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To the memory of Eva



Preface to the Second Edition

In this second revised edition several parts of the first edition have been rewritten
and extended. This is particularly the case for Chaps. 4, 6 and 8, which represent the
central parts of the book. The presentation of numerical results concerning
quantum-electrodynamical (QED) effects in combination with electron correlation
is extended and now includes radiative QED effects (electron self-energy, vertex
correction and vacuum polarization), involving the use of Feynman and Coulomb
gauges.

A new section (Part IV) has been added, dealing with QED effects in dynamical
processes. It turned out that the Green’s operator, introduced primarily for structure
problems, is particularly suitable also for dealing with dynamical processes, when
bound states are involved. Here, certain singularities may appear of the same kind
as in dealing with static processes, leading to so-called model-space contributions.
These cannot be handled with the standard S-matrix formulation, which is the
normal procedure for dynamical processes involving only free-particle states. This
has led to a modification of the optical theorem applicable also to bound states,
where the S-matrix is replaced by the Green’s operator.

In addition, a number of misprints and other errors have been corrected for, and
I am grateful to all readers who have pointed out some of them to me.

I wish to express my gratitude to Prof. Walter Greiner, Frankfurt, and to the
Alexander von Humboldt Foundation for moral and economic support during the
entire work with this book.

I am very grateful to my coworkers, Sten Salomonson, Daniel Hedendahl and
Johan Holmberg, for valuable cooperation and for allowing me to include results
that are unpublished or in the process of being published.
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On behalf of our research group of theoretical Atomic Physics at the University
of Gothenburg, I wish to express our deep gratitude to Horst Stöcker and Thomas
Stöhlker at GSI, Darmstadt, as well as to the Helmholtz Association for moral and
financial support during the final phase of this project, which has been of vital
importance for the conclusion of the project.

Gothenburg Ingvar Lindgren
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Preface to the First Edition

It is now almost 30 years since the first edition of my book together with John
Morrison, Atomic Many-Body Theory [124], appeared, and the second edition
appeared some years later. It has been out of print for quite some time, but fortu-
nately it has recently been made available again by a reprint by Springer Verlag.

During the time that has followed, there has been a tremendous development in
the treatment of many-body systems, conceptually as well as computationally.
Particularly the relativistic treatment has expanded considerably, a treatment that
has been extensively reviewed recently by Ian Grant in the book Relativistic
Quantum Theory of Atoms and Molecules [79].

Also, the treatment of quantum-electrodynamical (QED) effects in atomic sys-
tems has developed considerably in the past few decades, and several review
articles have appeared in the field [130, 159, 226] as well as in the book by
Labzowsky et al., Relativistic Effects in Spectra of Atomic Systems [114].

An impressive development has taken place in the field of many-electron sys-
tems by means of various coupled-cluster approaches, with applications particularly
on molecular systems. The development during the past 50 years has been sum-
marized in the book Recent Progress in Coupled Cluster Methods, edited by
Čársky, Paldus and Pittner [246].

The present book is aimed at combining the atomic many-body theory with
quantum electrodynamics, which is a long-sought goal in quantum physics. The
main problem in this effort has been that the methods for QED calculations, such as
the S-matrix formulation, and the methods for many-body perturbation theory
(MBPT) have completely different structures. With the development of the new
method for QED calculations, the covariant evolution operator formalism by the
Gothenburg Atomic-Theory group [5], the situation has changed, and quite new
possibilities has appeared to formulate a unified theory.

The new formalism is based on field theory, and in its full extent the unification
process represents a formidable problem, and we can in the present book describe
only how some steps towards this goal can be taken. The present book will be
largely based upon the previous book Atomic Many-Body Theory [124], and it is
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assumed that the reader has absorbed most of that book, particularly Part II.
In addition, the reader is expected to have basic knowledge in quantum field theory,
as found in books like Quantum Theory of Many-Particle Systems by Fetter and
Walecka [67] (mainly parts I and II), An Introduction to Quantum Field Theory by
Peskin and Schroeder [194], and Quantum Field Theory by Mandl and Shaw [143].

