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I am an applied physicist. I apply physics to
mathematics.
(S. Ulam)






Preface

This volume owes its creation to the conference “Stochastic and Infinite Dimen-
sional Analysis” held at ZiF, Bielefeld, on June 2013 for the 75th birthday of the
distinguished scientist Prof. Ludwig Streit. This event was organised to celebrate
his long ongoing work in these fields, to which he contributed as a forerunner. This
publication collects papers, mostly novel research, spanning the whole range of his
interests and activities in the past and future. A sizeable number of the contributions
do not stem from participants to the conference, and some of the contributions are
only vaguely related to the presentations given during the conference.

This book stands out as it combines the many guises in which infinite dimen-
sional analysis can occur like white noise analysis, Malliavin calculus, harmonic
analysis, fractional Brownian motion and operator theory. The different guises
stem from different viewpoints motivated by particular applications. Fittingly, this
collection gathers applications ranging from networks, stochastic partial differential
equations, superprocesses, stochastic dynamics on trees, moment problems, and
polymer physics to quantum field theory. They play a prominent role as test bed
for the mathematics as well as inspiration for the theory.

Prof. Ludwig Streit often recalls when he met S. Ulam and heard firsthand the
citation given at the beginning of this volume. This phrase may have made a strong
impression on Prof. Ludwig Streit since it actually perfectly summarises his working
style. The style of this volume can be considered in this spirit.

Jagna, Bohol, Philippines Christopher C. Bernido
Jagna, Bohol, Philippines M. Victoria Carpio-Bernido
Kaiserslautern, Germany Martin Grothaus
Reading, UK Tobias Kuna
Lisbon, Portugal Maria Jodo Oliveira
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Along Paths Inspired by Ludwig Streit:
Stochastic Equations for Quantum Fields
and Related Systems

Sergio Albeverio

Abstract The interaction between quantum mechanics, quantum field theory,
stochastic partial differential equations and infinite dimensional analysis is briefly
surveyed, referring in particular to models and techniques to which L. Streit has
given outstanding contributions.

Keywords Functional integration * Feynman path integrals ¢ Quantum field the-
ory ¢ Stochastic quantization ¢ Stochastic partial differential equations ¢ Infinite
dimensional integrals

1 Introduction

It is a great pleasure to present a contribution to this volume dedicated to Ludwig
Streit, on the occasion of his 75th birthday. I have written before in [3] about
Ludwig’s work and the strong influence it had on my own development. In the
present paper I will concentrate on some aspects relating quantum theory with
stochastic analysis and infinite dimensional analysis, stressing interactions between
these areas and mentioning some open problems.

In Sect. 2 I shall briefly describe the relations between oscillatory and probabilis-
tic integrals.

In Sect. 3 I shall describe canonical quantum mechanics from this point of view.

In Sect. 4 I shall discuss the complex relations between canonical quantum fields
and S(P)DEs, and also relate them with Euclidean (and relativistic) quantum fields.

In Sect. 5 I shall provide some remarks on related systems.
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2 S. Albeverio
2 Oscillatory and Probabilistic Integrals

Since the work of Feynman (preceded in part by Wentzell and Dirac), see, e.g.,
[2, 107-110], a very fruitful approach to quantum mechanics and quantum field
theory is based on the consideration of heuristic complex-valued measures of the
form

pr(dy) = <2715 dy” (1)

on a “state space” I', hence y € I', with an “action functional” S(y) : I' - R
associated with an underlying “classical system”, dy a “flat measure on ', i the
imaginary unit and Z a normalization constant.

Physical quantities of interest are then computed as “averages” (linear function-
als, integrals)

/F FOmr(dy) @)

of suitable “observable functionals” f : I' — C.

For example, to solve the Schrodinger equation for a non relativistic quantum
mechanical particle moving for a time from the interval [0,7], # > 0 on a D-
dimensional manifold M one takes as I a space of paths from [0, 7] into M.

For a quantum (scalar) field, vibrating for a time from the interval [0, 7] and in
a spatial (d — 1)-dimensional domain A C RY~! (d being then the space-time-
dimension) one takes I" as a space of paths from [0, 7] into a space of real-valued
(generalized) functions depending on a space variable x € A.

Analogous choices are made, e.g., for quantum gauge fields (with I" a space of
connection 1-forms in a principal fibre bundle over a Lorentzian manifold) and for
quantum gravity (with I" a space of locally Lorentzian space-time metrics).

In the case of scalar quantum fields, f could be a product of n € N field operators
]_[l’f=1 y(t,x;),t; € Rx; € R4~! in which case above integrals would yield “correla-
tion functions” (Wightman functions) associated with the quantum field y (¢, x) € R,
t € R, x € R¥!, Similar choices of relevant observable functions can be given in
the other cases alluded above. See, e.g., [1, 2, 9, 33, 48, 52, 78, 80, 107, 109, 110],
and references therein.

The choice of the action functional S depends on the problem at hand. In above
examples, S has a typical Lagrangian form, e.g., in the case of a non relativistic
particle (of unit mass) moving during the time interval [0, 7] in the D-dimensional
Euclidean space R” under the force given by a (continuous) potential (function)
v : R? — R one has:

500 = Son(n) = 5 [ BOF 65— [ oo as ®
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and for scalar quantum fields moving at arbitrary times s € R over the space R?~!
one has

1 - | - -
S0) = Sorn) = 5 [ s asii- [ wedfes @

2
_m_/ |y(s,z)\2 dsd?c—/ v(y(s, %)) ds dx,
2 R4 R4

(5,¥) e Rx R m>0.

From the quantum description given in terms of (1), (2), (3), and (4) one obtains
heuristically the classical (particle resp. field) mechanical one by inserting the
(reduced) Planck constant # at the right place, i.e. replacing S by %S and making
corresponding changes in the observable f in (2), and considering % to be small.

Heuristically then from (2) with such replacements one should be able to
derive from Feynman’s heuristic quantum description (1) and (2) the corresponding
classical description in the limit # | 0, with its corresponding “small A-corrections”.
In the case of relativistic models, the velocity of light ¢ appears as a parameter. Then
one should be able to recover the non relativistic limit of the relativistic quantum
description (1), (2), (3), and (4) by letting the velocity of light ¢ go to +00 (¢ occurs
implicitly in S and f). In principle one could proceed in similar ways to describe the
limiting dependence of the quantum averages (2) on other parameters occurring in
the action functionals and observables occurring in the examples mentioned above.

There are well known difficulties in trying to transform this heuristic approach
into a rigorous one. E.g., even in the case v = 0 (the “free field” case), in the
computation of (2), the covariance of the “complex Gaussian measure” given by the
covariance Sor(y)|y=o appears. It is, for m> = 1, the fundamental solution (O —
1)~!(s,X; s’; X’), which has a singularity on the submanifold (s—s')?>— (x—¥X)? = 1,
indicating that it should be interpreted as a generalized function, which then means
that the relevant y’s in (2) also are generalized functions. This creates difficulties
in giving mathematical meaning to the complex-valued non linear function f(y)
appearing in (2). In the linear case where v = 0, taking e.g. f to be of the Wick
product type, a sense can easily be given to (2). However, for v # 0 and neither
linear nor quadratic, v(y) is ill defined for y which are typical relative to the
complex Gaussian measure jr for the case v = 0.

There is a well known trick (going back to Nagumo, Schwinger, and Symanzik)
of analytically continuing ur to a corresponding “Euclidean” probability measure
(or functional) pg heuristically written as

pe(dy) = “Z7'e M dy” (5)
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with Sg(y) the “Euclidean” action (in contrast to the above relativistic or
“Minkowskian” action (4))

se0) = [[ v ol + 2 [[ v asai+ [[voo.or0sa
©

in which case the typical y’s in (5) become still heuristically generalized random
fields but at least ;g would look as a “positive measure”. This however, only really
solves the problem for v = 0 and arbitrary d, or special v % 0 whend = 2, 3. In this
case one interprets (g as a probabilistic (0-additive) Gaussian measure, e.g., with
support on the Schwartz tempered distributions space S'(R¢). For the mentioned
special cases of v # 0 and d = 2, 3, one manages, in fact, to “renormalize” the non-
sensical v(y (s, X)) to give it a sense as a genuine generalized random field, obtaining
non trivial quantum averages (2) (heuristically up # pr|y=0, that is, in particular,
states which are typically with respect to one of the measures are atypical with
respect to the other measure). Moreover from such averages one recovers by “ana-
lytic continuation” in the ¢ variable a solution of the original problem (1) and (2).

This was achieved in connection with the programme of constructive quantum
field theory [9, 71, 76, 78, 98, 106], to which Ludwig Streit contributed substantially
and in various ways, see, e.g., [16—18, 65, 78, 79, 81, 101, 102, 107]. Independently
of the proper methods of constructive quantum field theory, the original programme
of giving directly a meaning to (1) and (2) has also been solved in some cases. E.g.,
ur and (g can be defined for various classes of (regularized) v in low space-time
dimension d. The integral [ f(y) dur(y) is then realized as

) (S Puup)) sy (7

in the framework of the infinite dimensional distributional setting

(8) € L*(ue) € (), ®)
with pairing ((, )) and (S), (S)’ infinite dimensional analogues of the test functions

space S(R?) resp. tempered distributions space S'(R?). s is the Gaussian white
noise measure on S’(R¢), defined by its Fourier transform

o) i= [ & duaty) = e, ©)
S'(RY)

with (g, y) the distributional pairing between g € S(R?) and y € S'(R?).
Heuristically thus

ue(dy) = wz=1 =3 [aaly( dx dy”, 10
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and, e.g.,
, 1 2
() = 502 VT Sy (dy). (11)

For d = 1, i.e. for quantum mechanics (anharmonic oscillator for m > 0), the
functional ®,,,, in (7) and (11) is well defined for a large class of continuous v and
works for solving e.g. the problem of the Schrodinger equation with potential v and
with smooth resp. §-initial conditions (Green’s function) by work by L. Streit and
coworkers, see e.g. [74, 75] and, for a related approach [94].

Another approach to the rigorous construction of (1) and (2) (for d = 1, and also
for d > 2, but the latter with regularized v(y)-term in (4) resp. (6)) is presented in
[26].

In the latter reference also work on the detailed expansion of (2) in fractional
powers of # around # = 0 by a rigorous method of stationary phase is described
(for the case d = 1).

The relations between the white noise and other approaches are discussed, e.g.,
in [26, 39, 93, 94].

The analogues of Wightman functions in the Euclidean setting, called Schwinger
functions (they are the moment functions to ug), for d = 1, i.e. related to quantum
mechanics, have also been described in terms of white noise functionals, see [74,
75, 94]. Corresponding results for the case v = 0 and all d, or for some v # 0 and
d = 2, 3 will be discussed in the next Sects. 3 and 4.

For characterization of interesting probability measures as white noise function-
als (like pg and related measures) see, e.g., [88, 101, 102].

3 Canonical Quantum Mechanics

In the canonical approach to quantum mechanics (and resp. the theory of quantum
fields) one takes the “Schrodinger representation” of the Hilbert space of states and
operators acting in L?(R”, 11) resp. L?(S'(R%), i), for some probability measures .

By work of Heisenberg, Coester, Haag, Araki from the early 1960s one uses, e.g.,
for the D-dimensional harmonic oscillators, that L (R”) is isomorphic to L2(R”, 1),

where p(dx) = N(0;1)(dx) = (V27 ~De=31" dx is the canonical Gaussian

measure on R”. E.g., for D = 1 the Hamiltonian H given on smooth functions
by H = —%A + %xz - % acting in L*(R) is then unitarily equivalent to the operator
H, = —L, given on smooth functions by H,, = —%A +x-Vin L2(R, p).

L, can be interpreted probabilistically as the restriction to smooth functions
of the Ornstein-Uhlenbeck operator associated with the classical Dirichlet form
% J Vu-Vvdp, for u, v in a suitable dense subset of L?(R, ). For classical Dirichlet
forms (on R? and also on infinite dimensional spaces) see, e.g., [4, 7, 8, 10, 28, 34,
37,49,57,59, 66,69, 72,92]. Through the replacement of N(0; 1) by a more general,
not necessarily Gaussian probability measure i, one can set up a corresponding
transformation for the generator L,, (called Dirichlet operator) associated with the
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classical Dirichlet form % Jgp Vu-Vudu in L*>(RP, i) to a generator —H, H > 0 in
L*(RD).

This “ground state transformation” was first studied in details in [27], where
a general and powerful approach to singular interactions in quantum mechanics
on R? via Dirichlet forms has been initiated. E.g., 3 nucleons interacting via 2-
particle §-functions in R* can be rigorously defined and discussed in this approach.
This Dirichlet form approach yields, more generally, a unified picture of quantum
mechanics suited both for singular interactions and infinite dimensional extensions
(the analogues of above classical Dirichlet forms being naturally also defined on
infinite dimensional spaces; the latter forms describe namely quantum fields, see
Sect. 4).

Remark 3.1 The probabilistic technique of subordination permits to treat quantum
systems with relativistic kinematics in a way similar to those with nonrelativistic
kinematics, see [6, 4446, 50].

To general classical Dirichlet forms, there are (properly) associated good Markov
processes X = (X;), t > 0, see [69]. Intuitively these can be seen as Brownian
motions distorted by a drift term given by the logarithmic derivative of u, u itself
constitutes then an invariant measure for X;. In particular X; can be extended to a
u-symmetric process for all 7 € R.

In the quantum mechanical situation corresponding to (4) withd = 1, n = 1,
and D = 1, the path space measure pg for X;, ¢t € R (giving the joint distribution of
Xeys.., X)), ti € R, i = 1,...,n) is heuristically given by ug as specified in (5)

and (6) with a suitable v. If we write S°(y) := 1 [ [I)'/I2 (s) + |y(s)|2] ds, then

pp(dy) = 27 1e™S M= [vNds gy, (12)

This can be rigorously defined for suitable v, e.g. as a probability measure on
S’(R%). An analytic continuation in time of the (time ordered) moment functions
given by g (“Schwinger functions”) permits to go over to the corresponding
quantities in terms of ur (“Wightman functions”), e.g. for v resp. a polynomial
or exponential function. This yields the full information on the dynamical quantum
mechanical “P(g);” resp. “exp(¢)1”-“models”. Such models can also be expressed
conveniently in terms of the white noise functionals mentioned in Section 2 ([74]).

One proves that both quantum mechanical Schwinger and Wightman functions
can be reformulated as limits of quantities defined in the canonical Hilbert space
L>(R, N(0, 1)), since for v = 0 the restriction of i to the o-algebra generated by
X is just 4 = N(0, 1) (X, acts just in the same L2-space L*>(R, N(0, 1)) where also
H), and the CCR are realized) and the inclusion of the v-term can be handled by
“perturbation and passage to the limit”, see, e.g., [22, 23, 27, 55, 111].

Let us summarize the situation in quantum mechanics for a particle moving in
RP. As a zero step (“Level 0”) we have a (fixed time) Hilbert space, say L?(RP),
an Hamiltonian H, as well as position and momentum operators, with the relative
canonical commutation relations (CCR), and a fixed time distribution x on R? (that
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exists if the lower end of the spectrum of H is an isolated simple eigenvalue) which
yields the natural Hilbert space L>(R”, ). At a first step (“Level 1”) one has a
Markov process X; (diffusion) with values in R”, ¢ being the time parameter, its
path space measure g (on, say, S’(RP)), and its moments functions (Schwinger
functions). This process has p as invariant measure. In the case v = 0, m = 1,

the path measure is ug = N (0;C™'), with C the operator (—% + 1) 1, (on

S'(R,RP)), X, is the RP-valued Ornstein-Uhlenbeck process satisfying dX, =
—X,dt + dW,, with W; a D-dimensional Brownian motion. It is associated with
the classical Dirichlet form % f]R” Vu - Vvdu. For D = 1 this coincides with the
measure g given by (5) and (6), ford = 1 and m = 1. For v = 0 one has
ug = N(O; (=A + 1)~!) with A the Laplacian on R.

At “Level 2” one has another Markov process (diffusion) Y;, 7 > 0. For D = 1
this has pg (as just described at level 1 given by the D = 1, m = 1 version of
(5) and (6)), as invariant measure. The Markov process is given by the stationary

solution of the SDE d¥ (1) = (& = 1) ¥,()dz — v/(Y; () dz + AW (1), T = 0,
with dW,(¢) a (7, f)-Gaussian white noise, T € Ry, t € R.

7 can be interpreted as a “computer time” (¢ is the “time” in the Euclidean version
of quantum mechanics; it will be replaced by a space-time variable in R d > 2,
in a quantum field interpretation, see Sect.4, the quantum (particle) mechanics
corresponding thus to the case d = 1. The equation for Y; is called “stochastic
quantization equation”. It is a particular case of Parisi-Wu’s approach [100] for
computing invariant measures of the type of ug.

Note that Y; can be looked upon (as a modification of) the standard diffu-
sion process associated with the classical Dirichlet form % fs' VuVvdug =
% (5)((VMVU, HE))(S)’ given by ME.

The determination of the associated generator on smooth cylinder functions has
been given in [31, 32, 87] (based on previous results in [84, 85]).

We shall now briefly go over to describe similar Level 0-2 structures for quantum
fields, i.e. associated with (5) and (6) (with non trivial dependence on the space
variable ¥ € R¥™!, d > 2).

(RP)

4 Canonical Quantum Fields and S(P)DEs

We shall only discuss, for simplicity, scalar fields.

At Level 0 we have as the analogue of the position operators resp. momentum
operators in quantum mechanics, the time zero quantum field ¢(x), x € R?"! resp.
the time zero momentum field I1(X), satisfying the canonical commutation relations
(CCR)

R S
(M), ¢@)] = 3G -7, xyeRT (13)

on some suitable dense domain in some Hilbert space.
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Since the situation for the case v # 0 is quite complicated, because of the well
known problem of divergences, let us first consider the case where v = 0, i.e. the
case of free fields describing first Level 0-2 for this case. If v = 0 in Syr as given by
(4), then the natural Hilbert space for the CCR representation is L2(S'(R4~"), u%?),
with pLOE’O = N(0; (—Ay4—1 + 1)_%), the free time zero field measure (of mass 1),
which can be realized on S’(R¢~!). One shows that pLOE’O is the restriction to the o-
algebra generated by the time zero fields of the measure 1%, described heuristically
as 1l = Z7 1=t dy with

1 - - - -
Oy) = —/ / (‘)'/(s,x)|2 + ‘Vy(s,)c)‘2 + ‘y(s,x)‘z) ds dx. (14)
2 R JRI—1

w3 is realized rigorously as N(0; (—A4 +1)7!) on 8’ (R?). It is called the Euclidean
free field measure, see [98].

The above L>(S'(R4™), ,u%o) is naturally isomorphic to the Fock space (“second
quantization”), see [78].

Consider the classical Dirichlet form &(u,v) = % [ VuVv dp,OE’O, so that

E,v) = (u,—LHo,ov) for u,v in the relevant domains, in L? (,u%o) =
E
L*(S'(R4TY), ;1,0’0) with L 00 the associated Dirichlet operator. One has that

H® = —L 00 is self—ad_]omt (on its natural domain) and is a realization of the
Hamlltoman for the free relativistic quantum field. In an analogous way one can
consider the generators of the whole Poincaré group on space-time R x R4~

The generators of the Lorentz group are not positive, but can be shown to be
essentlally self-adjoint on smooth cylinder functions (by using the isomorphism of
Lz(,u ) with Fock space, i.e. second quantization).

Then one has a rigorous full implementation of canonical relativistic free
quantum fields in LZ(M%O), see [48].

Note that LM%O generates a diffusion process X;(x), t > 0,x € R4~ with state

space S’(R?!) satisfying the stochastic differential equation
X, = — [(—Ad_l + 1)%X,(})] dr + dw(®), 1> 0,% € R, (15)

dw;(¥) denotes the Gaussian white noise in the #- and ¥-variables.

This was first discussed in [23] and [81]. Note also that pLOE’O is the unique
stationary measure for X,(X).

The path space distribution of X,(¥) is the Euclidean free field measure u% =
N (0; (—Aga + 1)7') on §'(RY), as described above.

This has been discussed originally by K. Symanzik [112] and E. Nelson [98]
(and, in connection with statistics, by L. Pitt, [103]).

That the restriction of 1% to the o-algebra o (X,) generated by the time zero fields
Xo(-) can be identified with ,u%o due to the global Markov property of the Euclidean
free field [29, 38, 98, 104].
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The Level 2 is described by the SDE (SPDE)

dX:(y) = (Ag — DX (y) + dW: (), (16)

y € RY > 0 (r is a “computer time”, y the space-time variable). dW, (y) denotes
the Gaussian white noise in the t- and y-variables.

The invariant measure to X;(y) is ,u%. The SPDE (16) is called stochastic
quantisation equation (SQE) associated with the Euclidean free field (over RY).

Already for d = 2, in the case v # 0 the construction of Levels 0-2 is much
more complicated.

Levels 0 and 1 have been achieved first in models with exponential interaction
(for which v is of the form v(u) = *, |¢| < ay, for suitable &g > 0, u € R) with
renormalization, in [82] resp. [20] (see also [11, 21, 89]).

In the same period the case of v of polynomial type, with renormalization, was
achieved, see [71, 106], and references therein.

The model with v of trigonometric type was first discussed in [19] (with
regularization, see also [14]) and solved (with renormalizations) in [68] (see also
[14, 67]).

All models are covered and unified by the white noise calculus approach [16—-18].

Let us give a short summary of these constructions. At Level 0 one constructs a
non Gaussian ""* on S'(R4™"). At Level 1 one constructs the analogue of (12) for
quantum fields, i.e.

pip(y) =“Z7'e 5" dy”, (17)

with S(y) = S°(y) + [ v(y(s.X)) dsdx. (Thus p} coincides with the expression
given by (5) and (6)). At Level 2 the measure (i, appears as invariant measure for
the solution of the stochastic quantization equation (also called, in other contexts,
Allen-Cahn equation, see, e.g., [99], also related to the Ginzburg-Landau equation),
associated to Euclidean fields with interaction given by v:

dX.(y) = (Ag — DX, (y)dt —v' (X, (y))d7 + dw.(y), 7>0, ye R (18)

The associated classical Dirichlet forms given by the restriction pLZ’O of u}, to the o-
algebra of the zero fields, which is thus a measure on S’ (Rd_l), (coinciding with the
level 0 measure 1”%) resp. by p1% itself, yield in turn generators of Markov processes
(diffusions) X;(X) resp. X;(y), .7 > 0, X € R¥"!, y € RY, the latter solving (18).
The generator of X;(X) is identifiable (via a natural isomorphism) on smooth
cylinder functions with the Hamiltonian acting in L? (,uz’o), of the interacting

quantum fields, given the global Markov property of the Euclidean fields [29].
The generators of the Poincaré group are also realizable as self-adjoint operators
on L2(11%°) [21, 47].

Whether all generators are already determined on smooth cylinder functions is
a hard problem, only solved for the case X,(y) in a bounded region when d =
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2 [61, 90] (it has been solved in bounded and unbounded regions for d = 1 in
[31, 32, 87]).
For recent work on Level 2 for d = 2 with exponential interaction see [30, 31].

Remark 4.1 The SQE has also been studied intensively with noise regularized in
the y-variable and corresponding modified drift coefficient, so as to heuristically
maintain the same invariant measure.

See [41-43, 56, 60, 61, 64, 70, 83-86, 95-97, 99, 100, 105], and also e.g. [58] for
related problems.

For d = 3 partial results on Level 0-2 have been achieved for v which are of the
form of a 4-th power (with renormalization), see, e.g. the references in [36].

Recently solutions of the SQE of Level 2 has been constructed by different
methods in [77]. However the Markov character of the solutions (a property included
if one uses processes associated with Dirichlet forms) has not yet been discussed.

The difficulties in constructing solutions is related to the expected singularity of
pb with respect to 1% even in bounded regions (this has been proved rigorously in
[35] only for the restriction of these measure to the o-algebra generated by the time
zero fields).

Other types of relativistic models however also exist for all d including d =
4, provided one relaxes the axioms to the ones which have been introduced (by
Strocchi-Wightman and Morchio-Strocchi) for gauge fields, see the work [73] (in
white noise analysis) and [12, 13] (and references therein).

For the construction of gauge fields for d = 2 see [1, 24, 25, 47, 48] (and
references therein).

For d = 3 in the Euclidean case a model of gauge fields has been constructed
using pr (Chern-Simons model) [15, 47, 91], again using methods from white noise
analysis (to which Ludwig has fundamentally contributed).

5 Some Remarks on Related Systems

Methods related to the ones discussed in the preceding Sections can also be used in
other areas.

E.g., in recent years equations for neuronal dynamics of the FitzHugh-Nagumo
type have been discussed in [5, 6].

In the simplest version they describe a signal propagating along a single neuron
under the influence of external noise and of certain salts concentrations. They are of
the form of 2 coupled random variables, the components of a vector X € L2([0, 1]) x
L?([0, 1]) satisfying a SDE of the form dX, = AX; dt + F(X;) dt + e dw;, t > 0, with
w; space-time Gaussian white noise and ¢ > 0 a (small diffusion) parameter.

A is a diffusion operator, F'(x) is a non linear term, e.g., of the Fitz-Hugh-Nagumo

type F(x) = (_x(x_l)(x_g)’ 0<6< 1),xeR.
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Using dissipativity, in [5, 54] the existence, uniqueness of solutions and the
uniqueness of the invariant measure have been discussed, as well as the ¢ | 0
behaviour in terms of detailed asymptotic expansions, with I”-control, 1 < p <
+o00, on remainders.

The invariant measure is exhibited, as being of Gibbsian type with a density ¢~¢
with respect to pa, and G' = —F, where 4 is the invariant Gaussian measure
associated to the linear stochastic equation for F' = 0.

It is interesting that in the case of Gaussian white noise replaced by Lévy noise
also an invariant measure has been found in [6]. Its character is presently under
discussion.

In the finite dimensional case explicit invariant measures of related systems can
be constructed via an analogue of the general ground state transformation discussed
early in [27], see [6, 50]. Andrisani and Cufaro-Petroni [50] have interesting
applications, e.g. to the study of halo formation in intense beams of charged particles
in accelerators.

Stochastic pde’s of the form of those we have discussed in connection with
quantum field theory and neuronal dynamics also occur in many other areas,
including, e.g., hydrodynamics and polymer physics, to which Ludwig Streit has
given outstanding contributions. Let us mention, in particular, his work on the
Burgers equation [51] and his work on polymer-type measures, a prototype for the
latter being given by the Edwards’ model described heuristically by the invariant
measure

w(dy) = w71 = Jo fo 8 (s)=w(s) dxds/luo(dw)” (19)

Mo being Wiener measure for Brownian motion on R4, § the Dirac distribution, A a
(positive) constant, ¢ > 0. The Gibbs factor inhibits self-intersection of paths. For
such measures and related ones see, e.g., [9, 40, 62, 63].

Varadhan showed in [113] that setting L, = [ [s 8:(&(s) — o(s')) dsds’ with §,
a natural e-regularization of § one has that L, — E(L;) converges as € |, 0in L? (i)
to a limit L, in such a way that

IL = [Le — E(Lo)] ll124) < Ce® (20)
for some constant C > 0, for all @ < %

This implies in particular the existence of the polymer measure (., understood as
weak limit of i as ¢ | 0 defined by (19) with

L:= /OT/OIS((;)(S) —w(s'))dsds’ (21)

replaced by L, — E(L;).
The above estimate (20) has been improved to & < 1 in a recent publication by
Ludwig and coworkers [53].
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6 Conclusions

We have just been able to discuss a few of the many important developments
inspired, initiated and rigorously pursued by Ludwig Streit. I am very grateful to
Ludwig for having been a constant source of inspiration for me and many coworkers
since many years. I wish him many more years of good health, happiness, “frohes
Schaffen”.
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Detecting Hierarchical Communities
in Networks: A New Approach

Michael J. Barber

Abstract Agglomerative clustering is a well established strategy for identifying
communities in networks. Communities are successively merged into larger com-
munities, coarsening a network of actors into a more manageable network of
communities. The order in which merges should occur is not in general clear,
necessitating heuristics for selecting pairs of communities to merge. We describe a
hierarchical clustering algorithm based on a local optimality property. For each edge
in the network, we associate the modularity change for merging the communities it
links. For each community vertex, we call the preferred edge that edge for which
the modularity change is maximal. When an edge is preferred by both vertices that
it links, it appears to be the optimal choice from the local viewpoint. We use the
locally optimal edges to define the algorithm: simultaneously merge all pairs of
communities that are connected by locally optimal edges that would increase the
modularity, redetermining the locally optimal edges after each step and continuing
so long as the modularity can be further increased. We apply the algorithm to model
and empirical networks, demonstrating that it can efficiently produce high-quality
community solutions. We relate the performance and implementation details to
the structure of the resulting community hierarchies. We additionally consider a
complementary local clustering algorithm, describing how to identify overlapping
communities based on the local optimality condition.

Keywords Complex networks ¢ Communities * Agglomerative clustering

1 Introduction

A prominent theme in the investigation of networks is the identification of their
community structure. Informally stated, network communities are subnetworks
whose constituent vertices are strongly affiliated to other community members and
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comparatively weakly affiliated with vertices outside the community; several for-
malizations of this concept have been explored (for useful reviews, see Refs. [1, 2]).
The strong internal connections of community members is often accompanied by
greater homogeneity of the members, e.g., communities in the World Wide Web
as sets of topically related web pages or communities in scientific collaboration
networks as scientists working in similar research areas. Identification of the
network communities thus can facilitate qualitative and quantitative investigation
of relevant subnetworks whose properties may differ from the aggregate properties
of the network as a whole.

Agglomerative clustering is a well established strategy for identifying a hierarchy
of communities in networks. Communities are successively merged into larger
communities, coarsening a network of actors into a more manageable network
of communities. The order in which merges should occur is not in general clear,
necessitating heuristics for selecting pairs of communities to merge.

A key approach to community identification in networks is from Newman [3],
who used a greedy agglomerative clustering algorithm to search for communities
with high modularity [4]. In this algorithm, pairs of communities are successively
merged based on a global optimality condition, so that the modularity increases
as much as possible with each merge. The pairwise merging ultimately produces
a community hierarchy that is structured as a binary tree. The structure of the
hierarchy closely relates to both the quality of the solution and the efficiency of
its calculation; modularity is favored by uniform community sizes [5, 6] while rapid
computation is favored by shorter trees [7], so both are favored when the community
hierarchy has a well-balanced binary tree structure, where the sub-trees at any node
are similar in size. But the greedy algorithm may produce unbalanced community
hierarchies—the hierarchy may even be dominated by a single large community that
absorbs single vertices one-by-one [8], causing the hierarchy to be unbalanced at all
levels.

In this chapter, we describe a new agglomerative clustering strategy for identify-
ing community hierarchies in networks. We replace the global optimality condition
for the greedy algorithm with a local optimality condition. The global optimality
condition holds for communities ¢ and ¢’ when no other pair of communities could
be merged so as to increase the modularity more than would merging ¢ and ¢’
The local optimality condition weakens the global condition, holding when no pair
of communities, one of which is either ¢ or ¢/, could be merged to increase the
modularity more than would merging ¢ and ¢’. The essentials of the clustering
strategy follow directly: concurrently merge communities that satisfy the local
optimality condition so as to increase the modularity, re-establishing the local
optimality conditions and repeating until no further modularity increase is possible.
The concurrent formation of communities encourages development of a cluster
hierarchy with properties favorable both to rapid computation and to the quality
of the resulting community solutions.
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2 Agglomerative Clustering

2.1 Greedy Algorithms

Agglomerative clustering [9, 10] is an approach long used [11] for classifying
data into a useful hierarchy. The approach is based on assigning the individual
observations of the data to clusters, which are fused or merged, pairwise, into
successively larger clusters. The merging process is frequently illustrated with a
dendrogram, a tree diagram showing the hierarchical relationships between clusters;
an example dendrogram is shown in Fig. 1. In this work, we will also refer to the
binary tree defined by the merging process as a dendrogram, regardless of whether
it is actually drawn.

Specific clustering algorithms depend on defining a measure of the similarity of
a pair of clusters, with different measures corresponding to different concepts of
clusters. Additionally, a rule must be provided for selecting which merges to make
based on their similarity. Commonly, merges are selected with a greedy strategy,
where the single best merge is made and the similarity recalculated for the new
cluster configuration, making successive merges until only a single cluster remains.
The greedy heuristic will not generally identify the optimal configuration, but can
often find a good one.

2.2 Modularity

Agglomerative clustering has seen much recent use for investigating the community
structure of complex networks (for a survey of agglomerative clustering and other
community identification approaches, see Refs. [1, 2]). The dominant approaches
follow Newman [3] in searching for communities (i.e., clusters) with high modu-
larity Q. Modularity assesses community strength for a partition of the n network

Fig. 1 Dendrogram
representation of a cluster
hierarchy. Clusters of data are
pairwise merged into larger
clusters, with all data
eventually in the same cluster
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vertices into disjoint sets, and is defined [4] as

1 kik;
:%ZZ(AU_Z_H;) , (1)

c ij€c

where the A;; are elements of the adjacency matrix for the graph, m is the number of
edges in the graph, and k; is the degree of vertex i, i.e., k; = Zj Aj;. The outer sum
is over all clusters ¢, the inner over all pairs of vertices (i, ) within c.

With some modest manipulation, Eq. (1) can be written in terms of cluster-level
properties and in a form suitable as well for use with weighted graphs:
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Here, W, is a weight of edges internal to cluster ¢, measuring the self-affinity of the
cluster constituents; K, is a form of volume for cluster ¢, analogous to the graph
volume; and A is a scaling factor equal to 1/2m for an unweighted graph. Other
choices for A may also be suitable [6], but we will not consider them further.

Edges between vertices in different clusters ¢ and ¢’ may also be described at the
cluster level; denote this edge by (c, ¢’). Edge (c, ¢’) has a corresponding symmetric
inter-cluster weight w,/, defined by

Weer = )Y Ajj (6)

i€c jec’

Using w,.s, we can describe the merge process entirely in terms of cluster properties.
When two clusters # and v are merged into a new cluster x, it will have

W, =W, + W, + 2w, (7)
K. =K, +K, . (8)
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The inter-cluster weights for the new cluster x will be
Wiy = Wy + Wy )
for each existing cluster y, excluding # and v. The modularity change AQ,,, is
AQuy =24 (Wi — AKKy) . (10)

From Eq. (10), it is clear that modularity can only increase when w,,, > 0 and, thus,
when there are edges between vertices in u and v.

With the above, we can view a partition of the vertices as an equivalent graph
of clusters or communities; merging two clusters equates to edge contraction. The
cluster graph is readily constructed from a network of interest by mapping the
original vertices to vertices representing singleton clusters and edges between the
vertices to edges between the corresponding clusters. For a cluster ¢ derived from a
vertex i, we initialize W, = 0 and K. = k;.

2.3 Modularity-Based Greedy Algorithms

Newman [3] applied a greedy algorithm to finding a high modularity partition of
network vertices by taking the similarity measure to be the change in modularity
AQ,,. In this approach, AQ,, is evaluated for each inter-cluster edge, and a linked
pair of clusters leading to maximal increase in modularity is selected for the
merge. A naive implementation of this greedy algorithm constructs the community
hierarchy and identifies the level in it with greatest modularity in worst-case time
O ((m + n)n), where m and n are, respectively, the numbers of edges and vertices in
the network.

Finding a partition giving the global maximum in Q is a formally hard, NP-
complete problem, equivalent to finding the ground state of an infinite-range spin
glass [12]. We should thus expect the greedy approach only to identify a high
modularity partition in a reasonable amount of time, rather than to provide us with
the global maximum. Variations on the basic greedy algorithm may be developed
focusing on increasing the community quality, reducing the time taken, or both.

Likely the most prominent such variation is the implementation described by
Clauset et al. [7]. While neither the greedy strategy nor the modularity similarity
measure is altered, the possible merges are tracked with a priority queue imple-
mented using a binary heap, allowing rapid determination of the best choice at each
step. This results in a worst-case time of O (mhlogn), where # is the height of the
resulting dendrogram. Thus, the re-implementation is beneficial when, as for many
empirical networks of interest, the dendrogram is short, ideally forming a balanced
binary tree with height equal to |log, n], where | x| denotes the integer part of x. But
the dendrogram need not be short—it may be a degenerate tree of height n, formed
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when all singleton clusters are merged one-by-one into the same cluster. Such a
dendrogram results in O (mn log n) time, worse than for the naive implementation.

Numerous variations on the use of the change in modularity have been proposed
for use with greedy algorithms, with some explicitly intended to provide a shorter,
better balanced dendrogram. We note two in particular. First, Danon et al. [5]
consider the impact that heterogeneity in community size has on the performance of
clustering algorithms, proposing an altered modularity as the similarity measure for
greedy agglomerative clustering. Second, Wakita and Tsurumi [8] report encoun-
tering poor scaling behavior for the algorithm of Clauset et al., caused by merging
communities in an unbalanced manner; they too propose several modifications to
the modularity to encourage more well-balanced dendrograms. In both papers, the
authors report an improvement in the (unmodified) modularity found, even though
they were no longer directly using modularity to select merges—promoting short,
well-balanced dendrograms can promote better performance both in terms of time
taken and in the quality of the resulting communities.

Alternatively, the strategy by which merges are selected may be changed, while
keeping the modularity as the similarity measure, giving rise to the multistep greedy
(MSG) algorithm [13, 14]. In the MSG approach, multiple merges are made at each
step, instead of just the single merge with greatest increase in the modularity. The
potential merges are sorted by the change in modularity AQ,, they produce; merges
are made in descending order of AQ,,, so long as (1) the merge will increase
modularity and (2) neither cluster to be merged has already been selected for a merge
with greater AQ,,. The MSG algorithm promotes building several communities
concurrently, avoiding early formation of a few large communities. Again, this leads
to shorter, better balanced dendrograms with improved performance both in terms
of time and community quality.

When required for clarity, we will refer to the original greedy strategy as single-
step greedy (SSG). Additionally, we will restrict our attention to an implementation
following Clauset et al. [7].

3 Clustering with Local Optimality

3.1 Local Optimality

The SSG and MSG algorithms are global in scope, pooling information from across
the entire network to identify the clusters to merge that would lead to the greatest
increase in modularity. In contrast, the potential modularity change AQ,, is local in
scope and can be calculated (Eq. 10) using only properties of the clusters u and v.
It is thus instructive to consider what else can be said on a local scale about the
possible merges, particularly those selected in the SSG algorithm.

Let us assume that, at some stage in the SSG algorithm, clusters u and v are
identified as those to merge. As noted in Sect. 2.2, there must be an edge between
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the two clusters. Restricting our attention to the edges incident on u, the edge (u, v)
is distinguished from the edge to any other linked cluster x by leading to a greater
modularity change, so that

AQuy = AQuy Vx . 1rn)

Considering the edges incident on v leads to a similar preference for the edge (u, v)
over that to another linked cluster y, with

AQuw = AQy  Vy . 12)

Informally, the two clusters each have the other as the best choice of merge.

For any cluster with incident edges, at least one edge will satisfy a condition
analogous to those in Eqgs. 11 and 12. Call these the preferred edges for the vertex;
similarly, refer to the corresponding merge as the preferred merge. If an edge is
preferred for both vertices on which it is incident, call it and the corresponding
merge locally optimal. We illustrate preferred and locally optimal edges in Fig. 2.

The local optimality condition is based on softening the global optimality
condition used in the SSG algorithm, replacing a network-wide comparison of
potential merges with an assessment of how clusters relate to their neighbors. As
we will see, locally optimal edges occur frequently and can be used as the basis for
an agglomerative clustering algorithm.

Fig. 2 Preferred and locally optimal edges. Each edge is labeled with its modularity change AQ,,,,
which is the basis for determining the merge preferences shown with arrows. Edges with a single
arrowhead are preferred edges for the vertex at the tail of the arrow, but not for the vertex at the
head of the arrow. Edges with arrowheads at each end are preferred for both vertices; these are
locally optimal edges. Those edges without arrowheads are not preferred by either of the linked
vertices
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3.2 Greedy Clustering Using Local Optimality

We can base an agglomerative clustering algorithm on merging along the locally
optimal edges in the network, determining whether any edges become locally
optimal as a consequence, and repeating this until no locally optimal edges remain.
With such an approach, we discourage the formation of unbalanced dendrograms by
allowing multiple merges to occur concurrently, thus favoring shorter dendrograms
and—given a suitable implementation—more efficient computation. The approach
lies somewhere between SSG and MSG clustering, featuring concurrent formation
of clusters like MSG, but selecting merges with a generalization of the condition in
SSG.

For the most part, it is straightforward to define a precise algorithm from this idea.
One complication is the presence of vertices with multiple locally optimal edges
incident upon them. These edges can lead to, for example, a state where edges (u, v)
and (u, w) are locally optimal, but (v, w) is not locally optimal. Thus, if we make
both locally optimal merges, we produce a combined cluster of {u, v, w} which also
includes the locally suboptimal merge. But to exclude merging v and w, we must
then only make one of the locally optimal merges. In this work, we adopt the latter
approach, arbitrarily selecting one of the locally optimal merges.

The resulting algorithm is:

1. For each edge (u, v), evaluate AQ,,, .

2. For each vertex v, identify the maximum modularity change AQy** from all
incident edges.

3. For each edge (u,v), determine if it is locally optimal by testing AQ,, =
AQT™ = AQP™. If, in addition, AQ,, > 0, edge (u, v) is a candidate merge.

4. If there are no candidate merges, stop. Otherwise, for each candidate, merge the
corresponding clusters, so long as neither cluster has so far been changed in the
current iteration.

5. Begin a new iteration from step 1.

The order of iteration in step 4 will have an effect on the resulting community
hierarchy when vertices have multiple locally optimal edges. In the implementation
used in this work, we iterate through the edges in an arbitrary order that is
uncorrelated with the modularity changes AQ,,. As the algorithm greedily selects
edges based on local optimality, we call it GLO clustering—greedy, local optimality
clustering.

When the GLO algorithm terminates, no remaining edge will support a positive
change in modularity; otherwise, one or more edges (, v) would have AQ,, > 0,
and thus there would be at least one candidate merge—that edge with the greatest
AQ,y. The clusters at termination have greater modularity than at any earlier
iteration in the algorithm, since merges are only made when they increase the
modularity.

Note that the GLO algorithm generally terminates only having formed the sub-
trees of the dendrogram for each cluster rather than the full dendrogram with single
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root. If the full dendrogram is needed, additional cluster merges can be made by
using an alternate greedy algorithm. Here, we follow the above steps for GLO
clustering, but drop the requirement that AQ,, > 0—all locally optimal edges
become candidate merges. This laxer condition is always satisfied by at least at
least the edge with greatest AQ,,, so the merge process continues until all edges
have been eliminated and only a single cluster remains.

Implementing the GLO algorithm presents no special difficulties. The needed
properties of the clusters (W,, K,, and w,,) can be handled as vertex and edge
attributes of a graph data structure. Straightforward implementation of the above
steps can be done simply by iterating through the m edges, leading to O (m)
worst-case time complexity for each of the p iterations of the merge process,
or O (mp) overall worst-case time complexity. A simple optimization of this
basic implementation strategy is to keep track of the AQ)™ values and a list of
corresponding preferred edges, recalculating these only when merges could lead to
changes; this does not change the worst case time complexity from O (mp), but does
notably improve the execution speed in practice.

The above estimates of time complexity have the shortcoming that they are given
not just in terms of the size of the network, but also in terms of an outcome of the
algorithm—the number of iterations p. There is no clear a priori relation between p
and the network size, but we may place bounds on p. First, the algorithm merges at
least one pair of clusters in each iteration, so p is bounded above by n. Second, the
algorithm involves any cluster in at most one merge in an iteration, so p must be at
least the height 4 of the dendrogram. This gives

n>p>h>|log,n| . (13)

Runtime of the algorithm is thus seen to be dependent on the structure of the cluster
hierarchy found, with better performance requiring a well-balanced dendrogram. We
do have reason to be optimistic that p will be relatively small in this case: a well-
balanced dendrogram results when multiple clusters are constructed concurrently,
which also requires fewer iterations of the algorithm.

3.3 Local Clustering Using Local Optimality

Although all merging decisions in GLO clustering are made using only local
information, the algorithm is nonetheless a global algorithm—the clusters possible
at one point in the graph are influenced by merges concurrently made elsewhere in
the network. Yet we may specify a local clustering algorithm: starting from a single
vertex, successively merge along any modularity-increasing, locally optimal edges
incident upon it, stopping only when no such locally optimal edges remain. In this
fashion, the modularity—an assessment of a partition of the vertices—may be used
to identify overlapping communities.
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This local algorithm functions by absorbing vertices one-by-one into a single
cluster. Unfortunately, this is exactly the behavior corresponding to the worst case
behavior for the SSG and GLO algorithms, producing a degenerate binary tree as the
dendrogram whose height is one less than the number of vertices in the community
and conceivably is one less than the number of vertices in the graph. The expected
time complexity is thus quadratic in the resulting community size. Worse still,
characterizing all local clusters for the graph may require a sizable fraction of the
vertices to be so investigated, giving a worst-case time complexity that is cubic in
the number of vertices of the graph. Such an approach is thus suited for networks of
only the most modest size.

A compromise approach is possible using a hybrid of the agglomerative and local
approaches. First, determine an initial set of clusters using the GLO algorithm.
Second, for each community, expand it using local clustering, treating all other
vertices as belonging to distinct singleton clusters. The hybrid algorithm is still
quite slow (and leaves the worst-case time complexity unchanged), but fast enough
to provide some insight into the overlapping community structure of networks with
tens of thousands of vertices.

4 Results

4.1 Model Networks

To begin, we confirm that the GLO clustering algorithm is able to identify
network communities by applying it to randomly generated graphs with known
community structure. We make use of the model graphs proposed and implemented
by Lancichinetti et al. [15]. We generate 1000 random graphs using the default
parameter settings, where each random graph instance has 1000 vertices with an
average degree of 15.

In Table 1, we show some characteristics of the results of clustering algorithm,
comparing the results to those for SSG and MSG clustering. For the model networks,
GLO produces community solutions that have a greater number of communities,
on average, than either SSG or MSG. The average modularity is greatest with
SSG, with GLO second and MSG lowest. Modularity values are sufficiently high
to indicate that GLO clustering is able to recognize the presence of communities in
the model networks.

While modularity characterizes clustering, it does not directly measure the
accuracy of the clusters. We instead assess accuracy using the normalized mutual
information I,om. For the joint probability distribution P (X,Y) over random
variables X and Y, o (X, Y) is

_AEXY)
Iiom (X, Y) = HOTHD (14)
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Table 1 Algorithm performance with model networks. Values are computed by averaging over
clustering results from 1000 realizations of the random graphs proposed by Lancichinetti et al.
[15], with default parameter settings. Results shown are for the highest modularity clusters in the
generated hierarchies, with the number of clusters in the partition, the corresponding modularity Q,
the normalized mutual information /o, comparing the algorithm output to the known community
assignments, and the height & of the dendrogram (optimal height would be 9). Uncertainties for
the final significant digits are shown parenthetically. All values in each column differ significantly
(p < 0.001)

Algorithm Clusters (0] Lhorm h

SSG 16.16(5) 0.7155(2) 0.8481(6) 124.1(5)
GLO 25.55(5) 0.6904(2) 0.8379(5) 38.3(1)
MSG 15.70(5) 0.5673(5) 0.6457(8) 11.94(2)

where the mutual information 7 (X, Y) and entropies H (X) and H (Y) are defined

P(X.Y)

I(X.Y)=) P(X, Y)logm (15)
X,y
H(X)= - P(X)logP(X) (16)
H(Y)=-) P(¥)logP(Y) . (17)
S

InEqgs. (14), (15), (16), and (17), we use the typical abbreviations P (X =x,Y =y) =
P(X,Y),P(X=x)=P(X),and P(Y =y) = P(Y). The base of the logarithms in
Egs. (15), (16), and (17) is arbitrary, as the computed measures only appear in the
ratio in Eq. (14).

To assess clustering algorithms with I (X, Y), we treat the actual community
membership for a vertex as a realization of a random variable X and the community
membership algorithmically assigned to the vertex as a realization of a second
random variable Y. The joint probability P (X, Y) is defined by the distribution of
paired community membership over all vertices in the graph. We can then evaluate
Lorm (X, Y), finding a result that parallels the modularity: SSG on average obtains
the greatest normalized mutual information, with GLO second and MSG the lowest.
The high value for I, (X, Y) indicates that GLO clustering assigns most vertices
to the correct communities.

As GLO clustering attempts to improve performance by favoring well-balanced
dendrograms, we also assess the balance of the dendrograms using their height.
Since a dendrogram is a binary tree, the optimal height for a graph with n vertices
is just the integer part of log, n; the extent to which the dendrogram height exceeds
this value is then indicative of performance shortcomings of the algorithm. The
random graphs considered in this section have 1000 vertices, and therefore the
optimal height is 9. The results are essentially what one would expect: SSG,
which does not attempt to favor merges leading to balanced dendrograms, produces
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the tallest dendrograms on average; MSG, which aggressively makes concurrent
merges, produces the shortest dendrograms; and GLO, which makes concurrent
merges more selectively than MSG, produces dendrograms with heights on average
between those resulting from SSG and MSG.

4.2 Empirical Networks

Based on the model networks considered in the preceding section, it appears that
SSG produces the best community solutions of the three clustering algorithms
considered. But we are ultimately not interested in model networks—it is in the
application to real networks that we are concerned. In this section, we consider
algorithm performance with several commonly used empirical networks.

The networks considered are a network of friendships between members of
a university karate club [16]; a network of frequent associations between dol-
phins living near Doubtful Sound, New Zealand [17]; a network of character
co-appearances in the novel Les Misérables [18]; a network of related purchases
of political books during the 2004 U.S. presidential election [19]; a network of
word adjacency in the novel David Copperfield [20]; a network of American college
football games played during the Fall 2000 season[21]; a network of collaborations
between jazz musicians [22]; a network of the neural connections in the C. elegans
nematode worm [23]; a network of co-authorships for scientific papers concerning
networks [20]; a network of metabolic processes in the C. elegans nematode
worm [24]; a network of university e-mail interactions [25]; a network of links
between political blogs during the 2004 U.S. presidential election[26]; a network
of the western U.S. power grid [23]; a network of co-authorships for scientific
preprints posted to the high-energy theory archive (hep-th) [27]; a network of
cryptographic keys shared among PGP users [28]; a network of co-authorships for
scientific preprints posted to the astrophysics archive (astro-ph) [27]; a network of
the structure of the internet, at the level of autonomous systems [29]; and three
networks of co-authorships for scientific preprints posted to the condensed matter
archive (cond-mat), based on submissions beginning in 1995 and continuing through
1999, 2003, and 2005 [27]. Several networks feature weighted or directed edges;
we ignore these, treating all networks as unweighted, undirected simple graphs.
Not all of the networks are connected; we consider only the largest connected
component from each network. The networks vary considerably in size, with the
number of vertices n and number of edges m spanning several orders of magnitude
(Table 2).

We apply SSG, MSG, and GLO clustering algorithms to each of the empirical
networks. In Table 3, we show properties of the clusterings produced by each
of the algorithms. The properties of the community solutions differ notably from
those for the random model networks. The number of clusters produced by GLO
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Table 2 Empirical networks Network

under consideration. The & m
number of vertices n and Karate club 34 78
edges m in each network are Dolphins 62 159
shown Les Misérables 77 254
Political books 105 441
Word adjacency 112 425
Football 115 615
Jazz 198 2742
C. elegans neural 297 2148
Network science 379 914
C. elegans metabolic 453 2040
Email 1133 5452
Political blogs 1222 16,717
Power grid 4941 6594
hep-th 5835 13,815
PGP users 10,680 24,316
cond-mat 1999 13,861 44,619
astro-ph 14,845 | 119,652
Internet 22,963 48,436
cond-mat 2003 27,519 | 116,181
cond-mat 2005 36,458 | 171,735

clustering no longer exceeds those for SSG and MSG clustering. Instead, the three
algorithms produce similar numbers of clusters for the smaller networks, with
the SSG algorithm yielding solutions with the greatest number of clusters for
the largest networks. As well, the GLO algorithm tends to produce the greatest
modularity values, exceeding the other approaches for 15 of the 20 empirical
networks considered, including all of the larger networks.

The dendrograms produced for the empirical networks parallel those for the
random networks. The dendrograms resulting from the SSG algorithm are the
tallest, those from the GLO algorithm are second, and those from MSG the shortest.
The SSG algorithm often produces dendrograms far taller than the ideal for a graph
with a given number n of vertices.

The differences between the dendrograms suggests the abundant presence of
locally optimal edges in the empirical networks. We verify this by counting the
number of candidate merges in the network for each iteration of the GLO and SSG
algorithms. In Fig.3, we show the number of candidate merges for the astro-ph
network; the other empirical networks show similar trends.
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Table 3 Comparative performance of agglomerative clustering algorithms. For each network and
each algorithm, shown are the number of clusters found, the modularity Q, and the dendrogram
height 4. Additionally shown for 4 is the minimum height for a dendrogram for the network
Network Clusters (0] h

SSG | GLO | MSG |SSG |GLO |MSG |SSG |GLO |MSG | min

Karate club 3 4 0.381 | 0.387 | 0.381 9 10 8| 6
Dolphins 4 3 4 0.495 | 0.491 | 0.492 18 10 716
Les Misérables 5 6 6 0.501 | 0.556 | 0.536 21 13 11 | 7
Political books 4 5 4 0.502 | 0.524 | 0.506 48 18 8 | 7
Word adjacency 7 7 8 0.295 | 0.289 | 0.252 23 13 8 | 7
Football 7 8 5 0.577 | 0.564 | 0.487 27 14 8 | 7
Jazz 4 4 4 0.439 | 0.424 | 0.363 65 33 10 | 8
C. elegans neural 5 6 5 0.372 | 0.388 | 0.333 | 110 35 17 | 9
Network science 19 | 18 |16 0.838 | 0.843 | 0.836 47 18 13 | 9
C. elegans metabolic | 11 10 9 0.404 | 0.428 | 0.400 | 121 43 13 | 9
Email 14 | 11 |10 0.510 | 0.553 | 0.487 | 333 60 16 |11
Political blogs 11 7 |10 0.427 | 0.420 | 0.406 | 631 | 316 77 |11
Power grid 40 | 41 |39 0.934 10935 | 0.930 | 79 35 27 |13
hep-th 76 | 56 |51 0.791 | 0.815 | 0.794 | 816 82 28 |13
PGP users 176 | 120 |95 0.855 | 0.874 | 0.860 | 904 | 181 | 139 |14
cond-mat 1999 165 | 77 |71 0.764 | 0.827 | 0.801 | 2005 | 115 40 |14
astro-ph 138 | 51 |38 0.622 | 0.708 | 0.642 | 3576 | 279 60 |14
Internet 43 | 32 |28 0.630 | 0.653 | 0.644 | 3517 | 1635 | 1209 |15
cond-mat 2003 316 | 81 |67 0.671 | 0.740 | 0.690 | 5893 | 297 90 |15
cond-mat 2005 472 | 77 |70 0.646 | 0.704 | 0.645 | 6857 | 570 | 119 |16

We additionally applied the local clustering scheme described in Sect.3.3,
expanding the clusters found for the empirical network. In each case, some or all
of the clusters are expanded (Table 4), leading to overlapping communities. As a
measure of the degree of cluster expansion, we define a size ratio R as

RlenC , (18)

n c
where 7, is the number of vertices in the expanded cluster c. The size ratio equals the
expected number of clusters in which a vertex is found. Values of R for the empirical
networks are given in the final column of Table 4.
The clusters do not expand uniformly. We illustrate this in Fig.4 using the
astro-ph network. In this representative example, numerous clusters expand only
minimally or not at all, while others increase in size dramatically.
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Fig. 3 Number of locally optimal edges. For the astro-ph network, we show the number of locally
optimal edges that are candidate merges at each iteration of the algorithm. As the algorithm is not
always able to merge all the candidates, also shown are the actual number of merges made at each
iteration. For comparison, we also show, for the SSG algorithm, the number of locally optimal
edges that would be candidate merges in GLO clustering

Table 4 Cluster expansion
using hybrid algorithm,

consisting of the GLO

clustering algorithm followed
by expansion using the local
clustering algorithm. Shown
are the number of clusters
found in the GLO stage, the
number of those clusters that
increase in size in the local
clustering stage, and the size
ratio R showing an average

expansion

Network

Karate club
Dolphins

Les Misérables
Political books
Word adjacency
Football

Jazz

C. elegans neural
Network science
C. elegans metabolic
Email

Political blogs
Power grid
hep-th

PGP users
cond-mat 1999
astro-ph

Internet
cond-mat 2003
cond-mat 2005

Clusters
4

(o NI R RN R RV RReo WAV ]

10
11

41
56
120
71
51
32
81
71

Expanded | R
1 1.18
1 1.02
4 1.38
5 1.97
6 1.31
7 1.43
4 1.51
6 2.33
11 1.33
9 1.96
11 2.64
3 1.01
23 1.01
45 4.48
43 2.37
61 6.83
45 8.20
22 2.45
63 9.39
58 8.31
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Fig. 4 Expansion of astro-ph communities with hybrid algorithm, consisting of the GLO cluster-
ing algorithm followed by expansion using the local clustering algorithm. Each point corresponds
to a single cluster, with the location showing the number of vertices in the cluster as determined
in the GLO stage and after the local clustering stage. The line shown indicates no expansion; all
points necessarily lie on or above the line

5 Conclusion

We have described a new agglomerative hierarchical clustering strategy for detect-
ing high-modularity community partitions in networks; we call this GLO clustering,
for greedy, local optimality clustering. At the core of the approach is a locally
optimality criterion, where merging two communities ¢ and ¢’ is locally optimal
when no better merge is available to either ¢ or ¢’. The cluster hierarchy is then
formed by concurrently merging locally optimal community pairs that increase
modularity, repeating this until no further modularity increases are possible. As all
decisions on which communities to merge are based on purely local information, a
natural counterpart strategy exists for local clustering.

The motivation for GLO clustering was to improve the computational perfor-
mance and result quality of community identification by favoring the formation
of a better hierarchy. The performance improvements have been largely achieved.
The hierarchical structure, as encoded in the dendrogram, is considerably better
balanced than that produced by SSG clustering, with corresponding improvements
in computational performance observed for both model and empirical networks. The
hierarchies produced by GLO clustering are moderately worse than those produced
by MSG clustering, which is far more aggressive about making merges.

In terms of the modularity of the community solutions, the best results are found
for the model networks using SSG clustering. But the results with the model are not
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borne out in reality—the highest modularity solution is found with GLO clustering
for 15 of the 20 empirical networks considered, including the eight largest networks.

Overall, the local optimality condition proposed in this paper appears to be a
good basis for forming clusters. We can gain some insight into this from the local
clustering algorithm. For each of the empirical networks considered here, there is
some overlap of the communities, with several networks showing a great deal of
community overlap. The borders between communities are then not entirely well
defined, with the membership of particular vertices depending on the details of the
sequence of merges performed in partitioning the vertices. The concurrent building
of communities in GLO clustering seems to allow suitable cores of communities
to form, with the local optimality condition providing a useful basis for identifying
those cores.

Several directions for future work seem promising. First, the local clustering
algorithm described in Sect.3.3 has worst-case time complexity O (n3) and is
thus unsuited to investigation of large networks; a reconsideration of the local
algorithm may lead to a method suited to a broader class of networks. Second, we
observe that nothing about GLO clustering requires that it be used with modularity,
so application of GLO clustering to community quality measures for specialized
classes of networks, such as bipartite networks [30], may prove beneficial. Finally,
we note that GLO clustering need not be used with networks at all; application to
broader classes of data analysis could thus be explored, developing GLO clustering
into a general tool for classifying data into an informative hierarchy of clusters.
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Transition Probabilities for Processes
with Memory on Topological Non-trivial Spaces

Christopher C. Bernido and M. Victoria Carpio-Bernido

Dedicated to Ludwig Streit on his 75th birthday.

