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Preface

The main novelty of this book is the consideration of chaos as an input for dif-
ferential and hybrid equations. More precisely, we insert chaos on the right-hand
side of the equations and investigate the results of perturbation. Moreover, we
investigate many possible consequences of the input–output analysis in systems
with many compartments. This is what makes our book on chaos unique among all
others.

Let us give some arguments toward the importance of the input–output analysis
of chaos for both theory and applications:

1. In the theory of dynamical systems, a large number of results use the input–
output analysis. For example, there are many theorems that can be loosely
formulated as follows: if a perturbation is periodic (bounded, almost periodic),
then there is a unique periodic (bounded, almost periodic) solution. Generally
speaking, our results can be formulated in the following way: if a perturbation is
chaotic, then there exists a chaos in the set of solutions. Thus, one can say that
our main proposal is to return investigation of chaos into the mainstream of
classical differential/difference equations theory and, consequently, a huge
number of rigorous mathematical methods, numerical instruments, and appli-
cations that rely on the input–output analysis will be involved for the investi-
gation of chaotic processes.

2. Despite the fact that many distinguished specialists in the chaos theory and
mathematics have been involved in the investigation, there are still many
challenging problems related to the origin of the chaos theory. For instance, we
do not have a rigorously approved chaos in Lorenz systems, Duffing equations,
and other systems. Moreover, there is no universal method to detect chaos in
multidimensional systems. Hopefully, the input–output analysis will give new
opportunities for the analyses of the basic models and help to unify the
knowledge of chaos. We believe that the exploitation of the mechanism in the
considered models can give mathematical clarity there.
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3. The input–output analysis can become a strong instrument in applications to
real-world problems through the modeling of chaos expansion. We hope that
unpredictability of weather, economical unpredictability, and irregularity as a
global phenomenon will be reflected in mathematical investigations more com-
prehensively through this machinery. This is true not only for atmospheric or
economic processes, but also for any large systems in biology, neural networks,
and computer sciences. Utilization of the input–output analysis in cryptography
and deciphering may also give effective results. The input–output analysis is very
popular, for instance, in mechanics, chemistry, biology, cryptography, etc.
Consequently, one can suppose that what we have suggested has to be realized
for real-world problems of various natures.

4. We describe the expansion of chaos on the basis of the input–output mechanism
using the concept of morphogenesis to emphasize that the expansion keeps the
geometrical properties of chaos. Furthermore, it is not surprising that the repli-
cation of chaos, introduced in the book, relates to concepts of science with broad
applications: self-organization, synergetics, chaos-order relations, thermo-
dynamics, biological patterns.

The book is attractive in the mathematical sense, since we have introduced
rigorous description of chaos for systems with continuous time for the first time.
This may give a push for the functional analysis of chaos to involve the operator
theory results, etc. Hopefully, our approach will give a basis for deeper compre-
hension and the possibility to unite different appearances of chaos. In this frame-
work, we also hope that the results can be developed for partial differential
equations, integro-differential equations, functional differential equations, evolution
systems, etc.

A part of the book is devoted to problems of economics. We have analyzed
chaos extension in economic models. Unpredictability in economics as sensitivity
in dynamical models is considered, and on that basis, global extension of unpre-
dictability is discussed.

The presence of chaos in neural networks is indispensable, and as applications of
our results, replication of chaos by neural networks is presented in a separate
chapter in this book.

We pay great attention to expansion of chaos through Lorenz models in mete-
orology. A special mathematical analysis has been made, since only dissipativeness
property of a system is used to prove the chaos presence in perturbed systems.

Entrainment of limit cycles by chaos is discovered numerically through specially
designed unidirectional coupling of two glow discharge-semiconductor systems.
The result demonstrates that the input–output machinery is working effectively for
partial differential equations. Chaotic control is through the external circuit equation
and governs the electrical potential on the boundary. The expandability of the
theory to collectives of glow discharge systems is discussed, and this increases the
potential of applications of the results.
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The content of the book is a good background for applications in mechanics,
biology, molecular biology, physiology, pharmacology, secure communications,
neural networks, and other real-world problems involving complex behavior of
models. Since chaos is present everywhere, we can say that our results are appli-
cable in any field, where differential and difference equations are utilized as models.

The authors would like to express their gratitude to those who contributed to the
preparation of this book, Zhanar Akhmetova and Ismail Rafatov for the joined
results, the Series Editor Prof. Albert Luo and Editor of HEP Liping Wang for their
interest in the monograph and patience during the publication of the book.

Ankara, Turkey Marat Akhmet
Atlanta, GA, USA Mehmet Onur Fen
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Chapter 1
Introduction

The theory of dynamical systems starts with H. Poincaré, who studied nonlinear
differential equations by introducing qualitative techniques to discuss the global
properties of solutions [1]. His discovery of the homoclinic orbits figures prominently
in the studies of chaotic dynamical systems. Poincaré first encountered the presence
of homoclinic orbits in the three-body problem of celestial mechanics [2]. A Poincaré
homoclinic orbit is an orbit of intersection of the stable and unstable manifolds of a
saddle periodic orbit. It is called structurally stable if the intersection is transverse,
and structurally unstable or a homoclinic tangency if the invariant manifolds are
tangent along the orbit [3]. In any neighborhood of a structurally stable Poincaré
homoclinic orbit, there exist nontrivial hyperbolic sets containing a countable number
of saddle periodic orbits and continuum of non-periodic Poisson stable orbits [3–5].
For this reason, the presence of a structurally stable Poincaré homoclinic orbit can
be considered as a criterion for the presence of complex dynamics [3].

The firstmathematically rigorous definition of chaos is introduced byLi andYorke
[6] for one-dimensional difference equations. According to [6], a continuousmap F :
J → J , where J ⊂ R is an interval, exhibits chaos if: (i) For every natural number
p, there exists a p−periodic point of F in J ; (ii) There is an uncountable set S ⊂ J
containing no periodic points such that for every s1, s2 ∈ S with s1 �= s2 we have
lim supk→∞

∣
∣Fk(s1) − Fk(s2)

∣
∣ > 0 and lim infk→∞

∣
∣Fk(s1) − Fk(s2)

∣
∣ = 0; (iii)

For every s ∈ S and periodic point σ ∈ J we have lim supk→∞
∣
∣Fk(s) − Fk(σ )

∣
∣ >

0. In the paper [6], it was proved that if a map on an interval has a point of period
three, then it is chaotic.

Generalizations of Li-Yorke chaos to high-dimensional difference equations were
provided in [7–10]. According toMarotto [10], if a repelling fixed point of a differen-
tiable map has an associated homoclinic orbit that is transversal in some sense, then
the map must exhibit chaotic behavior. More precisely, if a multidimensional differ-
entiable map has a snap-back repeller, then it is chaotic. In the paper [9], Marotto’s
Theorem was used to prove rigorously the existence of Li-Yorke chaos in a spa-
tiotemporal chaotic system. Furthermore, the notion of Li-Yorke sensitivity, which
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2 1 Introduction

links the Li-Yorke chaos with the notion of sensitivity, was studied in [7], and gen-
eralizations of Li-Yorke chaos to mappings in Banach spaces and complete metric
spaces were considered in [8].

Another mathematical definition of chaos for discrete-time dynamics was intro-
duced by Devaney [1]. It is mentioned in [1] that a map F : J → J , where J ⊂ R is
an interval, has sensitive dependence on initial conditions if there exists δ > 0 such
that for any x ∈ J and any neighborhood N of x there exists y ∈ J and a positive
integer k such that

∣
∣Fk(x) − Fk(y)

∣
∣ > δ.On the other hand, F is said to be topolog-

ically transitive if for any pair of open sets U, V ⊂ J there exists a positive integer
k such that Fk(U ) ∩ V �= ∅. According to Devaney, a map F : J → J is chaotic
on J if: (i) F has sensitive dependence on initial conditions; (ii) F is topologically
transitive; (iii) Periodic points of F are dense in J. In other words, a chaotic map
possesses three ingredients: unpredictability, indecomposability, and an element of
regularity.

Symbolic dynamics, whose earliest examples were constructed by Hadamard
[11] and Morse [12], is one of the oldest techniques for the study of chaos. Symbolic
dynamical systems are systemswhose phase space consists of one-sided or two-sided
infinite sequences of symbols chosen from a finite alphabet. Such dynamics arises
in a variety of situations such as in horseshoe maps and the logistic map. The set
of allowed sequences is invariant under the shift map, which is the most important
ingredient in symbolic dynamics [1, 13–17]. Moreover, it is known that the symbolic
dynamics admits the chaos in the sense of both Devaney and Li-Yorke [1, 18–21].

The Smale Horseshoe map is first studied by Smale [22] and it is an example of
a diffeomorphism which is structurally stable and possesses a chaotic invariant set
[1, 15, 17]. The horseshoe ariseswhenever one has transverse homoclinic orbits, as in
the case of the Duffing equation [23]. People used the symbolic dynamics to discover
chaos, but we suppose that it can serve as an “embryo” for the morphogenesis of
chaos.

From the mathematical point of view, chaotic systems are characterized by local
instability and uniform boundedness of the trajectories. Since local instability of
a linear system implies unboundedness of its solutions, chaotic system should be
necessarily nonlinear [24]. Chaos in dynamical systems is commonly associatedwith
the notion of a strange attractor, which is an attractive limit set with a complicated
structure of orbit behavior. This term was introduced by Ruelle and Takens [25] in
the sense where the word strange means the limit set has a fractal structure [3]. The
dynamics of chaotic systems are sensitive to small perturbations of initial conditions.
This means that if we take two close but different points in the phase space and follow
their evolution, then we see that the two phase trajectories starting from these points
eventually diverge [1, 26]. The sensitive dependence on the initial condition is used
both to stabilize the chaotic behavior in periodic orbits and to direct trajectories to a
desired state [27].

It was Lorenz [28] who discovered that the dynamics of an infinite-dimensional
system being reduced to three-dimensional equation can be next analyzed in its
chaotic appearances by application of the simple unimodal one-dimensional map.
Smale [22] explained that the geometry of the horseshoe map is underneath of the
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Van der Pol equation’s complex dynamics which was investigated by Cartwright and
Littlewood [29] and later by Levinson [30]. Nowadays, the Smale horseshoes with its
chaotic dynamics is one of the basic instruments when one tries to recognize a chaos
in a process. Guckenheimer and Williams [31] gave a geometric description of the
flow of Lorenz attractor to show the structural stability of codimension 2. In addition
to this, it was found out that the topology of the Lorenz attractor is considerably
more complicated than the topology of the horseshoe [23]. Moreover, Levi [32]
used a geometric approach for a simplified version of the Van der pol equation to
show existence of horseshoes embedded within the Van der Pol map and how the
horseshoes fit in the phase plane.

It is natural to discover a chaos [6, 10, 25, 28, 33–42] and proceed by producing
basic definitions and creating the theory.On the other hand, one can shape an irregular
process by inserting chaotic elements in a system which has regular dynamics (let
us say comprising an asymptotically stable equilibrium, a global attractor, etc.).
This approach to the problem also deserves consideration as it may allow for a
more rigorous treatment of the phenomenon, and helps develop new methods of
investigation. Our results are of this type.

In this book, we use the idea that chaos can be utilized as input in systems of
equations. To explain the input–output procedure realized in our book, let us introduce
examples of systems called as the base-system, the replicator, and the generator,
which will be intensively used in the manuscript. Consider the following system of
differential equations,

dz

dt
= B(z). (1.1)

The system (1.1) is called the base-system. We assume that the system admits a
regular property. For example, there is a globally asymptotically stable equilibrium
of (1.1). Next we apply to the system a perturbation, I (t), which will be called an
input and obtain the following system,

dy

dt
= B(y) + I (t), (1.2)

which will be called as the replicator.
Suppose that the input I admits a certain property, let us say, it is a bounded

function.We assume then that there exists a unique solution, y(t), of the last equation,
the replicator, with the same property of boundedness. This solution is considered
as an output. The process for obtaining the solution y(t) of the replicator system
by applying perturbation I (t) to the base-system (1.1) is called the input–output
mechanism, and sometimes we shall call it the machinery. It is known that for certain
base-systems, if the input is periodic, almost periodic, bounded, then there exists an
output, which is also periodic, almost periodic, bounded, respectively. In our book,
we consider inputs of the new nature: chaotic sets and chaotic functions. Themotions
which are in the chaotic attractor of the Lorenz system considered altogether provide
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Fig. 1.1 The input–output
mechanism

us an example of a chaotic set of functions. Any element of this set is considered as a
chaotic function. Both of these types of inputs will be used effectively. For example,
to prove rigorously, by verification of all ingredients, that there exists a certain type
of chaos generated by the input–output procedure, we use the concept of the chaotic
set. For simulations we shall use inputs in the form of chaotic functions. The diagram
in Fig. 1.1 illustrates the input–output procedure schematically. We have to say that
in the figure the input I can be a set of functions as well as a single function. The
same is true for the output, y(t).

The main sources of chaos in theory are difference and differential equations. For
this reason, we consider inputs which are solutions of some systems of differential
equations or discrete equations. These systems will be called generators in this book.

Thus, we can consider the following system of differential equations,

dx

dt
= G(x), (1.3)

and it is assumed that this system possesses chaos. We shall call this system a gen-
erator. If x(t) is a solution of the system from the chaotic attractor, that is, it is a
chaotic solution, then we notate I (t) = x(t) and use the function I (t) in Eq. (1.2).
Types of the Eqs. (1.1)–(1.3) considered as a base-system, replicator system, and a
generator system, respectively, can be varied in the future. For example, the systems
may be non-autonomous and an input may be involved non-linearly.

In this book, we have proved rigorously that the output possesses the same type
of chaos as the input if base-systems are with globally asymptotically stable equilib-
riums, with limit cycles and dissipative systems.

The term morphogenesis is used issuing from the sense of the words morph
meaning “form” and genesis meaning “creation.” This is similar to the idea such
that morphogenesis is used in fields such as urban studies [43], architecture [44],
mechanics [45], computer science [46], linguistics [47], and sociology [48, 49]. In the
present book, morphogenesis is understood in this weak sense, and themechanism of
the replication is simple. In discussion form,we consider inheritance of intermittency,
the double-scroll Chua’s attractor, and quasiperiodical motions as a possible skeleton
of a chaotic attractor. We use the concept of morphogenesis for two reasons. First of
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all, morphogenesis is convenient to describe how the input–output analysis works if
chaos is an input. Second, it provides information about structure of the chaos-output,
if one knows structure of the chaos-input. We give a full description of the chaos
expansion as morphogenesis, if base-systems are linear and with constant matrices
of coefficients. We make comparison of the main concept of our book with Turing’s
morphogenesis [50] and John vonNeumann automata [51], considering that this may
not be only a formal comparison, but will also give ideas for the chaos development
in the morphogenesis of Turing and for self-replicating machines.

We propose a rigorous identification method for replication of chaos from a prior
one to systemswith large dimensions. Extension of the formal properties and features
of a complex motion can be observed such that ingredients of chaos united as known
types of chaos, Devaney’s, Li-Yorke, and others. This is true for other appearances
of chaos: intermittency, structure of the chaotic attractor, its fractal dimension, form
of the bifurcation diagram, the spectra of Lyapunov exponents, etc.

In our theoretical results of chaos extension, we use coupled systems in which
the generator influences the replicator in a unidirectional way, that is, the generator
affects the behavior of the replicator, but not the converse. The possibility of making
use of more than one replicators and non-identical systems in the machinery is an
advantage of the procedure. On the other hand, contrary to the method that we
present, in the synchronization of chaotic systems, one does not consider the type
of the chaos that the master and slave systems admit. The problem that whether the
synchronization of systems implies the same type of chaos for both master and slave
has not been taken into account yet.

The concept of morphogenesis is considered carefully only in the second chapter
of the book, for systems with stable equilibrium, since for other base-systems the
discussion can be done very similarly. Another reason is that namely for systems
with stable equilibriums all the known ingredients of chaos are proper, when for
other types of base-systems the number of ingredients, which can be saved in the
machinery, gradually decreases. We shall discuss this phenomenon in the main text
of the book.

The significant theoretical meaning, in our opinion, can be given to the results on
entrainment of chaos. Entrainment is a very general concept and it has been used
in various fields of science. Mainly, the concept of entrainment is related to cyclic
motions. We understand the entrainment of chaos as the seizure of irregularity of
inputs by the vector field around the limit cycle such that the resultant vector field
of the replicator behaves chaotically in a certain region. In theoretical sense, the
analysis of chaos is more complex, since it requests the elaboration of the proof
of Andronov-Witt Theorem [52] on orbital stability of a limit cycle, as well as the
utilization of the theorem of Massera [53] for the existence of periodic solutions of
nonlinear systems.

Finally, we have found that the base-systems can be dissipative systems, which do
not necessarily possess a stable equilibrium or a limit cycle. This theoretical result
immediately increases the number of models. For example, Lorenz systems are of
these type of equations. In the same time, one has to say that by making the nature
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of attractors for base-systems more general and less obscure in their description
(from equilibriums to dissipative systems), we have lost some ingredients of chaos
for the resulting chaos-outputs. For example, in the last type of base-systems with
dissipativeness, we can not prove the transitivity feature. The same is true for chaos
on the basis of a limit cycle. Nevertheless, in these systems we have proved the
presence of sensitivity as well as the existence of infinitely many unstable periodic
solutions.

Taking into account that our results provide strong evidence of chaos expansion,
we become able to interpret them for real-world problems. In this book, we con-
sider models from mechanics and electronics by means of Duffing and Van der Pol
equations, and double-scroll Chua’s oscillator. Two subjects, economical models
and atmospheric dynamics, are discussed in Chaps. 7 and 9, respectively. For both
of them we provide a full range analysis based on our theoretical results. Doubtless,
the main keyword for these applications is the word chaos itself, since it has to be
interpreted as irregularity, which is a very natural feature for economic processes
as well as for the dynamics of the weather. In Chap.10 spatiotemporal chaos in
glow discharge-semiconductor systems is verified. Nevertheless, by our opinion, the
main ingredient of chaos that is important for the models is the sensitivity, since this
property reflects unpredictability for atmospheric dynamics and it is important for
economics, too. Thus, one can say that as a consequence of our theoretical results in
the theory of dynamical systems, we have made the first step in the globalization of
the unpredictability phenomenon for both economics and weather dynamics.

1.1 Synchronization of Chaotic Systems

One of the usage areas of master-slave systems is the study of synchronization of
chaotic systems [54–60]. In 1990, Pecora and Carroll [59] realized that two identi-
cal chaotic systems can be synchronized under appropriate unidirectional coupling
schemes. Consider the system

x ′ = G(x), (1.1.4)

as the master, where x ∈ R
d , such that the steady evolution of the system occurs in

a chaotic attractor. The dynamics of the slave system is governed by the equation

y′ = H(x, y). (1.1.5)

When the unidirectional drive is established, suppose that the right hand side of
Eq. (1.1.5) satisfies that

H(x, y) = G(x), (1.1.6)

http://dx.doi.org/10.1007/978-3-662-47500-3_7
http://dx.doi.org/10.1007/978-3-662-47500-3_9
http://dx.doi.org/10.1007/978-3-662-47500-3_10
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for y = x, and the slave system takes the form

y′ = G(y), (1.1.7)

which is a copy of system (1.1.4), in the absence of driving. In unidirectional cou-
plings, the signals of the master system acts on the slave system, but the converse is
not true. Moreover, this action becomes null when the two systems follow identical
trajectories [56]. The continuous control scheme [61, 62] and the method of replace-
ment of variables [63, 64] can be used to obtain couplings in the form of the system
(1.1.4)+ (1.1.5). Synchronization of a slave system to a master system, under the
condition (1.1.6), is known as identical synchronization, and it occurs when there are
sets of initial dataBx ⊂ R

d andBy ⊂ R
d for the master and slave systems, respec-

tively, such that the equation limt→∞ ‖x(t) − y(t)‖ = 0 holds, where (x(t), y(t))
is a solution of system (1.1.4)+ (1.1.5) with initial data (x(0), y(0)) ∈ Bx × By .

In paper [65], Afraimovich et al. proposed the synchronization of chaotic systems
that are different and not restricted in coupling. To realize this proposal, Rulkov
et al. [60] considered the concept of generalized synchronization for unidirectionally
coupled systems.

Consider the unidirectionally coupled system (1.1.4)+ (1.1.5) such that the
dimensions of the master and slave systems are d and r, respectively. Generalized
synchronization [54–58, 60] is said to occur if there exist setsBx ⊂ R

d ,By ⊂ R
r of

initial conditions and a transformation ψ, defined on the chaotic attractor of (1.1.4),
such that for all x(0) ∈ Bx , y(0) ∈ By the relation

lim
t→∞ ‖y(t) − ψ(x(t))‖ = 0 (1.1.8)

holds. In this case, a motion that starts on Bx × By collapses onto a manifold
M ⊂ Bx × By of synchronized motions. The transformation ψ is not required to
exist for the transient trajectories. Generalized synchronization includes the identical
synchronization as a particular case. That is, if ψ is the identity transformation, then
identical synchronization takes place. The paper [57] deals with the case when the
transformation ψ is differentiable.

According to Kocarev and Parlitz [58], generalized synchronization occurs in the
dynamics of the coupled system (1.1.4)+ (1.1.5) if and only if for all x0 ∈ Bx ,

y10, y20 ∈ By, the criterion

lim
t→∞ ‖y(t, x0, y10) − y(t, x0, y20)‖ = 0 (1.1.9)

holds, where y(t, x0, y10), y(t, x0, y20) denote the solutions of the slave system
(1.1.5) with the initial data y(0, x0, y10) = y10, y(0, x0, y20) = y20 and the same
x(t), x(0) = x0.
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As a consequence of generalized synchronization, the behavior of the slave system
(1.1.5) can be predicted by the knowledge of the trajectories of the master system
(1.1.4) and the transformation ψ. The master system is also predictable from the
slave system, if ψ is invertible [58].

Let us consider the synchronization concept simply as a chaos generation. In this
case, one can guess that it is not possible to describe the output precisely as we have
done, and for that reason in the first papers, only identical master and slave systems
were discussed. It was assumed that if the two systems admit asymptotically close
solutions, then it means that the solutions of the slave system behave chaotically.
Nevertheless, the fact that the asymptotic closeness implies the chaoticity of the
slave system has not been verified. That is, the authors decided that this is seen
intuitively, and does not deserve to be checked. Our objection is that synchronization
of chaos has not been approved in the sense that the chaos of the slave system is not
verified. Moreover, we have to recognize that only identical systems as the master
and the slave system have been considered, and this is a very strong restriction.
Later, the synchronization was extended to arbitrary systems (not only identical).
The presence of a transformation between the solutions of a master and slave system
is required, and asymptotic property has been generalized. However, both of them are
practically impossible to check in an analyticalway and only numericalmethods have
been used to indicate the conditions. Our approach is free of the asymptotic condition
and it is verifiable. It can be developed not only by means of linear stability, but also
the Lyapunov functions can be applied to arrange the generation of chaos. The main
advantage of our results is that we assure the structure of the generated chaos in many
senses: the type of chaos, bifurcation diagrams, Lyapunov exponents, presence of
periodic motions (periods), or almost periodic solutions (their spectra). Definitely,
this is very important for the development of security of information, neural networks
activities, synchronization problems of mechanics, chemistry, biology, etc. We do
hope that the developed theory of synchronization can adopt our results to strengthen
the theoretical and practical power of the theory.

1.2 Control of Chaos

The idea of chaos control is based on the fact that chaotic attractors have a skeleton
made of an infinite number of unstable periodic orbits [1, 26, 56, 66, 67]. Stability
can be described as the ability of a system to keep itself working properly even when
perturbations act on it, and this is the main goal to be achieved by the control strategy
that is embedded in the system [67]. In other words, the aim of chaos control is to
stabilize a previously chosen unstable periodic orbit by means of small perturbations
applied to the system, so the chaotic dynamics is substituted by a periodic one chosen
at will among the several available [56]. That is, when control is present, a chaotic
trajectory transforms into a periodic one [24]. Experimental demonstrations of chaos
control methods were presented in the papers [68–75].
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Small perturbations applied to control parameters can be used to stabilize chaos,
keeping the parameters in the neighborhood of their nominal values, and this idea
is first introduced by Ott et al. [76]. Experimental applications of the Ott-Grebogi-
Yorke (OGY) control method require a permanent computer analysis of the state
of the system. The method deals with a Poincaré map and therefore, the parameter
changes are discrete in time. Using this method, one can stabilize only those periodic
orbits whose maximal Lyapunov exponent is small compared to the reciprocal of the
time interval between parameter changes [77]. Another control method has been
developed by Pyragas [77] to stabilize unstable periodic orbits applying small time
continuous control to a parameter of a system while it evolves in continuous time,
instead of a discrete control at the crossing of a surface [56]. Pyragas control method
uses a delayed feedback employing a suitably amplified difference of an output
measurement of the chaotic system and the respectively delayed measurement for
control. The control signal vanishes in the post-transient behavior for the stabilized
orbit. For this reason, the delay time has to be the exact value of the period of the
unstable periodic orbit that will be stabilized [78]. Both of the OGY and Pyragas
control methods will be utilized throughout the book.

Scientists are interested in the chaos theory because of the fact that it can offer new
controlling strategies which have some particularly interesting insights for economic
policies. There was opinion among economists that dynamics of chaos is neither
predictable nor controllable due to sensitivity. Results of Ott et al. [76] showed
that control of a chaos can be made by very small corrections of parameters [56,
79]. This achievement has been widely used in economics by Kaas, Kopel, Holyst,
Urbanovwics [80–83], and many others. Our results demonstrate that the control
may not be local (applied to an isolated model) but a global phenomenon with strong
effectiveness. A control applied to a model, which is realizable easily (for example,
the logistic map or Feichtinger’s generic model [84]), can be sufficient to rule the
process in all models joined with the controlled one. Another benefit of our studies
is that in the literature controls are applied to those systems which are simple and
low-dimensional. It is worth noting that control of chaos (unstable periodic motions)
becomes difficult if dimensions of systems increase and the construction of Poincar
sections is complexified. For this reason, the idea to control the generated chaos by
controlling the exogenous shocks is useful for applications. In the present book, the
control of an economic system through the application of the OGY control to the
logistic map is demonstrated. A chaos control can not be realized if we do not know
the period of unstable themotion to be controlled. In our case, the control is applicable
to models with arbitrary dimension if just the basic period of the generator is known.
It is obvious that our methods provide us a scheme of investigations, which can be
accompanied with detailed studies in the future. Control of chaos is a synonym to the
suppression of chaos nowadays. Thus, our results give another way of suppression of
chaos. If we find the controllable link (member) in a chain (collection) of connected
chaotic systems, then we can suppress chaos in the whole chain. This is an effective
consequence of our studies.
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1.3 Neural Networks and Chaos

The chaos phenomenon has been observed in the dynamics of neural networks
[85–96], and chaotic dynamics applying as external inputs are useful for separat-
ing image segments [93], information processing [90, 91] and synchronization of
neural networks [97–99]. Aihara et al. [86] proposed a model of a single neuron
with chaotic dynamics by considering graded responses, relative refractoriness, and
spatio-temporal summation of inputs. Chaotic solutions of both the single chaotic
neuron and the chaotic neural network composed of such neurons were demonstrated
numerically in [86]. Focusing on the model proposed in [86], dynamical properties
of a chaotic neural network in chaotic wandering state were studied concerning sen-
sitivity to external inputs in [89]. On the other hand, in the paper [93], Aihara’s
chaotic neuron model is used as the fundamental model of elements in a network,
and the synchronization characteristics in response to external inputs in a coupled
lattice based on a Newman-Watts model are investigated. Besides, in the studies [90,
91], a network consisting of binary neurons which do not display chaotic behavior
is considered, and by means of the reduction of synaptic connectivities it is shown
that the state of the network in which cycle memories are embedded reveals chaotic
wandering among memory attractor basins. Moreover, it is mentioned that chaotic
wandering among memories is considerably intermittent. Chaotic solutions to the
Hodgkin-Huxley equations with periodic forcing have been discovered in [85]. The
paper [88] indicates the existence of chaotic solutions in the Hodgkin-Huxley model
with its original parameters. An analytical proof for the existence of chaos through
period-doubling cascade in a discrete-time neural network is given in [96], and the
problem of creating a robust chaotic neural network is handled in [92]. Generally
speaking, it is recognized that chaos is a friend of mind.

1.4 Extension of Chaos

To have a comprehensible discussion in this introduction, let us give an outline
of a consequence of our results for collectives of systems. Suppose that there is
a system, S1, which is autonomous and possesses chaos. That is, a chaotic attrac-
tor of the system exists and the presence of chaos is proved by applying one of
the definitions of chaos: Li-Yorke chaos, Devaney chaos, chaos through period-
doubling cascade and sensitivity, etc. We call S1 as the generator system (generator
of chaos). Assume that there are other systems, S2, S3, . . . , Sn , which are all inter-
connected in the unidirectional fashion. In Fig. 1.2, an example of the connection for
the case n = 16 is depicted. The connection’s nature is very simple. Solutions of
system S1 are utilized as perturbations for systems S2, S5, S7 and S11. Next, solu-
tions of the perturbed systems are utilized to perturb other adjoint systems and so on.
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Fig. 1.2 Chaos extension
mechanism in the net

That is, in their own turn systems S2, S5, S7, and S11 become generator systems for
all others, except S1, etc. So, these connections will continue, while all the systems
are connected in the net, which is seen in Fig. 1.2. Systems Si , i > 1, admit glob-
ally stable equilibriums, if they are isolated (unperturbed). In this unconnected state,
they are called base-systems. It implies from our results that when the connections
are valid, they are all chaotic under certain conditions. Thus, all of the cells shown
in Fig. 1.3 are chaotic such that the whole system S, the union of subsystems, Si ,

i = 1, 2, . . . , 16, is chaotic with the same type of chaos as S1. Thus, in what follows
we shall refer to the collection S of the chaotified systems to illustrate concepts of
the discussion.

Fig. 1.3 Collection of
chaotified systems
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1.5 Ordering Chaos

One of the most interesting questions in science is as follows: How do chaos and
order act together in the universe and relate to each other? It was ancient Greeks
who accept that chaos is primary with respect to order. For example, Hesiod (eighth
century B.C.) considers chaos as “a uniform disorderly mass, heavy and obscure, a
mixture ofwater, earth, fire and air” [100, 101]. Similarly,Ovid in hisMetamorphoses
understands chaos as the raw and disordered formless mass from which the ordered
universe is created. The antithesis of chaos was cosmos, understood as world or
universe. This was described by Heraclitus, Plato, and Aristotle. In classical science,
represented by the mechanics of Galileo and Newton, the order is primary, while
chaos is a deviation from regularities. Moreover, chaos is regarded as the violation of
order, not as the absence of order [101]. In their book [102], Prigogine and Stengers
wrote that “Our scientific heritage includes two basic questions to which till now no
answer was provided. One is the relation between disorder and order. The famous
law of increase of entropy describes the world as evolving from order to disorder ...”
In the same time, “... biological or social evolution shows us the complex emerging
from the simple. How is this possible? How can structure arise from disorder? ...
We know now that nonequilibrium, the flow of matter and energy, may be source of
order.” [102]. It was desired to say that chaos and order are not separated in time or
space, the chaos is not something a formless, but one in which “there are underlying
patterns, fractal structures, governed by a new view of our ‘orderly’ world” [103].

In his study [104], theGerman philosopher and scientist Immanuel Kant raised the
idea which supports that chaos and order are antitheses considering the universe, and
consequently, one cannot say which one is primary or secondary in the couple. He
expressed the hypothesis of the wave-like character of the evolution of the universe
as the sequential replacement of chaos and order, which goes on from the infinite past
to the infinite future [101]. What we have done in the present book is a contribution
to the point of view of Kant in the following sense. It is clear that chaos (better to say
disorder) and order are antitheses, and in general philosophical sense, they are proper
not only for the universe evolution, but also in every place where these concepts can
be met. This is true for some abstract constructions too. So, it is worth noting that,
in the present book, flows of unperturbed systems (the base-systems) present order,
since they admit asymptotically stable equilibria (globally stable). When they are
perturbed with chaotic functions (chaotic solutions of the generator system), they in
turn produce a new chaos. That is, perturbations present chaos in our investigations.
Thus, considering several systems in chain, we have thewave-like expansion of chaos
represented in Fig. 1.4.

Fig. 1.4 The wave-like expansion of chaos
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In other words, the chaos-order waves happen in the set of perturbation-flow
models. Thus, one can observe an interaction of chaos and order in a new way. These
waves are expanding not in time, but rather in the space of phase variables such that
different coordinates are subdued to different systems (models). They are presum-
ably finite, since a number of connected models (systems) are finite. Nevertheless,
the wave exists. So, we think that our results make the Kant’s hypothesis more real-
istic, and they support that chaos and order are antitheses and complimentary in the
universe.

Our analysis implies that chaos can be ordered in the following way. It is possible
to construct a system with subsystems—cells, having the same type of chaos (the
subsystems can be identical). This is another reason to consider the morphogenesis
concept by applying replication of chaos. Themorphogenesis is expressed not only in
the type of chaos, but also through the arrangement of similar bifurcation diagrams,
fractals, sensitivity, shadowing property, structures of chaotic attractor’s images by
the stroboscopic method. We are very confident that it will take its place in all
appearances of chaos in next investigations.

The main idea of the hypothesis is that chaos and order are equal in the relation to
eachother, they are antitheses.Does chaos deserve analysis against regular dynamics?
It seems that the answer is rather positive than negative. Moreover, can we say that
deterministic chaos is disorder? It is obvious that the answer has to be negative.
Order is discovered in chaos: there are skeletons of chaos consisting of periodic,
almost periodic, recurrent motions. Bifurcation diagrams, Feigenbaum number, and
Lyapunov exponents are widely applied to give a proper description of irregular
behavior. We can compare chaos of two systems through synchronization. From this
point of view, possibly, it is better to say that we are on the way to give a more
precise picture of order/disorder. The chaos theory considered in papers of the last
half century is just one step in this direction. Possibly, it is better to call the theory
of chaos investigated last century as theory of complexity as it is done in [105].

Another remark is as follows. The expansion of order, which was started in the
studies of Newton, Galileo, continues by results in the theory of chaos. This is what
waswritten byDurrenmatt in his play The Physicists “... science progresses by reduc-
ing the complexity of reality to a hidden simplicity” [106]. In other words, this idea
for dynamical systems was expressed by M.W. Hirsh in [107], “The development of
mathematical dynamical systems theory can be viewed as the simultaneous pursuit
of two lines of research: on the one hand, the quest for simplicity, comprehensibility,
stability; on the other hand, the discovery of complexity, instability, chaos. When
new complexities are discovered we try to tame them through analysis and classi-
fication.” In 1969, it was said by R. Abraham in [108] that “Some large (yin) sets
of differential equations with generic properties are known, some small (yang) sets
which can be classified are known, but in general the two domains have not yet met.”
In that sense, we suppose that the replication of chaos is a convenient instrument to
give points of meeting for those differential equations and the methods of analyses,
which are known in theory of differential equations (not only ordinary differential



14 1 Introduction

equations) and chaos appearances. This is true not only for enlarging the sets of
equations, but also for enlarging the dimensions of equations, which admit irregular
motions. R. Thom in his book [109] emphasizes the role of attractors as models in
science by declaring that “Every object, or every physical form, can be represented
by an attractor C of a dynamical system in a space M of internal variables.” In his
paper [107], M. Hirsh recognized that “It is in fact exceedingly difficult to decide,
either theoretically or practically, whether a particular system has a strange attractor.”
Apparently, our results will enlighten the problem of indication of strange (chaotic)
attractors. At least, we are now able to construct strange attractors of arbitrary dimen-
sion being confident that they are chaotic, which type of chaos is developing in the
sets, whether a dense trajectory is present, whether infinitely many unstable peri-
odic (almost periodic) trajectories exist, etc. From this point of view, we hope that
analyses of particular models and their collectives will be improved.

What we have written is not something original. It is just an interpretation of
dialectical laws [110].

1.6 Self-organization of Chaos

The idea of the transition of chaos from one system to another as well as the
arrangement of chaos in an ordered way can be considered as another level of self-
organization [105, 111]. In [106] it is described that “... a system is self-organizing
if it acquires a spatial, temporal or functional structure without specific interfer-
ence from the outside. By “specific” we mean that the structure of functioning is
not impressed on the system, but the system is acted upon from the outside in a
nonspecific fashion.” here are three approaches to self-organization, namely thermo-
dynamic (dissipative structures), synergetic and the autowave [101]. For the theory
of dynamical systems (differential equations, e.g.), the phenomenon means that an
autonomous system of equations admits a regular and stable motion such as peri-
odic, quasi-periodic, almost periodic. This is what in literature is called autowave
processes [112] or self-excited oscillations [103]. We inclined to add to the list
another phenomenon, which is a consequence of replication of chaos. Consider
the collection of systems S1, S2, S3, . . . , Sn introduced in Sect. 1.4 once again, and
assume that the first system, S1, is autonomous and admits a chaos, let us say, of
Devaney type. Because of the connections and conditions discovered in our analy-
sis, all other subsystems, Si , i = 2, . . . , n, will have the same type of chaos. We
suppose that one can call this as a self-organization phenomenon. That is, sustained
chaotic motion is present in a multidimensional system (with several, if not infi-
nite subsystems). The chaos is homogeneous such that at each of the subsystems
the chaos type is the same with similar characteristics (bifurcation diagrams, Lya-
punov exponents, sensitivity, quantitative characteristics, etc.). This phenomenon
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can be restricted only for autonomous systems or it can be even interpreted for non-
autonomous systems too. If needed, we may also give arguments for periodicity by
the consideration of chaos-order waves (see Sect. 1.5) as a strong argument of self-
organization. Not only the community of systems with the same chaos type is large,
participating in the replication, but also a chaos considered in an isolated model is
a “thicker” object than let us say a cycle, the trajectory of a periodic motion. So,
we can say that replication of chaos is an example of self-organization phenom-
enon, that is a coherent behavior of a large number of systems and even a single
system [111].

To observe self-organization inmodels, it is useful to find a cooperation of dissipa-
tivenesswith forces, which repel from an equilibrium. This is true formorphogenesis.
In his famous paper [50], the English mathematician A. Turing constructed a model
of morphogenesis, a reaction-diffusion model, where formation of organs in organ-
isms appears, by considering transformation in the couple stability–instability. In
our investigations, we have similar effect of cooperation of stability and instability.
Our base-systems are assumed to be asymptotically stable and chaotic perturba-
tions are representatives of strong instability (analogues of the diffusion-driving in
the Turing’s model). Thus, if in morphogenesis one says about Turing’s instability,
our results may give the new concept of chaotic instability. Self-organization is a
process of formation of dissipative systems [113]. According to Glansdorff and Pri-
gogine [113], “Classical thermodynamics had solved the problem of the competition
between randomness and organization for equilibrium systems. But what happens
far from equilibrium? Can we find there new organizations, new structures stabi-
lized through the interaction with the outside world?” and “Dissipative structures are
formed and maintained through the effect of exchange of energy and matter in non-
equilibrium conditions. The formation of cell patterns at the onset of free connection
is a typical example of a dissipative structure. We may consider a convection cell
as a giant fluctuation stabilized by the flow of energy and matter prescribed by the
boundary conditions.” The role of fluctuations is emphasized in the sentence [113]
“... a new ‘structure’ is always the result of an instability. It originates from fluctua-
tion.” One can compare what we have done with the theory of dissipative structures
to see that the role of fluctuations is prescribed in our case to chaotic perturbations,
while the flow of base-systems pointed to equilibriums are similar to the flow of
energy and matter present in the thermodynamical processes. One more thing to be
compared is as follows. It is mentioned in [102] that “In far-from-equilibrium con-
ditions we may have transformations from disorder, from thermal chaos, into order.”
It is reasonable to ask that “What is the analogue of the order in our case?.” We
have the following answer for the question. The chaotic “cells,” Si , i = 1, . . . , n,
constitute the new order of chaotified systems. It is similar to that we have in Bénard
convection phenomenon or biological structures, which appear in morphogenesis.
To demonstrate this, let us specify the systems Si by considering n = 9 with the
following differential equations,
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x ′
1 = x2

x ′
2 = −0.05x2 − x31 + 7.5 cos t

x ′
3 = x3 + 4x4 + x1

x ′
4 = −2x3 − 3x4 + 0.001x24 + x2

x ′
5 = x5 + 4.01x6 + 0.001x26 + x4

x ′
6 = −2x5 − 3x6 + 0.6x3 + 0.5 sin x3

x ′
7 = x7 + 4.01x8 + 0.005x37 + x5 + 0.0001x35

x ′
8 = −2.01x7 − 3x8 + tan(x6/10)

x ′
9 = 1.01x9 + 4x10 + 0.03 sin x9 + 2x8

x ′
10 = −2x9 − 3.01x10 + 4x7 + 2 cos x7

x ′
11 = x11 + 4.01x12 + ex9/2

x ′
12 = −2.01x11 − 3.01x12 + 0.001x211 + x10

x ′
13 = 1.01x13 + 4x14 + 0.001x213 + x12

x ′
14 = −2.01x13 − 3.01x14 + x11 + tanh(x11)

x ′
15 = 1.01x15 + 4.01x16 + x13

x ′
16 = −2x15 − 3.01x16 + 0.004x316 + arctan(x14)

x ′
17 = 1.01x17 + 4.01x18 + 0.002x317 + (x215 + 3x15 − 1)/(x15 + 3)

x ′
18 = −2.01x17 − 3x18 + 0.3x16.

(1.6.10)

Since the first subsystem

x ′
1 = x2

x ′
2 = −0.05x2 − x31 + 7.5 cos t

(1.6.11)

possesses a chaotic attractor [114] as it is the Duffing equation with “chaotic” coef-
ficients, all remaining eight 2-dimensional subsystems are chaotic by replication of
chaos, due to the connections. The chaotic attractor of the whole 18-dimensional
system (1.6.10) is shown in Fig. 1.5. Thus, one can see that the scenario of self-
organization is repeated in our studies, too. That is the reason why we observe
“morphogenesis” in our simulations and this is true not only for geometrical objects
which can be visualized in the collective flow, but also for bifurcation diagrams,
quantitative characteristics of period-doubling cascade, etc. This is a new form of
coherence.

Saying about chemical clocks in [102], authors indicate that “... a situation is no
longer be described in terms of chaotic behavior. A new type of order has appeared.
We can speak of a new coherence, of a mechanism of “communication” among
molecules. But this type of communication can arise only in far-from-equilibrium
conditions. It is quite interesting that such communication seems to be the rule in the
world of biology.” We suppose that chaos extension discovered through replication
of chaos also has to be accepted as a new form of order. One can name it as an
ordered net of chaotic “cells.” The reader can find more about the architecture of the
extension of chaos in the next section.



1.6 Self-organization of Chaos 17

Fig. 1.5 Chaotic attractor of
system (1.6.10)

There is no doubt that this type of order exists not only for models in the form of
ordinary differential equations or difference equations, but also for partial differential
equations, equations in Banach spaces and, in fact, for all other types of equations.
We have to recognize that our theoretically approved results have not been seen in
experiments yet, but only in simulations through numerical analysis. So, we hope
that in very close future special experiments will be done, and one will see the results
of replication of chaos in electrical devices, mechanisms, artificial intelligence, etc.

In fact, biological pattern formation, dissipative structures, and replication of
chaos are results of interaction of dissipation and diffusion-driven instability, fluctu-
ations, and chaotic perturbations. That is, there are forces acting from outside toward,
let us say an attractor, and forceswhich “revolt” acting outward, called “instabilities.”
The sustained structures in morphogenesis, dissipative structures or ordered nets of
chaos are results of balance of the forces. In order to give more visible impression of
this type of self-organization, let us take in attention the life on the Earth. It is from
one side result of the gravitational force, which is universally needed for life, and
from another side of many forces which are acting “against” the force of gravitation
and all together bring the life phenomenon to the globe. In [102] it is written that
“... the type of dissipative structure depends critically on the conditions in which
the structure is formed. External fields such as the gravitational field of Earth, as
well as the magnetic field, may play an essential role in the selection mechanism of
self-organization.” An important idea that was first proposed by Turing [50] is that
a system of chemicals, which is stable in the absence of diffusion, becomes unsta-
ble in the presence of diffusion. The same scenario of chaos replication is played
by forces in two opposite directions. One force is toward to the equilibrium and
another “revolts” chaotically such that as a result we have the chaotic attractor in the
replicator system. Finally, we do not pretend that replication of chaos will be on the
same level of universality as biological pattern formation or dissipative structures
(first of all, we have to see the phenomenon in experiments), but we are sure that, at
least, replication of chaos will be found later as a link in some universal chains of
self-organization.
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1.7 Morphogenesis of Chaos

In this book, we try to use the term morphogenesis issuing from the sense of the
wordsmorph meaning “form” and genesis meaning “creation” [115]. In other words,
similar to the ideas of René Thom [116], we employ the word morphogenesis as
its etymology indicates, to denote processes creating forms. One should understand
morphogenesis of chaos as a form-generatingmechanismemerging fromadynamical
process which is based on replication of chaos. Here, we accept the form (morph)
not only as a type of chaos, but also accompanying concepts as the structure of the
chaotic attractor, its fractal dimension, form of the bifurcation diagram, the spectra
of Lyapunov exponents, inheritance of intermittency, etc. To illustrate the point of
view one can see the “chaotic attractor” of the 18-dimensional system in Fig. 1.5.

To understand the concept of this book better, let us consider morphogenesis of
fractal structures [117, 118]. It is important to say that Mandelbrot fractal structures
exhibit the appearance of fractal hierarchy looking in, that is, a part is similar to
the whole. Examples for this are the Julia sets [119, 120] and the Sierpinski carpet
[121]. In our morphogenesis both directions, in and out, are present. Indeed, the
fractal structure of the prior chaos has hierarchy looking in, and the structure for
the result-system is obtained considering hierarchy looking out, that is, when the
whole is similar to the part. It is important to say that morphogenesis out is very
important for biological evolution [122] and also for industry, urban, and computer
developments.

In our results, we do not consider the chaos synchronization problem, but we
say that the type of the chaos is kept invariant in the procedure. That is why the
classes which can be considered with respect to this invariance is expectedly wider
then those investigated for synchronization of chaos. Since we do not request strong
relation and accordance between the solutions of the generator and the replicator in
the asymptotic point of view, the termsmaster and slave as well as drive and response
are not preferred to be used for the analyzed systems. On the other hand, contrary to
the method that we present, in the synchronization of chaotic systems, one does not
consider the type of the chaos that the master and slave systems admit. The problem
that whether the synchronization of systems implies the same type of chaos for both
master and slave has not been taken into account yet.

The phenomenon of the form recognition for chaotic processes has already begun
in pioneering papers [22, 23, 28–32]. All these results say about chaos recognition,
by reducing complex behavior to the structure with recognizable chaos. In [19, 20,
123–128], we provide a different and constructive way when a recognized chaos
can be extended saving the form of chaos to a multidimensional system. The idea is
extended to the morphogenesis of chaos in the present book.

Nowadays, one can consider the development of a multidimensional chaos from
a low-dimensional one in different ways. One of them is the chaotic itinerancy
[95, 129–135]. The itinerant motion among varieties of ordered states through
high-dimensional chaotic motion can be observed and this behavior is named as
chaotic itinerancy. In other words, chaotic itinerancy is a universal dynamics in
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high-dimensional dynamical systems, showing itinerant motion among varieties of
low-dimensional ordered states through high dimensional chaos. This phenomenon
occurs in different real-world processes: optical turbulence [129], globally coupled
chaotic systems [130, 131], non-equilibrium neural networks [95, 135], analysis of
brain activities [136] and ecological systems [137]. One can see that in its degen-
erated form chaotic itinerancy relates to intermittency [36, 103], since they both
represent dynamical interchange of irregularity and regularity.

Likewise the itinerant chaos observed in brain activities, we have low-dimensional
chaos in the subsystems considered and high dimensional chaos is obtainedwhen one
considers all subsystems as a whole. The main difference compared to our technique
is in the elapsed time for the occurrence of the process. In our discussions, no itinerant
motion is observable and all resultant chaotic subsystems process simultaneously,
whereas the low-dimensional chaotic motions take place as time elapses in the case
of chaotic itinerancy. Knowledge of the type of chaos is another difference between
chaotic itinerancy and our procedure. Possibly the present way of replication of chaos
will give a light to the solutions of problems about extension of irregular behavior
(crises, collapses, etc.) in interrelated or multiple connected systems which can arise
in problems of classical mechanics [103], electrical systems [138, 139], economic
theory [140], and brain activity investigations [136].

In systems whose dimension is at least four, it is possible to observe chaotic
attractors with at least two positive Lyapunov exponents and such systems are called
hyperchaotic [141]. An example of a four-dimensional hyperchaotic system is dis-
covered by Rössler [38]. Combining two or more chaotic, not necessarily identical,
systems is a way of achieving hyperchaos [139, 142, 143]. However, we take into
account exactly one chaotic system with a known type of chaos, and use this system
as the generator to reproduce the same type of chaos in other systems. On the other
hand, the crucial phenomenon in the hyperchaotic systems is the existence of two or
more positive Lyapunov exponents and the type of chaos is not taken into account. In
our way of morphogenesis, the critical situation is rather the replication of a known
type of chaos.

The paper [50] was one of the first studies that consider mathematically the self-
replicating forms using a set of reaction-diffusion equations [144]. Taking inspiration
from the ideas of Turing, Smale [145] considers the problem of whether oscillations
can be generated through coupling of identical systems which tend to an equilib-
rium. A similar question is also reasonable for the achievement of chaos in such
systems and it is found out that, without using a chaotic input, it is possible to obtain
coupled systems which exhibit chaotic behavior. The existence of strange attrac-
tors in a family of vector fields consisting of two Brusselators linearly coupled by
diffusion is proved analytically in the paper [146] and numerical examples of such
a chaotic behavior are provided in [147]. Such couplings display several cases of
Hopf-pitchfork singularities of codimensions 2, 3, and 4. In all these cases, the cor-
responding bifurcation diagrams provide regions of parameters such that the system
exhibits synchronization, regions where synchronization depends on the initial state
and regions where orbits show infinitely many transients of synchronization [148].
Another example of a linearly coupled system which exhibit chaotic behavior can
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be found in [149]. According to the results of [149], a sufficiently large coupling
coefficient used in a network of linearly coupled identical systems, where each node
is located in a non-chaotic region, leads to the existence of a positive transversal
Lyapunov exponent and makes the system behave chaotically. The Lorenz systems
with stable equilibriums can be used in the construction of such a network of linearly
coupled systems. Distinctively, we make use of coupled systems such that exactly
one of them is chaotic with a known type of chaos and prove theoretically that the
same type of chaos is extended. Moreover, in the presented mechanism, we are not
restricted to use linear couplings as well as identical systems.

1.8 Chaos and Cellular Automata

The concept of self-replicating machines, in the abstract sense, starts with the ideas
of von Neumann [51] and these ideas are supposed to be the origins of cellular
automata theory [144]. Morphogenesis was deeply involved in mathematical dis-
cussions through Turing’s investigations [50] as well as in the concept of structural
stability [109]. In the book, the term “morphogenesis” is used in the meaning of
“processes creating forms” where we accept the form not only as a type of chaos,
but also accompanying concepts as the structure of the chaotic attractor, its frac-
tal dimension, form of the bifurcation diagram, the spectra of Lyapunov exponents,
inheritance of intermittency, etc. This is similar to the idea such that morphogen-
esis is used in fields such as urban studies [43], architecture [44], mechanics [45],
computer science [46], linguistics [47], and sociology [48, 49].

According to von Neumann, it is feasible in principle to create a self-replicating
machine, which he refers as an “automaton,” by startingwith amachine A,which has
the ability to construct any othermachine once it is furnishedwith a set of instructions,
and then attaching to A another component B that can make a copy of any instruction
supplied to it. Together with a third component labeled C, it is possible to create a
machine, denoted by R, with components A, B, and C such that C is responsible
to initiate A to construct a machine as described by the instructions, then make B
to create a copy of the instructions, and supply the copy of the instructions to the
entire apparatus. The component C is referred as “control mechanism.” It is the
resulting machine R′, obtained by furnishing the machine R by instructions IR, that
is capable of replicating itself. Multiple usage of the set of instructions IR is crucial
in the mechanism of self-replication. First, the instructions must be fulfilled by the
machine A, then they must be copied by B, and finally the copy must be attached to
machine R to form the system R′ once again [51, 144].

Our theory of replication of chaos relates the ideas of von Neumann about self-
replicating machines in the following sense. Initially, we take into account a system
of differential equations (the generator) which plays the role of machine A as in the
ideas of von Neumann, and we use this system to influence in a unidirectional way,
another system (the replicator) in the role of machine B, in such a manner that the
replicator mimics the same ingredients of chaos furnished to the generator. In this
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book, we use such ingredients in the form of period-doubling cascade, Devaney’s and
Li-Yorke chaos. In conclusion, the generator system with the replicator counterpart
together, that is, the result-system, admits ingredients of the generator. In otherwords,
a known type of chaos is replicated.

1.9 Synergetics and Chaos

In his fascinating book [111], German theoretical physicist Hermann Haken intro-
duced a new interdisciplinary field of science, synergetics, which studies the origins
and the evolution of spatio-temporal structures. Profound part of synergetics is based
on the dynamical systems theory. Depending on the mathematical discussion of our
book, it is natural that we concentrate on the differential and difference equations.
Everything that will be said below about synergetics concern first of all dynamical
systems with mathematical approach. One of the main features of systems in syn-
ergetics is self-organization, which is discussed in Sect. 1.6, and we realize that the
phenomenon is present in replication of chaos in strong or weak sense. According to
Haken [111], the central question in synergetics is whether there are general princi-
ples that govern the self-organized formation of structures and/or functions. Themain
principles by the founder of the theory are instability, order parameters and slaving
[111]. Instability is understood as the formation or collapse of structures (patterns).
This is very common in fluid dynamics, lasers, chemistry, and biology [111, 122,
150–152]. A number of examples of instability can be found in the literature about
morphogenesis. For instance, the pattern formation examples can be found in fluid
dynamics. The phenomenon is called instability because the former state of the fluid
transforms to a new one, loses its ability to persist and becomes unstable.

We see instability in the replication of chaos, first of all, through the chaotification
of the base-system, which is originally non-chaotic. Secondly, if one considers real-
world systems, then, for example, this chaotification can be evolved in time by a new
replicator joined to the former generator. Finally, since we consider macroscopic
processes, increasing the field of chaos by adding new subsystems can be accepted
as instability.

The concepts of the order parameter and slaving are strongly related in synergetics.
In the theory of differential equations, order parameters mean those dependent vari-
ables whose behavior formates the main properties of a macroscopic structure that
dominates over all other variables in the formation such that they can even depend on
the order parameters functionally. The mathematically proved (discovered) depen-
dence is called as slaving [111]. It is not difficult to see that in the replication of
chaos, considering a generator and several replicators, the variables of the generator
are order parameters and they determine the chaotic behavior of replicators’ vari-
ables. That is, the slaving principle is present there.We have to say that, generally, the
slaving principle works in bidirectional connections, but we discuss unidirectionally
interacting systems. Nevertheless, the slaving principle is in the basis of replication
of chaos as well as in synergetics.
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1.10 Mathematics in Chaos Theory

A very serious question may occur concerning the results of our investigations.
Should we call the phenomenon discussed as replication of chaos? It seems that one
can name the results as, let us say, theorems on the existence of chaos in a similar way
to the theorems on the existence of periodic solutions for periodically perturbed linear
systems. We have to say that this similarity is superficial. Indeed, the input–output
analysis realized in differential equations theory to obtain the existence of periodic
solutions, almost periodic solutions, etc. deals with separate, individual functions and
solutions. One can say that it replicates periodic, almost periodic functions. How-
ever, in our case, the mechanism replicates a set of functions (a chaotic set), which
comprises infinitely many elements. Moreover, we can say that a phenomenon is
replicated. That is, we are considering the apparition. This makes the replication
of chaos closer to those results obtained for reaction-diffusion equations and ther-
modynamics [102, 113] rather than finite-dimensional flows. Additionally, we fix
the presence of chaos and say about all accompanying characteristics of irregular
motions. This is a new theory, which can be developed in a similar way to the theory
of periodic solutions, stability and other known ones for differential equations. In
that sense, our results bring the investigation of chaos to the bosom of differential
equations theory back, where it was originated. Thus, we somehow support Philip
Holmes’ opinion that the theory of chaos has to be a part of the theory of differential
equations [153]. According to Holmes [153], much remains to be learned about the
applicability and validity of the methods of data analysis for chaos such as dimension
computations, Lyapunov exponents, phase-space reconstruction, spectra of dimen-
sions, etc.Moreover, the author recognizes that “... I do not really see a “new science”
here, in particular I do not see that “chaos theory” even exists as a coherent object, for
example like the quantum and relativity theories.” Since the main body of results on
chaotic motions have been formulated in terms of differential and difference equa-
tions, we may suggest that all these achievements have to be embedded in the theory
of dynamical systems or more specifically, in the theory of differential equations or
hybrid systems. In this sense, our results, which use the methods developed in the
theory of ordinary differential equations for quasilinear systems and realized on the
basis of definitions obtained to introduce chaos in the set of continuous functions, can
be considered as an attempt to see the results about chaos in the theory of differential
equations.

Possibly, we will achieve more successes in the direction of investigation. These
results will pull chaos analysis back to the classical dynamical systems theory. If
the apparatus will be utilized to the problems in the whole of its might, one will
definitely be able to response to what was written in [153]: “Certain persons seem
to prefer to abandon hard won, detailed knowledge of problems like turbulence in
boundary or shear layers in favor of metaphors, such as coupled map lattices, which
have little obvious connection with underlying physics.” According to L. Shil’nikov
[154], quasi-minimal sets possibly constitute the basis of many chaos appearances.
The sets that are closures of Poisson stable trajectories are in the content of classical
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dynamics theory [107]. Nowadays, not all mathematicians agree that chaos is present
in the world as much as the regular motions. Chaos is considered by the majority of
mathematicians as an exotic phenomenon. Nevertheless, specialists who are working
with chaos have become more and more confident that the chaos presence extends
in the real-world as much as regular motions. Possibly, it will be verified that the
places where chaotic motions evolve in reality are much more than the ones with
non-chaotic motions, as it is for rational and irrational numbers, for example. In that
sense, we hope that our proposals based on the input–output analysis for the chaos
extension may give more arguments and tools for further investigation of chaos in
the mathematical theory as well as in applications. However, nowadays, we continue
to consider chaos being present in the real-world problems less than it deserves even
in the measure sense. Remember that the dimension of a chaotic attractor is not
only a fractal, but also it is less than the dimension of a system, where the chaos
is observed. The phase space of the system may admit partitions such as periodic,
almost periodic trajectories and other regular alternatives. These regular orbits are
also the sets with small measure, even zero. So, in that case, one can consider chaotic
trajectory or chaotic set of orbits in the sameway as periodic, quasi-periodic or almost
periodic ones. This consideration is not something exceptional. Our investigation
gives a light on the concept of chaos in that sense. That is, we try to treat chaotic
motions (functions) as the ones in the row of functions: periodic, quasi-periodic,
almost periodic, chaotic, bounded on the real axis. Moreover, we guess that chaotic
functions can be investigated more deeply within the scope of theory of functions in
the future.

1.11 Chaos Theory and Real World

A very interesting question is the following one: How do chaotic systems interact
with their environment or other systems? More specifically, how can several chaotic
and non-chaotic systems interact to give some desirable effect or to suppress harmful
influences? Synchronization of chaos and suppression of chaos by control are two
fields of the modern science, where this question is considered. Synchronization
is very important for comprehension processes in the brain and to develop reliable
security of communication systems. It is investigated for circadian rhythms, chemical
oscillators, electrical circuits, plasma tubes, technology of communications, etc.

There are some observations, which confirm that if a chaotic oscillator is acted on
by a periodic perturbation, then there is the locking of the phase of the oscillator to that
of the force. Since periodic perturbations are very common in magneto-mechanical
systems, chemical reactions, which have been observed in laboratories as well as for
the earth and life sciences, the role of the suppression of chaos is obviously increasing
with the development of interdisciplinary connections of dynamical systems theory.
This is true not only for mechanical and electrical engineering with undesirable and
harmful irregular oscillations, but also for economics, biology, and neural networks
theory. There is another possibility of interaction of a chaotic system with environ-
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ment when the latter is chaotic. This phenomenon is described in the literature as
the interaction of a chaotic driving system, which is connected unidirectionally with
another chaotic response system. Obviously, the problem is difficult for analysis,
and it has been analyzed only within the scope of the synchronization theory. Excep-
tionally, it is difficult if the interconnected systems are not identical. If the drive and
response systems are identical, then there are results such that the systems have solu-
tions which are asymptotically close as the time evolves to infinity [56, 59]. Despite
the fact that just sensitivity can be confirmed intuitively only, it is recognized that
the asymptotic closeness indicates the presence of chaos for the response system.
The asymptotic closeness of solutions can be easily proved by applying, let us say, the
second Lyapunov method [155]. Nevertheless, as we have just said, chaoticity of the
response system has not been discussed from the point of view of the rigorous math-
ematics of dynamical systems theory. In the case of non-identical drive and response
systems (generalized synchronization), there is an additional request that there has to
be a correspondence between solutions of the systems: a homeomorphism in themost
restrictive case. That is the reason why applications of the generalized synchroniza-
tion is not a so much obvious task. In order to detect the synchronization, conditional
Lyapunov exponents, auxiliary system approach, and mutual false nearest neighbors
techniques can be used [54, 56, 59, 60]. All these methods of indication are rather
numerical. So, the problem has to be further considered by theoretical investigations.

What we do in our analysis in its particular case can be considered as an inter-
action of a chaotic system, which we call as the generator, with a regular system
(for example, a system having a globally asymptotically stable equilibrium), which
is called the base-system. When the latter is perturbed by solutions of the generator,
(generally non-linearly), the obtained system is called the replicator. Thus, we can
say that the subject is two systems: a chaotic system and a non-chaotic one. There is a
unidirectional connection of the first one with the second. It is rigorously proved that
the replicator admits chaos provided that the base-system is with stable equilibrium,
limit cycle or torus. This problem has not been considered before in the literature.
Our method is based on rigorous definitions of chaotic sets of functions and chaotic
functions as elements of a chaotic set. This is also done for the first time in the liter-
ature. Thus, we consider a chaotic environment and prove that a non-chaotic system
(an oscillator) with certain properties also becomes chaotic in the environment.

In the book [103], F.C. Moon states that “... engineers have always known about
chaos—it was called noise or turbulence and huge factors or factors of safety were
used to design around these apparent random unknowns that seem to crop up in every
technical device ...” According to Moon [103], the recognition of chaos in nonlinear
deterministic systems may be useful for understanding the source of random like
noise. Moreover, the author declares that “the new discoveries in nonlinear dynamics
bring with them new concepts and tools for detecting chaotic vibrations in physical
systems and for quantifying this ‘deterministic noise’ with new measures such as
fractal dimensions andLyapunov exponents.”Our investigations realize expectations
from the chaos theory in both cases. We suggest that if one investigates the presence
of chaos in a systemwith connections to its neighbor systems among which there is a
system that is respectively simple for the chaos analysis, then the same characteristics
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of chaos can also be determined for the examined system. The characteristics of chaos
can be considered as the chaos type, unstable periodic solutions in the skeleton of the
chaos, bifurcation diagrams, and quantities such as Lyapunov exponents and fractal
dimensions. We remind that it is standard to look for chaos through the construction
of special low-dimensional maps. On the basis of the map, one can make conclusion
on the multidimensional chaos. However, in our case, we reduce the analysis to more
simple systems by looking at interconnections in a collection of systems. This is
something new in the theoretical indication of chaos.

Is unpredictability a generic phenomenon in economics, meteorology, mechanical
experiments and neural networks? This question is actual today when the world
economy is shaken by the crisis, and it should push economists to wonder about the
approach used to analyze economic phenomena. Another question is as follows: Is
it possible to recognize an economic crisis before it occurs? Our results may give a
slight light on the problem. On the basis of our results, we show that unpredictability
is not avoidable in economics globally. The fact that chaos is a generic property of
dynamics is not new. We will give more literature observation later. But now, let us
describe why unpredictability is generic through our investigations. For that purpose
let us consider a global economy as interconnected models, where each model is a
system of differential, difference or hybrid equations. It implies from our results that
if one of themodels generates endogenous chaos (unpredictability), then it infects the
“neighbors” through the connections, provided that some certain criteria are satisfied.
That is why unpredictability is a global phenomenon. The topology of the expansion
can be of various types. If one wants to study the globalization of unpredictability
in economics, it has to be taken into account that our results consider the expansion
among models with strict conditions, for instance, the Lipschitz condition with small
coefficients. We consider also quasilinear systems which are with hyperbolic linear
parts. Thus, there are opportunities to consider the generation of chaos in the global
economy.

Detection of chaos is one of the main problems considered within the scope of
applications of chaos. The methods of bifurcation diagrams, Lyapunov exponents,
etc. do not always work. The next question is the determination of the chaos type that
the irregular dynamics belong to. We suggest to consider a cluster of models with
irregular behavior, confirm that they are interconnected, learn which of the models
is the most simple to analyze for chaos, specify the chaos type and the values of all
parameters such as Lyapunov exponents, etc., and then to verify that counterparts
of the model satisfy conditions of our results. Finally, one can decide that the same
chaos is proper for the whole system of models or those of models which satisfy
the needed criteria. Hence, the problem of determination of chaos can be solved by
the algorithm and it may give a new approach to complex system development and
indication. Moreover, we can estimate the divergence of the output motions by using
the knowledge about the input motions. That is what we can give for practice.

One can take into account the following source of chaotic shocks: the bio-
economic synthesis (see Chap.13 in [84]). More precisely, assuming that economic
endogenous chaos is questionable, we accept that biological (population dynamics)
chaos is approved. Then we can connect economy with fishery, etc., to obtain that
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chaos enters into economics through exogenous biological shocks. We may also
support relay functions by seasonal harvesting, etc.

It is known that there are comparisons of economics with thermodynamics and in
general physics [156]. There is another science to compare economics with meteo-
rology and atmospheric physics. This is useful to imagine exceptionally if one talks
about global processes.

1.12 Organization of the Book

The book is organized as follows.
We start with the descriptions of the chaotic sets of functions in Devaney and

Li-Yorke sense as well as hyperbolic set of functions in Chap.2. Next, replication
of chaos on the basis of the input–output mechanism is provided with rigorous
verification. Machinery for the extension of chaos in the sense of Devaney and
Li-Yorke as well as the one obtained through period-doubling cascade is established.
Control of chaos inserted in the input–output procedure is realized such that periodic
motions, which are in the skeleton of chaos, are stabilized. In discussions of the main
results of the chapter, morphogenesis of intermittency and the double-scroll Chua’s
attractor are considered as well as quasi-periodicity, Shil’nikov orbits and the case
when the linear system admits non-negative eigenvalues are handled.

Chapter3 is devoted to the subject of the second chapter in the case that the
condition on the eigenvalues of the coefficient matrix is weakened. We consider
the hyperbolic case such that some of the eigenvalues are with positive real parts.
Extension of chaos is observed for this case too. Possibly, this chapter is first of all
of theoretical interest.

In Chap.4, we consider a limit cycle as the main qualitative feature of the base-
system. The entrainment of limit cycles by chaos, which is understood as the defor-
mation of limit cycles to chaotic cycles, is considered. The extension of sensitivity as
well as the presence of infinitely many unstable periodic solutions and their control
are realized through the input–output analysis. The entrainment of toroidal attractors
by chaos is also considered. It is shown that the phenomenon cannot be considered
as generalized synchronization of chaotic systems.

We take into account the base-systemwith impulsive actions in Chap.5. The pres-
ence of chaotic dynamics is rigorously approved by implementing chaotic perturba-
tions. The results are applied to mechanical systems by means of Duffing equations.
Controllability of the obtained chaos is also proposed.

In Chap.6, we handle relay functions and impulsive perturbations, which are the
most specific inputs in the book. Again chaos in the sense of Devaney, Li-Yorke,
and chaos on the basis of period-doubling cascade are generated, but this time inputs
and outputs are of different natures. If the former are discontinuous, then the latter
are continuous or discontinuous (for impulsive systems). The classical concepts of
quasi-minimal sets, hyperbolic sets, and shadowing property are discussed through

http://dx.doi.org/10.1007/978-3-662-47500-3_2
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the input–output analysis. Applications of the theoretical results such as Duffing
equation and others are investigated subdued to chaotic perturbations.

The last four chapters revolve around more applications of our theoretical results.
Chapter7 is concerned with economic models, where chaotic inputs are interpreted
as exogenous shocks. The base-systems are consideredwith stable equilibriumpoints
and limit cycles. The attractors have very realistic economical sense as equilibria,
limit cycles or tori. Continuous and discontinuous shocks are applied as inputs for the
base-systems. In the case of discontinuous shocks, discrete variables are the values of
the economical variables as well as the moments of time, when the shocks happen.
A comparison of exogenous chaos and endogenous one in the business cycles is
performed through our results.

Chapter8 is devoted to neural networks. In that chapter, we consider the problem
of chaos generation in shunting inhibitory cellular neural networks and Hopfield
neural networks by taking advantage of external inputs. Retarded and impulsive
neural networks are studied with chaotic external inputs. The generation of cyclic
and toroidal chaotic motions by neural networks are also discussed.

The question “Why is the weather unpredictability a global phenomenon?” is
under discussion in Chap.9. We specify it as the Lorenz unpredictability as it is
studied on the basis of the famous model. While the base-systems are considered
with equilibrium points and limit cycles in the previous chapters, in Chap.9 the
base-system is just a dissipative one. On the basis of the input–output analysis, we
theoretically approve the concept of the global weather unpredictability in the toy
case, considering it as sensitivity in the dynamical system.

Finally, Chap. 10 is entirely about spatiotemporal chaos in glow discharge-
semiconductor systems. The results of that part of the book demonstrate that the
extension of chaos can be observed in any type of models, this time partial differen-
tial equations.
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equation ÿ − k(1 − y2)′y + y = bkcos(λt + a), k large. J. Lond. Math. Soc. 20, 180–189
(1945)

30. N. Levinson, A second order differential equation with singular solutions. Ann. Math. 50,
127–153 (1949)

31. J. Guckenheimer, R.F. Williams, Structural stability of Lorenz attractors. Publ. Math. 50,
307–320 (1979)

32. M. Levi, Qualitative Analysis of the Periodically Forced Relaxation Oscillations (Memoirs
of the American Mathematical Society, Providence, 1981)

33. L.O. Chua, M. Komuro, T. Matsumoto, The double scroll family, parts I and II. IEEE Trans.
Circuit Syst. CAS-33, 1072–1118 (1986)

34. M. Hénon, A two-dimensional mapping with a strange attractor. Commun.Math. Phys. 50(1),
69–77 (1976)

35. T. Matsumoto, L.O. Chua, M. Komuro, The double scroll. IEEE Trans. Circuit Syst. CAS-32,
797–818 (1985)

36. Y. Pomeau, P. Manneville, Intermittent transition to turbulence in dissipative dynamical sys-
tems. Commun. Math. Phys. 74, 189–197 (1980)

37. O.E. Rössler, An equation for continuous chaos. Phys. Lett. 57A, 397–398 (1976)
38. O.E. Rössler, An equation for hyperchaos. Phys. Lett. A 71, 155–157 (1979)
39. E. Sander, J.A. Yorke, Period-doubling cascades for large perturbations of Hénon families. J.

Fixed Point Theory Appl. 6, 153–163 (2009)
40. S. Sato, M. Sano, Y. Sawada, Universal scaling property in bifurcation structure of Duffing’s

and of generalized Duffing’s equations. Phys. Rev. A 28, 1654–1658 (1983)
41. S.W. Shaw, A.G. Haddow, S.R. Hsieh, Properties of cross-well chaos in an impacting systems.

Philos. Trans. R. Soc. Lond. A 347, 391–410 (1994)
42. K. Thamilmaran, M. Lakshmanan, Rich variety of bifurcations and chaos in a variant of

Murali-Lakshmanan-Chua circuit. Int. J. Bifurc. Chaos 10, 1781–1785 (2000)



References 29

43. T. Courtat, C. Gloaguen, S. Douady, Mathematics and morphogenesis of cities: a geometrical
approach. Phys. Rev. E 83, 1–12 (2011)

44. S. Roudavski, Towards morphogenesis in architecture. Int. J. Archit. Comput. 7, 345–374
(2009)

45. L.A. Taber, Towards a unified theory for morphomechanics. Philos. Trans. R. Soc. A 367,
3555–3583 (2009)

46. P. Bourgine, A. Lesne, Morphogenesis: Origins of Patterns and Shapes (Springer, Berlin,
2011)

47. C. Hagége, The Language Builder: An Essay on the Human Signature in Linguistic Morpho-
genesis (John Benjamins Publishing Co., Amsterdam, 1993)

48. M.S. Archer, Realistic Social Theory: The Morphogenetic Approach (Cambridge University
Press, Cambridge, 1995)

49. W. Buckley, Sociology and Modern Systems Theory (Prentice Hall, New Jersey, 1967)
50. A.M. Turing, The chemical basis of morphogenesis. Philos. Trans. R. Soc. Lond., Ser. B, Biol.

Sci. 237, 37–72 (1952)
51. J. Von Neumann, A.W. Burks (eds.), The Theory of Self-Reproducing Automata (University

of Illinois Press, Urbana, 1966)
52. M. Farkas, Periodic Motions (Springer, New York, 2010)
53. J.L. Massera, The existence of periodic solutions of systems of differential equations. Duke

Math. J. 17, 457–475 (1950)
54. H.D.I. Abarbanel, N.F. Rulkov, M.M. Sushchik, Generalized synchronization of chaos: the

auxiliary system approach. Phys. Rev. E 53, 4528–4535 (1996)
55. V. Afraimovich, J.R. Chazottes, A. Cordonet, Nonsmooth functions in generalized synchro-

nization of chaos. Phys. Lett. A 283, 109–112 (2001)
56. J.M. Gonzáles-Miranda, Synchronization and Control of Chaos (Imperial College Press, Lon-

don, 2004)
57. B.R. Hunt, E. Ott, J.A. Yorke, Differentiable generalized synchronization of chaos. Phys. Rev.

E 55(4), 4029–4034 (1997)
58. L. Kocarev, U. Parlitz, Generalized synchronization, predictability, and equivalence of unidi-

rectionally coupled dynamical systems. Phys. Rev. Lett. 76(11), 1816–1819 (1996)
59. L.M. Pecora, T.L. Carroll, Synchronization in chaotic systems. Phys. Rev. Lett. 64, 821–825

(1990)
60. N.F. Rulkov, M.M. Sushchik, L.S. Tsimring, H.D.I. Abarbanel, Generalized synchronization

of chaos in directionally coupled chaotic systems. Phys. Rev. E 51(2), 980–994 (1995)
61. M. Ding, E. Ott, Enhancing synchronism of chaotic systems. Phys. Rev. E 49, R945–R948

(1994)
62. T. Kapitaniak, Synchronization of chaos using continuous control. Phys. Rev. E 50, 1642–

1644 (1994)
63. K.M. Cuomo, A.V. Oppenheim, Circuit implementation of synchronized chaos with applica-

tions to communications. Phys. Rev. Lett. 71, 65–68 (1993)
64. L.M. Pecora, T.L. Carroll, Driving systems with chaotic signals. Phys. Rev. A 44, 2374–2383

(1991)
65. V.S. Afraimovich, N.N. Verichev, M.I. Rabinovich, Stochastic synchronization of oscillation

in dissipative systems. Radiophys. Quantum Electron. 29, 795–803 (1986)
66. T.Kapitaniak,Controlling Chaos: Theoretical and Practical Methods in Non-linear Dynamics

(Butler and Tanner Ltd., Frome, 1996)
67. E. Schöll, H.G. Schuster, Handbook of Chaos Control (Wiley-VCH, Weinheim, 2008)
68. A. Azevedo, S.M. Rezende, Controlling chaos in spin-wave instabilities. Phys. Rev. Lett.

66(10), 1342–1345 (1991)
69. G.L. Baker, Control of the chaotic driven pendulum. Am. J. Phys. 63, 832–838 (1995)
70. S. Bielawski, D. Derozier, P. Glorieux, Controlling unstable periodic orbits by a delayed

continuous feedback. Phys. Rev. E 49, R971–R974 (1994)
71. W.L. Ditto, S.N. Tauseo, M.L. Spano, Experimental control of chaos. Phys. Rev. Lett. 65(26),

3211–3214 (1990)



30 1 Introduction

72. A. Garfinkel, M.L. Spano, W.L. Ditto, J.N. Weiss, Controlling cardiac chaos. Science 257,
1230–1233 (1992)

73. S. Hayes, C. Grebogi, E. Ott, Communicating with chaos. Phys. Rev. Lett. 70(20), 3031–3034
(1993)

74. R. Meucci, W. Gadomski, M. Ciofini, F.T. Arecchi, Experimental control of chaos by means
of weak parametric perturbations. Phys. Rev. E 49(4), R2528–R2531 (1994)

75. S.J. Schiff, K. Jerger, D.H. Duong, T. Chang, M.L. Spano, W.L. Ditto, Controlling chaos in
the brain. Nature 370, 615–620 (1994)

76. E. Ott, C. Grebogi, J.A. Yorke, Controlling chaos. Phys. Rev. Lett. 64, 1196–1199 (1990)
77. K. Pyragas, Continuous control of chaos by self-controlling feedback. Phys. Rev. A 170,

421–428 (1992)
78. G. Herrmann, A robust delay adaptation scheme for Pyragas’ chaos control method. Phys.

Lett. A 287(3–4), 245–256 (2001)
79. J.A. Holyst, K. Urbanowicz, Chaos control in economical model by time delayed feedback

method. Phys. A: Stat. Mech. Appl. 287(3–4), 587–598 (2000)
80. M.Allais, The economic science of today and global disequilibrium, inGlobal Disequilibrium

in the World Economy, ed. by M. Baldassarry, J. McCallum, R.A. Mundell (Macmillan,
Basingstoke, 1992)

81. J.A. Holyst, T. Hagel, G. Haag, W. Weidlich, How to control a chaotic economy? J. Evol.
Econ. 6(1), 31–42 (1996)

82. L. Kaas, Stabilizing chaos in a dynamic macroeconomic model. J. Econ. Behav. Organ. 33,
313–332 (1998)

83. M. Kopel, Improving the performance of an economic system: controlling chaos. J. Evol.
Econ. 7, 269–289 (1997)

84. G. Feichtinger, Nonlinear threshold dynamics: further examples for chaos in social sciences,
in Economic Evolution and Demographic Change, ed. by G. Haag, U. Mueller, K.G. Troitzsh
(Springer, Berlin, 1992)

85. K.Aihara, G.Matsumoto, Chaotic oscillations and bifurcations in squid giant axons, inChaos,
ed. by A. Holden (Manchester University Press, Manchester, 1986), pp. 257–269

86. K. Aihara, T. Takabe,M. Toyoda, Chaotic neural networks. Phys. Lett. A 144, 333–340 (1990)
87. W.J. Freeman, Tutorial on neurobiology: from single neurons to brain chaos. Int. J. Bifurc.

Chaos 2(3), 451–482 (1992)
88. J. Guckenheimer, R.A. Oliva, Chaos in the Hodgkin-Huxley model. SIAM J. Appl. Dyn. Syst.

1(1), 105–114 (2002)
89. J. Kuroiwa, N. Masutani, S. Nara, K. Aihara, Chaotic wandering and its sensitivity to external

input in a chaotic neural network, inProceedings of the 9th International Conference on Neural
Information Processing (ICONIP’O2), ed. by L. Wang, J.C. Rajapakse, K. Fukushima, S.Y.
Lee, X. Yao (Orchid Country Club, Singapore, 2002), pp. 353–357

90. S. Nara, P. Davis, Chaotic wandering and search in a cycle-memory neural network. Prog.
Theor. Phys. 88(5), 845–855 (1992)

91. S. Nara, P. Davis, M. Kawachi, H. Totsuji, Chaotic memory dynamics in a recurrent neural
network with cycle memories embedded by pseudo-inverse method. Int. J. Bifurc. Chaos 5(4),
1205–1212 (1995)

92. A. Potapov,M.K. Ali, Robust chaos in neural networks. Phys. Lett. A 277(6), 310–322 (2000)
93. M. Shibasaki, M. Adachi, Response to external input of chaotic neural networks based on

Newman-Watts model, in The 2012 International Joint Conference on Neural Networks, ed.
by J. Liu, C. Alippi, B. Bouchon-Meunier, G.W. Greenwood, H.A. Abbass (Brisbane, 2012),
pp. 1–7

94. C.A. Skarda, W.J. Freeman, How brains make chaos in order to make sense of the world.
Behav. Brain Sci. 10(2), 161–173 (1987)

95. I. Tsuda, Chaotic itinerancy as a dynamical basis of hermeneutics in brain and mind. World
Futures 32, 167–184 (1991)

96. X.Wang, Period-doublings to chaos in a simple neural network: an analytical proof. Complex
Syst. 5, 425–441 (1991)



References 31

97. Q. Liu, S. Zhang, Adaptive lag synchronization of chaotic Cohen-Grossberg neural networks
with discrete delays. Chaos 22(3), 033123 (2012)

98. W. Lu, T. Chen, Synchronization of coupled connected neural networks with delays. IEEE
Trans. Circuits Syst.-I: Regul. Pap. 51(12), 2491–2503 (2004)

99. W. Yu, J. Cao, W. Lu, Synchronization control of switched linearly coupled neural networks
with delay. Neurocomputing 73(4–6), 858–866 (2010)

100. R. Graves, New Larousse Encyclopedia of Mythology (Prometheus Press/Hamlyn, New York,
1968)

101. M. Bushev, Synergetics: Chaos, Order Self-Organization (World Scientific, Singapore, 1994)
102. I. Prigogine, I. Stengers, Order Out of Chaos: Man’s Dialogue with Nature (Bantam Books,

Toronto, 1984)
103. F.C. Moon, Chaotic Vibrations: An Introduction for Applied Scientists and Engineers (Wiley,

Hoboken, 2004)
104. I. Kant,Universal Natural History and Theory of the Heavens (Richer Resources Publications,

Virginia, 2008)
105. G. Nicolis, I. Prigogine, Exploring Complexity: An Introduction (W.H. Freeman, New York,

1989)
106. F. Durrenmatt, The Physicists (Grove, New York, 1964)
107. M.W. Hirsh, The dynamical systems approach to differential equations. Bull. Am. Math. Soc.

11, 1–64 (1984)
108. R. Abraham, Predictions for the Future of Differential Equations. Lecture Notes in Mathe-

matics, vol. 206 (Springer, Berlin, 1971)
109. R. Thom, Stabilité Structurelle et Morphogénèse (W.A. Benjamin, New York, 1972)
110. C.W. Hegel, Lectures on the History of Philosophy (Humanities Press, New York, 1974)
111. H. Haken, Advanced Synergetics: Instability Hierarchies of Self-Organizing Systems and

Devices (Springer, Berlin, 1983)
112. A.A. Andronov, A.A. Vitt, C.E. Khaikin, Theory of Oscillations (Pergamon Press, Oxford,

1966)
113. P. Glansdorff, I. Prigogine, Thermodynamic Theory of Structure, Stability and Fluctuations

(Wiley, London, 1971)
114. J.M.T. Thompson, H.B. Stewart, Nonlinear Dynamics and Chaos (Wiley, Chichester, 2002)
115. J.A. Davies, Mechanisms of Morphogenesis: The Creation of Biological Form (Elsevier Aca-

demic Press, Amsterdam, 2005)
116. R. Thom,Mathematical Models of Morphogenesis (Ellis Horwood Limited, Chichester, 1983)
117. B.M. Mandelbrot, The Fractal Geometry of Nature (Freeman, San Francisco, 1982)
118. B.M. Mandelbrot, Fractals: Form, Chance and Dimension (Freeman, San Francisco, 1977)
119. B. Branner, L. Keen, A. Douady, P. Blanchard, J.H. Hubbard, D. Schleicher, R.L. Devaney,

in Complex Dynamical Systems: The Mathematics Behind Mandelbrot and Julia Sets, ed. by
R.L. Devaney (American Mathematical Society, Providence, 1994)

120. J. Milnor, Dynamics in One Complex Variable (Princeton University Press, Princeton, 2006)
121. H.O. Peitgen, H. Jürgens, D. Saupe, Chaos and Fractals: New Frontiers of Science (Springer,

New York, 2004)
122. J.D.Murray,Mathematical Biology II: Spatial Models and Biomedical Applications (Springer,

New York, 2003)
123. M. Akhmet, Principles of Discontinuous Dynamical Systems (Springer, New York, 2010)
124. M.U. Akhmet, Creating a chaos in a system with relay. Int. J. Qual. Theory Differ. Equ. Appl.

3, 3–7 (2009)
125. M.U. Akhmet, Dynamical synthesis of quasi-minimal sets. Int. J. Bifur. Chaos 19, 2423–2427

(2009)
126. M.U.Akhmet, Shadowing and dynamical synthesis. Int. J. Bifur. Chaos 19, 3339–3346 (2009)
127. M.U. Akhmet, M.O. Fen, Chaotic period-doubling and OGY control for the forced Duffing

equation. Commun. Nonlinear Sci. Numer. Simul. 17, 1929–1946 (2012)
128. M.U. Akhmet, M.O. Fen, The period-doubling route to chaos in the relay system, in Proceed-

ings of Dynamic Systems and Applications, vol. 6, ed. by G.S. Ladde, N.G. Medhin, C. Peng,
M. Sambandham (Dynamic Publisher Inc., Atlanta, 2012), pp. 22–26



32 1 Introduction

129. K. Ikeda, K. Matsumoto, K. Otsuka, Maxwell-Bloch turbulence. Prog. Theor. Phys. Suppl.
99, 295 (1989)

130. K. Kaneko, Clustering, coding, switching, hierarchical ordering, and control in network of
chaotic elements. Phys. D 41, 137–172 (1990)

131. K. Kaneko, Globally coupled circle maps. Phys. D 54, 5–19 (1991)
132. K. Kaneko, I. Tsuda, Complex Systems: Chaos and Beyond, A Constructive Approach with

Applications in Life Sciences (Springer, Berlin, 2000)
133. K. Kaneko, I. Tsuda, Chaotic itinerancy. Chaos 13, 926–936 (2003)
134. T. Sauer, Chaotic itinerancy based on attractors of one-dimensional maps. Chaos 13, 947–952

(2003)
135. I. Tsuda, Dynamic link of memory–chaotic memory map in nonequilibrium neural networks.

Neural Netw. 5, 313–326 (1992)
136. W.J. Freeman, J.M. Barrie, Chaotic oscillations and the genesis of meaning in cerebral cortex,

in Temporal Coding in the Brain, ed. by G. Buzsáki, R. Llinás, W. Singer, A. Berthoz, Y.
Christen (Springer, Berlin, 1994), pp. 13–37

137. P. Kim, T. Ko, H. Jeong, K.J. Lee, S.K. Han, Emergence of chaotic itinerancy in simple
ecological systems. Phys. Rev. E 76, 1–4 (2007)

138. L.O. Chua, Chua’s circuit: ten years later. IEICETrans. Fundam. Electron. Commun. Comput.
Sci. E77-A, 1811–1822 (1994)

139. T.Kapitaniak, L.O. Chua,Hyperchaotic attractors of unidirectionally-coupledChua’s circuits.
Int. J. Bifurc. Chaos Appl. Sci. Eng. 4, 477–482 (1994)

140. H.W. Lorenz, Nonlinear Dynamical Economics and Chaotic Motion (Springer, New York,
1993)

141. J.C. Sprott,Elegant Chaos: Algebraically Simple Chaotic Flows (World Scientific Publishing,
Singapore, 2010)

142. T. Kapitaniak, Transition to hyperchaos in chaotically forced coupled oscillators. Phys. Rev.
E 47, R2975–R2978 (1993)

143. T. Kapitaniak, L.O. Chua, G. Zhong, Experimental hyperchaos in coupled Chua’s circuits.
IEEE Trans. Circuits Syst.-I: Fundam. Theory Appl. 41, 499–503 (1994)

144. J.L. Schiff, Cellular Automata: A Discrete View of the World (Wiley, Hoboken, 2008)
145. S. Smale, A mathematical model of two cells via Turing’s equation, in Some Mathematical

Questions in Biology, V, Proceedings of the Seventh Symposium on Mathematical Biology,
Mathematics and Life Sciences, vol. 6 (American Mathematical Society, Mexico, 1973), pp.
15–26

146. F. Drubi, S. Ibáñez, J.A. Rodriguez, Coupling leads to chaos. J. Differ. Equ. 239(2), 371–385
(2007)

147. F. Drubi, S. Ibáñez, J.A. Rodriguez, Singularities and chaos in coupled systems. Bull. Belg.
Math. Soc. Simon Stevin 15(5), 797–808 (2008)

148. F. Drubi, S. Ibáñez, J.A. Rodriguez, Hopf-pitchfork singularities in coupled systems. Phys.
D 240(9–10), 825–840 (2011)

149. W.-J. Yuan, X.-S. Luo, P.-Q. Jiang, B.-H.Wang, J.-Q. Fang, Transition to chaos in small-world
dynamical network. Chaos Solitons Fractals 37(3), 799–806 (2008)

150. H. Haken, Information and Self-Organization: A Macroscopic Approach to Complex Systems
(Springer, Berlin, 1988)

151. H. Haken, Brain Dynamics, Synchronization and Activity Patterns in Pulse-Coupled Neural
Nets with Delays and Noise (Springer, Berlin, 2002)

152. M.A. Vorontsov,W.B.Miller, Self-Organization in Optical Systems and Applications in Infor-
mation Technology (Springer, Berlin, 1998)

153. P. Holmes, Poincaré, celestial mechanics, dynamical-systems theory and “chaos”. Phys. Rep.,
Rev. Sect. Phys. Lett. 193, 137–163 (1990)

154. L. Shilnikov, Bifurcations and strange attractors, inProceedings of the International Congress
of Mathematicians, vol. III (Higher Education Press, Beijing, 2002), pp. 349–372

155. T. Yoshizawa, Stability Theory and the Existence of Periodic Solutions and Almost Periodic
Solutions (Springer, New York, 1975)

156. J.B. Rosser Jr., From Catastrophe to Chaos: A General Theory of Economic Discontinuities,
2nd edn. (Kluwer Academic Publishers, Norwell, 2000)



Chapter 2
Replication of Continuous Chaos
About Equilibria

To approve stable chaotic motions by utilizing the input–output analysis one needs
base-systems with attractors. The simplest attractors are equilibriums. This is why
we start with perturbation of linear systems with constant coefficients and glob-
ally asymptotically stable equilibriums. In this chapter, we introduce chaotic sets of
functions, the generator and replicator of chaos, precise description of ingredients for
Devaney and Li–Yorke chaos in continuous dynamics. Moreover, we shall discuss
morphogenesis phenomenon, hyperbolic set of functions, intermittency, chaos con-
trol, the double-scroll Chua’s attractor, and quasiperiodicity. Appropriate simulations
which confirm the theoretical results are provided. We consider the morphogenesis
concept, since it helps us to describe in the most general form the expansion of chaos,
which is not only an enlargement of the dimension of chaotic systems, but also saving
properties of chaos during the extension.

2.1 Introduction

It is known that if one considers the evolution equation u′ = L[u]+ I (t),where L[u]
is a linear operator with spectra placed in the left half of the complex plane, then
a function I (t) being considered as an input with a certain property (boundedness,
periodicity, almost periodicity) produces through the equation the output, a solution
with a similar property, boundedness/periodicity/almost periodicity [1–4].

A reasonable question appears whether it is possible to use as input a chaotic
motion and to obtain output also as a chaos of certain type. The present chapter is
devoted to answer this question even if the input is inserted nonlinearly. One must
say that we consider as an input first of all a single function, a member of a chaotic
set to obtain a solution, which is a member of another chaotic set. Besides that
we consider the chaotic sets as the input and the output. We have been forced to

© Higher Education Press, Beijing and Springer-Verlag Berlin Heidelberg 2016
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34 2 Replication of Continuous Chaos About Equilibria

consider sets of functions as inputs and outputs, since Devaney or Li–Yorke chaos
are indicated through relation of motions (sensitivity, transitiveness, proximality).
Thus, we consider the input and the output not only as single functions, but also
as collections of functions. The way of our investigation is arranged in the well-
accepted traditional mathematical fashion, but with a new and a more complex way
of arrangement of the connections between the input and the output.

Since the concept of chaos is much more complex than just single periodic or
almost periodic solutions, we have to use a special terminology for the chaos gener-
ation through the input–output mechanism, replication of chaos.

The technique of the replication used in this chapter is as follows.Weneed a source
of chaotic inputs, but mostly chaos can be obtained through solving differential or
difference equations. For this reason, we use special generator systems as the source
of chaos or chaotic functions. Nevertheless, we emphasize that the generator is not
necessarily the element of the replication procedure since it can be replaced by
another source of a chaotic input, and in applications present resultmay be considered
with, for example, chaotic inputs obtained from experimental activity. So, initially,
we take into account a systemof differential equations (the generator)which produces
chaos, and we use this system to influence in a unidirectional way, another system
(the replicator) in such a manner that the replicator mimics the same ingredients of
chaos provided to the generator. In the present chapter, we use such ingredients in
the form of period-doubling cascade, Devaney and Li–Yorke chaos. For the study
of the subject, we introduce new definitions such as chaotic sets of functions, the
generator and replicator of chaos, and precise description of ingredients for Devaney
and Li–Yorke chaos in continuous dynamics.

Throughout the chapter, the generator will be considered as a system of the form

x ′ = F(t, x), (2.1.1)

where F : R × R
m → R

m is a continuous function in all its arguments, and the
replicator is assumed to have the form

y′ = Ay + g(x(t), y), (2.1.2)

where g : Rm ×R
n → R

n is a continuous function in all its arguments, the constant
n ×n real-valued matrix A has real parts of eigenvalues all negative and the function
x(t) is a solution of system (2.1.1).

We consider, in this chapter, the linear equation

z′ = Az (2.1.3)

as the base-system. The condition on eigenvalues of matrix A implies that the base-
system admits asymptotically stable equilibrium. The generator–replicator couple,
(2.1.1)+ (2.1.2), will be called in the remaining parts of the chapter as the result-
system.
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Now, to illustrate the replication mechanism discussed in this chapter, let us con-
sider the following example. For our purposes, as the generator we shall take into
account the Duffing’s oscillator represented by the differential equation

x ′′ + 0.05x ′ + x3 = 7.5 cos t. (2.1.4)

It is known that Eq. (2.1.4) possesses a chaotic attractor [5]. Defining the variables
x1 = x and x2 = x ′, Eq. (2.1.4) can be reduced to the system

x ′
1 = x2

x ′
2 = −0.05x2 − x31 + 7.5 cos t.

(2.1.5)

Next, let us consider the following system:

x ′
3 = x4 + x1(t)

x ′
4 = −3x3 − 2x4 − 0.008x33 + x2(t).

(2.1.6)

In this form system (2.1.6) is a replicator. One has to emphasize that the linear part
of the associated with (2.1.6) non-perturbed system

x ′
3 = x4

x ′
4 = −3x3 − 2x4 − 0.008x33 ,

(2.1.7)

has eigenvalues with negative real parts and does not admit chaos.
Figure2.1 shows the trajectory of system (2.1.7) with x3(0) = −2 and x4(0) = 1.

It is seen in the figure that the behavior of the solution is non-chaotic.
To visualize the process of replication by the result-system, (2.1.5) + (2.1.6), let

us consider the Poincaré sections of the both. Bymarking the trajectory of this system
with the initial data x1(0) = 2, x2(0) = 3, x3(0) = −1, x4(0) = 1 stroboscopically

Fig. 2.1 The trajectory of
system (2.1.7) with
x3(0) = −2 and x4(0) = 1
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(a) (b)

Fig. 2.2 The picture in a not only represents the projection of the whole attractor on the x1 − x2
plane, but also the strange attractor of the generator. In a similar way, the picture introduced in b
represents the chaotic attractors of the replicator. The presented chaotic attractors of the generator
and the replicator systems reveal that the chaos replication mechanism works consummately

at times that are integermultiples of 2π,weobtain thePoincaré section and inFig. 2.2,
where the chaos replication is apparent, we illustrate its 2-dimensional projections.
Figure2.2a represents the projection of the Poincaré section on the x1 − x2 plane,
and we note that this projection is in fact the strange attractor of the generator system
(2.1.5). On the other hand, the projection on the x3 − x4 plane presented in Fig. 2.2b
is the attractor corresponding to the replicator system (2.1.6). One can see that the
attractor indicated inFig. 2.2b repeated the structure of the attractor shown inFig. 2.2a
and this result is a manifestation of the replication of chaos. One has to think about
mathematical aspects of this phenomena and in this chapter we handle this problem.

In our theoretical results, we use coupled systems in which the generator influ-
ences the replicator in a unidirectional way. In other words, the generator affects the
behavior of the replicator counterpart in such a way that the solutions of the generator
are used as an input for the latter. The possibility of making use of more than one
replicator systems with arbitrarily high dimensions in the extension mechanism is
an advantage of our procedure. Moreover, we are describing a process involving the
replication of chaos which does not occur in the course of time, but instead an instan-
taneous one. In other words, the prior chaos is mimicked in all existing replicators
such that the generating mechanism works through arranging connections between
systems not with the lapse of time.

Since we do not restrict ourselves in this chapter with a simple couple the
generator–the replicator, but get them in different combinations and numbers, hav-
ing the geometric features of chaos saved, we shall call the extension of chaos as
morphogenesis.

In the next section we will present assumptions for systems (2.1.1) and (2.1.2)
which are needed for the chaos replication, and introduce the chaotic attractors of
these systems in the functional sense.
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2.2 Preliminaries

Throughout the chapter, R and N will denote the sets of real numbers and natural
numbers, respectively. We will make use of the usual Euclidean norm for vectors
and the norm induced by the Euclidean norm for square matrices [6], that is,

‖Γ ‖ = max
{√

ς : ς is an eigenvalue of Γ T Γ
}

for any square matrix Γ with real entries, and Γ T denotes the transpose of the matrix
Γ.

Since the matrix A, which is aforementioned in system (2.1.2), is supposed to
admit eigenvalues all with negative real parts, it is easy to verify the existence of
positive numbers N and ω such that

∥
∥eAt

∥
∥ ≤ Ne−ωt , t ≥ 0. These numbers will be

used in the last condition below.
The following assumptions on systems (2.1.1) and (2.1.2) are needed throughout

the chapter:

(A1) There exists a positive number T such that the function F(t, x) satisfies the
periodicity condition

F(t + T, x) = F(t, x),

for all t ∈ R, x ∈ R
m;

(A2) There exists a positive number L0 such that

‖F(t, x1) − F(t, x2)‖ ≤ L0 ‖x1 − x2‖ ,

for all t ∈ R, x1, x2 ∈ R
m;

(A3) There exists a positive number H0 < ∞ such that

sup
t∈R,x∈Rm

‖F(t, x)‖ ≤ H0;

(A4) There exists a positive number L1 such that

‖g(x1, y) − g(x2, y)‖ ≥ L1 ‖x1 − x2‖ ,

for all x1, x2 ∈ R
m, y ∈ R

n;
(A5) There exist positive numbers L2 and L3 such that

‖g(x1, y) − g(x2, y)‖ ≤ L2 ‖x1 − x2‖ ,

for all x1, x2 ∈ R
m, y ∈ R

n, and

‖g(x, y1) − g(x, y2)‖ ≤ L3 ‖y1 − y2‖ ,
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for all x ∈ R
m, y1, y2 ∈ R

n;
(A6) There exists a positive number M0 < ∞ such that

sup
x∈Rm ,y∈Rn

‖g(x, y)‖ ≤ M0;

(A7) N L3 − ω < 0.

Remark 2.1 The results presented in the remaining parts are also true even if we
replace the nonautonomous system (2.1.1) by the autonomous equation

x ′ = F(x), (2.2.8)

where the function F : Rm → R
m is continuous with conditions which are counter-

parts of (A2) and (A3).

At the present time, systems of differential equations which are known to exhibit
chaotic behavior are either nonautonomous and periodic in time such as the Duffing
and Van der Pol oscillators or autonomous such as the Lorenz, Chua and Rössler
systems. In a similarway, in our investigations of chaos generation,we take advantage
of periodic nonautonomous systems as well as autonomous ones as generators.

Using the theory of quasilinear equations [7], one can verify that for a given
solution x(t) of system (2.1.1), there exists a unique bounded on R solution y(t) of
the system y′ = Ay + g(x(t), y), denoted by y(t) = φx(t)(t), which satisfies the
integral equation

y(t) =
∫ t

−∞
eA(t−s)g(x(s), y(s))ds. (2.2.9)

Our main assumption is the existence of a nonempty set Ax of all solutions of
system (2.1.1), uniformly bounded on R. That is, there exists a positive number H
such that sup

t∈R
‖x(t)‖ ≤ H, for all x(t) ∈ Ax .

Let us introduce the sets of functions

Ay = {

φx(t)(t) | x(t) ∈ Ax
}

, (2.2.10)

and

A = {

(x(t), φx(t)(t)) | x(t) ∈ Ax
}

. (2.2.11)

We note that for all y(t) ∈ Ay one has sup
t∈R

‖y(t)‖ ≤ M, where M = N M0

ω
.

Next, we reveal that if the set Ax is an attractor with basin Ux , that is, for each
x(t) ∈ Ux there exists x(t) ∈ Ax such that ‖x(t) − x(t)‖ → 0 as t → ∞, then the
set Ay is also an attractor in the same sense. Denote by Uy the set consisting of all
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solutions of system y′ = Ay + g(x(t), y), where x(t) ∈ Ux . In the next lemma we
specify the basin of attraction of Ay .

Lemma 2.1 Uy is a basin of Ay .

Proof Fix an arbitrary positive number ε and let y(t) ∈ Uy be a given solution of
the system y′ = Ay + g(x(t), y) for some x(t) ∈ Ux . In this case, there exists

x(t) ∈ Ax such that ‖x(t) − x(t)‖ → 0 as t → ∞. Let α = ω − N L3

ω − N L3 + N L2
and y(t) = φx(t)(t). Condition (A7) implies that the number α is positive. Under
the circumstances, one can find R0 = R0(ε) > 0 such that if t ≥ R0, then
‖x(t) − x(t)‖ < αε and N ‖y(R0) − y(R0)‖ e(N L3−ω)t < αε. The functions y(t)
and y(t) satisfy the relations

y(t) = eA(t−R0)y(R0) +
∫ t

R0

eA(t−s)g(x(s), y(s))ds,

and

y(t) = eA(t−R0)y(R0) +
∫ t

R0

eA(t−s)g(x(s), y(s))ds,

respectively. Making use of these relations, one can verify that

y(t) − y(t) = eA(t−R0)(y(R0) − y(R0))

+
∫ t

R0

eA(t−s) [g(x(s), y(s)) − g(x(s), y(s))] ds

+
∫ t

R0

eA(t−s) [g(x(s), y(s)) − g(x(s), y(s))] ds.

Therefore, we have

‖y(t) − y(t)‖ ≤ Ne−ω(t−R0) ‖y(R0) − y(R0)‖ + N L2αε

ω
e−ωt

(

eωt − eωR0
)

+N L3

∫ t

R0

e−ω(t−s) ‖y(s) − y(s)‖ ds.

Let u : [R0,∞) → [0,∞) be a function defined as u(t) = eωt ‖y(t) − y(t)‖ .

By means of this definition, we reach the inequality

u(t) ≤ NeωR0 ‖y(R0) − y(R0)‖ + N L2αε

ω

(

eωt − eωR0
)

+ N L3

∫ t

R0

u(s)ds.

Now, let ψ(t) = N L2αε

ω
eωt and φ(t) = ψ(t) + c, where
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c = NeωR0 ‖y(R0) − y(R0)‖ − N L2αε

ω
eωR0 .

Using these functions we get

u(t) ≤ φ(t) + N L3

∫ t

R0

u(s)ds.

Applying Gronwall’s Lemma [8] to the last inequality for t ≥ R0, we attain the
inequality

u(t) ≤ c + ψ(t) + N L3

∫ t

R0

eN L3(t−s)cds + N L3

∫ t

R0

eN L3(t−s)ψ(s)ds

and hence,

u(t) ≤ c + ψ(t) + c
(

eN L3(t−R0) − 1
)

+ N 2L2L3αε

ω(ω − N L3)
eωt

(

1 − e(N L3−ω)(t−R0)
)

= N L2αε

ω
eωt + N ‖y(R0) − y(R0)‖ eωR0eN L3(t−R0)

− N L2αε

ω
eωR0eN L3(t−R0) + N 2L2L3αε

ω(ω − N L3)
eωt

(

1 − e(N L3−ω)(t−R0)
)

.

Thus,

‖y(t) − y(t)‖ ≤ N L2αε

ω
+ N ‖y(R0) − y(R0)‖ e(N L3−ω)(t−R0)

− N L2αε

ω
e(N L3−ω)(t−R0) + N 2L2L3αε

ω(ω − N L3)

(

1 − e(N L3−ω)(t−R0)
)

< N ‖y(R0) − y(R0)‖ e(N L3−ω)(t−R0) + N L2αε

ω − N L3
.

Consequently, for t ≥ 2R0, we have that

‖y(t) − y(t)‖ <

(

1 + N L2

ω − N L3

)

αε = ε,

and hence ‖y(t) − y(t)‖ → 0 as t → ∞.

The proof of the lemma is completed. �

Now, let us define the set U consisting the solutions (x(t), y(t)) of system
(2.1.1)+ (2.1.2), where x(t) ∈ Ux .Next, we state the following corollary of Lemma
2.1.
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Corollary 2.1 U is a basin of A .

Proof Let (x(t), y(t)) ∈ U be a given solution of system (2.1.1)+ (2.1.2). Accord-
ing to Lemma 2.1, there exists a function (x(t), y(t)) ∈ A such that both
‖x(t) − x(t)‖ and ‖y(t) − y(t)‖ tend to 0 as t tends to ∞. Consequently,

‖(x(t), y(t)) − (x(t), y(t))‖ → 0 as t → ∞.

The proof is finalized. �

2.3 Chaotic Sets of Functions

In this section, the descriptions for the chaotic sets of continuous functions will be
introduced and the definitions of the chaotic features will be presented, both in the
Devaney’s sense and in the sense of Li–Yorke.

Let us denote by

B = {ψ(t) | ψ : R → K is continuous} (2.3.12)

a collection of functions, where K ⊂ R
q , q ∈ N, is a bounded region.

We start with the description of chaotic sets of functions in Devaney’s sense and
then continue with the Li–Yorke counterpart.

2.3.1 Devaney Set of Functions

In this part, we shall elucidate the ingredients of the chaos in Devaney’s sense for the
setB,which is introduced by (2.3.12), and the first definition is about the sensitivity
of chaotic sets of functions.

Definition 2.1 B is called sensitive if there exist positive numbers ε and Δ such
that for every ψ(t) ∈ B and for arbitrary δ > 0 there exist ψ(t) ∈ B, t0 ∈ R and an
interval J ⊂ [t0,∞), with length not less than Δ, such that

∥
∥ψ(t0) − ψ(t0)

∥
∥ < δ

and
∥
∥ψ(t) − ψ(t)

∥
∥ > ε, for all t ∈ J.

Definition 2.1 considers the inequality (>ε) over the interval J. In the Devaney’s
chaos definition for the map, the inequality is assumed for discrete moments. Let
us reveal how one can extend the inequality from a discrete point to an interval by
considering continuous flows.

In [9], it is indicated that a continuous map ϕ : Λ → Λ,with an invariant domain
Λ ⊂ R

k, k ∈ N, has sensitive dependence on initial conditions if there exists ε > 0
such that for any x ∈ Λ and any neighborhood U of x, there exist y ∈ U and a
natural number n such that ‖ϕn(x) − ϕn(y)‖ > ε.

Suppose that the setAx satisfies the definition of sensitivity in the following sense:
There exists ε > 0 such that for every x(t) ∈ Ax and arbitrary δ > 0, there exist
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x(t) ∈ Ax , t0 ∈ R and a real number ζ ≥ t0 such that ‖x(t0) − x(t0)‖ < δ and
‖x(ζ ) − x(ζ )‖ > ε.

In this case, for given x(t) ∈ Ax and δ > 0, one can find x(t) ∈ Ax and ζ ≥ t0

such that ‖x(t0) − x(t0)‖ < δ and ‖x(ζ ) − x(ζ )‖ > ε. Let Δ = ε

8H L0
and take a

number Δ1 such that Δ ≤ Δ1 ≤ ε

4H L0
. Using appropriate integral equations for

t ∈ [ζ, ζ + Δ1], it can be verified that

‖x(t) − x(t)‖ ≥ ‖x(ζ ) − x(ζ )‖ −
∥
∥
∥
∥

∫ t

ζ

[F(s, x(s)) − F(s, x(s))]ds

∥
∥
∥
∥

> ε − 2H L0Δ1

≥ ε

2
.

The last inequality confirms that Ax satisfies Definition 2.1 with ε = ε/2 and
J = [ζ, ζ + Δ1]. So the definition is a natural one. It provides more information
then discrete moments and for us it is important that the extension on the interval is
useful to prove the property for chaos extension.

In the next two definitions, we continue with the existence of a dense function in
the set of chaotic functions followed by the transitivity property.

Definition 2.2 B possesses a dense functionψ∗(t) ∈ B if for every functionψ(t) ∈
B, arbitrary small ε > 0 and arbitrary large E > 0, there exist a number ξ > 0 and
an interval J ⊂ R, with length E, such that ‖ψ(t) − ψ∗(t + ξ)‖ < ε, for all t ∈ J.

Definition 2.3 B is called transitive if it possesses a dense function.

Now, let us recall the definition of transitivity for maps [9]. A continuous map
ϕ with an invariant domain Λ ⊂ R

k, k ∈ N, possesses a dense orbit if there exists
c∗ ∈ Λ such that for each c ∈ Λ and arbitrary number ε > 0, there exist natural
numbers k0 and l0 such that

∥
∥ϕl0(c) − ϕl0+k0(c∗)

∥
∥ < ε, and maps which have dense

orbits are called transitive.
Suppose that Ax satisfies the transitivity property in the following sense. There

exists a function x∗(t) ∈ Ax such that for each x(t) ∈ Ax and arbitrary posi-
tive number ε, there exist a real number ζ0 and a natural number m0 such that
‖x(ζ0) − x∗(ζ0 + m0T )‖ < ε.

Fix an arbitrary function x(t) ∈ Ax , arbitrary small ε > 0 and arbitrary large
E > 0. Under the circumstances, one can find ζ0 ∈ R and m0 ∈ N such that
‖x(ζ0) − x∗(ζ0 + m0T )‖ < εe−L0E .

Using the condition (A2) together with the convenient integral equations that x(t)
and x∗(t) satisfy, it is easy to obtain for t ∈ [ζ0, ζ0 + E] that

∥
∥x(t) − x∗(t + m0T )

∥
∥ ≤ ∥

∥x(ζ0) − x∗(ζ0 + m0T )
∥
∥

+
∫ t

ζ0

L0
∥
∥x(s) − x∗(s + m0T )

∥
∥ ds,
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and by the help of the Gronwall–Bellman inequality [2], we get

∥
∥x(t) − x∗(t + m0T )

∥
∥ ≤ ∥

∥x(ζ0) − x∗(ζ0 + m0T )
∥
∥ eL0(t−ζ0) < ε.

The last inequality shows that the set Ax satisfies Definition 2.2 with ξ = k0T and
is transitive in accordance with Definition 2.3.

The following definition describes the density of periodic functions insideB.

Definition 2.4 B admits a dense collection G ⊂ B of periodic functions if for
every function ψ(t) ∈ B, arbitrary small ε > 0 and arbitrary large E > 0, there
exist ψ̃(t) ∈ G and an interval J ⊂ R,with length E, such that

∥
∥ψ(t) − ψ̃(t)

∥
∥ < ε,

for all t ∈ J.

Let us remind the definition of density of periodic orbits for maps [9]. The set of
periodic orbits of a continuous map ϕ with an invariant domain Λ ⊂ R

k, k ∈ N,

is called dense in Λ if for each c ∈ Λ, arbitrary positive number ε, there exist a
natural number l0 and a point c̃ ∈ Λ such that the sequence

{

ϕi (̃c)
}

is periodic and
∥
∥ϕl0(c) − ϕl0 (̃c)

∥
∥ < ε.

Let us denote by Gx the set of all periodic functions inside Ax . Suppose that Ax

satisfies density of periodic solutions as follows. For an arbitrary function x(t) ∈ Ax

and arbitrary small ε > 0 there exist a periodic function x̃(t) ∈ Gx and a number
ζ0 ∈ R such that ‖x(ζ0) − x̃(ζ0)‖ < ε.

Let us fix an arbitrary function x(t) ∈ Ax , arbitrary small ε > 0 and arbitrary
large E > 0. In that case, there exist a periodic function x̃(t) ∈ Gx and ζ0 ∈ R such
that ‖x(ζ0) − x̃(ζ0)‖ < εe−L0E .

It can be easily verified for t ∈ [ζ0, ζ0 + E] that the inequality

‖x(t) − x̃(t)‖ ≤ ‖x(ζ0) − x̃(ζ0)‖ +
∫ t

ζ0

L0 ‖x(s) − x̃(s)‖ ds,

holds, and therefore for each t from the same interval of time we have

‖x(t) − x̃(t)‖ ≤ ‖x(ζ0) − x̃(ζ0)‖ eL0(t−ζ0) < ε.

Consequently, the set Ax satisfies Definition 2.4 with J = [ζ0, ζ0 + E].
Finally,we introduce in the next definition the chaotic set of functions inDevaney’s

sense.
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Definition 2.5 The collection B of functions is called a Devaney’s chaotic set if

(D1) B is sensitive;
(D2) B is transitive;
(D3) B admits a dense collection of periodic functions.

In the next subsection, the chaotic properties of the setB will be imposed in the
sense of Li–Yorke.

2.3.2 Li–Yorke Set of Functions

The ingredients of Li–Yorke chaos for the collection of functionsB,which is defined
by (2.3.12), will be described in this part. Making use of discussions similar to the
ones made in the previous subsection, we extend, below, the definitions for the
ingredients of Li–Yorke chaos from maps [10–13] to continuous flows and we just
omit these indications here.

Definition 2.6 A couple of functions
(

ψ(t), ψ(t)
) ∈ B × B is called proximal

if for arbitrary small ε > 0 and arbitrary large E > 0, there exist infinitely many
disjoint intervals of length not less than E such that

∥
∥ψ(t) − ψ(t)

∥
∥ < ε, for each t

from these intervals.

Definition 2.7 A couple of functions
(

ψ(t), ψ(t)
) ∈ B ×B is frequently (ε0,Δ)-

separated if there exist positive numbers ε0, Δ and infinitely many disjoint intervals
of length no less than Δ, such that

∥
∥ψ(t) − ψ(t)

∥
∥ > ε0, for each t from these

intervals.

Remark 2.2 The numbers ε0 and Δ taken into account in Definition 2.7 depend on
the functions ψ(t) and ψ(t).

Definition 2.8 A couple of functions
(

ψ(t), ψ(t)
) ∈ B × B is a Li–Yorke pair

if they are proximal and frequently (ε0,Δ)-separated for some positive numbers ε0
and Δ.

Definition 2.9 An uncountable set C ⊂ B is called a scrambled set if C does not
contain any periodic functions and each couple of different functions inside C × C
is a Li–Yorke pair.

Definition 2.10 B is called a Li–Yorke chaotic set if

(LY1) There exists a positive number T0 such that B admits a periodic function
of period kT0, for any k ∈ N;

(LY2) B possesses a scrambled set C ;
(LY3) For any function ψ(t) ∈ C and any periodic function ψ(t) ∈ B, the

couple
(

ψ(t), ψ(t)
)

is frequently (ε0,Δ)—separated for some positive numbers
ε0 and Δ.
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2.4 Hyperbolic Set of Functions

Thedefinitions of stable andunstable sets of hyperbolic periodic orbits of autonomous
systems are given in [14], and information about such sets of solutions of perturbed
nonautonomous systems can be found in [15]. Moreover, homoclinic structures in
almost periodic systems were studied in [16–18]. In this section, we give a definition
for hyperbolic collection of uniformly bounded functions and before this, we start
with the descriptions of stable and unstable sets of a function.

We define the stable set of a functionψ(t) ∈ B,where the collectionB is defined
by (2.3.12), as the set of functions

W s (ψ(t)) = {u(t) ∈ B | ‖u(t) − ψ(t)‖ → 0 as t → ∞} , (2.4.13)

and, similarly, we define the unstable set of a function ψ(t) ∈ B as the set of
functions

W u (ψ(t)) = {v(t) ∈ B | ‖v(t) − ψ(t)‖ → 0 as t → −∞} . (2.4.14)

Definition 2.11 The set of functionsB is called hyperbolic if the stable and unstable
sets of each function ψ(t) ∈ B possess at least one element different from ψ(t).

Theorem 2.1 If Ax is hyperbolic, then the same is true for Ay .

Proof Fix an arbitrary positive number ε and a function y(t) = φx(t)(t) ∈ Ay . Let

α = ω − N L3

ω − N L3 + N L2
and β = ω − N L3

1 + N L2
. By condition (A7), one can verify that

the numbers α and β are both positive.
Due to hyperbolicity ofAx , the function x(t) has a nonempty stable set W s(x(t))

and a nonempty unstable set W u(x(t)).
Let us take an arbitrary function u(t) ∈ W s(x(t)). Since ‖x(t) − u(t)‖ → 0

as t → ∞ and N L3 − ω < 0, there exists a positive number R1, which depends

on ε, such that ‖x(t) − u(t)‖ < αε and e(N L3−ω)t <
ωαε

2M0N
for t ≥ R1. Let

y(t) = φu(t)(t). We shall prove that the function y(t) belongs to the stable set of
y(t).

The bounded on R functions y(t) and y(t) satisfy the relations

y(t) =
∫ t

−∞
eA(t−s)g(x(s), y(s))ds,

and

y(t) =
∫ t

−∞
eA(t−s)g(u(s), y(s))ds,

respectively, for t ≥ R1.
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Therefore, one can easily reach up the equation

y(t) − y(t) =
∫ R1

−∞
eA(t−s)[g(x(s), y(s)) − g(u(s), y(s))]ds

+
∫ t

R1

eA(t−s)
{

[g(x(s), y(s)) − g(x(s), y(s))]

+ [g(x(s), y(s)) − g(u(s), y(s))]
}

ds,

which implies that

‖y(t) − y(t)‖ ≤
∫ R1

−∞
2M0Ne−ω(t−s)ds

+
∫ t

R1

e−ω(t−s) (N L3 ‖y(s) − y(s)‖ + N L2 ‖x(s) − u(s)‖) ds

≤ 2M0N

ω
e−ω(t−R1) +

∫ t

R1

e−ω(t−s) (N L3 ‖y(s) − y(s)‖ + N L2αε) ds.

Using the Gronwall type inequality indicated in [19], we obtain for t ≥ R1 that

‖y(t) − y(t)‖ ≤ 2M0N

ω
e(N L3−ω)(t−R1) + N L2αε

ω − N L3
[1 − e(N L3−ω)(t−R1)].

For this reason, for all t ≥ 2R1, one has

‖y(t) − y(t)‖ ≤ 2M0N

ω
e(N L3−ω)R1 + N L2αε

ω − N L3
<

(

1 + N L2

ω − N L3

)

αε = ε.

The last inequality implies that‖y(t) − y(t)‖ → 0 as t → ∞.Hence, the function
y(t) belongs to the stable set W s(y(t)) of y(t).

On the other hand, let v(t) be a function inside the unstable set W u(x(t)). Since
‖x(t) − v(t)‖ tends to 0 as t → −∞, there exists a negative number R2(ε) such that
‖x(t) − v(t)‖ < βε for t ≤ R2. Let ỹ(t) = φv(t)(t). Now, our purpose is to show
that ỹ(t) belongs to the unstable set of y(t).

By the help of the integral equations

y(t) =
∫ t

−∞
eA(t−s)g(x(s), y(s))ds,

and

ỹ(t) =
∫ t

−∞
eA(t−s)g(v(s), ỹ(s))ds,
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we obtain that

y(t) − ỹ(t) =
∫ t

−∞
eA(t−s)[g(x(s), y(s)) − g(v(s), y(s))]ds

+
∫ t

−∞
eA(t−s)[g(v(s), y(s)) − g(v(s), ỹ(s))]ds.

Therefore, for t ≤ R2, one has

‖y(t) − ỹ(t)‖ ≤
∫ t

−∞
N L2e−ω(t−s) ‖x(t) − v(t)‖ ds

+
∫ t

−∞
e−ω(t−s)N L3 ‖y(s) − ỹ(s)‖ ds

≤ N L2βε

ω
+ N L3

ω
sup
t≤R2

‖y(t) − ỹ(t)‖ .

Hence,

sup
t≤R2

‖y(t) − ỹ(t)‖ ≤ N L2βε

ω
+ N L3

ω
sup
t≤R2

‖y(t) − ỹ(t)‖

and

sup
t≤R2

‖y(t) − ỹ(t)‖ ≤ N L2βε

ω − N L3
< ε.