The material of the present book is largely based upon lecture notes and recent
publications by the Gothenburg Atomic-Theory group [86, 89, 130–132], and I
want to express my sincere gratitude particularly to my previous co-author John
Morrison and to my present coworkers, Sten Salomonson and Daniel Hedendahl, as
well as to the previous collaborators Ann-Marie Pendrill, Jean-Louis Heully, Eva
Lindroth, Bjöorn Åsén, Hans Persson, Per Sunnergren, Martin Gustavsson and
Håkan Warston for valuable collaboration.

In addition, I want to thank the late pioneers of the field, Per-Olov Löwdin, who
taught me the foundations of perturbation theory some 40 years ago, and Hugh
Kelly, who introduced the diagrammatic representation into atomic physics—two
corner stones of the later developments. Furthermore, I have benefitted greatly from
communications with many other national and international colleagues and friends
(in alphabetic order), Rod Bartlett, Erkki Brändas, Gordon Drake, Ephraim Eliav,
Stephen Fritzsche, Gerald Gabrielse, Walter Greiner, Paul Indelicato, Karol
Jankowski, Jüurgen Kluge, Leonti Labzowsky, Peter Mohr, Debashis Mukherjee,
Marcel Nooijen, Joe Paldus, Vladimir Shabaev, Thomas Stöohlker, Gerhard Soff†,
Joe Sucher, Peter Surjan and many others.

The outline of the book is the following. The main text is divided into three
parts. Part I gives some basic formalism and the basic many-body theory that will
serve as a foundation for the following text. In Part II three numerical procedures
for calculation of QED effects on bound electronic states are described, the S-matrix
formulation, the Green’s function and the Green’s operator methods. A procedure
towards combining QED with MBPT is developed in Part III. Part IV contains a
number of appendices, where basic concepts are summarized. Certain sections
of the text that can be omitted at first reading are marked with an asterisk (*).

Gothenburg Ingvar Lindgren
November 2010
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Chapter 1
Introduction

1.1 Standard Many-Body Perturbation Theory

The quantum-mechanical treatment of many-electron systems, based on the
Schrödinger equation and the Coulomb interaction between the electrons, was devel-
oped shortly after the advent of quantum mechanics, particularly by John Slater in
the late 1920s and early 1930s [230]. Self-consistent-field (SCF) schemes were
early developed by Slater, Hartree, Fock and others.1 Perturbative schemes for
quantum-mechanical system, based on the Rayleigh–Schrödinger and Brillouin–
Wigner schemes, were developed in the 1930s and 1940s, leading to the impor-
tant linked-diagram expansion, introduced by Brueckner [40] and Goldstone [78]
in the 1950s, primarily for nuclear applications. That scheme was in the 1960s and
1970s also applied to electronic systems [104] and extended to degenerate and quasi-
degenerate energy levels (“multi-reference systems”) [34, 117]. The next step in this
development was the introduction of “all-order methods” of coupled-cluster type,
where certain effects are taken to all orders of the perturbation expansion (see [246]).
This represents the last—and probably final—major step of the development of a
non-relativistic many-body perturbation theory (MBPT).2

The first step towards a relativistic treatment of many-electron systems was taken
in the early 1930s by Gregory Breit [35], extending works made somewhat earlier by
J.A. Gaunt [73]. Physically, the Gaunt interaction represents the magnetic interaction
between the electrons, which is a purely relativistic effect. Breit augmented this
treatment by including the leading retardation effect, due to the fact that the Coulomb
interaction is not instantaneous, which is an effect of the same order.

1For a review of the SCF methods the reader is referred to the book by Ch. Froese-Fischer [71].
2ByMBPTwe understand here perturbative methods based upon the Rayleigh–Schrödinger pertur-
bation scheme and the linked-diagram expansion. To that group we also include non-perturbative
schemes, like the coupled-cluster approach (CCA), which are based upon the same formalism.