Abstract Stochastic processes with memory subjected to a periodic boundary
condition are investigated. The transition probability function for some types of
memory behavior is calculated by summing over all possible paths within a white
noise functional integral framework. Specific examples such as processes in spaces
with circular topology and wedges are discussed.

Keywords Stochastic processes with memory ¢ Circular topology * Wedge
boundary

1 Introduction

In modeling natural phenomena, we often encounter physical systems which exhibit
topological constraints. An illustrative example would be diffusion on a plane with a
point singularity, or spaces with circular geometry, where the direction of diffusion
can be clockwise or counterclockwise generating topologically inequivalent paths
with periodic boundary condition [1, 2]. Similarly, a particle diffusing in a regular
lattice could encounter a repetition of events at each lattice point. These types of
paths have previously been treated as a path integral for Markov processes and
for quantum systems [1-6]. In this paper, we incorporate memory which modifies
the stochastic process using a memory function for more realistic applications as a
system evolves from an initial time # = O to a final time 7. Specifically, we consider
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a randomly fluctuating variable parametrized as,
0 =x+ [fE=0h000d, 1)
0

where, f (t — t) is a memory function, /4 (¢) a function of time, and w (7) a Gaussian
white noise. The calculus of white noise as “velocity” of the Brownian motion,
i.e., w (f) = dB(t) /dt, has been extensively developed [7-9]. In the special case
where, f (t —1) = h(t) = 1, Eq.(1) becomes, x(t) = xo + B(t), where B (1)
is ordinary Brownian motion. This parametrization by Brownian paths B (¢) has
been successfully applied in discussing the Feynman integral in quantum mechanics
[7, 10-13] including those with boundaries [5, 14].

We show in the next section that the conditional probability density function for
random variables parametrized as Eq. (1) may be evaluated as a sum over paths
where f (t — ) and h (r) are chosen to suit a given physical system one wants to
model [15, 16]. We shall discuss, in particular, a topologically constrained process
in a circle and, in Sect. 5, in a space with a wedge-shaped boundary. We begin in the
next section by discussing systems endowed with memory in spaces with circular
geometry.

2 Stochastic Process with Memory on a Circle

In analogy to Eq. (1), let us consider the angular variable, 0 < ¢ < 2,
s@=m+ [Fe=0 b0 00 d @
0

where, ¢ is the initial point, f (t — #) is a memory function, and w (¢) the Gaussian
white noise [7]. For a process which starts at ¢y and ends at ¢, there are actually
numerous possible routes since it may go clockwise or counterclockwise, as well as
go around the circle n times before ending at ¢;. Given Eq. (2) we, therefore, look at
all paths which satisfy the delta function constraint which pins ¢ (t) at the endpoint

¢1, 1.e.,
50 (1) — ) =38 <po—¢1+/f(t—t)h(t)w(t) ar| . 3)
0

To evaluate the probability density function, given that there are topologically
inequivalent paths on a circle, we sum Eq. (3) over all histories or all possible paths
with endpoints ¢y and ¢y, i.e.,

+o00
Y Sp@—pi+2wn) 1 n=0,£142,.... @)

n=—oo
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where n is a winding number. Note that, Eq. (4) is the version of Eq.(3) on the
covering space, i.e., one considers R as built up from infinite repetitions of the
interval [0, 2) coding the winding number n in this way. We can then evaluate
the expectation value of Eq. (4) and get the probability that indeed ¢ (7) ends at ¢;
at time 7, if it started at ¢y. We have,

+o0
P(p1,7;90,0) = IE( Z 3 (p(t) — ¢ +27m))

n=—0o0

n=—0o0

+00
/( > 5(<p(f)—<p1+2nn))du

_ ¥ [560@ =1+ 200 a )

n=—0oo

We express the delta function in terms of its Fourier representation such that,

Pt = 3 [ o [ ewlitto @~ + 2l dka

n=—0oo

Z / — eXP [ik (g0 — @1 + 27n)]

x/exp ikO/f(r—t) h(t) w(r) dt| du, (6)

where we used Eq. (2) for ¢ (7). The integration over du is done by applying [7],

/exp (z/w ®E® dt) du(w) = exp (—% / £2(1) dt) , @)

for the characteristic functional, where & (1) = k yjor (t) f (t —t) A (¢), with x4 (1)
denoting the characteristic function of the set A. Hence, we obtain,

P (g1, t:90.0) = Z / Py exp [ik (9o — 1 + 27n)]

n=—0o0

X exp —k—/[f(r—t)h(t)] dar| . ()

0
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The remaining integral over k is a Gaussian integral which could be evaluated to
yield,

+o00
P(p1,7:¢0,0) = Y Pu(p1,7:90,0) ©)

n=—0o0

with n indicating the number of times a path winds around the circle for the partial
probability density,

Nl—

T

Po (01, 7:90,0) = | 27 / F (c = h@OF dr

0
_ 271)?
X exp E‘/’O @1 + 27n) (10)
2[1f @ =Dh@) di
0
Alternatively, from Eq. (8), we can apply the Poisson sum formula [17],
1 +o00 +o0
o _Z exp (ing) = _Z 8 (¢ + 27m) (11)
n=—0o0 m=—00
to obtain the expression,
1 Foo +oo
P (g1 tig0.0) = —— > / 8 (k + m) exp [ik (po — ¢1)]
7 m=—o0 Y ~X
T
X exp ~7 [f (=0 h(0)]" dt|dk. (12)
0
The integration in Eq. (12) is facilitated by the delta function to yield,
1 +o00
Plp1,i90,0) = — 3 expl—im(go— )]
m=—00
m? A
X exp —7/[f(t—t)h(t)]2 dr| . (13)

0
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The probability density function Eq. (13) can be expressed as,

+o00

Z qm2 exp (i2mu)

m=—0oQ

1
2

P (1, 7: 90, 0)

1
= 2—®3 (u, q) (14)
b4

where O3 (u, g) is a Theta function [19], g = exp [—% fOT [f (x — 1) h(n)] dt], and,

u = —(¢o — ¢1) /2. Note that, we could also write,
S 2
O3, q) =142 ¢" cos(2mu) . (15)
m=1

3 Winding Probabilities

One can also evaluate the winding probability W, from Egs. (10) and (14), i.e.
[15, 16],

Pn 7; 50
W, = (®1, 73 90,0)

P (¢1,T; 0, 0)
2 (0o — @1 + 27m)2
= - exp — -
Of[f (t—0h@) dt 20f[f (t—0h@) dt
x [0 (u. )] " (16)

Note that the winding probability W, depends on the memory function f (t — ¢) and
function £ (¢) one chooses to model a given system.

4 Memory Functions

Further simplification of the probability density function Eq. (13), or the winding
probability Eq. (16) would now depend on the explicit choice of f (t — ¢) and 4 (¢).
There are many possible choices and we now consider a few examples.
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4.1 Fractional Brownian Motion

A familiar case of a memory function is,

_ (‘C _ t)H—l/2
f(r—t)—m, (17)
with & (f) = 1 such that Eq. (2) becomes,
Fo NH-1/2
o =g+ [0 ar. (18)

T'(H+1/2)
0

where H is the Hurst exponent characterizing sub-diffusion for, 0 < H < 1/2, and
super-diffusion for 1/2 < H < 1. Note that, for H = 1/2, Eq. (18) becomes that
of ordinary Brownian motion. With this choice, the probability density function for
n-times winding, Eq. (10), becomes,

HT2(H+1)
Py (g1, T:90.0) = T
HT?(H+ 3) (g0 — o1 + 27n)’
XeXp{— ( 2)?;;)1 @1 ) ' (19)

This P, (¢1, T; @0, 0) when used in Eq. (9) gives the conditional probability function
for ¢ (7) ending at ¢;, given that at time r = 0 it was at ¢y. Note that Eq. (17)
allows us to write the path parametrization Eq. (18) as, ¢ () = ¢o + B (7), where
B (1) is a fractional Brownian motion in the Riemann-Liouville fractional integral
representation defined by [18],

1 [ B
B (1) = m 0/ (t—=0""V2dB(r). (20)

4.2 Bessel-Modified Brownian Motion

For memory function f (t — ¢) and multiplication function £ (¢), oscillatory func-
tions can also be considered such as,

fe—t=cost(t—1) : ht)= T 1)
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where J, (?) is a Bessel function of the first kind and, for simplicity, we take, 0 <
(t — 1) < /2. For this case, the random path representation Eq. (2) becomes,

¢ (r) =@+ B (1)

T

~ % +/COS% (=) VT @) w (1) dr.

0

With Eq. (6.674.8) of Ref. [19], this yields for Eq.(10) the probability density
function for n-times winding,

P, (%1,7;¢0,0) =

_ (9o — o1 + ZJrn)z) (22)

1
arth@ " ( 2040 (1)

Using this in Eq. (9) gives the transition probability function for random paths with
endpoints ¢y and ¢;.

4.3 Exponentially-Modified Brownian Motion

Other examples are memory functions of the form,

fa=n=@-n""2, (23)
and multiplication factors,
e~ B2
h(t) = pre Y (24)
The path parametrization of Eq. (2) acquires the form,
¢ (1) = go + B (1)
’ -1/2 —
—+ [ v @
0

The process has short-memory behavior for 0 < p < 1, and long-memory for
1 < w. Using Eq. (3.471.3) of Ref. [19], the probability density function Eq. (9) has
a partial probability density P, (¢1, T; ¢o, 0) given by,

#12gP /2t weBl (0 — 2n)?
P, (¢1,7;90,0) = p-e ex _,3 eP’t (po — @1 —}_—1 n) 26)
27l () T 2T (n)

where £ > 0, and I" (u) is the Gamma function.



46 C.C. Bernido and M.V. Carpio-Bernido
S Wedge Boundary

Consider a wedge with an angular opening of ¢ (see, Fig. 1).

As shown in Fig. 1, a particle from ¢ can go directly to ¢;. Alternatively, the
particle from ¢ can bounce off the walls before ending at ¢, traveling an extra 2¢n
(n=0,%£1, £2,...) distance. The different possible paths may be described by the
delta function constraint,

8 (¢ (1) — o1 +2¢n). 27

Using Eq. (27), consider the linear combination,

Co=68(p (v) — @1 +2pn) =8 (¢ () + ¢1 + 2¢n) . (28)

We can sum over all possible values of n, i.e., Zn C,, and evaluate the expectation
value as,

+o0
Py (@1, 75 90,0) =/< Z Cn) du . (29)

Equation (29) can further be written as,

+o00
Py (¢1,7:90,0) = %/ > [8 (% (¢ (f)—¢1)+2ﬂn)

n=—0oo

- (g (@) +¢)+ 27m):| du, (30)

Fig. 1 The angular opening \\
¢ is a constant characterizing \
the wedge. There are many \
paths for a particle to go from

x NN
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for which we apply the Poisson sum formula, Eq. (11) to get,

Pt =5 [ Z {exp[—(w(r) m}

—exp [% (¢ (1) + sol)}} dp. (31

Using the path parametrization of Eq. (2) for ¢ (), Eq. (31) gives,

Py (1,71 90.0) = / Z {exp [— (po — 901)}

m=—00

—exp [ﬂ (o + wl)}}
7

X exp im%/f(r—t) h) o@) di | du.  (32)
0

We can further write,
+o00

> {GXP [% (p0 — @1)} —exp [% (po + (Pl):|}

m=—0Q

¥ mit mim
=2 ) sin (T@O) sin (T(pl) : (33)
S e ¢

Hence, we have,

1 B mm mim
Py, (¢1,7;¢00,0) = = Z sin (7%) sin (7901)

(p m=—0oQ
x/exp im%/f(r—t) W) @) dt | du. (34
0

The integral over the white noise measure du can be carried out using Eq. (7) where,
§(0) = (mr/9) xpo.0 (1) f (x =) h (1) to yield,

400

mim

Py (91,73 90,0) = = Z sm(—@o) sin (T(pl)
0. =. \¢ ¢

m2n2

s / [f (x—0h@®)dt|, (35)

0

xexp | —
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or,
+00
Py (@1 T:900.0) = > @y (90) O (p1)
m*m? ( 5
xexp | — P /[f(t—t)h(t)] de|. (36)
@
0

In Eq. (36), @, () = l/ﬁsin (mngo/@), are solutions vanishing at the walls of
the wedge, ¢ = 0 and ¢ = @, and hence satisfying the Dirichlet boundary condition.

6 Conclusion

Studies involving stochastic processes with memory [20], as exemplified by frac-
tional Brownian motion, can be extended to more realistic applications by putting
boundaries and topological constraints. In particular, we have shown that spaces
with topological constraints could be efficiently dealt with using Feynman’s sum-
over-all-possible paths or histories [2, 3]. Moreover, we have demonstrated in this
paper that white noise analysis appears to be an effective tool for carrying out path
summation to obtain the transition probability function even for stochastic processes
with varying memory behavior. Since one is able to choose the type of memory
function f (r — 1) and £ (¢) to realistically model an event, the approach is versatile
enough to contribute in the description of various natural and social phenomena.
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Analysis and Applications to Hamiltonian Path
Integrals with Quadratic Action
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Abstract We give an outlook, how to realize the ideas of complex scaling from
[15-17] to phase space path integrals in the framework of White Noise Analysis.
The idea of this scaling method goes back to [9]. Therefore we extend the concept
complex scaling to scaling with suitable bounded operators.
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1 Introduction

As an alternative approach to quantum mechanics Feynman introduced the concept
of path integrals [10-12], which was developed into an extremely useful tool
in many branches of theoretical physics. The phase space Feynman integral, or
Hamiltonian path integral, for a particle moving from y, at time O to y at time ¢
under the potential V is given by

i t . [72
N/X(O):yoyx(r):y/exp (z/(; [px— > —V(x,p):| dt) l—[ dp(t)dx(7),

O<t<t
h
h=—. 1
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Here & is Planck’s constant, and the integral is thought of being over all position
paths with x(0) = yo and x(¢#) = y and all momentum paths. The missing restriction
on the momentum variable at time O and time ¢ is an immediate consequence
of the Heisenberg uncertainty relation, i.e. the fact that one can not measure
momentum and space variable at the same time. The path integral to the phase space
has several advantages. Firstly the semi-classical approximation can be validated
easier in a phase space formulation and secondly that quantum mechanics are
founded on the phase space, i.e. every quantum mechanical observable can be
expressed as a function of the space and momentum. A discussion about phase
space path integrals can be found in the monograph [3] and in the references
therein.

There are many attempts to give a meaning to the Hamiltonian path integral as
a mathematical rigorous object. Among these are analytic continuation of proba-
bilistic integrals via coherent states [22, 23] and infinite dimensional distributions
e.g. [8]. Most recently also an approach using time-slicing was developed by
Naoto Kumano-Go [27] and also by Albeverio et al. using Fresnel integrals [1—
3]. As a guide to the literature on many attempts to formulate these ideas we
point out the list in [3]. Here we choose a white noise approach. White noise
analysis is a mathematical framework which offers generalizations of concepts from
finite-dimensional analysis, like differential operators and Fourier transform to an
infinite-dimensional setting. We give a brief introduction to White Noise Analysis
in Sect. 2, for more details see [4, 18, 20, 28, 32]. Of special importance in White
Noise Analysis are spaces of generalized functions and their characterizations. In
this article we choose the space of Hida distributions, see Sect. 2.

The idea of realizing Feynman integrals within the white noise framework
goes back to [19]. There the authors used exponentials of quadratic (generalized)
functions in order to give meaning to the Feynman integral in configuration space
representation

i h
N/ exp (—S(x)) dx(tr), h=—,
(0)=y0.x(1)=y h [ 2n

O<t<t

with the classical action S(x) = [; [imi? — V(x)] dr.In [5, 6] and [7] concepts of
quadratic actions in White Noise Analysis, see [14] were used to give a rigorous
meaning to the Feynman integrand

2m

.o 2 t
Iy = Nexp (% /0 [p(t))'c(r) — Q) } dr + %/0 [)'c(t)2 +p(t)2] d‘l,') 2)
oxp(— [ Va.pe.0d) 860 )

as a Hida distribution. In this expression the sum of the first and the third integral in
the exponential is the action S(x, p), and the (Donsker’s) delta function serves to pin
trajectories to y at time 7. The second integral is introduced to simulate the Lebesgue



Generalized Scaling Operators 53

integral by a local compensation of the fall-off of the Gaussian reference measure
(. Furthermore a Brownian motion starting in yy is used to model the space variable
when the momentum variable is modeled by white noise, i.e.

x(7) = y(0) + \/EB(T)’ p(0)=w(r), O0=t=r 3)

For the integrand we have thus the following ansatz

1
— E((wx,a)p),L(wxswp»)

- 8(((@x, @), (10, 0)) — ),

Iy = Nexp( — 5 ((@x, @), K(@x. @))) - exp

1
2

where K is given by

-1 —il
K=o Tt0o . @)
—ilp —(1 =)L,

Here the operator 1jp ;) denotes the multiplication with 1jy ;. And the operator L,
fulfilling the assumptions of Lemma 2.14 is used to model the quadratic potential.
For sake of simplicity we consider in this article path integrals with one degree of
freedom, i.e. the underlying space is the space S5(RR).

In the euclidean configuration space a solution to the heat equation is given by the
Feynman-Kac formula with its corresponding heat kernel. In White Noise Analysis
one constructs the integral kernel by inserting Donsker’s delta function to pin the
final point x € R and taking the expectation, i.e.,

Ky(x,t,x0,50) = E (exp(/ V(xo + (L., ) dr)d(xo + (L. *) —x)) ,

where the integrand is a suitable distribution in White Noise Analysis (e.g. a Hida
distribution).

A complementary strategy to construct Feynman integrals in the configuration
space with White Noise methods was inspired by [9], see also [16, 36, 37] and also
[30] and [24] . Here for suitable potentials V a complex-scaled Feynman-Kac kernel
can be rigorously justified by giving a meaning to

K(x,t,x0,10) = E (exp (le / V(x + zBy) ds) 0,6(B; — (x — xo))) . (5)

In the configuration space, this has been done in [37] and [16, 36]. Note that if
z = +/iin (5), we have the Schrodinger kernel.
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This scaling approach has several advantages e.g.

» Treatable potentials are beyond perturbation theory such as

dnt1
V(x) = (=1 Magx* 2 + Z a, xeRneN,
=1

with ag,42 > 0, aj € C.

¢ Due to a Wick formula we have a convenient structure (i.e. “Brownian motion is
replaced by a Brownian bridge”)

 The kinetic energy “o,6” and the potential can be treated separately, for details
see e.g. [29].

We give an idea how to implement this approach to phase space for quadratic
potentials. This is a first step to a scaling approach to the above potential class also
for Hamiltonian path integrands.

2 Preliminaries
2.1 Gel’fand Triples

Starting point is the Gel’fand triple S;(R) C L3(R) C S)(R) of the R?-valued,
d € N, Schwartz test functions and tempered distributions with the Hilbert space of
(equivalence classes of) R?-valued square integrable functions w.r.t. the Lebesgue
measure as central space (equipped with its canonical inner product (-, -) and norm
Il - 1), see e.g. [18, 28]. Since S4(R) is a nuclear space, represented as projective
limit of a decreasing chain of Hilbert spaces (H,),en, see e.g. [34, Chap. 2] and [13],
ie.

Sa(R) = ﬂH .

pEN

we have that S;(R) is a countably Hilbert space in the sense of Gel’fand and
Vilenkin [13]. We denote the inner product and the corresponding norm on H,
by (-,-), and || - ||, respectively, with the convention Hy = L3(R). Let H_, be
the dual space of H, and let (-,-) denote the dual pairing on H, x H_,. H, is
continuously embedded into L3(R). By identifying L2(R) with its dual L2(R)’,
via the Riesz isomorphism, we obtain the chain H, C L3(R) C H_,. Note that
SH(R) = U H_,,i.e. S)(R) is the inductive limit of the increasing chain of Hilbert
peN
spaces (H—p)pen, see e.g. [13]. We denote the dual pairing of S4(R) and S/,(R) also
by (-,-). Note that its restriction on S;(R) x L3(R) is given by (-,-). We also use
the complexifications of these spaces denoted with the sub-index C (as well as their
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inner products and norms). The dual pairing we extend in a bilinear way. Hence we
have the relation

(gsf> = (gvf)v fv ge ngl(R)(Cs

where the overline denotes the complex conjugation.

2.2 White Noise Spaces

We consider on S/, (R) the o-algebra C, (S/,(R)) generated by the cylinder sets {® €
SyB®)(E1, ) € Fi,....(§n0) € Fu}, & € Sa®), Fi € BR), 1 <i<nneN,
where B(R) denotes the Borel o-algebra on R.

The canonical Gaussian measure i on Cy(S)(R)) is given via its characteristic
function

/ exp(iff, ®))dp(@) = exp(=3[IfI*), fe Sa(R),
Sy(®)

by the theorem of Bochner and Minlos, see e.g. [31], [4, Chap.2 Theo. 1. 11].
The space (S,(R).Cy(S,(R)).n) is the basic probability space in our setup.
The central Gaussian spaces in our framework are the Hilbert spaces (L?) :=
L2(S)(R), Cy(S)(R)), ) of complex-valued square integrable functions w.r.t. the
Gaussian measure /L.

Within this formalism a representation of a d-dimensional Brownian motion is
given by

Bi(®) := (Bi(w1), ..., Bi(wa) == ((Ljo., @1), ... (L. wa)), (6)

withw = (@1,...,05) € SH(R), ¢ > 0, in the sense of an (L?)-limit. Here 14
denotes the indicator function of a set A.

2.3 The Hida Triple

Let us now consider the Hilbert space (L*) and the corresponding Gel’fand triple
(8) C (L?) C ().

Here (S) denotes the space of Hida test functions and (S)' the space of Hida
distributions. In the following we denote the dual pairing between elements of (S)
and (S)’ by {(-,-)). Instead of reproducing the construction of (S)" here we give its
characterization in terms of the 7-transform.
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Definition 2.1 We define the T-transform of ® € (S)’ by

TO(f) := ((exp(i{f.-). @), f:=(fi.....fa) € Sa(R).

Remark 2.2 (i) Since exp(i{f,-)) € (S) for all f € S;(R), the T-transform of a
Hida distribution is well-defined.

(ii) For f = 0 the above expression yields (&, 1)), therefore T®(0) is called the
generalized expectation of @ € (S)’

(iii) Another important examples of Hida test functions are the so-called coherent
states or Wick exponentials

1
rexp({f. ) = exp(— {£.6)) -exp((£. ). f€Sa(R).

In order to characterize the space (S)’ by the T-transform we need the following
definition.

Definition 2.3 A mapping F : S;(R) — C is called a U-functional if it satisfies the
following conditions:

Ul. For all f,g € S;(R) the mapping R 5 A — F(Af + g) € C has an analytic
continuation to A € C (ray analyticity).
U2. There exist constants 0 < C, D < oo and a p € Ny such that

|F(zf)] < Cexp(DIzI[Ifl]}).

forall z € C and f € S;(R) (growth condition).

This is the basis of the following characterization theorem. For the proof we refer to
[18, 25, 26, 33].

Theorem 2.4 A mapping F : S;(R) — C is the T-transform of an element in (S)’
if and only if it is a U-functional.

Theorem 2.4 enables us to discuss convergence of sequences of Hida distributions
by considering the corresponding 7-transforms, i.e. by considering convergence on
the level of U-functionals. The following corollary is proved in [18, 26, 33].

Corollary 2.5 Let (®,),en denote a sequence in (S)' such that:

(i) Forallf e S;(R), (TD,)(f)),en is a Cauchy sequence in C.
(i) There exist constants 0 < C, D < 0o such that for some p € Ny one has

|(T®,)(zh)| < Cexp(DIz*[If])

forallf e S4(R), ze C,ne N
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Then (®,,),en converges strongly in (S)' to a unique Hida distribution.
Example 2.6 (Vector valued white noise) Let B(f), t > 0, be the d-dimensional

Brownian motion as in (6). Consider

B(t+ hw)—B(t, o) Ljiah)
P’ = ({ h

1 i40)
h

1), ... ((

,a)d)), h> 0.

Then in the sense of Corollary 2.5 it exists

(51:0) = (o). ) = fim purhe) ZBo)

Of course for the left derivative we get the same limit. Hence it is natural to call the
generalized process (8,, ), t > 0 in (S)’ vector valued white noise. One also uses
the notation @ (t) = (§;, @), 1> 0.

Another useful corollary of Theorem 2.4 concerns integration of a family of
generalized functions, see [18, 26, 33].

Corollary 2.7 Let (A, A,v) be a measure space and A > A — ®(L) € () a
mapping. We assume that its T—transform T ® satisfies the following conditions:

(1) The mapping A 3 A — T(®(A))(f) € C is measurable for all f € S4(R).
(ii) There exists a p € Ny and functions D € L>°(A,v) and C € L' (A, v) such that

IT(@M)) ()] < C(A) exp(D(X) |z [If]]>),

fora.e. A € A and for all f € S;(R), z € C.

Then, in the sense of Bochner integration in H_, C (S) for a suitable q €
No, the integral of the family of Hida distributions is itself a Hida distribution,

ie. / ®(L) dv(L) € (S) and the T-transform interchanges with integration, i.e.
A

T( / <I>(A)dv(x)) ® = [ T@ON®@G). Tesi®),
A A

Based on the above theorem, we introduce the following Hida distribution.

Definition 2.8 We define Donsker’s delta at x € R correspondingto 0 # 5 € LA(R)
by

Soln.) =)= 5 /1; exp(iA({n. ) —x)) dA
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in the sense of Bochner integration, see e.g. [18, 29, 37]. Its T—transform in f €
S4(R) is given by

T(So({n.-) —x)(®)

1 | 1
T T - in. £ —x)2 — —(f.f £ '
IR ) eXp( 20y £ =07 = S )), € Su(R)

2.4 Generalized Gauss Kernels

Here we review a special class of Hida distributions which are defined by their
T-transform, see e.g. [14]. Let 55 be the set of all continuous bilinear mappings
B : S;(R) x S4(R) — C. Then the functions

Si(R) 5 f > exp (—%B(f, f)) eC

for all B € B are U-functionals. Therefore, by using the characterization of Hida
distributions in Theorem 2.4, the inverse T-transform of these functions

1
®p =T 'exp (_EB)

Definition 2.9 The set of generalized Gauss kernels is defined by

are elements of (S)’.

GGK := {®3, B € B}.

Definition 2.10 Let K be a symmetric trace class operator on L3(IR). We define for
w € S\(R)

(0, Kw) := 11m Zen, )(kq) (€, @),

where (e,),en denotes an eigenbasis of the corresponding eigenvalues (k) en-

Example 2.11 ([14]) We consider a symmetric trace class operator K on Lfl(]R)
such that —% < K <0, then

/ exp (—(w, Kw)) di(w) = (det(ld + 2K))™? < 0.
S)(R)
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Here Id denotes the identity operator on the Hilbert space L3(R), and det(A)
of a symmetric trace class operator A on Lfl(]R) denotes the infinite product of
its eigenvalues, if it exists. In the present situation we have det(Ild + 2K) # 0.
Therefore we obtain that the exponential g = exp(—%(-, K-)) is square-integrable
and its T-transform is given by

Tg(f) = (det(Id + K)) ™% exp (—%(f, (I1d + K)_lf)) . feSuR).

Therefore (det(Id + K))% g is a generalized Gauss kernel.

Definition 2.12 Let K : L} (R, dx) — Lj (R, dx) be linear and continuous such
that

(i) Id + K is injective,
(ii) there exists p € Ny such that (Id + K)(Lfl’(c(]R, dx)) C H,c is dense,
(iii) there exist ¢ € Ny such that (Id + K)™" : H,c — H_, is continuous with p
as in (ii).

Then we define the normalized exponential
1
NeXP(—E(', K-)) (N
by
1 1 4
T(Nexp(—§(~, KN){®) = exp(—E(f, (Id+K)7 '), feSi(R).

Remark 2.13 The “normalization” of the exponential in the above definition can be
regarded as a division of a divergent factor. In an informal way one can write

T(exp(=5 (- K-)®)
T(exp(—4 (- K)(0)
_ TExp(—3 (KN

Jdet(ld + K)

i.e. we can still define the normalized exponential by the T-transform even if the
determinant is not defined.

T(Nexp(—3 - K))(®) =

f e Sa(R),

Lemma 2.14 ([6]) Let L be a d x d block operator matrix on LEZ(R)(C acting
component-wise such that all entries are bounded operators on L*(R)c. Let K be
a d xd block operator matrix on L3(R)¢, such that Id + K and N = Id + K + L
are bounded with bounded inverse. Furthermore assume that det(Id + L(Id + K)™")
exists and is different from zero (this is e.g. the case if L is trace class and -1 in
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the resolvent set of L(Id + K)™'). Let My—1 be the matrix given by an orthogonal
system (1 )k=1...; of non—zero functions from L2(R), J € N, under the bilinear form
(-,N_l-), ie. My—)ij = (ni,N_lni), 1 < i,j < J. Under the assumption that
either ‘

RMy-1) >0 or NR(My-1) =0 and I(My-1) # 0,

where M—1 = R(My—1) + iS(Mn-1) with real matrices R (My—1) and I(My-1),
then

D = Nexp(— 3 (- K) -exp (— 5 (- 1)) - exp(it- 1‘[80( ) =),

forge L[ZI(R, C),t>0,y,eR, k=1...,J, exists as a Hida distribution.
Moreover for f € S;(R)

| 1
Tok (f) = @) det((My ) \/ det(ld + L(ld + K)™')

cewp (= 3@+ N 0+0) ) exp (= 0060 0). ©
where

= ((iy1 + . N7' €+ 2)..... (iys + (. N (£ + g)))) .

2.5 Scaling Operator

First note, that every test function ¢ € (S) can be extended to S;(R), see e.g. [28].
Thus the following definition makes sense.

Definition 2.15 Let ¢ be the continuous version of an element of (S). Then for
0 # z € C we define the scaling operator o, by

(0:0) (@) = ¢(zw). o € Sy(R).

Proposition 2.16 (i) Forall 0 # z € C we have o, € L((S), (5)),
>ii) for ¢,y € (S) we have

o.(¢ - ¥) = (0:9)(0.¥).
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Proof (i) is provedin [37]

For (ii), first note that (S) is an algebra under pointwise multiplication. Since
the scaling operator is continuous from (S) to itself by (i), it suffices to show the
assumption for the set of Wick ordered exponentials. Since this set is total the rest
follows by a density argument. We have for &, n € S;(R),

o xp((E. ) expl(n. ) ) =
o(exp (= ((6.8) + (1.1 ) exp((s + 1.0))

= exp (566 + (.1 ) expl(€ + . 20)

= exp (~5(6.6) + (.1 ) expl(et, ) expl(en. )

on the other hand

0 exp((£.) ) 0.t expl(n.) ) =
exp(—3 (€. 1) exp((€, 0)) exp(— (n. 1)) exp((1.0),

which proves the assumption. O
More precisely we have, compare to [36] and [37] the following proposition.

Proposition 2.17 Let ¢ € (S), z € C, then

(o]

o =) (@),

n=0

with kernels

o0 2 k
a2 (2N
b =2 ; kin! 2 i,

Definition 2.18 Since o, is a continuous mapping from (S) to itself we can define
its dual operator UJ 2 (8)* — (5)* by

(. 0] @) = (0.0, D)),

for ® € (5)* and ¢ € (S).
The following proposition can be found in [37] and [36].
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Proposition 2.19 Ler ® € (S)*, ¢, ¥ € (S) and z € C then we have
®
o]®=1J, 0T,
where T, is defined by
S(TP)(§) = S(P)(26). & € Su(R),

and J, = Nexp(—%zz(-, ‘). In particular we have
0;1 =J,.

(i) J.¢ = o) (0.9).

3 Generalized Scaling Operators

In a view to the previous section we want to generalize the notion of scaling to
bounded operators. More precisely we investigate for which kind of linear mappings
B € L(S4(R)’, S4(R)’) there exists some operator o : (S) — (S) such that

Dppx) - @ = a;an).

Further we state a generalization of the Wick formula to Gauss kernels. We start
with the definition of 0.

Definition 3.1 Let B € L(Sas(R)c, S,(R)c). By trg we denote the element in
S/(R)c ® S/, (R)c, which is defined by

V&, n € SaR)c: trg(§ ® n) = (§,Bn) .
Note that 7 is not symmetric. Further there exists a ¢ € Z such that trg € H,c ®
H,c.

Proposition 3.2 Let B € L(L2(R,C),L3(R,C)) be a Hilbert-Schmidt operator.
Then trg € L3(R, C) ® L3(R, C). Furthermore for each orthonormal basis (e;)jen of
L%(R, C) we have:

o0
trg = ZBe,- ® e;.
i=0
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Proof We have

Y lenBe)ei®e| =Y |fewBe)| = |Bey,
ij=0 o =0 =0

2
= [|Bllus < oo.

Hence the sum is a well-defined element in L2(R, C)®L2(R, C). The identity follows
by verifying the formula for {e; ® e} jen:

00
<ek ® ey, ZBei ® €i> = (e, B_e[)’}-t(el,e_l)Lg(R,C) = (e, B_el)Lg(R,(C) = (elmBel)‘
i=0

O
Proposition 3.3 In the case S4(R) = S4(R) and B € L(Ss(R)c, S,;(R)c) we have

o0
trg = ZBhl ® h;
i=0

Proof By the continuity of the bilinear form (-, B-) on S;(R)¢ x S4(R)¢ there exists
p > Osuchthat Be€ L(H,c,H_,c). Letg > p + 1. Then

o0 o0 o0
1D Bhy @ hal*y = > 1Bhal* - Nl < K Y a2 [l
n=0 n=0 n=0

for some K > 0. For the last expression we have

o] e} 1 2
2 2
K§:mm'm¢WsK§j(h+Q) < oo
n=0

n=0

Then as in the proof of Proposition 3.2 we obtain

oo
trg =Y Bhy ® hy.
n=0

since

—_—  S(R)RSy(R
spantii, @ g o 2 S4(R) @ Su(R).
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Definition 3.4 For B € L(S)(R)c. S, (R)c) we define ogp, ¢ € (S), via its chaos
decomposition, which is given by

o

onp =Y (e 2", ©)

n=0

with kernels

k

) (n+20)! (1 ek n+2k

5 ZW ) (B)®" (tr{yy_pgey " ).
k=0

Here, B* means the dual operator of B with respect to (-,-). Further for A €
L(Sa(R)c, S(R)c), the expression trk ¢ "% is defined by

trﬁgo(”“") — (tr/?k,<p("+2")) c Sd(R)®",

where the generalized trace kernel try is defined in (3.1).

Proposition 3.5 Let B € L(S;(R)¢, S4(R)c) andn € N, n > 0. Then forallp € N
there exists a K > 0 and q1,q2 € N, withp < q1 < g2 such that for all 9 € Sd(R)g"
we have

[B6], < (K11Bll s, liaisss)" - 161,

Proof Choose q1, ¢» € Nwithg, > g; > pand

B e L(qu,(c,Hp,C) and B € L(qu,(c,qu’(c, )

For a shorter notation we write e; for e;, ®---®¢;,. Now let (e,); be an orthonormal
basis of HI?”. Further let Z, : (Hf’g)/ — H; ®” be the Riesz isomorphism. Then for

0 € Sa(R)S"
B0 Z (B®"6, ¢)), |’ Z ‘<B®”9 I—l(ej)>’
= Z (B®"0. 7, ()| Z| (0. B, )"

<101, - Y |BHL ],

J
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We can estimate this with the norm of B* : H_, ¢ — H_, ¢, denoted by
|B*||—g1.—¢,- Then for a K > 0 we have

108, - D 1B el <100, K 1B 12, DT ()], -
J J

= |9| K ”B”ql ) “ 611P||HS’

where the last equation is due to [35, Theorem 4.10(2), p. 93] O
Next we show the continuity of the generalized scaling operator.

Proposition 3.6 Let B : S,(R)c — S, (R)c a bounded operator. Then ¢ > oy is
continuous from (S) into itself.

Proof Let (pgl) as in Definition 9.
First choose ¢; > 0, such that |tr;y_gp=|*
C(B) > 0, g» > gl such that

o < 0o Then, by (3.5), there exist

! (n +26)! 1" ; "
“|p—|Z o (B)®" (t0}y_ e 0" "),

k)!
_C(B)n Z (n + Zk) v (2k) 0t 20 im0 [ [0

Il r 2% | k2K

Since Vk(él; < 1, see [37], we have

—C(B)”Z (n + Zk) V (2k)! CET T _qz Pacim

Jnl 2% ) K2k

k k
TC(B)” Z (n —;{_ ) V() tria—sss |2, 9" g,

1
[ele] 2
n + k /
—C(B)"2_” 2 27| trig—pp+ |~
1
o0 2
x (Z(n + k)24 <"+k>|<p<"+k>|§2)

k=0

n+1
2

=< 10l J_ (1= 27 -+ )
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If ¢’ fulfills
27 |tr1—pp <1,
we obtain
2 2 - n(g—q') 2n - —(+D)
losgl2,, = o1, - 202w (1= 27 lirupwel-a2)
n=0
where the right hand side converges if ¢’ — ¢ is large enough. O

Proposition 3.7 Let ¢ € (S) given by its continuous version. Then it holds

opp(w) = ¢(Bw),

if B € L(S)(R), S)(R)), » € S)(R).

This can be proved directly by an explicit calculation on the the set of Wick
exponentials, a density argument and a verifying of pointwise convergence, compare
[32, Proposition 4.6.7, p. 104], last paragraph.

In the same manner the following statement is proved.

Proposition 3.8 Let B : S(R) — S(R)’ be a bounded operator. For ¢, ¥ € (N)
the following equation holds

op(pV¥) = (o) (0BY).

Since we consider a continuous mapping from (A/) into itself one can define the
dual scaling operator with respect to {-,-), 0; (N)Y = (W) by

(es0-v) = {@.00v))

The Wick formula as stated in [16, 36] for Donsker’s delta function can be
extended to Generalized Gauss kernels.

Proposition 3.9 (Generalized Wick formula) Ler ® € (S), ¢, ¥ € (S) and B €
L(S/(R), S/, (R)). then we have

()
O'; = CDBB* < FB*qD,
where I'g* is defined by

S(Tp*@)(€) = S(P)(B*E), § € Sa(R).
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In particular we have
ogl1=a
gl = ¥BB*.
(ii) Pppr - = 0;((73(/))-

(iii) DPpp+ - @ = Ppp« © (I'px 0 0p(9)).
Proof Proof of (i): Let ® € (S) and & € S4(R)c then we have

S(o4®)(§) = (: exp({£, ) =, o5 D))
= ({op : exp((£, ) 1, D) = exp(—%@, £))(exp((B*€. ), D))
= exp(—% (€, (Id — BB*)E))S(®)(B*E) = S(Pppe)(£) - S(Tp= D) (£)

Proof of (ii): First we have 0;1 = Dpp+ ¢ ['gx1 = Dpp+. Thus for all ¢, ¥ € (S)

(Popp. ) = (o'Lp-y) =
(1, (o0) (089)) = ((089), (03)) = (04(080), V')

Proof of (iii): Immediate from (i) and (ii). O

Remark 3.10 The scaling operator can be considered as a linear measure transform.
Let ¢ € S — d(R) and B a real bounded operator on S;(R)’. Then we have

/ 050(@) d(@) = / o (Bowo) dpu(w) = / 0(0) du (B~ w)
SR) S(R) S(R)
Moreover we have
1
/ exp(i(5. @) du (B w) = exp(— (B, B°E),
S(R)

which is a characteristic function of a probability measure by the Theorem of
Bochner and Minlos [31]. Furthermore

/ exp(i(E. ©) du(B~'w) = T( 1) ().
S(R)

such that ®gp« is represented by the positive Hida measure j2 o B~!.
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4 Construction of Hamiltonian Path Integrand
via Generalized Scaling

We construct in this section by a suitable generalized scaling the Hamiltonian path
integral as an expectation based on the formula above as in (5).

In phase space however the arguments are multidimensional, since we consider
momentum and space variables as independent variables. For simplicity we consider
to = 0 and furthermore # = m = 1. Indeed we have the following

Proposition 4.1 Let N~' = (l[o’t)c 0 ) + i( Lo Lo ) as in the case of the
O 1[()’,«)0 1[(),;) O

[free Hamiltonian integrand Iy (i.e. V = 0). Let R be a symmetric operator (w.r.t. the
dual pairing) with R> = N~'. Indeed we have:

(104 0 Vi A5 TP
R = + TU - U,
0 dpoe/) 14 (Bt 0 ==1py

with

(_ﬁ+1 1 )
U= 2
1 a5t

2

Then under the assumption that ogé({(1j.0),-)) = ((R(1j0,),0),-)) € (5), we
have

Ip = a0r8({(1)0., 0), ).

Consequently the Hamiltonian path integrand for an arbitrary space dependent
potential V, can be informally written as

Iy = Nexp (—%(-,K-)) exp (—i/ot Vo + {10, 0).-) dr)
x 8(x0 + (L., 0), ) =)
= o} (ox(exp (—i/ot V(xo + (10, 0). ) dr))
X 0830 + (L. 0).) =), (10)

forx,xp e Rand 0 < 1y <t < o0.
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In the following we give some ideas to give a mathematical meaning to the
expression in (10). First we consider a quadratic potential, i.e. we consider

1
exp(—5 (L5, 0). 1) — ).
Definition 4.2 For L fulfilling the assumption of Lemma 2.14 and

5(((1j0,0).) =
we define
o (exp 5 L3001 )
= expl—5 (RLRDS(R(10. 0. ) — ).

We now take a look at the T-transform of this expression in f € S>(R). We have

Tt (expt—3 LD (N0.0).) =) )

= 7o (3005 LLDB(Ri:00.9) =) (RO

1
/2w det(ld + RLR)

exp(—% (Rf, (Id + RLR)™'Rf))

s exp (L2~ (RE.Ud + RLR)'R(1j0.0. O))*
2(R(1[[0’[), O), (Id + RLR)_lR(l[[OJ) N O)) ’

Now with R2 = N~! and since R is invertible with R"!R™! = N, we have
Id + RLR = RR'R'R + RLR = R(ld + K + L)R
and

(Id +RLR)' =R '(Ild+ K+ L)"'R".
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Thus

Tiojon (expt=3 LD N0.0).) =) ))©)

1
~ V2ndet((N + LNT)

( 1
P M, 0. N+ D) (), 0))

exp(—3 (€. (V + )7'£))

ex @iy = (€ (N + D)™ .0 00)))

which equals the expression from Lemma 2.14. Hence we have that for a suitable
quadratic potential

olon (exp<—%<-L->)8<<(1p0.,), 0).) —y)) ,

exists as a Hida distribution. Moreover for all quadratic potentials from the previous
chapter, the T-transform obtained via scaling gives the generating functional as in
chapter “38 Years with Professor Ludwig Streit”. Since the 7-transforms coincide,
also the distributions are the same.

For the case of quadratic potentials we obtained the correct physics also by the
scaling approach.

Example 4.3 We construct the Feynman integrand for the harmonic oscillator in
phase space via the generalized scaling. L.e. the potential is given by x > V(x) =
2kx?, 0 < k < oo.

Thus the matrix L which includes the information about the potential, is given by

where Af(s) = 1,(s) [} [y f(r)drdz.f € *(R,C),s € R, then for f € S,(R)c,
see also [6] and [14] we have

7 (ohor (ex0(- 3 LLDB((T100: 0. - ) ) 0

_ vk /2 )
l <2—<fk>) "(z% (o+(nt+9) )
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1 Lo O
——((t+g).( ) f )
X exp( > (( + g) (0 Loy ( + g)

1 t LA —10) 7" (kA — 11947
— | (£ -1 ' [0.) (0.9 f
x eXp( 2 (( *8)-;le ((kA o) kA — 10,7 ) ETE)) )

which is identically equal to the generating functional of the Feynman integrand for
the harmonic oscillator in phase space, see e.g.[6].
Moreover its generalized expectation

E(Ino) = T(Ino)(0) = ( vk ex ( Vk ,

27i sin(+/kt) i2 tan(\/%t)y

is the Greens function to the Schrodinger equation for the harmonic oscillator,
compare e.g. with [21].
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Computer Simulations of Self-repelling
Fractional Brownian Motion

Jinky Bornales, Cresente Cabahug, Roel Baybayon, Sim Bantayan,
and Beverly Gemao

Abstract Self-repelling fractional Brownian motion (fBm) has been constructed,
generalizing the Edwards model for the conformations of chain polymers. In this
context of particular interest is the predicted scaling behaviour of their end-to-end
length, i.e. the anomalous diffusion of self-repelling fBm. We briefly present the
model and a heuristic formula of the scaling behaviour for general dimension and
Hurst index, and then our computer simulations of self-repelling fBm paths, their
method and first results.

Keyword Fractional Brownian motion

Mathematics Subject Classification (2010) 60G22

1 Self-Repelling Brownian Motion

The field of self-avoiding or self-repelling random paths has been widely studied in
combinatorics, stochastic analysis, statistical mechanics, numerically using Monte
Carlo methods, and in the chemistry of polymers. It is thus highly interdisciplinary:
while the motivation came from chemistry and the modelling of polymer con-
formations [9], physics provided structural intuition and far-reaching predictions.
The mathematical results are less far-reaching but have the higher reliability
characteristic of the mathematical approach. Large scale computer simulations back
up the theoretical arguments. For reviews of recent results in the mathematics and
physics communities see [11] and [17].
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2 The Edwards Model

Self-repelling paths were introduced by Edwards [8] to avoid the combinatorial
complications of strictly self-avoiding random walks. For Brownian trajectories this
can be done via a “Boltzmann factor” which suppresses the probability of self-
intersections, informally

N N
G= %exp (—g/o ds/o dts (B(s) — B(t))) .

Mathematically, the self-intersection local time in the exponent is increasingly
singular for increasing spatial dimension d of the Brownian motion; for d =
2 it requires centering [19] to be finite, in higher dimension a multiplicative
renormalization is required [20].

3 The Flory Formula

A characteristic observable is the (mean square) end-to-end distance R of paths
B =x:

R*(N) = E ((x(N) - x(O))z) .

When the time N (the number of monomers) becomes large one expects a scaling
behavior

R(N) ~N".

For Brownian motion the root-mean-square length R is scaling with v = 1/2. But
self avoidance, “the excluded volume effect”, makes the polymers swell: the end-
to-end length increases; there is the famous Flory formula [9]

derived on the basis of heuristic arguments. The following table summarizes what
is known about the Flory index.

Flory Theory Exp.
d=1: 1 1
d=2:075 075 0.79
d=3:0.60 0.588 0.59
d=4: 05 05
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The theoretical values are of a different nature: for d = 1 there exists a mathematical
proof, see e.g. [11], and for d > 4 there are no self-intersections of Brownian paths,
hence no anomalous scaling. For d = 2 there exists an often quoted justification for
v = 3/4 using arguments from quantum field theory [16].

4 Generalization to Fractional Brownian Motion

Fractional Brownian motion in R?, d > 1, with “Hurst parameter” H € (0, 1) is a d-
dimensional centered Gaussian process [2, 15] Bf = {B¥ : t > 0} with covariance
function

8
E(BBM) = Ej(tzH+s2H—|t—s|2H), ij=1,....d, s,t>0,

and, by the Kolmogorov-Chentsov argument, has continuous trajectories. H = 1/2
is ordinary Brownian motion. So increments are uncorrelated for H = 1/2, and
positively correlated (“persistent” paths) for H > 1/2, and negatively correlated for
H < 1/2 so that for larger resp. smaller H the paths are smoother resp. curlier than
those of Brownian motion.

S Extension of the Edwards Model and of the Flory Formula

The Varadhan existence proof of the Edwards model has been extended to fractional
Brownian motion in [10]. If Hd < 1, the fBm Edwards model is well defined.
Starting from a smooth approximation

1 _ k2

85()() = W@ 2, >0,
of the Dirac §—function we get that
N 1
L:= lim dt / ds 8.(B" (1) — B"(s)) (1)
e—=01 Jo 0

exists in L? [12] so that

1 N N H H
G:= zexp(—g/(; ds/(; dt8(B (s) —B" () ))
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is integrable for g > 0. For H = 1/d, and g sufficiently small

G= gmziexp(—g/ ds/ dté, BH(s) BH(t)))

with

Z.=E (exp (—g /ON ds /ON ds. (B" (s) — B (1) )))

is well-defined [10].
As is to be expected from the Brownian case, no such mathematical rigorous
result exists (yet) for the Flory index. Heuristic physical arguments [5] suggest

1 if 2H>d

ve =13 H if Hi=2 2
2H+2

S otherwise

The first case pertains to d = 1 and H > 1/2 where the repulsion produces linear
scaling, the second comes from the fact that for Hd > 2 there are no more self-
intersections [18].

More generally [4],

2H+k+1
= - - 3
v kd + 2 ©)

if up to k-fold intersections are tolerated [6, 7].

The heuristic derivation calls for validation. Analytic arguments do not easily
carry over from the Brownian case insofar as they are typically based on the
Markov property which is not available in the fractional case. This makes numerical
simulations particularly interesting.

6 Numerical Computation

As a starting point for our computational simulations we have focused on the one-
dimensional case. While this would be unphysical as a polymer model it is the best
studied case in mathematical terms [11], and there exists a recursion relation linking
it to the Flory index in higher dimensions [4, 5], see also [13] for the Brownian case.
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6.1 Off-lattice Discretization

Approximations of fBm by random walks on a lattice are notoriously difficult. By
contrast an off-lattice N step discretization, with

xe=BH(k), k= 0,1,2,....N—1
is easy. Physically this would correspond to the positions of N consecutive
monomers.
We introduce N — 1 “bond vectors”

e = B (k+ 1) — B (k)

and invert the covariance Ay, = E(yxy;) to get their probability density

S exp (—%@,A‘ly)) :
v @m)V ! detA

To discretize the self-intersection local time one expresses it by the local time at
points x as follows:

00(y) =

+o00
L= / i @)

o

where
N
Lx=/ ds8(BH(s)—x) — 00 <X < 00.
0

is the local time of Fractional Brownian motion, see for e.g. [1] (the relation (6.1)
is in fact rigorous for the approximate local time with the 8. instead of §). One
discretizes this by decomposing the real line into cells 7, of equal length I/, and
replaces L, by the number of positions x; = B (k) that fall into the cell with number
n:

L,=#{x:xx€l,} n=0,%1,£2,....
Likewise we replace the self-intersection local time of (4) by

o0
L= Y L

n=—0o0
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so that the unnormalized probability density becomes

—% (y.A7"y) — gL(y)) :

p(y) ~ exp (
Given this density, the Metropolis algorithm [14] can now be invoked to produce
updates of configurations by updating a randomly chosen y; — y; so that

y(O) = V1o s Vkrero s YN=1)
becomes

(1):(

y Vioeeos Yoo s YN1)

and so on by iteration, generating asymptotically an equilibrium distribution of
conformations. In practice, for polymers of a length N between 200 and 450, we
have performed 4 x 107 relaxation updates before starting the sampling during
another 107 updates.

In these computations one has to set various parameters on which however the
final outcome should depend as little as possible; we mention the relaxation time,
the sample size, updating range, incidence cell size, and in particular the coupling
g. Asymptotically for large N, scaling should be independent of the value of g > 0.
For finite N we expect a steep rise of the scaling exponent to its asymptotic value as
g increases from zero. In Fig. I we show the behaviour found in the Brownian case.
After the initial steep rise there is first an overshoot, but unexpectedly the scaling
index then does not settle to the asymptotic value but drops down further.

0 0.5 1 1.5 2 2.5 3 35 4 4.5 5
1.2 PO NPT ST AN T N W N NN AT U WA N T T N N N W T WA N [ WO T T TN [ WO S T N AT T AT W T N O O T AN T O T 1.2
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o i il e im0 ot S T T S . »
1 !— L - P . 1
* T e i
§09— - 0.9
E - L
5 0.8 0.8
U B -
0.7 5 . - 0.7
4 @ -
L ]
06 o - 0.6
°
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Coupling constant (g)

Fig. 1 Computation of the Flory index for H = 1/2 as a function of the coupling constant
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Fig. 2 Thirty simulations of the end-to-end length, exhibiting outliers

To understand this phenomenon it is useful to study the output of independent
simulations undertaken in parallel, with identical parameters but different (random)
initial conformations. As one sees in Fig. 2, there is remarkable agreement among
them of the output end-to-end-length, except for a number of outliers (underlaid
in blue). Their number increases for longer polymers as well as for decreasing
Hurst parameter. To some extent one would find saturation of the Hurst index if one
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neglected the outliers, but as one sees they become dominant for longer polymers
so that this ad hoc method is also not practical.

Sampling during the relaxation phase revealed that the energy relaxes very fast
but there are instances where the end-to-end length does not, there are knotted
conformations which “are stuck” and will not unfold even after some 107 updates
of the bond vectors.

To remedy this we have used a different relaxation schedule where during the
relaxation phase we gradually increase the coupling constant g toward its final value
which will then be maintained during the sampling phase as before. And as one sees
in Fig. 3, the outliers disappear completely.
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Fig. 3 Thirty simulations of the end-to-end length, outliers eliminated
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Preliminary results under this regime have produced Flory indices deviating no
more that about 1% from the theoretical prediction of

_2H+2
T d+2

for d = 1 and Hurst indices in the range 0.1 < H < 0.5.
A more detailed investigation, including a study of parameter dependence and
error estimates, is in preparation [3].
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1 Introduction

We dedicate this paper to Ludwig Streit in great appreciation of the tremendous
influence he exerted on all those who were permitted a glimpse at his boundless
curiosity and approach to all aspects of science. We hope this modest contribution
will create some joy for him.

The main focus of this paper centers around Weyl-Titchmarsh and principal
solutions for general Sturm-Liouville operators (associated with three coefficients)
on arbitrary open intervals (a,b) € R. We will discuss in great detail the case of
scalar coefficients p, g, r associated with the differential expression

{=—-—-——p—+¢q], —oc0o<a<x<b<oo, (1)
dx dx

and corresponding operator realizations in the Hilbert space L?((a, b); rdx), as well
as the case of m x m matrix-valued coefficients P, Q, R, m € N, associated with the
differential expression

L:R_l(—iPi+Q), —o0o<a<x<b<oo, )
dx dx
and operator realizations of L in the Hilbert space L?((a, b); Rdx; C™).

Focusing in this introduction for reasons of brevity exclusively on the right end
point b, if £ is nonoscillatory at b, (real-valued) principal solutions u,(A, ) of fu =
Au, A € R, are characterized by the condition that u,(A,-) does not vanish in a
neighborhood [c, b) of b (with ¢ € (a, b)) and that

b
/ dxp(®)tup(A,x) 7% = 0. 3)

As discussed in Lemma 2.7, up(A,-) is unique up to constant (possibly, A-
dependent) multiples and, in a certain sense (made precise in Lemma 2.7), also
characterized as the smallest (minimal) possible solution of fu = Au near the
endpoint b.

In contrast to (3), if £ is in the limit point case at b, Weyl-Titchmarsh solutions
Y4 (z,+) of u = zu, z € C\R, are characterized by the condition that for some (and
hence for all) ¢ € (a, b),

Vi(z,-) € L*((c,b);rdx) z € C\R. 4)

Again, ¥4 (z, - ) is unique up to constant (generally, z-dependent) multiples.

Our main result, Theorem 2.13 in Sect. 2, then proves equality of these solutions
(up to constant, possibly spectral parameter dependent multiples) under appropriate
assumptions. More precisely, assuming £ to be nonoscillatory and in the limit point
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case at b, there exists A, € R, such that for all A < A;, x,xo € (a, b), with x, xg
beyond the last zero of V¥4 (A, ), up(A, - ) (if any),

Ui A, 01 (A, x0) " = wp (X, X)up(X, x0) )

Here, ¥4 (4, -), A < A, denotes the extension of ¥ (z, - ), defined initially only
for z € C\R, to real values z < A,. This extension is permitted on the basis that £ is
assumed to be nonoscillatory and in the limit point case at b (cf. Remark 2.12).

We also recall Green’s function formulas in terms of principal solutions and an
explicit formula for the Weyl-Titchmarsh function at the end of Sect. 2, supposing
the underlying limit point assumptions on £.

In Sect. 3, the main new section in this paper, we prove the analogous results
in the matrix-valued setting. We will be primarily concerned with self-conjugate
solutions U(A,-) of LU = AU, A € R, defined by the vanishing of the underlying
m X m matrix-valued Wronskian,

WU, )* UR,-) =0, AeR. 6)

Focusing again exclusively on the endpoint b, a self-conjugate solution U(A, -) of
LU = AU thatis invertible on [c, b) for some ¢ € (a, b) is called a principal solution
of LU = AU at b if

x —1
lim|: / dx’Ub(k,x’)_lP(x’)_l[Ub(k,x’)_l]*:| =0. (7

xtb

Again, by Lemma 3.6, U,(A,-) is unique up to right multiplication by invertible
(possibly, A-dependent) constant m x m matrices, and in a certain sense (detailed
in Lemma 3.7) it represents the smallest (minimal) solution of LU = AU near the
endpoint b.

In analogy to (4), if L is in the limit point case at b, Weyl-Titchmarsh solutions
W, (z,-) of LU = zU, z € C\R, are then characterized by the condition that for
some (and hence for all) ¢ € (a, b), there exists an invertible m x m matrix-valued
solution W4 (z,-) of LU = zU such that the m x m matrices

b
/dx\IJ+(z,x)*R(x)\IJ+(z,x), z€ C\R, (8)

exist. As in the context of principal solutions, W4 (z,-) is unique up to right
multiplication by (generally, z-dependent) invertible m X m matrices and it can be
shown that W (z, -) is self-conjugate.

Our main result, Theorem 3.11 in Sect. 3, once again proves equality of these
solutions (up to right multiplication by possibly, spectral parameter dependent
invertible m x m matrices) under appropriate assumptions. More precisely, assuming
the existence of A, € R, such that L — A,/ is disconjugate on [c, b) for all ¢ € (a, b),
and supposing L to be in the limit point case at b, then for all A < A;, x,xo € (a, b),
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with x, xo beyond the last zero of deten (W4 (A, -)), detem (Up(A, +)) (if any),
Wi (A, 0V (A, x0) " = Up(A, 0)Up(A,x0) ™" ©)

Moreover, with the normalized m xm matrix-valued solutions ®(z, - , xo) of LU =
zU defined by

®(Zs XO,.X()) = Imv [P(-x)®/(zv-xv -x())](-xo)l)c:xo = Os (10)

we will show the following formula for the m x m matrix-valued Weyl-Titchmarsh
function associated with L,

* -1
My (z,x0) = —lig?l |:/ dx’ @(Z,xl,xo)_lp(x/)_l[@)(z’ x/’xo)—l]*i| ’

X0

z€ C\R, (11)

assuming L to be in the limit point case at b. If in addition, Lu = A,u is disconjugate
for some A, € R, then also

b —1
My (A, x0) = —[/ dx’@(A,x’,xo)_lP(x’)_l[@(k,x’,xo)_l]*} . A< A,
K (12)
holds, and

(E’ M"F(Av-x())_ln)(cm

b
= —/ dx' (£, 0(A.x . x0) "' P) ' [O. ¥ . x0) ] ) o 13)

X0

A <Ap, E,neC”

exists as a Lebesgue integral. Both formulas, (11) and (12), are of independent
interest and we know of no previous source that recorded them.

Concluding this introduction, we briefly summarize some of the notation used in
this paper. If H is a separable complex Hilbert space the symbol (-, - ) denotes the
scalar product in ‘H (linear in the second entry). If T is a linear operator mapping
(a subspace of) a Hilbert space into another, dom(7) denotes the domain of 7. The
spectrum and resolvent set of a closed linear operator in H will be denoted by o (+)
and p(-), respectively. The closure of a closable operator S in  is denoted by S.

The Banach spaces of bounded and compact linear operators on H are denoted
by B(H) and B (H), respectively.

