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Supervisor’s Foreword

Several pioneering experiments have demonstrated the great potential of ultracold
atoms for quantum simulations in the spirit of Richard Feynman’s great vision:
building a computer that is made of quantum mechanical elements that obey
quantum mechanical laws to emulate situations that are computationally and
numerically intractable. The potential of cold atoms mainly relies on the high
tunability of the system parameters that govern their dynamics such as dimen-
sionality or collisional properties. In a typical cold atom experiment bosonic or
fermionic atoms are cooled to ultra-low temperatures in order to reach quantum
degeneracy. Subsequently they are confined in engineered magnetic and optical
potentials realizing closed quantum systems that are, to a good approximation,
decoupled from their environment. Using standing waves of laser light the atoms
can be exposed to almost defect free crystal-like optical potentials to simulate
famous condensed matter problems such as the superfluid to Mott-insulator tran-
sition. In these systems the atoms play the role of the electrons in an ion crystal.
However, there is a major difference between the two regarding the electric charge.
Since ultracold atoms are charge neutral they are not affected by electromagnetic
fields the way electrons are. It has been an active field of research to overcome this
limitation and to find new experimental techniques that would allow one to mimic
the physics of charged particles subjected to external electromagnetic fields.

The thesis of Monika Aidelsburger covers the topical subject of artificial mag-
netic fields with ultracold atoms in optical lattices. In her thesis, Monika gives an
authoritative introduction into this interdisciplinary research field at the crossroads
of quantum optics and condensed matter physics. The thesis discusses in detail and
in a very pedagogical manner several seminal experiments carried out by her, e.g.,
on the realization of the Hoftstadter model with cold atoms and the first mea-
surement of the Chern number of these topological Bloch bands by directly probing
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bulk topological currents. The thesis will both appeal as an introduction to a reader
wanting to learn more about this contemporary research field and also contain a
depth that will likewise make it a highly valuable reference for experts in the field.

Munich Prof. Immanuel Bloch
August 2015
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Abstract

This thesis reports on the generation of artificial magnetic fields with ultracold
atoms in optical lattice potentials using laser-assisted tunneling, as well as on the
first Chern number measurement in a non-electronic system.

The high experimental controllability of cold atoms in optical lattices makes
them suitable candidates to study condensed matter Hamiltonians, where the atoms
play the role of the electrons. However, the observation of magnetic field effects in
these systems is challenging because the atoms are charge neutral and do not
experience a Lorentz force. In the context of this thesis a new experimental tech-
nique for the generation of effective magnetic fields with laser-assisted tunneling
was demonstrated, which mimics the physics of charged particles in real magnetic
fields. The applied laser beams create a periodic on-site modulation whose phase
depends on the position in the lattice and leads to complex tunnel couplings. An
atom that hops around a closed loop in this system picks up a non-zero phase,
which is reminiscent of the Aharonov–Bohm phase acquired by a charged particle
in a magnetic field. The corresponding time-dependent Hamiltonian is typically
described in terms of an effective time-independent Floquet Hamiltonian. In this
work a theoretical description of the underlying full-time dynamics that occurs
within one driving period and goes beyond the simple time-independent picture is
presented. In the experiment the laser-assisted-tunneling method was implemented
for staggered as well as uniform flux distributions, where the latter is a realization
of the Harper-Hofstadter model for a flux Φ ¼ π=2 per lattice unit cell. By
exploiting an additional pseudo-spin degree of freedom the same experimental setup
led to the observation of the spin Hall effect in an optical lattice. Using the unique
experimental detection and manipulation techniques offered by a two-dimensional
bichromatic superlattice potential the strength of the artificial magnetic field and its
spatial distribution could be determined through the observation of quantum
cyclotron orbits on the level of isolated four-site square plaquettes. The band
structure in the presence of a uniform magnetic field is topologically non-trivial and
is characterized by the Chern number, a two-dimensional topological invariant,
which is at the origin of the quantized Hall conductance observed in electronic
systems. In order to probe the topology of the bands the techniques mentioned
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above were refined by developing a new all-optical laser-assisted tunneling setup,
which enabled the first experimental determination of the Chern number in a
non-electronic system.

The presented measurements and techniques offer a unique setting to study the
properties of topological systems with ultracold atoms. All experimental techniques
that were developed in the context of this thesis with bosonic atoms can be directly
applied to fermionic systems.

x Abstract
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Chapter 1
Introduction

Abstract The topic of this thesis is at the interface between condensed matter
physics and ultracold quantum gases. The introductory chapter gives a brief overview
over topological quantum states of matter and important experimental works in the
field of ultracold atoms that enable a study of related phenomenawith ultracold atoms
in optical lattices.

1.1 Topology in Condensed Matter Physics

Quantum states of matter have been successfully characterized by the concept of
spontaneous symmetry breaking [1]. A descriptive example is the transition from a
paramagnetic to a ferromagnetic state of ametal. Above a critical temperature, known
as the Curie temperature, the direction of the spins in the material is random and the
average magnetization 〈M〉 is zero. Below a critical temperature the system enters
a ferromagnetic phase, where the spins are at least partially aligned, such that the
magnetization 〈M〉 takes a finite value. The ferromagnetic state is no longer invariant
under spin rotation; an additional symmetry is broken compared to the paramagnetic
state. The transition is characterized by the order parameter 〈M〉, which is zero for
the symmetric state and non-zero for the symmetry-breaking state.

With the discovery of the integer quantum Hall (QH) effect [2, 3] a new family of
quantumstateswas foundwhich did not fit into this simple classification of condensed
matter systems described above [4–6]. In theQHeffect electrons form aQH insulator,
that is insulating in the bulk but displays current-carrying states at its boundaries.
Each of these states contributes one quantum of conductance e2/h, which gives rise
to the perfectly quantized Hall conductance discovered in 1980 [2, 3]. Surprisingly,
this quantization was found independent of the microscopic details of the material
[7, 8]. In fact the number of edge states is mathematically determined by the value of
an integer topological invariant such that the quantization is topologically protected
against small perturbations of the system.
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2 1 Introduction

In mathematics the term topology was introduced by Johann Benedict Listing in
the 19th century [9] to classify the shape of geometric objects. He started to establish
a new language to describe what one could call the qualitative shape of a geometric
object without making use of ordinary quantities that are usually employed to define
the shape of an object. Intuitively one would say that a sphere is intrinsically different
from a torus because they cannot be continuously transformed into each other. The
torus belongs to a class of objects with genus g = 1, that are characterized by a
hole independent of the specific details of its shape. In contrast a sphere belongs to
a class with genus g = 0 and does not exhibit a hole. In this sense a coffee cup is
topologically equivalent to a torus and the genus is a topological invariant. It was
found that mathematically these numbers can be described as integrals over the local
curvature of a surface. Even though the integrands locally depend on the details of
the geometry, the integral itself however does not.

In condensed matter systems the abstract concept of topology can be applied to
determine the intrinsic properties of the corresponding energy bands. Two systems
with a gapped energy spectrum can only be continuously transformed into each other
if they belong to the same topological class. Otherwise the system undergoes a quan-
tum phase transition during the transformation where the energy spectrum becomes
gapless. Accordingly, smooth deformations can be defined as transformations that
do not close an energy gap [4, 6]. It turns out that observables such as the quantized
conductivity in the integer QH effect, that arise due to the topological properties of
the edge states, are rooted in the topological properties of the bulk [10–12], which
are described by the Chern number, a topological invariant defined as an integral in
momentum space [8].

Since the discovery of QH insulators the field of topological materials has been
rapidly growing [4, 6, 13]. Initially, it was believed that topological quantum states
can only exist in 2D and if time-reversal (TR) symmetry is broken by applying a
magnetic field. In 1988 Haldane [14] proposed a model Hamiltonian that supports
QH states on a honeycomb lattice without external magnetic field. Such insulators
are generally known as Chern insulators and even though these insulators are con-
ceptually different from QH systems they belong to the same class. A generalization
of Haldane’s model was put forward by Kane andMele [15] and Bernevig and Zhang
[16], who predicted TR-symmetric topological insulators due to spin-orbit interac-
tion. In 2D topological insulators are synonymously called quantum spin Hall (QSH)
insulators and were observed experimentally in HgTe/CdTe quantum well structures
[17–19]. QSH materials are closely related to QH insulators; they are characterized
by a charge excitation gap in the 2D bulk and gapless helical edge states that lie
in the bulk gap and are protected by TR symmetry. The edge states appear in pairs
at the surface and their propagation direction depends on the spin of the particle.
Soon after also topological insulators in 3D were predicted [20–22] and observed in
experiments [23, 24].

The origin of topological insulators can be understood in a single-particle frame-
work. However, the physics becomes even richer if the interaction between the charge
carriers plays a significant role as was first demonstrated with the discovery of the
fractional quantum Hall (FQH) effect [25, 26]. In addition to the integer QH effect
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new plateaus were found at fractional values of e2/h, which cannot be understood
in a single-particle picture. FQH states are particularly interesting because they can
feature fractionally-charged excitations which obey unusual statistics that are neither
fermionic nor bosonic. Quantum-mechanical systems whose properties are governed
by the interaction between its constituents are computationally difficult to handle. In
most cases numerical results can only be obtained for small systems or in reduced
dimensions. In the laboratories FQH states only exist under extreme conditions: very
low temperatures and strong magnetic fields. Similar states are predicted at zero
magnetic fields in fractional Chern insulators (FQI), which potentially exist even
up to room temperatures [13, 27]. So far related experimental observations have not
been reported, however, very recently a Chern insulator without external magnetic
field has been observed experimentally [28].

1.2 Ultracold Atoms in Optical Lattices

A different approach to study topological physics consists in engineering synthetic
materials in laboratories which exhibit the properties of interest. Synthetic materials
that consist of ultracold atoms in optical lattices have proven to be very well suited to
simulate and study condensed matter Hamiltonians [29, 30]. Neutral atoms are rou-
tinely cooled and trapped in periodic potentials created by interfering laser beams
[31]. Using these techniques various lattice geometries can be engineered with a
high degree of experimental control [32–37]. The physics of interacting atoms in
such periodic potentials can be described by the Hubbard model [38], which is an
essential model Hamiltonian to describe strongly-correlated electrons in condensed
matter systems. The characteristic parameters are the tunnel coupling between neigh-
boring sites and the on-site interaction [39–41]. For bosonic atoms with repulsive
interactions the system undergoes a quantum phase transition at a critical ratio of
interaction to kinetic energy [42, 43], which has been observed experimentally in
2001 [44]. With ultracold atoms in optical lattices the Hubbard parameters can be
tuned individually in a very clean, defect-free realization by changing the lattice
depth, which changes the kinetic energy, or by controlling the interaction strength
via Feshbach resonances [45].

Due to the high experimental controllability, cold-atom systems constitute promis-
ing candidates to gain deeper insight into the rich physics of topological materials.
In particular they may provide access to physical observables typically not attainable
in solid-state experiments [29]. Ultracold quantum gases are commonly probed after
releasing the atoms from the trap and letting them expand for a certain amount of
time (time-of-flight) to obtain information about their momentum distribution and
coherence properties [29]. Newgeneration experiments have increased the number of
accessible observables to a great extent through high-resolution detection techniques
[46–51]. Single-site and single-atom resolved density distributions of atoms in opti-
cal lattices have become available [49, 50]. This new imaging techniques provide
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access to complex spatial correlations [52] and enabled single-site spin control of
individual atoms in the lattice [53].

Cold-atom setups might further allow the generation of synthetic topological
matter without any counterpart in nature. The most recent example is the implemen-
tation of the Haldane model [14] which was considered unlikely to be realized in
condensed-matter systems but was demonstrated in a cold-atom setup [54] by break-
ing TR symmetry in a honeycomb lattice by applying a circular modulation [55].

Typically QH states are associated with 2D electron gases confined in a two-
dimensional crystalline potential and subjected to a very large magnetic field. In
cold-atom setups related physical effects cannot be observed directly because the
charge neutrality of the atoms prevents a direct application of the Lorentz force.
To overcome this limitation several experimental techniques have been developed
to engineer artificial magnetic fields which mimic the effect of real magnetic fields
and many of them were already successfully demonstrated experimentally [56–59].
However, the realization of very strong synthetic magnetic fields has so far remained
out of reach. It has been shown that atoms in optical lattices might be well suited to
enter this regime by coupling their motional and internal degrees of freedom [60–62].
In this thesis, a similar method is discussed, where artificial gauge fields are imple-
mented in optical lattices using laser-assisted tunneling. The underlying idea is that
atoms can only tunnel between neighboring sites in the lattice due to the presence of
an additional well-chosen laser configuration. This scheme has the advantage that it
does not rely on the internal structure of the atom but makes use of periodic on-site
modulation of the lattice using far-detuned running-wave beams [63–66]. Therefore
it is less susceptible to heating due to spontaneous emission. This has lead to the
successful implementation of staggered [67–69] as well as uniform flux distribu-
tions [70–73] in the strong-field regime and enabled the first experimental obser-
vation of a 2D topological invariant, the Chern number, in a cold-atom setup [73].

1.3 Contents of This Thesis

The energy spectrum of an electron moving in a periodic potential is altered due to
the presence of a magnetic field in a rather dramatic way even in a single-particle
picture [74–76]. Due to the magnetic field the discrete translational symmetry of
the Hamiltonian is no longer determined by the symmetry of the underlying crystal
structure but by the magnetic translation symmetries which are related to the strength
of the magnetic field. A theoretical discussion of the properties of the single-particle
Hamiltonian of a square lattice subjected to an external magnetic field is presented
in Chap.2.

In a cold-atom setting synthetic magnetic fields can be engineered using the laser-
assisted-tunneling technique as mentioned above. Due to the periodic on-site mod-
ulation introduced by the additional laser beams the corresponding Hamiltonian
governing the dynamics is periodic in time and can be described using the Floquet

http://dx.doi.org/10.1007/978-3-319-25829-4_2
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theorem. This description is similar to Bloch’s theorem which generally applies
for spatially periodic Hamiltonians. In Chap.3 the theoretical background of time-
periodic Hamiltonians and the generation of artificial gauge fields with laser-assisted
tunneling is introduced.

All measurements presented in this thesis were performed with bosonic atoms.
Each experimental cycle started with the preparation of a Bose-Einstein condensate
(BEC) of Rubidium atoms (87Rb), which was then loaded into several optical lattice
and superlattice potentials. A description of the main underlying experimental setup
and measurement techniques can be found in Chap. 4.

The first successful implementations of artificial gauge fields in 2D optical lattices
were staggered flux distributions in triangular [67] and square lattices [68, 69]. In
these configurations the direction of the field alternates in sign across the lattice
and exhibits a zero mean value. An experimental realization of such a staggered
flux distribution with laser-assisted tunneling in a staggered superlattice potential is
discussed in Chap. 5.

In order to generate uniform flux configurations [70, 71] the above setup was
modified by replacing the staggered potential with a linear one (Chap.6). This con-
stitutes a realization of the Harper-Hofstadter Hamiltonian [74–76] which describes
charged particles on a square lattice with uniform magnetic field; it breaks TR sym-
metry and gives rise to topologically non-trivial bands. Moreover, using the exact
same experimental setup a Hamiltonian [77] underlying the QSH effect [15, 16] was
implemented by making use of an additional pseudo-spin degree of freedom. This
further led to the observation of the spin Hall effect in an optical lattice (Chap.6).

The previously mentioned scheme, which is discussed in Chap. 6, relies on a
magnetic field gradient and did not allow for an observation of the dynamics in
the fully connected two-dimensional lattice but only on a local scale. The main
limitation was to find an adiabatic way to connect the topologically trivial 2D lattice
without flux to the topologically non-trivial onewhich exhibits a completely different
energy spectrum. In Chap.7 a new all-optical setup is introduced, which generates an
effective uniformmagnetic fieldwithout the requirement of amagnetic field gradient.
This greatly increases the experimental flexibility and enabled an adiabatic loading
of the atoms into the topologically non-trivial energy bands.

It further provided the basis for the first measurement of a 2D topological invariant
in a cold-atom setup [73]. Due to the non-trivial topology of the energy bands the
atoms experience a transverse motion as a response to an applied force, which is
proportional to the Chern number. The experimental results are reported in Chap. 8.
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58. J. Dalibard, F. Gerbier, G. Juzeliūnas, P. Öhberg. Colloquium: artificial gauge potentials for

neutral atoms. Rev. Mod. Phys. 83, 1523–1543 (2011)
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Chapter 2
Square Lattice with Magnetic Field

Abstract Electrons moving in a periodic potential experience a quantized energy
spectrum, where the discrete energy bands are known as Bloch bands. In a mag-
netic field the spectrum further splits into highly degenerate Landau levels. The
interplay between both effects leads to a complex fractal energy spectrum known
as Hofstadter’s butterfly. This chapter provides an introduction into the theoretical
description of the system in the absence of interactions in terms of magnetic trans-
lation symmetries. The topological properties of the system are further discussed in
terms of topological invariants, the Chern numbers, which are directly related to the
quantization of the Hall conductivity.

Electrons moving in a periodic potential experience a quantized energy spectrum,
where the discrete energy bands are known as Bloch bands. In a magnetic field the
spectrum further splits into highly degenerate Landau levels. The interplay between
both effects leads to a complex fractal energy spectrum known as Hofstadter’s but-
terfly [1]. In order to observe related effects experimentally, magnetic fields on the
order of one flux quantum per lattice unit cell are required. In solid state setups the
lattice constants are rather small, i.e. on the order of a few angstroms. Consequently,
unfeasible large magnetic fields would need to be applied to the material to enter
this regime. To overcome this limitation artificial materials with larger lattice con-
stants can be designed. Recently this was demonstrated by engineering superlattice
structures with graphene placed on hexagonal boron nitride [2–4]. Additionally the
same experimental regimes became accessible in photonics [5, 6] and with ultracold
atoms [7, 8].

Already the single particle physics in a periodic potential with largemagnetic field
shows very interesting phenomena. The motion of a charged particle in a magnetic
field is accompanied by a geometric phase, the Aharonov-Bohm phase [9]. On a
lattice these phases are introduced in the form of so-called Peierls phases that a
particle picks up when hopping in the lattice (Sect. 2.1). Unlike the zero-field case
the magnetic Hamiltonian is not invariant under the usual translation by a lattice
unit vector. Instead one has to consider the magnetic translation symmetries of the
Hamiltonian which effectively enlarge the usual lattice unit cell depending on the

© Springer International Publishing Switzerland 2016
M. Aidelsburger, Artificial Gauge Fields with Ultracold Atoms
in Optical Lattices, Springer Theses, DOI 10.1007/978-3-319-25829-4_2

9
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magnetic flux. The newunit cell is denoted asmagnetic unit cell. Its area is determined
by the strength of the flux but its dimensions are not unique (Sect. 2.2). The resulting
single-particle energy spectrum shows a fractal structure as a function of themagnetic
flux per unit cell, which is known as Hofstadter’s butterfly (Sect. 2.3). Depending on
the flux the lowest tight-binding band splits into several subbands, whose topological
properties are characterized by topological invariants called Chern numbers, which
are directly related to the quantization of the Hall conductivity in the integer QH
effect (Sect. 2.4).

2.1 Peierls Phase-Factors

The physics of electrons moving in a periodic potential can be described by the
Hubbard model, which was first introduced by John Hubbard in 1963 [10]. This
model is a good approximation for systems at low temperatures where all particles
occupy the lowest energy band [11, 12]. It is typically characterized by two terms:
a kinetic term that describes the hopping of particles between neighboring sites in
the potential and an on-site interaction term. For a single electron in a 2D lattice
potential the Hamiltonian consists only of the kinetic term and can be written in the
following form

Ĥ0 = −J
∑

m,n

(
â†

m+1,nâm,n + â†
m,n+1âm,n + h.c.

)
, (2.1)

where â†
m,n and âm,n are the creation and annihilation operators on site (m, n) respec-

tively, m is the site index along x and n the one along y. The model is based on the

(a) (b)

Fig. 2.1 Equivalence between complex tunneling amplitudes on a square lattice and the Aharonov-
Bohm phase. a Schematic drawing of a 2D lattice with complex tunneling amplitudes determined
by the Peierls phases φi

m,n , i = {x, y}. The coupling strength along both directions is given by
J . An electron that tunnels around the borders of one lattice unit cell (gray shaded area) picks up
a phase � = φx

m,n + φ
y
m+1,n − φx

m,n+1 − φ
y
m,n due to the presence of the vector potential A. b

Illustration of an electron moving along a closed path C in an external magnetic field B = ∇ × A.
The particle picks up a geometric phase �AB known as Aharonov-Bohm phase
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tight-binding approximation where the electrons are assumed to occupy the standard
orbitals of the atoms and the overlap between atomic wave functions on neighboring
sites is small. The tunneling amplitude for an electron to hop from one atom to the
next is determined by the coupling matrix element J .

In the presence of an external magnetic field B = ∇ × A, where A is the vector
potential, Hamiltonian (2.1) is modified according to the Peierls substitution [13].
As a result the tunneling matrix elements become complex and hopping in the lattice
is accompanied by a phase φi

m,n = −eAi
m,n/�, i = {x, y}, which is known as Peierls

phase (Fig. 2.1a), e is the electron charge and � = h/(2π) the reduced Planck
constant. Accordingly, the tight-binding Hamiltonian takes the following form

Ĥ = −J
∑

m,n

(
eiφx

m,n â†
m+1,nâm,n + eiφ y

m,n â†
m,n+1âm,n + h.c.

)
. (2.2)

The Peierls phases are a manifestation of the Aharonov-Bohm phase experienced by
a charged particle moving in a magnetic field (Fig. 2.1b)

�AB = − e

�

∮

C
A · dr = −2π �B/�0, (2.3)

where �B is the magnetic flux through the area enclosed by the contour C and
�0 = h/e is themagnetic flux quantum [9]. Equivalently one can define themagnetic
flux per lattice unit cell in units of the magnetic flux quantum as

α = 1

2π
� = 1

2π

(
φ

x
m,n + φ

y
m+1,n − φ

x
m,n+1 − φ

y
m,n

)
. (2.4)

In the following � will be denoted as the flux per unit cell of the underlying lattice
or simply the flux per plaquette.

2.2 Magnetic Translation Operators

In the zero-field case the lattice translation operators T̂ 0
i commute with Hamiltonian

(2.1) for all Bravais lattice vectors [11, 12],

T̂ 0
x =

∑

m,n

â†
m+1,nâm,n , T̂ 0

y =
∑

m,n

â†
m,n+1âm,n ; (2.5)

they further commute with each other [T̂ 0
x , T̂ 0

y ] = 0, which allows us to apply the
well-known Bloch theorem [11, 12]. In the presence of a vector potential, however,
the Hamiltonian is no longer invariant under the translation by one lattice unit vector
because the corresponding vector potential Am,n is not invariant under this discrete
translation even though the magnetic field B itself might be. Hence, the translation
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operators T̂ 0
i do not commute with Hamiltonian (2.2). For the following discussion

it is convenient to write Hamiltonian (2.2) in the following form

Ĥ = T̂x + T̂y + h.c., (2.6)

where T̂x and T̂y describe the translation by one lattice constant along the x- and y-
direction in the presence of a vector potential Am,n:

T̂x =
∑

m,n

â†
m+1,nâm,ne

iφx
m,n , T̂y =

∑

m,n

â†
m,n+1âm,ne

iφ y
m,n . (2.7)

For simplicity the tunnel coupling is set to J = −1. It can be easily verified that in
general the operators T̂i do not commute with each other [T̂x , T̂y] �= 0, thus, they
neither commutewith theHamiltonian, [T̂x , Ĥ ] �= 0 and [T̂y, Ĥ ] �= 0.Tofind thenew
symmetries of the latticeHamiltonianwithflux and to recover translational invariance
new operators have to be constructed, which form a complete set of commuting
operators with Hamiltonian (2.6). These operators are a combination of translation
and gauge transformation

T̂ M
x =

∑

m,n

â†
m+1,nâm,ne

iθ x
m,n , T̂ M

y =
∑

m,n

â†
m,n+1âm,ne

iθ y
m,n , (2.8)

and are called magnetic translations operators (MTOs) [14–16]. In general the new
magnetic translation symmetry will differ from the one of the underlying lattice
potential. The phases θ i

m,n are determined by the formal requirement that the MTOs

have to commute with the Hamiltonian, [T̂ M
i , Ĥ ] = 0, leading to

θ x
m,n = φx

m,n + �m,nn , θ y
m,n = φ y

m,n − �m,nm . (2.9)

A detailed derivation of these expressions can be found inAppendixA, which closely
follows Ref. [17]. The flux per unit cell �m,n is allowed to vary across the lattice and

φm,n+1
y φm+1,n

y

φm,n+1
x

φm,n
x

Φm,n

x

y
(m,n)

Fig. 2.2 Effective magnetic flux �m,n per plaquette. The vector potential Am,n gives rise to and
effective flux per plaquette (gray shaded area) as defined in Eq. (2.10), with the convention that
the magnetic field is pointing along the +êz-direction. The arrows illustrate the direction of the
tunneling
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its index is determined by the lattice site on the lower left corner (Fig. 2.2)

�m,n = φ
x
m,n + φ

y
m+1,n − φ

x
m,n+1 − φ

y
m,n . (2.10)

Although the derivation of Eq. (2.9) was carried out for general flux distributions
�m,n , it might not be directly applicable in the case of more complicated configura-
tions such as staggered flux distributions (Chap. 5). However, even in this case the
corresponding MTOs can be derived using the methods described in Appendix A.
The MTOs obtained in this way do commute with the Hamiltonian by construction
but they do not necessarily commute with each other. The value of the commutator
[T̂ M

x , T̂ M
y ] can be computed using the single-particle state ψi, j = â†

i, j |0〉 on lattice
site (i, j):

T̂ M
x T̂ M

y ψi, j = T̂ M
x eiθ y

i, j ψi, j+1 = ei(θ x
i, j+1+θ

y
i, j ) ψi+1, j+1 (2.11)

T̂ M
y T̂ M

x ψi, j = T̂ M
y eiθ x

i, j ψi+1, j = ei(θ x
i, j +θ

y
i+1, j ) ψi+1, j+1. (2.12)

The specific form of theMTOs depends on the particular form of the vector potential
Am,n , which in turn depends on the choice of gauge.However, there is no fundamental
reason for the two magnetic translations operators T̂ M

x and T̂ M
y defined in Eq. (2.8)

to commute with each other.

2.2.1 Homogeneous Magnetic Fields

Let us consider a homogeneous magnetic field with �m,n ≡ � = 2πα per plaquette
(Fig. 2.3a). Inserting Eq. (2.9) into the expressions given in Eqs. (2.11) and (2.12)
leads to the following result

Ty
M Ty

M

Tx
M

Tx
M

−Φ
Φ− Φ−

k

lΦ

Φ Φ

ΦΦ

Φ ΦΦ

Φ

x

y

a

a(a) (b) (c)

Fig. 2.3 Magnetic translation operators for a homogeneous magnetic field. a Schematic draw-
ing of a square lattice with lattice constant a and homogeneous flux � per plaquette. b
Action of the magnetic translation operators along a closed path around one lattice unit cell,
(T̂ M

y )†(T̂ M
x )† T̂ M

y T̂ M
x ψi, j = exp(−i�)ψi j . c If the path shown in (b) is enlarged around a

super-cell of dimension k × l the action of the MTOs along that path corresponds to a phase shift
of −kl� = −2πα · kl

http://dx.doi.org/10.1007/978-3-319-25829-4_5
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e−i� T̂ M
x T̂ M

y = T̂ M
y T̂ M

x . (2.13)

Consequently, the commutator vanishes only if � is an integer multiple of 2π . Such
a flux configuration is however gauge-equivalent to the trivial case of zero flux per
plaquette and does not correspond to the situation we are interested in. Nevertheless
equation (2.13) does provide us with an intuitive picture of the MTOs by acting with
them on a single-particle state ψi, j around the borders of one lattice unit cell that is
pierced by a flux �. Choosing the direction illustrated in Fig. 2.3b the single particle
state ψi, j picks up a phase −�, which corresponds to a flux pointing in the opposite
direction.

For flux values different from � = ν × 2π , ν ∈ Z, this intuitive picture suggests
that commuting magnetic translation operators can be constructed if they enclose a
super-cell on the lattice pierced by a magnetic flux equal to an integer multiple of
2π . For a super-cell of dimension k × l one obtains

(
T̂ M

x

)k (
T̂ M

y

)l
ψi, j =

(
T̂ M

x

)k
exp

(
i

l−1∑

ν=0

θ
y
i, j+ν

)
ψi, j+l

= exp

⎛

⎝i
k−1∑

μ=0

θ
x
i+μ, j+l + i

l−1∑

ν=0

θ
y
i, j+ν

⎞

⎠ψi+k, j+l , (2.14)

(
T̂ M

y

)l (
T̂ M

x

)k
ψi, j =

(
T̂ M

y

)l
exp

⎛

⎝i
k−1∑

μ=0

θ x
i+μ, j

⎞

⎠ψi+k, j

= exp

⎛

⎝i
l−1∑

ν=0

θ
y
i+k, j+ν + i

k−1∑

μ=0

θ
x
i+μ, j

⎞

⎠ψi+k, j+l . (2.15)

Hence, the phase acquired by the single-particle stateψi, j whichwas translated along
the borders of the super-cell by acting on it with theMTOs is simply given by the sum
of the corresponding phase terms θ i

m,n along the borders of the super-cell. This sum
can be decomposed in k · l lattice unit cells, for which the phase term was determined
in Eq. (2.13), and one obtains

e−ikl�
(

T̂ M
x

)k (
T̂ M

y

)l =
(

T̂ M
y

)l (
T̂ M

x

)k
, (2.16)

as illustrated in Fig. 2.3c. For rational values of α = p/q (p, q ∈ Z) the commutator
vanishes if

kl� = 2πp
kl

q
!= 2π × ν, ν ∈ Z. (2.17)
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The smallest possible super-cell for which [(T̂ M
x )k, (T̂ M

y )l] = 0 is given by kl = q
and is called magnetic unit cell. The area of the magnetic unit cell AMU is q times
larger than the area of the normal lattice unit cell and contains q sites. The new
operators (T̂ M

x )k ≡ M̂k
x and (T̂ M

y )l ≡ M̂l
y together with Ĥ (2.6) form a com-

plete set of commuting operators such that one can find simultaneous eigenstates
	m,n by formulating a generalized Bloch theorem based on the magnetic translation
symmetries:

M̂k
x 	m,n = eiμx

m,n 	m+k,n = eikx ka 	m,n ,

M̂l
y 	m,n = eiμy

m,n 	m,n+l = eikyla 	m,n . (2.18)

with kl = q, a the lattice constant and k = (kx , ky) defined within the first magnetic
Brillouin zone (FBZ): −π/(ka) ≤ kx < π/(ka), −π/(la) ≤ ky < π/(la). An
explicit form of the eigenstates will be derived in the following section for α = 1/4.
Note that the area of the magnetic unit cell is fixed by the strength of the magnetic
flux α = p/q, its dimensions, however, are not.

2.2.2 Magnetic Translation Operators for α= 1/4

In this section the MTOs for α = 1/4 are introduced. According to Eq. (2.17) the
magnetic unit cell consists of four lattice unit cells, such that its area is given by
AMU = 4a2. For this value of the flux there are three different possibilities to choose
its dimensions (Fig. 2.4). The specific formof theMTOs is gaugedependent, therefore
the following example is carried out choosing the Landau gaugeφm,n = (−2παn, 0).
The non-commuting magnetic translation operators in this gauge are

32100 1

32

0

3

2

1

x

y

a

a(a) (b) (c)

Fig. 2.4 Magnetic unit cells of a square lattice with flux α = 1/4. Schematic drawing of a square
latticewith constant a. The area of themagnetic unit cell (blue shaded area) depends on themagnetic
flux; for α = 1/4 it contains q = 4 sites (black circles) and covers an area of four lattice unit cells
AMU = 4a2. There are three different possibilities to choose its shape: a rectangular and oriented
along y with AMU = 1a × 4a, b symmetric with AMU = 2a × 2a and c rectangular and oriented
along x with AMU = 4a × 1a
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T̂ M
x =

∑

m,n

â†
m+1,nâm,n , T̂ M

y =
∑

m,n

â†
m,n+1âm,ne

−i2παm , (2.19)

and the commuting ones are given by

M̂k
x =

∑

m,n

â†
m+k,nâm,n, M̂l

y =
∑

m,n

â†
m,n+l âm,ne

−i2παml , (2.20)

with kl = 4. In the following explicit forms of the eigenfunctions for the different
choices of the magnetic unit cell are determined.

Rectangular magnetic unit cell oriented along y (Fig. 2.4a): In the literature this
is the most common choice for the magnetic unit cell in the Landau gauge because
the MTOs take the form of usual lattice translation operators

M̂1
x =

∑

m,n

â†
m+1,nâm,n , M̂4

y =
∑

m,n

â†
m,n+4âm,n , (2.21)

and the eigenfunctions satisfying the generalized Bloch’s theorem in Eq. (2.18) can
be written in the following form

	m,n = eikx maeiky naψn, ψn+4 = ψn , (2.22)

where	m,n is expanded in single-particle on-sitewave functions;ψi , i = {0, 1, 2, 3},
is the complex amplitude of the wave function on the four sites of the magnetic unit
cell and k is defined within the FBZ: −π/a ≤ kx < π/a, −π/(4a) ≤ ky < π/(4a).
One can verify that this ansatz fulfills the generalized form of Bloch’s theorem (2.18)

M̂1
x 	m,n = 	m+1,n = eikx a 	m,n ,

M̂4
y 	m,n = 	m,n+4 = e4ikya 	m,n . (2.23)

Symmetric magnetic unit cell (Fig. 2.4b): For the square symmetric magnetic unit
cell the MTO along y is slightly more complicated. It is a combination of a usual
translation by two lattice sites and an additional phase factor,

M̂2
x =

∑

m,n

â†
m+2,nâm,n , M̂2

y =
∑

m,n

â†
m,n+2âm,ne

−iπm . (2.24)

In this case the wave function has to fulfill the following relations

M̂2
x 	m,n = 	m+2,n = e2ikx a 	m,n ,

M̂2
y 	m,n = e−iπm 	m,n+2 = e2ikya 	m,n . (2.25)
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For m even the eigenfunctions take the usual form Bloch functions; for m odd,
however, additional phase terms have to be introduced. The combined solution can
be written as

	m,n = eikx maeiky na

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ψ0 , for m, n even

ψ1 e−inπ/2 , for m odd, n even

ψ2 , for m even, n odd

ψ3 e−inπ/2 , for m, n odd

(2.26)

with k defined within the FBZ, −π/(2a) ≤ kx < π/(2a) and −π/(2a) ≤ ky <

π/(2a).

Rectangular magnetic unit cell oriented along x (Fig. 2.4c): The third possible
choice is a rectangular magnetic unit cell oriented along x , where the corresponding
MTOs are

M̂4
x =

∑

m,n

â†
m+4,nâm,n , M̂1

y =
∑

m,n

â†
m,n+1âm,ne

−iπm/2 . (2.27)

For this choice of the magnetic unit cell, the translation along x is again of the usual
form but the one along y is not. For every site m an additional phase term has to be
introduced in 	m,n to fulfill Bloch’s theorem (2.18)

M̂4
x 	m,n = 	m+4,n = e4ikx a 	m,n ,

M̂1
y 	m,n = e−iπm/2 	m,n+1 = eikya 	m,n . (2.28)

The form of the eigenfunctions involves an additional phase factor that depends on
the site index (m, n) and can be written as

	m,n = eikx ma eiky na eiπmn/2 ψm , ψm+4 = ψm , (2.29)

where k is defined in the range −π/(4a) ≤ kx < π/(4a) and −π/a ≤ ky < π/a.

2.3 Harper-Hofstadter Hamiltonian

The theoretical description of a lattice Hamiltonian with flux depends on the choice
of the gauge since the explicit form of the MTOs depends on the particular form
of the vector potential as was shown above. The physical observables investigated
in the following (energy spectrum, topological invariants) are gauge independent
and one can choose a vector potential where the calculations are particularly simple.
As in the previous section the vector potential will be written in the Landau gauge
φm,n = (−�n, 0), which corresponds to a uniformmagnetic fieldwith flux� = 2πα

per plaquette



18 2 Square Lattice with Magnetic Field

Ĥ = −J
∑

m,n

(
e−i�n â†

m+1,nâm,n + â†
m,n+1âm,n + h.c.

)
. (2.30)

In this gauge only tunneling along the x-direction is complex while tunneling along
the y-direction is real. This Hamiltonian is known as the famous Harper-Hofstadter
Hamiltonian [1, 18, 19], whose single-particle energy spectrum exhibits a fractal
self-similar structure as a function of the flux α, known as Hofstadter’s butterfly [1].

2.3.1 Single-Particle Energy Spectrum

In order to solve the Schrödinger equation first the commuting magnetic translation
operators need to be constructed using the MTOs given in Eq. (2.19), which were
derived in the same gauge. For rational values of the flux α = p/q one can always
choose amagnetic unit cell oriented along the y-directionwith dimensions (1×q) · a2

(see also Fig. 2.4a for α = 1/4). For this particular choice of the magnetic unit cell
the commuting MTOs can be written in the following form,

M̂1
x =

∑

m,n

â†
m+1,nâm,n , M̂q

y =
∑

m,n

â†
m,n+q âm,n . (2.31)

Both operators are equivalent to the usual lattice translation operators as defined in
Eq. (2.5), where the one along x corresponds to a translation by one lattice constant
and the one along y by q lattice constants. The magnetic unit cell contains a flux
�MU = p × 2π . In order to solve the Schrödinger equation one can make the
following ansatz for the wave function

	m,n = eikx ma eiky na ψn , ψn+q = ψn , (2.32)

where kx , ky are defined in the range −π/a ≤ kx < π/a and −π/(qa) ≤ ky <

π/(qa). As shown above, this ansatz fulfills the generalized Bloch theorem (2.18)

M̂1
x 	m,n = 	m+1,n = eikx a 	m,n ,

M̂q
y 	m,n = 	m,n+q = eikyqa 	m,n . (2.33)

By inserting Eq. (2.32) into the Schrödinger equation associated with the Harper-
Hofstadter Hamiltonian (2.30)

E	m,n = −J (e−i�n 	m+1,n + ei�n 	m−1,n + 	m,n+1 + 	m,n−1) (2.34)

one obtains the following simplified equation

Eψn = −J
[
2 cos(kx a − �n)ψn + eikya ψn+1 + e−ikya ψn−1

]
. (2.35)



2.3 Harper-Hofstadter Hamiltonian 19

Consequently, the problem reduces to a q-dimensional eigenvalue equation

E(k)

⎛

⎜⎜⎜⎝

ψ0

ψ1
...

ψq−1

⎞

⎟⎟⎟⎠ = H(k)

⎛

⎜⎜⎜⎝

ψ0

ψ1
...

ψq−1

⎞

⎟⎟⎟⎠ , (2.36)

where the q × q matrix is defined as

H(k) = −J

⎛

⎜⎜⎜⎜⎜⎝

h0 eikya 0 · · · e−ikya

e−iky a h1 eikya · · · 0
0 e−ikya h2 · · · 0
...

...
...

. . .
...

eikya 0 0 · · · hq−1

⎞

⎟⎟⎟⎟⎟⎠
, (2.37)

with hq = 2 cos (kx a − q�). Without magnetic field, or more generally for α ∈ Z,
one obtains a single energy band with dispersion relation

E(k) = −2J cos(kx a) − 2J cos(kya), (2.38)

where the corresponding bandwidth is given by Ebw = 2 × 4J . In the presence of a
rational flux per plaquette α = p/q this band splits into q subbands (Fig. 2.5) with
dispersion relations Eμ(k),μ = {1, . . . , q}. This leads to the famous fractal structure
of the Hofstadter butterfly which displays the single-particle energy as a function of
the magnetic flux α. In Fig. 2.6 two examples of such a spectrum are shown for
α = 1/5 and α = 1/6, which were computed using Eqs. (2.36) and (2.37).

α

1

0.5

0
0-4 4

E/J

Fig. 2.5 Single-particle energy spectrum of an electron in a periodic potential exposed to large
magnetic fields, known as Hofstadter’s butterfly. Energy spectrum of the lowest tight-binding band
as a function of the flux per unit cell α = �/(2π) displaying a fractal, self-similar structure. The
number of energy bands depends crucially on the value of the flux per lattice unit cell. (Data taken
from Ref. [1])
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Fig. 2.6 Single-particle energy spectrum and Chern number distribution of the Hofstadter model
for α = 1/5 (a) and α = 1/6 (b). For α = 1/5 the spectrum splits into five subbands, while
for α = 1/6 it splits into six. The Hamiltonian is particle-hole symmetric, which manifests itself
in certain symmetries between the dispersion relations of the individual subbands (Sect. 2.3.2). It
further leads to a symmetric Chern number distribution around E = 0

For irrational values of the flux the spectrum splits into an infinite number of
energy levels forming a Cantor set [1]. Similar spectra were further computed for
graphene-type lattices [20, 21]. The nature of the single-particle energy spectrum is
determined by rational and irrational values of α respectively. In a Penrose lattice
two kinds of elementary tilings may exist such that one of them is pierced by a
rational flux α while the second one is pierced by an irrational one. It has been
shown that such a configuration can lead to interesting electronic properties and the
spectrum is butterfly-like with a periodicity that is characteristic of the underlying
quasicrystal [22].

2.3.2 Particle-Hole Symmetry

An important property of the Hofstadter model is the particle-hole symmetry, which
gives rise to certain symmetries in the energy spectrum and the Chern number distri-
bution of the energy bands (Sect. 2.4). Let us consider the following transformation

	m,n → 	̃m,n = (−1)m+n 	m,n. (2.39)

The new wave function 	̃m,n satisfies the Harper equation (2.34)

− E	̃m,n = −J (e−i�n 	̃m+1,n + ei�n 	̃m−1,n + 	̃m,n+1 + 	̃m,n−1), (2.40)

which is similar to Eq. (2.34) but with different energy E → −E . This means that
if there exists a state 	m,n with energy E there necessarily also exists a state 	̃m,n
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with opposite energy −E . This result illustrates the particle-hole symmetry present
in the system. The state can be also written in the following way

	̃m,n = eikx maeiky naψ̃n, ψ̃n+q = ψ̃n. (2.41)

Inserting this state into Eq. (2.40) leads to an eigenvalue equation for the new periodic
function ψ̃n , which can be written as follows

Eψ̃n = −J
[
2 cos (kx a + π − �n) ψ̃n + ei(kya+π) ψ̃n+1 + e−i(kya+π) ψ̃n−1

]
.