The last inequality confirms that ‖y(t) − ỹ(t)‖ → 0 as t → −∞. Therefore ỹ(t) ∈
W u(y(t)).

Consequently, Ay is hyperbolic since y(t) possesses both nonempty stable and
unstable sets, denoted by W s(y(t)) and W u(y(t)), respectively. The theorem is
proved. �

Theorem 2.1 implies the following corollary:

Corollary 2.2 If Ax is hyperbolic, then the same is true for A .

Next,we continuewith another corollary ofTheorem2.1, following the definitions
of homoclinic and heteroclinic functions.

A function ψ1(t) ∈ B is said to be homoclinic to the function ψ0(t) ∈ B,

ψ0(t) �= ψ1(t), if ψ1(t) ∈ W s (ψ0(t)) ∩ W u (ψ0(t)) .

On the other hand, a function ψ2(t) ∈ B is called heteroclinic to the functions
ψ0(t), ψ1(t) ∈ B, ψ0(t) �= ψ2(t), ψ1(t) �= ψ2(t), if ψ2(t) ∈ W s (ψ0(t)) ∩
W u (ψ1(t)) .

Corollary 2.3 If x1(t) ∈ Ax is homoclinic to the function x0(t) ∈ Ax , x0(t) �= x(t),
then φx1(t)(t) is homoclinic to the function φx0(t)(t).
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Similarly, if x2(t) ∈ Ax is heteroclinic to the functions x0(t), x1(t) ∈ Ax , x0(t) �=
x2(t), x1(t) �= x2(t), then φx2(t)(t) is heteroclinic to the functions φx0(t)(t), φx1(t)(t).

In the next section, we theoretically prove that the setAy replicates the ingredients
of Devaney’s chaos provided to the set Ax , and as a consequence the same is valid
also for the setA . The same problem for the chaos in the sense of Li–Yorke will be
handled in Sect. 2.6.

2.5 Replication of Devaney’s Chaos

In this part, we will prove theoretically that the ingredients of Devaney’s chaos
furnished to the set Ax are all replicated by the set Ay .

Suppose that the function g(x, y) which is used in the right hand side of system
(2.1.2) has component functions g j (x, y), j = 1, 2, . . . , n. That is,

g(x, y) =

⎛

⎜
⎜
⎜
⎝

g1(x, y)

g2(x, y)
...

gn(x, y)

⎞

⎟
⎟
⎟
⎠

,

where each g j (x, y), j = 1, 2, . . . , n, is a real valued function.
We start with the following assertion, which will be needed in the proof of Lemma

2.3.

Lemma 2.2 The set of functions

F = {

g j (x(t), φx(t)(t)) − g j (x(t), φx(t)(t)) | 1 ≤ j ≤ n, x(t) ∈ Ax , x(t) ∈ Ax
}

is an equicontinuous family on R.

Proof Let us define a function h : Rm × R
m × R

n → R
n by the formula

h(x1, x2, x3) = g(x1, x3) − g(x2, x3).

Being continuous on the compact region

D = {

(x1, x2, x3) ∈ R
m × R

m × R
n | ‖x1‖ ≤ H, ‖x2‖ ≤ H, ‖x3‖ ≤ M

}

,

the function h(x1, x2, x3) is uniformly continuous on D .

Fix an arbitrary positive number ε. There exists a number δ1 = δ1(ε) > 0 such
that for all

(

x01 , x02 , x03
)

,
(

x11 , x12 , x13
) ∈ R

m × R
m × R

n with

∥
∥
∥

(

x01 , x02 , x03

)

−
(

x11 , x12 , x13

)∥
∥
∥ < δ1,



2.5 Replication of Devaney’s Chaos 49

the inequality
∥
∥
∥h
(

x01 , x02 , x03

)

− h
(

x11 , x12 , x13

)∥
∥
∥ < ε

holds.
Since

∥
∥x ′(t)

∥
∥ ≤ H0 for each x(t) ∈ Ax , the set Ax is an equicontinuous family

on R. Therefore, there exists a number δ2 = δ2(δ1) > 0 such that for all t1, t2 ∈ R

satisfying |t1 − t2| < δ2 we have ‖x(t1) − x(t2)‖ < δ1/3 for all x(t) ∈ Ax .

Similarly, the set Ay is also an equicontinuous family on R, since
∥
∥y′(t)

∥
∥ ≤

‖A‖ M + M0 for each y(t) ∈ Ay . Thus, one can find a number δ3 = δ3(δ1) > 0 such
that for all t1, t2 ∈ R with |t1 − t2| < δ3, the inequality ‖y(t1) − y(t2)‖ < δ1/3 is
valid for all y(t) ∈ Ay .

In this case, for all t1, t2 ∈ R with |t1 − t2| < min {δ2, δ3}, one has
∥
∥
(

x(t1), x(t1), φx(t)(t1)
)− (

x(t2), x(t2), φx(t)(t2)
)∥
∥

≤ ‖x(t1) − x(t2)‖ + ‖x(t1) − x(t2)‖ + ∥
∥φx(t)(t1) − φx(t)(t2)

∥
∥

< δ1,

for all x(t), x(t) ∈ Ax .

Hence, taking δ = min {δ2, δ3}, one can confirm for all t1, t2 ∈ Rwith |t1 − t2| <

δ that the inequality

∥
∥
∥

(

g j (x(t1), φx(t)(t1)) − g j (x(t1), φx(t)(t1))
)

− (g j (x(t2), φx(t)(t2)) − g j (x(t2), φx(t)(t2))
)
∥
∥
∥

≤ ∥
∥h
(

x(t1), x(t1), φx(t)(t1)
)− h

(

x(t2), x(t2), φx(t)(t2)
)∥
∥

< ε

holds for each j = 1, 2, . . . , n and x(t), x(t) ∈ Ax . Consequently, the family F is
equicontinuous on R. �

We continue with replication of sensitivity in the next lemma.

Lemma 2.3 Sensitivity of the set Ax implies the same feature for the set Ay .

Proof Fix an arbitrary δ > 0 and let y(t) ∈ Ay be a given solution of system (2.1.2).
In this case, there exists x(t) ∈ Ax such that y(t) = φx(t)(t).

Let us choose a number ε = ε(δ) > 0 small enough which satisfies the inequality

(

1 + N L2

ω − N L3

)

ε < δ.

Then take R = R(ε) < 0 sufficiently large in absolute value such that

2M0N

ω
e(ω−N L3)R < ε,
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and let δ1 = δ1(ε, R) = εeL0R . Since the set of functions Ax is sensitive, there
exist positive numbers ε0 and Δ such that the inequalities ‖x(t0) − x(t0)‖ < δ1 and
‖x(t) − x(t)‖ > ε0, t ∈ J, hold for some solution x(t) ∈ Ax , a number t0 ∈ R and
an interval J ⊂ [t0,∞) whose length is not less than Δ.

Using the couple of integral equations

x(t) = x(t0) +
∫ t

t0
F(s, x(s))ds,

x(t) = x(t0) +
∫ t

t0
F(s, x(s))ds

together with condition (A2), one can see that the inequality

‖x(t) − x(t)‖ ≤ ‖x(t0) − x(t0)‖ +
∣
∣
∣
∣

∫ t

t0
L0 ‖x(s) − x(s)‖ ds

∣
∣
∣
∣

holds for t ∈ [t0 + R, t0]. Applying the Gronwall–Bellman inequality [2], we obtain
that

‖x(t) − x(t)‖ ≤ ‖x(t0) − x(t0)‖ eL0|t−t0|

and therefore ‖x(t) − x(t)‖ < ε for t ∈ [t0 + R, t0].
Let us denote y(t) = φ x(t)(t). First, we will show that ‖y(t0) − y(t0)‖ < δ.

The functions y(t) and y(t) satisfy the relations

y(t) =
∫ t

−∞
eA(t−s)g(x(s), y(s))ds

and

y(t) =
∫ t

−∞
eA(t−s)g(x(s), y(s))ds,

respectively. Therefore,

y(t) − y(t) =
∫ t

−∞
eA(t−s)[g(x(s), y(s)) − g(x(s), y(s))]ds

and hence we obtain that
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‖y(t) − y(t)‖ ≤
∫ t

t0+R
Ne−ω(t−s) ‖g(x(s), y(s)) − g(x(s), y(s))‖ ds

+
∫ t

t0+R
Ne−ω(t−s) ‖g(x(s), y(s)) − g(x(s), y(s))‖ ds

+
∫ t0+R

−∞
Ne−ω(t−s) ‖g(x(s), y(s)) − g(x(s), y(s))‖ ds.

Since ‖x(t) − x(t)‖ < ε for t ∈ [t0 + R, t0], one has

‖y(t) − y(t)‖ ≤ N L3

∫ t

t0+R
e−ω(t−s) ‖y(s) − y(s)‖ ds

+ N L2ε

ω
e−ωt (eωt − eω(t0+R)) + 2M0N

ω
e−ω(t−t0−R).

Now, let us introduce the functions u(t) = eωt ‖y(t) − y(t)‖ , k(t) = N L2ε

ω
eωt

and h(t) = c + k(t), where c =
(
2M0N

ω
− N L2ε

ω

)

eω(t0+R).

These definitions give us the inequality

u(t) ≤ h(t) +
∫ t

t0+R
N L3u(s)ds.

Applying Lemma 2.2 [20] to the last inequality, we achieve that

u(t) ≤ h(t) + N L3

∫ t

t0+R
eN L3(t−s)h(s)ds.

Therefore, on the time interval [t0 + R, t0], the inequality

u(t) ≤ c + k(t) + c
(

eN L3(t−t0−R) − 1
)

+ N 2L2L3ε

ω
eN L3t

∫ t

t0+R
e(ω−N L3)sds

= N L2ε

ω
eωt +

(
2M0N

ω
− N L2ε

ω

)

eωReN L3(t−t0−R)

+ N 2L2L3ε

ω(ω − N L3)
eωt

[

1 − e(N L3−ω)(t−t0−R)
]

holds.
The last inequality leads to
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‖y(t) − y(t)‖ ≤ N L2ε

ω − N L3
+ 2M0N

ω
e(N L3−ω)(t−t0−R),

and consequently we obtain that

‖y(t0) − y(t0)‖ ≤ N L2ε

ω − N L3
+ 2M0N

ω
e(ω−N L3)R

<

(

1 + N L2

ω − N L3

)

ε

< δ.

In the remaining part of the proof, we will show the existence of a positive number
ε1 and an interval J 1 ⊂ J, with a fixed length which is independent of y(t), y(t) ∈
Ay, such that the inequality ‖y(t) − y(t)‖ > ε1 holds for all t ∈ J 1.

According to Lemma 2.2, there exists a positive number τ < Δ, independent of
the functions x(t), x(t) ∈ Ax , y(t), y(t) ∈ Ay, such that for any t1, t2 ∈ R with
|t1 − t2| < τ the inequality

∣
∣
∣

(

g j (x(t1), y(t1)) − g j (x(t1), y(t1))
)

− (g j (x(t2), y(t2)) − g j (x(t2), y(t2))
)
∣
∣
∣

<
L1ε0

2n

(2.5.15)

holds, for all 1 ≤ j ≤ n.

Condition (A4) implies that, for all t ∈ J, the inequality

‖g(x(t), y(t)) − g(x(t), y(t))‖ ≥ L1 ‖x(t) − x(t)‖

is satisfied. Therefore, for each t ∈ J, there exists an integer j0 = j0(t), 1 ≤ j0 ≤ n,

such that

∣
∣g j0(x(t), y(t)) − g j0(x(t), y(t))

∣
∣ ≥ L1

n
‖x(t) − x(t)‖ .

Otherwise, if there exists s ∈ J such that for all 1 ≤ j ≤ n, the inequality

∣
∣g j (x (s) , y (s)) − g j (x(s), y(s))

∣
∣ <

L1

n
‖x(s) − x(s)‖

holds, then one encounters with a contradiction since

‖g(x(s), y(s)) − g(x(s), y(s))‖ ≤
n
∑

j=1

∣
∣g j (x(s), y(s)) − g j (x(s), y(s))

∣
∣

< L1 ‖x(s) − x(s)‖ .
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Now, let s0 be the midpoint of the interval J and θ = s0 − τ/2. One can find an
integer j0 = j0(s0), 1 ≤ j0 ≤ n, such that

∣
∣g j0 (x(s0), y(s0)) − g j0 (x(s0), y(s0))

∣
∣ ≥ L1

n
‖x(s0) − x(s0)‖ >

L1ε0

n
. (2.5.16)

On the other hand, making use of inequality (2.5.15), for all t ∈ [θ, θ + τ ] we
have

∣
∣g j0 (x(s0), y(s0)) − g j0 (x(s0), y(s0))

∣
∣− ∣

∣g j0 (x(t), y(t)) − g j0 (x(t), y(t))
∣
∣

≤ ∣
∣
(

g j0 (x(t), y(t)) − g j0 (x(t), y(t))
)− (

g j0 (x(s0), y(s0)) − g j0 (x(s0), y(s0))
)∣
∣

<
L1ε0

2n
.

Therefore, by means of (2.5.16), we obtain that the inequality

∣
∣g j0 (x(t), y(t)) − g j0 (x(t), y(t))

∣
∣

>
∣
∣g j0 (x(s0), y(s0)) − g j0 (x(s0), y(s0))

∣
∣− L1ε0

2n

>
L1ε0

2n

(2.5.17)

holds for all t ∈ [θ, θ + τ ] .
By applying the mean value theorem for integrals, one can find s1, s2, . . . , sn ∈

[θ, θ + τ ] such that

∫ θ+τ

θ

[g(x(s), y(s)) − g(x(s), y(s))] ds

=

⎛

⎜
⎜
⎜
⎝

τ [g1(x(s1), y(s1)) − g1(x(s1), y(s1))]
τ [g2(x(s2), y(s2)) − g2(x(s2), y(s2))]

...

τ [gn(x(sn), y(sn)) − gn(x(sn), y(sn))]

⎞

⎟
⎟
⎟
⎠

.

Thus, using (2.5.17), one can verify that

∥
∥
∥
∥

∫ θ+τ

θ

[g(x(s), y(s)) − g(x(s), y(s))] ds

∥
∥
∥
∥

≥ τ
∣
∣g j0(x(s j0), y(s j0)) − g j0(x(s j0), y(s j0))

∣
∣

>
τ L1ε0

2n
.

(2.5.18)

It is clear that, for t ∈ [θ, θ + τ ], the solutions y(t) and y(t) satisfy the integral
equations
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y(t) = y(θ) +
∫ t

θ

Ay(s)ds +
∫ t

θ

g(x(s), y(s))ds,

and

y(t) = y(θ) +
∫ t

θ

Ay(s)ds +
∫ t

θ

g(x(s), y(s))ds,

respectively, and herewith the equation

y(t) − y(t) = (y(θ) − y(θ)) +
∫ t

θ

A(y(s) − y(s))ds

+
∫ t

θ

[g(x(s), y(s)) − g(x(s), y(s))]ds

+
∫ t

θ

[g(x(s), y(s)) − g(x(s), y(s))]ds

holds. Hence, we have the inequality

‖y(θ + τ) − y(θ + τ)‖ ≥
∥
∥
∥
∥

∫ θ+τ

θ

[g(x(s), y(s)) − g(x(s), y(s))]ds

∥
∥
∥
∥

−‖y(θ) − y(θ)‖ −
∫ θ+τ

θ

‖A‖ ‖y(s) − y(s)‖ ds

−
∫ θ+τ

θ

L3 ‖y(s) − y(s)‖ ds.

(2.5.19)

Now, assume that max
t∈[θ,θ+τ ] ‖y(t) − y(t)‖ ≤ τ L1ε0

2n[2 + τ(L3 + ‖A‖)] . In the present
case, one encounters with a contradiction since, by means of the inequalities (2.5.18)
and (2.5.19), we have

max
t∈[θ,θ+τ ] ‖y(t) − y(t)‖ ≥ ‖y(θ + τ) − y(θ + τ)‖

>
τ L1ε0

2n
− [1 + τ(L3 + ‖A‖)] max

t∈[θ,θ+τ ] ‖y(t) − y(t)‖

≥ τ L1ε0

2n[2 + τ(L3 + ‖A‖)] .

Therefore, one can see that the inequality

max
t∈[θ,θ+τ ] ‖y(t) − y(t)‖ >

τ L1ε0

2n[2 + τ(L3 + ‖A‖)]
is valid.
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Suppose that at a point η ∈ [θ, θ + τ ], the real valued function ‖y(t) − y(t)‖
takes its maximum on the interval [θ, θ + τ ]. That is,

max
t∈[θ,θ+τ ] ‖y(t) − y(t)‖ = ‖y(η) − y(η)‖ .

For t ∈ [θ, θ + τ ], by virtue of the integral equations

y(t) = y(η) +
∫ t

η

Ay(s)ds +
∫ t

η

g(x(s), y(s))ds,

and

y(t) = y(η) +
∫ t

η

Ay(s)ds +
∫ t

η

g(x(s), y(s))ds,

we obtain

y(t) − y(t) = (y(η) − y(η)) +
∫ t

η

A(y(s) − y(s))ds

+
∫ t

η

[g(x(s), y(s)) − g(x(s), y(s))]ds.

Define

τ 1 = min

{
τ

2
,

τ L1ε0

8n(M ‖A‖ + M0)[2 + τ(L3 + ‖A‖)]
}

and let

θ1 =
{

η, if η ≤ θ + τ/2
η − τ 1, if η > θ + τ/2

.

We note that the interval J 1 = [θ1, θ1 + τ 1] is a subset of [θ, θ + τ ] and hence of J.

For t ∈ J 1, we have that

‖y(t) − y(t)‖ ≥ ‖y(η) − y(η)‖ −
∣
∣
∣
∣

∫ t

η

‖A‖ ‖y(s) − y(s)‖ ds

∣
∣
∣
∣

−
∣
∣
∣
∣

∫ t

η

‖g(x(s), y(s)) − g(x(s), y(s))‖ ds

∣
∣
∣
∣

>
τ L1ε0

2n[2 + τ(L3 + ‖A‖)] − 2τ 1(M ‖A‖ + M0)

≥ τ L1ε0

4n[2 + τ(L3 + ‖A‖)] .

Consequently, the inequality ‖y(t) − y(t)‖ > ε1 holds for t ∈ J 1, where
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ε1 = τ L1ε0

4n[2 + τ(L3 + ‖A‖)] ,

and the length of the interval J 1 does not depend on the functions x(t), x(t) ∈ Ax .

The proof of the lemma is finalized. �

Through Lemma 2.3, we mention the replication of sensitivity feature from
the set of functions Ax to Ay, that is, from the generator system to the replica-
tor counterpart. In a similar way, it is reasonable to analyze the sensitivity of the
set of functions A , which is defined through Eq. (2.2.11). In the present case, we
shall say that the set A is sensitive provided that Ay is sensitive. This descrip-
tion is a natural one since, otherwise, the inequality ‖x(t) − x(t)‖ > ε0 implies
that

∥
∥
(

x(t), φx(t)(t)
)− (

x(t), φ x(t)(t)
)∥
∥ > ε0 in the same interval of time, which

already signifies sensitivity of A . But in replication of chaos, the crucial idea is
the extension of sensitivity not only by the result-system, but also by the replicator,
and one should understand sensitivity of the result-system as a property which is
equivalent to the sensitivity of the replicator. According to this explanation, we note
that if Ax is sensitive, then Lemma 2.3 implies the same feature for the set Ay, and
hence for the set A .

Now, let us illustrate the replication of sensitivity through an example. It is known
that the Lorenz system

x ′
1 = σ (−x1 + x2)

x ′
2 = −x2 + r x1 − x1x3

x ′
3 = −bx3 + x1x2,

(2.5.20)

with the coefficients σ = 10, b = 8/3, r = 28 admits sensitivity [21]. We use
system (2.5.20) with the specified coefficients as the generator and constitute the
6-dimensional result-system

x ′
1 = 10(−x1 + x2)

x ′
2 = −x2 + 28x1 − x1x3

x ′
3 = − 8

3 x3 + x1x2
x ′
4 = −5x4 + x3

x ′
5 = −2x5 + 0.0002(x2 − x5)3 + 4x2

x ′
6 = −3x6 − 3x1.

(2.5.21)

When system (2.5.21) is considered in the form of system (2.1.1)+ (2.1.2), one
can see that the diagonal matrix A whose entries on the diagonal are −5,−2,−3
satisfies the inequality

∥
∥eAt

∥
∥ ≤ Ne−ωt with the coefficients N = 1 and ω = 2. We

note that the function g : R3 × R
3 → R

3 defined as

g(x1, x2, x3, x4, x5, x6) =
(

x3, 0.0002(x2 − x5)
3 + 4x2,−3x1

)
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(a) (b)

Fig. 2.3 Replication of sensitivity in the result-system (2.5.21). a 3-dimensional projection in the
x1 − x2 − x3 space. b 3-dimensional projection in the x4 − x5 − x6 space. The sensitivity property
is observable both in (a) and (b) such that the trajectories presented by blue and red colors move
together in the first stage and then diverge. In other words, the sensitivity property of the generator
system is mimicked by the replicator counterpart

provides the conditions (A4) and (A5) with constants L1 = 1/
√
3, L2 = 11

√
3/2

and L3 = 3/2 since the chaotic attractor of system (2.5.21) is inside a compact
region such that |x2| ≤ 30 and |x5| ≤ 50. Consequently, system (2.5.21) satisfies
the condition (A7).

In Fig. 2.3, one can see the 3-dimensional projections in the x1 − x2 − x3 and
x4 − x5 − x6 spaces of two different trajectories of the result-system (2.5.21) with
adjacent initial conditions, such that one of them is in blue color and the other
in red color. For the trajectory with blue color, we make use of the initial data
x1(0) = −8.57, x2(0) = −2.39, x3(0) = 33.08, x4(0) = 5.32, x5(0) = 10.87,
x6(0) = −6.37 and for the one with red color, we use the initial data x1(0) = −8.53,
x2(0) = −2.47, x3(0) = 33.05, x4(0) = 5.33, x5(0) = 10.86, x6(0) = −6.36.
In the simulation, the trajectories move on the time interval [0, 3]. The results seen
in Fig. 2.3 supports our theoretical results indicated in Lemma 2.3 such that the
replicator system, likewise the generator counterpart, admits the sensitivity feature.
That is, the solutions of both the generator and the replicator given by blue and red
colors diverge, even though they start and move close to each other in the first stage.

In the next assertion we continue with the replication of transitivity.

Lemma 2.4 Transitivity of Ax implies the same feature for Ay .

Proof Fix an arbitrary small ε > 0, an arbitrary large E > 0 and let y(t) ∈ Ay be
a given function. Arising from the description (2.2.10) of the set Ay, there exists a

function x(t) ∈ Ax such that y(t) = φx(t)(t). Let γ = ω(ω − N L3)

2M0N (ω − N L3) + N L2ω
.

Condition (A7) guarantees that γ is positive. Since there exists a dense solution
x∗(t) ∈ Ax , one can find ξ > 0 and an interval J ⊂ R with length E such that
‖x(t) − x∗(t + ξ)‖ < γε for all t ∈ J. Without loss of generality, assume that J is
a closed interval, that is, J = [a, a + E] for some real number a.
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Let y∗(t) = φx∗(t)(t). For t ∈ J, the bounded on R solutions y(t) and y∗(t)
satisfy the relations

y(t) =
∫ t

−∞
eA(t−s)g(x(s), y(s))ds,

and

y∗(t) =
∫ t

−∞
eA(t−s)g(x∗(s), y∗(s))ds,

respectively. The second equation above implies that

y∗(t + ξ) =
∫ t+ξ

−∞
eA(t+ξ−s)g(x∗(s), y∗(s))ds.

Using the transformation s = s − ξ, and replacing s by s again, it is easy to verify
that

y∗(t + ξ) =
∫ t

−∞
eA(t−s)g(x∗(s + ξ), y∗(s + ξ))ds.

Therefore, for t ∈ J, we have that

y(t) − y∗(t + ξ) =
∫ a

−∞
eA(t−s)[g(x(s), y(s)) − g(x∗(s + ξ), y∗(s + ξ))]ds

+
∫ t

a
eA(t−s)[g(x(s), y(s)) − g(x(s), y∗(s + ξ))]ds

+
∫ t

a
eA(t−s)[g(x(s), y∗(s)) − g(x∗(s + ξ), y∗(s + ξ))]ds,

which implies the inequality

∥
∥y(t) − y∗(t + ξ)

∥
∥ ≤

∫ a

−∞
2M0Ne−ω(t−s)ds

+
∫ t

a
N L3e−ω(t−s)

∥
∥y(s) − y∗(s + ξ)

∥
∥ ds

+
∫ t

a
N L2e−ω(t−s)

∥
∥x(s) − x∗(s + ξ)

∥
∥ ds

≤ 2M0N

ω
e−ω(t−a) + N L2γ ε

ω
e−ωt (eωt − eωa)

+
∫ t

a
N L3e−ω(t−s)

∥
∥y(s) − y∗(s + ξ)

∥
∥ ds.
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Hence, we get

eωt
∥
∥y(t) − y∗(t + ξ)

∥
∥ ≤ 2M0N

ω
eωa + N L2γ ε

ω

(

eωt − eωa)

+
∫ t

a
N L3eωs

∥
∥y(s) − y∗(s + ξ)

∥
∥ ds.

Through the implementation of Lemma 2.2 [20] to the last inequality, we obtain

eωt
∥
∥y(t) − y∗(t + ξ)

∥
∥ ≤ 2M0N

ω
eωa + N L2γ ε

ω

(

eωt − eωa)

+
∫ t

a
N L3

[
2M0N

ω
eωa + N L2γ ε

ω

(

eωs − eωa)
]

eN L3(t−s)ds

= N L2γ ε

ω
eωt +

(
2M0N

ω
− N L2γ ε

ω

)

eωaeN L3(t−a)

+ N 2L2L3γ ε

ω(ω − N L3)
eN L3t

(

e(ω−N L3)t − e(ω−N L3)a
)

.

Multiplying both sides by e−ωt , one can attain that

∥
∥y(t) − y∗(t)

∥
∥ ≤ 2M0N

ω
e(N L3−ω)(t−a)

+
(

N L2γ ε

ω
+ N 2L2L3γ ε

ω(ω − N L3)

)(

1 − e(N L3−ω)(t−a)
)

= 2M0N

ω
e(N L3−ω)(t−a) + N L2γ ε

ω − N L3

(

1 − e(N L3−ω)(t−a)
)

.

Now, suppose that the number E is sufficiently large such that

E >
2

ω − N L3
ln

(
1

γ ε

)

.

If t ∈ [a + E/2, a + E] , then it is true that

e(N L3−ω)(t−a) ≤ e(N L3−ω) E
2 < γε.

As a result, we have

∥
∥y(t) − y∗(t + ξ)

∥
∥ <

[
2M0N

ω
+ N L2

ω − N L3

]

γ ε = ε,

for t ∈ J1 = [a1, a1 + E1] , where a1 = a + E/2 and E1 = E/2. Consequently,
the set Ay is transitive in compliance with Definition 2.3.
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The lemma is proved. �

The extension of the last ingredient of chaos in the sense of Devaney is presented
in the following lemma:

Lemma 2.5 If Ax admits a dense collection of periodic functions, then the same is
true for Ay .

Proof Fix a function y(t) = φx(t)(t) ∈ Ay, an arbitrary small number ε > 0 and

an arbitrary large number E > 0. Let γ = ω(ω − N L3)

2M0N (ω − N L3) + N L2ω
, which is a

positive number by condition (A7). Suppose that Gx is a dense collection of periodic
functions inside Ax . In this case, there exist x̃(t) ∈ Gx and an interval J ⊂ R with
length E such that ‖x(t) − x̃(t)‖ < γε, for all t ∈ J. Without loss of generality,
assume that J is a closed interval, that is, J = [a, a + E] for some a ∈ R.

We note that by condition (A4) there is a one-to-one correspondence between the
sets Gx and

Gy = {

φx(t)(t) | x(t) ∈ Gx
}

, (2.5.22)

such that if x(t) ∈ Gx is periodic then φx(t)(t) ∈ Gy is also periodic with the same
period, and vice versa. Therefore, Gy ⊂ Ay is a collection of periodic functions and
in the proof our aim is to verify that the set Gy is dense in Ay .

Let ỹ(t) = φx̃(t)(t), which clearly belongs to the set Gy . Making use of the
relations

y(t) =
∫ t

−∞
eA(t−s)g(x(s), y(s))ds,

and

ỹ(t) =
∫ t

−∞
eA(t−s)g(̃x(s), ỹ(s))ds,

for t ∈ J, we attain that

y(t) − ỹ(t) =
∫ a

−∞
eA(t−s)[g(x(s), y(s)) − g(̃x(s), ỹ(s))]ds

+
∫ t

a
eA(t−s)[g(x(s), y(s)) − g(x(s), ỹ(s))]ds

+
∫ t

a
eA(t−s)[g(x(s), ỹ(s)) − g(̃x(s), ỹ(s))]ds.

The last equation implies that
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‖y(t) − ỹ(t)‖ ≤
∫ a

−∞
2M0Ne−ω(t−s)ds

+
∫ t

a
N L3e−ω(t−s) ‖y(s) − ỹ(s)‖ ds

+
∫ t

a
N L2e−ω(t−s) ‖x(s) − x̃(s)‖ ds

≤ 2M0N

ω
e−ω(t−a) + N L2γ ε

ω
e−ωt (eωt − eωa)

+
∫ t

a
N L3e−ω(t−s) ‖y(s) − ỹ(s)‖ ds.

Hence, we have

eωt ‖y(t) − ỹ(t)‖ ≤ 2M0N

ω
eωa + N L2γ ε

ω

(

eωt − eωa)

+
∫ t

a
N L3eωs ‖y(s) − ỹ(s)‖ ds.

Application of Lemma 2.2 [20] to the last inequality yields

eωt ‖y(t) − ỹ(t)‖ ≤ 2M0N

ω
eωa + N L2γ ε

ω

(

eωt − eωa)

+
∫ t

a
N L3

[
2M0N

ω
eωa + N L2γ ε

ω

(

eωs − eωa)
]

eN L3(t−s)ds

= N L2γ ε

ω
eωt +

(
2M0N

ω
− N L2γ ε

ω

)

eωaeN L3(t−a)

+ N 2L2L3γ ε

ω(ω − N L3)
eN L3t

(

e(ω−N L3)t − e(ω−N L3)a
)

.

Multiplying both sides by e−ωt , we obtain that

‖y(t) − ỹ(t)‖ ≤ 2M0N

ω
e(N L3−ω)(t−a)

+
(

N L2γ ε

ω
+ N 2L2L3γ ε

ω(ω − N L3)

)(

1 − e(N L3−ω)(t−a)
)

= 2M0N

ω
e(N L3−ω)(t−a) + N L2γ ε

ω − N L3

(

1 − e(N L3−ω)(t−a)
)

.

Suppose that the number E is sufficiently large such that

E >
2

ω − N L3
ln

(
1

γ ε

)

.
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If a + E

2
≤ t ≤ a + E, then one has e(N L3−ω)(t−a) ≤ e(N L3−ω)E/2 < γε. Conse-

quently, the inequality

‖y(t) − ỹ(t)‖ <

(
2M0N

ω
+ N L2

ω − N L3

)

γ ε = ε,

holds for t ∈ J1 = [a1, a1 + E1] , where a1 = a + E/2 and E1 = E/2.
The proof of the lemma is accomplished. �

We end up the present part by stating the following theorem and its immediate
corollary, which can be verified as consequences of Lemmas2.3, 2.4, and 2.5.

Theorem 2.2 If the set Ax is Devaney’s chaotic, then the same is true for the set
Ay .

Corollary 2.4 If the setAx is Devaney’s chaotic, then A is chaotic in the same way.

In the next part, the replication of chaos in theLi–Yorke sense is taken into account.

2.6 Extension of Li–Yorke Chaos

Our aim in this section is to prove that ifAx is chaotic in the sense of Li–Yorke, then
the same is valid for the set Ay, and consequently for the set A .

We start by indicating the following assertion, which presents the replication of
proximality feature in accordance with Definition 2.6.

Lemma 2.6 If a couple of functions (x(t), x(t)) ∈ Ax × Ax is proximal, then the
same is true for the couple

(

φx(t)(t), φx(t)(t)
) ∈ Ay × Ay .

Proof Fix an arbitrary small positive number ε and an arbitrary large positive num-

ber E . Define γ = ω(ω − N L3)

2M0N (ω − N L3) + N L2ω
. Condition (A7) implies that γ is

positive. Because a given couple of functions (x(t), x(t)) ∈ Ax × Ax is proximal,
one can find a sequence of real numbers {Ei } satisfying Ei ≥ E for each i ∈ N, and
a sequence {ai } , ai → ∞ as i → ∞, such that we have ‖x(t) − x(t)‖ < γε, for
each t from the intervals Ji = [ai , ai + Ei ], i ∈ N, and Ji ∩ J j = ∅whenever i �= j.

Let us fix an arbitrary natural number i. Since the functions y(t) = φx(t)(t) ∈ Ay

and y(t) = φ x(t)(t) ∈ Ay satisfy the relations

y(t) =
∫ t

−∞
eA(t−s)g(x(s), y(s))ds,
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and

y(t) =
∫ t

−∞
eA(t−s)g(x(s), y(s))ds,

respectively, for t ∈ Ji , we have that

y(t) − y(t) =
∫ ai

−∞
eA(t−s)[g(x(s), y(s)) − g(x(s), y(s))]ds

+
∫ t

ai

eA(t−s)[g(x(s), y(s)) − g(x(s), y(s))]ds

+
∫ t

ai

eA(t−s)[g(x(s), y(s)) − g(x(s), y(s))]ds.

This implies that the inequality

‖y(t) − y(t)‖ ≤
∫ ai

−∞
2M0Ne−ω(t−s)ds

+
∫ t

ai

N L3e−ω(t−s) ‖y(s) − y(s)‖ ds

+
∫ t

ai

N L2e−ω(t−s) ‖x(s) − x(s)‖ ds

≤ 2M0N

ω
e−ω(t−a) + N L2γ ε

ω
e−ωt (eωt − eωa)

+
∫ t

ai

N L3e−ω(t−s) ‖y(s) − y(s)‖ ds

is valid. Hence, we attain that

eωt ‖y(t) − y(t)‖ ≤ 2M0N

ω
eωai + N L2γ ε

ω

(

eωt − eωai
)

+
∫ t

ai

N L3eωs ‖y(s) − y(s)‖ ds.

Implementing Lemma 2.2 [20] to the last inequality, we obtain

eωt ‖y(t) − y(t)‖ ≤ 2M0N

ω
eωai + N L2γ ε

ω

(

eωt − eωai
)

+
∫ t

a
N L3

[
2M0N

ω
eωai + N L2γ ε

ω

(

eωs − eωai
)
]

eN L3(t−s)ds

= N L2γ ε

ω
eωt +

(
2M0N

ω
− N L2γ ε

ω

)

eωai eN L3(t−ai )
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+ N 2L2L3γ ε

ω(ω − N L3)
eN L3t

(

e(ω−N L3)t − e(ω−N L3)ai
)

.

Multiplying both sides by the term e−ωt , one can verify that

‖y(t) − y(t)‖ ≤ 2M0N

ω
e(N L3−ω)(t−ai )

+
(

N L2γ ε

ω
+ N 2L2L3γ ε

ω(ω − N L3)

)(

1 − e(N L3−ω)(t−ai )
)

= 2M0N

ω
e(N L3−ω)(t−ai ) + N L2γ ε

ω − N L3

(

1 − e(N L3−ω)(t−ai )
)

.

If E is sufficiently large such that E >
2

ω − N L3
ln

(
1

γ ε

)

, then one has

e(N L3−ω)(t−ai ) < e(N L3−ω)Ei /2 ≤ e(N L3−ω)E/2 < γε,

for t ∈ [ai + Ei/2, ai + Ei ] .
Since the natural number i was arbitrarily chosen, for each i ∈ N, we have that

‖y(t) − y(t)‖ <

(
2M0N

ω
+ N L2

ω − N L3

)

γ ε = ε,

for each t ∈ J̃i = [

ãi , ãi + Ẽi
]

, where ãi = ai + Ei/2 and Ẽi = Ei/2. Note that
for each i the interval J̃i ⊂ R has a length no less than Ẽ = E/2. As a consequence,
the couple of functions

(

φx(t)(t), φx(t)(t)
) ∈ Ay × Ay is proximal according to

Definition 2.6.
The proof is completed. �

The following lemma indicates the replication of the next characteristic feature
of Li–Yorke chaos.

Lemma 2.7 If a couple (x(t), x(t)) ∈ Ax ×Ax is frequently (ε0,Δ)-separated for
some positive numbers ε0 and Δ, then the couple

(

φx(t)(t), φx(t)(t)
) ∈ Ay × Ay is

frequently (ε1,Δ)-separated for some positive numbers ε1 and Δ.

Proof Since a given couple of functions (x(t), x(t)) ∈ Ax×Ax is frequently (ε0,Δ)-
separated for some ε0 > 0 and Δ > 0, there exist infinitely many disjoint intervals,
each with a length no less than Δ, such that ‖x(t) − x(t)‖ > ε0 for each t from
these intervals. Without loss of generality, assume that these intervals are all closed
subsets of R. In that case, one can find a sequence {Δi } satisfying Δi ≥ Δ, i ∈ N,

and a sequence {di } , di → ∞ as i → ∞, such that for each i ∈ N the inequality
‖x(t) − x(t)‖ > ε0 holds for t ∈ Ji = [di , di +Δi ], and Ji ∩J j = ∅whenever i �= j.
Throughout the proof, let us denote y(t) = φx(t)(t) ∈ Ay and y(t) = φx(t)(t) ∈ Ay .
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Our aim is to show the existence of positive numbers ε1,Δ and infinitely many
disjoint intervals J i ⊂ Ji , i ∈ N, each with length Δ, such that the inequality

‖y(t) − y(t)‖ > ε1

holds for each t from the intervals J i , i ∈ N.

As in Sect. 2.5, we again suppose that g(x, y) =

⎛

⎜
⎜
⎜
⎝

g1(x, y)

g2(x, y)
...

gn(x, y)

⎞

⎟
⎟
⎟
⎠

, where each

g j (x, y), 1 ≤ j ≤ n, is a real valued function. Using the equicontinuity on R

of the familyF , which is mentioned in Lemma 2.2, one can find a positive number
τ < Δ, independent of the functions x(t), x(t) ∈ Ax , y(t), y(t) ∈ Ay, such that
for any t1, t2 ∈ R with |t1 − t2| < τ the inequality

∣
∣
∣

(

g j (x(t1), y(t1)) − g j (x(t1), y(t1))
)

− (g j (x(t2), y(t2)) − g j (x(t2), y(t2))
)
∣
∣
∣

<
L1ε0

2n

(2.6.23)

holds for all 1 ≤ j ≤ n.

Suppose that the sequence {si } denotes the midpoints of the intervals Ji , that is,
si = di + Δi/2 for each i ∈ N. Let us define a sequence {θi } through the equation
θi = si − τ/2.

Let us fix an arbitrary natural number i. In a similar way to the method specified
in the proof of Lemma 2.3, one can show the existence of an integer ji = ji (si ),

1 ≤ ji ≤ n, such that

∣
∣g ji (x(si ), y(si )) − g ji (x(si ), y(si ))

∣
∣ ≥ L1

n
‖x(si ) − x(si )‖ >

L1ε0

n
. (2.6.24)

On the other hand, making use of the inequality (2.6.23), it is easy to verify that

∣
∣g ji (x(si ), y(si )) − g ji (x(si ), y(si ))

∣
∣− ∣

∣g ji (x(t), y(t)) − g ji (x(t), y(t))
∣
∣

≤ ∣
∣
(

g ji (x(t), y(t)) − g ji (x(t), y(t))
)− (

g ji (x(si ), y(si )) − g ji (x(si ), y(si ))
)∣
∣

<
L1ε0

2n
,

for all t ∈ [θi , θi + τ ] . Therefore, by favor of (2.6.24), we obtain that the inequality
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∣
∣g ji (x(t), y(t)) − g ji (x(t), y(t))

∣
∣

>
∣
∣g ji (x(si ), y(si )) − g ji (x(si ), y(si ))

∣
∣− L1ε0

2n

>
L1ε0

2n

(2.6.25)

is valid on the same interval.
Using the mean value theorem for integrals, it is possible to find real numbers

si
1, si

2, . . . , si
n ∈ [θi , θi + τ ] such that
∥
∥
∥
∥

∫ θi +τ

θi

[g(x(s), y(s)) − g(x(s), y(s))] ds

∥
∥
∥
∥

=

∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

∫ θi +τ

θi

[g1(x(s), y(s)) − g1(x(s), y(s))] ds

∫ θi +τ

θi

[g2(x(s), y(s)) − g2(x(s), y(s))] ds

...
∫ θi +τ

θi

[gn(x(s), y(s)) − gn(x(s), y(s))] ds

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥

=

∥
∥
∥
∥
∥
∥
∥
∥
∥

⎛

⎜
⎜
⎜
⎝

τ
[

g1(x(si
1), y(si

1)) − g1(x(si
1), y(si

1))
]

τ
[

g2(x(si
2), y(si

2)) − g2(x(si
2), y(si

2))
]

...

τ
[

gn(x(si
n), y(si

n)) − gn(x(si
n), y(si

n))
]

⎞

⎟
⎟
⎟
⎠

∥
∥
∥
∥
∥
∥
∥
∥
∥

.

Hence, the inequality (2.6.25) yields that

∥
∥
∥
∥

∫ θi +τ

θi

[g(x(s), y(s)) − g(x(s), y(s))] ds

∥
∥
∥
∥

≥ τ

∣
∣
∣g ji (x(si

ji ), y(si
ji )) − g ji (x(si

ji ), y(si
ji ))

∣
∣
∣

>
τ L1ε0

2n
.

For t ∈ [θi , θi + τ ], the functions y(t) ∈ Ay and y(t) ∈ Ay satisfy the relations

y(t) = y(θi ) +
∫ t

θi

Ay(s)ds +
∫ t

θi

g(x(s), y(s))ds,

and

y(t) = y(θi ) +
∫ t

θi

Ay(s)ds +
∫ t

θi

g(x(s), y(s))ds,
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respectively, and herewith the equation

y(t) − y(t) = (y(θi ) − y(θi )) +
∫ t

θi

A(y(s) − y(s))ds

+
∫ t

θi

[g(x(s), y(s)) − g(x(s), y(s))]ds

+
∫ t

θi

[g(x(s), y(s)) − g(x(s), y(s))]ds

is achieved. Taking t = θi + τ in the last equation, we attain the inequality

‖y(θi + τ) − y(θi + τ)‖ ≥
∥
∥
∥
∥

∫ θ+τ

θ

[g(x(s), y(s)) − g(x(s), y(s))]ds

∥
∥
∥
∥

−‖y(θi ) − y(θi )‖ −
∫ θi +τ

θi

(‖A‖ + L3) ‖y(s) − y(s)‖ ds
(2.6.26)

Now, assume that max
t∈[θi ,θi +τ ] ‖y(t) − y(t)‖ ≤ τ L1ε0

2n[2 + τ(L3 + ‖A‖)] . In this case,
one arrives at a contradiction since, bymeans of the inequalities (2.6.25) and (2.6.26),
we have

max
t∈[θi ,θi +τ ] ‖y(t) − y(t)‖ ≥ ‖y(θi + τ) − y(θi + τ)‖

>
τ L1ε0

2n
− [1 + τ(L3 + ‖A‖)] max

t∈[θi ,θi +τ ] ‖y(t) − y(t)‖

≥ τ L1ε0

2n
− [1 + τ(L3 + ‖A‖)] τ L1ε0

2n[2 + τ(L3 + ‖A‖)]
= τ L1ε0

2n

(

1 − 1 + τ(L3 + ‖A‖)
2 + τ(L3 + ‖A‖)

)

= τ L1ε0

2n[2 + τ(L3 + ‖A‖)] .

Therefore, it is true that max
t∈[θi ,θi +τ ] ‖y(t) − y(t)‖ >

τ L1ε0

2n[2 + τ(L3 + ‖A‖)] .
Suppose that the real valued function ‖y(t) − y(t)‖ takes its maximum value for

t ∈ [θi , θi + τ ] at a point ηi . In other words, for some ηi ∈ [θi , θi + τ ] , we have
that

max
t∈[θi ,θi +τ ] ‖y(t) − y(t)‖ = ‖y(ηi ) − y(ηi )‖ .

Making use of the integral equations
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y(t) = y(ηi ) +
∫ t

ηi

Ay(s)ds +
∫ t

ηi

g(x(s), y(s))ds,

and

y(t) = y(ηi ) +
∫ t

ηi

Ay(s)ds +
∫ t

ηi

g(x(s), y(s))ds,

on the time interval [θi , θi + τ ], one can obtain that

y(t) − y(t) = (y(ηi ) − y(ηi )) +
∫ t

ηi

A(y(s) − y(s))ds

+
∫ t

ηi

[g(x(s), y(s)) − g(x(s), y(s))]ds.

Define the numbers

Δ = min

{
τ

2
,

τ L1ε0

8n(M ‖A‖ + M0)[2 + τ(L3 + ‖A‖)]
}

and

θ1i =
{

ηi , if η ≤ θi + τ/2
ηi − τ 1, if ηi > θi + τ/2

.

For each t ∈ [θ1i , θ1i + Δ], we have that

‖y(t) − y(t)‖ ≥ ‖y(ηi ) − y(ηi )‖ −
∣
∣
∣
∣

∫ t

ηi

‖A‖ ‖y(s) − y(s)‖ ds

∣
∣
∣
∣

−
∣
∣
∣
∣

∫ t

ηi

‖g(x(s), y(s)) − g(x(s), y(s))‖ ds

∣
∣
∣
∣

>
τ L1ε0

2n[2 + τ(L3 + ‖A‖)] − 2M ‖A‖ τ 1 − 2M0τ
1

= τ L1ε0

2n[2 + τ(L3 + ‖A‖)] − 2τ 1(M ‖A‖ + M0)

≥ τ L1ε0

4n[2 + τ(L3 + ‖A‖)] .

The information mentioned above is true for an arbitrarily chosen natural number
i. Therefore, for each i ∈ N, the interval J i = [θ1i , θ1i +Δ] is a subset of [θi , θi +τ ],
and hence of Ji . Moreover, for any i ∈ N, we have ‖y(t) − y(t)‖ > ε1, t ∈ J i ,

where ε1 = τ L1ε0

4n[2 + τ(L3 + ‖A‖)] .
Consequently, according to Definition 2.7, the pair

(

φx(t)(t), φx(t)(t)
) ∈ Ay ×Ay

is frequently (ε1,Δ)-separated.
The proof of the lemma is finalized. �



2.6 Extension of Li–Yorke Chaos 69

Now, we state and prove the main theorem of the present section. In the proof,
we suppose that Gx ⊂ Ax denotes the set of periodic functions inside Ax and the
set Gy ⊂ Ay, defined through Eq. (2.5.22), denotes the set of periodic functions
inside Ay .

Theorem 2.3 If the set Ax is Li–Yorke chaotic, then the same is true for the set Ay .

Proof It can be easily verified that for any natural number k, x(t) ∈ Gx is a kT -
periodic function if and only if φx(t)(t) ∈ Gy is kT -periodic, where Gx and Gy denote
the sets of all periodic functions inside Ax and Ay,, respectively. Therefore, the set
Ay admits a kT -periodic function for any k ∈ N.

Next, suppose that the set Cx is a scrambled set inside Ax and define the set

Cy = {

φx(t)(t) | x(t) ∈ Cx
}

. (2.6.27)

Condition (A4) implies that there is a one-to-one correspondence between the sets
Cx and Cy . Since the scrambled set Cx is uncountable, it is clear that the set Cy is
also uncountable. Moreover, using the same condition one can show that no periodic
functions exist inside Cy, since no such functions take place inside the set Cx . That
is, Cy ∩ Gy = ∅.

Since each couple of functions inside Cx × Cx is proximal, Lemma 2.6 implies
the same feature for each couple of functions inside Cy × Cy .

Similarly, Lemma 2.7 implies that if each couple of functions (x(t), x(t)) ∈
Cx × Cx (Cx × Gx ) is frequently (ε0,Δ)-separated for some positive numbers ε0
andΔ, then each couple of functions (y(t), y(t)) ∈ Cy ×Cy

(

Cy × Gy
)

is frequently
(ε1,Δ)-separated for some positive numbers ε1 and Δ. Consequently, the set Cy is a
scrambled set inside Ay, and according to Definition 2.10, Ay is Li–Yorke chaotic.

The proof of the theorem is accomplished. �

An immediate corollary of Theorem 2.3 is the following:

Corollary 2.5 If the set Ax is Li–Yorke chaotic, then the set A is chaotic in the
same way.

2.7 Morphogenesis of Chaos

Two different mechanisms of chaos extension (morphogenesis) through applying
replication are considered in this chapter. The first one is illustrated schematically
in Fig. 2.4. The figure represents consecutively connected systems as boxes and the
blue arrows symbolize unidirectional couplings between two systems. In the first
coupling, we take into account a generator system, the leftmost box in the figure,
which is connected with a second system considered as a replicator in the couple. In
the next coupling, the second system is considered as a generator with respect to the
third one. That is, it changes its role in the extension process. In the third coupling,
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Fig. 2.4 Morphogenesis of chaos through consecutive replications

Fig. 2.5 Morphogenesis of
chaos from a prior chaos as a
core

the third system is considered as a generator and the forth one as a replicator. In
summary, the mechanism proceeds as follows. We take into account consecutive
unidirectionally coupled systems such that the initial one is a generator and at each
next coupling the role of the previously chaotified replicator changes and we start
to use it as a generator. As a result of the mechanism all individual subsystems are
chaotic as well as the system which consists of all subsystems. Moreover, the type
of the chaos is saved under this procedure.

In Fig. 2.5 we show another mechanism of chaos extension. Here, the generator
is surrounded by three replicators and the blue arrows symbolize, again, unidirec-
tional couplings between two systems. Distinctively from the former mechanism,
the replicators do not change their role with respect to each other according to the
special topology of connection. The generator is coupled with all other replicators
such that it is rather a core than a beginning element. The result of the mechanism is
similar to the former such that all replicators as well as the system consisting of all
subsystems become chaotic, saving the chaos type of the generator.

We call the two ways as the chain and the core mechanisms, respectively, and
the system which unites the generator and several replicators, of type (2.1.2), in
either extension mechanism as the result-system. Theoretically, we do not discuss
constraints on the dimension of the result-system, but under certain conditions it
seems that the dimension is not restricted for both mechanisms. However, this is
definitely true for the core mechanism even with infinite dimensions.We will discuss
and simulate the chain mechanism in the chapter, mainly, since the core mechanism
can be discussed very similarly. One can invent other mechanisms, for example,
by considering “composition” of the two mechanisms proposed presently. As an
example, one can consider the network pictured in Fig. 1.2.

Next, to exemplify the chaos extension procedure, according to the chain mech-
anism shown in Fig. 2.4 we set up the following 8-dimensional result-system

http://dx.doi.org/10.1007/978-3-662-47500-3_1
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x ′
1 = x2

x ′
2 = −0.05x2 − x31 + 7.5 cos t

x ′
3 = x4 + x1

x ′
4 = −3x3 − 2x4 − 0.008x33 + x2

x ′
5 = x6 + x3

x ′
6 = −3x5 − 2.1x6 − 0.007x35 + x4

x ′
7 = x8 + x5

x ′
8 = −3.1x7 − 2.2x8 − 0.006x37 + x6.

(2.7.28)

We note that system (2.7.28) consists of four subsystems with the coordinates
(x1, x2), (x3, x4), (x5, x6), and (x7, x8) such that the subsystem (x1, x2) is exactly
the generator used in system (2.1.5) + (2.1.6), while the subsystem (x3, x4) is the
replicator of (2.1.5)+ (2.1.6).

According to the theoretical results of the present chapter, system (2.7.28) pos-
sesses a chaotic attractor in the 8-dimensional phase space. Bymarking the trajectory
of this system with the initial data x1(0) = 2, x2(0) = 3, x3(0) = x5(0) = x7(0) =
−1, x4(0) = x6(0) = x8(0) = 1 stroboscopically at times that are integer multiples
of 2π, we obtain the Poincaré section inside the 8-dimensional space. In Fig. 2.6,
which informs us about morphogenesis, the 3-dimensional projections of the whole
Poincaré section on the x2 − x4 − x6 and x3 − x5 − x7 spaces are shown. One can
see in Fig. 2.6a, b the additional foldings which are not possible to observe in the
classical strange attractor shown in Fig. 2.2a.

Despite we are restricted to make illustrations at most in 3-dimensional spaces,
taking inspiration from Figs. 2.2 and 2.6, one can imagine that the structure of the
original Poincaré section in the 8-dimensional spacewill be similar through its fractal

(a) (b)

Fig. 2.6 In a and b projections of the result chaotic attractor on the x2 − x4 − x6 and x3 − x5 − x7
spaces are respectively presented. One can see in (a) and (b) the additional foldings which are not
possible to observe in the 2-dimensional picture of the prior classical chaos shown in Fig. 2.2a. In
the same time, the shape of the original attractor is seen in the resulting chaos. The illustrations in
(a) and (b) repeat the structure of the attractor of the generator and the similarity between these
pictures is a manifestation of the morphogenesis of chaos
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structure, but more beautiful and impressive than its projections. From this point of
view, we are not surprised since these facts have been proved theoretically.

Next, we shall handle the problem that whether the chaos extension procedure
works for all existing systems in the mechanisms presented above, from the theoreti-
cal point of view. Since the core mechanism does not need any additional theoretical
discussions, we will consider the chain mechanism.

In addition to the system (2.1.1)+ (2.1.2), we take into account the system

z′ = Bz + h(y(t), z), (2.7.29)

where h : R
n × R

l → R
l is a continuous function in all of its arguments, the

constant l × l real-valued matrix B has real parts of eigenvalues all negative and y(t)
is a solution system (2.1.2).

It is easy to verify the existence of positive numbers Ñ and ω̃ such that
∥
∥eBt

∥
∥ ≤

Ñe−ω̃t , for all t ≥ 0.
In our next theoretical discussions, the system (2.7.29) will serve as the third sys-

tem in the chainmechanismpresented by Fig. 2.4, andwe need the following assump-
tions which are counterparts of the conditions (A4)–(A7) presented in Sect. 2.2.

(A8) There exists a positive number L̃1 such that

‖h(y1, z) − h(y2, z)‖ ≥ L̃1 ‖y1 − y2‖ ,

for all y1, y2 ∈ R
n, z ∈ R

l;
(A9) There exist positive numbers L̃2 and L̃3 such that

‖h(y1, z) − h(y2, z)‖ ≤ L̃2 ‖y1 − y2‖ ,

for all y1, y2 ∈ R
n, z ∈ R

l , and

‖h(y, z1) − h(y, z2)‖ ≤ L̃3 ‖z1 − z2‖ ,

for all y ∈ R
n, z1, z2 ∈ R

l;
(A10) There exists a positive number K0 < ∞ such that

sup
y∈Rn ,z∈Rl

‖h(y, z)‖ ≤ K0;

(A11) Ñ L̃3 − ω̃ < 0.

Likewise the definition for the set of functionsAy, given by (2.2.10), let us denote
byAz the set of all bounded on R solutions of system z′ = Bz + h(y(t), z), for any
y(t) ∈ Ay .

In a similar way to Lemma 2.1, one can show that the set Uz which consists of
the solutions of system z′ = Az + g(y(t), z) for some y(t) ∈ Uy is a basin of Az .



2.7 Morphogenesis of Chaos 73

Furthermore, a similar result of Theorem 2.1 introduced in Sect. 2.4, hold also for
the set Az .

We state in the next theorem that similar results of the Theorems 2.2 and 2.3
presented in Sects. 2.5 and 2.6, respectively, hold also for the set Az .

We note that, in the case of the presence of arbitrary finite number of systems,
which obey conditions that are counterparts of (A4)–(A7), one can prove that a
similar result of the next theorem holds for the chain mechanism.

Theorem 2.4 If the set Ax is Devaney chaotic or Li–Yorke chaotic, then the set Az

is chaotic in the same way as both Ax and Ay .

Proof In the proof, we will show that for each z(t) ∈ Az and arbitrary δ > 0, there
exist z(t) ∈ Az and t0 ∈ R such that ‖z(t0) − z(t0)‖ < δ, which is needed to show
sensitivity ofAz . The remaining parts of the proof can be performed in a similar way
to the proofs presented in Sects. 2.5 and 2.6, and therefore are omitted.

Suppose that the set Ax is sensitive. Fix an arbitrary δ > 0 and let z(t) ∈ Az be
a given solution of system (2.7.29). In this case, there exists y(t) = φx(t)(t) ∈ Ay,

where x(t) ∈ Ax , such that z(t) is the unique bounded on R solution of the system
z′ = Bz + h(y(t), z).

Let us choose a sufficiently small positive number ε = ε(δ) which satisfies the
inequality

(

1 + Ñ L̃2

ω̃ − Ñ L̃3

)(

1 + N L2

ω − N L3

)

ε < δ

and denote ε1 =
(

1 + N L2

ω − N L3

)

ε. Now, take R = R(ε) < 0 sufficiently large

in absolute value such that both of the inequalities
2M0N

ω
e−(N L3−ω)R/2 ≤ ε and

2M̃0 Ñ

ω̃
e−(Ñ L̃3−ω̃)R/2 ≤ ε1 are valid, and let δ1 = δ1(ε, R) = εeL0R . Since the

set Ax is sensitive, one can find x(t) ∈ Ax and t0 ∈ R such that the inequality
‖x(t0) − x(t0)‖ < δ1 holds.

As in the case of the proof of Lemma 2.3, for t ∈ [t0 + R, t0], one can verify that
‖x(t) − x(t)‖ < ε, and

‖y(t) − y(t)‖ ≤ N L2ε

ω − N L3
+ 2M0N

ω
e(N L3−ω)(t−t0−R).

According to the last inequality, we have ‖y(t) − y(t)‖ ≤ ε1, for t ∈ [t0 +
R/2, t0].

Suppose that z(t) is the unique bounded on R solution of the system z′ = Bz +
h(y(t), z). One can see that the relations

z(t) =
∫ t

−∞
eB(t−s)h(y(s), z(s))ds
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and

z(t) =
∫ t

−∞
eB(t−s)h(y(s), z(s))ds,

are valid. Using these equations, it can be verified that

‖z(t) − z(t)‖ ≤
∫ t

t0+ R
2

Ñe−ω̃(t−s) ‖h(y(s), z(s)) − h(y(s), z(s))‖ ds

+
∫ t

t0+ R
2

Ñe−ω̃(t−s) ‖h(y(s), z(s)) − h(y(s), z(s))‖ ds

+
∫ t0+ R

2

−∞
Ñe−ω̃(t−s) ‖h(y(s), z(s)) − h(y(s), z(s))‖ ds.

Since ‖y(t) − y(t)‖ < ε1 for t ∈ [t0 + R/2, t0], one has

‖z(t) − z(t)‖ ≤ Ñ L̃3

∫ t

t0+ R
2

e−ω̃(t−s) ‖z(s) − z(s)‖ ds

+Ñ L̃2ε1

∫ t

t0+ R
2

e−ω̃(t−s)ds + 2M̃0 Ñ
∫ t0+ R

2

−∞
e−ω̃(t−s)ds

≤ Ñ L̃3

∫ t

t0+ R
2

e−ω̃(t−s) ‖z(s) − z(s)‖ ds

+ Ñ L̃2ε1

ω̃
e−ω̃t (eω̃t − eω̃(t0+R/2)) + 2M̃0 Ñ

ω̃
e−ω̃(t−t0−R/2).

Now, let us introduce the functions u(t) = eω̃t ‖z(t) − z(t)‖ , k(t) = Ñ L̃2ε1

ω̃
eω̃t ,

and v(t) = c + k(t) where c =
(
2M̃0 Ñ

ω̃
− Ñ L̃2ε1

ω̃

)

eω̃(t0+R/2).

Thesedefinitions imply thatu(t) ≤ v(t)+
∫ t

t0+ R
2

Ñ L̃3u(s)ds and applyingLemma

2.2 [20] leads to

u(t) ≤ v(t) + Ñ L̃3

∫ t

t0+ R
2

eÑ L̃3(t−s)h(s)ds.

Therefore, for t ∈ [t0 + R/2, t0] we have
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u(t) ≤ c + k(t) + c
(

eÑ L̃3(t−t0−R/2) − 1
)

+ N 2 L̃2 L̃3ε1

ω̃
eÑ L̃3t

∫ t

t0+ R
2

e(ω̃−Ñ L̃3)sds

= Ñ L̃2ε1

ω̃
eω̃t +

(
2M̃0N

ω̃
− Ñ L̃2ε1

ω̃

)

eω̃T eÑ L̃3(t−t0−R/2)

+ Ñ 2 L̃2 L̃3ε1

ω̃(ω̃ − Ñ L̃3)
eω̃t

[

1 − e(Ñ L̃3−ω̃)(t−t0−R/2)
]

,

and hence

‖z(t) − z(t)‖ ≤ Ñ L̃2ε1

ω̃ − Ñ L̃3

[

1 − e(Ñ L̃3−ω̃)(t−t0−R/2)
]

+ 2M̃0N

ω̃
e(Ñ L̃3−ω̃)(t−t0−R/2).

Consequently, the inequality

‖z(t0) − z(t0)‖ ≤ Ñ L̃2ε1

ω̃ − Ñ L̃3
+ 2M̃0 Ñ

ω̃
e(ω̃−Ñ L̃3)R/2

<

(

1 + Ñ L̃2

ω̃ − Ñ L̃3

)

ε1

< δ

is valid.
The theorem is proved. �

2.8 Period-Doubling Cascade

We start this section by describing the chaos through period-doubling cascade [22–
24] for the set of functions Ax , and deal with its replication by the set of functions
Ay, which is defined by Eq. (2.2.10).

Suppose that there exists a function G : R×R
m ×R → R

m which is continuous
in all of its arguments such that F(t, x) = G(t, x, μ∞) for some finite number μ∞,

which will be explained below.
To discuss chaos through period-doubling cascade, let us consider the system

x ′ = G(t, x, μ), (2.8.30)

where μ is a parameter.
We say that the set Ax is chaotic through period-doubling cascade if there exist

a natural number k and a sequence of period-doubling bifurcation values {μm} ,

μm → μ∞ as m → ∞, such that for each m ∈ N as the parameter μ increases (or
decreases) throughμm, system (2.8.30) undergoes a period-doubling bifurcation and
a periodic solution with period k2m T appears. As a consequence, at μ = μ∞, there
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exist infinitely many unstable periodic solutions of system (2.8.30), and hence of
system (2.1.1), all lying in a bounded region. In this case, the setAx admits periodic
functions of periods kT, 2kT, 4kT, 8kT, . . . .

Now, making use of the Eq. (2.2.9), one can show that for any natural number
p, if x(t) ∈ Ax is a pT -periodic function then φx(t)(t) ∈ Ay is also pT -periodic.
Moreover, condition (A4) implies that the converse is also true. Consequently, if
the setAx admits periodic functions of periods kT, 2kT, 4kT, . . . , then the same is
valid forAy,with no additional periodic functions of any other period. Furthermore,
the technique indicated in the proof of Lemma 2.3 can be used to show that these
periodic solutions are all unstable and this provides us an opportunity to state the
following theorem.

Theorem 2.5 If the set Ax is chaotic through period-doubling cascade, then the
same is true for Ay .

The following corollary of Theorem 2.5 states that the result-system (2.1.1)
+ (2.1.2) is chaotic through the period-doubling cascade, provided the system
(2.1.1) is.

Corollary 2.6 If the set Ax is chaotic through period-doubling cascade, then the
same is true for A .

Our theoretical results show that the replicator system (2.1.2), likewise the genera-
tor counterpart, undergoes period-doubling bifurcations as the parameterμ increases
or decreases through the values μm, m ∈ N. That is, the sequence {μm} of bifur-
cation parameters is exactly the same for both generator and replicator systems. In
this case, if the generator system obeys the Feigenbaum universality [5, 25–27] then
one can conclude that the same is true also for the replicator. In other words, when

lim
m→∞

μm − μm+1

μm+1 − μm+2
is evaluated, the universal constant known as the Feigenbaum

number 4.6692016 . . . is achieved and this universal number is the same for both
generator and replicator.

It is worth saying that the results about replication of period-doubling cascade
as well as the Feigenbaum’s universal behavior, which can be perceived as another
aspect of morphogenesis of chaos, are true also for chaos extension mechanisms
shown in Figs. 2.4 and 2.5. In our next example, using the chain mechanism, we will
illustrate through simulations the morphogenesis of period-doubling cascade.

In paper [28], it is indicated that the Duffing’s equation

x ′′ + 0.3x ′ + x3 = μ cos t (2.8.31)

admits the chaos through period-doubling cascade at the parameter valueμ = μ∞ ≡
40. Defining the new variables x1 = x and x2 = x ′, Eq. (2.8.31) can be rewritten as
a system in the following form:

x ′
1 = x2

x ′
2 = −0.3x2 − x31 + μ cos t.

(2.8.32)
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Making use of system (2.8.32) as the generator, let us constitute the following 8-
dimensional result-system

x ′
1 = x2

x ′
2 = −0.3x2 − x31 + μ cos t

x ′
3 = 2x3 − x4 + 0.4 tan ((x1 + x3)/10)

x ′
4 = 17x3 − 6x4 + x2

x ′
5 = −2x5 + 0.5 sin x6 − 4x4

x ′
6 = −x5 − 4x6 − tan (x3/2)

x ′
7 = 2x7 + 5x8 − 0.0003(x7 − x8)3 − 1.5x6

x ′
8 = −5x7 − 8x8 + 4x5.

(2.8.33)

System (2.8.33) is designed according to the chain mechanism indicated in
Fig. 2.4. In the coupling between the subsystems with coordinates (x1, x2) and
(x3, x4) the former is the generator and the latter is the replicator. In the second
coupling between the subsystems with coordinates (x3, x4) and (x5, x6), this time
the former is used as the generator although it was the replicator in the previous
coupling. The final coupling between the subsystems with coordinates (x5, x6) and
(x7, x8) is constructed in a similar way. In this exemplification we will refer to sub-
systems with coordinates (x1, x2), (x3, x4), (x5, x6) and (x7, x8) as the first, second,
third and the fourth subsystems, respectively.

According to our theoretical discussions, the result-system (2.8.33) with the para-
meter value μ = μ∞ ≡ 40 admits a chaotic attractor in the 8-dimensional phase
space, which is obtained through period-doubling cascade. For the parameter value
μ between 30 and 40, the bifurcation diagrams corresponding to the x2, x4, x6 and
x8 coordinates of system (2.8.33) are illustrated in Fig. 2.7. The picture shown in
Fig. 2.7a is the bifurcation diagram of the system (2.8.32), while the pictures pre-
sented in Fig. 2.7b–d correspond to the second, third and the fourth subsystems,
respectively. For the parameter values where stable periodic solutions exist, the one-
to-one correspondencebetween the periodic solutions of the subsystems is observable
in the figure. Moreover, it is seen in Fig. 2.7b–d that, likewise the first subsystem,
all other subsystems undergo period-doubling bifurcations at the same parameter
values such that for μ = μ∞ all of them are chaotic. One should recognize that the
similarities between the presented bifurcation diagrams indicate morphogenesis of
period-doubling cascade.

In Fig. 2.8a–d, we illustrate the 2-dimensional projections of the trajectory of
system (2.8.33), with the initial data x1(0) = 2.16, x2(0) = −9.28, x3(0) = −0.21,
x4(0) = −2.03, x5(0) = 3.36, x6(0) = −0.52, x7(0) = 3.07, x8(0) = −0.32, on
the planes x1−x2, x3−x4, x5−x6, and x7−x8, respectively. The picture in Fig. 2.8a
shows in fact the attractor of the prior chaos producedby the generator system (2.8.32)
and similarly the illustrations in Fig. 2.8b–d correspond to the chaotic attractors of the
second, third and the fourth subsystems, respectively. The resemblance between
the shapes of the attractors of the subsystems reflect the morphogenesis of chaos in
the result-system (2.8.33).
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µ µ

µ µ

(a) (b)

(c) (d)

Fig. 2.7 The bifurcation diagrams of system (2.8.33) according to coordinates. a The bifurcation
diagram corresponding to x2-coordinate.bThe bifurcation diagram corresponding to x4-coordinate.
cThe bifurcation diagram corresponding to x6-coordinate.dThe bifurcation diagram corresponding
to x8-coordinate. The picture in (a) is the bifurcation diagram of the generator system (2.8.32) and
the pictures shown in (b), (c) and (d) correspond to the second, third and fourth replicator systems,
respectively. It is observable that all replicators, likewise the generator, undergo period-doubling
bifurcations at the same values of the parameter and all of them are chaotic for μ = μ∞ ≡ 40. The
one-to-one correspondence between the stable periodic solutions of the generator and replicators
are also seen in the figure. The resemblances between the bifurcation diagrams corresponding to
the coordinates x2, x4, x6, and x8 reveal morphogenesis of chaos

To obtain a better impression about the chaotic attractor of system (2.8.33), in
Fig. 2.9 we demonstrate the 3-dimensional projections of the trajectory with the
same initial data as above, on the x3 − x5 − x7 and x4 − x6 − x8 spaces. Although
we are restricted to make illustrations at most in 3-dimensional spaces and not able
to provide a picture of the whole chaotic attractor, the results shown both in Figs. 2.8
and 2.9 give us an idea about the spectacular chaotic attractor of system (2.8.33).

We note that system (2.8.33) exhibits a symmetry under the transformation which
maps xi to −xi , i = 1, 2, . . . , 8 and t to t + π, and the presented attractors are
symmetric around the origin due to the symmetry of the result-system (2.8.33) under
this transformation.

Now, let us show that the first replicator system which is included inside (2.8.33)
satisfies the condition (A7).

When the system

x ′
3 = 2x3 − x4 + 0.4 tan ((x1 + x3)/10)

x ′
4 = 17x3 − 6x4 + x2

(2.8.34)
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(a) (b)

(c) (d)

Fig. 2.8 2-dimensional projections of the chaotic attractor of the result-system (2.8.33).aProjection
on the x1 − x2 plane. b Projection on the x3 − x4 plane. c Projection on the x5 − x6 plane. d
Projection on the x7 − x8 plane. The picture in (a) shows the attractor of the prior chaos produced
by the generator system (2.8.32) and in (b)–(d) the chaotic attractors of the remaining subsystems
are observable. The illustrations in (b)–(d) repeated the structure of the attractor shown in (a), and
these pictures are indicators of the chaos extension

(a) (b)

Fig. 2.9 3-dimensional projections of the chaotic attractor of the result-system (2.8.33).aProjection
on the x3 − x5 − x7 space. b Projection on the x4 − x6 − x8 space. The illustrations presented in
(a) and (b) give information about the impressive chaotic attractor in the 8-dimensional space
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is considered in the formof system (2.1.2), one can see that thematrix A can bewritten

as A =
(

2 −1

17 −6

)

, which admits the complex conjugate eigenvalues −2 ∓ i.

The real Jordan form of the matrix A is given by J =
(−2 −1

1 −2

)

and the identity

P−1AP = J is satisfied where P =
(

0 1

−1 4

)

. Evaluating the exponential matrix

eAt we obtain that

eAt = e−2t P

(

cos t − sin t

sin t cos t

)

P−1. (2.8.35)

Taking N = ‖P‖ ∥∥P−1
∥
∥ < 18 and ω = 2, one can see that the inequality

∥
∥eAt

∥
∥ ≤ Ne−ωt holds for all t ≥ 0. The function g : R2 × R

2 → R
2 defined as

g(x1, x2, x3, x4) =
(

0.4 tan

(
x1 + x3

10

)

, x2

)

satisfies the conditions (A4) and (A5) with constants L1 = √
2/50, L2 = √

2 and
L3 = 0.08 since the chaotic attractor of system (2.8.33) satisfies the inequalities

|x1| ≤ 6, |x3| ≤ 3/2, and consequently

∣
∣
∣
∣

x1 + x3
10

∣
∣
∣
∣
≤ 3/4. Therefore, the condition

(A7) is satisfied.
In a similar way, for the second replicator system, making use of |x3| ≤ 3/2 once

again, one can show that the function h : R2 × R
2 → R

2 defined as

h(x3, x4, x5, x6) =
(

0.5 sin x6 − 4x4,− tan
( x3
2

))

satisfies the counterparts of the conditions (A4) and (A5)with constants L1 = √
2/4,

L2 = 4
√
2 and L3 = 1/2.

Now, we shall focus on the third replicator system

x ′
7 = 2x7 + 5x8 − 0.00004(x7 − x8)3 − 3

2 x6
x ′
8 = −5x7 − 8x8 + 4x5.

(2.8.36)

The matrix of coefficients of the system (2.8.36) with the assumed coefficients is

A =
(

2 5

−5 −8

)

.



2.8 Period-Doubling Cascade 81

It can be easily seen that−3 is an eigenvalue of the matrix A with multiplicity 2. The

real Jordan form of the matrix A is J =
(−3 1

0 −3

)

and the identity J = P−1AP is

satisfied where P =
(

1 0

−1 1/5

)

. Evaluating the exponential matrix eAt we have

eAt = e−3t P

(

1 t

0 1

)

P−1. (2.8.37)

If we denote by I the 2×2 identity matrix, then using Eq. (2.8.37), one can conclude
for t ≥ 0 that

∥
∥
∥eAt

∥
∥
∥ ≤ e−3t ‖P‖

∥
∥
∥P−1

∥
∥
∥

∥
∥
∥
∥
∥

I +
(

0 t

0 0

)∥
∥
∥
∥
∥

≤ e−3t ‖P‖
∥
∥
∥P−1

∥
∥
∥ (1 + t)

= e−2t ‖P‖
∥
∥
∥P−1

∥
∥
∥
1 + t

et

≤ e−2t ‖P‖
∥
∥
∥P−1

∥
∥
∥

since 1 + t ≤ et for all t ≥ 0.
Thus, taking N = ‖P‖ ∥∥P−1

∥
∥ < 10.2 and ω = 2, one can see that the inequality

∥
∥eAt

∥
∥ ≤ Ne−ωt holds for all t ≥ 0. Furthermore, the function k : R2 × R

2 → R
2

defined by the formula

k(x5, x6, x7, x8) =
(

0.0003(x7 − x8)
3 − 3

2
x6, 4x5

)

satisfies the conditions (A4) and (A5) with constants L1 = 3
√
2/4, L2 = 4

√
2 and

L3 = 0.19, since the chaotic attractor of system (2.8.36) satisfies the inequalities
|x7| ≤ 8, |x8| ≤ 4. Therefore, N L3 − ω < 0 and condition (A7) is satisfied.

Remark 2.3 We have proved that the replicator system (2.1.2) exhibits chaos in the
sense of Devaney, Li–Yorke, and the one obtained through period-doubling cascade,
provided that the generator system (2.1.1) or (2.2.8) exhibits the same types of chaos.
Since Lemma 2.1 implies the presence of the criterion (1.1.9) for the unidirectionally
coupled system (2.2.8)+ (2.1.2), in which an autonomous generator is used, we
can say that generalized synchronization takes place in the dynamics of system
(2.2.8)+ (2.1.2).

The next section is devoted to the results about controlling the replicated chaos.

http://dx.doi.org/10.1007/978-3-662-47500-3_1
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2.9 Control by Replication

In the previous sections, we have theoretically proved replication of chaos for specific
types and controlling the extended chaos is another interesting problem. The next
theorem and its corollary indicate a method to control the chaos of the replicator
system (2.1.2) and the result-system (2.1.1)+ (2.1.2), respectively, and reveal that
controlling the chaos of system (2.1.1) is sufficient for this.

Theorem 2.6 Assume that for arbitrary ε > 0, a periodic solution x p(t) ∈ Ax is
stabilized such that for any solution x(t) of system (2.1.1) there exist real numbers
a and E > 0 such that the inequality

∥
∥x(t) − x p(t)

∥
∥ < ε holds for t ∈ [a, a + E].

Then, the periodic solution φx p(t)(t) ∈ Ay is stabilized such that for any solu-
tion y(t) of system (2.1.2) there exists a number b ≥ a such that the inequality
∥
∥y(t) − φx p(t)(t)

∥
∥ <

(

1 + N L2

ω − N L3

)

ε holds for t ∈ [b, a + E], provided that the

number E is sufficiently large.

Proof Fix an arbitrary solution y(t) of system y′ = Ay+g(x(t), y) for some solution
x(t) of system (2.1.1). According to our assumption, there exist numbers a and E > 0
such that the inequality

∥
∥x(t) − x p(t)

∥
∥ < ε holds for t ∈ [a, a + E]. Let us denote

yp(t) = φx p(t)(t) ∈ Ay . It is clear that the function yp(t) is periodic with the same
period as x p(t). Since y(t) and yp(t) satisfy the integral equations

y(t) = eA(t−a)y(a) +
∫ t

a
eA(t−s)g(x(s), y(s))ds,

and

yp(t) = eA(t−a)yp(a) +
∫ t

a
eA(t−s)g(x p(s), yp(s))ds,

respectively, one has

y(t) − yp(t) = eA(t−a)(y(a) − yp(a))

+
∫ t

a
eA(t−s) [g(x(s), y(s)) − g(x(s), yp(s))

]

ds

+
∫ t

a
eA(t−s) [g(x(s), yp(s)) − g(x p(s), yp(s))

]

ds.

By the help of the last equation, we have

∥
∥y(t) − yp(t)

∥
∥ ≤ Ne−ω(t−a)

∥
∥y(a) − yp(a)

∥
∥+ N L2ε

ω
e−ωt (eωt − eωa)

+N L3

∫ t

a
e−ω(t−s)

∥
∥y(s) − yp(s)

∥
∥ ds.
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Let u : [a, a + E] → [0,∞) be a function defined as u(t) = eωt
∥
∥y(t) − yp(t)

∥
∥ .

In this case, we reach the inequality

u(t) ≤ Neωa
∥
∥y(a) − yp(a)

∥
∥+ N L2ε

ω

(

eωt − eωa)+ N L3

∫ t

a
u(s)ds.

Implementation of Lemma 2.2 [20] to the last inequality, where t ∈ [a, a + E],
provides us

u(t) ≤ N L2ε

ω
eωt + N

∥
∥y(a) − yp(a)

∥
∥ eωaeN L3(t−a)

− N L2ε

ω
eωaeN L3(t−a) + N 2L2L3ε

ω(ω − N L3)
eωt

(

1 − e(N L3−ω)(t−a)
)

.

and consequently,

∥
∥y(t) − yp(t)

∥
∥ ≤ N L2ε

ω
+ N

∥
∥y(a) − yp(a)

∥
∥ e(N L3−ω)(t−a)

− N L2ε

ω
e(N L3−ω)(t−a) + N 2L2L3ε

ω(ω − N L3)

(

1 − e(N L3−ω)(t−a)
)

< N
∥
∥y(a) − yp(a)

∥
∥ e(N L3−ω)(t−a) + N L2ε

ω − N L3
.

If y(a) = yp(a), then clearly
∥
∥yp(t) − y(t)

∥
∥ <

(

1 + N L2

ω − N L3

)

ε, t ∈ [a, a +

E]. Suppose that y(a) �= yp(a). For t ≥ a + 1

N L3 − ω
ln

(

ε

N
∥
∥y(a) − yp(a)

∥
∥

)

,

the inequality e(N L3−ω)(t−a) ≤ ε

N
∥
∥y(a) − yp(a)

∥
∥

is satisfied. Assume that the

number E is sufficiently large so that E >
1

N L3 − ω
ln

(

ε

N
∥
∥y(a) − yp(a)

∥
∥

)

.

Thus, taking

b = max

{

a, a + 1

N L3 − ω
ln

(

ε

N
∥
∥y(a) − yp(a)

∥
∥

)}

and

Ẽ = min

{

E, E − 1

N L3 − ω
ln

(

ε

N
∥
∥y(a) − yp(a)

∥
∥

)}
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one attains
∥
∥y(t) − yp(t)

∥
∥ <

(
ω − N L3 + N L2

ω − N L3

)

ε, for t ∈ [b, b + Ẽ]. Here the
number Ẽ stands for the duration of control for system (2.1.2). We note that b ≥ a,

0 < Ẽ ≤ E and b + Ẽ = a + E .

Hence
∥
∥y(t) − yp(t)

∥
∥ <

(

1 + N L2

ω − N L3

)

ε, for t ∈ [b, a + E].
The proof of the theorem is finalized. �

An immediate corollary of Theorem 2.6 is the following.

Corollary 2.7 Assume that the conditions of Theorem 2.6 hold. In this case, the
periodic solution z p(t) = (

x p(t), φx p(t)(t)
) ∈ A is stabilized such that for any

solution z(t) of system (2.1.1)+ (2.1.2) there exists a number b ≥ a such that the

inequality
∥
∥z p(t) − z(t)

∥
∥ <

(

2 + N L2

ω − N L3

)

ε holds for t ∈ [b, a + E], provided

that the number E is sufficiently large.

Proof Making use of the inequality

∥
∥z(t) − z p(t)

∥
∥ ≤ ∥

∥x(t) − x p(t)
∥
∥+ ∥

∥y(t) − φx p(t)(t)
∥
∥ ,

and the conclusion of Theorem 2.6, one can show that the inequality

∥
∥z p(t) − z(t)

∥
∥ <

(

2 + N L2

ω − N L3

)

ε

holds for t ∈ [b, a + E] and for some b ≥ a. The proof is completed. �

Remark 2.4 As a conclusion of Theorem 2.6, the transient time for control to take
effect may increase and the duration of control may decrease as the number of
consecutive replicator systems increase.

In the remaining part of this section, our aim is to present an illustration which
confirms the results of Theorem 2.6, and for our purposes, we will make use of
the Pyragas control method [29]. Therefore, primarily, we continue with a brief
explanation of this method.

A delayed feedback controlmethod for the stabilization of unstable periodic orbits
of a chaotic system was proposed by Pyragas [29]. In this method, one considers a
system of the form

x ′ = H(x, q), (2.9.38)

where q = q(t) is an externally controllable parameter and for q = 0 it is assumed
that the system (2.9.38) is in the chaotic state of interest, whose periodic orbits are
to be stabilized [27, 29–31]. According to Pyragas method, an unstable ξ -periodic
solution of the system (2.9.38) with q = 0, can be stabilized by the control law
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q(t) = C [s (t − ξ) − s(t)] , where the parameter C represents the strength of the
perturbation and s(t) = σ [x(t)] is a scalar signal given by some function of the state
of the system.

It is indicated in [31] that in order to apply the Pyragas control method to the
chaotic Duffing oscillator given by the system

x ′
1 = x2

x ′
2 = −0.10x2 + 0.5x1

(

1 − x21
)+ 0.24 sin t,

(2.9.39)

one can construct the corresponding control system

v′
1 = v2

v′
2 = −0.10v2 + 0.5v1

(

1 − v21

)

+ 0.24 sin(v3) + C [v2(t − 2π) − v2(t)]

v′
3 = 1,

(2.9.40)

where q(t) = C [v2(t − 2π) − v2(t)] is the control law, and an unstable 2π -periodic
solution can be stabilized by choosing an appropriate value for the parameter C.

Now, let us combine system (2.9.39) with two consecutive replicator systems and
set up the following 6-dimensional result-system

x ′
1 = x2

x ′
2 = −0.10x2 + 0.5x1

(

1 − x21
)+ 0.24 sin t

x ′
3 = x4 − 0.1x1

x ′
4 = −3x3 − 2x4 − 0.008x33 + 1.6x2

x ′
5 = x6 + 0.6x3

x ′
6 = −3.1x5 − 2.1x6 − 0.007x35 + 2.5x4.

(2.9.41)

In system (2.9.41) the subsystems with coordinates (x3, x4) and (x5, x6) corre-
spond to the first and the second replicator systems, respectively. Since our procedure
of morphogenesis is valid for specific types of chaos such as in Devaney’s and Li–
Yorke sense and through period-doubling cascade, we expect that our procedure is
also applicable to any other chaotic systemwith an unspecified type of chaos.Accord-
ingly, system (2.9.41) is chaotic since the generator system (2.9.39) is chaotic.

Theorem 2.6 specifies that in order to control the chaos of system (2.9.41) one
should control the chaos of the generator system, which is the subsystem of (2.9.41)
with coordinates (x1, x2). In accordance with this purpose, we will use the Pyragas
control method by means of the system

v′
1 = v2

v′
2 = −0.10v2 + 0.5v1

(

1 − v21
)+ 0.24 sin(v3) + C [v2(t − 2π) − v2(t)]

v′
3 = 1

v′
4 = v5 − 0.1v1

v′
5 = −3v4 − 2v5 − 0.008v34 + 1.6v2

v′
6 = v7 + 0.6v4

v′
7 = −3.1v6 − 2.1v7 − 0.007v36 + 2.5v5,

(2.9.42)
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(a)

(b)

(c)

Fig. 2.10 Pyragas control method applied to the result-system (2.9.41) with the aid of the cor-
responding control system (2.9.42). a The graph of v2-coordinate. b The graph of v5-coordinate.
c The graph of v7-coordinate. The result of Pyragas control method applied to the generator sys-
tem (2.9.39) is seen in (a). Through this method, the 2π -periodic solution of the generator and
accordingly the 2π -periodic solutions of the first and the second replicator systems are stabilized.
In other words, the chaos of the result-system (2.9.41) is controlled. For the coordinates v1, v4 and
v6 we have similar results which are not just pictured here. The control starts at t = 60 and ends at
t = 200, after which emergence of the chaos is observable again

which is the control system corresponding to (2.9.41).
Let us consider a solution of system (2.9.42) with the initial data v1(0) = 0.2,

v2(0) = 0.2, v3(0) = 0, v4(0) = −0.5, v5(0) = 0.1, v6 = −0.2, and v7(0) = 0.1.
We let the system evolve freely taking C = 0 until t = 60, and at that moment we
switch on the control by taking C = 0.84. At t = 200, we switch off the control and
start to use the value of the parameterC = 0 again. In Fig. 2.10 one can see the graphs
of the v2, v5, v7 coordinates of the solution. Supporting the result of Theorem 2.6,
it is observable in Fig. 2.10 that stabilizing a 2π -periodic solution of the generator
system provides the stabilization of the corresponding 2π -periodic solutions of the
replicator systems. After switching off the control, the 2π -periodic solutions of the
generator and replicators lose their stability and chaos emerges again.

2.10 Miscellany

In this part of the chapter, we intend to consider not rigorously proved, but interesting
phenomena which can be considered in the framework of our results. So, we shall
give some additional light on the results obtained above and say about the possibility
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for the replication of intermittency, Shilnikov orbits and relay systems. We also
demonstrate the possibility of quasiperiodic motions as an infinite basis of chaos.

We start our discussions with replication of intermittency.

2.10.1 Intermittency

In the previous sections, we have rigorously proved replication of specific types
of chaos such as period-doubling cascade, Devaney’s, and Li–Yorke chaos. Conse-
quently, one can expect that the same procedure also works for the intermittency
route.

Pomeau and Manneville [32] observed chaos through intermittency in the Lorenz
system (2.5.20), with the coefficients σ = 10, b = 8/3 and values of r slightly larger
than the critical value rc ≈ 166.06. To observe intermittent behavior in the Lorenz
system, let us consider a solution of system (2.5.20) together with the coefficients
σ = 10, b = 8/3, r = 166.25 using the initial data x1(0) = −23.3, x2(0) = 38.3
and x3(0) = 193.4. The time-series for the x1, x2 and x3 coordinates of the solution
are indicated in Fig. 2.11, where one can see that regular oscillations are interrupted
by irregular ones.

To perform the replication of intermittency, let us consider the Lorenz system
(2.5.20) as the generator and set up the 6-dimensional result-system

x ′
1 = σ (−x1 + x2)

x ′
2 = −x2 + r x1 − x1x3

x ′
3 = −bx3 + x1x2

x ′
4 = −x4 + 4x1

x ′
5 = x6 + 2x2

x ′
6 = −3x5 − 2x6 − 0.00005x35 + 0.5x4,

(2.10.43)

(a)

(b)

(c)

Fig. 2.11 Intermittency in the Lorenz system (2.5.20), where σ = 10, b = 8/3 and r = 166.25. a
The graph of the x1-coordinate. b The graph of the x2-coordinate. c The graph of the x3-coordinate



88 2 Replication of Continuous Chaos About Equilibria

(a)

(b)

(c)

Fig. 2.12 Intermittency in the replicator system. a The graph of the x4-coordinate. b The graph
of the x5-coordinate. c The graph of the x6-coordinate. The analogy between the time series of the
generator and the replicator systems indicates the morphogenesis of intermittency

again with the coefficients σ = 10, b = 8/3 and r = 166.25. It can be easily
verified that condition (A7) is valid for system (2.10.43). We consider the trajectory
of system (2.10.43) corresponding to the initial data x1(0) = −23.3, x2(0) = 38.3,
x3(0) = 193.4, x4(0) = −17.7, x5(0) = 11.4, and x6(0) = 2.5, and represent
the graphs for the x4, x5 and x6 coordinates in Fig. 2.12 such that the intermittent
behavior in the replicator system is observable. The similarity between the graphs of
the coordinates corresponding to the generator and the replicator counterpart reveals
the replication of intermittency.

2.10.2 Shilnikov Orbits

To illustrate that by our method it may also be possible to replicate strange attractors
[33–35], let us provide simulations of homoclinic and complicated Shilnikov orbits
(Figs. 2.13 and 2.14 correspondingly).

As a model for Shilnikov’s orbits, the paper [36] considers the system

x ′
1 = x2

x ′
2 = x3

x ′
3 = −x2 − βx3 + fμ(x1),

(2.10.44)

where

fμ(x) =
{

1 − μx, if x > 0
1 + αx, if x ≤ 0.

(2.10.45)
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(a) (b)

Fig. 2.13 Replication of a Shilnikov type homoclinic orbit. In picture a, one can see the projection
on the x1 − x2 − x3 space of the trajectory of system (2.10.46) corresponding to the initial data
x1(0)−1.57590, x2(0) = 0, x3(0) = 0, x4(0) = −0.78795, x5(0) = 0 and x6(0) = 0. The picture
in b shows the projection on the x4 − x5 − x6 space of the same trajectory. The parameter values
α = 0.633625, β = 0.3375 andμ = 2.16 are used in the simulation. The picture in (a) represents a
Shilnikov type homoclinic orbit corresponding to the generator system (2.10.44), while the picture
in (b) shows its replication through the system (2.10.46)

(a) (b)

Fig. 2.14 Projections of a complicated orbit of system (2.10.46) with α = 0.633625, β = 0.3375
and μ = 0.83. a Projection on the x1 − x2 − x3 space. b Projection on the x4 − x5 − x6 space. The
initial data x1(0) − 1.57590, x2(0) = 0, x3(0) = 0, x4(0) = −0.78795, x5(0) = 0, x6(0) = 0 is
used for the illustration. The picture in (a) represents the behavior of the trajectory corresponding
to the generator (2.10.44), while the picture in (b) illustrates its replication

The values α = 0.633625, β = 0.3375 and the parameter μ used in system
(2.10.44) are taken from [23]. The point e0 = (−1/α, 0, 0) is an equilibrium point
of system (2.10.44), and the eigenvalues of thematrix of linearization at e0 are 0.4625,
−0.4 ± 1.1i such that the condition of the Shilnikov’s theorem about eigenvalues
[37] is satisfied. For values of the parameter μ near 2.16, system (2.10.44) possesses
a special type homoclinic orbit−Shilnikov orbit, and its presence implies chaotic
dynamics [23]. In this case, Shilnikov’s theorem asserts that every neighborhood of
the homoclinic orbit contains a countably infinite number of unstable periodic orbits
[36, 37].
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To demonstrate numerically the replication of a Shilnikov orbit, let us consider
the following system

x ′
1 = x2

x ′
2 = x3

x ′
3 = −x2 − βx3 + fμ(x1)

x ′
4 = −2x4 + x1

x ′
5 = −0.6x5 + 2x2 + 0.1x32

x ′
6 = −1.2x6 + 0.001 sin(x6) + x3,

(2.10.46)

where, again, the function fμ(x) is given by formula (2.10.45).
System (2.10.44) is used as a generator in system (2.10.45), where the last three

coordinates are of a replicator. Let us consider system (2.10.46) with the values
α = 0.633625, β = 0.3375 and μ = 2.16 once again. In Fig. 2.13 we show the
trajectory of this system with initial data x1(0) − 1.5759, x2(0) = 0, x3(0) = 0,
x4(0) = −0.78795, x5(0) = 0 and x6(0) = 0. The picture in Fig. 2.13a, where
we illustrate the projection of the trajectory on the x1 − x2 − x3 space represents,
in fact, the Shilnikov orbit corresponding to the generator system (2.10.44). On
the other hand, the picture in Fig. 2.13b, shows the projection of the trajectory on
the x4 − x5 − x6 space and in this picture the replication of the Shilnikov orbit is
observable.

Next, we consider system (2.10.46) with the values α = 0.633625, β = 0.3375,
μ = 0.83 and take the trajectory of this system with the same initial data as above. In
Fig. 2.14a, b,we represent the projections of this trajectory on the x1−x2−x3 and x4−
x5 − x6 spaces, respectively. The picture in (a) represents the complicated behavior
of the generator system (2.10.44) and one can see in picture (b) the replication of
this behavior.

We suppose that theoretical affirmation of our simulation results can be done if
one considers interpretation of Shilnikov’s theorem [37] for the multidimensional
replicator. That is, we are still questioning whether our approach can be somehow
combined with methods indicating chaos through Shilnikov type strange attractors
[33, 35]. At least, it is easy to see that a homoclinic trajectory exists for a replicator
as well as a denumerable set of unstable periodic solutions.

In next our discussion, we will emphasize by means of simulations the morpho-
genesis of the double-scroll Chua’s attractor in a unidirectionally coupled open chain
of Chua circuits. Approaches for the generation of hyperchaotic systems have already
been discussedmaking use of Chua circuits which are all chaotic [38, 39]. It deserves
to remark that to create hyperchaotic attractors in previous papers, others consider
both involved interacting systems chaotic, but in our case only the first link of the
chain is chaotic and other consecutive Chua systems are all non-chaotic.
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2.10.3 Morphogenesis of the Double-Scroll
Chua’s Attractor

The type of chaos for the double-scroll Chua circuit is proposed in paper [40]. It
is an interesting problem to prove that this type of chaos can be replicated through
the method discussed in this chapter. Nevertheless, we will show by simulations that
the regular behavior in Chua circuits placed in the extension mechanism can also be
seen. This means that next special investigation has to be done. Moreover, this will
show how one can use morphogenesis not only for chaos, but also for Chua circuits
by uniting them in complexes in electrical (physical) sense, and observing the same
properties as a unique separated Chua circuit admits. This is an interesting problem
which can give a light for the complex behavior of huge electrical circuits.

There is a well-known result of the chaoticity based on the double-scroll Chua’s
attractor [41]. It was proven first in the paper [40] rigorously, and the proof is based
on the Shilnikov’s theorem [37]. Since the Chua circuit and its chaotic behavior is of
extreme importance from the theoretical point of view and its usage area in electrical
circuits by radio physicists and nonlinear scientists from other disciplines, one can
suppose that morphogenesis of the chaos will also be of a practical and a theoretical
interest.

We just take into account a simulation result which supports that morphogenesis
idea can be developed also from this point of view.

Let us consider the dimensionless form of the Chua’s oscillator given by the
system

x ′
1 = kα[x2 − x1 − f (x1)]

x ′
2 = k(x1 − x2 + x3)

x ′
3 = k(−βx2 − γ x3)

f (x) = bx + 0.5(a − b) (|x + 1| + |x − 1|) ,

(2.10.47)

where α, β, γ, a, b and k are constants.
In paper [42], it is indicated that system (2.10.47) with the coefficients α =

21.32/5.75, β = 7.8351, γ = 1.38166392/12, a = −1.8459, b = −0.86604 and
k = 1 admits a stable equilibrium.

In what follows, as the generator, we make use of system (2.10.47) together with
the coefficients α = 15.6, β = 25.58, γ = 0, a = −8/7, b = −5/7 and k = 1
such that a double-scroll Chua’s attractor takes place [22], and consider the following
12-dimensional result-system:
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x ′
1 = 15.6 [x2 − (2/7)x1 + (3/14) (|x1 + 1| + |x1 − 1|)]

x ′
2 = x1 − x2 + x3

x ′
3 = −25.58x2

x ′
4 = (21.32/5.75)[x5 − 0.13396x4

+0.48993 (|x4 + 1| + |x4 − 1|)] + 2x1
x ′
5 = x4 − x5 + x6 + 5x2

x ′
6 = −7.8351x5 − (1.38166392/12)x6 + 2x3

x ′
7 = (21.32/5.75)[x8 − 0.13396x7

+0.48993 (|x7 + 1| + |x7 − 1|)] + 2x4
x ′
8 = x7 − x8 + x9 + 3x5

x ′
9 = −7.8351x8 − (1.38166392/12)x9 − 0.001x6

x ′
10 = (21.32/5.75)[x11 − 0.13396x10

+0.48993 (|x10 + 1| + |x10 − 1|)] + 4x7
x ′
11 = x10 − x11 + x12 − 0.1x8

x ′
12 = −7.8351x11 − (1.38166392/12)x12 + 2x9.

(2.10.48)

System (2.10.48) consists of four unidirectionally coupled Chua circuits such
that the subsystems with coordinates (x1, x2, x3), (x4, x5, x6), (x7, x8, x9) and
(x10, x11, x12) correspond to the first, second, third, and the fourth links of the open
chain of circuits.

In Fig. 2.15, we simulate the 3-dimensional projections on the x1 − x2 − x3 and
x4 − x5 − x6 spaces of the trajectory of the result-system (2.10.48) with the initial
data x1(0) = 0.634, x2(0) = −0.093, x3(0) = −0.921, x4(0) = −8.013, x5(0) =
0.221, x6(0) = 6.239, x7(0) = −50.044, x8(0) = −0.984, x9(0) = 48.513,
x10(0) = −256.325, x11(0) = 7.837, x12(0) = 264.331. The projection on the
x1−x2−x3 space shows the double-scroll Chua’s attractor produced by the generator
system (2.10.47), and projection on the x4 − x5 − x6 space represents the chaotic
attractor of the first replicator.

In a similar way, we display the projections of the same trajectory on the x7 −
x8 − x9 and x10 − x11 − x12 spaces, which correspond to the attractors of the second
and the third replicator systems, in Fig. 2.16. The illustrations shown in Figs. 2.15
and 2.16 indicate the extension of chaos in system (2.10.48). Possibly the result-
system (2.10.48) produces a double-scroll Chua’s attractor with hyperchaos, where
the number of positive Lyapunov exponents are more than one and even four.

2.10.4 Quasiperiodicity in Chaos

Now, let us indicate that if there are more than one generator system, then the chaos
extension mechanism will lead to some new forms such as periodicity gives birth to
quasiperiodicity.

In paper [43], it is mentioned that the Duffing equation
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(a) (b)

Fig. 2.15 3-dimensional projections of the chaotic attractor of the result-system (2.10.48). a Pro-
jection on the x1 − x2 − x3 space. b Projection on the x4 − x5 − x6 space. The picture in (a) shows
the attractor of the original prior chaos of the generator system (2.10.47) and (b) represents the
attractor of the first replicator. The resemblance between shapes of the attractors of the generator
and the replicator systems makes the extension of chaos apparent

(a) (b)

Fig. 2.16 3-dimensional projections of the chaotic attractor of the result-system (2.10.48). a Pro-
jection on the x7−x8−x9 space. b Projection on the x10−x11−x12 space. (a) and (b) demonstrates
the attractors generated by the second and the third replicator systems, respectively

x ′′ + 0.168x ′ − 0.5x
(

1 − x2
)

= μ sin t, (2.10.49)

where μ is a parameter, admits the chaos through period-doubling cascade at the
parameter value μ = μ∞ ≡ 0.21. That is, at the parameter value μ = μ∞, for each
natural number k the Eq. (2.10.49) admits infinitely many periodic solutions with
periods 2kπ.Using the change of variables t = 2πs and x(t) = y(s), and relabeling
s as t, one attains the following equation:

y′′ + 0.168πy′ − 0.5π2y
(

1 − y2
) = π2μ sin(π t). (2.10.50)
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Likewise Eq. (2.10.49), it is clear that Eq. (2.10.50), when considered with μ =
μ∞, also admits the chaos through period-doubling cascade and has infinitely many
periodic solutions with periods 2, 4, 8, . . ..

Using the new variables x1 = x, x2 = x ′ and x3 = y, x4 = y′, one can convert
the Eqs. (2.10.49) and (2.10.50) to the systems

x ′
1 = x2

x ′
2 = −0.168x2 + 0.5x1

(

1 − x21

)

+ μ sin t
(2.10.51)

and

x ′
3 = x4

x ′
4 = −0.168πx4 + 0.5π2x3(1 − x23 ) + π2μ sin(π t),

(2.10.52)

respectively. Now, we shall make use both of the systems (2.10.51) and (2.10.52),
with μ = μ∞, as generators to obtain a chaotic system with infinitely many qua-
siperiodic solutions. We mean that the two systems admit incommensurate periods
and consequently their influence on the replicator will be quasiperiodic. In this case,
one can expect that replicator will expose infinitely many quasiperiodic solutions.
For that purpose, let us consider the 6-dimensional result-system

x ′
1 = x2

x ′
2 = −0.168x2 + 0.5x1(1 − x21 ) + 0.21 sin t

x ′
3 = x4

x ′
4 = −0.168πx4 + 0.5π2x3(1 − x23 ) + 0.21π2 sin(π t)

x ′
5 = x6 + x1 + x3

x ′
6 = −3x5 − 2x6 − 0.008x35 + x2 + x4,

(2.10.53)

where the last two equations are of a replicator.
To reveal existence of quasiperiodic solutions embedded in the chaotic attractor

of system (2.10.53) we control the chaos of system (2.10.53) by the Pyragas method
through the following control system

v′
1 = v2

v′
2 = −0.168v2 + 0.5v1(1 − v21) + 0.21 sin v3

+C1(v2(t − 2π) − v2(t))
v′
3 = 1

v′
4 = v5

v′
5 = −0.168πv5 + 0.5π2v4(1 − v24) + 0.21π2 sin(πv6)

+C2(v5(t − 2) − v5(t))
v′
6 = 1

v′
7 = v8 + v1 + v4

v′
8 = −3v7 − 2v8 − 0.008v37 + v2 + v5.

(2.10.54)
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(a)

(b)

(c)

Fig. 2.17 Pyragas control method applied to the result-system (2.10.53) by means of the cor-
responding control system (2.10.54). a The graph of the v2-coordinate. b The graph of the v5-
coordinate. c The graph of the v8-coordinate. The simulation for the result-system (2.10.53) is
provided such that in (a) and (b) periodic solutions with incommensurate periods 2 and 2π are
controlled by Pyragas method and in (c) a quasiperiodic solution of the replicator system is pic-
tured. The control starts at t = 35 and ends at t = 120. After switching off the control, chaos
emerges again and irregular behavior reappears. For the coordinates v1, v4 and v7 we have similar
illustrations which are not indicated here

We take into account the solution of the result-system (2.10.53) with the initial
data v1(0) = 0.4, v2(0) = −0.1, v3(0) = 0, v4(0) = −0.2, v5(0) = 0.5, v6(0) = 0,
v7(0) = 1.1 and v8(0) = 2.5. The simulation results are shown in Fig. 2.17. The
control mechanism starts at t = 35 and ends at t = 120. The chaos not only in
the generator systems, but also in the replicator counterpart is observable before the
control is switched on. During the control, we make use of the values of C1 = 0.62
and C2 = 2.58 to stabilize the periodic solutions corresponding to the generator
systems (2.10.51) and (2.10.52) with periods 2π and 2, respectively. Up to t = 35
and after t = 120 the values C1 = C2 = 0 are used. Between t = 35 and t = 120,
the quasiperiodic solution of the replicator is stabilized and after t = 120 chaos in
the system (2.10.53) develops again.

Possibly the obtained simulation result and previous theoretical discussions can
give a support to the idea of quasiperiodical cascade for the appearance of chaos
which can be considered as a development of the popular period-doubling route to
chaos.

In paper [44], it has beenmentioned that, in general, in the place of countable set of
periodic solutions to form chaos, one can take an uncountable collection of Poisson
stable motions which are dense in a quasi-minimal set. This can be also observed
in Horseshoe attractor [45]. These emphasize that our simulation of quasiperiodic
solutions can be considered as another evidence for the theoretical results.
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2.10.5 Replicators with Nonnegative Eigenvalues

We recall that in our theoretical discussions, all eigenvalues of the real-valued con-
stant matrix A, used in system (2.1.2), are assumed to have negative real parts. Now,
as open problems from the theoretical point of view, we shall discuss through simu-
lations the problem of chaos replication in the case when the matrix A possesses an
eigenvalue with positive or zero real part.

First, we are going to concentrate on the case of the existence of an eigenvalue
with positive real part. Let us make use of the Lorenz system (2.5.20) together with
the coefficients σ = 10, r = 28 and b = 8/3 as the generator, which is known to be
chaotic [21, 46], and set up the 6-dimensional result-system

x ′
1 = −10x1 + 10x2

x ′
2 = −x2 + 28x1 − x1x3

x ′
3 = −(8/3)x3 + x1x2

x ′
4 = −2x4 + x1

x ′
5 = −3x5 + x2

x ′
6 = 4x6 − x36 + x3.

(2.10.55)

It is crucial to note that system (2.10.55) is of the form of system (2.1.1)+ (2.1.2),
where the matrix A admits the eigenvalues −2,−3 and 4, such that one of them
is positive. We take into account the solution of system (2.10.55) with the initial
data x1(0) = −12.7, x2(0) = −8.5, x3(0) = 36.5, x4(0) = −3.4, x5(0) = −3.2,
x6(0) = 3.7 and visualize in Fig. 2.18 the projections of the corresponding trajectory
on the x1 − x2 − x3 and x4 − x5 − x6 spaces. It is seen that the replicator system
admits the chaos and the input–output analysis works for system (2.10.55).

(a) (b)

Fig. 2.18 3-dimensional projections of the chaotic attractor of the result-system (2.10.55). a Pro-
jection on the x1 − x2 − x3 space. b Projection on the x4 − x5 − x6 space. In (a), the famous
Lorenz attractor produced by the generator system (2.5.20) with coefficients σ = 10, r = 28 and
b = 8/3 is shown. In (b), as in usual way, the projection of the chaotic attractor of the result-system
(2.10.55), which can separately be considered as a chaotic attractor, is presented. Possibly one can
call the attractor of the result-system as 6D Lorenz attractor
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Next, we continue to our discussion with the case of the existence of an eigenvalue
with a zero real part. This time we consider the chaotic Rössler system [46, 47]
described by

x ′
1 = −(x2 + x3)

x ′
2 = x1 + 0.2x2

x ′
3 = 0.2 + x3(x1 − 5.7)

(2.10.56)

as the generator and constitute the result-system

x ′
1 = −(x2 + x3)

x ′
2 = x1 + 0.2x2

x ′
3 = 0.2 + x3(x1 − 5.7)

x ′
4 = −4x4 + x1

x ′
5 = −x5 + x2

x ′
6 = −0.2x36 + x3.

(2.10.57)

In this case, one can consider system (2.10.57) as in the form of (2.1.1)+ (2.1.2)
where the matrix A is a diagonal matrix with entries −4,−1, 0 on the diagonal and
admits the number 0 as an eigenvalue. We simulate the solution of system (2.10.57)
with the initial data x1(0) = 4.6, x2(0) = −3.3, x3(0) = 0, x4(0) = 1, x5(0) =
−3.7 and x6(0) = 0.8. The projections of the trajectory on the x1 − x2 − x3 and
x4 − x5 − x6 spaces are seen in Fig. 2.19. The simulation results confirm that the
replicator mimics the complex behavior of the generator system.

These results of the simulations requestmore detailed investigationwhich concern
not only the theoretical existence of chaos, but also its resistance and stability.

(a) (b)

Fig. 2.19 3-dimensional projections of the chaotic attractor of the result-system (2.10.57). a Pro-
jection on the x1− x2− x3 space. b Projection on the x4− x5− x6 space. The picture in (a) indicates
the famous Rössler attractor produced by the generator system (2.10.56). The similarity between
the illustrations presented in (a) and (b) supports the morphogenesis of chaos. The attractor of the
result-system (2.10.57) can be possibly called as 6D Rössler attractor
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2.11 Notes

In this chapter, we show that a known type of chaos, such as the one obtained
through period-doubling cascade and in the sense of Devaney or Li–Yorke, can be
extended to systems with arbitrary large dimensions. More precisely, we provide
the replication of chaos between unidirectionally coupled systems such that a result-
system admitting the same type of chaos is obtained. The definitions of chaotic sets as
well as the hyperbolic sets of continuous functions are introduced, and the replication
of the chaos is proved rigorously. The considered morphogenesis mechanism is
based on a chaos generating element inserted in a network of systems. Replication
of intermittency as well as Shilnikov orbits are discussed. Morphogenesis of the
double-scroll Chua’s attractor and quasiperiodical motions as a possible skeleton of
a chaotic attractor are demonstrated numerically. The presented technique is useful
for creating chaos in systems that are encountered in mechanics, electrical systems,
economic theory, meteorology, neural networks theory, and communication systems.

The concept of self-replicating machines, in the abstract sense, starts with the
ideas of von Neumann [48], and these ideas are supposed to be the origins of cellular
automata theory [49]. Morphogenesis was deeply involved in mathematical discus-
sions through Turing’s investigations [50] as well as in the concept of structural
stability [51]. In this chapter, the term “morphogenesis” is used in the meaning of
“processes creating forms” where we accept the form not only as a type of chaos,
but also accompanying concepts as the structure of the chaotic attractor, its frac-
tal dimension, form of the bifurcation diagram, the spectra of Lyapunov exponents,
inheritance of intermittency, etc. This is similar to the idea such that morphogen-
esis is used in fields such as urban studies [52], architecture [53], mechanics [54],
computer science [55], linguistics [56], and sociology [57, 58]. The results of this
chapter were published in the paper [59].
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Chapter 3
Chaos Extension in Hyperbolic Systems

This chapter is devoted to the investigation of chaos in the dynamics of chaotically
perturbed hyperbolic systems. Extension of chaos in the sense of Devaney and Li–
Yorke is taken into account for unidirectionally coupled systems. The rigorously
proved results are supported by simulations. A method for controlling the extended
chaos is also presented.

3.1 Introduction

In this chapter, we will consider non-chaotic systems and perturb them in a uni-
directional way through exogenous chaotic forcing terms to achieve propagation
of the chaotic behavior. In other words, the influence of the chaos of a system on
another one will be mentioned in the chapter such that as a result the latter behaves
also chaotically. Chaotification of systems of differential equations through different
techniques can be found in our studies [1–5, 7–10]. Endogenously generated chaotic
behavior of systems are well investigated in the literature. The systems of Lorenz
[11], Rössler [12], and Chua [13, 14] as well as the Van der Pol [15–17] and Duffing
[18–20] oscillators can be considered as systems which are capable of generating
chaos endogenously. We will make use of Devaney and Li–Yorke chaos in the exten-
sion mechanism through exogenous perturbations, and essentially indicate in the
present chapter that not only endogenous structure of systems, but also exogenous
chaotic perturbations can give rise to observation of chaotic behavior.

To explain the extension procedure of the present chapter, let us give the following
information. It is known that if one considers the evolution equation u′ = L[u]+ I (t),
where L[u] is a linear operator with spectra placed out of the imaginary axis of the
complex plane, then a function I (t) being considered as an input with a certain prop-
erty (boundedness, periodicity, almost periodicity) produces through the equation the
output, a solution with a similar property, boundedness/periodicity/almost periodic-
ity. In particular, in this chapter, we solved a similar problem when the linear system

© Higher Education Press, Beijing and Springer-Verlag Berlin Heidelberg 2016
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Economics and Physics, Nonlinear Physical Science,
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has eigenvalues with negative real parts and input is considered as a chaotic set of
functions with a known type. Our results are different in the sense that the input and
the output are not single functions, but a collection of functions. In other words, we
prove that both the input and the output are chaos of the same type for the discussed
equation. The way of our investigation is arranged in the well-accepted traditional
mathematical fashion, but with a new and a more complex way of arrangement of
the connections between the input and the output. The same is true for the control
results discussed in the chapter. If one considers an element of the chaotic set as the
chaotic function, then we may consider our results through the analysis where input
and output are of the same nature, that is, they are chaotic functions.

Throughout the chapter, we will denote by R and N the sets of real numbers and
natural numbers, respectively. Moreover, the usual Euclidean norm for vectors and
the norm induced by the Euclidean norm for square matrices [21] will be used.

The paper [8], where we discuss an extension mechanism of chaos, is about the
replication of specific types of chaos, such as Devaney, Li–Yorke chaos, and chaos
obtained through period-doubling cascade. In this process,we consider the generator-
replicator systems such that the generator is considered as a system of the form

x ′ = F(t, x), (3.1.1)

where F : R × R
m → R

m is a continuous function in all its arguments and the
replicator is assumed to have the form

y′ = Ay + g(x, y), (3.1.2)

where g : Rm × R
n → R

n is a continuous function in all its arguments and the
constant n × n real-valued matrix A has real parts of eigenvalues all negative.

The rigorous results of the extension mechanism emphasize that system (3.1.2) is
chaotic in the sameway as system (3.1.1). Replication of chaos through intermittency
is also shown through simulations in paper [8], where one can find new definitions
for chaotic sets of functions, and precise descriptions for the ingredients of Devaney
and Li–Yorke chaos in continuous-time dynamics, which are used as tools for the
extension procedure.

In the case that the matrix A in (3.1.2) is hyperbolic, we have not been able to find
a way to insert a term nonlinear in y in the system to preserve the results of paper
[8] and, instead, we are forced to handle system (3.2.6) to achieve success in the
theoretical results. In other words, we could not achieve the extension of Devaney
and/or Li–Yorke chaos when nonlinearity with respect to y is included in the system
and the eigenvalues of the matrix A are allowed to possess positive real parts as well
as negative real parts. However, in the present chapter, the chaos extension problem
is considered for a hyperbolic matrix A and the nonlinear term of the initially non-
perturbed system is removed for a theoretically supported chaotification process,
and this is the main difference compared to [8]. The restrictive conditions of the
chapters have their own priority in such a way that the present chapter considers
hyperbolic linear vector fields in the form of equation (3.2.5) to be forced through
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chaotic perturbations, while the paper [8] allows us to include nonlinear terms for the
existing replicators such that the real-valued matrix A has eigenvalues with negative
real parts. An example with a nonlinear term is demonstrated numerically in the last
part of the chapter.

It is also worth noting that, at each step of the extension mechanism, one should
take into account replicator systems with smaller Lipschitz constants and this may
violate the validity of the procedure for infinitely many consecutive systems [8].
Distinctively, in the present chapter, such a condition is not requested and therefore
the procedure can be performed for infinite number of consecutive systems and
decay for the strength of chaoticity does not occur. We also note that likewise the
Smale horseshoe map or the Cantor set of the logistic map hμ(x) = μx(1− x) with
μ > 4, the bounded solutions of system (3.2.6), in general, cannot be considered as
an attractor. Consequently, they cannot be simulated, and present results have rather
theoretical sense.

Let us denote by

B = {ψ(t) | ψ : R → K is continuous} (3.1.3)

a collection of functions, where K ⊂ R
p is a bounded region. Since the concept of

chaotic set of functions is used in the theoretical discussions, let us explain briefly the
ingredients of Devaney and Li–Yorke chaos for the set B, which are introduced in
paper [8]. The proofs indicated in Sect. 3.3 are predicated on the definitions of these
ingredients. For more information about Devaney and Li–Yorke chaos, one can see
[22–27].

Let us start with introducing the following ingredients of Devaney chaos for the
setB.

(D1) B is called sensitive if there exist positive numbers ε andΔ such that for every
ψ(t) ∈ B and for arbitrary δ > 0 there existψ(t) ∈ B, t0 ∈ R and an interval
J ⊂ [t0,∞), with length not less than Δ, such that

∥
∥ψ(t0) − ψ(t0)

∥
∥ < δ and

∥
∥ψ(t) − ψ(t)

∥
∥ > ε, for all t ∈ J ;

(D2) B is called transitive if there exists a function ψ∗(t) ∈ B such that for every
function ψ(t) ∈ B, arbitrary small ε > 0 and arbitrary large E > 0, there
exist a number ξ > 0 and an interval J ⊂ R, with length E, such that
‖ψ(t) − ψ∗(t + ξ)‖ < ε, for all t ∈ J ;

(D3) B possesses a dense collection G ⊂ B of periodic functions if for every
functionψ(t) ∈ B, arbitrary small ε > 0 and arbitrary large E > 0, there exist
ψ̃(t) ∈ G and an interval J ⊂ R,with length E, such that

∥
∥ψ(t) − ψ̃(t)

∥
∥ < ε,

for all t ∈ J.

We say that the set B of functions is a Devaney’s chaotic set if it is sensitive,
transitive, and possesses a dense collection of periodic functions.
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Now, let us continue with the ingredients in the sense of Li–Yorke.

(LY1) Acouple of functions
(

ψ(t), ψ(t)
) ∈ B×B is called proximal if for arbitrary

small ε > 0 and arbitrary large E > 0, there exist infinitely many disjoint
intervals of length not less than E such that

∥
∥ψ(t) − ψ(t)

∥
∥ < ε, for each t

from these intervals;
(LY2) Acouple of functions

(

ψ(t), ψ(t)
) ∈ B×B is frequently (ε0,Δ)−separated

if there exist positive real numbers ε0,Δ and infinitely many disjoint intervals
of length not less than Δ, such that

∥
∥ψ(t) − ψ(t)

∥
∥ > ε0, for each t from

these intervals.

A couple of functions
(

ψ(t), ψ(t)
) ∈ B × B is a Li–Yorke pair if they are

proximal and frequently (ε0,Δ)−separated for some positive numbers ε0 and Δ.

On the other hand, a set C ⊂ B is called a scrambled set if C does not contain any
periodic functions and each couple of different functions inside C ×C is a Li–Yorke
pair.

B is called a Li–Yorke chaotic set if there exists a positive real number T0 such
that B admits a periodic function of period kT0, for any k ∈ N, B possesses an
uncountable scrambled set C , and for any function ψ(t) ∈ C and any periodic
function ψ(t) ∈ B, the couple

(

ψ(t), ψ(t)
)

is frequently (ε0,Δ)−separated for
some positive real numbers ε0 and Δ.

In the next section, we introduce the systems which will be under investigation
and give information about the properties of these systems under some conditions.

3.2 Preliminaries

Let us consider the systems

x ′ = F(t, x) (3.2.4)

and

u′ = Au, (3.2.5)

where the function F : R × R
m → R

m is continuous in all its arguments, and the
eigenvalues of the n × n constant real-valued matrix A has nonzero real parts.

To extend chaos generated by equation (3.2.4), we perturb system (3.2.5) through
the solutions of (3.2.4) to achieve the system

y′ = Ay + h(x), (3.2.6)

where h : Rm → R
n is a continuous function.



3.2 Preliminaries 105

The following assumptions are needed throughout the chapter:

(A1) There exists a positive real number L0 such that

‖F(t, x1) − F(t, x2)‖ ≤ L0 ‖x1 − x2‖ ,

for all t ∈ R, x1, x2 ∈ R
m;

(A2) There exists a positive real number H0 such that

sup
t∈R,x∈Rm

‖F(t, x)‖ ≤ H0;

(A3) There exist positive real numbers L1 and L2 such that

L1 ‖x1 − x2‖ ≤ ‖h(x1) − h(x2)‖ ≤ L2 ‖x1 − x2‖ ,

for all x1, x2 ∈ R
m, y ∈ R

n;
(A4) There exists a positive real number M0 such that

sup
x∈Rm ,y∈Rn

‖h(x)‖ ≤ M0.

It is worth saying that the results of the present chapter are also true even if we
replace the nonautonomous system (3.2.4) by the autonomous equation

x ′ = F(x), (3.2.7)

where the function F : Rm → R
m is continuous with conditions which are counter-

parts of (A1) and (A2).
If we denote by λ j , j = 1, . . . , n, the eigenvalues of the matrix A, then we

suppose that there exists a nonnegative integer k such that max
j=1,...,k

Rλ j < 0, and

min
j=k+1,...,n

Rλ j > 0, where Rλ j denotes the real part of the eigenvalue λ j of the

matrix A. Without loss of generality, one can assume that

A =
(

A+ 0
0 A−

)

, (3.2.8)

where the square matrices A+ and A− are of dimensions k and n − k, respectively,
λ j , j = 1, . . . , k are the eigenvalues of the matrix A+ and λ j , j = k + 1, . . . , n are
the eigenvalues of the matrix A−. Under the circumstances, there exist positive real
numbers N and ω such that

∥
∥eA+t

∥
∥ ≤ Ne−ωt , t ≥ 0 and

∥
∥eA−t

∥
∥ ≤ Neωt , t ≤ 0.