© Springer International Publishing Switzerland 2016
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Springer Series on Atomic, Optical, and Plasma Physics 63,
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2 1 Introduction

A proper relativistic theory should be Lorentz covariant, like the Dirac single-
electron theory.3 The Dirac equation for the individual electrons together with the
instantaneous Coulomb and Breit interactions between the electrons represent for a
many-electron system all effects up to order α2 H(artree atomic units) or α4 mec2.4

This procedure, however, is NOT Lorentz covariant, and the instantaneous Breit
interaction can only be treated to first-order in perturbation theory, unless projection
operators are introduced to prevent the intermediate states from falling into the “Dirac
sea” of negative-energy states, as discussed early by Brown and Ravenhall [39] and
later by Joe Sucher [238]. The latter approach has been successfully employed for a
long time in relativistic many-body calculations and is known as the no-virtual-pair
approximation (NVPA).

A fully covariant relativistic many-body theory requires a field-theoretical
approach, i.e., the use of quantum electrodynamics (QED). In principle, there is
no sharp distinction between relativity and QED, but conventionally we shall refer
to effects beyond the no-virtual-pair approximation as QED effects. This includes
“non-radiative” effects (retardation and virtual electron-positron pairs) as well as
“radiative” effects (self-energy, vacuum polarization, vertex correction). The sys-
tematic treatment of these effects requires a covariant approach, where the QED
effects are included in the wave function and hence can be treated on the same foot-
ing as the electron-electron interaction. It is the main purpose of the present book to
formulate the foundations of such a unified MBPT-QED procedure.

1.2 Quantum Electrodynamics

Already in the 1930s deviations were observed between the results of precision
spectroscopy and the Dirac theory for simple atomic systems, primarily the hydrogen
atom. Originally, this deviation was expected to be due to vacuum polarization, i.e.,
spontaneous creation of electron-positron pairs in the vacuum, but this effect turned
out to be too small and even of the wrong sign. An alternative explanation was the
electron self-energy, i.e., the emission and absorption of a virtual photon on the same
electron—another effect that is not included in the Dirac theory. Early attempts to
calculate this effect, however, were unsuccessful, due to singularities (infinities) in
the mathematical expressions.

The first experimental observation of a clear-cut deviation from the Dirac theory
was the detection in 1947 by Lamb and Retherford of the so-called Lamb shift [116],

3A physical quantity (scalar, vector, tensor) is said to be Lorentz covariant, if it transforms according
to a representation of the Lorentz group. (Only a scalar is invariant under a that transformation.)
An equation or a theory, like the theory of relativity or Maxwell’s theory of electromagnetism, is
said to be Lorentz covariant, if it can be expressed entirely in terms of covariant quantities (see, for
instance, the books of Bjorken and Drell [21, 22]).
4α is the fine-structure constant ≈1/137 and mec2 is the electron rest energy (see Appendix K).
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namely the shift between the 2s and 2p1/2 levels in atomic hydrogen, levels that are
exactly degenerate in the Dirac theory [58, 59]. In the same year Hans Bethe was able
to explain the shift by a non-relativistic calculation, eliminating the singularity of
the self-energy by means of a renormalization process [19]. At about the same time
Kusch and Foley observed that the magnetic g-factor of the free electron deviates
slightly but significantly from the Dirac value −2 [110, 111]. These observations led
to the development of the modern form of the quantum-electrodynamic theory by
Feynman, Schwinger, Dyson, Tomanaga and others by which the deviations from
the Dirac theory could be explained with good accuracy [63, 68, 69, 224, 244].5

The original theory of QED was applied to free electrons. During the last four
to five decades several methods have been developed for numerical calculation of
QED effects in bound electronic states. The scattering-matrix or S-matrix formula-
tion, originally developed for dealing with the scattering of free particles, was made
applicable also to bound states by Joe Sucher [236], and the numerical procedure was
refined in the 1970s particularly by Peter Mohr [153]. During the last two decades
the method has been extensively used in studies of highly charged ions in order to
test the QED theory under extreme conditions, works that have been pioneered by
Mohr and Soff (for a review, see [159]).

The Green’s function is one of the most important tools in mathematical physics
with applications in essentially all branches of physics.6 During the 1990s themethod
was adopted to bound-state QED problems by Shabaev et al. [226]. This procedure
is referred to as the two-time Green’s function and has recently been extensively
applied to highly-charged ions by the St Petersburg group.

