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Preface

The aim of the research discussed in this thesis is to make a small progress in the
secular question on the nature of the glass transition. We focused, mainly with a
numerical approach, on a paradigmatic glassy system, the spin glass, and we dealt
with them by seeing their behavior at equilibrium as well as studying the features
of their rugged energy landscape.

The equilibrium properties we were interested in concerned the universality in
the glass transition and the fragility of the spin glass phase under an external
magnetic field. On the side of the energy landscape, it is accepted that the energy
landscape plays a major role in the slowing down of the glasses’ dynamics. We
tried to get a better insight by studying zero-temperature dynamics, by studying
how the energy landscape becomes trivial when tuning certain parameters, and by
analyzing the lowest modes of the density of states.

Scope and Organization of This Dissertation

The text is organized in four parts. In the following paragraphs we introduce briefly
each of them.

Part I of this thesis is completely introductory on the systems we studied in this
thesis, spin glasses. Section 1.1 aims to put the reader into context by introducing
spin glasses in the frame of the glass transitions in general, by posing a historical
basis about the birth of spin glasses, mentioning and explaining the development of
some major theories. We get more technical in Sect. 1.2, where we detail the
observables that will be analyzed throughout the rest of the text. In Sect. 1.3 we
recall the reader some main concepts on scaling and renormalization group that will
be useful to understand the analyses we performed.

Part II is dedicated to the study of critical properties of spin glasses through
equilibrium simulations. We study the presence and the features of critical lines in
the presence of perturbations on paradigmatic Hamiltonians.
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In Chap. 2, which comes from Baity-Jesi et al. (J. Stat. Mech. 2014, P05014
(2014)) and some unpublished results, we investigate, through Monte Carlo sim-
ulations with the dedicated computer JANUS, whether the SG phase survives the
imposition of a small external magnetic field, and thus whether there is a phase
transition under the field. The two main theories on the SG phase have different
predictions, so understanding whether there is or not a phase transition would be a
strong factor for discrimination between the two. We find very large fluctuations in
the observables we measure, and the average turns out to be a bad descriptor for our
populations of measurements. Thus, we develop statistical methods and a new
finite-size scaling ansatz that let us detect very different behaviors. Some of the
measurements present strong signs of criticality, while others do not. It is not
possible to determine which of the two behaviors will dominate in the thermody-
namic limit, but we are able to set a temperature range where the would-be phase
transition should be searched.

The material in Chap. 3 comes from Baity-Jesi et al. (Phys. Rev. 89,014202
(2014)). To produce it I had the opportunity to work on large GPU clusters in Spain
and in China. We did equilibrium Monte Carlo simulations on the Heisenberg spin
glass with random exchange anisotropies. According to the Kawamura scenario, the
chiral and the spin glass channels couple when anisotropies are introduced. We find
a phase transition for each of the order parameters, and through a careful finite-size
scaling analysis we conclude that the phase transition is unique. Moreover, the
universal quantities we measure are compatible with the Ising universality class,
instead of Heisenberg, indicating that the anisotropy is a relevant perturbation in the
renormalization group sense.

Part III is on spin glasses in the absence of thermal vibration. The energy
landscape appears to play a fundamental role in the sluggish dynamics that char-
acterize a glass. It is a feature with a diverging number of dimensions, and still, it is
most commonly described through a single number. This simplification is not
always suitable and it is necessary to resort to different descriptors.

Chapter 4 that comes from Baity-Jesi, Parisi (Phys. Rev. B 91, 134203 (April
2015)) is a study of the energy landscape of spin glasses as a function of the number
of spin components m. When m is small the energy landscape is rugged and
complex, with a large amount of local minima. An increase of m involves the
gradual disappearance of most of those minima, along with a growth of the cor-
relations and a slow down of the dynamics.

In Chap. 5, which is the result of my stay at the Center for Soft Matter Research
of the New York University, we show how athermal dynamics in spin glasses is
related to crackling noise, exposing the studies from Yan et al. and Baity-Jesi et al.
(Phys. Rev. Lett. 114, 247208 (2015), Range of the interactions in selforganized
criticality (2015)) and unpublished material. We focus on the hysteresis of the SK
model that describes spins in a fully connected graph. The dynamics along the
hysteresis loop is in form of abrupt spin avalanches. We show that these avalanches
cannot occur if the interactions are short-range, and that long-range interactions are
a relevant perturbation to the short-range Hamiltonian. During the avalanches,
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furthermore, correlations between soft spins arise spontaneously, leading naturally
the system to marginally stable states.

Chapter 6, based on the work of Baity-Jesi (Soft modes, localization and
two-level systems in spin glasses (2015)), examines soft plastic modes of
Heisenberg spin glasses in a RF, which we impose on the system in order to get rid
of the soft modes due to the rotational symmetry. At low frequencies, the density of
states has a non-Debye behavior, revealing the presence of a boson peak, a typical
feature of structural glasses. These soft modes are localized, and they connect very
near states, separated by very low energy barriers, which we identify as classical
two-level systems. This helps to find a connection between the two main theories on
the boson peak. On the one hand, the replica theory gives a mean field description
that attributes the soft modes to a fractal energy landscape, and on the other there is
the phenomenological picture of the two-level systems that attributes the excess of
soft modes to a quantum tunneling between near states.

In Part IV we give our conclusions, resuming the main results chapter by
chapter.

We also include several appendices. Appendix A is on Monte Carlo algorithms
and on parallel computing for spin glass simulations. Appendix B is on the mea-
surement of connected propagators in a field. Appendix C gives details on the
creation of the quantiles defined in Chap. 2. In Appendix D we derive some
identities that were crucial to make sure that our programs gave correct output.
Appendix E is about error managing. Appendix F explains the energy minimization
algorithms that were used in Chaps. 4 and 6.

High-Performance Computing in This Thesis

In this thesis, we present the results of several research projects on spin glasses,
principally obtained through numerical simulations. Since this is a thesis in physics,
we will mainly talk about the physical results, relegating to the background the
numerical details.

Nevertheless, it is important to mention that extremely powerful numerical
resources were necessary to arrive at some conclusions. Especially the work of
Baity-Jesi et al. (J. Stat. Mech. 2014, P05014 (2014), Phys. Rev. 89, 014202
(2014)) would have been unthinkable with normal computing resources.

For the work of Baity-Jesi et al. (J. Stat. Mech. 2014, P05014 (2014)), I enjoyed
the chance of being part of the JANUS Collaboration, a partnership of physicists and
engineers that work with the (FPGA)-based machine JANUS (Belletti et al.,
Computing in Science and Engineering 8, 41 (2006), Yllanes Rugged Free-Energy
Landscapes in Disordered Spin Systems (2011), Baños et al., Proc. Natl. Acad. Sci.
USA 109, 6452 (2012), and the recently launched Janus II, Baity-Jesi et al.,
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Comp. Phys. Comm 185, 550–559 (2014)),1 devised expressly for Monte Carlo
simulations of spin glasses. The JANUS computer has been able to thermalize much
larger lattices than conventional computers, at lower temperatures, and it can reach
times comparable with those of the experiments done by others (Belletti et al., Phys.
Rev. Lett. 101, 157201 (2008), Alvarez et al., J. Stat. Mech. 2010, P06026 (2010),
Alvarez Baños et al., Phys. Rev. Lett. 105, 177202 (2010), Baños et al., Proc. Natl.
Acad. Sci. USA 109, 6452 (2012)).

In the case of the work of Baity-Jesi et al. (Phys. Rev. 89, 014202 (2014)), I was
part of SCC-Computing as a member of BIFI,2 a FP7 project that aimed at
developing connections between European and Chinese scientists by giving
European groups the possibility to run simulations on the supercomputer
Tianhe-1A, which had been the most powerful machine in the world, and at the time
was ranked number two in Top 500.3 Only thanks to these extraordinary resources,
added to a careful tuning of our simulations in order to get the maximum perfor-
mance, it has been possible to obtain the results shown in this dissertation.

In addition to the aforementioned facilities, I had the chance to use the small
cluster of my group in Madrid, the Minotauro GPU cluster in the Barcelona
Supercomputing Center, the Memento and Terminus CPU clusters and some GPU
for benchmarking from BIFI, and the Mercer cluster of the New York University.

1http://www.janus-computer.com/.
2Strategic collaboration with China on super-computing based on Tianhe-1A, supported by the
EU’s Seventh Framework Programme (FP7) Programme under grant agreement n°287746. http://
www.scc-computing.eu.
3Top 500 is the annual ranking of the 500 most powerful computers in the world, in terms of flops.
http://www.top500.org.
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. . . Subleading corrections
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. . .h i In Chap. 5: average over the avalanches
. . .h i In the other chapters: thermal average
. . .h it Time average

ð. . .Þ Average over the disorder
. . .k k1 1-norm
. . .k k2 2-norm
s j s0h i Scalar product between configurations sj i and s0j i
a1; a2 Nontrivial components of the pion
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a, b, c, d Replica indices
A Area of the hysteresis loop
Að ~π0h jÞ Amplitude parameter for forcings along ~π0j i [see also

Eq. (6.15)]
Að ~πRANDj iÞ Amplitude parameter for forcings along ~πRANDj i [see also

Eq. (6.15)]
AF Amplitude of the forcing
average, annealed logðZJÞ
average, quenched logðZJÞ
α In Sect. 1.3: critical exponent of the specific heat
α In Chap. 6: ρðλÞ� λα for small λ
b In Sect. 1.3: size of the patches in the block Hamiltonian
b In Appendix B.3.3: bit

bðJKÞj
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β In Sect. 1.2: inverse temperature
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β In Chap. 5: scaling exponent for ΔM
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c1; c2 Terms of the variance
CðλÞ Correlation between the softest spin and the spins with local

stability λ

Cf ðλÞ;C0
f ðλÞ Correlations between the spin s0 and the spins with local

stability λ before and after the flipping event
Ch Specific heat

CðplaneÞ
link ðrÞ Link plane correlation function

CðpointÞ
link ðrÞ Link point correlation function

CðrÞ Two-point correlation function (with translational invariance)
CðrÞ Point-to-plane correlation function
ĈðkÞ Fourier transform of CðrÞ
CðplaneÞðrÞ Plane tensorial correlation function

CðpointÞðrÞ Point tensorial correlation function
Cðx; yÞ Two-point correlation function
CðrÞ Green’s correlation function
configuration Position of all the spins in the system: sj i
χ Susceptibility
χCG Chiral glass susceptibility
χSG Spin glass susceptibility
χðkÞ Wave-vector dependent susceptibility
χL Susceptibility of a lattice of size L
χR;iðkÞ Per-quantile χRðkÞ
χRðkÞ Wave-vector dependent replicon susceptibility
d Dimensions of space
d̂ Scaling function
D Amplitude of the anisotropy
Ddip

x;y Dipolar anisotropy matrix

DDM
x;y Dzyaloshinskii–Moriya anisotropy matrix

DIsing Ising anisotropy
Dðλ; tÞ Diffusion constant
Dx Per-site random single-ion anisotropy
DXY XY anisotropy
DðnÞ Avalanche size distribution

Dαβ

xy Diagonal part of Mαβ

xy

δ In Sect. 1.3: field critical exponent
δ In Chap. 5: correlation exponent (number of spins)
δ In Chap. 6: gðωÞ�ωδ for small ω
δαβ Kronecker delta
δð. . .Þ Dirac delta function
ΔE In Appendix A: energy difference in the PT swap
ΔE In Chap. 6: energy difference in terms of HRF

ΔEðFÞ Energy cost of flipping all the spins belonging to F
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ΔEav Energy change in a single avalanche
ΔEflip Energy change in a single flip
ΔE� Reverse energy barrier
ΔExy Energy cost of flipping sx and sy
ΔM Magnetization jump
ΔMc Magnetization jump cutoff
ΔMðtotÞ Total magnetization change
ΔW Variation of W after the forcing
ê1;x; ê2;x Unitary vectors forming the basis B
eIS Energy of the IS
E Mean number of spins triggered by a flip (see also EðnunstÞ)
~Ej Oð Þ Estimator of O for the jth block

~EðJKÞ
j Oð Þ Estimator of O for the jth jackknife block

EðnunstÞ Indicator of the random walk bias
~EðOÞ Estimator of the average
EðOÞ Thermal and disorder average of observable O
ÊðOÞ EðO j q̂Þ
Êð. . .Þ Estimator of the average

EðtotÞ Total energy change in a full hysteresis loop
ε In Chap. 2: width of the interval
ε In Chap. 6: amplitude of the perturbation
η Anomalous dimension
ηeff Effective anomalous dimension
ηx Gaussian noise
f Extension factor of the simulations
fO; gO; hO Scaling functions for an observable O
fλðxÞ Distribution of kicks x given to spins of stability λ

fmax Maximum extension factor of the simulations

f ðJKÞn f ÊðOÞ� �
(the last extra jackknife block stores the average)

f ðt; hÞ Intensive-free energy
FðλÞ Cumulative of ρðλÞ
F In Chap. 5: a set of soft spins
F In the other chapters: free energy
F coarse Coarse-grained free energy
F J Sample-dependent free energy
gðωÞ Density of states
Gc

2ðrÞ 2-replica connected plane correlation function
Gnc

2 ðrÞ 2-replica non-connected plane correlation function
GA Anomalous propagator
GL Longitudinal propagator
ĜRðkÞ Fourier transform of GRðrÞ
GRðrÞ Replicon propagator
G Green’s function
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GA G inherent structure, A avalanche
GG G inherent structure, G avalanche
GR G inherent structure, R avalanche
γ In Sect. 1.3: critical exponent of the order parameter
γ In Chap. 5: correlation exponent (stability)
γ In Chap. 6: FðλÞ� λγ for small λ
Γ1ðx; yÞ;Γ2ðx; yÞ Connected correlators
h External magnetic field
hMIN Smallest local field
hðq̂Þ Histogram of q̂
~h Rescaled field
~hx In Chap. 6: random field of amplitude Hamp on site x
hx Local field in the SK model
Hamp Amplitude of the random field
H Hamiltonian
HANI Heisenberg spin glass with a random anisotropic exchange
HDM

x;y
Dzyaloshinskii–Moriya anisotropy term

HEA Edwards–Anderson Hamiltonian
Hh Edwards–Anderson Hamiltonian in a field
HF Forced Hamiltonian
HIS Hamiltonian HRF calculated at the IS
HIsing Hamiltonian with Ising anisotropy
Hr1 Hamiltonian with random single-ion anisotropy on an

established axis
Hr2 Hamiltonian with random single-ion anisotropy on a random

axis
HRF Hamiltonian of the Heisenberg SG with a random field
Hsi Hamiltonian of a ferromagnet with single-ion anisotropy
HSL Hamiltonian that mixes short- and long-range interactions
HSR Finite-connectivity Hamiltonian
HXY Hamiltonian with XY anisotropy
Heisenberg spin Spin with m ¼ 3 components
ih Index of the forcing
inherent structure The local energy minimum reached by relaxing the system
IS The subscripted quantity is referred to an inherent structure
ISðihÞj i IS with the perturbed Hamiltonian
IS�j i IS after the forcing
Ising spin Spin with m ¼ 1 components
Jtyp Typical coupling
Jxy Coupling between sites x and y

Jð‘Þxy
Amplitude of the long-range coupling

JðsÞxy
Amplitude of the short-range coupling

k Wave vector
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k11 Wave vector along a diagonal of the lattice
kB Boltzmann constant (kB ¼ 1)
kmin Lowest wave number
kn Wave vector along an axis
K Kick in the local stability of its neighbors
K Kurtosis
KnðOÞ nth moment of O
K̂ðqÞ Ê q� ÊðqÞ� �� �4
L Linear lattice size
λðmÞ The mth smallest stability
λmin Lowest eigenvalue
λMIN Smallest local stability
λ0 Local stability after the flip
λ� Crossover λ
λx Local stability in the SK model
Λ Parameter of the SOR
m In Sect. 1.3: magnetization
m In Chap. 5: the number of chosen softest spins
m In the other chapters: number of spin components
m̂ Polarized magnetization along the pion
ðm=LÞ1 Ratio over which there is only one minimum of the energy
ðm=LÞSG Ratio under which the number of (ISs) is exponential
M Magnetization
Mxy Matrix element of the Hessian matrix x and y stand for the

position

Mαβ

xy
Element of the Hessian matrix x; y indicate the position, αβ
indicate the component

master The node that manages the instructions
μ Generic principal axis
n In Chap. 5: size of the avalanche
n In Chap. 6: number of visited valleys
nav Number of avalanches
nb Number of bits
nc Avalanche size cutoff
nλ Number of calculated eigenvalues
nðTÞ Number of coarse-graining steps
n�unst nunst : EðnunstÞ ¼ 1; rðnunstÞ ¼ 0
nunstðtÞ Number of unstable spins after t spin flips
n̂x Random vector on the sphere of radius 1
N Total number of spins
N Set of the natural numbers
NA Avogadro number
Nmin
EMCS

Minimum number of EMCS
NF Number of forcings
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NGPU Number of GPUs
Nm Number of offline measurements
NMC Number of EMCS
Nreplicas Number of replicas
Nsamples Number of samples
Nsweeps Number of full sweeps of the lattice
Nt Number of quadruplets of configurations
NT Number of temperatures
Nmin
τ

Minimum number of EMCS in units of τ
Nthreads Number of threads
NðXÞ Number density of having fluctuation N
N Number of equivalent wave vectors
N m Total number of measurements

N αβ

xy Non-diagonal part of Mαβ
xy

ν Critical exponent of the correlation length
νCG Exponent of the chiral glass sector
νSG Exponent of the spin glass sector
O Generic observable
Oi ith measurement of observable O
ω Largest irrelevant exponent
p̂ Scaling function
P1d Return probability of a 1d RW
P2d Return probability of a 2d RW
PH
L ðAF ; nÞ Probability of changing valley

PJðqÞ Sample-dependent distribution of the overlap
Pð‘Þ X1 averaged over the ‘th plane
PðqÞ Probability distribution function of the overlap
Pðq̂Þ Probability distribution function of the CV
PðqISÞ Overlap distribution of the inherent structures
PðsymÞðqÞ Symmetrized probability distribution function
PðΔMÞ Magnetization jump distribution

Φ̂
ðab;cdÞ
k

Fourier transform of Φðab;cdÞ
x

Φðab;cdÞ
x

Connected 4-replica field
eπ0j i Softest mode
eπRANDj i Random mode
~πx Pion
~πx Pion as a function of two components
ψn Eigenvector
q Overlap
qab Overlap matrix
qav Average overlap
qlink;av Average link overlap
qb Overlap between initial and perturbed IS
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qEA Edwards–Anderson parameter
q̂ Conditioning variate
q̂CGðkÞ Fourier transforms of the chiral glass overlap
q̂i Value of the conditioning variate (CV) for measurement i
q̂SGðkÞ Fourier transforms of the spin glass overlap
~qi ith quantile
qif Overlap between configurations before and after the forcing
q̂i Value of the CV at the ith measurement
qlink Link overlap
qmax Maximum overlap
qlink;max Maximum link overlap
qmed Median overlap
qlink;med Median link overlap
qmin Minimum overlap
qlink;min Minimum link overlap
qCG Chiral glass overlap
qSG Spin glass overlap
qx Local overlap
qx;t Instant measurement
Q Tensorial overlap
Qlink Tensorial link overlap
quenched disorder The disorder that appears in the Hamiltonian
r Euclidean distance between two points
r Modulus of the distance
r̂ Unit vector
rðnunstÞ Indicator of the random walk bias
~rx Position of~sx
R12;i Per-quantile R12

RA R inherent structure, A avalanche
replicas Independent copies of the same sample
RG R inherent structure, G avalanche
RR R inherent structure, R avalanche
R12 χðk1Þ=χðk11Þ
ρ Power law exponent for DðnÞ
ρðλÞ Distribution of local stabilities
ρss Steady-state local stability distribution
~sj i Configuration
~s ðISÞ
�� �

Inherent structure

~s ðISÞ Spin of the inherent structure

~sðISÞ�x
Spin of the IS after the forcing

~sx Vector spin on site x
sx Ising spin on site x
sx;z z component of the spin in site x
S2ðqÞ Two-replica skewness
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S3ðqÞ Three-replica skewness
ŜðOÞ S Ojq̂ð Þ
σx Block variable
sample A single realization of the disorder
slave Node that receives the instructions
σ Scaling exponent for n
σf Jackknife error
σx Amplitude of the noiseP

x;y Sum over all the x and yP
x 6¼y Sum over all the x and y, except x ¼ yP
x�yj j ¼ 1 Sum over all the nearest neighbors x and yP
y: x�yj j ¼ 1 Sum over all the y neighbors of x

t In Sect. 1.3 and Chap. 2: the reduced temperature
t In Chap. 4: time in the quench
t In Chap. 5: number of elapsed spin flips in the avalanche
~t Rescaled reduced temperature
tw Waiting time
T Temperature
T0 Final temperature of a quench
TCG Chiral glass critical temperature
TL;2L Temperature where ξLðTÞ=L crosses ξ2LðTÞ=ð2LÞ
Tmin; Tmax Lowest and highest simulated temperatures
TSG Spin glass critical temperature
TL;2L
CG

Crossing temperature of χCG with sizes L and 2L

TL;2L
SG

Crossing temperature of χSG with sizes L and 2L

TupðhÞ Upper bound for the critical temperature
τ In Chap. 2: exponential autocorrelation time
τ In Chap. 5: power law exponent for PðΔMÞ
τ In Appendix A: integrated autocorrelation time
Tc Critical temperature
θ Pseudogap exponent
uax Word
vðλ; tÞ Drift term
vssðλÞ Steady-state drift term
VðxÞ Set of sites that are connected to x
valley Local minimum of the energy
varðOÞ Variance of O
varðO j q̂Þ Conditional variance
wx Local spin variation
W Global spin variation
W Cumulant of the spin variation
Word nb-bit integer
x Site
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X Fluctuation of ΔEðFÞ
X̂1ðkÞ Fourier transform of Pð‘Þ
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XMIN Most extreme fluctuation of ΔEðFÞ
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XY spin Spin with m ¼ 2 components
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ξL Correlation length measured in a lattice of size L
ξL;i Per-quantile ξL

ξ
ðplaneÞ
2

Second moment plane correlation length

ξ
ðpointÞ
2

Second moment point correlation length

yh Field scaling exponent
yt Temperature scaling exponent
Yλ Inverse participation ratio
Z Partition function
z In Chap. 3: exponent that relates space and time
z In the other chapters: connectivity
Z2 Reflection symmetry group
ZJ Sample-dependent partition function

Notations xxix

http://dx.doi.org/10.1007/978-3-319-41231-3_3


Part I
Introduction



Chapter 1
An Introduction to Spin Glasses:
History, Simulations and Phase Transition

1.1 Background

After briefly introducing the glass phase in general terms, showing how it appears
in many aspects of modern society, we make a historical presentation on birth and
evolution of the SG theory. It is hard to propose oneself a historical approach on a
research topic, since any quoted argument could need a whole treatise for itself, so
we choose the starting point that looked mostly appropriate to us, and refer to an
exhaustive bibliography the interested reader.1 Moreover, since the SG theory has by
now evolved over half a century under disparate aspects, and it has fused with many
other domains of science, such as biology and computer science, it is unthinkable to
use this introduction to mention all the aspects of this stimulating branch of physics.
We will instead focus on the origin of SGs as they are known at present, and we
will only touch on those aspects of SG theory that are useful to expose the results
of this thesis.2 Since its aim is to get into the topic and set the bases for further
discussion, the introduction on SGs is left open, and recent developments are left to
the introduction of each chapter.

1.1.1 The Glass Transition

If we cool a liquid quickly enough, it can happen that the sudden lack of
thermal vibration arrest its dynamics before it is able to end in the lowest-entropy

1In particular, in [Mat81] there is an extended historical introduction on magnetism (but not on
SGs). Historical comments on SGs appear in [Myd93]; a perspective is given in [She07].
2The references herein come from an intensive bibliographic research, and are in the author’s
opinion the most representative of a part of the history of SGs. It may occur to the reader that some
notable publication or remark, that should appear in this thesis, has been not been cited. If this were
the case, the author would thank such reader if he could inform him in order to add the missing
work to further versions of this introduction.

© Springer International Publishing Switzerland 2016
M. Baity Jesi, Spin Glasses, Springer Theses, DOI 10.1007/978-3-319-41231-3_1
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4 1 An Introduction to Spin Glasses: History, Simulations and Phase Transition

Fig. 1.1 Logarithm of the viscosity η against the inverse of the temperature T , normalized with
a constant Tg. Tg is the temperature where the viscosity is 1013 poise (with the exception of some
curves that do not meet at Tg/T = 1 because Tg was defined as the temperature where the enthalpy
relaxation time is ≈200 s). It represents an experimental cutoff over which the relaxation times
t ∼ η are too long to perform equilibrium experiments. On the other hand, η = 10−4 poise is the
roughly common high-temperature limit of the viscosity. Reprinted by permission from Macmillan
Publishers Ltd: Nature 410, 663–667 (doi:10.1038/35070517), copyright (2001) [Mar01]

configurations and crystallize. Once this happens, a glass is formed, and the material
behaves as a solid even though apparently no symmetry was broken and no phase
transition took place. Simply, the viscosity and the relaxation times grow so fast in a
very short range of temperatures, that the liquid stops flowing and appears solid. In
Fig. 1.1, a famous plot by Angell shows this steep behavior in a set of glass formers.
With a factor 2 change in temperature the viscosity grows 8–11 orders of magnitude.
A so large growth of the relaxation times is hard to explain in the absence of a phase
transition, and no completely satisfying theory has been found. So many scenarios
have been proposed to explain this phenomenon, that is it often said that there are
more glass theories than theorists.

Besides the natural interest in amorphous solid states, called structural glasses,
the reason why much emphasis is put in the study of the glass transition is the
huge amount of applications that glasses have, and the immense amount of disparate
systems that exhibit a glassy state.

The most commonly known glasses are silica compounds. They are fused to a
temperature where the viscosity is low and they are malleable, and the glassy phase
is obtained by quickly taking them back to room temperature. For their properties of
manufacturability, low dilatancy, uncorrosiveness and transparency they are present

http://dx.doi.org/10.1038/35070517
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in many objects of our everyday life, such as windows, bottles, optical fibers, beakers
and touchscreens.3

Still, the glassy phase presents itself in numerous different forms in technology
and nature [Ang95]. Metallic glasses are used for high efficiency transformers for
their magnetic properties, or as an alternative to silicon to make molds for nanocom-
ponents [Gre95]. Automobile bodies and parts of boats are made of fiberglass, that is
obtained by embedding extremely fine fibers of glass in an organic polymer plastic,
trapping the air in order to make it a good thermal insulator [May93, Mar06]. Vit-
rification takes places in processes related to the stabilization of labile biochemicals
for commercial use [Cro98], and in the preservation of insect life under extreme con-
ditions of cold or dehydration [Cro98]. Protein folding exhibits glass-like behavior
[Web13], many foods and their industrial production chain involve glassy states and
dynamics [Bla93], and so do instances of optimization and combinatorial problems
[Mez87].

Spin glasses are yet another instance of the glassy phase, characterized by an
amorphous magnetic low-temperature state. Despite a very peculiar phenomenology
[Nag79, Myd93, Vin97, Jon98, Her02], few or none industrial applications of SGs
exist at the moment, and it would be reasonable to query why SGs are apparently
overrepresented in theoretical physics.

The main reason is due to their simplicity. Very simple Hamiltonians defined on
uncomplicated graphs capture highly non-trivial behaviors, making them probably
the most understandable models that display a glassy phase. Their study is useful
to get an insight on the study of the glass phase in a more general sense and on
complexity, since

• experimental measurements are easier through the use of very sensitive magne-
tometers called SQUIDs (Superconducting QUantum Interference Devices). See
e.g. [Dru07, Kum14].

• in the context of SGs it was possible to develop very advanced theoretical tools
that can be reused in other contexts [Mez87, Bia12, Cha14].

• differently from structural glasses, the SG transition is well identified in finite
dimensions [Bal00, Lee03].

• they are easier to simulate, because e.g. they are defined on graphs where the
neighbors do not change with time, the degrees of freedom are binary or limited.
It is possible to simulate far more degrees of freedom than on structural glass,
making finite-sizes effects less overwhelming [Fer15].

• it is possible to construct dedicated hardware for more effective numerical studies
[Bel06, Bel08a, BJ12, BJ14c].

Finally, SGs are often used as toy models to test the phenomenology of more
complicated systems, and not seldom SG theory was of crucial importance for rel-
evant advances in numerous fields. For example the Random First Order Transition
theory for structural glasses is inspired on the p-spin SG model [Cav09] (Sect. 1.1.2);

3Devices such as tablets and smartphones require high-tech glasses. The recently-developed Gorilla
Glass (http://www.corninggorillaglass.com/), for example, enjoys wide popularity.

http://www.corninggorillaglass.com/
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neural networks are now a branch of SG theory, and for example the Hopfield model
is known to display a SG phase and is studied with SG tools [Mez87]; protein folding
codes can be successfully obtained with SG theory [Gol92], and many ideas from
SGses were used to understand this phenomenon [Wol92]. In this dissertation we
use SGs to understand marginal stability and two-level systems (Chaps. 6 and 5).

1.1.2 The Origins of Spin Glass Theory

During the beginning of the second half of the 20th century much attention has been
devoted to the study of solutions of (Mn) in copper (Cu), that displayed peculiar
properties that puzzled the condensed-matter community [Owe56, Nob59, Zim60].
A cusp in the susceptibility was observed at a temperature Tc roughly proportional
to the concentration of Mn (with concentration of 0.1–10 % Tc ranged between 1 K
and 100K), separating the paramagnetic phase from a peculiar phase in which no
order was identified, though several features discriminated it from a paramagnetic
phase. It lacked spontaneous magnetization, but after applying reasonably large fields
one could observe remnant magnetization. Also, the susceptibility χ was practically
constant instead of being inversely proportional to the temperature T , χ ∝ 1/T as
the Curie law suggests for a paramagnet, and the low-temperature specific heat was
linear in T instead of being proportional to 1/T 2.

This surprising low-temperature behavior was attributed to the s − d interaction
[Mar60], that couples electrons of unfilled inner shells and conduction electrons.
Depending on the involved metal, this interaction can lead both to ferromagnetism
and antiferromagnetism. In order to explain the atypical ordered phase the s − d
interaction was supposed to be the dominant one.

This interaction was first pointed out by Zener in 1951, with a phenomenological
model that did not involve the possibility of antiferromagnetism [Zen51a, Zen51b,
Zen51c]. Few years later the theory was further developed by Kasuya [Kas56], that
found that the s − d interaction can imply antiferromagnetism and spin waves, and
Yosida [Yos57], that notices that the model from Ruderman and Kittel [Rud54], for
the coupling between two magnetic moments through their hyperfine interaction with
the conduction electrons, successfully describes the s − d interaction.4

The resulting coupling J (RKKY)
x y between two Mn ions separated by r resulting

from this description is called (RKKY). It has a sinusoidal form that to our purposes
can be represented as a pairing

J (RKKY)
x y ∼ cos

(
k · r
|r|3

)
, (1.1)

4A Hamiltonian for the s − d interaction is also derived in [Mit57]. More useful references on the
subject: [Fro40, Blo55, VV62, Mat81].

http://dx.doi.org/10.1007/978-3-319-41231-3_6
http://dx.doi.org/10.1007/978-3-319-41231-3_5
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between two spins �sx and �s y at distance r one from the other. The k is of the order
of the Fermi vector, meaning that the oscillations of the cosine are very quick. So,
expression (1.1) tells us that, besides decaying as 1/r3, depending on the distance
between the ions the couplings can be ferromagnetic or antiferromagnetic.

The interactions of the Cu substrate were assumed negligible for the study of the
magnetic properties of the examined CuMn alloys, and the cusp in the susceptibility
was entirely attributed to the RKKY interaction between the Mn ions [Mar60]. Being
the positions in the alloy of these ions random, both the module and the sign of the
couplings had to be treated as a random variable, and random ferromagnets became
popular [Bro59]. First modelizations involved systems of spins under independent
effective random local fields [Mar60, Kle63], and later on disorder is assumed in the
interactions [Mon70].

The birth of spin glass theory.

The term spin glass is first used in a paper by Anderson in 1970,5 in analogy with
structural glasses, to stress the presence of a low-temperature phase with uniden-
tified order. He defines a formally simple model where the Hamiltonian has an
explicit dependence on the disorder [And70]. He assumes that the dominant role
is not assumed by the electrons, that have only the function of transmitting the inter-
action, but by the Mn ions and their exchange interactions. The interaction between
the Mn spins is given by the RKKY interaction (1.1), whose sign depends on the
distance rx y between two spins �sx and �s y and that decreases in magnitude as rx y
increases. Since rx y is random and depends on the single realization of the alloy and
of its disorder, that we will call sample, also the coupling Jx y is a random variable.
So, Anderson proposed the first SG Hamiltonian as a Heisenberg model

H = 1

2

∑
x �= y

Jx y�sx · �s y, (1.2)

where the Jx y are random constants distributed through an unknown distribution
that should reproduce roughly the RKKY interaction. The essential novelty is thus
that the “experimental” couplings J (RKKY)

x y are replaced by the random variables Jx y.
We call quenched disorder the randomness of the Jx ys, that appears directly in the
Hamiltonian. Notice that being the couplings Jx y randomly negative and positive, it
is impossible to satisfy simultaneously the energy along all the bonds (we will come
back to this later on). This feature is called frustration. Hamiltonian (1.2) possesses
both quenched disorder and frustration, that become the distinctive features of a SG
model [You05, Kaw10]. Anderson tried a mean field approach without, yet, aver-
aging over the disorder. He also assumed the possibility of purely nearest-neighbor
interactions on a regular lattice, and treated the system as a set of independent clusters

5Under suggestion of B.R. Coles.
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each with its critical temperature, bringing back the problem of localization that in his
view had been disregarded. This cluster-based interpretation was well embraced by
the scientific community. Experimental observations of the susceptibility cusp were
done also in other types of alloy such as AuFe, with similar results. The dominant
interpretation was an arisal of ferro- and antiferromagnetic clusters with short-range
order that as the temperature is lowered interact at long range [Bec71, Can72, Smi74],
or seeing the SG as a sort of macroscopic antiferromagnet [Adk74].6

The Edwards-Anderson model.

The milestone year for the definition of SGs as a branch of theoretical physics is
1975. A solid basis on SG theory was given in [Edw75, Edw76] by Edwards and
Anderson through a very simple model that was able to describe qualitatively the
experimental observations. Their starting idea is that in the low temperature spin
glass phase there must be some local ordering of the spins along a random preferred
direction. Even though this direction is unknown, one can see whether an alignment
is taking place by examining if after a time t the single spins sx(t) have a tendency
of pointing in the same direction. In quantitative terms, they define the overlap

q = lim
t→∞

1

N

N∑
x

〈�sx(0) · �sx(t)〉t , (1.3)

where 〈O(t)〉 is the time average of a generic observableO, 〈O(t)〉t ≡ 1
t

∫ t
0 dt ′O(t ′).

Equation (1.3) is one of several ways to define the order parameter of a SG. Assuming
that the equilibrium phase is ergodic, one can rewrite Eq. (1.3) by replacing the time
average 〈. . .〉t with an ensemble average 〈. . .〉 to give an alternative expression for
the overlap,

q = 1

N

N∑
x

〈�sx〉2
. (1.4)

In the paramagnetic phase there is no favored direction, so q = 0. On the other
side, in the SG phase each spin will align along a privileged direction and q �= 0. In
[Edw75] Hamiltonian (1.2) is taken into account and it is shown with a mean field
approach that a phase transition occurs with q as order parameter, accompanied by
a cusp in the susceptibility. Hamiltonian (1.2), with nearest neighbor interactions
on a regular lattice, assumes the name of EA model. Assuming a unitary distance
between nearest neighbors, the EA Hamiltonian is

HEA = 1

2

∑
|x− y|=1

Jx y�sx · �s y, (1.5)

6This latter interpretation tried to explain the rounding of in the cusp of the susceptibility under
an applied magnetic field. As we will discuss more thoroughly in Chap. 2, it is still an open issue
whether a SG in a field undergoes a phase transition

http://dx.doi.org/10.1007/978-3-319-41231-3_2
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where for7 simplicity reasons the Jx y were assumed by Edwards and Anderson to
come from a Gaussian pdf P(J ). Different samples of an EA spin glass will have a
different realization of the coupling, but on average they must have the same behavior,
and the larger the lattice more similar the behavior will be. This assumption, that
gives sense to the free energy of the SG model, is called self averageness. So, calling
FJ and ZJ the free energy and the partition function of a sample with a set J of
couplings, one is interested in the average free energy

F =
∫

FJ P(J )d J = −kBT
∫

P(J ) logZJ d J, (1.6)

that by writing with an over bar (. . .) the average of the disorder assumes the form
F = −kBT logZJ . Equation (1.6) encloses a central difficulty in SG theory, that
is taking the average of the logarithm of ZJ . This is called a quenched average, in
opposition with the easier approach, called annealed average, of taking the logarithm
of the average ofZJ , resulting in the annealed free energyFAnn = logZJ , that results
incorrect at low temperatures (see e.g. [Mez87]). To overcome the problem of this
integration, Edwards and Anderson propose the replica trick, that consists in using

the identity log (x) = lim
n→0

xn − 1

n
to transform the annoying logarithm in a power

law,8

F = −kBT logZJ = −kBT lim
n→0

Zn − 1

n
. (1.7)

By artificially assuming that n is an integer, one could think about Zn as the partition
function of n independent replicas of the same system, that share the same instance
of the couplings but are independent one from the other. With the help of replicas
the order parameter can be rewritten as [Par83]

qab = 〈�s(a)
x · �s(b)

x

〉
. (1.8)

where (a) and (b) indicate different replicas. Treating Zn as a set of independent
replicas simplifies the calculations, although it implies a few mathematical forcings
such as taking the limit n → 0 with n ∈ N. Notwithstanding, although the EA model
still nowadays lacks a full analytical understanding, the replica trick became a very
popular tool for disordered systems.

7It is the case to make clarity on the notation for the summations.
∑

x, y is a sum over all the choices
of x and y.

∑
x �= y is a sum over all the choices of x and y, except x = y (in our models the positions

x are discretized).
∑

|x− y|=1 is a sum over all the choices of x and y that are nearest neighbors. In all
the previous cases each coupling is counted twice, so we put a factor 1/2 in front of the summation.∑

y:|x− y|=1 is a sum over all the choices of y that are neighbors of x, so the summation runs over
a number of terms equal to the connectivity z. Writing

∑
|x− y|=1 is equivalent to

∑
x
∑

y:|x− y|=1.
8The identity comes from a first order expansion of the exponential function: xn = en log (x) =
1 + n log (x) + o(n2).
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The EA model was promptly be extended to quantum spins [She75b, Fis75], but
we will not treat quantum SGs in this thesis, so we will leave these models aside.

The Sherrington-Kirkpatrick model.

Also in 1975, with the aim of giving a model for which mean field theory be valid,
Sherrington and Kirkpatrick propose to slightly modify Hamiltonian (1.5) by impos-
ing fully-connected interactions and Ising spins sx = ±1 [She75a]

HSK = 1

2

∑
x, y

Jx y�sx · �s y, (1.9)

where the couplings Jx y are Gaussian distributed with Jx y = 0, and their variance
is such that the energy is extensive, J 2 = 1/N . This model, for which mean field
theory is valid, will be called SK model. Their solution, yet, has unphysical features
such a negative entropy at low temperatures. Sherrington and Kirkpatrick attributed
this to an assumption they made, in their calculations, of commutativity between
the limit n → 0 and the thermodynamic limit N → ∞ (N indicates the number of
spins). Yet, it slowly became clear that the problem resided in the (yet reasonable)
ansatz they made of replica symmetry [Alm78b, Bra78], that the overlap (1.8) is the
same no matter what two replicas are chosen [the (RS) ansatz],

qab = q(1 − δab), (1.10)

especially after it was shown that in the SK model the inversion of the limits is valid
[Hem79].

It is worth to mention also another interesting model with disorder proposed in
1975, the Random Field Ising Model [Imr75],9 that depicts an Ising ferromagnet in
which each spin feels a random field that is not correlated with the rest of the sites.
This is not a SG because there couplings are ferromagnetic, so there is no frustration.
A way to define frustration quantitatively is through the Wilson loop. For each closed
circuit in the lattice, we can take the ordered product of all the links that form it.
If this product is negative it is not possible to find a configuration that minimizes
simultaneously the local energy along each of the links, and the loop is said to be
frustrated [Tou77, Bla78].10,11

The RS solution of the SK model given in [She75a] was shown to be stable
only at high temperatures by de Almeida and Thouless [Alm78b] (this result was

9We will take inspiration from this model in Chap. 6 to work on a system with broken rotational
symmetry.
10See the introduction of [Mez87] for a definition of frustration from every-day life examples, and
[Par95] for an intuitive discussion on Wilson loops.
11In this text, when we will talk about the system being more or less frustrated we will be referring
to the presence of a larger or smaller number of frustrated loops. When instead we say that two spins
are mutually frustrated, we mean that the energy is not minimized along the bond(s) connecting the
two spins.

http://dx.doi.org/10.1007/978-3-319-41231-3_6
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Fig. 1.2 Stability of the RS solution of the SK model in the paramagnetic phase. H is the applied
magnetic field, T is the temperature, J is the typical coupling energy, and kB is Boltzmann’s constant
(in this thesis, we will usually set kB = 1). The RS solution is stable only at high temperatures or
at high fields. The (dAT) line separates the zone of the phase diagram where the RS phase is stable
from the one where magnetic ordering appears

promptly generalized to spins with any finite number m of components [Alm78a]).
The paramagnetic phase is RS, but under a certain temperature massless modes in
the overlap correlation functions (replicon modes) become unstable [Bra79]. Replica
symmetry, thus, becomes unstable in favor of a yet undefined SG phase. Therefore
all the results obtained under that temperature, including the critical temperature, are
not very useful. Also in the presence of an externally applied magnetic field it was
shown that for low temperatures and fields the RS phase is not stable, so at least in
the SK modelization, there exists a SG phase in a field (Fig. 1.2). The critical line
where the RS phase becomes unstable will be called the dAT line. Even though the
reason of this instability was suspected to be replica symmetry [Bra78, Alm78b],
it was not clear how to break the symmetry between replicas in order to obtain a
physically reasonable solution.

Perhaps with the additional stimulation of these initial failures of the replica
approach, different approaches have been tried, such as expansions in 6 − ε dimen-
sions of space [Har76, You76, Che77, Sou77] of alternative formulations of the
mean field. In opposition with the replica method, that constructs a mean field theory
after having averaged over the disorder with the replica trick, Thouless, Anderson
and Palmer formed a mean field theory first, including in the free energy the rebound
effect of each spin on itself (Onsager’s reaction term [Ons36, Bar73]), and only after
averaged over the disorder [Tho77]. Still, the (TAP) approach was shown to be useful
only at high temperatures (see e.g. [Mez87]). Numerical simulations confirmed the
validity of all the aforementioned analytical results only at high temperature [Kir78].

Apparently no theory was satisfactory describing the low-temperature phase of a
SG, and no ansatz for RSB was fully satisfactory.

The Parisi solution.

In order to find the good solution of the SK model the replica symmetry needed to
be broken, but qab, an n × n matrix (with n → 0!) could be parametrized in infinite



12 1 An Introduction to Spin Glasses: History, Simulations and Phase Transition

Fig. 1.3 Sketch of the first two steps of replica symmetry breaking. The first n×n matrix represents
the RS ansatz, where there is total symmetry with respect to replica exchange. The second matrix
shows the first step of RSB, the matrix is divided in blocks, and the overlap qab can now assume two
values. In the SK model the process needs to be iterated infinite times to obtain the exact solution.
The iteration procedure is clear from the 2-step RSB: the inner blocks are subsequently divided in
smaller blocks, up to having a continuum of solutions at the full RSB level. More details in the main
text

ways, and the only modus operandi with new ansatz for a RSB overlap matrix was
by trial and error [Bra78]. It appeared also that adding new order parameters to the
model, that is giving qab the possibility to assume more than one value, shifted the
negative zero-temperature entropy towards zero [Par79b]. Each new order parameter
is equivalent to a new breaking of the replica symmetry, so an ansatz with 2 order
parameters is called with 1RSB. It became quickly clear that the SG phase has
intriguing unseen properties when finally the good ansatz was found by Parisi in
1979, with infinite steps of RSB, that we call full RSB [Par79a].

The Parisi ansatz for the matrix qab consisted in an iterative process starting from
the RS ansatz qab = q0(1 − δab) (Fig. 1.3) [Par80b, Par80a, Par80c]. The n × n
matrix is then parted in n/m1 blocks of size m1 × m1. The off-diagonal blocks
stay unchanged, but the off-diagonal terms of the diagonal blocks now assume the
value q1. This is the first step of RSB, and is called 1RSB. The second step of RSB
is identical, and consists in iterating the symmetry breaking in each of the n/m1

diagonal blocks. Each is subdivided in m1/m2 sub-blocks of size m2 × m2. The
off-diagonal sub-blocks stay the same, while the off-diagonal elements of the the
diagonal sub-blocks assume the value q2. The process can be iterated infinite times,
up to the full RSB solution. An overlap matrix constructed this way has any two rows
(or columns) identical up to permutations. This property is called replica equivalence,
and both the RS and the RSB matrices benefit from this property.
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In the RS phase qab = 0 ∀a, b, so the pdf of the order parameter, P(q), is a
δ(0). The full RSB ansatz implies instead that in the SG phase the pdf of the order
parameter is non-trivial. By simply counting the n(n − 1) non-diagonal values qab

can assume, one has

P(q) = 1

n(n − 1)

∑
a �=b

δ
(
q − qab

) =

= n

n(n − 1)
[(n − m1)δ(q − q0) + (m1 − m2)δ(q − q1)+

+(m2 − m3)δ(q − q2) + · · · ] . (1.13)

Once the n → 0 limit is taken,

P(q) = m1δ(q − q0) + (m2 − m1)δ(q − q1) + (m3 − m2)δ(q − q2) + · · · , (1.14)

the P(q) is positive definite only if 0 < m1 < m2 < . . . < 1. One can hypothesize,
as also numerical simulations suggest, that the qi constitute an increasing sequence,
and since the sequence is infinite it is convenient to define a function q(x) such that

q(x) = qi if mi < x < mi+1, (1.15)

so after a k-step RSB q(x) is a piecewise function that takes at most k + 1 different
values, and when k is sent to infinity it becomes a continuous function in the interval
[0,1] [Par80b]. In this representation the free energy becomes a functional of q(x),
and has to be maximized with respect to it. It is also shown by Parisi that

q(x) = qm for x ≤ xm, (1.16)

q(x) = qM for x ≥ xM. (1.17)

This means that the pdf can be rewritten as the sum of two delta functions connected
by a smooth function P̃(q) which is non-zero only in the interval xm < x < xM

P(q) = xmδ(q − qm) + P̃(q) + xMδ(q − qM). (1.18)

Practically, given two random states α and β (chosen from P(q)), with mutual
overlap qαβ , with probability xM α and β will be the same state and they will have
maximal overlap qM, with probability xm they will be as different as it is possible,
with qαβ = qm, and with probability 1 − xm − xM the situation will be something in
between. The lower limits qm and xm depend on an external magnetic field as h2/3. In
the interval xm < x < xM the function q(x) depends weakly on the field, and so does
xM. When the critical field is approached from the SG phase the distance between the
two peaks in the P(q) decreases, xm → xM and qm → qM, until the P(q) becomes
trivial (a δ(q −qEA)) at the de Almeida-Thouless (dAT) line. Figure 1.4 gives a better
intuition on the P(q).
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Fig. 1.4 Different instances of P(q) in the SK model. Top left At zero field, close to Tc, qM is
proportional to T −Tc. Top right At small magnetic field h, qm is proportional to h2/3. Bottom left At
large magnetic field h the dAT line is approached and the difference qM −qm shrinks proportionally
to the distance from this line. Bottom right In the RS phase the P(q) is a delta function centered in
qEA, that goes to zero as h → 0

It follows from the Parisi ansatz that there is an underlying hierarchical structure
in the organization of the states in the SG phase, that results in an ultrametric overlap
space where qac ≥ min (qabqbc)[Mez84, Mez85, Ram86]. This can be seen by
following the RSB process as a tree (Fig. 1.5). At the RS level all the states have
the same overlap q0, this represents the root of the tree. After one step of replica
symmetry breaking the replicas part in two groups. Replicas within the same group
share have overlap q1, otherwise it is q0 < q1, and so on for further steps of RSB. The
overlap between two replicas α and β can be identified by returning back towards the
root until the two states belong to the same group. For example, the overlap between
states α and β in Fig. 1.5 is qαβ = q1. The ultrametricity condition is easily verified
by picking three generic states.

The full RSB P(q) is sign of a SG phase with a complex energy landscape and
an infinitely large number of metastable states that are not related through evident
symmetries: “The space of configurations consists of many valleys separated by
high mountains (free energy barriers) whose height goes to infinity in the infinite-
volume limit” [Par83]. The number of valleys is exponential in the number of spins
N [Bra80a, Dom80, You81], and so is the time spent in a single valley, meaning
that the dynamics of a SG are extremely slow, and when the system size goes to
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Fig. 1.5 RSB as branching process. The overlap between two states α and β can be seen as the
first common level of RSB between α and β (left). Another way to visualize this is to represent the
RSB process as an iterative subdivision in subsets (right), then the overlap between two states α
and β is given by the smallest set containing both α and β. The n, m1, m2, . . . are the parameters
that define the overlap matrix in the Parisi solution

infinity ergodicity is broken [Mac82] in the whole SG phase. This was made clear
at first in the infinite-range model [Kir78], an extension of the SK model that mixes
interactions between p spins (also called the p-spin model). The limit p → ∞ of the
p-spin model yields an exactly solvable model called the REM [Der81], where the
probability of a state depends exclusively on its energy and not on the configuration
itself.