(2.42)

Comparing this result with Eq. (2.35) shows that the eigenstate associated with the
band E(k) located at positive energies is related to the state in the lower band at
negative energies through the relation

ψn(kx , ky) = ψ̃n(kx + π/a, ky + π/a). (2.43)

Consequently the particle-hole transformation (2.39) maps a state at energy +E
to a state at energy −E . Additionally this transformation corresponds to a shift in
momentum space (kx , ky) → (kx +π/a, ky +π/a). Hence, the dispersion relation of
a band μ which is located around a mean energy Ēμ > 0 is related to the dispersion
relation of a band μ̃ located around a mean value Ēμ̃ < 0 according to

Eμ(kx , ky) = −Eμ̃(kx + π/a, ky + π/a). (2.44)

In addition the particle-hole symmetry has important consequences for the Chern
number distribution as will be discussed in the following section.

2.4 Chern Number

The topology of an energy band is robust against continuous deformations of the
underlying Hamiltonian and is characterized by topological invariants. These topo-
logical properties can have important physical consequences. It has been shown that
the quantization of the Hall conductance discovered by Klaus von Klitzing et al. in
1980 [23] is directly related to an integer topological invariant known as the Chern
number [24].

In solid-state experiments the quantization of theHall conductance σH is observed
by sending a constant current through the sample and measuring the voltage differ-
ence in the transverse direction. At low temperatures all energy bands below the
Fermi energy EF are filled. If the Fermi energy lies within a spectral gap the Hall
conductance is determined by
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σH = e2

h

∑

Eμ<EF

νμ, (2.45)

where νμ is the Chern number of theμth band Eμ and the sum runs over all occupied
bands below the Fermi energy Eμ < EF .

AQHdevice is insulating in the bulk if the Fermi energy is located in an energy gap
and the value of the Hall conductivity is determined by the number of gapless chiral
edge states, that are contributing to the current. The existence of these modes can be
seen as a manifestation of the topological order of the bulk. The connection between
the topological properties of the bulk energy bands and the quantization of the Hall
conductance was first identified in the work by Thouless, Kohmoto, Nightingale,
den Nijs [24]. The corresponding topological invariant, the Chern number of the μth
energy band can be expressed in terms of the periodic eigenfunctions

∣∣uμ(k)
〉
, which

are solutions of the eigenvalue equation (2.36) given above,

νμ = i

2π

∫

F B Z

(〈
∂uμ(k)

∂kx

∣∣∣∣
∂uμ(k)

∂ky

〉
−

〈
∂uμ(k)

∂ky

∣∣∣∣
∂uμ(k)

∂kx

〉)

︸ ︷︷ ︸
=−i�μ(k)

d2k, (2.46)

where �μ(k) is know as the Berry curvature of the μth band [25] and the integral
is carried out over the first magnetic Brillouin zone. This invariant was derived
for an infinite system without edges. Using this expression the topological role of
the edge states is not yet clear. The relation between the topological properties of
the edge modes and the bulk is commonly denoted as bulk-edge correspondence
[26–28]. In particular, it was shown by Hatsugai, that the topology of the edge
states is characterized by an integer, which is equal to the bulk topological invariant
[26, 27].

In Chap.8 we are going to present an experimental observation of the Chern num-
ber of the lowest Hofstadter band for α = 1/4 with bosonic atoms [29]. In these
measurements the topological properties of the bulk were probed through measure-
ments of the anomalous Hall velocity, which occurs transverse to an applied force
and is proportional to the Berry curvature defined above [25].

2.4.1 Distribution in the Hofstadter Model

The particle-hole symmetry (Sect. 2.3.2) inherent to the Hofstadter model has impor-
tant consequences on the Chern number distribution νμ of the Hofstadter bands.
Taking into account the symmetry properties of the wave-function amplitudes ψn in
equation (2.43) leads to an equivalent relation for the eigenfunctions

∣∣uμ(kx , ky)
〉 = ∣∣uμ̃(kx + π/a, ky + π/a)

〉
. (2.47)

http://dx.doi.org/10.1007/978-3-319-25829-4_8
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As a consequence the Berry curvature of the μth band is related the Berry curvature
of the opposite band μ̃ according to

�μ(kx , ky) = �μ̃(kx + π/a, ky + π/a). (2.48)

Hence, both bands share the same Berry curvature shifted in momentum space by
(δkx , δky) = (π/a, π/a). The characteristic Chern number νμ of the band defined
in Eq. (2.46) is obtained by integrating the Berry curvature over the first magnetic
Brillouin zone. As a result the two bands share the same Chern number νμ = νμ̃ and
the distribution is symmetric around E = 0 (Fig. 2.6). Note, that the Chern number
of the total tight-binding band necessarily vanishes, i.e.

∑

μ

νμ = 0 . (2.49)

2.4.2 Diophantine Equation

It has been shown that the fractal structure of the Hofstadter butterfly follows a
simply relation, which allows for an analytical computation of the Chern number.
For a rational flux α = p/q the energy gaps are characterized by two integers sr and
tr , which are determined by a Diophantine equation [30, 31]

r = qsr + ptr , |tr | ≤ q

2
, sr , tr ∈ Z, (2.50)

where r denotes the r th energy gap of the Hofstadter spectrum. Since the spectrum is
split into q-subbands, r can only take values in the interval 0 ≤ r ≤ q. The solutions
of equation Eq. (2.50) are uniquely defined and the two numbers sr , tr are topological
numbers characterizing the gap, where the integer tr determines the value of the Hall
conductivity [24, 32, 33] according to

σH = −e2

h
tr . (2.51)

Thus, tr is given by the sum of the Chern numbers
∑r

1 νr of all occupied bands and
the r th band, which lies between the r th and the (r − 1)st energy gap, carries an
integral Hall conductance determined by the Chern number of the r th band νr which
is a solution of the following Diophantine equation

−1 = q(sr−1 − sr ) + p(tr−1 − tr ) = qσr + pνr , σr ∈ Z. (2.52)

For generic values of the flux with p = 1 one can show that the bands with r < q/2
exhibit a Chern number νr = −1.
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For r even, the middle two bands touch at q Dirac cones (Fig. 2.6b) and the
Diophantine equation above can only predict the sum of the two Chern numbers
νr = q − 2. For r odd, the middle band carries a Chern number νr = q − 1.
These analytical results are in agreement with the numerical calculations depicted in
Fig. 2.6.

A Chern number of the lowest band larger than one |ν1| > 1 can be achieved e.g.
with a flux α = 4/9, where the Chern number of the lowest band is ν1 = 2.

2.4.3 Numerical Calculation of the Chern Number

An efficient way to calculate the Berry curvature and the Chern number of non-
degenerate bands was proposed by Fukui et al. [34] and will be briefly reviewed here.
For the sake of simplicity the band index μ is omitted in the following discussion.
The fundamental idea is to compute the Berry curvature numerically by discretizing
the Brillouin zone using a grid in momentum space defined according to

kα = (kx , ky), kx = 2πα1

N1
, (α1 = 0, . . . , N1 − 1),

ky = 2πα2

q N2
, (α2 = 0, . . . , N2 − 1), (2.53)

where α = (1, . . . , N1N2) and N1, N2 define the size of the unit cell of the grid. The
unit vectors of the grid in momentum space along the two directions are

ê1 = 2π

N1
(1, 0) , ê2 = 2π

q N2
(0, 1) . (2.54)

Using this notation the discrete distribution of the Berry curvature �̃12(kα) in the
FBZ is determined by

�̃12(kα) ≡ ln U1(kα) U2(kα + ê1) U1(kα + ê2)−1 U2(kα)−1, (2.55)

where U1,2 is defined as the link variable

U1(kα) =
〈
u(kα)

∣∣u(kα + ê1)
〉

∣∣〈u(kα)
∣∣u(kα + ê1)

〉∣∣ , U2(kα) =
〈
u(kα)

∣∣u(kα + ê2)
〉

∣∣〈u(kα)
∣∣u(kα + ê2)

〉∣∣ . (2.56)

From this distribution the Chern number can be simply computed by taking the sum
over all possible momenta kα

ν̃ = 1

2π i

∑

α

�̃12(kα). (2.57)
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The numerical determination of the Chern number using the above equations is
accurate already for very coarse grids as demonstrated in Ref. [34]. The Chern
numbers of the different bands illustrated inFig. 2.6were evaluatedusing thismethod.

The Case of Band Touching Points

For bands that are not well separated as it is the case for the two middle bands
in Fig. 2.6b the method described above cannot be applied directly but it can be
generalized as shown in Ref. [34]. Assuming that there are M touching bands
E1(k), E2(k), . . . , EM(k), the link variables can be substituted by determinants of
M × M matrices associated with the multiplet ψ = (|u1〉 , |u2〉 , . . . , |uM〉)

Ũγ (kα) = detUγ (kα)∣∣detUγ (kα)
∣∣ , γ = {1, 2}. (2.58)

The M-dimensional matrices Uγ (kα) are defined as

Uγ (kα) =
⎛

⎜⎝

〈
u1(kα)

∣∣u1(kα + êγ )
〉 · · · 〈

u1(kα)
∣∣uM(kα + êγ )

〉

...
. . .

...〈
uM(kα)

∣∣u1(kα + êγ )
〉 · · · 〈uM(kα)

∣∣uM(kα + êγ )
〉

⎞

⎟⎠ . (2.59)

The corresponding field strength and Chern number of the multiband is defined
according to Eqs. (2.55) and (2.57). TheChern number of themiddle band in Fig. 2.6b
was evaluated for α = 1/6 using this technique. The result is in agreement with the
analytical solution obtained using the Diophantine equation given in the previous
section: ν3 + ν4 = q − 2 = 4.
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Chapter 3
Artificial Gauge Fields with Laser-Assisted
Tunneling

Abstract In ultracold-atom setups the physics of charged particles inmagnetic fields
cannot be simulated directly because of the charge neutrality of the atoms. Therefore
new experimental methods had to be developed to circumvent this limitation by
designing effective systems whose dynamics are governed by a Hamiltonian analog
to the one of a charged particle in a magnetic field. Many realizations are based
on periodically driven systems that can be mapped onto effective time-independent
Hamiltonians which exhibit the desired physical properties. The general formalism
is summarized in this chapter. In the end it focuses on the laser-assisted tunneling
technique, which is used for the experimental results described in the context of this
thesis.

In ultracold-atom setups the physics of magnetic field effects cannot be simulated
directly because of the charge neutrality of the atoms. Therefore new experimental
methods had to be developed to circumvent this limitation by designing effective
systems whose dynamics are governed by a Hamiltonian analog to the one of a
charged particle in a magnetic field [1, 2]. One possibility is to exploit the equiv-
alence between the Lorentz force and the Coriolis force in rotating systems [3, 4],
which was successfully implemented in several experiments [5–7]. Other methods
rely on the realization of syntheticmagnetic fields by engineering spatially dependent
optical couplings [8, 9] that lead to Berry phases [10, 11] which can be interpreted
as the Aharonov-Bohm phase [12] of a charged particle. It has been shown in several
proposals that cold atoms in optical lattices arewell suited to reach the regime of large
magnetic fields on the order of one flux quantum per unit cell by engineering Peierls
phases (Sect. 2.1) with the help of laser-assisted tunneling [13, 14]. These methods
intrinsically lead to effective magnetic fluxes on the order of one flux quantum per
unit cell and hence provide direct access to the physics of the Harper-Hofstadter
model (Sect. 2.3). Similar ideas led to the development of “optical flux lattices”
based on optical dressing in weak periodic potentials [15, 16]. Since then a number
of experimental realizations were reported regarding the observation of complex tun-
neling amplitudes in 1D [17, 18] and 2D optical lattices [19, 20]. Many realizations
are based on periodically driven systems that can be mapped onto effective time-
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independent Hamiltonians (Sect. 3.1) which exhibit the desired physical properties.
In particular one can show that simple periodic on-site modulations can give rise
to complex tunneling amplitudes (Sect. 3.2). The effective time-independent Hamil-
tonian however does not provide any information about the full time evolution of the
system (Sect. 3.3), which can be of importance for the experimental implementation
of artificial magnetic fields in 2D lattices (Sect. 3.4).

3.1 Periodically Driven Quantum Systems

Time-periodic Hamiltonians Ĥ(t + T ) = Ĥ(t) can be treated using Floquet’s the-
orem, which states that the evolution of the system after one period T = 2π/ω can
be described by an effective time-independent Hamiltonian. In most cases it is not
possible to find an analytic expression for the effective Floquet Hamiltonian. How-
ever, in the high-frequency limit, where ω is much larger than all other energy scales
in the system the effective Hamiltonian can be derived perturbatively. After a short
introduction to Floquet theory (Sect. 3.1.1) two different approaches to derive the
effective Hamiltonian are presented (Sects. 3.1.2 and 3.1.3), one of them based on
the Magnus expansion [21, 22] and a second one based on the formalism introduced
by Rahav et al. [23]. Eventually both methods are compared using the example of a
simple driven two-level system (Sect. 3.1.4).

3.1.1 Floquet Formalism

According to Floquet theory [24–26] the solutions of the time-dependent Schrödinger
equation

i�
∂

∂t
|�(t)〉 = Ĥ(t) |�(t)〉 (3.1)

associated with a time-periodic Hamiltonian can be written in the following form

|�α(t)〉 = exp [−iεαt/�] |�α(t)〉 , (3.2)

where |�α(t)〉 is the Floquet mode, which has the same periodicity as the Hamil-
tonian, |�α(t + T )〉 = |�α(t)〉. In analogy to Bloch’s theorem, εα is called quasi-
energy. By inserting Eq. (3.2) into the time-dependent Schrödinger equation one
obtains an eigenvalue equation for the Floquet modes

(
Ĥ(t) − i�

∂

∂t

)
|�α(t)〉 = εα |�α(t)〉 . (3.3)
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One can show that by making the following Fourier expansion

|�α(t)〉 =
∑

β

exp [iβωt]
∣∣nβ

α

〉
, (3.4)

the time-dependent problem (3.3) can be transformed into a time-independent one,
which involves an infinite matrix [24]. Due to the specific form of the Floquet states,
the quasi-energies εα are only defined up to a multiple of �ω. This can be readily
seen by looking at the following expression

|�α(t)〉 = exp [−i(εα + β�ω)t/�] exp [iβωt] |�α(t)〉
= exp

[−iεβ
α t/�

] ∣∣�β
α(t)

〉
.

(3.5)

Evindently, |�β
α (t)〉 = exp [iβωt] |�α(t)〉 is the same physical state as |�α(t)〉, see

also Eq. (3.4). The corresponding quasi-energies are given by εβ
α = εα +β�ω, where

β is an integer. Similar to spatially periodic systems, where the quasimomentum is
defined within the first Brillouin zone, the quasi-energy can be defined in the range
−�ω/2 ≤ εα < �ω/2. The particular structure of the Floquet energy spectrum
can have important consequences for the scattering properties of the particles in
periodically-driven systems in the presence of interactions [27].

Evolution operator

Here, we are going to focus on the theoretical description in terms of the unitary
time-evolution operator Û (t, t0), which evolves a state |ψ(t0)〉 at time t = t0 to
|ψ(t)〉 according to

|ψ(t)〉 = Û (t, t0) |ψ(t0)〉 . (3.6)

The operator Û (t, t0) is a solution to the time-dependent Schrödinger equation

i�
∂

∂t
Û (t, t0) = Ĥ(t)Û (t, t0), Û (t0, t0) = 11. (3.7)

In general it can be written in the following form

Û (t, t0) = Tt exp

[
− i

�

∫ t

t0

Ĥ(t ′)dt ′
]

, (3.8)

where Tt is the time-ordering operator, which is a short notation of an infinite series of
commutator relations. One can show that for periodic systems the evolution operator
fulfills the following properties [28]

Û (t + T, 0) = Û (t, 0)Û (T, 0), Û (t + T, T ) = Û (t, 0). (3.9)
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Using these relations one obtains

Û (nT, 0) =
[
Û (T, 0)

]n =
[
Û (T )

]n
, with Û (T, 0) ≡ Û (T ) and n ∈ N, (3.10)

where Û (T ) is the evolution operator over one period T . The long-time behavior
of the system can be described stroboscopically with Û (t) at times t = nT . This is
an essential part of Floquet’s theorem [24, 28–31], which tells us that the evolution
of the system after multiples of one driving period can be described by an effective
time-independent Floquet Hamiltonian ĤF

Û (nT ) =
[
Û (T )

]n = exp

[
− i

�
nT ĤF

]
, Û (T ) = exp

[
− i

�
T ĤF

]
, (3.11)

where ĤF is a Hermitian matrix. Note that there exists a whole family of effective
Hamiltonians which describe the long-time dynamics of the system. These Hamil-
tonians are related to each other via gauge transformations; they share the same
spectrum and the same topological properties. In general it is not possible to find an
analytic expression for ĤF .However, in the high frequency limit,where the frequency
ω = 2π/T associated with one period T is much faster than all other time-scales of
the system, the effective Hamiltonian ĤF can be calculated perturbatively; two dif-
ferent approaches are presented in the following two subsections. Having the Floquet
Hamiltonian at hand the theoretical discussion simplifies and the properties of the
system can be easily studied with usual techniques that apply for time-independent
Hamiltonians. Certainly, this has the disadvantage that information about the evolu-
tion within one driving period is lost; this is the so-called micro-motion, which can
be important for experiments since it might lead to large oscillations of experimen-
tal observables [32–34]. In a more general form of Floquet’s theorem the evolution
operator can be partitioned as [23]

Û (t f , ti ) = P̂(t f )e
− i

�
ĤF (t f −ti ) P̂†(ti ) = e−i K̂ (t f )e− i

�
ĤF (t f −ti )ei K̂ (ti ) (3.12)

where P̂(t) = P̂(t + T ) is a time-periodic unitary operator, which was identified in
Ref. [32] as initial and final kick-operators; ti is the initial time of the evolution and
t f the final one. The validity of Eq. (3.12) can be proven using general properties of
the evolution operator

Û (t f , ti ) = Û (t f , 0)Û (0, ti ) = Û (t f , 0)Û (ti , 0)
−1 = Û (t f , 0)Û (ti , 0)

†, (3.13)

together with the well known form of Floquet’s theorem [28, 35]

Û (t, 0) = P̂(t)e− i
�

ĤF t , P̂(0) = 11. (3.14)
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The proof for the time-periodicity of the propagation operator P̂(t) can be found in
Ref. [35] and Appendix B.

The general form of the evolution operator (3.12)motivates the following intuitive
interpretation. The eigenvalues and eigenstates of the effective time-independent
Hamiltonian ĤF are denoted as ε and |v〉 respectively so that the eigenstates satisfy
the following equations

i�
∂

∂t
|v(t)〉 = ĤF |v(t)〉 , with |v(t)〉 = e−iεt/� |v〉 . (3.15)

Let us further assume that we can find a unitary transformation ei K̂ (t) which maps the
system described by the time-periodic Hamiltonian Ĥ(t) onto a time-independent
one governed by ĤF . Then the eigenfunctions of the original Hamiltonian are
given by

|�(t)〉 = e−i K̂ (t) |v(t)〉 = e−iεt/� e−i K̂ (t) |v〉︸ ︷︷ ︸
=|�(t)〉

= e−iεt/� |�(t)〉 . (3.16)

Hence |�(t)〉 is a solution of the time-periodic Hamiltonian Ĥ(t) with quasi-energy
ε and periodic eigenfunction |�(t + T )〉 = |�(t)〉, see also Eqs. (3.1)–(3.3). Con-
sequently, the evolution of the system can be computed by first making a unitary
transformation to the time-independent Hamiltonian using the kick-operator K̂ (t),
then evolving the state according to ĤF for a time (t f −ti ) and at the end transforming
it back with K̂ (t).

3.1.2 Mapping to Time-Independent Hamiltonian

Following the discussion in the previous section it becomes obvious that one way
of solving the time-dependent problem builds on the computation of the unitary
transformation ei K̂ (t) that maps the time-dependent Hamiltonian Ĥ(t) onto a time-
independent one ĤF [23, 32].We start with the time-dependent Schrödinger equation
(3.1). Applying the operator ei K̂ (t) from the left and adding i�[(∂/∂t)ei K̂ (t)] |ψ(t)〉
leads to the following equation

i�
∂

∂t

(
ei K̂ (t) |ψ(t)〉

)
= ei K̂ (t) Ĥ(t) |ψ(t)〉 + i�

(
∂

∂t
ei K̂ (t)

)
|ψ(t)〉 , (3.17)

and together with Eqs. (3.15) and (3.16) we can identify the time-independent Hamil-
tonian

ĤF = ei K̂ (t) Ĥ(t)e−i K̂ (t) + i�

(
∂

∂t
ei K̂ (t)

)
e−i K̂ (t). (3.18)
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In the high-frequency limit the Hamiltonian ĤF and the operator K̂ (t) can be
expanded in orders of 1/ω

ĤF =
∞∑

n=0

1

ωn
Ĥ (n)

F and K̂ =
∞∑

n=1

1

ωn
K̂ (n) . (3.19)

The strategy is to compute Ĥ (n)
F as a function of K̂ (1), . . . , K̂ (n+1) and to choose

K̂ (n+1) iteratively such that Ĥ (n)
F is time-independent. In this way one assures that

ĤF is time-independent in any order n. This is achieved using the following operator
expansions [23]

ei K̂ (t) Ĥ(t)e−i K̂ (t) = Ĥ + i[K̂ , Ĥ ] − 1

2! [K̂ , [K̂ , Ĥ ]] − i

3! [K̂ , [K̂ , [K̂ , Ĥ ]]] + · · · ,

(3.20)
(

∂

∂t
ei K̂ (t)

)
e−i K̂ (t) = i

∂ K̂

∂t
− 1

2!

[
K̂ ,

∂ K̂

∂t

]
− i

3!

[
K̂ ,

[
K̂ ,

∂ K̂

∂t

]]
+ · · · . (3.21)

Application: Off-Resonant Driving

In Ref. [32] the above formalism was applied to periodic Hamiltonians of the fol-
lowing form

Ĥ(t) = Ĥ0 + V̂ (t) = Ĥ0 +
∞∑

j=1

(
V̂ ( j)ei jωt + V̂ (− j)e−i jωt

)
, (3.22)

where the driving frequencyω ismuch larger than all other energy scales of the system
ω → ∞. Making use of the operator expansions (3.20) and (3.21) one can derive
general expressions for the time-independent Hamiltonian ĤF and the kick-operator
K̂ (t)

ĤF = Ĥ0 + 1

�ω

∞∑

j=1

1

j

[
V̂ ( j), V̂ (− j)

]

+ 1

2(�ω)2

∞∑

j=1

1

j2

([[
V̂ ( j), Ĥ0

]
, V̂ (− j)

]
+

[[
V̂ (− j), Ĥ0

]
, V̂ ( j)

])
+ O

(
1

ω3

)

(3.23)

K̂ (t) = 1

�

∫ t
V̂ (τ )dτ + O

(
1

ω2

)
=

∑

j 	=0

1

i j�ω
V̂ ei jωt + O

(
1

ω2

)
. (3.24)
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A more complete expression including higher order terms as well as second order
terms that mix different harmonics can be found in Ref. [32]. This formalism applies
for example to periodically shaken lattices as realized experimentally in Refs. [18,
19, 36–38].

Application: Resonant Driving

Recently, the formalism described above was extended to resonant driving [34],
where the driving frequency ω is still large but resonant with an energy scale of
the static part of the Hamiltonian Ĥ0, which is the case in the experimental setups
of Refs. [20, 39–44]. The effective Hamiltonian in Eq. (3.23) was calculated using
the perturbative expansion in powers of 1/ω (3.19). This derivation is based on the
assumption that the periodic Hamiltonian Ĥ(t) remains finite in the limit ω → ∞.
For the Hamiltonians considered here, however, the static Hamiltonian contains a
term which is proportional to �ω, hence it diverges in the limit ω → ∞. We write
the static Hamiltonian in the following form

Ĥ0 =
∑

αβ

P̂α Ĥ (0)
αβ P̂β + �ω

∑

α

α P̂α, α, β ∈ Z, (3.25)

where P̂α is a projection operator, which divides the full Hilbert space into a set of
orthogonal sectors (P̂α P̂β = δαβ P̂α) labelled by the integer α, and

∑
α P̂α = 11.

The number of sectors α depends on the specific problem. Later in this chapter we
are going to present simple examples such as the dynamics of a particle hopping on
a superlattice potential (Fig. 3.1a) in the presence of periodic driving (Sect. 3.3). In
this example the potential energy is increased on every other site by an amount �ω

and the Hilbert space separates into two parts α = {0, 1}.
In general, terms of the form Ĥαβ (α 	= β) couple different sectors, while the terms
Ĥαα describe additional diagonal terms such as on-site interactions or on-site poten-
tials. We assume that all divergent terms of the Hamiltonian are contained in the term
�ω

∑
α α P̂α and all remaining components do not consist of terms that diverge with

ω. The time-periodic part is consistently written as

V̂ (t) =
∑

j>0

[
V̂ ( j)ei jωt + V̂ (− j)e−i jωt

]
, V̂ ( j) =

∑

αβ

P̂α Ĥ ( j)
αβ P̂β. (3.26)

We start by applying a time-dependent unitary transformation to the Hamiltonian
Ĥ(t) = Ĥ0 + V̂ (t) according to

|ψ(t)〉 → ∣∣ψ ′(t)
〉 = R̂(t) |ψ(t)〉 , with R̂(t) = exp

[
i
∑

α

αωt P̂α

]
. (3.27)
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Hence, the new Hamiltonian Ĥ(t) takes the following form

Ĥ(t) = R̂ Ĥ(t)R̂† − i�R̂dt R̂† =
∑

j

Ĥ( j)ei jωt , (3.28)

Ĥ( j) =
∑

αβ

P̂α Ĥ ( j−α+β)

αβ P̂β. (3.29)

The transformed Hamiltonian does not contain any divergent terms proportional to
ω and is periodic in time. Moreover it can be recast into the form of Hamiltonian
(3.22), which was studied in Ref. [32], such that the formalism described above can
be directly applied. The time-evolution operator now reads

Û (t f , ti ) = R̂†(t f )e
−iK̂(t f )e− i

�
ĤF (t f −ti )eiK̂(ti ) R̂(ti ), (3.30)

which is essentially the evolution operator given in Eq. (3.12) accompanied by the
unitary transformation used to treat the divergent terms of the static Hamiltonian Ĥ0

(3.25). The effective time-independent Hamiltonian ĤF and the kick-operator K̂(t)
can be computed using analogue expressions as given in Eqs. (3.23) and (3.24)

ĤF = Ĥ(0) + 1

�ω

∑

j>0

1

j

[
Ĥ(+ j), Ĥ(− j)

]
+ O

(
1

ω2

)
, (3.31)

K̂(t) = 1

i�ω

∑

j>0

[
Ĥ(+ j)ei jωt − Ĥ(− j)e−i jωt

]
+ O

(
1

ω2

)
. (3.32)

The full time-evolution operator can be written as

Û (t f , ti ) = e−iM̂(t f )e− i
�
ĤF (t f −ti )eiM̂(ti ), eiM̂(t) ≡ eiK̂(t) R̂(t), (3.33)

where from now on we refer to M̂(t) as the micro-motion operator.

3.1.3 Magnus-Expansion Approach

The perturbative approach presented above is very powerful in computing the full
time evolution of periodic Hamiltonians. In this section we are going to compare this
approach to a different perturbative treatment based on the Magnus expansion [21,
22, 45]. This method is particularly useful for describing the stroboscopic long-time
evolution of the system at times t = nT , with n ∈ N. According to Floquet theory this
evolution can be described by an effective time-independent FloquetHamiltonian ĤF

as given in Eq. (3.11). In the high-frequency limit ω → ∞ the Floquet Hamiltonian
can be computed in a perturbative manner using the Magnus expansion [21, 22]
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ĤF =
∞∑

n=0

Ĥ (n)
F , (3.34)

where the lowest two orders are given by

Ĥ (0)
F = 1

T

∫ T

0
Ĥ(t)dt, (3.35)

Ĥ (1)
F = −i

2�T

∫ T

0

∫ t2

0

[
Ĥ(t2), Ĥ(t1)

]
dt1dt2. (3.36)

Higher orders of theMagnus expansion scale as 1/ωn , such that in the high frequency
limit the effective time-independent Hamiltonian is well approximated by the lowest
order of the expansion ĤF 
 Ĥ (0)

F . The explicit form of the effective time-averaged
Hamiltonian depends on the time interval chosen for the integration, [0, T ] and
[t0, t0+T ] respectively. This gauge freedom is also known asFloquet gauge freedom
[45]. In the following we consider Hamiltonians of the form Ĥ(t) = Ĥ0 + V̂ (t)
as defined in Eqs. (3.25) and (3.26). The static term of the Hamiltonian contains
diverging components proportional to ω. Similar to the method described above we
perform a unitary transformation. However, this time it further involves the time-
periodic part of the Hamiltonian V̂ (t) [45, 46] and is defined according to

|ψM(t)〉 = R̂M(t) |ψ(t)〉 , with R̂M(t) = exp

[
i
∑

α

αωt P̂α + i
1

�

∫ t

V̂ (t ′)dt ′
]

.

(3.37)
This transformation leads to the new Hamiltonian

ĤM(t) = R̂M Ĥ(t)R̂†
M − i�R̂Mdt R̂†

M . (3.38)

The Hamiltonian in the rotating frame ĤM(t) is time-periodic so that in general the
full time-evolution operator can be partitioned as

Û (t f , ti ) = R̂†
M(t f )e

−iK̂M (t f )e− i
�
ĤM

F (t f −ti )eiK̂M (ti ) R̂M(ti ), (3.39)

with the corresponding micro-motion operator

eiM̂M (t) ≡ eiK̂M (t) R̂M(t). (3.40)

In a stroboscopic analysis the lowest order of the Floquet Hamiltonian ĤM
F in the

rotating frame can be computed using the Magnus expansion in Eq. (3.35)

ĤM
F 
 1

T

∫ T

0
ĤM(t)dt. (3.41)
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In this case the stroboscopic evolution of the system in the lab-frame is determined by

Û (t, 0) = R̂†
M(t)e− i

�
ĤM

F t R̂M(0), (3.42)

where t = nT , n ∈ N.

3.1.4 Comparison of the Two Methods: Two-Level System

The two perturbative methods presented above are compared based on a two-level
system with levels |0〉 and |1〉, that are separated by a large energy offset . The
system is described by the static Hamiltonian

Ĥ = J (|0〉 〈1| + |1〉 〈0|) + P̂1, P̂1 = |1〉 〈1| , (3.43)

where J is the coupling between the two levels. The energy difference between the
two eigenstates is given by

Egap =
√

2 + 4J 2. (3.44)

This sets the exact value for the driving frequency to couple the two levels resonantly
�ω = Egap. In the limit of a large energy offset  � J , this difference is approx-
imately given by Egap 
  with the resonance condition �ω 
 . The dynamics
of the system in the presence of a resonant periodic modulation with frequency ω is
described by the following time-periodic Hamiltonian

Ĥ(t) = J (|0〉 〈1| + |1〉 〈0|)+�ω P̂1 + V0 cos(ωt +ϕ)P̂0, P̂α = |α〉 〈α| , (3.45)

with P̂α the projectors on the two sectorsα = {0, 1} andV0 themodulation amplitude.
Following the method presented in Sect. 3.1.3 we perform a unitary transformation
into the rotating frame [45, 46] as given in Eqs. (3.37) and (3.38) with

R̂M(t) = exp

[
iωt P̂1 + i

V0

�ω
sin(ωt + ϕ)P̂0

]
. (3.46)

The only component in the Hamiltonian which is affected by this transformation is
the coupling term proportional to J , which results in a time-dependent coupling

ĤM(t) = J |0〉 〈1| eiη(t) + J |1〉 〈0| e−iη(t),

η(t) = −
[
ωt − V0

�ω
sin(ωt + ϕ)

]
.

(3.47)
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The transformed Hamiltonian ĤM(t) is periodic in time without any static compo-
nents. To lowest order the effective Hamiltonian is determined by Eq. (3.41)

ĤM
F = 1

T

∫ T

0
ĤM(t)dt

= 1

2π

∫ 2π

0

[
J |0〉 〈1| e−i

[
τ− V0

�ω
sin(τ+ϕ)

]

+ h.c.

]
dτ

= JJ1

(
V0

�ω

)

︸ ︷︷ ︸
=:Jeff

eiϕ |0〉 〈1| + h.c., (3.48)

where τ = ωt andJ1(x) = 1
2π

∫ 2π
0 e−i(τ−xsinτ)dτ is the first-order Bessel function of

the first kind. The coupling between the two levels |0〉 and |1〉 is restored in the pres-
ence of resonant driving Jeff = JJ1(V0/[�ω]) 
 J V0/(2�ω) and is accompanied
by an additional complex term eiϕ , which can be used to generate artificial magnetic
fields as will be shown in the following sections.

The micro-motion operator K̂M(t) associated with the Hamiltonian ĤM(t) can
be calculated perturbatively in the high-frequency limit �ω � J [21, 22, 47]. The
two lowest orders of the expansion are given by

e−iK̂M (t) = 11 − i

�

∫ t

0
ĤM(t ′)dt ′ + · · ·


 11 − i J

�ω

∫ τ

0

[
|0〉 〈1| e−i

[
τ ′− V0

�ω
sin(τ ′+ϕ)

]

+ h.c.

]
dτ ′

︸ ︷︷ ︸
→0 for ω→∞

. (3.49)

Consequently, in the limit of infinite driving frequencies ω → ∞ the full-time
dynamics associated with the time-periodic Hamiltonian ĤM(t) in the rotating frame
(3.47) is exactly described by the effective time-independentHamiltonian ĤM

F (3.48).
Hence, the full time evolution of the driven two-level system is approximately given
by Eq. (3.42) for arbitrary times t 	= nT , with n ∈ N, and the micro-motion in the
lab-frame is solely determined by the unitary transformation R̂M(t) (3.46). Note,
however, that this is not true in general.

The same system is now analyzed again using the formalism developed in [34]
as discussed in Sect. 3.1.2. The Hamiltonian describing the two-level system (3.45)
is indeed of the form (3.25) and (3.26) and we perform the unitary transformation
to remove the diverging terms of the Hamiltonian as defined in Eqs. (3.27)–(3.29)
using the unitary operator

R̂(t) = exp
[
iωt P̂1

]
. (3.50)
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Note that this operator differs from the transformation used for theMagnus-expansion
approach (3.46) and contains only the static diverging terms of Ĥ0. The new Hamil-
tonian reads

Ĥ(t) = Ĥ(+1)eiωt + Ĥ(−1)e−iωt ,

Ĥ(+1) = J |1〉 〈0| + V0

2
P̂0eiϕ,

Ĥ(−1) = J |0〉 〈1| + V0

2
P̂0e−iϕ.

(3.51)

Using Eq. (3.31) we can derive the effective time-independent Hamiltonian

ĤF = 1

�ω

[
Ĥ(+1), Ĥ(−1)

]

= −1

�ω

⎛

⎜⎜⎝[J |0〉 〈1| , J |1〉 〈0|]︸ ︷︷ ︸
=J 2[P̂0−P̂1]

+
[

V0
2

P̂0e−iϕ, J |1〉 〈0|
]

+
[

J |0〉 〈1| , V0
2

P̂0eiϕ
]
⎞

⎟⎟⎠


 J V0
2�ω

(
|0〉 〈1| eiϕ + |1〉 〈0| e−iϕ

)
, (3.52)

where we have omitted the additional detuning term

Ĥdet = − J 2

�ω
[P̂0 − P̂1]. (3.53)

This term also appears in the second order of the Magnus expansion [45]. For typical
experimental parameters used for the measurements discussed in the context of this
thesis, �ω/J = /J 
 30, and the detuning can be safely neglected. One exception
where this assumption does not hold anymore is presented in Sect. 5.7 where the
ratio is about one order of magnitude smaller /J 
 3.56.

The effective Hamiltonian (3.52) is in agreement with the result obtained using
the Magnus expansion (3.48) in the limit V0/(�ω)  1. The main contribution to
the kick-operator according to Eq. (3.32) is given by

K̂(t) = 1

i�ω

[
J |1〉 〈0| + V0

2
P̂0eiϕ

]
eiωt − 1

i�ω

[
J |0〉 〈1| + V0

2
P̂0e−iϕ

]
e−iωt


 V0

�ω
sin(ωt + ϕ)P̂0,

(3.54)
where we considered again the limit J  �ω. As a result the main contributions to
the micro-motion operator are

M̂(t) = ωt P̂1 + V0

�ω
sin(ωt + ϕ)P̂0, (3.55)

which is in agreement with the Magnus-expansion approach discussed above.

http://dx.doi.org/10.1007/978-3-319-25829-4_5
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3.2 Peierls Phases and Multi-photon Processes

For the remaining part of this chapter we restrict our discussion to the perturba-
tive treatment of time-periodic Hamiltonians based on the Magnus expansion. For
simplicity we omit the index M and denote the Floquet Hamiltonian in the rotating
frame as ĤM

F ≡ ĤF . The theoretical description of the two-level system can be easily
extended to more general situations sometimes called multi-photon processes where
an integer multiple of the driving frequency ω is used to restore resonant tunneling
between the two levels |0〉 and |1〉 [48, 49]. Let us consider the following periodically
driven two-level system described by the Hamiltonian

Ĥ(t) = J (|0〉 〈1| + |1〉 〈0|) + P̂1 + V0 cos(ωt + ϕ)P̂0, (3.56)

where  is the energy difference between the two levels. For resonant driving  =
ν�ω, with ν ∈ Z, the effective time-independent Hamiltonian takes a very simple
formusing the integral representation of theBessel functions of the first kindJν(x) =
1
2π

∫ 2π
0 ei(ντ−xsinτ)dτ ,

ĤF = JJν

(
V0

�ω

) [
eiνϕ |0〉 〈1| + e−iνϕ |1〉 〈0|] . (3.57)

In the limit ω → ∞ this Hamiltonian is exact for the dynamics described in the
rotating frame as shown in Sect. 3.1.4. The phase factor νϕ scales with the order ν of
the multi-photon process. In the context of this thesis we consider zero-order ν = 0
as well as first-order ν = ±1 processes. Zero-order processes do not lead to complex
couplings but the strength of the tunnel coupling is renormalized according to the
zeroth order Bessel function J0(V0/[�ω]), which was observed experimentally in
Ref. [36]. First-order processes on the other hand lead to complex tunneling matrix
elements; these processes are typically referred to as laser-assisted tunneling. Note
that there is an important difference regarding the sign of the energy offset  or
driving frequency ω, which is summarized in the table below.

Resonance condition Effective coupling strength Phase factor
�ω =  JJ1 (V0/[�ω]) ϕ

�ω = − JJ1 (V0/[�ω]) −ϕ + π

The effective coupling strength induced by the laser-assisted tunneling is independent
of the sign in the resonance condition �ω = ±, the phase factor, however, does
depend on it. In particular, the sign of the phase changes, which will be important for
the experimental realization of different flux distributions as discussed in Chaps. 5–7.

http://dx.doi.org/10.1007/978-3-319-25829-4_5
http://dx.doi.org/10.1007/978-3-319-25829-4_7
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3.3 Periodically Driven One-Dimensional Lattices

The description of a time-periodic system in terms of a time-independent Floquet
Hamiltonian ĤF might not always be sufficient since the evolution within one period
might give rise to large oscillations of experimental observables. In this section we
discuss the micro-motion M̂(t) within one Floquet period for periodically modu-
lated one-dimensional lattice potentials using two examples, which are illustrated
in Fig. 3.1. We consider the dynamics of atoms in a one-dimensional lattice poten-
tial with additional site-dependent energy offsets m described by the following
tight-binding Hamiltonian

Ĥ(t) = −Jx

∑

m

(
â†

m+1âm + h.c.
)

+
∑

m

(V0sin(ωt + ϕm) + m) n̂m , (3.58)

where ϕm is the site-dependent phase of the driving. In the context of this thesis only
potentials of the form m+1 − m = ± = ±�ω are considered but the model
can be extended to other potentials where the energy offset between neighboring
sites is an integer multiple of  as demonstrated in Ref. [34]. The Hamiltonian in
Eq. (3.58) is periodic in time Ĥ(t + T ) = Ĥ(t) and is indeed of the form given in
Eqs. (3.25) and (3.26). The static divergent term of the Hamiltonian can be written
in the following form

Ŝ =
∑

m

mn̂m = �ω
∑

α

α N̂α , N̂α =
∑

m∈α

n̂m, (3.59)

where N̂α is the number operator for the sector α and α ∈ Z. The sites m that belong
to one sector α are defined by the on-site potential m . For the potential illustrated
in Fig. 3.1a there are two different sectors α = {0, 1}, where every other site belongs

Δ

Δ

Δ

Δ

x

Jx

Jx(a) (b)

Fig. 3.1 Schematic drawings of the periodically modulated one-dimensional lattice potentials.
a Superlattice potential with two non-equivalent sites (α = {0, 1}) with energy offsets m =
(−1)m/2. b Wannier-Stark ladder with linearly increasing on-site energy m = m (α =
{0, 1, 2, 3, . . .}). The different colors refer to different sectors α. In both cases the energy offset
between neighboring sites is  which inhibits tunneling along the x-direction for  � Jx , with
bare tunnel coupling Jx . Resonant tunneling can be restored in both cases with a single-harmonic
driving at frequency �ω = . (Figure adapted from Ref. [34])
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to the same sector. In the case of the Wannier-Stark ladder depicted in Fig. 3.1b, the
number of sectors is infinite and each site belongs to a different sector. The number
operator N̂α on the other hand can be written in terms of projectors

N̂α =
∑

nα

nα P̂nα
, N̂α |nα〉 = nα |nα〉 . (3.60)

Using this expression together with Eq. (3.59) we obtain

Ŝ = �ω
∑

α,nα

(αnα)P̂nα
. (3.61)

We start by performing a unitary transformation to the rotating frame as defined in
Eqs. (3.37) and (3.38) using the unitary operator

R̂(t) = exp

[
i
∑

m

(
− V0

�ω
cos(ωt + ϕm) + mt

�

)
n̂m

]

= exp

[
i
∑

m

χm(t)n̂m

]
, (3.62)

which leads to the new transformed Hamiltonian

Ĥ(t) = −Jx

∑

m

(
eiηm (t)â†

m+1âm + h.c.
)

, (3.63)

with ηm(t) = χm+1(t) − χm(t) determined by the following equations

ηm(t) = [−cos(ωt + ϕm+1) + cos(ωt + ϕm)
]

V0/(�ω) + (m+1 − m)t/�

= −2V0

�ω
sin

(
ωt + ϕm+1 + ϕm

2

)
sin

(
ϕm+1 − ϕm

2

)
+ (m+1 − m)t/�

=: −η0 sin

(
ωt + ϕm+1 + ϕm

2

)
+ (m+1 − m)t/�. (3.64)

Using the equations above we study the micro-motion for different on-site potentials
m , which is fully determined by the unitary operator R̂(t) in Eq. (3.62) as shown
above (Sect. 3.1.4).