During the first decade of this century another procedure for numerical QED
calculations was developed by the Gothenburg atomic theory group, first termed the
Covariant evolution-operator method [130], which was applied to the fine structure
and other energy-level separations of heliumlike ions. This can be combined with
electron correlation to arbitrary order, and we then refer to this procedure as the
Green’s-operator method. This represents a step towards a fully covariant treatment
of many-electron systems and formally equivalent to the Bethe–Salpeter equation
(see below).

1.3 Bethe–Salpeter Equation

The first completely covariant treatment of a bound-state problem was presented in
1951 by Salpeter and Bethe [20, 213] and by Gell-Mann and Low [74]. The two-
particle Bethe–Salpeter (BS) equation contains in principle the complete relativistic
and interelectronic interaction, i.e., all kinds of electron-correlation andQED effects.

5For the history of the development of the QED theory the reader is referred to the authoritative
review by Silvan Schweber [221].
6For a comprehensive account of the applications, particularly in condensed-matter physics, the
reader is referred to the book by Gerald Mahan [140].
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The BS equation is associated with several fundamental problems, which were
discussed in the early days, particularly by Dyson [64], Goldstein [77], Wick [251]
and Cutkosky [53]. Dyson found that the question of relativistic quantum mechanics
is “full of obscurities and unsolved problems” and that “the physical meaning of the
4-dimensional wave function is quite unclear”. It seems that some of these problems
still remain.

The BS equation is based upon field theory, and there is no direct connection to the
Hamiltonian approachof quantummechanics. The solution of thefield-theoreticalBS
equation leads to a four-dimensional wave function with individual times for the two
particles. This is not in accordance with the standard quantum-mechanical picture,
which has a single time variable also for many-particle systems. The additional
time variable leads sometimes to “abnormal solutions” with no counterparts in non-
relativistic quantum mechanics, as discussed particularly by Nakanishi [172] and
Namyslowski [173].

Much effort has been devoted to simplifying the BS equation by reducing it to
a three-dimensional equation, in analogy with the standard quantum-mechanical
equations (for reviews, see [32, 49]). Salpeter [212] derived early an “instanta-
neous” approximation, neglecting retardation, which led to a relativistically exact
three-dimensional equation, similar to—but not exactly equal to—the Breit equa-
tion. More sophisticated is the so-called quasi-potential approximation, introduced
by Todorov [242], frequently used in scattering problems. Here, a three-dimensional
Schrödinger-type equation is derived with an energy-dependent potential, deduced
from scattering theory. Sazdjian [216, 217] was able to separate the BS equation into
a three-dimensional equation of Schrödinger type and one equation for the relative
time of the two particles, serving as a perturbation—an approach that is claimed to
be exactly equivalent to the original BS equation. This approach establishes a defin-
itive link between the Hamiltonian relativistic quantum mechanics and field theory.
Connell [49] further developed the quasi-potential approximation of Todorov by
introducing series of corrections, a procedure that also is claimed to be formally
equivalent to the original BS equation.

Caswell and Lepage [42] applied the quasi-potential method to evaluate the hyper-
fine structure ofmuonium and positronium to the orderα6 mec2 by combining analyt-
ical and perturbative approaches. Grotch andYennie [32, 83] have applied themethod
to evaluate higher-order nuclear corrections to the energy levels of the hydrogen atom,
and Adkins and Fell [3, 4] have applied it to positronium.

A vast literature on the Bethe–Salpeter equation, its fundamental problems and its
applications, has been gathered over the years since the original equation appeared.
Most applications are performed in the strong-coupling case (QCD), where the fun-
damental problems of the equation are more pronounced. The interested reader is
here referred to some reviews of the field, where numerous references to original
works can be found [82, 172, 173, 178, 217].
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1.4 Helium Atom. Analytical Approach