Despite the Parisi solution of the SK model was physically consistent and con-
firmed by numerical simulations and other analytical methods (for example the cavity
method [Mez86]), it contained some mathematical arbitrarities, some of which we
already mentioned, that made it non-rigorous. It took over 20 years later before it
was confirmed rigorously through a mathematical proof [Gue02, Gue03, Tal06].
Nonetheless, this mean field solution of the EA model posed a first hypothesis on
the nature of the SG phase in finite dimensions. Just as the mean field solution of
the Ising model, valid in infinite dimensions, is a good qualitative descriptor of the
ferromagnetic transition, the SG phase in a lattice of size L × L × L would be qual-
itatively similar to the one detected in the SK model. This means for instance that
the SG phase would resist the application of a small magnetic field, the P(q) would
be non-trivial and the overlap space would be ultrametric. Also, in low dimensions
the RSB the domains are expected to be space-filling, i.e. with a fractal dimension
ds = d, and it is possible to have excitations that involve a finite fraction, O(Ld), of
the total spins with a finite-energy cost.
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This attractive12 vision of how real SGs are is called RSB scenario.13

The droplet picture.

Stimulated by earlier numerical domain-wall renormalization group studies of low-
dimensional SGs [Bray85, McM85], and inspired on a schematic scaling theory of
SGs proposed by Mc Millan [McM84], Fisher and Huse proposed a new picture
of the ordered phase in SGs [Fis86], called droplet picture [Fis87, Hus87, Fis88a,
Fis88b]. The theory, that derives from a Migdal-Kadanoff approximation [Mig75,
Kad76] on the EA model [And78], exact in one dimension, describes the SG phase
of low-dimensional SGs as a “ferromagnet in disguise”,14 with only two pure states,
with order parameter q = ±qEA. Within a pure state, phase coexistence occurs
in form of low lying excitations (droplets) of spins in the subdominant state. The
boundaries of these domains are not fixed, but move around due to the disorder,
exploiting unsatisfied links and avoiding the strongly satisfied ones. The effect is that
the droplets are non-convex, and their boundary scales as Lds , with d − 1 ≤ ds < d,
so not space-filling. The fundamental ansatz, inspired by an earlier argument from
Anderson and Pond in the aforementioned Migdal-Kadanoff approach [And78], is
that the free-energy cost of the lowest-energy excitations of linear size � is

F� ∼ γ(T )�θ, (1.19)

where θ is the stiffness coefficient, 0 < θ < (d −1)/2 and γ is the stiffness modulus.
A direct implication is that an infinite energy would be necessary to excite a finite
fraction (� ∼ L) of the total number of spins, so only small excitations (� � L) are
supported.

In the droplet picture the stiffness coefficient controls the decay of the correlations
that go as

C(|x − y|) = 〈
sxs y

〉2 − 〈sx〉2
〈
s y

〉2 ∼ 1

|x − y|θ , (1.20)

that entails q2 − q2 → 0, and therefore the overlap distribution is a delta function,
P(q) = δ(q − qEA).

One last remarkable feature of the droplet theory is that the energy barrier for
flipping a droplet in a field h scales as Lθ−hLd/2. Because of the bound θ < (d−1)/2,
the SG phase is unstable to the presence of any magnetic field. This prediction in

12“God used beautiful mathematics in creating the world”, Paul Dirac, as quoted in The Cosmic
Code : Quantum Physics As The Language Of Nature (1982) by Heinz R. Pagels, p. 295; also in
Paul Adrien Maurice Dirac : Reminiscences about a Great Physicist (1990) edited by Behram N.
Kursunoglu and Eugene Paul Wigner, p. xv.
13For a detailed review on the RSB scenario see [Mar00b]. See also [Par96].
14Ferromagnets in disguise can be obtained, for example, by performing a random gauge transfor-
mation on an ordered system [Nis01], as it is done in the Mattis model [Mat76].
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particular is in contrast with the RSB theory, that predicts a de Almeida-Thouless
(dAT) line for h > 0.15

It is still matter of debate whether which of the two dominant theories for the
SG phase, the droplet and the RSB scenario, describes well the SG phase [Moo11,
Par12b, Yeo12, Yuc12, Bil13, Yuc13]. It is predominantly accepted that the RSB
scenario is valid for dimensions greater than the upper critical dimension du = 6,
and that the droplet picture is exact in d = 1.

A different order parameter.

The reason why it is hard to understand the SG in real-life (three-dimensional) SGs
could be that we are not looking at the most useful order parameter [Con03, Con05a,
Con06].

From a purely mathematical perspective, in the SK model the square of overlap
(1.8) represents the covariance of Hamiltonian (1.9). On the other side, in a finite-
dimensional EA model, the covariance of Hamiltonian (1.5) is given by the square
of the link overlap

q2
link = 1

N z

N∑
x y

d∑
μ=1

qxq y (1.21)

where qx = s(a)
x · s(b)

x and z is the connectivity.
Overlap and link overlap are the same in the SK model, but in finite-dimensional

lattices the two behave differently, as, for instance, under an inversion of all the spins
the change in q is O(Ld), while in the case of the link overlap the only changes are
in the links that cross the domain surfaces, so the variation is O(Lds ).

Droplet and RSB theories have different predictions for the relation between q
and qlink. In the droplet picture, where the surface-volume ratio vanishes for large
systems, qlink should be constant, with no correlation with q. On the other side, in the
RSB scenario the surfaces are space-filling, so there should be a correlation between
qlink and q, implying that also P(qlink) is non-trivial.

1.2 Observables in Simulations

The reason why numerical simulations became so popular in the last decades is that
they are able to give a perspective to physical phenomena orthogonal to the one com-
ing from analytical work and experiments. It is often not possible to validate a model,
nor to make predictions that experimentalists can use by using only analytical tools.
A numerical simulation can take advantage of the knowledge of the Hamiltonian
to test it straightforwardly. As an advantage with respect to experiments, computer
simulations are able to measure a large set of observables, mostly microscopic, that

15In Chap. 2 we will try to see whether there is or not a phase transition in a field, that would
discriminate the (in)correct theory.

http://dx.doi.org/10.1007/978-3-319-41231-3_2
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are not accessible on real samples. The conjunction of these three aspects of research
makes scientific advance much more effective. In this chapter we will discuss most
of the observables that we kept track of in our simulations and analyses.

Some notation.

Most of the work presented in this thesis comes from numerical simulations on
systems of N spins, both in regular d-dimensional cubic lattices of size Ld = N
(Chaps. 2, 3, 4, 6), and in fully connected networks (Chap. 5). Each spin �sx occupies
a position x and has m components, �sx = (sx,1, sx,2, . . . , sx,m). If m = 1 we call
them Ising spins and often remove the vector symbol, sx . If m = 2 they are XY spins,
while if m = 3 we call them Heisenberg spins. The set of all the spins �sx of the
system is denoted with a ket, |�s〉, and constitutes a configuration.

Through MC simulations we thermalize the system at a temperature T , taking
them to follow the Boltzmann distribution

P(|s〉) ∼ e−βH(|s〉), (1.22)

where H is the model’s Hamiltonian and β = 1/kBT = 1/T is the inverse temper-
ature, as we set to one the Boltzmann constant, kB = 1.

Once the system is thermalized, one can take thermal averages of any measurable
observable O, that we denote with 〈O〉. The averages over the disorder, instead, are
indicated with an over line O. To make the notation lighter, we use E(O) when both
averages are performed, E(O) ≡ 〈O〉.

It can be useful to define a scalar product between two configurations |s〉 and |s ′〉,
for which we use again Dirac’s notation

〈s| s ′〉 =
N∑
x

�sx · �s ′
x . (1.23)

It is straightforward to define the 1- and 2-norms in this space

‖s‖1 =
N∑
x

|�sx |, (1.24)

‖s‖2 =
N∑
x

|�sx |2 = 〈s| s〉. (1.25)

Now that the notation is defined, we can proceed describing the set of observables
O that we measured in our simulations, that can be used to validate theories and
physical scenarios.

http://dx.doi.org/10.1007/978-3-319-41231-3_2
http://dx.doi.org/10.1007/978-3-319-41231-3_3
http://dx.doi.org/10.1007/978-3-319-41231-3_4
http://dx.doi.org/10.1007/978-3-319-41231-3_6
http://dx.doi.org/10.1007/978-3-319-41231-3_5
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1.2.1 Overlaps

We will use two replicas in order to create gauge-invariant observables [Mez87]. To
identify different replicas we use the superscripts (a),(b),(c) and (d). The definition of
overlap we use depends on the model we consider and on its symmetries.

Ising overlap.

With Ising spins sx = ±1 we can define the local overlap as

qx = s(a)
x s(b)

x , (1.26)

from which we can create the global overlap

q = 1

N

N∑
x

qx = 1

N
〈s(a)|s(b)〉, (1.27)

where we used notation (1.23).
Tensorial overlap When the spins are m-component vectors �sx = (sx,1, sx,2, . . . ,

sx,m) and H displays an O(m) symmetry it is convenient to define a rotationally
invariant overlap.

We define the tensorial site overlap is defined as

ταβ(x) = s(a)
x,αs(b)

x,β, (1.28)

where α,β = 1, . . . , m indicate the components of the vector. Notice that ταβ(x) is
not Hermitian, since

ταβ(x)† = τβα(x) = s(a)
x,βs(b)

x,α. (1.29)

The order parameter is the overlap tensor [Fer09b]:

Qαβ = 1

N

∑
x

ταβ(x). (1.30)

This quantity is not rotationally invariant, and since it is a tensor it is not easy to deal
with, so we use the square overlap [Bin86, Col95]

Q2 = Tr
[
Q Q†

]
= 1

N 2

∑
x, y

Tr
[
τ (x)τ ( y)†

]

= 1

N 2

∑
x, y

(�s(a)
x · �s(a)

y )(�s(b)
x · �s(b)

y ), (1.31)
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that is O(m) × O(m) invariant (rotational invariance for replica a and replica b).
Even though the Q2 defined in Eq. (1.31) is a square overlap, we will be calling it
overlap when referring to it.
The self overlap Q2

self is defined analogously, by taking (a) = (b) in the previous
definitions. Notice that the self overlap is not identically equal to 1. It is easy to see,
for example, that at infinite temperature, in the thermodynamic limit it is equal to
Q2

self(T = ∞; L = ∞) = 1/m (see for example the Appendix of [BJ11]).
Scalar overlap With vector spins, if the Hamiltonian is not rotationally invariant the
overlap can be expressed straightforwardly through the scalar product between spins
of different replicas. The site overlap would be

qSG,x = �s a
x · �s b

x , (1.32)

and the global overlap

qSG = 1

N

N∑
x

qSG,x . (1.33)

We will be calling qSG the SG overlap, to differentiate it from the CG overlap QCG,
defined in the next paragraph.
Chiral overlap With vector spins it is possible to define the chirality, an observable
whose importance we will discuss in Chap. 3. It represents the amplitude and hand-
edness of the alignment of the spins along the axis μ, and is expressed with the mixed
product of three consecutive spins

ζx,μ = �sx+eμ
· (�sx × �sx−eμ

), μ = 1, . . . , d, (1.34)

where eμ is the unitary vector along the μ direction. We can see it as the oriented
volume of the parallelepiped we can construct with the three spins. The CG overlap
is defined similarly to the SG one,

κx,μ = ζ(a)
x,μ ζ(b)

x,μ, (1.35)

but in this case we also sum over the d equivalent directions μ

qCG = 1

Nd

d,N∑
x,μ

κx,μ. (1.36)

Link overlap We also measured the link overlaps, that were shown to be equivalent
to the overlaps in the description of the low temperature phase [Con05b, Con06]. In
the case of Ising spins the link overlap is

http://dx.doi.org/10.1007/978-3-319-41231-3_3
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q2
link = 1

Nd

N∑
x

d∑
μ=1

qxqx+eμ
(1.37)

= 1

Nd

N∑
x

d∑
μ=1

s(a)
x s(a)

x+eμ
s(b)
x s(b)

x+eμ
,

while for vector spins

Q2
link = 1

Nd

N∑
x

d∑
μ=1

qμ 2
link(x), (1.38)

qμ 2
link(x) = Tr

[
τ (x)τ (x + êμ)

†
] = (1.39)

= (�s (a)
x · �s (a)

x+êμ
)(�s (b)

x · �s (b)

x+êμ
),

which is a generalization of (1.37).

1.2.2 Scalar Correlators

For a given the wave vector k we can define the Fourier transforms of the overlap
fields

q̂SG(k) = 1

N

N∑
x

qxeik·x (1.40)

q̂μ
CG(k) = 1

N

N∑
x

κxeik·x, (1.41)

that we use to build the wave-vector dependent susceptibilities as

χSG(k) = N 〈|qSG(k)|2〉, (1.42)

χCG(k) = N 〈|qCG(k)|2〉. (1.43)

Since the lattice is finite and has discrete spacings, in our simulations we measure
q̂(k) for a specific set of wave vectors that we need to compute relevant observ-
ables. Calling kmin = 2π/L the lowest wave number allowed by periodic boundary
conditions, we seek

kn = (nkmin, 0, 0) n = 0, . . . , L/2, (1.44)

k11 = (kmin,±kmin, 0), (1.45)

and the permutations of their components.
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We can then construct the susceptibilities χSG = χSG(0) and χCG = χCG(0) and
the dimensionless cumulant R12 that will be useful to spot phase transitions with the
finite-size scaling method (Sect. 1.3.4):

R12 = χ(k1)

χ(k11)
, (1.46)

where we averaged over all the possible permutations of the components of k1 and
k11.

We define the two-point correlation functions C(x, y) = 〈qxq y〉. When the system
is translationally invariant, this correlation can be expressed as a function of the
separation r = x− y, being called C(r). We compute C(r) and its Fourier transform
Ĉ(k) as

C(r) = 1

N

N∑
x

qxqx+r , (1.47)

Ĉ(k) =
∑
r

C(r)eik·(r), (1.48)

and consequently C(r) can be obtained back as the anti Fourier transform C(r) =
1
L

∑
k

Ĉ(k)e−ik·(r). In appendix D.3 we discuss the numerical estimators of these

quantities.
The wave-vector dependent susceptibilities are directly related to the correlation

functions. Using Eqs. (1.40), (1.42) we have

χ(k) = N
[
q̂SG(k)q̂SG(k)∗

] = (1.49)

= 1

N

N∑
x

qxeik·x
N∑
y

q ye
−ik· y = (1.50)

= 1

N

N∑
x, y

C(x, y)eik·(x− y) = (1.51)

that in the presence of translational invariance and recalling Eq. (1.48) becomes

= 1

N

N∑
x

N∑
r

C(r)eik·(r) = Ĉ(k). (1.52)

This means that we can measure correlation functions both in the real and in the
Fourier space, depending on which of the procedures is more convenient numerically.

The point-to-plane correlation functions are computed from the Fourier transform
of the fields,
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C(r) = 1

L

L−1∑
n=0

e−ir·kn χ
(
kn

) ≡
∑
y,z

C(x = r, y, z), (1.53)

where r is the modulus of the distance. Equation (1.53) is equivalent if we align the
wave vector along any of the three coordinate axes, so we average over these choices.

In Chap. 2 we will use similar procedures to construct correlation functions with
four replicas instead of two.

1.2.3 Tensorial Correlation Functions

We will be measuring both point and plane correlation functions. The point correla-
tion function is

C (point)(r) = 1

Nd

d∑
μ=1

N∑
x

Tr[τ (x)τ (x + êμr)†], (1.54)

where μ = 1 (or x), 2 (or y), 3 (or z) is a coordinate axis, and eμ is the unitary vector
in that direction. We also use plane correlation functions because they decay slower
and have a better signal-to-noise ratio. If we denominate the plane-overlap tensor as
the mean overlap tensor over a plane

Px
αβ(x) = 1

L2

L−1∑
y,z=0

ταβ(x, y, z), (1.55)

we can define the plane correlation function as

C (plane)(r) = 1

Ld

d∑
μ=1

L−1∑
x=0

Tr[Pμ(x)Pμ(x + r)†]. (1.56)

These tensorial definitions of C(r) are O(m) × O(m) invariant.
The link-overlap correlation functions are

C (point)
link (r) = 1

Nd2

d∑
μ,ν=1

N∑
x

qν 2
link(x)qν 2

link(x + r êμ), (1.57)

C (plane)
link (r) = 1

Ld

d∑
μ=1

L−1∑
x=0

Plink(x)Plink(x + r), (1.58)

http://dx.doi.org/10.1007/978-3-319-41231-3_2
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with

Px
link(x) = 1

L2d

d∑
ν=1

L−1∑
y,z=0

qν 2
link(x, y, z). (1.59)

One could in principle choose to subtract from those correlators the equilibrium link
overlap, to obtain connected correlators, since the link overlap is non-zero also in
the paramagnetic phase.

1.2.4 Four-Replica Correlators

We will be working with Ising spins under an applied magnetic field h > 0. In
this situation the order parameter qEA is not zero even in the paramagnetic phase.
This implies that we cannot construct connected correlation functions by means of
only two replicas. Therefore, for each sample we simulated 4 different replicas, in
order to be able to compute connected correlation functions that go to zero at infinite
distance. In appendix B we give more details and show that the most informative
connected correlator we can construct with 4 replicas is the replicon propagator
[Alm78b, Dom06]

GR(r) = 1

N

∑
x

(〈sxsx+r〉 − 〈sx〉〈sx+r〉)2. (1.60)

To compute GR we calculate the 4-replica field

�(ab;cd)
x = 1

2
(s(a)

x − s(b)
x )(s(c)

x − s(d)
x ), (1.61)

where the indexes a, b, c, d indicate strictly different replicas. Notice that

〈
�(ab;cd)

x �(ab;cd)
y

〉 = (〈sxsx+r〉 − 〈sx〉〈sx+r〉)2 , (1.62)

so we obtain GR by taking also the average over the samples

E(�(ab;cd)
x �(ab;cd)

y ) = GR(x − y). (1.63)

Here, and everywhere there is more than one possible permutation of the replica
indices, we average over all of them to gain statistics.

From this point on everything is formally like the two-replica construction, using
�x instead of qx to construct the susceptibilities χ(k). For example correlations in
the Fourier space are defined by Fourier-transforming �(ab;cd)

x , so the wave-vector
dependent replicon susceptibility is expressed as



1.2 Observables in Simulations 25

χR(k) = 1

N
E(|�̂(ab;cd)

k |2), �̂
(ab;cd)

k =
N∑
x

eik·x�(ab;cd)
x . (1.64)

Point-to-plane correlation functions are computed through Eq. (1.53).

1.2.5 Correlation Lengths

The correlation length is the average distance weighed with the C(r). We will be
constructing second-moment correlation lengths for point and plane correlations

ξ
(point)
2 =

√√√√
∫ L/2

0 C (point)(r)r4dr∫ L/2
0 C (point)(r)r2dr

, (1.65)

ξ
(plane)
2 =

√√√√
∫ L/2

0 C (plane)(r)r2dr∫ L/2
0 C (plane)(r)dr

. (1.66)

The difference in the definitions is due to the presence of a Jacobian term when we
want to integrate the point correlation function over the space. These two lengths
would be proportional by a factor

√
6 if they had the same purely exponential

correlation function. Note that ξ
(point)
2 and ξ

(plane)
2 are proper estimators of a cor-

relation length only when the correlation functions C (point)(r) and C (plane)(r) are
connected (i.e. they go to zero for large r ). Otherwise, in principle they could be
used to individuate if a quench penetrated in the SG phase. In fact, depending on m a
quench will drive us in a ferromagnetic or in a SG phase. Our correlation functions are
connected in the SG phase, but they are not in a ferromagnetic state. Consequently, a
cumulant such as ξL/L—being ξL the correlation length measured in a lattice of size
L—will diverge as Lθ/2 (see Ref. [AB10a] for a definition of θ and an explanation
of this behavior) when m is too large for a SG phase, it will converge as 1/L if the
quench penetrates in the SG phase, and it will be of order 1 right at the critical m,
mSG, that is probably not integer, so not exactly locatable.

When the correlation function decays very quickly and the noise becomes larger
than the signal, one could measure negative values of C(r), that would be amplified
by the factors r2 and r4 in the integrals. This would imply very large errors in ξ, or
even the square root of a negative number. To overcome this problem, we truncated
the correlation functions when they became less than three times the error [Bel09a].
This procedure introduces a small bias, but reduces drastically the statistical error.
Furthermore, the plane correlation function required the truncation much more rarely,
therefore we compared the behaviors as a consistency check.

As shown in the appendices of [BJ11], in the thermodynamic limit (kmin = 0) the
second moment correlation length can be re-expressed as
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ξL = 1

2 sin (kmin/2)

√
χ(0)

χ(kmin)
− 1. (1.67)

being kmin = (2π/L , 0, 0) or permutations. The sub-index L stresses the dependence
the linear size of the lattice (recall that kmin depends on L). This same definition can
be used with any of the observables defined in the previous section (SG susceptibility,
SG susceptibility, replicon susceptibility, …). This quantity will be used only using
with plane correlations, since integrating over all the directions in the lattice to
calculate χ(kmin) is a cumbersome and imprecise task. When computing ξCG, one
can choose μ parallel or orthogonal to the wave vector kmin. As it was already
observed in [Fer09b], there is no apparent difference between the two options, so we
averaged over all the values of μ to enhance our statistics.

The definitions of the link correlation lengths ξ
(point)
2,link and ξ

(plane)
2,link can be obtained

from Eqs. (1.65) and (1.66), by substituting the spin with link correlation functions.

1.3 Phase Transitions with a Diverging Length Scale

The topics treated in this section have been very successful in describing phase
transitions and are very well consolidated tool since the 1970s. Our scope here is not
to give an extended treatment, that can be found elsewhere (see e.g. [Ma76, Bin86,
Hua87, Car96, Ami05]), but to refresh the reader’s memory on some concepts that
we will be using throughout this dissertation.

1.3.1 Second-Order-Like Phase Transitions

The phenomenology of the spin-glass transitions we will treat is similar to that of
a second-order phase transition. In this section we will assume Ising spins, but the
description is the same with m-component spins. The coherence length ξ, that we
can define through the long-distance decay of two-point correlation function,

〈sx+rsx〉 |r|→∞∼ e−|r|/ξ, (1.68)

diverges in power law as we approach the critical point

ξ ∝ |t |−ν . (1.69)

In Eq. (1.69) we defined the reduced temperature t = T −Tc
Tc

, and Tc is the critical
temperature. Mind that the symbol t will represent the reduced temperature only
in this chapter, while throughout the rest of the text it will indicate the time. The
exponent ν characterizes the phase transition and sets its Universality class. The
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correlation length ξ is not the only diverging observable. To fully identify the type
of phase transition we can define six critical exponents α,β, γ, δ, η, ν that describe
the power law behavior of the observables that are relevant in our case.

The specific heat diverges as

Ch(t) ∼ |t |α. (1.70)

The case α = 0 can indicate a discontinuity or a logarithmic divergence.
The order parameter, for example the magnetization m or the overlap q, vanishes

as
m̂(t) ∼ (−t)β (1.71)

when we approach the critical temperature from below.
The response to a small external field h, that we call susceptibility, diverges like

χ(t) ∼ |t |γ . (1.72)

If we are exactly at the critical point t = 0, for small fields h the order parameter
behaves as

m(t = 0, h) ∼ |h|1/δ, (1.73)

and the correlation length decays with a power law

〈sx+rsx〉 |r|→∞∼ |r|−(d−2+η), (1.74)

and we call η the anomalous dimension.
These critical exponents are constrained by a set of four independent scaling

relations,
2β + γ = 2 + α,

2βδ − γ = 2 + α,

γ = ν(2 − η),

νd = 2 − α,

(1.75)

that reduce to two the number of independent exponents. The fourth of Eq. (1.75)
relates the exponents to the dimension of space. It is called hyperscaling relation and
is valid only under the upper critical dimension du . From the hyperscaling relation
one understands directly that the universality class must depend on dimensionality,
since the critical exponents change with d.

1.3.2 Real-Space Coarse Graining

The coherence length ξ represents the size of patches of highly correlated spins. One
can think that patches of size ξ interact one with the other. This concept works very



28 1 An Introduction to Spin Glasses: History, Simulations and Phase Transition

well in ferromagnets [Ma76, Hua87, Ami05], but though plausible it is still not fully
developed for disordered systems [Har76, Dot87, Dot01, Ang13]. Following this
idea, since ξ is singular at the critical temperature, we can think to construct a block
Hamiltonian that describes the interactions between patches of spins. Let us call b
the linear size of these blocks. Then there will be Ldb−d blocks, each including bd

spins. The block variables σx can be defined as the mean spin in the block

σx = b−d
bd∑
y∈x

s y, (1.76)

where the sum runs over all the spins s y that belong to the block σx . The probability
distribution for the blocks of spins is

P ′[{σ}] =
〈∏

x

δ

⎛
⎝σx − b−d

bd∑
y∈x

s y

⎞
⎠

〉

P

∝

∝
∫

e−H[{s}]/T
∏
x

δ

⎛
⎝σx − b−d

bd∑
y∈x

s y

⎞
⎠ ds1ds2 . . . dsN ≡

≡ e−Hblock[{σ}]/T , (1.77)

where with 〈. . .〉P we indicate the average using the equilibrium distribution P of
the spins s y, P = Z−1e−H[{s}]/T , being Z the partition function. Hblock is the block
Hamiltonian deriving from the coarsening we made, and is equivalent to the original
Hamiltonian as long as we are interested in spatial resolutions larger than b. This is
our case, since we want to use this procedure to describe diverging length scales. Once
we constructed the blocks once, we can obviously iterate the process, renormalizing
each time dynamics variables and Hamiltonian.

1.3.3 Scaling Hypothesis and Widom Scaling

The scaling hypothesis, first conjectured by Widom [Wid65], is the reasonable
assumption that if we have a phase transition with a diverging length ξ, then ξ is
the only relevant length. It is model-independent and has been very effective in
describing observations. The main idea is that the singular behavior is completely
due to the long-range correlation of spin fluctuations near Tc.

To formalize this setting, we assume that when we coarsen the lattice in block
variables the free energy remains unchanged, F = Fcoarse: even though our model
is short ranged, we are only interested in the long-range correlations that arise from
being at criticality. The renormalized temperature t̃ and field h̃ will have to be rescaled
in a consonous way. This rescaling can be written as
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{
t̃ = t b yt

h̃ = h b yh ,
(1.78)

where yt and yh are generic exponents that describe the rescaling. Using Eq. (1.78)
and F = Fcoarse we have that the intensive free energy scales as

f (t, h) = b−d f (t̃, h̃) = b−d f (t b yt , h b yh ). (1.79)

To obtain yt and yh as a function of the critical exponents we study the behavior of
the magnetization m, that we can obtain by deriving f by the magnetic field:

m(t, h) = ∂ f (t, h)

∂h
= b−d ∂ f (t b yt , h b yh )

∂h
= b yh−dm(t b yt , h b yh ). (1.80)

Since b is an arbitrary scaling parameter, we can set it to grow as any diverging
function of t̃ or h̃. If we place ourselves in the zero-field limit h = 0 it is convenient
to choose b = (−t)−1/yt , so Eq. (1.80) becomes

m(t, 0) = (−t) (d−yh)/yt m(−1, 0). (1.81)

Remembering the definition of the critical exponent β, that defines that approaching
the critical point from below the magnetization goes to zero as m(t) ∼ (−t)β , we
can determine the constraint β = (d − yh)/yt .

We can also study the behavior of the system along the critical curve t = 0. A
helpful choice of b is then b = h−1/yh , in such a way that

m(0, h) = (h) (d−yh)/yh m(0, 1). (1.82)

This time we use the definition of δ, that for small h sets the behavior of m along the
critical line as m(0, h) ∼ h1/δ , and obtain the constraint δ = yh/(d − yh).

Using Eq. (1.75) it becomes possible to reconstruct all the other critical exponents.

1.3.4 Finite-Size Scaling

Simulations near Tc in a lattice of linear size L are usually far from the thermo-
dynamic, due to the extreme growth of the correlation length. Finite-size scaling
(FSS) techniques let us measure properties of the thermodynamic limit by using L
as a scaling variable, just like we did with the parameter b in the previous para-
graphs. It was proposed by Nightingale [Nig75] and developed by Binder [Bin82],
and it is nowadays the method of choice to study this type of phase transitions (see
e.g. [Bin86, Bal96, Bal98a, Bal00, Lee03, Cam06, Jor06, Leu08, Jor08b, Has08,
Fer09c, Bn12b, BJ13, BJ14d, Lul15] for applications of FSS in the field of SGs).
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1.3.4.1 Spotting the Transition

If an observable O diverges at the critical temperature as O ∝ |t |xO , then its thermal
average close to the critical point can be expressed like

〈O(L , T )〉 = LxO/ν

[
fO(L1/ν

(
t)

)

+ L−ωgO
(
L1/ν t

)

+ L−2ωhO
(
L1/ν t

) + · · ·
]
, (1.83)

where fO, gO and hO are analytic scaling functions for observable O, while ν is
defined in Eq. (1.69). The exponent ω > 0 is the largest irrelevant exponent. It is
universal, and it expresses the corrections to the dominant scaling. The lower dots,
. . ., stand for subleading corrections to scaling.

The case O = ξL(T )/L is of special interest, since ν is the critical exponent for
the correlation length. Then, Eq. (1.83) becomes in this case, up to the leading-order,

ξL

L
= fξ

(
L1/ν(t)

) + · · · . (1.84)

Therefore, we can identify T = Tc (t = 0) as the temperature where the curves
ξL(T )/L cross for all L for sufficiently large L . The same reasoning is valid also for
R12, defined in Eq. (1.46)

R12 = fR
(
L1/ν(t)

) + · · · , (1.85)

so R12 as well can be used to identify the phase transition, and has the feature of not
depending on the susceptibility.

The cumulant R12 (recall Fig. 2.1) was introduced in [Bn12a] to estimate the
critical temperature bypassing pathologies on χ(0) due to the fact that the overlap is
non-zero in the paramagnetic phase [Leu09].

Note that the value of ξL/L and R12 at the crossing tends to a non-trivial universal
quantity (see also footnote in Sect. 1.3.5):

ξL

L

∣∣∣∣
T L ,2L

= ξ

L

∣∣∣∣
L=∞

+ Aξ L−ω + · · · , (1.86)

R12|T L ,2L = R12|L=∞ + AR L−ω + · · · . (1.87)

If we let T L ,2L be the temperature where ξL(T )/L crosses ξ2L(T )/(2L), this
regime is reached once the T L ,2L has converged. Yet, if ω is small, our lattice sizes
may not be large enough, so we will have to take in account the aforementioned
corrections to scaling. Including the second-order corrections, the approach of the

http://dx.doi.org/10.1007/978-3-319-41231-3_2


1.3 Phase Transitions with a Diverging Length Scale 31

crossing temperature T L ,2L to the asymptotic value Tc can be written as

T L ,2L − Tc = AL−(ω+1/ν) + BL−(2ω+1/ν) + · · · , (1.88)

where A and B are non-universal scaling amplitudes.

1.3.4.2 Critical Exponents

To compute the critical exponents ν and η we use the quotients’ method, taking the
quotient of the same observable between different lattice sizes L and 2L . At the
temperature T L ,2L we get:

〈O2L(T L ,2L)〉J

〈OL(T L ,2L)〉J

= 2xO/ν + AxO L−ω + · · · . (1.89)

Again, AxO is a non-universal amplitude, while the dots stand for subleading correc-
tions to scaling. Therefore, if O is the thermal derivative of ξ, we can compute the ν
critical exponent through the relation

dξ2L(T L ,2L)/dT

dξL(T L ,2L)/dT
= 21+1/ν + Aν L−ω + · · · . (1.90)

To calculate η we use the susceptibility, as χ ∝ |T − Tc|−γ ∼ Lγ/ν . Since for the
scaling relations (1.75) 2 − η = γ/ν, the susceptibility at the critical temperature
scales as

χL ∼ L2−η, (1.91)

so the exponent η can be calculated by taking the quotient between sizes 2L and L

χ2L(T L ,2L)

χL(T L ,2L)
= 22−η + Aη L−ω + · · · . (1.92)

Due to the scaling relations (1.75) determining the two exponents η and ν is enough
to be able to estimate them all.

1.3.5 Universality and Renormalization Group Flow

The RG assumption is that the coarse-graining transformation (1.76) will transform
smoothly the free energy (Eq. (1.79)), that will converge to aFP in the space of the
rescaled parameters (t̃ and h̃ in the case of Eq. (1.79)). That is, when the system
is looked at large enough scales, the whole behavior of the system will be given
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T = 0 T = ∞T = Tc

Fig. 1.6 RG flow in the Ising model. The only control parameter is the temperature. There are two
stable FP at zero and infinite temperature, and one unstable FP at the critical temperature Tc. The
arrows represent the direction of the flow

by the FP, that depends in a complicated way on physical parameters such as the
temperature T , the magnetic field h, etc.

Now, the physical parameters can be adjusted in experiments, and can be imposed
in calculations, in order to tune the regime in which the system finds itself. In the
space of the (rescaled) parameters, a FP will attract the RG trajectories that start
in a finite region around it. This region is often a hypersurface in the space of the
scaling variables. Since all the trajectories of the hypersurface converge to the same
FP, in the infinite-size limit all these starting points will share the same behavior.
More precisely, the value to which the observables converge will be the same, such as
ξ|L=∞ and R12|L=∞,16 and the way they converge to this quantity also will coincide,
so the critical exponents will be the same. The set of all the quantities that are set by
the FP is called universality class. In principle, different models can fall in the same
universality class as long as they are dominated by the same FP.

Let us take as an example the Ising model [Hua87] with d > 1 spatial dimen-
sions, that has the temperature as only control parameter, and displays a second-order
phase transition at a temperature Tc. In this case the parameter space is 1 dimensional,
so the critical hypersurface is a point. There is a zero-temperature and an infinite-
temperature stable FP, respectively governing the behavior of the ferromagnetic and
of the paramagnetic phases. By stable we mean that the FP is attractive, and RG
trajectories starting from a neighborhood finish in those FPs. The two are separated
by a FP at Tc that represents the critical point (Fig. 1.6). Any RG trajectory start-
ing at T > Tc will converge to the T = ∞ FP after a large enough number of
coarse-graining steps. Equivalently, the behavior at T < Tc is described by the zero-

16 For systems belonging to the same universality class the correlation function scales as

C(r, L) = 1

L2−η−d
fC

( r
L

)
. (1.93)

The scaling function fC is depends on the geometry of the system (ratio between the sides, type of
boundary conditions, etc.), but not on the Hamiltonian (as long as it is dominated by the same FP). If
we take the ratio between the Fourier transforms of the correlation function R12 = χ(k1)

χ(k11)
, the diver-

gences even out an it tends to a constant value. Similarly, for large L , ξL
L = 1

2L sin (π/L)

√
χ(0)
χ(k1)

− 1

tends to a constant value, since L sin (π/L) → π.
Even though ξ|L=∞ is universal, its value is not very interesting, since it diverges. To obtain

some non-trivial limit, we can divide it by some power of L . The ratio ξL
L A

∣∣∣
L=∞ has three limits,

two of which are trivial. If A > 1 we get ξL
L A

∣∣∣
L=∞ = 0, while if A < 1 then ξL

L A

∣∣∣
L=∞ = ∞, no

matter the universality class of the phase transition. Only A = 1 gives therefore a useful indicator
of the universality class, since ξL

L tends to a finite value.
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temperature FP after the system is coarse-grained enough. Moreover, the fact that the
ferromagnetic phase is described by a FP at zero temperature means that neglecting
thermal fluctuations is a fair way to treat this phase. Being the critical FP unstable,
the only way for a trajectory to converge to it is if it starts at T = Tc.

The “speed” of the rescaling is proportional to the distance from the critical
temperature t [recall the first of (1.78)], so the closer we are to Tc the longer it
will take to reach the FP. Suppose that starting from T > Tc we want to reach a
correlation length ξ0 = O(1), this will take an amount n(T ) of coarse-graining steps,
so ξ(T )b−n(T ) = ξ0. The smaller |t |, the higher n(T ). So, as T → Tc, n(T ) → ∞,
meaning that ξ(Tc) → ∞, representing a critical point.

We stress that as long as t � 0, it will take a very large number of coarsening steps
before the behavior of the system (for example the size of the correlation length) start
to appear more similar to that of the stable infinite-temperature FP (to which it will
eventually converge) than to that of the unstable critical FP.

1.3.5.1 Crossover Behaviors

As pointed out in the previous section, when we find ourselves very close to a critical
(unstable) FP, the system will show for a long time (in terms of coarse-graining steps)
echoes of that FP’s behavior.

To tackle the role of crossover behaviors we make an explicit example. Let us
take in account an m = 3 Heisenberg magnet with single-ion uniaxial anisotropy
and nearest-neighbor interactions. The Hamiltonian is

Hsi = −1

2

∑
|x− y|=1

�sx · �s y − D
∑
x

s2
x,z, (1.94)

where sx,z is the z component of spin �sx . The anisotropy term D splits the Heisenberg
O(3) symmetry into a direct product of an XY O(2) and an Ising symmetry. When
D = 0 the symmetry of the model is O(3), and the critical behavior is governed
by a Heisenberg FP. When D → +∞ the z component is infinitely favored, only
configurations with sx,z = ±1 (∀x) are eligible, and the system falls in the Ising
universality class. When D → −∞ the z component is infinitely suppressed, only
configurations with sx,z = 0 are allowed, and the critical behavior is XY. Thus, in
the RG flow diagram that we can draw in the (T, D) plane, there will be three fixed
points, Ising, XY and Heisenberg. Figure 1.7 gives a qualitative picture of what the
phase diagram could look like. Two critical lines will part from the D = 0 fixed point.
It is reasonable that the XY and Ising universality classes for D �= 0 are maintained
along the whole area of the phase diagram where the symmetries are broken, so the
Ising and XY fixed points will be attractive along the critical lines.

Now, assume we are in a situation of small positive anisotropy D. Depending
on the temperature we will find ourselves in some part of the dashed line drawn in
Fig. 1.7. We can start our RG flow, for example, from point A, deep in the ferro-

http://dx.doi.org/10.1007/978-3-319-41231-3_1
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XY order

Ising order
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Fig. 1.7 Phase diagram of the Heisenberg model with uniaxial anisotropy. When the anisotropy
parameter D is positive the low-T phase has Ising order, and the critical line is dominated by the
Ising FP (I). Equivalently, for D < 0 the order is XY-like, and the critical behavior is XY-like. Only
when D = 0 the critical behavior is Heisenberg-like. The arrows show the direction of the RG flow.
See main text for more discussions of the figure

magnetic phase, or from point B, still in the ordered phase, but very close to the
critical line. Both trajectories will eventually finish in the fixed point that describes
the ordered phase. Yet, a trajectory starting from A will head directly towards the
low-temperature fixed point. The one that begins on B instead, will pass very close
to the Ising FP, and since it is a FP it will spend a lot of time near it. As we argued in
the previous section, this amount of time diverges as point B approaches the critical
line.

This implies that despite the Ising FP attracts trajectories that come away from
the Heisenberg fixed point, when one explores the phase diagram with numerical
RG methods his measurements might be biased by pure echoes of the more unstable
Heisenberg FP. On the present example there are several ways to try to avoid this,
such as (1) using a large D, (2) working very close to the critical temperature, (3)
or tuning the starting point after having performed some RG steps (i.e. working on
very large lattices). Unfortunately these measures are seldom adoptable. In fact (1)
the critical line could exist only for small D, so too large anisotropies would hurl
us in the paramagnetic phase, far from the critical line. This is not the case in this
example (in Chap. 3 we will succesfully use strong anisotropies to study the critical
behavior of the model), but is it, by instance, the case when we deal with SGs in a
field. In that case the control parameter is the field h instead of D, and the critical
line is dominated by a fixed point at T = 0 and finite field [You97] (recall Fig. 1.2).
Working at large h would yes take us far from the echoes of the h = 0 fixed point, but
there is a large risk of overshootings that would make the critical line invisible, which
is a big problem especially if we are not sure whether it exists or not (see Chap. 2).
One could then rely on working very close to the critical line (2), but this is very
hard task when the position (or even the existence) of the critical line is unknown, or
try to use extremely large lattices, that in SGs is rarely feasible because of their very
sluggish dynamics [Bel08b]. The solution is to try to tune these three factors in the

http://dx.doi.org/10.1007/978-3-319-41231-3_3
http://dx.doi.org/10.1007/978-3-319-41231-3_2
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best possible way and to pay special attention, during the analysis, to the crossover
echo effects.

For more quantitative explanations on this and other crossover behaviors see e.g.
[Fis74] and [Car96] (where the previous example is taken from).

1.3.5.2 A Note on the Distribution of the Couplings

The first SG Hamiltonian, proposed in [And70, Edw75] (see Sect. 1.1.2), depended
on a set of coupling Jx y that followed a distribution of quenched couplings P(Jx y).
In [And70] P(Jx y) was meant to follow roughly the RKKY distribution, but already
in [Edw75] this idea was abandoned in favor of a Gaussian distribution, for sake
of simplicity. The EA model described successfully the phenomenology of the spin
glass, therefore it was kept. There is no solid argument stating that the P(Jx y) should
be Gaussian rather than, for instance, bimodal. The reason of this approach is often
seen in theoretical physics: one simplifies the model as much as it is possible, try-
ing to keep track of only the most fundamental traits, so Edwards and Anderson
hypothesized that it was important that P(Jx y) imply frustration, but it did not have
to be necessarily the real one (the one that would descend from a renormalization of
the RKKY couplings), provided that the P(Jx y) is “decent” enough, and for example
it has a finite variance.17

This said, a very large amount of Hamiltonians were proposed after the EA model,
and all of them tried to pick the fundamental aspects, such as disorder, symmetries
and range of the interactions, and to neglect what seemed to be unimportant, such as
the exact distribution of the couplings. The Gaussian pdf has often been chosen, but
depending on the context other distributions were used as well.

That these models belong to the same universality class no matter the P(Jx y) is
a natural hypothesis in SG theory. If it were contradicted there would be no reason
to choose one distribution over another, and all the results obtained by SG theory
would have a very limited impact.

The general feeling in the SG community has always been, indeed, that the precise
distribution of the couplings is an unimportant feature in their description, despite no
proof has been given yet. Some doubts arose from numerical works in which different
critical exponents were measured (e.g. [Ber95]), but recent careful literature suggests
that it is a matter of finite-size effects, and when scaling corrections are taken in
account the universality is confirmed.

This independence from microscopic details like the disorder distribution has been
found for spin glasses [Hem84, Jor06, Kat06, Has08, Jor08a], but also for other
disordered systems such as the Random Field Ising model [Fyt13], or disordered
ferromagnets (either site [Bal98b] or bond [Ber04a, Mal12] diluted).

17Even though in this text we did not treat ppdf with non-zero mean, the mean of P(Jx y)is generally
taken as a parameter [Mez87].
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Chapter 2
The Ising Spin Glass in a Field

This chapter is dedicated to the search of a would-be phase transition in a three-
dimensional spin glass. The discussion will focus entirely on the analysis of the
data and on the results. We want to stress, in this context, that the equilibrium MC
simulations performed in [BJ14a] required huge numerical efforts. On the one hand,
lower temperatures drastically increased thermalization times; on the other hand,
the significance of the results depends upon the size of the systems we are able to
simulate.

The problem of enhancing the reach of our simulations is faced by resorting to
advanced algorithms and techniques, such as PT1 and MSC,2 but that is still not
enough. It would not have been possible to attain the results published in [BJ14a]
with the mere use of ordinary computational resources. We drew upon (HPC) on one
side by making use of the Janus dedicated computer to simulate the largest lattices,
and on the other by simulating the smaller systems on a large CPU cluster, Memento.

2.1 The de Almeida-Thouless Line in Three Dimensions

In Sect. 1.1.2 we explained that the nature of the SG phase in three dimensions it
is still matter of debate. The two dominant theories are the droplet picture and the
RSB scenario, and they have different predictions on the presence of a SG phase in
a field. In the droplet picture even the smallest applied magnetic field destroys the
SG phase, while in the RSB scenario there is a DAT line hc(T ) that separates the SG
from the paramagnetic phase.

A rather obvious way out would be the experimental study of spin glasses in a
field. Unfortunately, opposing indications have been gleaned over the existence of a
phase transition [Jön05, Pet99, Pet02, Tab10].

1A short discussion on PT is given in Appendix A.1.
2In Appendix B.3 we describe how MSC was implemented in the analysis stage. Multi-spin coding
MC in the simulations [Seo13] follows roughly the same principles than in the analyses.
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The RG approach to this problem also provides conflicting results. No FPs were
found by enforcing that the number of replicas of the replicated field theory be
zero [Bra80b]. However, FPs were found relaxing this condition and using the
most general Hamiltonian [Tem02]. Reasoning along this line, in [Tem08] (see also
[Par12b]) the DAT line was computed for d slightly below the upper critical dimen-
sion du = 6 (the upper critical dimension remains 6 when an external magnetic field
is applied).

Equilibrium numerical simulations offer an alternative approach, which has
already been effective in establishing that a phase transition does occur at zero field
in the d = 3 Edwards–Anderson model [Pal99a, Bal00] (in agreement with exper-
iments [Gun91]). The same strategy has been followed for h > 0, with negative
results [You04, Jör08b]. Yet, this cannot be the whole story: Recent work in d = 4,
hence below du, using a non-standard finite-size scaling method has found clear
evidence for a DAT line [Bn12a]. Furthermore, one may try to interpolate between
d = 3 and d = 4 by tuning long-range interactions in d = 1 chains [Kot83, Leu08].
This approach suggests that a DAT might be present in d = 4, but not in d = 3
[Lar13] (yet, see the criticism in [Leu13]).

The problem being still open, in [BJ14b] we undertook a dynamical study of the
3-dimensional EA spin glass with the Janus dedicated computer [Bel06, Bel08a,
Bel09b, AB10a, Bn11, BJ12]. We studied very large lattices (L3 = 803), in wide
time scales (from an equivalent of ∼1 ps to ∼0.01 s), and gathered both equilibrium
and non-equilibrium data. We focused on the increase of relaxation times and found a
would-be dynamical transition, but at a suspiciously high temperature. A subsequent
examination of the correlation length found a growth faster than predicted by the
droplet theory, and slower than what RSB would expect. We also examined the
problem from a supercooled liquid point of view [Deb97, Deb01, Cav09, Cas05,
Kir87, Kir89], motivated by the equivalence of universality classes between spin
and structural glasses [Moo02, Ful13]. At any rate, the study of the possible critical
divergence of the correlation length allowed us to give upper bounds T up(h) to the
possible transition line for the studied fields.

The impossibility to get concluding evidence in [BJ14b], may be due to the fact that
we did not reach low enough temperatures (our simulations fell out of equilibrium
at temperatures T significantly higher than T up(h)). In any case, a study of the
equilibrium properties of the model is mandatory if one wants to understand the
nature of the thermodynamic phases of the three-dimensional EA spin glass in a
field.

In this dissertation we will not talk about the aforementioned out-of-equilibrium
results [BJ14b]. We will instead focus on the result of equilibrium simulations per-
formed on Janus, using lattices up to L = 32 [BJ14a].3 For further reference we
recall that T up(h = 0.1) = 0.8 and T up(h = 0.2) = T up(h = 0.3) = 0.5. Analo-
gously to what has been already found in mean-field spin glasses on the DAT line,
we find extreme fluctuations in the model’s behavior [Par12a]. We will propose a

3In [BJ14b] we studied a bimodal field, while in the work we present here h is constant. Notwith-
standing, we will make comparisons with the bounds T up(h) by matching h2 in both models.
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method to tame these fluctuations, and we will find out that, although the average
behavior does not show any sign of a phase transition, this is not true for the medians
of our observables, where we have indications of a possible phase transition at a
temperature Tc � T up(h).

2.2 Model and Simulations

2.2.1 The 3d Edwards–Anderson Model in a Field

We consider a 3d cubic lattice of linear size L with periodic boundary conditions. In
each of the N = L3 vertices of the lattice there is an Ising spin sx = ±1. The spins
interact uniquely with their nearest neighbors and with an external magnetic field h.
The Hamiltonian is

Hh = −1

2

∑
|x− y|=1

Jx ysxs y − h
∑
x

sx, (2.1)

where the couplings Jx y, which are constant during each simulation, take the values
±1 with equal probability (quenched disorder). As already stated in Sect. 1.2.4, a
given instance of the bonds Jx y and of the intensity of the magnetic field h define
a sample. We will consider real replicas of each sample, i.e., systems with identical
couplings Jx y and field h, but independent evolutions (for a recent discussion see
[Bel09a, AB10a]). In this work we will use 4 replicas per sample.

2.2.2 The Simulations

For all our simulations we made use of PT.4 The whole procedure was very similar
to the one in [Bn12a].