The symbol I,,, m € N, represents the identity operator in C™. The set of
m X m matrices with complex-valued (resp., real-valued) entries is abbreviated
by C"™" (resp., R™™), and similarly, L*((c, d); dx)™"™ (resp., L} .((c,d); dx)™ ™)

loc
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denotes the set of m x m matrices with entries belonging to L*((c, d); dx) (resp.,
L; .((c,d);dx)), where s > 0 and a < ¢ < d < b. For notational simplicity, /
represents the identity operator in L?((a, b); rdx) and also in L*((a, b); rdx; C™).

Finally, C4 (resp., C_) denotes the open complex upper (resp., lower) half-plane,
and we will use the abbreviation “a.e.” for “Lebesgue almost everywhere.”

2 Basic Facts on Scalar Principal Solutions

In this preparatory section we recall some of the basic facts on oscillation theory
with particular emphasis on principal solutions, a notion originally due to Leighton
and Morse [68], in connection with scalar Sturm-Liouville operators on arbitrary
open intervals (a, b) C R.

We start by summarizing a few key results in the one-dimensional scalar case,
whose extension to the matrix-valued context we are particularly interested in.

Our basic hypothesis in this section will be the following (however, we empha-
size that all results in this section have been proved under more general conditions
on the coefficients p, ¢, and for more general differential expressions £, in [16]).

Hypothesis 2.1 Let —o00 < a < b < oo and suppose that p, q,r are (Lebesgue)
measurable on (a, b), and that

p>0,r > 0a.e on(a,b), qis real-valued,

(14)
1/p.q.r € L, ((a,b); dx).
Given Hypothesis 2.1, we consider the differential expression
1 d d
b=—-—-——=—p—+¢q), —-0<a<x<b<oo, (15)
r dx" dx

and define the minimal operator 7,,;, and maximal operator 7}, in the Hilbert space
L?((a, b); rdx) associated with £ by

Toninut = Lu,

u € dom(Tyin) = {v € L*((a, b); rdx) | v, pv" € ACpe((a. b)); (16)
supp (v) C (a, b) compact; {v € L*((a. b); rdx)},

Tmaxtt = Lu, (17)

u € dom(Tyar) = {v € L*((a, b); rdx) | v, pv" € ACpe((a. b)):
Lv € L*((a, b); rdx)},

respectively. Here ACj,.((a, b)) denotes the set of locally absolutely continuous
functions on (a, b).
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Then T,,;, is densely defined and [73, p. 64, 88]

Tmina'< = Tonax T:tax = Thin- (18)

Remark 2.2 (i) In obvious notation, we will occasionally write [ p(xo)u’(xo)] for
the quasi-derivative pu/ |y, .

(it) In the following we will frequently invoke solutions u(z, - ) of £u = zu for some
z € C. Such solutions are always assumed to be distributional solutions, that is,
we tacitly assume

u(z,-), p(-)u'(z,-) € ACipc((a. b)) 19)

in such a case.
Lemma 2.3 (cf., e.g., [33]) Assume Hypothesis 2.1.

(i) Suppose Lu = Au for some A € R with u(A,-) = 0 (u(A,-) # 0) on (a,b).
Then u(A,-) > 0on (a,b).

(i) (Harnack’s inequality). Let K C (a,b) be compact and A € R. Then there
exists a Cxc ) > 0 such that for all solutions u(A,-) = 0 satisfying bu = Au,
one has

sup(u(A,x)) < Cxa inlg(u(k,x)). (20)
xeK x€

Definition 2.4 Assume Hypothesis 2.1.

(i) Fix ¢ € (a,b). Then { is called nonoscillatory near a (resp., b) for some A € R
if and only if every solution u(A, - ) of fu = Au has finitely many zeros in (a, ¢)
(resp., (¢, b)). Otherwise, £ is called oscillatory near a (resp., b).

(i) Let Ao € R. Then T, is bounded from below by A, and one writes T,,;;, = Aol,
if

(M, [Tmm — AOI]”)LZ((a,b);rdX) = O, ue dOIn(Tmm). (21)

The following is a key result.

Theorem 2.5 ([39, 55, 80, 901) Assume Hypothesis 2.1. Then the following asser-
tions are equivalent:

(i) Tpin (and hence any symmetric extension of T, ) is bounded from below.
(i) There exists a Ay € R such that £ is nonoscillatory near a and b for all A < A.
(iii) For fixed c € (a,b), there exists a Ay € R such that for all A < Ao, Lu = Au
has solutions u,(A,-) > 0, it,(A,-) > 0 in a neighborhood (a, c] of a, and
solutions up(A,-) > 0, (A, ) > 0 in a neighborhood [c, b) of b, such that

W(ua(kv ')v ﬁa(ks )) =1, Ma(kv-x) = O(IL,(A,.X)) as x \L a, (22)
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Wup(A,-), up(A,-)) =1, up(d,x) = o(ip(A,x)) asx 1 b, (23)
c b
/ dxp()c)_ll/ta(k,x)_2 =/ dxp(x)_lu;,(k,x)_2 = o0, 24)
c b
/ dxp(x) ' (A, %)% < o0, / dxp(x) "' ip(A,x) 7% < c0. (25)
Here
W(u, v)(x) = u(x)(pv)(x) — (pu")X)v(x), x € (a,b), (26)

denotes the Wronskian of u and v, assuming u, (pu’),v, (pv’) € C((a,b)). In
particular, if fu; = zju;, 7; € C, then

dixW(ul(Zlvx)suZ(Zva)) = (21 — 2)r@)u1(z1, X)uz(z2,%), x € (a,b). (27)

Definition 2.6 Assume Hypothesis 2.1 and let A € R. Then u,(A,-) (resp.,
up(A, -)) in Theorem 2.5 (iif) is called a principal (or minimal ) solution of fu = Au
at a (resp., b). A solution i,(A, -) (resp., up(A,-)) of Lu = Au linearly independent
of us(A,-) (resp., up(1,-)) is called nonprincipal at a (resp., b).

Principal and nonprincipal solutions are well-defined due to Lemma 2.7 (i) below.
Lemma 2.7 ([39]) Assume Hypothesis 2.1.

(@) ua(A,-) and up(A,-) in Theorem 2.5 (iii) are unique up to constant multiples.
Moreover, u,(A,-) and up(A, - ) are minimal solutions of fu = Au in the sense
that

uA, %) ug(A,x) =o(l)asx | a, (28)

u(A, %) up(X,x) = o(1) asx 1 b, (29)
for any other solution u(A,-) of Lu = Au (which is positive near a, resp., b)
with W(ug,(A,-),u(A,-)) # 0, respectively, W(up(A,-),u(r,-)) # 0.

(if) Let u(A,-) be any positive solution of u = Au near a (resp., b). Then for
c1 > a (resp., c; < b) sufficiently close to a (resp., b),

ta(A,x) = u(A,x) /Cl dx’p(x/)—lu(k,x’)—z (30)

(resp., ip(A,x) = u(A,x) /x dx’p(x/)_lu(k,x’)_z) 31
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is a nonprincipal solution of Lu = Au at a (resp., b). If ti,(A, -) (resp., up(X,-))
is a nonprincipal solution of u = Au at a (resp., b) then

ta(hs ) = i (1,) / @ PO M a2 (32)

b
(resp., up(A, x) = fip(A, x) / dx’p(x’)—la,,(x,x’)‘z) (33)

is principal at a (resp., b).

The following two theorems describe a fundamental link between spectral theory
and non-oscillation results.

Theorem 2.8 ([39]) Assume Hypothesis 2.1 and let Ay € R. Then the following
assertions are equivalent:

() Tpin = Aol
(i) There exists a positive (distributional) solution u > 0 of Lv = Ayv on (a, b).

For the proof of Theorem 2.8 one notes that Theorems XI.6.1 and XI.6.2
and Corollary XI.6.1 in Hartman’s monograph [39] extend to our more general
hypotheses on p, ¢, r without modifications. In particular, item (if) implies item ()
by Jacobi’s factorization identity

—(pg) +h~ (ph'Y'g = —h~" (ph*(g/h)'Y, (34)
0 < h, ph' € ACipe((a, b)), g € dom(T,,;,).
Theorem 2.9 (Dunford-Schwartz [15], Theorem XIIL.7.40, [16], Section 11)
Suppose Hypothesis 2.1. Then the following assertions hold:

(i) Tyin is not bounded from below if and only if for all A € R, every solution
u(A, ) of tu = Au has infinitely many zeros on (a, b).

(it) If Tyn is bounded from below and o = inf(o.(T)) for some self-adjoint
extension T of Tyn, then, for A > L, every solution u(A,-) of u = Au has
infinitely many zeros on (a, b), while, for A < Ly, no solution u(A,-) of tu = Au
has infinitely many zeros on (a, b).

Thus, the existence of positive solutions on (a, b) can be used to characterize
inf(o (7)) while the existence of nonoscillatory solutions can be used to charac-
terize inf(o.s(7)). Without going into further details at this point, we note that
under appropriate assumptions on the coefficients, these characterizations extend
to elliptic partial differential operators. We also note that eigenvalue counts in
essential spectral gaps in terms of (renormalized) oscillation theory in terms of zeros
of Wronskians, rather than zeros of eigenfunctions, was established in [29]. For
additional work in this direction we refer to [63—-65].
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Next, in order to set up the connection between principal and Weyl-Titchmarsh
solutions, we recall Weyl’s definition of the limit point property of £ at the endpoint
a (resp., b).

Definition 2.10 Assume Hypothesis 2.1 and let z € C\R. Then / is said to be in
the limit point case (I.p.c.) at b (resp., a) if for some (and hence for all) ¢ € (a, b),
there exists a unique solution (up to constant multiples) ¥+ (z,-) (resp., ¥—(z,-))
of fu = zu such that

V4(z,-) € L*((c, b); rdx) (resp., Y—(z.-) € L*((a, c); rdvx)). (35)

The constants permitted above in Definition 2.10 (while of course x-independent)
are generally z-dependent.

One notes that L2-solutions u+(z,-) of fu = zu in a neighborhood of a and b
always exist. What singles out the limit point case for £ at a or b is the uniqueness
(up to constant multiples) of the L?-solution v (z,-), respectively, ¥_(z,-) in
Definition 2.10.

Any solution of fu = zu satisfying the square integrability in (35) in a
neighborhood of b (resp., a), independent of whether it is unique up to constant
multiples or not, is called a Weyl-Titchmarsh solution of £u = zu near b (resp., a).

We continue with the fact that nonoscillatory behavior at one end point plus a
simple condition on r/p implies the limit point property at that endpoint:

Lemma 2.11 (Hartman [37], see also [16], Section 11, [26, 75, 80]) Assume
Hypothesis 2.1, let ¢ € (a,b), and suppose that for some Ay € R, £ — A¢ is
nonoscillatory near d € {a, b}. Then, if

d
/ dx [r(x)/p()] 2| = oo, (36)

L is in the limit point case at d.

Hartman’s elegant proof of Lemma 2.11 in [37] is based on an application of
(non)principal solutions of fu = Au.

Remark 2.12 Assuming £ to be nonoscillatory and in the limit point case at a (resp.,
b), one recalls that y_ (resp., ¥+) in (35) analytically extends to z < A, for some
Aq € R (resp., z < Ap, for some A;, € R). In particular, for fixed x € (a, b), Y—(-,x)
(resp., ¥+ (-,x)) is analytic in C\[A,, 00) (resp., C\[A;, 00)). For more details in
this context we refer to the comments following [29, Proposition 1.1].

Next, we fix a reference pointxg € (a, b), and introduce the normalized solutions
¢(Z’ ’ ,X()) and H(Z, N ,X()) Of @u = ZU by
¢(Z, X0, .XO) =0, [p(-x)d)/(Z, x, xo)]X:x[) — 1

37
0(z,x0,x0) = 1,  [p(x)0'(z,x,%0)]x=x, = 0,
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with prime ' denoting d/dx, one infers (from the z-independence of the initial
conditions in (37)) that for fixed x € (a,b), ¢(-,x,x0) and 8(-,x,xp) are entire
with respect to z € C and that

W(O(z -, x0). ¢(z.-.x)) =1, z€C, xo € (a,b). (38)

Consequently, if u4(z,-) denote any nontrivial square integrable solutions of
fu = zuin a neighborhood of a and b, that is, for some (and hence for all) ¢ € (a, b),

uy(z,-) € L*((c,b); rdx), u_(z,-) € L*((a, c); rdx), (39)
one obtains u+(z, xo) # 0, and

U (2, X)ux(z. %) " = 0(z.x, x0) + ¢ (2. x, x0)m+ (2, X0),

z€ C\R, x,xo € (a,b),

(40)

for some coefficients m4 (-, xo), the Weyl-Titchmarsh functions associated with £.
The function m4 (z, xo) (resp., m—(z, xo)) is uniquely determined if and only if ¢
is in the limit point case at b (resp., @). In this case uy (z, - ) (resp., u—(z, - )) coincides
up to z-dependent constant multiples with ¥ (z,-) (resp., ¥—(z,-)) in (35).
Moreover, =m (-, x9) are Nevanlinna—Herglotz functions, that is, for all x, €
(a,b),

m4(-,xp) are analytic in C\R, 41
and
+ Im(my(z,x0)) >0, ze€Cy. (42)
In addition, for all xy € (a, b), m+(-, xp) satisfy
m(z,%0) = mx(Z,x0), z€Cy. (43)
Finally, one also infers for all z € C\R, xo € (a, b),

W(M-i- (Zs : )s M_(Z, : )) = [m— (Zs X()) —m4 (Zs X())]Lt+ (Zv .X())Lt_ (Zs X()), (4’4’)
me(z,%0) = [p(xo)udly (2, x0)]/ux (2, %o). (45)
Given these preparations we can finally state the main result of this section

which identifies principal and Weyl-Titchmarsh solutions at an endpoint where £
is nonoscillatory and in the limit point case:

Theorem 2.13 Assume Hypothesis 2.1.
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(i) If € is nonoscillatory and in the limit point case at b, then there exists A, € R,
such that for all L < Ap, x,x0 € (a,b), with x, xy to the right of the last zero of

I//-l-(k7 * )7 “/J(A7 ) (zfany),
VA, 0V (Ax0) " = up(A, x)up(X,x0) ", (46)

that is, Y+ (A, ) and up(A,-), A < Ap, are constant multiples of each other.
(i) If € is nonoscillatory and in the limit point case at a, then there exists A, € R,
such that for all A < A4, x,x0 € (a,b), with x, x to the left of the first zero of

V—(A,-), ua(A,-) (if any),
w—(kvx)w—(AvXO)_l = ua(kv-x)ua(kv-XO)_lv (4‘7)

that is, y—(A,-) and u,(A,-), A < A, are constant multiples of each other.

Proof 1t suffices to consider the case of ¥4 and up. Then, if ¥+ is a nonprincipal
solution of £u = Au, Lemma 2.7 (i) implies the existence of C+ > 0 and ¢ € (a, b),
such that for all A < A, and for all x € (c, b),

lup(X. 0)| < Cy|[Y+ (A, 0)]. (48)

Thus, uy(A,-) € L?((c, b); rdx). But since by hypothesis ¥4 and u; are linearly
independent, W(¥4 (A, ), us(A,-)) # 0, this contradicts the limit point hypothesis
at b which yields precisely one L?((c, b); rdx)-solution up to constant (generally,
A-dependent) multiples. O

In particular, if T,,;, is bounded from below by Ay € R and essentially self-
adjoint, then for all A < A, principal and Weyl-Titchmarsh solutions at an endpoint
coincide up to constant (A-dependent) multiples.

We briefly follow up with the connection between Green’s functions and princi-
pal solutions for Sturm-Liouville operators, illustrating once more the relevance of
principal solutions.

Lemma 2.14 Assume Hypothesis 2.1 and suppose that T,;, = Aol for some Ay €
R. In addition, assume that £ is in the limit point case at a and b. Then

Toin = Toax =T (4‘9)

is the unique self-adjoint extension of Ty, in L*((a, b); rdx) and for any xy € (a, b),

b
0<GA,x,x)= (/ dtp(t)—lua(x,t)—z)ub(x,xo)—lua(x,xo)x

0

(50)

y %ua(x,x)ub(x,f), a<xsx<b o, o

ug(A, X Nup(A,x), a<x <x<b,
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is the positive Green’s function of T. Here we abbreviated
Gzx.X)= (T —z2)"'(x.xX), xx €(ab), ze C\[Ao, ). (51)
As a consequence of Theorem 2.13, u, (A, -) and u,(A, -) in the Green’s function

representation (50) can be replaced by ¥_(z,-) and ¥4 (z,-). More precisely, an
additional analytic continuation with respect to z € C\[A¢, c0) yields

Gle.x.x) = 1 Y (2. X))V (z2,X), a<x<x <b,
eha= WWi(z,), ¥—(z,°) [ Yz, 0)¥_(z.x), a<x <x<b,
z € C\[Ag, 00),

(52)

where for all z € C\[A¢, 00), x9 € (a, b),

Wi (z,+), ¥—(z,+)) = [m—(z,x0) — m4(z, x0)]¥+ (2, X0)¥— (2, X0), (53)
m(z,x0) = [p(xo) ¥y (z. x0)1/ ¥+ (2, x0). (54)

The material in Lemma 2.3-Theorem 2.9, Lemmas 2.11 and 2.14 (and con-
siderably more) is discussed in great detail in [33] (with special emphasis on the
Friedrichs extension Tf of T,,;,), and under more general conditions on £ and its
coefficients in [16].

We conclude this section by recalling a known formula for m4(-,xo) (resp.,
m—(-,xo)) whenever £ is in the limit point case and nonoscillatory at b (resp., a):
Assuming the limit point case of £ at b (resp., at @), it is well-known that

m4(z,x0) = —lxi%rbl 0(z,x,x0)/P(z,x,x0), z€ C\R,

(55)
(resp., m—(z,xp) = —liin 0(z,x,x0)/P(z,x,x0), z € C\R).

Next, fix z € C and suppose that v(z, -, xo) satisfies fu = zu and v(z,x) # 0 for
X € [xo, b), then clearly w(z, -, xo) defined by

w(z,x) = v(z, x, Xo) [Cl + C2/ dx' p(x) "v(z, x/,xo)_2i|, X € [x0,b), (56)

X0

is a solution of fu = zu satisfying W(v(z, -, x0), w(z,-,x0)) = C. An elementary
application of these facts to ¢(z,-,x9) and 0(z,-,xp), taking into account that
0(z,x,x0) # 0,z € C\R, x,x9 € (a, b), yields

o (z,x,x0) = 9(z,x,xo)/ dx' p(x')'0(z. X', x0) %, z€ C\R, x,x0 € (a,b).
X0
(57)
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Insertion of (57) into (55) yields the interesting formula,

x —1
my(z,x0) = —11%2[ / dx’ p(x/)_le(z,xl,xo)_2:| , ze€C\R. (58)

X0

If in addition, £ is nonoscillatory at b, analytic continuation of both sides in (58)
with respect to z permits one to extend (58) to all z € C\[A;, 00), with A} as in
Theorem 2.13 (i). We also note that for A < A, the expression

X —1
[ / dx/p(x’)_lé’(/\,x’,xo)_2:| . A< A, (59)

X0

is strictly monotonically decreasing with respect to x and hence the existence of the
limit of the integral in (59) as x 1 b is guaranteed and one obtains

b -1
m4 (A, xp) = —[/ dx/p(x’)_le(k,x’,xo)_z} . A< Ap, (60)

0

with fx [; dx’ --- in (60) representing a Lebesgue integral.

We first found (60) mentioned without proof in a paper by Kotani [58]. Kotani
kindly alerted us to a paper by Kac and Krein [54], where such a formula is discussed
near the end of their section 2, but the precise history of (60) is unknown to us at
this point. We will provide a detailed derivation of (58), (60) in the matrix-valued
context in Sect. 3.

Next, replacing ¢ (z, -, xo), 0(z, -, x0) satisfying fu = zu and (37) by the more
general ¢y (z, -, x0), 04 (2, - , x0) satisfying fu = zu and

ba (2. X0, X0) = —sin(@),  [p(X)e, (2. X, X0)]lx=x, = cos(a),

(61)
Ou (2, %0, X0) = cos(@).  [p(x)0, (2. X0, %0)]lv=sx, = sin(e),
for some « € [0, ), and hence replacing (40) by
Ut o(2,%) = 0(z,%,%0) + Po (2, X, X0) M+ (2, X),
(62)

z € C\R, x,x9 € (a,b),

for appropriate Weyl-Titchmarsh coefficients m+ 4(-,X9), one obtains along the
lines leading to (57) for z € C\R,

X dx/
X0 p(-xl)eot (Zv -xlv .X())2 ’

@ € [0, m)\{7/2},

D (2, x,x0) = —tan(a) 0y (2, x, X0) + 0, (2, X, X0) (63)
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x dx’'
0y (z, x, = —cot (& Ay AQ) T Pl Ay ()b (2. X X0)2 o4
(z,x,X0) cot(@) ¢ (2, X, X0) — Pa (2, X, X0) w0 PO ¢a (2, X', X0)? ©9
a € (0,m),
and using
M aa0) = ~lim b exx0)/guz.xan), € C\R, ©5)

one now obtains

-1
[tan(a) — lim,y,, fx’; dx’p(x’)_lea(z,x’,xo)_2:| , a €0, m)\{r/2},

cot(a) + limypy, [ dx' p(x) " o (z, X', x0) 72, a € (0,m),

X0

M+ o (Z) =

7€ C\R,
(66)

whenever £ is in the limit point case at b (and similarly for z < A,, for an
appropriate A, € R, and a Lebesgue integral fx IZ dx' --- if £ is also nonoscillatory
at b).

Replacing lim,4, f;; dx' -+ by —limy, [*°dx’ ---, all formulas for m (-, xo)
and m4 4 (-, xo) immediately extend to m—_(-,xp) and m— (-, xp), assuming £ to be
in the limit point case at a (and analogously if £ is also nonoscillatory at a).

3 Matrix-Valued Principal Solutions

This section is devoted to an extension of some of the basic results on principal
solutions of the previous Sect.2 to those associated with matrix-valued singular
Sturm-Liouville operators.

Matrix oscillation theory relevant to this paper originated with Hartman [38] and
Reid [76]. The literature on oscillation theory for systems of differential equations
is so rich by now that we cannot possibly offer a comprehensive list of references.
Hence, we restrict ourselves primarily to a number of monographs by Coppel [14,
Ch. 2], Hartman [39, Sects. X.10, X.11], Hille [41, Sect. 9.6], [42], Kratz [62, Chs.
4, 7], Reid [78, Ch. VII], [79, Ch. V], Rofe-Beketov and Kholkin [84, Chs. 1-4],
and a few additional such as [4, 6, 9, 17, 21-24, 36, 51, 77, 83], and [95].

Basic Weyl-Titchmarsh theory and general spectral theory for matrix-valued
singular Sturm-Liouville operators as well as the more general case of singular
Hamiltonian systems has been derived in detail by Hinton and Shaw [46-50] (we
also refer to [8, Ch. 10], [10-13, 22,27, 30], [41, Sect. 10.7], [43-45, 52, 53,57, 59—
61, 69, 74, 81, 89, 94] for pertinent spectral results in this connection).
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In the following we take these developments for granted and only focus on the
required changes in Sect. 2 in connection with principal solutions which are implied
by inherent noncommutativity issues due to the matrix-valued setting.

The basic assumptions for this section then read as follows:

Hypothesis 3.1 Let —00 < a < b < 0o and suppose that P,Q,R € C"™" m € N,
have (Lebesgue ) measurable entries on (a, b), and that

P>0,R>0a.e on(ab), Q= Qis self-adjoint,
(67)
P ' 0,Re L, ((a,b);dx)™".

In addition, we introduce the Hilbert space of C™-valued elements,
Lz((a, b); Rdx; C™) = {U = (Uy,..., Um)T, Uy (Lebesgue) measurable,

1<k< m' / dx (U(x),R(x)U(x))cm < ooy,
(a.b)
(68)

with associated scalar product

(U, V)2 (@by:rdx;cmy = /

(a,

dx (U(x), RV (x))cm,
?) (69)

U,V € L*((a, b); Rdx; C™).
Here (... )T indicates a column vector in C" and (-, - )cm represents the standard
scalar product in C”, that is,

m

Wi wa)on = Y Wiowak W= Wii.....wm) ' €C" j=1,2.  (70)
k=1

Given Hypothesis 3.1, we consider the differential expression

d _d
L:R_l(—EPE—i—Q), —o<a<x<b<oo, 71)

and once more define the minimal operator 7,,;, and maximal operator 7, in
L?((a, b); Rdx; C™) associated with L by

Tninu = Lu,
u € dom(Tin) = {v € L*((a.b); Rdx; C") | v, Pv’ € ACpoe((a, b))"™"; (72)
supp (v) C (a, b) compact; Lv € L*((a, b); Rdx; Cc™},
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Tnaxt = Lu,
u € dom(Tar) = {v € L*((a. b); Rdx; C") | v, Pv’ € ACpe((a, b))™": (73)
Lv € L*((a, b); Rdx; C™)},
respectively. Here ACj,.((a, b))™" denotes the set of m x n matrices, m,n € N,
with locally absolutely continuous entries on (a, b) (we will use the analogous in

connection with C((a, b))"™" below).
Again, T, is densely defined and

Tmin>|< = Tonax Trw = Thin- (74’)

max

In the following, matrix-valued solutions U(z,-) of LU = zU for some z € C,
are always assumed to be distributional solutions, in addition, we either assume the
vector-valued

u(z,-), Pu'(z,-) € ACipe((a, b))™ ", (75)
or the m x m matrix-valued case
U(z,), PU'(z,-) € ACipc((a, b))™™, (76)

in this context. In fact, assuming U, (PU"), V, (PV’) € C((a, b))"™™, one introduces
the matrix-valued Wronskian of u and v by

W(U,V)(x) = Ux)(PV)(x) — (PU)x)V(x), x€ (a,b), (77
and if U; are m X m matrix solutions of LU; = z;U;, z; € C, then

EWWIET 0", U ) = (1~ )G RO V229, %€ (a D).

(78)
Definition 3.2 Assume Hypothesis 3.1 and let z € C\R. Then L is said to be in the
limit point case (Lp.c.) at b (resp., a) if for some (and hence for all ) ¢ € (a, b), there
exists a unique invertible m x m matrix-valued solution (up to constant multiples by

right multiplication with invertible m x m matrices) W (z,-) (resp., ¥_(z,-)) of
LU = zU such that the m x m matrices

b c
/ dx W (z,x)*R(x) ¥4 (z,x) (resp.,/ dx‘-IJ_(z,x)*R(x)\IJ_(z,x)) (79)

a

exist.
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Again, the constant invertible m x m matrices permitted in connection with
right multiplication in Definition 3.2 (while of course x-independent) are generally
z-dependent.

Given the analogy to the scalar case m = 1, any solution of LU = zU satisfying
the square integrability condition (79) in a neighborhood of b (resp., a), independent
of uniqueness up to right multiplication by constant invertible matrices, will be
called a (m x m matrix-valued) Weyl-Titchmarsh solution of LU = zU near b
(resp., a).

Remark 3.3 Assuming there exists a A, € R (resp., A, € R) for which (i, [T}, —
Aad|) 12 ((ap);rax;omy = 0 for all u € dom(7,,;,) with u = 0 in a neighborhood of b
(resp., (, [Tonin — ApI) 12 (0 p):Rav;cmy = 0 for all u € dom(7pn) with u = 0 in a
neighborhood of @) and that L is in the limit point case at a (resp., b), then W_ (resp.,
W, ) in (79) analytically extends to z < A, (resp., z < Ap). In particular, for fixed
x € (a,b), V_(-,x) (resp., ¥4+ (-,x)) is analytic in C\[A,, 00) (resp., C\[A;, 00))
(cf. the analogous Remark 2.12 in the scalar context).

We shall now turn to a brief summary of the principal facts of Weyl-Titchmarsh
theory in the present matrix-valued context. Again, we fix a reference point xo €
(a, b), and introduce the normalized m X m matrix-valued solutions ®(z, -, xo) and
O(z,-,x0) of LU = zU by

P(z,x0.%0) =0, [PG)P' (2., %0)||x=xp = I,

, (80)
O(z,x0,X0) = I,  [P(x)O"(z, X, %0)]lx=zy = 0,

and note again that for fixed x € (a,b), ®(-,x,x9) and O(-, x,xo) are entire with

respect to z € C. Moreover, one verifies (cf., e.g., [11, Sect. 2], [31, Sect. 2]) that

forany z € C, xy € (a, b),

W(@(Z,',Xo)*,qJ(Z,',X())) = Imv (81)
W((D(Zv N sxO)*v ®(Z, : ,.X())) = Imv (82)
W(D(Z,-,x0)*, ®(z,+,x)) =0, (83)
W(OGZ,-,x0)*,0(z,-,x0)) =0, (84)
as well as,
D(z,x,x0)O(Z, x,x0)* — Oz, x, x0) P(Z, x, x0)* =0, (85)
[P(x)®'(z, x, x0)][P(x) O (Z, x, x0)]*
— [P(x)©'(z, x, x0)][P(x) D' (Z, x, x0)]* = 0, (86)
[P(x) CD/(Zv X, /W))]@(Z, X, X())* - [P(X)®/(Z, X, X())]q)(z, X, X())* = Im7 (87)

®(Zs X, XO) [P(X) @’(z, X, .X())]* - ¢(Zv X, XO)[P(X)®/(Z, X, .X())]* = Im (88)
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Consequently, if U+ (z,-) denote any invertible square integrable m x m matrix-
valued solutions of LU = zU in a neighborhood of a and b in the sense that for
some (and hence for all) ¢ € (a, b), the m x m matrices

b c
/ dx Uy (z,%)*R(x)U (2, %), / dx U_(z,x)* R(x)U_(z, x), (89)

a

exist, one obtains

Us(z.x)Ux(z,%0) "' = O(z, x, x0) + P(z, x, x0) M (2, X0),
z€ C\R, x,x € (a,b),

(90)

for some m x m matrix-valued coefficients M1 (z, xo) € C™™, the Weyl-Titchmarsh
matrices associated with L.

Again, the matrix M (z, xo) (resp., M_(z, xo)) is uniquely determined if and only
if L is in the limit point case at b (resp., a). In this case U+(z,-) (resp., U-(z,+))
coincides up to right multiplication by z-dependent constant matrices with W (z, -)
(resp., W_(z, xp)) in (79).

Moreover, M4 (-, xo) are m x m Nevanlinna—Herglotz matrices, that is, for all
xo € (a,b),

My (-,x0) are analytic in C\R, rank (M4 (z,x0)) =m, z € C4, (C2Y)
and

+Im(My(z,x0)) >0, zeCy. (92)

(Here, in obvious notation, Im(M) = (2i)~' (M — M*), M € C"™ ) In addition, for
all xy € (a,b), M+ (-, xp) satisfy

Mi(z,x0) = M+(Z,x0)*, z€Cy. 93)
Finally, one also infers for all z € C\R, xy € (a, b),

W(UL(E, )", U-(z,)) = U4+(Z,%0)*[M—(z,X0) — M+ (2, %0)]U-(z, %),  (94)
M:I:(Zs .X()) = P(XO)U;:(Zs .X())U:t(Z,.X())_l. (95)

Unraveling the crucial identities (93) and (95) results in the fundamental fact
U+ Z0)*[PO)UL(z,0)] = [PQULE )" Ux(z,x), z€C\R, (96)
for x € (a, b). In particular,

WU+ )", Ux(z,-)) = 0. 7)
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In other words, invertible square integrable m x m matrix-valued solutions of
LU = zU in the sense of (89) closely resemble prepared solutions in the sense of
Hartman [38]. We use the term “closely resemble” as Hartman avoids the use of a
complex spectral parameter and focuses on z = 0 instead. The term “prepared” did
not stick as one finds also the notions of conjoined, isotropic, and self-conjugate
solutions in the literature in connection with the property (96) (resp., (97)). Be that
as it may, isolating property (96) was definitely a crucial step in the spectral analysis
of systems of differential equations as the following observations will demonstrate.

Definition 3.4 Assume Hypothesis 3.1, let A € R, and suppose that U(A, ) is an
m X m matrix-valued solution of LU = AU. Then U(A, -) is called self-conjugate if

WUQR. )" U@,-)) =0, (98)
equivalently, if
U, x)*[Px)U (A, x)] = [P@)U (L, x)]*U,x), x¢€(a,b). 99)

That is, U(A,x)*[P(x)U’(A,x)] is self-adjoint in (99) for all x € (a,b), and
this is why we thought it most natural to follow those who adopted the term
“self-conjugate” in connection with Definition 3.4. While we could have extended
Definition 3.4 immediately to A € C along the lines of (96), (97), we are eventually
aiming at principal matrix-valued solutions which are typically considered for
AeR.

Next, let V4 (z, -, ¢) (resp., V_(z, -, ¢)) be m xm matrix-valued solutions of LU =
zU, invertible on the interval [c, b) (resp., (a,c]) for some ¢ € (a,b), satisfying
property (96) on [c, b) (resp., (a, c]). In particular,

WLz, 0)* Vi(z,-,c)) =0. (100)

We introduce

Wi(z,x,¢) = Vi(z,x,0) |:C+,1
(101)

+/ dx’V+(z,x’,c)_lP(x/)_l[V+(Z,x/,c)_l]*C+,2i|, x € [e, b),
and

W_(z,x,c) = V_(z, x, C)I:C_,l
¢ (102)
_/ dx’V+(Z,x’,c)_lP(x/)_l[V+(Z,x’,c)_l]*C_,2:|, x € (a,d],

X
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where C+j € C™™, j = 1, 2. Then straightforward computations yield

LWy (z,+,¢) =zW4(z,-,¢) on [c, b), (103)
LW_(z,-,¢) = z2W_(z,-,c) on (a,c], (104)
W(VL(E -, 0)" Wi(z,-,0)) = Cxp, (105)
WWi(E, -, 0)" We(z,-,¢)) = C |Cxr — CL,Cx 1. (106)

At this point we introduce the notion of matrix-valued principal solutions of
LU =AU, A e R.

Definition 3.5 Assume Hypothesis 3.1 and let A € R.

(i) Suppose that Uy (A, -) is a self-conjugate solution of LU = AU that is invertible
on [c, b) for some ¢ € (a,b). Then U,(A,-) is called a principal solution of
LU = AU atbif

X —1
ng[ / dx’ Ub(/\,x/)_lP(x’)_l[Ub(k,x’)_l]*} =0. (107)

(it) Suppose that U, (A, -) is a self-conjugate solution of LU = AU that is invertible
on (a, c] for some ¢ € (a,b). Then U,(A,-) is called a principal solution of
LU = AU ataif

¢ -1
lim[ / dx’ Ua(/\,x/)_lP(x’)_l[Ua(/\,x/)_l]*i| =0. (108)

xda
Principal solutions, if they exist, are unique up to right multiplication with
invertible constant m x m matrices:

Lemma 3.6 Assume Hypothesis 3.1 and let A € R. Then if a principal solution
Up(A,-) at b (resp., U,(A,-) at a) of LU = AU exists, it is unique up to right
multiplication with an invertible (generally, A-dependent) constant m X m matrix.

This follows from [14, Theorem 2.3], or [39, Theorem 10.5 (ii)].

Lemma 3.7 Assume Hypothesis 3.1 and let A € R. Suppose that Uy(A,-) is a
self-conjugate solution of LU = AU that is invertible on [c,b) (resp., (a,c]) and
let V(A,-) be any m x m matrix-valued solution of LU = AU. Then Uy(A,-) is a
principal solution at b (resp., a) and

W(Uo(A,-)*,V(A,-)) is invertible, (109)
if and only if V(A,-) is invertible near b (resp., a) and

11%1}71 VA, x)"'Up(A,x) =0 (resp., liin VA, x)"'Uo(A, x) = 0). (110)
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If (110) holds, then, for appropriate c, c, € (a,b),

X -1
lipbl[/ dx’ V()L,x’)_lP(x’)_l[V(/\,x/)_l]*i| exists and is invertible ~ (111)

Ch

Cq -1
(resp., |:lim/ dx’ V()L,x’)_lP(x/)_l[V(A7x/)_l]*i|

xda Jy

exists and is invertible).

Again, this follows from [14, Proposition 2.4], or [39, Theorem 10.5 (iii)].

Definition 3.8 Assume Hypothesis 3.1. The equation Lu = zu, z € C, is called
disconjugate on the interval J C (a, b) if every nontrivial (i.e., not identically
vanishing) solution v of Lu = zu vanishes at most once on J.

It is well known (cf., e.g., [14, Sect. 2.1], [39, Theorem XI.10.1]) that Lu = zu,
z € C, is disconjugate on J C (a, b) if and only if

for any x; € J and any n; € C", Lu = zu has a unique solution v(z, -)

(112)
satisfying v(z,x;)) = n;,j = 1,2.
Equivalently, Lu = zu, z € C, is disconjugate on J C (a, b) if and only if
forany x; € J,j = 1,2, x; # x, Lu = zu has a no nontrivial solution
’ (113)

v(z,-) satisfying v(z,x;) = 0,j = 1,2.

We also recall the following useful result:

Theorem 3.9 ([14], Sect. 2.1-2.2, [39], Theorem XI.10.2) Assume Hypothe-
sis 3.1.

() IfJ is a closed half-line (i.e., J = [c,b) or J = (a, c] for some c € (a, b)), then
Lu = zu, z € C, is disconjugate on J if and only if there exists a self-conjugate
solution U(z,-) of LU = zU such that U(z, - ) is invertible on the interior of J.

(@) If J is a closed bounded subinterval of (a,b) or J C (a, b) is an open interval,
then Lu = zu, z € C, is disconjugate on J if and only if there exists a self-
conjugate solution U(z,-) of LU = zU such that U(z, -) is invertible on J.

Next, we derive the analog of (57)-(60) in the present matrix-valued context.
Combining (80)—(84) and (100)-(102) yields the analog of (57),

D(z,x,x0) = @(z,x,xo)/ dx’@(z,x/,xo)_lP(x/)_l[@(Z,x’,xo)_l]*,
X0

z€ C\R, x,xy € (a,b). (114)
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Moreover, assuming that L is in the limit point case at b (resp., at a), it is known
(cf., [46]) that the analog of (55) also holds in the form,

Mgmm=—%@@LmY@@Lm,z€QR
xth

(115)
(resp., M_(z,x0) = —liin D(z,x, %) 'Oz x,x0), z€ C\R).

Hence, we obtain the following formulas for M4 (-, x¢), the analogs of (58) and (60):

Theorem 3.10 Assume Hypothesis 3.1 and suppose that L is in the limit point case
at b (resp., at a). Then

X -1
M (z,x0) = —11%1[71 [/ dx’@(z,x’,xo)_lP(x’)_l[@(Z,x’,xo)_l]*} ,

X0

z € C\R,
(116)

X0
(resp., M_(z,x0) = liin |:/ d)/@(z,x’,xo)_l

xda
-1

x P(x)7'[O(, x’,xo)_l]*:| , ZE€ C\R). (117)

If, in addition, Lu = Apu is disconjugate on [xg, b) (resp., (a, xo]) for some A, € R
(resp., Ay € R), then

b -1
My (A, x0) = —[/ dx’@(A,x’,xo)_lP(x/)_l[@(k,x/,xo)_l]*:| . A< A,
X0
(118)

X0
(resp., M_(A,x) = |:/ dx' O, ', xo) !

a

-1
xP(x/)_l[®(k,x’,x0)_l]*:| , A<Aa), (119)
and

b
(6 My G 1)en == [ (600G ) (120)

X0

x P) O X . x0) ™ ] ) e
A <Ay E.neC,
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(resp., (s,M—(/\,XO)_IVI)(Cm = /XO dx' (8,0, x',x0)~" (121)
x P(x/)_l[@(A,x’,xo)_l]*n)cm, A<Aa En€ (C”’),

exists as a Lebesgue integral.

Proof It suffices to focus on the endpoint b. Combining (114) and (115) (employing
that L is l.p.c. at b) yields relation (116).

For the remainder of this proof we thus assume that Lu = A,u is disconjugate on
[x0, b) for some A, € R (in addition to L being 1.p.c. at b). Then,

/dx’@(x,x’,xo)—lp(x’)—l[@(x,x’,xo)—l]*, A< Ap, (122)

0

is strictly monotone increasing with respect to x > x(. Recalling the well-known
fact (cf. [7, Lemma 2.1]),

fO<SCI <<+ € Coo,With G, Co € Boo(H), n € N,

123
then 1_i)m |C. — CllB3) = 0 for some C € Boo(H), (123)
n—>o0

one infers convergence of the m x m matrix — fx ); dx' --- to— fx [; dx’' --- onthe right-
hand-side in (118) as x 1 b. In addition, the monotone convergence theorem implies
the existence of

b
/ dx' (5.0 x . x0) P [O X x0) T E) e A < Ay, E €T,
" (124)

as a Lebesgue integral. The general case depicted in (120) for &, n € C” then follows
by polarization.

It remains to prove equality of M4 (A, xy) with the right-hand side of (118) for
A < Ap. We start by noting that disconjugacy of Lu = A,u implies analyticity of
My (-, x0) on C\[Ap, 00) and hence the fact that the m x m matrix-valued measure
(-, xp) in the Nevanlinna—Herglotz representation for My (-, x) is supported on
[Ap, 00), that is, one infers the representation,

My(z,%) = A+ /[A )dsz(x,xo)[(x -2 A1+ 27,

z € C\[Ap, 00),

A=A*eC™™, / dE QA x0)E)en(1 + 1) <00, E€C™. (125)
[Ap,00)
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Similarly, one infers that for each x € [xg,b) the m x m matrix-valued function,
My (-, xp), defined by

My (2, x0) = —®(z,x,%0) ' O(z, x, x)

X -1
= _[/ dx’@(z,x/,xo)_lP(x/)_l[@(Z,x’,xo)_l]*} . (126)
z € C\[Ap, 00), x € (x0, b),

is meromorphic on C and analytic on C\[A;, 00). General Weyl-Titchmarsh theory
in connection with the interval [xo, x], x € (xo, b), where xp, x are regular endpoints
for L, yields that for fixed xo,y € (a,b), My (-,x0), and hence the m x m
matrix-valued integral in (126), represents a matrix-valued meromorphic Herglotz—
Nevanlinna function (cf. [46]). Indeed, employing (85) yields

My y(z.x0)* = M4 ,(Z.x0), z€C\R, (127)
and introducing

Uy(Z,X,X()) = @(Z,X,X()) + CD(z,x,xo)[—q)(z,y,xo)_le)(z, y’xo)]’

(128)
7€ C\R, x € [x0,y],y € (x0,b),

a combination of (78) (for z = Z; = 22), Uy(z,y,%0) = 0, (81), (82), (83), and (84)
imply the identity
Im(My ,(z.%0)) = Im(— @(z.y.x0) ' O(z. y. x0))
=@ [ @ Ufe ) ROV ek ). € C\R. v G,
N (129)
Again, disconjugacy of Lu = A,u implies that the m x m matrix-valued measure

Q. associated with M4 (-, xp) in (126), is again supported on [A;, 00), that is, for
each x € (xo, b),

M (2, x0) = —®(z,x, %) "' O(z, x, x0)

.

=A, + / dQ.:(A.x0)[A—2)7' =21 + 27!, ze C\[A, 0),
[Ap.00)
(130)

x —1
/ dx’@(z,x’,xo)_lP(x’)_l[@(Z,x’,xo)_l]*}

0

A, = A* e O™, / d(E, QA x0)E)en (1 + A2 < 00, £ € C.

[A5,00)
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In accordance with the limiting relation (115), the finite measures d€2,(A, xo)(1 +
A2)~! converge to dQ2(A,x0)(1 + A2)~" as x 1 b in the weak-* sense (cf. also [66]),
that is,

lim de(A,xo)(l—i—/\z)_lf(k):/ dQ(A, x)(1+A3)7F () (131)
b J{ap.00) [A5.00)

for all f € C(R) N L*°(R; dA). The Nevanlinna—Herglotz representation (130) for
M4 (-,xy) demonstrates that for any compact K C C\[Ap, 00), there exists a
constant C(K) > 0 such that |M4 .(z, x0)||gcm < C(K) uniformly with respect
toz € K and x € (xo,b). An application of Vitali’s Theorem (see, e.g., [82, Sect.
7.3]) then proves that the convergence in (115) extends to

Mo (2. x%0) = —lim ®(z,x,%0) 'Oz, x,x0), 2 € C\[Ap, 00), (132)

in particular, it applies to z < A, and hence yields (118). O

We are not aware of any source containing formulas of the type (116), (117),
(118), (119), (120), and (121). Naturally, these formulas can be extended to the
more general self-adjoint boundary conditions at the regular endpoint xy € (a, b)
discussed in detail in [46] (cf. also [10, 11]) in the matrix-valued context, extending
the scalar case described in (61), (62), and (66). We omit further details at this point.

The main result of this section then reads as follows.

Theorem 3.11 Assume Hypothesis 3.1.

(i) Suppose that for some A, € R, (u, [Tpin — Aplltt)12((ap):Rax;cmy = O for all
u € dom(T ;) with u = 0 in a neighborhood of a. In addition, assume that L is
in the limit point case at b. Then for all A < Ap, the Weyl-Titchmarsh solution
W, (A,-) is also a principal solution of LU = AU at b, that is, for x, xg to the
right of the last zero of detem (W4 (A, +)), deten (Up(A, +)) (if any),

V(A 0) W (A, x0) " = Up(A,x)Up(A, x0) " (133)

(if) Suppose that for some A, € R, (u,[Tin — Aad])12((@p);rav;cmy = 0 for all
u € dom(Ty,;,) with u = 0 in a neighborhood of b. In addition, assume that L is
in the limit point case at a. Then for all A < A, the Weyl-Titchmarsh solution
W_(A,-) is also a principal solution of LU = AU at a, that is, for x, xy to the
left of the first zero of detcm (W—(A, -)), deten (U, (A, +)) (if any),

W_(A, 0)W_(A,x0) "' = U, x)Us (A, x0) 7. (134)

Proof 1t suffices to consider item (i). By [39, Theorem XI.10.3 ], the assumption on
Tpnin — Apl implies that for all A < Aj, and all ¢ € (a, b), Lu = Au is disconjugate
on [c, b). By [14, Theorem 2.3] or [39, Theorem XI1.10.5], LU = AU has a principal
solution Up(A,-) for all A < A,. Without loss of generality we may uniquely
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determine Up(A,-,x9) by demanding the normalization U,(A4,xp;x0) = IL,. As
proved in [14, p. 44-45], it is possible to approximate U,(A,-,xo) as follows:
For y € (x,b), consider the unique solution Uy(A, ;xp), of LU = AU, A < A,
satisfying

Uy(A,x0,%0) = In, Uy(A,y,x0) = 0. (135)
Then

Up(A,-,x0) = li%n Uy(A, - x0), A <Ap. (136)
1o

In addition, one obtains that
Uy(/\, . ,)C()) = @(A, . ,X()) =+ CD(/\, . ,xo)M+,y()k;xo), (137)

with My ,(A; xo) introduced in (126). Employing the convergence result (118), that
is, limy4, My (A, x0) = M4 (A, X0), A < Ap, in (137) thus also yields

11%2 Uy(A,+,x0) = U4 (A, )WL (A, x0) 7, A< Ap (138)
;

A comparison of (136) and (138) then proves
Up(A,+,x0) = WA, )W (X, x0) " A < Ay, (139)

completing the proof. O

We emphasize that the continuity assumptions on the coefficients in L made in
the context of oscillation theory in [14, Sect. 2.1], [39, Sect. XI.10] are not necessary
and the quoted results in this section all extend to our current Hypothesis 3.1.

We also note that while we focused on Sturm-Liouville operators with matrix-
valued coefficients, a treatment of more general singular Hamiltonian systems
(along the lines of [11], [14, Ch. 2], [43-50, 76, 77], [78, Ch. VII], [79, Chs. V,
VI], is clearly possible.

Emboldened by the results in Theorem 3.11 in the matrix context, one might
guess that if T,,;, = Aol for some A € R, positivity of the solution u(1g, ) of Lu =
Aou, or alternatively, u # 0 in Theorem 2.8 could be translated to the matrix-valued
case in a multitude of different ways. Let U(A¢,-) € C™ denote a matrix-valued
solution of LU = A¢U, then here is a possible list of “positivity results” one could
imagine in the matrix context from the outset:

(I)y U e C™™ is invertible.

(II) U e C™™ is positive definite.
(Il1) U € C™™ is positivity preserving.
(IV) U e C"™ is positivity improving.
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For completeness we briefly recall the notions of positivity preserving (resp.,
improving) matrices:

Definition 3.12 Let A = (4;) € R™™ for some m € N.

1< k<m

(i) Ais called positivity preserving if Aj; = 0 forall 1 <j, k < m.
(ii) A is called positivity improving if Ajx > O forall 1 <j, k < m.

However, item (/1) implies self-adjointness of U(Ao, - ) and hence upon invoking
the equation adjoint to LU = AoU, commutativity of U(A¢,-) and Q(-). Our next
example, a matrix-valued Schrodinger operator (i.e., P(:-) = R(-) = I, in L),
provides a simple counter-example to positive definiteness.

Example 3.13 Letm =2, (a,b) =R, P(-) = R(-) = L a.e. on R, and

0(x) = (‘1) ;) (140)

in L. One verifies that

Taking E = —2, the general solution to LU = —2U has the form

— Ul,l(x) Ul,z(x)
v = (Uz,l(x) Uz,z(x)) » X€R, (142)

where
Upi(x) = cleﬁx + cze_ﬁx, (143)
Uni(x) = &16% + Bae ™ = (c1/2)e¥> = (e2/ eV, (144)
Us 2 (x) = dy cos(x) + da sin(x) + dse¥™ + dse™V, (145)
Uia(x) = dieV> + doe™V> — (dy/3) cos(x) — (da/3) sin(x) (146)

+ (ds/5)eY™ + (dy)5)e VT, (147)

and ¢j, ¢;, le,j € {1,2},and di, k € {1,2, 3, 4} are arbitrary parameters. No solution
of the form (142), (143), (144), (145), (146), and (147) is positive definite for all
x € R. If such a solution were positive definite, it would commute with Q, so it
suffices to show that solutions that commute with Q are not positive definite. By
writing out UQ = QU, and equating corresponding matrix entries, one infers that
U commutes with Q if and only if

Gl=tr=di=dr=dy=d; =0, ¢, = =2dy, c; = —2d,, (148)
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with d; and d, arbitrary. (One could just as well arrive at (148) using self-adjointness
of U(x).) Taking (148) for granted, for a fixed choice of constants d; and d», U(x)
has the form

_ [—2A) A(x)
Ukx) = ( A 0 ), x €R, (149)
where we have set
A) = deV> £ dhe V>, xeR. (150)

One then computes the eigenvalues of U(x) in (149) to be
Ax(x) = —A(X) £ V2|A@®)], xeR. (151)
Since A_(x) < 0 for all x € R, U(x) is not positive definite for any value of x, let

alone for all x € R.

In addition, items (/II) and (IV) are ruled out by the following elementary
constant coefficient example:

Example 3.14 Letm = 2, (a,b) = R, P(:) = R(:) = I, a.e.on R, gp € R\{0}, and

0
o) = ( "0) . (152)
qo 0
One verifies that
Tmin = _|q0|- (153)

Assuming that E < —|qo| < 0, let

§+(E) = V|E £ qol. (154)
We claim that U (E, - ), defined by

8—87 (E)x _e—8+ (E)x
Uoo (E, x) = (E_S(E)x i ) . E<—|q| <0, xeR, (155)

is a principal solution of LU = EU at co. That U (E, ) is self-conjugate follows
from the observation that

_ —0—(E)x
25_(E)e 0 ) (156

(UOO(E,X)/)*UOO(E,X) = ( 0 _28+(E)e—8+(E)x
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Since det(Uno (E, x)) = 2e~O=E+3+EDx one infers that U (E, - ) is invertible on
R. That this particular solution is principal at oo follows from the fact that

. -1
[ / a UOO(E,x/)_l[Uoo(EsX/)_l]*}
0

(157)
_ (48-(E)/(e*Ex —1) 0 0
N 0 484 (E)/(e®+Px — 1)) oo
Next, we turn to all principal solutions of this example and hence consider
_ —8—(E)x _,—84(E)x :3
e e o
Uso(E,x) = (e—S(E)x o=+ (E)x ) (y e)
ae—S_ (E)x __ ye—5+ (E)x ﬁe—S(E)x _ 66_8"" (E)x
= (a oS- (Ex 4 y o5+ (E)x B 3B | ¢ e—5+(E)x) (158)

with (% #) € C**?2 a nonsingular constant matrix.
By inspection, Us(—|qol, - ) is never positivity preserving (let alone, improving ).

The question of positive vector solutions of Lu = Agu has been studied in the
literature and we refer, for instance to [1-3, 5, 25, 91].

We conclude with the remark that the results presented in this section extend
from the case of m x m matrix-valued coefficients to the situation of operator-
valued coefficients in an infinite-dimensional, complex, separable Hilbert space. For
instance, basic Weyl-Titchmarsh theory for the infinite-dimensional case has been
derived by Gorbachuk [34], Gesztesy, Weikard, and Zinchenko [31, 32], Saito [85—
88] (see also [28], [35, Chs. 3, 4], [70-72], [84, Chs. 1-4], [92, 93]). For oscillation
theoretic results in the infinite-dimensional context we refer, for example, to [18—
20, 40, 56, 67]. A detailed treatment of this circle of ideas will appear elsewhere.

Acknowledgements We are indebted to Don Hinton for directing our attention to reference [46]
and the connection between Weyl-Titchmarsh and principal solutions pointed out therein. We
are also grateful to Shinichi Kotani for pointing out reference [54] to us in connection with
formula (60).
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Dennis Hagedorn, Yuri Kondratiev, Eugene Lytvynov, and Anatoly Vershik

Abstract Let K(R?) denote the cone of discrete Radon measures on R?. The
gamma measure G is the probability measure on K(R“) which is a measure-valued
Lévy process with intensity measure s~'e™ ds on (0,00). We study a class of
Laplace-type operators in L?>(K(R?), G). These operators are defined as generators
of certain (local) Dirichlet forms. The main result of the paper is the essential self-
adjointness of these operators on a set of ‘test’ cylinder functions on K(RR¢).
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1 Introduction

Handling and modeling complex systems have become an essential part of modern
science. For a long time, complex systems have been treated in physics, where e.g.
methods of probability theory are used to determine their macroscopic behavior by
their microscopic properties. Nowadays, complex systems, including ecosystems,
biological populations, societies, and financial markets, play an important role
in various fields, like biology, chemistry, robotics, computer science, and social
science.
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A mathematical tool to study complex systems is infinite dimensional analysis.
Such studies are often related to a probability measure y defined on an infinite
dimensional state space. The most ‘traditional’ example of a measure p is the
Gaussian (white noise) measure, which is defined on the Schwartz space of tem-
pered distributions, S’ (RY), see e.g. [3, 4, 9]. Another example of measure p is the
Poisson random measure on R?. This is a probability measure on the configuration
space I'(R?) consisting of all locally finite subsets of R?. A configuration y =
{x;} € T'(RY) may be interpreted either as a collection of indistinguishable physical
particles located at points x;, or as a population of a species whose individuals
occupy points x;, or otherwise depending on the type of the problem. The Poisson
measure corresponds to a system without interaction between its entities. In order to
describe an interaction, one introduces Gibbs perturbations of the Poisson measure,
i.e., Gibbs measures on I'(R?).

In papers [1, 2], some elements of analysis and geometry on the configuration
space I'(R?) were introduced. In particular, for each y = {x;} € I'(RY), a tangent
space to I'(R9) at point y was defined as

T,(I) == *(RY = R%, y),

where we identified y with the Radon measure ) ; é,,. A gradient of a differentiable
function F : I'(RY) — R was explicitly identified as a function

TRY >y (VIF)(y) € T, (D).

This, in turn, led to a Dirichlet form

E'(F.G) :/ (VER)), (VEG) )1,y die(y)

I(RY)

where 1 is either Poisson measure or a Gibbs measure. Denote by —L' the generator
of the Dirichlet form ET. Then, in the case where W is Poisson measure, the operator
L' can be understood as a Laplace operator on the configuration space I"(R?).

Assume that the dimension d of the underlying space R? is > 2. By using the
theory of Dirichlet forms, it was shown that there exists a diffusion process on I (RY)
which has generator L' see[1,2,19,22,31].In particular, this diffusion process has
M as an invariant measure. (For d = 1, in order to construct an associated diffusion
process an extension of I'(R?) is required.)

A further fundamental example of a probability measure on an infinite dimen-
sional space is given by the gamma measure [6, 27, 29, 30]. This measure, denoted
in this paper by G, was initially defined through its Fourier transform as a probability
measure on the Schwartz space of tempered distributions, S’(R?). White noise
analysis related to the gamma measure was initiated by Kondratiev, da Silva, Streit,
and Us in [14], and further developed in [12, 16, 17]. Note that the gamma measure
belongs to the class of five Meixner-type Lévy measures (this class also includes
Gaussian and Poisson measures). Each measure p from this Meixner-type class
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admits a ‘nice’ orthogonal decomposition of L?(x) in orthogonal polynomials of
infinitely many variables. In particular, in the case of the gamma measure G, these
orthogonal polynomials are an infinite dimensional counterpart of the Laguerre
polynomials on the real line [14].

A more delicate analysis shows that the gamma measure is concentrated on
the smaller space M(R“) of all Radon measures on R?. More precisely, G is
concentrated on the cone of discrete Radon measures on R?, denoted by K(R?). By
definition, K(Rd) consists of all Radon measures of the form n = Zi 5i6y,. It should
be stressed that, with G-probability one, the countable set of positions, {x;}, is dense
in R?. As for the weights s;, with G-probability one, we have n(R?) = ", s; = oo,
but for each compact set A C R?, n(A) = Zi:x,-EA si < oo. Elements n € K(RY)
may model, for example, biological systems, so that the points x; represent location
of some organisms, and the values s; are a certain attribute attached to these
organisms, like their weight or height.

A very important property of the gamma measure is that it is quasi-invariant with
respect to a natural group of transformations of the weights s; [27], see also [15].
Note also that an infinite dimensional analog of the Lebesgue measure is absolutely
continuous with respect to the gamma measure [27, 28].

In paper [13], which is currently in preparation, we introduce elements of
differential structure on the space of Radon measures, M(IR?). More precisely, for
a differentiable function F : M(R?) — R, we define its gradient (VMF)(n) as a
function of n € M(RY) taking value in a tangent space T,(M) to M(R?) at point
n. Furthermore, we identify a class of measure-valued Lévy processes i which are
probability measures on K(R?) and which admit an integration by parts formula.
This class of measures p includes the gamma measure G as an important example.
We introduce and study the corresponding Dirichlet form

ENF.G) = / (VR (), (VM G) (1) 7, 0m) dir ().

K(Rd)

In particular, we find an explicit form of the generator —LM of this Dirichlet form on
a proper set of ‘test’ functions on K(R9). Note that the operator L can, in a certain
sense, be thought of as a Laplace operator on K(R?), associated with the measure
W

In this paper, we will discuss a class of Laplace-type operators associated with
the gamma measure G. More precisely, we will consider a Dirichlet form

EN(F, G) :/ (VR (), c( (VG () 7, 01y dG ().
K(R9)

where c(7) is a certain coefficient (possibly equal identically to one). We prove that
this bilinear form is closable, its closure is a Dirichlet form and derive the generator
—IM of this form. The main result of the paper is that, under some assumption on
the coefficient (), the operator L™ is essentially self-adjoint on a proper set of
‘test’ functions on K(RY).
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Unfortunately, our result does not yet cover the case where c¢() is identically
equal to one. The open problem here is to prove the essential self-adjointness of a
certain differential operator on R x (0, 00).

Let us briefly discuss the structure of the paper. In Sect.2, we recall basic
notions from [13] related to differentiation on M(R?), like a tangent space and a
gradient of a function on M(X). As intuitively clear, we have two types of such
objects: one related to transformations of the support of a Radon measure, which
we call intrinsic transformations, and one related to transformations of masses,
which we call extrinsic transformations. We also combine the two types of tangent
spaces/gradients into a full tangent space/gradient.