We can write equation (3.2.6) in the following form:

y′+ = A+y+ + h+(x),

y′− = A−y− + h−(x),
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where y =
(

y+
y−

)

, y+ ∈ R
k, y− ∈ R

n−k and h =
(

h+
h−

)

.

Using the theory of quasilinear equations [28], one can verify that for a given
solution x(t) of system (3.2.4), there exists a unique bounded onR solutionφx(t)(t) =
(

y+(t)
y−(t)

)

, of the system y′ = Ay + h(x(t)), which satisfies the couple of integral

equations

y+(t) =
∫ t

−∞
eA+(t−s)h+(x(s))ds,

y−(t) = −
∫ ∞

t
eA−(t−s)h−(x(s))ds.

Our main assumption is the existence of a nonempty set Ax of all solutions of
system (3.2.4), uniformly bounded on R. That is, there exists a positive real number
H such that sup

t∈R
‖x(t)‖ ≤ H, for all x(t) ∈ Ax .

Let us introduce the sets of functions [8]

Ay = {

φx(t)(t) | x(t) ∈ Ax
}

,

and

A = {

(x(t), φx(t)(t)) | x(t) ∈ Ax
}

.

We note that for each y(t) ∈ Ay, one has sup
t∈R

‖y(t)‖ ≤ M, where M = 2N M0

ω
.

In the last part of the chapter, we will demonstrate numerically the possibility of
chaos extension in a hyperbolic system involving a nonlinear term. For this purpose,
we will make use of a system in the following form:

y′ = Ay + f (y) + h(x), (3.2.9)

where the matrix A and the function h have the same properties as in system (3.2.6)
and f : Rn → R

n is a continuous function. Here, equation (3.2.9) is attained through
the perturbation of

u′ = Au + f (u), (3.2.10)

by the solutions of the processor system (3.2.4). In the exemplification, a non-chaotic
Lorenz system will be perturbed through the solutions of a chaotic Rössler system.

The next section is devoted for the clarification of the theoretical results for the
chaos extension in systems of the form (3.2.4)+ (3.2.6).
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3.3 Extension of Chaos

The present section is devoted for the rigorous proofs for the extension of chaos in
the sense of Devaney and Li–Yorke.We start our discussions with the first ingredient,
sensitivity, of Devaney chaos.

Lemma 3.1 If Ax sensitive then the same is true for the set Ay .

Proof Fix an arbitrary function y(t) =
(

y+(t)
y−(t)

)

∈ Ay and a positive real number

δ.Owing to the description of the setAy, there exists a function x(t) ∈ Ax such that
y(t) = φx(t)(t).

Choose a sufficiently small positive number ε = ε(δ) such that

(

1 + 2N L2

ω

)

ε < δ

and take a sufficiently large positive real number R = R(ε) which satisfies the

inequality
4M0N

ω
e−ωR < ε. Let δ1 = δ1(ε, R) = εe−L0R . Since the set Ax

is sensitive, there exist positive real numbers ε0 and Δ such that the inequalities
‖x(t0) − x(t0)‖ < δ1 and ‖x(t) − x(t)‖ ≥ ε0, t ∈ J, hold for some x(t) ∈ Ax ,

t0 ∈ R and for some interval J ⊂ [t0,∞) with length not less than Δ.

Suppose that y(t) = φx(t)(t) ∈ Ay . In the proof our aim is first to show that

‖y(t0) − y(t0)‖ < δ

and then to prove the existence of a positive real number ε1 and an interval J 1 ⊂ J
with a fixed length, which is independent of y(t), y(t) ∈ Ay, such that the inequality
‖y(t) − y(t)‖ ≥ ε1 holds, for all t ∈ J 1.

Making use of the relations

x(t) = x(t0) +
∫ t

t0
F(s, x(s))ds

and

x(t) = x(t0) +
∫ t

t0
F(s, x(s))ds

we obtain the inequality

‖x(t) − x(t)‖ ≤ ‖x(t0) − x(t0)‖ +
∣
∣
∣
∣

∫ t

t0
L0 ‖x(s) − x(s)‖ ds

∣
∣
∣
∣
.
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Applying Gronwall–Bellman Lemma to the last inequality for t ∈ [t0 − R, t0 + R],
we obtain that

‖x(t) − x(t)‖ ≤ ‖x(t0) − x(t0)‖ eL0|t−t0|.

Now, since the inequality ‖x(t0) − x(t0)‖ < δ1 holds true, we get ‖x(t) − x(t)‖ < ε

for all t ∈ [t0 − R, t0 + R].
Using the relations

y+(t) =
∫ t

−∞
eA+(t−s)h+(x(s))ds

and

y+(t) =
∫ t

−∞
eA+(t−s)h+(x(s))ds,

for t ∈ [t0 − R, t0 + R], we achieve that

y+(t) − y+(t) =
∫ t

−∞
eA+(t−s) [

h+(x(s)) − h+(x(s))
]

=
∫ t0−R

−∞
eA+(t−s) [

h+(x(s)) − h+(x(s))
]

+
∫ t

t0−R
eA+(t−s) [

h+(x(s)) − h+(x(s))
]

.

Therefore, the inequality

∥
∥y+(t) − y+(t)

∥
∥ ≤

∫ t0−R

−∞
Ne−ω(t−s) ‖h+(x(s)) − h+(x(s))‖ ds

+
∫ t

t0−R
Ne−ω(t−s) ‖h+(x(s)) − h+(x(s))‖ ds

≤
∫ t0−R

−∞
2N M0e−ω(t−s)ds +

∫ t

t0−R
N L2εe−ω(t−s)ds

= 2N M0

ω
e−ω(t−t0+R) + N L2ε

ω

(

1 − e−ω(t−t0+R)
)

holds for all t ∈ [t0 − R, t0 + R]. In particular, the last inequality is true for t = t0

and hence one obtains
∥
∥y+(t0) − y+(t0)

∥
∥ ≤ 2N M0

ω
e−ωR + N L2ε

ω
.

Similarly, by means of the integral equations

y−(t) = −
∫ ∞

t
eA−(t−s)h−(x(s))ds
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and

y−(t) = −
∫ ∞

t
eA−(t−s)h−(x(s))ds,

we have

y−(t) − y−(t) = −
∫ ∞

t
eA−(t−s) [

h−(x(s)) − h−(x(s))
]

= −
∫ t0+R

t
eA−(t−s) [

h−(x(s)) − h−(x(s))
]

−
∫ ∞

t0+R
eA−(t−s) [

h−(x(s)) − h−(x(s))
]

.

Thus, for all t ∈ [t0 − R, t0 + R], we have
∥
∥y−(t) − y−(t)

∥
∥ ≤

∫ t0+R

t
Neω(t−s) ‖h−(x(s)) − h−(x(s))‖ ds

+
∫ ∞

t0+R
Neω(t−s) ‖h−(x(s)) − h−(x(s))‖ ds

≤
∫ ∞

t0+R
2N M0eω(t−s)ds +

∫ t0+R

t
N L2εeω(t−s)ds

= 2N M0

ω
e−ω(t0+R−t) + N L2ε

ω

(

1 − e−ω(t0+R−t)
)

and as a consequence the inequality

∥
∥y−(t0) − y−(t0)

∥
∥ ≤ 2N M0

ω
e−ωR + N L2ε

ω

is valid.
Now, it is easy to see that

‖y(t0) − y(t0)‖ ≤ ∥
∥y+(t0) − y+(t0)

∥
∥ + ∥

∥y−(t0) − y−(t0)
∥
∥

≤ 4N M0

ω
e−ωR + 2N L2ε

ω

≤
(

1 + 2N L2

ω

)

ε

< δ.

In the remaining part of the proof, we will show the existence of a positive number
ε1 and an interval J 1 ⊂ J, with a fixed length which is independent of y(t), y(t) ∈
Ay, such that the inequality ‖y(t) − y(t)‖ > ε1 holds for all t ∈ J 1.
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Suppose that h(x) =

⎛

⎜
⎜
⎜
⎝

h1(x)

h2(x)
...

hn(x)

⎞

⎟
⎟
⎟
⎠

, where each h j , 1 ≤ j ≤ n, is a real-valued

function.
Since for each x(t) ∈ Ax , the function x ′(t) is inside the tube with radius H0,

one can conclude that the set Ax is an equicontinuous family on R. Making use of
the uniform continuity of the function h : Rm × R

m → R
n defined as h(x1, x2) =

h(x1) − h(x2) on the compact region

D = {

(x1, x2) ∈ R
m × R

m | ‖x1‖ ≤ H, ‖x2‖ ≤ H
}

,

together with the equicontinuity of Ax , one can easily show that the set

F = {

h j (x(t)) − h j (x(t)) | 1 ≤ j ≤ n, x(t) ∈ Ax , x(t) ∈ Ax
}

is an equicontinuous family on R.

Therefore, there exists a positive real number τ < Δ, independent of the functions
x(t), x(t) ∈ Ax , such that for any t1, t2 ∈ R+ with |t1 − t2| < τ the inequality

∣
∣
(

h j (x(t1)) − h j (x(t1))
) − (

h j (x(t2)) − h j (x(t2))
)∣
∣ <

L1ε0

2n
(3.3.11)

holds for all 1 ≤ j ≤ n.

Condition (A3) implies that for each t ∈ J the inequality

‖h(x(t)) − h(x(t))‖ ≥ L1 ‖x(t) − x(t)‖

holds. Therefore, for all t ∈ J, there exists an integer j0, 1 ≤ j0 ≤ n,which possibly
depends on t, such that

∣
∣h j0(x(t)) − h j0(x(t))

∣
∣ ≥ L1

n
‖x(t) − x(t)‖ .

Otherwise, if there exists s ∈ J such that for all 1 ≤ j ≤ n, the inequality

∣
∣h j (x (s)) − h j (x(s))

∣
∣ <

L1

n
‖x(s) − x(s)‖

holds, then one encounters with a contradiction since

‖h(x(s)) − h(x(s))‖ ≤
n

∑

j=1

∣
∣h j (x(s)) − h j (x(s))

∣
∣ < L1 ‖x(s) − x(s)‖ .
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Now, let s0 be the midpoint of the interval J and θ = s0 − τ

2
. One can find an

integer j0 = j0(s0), 1 ≤ j0 ≤ n, such that

∣
∣h j0(x(s0)) − h j0(x(s0))

∣
∣ ≥ L1

n
‖x(s0) − x(s0)‖ ≥ L1ε0

n
. (3.3.12)

On the other hand, making use of the inequality (3.3.11), for all t ∈ [θ, θ + τ ]
we have

∣
∣h j0 (x(s0)) − h j0 (x(s0))

∣
∣ − ∣

∣h j0 (x(t)) − h j0 (x(t))
∣
∣

≤ ∣
∣
(

h j0 (x(t)) − h j0 (x(t))
) − (

h j0 (x(s0)) − h j0 (x(s0))
)∣
∣

<
L1ε0

2n

and therefore, by means of (3.3.12), we obtain that the inequality

∣
∣h j0 (x(t)) − h j0 (x(t))

∣
∣ >

∣
∣h j0 (x(s0)) − h j0 (x(s0))

∣
∣ − L1ε0

2n

≥ L1ε0

2n

(3.3.13)

holds for all t ∈ [θ, θ + τ ] .
One can verify the existence of numbers s1, s2, . . . , sn ∈ [θ, θ + τ ] such that

∥
∥
∥
∥

∫ θ+τ

θ

[h(x(s)) − h(x(s))] ds

∥
∥
∥
∥

=

∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

∫ θ+τ

θ

[h1(x(s)) − h1(x(s))] ds
∫ θ+τ

θ

[h2(x(s)) − h2(x(s))] ds

...
∫ θ+τ

θ

[hn(x(s)) − hn(x(s))] ds

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥

=

∥
∥
∥
∥
∥
∥
∥
∥
∥

⎛

⎜
⎜
⎜
⎝

τ [h1(x(s1)) − h1(x(s1))]
τ [h2(x(s2)) − h2(x(s2))]

...

τ [hn(x(sn)) − hn(x(sn))]

⎞

⎟
⎟
⎟
⎠

∥
∥
∥
∥
∥
∥
∥
∥
∥

.

Thus, using (3.3.13), one can obtain that

∥
∥
∥
∥

∫ θ+τ

θ

[h(x(s)) − h(x(s))] ds

∥
∥
∥
∥

≥ τ
∣
∣h j0(x(s j0)) − h j0(x(s j0))

∣
∣

>
τ L1ε0

2n
.

(3.3.14)
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It is clear that, for t ∈ [θ, θ + τ ], y(t) and y(t) satisfy the integral equations

y(t) = y(θ) +
∫ t

θ

Ay(s)ds +
∫ t

θ

h(x(s))ds,

and

y(t) = y(θ) +
∫ t

θ

Ay(s)ds +
∫ t

θ

h(x(s))ds,

respectively, and herewith the equation

y(t) − y(t) = (y(θ) − y(θ)) +
∫ t

θ

A(y(s) − y(s))ds

+
∫ t

θ

[h(x(s)) − h(x(s))]ds

is achieved. Hence, we have the inequality

‖y(θ + τ) − y(θ + τ)‖ ≥
∥
∥
∥
∥

∫ θ+τ

θ

[h(x(s)) − h(x(s))]ds

∥
∥
∥
∥

−‖y(θ) − y(θ)‖ −
∫ θ+τ

θ

‖A‖ ‖y(s) − y(s)‖ ds.
(3.3.15)

Now, assume that max
t∈[θ,θ+τ ] ‖y(t) − y(t)‖ ≤ τ L1ε0

2n(2 + τ ‖A‖) . In this case, one

arrives at a contradiction since, by means of the inequalities (3.3.14) and (3.3.15),
we have

max
t∈[θ,θ+τ ] ‖y(t) − y(t)‖ ≥ ‖y(θ + τ) − y(θ + τ)‖

>
τ L1ε0

2n
− (1 + τ ‖A‖) max

t∈[θ,θ+τ ] ‖y(t) − y(t)‖

≥ τ L1ε0

2n
− (1 + τ ‖A‖) τ L1ε0

2n(2 + τ ‖A‖)
= τ L1ε0

2n

(

1 − 1 + τ ‖A‖
2 + τ ‖A‖

)

= τ L1ε0

2n(2 + τ ‖A‖) .

Therefore, we have max
t∈[θ,θ+τ ] ‖y(t) − y(t)‖ >

τ L1ε0

2n(2 + τ ‖A‖) .
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Suppose that the real-valued function ‖y(t) − y(t)‖ takes its maximum on the
interval [θ, θ + τ ] at η, that is,

max
t∈[θ,θ+τ ] ‖y(t) − y(t)‖ = ‖y(η) − y(η)‖

for some θ ≤ η ≤ θ + τ.

For t ∈ [θ, θ + τ ], by favor of the integral equations

y(t) = y(η) +
∫ t

η

Ay(s)ds +
∫ t

η

h(x(s))ds,

and

y(t) = y(η) +
∫ t

η

Ay(s)ds +
∫ t

η

h(x(s))ds,

we obtain

y(t) − y(t) = (y(η) − y(η)) +
∫ t

η

A(y(s) − y(s))ds

+
∫ t

η

[h(x(s)) − h(x(s))]ds.

Define

τ 1 = min

{
τ

2
,

τ L1ε0

8n(M ‖A‖ + M0)(2 + τ ‖A‖)
}

and let

θ1 =
{

η, if η ≤ θ + τ
2

η − τ 1, if η > θ + τ
2

.

We note that the interval J 1 = [θ1, θ1 + τ 1] is a subset of [θ, θ + τ ] and hence a
subset of J.

For t ∈ J 1, we have

‖y(t) − y(t)‖ ≥ ‖y(η) − y(η)‖ −
∣
∣
∣
∣

∫ t

η

‖A‖ ‖y(s) − y(s)‖ ds

∣
∣
∣
∣

−
∣
∣
∣
∣

∫ t

η

‖h(x(s)) − h(x(s))‖ ds

∣
∣
∣
∣

>
τ L1ε0

2n(2 + τ ‖A‖) − 2M ‖A‖ τ 1 − 2M0τ
1

= τ L1ε0

2n(2 + τ ‖A‖) − 2τ 1(M ‖A‖ + M0)

≥ τ L1ε0

4n(2 + τ ‖A‖) .
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Consequently, we get ‖y(t) − y(t)‖ > ε1, t ∈ J 1, where ε1 = τ L1ε0

4n(2 + τ ‖A‖)
and the length τ 1 of the interval J 1 does not depend on the functions x(t), x(t) ∈ Ax .

This finalizes the proof of the lemma.�

We shall continue in the next lemma by the extension of transitivity feature.

Lemma 3.2 Transitivity of Ax implies the same feature for the set Ay .

Proof Fix arbitrary ε > 0, E > 0 and y(t) =
(

y+(t)
y−(t)

)

∈ Ay . In this case, there

exists a function x(t) ∈ Ax such that y(t) = φx(t)(t). Let γ = ω

4N M0 + 2N L2
.

Since there exists a solution x∗(t) ∈ Ax ,which is dense inAx ,one canfind ξ > 0 and
an interval J ⊂ R with length E such that ‖x(t) − x∗(t + ξ)‖ < γε, for all t ∈ J.

Without loss of generality, assume that J is a closed interval, that is, J = [a, a + E]
for some real number a. Let y∗(t) = φx∗(t)(t) =

(

y∗+(t)
y∗−(t)

)

.

The functions y+(t) and y∗+(t) satisfy the relations

y+(t) =
∫ t

−∞
eA+(t−s)h+(x(s))ds

and

y∗+(t) =
∫ t

−∞
eA+(t−s)h+(x∗(s))ds,

respectively.
Making use of the latter, one can show that

y∗+(t + ξ) =
∫ t

−∞
eA+(t−s)h+(x∗(s + ξ))ds.

Therefore we have

y+(t) − y∗(t + ξ) =
∫ t

−∞
eA+(t−s) [

h+(x(s)) − h+(x∗(s + ξ))
]

ds

=
∫ a

−∞
eA+(t−s) [

h+(x(s)) − h+(x∗(s + ξ))
]

ds

+
∫ t

a
eA+(t−s) [

h+(x(s)) − h+(x∗(s + ξ))
]

ds.

The last equation implies that
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∥
∥y+(t) − y∗+(t + ξ)

∥
∥ ≤

∫ a

−∞

∥
∥
∥eA+(t−s)

∥
∥
∥

∥
∥h+(x(s)) − h+(x∗(s + ξ))

∥
∥ ds

+
∫ t

a

∥
∥
∥eA+(t−s)

∥
∥
∥

∥
∥h+(x(s)) − h+(x∗(s + ξ))

∥
∥ ds

≤
∫ a

−∞
Ne−ω(t−s)2M0ds +

∫ t

a
Ne−ω(t−s)L2γ εds

= 2N M0

ω
e−ω(t−a) + N L2γ ε

ω

(

1 − e−ω(t−a)
)

.

On theother hand, for t ∈ [a, a+E], y−(t) and y∗−(t) satisfy the integral equations

y−(t) = −
∫ ∞

t
eA−(t−s)h−(x(s))ds

and

y∗−(t) = −
∫ ∞

t
eA−(t−s)h−(x∗(s))ds,

respectively.
It is easy to verify that the equation

y∗−(t + ξ) = −
∫ ∞

t
eA−(t−s)h−(x∗(s + ξ))ds

holds for all t ∈ [a, a + E].
Thus, the equation

y−(t) − y∗−(t + ξ) = −
∫ ∞

t
eA−(t−s) [

h−(x(s)) − h−(x∗(s + ξ))
]

ds

= −
∫ ∞

a+E
eA−(t−s) [

h−(x(s)) − h−(x∗(s + ξ))
]

ds

−
∫ a+E

t
eA−(t−s) [

h−(x(s)) − h−(x∗(s + ξ))
]

ds

is valid and as a consequence the inequality

∥
∥y−(t) − y∗−(t + ξ)

∥
∥ ≤

∫ ∞

a+E

∥
∥
∥eA−(t−s)

∥
∥
∥

∥
∥h−(x(s)) − h−(x∗(s + ξ))

∥
∥ ds

+
∫ a+E

t

∥
∥
∥eA−(t−s)

∥
∥
∥

∥
∥h−(x(s)) − h−(x∗(s + ξ))

∥
∥ ds
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≤
∫ ∞

a+E
2N M0eω(t−s)ds +

∫ a+E

t
N L2γ εeω(t−s)ds

= 2N M0

ω
e−ω(a+E−t) + N L2γ ε

ω

(

1 − e−ω(a+E−t)
)

is satisfied for t ∈ [a, a + E].
Now, making use of the inequality

∥
∥y(t) − y∗(t + ξ)

∥
∥ ≤ ∥

∥y+(t) − y∗+(t + ξ)
∥
∥ + ∥

∥y−(t) − y∗−(t + ξ)
∥
∥ ,

we obtain that

∥
∥y−(t) − y∗−(t + ξ)

∥
∥ ≤ 2N M0

ω

[

e−ω(t−a) + e−ω(a+E−t)
]

+ N L2γ ε

ω

[(

1 − e−ω(t−a)
)

+
(

1 − e−ω(a+E−t)
)]

≤ 2N M0

ω

[

e−ω(t−a) + e−ω(a+E−t)
]

+ 2N L2γ ε

ω
.

Suppose that E >
3

ω
ln

(
1

γ ε

)

. In this case, for t ∈ [

a + E
3 , a + 2E

3

]

one can

see that both of the inequalities e−ω(t−a) ≤ e−ωE/3 and e−ω(a+E−t) ≤ e−ωE/3 are
valid, and consequently

∥
∥y−(t) − y∗−(t + ξ)

∥
∥ <

(
4N M0 + 2N L2

ω

)

γ ε = ε.

Lemma is proved. �
Wehandle the extension of the last ingredient ofDevaney chaos in the next lemma.

Lemma 3.3 If Ax admits a dense countable collection of periodic functions, then
the same is true for Ay .

Proof Fix arbitrary numbers ε > 0, E > 0 and y(t) =
(

y+(t)
y−(t)

)

∈ Ay . Owing

to the construction of the set Ay , one can find a function x(t) ∈ Ax such that
y(t) = φx(t)(t). Assume that the set Ax admits a dense countable collection Gx of

periodic functions. Let γ = ω

4N M0 + 2N L2
.

By density of Gx ⊂ Ax , there exist x̃(t) ∈ Gx and an interval J ⊂ R with length
E such that ‖x(t) − x̃(t)‖ < γε, for all t ∈ J. Without loss of generality, assume
that J is a closed interval, that is, J = [a, a + E] for some real number a.

We note that by condition (A3) there is a one-to-one correspondence between the
sets Gx and Gy = {

φx(t)(t) | x(t) ∈ Gx
}

. Moreover, x(t) ∈ Gx and φx(t)(t) ∈ Gy

admit the same periods. Therefore, Gy ⊂ Ay is a countable collection of periodic
functions and our aim is to show that the set Gy is dense in Ay .
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Let ỹ(t) = φx̃(t)(t) =
(

ỹ+(t)
ỹ−(t)

)

∈ Gy . The functions y+(t) and ỹ+(t) satisfy the

relations

y+(t) =
∫ t

−∞
eA+(t−s)h+(x(s))ds

and

ỹ+(t) =
∫ t

−∞
eA+(t−s)h+(̃x(s))ds,

respectively.
Therefore we have

y+(t) − ỹ+(t) =
∫ t

−∞
eA+(t−s) [

h+(x(s)) − h+(̃x(s))
]

ds

=
∫ a

−∞
eA+(t−s) [

h+(x(s)) − h+(x∗(s))
]

ds

+
∫ t

a
eA+(t−s) [

h+(x(s)) − h+(̃x(s))
]

ds.

The last equation implies that

‖y+(t) − ỹ+(t)‖ ≤
∫ a

−∞

∥
∥
∥eA+(t−s)

∥
∥
∥ ‖h+(x(s)) − h+(̃x(s))‖ ds

+
∫ t

a

∥
∥
∥eA+(t−s)

∥
∥
∥ ‖h+(x(s)) − h+(̃x(s))‖ ds

≤
∫ a

−∞
Ne−ω(t−s)2M0ds +

∫ t

a
Ne−ω(t−s)L2γ εds

= 2N M0

ω
e−ω(t−a) + N L2γ ε

ω

(

1 − e−ω(t−a)
)

.

On theother hand, for t ∈ [a, a+E], y−(t) and ỹ−(t) satisfy the integral equations

y−(t) = −
∫ ∞

t
eA−(t−s)h−(x(s))ds

and

ỹ−(t) = −
∫ ∞

t
eA−(t−s)h−(̃x(s))ds,

respectively.
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Thus, the equation

y−(t) − ỹ−(t) = −
∫ ∞

t
eA−(t−s) [

h−(x(s)) − h−(̃x(s))
]

ds

= −
∫ ∞

a+E
eA−(t−s) [

h−(x(s)) − h−(̃x(s))
]

ds

−
∫ a+E

t
eA−(t−s) [

h−(x(s)) − h−(̃x(s))
]

ds

is valid and as a consequence the inequality

‖y−(t) − ỹ−(t)‖ ≤
∫ ∞

a+E

∥
∥
∥eA−(t−s)

∥
∥
∥ ‖h−(x(s)) − h−(̃x(s))‖ ds

+
∫ a+E

t

∥
∥
∥eA−(t−s)

∥
∥
∥ ‖h−(x(s)) − h−(̃x(s))‖ ds

≤
∫ ∞

a+E
2N M0eω(t−s)ds +

∫ a+E

t
N L2γ εeω(t−s)ds

= 2N M0

ω
e−ω(a+E−t) + N L2γ ε

ω

(

1 − e−ω(a+E−t)
)

is satisfied for t ∈ [a, a + E].
Now, making use of the inequality

‖y(t) − ỹ(t)‖ ≤ ‖y+(t) − ỹ+(t)‖ + ‖y−(t) − ỹ−(t)‖ ,

we obtain that

‖y(t) − ỹ(t)‖ ≤ 2N M0

ω

[

e−ω(t−a) + e−ω(a+E−t)
]

+ N L2γ ε

ω

[(

1 − e−ω(t−a)
)

+
(

1 − e−ω(a+E−t)
)]

≤ 2N M0

ω

[

e−ω(t−a) + e−ω(a+E−t)
]

+ 2N L2γ ε

ω
.

Suppose that E >
3

ω
ln

(
1

γ ε

)

. In this case, for t ∈ [

a + E
3 , a + 2E

3

]

one can

see that both of the inequalities e−ω(t−a) ≤ e−ωE/3 and e−ω(a+E−t) ≤ e−ωE/3 are
valid, and consequently

‖y(t) − ỹ(t)‖ <

(
4N M0 + 2N L2

ω

)

γ ε = ε.

Proof of the lemma is accomplished. �
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Next, we state the main theorem about Devaney chaos, whose proof follows from
Lemmas 3.1–3.3.

Theorem 3.1 If Ax is a Devaney chaotic set, then the same is true for Ay .

A corollary of Theorem 3.1 is the following one.

Corollary 3.1 Under the condition of Theorem 3.1, the collection A is a Devaney
chaotic set.

Now, we continue by indicating the extension of chaos in the sense of Li–Yorke
for the system (3.2.4)+ (3.2.6). The proof of the next theorem is given briefly, since
the technique is similar to the previous lemmas.

Theorem 3.2 If Ax is a Li–Yorke chaotic set, then the same is true for Ay .

Proof Assume that the set Ax is Li–Yorke chaotic. According to the one-to-one
correspondence between the periodic solutions of (3.2.4) and (3.2.6), if for some
T > 0 the setAx admits a kT −periodic function for any natural number k, then the
same is true for the set Ay .

Now, suppose thatCx is an uncountable scrambled set insideAx .Let us introduce

Cy = {

φx(t)(t) : x(t) ∈ Cx
}

. (3.3.16)

Condition (A3) implies that there is a one-to-one correspondence between the sets
Cx andCy . Therefore,Cy is also uncountable. Under same condition, it is easy verify
that there does not exist any periodic function inside the set Cy .

Since the collection Ax is assumed to be chaotic in the sense of Li–Yorke, each
couple of functions inside Cx × Cx is proximal. Under the circumstances, one can
use the method of the proof of Lemma 3.3 to show that the same is valid for each
couple inside Cy × Cy .

On the other hand, one can follow the technique used in the proof of Lemma 3.1
to verify the existence of positive real numbers ε1 and Δ1 such that each couple
of functions (y(t), y(t)) ∈ Cy × Cy are frequently (ε1,Δ1)−separated. The same
property is true also for each couple of sequences inside

(

Cy × Gy
)

, where Gy repre-
sents the set of periodic functions inside Ay . Consequently, the set of functions Ay

is a Li–Yorke chaotic set.
The proof of the theorem is finalized. �

We end up the present section by stating the following corollary of Theorem 3.2.

Corollary 3.2 Under the condition of Theorem 3.2, the collection A is a Li–Yorke
chaotic set.
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3.4 Simulations

Let us consider the Duffing’s chaotic oscillator [20]

x ′′ + 0.05x ′ + x3 = 7.5 cos t (3.4.17)

and the equation

u′′ + 2u′ + 3u = 0. (3.4.18)

Let us combine the equations (3.4.17) and (3.4.18) in a unidirectional way to build
the following couple of differential equations

x ′′ + 0.05x ′ + x3 = 7.5 cos t
y′′ + 2y′ + 3y = 2(x + x3).

(3.4.19)

One can see that the coupled system (3.4.19) is constructed in such a way that
equation (3.4.18) is forced by the exogenous term h(x) = 2(x + x3), where the
solutions of the Duffing’s oscillator (3.4.17) are used.

Making use of the new variables x1 = x, y1 = y, x2 = x ′, and y2 = y′, one
can rewrite the couple of differential equations (3.4.19) as a 4-dimensional system
as follows:

x1 = x2
x ′
2 = −0.05x2 − x31 + 7.5 cos t

y′
1 = y2

y′
2 = −2y2 − 3y1 + 2(x1 + x31).

(3.4.20)

We note that system (3.4.20) is in the form of (3.2.4)+ (3.2.6), where the matrix

A =
(

0 1

−3 −2

)

has eigenvalues −1 ± i
√
2. According to the theoretical results

of the chapter, we say that system (3.4.20) is chaotic. For the visualization of the
chaotic behavior, let us consider the trajectory of system (3.4.20) with the initial data
x1(0) = 3.07, x2(0) = 4.18, y1(0) = 0.15, and y2 = 0.24. Figure3.1 represents the
2-dimensional projections of the trajectory on the x1 − x2 and y1 − y2 planes. The
picture shown in Fig. 3.1a is, in fact, the chaotic attractor of the nonlinear system

x1 = x2
x ′
2 = −0.05x2 − x31 + 7.5 cos t,

(3.4.21)

which is the subsystem of (3.4.20) corresponding to the first two coordinates, and
the chaotic attractor shown in Fig. 3.1b signifies the extension of chaos in system
(3.4.20) and supports our rigorously approved results.
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Fig. 3.1 The 2-dimensional projections of the chaotic attractor of system (3.4.20). a The projection
on the x1 − x2 plane. b The projection on the y1 − y2 plane. The picture in (a) represents, in fact,
the chaotic attractor of system (3.4.21). Extension of chaos in system (3.4.20) is apparent in picture
(b) which supports our theoretical results

Next, let us demonstrate numerically that the chaos achieved in system (3.4.20)
is controllable and we shall make use of the Pyragas method [29] for stabilizing
the unstable periodic solutions of (3.4.20). In the Pyragas control procedure, one
considers a system in the form

v′ = H(v, q), (3.4.22)

where q = q(t) is an externally controllable parameter and for q = 0 it is assumed
that the system (3.4.22) is in the chaotic state of interest, whose periodic orbits are
to be stabilized [29–32]. According to Pyragas method, by means of the control law
q(t) = C [s (t − p0) − s(t)], an unstable periodic solution with period p0 of system
(3.4.22) with q = 0 can be stabilized. Here, the parameter C represents the strength
of the perturbation and s(t) = σ [x(t)] is a scalar signal given by some function of
the state of the system.

Through the Pyragas control method, one can verify numerically that it is possible
to stabilize the unstable 2π -periodic solution of system (3.4.21) by means of the
following control system

v′
1 = v2

v′
2 = −0.05v2 − v31 + 7.5 cos(v3) + C [v2(t − 2π) − v2(t)]

v′
3 = 1,

by taking C = 0.36, where q(t) = C [v2(t − 2π) − v2(t)] is the control law.
Now, let us show how it is possible to control chaos of system (3.4.20). We

propose that if a periodic solution of the system (3.4.21), which is used as the source
of chaotic perturbation, is stabilized, then the same is true for the corresponding
unstable periodic solution of (3.4.20).
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To control chaos of system (3.4.20), we set up the system

v′
1 = v2

v′
2 = −0.05v2 − v31 + 7.5 cos(v3) + 0.36 [v2(t − 2π) − v2(t)]

v′
3 = 1

y′
1 = y2

y′
2 = −2y2 − 3y1 + 2(v1 + v31),

(3.4.23)

which we call as the control system corresponding to (3.4.20).
We consider the solution of system (3.4.23) with the initial data v1(0) = 3.07,

v2(0) = 4.18, v3(0) = 0, y4(0) = 0.15, and y5(0) = 0.24. The system is allowed
to evolve freely by taking C = 0 until the time t = 70, and at that moment the
control is switched on using the value C = 0.36.At t = 180, the control mechanism
is switched off and after this moment we start to use the value of the parameter
C = 0 once again. Figure3.2, which reveals the chaos control for system (3.4.20),
represents the time-series for the v2 and y2 coordinates of the solution. After the
control is switched off, the stabilized 2π -periodic solution loses its stability and
chaos emerges again. Similar pictures can be obtained for the other coordinates of
system (3.4.23), which are not just pictured here. Figure3.2 supports the idea to
control the chaos of system (3.4.20), it is sufficient to control the chaos of (3.4.21)
and for this purpose the Pyragas control method is suitable.

Our next example is about the numerical demonstration of the chaos extension
for systems in the form of (3.2.4)+ (3.2.10).

v 2
y 2
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−20
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(b)

Fig. 3.2 Application of the Pyragas control method to system (3.4.20). a The time-series for the
v2 coordinate. b The time-series for the y2 coordinate. The chaos control for system (3.4.20) is
achieved by means of the corresponding control system (3.4.23). The picture in (a) shows that by
means of the control system (3.4.23), it is possible to stabilize the 2π -periodic solution of system
(3.4.21), and correspondingly the picture in (b) reveals that the corresponding periodic solution of
system (3.4.20) is controlled. The control mechanism starts at the time t = 70 and ends at t = 180.
After switching off the control mechanism, the stabilized 2π -periodic solution of (3.4.20) loses its
stability and irregular behavior develops again
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Let us consider the following Lorenz system [11]

u′
1 = −10u1 + 10u2

u′
2 = 7u1 − u2 − u1u3

u′
3 = u1u2 − (8/3)u3.

(3.4.24)

System (3.4.24) admits two fixed points C+ = (4, 4, 6) and C− = (−4,−4, 6),
which are both stable, and it can be written in the form of equation (3.2.10), where
the matrix

A =

⎛

⎜
⎜
⎝

−10 10 0

7 −1 0

0 0 −8/3

⎞

⎟
⎟
⎠

has eigenvalues −15,−8/3 and 4.
We perturb system (3.4.24) through the solutions of the chaotic Rössler sys-

tem [12]

x ′
1 = −x2 − x3

x ′
2 = x1 + 0.2x2

x ′
3 = 0.2 − 5.7x3 + x1x3

(3.4.25)

and set up the following 6-dimensional system

x ′
1 = −x2 − x3

x ′
2 = x1 + 0.2x2

x ′
3 = 0.2 − 5.7x3 + x1x3

y′
1 = −10y1 + 10y2 + x1

y′
2 = 7y1 − y2 − y1y3 + 2x2

y′
3 = y1y2 − (8/3)y3 + x3.

(3.4.26)

Figure3.3 shows the 3-dimensional projections of the trajectory of system (3.4.26)
with the initial data x1(0) = 10.563, x2(0) = −1.594, x3(0) = 4.024 y1(0) =
−3.441, y2(0) = −4.365, and y3(0) = 7.398. The picture in Fig. 3.3a corresponds
to the chaotic attractor of the Rössler system (3.4.25), while Fig. 3.3b indicates the
extension of chaos in system (3.4.26). Although the initially non-perturbed system
(3.4.24) is not chaotic, the perturbation acts in such a way that the system starts to
behave chaotically.

The result of the last example shows that it is also possible to make use of systems
of the form (3.2.4)+ ( 3.2.10) to extend chaos. The present chapter does not give
a theoretical background for this behavior since the nonlinearity is included in the
system. One can try to linearize system (3.4.24) around one of the fixed points C+
or C− to give a theoretical support for the numerical results through the discussions
of the paper [8]. Such a discussion is also not possible, since mathematical results
of the paper [8] request the smallness for the Lipschitz constants of the nonlinear
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Fig. 3.3 The 3-dimensional projections of the chaotic attractor of system (3.4.26). a Projection on
the x1 − x2 − x3 space. b Projection on the y1 − y2 − y3 space. The picture in (a) shows, in fact,
the chaotic attractor of the Rössler system (3.4.25). The picture presented in (b) supports the idea
that it is also possible to make use of systems of the form (3.2.4)+ (3.2.10) to extend chaos

terms, which is not satisfied by the system (3.4.26). Accordingly, we should say that
the theoretical discussions for the Lorenz system have to be handled by a different
and a newmethod, compared to our present and previous results, and we will discuss
the problem in next investigations.

3.5 Notes

In this chapter, we consider the extension of chaos in hyperbolic systems with
arbitrary large dimensions. Our investigations comprise chaos in the sense of both
Devaney and Li–Yorke. We provide a mechanism for unidirectionally coupled sys-
tems through the insertion of chaos from one system to another, where the latter is
initially non-chaotic. In the chaos extension procedure, we take advantage of chaotic
sets of functions in order to provide mathematically approved results. The theoretical
results are supported through simulations by means of a Duffing oscillator. A control
technique for the extended chaos is demonstrated numerically. The results of Chap.
3 were published in the paper [6].
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Chapter 4
Entrainment by Chaos

In this chapter, a new phenomenon, the entrainment of limit cycles by chaos, which
results as the appearance of cyclic irregular behavior, is discussed. Sensitivity is
considered as the main ingredient of chaos to be captured, and the period-doubling
cascade is chosen for extension. Theoretical results are supported by simulations and
discussions regarding Chua’s oscillators, entrainment of toroidal attractors by chaos,
synchronization, and controlling problems. It is demonstrated that the entrainment
cannot be considered as generalized synchronization of chaotic systems.

4.1 Introduction

Christiaan Huygens was the first to introduce the concept of entrainment when he
observed that two pendulum clocks mounted next to each other on the same support
often become synchronized [1]. One can also mention the practice of fine-tuning
brainwaves to a desired frequency, that is, brainwave entrainment [2, 3], or the idea
of entrainment in biomusicology, which is understood to be the synchronization of
organisms to an external rhythm [4]. The entrainment phenomenon is also known in
hydrodynamics as the movement of one fluid induced by another [5]. In the present
chapter, we discuss the entrainment of limit cycles by chaos and demonstrate that
entrainment, in mathematical theory, is not confined to the notions of frequency,
period, or phase [6–8] but extends to the concept of chaos, as well. Unidirectional
coupling, which has been extensively studied in physics [8–12], is investigated in
this work. The results presented can be used to generate the entrainment by chaos
in business cycle models [13], chaotic cycles in electrical circuits, such as those
obtained via the Van der Pol equations [14], and chaotic oscillations in Belousov–
Zhabotinsky reactions [15]. Indeed, the results can be applied and developed in any
field in which limit cycles are observed.
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The entrainment by chaos is understood in this chapter as the deformation of limit
cycles to chaotic cycles. The presence of chaotic behavior is confirmed by checking
for the existence of infinitely many unstable periodic solutions and sensitivity, which
is the main ingredient of chaos [16–19].

In studies [20–25], we considered systems with asymptotically stable and hyper-
bolic equilibria and perturbed them chaotically. It was found that the solutions admit
the same type of chaos that perturbations do. Unlike the mechanism discussed in
[25], where we considered chaos near fixed points, in the present chapter, we take
into account systems with orbitally stable limit cycles and perturb them with chaos.
As a result, we obtain chaotic cycles, that is, motions that behave cyclically and
chaotically at the same time.

To the best of our knowledge, the generation of chaos is considered in synchro-
nization theory [26–33]. However, in the literature, it is required that the chaos of
the response system be asymptotically close to that of the driver, and this property
is used for verification of chaos. Since we do not use this proximity, our method
is of different type in generation of chaos than that used in synchronization theory.
Moreover, we have shown that our results are not reducible to the synchronization,
in general.

In Sect. 4.7, we present the results of simulations of a chaotic torus and a Chua
oscillator, though these entrainment phenomena must be investigated further. It is
also of great interest to prove the entrainment by chaos around hyperbolic periodic
solutions [34–36].

To illustrate the main idea of this chapter, we present the example of an oscillating
chemical reaction. Paper [37] considers the chlorine dioxide–iodine–malonic acid
(ClO2−I2−MA) chemical reaction,which arises from the following three component
reactions:

MA + I2 −→ IMA + I − + H+,

ClO2 + I − −→ ClO−
2 + 1

2
I2,

ClO−
2 + 4I− + 4H+ −→ Cl− + 2I2 + 2H2 O.

(4.1.1)

After making reasonable simplifications and nondimensionalizations, Lengyel et al.
[37] reduced the rate equations to the system

u′
1 = a − u1 − 4u1u2

1 + u2
1

,

u′
2 = bu1

(

1 − u2

1 + u2
1

)

,

(4.1.2)

where u1 and u2 represent the dimensionless concentrations of I − and ClO−
2 ions,

respectively, and the parameters a > 0 and b > 0 depend on the empirical rate
constants and the concentrations of the slow reactants.
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For a given value of parameter a, system (4.1.2) undergoes a Hopf bifurcation at
the parameter value b = b0 ≡ 3a/5 − 25/a, such that when b > b0 all trajectories
spiral into the stable fixed point (u∗

1, u∗
2) = (a/5, 1 + a2/25), whereas for b < b0,

trajectories are attracted to an orbitally stable limit cycle. If we consider system
(4.1.2) with the coefficient a = 11, Hopf bifurcation occurs for b0 = 238/55, and
an orbitally stable limit cycle takes place for b = 2.1 [38].

Next, we take into account the Birkhoff-Shaw chaotic attractor [39, 40] which is
generated by the following system of differential equations:

x ′
1 = 0.7x2 + 10x1(0.1 − x22 ),

x ′
2 = −x1 + 0.25 sin(1.57t).

(4.1.3)

The following system is obtained by perturbing system (4.1.2) using solutions
of (4.1.3):

y′
1 = 11 − y1 − 4y1y2

1 + y21
+ 0.5 tan

(
x1(t)

2

)

,

y′
2 = 2.1y1

(

1 − y2
1 + y21

)

+ 0.4x2(t).
(4.1.4)

The present chapter rigorously demonstrates that system (4.1.4) displays chaotic
motions around the orbitally stable limit cycle of system (4.1.2). Figure4.1a depicts
the chaotic trajectory, x(t), of (4.1.3), with x1(0) = 0.2, x2(0) = 0.3. If one sub-
stitutes x(t) into (4.1.4), then the system admits a chaotic trajectory, y(t), with
y1(0) = 0.75, y2(0) = 4.82, as shown in Fig. 4.1b. That is, an entrainment by
chaos is observed. Moreover, the irregular behavior of the y2 coordinate over time is
illustrated in Fig. 4.2.

Now, let us use the auxiliary system approach [26, 27] to investigate the couple
(4.1.3)+ (4.1.4) for generalized synchronization.
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Fig. 4.1 The chaotic trajectory in a corresponds to system (4.1.3) and the irregular structure around
the limit cycle in b is a manifestation of the entrainment by chaos
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Fig. 4.2 The graph presents the irregular behavior of the y2 coordinate and supports the existence
of the entrainment by chaos

Fig. 4.3 The auxiliary
system approach shows that
the systems (4.1.3) and
(4.1.4) are unsynchronized
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Consider the auxiliary system

z′
1 = 11 − z1 − 4z1z2

1 + z21
+ 0.5 tan

(
x1(t)

2

)

,

z′
2 = 2.1z1

(

1 − z2
1 + z21

)

+ 0.4x2(t).
(4.1.5)

By marking the trajectory of system (4.1.3)+ (4.1.4)+ (4.1.5) with initial data
x1(0) = 0.2, x2(0) = 0.3, y1(0) = 0.75, y2(0) = 4.82, z1(0) = 2.92, z2(0) = 8.78
at times t that are integer multiples of 2π/1.57 and omitting the first 200 iterations,
we obtain the stroboscopic plot whose projection on the y1 − z1 plane is shown in
Fig. 4.3. Since the plot is not placed on the line z1 = y1, we conclude that generalized
synchronization does not occur in the couple (4.1.3)+ (4.1.4).

4.2 Preliminaries

Throughout the chapter,R andR+ will denote the set of real numbers and the interval
[0,∞), respectively. We will make use of the usual Euclidean norm for vectors and
the norm induced by the Euclidean norm for square matrices [41].
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Let us introduce the system

x ′ = F(t, x), (4.2.6)

where F : R+ × R
m → R

m is a continuous function in all its arguments. We treat
system (4.2.6) as a source of chaos and thus call it the generator system.

Now, consider the system

u′ = f (u), (4.2.7)

where f : Rn → R
n is a continuously differentiable function. We subject system

(4.2.7) to the entrainment mechanism in the following way:

y′ = f (y) + μg(x), (4.2.8)

such that we now consider the system

y′ = f (y) + μg(x(t)), (4.2.9)

where x(t) are solutions of system (4.2.6),μ is a nonzero constant and g : Rm → R
n

is a continuous function. Here, the couple (4.2.6)+ (4.2.8) is a system with a skew
product structure.

Remark 4.1 The results presented in the remaining sections are valid even if we
replace the nonautonomous system (4.2.6) with the autonomous equation

x ′ = F(x), (4.2.10)

where F : Rm → R
m is a continuous function.

The following conditions are required:

(A1) There exists a positive number L f such that

‖ f (y1) − f (y2)‖ ≤ L f ‖y1 − y2‖ ,

for all y1, y2 ∈ R
n;

(A2) There exists a positive number Lg such that

‖g(x1) − g(x2)‖ ≥ Lg ‖x1 − x2‖ ,

for all x1, x2 ∈ R
m;

(A3) There exist positive numbers MF , M f and Mg such that

sup
t∈R+,x∈Rm

‖F(t, x)‖ ≤ MF , sup
y∈Rn

‖ f (y)‖ ≤ M f , sup
x∈Rm

‖g(x)‖ ≤ Mg.
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For a given x(t), the existence of solutions of system (4.2.9) as well as their
continuation to +∞, follow from the Lipschitz condition for the function f because
the perturbation μg(x(t)) depends only on t and from the fact that the domain of the
equation is the entire space Rn [42].

We mainly assume that system (4.2.6) ((4.2.10)) admits a chaotic attractor, let us
say a set in R

m for (4.2.10). Fix x0 from the attractor and take a solution x(t) of
(4.2.10) with x(0) = x0. Since we use the solution x(t) as a perturbation in system
(4.2.8), we call it as chaotic function. The chaotic functions may be irregular as well
as regular (periodic and unstable) [43–49].

We also assume that the nonlinear autonomous system (4.2.7) possesses a non-
constant T -periodic solution p(t) for some positive number T and consider system
(4.2.8) in a neighborhood of the orbit

γ = {σ ∈ R
n : σ = p(t), t ∈ [0, T ]} . (4.2.11)

It is clear that p′(t) is a nontrivial T -periodic solution of the variational system

v′ = A(t)v, (4.2.12)

where A(t) = ∂ f (p(t))

∂u
is an n × n real, continuous, T -periodic matrix function,

and consequently, 1 is a characteristic multiplier of system (4.2.12).
In what follows, we assume that 1 is a simple characteristic multiplier of the

variational system (4.2.12) and the remaining n −1 characteristic multipliers are less
than 1 in modulus. Under this assumption, according to the Andronov–Witt Theorem
[50], the periodic solution p(t) of system (4.2.7) is asymptotically orbitally stable,
with the asymptotic phase property.

In the following, wewill understand chaos in terms of sensitivity and the existence
of infinitely many unstable periodic solutions in a bounded region.

4.3 Sensitivity

In this section, the sensitivity of system (4.2.9)will be extended.Webegin by defining
the sensitivity of Eq. (4.2.6) and continue with its replication in (4.2.8).

In what follows, for a given chaotic solution x(t) of system (4.2.6), the function
ηx(t)(t, η0) will represent the solution of (4.2.9) with ηx(t)(0, η0) = η0.

System (4.2.6) is called sensitive if there exist positive numbers ε0 and Δ such
that for an arbitrary positive number δ0 and for each chaotic solution x(t) of system
(4.2.6), there exist a chaotic solution x(t) of the same system and an interval J ⊂ R+,
with a length no less than Δ, such that ‖x(0) − x(0)‖ < δ0 and ‖x(t) − x(t)‖ > ε0
for all t ∈ J.
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We say that system (4.2.8) replicates the sensitivity of (4.2.6) if there exist positive
numbers ε1 and Δ such that for an arbitrary positive number δ1 and for each solution
ηx(t)(t, η0), there exist an interval J 1 ⊂ R+, with a length no less than Δ, and a
solution ηx(t)(t, η1) such that

‖η0 − η1‖ < δ1

and
∥
∥ηx(t)(t, η0) − ηx(t)(t, η1)

∥
∥ > ε1

for all t ∈ J 1.

Theorem 4.1 If conditions (A1)−(A3) hold, then system (4.2.8) replicates the sen-
sitivity of system (4.2.6).

Proof Fix an arbitrary positive number δ1 and a solution ηx(t)(t, η0) of (4.2.9).
Since system (4.2.6) is sensitive, there exist positive numbers ε0 and Δ such that
for arbitrary δ0 > 0 the inequalities ‖x(0) − x(0)‖ < δ0 and ‖x(t) − x(t)‖ > ε0,
t ∈ J , hold for some chaotic solution x(t) of (4.2.6) and for some interval J ⊂ R+
with length not less than Δ.

Now, let us fix arbitrary η1 ∈ R
n such that ‖η0 − η1‖ < δ1. Our aim is to

determine positive numbers ε1, Δ and an interval J 1 with length Δ, such that
∥
∥ηx(t)(t, η0) − ηx(t)(t, η1)

∥
∥ > ε1 for all t ∈ J 1.

Suppose that g(x) = (g1(x), g2(x), . . . , gn(x)) , where each g j , 1 ≤ j ≤ n, is a
real valued function.

Since for each chaotic solution x(t) of (4.2.6) the inequality sup
t∈R+

∥
∥x ′(t)

∥
∥ ≤ MF

holds, one can conclude that the collection of chaotic solutions of Eq. (4.2.6) con-
stitutes an equicontinuous family on R+. According to our assumption that sys-
tem (4.2.6) possesses a chaotic attractor, there exists a positive number M such that
sup

t∈R+
‖x(t)‖ ≤ M for each chaotic solution of (4.2.6).Making use of the uniform con-

tinuity of the function g : Rm ×R
m → R

n , defined as g(x1, x2) = g(x1)−g(x2), on
the compact region {(x1, x2) ∈ R

m × R
m : ‖x1‖ ≤ M, ‖x2‖ ≤ M} , together with

the equicontinuity of the collection of chaotic solutions of system (4.2.6), one can ver-
ify that the set consisting of the elements of the form g j (x(t))−g j (x(t)), 1 ≤ j ≤ n,
where x(t) and x(t) are chaotic solutions of (4.2.6), is an equicontinuous family on
R+. Therefore, there exists a positive number τ < Δ, independent of the functions
x(t) and x(t), such that for any t1, t2 ∈ R+ with |t1 − t2| < τ , the inequality

∣
∣
(

g j (x(t1)) − g j (x(t1))
) − (

g j (x(t2)) − g j (x(t2))
)∣
∣ <

Lgε0

2n

holds for all 1 ≤ j ≤ n.

Condition (A2) implies for all t∈J that‖g(x(t)) − g(x(t))‖ ≥ Lg ‖x(t) − x(t)‖ .

Thus, for each t ∈ J , there exists an integer j0, 1 ≤ j0 ≤ n, which possibly depends
on t , such that
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∣
∣g j0(x(t)) − g j0(x(t))

∣
∣ ≥ Lg

n
‖x(t) − x(t)‖ .

Let s0 be the midpoint of the interval J and θ = s0 − τ/2. One can find an integer
j0 = j0(s0), 1 ≤ j0 ≤ n, such that

∣
∣g j0(x(s0)) − g j0(x(s0))

∣
∣ >

Lgε0

n
. (4.3.13)

On the other hand, for all t ∈ [θ, θ + τ ] we have

∣
∣g j0 (x(s0)) − g j0 (x(s0))

∣
∣ − ∣

∣g j0 (x(t)) − g j0 (x(t))
∣
∣ <

Lgε0

2n

and by means of (4.3.13) we obtain

∣
∣g j0 (x(t)) − g j0 (x(t))

∣
∣ >

Lgε0

2n
, t ∈ [θ, θ + τ ] .

The last inequality implies that

∥
∥
∥
∥

∫ θ+τ

θ

[g(x(s)) − g(x(s))] ds

∥
∥
∥
∥

>
τ Lgε0

2n
. (4.3.14)

Using the inequality

∥
∥ηx(t)(θ + τ, η0) − ηx(t)(θ + τ, η1)

∥
∥ ≥ |μ|

∥
∥
∥
∥

∫ θ+τ

θ

[g(x(s)) − g(x(s))]ds

∥
∥
∥
∥

− ∥
∥ηx(t)(θ, η0) − ηx(t)(θ, η1)

∥
∥ −

∫ θ+τ

θ

L f
∥
∥ηx(t)(s, η0) − ηx(t)(s, η1)

∥
∥ ds

together with (4.3.14), one can verify that

max
t∈[θ,θ+τ ]

∥
∥ηx(t)(t, η0) − ηx(t)(t, η1)

∥
∥ >

|μ| τ Lgε0

2n(2 + τ L f )
.

Suppose that the function
∥
∥ηx(t)(t, η0) − ηx(t)(t, η1)

∥
∥ takes its maximum on the

interval [θ, θ + τ ] at the point ξ.

Let us define

Δ = min

{
τ

2
,

|μ| τ Lgε0

8n(M f + Mg |μ|)(2 + τ L f )

}

and

θ1 =
{

ξ, if ξ ≤ θ + τ/2
ξ − Δ, if ξ > θ + τ/2

.
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We note that the interval J 1 = [θ1, θ1 + Δ] is a subset of J. For t ∈ J 1, it can be
verified that

∥
∥ηx(t)(t, η0) − ηx(t)(t, η1)

∥
∥ > ε1, (4.3.15)

where ε1 = |μ| τ Lgε0

4n(2 + τ L f )
, and the length Δ of the interval J 1 does not depend

on x(t) and x(t). Consequently, system (4.2.8) replicates the sensitivity of system
(4.2.6). �

4.4 Unstable Periodic Solutions

We begin this section by describing period-doubling cascade for system (4.2.6) and
continue with its extension to system (4.2.9) through system (4.2.8).

Assume, in this section, that system (4.2.6) admits a period-doubling cascade.
That is, there exists an equation

x ′ = G(t, x, λ), (4.4.16)

where λ is a parameter and the function G : R+ × R
m × R → R

m is such that for
some finite number λ∞, G(t, x, λ∞) is equal to the function F(t, x) in the right-hand
side of system (4.2.6).

The following condition is required:

(A4) There exists a positive number ω such that the periodicity property G(t +
ω, x, λ) = G(t, x, λ) holds for all t ∈ R+, x ∈ R

m and λ ∈ R.

System (4.2.6) is said to admit a period-doubling cascade [43, 45, 46, 48, 49] if
there exist a natural number k0 and a sequence of period-doubling bifurcation values{

λ j
}

, λ j → λ∞ as j → ∞, such that for each natural number j , a periodic solution
with period k02 jω appears, and as the parameter λ increases or decreases through
λ j , system (4.4.16) undergoes a period-doubling bifurcation. As a consequence, at
the parameter value λ = λ∞, there exist infinitely many unstable periodic solutions
of system (4.4.16), and hence of system (4.2.6), all lying in a bounded region.

Now, let us introduce the following definition [51]. We say that the solutions of
the nonautonomous system (4.2.9), with a fixed x(t), are ultimately bounded if there
exists a number B > 0 such that for every solution y(t), y(t0) = y0, of system
(4.2.9), there exists a positive number R such that the inequality ‖y(t)‖ < B holds
for all t ≥ t0 + R.

The following condition is required in the next theorem, which can be verified
using Theorem 15.8 [51].

(A5) Solutions of system (4.2.9) are ultimately bounded by a bound common for
all x(t).
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We say that system (4.2.8) replicates the period-doubling cascade of system (4.2.6)
if for each periodic solution x(t) of (4.2.6), system (4.2.9) admits a periodic solution
with the same period.

Theorem 4.2 If conditions (A1)−(A5) hold, then system (4.2.8) replicates the
period-doubling cascade of system (4.2.6).

We emphasize that the instability of the infinite number of periodic solutions of
system (4.2.8) is ensured by Theorem4.1. Condition (A5) can be verified directly, for
example, by using Lyapunov functions, as in the case of system (4.6.26) presented
in Sect. 4.6.

4.5 Main Result

Let H be the set of all solutions ηx(t)(t, η0) of (4.2.9). Based on the previous results,
one can say that solutions in H are sensitive and there are infinitely many unstable
periodic solutions in the set; that is, H is chaotic.

We say that the entrainment of the limit cycle by chaos is observed in system (4.2.8)
if there exists a neighborhood N of γ where the chaos is developed. Moreover, there
exists an open ball inRn centered at p(0) such that each chaotic solution ηx(t)(t, η0)
that starts inside the ball remains in N for all t ≥ 0.

Theorem 4.3 Suppose that conditions (A1)−(A5) hold. If |μ| is sufficiently small,
then there is an entrainment of system (4.2.8) by the chaos.

Proof Assume, without loss of generality, that p(0) = 0 and

p′(0) = ( p̄1, 0, 0, . . . , 0)

for some positive number p̄1. At first, we are going to show that for sufficiently
small |μ|, the solutions of system (4.2.9) remain and rotate in a neighborhood of the
limit cycle. That is, ηx(t)(θi , η0) belongs to a neighborhood of the origin, if ‖η0‖
is sufficiently small, for a sequence θi → ∞ as i → ∞ with uniformly bounded
θi+1 − θi .

Let us denote by ζ(t, ζ0) the solution ofEq. (4.2.7)with ζ(0, ζ0) = ζ0.There exists
a hypersurface S such that the orbit γ of the periodic solution p(t) intersects this
surface transversally, as shown in Sect. 4.8. Therefore, there exists a number ε1 > 0
such that if ‖ζ(t, ζ0) − p(t)‖ < ε1 for each t ∈ [0, 2T ], then ζ(t, ζ0) intersects S at
some moment t1 ∈ [0, 2T ].

Suppose that a positive number δ = δ(ε1) is chosen such that δ ≤ ε1e−2L f T .

Throughout the proof, Bδ will stand for the open ball in R
n centered at the origin

with radius δ. Let an arbitrary ζ0 ∈ Bδ be given.
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The solutions ζ(t, ζ0) and p(t) = ζ(t, 0) satisfy the relation

‖ζ(t, ζ0) − p(t)‖ ≤ ‖ζ0‖ +
∫ t

0
L f ‖ζ(s, ζ0) − p(s)‖ ds.

Using ‖ζ0‖ < δ, one can verify that if 0 ≤ t ≤ 2T then ‖ζ(t, ζ0) − p(t)‖ < δe2L f T .

Therefore,
‖ζ(t, ζ0) − p(t)‖ < ε1

for t ∈ [0, 2T ], and ζ1 = ζ(t1(ζ0), ζ0) belongs to S for some t1(ζ0) ∈ [0, 2T ]. It is
clear that ‖ζ1‖ < R, where R = ε1 + ρ and ρ = max

t∈[0,T ] ‖p(t)‖ .

Now, let us fix an arbitrary number l ∈ (0, 1). In accordance with inequality
(4.8.48), presented in Sect. 4.8, there exists a natural number n0 = n0

( lδ
R

)

, indepen-
dent of ζ0, such that

‖ζ(n0T + t1(ζ0), ζ0)‖ < lδ. (4.5.17)

Let ε = δ

(
1 − l

2

)

and suppose that the nonzero number |μ| is sufficiently small

so that |μ| <
εL f

Mg
[

eL f (n0+2)T − 1
] .

Take a solution ηx(t)(t, η0), with η0 ∈ Bδ. By the previous discussions, there
exists a number t1(η0) ∈ [0, 2T ] such that ζ(t1(η0), η0) belongs to S.

It can be verified that

∥
∥ηx(t)(t, η0) − ζ(t, η0)

∥
∥ ≤ |μ| Mgt +

∫ t

0
L f

∥
∥ηx(t)(s, η0) − ζ(s, η0)

∥
∥ ds,

and therefore, we have

∥
∥ηx(t)(t, η0) − ζ(t, η0)

∥
∥ ≤ |μ| Mg

L f

(

eL f t − 1
)

, t ≤ (n0 + 2)T .

In this case, we obtain the inequality

∥
∥ηx(t)(n0T + t1(η0), η0) − ζ(n0T + t1(η0), η0)

∥
∥ < ε,

and bymeans of (4.5.17) we have η1 = ηx(t)(θ1, η0) ∈ Bδ , where θ1 = n0T +t1(η0).
We note that the point η1 depends on both η0 and x(t).

Similarly to the above, one can find that the inequality

∥
∥ηx(t)(t, η0) − ζ(t − θ1, η1)

∥
∥ ≤ |μ| Mg

L f

(

eL f (n0+2)T − 1
)
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holds for all t ∈ [θ1, θ1 + (n0 + 2)T ]. Additionally, the existence of a number
t2(η1) ∈ [0, 2T ] such that ζ(t2(η1), η1) ∈ S can be verified. Therefore, we have

∥
∥ηx(t)(2n0T + t1(η0) + t2(η1), η0) − ζ(n0T + t2(η1), η1)

∥
∥ < ε,

and hence η2 = ηx(t)(θ2, η0) ∈ Bδ , where θ2 = 2n0T + t1(η0) + t2(η1).
One can continue in the samemanner to construct a sequence

{

t j
}

,which satisfies
0 ≤ t j ≤ 2T , j ≥ 1, and

∥
∥ηx(t)(t, η0) − ζ(t − θi , ηi )

∥
∥ ≤ |μ| Mg

L f

(

eL f (n0+2)T − 1
)

, (4.5.18)

for t ∈ [θi , θi + (n0 + 2)T ], where ηi = ηx(t)(θi , η0) ∈ Bδ , i ≥ 0, θ0 = 0 and

θi = in0T +
i

∑

j=1

t j , i ≥ 1. (4.5.19)

We emphasize that for any i ≥ 1, it is true that θi belongs to [in0T, i(n0 + 2)T ] and
θi − θi−1 = n0T + ti ≤ (n0 + 2)T . The procedure of the proof for t ∈ [θi , θi+1] is
illustrated in Fig. 4.4.

In the remaining part of the proof, we will demonstrate the boundedness of
ηx(t)(t, η0) − p(t), which implies the boundedness of ηx(t)(t, η0).

Fig. 4.4 The schematic representation of the proof of Theorem4.3. The trajectory in red shows
the function ηx(t)(t, η0), while the trajectory in blue represents ζ(t − θi , ηi ), where the sequence
{θi } is defined in (4.5.19) and ηi = ηx(t)(θi , η0). The presented illustration covers the way of the
2-dimensional case of the proof on the time interval [θi , θi+1], for an arbitrary i ≥ 0. In the figure
Blδ and Bδ denote the open balls centered at the origin with radii lδ and δ, respectively. At the
moment t = θi+1, the solution ζ(t − θi , ηi ) belongs to Blδ and ηi+1 is inside Bδ
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For afixed i , using the couple of relations ζ(t−θi , ηi ) = ηi +
∫ t

θi

f (ζ(s−θi , ηi ))ds

and p(t) = p(θi ) +
∫ t

θi

f (p(s))ds one can obtain the following inequality

‖ζ(t − θi , ηi ) − p(t)‖ ≤ (δ + ρ)e2L f T , θi ≤ t ≤ θi + 2T .

Hence, we have ‖ζ(ti+1(ηi ), ηi )‖ ≤ ρ + (δ + ρ)e2L f T .

Since the point ζ(ti+1(ηi ), ηi ) is on the surface S, according to (4.8.50), it is true
for t∈R+ that ‖ζ(t + ti+1(ηi ), ηi ) − p(t)‖ ≤ 4K1

∥
∥P−1(0)

∥
∥

[

ρ + (δ + ρ) e2L f T
]

.

Thus, we find for t ∈ R+ that

∥
∥ηx(t)(t, η0) − p(t)

∥
∥ ≤ |μ| Mg

L f

(

eL f (n0+2)T − 1
)

+ H0(δ, ρ), (4.5.20)

where

H0(δ, ρ) = max
{

(δ + ρ)e2L f T , 4K1

∥
∥
∥P−1(0)

∥
∥
∥

[

ρ + (δ + ρ) e2L f T
]}

.

It is worth noting that H0(δ, ρ) → 0 as δ → 0 and ρ → 0, and
∥
∥ηx(t)(t, η0) − p(t)

∥
∥

can be made arbitrarily small by suitable choices of μ, δ and ρ.

Consequently, any solution ηx(t)(t, η0), where η0 ∈ Bδ , is bounded on R+, and
remains near the limit cycle in accordance with formula (4.5.20).

In compliance with the results of Theorems4.1 and 4.2, the set H exhibits sensi-
tivity and contains infinitely many unstable periodic solutions. For each chaotic x(t),
the trajectories of (4.2.9) starting inside the ball Bδ constitute a subfamily of H and
behave chaotically around the limit cycle γ. Therefore, the entrainment of the limit
cycle by chaos takes place in system (4.2.8). �

Given the presence of chaos in (4.2.6), we have obtained chaos for the couple
(x(t), y(t)), so that one can talk not only of the entrainment by chaos, but also of the
extension of chaos to a higher dimensional system.

4.6 Examples

We consider the system

u′
1 = αu1 − u2 − u1(u2

1 + u2
2),

u′
2 = u1 + αu2 − u2(u2

1 + u2
2),

(4.6.21)

which is in the form of (4.2.7), where α is a positive number and

f (u1, u2) =
(

αu1 − u2 − u1(u2
1 + u2

2)

u1 + αu2 − u2(u2
1 + u2

2)

)

.
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One can verify that p(t) = (√
α cos t,

√
α sin t

)

is a periodic solution of (4.6.21).

Evaluating A(t) = ∂ f (p(t))

∂u
gives us

A(t) =
( −2α cos2 t −1 − α sin(2t)
1 − α sin(2t) −2α sin2 t

)

. (4.6.22)

Evidently, the first multiplier of the corresponding variational system is ρ1 = 1,

and according to Lemma 7.3 [52] ρ2 = exp
(∫ 2π

0 trA(s)ds
)

= e−4πα. Thus, the

periodic solution p(t) is asymptotically orbitally stable according to Andronov–Witt
Theorem.

As the generator we will make use of Duffing equations in the form

x ′′ + D1x ′ + D2x3 = λ cos t, (4.6.23)

where D1, D2 and λ are constants. Defining the variables x1 = x and x2 = x ′,
Eq. (4.6.23) can be rewritten as

x ′
1 = x2,

x ′
2 = −D1x2 − D2x31 + λ cos t.

(4.6.24)

Example 4.1 Consider system (4.6.24) with D1 = 0.05, D2 = 1 and λ = 7.5 such
that the system possesses chaotic motions seen through simulations [40]. Perturbing
system (4.6.21) with solutions of (4.6.24) and setting α = 9, we obtain the following
system

y′
1 = 9y1 − y2 − y1(y21 + y22 ) + 0.5x1(t),

y′
2 = y1 + 9y2 − y2(y21 + y22 ) + 3.6x2(t).

(4.6.25)

In Fig. 4.5a, b, we depict the chaotic trajectories of systems (4.6.24) and (4.6.25),
respectively. The initial data x1(0) = 3.05, x2(0) = 4.153, y1(0) = 2.8, y2(0) = 0.5
are used. Figure4.5b shows the chaotic motion in a neighborhood of the limit cycle
of (4.6.21). The pictures support the results of the present chapter predicting the
entrainment by chaos.

Figure4.6 depicts the Poincaré sections, which are obtained by marking the tra-
jectories of systems (4.6.24) and (4.6.25) with x1(0) = 2, x2(0) = 3, y1(0) = 3,
y2(0) = 0 stroboscopically at times t that are integer multiples of 2π. Figure4.6a
presents the strange attractor of the first system, and Fig. 4.6b demonstrates the
entrained chaotic behavior.

Now, to show through simulations the replication of sensitivity, we consider two
initially close solutions of system (4.6.24)+ (4.6.25), onewith the initial data x1(0) =
3.07, x2(0) = 4.18, y1(0) = 1.57, y2(0) = −0.25, which is presented in blue, and
another with the initial data x1(0) = 3.22, x2(0) = 4.14, y1(0) = 1.35, y2(0) =
−0.22, which is pictured in red. In Fig. 4.7, we present these trajectories. Figure4.7a
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Fig. 4.5 The chaotic behavior of system (4.6.24) is pictured in (a), and the chaoticmotion generated
around the limit cycle is shown in (b)
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Fig. 4.6 Poincaré sections of systems (4.6.24) and (4.6.25)
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Fig. 4.7 The picture in a shows two initially close trajectories corresponding to system (4.6.24)
that eventually diverge. The replication of sensitivity is observed in (b), where the blue and red
trajectories are initially close to each other and are then separated

shows the existence of sensitivity in system (4.6.24), while Fig. 4.7b illustrates the
replication of this feature.

Formula (4.3.15) implies that the strength of sensitivity of system (4.2.8) is pro-
portional to the strength of the chaotic perturbation, μg(x), used in the system.
Therefore, despite the fact that the extension of sensitivity is guaranteed by Theo-
rem4.1, if one considers (4.2.8) with weak perturbations, it may not be visible in
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simulation results. On the other hand, according to formula (4.5.18), strong pertur-
bations may diminish the cyclical behavior of the chaotic solutions. For that reason,
given the strength of the perturbation used in system (4.6.25), Fig. 4.7b displays the
extension of sensitivity, but does not indicate cyclical behavior.

We will continue with an example that demonstrates the extension of period-
doubling cascade.

Example 4.2 In paper [53], it is mentioned that system (4.6.24), in which λ is con-
sidered as a parameter, displays period-doubling bifurcations for the coefficients
D1 = 0.3, D2 = 1, and the sequence of bifurcation parameter values accumulates at
λ = λ∞ ≡ 40 such that the system admits infinitely many unstable periodic orbits.

To illustrate the entrainment by chaos, system (4.6.24) with the specified coef-
ficients and λ = λ∞ will be utilized as the generator. Let us use the solutions of
(4.6.24) to perturb (4.6.21) and build the system

y′
1 = αy1 − y2 − y1

(

y21 + y22
) + μx1(t),

y′
2 = y1 + αy2 − y2

(

y21 + y22
) + μx2(t),

(4.6.26)

where μ is a nonzero constant.

We will make use of the Lyapunov function V (y1, y2) = y21 + y22 to show the
validity of condition (A5) for system (4.6.26). One can verify that

V ′
(4.6.26)(y1, y2) = −2

√

y21 + y22

[ (

y21 + y22 − α
) √

y21 + y22

− μ
√

y21 + y22

(x1y1 + x2y2)
]

.

Let us fix a positive number r0 and suppose that
√

y21 + y22 >
√

α + r0. Under

this condition we have
(

y21 + y22 − α
)
√

y21 + y22 > r30 + 3r20
√

α + 2r1α. Since the
chaotic attractor of system (4.6.24) satisfies |x1| < 6 and |x2| < 15, we obtain

that

∣
∣
∣
∣
∣

μ
√

y21+y22
(x1y1 + x2y2)

∣
∣
∣
∣
∣
≤ 21 |μ| . Therefore, if |μ| is sufficiently small so that

|μ| ≤ r30/21, then V ′
(4.6.26)(y1, y2) < 0 for

√

y21 + y22 >
√

α + r1, and condition
(A5) holds for system (4.6.26).

In conformity with the discussion above, one can identify a bounded region G
in R

2 such that for sufficiently small |μ|, Massera’s Theorem [51, 54] implies the
existence of a periodic solution of the planar system (4.6.26) inside the region G for
each periodic (x1(t), x2(t)). Moreover, all these periodic solutions are unstable.

In Fig. 4.8, the trajectories of systems (4.6.24) and (4.6.26), where α = 0.002 and
μ = 0.008, with x1(0) = 3.5, x2(0) = −2, y1(0) = 0.02, y2(0) = 0.038 are seen.
Figure4.8a illustrates the chaotic behavior of system (4.6.24) and Fig. 4.8b shows
the irregular motion around the limit cycle.
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Fig. 4.8 The chaotic trajectories of the unidirectionally coupled systems (4.6.24) and (4.6.26). The
coefficients D1 = 0.3, D2 = 1, λ = 40, α = 0.002 and μ = 0.008 are used in the simulation

4.7 Miscellany

This section is devoted to discussions and simulations of the entrainment of toroidal
attractors by chaos and entrainment in Chua’s oscillators, as well as controlling
and synchronization problems. We start with the demonstration of chaos generation
around tori.

4.7.1 Chaotic Tori

In previous parts of the chapter, we have discussed the entrainment of limit cycles
by chaos. Now, the question is whether a similar approach is possible around tori. In
this part, we will investigate numerically the problem of capture of chaos by toroidal
attractors.

Let us consider the following system [55, 56]:

u′
1 = (λ − 3)u1 − 0.25u2 + u1

(

u3 + 0.2(1 − u2
3)

)

,

u′
2 = 0.25u1 + (λ − 3)u2 + u2

(

u3 + 0.2(1 − u2
3)

)

,

u′
3 = λu3 − (u2

1 + u2
2 + u2

3),

(4.7.27)

where λ is a parameter.
For small and positive values of the parameterλ, system (4.7.27) admits an asymp-

totically stable equilibrium point with a positive u3 coordinate close to the origin. At
λ ≈ 1.68, the equilibrium point loses its stability and an hyperbolic, asymptotically
orbitally stable limit cycle emerges. At the parameter value λ = 2, the periodic orbit
is still asymptotically orbitally stable, but not hyperbolic. For λ > 2, the limit cycle
is no longer stable and an attracting invariant torus is formed near the periodic orbit.
With the increasing values of λ, the invariant torus grows rapidly [55].
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Fig. 4.9 The emergence of
chaotic motion around a
torus demonstrates the
entrainment by chaos
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To produce chaotic motions around the torus, we use the chaotic Lorenz sys-
tem [17]

x ′
1 = −10x1 + 10x2,

x ′
2 = −x1x3 + 28x1 − x2,

x ′
3 = x1x2 − (8/3)x3,

(4.7.28)

as the generator and set up the following system:

y′
1 = (λ − 3)y1 − 0.25y2 + y1

(

y3 + 0.2(1 − y23 )
) + 0.003x1(t),

y′
2 = 0.25y1 + (λ − 3)y2 + y2

(

y3 + 0.2(1 − y23 )
) + 0.004x2(t),

y′
3 = λy3 − (y21 + y22 + y23 ) + 0.002x3(t),

(4.7.29)

where λ = 2.003.
Figure4.9 shows the trajectory of system (4.7.29) with y1(0) = 0.0793, y2(0) =

−1.1761, y3(0) = 0.9449, where x(t) is a solution of (4.7.28) with x1(0) =
−6.7453, x2(0) = 0.3435, x3(0) = 32.7629. One can see that the motion is chaotic
and surrounds the torus.

4.7.2 Entrainment in Chua’s Oscillators

We continue the discussion by presenting a simulation result for the entrainment by
chaos in a Chua’s oscillator.

Using system (4.6.24) with D1 = 0.3, D2 = 1 and λ = 40 as the generator
of chaos, we demonstrated in Sect. 4.6 that system (4.6.26) with α = 0.002 and
μ = 0.008 exhibits motions which behave chaotically and cyclically, so that the
entrainment by chaos is present. Now, we consider a Chua’s oscillator which admits
an asymptotically stable equilibrium in dimensionless form [57], and perturb it with
the solutions of (4.6.26):
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Fig. 4.10 The chaotic and
cyclic motion generated by
the perturbed Chua system
(4.7.30)
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z′
1 = (21.32/5.75)[z2 − 0.13396z1 + 0.48993(|z1 + 1| + |z1 − 1|)]

+0.5y1(t),
z′
2 = z1 − z2 + z3 + 2y2(t),

z′
3 = −7.8351z2 − (1.38166392/12)z3 + 3y2(t).

(4.7.30)

Note that system (4.6.26), which itself is a perturbed system, is the generator.
According to [25], we have to observe chaotic behavior in the oscillator. We consider
a trajectory of system (4.6.24)+ (4.6.26) with initial data x1(0) = 3.5, x2(0) = −2,
y1(0) = 0.02, y2(0) = 0.038, and plot the corresponding trajectory of (4.7.30) with
z1(0) = −8.016, z2(0) = −0.084, z3(0) = 7.792 in Fig. 4.10. It confirms that
chaotic motion around a cycle emerges in the perturbed Chua system, which is a
manifestation of the entrainment by chaos.

The obtained result highlights the possibility of employing existing cyclic chaos
to generate a new one in systems with stable equilibria, and particularly in Chua’s
oscillators. Furthermore, it is seen in Fig. 4.10 that the resulting motion resembles
the spiral Chua’s attractor, which occurs in the case of a period-doubling cascade
[57, 58].

4.7.3 Controlling Chaos

The Pyragas control method [59–62] is an effective instrument for stabilizing the
unstable periodic orbits of chaotic systems. It is also very useful for visually dis-
cerning the periodic solutions, which are otherwise indistinguishable in the set of
irregular motions.

As an example, we will describe the procedure for stabilizing unstable periodic
solutions of systems of the form (4.2.6)+ (4.2.8).
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It is demonstrated in [27] that to apply the Pyragas control method to the chaotic
Duffing oscillator given by the system

x ′
1 = x2,

x ′
2 = −0.10x2 + 0.5x1

(

1 − x21
) + 0.24 sin t,

(4.7.31)

one can construct the corresponding control system

z′
1 = z2,

z′
2 = −0.10z2 + 0.5z1

(

1 − z21
) + 0.24 sin(z3)

+C [z2(t − τ0) − z2(t)] ,
z′
3 = 1,

(4.7.32)

where q(t) = C [z2(t − τ0) − z2(t)] is the control law and the parameter C rep-
resents the strength of the perturbation. An unstable 2π -periodic solution can be
stabilized by choosing the value τ0 = 2π.

Using system (4.7.31) as the generator, we set up the following system:

y′
1 = 7y1 − y2 − y1(y21 + y22 ) + 5x1(t),

y′
2 = y1 + 7y2 − y2(y21 + y22 ) + 4(x2(t) + x32(t)).

(4.7.33)

According to the theoretical discussions, system (4.7.31)+ (4.7.33) is chaotic,
and there is entrainment by chaos such that (4.7.33) exhibits chaotic motions around
the limit cycle of system (4.6.21) with α = 7.

Our current objective is to show numerically how to control the chaos of system
(4.7.31)+ (4.7.33). We suggest that if a periodic solution of the generator system
(4.7.31) is stabilized, then the chaos of system (4.7.31)+ (4.7.33) is controlled.

To apply the Pyragas method to control the chaos of (4.7.31)+ (4.7.33), we set
up the system

v′
1 = 7v1 − v2 − v1(v21 + v22) + 5z1(t),

v′
2 = v1 + 7v2 − v2(v21 + v22) + 4(z2(t) + z32(t)),

(4.7.34)

where z1(t) and z2(t) refer to the first and second coordinates of the solutions of the
control system (4.7.32).

Let us consider the solution of (4.7.32)+ (4.7.34) with initial data z1(0) = 0.2,
z2(0) = 0.4, z3(0) = 0, v1(0) = −2.5 and v2(0) = 0.8. We allow system
(4.7.32)+ (4.7.34) to evolve freely by takingC = 0 until t = 70, and at that moment,
we switch on the control and useC = 0.84.When t = 210, the control mechanism is
switched off, and henceforth, the value C = 0 is utilized. Figure4.11, which depicts
chaos control, shows the z2 and v2 coordinates of the solution. It can be observed
that after switching off the control mechanism, the stabilized 2π -periodic solution
of system (4.7.31)+ (4.7.33) loses its stability, and chaos emerges again. We note
that one can obtain similar graphs for the other coordinates of (4.7.32)+ (4.7.34).
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Fig. 4.11 Application of the Pyragas control method to system (4.7.31)+ (4.7.33) by means of
system (4.7.32)+ (4.7.34). a Graph of the z2 coordinate, b Graph of the v2 coordinate

4.7.4 Entrainment and Synchronization

In this subsection, we will show that our results cannot be considered as generalized
synchronization (GS) results [33].

GS characterizes the dynamics of a response system that is driven by the output
of a chaotic driving system [26–28, 30, 33]. Suppose that the dynamics of the drive
and response are governed by the following systems with a skew product structure

x ′ = D(x) (4.7.35)

and

y′ = R(y, K (x)), (4.7.36)

respectively, where x ∈ R
p, y ∈ R

q . Synchronization [33] is said to occur if there
exist sets Ix , Iy of initial conditions and a transformation φ, defined on the chaotic
attractor of (4.7.35), such that for all x(0) ∈ Ix , y(0) ∈ Iy the relation

lim
t→∞ ‖y(t) − φ(x(t))‖ = 0

holds. In this case, a motion that starts on Ix × Iy collapses onto a manifold M ⊂
Ix × Iy of synchronized motions. The transformation φ is not required to exist for
the transient trajectories. When φ is the identity, the identical synchronization takes
place [27, 32]. The case of differentiable φ is considered in [28].

It is formulated in paper [30] that GS occurs if and only if for all x0 ∈ Ix ,
y10, y20 ∈ Iy , the following asymptotic stability criterion holds:
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Fig. 4.12 The projection of
the stroboscopic plot of the
system
(4.6.24)+ (4.6.26)+ (4.7.37)
on the y1 − z1 plane
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lim
t→∞ ‖y(t, x0, y10) − y(t, x0, y20)‖ = 0,

where y(t, x0, y10), y(t, x0, y20) denote the solutions of (4.7.36) with the initial data
y(0, x0, y10) = y10, y(0, x0, y20) = y20 and the same x(t), x(0) = x0.

To make comparison of our approach with that of GS, let us apply the auxiliary
system method [26, 27] to indicate the presence or absence of GS in the couple
(4.2.6)+ (4.2.8) ((4.2.10)+ (4.2.8)), considered this time as drive-response systems
(as it is accepted in the synchronization theory).

Let us start the procedure by the couple (4.6.24)+ (4.6.26) with D1 = 0.3, D2 =
1, λ = 40, α = 0.002 and μ = 0.008 such that the entrainment by chaos takes place
as demonstrated in Sect. 4.6. The corresponding auxiliary system is

z′
1 = 0.002z1 − z2 − z1

(

z21 + z22
) + 0.008x1(t),

z′
2 = z1 + 0.002z2 − z2

(

z21 + z22
) + 0.008x2(t),

(4.7.37)

which is an identical copy of system (4.6.26).
The projection of the stroboscopic plot of system (4.6.24)+ (4.6.26)+ (4.7.37)

on the y1 − z1 plane is depicted in Fig. 4.12. The figure is obtained by marking
the trajectory with the initial data x1(0) = 3.5, x2(0) = −2, y1(0) = −0.01,
y2(0) = −0.03, z1(0) = 0.02, z2(0) = 0.038 at times t that are integer multiples
of 2π and by omitting the first 4000 iterations. It is observable in Fig. 4.12 that the
stroboscopic plot is not on the line z1 = y1, and therefore GS does not take place in
the system (4.6.24)+ (4.6.26).

To have a more detailed comparison of the present results with GS, let us con-
sider a Rössler–Lorenz couple. GS was observed in [26, 27] with specific values of
coefficients and perturbations. Let us take into account the couple with our particular
data which issues from present investigations.
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Consider the Lorenz system

u′
1 = −10u1 + 10u2,

u′
2 = −u1u3 + 350u1 − u2,

u′
3 = u1u2 − (8/3)u3.

(4.7.38)

According to Sparrow [63], system (4.7.38) possesses a globally attracting limit
cycle. We perturb system (4.7.38) with the solutions of the chaotic Rössler sys-
tem [64]

x ′
1 = −(x2 + x3),

x ′
2 = x1 + 0.2x2,

x ′
3 = 0.2 + x3(x1 − 5.7),

(4.7.39)

and set up the system

y′
1 = −10y1 + 10y2 + 2.8x1(t),

y′
2 = −y1y3 + 350y1 − y2 + 7x2(t),

y′
3 = y1y2 − (8/3)y3 + 4.5x3(t).

(4.7.40)

Using the solution of system (4.7.39) with x1(0) = 2.1, x2(0) = −7.7, x3(0) =
0.1, we represent the trajectory of system (4.7.40) corresponding to the initial data
y1(0) = −19.2, y2(0) = −63.9, y3(0) = 296.1 in Fig. 4.13a. The projection of
the same trajectory on the y1 − y2 plane is shown in Fig. 4.13b. The simulation
results show that chaotic behavior appears near the limit cycle. Moreover, the chaotic
behavior of the y3 coordinate is illustrated in Fig. 4.14.

For system (4.7.39)+ (4.7.40), we can construct the corresponding auxiliary sys-
tem of the form
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Fig. 4.13 A chaotic trajectory of system (4.7.40) near the limit cycle
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Fig. 4.14 The irregular behavior of the y3 coordinate of system (4.7.40)

Fig. 4.15 Application of the
auxiliary system approach to
the system
(4.7.39)+ (4.7.40) indicates
that GS does not exist for the
couple
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z′
1 = −10z1 + 10z2 + 2.8x1(t),

z′
2 = −z1z3 + 350z1 − z2 + 7x2(t),

z′
3 = z1z2 − (8/3)z3 + 4.5x3(t).

(4.7.41)

The projection of the stroboscopic plot of system (4.7.39)+ (4.7.40)+ (4.7.41) on
the y3 − z3 plane is shown in Fig. 4.15. The initial data x1(0) = 2.1, x2(0) = −7.7,
x3(0) = 0.1, y1(0) = −19.2, y2(0) = −63.9, y3(0) = 296.1, z1(0) = −14.9,
z2(0) = −75.6, z3(0) = 325.4 are used and the first 200 iterations are omitted. To
have GS indicated by the auxiliary system approach we need the stroboscopic plot
to be placed on the line z3 = y3. Since this is not the case as seen in Fig. 4.15, we
can conclude that the entrainment by chaos is not GS.

Next, let us use the auxiliary system approach to analyze the coupled system
(4.7.28)+ (4.7.29) with λ = 2.003 such that the entrainment by chaos takes place as
shown in Sect. 4.7.1. The auxiliary system in this case is

z′
1 = −0.997z1 − 0.25z2 + z1

(

z3 + 0.2(1 − z23)
) + 0.003x1(t),

z′
2 = 0.25z1 − 0.997z2 + z2

(

z3 + 0.2(1 − z23)
) + 0.004x2(t),

z′
3 = 2.003z3 − (z21 + z22 + z23) + 0.002x3(t).

(4.7.42)

Making use of the initial data x1(0) = −6.74, x2(0) = 0.34, x3(0) = 32.76,
y1(0) = 0.07, y2(0) = −1.17, y3(0) = 0.94, z1(0) = 0.85, z2(0) = −0.24, z3(0) =
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Fig. 4.16 Application of the
auxiliary system approach to
the system
(4.7.28)+ (4.7.29) reveals
that entrainment of toroidal
attractors by chaos is not GS
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0.74, and omitting the first 200 iterations, we depict in Fig. 4.16 the projection of
the stroboscopic plot of system (4.7.39)+ (4.7.40)+ (4.7.41) on the y3 − z3 plane.
One can see in Fig. 4.15 that the stroboscopic plot is not placed on the line z3 = y3.
Therefore, we conclude thatGS is not achieved in the dynamics of the coupled system
(4.7.39)+ (4.7.40).

4.8 The Regular Motion Near the Limit Cycle

In this part, we provide the needed information from the proof of Andronov–Witt
Theorem [50] and also precise the decay of the solutions regarding the initial value.

Without loss of generality, let us assume that p(0)=0 and p′(0)= ( p̄1, 0, 0, . . . , 0)
for some positive number p̄1.

According to our assumption that system (4.2.12) admits the number 1 as a simple
characteristicmultiplier and the remaining n−1 characteristicmultipliers are smaller
than one in modulus, system (4.2.12) has a real fundamental matrix Φ(t) of the

form Φ(t) = P(t)

(

1 0
0 eB1t

)

, where P(t) is a regular, continuously differentiable

T -periodic matrix and B1 is an (n − 1) × (n − 1) matrix all of whose eigenvalues
have negative real parts.

We emphasize that for an arbitrary solution u(t) of Eq. (4.2.7), the differential
equation satisfied by the function z(t) = u(t) − p(t) is

z′ = A(t)z + ϕ(t, z), (4.8.43)

where A(t) = ∂ f (p(t))

∂u
and ϕ(t, z) = f (p(t) + z) − f (p(t)) − A(t)z. It is clear

that ϕ(t + T, z) = ϕ(t, z) and ϕ(t, 0) = ϕz(t, 0) = 0 for all t ∈ R+.
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Since ϕz(t, z) = o(1) as z → 0 uniformly in t ∈ R+, there exist numbers Lϕ > 0
and δ̃(Lϕ) > 0 such that if ‖z1‖ < δ̃(Lϕ), ‖z2‖ < δ̃(Lϕ), then the inequality
‖ϕ(t, z1) − ϕ(t, z2)‖ ≤ Lϕ ‖z1 − z2‖ holds uniformly on t ∈ R+.

Suppose thata = (0, a2, a3, . . . , an) is ann-dimensional vector,which is orthogo-
nal to p′(0).There exist positive numbers K1 andα such that‖Φ(t)a‖ ≤ K1 ‖a‖ e−αt

for all t ∈ R+. Moreover, if ‖a‖ < δ̃(Lϕ)/(2K1) then a solution z(t, a) of (4.8.43)
exists on [0,∞) and satisfies the following inequality

‖z(t, a)‖ ≤ 2K1 ‖a‖ e−αt/2, t ≥ 0. (4.8.44)

A solution ζ(t, ζ0) of (4.2.7) satisfies the relation ζ(t, ζ0) = z(t, a) + p(t), where
z(t, a) is a solution of (4.8.43) with z(0, a) = ζ0. Additionally, the equation

ζ0 = P(0)a − h̃(a) (4.8.45)

holds, where h̃(a) = (

h̃1(a2, . . . , an), 0, . . . , 0
)

, for some continuously differen-
tiable function h̃1, and h̃(a) = o(‖a‖).

Suppose that ζ0 = (ζ 0
1 , ζ 0

2 , . . . , ζ 0
n ) and pi j are the coordinates of the matrix

P(0), where i, j = 1, 2, . . . , n. Equation (4.8.45) is equivalent to

ζ 0
1 +

n
∑

i=2

qiζ
0
i − h(η02, ζ

0
3 , . . . , ζ 0

n ) = 0, (4.8.46)

where qi , i = 2, . . . , n, are constants and h is a continuously differentiable function
such that

h(ζ 0
2 , . . . , ζ 0

n ) = o

⎛

⎝

(
n

∑

i=2

(ζ 0
i )2

)1/2
⎞

⎠ .

Denote by S the (n − 1) dimensional, C1 manifold determined by the equation

x1 +
n

∑

i=2

qi xi − h(x2, x3, . . . , xn) = 0. (4.8.47)

The hypersurface S crosses the orbit γ , which is defined by Eq. (4.2.11), transver-
sally so that for any solution ζ(t, ζ0) starting on this initial manifold, we have
‖ζ(t, ζ0) − p(t)‖ → 0 exponentially as t → ∞.

Now, we are going to prove that for each number l ∈ (0, 1) there exists a natural
number n0 = n0(l) such that if ζ0 belongs to S then

‖ζ(n0T, ζ0)‖ ≤ l ‖ζ0‖ . (4.8.48)
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Let ε = 1/
(

2
∥
∥P−1(0)

∥
∥
)

. It is possible to find a number δ (ε) > 0 such that if

‖a‖ < min
{

δ̃(Lϕ)/(2K1), δ (ε)
}

,

then the inequality
∥
∥h̃(a)

∥
∥ < ε ‖a‖ (4.8.49)

is valid.
Let us fix a solution ζ(t, ζ0) such that ζ0 belongs to S. In the case ‖a‖ <

min
{

δ̃(Lϕ)/(2K1), δ (ε)
}

, taking advantage of (4.8.45) and (4.8.49) one can find
that ‖a‖ ≤ 2

∥
∥P−1(0)

∥
∥ ‖ζ0‖ and according to (4.8.44), we have

‖ζ(t, ζ0) − p(t)‖ ≤ 4K1

∥
∥
∥P−1(0)

∥
∥
∥ ‖ζ0‖ e−αt/2, t ≥ 0. (4.8.50)

Let us fix an arbitrary number l ∈ (0, 1). There exists a natural number n0 =
n0(l) such that 4K1

∥
∥P−1(0)

∥
∥ e−αT n0/2 < l. Making use of (4.8.50) we obtain that

‖ζ(n0T, ζ0) − p(n0T )‖ < l ‖ζ0‖ . Since p(n0T ) = 0, inequality (4.8.48) holds.

4.9 Notes

The concept of entrainment is extended to introduce the notion of the entrainment
of limit cycles by chaos. Our theoretical results can be effectively adapted to arbi-
trarily high-dimensional systems that possess asymptotically orbitally stable limit
cycles. Examples of such systems can be found inmechanics, electronics, economics,
the neural sciences, chemistry, and population dynamics [65–71]. Employing the
method presented, one can obtain motions that behave cyclically and chaotically at
the same time.

We prove the presence of chaos through the notions of period-doubling cascade
and sensitivity. It is known that [17, 18] sensitivity is the main ingredient of chaos.
Verifying other ingredients of chaos, namely the transitivity and density of periodic
motions, is more difficult.

The entrainment of toroidal attractors by chaos and entrainment in Chua’s oscil-
lators are demonstrated numerically. Moreover, the existence of unstable periodic
solutions is evidenced through the Pyragas method [60] and simulations.

One of the important peculiarities of our approach is that entrainment by chaos
cannot be embedded as a part of synchronization theory [26–28, 30, 33].

Cyclical behavior in chaotic attractors has been widely observed in the literature.
We can note the famousRössler attractor, Chua’s spiral attractor and even the classical
Lorenz attractor, where one can observe two-center cyclical behavior, as examples.
Our results for obtaining cyclical behavior are different from those presented in
the literature, because exogenous perturbations are applied in our case. In fact, the
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mechanism proposed in this chapter could be the unsuspected underlying force that
gives rise to some chaotic attractors discussed in the literature.

Some of our results, for example, boundedness of solutions around the limit cycle,
can be obtained if one applies results in [72] on the existence of invariant manifolds
and their persistence under perturbation or by reduction to discrete equations with
respect to both phase and time variables [42].

The conclusions of this chapter can be replicated in cases in which cycles are
attracting when time decreases to −∞. Another theoretically challenging problem
is to consider hyperbolic cycles, as well as the critical cases [34–36]. Moreover, our
results are useful for generating multidimensional chaos, especially if one requires
a rigorous proof for the phenomenon [73]. We can formally compare our results
with those of Ruelle and Takens [74] on the appearance of turbulence through three
successive Hopf bifurcations. Unlike Ruelle and Takens, we observe chaos to emerge
after fewer than three bifurcations and we use chaotic perturbations. The results of
the present chapter were published in the paper [75].
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Chapter 5
Chaotification of Impulsive Systems

In this chapter, we present a new method for chaos generation in non-autonomous
impulsive systems. We prove the presence of chaos in the sense of Li–Yorke by
implementing chaotic perturbations. An impulsive Duffing oscillator is used to show
the effectiveness of our technique, and simulations that support the theoretical results
are depicted. Moreover, a procedure to stabilize the unstable periodic solutions is
proposed.

5.1 Introduction

It is well known how discrete dynamics is important for the chaos theory [1–4].
Very interesting examples of applications of discrete dynamics to continuous chaos
analysis were provided in papers [5–8]. In these studies, the general technique of
dynamical synthesis [5] was developed. Besides that, it is of big interest to consider
chaotic processes where continuous dynamics is intermingled with discontinuity
[9–13].

Impulsive differential equations describe the dynamics of real-world processes
in which abrupt changes occur. Such equations play an increasingly important role
in various fields such as mechanics, electronics, neural networks, communication
systems, and population dynamics [14–20]. In this chapter, we present a rigorous
method for chaotification of arbitrary high dimensional impulsive systems.

Throughout the chapter R, Z and Nwill denote the sets of real numbers, integers,
and natural numbers, respectively. We will make use of the usual Euclidean norm
for vectors and the norm induced by the Euclidean norm for square matrices [21].

The main purpose of our investigation is as follows. Consider the collection of
functions

A =
{

ϕ(t) : R → R
n | sup

t∈R
‖ϕ(t)‖ ≤ H0

}

,
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where H0 is a positive number, and suppose that A is an equicontinuous family on
R. We perturb the impulsive system

x ′(t) = Ax(t) + f (t, x(t)), t �= θk,

Δx |t=θk = Bx(θk) + W (x(θk)),
(5.1.1)

by the functions ϕ(t) ∈ A to obtain the system

y′(t) = Ay(t) + f (t, y(t)) + ϕ(t), t �= θk,

Δy|t=θk = By(θk) + W (y(θk)),
(5.1.2)

where the functions f : R × R
n → R

n and W : Rn → R
n are continuous in all

their arguments, A and B are n × n constant real-valued matrices, the sequence {θk},
k ∈ Z, of impulsive moments is strictly increasing, Δy|t=θk = y(θk+) − y(θk) and
y(θk+) = lim

t→θk+
y(t). The main objective of the present chapter is the verification of

chaos in the dynamics of system (5.1.2), provided that the collection A is chaotic.
The description of chaotic collection of functionswill be presented in the next section.

The term chaos, as a mathematical notion, has first been used in [2] for one
dimensional difference equations. According to Li and Yorke [2], a continuous map
F : J → J , where J ⊂ R is an interval, exhibits chaos if: (i) For every natural
number p, there exists a p-periodic point of F in J ; (ii) There is an uncountable set
S ⊂ J containing no periodic points such that for every s1, s2 ∈ S with s1 �= s2 we

have lim sup
j→∞

∣
∣
∣F j (s1) − F j (s2)

∣
∣
∣ > 0 and lim inf

j→∞

∣
∣
∣F j (s1) − F j (s2)

∣
∣
∣ = 0; (iii) For

every s ∈ S and periodic point σ ∈ J we have lim sup
j→∞

∣
∣
∣F j (s) − F j (σ )

∣
∣
∣ > 0.

The concept of snap-back repellers for high dimensional maps was introduced in
[22]. According to Marotto [22], if a multidimensional continuously differentiable
map has a snap-back repeller, then it is Li–Yorke chaotic. Marotto’s Theorem was
used in [23] to prove the existence of Li–Yorke chaos in a spatiotemporal chaotic
system. Li–Yorke sensitivity, which links the Li–Yorke chaos with the notion of sen-
sitivity, was studied in [24]. Moreover, generalizations of Li–Yorke chaos to map-
pings in Banach spaces and complete metric spaces were provided in [25–27]. In the
present chapter, we develop the concept of Li–Yorke chaos to piecewise continuous
functions, and prove its presence rigorously in impulsive systems of the form (5.1.2)
without any restriction on the dimension.

Taking advantage of chaotically changing impulsive moments, which are func-
tionally dependent on the initial moment, the presence of Li–Yorke chaos in a non-
autonomous impulsive differential equation was rigorously proved in [9]. On the
other hand, the existence of Li–Yorke chaos and its control in an autonomous impul-
sive differential system were discussed both theoretically and numerically in the
paper [12], where the presence of a snap-back repeller was proved based on the qual-
itative analysis using the Poincaré map and the Lambert W-function. A system of
impulsive differential equations with moments of impulses generated by a sensitive
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map which depends on a parameter was taken into account in [13], and sensitivity
was considered as a chaotic property. The existence of chaos in singular impulsive
systems was shown in [11] by means of transversal homoclinic points. Moreover,
chaos in the sense of Devaney [1] was studied in an impulsive model of the car-
diovascular system by means of chaotically changing impulsive moments within the
scope of the paper [10]. Distinctively from the papers [9–13], wemake use of chaotic
perturbations to prove the existence of Li–Yorke chaos, and this is the main novelty
of this chapter.

Small perturbations applied to control parameters can be used to stabilize chaos,
keeping the parameters in the neighborhood of their nominal values [28, 29], and
this idea is first introduced by Ott et al. [30]. Experimental applications of the OGY
control method requires a permanent computer analysis of the system’s state. Since
the method deals with a Poincaré map, the parameter changes are discrete in time.
By this method, it is possible to stabilize only those periodic orbits whose maximal
Lyapunov exponent is small compared to the reciprocal of the time interval between
parameter changes [31].

In the example presented in Sect. 5.4, to obtain a collection of chaotic functions,
wewill use aDuffing oscillatorwhich is forced by a relay function. On the other hand,
to support our new theoretical results, an impulsiveDuffing oscillator will be utilized.
The presented example shows the effectiveness of our technique. Moreover, making
use of the OGY control method [30], we will demonstrate that the chaos of system
(5.1.2) is controllable. This method is useful for visually discerning the periodic
solutions, which are otherwise indistinguishable in the set of irregular motions.

A concept in which impulsive differential equations are effectively used is the
impulsive synchronization of chaotic systems [32–38]. This technique is appropriate
for the synchronization of Lorenz systems [39–41], Chua oscillators [19, 42] and
Rössler systems [43]. In the framework of impulsive synchronization, one can set
up an impulsive error system which admits the synchronization error e = y − x
as a solution, where x and y denote the states of the drive and response systems,
respectively, and require this system to possess a stable equilibrium point. Accord-
ing to the last equation, the synchronized systems must have the same dimensions.
However, this is not requested in our results. Therefore, we significantly extend the
chaos generation possibilities. Generally speaking, we consider the chaotification
procedure in the most definitive and general form. On the other hand, in our theory,
it is not necessary to use a drive-response couple. Instead, one can take into account
an impulsive system and perturb it by a previously obtained chaotic data. Moreover,
in the theory of impulsive synchronization the chaos type of the drive and response
systems is not considered. Contrarily, in our results, we rigorously prove that the
impulsive system exhibits the same type of chaos as the chaotic perturbations.

The rest of the chapter is organized as follows. In Sect. 5.2, we introduce the
ingredients of Li–Yorke chaos for collections of piecewise continuous functions and
give sufficient conditions for the presence of chaotic dynamics in system (5.1.2).
Moreover, we verify the attractiveness property of the bounded on R solutions of
system (5.1.2). Section5.3 is devoted to theoretical results such that the ingredi-
ents of Li–Yorke chaos for system (5.1.2) are rigorously proved. Our method of
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chaotification is applied to an impulsive Duffing oscillator in Sect. 5.4, and a proce-
dure to stabilize the existing unstable periodic solutions is presented. Finally, some
concluding remarks are indicated in Sect. 5.5.

5.2 Preliminaries

We say that a function ψ(t) : R → R
l , l ∈ N, belongs to the setPC (R) if it is left-

continuous and continuous except, possibly, at the points where it has discontinuities
of the first kind. The definition of a Li–Yorke chaotic set of piecewise continuous
functions is as follows.

Suppose that D is a set of uniformly bounded functions ψ(t) : R → R
l which

belong toPC (R) and have common points of discontinuity.
We say that a couple

(

ψ(t), ψ̃(t)
) ∈ D × D is proximal if for arbitrary small

ε > 0 and arbitrary large E > 0, there exists an interval J with a length no less than E
such that

∥
∥ψ(t) − ψ̃(t)

∥
∥ < ε for t ∈ J . On the other hand, a couple

(

ψ(t), ψ̃(t)
) ∈

D × D is called frequently (ε0,Δ)-separated if there exist positive numbers ε0,Δ

and infinitely many disjoint intervals, each with a length no less than Δ, such that
∥
∥ψ(t) − ψ̃(t)

∥
∥ > ε0 for each t from these intervals, and each of these intervals

contains at most one discontinuity point of both ψ(t) and ψ̃(t). It is worth noting
that the numbers ε0 and Δ depend on the functions ψ(t) and ψ̃(t).

A couple
(

ψ(t), ψ̃(t)
) ∈ D×D is a Li−Yorke pair if it is proximal and frequently

(ε0,Δ)-separated for some positive numbers ε0 and Δ. Moreover, an uncountable
set C ⊂ D is called a scrambled set if C does not contain any periodic functions
and each couple of different functions inside C × C is a Li−Yorke pair.

We say that the collectionD is a Li−Yorke chaotic set if: (i) There exists a positive
number T0 such thatD possesses a periodic function of period mT0 for each m ∈ N;
(ii)D possesses a scrambled set C ; (iii) For any functionψ(t) ∈ C and any periodic
function ψ̃(t) ∈ D , the couple

(

ψ(t), ψ̃(t)
)

is frequently (ε0,Δ)-separated for some
positive numbers ε0 and Δ.

One can obtain a new Li–Yorke chaotic set of functions from a given one as
follows. Suppose that h : Rl → R

l is a function which satisfies for all u1, u2 ∈ R
l

that

L1 ‖u1 − u2‖ ≤ ‖h(u1) − h(u2)‖ ≤ L2 ‖u1 − u2‖ , (5.2.3)

where L1 and L2 are positive numbers. One can verify that ifD is a Li–Yorke chaotic
set, then the collection Dh = {h(ψ(t)) | ψ(t) ∈ D} is also Li–Yorke chaotic.

The following conditions are needed:

(A1) The matrices A and B commute and det(I + B) �= 0, where I is the n × n
identity matrix;

(A2) There exists a positive number T and a natural number p such that f (t +
T, y) = f (t, y) for all t ∈ R, y ∈ R

n and θk+p = θk + T for all k ∈ Z;
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(A3) The eigenvalues of the matrix A + p

T
ln(I + B) have negative real parts;

(A4) There exist positive numbers M f and MW such that

sup
t∈R,y∈Rn

‖ f (t, y)‖ ≤ M f and sup
y∈Rn

‖W (y)‖ ≤ MW ;

(A5) There exists a positive number L f such that

‖ f (t, y1) − f (t, y2)‖ ≤ L f ‖y1 − y2‖ ,

for all t ∈ R and y1, y2 ∈ R
n;

(A6) There exists a positive number LW such that

‖W (y1) − W (y2)‖ ≤ LW ‖y1 − y2‖ ,

for all y1, y2 ∈ R
n .

Let us denote by U (t, s) the transition matrix of the linear homogeneous system

u′(t) = Au(t), t �= θk,

Δu|t=θk = Bu(θk).

Under the conditions (A1)−(A3), there exist positive numbers N and ω such that
‖U (t, s)‖ ≤ Ne−ω(t−s) for t ≥ s [14, 44].

The following conditions are also required:

(A7) N

(
L f

ω
+ pLW

1 − e−ωT

)

< 1;
(A8) −ω + NL f + p

T
ln(1 + NLW ) < 0;

(A9) LW
∥
∥(I + B)−1

∥
∥ < 1.

We say that a left-continuous function y(t) : R → R
n is a solution of (5.1.2) if:

(i) It has discontinuities only at the points θk , k ∈ Z, and these discontinuities are
of the first kind; (ii) The derivative y′(t) exists at each point t ∈ R\{θk}, and the
left-sided derivative exists at the points θk , k ∈ Z; (iii) The differential equation is
satisfied by y(t) on R\{θk}, and it holds for the left derivative of y(t) at every point
θk , k ∈ Z; (iv) The jump equation is satisfied by y(t) for every k ∈ Z.

According to the results of [14, 44], for any function ϕ(t) ∈ A , one can confirm
under the conditions (A1)−(A7) that there exists a unique bounded on R solution
φϕ(t) of system (5.1.2) which satisfies the relation

φϕ(t) =
∫ t

−∞
U (t, s)

[

f (s, φϕ(s)) + ϕ(s)
]

ds +
∑

θk<t

U (t, θk)W (φϕ(θk)).
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It can be verified for each ϕ(t) ∈ A that the inequality sup
t∈R

∥
∥φϕ(t)

∥
∥ ≤ K0 holds,

where

K0 = N (M f + H0)

ω
+ pNMW

1 − e−ωT
.

By means of the collection A , let us construct the set

B = {

φϕ(t) | ϕ(t) ∈ A
}

.

For a given function ϕ(t) ∈ A , let us denote by yϕ(t, y0) the solution of (5.1.2)
with yϕ(0, y0) = y0. We say that the collectionB is an attractor if for any ϕ(t) ∈ A
and y0 ∈ R

n , we have
∥
∥yϕ(t, y0) − φϕ(t)

∥
∥ → 0 as t → ∞. The attractiveness

feature of the collection B is mentioned in the next assertion.

Lemma 5.1 If the conditions (A1)−(A8) are valid, then the collection B is an
attractor.

Proof Fix an arbitrary function ϕ(t) ∈ A and y0 ∈ R
n . Taking advantage of the

relations

yϕ(t, y0) = U (t, 0)y0 +
∫ t

0
U (t, s)

[

f (s, yϕ(s, y0)) + ϕ(s)
]

ds

+
∑

0≤θk<t

U (t, θk)W (yϕ(θk, y0))

and

φϕ(t) = U (t, 0)φϕ(0) +
∫ t

0
U (t, s)

[

f (s, φϕ(s)) + ϕ(s)
]

ds +
∑

0≤θk<t

U (t, θk)W (φϕ(θk)),

for t ≥ 0 we obtain the inequality

eωt
∥
∥yϕ(t, y0) − φϕ(t)

∥
∥ ≤ N

∥
∥y0 − φϕ(0)

∥
∥ +

∫ t

0
N L f eωs

∥
∥yϕ(s, y0) − φϕ(s)

∥
∥

+
∑

0≤θk<t

N LW eωθk
∥
∥yϕ(θk, y0) − φϕ(θk)

∥
∥ .

Applying the Gronwall-Bellman Lemma for piecewise continuous functions, one
can verify that

∥
∥yϕ(t, y0) − φϕ(t)

∥
∥ ≤ N (1+N LW )p ∥

∥y0 − φϕ(0)
∥
∥ e[−ω+N L f +(p/T ) ln(1+N LW )]t , t ≥ 0.
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Consequently, in accordance with condition (A8), we have that

∥
∥yϕ(t, y0) − φϕ(t)

∥
∥ → 0

as t → ∞.

In the next section, we will prove that if the collection A is chaotic in the sense
of Li–Yorke, then the same is true for the collection B.

5.3 Chaotic Dynamics

The ingredients of Li–Yorke chaos for system (5.1.2) will be considered in Lem-
mas5.2 and 5.3. The main conclusion of the present chapter will be stated in Theo-
rem5.1.

In the proof of the next assertion, we will denote by i((a, b)) the number of the
terms of the sequence {θk}which belong to the interval (a, b), where a and b are real

numbers such that a < b. Clearly, i((a, b)) ≤ p + p

T
(b − a).

Lemma 5.2 Suppose that the conditions (A1)−(A8) hold. If a couple of func-
tions (ϕ(t), ϕ(t)) ∈ A × A is proximal, then the same is true for the couple
(

φϕ(t), φϕ(t)
) ∈ B × B.

Proof Fix an arbitrary small positive number ε and an arbitrary large positive number

E . Let us denote α = ω − NL f − p

T
ln(1 + NLW ) and set

γ = 1 + N

ω
+ N 2L f

ωα
(1 + NLW )p +

(
N 2LW

ω

) (
pe2αT

eαT − 1

)

(1 + NLW )p.

Since the couple (ϕ(t), ϕ(t)) ∈ A × A is proximal, there exists an interval J =
[σ, σ + E1], where E1 ≥ E , such that ‖ϕ(t) − ϕ(t)‖ < ε/γ for t ∈ J.

For the sake of clarity, we will denote y(t) = φϕ(t) ∈ B and y(t) = φϕ(t) ∈ B.

The functions y(t) and y(t) satisfy the relations

y(t) =
∫ t

−∞
U (t, s) [ f (s, y(s)) + ϕ(s)] ds +

∑

θk<t

U (t, θk)W (y(θk))

and

y(t) =
∫ t

−∞
U (t, s) [ f (s, y(s)) + ϕ(s)] ds +

∑

θk<t

U (t, θk)W (y(θk)),
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respectively. By means of these relations, we obtain that

y(t) − y(t) =
∫ σ

−∞
U (t, s) [ f (s, y(s)) − f (s, y(s)) + ϕ(s) − ϕ(s)] ds

+
∫ t

σ

U (t, s) [ f (s, y(s)) − f (s, y(s)) + ϕ(s) − ϕ(s)] ds

+
∑

θk≤σ

U (t, θk) [W (y(θk)) − W (y(θk))]

+
∑

σ<θk<t

U (t, θk) [W (y(θk)) − W (y(θk))] .

Using the inequalities
∥
∥
∥
∥
∥
∥

∑

θk≤σ

U (t, θk) [W (y(θk)) − W (y(θk))]

∥
∥
∥
∥
∥
∥

≤
∑

θk≤σ

2NMW e−ω(t−θk )

= 2NMW e−ωt
∞
∑

l=0

∑

σ−(l+1)T <θk≤σ−lT

eωθk

≤ 2NMW e−ωt
∞
∑

l=0

peω(σ−lT )

= 2pNMW

1 − e−ωT
e−ω(t−σ)

and
∥
∥
∥
∥

∫ σ

−∞
U (t, s) [ f (s, y(s)) − f (s, y(s)) + ϕ(s) − ϕ(s)] ds

∥
∥
∥
∥

≤ 2N (M f + H0)

ω
e−ω(t−σ),

it can be verified for t ∈ J that

‖y(t) − y(t)‖ ≤
(
2N (M f + H0)

ω
+ 2pNMW

1 − e−ωT

)

e−ω(t−σ) + Nε

γω

(

1 − e−ω(t−σ)
)

+NL f

∫ t

σ

e−ω(t−s) ‖y(s) − y(s)‖ ds + NLW

∑

σ<θk<t

e−ω(t−θk ) ‖y(θk) − y(θk)‖ .

Now, let u(t) = eωt ‖y(t) − y(t)‖ . Under the circumstances we have that

u(t) ≤ c + Nε

γω
eωt + NL f

∫ t

σ

u(s)ds + NLW

∑

σ<θk<t

u(θk), t ∈ J,

where c = eωσ

(
2N (M f + H0)

ω
+ 2pNMW

1 − e−ωT
− Nε

γω

)

.
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Implication of the analogue of Gronwall’s Lemma for piecewise continuous func-
tions leads to the inequality

u(t) ≤ Nε

γω
eωt + c +

∫ t

σ

NL f

(
Nε

γω
eωs + c

)

(1 + NLW )i((s,t))eNL f (t−s)ds

+
∑

σ<θk<t

NLW

(
Nε

γω
eωθk + c

)

(1 + NLW )i((θk ,t))eNL f (t−θk ).

With the aid of the equation

(1 + NLW )i((σ,t))eNL f (t−σ) = 1 +
∫ t

σ

NL f (1 + NLW )i((s,t))eNL f (t−s)ds

+
∑

σ<θk<t

NLW (1 + NLW )i((θk ,t))eNL f (t−θk )

one can attain that

u(t) ≤ Nε

γω
eωt + c(1 + NLW )i((σ,t))eNL f (t−σ)

+ N 2L f ε

γω

∫ t

σ

eωs(1 + NLW )i((s,t))eNL f (t−s)ds

+ N 2LW ε

γω

∑

σ<θk<t

eθk (1 + NLW )i((θk ,t))eNL f (t−θk )

≤ Nε

γω
eωt + c(1 + NLW )pe(ω−α)(t−σ) + N 2L f ε

γωα
(1 + NLW )peωt

(

1 − e−α(t−σ)
)

+ N 2LW ε

γω
(1 + NLW )pe(ω−α)t

∑

σ<θk<t

eαθk .

Let q = q(t) =
⌊

t − σ

T

⌋

, that is, q is the greatest integer which not larger than

t − σ

T
. Under the circumstances we have that

∑

σ<θk<t

eαθk ≤
∑

σ<θk<σ+(q+1)T

eαθk ≤
q

∑

l=0

∑

σ+lT ≤θk<σ+(l+1)T

eαθk <

q
∑

l=0

peα[σ+(l+1)T ]

= pe(σ+T )α e(q+1)αT − 1

eαT − 1
≤ pe(σ+T )α

eαT − 1

(

eα(t−σ+T ) − 1
)

<
pe2αT

eαT − 1
eαt .
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The last inequality implies that

u(t) <
Nε

γω
eωt

(

1 − (1 + NLW )pe−α(t−σ)
)

+ N 2L f ε

γωα
(1 + NLW )peωt

(

1 − e−α(t−σ)
)

+
(

N 2LW ε

γω

) (
pe2αT

eαT − 1

)

(1 + NLW )peωt

+(1 + NLW )p
(
2N (M f + H0)

ω
+ 2pNMW

1 − e−ωT

)

eωt e−α(t−σ),

and multiplying both sides by e−ωt one can obtain the inequality

‖y(t) − y(t)‖ <
Nε

γω

(

1 − (1 + NLW )pe−α(t−σ)
)

+ N 2L f ε

γωα
(1 + NLW )p

(

1 − e−α(t−σ)
)

+
(

N 2LW ε

γω

) (
pe2αT

eαT − 1

)

(1 + NLW )p

+(1 + NLW )p
(
2N (M f + H0)

ω
+ 2pNMW

1 − e−ωT

)

e−α(t−σ)

<
Nε

γω
+ N 2L f ε

γωα
(1 + NLW )p +

(
N 2LW ε

γω

)(
pe2αT

eαT − 1

)

(1 + NLW )p

+(1 + NLW )p
(
2N (M f + H0)

ω
+ 2pNMW

1 − e−ωT

)

e−α(t−σ).

Set β = (1+NLW )p
(
2N (M f + H0)

ω
+ 2pNMW

1 − e−ωT

)

, and suppose that the num-

ber E is sufficiently large such that E ≥ 2

α
ln

(
γβ

ε

)

. In this case, βe−α(t−σ) < ε/γ

for t ∈ [σ + E/2, σ + E1] . Thus, the inequality

‖y(t) − y(t)‖
<

ε

γ

[

1 + N

ω
+ N 2L f

ωα
(1 + NLW )p +

(
N 2LW

ω

)(
pe2αT

eαT − 1

)

(1 + NLW )p
]

= ε

holds for t ∈ [σ + E/2, σ + E1] .The interval J̃ = [σ + E/2, σ + E1] has a length
no less than E/2. Consequently, the couple

(

φϕ(t), φϕ(t)
) ∈ B × B is proximal.

Next, we shall continue with the second ingredient of Li–Yorke chaos in the
following lemma.
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Lemma 5.3 Suppose that the conditions (A1)−(A7), (A9) are fulfilled. If a couple
of functions (ϕ(t), ϕ(t)) ∈ A ×A are frequently (ε0,Δ)-separated for some positive
numbers ε0 and Δ, then the couple

(

φϕ(t), φϕ(t)
) ∈ B ×B are frequently (ε1,Δ)-

separated for some positive numbers ε1 and Δ.

Proof Since the couple of functions (ϕ(t), ϕ(t)) ∈ A × A is frequently (ε0,Δ)

separated for some positive numbers ε0 and Δ, there exists infinitely many disjoint
intervals Ji , i ∈ N, each with a length no less than Δ, such that

‖ϕ(t) − ϕ(t)‖ > ε0

for each t from these intervals. Without loss of generality, suppose that the intervals
Ji , i ∈ N, are all open subsets of R. In that case, one can find a sequence {Δi }
satisfying Δi ≥ Δ, i ∈ N, and a sequence {αi }, αi → ∞ as i → ∞, such that
Ji = (αi , αi + Δi ).

In the proof, we will verify the existence of positive numbers ε1, Δ and infinitely
many disjoint intervals J 1

i , i ∈ N, each with length Δ, such that the inequality
∥
∥φϕ(t) − φϕ(t)

∥
∥ > ε1 holds for each t from these intervals.

Suppose that
ϕ(t) = (ϕ1(t), ϕ2(t), . . . , ϕn(t))

and
ϕ(t) = (

ϕ1(t), ϕ2(t), . . . , ϕn(t)
)

,

where ϕ j and ϕ j , 1 ≤ j ≤ n, are real-valued functions. According to the equiconti-
nuity of the collection A , one can find a positive number τ < Δ, such that for any
t1, t2 ∈ R with |t1 − t2| < τ , the inequality

∣
∣
(

ϕ j (t1) − ϕ j (t1)
) − (

ϕ j (t2) − ϕ j (t2)
)∣
∣ <

ε0

2n
(5.3.4)

holds for all 1 ≤ j ≤ n.

For each i , let ηi = αi + Δi

2
. That is, ηi is the midpoint of the interval Ji .

Moreover, define a sequence {ζi }, i ∈ N, through the equation ζi = ηi − τ

2
.