The smaller lattices (L = 6, 8, 12) were simulated with MSC (C code with words
of 128 bits, by means of streaming extensions) [New99, Bn12a, Seo13] on the
Memento CPU cluster at BIFI. See details on MSC in Appendix B.3. The larger
samples (L = 16, 24, 32) were simulated on the Janus computer [Bel06, BJ12].

An EMCS consisted in 1 PT exchange every 10 Metropolis steps for the MSC
samples, and 1 PT every 10 (HB) for the samples simulated on Janus. Table 2.1
shows the relevant parameters of the simulations. The temperatures were equally
spaced between Tmin and Tmax. The intensities of the external magnetic field we
chose are h = 0.05, 0.1, 0.2 and 0.4.

4See the short note in Appendix A.1.
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Table 2.1 Parameters of the simulations

h L Nsamples Nmin
EMCS fmax Nmin

τ NT Tmin Tmax

0.05 6 25600 1.6 × 106 1 40.0 14 0.5 1.8

0.05 8 25600 3.2 × 106 16 40.0 14 0.5 1.8

0.05 12 25600 3.2 × 106 16 15.6 12 0.7 1.8

0.05 16 12800 1.28×107 128 20.1 24 0.6 1.75

0.05 24 6400 1.28×107 110 16.0 20 0.78 1.54

0.05 32 2400 6.4 × 107 256 14.3 30 0.805128 1.54872

0.1 6 25600 1.6 × 106 4 40.0 14 0.5 1.8

0.1 8 25600 3.2 × 106 16 40.0 14 0.5 1.8

0.1 12 25600 3.2 × 106 16 14.4 12 0.7 1.8

0.1 16 12800 1.28×107 256 27.9 24 0.6 1.75

0.1 24 3200 1.28×107 4097 14.3 24 0.66 1.58

0.1 32 1600 6.4 × 107 533 14.4 30 0.805128 1.54872

0.2 6 25600 1.6 × 106 1 40.0 14 0.5 1.8

0.2 8 25600 3.2 × 106 16 40.0 14 0.5 1.8

0.2 12 25600 3.2 × 106 64 25.4 12 0.7 1.8

0.2 16 12800 1.28×107 256 18.4 24 0.6 1.75

0.2 24 3200 1.28×107 512 16.1 24 0.66 1.58

0.2 32 1600 1.6 × 107 513 16.0 30 0.805128 1.54872

0.4 6 25600 1.6 × 106 1 40.0 14 0.5 1.8

0.4 8 25600 3.2 × 106 4 30.7 14 0.5 1.8

0.4 12 25600 3.2 × 106 16 14.1 12 0.7 1.8

0.4 16 3200 1.28×107 32 20.1 24 0.6 1.75

0.4 24 800 1.28×107 29 16.1 24 0.66 1.58

0.4 32 800 3.2 × 106 16 16.4 30 0.805128 1.54872

We report the magnetic fieldh, the lattice linear size L , the number of simulated samples Nsamples, and
the basic length of a simulation in EMCS Nmin

EMCS. In each simulation we measured the exponential
correlation time τ of the PT random walk in temperatures. When τ was too large to meet our
thermalization requirements, we extended the length of each simulation by an extension factor f .
We denote with fmax the greatest extension factor. We also give the minimum length of a simulation
Nmin

τ in units of τ . In all cases we imposed Nmin
τ > 14. Finally, we give the number of temperatures

NT we used for the PT, and the minimum and maximum temperatures Tmin and Tmax

To check whether the samples were thermalized we measured the exponential
autocorrelation time of the PT random walk in temperatures τ [Fer09b, AB10a,
Yll11, Bn12a]. We required the simulations to last at least 14τ . To do so without
consuming computing time on already thermalized lattices, we assigned a minimum
number of EMCS, Nmin

EMCS, for all the samples, and extended by a factor f > 1
only the ones that did not meet the imposed thermalization criterion. In Table 2.1 we
report Nmin

EMCS, the maximum extension factor fmax of the simulations, and minimum
number Nmin

τ of EMCS in units of τ .
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Equilibrium measurements were taken offline over the second half of each simula-
tion. Independently of how much the simulations were extended, we saved Nm = 16
equally time-spaced configurations and performed measurements on them. We mea-
sured four-replica observables. Therefore, for each sample it was possible to choose
quadruplets of configurations, each from a different replica, in N 4

m ways. Out of the
N 4

m possibilities, we chose randomly Nt = 1000 combinations. In other words, each
sample participated in the statistics with Nt = 1000 measurements.

The errors were estimated with the jackknife method (Appendix E).

2.3 Giant Fluctuations and the Silent Majority

2.3.1 No Signs of a Phase Transition with Common Tools

A common way to locate a phase transition is to proceed as described in Sect. 1.3.4,
by locating the temperature where the curves ξL

L (T ) and R12(T ) of different lattice
sizes cross. For sufficiently large systems, if the curves do not cross, there is no phase
transition in the simulated temperature range.

In the present case, this type of analysis yields a clear result: there is no evidence
of a crossing at the simulated temperatures, magnetic fields and sizes. This is clearly
visible from Fig. 2.1, where the curves ξL

L (T ) and R12(T ) should have some crossing
point if we were in the presence of a phase transition. This is in complete qualitative
agreement with earlier works on this model [You04, Jör08b].

2.3.2 A Hidden Behavior

Although ξL
L (T ) is smaller the larger the lattice size, the coherence length ξL grows

significantly even for our largest lattice sizes. For example at h = 0.2, T = 0.81 we
have ξ16 = 6.09(4), ξ24 = 7.63(9) and ξ32 = 9.0(2). The noticeable size evolution
implies that the asymptotic correlation length ξ∞ is large compared with L = 32.

Also, we can examine the behavior of the spin-glass order parameter, the overlap
q, by studying its distribution function P(q). In the absence of a phase transition
we would be in the paramagnetic phase, and P(q) should be a delta function of a
positive overlap qEA (so in finite systems it should be Gaussian).

Instead, we can see from Fig. 2.2 that its distribution P(q) has a very wide support,
with tails that, for small enough magnetic fields, reach even negative values of q.
This is precisely what was observed in the mean-field version of the model on the
de Almeida-Thouless line, and it was attributed to the contribution of few samples
[Par12a].

http://dx.doi.org/10.1007/978-3-319-41231-3_1
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Fig. 2.1 The figures on the left show the standard correlation length ξL in units of the lattice size L
as a function of the temperature T , for all our lattice sizes. The magnetic fields are h = 0.1 (top), and
h = 0.2 (bottom). If the lattices are large enough, in the presence of a second-order phase transition,
the curves are expected to cross at a finite temperature Tc(h). The figures on the right show the
cumulant R12, which in the presence of a magnetic field is a better indicator of a phase transition
[Bn12a], for the same magnetic fields. At zero field the heights of the crossings (which are universal
quantities) are indicated with a point at Tc = 1.1019(29). They are ξL/L(h = 0; Tc) = 0.6516(32)

and R12(h = 0; Tc) = 2.211(6) [BJ13]. In neither case we observe signs of a crossing at the
simulated temperatures, nor can we state that the curves will cross at lower temperature. The reader
might remark that the curve for L = 32, h = 0.1 is not as smooth as one would expect from parallel
tempering simulations. The reason is twofold. On one side the number of simulated samples is
much smaller than for L < 32, and on the other side temperature chaos, which is stronger the larger
the lattice, is probably present [Fer13]

From these arguments it becomes reasonable to think that we may not be simu-
lating large enough lattices to observe the asymptotic nature of the system and that
there may be some hidden behavior that we are not appreciating.

2.3.3 Giant Fluctuations

In fact, we find out that the average values we measure are representative of only
a small part of the data set. That is, the average of relevant observables (e.g., the
spatial correlation function) only represents the small number of measurements that
are dominating it. The rest of the measurements is not appreciated by using the
average.

Clearly, standard finite-size scaling methods are not adequate to these systems, and
we need to find a way to take into account all the measurements. Recalling the wide
distributions of Fig. 2.2, it seems reasonable to sort our measurements according
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at the DAT transition line [Par12a]
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Fig. 2.3 Different instances of the normalised plane correlation function C(r) (Eq. 1.5.3) for
L = 32, T = 0.805128. The field is h = 0.1 on the left, and h = 0.2 in the right plot. We sort
the measurements with the help of a conditioning variate q̂ as described in Sect. 2.4. In this case q̂
is the median overlap qmed. We show small sets of measurements. Namely, the ones with the 10 %
lowest (top curve) and highest (bottom curve) q̂ and those whose q̂ corresponds to the median of the
distribution of q̂ (50 % lowest/highest q̂). This sorting reveals extreme differences in the fauna of
measurements. The average and median of the correlation functions are very different. The average
is very similar to the 10 % lowest ranked measures, i.e., it is only representative of a very small part
of the data. We normalise C(r) by dividing by C(0) because we measure point-to-plane correlation
functions (Eq. 1.5.3). The correlation functions have zero slope at r = L/2 due to the periodic
boundary conditions

to some conditioning variable q̂ related to the overlaps between our replicas (see
Sect. 2.4). This way, we find out that the average values we measure are given by only
a small part of the measurements. For example in Fig. 2.3 we show the correlation
function C(r). We plot 4 estimators of C(r): the average (which is the standard

http://dx.doi.org/10.1007/978-3-319-41231-3_1
http://dx.doi.org/10.1007/978-3-319-41231-3_1
http://dx.doi.org/10.1007/978-3-319-41231-3_1
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quantity studied in almost all, if not all, previous work), the C(r) that corresponds
to the median of the q̂ distribution, and the measurements with the 10 % highest
(lowest) value of q̂ . We see that the average is very close to the 10 % lowest q̂ , and
very far from the two other curves. So, when we plot the average curve, we are only
representing the behavior of that small set of data.

Therefore, if we want to understand the behavior of the whole collection of mea-
surements, we have to be able to find some criterion to sort them and analyse them
separately.

2.4 Conditional Expectation Values and Variances

2.4.1 The Conditioning Variate

As we pointed out in Sect. 2.3, the behavior of the system is dominated by a very
small number of measurements.

This means that the average over all the measurements of an observable does
not describe the typical behavior of the system. Furthermore, the behavior of the
measurements that contribute less to the full averages is qualitatively different from
the one of those who give the main contribution (see Fig. 2.3 and later on Sect. 2.9).

We want to classify our measurements in a convenient way, in order to be able to
separate different behaviors, and analyse them separately. To this goal, we replace
normal expectation values E(O) of a generic observable O, with the expectation
value E(O|q̂) conditioned to another random variable q̂ . Perhaps for lack of imagi-
nation q̂ will be named CV. For each instance of O we monitor also the value of q̂ ,
and we use it to label O. Hopefully, there will be some correlation.

The conditional expectation value is defined as the average of O, restricted to
the measurements i (out of the Nm = NtNsamples total measurements) that simulta-
neously yield Oi and q̂i [so we are actually talking about couples of simultaneous
measurements (Oi , q̂i )] in a small interval around q̂ = c,

E(O|q̂ = c) = E
[OiXq̂=c(q̂i )

]
E

[Xq̂=c(q̂i )
] . (2.2)

where we have used the characteristic function

Xc(q̂i ) =
{

1, if |c − q̂i | < ε ∼ 1√
V

0, otherwise.
(2.3)

In Appendix C we give technical details on the choice of ε. To make notation lighter,
in the rest of the paper we will replace E(O|q̂ = c) with E(O|q̂).
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The traditional expectation value E(O) can be recovered by integrating over all
the possible values of the CV q̂:

E(O) =
∫

dq̂ E(O|q̂)P(q̂), P(q̂) = E[Xq̂ ], (2.4)

where P(q̂) is the probability distribution function of the CV.
We remark that the concept of CV is fairly similar to the one of control-variate.

Yet, the latter was formalised slightly differently, and with the objective of enhancing
the precision of the measures [Fer09a]. In [AB10a, AB10b] a procedure very similar
to the present one was followed, but the aim was constructing clustering correlation
functions, while in our case the CV is used to analyse separately different behaviors
outcoming from the same global data set, so that a sensible finite-size scaling becomes
possible.

2.4.2 Measurements Against Samples

The reader may argue that a sample-to-sample distinction of the different behaviors is
more natural than a measurement-dependent one (although intuition leads to assume
that the two are related). This was indeed our first approach to the problem (it was,
in fact, proposed in [Par12a]). However, we found that the approach described in the
previous section is preferable, both for practical and conceptual reasons.

On the practical side, a sample-to-sample separation implies that from each sample
we get only one data point: For any observable, we limit ourselves to its thermal
average. In this case we would need a limitless amount of samples to be able to
construct a reasonable P(q̂). Moreover, the simulations should last a huge number
of autocorrelation times τ if we want to have small enough errors on the thermal
averages of each sample. Otherwise, we would introduce a large bias that is not
reduced when increasing the number of samples.

On the conceptual side, representing each sample merely with a single number
(namely the thermal expectation value), is a severe oversimplification. As we show
in Fig. 2.4, even though we are in the paramagnetic phase, the behavior within each
sample is far from trivial. For a non-negligible fraction of the samples, the overlap
distribution is wide, often with a multi-peak structure. The barriers among peaks can
be deep, hence suggesting extremely slow dynamics (which is indeed the case for
physical dinamics [BJ14b], or for the parallel tempering dynamics [Huk96, Mar98]).

In summary, we find that using instantaneous measurements to classify the avail-
able information is the best solution.



54 2 The Ising Spin Glass in a Field

 0

 1

 2

 3

P
J 

(q
)

 0

 1

 2

 3

 4

 5

P
J 

(q
)

 0

 2

 4

 6

0 0.2 0.4 0.6 0.8 1

P
J 

(q
)

q
0 0.2 0.4 0.6 0.8 1

 0

 5

 10

 15

P
J 

(q
)

q

L = 32
h = 0.2
T = 0.805128
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type of PJ (q) we encountered. As well as the averaged P(q), also the sample-dependent density
function can be wide and with a structure. The plotted data comes from samples with L = 32,
h = 0.2 and T = 0.805128

2.4.3 The Selection of the Conditioning Variate

2.4.3.1 A Quantitative Criterion

In Appendix D we show how to decompose the moments of a generic variable O as
sums of averages conditioned to q̂ . For the variance we find that

var(O) =
∫ 1

−1
dq̂ P(q̂)

{
var(O|q̂) + [

E(O) − E(O|q̂)
]2

}
, (2.5)

where
var(O|q̂) = E

([O − E(O|q̂)
]2 | q̂

)
. (2.6)

A convenient CV is the one that mostly discerns the different behaviors of the
model. We can get a quantitative criterion for the selection of a good q̂ by rewriting
Eq. (2.5) as:

var(O) = c1 + c2, (2.7)

where

c1 ≡
∫ 1

−1
dq̂ P(q̂)var(O|q̂) ,
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c2 ≡
∫ 1

−1
dq̂ P(q̂)[E(O) − E(O|q̂)]2, (2.8)

and studying the relation between the terms c1 and c2. Both are positive, and their
sum is fixed independently from the used CV.

We will show intuitively that a useful CV has c2 � c1.
If c1 = 0 the fluctuations of O would be explained solely by the fluctuations of q̂ .

In this case c2 is large and assumes its largest possible value, meaning that different
values of O are mostly spread apart by q̂ .

On the other side, c2 = 0 implies E(O) = E(O|q̂) and signals an insensitive CV,
with null correlation between O and q̂ .

Equations (2.7) and (2.8) can thus be used to quantify the quality of the CV q̂:
We look for the highest quotient c2/c1.

2.4.3.2 Candidates for q̂

To select an appropriate CV we need to chose O and propose some test definitions
for q̂ . The functions of the observables that one could use as a CV are infinite, but
physical intuition lead us to try with simple functions of the overlap and of the link
overlap Eq. (1.21). On the other side, a natural choice of O is the estimator of the
replicon susceptibility [see Eq. (1.64)]. This means that

O −→ 1

3N
N∑

equiv.wave
vectors k

[
|�(ab;cd)

k |2 + |�(ac;bd)

k |2 + |�(ad;bc)
k |2

]
, (2.9)

where N is the number of equivalent wave vectors one can construct. This is a 4-
replica quantity [see Appendix (B.9)], so six instantaneous overlaps (and six link
overlaps) are associated to each instance of the correlators. To define q̂ we need to
propose a function of the six overlaps in order to get a one-to-one correspondence.

Let us reorder each 6-plet of instantaneous overlaps {q(i j)} in the form of six
sorted overlaps {qk}

{
q(ab), q(ac), q(ad), q(bc), q(bd), q(cd)

} −→ {q1 ≤ q2 ≤ q3 ≤ q4 ≤ q5 ≤ q6} ,

(2.10)
and do the same thing with the link overlap

{
q(ab)

link , q(ac)
link , q(ad)

link , q(bc)
link , q(bd)

link , q(cd)
link

}
−→

−→ {
qlink,1 ≤ qlink,2 ≤ qlink,3 ≤ qlink,4 ≤ qlink,5 ≤ qlink,6

}
, (2.11)

http://dx.doi.org/10.1007/978-3-319-41231-3_1
http://dx.doi.org/10.1007/978-3-319-41231-3_1
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Table 2.2 Criterion for the choice of the CV q̂ for h = 0.1, L = 32, T = 0.805128, by looking at
the indicators c1 and c2 relatively to χR(0) and χlink

R (0)

q̂ χ
spin
R : c1 χ

spin
R : c2 c2/c1 χlink

R : c1 χlink
R : c2 c2/c1

qspin
min 399000 ±

37000
121000 ±
15000

0.30(6) 8.35 ± 0.47 0.297 ±
0.023

0.36(5)

qspin
max 514000 ±

51000
6230 ± 690 0.012(3) 8.54 ± 0.49 0.1070±

0.0073
0.013(2)

qspin
med 162000 ±

10000
358000 ±
45000

2.2(4) 7.35 ± 0.39 1.30 ± 0.11 0.18(2)

qspin
av 328000 ±

26000
192000 ±
28000

0.6(1) 7.51 ± 0.41 1.141 ±
0.094

0.15(2)

q link
min 461000 ±

46000
59300 ±
5800

0.13(3) 8.38 ± 0.48 0.271 ±
0.020

0.032(4)

q link
max 460000 ±

46000
59700 ±
5900

0.13(3) 8.56 ± 0.49 0.0838±
0.0067

0.010(1)

q link
med 360000 ±

36000
160000 ±
18000

0.44(9) 7.36 ± 0.38 1.29 ± 0.11 0.17(2)

q link
av 415000 ±

42000
105000 ±
10000

.25(5) 7.72 ± 0.42 0.927 ±
0.073

0.12(2)

We want the q̂ to split as much as possible the different measured susceptibilities. This is obtained,
see (2.8), when the ratio c2/c1 is maximised. From the data we see that this occurs with q̂ = qmed

The following are natural test CVs:

q̂ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

qmin = q1 (the minimum)

qlink,min = qlink,1

qmax = q6 (the maximum)

qlink,max = qlink,6

qmed = 1
2 (q3 + q4) (the median)

qlink,med = 1
2 (qlink,3 + qlink,4)

qav = 1
6 (q1 + q2 + q3 + q4 + q5 + q6) (the average)

qlink,av = 1
6 (qlink,1 + qlink,2 + qlink,3 + qlink,4 + qlink,5 + qlink,6).

(2.12)
We checked how each of the CVs sorted the overlap and link susceptibilities χR(0)

and χlink
R (0). Table 2.2 depicts the c1 and c2 terms, and their ratio, for all the CV, for

a single triplet (T, L , h) and k = (0, 0, 0).
The best CV is clearly the median overlap, since it has the highest c2/c1 ratio.

The situation is similar for other choices of (T, L , h).
For a qualitative description of the difference between the diverse CVs, in Fig. 2.5

(top) the reader can appreciate the probability distribution functions for each of the
CVs, while in Fig. 2.5 (bottom) we plotted the conditioned susceptibilities. From
(2.4) we stress that the integral of the values on the top times the values of the bottom
set yields the average susceptibility, which is indicated with a horizontal line on the
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Fig. 2.5 Features of the diverse CVs we proposed for L = 32, h = 0.2 and T = 0.805128. The top
figure shows the histograms P(q̂) for four candidates of conditioning variate: the minimum overlap
qmin [of the six we can make with four replicas, recall equations (2.12)], the maximum qmax, the
median qmed and the average qav. The histograms were constructed as explained in Appendix C.
The bottom figure depicts the size of the susceptibility χ for each value of the CV. The horizontal
line marks the value of χ when it is averaged over the full set of measurements. For aesthetic reasons
in both figures we have cut the curves at the two end points, where they become extremely noisy
due to poor sampling

bottom plot of Fig. 2.5. As it is also reflected by Table 2.2, qmax is the worst CV, as
its χ does not vary much with the fluctuations of qmax. The steepest slope is obtained
when the CV is qav or qmed, but the latter is smoother and covers a wider range of χ.

Figure 2.5 also displays the large deviations present in the system. In fact one can
see that the value of qmed at which the P(qmed) has its maximum is significantly
different with respect to the value of qmed at which χ(qmed) assumes the value of the
average.

Let us compare the overlap with the link-overlap signal. Besides the fact that the
link overlaps appear to be bad CVs, one can see from Table 2.2 that on one side the
fluctuations on χlink,R(0) are much smaller than χR(0), and on the other none of the
CVs seems to separate the behaviors (the ratio c2/c1 is much smaller). We can see this
better from Fig. 2.6, that depicts the results of a sorting with the median (link-)overlap
on CR(r) and Clink,R(r). The bold line stands for the average behavior, while the thin
ones represent a sorting of the data according to the quantile of the distribution of
the CV.5 If the average is in the middle of the thin lines it is a good descriptor of the
data, otherwise it is a biased estimator. Very spread thin lines indicate that c2 � c1:
the CV separates behaviors properly.

5A quantile is the value of q̂ that separates a fixed part of the pdf (Sect. 2.5 later on).
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Fig. 2.6 Spin and link plane replicon correlation functions with h = 0.1, L = 32, T = 0.805128.
The thin lines indicate different quantiles of the conditioning variate’s distribution (see Sect. 2.5),
the bold lines indicate the average. Top Spin correlation functions, bottom link correlation functions.
Left q̂ = qmed, right: q̂ = qlink,med. Discussion in the main text

The data illustrates that, while the average spin correlation function is not repre-
sentative of the majority of outcomes for both the CV, the link correlation function
is well-described by its average. This suggests that the link overlap might be a more
accurate indicator of the critical behavior of the EA spin glass in a field. Analyses
on the link-overlaps will be object of further future studies.

On another side, if we concentrate on the spin correlation function C(r), we see
that the link is not a suitable CV, both because it separates less the behaviors, and
because the separation has a dependency on the distance r .

2.5 Quantiles and a Modified Finite-Size Scaling Ansatz

We stated in Sect. 2.3 that the set of measurements with low q̂ has a very different
behavior from the measurements with high q̂ (recall Fig. 2.3). From now on, we shall
restrict ourselves to q̂ = qmed, since we evinced that the median is our best CV. Our
next goal will be to carry out a finite-size scaling analysis based on the P(qmed) that
lets us observe different parts of the spectrum of behaviors of the system.
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In order to analyse separately these different sets of measures, we divide the
P(qmed) in 10 sectors, each containing 10 % of the measured qmed. We focus our
analysis on the values of qmed that separate each of these sectors. They are called
quantiles (see, e.g., [Hyn96]), and we label them with the subscript i = 1, . . . , 9.
If we call q̃i (h, T, L) the value of the i th quantile, we can define it in the following
implicit way: ∫ q̃i

−1
dq̂ P(q̂) = i

10
. (2.13)

In Appendix C we explain how q̃i (h, T, L) was computed.
We can adapt to the i th quantile the definitions we gave in Sect. 1.2.4:

χR,i (k) = 1

N
E

(
|�̂(ab;cd)

k |2
∣∣∣∣ q̃i

)
, (2.14)

ξL ,i = 1

2 sin (kmin/2)

√
χR,i (0)

χR,i (2π/L , 0, 0)
− 1, (2.15)

R12,i = χR,i (2π/L , 0, 0)

χR,i (2π/L ,±2π/L , 0)
. (2.16)

This way we can extend the finite-size scaling methodology to the i th quantile:

ξL

L

∣∣∣∣
T,h,L ,i

= fξi
(
L1/ν(T − Tc)

) + · · · , (2.17)

R12|T,h,L ,i = fRi

(
L1/ν(T − Tc)

) + · · · . (2.18)

This is a new approach for finite-size scaling. Although it demands a very large
amount of data because it is done over a small fraction of the measurements (in
Appendix E we explain a method we used to reduce rounding errors), it allows us to
perform finite-size scaling on selected sets of measurements.

Let us stress that no a priori knowledge is required on the probability distribution
function P(qmed): Quantiles are conceived in order to define a scaling that self-adapts
when the volume increases.

2.6 Testing the Quantile Approach

We take advantage of our h = 0 data from [BJ13] to validate our new FSS ansatz and
the quantile description, by showing its behavior in the zero-field case. Two replicas
would be enough to construct connected correlators in h = 0, and using the 4-replica
definitions proposed in Sect. 1.2.4 only adds noise to the results. Yet, we opted for
the latter option because the objective of the current section is the validation of the
full procedure proposed herein.

http://dx.doi.org/10.1007/978-3-319-41231-3_1
http://dx.doi.org/10.1007/978-3-319-41231-3_1
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R12, defined in Eq. (1.46). The curves crossings are compatible with the well-known temperature
of the zero-field transition. The data come from [BJ13]. We used 256,000 samples for each lattice
size. The insets show the same data of the larger sets, but as a function of the scaling variable L1/ν t ,
where t is the reduced temperature t = (T − Tc)/Tc

In the absence of a magnetic field we expect that the curves ξ/L(T ) and R12 cross
no matter the quantile, since the behavior of the system is not dominated by extreme
events and crossover fluctuations. Also, in this case the data in our hands arrive down
to the critical point, so the crossings ought to be visible.

One can see in fact from Fig. 2.7 that all the quantiles show visible signs of a
crossing at Tc both in the case of ξL/L and of R12. Furthermore, if we plot the same
data as a function of the scaling variable L1/ν(T − Tc)/Tc the data collapses well for
all the quantiles (Fig. 2.7, insets).

http://dx.doi.org/10.1007/978-3-319-41231-3_1
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Fig. 2.8 Probability distribution function for h = 0, L = 24, T = 1.1. The data come from 512
samples where we took all the 164 combinations of overlaps per sample. We show P(q), that in null
field is symmetric, and P(qmed), that is not. We also plot the symmetrized histograms P(sym)(q)

and P(sym)(qmed), that overlap on the respective curves. As more extendedly explained in the main
text, the symmetrized overlap is obtained by averaging each qmed over the values it would acquire
by imposing all the combinations of Z2 symmetry (flip all the spins) on the configurations on which
the qmed is calculated

Some reader may be surprised that quantiles 1 and 9 show different behavior,
being P(q) symmetrical (Fig. 2.8). The reason is that, although P(q) is symmetrical,
P(qmed) is not. In fact, given six overlapsqab, qac, qad, qbc, qbd, qcd coming from four
configurations |s(a)〉,|s(b)〉,|s(c)〉,|s(d)〉, each enjoying a Z2 symmetry, the distribution
of their median privileges negative values.6 We show this in Fig. 2.8, where we give
both the P(q) and the P(qmed) for h = 0, L = 32, T = 1.1. The first is symmetrical
and the second is not. To convince the reader that the starting configurations do
enjoy Z2 symmetry, we also construct the symmetrized functions P (sym)(q) and
P (sym)(qmed). These two functions are obtained by explicitly imposing the reflection
symmetry Z2: for each measurement we construct the 24 overlaps with both |s〉
and |−s〉. It is visible from Fig. 2.8 that P (sym)(qmed) is asymmetric even though we
imposed by hand the Z2 symmetry on the configurations.

6Let us give a simple example. Take 4 Z2-symmetric single-spin systems that can assume different
values s1 = ±1, s2 = ±2, s3 = ±3, s4 = ±4. We can construct 6 overlaps qi j (s1, s2, s3, s4). If we
explicitate the Z2 symmetry, taking all the combinations of our random variables, the histogram of
q will be symmetric with zero mean. Yet, if we take the histogram of the median overlap, it will
be asymmetric with mean 〈qmed〉 = −3. This can easily be checked by computing all the possible
combinations of the signs of the si and computing the median in each case:qmed(+1,+2,+3,+4) =
5, qmed(+1,+2,+3,−4) = −1, qmed(+1,+2,−3,−4) = −3.5, and so on.
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2.6.1 The P(qmed)

To our knowledge, the median overlap qmed, despite its simplicity, has not been object
of previous study. Yet, since we base our analysis on this quantity, it is necessary to
dedicate passing attention to its features.

By its definition, the probability distribution P(qmed) of the median overlap has
narrower tails than P(q) (recall Fig. 2.2), although from Fig. 2.5 (top) it is clear that
the strong fluctuations persist also with qmed.

The median of P(qmed) corresponds to the fifth quantile. We will prefer to call
it “5th quantile” rather than “median of the median overlap”. Of the nine studied
quantiles it is the smoothest and has the least finite-size effects, as one can see from
Fig. 2.9 (inset). Further analysis is given in Sect. 2.8.

We remark also that the separation between the different q̃i ’s can be used as order
parameter, since its thermodynamic limit should be zero in the paramagnetic phase,
and greater than zero in the possible low-temperature phase due to the (would-be)
replica symmetry breaking. Figure 2.9 shows the difference between the 8th and the
2nd quantile, i.e., the qmed-span of the central 60 % of the data. If we were able to
extrapolate a clean L → ∞ limit for this curve, we would be able to answer to whether
the transition exists or not. Unfortunately, even for T > Tc(h = 0) = 1.1019(29),
where we know that we are in the paramagnetic phase, it is not possible to make good
extrapolations since the trend is strongly non-linear. In Sect. 2.8 we will show that
extrapolations to the thermodynamic limit were only possible in the trivial case of
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Fig. 2.9 Using qmed as CV, we show the temperature dependence of the difference between quan-
tiles q̃8 − q̃2, for all our lattice sizes, in a field of intensity h = 0.2. This corresponds to the width
of the central 60 % of area of P(qmed). This quantity can reveal a phase transition, since in the
paramagnetic phase the P(qmed) should be a delta function, while in the spin-glass phase it should
have a finite support. We show the central 60 % and not a wider range because it is an equivalent
indicator of the phase transition, and it is safer from rare events that would vanish in the thermo-
dynamic limit. In the inset we show the position of 5th quantile as a function of temperature in all
our lattice sizes. It is a very smooth curve with very small finite-size effects
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h = 0.4 (deep paramagnetic phase), and that between all the quantiles, the median
curve is the one that shows less finite-size effects.

2.7 A caveat for the Quantile Description

In the absence of an applied field, the overlap probability distribution function P(q) is
symmetric, with a single peak centred in q = 0. In the presence of a field, instead, we
expect the P(q) to be strictly positive, at least in the thermodynamic limit. Similarly,
we expect that the probability distribution function P(qmed) have only one peak at
positive qmed when a field is applied, and a peak in q = 0 if h = 0.

If the system sizes are too small, it may occur that the h = 0 behavior bias
the P(qmed). This is what happens, for example, when L = 6, h = 0.2 and the
temperature is sufficiently low: a second peak around qmed � 0 develops upon
lowering T (Fig. 2.10, top). This second peak disappears when we increase the lattice
size (Fig. 2.10, centre), and the P(qmed) assumes only positive values when L is large
enough (Fig. 2.10, bottom). The lower the field, the easier it is to find multiple peaks,
and the greater the system has to be to be able to neglect the h = 0 behavior. For
h = 0.05, even lattices with L = 12 show a double peak.

Fig. 2.10 Median overlap
probability distribution
function P(qmed) with
h = 0.2 for different
temperatures (the ones from
L = 32 are an approximation
to the second decimal digit).
The top figure shows the
case of L = 6, where the
lowest temperature curves
display a second peak around
qmed � 0, which disappears
when T increases. For
L = 16 (middle) the
P(qmed) are single-peaked,
but assume also negative
values. In the bottom curve
we have L = 32, where the
P(qmed) are single-peaked
and defined only on positive
qmed, since we are closest to
the asymptotic behavior
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A second peak in P(qmed) is a clear signal that we are observing and echo of
h = 0. When we make the quantile classification, and have a quantile on a peak, we
are seeing only non-asymptotic data. Thus, quantile 1 for the smallest lattices gives
us no relevant information.

If we plot versus the temperature any observable O related to the first quantile, the
information will be biased for low temperatures, and the bias will gradually disappear
as we increase T . The result is that the curve O(T ) will have a strange shape and
will be of no use (see, e.g., the h = 0.05 data in Fig. 2.11). This is why we did not
include the L = 6 points in the top set of Fig. 2.13 later on.
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Fig. 2.11 Extrapolations to infinite size of the quantile overlap q̃i , for T = 0.81 (left) and
T = 1.109 (right), and fields h = 0.05 (top) and h = 0.4 (bottom). We show quantiles i = 1, . . . , 9
(thin lines), and the average behavior (bold line). The h = 0.4 extrapolations to infinite volume were
clean (χ2/DOF < 1), while for h = 0.05 (and all the other fields we simulated), we encountered
too strong and nonlinear finite-size effects to get reasonable extrapolations. We choose 1/LD/2

as scaling variable because in conditions of validity of the central limit theorem, the fluctuations
should be of order 1/

√
N
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2.8 Finding a Privileged q

Since all our simulations are in the paramagnetic phase the thermodynamic limit of
the P(q) is a delta function, so all the quantiles should tend to the a common q = qEA

in the L → ∞ limit. We tried to perform these extrapolations at fixed (reasonably
low) temperature, to see if we could look at the problem from such a privileged
position. In Fig. 2.11 we see this type of extrapolation for h = 0.4 and h = 0.05, at
temperatures T = 0.81 and 1.109. The first is the lowest temperature we simulated
in all our lattices, while the second is the zero-field critical temperature [BJ13]. Since
we are in the paramagnetic phase and we are plotting q̃i versus the inverse lattice
size, the curves should cross at the intercept. This is indeed what appears to happen,
but although in the case of h = 0.4, the extrapolations were clean, for all the other
simulated fields the finite-size effects were too strong and nonlinear to make solid
extrapolations. We remark, yet, that once L > 8 the 5th quantile is the one with the
least finite-size effects.

2.9 The Silent Majority

As already emphasized, the behavior of the system is characterized by very strong
fluctuations, and a wide and asymmetric P(q). As a result, the average and median
behavior are very different. In Fig. 2.12, we show the replicon susceptibility: its
average χ on the left plot, and its fifth quantile χ5. Motivated by the arguments in
Sect. 2.4 all the quantiles we show in this section use the CV q̂ = qmed.

Visibly, not only is the average susceptibility much larger than the 5th quantile,
but also the two have peaks at different temperatures. Also, finite-size effects are
much stronger in the case of χ5 (yet, recall the inset in Fig. 2.9, finite-size effects on
q̃5 are tiny).7

We show in Fig. 2.13 how sorting the data with the quantiles revealed the presence
of different types of behavior, by plotting the ξL/L and the R12 for quantiles 1, 5
and 9 at h = 0.2. There are two vertical lines in each figure. The one on the left
represents the upper bound T up(h) for the phase transition (meaning that no phase
transition can occur for T > T up(h)) given in [BJ14b], while the one on the right
indicates the zero field critical temperature Tc = 1.1019(29) [BJ13].

We can see that the 1st quantile has the same qualitative behavior of the average
(Fig. 2.1), but lower values, since the main contribution to the average comes from
data whose qmed is even lower than q̃1. Moreover, one can notice that in Fig. 2.1 the
indicators ξL/L and R12 show a different qualitative behavior when the lattices are
small (R12 shows a crossing). This discrepancy vanishes when we look only at the

7We made power law extrapolations to L → ∞ of the maxima of the susceptibility, but they were
not satisfactory (too large χ2/DOF). Only for h = 0.2, 0.4 were we able to fit the maxima’s heights
and obtained η(h = 0.2) ≈ 0.6 and η(h = 0.4) ≈ 0.9..
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Fig. 2.12 The replicon susceptibility χ as a function of the temperature, for all the simulated
lattice sizes and the field h = 0.2. We represent its average χ (top), and the 5th quantile χ5 with
q̂ = qmed (bottom). In both plots, the two vertical lines represent the upper bound of the possible
phase transition T up(h = 0.2) = 0.5 given in [BJ14b], and the zero-field critical temperature
Tc(h = 0) = 1.109(29) [BJ13]. The amplitudes and the positions of the peaks of χ are strikingly
different (mind the different scales in the y axes). The inset shows the ratio between the two, which
we expect to tend to an order one constant in the thermodynamic limit. This is actually what we see
at high temperatures

first quantile: Separating different behaviors enhances the consistency between ξL/L
and R12.

The behavior of the 5th quantile is quite different, since now it appears reasonable
that the curves cross at some T � T up(h). The crossings become even more evident
when we consider the highest quantile.

All this is consistent with the arguments of Sect. 2.3, where we showed how the
correlation function is dominated by a little portion of data, near the first quantile
(Fig. 2.3), while the behavior of the majority of the samples is hidden.

Unfortunately, the high non-linearity of the curves impedes an extrapolation of
the crossing points, but they are apparently compatible with the upper bound T up,
and their heights apparently do not depend on the intensity of the applied field h (see
also Fig. 2.14).

The careful reader might have noticed that the upper bound T up(h) for the possible
phase transition given in [BJ14b] is higher when the field is lower: T up(0.1) = 0.8 >

T up(0.2) = 0.5. It is then justified to ask oneself how do the quantile plots look like
for h = 0.1. We show them in Fig. 2.14. Since the field is lower, the effects on the
double peak on the first quantile (Sect. 2.7) extend to larger lattices than for h = 0.2.
Thus, we show only the non-biased sizes, i.e., L > 12.

Although the 9th quantile shows signs of scale invariance at T = T up(0.1), the
behavior of the 5th quantile suggests a scale invariance around T = 0.5. We believe
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Fig. 2.13 Finite-size indicators of a phase transition, computed for h = 0.2. On the left side we
plot, for quantiles 1 (top), 5 (middle) and 9 (bottom), the correlation length in units of the lattice size
ξL/L (left) versus the temperature, for all our lattice sizes except L = 6 (we show in Sect. 2.7 that
the quantile description is not suitable for L = 6 because there is a double peak in the P(q)). On
the right we show analogous plots for R12 [defined in Eq. (1.46)]. The vertical line on the left marks
the upper bound T up for a possible phase transition given in [BJ14b], while the one on the right
marks the zero-field transition temperature Tc given in [BJ13]. Quantile 1 has the same qualitative
behavior of the average ξL/L , shown in Fig. 2.1, while quantiles 5 and 9 suggest a scale invariance
at some temperature Th < T up

that the 5th quantile is a better indicator, since the position of the fifth quantile q̃5

has less finite-size effects (it practically has none, Fig. 2.9–inset) than q̃9.
It is interesting to focus on the height of the crossings of each quantile from

Fig. 2.13, and compare them with h = 0.2 (Fig. 2.13). This is expected to be a
universal quantity, and in the hypothesis of a phase transition it should be the same
for both fields. Although it is not possible to assign error bars to the these values,
it is possible to see that both for h = 0.1 and h = 0.2 the heights are similar
(ξL ,5/L ≈ 0.15, ξL ,9/L ≈ 0.09, R12,5 ≈ 1.6, R12,9 ≈ 1.3).

http://dx.doi.org/10.1007/978-3-319-41231-3_1
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Fig. 2.14 Same as Fig. 2.13, but for h = 0.1. This time the effects of the zero-temperature transition
are stronger, so we removed from the plot sizes L = 6, 8, 12. In Sect. 2.7 we show that the quantile
description is not suitable for smaller lattices due to crossover effects from the zero-field behavior.

2.10 This is not an Echo of the h = 0 Transition

The crossing suggested by the quantiles 5 and 9 in Fig. 2.13 is unlikely to be caused
by the zero-field transition, since it appears at T < Tc, and shifts towards lower
temperatures as the lattice size increases. Also, the value of ξL/L (R12) at the possible
crossing point of the fifth quantile is upper-bounded to ξL/L � 0.16 (R12 � 1.65),
while for h = 0 it is considerably larger (ξL(Tc)/L � 0.28 [R12(Tc) � 2.15]), recall
Sect. 2.6. In this section, we will advance more arguments contradicting the notion
that what was seen resulted from the effects of zero-field transition.

2.10.1 An Escaping Transition

As pointed out in Sect. 2.3, there is a controversy because we observe a wide P(q),
just like in the mean-field model, but the curves ξL/L(T ) and R12(T ) do not show any
sign of a crossing. If we were in the presence of a phase transition, a straightforward
explanation could reside in an anomalous exponent η close to 2 [BJ14d], since at the
critical temperature the replicon susceptibility scales as χR(L) ∼ L2−η (1.91). It is
possible to calculate η with the quotients’ method [Nig75, Bal96], by comparing the
susceptibility χL of different lattice sizes at the critical point Tc:

http://dx.doi.org/10.1007/978-3-319-41231-3_1
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χ2L(Tc)

χL(Tc)
= 22−η + · · · , (2.19)

where the dots stand for subleading terms. This definition only makes sense at criti-
cality, but we can extend it in an effective manner to a generic temperature. This way
we can delineate an effective exponent

ηeff(T ; L , 2L) = 2 − log2
χ2L(T )

χL(T )
. (2.20)

In case there were a phase transition at a finite temperature Th , we would have
ηeff(Th) = η. We should have ηeff = 2 in the paramagnetic phase, ηeff = −1 in the
deep spin-glass phase8 and signs of a crossing at ηeff = η(h = 0) = −0.3900(36)

[BJ13] in the limit of a complete domination by the h = 0 transition.
In Fig. 2.15 we show ηeff(T ) for h = 0.4, h = 0.1, and h = 0 (the h = 0 data come

from the simulations we performed in [BJ13]).9 If a phase transition were present,
but hidden by heavy finite-size effects, we would expect at least that the L-trend of
ηeff be decreasing. Contrarily, the larger our lattices, the wider the temperature range
in which ηeff = 2. The apparent phase transition shifts towards lower temperature
when we suppress finite-size effects. The data in our possession is not enough to
state whether this shift will converge to a positive temperature. In any case, this is
compatible with the upper bounds to a possible transition given in [BJ14b].

On the other side, ηeff stays positive for all our simulated lattices (except h = 0.05,
L = 6), and that even for T < Tc(h = 0) it tends to some value around 0.5, so it is
unlikely that the null field transition is dominating the system’s behavior.

2.10.2 Scaling at T = Tc(h = 0)

From the scaling with the lattice linear size of ξL/L at Tc = Tc(h = 0), we can
get another element to discard the hypothesis that the h = 0 transition is biasing
significantly our measures. Assuming that there is no critical line for h > 0, a very
large correlation length could be due to an echo of the zero-field transition or a low-
temperature effect. In a theory that predicts that system is critical only at h = 0,
T = Tc, the effects of this echo on the h > 0 behavior should be maximal near
T = Tc. So, if we find a ξ that is large compared to our lattice sizes for T < Tc,
a primary check is to monitor the scaling of the coherence length at Tc. Figure 2.16
shows the scaling of ξL/L at Tc with h = 0.2. We plot the average, the first, the fifth
and the highest quantile. All of them show a clear decrease of ξL/L when increasing
the lattice size, so our lattice sizes are large enough to state that the divergence at

8See Appendix B.21, keeping in mind that ηeff = −1 is somewhat trivial in the limit h → 0, where
χ reduces to χ = V E(q2).
9For each jackknife block we calculated ηeff (T ) and made a cubic spline temperature interpolation.
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Fig. 2.15 We plot ηeff (T ), defined in (2.20), for all the pairs (L , 2L) we could form. The magnetic
fields are h = 0.4 (top), h = 0.1 (center) and h = 0 (bottom). The h = 0 data comes from [BJ13].
In each plot we uses horizontal lines to underline meaningful limits, and we label them with a tic
on the right axis. From up to down, we depict the limit ηPM

eff = 2 of a system in the paramagnetic
phase, the ηeff = 0 axis, the zero-field value ηeff (h = 0, Tc) = −0.3900(36) [BJ13], and its value
in a deep spin-glass phase ηSG

eff = −1. Notice the difference between the case with or without a
field. For h = 0.1 the curves appear to converge to a positive ηeff � 0.5, while in the latter all the
curves become negative and merge at ηeff (h = 0, Tc)

h = 0 is not dominating ξL ’s behavior. On the other side, we are still far from the
thermodynamic limit, since when the lattices are large enough, ξL(Tc)/L should
decay to zero linearly in 1/L .
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Fig. 2.16 Scaling of ξL/L
at the null-field critical
temperature Tc = 1.109(29)

[BJ13], with h = 0.2. We
show the behavior of the
average, and of quantiles 1, 5
and 9. If L is large enough,
ξL/L should go as 1/L ,
while if the system is seeing
purely an echo of the
divergence of the h = 0
transition transition, then
ξL/L should be constant
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2.11 Overview

We have studied the equilibrium behavior of the three-dimensional Ising Edwards–
Anderson spin glass in an external magnetic field. Thermalizing the system at suf-
ficiently low temperature was a computationally hard task and required the use of
the Janus dedicated computer to thermalize lattice sizes up to L = 32, down to
temperatures T ≥ 0.8.

First of all, we carried out a traditional analysis of our data. We chose observables
that would be scale invariant at the critical temperature, and compared them for
different lattice sizes, looking for crossings in their temperature curves. With this
procedure we found no traces of a phase transition.

Yet, the scenario is more complicated. Despite the absence of crossings, indica-
tions that something non-trivial is going on are given by signals such as a growing
correlation length (even for our largest lattices), peaks in the susceptibility, and a
wide probability distribution function of the overlap.

We noticed a wide variety of behaviors within the same set of simulation parame-
ters. Some measurements presented signs of criticality, while others did not. So, we
tried to classify them in a meaningful way. We sorted our observables with the help
of a CV, and came up with a quantitative criterion to select the best CV. Between the
ones we proposed, the function of the instant overlaps that made the best CV turned
out to be the median overlap qmed.

As a function of the median overlap, the scenario appeared rather non-trivial. The
averages turned out to be dominated by a very small number of measurements. Those
with a smallqmed behaved similarly to the average: long correlation lengths, very large
susceptibilities, and no signs of criticality. On the other side, the median behavior was
far from the average, and the behavior of most of the measurements was qualitatively
different from the average, with smaller correlation lengths and susceptibilities, but
non-negligible indications of scale invariance right below the upper bound T up(h)

given in [BJ14b]. Furthermore, separating the different behaviors of the system we
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obtain mutually consistent indications of criticality from our primary dimensionless
magnitudes ξL ,i/L and R12,i . The achievement of this consistency is an important
step forward with respect to [Bn12a], where the phase transition was revealed only
by the R12 indicator, but it was invisible to ξL/L .

Unfortunately we were not able to make a quantitative prediction on the critical
temperatures Tc(h), because the observables as a function of the lattice size and of
the temperature were very nonlinear, and the temperatures we reached were not low
enough reliably to identify the crossing points of the quantile-dependent ξL ,i/L and
R12,i .

Overall, the presence of a phase transition appears plausible from our simulations.
Perhaps more importantly, now the challenge is well defined: in order to be able to
give, numerically, a conclusive answer on the presence of a de Almeida-Thouless line
we need push our simulations down to T � 0.4 (at h = 0.2). We believe that Janus
II, the next generation of our dedicated computer [BJ14b], will be able to assume
this challenge.
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Chapter 3
Heisenberg Spin Glass with Random
Exchange Anisotropy

In the current chapter we expose the physical results of a work that required the
use of unusual computing resources that revealed crucial for our results [BJ14d].
We carried out a massive campaign of MC simulations, exploiting the GPU clusters
Minotauro,1 in Barcelona, and Tianhe-1a in Tianjin, China,2 and developing parallel
codes in C, CUDA C and MPI to run our programs on one or multiple GPUs. This
chapter will be dedicated to the physical results, while useful information on the
computational aspects of our campaign is supplied in Appendix A.

3.1 The Kawamura Scenario

Already in the late ‘80s–early ‘90s there was general agreement on that experi-
mental SGs undergo a phase transition at sufficiently low temperature [Bou86, Lév88,
Gun91].

On the other hand, theoretical work in three dimensions was less advanced, even
though one works with extremely simple models. For the Ising SG there were argu-
ments supporting the existence of a phase transition [Fra94], that were later confirmed
numerically [Pal99b, Bal00]. In the Heisenberg case, instead, all the attempts carried
out during the ‘80s and ‘90s failed in finding a phase transition at a finite temperature
TSG > 0 [McM85, Oli86, Mor86, Mat91]. In fact, Matsubara et al. showed in 1991
that once a small anisotropic term is added to the Heisenberg Hamiltonian the phase
transition becomes visible [Mat91]. This was in agreement with a later domain-wall
computation [Gin93]. The accepted picture at the time was that the lower critical
dimension (i.e. the spatial dimension below which there is no phase transition) lie
somewhere between 3d and 4d [Col95].

1Barcelona Supercomputing Center, Barcelona, Spain, http://www.bsc.es.
2National Super-Computing Center, Tianjin, China, http://www.nscc-tj.gov.cn/en/.
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However, the story was slightly more complicated. Villain and coworkers made a
provocative suggestion hypothesizing that, although maybe there was no spin glass
transition, a different order parameter called chirality (or vorticity) could be criti-
cal [Mau90]. Chirality is a scalar observable that describes vorticity and alignment
between neighboring spins [recall its definition (1.34) in Sect. 1.2] with the idea of
mapping XY and Heisenberg to Ising SGs [Vil77, Vil78].