An approach to solve the BS equation, known as the external-potential approach,
was first developed by Sucher [235, 237] in order to evaluate the lowest-order QED
contributions to the ground-state energy of the helium atom, and equivalent results
were at the same time also derived by Araki [5]. The electrons are here assumed to
move in the field of the (infinitely heavy) atomic nucleus. The relative time of the two
electrons is eliminated by integrating over the corresponding energy of the Fourier
transform, which leads to a Schrödinger-like equation, as in the quasi-potential-
method. The solution of this equation is expanded in terms of a Brillouin–Wigner
perturbation series. This work has been further developed and applied by Douglas
and Kroll [60] and by Zhang and Drake [259, 263] by considering higher-order terms
in the α and Zα expansions. This approach, which is reviewed in Chap.11, can be
used for light systems, such as light heliumlike ions, where the power expansions
are sufficiently convergent. The QED effects are here evaluated by means of highly
correlated wave functions of Hylleraas type, which implies that QED and electron-
correlation effects are highly mixed. A related technique, referred to as the effective
Hamiltonian approach, has been developed and applied to heliumlike systems by
Pachucki and Sapirstein [179, 180, 181].

A problem that has been controversial for quite some time is the fine structure of
the lowest P state of the neutral helium atom. The very accurate analytical results
of Drake et al. and by Pachucki et al. give results close to the experimental results
obtained by Gabrielse and others [258], but there have for quite some time been
significant deviations—well outside the estimated limits of error. More recently,
Pachucki and Yerokhin have by means of improved calculations shown that the
controversy has been resolved [182, 183, 184, 185].

1.5 Field-Theoretical Approach to Many-Body
Perturbation Theory

The methods mentioned for numerical QED calculations can for practical reasons
be used only to evaluate one- and two-photon exchange in a complete way. This
implies that the electron correlation can only be treated to lowest order. This might
be sufficiently accurate for highly charged systems, where the QED effects dominate
over the electron correlation, but is usually quite insufficient for lighter systems,
where the situation is different.

In the numerical procedures for standard (relativistic) MBPT the electron corre-
lation can be evaluated effectively to essentially all orders by techniques of coupled-
cluster type. QED effects can here be included only as first-order energy corrections,
a technique applied particularly by the Notre-Dame group [195]. To treat electron
correlation, relativity and QED in a unified manner would require a field-theoretical
many-body approach from the start.

http://dx.doi.org/10.1007/978-3-319-15386-5_11
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The methods developed for QED calculations are all based upon field-theory. Of
thesemethods, the covariant-evolution-operator method, has the advantage that it has
a structure that is quite akin to that of standardMBPT.Contrary to the othermethods it
can be used to evaluate perturbations to the wave function—not only to the energy.
Then it can serve as a basis for a unified field-theoretical many-body approach,
where the dominating QED effects can be evaluated order for order together with
the Coulomb interaction. This leads to a procedure for the combination of QED and
electron correlation. This is the approach that will be described in the present book
and represents the direction of research presently being pursued by the Gothenburg
atomic theory group.

(It should be mentioned that a related idea was proposed by Leonard Rosenberg
more than 20years ago [203], namely of including Coulomb interactions in the QED
Hamiltonian.)

The covariant evolution operator can be singular, as the standard evolution oper-
ator of non-relativistic quantum mechanics, but the singularities can be eliminated
in a similar way as the corresponding singularities of the Green’s function. The reg-
ular part of the covariant evolution operator is the Green’s operator, which can be
regarded as an extension of the Green’s-function concept and shown to serve as a link
between field theory and standard many-body perturbation theory. The perturbation
used in this procedure represents the interaction between the electromagnetic field
and the individual electrons. This implies that the equations operate in an extended
photonic Fock space with variable number of photons.

The strategy is here to combine a single retarded photon with numerous Coulomb
interactions.As long as no virtual pairs are involved, this can be performed iteratively.
In this way the dominating QED effects can—for the first time—be treated in the
same manner as standard many-body perturbations. For practical reasons only a
single retarded photon can be included in each iteration at present time, but due to
the iterations this corresponds to the most important (“reducible”) effects also in
higher orders [132]. When extended to (“irreducible”) interactions of multi-photon
type, this would lead for two-particle systems to the Bethe–Salpeter equation, and
in the multi-reference case to an extension of this equation, referred to as the Bethe–
Salpeter–Bloch equation [131].