3.3.1 Micro-motion Staggered Superlattice Potential

The staggered superlattice potential illustrated in Fig. 3.1a consists of two non-
equivalent lattice sites (two sectors α) with on-site potential energies that alternate
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in sign along the direction of the staggered potential m = (−1)m/2. Hence, the
micro-motion operator is determined by

M̂stagg(t) =
∑

m

(
− V0

�ω
cos(ωt + ϕm) + t

2�
(−1)m

)
n̂m . (3.65)

First of all we note that M̂(t) is proportional to the number operator n̂m . Conse-
quently, the density distribution of the wave function is not affected by the micro-
motion contrary to the quasimomentum distribution. With non-interacting bosonic
atoms this distribution can be probed using standard time-of-flight (TOF) imaging
(see Ref. [50] and Sect. 5.2). The micro-motion operator consists of two distinct
parts:

M̂(t)mod =
∑

m

(
− V0

�ω
cos(ωt + ϕm)

)
n̂m, (3.66)

and

M̂(t)pot =
∑

m

(
t

2�
(−1)m

)
n̂m . (3.67)

The first one is associated with the periodic on-site modulation and is proportional
to γ = V0/(�ω). To gain more insight into the properties of this operator we study
the evolution of a state |GS〉 under the action of M̂(t)mod,

|ψ(t)〉 = exp[iM̂(t)mod] |GS〉 . (3.68)

The initial state at t = 0 is chosen as the ground state |GS〉 of the normal lat-
tice without periodic driving (V0 = 0) and without potential energy offset between
neighboring sites ( = 0). This state exhibits a single quasimomentum component
at zero momentum (black solid line in Fig. 3.2). For V0 > 0 the operator M̂(t)mod

generally gives rise to additional momentum components. For a linear phase distri-
bution ϕm = 2παm these components are separated by multiples of δk = 2πα/a,
where a is the lattice constant and the position in the lattice is defined as R = maêx ,
with êx the unit vector along x [14]. In Fig. 3.2 the quasimomentum distribution is
plotted for α = 1/4, different values of the modulation amplitude V0 and differ-
ent evolution times t . As expected additional momentum components appear in the
distribution at period δk = π/(2a). The amplitudes of the individual components
oscillate periodically with period T α, but their positions remain unchanged.

The second part M̂(t)pot is determined by the potential which inhibits bare tun-
neling for  � Jx . We perform similar calculations as before but this time we act
with M̂(t)pot on the ground state |GS〉 of the normal lattice

|ψ(t)〉 = exp[iM̂(t)pot] |GS〉 . (3.69)

http://dx.doi.org/10.1007/978-3-319-25829-4_5
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Fig. 3.2 Typical momentum distribution after acting with the modulation-induced micro-motion
operator M̂(t)mod on an initial state with zero quasimomentum. The initial state is the ground
state of the unperturbed lattice potential with lattice constant a for V0 = 0 and  = 0. The
momentum distribution was evaluated for various values of themodulation amplitude γ = V0/(�ω)

and ϕm = mπ/2 at time a t = 0 and b t = T/8. The distribution exhibits additional momentum
components separated by δk = π/(2a) whose amplitudes oscillate with period T/4, T = 2π/ω

-1 0 1

Momentum (π/a)

-1 0 1

0

0.5

1

0

0.5

1

Q
ua

si
m

om
en

tu
m

di
st

rib
ut

io
n 

(a
.u

.)

Q
ua

si
m

om
en

tu
m

di
st

rib
ut

io
n 

(a
.u

.)

Momentum (π/a)

t=T/8
t=0

t=T/4
t=T/2

t=T/8
t=0

t=T/4
t=T/2

(a) (b)

Fig. 3.3 Typical momentum distribution after acting with the on-site-potential induced micro-
motion operator M̂(t)pot on an initial state with zero quasimomentum. The initial state is the
ground state of the unperturbed lattice potential with lattice constant a for V0 = 0 and  = 0.
a The staggered on-site potential illustrated in Fig. 3.1a ( 	= 0) causes oscillations between
the quasimomentum components at zero and ±π/a with period T = h/. b In the case of the
Wannier-Stark ladder shown in Fig. 3.1b ( 	= 0) the micro-motion results in a constant drift of the
quasimomentum components with δk(t) = t/h × 2π/a

The quasimomentumdistribution of |ψ(t)〉 features oscillations between themomen-
tum components at zero and ±π/a with an oscillation period T = h/ (Fig. 3.3a).
The evolution starts at zero momentum for t = 0. After half an oscillation t = T/2
the component at zero momentum disappears and the distribution shows only com-
ponents at the edge of the Brillouin zone (±π/a). For longer times the amplitudes
of the different momentum components oscillate but no additional components are
populated.
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3.3.2 Micro-motion Wannier-Stark Ladder

TheWannier-Stark ladder denotes a periodic potentialwith linearly increasing on-site
potential along the direction of the lattice structure m = m as illustrated in
Fig. 3.1b. For this lattice potential themicro-motion operator is determined according
to

M̂W S(t) =
∑

m

(
− V0

�ω
cos(ωt + ϕm) + t

�
m

)
n̂m, (3.70)

which is very similar to the case of the staggered superlattice potential. The
modulation-induced component M̂(t)mod is again the same causing an equivalent
micro-motion in quasimomentum space as illustrated in Fig. 3.2. The second com-
ponent however differs from the two-site superlattice potential and is determined by

M̂(t)pot =
∑

m

(
t

�
m

)
n̂m . (3.71)

For a driving frequencyω = /� themicro-motion is associatedwith a constant drift
in momentum space with δk(t) = ωt/a. Hence, if the system is initially prepared in
the ground state of the unperturbed lattice with V0 = 0 and  = 0, the momentum
distribution travels across the Brillouin zone while the corresponding amplitudes
remain unchanged. In Fig. 3.3b we illustrate the evolution for a state |ψ(t)〉 using
Eqs. (3.69) and (3.71), where |GS〉 is again the ground state in the unperturbed lattice.
After each period of the driving T the momentum components travelled across the
Brillouin zone once. This contribution to the micro-motion operator is independent
of the on-site modulation. Consequently, all driving schemes based on the Wanner-
Stark ladder will exhibit a drift of the momentum components in reciprocal space.

3.4 Extension to Two Dimensions: Artificial Gauge Fields

In one dimension complex tunnel couplings can be engineered but they do not give
rise to a magnetic flux. The schemes presented above can be further extended to two
dimensions by introducing another lattice potential in the perpendicular direction.
For the 2D lattice the tight-binding Hamiltonian can be written as

Ĥ(t) =
∑

m,n

(
−Jx â†

m+1,nâm,n − Jy â†
m,n+1âm,n + h.c.

)

+
∑

m,n

(
V0sin(ωt + ϕm,n) + m

)
n̂m,n ,

(3.72)

where Jy is the tunneling amplitude along y. Note that tunneling is only inhib-
ited along the x-direction with the static potential m . The modulation contains
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site-dependent phases ϕm,n which depend both on the x- and y-coordinate and the
position in the lattice is defined as R = maêx + naêy , with êy the unit vector along
y. The derivation of the effective Hamiltonian discussed above also applies to mod-
ulated 2D lattices. We perform the following unitary transformation as defined in
Eqs. (3.37) and (3.38) using

R̂(t) = exp

[
i
∑

m,n

(
− V0

�ω
cos(ωt + ϕm,n) + mt

�

)
n̂m,n

]

= exp

[
i
∑

m,n

χm,n(t)n̂m,n

]
. (3.73)

The transformed Hamiltonian can be written in the following form, where we have
to take into account that the periodic modulation potentially affects the tunneling in
both directions

Ĥ(t) = −Jx

∑

m,n

(
eiηx

m,n(t)â†
m+1,nâm,n + h.c.

)

= −Jy

∑

m,n

(
eiηy

m,n(t)â†
m,n+1âm,n + h.c.

)
, (3.74)

with the differential modulation amplitudes ηx
m,n(t) = χm+1,n(t) − χm,n(t) and

η
y
m,n(t) = χm,n+1(t) − χm,n(t) given by

ηx
m,n(t) = −η0x sin

(
ωt + ϕm+1,n + ϕm,n

2

)
+ (m+1 − m)t/�, (3.75)

ηy
m,n(t) = −η0y sin

(
ωt + ϕm,n+1 + ϕm,n

2

)
, (3.76)

where

η0x = 2V0

�ω
sin

(
ϕm+1,n − ϕm,n

2

)
=: 2γ sin (δϕx/2) , (3.77)

η0y = 2V0

�ω
sin

(
ϕm,n+1 − ϕm,n

2

)
=: 2γ sin (

δϕy/2
)
. (3.78)

In the following we consider only on-site potentials with |m+1 −m | = . Hence,
for resonant laser-assisted tunneling �ω = , the effective time-independent Hamil-
tonian can be written as

ĤF = − JxJ1 (η0x )︸ ︷︷ ︸
=:K

∑

m,n

eiφm,n â†
m+1,nâm,n − JyJ0

(
η0y

)
︸ ︷︷ ︸

=:J

∑

m,n

â†
m,n+1âm,n + h.c.,

(3.79)
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Fig. 3.4 Bessel functions J0(η0y) and J1(η0x ) for the zero- and first-order process. a Tunneling
along the y-direction is proportional to the zeroth order Bessel function of the first kind J/Jy =
J0(η0y) as given in Eq. (3.78), which depends on the driving amplitude γ = V0/(�ω) and the phase
difference δϕy = ϕm,n+1 − ϕm,n of the on-site modulation. b Restored effective coupling along the
x axis, which is proportional to the first order Bessel function of the first kind K/Jx = J1(η0x ).
It also depends on the driving amplitude γ as well as the phase difference of the modulation along
the corresponding axis δϕx = ϕm+1,n − ϕm,n . The red dashed lines mark the values used for the
calculations depicted in the side panels

where the phases φm,n ∝ (ϕm+1,n +ϕm,n)/2 depend on the phase distribution ϕm,n as
well as on the particular shape of the potential m (Sect. 3.2). Along the x-direction
tunneling is restored by the periodic modulation resulting in an effective tunnel
coupling K accompanied by a complex phase φm,n . In the perpendicular direction
tunneling is potentially renormalized but real. In the limit V0  �ω the effective
coupling J is determined by

J

Jy
= 1 − 1

4
η2
0y + O(η4

0y) 
 1 − γ 2 sin2
(
δϕy/2

)
. (3.80)

For small driving amplitudes the coupling is essentially given by the bare coupling Jy

and it decreases with increasing modulation strength γ . Additionally it also depends
on the phase difference between neighboring sites δϕy (Fig. 3.4a). If neighboring
sites are modulated in phase the differential modulation amplitude vanishes and the
bare tunneling remains unchanged. The largest effect occurs for δϕy = π where
the differential modulation amplitude is largest. A similar situation occurs along the
x-direction with the difference that without the driving, tunneling is inhibited by the
potential energy offset . Its strength K depends on the phase difference δϕx and
increases linearly with the driving amplitude γ . In the limit V0  �ω it is given by
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Fig. 3.5 Magnetic flux per plaquette generated by Hamiltonian (3.79). The artificial flux is deter-
mined by the phase difference�m,n = φm,n −φm,n+1 using the convention that the magnetic field is
pointing in the+êz-direction. Its value only depends on the y-coordinate of the phase perpendicular
to the direction of laser-assisted tunneling

K

Jx
= 1

2
η0x + O(η3

0x ) 
 γ sin (δϕx/2) . (3.81)

If themodulation is in phase (δϕx = 0) between neighboring sites tunneling cannot be
restored and the largest effect occurs once more for δϕx = π . This phase dependence
allows for a local control of the laser-assisted tunneling as discussed in Chaps. 7 and
8 [34, 44].

The Peierls phase-factors φm,n in the effective Hamiltonian (3.79) appear along
the direction of the laser-assisted tunneling and the flux per plaquette is defined
according to

�m,n = φm,n − φm,n+1, (3.82)

where the direction of the magnetic field is defined along the +êz-direction. A
schematic drawing of the relevant tunnel couplings is shown in Fig. 3.5. Note that the
value of the flux only depends on the phase of the modulation along the y-axis δϕy .
The evolution of the phase along the x-axis δϕx only determines the strength of the
effective coupling. The model system presented in this chapter naturally gives rise to
artificial fluxes that are on the order of 2π and therefore constitute good candidates
to enter the regime of very strong magnetic fields on the order of one magnetic flux
quantum. Similar methods were developed for photonic crystals [51] and ion traps
[52, 53].
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Chapter 4
Overview of the Experimental Setup
and Measurement Techniques

Abstract The experiments presented in the context of this thesis were performed
with bosonic 87Rb-atoms. A short overview of the experimental apparturs and rele-
vant experimental methods for initial-state preparation and manipulation is given in
this chapter.

The experiments presented in the context of this thesis were performed with bosonic
atoms (87Rb). For all measurements the atoms were first cooled below the critical
temperature for Bose-Einstein condensation (BEC) [1, 2], which for our experimen-
tal parameters corresponds to about 100 nK. After that the atoms were loaded into
optical lattice potentials where the final measurements were carried out. The main
experimental apparatus was designed about 15years ago and is well described in
Refs. [3, 4] and a number of successive PhD theses [5–8]. During the past several
modifications have been made in particular regarding the final stage of the BEC
preparation, which takes place in a crossed optical dipole trap. The most recent
description of the current experimental setup can be found in Ref. [9].

The main apparatus consists of two vacuum chambers connected via a differential
pumping stage. This allows for a pressure gradient between the two chambers, such
that the pressure in the science chamber, where the experiments take place, can be a
few orders of magnitude smaller than the one in the chamber to which the Rubidium
reservoir is attached. In this first chamber the pressure p ≈ 10−8 − 10−9 mbar is
dominated by the partial pressure of Rubidium, which allows for an efficient load-
ing into a standard three-dimensional magneto-optical trap (MOT) [10]. After pre-
cooling the atoms in this configuration they are transported to an ultra-high vacuum
(UHV) or science chamber, with p ≈ 10−11 mbar, using a magnetic transportation
scheme [3, 11]. There, the atoms are cooled further to reach quantum degeneracy via
evaporative cooling (Sect. 4.1). Subsequently they are loaded into optical lattice and
superlattice potentials (Sects. 4.2 and 4.3). Relevant experimental techniques for state
manipulation and detection are introduced at the end of this chapter (Sects. 4.4–4.6).

© Springer International Publishing Switzerland 2016
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52 4 Overview of the Experimental Setup and Measurement Techniques

4.1 Towards Quantum Degeneracy

The cooling sequence is carried out in three distinct sections of the main apparatus
(Fig. 4.1) and involves several stages: pre-cooling in a magneto-optical trap (red
coils) and optical molasses, magnetic transfer to the science chamber (green coils)
and a two-stage evaporative cooling in a magnetic quadrupole (yellow coils) and a
crossed optical dipole trap.

Magneto-optical trap and optical molasses Each experimental cycle starts by
trapping 87Rb atoms in a standard three-dimensionalmagneto-optical trap (3D-MOT)
[10, 12, 13]. Cooling in such a trap is achieved via the combined effect of slowing
down the atoms due to absorption of photons and the spacial confinement of the
underlying magnetic trap (Fig. 4.1). In a 3D-MOT the atoms are typically cooled
along all three spatial directions using two counter-propagating laser beams along
each direction. The MOT is operated on the D2-line of Rubidium (λD2 = 780 nm),1

which corresponds to the
∣∣S1/2

〉 → ∣∣P3/2
〉
transition as illustrated in Fig. 4.2a [14].

After 15 s operation time about 109 atoms are obtained with final temperatures below
1mK. In order to reach higher densities the magnetic field gradients are increased at
the end of the MOT phase [15]; this causes additional heating which is subsequently
compensated by cooling the atoms in an optical molasses [16]. At the end final
temperatures in the lowμK-regime are reached. As a last step, all atoms are optically
pumped into to the |F = 1, m F = −1〉 state of the ground-state manifold

∣∣S1/2
〉
,

which is a low field seeking state. To initialize the magnetic transport the atoms are
loaded into a magnetic quadrupole trap with efficiencies up to 70%. The lifetime in
this trap is about τ � 8 s [9], where τ is defined as the 1/e-decay of the atom number.

MOT coils

z

y
x

MOT section Transfer section UHV section

BEC coilsTransfer coils

10-8-10-9 mbar 10-11 mbar

Fig. 4.1 Schematic drawing of the coil arrangement around the vacuum chamber. The experimental
apparatus is divided into three parts: the first chamber with a magneto-optical trap (MOT, red coils )
for initial trapping and cooling of the atoms, the transfer section (magnetic transport using the green
coils) with the differential pumping stage and the ultra-high vacuum (UHV) or science chamber
with a magnetic quadrupole trap (yellow coils), where the atoms are further cooled evaporatively.
The black lines show the equipotential lines of the trapping potential at a certain time during the
magnetic transfer. (Figure adapted from Ref. [4])

1TOPTICA, DL-PRO 100 (output power: 80mW); TOPTICA, DL-PRO 100 with an additional
tapered amplifier (output power: 1W).
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Fig. 4.2 Illustration of the atomic transitions and laser beams used in the experimental setup. a
Simplified level scheme of 87Rb with

∣∣S1/2
〉
being the ground state and δν the detuning relative to

the atomic transition |S〉 → |P〉. Laser beams with negative frequency detuning δν < 0 are called
red-detuned, while for positive detuning δν > 0 they are denoted as blue-detuned. b Schematics
of the laser-beam configuration involved in the two-stage evaporative cooling (see main text). The
optical plug (λplug = 767 nm) used tominimizeMajorana losses during the rf-evaporation is aligned
along the vertical direction. The second evaporation step is performed in a crossed optical dipole
trap (λDT = 1064 nm), where the beams are aligned along the principal axes in the horizontal
plane. c Schematic drawing of the optical lattices, which are created by retro-reflected laser beams.
The corresponding mirrors are illustrated as gray plates. The vertical lattice is red-detuned to the
atomic transition with λz = 844 nm. In the horizontal plane there are two lattice potentials along
each axis, a long and a short one with wavelengths λs = 767 nm and λl = 1534 nm respectively.
The superposition of these two standing waves generates a bichromatic superlattice potential. The
atomic cloud is illustrated as a gray sphere

Magnetic transport Starting from the MOT-chamber the atoms are transferred
magnetically across an “L-shaped” distance of about 33 cm to the science chamber;
20 cm along the y-axis and 13 cm along x . The efficiency of the transfer can be up to
98% and takes 4 s in the current setup. The coil configuration consists of nine pairs of
overlapping quadrupole coils (Fig. 4.1) that are designed such that the trap geometry
stays constant during the transport to minimize heating effects [11]. At the end of the
transport the atoms are loaded into a final magnetic quadrupole trap in the science
chamber (large yellow coils in Fig. 4.1). There are two main advantages arising from
the transport design. First, it allows for a simple implementation of theMOT because
it is efficiently loaded from the background vapor at a relatively high pressure; there
is no need for an additional deceleration of the atoms by using a Zeeman slower
[17] or a two-dimensional MOT [18]. At the same time the pressure in the science
chamber can be much lower which increases the lifetime of the atoms by roughly
one order of magnitude [9]. The second advantage is the large optical access around
the science chamber due to the spatial separation of the MOT setup. This increases
the experimental flexibility regarding the implementation of additional laser beams
for state preparation and manipulation.

Evaporative cooling The final cooling stage consists of a two-stage evaporative
cooling process [19–21]: Radio-frequency (rf) induced evaporation in an optically
plugged magnetic quadrupole trap and forced evaporation in a crossed optical dipole
trap. The general operation principle of evaporative cooling is to successively remove
the hottest atoms from the trap and letting the remaining atoms rethermalize while
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increasing the phase-space density at the same time. Evaporative cooling with Alkali
atoms was first demonstrated in magnetic traps [22, 23]. Thereby rf-fields are used to
transfer atoms from a magnetically trappable to a magnetically untrappable state in
an energy selective manner. The trap configuration is kept constant during the evap-
oration, which allows for an efficient rethermalization of the atoms by maintaining
large collision rates.

During the rf-evaporation in the magnetic quadrupole trap atoms can undergo
nonadiabatic spin flips (Majorana losses) at the center of the trap where the magnetic
field vanishes. This potentially leads to undesired atom losses. To overcome this
problem various other types of traps could be used which do not exhibit a zero-
crossing of the magnetic field, such as TOP (time-averaged orbiting potential) [22],
Ioffe [24] or Ioffe-type traps [25]. In previous experiments the small yellow coil
in Fig. 4.1 was used to realize a Ioffe-type trap. In the current experimental setup
we use a tightly focused blue-detuned laser beam2 (λplug = 767 nm, δν > 0) along
the z-direction (Fig. 4.2b), which is focused at the atom position to a waist of about
20µm with a typical power of ∼500mW. It creates a repulsive potential [26] at
the point of zero-magnetic field and prevents the atoms from reaching field regimes
where the probability forMajorana losses is high. The total rf-evaporation takes 8.5 s
and the final cut-off frequency is νrf = 2MHz. After this pre-evaporation stage the
atoms are loaded into a crossed optical dipole trap3 with wavelength λDT = 1064 nm
(Fig. 4.2b) and a maximum potential depth of about U0 = kB × 40µK, where kB is
the Boltzmann constant.

In principle evaporation in an optical trap can be achieved by lowering the intensi-
ties of the optical dipole trap beams, however, this leads to a decrease of the collision
rate, which may in turn cause inefficient rethermalization [27]. One possibility to
overcome this issue and to reach runaway evaporative cooling is to apply an external
force during the evaporation [28]. This causes only a weak deconfinement of the
dipole trap and forces the hottest atoms to leave the trap in the direction of the force.
In our experiments we use gravity as a force, which allows us to reach quantum
degeneracy within an additional evaporation time of 8 s.

4.2 Optical Lattice Potentials

All measurements presented in the scope of this thesis were carried out in periodic
optical potentials [26] of different dimensionality (1D-3D) by adiabatic loading of
a BEC into several standing waves of laser light [29]. Each standing-wave potential
is created by focusing a far-detuned laser beam onto the atom position with a waist
of typically ∼125µm and retro-reflecting it with a mirror (Fig. 4.2c). Depending on

2Exp. in Chap.5: Ti:sapphire laserCoherent, MBR-110 (output power: 4.5W) pumped byCoherent
Verdi V18 (output power: 18W); Exp. in Chaps. 6–8: Ti:sapphire laser M Squared, SolsTis (output
power: 2.4W) pumped by Lighthouse Photonics Sprout-G V10 (output power: 10W).
3YLR-20-LP IPG-Laser, output power: 20W.

http://dx.doi.org/10.1007/978-3-319-25829-4_5
http://dx.doi.org/10.1007/978-3-319-25829-4_6
http://dx.doi.org/10.1007/978-3-319-25829-4_8
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the sign of the frequency detuning δν relative to the atomic transition (Fig. 4.2a) the
atoms are either located at the intensitymaxima (red detuned, δν < 0) orminima (blue
detuned, δν > 0). These periodic structures are called optical lattice potentials. In the
horizontal plane there are two blue detuned lattices with wavelength λs = 767 nm
for which we use the same laser as for the optical plug described in the previous
section. The vertical lattice4 is red detuned with wavelength λz = 844 nm (Fig. 4.2c).
Each of these beams passes through an acousto-optic modulator which is employed
to stabilize the intensity of the beams individually with a feedback loop [30] and
to introduce a frequency offset of at least 20MHz between lattice beams, that are
generated with the same laser, in order to avoid cross-interference. Additionally the
polarizations of the beams are chosen to be orthogonal to further reduce possible
cross-interference terms. Neglecting the overall confinement due to the Gaussian
beam profile the 3D potential can be described by the following equation

VLat(r) = −Vx cos
2(ks x) − Vy cos

2(ks y) − Vz cos
2(kzz), (4.1)

where Vi , i = {x, y, z} is the potential depth and ki = 2π/λi , i = {s, z} is the wave
vector. The typical energy scale of an optical lattice is determined by the corre-
sponding photon recoil energy Eri = �

2k2
i /(2m), i = {s, z}, where m is the mass of

the atom. The motion of the atoms in such a periodic crystal-like structure mimics
the behavior of electrons in a solid state crystal, where the atoms play the role of
the electrons [31, 32]. The typical lattice constant ai = λi/2 of optical crystals is
several orders of magnitude larger than typical lattice spacings in a real solid, which
are on the order of a few angstroms. This opens up many new possibilities to study
condensed matter Hamiltonians by looking at observables not accessible in typi-
cal solid state experiments as demonstrated e.g. with high-resolution quantum gas
microscopes that can resolve single atoms on individual lattice sites [33–35].

The Schrödinger equation of a particle in a periodic potential can be solved
using Bloch’s theorem [36, 37], which is very similar to the more general Floquet’s
theorem, that was introduced in Sect. 3.1 for time-periodic Hamiltonians. For shal-
low lattices V < 5Er the atoms are delocalized over several lattice sites and the
system is well described in terms of Bloch functions. For deeper lattice potentials
the atomic wave functions become more and more localized and it is convenient to
choose a localized basis to describe the dynamics. These are the so-called Wan-
nier functions, which are a superposition of Bloch functions. Considering only
the lowest vibrational band the dynamics can be described by the Bose-Hubbard
Hamiltonian [38]

ĤBH = −J
∑

〈m,n〉
â†

mân +
∑

m

�mn̂m + 1

2
U

∑

m

n̂m(n̂m − 1), (4.2)

4Ti:sapphire laser Coherent, MBR-110 (output power: 1.5W) pumped by Coherent Verdi V10
(output power: 10W).

http://dx.doi.org/10.1007/978-3-319-25829-4_3
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where â†
m and âm are the bosonic creation and annihilation operators on site m and

n̂m is the corresponding number operator. The Hubbard parameter J is the tunneling
matrix element between neighboring sites n and m, �m is the potential energy offset
on the corresponding site and U determines the on-site interaction of two atoms that
are located on the same lattice site. For the measurements described in the context of
this thesis the on-site interaction U is neglected, unless stated otherwise, because it
is either much smaller than all other energy scales of the system or the experiments
were performed with single particles in isolated few-site potentials.

4.3 Superlattice Potential

Besides the dimensionality also the unit cell of the crystal can bemodified. By imple-
menting superlattice potentials in the horizontal plane a periodic potential whose unit
cell contains two or four non-equivalent lattice sites can be realized. Along each of
the two axes a bichromatic superlattice potential can be created by superimposing
an additional standing wave5 with wavelength λl = 2λs = 1534 nm (Fig. 4.2c). The
phase of each standing wave is fixed at the position of the retro-reflecting mirror,
however, by introducing a small frequency difference�ν = 2νl − νs , νl(s) = c/λl(s),
between the two lasers the two standing waves accumulate a relative phase until they
reach the atom position according to

ϕSL = 2π

c
�νL , (4.3)

where c is the speed of light and L is the distance between the retro-reflecting
mirror and the position of the atomic cloud (Fig. 4.3). Thevariation of the phase over

L 20cmAtom cloud: 30 μm Mirror

Fig. 4.3 Illustration of the experimental setup of the bichromatic superlattice. The superlattice
potential (black) consists of two standing waves with λs = 767 nm (blue) and λl = 2λs (red). Due
to a small frequency offset �ν between the two lasers the standing waves accumulate a relative
phase until they reach the atom position which is proportional to the distance L between the atoms
and the mirror. The relative phase is approximately constant over the extent of the cloud as d � L .
Note that distances are not to scale

5Chapters 5–7: Two Erbium doped fiber amplifier from NP Photonics (output power: 5W) one for
each axis; Chap.8: Laser for x-lattice was changed to: Seed laser RIO Orion Laser Source (output
power: 5–10mW) with fiber amplifier Nufern NuAMP (output power: 6W).

http://dx.doi.org/10.1007/978-3-319-25829-4_5
http://dx.doi.org/10.1007/978-3-319-25829-4_7
http://dx.doi.org/10.1007/978-3-319-25829-4_8
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Fig. 4.4 Influence of the relative phase between the two standing waves used to create the superlat-
tice potential. a Illustration of the superlattice potential given in Eq. (4.4) for Vl = V and different
values of the relative phaseϕSL . ForϕSL = {0, π, . . .}we refer to the potential as symmetric double-
well configuration while for ϕSL = {π/2, 3π/2, . . .} we denote it as staggered superlattice. Any
value in between results in a tilted double-well configuration. b Phase calibration of the superlattice
potential along x . Fraction of atoms in themomentum components kl = ±2kl = ±ks (dashed boxes
in the inset) corresponding exclusively to the long lattice spacing al = λl/2 as a function of the
superlattice phase ϕx

SL , which is controlled by the frequency difference �νx according to Eq. (4.3).
The color code illustrates the connection between the shape of the superlattice potential and the
measured fraction. For the symmetric double-well configuration the lattice constant is given by
the short lattice spacing as = λs/2 and the amplitude of the momentum components at kx = ±2kl
almost disappears. The separation between the two minima �νx = 0.74(1)GHz corresponds to a
phase shift δϕx

SL = π . The dashed lines are guides to the eye. The inset shows a typical experimental
image obtained after 10ms TOF using standard absorption imaging

the extent of the atomic cloud with a typical diameter of d ≈ 30µm can be safely
neglected. For our experimental parameters it varies by less than 1mrad. A detailed
description of the setup and the frequency stabilization can be found in Ref. [7, 9,
39]. The resulting superlattice potential along x can be written in the following form

V (x) = Vxl cos
2(kl x + ϕx

SL/2) + Vx cos
2(ks x), (4.4)

where kl = 2π/λl = ks/2 and Vxl is the depth of the long lattice. The lattice depths
Vx and Vxl can be controlled independently. The superlattice potential along y is
given by an analog expression, where Vyl and Vy are the corresponding lattice depths
along y. The relative phases ϕx

SL and ϕ
y
SL can be adjusted individually for the two

axes and determine the shape of the superlattice potential as illustrated in Fig. 4.4a.

4.3.1 Phase Calibration

To calibrate the phase of the superlattice potential [7] we typically load a BEC
adiabaticallywithin 200ms into the ground state of a three-dimensional optical lattice
using the following parameters: Vx = Vy = 5.0(2)Ers, Vz = 5.0(2)Ez and Vxl =
10.0(3)Erl, with Erl = �

2k2
l /(2m); the phase ϕx

SL is adjusted for each measurement
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by controlling the frequency difference �νx as defined in Eq. (4.3). The lattices
are shallow enough to remain in the superfluid regime [31] where the atoms are
delocalized over the lattice and the phase of the ground-state wave function between
different lattice sites is constant. After releasing the atoms suddenly from the trap the
correspondingmomentum distribution can be obtained after TOF [32] using standard
absorption imaging [40]. For the symmetric double well configuration (ϕx

SL = 0) the
periodicity of the superfluid wave function is determined by the lattice constant of
the short lattice a = λs/2. For this reason we observe a distribution with momentum
peaks separated by kx = ±2ks (Fig. 4.4b), which is the reciprocal lattice vector of the
periodic potential. The envelope of the pattern is determined by the Fourier transform
of the on-site wave function.

If the phase is increased away from the symmetric configuration the double-
well potential becomes more and more asymmetric and momentum components at
kx = ±2kl appear in the TOF images. The amplitude of the momentum components
depends on the relative population of the atoms on the two sites of the unit cell. Above
a certain value of the phase atoms only populate the sites with lower energy and the
periodicity is solely given by the long lattice constant al = λl/2. At this value of the
phase the fraction of atomsdiffracted into themomentumcomponents at kx = ±2kl is
largest. Increasing the phase even further does not influence the distribution anymore
since only the lower energy sites are populated and the particular shapeof the potential
does not influence the periodicity of the ground-state wave function.

For even larger values of the phase again a symmetric double-well configura-
tion is reached where the peaks at kx = ±2kl almost disappear. The fraction of
atoms appearing at kx = ±2kl is expected to change periodically as a function of the
superlattice phase in agreement with the experimental data depicted in Fig. 4.4. This
calibration method is very well suited for a first calibration of the superlattice phase
[9, 39]. For a more precise characterization of the superlattice potential spectroscopy
measurements can be performed as discussed in the following section.

4.3.2 Calibration of the Staggered Superlattice Potential

Depending on the value of the superlattice phase ϕSL an energy offset� is introduced
between neighboring sites (Fig. 4.5a), which exhibits a maximum for ϕSL = π/2
(Fig. 4.4a). This offset can be determined experimentally with spectroscopy mea-
surements using lattice modulation or laser-assisted tunneling [41–44], see also
Chap.3. If the energy offset is much larger than the coupling between neighboring
sites � 	 J, J ′ tunneling is inhibited and all dynamics is frozen along the corre-
sponding axis. By applying a periodic driving with frequency �ω = � tunneling can
be restored resonantly. In this section calibration measurements of the superlattice
potential along x are presented (Fig. 4.5).

The experimental sequence started by loading the atoms adiabatically within
200ms into a 3D optical potential. The lattice parameters were Vxl = 5.0(2)Erl,
Vx = 9.0(3)Ers, Vy = 20(1)Ers, Vz = 20(1)Ez and ϕx

SL > 0. The vertical lattice

http://dx.doi.org/10.1007/978-3-319-25829-4_3
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Fig. 4.5 Calibration of the superlattice phase ϕx
SL using spectroscopy measurements. a Schematic

drawing of the superlattice potential with energy offset �, inner-well coupling Jx and inter-well
coupling J ′

x . b Typical experimental data obtained from a spectroscopy measurement for ϕx
SL =

0.39(2)π . The fraction of atoms transferred to even sites is measured as a function of themodulation
frequency ω. The solid line shows the fit of a Lorentzian to determine the resonance condition
ω = �/�. c Measured energy offset � obtained from spectroscopy measurements as shown in (a)
as a function of the superlattice phase ϕx

SL . The offset exhibits a maximum for ϕx
SL = π/2, which

corresponds to the staggered superlattice potential. The solid line is a guide to the eye. (Figure
adapted from Ref. [41])

was used to isolate different planes but in general it has no influence on the calibra-
tion measurements. The ground state in this superlattice potential corresponds to a
state, where all atoms occupy the lower energy sites, which are denoted as odd sites
(Fig. 4.5a). The energy offset was chosen to be large � 	 Jx , J ′

x compared to the
bare hopping amplitudes in order to inhibit tunneling to even sites. After suddenly
switching on the modulation facilitated by the setup described in Sect. 5.3, the frac-
tion of atoms transferred to even sites neven = Neven/N was measured as a function
of the modulation frequency ω (Fig. 4.5b); here N is the total atom number and Neven

the atom number on even sites, which was evaluated using the site-resolved detection
technique introduced in Sect. 4.6. In all spectroscopy measurements the modulation
was switched on for less than half a Rabi oscillation, t < h/(4K ), where K is the
restored tunnel coupling given in Eq. (3.81) for δϕx = π/2. The measured transfer
exhibits a maximum if the frequency difference is resonant with the energy offset
ω = �/�.

Note that there can be corrections to the resonance frequency on the order of Jx /�.
Related effects are discussed in Sect. 3.14 for the case of a two-level system. The
resonance frequencywhich is calibrated experimentally using spectroscopymeasure-
ments always corresponds to the exact energy gap Egap between the energy levels as
defined in Eq. (3.44). For typical experimental parameters�/Jx � 30 the resonance
condition is well approximated by ω = �/� and corrections of order Jx/� can be
safely neglected in the theoretical discussion. In Sect. 3.57, however, we are going
to discuss an exception, where �/Jx � 3.56 and this approximation is not valid
anymore. In this case the exact resonance condition has to be incorporated in the
derivation of the effective Hamiltonian.

Beyond that the energy offset � was measured as a function of the superlattice
phase ϕx

SL as illustrated in Fig. 4.5c. It exhibits a maximum at ϕx
SL = π/2, which

corresponds to the staggered superlattice configuration. For our parameters the max-

http://dx.doi.org/10.1007/978-3-319-25829-4_5
http://dx.doi.org/10.1007/978-3-319-25829-4_3
http://dx.doi.org/10.1007/978-3-319-25829-4_3
http://dx.doi.org/10.1007/978-3-319-25829-4_3
http://dx.doi.org/10.1007/978-3-319-25829-4_3
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imum energy offset was evaluated to be �/h = 4.4(1) kHz. The effective coupling
strengths for all measurements depicted in Fig. 4.5b and c were on the order of
K/h = 30Hz [41]. The maximum amplitude of the resonance shown in Fig. 4.5a is
neven = 0.5, which is a state with equal population on all lattice sites.

4.4 Calibration of the Tunnel Coupling

The tunnel coupling between neighboring sites is determined experimentally by
observing Josephson oscillations in isolated double well potentials, where the inner-
well coupling J is much larger than the inter double-well coupling J ′, so that all
dynamics is restricted within the two sites of the double-well potential (Fig. 4.5a).
The measurements discussed in the following section were performed along the x-
axis making use of the laser-assisted tunneling method described in Sect. 5.3. We
note however that this scheme is very general and can be applied equally well to
measure bare tunnel couplings or renormalization of the tunneling in the presence
of a periodic on-site modulation as derived in Eq. (3.80). Here we apply a periodic
driving with amplitude V0, frequency �ω = � and a phase difference δϕx = π/2
between neighboring sites, such that the restored resonant tunnel coupling is given
by K = JxJ1(

√
2V0/�) as determined by Eq. (3.81).

The experimental sequence started by loading a BEC within 200ms into a 3D
optical lattice in the Mott-insulating (MI) regime [31] with Vxl = 35(1)Erl, Vy =
30(1)Ers and Vz = 30(1)Ez. The atoms were then loaded into the odd sites of the
double-well potential by ramping up the short lattice along x within 10ms to its final
value, which was varied in the range Vx = 8.5(1) − 13.5(1)Ers. The relative phase
was chosen in order to create a tilted double-well potential (Fig. 4.5a). The energy
offset �/h ≈ 4.4kHz was calibrated independently for each potential configuration
Vx by performing spectroscopy measurements as described in the previous section.
The energy offset between neighboring sites was much larger than the coupling
strength� 	 Jx such that all atoms initially populate odd sites and tunneling to even
sites is inhibited. After instantaneously switching on the resonant modulation, atoms
undergo tunnel oscillations between even and odd sites (Fig. 4.6a). To determine the
effective coupling strength we measured the fraction of atoms in even sites neven

as a function of the modulation time tmod . The populations oscillate with frequency
ωK = 2K/�.

Ideally the oscillations would start at neven = 0 with an oscillation amplitude of
one. The reduced contrast is most likely due to an imperfect initial state preparation
and different atom numbers inside the double-wells. The signal can be improved by
applying a filtering sequence as introduced in the following section, where all atoms
on doubly occupied sites are removed from the trap. The damping of the oscillations
is most likely due to inhomogeneities caused by the harmonic trap which leads to a
dephasing of the oscillations in the individual double-well potentials.

The induced inner-well coupling K was further measured as a function of the
bare coupling Jx (Fig. 4.6b). In agreement with theory, K = JxJ1(

√
2V0/�), we

http://dx.doi.org/10.1007/978-3-319-25829-4_5
http://dx.doi.org/10.1007/978-3-319-25829-4_3
http://dx.doi.org/10.1007/978-3-319-25829-4_3
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Fig. 4.6 Calibration of the effective tunnel coupling induced by the laser-assisted tunnelingmethod
introduced in Sect. 5.3. a Rabi oscillations between odd and even sites triggered by the lattice
modulation as a function of the modulation time tmod for Jx/h = 0.77(4) kHz. The solid line is
a damped-sine fit to extract the oscillation frequency ωK = 2K/� which corresponds to K/h =
0.23(1) kHz. b Measured effective inner-well coupling K as a function of the bare tunnel coupling
Jx . The solid line is a linear fit to our data, where the offset was fixed to zero. The horizontal error
bars depict the uncertainty in the calibration of Jx , which is mainly determined by the uncertainty of
the lattice-depth calibration. The vertical error bars show the fit error obtained from the damped-sine
fits as depicted in (a). (Figure adapted from Ref. [41])

found a linear relation between the induced and the bare tunnel coupling, where the
proportionality constant K/Jx = 0.31(1) was evaluated from the linear fit depicted
in (Fig. 4.6b). The modulation amplitude V0 was additionally calibrated by loading
the atoms into the diagonal lattice created by the two running-wave beams for ω = 0
using parametric heating [45]. The corresponding modulation amplitude was V0 =
2.1(1)Erl, which results in J1(

√
2V0/�) = 0.32(1) in agreement with the value

extracted from the data shown in (Fig. 4.6b). For very small coupling strengths the
damping time is on the order of the oscillation period, which is most likely the reason
for the larger deviation of the measured coupling strength at Jx/h = 0.20(1) kHz
(Fig. 4.6b).

4.5 Filtering Sequence

For some of the experiments it is required to prepare the atoms in a three dimensional
optical lattice with at most one atom per lattice site. This can be achieved by loading
a MI state where the inner-most shell has a density of n = 1 atoms per lattice site.
However, this regime crucially depends on the atom number and the external trapping
potential. In order to bemore flexible regarding the experimental parameterswe apply
a filtering sequence which allows us to remove possible double occupancies from
the trap (Fig. 4.7).

The experimental sequence starts by loading a MI state within 100–200ms in a
parameter regime with at most two atoms per lattice site. The final lattice depths
are typically about 20–30Eri, i = {z, s, l}. After that the potential depths are ramped
up to about 70–120Eri within 1ms in order to increase the confinement and enhance
the collision rate. At this point the atoms are transferred from the |F = 1, m F = −1〉

http://dx.doi.org/10.1007/978-3-319-25829-4_5
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Fig. 4.7 Schematic drawing of the filtering sequence used to remove atoms on doubly occupied
sites. The filtering is applied on a MI state with at most two atoms per lattice site. The sequence
starts by transferring all atoms from the |F = 1, m F = −1〉 state to the |F = 2, m F = −1〉 state.
In this state atoms on doubly occupied sites undergo spin relaxation collisions. After a waiting
time of typically 50ms all double occupancies are removed from the trap. At the end the atoms are
transferred back to the |F = 1, m F = −1〉 state

state to the |F = 2, m F = −1〉 state using a rapid adiabatic passage: In the presence
of amicrowave field at νMW ≈ 6.8GHz,which corresponds to the hyperfine-splitting
of the ground state, a homogeneous offsetmagnetic field is swept across the resonance
condition. The sweep rate is small enough to stay adiabatic and allows us to achieve
an almost complete transfer to the |F = 2, m F = −1〉 state. In the F = 2 manifold
atoms can undergo hyperfine-changing collisions |F = 2〉 → |F = 1〉 leading to a
decreased lifetime of atoms in the upper hyperfine manifold [46–48]. If two atoms
collide at least one of them falls down to the F = 1 manifold and an excess energy
of about h × 6.8GHz is released. This is enough to expel both atoms from the trap.
After a waiting time of 50ms all atoms on doubly occupied sites are removed from
the trap. The remaining atoms are transferred back to the |F = 1, m F = −1〉 state
and we are left with at most one atom per lattice site.