Fix a natural number i. For each t ∈ Ji , there exists an integer ji = ji (t),
1 ≤ ji ≤ n, such that

∣
∣ϕ ji (t) − ϕ ji (t)

∣
∣ ≥ 1

n
‖ϕ(t) − ϕ(t)‖ .

Otherwise, if there exists t0 ∈ Ji such that for all 1 ≤ j ≤ n the inequality

∣
∣ϕ j (t0) − ϕ j (t0)

∣
∣ <

1

n
‖ϕ(t0) − ϕ(t0)‖
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holds, then we encounter with a contradiction since

‖ϕ(t0) − ϕ(t0)‖ ≤
n

∑

j=1

∣
∣ϕ j (t0) − ϕ j (t0)

∣
∣ < ‖ϕ(t0) − ϕ(t0)‖ .

For this reason, there exists an integer ji = ji (ηi ), 1 ≤ ji ≤ n, such that

∣
∣ϕ ji (ηi ) − ϕ ji (ηi )

∣
∣ ≥ 1

n
‖ϕ(ηi ) − ϕ(ηi )‖ >

ε0

n
. (5.3.5)

On the other hand, making use of the inequality (5.3.4), it is easy to verify for all
t ∈ [ζi , ζi + τ ] that

∣
∣ϕ ji (ηi ) − ϕ ji (ηi )

∣
∣ − ∣

∣ϕ ji (t) − ϕ ji (t)
∣
∣

≤ ∣
∣
(

ϕ ji (t) − ϕ ji (t)
) − (

ϕ ji (ηi ) − ϕ ji (ηi )
)∣
∣

<
ε0

2n
.

Therefore, by virtue of (5.3.5), we obtain the inequality

∣
∣ϕ ji (t) − ϕ ji (t)

∣
∣ >

∣
∣ϕ ji (ηi ) − ϕ ji (ηi )

∣
∣ − ε0

2n
>

ε0

2n
, t ∈ [ζi , ζi + τ ] . (5.3.6)

It is possible to find numbers si
1, si

2, . . . , si
n ∈ [ζi , ζi + τ ] such that

∫ ζi +τ

ζi

(ϕ(s) − ϕ(s)) ds

= τ
(

ϕ1(s
i
1) − ϕ1(s

i
1), ϕ2(s

i
2) − ϕ2(s

i
2), . . . , ϕn(si

n) − ϕn(si
n)

)

.

Hence, the inequality (5.3.6) implies that

∥
∥
∥
∥

∫ ζi +τ

ζi

(ϕ(s) − ϕ(s)) ds

∥
∥
∥
∥

≥ τ

∣
∣
∣ϕ ji (s

i
ji
) − ϕ ji (s

i
ji
)

∣
∣
∣ >

τε0

2n
. (5.3.7)

For the sake of clarity, let us denote y(t) = φϕ(t) and y(t) = φϕ(t). For t ∈
[ζi , ζi + τ ], using the couple of relations

y(t) = y(ζi ) +
∫ t

ζi

[Ay(s) + f (s, y(s)) + ϕ(s)] ds +
∑

ζi ≤θk<t

[By(θk) + W (y(θk))]
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and

y(t) = y(ζi ) +
∫ t

ζi

[Ay(s) + f (s, y(s)) + ϕ(s)] ds +
∑

ζi ≤θk<t

[

B y(θk) + W (y(θk))
]

,

one can verify that

‖y(ζi + τ) − y(ζi + τ)‖ ≥
∥
∥
∥
∥
∥

∫ ζi +τ

ζi

(ϕ(s) − ϕ(s)) ds

∥
∥
∥
∥
∥

− ‖y(ζi ) − y(ζi )‖

−
∫ ζi +τ

ζi

(‖A‖ + L f
) ‖y(s) − y(s)‖ ds −

∑

ζi ≤θk<ζi +τ

(‖B‖ + LW ) ‖y(θk) − y(θk)‖ .

Making use of the last inequality together with (5.3.7), we obtain that

sup
t∈[ζi ,ζi +τ ]

‖y(t) − y(t)‖ >
τε0

2n
− [

1 + τ(‖A‖ + L f )
]

sup
t∈[ζi ,ζi +τ ]

‖y(t) − y(t)‖

− p

T
(T + τ) (‖B‖ + LW ) sup

t∈[ζi ,ζi +τ ]
‖y(t) − y(t)‖ ,

and therefore sup
t∈[ζi ,ζi +τ ]

‖y(t) − y(t)‖ > M0, where

M0 = τε0

2n
[

2 + τ(‖A‖ + L f ) + p

T
(T + τ) (‖B‖ + LW )

] .

Set θ = min1≤k≤p (θk+1 − θk), and define the numbers

ε1 = M0

2
min

{

1 − LW
∥
∥(I + B)−1

∥
∥

∥
∥(I + B)−1

∥
∥

,
1

1 + ‖B‖ + LW

}

and

Δ = min
{

θ,
M0

4
[

(‖A‖ + L f )K0 + H0
]

(2 + ‖B‖ + LW )
,

M0
(

1 − LW
∥
∥(I + B)−1

∥
∥
)

4
[

(‖A‖ + L f )K0 + H0
] [

1 + (1 − LW )
∥
∥(I + B)−1

∥
∥
]

}

.

First, suppose that there exists ξi ∈ [ζi , ζi + τ ] such that

sup
t∈[ζi ,ζi +τ ]

‖y(t) − y(t)‖ = ‖y(ξi ) − y(ξi )‖ .
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Let ζ 1
i =

{

ξi , if ξi ≤ ζi + τ/2
ξi − Δ, if ξi > ζi + τ/2

. Since Δ ≤ θ , there exists at most one

impulsive moment on the interval (ζ 1
i , ζ 1

i + Δ).

We shall start by considering the case ξi > ζi + τ

2
. Assume that there exists an

impulsive moment θ j ∈ (ζ 1
i , ζ 1

i + Δ). Under the circumstances, one can verify for
t ∈ (θ j , ζ

1
i + Δ) that

‖y(t) − y(t)‖ ≥ ‖y(ξi ) − y(ξi )‖ −
∥
∥
∥
∥

∫ t

ξi

A(y(s) − y(s))ds

∥
∥
∥
∥

−
∥
∥
∥
∥

∫ t

ξi

[ f (s, y(s)) − f (s, y(s))] ds

∥
∥
∥
∥

−
∥
∥
∥
∥

∫ t

ξi

[ϕ(s) − ϕ(s)] ds

∥
∥
∥
∥

> M0 − 2Δ
[(‖A‖ + L f

)

K0 + H0
]

>
M0

2
> ε1.

In particular, the inequality
∥
∥y(θ j+) − y(θ j+)

∥
∥ > M0−2Δ

[(‖A‖ + L f
)

K0 + H0
]

is valid. Taking advantage of the relations y(θ j+) = (I + B)y(θ j ) + W (y(θ j )) and
y(θ j+) = (I + B)y(θ j ) + W

(

y(θ j )
)

, we obtain that

∥
∥y(θ j ) − y(θ j )

∥
∥ ≥

∥
∥y(θ j+) − y(θ j+)

∥
∥

1 + ‖B‖ + LW
>

M0 − 2Δ
[(‖A‖ + L f

)

K0 + H0
]

1 + ‖B‖ + LW
.

The last inequality implies for t ∈ (ζ 1
i , θ j ] that

‖y(t) − y(t)‖ ≥ ∥
∥y(θ j ) − y(θ j )

∥
∥ −

∥
∥
∥
∥
∥

∫ t

θ j

A(y(s) − y(s))ds

∥
∥
∥
∥
∥

−
∥
∥
∥
∥
∥

∫ t

θ j

[ f (s, y(s)) − f (s, y(s))] ds

∥
∥
∥
∥
∥

−
∥
∥
∥
∥
∥

∫ t

θ j

[ϕ(s) − ϕ(s)] ds

∥
∥
∥
∥
∥

>
M0 − 2Δ

[(‖A‖ + L f
)

K0 + H0
]

1 + ‖B‖ + LW
− 2Δ

[(‖A‖ + L f
)

K0 + H0
]

= 1

1 + ‖B‖ + LW

[

M0 − 2Δ(2 + ‖B‖ + LW )
((‖A‖ + L f

)

K0 + H0
)]

≥ M0

2 (1 + ‖B‖ + LW )

≥ ε1.

On the other hand, if none of the impulsive moments belong to (ζ 1
i , ζ 1

i +Δ), then for

each t from this interval we have that ‖y(t) − y(t)‖ >
M0

2
. Therefore, in the case
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of ξi > ζi + τ

2
, the inequality ‖y(t) − y(t)‖ > ε1 holds for all t ∈ (ζ 1

i , ζ 1
i + Δ),

regardless of the existence of an impulsive moment in this interval.

Next, we continue with the case ξi ≤ ζi + τ

2
. If there exists an impulsive moment

θ j ∈ (ζ 1
i , ζ 1

i + Δ), then it is easy to show for t ∈ (ζ 1
i , θ j ] that

‖y(t) − y(t)‖ > M0 − 2Δ
[(‖A‖ + L f

)

K0 + H0
]

> ε1.

Since
∥
∥y(θ j ) − y(θ j )

∥
∥ > M0 − 2Δ

[(‖A‖ + L f
)

K0 + H0
]

, the condition (A9)
implies that

∥
∥y(θ j+) − y(θ j+)

∥
∥ ≥ ∥

∥(I + B)(y(θ j ) − y(θ j ))
∥
∥ − LW

∥
∥y(θ j ) − y(θ j )

∥
∥

≥
∥
∥y(θ j ) − y(θ j )

∥
∥

∥
∥(I + B)−1

∥
∥

− LW
∥
∥y(θ j ) − y(θ j )

∥
∥

>

(

1 − LW
∥
∥(I + B)−1

∥
∥

∥
∥(I + B)−1

∥
∥

)

[

M0 − 2Δ
((‖A‖ + L f

)

K0 + H0
)]

.

Making use of the last inequality, we attain for all t ∈ (θ j , ζ
1
i + Δ) that

‖y(t) − y(t)‖ ≥ ∥
∥y(θ j+) − y(θ j+)

∥
∥ − 2Δ

[

(‖A‖ + L f )K0 + H0
]

>

(

1 − LW
∥
∥(I + B)−1

∥
∥

∥
∥(I + B)−1

∥
∥

)

× [

M0 − 2Δ
((‖A‖ + L f

)

K0 + H0
)] − 2Δ

[

(‖A‖ + L f )K0 + H0
]

≥ M0

2

(

1 − LW
∥
∥(I + B)−1

∥
∥

∥
∥(I + B)−1

∥
∥

)

.

Therefore, for all t ∈ (ζ 1
i , ζ 1

i + Δ) it is clear that ‖y(t) − y(t)‖ > ε1. Besides, the
same inequality holds even if the interval (ζ 1

i , ζ 1
i +Δ) does not contain an impulsive

moment.
Now, suppose that there exists an impulsive moment θl ∈ [ζi , ζi + τ ] such that

sup
t∈[ζi ,ζi +τ ]

‖y(t) − y(t)‖ = ‖y(θl+) − y(θl+)‖ .

Let us define ζ 1
i =

{

θl , if θl ≤ ζi + τ/2
θl − Δ, if θl > ζi + τ/2

. In the case that θl > ζi + τ

2
, taking

advantage of the inequality

‖y(θl) − y(θl)‖ ≥ ‖y(θl+) − y(θl+)‖
1 + ‖B‖ + LW

>
M0

1 + ‖B‖ + LW
,
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one can verify that

‖y(t) − y(t)‖ ≥ ‖y(θl) − y(θl)‖ − 2Δ
[

(‖A‖ + L f )K0 + H0
]

>
M0

2(1 + ‖B‖ + LW )

≥ ε1,

for all t ∈ (ζ 1
i , ζ 1

i + Δ). In a similar way, if θl ≤ ζi + τ

2
, then we have for t ∈

(ζ 1
i , ζ 1

i + Δ) that

‖y(t) − y(t)‖ ≥ ‖y(θl+) − y(θl+)‖ − 2Δ
[

(‖A‖ + L f )K0 + H0
]

>
M0

2
> ε1.

Consequently, on each of the intervals J 1
i = (ζ 1

i , ζ 1
i + Δ), i ∈ N, the inequality

‖y(t) − y(t)‖ > ε1 holds. Therefore, the couple of functions
(

φϕ(t), φϕ(t)
) ∈ B ×

B is frequently (ε1,Δ)-separated.

The main theorem of the present chapter is as follows.

Theorem 5.1 Suppose that the conditions (A1)−(A9) are valid. If A is a Li–Yorke
chaotic set which possesses an mT -periodic function for each natural number m,
then B is also a Li–Yorke chaotic set.

Proof By means of conditions (A1)−(A7), one can confirm that if ϕ(t) ∈ A is
mT -periodic for some natural number m, then φϕ(t) ∈ B is a periodic function with
the same period, and vice versa.

Suppose that the set CA is a scrambled set inside A , and define the set

CB = {

φϕ(t)(t) | ϕ(t) ∈ CA
}

.

It is easy to verify that there is a one-to-one correspondence between the sets CA
and CB . Since the set CA is uncountable, the same is true for CB . Moreover, no
periodic functions exist inside CB , since no such functions take place inside the set
CA .

Because each pair of functions that belong to CA ×CA is proximal, Lemma5.2
implies the same feature for each pair inside CB × CB. In connection with
Lemma5.3, there exists positive numbers ε1 and Δ such that each couple of func-
tions from CB ×CB are frequently (ε1,Δ)-separated. Hence, CB is a scrambled set
insideB. If we denote byPA andPB the sets of periodic functions insideA and
B, respectively, then a similar discussion holds for each pair insideCB ×PB , since
the same is true for any pair from the set CA × PA . Consequently, the collection
B is Li–Yorke chaotic.

In the next section, we will apply our results to an impulsive Duffing oscillator.
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5.4 An Example

This section is devoted to an illustrative example. In Theorem5.1 we have shown that
if the perturbation term ϕ(t) in system (5.1.2) belongs to a collection which is chaotic
in the sense of Li–Yorke, then system (5.1.2) exhibits chaotic motions. Therefore, to
actualize our results, we need a source of Li–Yorke chaotic functions. To construct
such a collection, we will consider a Duffing oscillator which is forced with a relay
function [45–49]. The switchingmoments of the relay function are generated through
the logistic map

Fμ(s) = μs(1 − s), (5.4.8)

which is chaotic in the sense of Li–Yorke for the parameter μ between 3.84 and
4 [2]. We note that the interval [0, 1] is invariant under the iterations of the map
Fμ(s) if 0 < μ ≤ 4 [50]. An impulsive Duffing oscillator will be used for the
main illustration. Moreover, in the example, a procedure to control the chaos of the
impulsive systemwill be presented. In our evaluations, we will make use of the usual
Euclidean norm [21].

Example 5.1 Consider, the forced Duffing oscillator

z′′(t) + 0.6z′(t) + 5z(t) − 0.02z3(t) = ν(t, t0, μ), (5.4.9)

where t ∈ R, t0 belongs to the interval [0, 1] and the relay function ν(t, t0) is
defined as

ν(t, t0, μ) =
{

0.6, if ζ2 j (t0, μ) < t ≤ ζ2 j+1(t0, μ), j ∈ Z,

2.5, if ζ2 j−1(t0, μ) < t ≤ ζ2 j (t0, μ), j ∈ Z,
. (5.4.10)

In Eq. (5.4.10), the switching moments ζ j (t0, μ), j ∈ Z, are defined through the
equation ζ j (t0, μ) = j + κ j (t0, μ), where the sequence

{

κ j (t0, μ)
}

, κ0(t0, μ) = t0,
is generated by the logistic map (5.4.8), that is, κ j+1(t0, μ) = Fμ(κ j (t0, μ)). More
information about the dynamics of relay systems can be found in [45–49].

By means of the variables z1 = z and z2 = z′, Eq. (5.4.9) can be reduced to the
system

z′
1(t) = z2(t),

z′
2(t) = −5z1(t) − 0.6z2(t) + 0.02z31(t) + ν(t, t0, μ).

(5.4.11)

According to the results of [45], system (5.4.11) with the parameter value μ = 3.9 is
Li–Yorke chaotic. Moreover, for each natural number m, the system admits different
unstable periodic solutions with periods 2m.

In system (5.4.11) we set μ = 3.9, and represent in Fig. 5.1 the z1 and z2 coordi-
nates of the solution of the system with z1(t0) = 0.492 and z2(t0) = −0.143, where
t0 = 0.385. It is seen in Fig. 5.1 that system (5.4.11) possesses chaotic motions.
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Fig. 5.1 The chaotic behavior of system (5.4.11) with μ = 3.9. The initial data z1(t0) = 0.492,
z2(t0) = −0.143, where t0 = 0.385, is used in the simulation.

The function h(z1, z2) = (z1 + 0.5z31, z2) satisfies the inequality (5.2.3) with
L1 = 1/

√
2 and L2 = 1.96

√
2 on the compact region in which the chaotic attractor

of system (5.4.11) with μ = 3.9 takes place. Therefore, the collection consisting of
functions of the form (z1(t) + 0.5z31(t), z2(t)), where (z1(t), z2(t)) is a bounded on
R solution of system (5.4.11), is Li–Yorke chaotic.

Next, we take into account the impulsive Duffing oscillator

x ′′(t) + 2x ′(t) + 3x(t) + 0.025x3(t) = 0.2 cos(π t), t �= θk,

Δx |t=θk = −3

4
x(θk),

Δx ′|t=θk = −3

4
x ′(θk) + 0.05(x ′(θk))

2,

(5.4.12)

where t ∈ R and θk = 2k, k ∈ Z. Clearly, θk+p = θk + T , where p = 1 and T = 2.
Defining the new variables x1 = x and x2 = x ′, one can reduce (5.4.12) to the

system

x ′
1(t) = x2(t),

x ′
2(t) = −3x1(t) − 2x2(t) − 0.025x31 (t) + 0.2 cos(π t), t �= θk,

Δx1|t=θk = −3

4
x1(θk),

Δx2|t=θk = −3

4
x2(θk) + 0.05(x2(θk))

2.

(5.4.13)

Let us demonstrate numerically that the system (5.4.13) possesses an asymptoti-
cally stable periodic solution. Figure5.2 shows the graphs of the x1 and x2 coordinates
of system (5.4.13). The initial data x1(1) = −0.019, x2(1) = −0.056 is used in the
simulation. The existence of an asymptotically stable periodic solution is observable
in the figure, and therefore, one can conclude that system (5.4.13) is not chaotic.
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Fig. 5.2 The graphs of the x1 and x2 coordinates of system (5.4.13).

We perturb (5.4.13) by the solutions of (5.4.11) to set up the system

y′
1(t) = y2(t) + z1(t) + 0.5z31(t),

y′
2(t) = −3y1(t) − 2y2(t) − 0.025y31(t) + 0.2 cos(π t) + z2(t), t �= θk,

Δy1|t=θk = −3

4
y1(θk),

Δy2|t=θk = −3

4
y2(θk) + 0.05(y2(θk))

2.

(5.4.14)

System (5.4.14) is in the form of (5.1.2), where

A =
(

0 1

−3 −2

)

, B =
(−3/4 0

0 −3/4

)

,

f (t, y1, y2) = (0,−0.025y31 + 0.2 cos(π t)) and W (y1, y2) = (0, 0.05y22 ). The

matrices A and B commute, and thematrix A+ p

T
ln(I + B) =

(− ln 2 1

−3 −2 − ln 2

)

has eigenvalues λ1,2 = −1 − ln 2 ± i
√
2.

Let us denote by U (t, s) the transition matrix of the linear homogeneous system

u′
1(t) = u2(t),

u′
2(t) = −3u1(t) − 2u2(t), t �= θk,

Δu1|t=θk = −3

4
u1(θk),

Δu2|t=θk = −3

4
u2(θk).

(5.4.15)
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Fig. 5.3 The chaotic behavior of the perturbed impulsive Duffing oscillator (5.4.14). The initial
data y1(t0) = −0.254, y2(t0) = 0.297 is used, where t0 = 0.385. The irregular behavior observed
in the graphs support our theoretical results.

One can verify that

U (t, s) = e−(t−s) P

(

cos(
√
2(t − s)) − sin(

√
2(t − s))

sin(
√
2(t − s)) cos(

√
2(t − s))

)

P−1(I+B)i([s,t)), t > s,

where i([s, t)) is the number of the terms of the sequence {θk} that belong to the

interval [s, t) and P =
(

0 1
√
2 −1

)

. The inequality ‖U (t, s)‖ ≤ Ne−ω(t−s) holds

for t ≥ s, where ω = 1 and N = 2.415.
The conditions (A4)−(A9) are valid for system (5.4.14) with M f = 0.2183,

MW = 0.0845, L f = 0.0608, and LW = 0.13. Thus, according to Theorem5.1,
system (5.4.14) is Li–Yorke chaotic.

Making use of the initial data y1(t0) = −0.254 and y2(t0) = 0.297, where
t0 = 0.385, we illustrate in Fig. 5.3 the y1 and y2 coordinates of the solution of
system (5.4.14) with the solution (z1(t), z2(t)) of system (5.4.11) which is illustrated
in Fig. 5.1. On the other hand, Fig. 5.4 depicts the trajectory of the same solution on
the y1 − y2 plane. Even if the system (5.4.13) is not chaotic, the simulation results
shown in Figs. 5.3 and 5.4 support our theoretical results such that a chaotic attractor
takes place in the dynamics of system (5.4.14).

Now, we shall present a method to control the chaos of system (5.4.14). This
procedure depends on the idea that to control the chaos of system (5.4.14) it is
sufficient to stabilize an unstable periodic solution of system (5.4.11). For this reason,
we will apply the OGY control method for the logistic map [29, 30], since the map
gives rise to the chaotic behavior in system (5.4.11). Let us explain themethod briefly.

Suppose that the parameter μ in the logistic map (5.4.8) is allowed to vary in
the range [3.9 − ε, 3.9 + ε], where ε is a given small positive number. Consider, an
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Fig. 5.4 The chaotic
trajectory of system (5.4.14)
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arbitrary solution
{

κ j
}

, κ0 ∈ [0, 1], of the map and denote by κ(i), i = 1, 2, . . . , p0,
the target unstable p0-periodic orbit to be stabilized. In the OGY control method
[29], at each iteration step j after the control mechanism is switched on, we consider
the logistic map with the parameter value μ = μ̄ j , where

μ̄ j = 3.9

(

1 + (2κ(i) − 1)(κ j − κ(i))

κ(i)(1 − κ(i))

)

, (5.4.16)

provided that the number on the right-hand side of the formula (5.4.16) belongs
to the interval [3.9 − ε, 3.9 + ε]. In other words, formula (5.4.16) is valid if the
trajectory

{

κ j
}

is sufficiently close to the target periodic orbit. Otherwise, we take
μ̄ j = 3.9, so that the system evolves at its original parameter value, and wait until
the trajectory

{

κ j
}

enters in a sufficiently small neighborhood of the periodic orbit

κ(i), i = 1, 2, . . . , p0, such that the inequality −ε ≤ 3.9
(2κ(i) − 1)(κ j − κ(i))

κ(i)(1 − κ(i))
≤ ε

holds. If this is the case, the control of chaos is not achieved immediately after
switching on the control mechanism. Instead, there is a transition time before the
desired periodic orbit is stabilized. The transition time increases if the number ε

decreases [28].
To apply the OGYmethod for controlling the chaos of system (5.4.11), we replace

the parameterμ in system (5.4.11) with μ̄ j , which is introduced by formula (5.4.16),
and set up the system

z′
1(t) = z2(t),

z′
2(t) = −5z1(t) − 0.6z2(t) + 0.02z31(t) + ν(t, t0, μ̄ j ).

(5.4.17)

System (5.4.17) is the control system conjugate to (5.4.11).
We consider the solution of system (5.4.17) with z1(t0) = 0.492 and z2(t0) =

−0.143, where t0 = 0.385, and apply the OGY control method around the period−1
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Fig. 5.5 Chaos control of system (5.4.11) by means of the corresponding control system (5.4.17).
In the simulation, the value ε = 0.05 is used. The control is switched on at t = ζ20 and switched
off at t = ζ40. It is seen in the figure that an unstable 2-periodic solution of system (5.4.11) is
stabilized.

orbit, that is the fixed point 2.9/3.9, of the logistic map F3.9(s). Figure5.5 depicts
the simulation results. One can observe in the figure that a 2-periodic solution of
system (5.4.17) is stabilized. The value ε = 0.05 is used. The control mechanism is
switched on at t = ζ20 and switched off at t = ζ40. The control becomes dominant
approximately at t = 37 and its effect lasts approximately until t = 93, after which
the instability becomes dominant and irregular behavior develops again.

In the next simulation, we demonstrate that the chaos of system (5.4.14) can
be controlled by stabilizing an unstable periodic solution of system (5.4.11). We
consider system (5.4.14) with the solution (z1(t), z2(t)) of system (5.4.17) which is
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Fig. 5.6 Chaos control of the perturbed impulsive Duffing oscillator (5.4.14). To control the chaos
of this system, the OGY control method is applied to system (5.4.11), which gives rise to the
presence of chaos in (5.4.14).
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illustrated in Fig. 5.5, and simulate in Fig. 5.6 the solution (y1(t), y2(t)) of system
(5.4.14) with y1(t0) = −0.254 and y2(t0) = 0.297, where t0 = 0.385. It is seen in
Fig. 5.6 that a 2-periodic solution of the system is stabilized. The moments where
the control is switched on and switched off and the period of time in which the
stabilization becomes dominant are the same with the results presented in Fig. 5.5.
The simulations seen in Fig. 5.6 confirm that to control the chaos of system (5.4.14)
it is sufficient to stabilize an unstable periodic solution of system (5.4.11).

5.5 Notes

In this chapter, we present a technique to obtain chaotic impulsive systems with the
aid of chaotic perturbations. Chaotic collections of piecewise continuous functions
are introduced based on the Li–Yorke definition of chaos. Our results are useful
for generating multidimensional discontinuous chaos, especially if one requires a
rigorous proof for the phenomenon.

We applied our method to an impulsive Duffing oscillator to show the feasibility.
According to their instability, the existing periodic solutions of system (5.1.2) are
invisible in the simulations. A periodic solution of the perturbed impulsive Duffing
oscillator is illustrated by means of the OGY control method [30] applied to the
logistic map. Other control procedures, such as the Pyragas method [31], can also
be used for this purpose. The results of the present chapter are convenient for con-
struction and stabilization of chaotic mechanical systems and electrical circuits with
impulses. Moreover, our approach can be applied to other types of chaos such as the
one analyzed through period-doubling cascade [51]. The results of this chapter were
published in the paper [52].
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Chapter 6
Chaos Generation in
Continuous/Discrete-Time Models

6.1 Devaney’s Chaos of a Relay System

We address the differential equation with a pulse function, whose moments of dis-
continuity depend on the initial moment. The existence of a chaotic attractor and
the complex behavior of all solutions are investigated. Appropriate simulations are
presented.

6.1.1 Introduction and Preliminaries

The irregular behavior of dynamical systems [1–7] has been discovered and investi-
gated intensively during the last decades. One of the ways to look for complex behav-
ior on the basis of the qualitative theory of differential equations is the approach based
on the topological ingredients, which were summarized in [8]. We investigate the
non-autonomous differential equation with a pulse function in the right-hand side,
using the topological ingredients for guidance. The moments where this function
changes its value are dependent on the initial moment. Another issue of relevance
to the section is nonlinear dynamics of electric circuits, of mechanical models [9],
and of control systems [10] which convert a discrete data to a continuous output. We
believe that our results may be applied to models with a pulsating control, which
depends on the initial data. Extremely close to our results in this sense is the investi-
gation of relay systems. That is, linear systems which can be analyzed by means of
existing linear theory, and where at certain instants the relay releases discontinuous
actions in one direction or another. The discontinuities are the results of idealizations
used in the representation of nonlinear characteristics. Moreover, one can see that
the set of solutions of the initial value problem is not linear, either. Consequently,
the system we consider concerns the nonlinear discontinuous dynamics [9–13].

© Higher Education Press, Beijing and Springer-Verlag Berlin Heidelberg 2016
M. Akhmet and M.O. Fen, Replication of Chaos in Neural Networks,
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In this section, we provide the definitions of chaos and of chaotic attractors of
non-autonomous differential equations, and define conditions of their existence.

We begin with the description of the symbolic dynamics [14, 15], which is in the
basis of an initial value problem with a pulse function. Consider the sequence space
[8, 14]

Σ2 = {s = (s0s1s2 . . .) : s j = 0 or 1}

with the metric

d[s, s̄] =
∞
∑

i=0

|si − s̄i |
2i

,

where s̄ = (s̄0s̄1 . . .) ∈ Σ2, and the shift map σ : Σ2 → Σ2, such that σ(s) =
(s1s2 . . .). The semidynamics (Σ2, σ ) is the symbolic dynamics [15].

The map is continuous, card Pern(σ ) = 2n, Per(σ ) is dense in Σ2, and there
exists a dense orbit in Σ2.

Dynamics of the logistic map h(x, μ) ≡ μx(1 − x), μ > 0, is another central
instrument. The dynamics has a positively invariant subset Λ ⊆ I = [0, 1], such
thatΛ = I, ifμ ≤ 4. Ifμ > 4, thenΛ is a Cantor set, and is chaotic onΛ [14]. That
is, h has sensitive dependence on the initial conditions; periodic points are dense in
Λ, and there exists a solution with every natural period p; and h is topologically
transitive, that is there exists a trajectory of h, dense in Λ.

If μ > 4, we denote

I0 =
[

0,
1

2
−

√

1

4
− 1

μ

]

, A0 =
(

1

2
−

√

1

4
− 1

μ
,
1

2
+

√

1

4
− 1

μ

)

, I1 =
[

1

2
+

√

1

4
− 1

μ
, 1

]

,

so that I = I0 ∪ A0 ∪ I1, Λ ⊂ I0 ∪ I1, h(I0) = h(I1) = I, h(A0) ∩ I = ∅.

Consider the itinerary of x, S(x) = (s0s1 . . .), where s j = 0, if h j (x) ∈ I0, and
s j = 1, if h j (x) ∈ I1. The function S(x) is a homeomorphism between Λ and Σ2,

and S ◦ h = σ ◦ S. That is, h and σ are topologically conjugate.
For every t0 ∈ Λ, one can construct a sequence κ(t0) of real numbers κi , i ∈ Z,

in the following way. If i ≥ 0, then κi+1 = h(κi ) and κ0 = t0. Let us show, how
the sequence is defined for negative i. Denote s0 = S(t0), s0 = (s00s01 . . .). Consider
elements s = (0s00s10 . . .), s = (1s00s10 . . .) of Σ2, such that σ(s) = σ(s) = s0 and
t = S−1(s), t = S−1(s). The homeomorphism implies that h(t) = h(t) = t0. Set
h−1(t0) may consist of not more than two elements t, t ∈ Λ. Each of these two
values can be chosen as κ−1(t0). Obviously, one can continue the process to −∞,

choosing always one element from the set h−1.We have finalized the construction of
the sequence, and, moreover, it is proved that κ(t0) ⊂ Λ. Fix one of the sequences
and introduce a sequence ζ(t0) = {ζi }, ζi = i + κi , i ∈ Z. The sequence ζ(t0) has
the periodicity property if there exists p ∈ N such that ζi+p = ζi + p, for all i ∈ Z.

If we denote by Π the set of all such sequences {ζi }, i ∈ Z, then a multivalued
functional w : I → Π is defined such that each of the sequences ζ(t0) is one of
values of w(t0).
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Let J ⊆ R be an interval. Introduce the following distance ‖ζ(t0) − ζ(t1)‖J =
sup

ζi (t0),ζi (t1)∈J
|ζi (t0) − ζi (t1)|. Let us formulate two important, for our discussion,

consequences of the topological conjugacy [14] of the symbolical dynamics and the
dynamics generated by the logistic map, in the following assertion.

Lemma 6.1 If μ > 4, then

(a) for each ζ(t0) ∈ Π, arbitrarily small ε > 0, and arbitrarily large positive
number E, there exists a sequence ζ(t1) ∈ Π with the periodicity property such
that |ζ(t0) − ζ(t1)|J < ε, where J = (0, E) ;

(b) there exists a sequence ζ(t∗) ∈ Π such that for each t0 ∈ Λ, for arbitrarily
small ε > 0, and arbitrarily large positive number E, there exists an integer m
such that |ζ(t0) − ζ(t∗, m)|J < ε, where J = (0, E).

Let Z, N, and R be the sets of all integers, natural and real numbers, respectively.
Denote by || · || the Euclidean norm in R

n , n ∈ N.

For every t0 ∈ Λ one can construct a sequence κ(t0) of real numbers κi , i ∈ Z,

such that κi+1 = h(κi , μ) and κ0 = t0 if i ≥ 0.
Fix a nonzero vector m0 ∈ R

n . For each ζ(t0), t0 ∈ Λ, we introduce a pulse
function

f (t, t0) =
{

m0 if ζ2i (t0) < t ≤ ζ2i+1(t0), i ∈ Z,

0 if ζ2i−1(t0) < t ≤ ζ2i (t0), i ∈ Z.

It is worth mentioning that we can consider other types of pulse functions to obtain
similar results, for instance, one may discuss,

F(t, t0) =
{

m0 if ζ2i (t0) < t ≤ ζ2i+1(t0), i ∈ Z,

m1 if ζ2i−1(t0) < t ≤ ζ2i (t0), i ∈ Z,

m0, m1 ∈ R
n .

The main object of our investigation is the following special initial value problem

z′(t) = Az(t) + f (t, t0),

z(t0) = z0, (t0, z0) ∈ Λ × R
n, (6.1.1)

where z ∈ R
n, t ∈ R. Following [10], we call (6.1.1) the pulse system.

The following assumption is required throughout the section: A is ann×n constant
real-valued matrix such that �λ j < 0, j = 1, 2, . . . , m,�λ j > 0, j = m + 1, m +
2, . . . , n, where m is a natural number, 0 ≤ m ≤ n, and �λ j denotes the real part
of the eigenvalue λ j of the matrix A. That is the matrix A is hyperbolic. Denote
α = max j �λ j , j = 1, 2, . . . , m, and β = min j �λ j , j = m + 1, m + 2, . . . , n.

We shall use the following definitions of solutions of (6.1.1). They coincide with
the definitions for differential equations with piecewise constant arguments of gen-
eralized type [16], see also [17].



186 6 Chaos Generation in Continuous/Discrete-Time Models

Definition 6.1 A function z(t), z(t0) = z0, is a solution of (6.1.1) on R if: (i) z(t)
is continuous on R; (ii) the derivative z′(t) exists at each point t ∈ R with the
possible exception of the points ζi (t0), i ∈ Z, where one-sided derivatives exist; (iii)
Equation (6.1.1) is satisfied on each interval (ζi (t0), ζi+1(t0)], i ∈ Z.

Definition 6.2 A solution z(t), z(t0) = z0, of (6.1.1) on [t0,∞) is a continuous
function such that (i) the derivative z′(t) exists at each point t ∈ [t0,∞), with the
possible exception of the points ζ j (t0), j ≥ 0, where left-sided derivatives exist; (ii)
Equation (6.1.1) is satisfied by z(t) on each interval (ζ j (t0), ζ j+1(t0)], j ≥ 0.

It can be easily verified that problem (6.1.1) has a unique solution in the sense of
Definition6.1, as well as Definition6.2, for each t0 ∈ Λ, z0 ∈ R

n,.
In what follows we denote by z(t, ξ, v), ξ ∈ R, v ∈ R

n, a solution of (6.1.1) with
t0 = ξ, z0 = v.

There exists a constant matrix B such that B−1AB = diag {C−, C+}, where
C− and C+ are m × m and (n − m) × (n − m) matrices, respectively, C+ has
eigenvalues with positive real part, and C− has eigenvalues with negative real part.
If we apply the linear transformation z = Bx to system (6.1.1), then one can see
that the pulse function f will be transformed to a pulse function. Hence, without any
loss of generality, we may assume that matrix A itself has the box-diagonal form
so that A = diag {A−, A+}, where all eigenvalues of A+ have positive real part,
and all eigenvalues of A− have negative real part. Consequently, there exist positive
numbers N and ω such that

‖eA−t‖ ≤ Ne−ωt , t ≥ 0, ‖eA+t‖ ≤ Neωt , t ≤ 0. (6.1.2)

Let us denote Z(t, s) = diag {Z−(t, s), Z+(t, s)}, Z−(t, s) = eA−(t−s),
Z+(t, s) = eA+(t−s), t, s ∈ R, where Z(t, s) is the transition matrix of the linear
homogeneous systemof differential equations associatedwith (6.1.1). It can be easily
checked (for a detailed explanation see [16]) that the solution z(t) = z(t, t0, z0), t0 ∈
Λ, z0 ∈ R

n, of (6.1.1) has the form

z(t) = Z(t, t0)z0 +
∫ t

t0
Z(t, s) f (s, t0) ds, (6.1.3)

and is defined on R.

Moreover, using the standard technique, one can verify that for every t0 ∈ Λ there
exists a unique vector v0 ∈ R

n such that z(t, t0, v0) is a bounded on R solution of
(6.1.1). Denote z(t, t0) = z(t, t0, v0), and z(t, t0) = (u(t, t0), v(t, t0)), u ∈ R

m, v ∈
R

n−m . One can see that the bounded solution is equal to

u(t, t0) =
∫ t

−∞
Z−(t, s) f−(s, t0)ds,

v(t, t0) = −
∫ ∞

t
Z+(t, s) f+(s, t0)ds, (6.1.4)
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if we denote f (t, t0) = ( f−(t, t0), f+(t, t0)). It is easy to show that ‖z(t, t0)‖ <
2N‖m0‖

ω
, t ∈ R. Denote CB = {z(t, t0) : t0 ∈ Λ}.

Thus, we have that all bounded on R solutions of (6.1.1) are placed in the tube
with the radius 2N‖m0‖

ω
. If κ(t0), t0 ∈ Λ, is a p-periodic sequence, then z(t, t0) is

periodic with period p. Denote the periodic solution by φ(t, t0).

Remark 6.1 Since sequences κ(t) do not intersect for different t ∈ Λ, one can
see that there exists a p-periodic solution for each p ∈ N. Consequently, there are
infinitely many periodic solutions of (6.1.1).

One can easily verify (see also [16]) that a solution z(t) of (6.1.1) is bounded on
[0,∞) if and only if z(t) = (u(t), v(t)) = z(t, t0, z0), z0 = (u0, v0),

u(t) = Z−(t, t0)u0 +
∫ t

t0
Z−(t, s) f−(s, t0) ds,

v(t) = −
∫ ∞

t
Z+(t, s) f+(s, t0)ds. (6.1.5)

We denote the solutions defined by (6.1.5) as z(t, t0, u0). Then C = {z(t, t0, u0) :
t0 ∈ Λ, u0 ∈ R

m} is the set of all solutions of (6.1.1) bounded on [0,∞). One can
confirm that

‖z(t, t0, u0) − z(t, t0)‖ < Ne−ω(t−t0)(‖u0‖ + ‖m0‖/ω), t ≥ t0. (6.1.6)

That is, every solution z(t, t0, u0) ∈ C \CB is attracted by a bounded solution
z(t, t0) ∈ CB. These solutions have a common set of discontinuity points ζ(t0).
Thus, CB is an attractor with the basin C . Obviously, CB ⊂ C . We intend to
address the topological ingredients for CB and C .

The section is organized as follows. In Sect. 6.1.2 we consider the main subjects:
the ingredients of the chaos, the existence of a chaotic attractor, the period-doubling
cascade, and an appropriate example. The conclusion is formulated at the end of the
section.

6.1.2 The Chaos

Everywhere in this subsection we assume that μ > 4, with the exception of the
part addressing the period-doubling cascade. At first we are going to describe the
ingredients for solutions of the initial value problem, which do not necessarily belong
to the attractor, but they are attracted by the bounded solutions from this set. Then the
chaos on the attractor will be defined. Finally, we will consider the period-doubling
cascade for the problem, and an illustrative example will be constructed.

Definition 6.3 We say that (6.1.1) is sensitive on Λ if there exists positive number
ε0 such that for every number t0 ∈ Λ and for each δ > 0 one can find a number
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t1 ∈ Λ, |t0 − t1| < δ, such that for each pair of solutions z(t, t1, u1)), z(t, t0, u0),

u1, u0 ∈ R
n, there exists a moment ξ > max(t0, t1),which satisfies ||z(ξ, t1, u1))−

z(ξ, t0, u0)|| > ε0, ||z(ξ, t1, u1))‖, ‖z(ξ, t0, u0)|| <
2N‖m0‖

ω
+ 1.

Definition 6.4 The set of all periodic solutions is called dense in C if for every
solution z(t) = z(t, t1, u0) ∈ C , t1 ∈ Λ, and each ε > 0, E > 0, there exists a
periodic solution φ(t, t0), t0 ∈ Λ, and an interval J ⊂ [t1,∞), with length E, such
that ‖φ(t, t0) − z(t, t1, z0)‖ < ε, t ∈ J.

Definition 6.5 A solution z(t, t∗, u0) ∈ C is called dense in C if for every solution
z(t, t1, z1) ∈ C and each ε > 0, E > 0, there exists a number ξ > 0 and an interval
J ⊂ [max{t1, t∗},∞) with length E, such that ‖z(t, t1, z1) − z(t + ξ, t∗, z0)‖ < ε,

for all t ∈ J.

Theorem 6.1 Problem(6.1.1) is sensitive on Λ.

Proof Fix t0 ∈ Λ, u0, u1 ∈ R
n, and solutions of (6.1.1), z(t) = z(t, t0, u0), z1(t) =

z(t, t1, u1). Let S(t0) = s0 = (s00 , s01 , . . .). Take a number t1 ∈ Λ such that S(t1) =
s1 = (s00 , s01 , . . . , s0k−1, s1k , s0k+1, s0k+2, . . .), s1k �= s0k , for some k > 0. We have that

d[σ i s0, σ i s1] =
{ 1

2k−i , if 0 ≤ i ≤ k,

0, if i > k.

Assume that k is sufficiently large so that by (6.1.6) ||z(t, t1, u1))‖, ‖z(t, t0, u0)||<
2N‖m0‖

ω
+ 1, if t > min(ζk(t0), ζk(t1)) − 1.

Since S is a homeomorphism and the set Σ2 is compact there exists a positive
number μ0 < 1 so that |κk(t0) − κk(t1)| > μ0. Without loss of generality, assume
that κk(t0) < κk(t1).

Denote m = max
μ0≤u≤1

‖eAu‖, M = min
μ0≤u≤1

‖∫ u
0 e

As
m0ds‖.

We shall show that the constant ε0 and the moment ξ of Definition6.3 can be
taken equal to ε0 = M

2(1+m)
, and ξ and ζk(t0) or ζk(t1)], relatively.

If ‖z(ζk(t0)) − z1(ζk(t0))‖ ≤ ε0, then we have that for t ∈ [ζk(t0), ζk(t1)],

z(t) = eA(t−ζk (t0))z((ζk(t0)) +
∫ t

ζk (t0)
eA(t−s) f (s, t0)ds,

z1(t) = eA(t−ζk (t0))z1((ζk(t0)),

and

‖z(ζk(t1)) − z1(ζk(t1))‖ ≥ M − mε0 > ε0.

The theorem is proved.
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Theorem 6.2 The set of all periodic solutions φ(t, t0), t0 ∈ Λ, of (6.1.1) is dense
in C .

Proof Let us fix t1 ∈ Λ and ε, E > 0, and denote z(t) = (u, v) = z(t, t1, u0). Fix a

positive number δ sufficiently small so that 2N‖m0‖δ e2ω

1 − e−2ω < ε/2.

By Lemma6.1 (a) for δ and an arbitrarily large number T̃ , there exists a periodic
sequence ζ(t0) ∈ Π such that ‖ζ(t1)−ζ(t0)‖Q < δ,where Q = (t1, t1+ T̃ +E).We
shall find numbers δ and T̃ such that‖z(t)−φ(t, t0)‖ < ε on J = (t1+T̃ , t1+T̃ +E).

Denote M1 = 1+ 2N‖m0‖
ω

. By (6.1.6) there exists a number T̄ = T̄ (z0, 1) > t1 such
that ‖z(t)‖ < M1, if t ≥ T̄ . Denote φ(t) = (φ−, φ+) = φ(t, t0), the periodic
solution. Assuming, without loss of generality, that ζi (t0) ≤ ζi (t1), for all i ∈ Z,
we have

‖z(t) − φ(t)‖ = ‖u(t) − φ−(t)‖ + ‖v(t) − φ+(t)‖ ≤ ‖u(T̄ ) − φ−(T̄ )‖‖Z−(t, T̄ )‖ +
t∫

T̄

‖Z−(t, s)‖‖ f−(s, t0) − f−(s, t1)‖ds +
T̄∫

−∞
‖Z−(t, s)‖‖ f−(s, t0)‖ds ≤

2Ne−ω(t−T̄ )M1 +
∑

T̄ ≤ζ j (t1)<t

⎡

⎢
⎣

ζ2 j (t1))∫

ζ2 j (t0))

2Ne−ω(t−s)‖m0‖ds+

ζ2 j+1(t1))∫

ζ2 j+1(t0))

2Ne−ω(t−s)‖m0‖ds

⎤

⎥
⎦ +

T̄∫

−∞
e−ω(t−s)‖m0‖ds ≤

N
[

2M1e
−ω(t−T̄ ) + 4δ

e2ω‖m0‖
1 − e−2ω + ‖m0‖e−ω(t−T̄ )1/ω

]

.

Now, if T̃ ≥ T̄ is sufficiently large so that

2NM1e
−ω(T̃ −T̄ ) + N‖m0‖e−ω(T̃ −T̄ ) 1

ω
<

ε

2
,

then ‖z(t) − φ(t, t0)‖ < ε for all t ∈ J. The theorem is proved.

Theorem 6.3 There exists a solution of (6.1.1) dense in C .

Proof Fix positive E, ε. By Lemma6.1 (b), there exists t∗ ∈ Λ such that ζ(t∗)
is dense in Π. There exists a unique bounded on R solution z∗(t) = (u∗, v∗) =
z(t, t∗) = z(t, t∗, z0). Let us prove that z∗(t) is the dense solution.

Consider an arbitrary solution z(t) = z(t, t1, u1), t1 ∈ Λ, of (6.1.1). There exists
T̄ , such that ‖z(t)‖ < M1, if t > T̄ . Consider an interval J1 = (0, T̄ + E1), where
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E1 is an arbitrarily large positive number. By Lemma6.1 (b), there exists a natural
m such that

‖ζ(t1) − ζ(t∗, m)‖J1 < δ < ε, (6.1.7)

where δ will be defined more precisely below. We have that

u∗(t + m) =
∫ t+m

−∞
Z−(t + m, s) f−(s, t∗)ds,

v∗(t + m) = −
∫ ∞

t+m
Z+(t + m, s) f+(s, t∗)ds, (6.1.8)

and

u(t) = Z−(t, T̄ )u(T̄ ) +
∫ t

T̄
Z−(t, s) f−(s, t1) ds,

v(t) = −
∫ ∞

t
Z+(t, s) f+(s, t1)ds. (6.1.9)

Now, using the last two formulas and (6.1.7), and emulating the proof of Theo-
rem6.2, we shall complete the proof. We have for t ≥ T̄ that

‖u∗(t + m) − u(t)‖ = ‖
∫ t+m

−∞
Z−(t + m, s) f−(s, t∗)ds − Z−(t, T̄ )u(T̄ )−

∫ t

T̄
Z+(t, s) f+(s, t1)ds‖ = ‖Z−(t, T̄ )u(T̄ )‖+‖

∫ T̄ +m

−∞
Z−(t+m, s) f−(s, t∗)ds‖+

‖
∫ t+m

T̄ +m
Z−(t +m, s) f−(s, t∗)ds −

∫ t

T̄
Z−(t, s) f−(s, t1) ds‖ = ‖Z−(t, T̄ )u(T̄ )‖+

‖
∫ T̄

−∞
Z−(t + m, s + m) f−(s + m, t∗)ds‖ +

∫ t

T̄
[‖Z−(t + m, s + m) − Z−(t, s)‖

×‖ f−(s + m, t∗)‖ + |Z−(t, s)‖‖ f−(s + m, t∗) − f−(s, t1)‖] ds ≤

Ne−ω(t−T̄ )[M1 + ‖m0‖/ω] + δN‖m0‖/ω.

Similarly,

‖v∗(t+m)−v(t)‖ = ‖
∫ ∞

t+m
Z+(t+m, s) f+(s, t∗)ds−

∫ ∞

t
Z+(t, s) f+(s, t1)ds‖ ≤
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∫ ∞
t

[‖Z+(t +m, s +m)− Z+(t, s)‖‖ f+(s, t∗)‖+‖Z+(t, s)‖‖ f+(s, t∗)− f+(s, t1)‖]ds ≤

δN‖m0‖/ω.

Fix T̃ > T̄ and δ sufficiently large and small, respectively, so that

Ne−ω(T̃ −T̄ )[M1 + ‖m0‖/ω] + 2δN‖m0‖/ω < ε.

Then the last two inequalities imply that ‖z(t) − z∗(t + m)‖ < ε, on the interval
J = [T̃ , T̃ + E], if E1 = T̃ + E − T̄ .

The theorem is proved.

6.1.3 The Chaos on the Attractor

This subsection is devoted to the discussion of the chaotic ingredients of bounded
solutions from CB. The first of these definitions is significantly different from its
counterpart for C , as it requires closeness of the initial values.

Definition 6.6 We say that (6.1.1) is sensitive on CB if there exist positive real
numbers ε0, ε1 such that for each t0 ∈ Λ, and for every δ > 0 one can find t1 ∈
Λ, z1 ∈ R

n, ‖z1 − z0‖ + |t0 − t1| < δ, and an interval Q from [0,∞) with length
no less than ε1 such that ||z(t, t0) − z(t, t1)|| ≥ ε0, t ∈ Q, and there are no points of
discontinuity of z(t, t0), z(t, t1) on Q.

Definition 6.7 The set of all periodic solutions is called dense in CB if for every
solution z(t) = z(t, t1), t1 ∈ Λ, and each ε > 0, E > 0, there exists a periodic
solution φ(t, t0), t0 ∈ Λ, and an interval J ⊂ [t1,∞), with length E, such that
‖φ(t, t0) − z(t, t1, z0)‖ < ε, t ∈ J.

Definition 6.8 A solution z(t, t∗) ∈ CB is called dense inCB if for every solution
z(t, t1) ∈ CB, and each ε > 0, E > 0, there exists a number ξ > 0 and an interval
J ⊂ [max{t1, t∗},∞) with length E such that ||z(t, t1) − z(t + ξ, t∗)|| < ε, for all
t ∈ J.

We call the attractor chaotic if: (i) problem (6.1.1) is sensitive in CB; (ii) there
are infinitely many periodic solutions φ(t, t0), t0 ∈ Λ, and they are dense in CB;
(iii) there exists a solution z(t, t0), t0 ∈ Λ, which is dense in CB.

Theorem 6.4 The manifold CB is a chaotic attractor.

Proof Let us start with sensitivity in CB. Fix a solution z(t, t0) = (u, v) =
z(t, t0, z0), z0 = (u0, v0), in CB.

Ifwe take into account the proof ofTheorem6.1 applied to z(t, t0) ∈ CB,weneed
only to show that for an arbitrarily small δ > 0 there exist t1, z1,which are considered
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in the proof, such that |t0 − t1|, ‖z0 − z1‖ < δ/2, and z1 = (u1, v1) = z(t1, t1). In
other words,

u1 =
t1∫

−∞
Z−(t1, s) f−(s, t1)ds, v1 = −

∞∫

t1

Z+(t1, s) f+(s, t1)ds.

Let (. . . s1−ks1−(k−1) . . . s10s11 . . .) be a bi-infinite sequence such that s1i = s0i , i <

n, s1n �= s0n , where n is the number discussed in the proof of Theorem6.1. Denote
s1 = (s10s11 . . .). Fix a positive δ1 < δ/2, which will be defined more precisely
below, and choose a number n sufficiently large so that ‖ζ(t0) − ζ(t1)‖[0,n/2] < δ1.

Obviously, |ζ−k(t0) − ζ−k(t1)| < δ1, k ≥ 1.
Now, assuming without any loss of generality that t0 < t1, we have that

‖u0 − u1‖ = ‖
∫ t0

−∞
Z−(t0, s) f−(s, t0)ds −

∫ t1

−∞
Z−(t1, s) f−(s, t1)ds‖ ≤

‖
∫ t1

t0
Z+(t1, s) f+(s, t1)ds‖ +

∫ t0

−∞
[‖Z+(t0, s) − Z+(t1, s)‖‖ f+(s, t0)‖+

‖Z+(t1, s)‖‖ f+(s, t1) − f+(s, t0)‖]ds ≤ ‖m0‖
{

N

ω
(κ(δ1) + δ1) + δ1m−

}

,

where κ is a continuous function, such that ‖I − eA−u‖ ≤ κ(δ1) if 0 ≤ |u| < δ1,

m− = max
0≤|u|≤1

‖eA−u‖.
Similarly, we have that

‖v0 − v1‖ = ‖
∞∫

t0

Z+(t0, s) f+(s, t0)ds −
∞∫

t1

Z+(t1, s) f+(s, t1)ds‖ ≤

‖
t1∫

t0

Z+(t1, s) f+(s, t0)ds‖ +
n/2∫

t0

[‖Z+(t0, s) − Z+(t1, s)‖‖ f+(s, t0)‖ +

‖Z+(t1, s)‖‖ f+(s, t1) − f+(s, t0)‖]ds +
∞∫

n/2

[‖Z+(t0, s) − Z+(t1, s)‖‖ f+(s, t0)‖ +

‖Z+(t1, s)‖‖ f+(s, t1) − f+(s, t0)‖]ds ≤
‖m0‖

{
N

ω
eω[κ1(δ1) + δ1 + eω(t0− n

2 ))(1 − δ1) + δ1m+
}

,
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where κ1 is a continuous function, such that ‖I − eA+u‖ ≤ κ1(δ1) if 0 ≤ |u| < δ1,

m+ = max
0≤|u|≤1

‖eA+u‖.
If we suppose that n and δ1 are sufficiently large and small, respectively, so that

‖m0‖
{

N

ω
[eω(κ1(δ1) + δ1 + eω(t0− n

2 ))(1 − δ1)) + κ(δ1) + δ1] + δ1(m
+ + m−)

}

<
δ

2
,

then from the last two inequalities ‖z1 − z0‖ < δ/2. Sensitivity is proved.
The existence of infinitelymany periodic solutions is considered in the Sect. 6.1.1.

The density of periodic solutions in CB follows immediately from Theorem6.2.
The existence of a dense solution in CB can be proved in exactly the same way as
Theorem6.3.

The theorem is proved.

6.1.4 The Period-Doubling Cascade and Intermittency:
An Example

The logistic map has been used to shape the chaos in the multidimensional system.
Consequently, one can expect to observe the period-doubling cascade and intermit-
tency.

Let us consider μ > 0, μ being the parameter for the logistic map h(t, μ) ≡
μt (1 − t). It is known [5], that there exists an infinite sequence 3 < μ1 < μ2 <

· · · < μk · · · < 3.8284 · · · such that h(t, μi ), i ≥ 1, has an asymptotically stable
prime period-2i point t∗i with a region of attraction (t∗i − δi , t∗i + δi ). And beyond
the value 3.8284 . . . , there are cycles with every integer period [3].

One can easily see that there is a 2i -periodic solution φ(t, t∗i , μi ) of (6.1.1) for
each i, and for different i these periodic solutions do not coincide. The periodic

solutions are in the bounded region ‖x‖ <
2N‖m0‖

ω
of the space R

n . The chaotic

attractor is also placed in the region. Finally, the cascade generates infinitely many
periodic solutions.

The numerical simulation of the chaos is not an easy task since even the verification
of sensitivity requires two close values of the initial moment in the Cantor set Λ,

which cannot be found easily. Hammel et al. [18] have given a computer-assisted
proof that an approximate trajectory of the logistic map can be shadowed by a true
trajectory for a long time. This result and the continuous dependence of the solutions
on the sequence of discontinuity points make possible the following appropriate
simulations.

To illustrate the chaotic nature of the discussed system, let us show that the chaotic
attractor and intermittency can be observed in the next example.

Example 6.1 Consider the sequence ζi = i + κi , κi = 3.8282κi−1(1 − κi−1), κ0 =
t0, t0 ∈ [0, 1], i ≥ 0. The coefficient’s value of 3.8282 is such that the logistic map



194 6 Chaos Generation in Continuous/Discrete-Time Models

admits intermittency [19]. Let the following pendulum equation be given

x ′′ + 2x ′ + 1.5x = f2(t, t0), (6.1.10)

where f2(t, t0) is a scalar pulse function with m0 = 1. Using new variables x1 =
x, x2 = x ′, one can reduce (6.1.10) to the system

x ′
1 = x2,

x ′
2 = −1.5x1 − 2x2 + f2(t, t0). (6.1.11)

One can easily verify that both eigenvalues of thematrix of coefficients have negative
real parts. Fix t0 = 0.5 and take a solution (x1(t), x2(t)) of the last system with the
initial condition x1(t0) = 0.02, x2(t0) = −0.025. The result of simulation can
be seen in Fig. 6.1. It demonstrates the intermittency phenomenon for the pulse
mechanical model.

Next, consider Eq. (6.1.10) with μ = 4, and the solution (x1(t), x2(t)) that has
been chosen for the intermittency observation. In Fig. 6.2, the chaotic attractor is
shown using the points (x1(n), x2(n)), n = 1, 2, 3, . . . , 75,000, in the x1, x2-plane.

(a)

(b)

(c)

Fig. 6.1 Simulation results. a The graph of the x1 coordinate. b The graph of the x2 coordinate. c
The trajectory of the solution (x1(t), x2(t))
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Fig. 6.2 The chaotic attractor by a stroboscopic sequence (x1(n), x2(n)), 1 ≤ n ≤ 75,000, is
observable

6.2 Li–Yorke Chaos in Systems with Impacts

The analogue of Li–Yorke chaos [3] for a special initial value problem of a non-
autonomous impulsive differential equation is developed in this section. It is proved
that Li–Yorke sensitivity [20] is also proper for the problem.

6.2.1 Introduction and Preliminaries

The first mathematical definition of chaos was introduced by Li and Yorke [3], and
it became one of the most discussed topics for the last several decades. Li and Yorke
proved that if a map on an interval has a point of period three, then it has points of
all periods. Moreover, there exists an uncountable scrambled subset of the interval.
While the existence of periodic solutions, as it was discovered later, is a particular
case of Sharkovsy’s theorem [21], the scrambled set remains the feature, which
distinguishes Li–Yorke chaos from other definitions [22]. Another fact which makes
the chaos attractive for applications is that it can be developed for a multidimensional
case [23–26].

The following special initial value problem for the impulsive differential equation
is the main subject of this section

z′(t) = Az(t) + f (z),
Δz|t=ζi (t0) = Bz(ζi (t0)) + W (z(ζi (t0))),
z(t0) = z0, (t0, z0) ∈ Λ × R

n,

(6.2.12)
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where z ∈ R
n, t ∈ R+ = [0,∞), i ≥ 0. Cantor set Λ ⊂ I = [0, 1], and the

strictly increasing and unbounded sequence of impulsivemoments ζi (t0)will be fully
described later. We shall need the following assumptions throughout the section:

(C1) A, B are n × n constant real-valued matrices, det(I + B) �= 0, whereI is
n × n identity matrix;

(C2) the functions f : R
n → R

n, W : R
n → R

n, satisfy

|| f (x1) − f (x2)|| + ‖W (x1) − W (x2‖ ≤ L||x1 − x2||, (6.2.13)

for all x1, x2 ∈ R
n, where L > 0 is a constant;

(C3)

Bx + W (x) �= 0,∀x ∈ R
n; (6.2.14)

(C4) the functions f and W are uniformly bounded so that

sup
x∈Rn

|| f (x)|| + sup
x∈Rn

||W (x)|| = M0 < ∞. (6.2.15)

(C5) the matrices A and B commute, and the real parts of all eigenvalues of the
matrix A + ln(I + B) are negative.

A left continuous function z(t) : [t0,∞) → R
n belongs to the set of functions

PC 1(t0), where t0 ∈ Λ is fixed, if:

(i) it has discontinuities only at points ζi (t0), i ≥ 0, and these discontinuities are
of the first kind;

(ii) the derivative z′(t) exists at each point t ∈ [t0,∞)\{ζi (t0)}, and the left-sided
derivative exists at points ζi (t0), i > 0.

A solution z(t) of (6.2.12) on [t0,∞) is a function z(t) ∈ PC 1(t0) such that:

(1) the differential equation is satisfied by z(t) on [t0,∞)\{ζi (t0)}, and it holds for
the left derivative of z(t) at every point ζi (t0), i > 0.

(2) the jumps equation is satisfied by z(t) for every i ≥ 0.

In what follows we denote by z(t, ξ, v), ξ ∈ R+, v ∈ R
n, a solution of (6.2.12)

with t0 = ξ, z0 = v.
Conditions (C1), (C2) imply that for every (t0, z0) ∈ Λ×R

n there exists a unique
solution z(t, t0, z0) of (6.2.12) fromPC 1(t0) [27].

We attempt to shape the Li–Yorke chaos for system (6.2.12) by implementing a
special initial value problem, where themoments of impulsive action are functionally
dependent on the initial moment, and using the results of the theory of impulsive
differential equations [27–32].

The description of themain subject of this section should beginwith the discussion
of the moments of impulses, as their generation is most important for the emergence
of chaos.
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Let us recall the definition of the chaos for maps. Consider an infinite nonvoid
compact metric space (X, ρ) with metric ρ and T : X → X, a continuous map.

Definition 6.9 The map T : X → X is Li–Yorke chaotic, if:

(i) it has points with all periods p ∈ N;
(ii) there exists an uncountable subset X ′ ⊆ X, the scrambled set, that does not

contain periodic points and

lim sup
i→∞

ρ(T i (x), T i (x̃)) > 0, (6.2.16)

lim inf
i→∞ ρ(T i (x), T i (x̃)) = 0, (6.2.17)

for each pair x, x̃ ∈ X ′, x �= x̃;
If x, x ′ ∈ X ′, x �= x ′, we call (x, x ′) a Li–Yorke pair.

One of the most effective ways to discover a chaos is to establish the topological
conjugacy with the symbolic dynamics [8]. Consider the sequence space [14]

Σ2 = {s = (s0s1s2 . . .) : s j = 0 or 1}

with the metric

d[s, t] =
∞
∑

i=0

|si − s̃i |
2i

,

where s̃ = (s̃0s̃1 . . .) ∈ Σ2, and the shift map σ : Σ2 → Σ2, such that
σ(s) = (s1s2 . . .). The pair (Σ2, σ ) is the symbolic dynamics. The map is con-
tinuous, card Pern(σ ) = 2n, Per(σ ) is dense in Σ2, and there exists a dense orbit
in Σ2.

Let h : Λ → Λ, where Λ is a subset of the interval I, be a map topologically
conjugate to σ. That is, there exists a homeomorphism S : Λ → Σ2 such that
S ◦ h = σ ◦ S.

For every t0 ∈ Λ one can construct a sequence κ(t0) of real numbers κi , i ≥ 0,
such that κi+1 = h(κi ) and κ0 = t0. Sequence ζ(t0) = {ζi (t0)} in (6.2.12) is defined
as ζi (t0) = i + κi (t0), i ≥ 0.

By applying the conjugacy of h and σ, we shall verify that map h has useful
chaotic properties.

It is known [15] that σ has orbits periodic with every p ∈ N. Now, consider an
element ωs = (s001s0s10011s0s1s2000111 . . .) ∈ Σ2, s = (s0s1 . . .) ∈ Σ2, and
define a set Σ ′

2 = {ωs : s ∈ Σ2}. One can easily check that Σ ′
2 is a scrambled set,

and dynamics (Σ2, σ ) is Li–Yorke chaotic.
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The proofs of the following lemmas are standard [14, 15].

Lemma 6.2 If (s, s′) is a Li–Yorke pair fromΣ ′
2, then there exist sequences ki , mi →

∞, as i → ∞, such that ski + j = s′
ki + j , j = 0, 1, . . . , mi − 1 and ski +mi �= s′

ki +mi
.

Lemma 6.3 If (s, s′) is a Li–Yorke pair from Σ ′
2, then there exists a sequence li →

∞, as i → ∞, such that d[σ li s, σ li s′] ≥ 1.

Now, the fact that S is a homeomorphism and compactness of Λ and Σ2 imply
easily that the following two assertions are valid.

Lemma 6.4 If t, t ′ ∈ Λ′, then there exist sequences ki , li → ∞, as i → ∞, such
that max

j=0,1,...,li
|hki + j (t) − hki + j (t ′)| → 0 as i → ∞.

Lemma 6.5 For every pair t, t ′ ∈ Λ′, t �= t ′, there exists a sequence mi → ∞, as
i → ∞, such that |hmi (t) − hmi (t ′)| ≥ δ.

Lemmas6.4 and 6.5 imply that h is a Li–Yorke chaotic,Λ′ = S−1(Σ ′
2) is a

scrambled subset of Λ. The dynamics (Λ′, h) is Li–Yorke sensitive [20].
Let us fix t0 ∈ Λ and denote by Z(t, s) = Z(t, s, t0) the transition matrix [27] of

the linear homogeneous system

z′(t) = Az(t), t �= ζi

Δz|t=ζi = Bz(ζi ),
(6.2.18)

associated with (6.2.12).
Condition (C5) in conjunction with Theorem34, [27], implies that there exist two

positive numbers N and ω such that for all t0 ∈ I,

||Z(t, s, t0)|| ≤ Ne−ω(t−s), t ≥ s. (6.2.19)

It is important that constants N and ω are common for all t0 ∈ Λ.

Denote m = max|u|≤1
‖eAu‖, m = min|u|≤1

‖eAu‖. Fix a number q ≥ 3, such that

1

q
<

2m

3m
.Condition (C3) implies that η = min‖x‖≤M1

(Bx +W (x)) > 0. The following

assumptions are also useful.

(C6) NL

[
2

ω
+ eω

1 − e−ω

]

< 1.

(C7) −ω + NL + ln(1 + NL) < 0.

(C8) L <

[
2m

3m
− 1

q

]

mη

2M1(m + m)
.

Theorem 6.5 If conditions (C1)–(C6) are valid, and sequence κi (t0), t0 ∈ Λ, is
periodic with a period p ∈ N, then:
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1. Equation (6.2.12) admits a unique p-periodic solution φ(t, t0);
2. all the periodic solutions are different.

The verification of part 1. of this theorem replicates the proof of Theorem58 [27].
It is easy to see that (C3) implies that there exist infinitely many different periodic
solutions, since the sequences of discontinuity moments of solutions with different
periods do not intersect. Thus, part 2. is also proved.

The impulsive differential equations of type (6.2.12) play an increasingly impor-
tant role in the investigation of the cardiovascular system, neural information process-
ing in the brain, information communication, and population dynamics [33–40]. It
is notable that the moments of time, where the impulses are performed, are chosen
dependent on the initial data. This type of problems may occur if one considers
an impulsively controlled process [27]. In [41], the author considered a system of
impulsive differential equations with moments of impulses generated by a sensitive
map, which depends on a parameter. Sensitivity was considered as a chaotic prop-
erty. In the present section, we show that solutions of (6.2.12) have Li–Yorke chaos
properties. They are similar to those formulated for maps [3, 14] with additional
peculiarities caused by discontinuities occurring at different moments for different
solutions.

6.2.2 Main Results

Let us fix an interval J ⊂ [0,∞), a positive number ε, and t0, t1 ∈ I. We introduce
the distance ‖ζ(t0) − ζ(t1)‖J = sup

ζi (t0),ζi (t1)∈J
|ζi (t0) − ζi (t1)|, and we shall say that

a function ξ(t) ∈ PC 1(t0) is ε-equivalent to a function ψ(t) ∈ PC 1(t1) on J
and write ξ(t)(ε, J )ψ(t), if ξ and ψ are defined on J, ‖ζ(t0) − ζ(t1)‖J < ε and
‖ξ(t) − ψ(t)‖ < ε for all t from J such that t /∈ ∪ζi (t0),ζi (t1)∈J ̂[ζi (t0), ζi (t1)]. Here
[̂a, b], a, b ∈ R, stands for an oriented interval, that is [̂a, b] = [a, b] if a ≤ b, and
[̂a, b] = [b, a], otherwise.

The ε-equivalence of two piecewise continuous functions with a small ε means
that they have close discontinuity points, and the values of the functions are close
at points that do not lie on intervals between the neighboring discontinuity points of
these functions. The concept was developed in [27–29, 31, 42].

The following definitions were taken from [3, 14, 20] and adapted for (6.2.12).

Definition 6.10 A pair of solutions of (6.2.12) z(t)=z(t, t0, z0), z1(t)=z(t, t1, z1),
t0, t1 ∈ Λ, is proximal if for each ε > 0, E > 0 there exists an interval J ⊂
[max(t0, t1),∞), with a length not less than E, such that z1(t)(ε, J )z(t).

Definition 6.11 The solutions of (6.2.12) z(t) = z(t, t0, z0), z1(t) = z(t, t1, z1), t0,
t1 ∈ Λ, are frequently (ε0, ε1)-separated if there exist positive numbers ε0, ε1 and
infinitelymany disjoint intervals of length not less than ε1, such that ||z1(t)−z(t)|| >
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ε0 for each t from these intervals, and none of these intervals contain a discontinuity
point of z1(t) or z(t).

Definition 6.12 A couple z(t) = z(t, t0, z0), z1(t) = z(t, t1, z1), t0, t1 ∈ Λ, of
solutions of (6.2.12) is a Li–Yorke pair if they are proximal and (ε0, ε1)-separated
for some positive ε0, ε1.

Definition 6.13 Problem(6.2.12) is Li–Yorke chaotic on Λ′ if:

1. there exist solutions φ(t, t0) with all periods p ∈ N;
2. each couple of solutions z(t) = z(t, t0, z0), z1(t) = z(t, t1, z1), with t0, t1 ∈

Λ′, t0 �= t1, is Li–Yorke pair;

Definition 6.14 Problem(6.2.12) is Li–Yorke sensitive on Λ′ if there exist posi-
tive numbers ε0, ε1, such that each couple of solutions z(t) = z(t, t0, z0), z1(t) =
z(t, t1, z1), with t0, t1 ∈ Λ′, t0 �= t1, is frequently (ε0, ε1)-separated.

Lemma 6.6 Assume that conditions (C1)–(C7) are fulfilled. Then each couple of
solutions of (6.2.12), z(t) = z(t, t0, z0), z1(t) = z(t, t1, z1), with t0, t1 ∈ Λ′, t0 �=
t1, is proximal.

Proof Fix numbers t0, t1 ∈ Λ′, t0 �= t1, solutions z(t) = z(t, t0, z0), z1(t) =
z(t, t1, z1), z0, z1 ∈ R

n, of (6.2.12), and E, ε > 0.
Using the integral representation formula [27]

z(t) = Z(t, t0)z0 +
∫ t

t0
Z(t, s) f (z(s))ds +

∑

t0≤ζi <t

Z(t, ζi )W (z(ζi )), (6.2.20)

one can find that

||z(t)|| ≤ Ne−ω(t−t0)||z0|| +
∫ t

t0
Ne−ω(t−s)M0 ds+

∑

ζi <t

Ne−ω(t−ζi )M0 ≤ Ne−ω(t−t0)||z0|| + NM0

(
1

ω
+ eω

1 − e−ω

)

.

Denote T̄ (t0, z0) := t0, if N‖z0‖ ≤ 1, and T̄ (t0, z0) := t0 − 1

ω
ln

1

N‖z0‖ , if

N‖z0‖ > 1.

From the last inequality, it follows that ‖z(t)‖ ≤ M1 = 1+NM0

( 1

ω
+ eω

1 − e−ω

)

for t ≥ T̄ (t0, z0).
Similarly, one can find a number T (t1, z1) such that ‖z1(t)‖ ≤ M1 follows from

the inequality t ≥ T̄ (t1, z1). Thus, there exists a number T̄ such that both solu-
tions z, z1 are in the tube with the radius M1 if t ≥ T̄ . By Lemma6.4 there exist
arbitrarily large numbers T̃ > T̄ , E > 0, such that ‖ζ(t1) − ζ(t0)‖Q < δ, where
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Q = (T̃ , T̃ + E). We shall find a sufficiently large E so that solutions z(t), z1(t) are
ε-equivalent on J = (T̃ + 1

2 E, T̃ + E).

Denote Z1(t, s) = Z(t, s, t0) and Z2(t, s) = Z(t, s, t1), t ≥ s. We have that

z(t) = Z1(t, T̃ )z(T̃ ) +
t∫

T̃

Z1(t, s) f (z(s))ds +
∑

T̃ ≤ζi <t

Z1(t, ζi (t0))W (z(ζi (t0))),

z1(t) = Z2(t, T̃ )z1(T̃ )+
t∫

T̃

Z2(t, s) f (z1(s))ds+
∑

T̃ ≤ζi <t

Z2(t, ζi (t1))W (z1(ζi (t1))).

It is difficult to evaluate the difference between z(t) and z1(t) using the last two
expressions since the moments of discontinuity of z(t) and z1(t) are distinct. For this
reason, we assume that ζ j (t0) ≤ ζ j (t1) for a fixed integer j. The opposite case can
be discussed similarly. We introduce the following map

W 1
j (z) = (I + B)

[

(eA(ζ j (t1)−ζ j (t0)) − I )z +
∫ ζ j (t1)

ζ j (t0)
eA(ζ j (t1)−s) f (z(s))ds

]

+

W

(

(I + B)

[

eA(ζ j (t1)−ζ j (t0))z +
∫ ζ j (t1)

ζ j (t0)
eA(ζ j (t1)−s) f (z(s))ds

])

−

∫ ζ j (t1)

ζ j (t0)
eA(ζi (t1)−s) f (z̄(s))ds − W (z),

where z(t), z̄(t) are solutions of

z′(t) = Az(t), (6.2.21)

such that z(ζ j (t0)) = z and z̄(ζ j (t1)) = z(ζ j (t1)+), where “+” indicates the right-
side limit at moment ζ j (t1). Consider the following systems

v′(t) = Av(t) + f (v),

Δv|t=ζi (t0) = Bv(ζi (t0)) + W (v(ζi (t0))) + W 1
i (v(ζi (t0))), (6.2.22)

and

z′(t) = Az(t) + f (z),

Δ|t=ζi (t1) = Bz(ζi (t1)) + W (z(ζi (t1))). (6.2.23)



202 6 Chaos Generation in Continuous/Discrete-Time Models

One can easily see that M2 = sup
‖z‖≤M1,i∈Z

‖W 1
i (z)‖ < ∞, and respective solutions of

systems (6.2.22) and (6.2.23) with the same initial data coincide in the intersection of
their domains only if t /∈ ̂[ζi (t0), ζi (t1)], i ∈ Z. For details [28–30] can be referred.

So, if v(t), v(T̃ ) = z1(T̃ ), is the solution of (6.2.22), then v(t) = z1(t) for all
t /∈ ̂[ζi (t0), ζi (t1)], i ∈ Z.

We have that

v(t) = Z1(t, T̃ )v(T̃ ) +
t∫

T̃

Z1(t, s) f (v(s))ds+

∑

T̃ ≤ζi <t

Z1(t, ζi (t0))[W (v(ζi (t0)) + W1(v(ζi (t0))].

Consequently,

‖z(t) − v(t)‖ ≤ ‖z(T̃ ) − v(T̃ )‖‖Z1(t, T̃ )‖ +
∫ t

T̃
‖Z1(t, s)‖L‖z(s) − v(s)‖ds+

∑

T̃ ≤ζ j (t0)<t

‖Z1(t, ζ j (t0))‖L‖z(ζ j (t0)) − v(ζ j (t0))‖+

∑

T̃ ≤ζ j (t0)<t

‖Z1(t, ζ j (t0))‖‖W1(v(ζ j (t0))‖ ≤

2M1N + M2
eω

1 − e−ω
+

∫ t

T̃
Ne−ω(t−s)L‖z(s) − v(s)‖ds+

∑

T̃ ≤ζ j <t

Ne−ω(t−ζ j (t0))L‖z(ζ j (t0)) − v(ζ j (t0))‖.

Now, applying the analogue of Gronwall–Bellman Lemma [27] for discontinuous
functions, we find that

‖z(t) − v(t)‖ ≤
(

2M1N + M2
eω

1 − e−ω

)

e(−ω+NL)(t−T̃ )
∏

T̃ ≤ζ j <t

(1 + NL) ≤
(

2M1N + M2
eω

1 − e−ω

)

e(−ω+NL+ln(1+NL))(t−T̃ ). (6.2.24)
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Last inequality implies that ‖z(t)− v(t)‖ < ε if t > T̃ + 1

2
E, t /∈ ̂[ζi (t0), ζi (t1)],

i ∈ Z, where

E >

2 ln
( ε

2M1N + M2eω(1 − e−ω)−1

)

−ω + NL + ln(1 + NL)

(we may assume that ε < 2M1N , without loss of generality). That is why, if J =
(T̃ + 1

2 E, T̃ + E), then z(t)(ε, J )φ(t). The lemma is proved.

Lemma 6.7 Assume that conditions (C1)–(C8) are fulfilled. Then (6.2.12) is Li–
Yorke sensitive on Λ′.

Proof Consider a pair of solutions z(t) = z(t, t0, z0), z1(t) = z(t, t1, z1), with
t0, t1 ∈ Λ′, t0 �= t1. Assume that ‖z0‖, ‖z1‖ > M1. The discussion of other cases is
easier.

Denote s0 = S(t0) = (s00 , s01 , . . .) and s1 = S(t1) = (s10 , s11 . . .). It is obvious
that s0 �= s1. By Lemmas6.2 and 6.3, there exists a sequence of integers mi → ∞
as i → ∞ such that d[σmi − j s0, σmi − j s1] ≥ 1

2 j , 0 ≤ j ≤ mi/2.
Similarly to the proof of the last lemma, one can choose mi > 2 sufficiently large

so that ‖z(t)‖ < M1, ‖z1(t)‖ < M1, if t >
mi + 1

2
. Let us fix this mi .

Since S is a homeomorphism and set Σ2 is compact, for a given j, 0 ≤ j ≤ mi ,

the set

Pj =
{

(s̄, s̃) ∈ Σ2 × Σ2 : d[s̄, s̃] ≥ 1

2mi − j

}

is compact, and

min
(s̄,s̃)∈Pj

|S−1(s̄) − S−1(s̃)| = μ j > 0,

Pj+1 ⊆ Pj , μ j+1 ≥ μ j , 0 ≤ j < mi − 1. Fix i0 = mi − 2. Then |κi (t0)− κi (t1)| ≥
μi0 if i = i0, i0 + 1.

Similarly, we also have that there exists a positive number μ0 < 1 such that
|κ j (t0) − κ j (t1)| ≤ μ0 if 0 ≤ j < mi .

Next, we assume that κ j (t0) < κ j (t1) for all j. It is easily seen that case κ j (t0) >

κ j (t1) can be analyzed similarly. Thus, there is a number k among i0, i0 + 1, such

that κk(t1) − κk(t0) > μi0 and κk(t0) − κk−1(t1) ≥ 1

2
(1 − μ0).

Clearly, (C8) implies that ν1 = 2

3

mη

m
− 2LM1 > 0 and ν2 < ν1, where ν2 =

2mLM1

m
+ 1

q
η.

We shall show that the constants ε0, ε1 of Definition6.12 can be set as ε0 =
1
q mη, ε1 = min{μi0 ,

1
2 (1 − μ0)}.
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Assume that ‖z(ζk(t0)) − z1(ζk(t0))‖ < ν1. Then, for t ∈ [ζk(t0), ζk(t1)],

z(t) = eA(t−ζk (t0))(I + B)z((ζk(t0)) +
∫ t

ζk (t0)
eA(t−s) f (z(s))ds + eA(t−ζk (t0))W (z((ζk(t0))),

z1(t) = eA(t−ζk (t0))z1((ζk(t0)) +
∫ t

ζk (t0)
eA(t−s) f (z1(s))ds.

We have that

‖z(t) − z1(t)‖ = ‖eA(t−ζk (t0))[Bz((ζk(t0)) + W (z((ζk(t0)))] +
eA(t−ζk (t0))[z((ζk(t0)) − z1((ζk(t0))] +

∫ t

ζk (t0)
eA(t−s)( f (z(s)) − f (z1(s)))ds‖

≥ mη − m(ν1 + 2LM1) ≥ ε0.

If ‖z(ζk(t0)) − z1(ζk(t0))‖ > ν2, then, for t ∈ [ζk−1(t1), ζk(t0)],

z(t) = eA(t−ζk (t0))z((ζk(t0)) +
∫ t

ζk (t0)
eA(t−s) f (z(s))ds,

z1(t) = eA(t−ζk (t0))z1((ζk(t0)) +
∫ t

ζk(t0)
eA(t−s) f (z1(s))ds.

and

‖z(t) − z1(t)‖ ≥ mν2 − m2LM1 = ε0.

The lemma is proved.

Lemmas6.6 and 6.7 imply that (6.2.12) is Li–Yorke chaotic on Λ′.
In the main theorems of the original paper [3], properties of the chaotic behavior

(i) and (ii) of Definition6.9 are accompanied with the following one:
(iii) for each point x ∈ X ′ and any periodic point x̄ ∈ X, one has that

lim sup
i→∞

ρ(T i (x), T i (x̄)) > 0. (6.2.25)

Then it was shown (see, for example [43], Lemma28) that by omitting at most one
point in the scrambled set one can have the chaos in the sense of Definition6.9. The
following assertion is about the analogue of (iii). Its proof is very similar to the proof
of Lemma6.7, if one uses property (iii) of map h.

Lemma 6.8 Assume that conditions (C1)–(C8) are fulfilled. Then every solution
z(t) = z(t, t1, z0), t1 ∈ Λ′, z0 ∈ R

n, and every periodic solution φ(t, t0), t0 ∈ Λ,

of (6.2.12) are (ε0, ε1)-separated, ε0 and ε1 being the same as in Lemma 6.7.
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Remark 6.2 It seems natural to consider the chaos only for uniformly bounded on
R+ solutions, since the domain of chaos is always assumed to be a compact set. We
consider the set of all solutions, where the chaos scenario starts at the moment when
a solution reaches the region ‖z(t)‖ ≤ M1.

Example 6.2 Consider the following initial value problem

x ′
1 = −1/3x2 + f1(x1, x2),

x ′
2 = 1/3x1 + f2(x1, x2), t �= ζi (t0),

Δx1|t=ζi (t0) = W (x1),

Δx2|t=ζi (t0) = −1

2
x2, (6.2.26)

where x1, x2 ∈ R, l is a positive constant, f1(s, u) = s cos u, f2(s, u) = s sin u,

W (s) = 1+ s2, if |s| ≤ l, and f1(s, u) = l cos u, f2(s, u) = l sin u, W (s) = 1+ l2,
if |s| > l. One can easily see that all the functions are Lipschitzian with a constant
proportional to l. The matrices of coefficients are

A =
(

0 − 1/3
1/3 0

)

, B =
(

0 0
0 − 1/2

)

.

The matrices commute, and the eigenvalues of the matrix

A + Ln (I + B) =
(

0 − 1/3
1/3 − ln 2

)

are negative: λ1,2 = − ln 2/2 ±
√

ln2 2/4 − 1/9 < 0.
Condition (C3) is obvious, since function W (s) is never equal to zero. All the

other conditions required by the theorems could be easily checked with sufficiently
small coefficient l. That is, the dynamics of (6.2.12) is Li–Yorke chaotic.

6.3 Li–Yorke Chaos in the System with Relay

In this section, we address a special initial value problem of a differential equation
with relay function. The concept of Li–Yorke chaos [3] is considered.

6.3.1 Introduction and Preliminaries

In paper [44], Devaney’s ingredients were indicated for a special initial value of a
relay system with linear elements. In the present section, we attempt to shape the Li–
Yorke chaos [3] for the multidimensional nonlinear relay system. The quasi-minimal
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set existence for this system has been proved in [45]. The fact, whichmakes Li–Yorke
chaos attractive for applications, is that it can be developed for a multidimensional
case [25]. So, in this section, an attempt to create other higher dimensional chaotic
systems is made. The approach has been also used in [46] for impulsive differential
equations.

Let us recall the definition of the chaos for maps. Consider a nonvoid compact
metric space (X, ρ) with metric ρ and T : X → X, a surjective continuous map. Li
and Yorke call the map chaotic if:

1. the map has points with all periods p ∈ N;
2. there exists an uncountable subset X ′ ⊆ X, the scrambled set, that does not

contain periodic points and

lim sup
i→∞

ρ(T i (x), T i (x̃)) > 0, (6.3.27)

lim inf
i→∞ ρ(T i (x), T i (x̃)) = 0, (6.3.28)

for each pair x, x̃ ∈ X ′, x �= x̃;
3. for each point x ∈ X ′ and any periodic point x̄ ∈ X, one has that

lim sup
i→∞

ρ(T i (x), T i (x̄)) > 0. (6.3.29)

Consider the sequence space [14]

Σ2 = {s = (s0s1s2 . . .) : s j = 0 or 1}

with the metric

d[s, t] =
∞
∑

i=0

|si − s̃i |
2i

,

where s̃ = (s̃0s̃1 . . .) ∈ Σ2, and the shift map σ : Σ2 → Σ2, such that
σ(s) = (s1s2 . . .). The pair (Σ2, σ ) is the symbolic dynamics. The map is con-
tinuous, card Pern(σ ) = 2n, Per(σ ) is dense in Σ2, and there exists a dense orbit
in Σ2.

In this part, we prove that every map which is topologically conjugate to the shift
σ onΣ2 is Li–Yorke chaotic. First we check if σ itself is chaotic, and then the general
case will be considered.

Let us denote h(t, μ) ≡ μt (1 − t), the logistic map, and assume that μ > 4.
Then, [8, 14], there exists an invariant Cantor set Λ̄ ⊂ I = [0, 1] for h. The map has
a 3-period point, hence the map is Li–Yorke chaotic. There exists a homeomorphism
S̄(t) betweenΛ andΣ2, such that S̄◦h = σ ◦ S̄ [8]. That is, h and σ are topologically
conjugate. Using the technique from [14] (see, for example, Theorem5.1, there) one
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can show that Σ ′
2 = S(Λ̄′) is a scrambled set. If s, s′ ∈ Σ ′

2, s �= s′, we call (s, s′) a
Li–Yorke pair.

The proofs of the following lemmas are standard [14].

Lemma 6.9 If (s, s′) is a Li–Yorke pair fromΣ ′
2, then there exist sequences ki , mi →

∞, as i → ∞, such that ski + j = s′
ki + j , j = 0, 1, . . . , mi − 1 and ski +mi �= s′

ki +mi
.

If s ∈ Σ ′
2 and s′ ∈ Σ2 is a periodic point, then there exists a sequence li → ∞, as

i → ∞, such that sli �= s′
li
.

Lemma 6.10 If (s, s′) is a Li–Yorke pair from Σ ′
2, then there exists a sequence

li → ∞, as i → ∞, such that d[σ li s, σ li s′] ≥ 1.

That is, the dynamics (Σ2, σ ) is Li–Yorke sensitive [20].
Let h : Λ → Λ,where Λ is a subset of the interval [0, 1], be a map topologically

conjugate to σ, and Λ′ is an image of Σ ′
2 by the conjugacy.

For every t0 ∈ Λ one can construct a sequence κ(t0) of real numbers κi , i ≥ 0,
such that κi+1 = h(κi ) and κ0 = t0. The sequence ζ(t0) = {ζi (t0)} in (6.2.12) is
defined as ζi (t0) = i + κi (t0), i ≥ 0.

By applying the conjugacy of h and σ, one can verify that map h has useful chaotic
properties.

Lemma 6.11 If t, t ′ ∈ Λ′, then there exist sequences ki , li → ∞, as i → ∞, such
that max

j=0,1,...,li
|hki + j (t) − hki + j (t ′)| → 0 as i → ∞.

Lemma 6.12 For every pair t, t ′ ∈ Λ′, t �= t ′, there exists a sequence mi → ∞,

as i → ∞, such that |hmi (t) − hmi (t ′)| ≥ δ.

The last two lemmas imply that h is a Li–Yorke chaotic map, since the verification
of the periodicity condition is simple.

6.3.2 The Li–Yorke Chaos

The main object of our investigation is the following special initial value problem

z′(t) = Az(t) + f (z) + v(t, t0),
z(t0) = z0, (t0, z0) ∈ Λ × R

n,
(6.3.30)

where z ∈ R
n, t ∈ R+ = [0,∞), i ≥ 0. Cantor set Λ ⊂ I = [0, 1], the sequence

ζ(t0) = {ζi (t0)} of switching moments were described in the last subsection and

v(t, t0) =
{

m0 if ζ2i (t0) < t ≤ ζ2i+1(t0), i ∈ Z,

m1 if ζ2i−1(t0) < t ≤ ζ2i (t0), i ∈ Z,
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where m0, m1 ∈ R
n are different vectors. The function f satisfies the Lipshitz

condition with a positive constant L , A is an n × n constant real-valued matrix with
real parts of eigenvalues all negative. Denote the maximal of them α < 0.

For a fixed t0 ∈ Λ, system (6.3.30) is a differential equation with discontinuous
right-hand side of a specific type when discontinuities happen on vertical planes in
the (t, z)-space.

A function z(t), z(t0) = z0, is a solution of (6.3.30) on [t0,∞) if: (i) z(t) is
continuous on [t0,∞); (ii) the derivative z′(t) exists at each point t ∈ R with the
possible exception of the points ζi (t0), where left-sided derivatives exist; (iii) Equa-
tion (6.3.30) is satisfied on each interval (ζi (t0), ζi+1(t0)], i ≥ 0.

It can be easily verified that problem (6.3.30) has a unique solution z(t, t0, z0) for
each t0 ∈ Λ, z0 ∈ R

n .

There exists a positive number N such that ‖eAt‖ ≤ Neαt , t ≥ 0.
The solution z(t) = z(t, t0, z0), t0 ∈ Λ, z0 ∈ R

n, of (6.3.30) satisfies the follow-
ing integral equation

z(t) = eA(t−t0)z0 +
∫ t

t0
eA(t−s)[ f (z(s)) + v(s, t0)] ds (6.3.31)

In what follows we assume that supRn | f (z)| = M0 < ∞, NL < α. Fix a
sequence ζ(t0), t0 ∈ Λ.Using the standard technique, one can verify that all solutions

eventually, as t increases, enter the tube with the radius M = M0

[

1 + N

α − NL

]

,

t ∈ R. Moreover, if the sequence κ(t0) is periodic with a period p ∈ N, then there
is a solution of (6.3.30) with the same period, and its integral curve is placed in the
tube. One can easily see that all these solutions are different for different p. Let us,
introduce the following distance. If φ,ψ are continuous on R functions, then denote
‖φ(t) − ψ(t)‖J = supJ ‖φ(t) − ψ(t)‖, where J is an interval of R.

We use the following definitions. They are taken from [3, 14, 20] and adapted for
(6.3.30).

Definition 6.15 A pair of solutions of (6.3.30) z(t)=z(t, t0, z0), z1(t)=z(t, t1, z1),
t0, t1 ∈ Λ, is proximal if for each ε > 0, E > 0 there exists an interval J ⊂ [t0,∞)

with length not less than E such that ‖z1(t) − z(t)‖E < ε.

Definition 6.16 The solutions of (6.3.30) z(t) = z(t, t0, z0), z1(t) = z(t, t1, z1),
t0, t1 ∈ Λ, are frequently (ε0, ε1)-separated if there exist positive numbers ε0, ε1
and infinitely many disjoint subintervals of [t0,∞), of length not less than ε1, such
that ||z1(t) − z(t)|| > ε0 for each t from these intervals.

Definition 6.17 A couple z(t) = z(t, t0, z0), z1(t) = z(t, t1, z1), t0, t1 ∈ Λ, of
solutions of (6.3.30) is a Li–Yorke pair if they are proximal and (ε0, ε1)-separated
for some positive ε0, ε1.

Definition 6.18 Problem(6.3.30) is Li–Yorke chaotic on Λ′ if:

1. there exist solutions φ(t, t0) with all periods p ∈ N;
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2. each couple of solutions z(t) = z(t, t0, z0), z1(t) = z(t, t1, z1), with t0, t1 ∈
Λ′, t0 �= t1, is Li–Yorke pair;

3. every solution z(t) = z(t, t0, z0), t0 ∈ Λ′, and every periodic solution φ(t) =
φ(t, t0), t0 ∈ Λ, of (6.3.30) are frequently (ε0, ε1)-separated for some positive
ε0, ε1.

Definition 6.19 Problem(6.3.30) is Li–Yorke sensitive on Λ′ if there exist posi-
tive numbers ε0, ε1, such that each couple of solutions z(t) = z(t, t0, z0), z1(t) =
z(t, t1, z1), with t0, t1 ∈ Λ′, t0 �= t1, is frequently (ε0, ε1)-separated.

By applying (6.3.31), Lemmas6.11 and 6.12, one can prove that the following
assertions are valid.

Lemma 6.13 Problem(6.3.30) is Li–Yorke sensitive on Λ′.

Theorem 6.6 Problem(6.3.30) is Li–Yorke chaotic on Λ′.

6.4 Dynamical Synthesis of Quasi-Minimal Sets

We address the quasilinear differential equation with a pulse function, whose
moments of discontinuity depend on the initial moment. The existence of a Poisson
stable trajectory dense in a quasi-minimal set is proved. An appropriate simulation
of a chaotic attractor is presented.

6.4.1 Introduction

L. Shilnikov in [47] emphasizes that “…it seems quite reasonable the role of dynam-
ical chaos orbits should be assigned to the Poisson stable trajectories,” and “…we
arrive at the following problem: how can one establish the existence of the Poisson
stable trajectories in the phase space of a system?” One way of solving the prob-
lem is the method of dynamical synthesis [48, 49], which is a general technique of
constructing dynamical systems with desired properties.

We use the map, which is topologically conjugate to symbolic dynamics, as the
generator of moments of discontinuities in the multidimensional dissipative system
to obtain the Poisson stable solutions. Since themain idea of this section is to obtain a
quasi-minimal set by inserting the generator with a similar property into a dissipative
system, one can say that the idea of dynamical synthesis is applied.

Another issue of relevance to the present section is the nonlinear dynamics of
electric circuits, of mechanical models and of control systems [10, 50, 51] which
convert discrete data into continuous output.

We believe that the approach can give a strong impact for applications, since one
can investigate controllability of chaos [52, 53] based on similar properties of the
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generator function, which are already known or can be developed if needed. For
example, it may give a tool to support the given degree of nonregularity, which is
important for cardiac rhythm [54].

The main object of our investigation is the following special initial value problem

z′(t) = Az(t) + f (z) + v(t, t0),

z(t0) = z0, (t0, z0) ∈ Λ × R
n, (6.4.32)

where z ∈ R
n, t ∈ R, i ∈ Z, R and Z are sets of all real numbers and integers,

respectively,

v(t, t0) =
{

m0 if ζ2i (t0) < t ≤ ζ2i+1(t0), i ∈ Z,

0 if ζ2i−1(t0) < t ≤ ζ2i (t0), i ∈ Z.

where m0 ∈ R
n is a nonzero vector. Cantor set Λ ⊂ [0, 1], and the sequence

ζ(t0) = {ζi (t0)}, i ∈ Z, are described in Sect. 6.4.4. The function f satisfies the
Lipshitz condition with a positive constant L , A is an n × n constant real-valued
matrix with real parts of eigenvalues all negative. Denote themaximal of them α < 0.

It is worth mentioning that we can consider other types of equations to obtain
similar results, for instance, one may assume v(t, t0) ≡ 0, and a function f (t, z)
with discontinuities of the first kind at the points of ζ(t0).

For a fixed t0 ∈ Λ, system (6.4.32) is a differential equation with discontinuous
right-hand side of a specific type when discontinuities happen on vertical planes in
the (t, z)-space.

In what follows, we use definition of solutions formulated in [17] (see, also,
[16]). Most general results on existence and uniqueness of solutions for differential
equation with discontinuous right-hand side can be found in [55].

A function z(t), z(t0) = z0, is a solution of (6.4.32) on R if: (i) z(t) is continuous
onR; (ii) the derivative z′(t) exists at each point t ∈ Rwith the possible exception of
the points ζi (t0),where left-sided derivatives exist; (iii) Equation (6.4.32) is satisfied
on each interval (ζi (t0), ζi+1(t0)], i ∈ Z.

It can be easily verified that problem (6.4.32) has a unique solution z(t, t0, z0), t ∈
R, for each t0 ∈ Λ, z0 ∈ R

n .

There exists a positive number N such that ‖eAt‖ ≤ Neαt , t ≥ 0.
The solution z(t) = z(t, t0, z0), t0 ∈ Λ, z0 ∈ R

n, of (6.4.32) satisfies the follow-
ing integral equation

z(t) = eA(t−t0)z0 +
∫ t

t0
eA(t−s)[ f (z(s)) + v(s, t0)] ds.

In the sequel, we assume that supRn | f (z)| = M0 < ∞, NL < |α|. Fix a sequence
ζ(t0), t0 ∈ Λ. Using the standard technique one can verify that z(t) is a bounded on
R solution of (6.4.32) if and only if it satisfies the equation
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z(t) =
∫ t

−∞
eA(t−s)[ f (z(s)) + v(s, t0)] ds,

and for each sequence ζ(t0), t0 ∈ Λ, there exists a unique bounded on R solution
z(t, ζ(t0)), and all these bounded solutions are placed in the tube with the radius

M = M0[1 − N
α+NL ], t ∈ R. Moreover, if z(t, t0, z0) is a solution of (6.4.32), then

using Gronwall–Bellman Lemma one can obtain that

‖z(t, t0, z0) − z(t, ζ(t0))‖ ≤ N‖z0 − z(t0, ζ(t0))‖e(−α+NL)(t−t0).

That is, the bounded solution z(t, ζ(t0)) attracts all solutions of (6.4.32) with the
same initial moment t0, t0 ∈ Λ.

DenoteCB = {z(t, ζ(t0)) : ζ(t0) ∈ Π},where setΠ of all sequences ζ(t0), t0 ∈
Λ, is described in Sect. 6.4.4. The set CB is placed in the tube with radius M, and
it is an attractor for all solutions of (6.4.32). We shall show that the attractor is a
quasi-minimal set in the next section.

6.4.2 Main Result

In the present section, we provide the definitions of the Poisson stable solution of
non-autonomous differential equations, α− and ω− limit solutions. They can be
compared with the definitions for non-autonomous equations in , Chap.8 [56].

Let us, introduce the following distance. If φ,ψ are continuous on R functions,
then denote ‖φ(t) − ψ(t)‖J = supJ ‖φ(t) − ψ(t)‖, where J is an interval of R.

We say that z(t, ζ(t∗)) ∈ CB, is positively Poisson stable (P+ stable) if for each
γ ∈ R there exist two sequences of real numbers βn, En with βn, En → ∞, and
‖z(t + βn, ζ(t∗)) − z(t + γ, ζ(t∗))‖(−En ,En) → 0, as n → ∞.

We say that z(t, ζ(t∗)) ∈ CB, is negatively Poisson stable (P− stable) if for each
γ ∈ R there exist two sequences of real numbers βn, En with βn, En → −∞, and
‖z(t + βn, ζ(t∗)) − z(t + γ, ζ(t∗))‖(En ,−En) → 0, as n → ∞.

Solution z(t, ζ(t∗)) ∈ CB, is Poisson stable (P stable) if it is P− and P+ stable.
We say that z(t, ζ(t)) ∈ CB, is ω-limit solution corresponding to z(t, ζ(t∗)) ∈

CB, if for each γ ∈ R there exist two sequences of real numbers βn, En with
βn, En → ∞, and ‖z(t + βn, ζ(t∗)) − z(t + γ, ζ(t))‖(−En ,En) → 0, as n → ∞.

We say that z(t, ζ(t)) ∈ CB, is α-limit solution corresponding to z(t, ζ(t∗)) ∈
CB, if for each γ ∈ R there exist two sequences of real numbers βn, En with
βn, En → −∞, and ‖z(t + βn, ζ(t∗)) − z(t + γ, ζ(t))‖(En ,−En) → 0, as n → ∞.

Denote sets, which consist of all ω-limit solutions and α-limit solutions as Ωt∗
and At∗ , respectively.

We say that CB is a quasi-minimal set if CB = Ωt∗ = At∗ , where z(t, ζ(t∗)) ∈
CB is a P stable solution.

Theorem 6.7 CB is the quasi-minimal set.

http://dx.doi.org/10.1007/978-3-662-47500-3_8
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Proof Consider a sequence ζ(t∗), which has been defined in Theorem6.8
(see Sect. 6.4.4), and fix the corresponding solution of (6.4.32), z(t, ζ(t∗)) ∈ CB.

We shall show that the solution is P+ stable by considering γ = 0. For all other
γ ∈ R, the proof is very similar. Fix a positive ε. Moreover, fix a positive ε1, whose
dependence on ε will be described below. From Theorem6.8 (1) we have that there
exist sufficiently large natural numbers j and m such that |ζi+m(t∗) − ζi (t∗)| < ε1
if − j ≤ i ≤ j. For the sake of simplicity below we shall write ζi instead of ζi (t∗).

We have that for t ≥ − j,

z(t, ζ(t∗)) = eA(t−ζ j (t∗))z(ζ j , ζ(t∗)) +
∫ t

ζ j

eA(t−s)[ f (z(s, ζ(t∗))) + v(s, t0)]ds,

and

z(t + ζ− j+m − ζ j ) = eA(t−ζ j )z(ζ− j+m, ζ(t∗))+
∫ t+ζ− j+m−ζ j

ζ− j+m

eA(t+ζ− j+m−ζ j −s)[ f (z(s, ζ(t∗))) + v(s, t0)]ds = eA(t−ζ j )z((ζ− j+m)+

∫ t

ζ j

eA(t−s)[ f (z(s + ζ− j+m − ζ j )) + v(s + ζ− j+m − ζ j , t0)]ds.

Subtract the last expression from the previous one to obtain that

‖z(t, ζ(t∗)) − z(t + ζ− j+m − ζ j )‖ ≤ 2MNe−ζ j (t−ζ j )+
∫ t

ζ j

NLe−α(t−s)‖z(s, ζ(t∗)) − z(s + ζ− j+m − ζ j )‖ds +
∫ t

ζ j

Ne−α(t−s)ε1‖m0‖ds.

Consider the following Lemma2.2 from [57].

Lemma 6.14 Let u(t), f (t) be nonnegative functions integrable over the interval
t0 ≤ t ≤ t0 + T ; let K be a positive constant. If the inequality

u(t) ≤ f (t) + K
∫ t

t0
u(s)ds, t0 ≤ t ≤ t0 + T,

is fulfilled then the following inequality holds

u(t) ≤ f (t) + K
∫ t

t0
eK (t−s) f (s)ds.

Next, we denote u(t) = ‖z(t, ζ(t∗)) − z(t + ζ− j+m − ζ j )‖eαt , and apply the last
Lemma, to obtain that
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‖z(t, ζ(t∗)) − z(t + ζ− j+m − ζ j )‖ ≤ Nε1‖m0‖
α

(

1 + 1

α − NL

)

+

α[2M(α − NL) − ε1‖m0‖]
αL(α − NL)

e(−α+NL)(t−ζ j ) + α[(NL − 1)(2Mα − ε1‖m0‖)
αL

e−α(t−ζ j ).

On the basis of the last inequality one can easily see that ‖z(t, ζ(t∗))−z(t +ζ− j+m −
ζ j )‖ < ε if t ∈ (−E, E),where E = j

2 , j is sufficiently large, and ε1 is a sufficiently
small positive number. The number ζ− j+m −ζ j is as large asm. Thus, we have proved
that the solution is P+ stable. Applying Theorem6.8 (2) in a similar manner, one
can show that it is P− stable. Moreover, using Theorem6.8 (3) and (4),we can show
that CB = Ωt∗ = At∗ . The theorem is proved.

6.4.3 A Simulation Result

Consider the sequence ζi = i +κi , κi = 4κi−1(1−κi−1), κ0 = t0, t0 ∈ [0, 1], i ≥ 0
and take into account the following system

x ′′ + 2x ′ + 1.5x = sin y,

y′ = −3y + v(t, t0), (6.4.33)

where v(t, t0) is a scalar pulse function with m0 = 1. The second equation is a drive
equation and the first one, the pendulum equation. Using new variables x1 = x, x2 =
x ′, x3 = y, one can reduce (6.4.33) to the system

x ′
1 = x2,

x ′
2 = −1.5x1 − 2x2 + sin x3.

x ′
3 = −3x3 + v(t, t0) (6.4.34)

One can easily verify that all eigenvalues of the matrix of coefficients have nega-
tive real parts. Fix t0 = 12/17 and take a solution (x1(t), x2(t), x3(t)) of the last
system with the initial condition x1(t0) = 0.02, x2(t0) = −0.025, x3(t0) = −0.02.
In Fig. 6.3 the chaotic attractor is shown using points (x1(n), x2(n), x3(n)), n =
1, 2, 3, . . . , 75,000, in x1, x2, x3-space.

Remark 6.3 In [18] it was proved that the shadowing property, which is valid for
uniformly hyperbolic maps [58, 59], can be extended if they are non-hyperbolic,
particularly for the logistic map.Using the technique of the present section one can
verify that system (6.4.32) inherits the shadowing property, if the generator function
has it [60]. We suppose that the general problem “how numerical orbits of systems
obtained by the dynamical synthesis can be shadowed by true orbits for long time”
deserves to be considered in the future.
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Fig. 6.3 The chaotic
attractor by a stroboscopic
sequence
(x1(n), x2(n), x3(n)),

1 ≤ n ≤ 75,000, is
observable

6.4.4 Appendix

Consider the sequence space Σ2 = {s = (s0s1s2 . . .) : s j = 0 or 1} with the

metric d[s, s̄] =
∞∑

i=0

|si −s̄i |
2i , where s̄ = (s̄0s̄1 . . .) ∈ Σ2, and the shift map σ :

Σ2 → Σ2, such that σ(s) = (s1s2 . . .). The semidynamics (Σ2, σ ) is the symbolic
dynamics [15].

Let us consider, also, the space of bi-sequences

Σ2 = {s = (. . . s−n . . . s−1s0s1s2 . . . sn . . .) : s j = 0 or 1}.

At the first, an ordering should be introduced on Σ2 [15]. If two finite sequences
are given s = {s1 . . . sk}, s̄ = {s̄1 . . . s̄k′ }, then it is said that s < s̄ if k < k′, and if
k = k′, then s < s̄ if si < s̄i , where i is the first integer such that si �= s̄i .

Thus, one denotes the sequences having length k as follows: sk
1 < · · · sk

2k , where
the superscript refers to the length of the sequence and the subscript refers to a
particular sequence of length k which is uniquely specified by the above ordering
scheme. Denote s∗ = (. . . s38s36s34s22s12s11s21s23s31s33s35s37 . . .).

Introduce maps Bi : Σ2 → Σ2, i ∈ Z, such that Bi (s) = (si , si+1, . . .). From
the method of construction of s∗ it follows that the following assertion is valid.

Lemma 6.15 (1) For a fixed j ∈ Z there exist two sequences of integers kn, ln with
kn, ln → ∞, and

lim
n→∞ max−ln≤i≤ln

d[Bkn+i (s
∗), B j+i (s

∗)] = 0.

(2) For a fixed j ∈ Z there exist two sequences of integers kn, ln with kn, ln →
−∞, and

lim
n→∞ max

ln≤i≤−ln
d[Bkn+i (s

∗), B j+i (s
∗)] = 0.
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(3) For each s ∈ Σ2 and j ∈ Z one can find sequences of integers kn, ln with
kn, ln → ∞, and

lim
n→∞ max−ln≤i≤ln

d[Bkn+i (s
∗), B j (s)] = 0.

(4) For each s ∈ Σ2 and j ∈ Z one can find sequences of integers kn, ln with
kn, ln → −∞, and

lim
n→∞ max

ln≤i≤−ln
d[Bkn+i (s

∗), B j (s)] = 0.

We assume that there exist a homeomorphism S betweenΣ2 and a setΛ ⊂ [0, 1],
and a map h : Λ → Λ, such that S ◦ h = σ ◦ S. That is h and σ are topologically
conjugate. It is known that Σ2 and Λ are Cantor sets: they are closed, perfect, and
totally disconnected [15]. Obviously, they are compact. One of the most popular
examples of the map h is the logistic map μx(1− x), μ > 4, considered on a subset
of [0, 1] [14].

For every t0 ∈ Λ, one can construct a sequence κ(t0) of real numbers κi , i ∈ Z,

in the following way. If i ≥ 0, then κi+1 = h(κi ) and κ0 = t0. Let us show, how
the sequence is defined for negative i. Denote s0 = S(t0), s0 = (s00s01 . . .). Consider
elements s = (0s00s10 . . .), s = (1s00s10 . . .) of Σ2, such that σ(s) = σ(s) = s0 and
t = S−1(s), t = S−1(s). The homeomorphism implies that h(t) = h(t) = t0. Set
h−1(t0) may consist of not more than two elements t, t ∈ Λ. Each of these two
values can be chosen as κ−1(t0). Obviously, one can continue the process to −∞,

choosing always one element from the set h−1. We have finalized the construction
of the sequence, and, moreover, it is proved that κ(t0) ⊂ Λ, κ(t0) = {κi (t0)}, i ∈ Z.

Thus, infinitely many sequences κ(t0) can be constructed for a given t0. However,
each of this type of sequence is unique for an increasing i. Fix one of the sequences
and define a sequence ζ(t0) = {ζi }, ζi = i + κi , i ∈ Z. If we denote by Π the set of
all such sequences {ζi }, i ∈ Z, then a multivalued functional w : I → Π is defined.
In this section, the sequence ζ(t0) in (6.4.32) is considered to be a value of w(t0).

The above discussion shows that there exists an one-to-one correspondence
between Σ2 and Π. Denote ζ(t∗) the sequence, which corresponds to s∗. Then
homeomorphism S, and Lemma6.15 imply that the following assertion is correct.

Theorem 6.8 (1) For a fixed j ∈ Z there exist two sequences of integers kn, ln with
kn, ln → ∞, and

lim
n→∞ max−ln≤i≤ln

|ζkn+i (t
∗) − ζ j+i (t

∗)| = 0.

(2) For a fixed j ∈ Z there exist two sequences of integers kn, ln with kn, ln →
−∞, and

lim
n→∞ max

ln≤i≤−ln
|ζkn+i (t

∗) − ζ j+i (t
∗)| = 0.

(3) For each ζ(t) ∈ Π and j ∈ Z one can find sequences of integers kn, ln with
kn, ln → ∞, and
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lim
n→∞ max−ln≤i≤ln

|ζkn+i (t
∗) − ζi+ j (t)| = 0.

(4) For each ζ(t) ∈ Π and j ∈ Z one can find sequences of integers kn, ln with
kn, ln → −∞, and

lim
n→∞ max

ln≤i≤−ln
|ζkn+i (t

∗) − ζi+ j (t)| = 0.

6.5 Hyperbolic Sets of Impact Systems

In this section, a hyperbolic set of bounded solutions is constructed on the basis of
a quasilinear impulsive differential equation with a special initial condition.

The famous homoclinical structure of H. Poincaré initiated the fundamental
investigations of the complex structure of dynamical systems by G. Birkhoff, M.L.
Cartwright, J.E. Littlewood, N. Levinson, S. Smale [61, 62] and their followers. The
results obtained proved to be universal and applicable as effective instruments of
analysis. In this section, we investigate the structure of the bounded solutions set of a
special initial value problem,which initialmoments of time are fromaCantor set. The
system was introduced in [28], where chaotic properties are discussed. Particularly,
we prove that there exists a chaotic attractor with infinitely many periodic solutions.
It is natural to expect that the attractor is a hyperbolic set. In the present section we
develop the investigation. In [41], the interesting idea to generate sensitiveness of
discontinuous motion using the parametric dependence of impulsive moments was
considered.

Consider the sequence space [8] Σ2 = {s = (s0s1s2 . . .) : s j = 0 or 1}. with the
metric

d[s, t] =
∞
∑

i=0

|si − ti |
2i

,

where t = (t0t1 . . .) ∈ Σ2, and the shift map σ : Σ2 → Σ2, such that σ(s) =
(s1s2 . . .). The semidynamics (Σ2, σ ) is the symbolic dynamics [15].

The map is continuous, card Pern(σ ) = 2n, Per(σ ) is dense in Σ2.

We assume that there exist a homeomorphism S between Σ2 and a set Λ ⊂
I, I = [0, ω̄], where ω̄ is a fixed positive number, and a map h : Λ → Λ, such
that S ◦ h = σ ◦ S. That is h and σ are topologically conjugate. It is known that Σ2
and Λ are Cantor sets [15]. Obviously, they are compact. One of the most popular
examples of the map h is the logistic map μx(1− x), μ > 4, considered on a subset
of [0, 1], [8].

Let us start with the description of the moments of impulses, as their generation
is most important for the hyperbolic set construction.

For every t0 ∈ Λ one can construct a sequence κ(t0) of real numbers κi , i ∈ Z,

in the following way. If i ≥ 0, then κi+1 = h(κi ) and κ0 = t0. Let us show, how
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the sequence is defined for negative i. Denote s0 = S(t0), s0 = (s00s01 . . .). Consider
elements s = (0s00s10 . . .), s = (1s00s10 . . .) of Σ2, such that σ(s) = σ(s) = s0 and
t = S−1(s), t = S−1(s). The homeomorphism implies that h(t) = h(t) = t0. Set
h−1(t0) may consist of not more than two elements t, t ∈ Λ. Each of these two
values can be chosen as κ−1(t0). Obviously, one can continue the process to −∞,

choosing always one element from the set h−1. We have finalized the construction
of the sequence, and, moreover, it is proved that κ(t0) ⊂ Λ. Thus, infinitely many
sequences κ(t0) can be constructed for a given t0. However, each of this type of
sequence is unique for an increasing i. Fix one of the sequences and define a sequence
ζ(t0) = {ζi }, ζi = iω̄ + κi , i ∈ Z. The sequence has a periodicity property if there
exists p ∈ N such that ζi+p = ζi + pω̄,∀i ∈ Z. If we denote by Π the set of all
such sequences ζ = {ζi }, i ∈ Z, then a multivalued functional w : Λ → Π such
that ζ(t0) = w(t0) is defined. In what follows, we assume, without loss of generality,
that ω̄ = 1.

The discussion indicates that homeomorphism S arranges one-to-one correspon-
dence Φ between the space of bi-sequences

Σ2
2 = {s = (. . . s−2s−1 · s0s1s2 . . .) : s j = 0 or 1} and the elements of space Π

such that if Φ(s) = ζ, then ζ j = jω̄ + S((s j s j+1 . . .)), j ∈ Z.

Fix s∗ ∈ Σ2
2 . We denote W s(s∗) a set of all elements s ∈ Σ2

2 , which entries
agree with those of s∗ to the right of some entry of s∗. Set W s(s∗) is the stable
set of s∗. Similarly, we denote W u(s∗) a set of all elements s ∈ Σ2

2 , which entries
agree with those of s∗ to the left of some entry of s∗. Set W u(s∗) is the unstable
set of s∗. A point s ∈ Σ2

2 , whose entries agree with those of s∗ to the right and
to the left of some entries of s∗ is a homoclinic sequence to s∗. It is clear that the
homoclinic sequence satisfies s ∈ W s(s∗)∩W u(s∗). If s ∈ W s(s∗)∩W u(s∗∗),where
s, s∗, s∗∗ ∈ Σ2

2 , then s is a heteroclinic sequence to s∗ and s∗∗. Since each point of
Σ2

2 is equipped with a stable and unstable set we call it the hyperbolic set. One can,
now, formulate the following analogues for Π. We say that η ∈ Π is homoclinic to
ζ ∈ Π if Φ−1(η) is homoclinic to Φ−1(ζ ), and η ∈ Π is heteroclinic to ζ, φ ∈ Π

if Φ−1(η) is heteroclinic to Φ−1(ζ ) and Φ−1(φ). Obviously, for a given ζ ∈ Π ,
W s(ζ ) = {η : Φ−1(η) ∈ W s(Φ−1(ζ ))}, W u(ζ ) = {η : Φ−1(η) ∈ W u(Φ−1(ζ ))}.
One can easily see that Π is a hyperbolic set. Moreover, using the compactness of
sets Λ and Σ2, the homeomorphism of S and the definition of Φ one can obtain
that, if η ∈ Π is homoclinic to ζ ∈ Π, then |ηi − ζi | → 0, as i → ±∞, and
|ηi − ζi | → 0, as i → ∞, |ηi − φi | → 0, as i → −∞, if η is heteroclinic to ζ

and φ.

The following special initial valueproblem for the impulsivedifferential equation,

z′(t) = Az(t) + f (z), t �= ζi (t0),

Δ|t=ζi (t0) = Bz(ζi (t0)) + W (z(ζi (t0))),

z(t0) = z0, (t0, z0) ∈ Λ × R
n, (6.5.35)

where z ∈ R
n, t ∈ R, and ζ(t0) = w(t0), t0 ∈ Λ, is the object, which will be mainly

discussed in the present section.
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We assume that:

(C1) A, B are n × n constant real-valued matrices, det(I + B) �= 0, whereI is
the n × n identical matrix;

(C2) for all x1, x2 ∈ R
n the functions f : R

n to R
n, W : R

n → R
n satisfy

|| f (x1) − f (x2)|| + ‖W (x1) − W (x2)‖ ≤ L||x1 − x2||,

where L > 0 is a constant;
(C3) Bx + W (x) �= 0,∀x ∈ R

n;
(C4) sup

x∈Rn
|| f (x)|| + sup

x∈Rn
||W (x)|| = M0 < ∞.

It implies from the last conditions that for each z0 ∈ R
n, t0 ∈ Λ, there exists

a unique solution of the problem, that is, a function which is continuous from the
left with discontinuities of the first kind at the points ζi (t0). Each solution is defined
on R.

Let us denote by Z(t, s) the transition matrix of the associated with (6.5.35) linear
homogeneous system

z′(t) = Az(t), t �= ζi

Δz|t=ζi = Bz(ζi ). (6.5.36)

We may assume that:

(C5) the matrices A and B commute, the real parts of all eigenvalues of the matrix
A + ln(I + B) are negative.

According to Theorem 34 [27], condition (C5) implies that there exist positive num-
bers N and ω, which do not depend on θ, such that ||Z(t, s)|| ≤ Ne−ω(t−s), t ≥ s.

Assume additionally that

(C6) NL

[
2

ω
+ eω

1 − e−ω

]

< 1.

Theorems37 and 89 from [27] imply that if conditions (C1), (C2), (C4)–(C6)
are valid, then for each t0 ∈ Λ there exists a unique bounded solution z(t, t0) of

(6.5.35) and ‖z(t, t0)‖ < NM0

[
1

ω
+ eω

1 − e−ω

]

for all t ∈ R.

We denote the set of all bounded solutions z(t, t0), t0 ∈ Λ, as PCB.

Let us say that a solution z(t, t1) ∈ PCB lies in the ε-neighborhood of a solution
z(t, t0) ∈ PCB on an interval J ⊂ R if ||z(t, t1) − z(t, t0)|| < ε for all t from J
except, possibly, those from (ζi (t0) − ε, ζi (t0) + ε), i ∈ Z, and |ζi (t0) − ζi (t1)| < ε

for all i such that ζi (t0) ∈ J.

We shall say that a solution z(t, t1) ∈ PCB belongs to the stable (unstable) set
W s(z(t, t0))(W u(z(t, t0))) of solution z(t, t0) ∈ PCB, t1 �= t0, if for an arbitrary
ε > 0 there exists a number T (ε) such that z(t, t1) is in ε-neighborhood of z(t, t0)
on (T,∞)((−∞, T )).
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A solution z(t, t1) ∈ PCB is homoclinic to solution z(t, t0) ∈ PCB, t1 �= t0,
if z(t, t1) ∈ W s(z(t, t0)) ∩ W u(z(t, t0)).

Asolution z(t, t2) ∈ PCB is heteroclinic to solutions z(t, t0), z(t, t1) ∈ PCB,

t2 �= t0, t2 �= t1, if z(t, t2) ∈ W s(z(t, t0)) ∩ W u(z(t, t1)).
The set PCB is hyperbolic if each solution of this set has stable and unstable

sets.
We may assume that

(C7) −ω + NL + ln(1 + NL) < 0.

One can prove by using the technique of integral representation of bounded solutions
of impulsive systems [27, 28] that the following theorem is valid.

Theorem 6.9 Assume that conditions (C1), (C2), (C4)–(C7) are fulfilled. Then,

1. Set PCB is hyperbolic;
2. W s(z(t, t0)) ∩ W u(z(t, t0)) �= ∅, for all t0 ∈ Λ;
3. Each element of PCB is homoclinic to an element of PCB.