In the first edition we dealt with the combination of electron correlation and non-
radiative QED effects, mainly retardation and virtual electron-positron pairs, based
upon the PhD thesis of Daniel Hedendahl in the Gothenburg group. In the meantime,
similar calculations have been performed for radiative effects (electron self-energy
and vertex correction) by Johan Holmberg in his thesis of the same group, and his
main results are included in the present second edition.

In combining QED with electron correlation it has been found advantageous to
work in theCoulomb gauge. In the Feynman gauge there are enormous cancellations
between various QED effects, which is not the case in the Coulomb gauge, making
the calculations in the latter gauge much more stable. This has the consequence,
as is demonstrated in Chap. 9, that it is practically impossible to carry calculations
involving radiative effects beyond second order using the Feynman gauge. With the
Coulomb gauge, on the other hand, reliable results could here be obtained.

http://dx.doi.org/10.1007/978-3-319-15386-5_9
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Furthermore, in this gauge one can, for instance, include the instantaneous Breit
interaction, which in other gauges, like the Feynman gauge, would correspond to
multiple transverse photons. Although this gauge is non-covariant in contrast to, for
instance, the simpler Feynman gauge, it can be argued that the deviation from a fully
covariant treatment will have negligible effect in practical applications when handled
properly. This makes it possible to mix a larger number of Coulomb interactions with
the retarded-photon interactions, which is expected to lead to the same ultimate result
as a fully covariant approach but with faster convergence rate due to the dominating
role of the Coulomb interaction.

The procedure can also be extended to systems with more than two electrons, and
due to the complete compatibility between the standard and the extended procedures,
theQED effects need only be includedwhere they are expected to bemost significant.

In principle, also the procedure outlined here leads to individual times for the
particles involved, consistent with the full Bethe–Salpeter equation but not with
the standard quantum-mechanical picture. We shall mainly work in the equal-time
approximation here, and we shall not analyze effects beyond this approximation in
any detail. It is expected that—if existing—any such effect would be extremely small
for electronic systems.

1.6 Dynamical Processes

The first edition of the book dealt only with static processes, i.e., structure calcula-
tions. In recent time experiments on dynamical processes have become increasingly
important in various parts of physics and chemistry. The standard theoretical pro-
cedure for dealing with such processes is the S-matrix formalism. In evaluating
QED effects for such systems, where bound states are involved, intermediate model-
space states will appear, which will lead to singularities that cannot be handled with
the S-matrix formalism. However, these singularities are of the same kind as those
appearing in structure calculations, which has the consequence that the methods
developed for QED calculations for structure calculations, such as the covariant evo-
lution operator method, work perfectly well also for dynamical processes. This is
demonstrated in Part IV of the second edition for the case of transition rates and
radiative recombination. Experiments are presently being performed to detect QED
effects in such processes. These effects are presently on the verge of being detectable
experimentally.



Part I
Basics. Standard Many-body

Perturbation Theory



Chapter 2
Time-Independent Formalism

In this first part of the book we shall review some basics of quantum mechanics and
the many-body theory for bound electronic systems that will form the foundations
for the following treatment. This material can also be found in several standard text
books. The time-independent formalism is summarized in the present chapter 1 and
the time-dependent formalism in the following one.

2.1 First Quantization

First quantization is the term for the elementary treatment of quantized systems,
where the particles of the system are treated quantum-mechanically, for instance,
in terms of Schrödinger wave functions, while the surrounding fields are treated
classically.

2.1.1 De Broglie’s Relations

As an introduction to the quantum mechanics we shall derive the Schrödinger equa-
tion from the classical relations of De Broglie.

According to Planck-Einstein’s quantum theory the electromagnetic radiation is
associated with particle-like photons with the energy (E) and momentum (p) given
by the relations

1This chapter is essentially a short summary of the second part of the book Atomic Many-Body
Theory by Lindgren and Morrison [124], and the reader who is not well familiar with the subject is
recommended to consult that book.

© Springer International Publishing Switzerland 2016
I. Lindgren, Relativistic Many-Body Theory,
Springer Series on Atomic, Optical, and Plasma Physics 63,
DOI 10.1007/978-3-319-15386-5_2
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{
E = hν = ω�

p = h/λ = �k,
(2.1)

where � = h/2π, h being Planck’s constant (see further Appendix K), ν the cyclic
frequency of the radiation (cycles/second) and ω = 2πν the angular frequency
(radians/second). λ = c/ν (c being the velocity of light in vacuum) is the wavelength
of the radiation and k = 2π/λ the wave number.