In Sect. 3, we explicitly construct the gamma measure G on K(R?). In Sect. 4, we
construct and study the respective Dirichlet forms on the space L?(K(R?), G). These
Dirichlet forms are related to the intrinsic, extrinsic, and full gradients. We carry out
the integration by parts with respect to the measure G and derive the generators of
these bilinear forms.

Finally, in Sect. 5, we prove the essential self-adjointness in L?(K(R%), G) of the
generators of the Dirichlet forms on a proper set of ‘test’ functions on K(R?). To this
end, we construct a unitary isomorphism between L?(K(R¢), G) and the symmetric
Fock space F(H) over the space

H = L*(RY x (0, 00),dxs™ e ds).

We show that the semigroup (T,),o in L*(K(R?),G) which corresponds to the
Dirichlet form is unitary isomorphic to the second quantization of a respective
semigroup (7;);>0 in #. It can be shown that this semigroup (7;)>o generates a
diffusion on R? x (0, 00). In particular, in the extrinsic case, the respective diffusion
on R x (0, 00) is related to a simple space-time transformation of the square of the
0-dimensional Bessel process on [0, c0).

In the forthcoming paper [5], by using the theory of Dirichlet forms, we will
prove the existence of a diffusion on K(R?) with generator L™. We will also
explicitly construct the Markov semigroup of kernels on K(R¢) which corresponds
to this diffusion. Furthermore, we plan to study equilibrium dynamics on K(R?) for
which a Gibbs perturbation of the gamma measure (see [8]) is a symmetrizing (and
hence invariant) measure.

2 Differentiation on the Space of Radon Measures

In this section, we present some definitions from [13].

Let X denote the Euclidean space R?, d € N, and let B(X) denote the Borel o-
algebra on X. Let M(X) denote the space of all (nonnegative) Radon measures on
(X, B(X)). The space M(X) is equipped with the vague topology, i.e., the coarsest
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topology making all mappings

M(X) > n (g, n) == /X<pdn, ¢ € Co(X),

continuous. Here Cy(X) is the space of all continuous functions on X with compact
support. It is well known (see e.g. [11, 15.7.7]) that M(X) is a Polish space. Let
B(M(X)) denote the Borel o-algebra on M(X).

Let us now introduce an appropriate notion of a gradient VM of a differentiable
function F : M(X) — R. We start with transformations of the support, which we
call intrinsic transformations. We fix any v € C{°(X — X), a smooth, compactly
supported vector field over X. Let (¢;)cr be the corresponding one-parameter
group of diffeomorphisms of X which are equal to the identity outside a compact set
in X. More precisely, (¢,):er is the unique solution of the Cauchy problem

6109 =g} (@),
o (x) = x.

ey

We naturally lift the action of this group to the space M(X). For each n € M(X),
we define ¢/ () € M(X) as the pushforward of n under the mapping ¢,”. Hence, for
eachf € L'(X, ),

(frd/(m) = (fod/. ). (2)

For a function F : M(X) — R, we define the intrinsic derivative of F in direction v
by

, d
(V') := 2| _ F@Im). n e M), =

provided the derivative on the right hand side of formula (3) exists. As an intrinsic
tangent space to M(X) at point € M(X) we choose the space

(M) == L*(X — X. 7).

i.e., the space of X-valued functions on X which are square integrable with respect
to the measure 7. The intrinsic gradient of F at point 7 is, by definition, the element
(V"F)(n) in ﬂ“‘(M) satisfying

(VS F)1) = (V™ F) (1), v)7mqun)

- /X (V™E) (.0, v@)x dn (). v € CP(X — X). 4

(In the above formula, (-, -)x denotes the usual scalar product in X.)
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We will now introduce transformations of the masses, which we call extrinsic
transformations. We fix any & € Cy(X). We consider the one-parameter group of
transformations of M(X) given through multiplication of each measure n € M(X)
by the function e”™, ¢ € R. Thus, for each € M(X), we define M;,(7) € M(X) by

dMy(n) (x) := €™ dn(x). (5)

The extrinsic derivative of a function F : M((X) — R in direction 4 is defined by

d
(VEF)Y) = | F(Mu(n). 1€ M), ©)

provided the derivative on the right hand side of (6) exists. As an extrinsic tangent
space to M((X) at point € M[(X) we choose

T (M) := L*(X, 7).

The extrinsic gradient of F at point 7 is defined to be the element (V*'F)(n) in
T;X (M) satisfying

(VIXF)(n) = (V'F) (), h) ey

- /X (VSF) (. 0h(x) dn (). h € Co(X). ™

We finally combine the intrinsic and extrinsic differentiation. For any 1 € M(X),
the full tangent space to M(X) at point 7 is defined by

T,(M) := T," (M) & T (M).

We define the full gradient VM := (Vint, vext),
For example, let us consider the set FC;°(D(X), M(X)) of all functions F :
M(X) — R of the form

F(n) = g({fi.n)..... (v, n)), (®)

where g € C3°(RY) (an infinitely differentiable function on RY which, together with
allits derivatives, is bounded), f; ...,fy € D(X),and N € N. Here D(X) := C{°(X)
is the space of all smooth, compactly supported functions on X. An easy calculation
shows that

N
(V"F)(.0) = Y @) ({fi. 1) - - - (fv. n) Vi), ©)

i=1
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N
(V)00 = @) ({fio ). . (fus D), (10)

i=1

so that

N
(VYF) (0. x) =Y @) ({fion). . (v (VLS.

i=1

Here 0;g denotes the partial derivative of g in the i-th variable.

3 Gamma Measure

In this section, following [13, 27], we will recall a construction of the gamma
measure. Recall that we denote by K(X) the cone of discrete Radon measures on
X:

K(X):={n=> s, € MX) |5 >0, x €Xq .

i

Here, dy, is the Dirac measure with mass at x;, the atoms x; are assumed to be distinct
and their total number is at most countable. By convention, the cone K(X) contains
the null mass n = 0, which is represented by the sum over the empty set of indices
i. We denote t(n) := {x;}, i.e., the set on which the measure 7 is concentrated.
For n € K(X) and x € t(n), we denote by s(x) the mass of 5 at point x, i.e.,
s(x) := n({x}). Thus, each n € K(X) can be written in the form n = ert(n) 5(x)6.

As shown in [8], K(X) € B(M(X)). We denote by B(K (X)) the trace o-algebra
of B(M(X)) on K(X).

Proposition 3.1 There exists a unique probability measure G on (K(X), B(K(X))),
called the gamma measure, which has Laplace transform

/ e AG(n) = exp [—/log(l —p(x)) dx:| , peCX), p<1. (1D
K(X) b

We will present a constructive proof of this statement, as it will be used
throughout the paper.

Proof of Proposition 3.1 Denote R% := (0, o) and define a metric on R by
dR»jr (s1,52) := [log(s1) —log(s2)|. s1.52 € RY.

Then R* becomes a locally compact Polish space, and any set of the form [a, b],
with 0 < a < b < o0, is compact. We denote X = X x R% and define the
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configuration space over X by
rXx):= {)/ cX | [y N A| < oo for each compact A C )?}

Here |y N A| denotes _the number of points in the set y N A. One can identify a
configuration y € I'(X) with the Radon measure »_( . (s from M(X). The

space F()?) is endowed with the vague topology, i.e., the weakest topology on F(?)
with respect to which all maps

L@ e (.9)i= [Feodres) = 3 fes. f e,
(x,;s)€y

are continuous. Let B (F(}?),)\denote the Borel o-algebra on F()?). We denote by 7
the Poisson measure on (I'(X), B(I"(X))) with intensity measure

dx(x, s) = dxdA(s), (12)

where
1
dA(s) := — e ds. (13)
S

The measure 7w can be characterized as the unique probability measure on F(jf\)
which satisfies the Mecke identity: for each measurable function F : I'(X) x X —
[0, o0], we have

/F _dn(y) Ady(x, 9 F(r.x.5)

X)

= /,\ dn(y) [\d}f(x, s)F(y U{(x,s)},x,5). (14)
r b%

Denote by 1",,(3(\) the set of so-called pinpointing configurations in X. By defini-
tion, Fp(}?) consists of all configurations y € F()?) such that if (xq, s1), (x2,52) € ¥
and (x1,s1) # (x2,52), then x; # x,. Thus, a configuration y € 1"1,()?) can not
contain two points (x, s;) and (x, s2) with s; # s,. As easily seen, F,,(?) e B(T ()?)).
Since the Lebesgue measure dx is non-atomic, the set

{(x1,51,%2,5) € X* | x1 = 12}

is of zero x®2-measure. Denote by BC()?) the set of all Borel measurable sets in

X which have compact closure. Fix any A € BC(}?). Using the distribution of the
configuration y N A under r (see e.g. [11]), we conclude that

n(y € 1"(?) | 3(x1,81), (x2,82) €Yy N A x1 =x2, 851 F sz) =0.

Hence, 71(1"1,(3(\)) = 1.
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Foreach y € Fp()?) and A € B.(X), we define a local mass by

W) = [aa@sdyes = 3 gaos € 0.0l (15)

(x.5)€y

Here x4 denotes the indicator function of the set A. The set of pinpointing
configurations with finite local mass is defined by

[y(X) := {y € T,(X) | Ma(y) < oo foreach A € B.(X)}.

As easily seen, l"pf(f) e B(T ()?)) and we denote by B(pr()?)) the trace o-algebra
of B(l"()?)) on pr(}?). For each A € B.(X), using the Mecke identity (14), we get

/F L TU)ar) = /F ) /A dx(x,5) s = /A i < oo,

P

Therefore, Jr(pr(}?)) = 1 and we can consider 7 as a probability measure on

(T (X). By (3))). R
We construct a bijective mapping R : I')y(X) — K(X) by setting, for each
y ={(x;,s:)} € pr(}?), Ry =), sy € K(X). By [8, Theorem 6.2], we have

B(K(X)) = {RA | A € B(T,:(X))}.

Hence, both R and its inverse R ! are measurable mappings. We define G to be the
pushforward of the measure 7 under R. One can easily check that G has Laplace
transform (11) and this Laplace transform uniquely characterizes this measure. 0O

Corollary 3.2 For each measurable function F : K(X) x X — [0, o0], we have

d d LX) = d dx dse”* 8y, X). 16
/M) g(n)/x 1) F (7. ) /K(X) g(n)ﬁxx SeF()+ 5502, (16)

Proof By the proof of Proposition 3.1 (in particular, using the Mecke identity), we
see that the left hand side of (16) is equal to

[ _ant) [ares ey
Cpr(X) X

:/ _dn(y) /;dx(x, s)sF(R(y U {(x,$)}),x),
Iy X

pf (X)

which is equal to the right hand side of (16). O

Remark 3.3 In fact, identity (16) uniquely characterizes the gamma measure G, i.e.,
if a probability measure u on K(X) satisfies identity (16) with G being replaced by
W, then u = G. See [8, Theorem 6.3] for a proof of this statement.
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Remark 3.4 By using either the Laplace transform of the gamma measure (for-
mula (11)) or formula (16), one can easily show that the gamma measure has all
moments finite, that is, for each A € B.(X) and n € N, we have

/ (ta )" dG(n) = / 1A' dG(n) < oo a7
K(X) K(X)

4 Dirichlet Forms

Having arrived at notions of both a gradient and a tangent space to M(X), we would
like to construct a corresponding Dirichlet form on the space L?(K(X),G). This,
in turn, should lead us, in future, to a diffusion process on K(X). In fact, we will
consider different types of Dirichlet forms, corresponding to the intrinsic gradient
Vintextrinsic gradient V', and the full gradient VM Furthermore, in the case of
the intrinsic gradient (full gradient, respectively), we will use a coefficient in the
Dirichlet form which depends on masses only. The sense of this coefficient will
become clear below.

A natural candidate for the domain of these bilinear forms (before the closure)
seems to be the set FCp°(D(X), M(X)), see (8). However, as we learnt in [13],
the gamma measure does not allow, on this set, an integration by parts formula
with respect to intrinsic differentiation. In view of this, we will now introduce an
alternative set of test functions on K(X).

Denote by D(X) the space of all infinitely differentiable functions on X which
have compact support in X. In particular, the support of each ¢ € D(X) is a subset
of some set A X [a,b], where A € B.(X) and 0 < a < b < oo. We denote by
FCi° (D(X) F(X)) the set of all cylinder functions F : F(X) — R of the form

F(y) = g1, 7)s - lons¥), v € TX), (18)

where g € C°(RY), ¢ ....¢y € D(X), and N € N. Next, we define

FCR(D(X), K(X))
= {F:K(X) — R | F(y) = G(R™'n) for some G € FC(D(X),['(X))}.

For ¢ € D(i) and 1 € K(X), we denote

(. n) = (. R7'n) = > o(x.s(x)) =/X(p(x D ).

x€t(n) )
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Then, each function F € FCp° (D()?), K(X)) has the form

Fn) = g((er ... {lon.n)). 1 e KX), 19)

with g, ¢ ..., ¢y and N as in (18).

We note that }'CEO(D@),F(?)) is a dense subset of LZ(F(?),C) for
any probability measure { on F(i). Hence, ]—'C§°(D(?),K(X)) is a dense
subset of L*>(K(X),u) for any probability measure p on K(X), in particular,
FCP(D(X). K(X)) is dense in L2(K(X), G).

For a function F of the form (19), v € Ci°(X — X), h € Cp(X), and n € K(X),
we easily calculate:

(Vi"F)(n)

N
=Y @) (e fow ) D V] @i 5@, v())x
i=1

x€t(n)

< [ 5 (Vi 50). 00 ),
x 5(x) 7

(VX F)(n)

N

3

=Y (@) (e n).- .. (on.n)) D —
i=1

T g P05 S0
x€t(n)

u=s(x

(X)fp(x, u)h(x) dn(x).

Uu=s

Hence,

N
) 1
(VMF)(.0) = Y @) (@10 - - (v, M o5 Voh=#i05@). 20

i=1

N
ad
(V). %) = > @:8) (pr. n)s - Gon- ) 5

. 21
Ju ‘u=s(x)€0(x’ M) ( )

i=1
Let F: K(X) — R, n € K(X), and x € t(n). We define

(VEF)() :=Vy| _ F(n = s(0)8: + 5(x)8,). (22)
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W = F 8+ ub), 23)
U lu=s(x)

provided the derivatives on the right hand side of (22) and (23) exist. Here the
variable y is from X, V, is the usual gradient on X in the y variable, and the variable
u is from R* . The following simple result is proven in [13].

Lemma 4.1 ForeachF € .FC;O(D@), K(X)), n € K(X), and x € t©(n), we have

(V"F)(7.3) = —— (VXF) (). 24)
e
(VE)(n.2) = (Vs FF) (). (25)

We fix a measurable function ¢ : R} — [0, 00) which is locally bounded. We
define the symmetric bilinear forms on L?(K(X), G) by

EMF.G) = /K " (VI"F) (1), ¢(s()) (V™ G) () 7oy G (1),

- / dG(n) / A (V™ F) (0.0, csC)(V™G)m.0)x.  (26)
K(X) X
ENE.6) = [ (V. (VHGY M) ). @7)
K(X)
EM(F,G) := EM(F, G) + EFY(F, G), (28)

where F, G € FCy° (D(?), K(X)). It follows from formulas (20) and (21) that, for

each F € FC;° (D(i), K(X)), there exist a constant C; > 0, a set A € B.(X) and an
interval [a, b] with 0 < a < b < oo such that

max{[|V"F(,0)|lx. [V*F0, )|} < C1 xa(®) x1ap)(s(x)). 1 € KX), x € 7(n).
(29)
Since the function c is locally bounded, there exists a constant C, > 0 such that

c(s()) xap (s&)) = G 1 € K(X), x € t(n). (30)

Therefore, by (17), (29), and (30), the integrals in (26) and (27) indeed make sense
and are finite for any F, G € FC;° (DX). K(X)).

Using Lemma 4.1, we may also give an equivalent representation of the bilinear
forms M, £ext,
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Lemma 4.2 Forany F.G € FC(D(X), K(X)),

EM(F, G) = / dg(n) /\dxds e 9 F ) + 8. 9.6 + 58),
K(X) X s
(3D
1 _(d d
EN(F,G) = / A () /ldxdse ; (— Fn +s5x)) (—G(n n sax)).
K(X) X ds ds
(32)

Proof Formulas (31) and (32) directly follow from Corollary 3.2, Lemma 4.1, and
formulas (26) and (27). O

The lemma below shows that the introduced symmetric bilinear forms are well
defined on L*(K(X), G).

Lemma4.3 Let F,G € ]-"CZO(D(f), K(X)) and let F = 0 G-a.e. Then EY(F, G) =
0, § = int, ext, ML

Proof For each A € B.(X), making use of Corollary 3.2, we get
[ g [axase 1o+ stz = [ agoniFlaa) =o.
K(X) X K(X)

Hence F(n + s8,) = 0dG(n) dxds-a.e. on K(X) x X. From here and Lemma 4.2,
the statement easily follows. O

Lemma 4.4 For ff = int,ext, M, the bilinear form (En,]-"CZO(D()?), K(X))) is a
pre-Dirichlet form on L*(K(X), G) (i.e., if it is closable, then its closure is a Dirichlet
form).

Proof The assertion follows, by standard methods, directly from [18, Chap. I,
Proposition 4.10] (see also [18, Chap. II, Exercise 2.7]). O

Analogously to (22) and (23), we define, for a function F : K(X) - R, n €
K(X), and x € ©(n),

(AFF) () = Ay F( = s(0)8: + 5(x)8y). (33)
ST (s _
(AxTF)(n) = (du2 du) MZJ(X)F(n s(x)8y + uéy). (34)

Here and below, A denotes the usual Laplacian on X (A, denoting the Laplacian in
the y variable). Explicitly, for a function F € FCp° (D()?), K(X)) of the form (19),
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we get

N
(AXF)() =) @i 9) ({1 1) - .. (on- 1)

ij=1

X (V3| 5(n. 80), V3| _ (v, 5)))x

N
+ @ {erm). s Gove A _ @i s(),

i=1
and similarly, we calculate (AFJr F)(n).

Proposition 4.5 For each F € FC°(D(X). K(X)), we define

c(s(x))

s(x)2

(L"F)(p) = /X dn(x) (AXF)(n).

(LNF) () = /X dn( (AT ). 1 e Ko,

MF = L"F + LF.

(35)

(36)

(37)

(38)

Then, for § = int,ext, M| (Ln,}'CZO(’D(i),K(X))) is a symmetric operator in

L*(K(X), G) which satisfies

ENF,G) = (-L'F.G)pxwg). F.G e FCP(DX),K(X)).

The bilinear form (En,]:C,fo(’D(i),K(X))) is closable on L*(K(X),G) and its

closure, denoted by (€%, D(EY)), is a Dirichlet form. The operator
(—LF, FC*(D(X). K(X)))

has Friedrichs’ extension, which we denote by (—L*, D(LY)).

Proof We first note that, for a fixed F € FC;° (D()?), K(X)), there exist A € B.(X)

and an interval [a, b] with 0 < a < b < oo such that the functions

- - d
X2 (x,s)—> ViF(n+s8), X3 (x5 d—F(n + s6;)
s

vanish outside the set A X [a,b]. Let § = int and let F,G € }'C,fo(D()?), K(X)).

Using Lemma 4.2 and integrating by parts in the x variable, we get

EM(F,G) = / dg(n) Adxds e’ %( — AF(n+ 580))G(n + s6.).

K(X)

(39)
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Note that, for F of the form (19), we have

(AF)(n + 56,)

N
=Y @0;2)({@r. M) + @1(x.5). ... {lon. m) + on(x.9)) (40)

ij=1

X (Vx(pi(x, S), Vx(pj(xv S))X

N
+ @) (G M) + @069, (o 1) + v, 9) Agilx,s). (@D

i=1

Hence, the function under the sign of integral on the right hand side of (39) is
integrable. By Corollary 3.2, (35), (36), (39), and (41), we get

c(s))

oz CAP.0GMm)

E(RG%=Awdﬂmédwﬂ
=/ (—L™F)()G(n) dG(n). 42)
K(X)

By (35) and the local boundedness of the function c, there exist C3; > 0 and A €
B.(X) such that

c(s(x))
02 I(AF) ()| = G xax),  n e KX), x € z(n).
Hence, by (17) and (36), we get L™F € L*(K(X),G). Thus, the bilinear form
(&M, FC°(D(X), K(X))) has L*-generator. Hence, the statement of the proposition
regarding f{ = int holds.

The proof for ff = ext (and so also for ff = M) is similar. O

Remark 4.6 Let us quickly note some natural choices of the coefficient function
¢(s). Choosing c¢(s) = 1, the intrinsic Dirichlet form becomes the closure of the
bilinear form

EN(F.G) = / (VF) (1), (V™G) (1)) 7in i) G ().

K(X)

The choice of ¢(s) = s yields, in fact, the Dirichlet form which is associated with
a diffusion process on K(X) of the type n(f) = Y .2, 5i6x,s)» Where (x;(1))%, are
independent Brownian motions on X, see [5]. When we choose c(s) = s?, the
generator of the intrinsic Dirichlet form becomes (see (36))

(mﬂwzémmmﬁmy
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Below we denote by FC;°(D(X), K(X)) the set of the functions on K(X) which
are restrictions of functions from FCp°(D(X), M(X)) to K(X), i.e., they have the
form (8) with n € K(X). We note that FC;°(D(X), K(X)) is a dense subset of
L>(KK(X), ) for any probability measure x on K(X) (see [7, Corollary 6.2.8] for a
proof of this rather obvious statement). In particular, FC;° (D(X), K(X)) is dense in
L*(K(X),G). We finish this section with the following proposition.

Proposition 4.7 Assume that the function c satisfies
/ c(s)e ¥ ds < oo. (43)
R}

For § = int, ext, M, we have
FCP(D(X). K(X)) C D(EP). (44)

andforany F,G € FC(D(X),K(X)), E¥(F, G) is given by the respective formula
in (26), (27), and (28).

Proof For F € D(EY), denote EF(F) := EY(F, F). On D(EY) we consider the norm
1Fllpety = EXF)' + |IFl 2.0 - (45)
Let F € FCp;°(D(X), K(X)), and for simplicity of notation, assume that F is of the

form F(n) = g({f.n)), where g € C;°(R) and f € D(X). For each n € N, we fix
any function u, € C*°(R) such that

X[i/n,00) = Un = X[1/(2n), o) (46)
and
lul, ()] < 4n xp1/@ny,1m (1), tER. 47)
Forn € N, let v, € C*°(R) be such that
A(—oon+1] = Vn < X(=oon+2] (48)
and
[, (O] <2 Y1042 (1), TER. (49)
We define

h(s) := sun(s)va(s), seRY, neN, (50)
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and
0a(x,8) i= F)ha(s), (x,5) €X, neN. (51)
Note that h, € C°(R% ) and ¢, € D(X). Let

Fo(m) := g({@n. M), neKX), neN, (52)

each F, being an element of FCp° (D(?), K(X)). For each n € K(X),

(n ) = D FEs@ua(s()va(s()) — (f, 1) asn — oo. (53)

x€1(n)

Hence, by the dominated convergence theorem, F,, — F in L*(K(X), G). Note that

Fu(n + 580 = g({{@n ) + 0u(x,5)), 1€ KX), (x,5) € X. (54)

Using Lemma 4.2 and formulas (46), (47), (48), (49), (50), (51), (52), (53), and (54),
one can easily show that

EYF,—F,) = 0 asn,m— oo. (55)

Since (£F, D(EY)) is a closed bilinear form on L?(K(X), G), we therefore have F €
D(EY), and furthermore £¥(F,) — E¥(F) as n — oo. From here, analogously to
the proof of (55), we conclude that £*(F) is given by the respective formula in (26),
(27), and (28) with G = F.

The statement of the proposition about E#(F,G) for general F,G €
FCX(D(X),K(X)) follows from the above statement about E£¥(F) and the
polarization identity. O

Remark 4.8 Let § = int,ext, M. For ff = int, M, assume that condition (43) is
satisfied and the dimension d of the underlying space X is > 2. In the forthcoming
paper [5], for ff = int, ext, Ml, we will prove the existence of a conservative diffusion
process on K(X) (i.e., a conservative strong Markov process with continuous sample
paths in K(X)) which is properly associated with the Dirichlet form (%, D(E")), see
[18] for details on diffusion processes properly associated with a Dirichlet form. In
particular, this diffusion process is G-symmetric and has G as an invariant measure.

Remark 4.9 Let # = int, ext, M. Consider the Dirichlet form (¥, D;(E%)) which
is defined as the closure of the bilinear form (&%, FC3°(D(X), K(X))). By Propo-
sition 4.7, the Dirichlet form (€%, D(E%)) is an extension of the Dirichlet form
(¥, D1(EY), ie., D1(EY) C D(EY). So, there is a natural question whether these
Dirichlet forms coincide, i.e., D;(€ n) = D(& II), or, equivalently, whether the set
FCX(D(X),K(X)) is dense in the space D(E¥) equipped with norm (45). We do
not expect a positive answer to this question. Furthermore, we do not expect the
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existence of a conservative diffusion process on K(X) which is properly associated
with the Dirichlet form (%, D; (EF)).

5 Essential Self-Adjointness of the Generators

In this section, for {f = int, ext, M, we will discu§§ the essential self-adjointness of
the operator (L*, D(L*)) on the domain FC°(D(X), K(X)).

Theorem 5.1 Let ff = int, ext, ML. Let the function ¢ : RY — [0, 00) be measurable
and locally bounded. For t = M, assume additionally that

c(s) =as+ azs2 + a3s3 (56)
for some a; = 0, i = 1,2,3, max{a;,az,as} > 0. Then the operator
(L}, FCP(D(X), K(X))) is essentially self-adjoint on L*(K(X), G).
Proof Fix any F € FC;° (D(?), F()?)) and y € F()?). Consider the function

X\ 73 @xs) = F(y + 8y).

It is evident that this function admits a unique extension by continuity to the whole
space X. We denote the resulting function by F(y + 8(xs)), although y + (. is
not necessarily an element of F(?). Note that F(y + () is a smooth functions of
(x,s) € X.

We preserve the notation (£, D(EF)) for the realization of the respective
Dirichlet form on pr(jf\). Thus, (£, D(EY)) is the closure of the bilinear form

(€', FCP(D(X), T(X)))

on LZ(F(X) 7). Furthermore, by the counterpart of Lemma 4.2 for the domain
}'CEO(D(X) K(X)), we get, for any F, G € }'Cio(D(X) X)),

5inl (F, G)

:/ _dn(y) /\dxdse_Y
T (X) X

P

gext (F, G)

d d
=1 dN(V)[\dxdse_s (— F(y 4 8xs )) (—G(V + S(xs )),
/Ff(X) X dS (=) dS x:5)

P

EX(F,G) = EM(F, G) + EXY(F, G). (57)

c(s)
S_Z(VXF()/ + S(X,X))a VxG(y + 8(x,s)))x 5
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We keep the notation (L*, D(L")) for the generator of the closed bilinear form
(E%,D(E%)) on L*(T,y, ). We easily conclude from Proposition 4.5 that

FCP(D(X), T (X)) € D(LY)

and for each F € ]—'CEO(D(}?), I'(X)) and y € I (X)

(L™F)(y) = Ldy(x, 9% axp) ), (58)
X N

(LNF)(y) = Lxdy(x, 9s (AT ), (59)

(LEF)(y) = (L™F)(y) + (L™F)(y). (60)

with

(AYF)(y) ::A},b:xF(y —8s) + 8(.5)).

2

R* d d
(A<TF)(y) 3=(ﬁ - a) ‘uqF(V —8s) + Swy)-

We equivalently have to prove that the symmetric operator (Lﬁ,]-'C,fo(D(}?),
I'(X))) is essentially self-adjoint on L*(I'(X), ). Denote by (H*, D(H")) the
closure of this symmetric operator on LZ(F(}?), 7). So we have to prove that the
operator (H*, D(H")) is self-adjoint.

It is not hard to check by approximation that, for each ¢ € D()?) andn € N,
F = (p,-)" € D(H") and (H"F)(y) is given by the right hand sides of formulas (58),
(59), and (60), respectively. Hence, by the polarization identity (e.g. [3, Chap. 2,
formula (2.17)]), we have

(01, {¢n,) € DHY), @1,..., 0, € DX), n €N, (61)

and again the action of H* onto a function F as in (61) is given by the right hand side
of formulas (58), (59), and (60), respectively. Let P denote the set of all functions
on F()?) which are finite sums of functions as in (61) and constants. Thus, P is a set
of polynomials on I'(X), and P C D(H #). Furthermore,

(—H'F,G) =ENF.G), F.GeP,t=intext, M. (62)

L (X).r)
In formula (62), £¥(F, G) is given by formulas (57).

For a real separable Hilbert space #, we denote by F(#) the symmetric Fock
space over ‘H. Thus, F(#) is the real Hilbert space

FH) = P F"H),

n=0
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where FO(H) := R, and for n € N, F(#) coincides with H®" as a set, and for
any f(n)’ g(n) c Fm (H)

(f(n)7 g(n))]-‘(n)(';.[) = (f(n), g(n))HOll n!.

Here © stands for symmetric tensor product.
Recall the measure » on X defined by formulas (12) and (13). Let

1: AT (X), ) - FL*X, %)) (63)

denote the unitary isomorphism which is derived through multiple stochastic
integrals with respect to the centered Poisson random measure on X with intensity
measure x, see e.g2. [26]. Denote by P the subset of F (Lz()? , %)) which is the linear
span of vectors of the form

@l@@Z@"'@@n, @ls---s(pnep(i)snEN

and the vacuum vector ¥ = (1,0,0,...). For any ¢ € D(jf\), denote by M,

the operator of multiplication by the function (g, -) in Lz(l"(jf\), ). Using the
representation of the operator /M, I~" as a sum of creation, neutral, and annihilation

operators in the Fock space (see e.g. [26]), we easily conclude that I'P = P.
We define a bilinear form (€%, P) by

ENf.g) = ENT T g), fogeP

on F(LA(X.x).
For each (x, s) € X, we define an annihilation operator at (x, s) as follows:

a(x,s) . 75 — 75
is the linear map given by
Iy ¥ =0, @1 OP OO =Y Gi(x.9)01 OO OGO Oy,

i=1

(64)

where ¢; denotes the absence of ¢;. We will preserve the notation 0y for
the operator /9, )[~! : P — P. This operator admits the following explicit
representation:

B(X,X)F()/) = F()/ + 8(x,s)) - F(V)
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for r-a.a. y € F()?), see e.g. [10, 20]. Note that
ViF(y 4 8(c9) = Va(F(y + 8(x) — F(¥)).
d d
0+ 8w = Z(Fr +809) = F())-

Hence, by (57), for any F, G € P,

EMYF,G) = /F(X) dn(y) /\dxdse_s )(V V) F(1). Vi dx)G(¥))y -

.6 = [ _anty) [avase f(— a(x,s)m)) (ﬁa(x,ﬂc;(y)) ,
F(X) as as
EYF,G) = EM(F, G) + EX'(F, G).

Hence, forany f, g € 75,

Em(f,g) = ﬁd%(x )@Z( ol 5 a(”)g)f(ﬁ(? y

£ (f.g) = ﬁdx(x s)s( deeafs - a(xs)g)

F(L2X.x)

EM(f,8) = EM(f,8) + EX(f. 9). (65)

Consider the bilinear forms

€)= [[dutr. O Gp(2.9. Vet (5, 9).

ad ad
eext(g& W) = /)\?d%(xs S)S (a@(xa S)) (alﬁ(x» S)) P

g y) = €. Y) + €N y). ¢.¥ € DX), (66)
on L ()? , %). We easily calculate the L2-generators of these bilinear forms:

. ¥) = (L. V) g, ¢V €DX), 67)
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where for ¢ € D()?)

()

(L™p)(x,5) = — Ap(x, s),
2
(£ (x.5) =5 (aaz as) (x,9),
2
Mo = gy 4 £ = Q Acp(x.s) + (% - 3) o(x.9). (68)

Let us now recall the notion of a differential second quantization. Let (A, D) be a
densely defined symmetric operator in a real, separable Hilbert space H. We denote
by Faie (D) the subset of the Fock space () which is the linear span of the vacuum
vector ¥ and vectors of the form ¢1 © ¢, © -+ ® @,, where ¢;,...,¢, € D and
n € N. The differential second quantization d Exp(.A) is defined as the symmetric
operator in () with domain JF,,(D) which acts as follows:

dExp(A)Y := 0,

dEXp(A)p1 O OO i=) 91000 (Ap) O O @ (69)

i=1

By e.g. [3, Chap. 6, subsec. 1.1], if the operator (A, D) is essentially self-adjoint
on H, then the differential second quantization (d Exp(.A), Fag(D)) is essentially
self-adjoint on F(H).

Now, we note that P = }'alg(D(j\()). By (64), (65), (66), (67), (68), and (69) (see
also [3, Chap. 6, Sect. 1]), an easy calculation shows that

ENf.8) = [@EXp(—LD.8) oy [o8 € P i = it ext M.
Hence, by (62),
H'f = dExp(€h)f, f e P, #=int ext, M. (70)

Here H' = IH'I™". To prove the theorem, it suffices to show that the operator
(H’j P) is essentially self-adjoint on LZ(K(X) G), or equivalently the operator
(H’i P) is essentially self-adjoint on F' (LZ(X x)). By (70), the theorem will follow
from the lemma below. O

Lemma 5.2 Under the assumptions of Theorem 5.1, the operator (£!, D()?)) is
essentially self-adjoint on L*(X, x), # = int, ext, ML

Proof We will only discuss the hardest case ff = M. We denote by (£, D(£M))
the closure of the symmetric operator (£, D(X)) on L?(X, x). We denote by S(X)
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the Schwartz space of real-valued, rapidly decreasing functions on X (see e.g. [23,
Sect. V.3]).

Claim. For each f € S(X) and k € N, the function ¢(x,s) = f(x)s* belongs to
D(£M), and £M¢ is given by the right hand side of (68).

Indeed, for any functions f € D(X) and g € C5°(R%), we have f(x)g(s) €
D(jf\) C D(£X). Hence, by approximation, we can easily conclude that, for any
functions f € S(X) and g € C5°(R?% ), we have f(x)g(s) € D(£X).

Fix any function u € C*°(R) such that y[1, o) < # < X[1/2, 00)- Let

Cs ;= max max{ | ()|, |u" ()|} < 0.
vim max max /O 0]}

Forn € N, let u,(t) := u(nt), t € R. Then

X[/, 00) < Un = X[1/(2n), 00) (71)

and

[l (1) < Canypjam.im@®, Ui < Can’xujem.1m@®, teR, neN.
(72)

We also fix any function v € C*°(R) such that ¥(—c0, 1] < V < f(~00,2)- Forn € N,
set v, (1) ;= v(t —n), t € R. Hence

X(—oo,nt1] = Un < X(—o00,n+2)s (73)
and for some C5 > 0
max{ |v, (), [v, (O]} < Cs xpt1.n+2. tER, neN. (74)
We fix any k € N and set
gn(s) == s*u,(s)va(s), seR%, neN. (75)

Clearly, g, € C°(R%). We fix f € S(X) and set
¢a(x.5) = f()ga(s).  (r.s) €X, neN, (76)
Thus, ¢, € D(£X). By the dominated convergence theorem,
@u(x,5) = @(x,5) := f(x)s* in Lz()?, Xx) asn — oQ. a7
We fix any ¢ € D(i). Then

(_SMﬁl’m W)Lz(/X\,}() = 6MI((ponv 1//)3 neN. (78)



142 D. Hagedorn et al.
It is easy to see that

Jim € (p,.9) = (g ). (79)
In (78) and (79) , ¢M(-, ) is given by the formulas in (66). Hence

1im (0, ¥) 5 = (€0 V)50 (80)

We stress that, in (80), the function £M¢ € L2(3(\ , %) is given by formulas in (68),
however we do not yet state that ¢ € D(£").
By using (71), (72), (73), (74), (75), and (76), it can be easily shown that

M
sup || €%ull a2, < 00.
neN M2 X.x)

Hence, by the Banach—Alaoglu and Banach—Saks theorems (see e.g. [18, Appendix,
Sect.2]), there exists a subsequence (qonj)]?’il of (pn)o2, such that the sequence

(£M&)2, converges in Lz(j\( ,%). Here

1 ¢ ,
gi = 7Z(pnj, ieN.
j=1

We note that, foreachi e N, §; € D(jf\), and by (77)
& — ¢ in Lz()?, x) asi — 00. 81)
Furthermore, by (80),
lim (£%5.9) 25, = (0. V)25, ¥ € DE).
Hence
Mg - eMy in Lz()?, x) asi — oo. (82)
By (81) and (82), we conclude that § — ¢ in the graph norm of the operator
(€Y, D(£M)). Thus, the claim is proven.
We next note that
L*(X, %) = LX(X.dx) @ L*(R*, 1) (83)

(recall (12)). Evidently, S(X) is a dense subset of L?>(X,dx). Furthermore, the
functions {s*}2° form a total set in L*(R*, 1) (i.e., the linear span of this set is
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dense in L2(R*_, 1)). Indeed, consider the unitary operator

LZ(R* LA) 2 g(s) — @

€ LX(R* , se™* ds).

Under this unitary operator, the set {s*}?°, goes over into the set {s*}2° . But the
measure yp+ (s)se*ds on (R, B(R)) has Laplace transform which is analytic in
a neighborhood of zero, hence the set of polynomials is dense in L?(R* , se™ ds).
Therefore, the set

Y = Ls{f(x)s" | feSX), ke N}

is dense in L? (? ,x). Here 1. s. denotes the linear span. By the Claim, the set Y is a
subset of D(£M). Note also that the operator £ maps the set Y into itself.

Since the symmetric operator (£, D(£M)) is an extension of the operator
(2™, ), to prove that (€™, D(€M)) is a self-adjoint operator, it suffices to prove
that the operator (£, ) is essentially self-adjoint.

We denote by Lé(? , %) the complex Hilbert space of all complex-valued x-
square-integrable functions on X. Let Y denote the complexification of T, i.e., the
set of all functions of the form ¢; + ig,, where ¢, ¢, € Y. Analogously, we define
Lé(X ,dx) and Sc(X), the Schwartz space of complex-valued, rapidly decreasing
functions on X. We extend the operator £ by linearity to Yc.

Recall that the Fourier transform determines a unitary operator

T L2(X,dx) — LA(X, dv).

This operator leaves the Schwartz space S¢(X) invariant, and furthermore
§ : Sc(X) > Sc(X)

is a bijective mapping. Under §, the Laplace operator A goes over into the operator
of multiplication by —||x|%, see e.g. [24, Sect. IX.1]. Using (83), we obtain the
unitary operator

FR1:LA(X. %) - LA(X. x).

Here 1 denotes the identity operator. Clearly § ® 1 : Y¢c — Y is a bijective
mapping. We define an operator R’ : Y¢ — Y¢ by

R =GFeone"Gen
Explicitly, for each ¢ € Y¢,

2

9 9
c(s) ||x||§ o, s) + s (@ — $) o(x, s). (84)

N

(R"9)(x,5) =

It suffices to prove that the operator (R™, Y¢) is essentially self-adjoint on L2 ()? ,X).
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Since the operator (ERM, Y¢) is non-positive, by the Nussbaum theorem [21], it
suffices to prove that, for each function

o(x,5) = f(0)s" (85)
withf € D(X) and k € N,
DIl 2 = oo (86)

n=1

For a function ¢(x, s) of the form (85), by virtue of (56) and (84), we get

R 9)(x, 5)
= —(a15" + " + ass" ) |3 () + (k(k — D5 — ks“)f (x)
= R @) (x.9) + RY'9)(x.5) + R0 (x,5) + (R '9)(x.9). (87)
Here

RY @) (x. 5) = k(k — 1)s*'f(x),

R0 (x.5) = (—ar|lx[; — b)s'f (),

RY9)(x.5) = —ar |3 f (),

(Ry'9)(x,5) = —as | x|} f (x). (88)

le:/
R

Since the Laplace transform of the measure Xr® (s)e™*ds on R is analytic in a
neighborhood of zero, there exists a constant C¢ > 1 such that

For / € N, denote

st dA(s) :/ st ds. (89)
0

*
+

m < CLl', leN. (90)

Consider a product 9%?1”1 . "Sﬁ\f@, where iy, ...,i, € {~1,0,1,2}. Denote by /;
the number of the S)‘{jM operators among the operators 2)‘“\?1”1, .. S)‘{gﬂ Thus, [} +
lo + I} + I, = n. Note that the function f(x) has a compact support in X, hence the
function ||x|| is bounded on supp(f). Recall also the estimate

e =4 jeN 1)
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Hence, by (87), (88), (89), (90), and (91), we get:
19" Rl Gy S Crlk— L+ 1 +20) (k= Iy + 11 + 2L)H=1th(92)

for some constant C; > 0 which is independent of /_;, Iy, 1, I, n. Since j! < ji , wWe
get from (92)

”9{1\141 l”@”LZ(X o = Cn(k_l L+ ll + 21 )k I +h+2bL+211+
=Cik—1_y +1 + 2lz)k+l_1+10+11+212
< Ch(k + 2n)ktn,
Therefore,

1O 9l,2 5, < (0" + 20) .

From here (86) follows. O

Let us recall the notion of a second quantization in a symmetric Fock space. Let
‘H be a real separable Hilbert space, and let 7 (#) be the symmetric Fock space over
‘H. Let B be a bounded linear operator in #, and assume that the operator norm of B
is < 1. We define the second quantization of B as a bounded linear operator Exp(B)
in F () which satisfies Exp(B)¥ := W (¥ being the vacuum vector in F(#)) and
for each n € N, the restriction of Exp(B) to F" (#) coincides with B®".

Let the conditions of Theorem 5.1 be satisfied. Forﬁ = int, ext, M, recall the non-
positive self-adjoint operator (2Ij D(£%)) in L? (X x). By Lemma 5.2, this operator
is essentially self-adjoint on D(X) and, for each ¢ € D(X) £y is given by (68).
Recall the unitary operator / in formula (63). In view of the bijective mapping R :
Ly (?) — K(X), we can equivalently treat the operator / as a unitary operator

I:L2(K(X),G) = F(L*(X, %)) (93)

(recall that the Poisson measure 7 is concentrated on pr()?)).

Corollary 5.3 Let the conditions of Theorem 5.1 be satisfied. Then, for § =
int, ext, M, we have

IV = Exp(e’ﬂu), >0,

i.e., under the unitary isomorphism (93), the semigroup (e’Ln),Zo with generator
(L}, [11D(L%)) goes over into the semigroup (Exp(e’gu)),zo—the second quantiza-
tion of the semigroup (e’sn),zo with generator (£}, D(£")).

Proof It follows from the proof of Theorem 5.1 that

IPI'f = dExp(8)f.  f € Fu(DX)).
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and the operator d Exp(£*) is essentially self-adjoint on Fag (D()?)). From here the
result immediately follows (cf. e.g. [3, Chap. 6, subsec. 1.1]). O

Remark 5.4 Consider the operator (£, D(£*")). We define the linear operator

ext 82 a o0
RY u(s) :=s 32 7 u(s), ue Cy°(RY).
It follows from the proof of Lemma 5.2 that this operator is essentially self-adjoint

on L*(R* , 1), and we denote by (EE‘L , D(,Qext )) the closure of this operator. Recall

that LZ(X, %) = L*(X,dx) ® *(R* , X). Usmg (68), it is easy to show that

Eext — 1 ® Sexl .

Using e.g. [25, Chap. XI], we easily conclude that (£5% ,D(Se’“ )) is the generator
+

of the Markov process Y(f) on Ry = [0,00) given by the followmg space-time
transformation of the square of the 0-dimensional Bessel process Q(t):

Y(1) = e 2Q((e* — 1)/2).

Note that, for each starting point s > 0, the process Y () is at O (so that it has exited
R ) with probability exp(—s/(1 — e™)), and once Y (f) reaches zero it stays there
forever (i.e., does not return to R’} ).
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38 Years with Professor Ludwig Streit

Takeyuki Hida

Abstract This paper focuses on the 38 years of research which Prof. Streit
dedicated to the development of the theory of Feynman path integrals, by using
the techniques of White Noise Analysis. This paper aims at giving an introductory
overview of his achievements.

Keywords white noise * Feynman integral

AMS Subject Classification 60H40 White Noise Theory

1 Introduction

I. A brief interpretation of the theory of the White Noise Analysis.

Let B(f) be the white noise which is realized as the time derivative of a
Brownian motion B(f),t € R'. The collection {B(f),t € R'} is a system of
idealized elementar random variables, the probability distribution & of which is
a Gaussian measure on the space E* of generalized functions. To fix the idea the
space E* is taken to be the dual space of a countably-Hilbert nuclear space E
dense in L>(R").

The white noise analysis is the calculus of functionals, the domain of which
is the measure space (E*, it).

The variables of the functional in question are denoted by ¢(x),x € E* ,
where x is viewed as a sample function of the B.

The variable is a generalized function, even random, and ¢ is nonlinear
in general, so we meet a lot of difficulty. However, the analysis, that is, the
white noise analysis, is much interesting and has surprisingly many significant
applications.
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II. Professor Ludwig Streit and White Noise.

1. I first met Professor Streit in 1975 at Kyoto, where an international confer-
ence was held and he was an invited participant.

2. Quantum theory due to Streit in terms of white Noise : We discussed various
problems in this direction at ZiF Bielefeld.

3. We also discussed our formulation of the Feynman path integrals at Bielefeld.

4. There have been further developments in the present line. We have had very
good collaboration either in Europe or in Nagoya.

2 Some Background

I. What is White Noise Analysis.

At the beginning of white noise theory we used to give a naive interpretation
in terms of Gaussian white noise B(t), the time derivative of a Brownian motion
B(t). At present, having had fruitful results, we can now state the récit of the
study in the following manner.

We are interested in the study of “random” complex phenomena. Each of
them should be represented by a system of random vaiables defined on a
certain probability space that we construct. For a mathematical study of those
random variables, we propose a approach. First form a system of indepedent
random variables having the same information as the variables in question. Then,
we are given a system of random functions of those independent variables.
The functions of independent random variables are much easier to deal with,
compared to the functions of dependent random variales. This step is the so-
called reduction, see [15].

The typical system of independent random variables, actually idealized
random variables, is the Gaussian white noise {B(r),7 € R'}.

II. Notes.

Next, there arises a question: what are the possible, in fact acceptable,
cardinal numbers of the system of independent variables. The case of finite or
countably infinite number of independent random variables is easy to deal with,
but it is not interesting. Whereas the case of continuously many independent
random variables is important and much more interesting. There arises, however,
a serious problem, that is, a system of continuously many independent ordinary
random variables has non-separable probability distributions. To avoid this
difficulty, we have the idea of taking the time-derivative of an additive process,
in particular, a Lévy process, say Z(f) where Z(¢) is some Lévy process. As for
the separability, there is no problem, see [8]. However, we have to pay a price,
namely, each Z() is no longer an ordinary random variable, but an idealized
variable.

Professor John R. Klauder has kindly suggested to me to call Z(7) an idealized
elementar random variable (i.e.r.v.). It is often simply called a noise.

There is one more remark. A noise is usually parametrized by time or space.
For example, B(f) or the Poisson noise P(f), which is the time derivative of a
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Poisson process P(r), depends on time; while another noise P’(1) depends on a
space variable A.

[Remark] Concerning the noise, we often use a phrase, in fact, after Streit, Raum,
Zeit, Rauschen, cf. H. Weyl, Raum, Zeit, Materie, [24].

3 Quantum Theory in Terms of White Noise

The first joint work with Professor Streit is related to Euclidean fields. The Gaussian
case is of particular interest. For example, we see that a multiple Markov Gaussian
process has good connection with quantum theory, even in the case where o-Markov
property holds. (See [13].) Further the T-positivity problem can be discussed in this
line.

It is to be noted that we have not yet used the space of ordinary white noise
functionals.

4 Path Integrals

1. The idea for the path integral.

The basic idea of our approach to the path integrals in quantum dynamics is
to apply the white noise analysis to the construction of the quantum mechanical
propagators.

In fact, an attempt to give a correct interpretation to the Feynman integral,
which had only formal significance before, was one of the motivation of
proposing the white noise analysis using generalized white noise functionals,
or Hida distributions named by Streit.

Actually, there were two problems for us. One is how to realize a “flat”
measure on a function space, where the function space itself should be clarified.
The other is how to understand the exponential functional of an action.

The path integral method is, as is well known, viewed as a third method
of quantization, which is different from the formulation by W. Heisenberg and
another one by E. Schrodinger. Our method of path integral, within the frame-
work of white noise analysis, follows mainly Feynman’s method [5] in spirit,
see also [11]. However, some other basic quantum mechanical considerations are
taken into account.

While we are working on the problem in question, we have come to realize
that we should consider Dirac’s ideas, which are mainly found in his textbook
[4].

2. We shall quickly explain our approach step by step.

(i) What does a path mean in quantum dynamics?
In quantum dynamics, following the Lagrangian dynamics theory, there
are many possible paths, that is, trajectories of a particle, where each
trajectory may be viewed as a sum of the classical one and fluctuations.
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The classical path, denoted by y, is of course uniquely determined by the
Lagrangian (with boundary values).

The so-called possible trajectories x in quantum dynamics can be
expressed in the form

xX=y+z

where z is the fluctuation. See [6].
Our first question is to determine the fluctuation z. We propose that z
is a Gaussian Markov process, more precisely a Brownian bridge which is
a linear function of a Brownian motion B(#). In the next section, we shall
explain why a Brownian bridge is fitting for a realization of fluctuation.
(i1)) To obtain Feynman’s expression of propagator, we first meet the action
integral

AQ) = / tL(x, X)ds.

The integrand involves a term B(s)? to express the kinetic energy. The B(s)2
is not an ordinary random function. To come to the propagator we even have
to exponentiate the action.

Thus, we shall be concerned with the analysis of generalized functions,
actually functionals of B(1)’s, that is, white noise functionals. The book [16]
and [12] provides the background for the study of generalized functionals of
white noise.

(iii) Integration over the function space X = {x}, the space of trajectories, can be
defined smoothly. To this end, we must specify a measure on X, which is now
obvious, since we have taken a white noise, whose probability distribution w
has automatically been introduced.

There is one problem to be reminded. We expect the integration to be
done with respect to the uniform measure on X. This problem can be solved
in Sect. 6.

(iv) With these background we can come to the actual computation of the
propagators. This can be done by using the white noise theory.

(v) We can recognize that our approach can be applied to a pretty large class of
Lagrangians.

(vi) Our method of integration on function space can further be applied to other

problems in physics as we shall see in the last two sections.

S Brownian Bridge and a Setup for the Propagator

First we have to explain why the Brownian bridge is involved in the class of quantum
mechanical possible trajectories.
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In [4] §32, Action principle, there is a statement that B(¢, s) = fts L(u)du satisfies
a chain rule, by which we may imagine as the formula for the transition probabilities
of a Markov process.

To fix the idea, we consider the case where the time interval is taken to be [0, 7.
Now the term z that expresses the quantity of fluctuation can be a Markov process
X(#),0 <t < T. Further assumptions on X () can be made as follows.

(1) X(z) is a Gaussian process, since it is a sort of noise.
(2) As ausual requirement, the Gaussian process satisfies £(X(¢)) = 0 and has the
canonical representation by Brownian motion [10], namely

X@) = /0 t F(t, u)B(u)du.

and X(0) = X(T) = 0 (bridged).

(3) X(?) is a Gaussian 1-ple Markov process.

(4) The normalized process Y(f) enjoys the projective invariance under time-
change.

Theorem 5.1 The Brownian bridge X(t) over the time interval [0, T) is character-
ized by the above conditions (1)—(4).

This theorem have been proved before and the proof is omitted here. We only note
that the canonical representation of X(7) is given by

X(1) = (T —1) /0 t %B(n)dn,

and the covariance I'(z, s) is

r'@,s) = jg;:;;,s <t
Namely,

L(t,s) = V0, 5,05 <,
where (-, -; -, -) is the anharmonic ratio.

Remark In 1981 at the Berlin Conference on Math-Phys, we proposed a white noise
approach to path integrals to have quantum mechanical propagators (see [14]; see
also [22]). We had, at that time, some idea in mind for the use of a Brownian bridge,
and we had many practically good examples of integrand with various kinds of
potentials, and satisfactory results have been obtained.

With this background we are ready to propose how to form quantum mechanical
propagators.
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The possible quantum mechanical trajectories x(¢), t € [0, T are expressed in the

form
h
x(0) = y(0) + EX(I)’

where X(¢) is a Brownian bridge over the time interval [0, T]. The fluctuation z in
the earlier expression is now taken to be a Brownian bridge.

Recall that the classical trajectory y(¢), ¢t € [0, T], is uniquely determined by the
variational principle for the action

T
Alx] = / L(x, x)dt,
0
where the Lagrangian L(x, x) in question is assumed to be of the form
. L,
L(x,x) = Em(x) - V(x).

The potential V(x) is usually assumed to be regular, but later we can extend the
theory to the case where V has certain singularity, even time-dependent (mainly
done by the Streit school).

The actual expression and computations of the propagator are given successively
as follows:
We follow the Lagrangian dynamics. The possible trajectories are sample paths
y(s),s € [0, 1], expressed in the form

y(s) = x(s) + \/EB(S), ey

where the B(?) is an ordinary Brownian motion. Hence the action S is expressed in
the form in terms of the quantum trajectory y:

A= /0 LO(s).3(5))d.

Note that the effect of forming a bridge is given by putting the delta-function
80(y(t) — y2) as a factor of the integrand, where y, = x().
Now we set

S(to, 1) = / ! L(t)dt. 2)

fo
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and set
i [h i
exp| - / L(t)dt| = exp | =S(t, 1) | = B(to, th)-
kit h
Then, we have ,forO0 <ty <t <---<t, <t,

B(0,1) = B(0,11) - B(t1,t2) - - - B(t, 1).

Theorem 5.2 The quantum mechanical propagator G(0,t;y1,y2) is given by the
following average

G(O, £:y1,32) = (Neh BEODUTELE 5 (1) — y)) 3)

where N is the amount of multiplicative renormalization. The average ( ) is
understood to be the integral with respect to the white noise measure L.

6 Generalized White Noise Functionals Revisited

It is well-known that there are two classes of generalized white noise functionals;
(L?)™ and (S)*. We use them without discrimination except it is necessary to choose
one of them specifically.

It seems better to explain the concept of “renormalization” which makes formal
but important basic functionals of the B(r)’s to be acceptable as generalized white
noise functionals. To save time we refer the interpretation to the literature (see [9, 16]
and [21]).

We should note that there are generalized white noise functionals involved in the
expectation in Theorem 5.2. For instance, the Donsker’s delta function 8, (y(1) — y»)
is a generalized white noise functional.

There is a Gauss kernel of the form explc for B(s)2ds], where the classical case
isc = —%. In general, we assume ¢ # %, and the Gaussian kernel can be a
generalized functional after the multiplication renormalization. Now it seems we
have the exceptional case, but it can be treated by combining it with another factor
coming from the exponential term. In reality, we combine it with the term that comes
from the kinetic energy.

The factor exp[% fot B(s)%ds] serves as the flattening effect of the white noise mea-
sure. One may ask why the functional does so. An intuitive answer to this question
is as follows: If we write a Lebesgue measure (exists only virtually) on E* by dL, the
white noise measure ;& may be expressed in the form exp[—% fot B(s)*ds]dL. Hence
the factor in question is put to make the measure p to be a flat measure dL. In fact,
this makes sense eventually.
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Returning to the average (3) (in Theorem 5.2), which is an integral with respect to
the white noise measure p, it is important to note that the integrand (i.e. the inside
of the angular bracket) is “integrable”. In other words, the average (3) is a bilinear
form of a generalized functional and a test functional.

To be reminded, there are short notes to follow. These are rather crucial. The
formula (3) involves a product of functionals of the form like ¢ (x) - §({x,f) —a),f €
L*(R),a € C. To give a correct interpretation to the expectation of (3) with this
choice, it should be checked that it can be regarded as a bilinear form of a pair
of a test functional and a generalized functional. The following theorem provides
answers to this question.

Theorem 6.1 (Streit et al. [23]) Let ¢(x) be a generalized white noise functional.
Assume that the T -transform (T ¢)(§), & € E, of ¢ is extended to a functional of f
in L*(R), in particular a function of € + Af, and that (T@)(§ — Af) is an integrable
function of A for any fixed &. If the transform of (T ¢)(§ — Af) is a U-functional,
then the pointwise product ¢(x) - §({x, f) — a) is defined and is a generalized white
noise functional.

Proof First a formula for the §-function is provided.
1 ial —ilx . s opper .
8.,(t) =6(t—a) = I e "*dA (in distribution sense).
b4

Hence, for ¢ € (5)* and f € L?>(R) we have the 7 -transform

1
2

o / ¢ (T)(E — Af)dA. 4

T(e@8(x.f) —a)(§) / e M g () dp () d A

By assumption this determines a U-functional, which means the product ¢(x) -
8({x,f) — a) makes sense and the product is a generalized white noise functional. O

Example 6.2 The above theorem can be applied to a Gauss kernel ¢.(x) =
N explc [ x(1)2di], with ¢ # 3. In particular:

(i) The case where c is real and ¢ < 0.
We have

c
1—

c
1—-2¢

(To)(E = 2f)

expl—- [ (€01~ a0

(€% = 2A(E.1) + 221 FIPD.

exp|

This is an integrable function of real A. Hence, by the above Theorem 6.1, we
have a generalized white noise functional.
(ii) The case where ¢ = % + ia,a € R — {0}. The same expression as in (i) holds.
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Example 6.3 In the following cases, exact values of the propagators can be obtained
and, of course, they agree with the known results.

(i) Free particle
(i1) Harmonic oscillator.
(iii) Potentials which are Fourier transforms of measures.

7 Some of Further Developments and Related Topics

[I[] In addition to Example 6.3, we have some more interesting potentials,
including some which are more singular and time depending. There are
satisfactory results in the recent developments.

Example 7.1 Streit et al. [7] have obtained explicit formulae in the following
cases:

(1) atime depending Lagrangian of the form

L(x(1). x(1).1) = %m(t))%(t)2 — k(0x(1)* = F ()x(0),

where m(t), k(¢) and f(¢) are smooth funtions.
(2) A singular potential V(x) of the form

Vix) = Zc_"ZSn(x), c>0,

and others.

[II] The Hopf equation.
There are many approaches to the Navier-Stokes equation.

Uy + UgUy p = —Pa + LUa pB,

where o, B = 1, 2, 3, and where the following notations are used:

o,

fOé,[ - E
e

fa.ﬂ = f

g
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and

foc.ﬂy =

There is an approach to this equation by using the characteristic functional
® of the measure P'(du) defined on the phase space {u = (uy, ua, u3)} :

D, 1) = / =51 P! (du).

E. Hopf shows that the characteristic functional ®(&,,r) satisfies the
following functional differential equation, called Hopf equation (see [17]):

10 ) Redol 10 oIl
= e [E 0 (oo, s B (s 5} =

Studying this approach, we may think of two matters. One is a similarity to
the Feynman integral in the sense that both cases deal with functional obtained
in the form

E(exp[f()])

where f (1) is a function of a path (trajectory) u. The expectation is taken with
respect to the probability measure introduced on the path space.

As the second point, one may think of functionals ®,,n > 0, that come
from the Hopf equation and the Fock space expansion of generalized white
noise functionals. In this case we expect that the calculus can be done in a
manner similar to the white noise calculus.

We may recall an interesting approach to the Navier-Stokes equation by A.
Inoue. See [18].

[III] Towards noncommutative white noise calculus. This comes from many rea-
sons, such as (i) noncommutative geometry, (ii) Hamiltonian dynamics using
both variables, p, g. See [3, 19] and [2].

8 Concluding Remarks

(1) There appears a particular quadratic form in the white noise analysis, i.e.

/ :B@)? : dr.
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(@)
3)

There is a somewhat general quadratic form

/ f(0 B - dr + / / F(u,v) : Bu)B(v) : dudv

which is called normal functional, the first term being the singular part and
the second term the regular part. The two terms can be characterized from our
viewpoint and play significant roles, respectively. Recall the role of the singular
part in the path integral.