6.6 Chaos and Shadowing

6.6.1 Introduction and Preliminaries

The proof of the existence of chaotic attractors remains as an important and difficult
problem, which is still not resolved fully, even for the Lorenz system [63–66]. In
this section, a multidimensional chaos is generated by a special initial value problem
for the non-autonomous impulsive differential equation. The existence of a chaotic
attractor is shown, where density of periodic solutions, sensitivity of solutions, and
existence of a trajectory, which is dense in the set of all orbits are observed. That is,
we concentrate on the topological ingredients of the version proposed by Devaney
[8]. An appropriate example is constructed, where a chaotic attractor is indicated,
and the intermittency is observed.

The discontinuous system consists of an impulsive differential equation and of a
discrete equation, which generates the moments of impacts.

We suppose that the generator is chaotic while the impulsive system is dissipative
for all possible sequences ofmoments of discontinuities, andwe prove that the system
has a similar chaotic nature. Similarly, if the generator function has a shadowing
property [14, 18, 58, 59], then the system admits an analogue of the property. The
shadowing exists if the generator is uniformly hyperbolic on the invariant set of initial
moments, or a non-hyperbolic map.

The results of this section illustrate that impulsive differential equations may play
a special role in the investigation of the complex behavior of dynamical systems.
The B-equivalence method is used to obtain the main results.
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Let us consider a continuous map H : I → R, I = [0, 1], with a positively
invariant compact set Λ ⊆ I. Let κi+1 = H(κi ), κ0 = t0 ∈ Λ, and the sequence
ζ(t0) = {ζi (t0)} be defined, where ζi (t0) = i + κi (t0), i ≥ 0.

One may consider the logistic map h(t, μ) = μt (1− t), μ > 0, as an example of
H. The main object of discussion in this section is the following special initial value
problem,

z′(t) = Az(t) + f (z),

Δ|t=ζi (t0) = Bz(ζi (t0)) + W (z(ζi (t0))),

z(t0) = z0, (t0, z0) ∈ Λ × R
n, (6.6.37)

where z ∈ R
n, t0 ∈ I, t ≥ t0.

We shall need the following basic assumptions for the problem:

(C1) A, B are n × n constant real-valued matrices; det(I + B) �= 0, whereI is
the identical matrix;

(C2) for all x1, x2 ∈ R
n the functions f : R

n → R
n, W : R

n → R
n satisfy

|| f (x1) − f (x2)|| + ‖W (x1) − W (x2)‖ ≤ L||x1 − x2||,

where L > 0 is a constant;

(C3) sup
x∈Rn

|| f (x)|| + sup
x∈Rn

||W (x)|| = M0 < ∞;
(C4) the matrices A and B commute and the real parts of all eigenvalues of A +

ln(I + B) are negative.

Under these conditions a solution z(t) = z(t, t0, z0), z0 ∈ R
n, of (6.6.37) exists

and is unique on [t0,∞).

Consider an unbounded and strictly increasing sequence θ with elements θi , i −
1 < θi < i + 2, i ∈ Z. Let us denote by Z(t, s) the transition matrix of the linear
homogeneous system

z′(t) = Az(t),

Δz|t=θi = Bz(θi ). (6.6.38)

Condition (C4) implies that there exist positive numbers N and ω, which do not
depend on θ, such that ||Z(t, s)|| ≤ Ne−ω(t−s), t ≥ s. In what follows, we shall
denote by Z(t, s, ξ) the transition matrix Z(t, s) if θ = ζ(ξ).

We shall need the following additional assumptions:

(C5) NL

[
2

ω
+ eω

1 − e−ω

]

< 1;
(C6) −ω + NL + ln(1 + NL) < 0.

The solution z(t) = z(t, t0, z0) of (6.6.37) satisfies the following integral equation
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z(t) = Z(t, t0, t0)z0+
t∫

t0

Z(t, s, t0) f (z(s))ds +
∑

t0≤ζi <t

Z(t, ζi (t0), t0)W (z(ζi (t0))).

Using the last formula and the technique of Chap. 7 [67], one can verify that all
solutions eventually, as t increases, enter the tube with the radius M = NM0[ 1ω +

eω

1−e−ω ], t ∈ R. That is, the discussion of this section can be made assuming that
all solutions are inside the tube. Moreover, if the sequence κ(t0) is periodic with
a period p ∈ N, then there is a solution of (6.6.37) with the same period, and its
integral curve is placed in the tube.

We assume that:

(C7) Bx + W (x) �= 0, if ‖x‖ ≤ M.

The last condition implies that periodic solutions are different for different p.

Denote byPC the set of all solutions z(t) = z(t, t0, z0), t0 ∈ Λ, z0 ∈ R
n, t ≥ t0

of (6.6.37), and denote PCA = {z ∈ PC : ‖z(t0)‖ < M, t0 ∈ Λ}. In the next
subsection, we define conditions with which PCA is a chaotic attractor.

6.6.2 The Devaney’s Chaos

Let us assume that the map H admits all Devaney’s ingredients of chaos on the set
Λ, that is:

1. there exists a positive δ0 such that for each t ∈ Λ and ε > 0 there is a point t̃ ∈ Λ

with |t − t̃ | < ε and |Hi (t)− Hi (t̃)| ≥ δ0 for some positive integer i (sensitivity);
2. there exists an element t∗ ∈ Λ such that the set Hi (t∗), i ≥ 0, is dense in Λ

(transitivity);
3. the set of period -p points, p ≥ 1, is dense in Λ (density of periodic points).

Let us define the chaos for the discontinuous dynamics of (6.6.37).

Definition 6.20 We say that (6.6.37) is sensitive on Λ if there exist positive real
numbers ε0, ε1 such that for each t0 ∈ Λ, and δ > 0 one can find a number t1 ∈
Λ, |t0 − t1| < δ, such that for each couple of solutions z(t) = z(t, t0, z0), z1(t) =
z(t, t1, z1), z0, z1 ∈ R

n, there exists an interval Q ⊂ [t0,∞)with the length not less
than ε1 such that ||z(t)−z1(t)|| ≥ ε0, t ∈ Q, and there are no points of discontinuity
of z(t), z1(t) in Q.

Definition 6.21 The set of all periodic solutions φ(t) = φ(t, t0), t0 ∈ Λ, of (6.6.37)
is called dense in PC if for every solution z(t) ∈ PC and each ε > 0, E > 0,
there exist a periodic solution φ(t, t∗), t∗ ∈ Λ, and an interval J ⊂ [t0,∞) with the
length E such that φ(t)(ε, J )z(t).

Definition 6.22 A solution z∗(t) ∈ PC of (6.6.37) is called dense in the set of all
orbits of PC if for every solution z(t) ∈ PC of (6.6.37), and each ε > 0, E > 0,

http://dx.doi.org/10.1007/978-3-662-47500-3_7
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there exist an interval J ⊂ [0,∞) with the length E and a real number ξ such that
z∗(t + ξ)(ε, J )z(t).

Definition 6.23 The problem (6.6.37) is chaotic if: (i) it is sensitive; (ii) the set of
all periodic solutions φ(t, t0), t0 ∈ Λ, is dense in PC ; (iii) there exists a solution
z∗(t), which is dense inPC .

Remark 6.4 Definitions of the chaotic ingredients have been worked out in detail
issuing from the two reasons: the considered system is non-autonomous and con-
sequently we analyze integral curves, but not trajectories; the system is impulsive
and different solutions have different points of discontinuity that necessitates the
B-topology.

Theorem 6.10 Assume that conditions (C1)–(C6) are fulfilled. Then the set of all
periodic solutions φ(t, t0), t0 ∈ Λ, of (6.6.37) is dense in PC .

Proof Fix t1 ∈ Λ and E, ε > 0. The density of periodic points of H and uniform
continuity of this map imply that for an arbitrary large number T̃ there exists a
sequence ζ(t0), defined by a periodic sequence κ(t0), such that ‖ζ(t1)−ζ(t0)‖Q < ε,

where Q = (t1, t1 + T̃ + E). We shall find the number T̃ so large that solution
z(t) = z(t, t1, z1), ‖z1‖ < M, is ε-equivalent toφ(t, t0) on J = (t1+T̃ , t1+T̃ +E).

Denote by Z1(t, s) = Z(t, s, t1) and Z2(t, s) = Z(t, s, t0), t ≥ s, the transition
matrices. We have that

z(t) = Z1(t, 1)z(1) +
t∫

c1

Z1(t, s) f (z(s))ds +
∑

1≤ζi <t

Z1(t, ζi (t1))W (z(ζi (t1))),

φ(t) = Z2(t, 1)φ(1) +
t∫

c1

Z2(t, s) f (φ(s))ds +
∑

1≤ζi <t

Z2(t, ζi (t0))W (φ(ζi (t0))).

The difference between z(t) and φ(t) cannot be evaluated by using the last two
expressions since the moments of discontinuities do not coincide. The method of
B-equivalence is helpful here. Introduce the following B-maps

W 1
i (z) = (I + B)

[

(eA(ζi (t1)−ζ j (t0)) − I )z +
∫ ζi (t1)

ζ j (t0)
eA(ζi (t1)−s) f (z(s))ds

]

+

W ((I + B)[eA(ζi (t1)−ζ j (t0))z +
∫ ζi (t1)

ζ j (t0)
eA(ζi (t1)−s) f (z(s))ds])−

∫ ζi (t1)

ζ j (t0)
eA(ζi (t1)−s) f (z1(s))ds − W (z),
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where z(t), z1(t), z(ζi (t0)) = z, z1(ζi (t1)) = z(ζi (t1)+), are solutions of the equa-
tion z′ = Az. One can easily verify that M1 = sup

‖z‖≤M,i∈Z
‖W 1

i (z)‖ < ∞. Consider

the following system

v′(t) = Av(t) + f (v), t �= ζi (t0),

Δv|t=ζi (t0) = Bv(ζi (t0)) + W (v(ζi (t0))) + W 1
i (v(ζi (t0))), (6.6.39)

together with the system

z′(t) = Az(t) + f (z), t �= ζi (t1),

Δ|t=ζi (t1) = Bz(ζi (t1)) + W (ζi (t1)), (6.6.40)

where t0, t1 are the numbers under discussion.
Systems (6.6.39) and (6.6.40) are B-equivalent. That is, their solutions with the

same initial condition coincide on the common domain if t /∈ ̂(ζi (t0), ζi (t1)], i ∈ Z.

So, if v(t), v(1) = z(1), is the solution of (6.6.39), then v(t) = z(t) for all t /∈
̂(ζi (t0), ζi (t1)], i ∈ Z. For v(t) we have that

v(t) = Z2(t, 1)v(1) +
t∫

c1

Z2(t, s) f (v(s))ds +
∑

1≤ζi <t

Z2(t, ζi (t0))[W (v(ζi (t0)) + W1(v(ζi (t0)))].

Thus,

‖φ(t) − v(t)‖ ≤ ‖φ(1) − v(1)‖‖Z2(t, 1)‖ +
∫ t

c1
‖Z2(t, s)‖L‖φ(s) − v(s)‖ds +

∑

1≤ζ j (t0)<t

‖Z2(t, ζ j (t0))‖L‖φ(ζ j (t0)) − v(ζ j (t0))‖ +
∑

1≤ζ j (t0)<t

‖Z2(t, ζ j (t0))‖‖W1(v(ζi (t0))‖ ≤

2MN + M1
eω

1 − e−ω
+

∫ t

c1
Ne−ω(t−s)L‖z(s) − v(s)‖ds +

∑

1≤ζ j <t

Ne−ω(t−ζ j (t0))L‖v(ζ j (t0)) − v(ζ j (t0))‖.

Now, applying Lemma2.5.1 [67], we can find that

‖z(t) − v(t)‖ ≤
(

2MN + M1
eω

1 − e−ω

)

e(−ω+NL+ln(1+NL))(t−1).
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The last inequality implies that ‖z(t)−v(t)‖ < ε if t > T̃ , t /∈ ̂[ζi (t0), ζi (t1)], i ≥ 0,

where T̃ = 1 + ln

(
ε

2MN + M1eω(1 − e−ω)−1

)

(−ω + NL + ln(1 + NL))−1, (we

may assume that ε < 2M). That is why, z(t)(ε, J )φ(t) if J = (t1 + T̃ , t1 + T̃ + E).

The theorem is proved.

Theorem 6.11 Assume that conditions (C1)–(C6) are fulfilled. Then there exists a
solution of (6.6.37), which is dense in PC .

Proof Fix positive E, ε, and t∗ ∈ Λ such that the orbit of t∗ is dense in Λ. Set
z∗(t) = z(t, t∗, z∗), ‖z∗‖ < M. Let us prove that z∗(t) is the dense solution.

Consider an arbitrary solution z(t) = z(t, t0, z0) ∈ PC . Consider an interval
J1 = (0, E1), where E1 is an arbitrarily large positive number. By density of the
orbit of t∗ and uniform continuity of H there exists a natural m such that

‖ζ(t1) − ζ(t∗, m)‖J1 < ε, (6.6.41)

where ζ(t∗, m) = {ζi+m(t∗)}.
We have

z∗(t + m) = Z∗(t + m, 1 + m)z∗(1 + m) +
∫ t+m

1+m
Z∗(t + m, u) f (z∗(u))du+

∑

1+m≤ζi (t0)<t+m

Z∗(t + m, ζi (t0))W (z∗(ζi (t0))) = Z∗(t + m, 1 + m)z∗(1 + m)+

∫ t

1
Z∗(t, u) f (z∗(u + m))du +

∑

1+m≤ζi (t0)<t+m

Z∗(t + m, ζi (t0))W (z∗(ζi (t0))),

and

z1(t) = Z1(t, 1)z1(1) +
∫ t

1
Z1(t, u) f (z1(u))du +

∑

1≤ζi (t1)<t

Z1(t, ζi (t1))W (z1(ζi (t1))),

where Z∗ and Z1 are fundamental matrices corresponding to points t∗ and t1, respec-
tively. Now, by means of the last two formulas, similarly to proof of Theorem6.10,
using (6.6.41) and the B-equivalence technique, we can find a sufficiently large num-
ber E1 > 2E, and a natural number m such that z∗(t +m) and z1(t) are ε-equivalent
on J = (E1/2, E1). The theorem is proved.

Let m = max|u|≤1
‖eAu‖, m = min|u|≤1

‖eAu‖. Condition (C7) implies that

η = min‖x‖≤M
(Bx + W (x)) > 0.
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From now on we make the assumption:

(C8) L <
mη

2m M
min

{

1,
mm

m + m

}

.

Theorem 6.12 Assume that conditions (C1)–(C8) are fulfilled. Then (6.6.37) is
sensitive on PC .

Proof Fix a solution z(t) = z(t, t0, z0), t0 ∈ Λ, z0 ∈ R
n, and a positive δ. By

sensitivity of H there exist t1 ∈ Λ, k > 0, such that |t0 − t1| < δ, |ζk(t0)− ζk(t1)| ≥
δ0. Consequently, by uniform continuity of H, there exist numbers δ1, δ2, which do
not depend on k and t0, t1 ∈ Λ, such that |ζk−1(t0) − ζk−1(t1)| ≥ δ1, |ζk−2(t0) −
ζk−2(t1)| ≥ δ2.Obviously, one can assume that k > 3.Moreover, uniform continuity
of H implies that k can be an arbitrarily large number. Take arbitrary z1 ∈ R

n and
solution z1(t) = z(t, t1, z1).

Now, let us prove the sensitiveness through the solution z1(t).
Condition (C8) implies that there exists a positive number ν such that

2mM

mη
< ν <

mη − 2mML

m
.

We shall show that the constants ε0, ε1 for Definition6.20 can be taken equal
to ε0 = min (mη − m(ν + 2LM), mν − m2LM), ε1 = min (δ, 1

2 (1 − δ)), where
δ = max (δ0, δ1, δ2), δ = min (δ0, δ1, δ2). One can easily see that among numbers
k and k − 1 there exists one , let us say k itself, such that |ζk(t0) − ζk(t1)| ≥ ε1 and
interval [ζk(t0) − ε1, ζk(t0)) does not have points of discontinuity from ζ(t0) and
ζ(t1). Assume that ‖z(ζk(t0)) − z1(ζk(t0))‖ < ν. Then, for t ∈ [ζk(t0), ζk(t1)],

z(t) = eA(t−ζk (t0))(I + B)z((ζk(t0))

+
∫ t

ζk (t0)
eA(t−s) f (z(s))ds + eA(t−ζk (t0))W (z((ζk(t0))),

z1(t) = eA(t−ζk (t0))z1((ζk(t0)) +
∫ t

ζk (t0)
eA(t−s) f (z1(s))ds.

We have that

‖z(t)− z1(t)‖ = ‖eA(t−ζk (t0))[Bz(ζk(t0))+ W (z(ζk(t0)))]+eA(t−ζk(t0))[z((ζk(t0))−

z1((ζk(t0))] +
∫ t

ζk (t0)
eA(t−s)( f (z(s)) − f (z1(s)))ds‖ ≥ mη − m(ν + 2LM) ≥ ε0.

If ‖z(ζk(t0)) − z1(ζk(t0))‖ > ν, then, for t ∈ [ζk(t0) − ε1, ζk(t0)),

z(t) = eA(t−ζk (t0))z((ζk(t0)) +
∫ t

ζk (t0)
eA(t−s) f (z(s))ds,
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z1(t) = eA(t−ζk (t0))z1((ζk(t0)) +
∫ t

ζk(t0)
eA(t−s) f (z1(s))ds.

and ‖z(t) − z1(t)‖ ≥ mν − m2LM ≥ ε0. The theorem is proved.

On the basis of Theorems6.10–6.12, we can conclude that (6.6.37) admits the
Devaney’s chaos.

It seems natural to consider the chaos only for uniformly bounded solutions on
[0,∞), since the domain of chaos is always assumed to be a compact set, but we
consider chaotic properties of all solutions, since the chaotic scenario for these
unbounded solutions starts at the moment they reach the region where solutions
fromPCA are placed. This set is a chaotic attractor as it is easily seen thatPCA
admits defined above all ingredients of Devaney’s chaos.

6.6.3 Shadowing Property

In this subsection, we give definitions of shadowing property for the flow of system
(6.6.37), and prove it for this system if the generatormap has the property. A corollary
of the result for a map H with the hyperbolic set Λ is obtained.

Assume that the generator map, H(t), is defined in a neighborhood of the unit
interval I.

The following definitions are from [14, 59, 68, 69] and are adapted for our system.
A sequence {κi }N

0 , N ≤ ∞, is said to be a true trajectory of H, if κ0 ∈ Λ and
κi+1 = H(κi ), 0 ≤ i < N .

A sequence {πi }N
0 , N ≤ ∞, is said to be a κ-pseudo-orbit, κ > 0, of H, if

|πi+1 − H(πi )| < κ, and |pi − λ| < κ for all 0 ≤ i < N , and λ ∈ Λ.

The true orbit {κi }N
0 δ-shadows the pseudo-orbit {πi }N

0 if |κi − πi | < δ for all i.
A sequence {zi }N

0 is said to be a true discrete orbit of (6.6.37) if zi+1 =
z(ζi+1, ζi , zi ), where ζi = i + κi for all 0 ≤ i < N . Let δ be a positive num-
ber, and k a positive integer. A sequence yik such that 0 ≤ ik ≤ N if N < ∞, and
i ≥ 0, if N = ∞, is said to be a discrete δ-pseudo-orbit for the problem (6.6.37)
with associated sequence {pi }N

0 if ‖y(i+1)k − w(p(i+1)k)‖ < δ for all admissible i,
and the solution w(t) of the initial value problem

w′(t) = Aw(t) + f (w),

Δ|t=pi w = Bw(pi ) + W (w(pi )),

w(pik) = yik . (6.6.42)

A discrete δ-pseudo-orbit yik of problem (6.6.37) is said to be ε-shadowed by a
true orbit {zi }N

0 of (6.6.37) if ‖zik − yik‖ < ε, and |ζik − pik | < ε for all i such
that 0 ≤ ik ≤ N if N < ∞, and i ≥ 0, if N = ∞. Consider the logistic func-
tion h(x, μ) ≡ μx(1 − x) with coefficient μ = 3.8. It is proved in [18] that for
ε = 10−8, N = 107, p0 = 0.4, the pseudo-orbit pi , i = 0 to N , is ε-shadowed by
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a true orbit, if δ = 3× 10−14. Several values of μ were claimed to be proper for the
shadowing.

Taking into account this result as well as results from [14, 58, 59, 70, 71] the
following assertion is very useful.

Theorem 6.13 Assume that conditions (C1)–(C6) are fulfilled. Then, given ε > 0,
there exists 0 < δ < ε and a positive integer k such that a δ-pseudo-orbit yik of
problem (6.6.37) is ε-shadowed by a true orbit {zi }N

0 of (6.6.37) if pi = i + πi , and
πi is δ-shadowed by {κi }N

0 .

Proof Fix positive ε and nonnegative integer i. We assume that ‖zik − yik‖ < ε,

and we will find δ and k, such that ‖z(i+1)k − y(i+1)k‖ < ε. Assume, without loss of
generality, that ζik < pik, and let z(t) = z(t, ζik, zik). We have that

‖z(pik) − yik‖ ≤ ‖z(pik) − zik‖ + ‖zik − yik‖ =
∥
∥
∥eA(pik−ζik)zik +

pik∫

ζik

eA(t−s) f (z(s))ds
∥
∥
∥ + ‖zik − yik‖ ≤

‖[I − eA(pik−ζik )]‖‖zik‖ + δNM0 + ε = δφ(δ) + ε,

where φ(s) is a bounded function.
Similarly to the proof of Theorem6.10 we find that (6.6.37) is B-equivalent to the

following system

v′(t) = Av(t) + f (v),

Δv|t=pi = Bv(pi ) + W (v(pi )) + W̃ 1
i (v(pi )),

v(t0) = z0, (t0, z0) ∈ Λ × R
n, (6.6.43)

with M2 = sup
‖z‖≤M,i∈Z

‖W̃ 1
i (z)‖ < ∞.

Then we can obtain that

‖z(t) − w(t)‖ ≤
[

N (δφ(δ) + ε) + M2
eω

1 − e−ω

]

e(−ω+NL+ln(1+NL))(t−1),

if t /∈ ̂[pi , ζi ). Now, choose k sufficiently large, and δ small for the right side of the
last inequality to be less than ε/3 at t = (i + 1)k − 1, and δmax(1, φ(δ)) < ε/3.
Then ‖z(i+1)k − y(i+1)k‖ < ‖z(i+1)k − z(p(i+1)k)‖ + ‖z(p(i+1)k) − w(p(i+1)k)‖ +
‖y(i+1)k − w(p(i+1)k)‖ < ε. The theorem is proved.

Now, by using the Shadowing Theorem [59, 68, 69] one can easily prove that the
following assertion is true.

Theorem 6.14 Assume that conditions (C1)–(C6) are fulfilled and H has a compact
positively invariant hyperbolic set Λ ⊂ I. Then, given ε > 0, there exist 0 < δ < ε,
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and a positive integer k such that a δ-pseudo-orbit {yik}∞0 , of problem (6.6.37) is
ε-shadowed by a true orbit {zi }∞0 of (6.6.37) if πi = pi −i, i ≥ 0, is a δ-pseudo-orbit
of H.

6.6.4 Simulations

Consider the following initial value problem

x ′
1 = 2/5x2 + l sin2 x2,

x ′
2 = 2/5x1 + l sin2 x1, t �= ζi (t0),

Δx1|t=ζi (t0) = −4

3
x1,

Δx2|t=ζi (t0) = −4

3
x2 + W (x2), (6.6.44)

where W (s) = 1 + s2, if |s| ≤ l, l is a positive constant, and W (s) = 1 + l2, if
|s| > l. One can easily see that all the functions are Lipschitzian with a constant
proportional to l. The matrices of coefficients

A =
(

0 2/5
2/5 0

)

, B =
( −4/3 0

0 − 4/3

)

commute, and the eigenvalues of the matrix

A + Ln (I + B) =
( − ln 3 2/5

2/5 − ln 3

)

are negative: λ1,2 = − ln 3 ± 2/5 < 0.
The results of the last sectionmake possible the following appropriate simulations.
Choose μ = 3.8 and l = 10−2 in (6.6.44) and consider the solution x(t) =

(x1, x2) with initial moments t0 = 7/9 and the initial value x(t0) = (0.005, 0.002).
If one considers the sequence (x1(n), x2(n)), n = 1, 2, 3, . . . , 75,000, in x1 − x2

plane, then the attractor seen in Fig. 6.4 is obtained. To approve that the attractor is
chaotic, we verify the conditions of the chaotic theorems in the following way. If
|s| ≤ l, then− 4

3 s +W (s) = s2− 4
3 s +1, and it is never equal to zero. If |s| > l, then

− 4
3 s+W (s) = l2− 4

3 s+1. For the last expression to be zero, we need, s = 3
4 (1+l2).

It is seen in the figure that the second coordinate takes values between 0.32 and 0.42.
This is the region where − 4

3 s + W (s) does not have zeros. All the other conditions
required by theorems of this section could be easily checked with sufficiently small
coefficient l.

Now, consider (6.6.44) withμ = 3.8282. Then the phenomenon of intermittency,
i.e., irregular switching between periodic and chaotic behavior, for the solution x(t)
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Fig. 6.4 The chaotic attractor by a stroboscopic sequence (x1(n), x2(n)), 1 ≤ n ≤ 75,000
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Fig. 6.5 The intermittency of the both coordinates x1(t), x2(t) is observable

can be observed in Fig. 6.5. The coefficient’s value is such that the logistic map
admits intermittency [8].

6.7 Chaos in the Forced Duffing Equation

6.7.1 Introduction and Preliminaries

The Duffing equation is a second-order differential equation of the type

x ′′ + c1x ′ + c2x + c3x3 = B cos(ω0t), (6.7.45)

where x is a function of t and B, c1, c2, c3, ω0 are fixed real numbers [72].
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Ueda examined chaos in an electrical circuit with a nonlinear inductor [73, 74]
using the Duffing equation, and gave description for the parameters of these type
of equations [75]. Moreover, in [76–80], the Duffing equations have been used to
model physical systems. Further, Thompson and Stewart [81] provided many more
details on the equation (6.7.45).

In the last decades, the effect of non-smoothness and discontinuity for the chaos
phenomena was widely investigated and realized [12, 44–46, 67, 82–87]. Non-
smooth nonlinear characteristics are often encountered within the system compo-
nents while considering real-world problems and commonly used in control systems,
such as mechanical, hydraulic, magnetic, biomedical, and physical systems [88, 89].
Moreover, these nonlinearities limit the system performance and it is known that
they vary with time [89]. For systems with non-smooth characteristics, the control
problem is very complicated and becomes even more difficult to handle in the case
of unknown time-varying parameters [88, 89]. There have been developed control
techniques to diminish the effects of unknown non-smooth nonlinearities [90, 91].

One of the important applications of nonlinear oscillators subjected to non-smooth
perturbations is the vibro-impact oscillators which has a wide spectrum of studies
among scientists and engineers. In the presence or absence of friction, the motion
of vibro-impact systems is usually described by non-smooth nonlinear differential
equations [27, 92–104]. Such systems have a complex dynamic structure that com-
prises chaotic motions, subharmonic oscillations, and coexistence of different attrac-
tors for the same excitation and system parameters under different initial data [12,
88–91, 96, 102]. In general, these systems involve multiple impact interactions in
the form of jumps in the state space. On the other hand, vibro-impact dynamics
has applications on lumped systems such as bouncing ball on a vibrating platform,
mass-spring-dashpot systems, and on continuous systems such as strings and beams,
which differ from lumped systems [96]. In papers [105, 106], feedback-based control
of impact oscillators under asymmetric double-sided barriers is proposed and it was
shown that chaotic impact oscillators can be controlled and kept in a desired posi-
tion using a synchronization scheme. The OGY control method is applied to impact
oscillators and stabilized their chaotic attractor on period-1 and period-2 orbits using
small time-dependent perturbations of the driving frequency [107]. Moreover, some
results pertaining to chaoticmotions in a periodically forced impacting system,which
is analogous to the version of Duffing equations with negative linear stiffness have
been presented in [108].

Our investigation demonstrates that processes comprising discontinuity phenom-
ena is convenient to generate rigorously approved chaotic motions from the theoret-
ical point of view. This is not surprising since the same we have already for discrete
equations such as the logistic map and the Hénon map [109, 110]. But in our case,
we have proved assertively the presence of the chaos for continuous dynamics. We
want to emphasize that despite the most popular and well-known examples of chaos
are the Lorenz systems and the Van der Pol equations, there are not definitely proved
results of the chaos for them. Most advanced result of the Lorenz systems is given
by J. Guckenheimer [64], where he considers not the system itself but the geomet-
ric approach. Similarly, the proof for the Van der Pol equations has been made by
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Levi [111] for the simplified version of the equation. On the other hand, for the Duff-
ing equations, the occurrence of chaotic period-doubling is discussed by making
simulations of bifurcation diagrams, but not proved mathematically [87, 112, 113].
Consequently, the problem of discovering chaos rigorously with precise indication
which kind of chaos is admitted continuous to be very actual for the nonlinear sci-
ence. Formodified systems, in our papers [44–46, 67, 82–84], we provide themethod
which allows to analyze the problems rigorously. Of course we do not pretend that
our results even are begin of the solution for the already discussed equation. But
we hope this constructive approach may give a light on solutions of the problems in
future.

Formation of chaos in systems with arbitrary large dimension is one of the sig-
nificant consequences of the present section. More precisely, our results show that
the chaos of one-dimensional maps can be extended to multidimensional systems. In
addition to this, extension of chaos control techniques for low-dimensional maps to
multidimensional systems is another result. Therefore, the present section leads for
the applications of theoretical results for one-dimensional maps to high dimensional
systems. In this sense, it is a continuation of our investigations which we start in
[44–46, 67, 82–84, 114, 115].

In the paper [116], besides the familiar period-doubling scenario to chaos, inter-
mittent and quasiperiodic routes to chaos as well as period-adding sequences and
Farey sequences are introduced in a nonlinear non-autonomous circuit, and verified
experimentally and through simulations. On the other hand, a control method with-
out feedback is developed for controlling a Duffing equation which admits chaos
through the period-doubling cascade [117, 118]. Two different modifications of the
OGY control method [119], which can lead to a better performance of the control
and the method presented by Pyragas [120] are applied to the classical Duffing oscil-
lator [72, 119], but in these cases the nature of chaos is not precise. Oppositely, in
our results, we prove the type of the existing chaos theoretically and use the OGY
method not for the classical Duffing equation but for the one which involves a pulse
function, such that we emphasis it to be considered as a primary object of analysis.

Switching systems have important applications in high dimensional systems and
hybrid systems [82, 121, 122], and the system taken into account in this section can
be considered as one example. Moreover, the systems with impacts are convenient
for simulations. The method and solutions that we present can be applied to hybrid
systems in the future, for instance to impulsive systems [27, 67]. In this section, we
construct chaos with prescribed properties such that chaos developed by using the
logisticmapwith slightly deviated characteristics. Consequently, it can be effectively
used for the security of communications and information using our chaos to mask
and unmask [39, 117, 123, 124]. Since we have the chaos with known properties,
it can also be used in master-slave systems and correspondingly to control these
type of systems [125, 126]. Moreover, the research in the artificial neural networks
emphasize that the deterministic chaos is a powerful mechanism for the storage and
retrieval of information in the dynamics of artificial neural networks [127–130].
Therefore, our results are also applicable to neuroscience.
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The main object of the present section is the following modified Duffing equation

x ′′ + d1x ′ + d2x + d3x3 = D cos(kπ t) + ν(t, t0, μ), (6.7.46)

where d1, d2, d3, D are real numbers and k is a natural number, the scalar pulse
function ν(t, t0, μ) is defined below.

Using the new variables x1 = x and x2 = x ′, one can reduce the differential
equation (6.7.46) to the system

x ′
1 = x2

x ′
2 = −d1x2 − d2x1 − d3x31 + D cos(kπ t) + ν(t, t0, μ).

(6.7.47)

Let R and N denote the sets of real numbers and natural numbers, respectively,
and I the unit interval [0, 1].

In this section, we will investigate also the system

z′(t) = Az(t) + f (t, z) + ν(t, t0, μ)

z(t0) = z0, (t0, z0) ∈ I × R
n,

(6.7.48)

which is the general form of the system (6.7.47).
In system (6.7.48), z ∈ R

n, t ∈ R+ = [0,∞), the n × n constant real-valued
matrix A has real parts of eigenvalues all negative. The function f (t, z) satisfies the
periodicity condition f (t +2, z) = f (t, z), t ∈ R+, and is Lipschitzian with respect
to z with the Lipschitz constant L .

Let us now, introduce the function ν(t, t0, μ) as follows

ν(t, t0, μ) =
{

m0, if ζ2i (t0, μ) < t ≤ ζ2i+1(t0, μ)

m1, if ζ2i+1(t0, μ) < t ≤ ζ2i+2(t0, μ),
(6.7.49)

where i is a nonnegative integer andm0, m1 ∈ R
n, such thatm0 �= m1.The sequence

ζ(t0, μ) = {ζi (t0, μ)}, i ≥ 0, is defined through the equation ζi (t0, μ) = i +
κi (t0, μ), with κi+1(t0, μ) = h(κi (t0, μ), μ), κ0(t0, μ) = t0, and h(s, μ) = μs(1−
s) is the logistic map, the central auxiliary instrument in the present section.

We shall need those values of the parameterμ,which are between 3.57 and 4, such
that the period-doubling cascade accumulates there to provide the chaotic structure
[8, 14] for the logistic map, h(s, μ). In paper [65], it was proved that the measure of
such μ is positive. In the sequel, we fix one of them, and notate it as μ∞. Moreover,
we will not indicate the dependence on the parameterμ, if there is no need to specify
it. Thus, for every t0 ∈ I, the sequence κ(t0) of real numbers κi , i ≥ 0, κ(t0) ⊂ I
is defined. The sequence ζ(t0) has the periodicity property if there exists a natural
number p such that ζi+p = ζi + p, for all i ≥ 0. In other words, if κi+p = κi , i ≥ 0.
The main object of the present section is to stabilize the periodic solutions of the
chaotic structure generated by the differential equation (6.7.46).
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We should point out that the adjoint linear equation of the nonperturbed Duffing
equation

x ′′ + d1x ′ + d2x + d3x3 = D cos(kπ t) (6.7.50)

has eigenvalues bothwith negative real parts. The logisticmap,which has the positive
Lyapunov exponent [131, 132], gives rise to the emergence of chaos in the main
equation (6.7.46) and generates the switching moments. That is, the chaotic scenario
in our model is developing “along” the time axis.

We suppose that the main reason of dealing an equation of the type of Eq. (6.7.46)
is that the generated chaos can give theway of analysis of systemswith discontinuous
perturbations, which is unfortunately far of to be complete [112].

The section is organized as follows. In Sect. 6.7.2, the existence of the chaotic
attractor is proved, through the period-doubling cascade. Section6.7.3 contains the
results of the OGY control of the chaos.

6.7.2 The Chaos Emergence

6.7.2.1 The Cascade: The Analysis Results

Let us start with the analysis of system (6.7.48). In what follows we assume that

sup
z∈Rn ,t∈R+

‖ f (t, z)‖ = M0 < ∞

and we denote the maximum of the real parts of the eigenvalues of matrix A by σ .
Note that σ is negative.

There exist a positive number N and a negative number α ≥ σ such that
∥
∥eAt

∥
∥ ≤

Neαt , for t ≥ 0. Therefore, we can find a natural number p0 such that
∥
∥eAp0

∥
∥ ≤

Neαp0 < 1. For p ≥ p0, we have

∥
∥
∥(I − eAp)−1

∥
∥
∥ ≤ 1

1 − Neαp
≤ 1

1 − Neαp0
.

Let us denote

K = max

{

max
1≤i≤p0−1

∥
∥
∥(I − eAi )−1

∥
∥
∥ ,

1

1 − Neαp0

}

, (6.7.51)

and in the sequel we assume also that

−KNL

α
< 1. (6.7.52)
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A function z(t), z(t0) = z0 is a solution of (6.7.48) on [t0,∞), t0 ∈ I if: (i) z(t) is
continuous on [t0,∞), (ii) the derivative z′(t) exists at each point t ∈ [t0,∞) with
the possible exception of the points ζi (t0), i ≥ 0 , where left-sided derivatives exist,
(iii) Equation (6.7.48) is satisfied on each interval (ζi (t0), ζi+1(t0)], i ≥ 0 [44].

In [44–46, 67, 83, 84], we develop the approach, when a system of differential
equations inserted with a chaotic element, the generator of switching moments, pro-
duces a chaotic attractor. It is proved that the attractor presents Li–Yorke [46, 83]
and Devaney [44] chaos, as well as a quasi-minimal set [45]. In the same time, it is
known that both Li–Yorke and Devaney scenario of chaos emergence are difficult in
the simulation with the logistic map. Moreover, speaking generally, period-doubling
cascade route to the chaos is most celebrated in simulations. That is why, in the
present section we consider the route to identify a chaotic structure for the equation.
One must say, also that, it is a difficult task to observe chaos in multidimensional
systems, exceptionally with clear theoretically supported properties. The next result
is suitable for systems with arbitrary finite dimension.

Consider the sequence of period-doubling bifurcation values {μm}, μm → μ∞
as m → ∞ for the logistic map h(s, μ) = μs(1 − s) [133].

We shall say that the system (6.7.48) has a chaos through the period-doubling
cascade at μ = μ∞, if for each p-periodic sequence {κi (t0, μ)} , p ∈ N, where t0 ∈
I, andμ is equal either toμm, m ∈ N orμ∞, there exists a unique periodic solution,
z p(t), of the system (6.7.48) with the same μ. Moreover, all trajectories of these
solutions lie in a bounded domain. This definition is natural since periodic solutions,
which correspond to different sequences κ, do not coincide, and consequently, the
Eq. (6.7.48) with μ = μ∞ has infinitely many periodic solutions.

The principal result of this section is the following theorem.

Theorem 6.15 System (6.7.48) admits the chaos through period-doubling cascade
at μ∞.

Proof Fix μ and t0 ∈ I such that the sequence {κi (t0, μ)} is p-periodic, p ∈ N. It
is easily seen that to verify the theorem, one needs to prove that the system (6.7.48)
with the sameμ admits a periodic solution, z p(t), and the norms of all these periodic
solutionswith all the possibleμ, are boundedwith one and the same positive number.

Set ρ0 = max {‖m0‖ , ‖m1‖} , and pick a number H = −KN

α
(M0 + ρ0), where

the number K is defined by the formula (6.7.51). One can see that H does not depend
on p.

We shall consider the cases in which p is even and odd. Let us start with p is
even. Using the standard technique [134], one can verify that the solution z p(t), if
exists, satisfies the integral equation

z p(t) =
∫ p

0

(

I − eAp
)−1

eA(p−s) [ f (t + s, z p(t + s)) + ν(t + s, t0, μ)
]

ds.

Introduce the set B1 of continuous functions ϕ : [t0,∞) → R
n such that ϕ(t +

p) = ϕ(t), t ≥ t0 and ‖ϕ‖1 ≤ H, where ‖ϕ‖1 = supt≥t0 ‖ϕ(t)‖ .
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Define an operator S on the set B1 through the equation

S(ϕ)(t) =
∫ p

0

(

I − eAp
)−1

eA(p−s) [ f (t + s, ϕ(t + s)) + ν(t + s, t0, μ)] ds.

First of all, we shall check that S(B1) ⊆ B1.

Since p is even, we have for ϕ ∈ B1 that f (t + p + s, ϕ(t + p + s)) = f (t +
s, ϕ(t + s)) and ν(t + p + s, t0, μ) = ν(t + s, t0, μ) for each t ≥ t0 and s ∈ [0, p].
Therefore, S(ϕ)(t + p) = S(ϕ)(t) for all t ≥ t0.

Let us define M = maxs∈[0,p]
∥
∥
∥

(

I − eAp
)−1

eA(p−s)
∥
∥
∥ . Take ϕ ∈ B1, and fix t ∈

[t0,∞) and an arbitrary ε > 0.Because the functions f (t, z) and ϕ(t) are continuous
in all their arguments, the function f (t, ϕ(t)) is also continuous. Therefore, there
exists a number δ1 > 0 such that for any s ∈ [0, p] the inequality

∥
∥ f (t + s, ϕ(t + s)) − f (t + s, ϕ(t + s))

∥
∥ <

ε

2pM

holds, provided that
∣
∣t − t

∣
∣ < δ1.

Set δ = min

{

δ1,
ε

2pM ‖m0 − m1‖
}

. In the case that
∣
∣t − t

∣
∣ < δ, one can verify

that
∫ p

0

∥
∥ν(t + s, t0, μ) − ν(t + s, t0, μ)

∥
∥ ds < pδ ‖m0 − m1‖ ,

since there are at most p subintervals of [0, p], each with a length less than δ, such
that in each of these subintervals the functions ν(t + s, t0, μ) and ν(t + s, t0, μ),

s ∈ [0, p], are different from each other.
Thus, if

∣
∣t − t

∣
∣ < δ, then we obtain that

∥
∥
∥S(ϕ)(t) − S(ϕ)(t)

∥
∥
∥ =

∥
∥
∥

∫ p

0

(

I − eAp
)−1

eA(p−s)
[

f (t + s, ϕ(t + s))

+ν(t + s, t0, μ) − f (t + s, ϕ(t + s)) − ν(t + s, t0, μ)
]

ds
∥
∥
∥

≤ M
∫ p

0

∥
∥ f (t + s, ϕ(t + s)) − f (t + s, ϕ(t + s))

∥
∥ ds

+M
∫ p

0

∥
∥ν(t + s, t0, μ) − ν(t + s, t0, μ)

∥
∥ ds

<
ε

2
+ pδM ‖m0 − m1‖

≤ ε.

Hence, S(ϕ)(t) is continuous on the interval [t0,∞).On the other hand, for ϕ ∈ B1,
one can attain for all t ≥ t0 that
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‖S(ϕ)(t)‖ ≤
∫ p

0

∥
∥
∥
∥

(

I − eAp
)−1

∥
∥
∥
∥

∥
∥
∥eA(p−s)

∥
∥
∥ ‖ f (t + s, ϕ(t + s)) + ν(t + s, t0, μ)‖ ds

≤ KN(M0 + ρ0)

∫ p

0
eα(p−s)ds

= −KN

α
(M0 + ρ0)(1 − eαp)

≤ H.

The last inequality implies that ‖S(ϕ)‖1 ≤ H. Consequently, S(B1) ⊆ B1.

Next, we shall show that the operator S is a contraction. For ϕ1, ϕ2 ∈ B1, we
have that

S(ϕ1)(t) − S(ϕ2)(t)

=
∫ p

0

(

I − eAp
)−1

eA(p−s) [ f (t + s, ϕ1(t + s)) − f (t + s, ϕ2(t + s))] ds.

Therefore,

‖S(ϕ1)(t) − S(ϕ2)(t)‖
≤

∫ p

0

∥
∥
∥
∥

(

I − eAp
)−1

∥
∥
∥
∥

∥
∥
∥eA(p−s)

∥
∥
∥ ‖ f (t + s, ϕ1(t + s)) − f (t + s, ϕ2(t + s))‖ ds

≤ K
∫ p

0
NLeα(p−s) ‖ϕ1(t + s) − ϕ2(t + s)‖ ds

≤ −KNL

α
(1 − eαp) ‖ϕ1 − ϕ2‖1

≤ −KNL

α
‖ϕ1 − ϕ2‖1 ,

and hence ‖S(ϕ1) − S(ϕ2)‖1 ≤ −KNL

α
‖ϕ1 − ϕ2‖1 .

Since
−KNL

α
< 1, the operator S is a contraction. Thus, there exists a unique

fixed point of S, and for each p-periodic {κi (t0, μ)}, there exists a unique solution
of the system (6.7.48) with the same period, provided that p is even.

In the case that p is an odd natural number, due to its definition, the relay function
ν(t, t0, μ) is 2p-periodic. Therefore, if z p(t) exists, it satisfies the integral equation

z p(t) =
∫ 2p

0

(

I − e2Ap
)−1

eA(2p−s) [ f (t + s, z p(t + s)) + ν(t + s, t0)
]

ds.

Introduce the set B2 of continuous functions ϕ : [t0,∞) → R
n such that ϕ(t +

2p) = ϕ(t), t ≥ t0 and ‖ϕ‖1 ≤ H, and define an operator S : B2 → B2 by means
of the equation
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Table 6.1 Correlation between p and the period of z p(t)

Range of μ p Period of z p(t)

1 < μ < 3 1 2

3 < μ < 3.4494 2 2

3.4494 < μ < 3.5440 4 4

3.5440 < μ < 3.5644 8 8

3.5644 < μ < 3.5687 16 16

3.5687 < μ < 3.5696 32 32

· · · · · · · · ·
3.6265 < μ < 3.6304 6 6

· · · · · · · · ·
3.7382 < μ < 3.7411 5 10

· · · · · · · · ·
3.8284 < μ < 3.8415 3 6

· · · · · · · · ·

S(ϕ)(t) =
∫ 2p

0

(

I − e2Ap
)−1

eA(2p−s) [ f (t + s, ϕ(t + s)) + ν(t + s, t0, μ)] ds.

Similar to the case of even p, it can be proved that S is a contraction. Therefore,
for each p-periodic sequence {κi (t0, μ)} , where p is odd, there exists a unique 2p-
periodic solution z p(t) of the system (6.7.48) such that

∥
∥z p(t)

∥
∥ ≤ H for all t ≥ t0.

Consequently, system (6.7.48) admits the chaos through period-doubling cascade
at μ∞. �

As a result of the proof of Theorem6.15 and making use of various parameter
values of period-doubling bifurcations for the logistic map h(s, μ) = μs(1 − s)
[5, 135], Table6.1 is constructed. The table indicates the periodicity dependence
between a p-periodic {κi (t0, μ)} and the unique periodic solution z p(t) of system
(6.7.48) with the same μ. In the table, we also specify the values of the parameter μ

for which the p-periodic {κi (t0, μ)} is stable, likewise the periodic solution z p(t) of
system (6.7.48).

If system (6.7.48) is compared with the system

z′(t) = Az(t) + ν(t, t0, μ)

z(t0) = z0, (t0, z0) ∈ I × R
n,

(6.7.53)

one can see that the difference is the presence of the function f (t, z), and the old
theorems from [44] can be repeated almost identically for system (6.7.48) by taking
into account the Lipschitz condition on the function f (t, z).
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6.7.2.2 The Duffing Equation’s Chaotic Behavior

In this part, we consider both the Duffing equation (6.7.46) and the corresponding
system (6.7.47) with the coefficients d1 = 0.18, d2 = 2, d3 = 0.00004, D =
0.02, k = 2, and m0 = 2, m1 = 1.

The bifurcation diagram of equation (6.7.46) with the specified coefficients is
shown in Fig. 6.6. In the range of μ values greater than 3.57, correlatively to the
behavior of the logistic map [93, 135], successive intervals of chaos and intervals of
stable periodic solutions, called the periodic windows, appear in the diagram.

At μ = 3, for which the period-doubling bifurcation for the logistic map occurs
for the first time [5, 133], splitting occurs in the bifurcation diagram of equation
(6.7.46) with the appointed coefficients, but period-doubling does not occur at this
parameter value. That is, up to the second bifurcation valueμ = 3.4494, all periodic
solutions of the Duffing equation have period 2. This is a prospective behavior, since
the periodicity of the periodic solution of the Duffing equation corresponding to a
p-periodic sequence {κi (t0, μ)} is 2p in the case of p is an odd integer.

If we denote by {rm} the sequence of the values of the parameter μ at which the
period-doubling bifurcations for the Duffing equation (6.7.46) with the given coeffi-
cients occur, it is numerically observed that this sequence coincideswith the sequence
{μm}, which has been defined above for the cascade of the logistic map, except the

(a)

(b) (c) (d)

Fig. 6.6 Bifurcation diagrams of theDuffing equation perturbedwith a pulse function x ′′+0.18x ′+
2x + 0.00004x3 − 0.02 cos(2π t) = ν(t, t0, μ), where m0 = 2 and m1 = 1. a The bifurcation
diagram where the parameter μ varies between 2.6 and 4.0. b Magnification of (a) where μ is
between 2.90 and 3.58. c Magnification of (b) whereμ is between 3.400 and 3.572. d Magnification
of (c) where μ changes from 3.460 to 3.571
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first term. That is, rm = μm+1, m ≥ 1. Consequently, when lim
m→∞

rm − rm+1

rm+1 − rm+2
is

evaluated, the universal constant known as the Feigenbaum number 4.6692016 . . .

is achieved [81, 132, 136].
In the regions where stable periodic solutions exist, for a fixed value of the para-

meterμ, the bifurcation diagram represents the values of the stable periodic solutions
of Eq. (6.7.46) at time t = ζ0 ∈ I , where ζ0 is the initial term of the periodic sequence
{ζi } corresponding to the same value of μ. We note that, for μm < μ < μm+1, there
are 2m different choices for the periodic sequence {ζi } with periodicity 2m, and this
is the reason for the observation of 2m different stable periodic solutions for these
values of the parameter.

A stable periodic solution in turn becomes unstable and is replaced by a newcouple
of stable solutions as the parameter μ increases through the bifurcation values. A
stable solution is replaced by a couple of stable periodic solutions of twice its period,
except at the parameter values corresponding to a p-periodic {κi }with p odd and the
process continues in this way. For such values of μ, the periodicity does not change,
by the same reasoning explained as above. In the intervals of chaos, all existing
periodic solutions are unstable.

In Fig. 6.7, one can see the larger image of the periodic window which starts at
μ = 3.8284, and its magnification for the parameter values between 3.8350 and
3.8600. It is observed that a similar copy of the whole bifurcation diagram reappears
in this region.

Now, let us check that the conditions of the last theorem are true for the sys-
tem (6.7.47). The matrix of coefficients of the system (6.7.47) with the assumed

coefficients is A =
(

0 1

−2 −0.18

)

.

The eigenvalues of the matrix A are a ∓ ib, where a = −0.09 and b =
√
2 − 0.092. The real Jordan form of the matrix A is given by J =

(

a −b

b a

)

and

the identity P−1AP = J is satisfied where P =
(

0 1

b a

)

and P−1 = 1

b

(−a 1

b 0

)

.

Evaluating the exponential matrix eAt we have

eAt = eat P

(

cos(bt) −sin(bt)

sin(bt) cos(bt)

)

P−1. (6.7.54)

Denote by ‖.‖ the matrix norm which is induced by the usual Euclidean norm in R
n .

That is,
‖Γ ‖ = max

{√
λ : λ is an eigenvalue of Γ T Γ

}

for any n × n matrix Γ with real entries, and Γ T denotes the transpose of the matrix
Γ [137].
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(a)

(b)

Fig. 6.7 The periodic windowwhich starts atμ = 3.8284 in the bifurcation diagram of the Duffing
equationperturbedwith a pulse function x ′′+0.18x ′+2x+0.00004x3−0.02 cos(2π t) = ν(t, t0, μ),
where m0 = 2 and m1 = 1. a The bifurcation diagram where μ is between 3.8250 and 3.8600. b
Magnification of (a) where μ changes from 3.8350 to 3.8600

One can see that

‖P‖ =
(

3

2
+

√
1 + 0.182

2

)1/2

,

and

∥
∥
∥P−1

∥
∥
∥ = 1√

2 − 0.092

(

3

2
+

√
1 + 0.182

2

)1/2

.

Therefore, using (6.7.54), we obtain
∥
∥
∥eAt

∥
∥
∥ ≤ Neαt where N = 3 + √

1 + 0.182√
8 − 0.182

and α = −0.09.
In what follows, we use approximation with accuracy of 7 digits in the decimal

part.
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For p0 = 4, Neαp0 =
(

3 + √
1 + 0.182√

8 − 0.182

)

e−0.36 ∼= 0.9926395 < 1. One can

easily evaluate that

max
1≤i≤3

{∥
∥
∥
∥

(

I − eJi
)−1

∥
∥
∥
∥

}

=
∥
∥
∥
∥

(

I − eJ1
)−1

∥
∥
∥
∥

∼= 0.8045044.

Then, using the matrix identity
(

I − eAt
)−1 = P

(

I − eJ t
)−1

P−1, the inequality

max
1≤i≤3

{∥
∥
∥
∥

(

I − eAi
)−1

∥
∥
∥
∥

}

≤ ‖P‖
∥
∥
∥P−1

∥
∥
∥ max
1≤i≤3

{∥
∥
∥
∥

(

I − eJi
)−1

∥
∥
∥
∥

}

∼= 1.1446324

is obtained. On the basis of above evaluations, one can find that

K = max

{

max
1≤i≤3

∥
∥
∥(I − eAi )−1

∥
∥
∥ ,

1

1 − Ne4α

}

∼= 135.8619956.

System (6.7.47) with the prescribed coefficients has the nonlinear term

f (t, x1, x2) =
[

0 − 0.00004x31

]T
.

The Lipschitz constant L for this function can be taken as 0.0003468 since the x1

values of the chaotic attractor satisfies the condition |x1| ≤ 1.7. Thus
−KNL

α
∼=

0.7448557 and the condition (6.7.52) is also satisfied.
We end up this part, by simulating a solution (x1, x2) of system (6.7.47) with

initial data x1(0.5) = 0.01, x2(0.5) = 0.025 and μ∞ = 3.8. In Fig. 6.8, the chaotic
behavior of the solution is revealed.

6.7.2.3 Lyapunov Exponents

The Lyapunov exponent is a measure of divergence of state trajectories, and is one of
the most important features of deterministic chaos [136]. There are well-developed
results for Lyapunov exponents of maps, and it is technically difficult for continuous
dynamics [72, 132, 133, 138]. Evaluation procedures of Lyapunov exponents for
continuous dynamics are, in general, provided for low-dimensional systems [139,
140]. Our system, despite there is discontinuity property, evolves along continuous-
time. Therefore, to work with Lyapunov exponents, we should consider mainly the
results for continuous dynamics. More exactly, our systems involve continuous and
discrete dynamics such that the space variables change continuouslywhile the switch-
ing moments of time satisfy discrete equations, that is, they belong to the class of
hybrid systems [82, 121, 122]. Consequently, we have to evaluate the divergence
of solutions by continuous as well as discrete Lyapunov exponents. Moreover, our
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(a)

(b)

(c)

Fig. 6.8 Simulation results of the Duffing equation perturbed with a pulse function x ′′ + 0.18x ′ +
2x + 0.00004x3 − 0.02cos(2π t) = ν(t, t0, μ∞), where m0 = 2, m1 = 1 and μ∞ = 3.8. The
pictures in a and b show the graphs of the x1 and x2 coordinates, respectively, while the picture in
c represents the trajectory of the solution (x1(t), x2(t))

systems are essentially non-autonomous. That is why one has to consider the method
of Lyapunov exponents for non-autonomous systems [140]. For chaos development,
the positive Lyapunov exponent is appropriate. So, one can conclude that the pos-
itiveness of one of the Lyapunov exponents is an indicator of chaos if the system
is considered in a bounded region. That is why for the general case of our analysis
in this section, it is sufficient to find that the Lyapunov exponent is positive for the
logistic map, the generator of the switching moments.

To illustrate the general discussions, let us consider the following example.
Example Let the equation

x ′ = −2x + ν(t, t0, μ∞) (6.7.55)

be given with μ∞ = 3.8.
Ifwe consider two solutions ofEq. (6.7.55)with the same t0, they are both bounded

and approach to each other with exponent −2, that is, −2 is an eigenvalue. Since the
equation is non-autonomous then it needs a special treatment [140]. When the time
variable is considered as a spatial one, one can transform Eq. (6.7.55) to a system as

dx

dt
= −2x + ν(τ, t0, μ∞)

dτ

dt
= 1

ζi+1 = i + 1 + h(ζi − i, μ∞).

(6.7.56)
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The second equation in (6.7.56) provides us the zero Lyapunov exponent [140]. Since
our system involves the discrete equation, the logistic map with μ∞ = 3.8, it admits
the third Lyapunov exponent which is approximately 0.432 [141]. This Lyapunov
exponent describes the divergence of solutions with different initial moments along
the time axis. Finally,we have obtained that the divergence of solutions of Eq. (6.7.55)
is described through three Lyapunov exponents λ1 = 0.432, λ2 = 0, λ3 = −2.

6.7.3 Controlling Results

6.7.3.1 The Logistic Map

We stabilize the periodic solutions by control of the switching moments of the pulse
function, which are defined through the logistic map. Therefore, one will need the
description of the OGY method for the map [142].

Suppose that the parameter μ, in the map, can be finely tuned in a small range
around the value μ∞ = 3.8, that is, μ is allowed to vary in the range [μ∞ −
δ, μ∞ + δ], where δ is small. Denote the target period-p orbit to be controlled
as κ(i)(t0, μ∞), i = 1, 2, . . . , p where t0 belongs to the unit interval I = [0, 1],
κ(i+1)(t0, μ∞) = h(κ(i)(t0, μ∞), μ∞) and κ(p+1)(t0, μ∞) = κ(1)(t0, μ∞). The
logistic map, h(s, μ) = μs(1 − s), in the neighborhood of a periodic orbit can be
approximated by a linear equation expanded around the periodic orbit. If we denote
μ̄ j − μ∞ = Δμ̄ j , and κ j+1(t1, μ̄ j ) = h(κ j (t1, μ̄ j ), μ̄ j ), t1 ∈ I, we get

κ j+1 − κ(i+1) = ∂h

∂s
[κ j − κ(i)] + ∂h

∂μ
Δμ̄ j

= μ∞[1 − 2κ(i)][κ j − κ(i)] + κ(i)[1 − κ(i)]Δμ̄ j ,

(6.7.57)

where partial derivatives are evaluated at s = κ(i)(t0, μ∞) and μ = μ∞. We require
κ j+1(t1, μ̄ j ) to stay in the neighborhood of κ(i+1)(t0, μ∞). Therefore, if we set

κ j+1(t1, μ̄ j ) − κ(i+1)(t0, μ∞) = 0,

then we obtain that

Δμ̄ j = μ∞
[2κ(i) − 1][κ j − κ(i)]

κ(i)[1 − κ(i)] (6.7.58)

or equivalently

μ̄ j = μ∞

(

1 + [2κ(i) − 1][κ j − κ(i)]
κ(i)[1 − κ(i)]

)

. (6.7.59)
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This equation holds only when the trajectory κ j enters a small neighborhood of the
period -p orbit, hence the required parameter perturbation Δμ̄ j is small. When the
trajectory is outside the neighborhood of the target periodic orbit, we do not apply
any parameter perturbation, so the system evolves at its nominal parameter value
μ∞. Hence, we set μ̄ j = μ∞, when

∣
∣Δμ̄ j

∣
∣ > δ.

Suppose that t0 ∈ I is fixed such that the sequence {κi (t0, μ∞)} is p-periodic.
Thus, for given δ > 0, there exist ε > 0 and i0, j0 ∈ N such that for all i, i0 ≤ i ≤
i0 + j0, we have |Δμ̄i | ≤ δ and |κi (t1, μ̄i ) − κi (t0, μ∞)| < ε [53, 72, 142, 143],
where κi+1(t1, μ̄i ) = h(κi (t1, μ̄i ), μ̄i ). The number j0 is, in general, finite, since
the nonlinearity is not included in (6.7.57). We will use the numbers ε, i0 and j0 for
Theorem6.16.

We note that the control of chaos is not achieved immediately after switching on
the control mechanism, rather, there is a transient time before the logistic map is
controlled. The transient time increases if the δ decreases [72, 143].

Now, we consider a simulation for the stabilization of the logistic map. Namely,
of the sequence {κi }, where κi+1 = 3.8κi (1 − κi ), i ≥ 0 and κ0 = t1 = 0.5. If the
OGY control method is applied around the fixed point 2.8/3.8, that is the period-1
orbit of the logistic equation h(s, 3.8) = 3.8s(1 − s), we obtain the result that is
shown in Fig. 6.9. We used the value δ = 0.19. The control starts at the iteration
number i = 25 and ends at i = 60. Despite the control was switched off at 60th
iteration, the stabilization prolongs till the 110th iteration.

6.7.3.2 The General System Control

From the description made above, it is seen that the control by OGY method means
construction of a sequence of the parameter’s value μ near a chaotic value of the
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Fig. 6.9 The OGY control method applied to the sequence {κi }, where κi+1 = 3.8κi (1 − κi ),
κ0 = 0.5, around the fixed point 2.8/3.8 of the logistic map with δ = 0.19. The control is switched
on at the iteration number i = 25 and switched off at i = 60
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parameter, μ∞, to generate a solution, which is close to the chosen periodic one. It
is obvious that similar control problem can be formulated for the system (6.7.47),
and consequently, for Eq. (6.7.46).

To control system (6.7.47), we replace the parameter μ by the control sequence
{

μi
}

and define

ν(t, t1, μ
i ) =

{

m0, if ζ2i (t1, μi ) < t ≤ ζ2i+1(t1, μi )

m1, if ζ2i+1(t1, μi ) < t ≤ ζ2i+2(t1, μi ),
(6.7.60)

where i ≥ 0 is an integer, m0, m1 ∈ R
n, the same as for the function ν(t, t0, μ)

in (6.7.49). The sequence ζ(t1, μi ) = {ζi (t1, μi )}, i ≥ 0, is defined through
the equation ζi (t1, μi ) = i + κi (t1, μi ), with κi+1(t1, μi ) = h(κi (t1, μi ), μi ),

κ0(t1, μi ) = t1.
Consider, now, the system,

z′(t) = Az(t) + f (t, z) + ν(t, t1, μi )

z(t1) = z1, (t1, z1) ∈ I × R
n,

(6.7.61)

which is the control system conjugate to the system (6.7.48).
Our aim is to determine the sequence

{

μi
}

which stabilizes the periodic solutions
of (6.7.48) and in the next theorem a convenient choice for this sequence is indicated.

By φ(t, t̄, z̄), t̄ ∈ I , z̄ ∈ R
n , we denote a solution of (6.7.61) with t1 = t̄ and

z1 = z̄.
In the following theorem we shall use the numbers ε, i0, and j0, which were

mentioned above for the stabilization of the logistic map.
Suppose that z p(t), p ∈ N, denotes the periodic solution of (6.7.48)with z p(t0) =

z0 and μ = μ∞. Take z1 ∈ R
n and consider the solution z(t) = φ(t, t1, z1) of

system (6.7.61). If z(ζi0(t0, μ∞)) is not equal to z p(ζi0(t0, μ∞)), then suppose that
the number T (ε, z1) is the maximum of the numbers ζi0(t0, μ∞) and

ζi0(t0, μ∞) + 1

NL + α
ln

(

1 − eαε

N
∥
∥z(ζi0(t0, μ∞)) − z p(ζi0(t0, μ∞))

∥
∥

)

.

Set T (ε, z1) = ζi0(t0, μ∞) in the case that z(ζi0(t0, μ∞)) and z p(ζi0(t0, μ∞)) are
equal to each other. The number T (ε, z1) will be needed in the following theorem,
which is one of the main results of this section.

In the proof of the following theorem, we assume without loss of generality that
i0 = 0. In this case, ζi0(t0, μ∞) = t0 and ζi0(t1, μ̄i ) = t1. It is worth saying that

since
−NL

α
<

−KNL

α
< 1, we have NL + α < 0.

Theorem 6.16 Assume that T (ε, z1) < i0 + j0. Then the sequence {μ̄i } stabilizes
the periodic solution z p(t) such that
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∥
∥φ(t, t1, z1) − z p(t)

∥
∥ <

(

1 − Ne−α ‖m0 − m1‖
(NL + α) (1 − eα)

)
(

1 − eαε
)

,

if t ∈ [T (ε, z1), i0 + j0] .

Proof Without loss of generality, assume that t1 ≤ t0. The solution z(t) =
φ(t, t1, z1), t1 ∈ I, z1 ∈ R

n , of (6.7.61) can be continued up to t = t0. Let us
denote z(t0) = η1 and z p(t0) = z0. In this case, the integral equations

z(t) = eA(t−t0)η1 +
∫ t

t0
eA(t−s)[ f (s, z(s)) + ν(s, t1, μ̄i )]ds

and

z p(t) = eA(t−t0)z0 +
∫ t

t0
eA(t−s)[ f (s, z p(s)) + ν(s, t0, μ∞)]ds

are satisfied. Therefore, for t ≥ t0 we have

z(t) − z p(t) = eA(t−t0)(η1 − z0) +
∫ t

t0
eA(t−s)[ f (s, z(s)) − f (s, z p(s))]ds

+
∫ t

t0
eA(t−s)[ν(s, t1, μ̄i ) − ν(s, t0, μ∞)]ds.

(6.7.62)

Since for each i, 0 ≤ i ≤ j0, the inequality

∣
∣ζi (t0, μ∞) − ζi (t1, μi )

∣
∣ = |κi (t0, μ∞) − κi (t1, μ̄i )| < ε

holds, one can verify that

∣
∣
∣
∣
∣

∫ ζi (t1,μi )

ζi (t0,μ∞)

eα(t−s)ds

∣
∣
∣
∣
∣
<

(−1

α

)
(

1 − eαε
)

eα(�t�−1−i), (6.7.63)

where �t� denotes the greatest integer which is not larger than t. On the other hand,
by means of the inequality (6.7.63) we have that

∥
∥
∥
∥

∫ t

t0
eA(t−s) [ν(s, t1, μi ) − ν(s, t0, μ∞)

]

ds

∥
∥
∥
∥

≤
∫ t

t0
Neα(t−s)

∥
∥ν(s, t1, μi ) − ν(s, t0, μ∞)

∥
∥ ds

≤
�t�
∑

i=1

∣
∣
∣
∣
∣

∫ ζi (t1,μi )

ζi (t0,μ∞)

Neα(t−s) ‖m0 − m1‖ ds

∣
∣
∣
∣
∣
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<

(−N

α

)
(

1 − eαε
) ‖m0 − m1‖

�t�
∑

i=1

eα(�t�−1−i)

<
−Ne−α ‖m0 − m1‖

α (1 − eα)

(

1 − eαε
)

.

Using Eq. (6.7.62) together with the last inequality one can obtain that

∥
∥z(t) − z p(t)

∥
∥ ≤ Neα(t−t0) ‖η1 − z0‖ + −Ne−α ‖m0 − m1‖

α (1 − eα)

(

1 − eαε
)

+
∫ t

t0
NLeα(t−s)

∥
∥z(s) − z p(s)

∥
∥ ds.

Now, let u(t) = ∥
∥z(t) − z p(t)

∥
∥ e−αt . Under the circumstances we have

u(t) ≤ Ne−αt0 ‖η1 − z0‖ + −Ne−α(t+1) ‖m0 − m1‖
α (1 − eα)

(

1 − eαε
) + NL

∫ t

t0
u(s)ds.

Applying Lemma 2.2 [57] we attain that

u(t) ≤ Ne−αt0 ‖η1 − z0‖ + −Ne−α(t+1) ‖m0 − m1‖
α (1 − eα)

(

1 − eαε
)

+N 2L ‖η1 − z0‖ e−αt0

∫ t

t0
eNL(t−s)ds

+−N 2Le−α ‖m0 − m1‖
α (1 − eα)

(

1 − eαε
)
∫ t

t0
eNL(t−s)e−αsds

Making use of the equations

∫ t

t0
eNL(t−s)ds = 1

NL

(

eNL(t−t0) − 1
)

,

and ∫ t

t0
eNL(t−s)e−αsds =

( −1

NL + α

)

e−αt
(

1 − e(NL+α)(t−t0)
)

it can be verified that

u(t) ≤ N ‖η1 − z0‖ e−αt0eNL(t−t0) − Ne−α(t+1) ‖m0 − m1‖
α (1 − eα)

(

1 − eαε
)

+ N 2Le−α(t+1) ‖m0 − m1‖
(NL + α)α (1 − eα)

(

1 − eαε
) (

1 − e(NL+α)(t−t0)
)
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< N ‖η1 − z0‖ e−αt0eNL(t−t0) − Ne−α(t+1) ‖m0 − m1‖
α (1 − eα)

(

1 − eαε
)

+ N 2Le−α(t+1) ‖m0 − m1‖
(NL + α)α (1 − eα)

(

1 − eαε
)

= N ‖η1 − z0‖ e−αt0eNL(t−t0) − Ne−α(t+1) ‖m0 − m1‖
(NL + α) (1 − eα)

(

1 − eαε
)

.

Multiplication of both sides of the last inequality by eαt implies that

∥
∥z(t) − z p(t)

∥
∥ < N ‖η1 − z0‖ e(NL+α)(t−t0) − Ne−α ‖m0 − m1‖

(NL + α) (1 − eα)

(

1 − eαε
)

.

It is clear that if η1 = z0, then the conclusion of the theorem is true. Suppose that
η1 �= z0. If t ∈ [T (ε, z1), j0] , then one can easily verify that

e(NL+α)(t−t0) ≤ 1 − eαε

N ‖η1 − z0‖ .

Consequently, the inequality

∥
∥z(t) − z p(t)

∥
∥ <

(

1 − Ne−α ‖m0 − m1‖
(NL + α) (1 − eα)

)
(

1 − eαε
)

holds, for t ∈ [T (ε, z1), j0] .
The theorem is proved.�

Implementation of Theorem6.16 to system (6.7.47) is mentioned in the next part.

6.7.3.3 The Duffing Equation Control

Let us consider the main system (6.7.47) with μ∞ = 3.8 and d1 = 0.18, d2 = 2,
d3 = 0.00004, D = 0.02, k = 2, m0 = 2, m1 = 1, again. The system satisfies the
conditions for existence of chaos and admits the chaos at μ∞ = 3.8. Theorem6.16
is applicable to (6.7.47). The control system (6.7.61) has, in this case, the form

x ′
1 = x2

x ′
2 = −2x1 − 0.18x2 − 0.00004x31 + 0.02 cos(2π t) + ν(t, t1, μ̄i ).

(6.7.64)

To simulate the result, let us take t1 = 0.5, t0 = 2.8/3.8 and the solution (x1, x2)
of system (6.7.64) with the initial condition x1(t1) = 0.01, x2(t1) = 0.025. Its graph
is seen in Fig. 6.10 and it approximates the 2-periodic solution z1(t). The value
δ = 0.19 is used, and the control starts at time t = ζ25 and ends at t = ζ60. Here, we
note that since the OGY control method is applied to the logistic map, the iteration
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(a)

(b)

(c)

Fig. 6.10 The OGY control method applied to the Duffing equation perturbed with a pulse function
x ′′ + 0.18x ′ + 2x + 0.00004x3 − 0.02 cos(2π t) = ν(t, t0, μ∞), where m0 = 2, m1 = 1 and
μ∞ = 3.8. The control starts at time t = ζ25 and ends at t = ζ60. a The graph of the x1-coordinate.
b The graph of the x2-coordinate. c The trajectory of the solution (x1(t), x2(t))

moment ī when the control is switched on corresponds to the time moment t = ζī ,

and a similar argument is valid for the moment when the control ends.
We use the same interval of stabilization for the logisticmap and theDuffing equa-

tion. But the interval of periodicity for the map is larger in the former, approximately
80 and 60, respectively. The reason is that the chaos of the equation is secondary with
respect to the chaos of the logistic map. Likewise the control of the logistic map, the
chaos transient time increases if the δ decreases.

To discuss our main assumptions, let us arrange the following simulations. Con-
sider the following Duffing equation in the standard form [81]

x ′′ + 0.05x ′ + x3 = 7.5 cos t. (6.7.65)

To convert this equation to a suitable form for which our theorem can be applied,
we use the change of variables u = t/π and y(u) = x(t). Using these new variables
and relabeling u as t, one can reduce (6.7.65) to the differential equation

y′′ + 0.05πy′ + π2y3 = 7.5π2 cos(π t). (6.7.66)

Defining new variables x1 = y and x2 = y′ we can reduce (6.7.66) to the system

x ′
1 = x2

x ′
2 = −0.05πx2 − π2x31 + 7.5π2 cos(π t).

(6.7.67)
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Fig. 6.11 The trajectory of
the solution (x1(t), x2(t)) for
system (6.7.67)
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The eigenvalues for this system are 0 and −0.05π . Since one of the eigenvalues is
zero, one can expect that our results are not applicable to system (6.7.67). That is,
the system is not controllable with our method. Take a solution of system (6.7.67)
with x1(0.5) = 1, x2(0.5) = 2. The chaotic behavior is seen in Fig. 6.11.

Now, we apply the method developed in the previous part to the equation

y′′ = −0.05πy′ − π2y3 + 7.5π2 cos(π t) + ν(t, t0, μ∞). (6.7.68)

The corresponding control system is

x ′
1 = x2

x ′
2 = −0.05πx2 − π2x31 + 7.5π2 cos(π t) + ν(t, t1, μ̄i ).

(6.7.69)

Let t1 = 0.5, t0 = 2.8/3.8 and δ = 0.19. We take the solution of the last system
with x1(t1) = 1 and x2(t1) = 2. The control is switched on at t = ζ25 and switched
off at t = ζ60. The simulation result is seen in Fig. 6.12.

Fig. 6.12 The trajectory of
the solution (x1(t), x2(t)) for
the control system (6.7.69),
where m0 = 2 and m1 = 1
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One can see that our way of application of the OGYmethod does not work for the
system (6.7.69). The reason is that the corresponding nonperturbed Duffing equation
to this system has the zero eigenvalue.

6.7.4 Morphogenesis and the Logistic Map

In Sect. 6.7.2.2, we demonstrated that the Duffing equation perturbed with a pulse
function

x ′′ + 0.18x ′ + 2x + 0.00004x3 = 0.02 cos(2π t) + ν(t, t0, μ∞), (6.7.70)

with the coefficients m0 = 2, m1 = 1 and μ∞ = 3.8, admits the chaos through
period-doubling cascade on the time interval [0,∞) and obeys the Feigenbaum
universal behavior [144].

By favor of the new variables x1 = x and x2 = x ′, Eq. (6.7.70) can be reduced to
the system

x ′
1 = x2

x ′
2 = −0.18x2 − 2x1 − 0.00004x31 + 0.02 cos(2π t) + ν(t, t0, μ∞).

(6.7.71)

For the illustration of chaos extension, we will make use of the relay system (6.7.71)
as the generator, in the role of a core as displayed inFig. 2.5, and attach three replicator
systems with coordinates x3 − x4, x5 − x6 and x7 − x8 to obtain the 8-dimensional
result-relay-system

x ′
1 = x2

x ′
2 = −0.18x2 − 2x1 − 0.00004x31 + 0.02 cos(2π t) + ν(t, t0, μ∞)

x ′
3 = x4 − 0.1x1

x ′
4 = −10x3 − 6x4 − 0.03x33 + 4x2

x ′
5 = x6 + 2x1

x ′
6 = −2x5 − 2x6 + 0.007x35 + 0.6x2

x ′
7 = x8 − 0.5x2

x ′
8 = −5x7 − 4x8 − 0.05x37 + 2.5x1,

(6.7.72)

where again m0 = 2, m1 = 1 and μ∞ = 3.8.
The theoretical results mentioned in Chap. 2 reveal that system (6.7.72), as well as

the replicators, admit the chaos through period-doubling cascade and obey the uni-
versal behavior of Feigenbaum. Figure6.13 shows the two-dimensional projections
on the x1 − x2, x3 − x4, x5 − x6 and x7 − x8 planes of the trajectory of the result-
relay-system (6.7.72) with initial data x1(0) = 1.37, x2(0) = −0.05, x3(0) = 0.05,
x4(0) = −0.1, x5(0) = 1.09, x6(0) = −0.81, x7(0) = 0.08 and x8(0) = 0.21. The
picture seen in Fig. 6.13, (a) is the attractor of the generator (6.7.71) and accordingly
Fig. 6.13, (b)–(d) represent the attractors of the first, second and the third replicator

http://dx.doi.org/10.1007/978-3-662-47500-3_2
http://dx.doi.org/10.1007/978-3-662-47500-3_2
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Fig. 6.13 2-dimensional projections of the chaotic attractor of the result-system (6.7.72). The
pictures in a, b, c and d represent the projections on the x1 − x2, x3 − x4, x5 − x6 and x7 − x8
planes, respectively. The picture in (a) shows the attractor of the prior chaos produced by the
generator (6.7.71), which is a relay system, and in (b)–(d) the chaotic attractors of the replicator
systems are observable. The illustrations in (b)–(d) repeated the structure of the attractor shown in
(a), and the mimicry between these pictures is an indicator of the replication of chaos

systems, respectively. It can be easily verified that all replicators used inside the
system (6.7.72) satisfy condition (A7) of Chap.2. The resemblance of the chaotic
attractors of the generator and the replicators is a consequence of morphogenesis of
chaos.

Now, let us continue with the control of morphogenesis of chaos by means of the
OGY control method. In order to stabilize the unstable periodic solutions of system
(6.7.71), we consider the system

x ′
1 = x2

x ′
2 = −0.18x2 − 2x1 − 0.00004x31 + 0.02 cos(2π t) + ν(t, t1, μ̄i )

x ′
3 = x4 − 0.1x1

x ′
4 = −10x3 − 6x4 − 0.03x33 + 4x2

x ′
5 = x6 + 2x1

x ′
6 = −2x5 − 2x6 + 0.007x35 + 0.6x2

x ′
7 = x8 − 0.5x2

x ′
8 = −5x7 − 4x8 − 0.05x37 + 2.5x1,

(6.7.73)

which is the control system conjugate to the result-relay-system (6.7.72), where
m0 = 2 and m1 = 1.

To simulate the control results, we make use of the values δ = 0.19, t1 = 0.5,
t0 = 2.8/3.8 and the trajectory of system (6.7.73) with the initial data x1(0) = 1.37,

http://dx.doi.org/10.1007/978-3-662-47500-3_2
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(a)

(b)

(c)

Fig. 6.14 OGY control method applied to the result-relay-system (6.7.72). a The graph of the
x3-coordinate, b The graph of the x5-coordinate, c The graph of the x7-coordinate

x2(0) = −0.05, x3(0) = 0.05, x4(0) = −0.1, x5(0) = 1.09, x6(0) = −0.81,
x7(0) = 0.08, x8(0) = 0.21. Taking the value t0 = 2.8/3.8 means that the control
mechanism is applied around the fixed point of the logistic map, and consequently
stabilizes the 2-periodic solutions of the generator and the existing replicators. We
switch on the control mechanism at the iteration number i = 25 for the logistic
map, such that for the continuous-time system this moment corresponds to t = ζ25,

and switch off at i = 125 which corresponds to the time moment t = ζ125. The
graphs of the coordinates x3, x5 and x7 are pictured in Fig. 6.14, and it is possible
to obtain similar illustrations for the remaining ones, which are not just simulated
here. It is observable that the 2-periodic solutions of the replicators and hence of
the result-relay-system (6.7.72) are stabilized. In other words, the extended chaos is
controlled, and the result of Theorem2.6 is validated one more time. One can see in
Fig. 6.14 that after approximately 60 iterations when the control is switched off, the
chaos becomes dominant again and irregular motion reappears.

6.7.5 Miscellany

6.7.5.1 Pyragas Control

Achaotic attractor contains an infinite number of unstable periodic orbits. The control
of chaos is the stabilization of one of these orbits, by means of small perturbations
applied to the system. One of the important applications of nonlinear oscillators
subjected to non-smooth perturbations is the vibro-impact systems, and such systems
can exhibit chaoticmotions [12, 88–91, 96, 102]. The pioneering paper [53] provides

http://dx.doi.org/10.1007/978-3-662-47500-3_2
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the famous OGY method of the control, and there have been proposed many other
ideas to control chaos [120, 145–151]. The parameters of the Duffing equation can
be chosen such that it alternatively admits only regular motions or a chaotic attractor
[72–75, 81, 133, 143, 152]. In the present section, the Duffing equation is modified
with a pulse function such that it admits the period-doubling cascade of chaos. This
idea of insertion of chaotic non-smooth elements in such systems to obtain chaos
has been realized in [44–46, 67, 83, 84].

One canfind that to control chaos of the system (6.7.48), unstable periodic orbits of
the logistic equation must be necessarily controlled. There are several other methods
to control chaos of the logistic map such as the method proposed by Pyragas [120]
and the extended time delayed auto synchronization method [136]. The main idea of
the Pyragas method applied to logistic map is the usage of a perturbation in the form
of a delay, that is, a perturbation of the form γ (κi− j − κi ). Here, the parameter γ

represents the strength of the perturbation and the positive integer j is the order of
the desired unstable periodic orbit [120, 136].

To show the results of Pyragas method applied to the system (6.7.47) with the
coefficients d1 = 0.18, d2 = 2, d3 = 0.00004, D = 0.02, k = 2, and m0 = 2,
m1 = 1, μ∞ = 3.8, we use the method around the period-1 orbit, that is the fixed
point, of the logistic map h(s, μ) = μs(1 − s) and construct the following control
system

x ′
1 = x2

x ′
2 = −2x1 − 0.18x2 − 0.00004x31 + 0.02cos(2π t) + ν(t, t1, μ∞)

ζi+1(t1, μ∞) = i + 1 + h(ζi (t1, μ∞) − i, μ∞) + γ (ζi−1(t1, μ∞)

−ζi (t1, μ∞) + 1).

(6.7.74)

If we simulate a solution of the last system with t1 = 0.5 and x1(t1) = 0.01,
x2(t1) = 0.025, the result seen in Fig. 6.15 is obtained. It approximates the 2-periodic
solution z1(t) of system (6.7.47). We use the value γ = −0.5 and the control starts
at time t = ζ30 and ends at t = ζ100.

6.7.5.2 High-Frequency Oscillations and Chaos

Now, let us analyze through simulation an interesting question if large own frequency
of unperturbed Duffing equation may suppress the chaos appearance in the perturbed
system. With this aim, consider the system

x ′
1 = x2

x ′
2 = −50x1 − 0.18x2 − 0.00004x31 + 0.02 cos(2π t) + ν(t, t0, μ∞),

(6.7.75)

which is in the form of system (6.7.47), where m0 = 2, m1 = 1 and μ∞ = 3.8.
The eigenvalues for this system are −0.09∓ i

√
50 − 0.092. Take a solution (x1, x2)

of the system with initial data x1(0.5) = 0.01 and x2(0.5) = 0.025. One can see
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(a)

(b)

(c)

Fig. 6.15 The Pyragas control method applied to the Duffing equation perturbed with a pulse
function x ′′ + 0.18x ′ + 2x + 0.00004x3 − 0.02 cos(2π t) = ν(t, t0, μ∞), where m0 = 2, m1 = 1
and μ∞ = 3.8. The control starts at time t = ζ30 and ends at t = ζ100. a The graph of the x1
coordinate. b The graph of the x2 coordinate. c The trajectory of the solution (x1(t), x2(t))

that the frequency is high, but the simulation seen in Fig. 6.16 shows that the chaos
appearance is persistent since conditions of our theorems are fulfilled for the system.

Wehave onemore confirmation of our theoretical results. The control environment
is sustained for the system (6.7.75) as seen in Fig. 6.17. In this simulation, we take
t1 = 0.5, t0 = 2.8/3.8, δ = 0.19, and consider the solution (x1, x2) of the control
system

x ′
1 = x2

x ′
2 = −50x1 − 0.18x2 − 0.00004x31 + 0.02 cos(2π t) + ν(t, t1, μ̄i ),

(6.7.76)

with the initial condition x1(t1) = 0.01, x2(t1) = 0.025. The control starts at time
t = ζ25 and ends at t = ζ60.

Figure6.17 supports our results such that the depicted solution approximates the
2-periodic solution z1(t) of system (6.7.75). Therefore, one can say that the chaos
control results are valid even if the frequency is high. The Pyragas control method
can also be used in the case of high frequency.

As the simulation results show, our proposals of generation of chaos and con-
sequently control of it can be extended by the rich diversity of results for discrete
maps. Exceptional interest is expected for development of security of communica-
tion systems [52, 72, 143, 152]. We suppose also that direct extension of the results
can be done on the basis of works, which consider control of chaos generated by
the logistic map [153, 154] and uses the map as an instrument of ciphering and
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(a)

(b)

(c)

Fig. 6.16 Simulation results of the perturbed Duffing equation x ′′ + 0.18x ′ + 50x + 0.00004x3 −
0.02 cos(2π t) = ν(t, t0, μ∞), where m0 = 2, m1 = 1 and μ∞ = 3.8. a The graph of the x1
coordinate. b The graph of the x2 coordinate. c The trajectory of the solution (x1(t), x2(t))

(a)

(b)

(c)

Fig. 6.17 The OGY control method applied to the Duffing equation perturbed with a pulse function
x ′′ + 0.18x ′ + 50x + 0.00004x3 − 0.02 cos(2π t) = ν(t, t0, μ∞), where m0 = 2, m1 = 1 and
μ∞ = 3.8. The control starts at time t = ζ25 and ends at t = ζ60. a The graph of the x1 coordinate.
b The graph of the x2 coordinate. c The trajectory of the solution (x1(t), x2(t))
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deciphering [155]. Next extension of investigation can be done by the discussion of
low-dimensional discrete dynamics [156, 157].

6.8 Notes

In Sect. 6.1 we developed an approach to form Devaney chaos in a non-autonomous
system. Themethod can be applied to differential equationswith a piecewise constant
argument of generalized type [16], and to quasilinear systems with a pulse function.
One can say that a new method to form the multidimensional chaos is proposed. The
existence of a chaotic attractor of the initial value problem is proved. The chaos is
observed not only on the attractor, but also in the set of all solutions.The results of
Sect. 6.1 were published in the paper [44].

In Sect. 6.2 we defined the features of the analogue of Li–Yorke chaos for the
multidimensional discontinuous dynamics. Apparently, the question of “whether
theoretical results obtained for systems with low-dimensionality are still applicable
for high or infinite dimensional systems” [158] has been partially answered. Taking
into account Theorem 6.5 the period-doubling route to chaos can be obtained. The
main modeling novelty of Sect. 6.2, which is useful for applications, is that the
moments of discontinuity are prescribed by the choice of the initial moment. The
present resultswere published in [46] and they could be effectively used inmechanics,
electronics, control theory and economics, and they could be developed further, by
using more delicate properties of one-dimensional maps [159].

In Sect. 6.3, a special initial value problem of a differential equation with relay
function is addressed. In paper [44], Devaney’s ingredients were indicated for a
special initial value problem of a relay system with linear elements. In Sect. 6.3,
we attempt to shape the Li–Yorke chaos for the multidimensional nonlinear relay
system. Li–Yorke chaos is attractive for applications, as it can be developed for a
multidimensional case [25]. In Sect. 6.3, another attempt to create higher dimensional
Li–Yorke chaotic systems is made.

The existence of a Poisson stable trajectory dense in a quasi-minimal set is proved
in Sect. 6.4 for the quasilinear differential equation with a pulse function, whose
moments of discontinuity depend on the initial moment. An appropriate simulation
of a chaotic attractor is presented. The results of Sects. 6.3 and 6.4 were published
in the papers [45, 83]

A hyperbolic set of bounded solutions is constructed in Sect. 6.5, on the basis
of a quasilinear impulsive differential equation with a special initial condition. We
investigate the structure of the bounded solutions set of a special initial value problem,
in which initial moments of time are from a Cantor set. The system was introduced
in [28], where chaotic properties were discussed. Particularly, we prove that there
exists a chaotic attractor with infinitely many periodic solutions.

The investigation of Sect. 6.6 is inspired by the discontinuous dynamics of the
neural information processing in the brain, information communication, and popu-
lation dynamics [13, 34, 37–39, 41, 160]. While there are many interesting papers
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concerned with the complex behavior generated by impulses, the rigorous theory of
chaotic impulsive systems remains far from being complete. Our goal is to develop
further the theoretical foundations of this area of research. The complex dynamics is
obtained using Devaney’s definition for guidance. The main results of Sect. 6.6 were
published in [84], where simulations for a pendulum were provided. Applications of
the present approach to the analysis of the cardiovascular system were considered in
[33, 161]. More of our results on chaos excitability can be found in [44–46].

We have proved in Sect. 6.7 that the OGY control of the logistic map stabilizes
the unstable periodic solutions embedded in the attractor. The exceptional result is
that an arbitrary solution of the system (6.7.61) approaches to the controlled periodic
solution eventually, if the initial moment is chosen properly. Thus, the way is found,
which extends control and chaos of low-dimensional maps to continuous systems
with arbitrary large dimension. This method can be useful for the construction and
stabilization of mechanical systems and electric circuits with chaotic features. The
results of Sect. 6.7 were published in the paper [115].

Concerning the Lyapunov exponents, wemust say that the dynamics of the system
(6.7.48) consist of the continuous dynamics of the differential equation itself and of
the discrete dynamics of the switching moments. That is, one can say that our system
is a hybrid system [82, 121, 122]. The important fact is that the Lyapunov exponent
of the discrete part of the system is a positive one, since it is the Lyapunov exponent
of the logistic map [132].
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Chapter 7
Economic Models with Exogenous
Continuous/Discrete Shocks

7.1 Chaos in Economic Models with Equilibria

In this section, we investigate the generation of chaos in economic models with equi-
libria through exogenous shocks. The perturbation is formulated as a pulse function
where either values or instants of discontinuity are chaotically behaved.We provide a
rigorous proof of the existence of chaos in the perturbedmodel. The analytical results
are applied to Kaldor–Kalecki-type models of the aggregate economy. Simulations
are used to demonstrate the emergence and the control of chaos. Our results shed
light on a novel source of chaos in economic models and have important implications
for policy-making.

7.1.1 Introduction

Irregularity is an inherent feature of economic reality. Regularity, as reflected in a
constant solution of a model or a periodic and even almost periodic motion in mathe-
matical sense, is a good assumption in engineering and natural science applications,
but less so in economic models. This was pointed out in early scientific work and has
been widely discussed in recent years [1–7]. One way of introducing irregularity in
economics is by allowing for stochastic processes. A different approach is generating
chaos in deterministic differential equations.1 The main property of chaos is sensi-
tivity, which can be interpreted as unpredictability in real-world problems. This is
also known as the butterfly effect [9]. Devaney [10] proposed that sensitivity in con-
junction with other properties, namely transitivity and density of periodic solutions,

1There exists a third approach, which is somewhere in between the two, where Iterated Function
Systems generated by the optimal policy functions for a class of stochastic growth models converge
to invariant distributions with support over fractal sets [8].

© Higher Education Press, Beijing and Springer-Verlag Berlin Heidelberg 2016
M. Akhmet and M.O. Fen, Replication of Chaos in Neural Networks,
Economics and Physics, Nonlinear Physical Science,
DOI 10.1007/978-3-662-47500-3_7

265



266 7 Economic Models with Exogenous Continuous/Discrete Shocks

be considered as ingredients of chaos. Another popular way to prove theoretically
the presence of chaos is by observing the period-doubling cascade [11].

The main theoretical contribution of the present section lies in demonstrating
that exogenous chaotic perturbations can produce irregular motions in economic
models. In mathematical terms, we augment the right-hand side of otherwise regular
differential equationswith chaotic terms and verify the intuitive idea that the resulting
models admit chaotic solutions. Previous works have considered the “endogenous”
appearance of chaos in economicmodels,where the presence of chaos hinges on some
crucial parameters (e.g., [12, 13], and papers cited there). The principal novelty of our
investigation is that we create an exogenous chaotic perturbation, plug it in a regular
dynamical system, and find that similar chaos is inherited by the solutions of the new
system. Such an approach has been widely used for differential equations before, but
for regular disturbance functions. That is, it has been shown that an (almost) periodic
perturbation function implies the existence of an (almost) periodic solution of the
system. While the literature on chaos synchronization has also produced methods of
generating chaos in a system by plugging in special terms that are chaotic, it relies on
the asymptotic convergence between the chaotic exogenous terms and the solutions
of the system [14, 15]. Instead, we provide a direct verification of the ingredients of
chaos for the perturbed system. Currently, we study cases where the shocks enter the
system additively, but future investigations may involve more complicated forms,
where the disturbance enters as an argument of the main functions.

One can think of two types of shocks exogenous to a given economic system,
say a macroeconomic model of a country. Shocks of the first type are generated
by global forces that are either completely outside of human control (for example,
weather phenomena) or are shaped in some worldwide marketplace (for example,
commodity prices which are determined in the world markets). Zhou et al. [16]
demonstrate that the flood series in the Huaihe river basin in China over the last
500 years exhibits chaotic dynamics. Decoster et al. [17] found evidence of chaotic
motion in daily silver, copper, sugar, and coffee futures prices. Wei and Leuthold
[18] show that futures prices of corn, soybeans, wheat, hogs, and coffee are chaotic
processes. Panas and Ninni [19] provide strong support to the presence of chaos
in daily oil product prices in the Rotterdam and Mediterranean petroleum markets.
These works employ tests developed by Brock [20] and Brock et al. [21], among
others, that aim to distinguish between random and chaotic deterministic series.
While it is in general very difficult to do so, especially for high-dimensional systems
and for short economic time series [22, 23], this only implies that just as there is as
yet no definite proof of the chaotic nature of economic variables, there is no definite
proof of their random nature, either. Moreover, it is plausible that a hybrid of the two
types of processes generates some economic data.

The second type of exogenous shocks that could affect a given economic system
is shocks generated outside the system but endogenous to some other system that is
linked with the former through financial, trade, and information flows. In this case
we can talk of the transmission of chaos from one economy to another. Multiple
papers investigating the emergence of endogenous chaos in economic models have
been produced. Many of them study Kaldor–Kaleckian or Keynesian models of the
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macroeconomy, as in [12, 13, 24], where real output is determined along with other
economic variables, such as capital stock or money supply. Suppose real output in a
foreign economy affects the level of demand by this economy for the exports of the
home country, and exports to the foreign economy influence the economic activity
at home. Then exports to the foreign country may be viewed as an exogenous shock
to the home economic system. The present section points out that if real output
abroad is chaotic, then the variables at home will be chaotic, as well, that is, chaos
is transmitted through chaotic export shocks from the foreign to the home economy.
Lorenz [25] produces chaos in a system consisting of three similar economies linked
through international trade, a six-dimensional system altogether. However, his goal
is to show that multidimensional systems of the kind that generate chaos are plausible
in economics, rather than to study the transmission of chaos internationally.

There is also a literature that studies the emergence of endogenous chaos in eco-
nomic models with microfoundations, such as standard models of overlapping gen-
erations and models with infinitely lived representative agents [2, 26–30]. Benhabib
and Day [27] give several examples of utility functions that generate chaotic con-
sumption trajectories in a standard, deterministic, overlapping generations model.
Among others, they derive a logistic map as the optimal consumption function.
Boldrin and Montrucchio [2] and Deneckere and Pelikan [29] show that in dynamic
optimisation problems satisfying the standard continuity and convexity assumptions,
the optimal policy function can be chaotic. In these investigations, the discount factor
plays an important role. Nishimura et al. [31] and Nishimura and Yano [32] show
that chaotic optimal solutions can be obtained in these models even for a discount
factor arbitrarily close to 1. Mitra and Sorger [33] prove that the logistic map can be
the optimal policy function of a regular dynamic optimisation problem if and only
if the discount factor does not exceed 1/16. We rely on the results of Benhabib and
Day [27] andMitra and Sorger [33], among others, to motivate our use of the logistic
map in what follows.

An implication of our results is that detecting the source of chaos in an economic
system is crucial for effective control of said chaos. The complex nature of economic
systems implied by the presence of chaos may suggest that the evolution of economic
variables is not only unpredictable, but also uncontrollable. To borrow a citation from
Mendes and Mendes [34], the common view until early 1990s was that “A chaotic
motion is generally neither predictable, nor controllable. It is unpredictable because
a small disturbance will produce exponentially growing perturbation of the motion.
Is it uncontrollable because small disturbances lead only to other chaotic motions
and not to any stable and predictable alternative” [35]. As a corollary, it may seem
that “any improvement in the functioning of these economies would require a radical
change to their basic structures, because the crises and booms associated with the
dynamics of capitalist structures, by being chaotic manifestations, can be neither
controllable nor predictable” [34].

However, developments in the study of chaos since early 1990s have provided
theoretical tools to effectively control chaos [36–42]. These methods rely on the
sensitivity of chaotic systems to small changes, by fine-tuning the parameters of the
system to nudge the dynamics toward a desired trajectory. “In the case of chaotic
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systems, as these are sensitive to very small changes in the parameters, a small but-
terfly effect in one of them is (in most cases) all that is required to control their
outcome, without changing the very nature of the controlled system in any relevant
way,” while “conventional classical control techniques control the dynamics of non-
linear processes through the use of brute force, having in fact frequently to change
the nature of the very system that is subject to control” [34]. As a result, the cost of
these control instruments is likely to be small, as well.

While the application of chaos control methods to real-world economic policy-
making remains an open question, numerous papers have demonstrated the potential
implementation of these techniques in various economic settings. Holyst et al. [43],
Holyst and Urbanowicz [44], Ahmed and Hassan [45], Salarieh and Alasty [46],
and Chen and Chen [47] control chaos in microeconomic models of firm compe-
tition, such as Cournot duopoly/oligopoly and Behrens–Feichtinger model of two
competing firms [48, 49]. Kaas [50] and Bala et al. [51] implement chaos control
in macroeconomic disequilibrium models, and Kopel [52] does so in a disequilib-
rium model of firms with bounded rationality. Haag et al. [53] stabilize a chaotic
urban system, Mendes and Mendes [34] control chaos in an overlapping generations
model (OLG), and Wieland and Westerhoff [54] demonstrate the possible control of
chaotic exchange rate dynamics by a central bank. In all these applications control
is carried out by varying the values of parameters that have a clear economic inter-
pretation and that can be plausibly set at will by either the government or private
actors, such as firms. For example, in [50] the government varies income tax rates
or government expenditures to stabilize an unstable Walrasian equilibrium, in [54]
the central bank intervenes in the foreign exchange market by varying the value of
the foreign exchange buy orders, and in [46] chaos can be controlled either through
government production tax/subsidy imposed on firms or through firms’ adjustment
of their production quantities.

The literature on the control of chaos originated with Ott et al. [39]. Their method
(commonly known as the OGY method) relies on the observation that a chaotic
set contains an infinite number of unstable periodic orbits. One can select the most
desirable unstable periodic orbit, wait until the system approaches it sufficiently and
apply a slight nudge to an appropriate parameter to keep the system on that orbit.
Notice that the controller can choose which orbit out of infinitely many orbits to
target. Particularly, the policy-makers may pick a trajectory that delivers the highest
welfare, based on the preferences for levels and volatility of the variables of interest.
The implementation of the method requires an observation of a slice of the chaotic
attractor (called the Poincaré section). This can be done for most economic variables,
data on which is collected by governments and other agencies. Finally, Ott et al.
[39] show that their approach is effective if a random noise is introduced into the
system, as long as the noise variable assumes extreme values very infrequently, i.e., is
sufficiently bounded. This is very convenient for the hybrid case of both deterministic
chaos and random shocks present in a model.

We will focus on the OGY method due to the advantages mentioned above. We
argue that correctly identifying the source of chaos in an economic system can have a
significant impact on the implementation of theOGYmethod. The construction of the
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Poincarémap, an essential step, demands the knowledge of the solutions in analytical
form and this is an unsolvable problem in many cases, since chaotic dynamics are
nonlinear. Therefore, it is extremely convenient to be able to isolate and apply the
OGY control directly to an exogenous shock that is driving the chaotic dynamics in a
system and whose Poincaré map can be constructed (either as an analytical solution
to a differential equation or through empirical analysis). This would be less resource-
consuming, since it would involve modifying fewer parameters, and in some cases
could be the only feasible solution.

Moreover, our findings emphasize the cost-effectiveness and importance of inter-
national cooperation in economic policy. In the case of the first type of exogenous
shocks mentioned above, such as commodity prices (oil, gold, silver, etc.), whose
values are determined in a global marketplace, cooperation between the major play-
ers in the market could allow to control the chaotic dynamics of these variables and
would translate into control of chaos in all economies affected. For the second type
of shocks, it is plausible that controlling chaos in one economy can be done most
effectively with the cooperation of another country that is the source of exogenous
chaotic shocks to the home economy. In the extreme case, controlling chaos in one
economy can help control chaos in another economy, which in turn helps control
chaos in a third country, and so on and so forth. Properly identifying the source of
global chaos in one economy and controlling chaos there would then be the most
effective way to control chaos worldwide and turns out to be very cheap relative to
the scale of the ultimate effect.

The rest of the section is organized as follows. In Sect. 7.1.2 we discuss the partic-
ular class of exogenous disturbance that we consider, i.e., exogenous perturbations
that take the formof a pulse function. Themathematical investigation of the perturbed
system is presented in Sect. 7.1.3. Simulations of a Kaldor–Kalecki model with pul-
sative disturbances of two types—with chaotically behaved values and chaotically
behaved discontinuity instants—are shown in Sect. 7.1.4. We also demonstrate the
application of the OGY control method to these models.

7.1.2 Modeling the Exogenous Shock

Theoretically, it is clear that we need a chaotic function to model the disturbance,
but in practice there is not a ready supply of such functions. For this reason, we
have to either use solutions of differential equations that are known for their chaotic
properties, or create functions with chaotic elements. In this section, we employ the
latter approach. In future work, we will consider how one can use actual economic
time series, such as those of commodity prices, that have been tested for deterministic
chaos [16–20, 55, 56], as exogenous shocks.

We investigate exogenous perturbations that take the form of a pulse function.
Consider a strictly increasing sequence of real numbers {θi } such that |θi | → ∞ as
|i | → ∞. We say that a function p(t) : R → R

n is a pulse function if for each
integer i there is pi ∈ R

n such that p(t) = pi either on the interval (θi , θi+1] or on
the interval [θi , θi+1).
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Consider a general form of economic models,

v̇ = H(v), (7.1.1)

where v : R → R
n is a function of time, v(t), and H : Rn → R

n is continuously
differentiable in its arguments.

Perturb the model chaotically (this will be explained later) with a pulse function
d̃[ t

h ], where h is a fixed positive real number, [s] denotes the largest integer that is
not greater than s, so that d̃[ t

h ] = d̃i ∈ R
n , if ih ≤ t < (i + 1)h, i is an integer. We

obtain the following model:

v̇ = H(v) + d̃[ t
h ]. (7.1.2)

Assume that the pulse function has only one nonzero coordinate, that is only
one equation in system (7.1.1) is chaotically perturbed. This assumption will be
justified in Sect. 7.1.3. This is a specific case only, and the more general case can be
investigated in a similar manner. Suppose that

d̃i = (g(di ), 0, 0, . . . , 0) (7.1.3)

for all integers i , where g : R → R is a continuous function.
We construct the values of the disturbance using a solution of a discrete equation:

di = F (di−1) , (7.1.4)

where the function F : R → R is continuous, and (7.1.4) generates chaotic exoge-
nous shocks. Two definitions of chaos are used: Devaney chaos and chaos through
period-doubling cascade.

While it is an intuitive conclusion, one has to verify rigorously whether system
(7.1.2) admits chaos. This is the objective of the present section. One of the most
convenientways of analysis in dynamics is to consider a problemnear an equilibrium.
So, assume that (7.1.1) admits a steady state at v = v∗. Transform the state variables
x = v − v∗ in (7.1.2). Then, near the equilibrium point the linearized model takes
the form

ẋ = Ax + f (x) + d̃[ t
h ],

d[ t
h ] = F

(

d[ t
h ]−1

)

,
(7.1.5)

where t ∈ R, x ∈ R
n , f (0) = 0. Assume that A is a matrix, all of whose eigenvalues

have negative real parts, and f : Rn → R
n is a function continuously differentiable

in its arguments.
We call the type of disturbances just described as pulsative perturbations with

chaotically behaved values and prove that the perturbed system exhibits chaos. This
is the first time that such disturbances are introduced in the chaos literature. There
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are many applications for shocks with chaotically behaved values in economics.
Consider economic time series such as commodity prices, productivity indices, and
international trade indicators, all of which are examples of exogenous shocks in
some economic models. These are usually gauged by economists at regular discrete
intervals, no matter how disaggregated (year, month, day, minute, second), and it
is their value that is unpredictable and irregular. Another interpretation is that some
variables truly change values only at fixed times, for example, the government budget
that is determined once a year, earnings of a farm that sells its produce in accordance
with the seasons, a firm’s capital equipment that changes with periodical investment.
All of these quantities vary at regular instants of time, but their values may be
irregular. Thus, pulsative perturbations with chaotically behaved values are a good
approximation of reality. In this section, we provide rigorous verification of the
presence of chaos in system (7.1.5).

To model F , one can consider the logistic map of P.-F. Verhulst [57],

F(di−1) = μdi−1(1 − di−1). (7.1.6)

It is known that if 0 < μ ≤ 4, then the unit interval [0, 1] is invariant under the
iterations of the map, and there are values of the parameter μ such that the map is
chaotic. The logistic map plays a very important role in many fields of science, and
economics is not an exception. Good examples of the applications of the logistic map
and its historical background are provided in [58].

Bala et al. [51] show that for particular forms of the utility functions in a sim-
ple discrete-time model of an exchange economy with two goods under Walrasian
tatonnement, the evolution of the price of the non-numeraire good is described with
a logistic map. This result can be used to model commodity prices, such as prices of
oil, gold, silver, etc., using a logistic map. Benhabib and Day [27] obtain a logistic
map as the law of motion of consumption in a simple overlapping generations model
with quadratic utility function, andMitra and Sorger [33] verify that the logistic map
can be the optimal policy function of a regular dynamic optimization problem, i.e.,
one satisfying some regularity assumptions, if and only if the discount factor does
not exceed 1/16. We use these results to motivate our use of the logistic map to
model the export shock in the Kaldor–Kalecki model of the aggregate economy in
Sect. 7.1.4, where exports to a foreign country are a function of consumption levels
there. Since consumption in the foreign country can be thought of as the solution to
a regular dynamic optimization problem of foreign consumers, we describe it with
a logistic map. Of course, the logistic map is only an illustrative example of a wide
range of chaotic dynamics that exogenous shocks can follow. Modeling the shocks
in any other way in our simulations would not alter the main message of the present
section.

An alternative way to generate a pulsative chaotic perturbation is considering a
pulse function with chaotically behaved discontinuity instants, the θi in the definition
of the pulse function above (as opposed to chaotically behaved values):
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ν(t, d) =
{

m0, if θ2i (d) < t ≤ θ2i+1(d)

m1, if θ2i−1(d) < t ≤ θ2i (d),
(7.1.7)

where i is an integer and m0, m1 are real numbers such that m0 �= m1. The sequence
{θi (d)}, which defines the discontinuity instants of the function ν(t, d), is introduced
through the equation θi (d) = i + di , where d = {di } is a solution of Eq. (7.1.4).
Examples of this type of shocks are natural disasters and extreme events in general,
such as market crashes. They take a finite number of values (an earthquake either
happens or not), but their timing is irregular.

The original system (in its linearized form) then becomes

ẋ = Ax + f (x) + ν(t, d). (7.1.8)

The theory of the systems of the form (7.1.8) is described in [59, 60]. In this
work, we will present simulations of chaos in a Kaldor–Kalecki model subjected to
such shocks. We will also demonstrate the application of the OGY control method
for both types of shocks described.

7.1.3 Mathematical Investigation of System (7.1.5)

In this subsection, we study differential equations perturbed by a pulse function with
chaotically behaved values. We first give a complete description of the perturbation,
and then consider the space of all bounded solutions of the system.

We shall make use of the uniform norm ‖Γ ‖ = sup
‖v‖=1

‖Γ v‖ for any matrix Γ .

Since all eigenvalues of the constant n × n real-valued matrix A have negative
real parts, one can verify the existence of positive real numbers N and ω such that
the inequality

∥
∥eAt

∥
∥ ≤ Ne−ωt is valid for all t ≥ 0.

The following four assumptions are needed throughout this section:

(C1) There exist positive real numbers M f and Mg such that sup
x∈Rn

‖ f (x)‖ = M f ,

sup
s∈R

|g(s)| = Mg;
(C2) There exists a positive real number L f such that the inequality

‖ f (x1) − f (x2)‖ ≤ L f ‖x1 − x2‖

holds for all x1, x2 ∈ R
n;

(C3) There exist positive real numbers L1 and L2 such that the inequality
L1 |s1 − s2| ≤ |g(s1) − g(s2)| ≤ L2 |s1 − s2| holds for all s1, s2 ∈ R;

(C4) N L f − ω < 0.

Condition (C4) ensures that system (7.1.2) is weakly nonlinear. We assume that
Eq. (7.1.4) admits a set of bounded solutions, defined for all integers. More precisely,
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assume that there exists a bounded set Λ of real numbers such that the values of
bounded solutions are in this set. Notice that in the case of the logistic map (7.1.6),
with 0 < μ ≤ 4, the set Λ can be taken as the unit interval [0, 1]. We shall denote
by D the set of all bounded solutions.

To solve system (7.1.5), one has to solve the discrete equation (7.1.4), given
initial value d0, obtain a sequence {di } as a solution, build a function d[ t

h ] = di , if
t ∈ [ih, (i + 1)h), and substitute this function in (7.1.5). The resulting system is

ẋ = Ax + f (x) + d̃[ t
h ], (7.1.9)

where d̃[ t
h ] =

(

g(d[ t
h ]), 0, 0, . . . , 0

)

∈ R
n . If the Lipschitz constant L f is suffi-

ciently small so that condition (C4) is satisfied, then for a given d ∈ D this system
admits a unique, bounded on the entire real axis, solution, denoted by φd(t) [61]. Let
us denote by X the set of such solutions for all possible d ∈ D . One can show that
φd(t) satisfies the relation [62]

φd(t) =
∫ t

−∞
eA(t−s)

(

f (φd(s)) + d̃[ s
h ]

)

ds. (7.1.10)

Let us denote M = M f + Mg , where the numbers M f and Mg are discussed in

condition (C1). For any x(t) ∈ X , we have sup
t∈R

‖x(t)‖ ≤ H0, where H0 = N M

ω
.

That is, all bounded solutions of system (7.1.9) lie in a tube with radius H0.
In what follows, for fixed d ∈ D , the function xd(t, x0), x0 ∈ R

n , will stand
for the unique solution of system (7.1.9) with the initial condition xd(0, x0) = x0.
Notice that this solution is not necessarily bounded.

We say that a sequence {di } ∈ D is p-periodic if there exists a natural number p
such that di+p = di for each integer i . Suppose that system (7.1.4) admits infinitely
many periodic solutions, and let us denote the set of all such solutions byP , which
is a subset of D .

By applying the standard technique [61], common for quasilinear ordinary differ-
ential equations, one can prove the following two assertions. We omit their verifica-
tion.

Lemma 7.1 For every d ∈ D and x0 ∈ R
n, the inequality ‖xd(t, x0) − φd(t)‖ ≤

N ‖x0 − φd(0)‖ e(N L f −ω)t holds for all t ≥ 0.

Using the last lemma together with condition (C3), one can show that for every
d ∈ D and any x0 ∈ R

n , ‖xd(t, x0) − φd(t)‖ → 0 as t → ∞, and consequently
xd(t, x0) eventually enters the tube with radius H0.

The proof of the next lemma uses representation (7.1.10).

Lemma 7.2 Suppose that p is a natural number. If d ∈ P is a p-periodic sequence,
then the solution φd(t) of system (7.1.9) is ph-periodic, and vice versa.
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Now,we demonstrate the chaotic properties of Eq. (7.1.4).We use two exactmath-
ematical descriptions of chaos: Devaney chaos and chaos through period-doubling
cascade. The former is the most theoretical known type of chaos, and the latter is
convenient for simulations.

The following are the ingredients of chaos [10], adapted for our needs. They hold
for any map which is topologically conjugate to symbolic dynamics [62].

(i) The set D is called sensitive if there exists a positive real number ε such that,
for each sequence {di } ∈ D and an arbitrary positive real number δ, there exist
a sequence {ci } ∈ D and a natural number j such that |ci − di | < δ, for all
i ≤ 0 and

∣
∣c j − d j

∣
∣ > ε.

(ii) The set D is called transitive if there exists a sequence
{

d∗
i

} ∈ D such that for
each {di } ∈ D , an arbitrarily small positive number ε and an arbitrarily large
natural number E , there exist a natural number m and an integer n such that
∣
∣di − d∗

i+m

∣
∣ < ε for each integer i between n and n + E .

(iii) The set of all periodic solutionsP of Eq. (7.1.4) is called dense inD if for each
sequence {di } ∈ D , an arbitrarily small positive number ε and an arbitrarily
large natural number E , there exist a periodic sequence {ci } ∈ P and an integer
n such that |ci − di | < ε, for each integer i between n and n + E .

In our discussions of chaos, we will suppose that the setD is sensitive, transitive,
and admits a dense set of periodic solutions.

Wewillmakeuseof thenumber τ = min

{
h

2
,

L1εh

4(H0 ‖A‖ + M)[2 + h(L f + ‖A‖)]
}

in the next lemma, where ε is that from the definition (i) of sensitivity of the set D .

Lemma 7.3 Suppose that the set D is sensitive. In this case, there exists a posi-
tive number ε0 such that for each sequence d ∈ D and an arbitrary positive real
number δ, there exist c ∈ D and an interval J ⊂ [0,∞) of length τ such that
‖φc(0) − φd(0)‖ < δ and ‖φc(t) − φd(t)‖ > ε0, for all t ∈ J . That is, X is sensitive.

Proof Fix an arbitrary sequence d ∈ D and an arbitrary positive number δ. Let
us take a sufficiently small positive real number δ0 which satisfies the inequality
(

1 + NL2

ω − NL f

)

δ0 < δ and a negative real number R such that
2MN

ω
e(ω−NL f )R <

δ0.
Since the set D is sensitive, there exists a positive number ε such that both of the

inequalities |ci − di | < δ0, i ≤ 0, and
∣
∣c j − d j

∣
∣ > ε hold for some sequence c ∈ D

and a natural number j .
First of all, we will show that ‖φc(0) − φd(0)‖ < δ. According to the relation

(7.1.10), the functions φc(t) and φd(t) satisfy the following couple of integral equa-
tions

φc(t) =
∫ t

−∞
eA(t−s)

(

f (φc(s))) + c̃[ s
h

]

)

ds,
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φd(t) =
∫ t

−∞
eA(t−s)

(

f (φd(s))) + d̃[ s
h

]

)

ds,

where c̃[ s
h ] =

(

g(c[ s
h ]), 0, 0, . . . , 0

)

∈ R
n and d̃[ s

h ] =
(

g(d[ s
h ]), 0, 0, . . . , 0

)

∈ R
n .

Using these equations one can obtain for R ≤ t ≤ 0 that

eωt ‖φc(t) − φd(t)‖ ≤ 2M N

ω
eωR + N L2δ0

ω

(

1 − e−ω(t−R)
)

eωt

+N L f

∫ t

R
eωs ‖φc(s) − φd(s)‖ ds.

Applying Gronwall’s Lemma [61] to the last inequality, one can find that

‖φc(0) − φd(0)‖ ≤ N L2δ0

ω − N L f
+ 2M N

ω
e(ω−N L f )R < δ.

In the remaining part of the proof, we shall determine an interval J ⊂ [0,∞) of
length τ such that the inequality ‖φd(t) − φc(t)‖ > ε0 is valid for all t ∈ J .

For t ∈ [ jh, ( j + 1)h], the functions φc(t) and φd(t) satisfy the equation

φc(t) − φd(t) = (φc( jh) − φd( jh)) +
∫ t

jh
A(φc(s) − φd(s))ds

+
∫ t

jh
[ f (φc(s)) − f (φd(s))] ds +

∫ t

jh

(

c̃[ s
h ] − d̃[ s

h ]
)

ds,

and evaluating at t = ( j + 1)h, one can produce the inequality

‖φc(( j + 1)h) − φd(( j + 1)h)‖ ≥ ∣
∣g(c j ) − g(d j )

∣
∣ h − ‖φc( jh) − φd( jh)‖

−
∫ ( j+1)h

jh

(

L f + ‖A‖) ‖φc(s) − φd(s)‖ ds.

By means of the last inequality, we have

max
t∈[ jh,( j+1)h]

‖φc(t) − φd(t)‖ ≥ ‖φc(( j + 1)h) − φd(( j + 1)h)‖
> L1εh − [1 + h(L f + ‖A‖)] max

t∈[ jh,( j+1)h]
‖φc(t) − φd(t)‖ .

Therefore, max
t∈[ jh,( j+1)h]

‖φc(t) − φd(t)‖ >
L1εh

[2 + h(L f + ‖A‖)] .
Suppose that on the interval [ jh, ( j+1)h], the real-valued function‖φc(t)−φd(t)‖

takes its maximum value at the point η. Let us define the number
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ξ =
{

η, if η ≤ jh + h
2

η − τ, if η > jh + h
2

,

and let J = [ξ, ξ + τ ], which is an interval of length τ . We note that the interval J
is a subset of the interval [ jh, ( j + 1)h] and depends on the sequences c and d, but
its length remains the same for different sequences.

By virtue of the inequality

‖φc(t) − φd(t)‖ ≥ ‖φc(η) − φd(η)‖ −
∣
∣
∣
∣

∫ t

η

‖A‖ ‖φc(s) − φd(s)‖ ds

∣
∣
∣
∣

−
∣
∣
∣
∣

∫ t

η

∥
∥
∥ f (φc(s)) − f (φd(s)) + c̃[ s

h ] − d̃[ s
h ]

∥
∥
∥ ds

∣
∣
∣
∣
,

for t ∈ J , one has ‖φc(t) − φd(t)‖ > ε0, where ε0 = L1εh

2[2 + h(L f + ‖A‖)] .
The proof is finalized. �

We shall proceed to the next ingredient of Devaney chaos. In the case when
Eq. (7.1.4) possesses a dense sequence d∗ ∈ D , the following assertion is valid.

Lemma 7.4 Suppose the setD is transitive. Then there exists a solution φd∗(t) ∈ X,
d∗ ∈ D such that for each solution φd(t) ∈ X, d ∈ D , an arbitrarily small positive
real number ε and an arbitrarily large natural number E, there exist a positive real
number ζ and an interval J ⊂ R of length Eh, such that ‖φd(t) − φd∗(t + ζ )‖ < ε,
for all t ∈ J .

Proof Fix an arbitrarily small positive number ε and an arbitrarily large natural
number E . Let d ∈ D be a given solution of Eq. (7.1.4) and suppose that γ =

ω(ω − N L f )

2M N (ω − N L f ) + N L2ω
. SinceD is transitive, there exist a natural numberm and

an integer n such that
∥
∥di − d∗

i+m

∥
∥ < γε, for all integers i satisfying n ≤ i ≤ n+2E .

Let ζ = mh. Equation (7.1.10) implies that

φd∗(t + ζ ) =
∫ t

−∞
eA(t−s)

(

f (φd∗(s + ζ )) + d̃∗[ s
h ]+m

)

ds.

Therefore, for t ∈ [nh, (n + 2E)h], the equation

φd(t) − φd∗(t + ζ )

=
∫ nh

−∞
eA(t−s)

(

f (φd(s)) − f (φd∗(s + ζ )) + d̃[ s
h ] − d̃∗[ s

h ]+m

)

ds

+
∫ t

nh
eA(t−s) ( f (φd(s)) − f (φd∗(s + ζ ))) ds +

∫ t

nh
eA(t−s)

(

d̃[ s
h ] − d̃∗[ s

h ]+m

)

ds
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holds, where

d̃[ s
h ] =

(

g(d[ s
h ]), 0, 0, . . . , 0

)

and

d̃∗[ s
h ] =

(

g(d∗
[ s

h ]), 0, 0, . . . , 0
)

are n-dimensional vectors in Rn .
Making use of the last equation we obtain that

eωt ‖φd(t) − φd∗(t + ζ )‖ ≤ 2M N

ω
eωnh + N L2γ ε

ω

(

eωt − eωnh
)

+
∫ t

nh
N L f eωs ‖φd(s) − φd∗(s + ζ )‖ ds.

Applying Gronwall’s Lemma [61], one can arrive at the following inequality:

‖φd(t) − φd∗(t + ζ )‖ ≤ 2M N

ω
e(N L f −ω)(t−nh) + N L2γ ε

ω − N L f

(

1 − e(N L f −ω)(t−nh)
)

.

Suppose that the natural number E is large enough so that

Eh >
1

ω − N L f
ln

(
1

γ ε

)

and let the interval J be defined as J = [(n + E) h, (n + 2E) h]. We note that the
length of the interval J is Eh. For t ≥ (n + E) h, it is the case that

e(N L f −ω)(t−nh) ≤ e(N L f −ω)Eh < γε.

Consequently, for t ∈ J we have

‖φd(t) − φd∗(t + ζ )‖ <

(
2M N

ω
+ N L2

ω − N L f

)

γ ε = ε.

The proof of the lemma is completed. �

For the case when the set of all periodic solutionsP of Eq. (7.1.4) is dense inD ,
we shall formulate an important ingredient of chaos for the set X , which states that
an arbitrary function chosen from this set can be approximated by periodic functions
from the set X P of all periodic solutions of system (7.1.9) on intervals of arbitrary
lengths. In other words, the density property of the setP is inherited by the set X P .
We call this property the density of the set X P in X . The next assertion can be proved
similarly to the previous lemma.



278 7 Economic Models with Exogenous Continuous/Discrete Shocks

Lemma 7.5 Suppose that the set of all periodic solutions P of Eq. (7.1.4) is dense
in D . Then for every solution φd(t) ∈ X, d ∈ D , an arbitrarily small positive ε and
an arbitrarily large positive E, one can find a periodic solution φc(t) ∈ X P , c ∈ P ,
and an interval J ⊂ R of length Eh, such that ‖φc(t) − φd(t)‖ < ε for t ∈ J .