De Broglie assumed that the relations (2.1) for photons would hold also for mate-
rial particles, like electrons. Non-relativistically, we have for a free electron in one
dimension

E = p2

2me
or �ω = �

2k2

2me
, (2.2)

where me is the mass of the electron.
De Broglie assumed that a particle could be represented by a wave packet

χ(t, x) =
∫

dk a(k) ei(kx−ωt). (2.3)

The relation (2.2) then leads to the one-dimensional wave equation for a free electron

i�
∂χ(t, x)

∂t
= − �

2

2me

∂2χ(t, x)

∂x2
, (2.4)

which is the Schrödinger equation for a free particle. This can be obtained from the
first of the relations (2.2) by means of the substitutions

E → i�
∂

∂t
p → −i�

∂

∂x
. (2.5)

2.1.2 The Schrödinger Equation

We can generalize the treatment above to an electron in three dimensions in an
external field, vext(x), for which the energy Hamiltonian is

E = H = p2

2me
+ vext(x). (2.6)

Generalizing the substitutions above to 2

p → p̂ = −i�∇ and x → x̂ = x, (2.7)

2Initially, we shall use the ‘hat’ symbol to indicate an operator, but later we shall use this symbol
only when the operator character needs to be emphasized.
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where ∇ is the vector gradient operator (see Appendix A.1), leads to the Hamilton
operator

Ĥ = p̂2

2me
+ vext(x) = − �

2

2me
∇2 + vext(x) (2.8)

and to the Schrödinger equation for a single electron

i�
∂

∂t
χ(t, x) = Ĥ χ(t, x) =

(
− �

2

2me
∇2 + vext(x)

)
χ(t, x). (2.9)

For an N -electron system the Schrödinger equation becomes correspondingly3

i�
∂

∂t
χ(t; x1, x2, . . . , xN ) = Ĥχ(t; x1, x2, . . . , xN ), (2.10)

where we assume the Hamiltonian to be of the form Ĥ = Ĥ1 + Ĥ2 (see Appendix
(B.19)) 4

Ĥ1 =
N∑

n=1

(
− �

2

2me
∇2

n + vext(xn)
)

=:
N∑

n=1

ĥ1(n)

Ĥ2 =
N∑

m<n

e2

4πε0 rmn
=:

N∑
m<n

ĥ2(m, n).

(2.11)

Here, rmn is the interelectronic distance, rmn = |xm − xn| and vext represents the
external (essentially nuclear) energy potential.

Generally, the quantum-mechanical operators Â, B̂ that represent the correspond-
ing classical quantities A, B in the Hamilton formulation (see Appendix E) should
satisfy the quantization condition

[ Â, B̂] = Â B̂ − B̂ Â = i�{A, B}, (2.12)

where the square bracket (with a comma) represents the commutator and the curly
bracket thePoisson bracket (E.10). For conjugate momenta, like the coordinate vector
x and themomentum vector p, the Poisson bracket equals unity, and, the quantization
conditions for the corresponding operators become

[x̂, p̂x ] = [ŷ, p̂y] = [ẑ, p̂z] = i�, (2.13)

which is consistent with the substitutions (2.7).

3Note that according to the quantum-mechanical picture the wave function has a single time also
for a many-electron system. This question will be discussed further in later chapters.
4The symbol “=:” indicates that this is a definition.
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We shall be mainly concerned with stationary, bound states of electronic systems,
forwhich thewave function can be separated into a time function and a space function

χ(t; x1, . . . , xN ) = F(t) Ψ (x1, x2, . . . , xN ).

As shown in standard text books, this leads to a separation into two equations, one
for the time part and one for the space part. The time equation becomes

i�
∂

∂t
F(t) = E F(t)

with the solution
F(t) ∝ e−iEt/�

and the space part is the standard time-independent Schrödinger equation

ĤΨ (x1, . . . , xN ) = E(Ψ (x1, . . . , xN ). (2.14)

Thus, for stationary states the time-dependent wave function is of the form

χ(t; x1, . . . , xN ) = e−iEt/� Ψ (x1, . . . , xN ). (2.15)

The separation constant E is interpreted as the energy of the state.