4.6 Site-Resolved Detection

The superlattice potential offers a variety of manipulation and detection techniques
[49, 50]. Here, we discuss the site-resolved detection technique which is used for
many experiments presented in the context of this thesis. It relies on the transfer
of atoms that are located in certain sites of the lattice to higher Bloch bands and
performing a subsequent band-mapping sequence [51], which allows us to determine
the band occupations after TOF.

The detection sequence starts by ramping up all lattices rapidly within 1ms in
order to freeze out all dynamics; the long lattices are typically increased to about
Vl = 70 Erl and the short lattices to about V = 40 Ers. Subsequently the tilt between
neighboring sites is increased non-adiabatically such that atoms located on odd sites
are transferred to the third energy level (Fig. 4.8). As a second step the barrier of
the double-well potential is ramped down adiabatically to Vs = 0 Erl. Hence, atoms
initially located in even sites stay in the lowestBlochbandof the long lattice and atoms
initially in odd sites end up in the third Bloch band. The higher-band occupations
can be detected by applying a subsequent band-mapping, where atoms in the nth
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adiabaticnon-adiabatic

even    odd

Fig. 4.8 Schematic drawing of the site-resolved detection sequence in an isolated double-well
potential. Initially the atoms are located in even and odd sites of the double-well potential. Tunnel
between neighboring sites is inhibited due to large potential barriers. As a first step the atoms in
odd sites are transferred non-adiabatically to the third energy level of the double-well potential by
rapidly increasing the energy offset between neighboring sites. Then, the short lattice is removed
adiabatically thereby preserving the band populations. Atoms initially located in odd sites are
transferred to the third Bloch band in the long lattice and atoms initially in even sites stay in the
lowest Bloch band

Bloch band are mapped to the nth Brillouin zone, n ∈ N. Figure4.9 illustrates the
connection between the site-populations and higher band-occupations if the sequence
is applied along x (Fig. 4.9a), along y (Fig. 4.9b) or along both directions (Fig. 4.9c).
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Fig. 4.9 Schematic illustration of the connection between the site occupations and the corre-
sponding Brillouin zones. i Illustration of the four non-equivalent lattice sites in the unit-cell of a
two-dimensional superlattice (plaquette). ii Schematic drawing of the Brillouin zones after applying
the site-resolved detection technique a along x , b along y or c along both directions simultaneously.
iii Typical experimental images after applying the site-resolved detection along the corresponding
directions measured after 10ms TOF; atoms are shown in black. Applying the sequence along x
allows us to evaluate nleft and nright and along y to obtain ndown and nup. All site-populations nR,
R = {A, B, C, D}, can be detected simultaneously by applying the sequence along both directions
at the same time. (Data in (a) and (b) taken from Ref. [43], data in (c) taken from Ref. [53])
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This technique is applicable for a single superlattice potential along x or y as well
as a 2D superlattice potential. If both superlattices are used at the same time a lattice
potential with a unit cell that contains four non-equivalent sites is formed. The new
unit cell is typically denoted as plaquette. In this potential configuration the detection
sequence applied along the x-axis gives access to the populations on the left and right
bond in the plaquette,

nleft = NA + ND

N
, nright = NB + NC

N
, (4.5)

while along y it determines the populations on the upper and lower bond,

ndown = NA + NB

N
, nup = NC + ND

N
. (4.6)

By performing the site-resolved detection along both axes simultaneously (Fig. 4.9c)
all site occupations

nR = NR
N

, R = {A, B, C, D}, (4.7)

can be determined; here N is the total atom number and NR is defined as the atom
number on siteR in the plaquette [52].
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Chapter 5
Staggered Magnetic Flux

Abstract Themost straightforward implementation of artificialmagnetic fieldswith
laser-assisted tunneling using the experimental apparatus described in the previous
chapter is based on a staggered optical superlattice potential, which leads to a stag-
gered effective flux distribution with zeromean. A theoretical analysis of the ground-
state properties of the single-particle Hamiltonian is presented in this chapter, which
were studied in the experiment through time-of-flight measurements. The strength
of the flux was determined by detecting the evolution of single atoms in isolated
four-site square plaquettes.

The most straightforward implementation of artificial magnetic fields with laser-
assisted tunneling (Chap.3) using the experimental apparatus described in the pre-
vious chapter is based on a staggered optical superlattice potential, which leads to a
staggered effective flux distribution with zero mean [1, 2]. The setup was inspired by
the proposals of Jaksch and Zoller [3] and subsequent work [4, 5], where complex
hoppings arise due to coupling of the motional and internal degrees of freedom of the
atoms. In contrast laser-assisted tunneling based on far-detuned running-wave beams
does not rely on the internal structure of the atoms [6–8], which makes it applicable
to a large variety of different systems. The resulting flux distribution alternates in
sign along one of the lattice axis and is uniform along the other. It has been shown
that such systems can feature interesting strongly-correlated phases as discussed in
Ref. [9]. Other staggered flux distributions, arranged in a chequerboard-like pattern,
were proposed using a time-dependent bichromatic optical potential [10]. These
systems were studied theoretically in detail for Fermions, Bosons as well as Bose-
Fermi mixtures [11–13]. Experimentally staggered fluxes were realized in triangular
lattices, which served for simulations of magnetic systems [14, 15].

Here, we start with a theoretical analysis of the ground-state properties of the
single-particle Hamiltonian of a square lattice with staggered flux (Sect. 5.1). The
degeneracy of the ground state depends on the field strength [9] as well as the
tunnel couplings and can be probed experimentally by measuring themomentum
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distribution (Sect. 5.5). This experimental observable is indeed gauge-dependent
(Sect. 5.2). In the experiment, the gauge is determined by the phases that are imprinted
by the laser-assisted tunneling scheme. The configuration chosen in our setup [1,
2] and a detailed derivation of the corresponding Floquet Hamiltonian is given in
Sects. 5.3 and 5.4, respectively. In addition, direct measurements of the flux are pre-
sented, which were obtained by partitioning the lattice into isolated four-site square
plaquettes and detecting the evolution of single atoms in these plaquettes (Sect. 5.6).
A theoretical discussion of the corresponding full-time dynamics can be found in
Sect. 5.7.

5.1 Single-Particle Hamiltonian

The single-particle energy spectrum of a square lattice with staggered magnetic flux
is studied as a function of the anisotropy in the tunnel couplings along x and y and
the strength of the magnetic flux α. The generating vector potential can be chosen
similar to the usual Landau gauge (Sect. 2.3), such that the phase increases linearly
along y and alternates in sign along x . This system can be described by the following
tight-binding Hamiltonian

Ĥstagg = −K
∑

m,n

eiφm,n â†
m+1,n âm,n − J

∑

m,n

â†
m,n+1 âm,n + h.c. , (5.1)

φm,n = 2παn(−1)(m+1), (5.2)

where K and J are the coupling strengths along x and y respectively and tunneling
along x further involves the spatially-dependent phase factors φm,n (Fig. 5.1a). These

a
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+

+

+

x

y

x

y evenodd

(b)

evenodd

(a)

K

J

Fig. 5.1 Peierls phase-factors φm,n and corresponding flux distribution �m,n for a square lattice
with staggered flux. a Phase distribution in units of 2π as defined in Eq. (5.2). Along y atoms can
tunnel with amplitude J , while along x the coupling strength is complex K eiφm,n and depends on
the position in the lattice. The lattice constant is denoted by a. b Illustration of the flux distribution
�m,n = 2πα(−1)m associated with Hamiltonian (5.1). The magnetic unit cell (gray shaded area)
is twice as large as the normal lattice unit cell independent of α and contains two non-equivalent
sites (odd and even)
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phases give rise to a staggered magnetic field �m,n = 2πα(−1)m which is uniform
along y and staggered along x with zero mean (Fig. 5.1b) according to the definition
in Eq. (3.82). The presence of the Peierls phase-factors breaks the translation sym-
metry of the underlying lattice and one needs to find the new magnetic translation
symmetries of the Hamiltonian. As shown in Sect. 2.2 the flux through one mag-
netic unit cell equals an integer multiple of 2π . Hence, for the staggered flux lattice
the smallest possible magnetic unit cell consists of two lattice unit cells, one with
flux �m,n = +2πα and one with �m,n = −2πα (gray shaded area in Fig. 5.1b); it
encloses an area that is pierced by a total flux �MU = 0. The magnetic unit cell is
two times larger than the normal lattice unit cell irrespective of the value of α and
contains two non-equivalent sites, which we denote as odd and even.

The magnetic translation operators can be found in a similar way as described
in Sect. 2.2. Note, however, that the phases θ i

m,n are not directly determined by
Eq. (2.9). Instead they can be derived following the calculations in Appendix A,
Eqs. (A.1)–(A.4), by incorporating a priori the knowledge about the dimensions of
the magnetic unit cell AMU = 2a × 1a. As a result one obtains

θ x
m,n = 0, θ y

m,n =
{

−2πα , for m odd

0 , for m even
(5.3)

and

M̂2
x =

∑

m,n

â†
m+2,nâm,n, M̂1

y =
∑

m,n

â†
m,n+1âm,n

{
e−i2πα , for m odd

1 , for m even
, (5.4)

where M̂2
x describes a translation by two lattice constants along x and M̂1

y a translation
of one lattice constant along y. Both operators commute with the Hamiltonian as well
as with each other. The simultaneous eigenstates which fulfill the generalized Bloch
theorem in Eq. (2.18) can be written in the following form

�m,n = eikx maeiky na

{
ψo ei2παn, for m odd

ψe , for m even
(5.5)

where kx and ky are defined within the first magnetic Brillouin zone (FBZ),
−ks/2 ≤ kx < ks/2 and −ks ≤ ky < ks and ks = π/a. Inserting this ansatz
into the Schrödinger equation associated with Hamiltonian (5.1)

E�m,n = −K (eiφm,n �m+1,n + e−iφm−1,n �m−1,n) − J
(
�m,n+1 + �m,n−1

)
, (5.6)

the problem reduces to a two-dimensional eigenvalue equation

H(k)

(
ψe

ψo

)
= E

(
ψe

ψo

)
, (5.7)

http://dx.doi.org/10.1007/978-3-319-25829-4_3
http://dx.doi.org/10.1007/978-3-319-25829-4_2
http://dx.doi.org/10.1007/978-3-319-25829-4_2
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with

H(k) = −2

(
J cos(kya) K cos(kx a)

K cos(kx a) J cos(kya + 2πα)

)
. (5.8)

Energy spectrum

Due to the larger size of the magnetic unit cell, the unperturbed tight-binding band
splits into two subbands (Fig. 5.2a). The bands touch at two Dirac cones in the FBZ
located at (kx , ky) = (0.5,−α)π/a and (kx , ky) = (0.5, 1− α)π/a. Their positions
only depend on α but not on the coupling ratio J/K .

The lowest energy band exhibits either one or twominimawithin the FBZ depend-
ing on the flux α and J/K (Fig. 5.2b). The momentum component along x of the
lowest energy state is always located at kx = 0, independent of J/K or α. Along y,
however, the spectrum exhibits either a single or a two-fold degenerate minimum.

For isotropic coupling J/K = 1 and below a critical value of the flux
α < αc � 0.29 the lowest band exhibits a single minimum at ky = −πα/a.
For larger values α > αc the minimum splits and there are two degenerate ground
states in the system (lower panel in Fig. 5.2b). The critical value of the flux at which
the bifurcation point occurs depends on the coupling ratio. The function αc(J/K ) is
depicted with the solid black line in the upper left panel of Fig. 5.2b.

The right panel in Fig. 5.2b shows the momentum components of the ground
state for constant flux α = 1/4. This situation was further studied experimentally in
Sect. 5.5. Below a critical value (J/K )c � 1.41 the band exhibits a single minimum
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Fig. 5.2 Single-particle energy spectrum and ground states. a Energy spectrum for J/K = 1 and
α = 1/4. The spectrum displays two subbands, that touch at the two Dirac cones at the border of
the magnetic Brillouin zone. b Number of ground states as a function of the flux per plaquette α and
coupling ratio J/K . Below a critical value of the flux, that depends on the coupling ratio, there is a
single minimum in the lowest band (gray shaded area). Above that value the minimum splits into
two and the spectrum exhibits two degenerate ground states. The lower panel shows the momentum
component along y of the lowest energy state for J/K = 1 and the panel on the right for α = 1/4
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at ky = −π/(4a), while above that value the minimum splits into two. In the limit
J � K the momenta approach the values ky = 0 and ky = −π/(2a).

The absolute positions of the ground-statemomentumcomponents (kx , ky) and the
position of the Dirac cones are in general gauge-dependent. This has to be considered
in cold-atom experiments, where the momentum distribution can be observed in
TOF experiments [16]. The ground-state properties in the presence of interactions
are discussed in Ref. [9] for isotropic couplings J/K = 1.

5.2 Gauge-Dependence of Expansion Images

In classical electromagnetism a gauge transformation is of the form A → A′ =
A −∇ f , where A is the vector potential generating a magnetic field B = ∇ × A and
f is a scalar field that depends on time and position. This transformation leaves all
fields and therefore the Maxwell’s equations invariant

B′ = ∇ × A′ = ∇ × A − ∇ × ∇ f︸ ︷︷ ︸
=0

= B. (5.9)

On a lattice with vector potentialAm,n = (Ax
m,n, Ay

m,n) a discrete version of the gauge
transformation can be defined [9, 17, 18]

Ax
m,n → A′x

m,n = Ax
m,n − 	x fm,n

Ay
m,n → A′y

m,n = Ay
m,n − 	y fm,n,

(5.10)

where 	i , i = {x, y} is the discrete form of the derivative

	x fm,n = fm+1,n − fm,n, 	y fm,n = fm,n+1 − fm,n, (5.11)

and fm,n is a scalar function. The vector potential Am,n gives rise to complex tunnel
couplings as discussed in Sect. 2.1. For the sake of simplicity all pre-factors such as
the electric charge q aswell as � are set to one such that the tight-bindingHamiltonian
is given by the following expression

Ĥ = −J
∑

m,n

(
ei Ax

m,n â†
m+1,n âm,n + ei Ay

m,n â†
m,n+1 âm,n + h.c.

)
, (5.12)

and the flux per unit cell is determined by

�m,n = Ax
m,n + Ay

m+1,n − Ax
m,n+1 − Ay

m,n . (5.13)

The explicit form of Hamiltonian (5.12) depends on the gauge. The flux per unit
cell, however, is gauge independent. For the transformed vector potential A′

m,n it is
given by

http://dx.doi.org/10.1007/978-3-319-25829-4_2
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�′
m,n = Ax

m,n + Ay
m+1,n − Ax

m,n+1 − Ay
m,n (5.14)

−( fm+1,n − fm,n) − ( fm+1,n+1 − fm+1,n) + ( fm+1,n+1 − fm,n+1) + ( fm,n+1 − fm,n)
︸ ︷︷ ︸

=0

.

This proves the gauge invariance of the flux distribution �m,n = �′
m,n . Hamiltonian

(5.12) can be brought back to its original form by redefining the creation and anni-
hilation operators according to

âm,n → â′
m,n = ei fm,n âm,n, â†

m,n → â′†
m,n = e−i fm,n â†

m,n, (5.15)

Note that additional terms in the Hamiltonian that are proportional to the number
operator n̂m,n = â†

m,nâm,n , such as on-site interactions or on-site potentials, are not
affected by this transformation. All physical observables that depend only on the flux
distribution �m,n are gauge invariant and cannot distinguish between âm,n and â′

m,n .
This is true for example for the density of the wave function or the energy spectrum,
which is gauge invariant up to a global shift in momentum space.

In cold-atom experiments the ground state can be probed through expansion imag-
ing, where the momentum distribution is measured after TOF. This quantity, in con-
trast, depends on the choice of the gauge as will be shown in the following. In
such experiments a BEC is typically prepared in the lowest energy state of a cer-
tain Hamiltonian. After switching off all fields abruptly (lattice potentials, trapping
potential, gauge fields) and if interactions between the atoms can be neglected, the
atoms expand ballistically for a period tTOF. The density distribution obtained after
this time corresponds to the momentum distribution of the particles in the lattice and
is given by

n(r) =
(

mat

�tTOF

)3

|ω̃(k)|2G(k),

G(k) =
∑

m,n,m ′,n′
ei(kx a(m−m ′)+kya(n−n′))

〈
â†

m,nâm ′,n′

〉 (5.16)

where mat is the mass of the particle, ω̃(k) is the Fourier transform of the on-site
or Wannier function and G(k) is the Fourier transform of the single-particle density
matrix

〈
â†

m,nâm ′,n′
〉
[16, 19, 20]. Themomentumk is related to the position r according

to k = mat r/(�tTOF). Applying the gauge transformation as defined in Eq. (5.15)
the single-particle density matrix becomes

〈
â†

m,nâm ′,n′

〉
→ 〈

â′†
m,nâ′

m ′,n′
〉 = ei( fm′ ,n′ − fm,n)

〈
â†

m,nâm ′,n′

〉
. (5.17)

The gauge transformation affects the single-particle density matrix and therefore
also the momentum distribution, which is obtained experimentally using expan-
sion imaging [9]. Figure5.3 depicts the momentum distribution in the FBZ for two
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Fig. 5.3 Momentum distribution in the FBZ of the ground state of Hamiltonian (5.1) for two
different gauge fields that result in the same flux distribution. The distributions were calculated
for isotropic coupling J/K = 1 and two different phase distributions for fixed Wannier functions:
a φm,n = (−1)m+1nπ/2 and b φm,n = (−1)m+1(n + m/2)π/2. Both distributions give rise to
the same flux distribution �m,n = (−1)mπ/2 but the momentum distribution obtained in a TOF
experiment differs due to the gauge-dependence of the corresponding observable. In both cases
there are two momentum components in the FBZ at non-zero momentum and δky = π/(2a) (red
arrows). The red crosses mark the center of the FBZ at zero momentum. The phases φm,n associated
with the momentum distribution shown in (a) do not depend on the site index m. Therefore there
is no displacement of the momentum components along x so that δkx = 0. In contrast, the one
associated with (b) does depend on m, which is the reason why the momenta additionally split
along x with δkx = π/(4a). The ratio of the shift in momentum space δkx/δky = 1/2 is consistent
with the spatial dependence of the phase φm,n . The momentum distribution was obtained by exact
diagonalization of a 31 × 31 matrix

different vector potentials which give rise to the same staggered flux distribution
�m,n = (−1)mπ/2.

5.3 Experimental Setup

The experimental setup consists of a two-dimensional lattice potential created by
two orthogonal standing waves of wavelength λs = 767 nm. Along the x-direction
an additional standing wave with twice the wavelength λl = 2λs is superimposed to
introduce a staggered energy offset ±	/2 (Fig. 5.4a), where the convention is used
that odd lattice sites have lower on-site energy than even lattice sites.

For 	 � Jx tunneling is inhibited along the x-direction, while bare tunneling
occurs along y.Apair of running-wavebeams1 with electric fieldsEi (r, t), i = {1, 2},
wave vectors |k1| � |k2| ≡ kR and frequencies ωi , is then used to periodically drive
the system and restore resonant tunneling for ω = ω1 − ω2 = ±	/�. Each of the
two beams is aligned along one of the two lattice axis

E1(r, t) = E x
0 ei(k1x+ω1t+φ1), E2(r, t) = E y

0 ei(k2 y+ω2t+φ2) , (5.18)

1Erbium doped fiber amplifier from NP Photonics (output power: 5W).
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Fig. 5.4 Experimental setup for the realization of a staggered artificial magnetic field. a Schematic
drawing of the staggered lattice potential along the x-direction with energy offset 	 and tunnel
coupling Jx between neighboring sites. It consists of two standing waves with wavelength λs =
767nm (blue) and λl = 2λs (red). Odd lattice sites (black circles) denote sites of low on-site energy
and even lattice sites (white circles) the ones of high energy.b Illustration of the full two-dimensional
lattice with lattice constant a = λs/2 and tunnel coupling Jy along y. An additional pair of running-
wave beams (red arrows) withwave vectorski , i ∈ {1, 2} and frequenciesωi are used to periodically
modulate the lattice potential. c Local optical potential created by the interference between the two
running-wave beams for a fixed time t . The phase fronts determine the site-dependent phases ϕm,n
of the time-dependent on-site potential

as illustrated in Fig. 5.4b. The corresponding local optical potential is of the following
form

V (r, t) = |V x
0 |2 + |V y

0 |2︸ ︷︷ ︸
constant

+ V0cos (δk · r + ωt + φ0)︸ ︷︷ ︸
=VK (t)

, (5.19)

with δk = k1 − k2, φ0 = φ1 − φ2 and the potential depth is proportional to the
amplitude of the electric fields V i

0 ∝ |Ei
0|2 and V0 ∝ 2E x

0 E y
0 [21]. The static

term leads to a global shift of the potential energy and can be neglected. Only the
time-periodic on-site modulation VK (t) is relevant. The site-dependent phases of
this modulation are given by δk · R, where R defines the position in the lattice,
R = maêx + naêy . This expression can be recast into the form

δk · R = kRa(m − n), (5.20)

For our experimental parameters kR = π/(2a) such that the phases are determined by

δk · R = π

2
(m − n). (5.21)

The phase difference of the modulation between neighboring sites along the two
directions is given by δϕx = −δϕy = π/2 (Fig. 5.4c). By choosing a different geom-
etry or a different wave vector kR , in principle any other phase difference can be
engineered. The additional phase φ0 in Eq. (5.19) is given by the relative phase
between the two running-wave beams, which is not actively stabilized and differs
between individual experimental realizations.
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5.4 Effective Floquet Hamiltonian and Micro-motion

The dynamics of the system described in the previous section is governed by an
explicitly time-dependent Hamiltonian

Ĥ(t) =
∑

m,n

(
−Jx â†

m+1,nâm,n − Jyâ†
m,n+1âm,n + h.c.

)

+
∑

m,n

(
V0 sin(ωt + ϕm,n) + (−1)m 	

2

)
n̂m,n,

(5.22)

with ϕm,n = π
2 (m −n+1)+φ0 being the site-dependent phase generated through the

application of the running-wave beams depicted in Fig. 5.4b. Since the Hamiltonian
is periodic in time Ĥ(t +T ) = Ĥ(t), with T = 2π/ω, Floquet’s theorem applies. As
discussed in Sect. 3.1 the evolution of the system over one period T can be described
by an effective time-independent Hamiltonian. The Hamiltonian above is of the form
studied in Sect. 3.4 so that in the high frequency limit �ω � Jx , Jy the formalism
can be applied directly. The static terms, that are proportional to �ω = 	, diverge in
the limit ω → ∞. Therefore a transformation into the rotating frame is performed
as demonstrated in Sect. 3.4 using the unitary operator defined in Eq. (3.73) for
	m = (−1)m	/2,

R̂stagg(t) = exp

[
i
∑

m,n

(
− V0

�ω
cos(ωt + ϕm,n) + (−1)m 	t

2�

)
n̂m,n

]
. (5.23)

This leads to the following transformed Hamiltonian, where the time-dependence
appears in the tunnel couplings

Ĥstagg(t) = − Jx

∑

m,n

(
eiηx

m,n(t)â†
m+1,nâm,n + h.c.

)

− Jy

∑

m,n

(
eiηy

m,n(t)â†
m,n+1âm,n + h.c.

)
,

(5.24)

with

ηx
m,n(t) = −η0 sin

(
ωt + ϕm+1,n + ϕm,n

2

)
+ (−1)m+1	t/�, (5.25)

ηy
m,n(t) = η0 sin

(
ωt + ϕm,n+1 + ϕm,n

2

)
. (5.26)

Since the phase difference of the modulation between neighboring sites along both
directions is equal |δϕx | = |δϕy| =: δϕ = π/2, the differential modulation amplitude
η0 is also the same,

http://dx.doi.org/10.1007/978-3-319-25829-4_3
http://dx.doi.org/10.1007/978-3-319-25829-4_3
http://dx.doi.org/10.1007/978-3-319-25829-4_3
http://dx.doi.org/10.1007/978-3-319-25829-4_3
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η0 = 2γ sin (δϕ) =
√
2V0

�ω
. (5.27)

For resonant driving �ω = 	 and �ω � Jx , Jy the effective Floquet Hamiltonian in
the rotating frame is well approximated by the lowest order of theMagnus expansion
(Sect. 3.1.3), which results in the following Hamiltonian

Ĥstagg
F = −K

∑

m,n

eiφm,n â†
m+1,nâm,n − J

∑

m,n

â†
m,n+1âm,n + h.c., (5.28)

with K = JxJ1(η0) and J = JyJ0(η0). Due to the staggered energy offset
	m = (−1)m	/2 the phases vary non-uniformly across the lattice (Sect. 3.2) and
are determined by

φm,n =
{

−(ϕm+1,n + ϕm,n)/2, for m odd

+(ϕm+1,n + ϕm,n)/2 + π, for m even
(5.29)

General form of the flux distribution

The lattice contains two different kinds of plaquettes with fluxes �o
m,n and �e

m,n
respectively (Fig. 5.5). For a positive energy offset between neighboring sites	m+1−
	m = 	 (m odd), the Peierls phase-factor is given by φ̃m,n := −(ϕm+1,n + ϕm,n)/2.
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- m,n+1+

- m,n+m,n
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y

)n,m()n,m(

evenevenodd

Fig. 5.5 Schematic drawing of the two different plaquettes with fluxes �o
m,n = −�e

m,n realized
using a staggered superlattice potential. a For m odd the energy offset between neighboring sites
is positive +	 and the flux through the plaquette is determined by �o

m,n = φ̃m,n − φ̃m,n+1. b For

m even the offset is negative −	 and the Peierls phases change sign φ̃m,n → −φ̃m,n + π . The
constant shift by π does not depend on the site, hence, it cannot influence the value of the flux. As
a result the flux per plaquette changes sign �e

m,n = −�o
m,n compared to the one for m odd

http://dx.doi.org/10.1007/978-3-319-25829-4_3
http://dx.doi.org/10.1007/978-3-319-25829-4_3
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The corresponding flux through the lattice unit cell is defined as

�o
m,n = φ̃m,n − φ̃m,n+1. (5.30)

For those plaquettes where the energy offset between neighboring sites is negative
	m+1 − 	m = −	 the Peierls phases change sign and are shifted by π , φ̃m,n →
−φ̃m,n + π . This is the case for m even such that the corresponding flux is given by

�e
m,n = −φ̃m,n + φ̃m,n+1 = −�o

m,n. (5.31)

This shows that laser-assisted tunneling using a staggered superlattice potential nat-
urally gives rise to a staggered flux distribution.

Gauge realized in the experiment

For the laser-beam configuration depicted in Fig. 5.4b the phases of the on-site mod-
ulation are determined by ϕm,n = π

2 (m − n + 1) + φ0 so that the corresponding
Peierls phases φm,n are given by

φm,n =
{

−π
2 (m − n + 3/2) − φ0, for m odd

+π
2 (m − n + 7/2) + φ0, for m even

(5.32)

This precise form of the gauge will be important for the experiments where the
momentum distribution is measured using expansion imaging (Sect. 5.5). As dis-
cussed in Sect. 5.2 the particular choice of gauge manifests itself in the position
of the momentum components. Since the experimental gauge is determined by the
laser-beam configuration it is necessary to derive the effective Hamiltonian taking
into account all relevant phase factor that might appear in the setup. Fortunately
for the case of a staggered flux distribution the relative phase φ0 between the two
running-wave beams, which is not stabilized in the experiment, has no impact on
the momentum distribution (Appendix C). For the sake of simplicity we choose
φ0 = −3π/4 and rewrite the expression for the phases given in Eq. (5.32) as follows

φm,n = π

2
(m + n)(−1)m+1. (5.33)

The two expressions are equivalent as illustrated in Fig. 5.6 except that they appear
to be shifted by two lattice constants along y relative to each other. For the following
discussion we are going to use the convention that the effective magnetic field is
pointing along the −êz direction such that the flux per lattice unit cell is given by

�m,n = π

2
(−1)m+1, (5.34)
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Fig. 5.6 Schematic drawing of the vector potential realized in the experiment. a Phase distribution
of the complex hopping as given in Eq. (5.32) for φ0 = −3π/4. b The experimentally realized
phase distribution can be represented by the equivalent expression φm,n = π

2 (m + n)(−1)m+1

which is uniform along y and staggered along x [1, 2]. An equivalent derivation
of the effective Hamiltonian using the formalism developed in Sect. 3.1.2 can be
found in Ref. [22], which is in agreement with the results obtained using the Magnus
expansion approach discussed above.

Micro-motion operator

Following the discussion of the micro-motion in 1D lattice geometries in Sect. 3.3 it
is expected that the micro-motion also influences the momentum distribution in the
staggered flux lattice. The full-time evolution according to Eqs. (3.39) and (3.40) is
given by

Û (t) = exp
[
iM̂†

stagg(t)
]
exp

[
− i

�
Ĥstagg

F t

]
exp

[
iM̂†

stagg(0)
]
, (5.35)

where the micro-motion operator is determined be the unitary operator R̂stagg(t) =
exp[iM̂stagg(t)] given in Eq. (5.23) such that

M̂stagg(t) =
∑

m,n

(
− V0

�ω
cos(ωt + ϕm,n) + (−1)m 	

2�
t

)
n̂m,n, (5.36)

The micro-motion associated with this operator is very similar to the case of a peri-
odically modulated 1D staggered superlattice potential. The part that is related to the
staggered offset potential 	m = (−1)m	/2 is trivial and only leads to oscillations
in the amplitudes of the different momentum components. The modulation-induced
term, however, can lead to additional momentum components shifted by integer mul-
tiples of δk = (π/(2a), π/(2a)). In the following section experimental signatures
of these additional components will be revealed.

http://dx.doi.org/10.1007/978-3-319-25829-4_3
http://dx.doi.org/10.1007/978-3-319-25829-4_3
http://dx.doi.org/10.1007/978-3-319-25829-4_3
http://dx.doi.org/10.1007/978-3-319-25829-4_3
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5.5 Ground State of the Staggered Flux Lattice

The ground state of the staggered flux lattice is studied experimentally for a fixed
value of the flux �m,n = ±2πα, with α = 1/4, as a function of the coupling ratio
J/K using expansion imaging (Sect. 5.2). The properties of the ground state were
studied theoretically at the beginning of this chapter. For α = 1/4 it was found that
there is a bifurcation point at (J/K )c � 1.41, where the ground state of the system
becomes two-fold degenerate. The staggered-flux Hamiltonian in the experimental
gauge was derived in the previous section and can be written in the following form

Ĥstagg
F = −K

∑

m,n

eiφm,n â†
m+1,nâm,n − J

∑

m,n

â†
m,n+1âm,n + h.c.

φm,n = π

2
(m + n) (−1)m+1 ,

(5.37)

with K = JxJ1(η0), J = JyJ0(η0) and η0 = √
2V0/(�ω).

5.5.1 Isotropic Coupling J = K

In order to prepare the ground state of the staggered-flux Hamiltonian we used the
experimental sequence illustrated in Fig. 5.7. It started by loading a BEC of about
5 × 104 atoms without any discernible fraction of thermal atoms into a 2D optical
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Fig. 5.7 Schematic drawing of the experimental sequence. The atoms were loaded adiabatically
within 160ms into a two-dimensional lattice with isotropic tunnel coupling along both directions
Jx/h = Jy/h = 31(2)Hz as illustrated by the schematic drawing in (i). After switching on the
staggered tilt Vxl and decreasing the short lattice along x , spontaneous tunneling was inhibited
by the staggered superlattice potential shown in (ii). Coupling was then restored by switching on
the modulation V0 (red arrows in ii). The modulation amplitude and lattice depths were chosen
such that the final effective coupling strengths K/h = J/h = 30(2)Hz matched the ones of the
initial state. After an additional holding time of 10ms coherence was restored and the momentum
distribution was measured after 20ms TOF
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lattice, which results in a 2D array of coupled 1D Bose gases. Perpendicular to the
lattice the atoms were confined by a crossed dipole trap with a harmonic trapping
potential of frequencyωz/(2π) � 30Hz. The atomswere loaded adiabaticallywithin
160ms into the lattice with final depths Vx = Vy = 14(1)Ers (see Sects. 4.2 and 4.3
for an overview of the lattice and superlattice potentials). The bare tunnel couplings
along both directions correspond to Jx/h = Jy/h = 31(2)Hz and were chosen
to match the final effective coupling strengths K and J at the end of the sequence.
After the initial loading the long lattice along x was ramped up within 0.7ms to
Vxl = 5.0(2)Erl in order to introduce a staggered energy offset between neighboring
sites of 	/h = 4.4(1)kHz. This value was calibrated independently as described in
Sect. 4.3.2. Subsequently the short lattice along x was decreased to Vx = 9.0(3)Ers,
which corresponds to a bare coupling strength Jx/h = 94(4)Hz. Since 	 was much
larger than the tunnel coupling Jx all dynamics was frozen along x , while the atoms
were free to tunnel along y. By switching on the modulation on resonance with
amplitude V0 = 2.10(5)Erl and frequency ω = 2π × 4.4kHz tunneling along x
was restored. In the limit η0  1 the effective couplings can be approximated by
K � Jx V0/(

√
2	) and J � Jy such that the effective coupling strength is given by

K/h = 30(2)Hz and the final coupling ratio is J/K = 1.0(1).
After holding the atoms in this configuration for 10ms we observed a restored

phase coherence (Fig. 5.8b) most likely due to a redistribution of entropy, which was
introduced by the random phases between the one-dimensional condensates, along
the longitudinalmodes. For comparison themomentum distribution of a simple cubic
lattice is depicted in Fig. 5.8a. For this case a single momentum component appears
in the FBZ at zero momentum kx = ky = 0 together with additional momentum
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Exp.

Cubic lattice J/K=1.0(1)

ky

kx

ks

O
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ks k

Fig. 5.8 Momentum distribution measured after tT O F = 20ms for a simple cubic lattice and the
staggered flux lattice with isotropic coupling. a The distribution was obtained by loading the atoms
into the ground state of a simple cubic lattice with lattice constant a = λs/2 without modulation
V0 = 0 and flux � = 0. b For the measured momentum distribution (left panel) the atoms were
loaded into a staggered flux lattice with � = (−1)m+1π/2 and J/K = 1.0(1). The theoretical
momentum distribution (right panel) was obtained by an exact diagonalization of a 31× 31 lattice
with a harmonic confinement ofωx/(2π) = ωy/(2π) = 20Hz. The red rectanglemarks the dimen-
sions of the magnetic Brillouin zone and the cross marks the center position at zero momentum.
There are two momentum components in the FBZ which are shifted by δk (red arrow). Each image
was normalized to its maximum intensity. (Data taken from Ref. [1])
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components separated by the reciprocal lattice vectors (2ks, 0) and (0, 2ks), with
ks = π/a. In contrast to that there are four momentum components per cubic lattice
Brillouin zone in the presence of the staggered magnetic flux (Fig. 5.8b). In order to
understand this momentum distribution the Schrödinger equation has to be solved in
the experimentally realized gauge since the position of the momentum components
is gauge-dependent (Sect. 5.2). A detailed derivation can be found in Appendix C,
where it is shown that the eigenstates can be written in the following form

�m,n = eikx maeiky na

{
ψo ei π

2 (m+n), for m odd

ψe, for m even
. (5.38)

Inserting this ansatz into the Schrödinger equation associated with Hamiltonian
(5.37) the problem reduces to the following two-dimensional eigenvalue equation

( −2J cos(kya) −K (ieikx a + e−ikx a)

−K (−ie−ikx a + eikx a) 2J sin(kya)

) (
ψe

ψo

)
= E(k)

(
ψe

ψo

)
, (5.39)

where kx , ky are defined within the FBZ, −ks/2 ≤ kx < ks/2 and −ks ≤ ky < ks ,
andψe,o are the amplitudes on even and odd lattice sites respectively. The dispersion
relation of the lowest band for J/K = 1 is depicted in Fig. 5.9a. It exhibits a single
minimum at ke = (−ks/4,−ks/4) and the corresponding ground state has an equal
weight on even and odd sites, |ψe| = |ψo|. According to the intrinsic structure of
the eigenstates we expect to obtain a momentum component at ke and an additional
one at ko = ke + δk shifted by δk = (ks/2, ks/2) due to the additional phase factor
corresponding to the wave-function amplitude on odd sites (red crosses in Fig. 5.9a).
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Fig. 5.9 Dispersion relation and ground-statewave function for J/K = 1. aThe dispersion relation
of the lowest band was calculated using Eq. (5.39). It exhibits a single minimum, which appears as
twomomentum components (red crosses) in the first magnetic Brillouin zone. b Spatial distribution
of the phase of the ground-state wave function encoded in the direction of the black arrows. Their
length illustrates the spatial distribution of the density, which is uniform. The background color
further depicts the values of the phase interpolated between neighboring lattice sites. The position
and chirality of the phase-vortices are illustrated with white arrows. (Data taken from Ref. [1])
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In the measured TOF images additional momentum components appear at multiples
of the reciprocal magnetic lattice vectors (ks, 0) and (0, 2ks) as shown in Fig. 5.8b,
in agreement with theory.

The spatial distribution of the ground-statewave function is illustrated in Fig. 5.9b.
The artificial gauge field causes the phase distribution of the atomic wave function
to be non-uniform across the lattice. The value of the phase on each site is encoded
in the direction of the black arrows in the figure. In order to make the appearance
of phase vortices more clear these values were further interpolated for positions
between neighboring lattice sites (background color in Fig. 5.9b). There is one vortex
whenever there is a phase-winding of 2π , as depicted in the legend of Fig. 5.9b. The
winding can be clockwise or anti-clockwise (white arrows), which is referred to as
the chirality of the vortex. For our value of the flux α = 1/4, there is one vortex
every four plaquettes if one follows one row along y in the lattice and the chirality
of the vortex alternates between neighboring rows along x , which coincides with
the direction where the flux is alternating in sign. The atomic density of the ground
state is uniform (length of the arrows in Fig. 5.9b), which is consistent with equal
amplitudes on even and odd sites |ψe| = |ψo|.

5.5.2 Dependence on the Coupling Ratio J/K

To study the ground state for different coupling ratios J/K the depth of the lattice
along y was varied between 9.5Ers and 16.5Ers, which corresponds to the range
0.6 ≤ J/K ≤ 2.8. The bifurcation point where the single minimum splits into
two degenerate ones is expected to occur at (J/K )c = √

2 (Sect. 5.1). We start
by studying the ground state for J/K = 2.5(2) above the critical point using the
same sequence as illustrated in Fig. 5.7. The only difference was that the y-lattice
was ramped to Vy = 10.0(3)Ers during the first ramp. This corresponds to the bare
tunnel coupling Jy/h = 75(3)Hz. After the first ramp the y-lattice depth was kept
constant until it was switched off for TOF imaging.

As displayed in the left panel of Fig. 5.10 we observed four momentum compo-
nents within the first magnetic Brillouin zone in agreement with an exact diagonal-
ization study as depicted in the right panel of the same figure. Due to the two-fold
degeneracy of the ground state �i , i = {L , U }, we obtain twice as many momen-
tum components compared to the situation of isotropic coupling J/K = 1 studied
in the previous section. Here, the index L denotes the state with lower momen-
tum components and U the one with the upper components (Fig. 5.11a). Each of
these two states �i features two momentum components ke

i and ko
i = ke

i + δk,
δk = (ks/2, ks/2), associated with even and odd lattice sites according to Eq. (5.38).
For J/K = 2.5, the dispersion relation of the lowest band displays one minimum at
ke

L � (−0.25ks,−0.45ks) and a second one at ke
U � (−0.25ks,−0.052ks) as shown

in Fig. 5.11a. The twomomenta are split around−ks/4 by	ky � 0.40ks . The relative
weight between the components ke

i and ko
i determines the spatial distribution of the

ground-state wave function. In Fig. 5.11bwe show the local density for one of the two
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Fig. 5.10 Momentum distribution after TOF for the staggered flux lattice with anisotropic coupling
strength J/K = 2.5(2). The momentum distribution depicted in the left panel was measured after
tT O F = 20ms using the sequence illustrated in Fig. 5.7 for Vy = 10.0(3)Ers. The theoretical
momentum distribution (right panel) was calculated by exact diagonalization of a 31 × 31 lattice
with harmonic confinementωx/(2π) = ωy/(2π) = 20Hz. The red rectanglemarks the dimensions
of the FBZ and the cross marks its center position at zero momentum. The distribution exhibits four
momentum components within the FBZ. The components that correspond to odd sites are shifted
by δk = (ks/2, ks/2) relative to the momentum components of even sites. Each of the two images
was normalized to its maximum intensity. (Data taken from Ref. [1])
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Fig. 5.11 Ground-state properties for an anisotropic coupling strength J/K = 2.5(2). a The
dispersion relation of the lowest band features two degenerate minima at ke

L (lower momentum
state) and ke

U (upper momentum state). This leads to four momentum components within the FBZ
(red crosses), where the two additional ones are located at ko

i = ke
i + δk, i = {L , U }. b Spatial

distribution of the phase (direction of the arrows) and amplitude (length of the arrows) for one of the
two ground states �L . The other ground state �U shows a similar distribution shifted by one lattice
constant. The background color represents the values of the phase which were interpolated between
neighboring lattice sites. c Measured atom fraction in the momentum components corresponding
to the ground state �L . The histogram was obtained from 172 identical measurements. (Data taken
from Ref. [1])

ground states�L (length of the arrows). It exhibits a charge density wave with larger
amplitudes on odd sites. Using the eigenvalue Eq. (5.39) we computed the relative
weight between even and odd sites |ψo

L |2/|ψe
L |2 � 6.1. Consequently, the momen-
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tum component at ko
L (odd sites) is more intense than the one at ke

L (even sites). For
the state �U the situation is reversed |ψo

U |2/|ψe
U |2 � 1/6.1 and the state features a

charge density wave with larger population on even sites. Hence, the component ke
U

(even sites) has a higher intensity compared to the ko
L -component (odd sites). This is

in qualitative agreement with the data shown in the left panel of Fig. 5.10. The spatial
distribution of one of the two degenerate ground states�L is illustrated in Fig. 5.11b.
It shows that the phase of the wave function tends to align along the direction of
larger coupling strength J , thereby frustrating the phase relation imprinted by the
modulation. As a result the density is suppressed on every second stripe along x . The
distribution for �U exhibits a similar behavior but shifted by one lattice constant.