We call the combined properties expressed in Lemmas 7.3–7.5 as chaos in the
sense of Devaney for the set X , and we can formulate the following theorem:

Theorem 7.1 The set X is chaotic in the sense of Devaney provided that the set D
is sensitive, transitive, and possesses a dense set of periodic sequences.

Next, let us describe chaos for Eq. (7.1.4) as obtained through period-doubling
cascade.

Let us consider the equation

di = G(di−1, μ), (7.1.11)

where i is an integer and the function G : R × R → R satisfies for all x ∈ R the
property that F(x) = G(x, μ∞), for some finite valueμ∞ of the parameterμ, which
will be explained below.

Suppose that there exist a natural number k0 and a sequence of period-doubling
bifurcation values {μm} of the parameter μ, such that for each natural number m,
as the parameter μ increases or decreases through μm , system (7.1.11) undergoes
a period-doubling bifurcation and the previously existing stable k02m−1-periodic
sequence becomes unstable and is replaced by a stable periodic sequence of period
k02m . Moreover, the sequence {μm} of parameter values converges to a finite value
μ∞ as m → ∞ and as a result, at μ = μ∞, there exist infinitely many unstable
periodic solutions of Eq. (7.1.11), and consequently of Eq. (7.1.4), all lying in a
bounded region. In this case, we say that Eq. (7.1.4) admits chaos through period-
doubling cascade [63].

Since chaos throughperiod-doubling cascade is based on the existence of infinitely
manyperiodic solutions, if Eq. (7.1.4) admits chaos throughperiod-doubling cascade,
then by Lemma 7.2 the same is true for system (7.1.9), as stated in the following
theorem. The instability of these periodic solutions can be proved using the same
technique as in the proof of Lemma 7.3.

Theorem 7.2 If Eq. (7.1.4) is chaotic through period-doubling cascade, then the
same is true for (7.1.9).

From the above discussion, Eq. (7.1.9), like Eq. (7.1.11), undergoes period-
doubling bifurcations as the parameter μ increases or decreases through the values
μm, m ∈ N. In other words, the sequence {μm} of bifurcation parameters is exactly
the same for both equations. It is worth pointing out that if Eq. (7.1.11) obeys the uni-
versality of Feigenbaum [63], one can conclude that the same holds for Eq. (7.1.9).

That is, when lim
m→∞

μm − μm+1

μm+1 − μm+2
is evaluated, the universal constant known as

the Feigenbaum number 4.6692016 . . . is achieved, and this universal number is the
same for both equations, and consequently for Eq. (7.1.5).
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7.1.4 Chaos in a Kaldor–Kalecki Model

Consider the model of the aggregate economy of a given country:

Ẏ = α[I (Y, K ) − S(Y, K )],
K̇ = I (Y, K ) − δK ,

(7.1.12)

where Y is income, K is capital stock, I is gross investment, and S is savings. Income
changes proportionally to the excess demand in the goods market, and the second
equation is a standard capital accumulation equation. The constant depreciation rate
δ and the adjustment coefficient α are positive. This model was studied in detail by
Lorenz [12] and Zhang [13]. It admits a stable equilibrium under certain conditions
on the functions involved. We will show how perturbing it with a chaotic distur-
bance affects the resulting dynamics. For this purpose, let us consider the following
specification of system (7.1.12) with I (Y, K ) = Y − aY 3 + bK , S(Y, K ) = sY ,

Ẏ = α[(1 − s)Y − aY 3 + bK ],
K̇ = Y − aY 3 + bK − δK ,

(7.1.13)

where the constant parameters satisfy α > 0, a > 0, b < 0, 0 < s < 1 and
0 < δ < 1. We present the following modified systems:

Ẏ = α[(1 − s)Y − aY 3 + bK ] + g(d[t]),
K̇ = Y − aY 3 + bK − δK ,

d[t] = μd[t]−1(1 − d[t]−1).

(7.1.14)

and

Ẏ = α[(1 − s)Y − aY 3 + bK ] + ν(t, d),

K̇ = Y − aY 3 + bK − δK ,
(7.1.15)

where the function ν(t, d) is defined in (7.1.7), and d is a solution of (7.1.4) and
(7.1.6).

We introduce the perturbation only in the equation for incomeY , since the equation
for capital stock K can be viewed as a mechanical relation between investment and
capital stock, where there is little room for exogenous influences. Income of a given
country, on the other hand, is subject to many possible exogenous disturbances,
such as productivity shocks and global economic fluctuations. This explains why
we investigated the case of a perturbation with only one nonzero coordinate in the
theoretical part. Of course, as we emphasized above, a more general case can be
considered in a similar manner.

We model these perturbations as pulse functions, with chaotically behaved values
in (7.1.14) andwith chaotically behaved discontinuity instants in (7.1.15). Both types
of disturbances are plausible: the first one is relevant if income shocks “pulsate”
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at regular time intervals (that is, they change values monthly, daily, etc.). Many
economic time series that are good examples of exogenous disturbances to output,
such as productivity indices, international trade indicators and commodity prices,
can be modeled in this way. The second case is applicable if the disturbances admit a
finite number of values, but the timing of these is chaotic. For example, output shocks
due to natural disasters and weather fluctuations could be described with a finite set
of values (e.g., the “Atlas of the Flood/Dryness in China for the last 500-year period”
distinguishes between flood, wetness, normal level, dryness, and aridity [16]), but
their timing is irregular. Of course, there may be a third case, where both the values
of the shocks and the instants of discontinuity evolve irregularly. We can provide
simulations for this scenario, as well, and the resulting chaotic behavior would be
similar to the other cases.

One can see that a steady state of (7.1.13) with positive coordinates

Y ∗ =
√

δ(1 − s) + bs

aδ
, K ∗ = s

δ

√

δ(1 − s) + bs

aδ
,

exists only if

δs < δ + bs. (7.1.16)

In the remaining part of the section, set α = 1, s = δ = 1/2, b = −7/16 to obtain

Y ∗ = 1

4
√

a
, K ∗ = 1

4
√

a
. Now, the transformations Y = y + Y ∗, K = k + K ∗,

applied to (7.1.13), give us the system

ẏ = (5/16)y − (7/16)k − ay3 − (3/4)
√

ay2,
k̇ = (13/16)y − (15/16)k − ay3 − (3/4)

√
ay2.

(7.1.17)

The eigenvalues for the associated linear system are λ1 = −1/2, λ2 = −1/8. In
this case, the equilibrium is asymptotically stable, if the number a is chosen to be
sufficiently small.

7.1.4.1 Perturbation with Chaotically Behaved Values

Suppose that the home economy exports goods to a foreign country. The export flows
are a function of consumption levels in the foreign country (normalized so that they
lie in the interval [0, 1] and denoted by d), which evolve according to a logistic
map: d[t] = μd[t]−1(1 − d[t]−1). That is, foreign consumption is a pulse function,
where the unit of time can be chosen as fine as desired (year, month, day, minute,
etc.). We motivate our choice of the logistic map with the results of Benhabib and
Day [27] and Mitra and Sorger [33], who show that in some standard optimization
problems the optimal policy function is a logistic map, under certain conditions. In
general, any other way of modeling chaotic shocks could be implemented. Assume
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that the export flows to the foreign country are determined by a cubic function,
ex[t] ≡ 0.0005(d[t] + d3[t]), and μ = 3.8. We multiply the export flows by the same
multiplier as excess demand in the domestic goods market in the output equation,
α, and since in our case α = 1, we obtain the following system of type (7.1.14)
introduced above:

Ẏ = (1 − s)Y − aY 3 + bK + 0.0005(d[t] + d3[t]),
K̇ = Y − aY 3 + bK − δK ,

d[t] = 3.8d[t]−1(1 − d[t]−1),

(7.1.18)

with g(d[t]) ≡ 0.0005(d[t] + d3[t]).
Let us take a = 0.02 in system (7.1.18). Transforming the variables as Y =

y + Y ∗, K = k + K ∗, where Y ∗ = 5

2
√
2
, K ∗ = 5

2
√
2
, one can obtain

ẏ = (5/16)y − (7/16)k − ay3 − (3/4)
√

ay2 + 0.0005(d[t] + d3[t]),
k̇ = (13/16)y − (15/16)k − ay3 − (3/4)

√
ay2,

d[t] = 3.8d[t]−1(1 − d[t]−1).

(7.1.19)

The sequence {di }with d0 = 0.219 is chaotic [41], and according to Theorem 7.2,
the solution with y(0) = 0.0078, k(0) = 0.0067, is chaotic. In Figs. 7.1 and 7.2
the chaotic behavior of the solution is observable. Notice that both coordinates are
positive.

We proceed by briefly explaining the OGY control method. Suppose that the
parameterμ in the logisticmap (7.1.6) is allowed to vary in the range [3.8−ε, 3.8+ε],
where ε is a given small number. That is, it is not possible (say, it is prohibitively
costly or practically infeasible) to simply shift the value ofμ to a level that generates
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Fig. 7.1 The graphs of the y and k coordinates of the chaotic solution of system (7.1.19)
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Fig. 7.2 The chaotic
trajectory of system (7.1.19)
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nonchaotic dynamics. Let us consider an arbitrary solution {di }, d0 ∈ [0, 1], of the
map and denote by d( j), j = 1, 2, . . . , p, the target unstable p-periodic orbit to be
stabilized. In the OGY control method [41], at each iteration step i after the control
mechanism is switched on, we consider the logistic map with the parameter value
μ = μ̄i , where

μ̄i = 3.8

(

1 + [2d( j) − 1][di − d( j)]
d( j)[1 − d( j)]

)

, (7.1.20)

provided that the number on the right-hand side of the formula (7.1.20) belongs
to the interval [3.8 − ε, 3.8 + ε]. In other words, we apply a perturbation in the

amount of
3.8[2d( j) − 1][di − d( j)]

d( j)[1 − d( j)] to the parameter μ = 3.8 of the logistic map, if

the trajectory {di } is sufficiently close to the target periodic orbit. This perturbation
makes the map behave regularly so that at each iteration step the orbit di is forced
to be located in a small neighborhood of a previously chosen periodic orbit d( j).
Unless the parameter perturbation is applied, the orbit di moves away from d( j)

due to the instability. If

∣
∣
∣
∣
∣

3.8[2d( j) − 1][di − d( j)]
d( j)[1 − d( j)]

∣
∣
∣
∣
∣

> ε, we set μ̄i = 3.8, so that

the system evolves at its original parameter value, and wait until the trajectory {di }
enters a sufficiently small neighborhood of the periodic orbit d( j), j = 1, 2, . . . , p,

such that the inequality −ε ≤ 3.8[2d( j) − 1][di − d( j)]
d( j)[1 − d( j)] ≤ ε holds. If this is the

case, the control of chaos is not achieved immediately after switching on the control
mechanism. Instead, there is a transition time before the desired periodic orbit is
stabilized. The transition time increases if the number ε decreases [14].

An unstable p-periodic solution of system (7.1.19) can be stabilized by controlling
the corresponding p-periodic solution of the third equation, that is, the p-periodic
solution of the logistic map. In the next example, a 2-periodic solution of system
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Fig. 7.3 OGYcontrolmethod applied to system (7.1.19). It is seen in both panels that the 2-periodic
solution of system (7.1.19) is stabilized

(7.1.19) is stabilized by applying the OGY control around the 2-periodic orbit d(1) ≈
0.3737, d(2) ≈ 0.8894 of the logistic map. Notice that there exist two different 2-
periodic solutions of system (7.1.19). One of them corresponds to the 2-periodic
solution {ci } of the logistic map with c0 = d(1), and the other corresponds to the
2-periodic solution {c̄i } with c̄0 = d(2).

We consider the solution of system (7.1.19) with the initial data y(0) = 0.0078,
k(0) = 0.0067, and d0 = 0.219 again and apply the OGY control method around
the 2-periodic solution {c̄i } of the logistic map, with c0 = d(2) ≈ 0.8894. Figure7.3
shows the simulation results for ε = 0.04. The control mechanism is switched on at
t = 50 and switched off at t = 130. The control becomes dominant approximately
at t = 100 and its effect lasts approximately until t = 190, after which the instability
becomes dominant and irregular behavior develops again.

The OGY control has to be applied to the logistic map, i.e., to the consumption
function of the foreign economy. This highlights the importance of international
economic cooperation between countries. Since foreign consumption is out of direct
control of the home policy-makers, its adjustment can be only done by the foreign
country in response to international negotiations. Additionally, the application of the
OGYcontrol to differential equations is feasible if a Poincarémap can be constructed,
but this requires the knowledge of analytical solutions, which is a difficult task in
general. Properly recognizing the unidimensional export shock as the source of the
chaotic motion in the home economy will lead to locating the most effective and
least costly way of stabilizing this dynamics, and in more general (and realistic)
cases of higher dimensional models of home economy may prove to be the only way
of controlling chaos.
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7.1.4.2 Perturbation with Chaotically Behaved Discontinuity Instants

Now suppose that the home economymodeled in (7.1.13) is perturbedwith an exoge-
nousweather shock ν(t, d), such as rainfall, that affects agricultural output and there-
fore the entire economy. We model rainfall as taking one of two values, where the
higher value is normal rainfall, and the lower value is drought, which leads to lower
agricultural production and slower output growth:

ν(t, d) =
{

0.024, if θ2i (d) < t ≤ θ2i+1(d)

0.007, if θ2i−1(d) < t ≤ θ2i (d),
(7.1.21)

where d is a solution of (7.1.6):

di = F(di−1) = μdi−1(1 − di−1).

Consider system (7.1.15) with a = 10−5. Transforming the variables as described
for system (7.1.19), one can reduce system (7.1.15) to the following:

ẏ = (5/16)y − (7/16)k − ay3 − (3/4)
√

ay2 + ν(t, d),

k̇ = (13/16)y − (15/16)k − ay3 − (3/4)
√

ay2.
(7.1.22)

The bifurcation diagram of system (7.1.22), for 2.6 ≤ μ ≤ 4, is depicted in
Fig. 7.4, where successive intervals of chaos and stable periodic solutions can be
observed. In the regions of stability, for fixed μ, the bifurcation diagram represents
the values of the stable periodic solutions of (7.1.22) at t = θ0(d), where d is a
periodic sequence. Therefore, in such regions, the number of intersection points of
the graph with a vertical line through a given value of μ gives the number of stable
periodic solutions for that μ. For example, for μ = 3.2, a vertical line intersects
the diagram at two points, which means that for this value of the parameter there
exist two stable periodic solutions. Even though the diagram indicates regions where
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Fig. 7.4 Bifurcation diagram of system (7.1.22) with a = 10−5
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stable solutions exist, it does not inform us about the periods of these solutions. A
theoretical discussion for the periods can be found in [60]. System (7.1.22) undergoes
period-doubling bifurcations at the same parameter values as the logistic map and
obeys the Feigenbaum universality [63]. One can observe from the diagram that
system (7.1.22) is chaotic for μ = 3.8.

Let us take into account system (7.1.22) with the parameter value μ = 3.8.
The time series of the y and k coordinates of system (7.1.22) corresponding to the
initial data y(0.39) = 0.21, k(0.39) = 0.18 and d0 = 0.39, are graphed in Fig. 7.5.
The trajectory of the same solution is shown in Fig. 7.6. In both figures, the chaotic
behavior of the solution can be observed. Notice that both coordinates of the solution,
y and k, are positive.

Similarly to the previous case, the unstable periodic solutions of system (7.1.22)
can be stabilized by controlling the chaos of the logistic map, particularly, using
the OGY control method [60]. Of course, the policy-makers cannot control rain-
fall directly. To implement this method, they would need to regulate the timing
of the impact of the rainfall on the economy, by providing assistance to farmers
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Fig. 7.5 The graphs of the y and k coordinates of system (7.1.22)

Fig. 7.6 The chaotic
trajectory of system (7.1.22)
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in order to stimulate their demand for goods and employ workers that are unem-
ployed/underemployed due to the shortfall in agricultural production in the times
of drought, and conversely tax farmers and/or agricultural workers in other times.
Again, applying OGY control directly to the exogenous shock would be less costly
than applying it to the entire system, and in high-dimensional models of the economy
would be the only feasible approach.

7.2 Chaotic Business Cycles

In this section, we propose a novel approach to generate chaotic business cycles
in a deterministic setting. Rather than producing chaos endogenously, we consider
aggregate economic models with limit cycles and/or equilibriums, subject them to
chaotic exogenous shocks and obtain chaotic cyclical motions. Thus, we emphasize
that chaotic cycles, which are inevitable in economics, are not only interior properties
of economic models, but also can be considered as a result of interaction of several
economical systems. This provides a comprehension of chaos (unpredictability, lack
of forecasting) and control of chaos as a global economic phenomenon from the
deterministic point of view.

We suppose that the results of this section contribute to the mixed exogenous–
endogenous theories of business cycles in classification by P.A. Samuelson [64].
Moreover, they demonstrate that the irregularity of the extended chaos can be struc-
tured, and this distinguishes them from the generalized synchronization. The advan-
tage of the knowledge of the structure is that by applying instruments, which already
have been developed for deterministic chaos, one can control the chaos, emphasizing
a parameter or a type ofmotion. For the globalization of cyclic chaos phenomenonwe
utilize new mechanisms such that entrainment by chaos, attraction of chaotic cycles
by equilibriums and bifurcation of chaotic cycles developed in our earlier papers.

7.2.1 Introduction

Scientists are interested in chaos theory due to the fact that the theory could offer
new controlling strategies which have some particularly interesting insights for eco-
nomic policies. There was a opinion among economists that dynamics of chaos is
neither predictable nor controllable because of sensitivity. Results of Ott et al. [39]
showed that control of chaos can be made by very small corrections of parameters
[14, 44]. This achievement has been widely used in economics by Kaas, Kopel,
Holyst, Urbanovwics [43, 50, 52, 65], and many others. In [1] it is written that the
role of chaos is “… of revealing sources of uncertainty, and enriching the list of
recognized possible developments.” The control of chaos makes the possible devel-
opments realistic.
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In the classic book [64] it is observed that while forced oscillator systems naturally
emerge in theoretical investigations of several technical and physical devices, eco-
nomic examples for this special family of functions have only rarely been provided.
The main reason for this deficiency may lie in the fact that the necessary periodicity
of the dynamic forcing may not be obvious in most economic applications. Our pro-
posals are to apply deterministic and chaotic exogenous shocks to economic models
and make them more realistic.

Onemay consider that chaos (the lack of forecasting) is undesirable in economics,
but unavoidable. Thus, one can say that an economic model is realistic if there are
chaotic motions of the system. We suggest to consider the presence of chaos in a
model not only as indication of adequacy to economic real motions, but also as a
measure of a power for an economic model. Indeed, chaos means that the model
generates infinitely many motions with different periods and aperiodic motions,
which are unstable, and consequently easy to be altered by control such that they can
be sustained in a desirable mode. In other words, deterministic chaos is essential for
economical models to function atmany levels of activity. These is true, exceptionally,
for the modern economies, with their intensive connections and globalization.

The principal novelty of our investigation is that we create a chaotic perturbation,
plug it in a regular dynamic system, and find that similar chaos is inherited by the
solutions of the new system. We call this as the input–output analysis of chaos
generation. Such approach has been widely used for differential equations before,
but with regular inputs. In papers [59, 60, 66–68], the mechanisms are provided
for generating chaos in systems with asymptotically stable equilibriums. Previously,
unpredictability in solutions of differential equations has been considered as a result
of random perturbations with small probability [69–72].

P.A. Samuelson [64] accepts purely endogenous theory as “self-generating” cycle.
Following this opinion we understand chaos as endogenous if it self-generated by an
economicmodel. One can find detailed analysis of the endogenous chaos in books [7,
12, 13] and paper [1], which are very seminal sources on the subject. The dynamics
arise in duopoly models [73], in simple ad hoc macroeconomic models [74, 75]. By
applying the Li–Yorke theorem it is shown in [26, 27] that an overlapping gener-
ations model of the Gale type could generate endogenous chaotic cycles. Discrete
equations have been applied to investigate the presence of the chaos in papers [3, 76],
where models representing a capital stock with a maximum capital–labor ratio and
a Malthusian agrarian economy are investigated. In [3, 77, 78] endogenous chaotic
cycles are demonstrated in growth cycle models. The multiplier–accelerator model
of Samuelson has been modified for generation of chaotic endogenous cycles and
investigated in [79–81]. Investigations in Kaldor’s type models, which are originated
from [79, 82] and finalized in [83] showed that they could generate endogenous
chaos.

Economists of the first half of the last century already filled a strong need of the
developed theory of irregularities. In the classical book [64] one can find that “… in a
physical system there are grand conservation laws of nature, which guarantee that the
systemmust fall on the thin line between stability and instability. But there is nothing
in the economic world corresponding to these laws …”. That is why, considering
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endogenous models P.A. Samuelson [64] suggests that “It is to be stressed that
the exogenous impulses which keep the cycle alive need not themselves be even
quasi-oscillatory in character.” Thus, it was stressed at first that irregularities are
significantly proper for economic dynamics, and at second that they are mostly
because of irregular exogenous shocks.

In the present section, we realize observations of the famous economist. He sug-
gested to consider mixed exogenous–endogenous theories, recognizing that “most
economists are eclectic and prefer a combination of endogenous and exogenous the-
ories.” Accordingly, we use economical models, which admit endogenous business
cycles to be perturbed by exogenous chaotic inputs. Examples of models possess-
ing limit cycles are Kaldor–Kalecki model, Lienard type equations with relaxation
oscillations which are also popular in economics, etc. Moreover, the systems are sub-
ject to exogenous chaotic disturbances, sensitive, and with infinitely many unstable
periodic solutions.

We suggest two scenarios to obtain exogenous chaotic cycles as solutions of
differential equations. For the first one an economical model with limit cycle is
perturbed chaotically to produce a chaotic business cycle. For the second one, we
consider a systemwith an equilibrium, perturb it by cyclic chaos and observe that the
chaotic business cycle emerges in the case too. The first scenario was theoretically
approved in our paper [84]. The second method of cyclic chaos generation is a new
one, and in this section we demonstrate it by simulations. Currently, we study cases
where the shocks enter the system additively, but future investigations may involve
more complex forms, where the disturbance enters the main functions (e.g., the
investment function, savings function, etc.). Both ways of chaotic cycles generation
are applied in discussion of chaotic business cycles as global phenomena. Indeed, in
the basis of anyprocess of extension an input–outputmechanismhas to be considered.

Goodwin [4] argues that the apparent unpredictability of economic systems is due
to deterministic chaos as much as to exogenous shocks. In this sense, our results can
be interpreted as the transmission of unpredictability from one economic system to
another, and even models that do not admit irregularity in isolation can eventually be
contaminated with chaos. Thus, we provide support to the idea that unpredictability
is a global phenomenon in economics, and demonstrate one of the mechanisms for
this contagion. Considering the current extensive globalization process, this is a good
depiction of reality.

Our results demonstrate that the control may become not local (applied to an
isolated model) but global phenomenon with strong effectiveness such that con-
trol applied to a model, which is realizable easily (for example, the logistic map
or Feichtinger’s generic model), can be sufficient to rule the process in all models
joined with the one controlled. Another benefit of our studies is that in the literature
controls are applied to those systems, which are simple and low dimensional. It is
worth to mention that control of chaos (unstable periodic motions) becomes difficult
if dimensions of systems increase and the construction of Poincaré sections is com-
plexified. For this reason the idea to control the generated chaos by controlling the
exogenous shocks became useful for applications. In this section it is demonstrated
through the application of the OGY control to the logistic map. A chaos control
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cannot be realized if we do not know the period of unstable motion to be controlled.
In our case the control is applicable to models with arbitrary dimension if only the
basic period of the generator is known. It is obvious that our methods provide us a
scheme of investigation, which can be accompanied with detailed investigation in the
future. Control of chaos nowadays is a synonym to the suppression of chaos. Thus
our results give another way of suppression of chaos. If we find the controllable link
(member) in a chain (collection) of connected chaotic systems, then we can suppress
chaos in the whole chain. This is an effective consequence of our studies.

The section is organized in the followingway. In Sect. 7.2.2we describe the input–
output mechanism, which is in the basis of the chaos extension, and formulate two
theorems, which are theoretical approvement for the following economical and sim-
ulation discussions. In Sect. 7.2.3 economical models with regular motions—stable
equilibrium and orbitally stable cycle are introduced. The models will be perturbed
chaotically in the next subsection to obtain the main economical dynamics. So,
Sect. 7.2.4 considers a stellar consisting of five economical models connected uni-
laterally. Extension of chaos near an equilibrium attractor, entrainment of a business
cycle by chaos, bifurcation of a chaotic economical cycle, and attraction of a chaotic
cycle are considered in economical models. Effects of the chaos generation for global
economies which utilize methods of the OGY control [39] is also demonstrated in
Sect. 7.2.4. Section7.2.5 contains simulation evidence of irregular business cycle
generation. It is demonstrated that entrainment by chaos is possible also for limit
cycles of economical models of retarded type. Detailed comparison of our method
of chaos generation with that on the basis of synchronization of chaos [15, 85, 86] is
made in Sect. 7.2.6. In particular, we provide an argument that the dynamics of the
obtained chaotic business cycles cannot be explained by the synchronization theory
of chaotic systems. In Sect. 7.3 we discuss our results from the point of view of
self-organization and synergetics of Haken [87].

7.2.2 The Input–Output Mechanism and Applications

To explain the input–outputmechanismof chaos generation, let us introduce systems,
which we call the base system, the replicator and the generator. They are intensively
throughout the section. Consider the following system of differential equations,

dz

dt
= B(z), (7.2.23)

where B : Rn → R
n is a continuously differentiable function. The system (7.2.23)

is called the base system.
Next, we subdue the base system to a perturbation, I (t), which will be called an

input and obtain the following system,

dy

dt
= B(y) + I (t), (7.2.24)
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which will be called as the replicator.
Suppose that the input I admits a certain property, let us say, it is a bounded

function.We assume then that there exists a unique solution, y(t), of the last equation,
the replicator,with the boundedness property. This solution is considered as anoutput.
The process for obtaining the solution y(t) of the replicator system by applying the
perturbation I (t) to the base system (7.2.23) is called the input–output mechanism.
It is known that for certain base systems, if the input is periodic, almost periodic,
bounded function, then there exists an output, which is also periodic, almost periodic,
bounded function. In this section, we consider inputs of the new nature: chaotic
functions and set of cyclic chaotic functions. The motions which are in the chaotic
attractor of the Lorenz system [9] considered altogether provide us an example of a
chaotic set of functions. Each element of this set is considered as a chaotic function.
Both of these types of inputs will be used effectively. We have to say the input can
be a set of functions as well as a single function. The same is true for the output.

In this section, we apply base systems of two types, (1) with asymptotically stable
equilibriums, (2) with limit cycles. In the former case we will say about attraction
of chaos by equilibriums, in particular, attraction of cyclic chaos by equilibrium. If
the base system admits a limit cycle, then we say about entrainment of limit cycles
by chaos or just about entrainment by chaos. If the limit cycle in a base system is a
result of the Hopf bifurcation, we will say also about bifurcation of the cyclic chaos.

The main source of chaos in theory are difference and differential equations. For
this reason we consider, inputs which are solutions of some systems of differential
or discrete equations. These systems will be called generators in this section.

Thus, we can consider the following system of differential equations,

dx

dt
= G(x), (7.2.25)

and it is assumed that this system possesses chaos. We shall call this system a gen-
erator. If x(t) is a solution of the system from the chaotic attractor, that is, it is a
chaotic solution, then we notate I (t) = εφ(x(t)) and use the function I (t) in the
Eq. (7.2.24). Here, ε is a nonzero real number and the functions G : Rm → R

m,

φ : Rm → R
n are continuous.

In this section, we will utilize also the logistic map as a generator.
Next, we will give the formulation of two assertions, the main mathematical

recourse of the section.
The following conditions are required:

(A1) System (7.2.23) admits a nonconstant and orbitally stable periodic solution,
(A2) System (7.2.25) possesses sensitivity and is chaotic through period-doubling

cascade,
(A3) Functions B, φ are bounded,
(A4) There exists a positive number L B such that

‖B(y1) − B(y2)‖ ≤ L B ‖y1 − y2‖ ,
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for all y1, y2 ∈ R
n,

(A5) There exists a positive number Lφ such that

‖φ(x1) − φ(x2)‖ ≥ Lφ ‖x1 − x2‖ ,

for all x1, x2 ∈ R
m .

The following assertion is based on the results in [84].

Theorem 7.3 If conditions (A1)–(A5) holds and |ε| is sufficiently small, there exists
a neighborhood U of the orbitally stable limit cycle of (7.2.23) such that solutions of
(7.2.24) which start inside U behave chaotically around the limit cycle. That is, the
solutions are sensitive and there are infinitely many unstable periodic solutions.

If one assumes that the limit cycle is with zero amplitude, that is an equilib-
rium, then immediately the theorem for attraction of chaos by equilibrium [68] can
be obtained. This mathematical result has been utilized in our paper [88] for the
economic dynamics analysis.

Theorem 7.4 [88] If Eq. (7.2.25) is chaotic through period-doubling cascade, then
the same is true for (7.2.24).

7.2.3 Economic Models: The Base Systems

In what follows, to arrange the procedure of chaotic business cycles generation we
shall need regular systems to be perturbed chaotically, i.e., models with asymp-
totically stable equilibriums or limit cycles. In this subsection, we suggest three
economical models as the base systems.

7.2.3.1 Kaldor–Kalecki Model with a Steady Equilibrium

Consider the model of the aggregate economy of a given country:

Y ′ = α[I (Y, K ) − S(Y, K )],
K ′ = I (Y, K ) − δK ,

(7.2.26)

where Y is income, K is capital stock, I is gross investment, and S is savings. Income
changes proportionally to the excess demand in the goods market, and the second
equation is a standard capital accumulation equation. The constant depreciation rate
δ and the adjustment coefficient α are positive. This model was studied in detail in
[12, 13]. It admits a stable equilibrium under certain conditions on the functions
involved.
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Let us consider the following specification of system (7.2.26) with I (Y, K ) =
Y − aY 3 + bK , S(Y, K ) = sY ,

Y ′ = α[(1 − s)Y − aY 3 + bK ],
K ′ = Y − aY 3 + bK − δK ,

(7.2.27)

where the constant parameters satisfy a > 0, b < 0, 0 < s < 1, and 0 < δ < 1.
One can see that a steady state of (7.2.27) with positive coordinates

Y ∗ =
√

δ(1 − s) + bs

aδ
, K ∗ = s

δ

√

δ(1 − s) + bs

aδ
,

exists only if δs < δ + bs.
The transformations Y = y + Y ∗, K = k + K ∗, applied to (7.2.27), give us the

system

y′ = α

[(

2(s − 1) − 3bs

δ

)

y + bk − ay3 − 3

√

aδ(1 − s) + abs

δ
y2

]

,

k′ =
(

3s − 2 − 3bs

δ

)

y + (b − δ)k − ay3 − 3

√

aδ(1 − s) + abs

δ
y2.

(7.2.28)

7.2.3.2 The Model with Business Cycle

We also investigate the idealized macroeconomic model with foreign capital invest-
ment,

S′ = αY + pS(k − Y 2),

Y ′ = v(S + F),

F ′ = mS − rY,

(7.2.29)

where S(t) are savings of households,Y (t) is GrossDomestic Product (GDP), F(t) is
foreign capital inflow, k is potential GDP, and t is time. If k is set to 1, then Y , S, F are
measured as multiples of potential output. The parameters represent corresponding
ratios:α is the variation of themarginal propensity to save, p is the ratio of capitalized

profit,
1

v
is the capital–output ratio, m is the capital inflow–savings ratio, and r is the

debt refund–output ratio.
Consider system (7.2.29) with specified coefficients,

S′ = αY + 0.1S(1 − Y 2),

Y ′ = 0.5(S + F),

F ′ = 0.19S − 0.25Y.

(7.2.30)
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According to [89], the system (7.2.30) admits Hopf bifurcation at α = α0 ≡ 0.25
and an orbitally stable cycle appears as α decreases.

7.2.3.3 Kaldor–Kalecki Model with Time Delay

Let us take into account the system,

Y ′ = 1.5[tanh(Y ) − 0.25K − (4/3)Y ],
K ′ = tanh(Y (t − τ)) − 0.5K . (7.2.31)

System (7.2.31) is the Kaldor–Kalecki model with time delay. According to [90],
the model admits an orbitally stable limit cycle for τ > 5.4. More precisely, the
periodic solution appearance follows the Hopf bifurcation, such that the origin is
asymptotically stable if τ < 5.4, and the origin loses its stability and the cycle
bifurcates from the origin for τ > 5.4. One can find additional information on the
models with delay in papers [91, 92].

7.2.4 Chaos in a Stellar of Economical Models

To provide a comprehensible discussion we will consider a stellar consisting of five
unilaterally connected economical models Ak , k = 1, . . . , 5. The topology of the
connection is seen in Fig. 7.7, and equations of the connected models are given in
system (7.2.32) below. It can be easily seen through the dependent variablesmigration
from one system to another that the systems are connected unilaterally. We will show
that the chaos appeared in A1 spreads among all of models, such that A2 serves as a
replicator of chaos in A1 and also as a generator of chaos for A3 and A4. The model
A4 is a replicator of chaos in A2 and, in the same time, it is a generator for A5.

The following is a systemof the five unidirectionally coupledmodels A1, . . . , A5 :

Fig. 7.7 The connection
topology of the systems
A1–A5
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κ j+1 = μκ j (1 − κ j ),
}

A1

y′
1 = (1/8)y1 − (5/16)k1 − a1y31 − 3

√
a1
2

y21 + ν1(t, θ),

k′
1 = (1/4)y1 − (3/8)k1 − a1y31 − 3

√
a1
2

y21 ,

⎫

⎪⎬

⎪⎭

A2

y′
2 = (1/3)y2 − k2 − a2y32 −

√
6a2
2

y22 + 0.6y1(t) + ν2(t, ζ ),

k′
2 = (1/2)y2 − (5/4)k2 − a2y32 −

√
6a2
2

y22 ,

⎫

⎪⎬

⎪⎭

A3

S′ = 0.23Y + 0.1S(1 − Y 2),

Y ′ = 0.5(S + F) + 2(y1(t) + 0.5),
F ′ = 0.19S − 0.25Y,

⎫

⎬

⎭
A4

y′
3 = (3/5)y3 − (4/5)k3 − a3y33 − 3

√
a3√
10

y23 + 0.01Y (t),

k′
3 = (7/10)y3 − (9/10)k3 − a3y33 − 3

√
a3√
10

y23 ,

⎫

⎪⎪⎬

⎪⎪⎭

A5

(7.2.32)

where the piecewise constant functions ν1(t, θ) and ν2(t, ζ ) are defined as follows:

ν1(t, θ) =
{

0.019, if θ2 j < t ≤ θ2 j+1,

0.002, if θ2 j−1 < t ≤ θ2 j ,
(7.2.33)

and

ν2(t, ζ ) =
{

0.0006, if ζ2 j < t ≤ ζ2 j+1,

0.0017, if ζ2 j−1 < t ≤ ζ2 j ,
. (7.2.34)

The sequences θ = {

θ j
}

and ζ = {

ζ j
}

are described immediately in the next
subsection.

Examples of shocks of the form (7.2.33) and (7.2.34) are natural disasters and
extreme events in general, such asmarket crashes. They take a finite number of values
(an earthquake either happens or not), but their timing is irregular or regular.

7.2.4.1 Description of the Models A1 to A5

A1: Equation A1 is the logisticmap, whichwill be used as themain source of chaos in
system (7.2.32). The interval [0, 1] is invariant under the iterations of the map for the
parameter values μ ∈ (0, 4], and for μ = 3.8 it is chaotic through period-doubling
cascade [93]. The equation A1 is the generator of chaos for the global system (7.2.32)
and as we mentioned above, a generator can be not only with continuous dynamics,
but the with discrete dynamics, and even hybrid, which combines both continuous
and dicrete cases. In fact the whole model (7.2.32) is an example of a hybrid system.
Next, immediately, we will show how chaotic solutions of the logistic map can be
transformed to the chaotic continuous perturbations of the differential equation.

A2: System A2 is a perturbed Kaldor–Kalecki model (7.2.28) such that in the
absence of the perturbation function ν1(t, θ) the system possesses an asymptoti-
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cally stable equilibrium point provided that the number a1 is sufficiently small. The
nonperturbed system is obtained by takingα = 1, s = 1/8, δ = 1/16 and b = −5/16
in theKaldor–Kaleckimodel (7.2.28). One can evaluate that the associated linear sys-
tem admits the complex conjugate eigenvalues (−1± i)/8. The sequence θ = {

θ j
}

,
j ∈ Z, of the discontinuity instants of the function (7.2.33) satisfies the relation
θ j = j + κ j , where the sequence

{

κ j
}

is a solution of the logistic map A1 with
κ0 ∈ [0, 1]. According to Theorem 7.4, the system A2 is chaotic through period-
doubling cascade. That is, it admits infinitely many unstable periodic solutions and
sensitivity is present. The chaotic change in the discontinuity instants of the function
ν1(t, θ) gives rise to the appearance of chaos in the system. For each natural number
p, the system possesses an unstable periodic solutions with period 2p. Next, in its
own turn system A2 is the generator for the systems A3 and A4.

A3: System A3 is obtained by using the coefficients α = 1, s = 1/6, δ = 1/4,
b = −1 in the Kaldor–Kalecki model (7.2.28) and by perturbing it with the solutions
of A2 as well as with the periodic function (7.2.34). The associated linear system
has the eigenvalues (−11 ± √

73)/24. If the number a2 is sufficiently small, then
the system admits an asymptotically stable equilibrium point in the case that the
perturbation terms 0.6y1(t) and ν2(t, ζ ) are absent. The sequence ζ = {

ζ j
}

, j ∈ Z, of
the discontinuity instants of (7.2.34) satisfies the relation ζ j = 2

√
2 j for each j . Since

the function (7.2.34) and the perturbations from the system A2 have incommensurate
periods, one can confirm by using the results of the paper [68] that the system A3 is
chaotic with infinitely many quasiperiodic solutions in basis.

A4: System A4 is obtained by influencing system (7.2.30) with the solutions of
A2. It is a replicator with respect to system A2. The term 2(y1(t) + 0.5) is the used
perturbation. It is worth noting that, in the absence of the perturbation, A4 possesses
an orbitally stable limit cycle [89]. Theorem 7.3 implies that the system A4 admits
chaotic business cycles. Since the orbitally stable cycle of system (7.2.30) occurs
through the bifurcation one can say that there is the phenomenon of chaotic cycles
bifurcation.

A5: System A5 is constructed by perturbing the Kaldor–Kalecki model (7.2.28)
with the solutions of A4. That is, A5 is a replicatorwith respect to A4. The eigenvalues
of the associated linear systemare−1/5and−1/10. In the absenceof the perturbation
term 0.01Y (t), the system possesses an asymptotically stable equilibrium point if
the number a3 is chosen to be sufficiently small. We will make use of system A5 to
demonstrate the attraction of chaotic business cycles.

7.2.4.2 Simulations

In this part, we will demonstrate numerically the chaotic behavior in system (7.2.32).
In what follows, we will use a1 = 3 × 10−6, a2 = 10−6, a3 = 5 × 10−6, μ = 3.8
and κ0 = 0.63.

Let us start with system A2. Making use of the initial data y1(t0) = 0.12, k1(t0) =
0.08, where t0 = 0.63, we represent in Fig. 7.8 the graphs of the y1 and k1 coordinates
of system A2. It is seen that both of the coordinates behave chaotically.
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Fig. 7.8 The graphs of the y1 and k1 coordinates of system A2
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Fig. 7.9 Extension of chaos by system A3

Now, to show the extension of chaos by system A3, we make use of the solution
shown in Fig. 7.8 as perturbation in system A3 and represent in Fig. 7.9 the graphs
of the y2 and k2 coordinates of A3. The initial data y2(t0) = 0.95, k2(t0) = 0.38,
where t0 = 0.63, is used in the simulation. Figure7.9 reveals that the chaos of system
A2 is extended such that the system A3 also possesses chaos. In order to confirm
the extension of chaos one more time, we depict in Fig. 7.10 the projection of the
trajectory of the coupled Kaldor–Kalecki system A2–A3 corresponding to the same
initial data on the y1 − k1 − y2 space.

Next, we continue with system A4. We take into account system A4 with the
solution of A2 that is shown in Fig. 7.8, and represent the trajectory of A4 with
S(t0) = 1.67, Y (t0) = 0.94, F(t0) = −5.15, where t0 = 0.63, in Fig. 7.11. One can
observe in Fig. 7.11 that the system A4 admits a chaotic business cycle.

In order to observe the attraction of the cyclic chaos of system A4, we use the
solution represented in Fig. 7.11 and depict in Fig. 7.12 the trajectory of system A5
with y3(t0) = 0.72, k3(t0) = 0.56. It is seen in Fig. 7.12 that the chaotic business
cycle of A4 is attracted by A5 and the cyclic irregular behavior is extended.



7.2 Chaotic Business Cycles 297

Fig. 7.10 The projection of
the chaotic trajectory of the
coupled Kaldor–Kalecki
system A2 − A3 on the
y1 − k1 − y2 space
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Fig. 7.11 Chaotic business
cycle of system A4
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Fig. 7.12 Attraction of
cyclic chaos by system A5
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7.2.4.3 Control of Extended Chaos

In system (7.2.32), the source of the chaoticmotions is the logisticmap A1. Therefore,
to control the chaos of the whole system, one has to stabilize an unstable periodic
solution of the logistic map. The OGY control method [39] is one of the possible
ways to do this. We proceed by briefly explaining the method.
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Suppose that the parameter μ in the logistic map A1 is allowed to vary in the
range [3.8 − ε, 3.8 + ε], where ε is a given small number. That is, it is not possible
(say, it is prohibitively costly or practically infeasible) to simply shift the value of μ

to a level that generates nonchaotic dynamics. Let us consider an arbitrary solution
{

κ j
}

, κ0 ∈ [0, 1], of the map and denote by κ(q), q = 1, 2, . . . , p, the target unstable
p-periodic orbit to be stabilized. In the OGY control method [93], at each iteration
step j after the control mechanism is switched on, we consider the logistic map with
the parameter value μ = μ̄ j , where

μ̄ j = 3.8

[

1 + (2κ(q) − 1)(κ j − κ(q))

κ(q)(1 − κ(q))

]

, (7.2.35)

provided that the number on the right-hand side of the formula (7.2.35) belongs to
the interval [3.8− ε, 3.8+ ε]. In other words, we apply a perturbation in the amount

of
3.8(2κ(q) − 1)(κ j − κ(q))

κ(q)(1 − κ(q))
to the parameter μ = 3.8 of the logistic map, if the

trajectory
{

κ j
}

is sufficiently close to the target periodic orbit. This perturbation
makes the map behave regularly so that at each iteration step the orbit κ j is forced
to be located in a small neighborhood of a previously chosen periodic orbit κ(q).
Unless the parameter perturbation is applied, the orbit κ j moves away from κ(q)

due to the instability. If

∣
∣
∣
∣
∣

3.8(2κ( jq) − 1)(κ j − κ(q))

κ(q)(1 − κ(q))

∣
∣
∣
∣
∣
> ε, we set μ̄ j = 3.8, so that

the system evolves at its original parameter value, and wait until the trajectory
{

κ j
}

enters a sufficiently small neighborhood of the periodic orbit κ(q), q = 1, 2, . . . , p,

such that the inequality −ε ≤ 3.8(2κ(q) − 1)(κ j − κ(q))

κ(q)(1 − κ(q))
≤ ε holds. If this is the

case, the control of chaos is not achieved immediately after switching on the control
mechanism. Instead, there is a transition time before the desired periodic orbit is
stabilized. The transition time increases if the number ε decreases [14].

The chaos of system A2 can be stabilized by controlling an unstable periodic orbit
of the logistic map A1, since themap gives rise to the presence of chaos in the system.
By applying the OGY control method around the fixed point 2.8/3.8 of the logistic
map, we stabilize the corresponding unstable 2-periodic solution of system A2. The
simulation result is seen in Fig. 7.13. We used the same initial data as in Fig. 7.8. It
is seen in Fig. 7.13 that the OGY control method successfully controls the chaos of
system A2. The control is switched on at t = θ50 and switched off at t = θ280. The
values κ0 = 0.63 and ε = 0.08 are utilized in the simulation. The control becomes
dominant approximately at t = 150 and its effect lasts approximately until t = 340,
after which the instability becomes dominant and irregular behavior develops again.

Next, we will demonstrate the stabilization of an unstable quasiperiodic solution
of system A3. We suppose that an unstable quasiperiodic solution of A3 can be
stabilized by controlling the chaos of system A2. We use the solution shown in
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Fig. 7.13 The chaos control of system A2. The OGY control method is applied around the fixed
point 2.8/3.8 of the logistic map. The value ε = 0.08 is used
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Fig. 7.14 The chaos control of system A3. It is observable in the figure that controlling the chaos
of system A3 makes the chaos of system A2 to be also controlled

Fig. 7.13 as the perturbation in system A3, and represent in Fig. 7.14 the solution of
A3 with y2(t0) = 0.95, k2(t0) = 0.38, where t0 = 0.63. Similarly to system A2, it
seen in the figure that the chaos of A3 is controlled approximately for 150 ≤ t ≤ 340.

To reveal that the stabilized solution is indeed quasiperiodic, we depict in Fig. 7.15
the graph of the same solution for 200 ≤ t ≤ 300. Figure7.15 manifests that the
application of theOGYcontrolmethod to system A2 makes an unstable quasiperiodic
solution of A3 to be stabilized. On the other hand, the stabilized torus of system A3
is shown in Fig. 7.16).
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Fig. 7.15 The stabilized quasiperiodic solution of system A3

7.2.5 Kaldor–Kalecki Model with Time Delay

This subsection considers the phenomenon of chaos extension by utilizing an eco-
nomical model with time lag (7.2.36). We decided to separate the model from the
previous discussion, since the result is not theoretically approved. The chaos exten-
sion can be only observed numerically in the example, but one can prove in the future
the entrainment of the limit cycle by chaos for functional differential equations by
considering our results. In this subsection, we will demonstrate numerically the for-
mation of chaotic business cycles in the Kaldor–Kalecki model with time delay.

Let us take into account the system,

Fig. 7.16 The stabilized
torus of system A3
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x ′′ + 5(x2 − 1)x ′ + x = 5 cos(2.467t),
}

B1

Y ′ = 1.5 [tanh(Y ) − 0.25K − (4/3)Y ] + 0.0045x(t),

K ′ = tanh(Y (t − τ)) − 0.5K .

}

B2
(7.2.36)

The description of the subsystems B1 and B2 are as follows.
B1: Equation B1 is the chaotic Van der Pol oscillator, which is used as the gener-

ator system in (7.2.36). Van der Pol type equations have played a role in economic
modeling [4, 12, 94]. It is shown in [95] that equation B1 is chaotic through period-
doubling cascade. The process of period-doubling is described in [96]. This implies
that there are infinitely many unstable periodic solutions of B1, all with different
periods. Due to the absence of stability, any solution that starts near the periodic
motions behaves irregularly.

B2: System B2 is the Kaldor–Kalecki model with time delay and it is a result of
the perturbation of the model (7.2.31). Here, the term 0.0045x(t) is the perturbation
provided by the solutions the generator system B1. Thus, one can observe numeri-
cally entrainment of the limit cycle of system (7.2.31) by chaos. In other words, the
appearance of a chaotic business cycle will be seen in the next simulations.

The motion generated by the Van der Pol equation B1 corresponding to the initial
data x(0) = 1.1008, x ′(0) = −1.5546 is depicted in Fig. 7.17, which confirms that
the equation possesses chaos.

Next, we will demonstrate the presence of business cycles in system B2 numeri-
cally. Let us take τ = 5.5 in B2 so that the system possesses an orbitally stable limit
cycle in the absence of perturbation. We make use of the solution x(t) of B1 shown
in Fig. 7.17 as the perturbation in system B2, and represent in Fig. 7.18 the solution
of B2 with the initial condition Y (t) = u(t) and K (t) = v(t) for t ∈ [−τ, 0], where
u(t) = −0.057 and v(t) = 0.063 are constant functions. Figure7.18 reveals that
chaotic business cycles takes place in the dynamics of B2. This result shows that our
theory of chaotic business cycles can be extended to systems with time delay.

Fig. 7.17 Chaotic dynamics
of the Van der Pol oscillator
B1
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Fig. 7.18 The appearance of
chaotic business cycle in the
Kaldor–Kalecki model B2
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7.2.6 Chaos Extension Versus Synchronization

Generalized synchronization characterizes the dynamics of a response system that is
driven by the output of a chaotic driving system [14, 85, 86, 97, 98]. Suppose that
the dynamics of the drive and response are governed by the following systems with
a skew product structure

x ′ = D(x) (7.2.37)

and

y′ = R(y, K (x)), (7.2.38)

respectively, where x ∈ R
p, y ∈ R

q . Synchronization [86] is said to occur if there
exist sets Ix , Iy of initial conditions and a transformation φ, defined on the chaotic
attractor of (7.2.37), such that for all x(0) ∈ Ix , y(0) ∈ Iy the relation

lim
t→∞ ‖y(t) − φ(x(t))‖ = 0

holds. In this case, a motion that starts on Ix × Iy collapses onto a manifold M ⊂
Ix × Iy of synchronized motions. The transformation φ is not required to exist for
the transient trajectories. When φ is the identity, the identical synchronization takes
place [14, 15].

It is formulated by [85] that generalized synchronization occurs if and only if for
all x0 ∈ Ix , y10, y20 ∈ Iy , the following asymptotic stability criterion holds:

lim
t→∞ ‖y(t, x0, y10) − y(t, x0, y20)‖ = 0,

where y(t, x0, y10), y(t, x0, y20) denote the solutions of (7.2.38) with the initial data
y(0, x0, y10) = y10, y(0, x0, y20) = y20 and the same x(t), x(0) = x0.
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Fig. 7.19 The auxiliary
system approach shows that
the systems A2 and A4 are
not synchronized in the
generalized sense
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A numerical method that can be used to investigate coupled systems for gener-
alized synchronization is the auxiliary system approach [14, 97]. Let us investigate
the coupled economic model A2 − A4 for generalized synchronization by means of
the auxiliary system approach.

Consider the auxiliary system

S′
0 = 0.23Y0 + 0.1S0(1 − Y 2

0 ),

Y ′
0 = 0.5(S0 + F0) + 2y3(t),

F ′
0 = 0.19S0 − 0.25Y0.

(7.2.39)

System (7.2.39) is an identical copy of system A4.
By marking the trajectory of system A2–A4-(7.2.39) with the initial data y1(t0) =

0.12, k1(t0) = 0.08, S(t0) = 1.67, Y (t0) = 0.94, F(t0) = −5.15, S0(t0) = 2.63,
Y0(t0) = 0.84, F0(t0) = −2.89 at times t = θ j and omitting the first 500 iterations,
we obtain the stroboscopic plot whose projection on the Y–Y0 plane is shown in
Fig. 7.19. Since the plot is not placed on the lineY0 = Y , we conclude that generalized
synchronization does not occur in the couple A2–A4.

It is worth noting that generalized synchronization does not take place also in the
dynamics of theunidirectionally coupled subsystems B1 and B2,which arementioned
in Sect. 7.2.5, and this can be verified by means of the auxiliary system approach
[14, 97] as well.

7.3 The Global Unpredictability, Self-organization
and Synergetics

We have to say that the idea of the transition of chaos from one system to another
as well as the arrangement of chaos in an ordered way can be considered as another
level of self-organization [87, 99]. Durrenmatt [100] indicated that “… a system
is self-organizing if it acquires a spatial, temporal or functional structure without
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specific interference from the outside. By “specific” we mean that the structure of
functioning is not impressed on the system, but the system is acted upon from the
outside in a nonspecific fashion. “There are three approaches to self-organization,
namely thermodynamic (dissipative structures), synergetic and the autowaves. For
the theory of dynamical systems (e.g., differential equations) the phenomenonmeans
that an autonomous system of equations admits a regular and stablemotion (periodic,
quasiperiodic, almost periodic). This is what in the literature is called autowaves
processes [101] or self-excited oscillations [102]. We are inclined to add to the list
one more phenomenon—the chaos extension. For example, consider the collection
of systems, A1, A2, . . . , A5, once again, where A1 is the original generator of chaos.
Because of the connections and the conditions discovered in our analysis, all the
other subsystems, Si , i = 2, 3, . . . , 9, are also chaotic. We suppose that this is a self-
organization phenomenon. That is a coherent behavior of a large number of systems
[87]. One can interpret the chaos extension as global unpredictability in economics.

The German theoretical physicist Haken [87] introduced a new interdisciplinary
field of science, synergetics, which deals with the origins and the evolution of spa-
tiotemporal structures. The profound part of synergetics is based on the dynam-
ical systems theory. One of the main features of systems in synergetics is self-
organization, which have been discussed above. According to Haken [87], the cen-
tral question in synergetics is whether there are general principles which govern the
self-organized formation of structures and/or functions. The main principles by the
founder of the theory are instability, order parameters, and slaving [87]. Instabil-
ity is understood as the formation or collapse of structures (patterns) [99]. This is
very common in fluid dynamics, lasers, chemistry and biology [87, 99, 103, 104].
A number of examples of instability can be found in the literature about morpho-
genesis [105] and the pattern formation examples can be found in fluid dynamics.
The phenomenon is called as instability because the former state of fluid transforms
to a new one, loses its ability to persist, and becomes unstable. One can see the
instability in our results as formation of chaos in systems A2, A3, A4, A5. Despite
the fact that processes in finite dimensional spaces are considered, we have to say
that chaotic attractors are assumed to be not single trajectories, but collections of
infinitely many trajectories with complex topologies. This allows to say that they are
somehow between objects of ordinary differential equations and partial differential
equations. This provides an opportunity to say also about dissipative structures [99],
and we hope that this makes our investigations more attractive, due to the “density”
of the chaotic trajectories in the space. For differential equations theory, order para-
meters mean those phase variables, whose behavior formate the main properties of a
macroscopic structure, which dominate over all other variables in the formation such
that they can even depend on the order parameters functionally. The dependence that
is proved (discovered) mathematically is what we call as slaving. It is not difficult
to see that the variables of the system A1 are order parameters, and they determine
chaotic behavior of the joined systems’ variables.



7.4 Notes 305

7.4 Notes

This chapter highlights a novel source of chaos in economic models. Unlike previ-
ous literature that studies endogenous chaos emergence, we allow chaotic exogenous
shocks perturbing a system with a stable equilibrium to generate chaos there. We
focus on exogenous disturbances that take the form of a pulse function. The pul-
sative shocks may have chaotically behaved values or chaotically behaved instants
of discontinuity. Both types of shocks are plausible in economics, as is the hybrid of
the two. We rigorously verify that the system perturbed with a pulsative disturbance
with chaotically behaved values admits chaos. The results are applied to a model of
the aggregate economy of a country subject to export shocks, which are determined
by the chaotic consumption levels of a foreign economy. We show simulations of
the chaotic motion, as well as the stabilized periodic solutions, obtained by imple-
menting the OGY control method [39]. We also demonstrate chaos in a model of the
aggregate economy perturbed by rainfall shocks that behave as a pulse function with
chaotically behaved instants of discontinuity. The theory of this type of perturbations
was developed in [59, 60].

According to Baumol and Benhabib [1], “apparently random behavior may not
be random at all”, but a product of deterministic chaos. We argue that what we
used to interpret as endogenous chaotic behavior may not be endogenous at all,
but a product of exogenous chaotic shocks. For the purposes of economic policy-
making, the control of chaos needs to be carried out in a very different way once
its source in an exogenous chaotic perturbation is recognized. The OGY control can
be applied directly to the exogenous disturbance, rather than the entire system. This
will significantly reduce the costs of the policy, and in most instances will be the
only feasible approach.

Our results also illustrate the transmission of unpredictability from one economic
system to another, so that even economies that do not admit irregularity in isolation
can eventually be contaminated with chaos. Thus, we provide support to the idea that
unpredictability is a global phenomenon in economics and demonstrate amechanism
for this contagion. Considering the current extensive globalization process, this is a
good depiction of reality.

We provide an example of a model of aggregate economy, based on a system
of differential and discrete equations, where the main variables exhibit cycle-like
motion with chaotic perturbations. Thus, we obtain an irregular business cycle in
a deterministic setting. This provides a modeling alternative to the business cycle
literature relying on stochastic variation in the economy. Additionally, our investi-
gation highlights the variety of ways of generating chaos in an economic model.
Previous work has focused on generating chaos and, in particular, chaotic business
cycles endogenously (see [7, 12, 13, 106, 107]). Our method of creating chaos has
its own relevance for economics, since we show the role of exogenous shocks in the
appearance of chaos in models that otherwise do not exhibit irregular behavior. It
can also be said that our work fills a missing link in the research on the origins of
irregularities in economic time series. While the literature on endogenous chaos was
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a response to the view that exogenous stochastic shocks are the source of fluctuations
in the economy (see [1]), Sect. 7.2 is a response to the former, in that it provides a
role for exogenous chaotic disturbances in producing these fluctuations, and thus
completes the circle.

In paper [1], the essence of chaos for economics was remarked as “Chaos theory
has at least equal power in providing caveats for both the economic analysis and the
policy designer. For example, it warns us that apparently random behavior may not
be random at all. It demonstrates dramatically the dangers of extrapolation and the
difficulties that can beset economic forecasting generally. It provides the basis for
the construction of simple models of the behavior of rational agents, showing how
even these can yield extremely complex developments. It has served as the basis for
models of learning behavior and has been shown to arise naturally in a number of
standard equilibrium models. It offers additional insights about the economic source
of oscillations in a number of economic models.”

Applications of chaos theory have illustrated the possibility of producing com-
plex dynamics in deterministic settings [4, 12, 13, 89, 106–108], with some papers
specifically focusing on building “chaotic business cycles” [109]. Chaos is generated
endogenously, and its appearance hinges on the values of some crucial parameters
of the model. The main novelty of Sect. 7.2 is that we start with a model that is not
endogenously complex. We assume that there exists a limit cycle, where the limit
cycle is understood to be a closed orbit that is also an attractor [110]. We then subject
the model to chaotic exogenous shocks and obtain a perturbed system that admits
chaotic motions. This approach is based on rigorous mathematical theory [59, 60],
and we provide numerical simulations. The chaos emerging around the original limit
cycle is cycle-like, and therefore can be called a chaotic business cycle.

Our goal is to show that it is possible to produce a chaotic business cycle in a
very natural way—take a system of differential equations with a limit cycle as a
point of departure, and introduce a chaotic exogenous disturbance. An example of
an exogenous disturbance is a technology shock to the economywhich affects output,
holding all other variables constant.We describe it using solutions of chaos generator
models. We use them to demonstrate the proposed approach, and other formulations
can be studied in future work. For example, one can use actual economic time series,
such as commodity prices, that have been tested for deterministic chaos [19, 55, 56,
111]. Moreover, shocks other than technology shocks can be considered, in view of
the ongoing debate between two literatures supporting and rejecting the importance
of technology shocks for generating business cycles [69, 112, 113]. The results of
Sect. 7.1 are published in the paper [88], while the results of Sect. 7.2 and Sect. 7.3
are partially published in [114].

Our results give more theoretical lights on the processes, as we suggest a math-
ematical apparatus, which describe rigorously the extension of chaos, increases its
complexity, and provides new structures for the effective control of whole clusters
of economic models.
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Chapter 8
Chaos by Neural Networks

Interests of researchers to neural networks originate, first of all, from the fact that
principles of functioning of neural networks are based on well-known biological
processes about the methods of information processing by the brain. In the basis
of brain functioning, there are collectives of huge number of, respectively, simple
elements called neurons. The joint activities of neuron collectives are guaranteed by
the giant number of connections between them.

Nowadays, neural networks have wide applications to solve problems connected
with image processing, artificial intelligence, associate memories, signal processing,
different types of forecast predictions, optimization problems, modeling of chemical
reactions, information processing, and other areas.

Each neuron in a neural network is capable of receiving input signals, process-
ing them, and sending an output signal. Neural signals consist of short electrical
pulses called action potentials or spikes. A chain of action potentials emitted by a
single neuron is called a spike train. Action potentials in a spike train are usually
well separated, and it is impossible to excite a second spike during or immediately
after a first one [1]. On the other hand, according to the switching phenomenon,
frequency changes or other sudden noises, the states of the electronic networks are
often subject to instantaneous perturbations and experience abrupt changes at certain
instants [2–4]. That is why the discontinuity phenomenon is a natural property of
neural networks, and models with discontinuities are more accurate to describe the
evolutionary processes of neural networks.

The main subject of the present chapter is the investigation of chaos extension in
collectives of neural networks. The extension is realized forHopfield neural networks
[5] and shunting inhibitory cellular neural networks [6], but the presented techniques
are applicable to other kinds of neural networks as well. Our results reveal that
chaos appears not only as an intrinsic property of neural networks, but also through
transmissions between them.
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8.1 SICNNs with Chaotic External Inputs

Taking advantage of external inputs, in the present section, it is shown that shunting
inhibitory cellular neural networks (SICNNs) behave chaotically. The analysis is
based on the Li–Yorke definition of chaos. Appropriate illustrations which support
the theoretical results are depicted.

Cellular neural networks have been paid much attention in the past two decades.
Exceptional role in psychophysics, speech, perception, robotics, adaptive pattern
recognition, vision, and image processing has been played by SICNNs. Chaotic
dynamics is an object of great interest in neural networks theory. This is natural since
chaotic outputs have been obtained for several types of neural networks. According
to the design of neural networks, solutions of some of them can be used as an input
for another ones. In this section, we realize this idea by considering SICNNs to
obtain chaos through chaotic external inputs. This is the first time that a theoretically
approved chaos is obtained in SICNNs.

8.1.1 Introduction

A class of cellular neural networks, introduced by Bouzerdoum and Pinter [6], is the
shunting inhibitory cellular neural networks, which have been extensively applied
in psychophysics, speech, perception, robotics, adaptive pattern recognition, vision,
and image processing [7–13].

The model in its most original formulation [6] is as follows. Consider a two-
dimensional grid of processing cells, and let Cij, i = 1, 2, . . . , m, j = 1, 2, . . . , n,
denote the cell at the (i, j) position of the lattice. Denote by Nr (i, j) the
r -neighborhood of Cij, such that

Nr (i, j) = {Ckl : max {|k − i |, |l − j |} ≤ r, 1 ≤ k ≤ m, 1 ≤ l ≤ n}.

In SICNNs, neighboring cells exert mutual inhibitory interactions of the shunting
type. The dynamics of the cell Cij is described by the nonlinear ordinary differential
equation

dxij

dt
= −aijxi j −

∑

Ckl∈Nr (i, j)

Ckl
ij f (xkl(t))xij + Lij(t), (8.1.1)

where xij is the activity of the cell Cij; Lij(t) is the external input to Cij; the constant
aij represents the passive decay rate of the cell activity; Ckl

ij ≥ 0 is the connection or
coupling strength of postsynaptic activity of the cell Ckl transmitted to the cell Cij;
and the activation function f (xkl) is a positive continuous function representing the
output or firing rate of the cell Ckl . For our theoretical discussions, we will consider
continuous external inputs.
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The existence and the stability of periodic, almost periodic and antiperiodic solu-
tions of SICNNs have been published in papers [14–23]. The main novelty of the
present section is the verification of the chaotic behavior in SICNNs. To prove the
existence of chaos, we apply the technique based on the Li–Yorke definition [24], and
make use of chaotic external inputs in the networks. We say that the external inputs
are chaotic if they belong to a collection of functions which satisfy the ingredients
of chaos. That is, we consider members of a chaotic set as external input terms, and,
as a result, we obtain solutions which display chaotic behavior.

Existence of a chaotic attractor in SICNNs with impulses was numerically
observed in [25] without a theoretical support, as well it is the case for the paper [26].
The presence of chaos in SICNNs with impulsive effects [27] by means of chaotic
external inputs will be considered in Sect. 8.3.

8.1.2 Preliminaries

Throughout the section, R will stand for the set of real numbers, and the norm

‖u‖ = max
(i, j)

∣
∣uij
∣
∣

will be used, where

u = {uij
} = (u11, . . . , u1n, . . . , um1, . . . , umn) ∈ R

m×n

and m, n are natural numbers.
Suppose that B is a collection of continuous functions ψ(t) = {

ψij(t)
}

,
i = 1, 2, . . . , m, j = 1, 2, . . . , n, such that sup

t∈R
‖ψ(t)‖ ≤ M , where M is a positive

number. We start by describing the ingredients of Li–Yorke chaos for the collec-
tionB.

We say that a couple
(

ψ(t), ψ̃(t)
) ∈ B × B is proximal if for arbitrary small

ε > 0 and arbitrary large E > 0, there exist infinitely many disjoint intervals of
length not less than E such that

∥
∥ψ(t) − ψ̃(t)

∥
∥ < ε, for each t from these intervals.

On the other hand, a couple
(

ψ(t), ψ̃(t)
) ∈ B × B is called frequently (ε0,Δ)-

separated if there exist positive numbers ε0,Δ and infinitely many disjoint intervals
of length not less than Δ, such that

∥
∥ψ(t) − ψ̃(t)

∥
∥ > ε0, for each t from these

intervals. It is worth saying that the numbers ε0 and Δ depend on the functions ψ(t)
and ψ̃(t).

A couple
(

ψ(t), ψ̃(t)
) ∈ B×B is a Li–Yorke pair if it is proximal and frequently

(ε0,Δ)-separated for some positive numbers ε0 and Δ. Moreover, an uncountable
set C ⊂ B is called a scrambled set if C does not contain any periodic functions
and each couple of different functions inside C × C is a Li–Yorke pair.
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B is called a Li–Yorke chaotic set if (i) There exists a positive number T0 such
thatB possesses a periodic function of period kT0, for any k ∈ N; (ii)B possesses
a scrambled set C ; (iii) For any function ψ(t) ∈ C and any periodic function
ψ̃(t) ∈ B, the couple

(

ψ(t), ψ̃(t)
)

is frequently (ε0,Δ)-separated for some positive
numbers ε0 and Δ.

One can obtain a new Li–Yorke chaotic set from a given one as follows. Suppose
that h : Rm×n → R

m×n is a function which satisfies for all u1, u2 ∈ R
m×n that

L1 ‖u1 − u2‖ ≤ ‖h(u1) − h(u2)‖ ≤ L2 ‖u1 − u2‖ , (8.1.2)

where L1 and L2 are positive numbers. One can verify that if the collection B is
Li–Yorke chaotic then the collection Bh whose elements are of the form h(ψ(t)),
ψ(t) ∈ B, is also Li–Yorke chaotic.

The following conditions are needed:

(C1) γ = min
(i, j)

aij > 0;
(C2) There exist positive numbers Mij such that sup

t∈R

∣
∣Lij(t)

∣
∣ ≤ Mij;

(C3) There exists a positive number M f such that sup
s∈R

| f (s)| ≤ M f ;
(C4) There exists a positive number L f such that | f (s1) − f (s2)| ≤ L f |s1 − s2|

for all s1, s2 ∈ R;
(C5) M f max

(i, j)

∑

Ckl∈Nr (i, j) Ckl
ij

aij
< 1;

(C6)
c(L f K0 + M f )

γ
< 1, where c and K0 are defined as c = max

(i, j)

∑

Ckl∈Nr (i, j)

Ckl
ij

and K0 =
max
(i, j)

Mij

aij

1 − M f max
(i, j)

∑

Ckl∈Nr (i, j) Ckl
ij

aij

.

Using the theory of quasilinear equations [28], one can verify that a bounded on
R function x(t) = {

xij(t)
}

is a solution of the network (8.1.1) if and only if the
following integral equation is satisfied

xij(t) = −
∫ t

−∞
e−aij(t−s)

[ ∑

Ckl∈Nr (i, j)

Ckl
ij f (xkl(s))xij(s) − Lij(s)

]

ds. (8.1.3)

A result about existence of bounded on R solutions is as follows.

Lemma 8.1 For any L(t) = {Lij(t)
}

, i = 1, 2, . . . , m, j = 1, 2, . . . , n, there exists

a unique bounded on R solution φL(t) =
{

φ
ij
L(t)

}

of the network (8.1.1) such that

supt∈R ‖φL(t)‖ ≤ K0.
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Proof Consider the set C0 of continuous functions u(t) = {uij(t)
}

, i = 1, 2, . . . , m,
j = 1, 2, . . . , n, such that ‖u‖1 ≤ K0, where ‖u‖1 = supt∈R ‖u(t)‖. Define on C0
the operator Π as

(Πu)ij(t) ≡ −
∫ t

−∞
e−aij(t−s)

[ ∑

Ckl∈Nr (i, j)

Ckl
ij f (ukl(s))uij(s) − Lij(s)

]

ds,

where u(t) = {uij(t)
}

and Πu(t) = {(Πu)ij(t)
}

. If u(t) belongs to C0 then

∣
∣(Πu)ij(t)

∣
∣ ≤

∫ t

−∞
e−aij(t−s)

[ ∑

Ckl∈Nr (i, j)

Ckl
ij | f (ukl)(s)|

∣
∣uij(s)

∣
∣+ ∣∣Lij(s)

∣
∣

]

ds

≤ 1

aij

(

Mij + M f K0

∑

Ckl∈Nr (i, j)

Ckl
ij

)

.

Accordingly, we have ‖Πu‖1 ≤ max
(i, j)

Mij

aij
+ M f K0 max

(i, j)

∑

Ckl∈Nr (i, j) Ckl
ij

aij
= K0.

Therefore, Π(C0) ⊆ C0.
On the other hand, for any u, v ∈ C0,

∣
∣(Πu)ij(t) − (Πv)ij(t)

∣
∣ ≤

∫ t

−∞
e−aij(t−s)

∑

Ckl∈Nr (i, j)

Ckl
ij

∣
∣
∣ f (ukl(s))uij(s)

− f (ukl(s))vij(s)
∣
∣
∣ds +

∫ t

−∞
e−aij(t−s)

∑

Ckl∈Nr (i, j)

Ckl
ij

∣
∣
∣ f (ukl(s))vij(s)

− f (vkl(s))vij(s)
∣
∣
∣ds

≤ (L f K0 + M f )max
(i, j)

∑

Ckl∈Nr (i, j) Ckl
ij

aij
‖u − v‖1 .

Thus, ‖Πu − Πv‖1 ≤ (L f K0+M f )max
(i, j)

∑

Ckl∈Nr (i, j) Ckl
ij

aij
‖u − v‖1, and condition

(C6) implies that the operator Π is contractive.
Consequently, for any L(t), there exists a unique bounded on R solution φL(t) of

the network (8.1.1) such that sup
t∈R

‖φL(t)‖ ≤ K0. �

For a given L(t) = {

Lij(t)
}

, i = 1, 2, . . . , m, j = 1, 2, . . . , n, let us denote by

xL(t, x0) =
{

xij
L(t, x0)

}

the unique solution of the SICNN (8.1.1) with xL(0, x0) =
x0. We note that the solution xL(t, x0) is not necessarily bounded on R.

Consider the set L whose elements are functions of the form L(t) = {

Lij(t)
}

,
i = 1, 2, . . . , m, j = 1, 2, . . . , n, such that sup

t∈R

∣
∣Lij(t)

∣
∣ ≤ Mij for each i and j .
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Suppose thatA is the collection of functions consisting of the bounded onR solutions
φL(t) of system (8.1.1), where L(t) ∈ L . In the present section, we assume thatL
is an equicontinuous family on R.

The following assertion confirms the attractiveness of the set A .

Lemma 8.2 For any x0 ∈ R
m×n and L(t) = {

Lij(t)
}

, i = 1, 2, . . . , m, j =
1, 2, . . . , n, we have ‖xL(t, x0) − φL(t)‖ → 0 as t → ∞.

Proof Making use of the relation

xij
L(t, x0) − φ

ij
L(t) = e−aijt

(

xij
L(0, x0) − φ

ij
L(0)

)

−
∫ t

0
e−aij(t−s)

[ ∑

Ckl∈Nr (i, j)

Ckl
ij f (xkl

L (s, x0))xij
L(s, x0)

−
∑

Ckl∈Nr (i, j)

Ckl
ij f (φkl

L (s))φij
L(s)

]

ds

we obtain for t ≥ 0 that

∣
∣
∣x

ij
L(t, x0) − φ

ij
L(t)

∣
∣
∣ ≤ e−aijt

∣
∣
∣x

ij
L(0, x0) − φ

ij
L(0)

∣
∣
∣

+M f

∑

Ckl∈Nr (i, j)

Ckl
ij

∫ t

0
e−aij(t−s)

∣
∣
∣x

ij
L(s, x0) − φ

ij
L(s)

∣
∣
∣ds

+L f K0

∫ t

0
e−aij(t−s)

∑

Ckl∈Nr (i, j)

Ckl
ij

∣
∣
∣xkl

L (s, x0) − φkl
L (s)

∣
∣
∣ds.

The last inequality implies for t ≥ 0 that

eγ t ‖xL(t, x0) − φL(t)‖
≤ ‖x0 − φL(0)‖ + c(L f K0 + M f )

∫ t

0
eγ s ‖xL(s, x0) − φL(s)‖ ds.

Applying Gronwall–Bellman Lemma, one can attain that

‖xL(t, x0) − φL(t)‖ ≤ ‖x0 − φL(0)‖ e[c(L f K0+M f )−γ ]t , t ≥ 0.

Consequently, ‖xL(t, x0) − φL(t)‖ → 0 as t → ∞, in accordancewith condition
(C6). �

Our purpose in the next part is to prove rigorously that if the collection L is
chaotic in the sense of Li–Yorke then the same is true for A . In other words, if the
external input terms Lij(t) behave chaotically, then the dynamics of the SICNNs are
also chaotic.
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8.1.3 Chaotic Dynamics

The replication of the ingredients of Li–Yorke chaos from the collection L to the
collectionA will be affirmed in the following two lemmas, and the main conclusion
will be stated in Theorem 8.1. We start with the following lemma, which indicates
existence of proximality in the collection A .

Lemma 8.3 If a couple of functions
(

L(t), L̃(t)
)

∈ L × L is proximal, then the

same is true for the couple
(

φL(t), φL̃(t)
) ∈ A × A .

Proof Fix an arbitrary small positive number ε and an arbitrary large positive number
E . Set

R = 2

(

M f K0 max
(i, j)

∑

Ckl∈Nr (i, j) Ckl
ij

aij
+ max

(i, j)

Mij

aij

)

and

0 < α ≤ γ − c(L f K0 + M f )

1 + γ − c(L f K0 + M f )
.

Suppose that a given pair
(

L(t), L̃(t)
) ∈ L ×L is proximal. There exist a sequence

of real numbers
{

Eq
}

satisfying Eq ≥ E for each q ∈ N and a sequence
{

tq
}

, tq →
∞ as q → ∞, such that

∥
∥L(t) − L̃(t)

∥
∥ < αε for each t from the disjoint intervals

Jq = [tq , tq + Eq ], q ∈ N. Let us denote φL(t) =
{

φ
ij
L(t)

}

and φL̃(t) =
{

φ
ij
L̃
(t)
}

.

Fix q ∈ N. For t ∈ Jq , using the relation (8.1.3), one can reach up for any i and
j that

φ
ij
L(t) − φ

ij
L̃
(t) = −

∫ t

−∞
e−aij(t−s)

[ ∑

Ckl∈Nr (i, j)

Ckl
ij f (φkl

L (s))φij
L(s) − Lij(s)

−
∑

Ckl∈Nr (i, j)

Ckl
ij f (φkl

L̃
(s))φij

L̃
(s) + L̃ ij(s)

]

ds.

By means of the last equation, one can obtain that

∣
∣
∣φ

ij
L(t) − φ

ij
L̃
(t)
∣
∣
∣ ≤ 2

(

M f K0

∑

Ckl∈Nr (i, j) Ckl
ij

aij
+ Mij

aij

)

e−aij(t−tq )

+αε

aij

(

1 − e−aij(t−tq )
)

+c(L f K0 + M f )

∫ t

tq
e−aij(t−s)

∥
∥φL(s) − φL̃(s)

∥
∥ ds.
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Accordingly, for t ∈ Jq we have that

eγ t
∥
∥φL(t) − φL̃(t)

∥
∥ ≤ Reγ tq + αε

γ

(

eγ t − eγ tq
)

+c(L f K0 + M f )

∫ t

tq
eγ s
∥
∥φL(s) − φL̃(s)

∥
∥ ds.

Application of Gronwall’s Lemma to the last inequality implies for t ∈ Jq that

∥
∥φL(t) − φL̃(t)

∥
∥ ≤ αε

γ − c(L f K0 + M f )

(

1 − e[c(L f K0+M f )−γ ](t−tq )
)

+Re[c(L f K0+M f )−γ ](t−tq ).

Suppose that the number E is sufficiently large such that

E >
2

γ − c(L f K0 + M f )
ln

(
R

αε

)

.

In this case, if t belongs to the interval [tq + E/2, tq + Eq ], then

Re[c(L f K0+M f )−γ ](t−tq ) < αε.

Thus, for t ∈ [tq + E/2, tq + Eq ]. the inequality
∥
∥φL(t) − φL̃(t)

∥
∥ <

(

1 + 1

γ − c(L f K0 + M f )

)

αε ≤ ε.

is valid. Consequently, since the last inequality holds for each t from the disjoint
intervals J 1

q = [tq + E/2, tq + Eq ], q ∈ N, the couple
(

φL(t), φL̃(t)
) ∈ A × A is

proximal. �

Now, let us continue with the replication the second main ingredient of Li–Yorke
chaos in the next lemma.

Lemma 8.4 If a couple
(

L(t), L̃(t)
) ∈ L ×L is frequently (ε0,Δ)-separated for

some positive numbers ε0 and Δ, then there exist positive numbers ε1 and Δ such
that the couple

(

φL(t), φL̃(t)
) ∈ A × A is frequently (ε1,Δ)-separated.

Proof Suppose that a given couple
(

L(t), L̃(t)
) ∈ L × L is frequently (ε0,Δ)

separated, for some ε0 > 0 andΔ > 0. In this case, there exist infinitelymany disjoint
intervals Jq , q ∈ N, each with length not less than Δ, such that

∥
∥L(t) − L̃(t)

∥
∥ > ε0

for each t from these intervals. In the proof, we will verify the existence of positive
numbers ε1,Δ and infinitely many disjoint intervals J 1

q ⊂ Jq , q ∈ N, each with

length Δ, such that the inequality
∥
∥φL(t) − φL̃(t)

∥
∥ > ε1 holds for each t from the

intervals J 1
q , q ∈ N.
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According to the equicontinuity of L , one can find a positive number τ < Δ,
such that for any t1, t2 ∈ R with |t1 − t2| < τ , the inequality

∣
∣
(

Lij(t1) − L̃ ij(t1)
)− (Lij(t2) − L̃ ij(t2)

)∣
∣ <

ε0

2
(8.1.4)

holds for all 1 ≤ i ≤ m, 1 ≤ j ≤ n.
Suppose that for each q ∈ N, the number sq denotes the midpoint of the interval

Jq . Let us define a sequence
{

θq
}

through the equation θq = sq − τ/2.
Let us fix an arbitrary q ∈ N. One can find integers i0, j0, such that

∣
∣Li0 j0(sq) − L̃i0 j0(sq)

∣
∣ = ∥∥L(sq) − L̃(sq)

∥
∥ > ε0. (8.1.5)

Making use of the inequality (8.1.4), for all t ∈ [θq , θq + τ
]

we have

∣
∣Li0 j0(sq) − L̃i0 j0(sq)

∣
∣− ∣∣Li0 j0(t) − L̃i0 j0(t)

∣
∣

≤ ∣∣(Li0 j0(t) − L̃i0 j0(t)
)− (Li0 j0(sq) − L̃i0 j0(sq)

)∣
∣

<
ε0

2

and therefore, by means of (8.1.5), we achieve that the inequality

∣
∣Li0 j0(t) − L̃i0 j0(t)

∣
∣ >

∣
∣Li0 j0(sq) − L̃i0 j0(sq)

∣
∣− ε0

2
>

ε0

2
(8.1.6)

is valid for all t ∈ [θq , θq + τ
]

.
For each i and j , one can find numbers ζ

q
ij ∈ [θq , θq + τ ] such that

∫ θq+τ

θq

(

L(s) − L̃(s)
)

ds = τ
(

L11(ζ
q
11) − L̃11(ζ

q
11), . . . , Lmn(ζ

q
mn) − L̃mn(ζ

q
mn)
)

.

Thus, according to the inequality (8.1.6), we have that

∥
∥
∥
∥
∥

∫ θq+τ

θq

(

L(s) − L̃(s)
)

ds

∥
∥
∥
∥
∥

≥ τ

∣
∣
∣Li0 j0(ζ

q
i0 j0

) − L̃i0 j0(ζ
q
i0 j0

)

∣
∣
∣ >

τε0

2
. (8.1.7)

For t ∈ [θq , θq + τ ], using the couple of relations

φ
ij
L(t) = φ

ij
L(θq) −

∫ t

θq

[

aij +
∑

Ckl∈Nr (i, j)

Ckl
ij f (φkl

L (s))
]

φ
ij
L(s)ds +

∫ t

θq

Lij(s)ds,
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and

φ
ij
L̃
(t) = φ

ij
L̃
(θq) −

∫ t

θq

[

aij +
∑

Ckl∈Nr (i, j)

Ckl
ij f (φkl

L̃
(s))
]

φ
ij
L̃
(s)ds +

∫ t

θq

L̃ ij(s)ds,

it can be verified that

φ
ij
L(θq + τ) − φ

ij
L̃
(θq + τ) =

∫ θq+τ

θq

(

Lij(s) − L̃ ij(s)
)

ds

+(φ
ij
L(θq) − φ

ij
L̃
(θq)) −

∫ θq+τ

θq

aij

(

φ
ij
L(s) − φ

ij
L̃
(s)
)

ds

−
∫ θq+τ

θq

[ ∑

Ckl∈Nr (i, j)

Ckl
ij f (φkl

L (s))φij
L(s) −

∑

Ckl∈Nr (i, j)

Ckl
ij f (φkl

L̃
(s))φij

L̃
(s)
]

ds.

Hence we achieve that

∥
∥φL(θq + τ) − φL̃(θq + τ)

∥
∥ ≥

∥
∥
∥
∥
∥

∫ θq+τ

θq

(

L(s) − L̃(s)
)

ds

∥
∥
∥
∥
∥

− ∥∥φL(θq) − φL̃(θq)
∥
∥− max

(i, j)

∣
∣
∣
∣
∣

∫ θq+τ

θq

aij

(

φ
ij
L(s) − φ

ij
L̃
(s)
)

ds

∣
∣
∣
∣
∣

−max
(i, j)

∣
∣
∣

∫ θq+τ

θq

[ ∑

Ckl∈Nr (i, j)

Ckl
ij f (φkl

L (s))φij
L(s)

−
∑

Ckl∈Nr (i, j)

Ckl
ij f (φkl

L̃
(s))φij

L̃
(s)
]

ds
∣
∣
∣. (8.1.8)

Let us denote γ = max
(i, j)

aij and H0 = max
(i, j)

Mij. The inequalities (8.1.7) and (8.1.8)

together imply that

max
t∈[θq ,θq+τ ]

∥
∥φL(t) − φL̃(t)

∥
∥ ≥ ∥∥φL(θq + τ) − φL̃(θq + τ)

∥
∥

>
τε0

2
− [1 + τγ + τc(L f K0 + M f )] max

t∈[θq ,θq+τ ]
∥
∥φL(t) − φL̃(t)

∥
∥ .

Therefore, we have max
t∈[θq ,θq+τ ]

∥
∥φL(t) − φL̃(t)

∥
∥ > ε, where

ε = τε0

2[2 + τγ + τc(L f K0 + M f )] .

Suppose that max
t∈[θq ,θq+τ ]

∥
∥φL(t) − φL̃(t)

∥
∥ = ∥

∥φL(ξq) − φL̃(ξq)
∥
∥ , for some ξq ∈

[θq , θq + τ ]. Define
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Δ = min

{

τ

2
,

ε

4
(

H0 + K0γ + M f K0c
)

}

and let

θ1q =
{

ξq , if ξq ≤ θq + τ/2
ξq − Δ, if ξq > θq + τ/2

.

For t ∈
[

θ1q , θ1q + Δ
]

, by favor of the integral equation

φ
ij
L(t) − φ

ij
L̃
(t) = (φ

ij
L(ξq) − φ

ij
L̃
(ξq))

+
∫ t

ξq

(

Lij(s) − L̃ ij(s)
)

ds −
∫ t

ξq

aij

(

φ
ij
L(s) − φ

ij
L̃
(s)
)

ds

−
∫ t

ξq

[ ∑

Ckl∈Nr (i, j)

Ckl
ij f (φkl

L (s))φij
L(s) −

∑

Ckl∈Nr (i, j)

Ckl
ij f (φkl

L̃
(s))φij

L̃
(s)
]

ds,

we have

∥
∥φL(t) − φL̃(t)

∥
∥ ≥ ∥∥φL(ξq) − φL̃(ξq)

∥
∥

−max
(i, j)

∣
∣
∣

∫ t

ξq

(

Lij(s) − L̃ ij(s)
)

ds
∣
∣
∣− max

(i, j)

∣
∣
∣

∫ t

ξq

aij

(

φ
ij
L(s) − φ

ij
L̃
(s)
)

ds
∣
∣
∣

−max
(i, j)

∣
∣
∣

∫ t

ξq

[ ∑

Ckl∈Nr (i, j)

Ckl
ij f (φkl

L (s))φij
L(s) −

∑

Ckl∈Nr (i, j)

Ckl
ij f (φkl

L̃
(s))φij

L̃
(s)
]

ds
∣
∣
∣

> ε − 2Δ
(

H0 + K0γ + M f K0c
)

≥ ε

2
.

Consequently, for each t from the disjoint intervals J 1
q =

[

θ1q , θ1q + Δ
]

, q ∈ N,

the inequality
∥
∥φL(t) − φL̃(t)

∥
∥ > ε1 holds, where ε1 = ε/2. �

The following theorem, which is the main result of the present section, indicates
that the network (8.1.1) is chaotic, provided that the external inputs are chaotic.

Theorem 8.1 If L is a Li–Yorke chaotic set, then the same is true for A .

Proof Assume that the set L is Li–Yorke chaotic. Under the circumstances, there
exists a positive number T0 such that for any natural number k,L possesses a periodic
function of period kT0. One can confirm that L(t) ∈ L is kT0-periodic if and only
if φL(t) ∈ A is kT0-periodic. Therefore, the setA contains a kT0-periodic function
for any natural number k.

Next, suppose that LS is a scrambled set inside L and take into account the
collection AS with elements of the form φL(t), where L(t) ∈ LS . Since LS is
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uncountable, the set AS is also uncountable. Due to the one-to-one correspondence
between the periodic functions inside L and A , no periodic functions exist inside
AS .

According to Lemmas 8.3 and 8.4, AS is a scrambled set. Moreover, Lemma
8.4 implies that each couple of functions inside AS × AP is frequently (ε1,Δ)-
separated for some positive numbers ε1 and Δ, where AP denotes the set of all
periodic functions inside A . Consequently, the set A is Li–Yorke chaotic. �

Remark 8.1 Combining the result of Theorem 8.1 with the one of Lemma 8.2, we
conclude that a chaotic attractor takes place in the dynamics of system (8.1.1).

8.1.4 Examples

To actualize the results of Sect. 8.1, one needs a source of external inputs, Lij(t),
which are ensured to be chaotic in the Li–Yorke sense. For this reason, in the first
example, wewill take into account SICNNswhose external inputs are relay functions
with chaotically changing switching moments. Then, to support our new theoretical
results, we will make use of the solutions of this network as external inputs for
another SICNNs, which is the main illustrative object for the results of Sect. 8.1. To
increase the flexibility of our method for applications, we will also take advantage
of nonlinear functions to build chaotic inputs.

Example 8.1 Let us introduce the SICNN

dzij

dt
= −bijzi j −

∑

Dkl∈N1(i, j)

Dkl
ij g(zkl(t))zij + νij(t, t0), (8.1.9)

in which i, j = 1, 2, 3,

⎛

⎝

b11 b12 b13
b21 b22 b23
b31 b32 b33

⎞

⎠ =
⎛

⎝

8 4 7
10 6 5
6 4 1

⎞

⎠ ,

⎛

⎝

D11 D12 D13
D21 D22 D23
D31 D32 D33

⎞

⎠ =
⎛

⎝

0.006 0 0.001
0.009 0.002 0.003
0 0.005 0.004

⎞

⎠ .

In Eq. (8.1.9), Dij denotes the cell at the (i, j) position of the lattice, and for each
i, j , the relay function νij(t, t0) is defined by the equation

νij(t, t0) =
{

αij, if ζ2q(t0) < t ≤ ζ2q+1(t0),
βij, if ζ2q−1(t0) < t ≤ ζ2q(t0),
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Fig. 8.1 The chaotic behavior of the SICNN (8.1.9)

where t0 ∈ [0, 1] and the numbers ζq(t0), q ∈ Z, denote the switching moments,
which are the same for all i, j . The switching moments are defined through the
formula ζq(t0) = q + κq(t0), q ∈ Z, where the sequence

{

κq(t0)
}

, κ0(t0) = t0, is
generated by the logistic equation κq+1(t0) = 3.9κq(t0)(1−κq(t0)), which is chaotic
in the Li–Yorke sense [24]. More information about the dynamics of relay systems
and replication of chaos can be found in papers [29–34].

In system (8.1.9), let g(s) = s2 and αij = 1, βij = 2 for all i, j . By results of the
paper [29], the family

{

νij(t, t0)
}

, t0 ∈ [0, 1], is chaotic in the sense of Li–Yorke,
and the collection L consisting of elements of the form z(t) = {zij(t)

}

, where z(t)
are bounded on R solutions of (8.1.9), is a Li–Yorke chaotic set.

Next, we consider the simulations of the network (8.1.9). Figure8.1 represents the
chaotic solution z(t) = {zij(t)

}

of (8.1.9) with z11(t0) = 0.1678, z12(t0) = 0.3956,
z13(t0) = 0.1987, z21(t0) = 0.1261, z22(t0) = 0.2405, z23(t0) = 0.3012, z31(t0) =
0.2412, z32(t0) = 0.3942, z33(t0) = 1.6692, where t0 = 0.45.

In Example 8.1, to procure a Li–Yorke chaotic set, we used an SICNN in the form
of (8.1.1), where the terms Lij(t) are replaced by relay functions νij(t, t0), whose
switching moments change chaotically. Now, to support the results of the present
section, we will construct another SICNN, but this time we will use external inputs
of the form Lij(t) = hij(z(t)), where z(t) are the chaotic solutions of the network
(8.1.9) and h(v) = {

hij(v)
}

is a nonlinear function which satisfies the inequality
(8.1.2).

Example 8.2 Consider the following SICNN,

dxij

dt
= −aijxi j −

∑

Ckl∈N1(i, j)

Ckl
ij f (xkl(t))xij + Lij(t), (8.1.10)

in which i, j = 1, 2, 3,
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⎛

⎝

a11 a12 a13
a21 a22 a23
a31 a32 a33

⎞

⎠ =
⎛

⎝

5 12 2
6 4 8
2 9 3

⎞

⎠ ,

⎛

⎝

C11 C12 C13
C21 C22 C23
C31 C32 C33

⎞

⎠ =
⎛

⎝

0.02 0.04 0.06
0.04 0.07 0.09
0.03 0.04 0.08

⎞

⎠ ,

and f (s) = 1

2
s3. One can calculate that

∑

Ckl∈N1(1,1)

Ckl
11 = 0.17,

∑

Ckl∈N1(1,2)

Ckl
12 = 0.32,

∑

Ckl∈N1(1,3)

Ckl
13 = 0.26,

∑

Ckl∈N1(2,1)

Ckl
21 = 0.24,

∑

Ckl∈N1(2,2)

Ckl
22 = 0.47,

∑

Ckl∈N1(2,3)

Ckl
23 = 0.38,

∑

Ckl∈N1(3,1)

Ckl
31 = 0.18,

∑

Ckl∈N1(3,2)

Ckl
32 = 0.35,

∑

Ckl∈N1(3,3)

Ckl
33 = 0.28.

In the previous example, we obtained a network whose solutions behave chaot-
ically. Now, we will make these solutions as external inputs for (8.1.10), with the
help of a nonlinear function h.

Define a function h(v) = {

hij(v)
}

, where v = {

vij
}

, i, j = 1, 2, 3, through

the equations h11(v) = 2v11 + sin(v11), h12(v) = 3

2
v212, h13(v) = ev13 , h21(v) =

tan
(v21

2

)

, h22(v) = v22 + arctan v22, h23(v) = v223 − v23 − 1

v23 − 1
, h31(v) = 2

3
(2 +

v31)
3/2, h32(v) = tanh(v32), h33(v) = 1

4
v333 + 1

5
v33. We note that the inequality

(8.1.2) can be verified using the bounded regions where each component function
zij(t) lies in. Accordingly, the setLh whose elements are of the form h(z(t)), z(t) ∈
L , where L is the set of bounded on R solutions of (8.1.9), is Li–Yorke chaotic.
Moreover, for each z(t) ∈ L we have

∣
∣hij(z(t))

∣
∣ ≤ Mij, where M11 = 0.78,

M12 = 0.54, M13 = 1.35, M21 = 0.11, M22 = 0.69, M23 = 2.11, M31 = 2.41,
M32 = 0.51, and M33 = 2.4.

Consider the network (8.1.10)with Lij(t) = hij(z(t)),whereh(z(t)) = {hij(z(t))
}

belongs toLh . In that case, the condition (C6) holds for (8.1.10) with M f = 0.864,
L f = 2.16, K0 = 1.36, γ = 2, and c = 0.47. The results of Theorem 8.1 ensure us
to say that the collection A with elements φz(t), z(t) ∈ L , is Li–Yorke chaotic.

In the SICNN (8.1.10), we use the chaotically behaving solution z(t) = {

zij(t)
}

which is simulated in Example 8.1, and depict in Fig. 8.2 the solution of (8.1.10)
with the initial data x11(t0) = 0.1341, x12(t0) = 0.0247, x13(t0) = 0.6493,
x21(t0) = 0.0143, x22(t0) = 0.1503, x23(t0) = 0.2394, x31(t0) = 1.1574, x32(t0) =
0.0467, and x33(t0) = 0.5145, where t0 = 0.45. Figure8.2 reveals that each cell
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Fig. 8.2 The chaotic behavior of the SICNN (8.1.10)

Fig. 8.3 The projection of
the chaotic attractor of the
network (8.1.10) on the
x22 − x31 − x33 space
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Cij, i, j = 1, 2, 3, behave chaotically, and this supports the result mentioned in
Theorem 8.1. Moreover, Fig. 8.3 shows the projection of the same trajectory on the
x22 − x31 − x33 space, and this figure also confirms the results of the present section.

8.2 Attraction of Chaos by Retarded SICNNs

In the present section, dynamics of retarded shunting inhibitory cellular neural net-
works (SICNNs) is investigated with Li–Yorke chaotic external inputs and outputs.
Within the scope of our results, we prove the presence of generalized synchroniza-
tion in coupled retarded SICNNs, and confirm it by means of the auxiliary system
approach. We have obtained more than just synchronization, as it is proved that the
Li–Yorke chaos is extended with its ingredients, proximality, and frequent sepa-
ration, which have not been considered in the theory of synchronization at all. Our
procedure is used to synchronize chains of unidirectionally coupled neural networks.
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The results may explain the high performance of brain functioning and can be
extended by specific stability analysis methods. Illustrations supporting the results
are depicted. For the first time in the literature, proximality, and frequent separation
features are demonstrated numerically for continuous-time dynamics.

8.2.1 Introduction

Cellular neural networks (CNNs) have been paid much attention due to their local
connectivity and easy hardware implementation. Time delays occur during the hard-
ware implementation of neural networks because of the finite switching speed of
the amplifiers. The occurrence of time delays may lead to an oscillation and insta-
bility of the networks [35, 36]. Moreover, the introduction of delay in the signals
transmitted among the cells of CNNs is required by the process of moving images
[37]. Therefore, the consideration of neural networks with time delay is important
for applications.

Chaotic dynamics has been widely investigated in neural networks [38–58]. In
their study, King et al. [45] observed chaotic behavior in a model of the central
dopaminergic neuronal system. It is shown in paper [41] that chaos can be expected
in mathematical models of neural systems possessing time delays. In order to study
the dynamical properties of a neural network in chaotic wandering state, Kuroiwa
et al. [46] utilized a model which was proposed by Aihara et al. [39]. The same
model was also used in [52] to investigate the synchronization characteristics in
response to external inputs in a coupled lattice based on a Newman–Watts model.
The existence of a period-doubling cascade was demonstrated by Wang [55] in a
discrete timeneural network.Ke andOommen [44] considered the chaotic andpattern
recognition properties of a neural network, which is based on the logistic map. In the
paper [43], the existence of chaos was demonstrated in the dynamics of fractional-
order Hopfield type neural networks. The presence of chaos in the Hodgkin-Huxley
model with its original parameters was revealed in [40], where the solutions were
found by displaying rectangles in a cross section whose images under the return
map produce a Smale horseshoe. Moreover, the verification of chaotic behavior in
Hopfield neural networks was provided by virtue of the horseshoes in the studies
[42, 47]. The problem of creating a robust chaotic neural network was studied by
Potapov and Ali [51]. Furthermore, chaotic dynamics in CNNs were studied in the
papers [48, 56–58].

The presence of chaos in neural networks is useful for separating image seg-
ments [52], information processing [49, 50], and synchronization of neural networks
[59–64]. Besides, the synchronization phenomenon is also observable in the dynam-
ics of coupled chaotic CNNs [65, 66]. The detection and characterization of synchro-
nization in neural networks is of great interest, since theymay provide the opportunity
to understand how the brain and nervous system works [67]. Chaotic dynamics can
improve the performance of CNNs on problems that have local minima in energy
(cost) functions, since chaotic behavior of CNNs can help the network avoid local
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minima and reach the global optimum [68]. Moreover, chaotic dynamics in CNNs
is an important tool for the studies of chaotic communication [69–71] and combina-
torial optimization problems [72].

The term chaos, as a mathematical notion, has first been used by Li and Yorke
[24] for one-dimensional difference equations. The concept of snap-back repellers
for high-dimensional maps was introduced byMarotto [73]. According to the results
of the paper [73], if a multidimensional continuously differentiable map has a snap-
back repeller, then it is Li–Yorke chaotic. Li et al. [74] used Marotto’s Theorem to
prove the existence of Li–Yorke chaos in a spatiotemporal chaotic system. Li–Yorke
sensitivity, which links the Li–Yorke chaos with the notion of sensitivity, was studied
in [75], and generalizations of Li–Yorke chaos to mappings in Banach spaces and
complete metric spaces were provided in [76]. In the present section, we develop the
concept of Li–Yorke chaos to the multidimensional dynamics of retarded shunting
inhibitory cellular neural networks, and prove its existence rigorously.

Marotto’s Theorem is also useful in the theory of neural networks to prove the
presence of chaos rigorously. It was used by Lin and Ruan [77] to determine chaotic
dynamics in a pacemaker neuron type integrate-and-fire circuit having two stateswith
a periodic pulse-train input. Moreover, in the paper [78], the chaos was approved by
virtue of the Marotto’s Theorem in discrete time-delayed Hopfield neural networks.

A class of CNNs which was introduced by Bouzerdoum and Pinter [6] is shunting
inhibitory cellular neural networks (SICNNs). SICNNshavebeen extensively applied
in psychophysics, speech, perception, robotics, adaptive pattern recognition, vision
and image processing [7–13, 79].

The model of SICNNs in the most original formulation [6] is as follows. Con-
sider a two-dimensional grid of processing cells, and let Cij, i = 1, 2, . . . , m, j =
1, 2, . . . , n, denote the cell at the (i, j) position of the lattice. The r -neighborhood
of Cij is defined as

Nr (i, j) = {Ckl : max {|k − i |, |l − j |} ≤ r, 1 ≤ k ≤ m, 1 ≤ l ≤ n}.

In SICNNs, neighboring cells exert mutual inhibitory interactions of the shunting
type. The dynamics of the cell Cij is described by the nonlinear ordinary differential
equation

dxij(t)

dt
= −aijxi j (t) −

∑

Ckl∈Nr (i, j)

Ckl
ij f (xkl(t))xij(t) + Lij(t),

where xij is the activity of the cell Cij; Lij(t) is the external input to Cij; the constant
aij > 0 represents the passive decay rate of the cell activity;Ckl

ij ≥ 0 is the connection
or coupling strength of the postsynaptic activity of the cell Ckl transmitted to the cell
Cij; and the activation function f (xkl) is a positive continuous function representing
the output or firing rate of the cell Ckl .



328 8 Chaos by Neural Networks

In the present section, we consider SICNNs with delay in the form

dxij(t)

dt
= −aijxi j (t) −

∑

Ckl∈Nr (i, j)

Ckl
ij f (xkl(t − τ))xij(t) + Lij(t), (8.2.11)

where τ is a positive number.
To give an explanation of the title of this section, let us start with the chaos to be

attracted. It is a set of bounded functions, L , chaotic in the Li–Yorke sense. In the
next section, the setL will be described in a detailed form.We apply the elements of
the chaotic set, L(t) = {Lij(t)

}

, as external inputs in the SICNN (8.2.11). Next, we
verify that the network (8.2.11) outputs a set of solutions of the same nature as the
set L , which are bounded functions chaotic in the Li–Yorke sense. We denote the
set of the outputs of (8.2.11) by L̃ . Thus, we say that the SICNN (8.2.11) “attracts”
a chaotic set L if it produces the chaotic output L̃ . It is worth noting that under
the conditions that will be introduced in the next section, the SICNN (8.2.11) does
not possess chaos provided that the external inputs are not chaotic, but regular or
absent. In the papers [16, 17], retardedSICNNswere consideredwith periodic/almost
periodic inputs, and it was demonstrated that the same regular dynamics appear in
the outputs.

Li–Yorke chaos is chosen in this sectionmainly for two reasons. First, the presence
of Li–Yorke chaos can be obtained through the reduction to scalar discrete equations,
for instance, to the logistic map. This reduction can be done in the multidimensional
case. Second, Marotto’s Theorem allows to study the chaos by reduction to mul-
tidimensional discrete equations. In the parametric sense, the chaos is generic, for
example, the logistic map xn+1 = μxn(1 − xn) is chaotic for the parameter value μ

between 3.84 and 4 [24].
In their studies, Freeman and his collaborators [80–85] revealed that chaotic

dynamics is an inevitable attribution of brain activities. Considering the brain as
a collection of neural networks, one may suppose that the chaos appearance can
happen in two ways. The first one is the “endogenous chaos,” which is generated
by an individual neural network itself without an influence from outside. This type
of chaos appearance was widely investigated in the literature [40, 42–44, 47, 48,
51, 55–58]. The second way is the extension of chaos from one network to another.
One can consider the synchronization of chaos [86–97] within the scope of the lat-
ter way. However, synchronization of chaos relies deeply on its description as well
as on the verification of asymptotic closeness between the outputs. Therefore, this
type of chaos extension brings us far from the effectiveness of chaos for the brain
activities. It brings us to the comprehension of schizophrenia, insomnia, and epilepsy
[41] rather than regular brain functioning. Nevertheless, Breakspear and Terry [98]
reported that synchronization plays an important role for activities of healthy brain.
That is why it is important to find mathematical methods for the chaos extension
between neural networks, where the asymptotic closeness is fully removed or its
presence is weakened in some sense.
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In the case of identical synchronization [94], one requires the condition

lim
t→∞ ‖y(t) − x(t)‖ = 0,

where x and y denote the states of the drive and response systems, respectively.
This type of asymptotic relation is strong and to weaken it, one should consider the
theory of generalized synchronization [67, 86, 88, 91, 92, 96, 97]. In this theory,
the previous relation is replaced by

lim
t→∞ ‖y(t) − φ(x(t))‖ = 0,

where φ is a transformation. The presence of the synchronizationmanifold y = φ(x)

in the drive-response systems is mostly investigated by numerical analyses [67, 86,
96]. The concept of generalized synchronization for coupled systems with delay was
considered in [97]. In the present section, we suggest an easy theoretical approach
to verify the presence of synchronization based on the exponential convergence of
outputs. Moreover, by the traditional simulation methods [67, 86], we will check
that generalized synchronization takes place in the attraction of chaos. It is worth
noting that we verify the ingredients of Li–Yorke chaos, which cannot be realized by
the concept of synchronization at all, and this is one of the principal novelties of our
results. The ingredients, proximality and frequent separation, may play an essential
role in the brain dynamics. This idea can be supported if one follows the experimental
analyses of Freeman and his collaborators [80–85], and develop researches in this
direction.

Investigations of neural networks will not be adequate for application problems
unless delay is not introduced in themodels. Therefore, a large number of papers paid
special attention to the presence of delay in SICNNs [14–17, 19–23, 99–102]. In
these papers, the existence and stability of periodic, almost periodic and antiperiodic
solutions of SICNNs were studied. Despite the fact that SICNNs and chaos are
important in neoroscience, there are still very few papers which consider chaos in
this type of neural networks. As far as we know, the subject was considered only
in the studies [25, 26], and the analyses were made only numerically without a
theoretical support. That is the reason why even a type of chaos was not indicated in
these studies. The theoretical approach for SICNNs based on the rigorous definition
of chaos presented by Li and Yorke [24] was started in our paper [103], where we
discussed the chaotification of SICNNs without delay. The way of chaos expansion
in continuous-time dynamics was also considered in the paper [34] without time
delay by taking into account chaos in the sense of both Li–Yorke [24] and Devaney
[104] as well as for period-doubling cascade [105, 106] and intermittency [107].

The novelty of the present section is the discussion of chaotic dynamics in SICNNs
with time delay. The investigation of chaotic outputs in retarded SICNNs is much
more sophisticated than the one without delay [103]. Themethod of adaptation of the
Li–Yorke chaos for differential equations with retardation considered in the present
section is new not only for neural networks, but also for the theory as a whole. This
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also provides a contribution to the chaos theory. Moreover, we analyze the relation
between generalized synchronization [67, 86, 88, 91, 92, 96, 97] and our approach
about the chaotification of neural systems in a detailed form, and such discussions
have never been reported before for SICNNs in the literature. In Sect. 8.2.4, we take
into account retarded SICNNs with external inputs in the form of relay functions.
However, in the studies [29–31, 33], relay systems were considered without time
delay. Our results are also applicable to other kinds of recurrent networks such as
Hopfield and Cohen–Grossberg neural networks [5, 108–114].

Motivated by the deficiency of mathematical methods for chaos recognition in
neural networks and the importance of irregular behavior for effective brain activities,
we suggest the results of the present section. It is the first time in the literature that
rigorous mathematical methods are used to prove not only the presence of chaos
in retarded SICNNs, but also how chaos can be exported between neural networks.
Another novelty is the precise achievement of chaos in the sense of Li–Yorke with
its ingredients, proximality and frequent separation, which may play an important
role for the working principle of a nervous system. To the best of our knowledge,
the numerical demonstration of the proximality and frequent separation features
for continuous-time dynamics have never been reported before (see Fig. 8.8 and
the related text). Our results can provide further research areas in neuroscience, in
particular, by the consideration of experiments of Freeman and other neurobiologists
[41, 54, 80–85].

The primary contributions of the present section are summarized below:

(i) We give a mathematical description of the Li–Yorke chaos for continuous-
time neural networks with delay. Moreover, simulations of the ingredients of
Li–Yorke chaos, proximality and frequent separation, have been performed for
continuous-time dynamics for the first time.

(ii) By means of external inputs, we theoretically prove the presence of chaos in
retarded SICNNs with arbitrary high number of cells, and we provide a way of
chaos extension among coupled neural networks with delay.

(iii) We make use of the exponential convergence of solutions (see Lemma 8.6)
to prove the presence of generalized synchronization in coupled retarded SIC-
NNs, and confirm its presence by means of the auxiliary system approach [67,
86]. Our procedure can be easily extended to synchronize chains of unidirec-
tionally coupled neural networks with delay. This may be important in neu-
roscience to explain the high performance of brain functioning [54, 84]. The
proposed approach cannot be reduced to generalized synchronization, since
we have obtained more than just synchronization. We prove that the Li–Yorke
chaos is extended with its ingredients, proximality, and frequent separation,
which have not been considered in the theory of synchronization at all.

(iv) Our results can be extended in neuroscience by specific stability analysis meth-
ods, for example, by the linear matrix inequality technique [62, 115–118].

The rest of the section is organized as follows. In Sect. 8.2.2, the description of
Li–Yorke chaos is presented and two lemmas about the existence of unique bounded
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onR solutions of SICNNs and their stability are provided. In Sect. 8.2.3, the presence
of Li–Yorke chaos is theoretically proved for retarded SICNNs of the form (8.2.11).
Section8.2.4 is devoted for an example. In this part, a chain of SICNNs is used
to show the effectiveness of the proposed results. Moreover, the ingredients of Li–
Yorke chaos are demonstrated numerically. Finally, we compared our method with
generalized synchronization both theoretically and numerically in Sect. 8.2.5.

8.2.2 Preliminaries

Throughout the section, R and N will denote the sets of real numbers and natural
numbers, respectively. Moreover, the norm ‖u‖ = max

(i, j)

∣
∣uij
∣
∣ will be used, where

u = {uij
} = (u11, . . . , u1n, . . . , um1 . . . , umn) ∈ R

m×n .
The description of Li–Yorke chaos that will be utilized in the present section is

as follows. Suppose thatL is a collection of continuous functions L(t) = {Lij(t)
}

,
i = 1, 2, . . . , m, j = 1, 2, . . . , n, such that sup

t∈R
‖L(t)‖ ≤ M , where M is a positive

number.
We say that a couple

(

L(t), L(t)
) ∈ L × L is proximal if for arbitrary small

ε > 0 and arbitrary large E > 0, there exists an interval J with a length no less than
E such that

∥
∥L(t) − L(t)

∥
∥ < ε for t ∈ J . On the other hand, a couple

(

L(t), L(t)
) ∈

L × L is called frequently (ε0,Δ)-separated if there exist positive numbers ε0, Δ
and infinitely many intervals Jq = [αq , βq ], q ∈ N, each with a length no less than
Δ, such that βq → ∞ as q → ∞ and

∥
∥L(t) − L(t)

∥
∥ > ε0 for each t from these

intervals. It is worth noting that the numbers ε0 and Δ depend on the functions L(t)
and L(t).

A couple
(

L(t), L(t)
) ∈ L ×L is a Li–Yorke pair if it is proximal and frequently

(ε0,Δ)-separated for some positive numbers ε0 and Δ. Moreover, an uncountable
setLS ⊂ L is called a scrambled set ifLS does not contain any periodic functions
and each couple of different functions inside LS × LS is a Li–Yorke pair.

The collection L is called a Li–Yorke chaotic set if: (i) there exists a positive
number T0 such that L possesses a periodic function of period kT0 for any k ∈ N;
(ii) L possesses a scrambled set LS; (iii) for any function L(t) ∈ LS and any
periodic function L(t) ∈ L , the couple

(

L(t), L(t)
)

is frequently (ε0,Δ)-separated
for some positive numbers ε0 and Δ.

The following conditions are required:

(C1) There exist positive numbers Mij such that sup
t∈R

∣
∣Lij(t)

∣
∣ ≤ Mij;

(C2) There exists a positive number M f such that sup
s∈R

| f (s)| ≤ M f ;
(C3) There exists a positive number L f such that | f (s1) − f (s2)| ≤ L f |s1 − s2|

for all s1, s2 ∈ R;
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(C4) M f δ < 1, where δ = max
(i, j)

∑

Ckl∈Nr (i, j) Ckl
ij

aij
;

(C5) (M f + K0L f )δ < 1, where K0 = M

1 − M f δ
and M = max

(i, j)

Mij

aij
.

One can confirm that a bounded on R function x(t) = {xij(t)
}

, i = 1, 2, . . . , m,
j = 1, 2, . . . , n, is a solution of the network (8.2.11) if and only if the following
integral equation is satisfied

xij(t) = −
∫ t

−∞
e−aij(t−s)

[ ∑

Ckl∈Nr (i, j)

Ckl
ij f (xkl(s − τ))xij(s)

−Lij(s)
]

ds. (8.2.12)

The following assertion is about the existence and uniqueness of bounded on R

solutions of system (8.2.11).

Lemma 8.5 Suppose that the conditions (C1)–(C5) are valid. Then, for any L(t) =
{

Lij(t)
}

, i = 1, 2, . . . , m, j = 1, 2, . . . , n, there exists a unique bounded on R

solution φL(t) of the network (8.2.11) such that sup
t∈R

‖φL(t)‖ ≤ K0.

Proof Consider the set C0 of continuous functions u(t) = {uij(t)
}

, i = 1, 2, . . . , m,
j = 1, 2, . . . , n, which are defined on R, such that ‖u‖0 ≤ K0, where ‖u‖0 =
sup
t∈R

‖u(t)‖. Define the operator Π on C0 as

(Πu(t))ij = −
∫ t

−∞
e−aij(t−s)

[ ∑

Ckl∈Nr (i, j)

Ckl
ij f (ukl(s − τ))uij(s) − Lij(s)

]

ds,

where Πu(t) = {(Πu)ij(t)
}

. If u(t) belongs to C0, then we have

∣
∣(Πu(t))ij

∣
∣ ≤

∫ t

−∞
e−aij(t−s)

[ ∑

Ckl∈Nr (i, j)

Ckl
ij | f (ukl(s − τ))| ∣∣uij(s)

∣
∣+ ∣∣Lij(s)

∣
∣

]

ds

≤ 1

aij

(

Mij + M f K0

∑

Ckl∈Nr (i, j)

Ckl
ij

)

.

Accordingly, the inequality ‖Πu‖0 ≤ M + M f K0δ = K0 holds. Therefore,
Π(C0) ⊆ C0.

On the other hand, for any u(t), v(t) ∈ C0, one can verify that
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∣
∣(Πu(t))ij − (Πv(t))ij

∣
∣ ≤

∫ t

−∞
e−aij(t−s)

∑

Ckl∈Nr (i, j)

Ckl
ij

∣
∣
∣ f (ukl(s − τ))uij(s)

− f (ukl(s − τ))vi j (s)
∣
∣
∣ds

+
∫ t

−∞
e−ai j (t−s)

∑

Ckl∈Nr (i, j)

Ckl
i j

∣
∣
∣ f (ukl(s − τ))vi j (s) − f (vkl(s − τ))vi j (s)

∣
∣
∣ds

≤ (M f + K0L f )

∑

Ckl∈Nr (i, j) Ckl
i j

aij
‖u − v‖0 .

Thus, ‖Πu − Πv‖0 ≤ (M f + K0L f )δ ‖u − v‖0, and the operator Π is contractive
according to the condition (C5). Consequently, for any L(t), there exists a unique
bounded on R solution φL(t) of system (8.2.11) such that sup

t∈R
‖φL(t)‖ ≤ K0. �

Consider the collection L whose elements are functions of the form L(t) =
{

Lij(t)
}

, i = 1, 2, . . . , m, j = 1, 2, . . . , n, such that sup
t∈R

∣
∣Lij(t)

∣
∣ ≤ Mij for each

i and j . Suppose that L̃ denotes the set of bounded on R solutions φL(t) of the
network (8.2.11), where L(t) = {

Lij(t)
}

belongs to L . In the present section, we
assume that L is an equicontinuous family on R.

Making use of the technique indicated in the proof of Theorem 2 [16], one can
prove the following assertion, which confirms the attractiveness of the set L̃ . A
similar result for systems without delay was obtained in the paper [34].

Lemma 8.6 If the conditions (C1)–(C5) are fulfilled, then for a fixed L(t) =
{

Lij(t)
}

, i = 1, 2, . . . , m, j = 1, 2, . . . , n, all solutions of system (8.2.11) con-
verge exponentially to the unique bounded on R solution φL(t).

8.2.3 Li–Yorke Chaos

Our purpose in the present section is to demonstrate that the network (8.2.11) behaves
chaotically provided that the external inputs are chaotic. In the following lemmas,
we will take advantage of the sets L and L̃ , which are defined in Sect. 8.2.2. The
main result will be mentioned in Theorem 8.2.

Let us denote K1 = 2M

1 − (M f + K0L f )δ
, γ = min

(i, j)
aij and

δ = max
(i, j)

∑

Ckl∈Nr (i, j) Ckl
ij

2ai j − γ
. We note that the number γ is positive since each aij,

i = 1, 2, . . . , m, j = 1, 2, . . . , n, are positive.
The following conditions are needed:

(C6)
[

M f + (K0 + K1)L f
]

δ < 1;
(C7) 2

(

M f + K0L f eγ τ/2
)

δ < 1.
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The next lemma is about the proximality feature of system (8.2.11).

Lemma 8.7 Under the conditions (C1)–(C7), if a pair
(

L(t), L(t)
)

∈ L × L is

proximal, then the same is true for the pair
(

φL(t), φL(t)
) ∈ L̃ × L̃ .

Proof Set R0 = 2K0

1 − 2(M f + K0L f eγ τ/2)δ
, R1 = 1

γ [1 − δ(M f + K0L f )] and

take a positive number η such that η ≤ 1/(R0 + R1). Fix an arbitrary small num-

ber ε > 0 and a positive number E such that E >
4

γ
ln

(
1

ηε

)

. Because the pair
(

L(t), L(t)
) ∈ L ×L is proximal, there exists an interval J = [σ, σ + E0], where

E0 ≥ E , such that
∥
∥L(t) − L(t)

∥
∥ < ηε for t ∈ J .

The bounded on R solutions φL(t) =
{

φ
ij
L(t)

}

and φL(t) =
{

φ
ij
L
(t)
}

, i =
1, 2, . . . , m, j = 1, 2, . . . , n, satisfy the relation

φ
ij
L(t) − φ

ij
L
(t) = e−ai j (t−σ)

(

φ
ij
L(σ ) − φ

ij
L
(σ )
)

+
∫ t

σ

e−aij(t−s)
(

Lij(s) − Lij(s)
)

ds

−
∫ t

σ

e−aij(t−s)
∑

Ckl∈Nr (i, j)

Ckl
ij

[

f (φkl
L (s − τ))φ

ij
L(s) − f (φkl

L
(s − τ))φ

ij
L
(s)
]

ds.

Denote by w(t) = {wij(t)
}

the difference φL(t) − φL(t). Then for each i and j , we
have that

wij(t) = e−aij(t−σ)
(

φ
ij
L(σ ) − φ

ij
L
(σ )
)

+
∫ t

σ

e−aij(t−s)
(

Lij(s) − Lij(s)
)

ds

−
∫ t

σ

e−aij(t−s)
∑

Ckl∈Nr (i, j)

Ckl
ij

[

f (wkl(s − τ) + φkl
L

(s − τ))
(

wij(s) + φ
ij
L
(s)
)

− f (φkl
L

(s − τ))φ
ij
L
(s)
]

ds.

Let Ψ be the set of continuous functions w(t) = {

wij(t)
}

, i = 1, 2, . . . , m,
j = 1, 2, . . . , n, which are defined on R, such that ‖w(t)‖ ≤ R0e−γ (t−σ)/2 + R1ηε

for σ − τ ≤ t ≤ σ + E0 and ‖w‖0 ≤ K1, where ‖w‖0 = sup
t∈R

‖w(t)‖.
Define on Ψ the operator Π̃ as follows:

(Π̃w(t))ij =

⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

φ
ij
L(t) − φ

ij
L
(t), t < σ,

e−aij(t−σ)
(

φ
ij
L(σ ) − φ

ij
L
(σ )
)

+
∫ t

σ

e−aij(t−s)(Li j (s) − Lij(s))ds

−
∫ t

σ

e−aij(t−s)
∑

Ckl∈Nr (i, j)

Ckl
ij

[

f (wkl(s − τ) + φkl
L

(s − τ))

×(wij(s) + φ
ij
L
(s)) − f (φkl

L
(s − τ))φ

ij
L
(s)
]

ds, t ≥ σ.
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First, we will show that Π̃ : Ψ → Ψ . Indeed, if w(t) belongs to Ψ , then for
t ∈ [σ, σ + E0] it is true that
∣
∣(Π̃w(t))ij

∣
∣ ≤ e−aij(t−σ)

∣
∣
∣φ

ij
L(σ ) − φ

ij
L
(σ )

∣
∣
∣+
∫ t

σ

e−aij(t−s)
∣
∣Lij(s) − Lij(s)

∣
∣ ds

+
∫ t

σ

e−aij(t−s)
∑

Ckl∈Nr (i, j)

Ckl
ij

∣
∣
∣ f (wkl(s − τ) + φkl

L
(s − τ))

∣
∣
∣

∣
∣wij(s)

∣
∣ ds

+
∫ t

σ

e−aij(t−s)
∑

Ckl∈Nr (i, j)

Ckl
ij

×
∣
∣
∣ f (wkl(s − τ) + φkl

L
(s − τ)) − f (φkl

L
(s − τ))

∣
∣
∣

∣
∣
∣φ

kl
L

(s)
∣
∣
∣ ds

≤ 2K0e−γ (t−σ) +
∫ t

σ

e−aij(t−s)ηεds

+
∫ t

σ

e−aij(t−s)
∑

Ckl∈Nr (i, j)

Ckl
ij M f

(

R0e−γ (s−σ)/2 + R1ηε
)

ds

+
∫ t

σ

e−aij(t−s)
∑

Ckl∈Nr (i, j)

Ckl
ij K0L f

(

R0e−γ (s−τ−σ)/2 + R1ηε
)

ds

= 2K0e−γ (t−σ) + ηε

aij

(

1 − e−aij(t−σ)
)

+2R0

(

M f + K0L f eγ τ/2
)
∑

Ckl∈Nr (i, j) Ckl
ij

2ai j − γ
e−γ (t−σ)/2

(

1 − e−(aij−γ /2)(t−σ)
)

+R1ηε(M f + K0L f )

∑

Ckl∈Nr (i, j) Ckl
ij

ai j

(

1 − e−aij(t−σ)
)

.