Our method of path integrals enables us to deal with the case of very irregular
potentials in the propagator (by L. Streit and others).

Some other approaches: A significant result is by C. C. Bernido and M. V.
Carpio Bernido [1]. They are using our method of path integral to investigate
the entanglement probabilities of two chain like macro-molecules where one
polymer lies on a plane and the other perpendicular to it. The entanglement
probabilities are calculated and the result shows a characteristic of the polymer.

We also should like to note that Masujima [20] has published a beautiful

monograph collecting various approaches to path integrals.
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Quasi-analyticity and Determinacy of the Full
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Dimensions
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Abstract This paper is aimed to show the essential role played by the theory of
quasi-analytic functions in the study of the determinacy of the moment problem
on finite and infinite-dimensional spaces. In particular, the quasi-analytic criterion
of self-adjointness of operators and their commutativity are crucial to establish
whether or not a measure is uniquely determined by its moments. Our main goal
is to point out that this is a common feature of the determinacy question in both the
finite and the infinite-dimensional moment problem, by reviewing some of the most
known determinacy results from this perspective. We also collect some properties
of independent interest concerning the characterization of quasi-analytic classes
associated to log-convex sequences.
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1 Introduction

Among the numerous aspects of the moment problem, the so-called determinacy
question is certainly one of the most investigated but still far from being completely
solved. The moment problem asks whether a given sequence of numbers is the
sequence of moments of some non-negative measure with fixed support. If such
a measure is unique, then the moment problem is said to be determinate. Therefore,
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the determinacy question is to find under which conditions a non-negative measure
with given support is completely characterized by its moments.

In this paper we give an overview about how the concept of quasi-analyticity
enters in the study of the determinacy question. As spectral theory and moment
theory developed in parallel, the determinacy proofs which can be found in literature
often seem circular. We review some of them showing the essential role played by
quasi-analyticity techniques.

The moment problem was originally posed in a finite-dimensional setting (see
e.g. [1, 55]). More precisely, in the multivariate power moment problem the starting
multisequence (ma)aeNg consists of real numbers and the support of the measure

is assumed to be a subset K € R? where d € N. However, at an early stage,
this problem has also been generalized to the case of infinitely many variables (see
e.g. [8] for more details on this topic). This abstract formulation of the moment
problem is actually very useful in many applications related to the analysis of many-
body systems, e.g. in statistical mechanics, spatial ecology, etc. In this setting, each
my, in the starting sequence (m1,)en, is an element of the tensor product of n copies
of a certain infinite-dimensional space (e.g. for each n, m, is a generalized function
of n variables in RY) and the support of the measure is assumed to be a non-linear
subset of this space (examples of supports are the set of all L? functions, the cone of
all non-negative generalized functions, the set of all signed measures).

This paper attempts to show that, regardless of the dimension of the setting
in which the moment problem is posed, quasi-analyticity theory gives in some
sense the best possible general sufficient determinacy conditions. In the literature,
there are different approaches to the investigation of the determinacy question for
concrete cases in the finite-dimensional context (see [47] for a thorough overview).
For instance, the first known determinacy conditions for the one-dimensional
moment problem were obtained through techniques involving continued fractions
(see e.g. [30, 31, 44, 59]) or using density conditions of polynomials (see e.g. [1,
12, 13, 49, 55, 60]). The determinacy of the higher-dimensional moment problem
is still less understood than the one-dimensional case. However, a number of
sufficient multivariate determinacy conditions were developed by using polynomial
and rational approximation (see e.g. [11, 27, 40, 45, 46]).

The link between quasi-analyticity and determinacy has been known since
the early days of the moment theory. In 1926, Carleman first applied quasi-
analyticity to the study of the determinacy of the univariate moment problem
(see [18]). More precisely, he proved that if the moment sequence (m1,),en, of a
non-negative measure p supported on R fulfills the so-called Carleman condition,

ie. Y 2, m,> = oo, then there is no other measure having the same moment
sequence as (. His main idea was to exploit the quasi-analyticity of a certain integral
transform, which intrinsically contains the moment data, to get the determinacy of
the classical Hamburger moment problem (c.f. Theorem 3.5).

The concept of quasi-analytic function was first introduced by Borel, who
observed that there is a larger class of functions, than merely the analytic functions,
having the property to be completely determined only by their value and the
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values of their derivatives at a single point (see e.g. [17]). Motivated by the
theory of partial differential equations, Hadamard proposed the problem to give
necessary and sufficient conditions bearing on a sequence (1,)qen, such that the
class of all infinitely differentiable functions whose n—th derivative is bounded
by m,, for each n € Ny, is quasi-analytic, [29]. Denjoy was the first to provide
sufficient conditions [23] and then Carleman, generalizing Denjoy’s theorem, gave
necessary and sufficient conditions. Carleman’s treatise [18] threw a new light on
the theory of quasi-analytic functions, revealing its important role in the study of
the moment problem. His ideas inspired a large series of subsequent works about
quasi-analyticity criteria for functions in one variable (see e.g. [2, 20, 38, 43]) and
for multivariate functions (see e.g. [14, 15, 25]).

Both in the higher-dimensional case and in the infinite-dimensional one, the
operator theoretical approach is a powerful method to get not only determinacy
conditions but also to guarantee the existence of a solution to the moment problem.
Actually, there has always been a mutual exchange between spectral theory and
moment problem, since the results in moment theory often served as a starting point
for new advances in the theory of operators. The quasi-analyticity again enters in
a crucial way in the analysis of the moment problem from the operator theoretical
point of view.

For the one-dimensional moment problem the basic ideas developed with the
traditional methods of continued fractions and orthogonal polynomials can be re-
derived by means of the spectral theory of self-adjoint extensions (see e.g. [1,
Chapter 4]). In particular, the classical Hamburger and Stieltjes existence theorems
and the relative uniqueness results due to Carleman can be obtained using this
approach (see [58]). Note that, in the one-dimensional moment problem, the theory
of quasi-analytic functions only appears in the uniqueness part via the concept of
quasi-analytic vector for an operator.

In contrast to the one-dimensional case, in higher dimensions, one does not
know how to prove existence without uniqueness. In fact, in dimension d > 2,
we need to use the spectral theorem for several essential self-adjoint operators and
this requires that the involved operators strongly commute (i.e. their resolutions
of identity commute). In [42, Theorem 6], Nussbaum proved that the strong
commutativity and the essential self-adjointness can actually be derived using
again the concept of quasi-analytic vectors. The so-called multivariate Carleman
condition gives a condition for the existence of a total subset of quasi-analytic
vectors for the considered operators directly in terms of the starting multisequence.
This yields the existence of a unique measure solving the given moment problem
(see [42, Theorem 10]). Other similar but slightly weaker results were proved before
Nussbaum’s theorem, using the determinacy of certain 1—sequences derived from
the starting positive semidefinite d—sequence (see e.g. [24, 26, 55]). For more recent
results about partial determinacy see [47, Section 5].

Despite of the fact that it is unknown how to prove the existence of a solution
to the moment problem on R? with d > 2 without involving its determinacy, it
is instead possible to use partial determinacy to conclude the determinacy of a
moment d—sequence. Petersen actually proved a general result of this kind, showing
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that if all the d marginal measures of a measure w on R? are determinate then 1
is determinate, too (see Theorem 3.10). Another determinacy result not involving
existence is due to De Jeu, who has recently proved the uniqueness part of the
moment problem on R? and on the positive octant R‘_‘;_ by following Carleman’s
path without using spectral theory, [21].

The operator theoretical approach is also applicable to the infinite-dimensional
moment problem. In fact, several infinite-dimensional moment problems have been
investigated using the theory of generalized eigenfunction expansion for self-adjoint
operators (see e.g. [4, 5, 7-9, 35, 57]). This approach is well developed for nuclear
spaces in [5, Chapter 8] and [8, Vol. II, Chapter 5], and it is a generalization
of the method presented by Krein in [36, 37]. In these works, Krein used the
so-called method of directed functionals for self-adjoint operators instead of the
spectral projection theorem for an infinite family of strongly commuting self-adjoint
operators given in [8, Vol. I, Chapter 3, Section 2]. Further different methods to
solve the moment problem on nuclear spaces were introduced in 1975 in [16] and
in [19] (see also [32] and [51, Section 12.5]). These approaches are essentially
based on Choquet theory and decompositions of positive definite functionals on
a commutative nuclear *-algebras into pure states.

We describe in this paper the infinite-dimensional moment problem on the dual
Q' of a nuclear space €2, showing that the proof scheme used to get the existence
of a unique solution to the moment problem on R? can be carried over in this
case. In fact, thanks to a certain determining condition, it is possible to show that
the family of operators associated to the starting positive semidefinite sequence
has a total subset of quasi-analytic vectors. Hence, they admit unique strongly
pairwise commuting self-adjoint extensions by Nussbaum’s result. Therefore, by the
spectral theorem for infinitely many unbounded self-adjoint operators, there exists
a unique measure on R™ representing those operators. It remains to show that this
measure is actually concentrated on ’. Note that the determining condition is the
correspondent of the multivariate Carleman condition in the infinite-dimensional
case. However, the infinite-dimensionality involves additional layers such as the
uniformity in the index, regularity properties and growth restrictions on the moments
as functions.

Let us outline the contents of this paper.

In Sect.2, we recall the notion of quasi-analytic class of infinitely differentiable
functions on R and we introduce the famous Denjoy-Carleman theorem. We also
review some different versions of the Carleman condition known in literature,
pointing out the role of the log-convexity in the proof of these results. In particular,
we recall the technique of the convex regularization by means of the logarithm,
which is important in solving the problem of the equivalence of quasi-analytic
classes. In this context, we propose a proof of the Denjoy-Carleman theorem due
to Mandelbrojt, which we found interesting since it is based on completely different
methods than the classical ones employing holomorphic function theory.

In Sect. 3, we aim to show how quasi-analytic classes enter in the determinacy
of the finite-dimensional moment problem. In Sect. 3.2, we give an alternative and
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simple proof of the Carleman uniqueness results for the Hamburger and the Stieltjes
one-dimensional moment problems, which exploits the quasi-analyticity of a certain
Fourier-Stieltjes transform (see proof of Theorem 3.5). Moreover, we recall the
importance of the geometry of the support K in the determinacy of the K—moment
problem. In Sect. 3.3, we focus on the determinacy of the d—dimensional moment
problem with d > 2. We first introduce the so-called multivariate Carleman
condition (10) and show that it is sufficient for the determinacy of the Hamburger
d—dimensional moment problem by using a result due to Petersen. Then we sketch
the proof of a recent version of the Denjoy-Carleman theorem for quasi-analytic
functions in several variables, which can be used to give an alternative proof of
the uniqueness result. Finally, we outline the operator theoretical approach to the
Hamburger d—dimensional moment problem developed by Nussbaum, stressing
the points where quasi-analyticity is fundamental to prove not only the uniqueness
but also the existence of the solution. We also mention a uniqueness result for the
d—dimensional version of the Stieltjes moment problem.

In Sect. 4, we present the moment problem on conuclear spaces. We first intro-
duce a sufficient condition for the determinacy of the analogue of the Hamburger
moment problem in this infinite-dimensional setting and we prove this uniqueness
result without using spectral theoretical tools. Then we review the main results
by Berezansky, Kondratiev and Sifrin about the existence and the uniqueness of a
solution for the analogues of the Hamburger and the Stieltjes moment problems on
conuclear spaces. We point out that, as in the finite-dimensional case, the existence
of a solution cannot be proved without using the determinacy of the moment
problem and we sketch the steps of this proof where quasi-analyticity enters.

In the appendix, we prove some results about log-convex sequences, which are
useful in relation to the quasi-analyticity of the associated classes of functions.

2 Characterization of Quasi-analytic Classes
of Functions on R

Let us recall the basic definitions and state some preliminary results concerning the
theory of quasi-analytic functions on R. In the following, we denote by Ny the set
of all non-negative integers and by C*°(X) the space of all infinitely differentiable
real valued functions on the topological space X.

Definition 2.1 (The class C{M,}) Given a sequence of positive real numbers
(M) nen,, we define the class C{M,} as the set of all functions f € C*°(R) such
that
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where D"f is the n—th derivative of f, | D"f|| o, := sup,cp |D"f(x)|, and By, By are
positive constants only depending on f.

Definition 2.2 (Quasi-analytic class) The class C{M,} of functions on R is said to
be quasi-analytic if the conditions

feCiM,}, (D"f)(0)=0, VneNy

imply that f(x) = O forallx € R.

The definition above can be given replacing (D"f)(0) with (D"f)(xo), where x is any
other given point in the domain of the function f. Note that the analytic functions on
R correspond to the class C{n!}. It is obvious from the previous definitions that the
following holds.

Proposition 2.3 Let (M,),en, be a sequence of positive real numbers. C{M,} is
quasi-analytic if and only if for any positive constant § the class C{6M,} is quasi-
analytic.

Recall that C{M,,} and C{M_} are said to be equivalent if there exist two constants
a,b > 0 such that a"M,, < M;l < b"M, for any n € Ny. This means that every
function of either of these two classes belongs also to the other. The problem of
constructing a sequence (M))qen, in a simple relationship with a given starting
sequence (M,),en, such that the corresponding classes of functions are equivalent
has extensively been studied (for more details see [39]). In particular, we introduce
here the so-called convex regularization of by means of the logarithm.

Definition 2.4 (Log-convexity) A sequence of positive real numbers (M,),en, is
said to be log-convex if and only if for all n > 1 we have that Mﬁ <M, M,4.

Definition 2.5 (Convex regularization by means of the logarithm) Let (M,,),en
1
be a sequence of positive real numbers with lim inf M} = oo. Define for any r > 1
n—>o0
the function 7'(r) := max A’/I—n The convex regularization of (M) nen by means of the
ne n
logarithm is the sequence (M),en defined by
In(M¢) := sup (nt —In(T(e"))) (1)

>0
: Cc . em ot
or equivalently, M;, := sup 7@ = SUP 7y -
>0 r>1

Note that (1) means that for any ¢ > 0 the line x + #x — In(7'(¢")) is not above
any of the points (In(M},))1<n<. The convex regularized sequence by means of the
logarithm is indeed the largest convex minorant (i.e. the convex envelope) of the
function n + In(M,). This means that (M}),en is a log-convex sequence and that
for any n € N, M, < M,,. Clearly, if (M,),en is log-convex then M = M,, for all
neN.
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This procedure allows to explicitly construct, starting from any sequence
(M) nen of positive real numbers with lim inf M,i/ "= o00,a log-convex sequence
n—>oo

(M),en such that the classes C{M,} and C{M;} are equivalent (see [39,
Theorem 6.5.111]). Therefore, if lim infM,ll/ " = o0, then the class C{M,} is quasi-
n—>o00

analytic if and only if C{M} is quasi-analytic.
Remark 2.6 When we deal with quasi-analytic classes the assumption that

1
liminfM,) = oo is not restrictive, but actually gives the only interesting case.
n—>oQ

1
In fact, if liminfM;; = 0, then C{M,} is equivalent to C{0} (which contains only
n—>oo

1
the constants) and if 0 < liminfM, < oo, then C{M,} is equivalent to C{1}

n—>oo

(see [39, Theorem 6.5.111]). In both cases, C{M,,} is already quasi-analytic.

The problem to give necessary and sufficient conditions bearing on the sequence
(M) nen, such that the class C{M,} is quasi-analytic was proposed by Hadamard
in [29]. Denjoy was the first to provide sufficient conditions for the quasi-
analyticity of a class [23], but the problem was completely solved by Carleman,
who generalized Denjoy’s theorem and methods giving the first characterization
of quasi-analytic classes in [18]. Using the convex regularization by means of the
logarithm, other conditions equivalent to Carleman’s one were obtained.

Theorem 2.7 (The Denjoy-Carleman Theorem) Let (M,),en, be a sequence of
positive real numbers. Then the following conditions are equivalent

(a). C{M,} is quasi-analytic,
o

(b). Y ﬂL = 00 with B, := infy, /M,
n=1

o0
(c). n; J#AT = 00,
(d). [ dr = oo,

X e
(e). Y. A'E‘ = 00,
n=1

where (M{),en is the convex regularization of (My,)nen by means of the logarithm
and for any r > 1 the function T is given by T(r) := max A%
ne n

Condition (b) and (c) are due to Carleman, [18] (see also [20] for a simple but
detailed proof). Condition (d) was instead introduced by Ostrowski in [43], who was
also the first to provide a new proof of Carleman’s theorem. Moreover, Condition (e)
was independently given by Mandelbrojt and Bang in [38] and [2], respectively.

A very nice proof of the equivalence of the conditions (b), (c), (d) and (e)
is given in [39, Theorem 1.8.VII]. For its simplicity, let us just sketch the proof
that (c) and (e) are equivalent. By Proposition 2.3, we can assume w.l.o.g. My = 1
and so easily derive from Proposition 1(b) that M;_, < (Mg)l_l/ ". Hence, (e)
implies (c). The converse follows by Carleman’s inequality, that is, by using
Yoo (ar - --an)% <e)y o2, ayfora, :=M:_ /M..
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To complete this section, we propose the proof of the equivalence of condi-
tions (a), (d) and (e) given by Mandelbrojtin [39] (see in particular Theorem 4.1.11T).
In contrast to Denjoy, Carleman and Ostrowski, Mandelbrojt’s proof is not based on
the theory of holomorphic functions but only on some considerations relative to the
average values of a real function.

The equivalence of (d) and (e) easily follows by the following

/ °° ln(T(r))
1

dr = In(T(1)) + 1 + Z ©)

n+1

As mentioned before, a detailed proof of this equality can be found in [39,
Theorem 1.8.VII]. We give here just an idea of this proof. For any r > 0, denote
by N(¢) the greatest n € N such that in — In(T'(e")) = InM,,. Then one can easily
see that InT(¢') — InT(e") = frr/ N(s)ds, for any ¢, > 0. Since N is a piecewise
continuous function and it is monotone increasing, we can denote by #; the points in
which the function N has a jump. Using Definition 2.5, we get that My, /My, | =
for any N(#;) < n < N(tx+1). Combining these two results and making some further
calculations, one finally gets (2).

The main ingredient used by Mandelbrojt to prove that (d) and (e) are both
necessary and sufficient for quasi-analyticity is the construction of an infinitely
differentiable function with compact support which belongs to the class C{M,,}.
Let us preliminarily sketch such a construction.

For a sequence (y,,),en of positive constants and a function g Lebesgue integrable

n [—y, y], we define

M(y1,. ... Y0 8)(X) := /_ / gx+1t 4+ -+ t,)dt ..

Let (i4x)nen be a sequence of positive constants with Y o2 | i, =: i < oo and let f
be a Lebesgue integrable function supported on [a, b]. For any n > 1, we set

M, (x) := M(pt1. ... i f)(x),

which is obviously zero outside the interval [, 1= [a — Y | i b + Y iy ]
and whose value is independent of the order in which the quantities uy, ..., u, are
taken. This definition is recursive since M,,(x) = M(w,; M,—1)(x). For any n € N,
the function M, (x) is differentiable in I; with first derivative equal to

(DM)(x) = %Mw, e s ) = Fe) ().

Thus, M,(x) has first derivative uniformly bounded in n and so the family
(M, (x))nen is equally graded continuous in [@ — w,b + p]. Therefore, it tends
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uniformly to a continuous function ¥ (x) and so for all x € [a — u, b + u]

M1

Vo) = ZL Mt D)W
M1

Hence, the function ¥ (x) is infinitely differentiable on [a—u, b+ ] and zero outside
this interval.

1
Proof (of (a)=>(d)) By Remark 2.6, we can directly assume that lim inf M,; = oo.

n—>o00
W.l.o.g. we can take My = 1, since C{M,,} and C{ M”} coincide by Proposition 2.3.
Suppose that Y oo, M;/M,,, < oo and repeat the construction above for
Mp = M,_ /M and f := ]l[—/w] with u := Y22, ju,. Then we get that the
associated limit function i is infinitely differentiable on [—2u,2u] and zero
outside. As a consequence, all the derivatives of the function v are zero at £2u.
Furthermore,

Mll
¥v(0) = lim —— / / Lyt + .. t)dty ... dt, =1

n—00 2”’qu

and it is easy to show that

1
[(D"Y)(x)| < Ml— =M, <M,.

In conclusion, we constructed ¥ € C{M,,} which is not quasi-analytic. O
To prove that (e) implies (a) we need the following lemma.

Lemma 2.8 Let (M,),en, a sequence of positive real numbers such that C{M,,} is
not quasi-analytic. Then there exists an infinite differentiable function ¢ on [0, 1]
such that

1. (D"¢)(0) = 0and (D"¢)(1) =0, Vn € Ny.
2. Vne Nand Vx € [0,1], [(D"¢)(x)| < M,.
3. ¢ >00n]0,1].

4. (1 —x) = ¢(x), Yx € [0,1].

Proof Since a class of functions is invariant under rescaling an translation, we can
assume w.l.o.g. that the functions in C{M,,} are defined on the interval [0, 1]. As
C{M,} is not quasi-analytic, there exists a non-zero function f € C{M,,} and a point
a € [0, 1] such that f and all its derivatives vanish at a but for any ¢ > 0 the function
f is not identically zero on [a,a + ¢]. Forany 0 < o < 1 — a, let us define for
x€0,1]

i = [ o / f()dvdr,
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Then the function f; is not identically zero on [0, 1] and all its derivatives vanish at 0.
Since f € C{M,}, there exists ¢ > 0 such that for any n € Ny and any x € [0, 1],
|(D"f)(x)| < ¢"M,,. Then |[(D"f1)(x)| < @"¢">My—, that is, fi € C{M,—5}.

Let f5(x) := fi(x — x?), then (Df)(x) = (1 — 2x)(Df1)(x — x?). By induction, it
can be easily proved that for any n > 2 we have

[7/2] o

[CACTED I s (040 3)

k=0

Using Taylor formula and the fact that all derivatives of fj vanish at zero, we obtain

00 = G, [ =0 00 @

By (3) and (4), we get

sup |(D"f)(x)| < &"¢" M, 22 M.

xe[0.1] (k')2 -

Hence, f; is in the same class of f; and vanishes with all its derivatives at 0 and at 1.
Let us consider the function f3(x) := f>(x)>. We can extend > to a periodic even
function, using that f> and all its derivative coincide at the endpoints. Hence,

d o0 o0
£@) =3+ Y (~1)dycos@mqx) and (D)) < 21)" Y ldylg"

q=1 q=1
where d; := 2(—1)4 fol S (x) cos(2mgx)dx. Integrating by parts [ times, we get that
|dy| < 2Q2nq) ol PM,. (5)

Using the binomial formula for the derivative and the Holder inequality, we obtain
that there exists C > 0 such that

(D) )] < (47)"C Y ldylq".

q=1

Furthermore, by (5) for [ = n + 2, we get that

1

p (2caez)”Mn,

[ESIOIEA DY

g=1



Quasi-analyticity and Determinacy of the Full Moment Problem from Finite to. . . 171

where L := 2C(27)7%(ae?)?. If we choose o < ﬁ, then the function we are
f3(x)
——, O

L 1
;1 q2

looking for is given by ¢(x) :=

Proof (of (e)=(a)) Let us show that if C{M,} is not quasi- analync then

floo ln(T(r))dr < 00. By Remark 2.6, we can again assume that lim 1nan” = o0.
n—>oo

Let f be a function on [0, 1] as given by Lemma 2.8 and define

1
F(2) ::/0 e f(x)dx, zeC,

which is an entire function with F(1) > 0. Using integration by parts k times and
the fact that f vanishes with all its derivatives at 0 and 1, we get that |F(z)| < |Mj|"

Since this holds for all £k € N and 1in_1>infM,1,/" = 00, we get
n o0

1

1
mz:1xJA—§1E CT(l2))
keN Mk

|F(2)| <

(6)

Let 0 < p < 1 and let us consider the circle C, given by the equation ‘%

Using the Poisson integral formula and the properties of F, it is possible to prove
that

1 In |F(z)|
|z|?

— d|z] = In|F(1)].
2pm

P

By using (6) in the latter equation, we get that

1 In(T
— wcud < —In|F(1)|.
2pm Je, Izl

If we denote by C;, the part of C, between the lines Im(z) = —t and Im(z) = ¢ which

contains the point ——, then for large values of t we have

T

L/ wdlzl < —In|F(1)].

2pm |z|?

If p — 1, then CI’, tends to the segment of the straight line Re(z) = % with —t <
Im(z) < t, which yields

/ 1n(T(r)) —In(F(1)).

As a consequence, the integral || 1°° m(f#dr < 00. O
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3 Uniqueness in the Finite-Dimensional Moment Problem

3.1 The Finite-Dimensional Moment Problem

Let R[x] be the algebra of all real polynomials with d real variables and real

coefficients. For o := (ay,...,aq) € Ng and X = (x1,...,x5) € RY we
define the following multi-index notation x* := x'---xj’ (where x? = 1) and
lo| := ay + -+ + ag. Let M*(R?) be the collection of all non-negative Borel

measures on R? such that x* € L' (u) for all & € N¢.

Definition 3.1 Let 1 € M*(R?) and o € Nd. The a"—moment of  is defined by
mb = / X u(dx) = / x5 X u(dxy, dxa, . . dxg).
R R

The multisequence (1l )aeNg is called moment sequence of |i.

Note that the set M*(R?) exactly consists of all the non-negative Borel measures
on R4 with finite moments of all orders. Given a closed subset K € R4, we denote
by M*(K) the set of all measures in M*(R¢) having support contained in K.

The K—moment problem asks to determine when a given multisequence is
actually the moment sequence of some measure y € M*(K).

Problem 3.2 (Full K—moment problem) Let m = (ma)aeNg be a multisequence

of real numbers and let K C R be closed. Find a measure n € M*(K) such that
me = mb forall o € N‘é.

If such a measure p does exists we say that the sequence m is realized by p on
K and the measure u is called realizing measure on K. Note that we refer to this
moment problem as finite-dimensional since the dimension of the supporting set K
is finite. Recall that if m is a finite sequence then the K—moment problem is called
truncated.

The statement of Problem 3.2 includes all the classical one-dimensional cases. In
fact, if d = 1, then we get

* The Hamburger moment problem for K = R.
» The Stieltjes moment problem for K = R .
* The Hausdorff moment problem for K = [0, 1].

It is easy to see that the K—moment problem can be restated in terms of integral
representation of linear functionals by introducing the so-called Riesz functional.

Definition 3.3 (Riesz’ functional) Given m = (ma)aeNg’ we define the associated
Riesz functional L,, on R[x] by L,,(x%) := m,, a € Nd.

A necessary condition for a sequence of real numbers to be the moment sequence
of some measure in M*(R?) is the following.
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Definition 3.4 (Positive semidefinite sequence) A sequencem = (mq),eng of real

numbers is said to be positive semidefinite if forany n € N, ay,..., 0, € Ng’ and
El?"'?gﬂ GR’

Z maj+a1§jgl 2 07

JiI=1

or equivalently, for any & € R[x], L,,(h*) > 0.

In the case of the Hamburger moment problem, i.e. when d = 1 and K = R, the
positive semidefiniteness is also sufficient, but this is not true when K = R4 with
d>2.

A measure u € M*(K) is called determinate if any other measure v € M*(K)
having the same moment sequence as u is equal to u. Equivalently, a sequence
of real numbers is called determining on K if there exists a unique non-negative
measure in M*(K) realizing m. In this case, the K-moment problem is also
addressed as determinate.

3.2 Determinacy Conditions in the One-Dimensional Case

As far as we know, Carleman was the first to approach the determinacy question with
methods involving quasi-analyticity theory. In fact, in his famous work of 1926, he
proposed the following result which gives a sufficient condition for the uniqueness
of the solution to the Hamburger moment problem (see [18, Chapter VIII]).

Theorem 3.5 Let 1, v € M*(R) have the same moment sequence m = (my),en,-
If m is such that

> W%zoo, )

n=1

then u = v.

The original proof by Carleman makes use of the Cauchy transform of the two
given measures. Here, we decided to propose a slightly different proof that uses
the Fourier-Stieltjes transform but maintains the same spirit of Carleman’s proof.
In fact, the essential strategy of both proofs is to consider the transform of the
difference of the two given measures and show that it belongs to the class C{/mo,},
which can be proved to be quasi-analytic thanks to (7). This directly leads to the fact
that the two original measures coincide and so to the determinacy of the Hamburger
moment problem for m. Before giving our proof of Theorem 3.5, let us observe a
useful property of the moment sequences.
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Remark 3.6 The log-convexity (see Definition 2.4) is a necessary condition for a
sequence of positive numbers to be the absolute moment sequence of some non-
negative measure defined on R. More precisely, if © € M*(R), then the sequence
(M) nen, of all its absolute moments, i.e. M,, = fR |x|" e (dx), is log-convex. In fact,
by Cauchy-Schwarz’s inequality, we have that for any n € N

Aﬁs(@Mwmwﬂ(Auwwwm)zMHMHL

It directly follows that the sequence of all even moments of a measure i € M*(R),
i.e.my, = [ X*"ju(dx) = Moy, is also log-convex.

Proof (of Theorem 3.5) W.l.o.g. assume that all even moments of p are positive. In
fact, if ma, = 0 for some n > 1 then supp(u) € {x € R : x = 0} = {0} and
thus, the unique realizing measure is & = mdy. By Remark 3.6, the sequence of
all even moments (112,),en, is log-convex. Hence, the sequence (/12 )nen, is also
log-convex and by assumption it satisfies (7), which can be rewritten as

1
o=
n=1 Man
Then, by Denjoy-Carleman’s Theorem 2.7, the class C{,/my,} is quasi-analytic.

Let us consider the Fourier-Stieltjes transforms of p and v, i.e.

Fu(t) = /Re_"’”,u(dx) and F,(t) ::/e_mv(dx), reR.

R

The function (F,, — F,) € C*°(R) belongs to C{,/ma,}. In fact, since

d—FM(t) = /(—ix)"e_mp,(dx) and d—F\,(t) = /(—ix)”e_mv(dx),
dar R dar R

we get

a"
‘ﬁ(ﬂt —Fy)(®)

S[MMM+/MWMS@+MWE
R R

where ¢, = /u(R), ¢, ;= /v(R). Moreover, since u and v have the same
moments, we easily get that %(F « — F,)(0) = 0. Then the quasi-analyticity of
the class C{,/m;,} implies that the function F,, — F, is identically zero on R.
Consequently, by the injectivity of the Fourier-Stieltjes transform, we have that
n=v. |

Carleman’s condition guarantees that the Hamburger moment problem is deter-
minate unless the even moments tend to infinity quite rapidly. However, this
criterion has the disadvantage to only give a sufficient condition for the moment
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problem to be determinate on R. Indeed, there exist Hamburger moment sequences
(My)nen, such that > o %/;mﬁ < oo but the correspondent moment problem is
determinate (see e.g. [61] for examples).

When we consider a Stieltjes moment sequence, we need to be careful in
distinguishing the determinacy in the sense of Stieltjes from the one in the sense
of Hamburger. Obviously, an indeterminate Stieltjes moment problem is also
an indeterminate Hamburger moment problem. However, there are determinate
Stieltjes moment problems which are indeterminate in the sense of Hamburger.
Regarding the determinacy of the Stieltjes moment problem, we have the following
sufficient criterion (see [18, Chapter VIII]).

Theorem 3.7 Let m = (my)nen, be the moment sequence of p € M*(Ry). If

— 1
szm, (8)

then u is the unique measure in M*(R.) realizing m.

Condition (8) is well-know as Stieltjes’ condition since it is sufficient for the
determinacy of the Stieltjes moment problem.

Proof Let us consider the measure v defined on R as follows

1
dv(x) := 3 (Lo, 100) )R (F) + L—o00)(X)dpn(x7)) .

Then we have that v € M*(R) and its moment sequence ¢ = (¢, )nen, is such that
gon = my, and g2,41 = 0, for all n € Ny. The conclusion follows by Theorem 3.5
applied to the sequence q. O

This demonstrates that in the general K—moment problem, the geometry of K
deeply influences its determinateness. Another example is when K is compact. In
fact, if two measures ¢, v € M*(R) have both compact support K and the same
moment sequence m, then by the Stone-Weirstrass theorem we directly get . = v.
However, if only one of the two measures has compact support K, then we can still
conclude that the correspondent K—moment problem for m is determinate, using
Carleman’s Theorem 3.5 and the following inequality

My, = /xz"p,(dx) < n(K)maxx*, VneN.
K x€K

The impact of the geometry of the support on the uniqueness of the realizing
measure has been extensively treated in [46], where the authors proved that if
K is one-dimensional and virtually compact then every K—moment problem is
determinate (see [50] and [46, Remark 3.4] for the notion of virtually compact set
and recall that such a set is not necessarily compact [46, Example 6.3]). On the
other hand, they showed that there exists a large class of non-virtually compact sets
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of dimension one which support indeterminate moment sequences. However, as far
as we know, it is still open the question if for any K not virtually compact it is
possible to construct an indeterminate K —moment problem.

The quasi-analyticity plays also a fundamental role in the analysis of the moment
problem from an operator theoretical point of view. The uniqueness results given
in this section for the one-dimensional moment problem follow indeed from the
quasi-analytic vectors theorem. A comprehensive exposition about the classical
Hamburger and Stieltjes moment problems via methods from the self-adjoint
extension theory of symmetric operators is given by Simon in [58]. In this paper,
we will describe the operator theoretical approach only for the higher-dimensional
moment problem, because for d > 2 the quasi-analyticity is already essential to
prove the existence of a solution and not only its uniqueness.

3.3 Determinacy Conditions in the Multidimensional Case

The determinacy of the d—dimensional moment problem for d > 2 is a more
delicate question, but thanks to quasi-analyticity it is possible to get interesting
results also in this case. For a detailed review about this topic, see the comprehensive
work of Putinar and Schmiidgen [47]. The quasi-analyticity of functions in several
variables has been already treated in [14, 15, 25]. However, we introduce here the
analogue of Theorem 2.7 for quasi-analytic classes of functions on R?, proposing a
recent proof due to de Jeu (see [22, Theorem B.1]).

Theorem 3.8 For j = 1,...,d, let (M;(n))nen, be a sequence of positive real
numbers with

oo

Vie{l.....d,

n=1

1
50 = oo with Bj(n) := }1r>1£ \/ M;(k). ©)]
J -

Let f € C®(RY) and assume that there exist A,B > 0 such that for any a =
(ocl,...,ad) € Ng

d
ID°flloo < AB™ | | Mi().

Jj=1

d
where D*f denotes the partial derivative %ﬁ loe] := " o and (DY) || oo =
R =

sup |Df(x)|. If (D*f)(0) = 0, Yo € N¢, then f = 0 on R

xERd

Remark 3.9 Note that (9) is equivalent to require that, for each fixedj € {1,...,d},
any of the conditions (a), (c), (d), (¢) in Theorem 2.7 is fulfilled by (M;(n)),en,-



Quasi-analyticity and Determinacy of the Full Moment Problem from Finite to. . . 177

Proof For d = 1, the result reduces to Theorem 2.7. Assume that Theorem 3.8

holds for the dimension d — 1. For any o, ..., 041 € No, let ¢y, oy : R = R
be defined by
aa1+"'+ad71
QDo....aq (D) 1= o5/0,...,0,b), VbeR.

o)
oxyt - 0x

Then, all the derivatives of ¢y, .. 4,_, vanish at 0 € R by assumption. Moreover, for
any oy € Ny and any b € R,

d—1
d%
oy (B)| < | ABT T T My(ay) | B Mo(ea).

dx%?

Then by Theorem 2.7, we have that ¢, o, , is identically zero on R, for arbitrary
ai,...,04-1 € Ny. For each b € R, define the function ¥, : R“! — R as
Yp(X1, ... Xq—1) := f(x1,....X4—1,b), forany (xi,...,xs—1) € R¥". The previous
argument shows that v, fulfills all the assumptions of Theorem 3.8 for d — 1. By
inductive assumption, for all b € R we have therefore that v, is identically zero
on R4"!, Hence, f is identically zero on R. O

Let us come back to the determinacy question for the higher-dimensional version
of the classical Hamburger moment problem. Namely, we ask whether a measure
w € M*(RY), with d > 2, is uniquely determined by its moments without any
restriction on its support. A fundamental sufficient criterion for uniqueness in this
case was obtained by Petersen in [45].

Theorem 3.10 Let u € M*(RY) withd > 2. Forj = 1,....d, let 7; : RY - R

be given by mj(x1,...,x4) = x; and denote by , the j—th marginal measure of
W, i.e. the image measure of |1 under the mapping n;. If all the marginal measures
Wxys -« - s L, are determinate, then | is determinate.

Petersen proved this result by density arguments on polynomials and he also showed
that the converse is not true (see [45] for a simple example of determinate measure
for which not all marginal measures are determinate). Using Theorems 3.10 and 3.5,
we easily get the following.

Theorem 3.11 Let 1, v € M*(R?) have the same moment sequence m = (ma)aeNg.

If

o0
1
Y Lu() =00, Vj=1.....4d. (10)

n=1

then u = v.

An alternative proof of Theorem 3.11 has been recently provided by de Jeu in [21,
Theorem 2.3], using Theorem 3.8 and the observation that (10) implies (9) for the
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sequence (,/M;(2n)),en, given by M;(h) := Lm(x;‘) for any & € Ny. The proof by
de Jeu is very close to the one of Theorem 3.5.

Condition (10) is well-known as multivariate Carleman’s condition and it is a
sharp determinacy condition for the multivariate moment problem in the following
sense.

Theorem 3.12 Let (M,)nen, be a log-convex sequence of positive real numbers
with My = 1. Then the following are equivalent.

1. The class C{M,} is quasi-analytic.
2. Forany ju,v € M*(R?) having the same moment multisequence and such that
there exists a positive constant ¢ for which

max(/ X" ). / ||X||2nV(dX))§CM2m Ve,
R4 R4

we have that i = v. (Note that || - || denotes the Euclidean norm on R¢.)

From Theorems 2.7, 3.11 and Lemma 3, it easily follows that (1) implies (2) in
Theorem 3.12. The converse is instead due to Belislé et al. in [3] and we sketch here
the main scheme of their proof for d = 1.

Proof (of (2)=(1) in Theorem 3.12) Suppose that C{M,,} is not quasi-analytic and
let us take ¢ € C{M,} as given by Lemma 2.8. W.l.o.g. we can assume that the
support of ¢ is contained in [a, b] with 0 < a < b. For any A C R, let us define

w(A) = /A Re(F(¢)*(x))dx

where F(¢) denotes the Fourier transform of ¢. Then it is easy to show that for any
ne N(),

/x"da)(x) =D"Fw(0) =0 and /x2"|a)|(dx) < |l@ ;1 May.

By taking i := wt, v := 0™ and ¢ := ||¢||,1, the previous relations respectively

give that i and v have the same moments and the following holds

max (/ X" ,u(dx),/ X" v(dx)) < /xz”d|a)|(x) < c M.
R R

|

After Petersen, many other sufficient criteria for the multivariate determinacy were
developed using polynomial and rational approximation (see e.g. [11, 27, 46, 47]).
All these results use that partial determinacy guarantees the uniqueness of the
solution of the multidimensional Hamburger moment problem. However, partial
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determinacy can be used to prove also the existence part of the moment problem.
The first results in this direction were proved by Shohat and Tamarkin in [55], by
Devinatz in [24] and by Eskin in [26]. In these works, the authors showed how
the determinacy of certain 1-sequences derived from a semidefinite d—sequence
m ensures both the existence and the uniqueness of a realizing measure for m.
Nussbaum in [42] not only reproved these results with different methods, but also
gave the following stronger theorem, which we present here in the form given by
Bergin [10].

Theorem 3.13 Let d > 2 and let m = (mgy),ene be a positive semidefinite
multisequence fulfilling the multivariate Carleman condition (10), then there exists
a unique non-negative Borel measure . € M*(R?) realizing m.

The proof of this result uses the theory of self-adjointness extensions and makes
clear that the multivariate Carleman condition is essential not only for the deter-
minacy but also for the existence of the realizing measure. In fact, as we already
mentioned above, the condition of positive semidefiniteness of m solely does not
imply the existence of a realizing measure on R? when d > 2 (see Example 6 in
[52]). In other words, we will see that we cannot prove an equivalent of Hamburger’s
existence theorem for higher dimensions without assuming a further condition
which guarantees that certain finitely many symmetric self-adjoint operators pair-
wise strongly commute.

Before proving Theorem 3.13, let us recall some preliminary notions and results
from spectral theory. In the following, for an unbounded operator 7 on a Hilbert
space H, we will denote by D(T) its domain, which we will suppose to be a dense
linear subspace of H. For the classical definitions of symmetric, self-adjoint and
essentially self-adjoint operators see for example [48, Vol. I, Chapter VIII]. The
main tool used by Nussbaum in his proof is the concept of quasi-analytic vector that
is intimately related, as we will see, to the multivariate Carleman condition and so

to the quasi-analyticity of functions on R¢. From now on we denote by D*®(T) :=
o0

D(T") and by D?(T) the set of all quasi-analytic vectors for T, i.e. all vectors
=1

n=

o0
v € D*(T) such that Y [|T"v||" = oo.
n=1
The motivation of Nussbaum in [42] was to generalize the classical analytic

vectors theorem due to Nelson (see [41]) to the setting of quasi-analytic vectors.
Indeed, he managed to prove this result reducing the situation to Theorem 3.5. Let
us restate here for convenience Nussbaum’s quasi-analytic vectors theorem (see [42,
Theorem 2] and [53, Theorem 7.14]).

Theorem 3.14 Let T be a symmetric operator on a Hilbert space H and suppose
that its domain D(T) contains a total set D of quasi-analytic vectors, i.e. D C
D1(T) and span(D) = H. Then T is essentially self-adjoint.

However, to solve the multidimensional moment problem we need more, namely
the strong commutativity of a pair of operators (see [42, Theorem 6] and [53,
Theorem 7.18]).
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Theorem 3.15 Let A and B be two symmetric operators on a Hilbert space H. Let
D be a set of vectors in H which are quasi-analytic for both A and B and such that
AD C D, BD C D, ABp = BA®, forall ¢ € D. If D is total in H, then the closures

A and B are > strongly commuting self-adjoint operators. Namely, for all s,t € R,

ISA n‘B — en‘AelsB

Remark 3.16 The hypotheses AD C D and BD C D guarantee that D C D(A"B™)
for any n,m € Nj. Then it is easy to see, by induction, that the assumption
AB¢ = BA¢ for all ¢ € D implies

A"B"¢p = B"A"¢p, Vm,neNy, V¢ eD.

However, this is not sufficient to conclude the strong commutativity of A and B
(c.f. [48, Section VIIL.5, Example 1]).

Proof (of Theorem 3.15) Since D € D¥(A), D € D¥(B) and D is total in H,
by Theorem 3.14, the operators A and B are both essentially self-adjoint, i.e. their
closures A and B are self-adjoint. In order to show that these operators also strongly
commute, we need to use quasi-analyticity of functions in two variables.

Given ¢ € D, let us consider the functions

Fi: R? »C
(Cl,b) — (eibE¢,€_iaZ¢))
and
Fz: RZ —C
(a,b) — (eiaxgb’e—ibﬁ(ﬁ) .

It is easy to show that Fy, F; € COO(RZ). Moreover, for all o1, a2 € Ny

0% g9 —w 5B . =1 —id

abaz a - l(a b) _ locz-l—oq (B B¢ A e—1¢1A¢)
and

g g “

e Fa(a,b) = iV (A" g B e ).

Hence, by Remark 3.16 we get that

aaz aal o2 [}

b gaa 00 = G g

F,(0,0). Y
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For all oy, a; € Ny, we also have that

g2 g
b2 Jau1

(Fy — F2) (a,b)| < 2M(a))M;(a2), (12)

where we set for any k € Ny
—k —k
Mi(k) ;= ||[A"¢]| and  M(k) := [|B ¢]l.

Both (M (k))ren, and (M (k))ren, are log-convex because they are defined by
norms. The quasi-analyticity of ¢ for both A and B implies that

o0 1 o0
Z T = oo and Z Mz(k 0. (13)

k=1 k=1

:

Therefore, by Theorem 3.8, the relations (11), (12) and (13) imply that the function
F| — F, = 0 on R2. Then

(eib§¢, e_iaxq&) = (eiax¢,e_ih§¢>), Ya,b € R, V¢ € D,
which also holds for all ¢ € H, since D is total in H and the operators ¢“% and ¢'B
are continuous. Then the conclusion follows by polarization identity. O

Proof (of Theorem 3.13 for d = 2) Let L,, be the Riesz functional on R[x] =
R[x, x2] associated to the sequence m (see Definition 3.3). We will apply to this
functional the well-known Gelfand-Naimark-Segal (GNS) construction and then
we will use the spectral theorem for pairwise strongly commuting self-adjoint
extensions of the multiplication operators defined on the Hilbert space given by
the GNS-construction.

Since m is a positive semidefinite sequence, the bilinear form given by (f, g) :=
L, (fg) is a quasi-inner product on R[x] and by the Cauchy-Schwarz inequality it
follows that the subset N := {h € R[x] : L, (h*) = 0} is an ideal of the algebra
of polynomials R[x]. Let H,, be the completion of the pre-Hilbert space R[x]/N
equipped with the inner product (-,-). For j = 1,2, we introduce the operator
X; : R[x]/N — R[x]/N defined by

Xj(h(xl,xz)) = x;h(x1,x,), forany h e R[x]/N.
Then X, X> and D := {x}x}|s, n € Ny} fulfill all the assumptions of Theorem 3.15.

We only show that D is a set of quasi-analytic vectors for both X; and X;. Let us fix
s,n € Ny, then by Cauchy-Schwarz’s inequality we get that for any k € N

=

IXEEP < (L) (L () . (14)
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Now, let us define the sequence M;(k) := Lm(xj’.‘) for j = 1,2. The log-convexity

of the sequence (M (k))ren, €asily follows by the Cauchy-Schwarz inequality for

the inner product (-, -). By Theorem 2.7 and Lemma 3, the multivariate Carleman

condition (10) for j = 1 guarantees that the class C{M,(k)} is quasi-analytic. By

Lemma 5, we get that for the fixed s € Ny the class C{M,(k + s)} is also quasi-

analytic. Then, by Lemma 3, the class C{v/M;(4k + 4s)} is quasi-analytic. Since
o

. . .. l _
M, (4n) is constant in k, Proposition 2.3 guarantees that kgl Wy = °

o0
This together with (14) implies that ||X1kxix§||_% = 00, i.e. x{x} is a quasi-
k=1

analytic vector for X;. The same proof applies to X,.

Theorem 3.15 guarantees that the closures X, and X; of X; and X, respectively,
are strongly commuting self-adjoint operators. By applying the spectral theorem to
X, and X, we get that there exists a unique non-negative measure ;1 € M*(R?)
such that for any o, oy € Ny

/ X2 pdxy dxo) = (1L X1+ X X+ Xo - 1). (15)
Rz N’ e’

o] times  «y times

On the other hand, we have that for any o), o, € Ny

(LXK X KXo ) = (L (X)) = Lo(52) = My (16)
S—— ——

o] times  «p times

By (15) and (16), we conclude that fRZ x*u(dx) = my for any a € N%, i.e. the
sequence m is realized on R? by the measure w. Moreover, since m fulfills (10)
by assumption, Theorem 3.11 for n = 2 guarantees that p is the unique measure
realizing m on R O

Concerning the Stieltjes moment problem in higher dimensions, it is possible
to obtain sufficient determinacy conditions using the quasi-analyticity of the
Fourier-Laplace transform of a measure supported on R‘i. This technique is used
in [47, Section 2.4], where the authors proved different determinacy conditions
corresponding to the different quasi-analyticity criteria given in [15] and [14].
Following the proof in the one-dimensional case (see Theorem 3.7), it is possible to
derive from Theorem 3.11 the following sufficient condition for the determinacy of
the multidimensional Stieltjes moment problem (see [21] for a detailed proof of this
result).

Theorem 3.17 Let m = (ma)aeNg be the moment sequence of a measure
e MR I

i 1
Y Lu() F =00, Vj=1....4d.
k=1

. . .. d
then |u is the unique measure realizing m on RY, .
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As well as in the one-dimensional case, the geometry of the support of a measure
on R? with d > 2 can be used to derive other determinacy conditions. First of all, the
compactness of K C R? guarantees the determinacy of the multivariate K—moment
problem for any d € N (the considerations made at the end of Sect.3.2 can be
straightforwardly generalized to higher dimensions). Moreover, in [46, Section 3]
the authors showed higher-dimensional determinacy criteria based on the geometry
of the support and provided examples of non-compact higher-dimensional sets
which support determinate measures (see also [47, Section 9] for a summary of
the results in [46]). Another powerful method to study the determinacy of the
multidimensional moment problem is to use disintegration techniques. In particular,
Putinar and Schmiidgen have recently proved through such techniques a general
result which reduces the determinacy question to lower dimensions and it has a very
broad class of applications, [47, Section §].

4 Uniqueness in the Infinite-Dimensional Moment Problem

4.1 The Moment Problem on Conuclear Spaces

In the following we are going to introduce an infinite-dimensional version of the
moment problem, in particular we will consider the moment problem on conuclear
spaces. For simplicity, from now on, all the spaces are assumed to be separable and
real.

Let us consider a family (Hy)rex of Hilbert spaces (K is an index set containing 0)
which is directed by topological embedding, i.e.

Vki,kyeK3k; : Hy, € Hy, , H, € Hy,.

We assume that each H is topologically embedded into Hy. Let €2 be the projective
limit of the family (Hj)rex endowed with the associated projective limit topology
and let us assume that 2 is nuclear, i.e. for each k; € K there exists k, € K such
that the embedding Hy, C Hy, is quasi-nuclear.

Let us denote by Q' the topological dual space of . We control the classical
rigging by identifying Hy and its dual Hj,. With this identification one can define the
duality pairing between elements in Hy and in its dual H;, = H_; using the inner
product in Hy. For this reason, in the following we will denote by (f, n) the duality
pairing between n € Q' and f € Q (see [6, 8] for more details).

Consider the n—th (n € Ny) symmetric tensor power Q®” of the space Q which
is defined as the projective limit of all H,‘?"; forn = 0, HE’O = R. Then its dual
space is

@®) = we) = Jap® = | JHE, a7

keK keK keK

which we can equip with the weak topology.
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A generalized process p is a finite measure defined on the Borel o—algebra
on Q’. Moreover, we say that a generalized process u is concentrated on a
measurable subset S € Q' if u (Q'\ S) = 0.

Definition 4.1 (Finite n—th local moment) Given n € N, a generalized process u
on Q' has finite n—th local moment (or local moment of order n) if for every f € Q
we have

[t <o

Definition 4.2 (n—th generalized moment function) Given n € N, a generalized
process j on ' has n—th generalized moment function in the sense of Q' if u has
finite n—th local moment and if the functional f > [, [{f, n)|"1(dn) is continuous
on . In fact, by the Kernel Theorem, for such a generalized process p there exists
a symmetric functional mff) € (Q®", which will be called the n—th generalized
moment function in the sense of Q', such that for any f € Q®” we have

) = [ .

By convention, mf?) = u().

In analogy to the finite-dimensional case, we will denote by M*(S) the
collection of all generalized processes concentrated on a measurable subset S of Q’
with generalized moment functions (in the sense of Q) of any order. Moreover,
let us simply denote by F () the collection of all infinite sequences (m™),en,
such that each m™ ¢ (Q‘X’”)/ is a symmetric functional, namely the tensor product

(Q )®" is considered to be symmetric.
The full moment problem, which in this infinite-dimensional context is often
called the full realizability problem, addresses exactly the following question.

Problem 4.3 (Full realizability problem on S C Q') Letr S be a measurable
subset of Q' and let m = (m"),en, € F(Q'). Find a generalized process j with
generalized moments (in the sense of Q') of any order and concentrated on S such
that m™ = mff) foralln € Ny, i.e. m™ is the n—th generalized moment function of
W for any n € Ny.

If such a measure p does exist we say that m is realized by i on S. Note that the
statement of the problem requires that one finds a measure concentrated on S and
not only on .

An obvious positivity property which is necessary for an element in F(Q’) to be
the moment sequence of some measure on ' is the following.
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Definition 4.4 (Positive semidefinite sequence) A sequence m € F(’) is said to
be positive semidefinite if for any fU) € Q%

o

39 @ 0, mU+h) = o,

Ji1=0

This is a straightforward generalization of the classical notion of positive semidefi-
niteness considered in the finite-dimensional moment problem (see Definition 3.4).
Note that, as we work with real spaces, we choose the involution on €2 considered
in [8] to be the identity.

A measure © € M*(S) is called determinate on S if any other measure
v € M*(S) having the same generalized moment functions as u is equal to u.

4.2 Determinacy Condition for the Realizability Problem
on Conuclear Spaces

As well as for the d—dimensional moment problem with d > 2, the role of
quasi-analyticity in the infinite-dimensional moment problem is fundamental not
only to develop sufficient determinacy conditions but also to obtain the existence
of a solution. The following notion is the crucial element to get analogues of
Theorems 3.11 and 3.13 for the realizability problem.

Definition 4.5 (Determining sequence) Let m € F(2’) and let E be a countable
total subset of €2, i.e. the linear span of E is dense in 2. Let us define the sequence
(mp)nen, as follows

mg := 4/ |m©]| and m, := sup [{fi ® @ fon,mE)|, V> 1. (18)
Sioefon€E

The sequence m is said to be determining if and only if there exists a countable
total subset E of © such that for any n € Ny, m, < oo and the class C{m,} is
quasi-analytic (see Definition 2.2 and Theorem 2.7).

Note that from (17) it follows that for any sequence m € F(2') there exists a

sequence (k™),en, C K s.t. for any n € Ny we have m™ € Hg:lm)- If we denote by

d(k™ E) := sup W Nl (19)
feE
then for the m,,’s defined in (18) we have

1
< @K, BN [m) g,

—x2n)
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Hence, we can see that a preferable choice for E is the one for which the sequence
(d(k(Z”),E))neN grows as little as possible. For instance, in [34, Lemma 4.5] we
proved that it is possible to explicitly construct such a set E in the case when €2
is the space of all infinitely differentiable functions with compact support in R¢.
This explicit construction is based on quasi-analyticity theory and uses a technique
similar to the one of [28, Chapter 4, Section 9].

Let us prove now the correspondent of Theorem 3.11 for Problem 4.3 in the case
S = Q' (c.f. [8, Vol. II, Theorem 2.1] and [9]). Before stating the theorem, we need
some preliminary considerations.

Let m € F(2") be the moment sequence of a measure p on Q. For any ¢ € Q
and any n € Ny, we define

My = (%", m™).

Therefore, we have
o= [ tonntan = [ P, @,

where 77, (1) := (@, n) forall n € Q" and ji,, is the image measure of x under 7,,.
Note that the sequence (1, »)nen, i8 a log-convex sequence of real numbers and if
1 is a probability then m, o = 1.

Theorem 4.6 Let Q' be a Suslin space and let (1,v € M*(Q') have the same
generalized moment sequence m = (m™),en,. If there exists a countable total
subset E of Q such that for all ¢ € E the class C{my,} is quasi-analytic, then
W = v. In particular, if m is determining, then the conclusion holds.

Proof Since for any ¢ € E the class C{m,,} is quasi-analytic and the sequence
(Mg n)nen, is log-convex, by Lemma 3 and Theorem 3.5, it follows that p;, = vy,
on R. To show that ;& = v on €/, it is enough to prove that x and v coincide on all
the cylindrical sets

C(fls---sfn;B) = {?’] S Q/ : ((fls ?’}),..., (fnv 77)) € B},

withn € N, fi,....f, € E and B in the Borel o—algebra 5(R") on R". In fact, since
E is total in  and ' is Suslin, a theorem due to Fernique (see [54, Lemma 18])
guarantees that the Borel o—algebra on Q' is generated by all the cylinders above.

Since for any n € N and for any fi,...,f, € E, we have already proved that
My = Vay OD R for all j € {1,...,n}, Petersen’s Theorem 3.10 implies that
w(C(fi,....fusB) =v(C(fi,...,fs; B)) for any B € B(R").

In particular, if m is determining then there exists a countable total subset E of Q2
such that C{m,} is quasi-analytic, where m,, is defined as in (18). Then forany ¢ € E
and n € Ny we get /My 2, < my,, which implies that C{,/m, 1} is quasi-analytic.
Hence, by Lemma 3, C{m,, , } is quasi-analytic. Then the conclusion follows by the
first part of this proof. O
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Let us state now the analogue of Theorem 3.13 for Problem 4.3 in the case S =
Q' (see [8, Vol. II, Theorem 2.1] and [9]).

Theorem 4.7 Ler Q' be a Suslin space. If m € F() is a positive semidefinite
sequence which is also determining, then there exists a unique non-negative
generalized process 1 € M*(Q) such that for any n € Ny and for any f™ e Q®"

(10, @) = /Q 02 ).

The original proof of Theorem 4.7 in [8] uses a slightly less general definition of
determining sequence. Indeed, the authors require that the class

cfawer bt |
—k n

is quasi-analytic, which in turn implies that C{m,} is also quasi-analytic. Never-
theless, their proof also works using just the bound given by Definition 4.5. The
latter has actually the advantage to guarantee that, whenever m is realizable on
2, the sequence (m,)en, is log-convex. This is an essential property to obtain
necessary and sufficient conditions for the realizability problem on semi-algebraic
sets (see [34] for more details on this topic).

Proof (Sketch) The general scheme of the proof of Theorem 4.7 is very similar to
the one of Theorem 3.13. As in the finite-dimensional case, the GNS construction
is used to define a Hilbert space H,, associated to the starting positive semidefinite
sequence m € JF(2’), which is now a sequence of functionals and no more of real
numbers. Consider the set P, (') of all polynomials on Q' of the form

N

P(n) ==Y (fV.n%), (20)

=0

where f© € Rand f) € Q®,j = 1,...,N with N € N. Let us define the Riesz
functional L, associated to m € F(2’) as

Ly : P () —-R

N N
P(n) = Z:O(p("), 18" > L(P) = Y (0" m™).

n=0

Since m is positive semidefinite, the bilinear form given by (P, Q) := L, (PQ) is a
quasi-inner product on P (2'). After the factorization of Hq (') with respect to
N :={P € P (') : L,(P*) = 0} and the subsequent completion of this quotient
space, we obtain a Hilbert space H,,.
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For any e € E, let us introduce the multiplication operator A, on H,, defined by

N
AP = Z(e ®fV, n®UtD) | forany P € Pq () as in (20).
=0

Thanks to the determining condition, it is possible to show that the domain of each of
these operators contains a countable total subset of quasi-analytic vectors, namely,
the set all the polynomials Py (1) := (fi®---®f, n®*) withk € Nandfy,....f; € E.
Indeed, for any e € E and any k € N we have that P, € N2, D(A”). Moreover, for
any n € N we get

1 1
APl = (A"P;, A"Py)2 = L,  n®Utmy2y;
[ACPrll = (AL Pk, AzPr) (i1® - Bfive® --®e,n )

n times

1
=(® - RfF®e®---@e.m* ) <y,

2n times

By Definition 4.5, the class C{m,} is quasi-analytic and the sequence (m,)qen is
log-convex. Then, by Lemma 5, the class C{my,} is also quasi-analytic. Hence,
the previous estimate shows that each Py is a quasi-analytic vector for A.. As in
the finite-dimensional case, it is possible to show that these operators admit unique
self-adjoint extensions, which are pairwise strongly commuting. Therefore, by the
spectral theorem for infinitely countable many unbounded self-adjoint operators
(see [8, Vol. I, Section 2]), there exists a unique measure representing those
operators. Hence, this spectral measure y realizes m on R”.