We further measured the relative population of the two ground states as depicted
in Fig. 5.11c. Contrary to the triangular lattice with frustrated hopping studied in
Ref. [14], where spontaneous symmetry breaking was observed, we do not see strong
fluctuations in the measured atom fraction but observe an equal population in both
states. Since there is a two-fold degeneracy in the system, the question arises if the
atoms condense into the same single-particle state or if the ground state is frag-
mented [23]. In the presence of weak repulsive interactions it has been shown that
fragmentation is in general unfavorable [24]. Following this result, it has been shown
in Ref. [9], that the condensate ground state can be written in the following form

�c = 1√
2

(
�L + eiχ �U

)
. (5.40)

This state breaks the translation invariance along y. For J/K = 2.5 the difference
between the two momentum components kL and kU along y is 	ky � 0.40ks .
As a result the state �c features a density wave, which is commensurate with the
lattice spacing and exhibits a periodicity of five lattice constants (Fig. 5.12). For weak
interactions compared to the kinetic energy, it was found that the system possesses an
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Fig. 5.12 Spatial density of the ground-statewave function defined inEq. (5.40) for J/K = 2.5. For
weakly interacting systems the ground state can be written as a superposition of the two degenerate
states �L and �U . The relative phase χ between them translates the density wave along y. For
J/K = 2.5 the density wave has a periodicity of five lattice constants. The distribution was
calculated using the eigenvalue equation given in Eq. (5.39)
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infinite degeneracy inχ , because the interaction energy does not depend on this phase
[9]. For stronger interactions this degeneracy is reduced and the density “locks” to the
lattice sites and the remaining degree of degeneracy is determined by the periodicity
of the density pattern in units of the lattice constant [9]. For J/K = 2.5 this would
correspond to a five-fold degeneracy. Intuitively this can be seen by looking at the
action of χ , which corresponds to a translation of the density distribution along y
(Fig. 5.12).

The splitting of themomentum components along y increases monotonically with
J/K for values larger than the critical ratio (J/K )c = √

2. For very large couplings
J � K it approaches a maximum splitting of 	ky = ks/2, which corresponds to a
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Fig. 5.13 Density distribution and splitting of the momentum components along y as a function
of J/K . a The density distribution of the ground state was obtained by exact diagonalization of
a finite lattice of dimension 39 × 39. The periodicity of the density wave increases with 	ky
and approaches a maximum value of four lattice constants in the limit J � K where the split-
ting approaches the value 	ky = ks/2. Each image was normalized to to the maximum density.
b Measured ground-state momentum components ky as a function of J/K associated with odd
lattice sites. For J/K <

√
2 we observe a single momentum component at ky = ks/4. Above that

value the momentum components split around this position. In the limit J � K the twomomentum
components tend to ky = 0 and ky = ks/2. The solid lines are calculated using the two-dimensional
eigenvalue Eq. (5.39) in agreement with our data. The horizontal error bars depict the experimental
uncertainty in the coupling ratio J/K and the vertical error bars display the fitting error in the deter-
mination of the peak positions. The insets show the calculated momentum distribution in the FBZ
and the red cross marks the position of zero momentum. (Data shown in (b) taken from Ref. [1])
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density wave of the ground state in the lattice with a period of four lattice constants
(Fig. 5.13a).

We measured the projection of the momentum components on the y-axis as a
function of J/K using the same experimental sequence as described in the previous
section. The depth of the y-lattice was set during the first ramp to its final value,
while the effective coupling along x remained unchanged K = 30(2)Hz. As shown
in Fig. 5.13b the measured momenta are in quantitative agreement with analytical
calculations using the eigenvalue equation (5.39). The small panels above the data
depict the density of the ground state on a finite lattice, which was computed with
exact diagonalization. These results are in agreement with the previous discussion
based on weak interactions. The period of the density wave decreases with the split-
ting of momentum components 	ky along y.

For certain values 	ky the corresponding periodicity of the density wave is
incommensurate with the lattice spacing. It was demonstrated that in this regime an
incommensurate-commensurate phase transition is expected to occur with increas-
ing interactions, where above a critical value of the interaction, the periodicity of the
density wave locks to the one of the underlying lattice [9].

5.5.3 Micro-motion in the Staggered Flux Lattice

So far we were discussing the experimental results in terms of the Floquet Hamil-
tonian (5.37) which was derived in the rotating frame. We know, however, that the
micro-motion potentially influences TOF experiments. For large driving frequen-
cies compared to the bare tunnel coupling the micro-motion essentially corresponds
to the transformation from the lab frame to the rotating frame and is determined
by Eqs. (5.35) and (5.36). This leads to the appearance of additional momentum
components whose amplitudes scale with the ratio V0/(�ω). For very small driving
amplitudes V0/(�ω)  1 we do not expect to observe additional momentum compo-
nents other than the ones discussed in the previous section (see also Sect. 5.4). For our
experimental parameters V0/(�ω) � 0.48, however, the micro-motion might play a
role. In the experiments described above the modulation was switched on abruptly
and after a waiting time of 10ms (44 driving periods) coherence was restored. The
relaxation process after switching on the periodic modulation which led to a restored
phase coherence is not yet well understood. However, the data can be compared with
the full-time evolution under the assumption that the system did relax to the ground
state �rot of the Floquet Hamiltonian (5.37) after the coherence was restored. The
measured momentum components depicted in Figs. 5.8b, 5.10 and 5.13b support this
assumption. In this case the corresponding state in the lab frame is determined by



5.5 Ground State of the Staggered Flux Lattice 87

O
D

 (a
.u

.)

y

x

ks

Theory Experiment

Fig. 5.14 Comparison of themeasuredmomentumdistributionwith theoretical calculations includ-
ing themicro-motion for J/K = 1.Thepanel on the left shows themeasuredmomentumdistribution
(same data as in Fig. 5.8b) which exhibits two prominent momentum components in the FBZ (black
frame). The panel in the middle focuses on the structure within the FBZ revealing two additional
weaker momentum components, which are in agreement with theoretical calculations based on
Eq. (5.41) for V0/(�ω) � 0.48

�lab(T ) = exp
[
iM̂†

stagg(T )
]
�rot,

M̂stagg(T ) =
∑

m,n

(
− V0

�ω
cos[ϕm,n]

)
n̂m,n,

(5.41)

withϕm,n = π
2 (m−n+1)+φ0 as derived in Sects. 5.3 and 5.4. Figure5.14 depicts the

calculated momentum distribution in the lab frame for isotropic coupling J/K = 1
in comparison with the experimental data, which was already shown in Fig. 5.8b. We
observe two weak additional momentum components in the FBZ compared to the
distribution obtained in the rotating frame (right panel Fig. 5.8b), whose amplitude
depends on V0/(�ω). They are located at (−ks/4, 3ks/4) and (ks/4,−3ks/4) in
agreement with our experimental data. Note that the position and weight of the
additional peaks do not depend on the relative phase φ0 between the two running-
wave beams, which sets the initial phase of the modulation (Sect. 5.3). The full-time
dynamics within one Floquet period leads to small oscillations in the weight of the
different momentum components but the positions remain constant.

5.6 Local Probe of the Artificial Gauge Field

The effect of the artificial gauge field can be probed locally bymaking use of the two-
dimensional superlattice potential (Sect. 4.3). This allows us to study the dynamics
of single atoms on the level of four-site square plaquettes (Fig. 5.15a) and enables
an experimental determination of the flux � per plaquette.

The setup consists of a tilted double-well potential along x and a symmetric
one along y. Tunneling between neighboring double wells is suppressed due to
high potential barriers, so that all dynamics is restricted to the four sites of one

http://dx.doi.org/10.1007/978-3-319-25829-4_4
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Fig. 5.15 Schematic drawing of the setup and the experimental sequence. a Making use of two
superlattice potentials along x and y the lattice is partitioned into four-site square plaquettes where
tunneling between the plaquettes is suppressed by a high potential barrier. Tunneling along x is
further inhibited by the tilt	 and later restoredwith the running-wavebeamsdepicted inFig. 5.4. The
flux� exhibits the same sign for each plaquette potential that contributes to the signal. The dynamics
within one plaquette can be described by the Hamiltonian in (5.42), where the sites are labeled as
R = {A, B, C, D}. The gray shaded area illustrates the initial state |ψ1〉 = (|A〉 + |D〉)/√2. b
Experimental sequence used to probe the artificial magnetic field in a local manner for the two
detection methods described in the main text, i.e. phase evolution and real space evolution. The
filtering sequence is used to remove double occupancies from the trap as described in Sect. 4.5

plaquette. The sites are denoted by R = {A, B, C, D} as depicted in Fig. 5.15a. All
observables measured in the experiment are averaged over a 3D array of individual
plaquette realizations. The flux through each plaquette exhibits the same sign for all
realizations because only every other plaquette participates in the measurement and
all of them exhibit an energy offset between neighboring sites with the same sign.

Experimental sequence

The experimental sequence (Fig. 5.15b) started by loading a BEC into a 3D optical
lattice in the Mott-insulating regime with at most two atoms per lattice site [25].
The potential was created using the two long lattices in the horizontal plane and the
vertical lattice with depths Vxl = Vyl = 35(1)Erl and Vz = 30(1)Ez. To remove
all atoms on doubly occupied sites a filtering sequence was applied as described in
Sect. 4.5 and Ref. [26]. Subsequently the short lattice along x was ramped up within
10ms to Vx = 5.0(2)Ers with ϕx

SL = 0.20(1) rad in order to load the atoms into
the ground state of the tilted double-well potential. This corresponds to an energy
offset 	/h = 6.0(1)kHz, which was calibrated independently using spectroscopy
measurements (Sect. 4.3.2). As a last step the short lattice along y was switched
on within 1ms to Vy = 14(1)Ers in order to create an initial state where each
atom is delocalized over the left bond in the plaquette |ψ1〉 = (|A〉 + |D〉)/√2.
The corresponding bare tunneling amplitudes are Jx/h = 2.0(1)kHz and Jy/h =
0.17(2)kHz. To initiate the dynamics the modulation was suddenly switched on.
This induced resonant tunneling to the B and C sites for �ω = 	. The effective
coupling strength K/h = 0.32(1)kHz was calibrated independently as explained

http://dx.doi.org/10.1007/978-3-319-25829-4_4
http://dx.doi.org/10.1007/978-3-319-25829-4_4
http://dx.doi.org/10.1007/978-3-319-25829-4_4
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in Sect. 4.4. In the weak driving limit V0/(�ω)  1 the effective coupling along y
is approximately given by the bare coupling strength, J � Jy . For our parameters
V0/(�ω) � 0.23. The dynamics of a single atom in the plaquette can be described
by the effective 4 × 4 Hamiltonian ĤP , written in the basis {|A〉 , |B〉 , |C〉 , |D〉}

ĤP = −

⎛

⎜⎜⎝

0 K 0 J
K 0 J 0
0 J 0 K e∓i�

J 0 K e±i� 0

⎞

⎟⎟⎠ , (5.42)

with� = π/2. The sign of the complex tunneling amplitude depends on the direction
of the flux and can be controlled by changing the sign of the modulation frequency
�ω = ±	.

5.6.1 Phase Evolution

We made use of two different detection techniques to study the dynamics within the
plaquettes, i.e. phase and density evolution. Using expansion imaging we can access
information about the phase distribution of the single-particle state in the plaquette.
The evolution can be rather complex but to get an intuitive understanding of it we
consider the limit J  K , where the dynamics along y is suppressed. As discussed
above, we quench the system from the initially tilted plaquette without flux where
tunneling is inhibited, to a symmetric one with flux � = π/2. In this configuration
the initial state |ψ1〉 = (|A〉 + |D〉)/√2 on the left bond couples to the one on the
right bond |ψ2〉 = (|B〉 + i |C〉)/√2. Note that this state involves a phase difference
between neighboring sites which is a manifestation of the flux through the plaquette.
By suddenly switching off all fields this value can be evaluated from the interference
pattern recorded after TOF. As an example we consider the single-particle state
|ψ〉 = (|A〉 + eiγ |D〉)/√2, with arbitrary phase γ . The density distribution after
TOF is a double-slit interference pattern along y proportional to cos (kt y + γ ) times
an envelope determined by the Wannier function, where kt = mat a/(�tT O F ) [26,
27]. For the initial state |ψ1〉 one expects a symmetric double-slit pattern as shown
in Fig. 5.16a, while for the state |ψ2〉 one would expect to observe a pattern that is
shifted due to the relative phase between the B and C site.

For our experimental parameters J/K ≈ 0.5 the evolution is expected to be
more complex. To access information about the phase between the lower and the
upper bond we first integrated the momentum distribution along x and then fitted the
relative phase γ of the double-slit interference pattern. The measured evolution γ (t)
is depicted in Fig. 5.16b. The blue data points show the evolution for �ω = 	 and
the gray data points depict the evolution for �ω = −	. The fact that the values of the
phases differ only by a sign is a manifestation of the broken time-reversal symmetry
in the system.

http://dx.doi.org/10.1007/978-3-319-25829-4_4
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Fig. 5.16 Phase evolution in isolated four-site square plaquettes. a Double-slit interference pattern
for the initial state |ψ1〉 = (|A〉 + |D〉)/√2 obtained after tT O F . (Data taken from Ref. [2])
b Phase evolution obtained from the double-slit patterns after integrating the density distributions
along x for �ω = 	 (blue) and �ω = −	 (gray). The inset shows the Fourier transformation for
�ω = 	 revealing two frequency components at 0.24(6)kHz and 0.62(13)kHz in agreement with
theory (gray vertical lines). The theoretical evolution was obtained by solving the time-dependent
Schrödinger equation associated with Hamiltonian (5.42) numerically. (Data taken from Ref. [1])

5.6.2 Quantum Cyclotron Orbit

Complementary to themeasurement above is the observation of the density evolution
in real space. The experimental sequence used for these measurements was the same
as described above (Fig. 5.15). However, the final lattice parameters of the short lat-
tices were changed in order to obtain different tunneling amplitudes: Vx = 7.0(2)Ers

and Vy = 10.0(2)Ers, corresponding to the coupling strengths Jx/h = 1.2(1)kHz
and Jy/h = 0.50(2)kHz. The effective coupling K/h = 0.28(1)kHz and the res-
onance condition 	/h = 4.9(1)kHz were calibrated independently as described in
Sect. 4.4. The effective coupling along y is approximately given by J � Jy and the
modulation amplitude was V0/(�ω) ≈ 0.34.
The sequence started by preparing single atoms per plaquette in the initial state |ψ1〉,
which is a superposition on A and D sites. The following real-space evolution after
suddenly switching on the modulation was measured by performing a site-resolved
detection as described inSect. 4.6,which enabledus to determine the number of atoms
NR on each site in the plaquette. Note that contrary to the site-resolvedmeasurements
with high-resolution detection techniques [28, 29], here, we measure the number of
atoms on each site of the plaquette averaged over a 3D array of local copies of the
same system. For the detection atoms located on different sites in the plaquette are
transferred to higher Bloch bands and a subsequent band-mapping sequence allows
for a determination of the corresponding band occupations. Themean positions along
x and y in the plaquette are defined according to

http://dx.doi.org/10.1007/978-3-319-25829-4_4
http://dx.doi.org/10.1007/978-3-319-25829-4_4
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Fig. 5.17 Real-space evolution of single atoms in isolated four-site square plaquettes. a Mean
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three measurements. The error bars depict the corresponding standard deviation. b Cyclotron orbit
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time of 13ms. This value was obtained from damped sine fits to 〈X〉 /a and 〈Y 〉 /a shown in (a).
(Data taken from Ref. [1])

〈X〉 = (−NA + NB + NC − ND)
a

2N
, (5.43)

〈Y 〉 = (−NA − NB + NC + ND)
a

2N
, (5.44)

where N is the total atom number (Fig. 5.17a). Initially all atoms are located on
the left bond in the plaquette with 〈X〉 (t = 0) = −0.5 and 〈Y 〉 (t = 0) = 0.
After switching on the modulation the atoms start to tunnel towards the right bond
(B- and C-sites). Without magnetic field the atoms would simply undergo Rabi
oscillations between the left and right bond, while no dynamics would occur along
y, i.e. 〈Y 〉 (t) = 0 for all times. Instead we observe that the particles are deflected
along y, perpendicular to the initial direction of the motion, which is reminiscent
of the Lorentz force acting on a charged particle in a magnetic field. The evolution
follows a small-scale cyclotron orbit as depicted in Fig. 5.17b analog to the classical
cyclotron orbit of a charged particle in amagnetic field. The theoretical evolutionwas
calculated numerically with Hamiltonian (5.42), where we used the independently
calibrated values of J and K . Leaving the flux� as a free fit parameterwe obtained an
experimental value for the flux �exp = 0.73(5)×π/2. The deviation from � = π/2
for a homogeneous lattice is due to a reduced distance between lattice sites adw < a
when partitioning the lattice into isolated four-site square plaquettes (Fig. 5.18). In
this case the flux per plaquette is �adw/a. For our experimental parameters this
corresponds to adw/a ≈ 0.78(1), which qualitatively explains the reduced value
of the flux. Residual deviations might be due to an angle mismatch between the
running-wave beams and the lattice axes.
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Fig. 5.18 Reduced flux in isolated plaquette potentials. a Schematic drawing of the usual lattice
potential with lattice constant a (blue) and the double-well potential used to restrict the dynamics
within two sites (black). The distance between the two wells is slightly smaller than the usual lattice
constant adw < a. b Complex phase factors imprinted by the modulation in the plaquettes. The
reduced distance adw also reduces the flux per plaquette ϕ1 − ϕ2 = �adw/a

5.7 Full-Time Dynamics of the Cyclotron Orbits

In the previous section we discussed the cyclotron orbits based on the effective
Floquet Hamiltonian in the rotating frame given in Eq. (5.42). This Hamiltonian was
derived in the high-frequency limit �ω � 	 � Jx . For our experimental parameters
	/Jx � 3.56, however, this assumption is not well fulfilled and corrections on the
order of Jx/	 (Sect. 3.1.4) might have to be taken into account. In addition the
evolution depicted in Fig. 5.17 was measured non-stroboscopically, which is only
valid in the high-frequency limit (Sect. 3.1.4), and the initial phase of the driving
was neglected. In this section we are going to present a detailed discussion of the
full-time dynamics, thereby verifying the description in terms of the simple effective
Hamiltonian given in Eq. (5.42).

The complete time-dependent Hamiltonian without any approximations written
in the basis {|A〉 , |B〉 , |C〉 , |D〉} is given by

Ĥ(t) = −

⎛

⎜⎜⎝

	/2 Jx 0 Jy

Jx −	/2 Jy 0
0 Jy −	/2 Jx

Jy 0 Jx 	/2

⎞

⎟⎟⎠ +

⎛

⎜⎜⎝

	A(t) 0 0 0
0 	B(t) 0 0
0 0 	C(t) 0
0 0 0 	D(t)

⎞

⎟⎟⎠ , (5.45)

	A(t) = V0 cos (ωt + φ0), 	B(t) = V0 cos (ωt + φ0 + π/2),

	C(t) = V0 cos (ωt + φ0 + π), 	D(t) = V0 cos (ωt + φ0 + π/2).

All numerical calculations presented in this section are obtained by solving the time-
dependent Schrödinger equation associated with this Hamiltonian.

http://dx.doi.org/10.1007/978-3-319-25829-4_3
http://dx.doi.org/10.1007/978-3-319-25829-4_3
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Fig. 5.19 Calculated cyclotron orbits for off-resonant and resonant modulation in the plaquettes.
The numerical evolutions (black) were obtained with the exact time-dependent Hamiltonian defined
in Eq. (5.45). The corresponding full-time evolution is depicted with the dashed line in the lower
panels and the dots highlight the dynamics at stroboscopic times. The evolution obtained using the
effective Floquet Hamiltonian in Eq. (5.42) is shown in blue. a Periodic driving at the approximate
resonance condition �ω � 	 = 4.3kHz×h causes a dramatic shrinking of the cyclotron orbit
(black) for our experimental parameters 	/Jx = 3.56 compared to the evolution governed by the
effective Hamiltonian (blue). b Numerical evolution of the cyclotron orbit for the exact resonance
condition �ωres = 4.9kHz ×h (black) as defined in Eq. (5.46). Contrary to (a) the amplitude
of the orbit is comparable to the one obtained using the effective Floquet Hamiltonian (blue). The
numerical results shown in black were obtained by averaging over the different individual plaquettes
realized in the experiment, which will be discussed in Sect. 5.7.2. All evolutions were computed for
the experimental parameters K/h = 0.28kHz, J/h = 0.47kHz and t ≤ 2.5ms, which correspond
to the measurements depicted in Fig. 5.17

5.7.1 Off-Resonant Driving

We have seen in Sect. 3.1.4 that for arbitrarily large energy offsets 	 � Jx peri-
odic modulation at the approximate resonance frequency �ω = 	 leads to the
desired effective Floquet Hamiltonian. However, if 	 is on the order of the tun-
nel coupling Jx , additional detuning terms in the effective Hamiltonian as given in
Eq. (3.53) will become important. This term causes a residual energy offset between
neighboring sites J 2

x /(�ω) along the x-direction in the plaquette, which suppresses
tunneling between the left and right side. In Fig. 5.19a we show the numerical evo-
lution for our experimental parameters if the periodic modulation is performed with
the approximate resonance frequency �ω = 	. As in the experiment we start the
evolution with an initial state that is delocalized on the left bond in the plaquette
|ψ1〉 = (|A〉+ |D〉)/√2, see Fig. 5.15a. However, after switching on the modulation
with the approximate resonance frequency atoms cannot tunnel resonantly to the

http://dx.doi.org/10.1007/978-3-319-25829-4_3
http://dx.doi.org/10.1007/978-3-319-25829-4_3
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B and C sites due to the additional detuning term. This leads to off-resonant Rabi
oscillations between the left and right bond with reduced amplitude and increased
frequency (lower panels in Fig. 5.19a). The squeezing of the off-resonant cyclotron
orbit is dramatic even though the detuning is only on the order of 0.1	. Similar
effects were observed in Ref. [30] and with interacting particles [31].

The exact resonance condition

�ωres =
√

	2 + 4J 2
x (5.46)

is determined by the energy difference between the two eigenstates of the static
Hamiltonian as defined in Sect. 3.1.4, Eq. (3.44). In our experiments the resonance
condition is calibrated through spectroscopy measurements (Sect. 4.3.2), hence, the
resonance frequency is automatically set to the exact one as defined in Eq. (5.46).

Let us consider periodic modulation of the double-well along x with the exact
resonance condition. The dynamics can be described by the following two-level
Hamiltonian

Ĥ(t) = −Jx (|0〉 〈1| + |1〉 〈0|) + 	P̂1 + V0 cos(ωrest + ϕ)P̂0 , (5.47)

P̂α = |α〉 〈α| , α = {0, 1},

where �ωres = √
	2 + 4J 2

x � 	 + 2J 2
x /	 and the two levels correspond to the

two sites of the double-well. After performing a unitary transformation according to
Eqs. (3.27)–(3.29) with

R̂(t) = exp
[
iωrest P̂1

]
(5.48)

the transformed Hamiltonian takes the following form

Ĥ(t) = Ĥ(0) + Ĥ(+1)eiωrest + Ĥ(−1)e−iωrest ,

Ĥ(0) = −2J 2
x

	
P̂1,

Ĥ(+1) = −Jx |1〉 〈0| + V0

2
P̂0eiϕ,

Ĥ(−1) = −Jx |0〉 〈1| + V0

2
P̂0e−iϕ.

(5.49)

It contains an additional static term Ĥ(0) which tends to zero in the limit Jx/	 → 0.
The effective Floquet Hamiltonian can be derived according to Eq. (3.31)

ĤF = Ĥ(0) + 1

�ωres

[
Ĥ(+1), Ĥ(−1)

]

= −2J 2
x

	
P̂1 − J 2

x

�ωres︸ ︷︷ ︸
≈J 2

x /	

(
P̂0 − P̂1

)
− Jx V0

2�ωres

(|0〉 〈1| eiϕ + |1〉 〈0| e−iϕ
)

(5.50)

http://dx.doi.org/10.1007/978-3-319-25829-4_3
http://dx.doi.org/10.1007/978-3-319-25829-4_3
http://dx.doi.org/10.1007/978-3-319-25829-4_4
http://dx.doi.org/10.1007/978-3-319-25829-4_3
http://dx.doi.org/10.1007/978-3-319-25829-4_3
http://dx.doi.org/10.1007/978-3-319-25829-4_3
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= − J 2
x

	

(
P̂0 + P̂1

)

︸ ︷︷ ︸
global offset

− Jx V0

2�ωres

(|0〉 〈1| eiϕ + |1〉 〈0| e−iϕ
)

(5.51)

= − Jx V0

2�ωres

(|0〉 〈1| eiϕ + |1〉 〈0| e−iϕ
) + cst. (5.52)

This precisely corresponds to the Hamiltonian (5.42), which was considered in the
discussion of the experimental data in the previous section, because the two detuning
terms compensate each other. This is in agreement with the numerical simulations
depicted in Fig. 5.19b, where the exact time-evolution governed by Hamiltonian
(5.45) is compared with the one predicted by the effective Floquet Hamiltonian
(5.42). The evolutions were calculated for our experimental parameters using the
exact resonance frequency,whichwas obtained experimentally through spectroscopy
measurements.

5.7.2 Initial Kick-Operator and Micro-motion

The cyclotron orbits weremeasured experimentally at non-stroboscopic times during
the evolution. It is not obvious that the experimental results obtained in this way
simply match the evolution predicted by the effective Floquet Hamiltonian (5.42).
In this section we discuss the complete full-time evolution determined by Eq. (3.33)

ÛP(t) = e−iM̂P (t)e− i
�

ĤP teiM̂P (0), (5.53)

where in the high-frequency limit �ω � Jx , Jy the micro-motion operator is given
by

M̂P(t) =
∑

R

[
V0

�ω
sin(ωt + ϕR) + 	R

�
t

]
n̂R, (5.54)

and ĤP is the effective plaquette Hamiltonian defined in Eq. (5.42). Here ϕR denotes
the phase of the driving on site R, 	R is the energy offset on each site and n̂R
is the corresponding number operator. The phases ϕR and energy offsets 	R are
determined by Eq. (5.45).

There are two separate effects related to the full-time evolution which are dis-
cussed in this section. The first one is due to the initial phase of the driving. This
effect is governed by the initial kick at t = 0 described by M̂P(0). The second
one concerns the micro-motion within one Floquet period according to M̂P(t),
which may lead to additional oscillations of the experimental observables. In the
high-frequency limit the operator M̂P(t) is proportional to the number operator n̂R.
Hence, it does not affect the shape of the cyclotron-orbits since we are measuring
on-site densities and the micro-motion operator commutes with the number operator
n̂R.

http://dx.doi.org/10.1007/978-3-319-25829-4_3


96 5 Staggered Magnetic Flux

Initial kick introduced by the modulation

In the high-frequency limit the density evolution can only deviate from the one
predicted by the effective Floquet Hamiltonian (5.42) due to the initial kick at t = 0
which is governed by the operator

MP(0) =
∑

R

V0

�ω
sin(ϕR)n̂R. (5.55)

Note that strictly speaking the Floquet Hamiltonian (5.42) depends on the initial
phase of the driving φ0. This term, however, has no impact on the dynamics as was
verified numerically. For the sake of simplicity we have omitted related terms in the
following discussion.

Acting with the operator MP(0) on the initial state |ψ1〉 = (|A〉 + |D〉)/√2
illustrated in Fig. 5.15 leads to the transformed initial state

∣∣∣ψ̃1

〉
= 1√

2

(
exp

[
i

V0

�ω
sin(ϕA)

]
|A〉 + exp

[
i

V0

�ω
sin(ϕD)

]
|D〉

)
, (5.56)

with ϕA = φ0 and ϕD = φ0 + π/2. This transformed initial state causes a modified
evolution of themean atom position 〈Y 〉 /a along the y-direction, while the evolution
along x remains unaffected. In Fig. 5.20a, b the mean atom position 〈Y 〉 /a and the
corresponding cyclotron orbit are displayed for two different values of the initial
phase φ0 = −π/4 (Fig. 5.20a) and φ0 = 3π/4 (Fig. 5.20b). The evolution was

calculated using
∣∣∣ψ̃1

〉
as an initial state and evolving it numerically with the effective

Floquet Hamiltonian (5.42) for � = π/2,

∣∣∣ψ̃P

〉
(t) = e− i

�
ĤP t

∣∣∣ψ̃1

〉
,

∣∣∣ψ̃1

〉
= eiM̂P (0) |ψ1〉 . (5.57)

The initial phase φ0 has a large influence on the shape of the cyclotron orbit and
is not actively stabilized in the experiment. As a result we should not be able to
observe any kind of orbit in the experiment. However, as mentioned above the mea-
sured quantities are averaged over the 3D array of individual plaquette realizations.
The configuration in the 2D plane is depicted in Fig. 5.20c, which reveals that there
are only two different kinds of plaquettes. The phase of the on-site modulation is
either ϕR or ϕR + π . Averaging the numerical evolution over these two plaquette
realizations leads to an evolution that matches almost exactly the one governed by
the effective Floquet Hamiltonian using an initial state |ψ1〉 (Fig. 5.20d). We verified
that this is the case for any value of φ0.
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Fig. 5.20 Impact of the initial kick introduced by the operator M̂P (0) on the mean atom position
〈Y 〉 /a and the corresponding cyclotron orbit. The numerical evolutions were calculated according

to the effective Hamiltonian (5.42) for an initial state
∣∣∣ψ̃1

〉
as defined in Eq. (5.56) and two different

values of the initial phase: a φ0 = −π/4 and b φ0 = 3π/4. c Schematic drawing of the 2D array
of isolated plaquettes. The phase of the on-site modulation ϕR is shifted by π between adjacent
plaquettes. In this figure the phase on the lower left corner of each plaquette is shown. d The
dashed line depicts the average evolution of (a) and (b) and the solid line the one governed by the
effective Hamiltonian (5.42) using the initial state |ψ1〉 = (|A〉+|D〉)/√2, which is the initial state
prepared in the experiment. The parameters for the numerical simulations were chosen to match
the ones for the measurements depicted in Fig. 5.17: V0/(�ω) � V0/	 = 0.39, K/h = 0.28kHz,
J/h = 0.47kHz and t ≤ 3ms

Micro-motion

What remains to be discussed are finite frequency corrections to the micro-motion
determined by M̂P(t). We assume that the system is modulated with the exact
resonance frequency ωres as defined in Eq. (5.46), which is the case for the measure-
ments discussed in the previous section. As mentioned above, in the high frequency
limit Jx/(�ωres) → 0 the micro-motion operator defined in Eq. (5.54) is proportional
to n̂R and does not influence the shape of the cyclotron orbits. In order to understand
the corrections arising from a finite ratio Jx/	 we consider again the evolution in
the double-well potential along x . The first order corrections to the micro-motion
operator M̂P(t) are of the form (Sect. 3.14)

http://dx.doi.org/10.1007/978-3-319-25829-4_3
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Fig. 5.21 Comparison of the ideal cyclotron evolution 〈X〉 /a, 〈Y 〉 /a governed by the effective
Floquet Hamiltonian with the exact full-time evolution and the impact of the initial kick of the
modulation for 	/Jx = 3.56. The exact time evolution (dashed line) was calculated using the
time-dependent Hamiltonian (5.45), where the dots highlight the dynamics at stroboscopic times.
The blue line depicts the ideal evolution governed by the effective Floquet Hamiltonian (5.42)
using the initial state |ψ1〉 and the green and orange lines illustrate the evolutions if the initial kick
is taken into account as defined in Eqs. (5.55) and (5.56). The dynamics were calculated for the
experimental parameters V0/	 = 0.39, K/h = 0.28kHz, J/h = 0.47kHz and t ≤ 3ms used
for the measurements shown in Fig. 5.17. The ratio between the bare coupling and the modulation
frequency is Jx/(�ωres) = 0.24. a, bCalculated dynamics for the two kinds of plaquettes illustrated
in Fig. 5.20c, which are realized simultaneously in the experiment. The initial phase was set to
φ0 = −π/4. c Evolution averaged over the two realizations depicted in (a) and (b)

Mc
P(t) = − Jx

i�ωres

(|1〉 〈0| eiωrest − |0〉 〈1| e−iωrest
)
. (5.58)

This term couples the two sites or levels of the double-well (|0〉 and |1〉) and gives rise
to fast oscillationswith period T = 2π/ωres, whose amplitude scaleswith Jx/(�ωres).

In Figs. 5.21 and 5.22 we show the full-time evolution of the cyclotron orbits
according to Hamiltonian (5.45) for 	/Jx = 3.56 and 	/Jx = 12 respectively. To
maintain the same effective coupling strengths J and K the modulation amplitude V0

was increased accordingly for the calculations depicted in Fig. 5.22. The simulations
reveal fast oscillations with frequency ωres, which are suppressed with increasing
driving frequency. The initial phase of the driving φ0 influences the evolution even
in the infinite frequency limit because it scales with the ratio V0/(�ωres), which was
kept constant.

In the experiment we are able to observe the cyclotron orbits because we averaged
over the two plaquette realizations illustrated in Fig. 5.20c. The simulations show,
that the individual evolutions in the plaquettes are considerably different from the
ideal evolution as depicted in Fig. 5.21a, b for φ0 = −π/4. Fortunately, the averaged
evolutions (Figs. 5.21c and 5.22c) agree well with the effective Hamiltonian (5.42)
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Fig. 5.22 Comparison of the ideal cyclotron evolution 〈X〉 /a, 〈Y 〉 /a governed by the effective
Floquet Hamiltonian with the exact full-time evolution and the impact of the initial kick for	/Jx =
12. The exact time evolution (dashed line) was calculated using Hamiltonian (5.45), where the dots
highlight the dynamics at stroboscopic times. The blue line depicts the ideal evolution governed by
the effective Floquet Hamiltonian (5.42) using the initial state |ψ1〉 and the green and orange lines
illustrate the corresponding evolutions taking into account the initial kick as defined in Eqs. (5.55)
and (5.56). The parameters for the calculations were the same as in Fig. 5.21, only the ratio	/Jx =
12was changed. The corresponding ratio between the bare coupling and themodulation frequency is
Jx/(�ωres) = 0.08. a,bCalculated dynamics for the two kinds of plaquettes illustrated in Fig. 5.20c,
which are realized simultaneously in the experiment. c Evolution averaged over the two realizations
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even for the rather small ratio 	/Jx � 3.56 as it was chosen for the measurements
depicted in Fig. 5.17.
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Chapter 6
Harper-Hofstadter Model and Spin
Hall Effect

Abstract A natural extension of the method described in the previous chapter con-
sists in replacing the staggered optical potential with a linear one. This gives rise
to a uniform flux distribution � = π/2, which is described by the famous Harper-
Hofstadter Hamiltonian. By exploiting an additional pseudo-spin degree of freedom
the setup further implements the time-reversal symmetric Hamiltonian underlying
the quantum spin Hall effect. This led to the first experimental observation of the
spin-Hall effect in an optical lattice.

In the previous chapter it was shown both theoretically and experimentally that laser-
assisted tunnelingbasedona staggered superlattice potential allows for the realization
of a staggered flux distribution [1]. Here we demonstrate a natural extension of the
previously described method by replacing the staggered potential with a linear one;
this gives rise to a uniform flux distribution � = π/2 [2], which is described by
the famous Harper-Hofstadter Hamiltonian [3–5]. In general the strength of the flux
� is fully tunable by changing the geometry of the laser-assisted tunneling scheme.
Similar work was performed at MIT with a uniform flux� = π per plaquette [6]. By
exploiting an additional pseudo-spin degree of freedom our setup further implements
the time-reversal symmetric Hamiltonian underlying the quantum spin Hall effect
[7, 8]. The pseudo-spins are realized with two Zeeman states of opposite magnetic
moment. Both spin states experience the same strength of the effective magnetic
field but its direction is spin-dependent [2]. The derivation of the effective Hamil-
tonian for our experimental setup is demonstrated in Sect. 6.1. Using the previously
developed technique of local cyclotron orbits [1] we were able to probe the spatial
distribution of the artificial gauge field and to demonstrate the uniform nature of the
flux (Sect. 6.3). The spin-dependent chirality of the observed cyclotron orbits verifies
the spin-dependence of the artificial flux, which exhibits the same strength but points
in opposite directions [9]. This further enabled us to observe the spin Hall effect in
an optical lattice (Sect. 6.4). Recently, the free-space spin Hall effect was observed
in quantum gases using Raman dressing [10].

© Springer International Publishing Switzerland 2016
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102 6 Harper-Hofstadter Model and Spin Hall Effect

6.1 Experimental Setup

The laser-assisted tunneling setup used to generate a uniform flux distribution is very
similar to the one described in Sect. 5.3. The only difference is, that tunneling along
the x-direction is inhibited by a linear potential (Fig. 6.1a). This configuration will
naturally lead to a uniform flux distribution if the phase of the on-site modulation
increases linearly along the two axes of the 2D lattice potential. This is the case for
the previous scheme, where two running-wave beams were applied as illustrated in
Fig. 5.4. Each of the two beams was aligned along on of the principal axes of the
2D lattice thereby creating a running-wave interference term which exhibits phase
fronts that are diagonal relative to the underlying lattice (Fig. 5.4c).

There are two possibilities for the implementation of a linear potential. The first
one builds on optical dipole forces [11]: A Gaussian laser beam that is focused on
the atom position such that the atoms are located at the maximum slope of the beam
profile along x , while being centered along y, introduces an approximately linear
potential along x if the waist of the beam is large compared to the extent of the
atomic cloud. The use of optical potentials has the advantage that they can be easily
controlled experimentally and therefore offer a large experimental flexibility. The
laser-assisted tunneling method, however, requires large energy offsets � between
neighboring sites. Thus, large optical powers or near-resonant laser beams have to be
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Fig. 6.1 Experimental setup to generate a uniform flux distribution in a 2D square lattice and spatial
distribution of the Peierls phase-factors. a The setup consists of a 2D lattice with constant a = λs/2
and bare tunneling couplings Jx and Jy . Amagnetic field gradient B ′ along x is used to introduce an
energy offset between neighboring sites. Tunneling along x is inhibited for � � Jx . An additional
pair of far-detuned running-wave beams (red arrows) with wave vectors |k1| � |k2| � kl = π/(2a)

restores resonant tunneling for ω = ω1 − ω2 = �/�. b Phase distribution φm,n of the effective
Hamiltonian (6.4). The induced coupling strengths are denoted as K and J respectively

http://dx.doi.org/10.1007/978-3-319-25829-4_5
http://dx.doi.org/10.1007/978-3-319-25829-4_5
http://dx.doi.org/10.1007/978-3-319-25829-4_5
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employed. Both options increase heating in the system due to spontaneous emission
of photons.

The second possibility is to use magnetic field gradients, which allow for a tuning
of the energy offset� over awide rangewithout having to dealwith increased heating
due to spontaneous emission andmaintaining the homogeneity of the linear potential
across the atomic cloud. One possible disadvantage is the reduced experimental
flexibility regarding the experimental controllability compared to optical fields. In
the following discussion we are going to present an experimental setup based on a
linear potential created using a magnetic field gradient, which offers an additional
advantage, namely it naturally allows for the realization of a time-reversal symmetric
Hamiltonian which underlies the quantum spin Hall effect [7–9].

6.1.1 Harper-Hofstadter Model

The experimental setup consists of a two-dimensional lattice created by two orthog-
onal standing waves with wavelength λs = 767 nm (Fig. 6.1). Along the x-direction
a magnetic field gradient B ′ is applied to generate a linear potential �m = �m,
which inhibits tunneling along the corresponding direction for � � Jx . Resonant
tunneling is then restored with the setup discussed in detail in the previous chapter
using two running-wave beams as defined in Eq. (5.18) and illustrated with the red
arrows in Fig. 6.1a. The corresponding local optical potential can be written in the
following form

VK (r, t) = V0 cos (δk · r + ωt + φ0) , (6.1)

with δk = k1 −k2 and ω = ω1 −ω2; the constant global energy shift was neglected.
The site-dependent phase of the modulation is determined by

δk · R = π

2
(m − n), R = maêx + naêy . (6.2)

and the time-dependent Hamiltonian of the system can be written as

Ĥ(t) =
∑

m,n

(
−Jx â†

m+1,nâm,n − Jyâ†
m,n+1âm,n + h.c.

)

+
∑

m,n

(
V0sin(ωt + ϕm,n) + �m

)
n̂m,n , (6.3)

with ϕm,n = π
2 (m−n+1)+φ0. This Hamiltonian is time-periodic Ĥ(t +T ) = Ĥ(t),

with T = 2π/ω, such that in the high-frequency limit �ω � Jx , Jy the formalism
discussed in Sect. 3.4 can be directly applied. The corresponding effective time-
independent Hamiltonian is written as

http://dx.doi.org/10.1007/978-3-319-25829-4_5
http://dx.doi.org/10.1007/978-3-319-25829-4_3
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ĤF = −K
∑

m,n

eiφm,n â†
m+1,nâm,n − J

∑

m,n

â†
m,n+1âm,n + h.c. , (6.4)

φm,n = π

2
(n − m), (6.5)

with K = JxJ1(η0), J = JyJ0(η0) and η0 = √
2V0/(�ω). The spatial distribution

of the Peierls phase-factors are illustrated in Fig. 6.1b. For the sake of simplicity
we set φ0 = −3π/4. This Hamiltonian is equivalent to the Hofstadter model for
� = π/2. For the following discussion we are going to use the convention that the
magnetic field is pointing in the −êz direction.

6.1.2 Spin-Dependent Harper-Hofstadter Model

The simplest setting where quantum spin Hall physics can be observed consists of
two independent copies of a quantum Hall system, one for each spin state, |↑〉 and
|↓〉, where the strength of the magnetic field is spin-independent but the direction of
the field “is opposite” for the two states.

Such a system can be realized by introducing a pseudo-spin degree of freedom
into the model described above. For the following experiments we use two different
Zeeman states of 87Rb with opposite magnetic moments to encode the pseudo-spin.
The two hyperfine states are denoted as

|↑〉 ≡ |F = 1, m F = −1〉 |↓〉 ≡ |F = 2, m F = −1〉 . (6.6)

The linear potential �m = ±�m implemented with a magnetic field gradient is now
spin-dependent; the plus-sign corresponds to |↑〉 particles (Fig. 6.2a) and the minus-
sign to |↓〉 particles (Fig. 6.2b). In Sect. 3.2 and 5.4 it was shown that the Peierls
phase-factors ±φm,n engineered with laser-assisted tunneling depend on the sign of
the energy offset ±� between neighboring sites. The total Hamiltonian for the two
spin components can be written in the following form

Ĥspin =
∑

m,n

(
−K ei φ̂m,n â†

m+1,nâm,n − J â†
m,n+1âm,n + h.c.