Villain’s idea was elaborated by Kawamura in his spin-chirality decoupling sce-
nario [Kaw92, Kaw98]. In the ideal case of a purely isotropic system the spin and
chiral glass order parameters would be decoupled, the CG order parameter (1.36)
would be critical whereas the SG overlap (1.33) would not display any phase tran-
sition. The introduction of any small anisotropy would couple the two. Since real
samples always have some degree of anisotropy (see the following Sect. 3.2) the SG
channel, coupled to the chiral one, would appear critical.

Kawamura’s scenario was apparently consistent with all the observations until
2003, when Lee and Young employed more efficient simulation algorithms and finite-
size scaling techniques to show that the spin glass channel is critical also in the fully
isotropic model (i.e. the Heisenberg limit) [Lee03].

Both order parameters seemed to become positive at the same temperature. Further
simulations confirmed the existence of a SG phase transition, although uncertainty
remains on whether the transition is unique [Cam06, Fer09b] or chiralities order at
a slightly higher temperature TCG [Vie09].

A parallel issue is measuring the chiral order parameter in experiments. Kawamura
proposed in 2003 that the extraordinary Hall resistivity is a simple function of the
linear and non-linear CG susceptibilities [Kaw07]. Experiments based on this pro-
posal observed the chiral transition and measured, for instance, the critical exponent
δ [Tan07].

Interestingly enough, the value of δ turned out to be in between spin and chiral
glass prediction. Nonetheless, it was impossible to identify a universality class despite
the critical exponents of these systems had been extensively measured (at least in
the SG sector) [Bou86, Lév88, Pet02]: the impression was that they change in a
continuous way from the Heisenberg to the Ising limit [Cam10], as we increased the
anisotropy.

However, analogy with ferromagnetic materials suggests a different interpreta-
tion. Anisotropy would be a relevant parameter in the sense of the renormalization
group [Ami05]. There should be a new dominant FP, and symmetry considerations
lead to think it should belong to the Ising-Edwards-Anderson (IEA) universality
class. Yet, when we add a relevant parameter to the Hamiltonian, there should be
some crossover effects (recall Sect. 1.3.5.1). In other words, one expects that while
the correlation length ξ is small, the critical exponents are closer to the Heisenberg-
Edwards-Anderson universality class, and that only for large enough ξ the univer-
sality class reveals its nature.

Notwithstanding, it is very hard, both numerically and experimentally, to prepare
a SG with a large correlation length, since one should wait very long times (it has
been argued that the waiting time tw required to reach a certain coherence length is
proportional to almost its seventh power, see e.g. [Bel08b, Bel09a, Joh99]). Probably
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this explains why the largest measured correlation lengths are of the order of only one
hundred lattice spacings [Joh99, Ber04b]. That is a rather small distance to reveal the
true universality class, so it is plausible that experiments will find critical exponents
between the two Universality classes.

In fact, materials are classified according to the degree of anisotropy in their
interactions [Pet02], which turns out to be relevant in their non-equilibrium magnetic
response [Ber04b]. On one end of the materials’ spectrum we find the extremely
anisotropic Fe0.5Mn0.5TiO3, which is maybe the best realization of the ideal limit of
an Ising SG (Ising SGs correspond to the idealization of uniaxial spins). On the other
end, we have very isotropic alloys such as AgMn or CuMn (whose modelization is
notoriously difficult [Pei09], due to the presence of short range spin-density wave
ordering [Cab82, Cab84, Lam95]).

To further complicate things, in experiments one has to take in account at least two
relevant crossovers. The first is the competition, that we just pointed out, between
the isotropic and the anisotropic fixed points. It is the one we treat in this chapter.
The second crossover, that we will not address, is about short versus long range
interactions. In fact, the Hamiltonian we treat is short range, but some often neglected
interactions, such as the Dzyaloshinskii-Moriya interaction (see following Sect. 3.2)
have been shown to be quasi-long-range, in the sense that the interactions are long
range, but only until a cut-off distance of the order of some tens of atomic spacings
[Bra82].3

Recent numerical work on the Heisenberg SG with weak random exchange
anisotropies [MM11], as they would appear in nature, found a foggy scenario over
the critical properties of the model. It was observed that:

• The CG critical temperature TCG was significantly higher than TSG, in disagreement
with experiments and expectations.

• Apparently, the chiral susceptibility was not divergent at TCG. This is surprising
and, apparently, in contrast with experiments [Tan07]. Technically, this lacking
divergence appeared as a very large anomalous dimension ηCG ∼ 2.4

• Introducing very weak anisotropies changed dramatically TSG. For example, the
TSG found by comparing systems of size L = 6, 12 was about twice its equivalent
on the fully isotropic model. This is surprising, since one expects that the critical
temperature would change very little from the isotropic case when D is as small
as in [MM11].

To the light of this stumble, we decided to face again the problem of the phase
transition in a model with random anisotropic exchange, but we increased drastically
two factors, the degree of anisotropy and the size of the systems, in order to collect
data closer to the attractive FP (recall Sect. 1.3.5.1),5 that we suspected to be in the
Ising universality class for symmetry reasons that will be discussed in Sect. 3.3.

3For further discussion of the crossover between long and short range interactions see [Ami05],
Sect. 1.3.1, and [Car96], Sect. 4.3.
4Recall that γCG = ν(2 − ηCG) where γCG is the critical index for the CG susceptibility, while ν is
the correlation-length exponent. .
5The underlying assumption is that the whole critical line is dominated by the same FP.

http://dx.doi.org/10.1007/978-3-319-41231-3_1
http://dx.doi.org/10.1007/978-3-319-41231-3_1
http://dx.doi.org/10.1007/978-3-319-41231-3_4
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In this chapter we will focus on the uniqueness of the phase transition and on
the Universality class, proposing that there is a unique transition, belonging to the
IEA Universality class [Edw75]. We will also give an interpretation to the results of
[MM11], showing that the apparent inconsistencies are due to scaling corrections,
that we will try to characterize, since we believe them to be fundamental both in the
interpretation of numerical simulations and of experiments.

3.2 Anisotropy in Spin Systems

Experimentally, anisotropies affect significantly the glassy response to external mag-
netic fields and the behavior under cooling protocols [Ber04b], and as we have men-
tioned in the previous section the anisotropy is the driving element of Kawamura’s
spin-chirality decoupling scenario.

We quickly review here three of the principal mechanisms that lead to an
anisotropy in the Hamiltonian [Myd93]. One one side the single-ion, and on the
other the dipolar, and the Dzyaloshinskii-Moriya anisotropies. While the first one is
site-dependent and does not depend on how the spins are coupled, the latter two are
exchange anisotropies and involve the interactions between spins.

3.2.1 Single-Ion Anisotropy

Single-ion anisotropy is produced by the local crystalline electric fields of the solid.
It depends on the spin and orbit angular moment of the modelled magnet and on the
morphology of the crystalline structure, for example if the material is made in layers
or in chains. Certain orientations of the spins will be preferred and others will be
suppressed.

The simplest form of anisotropy we can think of is a strong uniaxial anisotropy
that forces the spins to point along a single direction, that we usually identify with
the z axis. This is the case of the Ising spins. Also, the system could be forced to lie
on a 2d plane, in that case we would talk of XY spins. One can think Ising and XY
systems as Heisenberg systems with an additional term that strongly inhibits certain
components,6

HIsing = −1

2

∑
|x− y|=1

Jx, y�sx · �s y + DIsing

∑
x

(
(sx · êx )

2 + (sx · êy)
2) , DIsing � 1,

(3.1)

6Note that the anisotropy terms in the two following Hamiltonians are equivalent, DIsing = −DXY,
just as in Sect. 1.3.5.1.

http://dx.doi.org/10.1007/978-3-319-41231-3_1
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HXY = −1

2

∑
|x− y|=1

Jx, y�sx · �s y + DXY

∑
x

(sx · êz)
2
, DXY � 1. (3.2)

For ferromagnetic systems (not SGs), the addition of perturbations of this type to the
Hamiltonian changes its universality class [Car96]. Notice that for infinite anisotropy
these Hamiltonians become the usual Ising and XY Hamiltonians.

In an amorphous material this anisotropy can be random, meaning that the pre-
ferred axis along which the spins want to align varies locally. One way to represent
this effect is to choose a preferred axis, but assigning randomly how each spin cou-
ples to this axis, through a random term Dx chosen from an appropriate pdf. The
resulting Hamiltonian is

Hr1 = −1

2

∑
|x− y|=1

Jx, y�sx · �s y −
∑
x

Dx(�sx · êz)
2
. (3.3)

More in general also the direction of the “easy” axis can vary, so

Hr2 = −1

2

∑
|x− y|=1

Jx, y�sx · �s y −
∑
x

Dx(�sx · n̂x)
2
, (3.4)

where n̂x are random vectors on the sphere of radius 1.

3.2.2 Dzyaloshinskii-Moriya Anisotropy

The Dzyaloshinskii-Moriya (DM) [Dzy58, Mor60] interaction between two spins
�sx and �s y describes the scattering of a conduction electron by �sx . The electron then
interacts with a non-magnetic scatterer with large spin-orbit coupling, and ends up
scattering on spin �s y.

This mechanism can be described with a term

HDM
x, y = − �B · (�sx × �s y), (3.5)

where �B = �rx × �r y, and �rx is the position of �sx . If we write the DM term in the form
−�sx · DDM

x, y �s y, then

DDM
x, y =

⎛
⎝ 0 Bz −B y

−Bz 0 Bx

B y −Bx 0

⎞
⎠ . (3.6)

This antisymmetric matrix has det DDM = 0, TrDDM = 0, and has rank 2 (so one
null eigenvalue).
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3.2.3 Dipolar Anisotropy

The dipolar anisotropy is a weak term: it is never the dominant term of the Hamil-
tonian. Yet, this type of anisotropy is always present in any kind of spin system, due
to the fact that there always is a dipolar interaction between spins. This makes it a
perfect candidate for the justification of the Kawamura scenario.

The dipolar interaction takes the form

Hdip
x, y = 1

r3
x y

[�sx · �s y − 3(�sx · r̂x y)(�s y · r̂x y)
]
, (3.7)

where �rx y = �rx − �r y, and r̂x y = �rx y/|rx y|. We can see how the configuration that
minimizes the energy actually depends on the mutual orientation of the two dipoles.
So for example, if �sx and �s y are parallel to r̂x y, the two spins will align parallel (the
energy of the coupling is −2/r3

x y if they are parallel, +2/r3
x y if they are antiparallel),

while if they are initially perpendicular to r̂x y they will prefer to be antiparallel (the
energy is 1/r3

x y if they are parallel, −1/r3
x y if they are antiparallel). Notice that also

the energy of the preferred energy minimum is different.
If we express Hdip

x, y in the form �sx ·Ddip
x, y�s y, we get Dαβ = δαβ − 3rαrβ . Therefore

Ddip =
⎛
⎝1 − 3r xr x r xr y r xr z

r yr x 1 − 3r yr y r yr z

r zr x r zr y 1 − 3r zr z

⎞
⎠ (3.8)

is a symmetric matrix with a non-zero diagonal.

3.3 The Model and Its Symmetries

We study the model introduced by Matsubara et al. [Mat91], which is particularly
convenient because of its simplicity. We consider N = L3 three-dimensional unitary
vectors �sx = (s1

x, s2
x, s3

x) on a cubic lattice of linear size L , with periodic boundary
conditions. The Hamiltonian is

HANI = −
∑

<x, y>

(Jx y�sx · �s y +
∑
αβ

sα
x Dαβ

x ys
β
y ), (3.9)

where the indexes α, β indicate the component of the spins. Jx y is the isotropic cou-
pling between sites x and y. Dx y is the anisotropy operator: a 3×3 symmetric matrix,
where the six matrix elements Dαβ

x y, α ≥ β, are independent random variables, so it
can be a fair descriptor of a dipolar anisotropy.

There is quenched disorder, this means that the time scales of the couplings
{Jx y, Dx y} are infinitely larger than those of our dynamic variables, so we
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represent them as constant in time random variables, with Jx y = Dαβ
x y = 0, J 2

x y = 1

and (Dαβ
x y)2 = D2.

We stress that if all the matrix elements Dαβ
x y are zero we recover the fully isotropic

Heisenberg model, with O(3) symmetry. However, if the Dαβ
x y are non-vanishing, the

only remaining symmetry is time-reversal: �sx −→ −�sx for all the spins in the lattice.
Time reversal is an instance of the Z2 symmetry. This is the symmetry group of the
IEA model [Edw75]. Hence, we expect that the Z2 symmetry will be spontaneously
broken in a unique phase transition belonging to the IEA Universality class (see e.g.
[Gin93]). Of course, underlying this expectation is the assumption that the anisotropic
coupling is a relevant perturbation in the RG sense (as it is the case in ferromagnets
[Ami05]). In fact, the infinite-anisotropy limit can be explicitly worked out for a
problem with site anisotropy [rather than link anisotropy as in Eq. (3.9)]: one finds
an IEA-like behavior [PT06, Lie07].

As we argued in Sect. 1.3.5.2 it is widely accepted that the universality class does
not change with the probability distribution of the couplings. We take advantage of
this, and choose a bimodal distribution for Jx y and Dαβ

x y , Jx y = ±1 and Dαβ
x y = ±D.

These couplings can be stored in a single bit, which is important because we are using
GPUs, special hardware devices where memory read/write should be minimized
(Appendix A).

We chose the two different values D = 0.5, 1. We want to compare our results
with those in [MM11], where simulations were done on samples with weak random
anisotropies. In that work the Dαβ

x y did not follow a bimodal distribution, but were
uniformly distributed between −0.05 and 0.05. To make proper comparisons we
consider the standard deviation of the distribution. For bimodal distributions it is
exactly D, in [MM11] it is (D2)1/2 = 1/

√
1200 � 0.03.

3.4 Simulation Details and Equilibration

We simulated on the largest lattices to present (up to L = 64), over a wide temperature
range.7 This has been possible thanks to an intense use of graphic accelerators (GPUs)
for the computations. We made use of the Tianhe-1A GPU cluster in Tianjin, China,
and of the Minotauro GPU cluster in Barcelona.

We used MC dynamics throughout all the work, mixing three different Monte
Carlo algorithms, HB, OR and PT as explained in Appendix A, since both HB and
OR are directly generalized to the anisotropic exchange case, where the local field
is �hx = ∂HANI/∂�sx = ∑

‖x− y‖=1[Jx y�s y + Dx y�s y].

7Of course the limiting factor is in the wide range of relaxation times, rather than temperatures.
However, relaxation times depend on a variety of implementation-dependent factors (such as the
temperature spacing in the parallel tempering, or the number of overrelaxation (OR) sweeps). Hence,
comparison with other work will be easier in terms of temperatures.

http://dx.doi.org/10.1007/978-3-319-41231-3_1
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Table 3.1 Details of the simulations

D L Nsamples N min
MCS NT Tmin Tmax

0.5 8 377 2.048 × 104 10 0.588 0.8

0.5 16 377 4.096 × 104 28 0.588 0.8

0.5 32 377 3.28 × 105 45 0.583 0.8

0.5 64 185 4 × 105 45 0.621 0.709

1 8 1024 2.048 × 104 10 0.877 1.28

1 12 716 1.68 × 105 20 0.893 1.28

1 16 1024 4.096 × 104 28 0.877 1.28

1 24 716 1.68 × 105 40 0.900 1.28

1 32 1024 3.28 × 105 45 0.917 1.28

1 64 54 3.44 × 105 45 1.0 1.16009

We show the simulation parameters for each anisotropy D, and lattice size L . Nsamples is the number
of simulated samples. NT is the number of temperatures that were used in parallel tempering. The
temperatures followed a geometric sequence between Tmin and Tmax, and NT was chosen so that the
PT’s acceptance was around 15 %. N min

MCS is the minimum number of EMCS for each simulation.
The simulation for L = 64, D = 1 was intended only to locate TCG

All the simulations were run on NVIDIA Tesla GPUs. Except L = 64, D = 0.5,
where we ran on 45 parallel GPUs, each sample was simulated on a single GPU. The
interested reader can find in appendix A details on how they were performed.

Table 3.1 depicts the relevant simulation parameters. For given L and D, the
simulations were all equally long, except for L = 64, D = 0.5, where we extended
the simulation of the samples with the longest relaxation times.

To ensure thermalization we made a logarithmic data binning. Each bin had twice
the length of the previous, i.e. it contained two times more EMCS, and had twice the
measures. More explicitly, let us call if the last bin: if contains the last half of the
MC time series, if − 1 the second quarter, if − 2 the second octave, and so on. This
allowed us to create a sequence of values 〈On(i)〉, for every observable O, where
n indicates the sample, and i identifies the bin, that has length 2i EMCS. A set of
samples was considered thermalized if 〈On(i)〉 − 〈On(if)〉 converged to zero. This
test is stricter than merely requesting the convergence of the sequence of 〈On(i)〉,
because neighboring blocks are statistically correlated, so the fluctuation of their
difference is smaller [Fer08]. Physical results were taken only from the last block.

Since the L = 64, D = 0.5 samples were the most GPU-consuming, we were
more strict with them. To ensure and monitor thermalization, beyond the previous
criteria, we measured the integrated autocorrelation time (mixing time) of the random
walk in temperatures of each sample [Fer09b, Yll11]. In a thermalized sample, all
the replicas stay a significant amount of time at each temperature. We made sure that
all the simulations were longer than 10 times this autocorrelation time. The sample-
to-sample fluctuations were not extreme, and the autocorrelation times τ spanned
between 10000 EMCS and 50000 EMCS, depending on the sample. Finally, we
decided to take measures only over the last 64000 EMCS of each simulation.
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3.5 Interpolations, Extrapolations and Errors

We have been able to estimate the critical temperature from the crossing of the curves
ξ/L at L and 2L , and the exponents ν and η with the method of the quotients, as
described in Sect. 1.3.4.

To identify the crossing point between the pairs of curves (Figs. 3.1 and 3.2), we
used low-order polynomial fits: for each lattice size, we took the four temperatures
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Fig. 3.1 Spin glass correlation length in units of the linear lattice size L for D = 0.5 (top) and
D = 1 (bottom). All the curves cross at about the same temperature for both anisotropies (see
Eq. (1.88)). The data for D = 1, L = 64, shown here for the sake of completeness, were only used
for the chiral sector

http://dx.doi.org/10.1007/978-3-319-41231-3_1
http://dx.doi.org/10.1007/978-3-319-41231-3_1
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Fig. 3.2 Chiral Glass correlation length in units of the lattice size for D = 0.5 (top) and D = 1
(bottom). When L grows, the crossing temperature shifts significantly towards left

in the parallel tempering nearest to the crossing point. We fitted these four data
points to a linear or quadratic function of the temperature. The obtained results were
compatible within one standard deviation (the values reported in this work come
from the linear interpolation). In order to calculate ν we needed the derivative of the
correlation length at the crossing point. We extracted it by taking the derivative of
the polynomial interpolations.

However, there is a difficulty in the calculation of statistical errors: the fits we had
to perform came from strongly correlated data (because of the parallel-tempering
temperature swap). Therefore, to get a proper estimate of the error, we made jackknife
blocks, fitted separately each block, and calculated the jackknife error [Ami05].
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The whole mentioned procedure was fluid while T L ,2L
SG fell in our simulated tem-

perature span. Yet, since T L ,2L
SG was fairly lower than T L ,2L

CG , it occurred in four cases
that we did not reach low enough temperatures in our simulations to be able to inter-
polate the crossing, and we had to recur to extrapolations. This happened with D = 1,
T 32,64

SG and T 32,64
CG , and in the lower anisotropy D = 0.5, with T 16,32

SG and T 32,64
SG .

The case of T 32,64
SG (D = 1) and T 16,32

SG (D = 0.5) was not a great issue, because
the crossing point was very near to the lowest simulated temperature, so we treated
these crossings just like the others.

In the case of T 32,64
SG (D = 0.5), instead, we had to extrapolate at a long distance

(see Fig. 3.1–top, in the next section). Again, we performed the extrapolation through
linear in temperature fits. To make the fit of L = 64 more stable, we took in account
a progressive number of points (i.e. we fitted to the n lowest temperatures). We
increased the number of temperatures, while the crossing temperature was constant.
Note that increasing the number of temperatures in the fit results in a smaller statistical
error for the crossing-temperature. However, ξL(T )/L is not a linear function at high
T (see Fig. 3.1). Therefore a tradeoff is needed because, when too high temperatures
were included in the fit, the crossing temperature started to change, and we knew
that curvature effects were biasing it. Our final extrapolation was obtained from a
fit performed on the 10 lowest-temperature points. Unfortunately, this approach was
not feasible for the SG susceptibility due to its strongly non-linear behavior. Hence,
in the next section we will not give an estimate for ηSG(L = 64).

In the case of T 32,64
SG (D = 1), the simulation was not devised to reach that crossing

point, and we did not extrapolate data.

3.6 Spin Glass Transition

Figure 3.1 show the crossings of ξSG(T )/L for D = 0.5, 1. Table 3.2 contains the
principal results on the SG sector, providing a quantitative description of those fig-
ures. As explained in Sect. 3.3, we expect that the transition belongs to the IEA
Universality class. This conjecture is supported by the fact that the critical exponents
νSG and ηSG, and the height at which the ξSG(T )/L cross, are compatible with those
of the IEA spin glass, indicated in the last line of Table 3.2. Hence, it is reasonable to
extrapolate our results to L → ∞ by assuming the IEA universality class. We took
ωIEA = 1.0(1) from [Has08], and fitted to Eqs. (1.86), (1.90) and (1.92).8 In those

8At the time these calculations were done and [BJ14d] was submitted, the most precise estimation
of the critical parameters of the IEA model was done in [Has08]. At the moment of the drafting
of this thesis, a more recent yet article from the Janus collaboration [BJ13] gives a more precise
determination of the critical exponents. The two estimations are compatible and using one or the
other does not change qualitatively nor quantitatively our results and conclusions. In fact, the
statistical errors on the extrapolations are much larger than those deriving from the uncertainty on
ω (see Table 3.2).

http://dx.doi.org/10.1007/978-3-319-41231-3_1
http://dx.doi.org/10.1007/978-3-319-41231-3_1
http://dx.doi.org/10.1007/978-3-319-41231-3_1
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Table 3.2 For each anisotropy D, and each pair of lattices (L , 2L), we obtain effective size-
dependent estimates for TSG, and the universal quantities νSG, ηSG and ξL (TSG)/L

Determination of the critical quantities for the SG sector

D (L , 2L) TSG νSG ηSG ξSG(TSG)/L

0.5 (8, 16) 0.602(18) 1.91(27) −0.388(27) 0.629(48)

0.5 (16, 32) 0.577(22) 2.70(63) −0.449(67) 0.705(76)

0.5 (32, 64) 0.596(14) 2.18(45) – 0.631(56)

0.5 ∞ 0.591(16)[0] 2.71(82)[3] – 0.637(87)[1]

χ2/d.o.f. 0.55/1 0.47/1 – 0.56/1

1.0 (8, 16) 0.910(21) 2.38(25) −0.410(44) 0.660(34)

1.0 (12, 24) 0.927(19) 2.32(28) −0.370(53) 0.629(36)

1.0 (16, 32) 0.910(16) 2.37(28) −0.400(19) 0.660(35)

1.0 ∞ 0.917(32)[0] 2.33(67)[0] −0.391(71)[1] 0.662(83)[0]

χ2/d.o.f. 0.66/1 0.030/1 0.37/1 0.55/1

IEA ∞ 2.45(15) −0.375(10) 0.645(15)

The thermodynamic limit, indicated with L = ∞, is obtained by means of fits to Eqs. (1.88), (1.90),
(1.92) and (1.86). Exponent ω was not a fitting parameter (we took ωIEA = 1.0(1) from [Has08]).
The line immediately after the extrapolations displays the estimator of the χ2 figure of merit of
each one. D = IEA represents the critical values of the IEA Universality class, taken from [Has08].
The numbers in square brackets express the systematic error due to the uncertainty of ωIEA. Notice
that this systematic error is small compared to the statistical error

fits we took in account both the anticorrelation in the data,9 and the bias arising from
the uncertainty of the exponent ωIEA. Notice, from Table 3.2, that the dependence
on L of the data is so weak, that this bias is practically negligible. This situation
is different from the one encountered in [MM11], where the anisotropy fields were

9Some of the points we used for those extrapolations in this chapter shared some of the data, so
the measurements could not be treated as independent. For example, the crossing of ξL/L for
L = 8, 16, had in common the points from size L = 16 with the pair L = 16, 32. This means that
for the estimation of quantities deriving from the crossings, for example the thermal exponent ν

(Eq. (1.90)), we need to take in account the non-diagonal part of the covariance matrix that gives a
measure of the anticorrelation between measurements that share data.

For the described case, the typical jackknife (JK) statistical error (see Appendix E.1) coming
from the diagonal part of the covariance matrix is

σ 2
(8,16;8,16) = (n − 1)

n−1∑
j=0

(ν
(8,16)
j − Ẽ(ν(8,16)))2

n
, (3.10)

where n is the number of JK blocks blocks and Ẽ(. . .) is the estimator of the average. The new
term we need to take in account in this example is the one coupling the couple (8, 16) to the couple
(16, 32)

σ 2
(16,32;16,32) = (n − 1)

n−1∑
j=0

(ν
(8,16)
j − Ẽ(ν(8,16)))(ν

(16,32)
j − Ẽ(ν(16,32)))

n
. (3.11)

http://dx.doi.org/10.1007/978-3-319-41231-3_1
http://dx.doi.org/10.1007/978-3-319-41231-3_1
http://dx.doi.org/10.1007/978-3-319-41231-3_1
http://dx.doi.org/10.1007/978-3-319-41231-3_1
http://dx.doi.org/10.1007/978-3-319-41231-3_1
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Table 3.3 Same as Table 3.2, but for chirality

Determination of the critical quantities for the CG sector

D (L , 2L) TCG νCG ηCG ξCG(TCG)/L

0.5 (8, 16) 0.7762(43) 1.45(22) 1.9778(23) 0.0321(22)

0.5 (16, 32) 0.7255(29) 1.78(14) 1.8416(98) 0.0735(41)

0.5 (32, 64) 0.659(47) 2.40(47) 0.823(68) 0.258(18)

1.0 (8, 16) 1.2031(33) 1.205(71) 1.9507(27) 0.0418(12)

1.0 (12, 24) 1.1472(40) 1.72(11) 1.8664(51) 0.0691(25)

1.0 (16, 32) 1.1046(38) 2.18(10) 1.6995(75) 0.1098(42)

1.0 (32, 64) 0.987(22) 2.48(84) 0.53(19) 0.368(58)

In this case the corrections to scaling are significant

extremely small (D � 0.03, see Sect. 3.3). There, the finite-size effects in the SG
sector were huge.

Overall, the strong consistency of our extrapolations to large L with the IEA
exponents shows a posteriori that our assumption was proper.

3.7 Chiral Glass Transition

In the CG channel (Fig. 3.2 and Table 3.3) the interpretation is slightly more con-
troversial, since finite-size effects are heavy. For the smaller lattice sizes, TCG is
consistently larger than TSG, and νCG is incompatible with the IEA limit. On the
other side, when L is larger, TCG approaches noticeably its SG counterpart, and so
does νCG. We notice that ηCG marks the distinction between these two regimes. In
fact, when L is small, it is very close to 2. This means that the divergence of χCG is
extremely slow (χ ∼ L2−η),10 revealing we are still far from the asymptotic limit.
When L is larger, ηCG is consistently smaller, the divergence of χCG is less suppressed,
and we can assume the asymptotic behavior is starting to show up. Consistently with
this observation, the value of ξCG/L at the crossing temperature becomes sizeable
[indeed, the second-moment correlation length (1.67) is well defined only if η < 2,
see e.g. [Ami05].

3.7.1 Uniqueness of the Transition

Although the SG and CG transitions do not coincide yet with our values of L and D,
the critical temperatures, as well as ν, become more and more similar as the linear

10Recall that γCG = ν(2 − ηCG) where γCG is the critical index for the CG susceptibility, while ν

is the correlation-length exponent.

http://dx.doi.org/10.1007/978-3-319-41231-3_1
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Fig. 3.3 Difference between the chiral crossing TCG and the spin glass transition temperature T ∞
SG,

in units of T ∞
SG (see Table 3.2 for the extrapolations of T ∞

SG). The exponents ωIEA and νIEA are taken
from [Has08]. In the upper plot we represent our data, for D = 0.5, 1. The two transitions get
closer when we increase L , and the approach appears faster when the lattice size increases. Notice
that a linear interpolation between the two largest lattice sizes intercepts the y axis compatibly
with a coupling between the two transitions (i.e. TSG = TCG). On the bottom plot we show data
from [MM11], where much lower anisotropies were considered. Here the scenario is completely
different, since the critical temperatures drift apart for large enough L . The horizontal dashed line
corresponds to TCG − TSG = 0

size of the system increases. Moreover, the decrease of ηCG as a function of L has
not yet stabilized, so it is likely that the chiral quantities will keep changing with
bigger lattice sizes.

As explained in Sect. 3.3, we expect that the transition should belong to the IEA
Universality class. To confirm this expectation, we make the ansatz of a unique
transition, of the IEA Universality class, to seek if the two critical temperatures
join for L → ∞. Figure 3.3 (upper half) shows the difference between the critical
temperatures as a function of the natural scale for first order corrections to scaling,
L−(ωIEA+1/νIEA) [Eq. (1.88)]. Again, ωIEA and νIEA are taken from [Has08]. Not only
Fig. 3.3 (top) reveals a marked increase of the speed of the convergence for L = 64
(to which corresponds the smallest anomalous exponent ηCG), but also, a linear
interpolation to infinite volume, taking that point and the previous, extrapolates TSG =
TCG within the error.

Figure 3.4 shows how the SG and CG critical temperatures approach each other
with L . Again, TCG gets closer to TSG, and the speed of the approach increases with the
lattice size. The points in the intercept represent extrapolations to the thermodynamic
limit of the TSG. Since the observations are compatible with the ansatz of a unique

http://dx.doi.org/10.1007/978-3-319-41231-3_1
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Fig. 3.4 Crossing temperatures as a function of L−(ωIEA+1/νIEA) (large plot). The points on the
intercept are the L → ∞ extrapolations from Table 3.2. The inset shows the phase diagram of
the model with these same points, as the most economic interpretation of our data is that in the
thermodynamic limit TSG = TCG. The D = 0 point is borrowed from [Fer09c]

phase transition, belonging to the IEA universality class, we used the infinite-size
limit of TSG to plot the model’s phase diagram (Fig. 3.4, inset).11

3.8 Comparing with Weak Anisotropies

Both plots of Fig. 3.3 show the same observable, for different anisotropies. The top
plot depicts our data, in the case of strong anisotropies D = 0.5, 1. The bottom one
represents the case of weak anisotropies (D � 0.03), coming from [MM11]. The
behavior is very different between the two cases. For strong anisotropies, the critical
temperatures tend to meet as we increase L . That is qualitatively very different from
the weak anisotropy case, where their distance increases. We can ask ourselves where
this qualitative difference of behavior comes from.

If we compare same system sizes and different D in Table 3.3, we notice that
finite-size effects are larger (and η closer to two) the smaller the anisotropy. These
differences in the finite-size effects are appreciable with a factor 2 change in the
anisotropy (from D = 1 to D = 0.5), so it is reasonable that suppressing the
anisotropy by a factor 17 or 35 will increase drastically the finite-size effects.

11In the phase diagram we show, the D = 0 point comes from [Fer09b], where chiral and spin glass
transition are assumed to be coupled. There is disagreement on whether TSG = TCG also in the
isotropic case. Yet, we do plot it as a single transition because although TSG might be lower than
TCG, their best estimates are compatible (and not distinguishable in the plot).
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The most economic explanation is then that there is a non-asymptotic effect that
disappears with much larger systems or, as we have seen, with larger anisotropies. In
other words there is a L∗(D) after which TSG and TCG start joining. For D � 0.03,
L∗ is so large that we observe a growing TCG − TSG, while for D ≥ 0.5 we find
L∗ < 8.

Another peculiarity out-coming from [MM11] arises from the SG transition alone.
It had been observed that a very weak perturbation on the symmetry of the isotropic
system implied huge changes in the critical temperature, while one would expect
that the transition line is smooth.

To solve this dilemma, we take advantage of having strong evidence for the Uni-
versality class of the transition. So, we take the data from [MM11], and use once again
the exponents νIEA and ωIEA in [Has08] to extrapolate the infinite volume limit with
second order corrections to scaling [Eq. (1.88)]. The fit is good (χ2/d.o.f. = 0.70/1),
and, as we show in Fig. 3.5, its L → ∞ extrapolation for the critical temperature
is compatible with TSG(D = 0) within one standard deviation. Thus, taming the
finite-size effects was enough to make the scenario consistent, and the issue reduces
to the fact that finite-size effects are extremely strong when the anisotropy is smaller.

http://dx.doi.org/10.1007/978-3-319-41231-3_1
http://dx.doi.org/10.1007/978-3-319-41231-3_1
http://dx.doi.org/10.1007/978-3-319-41231-3_1
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3.9 An ex post Interpretation

We can reinterpret the results on the Heisenberg model with random anisotropic
exchange interaction from an RG perspective. It was already established that in the
isotropic D = 0 limit there is a phase transition at T D=0

SG . There are controversies on
whether T D=0

SG = T D=0
CG , but this is unimportant to us, because it is generally accepted

that T D>0
SG = T D>0

CG , though it was not verified until [BJ14d]. Therefore in the present
section we mention the critical temperature as TSG.

One of our main questions was whether the universality class changes when
D > 0. Since in nature anisotropies are always present, though weak, the problem
was initially tackled by studying low random anisotropies in [MM11]. To the light
of the remarks of Sect. 1.3.5.1, it was expectable that the numerical results be of hard
interpretation. In fact when starting the RG flow from a small anisotropy, the system
will initially feel strong effects from the D = 0 FP. Furthermore, if the flow does not
start close to TSG, the numerical simulations will only feel at first the effects of the
D = 0 FP, and then those of the T = 0 or T = ∞ FP (recall Fig. 1.7 and discussion).

Of the three options that in Sect. 1.3.5.1 are suggested to get away from this hard
regime, we are able to adopt two, increasing drastically both the anisotropy and the
lattice sizes, and finished obtaining also a better estimate of the critical temperature.
The result is depicted in Fig. 3.6. Starting the flow from a large anisotropy leads

Fig. 3.6 RG flow in the Heisenberg SG with random anisotropies. The orange zone represents the
zone of the phase diagram where the echoes of the Heisenberg FP are strong (even though it is not
an attractive FP). The blue area is equivalent, but for the Ising FP. The Ising FP is attractive along
the critical line Dc(T ), but it is not in the rest of the phase diagram, so to approach the blue from
the orange zone one must follow a flow that starts very close to Dc(T ). Further discussions in the
main text

http://dx.doi.org/10.1007/978-3-319-41231-3_1
http://dx.doi.org/10.1007/978-3-319-41231-3_1
http://dx.doi.org/10.1007/978-3-319-41231-3_1
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the system far from the zone where echoes of the D = 0 transition are strong, and
simulating on larger lattices is equivalent to taking more RG steps, toward the Ising
FP. Furthermore, large lattices gave us a better estimate of the critical temperature,
so our movement in the phase diagram sped towards the Ising FP in an effective
way. In terms of Fig. 3.6 we moved from the outer part of the Heisenberg fixed point
influence (drawn in orange, smaller lattices), to the zone where the Ising behavior is
strong, blue zone (L = 64), so we were able to measure an Ising behavior.

3.10 Overview

We performed a numerical study of the critical behavior of Heisenberg spin glasses
with strong bimodal random anisotropies. Our aim was to clarify the role of scaling-
corrections, as well as the crossover effects between the Heisenberg and Ising Uni-
versality classes, to be expected when the anisotropic interactions are present. In fact,
we show that anisotropic interactions are a relevant perturbation in the RG sense: no
matter how small the anisotropy, the asymptotic critical exponents are those of the
Ising-Edwards-Anderson model. However, a fairly large correlation length maybe
needed to reach the asymptotic regime. This observation is relevant for the interpre-
tation of both numerical simulations [MM11], and experiments [Pet02].

It is then clear that large system sizes are needed to make progress, something that
calls for extraordinary simulation methods. Therefore, we performed single-GPU and
multi-GPU simulations to thermalize lattices up to L = 64 at low temperatures.
As side benefit, our work provides a proof-of-concept for GPU and multi-GPU
massive simulation of spin-glasses with continuous degrees of freedom. This topic
is elaborated further in Appendix A.

We performed a finite-size scaling analysis based on phenomenological renormal-
ization (Sect. 1.3.4). We imposed scale-invariance on the second-moment correlation
length in units of the system size, ξL/L . We followed this approach for both the chiral
and spin glass order parameters.

Our results for the spin-glass sector were crystal clear: all the indicators of the
Universality class were compatible with their counterparts in the Ising-Edwards-
Anderson model. On the other hand, in the chiral sector scaling-corrections were
annoyingly large, despite they decrease upon increasing the magnitude of the
anisotropic interactions.

Regarding the coupling of chiral and spin glass transition, our numerical results
seem to indicate that the two phase-transitions take place at the same temperature
(i.e. TCG = TSG). However, it is important to stress that we need our very largest
lattices to observe this trend. Nevertheless, what we see is in agreement with both
Kawamura’s prediction and experiments, where the phase transitions are apparently
coupled, and the chiral glass susceptibility is divergent [Tan07].

Moreover, we were able to rationalize the numerical results in [MM11] with
corrections to scaling, by assuming the Ising-Edwards-Anderson Universality class.

http://dx.doi.org/10.1007/978-3-319-41231-3_1
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We remark that there are strong analogies between the interpretation of numerical
and experimental data. In both cases, there is a relevant length scale (the correlation
length for experiments, the system size for simulations). If that length is large enough,
the asymptotic Ising-Edwards-Anderson Universality class should be observed. Oth-
erwise, intermediate results between Heisenberg and Ising are to be expected, and
indeed appear [Pet02].

The difficulty in reaching the asymptotic regime lies on time: the time growth of
the correlation length is remarkably slow (ξ(tw) ∼ t1/z

w with z ≈ 7 [Bel08b, Bel09a,
Joh99], where tw is the waiting time). Indeed, the current experimental record is
around ξ ∼ 100 lattice spacings [Joh99, Ber04b], pretty far from the thermodynamic
limit.12 Hence attention should shift to the study of the intermediate crossover regime.
An intriguing possibility appears: one could envisage an experimental study of the
crossover effects as a function of the waiting time. In fact, tw varies some four orders
of magnitude in current experiments [Rod13], which should result in a factor 4
variation of ξ(tw).
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Part III
Energy Landscapes



Chapter 4
Energy Landscape of m-Component Spin
Glasses

Although it is established that typical spin glasses [Méz87] order at a critical tem-
perature TSG for d ≥ 3 [Bal00, Kaw01, Lee03], the nature of the low-temperature
phase of spin glasses under the upper critical dimension du = 6 is still a matter of
debate (Sect. 1.1.2).

Already at the dawning of spin glass theory interest had been given to the behavior
of SGs as a function of the number of spin components m [Alm78a]. Increasing
the number of spin components m reduces the number of metastable states, and
recently renewed interest has been shown towards the properties of these models in
the m → ∞ limit, and their energy landscape [Has00]. Interesting features have
been pointed out in large-m mean field models, such as a Bose-Einstein condensation
in which the spins condense from an m-dimensional to an n0-dimensional subspace,
where n0 scales with the total number of spins N as n0 ∼ N 2/5 [Asp04].

It has been argued in [Asp04] that the m = ∞ limit could be a good starting point
for the study of the low-m SGs,1 via 1/m expansions that have been used, for instance,
to try to question the presence of a dAT line [Moo12]. However the Hamiltonian of
the m = ∞ model has a unique local minimum, that can be found easily by steepest
descendent (the determination of the ground state is not an NP-complete problem).

Explicit computations also indicate that the m = ∞ model is substantially differ-
ent from any finite-m model (for example there is only quasi long-range order under
TSG, the upper critical dimension has been shown to be du = 8, and the lower critical
dimension is suspected to be dl = 8 too [Gre82, Via88, Lee05]), and that it is more
interesting to study these models for large but finite m, thus reversing the order of
the limits m → ∞ and N → ∞ [Lee05].

To better understand the large (but finite)m limit we undertake a numerical study in
a three-dimensional cubic lattice. Our aim is to arrive at a quantitative comprehension
of the energy landscape of systems with varyingm, expecting, for example, to observe
growing correlations as m increases [Has00].

1For example, in [Bey12] the infinite-m limit is used to derive exact relations in the one-dimensional
spin glass with power law interactions.
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We focus on infinite-temperature ISs, i.e. the local energy minima that one reaches
by relaxing the system from an infinite-temperature state, that is equivalent to a
random configuration. Examining a system from the point of view of the ISs is a
very common practice in the study of structural glasses [Cav09]. Only recently the
study of quenches2 from a high to a lower temperature has stimulated interest also
in spin systems, both in presence and absence of quenched disorder.3

We analyze the properties of the ISs, and we inspect the dynamics of how the
system converges to those configurations.

When one performs a quench from T = ∞ to 0 < T = T0 < TSG, the system is
expected to show two types of dynamics, an initial regime where thermal fluctuations
are irrelevant, and a later one where they dominate the evolution (see for example
the quenches performed in [Ber04c]). We choose T0 = 0, so we can to show that
the origin of the second dynamical regime is actually due to thermal effects. We
study the quenches as a function of m. While on one side in the Ising limit m = 1 the
dynamics is trivial, and correlations never become larger than a single lattice spacing,
on the other side an increasing m yields a slower convergence, with the arising of
low-temperature correlations that we can interpret as interactions between blocks of
spins.

4.1 Model and Simulations

4.1.1 Model

The model is defined on a cubic lattice of side L with periodic boundary conditions.
Each of the N = L3 vertices x of the lattice hosts an m-dimensional spin �sx =
(sx,1, . . . , sx,m), with the constraint �sx · �sx = 1. Neighboring spins �sx and �s y are
linked through a coupling constant Jx, y. The Hamiltonian is

HEA = −1

2

∑
|x− y|=1

Jx, y �sx · �s y, (4.1)

that was already defined in Sect. 1.1.2. The couplings Jx y are Gaussian-distributed,
with Jx y = 0 and J 2

x y = 1. The local field �hx for (4.1) is �hx = ∑
y:|x− y|=1 Jx y�s y.

2By quench we mean the minimization of the energy throughout the best possible satisfaction of
the local constraints, i.e. a quench is a dynamical procedure, as explained in Appendix F.1.1. Be
careful not to confuse it with other uses of the same term. For example, those quenches have little
to do with the quenched approximation used in QCD, or the quenched disorder, that is a property
of the system.
3In addition to [Ber04c, BJ11] cited several times in this chapter, one can e.g. see [Bla14] for
systems without quenched disorder, and [Bur07] for spin glasses.

http://dx.doi.org/10.1007/978-3-319-41231-3_1
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This Hamiltonian is invariant under the simultaneous rotation or reflection of all
the spins [that belongs to the O(m) symmetry group], so the energy minimas may be
found modulo a global rotation. For this reason we will use the tensorial definitions of
the overlap (Sect. 1.2.1) and correlation functions and lengths (both point and plane,
Sect. 1.2.3), so that the observables we measure are rotationally invariant too.

When one of the defined quantities is referred to the ISs (i.e. the final configurations
of our quenches), we will stress it by putting the subscript IS.

4.1.2 Simulations

We are interested in the ISs from infinite temperature, hence we need to pick random
starting configurations, and directly minimize the energy.

The algorithm we choose is a direct quench, that consists in aligning each spin to
its local field �hx (Appendix F.1.1). This choice was done because it allows us to
compare ISs from systems with a different m in a general way. For example, the
(SOR) (Appendix F.1.2) yields ISs with different properties, depending on the value
of a parameter � [BJ11], and the same � is not equivalent for two different values
of m.

For each sample we simulated two replicas, in order to be able to compute overlaps.
We fixed the number of full sweeps of a lattice to Nsweeps = 105, as it had already been
done in [Ber04c] with quenches to finite temperature. As it can be seen in Figs. 4.8,
4.9, 4.10 and 4.11 further on, this amount of steps was enough to guarantee the
convergence to an IS in all our simulations. To ensure the convergence we required
the last (logarithmically spaced) measurements to be equal within the error for each
of the measured observables.

In Table 4.1 we give the parameters of our simulations.
Truncated correlators When the correlation function decays very quickly and the
noise becomes larger than the signal, one could measure negative values of C(r),
that would be amplified by the factors r2 and r4 in the integrals (1.65) and (1.66).
This would imply very large errors in ξ, or even the square root of a negative number.
To overcome this problem, we truncated the correlation functions when they became
less than three times the error, as it was first proposed in [Bel09a]. This procedure
introduces a small bias, but reduces drastically the statistical error. Furthermore, the
plane correlation function required the truncation much more rarely, therefore we
compared the behaviors as a consistency check.

4.2 Features of the Inherent Structures Varying m

We want to analyse how the model’s behavior changes with m. Intuitively, the more
components a spin has, the easier it is to avoid frustration [Has00], and the simpler is
the energy landscape. According to this scenario, when m increases, the number of

http://dx.doi.org/10.1007/978-3-319-41231-3_1
http://dx.doi.org/10.1007/978-3-319-41231-3_1
http://dx.doi.org/10.1007/978-3-319-41231-3_1
http://dx.doi.org/10.1007/978-3-319-41231-3_1
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Table 4.1 Parameters of our simulations. Nsamples is the number of simulated samples, Nsweeps is
the number of quench sweeps of the whole lattice, and Nm is the number of measures we did during
the quench. We chose to follow the same roughly logarithmic progression chosen in [Ber04c],
measuring at times 2, 3, 5, 9, 16, 27, 46, 80, 139, 240, 416, 720, 1245, 2154, 3728, 6449, 11,159,
19,307, 33,405, 57,797, 100,000

L m Nsamples Nsweeps Nm

8 1 10,000 105 22

8 2 10,000 105 22

8 3 10,000 105 22

8 4 5000 105 22

8 6 10,000 105 22

8 8 10,000 105 22

16 1 1000 105 22

16 2 1000 105 22

16 3 1000 105 22

16 4 1000 105 22

16 8 1000 105 22

16 12 1000 105 22

16 16 1000 105 22

64 3 160 105 22

available ISs decreases down to the limit in which the energy landscape is trivial, and
there is only one minimum. This should be reflected in the quantity Q2/Q2

self (recall
Definition (1.31)), that should be small when there are many minima of the energy,
and go to 1 when there is only one inherent structure, since all the quenches end
in the same configuration. As shown in Fig. 4.1 (top), our expectation is confirmed.
With Ising spins (m = 1) the energy landscape is so rich that ISs have practically
nothing in common. When we increase m the overlaps start to grow until the limit
Q2 = Q2

self . By comparing the data for different L , we can dismiss a difference in the
behavior between discrete (m = 1) and continuous (m > 1) spins, since m = 1 for
L = 8 behaves the same as m = 2 for L = 16. In Sect. 4.4 we will discuss aspects
in which we do encounter differences.

Since the number of available ISs depends on both m and L , we can give an
operative definition of a ratio (m/L)SG under which the number of ISs is exponential
(so Q2/Q2

self � 0), and of a ratio (m/L)1 over which there is only one minimum.
This way, we can characterize finite-size effects effectively: An extremely small

system m/L > (m/L)1 is trivial and has only one stable state. Increasing the size
we encounter a less trivial behavior, but to find a visible signature of a spin glass
phase one has to have L ≥ m(L/m)SG. From Fig. 4.1 one can see that for L = 8,
mSG = 1, and for L = 16, mSG = 2. Then, for example, we see that to observe a
complex behavior for m = 3 spin glasses, one should use L > 16.

http://dx.doi.org/10.1007/978-3-319-41231-3_1
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Fig. 4.1 Dependence of the ISs’ overlaps from the number of components m of the spins. The top
figure displays the overlap normalized with the self-overlap, showing that when m is large enough
the energy landscape is trivial. In the bottom we have the unnormalized overlap Q2. The dashed
horizontal lines represent the limits 0 and 1, that bound both observables. Error bars are present
though small, so almost not visible

Table 4.2 Properties of the ISs. For each choice of the parameters we show the observables at the
end of the quench: The energy eIS, the overlap Q2

IS, the self overlap Q2
self,IS, the point-correlation

length ξ
point
IS and the plane correlation length ξ

plane
IS

L m eIS Q2
IS Q2

self,IS ξ
(plane)
IS ξ

(point)
IS

8 1 −0.4709(1) 0.0095(1) 1 0.68(2) 1.71(1)

8 2 −0.5953(1) 0.0497(3) 0.50297(2) 1.49(1) 2.802(4)

8 3 −0.6151(1) 0.1784(6) 0.33994(4) 2.188(2) 3.2358(7)

8 4 −0.6176(2) 0.2213(5) 0.26229(9) 2.2919(9) 3.2760(5)

8 6 −0.61801(11) 0.1989(1) 0.1997(1) 2.2567(3) 3.2514(2)

8 8 −0.61797(12) 0.1905(1) 0.1905(1) 2.2364(3) 3.2428(2)

16 1 −0.4721(1) 0.00123(6) 1 0.63(2) 1.69(1)

16 2 −0.5965(1) 0.0067(2) 0.500379(8) 1.49(4) 3.20(6)

16 3 −0.6165(1) 0.0382(5) 0.33416(1) 3.37(3) 5.43(1)

16 4 −0.6191(2) 0.0833(6) 0.25144(2) 4.153(7) 6.008(4)

16 8 −0.6200(1) 0.1218(3) 0.13126(5) 4.519(2) 6.187(1)

16 12 −0.6202(1) 0.10031(9) 0.10044(9) 4.3814(8) 6.087(1)

16 16 −0.6197(1) 0.0959(1) 0.0959(1) 4.3412(8) 6.066(1)

64 3 −0.61657(4) 0.00064(2) 0.3333466(4) 3.53(7) 6.74(6)

Moreover, this interpretation gives a straightforward explanation of the finite-
size effects one encounters in the energy of an inherent structure (Table 4.2). For
example, if we compare L = 8, 16 at m = 8, we notice two incompatible energies.
In fact, there is an intrinsic difference between the two sizes, since L = 8 represents
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Fig. 4.2 Dependence of the
second-moment correlation
length ξ2 on the number of
components of the spins m.
We show both the plane and
the point correlation
functions defined in
Eqs. (1.57) and (1.58), for
L = 8, 16
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single-basin systems, while L = 16 has a variety of inherent structures. On the other
side, finite-size effects on lower m are smaller, because we are comparing similar
types of behavior.