The final part of the proof consists in showing that the spectral measure is actually
supported on . Moreover, since m is determining by assumption, Theorem 4.6 also
guarantees that the measure p is the unique measure realizing m on . O

Remark 4.8 The d—dimensional moment problem on R? is a special case of
Problem 4.3 for @ = Hy, = R?. Hence, an analogue of Theorem 4.7 can be proved
also in the finite-dimensional case, where the condition m := (m("))neN0 e F (Rd)
holds for any multisequence of real numbers. In fact, if {ey,...,e;} denotes the
canonical basis of R? then we have that for each n € Ny,

. (n) d
m" = Y om) e @R ® - Qey® - ®eq € R
.....
nln-ll—"-.:fﬁsfg” n| times ng times

The determining condition on m reduces to the requirement that the class

ny,...nd €ENg
1++ng=2n

c \/ max  |m, | @h
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is quasi-analytic. This follows by taking E := {ey, ..., e;} in Definition 4.5. Note
that the quasi-analyticity of the class (21) implies the multivariate Carleman condi-
tion. Hence, Theorem 4.7 gives here a slightly weaker version than Theorem 3.13,
but it is now clear that it is the quasi-analyticity the key stone on which both results
are based. Let us also underline that, whenever the starting sequence m is realizable
on R?, the sequence in (21) is log-convex.

The infinite-dimensional analogue of the Stieltjes moment problem was consid-
ered by Sifrin in [56], where he develops the analysis of the infinite-dimensional
moment problem on dual cones in conuclear spaces. In particular, applying Sifrin’s
result to a generating cone KC of a nuclear space 2 as before, it is possible to
obtain a version of Theorem 4.7 for the realizability problem on the dual cone of
such a IC, but with the difference that the determining condition is replaced by the
requirement that the class C{,/m,} is quasi-analytic where the m,’s are defined as in
Definition 4.5. This condition is slightly more general than the one given by Sifrin
in [56], which can be rewritten as

> 1
> = oo, (22)
o d(k(Zn)’ E)Zn Hm(Zn) HH®2"

—x(2n)

where d(k®” E) is defined as in (19) and E is total in €. Condition (22) is
called generalized Stieltjes’ condition. In fact, it is easy to see that the difference
between (22) and the original determining condition given by Berezansky and
Kondratiev, i.e.

> 1
> .
w1 2/d(kC@n, E)2n ||m(2n) ||H®2”

—x2n)

is the same as the difference between Stieltjes’ condition (8) and Carleman’s
condition (7) in the one-dimensional case.

As in the finite-dimensional case, the geometry of the support S again allows to
get easier conditions for realizability (see [33] for some examples).

Appendix: Log-Convexity and Quasi-analyticity

We conclude this paper with some properties of log-convex sequences which are
useful in relation to the quasi-analyticity of the associated classes of functions.
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Proposition 1 For a sequence of positive real numbers (M,)qen, the following are
equivalent

(a). (My)nen, is log-convex.

(b). (A;”—”) is monotone increasing.
n—1 J neN

(c). (In(M,)),en is convex.

Proof The conditions (a) and (b) are obviously equivalent. If (c) holds, then
2InM, <InM,+| +InM,_,,
which implies (a). Let us assume (b), then for any n,m, k € Nsuchthatn <k <m

we have
k m
1 M; 1 M;
E In L )< —— In I, (23)
k—n ]‘4/_1 m—k . ]‘4/_1

j=n+1 j=k+1

where we used the fact that the denominators of the pre-factors are equal to the
number of summands in both sums. The inequality (23) is equivalent to

(m—n)InM; < (k—n)InM,, + (m — k) In M,

which gives the convexity of the sequence (In(M,,)),cy and so (c). O

Corollary 2 If a sequence of positive real numbers (M,),en, is log-convex with
My = 1, then (/M) en is monotone increasing.

Proof From (b) in Proposition 1, it follows that for any n € N

Mn = % = l—[ M’ 5 Mn ’
M M;_ M,

=1 Jj—1

which gives M"_| < M"~!, or equivalently, Mii"l_l < M O
Lemma 3 Assume that (M,)nen, is a log-convex sequence of positive real numbers.
C{M,,} is quasi-analytic if and only if for some (and hence for any) j € N the class

C{y/M;,} is quasi-analytic.

Proof W.l.o.g. we can assume that My = 1. (In fact, if My # 1 then one can always
apply the following proof to the sequence (%),,GNO by Proposition 2.3.)
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o0

Let us first note that, by Theorem 2.7, it is enough to prove

ﬁzooifand

only if for some j € N, Z = o00. By Corollary 2, we have

]W

(] 1 o0 1 j—1 1
Z nMn Z( o4 jnJr(jW) + nMn

n=1 n=1 n=1

e

n=

IA

Y

—
=
:

which gives the necessity part. On the other hand, if Z \/_ diverges for some

o0

j €N, thenalso > 1’/;1\7 diverges since it contains more summands than the former
n=1 "

series. O

Lemma 4 Let (My)nen, be a sequence of positive real numbers. Then, for any

k € Ny, Z 1{';;1 —oozfandonlyzfz M” L = oo0.

Proof These two series differ only by a finite number of positive summands. O
Lemma 5 Let (M,),en, be a log-convex sequence of positive real numbers. C{M,,}

is quasi-analytic if and only if for some (and hence for any) k € Ny the class
C{M,,+«} is quasi-analytic.

Proof By Theorem 2.7 and Lemma 4, C{M,,} is quasi-analytic if and only if
o0

Myor
> Tl o (24)
M,k

n=1

Note that the sequence (M,+x) .y, 1S also log-convex. Hence, by Theorem 2.7, (24)
is equivalent to the quasi-analyticity of the class C {M,,4}. O

Theorem 6 Let (My)nen, be a log-convex sequence of positive real numbers. If we

havez ZF—OO thenz 2m—oof0ranyheNo

Proof By Proposition 2.3, we can assume w.l.o.g. that My = 1. Let us consider
separately the cases when £ is even or odd.

If 4 is even, then the conclusion directly follows by applying Lemma 5.

If i 1s odd, then we need some more considerations. Let us first note that for bounded
(M) nen,, the result is obvious. Suppose (M,),en, diverges, then there exists N € N
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such that for any n > N we have that M,, > 1. Hence, for any n > N, we get that

1 1
< .
2n—1 /MZn—l — 2n /M2n_1

(25)

Moreover, by Corollary 2, we have that -+ for any n € N. Hence,

1
o = =Y Mot
since Z zi“/AT = 00, also Z M/—Mi—l = oo. This together with (25) gives that

n=1 n=1

Z W = 0. (26)

Let us consider the sequence B, := +/Mj,_; for n > 1. The log-convexity of
(My)nen, implies that (B,),en is also log-convex. Then (26) is equivalent to the
quasi-analyticity of the class C{B,} by Theorem 2.7. Let k € N be such that
h = 2k—1, then by applying Lemma 5 to the sequence (B,)qen, we get that C{B, 4}
is quasi-analytic which proves our conclusion. O
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Abstract We present some elements concerning the retrieval of the Solar irradiance
spectrum on the surface of Mars, from data collected by arrays of photodiodes,
such as those aboard the “Curiosity” MSL-rover and other missions currently under
design.
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1 Introduction: Solar Irradiance Sensors

Several probes that have been sent to Mars or are under consideration to be sent in
the future to study the atmosphere and the general conditions on the surface of the
planet, carry a Solar irradiance sensor (SIS) composed of several photodiodes that
measure radiation intensity in different bands.

Measuring the Solar irradiance on the surface of a celestial body is an important
step in order to determine the feasibility of human habitability. Also, it is important
in order to determine whether Earth-like life could be found.
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The Solar spectrum can be measured on Earth with different instruments.
Typically, this is achieved using a spectrometer: a device that measures intensity
for a specific wavelength, that can be then tuned to sample the whole range under
consideration in a detailed way and establish the experimental dependence of the
intensity versus the wavelength.

Unfortunately, the restrictions of present spatial probes on size and weight
of the payload they can carry as well as on the needs of power supply do not
allow such instruments to qualify for a mission. Instead, instruments with arrays
of photodiodes are preferred due to their robustness as well as their size, weight
and power requirements. Contrarily to a spectrometer, that can measure intensity
corresponding to a single wavelength (up to some precision), photodiodes measure
over extended intervals of wavelength values. In that sense, their measure can be
considered as an integrated value.

The corresponding ranges can be either narrow, around a specific wave length, or
extended over a wider span. For instance, REMS-MSL[1-3] carries 6 photodiodes
that cover different ranges over the ultra-violet (UV) region of the spectrum, with
photodiodes devoted to each of three bands, UV-A, UV-B and UV-C:

No. Range

1 Global UV: 200-370 nm

2 UV-A: 320-370 nm

3 UV-B: 280-320 nm

4 UV-C: 220-280 nm

5 Ozone absorption: 230-290 nm

6 Complementary range: 300-350 nm

Note that photodiodes 2—6 have intersecting ranges and fill-in in a complementary
way the spectral range covered by photodiode 1.

METSIS[4, 5] has an array of eleven different photodiodes, some are duplicated
on the different faces of the instrument. They cover not only the UV region but also
the near infra-red (IR), the visible spectrum (VIS), some specific bands related to
the expected dust absorption wavelengths, the water absorption wavelength (H,O),
as well as some other bands related to the Ozone. Some of the ranges are limited on
purpose around specific values (those related to the dust can be considered as having
only an 8 nm span) but other cover practically the whole region under observation:
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Z
e

Range

Total luminosity reference: 230—1200 nm
UV-A: 315-400 nm

UV-B: 280-315 nm

Hartley Band: 200-310 nm
Huggins Band: 300-345 nm
Dust Optical Depth: 440 nm
Dust Optical Depth: 600 nm
IR: 700-1100 nm

VIS: 400-700 nm

UV MRO: 245-290 nm
H,0: 930-950 nm

O 0 || N W=

[
=]

SISDREAMS[6], due to some limitations in the design, will carry three different
photodiodes, one on the top face, the other two being duplicated on the three lateral
faces of the instrument.

No. Range
UV-A: 315-400 nm
2 IR: 700-1100 nm
3 Total luminosity reference: 220—-1100 nm

2 Mathematical Models

The challenge associated to the use of photodiodes is to reconstruct the dependence
of the intensity versus the wavelength from the measures of the intensity accumu-
lated over the different ranges.

In this sense, we can ideally consider that we have for a given photodiode
measuring all wavelength contributions from A, t0 Ayax @ value Mige, given by:

A’lnﬂx
Migeal = / I(A) dA, (1

min

where /(1) is the intensity corresponding to wavelength A. Our goal is to estimate a
suitable function 7(1). We call this an “ideal” measure since we will see later how
to take into account more realistic situations.

To achieve our goal, we suppose that we have the measures from n ideal
photodiodes M;, with j = 1, ..., n, each covering a wave range given by [o;, B)]:

ﬁ.
szfjl()t)d)t, i=1,....n. 2
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These ranges are not necessarily disjoint and some overlapping may occur among
them.

We suppose 1(4) exists and is integrable over the different ranges and call F (1)
a primitive. We have then

M;=FB)—F(a), j=1,....n. 3)

We suppose, furthermore, that we may approximate F(1) in some vector space,
in principle with infinite dimension, with orthonormal base functions ¢ (1), k =

1,..., 00, such that the orthogonal projection of F on that space is a Fourier series
of the form:
o0
D a(h). )
k=1

We suppose that this series converges uniformly to F and that a good approximation
is obtained when we truncate the series keeping only the first n terms.

Of these last two hypothesis, the first one is reasonable but the second one is not
necessarily guaranteed if n is small.

Assuming all of the above, we can reconstruct approximatively F as

FO) ~ Y ag(h). (5)

k=1
while [ is then approximated by

n

1) ~ Y ai(3), 6)

k=1

where ¢ (1) are the derivatives of the base functions. The coefficients a; are
determined solving (3) which corresponds to the linear system:

Vi=1....n. M=) afdules) — pe(B))]- 7

k=1

This is the approach used in [7]. Due to the fact that for all three configurations
(MSL, METSIS and SISDREAMS) there is a global sensor with a range that
overlaps all other ranges, the linear system (7) can present equations that are close
to linear combinations of some of the others and we may expect to have a large
condition number.
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Conversely to the previous process, one may start approximating / in the base of
orthonormal functions and consider

10) ~ Y api(h) @®)
k=1
instead of (6), and determine the coefficients solving now:

Vi=l..on M= aPule) — du(B))]. ©)
k=1

where, for each k, ®;(A4) is a primitive of ¢y (1).
A way to discriminate both possibilities is to construct matrices A and C,
associated respectively to (7) and (9), given by:

Aje = ¢r(@j) — du(B)). Cik = Pi(ej) — Dr(B)). (10)

compute their condition number, and choose the method that gives a smaller value,
since that approach would be less sensitive to errors.

As an illustration we present some results in the cases of METSIS and SIS-
DREAMS. We reconstruct the irradiance spectrum of the black body radiation,
considering what would be the ideal values measured by the corresponding array of
photodiodes. We have used as base functions Chebyshev polynomials, with a change
of variables to adjust the whole range to the usual interval for those polynomials. We
represent the results for METSIS in Fig. 1. We have also computed the irradiance
spectrum allowing a 1 % error in all data, which should be within the characteristics
of the actual sensors, with no significant variation of the results. A more thorough
analysis, using the stochastic ideas in [8] is under consideration.

The case for SISDREAMS is different since from the three values we can only
fit a parabola, which is poorly adapted to represent the general shape of the black
body radiation. To overcome this limitation, we include an extra measure, that of
a “virtual sensor”, with an arbitrary value that we adjust in order to minimize the
integral of the resulting third degree polynomial. We represent the results in Fig. 2.

3 Responsivities

A real photodiode does not provide the same response to all wavelengths inside
the nominal range it covers. Some responsivity function r that depends on A has
to be taken into account. We may understand that a more realistic measure can be
represented, instead of by (1), by:

Amax
M:/ 1) r(L) d . (11)
Amin
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Fig. 1 Approximation of the spectrum of the black body using METSIS photodiodes
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Fig. 2 Approximation of the spectrum of the black body using SISDREAMS photodiodes and a
virtual one

The values of the responsivity function (A1) for a specific photodiode can be
tabulated by experimental measures on the laboratory with sufficient precision.
In this sense the presence of r would not suppose a significant difference in the
approach, but some other factors have to be considered: from missions to Mars [9],
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it is known that dust will deposit erratically on all exposed surfaces, including those
of the photodiodes, reducing in this case their sensibility. But it is also known [9]
that winds that can remove a large part of the dust and cleanse the devices, allowing
them to recover part of their lost sensitivity. Also, the response of the photodiodes
can be degraded due to exposition to the radiation itself, especially to the most
energetic one as well as to high energy protons from the Solar wind.

We may use the tabulated values of r as a primer but we devise an iterative
process to approximate the actual values.

For each photodiode j, we start considering a first approximation to the mean
value of the responsivity in the corresponding range defined as:

1 Bi
7 _ / nQ)dA, j=1.....n. (12)
IBJ_“/ aj ’

We consider that the measures M; given by the photodiodes correspond to
Bj
sz/ IA)ry(A)dA, j=1,....n. (13)
L
In order to approximate /(1), we define 1°(1) such that

Bi M;
/IO()L)dA— —=. j=1Ll....n, (14)
J

&

and construct it through the interpolation process as in the previous section. Once
we have it, we estimate a new set of average values

fﬁf °(A) r;(A) dA

P r)dr, j=1,. 15
= Fra M/ (. | (15)

From here, we define I' (1) such that

/a. '"Vydr ==L

J J

M
—, j=1,...,n, (16)

and construct it. We then iterate this process, defining further approximations 7‘}’ and
I’(X),p = 2,..., until achieving convergence [10].

In this way we can take into account deviations of the responsivity from the
nominal values.

As an illustration, we present in Figs.3 and 4 the retrieved irradiance for a
Hamamatsu deuterium (D;) lamp both in vacuum and with some ozone, with
the photodiodes corresponding to the REMS settings with filters that modify the
responsivity. The algorithm converges in five iterations to values with an error less
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than 0.6 % [10]. As we see, we can discriminate accurately both cases: with and
without the presence of ozone.

A more realistic approach should take into account that the photodiodes response
depend on the angle 6 of the light coming directly from the Sun with the normal to
their surface:

)lmax
M= 1) r(A, 6) dA., (17)

Amin

where the responsivity function depends now both on A and on 6. An iterative
method similar to the previous one can be used, starting with the values of r
tabulated for different angles from calibrations in the laboratory.
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4 Radiative Transfer

The real emission from the Sun is not that of black body but has some irregularities.
Furthermore, the presence of dust, concentration of water vapour and ozone etc., on
the atmosphere alter in a characteristic way the radiation that reaches the surface of
the planet. From Radiative Transfer techniques it is possible to have information on
these different possible scenarios. Also, other instruments on board the same probe
can give an idea of the atmosphere situation at the precise time of the measurements.
This is useful to adapt the interpolation techniques to try and match the measures of
some of these cases, in order to identify more precisely the actual irradiance.

For instance, in [7] we used a combination of approximation by rational functions
and polynomials to reproduce the expected curve in the UV region, from 220 to
400nm. We used a linear combination of the polynomial Q(1) given by the right
handside of (6) with Gauss-Legendre polynomials as base functions and the rational
function approximation R(1), choosing the coefficients in a way to minimize the
total integral.

As another option, we have used natural cubic spline intepolation plus conditions
on the spectrum provided by the Radiative Transfer models to retrieve the spectrum
in a scenario of a Martian atmosphere with high dust concentration. The result can
be seen in Fig.5. The retrieval is qualitatively correct and a good quantitatively
approximation.

0.6
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0.2 r

0.1 |
original data
mean values

qatural qubic sp!ines regrieval

0 1 1 1
200 250 300 350 400 450 500 550 600 650

Fig. 5 Approximation in the lower part of the spectrum by natural splines with additional
conditions determined by Radiative Transfer
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Stochastic Processes on Ends of Tree
and Dirichlet Forms

Witold Karwowski

Abstract We present main ideas and compare two constructions of stochastic
processes on the ends (leaves) of the trees with varying numbers of edges at the
nods. In one of them the trees are represented by spaces of numerical sequences and
the processes are obtained by solving a class of Chapman-Kolmogorov Equations.
In the other the trees are described by the set of nodes and edges. To each node there
is naturally associated a finite dimensional function space and the Dirichlet form on
it. Having a class of Dirichlet forms at the nodes one can under certain conditions
build a Dirichlet form on L? space of funcions on the ends of the trees. We show that
the state spaces of two approaches are homeomorphic but the second yields larger
class of processes.

Keywords p-adics * Trees * Stochastic processes ¢ Jump processes ® Ultramet-
ric spaces

Mathematics Subject Classification (2010) Primary 60J75; Secondary 05CO05,
31C25

1 Introduction

The physicists became interested in ultrametric spaces in mainly two contexts. In
1980s of the last century it had been conjectured that at high energy collisions when
dynamics at Planck distances had to be taken into account the structure of space-
time was no longer that of a real linear space but might have a non-Archimedean
metric. The p-adic numbers [20] turned out to be natural object to be implemented
in the theory. The expected physical applications prompted research leading to
formulation and studies of p-adic analogs of Quantum Mechanics and Quantum
Field Theory [4-6, 19, 23]. Another contact point of Physics and ultrametric spaces
was the theory of spin glasses. It has been observed that relaxation in a large system
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of interacting spins is (below certain temperature) not exponential but proportional
to 7%, o, t > 0. It has been explained roughly speaking by assuming hierarchical
structure of dynamics and modelled by random processes on hierarchical spaces.
Again p-adics were the natural mathematical objects for constructing the physical
models [22]. Independently the studies of random processes on p-adics appeared
in mathematical literature. Aldous and Evans [8, 10] constructed and discussed
spherically symmetric processes in terms of Leévy—Khinchin formula. Albeverio
and Karwowski [1] constructed the same class [7] of processes on p-adics by
solving Chapman-Kolmogorov equations and computing transition functions of the
processes. They found explicit formulas for the Dirichlet forms and generators. They
also gave complete spectral description of the generators. Yasuda [24] extended their
method to local fields.

The method of constructing stochastic processes by solving Chapman-
Kolmogorov equations was independent of algebraic structure but relied on
non-Archimedean metric space properties of p-adics. Exploiting this property
Karwowski and Vilela Mendes [16] constructed a class of processes without
spherical and translation symmetry. Such processes were required for some physical
applications [21]. Further studies of [16] processes were carried out in [3] and [7].
Next generalizations of [1] processes went beyond the state space of p-adics. While
p-adic numbers considered as a metric space can be identified with leaves of a tree
having p + 1 edges at every node Albeverio and Karwowski [2] constructed a class
of processes on leaves of the trees with varying number of edges attached to a node.
Similarly as in [1] they provided formulas for transition function, the Dirichlet form
and the generator of the process.

Due to well known correspondence between regular Dirichlet forms and Markov
processes [11, 12] one may first define a Dirichlet form and then obtain the
process. Such approach has been successfully used in study of random processes
on hierarchical spaces. Before listing some examples we remark that the Dirichlet
forms for the processes discussed in [16] and [3] could have been obtained by
multiplicative functional transformation of the spherically symmetric Dirichlet
forms introduced in [1]. Kaneko [13] constructed a class of regular Dirichlet forms
yielding spatially inhomogeneous processes. In this class there were forms which
could not have been obtained by multiplicative functional transformation of the
spherically symmetric forms.

Using the method of Dirichlet forms Karwowski and Yasuda [15, 17] studied
processes of diffusion in R and R? consisting of diffusion and jumps on some fractal
subsets. They characterized class of admissible jump parts in terms of Haussdorff
dimension of the fractal.

Recently Kaneko [14] introduced a new class of processes on leaves of multi-
branching trees. Let Sp stands for the non-Arhimedean space of the leaves and p
for the ambient measure on Sp. Given a Dirichlet form on L?(Sg, 1) put H for the
generator of the corresponding transition semigroup. Then according to property of
the balls for any node V of the tree there corresponds a finite dimensional eigenspace
Hy of H and P, Hy = L*(Sg, ). Let Hy be a positive Hermitean matrix in Hy.
Then there is a positive self-adjoint operator H with D(H) dense in L2(Sg, jt) such
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that H | Hy = Hy. The question arises. What are the conditions for a given family
of operators Hy so that H is the generator of a Hunt process in Sz? Kaneko has
formulated the problem in terms of Dirichlet forms and found sufficient conditions.
He provided examples which went beyond the scope of Ref. [2].

In this note we present and compare the classes of Markov processes discussed in
references [2] and [14].

We prove that although the state spaces are defined in different manners they are
essentially identical. More precisely they are homeomorphic under a map preserving
their tree structures. We also show that for any Radon measure & on the state space
Sp with suppuu = Sp there is an orthogonal system e’(;’M assigned to any node
{}—+1), @ € Sp.M € Z,k = 1,2,...,54n. The total system of the vectors
corresponding to all nodes in Sp is complete in L2(Sg, 1) if (Sp) = oo. If u(Sp) =
1 then this system and a non-zero constant function form an orthogonal basis in
L?(Sp. ). It will also be evident that the class of processes discussed in [14] is
wider than that of [2]. In Sect. 2 we introduce the state spaces Sg of Ref.[2] and >+
of Ref. [14] and show their equivalence. We continue the presentation using Sp as
the state space. In Sect. 3 we briefly present the main facts about the constructions of
the processes according to [2] (Sect. 3.1) and [14] (Sect. 3.3). In Sect. 3.2 we provide
main information on the Dirichlet form and the transition semigroup generators for
the processes obtained in Sect. 3.1.

2 The State Space

Let as usual Z, N and Ny stand for the sets of integers, positive integers and non-
negative integers respectively. For any k € Z let Si be the family of all sequences
{@i}i<k such that o; € Np and ; = O for all i < N for some N < k, N € Z. Put

s={JS

kEZ

To simplify notations we put
{oi = {ai}izk-

If ¢; = O for all i < k then we write {a}; = {O}.

Definition 2.1 Let B,, be a function defined on S with values in N \ {1}. We say
that {a}; € Sp C Siff 0 < @i+ < B,, — 1 foreveryi < k. O

Clearly {0}, € Sp for any k € Z.

Definition 2.2 We say that a sequence {«;};cz belongs to the set Sp iff {a}; € Sp
forall k € Z. ]
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To simplify notations we write
o= {Ol,'},'ez. (1)
Let g be a real number, g > 1. For any pair o, § € Sg we define

pg(a,0) =0
i (2)
pqle, B) =g,

where i is such that o;, # B, and o; = B; if i < i.
Proposition 2.3 p, is a metric on Sg satisfying the non-Archimedean triangle

inequality

pg(a, B) < max{p,(et, ), pg(y. B)}. 3)

0

It is clear that for any ¢, ¢’ > 1 the metrics p, and p, are equivalent. Thus we fix
areal number g > 1 throughout the paper and drop the subscript g. Set

S’g = {a € Sp;a; = O fori >k}, 4)

and

Spo = S} (5)

kEZ

Proposition 2.4 [2] Sg equipped with the metric p is a complete metric space and
Spo is a dense subset of it. O

Given o € Sg and N € Z the set

K(a.q") = {B € Sp: p(e, B) = ¢"} (6)
will be called a ball of radius ¢" centered at a. The following facts are the
consequences of (3):

1. If B € K(a, g") then K(B, ¢") = K(a, gV).
2. If &, B € Sp then the balls K (e, ¢"), K(B, ¢") are either disjoint or identical.
3. Ifa € Sgand o; = 0 fori < —N, then K(, ¢") = K(0, ¢").

It follows from (6) that K («, ¢") is uniquely defined by {a'}—v+1) and thus we can
identify

{at—v+1) = Ko, ¢"). 7
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It will be convenient to introduce following notation:
Definition 2.5
1. We say that {&};+1 is the B-product of {&}; and {0y} iff

it = {oe X {o41} (8)
and
0 <apt+1 < By, — 1. 9

2. We say that {a}x+;, | € N is the B-product of {o}; and the ordered I-tuple
{Olk.H, ey Olk_H}

{0kt = {ofr X {1, -, Ot}
iff
{odias = (oo (Qodi X {arg1 ) X {oga)) X oo x {aeqi ), (10

where all products are B-products in the sense of 1. We then write

{odkrr = {ofr X {ag1) X - X {ag)- (11)

O

Remark 2.6 Whenever we write a formula like the right side of (11) we always
mean the B-product. O

With this notation one easily sees that

K(@.d"*") = {@}-v2) = [ Jlad-vaa) x (1), (12)
Y

where the union is taken over the values of y satisfying:
0 <y < B{a}_y4 — 1. Thus the ball K (. g™*P) is the union of Byy)_,,,, disjoint
balls of radius qN . Take N,M € Z, N > M. Iterating formula (12) we find a family
of disjoint balls of radius g™ such that K(a, ¢") can be expressed as their union.
Once the function By, is defined, this family depends on o € Sp and the numbers
N, M. We denote this family by K(«, N, M) and by n(«, N, M) the number of balls
in it. Note that (o, N, M) & K(a, N + 1, M). Consequently n(«, N, M) increases
to infinity as N varies from M 4 1 to +o00. Let M € Z be given. Then according to
property 3 of the balls for any 8 € Sp there is N > M such that 8 € K(0,¢"). Thus

S = | K(0.4"). (13)

N>M
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On the other hand B € K (0, ¢") implies that 8 belongs to one of the balls in the
family (0, N, M). Set

KMy := | K(0.N.M). (14)

N>M

Then K(M) is a countable family of disjoint balls of radius g™
K(M) = {K}" }ien, (15)

where K} is a ball of radius ¢ and K} N K} = @ iff i # j. As a consequence
of (12), (13) we have

g = J K. (16)

ieN

Let p be a prime number. Put By, = p for all {a}; € S. Then Sg can be identified
with the set of p-adic numbers Q,. If in addition ¢ = p, then the Sp metric coincides
with that of Q,. We also have

Proposition 2.7 [2] A ball in Sg is both open and compact. O

In contrast with the above description of the trees and their leaves Kaneko [14]
following Kigami [18] used different formulation. We shall briefly describe his
approach and show that two formulations are equivalent.

Let a countably infinite set 7 and amap A : T x T — {0, 1} be given. In what
follows we always assume A(x,x) = 0 and A(x,y) = A(y,x). The elements of
T are called nodes and the pairs x,y € T with A(x,y) = 1 are called wedges.
A sequence ¢; € T, i = 0,1,...,nis called a path if A(a;,a;1+1) = 1, i =
0,1,....n—=1.If i # j = a; # a; the path is called simple. If (ao,...,a,) is a
simple path then 7 is called the length of the path. If for any pair x,y € T there is
apatha, € T, i = 0,1,...,n withap = x, a, = y then (T, A) is called a non-
directed tree. Put V(x) = {y; A(x,y) = 1}. The class of non-directed trees admitted
in [14] is limited by following requirements

(i) for any x € T the set V(x) is finite and §V(x) > 3,

(ii) (7,.A) does not admit any path (ag, a1, . .., a,—1, a,) with ayp = a, and distinct
edges (ag, a1), (a1, a2), ..., (an—1,an)-

Lemma 2.8 (Kaneko,private comm) The condition (ii) is equivalent to the follow-

ing; If (ap, ai, . ..,a,) and (a,—1, ay, . . . , Anym) are simple paths then (ao, . . . , Apt+m)
is a simple path. O

The condition (ii) eliminates trees with cycles from the consideration. An infinite
sequence a; € T, i € Ny is called a geodesic ray if for any n € N the sequence
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a;, i = 0,...,nis a simple path. Put R for the set of all geodesic rays in the tree
{T, A} and define an equivalence relation “~” on R by

Definition 2.9 (ay,ay,...) ~ (by, by,...) if there is k € Z such that a;,, = b,, for
any m € Nj. O

We denote the quotient space R/ ~ by X and call its elements the ends of the tree.
Let A € X be fixed and denote X+ = X \ A. Let (8. 6;....) be a representative
sequence for A then to any x ¢ (89,0;,...) and i € Ny there is a simple path
(ao, . ..,a,) with gy = x and a, = §;. In particular there is i, € Ny such that the
length of (ay, . .., a,) is minimal. We denote the minimal length by £(x) and define
themapw : T — T by

ay if x ¢ {80,061 ...}, 17

() = 8i+1 if x = 6; for some i > 0.

PutT,, = {x € T|l(x) — i, = m}form € Z. Thenm # m' = T,, N T,y = @ and

T= UmEZ Tm

Now we are going to demonstrate that the above description of trees is equivalent
to that in terms of numerical sequences as formulated in [2] . Let S be given. Take
Sp for the set T of nodes. Define the function A as follows:
If {a}x € Spand 0 < y < Byyy, — 1 then

A(fati—1, {ah) = Al {afe x y) =1, (18)
A}k, ) = 0 otherwise.

Hence
V({ah) = Haji—1, {a}ity (19)
where 0 < y < By, — 1 and
tV({a}r) = By, +1 > 3. (20)
Let {a}, {B}; € Sp and {a}r # {B}; . Then there is N < min{/, k}, such that
{a}y = {B}n. Take the maximal N with this property and define the sequence of
nods
ai ={a}—, 0<i<k—N
and

ai ={ByoN—i+i k—N+1<i<n=k+1-2N.
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Then (ao, .. .,a,) is a simple path and ¢y = {a}x, a, = {B};. Hence (T, A) is a
non-directed tree. By Definition 2.1 the condition (i) is satisfied. Conditions (ii) is
also easily verified.

By definition of Sg the sequences a+; € Sg, i € Ny are the geodesic rays iff there
isa € Sgpandn € Z such that ay; = {a},+;. Following Definition 2.9. we introduce
the equivalence relation ~, in the set R of geodesic rays and find that to any & € Sp
there is the equivalence class o consisting of geodesic rays

Agn = Hatutr k€N, ne Z}. (21)

Moreover there is the equivalence class A consisting of the geodesic rays O, , =
{{a}—k, k € N}, n € Z, a € Sg}. We denote the set of all equivalence classes
{a € Sg, A} by X and put ¥ = X\ A. Thus S can be identified with =+.

We summarise our discussion in following theorem.

Theorem 2.10 Given Sg and the map A : Sg x Sg — {0, 1} defined by (18). Then
(Sg, A) is a non-directed tree satisfying conditions (i), (ii). Put A = {Oyn}aesgnez.
Then (21) defines a one to one correspondence between Sg and X+, O

Let now a tree (7, .A) satisfying the conditions (i), (ii) be given. Choose A € 3.
We shall define a function G : T — S in an infinite sequence of steps.

Step 0. Let (8o, 8;,...) be a representative sequence for A. For every i € Ny
define G§; = {0};.
We apply following inductive procedure. In step n, n € N we first specify a
set T™ C T by the property that for any y € T™ the map G (y) has already
been defined. Put 7" = {y € T™; 7(y) = x}. We have Gx = {a}; for some
{a}; € Si. Then fory € T™ we define Gy = {a}; xy,sothat0 < y < #V(x)—2
and the G is one to one.

Step1. Set TV = V(§y) \ {8;} and define Gy for y € T,

Step 2. Set

T = [V(8) \ {82.80}}] U {y € Tim(y) € TV,

and define Gy fory € T?.
Stepn. Set

T = [V(S1-1) \ {8 8u—2}] U Ly € T; (y) € TV}

and define Gy fory € T™.,

Ify = 6;, i € Ny then Gy is defined in step 0. If y ¢ {5y, 51, ...} then there is i,
and I(y) so that 7'0)(y) = &; . If iy is the minimal number with this property then
y € T™ where n = I(y) + iy. Observing that §7" < oo we conclude that for every
y € T the element Gy is defined in finite number of steps.
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Let Gy = {a}i. Denote By, = V(y) — 1. Then we have
GT = Sp. (22)

Let the sequence (a—;, a—i+1, . ..), where a_; = §;, i < 0 be a geodesic ray. Define
by =ayifk > —iand by = 6_; if k < i. Then

{(bk, bk-‘rls .. .), ke Z} (23)

is a class of equivalence of geodesic rays. The class (23) defines the sequence f =
{Bi}icz such that {8}, = Gb; and {B}; € Sk. Hence B € Sg. Thus we have proved

Theorem 2.11 Let (T, A) be a non-directed tree satisfying conditions (i), (ii). Then
there is a space Sg, the corresponding space Sg and a one to one map G of T onto Sp
such that if (8o, 81, . . .) is a given representative sequence of A then G§; = {0};, i €
No, and for any a € Sg, k € Z there is By, = V(y) — 1, where {a}; = Gy. The
map G determines a one to one correspondence between £ % and Sp. O

For any x € T define S, = {y € T|n¥(y) = x for some non-negative integer
k} and X, = {£ € X|¢ admits a geodesic ray (ag,a,...), aop,ai,... € Sy
as a representative sequence of &}. Taking the family =7 = U, escr = for the
family of open sets defines a topology in . However if x € T_q41) then
x 5 {a}—m+1) € Sp for some a € Sgand T} 5 K(o,g"). Thus TF and S
are homeomorphic.

3 Stochastic Processes on Sg

3.1 Chapman-Kolmogorov Equation Method

In this section we present main ideas of the construction of stochastic processes on
Sp developed in Ref. [2]. We begin by constructing Markov processes on KC(M). Let
o' € KM, i € N. Then according to (7)

K" =K' ¢") = {&" —u+1)- (24)

Put Pioiy_ it} gy () 1 € Ry for the transition probability from K} to K} in
time t. We shall temporally use the simplified notation

Py = P{U‘i}f(M+l){aj}7(M+l)(t)' (25)
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Thus the forward and backward Chapman-Kolmogorov equations read:

00

Py(t) = —aPy(t) + Y iiPy. (262)
(=
o

Py(t) = —aPy(1) + ) iwPy, (26b)
(=

i,j € N. We impose the initial condition
Pii(0) = §;. 27

The coefficients a; and i; will be defined according to the following intuitive
requirements. If at time # the process is in the ball K (c, ¢"), then the probability that
at time ¢ + At > t the process is outside of K(a, g") is set equal to a(a, N)At. We
call a(a, N) the intensity of the state K (a, ¢") and assume

(i) The intensity of the state K(a, ¢") depends only on the radius of the ball, i.e.
on N, and is independent of «. Hence

P (Xi+ar € (Sp — K(@.¢"))IX; € K(e, ¢")) = a(N)Ar.

(i) The Probability that during a short time At the process jumps over a distance
g" and reaches a state in K(c, qN/) is the same as the probability to reach a
state in K(B, ¢"') where M < N’ < N and p(e, B) = ¢V t'.

(iii) The coefficients g; satisfy the following relation:

o

a =y i (28)
=1
I#j

To meet requirement (i) we proceed as follows. We define a sequence a(N), N € Z
such that

a(N) > a(N + 1) (29a)
and
lim a(N) =0, lim a(N) =W, (29b)
N—o0 N——00

where W is either a positive real number or 4-co. Put

UN + 1) = a(N) —a(N + 1). (30)
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We interpret U(N + 1)At as the probability that the process leaves a ball K («, ¢")
but stays in the ball K («, ¢ ) i.e. it jumps to one of the balls

lof—vt2) Xy ¥ =000 Blay_ vy — L ¥ 7 v €2
Let p(a, &) = ¢V, m € N. Define
B .m, M) = Bais_ iy = DBiaht_grim  Blal}—orin (32)
Set
u(ed,m,M) := B~ (&, m, M)UM + m). (33)

It follows from (i), (ii) that u(a/, m, M) At is the probability that the process jumps
from {a!}_s+1) to {&/}_ (w41 during the time Az. Thus we define

= u(e, m, M). (34)

To underline the fact that the elementary balls have radius g” we write

a; = a;(M). (35)

Lemma 3.1
aj(M) = a(M). (36)
O

Specifying the coefficients in equations (26a) as defined by (34) and (35) the
solution satisfying initial conditions (27) is found to be given by

° —1
Pii = Z (B{ai}—(M+ll+2) "'B{di}—(M+z)) (B{ai}—(M+ll+2) - 1)

n=0

exp{— (a(M +n) + u(@' . 1, M +n))t}. (37

If p(a!, o) = gMT¥ k € N then

Py(t) = B (@ kM) (P05 — paHi)

) W —1 .
=B\ kB, (B{al}fwﬂﬂ - 1)
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o0

-1
[Z (B{ai}—(M+k+zz+2) "'B{di}—(M+k+z)) (B{ai}—(M+k+zz+2) - 1)

n=0

exp {— (a(M +k+n) +ul@, 1,M+k+ n)) t}
—exp{—(aM +k—1) +u(e', 1,M + k— 1)) t}]. (38)
Formulas (37), (38) give the explicit form of the transition functions for a class of

processes on KC(M). The next step of our discussion is to construct the transition
functions on Sg.

Let o, ,3 € Sg. Then {O{}_(M_H) = {()éi}_(M+1) and {:3}—(M+1) = {Oéj}_(M+1) for
some 7,j € N. Recall that in the extended notation we had Pyoy 1, (8} _guyn) () =
Pjj(1). Thus

P{a}—(M+1){a}—(M+1)(t)

o0
-1
= Z (B{“}f(MJerz) "'B{a}f(MJrz)) (B{a}*(M‘F’H*Z) - 1)
n=0

x exp{— (aM + n) + u(o, 1,M + n)) t} (39)

and
—1 —1
Pioy_ s Bi—arn () = B (B k, M)B{aL(MHJrn (B{a},(MHH) - 1)

o0
—1
[Z (B{a}*(MJrkJrnJrZ) "'B{a}f(n1+k+2>) (B{Of}f(M+k+n+z) - 1)
n=0

xexp{— (@M +k+n) 4+ u(a,1,m+ k+n))t}
—exp{—(@M+k—1)+u(e, 1, M+ k—1))t}], (40)

when p(a, B) = gMT*.
Let M,N € Z and M < N. Then {B}_(+1) is an union of the balls of radius ¢" i.e.

{Bl-v+1) = U (Bl =1 X {y-n} X Ay—m+1)}, (4D
Y

where the union runs over all B-products of {8}_+1) and the (N — M)-tuples y.
Then we define

P{a}f(MJrl){ﬂ}f(NJrl)(t) = ZP{a}f(M+l){ﬂ}f(N+l)X{)’fN}X"'X{Vf(M+1)}(t)‘ (42)
Y
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It can be shown that the function (42) does not depend on M provided M < N. Since
o= ﬂMsN {a}_(M+1) we set

P, ABY-v+1)5 1) = Piad_ gy iB}—ary (43)

We shall show in the next subsection that (43) defines the transition function for
a stochastic process on Sg.

3.2 Markovian Semigroup and Its Generator

We begin by defining a Borel measure on Sg. Recall that IC(M) defined by (14) is
the family of all disjoint balls of radius ¢g¥. Then

K:=JKm)

MEeZ

is the family of all balls in Sp. Set

p({0}-1) =1, (44)

and

pet—m+1) = Biay_ oy p(at—n) (45)

forallae € Spand M € Z.

Equation (44) and multiple application of (45) define a set function on K. Note
that by (45) the numbers p({o}—+1x(y1)> 0 < ¥ < Bia}_y4,, — | are equal.
By standard arguments [9]  can be extended to a Borel measure on Sg. Similarly
for any o € Sg and t > 0, P(c, {B}—k+1), t) defines a set function on X and can
be extended to a Borel measure on Sp. Given a ball {8}_+1) and ¢ > 0, then
P(a, {B}—@+1). 1) is a function of o € Sp and by (43) it is constant on every ball
{at}—k+1). It follows that for any Borel set A C Sp, P(«, A, ) is a u-measurable
function. Thus P(«, A, ) is a family of positive integral kernels. For a real valued
Borel function u on Sg put p,u(n) = fSB P(n, d&, t)u(§) whenever the integral makes
sense. It is shown in reference [2] that p, defines a strongly continuous self-adjoint
Markovian semigroup 7;, t > 0 in L*(Sp, i).

Hence it has the representation

T,=eM1>0
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where H is a non-negative self-adjoint operator acting in L?(Sg, u). Let f €
L?(Sg, it). Then by definition

(Hf)(n) =lim ™" [f(n) — (T) (] = lim ¢! [f (m — / F(E)P(n, dE, t)}
130 110 Sp

whenever the strong limit exists. By direct computation one checks that the
characteristic function of any ball in Sz belongs to the domain D(H) of H. For
any o« € Sg and M € 7 we have

a(M) if n € {af—u+1).
Hyay iy () = | =B~ (. k. M) (a(M + k — 1) — a(M + k)) (46)
if p(n.) = g"**.
The spectral properties of H are described by

Theorem 3.2 Let —H denote the generator of the strongly continuous semigroup
T, with the kernel defined by (43).
Then

(a). Toany M € Z such that a(M) > 0 and o € Sp there corresponds an eigenvalue
hyr o of H given by

-1
hare = (B{a}_(M o — 1) (B{a}_(M ya(M) —a(M + 1)) 47)

and a By, ., — 1 dimensional eigenspace spanned by vectors of the form

ea = Y by Xiah_riaxiy}- (48)
y=0
where
> by =0ands=B_,,, — 1. (49)
y=0

Ifa(M) = O then x(4y_,, is an eigenvector of H to the eigenvalue 0.
(b). The linear hull spanned by the vectors eyo, M € Z, a € Sp is dense in
L2 (SBa I"L)
O

Put Dy for the linear hull spanned by all functions y4}_ - ® € Spand M € Z.
Since x{a}_ 11, € D(H) we have Dy C D(H).

By Theorem 3.2 (a), the eigenfunctions eﬁw H eﬁw H_l of H are defined as linear
combinations of the characteristic functions for the balls and thus belong to Dy.
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Hence by Theorem 3.2 (b) Dy is dense in D(H) in the graph norm. As the result we
have

Corollary 3.3 Dy is an operator core for H in L*(Sg, j1).

Since —H is the generator of the strongly continuous Markov semigroup T;, t >
0 constructed above, the quadratic form

Ef.9) = (Hf. Hg)

defined for all f, g € D[E] = D(H%) is according to [11, 12] a closed, symmetric
Markovian quadratic form i.e. a Dirichlet form in L?(Sg, ).
Since Dy is a core for H it is also a core for H? i.e.

(a). Dy is dense in D[£] in the norm (& (-, -))% =[EC)+ -)]%.
Put Cy(Sp) for the space of real valued continuous functions of compact
support on Sg. Then by the Weierstrass-Stone theorem
(b). Dy is dense in Cy(Sp) in the uniform norm topology.

In the Fukushima terminology a set Dy C D[E] N Cy(Sp) satisfying (a) and (b)
is called a core for £ and a Dirichlet form which has a core is called regular. The
regular Dirichlet forms can be expressed uniquely in terms of the Beurling-Deny
representation which in our case reads

Eu.v) = / / () — u(E) (w() — v(E)I(dn. dE) (50)
SpxSp\d

for u,v € D[E] N Co(Sp).
Here J(dn, d€) is a symmetric positive Borel measure on Sg x Sp off the diagonal
d.Let p(ar, B) = ¢™*, M € Z, k € N. By direct computations one gets

J (fo}—ur vy, {BY—n41) = 31 ({0} —us))
x BN (B kM) (aM +k+1)—aM + k)  (51)

which determines the measure J uniquely.

Remark The formula (51) seems to contradict the symmetry of J. However a direct
computation shows that

1 ({@}—rn) B~ (B k. M) = 1 ({B3-we+1)) B~ (o, k, M)

so that after all J is symmetric. O
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3.3 The Dirichlet Forms Method

Let ¢ be a Radon measure on Sg with suppu = Sp. Recall that for any « € Sp and
M € Z the sequence {a}—y+1) determines the ball K (e, g™). If s = B} gy — 1
then

s

lo}— vy = U{Ol}—(M+1) Xy
y=0

Denote the characteristic function of the ball {o/} _a+1) Xy by Ya.m,,- The linear hull
spanned by yoay, @ €Sg, M € Z, 0 <y < B{a}f(MJrl)—l = 54 1s identical with
Dy and so it is dense in L?(Sg, it). Put H, ys for the subspace of L?(Sp, i) spanned
by the functions yg .y, 0 <y < squ. Let ’HiM be the orthogonal complement of
X{e}—ui41) 10 Hom- Then the functions

Sa.M

k _ § : k
ea,M - bea,M,)/
y=0

form an orthogonal basis in Hij i the coefficients b;‘, satisfy

Sa.M

Y B ulat-—wsn xy) =0
y=0

and

Sa,.M

Zbl;,b;‘/ pRaf—r41) X ¥) = S
y=0

Note that ek ,,, ¢, ,, are orthogonal unless M = M, {a}_ars1) = {&'}—u+1)s
k = k'. Hence

E={e Jae€Sp, M€Z, 1 <k <squ} (52)
is an orthonormal system in L>(Sg, ). Note that E C D,. Next theorem is a
generalization of Theorem 3.1 in [3].

Theorem 3.4

(a) If u(Sp) = oo then the orthonormal system (52) is a basis in L*(Sp, [v).
(b) If 1(Sp) = 1 then the orthonormal system (52) and the identity function form a
basis in L*(Sg, |v).
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Proof Let f € L*(Sp,u) be orthogonal to the system (52). In particular
LM B} -v+1) C {e}—u+1) implies f(x) = C € R for x € {@}—u+1)
ie [y gy SR = Cu(ie}—@s+1). Similarly, if LMy ABY-v+1) C
{o}—m+2) then f(x) = C’ and f{a}_(MH)f(X)M(dx) = C'u({aj—+2). Since
{a}—+1) C {a}—(mu+2) we have C = C'. Taking M — oo we obtain f(x) = C
for x € Sp. If u(Sp) = oo then f € L*(Sp, ) implies C = 0. If u(Sp) = 1 then
f(x) = 1 completes the system (52) to orthonormal basis for L*(Sg, j1). O

The situation described in Theorem 3.4 has already occured, when we discussed
spectral property of the generator H. The eigenspaces of H were the examples of
the spaces ’HiM.

Let U be a finite set of disjoint balls K;, i = 1,2,...,nin Sp and £ a symmetric
bilinear form on the real linear space C spanned by the functions yx,,i = 1,2,...,n.
Thus C > u = ), u; x,. The pair (£, C) is called a Dirichlet space if

(1) E(u,u) > O0foranyu € C,
(1) E(xx xx;) < 0if i #J,
(iii) Ifv=1oneveryK;i=1,2,...,nthen E(u,v) = 0 forevery u € C.

If (£, C) is a Dirichlet space then there is a matrics A;, i,j = 1,2,...,n such
that £(u, v) = X;;A;uv;. Then Ay = Aj and XZ;A; = 0. Alternatively we have the
representation & (u, v) = %E,-JA,j(ui — u;)(v; — v;). A symmetric bilinear form £ on
C satisfying (i) is called non-negative.

In particular we can take C = Hy .

Presently we address the following problem elaborated by Kaneko [14]. Given
a Dirichlet form & in L?(Sg, ). When does it induce “local” Dirichlet forms on
the Hy p spaces. Conversely, given a family of Dirichlet forms on the H, 5 spaces,
when does it determine a Dirichlet form on L2(Sg, ().

Let a Dirichlet space (£, F) in L?>(Sg, 1) be such that Dy € F. Define

ga,M(uv U) = g(uv U) - (u)d,M(v)a,Mg(X{a}_(M+1) ’ X{a}_(M+1)) (53)

where (u)om = p{a}—+1) ! f{a}—<M+1> u(n)(dn) and put P,y for the orthog-
onal projection onto He p.

Proposition 3.5 If E(Pymu, Y {a}_yy4yy) = 0 forany u € L*(Sg, 1), o € Sp and
M € Z, then (Ey.m» Ham) is a Dirichlet space. |

Remark 3.6 Let —H be the generator of a strongly continuous Markovian semi-
group Ty, t > O constructed in Sects. 3.1, 3.2 and

E(f.8) = (H'’f,H'?g), f,g € DH'?)
the corresponding Dirichlet form. It can be shown that then

S(Pot,Mus X{a}_(M_H)) =0 (54’)
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for any u € LZ(SB,,u), « € Sg, M € Z and [ > 1. Hence in particular the
assumptions of Proposition 3.5 are satisfied and (£, s, He ) is a Dirichlet space.

Remark 3.7 If £ is a regular Dirichlet form on L?(Sp, ) with vanishing killing
measure, then its Beurling-Deny representation reads

Ev) = + / W(®) — um)(w(E) — v(m)J(dE. dn)
2 JspxSp\d

u,v e F.

Theorem 3.8 Given a regular Dirichlet space (£,F) such that E(Pypu,
Etataryy) = 0. 1 = 0. The following conditions are equivalent:

(1) Ifu€ Hom, v € How o and Hom 7é Hor mr then E(u,v) =0.
(2) The measure J(d&,dn) is absolutely continuous with respect to the product
measure (d€)u(dn) and the density function is constant at every direct

product of the balls {. .., op42, Ay1, Y X {. oo 0t A1, V'E Yy # 9.
O

Given a sequence {(&, Fi)}i2, of Dirichlet spaces on L>(Sp, ). If Homr € Fi
then we put

Eam = E(Pomtt, Poyv), u,v € Fy.

Definition 3.9 If a sequence {(&, Fi)}22, of Dirichlet spaces on L?(Sg, i) is such
that F, C Fy+ for any k € Ny, and for any &« € Sg, M € Z and u,v € Hoyum
the condition Hy p € Fi implies E g u(#t, V) = Ex+1.0.m(u, v) then the sequence
{(Ek, Fr) )72, is called nodewise consistent.

Put 7—[’0‘(,  Tor the linear space spanned by Uf:o Ho p+1- From now on we shall
make following

Assumption 3.10 For any o € Sg and M € 7Z the inequality
sup{A|E(u, u) = A(u,u);u € Homti \ {0}, k € No} < o0.

Proposition 3.11 If (£, F) is a regular Dirichlet space and condition (1) of
theorem (3.8) holds, then for any pair (o, M) the symmetric bilinear form

g(];,M(us U) = ga,M(uv U) + goc,M-H (Ms U) + A + ga,M-f—k(uv U)
with domain HY, ,, is a Dirichlet space and the sequence {(Ex ;. HY )22, of the

Dirichlet spaces is nodewise consistent. O

According to the last proposition any Dirichlet space (£, F) satisfying Assump-
tion 3.10 defines for any pair (o, M) a sequence of nodewise consistent Dirichlet
spaces. We shall now proceed in opposite direction. In our discussion the crucial
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role will be played by the concept of admissible family of the Dirichlet spaces. Let
{(gd,Mv H()(,M)s o€ SB? M e Z} (55)

be a family of Dirichlet spaces in L?(Sg, 1) with vanishing killing measure and such
that uJ_HijM, v E HiM implies &, y(u, v) = 0.
The family (55) is called admissible if the symmetric bilinear form

EX ) = Eum(,v) + Eqpri1 (V) + ...+ Eq i (U, v)

with domain H, ,, satisfies 5§,M(X{a}7(M+1>><y’ Xio}—gusnyxy’) < Oforany y # y’.
Lemma 3.12 [f the family (55) is admissible then

(i) (ES,M, HE,M) is a Dirichlet space for any («, M) and k € Ny,
(ii) the sequence {(Eg’M, Hg,M)}I?iO of Dirichlet spaces is nodewise consistent.

Chose m > —(M + 1). Put I for the set of all B-products {{o} _ar41) X y1 X y2 X
oo X YmtM+i+1}> k € Ny and define

m . _
E = D er s (56)
and
m . _
H) = @geri(k)“rzg, (57)

where i(k) = m+ M +k+ 1. Define the map I1 : Sp xSp\ {diagonal} — SpxSp as
follows: If §,n € Sp, § # nthen II(§, 7)) = ({€}-w+1). {n}-+1)), Where N € Z
is such that {§}_v+2) = {nj-v+2). and {§}—w+1) # {n}—+1). Finally we put
ok = {0 — ity X ot —utit 1) \ Usgery, § X 8- Note that (§, 1) € lopr iff

& -+ = M-k =} —urrn and —=(m + 1) <N <M + k.
With this notation we have

Proposition 3.13 [f a family (55) is admissible then the sequence
{55,7;)4“’ H&ALH JkeNy

is nodewise consistent and for any k € Ny and u,v € H;mﬁ),] 1 the quadratic form

E;TKEH_,( (u, v) admits representation

" 1
i) =5 /Iuw(u(s) — ) ((E) — VK rnr

X (I1(§, n) u(dE) pu(dn). (58)
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where  Kigyarrirn) ((E —v+1, (M-wv+1) = (U{E -+ ndm-w+1) ™"

5%}’-IEN_I (X{E}f(N+l) ’ X{n}—(NJrl))'
Put

o0

H = {ue | JHI ] Jlim E i (u,u) < 00} (59)
k=0

and
(m) : (m)
£ = lim & (60)

Then we have

Proposition 3.14 [f a family (55) of Dirichlet spaces is admissible then the family
{Eim), ’Him)} of the symmetric bilinear forms satisfies

EMt vy = EM (u, v)

forany u,v € ’Him) andm > —(M + 1).

Note that %1, " and Une— 1) HY" are independent of & and M. Put

m=—(M+1)

In virtue of Proposition 3.14 we can define following quadratic form with
domain H.x

Exu,v) = EM (u,v), u,v € Hy 61)

where m is such that u, v € ’H,fkm) . The form (61) with domain H is not closed but
is closable. Its closure is characterise by following theorem

Theorem 3.15 If a family (55) of the Dirichlet forms is admissible and
limy—s o0 Eg’M()({a}f(MH),)({a}f(MH)) < oo for any o € Sg, M € Z, then there
exists a regular Dirichlet space (£,F) on L*(Sp, i) such that Eypy(u,v) =
E(u,v) — (u)a,M(v)a,MS()({a}f(MH), X{a}f(MH))for any u,v € Hqpm. O

When discussing special cases of the Dirichlet forms (Ey 57, Hepr) it is conve-
nient to have a sufficient conditions for the assumptions of Theorem 3.15 to hold
which can be directly verified. We shall formulate below a result in this direction. If
(Ewm, Ho ) is a Dirichlet space then the corresponding matrix denoted H;XJ!M is real
symmetric and non-positive defined. Hence there is s4 37 + | dimensional orthogonal
basis of its eigenfunctions in H, s and the condition 5a,M(X{a}7(M+1)a u) = 0 for
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any u € Hqn implies that y(;_,,,,, is an eigenfunction to the eigenvalue 0. We
chose the system (52) so that e}, ,, are eigenfunctions for H;’J?M and put A% ,, for the
corresponding eigenvalues. We also set A,y = maxy )L’;! - The sufficient condition
we mentioned is given in terms of a sequence {I™}/ez of the functions defined by

1 _ 1 )
woy—or+iy) ot —@atitn))

MEE) = S =3 Al

i=1
if 60 = {o}— 41y X y() for some o € Spand y # y'.

=00

Moo on 1 Aam— 1 !
Ey= L e NN -
7. €) 2" ulfod—u—p) ; M (M({“}—(M—m—l)) M({“}—(M—m))))

if £ = {a}——p x y") for some & € Sp, I < 0and y # y’. Otherwise
M(&, &) = 0. Then we have

Theorem 3.16 If every function in {IMyey is real and non-negative, then there
exists a regular Dirichlet space (£, F) on L*(Sp, jt) such that

got,M(uv U) = 5(“3 U) - (u)a,M(v)a,Mg(X{a}f(M+1) s X{O{}f(M+1))

foranyu,v € Hopy and any o € S, M € Z. O

To summarise the discussion presented in this note we compare classes of the
processes obtained in references [2] and [14]. Although the methods are different
the results are finally formulated in terms of Dirichlet forms and the semigroup
generators. In [2] the measure u is determined by the structure of Sg. The process
obtained is determined by the sequence {ay}yez. Any ’HiM is an eigenspace of the
generator corresponding to one eigenvalue A, . The formulation of [14] is more
general. Given Sp the measure p is merely assumed to be Radon. The sequence
{ay}mez is not explicite introduced. Any ’HiM is spanned by eigenfunctions of the
generator but the eigenvalues do not have to be equal.

References

1. Albeverio, S., Karwowski, W.: A random walk on p-adics the generator and its spectrum. Stoch.
Process. Appl. 53, 1-22 (1994)

2. Albeverio, S., Karwowski, W.: Jump processes on leaves of multibranching trees. J. Math.
Phys. 49, 093503, 20 (2008)

3. Albeverio, S., Karwowski, W., Zhao, X.: Asymptotic and spectral results for random walks on
p-adics. Stoch. Process. Appl. 83, 39-59 (1999)

4. Albeverio, S., Khrennikov, Yu., Shelkovich, V.M.: Associated homogeneous p-adic distibu-
tions. J. Math. Anal. Appl. 313, 64-83 (2006)



226 W. Karwowski

5. Albeverio, S., Khrennikov, Yu., Shelkovich, V.M.: p-adic Colombeau-Egorov type theory of
generalized functions. Math. Nachr. 278, 3-16 (2005)

6. Albeverio, S., Khrennikov, Yu., Shelkovich, V.M.: Nonlinear problems in p-adic analysis:
associative algebras of p-adic distributions. Izviestia Akad. Nauk Ser. Math. 69, 221-263
(2005)

7. Albeverio, S., Zhao, X.: A remark on the relations between different constructions of random
walks on p-adics. Markov Process. Relat. Fields 6, 239-256 (2000)

8. Aldous, D., Evans, S.: Dirichlet forms on totally disconnected spaces and bipartite Markov
chains. J. Theor. Prob. 12, 839-857 (1999)

9. Bourbaki, N.: Eléments de Mathématique Livre VI Intégration. Hermann, Paris VI (1969)

10. Evans, S.N.: Local properties of Levy processes on totally disconnected groups. J. Theor. Prob.
2,209-259 (1989)

11. Fukushima, M.: Dirichlet Forms and Markov Processes. North Holland/Kodansha, Amster-
dam/Tokyo (1980)

12. Fukushima, M., Oshima, Y., Takeda, M.: Dirichlet Forms and Symmetric Markov Processes.
De Gruyter, Berlin (1994)

13. Kaneko, H.: A class of spatially inhomogeneous Dirihlet spaces on the p-adic number field.
Stoch. Process. Appl. 88, 161-174 (2000)

14. Kaneko, H.: A Dirichlet space on ends of tree and Dirichlet forms with a node wise orthogonal
property. Potential Anal. doi:10.1007/s11118-013-9372-7

15. Karwowski, W.: Diffusion processes with ultrametric jumps. Rep. Math. Phys. 60, 221-235
(2007)

16. Karwowski, W., Vilela Mendes, R.: Hierarchical structures and asymmetric processes on
p-adics and adeles. J. Math. Phys. 35, 46374650 (1994)

17. Karwowski, W., Yasuda, K.: Dirichlet forms for diffusion in R? and jumps on fractals. The
regularity problem. p-Adic Numbers Ultrametric Anal. Appl. 2, 341-359 (2010)

18. Kigami, J.: Transitions on a noncompact Cantor set and random walks on its defining trees.
Annales de I’Institut Henri Poincaé, Probabilités et Statistiques 49, 1013-1129 (2013)

19. Khrennikov, A.: p-adic valued distributions in mathematical physics. Kluver Academic,
Dordreht (1994)

20. Koblitz, N.: p-Adic Numbers, p-Adic Analysis and Zeta Functions, 2nd edn. Springer,
New York (1984)

21. Lima, R., Vilela Mendes, R.: Stochastic processes for the turbulent cascade. Phys. Rev. E 53,
3536-3540 (1996)

22. Rammal, R., Toulouse, G., Virasoro, M. A.: Ultrametricity for physicists. Rev. Mod. Phys. 58,
765-788 (1986)

23. Vladimirov, V., Volovich, 1., Zelnov, E.: p-adic analysis in mathematical physics. World
Scientific, Singapore (1994)

24. Yasuda, K.: Additive processes on local fields. J. Math. Sci. Univ. Tokyo 3, 629-654 (1996)



Completing Canonical Quantization, and Its
Role in Nontrivial Scalar Field Quantization

John R. Klauder

Abstract The process of canonical quantization is redefined so that the classical
and quantum theories coexist when # > 0, just as they do in the real world. This
analysis not only supports conventional procedures, it also reveals new quantization
procedures that, among several examples, permit nontrivial quantization of scalar
field models such as ¢? for every spacetime dimension n > 2.