)
, (6.7)

where φ̂m,n = φm,n σ̂z and σ̂z is the z-component of the Pauli spin matrix σ . Strictly
speaking there is an additional phase shift of π between the two spin-components
(Sect. 3.2). However, since the two spin-states are not coupled it has no influence
on the dynamics of the system and can be safely neglected. Hamiltonian (6.7)
describes two independent copies of the Harper-Hofstadter model for � = π/2,
where the two spin components experience a magnetic field of the same strength
but opposite direction: �↑ = π/2 for the |↑〉 state and �↓ = −π/2 for |↓〉. In
contrast to the Harper-Hofstadter Hamiltonian, which breaks time-reversal symme-
try, this Hamiltonian is time-reversal symmetric. Including additional terms in the

http://dx.doi.org/10.1007/978-3-319-25829-4_3
http://dx.doi.org/10.1007/978-3-319-25829-4_5
http://dx.doi.org/10.1007/978-3-319-25829-4_3
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Fig. 6.2 Implementation of the spin-dependent Harper-Hofstadter model using the setup illustrated
in Fig. 6.1. Schematic drawing of the experimental setup for a |↑〉 particles and b |↓〉 particles. The
two pseudo-spin components denote two different Zeeman states with opposite magnetic moment.
Hence, the magnetic field gradient B ′ gives rise to a linear potential �m = ±�m, where the sign
depends on the spin of the particle. As a result the direction of the effective magnetic field is spin-
dependent: �↑ = π/2 for |↑〉 particles (a) and �↓ = −π/2 for |↓〉 particles (b). (Figure adapted
from [2])

Hamiltonian which couple the two spin components would allow for the realization
of non-Abelian gauge fields [12, 13].

6.2 Laser-Assisted Tunneling in a Tilted Lattice Potential

In order to investigate the global properties of the system described above we studied
laser-assisted tunneling in the presence of amagnetic field gradient B ′ in the 2D lattice
by performing spectroscopy measurements (Sect. 4.3.2). The measured spectra are
independent of the spin state because only the absolute value of the energy offset
|�| determines if atoms can tunnel resonantly to the neighboring sites (inset in
Fig. 6.3b). All measurements presented in the following section were performed
with |↑〉 particles.

The experimental sequence started with an initial state where all atoms populated
even sites along the x direction of the lattice with at most one atom per lattice site and
odd sites were left empty (Fig. 6.3a). The final lattice depths were Vx = 5.0(1)Ers

and Vy = 40(1)Ers. Due to the deep lattice along y, tunneling is inhibited along
that direction on the timescales of the experiment, while bare tunneling along x
occurs with strength Jx/h = 0.26(1) kHz. Additionally a magnetic field gradient
was applied, which inhibited tunneling along x , such that all dynamics was frozen
and atoms stayed in even lattice sites. Perpendicular to the 2D plane an additional
lattice potential was used with wavelength λz = 844 nm in order to isolate individual

http://dx.doi.org/10.1007/978-3-319-25829-4_4
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planes from each other. The final lattice depth was Vz = 30(1)Erz. After switching
on the modulation abruptly for a duration of t = 4ms with strength V0 = 2.48(5)Erl

the fraction of atoms transferred to odd sites nodd = Nodd/N was measured as a
function of the modulation frequency ω; here N denotes the total atom number. The
even-odd resolved detection was achieved by applying the site-resolved detection
technique along x as discussed in Sect. 4.6 (nodd =̂ nright). If the frequency of the
modulation ω is resonant with the energy offset between neighboring sites ω = �/�

the transferred fraction nodd exhibits a maximum (inset Fig. 6.3b), which allows us to
determine the energy offset � between neighboring sites produced by the magnetic
field gradient. Figure6.3b displays themeasured resonance frequencyω as a function
of the magnetic field gradient B ′. It shows that the energy offset � can be adjusted
over a large range of values up to �/h ∼ 10 kHz.

Initial state preparation: Patterned loading
The initial state illustrated in Fig. 6.3a was prepared with the help of an additional
superlattice potential along x . The sequence started by loading aBEC into a 3D lattice
in theMI regimewith atmost two atoms per lattice site [14]. The potentialwas created
by the long lattice along x ,Vxl = 30(1)Erl, the short lattice along y,Vy = 20.0(6)Ers,
and the vertical lattice with depth Vz = 20.0(6)Erz. In order to empty all doubly
occupied sites a filtering sequencewas applied (Sect. 4.5), for which the lattice depths
were increased to Vxl = 104(3)Erl, Vy = 100(3)Ers and Vz = 120(3)Erz. After all
doubly occupied sites were removed from the trap the lattices were ramped down
again to Vxl = 52(2)Erl, Vy = 40(1)Ers and Vz = 30(1)Erz. Subsequently, the
magnetic field gradientwas switched onwithin 200ms. The ramping timewas chosen
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Fig. 6.3 Laser-assisted tunneling in a tilted optical lattice. a Illustration of the initial state, where all
atoms (gray spheres) populate even sites with at most one atom per lattice site and odd sites are left
empty. b Measured resonance frequency ω = ω1 − ω2 obtained from spectroscopy measurements
(blue vertical line in the inset) as a function of the magnetic field gradient B ′. The offset at B ′ = 0 is
due to an additionalmagnetic field gradient present in the experiment (seemain text). The solid line is
a linear fit to the data. The inset shows a typical spectroscopy measurement for B ′ = 17.5mG/µm.
For the modulation frequencyω = �/� atoms can tunnel resonantly to odd sites and the transferred
fraction of atoms nodd exhibits a maximum. The solid line depicts the fit of a Lorentzian to the data
used to extract the resonance frequency. (Data taken from Ref. [2])
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large enough to assure that the gradient has reached its final value. As a last step the
short lattice along x was ramped up within 20ms to Vx = 40(1)Ers with ϕx

SL = 0
(Sect. 4.3) in the symmetric double-well configuration in order to load all atoms into
the lower energy sites of the tilted double-well potential; the energy offset between
neighboring sites in the double-well is introduced by the magnetic field gradient.
After switching off the long lattice within 2ms and lowering the short lattice to its
final value Vx = 5.0(1)Ers the initial state for themeasurements depicted in Fig. 6.3b
was obtained.

Realization of the magnetic field gradient
The magnetic field gradient B ′ was created using a quadrupole magnetic field in
combination with an additional homogeneous offset field. In our experimental setup
the quadrupole field is typically used to compensate gravity along the z-direction. In
the horizontal plane the quadrupole field is aligned on the atom position in order to
avoid possible magnetic field gradients along the x and y directions. To displace the
minimum of the quadrupole magnetic field an additional offset field B0 was applied.
This induced a magnetic field gradient B ′

quad(I ) whose strength could be controlled
with the current I in the quadrupole coils. The offset field along x , however, is not
entirely homogeneous but further involves a small magnetic field gradient B ′

0. Thus,
the total gradient is given by the sum of the two: B ′ = B ′

quad(I ) + B ′
0. From the data

shown in Fig. 6.3b the offset gradient B ′
0 could be evaluated, which corresponds to

�/h = 1.30(4) kHz.

6.3 Probing the Magnetic Flux Distribution

The local structure of the artificial magnetic field can be examined on the level of
isolated four-site square plaquettes by tracking the evolution of single atoms inside
these plaquettes. This technique has been developed previously to probe the strength
of themagnetic field for the staggered flux distribution studied in Sect. 5.6 andRef. [1,
15]. The evolution after quenching the system from a plaquette with zero flux to
� = π/2 is reminiscent of a cyclotron orbit a charged particle would follow in the
presence of a magnetic field. The full-time dynamics of the real-space dynamics was
discussed in detail in Sect. 5.7. In conclusion it was found that the cyclotron dynamics
can be described with the effective time-independent Hamiltonian in the rotating
frame and the micro-motion can be safely neglected for our parameter regime. In
the following measurements the same method will be applied to explore the spatial
distribution of the artificial magnetic field in the 2D lattice.

The experiments were performed in a 3D optical lattice. In the horizontal plane
two superlattice potentials were employed in the symmetric double-well configura-
tion, ϕx

SL = ϕ
y
SL = 0 (Sect. 4.3), in order to inhibit tunneling on every other bond

along both directions such that all dynamics is restricted to the four sites of a pla-
quette potential. The final lattice depths were Vx = 7.0(2)Ers, Vy = 10.0(3)Ers

and Vxl = Vyl = 35(1)Erl. Along the vertical axis an additional lattice was used

http://dx.doi.org/10.1007/978-3-319-25829-4_4
http://dx.doi.org/10.1007/978-3-319-25829-4_5
http://dx.doi.org/10.1007/978-3-319-25829-4_5
http://dx.doi.org/10.1007/978-3-319-25829-4_4
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to isolate individual planes; the corresponding lattice depth was Vz = 30(1)Erz.
Furthermore tunneling along x in the plaquette was inhibited by the magnetic field
gradient � � Jx , where Jx denotes the bare inner-well coupling of the double-well
potential along x .

As an initial state we prepared single atoms in the ground state of the tilted pla-
quettes as illustrated by the gray shaded area in Fig. 6.4i. Due to the spin-dependency
of the energy offset ±� between neighboring sites along x , the ground states are
spin-dependent as well:

∣∣�↑
〉 = (|A〉 + |D〉) /

√
2 for |↑〉 particles (Fig. 6.4a) and∣∣�↓

〉 = (|B〉 + |C〉) /
√
2 for |↓〉 particles (Fig. 6.4b). The evolution was then trig-

gered by switching on the modulation instantaneously with ω = �/� and thereby
quenching the system from tilted plaquette potentials with � = 0 to symmetric
ones with � = ±π/2. The energy offset � was calibrated independently through
spectroscopy measurements (Sect. 4.3.2). The dynamics of a single atom in the pla-
quette is governed by the following effective 4 × 4 Hamiltonian written in the basis
{|A〉 , |B〉 , |C〉 , |D〉}

Ĥ P
↑,↓ = −

⎛

⎜⎜⎝

0 K 0 J
K 0 J 0
0 J 0 K exp

[−i�↑,↓
]

J 0 K exp
[
i�↑,↓

]
0

⎞

⎟⎟⎠ . (6.8)

Using the site-resolved detection techniques introduced in Sect. 4.6 we evaluated the
mean atom positions 〈X〉, 〈Y 〉 within the plaquettes,

〈X〉 = (Nright − Nleft)a

2N
, 〈Y 〉 = (Nup − Ndown)a

2N
, (6.9)

where Nleft = NA + ND , Nright = NB + NC , Nup = NC + ND , Ndown = NA + NB

and NR is the atom number on each siteR of the plaquette.
Without the magnetic field the atoms would start to undergo Rabi oscillations

between left (A and D) and right (B and C) sites, however, due the the artificial
gauge field the atoms get deflected perpendicular to their direction of motion, which
is reminiscent of the Lorentz force acting on a charged particle in a magnetic field
(Fig. 6.4). We observe that |↑〉 particles start to to tunnel to the right and get deflected
to the lower bond while |↓〉 particles first tunnel to the left and get deflected to the
same bond as |↑〉 particles. Hence, the two orbits exhibit opposite chirality, which is
a manifestation of the spin-dependent direction of the flux � = ±π/2.

The observation of local cyclotron orbits is equivalent to the results obtained in
a lattice with staggered flux � = (−1)mπ/2 because in these measurements only
plaquettes with equal sign of the flux contributed (Sect. 5.6). In order to probe the
uniform nature of the artificial gauge field the superlattice potential along x was
shifted by one lattice constant (Fig. 6.5i). This was achieved by changing the relative
phase between the short and the long lattice fromϕx

SL = 0 toϕx
SL = π (Sect. 4.3). The

measurements were performed in exactly the same way as described above but this
time the neighboring plaquettes along x participated in the measurements; these are

http://dx.doi.org/10.1007/978-3-319-25829-4_4
http://dx.doi.org/10.1007/978-3-319-25829-4_4
http://dx.doi.org/10.1007/978-3-319-25829-4_5
http://dx.doi.org/10.1007/978-3-319-25829-4_4
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Fig. 6.4 Probing the spin-dependence of the artificial gauge field with local cyclotron orbits for
J/K ≈ 2. i The setup consists of a 2D superlattice that consists of symmetric double-well potentials
along x and y. The high potential barrier on every other bond suppresses inter-double-well tunneling
so that all dynamics is restricted to the four sites of each plaquette. The corresponding lattice sites
are denoted as R = {A, B, C, D}. The initial state is a single atom in the ground state of the tilted
plaquette (gray shaded area):

∣∣�↑
〉 = (|A〉 + |D〉) /

√
2 for |↑〉 (a) and ∣∣�↓

〉 = (|B〉 + |C〉) /
√
2

for |↓〉 particles (b). ii Evolution of the mean atom position in the plaquette for |↑〉 (a) and |↓〉
particles (b). The solid gray line is a fit to our data of the numerically calculated dynamics fX (t) and
fY (t) defined in Eq. (6.10), which were obtained with Hamiltonian (6.8). The time offset and the
flux were set to τ = 0.12(5)ms and � = 0.73(5) × π/2 respectively; X0, Y0, A〈X〉 and A〈Y 〉 were
free fit parameters. Each data point is an average over three individual measurements. The opposite
chirality of the orbits is a manifestation of the spin-dependent direction of the flux � = ±π/2.
(Data taken from Ref. [2])

the plaquettes which did not contribute to the experimental results shown in Fig. 6.4.
Again we observe orbits with opposite chirality for the two spin states (Fig. 6.5) and
moreover the chirality is the same as in the measurements depicted in Fig. 6.4. This
shows that the direction of the flux is unchanged between adjacent plaquettes, which
is consistent with a uniform flux distribution.

The experimental data was fitted with the theoretical evolution discussed below,
which was obtained by solving the Schrdinger equation associated with Hamiltonian
(6.8) numerically using the previously determined value of the magnetic flux per
plaquette � = 0.73(5) × π/2 (Sect. 5.6 and [1, 15]). The smaller amplitude of
the cyclotron orbits compared to the theoretical prediction is most likely due to
inhomogeneities in the system caused by the external harmonic confinement. The
reduced value of the flux� = 0.73(5)×π/2 stems from the smaller distance between

http://dx.doi.org/10.1007/978-3-319-25829-4_5
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Fig. 6.5 Flux distribution obtained from local cyclotron orbits in adjacent plaquettes for J/K ≈ 2. i
Schematic drawing of the setup for |↑〉 particles (a) an |↓〉 particles (b) as in Fig. 6.4. The superlattice
potential along x is shifted by one lattice constant such that all dynamics is now restricted to
the neighboring plaquettes which did not participate in the measurements presented in Fig. 6.4. ii
Measured mean atom positions 〈X〉 and 〈Y 〉 versus modulation time. The solid gray line is a fit to
our data of the numerical evolutions fX (t) and fY (t) defined in Eq. (6.10), which were obtained
with Hamiltonian (6.8). The time offset was τ = 0.12(5)ms, the flux � = 0.73(5)π/2 and X0,
Y0, A〈X〉 and A〈Y 〉 were free fit parameters. Every data point is an average over three individual
measurements. The orbits exhibit opposite chirality depending on the spin but they are the same
compared to the ones displayed in Fig. 6.4. (Data taken from Ref. [2])

lattice sites along y when the lattice is partitioned into an array of isolated plaquette
potentials (Fig. 5.18).

6.3.1 Experimental Sequence

The experimental sequence was similar to the one illustrated in Fig. 5.15. It started
by loading a BEC into a 3D lattice potential with depths Vxl = Vyl = 20.0(6)Erl and
Vz = 20.0(6)Ez in theMott-insulating regimewith at most two atoms per lattice site.
Then, a filtering sequence (Sect. 4.5) was applied to remove all atoms on doubly-
occupied sites from the trap. At this point of the sequence all atoms were in the
|↑〉 = |F = 1, m F = −1〉 state and all lattice sites were populated with at most one
atom. By removing the last Landau-Zener sweep from the filtering sequence, after all
double occupancieswere removed, all atoms remain in the |↓〉 = |F = 2, m F = −1〉
state with at most one atom per lattice site. During the filtering sequence the lattices
were increased tomuch larger values typically aroundV = 100 Er in order to enhance

http://dx.doi.org/10.1007/978-3-319-25829-4_5
http://dx.doi.org/10.1007/978-3-319-25829-4_5
http://dx.doi.org/10.1007/978-3-319-25829-4_4
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the scattering rate. After that we lowered them again to Vxl = Vyl = 35(1)Erl and
Vz = 30(1)Erz within 1ms. In previous experiments the tilt was introduced by the
superlattice phase ϕx

SL (Sect. 5.6). For the measurement presented in this chapter a
magnetic field gradient was applied along x . It was switched on in 250ms together
with the offset field B0, which shifts the position of the quadrupole trap relative to
the atom position (see discussion above). By ramping up the short lattice along x
within 15ms the long-lattice sites were split into tilted double-well potentials with
Vx = 40(1)Ers and all particles occupied the sites with lower energy. Subsequently,
the long lattice along y was split within 0.1ms by ramping up the short lattice to
Vy = 10.0(3)Ers. Simultaneously the barrier of the double-well potential along x was
lowered to Vx = 7.0(2)Ers. The evolution started by switching on the modulation
instantaneously on resonance. The final trap parameters J, K and � were calibrated
independently for eachmeasurement (Sects. 4.3.2 and 4.4). The corresponding values
are displayed in Figs. 6.4 and 6.5 respectively. For the calibration of the renormalized
coupling J = JxJ0(

√
2V0/�) a similar method was used as for the calibration of

the induced tunneling coupling K . We measured Rabi oscillations between the left
and right side of a symmetric isolated double-well potential in the presence of the
modulation with driving frequency ω = �/�.

6.3.2 Numerical Simulations

Wesimulated the dynamics of themean atompositions 〈X〉 and 〈Y 〉within the plaque-
ttes by solving the time-dependent Schrdinger equation associated with Hamiltonian
(6.8) numerically with � = 0.73(5) × π/2 (Sect. 5.6 and [1, 15]). The numerical
evolutions were fitted to our data using the following functions

fX (t) = X0 + A〈X〉 · X (t + τ), fY (t) = Y0 + A〈Y 〉 · Y (t + τ), (6.10)

where the offsets X0/Y0 and oscillations amplitudes A〈X〉/A〈Y 〉 were free fit variables.
The time offset τ was introduced to account for the finite ramping times that occur
during the last ramps before the detection where we increased all lattice depths in
order to freeze the dynamics. The ramping times are typically around 0.1 − 0.2ms,
which prevents us from an exact determination of the t = 0 point a priori. The offset
τ was determined by fitting the numerical evolution for each data set individually
and including τ as a fitting variable. We obtained an average value τ = 0.12(5)ms
from the evolutions depicted in Figs. 6.4 and 6.5.

To gain better insight into the agreement between our experimental data and the
numerical predictions we performed additional simulations taking into account the
experimental uncertainties in the independently calibrated values J , K and �. We
also considered possible detunings δx = δy = 0(30)Hz along the x and y directions,
which might be caused by an imperfect experimental control over the relative phase
between the short and the long latticesϕx

SL andϕ
y
SL .We assumed a normal distribution

for each parameter J, K ,� and δx/δy with the mean and standard deviation values
stated above. From these distributions a sample of random parameters is generated,

http://dx.doi.org/10.1007/978-3-319-25829-4_5
http://dx.doi.org/10.1007/978-3-319-25829-4_4
http://dx.doi.org/10.1007/978-3-319-25829-4_4
http://dx.doi.org/10.1007/978-3-319-25829-4_5
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Fig. 6.6 Numerical simulations based on statistical sampling of the parameter space. Comparison
between the 1000 trajectories obtained from the Monte-Carlo samples described in the text and the
measured cyclotron orbits (blue and green) displayed in Figs. 6.4 (a) and 6.5 (b). The black (left
panels) and gray (right panels) solid lines show the fit to our experimental data using Eq. (6.10). The
panels on the right depict the same data together with the error bars, which illustrate the standard
deviation obtained from the individual measurements. (Data taken from Ref. [2])
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which is then used to model the dynamics according to the following Hamiltonian

Ĥ P
↑,↓ = −

⎛

⎜⎜⎝

0 K 0 J
K −δx J 0
0 J −(δx + δy) K exp

[−i�↑,↓
]

J 0 K exp
[
i�↑,↓

] −δy

⎞

⎟⎟⎠ , (6.11)

written in the basis {|A〉 , |B〉 , |C〉 , |D〉}, where the sites of the plaquette are labeled
as illustrated in Figs. 6.4 and 6.5. Such a sampling procedure is sometimes referred
to as Monte-Carlo sampling. This procedure was repeated for 1000 samples and
plotted together with our experimental data (left panels in Fig. 6.6). The amplitudes
A〈X〉/A〈Y 〉, offsets X0/Y0 and time delay τ were set to the values obtained from the
fitting functions given above. For a better comparison with the data we further show
the statistical uncertainties obtained from the individual measurements (right panels
in Fig. 6.6).

6.4 Spin Hall Effect in an Optical Lattice

The spin Hall effect refers to a situation where a transverse spin current develops
as a response to an electric field. It can be thought of as spin-up electrons moving
transverse to the electric field in one direction and spin-down electrons moving in
the opposite direction. In this case no net charge current flows but a spin imbal-
ance builds up at the edges of the sample similar to the Hall voltage in the conven-
tional Hall effect. This effect has been observed in thin-film semiconductor devices
[16, 17] and with ultracold atoms in a harmonic trap using Raman dressing [10].

In this section related experimental results are presented which were obtained for
the first time with ultracold bosonic atoms in optical lattices [2]. We determine the
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Fig. 6.7 Initial state and spin-dependent oscillations transverse to the initial motion of the atoms.
a Schematic drawing of the setup, which is an array of isolated plaquette potentials. The atoms
were prepared in a spin-superposition state |ψ〉spin = α |↑〉 + β |↓〉 before they were loaded into
the ground state of the lower bond in the plaquette. b Mean atom position 〈X〉 for a spin-polarized
sample with β = 1 (left panel) and α = 1 (right panel) respectively. The experimental parameters
were J/h = 0.69(1) kHz, K/h = 0.38(1) kHz and �/h = 5.31(5) kHz. The blue and green solid
lines are a fit of the numerically determined evolution fX (t) defined in Eq. (6.10) to our data, the
time offset was τ = 0.18(3)ms. (Data taken from Ref. [2])
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Fig. 6.8 Oscillation amplitude A〈X〉 of the mean atom position 〈X〉 /a as a function of the spin-

imbalance n↑ − n↓. The total oscillation amplitude A〈X〉 = A↓
〈X〉 + A↑

〈X〉 was fitted according to
the numerical evolution fX (t) defined in Eq. (6.10) with τ = 0.18(3)ms. Every data point is an
average over two individual measurements. The schematic drawings illustrate the initial state and
the direction of the flux for fully polarized samples, |ψ〉spin = |↓〉 (blue) and |ψ〉spin = |↑〉 (green).
The solid line is a linear fit to the data, where the offset was set to zero. The error bars depict the
standard deviation obtained from the individual measurements. (Data taken from Ref. [2])

oscillation of single atoms in isolated plaquettes transverse to their initial motion as
a function of the spin imbalance n↑ −n↓, where n↑ = N↑/N is the fraction of atoms
with spin-up and n↓ = N↓/N the one with spin-down.

The experimental setup was similar to the one described above, which consisted
of a 3D optical lattice that was partitioned into isolated plaquettes in the horizontal
plane using superlattice potentials (Fig. 6.7a). Contrary to the previous sequence we
prepared the atoms in a spin-superposition state |ψ〉spin = α |↑〉 + β |↓〉 before we
loaded them into the ground state of the lower bond in the plaquette potential. This
state has equal weight on A and B sites independent of the spin state |ψ〉spin. We
measured the mean atom position in the non-trivial direction 〈X〉 /a and observed
almost perfectly mirrored oscillations for the two spin states (Fig. 6.7b). We obtained
A〈X〉 = −0.28(2) for |ψ〉spin = |↓〉 (blue) and A〈X〉 = 0.26(4) for |ψ〉spin = |↑〉
(green). The measured oscillation amplitude A〈X〉 = A↓

〈X〉 + A↑
〈X〉 was found to

depend linearly on the spin imbalance n↑ −n↓ and it reversed the sign when the spin
was flipped (Fig. 6.8).

6.4.1 Experimental Sequence

The sequence started by loading a BEC into a deep 3D optical lattice in the
MI-regime created by the two long lattices and the vertical one. The final depths were
Vxl = 30(1)Erl, Vyl = 20.0(6)Erl and Vz = 20.0(6)Ez. For the filtering sequence
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(Sect. 4.5) all lattices were ramped up to Vxl = 104(3)Erl, Vyl = 70.0(2)Erl and
Vz = 120.0(4)Ez in order to increase the scattering rate. At the end of the filtering
sequence the atoms are prepared in a spin-superposition state |ψ〉spin as described
below. Subsequently the lattices were decreased to Vxl = 52(2)Erl, Vyl = 35(2)Erl

and Vz = 30(1)Ez. In order to load the atoms into the lower bond of the plaque-
tte the short lattice along y was switched on within 20ms to Vy = 40(2)Ers with
ϕ

y
SL = 0 (Sect. 4.3), which corresponds to a tilted double-well potential along y.

Due to the tilt all atoms occupied the lower energy sites of the double-well (lower
bond). In addition, the high potential barrier inhibited tunneling such that the rela-
tive phase could be changed adiabatically to ϕ

y
SL = 0 within 40ms resulting in a

symmetric double-well configuration. Subsequently the magnetic field gradient was
ramped up in 250ms and after that the short lattice along x was ramped up in 2ms
to its final value Vx = 6.0(2)Ers. In the presence of the magnetic field gradient |↑〉
atoms are preferentially located on A sites and |↓〉 atoms on B sites. Tunneling was
inhibited along both directions due to the magnetic field gradient along x and the
high potential barrier along y. At this point the running-wave beams were switched
on adiabatically within 7ms to couple A and B sites. The potential barrier along y
remained high and the atoms where loaded into the ground state of the lower bond
in the plaquette with equal weight on A and B sites. The cyclotron motion was then
initiated by decreasing the short lattice along y within 100µs to Vy = 9.0(3)Ers. The
final plaquette parameters K , J and � were calibrated independently (Sects. 4.3.2
and 4.4).

6.4.2 Spin-state Preparation

Different spin-superposition states were prepared by modifying the final ramp of the
filtering sequence (Fig. 6.9 and Sect. 4.5), whichwas used to remove double occupan-
cies from the trap. Changing the duration of themicrowave-pulse (MW-pulse) during
the last Landau-Zener sweep (LZ sweep) results in different spin-superposition states
|ψ〉spin = α |↑〉 + β |↓〉. If the MW-pulse is applied during the total time of the 2nd
LZ sweep a fully polarized sample will be obtained with all atoms in the |↑〉 state,
while if the pulse is removed completely during that sweep all atoms will remain in
the |↓〉 state. Choosing any duration in between those two values will lead to a super-
position state |ψ〉spin. The probability of finding an atom in a particular spin state
was calibrated independently for each pulse duration by releasing the atoms from
the trap and applying a Stern-Gerlach pulse at the beginning of TOF. Using usual
absorption imaging techniques the fraction of atoms in each spin state: n↑ = |α|2
and n↓ = |β|2, was evaluated.
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http://dx.doi.org/10.1007/978-3-319-25829-4_4
http://dx.doi.org/10.1007/978-3-319-25829-4_4
http://dx.doi.org/10.1007/978-3-319-25829-4_4
http://dx.doi.org/10.1007/978-3-319-25829-4_4


116 6 Harper-Hofstadter Model and Spin Hall Effect

1st LZ sweep 2nd LZ sweep

MW-pulse

B-field

t

Spin relaxation collisions

Fig. 6.9 Preparation of different spin-superposition states. Schematic drawing of the filtering
sequence (Sect. 4.5) used to remove double occupancies from the trap through spin-relaxation
collisions. During this sequence the atoms are first transferred to the upper hyperfine-manifold
|↓〉 = |F = 2, m F = −1〉 using a Landau-Zener (LZ) sweep (magnetic field ramp). After a certain
hold time during which atoms on doubly-occupied sites are lost from the trap the atoms are typically
transferred back to the |↑〉 = |F = 1, m F = −1〉 by applying a 2ndLZ sweep. The gray shaded area
illustrates the duration of the MW-pulse driving the hyperfine transition at∼ 6.8GHz. By changing
the duration of the pulse during the 2nd LZ sweep the atoms end up in a spin-superposition state
|ψ〉spin = α |↑〉 + β |↓〉
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Chapter 7
All-Optical Setup for Flux Rectification

Abstract In Chaps. 5 and 6 it was discussed how the artificial gauge field can be
probed through the observation of local cyclotron orbits in isolated plaquette poten-
tials. However, observing the global properties of a fully connected 2D lattice in
the presence of an artificial magnetic field remained out of reach. In this chapter a
new experimental all-optical setup is described which led to the first Chern-number
measurement in a non-electronic system.

In the previous chapter a new experimental technique for the realization of uniform
artificial gauge fields in optical square lattices was demonstrated. It has been shown
that the flux distributions can be probed with local cyclotron orbits [1, 2]. The same
technique further enabled the observation of chiral currents in optical ladder poten-
tials [3]. However, observing the global properties of the system in a full 2D lattice
remained out of reach with current setups [2, 4].

The main limitation is rooted in the lack of an adiabatic loading procedure that
connects the lattice with trivial topology to the onewith non-trivial topology. Starting
from a normal square lattice and simply turning on the flux would lead to a splitting
of the spectrum into several subbands and the atoms would potentially redistribute
over the magnetic subbands in a non-trivial manner. The use of a magnetic field
gradient (Chap.6) further limits the experimental flexibility in the design of possible
loading procedures.

In this chapter a new experimental setup is introduced which relies solely on
far-detuned laser beams and offers the possibility of addressing neighboring bonds
in the lattice individually [5, 6]. In a staggered superlattice potential there are two
kinds of bonds with positive and negative energy offset between neighboring sites,
which will naturally lead to staggered flux distributions if tunneling is restored on all
bonds with the same laser beams (Chap. 5). The topology of this system is trivial and
the energy bands exhibit a Chern number of zero. With the new scheme tunneling
along the two kinds of bonds can be controlled individually. In particular, the sign
of the Peierls phases φm,n can be adjusted experimentally, which in turn facilitates
flux rectification in a square optical lattice with staggered energy offset. In the next
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chapter (Chap. 8) this setup serves as the starting point for an adiabatic loading of
the atoms into the Hofstadter bands for � = π/2 and it further enabled the first
Chern-number measurement in a non-electronic system [5].

7.1 Laser-Assisted Tunneling on Every Other Bond

The main ingredient to achieve flux rectification with a staggered superlattice poten-
tial is the ability to control tunneling on neighboring bonds in the lattice individ-
ually. This is achieved by performing a slight modification to the setup introduced
in Sect. 5.3. The new beam configuration is illustrated in Fig. 7.1a. In this setup the
running-wave beam along the x-direction is retro-reflected, creates a standing wave
and interferes with the running wave along y. The corresponding electric fields are
defined according to

E1(r, t) = 2E1 e
i(ω1t+φ1) cos(kl x + ϕ), E2(r, t) = E2 e

i(−kl y+ω2t+φ2), (7.1)

where the phaseϕ determines the position of themodulation relative to the underlying
staggered superlattice potential (Sect. 4.3)
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Fig. 7.1 Experimental setup for laser-assisted tunneling on every other bond. a Schematic drawing
of the experimental setup. Along the x-direction of a 2D lattice with lattice constant a = λs/2 a
staggered superlattice potential with� � Jx is used to inhibit tunneling. The bare tunnel couplings
are denoted as Jx and Jy . An additional pair of far-detuned laser beams with |ω2 − ω1| = �/�

and wave vector kl = π/(2a) restores resonant tunneling along that axis in order to create complex
tunnel couplings. The pair consists of a running wave along y and a standing wave along x . The
corresponding optical potential Eq. (7.3) is adjusted such that tunneling is induced on every other
bond; for ϕ = −π/4 on red bonds and for ϕ = +π/4 on gray bonds. b Time-dependent on-site
modulation V (x, y, t) for y = 0 as a function of time for ϕ = −π/4 as defined in Eq. (7.3).
Neighboring sites with negative energy offset −� are modulated in phase therefore no tunneling is
induced. It is only induced on bonds with positive energy offset +� (figure adapted from Ref. [5])
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VSL(x) = Vxl cos
2(kl x) + Vx cos

2(ks x + π/2), (7.2)

with kl = ks/2 and ks = 2π/λs . For technical reasons the direction of the laser beam
along y (dark red arrow in Fig. 7.1a) was changed compared to the previous setup.
The phase ϕ can be adjusted by changing the frequency of the laser beam similar to
the phase of the superlattice potential ϕSL as discussed in Sect. 4.3.

The time-dependent optical potential created by the two beams in Eq. (7.1) can
be written in the following form

V (x, y, t) = 4V1 cos
2(kl x + ϕ)︸ ︷︷ ︸

standing wave Vsw

+ V2︸︷︷︸
cst.

+ V0 cos(kl x + ϕ) cos(−kl y + ωt + φ),

(7.3)
where ω = ω2 − ω1 and φ = φ2 − φ1. The potential amplitudes are proportional
to the corresponding field amplitudes V1 ∝ E2

1 , V2 ∝ E2
2 and V0 ∝ 4E1E2 [7].

For an appropriate choice of the relative phase ϕ = ±π/4 the modulation induces
tunneling only on every other bond. On the remaining bonds the modulation between
neighboring sites is in phase (Fig. 7.1b) and does not induce tunneling as discussed
in Sect. 3.4. To simplify notations the time-dependent potential V (x, y, t) is written
as

Vm,n(t) = Vsw + V0 cos(m π/2 + ϕ) cos(−n π/2 + ωt + φ), (7.4)
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Fig. 7.2 Suppression of tunneling on every other bond in isolated double-well potentials. a
Schematic drawing of the experimental setup. Along x a tilted double-well potential with energy
offset � � Jx is used to inhibit tunneling; Jx is the bare inner-well coupling. Resonant tunneling
is then restored using a pair of laser beams (red arrows) that creates a time-dependent potential
V (x, y, t) as defined in Eq. (7.4). The potential is illustrated with the red solid line for y = 0 and
t = 0. Depending on the relative phase ϕ, the effective tunnel coupling K varies between zero and
K = JxJ1(

√
2V0/�). b Measured effective coupling strength as a function of the phase ϕ. The

solid line is a fit to our data using f (ϕ) = A0| sin(ϕ+ϕ0)|, where the amplitude A0 = 0.287(6)kHz
and the phase offset ϕ0 = 0.008(5)π were free fit variables (figure adapted from Ref. [5])
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where R = maêx + naêy denotes the position in the lattice. The constant part of the
potential was neglected since it only adds a global energy offset.

In the experiment the applicability of this method was tested in isolated double-
well potentials, where tunneling on every other bond is suppressed by a high potential
barrier (gray bonds in Fig. 7.2a) and all dynamics is restricted to two sites only.
Tunneling within each double-well is initially inhibited by a potential energy offset
� and is then restored resonantly with ω = �/� using the laser beam configuration
explained above. The differential modulation amplitude between neighboring sites
in the double-well is given by

δV = Vm+1,n − Vm,n = √
2V0| sin(ϕ)|, (7.5)

which results in an effective tunnel coupling K = JxJ1(δV/�). For ϕ = 0 the long
lattice and the on-site modulation are in phase. Hence, the two sites of the double-
well potential aremodulated in phase and the relativemodulation amplitude vanishes.
Ideally, this results in a vanishing effective coupling K = 0. For ϕ = π/2 the relative
modulation amplitude reaches its maximum value such that K = JxJ1(

√
2V0/�).

The tunnel couplings K were measured for different values of the phase ϕ using
a similar sequence as described in Sect. 4.4, where possible doubly occupied sites
were emptied by applying a filtering sequence (Sect. 4.5). The final lattice parameters
were Vx = 7.0(2)Ers, Vxl = 35(1)Erl, ϕx

SL = 0.073(2)π , Vy = 30(1)Ers and Vz =
30(1)Erz. This corresponds to a tilted double-well potential (Sect. 4.3) with energy
offset �/� ≈ 4.5kHz between the two sites, which was calibrated independently by
performing spectroscopy measurements for each value of the phase ϕ (Sect. 4.3.2).
Note that due to the additional standing-wave term in Eq. (7.4) the tilted double-well
potential is slightly modified. This leads to a dependence of the resonance frequency
on the relative phase ϕ on the order of 20%.

Using themeasured coupling strengths displayed in Fig. 7.2b an upper limit for the
suppression of tunneling on every other bond was obtained, Kmin/Kmax < 0.13. A
residual non-zero coupling obtained when the modulation between neighboring sites
is in phase, is most likely due to an imperfect back-reflection of the running-wave
beam along x (light red arrow in Fig. 7.2a).

7.2 Uniform Flux in a Staggered Potential

With the experimental setup described in the previous section tunneling could be
restored on every other bond (red bonds in Fig. 7.1a). This is the starting point for
the flux-rectification scheme. In the following two pairs of beams are applied in the
same configuration as described above (red and blue arrows in Fig. 7.3a)

V i
m,n(t) = V i

sw + V i
0 cos(m π/2 + ϕi ) cos(−n π/2 + ωi t + φi ), (7.6)
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(a) (b) (c)

Fig. 7.3 All-optical flux-rectification scheme for laser-assisted tunneling in a staggered superlattice
potential.aSchematics of the all-optical setup.A staggered superlattice potentialwith offset� � Jx
inhibits tunneling between neighboring sites (gray and white). Two additional pairs of beams (red
and blue arrows) restore resonant tunneling with ωi = ωi2 − ωi1 = ±�/� and wave vectors
|ki j | � kl = π/(2a), with i = {r, b} and j = {1, 2}. Each pair is composed of one running wave
along y and one standing wave along x (arrows with lighter shading). Tunneling on different bonds
with opposite sign of the energy offset ±� (red and blue) is controlled independently with the
red and blue beams, which results in a uniform flux distribution � = π/2 per plaquette (aligned
along −êz). b, c Total time-dependent potentials Vi (x, 0, t) as a function of time for the red (b) and
blue (c) beams. The differential modulation amplitude between neighboring sites V i

m+1,n − V i
m,n

vanishes on every other bond (gray bonds) and tunneling is restored on red bonds (b) and blue
bonds (c) independently (figure adapted from Ref. [5])

where ωi = ωi2 − ωi1, i = {r, b}. For ϕr = −π/4 and ϕb = π/4 two independent
on-sitemodulation potentials are obtained (Fig. 7.3b, c), which are spatially separated
by one lattice constant, so that the two kinds of bonds in the lattice (red and blue) can
be addressed individually. As a side effect the two standing-wave terms V i

sw cancel
each other. The modulation amplitudes V r

0 = V b
0 ≡ V0 are the same for both pairs

by construction as will be demonstrated in Sect. 7.3.
The system can be described using the following time-dependent tight-binding

Hamiltonian

Ĥ(t) =
∑

m,n

(
−Jx â†

m+1,nâm,n − Jy â†
m,n+1âm,n + h.c.

)
+

∑

m,n

(−1)m �

2
n̂m,n

+
∑

m,n

[
V0 cos

(
m

π

2
− π

4

)
cos

(
−n

π

2
+ ωr t + φr

)]
n̂m,n (7.7)

+
∑

m,n

[
V0 cos

(
m

π

2
+ π

4

)
cos

(
−n

π

2
+ ωbt + φb

)]
n̂m,n.

In the high-frequency limit �ω � Jx , Jy , where ω := |ωr | = |ωb| = �/�, the
corresponding effective Floquet Hamiltonian can be derived in the rotating frame as
discussed in Sect. 3.4. The unitary transformation is defined in Eq. (3.73) with

http://dx.doi.org/10.1007/978-3-319-25829-4_3
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χm,n(t) = V0

�ωr
cos

(
m

π

2
− π

4

)
sin

(
−n

π

2
+ ωr t + φr

)

+ V0

�ωb
cos

(
m

π

2
+ π

4

)
sin

(
−n

π

2
+ ωbt + φb

)
+ (−1)m �t

2�
. (7.8)

The transformed Hamiltonian Ĥ(t) defined in Eq. (3.74) involves time-dependent
complex tunnel couplings with phase factors ηx

m,n(t) = χm+1,n(t) − χm,n(t) for
hopping along the x-direction. For the experimental setup these phases can be
expressed in the following form

ηx
m,n(t) =

{
−

√
2V0

�ωr
sin

(−n π
2 + ωr t + φr − (m − 1) π

2

) + �t
�

for m odd

−
√
2V0

�ωb
sin

(−n π
2 + ωbt + φb − m π

2

) − �t
�

for m even.
(7.9)

Taking the time average over one driving period T = 2π/ω according to Eq. (3.35)
results in the effective time-independent Hamiltonian given by

ĤF =
∑

m,n

(
−K eiφm,n â†

m+1,nâm,n − J â†
m,n+1âm,n + h.c.

)
, (7.10)

where K = JxJ1(
√
2V0/�). For ωr = −ωb = ±�/� the corresponding Peierls

phase-factors are determined by

φm,n =
{

±π
2 (m + n − 1) ∓ φr , for m odd

±π
2 (m + n) ∓ φb, for m even,

(7.11)

which gives rise to a uniform flux distribution with � = φm,n+1 − φm,n = ±π/2 per
plaquette. Note that by choosing ωr = ωb = ±�/� a staggered flux distribution is
obtained (Sect. 7.4).

In order to derive the effective coupling strength J perpendicular to the complex
tunneling direction the time-dependent phases-factors η

y
m,n(t) = χm,n+1(t)−χm,n(t)

have to be considered

ηy
m,n(t) = −

√
2V0

�ωr
cos

(
m

π

2
− π

4

)
cos

(
−n

π

2
+ ωr t + φr − π

4

)

−
√
2V0

�ωb
cos

(
m

π

2
+ π

4

)
cos

(
−n

π

2
+ ωbt + φb − π

4

)
. (7.12)

In contrast to the restored tunneling along the x-axis, tunneling along y is affected
by both modulation potentials simultaneously for each bond and the differential
modulation amplitude between neighboring sites cannot be evaluated by treating the
two modulations separately.

The combined on-site modulation is characterized by two distinct phases, i.e. the
relative phase of themodulation δφ = φr −φb and the initial phase of themodulation

http://dx.doi.org/10.1007/978-3-319-25829-4_3
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φ0 := φr . The relative phase δφ can be controlled experimentally as will be shown
in Sect. 7.3.1 but the initial phase of the driving is not stabilized. For the sake of
simplicity the relative phase is set to δφ = −π/2 for the following discussion.
Together with ω := ωr = −ωb the equations above simplify to

ηy
m,n(t) = ±2V0

�ω

{
cos (φ0) sin

(
ωt ± π

4

)
, for (m + n) odd

sin (φ0) sin
(
ωt ± π

4

)
, for (m + n) even.