Notice that, although the ratio Q2/Q2
self(m) grows monotonously, this is not true

for the pure overlap Q2(m) (Fig. 4.1, bottom), that has a peak at an intermediate
m. Moreover, the position of the peak doubles when we double the lattice linear
size, justifying the operational definitions (m/L)SG and (m/L)1. The same peak at
intermediate m is also visible in the energy and in the correlation length (Fig. 4.2),
indicating that there is an intrinsic difference in the nature of the reached ISs. In
Table 4.2 we give the values of the aforementioned observables at the IS. We see in
this behavior the competition between two effects. When m is small, the quench has
a vast choice of valleys where to fall. Since, reasonably the attraction basin of the
lower-energy ISs is larger, the wide variety of ISs will increase the probability of
falling in a minimum with low energy and larger correlations. When m increases, the
number of available valleys decreases, so it is more likely that two different replicas
fall in the same one. Yet, the quality of the reached ISs decreases, since the quench
does not have the possibility to choose the lowest-energy minimum.

4.3 Overlap Probability Densities

From these observations it is reasonable to think that overlap and energy of the v are
correlated. We looked for these correlations both on the overlap, on the self overlap,
and in their ratio, but with a negative result. In Fig. 4.3 we show a scatter-plot of the
ratio of the inherent structure’s overlaps Q2

IS/Q
2
self,IS that confirms our statements.

An equivalent plot for the link overlap is displayed in the inset.

http://dx.doi.org/10.1007/978-3-319-41231-3_1
http://dx.doi.org/10.1007/978-3-319-41231-3_1
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Fig. 4.3 Scatter plots for
L = 16, at different values of
m, of the overlap ratio
Q2

IS/Q2
self,IS against mean

energy between the two
replicas
eIS = (e(a)

IS + e(b)
IS )/2. Each

simulated sample contributes
to the plot with a single
point. The inset displays an
analog plot for the link
overlap
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The cross sections of Fig. 4.3 give an idea of the energy and overlap probability
distribution functions. We show explicitly the overlap probability distribution func-
tions (normalized with the bin width) of the ISs in Fig. 4.4. They are qualitatively
different from their thermal counterparts (see, e.g., [AB10a]). The ratio Q2

IS/Q
2
self,IS

is bounded between zero and one. The distributions are extremely wide, and the phe-
nomenology is quite different near the two bounds. In fact, when m is large enough,
the limit Q2

IS/Q
2
self,IS = 1 changes completely the shape of the curves, introduc-

ing a second peak (that we could read as an echo of the Bose-Einstein condensation
remarked in [Asp04]). Around the lower bound of the P(Q2

IS/Q
2
self,IS), instead, there

is no double peak. We can try to give an interpretation to the presence of this second
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Fig. 4.5 Sample-dependent overlap pdfs PJ (Q2
IS/Q2

self,IS). Each curve depicts data from a separate
sample. In each plot we show a selection of three samples with different shapes of the distribution.
The choices of the parameters are represented in the key of each plot. We used two different color
codes to distinguish the three plots that come from L = 8 systems (top-left and right, and bottom
left), from the bottom-right plot that is for L = 16. The curves are normalized as in Fig. 4.4

peak by looking at the overlap distribution functions PJ (Q2
IS/Q

2
self,IS) for a given

instance of the couplings. In Fig. 4.5 we show that this distribution has relevant
sample-to-sample fluctuations. When we increase m, the number of minima of the
energy, NIS, gradually becomes smaller. Yet, depending on the specific choice of the
couplings, NIS can vary sensibly. For example in Fig. 4.5, top-right, one can see that
when L = 8 and m = 4, NIS can be both large (red curve) or of order one (blue
curve). For L = 8, m = 6 (Fig. 4.5, bottom-left), the situation is similar: for the blue
curve NIS = 1, while for others NIS > 1.

As we similarly stated in Sect. 4.2, we notice that the lattice size plays a substantial
role on the properties of the reached inherent structure, since when we pass from
L = 8 to L = 16 histograms regarding the same m cover very different ranges of
q. We can both see them traditionally as strong finite-size effects, or focus on L as a
relevant parameter (as it was suggested, for example, in [BJ14d]), concentrating the
interest on finite L .
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Fig. 4.6 Same as Fig. 4.4,
but for the link overlap. The
inset shows a zoom for the
m = 8, L = 16 data, where
we also removed the
logarithmic scale on the y
axis
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4.3.1 Link Overlaps

Since in the past ten years an increasing attention has been devoted to the link overlap
Q2

link as an alternative order parameter for the study of the low temperature region
of spin glasses [Krz00, Con06, AB10a], in Fig. 4.6 we show also the link-overlap
histograms P(Q2

link,IS) at the IS. The functions P(Q2
link,IS) have much smaller finite-

size effects than the P(Q2
IS), and are more Gaussian-like (although the Gaussian

limit is impossible, since Q2
link is bounded between 0 and 1). The inset shows that

the second peak on high overlaps is present also with the link overlap.
We checked also the correlation between spin and link overlaps. At finite temper-

ature there are different predictions between RSB and droplet pictures. According to
the RSB picture the conditional expectation value E(Q2

link|Q2) should to be a linear,
strictly increasing function of Q2, while this should not be true in the Droplet theory
(Sect. 1.1.2). When m is small, this correlation is practically invisible, but it becomes
extremely strong when we increase the number of components of the spins (Fig. 4.7).
Notice how the correlation between spin and link overlap is formidably increased
when we normalize the two with the self overlap. The curves in Fig. 4.7 represent
E(Q2

link|Q2). If we exclude the tails, that are dominated by rare non-Gaussian events,
the trend is compatible with linearly increasing functions.

http://dx.doi.org/10.1007/978-3-319-41231-3_1
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Fig. 4.7 Correlation between the spin and the link overlap of the ISs, for L = 16 lattices, with
m = 1 (top), m = 4 (center) and m = 12 (bottom). On the left we plot the overlaps, while on
the right they are normalized with the self overlap. Normalizing with the self overlap increases the
correlations between the two order parameters. The two top figures are the same because the self
overlap is one when m = 1. The black lines on the left plots represent E(Q2

link |Q2), and they show
that a correlation exists also without normalization

4.4 Quench Dynamics

Let us get an insight on the dynamics of the quench. For short times, the energy
converges towards a minimum with a roughly power law behavior (Fig. 4.8). At
longer times there is a cutoff, that grows with the system’s size, revealing a change in
the dynamics after which the system converges faster to a valley. We stress the great
difference in the convergence rate between m = 1 and m > 1. We can identify two
different decrease rates, depending on whether the spins are discrete or continuous.
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Fig. 4.8 Evolution of the energy during the quench for all the simulated values of m, in L = 16
lattices. On the x axis there is the time, measured in full lattice quench sweeps. On the y axis there
is the difference between the energy at time t , e(t) = (

e(a)(t) + e(b)(t)
)
/2, and its final value

eIS = e(t = 105). The convergence speed is very different between continuous and discrete spins.
To stress the finite-size effects we also show points for L = 64, m = 3 (points connected by
segments).

Figure 4.9 shows the evolution of the overlap for L = 16, and gives a better
understanding of why quantities such as Q2

IS are not monotonous with m. We show
both the evolution of Q2/Q2

self (top), and of Q2 (bottom). The first one behaves as
one would expect when the number of minima is decreasing to one. On the other side,
we see from the lower plot how the quenches of m = 8 reach the highest overlap.
A possible interpretation is to ideally separate the quench in two regions. At the
beginning there is a search of the valley with a power-law growth of Q2, and later
the convergence inside of the valley. Figure 4.9 shows that the search of the valley
stops earlier when m = 12, 16, i.e. when their number is of order one.

We remark on a nonlinear trend on the evolution of the self overlap Q2
self(t). For

continuous spins (m > 1) it has a different value at infinite and zero temperature
(Fig. 4.10). This variation is strikingly visible when m is large, but the same trends
are found for m ≤ 3, though the variations are so small that it is justified that they
are usually not found.4 Moreover Q2

self(t) is highly nonlinear, and, except for the
highest m, it overshoots before having converged.

In Fig. 4.11 we show the evolution of the correlation lengths ξ
plane
2 during the

quenches for L = 16 for all our values of m. We see the same variety of behaviors
shown by Q2 (Fig. 4.9), with ξ

plane
2 (m = 12, 16) that abruptly stop increasing, while

4To our knowledge, the only reference where a non-trivial behavior of the self-overlap was found
is in [BJ11]. Yet, in this case it was in the study of ISs from finite temperature, and in the chiral
sector (they worked with m = 3).
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Fig. 4.9 Time evolution of
the overlaps in L = 16
lattices. In the top set we
show the overlap Q2

normalized with the self
overlap Q2

self . On the center
we show Q2 without
normalizing. Notice that
differently from the top case,
in the center plot it is the
curve representing m = 8
that reaches the highest
values. The bottom plot
shows that the behavior is
analogous with Q2

link

10-3

10-2

10-1

100

Q
2 /Q

se
lf

2

10-3

10-2

10-1

Q
2 m =   1

m =   2
m =   3
m =   4
m =   8
m = 12
m = 16

0.2

0.3

0.4

0.5

0.6

100 101 102 103 104 105

Q
lin

k2

t

when m = 8 the increase is similar but lasts longer and the change of growth is
smoother.5

We can contrast our results with the ones obtained by Berthier and Young in
[Ber04c] form = 3 Heisenberg spin glasses. In that case they measured the evolution
of the coherence length in quenches down to positive temperature T0 > 0 (L =
60). They remarked two different regimes of growth of the coherence length, and
attributed them to the passage from critical to activated dynamics.6 In that case the
slope of the second phase kept being positive and ξ did not appear to converge after
105 lattice sweeps. We can make a direct comparison with our quenches to zero-
temperature T0 = 0 with L = 64 (Fig. 4.9, inset). We obtain a flat second regime
after 104 sweeps, so we can indeed attribute the growth in the second regime to

5The point correlation length ξ
point
2 behaves analogously.

6Note that the definition of the coherence length in [Ber04c] is different from ours.
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Fig. 4.10 Evolution of the
self overlap Q2

self (t) for
lattices of size L = 16, for
different values of m. Note
the differences in the
y-scales: For small m the
variation of Q2

self (t) is very
small, while for the largest
ones it is of the order of the
self-overlap

 0.995
 1

 1.005 m =   1

0.50037

0.50041
m =   2

 0.33415

 0.33435

 0.33455 m =   3

 0.2513

 0.2518

 0.2523
Q

2 se
lf

m =   4

 0.1284

 0.1304

 0.1324

m =   8

 0.087

 0.095

 0.103

m = 12

 0.0646

 0.0746

 0.0846

 0.0946

100 101 102 103 104 105

t

m = 16

Fig. 4.11 Time evolution of
the plane second-moment
correlation length ξ

plane
2 . In

the large figure we show
every simulated m for size L .
Notice that the highest
correlation length is reached
by m = 8. The inset depicts
the sole case of
three-dimensional spins
(m = 3) for sizes
L = 8, 16, 64

 0

 1

 2

 3

 4

 5

10-1 100 101 102 103 104 105

ξ 2
(p

la
ne

)

t

m =   1
m =   2
m =   3
m =   4
m =   8
m = 12
m = 16

 1.5

 2.5

 3.5

100 101 102 103 104 105

t

m =   3

thermal effects. In the inset we compare the coherence length of different lattice
sizes to remark that although ξ

plane
2 < 4, we are clearly far from the thermodynamic

limit even for L = 16.
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4.5 Overview

We performed an extensive study of the energy landscape of three-dimensional vector
spin glasses, focusing on their dependence on the number of components m of the
spins. We were concerned both with the zero-T dynamics and with the properties of
the ISs, remarking various types of finite-size effects.

Increasing m the number of minima in the energy landscape decreases monoto-
nously, down to the limit of a single state. The number of components mSG(L) after
which the number of minima becomes sub-exponential grows with the lattice size.
Reversing the relation, we can operatively define LSG(mSG) as the smallest lattice
size needed in order to observe a complex behavior for a given m.

For smallm correlations are small and dynamics are trivial, while whenm becomes
larger correlations increase and the convergence to an inherent structure slows down
(for a small enough m/L ratio). We remark on the competition between the m = 1
limit, with abundance of ISs, and the large-m limit where at T = 0 there is only a
single state.

In finite systems neither the overlap, nor the correlation length, nor the energy
of the ISs is a monotonous function of m, as one would expect from a decreasing
number of available disordered states. They have instead a peak at an intermediate
m. We attribute this to the fact that when there are several minima, those of more
ordered states have a larger attraction basin, so having many ISs makes it easier to fall
into a more ordered state. If one wanted to rule out the non-monotonous behavior it
could be useful to redefine the correlations as a function of the normalized overlaps
Q2/Q2

self , as we have seen that the normalized overlaps do exhibit a monotonous
trend.

Also, we presented pdfs of the spin and link order parameters Q2/Q2
self and

Q2
link/Q

2
link,self , noticing that the states with Q2/Q2

self = 1 have a major attraction
basin, and create a second peak in the curve. Finite-size effects in the ISs’ pdfs were
very heavy, as remarked also by looking at other observables, but they were minimal
if we considered the link overlap. This can suggests that perhaps the link overlap
might be a better descriptor to search a phase transition in a field (Chap. 2).

Finally, we found a non-trivial behavior on the evolution of the self-overlap, that
could be used as an indicator of the “quality” of a reached inherent structure.

References

[AB10a] R. Alvarez Baños, A. Cruz, L.A. Fernandez, J.M. Gil-Narvion, A. Gordillo-Guerrero,
M. Guidetti, A. Maiorano, F. Mantovani, E. Marinari, V. Martin-Mayor, J. Monforte-
Garcia, A. Muñoz Sudupe, D. Navarro, G. Parisi, S. Perez-Gaviro, J.J. Ruiz-Lorenzo,
S.F. Schifano, B. Seoane, A. Tarancon, R. Tripiccione, D. Yllanes (Janus Collabora-
tion), J. Stat. Mech. 2010, P06026 (2010). doi:10.1088/1742-5468/2010/06/P06026.
arXiv:1003.2569

[Asp04] T. Aspelmeier, M.A. Moore, Phys. Rev. Lett. 92, 077201 (2004)

http://dx.doi.org/10.1007/978-3-319-41231-3_2
http://dx.doi.org/10.1088/1742-5468/2010/06/P06026
http://arxiv.org/abs/1003.2569


References 113

[BJ11] M. Baity-Jesi: Energy landscape in three-dimensional Heisenberg spin glasses.
Master’s thesis, Sapienza, Universitá di Roma, Rome, Italy (January 2011).
arXiv:1503.08409

[BJ14d] M. Baity-Jesi, L.A. Fernandez, V. Martin-Mayor, J.M. Sanz, Phys. Rev. 89, 014202
(2014). doi:10.1103/PhysRevB.89.014202. arXiv:1309.1599

[Bal00] H.G. Ballesteros, A. Cruz, L.A. Fernandez, V. Martin-Mayor, J. Pech, J.J. Ruiz-Lorenzo,
A. Tarancon, P. Tellez, C.L. Ullod, C. Ungil, Phys. Rev. B 62, 14237–14245 (2000).
doi:10.1103/PhysRevB.62.14237. arXiv:cond-mat/0006211

[Bel09a] F. Belletti, A. Cruz, L.A. Fernandez, A. Gordillo-Guerrero, M. Guidetti, A. Maiorano, F.
Mantovani, E. Marinari, V. Martin-Mayor, J. Monforte, A. Muñoz, Sudupe, D. Navarro,
G. Parisi, S. Perez-Gaviro, J.J. Ruiz-Lorenzo, S.F. Schifano, D. Sciretti, A. Tarancon, R.
Tripiccione, D. Yllanes (Janus Collaboration), J. Stat. Phys. 135, 1121 (2009). doi:10.
1007/s10955-009-9727-z. arXiv:0811.2864

[Ber04c] L. Berthier, A.P. Young, Phys. Rev. B 69, 184423 (2004)
[Bey12] F. Beyer, M. Weigel, M. Moore, Phys. Rev. B 86, 014431 (2012)
[Bla14] T. Blanchard, F. Corberi, L. Cugliandolo, M. Picco, Europhys. Lett. 106, 66001 (2014)
[Bur07] Z. Burda, A. Krzywicki, O. Martin, Phys. Rev. E 76, 051107 (2007)
[Cav09] A. Cavagna, Phys. Rep. 476, 51–124 (2009). arXiv:0903.4264
[Con06] P. Contucci, C. Giardinà, C. Giberti, C. Vernia, Phys. Rev. Lett. 96, 217204 (2006).

doi:10.1103/PhysRevLett.96.217204
[Alm78a] J. de Almeida, R. Jones, J. Kosterlitz, D. Thouless, J. Phys. C: Solid State Phys. 11,

L871 (1978). doi:10.1088/0022-3719/11/21/005. http://stacks.iop.org/0022-3719/11/
i=21/a=005

[Gre82] J. Green, A. Bray, M. Moore, J. Phys. A 15, 2307 (1982)
[Has00] M.B. Hastings, J. Stat. Phys. 99, 171 (2000)
[Kaw01] H. Kawamura, M. Li, Phys. Rev. Lett. 87, 18 (2001)
[Krz00] F. Krzakala, O.C. Martin, Phys. Rev. Lett. 85, 3013 (2000). doi:10.1103/PhysRevLett.

85.3013
[Lee05] L.W. Lee, A. Dhar, A.P. Young, Phys. Rev. E 71, 036146 (2005)
[Lee03] L.W. Lee, A.P. Young, Phys. Rev. Lett. 90, 227203 (2003). doi:10.1103/PhysRevLett.

90.227203
[Méz87] M. Mézard, G. Parisi, M. Virasoro, Spin-Glass Theory and Beyond (World Scientific,

Singapore, 1987)
[Moo12] M.A. Moore, Phys. Rev. E 86, 031114 (2012)
[Via88] L. Viana, J. Phys. A 21, 803 (1988)

http://arxiv.org/abs/1503.08409
http://dx.doi.org/10.1103/PhysRevB.89.014202
http://arxiv.org/abs/1309.1599
http://dx.doi.org/10.1103/PhysRevB.62.14237
http://arxiv.org/abs/cond-mat/0006211
http://dx.doi.org/10.1007/s10955-009-9727-z
http://dx.doi.org/10.1007/s10955-009-9727-z
http://arxiv.org/abs/0811.2864
http://arxiv.org/abs/0903.4264
http://dx.doi.org/10.1103/PhysRevLett.96.217204
http://dx.doi.org/10.1088/0022-3719/11/21/005
http://stacks.iop.org/0022-3719/11/i=21/a=005
http://stacks.iop.org/0022-3719/11/i=21/a=005
http://dx.doi.org/10.1103/PhysRevLett.85.3013
http://dx.doi.org/10.1103/PhysRevLett.85.3013
http://dx.doi.org/10.1103/PhysRevLett.90.227203
http://dx.doi.org/10.1103/PhysRevLett.90.227203


Chapter 5
Zero-Temperature Dynamics

In numerous glassy systems, such as electron [Efr75, Dav82, Pan05, Pal12], struc-
tural [Wya12, Ler13, Kal14] and spin glasses [Tho77, Dou10, Sha14], it is possible
to identify a set of states that exhibit a distribution of soft modes, unrelated to any
symmetry, that reaches zero asymptotically. These states with modes infinitely close
to zero constitute the manifold that separates stable from unstable states, and are said
marginally stable [Mue15].

When we relax an unstable system, it will stabilize the excitations and approach
the marginally stable manifold, that we can identify as the region of the space of states
where the system becomes stable. When we treat, as we do in this chapter, discrete
excitations, the marginal manifold can be attained only in the thermodynamic limit.

Close to null temperature, when marginally stable systems are driven through
an external force, the dynamics proceed through discrete changes in some relevant
observable. The size of these rearrangements is scale-invariant, and it is usually
referred to as crackling noise [Set01].

Often such scale-free bursty dynamics appears for a specific value of the force
[Set93, Fis98]. When the crackling noise occurs without the need to tune the external
parameters, we talk of self-organized criticality (SOC). When a pseudogap is present
in the density of states, and a system displays SOC,1 then if the stability bounds are
saturated the system is marginal [Mue15].

The crackling responses are power-law distributed and span all the system. We
study the arisal of crackling and of a pseudogap in the Sherrington-Kirkpatrick spin
glass [Eas06, Hor08], that exhibits both marginal stability and SOC. This is done
both statically, through stability arguments, and by studying the dynamics of the
crackling, that in the SK model appears in form of avalanches of spin flips. At first,
we focus on single- and multi-spin stability and scaling arguments. We characterize
the pseudogap finding correlations between soft spins and we show that an infinite
number of neighbors is needed to have avalanches that span the whole system at

1By pseudogap we mean a gap with zero width, i.e. the distribution is zero only in a point.
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T = 0, confirming a sensation generated by numerical simulations [And13]. We
confirm this impression by stability arguments, indicating that an infinite number of
neighbors is needed, and that the presence of the short-range interactions irrelevant:
SOC is present in the presence of long-range interactions, and absent in their absence.
We then study what happens during the avalanches, focusing on their dependency on
the type of dynamics, and modelizing them through different types of random walks.
The same pseudogap that we find with stability arguments arises spontaneously
during the dynamics.

5.1 Self-organized Criticality and Marginal Stability
in the SK Model

The SK model, that was introduced in chapter as a SG model for which mean field
theory is valid [She75a], treats Ising spins sx = ±1 at the vertices of a fully connected
graph. We are interested in its hysteresis, so the Hamiltonian includes a magnetic
field term,

HSK = −1

2

∑
x �= y

Jx ysxs y − h
N∑
x

sx . (5.1)

The couplings are Gaussian-distributed, with mean Jx y = 0 [the overline (. . .)

indicates an average over the instances of the couplings]. The variance scales as
J 2
x y = J 2/N , so the free energy is extensive and the local stability distribution

[Eq. (5.4) later on] stays O(1).
We define the local field as

hx ≡ −∂H
∂sx

=
∑
y �=x

Jx ys y + h, (5.2)

and the local stability of each spin as

λx = hxsx . (5.3)

If a spin sx is aligned to its local field, then λx > 0 and that site is stable. If λx < 0
we call it unstable. We will be interested in the distribution of local stabilities

ρ(λ) = 1

N

N∑
x

δ(λ − λx), (5.4)
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where δ(. . .) is a Dirac delta function. In a stable state, ρ(λ) assumes only positive
values, whereas if it is non-zero for negative λ the state is unstable.2 In a marginally
stable state the ρ(λ) reaches asymptotically zero, creating a pseudogap in the distri-
bution of the local field. For small enough λ we can expect it to scale as [Eas06]

ρ(λ) ∝ λθ , (5.5)

for some θ that we will try to determine.
We work at zero temperature, focusing only on the changes that the variation of

field h imposes on the energy landscape. The dynamics are triggered by the variations
of h. As soon as the field is strong enough to destabilize a spin, that spin will flip.
This flip can both stabilize the system, or destabilize some of its neighbors. When
more than one spin is unstable, the most unstable one is flipped (greedy dynamics,
[Par03]). This dynamics is not frustrated: the flipping event decreasing the local
energy of a spin also lowers the total energy, and thus stable states are achievable
after a finite amount of steps.

The magnetization change �M between the beginning and the end of the
avalanche,3 and the number of spin flips n, that we call the avalanche size, have
distributions P(�M) and D(n) that follow a power law

P(�M) ∝ �M−τ p̂(�M/Nβ)/ log(N ), (5.6)

D(n) ∝ n−ρ d̂(n/N σ )/ log(N ), (5.7)

where p̂ and d̂ are scaling functions and β and σ are scaling exponents, with σ � 1
and 0.5 ≤ β ≤ 1 [Páz99]. The power law exponents are numerically found to be
τ = ρ = 1 [Páz99]. The same values of the exponents are found for the ground
states (equilibrium avalanches) through replica calculations [LD12]. In Fig. 5.1 we
show both distributions P(�M) and D(n).

5.2 Stability and Correlations

5.2.1 Presence of Avalanches

In order to have avalanches, when a spin is flipped, in average it must trigger at least
another spin.4

2When we say stable we mean that all the local stabilities are positive. In a thermodynamic sense
those states are metastable.
3The magnetization is M = ∑N

x sx .
4We say at least one, and not one and only one spin, because in principle the average number of
triggered spins could be larger than one, and the avalanches stop due to the fluctuations in the
number of triggered spins.
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Fig. 5.1 Avalanches in the SK model for several system sizes. Left Distribution of the magnetization
jumps P(�M). Right Distribution of the avalanche sizes D(n). The straight lines are reference
curves ∝ �M−1 and ∝ n−1

Every spin flip causes a kick K in the local stability of its neighbors, that will
be equal to twice the typical coupling Jtyp between them, so the average kick scales
as K ∼ 2Jtyp ∼ 2/

√
N . The probability that spin si is triggered by the kick is

P(λi < K ), so extending it to the whole system we need

(N − 1)P(λi < K ) ≥ 1. (5.8)

Since the kick coming from a single spin is small, we can restrict ourselves to the
soft part of the ρ(λ), so through Eq. (5.5) we get

P(λi < K ) ∼
∫ 1/

√
N

0
λθdλ ∼ N

1−θ
2 , (5.9)

that combined with (5.8) implies the stability bound

θ ≤ 1. (5.10)

If the bound is not satisfied, the avalanches fade off very quickly.
If Eq. (5.8) is satisfied as an equality (we will show that this is the case), it would

mean that, in a finite system, in average there is only one element with stability
uniformly distributed in 0 < λi < K , therefore the ρ(λ) displays a kink for small λ

and intercepts the y axis at a height ρ(0) ∼ 1/
√

N .
Smallest stability We can estimate the scaling of the least stability λMIN with a
similar argument. There has to be a fraction 1

N of spins with stability of the order of
λMIN or lower, so

1

N
∼

∫ λMIN

0
λθdλ ∼ λθ+1

MIN, (5.11)

that implies that the smallest stability scales as
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λMIN ∼ N−1/(θ+1). (5.12)

This also means that the minimum increase of the external field to trigger an avalanche
scales as hMIN ∼ λMIN ∼ N−1/(θ+1).

5.2.2 Contained Avalanches

Let us now consider in a stable state, a site x, with local stability of the order of λMIN,
and the site y that, among its neighbors, has the lowest stability. In a finite percentage
of cases, the interaction between the two sites will be unfrustrated, meaning that
sx Jx ys y > 0. In this situation, the energy cost of the simultaneous flip of both spins
will be

�Ex y = 2(λx + λ y) − 4|Jx y|. (5.13)

For stability reasons, �Ex y should be positive. So, to grant that the second term
does not counteract the first two with very large probability, we need λMIN ≥ Jtyp,
therefore N−1/(θ+1) ≥ N−1/2, and

θ ≥ 1. (5.14)

Constraints (5.8) and (5.14) imply that the two bounds are saturated and the pseudo-
gap exponent is θ = 1, confirming numerical simulations [Páz99].

To extend this bound to single-flip stability, one can consider the quantity E ,
defined as the average number of spins triggered by a flip,

E = N
∫ K

0
ρ(λ)dλ ∼ N (1−θ)/2. (5.15)

If E 
 1 the number of unstable spins grows exponentially, and the avalanche never
stops. To avoid this possibility we must have θ ≥ 1. Later on we will come back to
the participation of E in the dynamics.

5.2.3 Multi-spin Stability

We can also extend the stability criterion to a whole set F of m spins that are initially
stable with respect to a single spin flip. The energy cost of such a change would be

�E(F) = 2
∑
x∈F

λx − 2
∑
x, y∈F

Jx ysxs y, (5.16)

which is an extension of Eq. (5.13). To study the stability with respect to multi-spin
flip excitations, we want to compare the contribution of the two terms in (5.16). This
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Fig. 5.2 Correlation
C(λ) = −2

〈
sx Jx ys y

〉
between the least stable spin
and the spins with local
stability λ, in locally stable
states along the hysteresis
loop. The function
f (N ) = 1.1 log(N )/N is
added in order to obtain a
collapse. When N goes to
infinity f (N ) vanishes, and
for λ � 1 the curve is flat, so
in this regime (small λ and
thermodynamic limit) we
can expect C(λ) ∼ 1/λ

had been done by Palmer and Pond by taking in account only the m softest spins
[Pal79].

Calling λ(m) the mth smallest stability, one has that

m

N
=

∫ λ(m)

0
ρ(λ)dλ ∼ λ(m)θ+1, (5.17)

so

λ(m) ∼
( m

N

) 1
1+θ

, (5.18)

and the first term in the right hand side (r.h.s.) of Eq. (5.16) scales as m
(

m
N

) 1
1+θ . For

the second term one has
∑m

x, y Jx ysxs y ∼ ∑m
x (m/N )1/2 because of the random signs.

The contribution scales then as m(m/N )1/2. In [Pal79] it was assumed to be positive,
i.e. the softest spins are in average unfrustrated among each other, and from that a
stability bound θ ≥ 1 was recovered. We can see from Fig. 5.2 that for small λ this
hypothesis is not confirmed, so �E(F) is always positive in average.

The nonfulfilling of Palmer and Pond’s hypothesis means that for small λ the
correlation

C(λ) = −2
〈
sx Jx ys y

〉
(5.19)

between the softest spin and a spin with stability λ is positive in average, and the
argument on the average scalings does not imply θ ≥ 0. If we postulate a behavior

C(λ) ∼ λ−γ N−δ, (5.20)

we can predict the scaling
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〈
−

m∑
x, y

Jx ysxs y

〉
∼ m2C

(
λ (m)

) ∼ m2− γ

1+θ N
γ

1+θ
−δ (5.21)

with the help of Eq. (5.18).

5.2.4 Bound Due to the Fluctuations

Even though a multi-spin stability criterion on the averages does not imply a bound
θ ≥ 1 on the correlation, it is still possible to recover that bound by studying the
large fluctuations of the last term of (5.16), that might make �E(F) negative.

Given the set of the m ′ most unstable spins, let us consider all the subsets F of
m = m ′/2 spins. We can assume that the �E associated with each of the sets F are
independent and Gaussian-distributed, with

〈�E〉m ′ = 2m 〈λ(m)〉m ′ − 2m2
〈
sx Jx ys y

〉
m ′ ∼ m(2+θ)/(1+θ)

N 1/(1+θ)
+ m2− γ

1+θ N
γ

1+θ
−δ,

(5.22)
var(�E) = 〈�E2〉m ′ − 〈�E〉2

m ′ = 8m2/N , (5.23)

where 〈. . .〉m ′ is an average over the m ′ softest sites.5 We neglected the non-
diagonal terms in the variance. So, from Eq. (5.23) it descends that the fluctuations

X = ∑m
x, y Jx ysxs y −

〈∑m
x, y Jx ysxs y

〉
on �E(F) are of order m/

√
N .6 As there are

22m sets F , the number density of having fluctuation X is N (X) ∼ 22me−N X2/m2

(if �E is Gaussian, X has to be Gaussian with zero mean). We can recover the
most negative fluctuation by imposing N (XMIN) ∼ 1, that implies straightforwardly

XMIN ∼ −
√

m3

N . Thus, the energy change �E(F) associated with the most negative
fluctuation scales as

�E(FMIN) = m(2+θ)/(1+θ)N−1/(1+θ) +m2−γ /(1+θ)N γ /(1+θ)−δ −m3/2 N−1/2. (5.25)

The multi-spin stability condition demands that, for large N and fixed m, the
energy change �E(FMIN) stay positive. This occurs if

5The second of the two terms on the r.h.s. of Eq. 5.22 comes from Eq. 5.21. To find the first one it
is necessary to calculate

〈λ(m)〉m′ =
∫ λ(m′)

0 λρ(λ)dλ∫ λ(m′)
0 ρ(λ)dλ

, (5.24)

where the maximum stability of the chosen set, λ(m′), can be evaluated through Eq. (5.17). Remem-

bering that m′ = 2m, one obtains 〈λ(m)〉m′ ∼ ( m
N

) 1
1+θ , that multiplied by m gives the term that

appears in Eq. (5.22).
6We neglect the fluctuations of

∑
x λx , since that sum is always positive and when m is large its

fluctuations are small compared to its expectation value.
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θ ≥ 1, (5.26)

or

γ /(1 + θ) − δ ≥ −1/2, (5.27)

depending on which of the two terms in the left hand side (l.h.s.) dominates. Nonethe-
less, the correlation between spins is bounded by the typical coupling, C(λ) � N−1/2,
so from Eq. (5.21) we obtain that γ /(1 + θ) − δ ≤ −1/2. Hence, if (5.26) is not
verified,θ < 1, then γ /(1 + θ) − δ = −1/2 and (5.27) is saturated.

The scaling with large m of (5.25) also requires 2 − γ

1+θ
≥ 3

2 , i.e. γ ≤ 1+θ
2 ≤ 1

and δ ≤ 1. In the relevant states all three exponents θ, γ and δ equal 1, and the
constraints are satisfied as exact equalities.

5.3 Finite-Size Cutoffs

In finite systems, the avalanches are bounded by cutoffs nc(N ) and �Mc(N ). The
shape of the avalanche distributions gives a relation between cutoffs and average sizes
of the avalanches. In the simplest case ρ = τ = σ = β = 1, we can incorporate
explicitly exponential cutoffs in the distributions of the avalanches, getting

D(n) ∝ n−1e− n
nc (5.28)

P(�M) ∝ �M−1e− �M
�Mc , (5.29)

so if we calculate the mean avalanche size and the mean magnetization jump,7 they
result proportional to their cutoff,

〈n〉 ∝ nc, (5.30)

〈�M〉 ∝ �Mc. (5.31)

In the case that the exponents τ and ρ are not equal to unity, 〈n〉 and 〈�M〉 can still
be used as estimators for the cutoffs, though the relation is not linear anymore.

If the cutoffs diverge as the system size becomes infinite, the system displays
SOC, so we can search its presence by looking at 〈�M〉 and 〈n〉.
Scaling of 〈�M〉 Let us consider an ideal driving experiment in which between
the beginning and the end we vary the external field of �h(tot). Let the driving be
so slow that every time an avalanche is triggered the external field’s variation was
neglectable, so the field variation is given only by the driving between one avalanche
and the next one, hMIN, that as we saw scales like N−1/2. Therefore, the number of
avalanches in the experiment scales as

7In this chapter the averages 〈. . .〉 are averages over the avalanches.
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Fig. 5.3 Scaling of the
average magnetization jump
〈�M〉 with the square root
of the system size, in the SK
model
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nav = �h(tot)

hMIN
∼ √

N . (5.32)

Also the total magnetization, that will change extensively, �M (tot) ∼ N , is related
to the number of avalanches in the experiment nav by

�M (tot) ∼ nav 〈�M〉 , (5.33)

implying
〈�M〉 ∼ √

N , (5.34)

so the cutoff goes to infinity as N → ∞, and the SK model displays SOC, as it is
confirmed in Fig. 5.3.

Scaling of 〈n〉 We can attempt to estimate the scaling of 〈n〉 by studying the energy,
since, differently from the magnetization, its evolution is monotonous in time. In a
single avalanche, the energy change is

〈�Eav〉 = 〈n〉 〈
�Eflip

〉
, (5.35)

where
〈
�Eflip

〉
is the average energy change per spin flip. Assuming that it is of the

order of the typical coupling,
〈
�Eflip

〉 ∼ Jtyp ∼ N−1/2.
For the total energy change during an avalanche, let us consider a full hysteresis

loop. Neglecting logarithmic corrections, its area A = ∑
i∈drivings Mdhi ∼ N is

extensive. 8 The total energy change, E (tot), is zero because the experiment starts and
finishes in the same point, but it is also equal to the sum of the contributions of the
avalanches and of the field drivings,

8With at most logarithmic corrections, that can be neglected in this argument.
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Fig. 5.4 Scaling of the
average avalanche size 〈n〉
with the system size N , in
the SK model. The straight
line is a reference curve ∝ N
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0 ∼ E (tot) ∼
∑

avalanches

�Eav +
∑

i∈drivings

Mdhi ∼ (5.36)

∼ nav�Eav + A ∼ (5.37)

∼ N + √
N�Eav, (5.38)

so �Eav ∼ √
N , and as a consequence

〈n〉 ∼ N . (5.39)

In Fig. 5.4 we show that numerical data are consistent with an asymptotic behavior
〈n〉 ∼ N (with possibile logarithmic corrections).

Both the cutoffs we recovered go to infinity with the system size, and the SK
model displays self-organized criticality.

5.3.1 Short-Range Models

Let us consider now models defined on a generic graph where each site has z neigh-
bors. The finite-neighbor (short-range) Hamiltonian is

HSR = −1

2

N∑
x

sx

z∑
y∈V(x)

Jx ys y − h
N∑
x

sx, (5.40)

where V(x) is the set of sites that are connected to x through an edge of the graph.
When the interactions are not long-range, i.e. each site has a small connectivity z,
it has been observed numerically that θ stays the same, but self-organized criticality
vanishes [And13], because the cutoffs of the power law behaviors do not diverge with
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the system size. Also, the pseudogap disappears, and the intercept of the stability
distribution scales as ρ(0) ∼ 1/

√
z.

That ρ(0) ∼ 1/
√

z is expectable from the previous argument that in average
there is only one element with stability uniformly distributed in 0 < λi < K . Since
now the kick K is of order 1/

√
z, the intercept is at height ρ(0) ∼ 1/

√
z, so the

distribution of the stabilities becomes

ρ(λ) ∼ A√
z

+ Bλ. (5.41)

In these conditions the smallest stability is given by

1

N
∼ P(λ < λMIN) ∼ A′λMIN

z
+ B ′λ2

MIN. (5.42)

Since λMIN is small, we can neglect the quadratic term, so λMIN ∼
√

z
N . It is straight-

forward to see that if z = cN , for some finite c, the SK limit is recovered.
The cutoff magnetization jump �Mc changes consequently

〈�M〉 = �M (tot)

nav
∼ NλMIN ∼ √

z. (5.43)

So, if the connectivity z is finite the avalanches have a finite cutoff, while if it diverges
we recover the self-organized criticality of the SK model.

This can be seen also through the scaling of nc, by using the relation �Eav ∼
〈n〉 〈

�Eflip
〉
. The average energy change per flip is of the order of �Eflip ∼ Jtyp ∼ 1√

z .

The hysteresis argument for 〈�Eav〉 this time yields nav ∼ 1
hMIN

∼ N√
z . Therefore

0 ∼ E (tot) ∼ nav�Eav + A (5.44)

∼ N + N√
z
�Eav, (5.45)

so 〈�Eav〉 ∼ √
z and 〈n〉 ∼ z, confirming the absence of self-organized criticality

in models with finite connectivity. One could actually expect this by looking at the
distributions P(�M) and D(n) in Fig. 5.5. For all the sizes, the curves collapse to
the same exponential decay, so there cannot be a scaling of the mean values (Fig. 5.6)
nor of the cutoffs.
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Fig. 5.6 Scaling of the averages 〈�M〉 (left) and 〈n〉 (right) with the system size N , in the EA
model

5.3.2 Competition Between Short and Long Range
Interactions

Long-range interaction models display SOC, while if the interactions are short-range
this is not true. Since the application of the concept of SOC is related to many systems
where there might be a coexistence of the two, a question that arises spontaneously
is whether it is the presence of long-range interactions that guarantees SOC, the
existence of short-range ones that kills it, or it depends on their relative magnitude.

We define thus a model that mixes short and long-range interactions, and try to
understand whether or not it displays SOC. A simple way is to get an EA model
on a cubic lattice, and add to it an infinite-range interaction term. Let the spacing
between nearest neighbors in the lattic be unitary, and L be the side of the full lattice.
We impose periodic boundary conditions. Each site x hosts a spin sx , and interacts
with the rest of the spins through a duplex network. One graph follows the geometry
of the lattice, and allows only nearest-neighbor interactions, and the other is fully
connected.
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The Hamiltonian is

HSL = −
∑
〈x, y〉

J (s)
x y sxs y −

∑
x, y

J (�)
x y sxs y − h

∑
x

sx, (5.46)

where J (s)
x y is the short-range coupling, and J (�)

x y is the long-range one. Both are

gaussian random variables with zero mean J (s)
x y = J (�)

x y = 0, and variances J (s)
x y

2 =
J (s)/z and J (s)

x y
2 = J (l)/N . The limit J (s) = 0 corresponds to the SK model, while

J (l) = 0 is the EA model. We work on a cubic lattice, so z = 2d.
We impose the stability argument separating the nearest neighbor interactions

from the others

1 ≤ (N − z)
∫ J (�)

0
ρ(λ)dλ +

∫ J̃

0
ρ(λ)dλ, (5.47)

with J̃ 2 = J (�)2 + J (s)2
. Taken alone, the first term on the right hand side is always

critical, whereas the second one is never.
To verify the presence of both terms, it is convenient to study the limit J (�) � J (s).

Since the typical avalanches do not imply large stability jumps (Fig. 5.12 later on),
the kicks on the softest modes will be dictated by J (�), and we can assume that the
stability distribution be ρ(λ) ∝ αλ, where the constant α is to keep track of the
competition between the two interactions.

The stability argument becomes then

1 ∼ (N − z)
∫ J (�)/

√
N

0
ρ(λ)dλ ∼ (5.48)

∼ αN
∫ (�)/

√
N

0
λdλ ∼ (5.49)

∼ α J (�)2
, (5.50)

so α = 1/J (�)2
and

ρ(λ) ∝ λ

J (�)2 . (5.51)

We can use again the argument for the scaling of the magnetization jump, 〈�M〉 =
�M (tot)

〈nav〉 , with this ρ(λ). The average number of avalanches now scales as 〈nav〉 ∼
1

hMIN
∼

√
N

J (�) , so

〈�M〉 ∝ J (�)
√

N , (5.52)

so even in the presence a the smallest long-range interaction, as the system size
grows the average magnetization jump in an avalanche diverges as

√
N , as it is also

confirmed numerically in Fig. 5.7, left.
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Fig. 5.7 Scaling of the average values in the model that mixes short- and long-range interactions.
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As to the number of spins involved in the avalanche, we also find that it diverges,
confirming the self-organized criticality of the model, but this time with a different
law than the SK model. In fact 〈n〉 ∼ �Eav

�Eflip
. While �Eav scales as J (�)

√
N , the energy

of a flip scales as �Eflip ∼
√

J (�)2

N + J (s)2

z . The average number of spins taking part
in an avalanche then scales like

〈n〉 = �Eav

�Eflip
∼ (5.53)

∼ J (�)
√

N

J (�)√
N

√
1 + N J (s)2

z J (�)2

∼ (5.54)

∼ J (�)

J (s)

√
zN . (5.55)

Numerical simulations, where we tune the amplitude J (�) keeping J (s) = 1 fixed,
confirm this argument (Fig. 5.7, right).

5.4 Dynamics

After having given several conclusions on the self-organized criticality of the SK
based on scaling and stability arguments, it is reasonable to ask oneself whether
self-organized criticality purely a property of the visited states or the dynamics too
play an important role on the crackling. In the following section we try to get some
insight from what is happening to the system during the avalanches.
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5.4.1 A Non-trivial Random Walk

An avalanche starts when a first spin is destabilized, and it finishes when all the local
stabilities are positive. With the typical spin update, that we call greedy algorithm, if
there is more than one unstable spin, the least stable is updated first. Calling nunst(t)
the number of unstable spins after t spin flips, this reads that the avalanche starts
with nunst(1) = 1, it performs a random walk (RW) in the space of nunst, and it end
with nunst(n) = 0.

The easiest guess for the dynamics is thus an unbiased RW, where for large
avalanches D(n) would be the return probability of a one-dimensional RW.9 The
return probability of a random walk is P1d ∝ 1√

t
in 1d and P2d ∝ 1

t log t in 2d, so
the unbiased RW scenario predicts ρ = 1/2, that is different from the ρ = 1 usually
observed (recall Fig. 5.1).

The RW of nunst can be described through two equivalent auxiliary variables
E(nunst(t)) and r(nunst(t)), that indicate the likeliness of the avalanche of shrinking
or expanding:

nunst(t) = nunst(t − 1)E(t − 1), (5.56)

nunst(t) = nunst(t − 1) + r(t − 1). (5.57)

In an unbiased random walk E(t) = 1 ∀t and r(t) = 0 ∀t . Random walks with
constant E < 1 (r < 0) are attractive, meaning that there cannot be extended
avalanches, while if E 
 1 (r 
 0) the system is highly unstable and the avalanches
never stop.

Since the number of triggered spins depends exclusively on the links between
the flipping spin and its neighbor, which is a static property of the system, it is
reasonable to assume—and more in a fully-connected spin glass where it makes no
sense to talk of spatial domains—that E and r depend on nunst rather than on how
long the avalanche lasted.

In Fig. 5.8 we show E and r for avalanches in the SK and in the 3d EA model.
Both E and r have a marked dependency on nunst, disclosing non-trivial RWs. In the
EA model E(nunst) < 1 ∀nunst, meaning that the dynamics is damped and the size
of the avalanche can grow only because of fluctuations. Mind that as nunst increases
(due to “lucky” fluctuations), E(nunst) approaches 1, reflecting that the connectivity
of the unstable domain grows, so it becomes easier to destabilize another spin. In the
SK model the situation is more interesting, since the dynamics is critical. Instead of
E(nunst) = 1 ∀nunst, that could be in principle a good ansatz for a marginal system,
the avalanches have a natural tendency to grow up to a size n∗

unst. For nunst > n∗
unst,

E is slightly smaller than one, meaning that n∗
unst is a preferred number of unstable

spins. A size-independent n∗
unst would entail that the scale invariance is only a low-

resolution effect due to the fact that E is smaller than one, but very close to it. From
Fig. 5.9 we see that this is not the case: n∗

unst grows as log(N ).

9It would be exactly the return probability of the random walk if the avalanche started with nunst = 0.
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Fig. 5.8 Indicators of the random walk bias E and r as a function of the number of unstable spins
nunst . The curves tagged with a (+) indicate starting configuration with positive magnetization,
those tagged with (−) indicate a negative magnetization. Details on the protocol are given in the
main text. The left plot shows data from the SK model for N = 8000. The right plot is from the
three-dimensional EA model with L = 20 (N = L3 = 8000). The two horizontal lines stress the
values of the unbiased RW, E = 1 and r = 0)
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for different lattice sizes, to
stress that the point n∗
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opposite magnetization
starting configurations, (−)
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What is clear is that the dynamics of the single spins are far from being indepen-
dent, and those of the system as a whole are related on the amount of unstable spins.
The evolutions and stabilities of the spins are correlated and there is some kind of
non-trivial mechanism that keeps the system marginal during the avalanches.

Initial conditions It is legitimate to inquire whether different starting conditions
play a pivotal role on the random walk. In Fig. 5.8 we compare two types of initial
configuration. We start at zero field with either all spins up (+) or all spins down
(−), and we minimize the energy by aligning successively the most unstable spin to
its local field until the system becomes stable (greedy algorithm). The two configu-
rations are totally equivalent, except that they have opposite remnant magnetization.
In Fig. 5.8 we see that there is an appreciable difference between the two starting
conditions, The external field in this numerical experiment varies from 0 to 1.5, that
is, the data come from a large number of avalanches, O(

√
8000). If the information
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on the initial state were lost within the first avalanche, the curves (+) and (−) should
differ by the order of 1 %.

5.4.2 Changing the Avalanche Dynamics

A way to understand whether marginality is a property of the static configurations or
it depends on the dynamics is to validate it on different types of dynamics. We propose
three types of single-spin-flip dynamics. The first is the one used until now, that at
each time step updates the most unstable of the spins. We call it greedy dynamics (G).
The second type of dynamics is inspired from [Par03], and updates the least unstable
spin. This is the reluctant algorithm (R). It was shown in [Par03] that minimizing the
energy with R dynamics leads to inherent structures with much lower energy. The
third dynamics we test updates a random spin among those with λ < 0. We call it
random dynamics (A).10

Avalanche distributions When switching to R and A avalanches, we remark no
variation on the ρ(λ), that for small λ still grows linearly (only the amplitude
changes), but we do see a difference in the exponents of the avalanche distributions.
More specifically, for A we see the same exponents ρ ≈ 1 and τ ≈ 1, but with R the
avalanches are significantly larger and have ρ ≈ 1.25, τ ≈ 1.4. In figure we show
R avalanches. The similarity between G and A can be attributed to the fact that the
energy change in a spin flip is of the same order, �Eflip ∼ 1/

√
N , while R dynamics

implies that the energy dissipated in a spin flip is smaller. Since the ρ(λ) is all of order
1, the typical distance between the stabilities is of order 1/N , so �Eflip ∼ 1/N .11

The data in Fig. 5.10 was obtained by relaxing a totally up configuration, and once
the initial IS was found we recorded the data of the avalanches until the overlap with
the initial configuration became smaller than Q = 0.9. This way we could grant
some dependence on the initial IS, and compare avalanches that started with G and R
inherent structures. We will use two letters to identify the procedure we refer to: the
first one refers to the initial IS, the second to the avalanche dynamics, so for example
RG is a greedy avalanche starting from a reluctant IS.