Hence, for t ∈ [σ, σ + E0], it can be verified that

∥
∥Π̃w(t)

∥
∥ ≤ 2K0e−γ (t−σ) + ηε

γ
+ 2R0

(

M f + K0L f eγ τ/2
)

δe−γ (t−σ)/2

+R1ηε(M f + K0L f )δ

≤ 2
[

K0 + R0(M f + K0L f eγ τ/2)δ
]

e−γ (t−σ)/2 + ηε

[
1

γ
+ R1(M f + K0L f )δ

]

= R0e−γ (t−σ)/2 + R1ηε.

Since R0 > 2K0, the inequality
∥
∥Π̃w(t)

∥
∥ ≤ R0e−γ (t−σ)/2 + R1ηε holds also for

σ − τ ≤ t < σ .
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On the other hand, if w(t) belongs to Ψ , then making benefit of the inequality
K1 ≥ 2K0 one can confirm for t ≥ σ that

∣
∣(Π̃w(t))ij

∣
∣ ≤ e−aij(t−σ)

∣
∣
∣φ

ij
L (σ ) − φ

ij
L
(σ )

∣
∣
∣+
∫ t

σ
2Mije

−ai j (t−s)ds

+
∫ t

σ
e−aij(t−s)

∑

Ckl∈Nr (i, j)

Ckl
ij

∣
∣
∣ f (wkl (s − τ) + φkl

L
(s − τ))

∣
∣
∣

∣
∣wij(s)

∣
∣ ds

+
∫ t

σ
e−aij(t−s)

∑

Ckl∈Nr (i, j)

Ckl
ij L f |wkl (s − τ)|

∣
∣
∣φ

ij
L
(s)
∣
∣
∣ ds

≤ 2K0e−aij(t−σ) +
(

2Mij

ai j
+ K1(M f + K0L f )

∑

Ckl∈Nr (i, j) Ckl
ij

ai j

)
(

1 − e−aij(t−σ)
)

≤ e−aij(t−σ)
[

2K0 − 2M − K1(M f + K0L f )δ
]+ 2M + K1(M f + K0L f )δ

≤ K1.

Therefore, the inequality
∥
∥Π̃w

∥
∥
0 ≤ K1 is valid. Thus, Π̃(Ψ ) ⊆ Ψ .

Now, we shall verify that the operator Π̃ is a contraction. Suppose that w(t),
w(t) ∈ Ψ . For t ≥ σ , we have that

∣
∣(Π̃w(t))ij − (Π̃w(t))ij

∣
∣ ≤

∫ t

σ
e−aij(t−s)

∑

Ckl∈Nr (i, j)

Ckl
ij

∣
∣
∣ f (wkl (s − τ) + φkl

L
(s − τ))

×(wij(s) + φ
ij
L
(s)) − f (wkl (s − τ) + φkl

L
(s − τ))(wij(s) + φ

ij
L
(s))
∣
∣
∣ds

≤
∫ t

σ
e−aij(t−s)

∑

Ckl∈Nr (i, j)

Ckl
ij

∣
∣
∣ f (wkl (s − τ) + φkl

L
(s − τ))

∣
∣
∣

∣
∣
∣wij(s) − wij(s)

∣
∣
∣ds

+
∫ t

σ
e−aij(t−s)

∑

Ckl∈Nr (i, j)

Ckl
ij L f

∣
∣
∣wkl (s − τ) − wkl (s − τ)

∣
∣
∣

∣
∣
∣wij(s) + φ

ij
L
(s)
∣
∣
∣ ds

≤ [M f + (K0 + K1)L f
]

∑

Ckl∈Nr (i, j) Ckl
ij

ai j
sup

t≥σ−τ
‖w(t) − w(t)‖ .

In view of the equation
∥
∥Π̃w(t) − Π̃w(t)

∥
∥ = 0 for t < σ , the last inequality implies

that
∥
∥Π̃w − Π̃w

∥
∥
0 ≤ [M f + (K0 + K1)L f

]

δ ‖w − w‖0 ,

and the operator Π̃ is contractive according to the condition (C6).
By means of the uniqueness of solutions, one can conclude that w(t) = φL(t) −

φL(t) is the unique fixed point of the operator Π̃ .

Since the number E satisfies the inequality E >
4

γ
ln

(
1

ηε

)

, we have

e−γ (t−σ)/2 < ηε,
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provided that t ≥ σ + E/2. Therefore, the inequality
∥
∥φL(t) − φL(t)

∥
∥ < (R0 +

R1)ηε ≤ ε holds for t ∈ [σ + E/2, σ + E0]. Consequently, the pair
(

φL(t), φL(t)
) ∈

L̃ × L̃ is proximal. �

Lemma 8.8 Suppose that the conditions (C1)–(C5) are fulfilled. If a pair (L(t) ,
L(t)

) ∈ L ×L is frequently (ε0,Δ)-separated for some positive numbers ε0 and Δ,
then there exist positive numbers ε1 and Δ such that the pair

(

φL(t), φL(t)
) ∈ L̃ ×L̃

is frequently (ε1,Δ)-separated.

Proof Since the pair
(

L(t), L(t)
) ∈ L × L is frequently (ε0,Δ) separated for

some numbers ε0 > 0, Δ > 0, there exist infinitely many intervals Jq = [αq , βq ],
q ∈ N, each with a length no less than Δ, such that βq → ∞ as q → ∞, and
∥
∥L(t) − L(t)

∥
∥ > ε0 for each t from these intervals. The essence of the proof is to

determine numbers ε1 > 0, Δ > 0 and infinitely many intervals J q = [αq , βq ], q ∈
N, each with length Δ, such that βq → ∞ as q → ∞, and

∥
∥φL(t) − φL(t)

∥
∥ > ε1

for each t from the intervals J q , q ∈ N.
SinceL is an equicontinuous family on R, there exists a positive number κ such

that for any t1, t2 ∈ R with |t1 − t2| < κ , the inequality

∣
∣
(

Lij(t1) − Lij(t1)
)− (Lij(t2) − Lij(t2)

)∣
∣ <

ε0

2
(8.2.13)

holds for all i = 1, 2, . . . , m and j = 1, 2, . . . , n. For each q ∈ N, set θq = βq −κ/2.
Let us fix q ∈ N. There exist integers i0, j0 such that

∣
∣Li0 j0(βq) − Li0 j0(βq)

∣
∣ = ∥∥L(βq) − L(βq)

∥
∥ > ε0. (8.2.14)

By virtue of the inequality (8.2.13), it can be verified for each t ∈ [θq , θq + κ
]

that

∣
∣Li0 j0(βq) − Li0 j0(βq)

∣
∣− ∣∣Li0 j0(t) − Li0 j0(t)

∣
∣

≤ ∣∣(Li0 j0(t) − Li0 j0(t)
)− (Li0 j0(βq) − Li0 j0(βq)

)∣
∣

<
ε0

2
.

Therefore, making use of (8.2.14), one can confirm for θq ≤ t ≤ θq + κ that

∣
∣Li0 j0(t) − Li0 j0(t)

∣
∣ >

∣
∣Li0 j0(βq) − Li0 j0(βq)

∣
∣− ε0

2
>

ε0

2
. (8.2.15)

For each i and j , there exist numbers ζ
q
ij ∈ [θq , θq + κ] such that

∫ θq+κ

θq

(

L(s) − L(s)
)

ds = κ
(

L11(ζ
q
11) − L11(ζ

q
11), . . . , Lmn(ζ

q
mn) − Lmn(ζ

q
mn)
)

.
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Thus, by means of the inequality (8.2.15), we obtain that

∥
∥
∥
∥
∥

∫ θq+κ

θq

(

L(s) − L(s)
)

ds

∥
∥
∥
∥
∥

≥ κ

∣
∣
∣Li0 j0(ζ

q
i0 j0

) − Li0 j0(ζ
q
i0 j0

)

∣
∣
∣ >

κε0

2
. (8.2.16)

For t ∈ [θq , θq + κ], by the help of the relations

φ
ij
L(t) = φ

ij
L(θq) −

∫ t

θq

[

aij +
∑

Ckl∈Nr (i, j)

Ckl
ij f (φkl

L (s − τ))
]

φ
ij
L(s)ds +

∫ t

θq

Lij(s)ds

and

φ
ij
L
(t) = φ

ij
L
(θq) −

∫ t

θq

[

aij +
∑

Ckl∈Nr (i, j)

Ckl
ij f (φkl

L
(s − τ))

]

φ
ij
L
(s)ds +

∫ t

θq

Lij(s)ds,

we attain that

φ
ij
L(θq + κ) − φ

ij
L
(θq + κ) =

∫ θq+κ

θq

(

Lij(s) − Lij(s)
)

ds

+(φ
ij
L(θq) − φ

ij
L
(θq)) −

∫ θq+κ

θq

aij

(

φ
i j
L (s) − φ

ij
L
(s)
)

ds

−
∫ θq+κ

θq

∑

Ckl∈Nr (i, j)

Ckl
ij

[

f (φkl
L (s − τ))φ

ij
L(s) − f (φkl

L
(s − τ))φ

ij
L
(s)
]

ds.

Hence, we have that

∥
∥φL(θq + κ) − φL(θq + κ)

∥
∥ ≥

∥
∥
∥
∥
∥

∫ θq+κ

θq

(

L(s) − L(s)
)

ds

∥
∥
∥
∥
∥

− ∥∥φL(θq) − φL(θq)
∥
∥− max

(i, j)

∣
∣
∣

∫ θq+κ

θq

aij

(

φ
i j
L (s) − φ

ij
L
(s)
)

ds
∣
∣
∣

−max
(i, j)

∣
∣
∣

∫ θq+κ

θq

∑

Ckl∈Nr (i, j)

Ckl
ij

[

f (φkl
L (s − τ))φ

ij
L(s)

− f (φkl
L

(s − τ))φ
ij
L
(s)
]

ds
∣
∣
∣. (8.2.17)

Set a = max
(i, j)

aij, c = max
(i, j)

∑

Ckl∈Nr (i, j)

Ckl
ij , H0 = max

(i, j)
Mij. The inequalities (8.2.16)

and (8.2.17) together imply that
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max
t∈[θq−τ,θq+κ]

∥
∥φL(t) − φL(t)

∥
∥ ≥ ∥∥φL(θq + κ) − φL(θq + κ)

∥
∥

>
κε0

2
− [1 + κa + κc(L f K0 + M f )] max

t∈[θq−τ,θq+κ]
∥
∥φL(t) − φL(t)

∥
∥ .

Therefore,

max
t∈[θq−τ,θq+κ]

∥
∥φL(t) − φL(t)

∥
∥ > ε,

where ε = κε0

2[2 + κa + κc(L f K0 + M f )] .
Now, suppose that max

t∈[θq−τ,θq+κ]
∥
∥φL(t) − φL(t)

∥
∥ = ∥

∥φL(ξq) − φL(ξq)
∥
∥ , for

some ξq ∈ [θq − τ, θq + κ]. Take a positive number Δ0 such that

Δ0 ≤ ε

4
(

H0 + K0a + M f K0c
) .

For t ∈ [ξq − Δ0, ξq + Δ0
]

, with the aid of the relation

φ
ij
L(t) − φ

i j
L

(t) = (φ
ij
L(ξq) − φ

ij
L
(ξq))

+
∫ t

ξq

(

Lij(s) − Lij(s)
)

ds −
∫ t

ξq

aij

(

φ
i j
L (s) − φ

ij
L
(s)
)

ds

−
∫ t

ξq

∑

Ckl∈Nr (i, j)

Ckl
ij

[

f (φkl
L (s − τ))φ

ij
L(s) − f (φkl

L
(s − τ))φ

ij
L
(s)
]

ds,

we obtain the inequality

∥
∥φL(t) − φL(t)

∥
∥ ≥ ∥∥φL(ξq) − φL(ξq)

∥
∥

−max
(i, j)

∣
∣
∣

∫ t

ξq

(

Lij(s) − Lij(s)
)

ds
∣
∣
∣− max

(i, j)

∣
∣
∣

∫ t

ξq

aij

(

φ
i j
L (s) − φ

ij
L
(s)
)

ds
∣
∣
∣

−max
(i, j)

∣
∣
∣

∫ t

ξq

∑

Ckl∈Nr (i, j)

Ckl
ij

[

f (φkl
L (s − τ))φ

ij
L(s) − f (φkl

L
(s − τ))φ

ij
L
(s)
]

ds
∣
∣
∣

> ε − 2Δ0
(

H0 + K0a + M f K0c
)

≥ ε

2
.

Hence, we have
∥
∥φL(t) − φL(t)

∥
∥ > ε/2 for each t from the intervals J q = [αq , βq

]

,
q ∈ N, where αq = ξq − Δ0 and βq = ξq + Δ0. One can confirm that βq → ∞ as
q → ∞.
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Consequently, the pair
(

φL(t), φL(t)
) ∈ L̃ × L̃ is frequently (ε1,Δ)-separated,

where ε1 = ε/2 and Δ = 2Δ0. �

The main result of the present section is as follows.

Theorem 8.2 Under the conditions (C1)–(C7), the set L̃ is Li–Yorke chaotic, pro-
vided that the same is true for the set L .

Proof Since the set L is Li–Yorke chaotic, there exists a positive number T0 such
that for any k ∈ N, L possesses a periodic function with period kT0. One can use
the integral equation (8.2.12) together with condition (C5) to verify that L(t) ∈ L
is kT0-periodic if and only if φL(t) ∈ L̃ is kT0-periodic. Thus, for each k ∈ N, the
set L̃ contains a kT0-periodic function.

Suppose that LS is a scrambled set inside L . Consider the collection L̃S with
elements of the form φL(t), where L(t) ∈ LS . Because of the one-to-one correspon-
dence between the elements of LS and L̃S , the set L̃S is uncountable. Moreover,
no periodic functions exist inside L̃S , since no such functions take place insideLS .

Lemmas 8.7 and 8.8 together ensure that L̃S is a scrambled set. Additionally,
Lemma 8.8 implies that any pair of functions inside L̃S × L̃P is frequently (ε1,Δ)-
separated for some positive numbers ε1 and Δ, where L̃P denotes the set of all
periodic functions inside L̃ . As a consequence, the set L̃ is Li–Yorke chaotic. �

Since time delay is an inevitable feature of neural networks, the result presented
in Theorem 8.2 is much more realistic then the one obtained in [103]. That is, unless
retardation is not introduced in the models, investigations of neural networks will not
be adequate for application problems. Introducing delay requests a more sophisti-
catedmathematical analysis, and this is the first time in the literature that the approach
developed in [34, 103] is applied to functional differential equations.

Suppose that F : Rm×n → R
m×n is a function such that for all s1, s2 ∈ R

m×n

the inequality

L1 ‖s1 − s2‖ ≤ ‖F(s1) − F(s2)‖ ≤ L2 ‖s1 − s2‖ , (8.2.18)

is valid, where L1 and L2 are positive numbers. One can verify that if a collection
L of functions is Li–Yorke chaotic, then the collection with elements of the form
F(L(t)), where L(t) ∈ L , is also Li–Yorke chaotic.

In the next section, we will focus on a neural system consisting of three layers
such that each layer is a SICNN, and the connections between the layers are provided
through nonlinear functions that satisfy the inequality (8.2.18).

8.2.4 An Example

In the theory of neural networks, one can consider interconnected collections of neu-
rons, called layers. Additionally, a neural system is a collection of neural networks,
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which can be considered as single layers. Each neuron in a neural network is capable
of receiving input signals, processing them, and sending an output signal. Neural
signals consist of short electrical pulses, which are called action potentials or spikes.
That is why the discontinuity phenomena is a natural property of neural networks. A
chain of action potentials emitted by a single neuron is called a spike train. Action
potentials in a spike train are usually well separated, and it is impossible to excite a
second spike during or immediately after a first one [1]. In this section, we take into
account an example of a neural system consisting of three layers, where each layer
is a SICNN. Discontinuous external inputs are used in the first layer to provide the
chaos.

Consider the retarded SICNNs

dxij

dt
= −aijxi j −

∑

Ckl∈N1(i, j)

Ckl
ij f (xkl(t − τ1))xij + Li j (t), (8.2.19)

dyij

dt
= −bij yi j −

∑

Ckl∈N1(i, j)

C
kl
ij g(ykl(t − τ2))yij + Lij(t), (8.2.20)

dzij

dt
= −cijzi j −

∑

Ckl∈N1(i, j)

C
kl

ij h(zkl(t − τ3))zij + Lij(t), (8.2.21)

in which i, j = 1, 2, 3,

⎛

⎝

a11 a12 a13
a21 a22 a23
a31 a32 a33

⎞

⎠ =
⎛

⎝

3 7 2
9 4 5
1 3 6

⎞

⎠ ,

⎛

⎝

C11 C12 C13
C21 C22 C23
C31 C32 C33

⎞

⎠ =
⎛

⎝

0 0.008 0.002
0.001 0.003 0.007
0.004 0 0.006

⎞

⎠ ,

⎛

⎝

b11 b12 b13
b21 b22 b23
b31 b32 b33

⎞

⎠ =
⎛

⎝

4 7 5
3 6 8
10 9 4

⎞

⎠ ,

⎛

⎝

C11 C12 C13

C21 C22 C23

C31 C32 C33

⎞

⎠ =
⎛

⎝

0.004 0.007 0.002
0 0.006 0.003

0.005 0.009 0.008

⎞

⎠ ,
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⎛

⎝

c11 c12 c13
c21 c22 c23
c31 c32 c33

⎞

⎠ =
⎛

⎝

2 8 4
1 1 3
6 2 5

⎞

⎠ ,

⎛

⎜
⎝

C11 C12 C13

C21 C22 C23

C31 C32 C33

⎞

⎟
⎠ =

⎛

⎝

0.006 0 0.002
0.004 0.001 0.008
0 0.007 0.002

⎞

⎠ ,

f (s) = 1

2
s2, g(s) = 1

3
s3, h(s) = √

s, τ1 = 0.5, τ2 = 3 and τ3 = 2.5.

To obtain chaotic SICNNs with delay by means of the presented method, one
needs a collection of external inputs which are known to be chaotic in the sense
of Li–Yorke. For that reason, in system (8.2.19), the external inputs, Lij(t), will be
considered as relay functions with chaotically changing switching moments [29–31,
33]. More precisely, we set Lij(t) = νi j (t, ζ ), where

νij(t, ζ ) =
{

αij, if ζ2q < t ≤ ζ2q+1,

βij, if ζ2q−1 < t ≤ ζ2q ,
. (8.2.22)

In the relay function (8.2.22), α = {

αij
}

, and β = {

βij
}

are different from each
other and the sequence ζ = {

ζq
}

, q ∈ Z, of switching moments are the same for
each i and j . The sequence ζ is defined by the formula ζq = q + κq , q ∈ Z, where
the sequence

{

κq
}

, κ0 ∈ [0, 1], is generated through the equation κq+1 = λ(κq),
and λ(s) = 3.9s(1 − s) is the logistic map, which is chaotic in the Li–Yorke sense
[24]. The interval [0, 1] is invariant under the iterations of the map λ(s) [119]. The
presence of chaos in the SICNN (8.2.19) can be proved in a similar manner to those
mentioned in Sect. 8.2.3. It is worth noting that external inputs of the form (8.2.22)
are Li–Yorke chaotic and this type of inputs have never been considered before in
the literature for SICNNs with delay.

Let us use αij = 1.2 and βij = 2.5 in (8.2.19). Clearly,

∑

Ckl∈N1(1,1)

Ckl
11 = 0.012,

∑

Ckl∈N1(1,2)

Ckl
12 = 0.021,

∑

Ckl∈N1(1,3)

Ckl
13 = 0.020,

∑

Ckl∈N1(2,1)

Ckl
21 = 0.016,

∑

Ckl∈N1(2,2)

Ckl
22 = 0.031,

∑

Ckl∈N1(2,3)

Ckl
23 = 0.026,

∑

Ckl∈N1(3,1)

Ckl
31 = 0.008,

∑

Ckl∈N1(3,2)

Ckl
32 = 0.021,

∑

Ckl∈N1(3,3)

Ckl
33 = 0.016.

One can confirm that the conditions (C1)–(C7) hold for system (8.2.19) with γ = 1,
L f = 2.5, M f = 3.125, M = 2.5, δ = 0.01, δ = 0.008, K0 = 2.581, and
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Fig. 8.4 The irregular behavior in each cell of the SICNN (8.2.19)

K1 = 5.53. Therefore, the collectionLx of bounded on R solutions of (8.2.19) with
different ζ is a Li–Yorke chaotic set.

Consider the constant function u1(t) =
{

uij
1(t)

}

with u11
1 (t) = 0.652, u12

1 (t) =
0.263, u13

1 (t) = 0.942, u21
1 (t) = 0.215, u22

1 (t) = 0.517, u23
1 (t) = 0.364, u31

1 (t) =
1.846, u32

1 (t) = 0.658, and u33
1 (t) = 0.361. We use the sequence ζ with ζ0 = 0.38,

and represent in Fig. 8.4 the solution x(t) = {

xij(t)
}

of (8.2.19) satisfying x(t) =
u1(t) for t0 − τ1 ≤ t ≤ t0, where t0 = 0.38. Figure8.4 reveals that each coordinate
of the solution behaves chaotically.

Now, we shall focus on the SICNN (8.2.20). Consider the function ϕ(v) =
{

ϕij(v)
}

, where v = {

vij
}

and ϕ11(v) = 0.5 tanh(v11), ϕ12(v) = 2v12 + arctan v12,
ϕ13(v) = 2v213, ϕ21(v) = √

v31, ϕ22(v) = 0.4ev32 , ϕ23(v) = v33 + 0.7 cos v33,

ϕ31(v) = 1

v221 + 1
, ϕ32(v) = v222 + 2v22 + 2

v22 + 1
, ϕ33(v) = (0.9 + v23)3. In system

(8.2.20), we set Lij(t) = ϕi j (x(t)) for each i, j = 1, 2, 3. That is, the external inputs
Lij(t) of the network (8.2.20) are provided through the outputs of (8.2.19).

The function ϕ satisfies the inequality (8.2.18) inside the compact region where
the chaotic attractor of system (8.2.19) takes place. Therefore, the collection which
consists of elements of the form ϕ(x(t)), x(t) ∈ Lx , is a Li–Yorke chaotic set.

One can evaluate that

∑

Ckl∈N1(1,1)

C
kl
11 = 0.017,

∑

Ckl∈N1(1,2)

C
kl
12 = 0.022,

∑

Ckl∈N1(1,3)

C
kl
13 = 0.018,

∑

Ckl∈N1(2,1)

C
kl
21 = 0.031,

∑

Ckl∈N1(2,2)

C
kl
22 = 0.044,

∑

Ckl∈N1(2,3)

C
kl
23 = 0.035,

∑

Ckl∈N1(3,1)

C
kl
31 = 0.020,

∑

Ckl∈N1(3,2)

C
kl
32 = 0.031,

∑

Ckl∈N1(3,3)

C
kl
33 = 0.026,
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Fig. 8.5 The motions that appear in the cells of the SICNN (8.2.20). Our theoretical discussions
are supported such that each cell behaves chaotically

and the conditions (C1)–(C7) hold for system (8.2.20) with γ = 3, Lg = 0.49,
Mg = 0.1145, M = 0.762175, δ = δ = 0.031/3, K0 = 0.7631, and K1 = 1.5322.
Consequently, the setLy of bounded on R solutions of system (8.2.20) is Li–Yorke
chaotic in accordance with Theorem 8.2.

We represent in Fig. 8.5 the solution of system (8.2.20) with y(t) = u2(t) for t0 −
τ2 ≤ t ≤ t0, where u2(t) =

{

uij
2

}

is a constant function defined as u11
2 (t) = 0.071,

u12
2 (t) = 0.125, u13

2 (t) = 0.412, u21
2 (t) = 0.454, u22

2 (t) = 0.132, u23
2 (t) = 0.127,

u31
2 (t) = 0.094, u32

2 (t) = 0.245, u33
2 (t) = 0.442 and t0 = 0.38. Figure8.5 supports

the theoretical results such that the dynamics of the SICNN (8.2.20) is chaotic.

In a similar way, in system (8.2.21), we take Lij(t) = ψi j (y(t)), i, j = 1, 2, 3,
where the function ψ(v) = {

ψij(v)
}

is defined through the equations ψ11(v)

= 1

3
v33, ψ12(v) = 2v32 + sin v32, ψ13(v) = 10v331, ψ21(v) = (1 + v11)1/3,

ψ22(v) = 0.5 arctan v12, ψ23(v) = 2v13, ψ31(v) = tanh v21, ψ32(v) = 1

v22 + 2
and ψ33(v) = 1.5

√
1 + v23. It can be verified that the inequality (8.2.18) holds for

the function ψ , and the collection with elements of the form ψ(y(t)), y(t) ∈ Ly , is
Li–Yorke chaotic.

In system (8.2.21), we have that

∑

Ckl∈N1(1,1)

C
kl

11 = 0.011,
∑

Ckl∈N1(1,2)

C
kl

12 = 0.021,
∑

Ckl∈N1(1,3)

C
kl

13 = 0.011,

∑

Ckl∈N1(2,1)

C
kl

21 = 0.018,
∑

Ckl∈N1(2,2)

C
kl

22 = 0.03,
∑

Ckl∈N1(2,3)

C
kl

23 = 0.02,



8.2 Attraction of Chaos by Retarded SICNNs 345

0 10 20 30 40 50
0.06

0.08

0.1

t
0 10 20 30 40 50

0.086

0.088

0.09

0.092

t

z 12

0 10 20 30 40 50
2

2.2

2.4
x 10

−3

t

z 13

0 10 20 30 40 50
1.008
1.01

1.012
1.014
1.016
1.018

t
0 10 20 30 40 50

0.04

0.05

0.06

0.07

t

z 22

0 10 20 30 40 50
0.1

0.2

0.3

0.4

t

z 23

0 10 20 30 40 50
0.06

0.07

0.08

t
0 10 20 30 40 50

0.232

0.234

0.236

t

z 32

z 11
z 21

z 31

0 10 20 30 40 50

0.316

0.317

0.318

0.319

t

z 33

Fig. 8.6 The chaotic motions in each cell of the SICNN (8.2.21)

∑

Ckl∈N1(3,1)

C
kl

31 = 0.012,
∑

Ckl∈N1(3,2)

C
kl

32 = 0.022,
∑

Ckl∈N1(3,3)

C
kl

33 = 0.018.

Moreover, the conditions (C1)–(C7) are validwithγ = 1, Lh = 0.4951, Mh = 1.01,
M = 1.0292, δ = δ = 0.03, K0 = 1.0614, and K1 = 2.1579. Thus, in compliance
with Theorem 8.2, the dynamics of system (8.2.21) is Li–Yorke chaotic. That is, the
setLz of bounded on R solutions of (8.2.21) is chaotic in the sense of Li–Yorke.

The behavior of the SICNN (8.2.21) is observable in Fig. 8.6, which depicts the
solution with z(t) = u3(t) for t0 − τ3 ≤ t ≤ t0, where t0 = 0.38 and the constant

function u3(t) =
{

uij
3

}

is defined as u11
3 (t) = 0.082, u12

3 (t) = 0.091, u13
3 (t) =

0.002, u21
3 (t) = 1.012, u22

3 (t) = 0.041, u23
3 (t) = 0.217, u31

3 (t) = 0.068, u32
3 (t) =

0.234, u33
3 (t) = 0.317. The illustration supports our results such that the SICNN

(8.2.21) exhibits chaos.
Even if we consider constant initial functions in the simulations, the illustrated

outputs in Figs. 8.4, 8.5 and 8.6 converge to bounded onR solutions, which are known
to be chaotic, and that is the reason why chaotic behavior is observable. Moreover,
it is possible to use other values of the delays τ1, τ2, and τ3 in the neural system
(8.2.19)− (8.2.20)− (8.2.21) provided that the condition (C7) is fulfilled.

To confirm one more time that the neural system (8.2.19)− (8.2.20)− (8.2.21)
exhibits chaotic motions, we illustrate in Fig. 8.7 the projection of the trajectory with
x(t) = u1(t), t0 − τ1 ≤ t ≤ t0, y(t) = u2(t), t0 − τ2 ≤ t ≤ t0, z(t) = u3(t),
t0 − τ3 ≤ t ≤ t0, on the x22 − y21 − z33 space, where t0 = 0.38. Figure8.7 supports
our results such that a chaotic attractor takes place in the dynamics of the neural
system. The obtained chaos for the neural system (8.2.19)− (8.2.20)− (8.2.21) is in
the sense of Li–Yorke, and it is remarkable that the presence of chaos with a precise
type in neural systems consisting of retarded SICNNs has never been reported before.

In order to illustrate the proximality and frequent separation features in the neural
system (8.2.19)− (8.2.20)− (8.2.21), we represent in Fig. 8.8 the x22, y22, and z22
coordinates of the solutions corresponding to the sequence ζ with ζ0 = 0.38 and
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Fig. 8.7 The projection of the chaotic trajectory of the neural system (8.2.19)− (8.2.20)− (8.2.21)
on the x22–y21–z33 space

ζ0 = 0.39 in blue and red colors, respectively. In the former, we use the initial
conditions x(t) = u1(t), t0 − τ1 ≤ t ≤ t0, y(t) = u2(t), t0 − τ2 ≤ t ≤ t0,
z(t) = u3(t), t0 − τ3 ≤ t ≤ t0, where t0 = 0.38. For the solution shown in
red color, the initial conditions x(t) = ū1(t), t1 − τ1 ≤ t ≤ t1, y(t) = ū2(t),
t1 − τ2 ≤ t ≤ t1, z(t) = ū3(t), t1 − τ3 ≤ t ≤ t1, where t1 = 0.39, are used. Here,

ū1(t) =
{

uij
1(t)

}

, ū2(t) =
{

uij
2(t)

}

and ū3(t) =
{

uij
3(t)

}

are constant functions

defined as ū11
1 (t) = 0.428, ū12

1 (t) = 0.351, ū13
1 (t) = 0.745, ū21

1 (t) = 0.623,
ū22
1 (t) = 0.553, ū23

1 (t) = 0.254, ū31
1 (t) = 1.725, ū32

1 (t) = 0.742, ū33
1 (t) = 0.249,

ū11
2 (t) = 0.086, ū12

2 (t) = 0.234, ū13
2 (t) = 0.321, ū21

2 (t) = 0.253, ū22
2 (t) = 0.201,

ū23
2 (t) = 0.113, ū31

2 (t) = 0.105, ū32
2 (t) = 0.194, ū33

2 (t) = 0.454, ū11
3 (t) = 0.095,

ū12
3 (t) = 0.094, ū13

3 (t) = 0.001, ū21
3 (t) = 1.145, ū22

3 (t) = 0.038, ū23
3 (t) = 0.332,

ū31
3 (t) = 0.089, ū32

3 (t) = 0.251, and ū33
3 (t) = 0.212.

It is seen in Fig. 8.8 that the x22, y22 and z22 coordinates of the represented
outputs are separated from each other by a positive number approximately for 1105 ≤
t ≤ 1110.3, 1105 ≤ t ≤ 1111.4, and 1105 ≤ t ≤ 1112.3, respectively. On the
other hand, one can observe the presence of the proximality feature in each of the
coordinates such that the solutions are almost identical approximately for 1120 ≤
t ≤ 1133. In addition to this, the solutions are again separated from each other by a
positive number approximately for 1133 ≤ t ≤ 1140.

8.2.5 Synchronization of Chaos

In the example presented in Sect. 8.2.4, a neural system consisting of three layers is
considered. Each layer of the neural system (8.2.19)− (8.2.20)− (8.2.21) is, in fact, a
retarded SICNN. The layers are connected in a unidirectional way such that between
the layers we have feed-forward connections. The schematic diagram of the neural
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Fig. 8.8 The presence of the proximality and frequent separation features in the neural system
(8.2.19)− (8.2.20)− (8.2.21)

Fig. 8.9 The schematic diagram of the neural system (8.2.19)− (8.2.20)− (8.2.21). The layers are
unidirectionally coupled, and each layer of the neural system is a SICNN. The couplings between
the cells of different layers are presented in blue and red colors, while the connections within each
SICNN are shown in black color

system is shown in Fig. 8.9, where the unidirectional connections between the cells
of different layers are presented in blue and red colors. It is worth noting that feed-
backward connections exist within the layers, and black color is used to depict them
in the figure. The first layer admits the chaos due to the external inputs in the form
of chaotic relay functions. The chaotic outputs of the first layer are used as external
inputs for the second one; and therefore, the latter also possesses chaotic motions
in accordance with our theoretical results. Besides, being affected by the outputs
of the second layer, the SICNN (8.2.21) exhibits chaos too. As a result, the system
(8.2.19)− (8.2.20)− (8.2.21) admits chaotic motions, and we call this process as the
chaotification of the neural system.
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The first notions of chaotic synchronization were introduced and developed in
the papers [87, 89, 94, 95]. Afraimovich et al. [87] proposed the synchronization
of chaotic systems that are different and not restricted in coupling. To realize this
proposal, Rulkov et al. [96] considered the concept of generalized synchronization
(GS) for unidirectionally coupled systems with a skew product structure in the form

x ′(t) = F(x(t)) (8.2.23)

and

y′(t) = G(x(t), y(t)). (8.2.24)

The systems (8.2.23) and (8.2.24) are called the drive and response systems, respec-
tively. GS [67, 86, 88, 91, 92, 96] is said to occur if there exist sets Bx , By of initial
conditions and a transformation φ, defined on the chaotic attractor of (8.2.23), such
that for all x(0) ∈ Bx , y(0) ∈ By the relation lim

t→∞ ‖y(t) − φ(x(t))‖ = 0 holds. In

the case of GS, a motion starting on Bx × By collapses onto amanifold M ⊂ Bx × By

of synchronized motions. The transformation φ is not required to exist for the tran-
sient trajectories. If φ is the identity transformation, then identical synchronization
takes place [94].

It is formulated in paper [92] that GS occurs in the coupled system
(8.2.23)− (8.2.24) if and only if for all x0 ∈ Bx , y1, y2 ∈ By , the asymptotic stability
criterion

lim
t→∞ ‖y(t, x0, y1) − y(t, x0, y2)‖ = 0

holds, where y(t, x0, y1) and y(t, x0, y2) are the solutions of (8.2.24) with the same
x(t) such that y(0, x0, y1) = y1, y(0, x0, y2) = y2, and x(0) = x0.

Now, let us discuss the concept of GS for the neural system (8.2.19)− (8.2.20)
− (8.2.21). Lemma 8.6 implies that for a fixed output x(t) = {xij(t)

}

of (8.2.19), the
criterion

lim
t→∞ ‖y(t, x(t), ϕ1(t)) − y(t, x(t), ϕ2(t))‖ = 0

holds for arbitrary initial functions ϕ1(t) and ϕ2(t), where y(t, x(t), ϕ1(t)), and
y(t, x(t), ϕ2(t)) denote the solutions of the network (8.2.20) with y(t, x(t), ϕ1(t)) =
ϕ1(t) and y(t, x(t), ϕ2(t)) = ϕ2(t) for t ∈ [−τ2, 0]. Therefore, one can conclude that
GS occurs in the dynamics of the coupled SICNNs (8.2.19)− (8.2.20). It is worth not-
ing that a similar discussion is valid for the SICNNs (8.2.20) and (8.2.21), and they are
also synchronized in the generalized sense. Since different coefficients and different
external inputs are used in the networks (8.2.20) and (8.2.21), one can confirm that
different synchronization manifolds take place for the couples (8.2.19)− (8.2.20),
(8.2.20)− (8.2.21), and (8.2.19)− (8.2.21).
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We apply Lemma 8.6 to prove the presence of GS and we need just to verify
the conditions (C1)–(C7) to confirm the presence of synchronization in a couple
of neural networks. It is shown for the first time in the literature that the technique
is used to synchronize a chain of SICNNs. Since the synchronization manifolds are
not the same for different pairs of SICNNs from the chain, the complexity of chaos
in the family increases. The results may be used to explain the high performance of
brain functioning [54, 84].

A numerical method that can be used to investigate coupled systems for GS
is the auxiliary system approach [67, 86]. We will use this approach to sup-
port the theoretical discussions about the presence of GS in the neural system
(8.2.19)− (8.2.20)− (8.2.21). First, we start with the coupled SICNNs
(8.2.19)− (8.2.20).

Let us take into account the auxiliary system

dζij

dt
= −bijζi j −

∑

Ckl∈N1(i, j)

C
kl
ij g(ζkl(t − τ2))ζij + Lij(t), (8.2.25)

which is an identical copy of (8.2.20).
In the networks (8.2.20) and (8.2.25), we use the external inputs xij(t), i = 1, 2, 3,

j = 1, 2, 3, which are depicted in Fig. 8.4, and represent in Fig. 8.10 the projection
of the stroboscopic plot of the network (8.2.19)− (8.2.20)− (8.2.25) on the y22−ζ22
plane using the initial functions y(t) = u2(t), which was described in the previous
section, and ζ(t) = v(t) for t0 − τ2 ≤ t ≤ t0, where t0 = 0.38 and v(t) = {

vij
}

is the constant function defined as v11(t) = 0.114, v12(t) = 0.191, v13(t) = 0.302,
v21(t) = 0.512, v22(t) = 0.041, v23(t) = 0.215, v31(t) = 0.287, v32(t) = 0.158,
v33(t) = 0.294. In the simulation the first 50 iterations are omitted. One can see in
Fig. 8.10 that the plot is on the line ζ22 = y22, and this result supports our theoretical
discussions about the presence of GS for the coupled SICNNs (8.2.19)− (8.2.20). A
similar simulation can be performed for the coupled SICNNs (8.2.20)− (8.2.21).

Fig. 8.10 Application of the
auxiliary system approach to
the coupled SICNNs
(8.2.19)− (8.2.20) indicates
that GS exists for the couple
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8.3 Impulsive SICNNs with Chaotic Postsynaptic Currents

In the present section, we investigate the dynamics of shunting inhibitory cel-
lular neural networks (SICNNs) with impulsive effects. We give a mathematical
description of the chaos for the multidimensional dynamics of impulsive SICNNs,
and prove its existence rigorously by taking advantage of the external inputs. The
Li–Yorke definition of chaos is used in our theoretical discussions. In the consid-
ered model, the impacts satisfy the cell and shunting principles. This strengthens the
application role of the results, and makes the analysis of impulsive neural networks
deeper. The technique is exceptionally useful for SICNNs with arbitrary number of
cells. We make benefit of unidirectionally coupled SICNNs to exemplify our results.
Moreover, the appearance of cyclic irregular behavior observed in neuroscience is
numerically demonstrated for discontinuous dynamics of impulsive SICNNs.

8.3.1 Introduction

Bouzerdoum and Pinter [6] introduced and analyzed a class of cellular neural net-
works (CNNs), namely the shunting inhibitory cellular neural networks (SICNNs),
which have been extensively applied in psychophysics, speech, perception, robotics,
adaptive pattern recognition, vision and image processing [7–13, 79]. The layers in
SICNNs are arranged into two-dimensional arrays of processing units, called cells,
where each cell is coupled to its neighboring units only. The interactions among
cells within a single layer is mediated via the biophysical mechanism of recurrent
shunting inhibition, where the shunting conductance of each cell is modulated by
voltages of neighboring cells [6].

In the most original formulation [6], the model of SICNNs is as follows. Con-
sider a two-dimensional grid of processing cells, and let Cij, i = 1, 2, . . . , m, j =
1, 2, . . . , n, denote the cell at the (i, j) position of the lattice. The r -neighborhood
of Cij is defined as

Nr (i, j) = {Chl : max {|h − i |, |l − j |} ≤ r, 1 ≤ h ≤ m, 1 ≤ l ≤ n}.

In SICNNs, neighboring cells exert mutual inhibitory interactions of the shunting
type. The dynamics of the cell Cij is described by the nonlinear ordinary differential
equation

dxij(t)

dt
= −aijxi j (t) −

∑

Chl∈Nr (i, j)

Chl
ij f (xhl(t))xij(t) + Li j (t), (8.3.26)

where xij is the activity of the cell Cij; Li j (t) is the external input to Cij; the constant
aij > 0 represents the passive decay rate of the cell activity;Chl

ij ≥ 0 is the connection
or coupling strength of the postsynaptic activity of the cell Chl transmitted to the cell
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Cij; and the activation function f (xhl) is a positive continuous function representing
the output or firing rate of the cell Chl .

According to the switching phenomenon, frequency changes or other sudden
noises, the states of the electronic networks are often subject to instantaneous pertur-
bations and experience abrupt changes at certain instants [2–4, 108]. In other words,
they exhibit impulsive effects. Therefore, neural network models with impulsive
effects are more accurate to describe the evolutionary processes of the systems.

In the present section, we will consider impulsive SICNNs in the form

dxij(t)

dt
= −aijxi j (t) −

∑

Chl∈Nr (i, j)

Chl
ij f (xhl(t))xij(t) + Li j (t), t = θk,

Δxij|t=θk = bijxi j (θk) +
∑

Chl∈Nr (i, j)

Dhl
ij g(xhl(θk))xij(θk) + I k

ij ,
(8.3.27)

where bij = −1 for each i = 1, 2, . . . , m and j = 1, 2, . . . , n, the sequence {θk},
k = 0,±1,±2, . . ., of impact moments is strictly increasing,Δxij|t=θk = xij(θk+)−
xij(θk) and xij(θk+) = lim

t→θk+
xij(t). In SICNN (8.3.27), the couple

(

Lij(t), I k
i j

)

is

the external input to the cell Cij. Similarly to the continuous interactions of neural
networks through synapses, one can say about impact type of interactions [2–4]. We
will say that the impact in the SICNN (8.3.27) is subject to the cell and shunting
principles since of the term

∑

Chl∈Nr (i, j)

Dhl
ij g(xhl(θk))xij(θk), where Dhl

ij ≥ 0 is the

impact coupling strength of the postsynaptic activity of the cell Chl transmitted to
the cell Cij and the impact activation function g(xhl) represents the output localized
at a moment of impact of the cell Chl . In the theoretical discussions, the functions
Lij(t) will be assumed to be continuous. Our main objective is to verify chaos in
the dynamics of the network (8.3.27), provided that the external inputs Lij(t) behave
chaotically.

According to Chua and Yang [120], the cellular structure makes cells of a CNN
communicate with each other directly only through its neighbors, and because of the
local interconnection feature, CNNs are much more amenable to VLSI implementa-
tion than general neural networks. In previous analyses of impulsive SICNNs [22, 25,
26, 121], the cell principle [120] and shunting phenomenon [6] have not been applied
to the impacts of neurons. Contrarily, in the present section,wemake the benefit of the
cell and shunting principles. In other words, the term

∑

Chl∈Nr (i, j)

Dhl
ij g(xhl(θk))xij(θk)

is inserted in the SICNN (8.3.27). We suppose that this novelty strengthens the theo-
retical results, and it is important for applications due to the suggestions mentioned
in the papers [6, 120].

The dynamics of CNNs with impulsive effects have been widely investigated in
the literature [22, 122–129]. The problem of global exponential stability for CNNs
with time-varying delays and fixed moments of impulses was considered in the stud-
ies [122, 128] by means of the Lyapunov functions and the Razumikhin technique.
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Wang and Liu [127] used the method of variation of parameters and Lyapunov func-
tionals to obtain sufficient conditions for the exponential stability of impulsive CNNs
with time delays. Besides, Song et al. [125] dealed with the exponential stability of
distributed delayed and impulsive CNNs with partially Lipschitz continuous activa-
tion functions. Li et al. [123] investigated impulsive CNNs with time-varying and
distributed delays, and obtained some sufficient conditions that ensure the existence,
uniqueness, and global exponential stability of the equilibrium point. Taking advan-
tage of piecewise continuous Lyapunov functions and the Razumikhin technique
combinedwith Young’s inequality, the stability of impulsive CNNswere analyzed by
Stamova and Ilarionov [126]. On the other hand, contraction mapping principle and
Krasnoselski’s fixed point theorem were utilized by Pan and Cao [124] to verify the
existence of antiperiodic solutions of delayed cellular neural networkswith impulsive
effects. Moreover, Yang and Cao [129] considered the global exponential stability
as well as the existence of a periodic solution for delayed cellular neural networks
with impulsive effects based on the Halanay inequality, mathematical induction, and
fixed point theorem.

Chaotic dynamics is an object of great interest in the theory of neural networks
[38–40, 44, 46, 49–53, 55, 82, 84], and CNNs are not excluded [48, 56–58]. The
presence of chaotic attractors was observed in two-cell nonautonomous and three-
cell autonomous CNNs in the studies [57, 58]. Moreover, Yan et al. [56] proposed
algebraic conditions for the control of multiple time-delayed chaotic CNNs, and Liu
and Wang [48] investigated the effect of variable thresholds in chaotic CNNs.

The presence of chaos in neural networks is useful for separating image seg-
ments [52], information processing [49, 50], and synchronization of neural networks
[59–61, 63]. Besides, the synchronization phenomenon is also observable in the
dynamics of coupled chaotic CNNs [65, 66]. Chaotic dynamics can improve the
performance of CNNs on problems that have local minima in energy (cost) func-
tions, since chaotic behavior of CNNs can help the network avoid local minima
and reach the global optimum [68]. Furthermore, chaotic dynamics in CNNs is an
important tool for the studies of chaotic communication [69–71] and combinatorial
optimization problems [72].

As a mathematical notion, the term chaos has first been used by Li and Yorke
[24] for one-dimensional discrete equations. According to Marotto [73], a multidi-
mensional continuously differentiable map exhibits chaos in the sense of Li–Yorke,
provided that it has a snap-back repeller. Marotto’s Theorem was utilized in [74]
to prove the existence of Li–Yorke chaos in a spatiotemporal chaotic system. This
theorem is also a powerful tool in the theory of neural networks. For instance, it
was used by Lin and Ruan [77] to determine the existence of chaos in a pacemaker
neuron type integrate-and-fire circuit having two states with a periodic pulse-train
input. Moreover, in the study [78], the chaos was approved by virtue of theMarotto’s
Theorem in discrete time-delayed Hopfield neural networks. Li–Yorke sensitivity,
which links the Li–Yorke chaos with the notion of sensitivity, was studied in [75],
and generalizations of Li–Yorke chaos to mappings in Banach spaces and complete
metric spaces were provided in [76]. Impulsive systems can be used as an appropri-
ate source of chaotic motions and there are several studies on the subject [25, 27,
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130–132]. In the present section, we develop the concept of Li–Yorke chaos to the
multidimensional dynamics of impulsive SICNNs, and prove its presence rigorously.

Many results concerning the dynamics of SICNNs have been published in the
last decade. The existence and stability of periodic, almost periodic and antiperiodic
outputs for SICNNs with delay have been studied in the papers [14–17, 19–21,
23, 99, 100, 102] using external inputs with the same type of regularity. Besides,
the existence and stability of periodic and almost periodic solutions for impulsive
SICNNs without the cell and shunting principles in the impacts were considered by
Sun [26] and Xia et al. [22], respectively. However, in this section, we make use of
chaotic external inputs and obtain chaos in the outputs of impulsive SICNNs with
impacts subject to the cell and shunting principles. In the paper [25], the existence of
a chaotic attractor in SICNNs with impulses was numerically demonstrated without
a theoretical support, and the chaos type was not indicated. Contrarily, in the present
section, we rigorously prove the presence of chaos in impulsive SICNNs with a
precise type of chaos. Our approach has already been discussed in [103] for SICNNs
without impulses. The main novelty of the present section is the discussion of the
problem with impulsive effects, which request a more sophisticated analysis and a
new approach of the proofs. In the paper [34], the chaos extension in continuous-
time dynamics was considered without impulsive effects. The technique presented
in this section was also approved for attraction of chaos in differential equations with
impulses and applied to mechanical problems (by means of Duffing oscillators) in
the study [132].

One of the advantages of our results is the suitability to obtain high-dimensional
neural systems. A possible chaos extension mechanism is represented in Fig. 8.11.
N pieces of SICNNs are shown in Fig. 8.11 such that SICNN 1 is the source of
chaotic motions, and the other networks, SICNN 2, SICNN 3, . . ., SICNN N , are
influenced by the outputs of SICNN 1. The couplings between SICNN 1 and the
remaining networks are all unidirectional. According to our theoretical results, the
neural system consisting of N pieces of SICNNs possess chaos under the conditions
that will be presented in the next section.We call this type of chaos extension process

Fig. 8.11 The core
mechanism of chaos
extension
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Fig. 8.12 The chain mechanism of chaos extension

as the “core” mechanism. In Sect. 8.3.4, we will make use of the core mechanism to
demonstrate how to obtain high-dimensional neural systems.

Another possible mechanism that can be used to obtain high-dimensional chaotic
neural systems is the “chain” mechanism, which is shown in Fig. 8.12. The figure
represents consecutively connected N pieces of SICNNs such that the couplings
between the networks are unidirectional. In the first coupling, we take into account
SICNN 1 as the source of chaos. The chaotic outputs of SICNN 1, which are used
as inputs for SICNN 2, gives rise to the appearance of chaos in the latter. In the next
coupling, SICNN 2 is considered as the source of chaotic motions with respect to
the third network. That is, SICNN 2 changes its role in the process. Similarly, in
the remaining couplings, the role of the previously chaotically influenced SICNN
changes and we start to use it as the source of chaotic external inputs for the next
network. As a result, all of the networks become chaotic as well as the whole neural
system consisting of N pieces of SICNNs. It is worth noting that the type of the
chaos is preserved in this procedure.

In the mechanisms, one can take the number of networks, N , arbitrarily large,
even with the possibility of infinite number of networks in the core mechanism.
Other mechanisms are also possible, for example, by means of the “composition” of
the proposed ones.

In their study, Skarda and Freeman [84] reported the formation of periodic and
chaotic EEG signals when a rabbit was given known and unknown odorants, respec-
tively. Additionally, Yao and Freeman [133] observed the presence of chaotic behav-
ior near-periodic motions in a model of the olfactory system. The emergence of
near-periodic chaos in continuous-time systems without impulses was considered
in [134] by means of weak chaotic perturbations applied to systems that possess
stable periodic solutions. In the study [135], the brain units such as neurons, cortical
columns, and neuronal modules were supposed to be weakly connected. The pres-
ence of weak synaptic connections in the hippocampals cells and between neurons
in the cortex was experimentally observed by McNaughton et al. [136] and Abeles
[137], respectively. In the present section, by establishing weak connections between
SICNNs, we numerically demonstrate the appearance of near-periodic discontinuous
chaos.

The rest of the section is organized as follows. In Sect. 8.3.2, we introduce the
description of Li–Yorke chaos for impulsive SICNNs, and prove the existence,
uniqueness, and attractiveness feature of the bounded solutions. The main result
of the present section is indicated in Sect. 8.3.3, where we prove the presence of
chaos in the dynamics of the impulsive SICNNs (8.3.27). Illustrative examples are
presented in Sect. 8.3.4.
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8.3.2 Preliminaries

Throughout the section, R, Z and N will stand for the sets of real numbers, integers,
and natural numbers, respectively. We will use the norm ‖w‖ = max

(i, j)

∣
∣wij
∣
∣, where

w = {wij
} = (w11, . . . , w1n, . . . , wm1 . . . , wmn) ∈ R

m×n .
We say that a function ψ(t) = {ψij(t)

}

, i = 1, 2, . . . , m, j = 1, 2, . . . , n, which
is defined on R, belongs to the set PC (R) if it is left-continuous and continuous
except, possibly, at the points where it has discontinuities of the first kind. The
definition of a Li–Yorke chaotic set of piecewise continuous functions that will be
used in the present section is as follows.

Suppose that B is a set of uniformly bounded functions ψ(t) = {

ψij(t)
}

, i =
1, 2, . . . , m, j = 1, 2, . . . , n, which belong to PC (R) and have common points of
discontinuity.

We say that a couple
(

ψ(t), ψ̃(t)
) ∈ B×B is proximal if for arbitrary small ε > 0

and arbitrary large E > 0, there exists an interval J with a length no less than E such
that

∥
∥ψ(t) − ψ̃(t)

∥
∥ < ε for t ∈ J . Besides, a couple

(

ψ(t), ψ̃(t)
) ∈ B×B is called

frequently (ε0,Δ)-separated if there exist positive numbers ε0,Δ and infinitelymany
disjoint intervals, each with a length no less than Δ, such that

∥
∥ψ(t) − ψ̃(t)

∥
∥ > ε0

for each t from these intervals, and each of these intervals contains at most one
discontinuity point of both ψ(t) and ψ̃(t). It is worth noting that the numbers ε0 and
Δ depend on the functions ψ(t) and ψ̃(t).

A couple
(

ψ(t), ψ̃(t)
) ∈ B×B is a Li–Yorke pair if it is proximal and frequently

(ε0,Δ)-separated for some positive numbers ε0 and Δ. Moreover, an uncountable
set C ⊂ B is called a scrambled set if C does not contain any periodic functions
and each couple of different functions inside C × C is a Li–Yorke pair.

We say that the collectionB is a Li–Yorke chaotic set if: (i) There exists a positive
number T0 such thatB admits a periodic function of period mT0, for any m ∈ N; (ii)
B possesses a scrambled set C ; (iii) For any function ψ(t) ∈ C and any periodic
function ψ̃(t) ∈ B, the couple

(

ψ(t), ψ̃(t)
)

is frequently (ε0,Δ)-separated for some
positive numbers ε0 and Δ.

Let us describe a method for obtaining a new Li–Yorke chaotic set of piecewise
continuous functions froma given one. Suppose thatϕ : Rm×n → R

m×n is a function
which satisfies for all u, v ∈ R

m×n that

L1 ‖u − v‖ ≤ ‖ϕ(u) − ϕ(v)‖ ≤ L2 ‖u − v‖ , (8.3.28)

where L1 and L2 are some positive numbers. In this case, ifB is a Li–Yorke chaotic
set, then the collection Bϕ whose elements are of the form ϕ(ψ(t)), ψ(t) ∈ B, is
also Li–Yorke chaotic.

For any interval I0, wewill denote by i(I0) the number of elements of the sequence
{θk}, k ∈ Z, that belong to I0. Let us denote uij(t, s) = e−ai j (t−s)(1 + bij)

i([s,t)),
where t ≥ s [131].
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The following conditions are required:

(C1) There exist a positive number T and a natural number p such that θk+p =
θk + T for all k ∈ Z;

(C2) λ = min
(i, j)

λij > 0, where λij = ai j − p

T
ln |1 + bij|;

(C3) There exist positive numbers M and Mij such that sup
t∈R

| f (t)|+sup
t∈R

|g(t)| ≤ M

and sup
t∈R

∣
∣Lij(t)

∣
∣+ sup

k∈Z

∣
∣
∣I k

ij

∣
∣
∣ ≤ Mij;

(C4) There exists a positive number L0 such that | f (s1) − f (s2)| + |g(s1)
−g(s2)| ≤ L0 |s1 − s2| for all s1, s2 ∈ R;

(C5) K Mδ < 1, where δ = max
(i, j)

(∑

Chl∈Nr (i, j) Chl
ij

λij
+ p

∑

Chl∈Nr (i, j) Dhl
ij

1 − e−λijT

)

.

In view of the condition (C1), we have
∣
∣
∣i([s, t)) − p

T
(t − s)

∣
∣
∣ ≤ p for all t ≥ s.

Moreover, the conditions (C1) and (C2) imply the existence of a positive number K
such that for each i = 1, 2, . . . , m and j = 1, 2, . . . , n, the inequality

∣
∣uij(t, s)

∣
∣ ≤

K e−λij(t−s) holds for all t ≥ s.
Throughout the section, the notations

H0 = K

1 − K Mδ
max
(i, j)

(
Mij

λij
+ pMij

1 − e−λijT

)

,

c = max
(i, j)

∑

Chl∈Nr (i, j)

Chl
ij ,

d = max
(i, j)

∑

Chl∈Nr (i, j)

Dhl
ij

and
b0 = min

(i, j)

( ∣
∣1 + bij

∣
∣− M

∑

Chl∈Nr (i, j)

Dhl
ij

)

will be used.
The following conditions are also needed:

(C6) K (M + L0H0)δ < 1;
(C7) −λ + K c(M + L0H0) + p

T
ln(1 + K d(M + L0H0)) < 0;

(C8) b0 − L0H0d > 0;
(C9) I k+p

ij = I k
i j for each i = 1, 2, . . . , m, j = 1, 2, . . . , n and k ∈ Z.

The conditions (C1) and (C9) are essentially required for the existence of infi-
nitely many periodic solutions, which is one of the features of the Li–Yorke chaos.
Similar conditions were also used in the studies [25, 26]. In SICNNs of the form
(8.3.26), for each i and j , the passive decay rate of the cell activity aij is assumed to
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be positive, since it represents the ratio of the resting conductance to the membrane
capacitance, which are connected in parallel to each other, in the electrical equivalent
circuit of a cell [6]. The condition (C2) is natural for impulsive SICNNs (8.3.27),
since it is the counterpart of the aforementioned feature of SICNNswithout impulses,
and a similar condition was required by Xia et al. [22]. The Lipschitz continuity and
boundedness of the activation functions were used in the studies [16, 17, 20, 25],
and such conditions are specified in (C3) and (C4) for the functions f and g. The
conditions (C5)–(C7) can be achieved by means of the smallness of the coupling
strengths Chl

ij and Dhl
ij . Similar conditions were used in the paper [16]. The condition

(C8) can also be attained by the smallness of the constants Dhl
ij and it is needed for

the frequent separation feature.
We say that a left-continuous function x(t) = {xij(t)

}

is a solution of (8.3.27) if:
(i) It has discontinuities only at the points θk , k ∈ Z, and these discontinuities are

of the first kind; (ii) The derivatives
dxij(t)

dt
exist at each point t ∈ R \ {θk}, and the

left-sided derivatives exist at the points θk , k ∈ Z; (iii) The differential equations are
satisfied by xij(t) on R \ {θk}, and they hold for the left derivatives of xij(t) at every
point θk , k ∈ Z; (iv) The jump equations are satisfied by xij(t) for every k ∈ Z.

According to the results of [131, 138], if conditions (C1)–(C3) hold, then a
bounded on R function x(t) = {

xij(t)
}

is a solution of the network (8.3.27) if and
only if the relation

xij(t) = −
∫ t

−∞
uij(t, s)

[ ∑

Chl∈Nr (i, j)

Chl
ij f (xhl(s))xij(s) − Li j (s)

]

ds

+
∑

−∞<θk<t

uij(t, θk+)
[ ∑

Chl∈Nr (i, j)

Dhl
ij f (xhl(s))xij(s) + I k

i j

]

(8.3.29)

is satisfied for each i and j .
The next lemma is about the existence and uniqueness of the bounded on R

solutions of network (8.3.27).

Lemma 8.9 If the conditions (C1)–(C6) are fulfilled, then for any L(t) = {Lij(t)
}

,
i = 1, 2, . . . , m, j = 1, 2, . . . , n, there exists a unique bounded on R solution

φL(t) =
{

φ
ij
L(t)

}

of the network (8.3.27) such that sup
t∈R

‖φL(t)‖ ≤ H0.

Proof Fix an arbitrary function L(t) = {Lij(t)
}

, and consider the setS0 of functions
w(t) = {wij(t)

} ∈ PC (R) which have discontinuities at the points θk , k ∈ Z, such
that ‖w‖1 ≤ H0, where ‖w‖1 = supt∈R ‖w(t)‖. The set S0 is complete [131].

Define on S0 the operator Π as

(Πw(t))ij ≡ −
∫ t

−∞
uij(t, s)

[ ∑

Chl∈Nr (i, j)

Chl
ij f (whl(s))wij(s) − Li j (s)

]

ds

+
∑

−∞<θk<t

uij(t, θk+)
[ ∑

Chl∈Nr (i, j)

Dhl
ij g(whl(θk))wij(θk) + I k

ij

]

,
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where Πw(t) = {(Πw(t))ij
}

.
First, we shall show that Π(S0) ⊆ S0. If w(t) belongs to S0, then it is easy to

verify that

∣
∣(Πw(t))ij

∣
∣ ≤

∫ t

−∞
K e−λij(t−s)

(

M H0

∑

Chl∈Nr (i, j)

Chl
ij + Mi j

)

ds

+
∑

−∞<θk<t

K e−λij(t−θk )
(

M H0

∑

Chl∈Nr (i, j)

Dhl
ij + Mi j

)

.

Making use of the inequality
∑

−∞<θk<t

e−λij(t−θk ) ≤ p

1 − e−λijT
, one can obtain that

∣
∣(Πw(t))ij

∣
∣ ≤ K

λij

(

M H0

∑

Chl∈Nr (i, j)

Chl
ij + Mi j

)

+ K p

1 − e−λijT

(

M H0

∑

Chl∈Nr (i, j)

Dhl
ij + Mi j

)

.

Accordingly, the inequality ‖Πw‖1 ≤ K M H0δ+K max
(i, j)

(Mij

λij
+ pMij

1 − e−λijT

)

= H0

holds. Therefore, Π(S0) ⊆ S0.
Next, we will verify that the operatorΠ is a contraction. For anyw(t), w(t) ∈ S0,

one can attain that

(Πw(t))ij − (Πw(t))ij = −
∫ t

−∞
uij(t, s)

∑

Chl∈Nr (i, j)

Chl
ij

[

f (whl(s))wij(s) −

f (whl(s))wij(s)
]

ds

+
∑

−∞<θk<t

uij(t, θk+)
∑

Chl∈Nr (i, j)

Dhl
ij

[

g(whl(θk))wij(θk) − g(whl(θk))wij(θk)
]

.

Therefore, we have

∣
∣(Πw(t))ij − (Πw(t))ij

∣
∣ ≤

∫ t

−∞
K e−λij(t−s)

∑

Chl∈Nr (i, j)

Chl
ij

×
(

| f (whl(s))|
∣
∣wij(s) − wij(s)

∣
∣

+ ∣∣wij(s)
∣
∣ | f (whl(s)) − f (whl(s))|

)

ds

+
∑

−∞<θk<t

K e−λij(t−θk )
∑

Chl∈Nr (i, j)

Dhl
ij

(

|g(whl(θk))|
∣
∣wij(θk) − wij(θk)

∣
∣
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+ ∣∣wij(θk)
∣
∣ |g(whl(θk)) − g(whl(θk))|

)

ds

≤ K (M + L0H0)

(∑

Chl∈Nr (i, j) Chl
ij

λij
+ p

∑

Chl∈Nr (i, j) Dhl
ij

1 − e−λijT

)

‖w − w‖1 .

The last inequality yields ‖Πw − Πw‖1 ≤ K (M + L0H0)δ ‖w − w‖1. Hence, in
accordance with condition (C6), the operator Π is contractive. Consequently, there

exists a unique bounded on R solution φL(t) =
{

φ
ij
L(t)

}

of the network (8.3.27)

such that sup
t∈R

‖φL(t)‖ ≤ H0. �

Asmentioned in Lemma 8.9, in the remaining parts of this section, we will denote

by φL(t) =
{

φ
ij
L(t)

}

the unique bounded on R solution of the impulsive SICNN

(8.3.27). Moreover, for a given external input L(t) = {

Lij(t)
}

and initial data x0 ∈
R

m×n , let us denote by xL(t, x0) =
{

xij
L(t, x0)

}

the unique solution of (8.3.27) with

xL(0, x0) = x0. We note that the solution xL(t, x0) is not necessarily bounded on R.
Consider the collection L whose elements are equicontinuous functions of

the form L(t) = {

Lij(t)
}

such that sup
t∈R

∣
∣Lij(t)

∣
∣ + sup

k∈Z

∣
∣
∣I k

ij

∣
∣
∣ ≤ Mij for each

i = 1, 2, . . . , m and j = 1, 2, . . . , n. Suppose thatA denotes the set of bounded on
R solutions φL(t) of the network (8.3.27), where L(t) belongs toL .

The following lemma is about the attractiveness of the set A .

Lemma 8.10 Suppose that the conditions (C1)–(C7) are valid. Then for any x0 ∈
R

m×n and L(t) = {Lij(t)
}

, we have ‖xL(t, x0) − φL(t)‖ → 0 as t → ∞.

Proof Fix an arbitrary x0 ∈ R
m×n and an arbitrary function L(t) = {

Lij(t)
}

. For
t ≥ 0, making use of the relations

xij
L(t, x0) = uij(t, 0)xi j

L (0, x0)

−
∫ t

0
uij(t, s)

[ ∑

Chl∈Nr (i, j)

Chl
ij f (xhl

L (s, x0))xij
L(s, x0) − Lij(s)

]

ds

+
∑

0≤θk<t

uij(t, θk+)
[ ∑

Chl∈Nr (i, j)

Dhl
ij g(xhl

L (θk, x0))xij
L(θk, x0) + I k

ij

]

and

φ
ij
L(t) = ui j (t, 0)φ

ij
L(0)

−
∫ t

0
uij(t, s)

[ ∑

Chl∈Nr (i, j)

Chl
ij f (φhl

L (s))φij
L(s) − Li j (s)

]

ds

+
∑

0≤θk<t

uij(t, θk+)
[ ∑

Chl∈Nr (i, j)

Dhl
ij g(φhl

L (θk))φ
ij
L(θk) + I k

ij

]

,
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we obtain that
∣
∣
∣x

ij
L(t, x0) − φ

ij
L(t)

∣
∣
∣ ≤ K e−λijt

∣
∣
∣x

ij
L(0, x0) − φ

ij
L(0)

∣
∣
∣

+
∫ t

0
K e−λij(t−s)

∑

Chl∈Nr (i, j)

Chl
ij

( ∣
∣
∣ f (xhl

L (s, x0))
∣
∣
∣

∣
∣
∣x

ij
L(s, x0) − φ

ij
L(s)

∣
∣
∣

+
∣
∣
∣φ

ij
L(s)

∣
∣
∣

∣
∣
∣ f (xhl

L (s, x0)) − f (φhl
L (s))

∣
∣
∣

)

ds

+
∑

0≤θk<t

K e−λij(t−θk )
∑

Chl∈Nr (i, j)

Dhl
ij

( ∣
∣
∣g(xhl

L (θk, x0))
∣
∣
∣

∣
∣
∣x

ij
L(θk, x0) − φ

ij
L(θk)

∣
∣
∣

+
∣
∣
∣φ

ij
L(θk)

∣
∣
∣

∣
∣
∣g(xhl

L (θk, x0)) − g(φhl
L (θk))

∣
∣
∣

)

≤ K e−λijt ‖x0 − φL(0)‖
+
∫ t

0
K (M + L0H0)e

−λij(t−s)
∑

Chl∈Nr (i, j)

Chl
ij ‖xL(s, x0) − φL(s)‖ ds

+
∑

0≤θk<t

K (M + L0H0)e
−λij(t−θk )

∑

Chl∈Nr (i, j)

Dhl
ij ‖xL(θk, x0) − φL(θk)‖ .

The last inequality implies for t ≥ 0 that

‖xL(t, x0) − φL(t)‖ ≤ K e−λt ‖x0 − φL(0)‖
+K c(M + L0H0)

∫ t

0
e−λ(t−s) ‖xL(s, x0) − φL(s)‖ ds

+K d(M + L0H0)
∑

0≤θk<t

e−λ(t−θk ) ‖xL(θk, x0) − φL(θk)‖ .

Let us define the function u(t) = eλt ‖xL(t, x0) − φL(t)‖. Then we have that

u(t) ≤ K ‖x0 − φL (0)‖ + K c(M + L0H0)

∫ t

0
u(s)ds + K d(M + L0H0)

∑

0≤θk<t

u(θk).

With the aid of the Gronwall–Bellman Lemma for piecewise continuous functions,
one can verify that

u(t) ≤ K ‖x0 − φL(0)‖ eK c(M+L0H0)t [1 + K d(M + L0H0)]i([0,t))

≤ K [1 + K d(M + L0H0)]p ‖x0 − φL(0)‖ e[K c(M+L0H0)+(p/T ) ln(1+K d(M+L0H0))]t .

Thus, the inequality

‖xL(t, x0) − φL(t)‖ ≤ K [1 + K d(M + L0H0)]p ‖x0 − φL(0)‖
×e[−λ+K c(M+L0H0)+(p/T ) ln(1+K d(M+L0H0))]t
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holds for all t ≥ 0. Consequently, in accordance with condition (C7), we have that
‖xL(t, x0) − φL(t)‖ → 0 as t → ∞. �

The next section is devoted for the chaotic dynamics of the network (8.3.27).

8.3.3 The Existence of Chaos

In this subsection, we will rigorously prove that if the collectionL is chaotic in the
sense of Li–Yorke, then the same is true for the collectionA . Before the main result
of the present section that will be stated in Theorem 8.3, we will mention about the
main ingredients of Li–Yorke chaos, proximality, and frequent separation features,
in Lemmas 8.11 and 8.12, respectively. The lemmas are as follows.

Lemma 8.11 Suppose that the conditions (C1)–(C7) hold. If a couple of func-

tions
(

L(t), L(t)
)

∈ L × L is proximal, then the same is true for the couple
(

φL(t), φL(t)
) ∈ A × A .

Proof Set R = 2K max
(i, j)

[M H0
∑

Chl∈Nr (i, j) Chl
ij + Mij

λij
+ pM H0

∑

Chl∈Nr (i, j) Dhl
ij

1 − e−λijT

]

and α = λ − K c(M + L0H0) − (p/T ) ln(1 + K d(M + L0H0)). The number α is
positive by condition (C7). Fix an arbitrary small positive number ε and an arbitrary
large positive number E which satisfies the inequality

E ≥ 2

α
ln

(

γ R[1 + K d(M + L0H0)]p

ε

)

.

Let γ be a number such that γ ≥ 1+ K

λ
+ K 2c(M + L0H0)

λα
[1+K d(M+L0H0)]p+

K 2d(M + L0H0)[1+ K d(M + L0H0)]p pe2αT

λ(eαT − 1)
. Since the pair

(

L(t), L(t)
) ∈

L ×L is proximal, there exists an interval J = [σ, σ + E1] with E1 ≥ E such that
∥
∥L(t) − L(t)

∥
∥ < ε/γ for all t ∈ J .

By means of the relations

φ
ij
L(t) = −

∫ t

−∞
uij(t, s)

[ ∑

Chl∈Nr (i, j)

Chl
ij f (φhl

L (s))φij
L(s) − Li j (s)

]

ds

+
∑

−∞<θk<t

uij(t, θk+)
[ ∑

Chl∈Nr (i, j)

Dhl
ij g(φhl

L (θk))φ
ij
L(θk) + I k

ij

]
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and

φ
ij
L
(t) = −

∫ t

−∞
uij(t, s)

[ ∑

Chl∈Nr (i, j)

Chl
ij f (φhl

L
(s))φij

L
(s) − Lij(s)

]

ds

+
∑

−∞<θk<t

uij(t, θk+)
[ ∑

Chl∈Nr (i, j)

Dhl
ij g(φhl

L
(θk))φ

ij
L
(θk) + I k

ij

]

,

one can obtain for t ≥ σ that

φ
ij
L(t) − φ

ij
L
(t) = −

∫ σ

−∞
uij(t, s)

[ ∑

Chl∈Nr (i, j)

Chl
ij f (φhl

L (s))φij
L(s) − Lij(s)

−
∑

Chl∈Nr (i, j)

Chl
ij f (φhl

L
(s))φij

L
(s) + Lij(s)

]

ds

−
∫ t

σ

uij(t, s)
[ ∑

Chl∈Nr (i, j)

Chl
ij f (φhl

L (s))φij
L(s) − Lij(s)

−
∑

Chl∈Nr (i, j)

Chl
ij f (φhl

L
(s))φij

L
(s) + Lij(s)

]

ds

+
∑

−∞<θk≤σ

uij(t, θk+)
∑

Chl∈Nr (i, j)

Dhl
ij

[

g(φhl
L (θk))φ

ij
L(θk) − g(φhl

L
(θk))φ

ij
L
(θk)

]

+
∑

σ<θk<t

uij(t, θk+)
∑

Chl∈Nr (i, j)

Dhl
ij

[

g(φhl
L (θk))φ

ij
L(θk) − g(φhl

L
(θk))φ

ij
L
(θk)

]

.

If t belongs to the interval J , then making use of the inequalities

∣
∣
∣−
∫ σ

−∞
uij(t, s)

[ ∑

Chl∈Nr (i, j)

Chl
ij f (φhl

L (s))φij
L(s) − Lij(s)

−
∑

Chl∈Nr (i, j)

Chl
ij f (φhl

L
(s))φij

L
(s) + Lij(s)

]

ds
∣
∣
∣

≤
∫ σ

−∞
2K e−λij(t−s)

(

M H0

∑

Chl∈Nr (i, j)

Chl
ij + Mij

)

ds

= 2K (M H0
∑

Chl∈Nr (i, j) Chl
ij + Mij)

λij
e−λij(t−σ)
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and
∣
∣
∣

∑

−∞<θk≤σ

uij(t, θk+)
∑

Chl∈Nr (i, j)

Dhl
ij

[

g(φhl
L (θk))φ

ij
L(θk) − g(φhl

L
(θk))φ

ij
L
(θk)

] ∣
∣
∣

≤
∑

−∞<θk≤σ

2K M H0e−λij(t−θk )
∑

Chl∈Nr (i, j)

Dhl
ij

≤ 2pK M H0

∑

Chl∈Nr (i, j) Dhl
ij

1 − e−λijT
e−λij(t−σ),

we attain that
∣
∣
∣φ

ij
L(t) − φ

ij
L
(t)
∣
∣
∣

≤ 2K
[M H0

∑

Chl∈Nr (i, j) Chl
ij + Mij

λij
+ pM H0

∑

Chl∈Nr (i, j) Dhl
ij

1 − e−λijT

]

e−λij(t−σ)

+
∫ t

σ

K e−λij(t−s)
∑

Chl∈Nr (i, j)

Chl
ij

( ∣
∣
∣ f (φhl

L (s))
∣
∣
∣

∣
∣
∣φ

ij
L(s) − φ

ij
L
(s)
∣
∣
∣

+
∣
∣
∣φ

ij
L
(s)
∣
∣
∣

∣
∣
∣ f (φhl

L (s)) − f (φhl
L

(s))
∣
∣
∣

)

ds

+
∑

σ<θk<t

K e−λij(t−θk )
∑

Chl∈Nr (i, j)

Dhl
ij

( ∣
∣
∣g(φhl

L (θk))

∣
∣
∣

∣
∣
∣φ

ij
L(θk) − φ

ij
L
(θk)

∣
∣
∣

+
∣
∣
∣φ

ij
L
(θk)

∣
∣
∣

∣
∣
∣g(φhl

L (θk)) − g(φhl
L

(θk))

∣
∣
∣

)

+
∫ t

σ

K e−λij(t−s)
∣
∣Lij(s) − Lij(s)

∣
∣ ds.

The last inequality implies for t ∈ J that

∥
∥φL(t) − φL(t)

∥
∥ ≤ Re−λ(t−σ) + K ε

γ λ
(1 − e−λ(t−σ))

+
∫ t

σ

K c(M + L0H0)e
−λ(t−s)

∥
∥φL(s) − φL(s)

∥
∥ ds

+
∑

σ<θk<t

K d(M + L0H0)e
−λ(t−θk )

∥
∥φL(θk) − φL(θk)

∥
∥ .

Define the functions

u(t) = eλt
∥
∥φL(t) − φL(t)

∥
∥

and

ψ(t) =
(

R − K ε

γ λ

)

eλσ + K ε

γ λ
eλt .
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In that case, we have

u(t) ≤ ψ(t) +
∫ t

σ

K c(M + L0H0)u(s)ds +
∑

σ<θk<t

K d(M + L0H0)u(θk), t ∈ J.

The application of the Gronwall’s Lemma for piecewise continuous functions to the
last inequality yields

u(t) ≤ ψ(t) +
∫ t

σ

K c(M + L0H0)

×[1 + K d(M + L0H0)]i((s,t))ψ(s)eK c(M+L0H0)(t−s)ds

+
∑

σ<θk<t

K d(M + L0H0)[1 + K d(M + L0H0)]i((θk ,t))ψ(θk)e
K c(M+L0H0)(t−θk ).

By virtue of the equation

1 +
∫ t

σ

K c(M + L0H0)[1 + K d(M + L0H0)]i((s,t))eK c(M+L0H0)(t−s)ds

+
∑

σ<θk<t

K d(M + L0H0)[1 + K d(M + L0H0)]i((θk ,t))eK c(M+L0H0)(t−θk)

= [1 + K d(M + L0H0)]i((σ,t))eK c(M+L0H0)(t−σ),

one can obtain that

u(t) ≤ [1 + K d(M + L0H0)]i((σ,t))eK c(M+L0H0)(t−σ)

(

R − K ε

γ λ

)

eλσ + K ε

γ λ
eλt

+K c(M + L0H0)
K ε

γ λ

∫ t

σ

eλs[1 + K d(M + L0H0)]i((s,t))eK c(M+L0H0)(t−s)ds

+K d(M + L0H0)
K ε

γ λ

∑

σ<θk<t

eλθk [1 + K d(M + L0H0)]i((θk ,t))eK c(M+L0H0)(t−θk ).

Since the inequality

[1+ K d(M + L0H0)]i((s,t))eK c(M+L0H0)(t−s) ≤ [1+ K d(M + L0H0)]pe(λ−α)(t−s)

holds for all t ≥ s, we have for t ∈ J that
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u(t) ≤ [1 + K d(M + L0H0)]p
(

R − K ε

γ λ

)

eλσ e(λ−α)(t−σ) + K ε

γ λ
eλt

+K c(M + L0H0)[1 + K d(M + L0H0)]p K ε

γ λ

∫ t

σ

eλse(λ−α)(t−s)ds

+K d(M + L0H0)[1 + K d(M + L0H0)]p K ε

γ λ

∑

σ<θk<t

eλθk e(λ−α)(t−θk ).

Now, let q =
⌊

t − σ

T

⌋

. That is, q is the greatest integer which not larger than
t − σ

T
.

One can verify that

∑

σ<θk<t

eαθk ≤
∑

σ<θk<σ+(q+1)T

eαθk ≤
q
∑

l=0

∑

σ+lT ≤θk<σ+(l+1)T

eαθk <

q
∑

l=0

peα[σ+(l+1)T ]

= pe(σ+T )α e(q+1)αT − 1

eαT − 1
≤ pe(σ+T )α

eαT − 1

(

eα(t−σ+T ) − 1
)

<
pe2αT

eαT − 1
eαt .

Therefore,

u(t) < R[1 + K d(M + L0H0)]peλt e−α(t−σ)

+ K ε

γ λ
eλt
[

1 − (1 + K d(M + L0H0))
pe−α(t−σ)

]

+K 2c(M + L0H0)[1 + K d(M + L0H0)]p ε

γ λα

(

1 − e−α(t−σ)
)

eλt

+K 2d(M + L0H0)[1 + K d(M + L0H0)]p εpe2αT

γ λ(eαT − 1)
eλt .

If we multiply both sides of the last inequality by e−λt , then we get

∥
∥φL(t) − φL(t)

∥
∥ < R[1 + K d(M + L0H0)]pe−α(t−σ)

+ K ε

γ λ

[

1 − (1 + K d(M + L0H0))
pe−α(t−σ)

]

+K 2c(M + L0H0)[1 + K d(M + L0H0)]p ε

γ λα

(

1 − e−α(t−σ)
)

+K 2d(M + L0H0)[1 + K d(M + L0H0)]p εpe2αT

γ λ(eαT − 1)
.
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Thus, one can obtain for t ∈ J that

∥
∥φL(t) − φL(t)

∥
∥ < R[1 + K d(M + L0H0)]pe−α(t−σ)

+ K ε

γ λ

[

1 + K c

α
(M + L0H0)(1 + K d(M + L0H0))

p

+K d(M + L0H0)(1 + K d(M + L0H0))
p pe2αT

eαT − 1

]

.

Since the number E is sufficiently large such that

E ≥ 2

α
ln

(

γ R[1 + K d(M + L0H0)]p

ε

)

,

we have that

R[1 + K d(M + L0H0)]pe−α(t−σ) ≤ ε

γ
, t ∈ [σ + E/2, σ + E1].

Hence, the inequality

∥
∥φL(t) − φL(t)

∥
∥ <

ε

γ

[

1 + K

λ
+ K 2c(M + L0H0)

λα
(1 + K d(M + L0H0))

p

+K 2d(M + L0H0)(1 + K d(M + L0H0))
p pe2αT

λ(eαT − 1)

]

≤ ε

holds for all t ∈ J 1, where J 1 = [σ + E/2, σ + E1]. We note that the interval J 1

has a length no less than E/2. Consequently, the couple
(

φL(t), φL(t)
) ∈ A × A

is proximal. �

The next assertion is about the frequent separation feature.

Lemma 8.12 Suppose that the conditions (C1)–(C6), (C8) are fulfilled. If a couple
(

L(t), L(t)
) ∈ L × L is frequently (ε0,Δ)-separated for some positive num-

bers ε0 and Δ, then there exist positive numbers ε1 and Δ such that the couple
(

φL(t), φL(t)
) ∈ A × A is frequently (ε1,Δ)-separated.

Proof Because the couple
(

L(t), L(t)
) ∈ L × L is frequently (ε0,Δ) separated

for some ε0 > 0 and Δ > 0, there exist infinitely many disjoint intervals Jq , q ∈ N,
each with a length no less than Δ, such that

∥
∥L(t) − L(t)

∥
∥ > ε0 for each t from

these intervals. In the proof, we will verify the existence of numbers ε1 > 0, Δ > 0
and infinitely many disjoint intervals J 1

q ⊂ Jq , q ∈ N, each with length Δ, such that
the inequality

∥
∥φL(t) − φL(t)

∥
∥ > ε1 holds for each t from the intervals J 1

q , q ∈ N.
According to the equicontinuity of L , one can find a positive number τ < Δ,

such that for any t1, t2 ∈ R with |t1 − t2| < τ , the inequality
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∣
∣
(

Lij(t1) − Lij(t1)
)− (Lij(t2) − Lij(t2)

)∣
∣ <

ε0

2
(8.3.30)

holds for all 1 ≤ i ≤ m, 1 ≤ j ≤ n.
Suppose that for each q ∈ N, the number sq denotes the midpoint of the interval

Jq . Let us define a sequence
{

κq
}

through the equation κq = sq − τ/2.
Let us fix an arbitrary q ∈ N. One can find integers i0, j0, such that

∣
∣Li0 j0(sq) − Li0 j0(sq)

∣
∣ = ∥∥L(sq) − L(sq)

∥
∥ > ε0. (8.3.31)

Making use of the inequality (8.3.30), for all t ∈ [κq , κq + τ
]

we have

∣
∣Li0 j0(sq) − Li0 j0(sq)

∣
∣− ∣∣Li0 j0(t) − Li0 j0(t)

∣
∣

≤ ∣∣(Li0 j0(t) − Li0 j0(t)
)− (Li0 j0(sq) − Li0 j0(sq)

)∣
∣

<
ε0

2
,

and therefore, by means of (8.3.31), we attain that the inequality

∣
∣Li0 j0(t) − Li0 j0(t)

∣
∣ >

∣
∣Li0 j0(sq) − Li0 j0(sq)

∣
∣− ε0

2
>

ε0

2
(8.3.32)

is valid for all t ∈ [κq , κq + τ
]

.
For each i and j , one can find numbers ζ

q
ij ∈ [κq , κq + τ ] such that

∫ κq+τ

κq

(

L(s) − L(s)
)

ds = τ
(

L11(ζ
q
11) − L11(ζ

q
11), . . . , Lmn(ζ

q
mn) − Lmn(ζ

q
mn)
)

.

Thus, according to the inequality (8.3.32), we have that

∥
∥
∥

∫ κq +τ

κq

(

L(s) − L(s)
)

ds
∥
∥
∥ ≥ τ

∣
∣
∣Li0 j0 (ζ

q
i0 j0

) − Li0 j0 (ζ
q
i0 j0

)

∣
∣
∣ >

τε0

2
. (8.3.33)

Making use of the relations

φ
ij
L(t) = φ

ij
L(κq) −

∫ t

κq

(

aij +
∑

Chl∈Nr (i, j)

Chl
ij f (φhl

L (s))
)

φ
ij
L(s)ds +

∫ t

κq

Lij(s)ds

+
∑

κq≤θk<t

(

bij +
∑

Chl∈Nr (i, j)

Dhl
ij g(φhl

L (θk))
)

φ
ij
L(θk) +

∑

κq≤θk<t

I k
ij
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and

φ
ij
L
(t) = φ

ij
L
(κq) −

∫ t

κq

(

aij +
∑

Chl∈Nr (i, j)

Chl
ij f (φhl

L
(s))
)

φ
ij
L
(s)ds +

∫ t

κq

Lij(s)ds

+
∑

κq≤θk<t

(

bij +
∑

Chl∈Nr (i, j)

Dhl
ij g(φhl

L
(θk))

)

φ
ij
L
(θk) +

∑

κq≤θk<t

I k
ij

we obtain that

∣
∣
∣φ

ij
L(κq + τ) − φ

ij
L
(κq + τ)

∣
∣
∣ ≥

∣
∣
∣

∫ κq+τ

κq

(

Lij(s) − Lij(s)
)

ds
∣
∣
∣−
∣
∣
∣φ

ij
L(κq) − φ

ij
L
(κq)

∣
∣
∣

−
∫ κq+τ

κq

aij

∣
∣
∣φ

ij
L(s) − φ

ij
L
(s)
∣
∣
∣ds −

∑

κq≤θk<κq+τ

∣
∣bij
∣
∣

∣
∣
∣φ

ij
L(θk) − φ

ij
L
(θk)

∣
∣
∣

−
∫ κq+τ

κq

∑

Chl∈Nr (i, j)

Chl
ij

∣
∣
∣ f (φhl

L (s))φij
L(s) − f (φhl

L
(s))φij

L
(s)
∣
∣
∣ds

−
∑

κq≤θk<κq+τ

∑

Chl∈Nr (i, j)

Dhl
ij

∣
∣
∣g(φhl

L (θk))φ
ij
L(θk) − g(φhl

L
(θk))φ

ij
L
(θk)

∣
∣
∣

≥
∣
∣
∣

∫ κq+τ

κq

(

Lij(s) − Lij(s)
)

ds
∣
∣
∣− sup

t∈[κq ,κq+τ ]
∥
∥φL(t) − φL(t)

∥
∥

−τaij sup
t∈[κq ,κq+τ ]

∥
∥φL(t) − φL(t)

∥
∥− p

T
(T + τ)|bij| sup

t∈[κq ,κq+τ ]
∥
∥φL(t) − φL(t)

∥
∥

−τ(M + L0H0)
∑

Chl∈Nr (i, j)

Chl
ij sup

t∈[κq ,κq+τ ]
∥
∥φL(t) − φL(t)

∥
∥

− p

T
(T + τ)(M + L0H0)

∑

Chl∈Nr (i, j)

Dhl
ij sup

t∈[κq ,κq+τ ]
∥
∥φL(t) − φL(t)

∥
∥ .

By means of the inequality (8.3.33), one can show that

sup
t∈[κq ,κq+τ ]

∥
∥φL(t) − φL(t)

∥
∥ ≥ ∥∥φL(κq + τ) − φL(κq + τ)

∥
∥

>
τε0

2
− (1 + P0) sup

t∈[κq ,κq+τ ]
∥
∥φL(t) − φL(t)

∥
∥ ,

where

P0 = max
(i, j)

[

τaij + τ(M + L0H0)
∑

Chl∈Nr (i, j)

Chl
ij + p

T
(T + τ)|bij|

+(M + L0H0)
p

T
(T + τ)

∑

Chl∈Nr (i, j)

Dhl
ij

]

.
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Hence, we have that sup
t∈[κq ,κq+τ ]

∥
∥φL(t) − φL(t)

∥
∥ > M0, where M0 = τε0

2 (2 + P0)
.

Set
M1 = 2max

(i, j)

(

H0aij + M H0

∑

Chl∈Nr (i, j)

Chl
ij + Mij

)

,

b1 = max
(i, j)

(

|bij| + (M + H0L0)
∑

Chl∈Nr (i, j)

Dhl
ij

)

and

θ = min
1≤k≤p

(θk+1 − θk).

Define the numbers

ε1 = M0

2
min

{

b0 − L0H0d,
1

1 + b1

}

and

Δ = min
{

θ,
M0

2M1(2 + b1)
,

M0
(

b0 − L0H0d
)

2M1(1 + b0 − L0H0d)

}

.

Suppose that there exists ξq ∈ [κq , κq + τ ] such that

sup
t∈[κq ,κq+τ ]

∥
∥φL(t) − φL(t)

∥
∥ = ∥∥φL(ξq) − φL(ξq)

∥
∥ .

Let κ1
q =

{

ξq , if ξq ≤ κq + τ/2
ξq − Δ, if ξq > κq + τ/2

. Since Δ ≤ θ , there exists at most one

impulsive moment on the interval (κ1
q , κ1

q + Δ).

We shall start by considering the case ξq > κq + τ

2
. Assume that there exists an

impulsive moment θk0 ∈ (κ1
q , κ1

q + Δ). For t ∈ (θk0 , κ
1
q + Δ), making use of the

equation

φ
ij
L(t) − φ

ij
L
(t) =

(

φ
ij
L(ξq) − φ

ij
L
(ξq)

)

−
∫ t

ξq

aij

(

φ
ij
L(s) − φ

ij
L
(s)
)

ds

−
∫ t

ξq

∑

Chl∈Nr (i, j)

Chl
ij

(

f (φhl
L (s))φij

L(s) − f (φhl
L

(s))φij
L
(s)
)

ds

+
∫ t

ξq

(

Lij(s) − Lij(s)
)

ds,
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one can verify that
∥
∥φL(t) − φL(t)

∥
∥ > M0 − ΔM1 >

M0

2
> ε1. In particular, we

have that
∥
∥φL(θk0+) − φL(θk0+)

∥
∥ > M0 − ΔM1.

Because the inequality

∣
∣
∣φ

ij
L(θk0+) − φ

ij
L
(θk0+)

∣
∣
∣ ≤ |1 + bij|

∣
∣
∣φ

ij
L(θk0) − φ

ij
L
(θk0)

∣
∣
∣

+M
∑

Chl∈Nr (i, j)

Dhl
ij

∣
∣
∣φ

ij
L(θk0) − φ

ij
L
(θk0)

∣
∣
∣

+H0L0

∑

Chl∈Nr (i, j)

Dhl
ij

∣
∣
∣φ

hl
L (θk0) − φhl

L
(θk0)

∣
∣
∣

is valid for each i and j , it is easy to obtain that

∥
∥φL(θk0) − φL(θk0)

∥
∥ ≥

∥
∥φL(θk0+) − φL(θk0+)

∥
∥

1 + b1
>

M0 − ΔM1

1 + b1
.

For t ∈ (κ1
q , θk0), the relation

φ
ij
L(t) − φ

ij
L
(t) =

(

φ
ij
L(θk0) − φ

ij
L
(θk0)

)

−
∫ t

θk0

aij

(

φ
ij
L(s) − φ

ij
L
(s)
)

ds

−
∫ t

θk0

∑

Chl∈Nr (i, j)

Chl
ij

(

f (φhl
L (s))φij

L(s) − f (φhl
L

(s))φij
L
(s)
)

ds

+
∫ t

θk0

(

Lij(s) − Lij(s)
)

ds

implies that

∥
∥φL(t) − φL(t)

∥
∥ >

M0 − ΔM1

1 + b1
− ΔM1

= 1

1 + b1
[M0 − ΔM1(2 + b1)]

≥ M0

2(1 + b1)
≥ ε1.

On the other hand, if none of the impulsive moments belong to (κ1
q , κ1

q +Δ), then

for each t from this interval we have that
∥
∥φL(t) − φL(t)

∥
∥ > M0 − ΔM1 > ε1.

Therefore, in the case of ξq > κq + τ/2, the inequality
∥
∥φL(t) − φL(t)

∥
∥ > ε1 holds
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for all t ∈ (κ1
q , κ1

q + Δ), regardless of the existence of an impulsive moment in this
interval.

Next, we consider the case ξq ≤ κq + τ

2
. If there exists an impulsive moment

θk0 ∈ (κ1
q , κ1

q + Δ), then one can use a similar evaluation as in the case discussed

above to show for t ∈ (κ1
q , θk0 ] that

∥
∥φL(t) − φL(t)

∥
∥ > M0−ΔM1 > ε1. Moreover,

the inequality

∣
∣
∣φ

ij
L(θk0+) − φ

ij
L
(θk0+)

∣
∣
∣ ≥

( ∣
∣1 + bij

∣
∣− M

∑

Chl∈Nr (i, j)

Dhl
ij

) ∣
∣
∣φ

ij
L(θk0) − φ

ij
L
(θk0)

∣
∣
∣

−
∑

Chl∈Nr (i, j)

Dhl
ij L0H0

∣
∣
∣φ

hl
L (θk0) − φhl

L
(θk0)

∣
∣
∣

yields

∥
∥φL(θk0+) − φL(θk0+)

∥
∥ ≥ (b0 − L0H0d

) ∥
∥φL(θk0) − φL(θk0)

∥
∥

>
(

b0 − L0H0d
)

(M0 − ΔM1).

Thus, for t ∈ (θk0 , κ
1
q + Δ), the relation

φ
ij
L(t) − φ

ij
L
(t) =

(

φ
ij
L(θk0+) − φ

ij
L
(θk0+)

)

−
∫ t

θk0

aij

(

φ
ij
L(s) − φ

ij
L
(s)
)

ds

−
∫ t

θk0

∑

Chl∈Nr (i, j)

Chl
ij

(

f (φhl
L (s))φij

L(s) − f (φkl
L

(s))φij
L
(s)
)

ds

+
∫ t

θk0

(

Lij(s) − Lij(s)
)

ds

implies that

∥
∥φL(t) − φL(t)

∥
∥ >

(

b0 − L0H0d
)

(M0 − ΔM1) − ΔM1

≥
(

b0 − L0H0d
)

M0

2
≥ ε1.

Therefore, for all t ∈ (κ1
q , κ1

q + Δ) we have that
∥
∥φL(t) − φL(t)

∥
∥ > ε1. One can

also show that the same inequality holds even if no impulsive moments exist inside
the interval (κ1

q , κ1
q + Δ).

Now, suppose that there exists an impulsive moment θl0 ∈ [κq , κq + τ ] such that

sup
t∈[κq ,κq+τ ]

∥
∥φL(t) − φL(t)

∥
∥ = ∥∥φL(θl0+) − φL(θl0+)

∥
∥ .
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Let us define κ1
q =

{

θl0 , if θl0 ≤ κq + τ/2
θl0 − Δ, if θl0 > κq + τ/2

. It is worth noting that the interval

(κ1
q , κ1

q + Δ) does not contain any impulsive moments. If θl0 > κq + τ

2
, then using

the inequality

∥
∥φL(θl0) − φL(θl0)

∥
∥ ≥

∥
∥φL(θl0+) − φL(θl0+)

∥
∥

1 + b1
>

M0

1 + b1
,

one can verify for t ∈ (κ1
q , κ1

q + Δ) that

∥
∥φL (t) − φL (t)

∥
∥ ≥ ∥∥φL (θl0 ) − φL (θl0 )

∥
∥− ΔM1 >

M0

1 + b1
− ΔM1 >

M0

2(1 + b1)
≥ ε1.

In a similar way, if θl0 ≤ κq + τ

2
, then we have for t ∈ (κ1

q , κ1
q + Δ) that

∥
∥φL(t) − φL(t)

∥
∥ ≥ ∥∥φL(θl0+) − φL(θl0+)

∥
∥− ΔM1 > M0 − ΔM1 >

M0

2
> ε1.

Hence, on each of the intervals J 1
q = (κ1

q , κ1
q + Δ), q ∈ N, the inequality

∥
∥φL(t) − φL(t)

∥
∥ > ε1

holds.
Consequently, the pair

(

φL(t), φL(t)
) ∈ A ×A is frequently (ε1,Δ)-separated.�

The main result of the present section is given in the following theorem.

Theorem 8.3 Suppose that the conditions (C1)–(C9) are valid. If L is a Li–Yorke
chaotic set which possesses a ρT -periodic function for each natural number ρ, then
the set A is also Li–Yorke chaotic.

Proof Using the conditions (C1)–(C6) and (C9), one can show that if L(t) ∈ L is
an ρT -periodic function for some natural number ρ, then the bounded onR solution
φL(t) ∈ A is also a periodic functionwith the sameperiod, and vice versa. Therefore,
the collection A contains ρT -periodic functions for each natural number ρ.

Suppose that the set CL is a scrambled set inside L . Define the set CA =
{φL(t) | L(t) ∈ CL } . There is a one-to-one correspondence between the sets CL
and CA . Because the set CL is uncountable, the same is true for CA . Moreover, no
periodic functions exist inside CA , since there are no such functions inside CL .

Lemmas 8.11 and 8.12 together imply that the set CA is a scrambled set. On
the other hand, according to Lemma 8.12, for any function φL(t) ∈ CA and any
periodic function φL(t) ∈ A , there exist positive numbers ε1 and Δ such that the
pair (φL(t), φL(t)) is frequently (ε1,Δ)-separated. Consequently, the set A is Li–
Yorke chaotic. �
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The results of the present section reveal that if the external inputs Lij(t) are chaotic,
then the impulsive SICNNs (8.3.27) behave chaotically. Accordingly, to illustrate
our results, we need external inputs which are ensured to be chaotic in the Li–Yorke
sense. In the next section, to obtain such external inputs, we will consider SICNNs
in the form of (8.3.26) whose external inputs are relay functions with chaotically
changing switching moments [29–31, 33, 34, 103, 131, 132]. Moreover, we will
take advantage of the core mechanism, which is represented in Fig. 8.11, in order to
set up a neural system consisting of three SICNNs.

8.3.4 Examples

Each neuron in a neural network is capable of receiving input signals, processing
them and sending an output signal. Neural signals consist of short electrical pulses
called action potentials or spikes. A chain of action potentials emitted by a single
neuron is called a spike train. Action potentials in a spike train are usually well
separated, and it is impossible to excite a second spike during or immediately after
a first one [1]. That is why the discontinuity phenomenon is a natural property of
neural networks. In this section, we take into account an example of a neural system
consisting of three SICNNs. Discontinuous external inputs in a rectangular form are
used in the first SICNN to provide the chaos.

Let us consider the SICNN

dxij(t)

dt
= −aijxij(t) −

∑

Chl∈N1(i, j)

Chl
ij f (xhl(t))xij(t) + Lij(t), (8.3.34)

in which i, j = 1, 2, 3,

⎛

⎝

a11 a12 a13
a21 a22 a23
a31 a32 a33

⎞

⎠ =
⎛

⎝

6 8 10
1 9 4
12 7 5

⎞

⎠ ,

⎛

⎝

C11 C12 C13
C21 C22 C23
C31 C32 C33

⎞

⎠ =
⎛

⎝

0.004 0.002 0
0.006 0.008 0.005
0.009 0.007 0.003

⎞

⎠ .

In the network (8.3.34), we set Lij(t) = Rij(t, ζ ), where the relay function Rij(t, ζ )

is defined by the equation

Rij(t, ζ ) =
{

αij, if ζ2q < t ≤ ζ2q+1,

βij, if ζ2q−1 < t ≤ ζ2q ,
.
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Here, the numbers ζq , q ∈ Z, denote the switching moments and they are the same
for all i and j . The sequence ζ = {ζq

}

is defined through the formula ζq = q + ϑq ,
q ∈ Z, where the sequence

{

ϑq
}

, ϑ0 ∈ [0, 1], is generated by the logistic map
ϑq+1 = 3.9ϑq(1−ϑq), which is chaotic in the Li–Yorke sense [24]. We note that the
interval [0, 1] is invariant under the iterations of the map [119]. More information
about the dynamics of relay systems can be found in the studies [29–31, 33, 34, 103,
131, 132].

We consider the SICNN (8.3.34) with f (s) = 0.6
√

s and αij = 1.5, βij = 0.4 for
all i, j . According to the results of [29, 103], the SICNN (8.3.34) exhibits chaotic
motions for ζ0 ∈ [0, 1], and the collectionL consisting of the boundedonR solutions
of (8.3.34) corresponding to different values of ζ0 is a Li–Yorke chaotic set, which
admits infinitely many periodic solutions with periods 2ρ for each natural number
ρ.

Figure8.13 shows the solution x(t) = {

xij(t)
}

of the SICNN (8.3.34) with ζ0 =
0.192 corresponding to the initial data x11(t0) = 0.1407, x12(t0) = 0.1548, x13(t0) =
0.1092, x21(t0) = 0.9168, x22(t0) = 0.1451, x23(t0) = 0.3276, x31(t0) = 0.1046,
x32(t0) = 0.0992, x33(t0) = 0.2518, where t0 = 0.192. It is seen in Fig. 8.13 that
each cell of the SICNN (8.3.34) possesses chaos.

Next, we consider the impulsive SICNN

dyij(t)

dt
= −aij yij(t) −

∑

Chl∈N1(i, j)

C
hl
ij f1(yhl(t))yij(t) + Lij(t), t = θk,

Δyij|t=θk = bij yij(θk) +
∑

Chl∈N1(i, j)

D
hl
ij g1(yhl(θk))yij(θk) + I

k
ij,

(8.3.35)

where i, j = 1, 2, 3, f1(s) = 0.4s7/2, g1(s) = 0.2s2, θk = 2k, k ∈ Z, I
k
ij = 0.001

for each i, j and k,
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Fig. 8.13 The chaotic behavior of the SICNNs (8.3.34)
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⎞
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⎞
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b11 b12 b13
b21 b22 b23
b31 b32 b33

⎞
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⎞

⎠ ,

⎛

⎝

C11 C12 C13
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⎞

⎠ =
⎛
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⎞
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⎞

⎠ .

Define the function ϕ(v) = {

ϕij(v)
}

, where v = {vij
}

, i, j = 1, 2, 3, through the
equations ϕ11(v) = 3v211, ϕ12(v) = arctan(v12), ϕ13(v) = 4(0.3 + 2v13)3, ϕ21(v) =
v21, ϕ22(v) = tanh(10v22), ϕ23(v) = v3/223 , ϕ31(v) = 3v31 + sin(v31), ϕ32(v) =
2v32 + 0.1v332, ϕ33(v) = 5v33

1 + v33
. In system (8.3.35), we set Lij(t) = ϕij(x(t)).

That is, we make use of the outputs of the SICNN (8.3.34) as external inputs for the
impulsive SICNN (8.3.35).

It is worth noting that the nonlinear function ϕ satisfies the inequality (8.3.28)
on the compact region in which the chaotic attractor of system (8.3.34) takes place.
Accordingly, the set Lϕ whose elements are of the form ϕ(x(t)), x(t) ∈ L , is
Li–Yorke chaotic.

One can verify that the conditions (C1)–(C9) hold for the network (8.3.35) with
p = 1, T = 2, K = 4, c = 0.04, d = 0.041, M = 0.0482, L0 = 0.3017,
b0 = 0.4980238, H0 = 7.3109, λ ≈ 3.764998, and δ ≈ 0.045279, where the
approximations for λ and δ are given with accuracy of six digits in the decimal part.
Therefore, the dynamics of the network (8.3.35) is Li–Yorke chaotic according to
Theorem 8.3.

In the impulsive SICNN (8.3.35), let us use the solution of (8.3.34) that is
represented in Fig. 8.13. Figure8.14 depicts the output of (8.3.35) with the initial
data y11(t0) = 0.0119, y12(t0) = 0.0306, y13(t0) = 0.0541, y21(t0) = 0.1591,
y22(t0) = 0.0635, y23(t0) = 0.0203, y31(t0) = 0.0339, y32(t0) = 0.0346,
y33(t0) = 0.0419, where t0 = 0.192. Figure8.14 supports our theoretical results
such that the SICNN (8.3.35) exhibits chaotic motions. The 3-dimensional projec-
tion of the same solution on the y13 − y21 − y33 space is shown in Fig. 8.15, which
confirms one more time the presence of chaos in the dynamics of the network.
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Fig. 8.14 The chaotic behavior of the SICNNs (8.3.35)

Fig. 8.15 The
three-dimensional projection
of the chaotic trajectory of
the impulsive SICNN
(8.3.35) on the
y13 − y21 − y33 space
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Now, let us take into account the impulsive SICNN

dzij(t)

dt
= −ãijzij(t) −

∑

C̃hl∈N1(i, j)

C̃hl
ij f2(zhl(t))zij(t) + L̃ ij(t), t = ηk,

Δzij|t=ηk = b̃ijzij(ηk) +
∑

C̃hl∈N1(i, j)

D̃hl
ij g2(zhl(ηk))zij(ηk) + Ĩ k

ij ,
(8.3.36)

where i, j = 1, 2, 3, f2(s) = 0.6s3, g2(s) = 0.1s4,ηk = 4k, k ∈ Z, Ĩ k
ij = 0.02(−1)k

for each i, j and k,
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⎠ .

We will demonstrate numerically the appearance of near-periodic discontinuous
chaos in the dynamics of the SICNN (8.3.36)when the networks (8.3.34) and (8.3.36)
are weakly connected.

First of all, let us consider the network (8.3.36) with the external inputs L11(t) =
0.008, L12(t) = 0.007, L13(t) = 0.002, L21(t) = 0.017, L22(t) = 0.032,
L23(t) = 0.018, L31(t) = 0.013, L32(t) = 0.016, L33(t) = 0.007, which are
constant functions, such that the network admits a unique periodic solution.

The output of SICNN (8.3.36) corresponding to the initial data z11(0.5) = 0.0332,
z12(0.5) = 0.0372, z13(0.5) = 0.0257, z21(0.5) = 0.0445, z22(0.5) = 0.0361,
z23(0.5) = 0.0973, z31(0.5) = 0.0245, z32(0.5) = 0.0246, z33(0.5) = 0.0232 is
shown in Fig. 8.16, where it is seen that the represented output approaches to the
periodic solution of the network (8.3.36).

In order to obtain motions that behave chaotically around the discontinuous peri-
odic solution shown in Fig. 8.16, we make use of the external inputs

L11(t) = 0.008 + 0.035x11(t), L12(t) = 0.007 + 0.037x12(t),

L13(t) = 0.002 + 0.032x13(t), L21(t) = 0.017 + 0.009x21(t),

L22(t) = 0.032 + 0.084x22(t), L23(t) = 0.018 + 0.029x23(t),
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Fig. 8.16 The periodic solution of the SICNN (8.3.36) with the external inputs L11(t) = 0.008,
L12(t) = 0.007, L13(t) = 0.002, L21(t) = 0.017, L22(t) = 0.032, L23(t) = 0.018, L31(t) =
0.013, L32(t) = 0.016, L33(t) = 0.007
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Fig. 8.17 The appearance of near-periodic discontinuous chaos in the SICNN (8.3.36)

L31(t) = 0.013 + 0.083x31(t), L32(t) = 0.016 + 0.045x32(t),

L33(t) = 0.007 + 0.023x33(t)

in the SICNN (8.3.36), where x(t) = {xij(t)
}

are the outputs of the SICNN (8.3.34).
The conditions (C1)–(C9) are valid for the SICNN (8.3.36) with p = 2, T = 8,

K = 1.8225, c = 0.039, d = 0.047, M = 0.0026, L0 = 0.0478, b0 = 1.0099298,
H0 = 0.6861, λ ≈ 0.146222 and δ ≈ 0.224958, where the approximations for λ and
δ are given with accuracy of six digits in the decimal part. According to Theorem
8.3, the network (8.3.36) possesses chaos in the sense of Li–Yorke.

Making use of the solution of (8.3.34) that is depicted in Fig. 8.13, we represent in
Fig. 8.17 the output of the impulsive SICNN (8.3.36) corresponding to the initial data
z11(t0) = 0.0561, z12(t0) = 0.0353, z13(t0) = 0.0412, z21(t0) = 0.0706, z22(t0) =
0.0451, z23(t0) = 0.1381, z31(t0) = 0.0572, z32(t0) = 0.0367, z33(t0) = 0.0379,
where t0 = 0.192. One can observe that the represented motion behaves chaotically
near the periodic solution shown in Fig. 8.16.

8.4 Cyclic/Toroidal Chaos in Hopfield Neural Networks

In this section, we discuss the appearance of cyclic and toroidal chaos in Hopfield
neural networks. The theoretical results may strongly relate to investigations of brain
activities performed by neurobiologists. As new phenomena, extension of chaos
by entrainment of several limit cycles as well as the attraction of cyclic chaos by
an equilibrium are discussed. Appropriate simulations that support the theoretical
results are depicted. Stabilization of tori in a chaotic attractor is realized not only
for neural networks, but also for differential equations theory, and this phenomenon
has never been reported before in the literature. It is demonstrated that the proposed
chaos generation technique cannot be considered as generalized synchronization.
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8.4.1 Introduction

There is a certain adequacy for the real world and its reflection by brain activities.
The presence of chaos in neural networks is useful for separating image segments
[52], information processing [49, 50] and synchronization [59–61, 63]. The chaos
can be generated either by a neural network itself (endogenous chaos), or a chaotic
influence outside of the neural network can be realized in its output (exogenous
chaos). The endogenous chaos in neural networks has been widely investigated in
the literature [38–40, 42, 44, 46, 47, 51, 53, 55, 82, 139–144], but the latter has
not been effectively discussed yet. This is not because the problem is not natural, but
the absence of a rigorously developed input/output mechanism for the phenomenon
seems to be the reason. This is why we were attracted by the problem of chaos
generation.

In their experiments, Skarda and Freeman [84] obtained different kinds of elec-
troencephalogram (EEG) signals when known and unknown odorants were given
to a rabbit. For known odorants, the signals were in the form of a limit cycle, but
for unknown ones, they were chaotic. According to the experimental results, it was
proposed that deterministic chaos is utilized in neural activities for learning new
sensory patterns as well as ensuring continual access to previously learned sensory
patterns. The roles of chaos for brain behavior have been investigated inmany papers.
For example, Watanabe et al. [54] demonstrated that the chaotic dynamics works as
means to learn new patterns and increases the memory capacity of neural networks.
The group of theorists, Guevara et al. [41], suggested that chaotic behavior may
be responsible for dynamical diseases such as schizophrenia, insomnia, epilepsy,
and dyskinesia. It was shown in the paper [41] that the periodic forcing of neural
oscillator models can lead to chaos. This is similar to the case that was primarily
observed in electrical devices through Van der Pol and Duffing oscillators in pioneer
papers [145–149]. Actually, this is not surprising since brain activities can be mostly
considered as electrical processes.

A sensory cortex is conceived in [83] as a global attractor with many “wings.”
When the cortex is at rest, the wings are shut. When a known stimulus arrives, the
system moves to an appropriate wing and a burst of oscillation is observed. In paper
[133], it was revealed that “each of the wings are either a near-limit cycle (a narrow
band chaos) or a broad band chaos.” One should emphasize that the near-limit cycle
chaos can result from the entrainment of limit cycles by chaos, which is theoretically
proved in [134] and considered as one of the main ways of chaos generation in the
present research.

Discussingwings as neural networks, one can suppose that there is the opportunity
of chaos production by a wing itself and extension of chaos from onewing to another.
The latter case has not been considered in the literature yet, at least mathematically.
That is why we decided to investigate the problem in the present section. More
precisely, for the first time in the literature, we consider the extension of chaos in
the following ways: (i) Entrainment of a limit cycle by chaos, (ii) Attraction of a
cyclic chaos by an equilibrium, (iii) Entrainment of two and more limit cycles by
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chaos, (iv) Attractions of chaotic cycles by an equilibrium. These chaos extension
types provide us with the mathematical support for Freeman’s “wings” of a sensory
cortex. The extension of chaos has not been considered in the previous investigations,
and we hope that the rigorous mathematical background for the phenomenon may
give a positive effect for the researches of neurobiologists. This is also true for
our results concerning quasiperiodic and almost periodic motions in the basis of
chaotic attractors. Since the appearance of limit cycle and near-limit cycle chaos
were experimentally observed in the studies [84, 133], one can hypothesize that both
limit tori and near-torus chaos can be dynamical representatives of brain processes
too.

The present section is suggested as an application of our investigations about
chaos extension developed in the papers [34, 103, 134] to give an additional mathe-
matical light on the ideas developed by neurobiologists, primarily, Freeman and his
collaborators [80–83, 85, 133]. The main dynamical result considered in this section
is the entrainment by chaos, which is understood as the deformation of limit cycles
to chaotic cycles. Our results are useful for analyzing chaos extension among collec-
tives of neural networks based on generation of chaos by input/output mechanisms
built through differential equations. According to Skarda and Freeman [84], limit
cycles and chaotic dynamics are of prime importance in odor recognition. Moreover,
it was observed in [84] that the brain’s EEG activity changes from limit cyclical to
near-cycle chaotic if a familiar odor was replaced by an unknown one. This can be
interpreted through our paper [134] as the chaotification of limit cycles. Additionally,
if we accept that complexity of chaos is important for the memory capacity, then one
can suppose that to increase a memory we need to do the samewith the complexity of
chaos. From this point of view, it is interesting to say about regular unstable motions
which constitute a basis (skeleton) of chaotic attractors. These are usually assumed
to be periodic motions [24, 104, 105]. Beside the periodic motions, quasiperiodic,
almost periodic, and recurrent motions can also be considered as a basis of chaos
[150–152]. As chaos increases the capacity of memorizing [54, 84], one can sup-
pose that chaos with the basis of quasiperiodic motions provides a memory with a
larger capacity than that with periodic motions. This is true if we compare chaos
with quasiperiodic unstable motions with a one having a skeleton of almost periodic
motions. That is why the problem of chaos generation by neural networks which is
based on unstable quasiperiodic or almost periodic unstable solutions is of strong
importance. In this section, it is shown that one can create quasiperiodic motions in
chaotic attractors as well as join different quasiperiodic motions to obtain quasiperi-
odic motions with a larger number of incommensurate frequencies. Moreover, we
discuss the problem of chaos control, which can also be considered as theoretical
basis of learning and recognition, if one accepts the ideas in the papers [80, 81, 84,
85, 133]. We suggest that the appearance of limit cycles in experiments with brain
behavior [54, 84, 133] results from the stabilization of one of the unstable periodic
solutions, which are already present in a wing. This stabilization can be done either
by external perturbation or by control (of Pyragas type [153]), which is triggered by
stimuli.
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Tohave aunity anduniformdelivering in the section, the discussions are developed
using Hopfield neural networks (HNNs) [5, 154–156], but they can also be realized
for other types of neural networks [111, 112, 120, 157–161].

HNNs [5, 154–156] are continuous-time dynamical systems described by the
following nonlinear ordinary differential equations:

Ci
dpi

dt
= − pi

Ri
+

N
∑

j=1

wij f j (p j ) + Ii , i = 1, 2, . . . , N , (8.4.37)

where N is the number of neurons, pi is the total input to neuron i , the bounded
monotonic differentiable function f j is the activation function acted on neuron j ,
Ci and Ri are the parameters corresponding, respectively, to a capacitance and a
resistance, Ii is the external input of neuron i and wij is the synaptic connection
value between neuron i and neuron j .

In an equivalent form, the HNN (8.4.37) can be represented as

ṗ = −Cp + W f (p) + I,

where p = (p1, p2, . . . , pN )T , the diagonal matrix C = diag {c1, c2, . . . , cN },
which is associated with Ci and Ri , has positive diagonal entries, W = (wij)N×N

is the connection matrix, f (p) = ( f1(p1), f2(p2), . . . , fN (pN ))T and I = (I1, I2,
. . . , IN )T is the external input vector.

Weak synaptic connections between neurons are observable in the dynamics of
brain, and a method to characterize the weakness of synaptic connections is to con-
sider amplitudes of postsynaptic potentials measured in the soma of neurons while
the neuronmembrane potential is far below the threshold value [162]. The brain units
such as neurons, cortical columns, and neuronal modules are supposed to be weakly
connected and modeled as autonomous quasiperiodic oscillators in the paper [135].
McNaughton et al. [136] revealed weak synaptic connections in the hippocampal
cells by means of the investigation of excitatory postsynaptic potentials. Moreover,
weak interactions between neurons in the cortex are observed by Abeles [137] as a
result of the analysis of cross correlograms obtained from pairs of neurons. On the
other hand, according to Pasemann et al. [163], periodic and quasiperiodic solutions
in biological and artificial systems are of fundamental importance as they are associ-
ated with central pattern generators. Therefore, the investigations of coupled neural
networks that possess periodic or quasiperiodic solutions with weak connections are
of prime importance.

In the present section, we establish weak connections between two HNNs, one
with a chaotic attractor and another with an attracting limit cycle or attracting torus.
As a result we obtain a chaotic cycle/torus, that is, motions that behave chaotically
around the limit cycle or torus.

Stability is one of the main properties which are suggested to be started with
pioneer papers [5]. It attracts the attention of other authors nowadays [164–171].
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However, starting with results on chaos, the role of papers on unstable motions and
their stabilization has been increased significantly.

In the literature, the generation of chaos is considered within the scope of syn-
chronization theory [67, 86, 87, 91, 92, 94, 96]. For two coupled systems to be
synchronized, the chaos of the response system has to be asymptotically close to that
of the driver. We do not use this proximity in our results, and we demonstrate that
chaos generation around limit cycles and tori are not reducible to synchronization,
in general.

8.4.2 Entrainment by Chaos in HNNs

Let us consider the HNN

ẋ = −Cx + W f (x) + I, (8.4.38)

where x ∈ R
m , C = diag {c1, c2, . . . , cm}, ci > 0 for each i = 1, 2, . . . , m,

W = (wij)m×m is the connection matrix and I is the external input vector.
Next, we take into account the HNN

ẏ = −Dy + W g(y) + εh(x(t)), (8.4.39)

where y ∈ R
n , x(t) are solutions of (8.4.38), ε is a nonzero constant, h : Rm → R

n

is a continuous function, D = diag {d1, d2, . . . , dn}, di > 0 for each i = 1, 2, . . . , n
andW = (wij)n×n is the connectionmatrix. It isworth noting that the unidirectionally
coupled networks (8.4.38)+ (8.4.39) have a skew product structure.

We mainly assume that the HNN

u̇ = −Du + W g(u) (8.4.40)

possesses an orbitally stable limit cycle.
On the other hand, we also assume that the network (8.4.38) admits a chaotic

attractor, let us say a set in R
m . Fix x0 from the attractor and take a solution x(t)

of (8.4.38) with x(0) = x0. Since we use the solution x(t) as an external input in
the network (8.4.39), we call it as chaotic function. The chaotic functions may be
irregular as well as regular (periodic and unstable) [104–106, 172].

The network (8.4.38) is called sensitive if there exist positive numbers ε0 and
Δ such that for an arbitrary positive number δ0 and for each chaotic solution x(t)
of (8.4.38), there exist a chaotic solution x(t) of the same network and an interval
J ⊂ [0,∞), with a length no less than Δ, such that ‖x(0) − x(0)‖ < δ0 and
‖x(t) − x(t)‖ > ε0 for all t ∈ J .

For a given chaotic solution x(t) of (8.4.38), let us denote by φx(t)(t, y0), y0 ∈ R
n ,

the solution of (8.4.39) with φx(t)(0, y0) = y0. The network (8.4.39) replicates the
sensitivity of (8.4.38) if there exist positive numbers ε1 and Δ such that for an
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arbitrary positive number δ1 and for each solution φx(t)(t, y0), there exist an interval
J 1 ⊂ [0,∞), with a length no less than Δ, and a solution φx(t)(t, y1) such that
‖y0 − y1‖ < δ1 and

∥
∥φx(t)(t, y0) − φx(t)(t, y1)

∥
∥ > ε1 for all t ∈ J 1. Moreover, we

say that the network (8.4.39) is chaotic if it replicates the sensitivity of (8.4.38) and
the system (8.4.38)+ (8.4.39) possesses infinitely many unstable periodic solutions
in a bounded region.

The following theorem is based on the entrainment of limit cycles by chaos con-
sidered in the paper [134], where the replication of sensitivity and the existence of
infinitely many unstable periodic solutions were rigorously proved.

Theorem 8.4 If there exists a number L > 0 such that ‖h(s1) − h(s2)‖ ≥
L ‖s1 − s2‖ for all s1, s2 ∈ R

m and the number |ε| is sufficiently small, then there
exists a neighborhood N of the orbitally stable limit cycle of (8.4.40) such that
solutions of (8.4.39) which start inside N behave chaotically around the limit cycle.
That is, the solutions are sensitive and there are infinitely many unstable periodic
solutions.