(7.13)

Along y the effective tunnel coupling is renormalized according to the zeroth-order
Bessel function of the first kind J = JyJ0(2Vy/�) but it does not involve any
Peierls phase-factors (Sects. 3.2 and 3.4). Therefore only the oscillation amplitude of
η

y
m,n(t) is of interest but not its phase. According to the Eq. (7.13) the amplitude can

take two different values Vy1 = V0 sin(φ0) and Vy2 = V0 cos(φ0) depending on φ0

(Fig. 7.4a). Intuitively, this phase determines the position of the modulation relative
to the underlying lattice along y. For each experimental realization a different value
of the phase φ0 is obtained, which potentially leads to inhomogeneous couplings
along the y-direction. However, in the limit V0/(�ω) 	 1, the effective coupling
can be very well approximated by the bare tunnel coupling J � Jy , such that it is
approximately homogeneous over the 2D lattice (Fig. 7.4b).

Note that stabilizing the value to φ0 = (ν ± 1/4)π , ν ∈ Z, would result
in homogeneous couplings independent of the driving amplitude V0 (gray verti-
cal lines in Fig. 7.4a) and the corresponding effective coupling would be given by
J = JyJ0(

√
2V0/�).

(b)(a)

Fig. 7.4 Relative modulation amplitudes Vy and effective coupling strengths J along the y-
direction. a The lattice modulation (red and blue arrows in Fig. 7.3b) leads to a renormalization of
the tunneling along y. The differential modulation amplitude between neighboring sites Vy depends
on the initial phase φ0 and is potentially inhomogeneous over the 2D lattice determined by the two
values Vy1 and Vy2 (green and purple). For a special choice of the phase φ0 = (ν ± 1/4)π , ν ∈ Z,
the differential modulation amplitude is homogeneous (gray vertical lines). b Possible values of
the effective coupling J for different phases φ0 as a function of the modulation amplitude V0. The
minimum value of J is determined by the maximum modulation amplitude V max

y = V0 and the

maximum value is equal to the bare tunnel coupling Jy for V min
y = 0. The inhomogeneity in the

coupling strength increases with increasing modulation amplitude V0. The gray vertical line marks
the value V0/(�ω) ≈ 0.58 used for the experiments presented in the next chapter (Chap. 8), for
which the couplings vary between Jmax = Jy and Jmin = 0.7Jy
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If this is not the case and V0 is on the order of the driving frequency than the
effective couplings J can be approximated up to second order in V0/(�ω) using
the series expansion of the zeroth order Bessel function of the first kind J0(x) ≈
1 − x2/4 + O(x4)

J = Jy

{
J0

( 2V0
�ω

cos (φ0)
) ≈ 1 − V 2

0
2(�ω)2

(1 + cos(2φ0)), for (m + n) odd

J0
( 2V0

�ω
sin (φ0)

) ≈ 1 − V 2
0

2(�ω)2
(1 − cos(2φ0)), for (m + n) even.

(7.14)
Finally this expressions can be combined into a single equation

J � Jy(1 + fm,n), fm,n = −1

2

(
V0

�ω

)2 [
1 − (−1)m+n cos(2φ0)

]
. (7.15)

An equivalent derivation of the effective Hamiltonian using the formalism discussed
in Sect. 3.1.2 can be found in Refs. [5, 6].

7.3 Experimental Setup

The two pairs of beams (red and blue arrows in Fig. 7.3a) are generated using a single
laser1 (Fig. 7.5a) with wavelength λl = 1534nm, which is locked to the short lattice
λs = 767nmvia a frequency offset lock. This is similar to the frequency control of the
two long lattices which participate in the generation of the bichromatic superlattice
potentials (Sect. 4.3). The laser beam is first split into two parts, each of them is
passing through an acousto-optic modulator (AOM) with frequency ωA = 2π ×
80MHz in order to stabilize the intensity of each beam individually with a feedback
loop [8]. Then each beam is sent through a fiber coupled intensity modulator2 (IM)
to generate sidebands at frequencies ± j , j = {1, 2}. At the same time the carrier
frequency at ωc + ωA, where ωc denotes the laser frequency, is suppressed by the
IM. By choosing 2 − 1 = ±�/� the condition required for the uniform flux
configuration ωr = −ωb = ±�/� is automatically fulfilled (Fig. 7.5b).

Relative position between the modulation and the superlattice potential: For the
local addressing to work the on-site modulation has to be further adjusted spatially,
relative to the underlying superlattice potential, which consists of a short and a long
lattice. The relative position is determined by the phases ϕr and ϕb respectively.
Analog to the phase of the superlattice potential the standing wave along x (light
arrows in Fig. 7.3) accumulates a phase until it reaches the atom position (Fig. 4.3),
hence, it can be adjusted by controlling its frequency relative to the one associated
with the short lattice using a frequency offset lock (Sect. 4.3).

1Erbium doped fiber amplifier from NP Photonics (output power: 5W).
2EOSPACE Lithium Niobate Modulator AX-0K5-00-PFA-PFA-NT-UL.

http://dx.doi.org/10.1007/978-3-319-25829-4_3
http://dx.doi.org/10.1007/978-3-319-25829-4_4
http://dx.doi.org/10.1007/978-3-319-25829-4_4
http://dx.doi.org/10.1007/978-3-319-25829-4_4
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(a) (b)

Fig. 7.5 Schematics of the experimental setup for flux rectification. a A fiber amplifier with fre-
quency ωc is used to generate all four beams for the modulation scheme illustrated in Fig. 7.3a. The
main beam is split into two parts: Beam 1 and 2 (gray and black solid line). Each of them passes
through anAOMwith frequencyωA and afiber coupled IM that creates sidebands at± j , j = {1, 2}
and suppresses the carrier frequency at ωc + ωA. Thus, Beam 1 is split into two beams with fre-
quencies ωr1,b1 = ωc +ωA ±1 (light red and light blue) and realizes the standing waves along x .
Beam 2 is the source for the two running waves along y with frequencies ωr2,b2 = ωc + ωA ± 2
(dark red and dark blue). b Illustration of the different frequencies generated in the experimental
setup. The dashed black line indicates that the carrier frequency at ωc + ωA is suppressed after the
IM. The solid lines (red and blue) indicate the frequencies ωi, j , i = {r, b}, which are used for the
modulation. Note that the distances are not to scale, 21,2 � |2 − 1| so that inference between
the sidebands (red and blue beams) can be neglected

Alignment procedure: First, the phase ϕ is calibrated for  j = 0 by creating a
bichromatic superlattice potential which consists of the short lattice and the standing
wave along x (Beam 1 in Fig. 7.5a). The relevant techniques are described in Sect. 4.3.
This will determine the position of the modulation relative to the superlattice poten-
tial. In addition the phase between the long lattice and the standing-wave along x
(Beam 1) can be inferred by applying both potentials simultaneously ( j = 0). If
the two beams are in phase, the corresponding potentials will add up, but if they are
out of phase, they will cancel each other.

As a second step the frequencies of the sidebands ± j need to be adjusted. The
frequency difference δνa required to shift the long-lattice standing wave by one
lattice constant a = λl/4 is known from the calibration measurements depicted in
Fig. 4.4, δνa = 740(10)MHz = 2δνl , with νl = c/λl . By choosing the frequencies
21 � 22 = 2π × 370(5)MHz for the generation of the sidebands a relative shift
of one lattice constant between the two modulations is ensured, which corresponds
to ϕb − ϕr = π/2. All relevant phase relations between the superlattice potential
and the lattice-modulation beams are very stable by construction since the phases
are determined by the position of the mirror, which is used to retro-reflect all beams.

Interference between the four frequency components: The interference terms
between the sidebands at ± j can be safely neglected since the two timescales are
well separated 2 j/|2 − 1| = 2 j/� � 105. Only interference of the laser
beams along x with the ones along y are considered in the following description.
Since the sidebands are created symmetrically using intensity modulation, the cor-
responding amplitudes are equal, |Er1| = |Eb1| and |Er2| = |Eb2|, which in turn
results in equal modulation amplitudes of the two pairs, V r

0 ∝ Er1Er2, V b
0 ∝ Eb1Eb2

and V r
0 = V b

0 = V0.

http://dx.doi.org/10.1007/978-3-319-25829-4_4
http://dx.doi.org/10.1007/978-3-319-25829-4_4
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Fig. 7.6 Schematic drawing of the intensity modulator that generates the sidebands for the laser-
assisted tunneling setup.aThe intensitymodulator is aMach-Zehnder interferometerwith integrated
phase modulators. The input and output optical fibers are polarization-maintaining. By applying a
constant voltage (bias voltage) to the electrodes without modulation (VM = 0) the relative phase
Vbias between the two interferometer arms ismodified and the transmission at the output of the device
can be tuned as shown in Fig. 7.7a. By applying a time-dependent voltage to the electrodes (VM (t)),
the spectrum exhibits additional frequency components at ω + k, k ∈ Z. The spectral density of
the individual components depends on the modulation amplitude and offset (figure adapted from
Jenoptik [9]). b Illustration of the spectrum at the output of the device for Vbias = π/4 and VM = 1
as defined in Eq. (7.18)

7.3.1 Intensity Modulation

The fiber coupled intensity modulator consists of two interferometer arms (Fig. 7.6).
In each arm there is a Pockels cell to modulate the phase of the incoming wave. It
is built such that an externally applied voltage is connected to both Pockels cells
with opposite polarity, which results in phase modulations with opposite sign for
the two interferometer arms ±VM sin(t + φI M) ±Vbias. Note that VM and Vbias are
dimensionless quantities. Let us consider the spectrum at the output of the intensity
modulator for an incoming wave E0 exp(iωt). The incoming wave is split into equal
parts at the beginning of the interferometer Er,b = E0 exp(iωt)/2. After the Pockels
cells the field is modified according to

Er,b(t) = E0

2
exp [i(ωt ± VM sin(t + φI M) ± Vbias)] . (7.16)

Without modulation (VM = 0) the modulator can be used as a simple switch. The
bias voltage introduces a constant phase shift Vbias between the two arms of the inter-
ferometer which allows one to adjust the transmitted intensity Iout ideally between
zero and I0 = |E0|2 if additional losses are neglected, such that Iout = I0 cos2(Vbias),
see Fig. 7.7a.

For the device used in the experiment the maximum transmission is typically
limited to about 0.5I0 because of the specified insertion loss of ∼3dBm. For non-
zero modulation amplitude (VM �= 0) the spectrum contains multiple frequency
components at ω + k, k ∈ Z. This can be seen by rewriting Eq. (7.16) in terms of
the Bessel functions of the first kind
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Er,b(t) = E0

2
ei(ωt±Vbias)

[
J0(±VM) +

∞∑

k=1

Jk(±VM)eik(t+φI M )

+
∞∑

k=1

(−1)kJk(±VM)e−ik(t+φI M )

]
. (7.17)

The interference between both arms at the output of the IM exhibits the following
spectral components

Eout = Er (t) + Eb(t) = E0 e
iωt

[ ∞∑

2k=−∞
Jk(VM)eik(t+φI M ) cos(Vbias)

+ i
∞∑

2k−1=1

Jk(VM)eik(t+φI M ) sin(Vbias)

− i
∞∑

2k−1=1

Jk(VM)e−ik(t+φI M ) sin(Vbias)

]
.

(7.18)

Depending on the bias voltage, that determines the phase offset Vbias, the spectrum
either consists of all frequency components ω + k (Fig. 7.6b) or only even and
odd ones respectively (Fig. 7.7b). The phase Vbias can be calibrated by measuring
the transmitted intensity Iout = |Eout|2 as a function of the bias voltage as shown
in Fig. 7.7a. Using this knowledge together with Eq. (7.18) determines the spectral
density of the transmitted light Eout.

For Vbias = π/2 the carrier frequency is fully suppressed and the spectrum con-
sists of odd frequency components only. Consequently, the spectrum of the output
intensity Iout, which was measured in the experiment (Fig. 7.7b), contains only spec-
tral components at multiples of 2. The same is true for Vbias = 0 even though the
spectral decomposition of the transmitted field Eout is very different (Fig. 7.7b). As
an example the spectral weight of the frequency component at 2 of the transmitted
intensity Iout is computed

I2(VM) =
{
2

∑∞
k=0 J2k(VM)J2k+2(VM) for Vbias = 0

J1(VM)2 − 2
∑∞

k=1 J2k−1(VM)J2k+1(VM) for Vbias = π/2.
(7.19)

One can show that both infinite series converge to the same value J2(2VM)/2.
For Vbias = π/4 the spectrum of the transmitted light Eout contains all even and odd
frequency components but the Fourier transform of Iout only consists of components
at odd multiples of . Again one may compute the spectral weight of the frequency
component at 2
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(b)(a)

Fig. 7.7 Intensity and spectrum of the light at the output of the intensity modulator as a function
of the bias voltage. a Measured transmitted intensity Iout versus bias voltage without modulation
(VM = 0). The data depicted in (a) was normalized to its minimum (green vertical lines, Vbias =
π/2) andmaximum (blue vertical line, Vbias = 0) value. The solid line is a fit of a cosine to our data.
For this device a phase shift of π corresponds to 9.96(2)V. b Spectrum of the transmitted intensity
Iout = |Eout|2 at the output of the IM for VM ≈ 0.45 as a function of the bias voltage. The upper
panels depict the spectral density of the corresponding spectral decomposition of the transmitted
field Eout. For Vbias = 0 the spectrum consists of even components (blue), while for Vbias = π/2 it
consists of odd ones (green). These two spectra cannot be distinguished by measuring the spectrum
of the transmitted intensity Iout, but in combination with (a) they can be reconstructed according to
Eq. (7.18). For Vbias = π/4 the spectrum consists of even as well as odd frequency components as
shown in Fig. 7.6b

I2(VM) = J1(VM)2 − 2
∞∑

k=0

Jk(VM)Jk+2(VM) = J2(2VM)

2
− J2(2VM)

2
= 0 .

(7.20)
It is determined by the difference between the two infinite series given in Eq. (7.19).
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Fig. 7.8 Spectral composition of the transmitted light Iout for Vbias = π/2 as a function of
the modulation amplitude VM . a Intensity Ik = I0(Jk(VM ))2 of the odd frequency components
k = {±1,±3,±5} as a function ofVM . All even frequencies as well as the carrier frequency are sup-
pressed for Vbias = π/2. The gray shaded area marks the regime typically used in the experiment.
b Spectrum for Vbias = π/2 and VM = 1
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For our experiments the phase offset between the two interferometer arms was
set to Vbias = π/2, where the carrier frequency is fully suppressed (Fig. 7.8). The
maximum intensity for the two sidebands at ± is obtained for VM = 1.8 and
corresponds to ∼ 0.34I0, where I0 is the maximum transmitted intensity, which is
possibly reduced due to the insertion loss at the input of the IM. For themeasurements
presented in this chapter and the following one (Chap. 8) the modulation amplitudes
were chosen such that the phase modulation was well below VM = π/2. This sets
an upper limit for the suppression of higher frequency components I3/I1 < 0.015,
where Ik = I0(Jk(VM))2. Consequently, all frequency components with |k| > 2 can
be neglected and the transmitted field can be written as

Er (t) + Eb(t) � i E0e
iωt

⎡

⎣J1(VM)ei(t+φI M )

︸ ︷︷ ︸
→ red beam

−J1(VM)e−i(t+φI M )

︸ ︷︷ ︸
→ blue beam

⎤

⎦ . (7.21)

To generate the four beams illustrated as blue and red arrows in Fig. 7.3a two intensity
modulators are used in the experimental setup (Fig. 7.5), one for each axes. The
beam sent along the x-axis (Beam 1) is characterized by the electric field E1(t) =
Er1(t) + Eb1(t) and the one along y (Beam 2) is given by an analog expression.
Using relation (7.21) the phase between the two modulations δφ = φr − φb can be
inferred according to

φr = φr2 − φr1 = φI M2 − φI M1, φb = φb2 − φb1 = −φI M2 + φI M1. (7.22)

This allows for an experimental control of the relative phase by adjusting the phase
of the modulation applied to one of the intensity modulators

δφ = 2(φI M2 − φI M1). (7.23)

7.3.2 Controlling the Relative Phase of the Modulation

Static potential: One possibility to verify the experimental control over the relative
phase δφ, is to study the static potential created by the two pairs of beams (red and
blue arrows in Fig. 7.3a), if the frequency differences are set to zero, ωr = ωb = 0.
For two particular values of the phase δφ = ±π/2 the resulting static potential
corresponds to a one-dimensional lattice, which is diagonal to the normal square
lattice (Fig. 7.9a)

V (x, y) =
⎧
⎨

⎩
V0 cos

(√
2kl[êx + êy]

)
for δφ = π/2

V0 cos
(√

2kl[êx − êy]
)

for δφ = −π/2.
(7.24)

http://dx.doi.org/10.1007/978-3-319-25829-4_8
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Fig. 7.9 Static potential generated by the four beams illustrated as blue and red arrows in Fig. 7.3
a for ωr = ωb = 0. a The shape of the potential V (x, y) depends on the relative phase δφ between
the two pairs of beams. For δφ = ±π/2 one expects a one-dimensional lattice structure diagonal to
the underlying lattice potential with lattice constant (2a,±2a). b Momentum distribution obtained
by loading the atoms into the potentials V (x, y) depicted in (a) measured after 10ms TOF. For
δφ = ±π/2 momentum components at (�kl ,±�kl ) appear in agreement with a 1D diagonal lattice

For the experimental results depicted in Fig. 7.9b a BEC was loaded within 100ms
into the static potential and the corresponding momentum distribution was measured
after 10ms TOF. The relative phase δφ can be reconstructed from these images by
comparing them with the calculated lattice potentials depicted in Fig. 7.9a.

Suppression of tunneling in isolated double-wells: To further test the experimen-
tal controllability of the setup additional measurements were performed in isolated
double-well potentials similar to the ones described in Sect. 7.1. This time both
pairs were applied (Fig. 7.10a) and the two independent modulation potentials were
adjusted such that each pair induced resonant tunneling with the same differential
modulation amplitude between neighboring sites δVr = δVb = V0. If both of them
are applied at the same time, the modulation amplitude between neighboring sites
will depend on their relative phase δφ and can be written in the following form

V0 [cos(ωr t) + cos(ωbt + δφ)] = 2V0 cos

(
δφ

2

)
cos

(
ωt + δφ

2

)
, (7.25)

where we have chosen ω = ωr = ωb = �/�, which is achieved using the setup
illustrated in Fig. 7.11. In the limit V0/� 	 1 the amplitude of the induced tunnel
coupling is determined by (Sect. 3.2)

K � Jx
V0

�

∣∣∣∣cos
(

δφ

2

)∣∣∣∣ . (7.26)

http://dx.doi.org/10.1007/978-3-319-25829-4_3
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(a) (b)

Fig. 7.10 Suppressionof tunneling in double-well potentialswith all four lattice-modulationbeams.
a Schematic drawing of the experimental setup, which consist of a tilted double-well potential along
x with energy offset � � Jx to inhibit tunneling. Resonant tunneling is restored using two pairs of
laser beams (red and blue arrows), which create the time-dependent potentials Vr,b(x, y, t) given
in Eq. (7.6). Depending on the relative phase δφ, the amplitude of the effective tunnel coupling
K varies between zero and K = JxJ1(2V0/�). b Measured coupling strength K as a function of
the relative phase δφ. The solid line is a fit to our data using Eq. (7.26), where the amplitude and
phase offset were free fit variables. The absolute value of δφ was not calibrated, which explains the
non-zero phase offset

The coupling was measured using the same sequence as described in Sect. 7.1 with
the final lattice parameters: Vx = 7.0(2)Ers, Vxl = 35(1)Erl, ϕx

SL = 0.073(2)π ,
Vy = 30(1)Ers and Vz = 30(1)Erz. The energy offset between neighboring sites
�/� ≈ 4.43(2)kHz was calibrated independently by performing spectroscopy mea-
surements. Note that for thesemeasurements there is no additional standingwave that
might influence the resonance condition because the two terms V r

sw and V b
sw cancel

each other for ϕb −ϕr = ±π/2. The experimental results are displayed in Fig. 7.10b
and we obtain an upper limit for the suppression of tunneling Kmin/Kmax < 0.1. A
residual induced coupling is most likely due to an imperfect back-reflection of the
beam along x .

7.4 Staggered Flux Distribution

The all-optical laser-assisted tunneling scheme introduced in this chapter can be fur-
ther used to realize a staggered flux distribution by performing a slight modification
to the experimental setup (Sect. 7.3). The frequencies for the intensitymodulation are
set equal1 = 2 =  and instead the frequency difference�/� is introduced in the
AOM-frequenciesωA2−ωA1 = ±�/�. As a result we obtainωr = ωb = ±�/� and
all bonds are modulated with the same frequency (Fig. 7.11). Together with the fact
that the energy offset between neighboring sites alternates in sign the corresponding
flux distribution is also alternating in sign � = ±(−1)mπ/2. This configuration is
very similar to the one discussed in Chap.5.

http://dx.doi.org/10.1007/978-3-319-25829-4_5
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(a) (b)

Fig. 7.11 Experimental setup for realizing a staggered flux distributionwith the beam configuration
shown in Fig. 7.3a. a Schematic drawing of the laser setup. The beam is split into two parts (Beam
1 and 2). Each of them passes through an AOM with frequency ωA1/ωA2, and a fiber-coupled IM
with frequency . At the output of the IM each beam consists of two frequency components (red
and blue). Beam 1 is aligned along the x-axis to create the two standing waves and Beam 2 along
the y-direction to realize the running waves. b Schematic drawing of the frequencies generated in
the laser setup shown in (a). Note that the distances are not to scale,  � |ωi2 − ωi1|

Another difference compared to the setup for the uniform flux configuration is
the effective coupling J along the perpendicular direction (y-axis). In contrast to
Eq. (7.13) it can be written in the following form

ηy
m,n(t) = −2V0

�ω
cos

(
−(m + n)

π

2
+ ωt

){
sin (δφ/2) , for m odd

cos (δφ/2) , for m even.
(7.27)

The extreme values are the same Jmax = Jy and Jmin = JyJ1(2V0/�) as shown in
Fig. 7.4b. The important difference however is that in this case the inhomogeneity
depends on the relative phase δφ, which can be controlled experimentally as dis-
cussed in the previous section. By setting δφ = π/2 the effective coupling is homo-
geneous independent of the modulation amplitude V0. The corresponding value of
the renormalized coupling strength would be J = JyJ1(

√
2V0/�).
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Chapter 8
Chern-Number Measurement
of Hofstadter Bands

Abstract In this chapter the first measurement of a 2D topological invariant—the
Chern number—in a non-electronic system is presented using the experimental setup
discussed in the previous chapter. After appying an external force to the atoms, that
were loaded into artificially generatedHofstadter bands, we recorded the evolution of
the in-situ center-of-mass position of the atomic cloud.Togetherwith bandpopulation
measurementswewere able to determine an experimental value for theChern number
of the lowest band with high precision.

Bloch bands with non-trivial topology have become available in cold-atom setups
with the realization of the Harper-Hofstadter Hamiltonian [1, 2] and the Haldane
model [3]. The local structure of the artificial gauge field has been observed previ-
ously with local cyclotron orbits [1, 4], however, a direct detection of 2D topological
invariants remained out of reach.

A first direct detection of a 1D topological invariant has been reported in
Ref. [5] using interferometric techniques. This method allows for an extension to
2D as demonstrated theoretically and experimentally [6, 7]. Several other propos-
als were developed to directly probe the topology of the system [8] from density
plateaus [9], time-of-flight images [10, 11], through semiclassical dynamics
[12, 13], hybrid time-of-flight measurements [14] or direct imaging of topological
edge states [15].

In this chapter the first measurement of a 2D topological invariant—the Chern
number—in a non-electronic system is presented. These observations are based on
transport experiments [12, 16] using bosonic atoms. The atomic cloud experiences
a transverse motion in response to an externally applied force which is proportional
to the Chern number of the band that was populated homogeneously (Sect. 8.2 and
Ref. [16]). Through direct imaging of the in-situ center-of-mass position of the cloud
in combinationwith band-populationmeasurements we obtain an experimental value
for the Chern number of the lowest band νexp = 0.99(5) (Sect. 8.4). These measure-
ments were facilitated by a newly developed all-optical setup, which was intro-
duced in Chap.7 and realizes the Hofstadter model for a flux � = π/2 (Sect. 8.1).
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The increased experimental flexibility provided by this setup enabled an adiabatic
loading of the atoms into the lowest Hofstadter band (Sect. 8.3).

8.1 Hofstadter Model for a Flux � = π/2

The experimental setup for the implementation of the Hofstadter model is illustrated
in Fig. 8.1a and was described in detail in the previous chapter. Using this scheme
laser-assisted tunneling on adjacent bonds in the lattice can be controlled individually,
which in turn enables flux rectification in a staggered superlattice potential. The
method only relies on optical potentials, which are created by far-detuned laser
beams.

The basic operation principle can be summarized as follows: Along x bare tun-
neling is inhibited by a staggered superlattice potential, which introduces an energy
offset on every other site. Resonant tunneling is then restored using two pairs of
far-detunend beams (red and blue arrows in Fig. 8.1a), with frequency difference
|ωi | = �/�, i = {r, b}. Both pairs create a time-dependent potential of the follow-
ing form Vi (x, y, t) = V0 cos(kl x ± π/4) cos(−kl y + ωi t), where kl = π/(2a) and
V0 is the modulation amplitude. This special configuration allows for an indepen-
dent control of the tunnel coupling on the two kinds of bonds with energy offset ±�
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Fig. 8.1 Hofstadter model for a flux � = ±π/2 per plaquette. a Schematic drawing of the experi-
mental setup. It consists of a 2D lattice with lattice constant a = λs/2, bare tunnel couplings Jx , Jy
and a staggered potential with energy offset � � Jx to inhibit tunneling along x . The two pairs
of beams (red and blue arrows) are used to restore resonant tunneling ωi = ωi2 − ωi1 = ±�/�.
b Schematics of the effective time-independent Hamiltonian describing the system shown in (a).
The experimental parameters were adjusted such that the effective tunneling along both directions
occurs with the same strength J . Along x tunneling is additionally accompanied by complex phase
factors that lead to a uniform flux � = ±π/2 per plaquette (aligned along the −êz direction).
The green shaded area illustrates the magnetic unit cell AMU = 2a × 2a, where the four sites are
denoted as A, B, C, D. c Energy spectrum in the FBZ for a lattice with flux � = π/2. The low-
est tight-binding band splits into four subbands; Egap � 1.5J denotes the bandgap to the second
band and Ebw � 0.2J the bandwidth. The Chern numbers of the three well-separated bands are
νμ = {1,−2, 1} and were calculated using the methods described in Sect. 2.4. (Figure adapted from
Ref. [17])

http://dx.doi.org/10.1007/978-3-319-25829-4_2
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between neighboring sites (red and blue bonds in Fig. 8.1a). For ω := ωr = −ωb a
uniform flux � = ±π/2 per plaquette is realized.
In the high-frequency limit �ω � Jx,y the system can be described by the following
tight-binding Hamiltonian

Ĥ = −J
∑

m,n

(
ein�â†

m+1,nâm,n + â†
m,n+1âm,n + h.c.

)
, � = π/2, (8.1)

where the Peierls phases are introduced in the Landau gauge and the position in
the lattice is defined as R = maêx + naêy . A detailed derivation of the effective
Hamiltonian in the experimental gauge can be found in Sect. 7.2. The experimental
parameters were adjusted such that the effective coupling strengths along x and y
are equal. Note, however, that for the experimental parameters V0/(�ω) = 0.58(2)
used for the following measurements, the effective coupling along y can be inhomo-
geneous with variations up to 30% depending on the initial phase of the modulation
φ0 (Sect. 7.2).

Due to the presence of the gauge field the system is no longer invariant under the
translation by multiples of the lattice unit vectors. In order to find the new symme-
tries of the Hamiltonian the magnetic translation symmetries have to be considered
(Sect. 2.2). It can be shown that the smallest possible magnetic unit cell contains a
magnetic flux of 2π . For the Hofstadter model with � = π/2 this corresponds to
a unit cell which is four times larger than the lattice unit cell. Here we have cho-
sen to describe the system using the symmetric magnetic unit cell AMU = 2a × 2a
(Fig. 8.1b). This choice is not unique and an equivalent description using different
unit cells was presented in Sect. 2.2.2. The discrete Schrödinger equation associated
with Hamiltonian (8.1) is given by

E	m,n = −J
(
einπ/2	m+1,n + e−inπ/2	m−1,n

) − J
(
	m,n+1 + 	m,n−1

)
. (8.2)

As discussed in Sect. 2.2 one can make the following ansatz for the wave function

	m,n = eikx meiky n

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ψA einπ/2 for m, n odd

ψB for m even, n odd

ψC einπ/2 for m odd, n even

ψD for m, n even

(8.3)

where kx , ky are defined within the FBZ (kx ∈ [−π/(2a), π/(2a)], ky ∈ [−π/(2a),

π/(2a)]) and the four sites of the unit cell are denoted as A, B, C, D (Fig. 8.1b).
Inserting this ansatz into the Schrödinger equation above reduces the problem to a
four-dimensional eigenvalue equation

http://dx.doi.org/10.1007/978-3-319-25829-4_7
http://dx.doi.org/10.1007/978-3-319-25829-4_7
http://dx.doi.org/10.1007/978-3-319-25829-4_2
http://dx.doi.org/10.1007/978-3-319-25829-4_2
http://dx.doi.org/10.1007/978-3-319-25829-4_2
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Ĥ

⎛

⎜⎜⎝

ψA

ψB

ψC

ψD

⎞

⎟⎟⎠ = E(k)

⎛

⎜⎜⎝

ψA

ψB

ψC

ψD

⎞

⎟⎟⎠ , (8.4)

with

Ĥ = −2J

⎛

⎜⎜⎝

0 i sin(kx a) − sin(kya) 0
−i sin(kx a) 0 0 cos(kya)

− sin(kya) 0 0 cos(kx a)

0 cos(kya) cos(kx a) 0

⎞

⎟⎟⎠ . (8.5)

The corresponding energy spectrum consists of four subbands, where the twomiddle
bands touch at four Dirac cones (Fig. 8.1c). Hence, the spectrum is decomposed into
three well separated Hofstadter bands. The lowest band exhibits a Chern number
ν1 = +1 and is topologically equivalent to the lowest Landau level. Moreover it
exhibits a large flatness ratio of Egap/Ebw � 7, which makes this system a promising
candidate to realize fractional Chern insulators [18].

8.2 Anomalous Hall Velocity and Chern-Number
Measurement

In Sect. 2.4 the connection between the quantized Hall conductance and the topologi-
cal invariants characterizing the energy gaps were established for electronic systems.
If the Fermi energy lies in a spectral gap, the bulk is insulating and the quantized
values of the Hall conductivity are directly related to the number of metallic edge
states. In a sense these measurements probe the topological properties of the edge
states, which are related to the bulk via the bulk-edge correspondence [19, 20].

Cold atoms in optical lattices may offer new possibilities to directly probe the
topological properties of the bulk energy bands. It has been shown that transport
measurements could allow for the observation of the anomalous Hall velocity, which
is proportional to the Berry curvature [21], and might be used to determine the Chern
number of the corresponding energy band [8, 12, 16]. In the presence of a constant
external force F = F êy the atoms undergo Bloch oscillations in the direction of the
force [22], which is captured by the band velocity vband

μ = ∂k Eμ/�,μ being the band
index. If additionally the band exhibits a non-zero Berry curvature �μ(k) as defined
in Eq. (2.46), the atoms will experience a perpendicular Hall drift vx

μ (Fig. 8.2a). For
a particle in a state |uμ(k)〉 of the μth band the velocity is given by [21]

vy
μ(k) = 1

�
∂ky Eμ

vx
μ(k) = 1

�
∂kx Eμ − F

�
�μ(k)

︸ ︷︷ ︸
anomalous velocity

.
(8.6)

http://dx.doi.org/10.1007/978-3-319-25829-4_2
http://dx.doi.org/10.1007/978-3-319-25829-4_2
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Fig. 8.2 Schematic drawing of the Chern-number measurement. a In the presence of an external
force the atoms experience a net perpendicular Hall drift, determined by the anomalous velocity
vx
μ(k) in Eq. (8.6). For a filled band the mean displacement is proportional to the Chern number

νμ of the occupied band μ, which can be determined by measuring the transverse center-of-mass
motion of the atomic cloud. (Figure adapted from Ref. [17]) b Transverse motion as a function of
the Bloch oscillation (BO) time. For the Hofstadter model for � = π/2 the transverse deflection
x(t) in Eq. (8.14) is only determined by the Chern number of the lowest band ν1 and the band
filling factor γ0. If only the lowest band is filled it takes a maximum value γ0 = 1 and it decreases
to zero with increasing higher-band population. For a homogeneous filling of all the bands γ0 = 0
the cloud is not deflected in the transverse direction, consistent with an effective Chern number of
zero

Recently, the anomalous Hall velocity was observed experimentally with ultracold
atoms in a modulated honeycomb lattice [3] and in an electronic system using
graphene superlattices [23].

For the following measurements we make use of this anomalous velocity to deter-
mine the Chern number of the lowest Hofstadter band experimentally with bosonic
atoms. In order to isolate the anomalous velocity from the trivial effects associated
with the band velocity vband

μ = ∂k Eμ/� we consider a uniformly filled band, where
ρμ(k) ≡ ρμ is the particle density per momentum k and thus per state |uμ(k)〉. Due
to the symmetry of the dispersion relation the contributions from the band velocity
identically vanish. For an infinite system the mean band velocity per particle of a
uniformly filled μth band can be computed according to

〈vband
μ 〉x = ρμ

�

∫

FBZ
∂kx Eμd

2k = 0, 〈vband
μ 〉y = ρμ

�

∫

FBZ
∂ky Eμd

2k = 0, (8.7)

where the integration is performed over all momenta in the first magnetic Brillouin
zone (FBZ). The expressions vanish because for every velocity v there exists a
counterpart with opposite velocity −v. For Fermions filled bands can be obtained by
setting the Fermi energy within a spectral gap [16]. Here we consider an incoherent
distribution of bosonic atoms which populate the band homogeneously in k-space.
This was verified independently in the experiment as will be shown in the following
section. Similarly, the mean anomalous velocity of the μth band is determined by
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〈vx
μ(k)〉 = −ρμF

�

∫

FBZ
�μ(k)d2k

︸ ︷︷ ︸
→ 2πνμ

, (8.8)

where νμ is the Chern number of the μth band. For well separated non-degenerate
energy bands the particle density in each band μ is given by

ρμ = Nμ

N

1

AFBZ
= ημ

a2

π2
, ημ := Nμ

N
(8.9)

where Nμ is the particle number in each band, N = ∑
μ Nμ is the total atom number

and AFBZ = π2/a2 is the area of the first magnetic Brillouin zone. Assuming that
the band populations remain constant during the dynamics ημ ≡ η0

μ the contribution
of the μth band to the center-of-mass displacement (COM) of the atomic cloud
perpendicular to the force follows the relation

xμ(t) = η0
μ

4a2F

h
νμ t = −4a η0

μνμ

t

τB
, (8.10)

where τB = h/(Fa) is the characteristic timescale for Bloch oscillations. If only the
lowest band is filled η1 = 1 and ημ>1 = 0 we expect a deflection of 4aν1 per Bloch
oscillation period (Fig. 8.2b)

x1(t) = −4aν1
t

τB
(8.11)

and the Chern number of the lowest band ν1 can be simply extracted from the slope of
the linear displacement perpendicular to the force. The displacement after one Bloch
oscillation period is expected to be on the order of four lattice constants, which is
large enough to be detectable with conventional imaging systems. In our experiment
the magnification of the imaging system is chosen such that one pixel corresponds
to about four lattice constants. The imaging resolution is not very important since
we are only interested in the COM motion.

For the particular case of the Hofstadter model for � = π/2 the spectrum is
split into three well separated bands where the middle “super”-band consists of two
subbands (Fig. 8.1c). This middle super-band contains twice as many states because
there are two available states for each momentum k and the particle density in this
band is given by ρ2 = η2/(2AFBZ). Taking into account the contribution of all bands
the resulting COM-motion can be written as

x(t) =
∑

μ

xμ(t) = −4a
t

τB

(
η0
1 ν1 + η0

2

2
ν2 + η0

3 ν3

)
. (8.12)

Using the fact that the Chern number associated with the total tight-binding band
necessarily vanishes,

∑
μ νμ = 0, the equation above simplifies
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x(t) = −4a
t

τB

[(
η0
1 − η0

3

)
ν1 + (

η0
2 − 2η0

3

) ν2

2

]
. (8.13)

We can further make use of the particle-hole symmetry inherent to the Hofstadter
model as discussed in Sect. 2.3.2, which tells us, that the Chern number distribution
is symmetric around E = 0 such that the Chern number of the lowest band is equal
to the one of the highest band ν1 = ν3 = −ν1 − ν2 (Sect. 2.4). This allows us to write
the COM-motion as a function of the Chern number of the lowest band only

x(t) = −4a
t

τB
γ0 ν1, γ0 = η0

1 − η0
2 + η0

3 , (8.14)

where we have introduced the filling factor γ0. The maximum value of the filling
factor equals one, if all atoms populate the lowest or highest Hofstadter band respec-
tively and equals zero if all the bands are occupied homogeneously. In this case the
atomic cloud would not experience a transverse COM displacement (Fig. 8.2b).

8.3 Adiabatic Loading into the Hofstadter Bands

Loading the atoms into the lowest Hofstadter band is a highly non-trivial task by
itself. Let us consider that the experimental sequence starts by loading the atoms in a
normal, topologically trivial square lattice with lattice constant a. By simply turning
on the flux lattice, the lowest band splits into four subbands and the atoms might be
transferred to higher Hofstadter bands. To overcome this issue a loading sequence
was developed based on additional staggered potentials along the two directions in
the horizontal plane, which connects the band population of a topologically trivial
band to the one of a topologically non-trivial band in a controlled way. Here we
benefit from the increased experimental control facilitated by the all-optical setup
(Chap. 7) compared to the one where a magnetic field gradient was used (Chap.6).

8.3.1 Loading Sequence: General Idea

The underlying idea is to first load the atoms into a lattice which has a unit cell
that is equivalent to the magnetic unit cell depicted in Fig. 8.1b. This can be done
by introducing an additional term Ĥd in the Hamiltonian, which corresponds to a
staggered detuning δ along both directions (Fig. 8.3a)

Ĥd =
∑

m,n

[
(−1)m δx

2
+ (−1)n δy

2

]
n̂m,n, (8.15)

http://dx.doi.org/10.1007/978-3-319-25829-4_2
http://dx.doi.org/10.1007/978-3-319-25829-4_2
http://dx.doi.org/10.1007/978-3-319-25829-4_7
http://dx.doi.org/10.1007/978-3-319-25829-4_6
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Fig. 8.3 Energy spectra and topology of the Bloch bands as a function of the staggered detuning
δ. a Illustration of the Hofstadter-like optical lattice with additional staggered detuning δ along the
x- and y-direction. The unit cell of the lattice is depicted by the green shaded area and the four
non-equivalent sites are labeled as A, B, C, D. b Energy spectra as a function of the detuning. For
a detuning larger than 2J the bands are topologically trivial and the Chern numbers are zero. At
δ = 2J there is a topological phase transition, where the gaps in the spectrum close and the system
enters the topologically non-trivial regime. In this regime the Chern number of the lowest band
is ν1 = +1 for � = π/2. For vanishing detuning δ = 0 the system realizes the Hofstadter model
with flux � = π/2. Note that the energy axis is rescaled for each spectrum. (Figure adapted from
Ref. [17])

with δ := δx = δy . Along x the additional detuning increases the potential away from
the resonance condition to � + δ, while along y it is simply given by δ. In the limit
� � δ this results in the following modified Hamiltonian

Ĥ → Ĥ = −2J

⎛

⎜⎜⎝

δ/(2J ) i sin(kx a) − sin(kya) 0
−i sin(kx a) 0 0 cos(kya)

− sin(kya) 0 0 cos(kx a)

0 cos(kya) cos(kx a) −δ/(2J )

⎞

⎟⎟⎠ . (8.16)

During the loading sequence the detuning is decreased to zero, δ → 0. The corre-
sponding energy spectra are displayed in Fig. 8.3b. Since the unit cells are equivalent,
the number of bands is preserved during the loading sequence. For δ > 2J the topol-
ogy of the bands is trivial and all Chern numbers are zero. At δ = 2J a topological
phase transition occurs and the gaps in the spectrum close. For δ < 2J the topolog-
ically non-trivial regime is reached, where the lowest band has a Chern number of
ν1 = +1, and at the end of the sequence (δ = 0) the Harper-Hofstadter Hamiltonian
for� = π/2 is realized. Note that the horizontal axes of the energy spectra in Fig. 8.3
are different compared to the ones shown in Ref. [17]. Depending on the definition
of the gauge and the detuning term given in Eq. (8.15) the dispersion relation might
be shifted in momentum space but this has no impact on the general loading scheme.
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Fig. 8.4 Schematic drawing of the experimental sequence. a Lattice depths as a function of time.
Note that the distances on the time-axis are not to scale. After loading the atoms into the Hofstadter
bands as described in the main text the transport measurements were performed for a certain Bloch
oscillation time tBO before several detection techniques were applied: in-situ position of the cloud,
band-population measurements, momentum distribution (Sect. 8.3.3). b Staggered energy offsets
along x and y as they evolve during the sequence (green). For comparison the modulation frequency
�ω is shown in red

8.3.2 Experimental Sequence

The experimental sequence is illustrated in Fig. 8.4. It started by loading a Bose-
Einstein condensate of 87Rb atoms within 150ms into a two-dimensional
optical superlattice of depths Vx = 6.0(2)Ers, Vxl = 5.25(16)Erl, Vy = 10(1)Ers

andVyl = 1.75(5)Erl. The phases between the short- and long-lattice standingwaves,
ϕx

SL = ϕ
y
SL = π/2 (Sect. 4.3), where chosen so as to create a staggered potential

with energy offset � + δx along x and δy along y. Along the z-direction the atoms
were confined by a weak harmonic potential generated by a crossed optical dipole
trap in the horizontal plane, ωz/(2π) ≈ 20Hz. Initially tunneling was inhibited
along both directions due to the potential detuning (� + δx ) � Jx and δy � Jy

and all atoms occupied the low-energy sites, denoted as A-sites (Fig. 8.3a). Then,
the modulation was switched on off-resonant within 30ms with V0 � 1.6Erl and
ω/(2π) = ±�/h � ±2.7 kHz. The resonance condition was calibrated indepen-
dently for thefinal lattice parameters along x ,Vx = 6.0(2)Ers andVxl = 3.25(10)Erl,
by performing spectroscopy measurements as discussed in Sect. 4.3.2.