In Fig. 5.10 we compare GR and RR dynamics. Apparently, the exponent does
not depend on the initial conditions, but the finite-size effects do visibly. While RR
avalanches display a power-law behavior with a finite-size cutoff, in GR one sees
that with a probability that decreases with N there can be avalanches with a very
large number of spin flips, arriving to n > N , that means that in average every spin
flips more than once. This suggests that G inherent structures are in some way more
unstable with respect to R dynamics than R inherent structures.

10We use an A, that stands for aleatory, because the R of random was already picked for the reluctant
algorithm.
11The arguments of Sect. 5.3 for the scaling of 〈�M〉 and 〈n〉 apply also to A and R dynamics. One
obtains 〈�M〉 ∼ √

N for both the dynamics, 〈n〉 ∼ N for A and 〈n〉 ∼ N 3/2 for R dynamics.
Numerical simulations seem compatible with these trends in the limit of very large systems.
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Fig. 5.11 The RW bias indicator r for avalanches that start from the initial inherent structure (i.e.
for Q = 0). Although our data only extends to nunst = 24, the avalanches had also larger numbers
of unstable spins. On the left we compare greedy and reluctant algorithms in N = 8000 systems. In
the right figure we show RR data for different N . When the system is small, r(nunst) crosses zero
at a finite n∗

unst , that grows with N . For N ≥ 2744 our data is not able to capture n∗
unst , though we

still expect it to be large but finite (see also main text). In both plots the horizontal line stresses the
unbiased value r = 0

RandomwalksSeeing the avalanche as a RW of the number of unstable spins, we see
no remarkable dependency on the initial IS, but we do notice a quite different behavior
between G and R avalanche dynamics (Fig. 5.11, left). In the G dynamics r(nunst) is
initially positive (expansion of the avalanche preferred) becomes negative (shrinking
preferred) at a finite n∗

unst, justifying avalanches of limited size. Differently, r appears
always positive in R avalanches, indicating a tendency towards enlargement. If r is
always positive the avalanches can only stop due to large fluctuations or by saturation
of the system (we have a trivial bound nunst < N ), that would mean that the dynamics
is unstable. The power law behavior of D(n) (Fig. 5.10) and the finite-size behavior
of r(nunst) (Fig. 5.11, right) induce to think that n∗

unst is instead finite but large, and
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that its growth with the system size is significantly quicker than in G avalanches.12

The different scaling of n∗
unst between the G and R could be what leads to different

exponents ρ and τ .

5.4.3 Fokker-Planck Description

Coming back to greedy dynamics, we will see now that the same exponents that
we obtained through stability constraints arise spontaneously from the dynamics of
the avalanches in the SK model. Let us take in account the random walk of each
local stability in the space of the local stability space. The random walk starts when
a stability becomes negative because of an imposed external magnetic field, and it
finishes when all the spins are stable again.

The flipping of the spin s0 changes its local stability from λ0 to λ′
0 = −λ0. The

stability of all the other spins s y in the system changes proportionally to their coupling
with s0,

λ y → λ′
y = λ y − 2s0 J0 ys y. (5.58)

The stability changes have a random fluctuating part and a non-zero mean value
due to the correlations with s0. As it was similarly done in Refs. [Eas06, Hor08],
this dynamics can be modelled with a Fokker-Planck equation for the distribution of
stabilities ρ(λ),

∂tρ(λ, t) = −∂λ [v(λ, t) − ∂λ D(λ, t)] ρ(λ, t)−δ(λ−λ0(t))+δ(λ+λ0(t)), (5.59)

where now the “time” t is the number of flips per spin that took place during the
avalanche and the two delta functions indicate the flipping of s0. The drift term
v(λ, t) ≡ −2N

〈
s0 J0 ys y

〉
λ y=λ

= NC(λ, t) is the average positive kick that a spin

with stability λ receives [Eq. (5.58)]. The diffusion constant D(λ, t) ≡ 2N
〈
J 2

0 y

〉
= 2

is the mean square of the kicks. The dynamics have a non-trivial thermodynamic limit
only if v ∼ O(1), meaning that

〈
s0 J0 ys y

〉 ∼ 1/N . This conveys that the exponent δ

from Eq. (5.20) must be equal to 1.
As N → ∞, the lowest stability approches zero λ0(t) → 0. We already saw,

in fact, that in a driving experiment with a finite field change �h, the number of
avalanches scales as nav ∼ 1/hMIN ∼ N 1/(1+θ). Each avalanche contains on average
〈n〉 ∼ ∫

nD(n)dn ∼ N (2−ρ)σ flip events [recall Eq. (5.6)], so the total number of
flips along the hysteresis curve is nav 〈n〉 ∼ N (2−ρ)σ+1/(1+θ), that is reasonably larger
than N . A diverging number of avalanches implies that the energy dissipation in
each avalanche has to be subextensive, ruling out strongly unstable configurations

12In G avalanches n∗
unst grows logarithmically, n∗

unst ∼ log(N ). With R dynamics we have little data
because our measurements only go up to nunst = 24. We deduce a roughly linear scaling n∗

unst ∼ N .
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Fig. 5.12 The average
dissipated energy �H in
avalanches of size n scales as
�H ∼ n ln n/

√
N . −�H/n

is a measure of the typical
value of the stability of most
unstable spins, λ0(n). Thus,
in the thermodynamic limit,
λ0 ∼ ln n/

√
N � 1 even for

very large avalanches

with an extensive number of spins with negative stability |λ| = O(1). So, as we
confirm numerically in Fig. 5.12, the smallest local stability must tend to zero in the
thermodynamic limit. This observation lets us replace the delta functions in Eq. 5.59
with a reflecting boundary condition at λ = 0,

[v(λ, t) − ∂λ D(λ, t)] ρ(λ, t)|λ=0 = 0. (5.60)

Since along the hysteresis loop spins flip a large amount of times, in a finite
interval we have a diverging number of time steps. At very large times a steady state
must be reached. In such conditions the flux of spins must vanish everywhere, so the
steady state drift is

vss(λ) = D∂λρss(λ)/ρss(λ) → 2θ/λ, (5.61)

where we assumed that the steady-state stability distribution follows (5.5). This
implies that γ = 1 in Eq. (5.20).

5.4.3.1 Arisal of Correlations

We will now argue that the correlations of Eq. (5.20) (with γ = δ = 1) arise naturally
in the dynamics through the shifts of the local stabilities caused by the spin flips.

Let us define with C f (λ) and C ′
f (λ) the correlations between the spin s0 and the

spins with local stability λ before and after the flipping event. After s0 flips, the
stability change is λ′

x = λx + xx , where xx = −2s0 J0xsx . The correlation C ′
f (λ) is

an average over all the spins whose stability, after the flip, is λ′,
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C ′
f (λ) = 1

ρ ′(λ)

∫
ρ(λ − x)(−x) fλ−x (x)dx, (5.62)

ρ ′(λ) =
∫

ρ(λ − x) fλ−x (x)dx . (5.63)

fλ(x) is the Gaussian distribution of kicks x given to spins of stability λ: fλ(x) =
exp

[
− (x−C f (λ))2

4D/N

]
/
√

4π D/N . In the integrands we expand ρ(λ− x) and C f (λ− x)

for small x and keep terms of order 1/N , which yields

C ′
f (λ) = −C f (λ) + 2

D

N

∂λρ(λ)

ρ(λ)
, (5.64a)

ρ ′(λ) = ρ(λ) − ∂λ

[
C f (λ)ρ(λ) − D

N
∂λρ(λ)

]
. (5.64b)

Thus, even if correlations are initially absent, C f (λ) = 0, they arise spontaneously,
C ′

f (λ) = 2D∂λρ(λ)/Nρ(λ).
In the steady state, ρ ′

ss = ρss, and Eq. (5.64b) implies the vanishing of the spin
flux, that is, Eq. (5.61) with v = NC f . Plugged into Eq. (5.64a), we obtain that the
correlations are steady, too,

C ′
f (λ) = C f (λ) = vss(λ)

N
= 2θ

Nλ
. (5.65)

These correlations are expected once the quasi-statically driven dynamics reaches a
statistically steady regime, and thus should be present both during avalanches and in
the locally stable states reached at their end.

Interestingly, Eq. (5.65) implies that all the bounds of Eqs. (5.26, 5.27) are satu-
rated if the first one is, i.e., if θ = 1. It is intriguing that the present Fokker-Planck
description of the dynamics does not pin θ , as according to Eqs. (5.61, 5.65) any
value of θ is acceptable for stationary states. However, additional considerations on
the applicability of the Fokker-Planck description discard the cases θ > 1 and θ < 1.

Excluding θ < 1 Our Fokker-Planck description only applies beyond the discretiza-
tion scale of the kicks due to flipping spins, which are of order J ∼ 1/

√
N . In

particular, from its definition, C(λ) must be bounded by 1/
√

N . Taking this into
account, Eq. (5.61) should be modified to:

vss(λ) ≈ min{D∂λρss(λ)/ρss(λ) ∼ 1/λ,
√

N }. (5.66)

This modification has no effect when θ ≥ 1, since in that case λmin ∼ N−1/(1+θ) ≥
1/

√
N . In contrast, pseudo-gaps with θ < 1 have λmin � 1/

√
N . To maintain such a

pseudogap in a stationary state, one would require correlations much larger than what
the discreteness of the model allows. Pseudogaps with θ < 1 are thus not admissible
solutions of Eqs. (5.59, 5.66).
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Excluding θ > 1 In this case, λmin 
 1/
√

N ∼ J . Thus when one spin flips, the
second least stable spin will not flip in general, and avalanches are typically of size
unity [Mue15]. It can easily be shown that in that case the number of flips per spin
along the loop would be small (in fact it would even vanish in the thermodynamic
limit, which is clearly impossible). In terms of our Fokker-Planck description, the
motion of the spin stabilities due to other flips would be small in comparison with the
motion of the stabilities inbetween avalanches, due to changes of the magnetic field.
Making the crude assumption that the magnetization is random for any λ, the change
of external magnetic field leads to an additional diffusion term in the Fokker-Planck
equation:

∂tρ(λ, t) = −∂λ(v − D∂λ)ρ(λ, t) + Dh∂
2
λρ(λ, t), (5.67)

where the term Dh is related to the typical field increment hmin ∼ λmin required to
trigger an avalanche. Indeed Dh ∼ Nh2

min ∼ N (θ−1)/(θ+1) 
 D ∼ 1. Under these
circumstances, Eq. (5.61) does not hold. The dynamics would be a simple diffusion
with reflecting boundary, whose only stationary solution corresponds to θ = 0,
violating our hypothesis θ > 1. Thus the last term of Eq. (5.67) provides a restoring
force toward dominated dynamics flattens the distribution. As soon as the pseudo-
gap is filled up to θ = 1, this diffusion contribution becomes sub-dominant and the
dynamics is dominated by the transient dynamics concentrated in the main text. In
stationary conditions, a typical pseudo-gap profile must thus converge to θ = 1.

5.5 Overview

The SK model presents presents self-organized criticality (SOC) in its whole hys-
teresis loop. That is, the external field h triggers power-law distributed avalanches
that span the entire system. This SOC is strictly related to marginal stability, since
for small λ the distribution of the local stabilities goes as ρ(λ) ∝ λθ . Through sta-
bility arguments we showed that to have crackling responses θ = 1 is needed. We
extended these stability arguments to multiple spins, remarking that the soft spins are
in average frustrated with each other (the energy along their links is not minimized):
There is a correlation function C(λ) that scales inversely with the stability λ.

We then related the averages 〈�M〉 and 〈n〉 to the cutoffs of the avalanches.
In order to have SOC, the cutoffs need to diverge when N → ∞. With scaling
arguments we showed that the SOC of the SK model vanishes when one considers
models with a finite number of neighbors, as it is also confirmed by numerical
simulations. Through a model that mixes short- and long-range interactions, we
showed that fully-connected interactions are a relevant perturbation to the short-
range Hamiltonian, so the presence of long-range interactions is strictly necessary
to have SOC in the system, independently of the presence or not of short-range
interactions, no matter their amplitude. Yet, even though the long-range interactions
grant avalanches that extend over all the system, the scaling of the avalanche sizes
cutoffs is different depending on the presence of short-range interactions.
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We also studied the crackling in the SK model from the point of view of the
dynamics. An avalanche can be seen as a discrete random walk (RW) of the number
of unstable spins, nunst. The end of the avalanche corresponds with the number of
time steps that it takes the RW to return to zero. In critical dynamics, these RWs are
non-trivial, have a preferred number of unstable spins, n∗

unst. For nunst < n∗
unst the

avalanches tendentially grow, for nunst > n∗
unst they shrink, suggesting that during

the avalanche there is some type of correlation between spins that keeps the system
critical. A further extensive study of the relation between n∗

unst, the correlations C(λ)

and the size of the avalanches can be a key factor for the understanding of SOC.
To figure out how much of the crackling behavior is related to the type of dynam-

ics one chooses, and how much is more universal, we analyzed different kinds of
single-spin flip algorithm. We identified a variation in the exponents of the avalanche
distributions, but more fundamental features as the pseudogap exponent θ stay the
same.

Finally, through a modelization with a RW in the space of the spin stabilities λ,
we found that it is the dynamics itself that, because of a strong correlation among
the softest spins, leads the system to a marginal state with a pseudogap. With a
Fokker-Planck description of the dynamics we explained the appearance of both the
pseudogap and the singular correlation C(λ).
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Chapter 6
Soft Modes and Localization in Spin Glasses

More than 40 years ago, it became clear that supercooled liquids and amorphous
solids exhibit an excess of low-energy excitations, compared with their crystalline
counterparts [Phi81]. This excess was evinced, for instance, from anomalies in
the specific heat at low temperatures (below 10 K). A number of scattering tech-
niques such as Raman, neutron [Buc84] and, more recently, inelastic X-ray scattering
[Set98], have shown that these excitations are of vibrational nature, and correspond
to wave vectors of a few nm−1 and frequencies of few mK (see e.g. [Mon09a] and
references therein). The corresponding vibrational density of states g(ω) displays an
excess of modes, respect to the conventional Debye behavior g(ω) ∝ ωd−1 (ω2 in the
three-dimensional case treated herein), called boson peak. Despite the shape of the
g(ω) depends on numerous factors, such as the considered material, the temperature,
the thermal history, etc., the presence of the boson peak is a universal feature [Buc84,
Mal91]. The starting point for an analysis of vibrational excitations is the harmonic
approximation around stable or metastable states as, for example, this way many low
temperature properties of solids can be calculated analytically [Hua87].

Also in liquid systems one encounters the same phenomenology. The density
of states in liquids was extensively studied to describe their dynamics, since for
small enough times one can characterize them through independent simple harmonic
motions (instantaneous normal modes) [Wu92, Key94, Wan94]. In supercooled liq-
uids the dynamics is so damped that it is dominated by the underlying energy land-
scape [Cav09], and it becomes natural to focus the attention on the harmonic modes
of the inherent structures (ISs), the local minima of the energy that can be obtained
by quickly relaxing the system, to zero temperature, obtaining metastable configura-
tions called inherent structures [Sti95, Mon09b]. These metastable states are likely to
play an important role both in driving the sluggish dynamics of these glassy systems
[Gri03], and in their thermodynamic properties as the temperature vanishes or the
system becomes jammed [Xu10].

Two main approaches are used to explain the presence of the boson peak, attribut-
ing it to the presence of many metastable states.

On one side, there should be a very large number of localized excitations due to the
quantum tunneling between very similar states. The system can bounce from one state
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to the other with very little energy exchange. The couples of states described through
this phenomenological approach are called two-level systems [And72, Phi72, Phi87].
Although their precise nature has not been clarified, their presence is experimentally
detectable [Lis15].

The second cause of an excess of soft modes is motivated by the presence of mar-
ginally stable states, that display infinitely soft modes. This excess of soft modes is
highly universal among strongly disordered mean field models [Méz87]. Indeed, by
means of replica calculations, it has been recently shown that mean field supercooled
liquids exhibit a transition to a full RSB phase at high enough pressure [Cha14]. Full
RSB implies a complex energy landscape with a hierarchical structure of states and
a large amount of degenerate minima separated by small energy barriers [Méz84,
Cha14]. These energy barriers can be infinitely small, along with the smallest har-
monic excitations, meaning that the system is marginally stable.

Besides to the shape of the energy landscape, marginal stability is also caused
by isostaticity [Wya12], the condition of having as many degrees of freedom as
independent constraints, that arises at jamming [O’H03]. The strong universality of
those features in continuous constraint satisfaction problems suggests that they are a
key ingredient for the understanding of the glass and the jamming transition [Fra15a,
Fra15b].

A main difference between the two scenarios is that the two-level system picture
requires the presence of strongly localized states, whereas the marginal stability is
recovered through calculations in infinite dimensions where localization cannot play
a crucial role, but a RSB transition is needed. Furthermore, the two-level system
descends from a quantum description and requires taking into account anharmonic
effects, whereas the boson peak predicted by RSB theories is classical, and can be
identified at the harmonic level. Here, we somehow reconcile the two approaches by
identifying two-level systems from a purely classical and harmonic starting point.

Even though many of the tools used to explain the boson peak descend from spin
glass theory, the investigation of small harmonic excitations of the metastable states
has remained relegated to the field of structural glasses. On one hand because in SGs
no “crystal phase” can be reached by cooling the system slow enough, on another,
perhaps, because the two most studied SG models are the EA and the SK model, both
with Ising spins, that are discrete. In the Ising SG the aforementioned phenomena are
difficult to study. When the passage from paramagnetic to SG phase is very quick,
while in structural glasses there is a large range of temperatures in the disordered
phase, where the dynamics is overdamped. Furthermore, it is not straightforward to
study soft excitations in a system where the smallest excitation is bounded by its
discrete nature.

Still, as we saw in Chap. 4, many types of SG model with continuous degrees of
freedom are easy to define. Among those, the Heisenberg model (1.2), where the
spins are unitary vectors with m = 3 components, is an epitome of the spin glass,
as it is the first proposed SG model. Harmonic modes can be easily studied in this
model, though due to the O(3) symmetry of the Hamiltonian, the system exhibits
an excess of trivial low-frequency modes (Goldstone modes and spin waves) that
make this type of analysis less clear. We can decide, thus, to add a random magnetic

http://dx.doi.org/10.1007/978-3-319-41231-3_4
http://dx.doi.org/10.1007/978-3-319-41231-3_1
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field to the Heisenberg Hamiltonian to wipe out the symmetries and the soft modes
they carry, keeping only those related to marginal stability. A similar procedure of
symmetry removal has been carried through in glass-forming liquids, by pinning
a certain fraction of particles [Kob12, Cam13]. In those references it was shown
that the glass transition survives the pinning. Hence from the above considerations
on marginal stability [Méz87, Fra15b] we expect as well a boson peak in pinned
systems.

We propose ourselves to extend these considerations to a finite-dimensional sys-
tem, the Heisenberg SG in a random magnetic field. This lets us verify the extent of
the universality of these phenomena. On one side by checking if the soft modes are
present with a similar phenomenology on a different type of system, and on the other
by extending the ideas of marginal stability to finite dimensions, in non-isostatic
systems. As an additional virtue, the model we study gives us the possibility of mak-
ing this analysis on unprecedentedly large systems, giving us the chance to observe
scalings along several orders of magnitude.

Here, we study the inherent structures and we do find that they are marginally
stable states where the distribution of eigenvalues of the Hessian matrix stretches
down to zero as a power law. Furthermore, we find that the soft modes are localized.
This cannot be revealed by computations in infinite dimensions, though it is still
possible to observe correlations in pseudo mean field networks such as the Bethe
lattice [Lup15], and it was shown that superuniversality (the independence of the
behavior on the space dimensionality) can be recovered by removing local excitations
[Cha15].

We broaden our analysis by taking in account the anharmonic effects due to the
complexity of the energy landscape. We find that the energy barriers along the softest
mode are extremely small, in agreement with the mean field picture, and that they
connect very similar states with an strong relationship, that we propose as a classical
operational definition of two-level systems.

At the end of the game the scenario is consistent, with mean field theory that does
apply, but with the necessary finite-dimension corrections due to the presence and
importance of localized states.

6.1 Model and Simulations

The model we study is the three-dimensional Heisenberg spin glass in a RF. The RF
breaks all rotational and translational symmetry, so there should be no Goldstone
bosons. The dynamic variables are spins �sx with m = 3 components. They are placed
at the vertices x of a cubic lattice of linear size L with unitary spacings. We have
therefore N = L3 spins, and 2N degrees of freedom (dof) due to the constraint
�sx · �sx = 1.
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The Hamiltonian is

HRF = −
∑

|x− y|=1

Jx y�sx · �s y −
N∑
x

�hx · �sx, (6.1)

where the fields �hx are random vectors chosen uniformly from the sphere of radius
Hamp. The couplings Jx y are fixed, Gaussian distributed, with Jx y = 0 and J 2

x y = J 2.
The lattice sizes we simulated are L = 12, 24, 48, 96, 192. We chose always

J = 1, and we compared it with Hamp = 0, 0.01, 0.05, 0.1, 0.5, 1, 5, 10, 50. In
Table 6.1 we resume how many samples we simulated for each couple (L , H).

6.2 Calculating the Density of States

Our goal is to study the dynamical matrix of the system. The dynamical matrix
is the Hessian matrix M of Hamiltonian (6.1), calculated at the local minima of
the energy, that we call inherent structures (ISs) in analogy with structural glasses.
Each infinite-temperature starting configuration |�s〉 can be associated to an IS

∣∣�s(IS)
〉

through a deterministic relaxation of the system.1

6.2.1 Reaching the Inherent Structure

As energy minimization algorithm we use the successive overrelaxation (SOR)
(Appendix F.1.2, that was successfully used in [BJ11] for 3d Heisenberg spin
glasses. This algorithm depends on a parameter �, and the convergence speed is
maximal for � ≈ 300 [BJ11]. Thus, the seek of ISs was done with � = 300, under
the reasonable assumption, reinforced in Appendix F, that a change on � does not
imply sensible changes in the observables we examine. In fact, the concept of IS is
strictly related to the protocol one chooses to relax the system, and on the starting
configuration. From [BJ11] our intuition is that despite the ISs’ energies do depend
on these two elements, this dependency is small and we can neglect it (dependencies
on the correlation lengths will be examined in a future work [BJ16]).

We validate these hypotheses in Appendix F.2, where we compare the density of
states (DOSs) both between� = 300 and� = 1, and between starting configurations
at different temperatures.

For most of the simulated fields, the pdf of the overlap of the reached inherent
structures, P(qIS), is peaked around a non-zero value that is significantly far from
1 (Fig. 6.1). This means that even though all the inherent structures have a very
large amount of spins in similar configurations, it is practically impossible with this
approach (at least for L > 12 lattices), to find two identical inherent structures.

1We will show in Appendix F that the starting temperature does not influence visibly the properties
we are studying, at least as long as we stay in the paramagnetic phase.
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Table 6.1 Number of samples, Nsamples, and of replicas, Nreplicas, of our simulations

Hamp L Nsamples Nreplicas nλ A(| �π0〉) A(| �πRAND〉)
50 192 10 (0) 2 35 – –

50 96 10 (10) 2 80 1 1

50 48 70 (70) 2 500 1 1

50 24 100 (100) 2 500 1 1

50 12 100 (100) 2 500 1 1

10 192 10 (0) 2 35 – –

10 96 10 (10) 2 80 0.6 0.72

10 48 70 (70) 2 500 0.6 0.72

10 24 100 (100) 2 500 0.3 0.72

10 12 100 (100) 2 500 0.3 0.72

5 192 10 (0) 2 35 – –

5 96 10 (10) 2 80 0.014 0.3

5 48 70 (70) 2 500 0.014 0.3

5 24 100 (100) 2 500 0.02 0.3

5 12 100 (100) 2 500 0.024 0.3

1 192 10 (0) 2 35 – –

1 96 10 (10) 2 80 0.004 0.05

1 48 70 (70) 2 500 0.004 0.05

1 24 100 (100) 2 500 0.0045 0.05

1 12 100 (100) 2 500 0.0045 0.05

0.5 192 10 (0) 2 35 – –

0.5 96 10 (10) 2 80 0.008 0.022

0.5 48 70 (70) 2 500 0.008 0.02

0.5 24 100 (100) 2 500 0.009 0.022

0.5 12 100 (100) 2 500 0.009 0.022

0.1 192 10 (0) 2 35 – –

0.1 96 10 (10) 2 80 0.006 0.012

0.1 48 100 (70) 2 500 0.006 0.012

0.1 24 100 (100) 2 500 0.1 0.012

0.1 12 100 (100) 2 500 0.1 0.012

0.05 192 10 (0) 2 25 – –

0.05 96 10 (10) 2 80 0.06 0.011

0.05 48 100 (70) 2 500 0.06 0.011

0.05 24 100 (100) 2 500 0.42 0.011

0.05 12 100 (100) 2 500 0.36 0.011

0.01 192 7 (0) 2 25 – –

0.01 96 10 (10) 2 80 0.045 0.016

0.01 48 100 (70) 2 500 0.045 0.016

0.01 24 100 (100) 2 500 0.009 0.004

0.01 12 100 (100) 2 500 0.007 0.001

The number between parentheses is the amount of samples used for the forcings. We indicate with
nλ the number of eigenvalues we calculated from the bottom of the spectrum ρ(λ) (see Sect. 6.3).
A(| �πRAND〉) and A(| �π0〉) are the forcings’ parameters from Eqs. (6.15) and (6.16)
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Fig. 6.1 Distribution P(qIS) of the overlaps at the inherent structures obtained with � = 300, for
Hamp = 0.1 (left) and Hamp = 1 (right).

6.2.2 The Local Reference Frame

Once the IS is found, we want to study the properties of the reached IS. From the
Hamiltonian at the inherent structure, HIS, we want to compute the Hessian matrix
M to study the harmonic behavior at the IS. This is not trivial, because it is necessary
to take into account the normalization of the spins �s 2

x = 1 ∀x.
To this scope we define local perturbation vectors �πx , and we call them pions

in analogy with the nonlinear σ model [GM60]. The distinguishing feature of the
pions is that they are orthogonal to the IS, (�sx · �πx) = 0, and that their global norm
is unitary, 〈 �π | �π〉 = 1.2 We can use the pions to parametrize an order ε perturbation
around the IS as

�s ε
x = �s (IS)

x

√
1 − ε2 �π2

x + ε �πx, �π2
x ≡ �πx · �πx, (6.2)

so the position of �s ε
x is fully determined by �πx . As long as ε is small enough to grant

ε2 �π2
x < 1 ∀x, the normalization condition is naturally satisfied without the need to

impose any external constraint.
We now build a local reference change. For each site x we define a local basis

B = {�s (IS)
x , ê1,x, ê2,x

}
, where ê1,x, ê2,x are any two unitary vectors, orthogonal to

each other and to �s (IS)
x , and well oriented. In our simulations they were generated

randomly. In this basis the pions can be rewritten as

�πx = (0, a1, a2), (6.3)

where now they explicitly depend only on two components, with real values a1 and
a2. We can therefore rewrite the pions as two-component vectors π̃x

π̃x = (a1, a2). (6.4)

2Recall the notation introduced in Sect. 1.2, according to which
〈
�a
∣∣∣�b〉

≡ ∑
x �ax · �bx .

http://dx.doi.org/10.1007/978-3-319-41231-3_1


6.2 Calculating the Density of States 145

At this point we completely integrated the normalization constraint with the para-
metrization, and we can obtain the 2N × 2N Hessian matrix M, that acts on 2N -
component vectors |π̃〉, by a second-order development of HIS (the derivation of M
is shown in Appendix F.3). The obtained matrix is sparse, with 13 non-zero elements
per line (1 diagonal element, and 6 two-component vectors for the nearest-neighbors).

The matrix element Mαβ
x y is

Mαβ
x y = Mx y(êα,x · êβ, y), (6.5)

with

Mx y = δx y(�h (IS)
y · �s (IS)

y ) −
D∑

μ=−D

Jx yδx+μ̂, y, (6.6)

where the bold latin characters as usual indicate the site, and the greek characters
indicate the component of the two-dimensional vector of Eq. (6.4).

Once M is known, from each simulated Hamp we calculate the spectrum of the
eigenvalues ρ(λ) or equivalently, in analogy with plane waves [Hua87], the DOS
g(ω), by defining λ = ω2. We measure the degrees of freedom (dof) both by means
of a convolution with a lorentian function with the method of the moments [Chi78,
Tur82, Alo01], and by making the explicit brute-force calculation of the lowest
eigenvalues with Arpack [Sor08].

6.3 The Spectrum of the Hessian Matrix

We find that, although for large fields there is a gap in the DOS (as one can easily
expect by calculating it exactly in the diagonal limit Hamp 	 J 
 0) when the field
is small enough the gap disappears and the DOS goes to zero developing soft modes
(Fig. 6.2, left). In the right set of Fig. 6.2 we show the scaling of the lowest eigenvalue
of the Hessian. We see that while for very large fields it remains approximately
constant, for smaller fields it approaches zero as we increase the lattice size L .

It is interesting to understand the origin of these soft modes, so we focus on the
ρ(λ) for small λ, or even better in its cumulative function

F(λ) =
∫ λ

0
ρ(λ′)dλ′. (6.7)

In the case that there be no gap and for small λ the function F(λ) reach zero as a
power law, we can define three exponents δ, α and γ , that describe how the functions
g, ρ and F go to zero for small λ3:

3The exponents δ, α and γ have nothing to do with the critical exponents defined in Sect. 1.3.

http://dx.doi.org/10.1007/978-3-319-41231-3_1
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Fig. 6.2 Left The DOS g(ω) calculated with the method of the moments. The vertical lines
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and Hamp = 0.1 are practically overlapped. Right Scaling with 1/L of the lowest eigenvalue λmin
of the Hessian matrix M calculated at the IS, for all the simulated fields. The straight line is a

reference curve λmin ∝ 1/L

g(ω) ∼ ωδ, ρ(λ) ∼ λα, F(λ) ∼ λγ , (6.8)

where the exponents are related by δ = 2α +1 = 2γ −1. In the Debye model, valid
for perfect crystals and based on the assumption that all the eigenvectors are plane
waves, one has δ = d − 1 = 2 (α = 0.5, γ = 1.5), and this is also what one expects
for our model in the absence of a field [Gri11]. In Figs. 6.3 and 6.4 we show the
function F(λ) for all the fields we simulated. We were able to calculate with Arpack
the lowest eigenvalues of the spectrum. The number of calculated eigenvalues nλ

is shown in Table 6.1. All the plots are compared with the Debye behavior λ1.5

and with the power law behavior λ2.5, because if there is some universality on the
exponents γ , our data suggests it has to be around γ = 2.5 (thus δ = 4 and α = 1.5).
This is straightforward for Hamp = 0.1, 0.5, 1, 5, where when λ is small there is a
clear power law behavior, with a power close to 2.5, while it can be excluded for
Hamp = 50, where the soft modes are suppressed in favor of a gap, as it was also
clear from Fig. 6.2. At Hamp = 10 we are probably close to where the gap forms. The
F(λ) goes as a large power law λboh when λ is large, but at the smallest values of λ,
recovered from L = 192, there is a slight change of power law towards something
that could become 2.5. One could also argue that a F(λ) goes to zero as a power
law for any finite Hamp, as long as one looks at small enough λ. Numerical analysis
cannot reply to questions of this type, but still, even if no sharp transition is present, an
empirical gap is clearly present for large Hamp, since the precision of any experiment
(numerical or real) is finite. In the case of the smallest fields Hamp = 0.01, 0.05, we
suffer from effects from Hamp = 0. The spin waves do not hybridize with the bulk
of the spectrum, and pseudo-Goldstone modes with a very small eigenvalue appear,
making it hard to extract a power law behavior.

Overall, we see good evidence for a γ around 2.5 at several values of Hamp, and
at other fields the data is not in contradiction with a hypothesis of universality in the
exponents (6.8). When the field is small we remark a change of trend from γ ≈ 2.5
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Fig. 6.3 Cumulative distributions F(λ) for small random fields Hamp = 0.01, 0.05, 0.1, 0.5. In
each plot we show a black reference curve representing the power law λ2.5, that is our guess for a
universal behavior, and a grey line indicating the Debye behavior λ1.5. One could expect a Debye
behavior for λ > λ∗, with λ∗ → 0 as Hamp → 0. Instead, we see an excess of eigenvalues even
compared to the Debye behavior, indicating a likely boson peak. Further discussions in the main
text

to γ < 1.5 at a value λ∗. The crossover λ∗ shifts towards zero as Hamp decreases.
This probably indicates the presence of a boson peak, an excess of modes at low
frequency. Signs of a boson peak in at Hamp = 0 can be seen in Fig. F.2. In that case
the mass of the spectrum is all concentrated at low λ, but there ought to be a Debye
behavior, meaning that λ∗ is very little.

6.4 Localization

We found that the application of a magnetic field does not induce a gap in the density
of states. It goes to zero as a power law even in the presence of a not too large
RF, and it develops a gaps when the RF is very large compared with the couplings.
What do these soft modes represent? We want to know something more about the 2N -
dimensional eigenvectors |π̃λ〉 of the matrixM. Similarly as it happens in other types
of disordered systems [Xu10, DeG14, Cha15], the soft modes are localized, meaning
that the eigenvectors |πλ〉 are dominated by very few components. To observe the
localization we can define the inverse participation ratio
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Fig. 6.4 Cumulative distributions F(λ) for large random fields Hamp = 1, 5, 10, 50. In each plot
we show a reference curve representing the power law λ2.5. The orange line in the bottom left set
is proportional to λ8

Yλ =
∑

x

(
|π̃λ,x |2

)2

( ∑
x |π̃λ,x |2

)2 =
∑

x

(
a2

1,i + a2
2,x

)2

( ∑
x(a

2
1,x + a2

2,x)
)2 , (6.9)

where we coupled the two components corresponding to a single site because the
local basis vectors have random directions, so there would be no point in trying
to distinguish one from the other. If the eigenvector

∣∣πλ,x
〉

is fully localized in one
site we will have Yλ = 1. On the counterpart, if all its components are the same
(fully delocalized) we will have Yλ = 1/N . In Fig. 6.5 we show that the softer the
eigenvectors the more localized they are.4 For small random fields (Fig. 6.5, left),
we remark sizable finite-size effects, with the passage from localized to delocalized
regime that becomes sharper as the lattice size is increased, suggesting the presence
of localization threshold that separates a small fixed percentage of localized eigen-
vectors from the delocalized bulk ones. For larger fields we appreciate no finite-size
effects, and it appears that ∼1 % of the eigenvectors is localized.

4Only in Hamp = 0.01 this was not clear, but we attribute it to strong echoes of the Hamp = 0
behavior. Due to this interference, we will basically exclude the case of a very small field from our
analysis.
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Fig. 6.5 Participation ratio for Hamp = 0.5 (left) and Hamp = 5 (right)

Since in a localized state the eigenvectors have a well-defined correlation length,
we can use also this criterion to probe the localization. We can define a correlation
length from Green’s function G, that is defined through the relation MG = δx y,
an is commonly used in field theory for two-point correlations. Since M−1 shares
eigenvectors ψn with M and has inverse eigenvalues 1/λn ,5 Green’s function is

G(x, y) = M−1δx y =
∑

n

ψn(x)ψn( y)
λn

, (6.10)

and squaring the relation

G2(x, y) =
∑
m,n

ψm(x)ψm( y)ψn(x)ψn( y)
λmλn

. (6.11)

By averaging over the disorder we gain translational invariance and G2 can be written
as a function of the distance r = x − y,

G2(r) =
∑
m,n

1

λmλn

∑
x

( [ψm(x)ψn(x)][ψm(x + r)ψn(x + r)]
V

)
. (6.12)

Making the reasonable assumption that different eigenvectors do not interfere with
each other, and exploiting the orthogonality condition

∑
x ψm(x)ψn(x) = δmn , we

obtain the desired correlation function

C(r) = G2(r) =
∑

n

1

λ2
n

ψ2
n (x)ψ2

n (x + r). (6.13)

5For simplicity we use N -component eigenvectors ψn(x) instead of the 2N -component ones |π̃〉.
The relationship between the two can be recovered through ψ2

n (x) = π̃2 = �π2.
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Fig. 6.6 In the left set we show the correlation functionC(r) for different lattice sizes and Hamp = 1.
Due to the periodic boundary conditions, when r reaches L/2 the correlation function increases
again. On the right we fix the size to L = 192 and show that the correlation length decreases with
Hamp. The top curve, in red, is Hamp = 0.01, immediately under, in green, we have Hamp = 0.05,
and so on with Hamp = 0.1, 0.5, 1, 5, 10, 50

This correlation function favors the softest modes by a factor 1/λ2
n . This is an advan-

tage, because the bulk modes do not exhibit a finite correlation length, so it is useful
to have them suppressed.

We calculated the correlations by inverting M with a conjugate gradient. A nice
exponential decay is visible (Fig. 6.6) to which we can associate a finite correlation
length that grows as Hamp decreases.

6.5 Anharmonicity

The Hessian matrixM is a harmonic approximation of the bottom of the valleys that
carries plenty of information. Still, we can go beyond and take in account the effects
due to the anharmonicity of the potential, and the relationship between different ISs.

The jamming point is characterized by diverging anharmonic effects (the softest
modes have the smallest barriers) [Xu10]. We are not able to define an equivalent
of the jamming point, but we can seek for a dependency on Hamp of the anharmonic
effects, and see for example if they diverge in null field.

6.5.1 Forcings

Perturbing the Hamiltonian We study the reaction of the system to an additional
force along a direction | �π〉 (identified with the 2N -dimensional vector |π̃〉). We are
interested in the softest mode, that is localized, and we want to compare it with the
behavior of the eigenvectors in bulk of the ρ(λ), that are delocalized. Therefore we
choose |π̃〉 = |π̃0〉 (softest mode) and |π̃〉 = |π̃RAND〉, a vector whose components
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are chosen at random, with the condition 〈π̃RAND |π̃RAND〉 = 1. The vector |π̃RAND〉
is not an eigenvector of M, but it is generally a combination of all the eigenvectors
of the system. Since the bulk eigenvectors overwhelm the soft modes by number
|π̃RAND〉 will be representative of the bulk behavior. The reason why we use |π̃RAND〉
instead of an actual bulk eigenvector is that with the Arnoldi algorithm we were able
to compute only the lowest eigenvectors, so for the large lattices it was practically
impossible to go beyond the localization threshold (recall Fig. 6.5).

With the application of a forcing along | �π〉, the Hamiltonian is modified in

HF = −
∑

‖x− y‖=1

Jx y�sx · �s y −
N∑
x

(�hx + AF �πx

)
· �sx, (6.14)

where AF is the amplitude of the forcing along | �π〉, that will be tuned appropriately.
We stimulate the system with forcings of increasing amplitude, and study when

this kicks the system out of the original inherent structure. To this scope AF = AF(ih),
where ih ∈ N tunes the forcing.6

The procedure is conceptually simple. Being NF the number of forcings one wants
to impose, for ih in {1, . . . , NF}
1. Start from the IS

∣∣�s(IS)
〉

of the unperturbed Hamiltonian HRF ≡ HF(ih = 0).
2. From

∣∣�s(IS)
〉
minimize the energy usingHF(ih), and find a new IS for the perturbed

system, |IS(ih)〉.
3. From |IS(ih)〉 minimize the energy again, using HF(0) = HRF, and find the IS

|IS∗〉 (with elements �s(IS)∗
x ).

4. If |IS∗〉 = ∣∣�s(IS)
〉
, the second minimization lead the system back to its original

configuration, so the forcing was too weak to break through an energy barrier. On
the contrary, if |IS∗〉 �= ∣∣�s(IS)

〉
the forcing was large enough for a hop to another

valley.

Since this is an anharmonicity test, the same procedure for negative ih yields different
results, therefore in our simulations ih ∈ {−NF, . . . , 0, . . . , NF}.

To ensure well-defined forcings along | �πRAND〉, we normalized AF with ‖|�π〉‖1,
since

∣∣∑
x �πx · �sx

∣∣ ≤ ∣∣∑
x �πx

∣∣ ≤ ∑
x | �πx | = ‖|�π〉‖1. Because ‖|�π〉‖1 scales nonlin-

early with N , we multiplied back by a factor N , obtaining and extensive correction
to the energy. For the softest mode we analyzed the effect of intensive forcings of
order O(1) because larger forcings lead the system out of the linear response regime.
The amplitudes we used can be resumed as

AF(ih) = N Aih

‖|π〉‖1
for |πRAND〉 , (6.15)

AF(ih) = Aih

‖|π〉‖1
for |π0〉 . (6.16)

6
N is the set of the natural numbers.



152 6 Soft Modes and Localization in Spin Glasses

The amplitudes A are an external parameter (of order 1), that we tried to tune in order
to be in the linear response regime for small ih , and out of it for ih approaching NF.
The dependency of the optimal A on L and Hamp was highly nonlinear. We list our
choices in Table 6.1.
Probing the Linear Regime To make sure that our forcings are not too strong,
we monitor the direct reaction of the system to the forcing. We define a “polar-
ized magnetization” m̂ = 〈IS(ih) | �π〉 = ∑

x �sx · πx , that indicates how much the
forcing pushed the alignment of the spins along the pion. The amplitude of the forc-
ing is tuned well if m̂(ih) is close to the linear regime. In Table 6.1 we show the
amplitudes A we used in order to be in the linear regime. Figure 6.7 confirms that
this was the working condition for the forcings along | �π0〉. Figure 6.8 is analogous,
but along | �πRAND〉. In the latter figure we rescale m̂ by a factor 1/

√
N to obtain

a collapse. In fact the normalization 〈 �πRAND | �πRAND〉 = 1 implies that the compo-
nents of | �πRAND〉 are of order 1/

√
N , so the polarized magnetization is bounded by

|m̂| = |〈I S(ih) | �πRAND〉 | ≤ ∑
x | �πx | ∼ √

N .
The reader will notice that to be in the regime of quasi-linear response, forcings

along |πRAND〉 can be extensive, whereas the localized forcings along |π0〉 need to
be of order 1.
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Fig. 6.7 Polarized magnetization m̂ of the forcings along | �π0〉, for Hamp = 0.1 (left) and Hamp = 1
(right). The inset is a zoom of the same data
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The Perturbed Configuration After the first minimization (with the perturbed
Hamiltonian) but before the second, we measure the overlap qb between

∣∣�s(IS)
〉

and
|IS(ih)〉, qb = 〈�s(IS) |IS(ih)〉 /N (Fig. 6.9), and the energy difference �E , in terms of
HRF, between |IS(ih)〉 and

∣∣�s(IS)
〉
, �E = ERF

( |IS(ih)〉
) − ERF

( ∣∣�s( IS)
〉 )

. The max-
imum value of �E before a hop to another valley should give an estimate of height
of the barrier. Still, it may happen that the minimum of the energy with Hamiltonian
(6.14) have an energy lower than ERF

( ∣∣�s( IS)
〉 )

, so in a strict sense �E is not positive
definite. To overcome this issue, we resort to the energy difference �E∗, in terms of
HRF, between |IS(ih)〉 and |(IS∗〉, �E = ERF

( |IS(ih)〉
) − ERF

( ∣∣�s(IS)
〉 )

, that mea-
sures the barrier from the arriving IS instead of the starting one. It has the advantage
of being positive definite, and even though the eigenvector | �π0〉 of the forcing is not
associated to that IS, we will see that the two ISs are so similar that it is a reasonable
descriptor.
Ending in a New Valley For each AF(ih) we measure the overlap qif between the
two minimas of HRF, the initial IS,

∣∣�s( IS)
〉
, and the final one, |IS∗〉. Naïvely, checking

that qif < 1 in principle is a good criterion to establish whether the system escaped
to another valley. We proceeded similarly, in terms of the spin variations between
initial and final configuration, through the quantities

wx = 1 − (�s (IS)
x · �s (IS) ∗

x

)
, (6.17)

W =
N∑
x

wx = N − 〈�s (IS)
∣∣IS∗〉 = N (1 − qif), (6.18)

W =
∑N

x w2
x(∑N

x wx

)2 . (6.19)

The local variation wx measures the change between the beginning and the end of the
process. If the spin stayed the same then wx = 0, while if it became uncorrelated with
the initial position wx = 1 in average. If one and only one spin becomes uncorrelated
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with its initial configuration, the variation of W is �W = 1/N . Similar variations
�W do not mean that one spin has decorrelated and the others have stayed the same,
this is impossible because

∣∣�s(IS)
〉

and |IS∗〉 are ISs and collective rearrangements are
needed. A �W = 1/N means instead that the overall change is equivalent to a
single spin becoming independent of its initial state. This is, for a rearrangement,
the minimal change in the W that we can define. Since the spins in our model are
continuous variables, we impose �W = 1/N as a threshold to state whether there
was or not a change of valley.

The cumulant W is an indicator of the type of rearrangement that took place. If
the rearrangement is completely localized (only one spin changes), W = 1, whereas
if it is maximally delocalized (all the spins have the same variation), then W = 1/N .
Falling Back in the Same Valley Even though the forcing is along a definite direc-
tion, since the energy landscape is very irregular, it may happen that stronger forcings
lead the system to the originary valley. For example it may happen that ih = 2 lead
the system to a new valley, and ih = 3 lead it once again to the same valley of
ih = 1. To exclude these extra apparent valleys we label each visited valley with
its W , and assume that two valleys with the same label are the same valley. These
events are not probable, and even less likely it is that this happen with two different
but equally-labelled valleys, so we neglect the bias due to this unlucky possibility.

6.5.2 Rearrangements

To delineate the effect of the forcings, we want to study, for every couple (Hamp, L),
the probability that a forcing of amplitude AF lead the system to a new valley, to
distinguish the behavior of soft from bulk modes.

Furthermore, once the system made its first jump to a new valley, it is not excluded
that a bigger forcing lead it to a third minimum of the energy. One can ask himself
what is the probability P H

L (AF, n) that n new valleys are reached by forcing the
system with an amplitude up to AF(ih), and to try to evince a dependency on system
L and random field amplitude Hamp. Even though n is bounded by ih , this does
not necessarily mean that if we made smaller and more numerous forcings n could
not be larger. On another side, if for a certain parameter choice rearrangements are
measured only for large ih , it is reasonable to think that these represent the smallest
possible forcings to fall off the IS.

To construct P H
L (AF, n), for every replica and sample we start from ih = 0 and

increase |ih | either in the positive or negative direction (the two are accounted for
independently). The value we assign to P H

L (AF, n) is the number of systems that
had n rearrangements after ih steps, divided by the total number of forcings, that is
2Nreplicas Nsamples.
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Fig. 6.10 Probability of there being exactly n changes of valley after ih = NF = 10 forcing steps.
The data come from Hamp = 0.1 (left) and Hamp = 1 (right). If P H

L (AF, n) = 1 for n = 0 it
means that the forcings were not strong enough to ever get out of the initial IS. On the contrary,
P H

L (AF, n) = 1 for n = 10 means that every single step lead the system to a new IS. The latter
scenario is realized in the case of forcings along | �πRAND〉, especially when the system size is large.
On the other side, forcings along | �π0〉 display a small but finite amount of rearrangements

First rearrangement In Fig. 6.10 we show the probability of measuring exactly n
rearrangements after ih = NF = 10 forcing steps.7 Even though both for | �πRAND〉
and | �π0〉 we are in the linear response regime, the behavior is very different between
the two types of forcing. In the first case every single forcing step we impose leads
the system to a new valley. In the second rearrangements are so uncommon that even
though the probability of having exactly one rearrangement is finite, that of having
more than one becomes negligible for large samples. It is then reasonable to think that
any rearrangement we measure for | �π0〉, it occurs for the smallest possible forcing,
and even when more than one occurs, these jumps are between neighboring valleys,
where by neighboring we mean that no smaller forcing would lead the system to a
different IS. To convince ourselves of this we can give a look at the average number
of rearrangements after ih forcing steps, n(ih) (Fig. 6.11).8

When ih is small no new ISs are visited and 〈n〉 = 0, while for larger ih , 〈n〉 is
positive but small, so we can call these changes of valley “first rearrangements”, i.e.
rearrangement between neighboring valleys.

6.5.3 Two-Level Systems

In the spectrum of M, ρ(λ), we remarked an extensive number of very soft modes,
with a localized eigenstate (Sect. 6.4). The eigenstates can connect different ISs
through the forcing procedure described in this section. The connection caused by

7We do not show data regarding forcings for Hamp = 10, 50, because no arrangement takes place.
Most likely the energy landscape is too trivial.
8Because P H

L (AF, n) is not defined over all the samples (it is hard to reach many different valleys
and it may not happen in all the simulations), the errors on P H

L (AF, n) were calculated by resampling
over the reduced data sets with the bootstrap method.
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Fig. 6.11 Average number of rearrangements n(ih) for forcings along | �π0〉 (left) and along | �πRAND〉
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such states is privileged, because the couples of ISs are innaturally near to each
other. In Fig. 6.12 we show the mean overlap between initial and final IS, qif =
〈�s (IS) |I S∗〉 /N .