To illustrate the result of Theorem 8.4, let us consider the HNN [42]

u̇1 = −u1 + 3.4 tanh(u1) − 1.6 tanh(u2) + 0.7 tanh(u3)

u̇2 = −u2 + 2.5 tanh(u1) + 0.95 tanh(u3)

u̇3 = −u3 − 3.5 tanh(u1) + 0.5 tanh(u2),

(8.4.41)

which is in the form of (8.4.40). It is mentioned in [42] that the network (8.4.41)
possesses a limit cyclewith theLyapunov exponents 0,−0.1356 and−0.1466.There-
fore, 1 is a simple characteristic multiplier of the corresponding variational system,
and the remaining characteristic multipliers are in modulus less than 1. According
to the Andronov–Witt Theorem [173], the limit cycle of (8.4.41) is orbitally stable.

Next, we take into account the following HNN,

ẋ1 = −x1 + 2 tanh(x1) − 1.2 tanh(x2)
ẋ2 = −x2 + 2 tanh(x1) + 1.71 tanh(x2) + 1.15 tanh(x3)
ẋ3 = −x3 − 4.75 tanh(x1) + 1.1 tanh(x3).

(8.4.42)

In the paper [143], it is shown that the network (8.4.42) admits a positive Lyapunov
exponent and possesses chaotic motions. We will use it as a system of the form
(8.4.38), which entrains the limit cycle of (8.4.41) by the chaos.

Making use of the solutions of (8.4.42) as external inputs for (8.4.41), we set up
the following HNN:

ẏ1 = −y1 + 3.4 tanh(y1) − 1.6 tanh(y2) + 0.7 tanh(y3)
+0.0136 tanh(x1(t)) − 0.0015 tanh(x2(t)) + 0.0025 tanh(x3(t))
ẏ2 = −y2 + 2.5 tanh(y1) + 0.95 tanh(y3)
+0.0004 tanh(x1(t)) + 0.0212 tanh(x2(t)) − 0.0005 tanh(x3(t))
ẏ3 = −y3 − 3.5 tanh(y1) + 0.5 tanh(y2)
+0.0012 tanh(x1(t)) + 0.0023 tanh(x2(t)) + 0.0145 tanh(x3(t)).

(8.4.43)
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Fig. 8.18 The chaotic trajectory of HNN (8.4.43). The figure supports Theorem 8.4 such that the
trajectory behaves chaotically around the limit cycle of HNN (8.4.41)
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Fig. 8.19 The chaotic behavior of the y3 coordinate of HNN (8.4.43)

The network (8.4.43) is in the form of (8.4.39), and according to Theorem 8.4, it
possesses chaotic motions around the limit cycle of (8.4.41).

To simulate the result, let us use in HNN (8.4.43) the chaotic solution x(t) of
(8.4.42) with x1(0) = −0.109, x2(0) = −0.832, x3(0) = 1.721, and represent
the trajectory of (8.4.43) with y1(0) = 0.645, y2(0) = 0.243, y3(0) = −0.628 in
Fig. 8.18. The figure supports the result of Theorem 8.4 such that the limit cycle
of (8.4.41) is entrained by the chaos. Moreover, the irregular behavior of the y3
coordinate over time is illustrated in Fig. 8.19.

8.4.2.1 Sensitivity Analysis

The replication of sensitivity inmore general coupled systems is rigorously proved in
the paper [134]. Here, we will show through simulations the replication of sensitivity
by HNNs.

Li et al. [47] theoretically verified the existence of horseshoe chaos in the HNN

ẋ1 = −x1 + 2 tanh(x1) − tanh(x2)
ẋ2 = −x2 + 1.7 tanh(x1) + 1.71 tanh(x2) + 1.1 tanh(x3)
ẋ3 = −2x3 − 2.5 tanh(x1) − 2.9 tanh(x2) + 0.56 tanh(x3).

(8.4.44)
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Fig. 8.20 Extension of sensitivity in the coupled HNNs (8.4.44)+ (8.4.45)

Additionally, we consider the HNN

ẏ1 = −y1 + 3.4 tanh(y1) − 1.6 tanh(y2) + 0.7 tanh(y3)
+0.02 tanh(x1(t)) + 0.035 tanh(x3(t))
ẏ2 = −y2 + 2.5 tanh(y1) + 0.95 tanh(y3) + 0.025 tanh(x2(t))
ẏ3 = −y3 − 3.5 tanh(y1) + 0.5 tanh(y2) + 0.004 tanh(x1(t))
−0.01 tanh(x2(t)) + 0.05 tanh(x3(t)),

(8.4.45)

which is obtained using of the solutions of (8.4.44) as external inputs in (8.4.41).
To demonstrate numerically the replication of sensitivity, we illustrate in Fig.8.20

two initially nearby trajectories of the coupled network (8.4.44)+ (8.4.45), one with
the initial data x1(0) = 0.236, x2(0) = 0.543, x3(0) = −0.745, y1(0) = −0.751,
y2(0) = −0.672, y3(0) = 1.641, represented in blue, and another with the initial
data x1(0) = 0.237, x2(0) = 0.541, x3(0) = −0.752, y1(0) = −0.749, y2(0) =
−0.674, y3(0) = 1.643, pictured in red. Figure8.20a, b, show the projections of
these trajectories on the x1 − x2 − x3 and y1 − y2 − y3 spaces, respectively. It is seen
in Fig. 8.20a, that the sensitivity feature is present in the HNN (8.4.44) such that the
initially nearby solutions eventually diverge.On theother hand, it is seen inFig. 8.20b,
that the trajectories are initially close to each other and are then separated, that is,
the sensitivity is replicated by the network (8.4.45). The simulations are performed
for t ∈ [0, 21].

8.4.2.2 Chaos Around Tori

Verification of the entrainment of limit tori by chaos is a theoretically difficult task.
Nevertheless, let us show that near-torus chaos is possible for HNNs. For these needs,
similarly to the near-limit cycle chaos, we will use the following neural networks.
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According to the simulation results of the study [141], the HNN

ẋ1 = −x1 + tanh(x1) + 0.5 tanh(x2) − 3 tanh(x3) − tanh(x4)
ẋ2 = −x2 + 2.3 tanh(x2) + 3 tanh(x3)
ẋ3 = −x3 + 3 tanh(x1) − 3 tanh(x2) + tanh(x3)
ẋ4 = −100x4 + 100 tanh(x1) + 170 tanh(x4)

(8.4.46)

is hyperchaotic such that it possesses two positive Lyapunov exponents. The chaos
will be applied as an input for the following Hopfield neural network,

u̇1 = −u1 + tanh(u1) + 0.5 tanh(u2) − 3 tanh(u3) − tanh(u4)

u̇2 = −u2 − 0.1 tanh(u1) + 2 tanh(u2) + 3 tanh(u3)

u̇3 = −u3 + 3 tanh(u1) − 3 tanh(u2) + tanh(u3)

u̇4 = −100u4 + 100 tanh(u1) + 170 tanh(u4).

(8.4.47)

It is shown in paper [139] that the HNN (8.4.47) admits the Lyapunov exponents 0,
0, −0.2092, and −46.8691 such that the network possesses a regular torus, which
attracts near solutions.

Now, let us perturb the last HNN by solutions of (8.4.46) as external inputs to
obtain

ẏ1 = −y1 + tanh(y1) + 0.5 tanh(y2) − 3 tanh(y3)
− tanh(y4) + 0.0257 tanh(x1(t))
ẏ2 = −y2 − 0.1 tanh(y1) + 2 tanh(y2) + 3 tanh(y3)
+0.0223 tanh(x2(t))
ẏ3 = −y3 + 3 tanh(y1) − 3 tanh(y2) + tanh(y3) + 0.0159 tanh(x3(t))
ẏ4 = −100y4 + 100 tanh(y1) + 170 tanh(y4) + 0.0334 tanh(x4(t)).

(8.4.48)

Figure8.21 shows the trajectory of (8.4.48) with x1(0) = −0.1321, x2(0) =
−0.3589, x3(0) = 0.3914, x4(0) = −1.7219, y1(0) = 0.0259, y2(0) = −0.0096,
y3(0) = −0.2383, y4(0) = −1.5493. One can see that the motion is chaotic and
surrounds the torus. Furthermore, the y2 coordinate of the solution is represented in
Fig. 8.22. The simulation results reveal that the HNN (8.4.48) possesses motions that
behave chaotically around the torus of (8.4.47).

8.4.2.3 Comparison with Synchronization of Chaos

The main role of synchronization [87, 94, 96] is to predict the properties of the
response system or the drive system. Thus, our results may be considered as an
indicative of a type of synchronization, if one accepts the following properties to be
predicted: the existence of infinitely many unstable periodic solutions with the same
periods as those for the drive system, ingredients of chaos, strange attractors, the
possibility of controlling chaos, etc.
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Fig. 8.21 The chaotic motion around the torus of HNN (8.4.47)
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Fig. 8.22 The graph of the y2 coordinate of HNN (8.4.48)

To analyze our results for generalized synchronization [67, 86, 91, 92, 96], we
will consider the chaos produced by the networks (8.4.46) and (8.4.48). The auxiliary
system approach [67, 86] as well as the method of conditional Lyapunov exponents
[92, 94] will be applied to indicate the presence or absence of generalized syn-
chronization in the couple (8.4.46)+ (8.4.48) considered this time as drive-response
systems (as it is accepted in the synchronization theory).

Let us take into account the auxiliary system

ż1 = −z1 + tanh(z1) + 0.5 tanh(z2) − 3 tanh(z3)
− tanh(z4) + 0.0257 tanh(x1(t))
ż2 = −z2 − 0.1 tanh(z1) + 2 tanh(z2) + 3 tanh(z3)
+0.0223 tanh(x2(t))
ż3 = −z3 + 3 tanh(z1) − 3 tanh(z2) + tanh(z3) + 0.0159 tanh(x3(t))
ż4 = −100z4 + 100 tanh(z1) + 170 tanh(z4) + 0.0334 tanh(x4(t)).

(8.4.49)

Making use of the initial data x1(0) = −0.1321, x2(0) = −0.3589, x3(0) =
0.3914, x4(0) = −1.7219, y1(0) = 0.0259, y2(0) = −0.0096, y3(0) = −0.2383,
y4(0) = −1.5493, z1(0) = 0.1376, z2(0) = −0.0469, z3(0) = 0.2524, z4(0) =
1.7589, and omitting the first 1000 iterations, we obtain the stroboscopic plot of
system (8.4.46)+ (8.4.48)+ (8.4.49) whose projection on the y2 − z2 plane is shown
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Fig. 8.23 The auxiliary
system approach applied to
the coupled HNNs
(8.4.46)+ (8.4.48)
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in Fig. 8.23. Since the plot is not on the line z2 = y2, we conclude that generalized
synchronization does not occur.

Next, to determine the conditional Lyapunov exponents,we consider the following
variational equations for the HNN (8.4.48),

η̇1 = [−1 + sech2(y1(t))]η1 + 0.5 sech2(y2(t))η2 − 3 sech2(y3(t))η3
− sech2(y4(t))η4
η̇2 = −0.1 sech2(y1(t))η1 + [−1 + 2 sech2(y2(t))]η2
+3 sech2(y3(t))η3
η̇3 = 3 sech2(y1(t))η1 − 3 sech2(y2(t))η2 + [−1 + sech2(y3(t))]η3
η̇4 = 100 sech2(y1(t))η1 + [−100 + 170 sech2(y4(t))]η4.

(8.4.50)

Taking into account the solution y(t) of (8.4.48) corresponding to the initial
data x1(0) = −0.1321, x2(0) = −0.3589, x3(0) = 0.3914, x4(0) = −1.7219,
y1(0) = 0.0259, y2(0) = −0.0096, y3(0) = −0.2383, y4(0) = −1.5493, we
evaluated the largest Lyapunov exponent of system (8.4.50) as 0.105747. That is, the
network (8.4.48) admits a positive conditional Lyapunov exponent, and this result
reveals one more time the absence of generalized synchronization in the coupled
HNNs (8.4.46)+ (8.4.48).

We have shown that the method of extension of chaos by entrainment of tori is
not generalized synchronization. This was also affirmed in several other simulations
for limit cycles and tori in the paper [134].

8.4.3 Control of Cyclic/Toroidal Chaos in Neural Networks

In the present section, we will apply the instrument of chaos extension to obtain and
control chaos in collectives of neural networks. New phenomena of the entrainment
of two limit cycles by chaos and attraction of two chaotic cycles by an equilibrium
will be demonstrated. Moreover, we will exhibit that the OGY (Ott, Grebogi, Yorke)
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control method [174] can be applied to stabilize not only periodic motions, but
also tori. The control applied to the chaos generating HNNs also affects chaos of the
perturbedHNNs. The results of the sectionmay provide new ideas on brain activities,
if one takes into account the experimental results in [54, 83, 84].

8.4.3.1 Entrainment of Two Limit Cycles by Chaos

We will use one more time the HNN (8.4.42) as the source of chaotic inputs, but this
time the following HNN is to be perturbed by the inputs,

u̇1 = −u1 + 1.5 tanh(u1) + 2.9 tanh(u2) + 0.8 tanh(u3)

u̇2 = −u2 − 3.5 tanh(u1) + 1.18 tanh(u2)

u̇3 = −u3 + 2.977 tanh(u1) − 22 tanh(u2) + 0.47 tanh(u3).

(8.4.51)

According to the results of the study [140], the network (8.4.51) admits two limit
cycles with the Lyapunov exponents 0, −0.1792 and −0.7083 such that the cycles
are orbitally stable by the Andronov–Witt Theorem [173].

Beside the last equations, consider the following HNN,

ẏ1 = −y1 + 1.5 tanh(y1) + 2.9 tanh(y2) + 0.8 tanh(y3) + 0.04 tanh(x1(t))
+0.03 tanh(x2(t)) + 0.006 tanh(x3(t))
ẏ2 = −y2 − 3.5 tanh(y1) + 1.18 tanh(y2) − 0.002 tanh(x1(t))
+0.06 tanh(x2(t))
ẏ3 = −y3 + 2.977 tanh(y1) − 22 tanh(y2) + 0.47 tanh(y3)
−0.001 tanh(x2(t)) + 0.04 tanh(x3(t)).

(8.4.52)

By localizing the result of Theorem 8.4 near the two limit cycles, one can conclude
that (8.4.52) admits two chaotic cycles. Figure8.24 represents the trajectories of
(8.4.52) corresponding to the initial data x1(0) = 1.903, x2(0) = 0.221, x3(0) =
−4.011, y1(0) = 0.713, y2(0) = 0.273, y3(0) = −10.001, and x1(0) = −0.532,
x2(0) = −1.647, x3(0) = 2.607, y1(0) = 0.571, y2(0) = 0.117, y3(0) = −0.079
shown in blue and red colors, respectively. One can see in Fig. 8.24 that two chaotic
cycles appear in the dynamics of the network (8.4.52). We call this phenomenon as
the entrainment of two limit cycles by chaos.

One can predict that the appearance of cyclic chaos can be implemented for HNNs
with not only two cycles, but also several ones. Moreover, the chaos extension by
the entrainment procedure can be realized for different types of neural networks.

8.4.3.2 Attraction of Two Chaotic Cycles by an Equilibrium

In our paper [34], we considered extension of chaos in neighborhoods of attracting
equilibria. From the simple observation for a dynamical system that a periodic solu-
tion used as a perturbation may cause a new cycle under certain conditions, one can
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Fig. 8.24 Entrainment of
two limit cycles by chaos
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conclude that near-limit cycle chaotic inputs can lead to similar outputs for systems
with stable equilibria. To verify this hypothesis numerically, let us apply the double
cyclic chaos obtained for system (8.4.52) as an input to the HNN

u̇1 = −u1 + 0.005 tanh(u1)) + 0.009 tanh(u2) − 0.008 tanh(u3)

u̇2 = −u2 − 0.001 tanh(u1) + 0.007 tanh(u2) − 0.003 tanh(u3)

u̇3 = −u3 + 0.009 tanh(u1) − 0.002 tanh(u2) + 0.004 tanh(u3),

(8.4.53)

which admits the primitive asymptotically stable solution, to set up the HNN

ż1 = −z1 + 0.005 tanh(z1)) + 0.009 tanh(z2) − 0.008 tanh(z3)
+4 tanh(y1(t)) + tanh(y2(t))
ż2 = −z2 − 0.001 tanh(z1) + 0.007 tanh(z2) − 0.003 tanh(z3)
+0.5 tanh(y1(t)) + 2 tanh(y2(t)) + 0.5 tanh(y3(t))
ż3 = −z3 + 0.009 tanh(z1) − 0.002 tanh(z2) + 0.004 tanh(z3)
+2 tanh(y1(t)) − tanh(y3(t)).

(8.4.54)

Figure8.25 shows the simulation results such that two chaotic cycles appear in the
dynamics of the network (8.4.54). In the simulation, we used the solutions of (8.4.52)
represented in Fig. 8.24, and depict with the corresponding same colors in Fig. 8.25
the trajectories of (8.4.54) with the initial data z1(0) = 0.705, z2(0) = 0.487,
z3(0) = 0.997, and z1(0) = −0.142, z2(0) = 0.408, z3(0) = −0.873 in blue and
red, respectively.

8.4.3.3 OGY Control of a Torus

The control of chaos in neural networks is supposed to be the reason for the appear-
ance of limit cycles in the experiments of neurobiologists [54, 84]. We showed in
[134] how the Pyragas control method [153] stabilizes entrained limit cycles. It is
easy to see that the simulations can be adapted for neural networks in the form of
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Fig. 8.25 Attraction of two
chaotic cycles by an
equilibrium
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(8.4.42)+ (8.4.43). In this subsection, we will demonstrate a novel application of the
OGY control [174, 175] to stabilize tori. Since the OGY control is for discrete equa-
tions, we will start with the description of piecewise constant perturbations, which
will be controlled by the method.

Consider the function

P(t, θ) =
{

1.6, if θ2i < t ≤ θ2i+1,

0.2, if θ2i+1 < t ≤ θ2i+2,
(8.4.55)

where i is a nonnegative integer, the sequence θ = {θi } is defined through the equation
θi = i + ζi with ζi+1 = Fλ(ζi ), ζ0 ∈ [0, 1], and Fλ(u) = λu(1 − u) is the logistic
map. The map Fλ(u) is chaotic through period-doubling cascade for λ = 3.8, and
the interval [0, 1] is invariant under its iterations [175].

Let us describe the OGY control method for the logistic map [175]. Suppose that
the parameter λ in the map Fλ(u) is allowed to vary in the range [3.8 − ε, 3.8 + ε],
where ε is a given small positive number. Consider an arbitrary solution {ζi }, ζ0 ∈
[0, 1], of the map and denote by ζ ( j), j = 1, 2, . . . , p, the target p-periodic orbit to
be stabilized. In the control procedure [174, 175], at each iteration step i after the
control mechanism is switched on, we consider the logistic map with the parameter
value λ = λ̄i , where

λ̄i = 3.8

(

1 + (2ζ ( j) − 1)(ζi − ζ ( j))

ζ ( j)(1 − ζ ( j))

)

, (8.4.56)

provided that the number on the right-hand side of the formula (8.4.56) belongs
to the interval [3.8 − ε, 3.8 + ε]. In other words, formula (8.4.56) is valid if the
trajectory {ζi } is sufficiently close to the target periodic orbit. Otherwise, we take
λ̄i = 3.8 so that the system evolves at its original parameter value, and wait until the
trajectory {ζi } enters in a sufficiently small neighborhood of the periodic orbit ζ ( j),
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j = 1, 2, . . . , p, such that the inequality−ε ≤ 3.8
(2ζ ( j) − 1)(ζi − ζ ( j))

ζ ( j)(1 − ζ ( j))
≤ ε holds.

If this is the case, the chaos control is not achieved immediately after switching on
the control mechanism. Instead, there is a transition time before the desired periodic
orbit is stabilized. The transition time increases if the number ε decreases [67].

Let us introduce the Hopfield neural network

ẋ1 = −7x1 + 0.012 tanh(x1) − 0.016 tanh(x2) + 0.003 tanh(x3)
ẋ2 = −4x2 − 0.004 tanh(x1) + 0.013 tanh(x2) + 0.005 tanh(x3)
+P(t, θ)

ẋ3 = −6x3 + 0.008 tanh(x1) + 0.005 tanh(x2) + 0.009 tanh(x3)
+ sin(4t) + P(t, θ),

(8.4.57)

where the piecewise constant function P(t, θ) described by (8.4.55) is used as a
chaotic input. Since the functions P(t, θ) and sin(4t) lead to the presence of infinitely
many quasiperiodic inputs with incommensurate periods, multiples of 2 and π/2,
respectively, one can use the results of [29–31, 33] to conclude that the HNN (8.4.57)
withλ = 3.8 possesses a chaotic attractorwith infinitelymany unstable quasiperiodic
solutions.

Using the solutions of (8.4.57) as inputs for the HNN

u̇1 = −3u1 + 0.003 tanh(u1) − 0.005 tanh(u2) − 0.013 tanh(u3)

u̇2 = −8u2 + 0.007 tanh(u1) + 0.008 tanh(u2) + 0.007 tanh(u3)

u̇3 = −6u3 − 0.004 tanh(u1) − 0.006 tanh(u2) + 0.002 tanh(u3),

(8.4.58)

we set up the network

ẏ1 = −3y1 + 0.003 tanh(y1) − 0.005 tanh(y2) − 0.013 tanh(y3)
+1.5x1(t)
ẏ2 = −8y2 + 0.007 tanh(y1) + 0.008 tanh(y2) + 0.007 tanh(y3)
+1.8x2(t)
ẏ3 = −6y3 − 0.004 tanh(y1) − 0.006 tanh(y2) + 0.002 tanh(y3)
+1.2x3(t).

(8.4.59)

It is worth noting that the origin is the asymptotically stable equilibrium point of
(8.4.58). According to the results of the study [34], the network (8.4.59) possesses a
chaotic attractor with infinitely many unstable quasiperiodic solutions, provided that
the value λ = 3.8 is used in (8.4.57).

The trajectories of (8.4.57) and (8.4.59) with λ = 3.8 corresponding to the initial
data x1(t0) = −0.0007, x2(t0) = 0.3983, x3(t0) = 0.2061, y1(t0) = −0.0004,
y2(t0) = 0.0801, y3(t0) = 0.0487, where t0 = 0.281, are represented in Fig. 8.26,
(a) and (b), respectively. Moreover, the graphs of the x3 and y3 coordinates of the
same trajectories are depicted in Fig. 8.27. The simulations reveal that both of the
HNNs (8.4.57) and (8.4.59) exhibit chaotic motions.



8.4 Cyclic/Toroidal Chaos in Hopfield Neural Networks 393

−8
−6

−4
−2

x 10
−4

−0.2
0

0.2
0.4

0

0.1

0.2

0.3

0.4

x
1

(a)

x
2

x 3

−8
−6

−4
−2

x 10
−4

−0.05

0

0.05

0.1
0

0.02

0.04

0.06

0.08

0.1

y
1

(b)

y
2

y 3

Fig. 8.26 The chaotic trajectories of (8.4.57) and (8.4.59) are represented in (a) and (b), respectively
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Fig. 8.27 The chaotic behavior in the networks (8.4.57) and (8.4.59)

Next, we consider the solution of the coupled networks (8.4.57)+ (8.4.59) with
the same initial data as considered in Figs. 8.26 and 8.27, and apply the OGY control
method around the fixed point 2.8/3.8 of the logistic map F3.8(u). Figure8.28 shows
the simulation results for the x3 and y3 coordinates. The value ε = 0.06 is used in
the simulation. The control mechanism is switched on at t = θ30 and switched off
at t = θ60. The control becomes dominant approximately at t = 45 and its effect
lasts approximately until t = 115, after which the instability becomes dominant
and irregular behavior develops again. It is seen that a quasiperiodic solution of
the HNN (8.4.57) is stabilized, and accordingly, the chaos of the HNN (8.4.59) is
controlled by the stabilization of the corresponding quasiperiodic solution. On the
other hand, Fig. 8.29a, b, represent the stabilized tori of the networks (8.4.57) and
(8.4.59), respectively.
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Fig. 8.28 The application of the OGY control method to stabilize the quasiperiodic solutions of
(8.4.57) and (8.4.59). The control is switched on at t = θ30 and switched off at t = θ60. The value
ε = 0.06 is used in the control procedure
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Fig. 8.29 The stabilized tori of HNNs (8.4.57) and (8.4.59) are shown in (a) and (b), respectively

8.5 Notes

In Sect. 8.1, it is shown that SICNNs with chaotic external inputs admit a chaotic
attractor. Considering this phenomenon through the input–output analysis, one can
say about chaos expansion among nonlinearly coupled SICNNs. The presented two
examples considered together illustrate the possibility. Our method can be applied
to other types of chaos, for example, that one analyzed through period-doubling
cascade. The approach is suitable for the control of unstable periodic motions. The
results of Sect. 8.1 were published in the paper [103] and they can be applied to
the studies of chaotic communication, combinatorial optimization problems and on
problems that have local minima in energy (cost) functions.

Delayed neural networks have applications inmany areas such as signal and image
processing, associativememories, combinatorial optimization and automatic control.
Because of the finite switching speed of the amplifiers, time delays occur during the
hardware implementation of neural networks. Therefore, it is of prime importance
to study neural networks with time delays.

Chaotic dynamics is useful in neural networks for separating image segments
and information processing. The presence of synchronization in neural networks
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provides a criterion for the existence of a dynamical correspondence between the
systems, and helps for a better understanding of neural processes. Moreover, chaos
can improve the performance of CNNs on problems that have local minima in energy
(cost) functions and it is an important tool for the studies of chaotic communication
and combinatorial optimization problems.

In Sect. 8.2, SICNNs with delay are considered with chaotic external inputs, and
this is the first time that a theoretically approved chaos is obtained in such networks.
As an example, we have considered a neural system consisting of three layers such
that each layer is a retarded SICNN. Piecewise constant external inputs are utilized
in the first layer of this neural system to ensure the presence of chaos in the sense
of Li–Yorke. The results of the obtained chaotification process is discussed through
the generalized synchronization point of view, and the proximality and frequent
separation features are demonstrated numerically. The results of Sect. 8.2 can be
extended easily if the delay is variable and also for the case of advanced argument.
Our approach can be applied to other types of chaos such as the one analyzed through
period-doubling cascade.

Freeman and his collaborators [80–85] achieved remarkable observations and
conclusions that reveal the essentialness of deterministic chaos for the brain func-
tioning. Another hypothesis is that chaos is undesirable and it occurs in brains subject
to pathological malfunctions [41]. This also provides an interesting and consider-
able direction to the analysis of neural network problems in the chaos theory. We
suppose that Sect. 8.2 can give some contributions in both directions. The proposed
chaotification procedure indicates not only the advantage of the deterministic chaos
over random noise for the analysis, but also significant properties of self-organization
[176, 177]. Our results may be useful for the investigation of environmental inputs
of the brain both on low and high levels of organization as well as learning by
considering it as the creation of new structures (motions) in neural networks.

The brain comprises functionally specialized areas, which perform specific tasks
and have differentiated parts or structures within. These different structures have
to work together for a cerebral activity to occur. In the papers [178–180], the
authors proposed the presence of synchronization as the underlying reason for such
processes. Breakspear and Terry [98] reported the detection of generalized synchro-
nization between different brain regions by means of electroencephalogram signals.
In Sect. 8.2, we have demonstrated the presence of generalized synchronization by
means of interconnected SICNNs with delay, and our results may provide an oppor-
tunity to understand the complex structure of the brain and the rest of the nervous
system. The results of Sect. 8.2 were published in the paper [181].

In Sect. 8.3, SICNNs with fixed moments of impulses under the influence of
chaotic external inputs are considered. The description of Li–Yorke chaos for the
multidimensional dynamics of impulsive SICNNs is given. This is the first time in
the literature that discontinuous Li–Yorke chaos is rigorously approved not only for
SICNNs, but also in neuroscience. The presence of the ingredients of Li–Yorke chaos,
proximality and frequent separation, aremathematically verified. The presented tech-
nique is appropriate for impulsive SICNNs with arbitrary number of cells.
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Another novelty in Sect. 8.3 is the consideration of the impacts with the cell and
shunting principles. The advantage of the novelty is grounded to the arguments of
the studies [6, 120].

According to the presented results, it is possible to obtain arbitrarily high-
dimensional neural systems by means of the core or chain mechanisms (see
Figs. 8.11 and 8.12), as well as their combinations. We illustrated the usefulness
of our results by taking into account a neural system consisting of three SIC-
NNs in Sect. 8.3.4. It is worth noting that the obtained chaos in the neural system
(8.3.34)− (8.3.35)− (8.3.36) is controllable [33, 34, 132], and a way to control the
chaos of the neural system is to stabilize an unstable periodic solution of the SICNN
(8.3.34). For instance, the OGY [174] and Pyragas [153] control methods applied to
the logistic map can be used for this purpose. The problem of period-doubling route
to chaos [105, 106] and extension of intermittency [107] by impulsive SICNNs can
also be considered through the presented method. Moreover, our approach can be
useful for modeling secure communication systems [182–186].

The appearance of cyclic irregular behavior in neural systems was observed by
Freeman and his collaborators [84, 133]. We numerically demonstrated the presence
of near-periodic discontinuous chaotic motions of SICNNs. The obtained result can
be useful for investigations of weakly coupled impulsive neural networks. The results
of Sect. 8.3 can be found in [187].

In Sect. 8.4, we have provided theoretical arguments for the entrainment of limit
cycles and tori by chaos in neural networks by applying basic Hopfield neural net-
works. In Sect. 8.4.3, several opportunities of the chaos extension are considered
when the number of limit cycles vary, and we performed the attraction of chaotic
cycles by equilibria. These all demonstrate the potentials of our approach, which can
be realized in the theory of neural networks.

It is natural to suppose that instead of a unique limit cycle or near-limit cycle
chaos as it was the case in the experiments [80, 81, 83, 85, 133], one and the same
stimulus may cause to the presence of several such behaviors if the experiments
are performed intentionally. Our dynamical results support this idea, and they can
be developed easily in the mathematical sense (and hopefully in brain behavior
researches) for various numbers and types of stimuli as well as chaotic and regular
outputs.We suggest that not only limit cycles and near-limit cycle chaos, but also limit
tori and near-limit tori chaos can be investigated in experiments. Another possible
experimental program concerning our results is to follow the papers [49, 50, 54, 84],
where it was claimed that the memory capacity depends strongly on chaos. Loosely
speaking, complexity of behavior, its degree of irregularity, is proportional to the
memory capacity. It is obvious that to have a larger memory, we have to make chaos
more “complex”. For example, it is known that periodic solutions (unstable) are in the
basis of Li–Yorke and Devaney chaos [24, 104]. By replacing the periodic motions
with quasiperiodic or even almost periodic ones [150], we have more complex chaos.

In papers [54, 84, 133], the limit cycle appearance in the chaotic set of motions
was mentioned without an explicit indication of the reason for the phenomenon.
One can suspect that this is because of the chaos control [153, 174], that is, the
stabilization of periodic solutions. However, the control procedure uses a special
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mechanism in which the solutions are involved [153, 174]. One can suggest that
external stimuli are not controlling the cycle, but just trigger the control mechanism
in neural networks. From this point of view, we have to say that our results extend the
comprehension of the mechanism from limit cycles to tori. Moreover, we develop
the idea that the control of chaos applied to a certain neural network can be extended
to those which are adjoint with the controlled one. The extension of chaos control
may give some positive information for the synchronized behavior in large society
of neural networks to govern a motion of human body.

Another process in brain behavior that our results concern with is the synchro-
nization of neural networks. Since chaos is an attribute of neural networks and
synchronization is necessary for the effective brain work, one should say about syn-
chronization of chaos in neural networks. For the moment, the most developed one
is the generalized synchronization [67, 86, 91, 92, 96], which requests asymptotic
closeness of drive and response systems. In Sect. 8.4.2.3, it is proved by themethod of
auxiliary system approach and conditional Lyapunov exponents applied to coupled
networks (8.4.46)+ (8.4.48) that the presented method is not generalized synchro-
nization. In other words, there are not necessarily asymptotic relations between the
two networks. Moreover, our method reveals that the systems participating in the
extension of chaos are synchronized in the sense that chaos may admit similar prop-
erties such as presence of motions with the same periods, similarity of chaotic attrac-
tors and bifurcation diagrams, property to be controlled simultaneously, Shilnikov
orbits, intermittency and so on [29–31, 33, 34, 103, 134]. The results of Sect. 8.4
were published in the paper [188] and they may be useful for neurobiologists to give
more directions as well as mathematical apparatus for the future joint investigations.

Chaotic itinerancy [189] is a universal dynamics in high-dimensional systems,
showing itinerant motion among varieties of low-dimensional ordered states through
high-dimensional chaos. This phenomenon occurs in nonequilibrium neural net-
works [53] and analysis of brain activities [83]. In its degenerated form, chaotic
itinerancy relates to intermittency [107] since both of them represent dynamical
interchange of irregularity and regularity. Likewise the itinerant chaos observed in
brain activities, low-dimensional chaos occurs in our results, and high-dimensional
chaos takes placewhen all subsystems are considered as awhole. Themain difference
between our technique and chaotic itinerancy is in the elapsed time for the occur-
rence of the processes. No itinerant motion is observable in our discussions and all
resultant chaotic subsystems process simultaneously, whereas the low-dimensional
chaotic motions take place as time elapses in the case of chaotic itinerancy. The
knowledge of the chaos type is another difference between chaotic itinerancy and
our approach [29, 30, 33, 34, 103].
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Chapter 9
The Prevalence of Weather Unpredictability

It is found that Lorenz systems can be unidirectionally coupled such that the chaos
expands from the drive system. This is true if the response system is not chaotic,
but admits a global attractor—an equilibrium or a cycle. Lorenz in his genius study
explains the unpredictability for a regional weather and considered the phenomenon
also globally. Wemake an effort to provide a mechanism which may help understand
the lack ofweather forecasting better on the basis of Lorenz systems. Our suggestions
concern an application of meteorological regional models.

9.1 Introduction

Significant investigations for weather forecasting in the history started with the
numerical studies of Richardson [1]. The first successful numerical weather fore-
cast was announced by Charney et al. [2]. They proposed a method for the numerical
solution of barotropic vorticity equation over a limited area of the Earth’s surface.
Although this oversimplified model was unable to describe the baroclinic instability
process, one can say that their study gave a light for the future applied computer
modelings for weather forecasting. A fairly realistic atmospheric circulation was
deduced in the study [3], which deals with the essential aspect of nonlinear interac-
tions through the analysis of a simple set of equations, that is, low-order models.

In the zero-dimensional modelings of the atmosphere, one essentially attempts to
follow the evolution of global surface-air temperature as a result of changes in global
radiative balance [4–6], where dimension refers to the number of independent space
variables that are used to describe themodel domain, that is, to physical-space dimen-
sions [7]. On the other hand, there are two kinds of one-dimensional atmospheric
models, for which the single spatial variable is latitude or height. The former are
called energy-balance models [8, 9], while the models in which the details of radia-
tive equilibrium are investigated with respect to a height coordinate are named as
radiative-convectivemodels [10–12], since convection plays a key role in vertical heat
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transfer. Considering the third space coordinate that is not explicitly included, two-
dimensional atmospheric models can also be characterized mainly in two classes—
models that resolve explicitly two horizontal coordinates [13–16] or explicitly a
meridional coordinate and height [17–19]. Another class of two-dimensional mod-
els can be considered as the extension of energy-balance models to resolve zonal
and meridional surface features [20–22]. Nowadays, the modeling of the atmosphere
continues to be a remarkable research area for scientists [23–25].

In his famous study, to investigate the dynamics of the atmosphere, Lorenz [26]
built a mathematical model consisting of a system of three differential equations in
the following form

dx1
dt

= −σ x1 + σ x2

dx2
dt

= −x1x3 + r x1 − x2

dx3
dt

= x1x2 − bx3,

(9.1.1)

where σ, r , and b are constants.
System (9.1.1) is a simplification of a model, derived by Saltzman [27], to study

finite amplitude convection. The studies of Saltzman originate from the Rayleigh–
Bénard convection which describes heat flow through a fluid, like air or water. In
this modeling, one considers a fluid between two horizontal plates where the gravity
is assumed to be in the downward direction and the temperature of the lower plate
is maintained at a higher value than the temperature of the upper one. Rayleigh
[28] found that if the temperature difference is kept at a constant value, then the
system possesses a steady-state solution in which there is no motion and convection
should take place if this solution becomes unstable. In other words, depending on the
temperature difference between the plates, heat can be transferred by conduction or
by convection. Assuming variations in only x1 − x3 plane, Saltzman [27] considered
the equations

∂

∂t
∇2ψ + ∂

(

ψ,∇2ψ
)

∂(x1, x3)
− gε

∂θ

∂x1
− ν∇4ψ = 0

∂θ

∂t
+ ∂ (ψ, θ)

∂(x1, x3)
− ΔT0

H

∂ψ

∂x1
− κ∇2θ = 0,

(9.1.2)

where ψ is a stream function for the two-dimensional motion, θ is the departure
of temperature from that occurring in the state of no convection and the constants
ΔT0, H, g, ε, ν, and κ denote, respectively, the temperature contrast between the
lower andupper boundaries of thefluid, the height of thefluid under consideration, the
acceleration of gravity, the coefficient of thermal expansion, the kinematic viscosity,
and the thermal conductivity [26, 27]. In his study, Saltzman [27] achieved an infinite
system by means of applying Fourier series methods to system (9.1.2), and then used
the simplification procedure proposed by Lorenz [29] to obtain a system with finite
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Fig. 9.1 The chaotic
trajectory of system (9.1.1)
with σ = 10, r = 28 and
b = 8/3
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number of terms. Lorenz [26] sets all but three Fourier coefficients equal to zero and
as a consequence attained system (9.1.1), which describes an idealized model of a
fluid.

In system (9.1.1), the variable x1 is proportional to the circulatory fluid flow veloc-
ity, while the variable x2 is proportional to the temperature difference between the
ascending and descending currents. Positive x1 values indicate clockwise rotations
of the fluid and negative x1 values mean counterclockwise motions. The variable x3,
on the other hand, is proportional to the distortion of the vertical temperature profile
from linearity, a positive value indicating that the strongest gradients occur near the
boundaries. The parameters σ and r are called the Prandtl and Rayleigh numbers,
respectively [26, 30, 31].

The dynamics of the Lorenz system (9.1.1) is very rich. For instance,with different
values of the parameters σ, r , and b, the system can exhibit stable periodic orbits,
homoclinic explosions, period-doubling bifurcations, and chaotic attractors [31].
Figure9.1 depicts the chaotic trajectory of system (9.1.1) with σ = 10, r = 28,
and b = 8/3 corresponding to the initial data x1(0) = −12.89, x2(0) = −8.91,
x3(0) = 36.59.

According to Lorenz [32], the butterfly effect is possible and he understands this
phenomenon as a positive answer to the following question: “Does the flap of a
butterfly’s wings in Brazil set off a tornado in Texas?” From this question one can
immediately decide that the butterfly effect is a global phenomenon, and consequently,
the underlying mathematics of the globalization has to be investigated. This is what
we do in the present chapter. Lorenz was the first who discovered sensitivity with the
aid of system (9.1.1) and thenmade the conclusionon the effect.Nowadays, there is an
agreement that the butterfly effect exists, if wemean sensitivity=unpredictability, but
the tornado caused by a butterfly’s flap is questionable. It seems that Lorenz himself
believed that sensitivity discovered in his equation is a strong indicator of the butterfly
effect in its original meteorological sense. Possibly his intuition is based on the idea
that the system of ordinary differential equations is derived from a system of partial
differential equations. There should be a deeper interpretation for the effect of chaotic
dynamics in the three-dimensional system on the infinite-dimensional one. We also
believe that the opinion of Lorenz, who considered his results as an evidence of the
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meteorological butterfly effect (tornado), is very reasonable. Moreover, his claim
has to be considered as a challenging problem for mathematicians. Apparently, we
are only in the beginning of the answer of the Lorenz’s question, and if one thinks
positively on the subject, then by our opinion several next questions emerge.

The first one is whether sensitivity in meteorological models is a reflection of the
butterfly effect. Definitely, this question needs a thorough investigation. Possibly it
requests a deep analysis on the basis of ordinary and partial differential equations. The
problem is not solved in this chapter at all. We axiomatize somehow the state assum-
ing that the butterfly effect is sensitivity in mathematical sense or, more generally,
chaos. We can also reduce the question by considering the problem of unpredictabil-
ity through sensitivity. Consequently, the following questions are reasonable: Can
one explain the global unpredictability of weather by applying models similar to the
Lorenz system? How Lorenz systems can be utilized for a global description of the
weather? These and adjoint questions are on the agenda.

The physical properties of the atmosphere are not the same throughout the Earth.
The tropical atmosphere possesses considerably a different behavior from those in
the temperate and polar latitudes, as if it was a different fluid [32]. Taking inspiration
from its multifaceted structure, we propose to consider that the atmosphere divided
into subregions such that the dynamic properties of each region differ considerably
from the others. In this case, we suppose that the dynamics of each subregion of
the atmosphere subjects to its own Lorenz system. That is, for different subregions,
the coefficients of the corresponding Lorenz system are different. Since for some
parameter values, chaos can take place in the Lorenz system and for some not; such
chaotic or non-chaotic motions should have prolonged forever, conflicting the realis-
tic dynamics of the atmosphere, where global unpredictability is present. To extend
our attitude for the butterfly effect, we propose that instability, which may occur in
a subregion, can be imported to neighbor subregions of the atmosphere, such that
chaos occurs not only endogenously, but also exogenously. In other words, exterior
perturbations influencing a part of the atmosphere may cause a chaotic behavior to
occur in that region. In addition to this, we suppose that these perturbations most
probably originate through the neighboring regions within the atmosphere, and the
dynamics of the connected Lorenz systems help analyze this. We understand that our
results give a light only on one among many questions how the weather processes
have to be described through mathematical models. For example, in our discussion,
we consider unidirectional connection of subsystems which is not true in reality. The
question whether the overlapping of two chaotic dynamics may produce regularity
can also be considered in future investigations. We guess that it is not possible, but
an analysis has to be made. One can also investigate synchronization of chaos in
neighbor regions, etc. Nevertheless, we issue from the point of view that what we
have done is a onemore small step in themathematical approach to the complexity of
the weather. This is not a modeling of the atmosphere, but rather an effort to explain
how the weather unpredictability can be arranged over the Earth on the basis of the
Lorenz’s meteorological model. In fact, this is also true for other meteorological
models, since mathematical properties of stability, attraction, and chaos attractors
are common for all models.
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Although we are in the beginning of the theory, we suppose that our rigorously
approved idea for the global unpredictability and for the extension of chaotic behav-
ior from one Lorenz system to another will give a light for the justification of the
erratic behavior observed in dynamical systems of meteorology. Generally, analysis
of chaotic dynamics in atmospheric models is rather numerical [33–37] or depends
on the observation of time-series [38, 39].

There are many published papers which have results about chaos considering first
of all its mathematical meaning. This is true either for differential equations [40,
41] or data analysis [42]. Apparently, there are still few articles with meteorological
interpretation of chaos ingredients. In this chapter, the main attention is given to
global chaos over the Earth in its mathematical sense. Moreover, what is not less
important is the discussion of the chaos presence as unpredictability of the weather,
which is the reflection of sensitivity in the chaos definition. Thus, not only the readers
who are interested in the strong mathematical basics of global chaos, but also the
ones who are looking for an evidence of unpredictability of weather as a global
phenomenon may find their interests in the present chapter.

The appearance of chaos in differential/discrete equations may be either endoge-
nous or exogenous. As the first type of chaos birth, one can take into account the
irregular motions that occur in Lorenz, Rössler, Chua systems, the logistic map,
Duffing and Van der Pol equations [43–48]. To indicate the endogenous irregularity,
we use (i) ingredients of Devaney and Li-Yorke chaos, (ii) period-doubling route to
chaos, (iii) intermittency, and (iv) positive Lyapunov exponents. Symbolic dynam-
ics and Smale horseshoes were widely used for that purpose [41, 44, 46, 49–53].
While the endogenous chaos production is widespread and historically unique, the
exogenous chaos as generated by irregular perturbations has not been intensively
investigated yet. In the present chapter, we will appeal to endogenous chaos, but
mostly to exogenous chaos.

The assumptions used in this chapter are as follows:

(i) The whole atmosphere of the Earth is partitioned in a finite number of subre-
gions.

(ii) In each of the subregions, the dynamics of theweather is governed by theLorenz
system with certain coefficients.

(iii) There are subregions forwhich the correspondingLorenz systems admit a chaos
with main ingredient as sensitivity, which means unpredictability of weather in
the meteorological sense and there are subregions, where Lorenz systems are
non-chaotic and with equilibriums or cycles as global attractors.

(iv) The Lorenz systems are connected unidirectionally.

The main goal of this chapter is to show that under conditions (i)–(iv) not only
regions mentioned in (iii) are subdued to unpredictability, but the Earth’s global
weather also is unpredictable, that is in each of its subregions.

The principal novelty of our investigation is that we create exogenous chaotic
perturbations by means of the solutions of a chaotic Lorenz system, plug it into a
regular Lorenz system, and find that chaos is inherited by the solutions of the latter.
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Such an approach has been widely used for differential equations before, but for
regular disturbance functions. That is, it has been shown that an (almost) periodic
perturbation function implies the existence of an (almost) periodic solution of the
system. While the literature on chaos synchronization [54–61] has also produced
methods of generating chaos in a system by plugging in terms that are chaotic, it
relies on the asymptotic convergence between the chaotic exogenous terms and the
solution of the response system for the proof of chaos creation. Instead, we provide
a direct verification of the ingredients of chaos for the perturbed system [62–70].
Moreover, in Sect. 9.5 we represent the appearance of cyclic chaos, which cannot be
reduced to generalized synchronization. Very interesting examples of applications of
discrete dynamics to continuous chaos analysis were provided in the papers [71–74].
In these studies, the general technique of dynamical synthesis [71] was developed,
and this technique was used in the paper [65].

9.2 Coupling Mechanism for Unpredictability

In order to describe the chaos expansion, let us localize the global process by taking
into account only two adjacent subregions of the atmosphere, labeled A and B. In
the beginning, the subregion A is assumed to be chaotic, while the subregion B is
non-chaotic. By the phrase “chaotic subregion,” we mean that the coefficients of the
corresponding Lorenz system are such that the system possesses a chaotic attractor.
In a similar way, one should understand from the phrase “non-chaotic subregion”
that the corresponding Lorenz system does not exhibit chaotic motions such that it
admits a global asymptotically stable equilibrium or a globally attracting limit cycle.

In our discussion, we couple the Lorenz systems corresponding to subregions A
and B unidirectionally such that the existing chaos propagates from one to another.
We suppose that the dynamics of the subregion A is described by the Lorenz system
(9.1.1) in which the coefficients σ, r , and b are chosen in such a way that the system
is chaotic. In addition to this, we consider the Lorenz system

du1

dt
= −σu1 + σu2

du2

dt
= −u1u3 + ru1 − u2

du3

dt
= u1u2 − bu3,

(9.2.3)

where the parameters σ , r , and b are such that the system is non-chaotic. To actualize
the chaos transmission process,we perturb system (9.2.3)with the solutions of (9.1.1)
to set up the system
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Fig. 9.2 Schematic representation of the chaos extension mechanism. a The dynamics during the
transmission of chaos, b The state of the weather after the transmission of chaos. The unidirectional
coupling of Lorenz systems gives rise to the chaotification of the initially non-chaotic system such
that as a result the unpredictability has been propagated from subregion A to subregion B

dy1
dt

= −σ y1 + σ y2 + g1(x(t))

dy2
dt

= −y1y3 + r y1 − y2 + g2(x(t))

dy3
dt

= y1y2 − by3 + g3(x(t)),

(9.2.4)

where x(t) = (x1(t), x2(t), x3(t)). The conditions on the continuous function
g(x) = (g1(x), g2(x), g3(x)) will be mentioned in Sect. 9.8. System (9.2.4) repre-
sents the dynamics of the subregionB after the transmission of chaos,whereas system
(9.2.3) represents the dynamics before the process is carried out. The propagation
mechanism is represented schematically in Fig. 9.2. By chaos propagation, we mean
the process of unidirectional coupling of Lorenz systems. Figure9.2a illustrates the
dynamics during the transmission of chaos. After the transmission of unpredictabil-
ity is achieved, the dynamics of both subregions, A and B, exhibit chaotic behavior
as shown in Fig. 9.2b.

It is worth noting that the mentioned local process can be maintained by consid-
ering more subregions, whose dynamics are also described by Lorenz systems.

9.3 Extension of Lorenz Unpredictability

To demonstrate the extension of sensitivity, we will show numerically on an example
that the divergence of two nearby solutions in the driving chaotic Lorenz system
(9.1.1) leads to the presence of the same feature in system (9.2.4). Additionally, we
will apply our method on a third Lorenz system, in order to show the maintainability
of the process. The mathematical description of sensitivity and a theoretical proof
for its extension are presented in Sect. 9.8.
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Fig. 9.3 Sensitivity in the
Lorenz system (9.3.5). The
figure represents the
divergence of two initially
nearby trajectories of system
(9.3.5), which are shown in
blue and red colors
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Let us begin by considering the chaotic system [26]

dx1
dt

= −10x1 + 10x2

dx2
dt

= −x1x3 + 28x1 − x2

dx3
dt

= x1x2 − (8/3)x3,

(9.3.5)

which is in the form of (9.1.1) with the coefficients σ = 10, r = 28 and b = 8/3. To
observe sensitivity of system (9.3.5), in Fig. 9.3, we represent two initially nearby
trajectories for t ∈ [0, 3], corresponding to the initial data x1(0) = −8.57, x2(0) =
−2.39, x3(0) = 33.08, and x1(0) = −8.53, x2(0) = −2.47, x3(0) = 33.05 which
are shown in blue and red colors, respectively.

Next, we take into account the Lorenz system

du1

dt
= −10u1 + 10u2

du2

dt
= −u1u3 + 0.35u1 − u2

du3

dt
= u1u2 − (8/3)u3,

(9.3.6)

which possesses a stable equilibrium point [31].We perturb (9.3.6) with the solutions
of (9.3.5) to set up the following system:

dy1
dt

= −10y1 + 10y2 + 0.3x1(t) − 0.15 sin (x1(t))

dy2
dt

= −y1y3 + 0.35y1 − y2 + 1.6x2(t)

dy3
dt

= y1y2 − (8/3)y3 + 0.1 tan(x3(t)/65).

(9.3.7)
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Fig. 9.4 Extension of
sensitivity in system (9.3.7).
The divergence of the
initially nearby solutions of
system (9.3.7) is observable
in the figure
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System (9.3.7) is in the form of (9.2.4) with σ = 10, r = 0.35, b = 8/3, g1(x(t)) =
0.3x1(t)− 0.15 sin (x1(t)) , g2(x(t)) = 1.6x2(t), and g3(x(t)) = 0.1 tan(x3(t)/65).

The applied perturbations may not be in accordance with realistic air flows in the
atmosphere.However, the exemplification reveals the propagation of unpredictability
and indicate the possibility for the usage of different types of perturbations in the
systems. Wemake use of “toy” perturbations because of the lack of preexisting ones,
which should be found through experimental investigations.

To reveal numerically the extension of sensitivity in system (9.3.7), we represent
in Fig. 9.4 the projections of two initially nearby trajectories of the unidirectionally
coupled system (9.3.5)+ (9.3.7) on the y1−y2−y3 space for t ∈ [0, 3].The trajectory
with blue color corresponds to the initial data x1(0) = −8.57, x2(0) = −2.39,
x3(0) = 33.08, y1(0) = 3.91, y2(0) = 1.86, y3(0) = 4.39, and the one with red
color corresponds to the initial data x1(0) = −8.53, x2(0) = −2.47, x3(0) = 33.05,
y1(0) = 3.91, y2(0) = 1.87, y3(0) = 4.40. The divergence of the initially nearby
trajectories seen in Fig. 9.4 manifests the sensitivity feature in system (9.3.7).

Now, we consider the system

dz1
dt

= −10z1 + 10z2 + 12y1(t)

dz2
dt

= −z1z3 + 0.1z1 − z2 + 20[y2(t) + 2 arctan(y2(t)/5)]
dz3
dt

= z1z2 − (8/3)z3 − 8y3(t).

(9.3.8)

System (9.3.8) is also in the form of (9.2.4), but this time the perturbations
h1(y(t)) = 12y1(t), h2(y(t)) = 20[y2(t) + 2 arctan(y2(t)/5)] and h3(y(t)) =
−8y3(t) are provided by the solutions of system (9.3.7).

Figure9.5 shows the projections of two trajectories, which are initially nearby, of
the 9-dimensional system (9.3.5)+ (9.3.7)+ (9.3.8) on the z1 − z2 − z3 space. The
trajectory with blue color has the initial data x1(0) = −8.57, x2(0) = −2.39,
x3(0) = 33.08, y1(0) = 3.91, y2(0) = 1.86, y3(0) = 4.39, z1(0) = 6.92,
z2(0) = −6.18, z3(0) = 10.48, whereas the one with red color has the initial data
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Fig. 9.5 Extension of sensitivity in system (9.3.8)
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Fig. 9.6 3-dimensional projections of the chaotic trajectory of system (9.3.5)+ (9.3.7)+ (9.3.8).
a The projection on the y1 − y2 − y3 space. b The projection on the z1 − z2 − z3 space. The
picture represented in (a) illustrates the chaotic trajectory of the perturbed Lorenz system (9.3.7),
while the picture in (b) corresponds to the perturbed Lorenz system (9.3.8). The projection on the
x1 − x2 − x3 space is the classical Lorenz attractor corresponding to system (9.3.5). The pictures
represented in (a) and (b) confirm both the extension of chaos and the existence of a chaotic attractor
in the 9-dimensional phase space

x1(0) = −8.53, x2(0) = −2.47, x3(0) = 33.05, y1(0) = 3.91, y2(0) = 1.87,
y3(0) = 4.40, z1(0) = 6.89, z2(0) = −6.18, z3(0) = 10.47.The utilized time inter-
val is the same with Figs. 9.3 and 9.4. It is seen in Fig. 9.5 that although the depicted
trajectories are initially nearby, later they diverge from each other. In other words, it
is demonstrated that the sensitivity of system (9.3.7) is extended to (9.3.8).Moreover,
one can conclude from the simulations that the system (9.3.5)+ (9.3.7)+ (9.3.8) is
also sensitive.

In the next simulation, the trajectory of system (9.3.5)+ (9.3.7)+ (9.3.8) with
x1(0) = −12.89, x2(0) = −8.91, x3(0) = 36.59, y1(0) = −4.21, y2(0) = −4.96,
y3(0) = 3.07, z1(0) = −14.06, z2(0) = −8.38, z3(0) = 16.93 is considered. The
3-dimensional projections of the trajectory on the y1− y2− y3 and z1−z2−z3 spaces
are depicted in Fig. 9.6. Both of the pictures represented in Fig. 9.6a and b manifest
not only the chaos extension but also the existence of a chaotic attractor in the 9-
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dimensional phase space. It is worth noting that the projection on the x1 − x2 − x3
space is the classical Lorenz attractor, which is shown in Fig. 9.1.

To illustrate the extension of chaos in large collections of interconnected Lorenz
systems, let us introduce the following 27-dimensional system consisting of the
subsystems S1, S2, . . . , S9 :

dx1
dt

= −10x1 + 10x2

dx2
dt

= −x1x3 + 28x1 − x2

dx3
dt

= x1x2 − (8/3)x3

⎫

⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

S1

dy1
dt

= −10y1 + 10y2 + 8x1(t)

dy2
dt

= −y1y3 + 0.21y1 − y2 + x2(t) + 0.001x32 (t)

dy3
dt

= y1y2 − (8/3)y3 + 2x3(t)

⎫

⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

S2

dz1
dt

= −10z1 + 10z2 + 4x2(t)

dz2
dt

= −z1z3 + 0.02z1 − z2 + 3x3(t)

dz3
dt

= z1z2 − (8/3)z3 + x1(t) + 0.1 cos(x1(t))

⎫

⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

S3

dw1

dt
= −10w1 + 10w2 − x1(t)

dw2

dt
= −w1w3 + 0.34w1 − w2 + 4 tanh(x2(t))

dw3

dt
= w1w2 − (8/3)w3 − 5x3(t)

⎫

⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

S4

dζ1

dt
= −10ζ1 + 10ζ2 + tan(y1(t)/20)

dζ2

dt
= −ζ1ζ3 + 0.12ζ1 − ζ2 + 2.5y2(t)

dζ3

dt
= ζ1ζ2 − (8/3)ζ3 − 10y3(t)

⎫

⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

S5
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dη1

dt
= −10η1 + 10η2 + 8y1(t)

dη2

dt
= −η1η3 + 0.29η1 − η2 + 4.5y3(t)

dη3

dt
= η1η2 − (8/3)η3 − ey2(t)/30

⎫

⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

S6

dκ1

dt
= −10κ1 + 10κ2 + 4z1(t)

dκ2

dt
= −κ1κ3 + 0.19κ1 − κ2 + 9z2(t)

dκ3

dt
= κ1κ2 − (8/3)κ3 + 6z3(t)

⎫

⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

S7

dρ1

dt
= −10ρ1 + 10ρ2 + 4w1(t)

dρ2

dt
= −ρ1ρ3 + 0.17ρ1 − ρ2 + 7w2(t)

dρ3

dt
= ρ1ρ2 − (8/3)ρ3 − 3 tanh(w3(t))

⎫

⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

S8

dτ1

dt
= −10τ1 + 10τ2 + arctan(w1(t))

dτ2

dt
= −τ1τ3 + 0.32τ1 − τ2 + 9w2(t)

dτ3

dt
= τ1τ2 − (8/3)τ3 + w3(t).

⎫

⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

S9

The coefficients of S1 are chosen in such a way that the system is chaotic [26].
The systems S2, S3, . . . , S9 are designed such that if the corresponding perturbations
x(t), y(t), z(t), w(t) are chaotic, then the systems possess chaos. However, in the
absence of the perturbations, S2, S3, . . . , S9 admit stable equilibria and they are all
non-chaotic. The connection topology of the systems S1, S2, . . . , S9 is represented
in Fig. 9.7. On the other hand, Fig. 9.8 depicts the chaotic attractors corresponding
the each Si , i = 1, 2, . . . , 9, such that collectively the picture can be considered
as the chaotic attractor of the whole 27-dimensional system. One can confirm that
Fig. 9.8 supports our ideas such that the chaos of S1 generates chaos in the remaining
subsystems even if they are non-chaotic in the absence of the perturbations.

We shall continue in the next section by the extension of chaos obtained through
period-doubling cascade.
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Fig. 9.7 The topology of the
unpredictability extension
through Lorenz systems
S1, S2, . . . , S9

Fig. 9.8 The chaotic
attractors of the Lorenz
systems S1, S2, . . . , S9, an
illustration of the butterfly
effect

9.4 Period-Doubling Cascade

Consider the Lorenz system [31, 75]

dx1
dt

= −10x1 + 10x2

dx2
dt

= −x1x3 + r x1 − x2

dx3
dt

= x1x2 − (8/3)x3,

(9.4.9)

where r is a parameter.
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For the values of r between 99.98 and 100.795, system (9.4.9) possesses two
symmetric stable periodic orbits such that one of them spirals round twice in x1 > 0
and once in x1 < 0, whereas another spirals round twice in x1 < 0 and once in
x1 > 0. The book [31] calls such periodic orbits as x2y and y2x, respectively. That
is, “x” is written every time when the orbit spirals round in x1 > 0, while “y” is
written every time when it spirals round in x1 < 0. As r decreases towards 99.98,
a period-doubling bifurcation occurs in the system such that two new symmetric
stable periodic orbits (x2yx2y and y2xy2x) appear and the previous periodic orbits
lose their stability [31, 75]. According to Franceschini [75], system (9.4.9) undergoes
infinitelymany period-doubling bifurcations at the parameter values 99.547, 99.529,
99.5255, and so on. The sequence of bifurcation parameter values accumulates at
r∞ = 99.524. For values of r smaller than r∞ infinitely many unstable periodic
orbits take place in the dynamics of system (9.4.9) [31, 75].

To extend the period-doubling cascade of (9.4.9), we perturb the system

du1

dt
= −10u1 + 10u2

du2

dt
= −u1u3 + 0.27u1 − u2

du3

dt
= u1u2 − (8/3)u3

(9.4.10)

with the solutions of (9.4.9), and set up the system

dy1
dt

= −10y1 + 10y2 + 1.8x1(t)

dy2
dt

= −y1y3 + 0.27y1 − y2 + x2(t)

dy3
dt

= y1y2 − (8/3)y3 + 0.3x3(t).

(9.4.11)

Using Theorem 15.8 [76], one can verify that for each periodic x(t), system
(9.4.11) admits a periodic solution with the same period.

In Fig. 9.9, we represent the stable periodic orbits of systems (9.4.9) and (9.4.11).
Figure9.9a shows the y2x periodic orbit of system (9.4.9) for r = 100.36, while
Fig. 9.9b depicts the corresponding periodic orbit of system (9.4.11). Similarly,
Fig. 9.9c and d represent the y2xy2x periodic orbit of system (9.4.9) with r = 99.74
and the corresponding periodic orbit of system (9.4.11), respectively.

Now, we demonstrate the extension of period-doubling cascade in Fig. 9.10. The
projection of the trajectory of system (9.4.9) with r = 99.51 corresponding to the
initial data x1(0) = 10.58, x2(0) = 28.19, x3(0) = 53.32 on the x1 − x3 plane
is shown in Fig. 9.10a. Making use of the initial data y1(0) = 2.23, y2(0) = 1.26,
y3(0) = 9.64, the projection of the corresponding trajectory of system (9.4.11)
on the y1 − y3 plane is depicted in Fig. 9.10b. Moreover, the irregular behavior of
the y3 coordinate over time is illustrated in Fig. 9.11. The simulation results reveal
that the period-doubling cascade of system (9.4.9) is extended to system (9.4.11).
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Fig. 9.9 The stable periodic orbits of systems (9.4.9) and (9.4.11)
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Fig. 9.10 Extension of period-doubling cascade in the unidirectionally coupled Lorenz systems
(9.4.9)+ (9.4.11)
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Fig. 9.11 The irregular behavior of the y3 coordinate of system (9.4.11) with r = 99.51

A theoretical investigation of the extension of period-doubling cascade is provided
in Sect. 9.8.

For some parameter values, the Lorenz system can exhibit limit cycles [31]. In the
next section, we will consider the Lorenz system (9.2.3) with a globally attracting
limit cycle and verify numerically how to achieve a motion that behaves chaotically
and cyclically in the same time.
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9.5 Cyclic Chaos in Lorenz Systems

In our previous illustrations, we considered system (9.2.3) with a stable equilibrium
point. Now, we shall consider the model with a limit cycle. The numerical simu-
lations represented in this part are theoretically based on the paper [70] in which
the main result is about the existence of infinitely many unstable periodic solutions
and extension of sensitivity, which is understood as unpredictability for weather
investigation.

According to Sparrow [31], the Lorenz system

du1

dt
= −10u1 + 10u2

du2

dt
= −u1u3 + 350u1 − u2

du3

dt
= u1u2 − (8/3)u3

(9.5.12)

possesses a globally attracting limit cycle. We perturb system (9.5.12) with the solu-
tions of (9.3.5), and set up the following system:

dy1
dt

= −10y1 + 10y2 + 2.3x1(t)

dy2
dt

= −y1y3 + 350y1 − y2 + 2x2(t)

dy3
dt

= y1y2 − (8/3)y3 + 1.5x3(t).

(9.5.13)

Making use of the solution of system (9.3.5) with x1(0) = 5.71, x2(0) = 9.01,
x3(0) = 17.06, we depict the trajectory of (9.5.13) corresponding to the initial data
y1(0) = −21.67, y2(0) = 34.33, y3(0) = 346.38 in Fig. 9.12a. The projection of
the same trajectory on the y1 − y2 plane is shown in Fig. 9.12b. Both figures reveal
that the trajectory behaves chaotically around the limit cycle of (9.5.12).

To confirm one more time that the considered trajectory is essentially chaotic, the
graph of the y2 coordinate of system (9.5.13) is illustrated in Fig. 9.13.

Although the system (9.5.12) possesses a globally attracting limit cycle, the sim-
ulations seen in Figs. 9.12 and 9.13 indicate that the applied perturbation makes the
system behave chaotically. In other words, chaotic behavior is seized by the limit
cycle of system (9.5.12) and as a result a motion which behaves both chaotically and
cyclically appears.

To make comparison of our approach with that of generalized synchronization
[54–56, 58, 61], let us apply the auxiliary system approach [54, 55] to the couple
(9.3.5)+ (9.5.13).
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Fig. 9.12 The projections of the chaotic trajectory produced by the coupled system
(9.3.5)+ (9.5.13). a The 3-dimensional projection on the y1 − y2 − y3 space; b The 2-dimensional
projection on the y1 − y2 plane. The pictures in (a) and (b) represent a motion which behaves both
chaotically and cyclically around the stable limit cycle of system (9.5.12)
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Fig. 9.13 The time-series for the y2-coordinate of system (9.5.13). The picture confirms the chaotic
behavior of the motion. The remaining coordinates of system (9.5.13), which are not just pictured
here, behave also chaotically

The corresponding auxiliary system is

dz1
dt

= −10z1 + 10z2 + 2.3x1(t)

dz2
dt

= −z1z3 + 350z1 − y2 + 2x2(t)

dz3
dt

= z1z2 − (8/3)z3 + 1.5x3(t).

(9.5.14)

The projection of the stroboscopic plot of the 9-dimensional system (9.3.5)+
(9.5.13)+ (9.5.14) on the y2−z2 plane is depicted in Fig. 9.14. The figure is obtained
by marking the trajectory with the initial data x1(0) = 5.71, x2(0) = 9.01, x3(0) =
17.06, y1(0) = −21.67, y2(0) = 34.33, y3(0) = 346.38, z1(0) = −46.26, z2(0) =
−49.73, z3(0) = 415.87, and by omitting the first 200 iterations. It is observable in
Fig. 9.14 that the stroboscopic plot is not on the line z2 = y2. Therefore, we conclude
that generalized synchronization does not take place in the dynamics of the couple
(9.3.5)+ (9.5.13).
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Fig. 9.14 Application of the
auxiliary system approach to
system (9.3.5)+ (9.5.13)
indicates that generalized
synchronization does not
exist for the couple
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Another approach to investigate the presence or absence of generalized synchro-

nization is the evaluation of conditional Lyapunov exponents [55, 58, 60].
To determine the conditional Lyapunov exponents, we take into account the fol-

lowing variational equations for system (9.5.13):

dξ1

dt
= −10ξ1 + 10ξ2

dξ2

dt
= (−y3(t) + 350)ξ1 − ξ2 − y1(t)ξ3

dξ3

dt
= y2(t)ξ1 + y1(t)ξ2 − (8/3)ξ3.

(9.5.15)

Using the solution y(t) of system (9.5.13) corresponding to the initial data x1(0) =
5.71, x2(0) = 9.01, x3(0) = 17.06, y1(0) = −21.67, y2(0) = 34.33, y3(0) =
346.38, we evaluated the largest Lyapunov exponent of system (9.5.15) as 0.0226.
That is, system (9.5.13) possesses a positive conditional Lyapunov exponent, and
this result reveals one more time the absence of generalized synchronization.

In the next part, we will continue with the extension of intermittency.

9.6 Intermittency in the Weather Dynamics

Pomeau and Manneville [52] observed intermittency in the Lorenz system

dx1
dt

= −10x1 + 10x2

dx2
dt

= −x1x3 + r x1 − x2

dx3
dt

= x1x2 − (8/3)x3,

(9.6.16)

where r is slightly larger than the critical value rc ≈ 166.06.
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Fig. 9.15 Intermittency in the Lorenz system (9.6.16) with r = 166.3. a The graph of the x1
coordinate. b The graph of the x2 coordinate. c The graph of the x3 coordinate

To illustrate the intermittent behavior of system (9.6.16) with r = 166.3, let us
consider the solution corresponding to the initial data x1(0) = −23.3, x2(0) = 38.3,
x3(0) = 193.4.The graphs of the x1, x2, and x3 coordinates of the solution are shown
in Fig. 9.15, where one can see that regular oscillations are interrupted by irregular
ones.

Now, we use solutions of (9.6.16) with r = 166.3 to perturb system (9.2.3), where
σ = 10, r = 0.35, b = 8/3, and constitute the following system:

dy1
dt

= −10y1 + 10y2 + 0.7x1(t)

dy2
dt

= −y1y3 + 0.35y1 − y2 − x2(t)

dy3
dt

= y1y2 − (8/3)y3 + 0.2x3(t).

(9.6.17)

The graphs of the y1, y2, and y3 coordinates of system (9.6.17) are represented in
Fig. 9.16. The initial data x1(0) = −23.3, x2(0) = 38.3, x3(0) = 193.4, y1(0) =
1.3, y2(0) = 5.5, y3(0) = 12.1 are used in the simulation. It is revealed in Fig. 9.16
that the intermittent behavior of the prior Lorenz system is extended.

9.7 Self-Organization and Synergetics

We have to say that the idea of the transition of chaos from one system to another
as well as the arrangement of chaos in an ordered way can be considered as another
level of self-organization [77, 78]. Durrenmatt [79] described that “... a system is
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Fig. 9.16 Extension of intermittency in system (9.6.17). The behaviors of the y1, y2, and y3 coordi-
nates are shown in pictures (a), (b) and (c), respectively. The extension of the intermittent behavior
is observable such that regular motions are interrupted by irregular ones

self-organizing if it acquires a spatial, temporal or functional structure without spe-
cific interference from the outside. By “specific” we mean that the structure of func-
tioning is not impressed on the system, but the system is acted upon from the outside
in a nonspecific fashion.” There are three approaches to self-organization, namely
thermodynamic (dissipative structures), synergetic, and the autowave. For the theory
of dynamical systems (e.g., differential equations), the phenomenon means that an
autonomous system of equations admits a regular and stable motion (periodic, quasi-
periodic, almost periodic). This is what in the literature is called autowaves processes
[80] or self-excited oscillations [81]. We are inclined to add to the list another phe-
nomenon, which is a consequence of the butterfly effect. Consider the collection of
subsystems, S1, S2, . . . , S9, (the number 9 can be replaced by any natural number n0,

in general) which is introduced in Sect. 9.3 once again. Because of the connections
and the conditions discovered in our analysis, likewise S1 all the other subsystems,
Si , i = 2, 3, . . . , 9, are also chaotic. We suppose that this is a self-organization.
This phenomenon can be restricted only for autonomous systems or it can be even
interpreted for non-autonomous systems, too. So, we can say that the butterfly effect
is an example of self-organization, that is a coherent behavior of a large number of
systems [77].

In his fascinating paper, the German theoretical physicist Haken [77] introduced
a new interdisciplinary field of science, synergetics, which deals with the origins
and the evolution of spatio-temporal structures. The profound part of synergetics is
based on the dynamical systems theory. Depending on the discussion of the present
chapter, it is natural that we concentrate on the differential equations, and everything
that will be said below about synergetics concerns first of all dynamical systems with
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mathematical approach. One of the main features of systems in synergetics is self-
organization,which has been discussed above, andwe approved that the phenomenon
is present in the butterfly effect. According to Haken [77], the central question in
synergetics is whether there are general principles which govern the self-organized
formation of structures and/or functions. The main principles by the founder of the
theory are instability, order parameters, and slaving [77]. Instability is understood
as the formation or collapse of structures (patterns). This is very common in fluid
dynamics, lasers, chemistry, and biology [77, 82–85]. A number of examples of
instability can be found in the literature about morphogenesis [86] and the pattern
formation examples can be found in fluid dynamics. The phenomenon is called
as instability because the former state of fluid transforms to a new one, loses its
ability to persist, and becomes unstable. We see instability in the butterfly effect, as
consecutive chaotification of systems S2, S3, ... joined to the source S1 of chaos. The
concepts of the order parameter and slaving are strongly connected in synergetics. For
differential equations theory, order parameters mean those phase variables, whose
behavior formate the main properties of a macroscopic structure, which dominate
over all other variables in the formation such that they can even depend on the order
parameters functionally. The dependence that is proved (discovered) mathematically
is what we call as slaving. It is not difficult to see in the butterfly effect that the
variables of the system S1 are order parameters, and they determine the chaotic
behavior of the joined systems’ variables. That is, the slaving principle is present
here.

9.8 The Mathematical Background

In our theoretical discussions, we consider more general coupled systems, which are
not necessarily Lorenz systems. We will denote by R and N the sets of real numbers
and natural numbers, respectively, and we will make use of the usual Euclidean norm
for vectors.

Let us consider the autonomous systems

dx

dt
= F(x), (9.8.18)

and

du

dt
= f (u), (9.8.19)

where t ≥ 0 and the functions F : Rm → R
m and f : Rn → R

n are continuous in
their arguments.

We perturb system (9.8.19) with the solutions of (9.8.18) and obtain the system
in the form,
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dy

dt
= f (y) + μg(x(t)), (9.8.20)

where the number μ is nonzero and the function g : Rm → R
n is continuous. It is

worth noting that the systems (9.1.1), (9.2.3), and (9.2.4) are in the form of (9.8.18),
(9.8.19), and (9.8.20), respectively.

Wemainly assume that system (9.8.18) possesses a chaotic attractor, let us say a set
in Rm . Fix x0 from the attractor and take a solution x(t) of (9.8.18) with x(0) = x0.
Since we use the solution x(t) as a perturbation in system (9.8.20), we call it as
chaotic function. Chaotic functions may be irregular as well as regular (periodic and
unstable) [26, 41, 49, 53, 87, 88].

Our purpose is to prove rigorously the extension of chaos from system (9.8.18)
to system (9.8.20). In our theoretical discussions, we request the existence of a
bounded positively invariant region for system (9.8.20). Such an invariant region can
be achieved by different methods and one of them is mentioned in the next part.
We will show the extension of sensitivity and the existence infinitely many unstable
periodic solutions in Sects. 9.8.2 and 9.8.3, respectively.

In the following parts, for a given solution x(t) of system (9.8.18), we will denote
by φx(t)(t, t0, y0) the unique solution of system (9.8.20) satisfying the initial condi-
tion φx(t)(t0, t0, y0) = y0.

9.8.1 Bounded Positively Invariant Region

Making benefit of Lyapunov functions and uniform ultimate boundedness [76, 89],
we present a method in Theorem 9.1 for the existence of a bounded positively invari-
ant set of system (9.8.20). Then, we will apply this technique to the Lorenz system.

Solutions of system (9.8.20) are uniformly ultimately bounded if there exists a
number B0 > 0 and corresponding to any number α > 0 there exists a number
T (α) > 0 such that ‖y0‖ ≤ α implies that for each solution x(t) of system (9.8.18)
and t0 ≥ 0 we have

∥
∥φx(t)(t, t0, y0)

∥
∥ < B0 for all t ≥ t0 + T (α).

The following condition is required:

(A1) There exists a positive number Mg such that sup
x∈Rm

‖g(x)‖ ≤ Mg.

Theorem 9.1 Suppose that condition (A1) is fulfilled and there exists a Lyapunov
function V (x) defined on R

n such that V (x) has continuous first-order partial deriv-
atives. Additionally, assume that there exists a number B ≥ 0 such that the following
conditions are satisfied on the region ‖x‖ ≥ B :

(i) V (x) ≥ a (‖x‖) , where a(r) is a continuous, increasing function defined for
r ≥ B which satisfies a(B) > 0 and a(r) → ∞ as r → ∞;

(ii) V ′
(9.8.19)(x) ≤ −b (‖x‖) ,where b(r) is an increasing function defined for r ≥ B

which satisfies b(B) > 0;
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(iii)

∥
∥
∥
∥

∂V

∂x
(x)

∥
∥
∥
∥

≤ c (‖x‖) , where c(r) is a function defined for r ≥ B and there

exists a positive number M0 such that 0 < c(r) ≤ M0b(r) for all r ≥ B.

Then, for sufficiently small |μ| , the solutions of system (9.8.20) are uniformly ulti-
mately bounded.

Proof Fix arbitrary numbers t0 ≥ 0, α > 0 and a solution x(t) of system (9.8.18).
Take a number β satisfying 0 < β < b(B). We consider system (9.8.20) with a
nonzero number μ which satisfies the inequality

|μ| ≤ 1

M0Mg

(

1 − β

b(B)

)

.

Our aim is to show the existence of numbers B0 > B and T (α) ≥ 0, independent
of t0, such that if ‖y0‖ ≤ α, then

∥
∥φx(t)(t, t0, y0)

∥
∥ < B0 for all t ≥ t0 + T (α).

Consider an arbitrary y0 ∈ R
n such that ‖y0‖ ≤ α. For the sake of brevity, let us

denote y(t) = φx(t)(t, t0, y0). In the proof, both of the possibilities ‖y0‖ < B and
‖y0‖ ≥ B will be considered. We start with the former.

Let MV = max‖x‖=B
V (x). Since a(r) → ∞ as r → ∞, there exists a number

B0 > B such that a(B0) ≥ MV .

Now, suppose that there exists a moment s1 > t0 such that ‖y(s1)‖ ≥ B0. It is
possible to find a moment s2 satisfying t0 < s2 < s1 such that ‖y(s2)‖ = B and
‖y(t)‖ ≥ B for all t ∈ [s2, s1].

Assumptions (i i) and (i i i) imply for s2 ≤ t ≤ s1 that

dV (y(t))

dt
= ∂V

∂x
(y(t)) · ( f (y(t)) + μg(x(t)))

≤ −b (‖y(t)‖) + |μ| Mgc (‖y(t)‖)
≤ (|μ| M0Mg − 1)b(B)

≤ −β,

where “·” denotes the scalar product.
The last inequality implies that V (y(s1)) < V (y(s2)). On the other hand, by the

help of assumption (i), we have V (y(s2)) ≤ MV ≤ a(B0) ≤ V (y(s1)). This is a
contradiction. Therefore, for all t ≥ t0, the inequality ‖y(t)‖ < B0 is valid.

Next, we consider the possibility ‖y0‖ ≥ B.Since the function V (x) is continuous
and ‖y0‖ ≤ α, one can find a number K (α) > 0 such that V (y0) ≤ K (α). By
means of condition (i) used together with the inequality ‖y0‖ ≥ B, we have that
K (α) ≥ a(B).

Assume that there exists a moment t > t0 + K (α) − a(B)

β
such that

∥
∥y(t)

∥
∥ ≥ B.

If there exists t1 ∈ [t0, t] such that ‖y(t1)‖ < B, then by means of uniqueness
of solutions, using a similar discussion to the case ‖y0‖ < B considered above, one
can show that for all t ≥ t1 the inequality ‖y(t)‖ < B0 holds. On the other hand,
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if for all t ∈ [t0, t] the inequality ‖y(t)‖ ≥ B is valid, then one can verify that the
inequality

V (y(t)) ≤ V (y0) − β(t − t0)

holds. Under the circumstances we attain that

a(B) ≤ V (y0) − β(t − t0) ≤ K (α) − β(t − t0) < a(B).

This is a contradiction. Hence, for all t > t0 + T (α), where T (α) = K (α) − a(B)

β
,

we have ‖y(t)‖ < B0. Consequently, the solutions of system (9.8.20) are uniformly
ultimately bounded.

Next, we shall verify the conditions of Theorem 9.1 for the Lorenz model. Let us
consider the system (9.2.3) with the parameters σ > 0, 0 < r <

√
2 − 1, b > 0,

and take into account the Lyapunov function

V (u) = 1

σ
u2
1 + u2

2 + u2
3,

where u = (u1, u2, u3) ∈ R
3.

Set γ1 = min

{

1,
1

σ

}

and define the function a(r) through the formula a(r) =
γ1r2. In that case, the relation V (u) ≥ γ1(u2

1 + u2
2 + u2

3) = a (‖u‖) holds. On the
other hand, one can verify that

V ′
(9.2.3)(u) = 2

σ
u1u′

1 + 2u2u′
2 + 2u3u′

3

= 2

σ
u1[σ(−u1 + u2)] + 2u2(−u1u3 + ru1 − u2) + 2u3(u1u2 − bu3)

= 2(r + 1)u1u2 − 2u2
1 − 2u2

2 − 2bu2
3.

Now, let γ2 = min
{

1, 2 − (r + 1)2, 2b
}

. Making use of the identity

2(r + 1)u1u2 = u2
1 + (r + 1)2u2

2 − [u1 − (r + 1)u2]
2

we attain the inequality

V ′
(9.2.3)(u) = − [u1 − (r + 1)u2]

2 − u2
1 −

[

2 − (r + 1)2
]

u2
2 − 2bu2

3

≤ −u2
1 −

[

2 − (r + 1)2
]

u2
2 − 2bu2

3

≤ −b (‖u‖) ,
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where the function b(r) is defined through the formula b(r) = γ2r2.The last inequal-
ity validates the condition (i i) of Theorem 9.1.

Furthermore, one can obtain that

∥
∥
∥
∥

∂V

∂u
(u)

∥
∥
∥
∥

= 2

√

1

σ 2 u2
1 + u2

2 + u2
3 ≤ c (‖u‖) ,

where c(r) = 2γ3r and γ3 = max

{

1,
1

σ

}

. If we take M0 = 2γ3
γ2

, then the inequality

c(r) ≤ M0b(r) holds for all r ≥ 1. Consequently, for B = 1, the conditions of
Theorem 9.1 are satisfied for system (9.2.3) with the coefficients σ > 0, 0 < r <√
2 − 1 and b > 0.
In the next section, we will continue with the extension of sensitivity, which can

be considered as the unique ingredient of chaos for a set of bounded solutions [26,
41, 90].

9.8.2 Unpredictability Analysis

Extension of the sensitivity feature through system (9.8.20) will be handled in the
present part. We shall begin with the meaning of the aforementioned property for
systems (9.8.18) and (9.8.20). The main result will be stated in Theorem 9.2.

System (9.8.18) is called sensitive if there exist positive numbers ε0 and Δ such
that for an arbitrary positive number δ0 and for each chaotic solution x(t) of sys-
tem (9.8.18), there exist a chaotic solution x(t) of the same system and an interval
J ⊂ [0,∞), with a length no less than Δ, such that ‖x(0) − x(0)‖ < δ0 and
‖x(t) − x(t)‖ > ε0 for all t ∈ J.

Our main assumption is the existence of a bounded positively invariant setK for
system (9.8.20). The existence of such an invariant set can be shown, for example,
using Theorem 9.1.

We say that system (9.8.20) is sensitive if there exist positive numbers ε1 and Δ

such that for an arbitrary positive number δ1, each y0 ∈ K and a chaotic solution
x(t) of (9.8.18), there exist y1 ∈ K , a chaotic solution x(t) of (9.8.18) and an
interval J 1 ⊂ [0,∞), with a length no less than Δ, such that ‖y0 − y1‖ < δ1 and∥
∥φx(t)(t, 0, y0) − φx(t)(t, 0, y1)

∥
∥ > ε1 for all t ∈ J 1.

The following assumptions are needed:

(A2) There exists a positive number MF such that sup
x∈Rm

‖F(x)‖ ≤ MF ;
(A3) There exists a positive number L f such that ‖ f (y1) − f (y2)‖ ≤ L f ‖y1 − y2‖

for all y1, y2 ∈ R
n;

(A4) There exists a positive number Lg such that‖g(x1) − g(x2)‖ ≥ Lg ‖x1 − x2‖
for all x1, x2 ∈ R

m .



432 9 The Prevalence of Weather Unpredictability

In the next theorem, the extension of sensitivity from system (9.8.18) to system
(9.8.20) is considered.

Theorem 9.2 Suppose that conditions (A1) − (A4) hold. If system (9.8.18) is sen-
sitive, then the same is true for system (9.8.20).

Proof Fix arbitrary δ1 > 0, y0 ∈ K and a chaotic solution x(t) of (9.8.18). Since
system (9.8.18) is sensitive, one can find ε0 > 0 and Δ > 0 such that for arbitrary
δ0 > 0 both of the inequalities ‖x(0) − x(0)‖ < δ0 and ‖x(t) − x(t)‖ > ε0, t ∈ J,

hold for some chaotic solution x(t) of (9.8.18) and for some interval J ⊂ [0,∞),

whose length is not less than Δ.

Take an arbitrary y1 ∈ K such that ‖y0 − y1‖ < δ1. For the sake of brevity, let
us denote y(t) = φx(t)(t, 0, y0) and y(t) = φx(t)(t, 0, y1).

It is worth noting that there exist positive numbers K0 and HF such that ‖y(t)‖ ,

‖y(t)‖ ≤ K0 for all t ≥ 0 and sup
t∈R+

‖x(t)‖ ≤ HF for each chaotic solution x(t) of

system (9.8.18).
Our aim is to determine positive numbers ε1, Δ and an interval J 1 ⊂ [0,∞)with

length Δ such that the inequality ‖y(t) − y(t)‖ > ε1 holds for all t ∈ J 1.

Since the derivative of each chaotic solution x(t) of (9.8.18) lies inside the tube
with radius MF , the collection of chaotic solutions of system (9.8.18) is an equicon-
tinuous family on [0,∞). Suppose that g(x) = (g1(x), g2(x), . . . , gn(x)) , where
each g j , 1 ≤ j ≤ n, is a real valued function.Making use of the uniform continuity of
the function g : Rm ×R

m → R
n, defined as g(ν1, ν2) = g(ν1)− g(ν2), on the com-

pact regionR = {(ν1, ν2) ∈ R
m × R

m : ‖ν1‖ ≤ HF , ‖ν2‖ ≤ HF } together with the
equicontinuity of the collection of chaotic solutions of (9.8.18), one can verify that
the collectionF consisting of the functions of the form g j (x1(t)) − g j (x2(t)), 1 ≤
j ≤ n, where x1(t) and x2(t) are chaotic solutions of system (9.8.18), is an equicon-
tinuous family on [0,∞).

According to the equicontinuity of the familyF , one can find a positive number
τ < Δ, which is independent of x(t) and x(t), such that for any t1, t2 ∈ [0,∞) with
|t1 − t2| < τ, the inequality

∣
∣
(

g j (x(t1)) − g j (x(t1))
) − (

g j (x(t2)) − g j (x(t2))
)∣
∣ <

Lgε0

2n
(9.8.21)

holds for all 1 ≤ j ≤ n.

Condition (A4) implies that ‖g(x(t)) − g(x(t))‖ ≥ Lg ‖x(t) − x(t)‖ , t ∈ J.

Therefore, for each t ∈ J, there exists an integer j0, 1 ≤ j0 ≤ n, which possibly
depends on t, such that

∣
∣g j0(x(t)) − g j0(x(t))

∣
∣ ≥ Lg

n
‖x(t) − x(t)‖ .

Otherwise, if there exists s ∈ J such that for all 1 ≤ j ≤ n the inequality



9.8 The Mathematical Background 433

∣
∣g j (x (s)) − g j (x(s))

∣
∣ <

Lg

n
‖x(s) − x(s)‖

holds, then one encounters with a contradiction since

‖g(x(s)) − g(x(s))‖ ≤
n

∑

j=1

∣
∣g j (x(s)) − g j (x(s))

∣
∣ < Lg ‖x(s) − x(s)‖ .

Denote by s0 the midpoint of the interval J, and let θ = s0 − τ/2. There exists
an integer j0, 1 ≤ j0 ≤ n, such that

∣
∣g j0(x(s0)) − g j0(x(s0))

∣
∣ ≥ Lg

n
‖x(s0) − x(s0)‖ >

Lgε0

n
. (9.8.22)

On the other hand, making use of the inequality (9.8.21) we acquire for all t ∈
[θ, θ + τ ] that

∣
∣g j0 (x(s0)) − g j0 (x(s0))

∣
∣ − ∣

∣g j0 (x(t)) − g j0 (x(t))
∣
∣

≤ ∣
∣
(

g j0 (x(t)) − g j0 (x(t))
) − (

g j0 (x(s0)) − g j0 (x(s0))
)∣
∣

<
Lgε0

2n
.

Therefore, by means of (9.8.22), we have that the inequality

∣
∣g j0 (x(t)) − g j0 (x(t))

∣
∣ >

∣
∣g j0 (x(s0)) − g j0 (x(s0))

∣
∣ − Lgε0

2n
>

Lgε0

2n
(9.8.23)

is valid for t ∈ [θ, θ + τ ] .
One can find numbers s1, s2, . . . , sn ∈ [θ, θ + τ ] such that

∫ θ+τ

θ

[g(x(s)) − g(x(s))] ds =
(

τ [g1(x(s1)) − g1(x(s1))] ,

τ [g2(x(s2)) − g2(x(s2))] , . . . , τ [gn(x(sn)) − gn(x(sn))]
)

.

By using the inequality (9.8.23), we attain that

∥
∥
∥
∥

∫ θ+τ

θ

[g(x(s)) − g(x(s))] ds

∥
∥
∥
∥

≥ τ
∣
∣g j0(x(s j0)) − g j0(x(s j0))

∣
∣ >

τ Lgε0

2n
.
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The relation

y(t) − y(t) = (y(θ) − y(θ)) +
∫ t

θ

[ f (y(s)) − f (y(s))] ds

+
∫ t

θ

μ[g(x(s)) − g(x(s))]ds,

where t ∈ [θ, θ + τ ], yields

‖y(θ + τ) − y(θ + τ)‖ ≥ |μ|
∥
∥
∥
∥

∫ θ+τ

θ

[g(x(s)) − g(x(s))]ds

∥
∥
∥
∥

−‖y(θ) − y(θ)‖ −
∫ θ+τ

θ

L f ‖y(s) − y(s)‖ ds

>
|μ| τ Lgε0

2n
− ‖y(θ) − y(θ)‖ −

∫ θ+τ

θ

L f ‖y(s) − y(s)‖ ds.

The last inequality implies that

max
t∈[θ,θ+τ ] ‖y(t) − y(t)‖ ≥ ‖y(θ + τ) − y(θ + τ)‖

>
|μ| τ Lgε0

2n
− (1 + τ L f ) max

t∈[θ,θ+τ ] ‖y(t) − y(t)‖ .

Therefore, max
t∈[θ,θ+τ ] ‖y(t) − y(t)‖ >

|μ| τ Lgε0

2n(2 + τ L f )
.

Suppose that max
t∈[θ,θ+τ ] ‖y(t) − y(t)‖ = ‖y(ξ) − y(ξ)‖ for some ξ ∈ [θ, θ + τ ].

Define

Δ = min

{
τ

2
,

|μ| τ Lgε0

8n(K0L f + Mg |μ|)(2 + τ L f )

}

and let

θ1 =
{

ξ, if ξ ≤ θ + τ/2
ξ − Δ, if ξ > θ + τ/2

.

For t ∈ [θ1, θ1 + Δ], by favor of the equation

y(t) − y(t) = (y(ξ) − y(ξ)) +
∫ t

ξ

[ f (y(s)) − f (y(s))] ds

+
∫ t

ξ

μ[g(x(s)) − g(x(s))]ds,
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one can obtain that

‖y(t) − y(t)‖ ≥ ‖y(ξ) − y(ξ)‖ −
∣
∣
∣
∣

∫ t

ξ

L f ‖y(s) − y(s)‖ ds

∣
∣
∣
∣

− |μ|
∣
∣
∣
∣

∫ t

ξ

‖g(x(s)) − g(x(s))‖ ds

∣
∣
∣
∣

>
|μ| τ Lgε0

2n(2 + τ L f )
− 2Δ

(

K0L f + Mg |μ|)

≥ |μ| τ Lgε0

4n(2 + τ L f )
.

The length of the interval J 1 = [θ1, θ1 + Δ] does not depend on x(t), x(t), and

for t ∈ J 1 the inequality ‖y(t) − y(t)‖ > ε1 holds, where ε1 = |μ| τ Lgε0

4n(2 + τ L f )
.

Consequently, system (9.8.20) is sensitive.

9.8.3 Unstable Cycles and Unpredictability

Assume that system (9.8.18) admits a period-doubling cascade. That is, there exists
an equation

x ′ = G(x, λ), (9.8.24)

where λ is a parameter and the function G : Rm × R → R
m is such that for some

finite number λ∞, G(x, λ∞) is equal to the function F(x) in the right-hand side of
system (9.8.18).

System (9.8.18) is said to admit a period-doubling cascade [49, 87, 88, 91] if
there exists a sequence of period-doubling bifurcation values

{

λ j
}

j∈N satisfying
λ j → λ∞ as j → ∞ such that as the parameter λ increases or decreases through
λ j system (9.8.24) undergoes a period-doubling bifurcation for each j ∈ N. As a
consequence, at the parameter value λ = λ∞, there exist infinitely many unstable
periodic solutions of system (9.8.24), and hence of system (9.8.18), all lying in a
bounded region.

Now, let us introduce the following definition [76]. We say that the solutions of
the non-autonomous system (9.8.20), with a fixed x(t), are ultimately bounded if
there exists a number B > 0 such that for every solution y(t), y(t0) = y0, of system
(9.8.20), there exists a positive number R such that the inequality ‖y(t)‖ < B holds
for all t ≥ t0 + R.

We say that system (9.8.20) replicates the period-doubling cascade of system
(9.8.18) if for each periodic solution x(t) of (9.8.18), system (9.8.20) admits a peri-
odic solution with the same period.

The following condition is required in the next theorem, which can be verified
using Theorem 15.8 [76].
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(A5) Solutions of system (9.8.20) are ultimately bounded by a bound common for
all x(t).

Theorem 9.3 If conditions (A1) − (A5) hold, then system (9.8.20) replicates the
period-doubling cascade of system (9.8.18).

It is worth noting that the instability of the infinite number of periodic solutions
of system (9.8.20) is ensured by Theorem 9.2.

9.9 Notes

Thequestion“Does the flap of a butterfly’s wings in Brazil set off a tornado in Texas?”
is very impressive and it has done a lot to popularize chaos for both mathematicians
and non-mathematicians. Some of the authors say that the question relates sensitive
dependence on initial conditions in dynamical systems considered as unpredictability
for meteorological observations. Lorenz himself, in successive his talks and the book
[32], was obsessed by the question and sincerely believed its possibility. He also
supposed that his system can give a key for the positive answer of the question. We
rely on the intuition of the great mathematician and meteorologist.

What we have done is a small step in themathematical approach to the complexity
of theweather.Our suggestions are not about amodeling, but rather an effort to answer
the question why the weather is unpredictable at each point of the Earth, on the basis
of the Lorenz’s meteorological model and other models.

We should recognize that all our discussions can be considered as a “toy object”
in the theory and according to the complexity phenomenon in meteorological inves-
tigations, one can say that the investigation of chaos in meteorology still remains
as a “toy object” [26, 92]. We do not take into account changes which may happen
because of the day light evolution, variety of land forms, seasonal differences in the
region, etc., but what we propose is to connect regional mathematical models into a
global net so that understanding the unpredictability becomes possible. The results
of the present chapter were published in the paper [93].

Since the chaotification principles proposed in this chapter are not specific for
the Lorenz system, they can be applied to other meteorological models as well,
without any restrictions on the dimension and the number of the coupled sys-
tems. For instance, one can consider the Lorenz model of general circulation of the
atmosphere [94]

d X1

dt
= −X2

2 − X2
3 − ãX1 + ãF

d X2

dt
= X1X2 − b̃X1X3 − X2 + G

d X3

dt
= b̃X1X2 + X1X3 − X3,

(9.9.25)

where X1 represents the strength of a large-scale westerly wind current, X2 and X3
represent the cosine and sine phases of a chain of superposed large-scale eddies, the
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parameter F represents the external-heating contrast, and G represents the heating
contrast betweenoceans and continents. The coefficient b̃, if greater thanunity, allows
the displacement to occur more rapidly than the amplification, and the coefficient ã,

if less than unity, allows the westerly current to damp less rapidly than the eddies
[94–97].

For ã > 0 and b̃ > −1, let us take into account the Lyapunov function V (X) =
X2
1 + X2

2 + X2
3, and set a = min {ã, 1} , b = √

ã2F2 + G2. One can verify that

V ′
(9.9.25)(X) ≤ −2a

(

X2
1 + X2

2 + X2
3

)

+ 2b
√

X2
1 + X2

2 + X2
3

and
∥
∥
∥
∥

∂V

∂ X

∥
∥
∥
∥

= 2
√

X2
1 + X2

2 + X2
3 .

Therefore, the conditions of Theorem 9.1 are satisfied with a(r) = r2, b(r) =
2ar2 − 2br, c(r) = 2r, M0 = 1 and B = 1 + b

a
. Consequently, our theory is also

applicable to the Lorenz model of general circulation of the atmosphere.
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Chapter 10
Spatiotemporal Chaos in Glow
Discharge-Semiconductor Systems

Spatiotemporal chaos is one of the complicated structures observed in spatially
extended dynamical systems and it is characterized by chaotic properties both in
time and space coordinates. The existence of a positive Lyapunov exponent can be
used to detect spatiotemporal complexity, which can be observed, for example, in
liquid crystal light valves, electroconvection, cardiac fibrillation, chemical reaction-
diffusion systems, and fluidized granular matter. Spatially extended dynamical sys-
tems often serve as standard models for the investigation of complex phenomena
in electronics. A special interest is directed toward pattern formation phenomena in
electronic media, mainly the nonlinear gas discharge systems. It is clear that chaos
can appear as an intrinsic property of systems as well as through couplings. The
interaction of spatially extended systems is important for neural networks, reentry
initiation in coupled parallel fibers, thermal convection in multilayered media, and
for systems consisting of several weakly coupled spatially extended systems such
as the electrohydrodynamical convection in liquid crystals. In the present chapter,
we numerically verify the appearance of cyclic chaotic behavior in unidirectionally
coupled glow discharge-semiconductor systems. The chaos in the response system
is obtained through period-doubling cascade of the drive system such that it admits
infinitely many unstable periodic solutions and sensitivity is present. Previously, the
extension of chaos through couplings has been considered by synchronization [1–7].
The task is difficult for partial differential equations because of the choice of con-
necting parameters [8–10]. Kocarev et al. [8] suggested a useful time-discontinuous
monitoring for synchronization, but our choice is based on a finite-dimensional con-
nection. It is demonstrated that the present results cannot be reduced to anyone in the
theory of synchronization of chaos. The technique of chaos extension suggested in
the present chapter can be related to technical problems [11, 12], where collectives
of microdischarge systems are considered and in models which appear in neural
networks, hydrodynamics, optics, chemical reactions, and electrical oscillators. Sta-
bilization of multidimensional periodical regimes can be useful in the applications
of the glow discharge systems in conventional and energy saving lamps, beamers,
flat TV screens, etc.

© Higher Education Press, Beijing and Springer-Verlag Berlin Heidelberg 2016
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10.1 Introduction

The investigations of chaos theory for continuous-time dynamics started due to
the needs of real-world applications, especially with the studies of Poincaré [13],
Cartwright and Littlewood [14], Levinson [15], Lorenz [16], and Ueda [17]. Chaotic
dynamics has high effectiveness in the analysis of electrical processes of neural net-
works [18, 19] and can be used for optimization and self-organization problems in
robotics [20]. The reason for that is the opportunities provided by the dynamical
structure of chaos.

Starting from the primary investigations [14–17], chaos has been found as an
internal property of systems, and studies in this sense have prolonged until today,
for example, by the construction of discrete maps [21–24]. At the very beginning
of the chaos analysis, one has to mention the Smale Horseshoes technique [25] and
symbolic dynamics [26]. Another opportunity to reveal chaotic dynamics is the usage
of bifurcation diagrams [27, 28].

If one considers a mechanical or electrical system and perturb it by an external
force which is bounded, periodic or almost periodic, then the forced system can pro-
duce a behavior with a similar property, boundedness/periodicity/almost periodicity
[29–33]. A reasonable question appears whether it is possible to use a chaotic force
to obtain the same type of complexity in physical systems.

To meet the challenge, we introduced rigorous description of chaotic force as a
function or a set of functions and described the input–output mechanism for ordi-
nary differential equations in the studies [34–46]. It was rigorously proved that an
irregular behavior can follow the chaotic force very likely as regular motions do.
We have applied the machinery to mechanical and electrical systems with a finite
number of freedom [34–42, 44, 46] as well as to neural networks [43, 45]. In the
present chapter, we apply the theory to unidirectionally coupled glow discharge-
semiconductor (GDS) systems.

10.2 Preliminaries

Chaotic dynamics can appear in systems as an intrinsic property and it canbe extended
through interactions. In the literature, an effective and unique way of the chaos exten-
sion from one system to another has been suggested within the scope of generalized
synchronization [1–5, 7], which characterizes the dynamics of a response system
that is driven by the output of a chaotic driving system. Suppose that the dynamics of
the drive and response systems are governed by the following systems with a skew
product structure

x ′ = F(x) (10.2.1)
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and

y′ = G(y, H(x)), (10.2.2)

respectively, where x ∈ R
m, y ∈ R

n . Generalized synchronization is said to occur
if there exist sets Ix , Iy of initial conditions and a transformation φ, defined on the
chaotic attractor of (10.2.1), such that for all x(0) ∈ Ix and y(0) ∈ Iy the relation
lim

t→∞ ‖y(t) − φ(x(t))‖ = 0 holds. In that case, a motion which starts on Ix × Iy

collapses onto amanifold M ⊂ Ix × Iy of synchronizedmotions. The transformation
φ is not required to exist for the transient trajectories. When φ is the identity, the
identical synchronization takes place [3, 6].

The synchronization of a large class of unidirectionally coupled chaotic partial
differential equations was deeply investigated in [8, 9], where the synchronization
was achieved by applying the driving signals only at a finite number of space points.
The synchronization of spatiotemporal chaos in a pair of complex Ginzburg–Landau
equations was performed in [10] for the case when all space points are continuously
driven. In the present chapter, we use perturbations to a single coordinate of an
infinite dimensional response system, which is nonchaotic in the absence of driving,
to obtain chaotic motions in the system.

It has not been investigated whether the response system admits the same type
of chaos with the drive system in the theory of chaos synchronization yet. The
replication of chaos with specific types such as Devaney [47], Li-Yorke [23], and
period-doubling cascade [48–50] was investigated for drive-response couples for the
first time in the papers [34–46].

In the study [44], we considered a system of the form

u′ = K (u), (10.2.3)

where K : Rn → R
n is a continuously differentiable function.We supposed that sys-

tem (10.2.3) possesses an orbitally stable limit cycle and perturbed it with solutions
of a chaos generating system, in the form of (10.2.1), and set up the system

y′ = K (y) + μM(x), (10.2.4)

where μ is a nonzero number and M : Rm → R
n is a continuous function. The

extension of sensitivity and chaos through period-doubling cascade for the coupled
system (10.2.1)–(10.2.4) were rigorously proved in the paper [44]. As a result, we
achieved chaotic cycles, that is, motions which behave cyclically and chaotically
simultaneously.

The rich experience of chaos expansion in finite-dimensional spaces provides
a confidence that our approach mentioned in [44] has to work also in infinite-
dimensional spaces. In this chapter, we numerically observe the presence of orbitally
stable limit cycles in the 2-dimensional projections of the infinite-dimensional space
as well as their deformation to chaotic cycles under chaotic perturbations. By using
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Fig. 10.1 A cross section of
a planar discharge cell: it
consists of a metal anode, a
gas layer, a high-ohmic
cathode, and another metal
contact. The subscripts g and
s refer to the gas and
semiconductor regions

the technique presented in [44], one can elaborate the results of the present chapter
from the theoretical point of view. Although couplings of GDS systems have not been
performed in the literature yet, our results reveal the opportunity of chaos extension
in such systems.

Summarizing, electronic systems are important tools for synchronization and
chaos extension. In the present chapter, we make use of our previous approach [44]
to extend chaos in unidirectionally coupled GDS systems.

10.2.1 Description of the GDS Model

Our GDS was previously studied both theoretically and experimentally in [51–66].
It represents a planar plasma layer coupled to a planar semiconductor layer, which
are sandwiched between two planar electrodes to which a DC voltage is applied (see
Fig. 10.1). We used a one-dimensional fluid model for this system, where any pattern
formation in the transversal direction is excluded and only the single dimension
normal to the layers is resolved. For the gas discharge, the model takes into account
electron and ion drift in the electric field, bulk impact ionization, and secondary
emission from the cathode as well as space charge effects. The semiconductor is
approximated with a constant conductivity.

The gas discharge part of the model consists of continuity equations for two
charged species, namely, electrons and positive ionswith particle densities ne and ni :

∂ t ne + ∇ · Γe = Se, (10.2.5)

∂ t ni + ∇ · Γi = Si, (10.2.6)
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which are coupled to Poisson’s equation for the electric field in electrostatic approx-
imation:

∇ · E = e

ε0
(ni − ne) , E = −∇Φ. (10.2.7)

Here, Φ is the electric potential, E is the electric field in the gas discharge, e is the
elementary charge, and ε0 is the dielectric constant. The vector fields Γe and Γi are
the particle flux densities, that in simplest approximation are described by drift only.
(In general, particle diffusion De,i∇ne,i could be included.) The drift velocities are
assumed to depend linearly on the local electric field with mobilities μe 	 μi :

Γe = −μene E, Γi = μi ni E, (10.2.8)

hence the total electric current in the discharge is

J = ε0∂t E + e
(

Γi − Γe
) = ε0∂t E + e

(

μi ni + μene

)

E. (10.2.9)

Two types of ionization processes are taken into account: the α process of electron
impact ionization in the bulk of the gas, and the γ process of electron emission by
ion impact onto the cathode. In a local field approximation, the α process determines
the source terms in the continuity equations (10.2.5) and (10.2.6):

Se = Si = |Γe| α0 α (|E|/E0) , (10.2.10)

where we use the classical Townsend approximation

α (|E|/E0) = exp (−E0/|E|) . (10.2.11)

The effect of the semiconductor layer with thickness ds , conductivity σs , dielectric
constant εs is described by the external circuit equation

∂tU = Utot − U − Rs J

Ts
, (10.2.12)

whereUtot is the applied voltage,U = ∫ dg
0 E d Z is the voltage over the gas discharge

which is the electric field E integrated over the height dg of the discharge, Rs =
ds/σs is the resistance of the semiconductor layer, where σs is its conductivity, and
Ts = εsε0/σs is the Maxwell relaxation time of the semiconductor with dielectric
constant εs .

Following the traditions of the synchronization of chaotic systems, we will call
the coupled GDS systems as the drive and response systems.

The goal of our investigation is to extend the spatiotemporal chaos of a drive
GDS system to a response GDS system bymeans of a special connection mechanism
between the systems. In order tomake the present chapter self-sufficient,we complete
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the chaos analysis of the GDS system, which was initiated in the papers [63, 64].
The method of the analysis, as well as the connection mechanism are our theoretical
suggestions [34–46].

The chaos obtained through period-doubling cascade [48–50] is under investiga-
tion in this chapter. In other words, the existence of infinitely many unstable periodic
solutions and the presence of sensitivity [47] are considered. One of the advantages
of our approach is the controllability of the extended chaos [3, 41, 42, 44, 67]. It
is possible to stabilize an unstable periodic solution of the response GDS system by
controlling the chaos of the drive system. The presented technique is applicable to
large number of interconnected GDS systems and the control of the global chaos can
also be achieved. This approach can be useful for applications of the gas discharge
systems in conventional and energy saving lamps, beamers, flat TV screens, etc.
[11, 12].

10.2.2 The Model in Dimensionless Form

Thedimensional analysis is performed essentially as in [63, 64]. In dimensional units,
Z parametrizes the direction normal to the layers. The anode of the gas discharge
is at Z = 0, the cathode end of the discharge is at Z = dg , and the semiconductor
extends up to Z = dg + ds .

When diffusion is neglected, the ion current and the ion density at the anode
vanish. This is described by the boundary condition on the anode Z = 0:

Γi (0, t) = 0 ⇒ ni (0, t) = 0. (10.2.13)

The boundary condition at the cathode, Z = dg , describes the γ -process of secondary
electron emission:

∣
∣Γe

(

dg, t
)∣
∣ = γ

∣
∣Γi

(

dg, t
)∣
∣ ⇒ μene

(

dg, t
) = γμi ni

(

dg, t
)

.(10.2.14)

Finally, a DC voltage Utot is applied to the system determining the electric potential
on the boundaries

Φ (0, t) = 0, Φ
(

dg + ds, t
) = −Utot. (10.2.15)

Here, the first potential vanishes due to gauge freedom. We denote the potential
at the interface between the semiconductor and the gas discharge by −U so that
Φ

(

dg, t
) = −U.

Let us introduce the intrinsic parameters of the systemas t0 = 1

α0μe E0
, Z0 = 1

α0
,

n0 = ε0α0E0

e
. In the studies [63, 64], the problem was reduced to one spatial

dimension z such that the GDS system takes the following dimensionless form:
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∂τ σ − ∂z (E σ) = σE α (E ) ,

∂τ ρ + μ∂z (E ρ) = σE α (E ) ,

∂zE = ρ − σ, E = −∂zφ,

(10.2.16)

where the dimensionless time, coordinates, and fields are z = Z

Z0
, τ = t

t0
,

σ (z, τ ) = ne (Z , t)

n0
, ρ(z, τ ) = ni (Z , t)

n0
, E (z, τ ) = E (Z , t)

E0
, φ(z, τ ) = Φ (Z , t)

E0Z0

and α (E ) = e−1/|E |.
The intrinsic dimensionless parameters of the gas discharge are the mobility ratio

μ of electrons and ions and the length ratio L of discharge gap width and impact

ionization length. That is, μ = μi

μe
and L = dg

Z0
. The boundary conditions become

ρ(0, τ ) = 0,
σ (L , τ ) = γμρ(L , τ ),

φ(0, τ ) = 0, φ(L , τ ) = −U ,

(10.2.17)

and the external circuit is described by

∂τU = Utot − U − Rs j

τs
, (10.2.18)

where the total applied voltage is rescaled as Utot = Utot/(E0Z0), dimensionless
voltage U (τ ) = ∫ L

0 E dz, time scale τs = Ts/t0, resistance Rs = Rs eμen0/Z0,
and spatially conserved total current j (τ ) = ∂τE + μρE + σE .

We consider a regime corresponding to a transition between Townsend and glow
discharge. The parameters are taken as in the experiments [66] and in our previous
work [63]. The discharge is in nitrogen at 40 mbar, in a gap of 1.4 mm. We used the
ion mobility μi = 23.33 cm2/(V s) and electron mobility μe = 6666.6 cm2/(V s),
therefore the mobility ratio is μ = μi/μe = 0.0035. The secondary emission coeffi-
cient was taken as γ = 0.08. The applied voltagesUtot are in the range of 513–570 V.
Forα0 = Ap = [27.8µm]−1 and for E0 = Bp = 10.3 kV/cm,we used values from
[58]. The semiconductor layer consists of 1.5 mm of GaAs with dielectric constant
εs = 13.1 and conductivity σs = (2.6 × 105 � cm)−1. Corresponding dimension-
less parameters are L = 50,Rs = 30597, τs = 7435, and a total voltage range Utot

between 17.67 and 20.03.

10.3 Chaotically Coupled GDS Systems

In the present section, wewill extend the spatiotemporal chaos of a driveGDS system
through utilizing its voltage over the gas discharge as a chaotic control applied to
the electric circuit of a response GDS system. In the coupling, the voltage over the
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discharge of the drive system is applied as a perturbation to the circuit equation of
the response system. The presence of chaos in the response system will be shown
numerically. Moreover, we will compare our results with generalized synchroniza-
tion.

The full analysis of the spatiotemporal chaos in the GDS system (10.2.16)–
(10.2.18) is provided in Sect. 10.4, where the bifurcation diagram as well as the
chaotic behaviors in the voltage, electric field, electron density, and ion density of
the system are represented. According to these results, the GDS system

∂τ σ − ∂z (E σ) = σE α (E ) ,

∂τ ρ + μ∂z (E ρ) = σE α (E ) ,

∂zE = ρ − σ, E = −∂zφ,

∂τU = 20 − U − Rs j

τs
,

(10.3.19)

is chaotic, and it will be accompanied by the boundary conditions

ρ(0, τ ) = 0,

σ (L , τ ) = γμρ(L , τ ),

φ(0, τ ) = 0, φ(L , τ ) = −U .

We will take into account (10.3.19) as the drive system.
The solutions of (10.3.19) will be used as a perturbation for the response GDS

system in the form,

∂τ σ̃ − ∂z
(

Ẽ σ̃
) = σ̃ Ẽ α

(

Ẽ
)

,

∂τ ρ̃ + μ∂z
(

Ẽ ρ̃
) = σ̃ Ẽ α

(

Ẽ
)

,

∂z Ẽ = ρ̃ − σ̃ , Ẽ = −∂zφ̃,

∂τV = Vtot − V − Rs j̃ + δU (τ )

τs
,

(10.3.20)

with the boundary conditions

ρ̃(0, τ ) = 0,

σ̃ (L , τ ) = γμρ̃(L , τ ),

φ̃(0, τ ) = 0, φ̃(L , τ ) = −V .

In system (10.3.20), δ is a nonzero number and the term δU (τ )/τs is the perturbation
from the drive system (10.3.19).

It is shown in Sect. 10.4 for the parameter valueUtot = 17.7 that the projection of
the attractor of system (10.2.16)–(10.2.18) on the domain of Eq. (10.2.18) is a stable
limit cycle (see Fig. 10.7). That is, in the absence of driving, the response system
(10.3.20) with Vtot = 17.7 does not possess chaos. We will numerically show that
the response GDS system possesses chaotic motions near the limit cycle, provided
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Fig. 10.2 The trajectory of the response system (10.3.20) in the V − j̃ plane manifests the chaotic
cycle

that the driving effect is included. Our results are theoretically based on the study
[44], where we have proved that if the drive system admits infinitely many unstable
periodic solutions and sensitivity, then the response system does the same. Since the
attractor exists in system (10.2.16)–(10.2.18) withUtot = 17.7, one can conclude by
the extension of our results presented in [44] that if the number |δ| in Eq. (10.3.20) is
sufficiently small, then system (10.3.20) possesses cyclic chaos on the V − j̃ plane.

Let us take Vtot = 17.7 and δ = 0.047 in the response GDS system (10.3.20).
Using the solution of the drive system shown in Figs. 10.8, 10.9 and 10.10, we depict
in Fig. 10.2 the projection of a chaotic solution of (10.3.20) on the V − j̃ plane.
The figure reveals that the response GDS system possesses motions that behave
chaotically around the limit cycle of system (10.2.16)–(10.2.18) with Utot = 17.7.
Moreover, to support the presence of chaos in the response system, we depict in
Fig. 10.3 the time series of the V coordinate. The amplitude ranges 15–16.6 and
7.4–8.6 are used in Fig. 10.3b, c, respectively, to increase the visibility of chaotic
behavior.

Figure10.4a–c, depict, respectively, the chaotic behaviors in the electric field,
electron density, and ion density of system (10.3.20). The figure supports the presence
of chaos in the response GDS system such that it is the expansion of the one which
takes place on the V − j̃ plane.

Now, let us compare our results with generalized synchronization (GS) [1–5, 7].
According to Kocarev and Parlitz [5], GS occurs for the coupled systems (10.2.1)
and (10.2.2) if and only if for all x0 ∈ Ix , y10, y20 ∈ Iy, the asymptotic stabil-
ity criterion lim

t→∞ ‖y(t, x0, y10) − y(t, x0, y20)‖ = 0 holds, where y(t, x0, y10) and

y(t, x0, y20) denote the solutions of (10.2.2) with the initial data y(0, x0, y10) = y10,
y(0, x0, y20) = y20 and the same x(t), x(0) = x0. This criterion is a mathematical
formulation of the auxiliary system approach [1, 3]. We shall make use of the auxil-
iary system approach to demonstrate the absence of generalized synchronization in
the coupled system (10.3.19)–(10.3.20).
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Fig. 10.3 The behavior of the V coordinate of system (10.3.20) is shown in (a). In b, c, where
the chaotic behavior is observable, the amplitudes are restricted to the ranges 15–16.6 and 7.4–8.6,
respectively

We introduce the auxiliary system

∂τ σ − ∂z

(

E σ
)

= σE α
(

E
)

,

∂τ ρ + μ∂z

(

E ρ
)

= σE α
(

E
)

,

∂zE = ρ̃ − σ , E = −∂zφ,

∂τW = 17.7 − W − Rs j + 0.047U (τ )

τs

(10.3.21)

with the boundary conditions

ρ(0, τ ) = 0,

σ (L , τ ) = γμρ(L , τ ),

φ(0, τ ) = 0, φ(L , τ ) = −W .

Making use of the solutionU (τ ) whose graph is represented in Fig. 10.9 in both
of the systems (10.3.20) and (10.3.21), we depict in Fig. 10.5 the projection of the
stroboscopic plot of system (10.3.20)–(10.3.21) on the V − W plane. The first 500
iterations are omitted in the simulation. The time interval [0, 80 × 106] is used and
the time step is taken as Δτ = 5000. Since the plot does not take place on the
line W = V , we conclude that generalized synchronization is not achieved in the
dynamics of the coupled system (10.3.19)–(10.3.20).
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Fig. 10.4 Time evolution of
profiles of the a electric field
Ẽ, b electron density ñe, and
c ion density ñi support the
existence of chaotic motions
around the periodic solution

Fig. 10.5 Application of the
auxiliary system approach
reveals that the coupled
systems (10.3.19) and
(10.3.20) are not
synchronized
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10.4 The Chaos in the Drive GDS System

In this part, we will extend the results of [63] about the presence of chaos in GDS
systems. In the paper [63], only a finite number of period-doubling bifurcations
were indicated. However, in the present section, we represent the occurrence of
infinitely many period-doubling bifurcations by means of a bifurcation diagram and
we definitely reveal the regions of regularity and chaoticity.

The bifurcation diagram corresponding to theU coordinate of system (10.2.16)–
(10.2.18) with the boundary conditions (10.2.17) is pictured in Fig. 10.6. Here, Utot

is the bifurcation parameter. Supporting the results of [63], it is observable in the
figure that the system displays period-doubling bifurcations and leads to chaos. The
period-doubling bifurcations occur approximately at theUtot values 18.315, 18.782,
18.902, 18.939, etc., and a period-six window appears near Utot = 19.073 in the
bifurcation diagram.

One can conclude from Fig. 10.6 that the system (10.2.16)–(10.2.18) possesses a
stable periodic solution forUtot = 17.7. The projection of a solution that approaches
to the stable limit cycle, which is the projection of the attractor of the global system
(10.2.16)–(10.2.18) on the domain of (10.2.18) with Utot = 17.7, is depicted in
Fig. 10.7. This result confirms the existence of an attractor as a periodic solution in
the spatiotemporal equation.

The bifurcation diagram shown in Fig. 10.6 confirms that the drive GDS system
(10.3.19) is chaotic. The projection of a chaotic solution of (10.3.19) on the U − j
plane is represented in Fig. 10.8. Moreover, the time series of the U coordinate of
the same solution is shown Fig. 10.9, where one can see the chaotic behavior.

The profiles of the electric field E , electron density ne, and ion density ni of
(10.3.19) are pictured in Fig. 10.10a–c, respectively. Figure10.10 also confirms the
presence of chaos in the drive system.

17.6 18 18.4 18.8 19.2 19.6 20

13

14

15

16

17

U

Utot

Fig. 10.6 The bifurcation diagram of system (10.2.16)–(10.2.18) for the values of the parameter
Utot between 17.67 and 20.03
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Fig. 10.7 The figure reveals a limit cycle, the projection of the attractor of the global system on
the domain of Eq. (10.2.18) with Utot = 17.7
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Fig. 10.8 The projection of the chaotic solution of the drive GDS system (10.3.19) on the U − j
plane
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Fig. 10.9 The chaotic behavior of the U coordinate of system (10.3.19)
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Fig. 10.10 Profiles of the a
electric field E, b electron
density ne, and c ion density
ni as functions of time
support the existence of
spatiotemporal chaos

10.5 Notes

In the studies [34–46], we applied the input–output mechanism to systems that admit
stable equilibrium points as well as limit cycles. It is theoretically proved in [44]
that weak forcing of systems with stable limit cycles leads to the deformation of
limit cycles to chaotic cycles, that is, motions that behave chaotically around the
limit cycle. This phenomenon cannot be explained by the theory of generalized
synchronization [1–5, 7], and it is also used in the present chapter. In the electrical
sense, the chaotification of limit cycles is much more preferable than that procedure
for asymptotic equilibria, because of the role of oscillations for electronics.

In this chapter, we utilize GDS systems as drive and response electrical models.
GDS systems were analyzed for a chaos presence in [63]. We complete the analysis
by constructing the full period-doubling bifurcation diagram to demonstrate that the
drive system admits infinitely many unstable periodic solutions as well as sensitivity.
However, this is only an auxiliary result. The main novelty of the present chapter
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with respect to the previous studies [57, 63, 64] is that we consider these systems
which are coupled in a unidirectional way and prove that the chaos can be extended
through couplings of GDS systems as well as in their arbitrary large collectives. This
type of chaos extension may give benefits in further applications, for example, in
economic lamps and flat TV screens [11, 12]. We suggest that our way of numerical
analysis and special design of complexity can be further verified experimentally. It
is worth noting that our approach is not generalized synchronization of chaos at all.
This is demonstrated through the special method of auxiliary system approach [1, 3].
The results of Chap.10 were published in the paper [68].
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