The detuning was chosen larger than the effective coupling strength on resonance
δx � J such that tunneling remained suppressed along this direction. Additionally
along the y-direction the condition δy 
 � was fulfilled in order to assure that the
modulation with frequency �ω = � did not induce tunneling in the perpendicular
direction (Fig. 8.4b). In these limits tunneling was suppressed in both directions and
atoms stayed in A-sites. The values for δx and δy were optimized experimentally
such that <10% of the atoms were transferred to higher bands after switching on
the modulation.

http://dx.doi.org/10.1007/978-3-319-25829-4_4
http://dx.doi.org/10.1007/978-3-319-25829-4_4
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The loading into the Hofstadter bands was achieved by ramping down the
detunings to zero within 30ms, by changing the long lattice depth along x to
Vxl = 3.25(10)Erl and the long lattice along y to Vyl = 0 Erl. For these values
resonant tunneling occurred along both directions and the parameters were cho-
sen such that the effective coupling strengths along both directions were the same,
J = 75(3)Hz. This lattice configuration realizes a lattice with uniform flux
� = ±π/2 per plaquette, where the direction of the flux depends on the sign of
the frequency ω.

8.3.3 Momentum Distribution and Initial Band Population

The Chern-number measurement as sketched in Sect. 8.2 is based on the assumption
that the atoms in each Hofstadter band populate the corresponding band homoge-
neously in k-space. This assumption was verified experimentally by measuring the
momentum distribution in the different bands.

For this purpose the loading sequence described above (Fig. 8.3) was reversed.
The sequence started by ramping up the staggered detunings δx and δy within 30ms in
order to suppress tunneling along both directions. The final lattice depths were Vx =
6.0(2)Ers, Vxl = 5.25(16)Erl, Vy = 10(1)Ers and Vyl = 1.75(5)Erl. The number of
energy bands is preserved during this ramp and the populations of the topological
Hofstadter bands are mapped onto the topologically trivial Hofstadter-like bands.

Due to the detuning tunneling was suppressed and the modulation could be
switched off instantaneously to map the populations of the explicitly time-dependent
Hamiltonian onto the ones of the static superlattice potential with staggered off-
sets � + δx and δy . The size of the Brillouin zone is unchanged during the whole
mapping sequence, hence, the population of different k-states is preserved if scat-
tering processes and heating effects during the ramp are neglected. Consequently
the momentum distribution of the Hofstadter bands is reflected in the momentum
distribution of the static two-dimensional superlattice potential.

All lattice potentials are subsequently ramped down adiabatically to map the
momentum distribution in the lattice onto the real-space momentum distribution.
Then the atoms were released from the trap and detected via absorption imaging
after 10ms TOF (Fig. 8.5a). The connection between the different Brillouin zones
and the corresponding Hofstadter bands is illustrated in Fig. 8.5b, c. There are two
informations we obtain from these images: (a) we achieve typically a population of
about 60% in the lowest Hofstadter band; (b) the distribution is homogeneous in each
of the individual bands. This data is consistent with the assumption of homogeneous
band populations.

In principle the band populations can be inferred by counting the atom numbers
in the different Brillouin zones. However, the zones are connected, thus, to ease the
counting of the occupations we apply a slightly different sequence that separates the
different Brillouin zones from each other (Sect. 8.4.2).
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Fig. 8.5 Momentum distribution of the atoms in the three well-separated Hofstadter bands. a Mea-
sured momentum distribution after loading the atoms into the Hofstadter bands using the sequence
described above and applying a subsequent band-mapping sequence as discussed in this section.
The distribution was detected after 10ms TOF. The data was averaged over 15 independent mea-
surements. b Schematics of the corresponding Brillouin zones. c Energy spectrum of the Hofstadter
model for � = π/2. The color code illustrates the connection between the Brillouin zones and the
associated Hofstadter bands. (Figure adapted from Ref. [17])

8.4 Transport Measurements

In the following section direct measurements of the anomalous velocity as a response
to an optical force are presented. The evolution was tracked by taking in-situ images
of the atomic cloud.We observe that for short times the deflection of the atomic cloud
is indeed linear in time in agreementwith Eq. (8.14) and exact diagonalization studies
[12, 16]. For longer times the transverse motion saturates due to a repopulation of the
atoms between different Hofstadter bands, which leads to a time-dependent filling
factor γ0 → γ (t). In combination with independent band-population measurements
we were able to extract an experimental value for the Chern number of the lowest
band νexp = 0.99(5) from from this long-time dynamics.

Optical force: The Bloch oscillations along y were induced using an optical
gradient. It was realizedwith an additional laser beamwithwavelength λz = 844 nm,
which was focused at the atom position to a waist of about 125µm. The beam
was aligned relative to the position of the atomic cloud along y such that the cloudwas
located at the maximum slope of the Gaussian beam profile. Along x the beam was
centered on the atom position in order not to induce Bloch oscillations along that
axis. The strength of the optical gradient was calibrated independently through Bloch
oscillations in a one-dimensional optical lattice with Vy = 10(1)Ers.

Experimental observable: After applying the optical force, the COM evolution
of the cloud was measured in-situ for opposite directions of the flux � = ±π/2.
These positions were then subtracted to obtain the differential shift

x(t, π/2) − x(t,−π/2) = 2x(t). (8.17)

This quantity is less susceptible to systematic errors and experimental uncertainties
of the absolute position of the atomic cloud caused by slow drifts. For each dataset
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Fig. 8.6 Differential COM displacement of the atomic cloud versus Bloch oscillation time. The
optical gradient was aligned along y, F = +F êy , with Fa/h = 38.4(8)Hz. a Typical experimen-
tal image obtained after subtracting the averaged in-situ images of the atomic cloud for opposite
directions of the flux ±� of one dataset as defined in the main text. All images were taken at
t = 35ms. b The gray data points depict the measured differential COM displacement. Each data
point is an average of five datasets and the error bars depict the standard error of the mean. The
black solid line is a linear fit to the data for t ≤ 35ms. Taking into account the measured initial
band populations η0μ = {0.55(6), 0.31(3), 0.13(3)} and using Eq. (8.14) yields νexp = 0.9(2). The
dashed line shows the ideal evolution for the measured initial band populations and ν1 = 1. The
green shaded area depicts numerical simulations taking into account the inhomogeneities in
the coupling along y according to Hamiltonian (8.18) for the initial phase of the driving φ0 ∈ [0, π ]
as introduced in Sect. 7.2. (Figure adapted from Ref. [17])

we averaged ten in-situ images of the atomic cloud for each direction of the flux
� and evaluated the corresponding COM positions x(t,±π/2). The images were
taken alternating for the two directions. A typical result after subtracting the averaged
images is shown in Fig. 8.6a.

8.4.1 Short-Time Dynamics

For short times, where inter-band transitions are negligible, we observe an almost
linear evolution of the differential shift Fig. 8.6b. Taking into account the measured
filling factor γ0 and using the assumption that the band populations η0

μ remain con-
stant for short times we can compare the short-time trajectories with the equation-of-
motion (8.14) to extract a first experimental value of the Chern number of the lowest
band. Fitting a linear function to our data we obtain νexp = 0.9(2). As shown in
Fig. 8.6b deviations from the ideal evolution are partially captured by the numerical
simulations which also account for Landau-Zener transitions to higher Hofstadter
bands during the dynamics.

http://dx.doi.org/10.1007/978-3-319-25829-4_7
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Numerical Simulations

The ideal evolution governed by Eq. (8.14) is valid for weak forces and short times,
where the band populations can be assumed to remain constant ημ(t) = η0

μ. In order
to gain more inside into the dynamics we simulated the full non-interacting problem
using the effective Hamiltonian which can be written in the following form

Ĥeff = −J
∑

m,n

{
â†

m+1,nâm,nei[π/2(m+n)−φ0] + (1 + fm,n)â
†
m,n+1âm,n + h.c.

} + V̂conf ,

(8.18)
where the experimental gauge was introduced as derived in Sect. 7.2 for a relative
phase δφ = −π/2. The initial phase of the modulation φ0 appears in the Peierls
phases as well as in the coupling terms along y as defined in Eq. (7.15). In addition
the harmonic confinement V̂conf, which is present in the experiment, is taken into
account

V̂conf =
∑

m,n

= Vm,nn̂m,n, Vm,n = κ(0.5m2 + n2), (8.19)

where κ = 10−3 J . The trap frequencies were calibrated independently and are given
by ωx ≈ 2π × 7.5Hz and ωy ≈ 2π × 10.5Hz.

The numerical simulations were performed similar to the ones described in
Ref. [16]. The initial conditions are first established by confining the system within a
certain radius r0 ∼ 10 − 30a using a potential V̂initial ∝ (r/r0)ζ , with ζ � 10. Using
an abrupt circular potential simplifies the analysis, however, as shown in Ref. [16]
smoother potentials could be also considered for the initial state preparation. First
the Hamiltonian Ĥeff + V̂initial is diagonalized on a finite size system with radius
r > r0. The band structure of the Harper-Hofstadter Hamiltonian is clearly visible
in the density of states and the eigenstates can be classified in terms of these bulk
bands. After setting the initial band populations (here η1 = 1 and ημ>1 = 0) the time
evolution of the states is calculated according to Ĥeff + V̂force, where V̂force describes
the force F = +F êy acting on the particles along the y-direction according to

V̂force = −Fa
∑

m,n

n n̂m,n . (8.20)

The COM deflection x(t) is then obtained by computing the spatial density for each
evolved state.

The numerical results are plotted in Fig. 8.7 for two different values of the force
Fexp = 0.52J/a (dark green) and Fweak = 0.25J/a (light green). For the weaker
force the evolution follows the linear behavior predicted by Eq. (8.14) and the
band populations ημ(t) = η0

μ remain approximately constant during the evolu-
tion. For the larger force Fexp as used for the measurements presented above, the
numerical simulations show a clear deviation from the ideal evolution due to
Landau-Zener transitions to higher bands. Such effects are neglected in the simple
equation-of-motion (8.14) and lead to band repopulation ημ(t) during the dynamics.

http://dx.doi.org/10.1007/978-3-319-25829-4_7
http://dx.doi.org/10.1007/978-3-319-25829-4_7
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Fig. 8.7 Numerical simulations of the transverse COM motion x(t) for F = +F êy , � = π/2
and γ0 = 1. The dynamics is governed by the Hamiltonian (8.18). The numerical calculations
were performed for φ0 = π/4 and the experimental parameter V0/(�ω) = 0.58. For this value
of the phase the effective coupling along y is uniform given by J ≈ 0.83Jy (Sect. 7.2) and the
effective coupling along x was set to K = Jy . The solid green lines show the results for the force
Fexp = 0.52J/a (dark green) used for the experiments shown in Fig. 8.6 and for a weaker force
Fweak = 0.25J/a (light green). The dashed lines show the corresponding ideal evolutions according
to the equation-of-motion (8.14). (Figure adapted from Ref. [17])

The simulations shown in Fig. 8.6b additionally take into account themeasured initial
filling factor γ0 ≈ 0.36, which leads to a further reduction of the transverse motion
because atoms that populate the middle band with Chern number ν2 = −2ν1 expe-
rience a drift opposite to those that populate the lowest Hofstadter band. For short
times the numerical simulations, which consider both, the initial band population
and the Landau-Zener transitions, are in agreement with the experimental data for
times t ≤ 35ms (Fig. 8.6b). The trajectories for different values of the phase φ0 are
found to be similar for our experimental values V0/(�ω) = 0.58(2). In conclusion
the reduced value of the experimental Chern number νexp = 0.9(2) can be partially
attributed to Landau-Zener transitions as they are not captured by the simple model
given in Eq. (8.14).

8.4.2 Long-Time Dynamics and Band Populations

In the following section we present a more precise determination of the Chern num-
ber based on the long-time dynamics combined with independent band-population
measurements. We observe that the transverse motion saturates already after about
2τB ≈ 50ms and is symmetric with respect to the direction of the force F = ±F êy

(black and gray data points in Fig. 8.8). The saturation effect is not captured any-
more by the numerical simulations (green shaded are in Fig. 8.8). This suggests that

http://dx.doi.org/10.1007/978-3-319-25829-4_7
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Fig. 8.8 Differential COM displacement transverse to the applied force F = ±F êy as a function
of the Bloch oscillation time. The black and gray data points show the long-time evolution of the
transverse motion for opposite directions of the force±F êy (Fa/h = 38.4(8)Hz) for atoms loaded
into the Hofstadter bands for � = π/2. The blue data points were taken in lattice configurations
with trivial topology, � = 0 (light blue) and � = (−1)mπ/2 (dark blue). Each data point is an
average of five datasets and the error bars show the standard error of the mean obtained from
these measurements. The solid black and gray lines show a fit to our data using Eq. (8.21) taking
into account the measured filling factor γ (t) obtained from the measured band populations ημ(t)
depicted in Fig. 8.10. This provides an experimental value for the Chern number νexp = 1.05(12)
(black) and νexp = 0.98(12) (gray). The blue solid lines are guides to the eye. The black and
gray dashed lines depict the ideal evolution according to Eq. (8.14) using the measured initial
band populations η0μ = {0.63(6), 0.27(9), 0.11(4)} (average of 24 individual measurements). The
green shaded areas illustrate the numerical simulations based on the same initial filling factor for
φ0 ∈ [0, π ] (Sect. 7.2). The images on the right how typical experimental images obtained after
subtracting the averaged in-situ images of one dataset. (Figure adapted from Ref. [17])

additional effects associated with heating due to the modulation or due to interaction
between the particles lead to additional inter-band transitions [24].

Further the COM-motion for a lattice without flux � = 0 (light blue data points
in Fig. 8.8) and a staggered flux lattice � = ±(−1)mπ/2 (dark blue data points in
Fig. 8.8) was measured. In both cases no significant displacement of the atomic cloud
transverse to the applied force was observed which is expected for lattice configura-
tions with trivial topology where all the bands have zero Chern numbers νμ = 0. The
loading sequences were chosen similar to the one described above. For the lattice
without flux the atoms were loaded within 150ms into a two-dimensional staggered
superlattice potential with Vx = Vy = 10(1)Ers and Vxl = Vyl = 1.75(5)Erl. After
ramping down the long lattices Vxl = Vyl = 0 Erl resonant tunneling occurred along
both directions with J/h = 75(3)Hz. For the staggered flux lattice we used the
experimental setup described in Sect. 7.4 with ωr = ωb = ±�/�. The experimental
sequence was the same as described above for the uniform flux lattice.

http://dx.doi.org/10.1007/978-3-319-25829-4_7
http://dx.doi.org/10.1007/978-3-319-25829-4_7


152 8 Chern-Number Measurement of Hofstadter Bands

Evolution of the Band Populations

Making use of independent band population measurements the band repopulation
ημ(t) and associated time-dependent filling factor γ (t) could be quantified experi-
mentally and included into our theoretical model by making a simple extension to
Eq. (8.14).

x(t) = −4a

τB
ν1

∫ t

0
γ (t ′)dt ′, γ (t) = [η1(t) − η2(t) + η3(t)] . (8.21)

The evolution of the band populations was measured by reversing the loading
sequence as described above, similar to the momentum distribution measurements
shown in Fig. 8.5. To ease the counting of the atoms in different Brillouin zones
the sequence is slightly modified to separate the Brillouin zones from each other.
After having switched of the modulation the system consists of a two-dimensional
staggered superlattice potential with offset � + δx along x and δy along y with
(� + δx ) � Jx and δy � Jy . Tunneling is suppressed along both directions, hence,
the band occupations correspond to populations in different lattice sites: N1 = NA,
N2 = NB + NC and N3 = ND . By transferring the populations on different sites to
even higher Bloch bands and applying a subsequent band-mapping technique we
are able to determine the Hofstadter-band populations Nμ by counting the num-
ber of atoms in different well-separated Brillouin zones. The connection between
Brillouin zones and Hofstadter bands is illustrated in Fig. 8.9. The sequence for the
site-resolved detection technique is explained in Sect. 4.6.

The experimental results are shown in Fig. 8.10. We find that the timescale for
the repopulation between the Hofstadter bands is in agreement with the saturation
timescale of the transverse atomic motion. By fitting Eq. (8.21) to our data, where ν1
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Fig. 8.9 Schematic illustration of the connection between the measured atom population in the
Brillouin zones and the corresponding Hofstadter bands. a Typical experimental image obtained
after applying the band-mapping sequence measured after 10ms TOF. b Brillouin zones of the
static two-dimensional superlattice. c Labeling of the four non-equivalent sites in the unit cell of
the superlattice potential. d Energy spectrum of the Hofstadter model for � = π/2. The color
code illustrates the connection between the Brillouin zones, lattice sites and energy bands. (Figure
adapted from Ref. [17])
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is the only free fit parameter we obtain an experimental value of the Chern number
of the lowest band

νexp = 0.99(5). (8.22)

This value was obtained by averaging over four independent Chern-number mea-
surements, two for each direction of the force (see inset of Fig. 8.11). The stated
uncertainty is the standard deviation obtained from these measurements. This shows
that including the time-resolved band-population measurements in our analysis leads
to a quantitate understanding of the transverse motion. To gain more insight into the
band repopulation dynamics future studies of heating rates induced by themodulation
and the interaction between the particles are necessary [24].

We also applied a complementary analysis of our data based on a more general
equation-of-motion that does not invoke the particle-hole symmetry (Sect. 2.3.2) and
constitutes an extension of Eq. (8.13)

x(t) = −4a

τB

(
ν1

∫ t

0

[
η1(t

′) − η3(t
′)
]
dt ′ + ν2

∫ t

0

[
η2(t ′)
2

− η3(t
′)
])

. (8.23)

This allows us to determine the Chern numbers ν1 and ν2 of the lowest twoHofstadter
bands simultaneously. We interpolated the measured populations ημ(t) depicted in
Fig. 8.10 and fitted the equation to the data shown in Fig. 8.8 with the two free
fit variables ν1 and ν2. We obtain ν1 = 1.21(14), ν2 = −2.7(5) (black data points)

http://dx.doi.org/10.1007/978-3-319-25829-4_2
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and ν1 = 1.04(10), ν2 = −2.2(3) (gray data points), which are compatible with the
theoretical values ν1 = +1 and ν2 = −2.

Chern-Number Measurement for Different Gradients

The measurements presented above were carried out using an optical gradient with
strength Fa/h = 38.4(8)Hz. This value was chosen as a compromise between two
competing effects. On the one hand the force should be small in order to limit
Landau-Zener transitions and non-linear effects. On the other hand the gradient has
to be strong enough so that the displacement of the atomic cloud can be detected
reliably. For gradients that are small compared to the bandgap Fa < Egap band-
repopulation timescales are similar. Therefore the measurements for small forces are
more strongly affected by the repopulation since the characteristic timescales given
by the Bloch period τB are naturally larger.

The dependence of the Chern-numbermeasurement on the applied forcewas stud-
ied in more detail as depicted in Fig. 8.11. For gradient strengths smaller than the
bandgap, Fa < Egap � 1.5J the measured Chern number saturates to νexp ≈ 1. This
indicates that it can be extracted reliably for small forces. For larger forces Fa > Egap

the experimentally determined Chern number decreases to zero, signaling a break
down of our model. We note that each data point depicted in Fig. 8.11 consists of
a single Chern-number measurement (average of five individual dataset) for only
one direction of the gradient, which explains the larger spread around νexp = 1 for
small forces. However, we also note that if we take into account all Chern-number
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Fig. 8.11 Measured Chern number as a function of the gradient strength Fa. The experimental
Chern number was determined for each value of the force by measuring the full time evolution of
the differential shift 2x(t) and the band populations ημ(t), similar to the data shown in Figs. 8.8
and 8.10. The solid black line is a guide to the eye to highlight the saturation at νexp ≈ 1 for
weak forces Fa < Egap. The green data point depicts the measured Chern number νexp = 0.99(5)
for Fa/h = 38.4(8)Hz, which was obtained from the four individual measurements displayed
in the inset. Each black data point is an average of five dataset for the differential shift and two
measurements for γ (t). The vertical error bars display the uncertainty determined by the fit error
of γ (t). (Figure adapted from Ref. [17])
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measurements for gradient strengths smaller than the bandgap we obtain an exper-
imental value for the Chern number νexp = 0.97(4), where the stated uncertainty is
the standard error of the mean. This value is fully compatible with νexp = 0.99(2),
obtained from the measurements depicted in the inset of Fig. 8.11, where the stated
uncertainty is the standard error of the mean. In (8.22) we have chosen to give a
more conservative value of the uncertainty which is the normal standard deviation
obtained from the individual measurements.

8.4.3 Characterization of the Topological Phase Transition

The followingmeasurementswere again performedwith Fa/h = 38.4(8)Hz,which
is well below the bandgap for δ = 0. We used the Chern-number measurements pre-
sented above to study the phase transition triggered by the staggered detuning δ,
which is expected to occur at δ = 2J for the Hamiltonian (8.16). The experimental
results are shown in Fig. 8.12c. In agreement with the theoretical expectations we
observe a decrease of the experimental Chern number to zero across the phase transi-
tion. Landau-Zener transitions during the Bloch oscillations are expected to become
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Fig. 8.12 Berry curvature and Chern number as a function of the staggered detuning δ. a Berry
curvature�1(k) of the lowest Hofstadter band (δ = 0). It exhibits only positive contributions which
leads to a non-zeroChern number ν1 = 1.bBerry curvature of the lowest band of theHofstadter-like
lattice for δ = 4J . Contrary to the topologically non-trivial case theBerry curvature exhibits positive
and negative values resulting in ν1 = 0. c Measured Chern number versus detuning for Fa/h =
38.4(8)Hz. For each value of the detuning the differential shift 2x(t)was measured at four different
times t = (20, 50, 100, 150)ms, averaged over five dataset. The corresponding band populations
ημ(t)weremeasured as depicted inFig. 8.10, averagedover two individualmeasurements. To extract
the Chern number we fit Eq. (8.21) using the measured filling factor γ (t); ν1 was the only free fit
variable. The green data point is the averaged value of the Chern number νexp = 0.99(5) for δ = 0
as given in (8.22). The topological phase transitions occurs at δ = 2J for Hamiltonian (8.16). As
explained in themain text, the transition is smoothened due to experimental uncertainties σδ = 0.4J
(horizontal error bars) in the determination of the resonance condition (green solid curve). The blue
shaded area illustrates the range of transition points δ ≈ 1.77(14)J governed by the Hamiltonian
(8.25), which includes higher order corrections due to the initial phase of the modulation φ0 (see
Fig. 8.14). The vertical error bars show the uncertainty of the experimental value for the Chern
number resulting from the fit errors related to γ (t). (Figure adapted from Ref. [17])
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more important close to the phase transition point where the gaps in the energy spec-
trum close. However, due to our independent band-population measurements this
should not affect the experimental results.

The smoothening of the transition is most likely due to experimental uncertain-
ties in the resonance condition. Possible drifts and fluctuations were recorded by
calibrating the resonance frequency several times over the course of one day and
evaluating the corresponding standard deviation σδ = 0.4J . This was included in
the model by convoluting the ideal transition at δ = 2J with a normal distribution
at the mean detuning δ and the standard deviation σδ (green solid line in Fig. 8.12c).
This qualitatively agrees with the data.

In Fig. 8.12a,b numerical calculations of the Berry curvature are shown for two
different values of the detuning, one on either side of the topological phase transition.
The calculations were performed according to the method described in Ref. [25] and
Sect. 2.4. The Berry curvature is a local property that is defined for each state

∣∣uμ(k)
〉

at momentum k within the FBZ according to Eq. (2.46). For the topologically non-
trivial band the sign of �1(k) is uniform across the first Brillouin zone such that the
integral over the full FBZ does not vanish; in particular for the lowest Hofstadter
band with � = π/2 it results in ν1 = +1 (Fig. 8.12a). For the topologically trivial
situation, however, we see that the Berry curvature changes signwithin the FBZ. This
leads to a vanishing Chern number ν1 = 0 for the lowest band of the Hofstadter-like
lattice with δ > 2J when integrating the curvature over the whole FBZ (Fig. 8.12a).
Note that similar to the energy spectrum the Berry curvature distribution might be
shifted in momentum space depending on the choice of gauge.

Higher-Order Corrections

So far we have neglected the corrections that arise due to the initial phase of the
modulation φ0. This phase can lead to small modifications of the coupling strength
J along y as discussed in Sect. 7.2. For our experimental parameters V0/(�ω) =
0.58(2) the initial phase φ0 can cause an inhomogeneity in the coupling along y
up to 30% (Fig. 7.4b). We further incorporate the corrections given in Eq. (7.15) into
the derivation of the effective Hamiltonian. The modified Schrödinger equation now
reads

E	m,n = − J
[
einπ/2	m+1,n + e−inπ/2	m−1,n

]

− J
[
(1 + fm,n)	m,n+1 + (1 + fm,n−1)	m,n−1

]
.

(8.24)

Using the same ansatz for the wave function as given above, Eq. (8.3), we obtain the
following modified Hamiltonian Ĥ → Ĥc (see also Eq. 8.16),

Ĥc = −2J

⎛

⎜⎜⎝

δ/(2J ) i sin(kx a) − sin(kya) + h1 0
−i sin(kx a) 0 0 cos(kya) + h∗

2− sin(kya) + h∗
1 0 0 cos(kx a)

0 cos(kya) + h2 cos(kx a) −δ/(2J )

⎞

⎟⎟⎠ ,

(8.25)

http://dx.doi.org/10.1007/978-3-319-25829-4_2
http://dx.doi.org/10.1007/978-3-319-25829-4_2
http://dx.doi.org/10.1007/978-3-319-25829-4_7
http://dx.doi.org/10.1007/978-3-319-25829-4_7
http://dx.doi.org/10.1007/978-3-319-25829-4_7
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Fig. 8.13 Energy spectrum of the Hofstadter model for δ = 0 in the presence of small higher-order
corrections. The corrections are determined by the phase of the modulation φ0, which can lead
to inhomogeneous couplings along y. For φ0 = 0 and φ0 = π/2 the inhomogeneity is maximal,
with Jmin = 0.69(2)J and Jmax = Jy . For φ0 = ±π/4 the coupling is homogeneous with Jmin =
Jmax = 0.84(1)J . The topology of the bands is robust against these corrections independent of the
value of φ0

where the small higher-order corrections are determined by φ0 and V0/(�ω)

h1 = +1

2

(
V0

�ω

)2 [
sin(kya) + i cos(2φ0) cos(kya)

]
(8.26)

h2 = −1

2

(
V0

�ω

)2 [
cos(kya) − i cos(2φ0) sin(kya)

]
. (8.27)

Figure 8.13 illustrates the energy spectrum for the Hofstadter model δ = 0 for four
different values of the phase. The largest deviations are obtained for φ0 = 0 and φ0 =
π/2, where the inhomogeneity in the coupling is maximal. For φ0 = (k ± 1/4)π ,
with k integer, the coupling along y is homogeneous and the spectrum is very sim-
ilar to the ideal Hofstadter bands. In this section we studied the topology of the
bands across the phase transition, which ideally occurs at δ = 2J . Using Hamil-
tonian (8.25) we find that the phase transition point depends weakly on the value
of the phase φ0. The corrections mainly shift the transition point to lower detunings

Fig. 8.14 Numerical
calculations of the energy
gap Egap and the topological
phase transition point using
Hamiltonian (8.25). Energy
gap as a function of the
phase φ0 and the staggered
detuning δ. In general the
gap-closing point appears to
be shifted to δ ≈ 1.77J
compared to the ideal value
of δ = 2J
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δ ≈ 1.77J (Fig. 8.14). The blue shaded area in Fig. 8.12c illustrates the different tran-
sition points for δ = 1.77(14), where we defined the transition region in the interval
Egap ∈ [0, 0.1]J . We observe that the corrections are within our experimental error
bars.
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Chapter 9
Conclusions and Outlook

Abstract This final chapter of this thesis summarizes the research results presented
in the context of this thesis and discusses potential future directions that have become
available with the current success regarding the realization of strong artificial gauge
fields with ultracold atoms.

The main topic of this thesis was the implementation of artificial magnetic fields
with ultracold atoms in optical lattices. A new experimental technique based on
laser-assisted tunneling was successfully demonstrated, that led to the generation of
synthetic magnetic fields on the order of one flux quantum per lattice unit cell. In
Chap.5 it was shown that laser-assisted tunneling in a staggered superlattice poten-
tial in its simplest form, where tunneling on each bond is triggered simultaneously
with the same pair of laser beams, naturally leads to a staggered flux distribution
with zero mean. In these systems the momentum distribution of the ground state was
studied in time-of-flight experiments. The corresponding experimental results were
shown to be in agreement with a theoretical description in terms of the effective
time-independent Floquet Hamiltonian. The underlying theoretical framework was
summarized in Chap.3, which also included a detailed discussion of the full-time
dynamics that occur within one driving period. Experimental signatures of these
additional dynamics were observed, supporting its relevance for experimental real-
izations. The structure of the artificial magnetic field was further examined on the
level of isolated four-site square plaquettes, which enabled a direct experimental
determination of the strength of the artificial flux per unit cell through the observa-
tion of local cyclotron orbits. The experimental results were shown to be in agreement
with the theoretically predicted full-time dynamics.

In Chaps. 6 and 7 two modifications of the initial laser-assisted tunneling scheme,
that was presented in Chap.5, were studied, which led to the realization of a uniform
flux configuration. In the first scheme (Chap.6) the flux was rectified by replacing
the staggered potential with a linear one that was realized with a magnetic field
gradient. By including an additional pseudo-spin degree of freedom into the same
system a Hamiltonian was implemented, that underlies the quantum spin Hall effect.
A first signature of this was the observation of the spin Hall effect in an optical lattice
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using cyclotron-orbit measurements. The second scheme (Chap.7) was again based
on a staggered superlattice potential. This time the laser-beam configuration for the
laser-assisted tunneling scheme was modified such that tunneling was restored only
on every other bond with a single pair of beams. By making use of two spatially
separated pairs, tunneling was independently restored on the two kinds of bonds,
thus enabling flux rectification. This scheme only relies on optical potentials which
increases the experimental flexibility in comparison with the use of magnetic field
gradients and was the starting point for the achievement of an adiabatic loading of
the atoms into the topological bands of the Hofstadter model.

In Chap.8 the new all-optical scheme was eventually employed to determine the
topological invariant, the Chern number, of the lowest Hofstadter band. In these
experiments the transverse deflection of an atomic cloud was observed as a response
to an applied force through in-situ imaging. For a filled energy band, the center-of-
mass evolution of the cloud is expected to be proportional to the Chern number of
the corresponding band. In our experiment this has been realized with bosonic atoms
populating the lowest Hofstadter band homogeneously both through interactions and
finite temperature. This experiment constitutes the first Chern-number measurement
in a non-electronic system. Furthermore the techniques which were developed in
this work with bosonic atoms are applicable to a wide range of other non-electronic
systems [1–3].

Outlook

In the context of this thesis interactions between the atoms were typically very small
and could be neglected compared to the other energy scales in the system. For the
Chern-number measurement presented in Chap.8, however, the situation might be
different. In the presence of a uniform magnetic field the lowest tight-binding band
splits into several subbands, which naturally decreases the relevant energy scales
in the system. For our experimental parameters the interaction energies are on the
order of the energy gap between the lowest two Hofstadter bands. This could be
a reason for the repopulation between the Hofstadter bands which was observed
during the dynamics. The Floquet energy in periodically driven systems is only
defined up to integer multiples of the modulation frequency ω (Chap. 3). In many
cases the theoretical discussion is restricted to one Floquet band only. Scattering
between the particles, however, can lead to a coupling between different Floquet
modes, which may in turn lead to a transfer of the atoms into higher bands under
the absorption of one or several “Floquet-photons” with energy�ω. Time-dependent
Hamiltonianswithout interactionswere extensively studied in the literature, however,
a detailed understanding of scattering effects just started to be put forward [4–8].
Thermodynamic properties of periodically driven quantum systems were studied in
Refs. [9–11]. Future experiments could reveal new insights by measuring heating
rates in the presence of a periodic modulation for different parameter regimes. In
3D lattice systems, e.g. stability islands are predicted where the coupling between
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different Floquet modes is suppressed [7]. Using Feshbach resonances [12] heating
rates could be further studied as a function of the interaction strength.

The realization of artificial magnetic fields using laser-assisted tunneling is com-
monly described in terms of the effective time-independent Floquet Hamiltonian.
In Chap.3 the corresponding micro-motion was discussed using the example of
one-dimensional driven lattices. This micro-motion can be very different for driving
schemes that result in the same effective flux distribution but are based on different
experimental setups [13]. This suggests that some schemesmight bemore susceptible
to modulation-induced heating than others. In a theoretical study about the orbital-
driven melting of a bosonic Mott insulator [14] it was found that a periodic shaking
of the lattice potential back and forth limits the transfer into higher bands compared
to other driving schemes that rely on on-site modulations. Future experiments could
clarify related questions.

Once a better understanding of interaction effects and modulation-induced heat-
ing is achieved, the inclusion of interactions could lead to the observation of
strongly correlated states in flat topological bands, such as fractional Chern insulators
[15, 16]. The Hofstadter bands realized with our current setup (Chaps. 7 and 8) with
flux � = 2πα = π/2 exhibit a flatness ratio of Egap/Ebw � 7 and are there-
fore promising candidates to realize such systems. For bosonic atoms there exists a
bosonic Laughlin state for filling 1/2, which means that the number of flux quanta
N� = 2N is twice the number of particles N . However, the regime of strong
interactions was initially only studied for α � 1 since large field strengths, with
α on the order of one, were not achievable in early experiments. For larger fluxes,
effects related to the presence of the lattice become important. It has been shown
that the ground state of hard-core bosons in the Hofstadter bands has a very large
overlap with the Laughlin wave function for fluxes α < 0.3 [17]. In this regime
the lowest Hofstadter band is very flat and the Laughlin wave function is a good
description. Experimental evidence of this state might be even observable by mea-
suring the momentum distribution of the atoms after time-of-flight [17]. This study
was extended to the regime of finite interactions in Ref. [18], where in addition the
topological nature of the ground state was explored in regimes where the overlap
with the Laughlin states is reduced. Filling factors different from 1/2 for bosonic
systems were studied in Ref. [19] also beyond a simple comparison to the continuum
limit [20].

A first step regarding the experimental realization of strongly-correlated states in
the presence of artificial gauge fields might be achieved with optical ladder systems.
This quasi one-dimensional geometry is the minimal lattice system where the effect
of artificial gauge fields can be studied. Previously, this has led to the observation of
a transition between a phase with Meissner-like chiral currents and a vortex phase
[21]. Several theoretical studies discussed the different strongly-correlated phases
that occur in these systems [22–29]. In combination with recently developed high-
resolution detection techniques [30, 31] the chiral currents could be measured in a
spatially-resolved manner [32]. Possibly this might also allow for an experimental
study of the connection between the chiral Meissner currents and the edge states of
an integer quantum Hall insulator [33, 34].
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Appendix A
Magnetic Translation Operators

Derivation

The derivation of the phases θ i
m,n , i = {x, y}, in the definition of the magnetic

translation operators, Eq. (2.8), follows closely the calculations presented in Ref. [1].
We require that all commutators between theMTOs and theHamiltonian Ĥ as defined
in Eqs. (2.6) and (2.7) vanish, [T̂ M

x , Ĥ ] = 0 and [T̂ M
y , Ĥ ] = 0. This imposes several

constraints on the phases

[
T̂ M

x , T̂x

]
= ei(φx

m,n+θ x
m+1,n)

[
1 − ei(θ x

m,n+φx
m+1,n−φx

m,n−θ x
m+1,n)

] != 0

⇒ �x θ x
m,n = �x φx

m,n , (A.1)

[
T̂ M

x , T̂y

]
= ei(φ y

m,n+θ
x
m,n+1)

[
1 − ei(θ x

m,n+φ
y
m+1,n−φ

y
m,n−θ x

m,n+1)
] != 0

⇒ �y θ x
m,n = �x φ y

m,n = �y φx
m,n + �m,n , (A.2)

where we have used the definition for the derivative on a discrete lattice as given
in Eq. (5.11), together with Eq. (2.10). The remaining commutator [T̂ M

y , Ĥ ] = 0
imposes analog constraints on the phases

[
T̂ M

y , T̂x

]
= ei(φx

m,n+θ
y
m+1,n)

[
1 − ei(θ y

m,n+φx
m,n+1−φx

m,n−θ
y
m+1,n)

] != 0

⇒ �xθ
y
m,n = �yφ

x
m,n = �xφ

y
m,n − �m,n , (A.3)

[
T̂ M

y , T̂y

]
= ei(φ y

m,n+θ
y
m,n+1)

[
1 − ei(θ y

m,n+φ
y
m,n+1−φ

y
m,n−θ

y
m,n+1)

] != 0

⇒ �y θ y
m,n = �y φ y

m,n . (A.4)
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The conditions imposed by Eqs.A.1–A.4 can be solved by

θ x
m,n = φx

m,n + �m,nn θ y
m,n = φ y

m,n − �m,nm , (A.5)

which matches the definition in Eq. (2.9) of Sect. 2.2.
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Appendix B
Propagation Operator

For time-periodic Hamiltonians Ĥ(t + T ) = Ĥ(t) Floquet’s theorem states that the
solution of the time-dependent Schrödinger equation

i�
∂

∂t
Û (t) = Ĥ(t)Û (t) (B.1)

can be written in the following form

Û (t) = P̂(t)e− i
�

ĤF t , (B.2)

where the propagation operator P̂(t + T ) = P̂(t) is a unitary operator which is
periodic in time [1–2] and ĤF is a time-independent hermitian operator. Proving
the time-periodicity of P̂(t) is rather straightforward. If Û (t) is a solution of the
time-dependent Schrödinger equation so is V̂ (t) = Û (t + T ), with V̂ (0) = Û (T ).
By applying the operator Û (T ) from the right side to the Schrödinger equation one
obtains

i� ∂t Û (t)Û (T )︸ ︷︷ ︸
∂t Ŵ (t)

= Ĥ(t) Û (t)Û (T )︸ ︷︷ ︸
Ŵ (t)

, (B.3)

which means that Ŵ (t) is also a solution to the Schrödinger equation with Ŵ (0) =
Û (T ). Since the solution to the Schrödinger equation is unique it follows that V̂ (t) =
Ŵ (t) or Û (t + T ) = Û (t)Û (T ) and moreover

P̂(t + T ) = Û (t + T )e
i
�

ĤF (t+T ) = U (t)

Û (T )e
i
�

ĤF (t+T )

︸ ︷︷ ︸
e− i

�
ĤF T e

i
�

ĤF (t+T )=e
i
�

ĤF t

= Û (t)e
i
�

ĤF t = P̂(t). (B.4)
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Appendix C
Staggered Flux Distribution

Experimental Gauge

It was shown in Sect. 5.2 that the momentum distribution measured in cold-atom
experiments using expansion imaging is a gauge-dependent quantity. Because of
that the effective Floquet Hamiltonian needs to be derived in the experimental gauge
which is determined by the laser-beam configuration chosen for the realization of
the on-site modulation. In Sect. 5.4 it was mentioned that the measured momentum
distributions are independent of the initial phase of the driving φ0. This was verified
numerically by exact diagonalization. An equivalent result can be obtained ana-
lytically by solving the Schrödinger equation associated with the effective Floquet
Hamiltonian (5.28) as will be demonstrated in the following.

The magnetic translation operators cannot be found easily by direct application of
Eq. (2.9), whichwas derived inAppendixA.However, using the knowledge about the
dimensions of the magnetic unit cell AMU = 2a × 1a they can be derived following
the general strategy presented in Appendix A. The Peierls phase-factors realized in
the experiment (5.32) are given by

φm,n =
{

−π
2 (m − n + 3/2) − φ0, for m odd

+π
2 (m − n + 7/2) + φ0, for m even

We find that the MTOs can be written in the following form

M̂2
x = ∑

m,n
â†

m+2,nâm,n

{
ei4πα , for m odd

1, for m even

M̂1
y = ∑

m,n
â†

m,n+1âm,n

{
e−i2πα, for m odd

1 , for m even

(C.1)
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Fulfilling Bloch’s theorem defined in Eq. (2.18) we can make the following ansatz
for the wave function

	m,n = eikx maeiky na

{
ψo e−i2πα(m−n), for m odd

ψe , for m even
, (C.2)

where kx and ky are defined within the first magnetic Brillouin zone, −π/(2a) ≤
kx < π/(2a) and −π/a ≤ ky < π/a. Plugging this ansatz into the Schrödingern
equation (5.6) results in a two-dimensional eigenvalue equation

Ĥ

(
ψe

ψo

)
= E(k)

(
ψe

ψo

)
, (C.3)

Ĥ =
( −2Jcos(kya) −K (ei(−2πα+φeven+kx a) + e−i(φodd+kx a))

−K (e−i(−2πα+φeven+kx a) + ei(φodd+kx a)) −2J cos(kya + 2πα)

)
,

with φeven = 7π/4+φ0 and φodd = −3π/4−φ0. The dispersion relation determined
by (C.3) does not depend on φ0, which means that the momentum distributions nei-
ther depend on it. Therefore we choose without loss of generality φ0 = −3π/4.

Simplified form of the gauge field as defined in Eq. (5.37): In this section we
are going to present the solutions to the Schrödinger equation associated with the
Hamiltonian (5.37) for a more general form of the gauge field φm,n = 2πα(m +
n)(−1)(m+1). The MTOs can be written in the following form

M̂2
x = ∑

m,n
â†

m+2,nâm,n

{
e−i4πα , for m odd

1 , for m even
,

M̂1
y = ∑

m,n
â†

m,n+1âm,n

{
e−2iπα , for m odd

1 , for m even
,

(C.4)

such that the ansatz for the wave function can be written as follows

	m,n = eikx maeiky na

{
ψo ei2πα(m+n), for m odd

ψe , for m even
, (C.5)

where kx and ky are defined within the FBZ defined above. Inserting this ansatz into
the Schrödinger equation (5.6) leads to the two-dimensional eigenvalue equation

( −2Jcos(kya) −K (ei2παeikx a + e−ikx a)

−K (e−i2παe−ikx a + eikx a) −2J cos(kya + 2πα)

)(
ψe

ψo

)
= E(k)

(
ψe

ψo

)
.

(C.6)
For α = 1/4 we recover the solutions presented in Sect. 5.5.
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