As expectable, the rearrangements are localized when we stimulate the system
along the softest mode, and delocalized when it is along a random direction (Fig. 6.12,
inset). The overlaps qif are much closer to 1 than the overlaps of independent ISs
shown in Fig. 6.1, meaning that the ISs are somewhat clustered in tiny groups that
are represented by a single IS. This could be an operational definition of classical
two-level system, i.e. a system in which there are two very close states connected
by a soft mode, where the transitions from one state to the other can be treated as
independent of the rest of the system [And72, Phi72, Phi87, Lis15].

To reinforce the idea of two-level system, we see that while the energy barriers
from random forcings increase with the system size (the growth is O(N )), while
those within the two-level system (along the softest mode) do not (Fig. 6.13).
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6.6 Overview

The introduction of a random field, besides extinguishing the rotational symmetry,
changes the response of the Heisenberg spin glass to soft excitations. In the absence
of field the density of states is expected to go as g(ω) ∝ ω2 [Gri11, Fra15b]. Very
strong random fields suppress the soft modes, and a gap appears in the density of
states g(ω). Still, soft modes do resist the application of a random field when it is
not too large. The data are compatible with the absence of a gap, where for small ω

the density of states grows as g(ω) ∝ ω4.
It appears that a finite fraction of the modes is localized, suggesting a localization

transition when the system size becomes large.
Besides the density of states, that consists in a harmonic approximation of the

metastable states, we make an anharmonic analysis by imposing an external force on
the system. The reaction of the spin glass has a strong dependency on the direction
of application of the force. Extensive corrections to the Hamiltonian are needed to be
able to move the spins in the direction of a forcing along a random direction, while
order 1 forcings are enough to obtain the same result pushing along the softest mode,
suggesting that it is the softest mode that drives the change.

Even though the response appears in both cases concentrated along the softest
modes, seldom the softest mode leads the system to a new inherent structure, whereas
a delocalized forcing drives it to explore many new valleys of the energy landscape.
Forcings of order one along the softest mode are the smallest we can impose in order
to have a jump toward another inherent structure. The rearrangement in the change of
inherent structure is localized, and the energy barrier does not grow with the system
size.

The most attractive feature of the valleys reached with a forcing along the softest
mode is that their overlap with the initial inherent structure is very high, much higher
than the typical overlap expected for independent inherent structures. This means that
there are couples of metastable states with a fundamental relation between them,
connected by a soft mode, with a small energy barrier. This could be used as an
operational definition of classical two-level system.
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Chapter 7
Conclusions

7.1 General Considerations

It is almost one century that scientists from several domains, going from physics, to
chemistry, engineering, mathematics and computer science, gathered to understand
the nature of the glass transition. In 1995, Anderson stated: “The deepest and most
interesting unsolved problem in solid state theory is probably the theory of the nature
of glass and the glass transition” [And95]. Twenty years later, in 2015, despite great
steps forward, the main answers on the glass transition are still unanswered.

It would be pretentious to think to make a revolutionary advance in a single Ph.D.
thesis, as the scientific advance is usually the sum of a very large series of small
contributions. It is like removing all the corns from a huge cob. Every single corn is
important, even though from the point of view of the full cob it might seem extremely
small.

Removing a corn consists in advancing under any known point of view, from
conceivingnew theories to developingnewmethodologies and instruments, tofinding
some new non-trivial behavior. It is up to the researcher to decide which perspective
is more suited to his profile and the problem he tackles, but he should always keep in
mind the multidisciplinarity of the problem, and possibly include it in his approach.

In this thesis we dealt with the glassy phase under several points of view, focusing
on spin glasses. Our approach was mainly numerical, with a strong imprint due to a
theoretical physics background.Weworked on simplified systems that carry only few
essential features, enough to yield the phenomenologywewish to understand.On one
hand we studied the critical behavior of canonical spin glasses, trying to understand
how the spin glass phase and transition change under perturbations, focusing on
concepts like universality and critical dimensions. On the other hand we tried to get
a better view on the energy landscape, a feature with a diverging number of degrees
of freedom that is usually described only through a single number, the energy.
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164 7 Conclusions

We contributed with a finite amount of small corns, to what one day will hopefully
be the full unraveling of the whole cob.

In the following sections we outline shortly the results we achieved in this thesis.
More extended conclusions are given at the end of each chapter.

7.2 State of the Art Computing

In this thesis we showed the usefulness of special hardware to achieve meaningful
results. The resources we used were never used before for the problems we attacked,
so our work is a proof of concept for these approaches.

The data in Chap.2 were obtained with the dedicated computer Janus, an FPGA-
based computer designed specifically for Ising spin glass simulations. With this
machine it was possible to thermalize on unprecedentedly large lattices, at uniquely
low temperatures. Even though this machine has been operating since 2008, before
the beginning of my research career, each of the results achieved with Janus repre-
sents a proof of the suitability of a dedicated FPGA-based computer.

In Chap.3 we simulated on Heisenberg spins, for which Janus is not optimized.
We resorted then to GPUs. At the moment of the publication of [BJ14d], despite
their popularity, no physical result had been obtained through GPU simulations on a
Heisenberg SG (and to our knowledge neither on Ising spins). Even at present date,
we are only aware of benchmarks [Yav12, Ber14] performed on Heisenberg spin
glasses with GPU. Besides our work, only on Ising systems GPU have been used to
obtain new insight on spin glasses [Man15a, Man15b, Lul15].

Moreover, our work can provide even further guiding because we used a large
GPU cluster and ran simulations with tens of GPU in parallel.

7.3 The Ising Spin Glass in a Magnetic Field

We studied the three-dimensional Ising Edwards-Anderson spin glass in an external
uniformmagnetic field.We showed that the finite-size fluctuations are somarked, that
searching signs of criticality becomes highly challenging. Taking the averages of the
observables hides the behavior of the majority of the measurements, so we needed to
developmore sophisticated statistical analysis tools.We classified our measurements
through a conditioning variate, a function of the observables that helps to distinguish
different types of behavior, and proposed a new finite-size scaling ansatz based on the
quantiles of the conditioning variate’s distribution. In some cases themodel appeared
critical, and in others it did not. We were not able to extrapolate which of the two
dominates in the thermodynamic limit, but we could identify the region where the
would-be phase transition should be searched.

http://dx.doi.org/10.1007/978-3-319-41231-3_2
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7.4 Heisenberg Spin Glass with a Strong Random
Exchange Anisotropy

We made equilibrium simulations on the three-dimensional Heisenberg model with
the addition of a random exchange anisotropy. We found both the chiral and the spin
glass phase transitions. Through a careful finite-size scaling analysis we conclude
that the two critical channels are coupled, so the phase transition is unique. The
exponents thatwe calculate are compatiblewith those of the IsingEdwards-Anderson
spin glass, so in the RG sense the exchange anisotropy is a relevant perturbation on
the Heisenberg Hamiltonian.

7.5 Energy Landscape of m-Component Spin Glasses

Westudied vector spin glasses in three dimensions, focusing on the role of the number
of spin componentsm. We performed an extensive study of the energy landscape and
of the zero-temperature dynamics from an excited state. An increase of m implies a
decrease of the amount of minima of the free energy, down to the trivial presence of
a unique minimum. For little m correlations are small and the dynamics are quickly
arrested,while for largerm low-temperature correlations crop up and the convergence
is slower, to a limit that appears to be related with the system size.

7.6 Zero-Temperature Dynamics

We analyzed the hysteresis properties of the SK model at zero temperature. The
states along the hysteresis loop are marginal, meaning that the density of stability
goes to zero as ρ(λ) ∝ λθ, and exhibit SOC. We analyzed the stability of these
configurations, and found that previous scaling arguments on the averages, granting
θ = 1, were not exact due to the presence of correlations C(λ) between soft spins.
This correlation diverges as 1/λ, and implies that they are mutually frustrated. The
value θ = 1 was still recovered by analyzing the fluctuations of the mean values.

Also, we stated through scaling arguments that SOC requires that each site have
an infinite number of neighbors, so the SKmodel is critical, and the EAmodel is not.
By mixing both short- and long-range interactions in a duplex network, we argued,
giving predictions that we confirmed numerically, that the long-range couplings are
a relevant perturbation to the short-range Hamiltonian. That is, as long as there are
long-range interactions, a sufficiently large system will display crackling over the
whole system.

Finally, we studied the dynamics of the avalanches. We found that the type of
spin update influences the power laws of the crackling, but maintains the rest of
the features. Furthermore, an avalanche can be represented as a random walk in
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the number of unstable spins, and this random walk has a bias that depends on
how unstable the system is in each moment. Lastly, we described the avalanche
dynamics through a random walk in the space of the local stabilities. We found that
the correlations between soft spins arise spontaneously during the avalanche, and we
saw that the same exponents found statically arise also dynamically.

7.7 Soft Modes and Localization in Spin Glasses

We examined the soft plastic modes in the three-dimensional Heisenberg spin glass
under a random field that broke the rotational symmetry, in order to suppress the
modes due to symmetries. We studied small fluctuations around the inherent struc-
tures, both at at the harmonic and anharmonic levels.

This analysis was motivated by the phenomenology of supercooled liquids, where
an excess of low-frequencymodes (the boson peak) is found over the Debye behavior
of the density of states, g(ω) ∝ ω2. These excitations are important because they
dominate the plastic response of the sample.

We chose Heisenberg spin glasses as a platform to study those behaviors to (i)
show that the boson peak appears in diverse types of disordered system, (ii) spin
glasses are better understood than structural glasses, and easier to simulate, letting
us analyze much larger systems, and (iii) Heisenberg spin glasses, differently from
Ising ones, have continuous symmetries and degrees of freedom, so the analysis of
the soft modes is analogous to that of sphere systems.

We found that for large random fields a gap appears in the density of states, while
when the fields are small the density of states departs from the Debye behavior, with
g(ω) ∝ ω4. These modes are localized, and they connect similar states connected by
small energy barriers, that we identify as a classical version of two-level systems.

7.8 Future Challenges and Opportunities

On the long term, the advances exposed in this thesis will represent a small step
towards a full comprehension of the glass transition, a few corns of a giant cob.

On a shorter term, a whole set of new research opportunities has been brought to
light thanks to this thesis.

From a computational point of view, we opened the door to GPU computing in
spin glasses, showing the feasibility and the effectiveness ofGPU simulations. Future
numerical works on this type of processing units is no more pioneering work aiming
to understand whether this possibility is effective, but a full exploitation of the new
possibilities of parallel computing.We also proved the usefulness of the construction
of machines highly optimized for the resolution of one single type of hard problem,
in our case spin glass simulations. The Janus computer gave us the access to regimes
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that were unthinkable with any other type of resource, and its success paved the way
for its next generation, Janus II.

The statistical analyses of the large fluctuations in Chap.2 open the way for a new
approach to this types of problems. Studying large deviation problems as a function
of the quantile can reveal interesting results in topics such as temperature chaos
[Fer13], and our new finite-size scaling ansatz might reduce drastically the size of
the systems necessary to deduce confidently the behavior in the thermodynamic limit
with the due further comprehension [Bil14]. Moreover, we showed two promising
ways to unravel the question of the existence of a dat line in three dimensions. On one
hand we showed in Chaps. 2 and 4 that the link overlap has far less fluctuations than
the normal overlap, meaning that a traditional type of analysis on the link overlap
could reveal whether or not the spin glass phase persists under an applied magnetic
field. On the other hand, we also found the region of temperature in which the phase
transition would lie, if it were present. Having a tangible temperature range where
to verify the existence of a dat line defines definitively the effort needed to answer
this question, that might be to the reach of Janus II.

The finding of a coupling between the chiral and spin glass channel in Chap.3
confirms a part of the Kawamura scenario. The main remaining question is now
on the coupling between the two in zero field [Fer09b, Vie09]. It would be also
interesting to verify the competition between chiral and spin glass sector in the two-
dimensional XY spin glass, where the stiffness of chiral and spin glass sectors appear
to be different [Wei08]. We also emphasized that the crossover regime is in practi-
cal means more important than the thermodynamic behavior, since in this problem
both simulations and experiments are completely immersed in the crossover region.
Therefore, quantities such as critical exponents might be more useful if accounted
for as a function of the size of the system or of the simulation time, using tools such
as the time-length dictionary developed in [AB10a].

A similar type of approach could be used with the crossover of the spin glasses’
behavior as a function of m shown in Chap.4. The fact that the frustration decreases
the number of spin components can also be a starting point for models (physical and
sociological) where m is a function of the site, meaning that some sites are more
susceptible to frustration than others.

The analysis of the dynamics of spin glass avalanches presented in Chap.5 still
has many open points. Randomwalks in the space of local stabilities could be used to
recover more relations between the exponents, and analytical computations on RW
in the number of unstable spins can explain what the values of τ and ρ depend on.
Furthermore, we expect these results obtained on the correlations in the SK model
to extend to other marginally stable systems such as sphere packings: opening a
soft contact should imply that contacts carrying small forces should see their force
increase.

Finally, the study of the soft modes in Chap. 6 opens a whole new field of studies
of the soft modes in spin glasses, and might sign a new trait of unification between
sphere packings and spin glasses. To this objective, a search of a boson peak in
zero field becomes necessary, possibly as a function of the initial temperature of the
relaxations. It would be mostly desirable to be able to search inherent structures from

http://dx.doi.org/10.1007/978-3-319-41231-3_2
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configurations thermalized in the spin glass phase. Also, a study of the correlations
lengths in the inherent structures would help to unify the understanding on spin and
structural glasses [BJ16].
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Appendix A
Monte Carlo on Heisenberg Spin Glasses

The appendix is structured as follows. Sect. A.1 is general about all the MC
simulations presented in Chap. 3, though it treats the specific algorithms that we have
used with no reference to their implementation, so it is referenced also in Chap. 2.
However, the implementation is often crucial. The simulations of Chap. 3 were so
demanding that we have used special hardware described in Sect. A.2.1. This special
hardware speeds up the simulations thanks to a massive parallelization of the calcu-
lations, so in Sect. A.2.2 we give some brief details about it. Finally, we address in
Sect. A.2.4 some issues regarding the generation of pseudo-random numbers.

A.1 Simulation Algorithms

For the thermalization of our vector SG we used a blend of several MC dynamics.
Specifically, our EMCS consisted of (in sequential order):

• 1 full lattice sweep with the heat bath (HB) algorithm [Ami05, Kra06],
• L lattice sweeps of microcanonical overrelaxation (OR) algorithm [Bro87,

Ami05],
• 1 parallel tempering (PT) sweep [Huk96, Mar98, Yll11].

Heatbath by itself would provide correct (but inefficient) dynamics. It actually mim-
ics the natural evolution followed by real SGs (that never reach equilibrium near or
below the critical temperature). For this reason we enhance it with two more algo-
rithms. However, HB does play a crucial role, since it is irreducible (i.e. the full
configuration space is reachable, at least in principle), at variance with OR, which
keeps the total energy constant, and PT, which changes the temperature but not the
spin configuration.

Crucial to perform the HB and OR dynamics is the factorization property of the
Boltzmann weight for the Hamiltonians (2.1) and (3.9). The conditional probability-
density for spin �sx , given the rest of the spins of the lattice is
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P(�sx | {�s y} y �=x) ∝ e(�sx ·�hx)/T , (A.1)

where �hx is the local field produced by the lattice nearest-neighbors of spin �sx .1

In the HB update, a new orientation for spin �sx is drawn from the conditional
probability (A.1), see [Ami05] for instance.

The OR update is deterministic. Given a spin �sx and its local field, we change the
spin as much as possible while keeping the energy constant:

�s new
x = 2�hx

�hx · �s old
x

h2
x

− �s old
x . (A.2)

Contrarily to HB, the order in which the spins are updated is important in OR.
Accessing the lattice randomly increases the autocorrelation time in a substantial
way. On the other hand, a sequential update generates a microcanonical wave that
sweeps the lattice. The resulting change in the configuration space is significantly
larger. A similar microcanonical wave is generated with other types of deterministic
lattice sweeps. For instance, one could partition the lattice in a checker-board way and
first update all spins in the black sublattice, updating the white spins only afterwards.

The combination of HB and OR has been shown to be effective in the case of
isotropic SGs [Pix08] and other models with frustration [Alo96, Mar00a]. However,
if one is interested on very low temperatures or large systems, PT is often crucial.
For each sample we simulate NT different copies of the system, each of them at one
of the temperatures T1 < T2 < . . . < TNT . A PT update consists in proposing, as
configuration change, a swap between configurations at neighboring temperatures.
The exchange is accepted with the Metropolis probability

P = min
[
1, e−β�E

]
, (A.3)

where �E is the energy difference between the two configurations and β is the
inverse temperature. One of the two systems involved in the swap will decrease its
energy, so that change will be automatically accepted. In order to accept the swap
both the configuration changes need to be accepted, so the swap is generally accepted
with probability e−β|�E |. Evidently, the acceptance is higher if the temperatures Ti
are closer to each other, since the energy of the configurations will be similar. Notice
that exchanging configurations is equivalent to exchange temperatures, so instead of
swapping configurations one can swap temperatures, reducing the data transfer to a
single number.

1In the IEA model in a magnetic field of Chap. 2 hx =
d∑

y:|x− y|=1

Jx ys y+h, in the Heisenberg model

with random anisotropic exchange of Chap. 3, �hx =
d∑

y:|x− y|=1

[Jx y�s y + Dx y�s y].

http://dx.doi.org/10.1007/978-3-319-41231-3_2
http://dx.doi.org/10.1007/978-3-319-41231-3_3
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A.2 Parallel Computing

We discuss now part of the implementation of our codes on the specific hardware
that we disposed of.

A.2.1 Hardware Features

The GPUs we used were of the Tesla generation, produced by NVIDIA, with a SIMD
architecture (Single Instruction, Multiple Data), optimized for the parallel processing
of large amounts of double precision data.

We had access to Tesla M2050 GPUs in the Tianhe-1A supercomputer in Tianjin,
China, and Tesla M2090 GPUs on theMinotauro cluster in Barcelona, Spain. Despite
the extremely high performances claimed by NVIDIA (e.g. 665 Gflops in double
precision in the case of the M2090 GPUs), it is practically impossible to reach that
limit, because the major bottleneck does not reside in the computing speed, but in the
memory access. Yet GPUs keep being a valid tool to simulate on SGs, as they typically
allow the same function to be launched concurrently on thousands of threads. This
is exactly what we need, since we can update simultaneously different replicas, and
also non-neighboring spins within the same replica, because the interactions are only
between nearest neighbors.

A.2.2 Effective GPU Coding

The optimization of the GPU code required a great effort. In fact, between the first
and the last version of the program, we gained a speed-up factor of 100.

The complexity of the Monte Carlo algorithms, that require the definition of a
very large number of variables, is what finally limits the speed of the program, since
they exceed the number of registers in the GPU (this effect is called register spilling
[NVI15]: some of the variables have to be stored in the global memory, slowing
down their access).

To limitate the memory access, we opted to simulate the model with binary cou-
plings Dαβ

x y = ±D, and Jx y = ±1, in order to be able to store in a single byte the
coupling between two sites. Since Dx y is symmetric there are 6 independent entries
Dαβ

x y , plus one for Jx y. The extra bit stayed unused. Also, we limited the size of
the lattice to powers of 2, in order to get be able to evaluate the lattice positions
with bitwise operations and to achieve a coalesced memory access, as explained
in Sect. A.2.3. We also maximized the use of the level 1 cache memory and tiled
the system in columns, updating independently two groups of non-neighboring tiles.
The black tiles are updated first, and the white are updated in a second kernel call,
in order to avoid synchronization conflicts.
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Issues of this type with single-GPU coding on spin systems are extensively treated
in works such as [Ber11, Yav12, Lul14], so let us focus on the complications related
to the use of multiple GPUs. We describe now in practical means the procedure of
simulations for L = 64 that mixed CUDA and message passing interface (MPI).

For each sample we simulate 2NT replicas, because we need two replicas per
temperature to be able to calculate overlaps. We use NGPU GPUs, and each hosts
two replicas, not necessarily at the same temperature, hence NGPU = NT . Since the
interactions are only between nearest neighbors, we can update simultaneously up to
half of the spins with two independent kernel calls (one for the black tiles and one for
the white). Yet, there are only 65,535 threads per GPU [NVI15], and 2L3 = 524,288
sites, so each thread has to update at least 4 spins. Since the major bottleneck is the
memory access, we work with Nthreads = 215 = 32,768 threads, assigning a row of
8 spins to each, along the x axis. This way we can minimize the number of reads
from global memory, and we give a direction to the OR spin wave. Adjacent rows
are updated in different kernel calls.

A.2.3 Coalescent Memory Reading

Changing the way we read from memory gives GPU programs a dramatic speedup,
and the only effort necessary to obtain this is to change the indexing of the memory
locations.

When a single multiprocessor is given some thread blocks to deal with, the sched-
uler executes them in groups of 32 threads, called warps. A warp executes one
instruction at a time, and the maximum performance is achieved when all the threads
in the warp have a similar execution path. To get coalesced reading, the consecu-
tive threads have to read from consecutive memory positions, in order to maximize
bandwidth of the memory bus [NVI15]. So, for example, if thread 1 reads from the
memory position 612, thread 2 would make an effective read from position 613. In
order to obtain this we have to reorganize the memory indexing in order to have thread
2 pointing to position 613. This is often automatically realized in simple arrays, but
not when the spatial geometry comes to play with tiling or with the indexing of the
Jx ys.

In the specific case of our spin indexing, we want neighboring rows to be called
by neighboring threads. Yet, when we say neighboring rows, we mean neighboring
rows within the same kernel call, not in the actual lattice. It is like if we compress
together all the white tiles and only then we worry about proximity. The first site of
the white row i (i runs only over the white tiles) has to be stored besides the first site
of row i +1, and so on. This means that their address in memory has to differ only in
the least significant bit. The z coordinate is the same both for i and i + 1. The same
happens for the x coordinate, since both threads sweep the row in the same way. On
the y axis, since we update one row of every two, the least significant bit y0 also is
the same. Hence the least significant bit of the coalesced reading has to be y1, the
second least y2, and so on. On Table A.1, line 4, we give an example of coalesced
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Table A.1 A step-by-step example of how to obtain coalescent reading for an L = 64 lattice

i th t14 t13 t12 t11 t10 t9 t8 t7 t6 t5 t4 t3 t2 t1 t0
irow r0 x5 x4 x3 z5 z4 z3 z2 z1 z0 y5 y4 y3 y2 y1

isite r0 z5 z4 z3 z2 z1 z0 y5 y4 y3 y2 y1 y0 x5 x4 x3 x2 x1 x0

icoalesced
site r0 y0 x5 x4 x3 x2 x1 x0 z5 z4 z3 z2 z1 z0 y5 y4 y3 y2 y1

On the first line we show the thread index. It has 15 significant bits, since we use 215 concurrent
threads. We have to use them to identify each tile with the starting point of the row (second line).
We use the most significant bit to identify the replica. Since L contains 8 rows, we need only 3
digits to identify their starting point on the x axis, but we need all the information on the z axis, and
only 5 bits for the y axis, since there is the constraint of having to simulate non-neighboring rows.
On the third line we show an easy way to organize the bits to identify a site once we started moving
along the row, in case of non-coalescent reading. It is straightforwardly deducible from irow. The
last row shows how to organize the bits to get coalescence. The replica index stays where it is, the
eleven following bits are shifted 7 positions to the right, and the final seven are shifted 11 positions
to the left. This way consecutive threads access consecutive memory positions. More details in the
main text

memory access. Since there are 215 threads, i th has 15 significant bits. To get the
index of the starting site irow of each row we need information on:

• Which replica were updating. There are two replicas, so 1 bit is enough.
• The z coordinate. It can assume L = 64 different values, so it requires 6 bits.
• The x coordinate is not constant. We just need the one of the first site of the row.

Rows are 8 sites long, so we can only fit 8 along a side. That makes 3 bits.
• The y coordinate. Since adjacent rows are updated in different kernel calls, y has

to change of 2 lattice spacings each time we change row, and half of the y choices
are forbidden. We need 5 bits for y.

The mapping from i th, associated with the thread to the index irow that indicated the
initial site of the tile, is shown on the second line of Table A.1. The index irow needs
only 3 bits to store its x position, because since the rows are of 8 sites along the x
axis there are only 8 tiles. By adding the three bits (Table A.1, line 3) we obtain an
uncoalesced memory read of site isite. From this one we obtain the coalesced read
by moving the bits around in order to force the changes of indexing to the least
significant bit. Practically, it is obtained by shifting seven positions to the right the
6 z-bits plus the 5 y-bits except y0, and with an 11 position shift towards left of the
remaining y0 plus the 6 x-bits. Notice that this type of reading is very convenient
since it only implies unsophisticated bit-to-bit operations, and it is valid for any L
power of 2. This is why almost all our simulations were with L = 8, 16, 32, 64.

The remaining information on the actual position on the lattice is given by a binary
parity parameter that the kernel gets from the input. The parity tells us whether y is
even or odd (if y0 = 1 or y0 = −1), or in other words, if the kernel call regards black
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Fig. A.1 Scaling of the
computing time with the
number of GPUs NGPU.
Benchmark performed on the
Minotauro GPU cluster
(Barcelona Supercomputing
Center, Barcelona, Spain)
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or white cells.2 The index isite indicates the position of the single site once one took
in account the parity and the position along the row.

A.2.3.1 MPI Parallelization

To simulate NT temperatures with MPI we used NT + 1 cores. NT of them, called
slaves, were in charge of measurements and updates on two lattices, using the
resources of a GPU each. The remaining one, called master, did not use any GPU
and was dedicated to the PT and to the management of the relationships between
slaves. The expedients for the simulations that we described in the previous sections
are valid at the level of the slave.

Each 1 HB + L OR sweeps, we do PT. We measure on the device (the GPU)
the energy of each replica, and we pass this information to the master. The master
makes the PT iterations, that require a negligible amount of time, and assigns a new
temperature to each replica. The memory transfer overhead is minimum in this case.
It becomes an issue when we have to

1. Perform 2-replica measurements (e.g. overlaps)
2. Write on disk (measurements and backup)

since we are forced to pass the entire configuration via MPI. The nature of the system
we are simulating is of help, since we can dilute measures (and writes) almost as much
as we desire, as long as we have enough measurements to perform decent averages.
The MPI extension turned out to be very effective, since not only the multi-GPU
version of the algorithms was as fast as the single-GPU, but also the speed had a
linear scaling with the number of GPUs (see Fig. A.1).

2For x = 0 it tells us if y is even or odd, but for x = 8, it tells us if y is odd or even, and so
on, because in each layer of rows the parity has to change in order to not update simultaneously
neighboring rows.
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A.2.4 Parallel Pseudo-Random Number Generator

Pseudo-random number generators (PRNGs) are a critical issue in the implementa-
tion of stochastic algorithms [Knu81], but even more in cases like ours, where each
of the Nthreads threads had to carry its own PRNG, and we had a large number of them
acting in parallel on the same lattice. This became a major problem especially in the
simulations with MPI, where a huge number of PRNGs was concentrated on only
two lattices. It was crucial to guarantee the statistical independence of the Nthreads

pseudo-random sequences. We consider three different aspects: (a) the PRNG that
each thread uses, (b) the initialization of the generators and (c) our tests on the
generators.

A.2.4.1 The Generator

We resorted to a linear combination of Parisi-Rapuano with congruential generators
[Fer09c].

With the Parisi-Rapuano sequence [Par85], the nth pseudo-random number Pn is
generated through the following relations:

yn = (yn−24 + yn−55) mod 264 (A.4)

Pn = yn XOR yn−61,

where XOR is the exclusive OR logic operator, and yi are 64-bit unsigned integers.
Although some pathologies have been found in the 32-bit Parisi-Rapuano PRNG
[Bal98c], it looks like its 64-bit version is solid [Fer05].

On the other side, we used a 64-bit congruential generator, where the nth element
of the sequence, Cn , was given by [Knu81, LÉ99]:

Cn = (Cn−1 × 3202034522624059733 + 1) mod 264. (A.5)

Also this generator is not reliable when used alone [Fer09c, Oss04].
The final pseudo-random number Rn was obtained by summing Pn and Cn:

Rn = (Pn + Cn) mod 264. (A.6)

A.2.4.2 Initializing the Generators

We have found that problems arise if special care is not devoted to the initialization
of the random numbers. This is particularly important in the case of multiple GPUs
where Nthreads = 32768 threads concurrently update the spins in only two lattices.

We need one PRNG for the master, that performs PT, and Nthreads independent
generators for each slave. It is not trivial to avoid periodicities when not only one
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wants NthreadsNGPU+1 ∼ 1.5×106 PRNG, but it is crucial for them to be reproducible,
monitorizable and backupable. Starting each simulation with over a million seeds is
not a realistic option, but any simplification can be crucial for the simulation.

We decide to use one seed per slave, plus one for the master, and refresh the PRNG
every time a backup is done.3 That makes 46 unsigned long long integer seeds (64
bits each). Passing the PRNG to the kernels is a major bottleneck in our simulations.
A combination of a congruential generator with the Parisi-Rapuano wheel is a fair
solution in terms of speed and memory passage to the kernel, but the Parisi-Rapuano
wheel contains 256 elements (passing them back to the master takes forever), and
it is not trivial to initialize properly a very large amount of wheels starting from a
single seed.

The starting point for each node is a single seed. From that we have to initialize
a whole set of Nthreads PRNGs, so it is clear that special care is needed to obtain
independent initializations.

Implementation For the initialization of the Nthreads generators through a single seed
we resorted to the Luescher generator, we employed the full luxury version, which
is fireproof but slow [Lue94]. This is how we proceeded to obtain a large set of
pseudo-independent PRNG out of a single seed.

1. Use the initial seed to initialize a 64-bit congruential PRNG (A.5).
2. Generate ∼1000 random numbers with the congruential PRNG, in case the initial

seed was not chosen properly (e.g. it was too small).
3. Use the congruential generator to initialize a Luescher wheel, that requires 256

24-bit elements (although we only need 24 for the initialization, plus an auxiliary
variable). Each 24-bit entry for the Luescher wheel is obtained through 3 subse-
quent call of the congruential. From each call we pick the 8 most significant bits,
and append the three together construct the 24-bit number.

4. Generate ∼1000 random numbers with Luescher’s wheel.
5. Use the Luescher wheel to fill up the state vector of the 64-bit PRNGs in Eq. (A.6).

Each entry is obtained through 8 Luescher calls, and taking the 8 most significant
bits from each.

In addition to the PRNGs, also the couplings are formed by using Luescher’s algo-
rithm. We were probably excessively cautious, given the high quality of the full-
luxury generator, but initialization takes only a small fraction of the total computing
time, and we wanted to grant the threads sufficiently independent PRNGs.

3 In order to gain in speed and space in disk, we decided not to save the random wheel when we had
to make backups. We limited ourselves to a refresh of the random wheels with new seeds read from
the urandom device. In this manner, we only had to save Nbackups(NGPU + 1) long long integers
per simulation.
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A.2.4.3 Tests

We tested with success our random sequences through the whole battery of tests
proposed in [Mar95]. To be sure the sequences were reliable also with concurrent
threads, we also generated Nthreads sequences and tested them horizontally, i.e. taking
first the first number of each sequence, then the second, and so on.

Also, we made simulations with ferromagnetic couplings demanding the energies
to be equal, up to the 7th significant digit, to those obtained with an independent CPU
program, that had been already used to produce publications such as [Fer09b].

Finally, it has been pointed out that local Schwinger-Dyson relations (see e.g.
[Riv90]) can be useful to assess the quality of PRNGs [Bal98c]. The relevant identity
here is

2T
〈
�sx · �hx

〉
−
〈
(�hx)

2 − (�sx · �hx)
2
〉
= 0. (A.7)

We averaged it over all the sites in the lattice, in order to obtain a more stringent test
for the simulations.



Appendix B
Four-Replica Correlators

In this appendix we give details on the 4-replica correlators used in Chap. 2. In
Sect. B.1 we motivate the need of four different replicas, in Sect. B.2 we explain how
to find the replicon and longitudinal connected correlation functions GR and GL, we
show that the signal carried by GL is much smaller than that of GR, and we give an
estimation of the value that the effective anomalous exponent ηeff defined in Sect. 2.10
should acquire in the spin glass phase (Sect. B.2.1). Section B.3 is dedicated to an
implementation of the MSC technique in our analyses.

In the presence of an external field the overlap is non-zero even in the paramagnetic
phase, so the correlation functions C(r) [Eq. (1.47)] do not go to zero for large
distances. We need therefore to explicitly construct correlators that go to zero. Two
natural constructions that can be measured directly are

�1(x, y) = [〈sxs y〉 − 〈sx〉〈s y〉
]2

, (B.1)

�2(x, y) = [〈sxs y〉2 − 〈sx〉2〈s y〉2
]
. (B.2)

In Sect. B.2 we will show how �1 and �2 relate to the correlators of the replicated
field theory.

B.1 The Need for Four Replicas

If we use only two replicas to calculate �1(x, y) and �2(x, y), we will introduce
an annoying systematic error in our measurements. Let us examine, for exam-
ple, �2, reexpressing it as a function of the overlaps using Eq. (1.26), �2(x, y) =〈
qxq y

〉− 〈qx〉
〈
q y
〉
.

During a single run of NMC EMCS and samplings qx,t (t = 1, . . . , NMC), we
measure an estimator [qx] of the overlap’s thermal average 〈qx〉,
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[qx] = 1

NMC

NMC∑
t=1

qx,t . (B.3)

The expected value and its estimator are related by

[qx] = 〈qx〉 + ηx
σx√

NMC/(2τ)
(B.4)

where τ is the integrated time related to qx4, ηx is gaussian with ηx = 0 and ηx
2 = 1

that stands for the fluctuations around the mean, and σx is the amplitude of these
fluctuations.

The estimated correlation function is then

[�2(x, y)] = [qxq y
]− [qx ]

[
q y
] =

= 〈qxq y
〉− 〈qx〉

〈
q y
〉

+ ηx y
σx y√

NMC/(2τ)
+ ηx

σx√
NMC/(2τ)

+ η y
σ y√

NMC/(2τ)
+ ηxη y

σxσ y

(NMC/(2τ))
.

(B.5)

When averaging over the disorder the three terms that are linear in η are linear in η

disappear because η = 0. On the contrary, since ηx and η y are correlated ηxη y �= 0,
therefore the last term represents a bias of order o(N−1

MC) that does not disappear with
an average over the disorder.

Since the disorder fluctuations are o(N−1/2
samples), as long as NMC 	 Nsamples we

can neglect this bias. As this is not necessarily true, so we recur to four-replica
measurements to have uncorrelated fluctuations. With an analogous procedure to the
one we just presented, the reader will notice that there is no bias in the four-replica
estimators we present in the next sections.

B.2 Computing the Replicon and Longitudinal Correlation
Functions

With 4 replicas we can construct 3 different correlators

G1(x, y) = 〈sxs y〉2 =
= 〈s(a)

x s(a)
y s(b)

x s(b)
y 〉, (B.6)

G2(x, y) = 〈sxs y〉〈sx〉〈s y〉 =
= 〈s(a)

x s(a)
y s(b)

x s(c)
y 〉, (B.7)

4See e.g. [Ami05] for informations on the relation between integrated time and number of indepen-
dent measurements.
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G3(x, y) = 〈sx〉2〈s y〉2 =
= 〈s(a)

x s(b)
y s(c)

x s(d)
y 〉. (B.8)

None of those goes to zero for large distances ‖x − y‖, but, in the paramagnetic
phase they all tend to the same value, qEA, when ‖x − y‖ −→ ∞. So, to create
connected correlators, we can make two linearly independent combinations of them,
and obtain the basic connected propagators of the replicated field theory [Dom98,
Dom06]5

GR = G1 − 2G2 + G3, (B.9)

GL = G1 − 4G2 + 3G3. (B.10)

GR theGL are easily related to �1 and �2 by expanding their expressions in Eqs. (B.1,
B.2). The first relation is direct,

�1(x, y) = [〈sxs y〉 − 〈sx〉2〈s y〉
]2 =

= 〈sxs y〉2 − 2
〈
sxs y

〉 〈sx〉 〈s y〉+ 〈sx〉
〈
s y
〉 = GR(x, y).

(B.11)

To expand �2 we complete a square

�2(x, y) = [〈sxs y〉2 − 〈sx〉2〈s y〉2
] =

=
(〈
sxs y

〉2 − 2
〈
sxs y

〉 〈sx〉 〈s y〉+ 〈sx〉2
〈
s y
〉2)+

+ 2

(〈
sxs y

〉 〈sx〉 〈s y〉− 〈sx〉2
〈
s y
〉2) =

= GR(x, y) + 2
[
G2(x, y) − G3(x, y)

]
. (B.12)

We can rewrite Eq. (B.12) in the more convenient form �2−�1 = 2(G2−G3). Notice
finally from Eqs. (B.9, B.10) and Eq. (B.12) thatGL = GR−2(G2−G3) = 2�1−�2.

The relations between Gs and �s can be resumed as

GR = �1,

GL = 2�1 − �2,

2 (G2 − G3) = �2 − �1 = GR − GL.

(B.13)

The definitions (B.9, B.10), valid at equilibrium, were used in [BJ14b] in an out-
of-equilibrium context, for lattices of size L = 80. In that work it had been noticed
that the replicon is the only correlator that carries a significant signal.

Also in the present work we measured both signals, and we can confirm that the
same phenomenology is observed in completely thermalised systems. In Fig. B.1

5In the effective field theory the longitudinal (GL ) and anomalous (GA ) propagators are degener-
ated. GR is the replicon propagator.
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Fig. B.1 Replicon and
longitudinal susceptibilities
as a function of T in our
equilibrium simulations, for
the fields h = 0.1, 0.2 in our
largest lattice sizes (L = 32).
Just as in [BJ14b] the signal
carried by the longitudinal
propagator is much smaller
than that of the replicon
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we plot both the replicon susceptibility χR and the longitudinal susceptibility χL, at
h = 0.1, 0.2. The figure is qualitatively very similar to Fig. 13 of [BJ14b], where it
is shown that χR carries a significant signal, while χL is very close to zero.

B.2.1 The Effective Anomalous Dimension in the Spin-Glass
Phase

The value of the effective anomalous exponent ηeff (Sect. 2.10) in the deep spin-glass
phase can be predicted by using the fact that GR is dominant with respect to GL.

In fact, in a RSB situation the overlap q is defined over a finite range, so the
overlap’s variance σ 2

q = E(q2) − E(q)2 is of order one:

RSB ⇒ σ 2
q ∼ 1. (B.14)

http://dx.doi.org/10.1007/978-3-319-41231-3_2
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Now, on general grounds (see for instance [Fis91]) we can expect

[
E(q2) − E(q)2

] ∼ 〈q2〉 − 〈q〉2, (B.15)

and remark that the r.h.s. is �̂2(0)/N , the zero-moment Fourier transform of �2

[defined in (B.2)].6 We have then that in RSB conditions

�̂2(0) ∼ Nσ 2
q

RSB∼ N . (B.16)

�̂2 can be related to the replicon and longitudinal susceptibilities through (B.13),
that imply that �̂2(0) = 2χR + χL. Now, in the beginning of this section we found
out empirically that the longitudinal susceptibility is subdominant with respect to the
replicon channel (Fig. B.1), so in the large-volume limit, in the presence of RSB, the
replicon susceptibility scales like the volume:

RSB ⇒ χR ∼ N . (B.17)

Let us recall (2.19) and impose the just-found implication. We have then

2D RSB= χR,2L

χR,L
≡ 22−ηeff , (B.18)

therefore in the spin-glass phase we would have ηeff = −1.

B.3 Measuring the Propagators with Multi-spin Coding

We now write the correlators in a way that is useful for multi-spin coding (MSC),
and then we show explicitly how MSC coding was done on these quantities.

B.3.1 Correlators as Simple Functions of Simple Fields

A simple way to construct unbiased quantities is to define them as functions of fields
of differences. With four replicas we can define

X1(x) = (sa
x − sb

x)(s
c
x − sd

x),

X2(x) = sa
xs

b
x − sc

xs
d
x .

(B.19)

6The correlation functions G(x, y) and �(x, y) are averaged over the disorder. Once this average
is performed we can integrate out one of the two spatial dependencies and write them as G(r) and
�(r). There is no ambiguity in this notation: when these function are written as depending on two
parameters, it is the two positions x and y, when there is only one parameter it is r = x − y.

http://dx.doi.org/10.1007/978-3-319-41231-3_2
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These are the quantities we actually measure, we want to relate them with the corre-
lation functions GR and GL (Eqs. B.9, B.10).

Expanding the X1 field correlator we get

〈X1(x)X1( y)〉 = 4
〈
sa
xs

c
xs

a
ys

c
y

〉− 8
〈
sa
xs

c
xs

a
ys

d
y

〉+ 4
〈
sa
xs

c
xs

b
ys

d
y

〉
. (B.20)

On the other side rewriting the replicon propagator GR as a function of four replicas
yields

GR(x, y) = 〈sa
xs

a
ys

b
xs

b
y

〉− 2
〈
sa
xs

a
ys

b
xs

c
y

〉+ 〈sa
xs

a
ys

c
xs

d
y

〉
, (B.21)

so

GR(x, y) = 1

4
〈X1(x)X1( y)〉. (B.22)

Equivalently, an expansion of the X2 field correlator returns

〈X2(x)X2( y)〉 = 〈sa
xs

b
xs

a
ys

b
y

〉− 〈sa
xs

b
xs

c
ys

d
y

〉− 〈sc
xs

d
xs

a
ys

b
y

〉+ 〈sc
xs

d
xs

c
ys

d
y

〉 =
= 2

(〈
sxs y

〉2 − 〈sx〉2
〈
s y
〉2)

. (B.23)

By averaging it over the disorder we can relate it to the non-connected correlators of
Eqs. (B.6, B.7, B.8),

1

2
〈X2(x)X2( y)〉 = G1(x, y) − G3(x, y) = (B.24)

= 2GR(x, y) − GL(x, y), (B.25)

where for the second relation we used Eq. (B.13). The expression of GL in terms of
the fields Xi becomes

GL(x, y) = 1

2
〈X1(x)X1( y)〉 − 1

2
〈X2(x)X2( y)〉. (B.26)

Since it is possible to construct the fields Xi with three independent permutations of
the replicas (X abcd

i , X acbd
i and X adbc

i ), we compute correlators starting from each of
those permutations and then average to reduce the fluctuations.

B.3.2 Plane Correlators

Since we average over the disorder, the replicon and longitudinal correlation functions
can be rewritten as a function of the distance vector r . We concentrate on the GR(r)
because it carries the most signal and it is the one we used in our analyses. It is
expressed as
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GR(r) = 1

4

∑
x

〈X1(x)X1(x + r)〉. (B.27)

For the convolution theorem, analogously as we did in Eq. (1.42), we can write its
Fourier transform as

ĜR(k) = N

4

〈
|X̂1(k)X̂1(−k)|2

〉
, (B.28)

where, for k = (k, 0, 0),

X̂1(k) = 1

N

L∑



eik
P(
), (B.29)

and P(
) is the field averaged over a plane with x1 = 


P(
) =
∑
y,z

X1(
, y, z). (B.30)

Clearly, one can choose any plane orientation, though some are easier to code than
others. In our analyses we chose planes orthogonal to the vectors of the euclidean
basis and to the diagonals of the lattice [vectors of the type (1, 1, 0) and (1, 1, 1)].

The computationally demanding part of the computation of GR(r) consists in
creating the plane fields P for all the samples and replica choices. Once we have
those, the remaining operations are of order L and are quickly performed. In the
next section we show how it was possible to speed up this problematic part of the
analysis.

B.3.3 Multi-spin Coding

We present now MSC [Jac81] as an extremely fast technique to be able to calculate the
elementary bricks through which we can construct our correlators. We will show how
to use MSC to extract the plane sums

∑
x∈plane X1(x) from the configurations. Once

they are calculated for all the planes of each direction (for example the directions can
be x, y, z and the single planes are the L possible plains one can construct along each
direction), the core of the arithmetic operations is done, and correlation functions
are constructed quickly.

In a MC simulation on Ising spins, the naïve approach is to store the information
of each spin with an integer variable. This results in a large waste of memory, since
an integer number of nb bits could store information for nb spins at a time. Since a
bit assumes the values b = 0, 1, the spin’s value is s = 1 − 2b. If instead of using
an integer for a single spin we use it for nb spins, not only do we gain in memory,
but also in speed. In fact, operations on the spins are highly parallelizable, so if one

http://dx.doi.org/10.1007/978-3-319-41231-3_1
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performs bitwise operations on the integers storing the spins, he can ideally gain a
performance factor of nb. This is the idea of multispin coding.

Clearly this technique presents a long series of caveats and complications, since
only bitwise operations are allowed. Storing binary magnitudes such as spins is easy,
but updating them in a MC simulations is non trivial, since the energy barriers can
assume several values, and also it is not possible to use the same random number to
update spins of the same lattice.

Storing the lattices The easiest way to parallelize is to treat groups of nb samples at
a time, assigning to an nb-bit integer, that we call a word, the value of the spin sx (or
bx , if we want to talk in terms of bits) for each of the samples. The bits of the word
ua
x , indicating site x and replica ‘a’ will be

ua
x = [ba,1

x , ba,2
x , . . . , ba,nb

x ], (B.31)

where we labelled with an extra superscript the different samples (i.e. bits). To store
the full configuration of the nb samples we need 4N words: a word per site per
replica.

The words ua
x are stored in variables of type MYWORD, where MYWORD is usually

an nb-bit integer. In this work we used nb = 128. In our C code we use triple arrays
to store the configurations, so the full configurations are stored in arrays of the type
MYWORD u[NT] [NR] [N]; where NT is the number of measurements Nm we
use (recall Sect. 2.2.2) and NR is the number of replicas, and N is the number of spins
N in a single lattice.

If Nsamples is a multiple of nb the method is then fully optimized, otherwise it is
enough to discard a number of bits from the last group of samples.

B.3.4 Replicon correlator with MSC

We will not face the task of explaining how to perform a MSC simulation, that is
already done in literature, for example in [Jac81, Seo13]. We will instead focus on
how we multi-spin coded the analysis of the correlation function GR (GL is similar).

We already described in Sect. B.3.1 how it is possible to obtainGR andGL from the
fields X1 and X2 [Eq. (B.19)], that are simple enough to allow for a MSC computation:
The field X1 takes only the values −4, 0, 4, while X2 takes −2, 0, 2, so they can be
stored with two bytes each (per site per sample). We want to use MSC to construct
the plane average P(
) of X1 and X2, that is the most computationally demanding
part of the analyses.

At the beginning of the MSC computation we have 4 replicas ua
x, u

b
x, u

c
x, u

d
x with

which to construct X1(x) (for GR we do not need X2).7

The MSC operations have to be iterated over all the sites. Once the loop over the
sites is finished the per-site analysis is over, global quantities are created and the

7We do it with the three independent permutations of the replicas X abcd
1 (x), X acbd

1 (x) and X adbc
1 (x).

http://dx.doi.org/10.1007/978-3-319-41231-3_2
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MSC part is finished. The loop over the sites is the bulk of MSC, where we compute
nb per-site observables at a time through bitwise operations. In C the loops appears
as (along with some variable declaration)

The first step is calculating the overlaps between couples of replicas. The XOR
logic gate (∧ in C) between two bits returns 1 if they are different, and 0 if they
are the same. It can be used to represent the overlap between two spins. Calling
bab
x = ba

x ∧ bb
x the value of the bit representing the overlap q(ab)

x , will be

q(ab)
x =

{
+1, if bab

x = 0

−1, if bab
x = 1

. (B.32)



188 Appendix B: Four-Replica Correlators

Calling _my_xor(out,in1,in2) a function (or macro) that returns as out the
bitwise XOR between in1 and in2, the code continues as

For the fields X1 the calculation is more involved, because we need to use 2 bits.
Among the several possibilities, we decide to use the two necessary bits indepen-
dently. One bit stores the positive values, and the other stores the negative values.
So, if the two are the same, the value of the variable is zero, otherwise it is +1 or −1
depending on which of the two is non-zero.

The difference between two spins sa
x − sb

x can assume the values −2, 0, 2. It is
zero if the are the same, i.e. if their overlap is equal to qab

x = 1 [and bab
x = 0, for

Eq. (B.32)]. Taking the example of the field X abcd
1 , if either bab

x = 0 or bcd
x = 0, then

the whole product is zero. For the field X abcd
1 to be non zero we need qab

x = qcd
x = −1

[bab
x = bcd

x = 1].
The AND gate (& in C), returns a 0 unless both input bits are 1, so X abcd

1 �= 0 if
and only if bab

x & bcd
x = 1. In that case we have to understand what sign it assumes.