Keywords Enhanced quantization procedures * Model problem solutions

1 Conventional & Enhanced Quantization

1.1 Conventional Canonical Quantization

The standard recipe for canonical quantization is simply stated. For a single degree
of freedom, one version reads:

Classical Theory: Choose canonically conjugate, classical phase space coordi-
nates p and ¢, along with a classical Hamiltonian H.(p, ¢), and adopt dynamical
equations, i.e., Hamilton’s equations of motion, that follow from the stationary
variation of a classical (C) action functional given by

Ac = [Ip(a(r) — H(p(0), q(1))] dr . (1)

Quantum Theory: Promote the phase space coordinates to Hermitian operators,
p — P and g — Q, that satisfy Heisenberg’s commutation relation [Q, P] = k1.
Choose a Hermitian Hamiltonian operator (P, Q), with dynamical equations, i.e.,
Schrodinger’s equation and its adjoint, that follow from the stationary variation of a
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quantum (Q) action functional given by

Ag = [t (W (®[ih(3/dr) — H(P, Q)W (1)) dr , )

where |y )—and its adjoint (| —denote vectors in a complex Hilbert space.

Comments: Clearly, the classical and quantum theories have several funda-
mental differences: For a single degree of freedom, classical phase space is two
dimensional, while in quantum theory the Hilbert space is infinite dimensional. In
the classical theory, one chooses # = 0, while in the quantum theory % ~ 10~*’erg-s
as determined by experimental measurement. To relate the classical and quantum
models, it is traditional to choose H(P,Q) = H.(P,(Q), modulo possible O(#)
corrections. While covariance under canonical coordinate transformations leads to
many possible choices of coordinates, quantization results are generally better [1] if
the original coordinates p and g are chosen as “Cartesian coordinates”—despite the
fact that classical phase space is not endowed with a metric structure that would
permit the identification of such coordinates.

Although canonical quantization as sketched above is highly successful, there are
certain cases where the so-defined quantum theory is less than satisfactory. We claim
that the triviality of ¢* scalar field models in high enough spacetime dimensions are
such cases. We aim to overcome that triviality.

1.2 Enhanced Canonical Quantization

In the real world # > 0, and so there must be a formulation of the classical theory
that accepts that fact [2]. The action functional for the quantum theory assumes
that general variations of the Hilbert space vectors are possible. But suppose that
is not the case, and we are able to vary only certain Hilbert space vectors that can
be varied without disturbing the system. One such variation involves translating
the system to a new position, but according to Galilean covariance we can move
the observer a corresponding amount instead of moving the system. Likewise we
can imagine putting the system into uniform motion with a constant velocity, but
again Galilean covariance asserts we can get the same result by putting the observer
into uniform motion instead of the system. Thus if we assume that some normalized
reference state |n) is relevant for our problem, e.g., under appropriate conditions,
the ground state for our system, then we can imagine that we can vary the set of
states denoted by

p.q) = e 1P/ PO/, 3)
a set of states recognized as canonical coherent states [3], which offer translation

of |n) to a new position by ¢ as well as to a new velocity as represented by a new
momentum p. Here the operators P and Q, which (for the present) we assume to be
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irreducible, obey the usual commutation relation [Q, P] = ik 1, and, moreover, are
chosen as self adjoint—a stronger condition than simply being Hermitian—which is
necessary to generate unitary transformations that preserve the normalization of | 7).
It is convenient to choose |1) such that (n|P|n) = (n|Q|n) = 0, called “physical
centering”, in which case (p, g|P|p,q) = p and (p, q|Q|p,q) = g, two equations
that determine the physical meaning of p and g. Armed with this set of states, we
declare as a classical observer that we can only vary p and ¢ in the limited set of
states {|p, q)}, and thus we are led to a restricted (R) quantum action functional
given by

Aowy = o (p(1), ()| [ (3/30) — H(P, Q)] |p(1), q(1)) di
= [5Ip(0a() = H(p().q(0)]dt @)

where (p,q|ih(3/91)|p,q) = (n|[(P + pl)g — Oplln) = pq. Here we have
introduced the important relation that

H(p,q) = (p.q/H(P,Q)Ip.q)
= (n|HP+pl, Q0+ ql)|n)
=H(p.q) + Oh;p,q) . ®)

Observe that the restricted quantum action functional Agpr) resembles the classical
action functional and differs from it only by the fact that # > 0. The conventional
classical Hamiltonian may be obtained as

H.(p,q) = hh_)mo H(p,q), (6)

but that limit may change the character of H(p,q) in unphysical ways. The
additional term O(#; p, g) in (5) depends on the choice of |1}, and generally would
change if |n) is changed. This is to be expected since our limited set of states {|p, ¢)}
involves projections in Hilbert space, and different choices of |n) lead to different
projections.

Classical mechanics also involves canonical coordinate transformations which
relate new canonical coordinates ( p, g) to our present coordinates ( p, g) by means
of the one form

pdq = pdg+dG(p.q) . (7

We define the coherent states to transform as scalars under such coordinate
transformations such that |p, q) = |p(p.q).q(p.q)) = |p, q), so that the restricted
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quantum action functional becomes

Towy = [o(P®,aOI[ih(3/00) — HP, O] Ip(1), 4(1)) dt
= [31BOa® + G(p(0.30) — H(p(0). 4(0)] dr . ®)

where ﬁ( D,q) = H(p,q), and which leads to the proper enhanced classical
equations of motion without changing the quantum operators in any way.

Next, let us return to the original coordinates (p, g) and observe that in these
canonical coordinates the relation (5) has exactly the feature characterized by the
choice of p and g as “Cartesian coordinates”. And indeed, we can now show that
these are Cartesian coordinates after all. The Hilbert space norm generates a metric
for vectors determined by d(|v/), |¢))? = | |¥)—|¢) ||>. However, in quantum theory
the overall phase of a vector carries no physics and we can instead consider the ray
(R) metric determined by dg(|¥/). |¢))> = min, || |¥) — €'%|¢) ||*>. If we evaluate
a rescaled version of the ray metric for two coherent states that are infinitesimally
close to each other, we obtain (a.k.a., the Fubini-Study metric)

dor(p.q)* = 2h)[ldlp.q)II> = |{p.qldIp.q) ]
= (2/h) [(Q*)dp* + (PQ + QP)dpdq + (P*)dg*],  (9)

where here (()) = (n|(-)|n). For a general choice of |5), the two-dimensional
space {p,q} is always flat, and up to a linear coordinate transformation, this
metric involves Cartesian coordinates. Specifically, for the common choice where
(wQ + iP)|n) = 0, i.e., an oscillator ground state, then

dor(p.q)* = 0~ 'dp® + wdq’ (10)

and p and ¢ are indeed Cartesian coordinates according to the Hilbert space metric.
Of course, we can now assign that metric to the classical phase space if so desired.
It is in this sense that the coordinates p and ¢ are Cartesian.

Conventional canonical quantization is confirmed! /7 is important to appre-
ciate that what has been shown so far is equivalent to the standard canonical
quantization procedure! Specifically, we have identified phase-space coordinates p
and g that are indeed Cartesian coordinates and the quantum Hamiltonian operator
is indeed the same function of the variables as is the classical Hamiltonian, modulo
terms of order #.

However, there is more to the story.

Reducible Canonical Operators
Let us consider the example with a classical Hamiltonian given by

H(P. Q) =3P*+mq>) +A(G**, (11)
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Where7 ={p1,p2,... ,pN} and_q) =1{q1,.92,...,9n}, With N < co. Here, 72 =
ZJN lpﬁ, gt = EN 1qn, and for N = oo we require that Pr4+74?* < oo. Itis clear
that this model is invariant under orthogonal rotations T —>0p.,q— 07, where
0 € O(N,R), and such models are called Rotationally Symmetric models [4]. As
a consequence of rotational invariance, every solution is equivalent to a solution for
N = 1if || attime ¢ = 0, or to a solution for N = 2 if B | ¢ at time r = 0.
Moreover, solutions for N = oo may be derived from those for N < oo by the limit
N — o0, provided we maintain 2 + ¢ 2 < oo.

A conventional canonical quantization begins with ? — ?’), 7 — 5, which
are irreducible operators that obey [Q;, P,] = ihd;,1 as the only non-vanishing
commutation relation. For a free model, with mass m and A = 0, the quantum
Hamiltonian Hy = % : (73)2 + mza’z) :, where : (-) : denotes normal ordering,
has the feature that the Hamiltonian operator for N = oo is obtained as the limit
of those for which N < oco. Moreover, with the ground state |0) of the Hamiltonian
operator chosen as the fiducial vector for canonical coherent states, namely,

7.9) = exp[~iq - P /h] expliF - O/A][0) . (12)

as desired, for all N < oo.

However, canonical quantization of the interacting models with A > 0 leads
to trivial results for N = oo. To show this we assume that the Schrodinger
representation of the ground state of an interacting model is real, unique, and
rotationally invariant. As a consequence, the characteristic function (i.e., the Fourier
transform) of the ground-state distribution has the form (note: [f|*> = XN 2 and
r = Z‘N lxz)

ov(F) = / A0/ B g (2 1TV d,
- / (i1 cos(0)/fr g (132 N1 gp in(0)V=2 46 d2y—s
~M / e_lf|2'2/2(N_ 2)h2 llfo(r)2 N drd$2y_s

- /OO LT (b a (14)
0

assuming convergence, where a steepest descent integral has been performed for
0, and in the last line we have taken the limit N — oo. Additionally, w(b) > 0,
and fooo w(b)db = 1. This is the result based on symmetry. Uniqueness of the
ground state then ensures that w(b) = §(b — 1/4m), for some m > 0, implying
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that the quantum theory is that of a free theory, i.e., the quantum theory is trivial! In
addition, the classical limit of the resultant quantum theory is a free theory, which
differs from the original, nonlinear classical theory.
—
The way around this unsatisfactory result is to let the representations of P
and 5 be reducible. The weak correspondence principle, namely H (7,_q)) =
(7.4 |H|P.7q), ensures that the enhanced classical Hamiltonian depends only
on the proper variables. A detailed study [4] of the proper reducible representation,
still in accord with the argument above that limits the ground-state functional form

= —
to a Gaussian, leads to the following formulation. Let R and S represent a new set
of operators, independent of the former operators, and which obey the commutation
relation [S;, R,] = 1%6;, 1. We introduce two Hamiltonian operators:

Hopp=1: (P2 +m(C +8)) -,
Hors = L+ (B2 +m*(S +10)°) -, (15)

where 0 < ¢ < 1. These two operators have a common, unique, Gaussian ground
state |0, 0; £). Let new coherent states, which span the Hilbert space of interest, be
defined with this ground state as the fiducial vector, as given by

. = . =
[7.°q) = expl=iq - P/h]explip - O/h]|0.0:¢) . (16)
and it follows that
(7. G | Hoprg + Hors +4v : Higs : 17.74)

=3[P+ m’ (1 + )+ ogtmt (G

=3P +mq*) +A(q%) (7
as required. This example shows that enhanced quantization techniques that make
use of reducible kinematical operator representations can lead to a nontrivial and
fully satisfactory solution to certain problems.

The next section illustrates yet another procedure that serves to generalize
canonical quantization.

1.3 Enhanced Affine Quantization
Affine Variables and Their Algebra
We return to the study of a single degree of freedom. Importantly, the canonical

operators P and Q, which have the whole real line for their spectrum and satisfy the
Heisenberg commutation rule [Q, P] = if 1, imply a second commutation relation
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as well. If we multiply the Heisenberg commutator by Q, we find iz Q = [Q, P]Q =
[Q, PQ], and finally the Lie algebra

[0, D] =ihQ, D=1(PQ+QP). (18)

The variables D and Q are called affine coordinates and the commutation relation
(18) is called an affine commutation relation. Clearly D has the dimensions of 7,
and we will find it convenient to choose Q as dimensionless (or consider Q/q( and
choose units so that gy = 1). If the representation for P and Q is irreducible, then
the representation for D and Q is reducible. The irreducible sub-representations of
D and Q are one where Q > 0 and a similar, second one where Q < 0; a third
representation with Q = 0 is less important. Initially, let us consider the irreducible
representation where Q > 0.

If O > 0 is a self-adjoint operator, then it follows that P, although Hermitian,
can never be self adjoint. Thus, P can not serve as the generator of unitary
transformations, so canonical coherent states do not exist in this case. However,
although P can not be self adjoint, the operator D can be self adjoint; hence
we choose a different algebra made from the affine variables. We choose a new
normalized fiducial vector |n) and introduce a set of affine coherent states [3],
which are defined by

p.q) = P /1~ @D/ 19)

forall (p,q) € RxR™,i.e., g > 0. While a self-adjoint P serves to translate Q, e.g.,
4P/t Qe~iP/h = O 4 g1, it follows that a self-adjoint D serves to dilate Q, e.g.,
'M@D/h 9 e=in@D/h = 40 as already partially noted, it is useful to treat ¢ and Q
as dimensionless. If we choose |1} so that [ (Q—1) +iD]|n) = 0—a rough analog
of (wQ + iP)|n) = 0 for the Heisenberg algebra—it follows that (n|Q|n) = 1 and
(nDln) = 0. Moreover, (p, q|Q|p.q) = q as well as (p. q|D|p,q) = pgq.

It is also important to consider reducible affine operator representations as
well. In this case, we introduce a fiducial vector |n) = |n4+) @ |n-) and Q =
O+ & Q_,where (n+|0Q+|n+) = +1. We introduce reducible affine coherent states
given by

lp.g%) = Ip.q+) @ Ip.q-) » (20)
wherep € R, £ g+ > 0, £ 04+ > 0, and

p.qz) = &P O/1 ~i(aDD/ Ay, ) 1)
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In particular, with the indicated choice of the fiducial vector, the coherent state
overlap function is given, for separate =+ in each vector, by

(P'.qd £ Ip.q%)
= 0@ LT Ta+ Vald) +itVaa(p —p)/BIFE (22)

where f(y) = 1ify > 0and 8(y) =0ify < 0.

Affine Quantization as Canonical Quantization

Given a quantum action functional, once again we assume that we can only vary a
subset of Hilbert space vectors, in particular, either the irreducible affine coherent
states {|p, g)} or the reducible affine coherent states {|p,g=+)}. This leads to two
versions of the restricted quantum action functional:

Aoy = [o (P, q@)|[ih(3/30) — H' (D, Q)] Ip(0), q(1)) dt
= [Tl=q(0)p(®) — H(p(1), q(0)] dr , 23)

in which ¢(#) > 0, as well as, for identical + in both vectors,

T .
Agre) = [ (p(0).q(1) £ [[ih(3/01) — H'(D. Q)]Ip(1), q(r) £) dt
T .

= [ol=a@®p®) —H(p(®).q())]dt , (24)
where now |g(f)] > 0. Note that this latter case is especially useful if the
Hamiltonian has a singularity at ¢ = 0. However, the important point is: The
restricted quantum action functional, based on affine coherent states, is again
identical to the form of a canonical classical system, enhanced, because in these
equations, 7 > 0! Stated otherwise, enhanced affine quantization effectively

serves as enhanced canonical quantization.
To complete the story we observe that

H(p,q) = (p.q£|H(D,Q)|p.q=)
= (H'(D+plq|0.19|10)) = H'(pq.q) + O(h:p.q) , (25)

as well as

H(p,q) =(p.qx|H(P,Q)Ip,q*)
= (H(P/lgl +p. |91 Q)) = H(p,q) + O(h;p.q) . (26)
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It is important to appreciate that the coordinates ( p, g) used in the affine coherent
states can be changed to a new set of coordinates ( p, g) in the very same manner
as was the case for the coordinates used in the canonical coherent states. While
the phase-space geometry induced by the canonical coherent states (9) led to a flat
space, the Fubini-Study metric for the affine coherent states, given by

dor(p,q)* = B~ ¢ dp* + Bg2dq* 27)

corresponds to a different phase-space geometry, namely, a space of constant neg-
ative curvature, —2 /. However, this difference in induced phase-space geometry
does not affect the suitability of enhanced affine quantization to serve as enhanced
canonical quantization.

A Simple Example

A simple example serves to illustrate the power of enhanced affine quantization.
As the classical Hamiltonian, we choose H.(p,q) = p?/2m — ¢*/|q|, which we
call a one-dimensional ‘hydrogen atom’ problem. Classical solutions fall into the
singularity in a finite time. For the Hamiltonian operator we choose H = P?/2m —
¢?/|0|, and thus the enhanced affine classical Hamiltonian is given by

H(p.q) =p*/2m—C/lq| + C'/q* . (28)

where C = €*{|Q|™!) « €? and C' = (P?)/2m o h*>/m. Observe that C' ~
h%/(me*)C, a ratio that is seen to be the Bohr radius!. Thus we see that the
enhanced affine classical Hamiltonian prevents all singularities and has a stable
minimum at a distance from the singularity of approximately the Bohr radius.
Since A > 0 in the real world, we are led to claim that the enhanced classical
Hamiltonian is ‘more physical’ than the conventional classical Hamiltonian with
which we started, for which A = 0. It would be hard to achieve the same features
from an enhanced canonical quantization.

It is important to emphasize that for enhanced affine quantization of Hamilto-
nians of the general form P> 4+ V(Q), the enhanced classical Hamiltonian always
contains a term of the form ¢~2 with a coefficient proportional to #2. This fact
anticipates the naturalness of an actual term proportional to #> and involving inverse
squared operators in the quantum Hamiltonian of other models, suggesting that it
may not be out of place.

These musings provide an important clue for the next topic of discussion.
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2 Scalar Field Quantization Without Divergences

We next consider a special class of infinitely-many degrees-of-freedom problems
associated with a covariant scalar field. For q&;f models, standard canonical quanti-
zation procedures have obtained self-consistent solutions for spacetime dimensions
n = 2,3, e.g., [5], but those same methods have failed to provide suitable results
for n > 4, leading instead to trivial quantum solutions equivalent to (generalized)
free theories. It is our believe that for higher spacetime dimensions (n > 4), we
can find nontrivial solutions by choosing affine quantization procedures, and that
this technique also leads to new solutions for n = 2,3 as well, which exhibit
compatibility for ‘mixed models’ in ways we will describe. The reason behind this
believe is based on the form of the ground-state distribution we are led to, which
has integrable singularities when certain field values are zero. As we shall see, this
particular form of the ground-state distribution has the decided advantage that a
perturbation series for the interaction does not exhibit divergences! Our ground-
state wave function with square-integrable singularities when certain fields vanish
leads to terms in the quantum Hamiltonian proportional to %2, and in our case
involve inverse squared field operators. Although an affine quantization is in order,
the insight outlined above for these models means that we can proceed to develop
the theory in a more direct manner [6].

2.1 Free vs. Pseudofree Models

It is self evident that lim,_,o(Ag + gA;) = Ao, except when it is false. Consider the
action functional for an anharmonic oscillator given by

Ay = [0 =y — gy} dt (29)

and the domain of functions allowed by this expression. If the exponent w = +4,
then the limit as g — 0 leads to the free action Ay = g 10@? — y(?dt,
but if w = —4 that is not the case. Instead, when w = —4, the limit as
g = 0is A = g%[)')(t)z — y(H)?]dt supplemented with the requirement that
f g y(£)~*dt < oo, which is a fundamentally different domain from that of the free
action functional. We refer to the theory described by Aj, as a pseudofree theory.
A pseudofree theory is the one that is continuously connected to the interacting
theories. The pseudofree theory may coincide with the usual free theory, as is the
case when w = +4, but when w = —4, the pseudofree and the free theories are
different. This distinction applies to the quantum theories as well. In particular, the
free and pseudofree quantum theories are identical for w = +4 and distinct for
w = —4.If one considered making a perturbation analysis of the interacting theory,
one would have to start with the pseudofree theory and not with the free theory
when these two theories differ.
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A rather similar situation applies to scalar fields. Consider the classical action
given by

A = [GUBLP 0P —mip (6,27} — gogp (6, 0)") de dx , (30)

where x € R*, s > 1. Provided m( > 0 and go > 0, a multiplicative inequality [7, 8]
implies, for n = s + 1, and now where x € R”, that

{80/ @ a2 < C" [{[VP()?] + mip(x)*} d' 3D
where C” = (4/3)[g)/>m" P?] if n < 4, while C” = oo if n > 5, which in the
latter case means that there are fields for which the left side of (31) diverges, but the
right side is finite. [Remark: The divergent cases are exactly the non-renormalizable
models when quantized—and that fact holds true for all the non-renormalizable
models of the form ¢? as well [8]!] Thus, whenn > 5, (31) ensures that the classical
pseudofree model is different from the classical free model; and thus we expect
that the quantum pseudofree and quantum free models are also different. We will
be guided in choosing the pseudofree model by the requirement that it connects
smoothly with the interacting models.

2.2 Choosing the Pseudofree Model

Formally, the action functional determines the quantum Hamiltonian, which, in
turn, determines the ground-state wave function. The reverse of this ordering is
also formally true, so let us start with a study of the lattice regularized form of the
presumptive ground-state wave function, I (¢) = exp[—U(¢p)/2], where, as usual,
U(¢) is determined by the ‘large-field’ behavior of the potential, and thus U(¢) is
well behaved when ¢ is ‘small’. On the lattice, {¢ (x)}, at t = 0, is replaced by {¢:},
where k € Z°* labels the site on a (spatial) hypercubic, periodic, lattice with lattice
spacing a > 0 and a total number of (spatial) sites L' = N’ < oo. The continuum
limit arises when a — 0, L — oo, but (La)® = N’a’ is fixed and finite, at least
initially. Many moments of the ground-state distribution diverge in the continuum
limit, such as

/ (2627 e V@) 1/ dg = ONP) | (32)

where the estimated value arises because there are N7 terms each of O(1), and as
N’ — oo, divergences arise, for all p > 1. [Remark: In (32) X} and IT; denote a sum
and product over all sites in a single spatial slice.] These divergences seem to arise
from the fact that the continuum limit involves an infinite number of integration
variables, but the continuum limit need not lead to divergences. To understand this
remark, let us first change the integration variables from “Cartesian coordinates” to
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“hyperspherical coordinates” by the transformation ¢, = « 1, where k> = X ,iqb,f,
1= E,i n,%, 0 <k < o0,and —1 < n < 1, for all k. In the new variables, (32)
becomes

/ (2P e~V EM N e 25(1 — ) n?) Iy . (33)

No longer do we have N terms of order O(1), but it is the power N’ — 1 of the
hyperspherical radius « that leads to divergences as N’ — oo. Moreover, a steepest
descent analysis as N’ — oo—which makes the support of the measure in (33)
disjoint, at least partially, for a change of parameters in U—Ieads to divergences
in any perturbation analysis. However, if the ground-state distribution contained
an additional factor, namely, st /_R), where R > 0 is fixed and finite, it would
effectively change the k-factor from k¥ ! to k®~'—a procedure we call measure
mashing—and, as a result, the divergences would disappear as N' — oo! Stated
otherwise, measure mashing would nullify the steepest descent argument, and thus
a perturbation analysis would not involve divergences. In summary, the “trick” in
securing a finite version of scalar field quantization—one that also smoothly passes
to its own pseudofree theory—is a direct result of mashing the measure.

To achieve measure mashing, we now assume the ground-state distribution has
the form

Wo()? = {IT][ 3] Jy 2] 7202y o~ U' (@) (34)

where J;; = 1/(2s + 1) for | = k and for [ equal to each site of the 2s
spatially nearest neighbors of k; J;; = 0 otherwise. Specifically, R = 2ba’N’,
where b > 0 has the dimensions of (length)™ to make R dimensionless. In turn,
the functional form of the lattice ground state determines the functional form of
the lattice-regularized Hamiltonian operator. Roughly speaking, the denominator
term fixes the small-field dependence of the potential, while U’(¢) leads to the
large-field behavior of the potential. However, to fix the Hamiltonian, we let the
chosen denominator (involving J ;) of the ground-state wave function determine
the small-field potential, but for the large-field behavior, we specify the form of
the Hamiltonian itself. This leads us to the lattice regularized form of the quantum
Hamiltonian operator given by

- 92 -
H = —%a 2Sh22;(87¢,% a’ + %Z;(k* (¢k* — ¢k)2 a’ 2 + %mézz fas

+80)_ypia + A1y Fi(¢)d’ — Eo (35)
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where k* denotes each of the s nearest neighbors to & in the positive sense, and the
all-important counterterm F(¢) is given by

Jixd 2
Fi(@) =101 —2ba')?a™™ (Zﬁ W)

Jik
(X0 Jt.m B3]

s\ =25 ‘Itz.kd)l%
+(1 —2ba )Cl ZTW .

—% (1 —2ba*ya™* Z/r
(36)

Although Fi(¢) does not depend only on ¢, it nevertheless becomes a local
potential in the formal continuum limit. The constant E is chosen to ensure that
HWy(¢p) = 0. Note that local field powers do not involve normal ordering, but
instead, they are defined by an operator product expansion, realized effectively by a
multiplicative renormalization of the parameters [6].

At this point, the reader may be wondering what is the relation of enhanced
quantization, the topic in the first part of this article, and the approach taken to
describe scalar field quantization in the second part of this article. In the first part
we introduced coherent states, both canonical and affine. Coherent states of any
kind are normally based on a fiducial vector, i.e., our |5}, and for a field theory with
an infinite number of degrees of freedom, the usual fiducial vectors (e.g., Gaussian
functions) are generally inappropriate. A safe fiducial vector to use is the ground
state of the associated Hamiltonian, and for the scalar field case under discussion,
the ground-state wave function, as given by the square root of (34), leads to affine
coherent states being appropriate [9], and thus our scalar field analysis is a form of
affine quantization.

From the Hamiltonian operator we can determine the form of the (Euclidean)
lattice action functional as given by

I'= 350 (G — ) a2 + i S a" + go Syl a" + 310 S F(g)d”
(37)
where n = s+ 1, X signifies a sum over the entire, finite, n-dimensional spacetime

lattice, and now k* runs over all n nearest neighbors to k in the positive sense. The
Euclidean-spacetime generating functional is given, in turn, by

S(h) = M/ez_l/zzkhkqﬁk“"/h ~1/h 1,4, (38)

where Z denotes the field-strength renormalization constant, I1; is a product
over all sites in the (finite) spacetime lattice, and M is chosen so that S(0) =
1. Based on the distribution underlying this integral, preliminary Monte Carlo
studies (J. Stankowicz, private communication) show a positive, non-vanishing
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renormalized coupling constant vs. the bare coupling constant for ¢2. This result
compares with an apparently vanishing renormalized coupling constant vs. the bare
coupling constant that follows from a Monte Carlo study of conventional canonical
quantization procedures [10].

2.3 Discussion of Scalar Field Quantization

The counterterm F;(¢p) does not depend on g¢ and thus it remains as go — 0.
The result of that limit is the pseudofree model, and it differs from the usual free
model. This kind of interacting theory provides a valid quantization of the non-
renormalizable models such as q&j, n > 5. However, we can also extend the use
of the new Hamiltonian operator to lower dimensions as well, even though, for
the classical theory, the free and pseudofree models are the same. The purpose of
extending the new form of the Hamiltonian is to ensure the uniqueness of ‘mixed
models’. For example, consider the case of ¢>§, which is a super-renormalizable
model that has been studied perturbatively and non-perturbatively with the same
self-consistent results; e.g., see [5]. But, suppose we studied the mixed model
given by gogz&g1 + g6¢38, which is a sum of a super-renormalizable and a non-
renormalizable model, or the mixed model gj¢3 + g ¢S, which is the sum of
two different non-renormalizable models, etc. Conventional canonical quantization
procedures would not be able to make any sense of such mixed models, but the new
version, which treats each ingredient of such models in the same manner, would
make perfectly good sense as the coupling constants are turned on, then off, then
on again, etc., in any order. In this regard we are also proposing new and different
quantization procedures for models like ¢5 and ¢3, and other super-renormalizable
models. [Remark: Of course, the original solutions for super-renormalizable models
have their own role to play for different physical situations.] On these grounds,
we advocate accepting the lattice Hamiltonian (35) and the lattice action (37) for
alln > 2.
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Stochastic Solutions of Nonlinear PDE’s
and an Extension of Superprocesses

Rui Vilela Mendes

Abstract Stochastic solutions provide new rigorous results for nonlinear PDE’s
and, through its local non-grid nature, are a natural tool for parallel computation.
There are two different approaches for the construction of stochastic solutions:
MacKean’s and superprocesses. Here one shows how to extend the McKean
construction to equations with derivatives and non-polynomial interactions. On the
other hand, when restricted to measures, superprocesses can only be used to generate
solutions for a limited class of nonlinear PDE’s. A new class of superprocesses,
namely superprocesses on signed measures and on ultradistributions, is proposed to
extend the stochastic solution approach to a wider class of PDE’s.

Keywords Stochastic solutions ® Superprocesses
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1 Introduction: Stochastic Solutions and Measure-Valued
Processes

A stochastic solution of a linear or nonlinear partial differential equation is a
stochastic process which, starting from a point x in the domain generates after
time ¢ a boundary measure that, sampling the initial condition at + = 0, provides
the solution at the point x and time . For illustration consider the McKean [1]
construction of a stochastic solution for the KPP equation
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Fig. 1 The McKean process x1(t)
x2(t) x3(1)
X4(t)
X ——@ x5(1)
—@ x6(t)
Let G (¢, x) be Green’s operator for the heat equation d,v(z, x) = %% v(t, x)
1,02
G(t.x) =ear
and write the KPP equation in integral form
t
v(t,x) = e 'G(t,x) g (x) + / e G (t—5,x) v (s, x) ds )
0

Denoting by (&, I1,) a Brownian motion starting from time zero and coordinate x,
Eq. (2) may be rewritten as

v (t,x) = I, {e—fg &)+ /Ote‘(t—s)vz (5, Eiy) ds}

= II, {e_tg &)+ /Ore_‘vv2 (t—s,&) ds} 3)

The stochastic solution process is a composite process: a Brownian motion plus
a branching process with exponential holding time 7, P(T > 1) = e~ (Fig. 1).
At each branching point the particle splits into two, the new particles going along
independent Brownian paths. At time ¢ > O, if there are n particles located at
x1 (1), x2 (), - -+ x, (¢), the solution of (1) is obtained by

v (1, %) = B {g (1) g (2 (1)) -~ 8 (xa(0)} “4)

An equivalent interpretation, that corresponds to the second equality in (3), is of a
process starting from time ¢ at x and propagating backwards-in-time to time zero.
When it reaches ¢ = 0 the process samples the initial condition, that is, it generates
a measure u at the ¢+ = 0 boundary which yields the solution by (4).

The construction of solutions for nonlinear equations, through the stochastic
interpretation of the integral equations, has become an active field in recent years,
applied for example to Navier-Stokes [2—6], to Vlasov-Poisson [7-9], to Euler [10]
to magnetohydrodynamics [11] and to a fractional version of the KPP equation
[12]. In addition to providing new exact results for nonlinear PDE’s, the stochastic
solutions are also a promising tool for numerical implementation, in particular for
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parallel computation using for example the recently develop probabilistic domain
decomposition method [13—15]. This method decomposes the integration domain
into subdomains, uses in each one a deterministic algorithm with Dirichlet boundary
conditions, the values at the boundaries being obtained by a stochastic algorithm.
This minimizes the time-consuming communication problem between subdomains
and allows for extraordinary improvements in computer time.

There are basically two methods to construct stochastic solutions. The first
method, which will be called the McKean method, as illustrated above, is essentially
a probabilistic interpretation of the Picard series. The differential equations are
written as integral equations which are rearranged in a such a way that the
coefficients of the successive terms in the Picard iteration obey a normalization
condition. The Picard iteration is then interpreted as an evolution and branching
process, the stochastic solution being equivalent to importance sampling of the
normalized Picard series. The second method [16, 17] constructs the boundary
measures of a measure-valued stochastic process (a superprocess) and obtains
the solution of the differential equation by a scaling procedure. For a detailed
comparison of the two methods refer to [18].

As developed in the past, both methods lead to boundary measure-valued
processes which are used to integrate a boundary function. As representations of
solutions of the nonlinear equations of physical interest both methods have serious
limitations. For the McKean method it is not clear how to handle nonpolynomial
interaction terms and terms with derivatives. For the measure-valued superpro-
cesses, in addition to these problems, they can only be applied to a limited class
of nonlinear partial differential equations. In this paper both problems will be
addressed, namely how to handle derivatives and nonpolynomial interactions in the
McKean construction and how to extend superprocesses from measure-valued to
ultradistribution-valued processes.

2 Stochastic Solutions with Derivatives and Non-polynomial
Terms

To extend the construction of stochastic solutions to cases more general than those
dealt with in the past, techniques must be developed to handle derivatives and
nonpolynomial interactions. Sometimes the direct handling of derivatives may be
avoided if the derivative of the propagation kernel is smooth. This is the case in the
configuration space Navier-Stokes equation [5], where by an integration by parts the
derivative of the heat kernel is controlled by a majorizing kernel and absorbed in the
probability measure. However, in general this is not possible.

Sometimes the nonpolynomial interaction case may be reduced to the polynomial
case by expanding the interaction term in a Taylor series and normalizing the
coefficients to obtain a probabilistic interpretation. Again, this is not always
possible.
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Here the solution of both problems (derivatives and non-polynomials) is illus-
trated in the example of the SOLEDGE2D equations [19] which describe plasma
dynamics in the scrape-off layer. Other examples and details may be found in [20].
One deals with the Cauchy problem, namely the equations are defined in the full
space with initial conditions at ¢+ = 0. This is the most natural setting when the
McKean approach is used. Spatial boundary conditions are easier to implement
through the superprocess formulation, with or without a scaling limit (see [18]).
Here the nonpolynomial and derivative terms will be treated as operator labels at
the branching points of the process.

The SOLEDGE2D equations are [19]

1
AN + =047 + LN = DN
q n

1 r? X 2
3 +-1=p0d%|—+N|+= (T —Ty) =vdT ®)
q N n

where I" and N are the dimensionless parallel momentum and density, (r, f) are
the radial and poloidal coordinates and the mask function y equals one in a region
where an obstacle is located and zero elsewhere.

To construct a stochastic representation for the solution one needs to identify a
stochastic process associated to the linear component (to the full linear component
or part of it) and then, through an integral equation, construct the branching
mechanism representing the nonlinear part.

2.1 The y =1 Case

In the y = 1 case the system (5) is linear
1 1 )
3;N+ —39F + -N = D3rN
q n
1
3T + — (I —Ty) = vd’T (6)
n

the solution being

(N(t)) _ J(-tca+mr-1) { (N(O))
INGYAR r(0)

t
[l ()] o
0 n
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(60)

with B and C the matrices
B (D 0) : c
0v

2.2 The yx =0 Case

The linear part of the system for y = 0 is:

1
N + ~9yT = DI’N
q

1
3T + —0gN = v0’T ®)
q
Given the initial conditions at time zero N(0,r.6) the solution of this system is
r,r0)
N (t,7,0) 1 2l (N(O,7,0)
= t{——Adg + B0 9
(Feorey) = omri-grn ol (Y07 )

A being the matrix

A= (O 1)
10
However, for the construction of a stochastic solution to the nonlinear equation,
through a probabilistic interpretation of the integral equation, it is convenient to
have a stochastic process that operates in a simple way on the arguments of the
functions. Therefore, instead of the full linear part, only the diffusion associated
to the first term in (8) will be used. It also provides an easier handling of the dg

derivative.
For the nonlinear equations one writes

1 t
N(t,r60) = PPN (0,r,60) — - / dte™"3,T (t — 7,7, 6)
qJo

1 ! 2
C(tr0) = MU 0,r,0)— —/ dte”agae %W + N} (t—1,r0)
qJo

(10)

Denote by §§N) and éir) two Brownian motions in the r—coordinate with diffusion
coefficients /2D and +/2v. Then the Eq. (10) may be reinterpreted as defining a
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probabilistic processes for which the expectation values are the functions N (z, r, 0)
and " (1,1, 0), that is

_ 1 )
N(t,r,0) = E¢.r0) I:P;N (Ov &, 9)

t "1—-p
— dtogT (t — T, iN),9:|
q(l—p)/o t o ¢ )

_ 1 (r)
L (tr0)=Eq.yg [P;F (0, & ,9)

2 “1—p 1r2 1 )
et S R L]

(1)

Erp) denotes the expectation value of a backwards-in-time stochastic process
started from (¢, r, 8). The processes that construct the solution at the point (z, r, 6)
are backwards-in-time processes that start from time ¢ and propagate to time
zero. With probability p the process reach time zero and the contribution to the

expectation value is [l)N (O, é,(N), 9) (or })I‘ (0, S,(F), 9)). With probability (1 — p)
the process is interrupted at a time t chosen with uniform probability in the interval

(t,0). For the process associated to N, the process changes its nature, becomes a I"
process and picks up a factor —m. For the case of the process I', with probability
%, this process either changes to a N process or branches into a N and a I" process.
In both cases it picks up a factor —q(lz—ip).

Notice that the propagation process acts only on the r—coordinate. Therefore
the derivative dg, the square in I'? and the quotient in %2 may all be treated as
operators which are kept as labels at each branching point. When all the lines of the
process reach time zero, the initial condition is sampled at the arrival rp—coordinate.
This initial condition is not simply a number but a function of 6 (I" (0, ry, 6) or
N (0, rg, 8)). It implies that both the initial condition and all its derivatives at the
argument § must be provided. This initial functions are then backtracked throughout
the sample lines, the multiplicative factors are picked up at each t interrupt and the
operators applied whenever a labelled branching point is reached. This provides
the contribution of each sample path to the expectation value. Figure 2 displays an
example of a sample path, where the operators picked up along the way are denoted
by flags.

Notice the order of the operators at each branching point. For example, at the
leftmost §—labelled point the operation is

r2(0.7".0)

"\ v (o.r70)
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Fig. 2 A sample path of the time
N — T stochastic process

-

o)
o) N©O) 10

and the whole contribution of this sample path to the N—expectation value is

2 O,r(l),é’ _
als ﬁ foor (0. 0)}

. 1 3 4rty 2
times the factor (—) v
L \P/ gtiop)t .
The branching, being identical to a Galton-Watson process, has a finite number
of branches almost surely. Therefore, with a uniform unit bound on the quantities
at each branching vertex, one obtains almost sure convergence of the expectation

value. In conclusion:

Proposition 2.1 If the initial conditions ‘%,N, I“ and all its derivatives are

bound by a constant M, the above described process provides a solution to the
SOLEDGE?2D equations up to time t < % a.s.

This bound, which is obtained by a worst case analysis, is in practice too severe
because the probability of the generated trees is a fast decreasing function of the
number of branches.

3 Superprocesses

A superprocess describes the evolution of a population, without a fixed number of
units, that evolves according to the laws of chance. Given a countable dense subset
Q of [0,00) and a countable dense subset F' of a separable metric space E, the
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countable set

My =13 by :x1x, € Fray ey € Qin > 1 (12)

i=1

is dense on the space M (E) of finite Borel measures on E (theorem 1.8 in [21]).
This is at the basis of the interpretation of the limits of evolving particle systems
as measure-valued superprocesses. On the other hand the representation of an
evolving measure as a collection of measures with point support is also useful for
the construction of solutions of nonlinear partial differential equations as scaling
limits of measure-valued superprocesses.

However, as far as representations of solutions of nonlinear PDE’s, superpro-
cesses constructed in the space M (E) of finite measures have serious limitations.
The set of interaction terms that can be handled is limited (essentially to u® (x)
with @« < 2) and derivative interactions cannot be included as well. The first
obvious generalization would be to construct superprocesses on distributions of
point support, because any such distribution is a finite sum of deltas and their
derivatives [22]. However, because in a general branching process the number of
branches is not bounded, one really needs a framework that can handle arbitrary
sums of deltas and their derivatives. This requirement leads naturally to the space of
ultradistributions of compact support.

Ultradistributions may be characterized as Fourier transforms of distributions of
exponential type [23]. However, the representation of ultradistributions by analytical
functions is actually simpler and also more convenient for practical calculations. Let
S be the Schwartz space of functions of rapid decrease and I/ C S those functions in
S that may be extended into the complex plane as entire functions of rapid decrease
on strips. U’, the dual of U, is Silva’s space of tempered ultradistributions [24, 25].

Let first E = R. Define B, as the complement in C of the strip Im (z) < n

B, ={z:1Im(z) > n} (13)
and H),, the set of functions which are holomorphic and of polynomial growth in B,
¢()eH,= IM.a : ¢ ()| <Mlz|".VzeB, (14)

Let H,, be the union of all such spaces

H, = ULZJOH,, (15)

and in H,, define the equivalence relation IT by

n
¢ ~ ¢ if ¢ — 1 is a polynomial
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Then, the space of tempered ultradistribution is
U =H,/1 (16)

The relation to ultradistributions as entities f (x) in R is obtained by the generalized
Stieltjes transform

p () )
00 =55 | siegtt e 0
p (2) being a polynomial such that f/p ~ O (r~") and P (z) an arbitrary polynomial.
In this sense one may say that [p] € H,/II is the Stieltjes image of the ultradis-
tribution f. Operations with f (x) are performed using their analytical images. For
example f is integrable in R if there is an yy and a ¢ (z) in the Stieltjes image such
that ¢ (x + iyg) — ¢ (x — iyp) is integrable in R in the sense of distributions.

An ultradistribution vanishes in an opensetA € Rif ¢ (x +iy) —p (x —iy) - 0
for x € A when y — 0 or, equivalently, if there an analytical extension of ¢ to the
vertical strip Rez € A. The support of f is the complement in R of the largest open
set where f vanishes.

All these notions are easily generalized to R” [25] by considering products of
semiplanes as in (13) and the corresponding polynomial bounds. For the equivalence
relation IT one uses pseudopolynomials, that is, functions of the form

A k
Zp VAT stv"' s Zn Zj

Jik

zAj meaning that this variable is absent from the arguments of p.

An ultradistribution f in R” has compact support if there is a disk D such that any
¢ in the Stieltjes image has an analytic extension to (C/D)".

For our purposes, the most important property of ultradistributions of compact
support is the fact that any such ultradistribution has a representation as a series of
multipoles

F@=Y" prr8" (x—a)

r1=0 =0

a being a point in the support of f. This result follows from the fact that for
compact support one may apply to the Stieltjes image the Cauchy theorem over
a closed contour. The space of tempered ultradistributions of compact support will
be denoted as ;).

Let the underlying space E be R". Denote by (X;, Py ) a branching stochastic
process with values in {; and transition probability Py, starting from time 0 and
v € U]. The process is assumed to satisfy the branching property, that is, given
V=V + 1

PO,v = PO,vl * PO,vz (18)
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After the branching (th, Po,\,l) and (th Py ,\,2) are independent and X! + X has the
same law as (X;, Po,»). In terms of the transition operator V, operating on functions
on U{ this would be

(Vifovi +v2) = (Vifovr) + (Vif, vo) (19)
with V, defined by e/} £ py e~ (X1 or
(Vof,v) = —log Py,e /X1 (20)

felu,vel.

Underlying the usual construction of superprocesses, in the form that is useful
for the representation of solutions of PDE’s, there is a stochastic process with paths
that start from a particular point in E, then propagate and branch, but the paths
preserve the same nature after the branching. In terms of measures it means that
one starts from an initial §, which at the branching point originates other §’s with at
most some scaling factors. It is to preserve this pointwise interpretation that, in this
larger setting, one considers ultradistributions in Z/l(’), because, as seen above, any
ultradistribution in ¢ may be represented as a multipole expansion at any point
of its support. Therefore an arbitrary transition in the process X; in U, may be
associated to a branching of paths in E and along these new paths new distributions
with point support will propagate. As a result the construction now proceeds as in
the measure-valued case.

In M = [0,00) x E consider a set 0 C M and the associated exit process § =
(&, y,) with parameter k defining the lifetime. The process starts from x € E
carrying along an ultradistribution in 4, with support on the path. At each branching
point of the §—process there is a transition ruled by the P probability in 14 leading
to one or more elements in 4. These U elements are then carried along by the
new paths of the &—process. The whole process stops at the boundary dQ, finally
defining an exit process (XQ, Po,u) on Z/l(’). If the initial v is &, one writes

u(x) = (Vof.v) = —log Py e (/%) @1
(f, Xp) being computed on the (space-time) boundary with the exit ultradistribution
generated by the process.

The connection with nonlinear PDE’s is established by defining the whole
process to be a (&, y) —superprocess if u (x) satisfies the equation

u+ Goy (u) = Kof (22)

where G is the Green operator,

Gof (r.x) = To, /0 fs8)ds 23)
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and Ky the Poisson operator

KQf (x) = HO,x1t<0Qf (Sr) (24)

V¥ (#) means ¥ (0, x; u (0, x)) and t is the first exit time from Q.
The superprocess is constructed as follows: Let ¢ (s,x;z) be the branching

function at time s and point x. Then for e = Py e~{fX0) one has

Pose{fXo) = w00 — [e—kre—ﬂr,sr)

+/ dske ™ ¢ (s, &;e—w(’_s’&))} (25)
0

7 is the first exit time from Q and f(7,&;) = (f,Xp) is computed with the
exit boundary ultradistribution. For measure-valued superprocesses the branching
function would be

¢ (5,5:2) = ¢y pals, )2 (26)
0

with )~ p, = 1 and c the branching intensity, but now it may be a more general
function.

For the interpretation of the superprocesses as generating solutions of PDE’s,
an essential role is played by a transformation of Eq. (25) that uses fOT ke *sds =
1 — e7* and the Markov property ITg, 1, I1;¢ = IIp,ls<;. This is lemma 1.2
in ch.4 of Ref.[16]. Because it only depends on the Markov properties of the
(&, Iy,) process it also holds in this more general context. A proof is included
in the Appendix with the notations used in this paper.

Using the lemma, Eq. (25) for ¢ (¥ is converted into

W0 _ ITo . I:e_f(tfr) + k/ ds I:(P (s’ £, e—w(t—x,&)) _ e—w(r—s,&)]i| 27
0

Eq.(22) is now obtained by a limiting process. Let in (27) replace w (0,x) by
Bwg (0,x) and f by Bf. B is interpreted as the mass of the particles and when the
Uj-valued process Xp — X, then P, — P%.

—Bf(t.60) 4 . = Bwl(r—s.E)
—Bw(0) _ e + kg [ ds|ep (s.Ece
e MO = Mo, [ _Oe—ﬂw[(r—s(,a)] ) (28)
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Two scaling limits will be used in this paper. The first one, which is the one used in
the past for superprocesses on measures, defines

= (e Py D = (1-e ) /B (29)
and
k
w;l) (O,x; ufgl)) = Fﬁ (go (O,x; 1-— ,BM)(;)) -1+ ,Bufgl)) 30)
one obtains from (28)
ug (0.%) + Mo /0 dsvg (5.6’ ) = oy (z.8) 31)
that is
1) G @ (MY _ K, (1) 32
ug' + Govg” (ug” ) = Kofy (32)

When 8 — O,fgl) — f and if ¥4 goes to a well defined limit v then ug tends to a
limit u solution of (22) associated to a superprocess. Also one sees from (29) that in
the 8 — 0 limit

M(ﬂl) — Wﬂ = —IOgP()!Xe_(f’XQ) (33)

as in Eq.(21). The superprocess corresponds to a cloud of ultradistribution
“particles” for which both the mass and the lifetime tend to zero.

3.1 Measure-Valued Superprocesses and Nonlinear PDE’s

Here one restricts oneself to measure-valued superprocesses, that is, in terms of
paths, to §’s propagating along the paths of the (&;, ITo ) process and simply branch-
ing to new § measures at each branching point. Let us construct a superprocess
providing a solution to the equation

du _ 1 0%u

" 2ae " G4

for 1 < a < 2. Comparing with (22) one should have

¥ (0, x;u) = u®
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Then from (30) and (26), withz = 1 — ,314;1) one has

B e :Z+£(l—z)“

Oa; = nn:
¢ (0,x;2) Xn:pz Z+k5 B B

a(e—1) ,
fr— 1 _— —
Z+k/3,3°‘_1( oz + 3 z
o(o—1 -2
La@— D@ )z3+~~~)
3!

(35)
Choosing kg = % the terms in z cancel and for 1 < a < 2 the coefficients

of all the remaining z powers are positive and may be interpreted as branching
probabilities. It would not be so for o > 2. Then

; pr=0; .- pnz(_l) (a) n>2 (36)

1
o o n

po =

with )~ p, = 1. With this choice of probabilities p, for branching into new §
measures and with kg = % and § — 0 one obtains a superprocess which,
through (21), provides a solution to the Eq.(34). « = 2 is an upper bound for
this representation, because for & > 2 some of the p/,s would be negative and would
not be interpretable as branching probabilities.

For the particular case

ou 1 0%u )
o 2o M 37

1 2
p1=0; Po=p2=7; kﬂ—ﬂ (38)
When  — 0, the solutions are given by (21) and the superprocesses correspond to
the scaling limit of processes where both the mass and the lifetime of the particles
tend to zero and at each bifurcation point one has probability py of dying without
offspring or creating n new § measures with probabilities p;,.
Superprocesses are usually associated with nonlinear PDE’s in the scaling limit
B — 00of (30) and (31). However other limits may also be useful. For example with
Pn = 6n2, B = 1and kg = 1 one obtains

wél) (O,x; u/(;)) = %ﬂ (qo (O,x; 1— ,BMI(;)) -1+ ,BMI(;))

5 (S (1) 1 )
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=5 ()
—>ut—u (39)

Therefore, in this case, one is led to the KPP equation

u 1%,

= 40

o 202 tu (“40)
However in this case, because § = 1 instead of § — 0, the solution is given

by (1 —e™") instead of (21). Because of the natural stochastic clock provided
by the linear u term, a stochastic solution for the Cauchy problem of the KPP
equation may be constructed by the McKean method [1], as seen before. However,
the interpretation as an exit measure, allows for the construction of solutions with
arbitrary boundary conditions.

3.2 Superprocesses on Signed Measures and Ultradistributions

When superprocesses are generalized from measures to ultradistributions of com-
pact support, a general aim would be, of course, to characterize all the admissible
transition kernels and branching mechanisms compatible with the new formulation.
I will leave this for future work and just present a few examples of transitions and
branchings which provide stochastic representations for a wider class of nonlinear
PDE’s.

Although the scaling limit 8 — 0 of measure-valued superprocesses allows the
construction of solutions for equations which do not possess a natural Poisson clock,
it has the severe limitation of requiring a polynomial branching function ¢ (s, x; 7).
This automatically restricts the nonlinear terms in the PDE’s to be powers of u. In
addition, these terms must be such that all coefficients in the 7" expansion in Eq. (26)
are positive to be interpretable as branching probabilities. As seen before, it was this
requirement that led to the restriction 1 < o < 2 in (34).

The variable 7 that appears in ¢ (s, x; z) is in fact 7 = e PW(=58) = p; o= (#1X),
When restricting the superprocess to measures, the delta measure, at each branch-
ing point, may at most branch into other deltas (with positive coefficients) and
therefore ¢ (s, x; z) must be a sum of monomials in z. When one generalizes to I
ultradistributions of compact support, changes of sign and transitions from deltas to
their derivatives are allowed. In the end, the exponential e~*#/X) will be computed
by evaluation of the function on the ultradistribution that reaches the boundary.
To find out the equation that is represented by the process one needs to compute
the g (O,x; u,g) of Eq.(30) for the corresponding ¢ (s, x;z) in the § — O limit.
Recalling that ¢ (s,x;2) = @p (s, &: e P*"8)) and z = ¢7#"#, one concludes that
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there are basically two new transitions at the branching points:

(1) A change of sign in the point support ultradistribution

B8 — B _y SBf =) — =) 41)
which corresponds to
— (42)

and
(2) A change from §™ to £8""Y, for example

B8 _ oBF0) _y S(BFES) _ T (43)

which corresponds to
7 — e:FE)Xlogz (44)

Case (1) corresponds to an extension of superprocesses on measures to super-
processes on signed measures and the second to superprocesses in U4{).

How these transformations provide stochastic representations of solutions for
other classes of PDE’s, will be illustrated by two examples:
First, let

dylogz —dylogz

01 (0,x;2) = p1e” ' 4 pre +p3d (45)
This branching function means that at the branching point, with probability p;
a derivative is added to the propagating ultradistribution, with probability p, a
derivative is added plus a change of sign and with probability p; the ultradistribution
branches into two identical ones. Using the transformation and scaling limit (29) one

has, for small 8

s eFaone _ Ftn(1-)
2 2
=1+ B3 + % {(axuj;’) + axuj;’z} +0() (46)

2

e 2= (1-Bu’) = 1-28u) + p2u)” 47)
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Then, computing /g (O, X; ”fsl)) withp; = p, = 7 L and p3 = 2 one obtains

k
w‘” (0,x; uf;’) = (" (0,x;2) —2)

B
= o (0o - ) -1+ )

ﬂ(iﬁ(x?f+§ﬁﬁ”+omﬂ) (48)

meaning that, with kg = %, the superprocess provides, in the § — 0 limit, a solution
to the equation

du 10%u , 1 5

For the second example a different scaling limit will be used, namely

1

1
2 _ - . (2) _
uy' = 55 (=) Y =

Bf _ =B
25 (e e ) (50)

Notice that, as before, uf;) — wg and féz) — f when § — 0. In this case with

~2fu @ 4 2/ Bu; @2 4

=2 2[3 2) :32 (2)2 (,34) (51)

z = P8 one has

and

1
= =2Buy) +2\/pug” + 1
z
=2+ 2Buy’ + B2u + 0 (B*) (52)
For the integral equation, instead of (31), one has
U (0.2) + Tlo.s / dsy? (5.6:u") = Moy (x.8) (53)

with

w(z) (O x; ul(sz)) kg (2,3 (‘/’ 0,x;2) — (O,x; %)) - ul(sz)) (54)
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Let now

1
9?(0,x;2) = ;12 +p2 (55)

This branching function means that with probability p; the ultradistribution
branches into two identical ones and with probability p, it changes its sign.

Therefore, in this case, one is simply extending the superprocess construction

to signed measures. Using (51) and (52) one computes 1//;32) (0, X; ug) ) obtaining

1
v (0.xu) = kg %‘mSuff) (1 " zﬁzu%m) + paty’ =’ +0 (B 4)}
(56)

and with p; = %; p2 = % and kg = % one obtains in the in the 8 — 0 limit

vy (O,x; ug)) - —ul? (57)

meaning that this superprocess provides a solution to the equation

u  10%u i (58)
_ = —_—— u”
ot 2 0x?
In conclusion: Extending the superprocess construction to signed measures and
ultradistributions, stochastic solutions are obtained for a much larger class of partial
differential equations.

4 Final Remarks

Stochastic solutions are powerful tools both to construct new exact solutions of
nonlinear PDE’s and to develop faster numerical algorithms for parallel computing.
Two related methods are used to construct the stochastic solutions. Both use
limiting processes, as in branching particle systems, to generate boundary measures
which sample the initial (boundary) conditions. The limitations in the classical
constructions, are the handling of derivatives, nonpolynomial terms and negative
branching coefficients which cannot be interpreted as probabilities. To overcome
these limitations one used either operator labels at the branching vertices or an
extension of superprocesses from measures to ultradistributions. In reality these
methods are closely related. In the first one keeps the propagating entities as delta
measures but then has to backtrack the initial conditions from the final boundary
time to apply the operators at each vertex. In the second the propagating entities are
modified at each vertex, the final generated entity being directly applied to the initial
conditions without any backtracking.



260 R.V. Mendes

Notice however that there are cases where backtracking of the initial conditions
through the tree is needed even in case without derivatives or nonpolynomial terms.
This is, for example, the case of Navier-Stokes or magnetohydrodynamics [11],
because of the Leray product at each vertex.

The simple superprocess examples treated here deal with the kind of terms that
will appear in PDE’s with local interactions. More general nonlocal interactions or
integral equations would require a more general treatment of the ultradistribution
superprocesses, where the allowed transitions are not simply changes of sign and
derivatives.

Appendix: Proof of a Lemma

Let
t
u(x, ) = o, %e_k'u (&,0) + / ke ™ ® (&, 1 —s) ds} (59)
0
Then
t t
Mo, [ huot—9)ds = Mo, { [ e oy as
0 0
t 1—s ,
+ / kds/ kds'e ™ @ (Eyqyt— 5 — s’)}
0 0
(60)
Summing (59) and (60)

t
u(x, 1)+ HOJ/ ku (&,t—s)ds
0
t
= T, { (e"" + / ke"‘("”ds) u (&,0)
0
t
+k/ R (&,t—s)ds
0

t —s
+k/ ds/ kds'e ™' ® (§S+S/, t—s— s’) ds/}
0 0
(61)
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Changing variables in the last integral in (61) from (s, ") to (s,0 = s + ') one
obtains for the last term

t o
k / do / kdse O D (¢,,1 — o) ds
0 0

and finally
'
u(x, 1) + Ho,xk/ u(&,t—s)ds
0
'
= o, %u(é,,O) + k/ D (&,t— ) ds} (62)
0
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Maximum Likelihood Drift Estimation
for the Mixing of Two Fractional Brownian
Motions

Yuliya Mishura

Abstract We construct the maximum likelihood estimator (MLE) of the unknown
drift parameter 6 € R in the linear model

X, = 0t + 0B (t) + 0»B™(1), 1 € [0, 7],
where B! and B2 are two independent fractional Brownian motions with Hurst
indices % < H, < H, < 1. The formula for MLE is based on the solution of the

integral equation with weak polar kernel.

Keywords Independent fractional Brownian motions ¢ Linear model * Unknown
drift parameter « Maximum likelihood estimator

1 Introduction: The Elements of Stochastic Calculus for fBm

Consider the continuous-time linear model
X(#) = 0t + 0 B™ (1) + 0,B™ (1), t €10, T,

where B! and B2 are two independent fractional Brownian motions with Hurst
indices % <H, <H,<1,01,00 > 0.