Given sa
x − sb

x �= 0, if sa
x = 1 then sa

x − sb
x = 2, and if sa

x = −1 then sa
x − sb

x = −2.
The same holds for sc

x − sd
x . So, the product between the aforementioned differences,

X abcd
1 , is inferable by comparing sa

x with sc
x

sign(X abcd
1 ) =

{
+, if qac

x = +1 (bac
x = 0)

−, if qac
x = −1 (bac

x = 1).
(B.33)

To represent this with bitwise operations first we calculate the auxiliary value temp.
Having temp=1 is a necessary condition for a positive X abcd

1 , so (temp AND bac) is
1 if and only if X abcd

1 = 1. This means that we can store the bit (temp AND bac) for
the negative values of X1. Equivalently, for the positive values we can use a NAND
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[NOT AND, ∼& in C (the simple not is ∼)] gate. The following commented code
clarifies the procedure8

8The code contains the logic-gate macros for the AND gate, _my_and(out,in1,in2), and for
the NAND, _my_andnot(out,in1,in2). In both cases the two words in1 and in2 are the
input, and out is the output.
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Once the MSC loop is finished we have 3N words (one per site per permutation)
each containing the site-dependent field X abcd

1 (x) for the set of nb samples. The final
step is to transform this in a sample-dependent quantity over which it is possible to
perform normal arithmetic operations. Practically, we want to transform the bits in
numbers.

To this objective we call a generic function suma_booleana(buffer,
size, n_bits, obs) that takes the buffer where the N nb-words are stored,
and yields an array of nb elements—one per sample—each containing information
on the variable over the whole system. In other words we pass from N words each
describing a site, to nb values, each describing a sample. This can be done through
O(log(N )) operations.

In the following listing we show how this was done with the overlap, with the
array q[6][NUMBITS], defined in listing B.1, that contains the count of how many
overlaps qx = −1 there are in each system, for the six combinations of the replicas
and the nb samples. In general this function will need as extra input also the size of
the lattice size=N , and the number of bits n_bits that are necessary to construct
that number (usually n_bits= log2 N ).



Appendix B: Four-Replica Correlators 191

Regarding the correlation functions the situation is slightly more complicated.
We want to average the field X1 not over the whole lattice, but over specific planes,
in order to be able to compute the correlation at distance r . We define NPLANES
planes, along the directions we want to average over (privileged directions are easier
to code), and loop over them. For each direction we make a loop over the distances,
and for each distance we perform the following operations:

(A) The first step to average X1 over the plane is to create a buffer with only the sites
regarding that plane. This is done for the 3 permutations of the replica indices.
For each permutation we have the positive- and the negative-value buffer, that
makes 6 buffers in total.

(B) We expand each of the six buffers with sum_booleana, this time over an
L ∗ L-dimensional space. We store those data, regarding a single r of a single
direction, in 6 temporal variables temporal (declared in listing B.1).

(C) We store each plane with an array sumplane (declared in listing B.1) that
depends on the parameters of all the nested loops: plane direction o, plane posi-
tion r, replica permutation k, and sampleibit. The storage has to be performed
through the operation temporal[2*k] [ibit]-temporal[2*k+1]
[ibit], because temporal[2*k] [ibit] stores the number of sites with
X1(x) = 1, and temporal[2*k+1] [ibit] has information on the num-
ber of sites with X1(x) = −1, so the full sum

∑
x∈plane X1(x) is obtained by

subtracting one from the other.
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The C code is as follows

At this point the analysis can procede in the traditional way, by computing the
plane correlators with sumplane.
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At the end of the full procedure we will have to proceed with the correct normal-
ization of the correlators, taking in account for example that the X1 we calculated is
a factor 4 smaller than its actual value.



Appendix C
Technical Details on the Creation of Quantiles

To grant the reproducibility of our results in Chap. 2, we give details on how we
proceeded in the labelling of the observables with the conditioning variate (CV), and
over the definition of the quantiles. Section C.1 is dedicated to the construction of the
pdf of the CV and Sect. C.2 to that of the quantiles. In Sect. C.3 we show that by using
two-replica instead of four-replica correlation functions the quantile description give
a similar result, with the first quantiles do not show signs of scale invariance, but the
ξ/L and R12 related to the median do suggest a phase transition.

C.1 Creating the P(q̂)

As already explained in Sect. 2.2 the analysis we conduct uses instantaneous reali-
sations of the observables, instead of the average over the equilibrium regime. This
is because computing P(q̂) properly requires as many instances of the overlap as
possible.

Operatively, we discard the first half of each simulation from the measurements
because out of equilibrium. We divide the second half of the simulation time-series
in 16 blocks, and for the 4 replicas we save the final configuration of each block.
This gives us 164 configurations over which we can potentially compute overlaps for
a single sample. Since it is not feasible to make measurements over the 164 times
per sample, for Nt times we pick 4 random numbers between 1 and 16 to create
an instant measure. This way we increase our statistics of a factor Nt , obtaining
Nm = Nsamples(L , T, h)×Nt measures for each triplet (L , T, h). We used Nt = 1000.

With the 4 replicas it is possible to compute 6 different overlaps qi (i = 1, . . . , 6),
and one instance of most observables, for example the replicon susceptibility χR.
Our ansatz is that χR and the overlaps have some type of correlation, so we label
χR with some function of the overlaps q̂(q1, . . . , q6), that we called conditioning
variate.

The random variable q̂ will have a probability distribution function P(q̂) that we
want to calculate numerically, in order to be able to work on the quantiles. Since
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our objective is not to individuate exactly the quantiles, but to compute observables
related to a particular quantile, we coarse grain the range of definition of the P(q̂).
This is done by making a binning of the P(q̂) [Eqs. (C.1, C.2) here below]. This
way, each conditioned expectation value of a generic observable, E(O|q̂), can be
calculated over a reasonable amount of measurements, and we have exactly one
conditioned expectation value for each bin of the P(q̂). Integrals such as those in
(2.4) and (2.7) are computed as sums over the histogram bins. Furthermore, the
described histogramming procedure has the advantage that errors can be calculated
in a very natural way with the JK method.

In order to have, as L increases, both a growing number of bins, and of points
per bin, we choose bins of width �q̂ = 1/

√
aV . We add the restriction of having

at least 150 bins, in order to be able to define the quantiles properly (with large bins
it could happen that a single bin contain more than 10 % of the pdf, and we want
to avoid the eventuality of two quantiles in the same bin). We verified that there is
no appreciable difference in the results between a = 1, 2, 4. Larger a implies a too
large error, because the bins are too small, while with smaller a the bins are too few.
The results we show throughout this thesis have a = 2.

To compute the conditional expectation values defined in Sect. 2.4 we use the
following estimators:

E(O|q̂ = c) ≈
1

Nm

∑Nm
i OiXc(q̂i )

1
Nm

∑Nm
i Xc(q̂i )

, (C.1)

P(q̂) ≈ 1

Nm

Nm∑
i

Xc=q̂(q̂i ), (C.2)

where with the symbol “≈” we stress that the quantity is an estimator that converges
to the exact value only in the limit of an infinite number of measurements Nm. Xc is
the characteristic function defined in Eq. (2.3).

C.2 Defining the Quantiles

As stated in Sect. 2.5, the quantiles are the points that separate definite areas under
P(q̂). Therefore, the i th quantile q̃i is defined by means of the cumulative distribution
X (q̂) of P(q̂), via the implicit relation

X (q̃i ) =
q̃i∫

−1

dq̂ P(q̂) = i

10
. (C.3)

Since this is a continuous relation, and our binning is discrete, it is most probable that
the quantile fall between two neighbouring bins. To evaluate the observables right at
the position of the quantile, we make linear interpolations between the two bins.

http://dx.doi.org/10.1007/978-3-319-41231-3_2
http://dx.doi.org/10.1007/978-3-319-41231-3_2
http://dx.doi.org/10.1007/978-3-319-41231-3_2
http://dx.doi.org/10.1007/978-3-319-41231-3_2
http://dx.doi.org/10.1007/978-3-319-41231-3_2
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Let us call i−bin(i+bin) the bin just under (over) quantile i . Observable Oi at quantile
i will be a linear combination of the values it assumes at i−bin and i+bin:

Oi = pOi−bin
+ (1 − p)Oi+bin

, (C.4)

where the interpretation of the indices is straightforward, and 0 ≤ p ≤ 1 is the
interpolation weight

p = X (q̃i ) − X (q̂i+bin
)

X (q̂i−bin
) − X (q̂i+bin

)
. (C.5)

C.3 Quantiles with 2-Replica Correlators

To have well behaving (connected) correlators in the presence of a magnetic field
we needed to use 4 replicas for each instance of them. As explained in Sects. 2.4 and
2.5, since the overlap is a 2-replica observable, we had to choose a function of the 6
overlaps in order to have a one-to-one correspondence between conditioning variates
and the correlators. The functions we tried out were the minimum, the maximum,
the median and the average of the 6 overlaps.

Now, it is legitimate to ask oneself if the fluctuations we observed would also
be visible having q as conditioning variate. Although this is not possible with the
replicon correlation function GR, we can renounce to have a connected correlation
function, and study the fluctuations of the 2-replica point-to-plane correlator

Gnc
2 (r) =

∑
y,z

E( q(0,0,0) q(r,y,z)), (C.6)

which allows us to have q as a conditioning variate. Gnc
2 (r) is the total correlation

between the origin, (0, 0, 0), and the plane x = r . Of course, one could equivalently
consider the planes y = r or z = r . One can displace freely the origin, as well. We
average over all these 3V choices.

At this point, it is possible to compare with previous work that studied fluctuations
with 2-replica correlators [Par12a]. Furthermore, we can construct the pseudocon-
nected correlation function

Gc
2(r) = Gnc

2 (r) − Gnc
2 (L/2)

Gnc
2 (0) − Gnc

2 (L/2)
, (C.7)

which forcedly is one for r = 0, and goes to zero for r = L/2. In Fig. C.1 we show
that the same dramatic fluctuations encountered with GR (Fig. 2.3) are also present
here.

The overall results, Fig. C.2, are consistent with the picture we draw in Sect. 2.9.
On the one hand, the standard data average hides all signs of a phase transition. On
the other hand, the fifth quantile displays signs of scale invariance.

http://dx.doi.org/10.1007/978-3-319-41231-3_2
http://dx.doi.org/10.1007/978-3-319-41231-3_2
http://dx.doi.org/10.1007/978-3-319-41231-3_2
http://dx.doi.org/10.1007/978-3-319-41231-3_2
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Fig. C.1 Same as Fig. 2.3, but for the 2-replica connected correlation function Gc
2(r) (C.7). We

show L = 32 data from h = 0.2, T = 0.805128. Note that Gc
2(r) is bound to be 1 at r = 0, and 0

at r = L/2, so the fluctuations between different quantiles are even stronger than they may appear

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 0.4  0.6  0.8  1  1.2  1.4  1.6  1.8

R
12

T

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 0.4  0.6  0.8  1  1.2  1.4  1.6  1.8

R
12

,5

T

L = 32
L = 24
L = 16
L = 12
L =   8
L =   6

Fig. C.2 The R12 cumulant computed from the two-replica correlation function (C.6) rather than
from four replicas. The field is h = 0.2. On the left side we show the average behavior, and on the
right, the 5th quantile, with the plain overlap q (1.27) as conditioning variate
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Appendix D
Decomposing Conditional Expectations

We want to derive here some useful relations pertinent to the conditioned expectations
of Chap. 2 that can be used to have a quantitative criterion for the conditioning variate
(Sect. 2.4.3) and to check that the statistical analysis code is reliable.

D.1 Variance

In Sect. 2.4.3 we used the integral rule

var(O) = E
([O − E(O)

]2) =
1∫

−1

dq̂ P(q̂)
{

var(O|q̂) + [E(O) − E(O|q̂)
]2}

,

(D.1)

var(O| q̂) = E
([O − E(O|q̂)

]2 | q̂
)

, (D.2)

to choose the best CV. The P(q̂) = E[Xq̂ ], when computed numerically, is actually
an empirical probability over the whole set of Nm measurements,

P(q̂) ≈ h(q̂) =
∑Nm

i Xq̂i (q̂)∫ 1
−1 dq̂

∑Nm
i Xq̂i (q̂)

, (D.3)

where the i labels the measurements, and q̂i the value of the CV for measurement i .
Relation (D.1) is easily shown to be true by applying Eq. (2.4) to the variance of

O, var(O) and summing zero to it:

E
([O − E(O)

]2) =

=
1∫

−1

dq̂ P(q̂)E
([O − E(O)

]2∣∣∣ q̂) =
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=
1∫

−1

dq̂ P(q̂)
{
E
(
O2|q̂

)
+ E(O)2 − 2E(O)E(O| q̂) +

[
E(O| q̂)2 − E(O| q̂)2

]}
=

=
1∫

−1

dq̂ P(q̂)
{

var(O| q̂) + [E(O) − E(O|q̂)
]2}

. (D.4)

D.2 Higher Moments

The same procedure can be used to find a relation for higher moments. The skewness
of observable O is

S(O) = E
[[O − E(O)

]3] =
1∫

−1

dq̂ P(q̂)E
([O − E(O)

]3| q̂) . (D.5)

To simplify the notation let us write

Ê(O) = E(O| q̂),

Ŝ(O) = S(O| q̂) = E
([O − E(O| q̂)

]3| q̂) , (D.6)

so, opening the cube,

S(O) =

=
1∫

−1

dq̂ P(q̂)
{
Ê
(
O3 − E(O)3 − 3O2E(O) + 3OE(O)2

)}
=

=
1∫

−1

dq̂ P(q̂)
{[

Ê
(
O3
)

+ 2Ê(O)3 − 3Ê
(
O2
)
Ê(O)

]
+

−E(O)3 + 3Ê
(
O2 Ê(O) + 3Ê

(
O2
)
E(O) − 3Ê

(
O2
)
E(O) − 2Ê(O)3

)}
=,
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the term in square brackets is equal to Ŝ(O)

=
1∫

−1

dq̂ P(q̂)
{

Ŝ(O) + 3Ê
(
O2
) [

Ê(O) − E(O)
]

+ Ê(O)3 − Ê(O)3 − E(O)3 +

−3Ê(O)2E(O) + 3Ê(O)E(O)2 − 2Ê(O)3 + 3Ê(O)2E(O)
}

=

=
1∫

−1

dq̂ P(q̂)

{
Ŝ(O) + 3Ê

(
O2
) [

Ê(O) − E(O)
]

+
[
Ê(O) − E(O)

]3 +

−3Ê(O)2
[
Ê(O) − E(O)

]}
=

=
1∫

−1

dq̂ P(q̂)

{
Ŝ(O) +

[
Ê(O) − E(O)

](
3 var(O| q̂) +

[
Ê(O) − E(O)

]2
)}

,

that can also be rewritten as

S(O) =
1∫

−1

dq̂ P(q̂)

{
Ŝ(O) + 3 var(O| q̂)

[
Ê(O) − E(O)

]
+
[
Ê(O) − E(O)

]3
}

.

(D.7)

Operatively, in our spin systems we define two types of skewness of the overlap,
depending on the replicas we use

S2(q) = E
[(
q(ab) − E(q)

)3]
, (D.8)

S3(q) = E
[(
q(ab) − E(q)

) (
q(ac) − E(q)

) (
q(bc) − E(q)

)]
. (D.9)

Applying Eq. (D.7) to S2(q) is straightforward, while for S3(q) we have to apply
some little modification specifying the replica

S3(q) =
1∫

−1

dq̂ P(q̂)
{
Ê
(
q(ab)q(ac)q(bc)

)
− E(q)Ê

(
q(ab)q(bc) + q(ac)q(bc) + q(ab)q(ac)

)

+E(q)2 Ê
(
q(ab) + q(ac) + q(bc)

)
− E(q)3

}
. (D.10)

The terms in Eq. D.10 can be easily computed in our analysis out of the four simulated
replicas
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Ê
(
q(ab)q(ac)q(bc)

) = 1

4

∑
α �=β �=γ

Ê
(
q(αβ)q(αγ )q(βγ )

)
, (D.11)

Ê
(
q(ab)q(bc)) = 1

12

∑
α �=β �=γ

Ê
(
q(αβ)q(βγ ) + q(αγ )q(βγ ) + q(αβ)q(αγ )

)
, (D.12)

Ê
(
q(ab)

) = 1

6

∑
α �=β

Ê
(
q(αβ)

)
, (D.13)

where the indices α, β, γ in the sums indicate the different replicas.

We give the same expression for the kurtosis K = E
[(
q(ab) − E(q)

)4]

K =
1∫

−1

dq̂ P(q̂)

{
K̂(q) +

[
Ê (q) − E(q)

]4 + 4 Ŝ(q)
[
Ê (q) − E(q)

]
+

+6 var(q|q̂)
[
Ê (q) − E(q)

]2
}

, (D.14)

where we introduced K̂(q) = Ê
([
q − Ê (q)

]4)
.

More in general, we find that for the nth moment Kn(O)

Kn(O) =
1∫

−1

dq̂ h(q̂)

n∑
i=0

(
n
i

)
Ki (O|q̂)

[
E(O) − E(O|q̂)

]n−i
, (D.15)

where we have to notice that K1(O|q̂) = 0.

D.3 Consistency Checks on the Correlation Functions

Since in our analyses we often measure both the correlation functionC(r) [Eq. 1.47)]
and its Fourier transform χ(k) [Eq. 1.48)], it is useful from a programming point
of view to have some constraints that tie one to the other. Our programs were quite
intricated, and these constraints, despite their easy derivation, revealed crucial to
keep the code under control.

Since C(r) = C(−r), and because of the periodic boundary conditions, when we
calculate correlation functions along an axis,C(r) = C(L−r), and Ĉ(k) = Ĉ(L−k).
Moreover, the wave numbers restrict to k = 2πn/L (n = 0, . . . , L − 1), so let us
label them with the integer index n, Ĉ(k(n)) = Ĉ(n).

These symmetries give us the chance to create simple constraints on the correlators
to check their consistency. The correlation function has to be expressable as anti
Fourier transform of the Ĉ(k) through

http://dx.doi.org/10.1007/978-3-319-41231-3_1
http://dx.doi.org/10.1007/978-3-319-41231-3_1
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C (r) = Ĉ (0) + 2
L/2−1∑
n=1

Ĉ(n) cos

(
2πn

L

)
+ Ĉ

(
L

2

)
. (D.16)

On the reverse way, we easily get basic constraints on the Ĉ(n) for some specific
value of n:

Ĉ (0) = C (0) + 2
L/2−1∑
r=1

C (r) + C

(
L

2

)
, (D.17)

Ĉ

(
L

2

)
= C (0) + 2

L/2−1∑
r=1

C (r) (−1)r + C

(
L

2

)
(−1)L/2 . (D.18)

We can also get a constraint for Ĉ(L/4),

Ĉ

(
L

4

)
= C (0) + 2

L/2−1∑
r=1

C (r) cos
(πr

2

)
+ C

(
L

2

)
cos

(
πL

4

)
,

and since r is an integer index and the cosines’ arguments are multiples of π/2, we
can reexpress it as

Ĉ

(
L

4

)
= C (0) + 2

L/2−1∑
r=1

C (r)
[
1 + (−1)r

]
(−1)r/2 + C

(
L

2

)
cos

(
πL

4

)
.

(D.19)
These tests were performed both on the average and on the per-quantile correlation
functions.



Appendix E
Managing the Errors

The observables O measured in the numerical experiments shown in this dissertation
suffer from two noises, one due to thermal fluctuations during a single run, and a
second one deriving from the disorder. Since we perform measurements at equilib-
rium, we can treat these measurements as independent identically distributed (i.i.d.)
random variables with two independent noises.

Given a a set of N measurements Oi , their expected value E(O) can be evaluated
through an estimator

Ẽ(O) = 1

N
N∑
i=1

Oi (E.1)

that for the central limit theorem is at a o(N−1/2) distance from e(O).
Nonlinear functions of the observables, f (O),9 can be estimated by evaluating

them over the estimator. This results in an estimator f (Ẽ(O)) that reproduces the
actual expected value f (E(O)) with a bias of order o(N−1) (see Sect. B.1). Since
this bias is smaller than the statistical error we can neglect it.

We present in this appendix the jackknife and the bootstrap method, that are the two
resampling methods that were used to calculate error bars throughout this dissertation.
Since these techniques are treated extendedly in literature (see e.g. [You12]), we will
limit ourselves to a description of the methodology, with no pretention of originality.

E.1 The Jackknife Method

Being the central value of the linear functions of the observables f (O) estimated as
f (E(O)), the jackknife (JK) method provides us a way to compute an appropriate
uncertainty on it. The idea is to block the data in a way that suppresses fluctuations

9For simplicity of notation we treat functions of a single observable, but our statements are also
valid for functions of many observables.
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and time correlations. Given the full set B′ of measurements Oi (i = 1, . . . ,N ),
we group them in n blocks b j ( j = 0, . . . , n − 1) of size 
, so n
 = N , getting n
per-block estimators

Ẽ j (O) = 1





∑
i∈b j

Oi (E.2)

of the expectation value E(O). From those we contruct JK estimators by creating
new JK bins. Each JK bin b(JK)

j contains the full data except that regarding precisely

b j , so b(JK)
j = B′\b j . The JK estimators are

Ẽ (JK)
j (O) = 1

N − 


N−
∑
i /∈b j

Oi = 1

N − 


N−
∑
i∈b(JK)

j

Oi , (E.3)

and over each of them we evaluate the nonlinear function f (JK)
j = f

(
Ẽ (JK)

j (O)
)

.

The JK error estimate σ f is then

σ f =

√√√√√(n − 1)

⎡
⎣1

n

n−1∑
j=0

f (JK)
j

2 −
⎛
⎝1

n

n−1∑
j=0

f (JK)
j

⎞
⎠

2⎤
⎦. (E.4)

From a programming point of view, it is often useful to define n + 1 JK blocks,
using the the extra one, block n, to store the average, so in the following section we

will use the notation f (JK)
n = f

(
Ẽ (JK)
n (O)

)
= f

(
Ẽ(O)

)
.

E.1.1 Variations on the Jackknife Blocks to Reduce the
Numerical Rounding Errors

Reducing the rounding errors often reveals fundamental in numerical analyses, since
computers only have a finite number of decimal digits to perform arithmetical oper-
ations (we always used double precision).

Had we an infinite precision, we would calculate the variance of an observable O
as

var(O) = E(O2) − E(O)2. (E.5)

Yet, this approach is not always numerically stable. If the relative fluctuations are very
small there is a very large amount of significant digits between the most significant
digit of the averages and the most significant digit of the deviations. This gap may
be larger than the numerical precision, and could imply, for instance, that positive-
definite quantities such as (E.5) assume negative values. To suppress these rounding
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errors we exploit the translational invariance of the variance

E(O2) − E(O)2 = E
(
(O − c)2

)− E(O − c)2, ∀c ∈ R (E.6)

to enhance numerical stability with the convenient choice c = Ẽ(O). By measuring
quantities with this offset we contain the gap that causes the rounding errors.

Consequently, when we construct the JK blocks we do it in two steps. First we
calculate Ẽ(O), and only later the variance (or higher moments). With this election
Eq. (E.6) becomes

var(O) = E

((
O − Ẽ(O)

)2
)

− E

(
O − Ẽ(O)

)2

. (E.7)

This translates in a correction that we have to apply to every JK block but the nth
one, the one that stores the average, because in that case the second term is zero.

One can extend this reasonment to the r th moment of the observable. We show
it for the quantile-dependent moments of q, since they were widely used in our
programs. Let us use the contracted notations Ẽ j ≡ Ẽ j (q|q̂) when the estimator is
not followed by parentheses, and expand the polinomial

Ẽ j

([
q − Ẽ j (q|q̂)

]r) = (E.8)

=Ẽ j

([
(q − Ẽn) − (Ẽ j − Ẽn)

]r) = (E.9)

=
r∑

s=0

(
r

s

)
Ẽ j

(
(q − Ẽn)

r−s
)

(Ẽ j − Ẽn)
s . (E.10)

The first moments r = 2, 3, 4 are

Ẽ j

([
q − Ẽ j (q|q̂)

]2
)

=Ẽ j

([
q − Ẽn(q|q̂)

]2
)

−
(
Ẽ j (q|q̂) − Ẽn(q|q̂)

)2
,

(E.11)

Ẽ j

([
q − Ẽ j (q|q̂)

]3
)

=Ẽ j

([
q − Ẽn(q|q̂)

]3
)

− 2
(
Ẽ j (q|q̂) − Ẽn(q|q̂)

)3 +

− 3Ẽ j

(
(
[
q − Ẽn(q|q̂)

]2
)(

Ẽ j (q|q̂) − Ẽn(q|q̂)
)

,

(E.12)

Ẽ j

([
q − Ẽ j (q|q̂)

]4
)

=Ẽ j

([
q − Ẽn(q|q̂)

]4
)

− 3
(
Ẽ j (q|q̂) − Ẽn(q|q̂)

)4 +

− 4Ẽ j

(
(
[
q − Ẽn(q|q̂)

]3
)(

Ẽ j (q|q̂) − Ẽn(q|q̂)
)

+
(E.13)
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+ 6Ẽ j

(
(
[
q − Ẽn(q|q̂)

]2
)(

Ẽ j (q|q̂) − Ẽn(q|q̂)
)2

,

(E.14)

where it is clear that in the nth block all the terms of the right hand sides disappear
except the first.

E.2 The Bootstrap Method

The bootstrap method is a valuable tool to calculate mean and variance of an estimator,
as well as other moments (see [Efr94] for a detailed treatise). It comes in a wide variety
of variants, and we will give the procedure for a very simple one, that we have used
in the work here described. Similarly to the JK method, the estimator of the central
value is the one described in Eq. (E.1), and the procedure concerns the determination
of its uncertainty.

Given a population X0 of N measurements we resample it Nb times. Each resam-
pling consists in recreating a population of N elements, by picking them at random
from the initial population. This means that each element of X0 can appear several
times or not appear at all in the generic resampled population Xi (i = 1, . . . , Nb).

From each of the Nb populations we extract quantities x such as the average or
the median, and calculate their simple and quadratic averages

x (1)
i = 1

N
N∑
j∈Xi

x j ,

x (2)
i = 1

N
N∑
j∈Xi

x2
j .

The bootstrap error is then

σb =

√√√√√
(

Nb

Nb − 1

)⎡
⎣ 1

Nb

Nb∑
i=1

x (2) −
(

1

Nb

Nb∑
i=1

x (1)

)2
⎤
⎦. (E.15)

The magnitude of σb does not depend on the number of resamplings Nb, but to take
best advantage out of the method it is good that each data point be represented in the
resampling, so as a general rule we adopted Nb = 10N to be able to make a proper
resampling of the data set.



Appendix F
The Inherent Structures

This appendix refers mainly to Chap. 6 (Sect. F.1.1 refers to Chap. 4), and it is dedi-
cated to show how we found the inherent structures (ISs) (Sect. F.1), to the comparison
between ISs reached with different protocols (Sect. F.2), and to the derivation of the
Hessian matrix at the local minimum of the energy.

An IS is the configuration to which the system converges when we decide to
relax it. When we talk about relaxing, we mean to give the best satisfaction to all
the local constraints, that is moving towards the nearest energy minimum. Although
this concept seems well-defined, there is an ambiguity related to what one means by
nearest.

One could in principle define a distance, find all the minima of the energy, and
see which of those minimizes this distance. Yet, different definitions of a distance
can give different results, and especially in discrete models degeneracies are not
excluded by this definition.10 Moreover, we do not have a way to measure all the
local minima of the energy, and even if we had, it is not granted that the physical
evolution converge to a minimum defined this way.

More in general, since when we minimize the energy we are following a non-
equilibrium procedure, there is a component of arbitrariety on the protocol we use.
The mostly used way to minimize the energy in spin systems is through a quench, i.e.
with the Gauss-Seidel algorithm (Sect. F.1.1), that is local and minimizes maximally
the energy in each update, and can be seen as a zero-temperature MC. Nonetheless,
there is no solid reason to state that ISs found with one algorithm are more repre-
sentative than others, but there also is none to say that all the inherent structures are
equivalent. It has been shown in [BJ11] that the algorithm choice does imply some
differences on the average properties of the ISs, but we show in this appendix that
they are small enough to be neglected.

10Two minima can be equivalent candidates for being the IS of an excited configuration.
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F.1 Minimizing the Energy

We discuss two very simple algorithms of energy minimization that were used in this
thesis.

F.1.1 Gauss-Seidel

The most commonly used way to minimize the energy of a SG is the Gauss-Seidel
algorithm, that consists in successive local rearrangements of the spins that decrease
maximally the local energy. The spin update with Gauss-Seidel consists in aligning
each spin to its local field

�s Q
x = �hx

|�hx |
, �hx =

∑
‖x− y‖

Jx y�sx (F.1)

Energy minimizations with the Gauss-Seidel algorithm are often called quenches,
since they consist in lowering abruptly the energy (temperature) of the system. Since
sometimes in literature also variants of Gauss-Seidel have also been called quenches,
one also refers to Gauss-Seidel as a greedy quench.

The problem with Gauss-Seidel is that despite a very fast initial decrease of the
energy, after few steps its convergence to a local minimum becomes so slow that the
algorithm is not usable to obtain ISs on large lattices (see e.g. [Sok92], where it is
explained that in systems with continuous degrees of freedom convergence problems
arise).

F.1.2 Successive Overrelaxation

To overcome the convergence trouble of the quenches, we recur to the successive over-
relaxation (SOR), that consists in an interpolation, through a parameter �, between a
greedy quench with the Gauss-Seidel algorithm, and the microcanonical OR update
shown in Appendix A.1.

We propose sequential single-flip updates with the rule

�s SOR
x = �hx + ��s OR

x

||�hx + ��s OR
x || . (F.2)

The limit � = 0 corresponds to a direct quench that notoriously presents convergence
problems. On the other side, with � = ∞ the energy does not decrease.

It is shown in [BJ11] that the optimal value of � in terms of convergence speed
is � ≈ 300.
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F.2 Testing the Dependency on T and �

In Chap. 6 we used SOR with � = 300 because the Gauss-Seidel algorithm, that is
recovered by setting � = 0, has strong convergence problems and it was not possible
to reach the ISs for the system sizes we needed. To validate the generality of our
results we compared the ISs reached with � = 300 and � = 1, at Hamp = 0 over a
wide range of temperatures. We took advantage, for this comparison, of the L = 48
configurations that were thermalized in [Fer09b], that go from TSG to 5

3TSG.
In Fig. F.1 we plot the energy eIS of the reached ISs, as a function of the temperature

T . We show ten random samples, each minimized with � = 1,300. Increasing �

the energy of the inherent structures decreases but this variation is smaller than the
dispersion between different samples. The energy of the ISs also decreases with
T , but this decrease too is smaller than the fluctuation between samples. Since the
dispersion on the energy is dominated by the disorder, rather than by � or T , we can
think of putting ourselves in the most convenient situation: T = ∞, that does not
require thermalization and � = 300, that yields the fastest minimization.

Also the spectrum of the dynamical matrix, to which a great attention is dedicated
in the whole Chap. 6, does not show relevant signs of dependency on either T of �,
as shown in Fig. F.2.
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Fig. F.1 Energy of the inherent structure as a function of temperature for 10 samples chosen at
random, for Hamp = 0. We use the same symbol for the same sample. ISs obtained with � = 300 are
in blue. Red represents � = 1. Sample-to-sample fluctuations are the largest source of dispersion,
compared with � and T

http://dx.doi.org/10.1007/978-3-319-41231-3_6
http://dx.doi.org/10.1007/978-3-319-41231-3_6


212 Appendix F: The Inherent Structures

 0
 0.02
 0.04
 0.06
 0.08

 0.1
 0.12
 0.14
 0.16
 0.18

 0.2

-2  0  2  4  6  8  10  12  14  16

g 
(λ

)

λ

SPECTRUM - Λ=1 

iβ = 0
iβ = 10
iβ = 20
iβ = 30
iβ = 40
iβ = 50
iβ = 60
iβ = 70
iβ = 78
iβ = 79

 0
 0.02
 0.04
 0.06
 0.08

 0.1
 0.12
 0.14
 0.16
 0.18

 0.2

-2  0  2  4  6  8  10  12  14  16

g 
(λ

)

λ

SPECTRUM

T = 0.12 - Λ=1
T = 0.12 - Λ=300

T = 0.19 - Λ=1
T = 0.19 - Λ=300

T = ∞ - Λ=1
T = ∞ - Λ=300

Fig. F.2 Spectrum ρ(λ) of the Hessian matrix calculated at the inherent structure for Hamp = 0.
Left ρ(λ) for different temperatures from T = 0.12 to T = ∞. Right Comparison of the spectrum
between � = 1 and λ = 300 at T = 0.12, 0.19,∞ vary �

F.3 Derivation ofM

In this section we derive the expression of the Hessian matrix M of the Hamiltonian
HRF (6.1) that we implemented in our programs. In terms of pionic perturbations,
recall (6.2), M would be defined as Mαβ

x y = ∂2HRF
∂πx,απ y,β

. An easy way to extract the
Hessian is to write HRF as perturbations around the IS and to pick only the second-
order terms.

To rewrite HRF as a function of the pionic perturbations, it is simpler to compute
separately the dot products

(�sx · �s y
)

and �hx · �sx . Including the ε factors into the
perturbation πx , the generic spin near the IS is expressed as �sx = �s (IS)

x

√
1 − �π2

x + �πx .
We can make a second-order expansion of the non-diagonal part of the Hamiltonian
by taking the first-order expansion of the square root

√
1 − �π2

x � 1 − �π2
x/2,

(�sx · �s y
) = (F.3)

=
(

�s (IS)
x

√
1 − �π2

x + �πx

)
·
(
�s( IS)
y

√
1 − �π2

y + �π y

)
=

=
√

1 − �π2
x

√
1 − �π2

y

(�s (IS)
x · �s (IS)

y

)+
√

1 − �π2
x

(�π y · �s (IS)
x

)+
+
√

1 − �π2
y

(�πx · �s (IS)
y

)+
(

�πx · �π y

)
=

=
(

1 − �π2
x

2

)(
1 − �π2

y

2

) (�s (IS)
x · �s (IS)

y

)+
(

1 − �π2
x

2

) (�π y · �s (IS)
y

)+

+
(

1 − �π2
y

2

) (�π y · �s (IS)
x

)+ (�πx · �π y
)+ o(| �π |3) �

� (�s (IS)
x · �s (IS)

y

)+ (�s (IS)
x · �π y

)+ (�s (IS)
y · �πx

)+ (F.4)

+ 1

2

[(−�π2
x − �π2

y

) (�s (IS)
x · �s (IS)

y

)+ 2�πx · �π y
]

.
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On the other hand the random-field term is

(�hx · �sx
)

= �hx ·
(

�s (IS)
x

√
1 − �π2

x + �πx

)
� (F.5)

� �hx ·
[
�s (IS)
x

(
1 − �π2

x

2

)
+ �πx

]
=
(�hx · �s (IS)

x

)
+
(�hx · �πx

)
− �π2

x

2

(�hx · �s (IS)
x

)
.

By inserting Eqs. (F.3, F.5) and taking only the second-order terms we obtain how
the Hessian matrix acts on the fields |π〉

1

2
〈 �πx |M

∣∣�π y
〉 = (F.6)

= − 1

2

∑
<x, y>

Jx, y
[(−�π2

x − �π2
y

) (�s (IS)
x · �s (IS)

y

)+ 2�πx · �π y
]+

N∑
x

�π2
x

2

(�hx · �s (IS)
x

)
=

=1

2

N∑
x

�π2
x

[
�s (IS)
x ·

(�h (IS)
x + �hx

)]
+ 1

2

∑
x

�πx ·
∑

y:|x− y|=1

Jx y �π y,

where we called �h (IS)
x the local field of the IS. The just-obtained expression represents

a sparse matrix with a matrix element Mx y that comfortably splits as Mx y =
Dx y + Nx y into a diagonal term Dx y and a nearest-neighbor one Nx y, with

Dx y = δx y

[
�s (IS)
x ·

(�h (IS)
x + �hx

)]
, (F.7)

Nx y = −
d∑

μ=−d

Jx yδx+êμ, y, (F.8)

where êμ is the unit vector towards one of the 2d neighbors.
M in the local reference frame The last step is to get an expression of the Hessian
matrix in the local reference frame, that includes the spin normalization constraint.

In the local reference frame the pions are written like �π = a1ê1,x +a2ê2,x because
they are perpendicular to the first vector of the basis, �s (IS)

x , and that is why we write
them in a two-dimensional representation as π̃ = (a1, a2) (see Sect. 6.2.2).

In this local basis, the matrix element acting on the pions is written as

�πxMx y �π y = (a1,x, a2,x)

(Mx y(ê1,x · ê1, y) Mx y(ê2,x · ê1, y)

Mx y(ê1,x · ê2, y) Mx y(ê2,x · ê2, y)

)(
a1, y

a2, y

)
, (F.9)

so in the 2N -dimensional reference M is expressed as

Mαβ
x y = Mx y

(
êα,x · êβ, y

)
, (F.10)
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and the elements of the diagonal and nearest-neighbor operators D and N become

Dαβ
x y = δx y δαβ

[
�s (IS)
x ·

(�h (IS)
x + �hx

)]
, (F.11)

N αβ
x y = −

d∑
μ=−d

Jx yδx+êμ, y
(
êα,x · êβ, y

)
. (F.12)

A consistency check A consistency and debugging check we could run with the
Hessian matrix is to control that the configurations were actually inherent struc-
tures, by verifying that for small perturbations of order ε the energy variations were
quadratic in ε

H − H(ε) = ε2

2
〈π |M |π〉 + o(ε3). (F.13)
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A
Anderson localization, see localization
Angell plot, 4
Anharmonicity, 140, 141, 150–156, 158
Anisotropy, 76–80, 82, 88, 92, 165

dipolar, 80
Dzyaloshinskii-Moriya, 77, 79
single-ion, 78
single-ion uniaxial, 33
weak, 77, 89

Annealed average, 9
Antiferromagnetism, 6
Arnoldi algorithm, 145, 151
Arpack, 145
Attraction basin, 104, 112
Autocorrelation time, see relaxation time
Avalanche, 115, 117, 118, 129

dynamics, see dynamics
initial conditions, 130–132

B
Bethe lattice, 141
Bias, see systematic errors
Block Hamiltonian, 28
Boltzmann

constant, 18
distribution, 18

Boson peak, 139–141, 147, 166

C
Cavity method, 15
Central limit theorem, 64
Chirality, 20, 76

experimental measurement, 76
Coalescence, 171–174

Coarse-graining, 27
Coherence length, see correlation length
Computing, see programming
Conditional expectation, 52–53
Configuration, 18
Correlation

arisal, 134
function, 21–26, 202

2-replica, 195, 197
4-replica, 24–25, 59, 179–193
connected, 179, 181
estimated, 180
Green, 149, 150
link, 23, 57, 58
longitudinal, 179–182, 184
plane, 22, 23, 51, 57, 58
point, 23
replicon, 179–182, 184–186, 197
tensorial, 23
truncation, 101
two-point, 22

length, 25–28, 33, 46, 49, 71, 76, 84, 93,
103, 104, 109, 111, see also xiL/L

eigenvector, 149–150
Green, see eigenvector correlation

length
soft spins, 115, 120–122, see also stabil-

ity correlation
stability, 133, 165, see also soft spins cor-

relation
Correlation function

connected, 24
replicon, 24

Correlator, see correlation function
Crackling noise, 115
Critical dimension

lower, 75, 99
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upper, 17, 27, 46, 99
Crossover, 33–35, 68, 69, 76, 77, 91, 93, 147,

167
Curie law, 6
Cutoff, 122

D
DAT, see de Almeida-Thouless
De Almeida-Thouless, 8, 10–11

transition, 11, 15, 17, 45–47, 49, 65–72,
99, 112, 164, 167

Debye, 139, 146, 147, 166
Density of states, 139, 142, 145–147, 158,

166, see also Hessian matrix spec-
trum

Debye, see Debye
Droplet picture, 16–17, 45, 71
Dynamical matrix, see Hessian matrix
Dynamics

aleatory, 131
greedy, 117, 129, 131, 132
reluctant, 131, 132

E
Energy, 103, 105, 109

barrier, 141, 151, 153, 156–158, 166
free, 14

free, 9, 28
landscape, 99, 101, 117, 139, 141, 153–

156, 158, 165
local, 210

Ergodicity breaking, 15
Errors, 83, 205–208

bootstrap, 208
correlated data, 84, 86
jackknife, 49, 84, 196, 205–208
rounding, 206
systematic, 179–180

Exponent
avalanche

ρ, 117, 122, 129, 131, 133
τ , 117, 122, 131, 133

correlation
δ, 120, 121, 134
γ , 120, 121, 134

critical, 26–27, 31, 32, 76, 85, 92
α, 27
β, 27
δ, 27, 76
η, 27, 31, 65, 68, 83, 85–87
η, effective, 69, 70, 179, 182–183
γ , 27, 31

ν, 26, 30, 31, 60, 77, 83, 85–87, 90
ω, 30, 85, 86, 88–90

dynamical
z, 93

pseudogap
θ , 117–122, 124, 133, 135–137

scaling
β, 117, 122
σ , 117, 122, 133

soft modes
α, 145–147
δ, 145–147, 158
γ , 145–147

Extraordinary Hall resistivity, 76
Extrapolation, 83

F
Ferromagnetism, 6
Finite-size effects, 64
Fixed point, 31–34, 76, 77, 91
Fokker-Planck, 133–137
Forcing, 143, 150–158

linear regime, 152
normalization, 151
procedure, 151
rearrangement, 154

Fractal dimension, 15–17
Frustration, 7, 10, 101, 119, 120, 136

G
Gap, 145–147, 158, 166
Gauss-Seidel, 210
Glass

electron, 115
fiber, 5
metallic, 5
phase, 3–6, 163, see also spin glass phase
spin, 115, see also spin glass
structural, 3–5, 46, 100, 115, 139, 140,

142
transition, 3–4, 140, 163, see also spin

glass transition
GPU, 164, 166, 171, see also programming

GPU
cluster, 75

Minotauro, 75, 81, 171, 174
Tianhe-1A, see Tianhe-1A

Greedy, see greedy dynamics
Green’s function, 149–150, see also Green

correlation length
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H
Hessian matrix, 141, 142, 144, 145, 150, 151

eigenvector, 147, 149
lowest eigenvalue, 145, 146
ρ(λ), see Hessian matrix spectrum
spectrum, 143, 145, 146, 148–150, 155,

212, see also density of states
cumulative, 145, 147
F(λ), see Hessian matrix spectrum

cumulative
Hopfield model, 6
Hysteresis, 116, 165

I
Infinite-range model, see p-spin model
Inherent structure, 100–112, 139, 141, 142,

144, 146, 150, 151, 155, 156, 158,
165, 209–212

Interpolation, 83
Ising model, 32
Isostaticity, 140

J
Jamming, 139, 140, 150
Janus

collaboration, 85
computer, 45–47, 71, 72, 164, 166

K
Kawamura scenario, 75–76, 78, 80, 87, 92

L
Large fluctuations, 49, 52
Local

basis, 144
field, 81, 101, 116, 170
minimum, see also inherent structure;

valley
perturbation vector, see pion
reference frame, 144
stability, 116–122, 125, 127, 131, 133–

137
distribution, 116, 118–121, 125, 127,

131, 133, 134, 136
Localization, 8, 139–141, 147–152, 158
Logarithmic data binning, 82

M
Marginal stability, 6, 115, 140, 141, 165

Metastable state, 99, 140, see also inherent
structure; local stability; valley

Method of the moments, 145, 146
Microcanonical wave, 170
Minotauro, see GPU cluster
Modes

Goldstone, 140, 141
harmonic, 139–158
instantaneous normal, 139
soft, 115, 139–158, 166

Monte Carlo, 18
elementary step, 47, 169, 174
heatbath, 81, 169, 170
Metropolis, 170
overrelaxation, 81, 169, 170, 210
parallel tempering, 45, 47, 48, 81, 84,

169, 170, 174
simulations, 47, 71, 81, 169
zero-temperature, 209

Multi-spin coding, 47, 185
overlaps, 187

N
Non-linear σ model, 144
Numerical simulations, 101, 124, 127, 130,

134, 142, 143, 145, 154, 185, 209–
212, see also Monte Carlo simula-
tions

parallel, 171

O
Onsager reaction term, 11
Overlap, 8, 19–21

average, 55, 56
chiral glass, 20, 76
distribution, 71, 104

sample-dependent, 54, 106
forcing, 156, 157
inherent structure

distribution, 142, 144
Ising, 19, 55, 65
link, 17, 20, 55, 56, 58, 107, 108, 110

distribution, sample-dependent, 107
Ising, 20

matrix, 9
maximum, 55, 56
median, 55, 56, 58, 71

distribution, 59, 61–63
distribution, not symmetrical, 61

minimum, 55, 56
scalar, 20, 156, 157
self, 20, 111
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spin glass, 20, 76
tensorial, 19, 101–112

self, 20
vector, 21

Overrelaxation, 210

P
Parisi ansatz, 11–16
Participation ratio, 147
Partition function, 9
Perturbation, see also pion; forcing
Phase

diagram, 34
paramagnetic, 6, 8
transition, 26, 29

second order, 26
Pinning, 141
Pion, 144–145, 150, 212–214
Polarized magnetization, 152
Programming

Arpack, see Arpack
C, 75, 186–193
CUDA, 75, 172, see also coalescence
GPU, 75, 81

multi, 82, 174
single, 82

MPI, 75, 172, 174
multi-spin coding, 186
parallel, 75, 185, see also tiling

Programming GPU, 171
Propagator, see correlation function
Protein folding, 5
Pseudogap, 115, 117
p-spin model, 5, 15

Q
Quantile, 57–68, 71, 195–198

finite-size effects, 62
operational definition, 196
test at h = 0, 59

Quench, 100, 101, see also Gauss-Seidel
average, 9
disorder, 7

R
R12, 22, 30, 32, 49, 50, 60, 65, 67, 68, 72,

195, 197, 198
quantile, 59

Random
anisotropy, see anisotropy
dynamics, see aleatory dynamics

energy model, 15
ferromagnet, 7
field, 140, 158
field Ising model, 10, 35
first order transition, 5
number generator, 175

congruential, 175
initialization, 175
Luescher, 176
Parisi-Rapuano, 175
test, 177

walk, 165
λ, 133, 134, 137
nunst , 129, 132, 136
return probability, 129

Rearrangement, 156, 157
first, 155

Register spilling, 171
Regla de suma, see sum rule
Relaxation time, 4, 46, 48, 53, 82, 93
Reluctant, see reluctant dynamics
Renormalization group, 76

flow, 31–35, 91
Replica, 9

equivalence, 12
real, 47
symmetry, 10, 13

ansatz, 10
breaking, 11
breaking, full, 12
breaking, scenario, 15–16, 45, 71

theory, 9–16, 117, 179
trick, 9

Replica symmetry breaking, 140
RG, see renormalization group
RKKY interaction, 6–7
RSB, see replica symmetry breaking

S
Scaling

corrections, 92
finite-size, 22, 29–31, 49, 50, 58, 71, 83,

85, 88, 92
quantile, 59
quotients’ method, 31, 68

hypothesis, 28
relations, 27, 31, 77, 87

hyper, 27
Widom, 28

Scattering
inelastic X-ray, 139
neutron, 139
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Raman, 139
Schwinger-Dyson relations, 177
s − d interaction, 6–7
Self averageness, 9
Self-correlation time, see relaxation time
Self-organized criticality, 115–137
Specific heat, 139
Spin

Heisenberg, 18, 33, 75–93, 139–158,
164, see also Heisenberg spin glass

Ising, 10, 18, 19, 24, 33, 45–72, 76, 78,
116–137, 164, 185, see also Ising spin
glass

wave, 6, 140
XY, 18, 33, 76, 78, see alsoXY spin glass

Spin-chirality
decoupling, see Kawamura scenario
recoupling, see Kawamura scenario

Spin glass, 5–6, 10
Edwards-Anderson, 8–10

Hamiltonian, 8, 100
in a field, 45–72
in a field, Hamiltonian, 47

Heisenberg, 7, 75, 141, 165, 166, see also
Heisenberg spin

Ising, 75, 164, see also Ising spin
phase, 6, 8, 179
Sherrington-Kirkpatrick, 10–15, 115–

137, 165
Hamiltonian, 10

theory, 7–17, 99, 140
transition, 26, 60, 66, 75, 76, 91, 92, 140
vector, 165
XY, see also XY spin

SQUID, 5
Stability

argument, 117
duplex network, 127
short-range, 125

multi-spin, 119
single-spin, 119
two-spin, 119

Successive overrelaxation, 142, 210
Sum rule, 199
Supercomputer, see Minotauro
Supercooled liquid, 139, see also structural

glass
Susceptibility, 27, 31, 71

anomalous, 181
chiral glass, 22, 77, 92
cusp, 6–8
longitudinal, 181–183, 195
quantile, 65, 66
replicon, 24, 55, 56, 66, 68, 182, 183, 195

conditioned, 56, 57

spin glass, 22, 77
wave-vector dependent, 22, 24

quantile, 59
Symmetry

O(3), 81, 140, 141, 158
O(m), 101
Z2, 61, 81

T
TAP approach, 11
Temperature chaos, 50
Thermalization, 18, 48–49, 71, 82, 164, 169,

see also Monte Carlo simulations
Thouless-Anderson-Palmer, see TAP

approach
Tianhe-1A, 75, 81, 164, 171
Tiling, 170–172
Transition in a field, see de Almeida-

Thouless
Two-level system, 6, 139–141, 155–156, 158

U
Ultrametricity, 14, 15
Universality, 31, 139–141

class, 26, 27, 32, 33, 46, 50, 68, 76–79,
88, 91, 92, 165
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