An adapted stochastic process {BH ®,t> O} is the fractional Brownian motion
with Hurst parameter H € (1/2, 1), if it is a centered Gaussian process with the
covariance function

E[B"()B"(s)] = % (ﬂH + 52— — s|2H) )
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Denote by L% [0, 7] the completion of the space of simple functions f: [0, T] — R
with respect to the scalar product

T T
(f.8)% = an /0 /0 Fg(s) |1 — s dsa,

where oy = H(2H — 1). For a step function of the form

n—1

f(t) = Zakl[tkvthrl)’

k=0

where {ty < t; < --- < t,} is a partition of [0, T], the integral I* () of f with respect
to B is defined by

T n—1
1) = [ 708" 0) = 3 ax (B (e) ~ B @)
0 k=0

1" maps isomorphically the space of step functions on [0, 7] with the scalar
product (-, -); into L*(2), therefore, I can be extended to L% [0, T].
Define a square integrable kernel

Bus' > [N — s)P32ul =1 2qu, ift>s

, otherwise,

KH(tv S) = {

=

where By = (m) :
The map

r T
(Kuf)(s) 2[ f(t)a,K(t,s)dt:,BHsl/z—H/ F(OH12 (1 — )32y

is an isometry between the space of step functions and can be extended to a Hilbert
space isomorphism between L% [0, 7] and L?[0, T]. This implies that the process

W) = 1" (K7™ 1jo.)
is a standard Wiener process on [0, T], moreover, for any f € L0, 71,
T
1"0) = [ ®i©awe) 1)
0

In particular, putting in the last formula f = 1jp 4, one gets the following well-
known representation of B:

B(r) = / IKH(t, $)dW (s).
0

For these transformations, see [7].
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Finally, we define the so-called fundamental martingale, or Molchan martingale M,
for BY. Let

Iu(t,s) = cus'> 7 (t —5)* Mg (s),

where

B ( (3 —2H) )%
N oHrG —myprH+ b/

Consider square-integrable Gaussian martingale

P VB (s) = (2 — 3 tsl/Z—H s
M (t)_/0 In(t, s)dB" (s) = (2 —2H) /0 dw(s).

The paper is organized as follows. In Sect.2 we reduce the main problem to
the solution of the integral equation with the weak polar kernel and establish
the existence-uniqueness result for this equation. Appendix contains an auxiliary
result concerning the existence and uniqueness of the solution of the corresponding
integral equation of the 1st kind. We prove this fact directly, by constructing the
unique solution.

Note that the elements of stochastic analysis of fBm are contained in [2, 5, 10],
and the problems of statistical drift parameter estimation are treated, among others,
in[l,3,4,6,11].

2 Main Problem

Now, let % <H < H, <1, {EHI (1), B™2(1), 1 = 0}, i = 1,2, be two processes
defined on the space (€2, §, (5);) and Py be a probability measure under which B
and B™ are independent, B is a fractional Brownian motion with Hurst parameter
H>, and B is a fractional Brownian motion with Hurst parameter H; and with drift
9 e.
oy’ ’

01B" (1) = 0t + 0,B™ (1).

The probability measure Py corresponds to the case when 6 = 0. Our main
problem is the construction of maximum likelihood estimator for 6 € R by the
observations of the process Z(t) = 0t + o1 B (t) + 0,B™(1), t € [0, T]. However,
the form of the process Z (two fBm’s with different Hurst indices) does not allow
to construct the estimator immediately. To simplify the construction, we apply to Z
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the linear transformation of the following form:
t t t
Y(r) = / Iy, (t,5)dZ(s) = 6 / I, (t, s)ds + oM™ (1) + o, / I, (t, s)dB™ (s)
0 0 0

= GcHlB(% _H), % - Hl)tHH1 + oM (1) + 0 /0 tzHl (1, 5)dB!™ (s).
2
This process is preferable since it involves Gaussian martingale M*.
Lemma 2.1 The linear transformation (2) is correctly defined.

Proof 1t is sufficient to establish the existence of the integral for I, (¢, s)dB™2(s) for
any t € [0, T]. But we have that for any u, s € [0, 7]

|u — 5|72 < PH2H )y 22

therefore
t t
2H,—2
i 1Ny = e [ b 19 110l = 52 s
0 Jo
t t
< ay, P2 / / I, (2, ) g, (8, u) |u— s|2H‘_2 dsdu
o Jo
— aH2t2H2—2H1 ||lH1 (l‘, )| |§11 — OlHZIZHZ_ZHIElMHI (l)|2
2
_ YV PH—AH+2
2 —2H, ’
whence the proof follows. O

As it was mentioned, process Y is more convenient to deal with since it involves
martingale with a drift. Furthermore, it follows from the next result that processes
Z and Y are observed simultaneously, so, we can reduce the original problem to the
equivalent problem of the construction of maximum likelihood estimator of 8 € R
basing on the linear transformation Y.

Lemma 2.2 Processes Z and Y are observed simultaneously.

Proof Taking into account (2), it is enough to present Z via Y. But it follows
from (2), from Fubini theorem for integrals w.r.t fBm (Theorem 2.6.5 [8]), and from
elementary integral transformations, that for any ¢ € [0, T

/0 t(t—s)H‘_% /0 ' L, (5. w)dZ (u)ds = /0 e / t(t—s)Hl—%(s—u)%—Hldst(u)

13

t t
:B<H1—§,§—H1>/ u%—Hle(u)z/(r—s)Hl—%Y(s)ds
0 0

= (Hl - %)_1 /Ot(t — ) 72dY (s),
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whence

1

2 = B(H - 3.

—1
//(M—S)H‘ 32172 gudy (s),

and the proof follows. O

Denote yu, = cp, B(%—Hl , %—Hl ) Now the main problem can be formulated as

follows. Let 1 < Hy < H, < 1, {X,(1) = M™1 (), Xo(1) := [, Iy, (¢, 5)dB™(s), 1 >
0}, be two processes defined on the space (€2, %) and Py be a probability measure
under which X; and X, are independent, B™2 is a fractional Brownian motion with
Hurst parameter H», and X isa martingale with square characteristics

(X1)(0) = 72

and with drift 22122 je.,
%) = M (1) = VH‘ 22 (),

Also, denote X; (f) = M1 (). Our main problem is the construction of maximum
likelihood estimator for 8 € R by the observations of the process

Y(t) = Oyp, 271 + 01 X1 (1) + 02Xa(0).

Consider the martingale MH' with a drift:

~ 0 !
MM (@) = %ﬁ—”’l + (2—2H))? /0 s'27M aw (s)

9 t t
V”‘ e 2H)2(2 — 2H1)2/ s%—”ls%—Hlder(z—zHl)%/ sV gw (s)
0 0
1 ! 1 ~
:(2—2H1)f/ s2 1 aw(s),
0
3)

where W(t) is a Wiener process with a drift defined under the measure Py by the
equation:

Vi (2 — 2H))?
[oa]

dW(t) :== dW(r) + 0 gy,
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By Girsanov theorem and independence of X; and X,

dPg

T 2

VH, L Hy 5 1, Y 2—2H}

Lo _ 22wt [ s Hai(s) — ~62 . Lo
dPy exp{ ( 02 /0 s () 2 o?

1

=exp{0- VH‘XI(T)— S0 ’;Hl 7y,
1

The derivative above is not the likelihood function of a parameter 6 since it is not
measurable with respect to the observed o-algebra

37 = 0o{Y(@),1 € [0, T]} = §7 := o{X(1),1 € [0, T]},

where X (1) = X;(¢) + X2(2).

We shall proceed as in [4]: let (g be the probability measure induced by Y on the
space of continuous functions with the supremum topology under probability Py.
Then for any measurable set A:

ho(4) = /A () todx,

where ®(x) is such measurable functional that ®(X) = (‘g;f) SX) The latter

means that 1y < po for any 6 € R. Taking into account that X; = X under Py and
the fact that the vector process (X, X) is Gaussian, we get that the corresponding
likelihood function is given by

_ dP9 _ VH, 1 VHI :
Lr(X,0) = \s" (exp{@ P (1) — 92 AT 13%)
— exp {9 : %EO(XI(T)|S’;) + %92 : );—%(V(T) — T2—2H1)}, (4)

1

where V(1) = Eo((X1(0) — EoCi 01))I3Y) 1 € [0.7].

For that follows let the coefficients o7 and 0, be equal to one.

Thus, we arrive at the following problem: to find the projection Px X (T') of X, (T)
onto {X(¢) = Xi(t) + Xz(¢), t € [0, T]}. We recall from Sect. 1 that

Wi(t)=/0 ((K5)"1p0.) dB™i(s), i = 1,2,
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are standard Wiener processes, which are obviously independent. Also from Sect. 1
we have

Xi() = @ —2my)* /0 S (s), B () = /0 K )dWas).  (5)

Then, using (1), we can write

X5(1) =/(; Ku, 1, (1, $)dWs(s),

where

Ky, 1, (t,5) = ,BHZCHISI/Z_H2 / (r— u)l/z_H‘ w2 iy — s)H2_3/2du. (6)
Similarly to (1), we have for f € L}, [0,T]
T T

[ 1000 = [ @G neare. )

where

T
(K 0) = [ 7O K 150

The projection of X|(T) onto {X(¢),t € [0,T]} is a centered X-measurable
Gaussian random variable, therefore, it has a form

T
PxX\(T) = / hr(1)dX (1)
0

with hy € L%{I [0, T]. Note that A7 still can be a distribution.
This projection for all u € [0, T] must satisfy

Ey(X@PxXi()) = Eo(X@X\(D)). ®)

Using (8) together with independency of X; and X,, we arrive at

T T
E(3i@) [ 00 + 300 [ hr0ax0) = Eo(Xx 1) =,
©

From (5), (6), (7), (8) and (9) we get

u T
(2 —2H)) / hr(s)s' 1 ds + / he ($)rs, 1, (5, u)ds = w? =2 (10)
0 0
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where
SAU
T'H\ H, (S, I/l) = / BA‘KHI H> (S, U)KHI H> (M, U)dl).
0
This kernel can be written alternatively as ry, g, (f, s) = 0;Rp, u, (¢, 5), Where
NS
RH] H ([, S) = / KH] H> (l, “)KHI H (S, M)dbl =E [Xz(t)Xz(S)]
0
t N
= ap, / / (t _ u)l/2—H1u1/2—H1 (S _ v)l/Z—H] vl/2—H1 |I/l _ U|2H2_2dv du.
o Jo
Differentiating (10) with respect to u, we arrive to
T
(2 — 2H))hy (u)u' M1 4 / hr(s)k(s, u)ds = (2 — 2H,)u' =1, (11)
0
where
SAuU
k(s,u) = 0y7m, 1, (s, u) = / 0sKu, 1, (s,v)0,Kn, 1, (u, v)dv. (12)
0

Theorem 2.3 Let H, — H, > %. Then there exists a sequence T,, — 00 such

that integral equation (11) has unique solution hy, on any interval [0,T,] and
hy, ()71 € L]0, T,

Proof We denote Cp, u, constants which values are not so important; their values
can change from line to line. At first, we can apply the changing of variables u =
s + (t — s)z to (6) and transform the kernel Ky, #, (¢, s) from (6) to the following
form:

1
Kutyas (1, 8) = Bryeays2 12 (1 — 5)1h / (=22 (s + (1—5)0) M3,
0
(13)

Then we can differentiate (13) and after inverse changing of variables we get that

KH],Hz(L S)
t—s

0: Ky, 1, (1,5) = (Hy — Hl)(

14
| (14)

t_

H»

t
+,3H2CHIS%_ / (t— r);_H‘rHZ_Hl_l(r—s)Hz_;dr).
s s

Further, we have the following bound for kernel Ky, g, (¢, s) on the interval [0, 71 :

3 1
0 < KH],Hz(L S) < :3H2CH13<§ _HI,HZ — E)IHZ_HIS%_HZ(I — S)HZ_HI N (15)
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and it follows from (14) and (15) that
1 -H 3 1 -H Hy—H;—1
OfatKHl,Hz(tas)f,BHchlsz Z(B(E—Hl,Hz—z)l'Hz l(t—s) 27

3 1
+B(5 — Hi Hy + 5 )77 (1= )27 ) < Cpy gyt o = syt
(16)

Now we can substitute the bound from (16) into (12) and get that

SAU
0 < k(s,u) < Cp, ’quHz—Hl st—H / v 722 (y — p)Ha i (g )=l gy
0
(17)

Let, for example, s < u. Note that
(M _ U)Hz—Hl—l — (I/l _ U)Hz-‘rHl—Z(u _ v)l—ZHl < (I/l _ U)Hz-‘rHl—Z(u _ S)l_2H1 )
Then it follows from (17) that

0 < k(s,u) < CHI’quHz—Hlst—Hl (u— S)1_2H1

s (18)
% / vl—ZHz (I/l _ U)H2+H1_2(S _ U)Hz_Hl_ldU.
0

In order to bound the integral in the right-hand side of (18), we apply the first
statement from lemma 2.2 [9], according to which for y,v > 0,¢ > 1

1
/ M1 =0 e—1)*Vdt = B(u, v)e V(e — 1),
0
Therefore, with p = 2 —2H,,v = Hy —Hjandc = %
/S Ul—2H2 (u _ U)H2+H1 —2(s _ U)Hz—Hl—ldv
0

1
_ _ u Hy+H—2 o
=5 1/ v! 2H2<——v) (1 —v)f2-i=lgy
0

s (19)
H|—H 2H,—2
:B(z—sz,Hz—Hl)s—l(f) 1 2(5—1) ’
S S
— CH1 ’stl—Hz—Hl qu—Hz (M _ S)ZHz—Z,

and it follows from (18) and (19) that for s < u

0 < k(s,u) < Cp, 8" 2H1 (u — 5)?H2—20=1 (20)
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Evidently, foru < s
0 < k(s,u) < Cy, ryu' 721 (s — w)*H220~1 1)

Now we rewrite equation (11) in the equivalent form

T
yélu%_H‘ = yélh(u)u%_H‘ +/ h(s)s%_H‘sH‘_%uH‘_%k(s, u)ds, (22)
0
or
2 A-H 2 7 "
Vi u? " =y hr(u) +/ hr(s)ki (s, u)ds, (23)
0

where ki (s, u) = s"'=2u =2 k(s, u), hr(u) = h(u)uz~™ and it follows from (20)
and (21) that for s < u

1 1
ki(s,u) < CHI,quHl_fsi_H‘ (u— s)ZHZ_ZHl_l
and foru < s
1 1
ki(s,u) < CHIqusH‘_i w2~ (s — u)ZHz_ZH‘_l.

Therefore, taking into account that for H,—H,; > % we have that 4H,—4H,—2 > —1,
it is possible to bound L, [0, 7]> — norm of the kernel:

T T T pu T T
||k1||L2[0,T]2=/0 /0 k%(s,u)dsdu:/o /0 k%(s,u)dsdu+/0 / k%(s,u)dsdu

T u
< CH1 H (/ / M2H1_1S1_2H1 (Lt _ s)4H2—4H1—2dsdu
0 0
T pT
4 / / S2H1_1M1_2H1 (S _ M)4H2_4H1 —stdu)
0 u

T T
<y, ’Hz(/ A= g T2H1—l/ Wl =2 (T — M)4H2—4H1—ldu)
0 0

< CH1 H T4Hz_4H1 < 0.
(24)

It means that the integral operator K7f(u) = fOT ki (s, u)f (u)du is compact linear
self-adjoint operator from L,[0,7] into L,[0,7] and Fredholm alternative can
be applied to equation (23). To avoid the question concerning eigenvalues and
eigenfunctions, we produce the following trick.
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It is very easy to see that for any a > 0

K(ta, sa) = K(t, s)a%+H2_2H‘, 0:Ky, m,(ta, sa) = 0,K(t, s)a_%'Hh_ZH‘, 25)
k(ta, sa) = a®~*1k(1, s),

whence
ki(ta, sa) = ki (¢, s)a* 220 ~1,

Therefore we can put in equation (23) s = s'T,u = u'T and hy(z) = hy(T7), and
equation (23) will be reduced to the equivalent form (we omit superscripts)

1
WT)2 ™ = Jip(u) + 72272 Vi / hr(s)ky (s, w)ds = hr(u)
’ (26)

1
+A / o (s)ky (s, u)ds,
0

with A = 72272 yglz. Since operator K| is compact linear self-adjoint operator
from L,[0, T into L,[0, T], as it was mentioned above, it has no more than countable
number of eigenvalues any of them are real numbers, and with only one possible
condensation point 0. Taking the sequence 7,, — oo in such a way that

__ g2H\—2H,,,2

will be not an eigenvalue, we get that equation (26) with 7, as upper bound of
integration has unique solution whence the proof follows. O

Now we establish the form of maximum likelihood estimate.

Theorem 2.4 Let H, — H| > %. Then the likelihood function has a form

Lr(X. 6) = exp{OyN(T) — 36772 (N)(T)}, @7

and maximum likelihood estimate has a form

A N(T
0(T) = L (28)
Y (N(T)
where N(f) = Eo(X,(t)|3%) is a square integrable Gaussian §¥-martingale,
N(T) = fOT hr()dX (¢) with hT(t)t%_Hl € L,[0, T], hr(¢) be a unique solution to (11)
and (NY(T) = (2 —2H)) [ hr()1'2H1dr.
Proof We start with (4). Consider Gaussian process N(f) = Eo(X;(2)|FX). Since
X1 () is §,-martingale and Sﬁf C 3§, the process N is a Sf(-martingale with respect
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to probability measure Py. Furthermore, we can present V (¢) as
V() = Eo(X(0[5) = N*(0).
Note that X7 (r) — 1>~ is §,-martingale. Therefore,

Ey (N*() — (P72 = V(1)) I5Y) = Eo (Eo(X7()IFF) — A7 |5Y)

= Ey (X}(t) — #72H|F%) = Eo(XF(9)IFY) — 77 = N2(s) — (s = V(5)),
(29)

therefore the quadratic variation of the martingale N equals (N)(1) = 272H —
V(?), and the likelihood ratio is reduced to

Lr(X.0) = exp {67 N(D) - 2672, (NN(D), G0)

so, we get (27) and (28). Now, taking (11) into account, we get that
T 2
W) = B (1) = o [ hr(raxco)
0
T 2
— o [ hrd0ni@ +X:00)
0
T 2 T 2
= E h ax E h dax.
0(/0 (1) 1(“)) + 0(/0 (1) 2(“))
T
= (2—2H1)/0 h%(u)ul_ZH‘du
T pT T

+/ / hT(u)BMKHI,HZ(u,t)du/ hT(S)axKHl,Hz(Sv t)dsdt

0 t t

T
= (2—2H1)/0 h%(u)ul_ZH‘du

T T SAU
+ / hr (u) / hr(s) / 5K, 11, (5, )0, Kp, 1, (u, 1)dtdsdu

0 0 0

T T
- / hT(u)((z—21L11)hT(u)ul—2H1 + / I (s)k(s, u)ds)du

0 0

T
=Q2- 2H1)/ hT(u)ul_ZH‘du,
0

whence the proof follows. O
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In what follows, saying “T — o0” we have in mind that the corresponding
property holds for any sequence 7,, — oo that has only finite common points with
the sequence of eigenvalues of operator K. Proof of the following result repeats the
proof of the corresponding statements from [4] so is omitted.

Theorem 2.5 The estimator Or is unbiased and the corresponding estimation error
is normal

R 1
Or—60 ~N(O, —— ).
r ( IOT hy(s)s'—2H ds>

Now we establish the asymptotic behavior of the estimator.

Theorem 2.6 Let Hy — H; > %. Estimator O is strongly consistent and

A 1
lim 722y — 0 = —
T—00 fol ho(u)u2 M du

Proof At first we rewrite equation (23) in the equivalent form, changing u =
u'T,s = s'T and omitting superscripts:

1

1
yf,luf_H‘ T3 M — )’1211 hy(uT) + T*272 / hy (sT)ki (s, u)ds, 3D
0

or
1
yaut ™M = y2 hp(uT)TM T3 4 22 / hr(sT)T! "3k (s, w)ds,  (32)
0

Denote pu = T2 Lethy, (u) = phr (uT)T™ =2 Then, taking into account (25),
equation (31) can be rewritten as

i 1 !
yg,lué H _ ;yfhhu(u)+ /O By, (s)ki (s, u)ds. (33)

Note that

T

r 1
(NNT) = / hy(s)s' M ds = / lle(s)s%_Hlds = T2—2H2/ hM(M)M%_HI du.
0 0 o

Define the operator K

1
(KF) () = /0 Fki (5. u)ds
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and the scalar product (f, g) = folf(s)g(s)ds, f.g € L]0, 1]. Then equation (33)
can be rewritten as

1
yélu%_H‘ = ;yélhﬂ(u) + Khy, (). (34)

Note that
1 1 1
(KF.f) = /0 (KF) (0 (1)di = /0 ( /0 FOki (1 5)ds)f ()dr

1 pl At
= / / f(t)tH‘_l/zf(s)sH‘_l/Z/ 0sKu, 1, (s, )0, Kp, m, (t, v)dvdsdt
o Jo

0
1 1 1
_ / dv / 8, Ky, (s, v)f (5)s™1 =2 / 8K, (6, V) (D= 2dt > 0.
0 v v
(35)

Introduce corresponding the first type auxiliary integral equation
1_
Vinu2 ™" = (Kh)(w). (36)
It follows from Lemma 1 that (36) has the unique solution, say, A, obviously, not

depending on p. The function §,, = h, —hy satisfies two equations K¢, + ﬁyf,l hy =

0 and K6, + ﬁyﬁ,l 8, = —%. Multiplying the 2nd equation by §,, and integrating,
we get

1 1
(K8, 8,) + ﬁyﬁh 18,117 = k! 37)

and it follows from (37) and (35) that 7/1%11 18,4017 < {ho,8,)| < llholl|8,.]l, which
implies that ||8,|| < ||Aol|. Multiplying the 1st equation by 4 and integrating we get

1
(K8, ho) + ﬁyf,l (hys ho) = 0.
Note that inequality ||8, || < ||4o]| implies that

|{ye ho)| < (80 ho) | + IlolI* < 2]l < o0,

and hence

1_ 1
Vi 18 u2 ™ )| = (8, Kho)| = [(K8,,. ho)| = ;VfIIHhM,hoH -0 (38)
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as T — oo. It means that limy_; oo fol hM(u)u%_H1 du = fol ho(u)u2~H1 du. Therefore

1 1
1 . T_m
fo hyWu2=""du fo ho(u)uz=""du

T2—2H2E9(éT _ 9)2 —

whence the proof follows. O

Remark 2.7 In outline, our method of proof follows the method of the correspond-
ing result from [4], however Lemma 1 is specific to our case.

Appendix

We recall some notions from fractional calculus. For the details see [12]. Fractional
integrals are defined as

1

(I ) (x) = T@

[ oo
and
1 b
G = 5o [ 0€C=0a
while fractional derivatives are defined as
o _ 1 i * _ N\«
PN = m—gy s [ FOG=0

and

d b
DN =~ g [ SO0

Fractional differentiation and integration are inverse operators on the appropriate
functional classes. Also, we shall use the following integration by parts formula for
fractional derivatives,

b b
| @rpwsas= [ oy pwas
Lemma 1 For any constant C > 0 integral equation
w2~ = C(Kh)(u), u € (0,1] (39)

of the 1st kind has the unique solution.
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Proof We can present equation (39) in equivalent form

1
/2 c/ h(s)ki (s, u)ds, u € (0,1],
0

or
1 . SAU
w7 = C / h(s) / 05K, 11, (5, )0, Kp, 11, (1, v)dvds, u € (0, 1],
0 0
where h(s) = h(s)s"/271 or, at last,

u 1
ylm2H — C/ (/ iz(s)BXKHI,HZ(s, v)ds)auKHl,Hz(u, v)dv. (40)
0

v

Now, taking into account the transition from equation (10) to (11) with the help of
differentiation, we can perform the inverse operation and get from (40) the following
equivalent equation

u 1
W = c(2 - 2H)) / K, 11, (1, v)( / h(s)d;Kp, 1, (s, v)ds)dv,u € [0,1].
0 v
(41)

The right-hand side of equation (41) can be rewritten as
C(2 —2H)) / Ku, 1, (4, v)q(v)dv,
0
where g(v) = fvl ;z(s)asKHl 1, (s, v)ds. At first, solve the equation

W = ¢y / K, 1, (u, v)q(v)dv,
0

with C; = C(2 — 2H)). Taking into account (6), the latter equation can be rewritten
in equivalent form

u u
WM = Cy B, / p!/2th / (u—2)' 2L (7 — )32 dzg (v)dv,
0 v

or
u Z
2 = €y, / ot (y — )2 / p!/27M (g — )R g (v)dvdz,
0 0

or, at last,

W = G p) (),
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where C; = C18y,I'(3/2 — H,) and
z

p(z) = / v/ 2712 (7 — p)273/2 4 (v)dw. (42)

0
It means that
p(n) = G (D™ (2721) (u)
u 1 (43)
= (CT(H -1 /2))—1( / (u—t)H1_3/2t2_2H‘dt) = Cyu'/*™,
0 u

where C3 = G/ 2—HC1211§((F}1111:11//22,)3—2H D Furthermore, comparing (42) and (43), we get
that

Z
G2 = /0 o!27M (=) q()d = T (H—1/2) Iy (P 9) @),

whence

v!/27Mg(v) = Cy(D(H = 1/2) 7 (D227 (v)
— C3(T(Hy — 1/2)F(3/2—Hz))_1(/v(v - t)l/z_Hztl/z_szt)/
0 v

1—2H:
= C4U 2,

where Cy = C3(2 — 2H,)(I'(Hy, — 1/2)T'(3/2 — H,))~'. Obviously, g(v) =
C4v'/?7H2 _and we arrive at the equation

Cq!'/?77H2 = /1 ;L(s)asKH1 H, (s, v)ds. (44)
v
Note that
0Ky (5.0) = By T(3/2 = H)! /22 (DT (Lot (= ) 3/2) ) o),
so, with the help of integration by parts formula, equation (44) can be rewritten as

= [ oot o) o

1
= [ @ iy s = oy s @

= (D(Hy = 1/2) 7 ({2 2D 2yt v),
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where Cs = Cy4(Bu,T'(3/2 — Hy))™". The latter equation means that

(D{I_l_l/zil)(v)sz_Hl = Ce(1 — )l /2=

Ce = %‘;}(f) At last, we get that
h(U) — UHl_l/zi’Jl(U) — CﬁUHl_l/z(IfI_l_l/z('Hl_Hz(l _ ')I/Z—Hl))(v)’
and this solution of equation (39) is unique. O

Acknowledgements My thanks to M. Kleptsyna for the statement of the problem and to M.
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Existence of Density for Solutions of Mixed
Stochastic Equations

Taras Shalaiko and Georgiy Shevchenko

Abstract We consider a mixed stochastic differential equation dX; = a(z, X;)dr +
b(t, X;)dW; + c(t, X,)dB¥ driven by independent multidimensional Wiener process
and fractional Brownian motion. Under Hérmander type conditions we show that
the distribution of X, possesses a density with respect to the Lebesgue measure.

Keywords Mixed stochastic differential equations ¢ Existence of denisty ¢ Hor-
mander condition ¢ Malliavin differentiability
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1 Introduction

In this paper we study a so-called mixed stochastic differential equation (SDE) in R?

t

t t
X = Xo+ / a(s, X;)ds + / b(s. X,)dW, + / (s, X,)dB" 1)
0 0 0

driven by a multidimensional standard Wiener process and a multidimensional
fractional Brownian motion (fBm) with Hurst parameter H € (1/2,1) (see next
section for precise definitions). Recently such equations gained a lot of attention
thanks to their modeling features. There is already a large literature devoted to

T. Shalaiko (B<)
Department of Probability Theory, Statistics and Actuarial Mathematics, Taras Shevchenko
National University of Kyiv, Volodymyrska 64, Kyiv 01601, Ukraine

Department of Mathematical Economics II,
Mathematical Institute of the Manhheim University, A5, 6, D-68131 Mannheim, Germany
e-mail: tshalaik@mail.uni-mannheim.de

G. Shevchenko

Department of Probability Theory, Statistics and Actuarial Mathematics, Taras Shevchenko
National University of Kyiv, Volodymyrska 64, Kyiv 01601, Ukraine

e-mail: zhora@univ.kiev.ua; zhoraster@gmail.com

© Springer International Publishing Switzerland 2016 281
C.C. Bernido et al. (eds.), Stochastic and Infinite Dimensional Analysis, Trends
in Mathematics, DOI 10.1007/978-3-319-07245-6_15


mailto:tshalaik@mail.uni-mannheim.de
mailto:zhora@univ.kiev.ua
mailto:zhoraster@gmail.com

282 T. Shalaiko and G. Shevchenko

them; the few papers we cite here give an extensive overview of existing results.
The unique solvability result in the form suitable for our needs is obtained in the
paper [12]; although the result is formulated there for equations with delay, it is a
fortiori valid for usual equations. The paper [11] contains useful estimates of the
solution and results on its integrability. Finally, we mention the paper [13], where
the Malliavin differentiability of the solution is obtained.

The main aim of this article is to provide conditions under which the solution
to (1) has a density with respect to the Lebesgue measure. For Itd SDEs, such
issues were addressed by many authors, see [8] and references therein. Existence
and regularity of density for SDEs driven by fBm we proved in [1, 9, 10] and in [6]
(in case of H € [1/3,1/2]) under Hérmander type conditions.

Equation (1) can be treated in the rough path sense by passing from an It6 integral
to a Stratonovich integral and adding the correspondent correction term to a drift.
Malliavin regularity and existence of a density of solutions to rough differential
equations is currently an active research topic. Among the others we mention the
following works: in [3] the existence of density was established for the differential
equations driven by Gaussian signals with “not too rough” sample paths (such as
fBm with Hurst index H > 1/3) under simplified Hérmander condition, under
Hoérmander condition and “non-degeneracy” of a driving Gaussian signal (this case
covers the fBm with a Hurst index H > 1/4) the existence (but not a smoothness)
of the density was proven in [4]; the existence and smoothness of the density were
finally obtained in [7] for a general class of rough Gaussian signals, including fBm
with Hurst index H > 1/4. The recent paper [2] contains a generalization of these
results to equations driven by Gaussian rough paths. However, in all cited papers the
authors assume that a driving signal consists of independent identically distributed
rough paths, thus, those results can not be applied to our mixed SDE (1).

The paper is organised as follows. In Sect. 2 we introduce our notation, describe
the main object and briefly discuss Malliavin calculus of variations for fractional
Brownian motion. In Sect. 3, we prove that the distribution of the solution X;, ¢ >
0 possesses density w.r.t. Lebesgue measure under a simplified version of the
Hormander condition. Section 4 contains the result on existence and smoothness
of the density under a strong version of the Hérmander condition. The Appendix
contains some technical lemmas and the Norris lemma for a mixed SDE.

2 Preliminaries

2.1 Definitions and Notation

Throughout the paper, |-| will denote the absolute value of a number, the Euclidean
norm of a vector, and the operator norm of a matrix. (-, -) stays for the usual scalar
product in the Euclidean space. We will use the symbol C to denote a generic
constant, whose value is not important and may change from one line to another.
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We will write a subscript if a constant is relevant or if its value depends on some
parameters.

For a matrix A = (a;) of arbitrary size, we denote by g; its i-th row and by a.;
its j-th column.

The classes of continuous and #-Hoélder continuous functions on [a, b] will be
denoted respectively by Cla, b] and C?[a, b]. For a function f: [a, b] — R denote by
/1l 50, [a,5) its supremum norm and by

[fllg e = sup @) —f6)l

a<s<t<b |t - Sle

its 6-Holder seminorm. If there is no ambiguity, we will use the notation || f|| ., and

I£1e-

Finally, for a function & € C?(R¢) denote by d,.h = (3—ilh, . a%h) its gradient

2.2 Main Equation and Assumptions

For a fixed time horizon 7 > 0, let {Q, . # . F = (%), P} be a standard
stochastic basis. Equation (1) is driven by two independent sources of randomness:
an m-dimensional F-Wiener process {W, = (W!,...,W™),t € [0,T]} and an
I-dimensional fBm {BY = (B! ... B™),t > [0,T]} with Hurst index H €
(1/2,1),i.e. a centered Gaussian process having the covariance

- 8
E[BMBY | = (2" + 5 =t =),

It is well known that the fBm B has a modification with y-Holder continuous path
for any y < H, in the following we will assume that the process itself is Holder
continuous.

Equation (1) is understood as a system of SDEs on [0, 7]

t m t ! !
X =X} + / ai(s, Xy)ds + Z/ bij(s. X;)dW/ + Z/ Cik(s, X;)dB{,
0 = 7o k=10

i = 1,...,d, with a non-random initial condition X, € R¢. In this equation, the
integral w.r.t. W is understood in a usual Itd sense, the one w.r.t. B is understood in a
pathwise sense, as Young integral. More information on its definition and properties
can be found in [5].
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The coefficients a;, bij, cix: [0, T] % R >R, i=1,....dj=1,....mk=
1,...,lare assumed to satisfy the following conditions.

Al forallz € [0,T] a(t,-),b(t,-) € C'(RY), c(t,-) € C*(RY);
A2 forallt € [0,T],x € R?

la(z, )| + |b(2. )| + |e(r, 0)] = C(1 + |x]);

A3 forallt € [0,T),x € R? |d,c(t,x)| < C;
A4 there exists B > 0 such that for all ¢, s € [0, T], x € R?

le(t,x) — c(s.x)| < Clt—s[P(1 + |x]),  |8ec(t,x) — dyc(s,x)| < C|t —s|P.
The continuous differentiability implies that a, b, d.c are locally Lipschitz continu-

ous. Therefore, by [12, Theorem 4.1], equation (1) has a unique solution which is
Holder continuous of any order 6 € (0, 1/2).

2.3 Ad Hoc Malliavin Calculus

Here we summarize some facts from the Malliavin calculus of variations, see [8]
for a deeper exposition. Denote by S[0, 7] the set the of step functions of the form
F(@® = Y = cilia b (¢) defined on [0, T]. Let L%[0, T] denote the separable Hilbert
space obtained by completing S[0, 7] w.r.t. the scalar product

T T
(f-82om = /0 /0 FDg()$ (1, s)drds,

where ¢ (1, 5) = HQ2H — 1)|t — s|*72.
Consider the product space

§ = (L4[0,77) x (£2[0,7])"

It is also a separable Hilbert space with a scalar product

i I+m
Z fugz 14[0.7] + Z (fhgi)Lz[O,T]‘
i=1 i=l+1
The map
. (1[0,,1), ey l[o,r,), 1[0’51), .. 1[0 Sm)) = (Br1 e BHI WSI1 s W;’;)
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can be extended by linearity to S[0, T]"+™. It appears that for f, g € S[0, T]'™"

E[{I(). 7 (@) = (f.8)s.

so .# can be extended to an isometry between §) and a subspace of L*(2; R"*).

For & = F(J(f1),...,7(fy)), where fi,....f, € Hand fi = (fi1,---.fim+1)s
i =1,....,n, F:R"™%) _— R is a continuously differentiable finitely supported
function, define the Malliavin derivative D& as an element of §), whose j-th
coordinate equal to

D 0 yiam i F (I E) o TGN =1 L+ m.

i=1

Denote for p > 1 by D! the closure of the space of smooth cylindrical random
variables with respect to the norm

I€Ie,, = E[ &P + [Dg)% 17"

D is closable in this space and its closure will be denoted likewise. Finally, the
Malliavin derivative is a (possibly, generalized) function from [0, 7] to RA*™ 5o we
can introduce the notation

D¢ = {D,£ = (D™'¢,.... D', D)€, ..., D}""¢), t € [0,T]} .

We say that § € ]D),l{;‘; if exists a sequence {&,(w), 2,},>1 such that Q, C Q2,4 for
n>1,P(Q\ (Uys Q) =0;§ € D'” and £|q, = &g, foralln > 1.

For the reader convenience we state here the theorem concerning the Mallivian
differentiability of the solution to (1) in the case of SDE with non-homogeneous
coefficients. The proof is similar to that of [13, Theorem 2]

Theorem 2.1 Suppose that coefficients a, b, c of (1) satisfy the assumptions

Bl forallt €[0,T] a(t,-),b(t,-) € C'(RY), c(t,-) € C*(RY);
B2 a,b,0d.a,0.b,0.c, 3)2“6‘ are bounded;
B3 there exists B > 0 such that for all t,s € [0, T], x € R?

le(t,x) — e(s,x)| < Clt —s|P(1 + [x]), |dxc(t, x) — duc(s, x)| < Clt—s|P.

Then X; € (,~, D'?.

p=>1
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3 Existence of Density Under Simplified Hormander
Condition

In this section we prove that a solution to (1) possesses density of a distribution
under a quite strong condition, which we call a simplified Hérmander condition.
More precisely, we will assume in this section that the coefficients of (1) satisfy

span{c.x(0,Xo),b.;(0,Xo) | | <k <11 <j<m}=R" )

The first step to establish the existence of density is to show the (local) Malliavin
differentiability of the solution to (1).

Theorem 3.1 If the coefficients of (1) satisfy the assumptions A1-A4, then X, €
1,

mpzl Dlolc)

Proof Define 2, = {o : [|X.(0)[lo0 04 < 1}, n = 1. Obviously, 2, C Qut1,n > 1

and, since [[X.(@)|lo0 0, < 00 as., U,>1 2» = 2. Consider a smooth function
¥ = ¥ (x), x € R such that

e forallxeR 0<vy((x) <1;
e Y(x)=1,xe[-1,1];
e Y(x)=0,x¢[-2,2]

Forn > 1, put ¥, = W,(xy,...,xs) = (5 ¥(y/m)dy,.... [5" ¥(y/n)dy), define
d"™(s,x) = d(t, W, (x)), d € {a, b, c}, and let X solve

n>1

t t t
Xt(") =Xy + / a(")(s,XS”))ds + / b(”)(s,Xg”))dWS + / c(”)(s,X;”))dB?.
0 0 0

Since the functions ay, b,, ¢, satisfy assumptions B1-B3, in view of Theorem 2.1,
X" e (=1 D'7. It is not hard to see that X"(w) = X,(») for ® € Q,, which
concludes the proof. O

Now we are to prove the main result of this section.

Theorem 3.2 Suppose that the coefficients of (1) satisfy assumptions A1-A4 and
the simplified Hormander condition (2). Then for all t > 0 the law of X, is absolutely
continuous with respect to the Lebesgue measure in RY.

Proof By the classical condition for existence of density (see e.g. [8, Theo-
rem 2.1.2]) and thanks to the previous theorem, it is enough to verify the non-
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as the solution to

d

! 3ai .
olif) =8+ [ [ X s
r=1 r

(3
"\ (" 0biy ok Lo dcig N 1RH
+y (5. XM 5o (r )dWE + > (5. X s0(r. )dBI1 .
= Jo ox e 0
where §;; = 1;=; is the Kronecker delta. The system above is linear, hence,

possesses a unique solution. In view of Lemma 1, J; o is non-degenerate; denoting
Jis = JioJ, :()1 and applying Lemma 2 one can write

M@ =) / Jrsb-1(5, X5)) b4 (5, X)) ds
k=10

! t pt
+Z/ / (pH(s,u)(J,,XC.,q(s,XY))(J,,MC.,q(u,Xu))’dsdu=J,,0C,J,/’0,
=170 Jo
where

m t
G=Y. / db.a(s, X)) (g boa(s, X)) ds
k=170

l t pt
! ;/0 /0 0 (5105 (8: X)) U €. (0. X,)) dsdlu

Again, due to the invertibility of J; o, M, is invertible if and only if so is C;. Assuming
the contrary, there exists a non-zero vector v € R such that v'C,v = 0. Write

m ]
2 2
v'Cv = Z [[(J-.0b- k(- X), V) 172009 + Z ” (J.0c.4(. X)), v) ||L2H[0,r] :
k=1 q=1
Since the functions

s (‘Is_,()lb',k(ssXs)s U), k= 1,...,m,
S = (‘,S_,Olc',q(sts)7 U)y q = 1,...,l
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are continuous, they must be equal zero for all s € [0, 7]. For s = 0 we get

d
> b0 Xo)vi = 0.k =1.....m:
i=1
d
> cig0. Xo)wi =0.g=1.....L

i=1

This, however, contradicts the assumption (2). Consequently, M, is invertible, as
required. O

4 Existence of Density Under Strong Hormander Condition

In this section we consider a homogeneous version of (1):

X, = Xo + / a(X,)ds + / b(X,)dW, + / c(X,)dB". 4)
0 0 0

In this section we assume that Hurst index H € (1/2,2/3), and some 6 € ((H —
1/2)/(3 —4H), 1/2) is fixed. The role of the restriction 8 > (H — 1/2)/(3 — 4H)
will become clear in the proof of the Norris lemma for (4) (Lemma 5). Now we just
remark that the expression (H — 1/2)/(3 — 4H) is increasing for H € (1/2,3/4)
and is equal to 1/2 for H = 2/3, so the upper bound H < 2/3 arises naturally.

We impose the following condition on the coefficients of (4):

Cl ab,ceCy (R?) with all derivatives bounded.

Under this assumption the solution is infinitely differentiable in the Malliavin sense:
X, € (=1 D*? = D%, which can be shown similarly to its differentiability under
B1-B3.

The aim of this section is to investigate the existence of a density and properties
of this density of a distribution of X; under the strong Hérmander condition, which
reads as follows.

Set Vo =a, Vi(-) =b.j(-)forj=1,...,mand Viy,(-) = c.j(-) forj=1,... L
Using the Lie bracket [, -], define the set

Y ={[Viso o Vi, Vil - L Gra oo i) € {1, ... d}F.

at the point X, if for some positive integer ny one has

no

V(X0). Ve i
k=1

span =R?, (5)
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The main result of this section is the following theorem.

Theorem 4.1 Assume that coefficients of (4) satisfy assumption C1 and the Hor-
mander condition (5). Then the law of X; for all t > 0 possesses a smooth density
with respect to the Lebesgue measure in R?.

Proof Using the usual condition for existence of a smooth density (see e.g. [8,
Theorem 2.1.4]) and taking into account that all moments of the Jacobian J;
are finite, it is enough to show that the matrix inverse to the reduced Malliavin
covariance matrix of X; possesses all moments.

Recall from Theorem 3.2 that the reduced Malliavin covariance matrix of the
solution to (4) can be written as

0 =Y [ Uibaen b as
k=10

1 ' '
+ qzz:l /(; /0 @H(Sy M)( :()l Cq(XA))( u_é C',q(Xu))/deu.

To simplify the notation, we assume from now that t+ = 1. We are to prove that
E[|detC;|™] < oo forall p > 1. Due to [8, Lemma 2.3.1] it suffices to prove that
the entries of C; possess all moments and for any p > 2 there exists C, such that for
all ¢ > 0 it holds

sup P{{v, Civ) < &} < Cpé.
lvll=1

Write

m

!
(v, Cv) = Z _lb.,k(X.), U>HiZ[0,1] + Z || (J.’_Olc.,q(X.), U>HL§,[0,1] .
q=1

It is well known that ||f||L121[0’1] < I/ l12j0,1)- Therefore,

m+1
(v, Crv) = CY " [IGillz oy - Where Gk = (' Vi(X.), v).
k=1

Applying [1, Lemma 4.4] we get that
m+1 1Ge ”2(3+1/0)

{v,Crv) = CZ 202+1/6)
=1 IIGkllg
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for & > H—1/2. Thus,

m+l 2(3+1/6)

1Gillso
CZ 20110 =€

P{(v.Civ) <&} <P
i=1 [Grlly

From [1, Lemma 4.5] and Theorem 5 we obtain the following estimate

ml 2(3+1/6)
Gl

20+1/6) —

< P . F : X - '
= ”G ” ce k=1 ! +1 {”(U,J,O\/k( )”oo <e¢ }
k=1 kllg

..... m

Now let V be a bounded vector field with bounded derivatives of all order. The chain
rule implies

m+I

Ve = Ve + [ IV v+ 5 3V Vi VDS
k=1
m t I+m t
+ / T Ve VIK)dW, + / oo Ve V](X,)dBY.
k=170 k=m+1"0

Thus, applying Theorem 5 once more, we obtain

P{l{v.].oV(X))llo < &} < Ce” + min Ny P {||(v. /' Vi. VIX)) ||, < &%}

k=1,...m

Let ny be the integer from the Hormander condition. Iterating our consideration
above, we obtain

P{(v.Civ) <&} <Ce’ + min P{|(v.J' V(X)) <&}
VGUZO:I i ' ©

10

for all & small enough. Since {V(x), V € ;2 Yi} spans RY, there exists v such
that (v, V(xp)) # 0. Hence, there exists go(p) such that for all ¢ < g¢(p) the second
term vanishes. As a result,

P{{v,Civ) <&} < Cpe’

for all ¢ < g¢(p), as required. O
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Appendix: Technical Lemmas

The following two lemmas concern the Jacobian of the flow generated by the
solution X to equation (1). These are quite standard facts, so we just sketch the
proofs.

Lemma 1 Under assumptions Al-A4 the matrix valued process J,g =
(J10(i,)))ij=1,..a given by (3) has an inverse Z,o = (Z,0(i,]))ij=1...a for all t > 0.
Moreover, {Z,o,t > 0} satisfies the following system of equations

d

" da .
Zio(ij) = 8G.j) =Y [ /O %(S,XY)ZY,O(l,r)ds
J

r=1

" 9b, L[ e
+y / (5. X)Zoo (1. YAWE + 3 / 4 (5. X)Zso(i. BT (6)
= Jo 8x, ’ i 0 a.x]' ’

arv uv
—ZZ/ S 5. et 5. X0l r)ds}

Proof The equation (6) is linear, thus possesses a unique solution Z; 5. So we need
to verify that Z,oJ; 0 = J1.0Z:0 = Iy, the identity matrix. The equality clearly holds
for t = 0. To show it for # > 0, it is enough to show that the differentials of Z, oJ,
and of J; 9Z; o vanish. But this can be routinely checked using the Itd formula. 0O

Denote for t > s J; s = J,,OJ;OI.
Lemma 2 Under assumptions A1-A4, the Malliavin derivatives of the solution
to (1) are given by
DX, = Jisbi(s. X) szt k= 1,....m, ()
DHaX, = Jysc.0(s, X) ly<r, g = 1,..., L 8)
Proof The argument is exactly the same for both equations, so we prove only (7).
Evidently, D;””‘X, = 0 for s > ¢, so suppose that s < t. Due to the closedness of

the derivative, we can freely differentiate (1) as if the integrals were finite sums, in
particular, using the chain rule, we can write fori = 1,...,d

t t - o
D" / ai(u, X,)du = / D a(u, X,)du =y / - —ai(1, X,)D{ X du
s A 0 = 0x, }
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and similarly

t d r oy
D?/'k/ ci,q(u,Xu)dBf’q = Z/ gci,q(u,Xu)DEV’kXZdB?q, g=1,....1
0 =17 r

t . d ty .
D;"* /0 bij(u, X, )W), = > / by X)DY X AW, = 1. m.j # k.
r=1"Y" r

To differentiate the integral w.r.t. W*, approximate it by an integral sum and note
that we will have an extra term corresponding to the derivative of the increment of
W* on the interval containing s. Passing to the limit, we get

1 d ty
DYk / biaut, X, )AWE = bis(s. X)) + / — by (u, X,) DV EXTAWE.
p O ’ r:l s axr S p
Therefore, we have for s < ¢ the following linear equation on D?’”‘X,,:

d t
0
D;V,kX, = b.i(s, X;) + Z [/ BTa(”vXu)DEV’kX;d”

r=1
l t 0 Wk - m ' 3 o ‘
! ;/ 7, G XD X dB T ; / g b XD XudW’S]
On the other hand, from (3) we can write

d t
aa,-
Jt,O - Js,O + Z |: 87(’45 XM)JLt,Odu
r=1 § r

"9k L e,
+> / oo (5 X uodWi, + 3 / ax"’(s,XY)Ju,odBf"I},
k=1Y% 4

r q=1 s
which, upon multiplying by J;OI b. (s, X;) on the right leads to the same equation on
Jusb. (s, X;) as that on DZVJ‘XZ . Hence, by uniqueness, we get the desired result. O

Further we establish a simple estimate on the It6 integral of a Holder continuous
integrand.

Lemma 3 Ler {f(t),t € [0,T]} be an F-adapted stochastic process such that
E [ ||f||g] <ooforallp>1,and0 < 8§ < A <T. Then forall s,t,u € [0, T] such
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thatu<s<tt—s <26, t—u< Aitholds

/ (F(0) —F@)dW, | < APV, 5.

where E[ 2,8] < GE[IIfI5 ] forallp = 1.

Proof It suffices to establish the required result for p large enough, then one can get
deduce it for all p > 1 with the help of Jensen’s inequlaity.
By the Garsia—Rodemich—Rumsey inequality, we get

PSP, 3 1/8
< Clr—s|'s ( / / L2 (F@) = f@)dW, |° dxdy)

/ (F(v) — £ (u))dW,

[x — yI*
< CAY§'2En,

where

t ot Y _ 8 1/8
by = A-05I ( / / [} (F) —fw)dW,| dxdy) '

x — y|*

For p > 8 the Holder inequality entails that

t t 'y _
E[ Z,s] < AOPPIA(1 — 5208 / / E[lfx (f() f(“))dW“'p]dxdy

|x — y|P/2

e 4 _ 2.4,,\P/2
< CPA—0178—2/ / E |: (j;( lf(v) —f(u)| dv) :|dxdy

|x — ylp/2

< G,ATPSE[ |15 ] A8 = GE[IIfIG ] -

Hence, we arrive at the desired statement. O

We also need the result concerning the pathwise regularity property of X. It
establishes certain exponential integrability of the Holder seminorm of X, so it is
an interesting result on its own.

Theorem 4 Let {X,,t € [0, T|} be the solution to (4). Assume that a, b, c satisfy the
assumption C1. Then X € C?[0,T] for 6 € (0,1/2) and E [exp {K ||X||Z}] < 00
forall g € (O, q*), K > 0, where

4H 2H + 1
= A
2H+6)+1"  4H

*

q

In particular, E [ ||X||g] < oo forallp > 0.
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Proof Define for ¢ € (0, T

||X|| _ sup |Xt - X?|
fe — —_—.
¢ 0<t—e<s<t<T (t— 5)9

Clearly, || Xy < IXll, + 2677 ||X|| . It follows from [11, equation (4)] that
1Xllg.e = Cr([7] g + Au(l + IXlloo 7).

for any ¢ € (0, CzA;l/“] where Cj, C, are some positive constants, u € (1/2, H),
Ay = ”BH”M +1, If = fot b(Xy)dW;. Therefore, setting & = CzA;l/”, we obtain

Xl = €3 (1] + A+ 2o A7) = € ([P, + A+ IXIE + A7),
where p’ > 1,and ¢’ = p’/(p’ — 1) is the exponent conjugate to p’. Therefore,

X105 < € (8 + AL+ X2 + AsOlm).

Evidently, g* < 1, so it follows from [13, Lemma 1] that E[ exp {K”I” HZ} ] <
oo for all K > 0. Further, A, is an almost surely finite supremum of a centered

Gaussian family, so by Fernique’s theorem E[ exp {K AZ} ] < oo for any K > 0,

z € (0,2). Finally, by [11, Corollary 4], E[ exp{K | X]15.} ] < ooforallK > 0,z <
4H/(2H +1). Now if p’ > 1is close to 4Hg~'(2H + 1)~! (thanks to the bound on g
such choice is possible) and p is close to H, then ¢’ is close to 4H/(4H—q(2H + 1)),
and gq'0/ is close to 4¢0/(4H — q(2H + 1)), which is less than 2. Indeed, the
last statement is equivalent to ¢(20 + 2H + 1) < 4H, which is true thanks to the
restriction on ¢g. Thus, we get the desired integrability. O

The following result is a Norris type lemma for mixed SDEs. It is a crucial result
to prove existence of density under the Hormander condition. Loosely speaking, this
statement says that if

Y, = Yo+ / a(s)ds + / b(s)dW, + / c(s)dBy, ©)
0 0 0

[Ylloo = 1Y lloo;j0,7y is small, then [|5]|, and [|c|| o can not be large. This means that

the integral w.r.t. W and w.r.t. B can not compensate each other well. The rigorous
formulation is as follows.
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Theorem 5 Assume that H € (1/2,2/3), 0 € (9*, 1/2), where

H—
0*:—7
3—4H

=

and that a, b, c in (9) are F-adapted processes satisfying E [ |lal/% + bl + il ]
< oo forall p > 1. Then exists g > 0 such that forallp > 1,& > 0

P{lYllo < &and [|bllo + llclloo > &7} < Cpe”.

Proof Here we imitate the proof of in [1, Proposition 3.4]. For notational simplicity,
we assume that T = 1. For some positive integers M and r denote A = 1/M,
§ = A/r and define the following uniform partitions of [0,1]: Ty = N§, N =

0,...,.M; tn = 8n,n = 0,...,Mr. Further, fix some H € (1/2, H) and write for

N=0,. 1 n=Nr....(N+1)r—1(sothatt, € [Ty. Txp1 )i = 1.....d
((Tw), B, = BE)+ (bi(T). Wiy, = W,) < 1Y = Y| 4+ 8 lallog
41 In+1
4 / (bi(s) — bi(Ty). dW,)| + / (ci(s) — ci(Tx). dB") (10)
Iy In

< 2[¥)loo + 8 llallo + CA%S |icllg | B | + A% 2En s =1 5,

where in the last step we have used the Young-Love inequality (see e.g. [9,
Proposition 1]) and Lemma 3.
For processes £, ¢ denote

(N+1Dr—1

Wi, §) = Z (gtn+1 _gt,,) (ét,,H _é‘tn); (11)

n=Nr

we remind that the summation is in fact over t, € [Ty, Ty+1). Squaring the both
sides of (10), summing over n = Nr, ..., (N + 1)r — 1 and then taking the square
root we get

m l
(Z biaTw)bin (TW) VW W) + Y ciu(T)ein (Ty) V(BT B"Y)  (12)

u,v=1 u,v=1

m 1 1/2
+ YD bia(Tw)ein(Tn) Vi (W, BH'”)) < CAV257!s. (13)

u=1v=l1
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Therefore,

m 1
D b (T V(W WYY+ " iy (Tw)] Vi (B™, B)

u=1 v=1

sc( S i T b (T 2V (W, W[ V2
1<u<v<m

(14)
+ Y e @] lein (T2 Vi B™, B V2

1<u<v<l

m l
+ 30 D Tl Pl (T VW B2 4 V257 )
u=1v=1

Further, for arbitrary f € c? [0, 1],

M—1

AN T = 1 f Lo

N=0

<|lfllo AY,

which yields

m l
Z ||bi,u||L1[o,1] + Z llciw ||L1[0.1]
u=1 v=1
i Ml / M—1
< (M Ibially + A Ibi,u(TN)I) +> (A" leisllo + A7) |Ct%v(TN)|)
=1

u N=0 v=1 N=0
m M—1
< 3 (A" 10l + A bl Y- 417 < Vi W'
u=1 N=0
M—1
+A1/251/2_H Z |bzu(TN)| VN(WM, Wu)l/Z)
N=0
1 M—1
+ Z (AO ||C||9 + A1/251/2_H ”C”oo Z |Al/28H_l/2 _ VN(BH’U,BH’U)I/Z‘
v=1 N=0

M—1
+A1/251/2_H Z |Ci,v(TN)| VN(BH’U,BH’U)I/Z).
N=0
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Therefore, using (14), we arrive at

160l r0.1y + lellzron = C(Ag( 1515 + liclly)

M—1 m
FAV b, D7D A28, — V(W W]
N=0u,v=1
M-1 1 12
+A1/281/2_H ”C”oo Z Z )AI/ZSH—I/ZSM’U _ ‘VN(BH’M,BH’U)‘ ‘
N=0uv=1
M—1 m l 12
+Al/281/2_H ”c”loé2 ”b”loéZ Z Z Z |VN(WM,BH'U)’ + S_HS)
N=0u=1v=1

=< C( Ibllg + llelly + ATV b o RY

FAITH el oo RE 4+ ATVASUTI2 (e o + 1blloo) R™ + S_HS),

where
M—1 m
RV — A¥A4g—1/4 Z Z )Al/zfsu,v — [V (W, W”)Il/z),
N=0uv=1
M—1 |
R = APZ2G12 N N ARSI, vyt | as)
N=0up=1

M—=1 m I
RVB _ A3/45—H/2 Z Z Z iVN(Wu’BH,U)|l/2'
N=0u=1 v=1

Further we use the following interpolation inequality, valid for any f € C?[0, 1] and
y <1:

1flloo = €O 1A Ne + ¥ 1 F oy )-
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for any y < 1. Thus,

1Bl + llellos = C(lIBNlg + lellg )y + CV_W(( Ibllg + licllg ) A°
(5]l + IICIIOO)[A_I/453/4_HRW + APTISTHRE 4 A‘l/“é’“‘H)/zRW’B]
+57 Voo + 8" flalloq + A%SH Yy | B + A%82 g ).
(16)
Now we want to put
AP Nsﬂ,Sws"‘,ywe”,a >fB>0,n>0,

so that in the right-hand side of (16), the exponents of ¢ are positive for all terms
except || Y| - Since (H —1/2)/0 < (3 — 4H) < 1, it is possible to take B/ €
((H—1/2)/6,(3—4H)) so that both 68 + (1/2— H)a and —f/4 + (3/4 — H)ax are
positive. Also (H— 1)+ (1—H)a = (1—-H)(ea—8) > 0,—/4+ (1 —H)x/2 >
—B/4+ (3/4—H)a > 0,08+ (H—H)a > 08 + (1/2— H)a > 0. Therefore, by
choosing 1 small enough we can make all needed exponents positive.

Thus, for some ¥ > 0 and C; > 0 we have

1blloo + lelloo = C 1Y llo 6™ + Clsk((”b”oo + llello)[RY + R® + R™F]

+116llg + liclly + llallo + liclls [B”

PR EA,&),
where A = Ha + /6. Consequently, for ¢ small enough
P {1Blloo + llcloo > £/ and [|Y]og < £}
<P{RY =P} 4+ P{RP = 6P} + P{RVF = ¢/}
+P{1Ibllg + liclly + llcll [B" | + €as = 67}

Now the statement follows by applying Lemmas 3 and 6 and the Chebyshev
inequality. O

Lemma 6 Let RY,RE and RV*® be given by (15) and (11). Then we have for any
h > 1 the following concentration inequalities

P{RY > h} < %exp(—Chz), (17)
P{R? > h} < %exp(—Ch2), (18)

P{R"? > h} < %exp(—Chz). (19)
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Proof By [1, Lemma 3.1] we have for 2 > 0

P{|AY2 — vy(W, W) 2| A74671% > b} < Cexp (—CH?). (20)
Further, let u # v. Since W* and W" are independent, and W' has independent
increments, then conditional on W¥, Vy(W", W”)A‘l/ 25=1/2 has a centered Gaus-

sian distribution with the variance Vy(W?, W”)A‘l. Therefore,

P {|VN(WM, WU)II/ZA—1/48—1/4 > ]’l}

4
=E[P{|Vy(W", WYy AT2512 > 3] |w'] < CE [exp%—%} }
h4A 1/2 v vy1/2
§Cexp —m +P{’A —VN(W,W) |ZU}

4A v2
< Cow|~ga o) | ~Cugn|

where we have used (20). Setting v2 = h?>A and recalling that A > § we get
P {|Vy(W*, W")|'/2ATY4§714 > b} < Cexp (—Ch?).

Combining this with (20), we get

M—-1 m

P{RV > n} < Z Z ) {A‘1/48_1/4|A1/28u,v _ |VN(WM,WU)|1/2| > hmz}

N=0u,v=1
C
< A exp {—Chz} .

Using the inequalities from [1, Lemma 3.2] and repeating the last step, we get (18).
The estimate (19) is proved similarly to (17), so we omit some details. Write

P {|VN(WM,BH'U)|1/2A_1/45_H/2 > h}

4 2H—1
— E[P {|Vy(W".B"")[ A6~ = i?} | "] < CE [exp% e } ]

_4VN(BH,‘U7BH,‘U)
h4A52H_l
T 4(AV28HT1/2 4 g2

h4A52H_l v2
S CCXP{—W} + CGXP{—CW} .

< Cexp% } +P {|A1/26H_1/2 _ VN(BH,U’BH,U)1/2| > v}
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Setting v? = h?>A§?"~! and taking into account that A > §, we arrive at
P {|Vy(W", BHV)[V2ATVA§THI2 > p} < Cexp {—Ch?} .

From here (19) is deduced similarly to (17). |
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