2.2 Second Quantization

2.2.1 Schrödinger Equation in Second Quantization*

In the following, we shall consistently base our treatment upon second quantization,
which implies that also the particles and fields are quantized and expressed in terms
of (creation- and absorption) field operators (seeAppendices B andC). Here, we shall
first derive the second-quantized form of the time-dependent Schrödinger equation
(SE) (2.9), which reads

i�
∂

∂t
|χ(t)〉 = H |χ(t)〉. (2.16)

With the partitioning (2.11), the operator becomes in second quantization (B.12)

Ĥ = c†i 〈i |h1| j〉 c j + 1

2
c†i c†j 〈i j |h2|kl〉 clck (2.17)
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and the state is expressed as a vector (C.4). Equation (2.16) is by no means obvious,
and we shall here indicate the proof. (The proof follows largely that given by Fetter
and Walecka [67, Chap.1].)

For the sake of concretization we consider a two-electron system. With the coor-
dinate representation (C.19) of the state vector

χ(x1, x2) = 〈x1, x2|χ(t)〉 (2.18)

the SE (2.16) becomes

i�
∂

∂t
〈x1, x2|χ(t)〉 = 〈x, x2|H |χ(t)〉. (2.19)

We consider first the effect of the one-body part of the Hamiltonian (2.17) operat-
ing on the wave function (2.18), and we shall show that this is equivalent to operating
with the second-quantized form of the operator (B.19)

Ĥ = c†i 〈i |h1| j〉 c j (2.20)

on the state vector |χ(t)〉.
We start by expanding the state vector in terms of straight products of single-

electron state vectors (t1 = t2 = t)

|χ(t)〉 = akl(t) |k〉|l〉 (2.21)

(akl = −alk). The coordinate representation of this relation is

χ(x1, x2) = 〈x1, x2|χ(t)〉 = akl(t) 〈x1|k〉〈x2|l〉. (2.22)

We now operate with the single-particle operator (2.20) on the state vector expan-
sion (2.21)

Ĥ1|χ(t)〉 = c†i 〈i |h1| j〉 c j akl(t) |k〉|l〉. (2.23)

For j = k the electron in position 1 is annihilated in the state k and replaced by an
electron in the state i , yielding

〈i |h1|k〉 akl(t) |i〉|l〉.

The coordinate representation of this relation becomes

〈x1|i〉〈i |h1|k〉 akl(t) 〈x2|l〉 = 〈x1|h1|k〉 akl(t) 〈x2|l〉,

using the resolution of the identity (C.12). The right-hand side of (2.23) can also be
expressed

h1(x1)φk(x1)φl(x2) akl(t) = h1(x1)χ(x1, x2).
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Together with the case j = l this leads to

〈x1, x2|H1|χ(t)〉 = (
h1(x1) + h1(x2)

)
χ(x1, x2) = H1χ(x1, x2).

Thus, we have shown the important relation

〈x1, x2|H1|χ(t)〉 = H1χ(x1, x2). (2.24)

A similar relation can be derived for the two-body part of the Hamiltonian, which
implies that

〈x1, x2|H |χ(t)〉 = Hχ(x1, x2) (2.25)

and from the relation (2.19)

i�
∂

∂t
〈x1, x2|χ(t)〉 = 〈x1, x2|H |χ(t)〉. (2.26)

This is the coordinate representation of the Schrödinger equation (2.16), which is thus
verified. It should be observed that (2.16) does not contain any space coordinates. The
treatment is here performed for the two-electron case, but it can easily be extended
to the general case.

2.2.2 Particle-Hole Formalism. Normal Order and
Contraction

In the particle-hole formalism we separate the single-particle states into particle and
hole states, a division that is to some extent arbitrary. Normally, core states (closed-
shell states) are treated as hole states and virtual and valence states as particle states,
but sometimes it might be advantageous to treat some closed-shell states as valence
states or some valence states as hole states. (All states of one (sub) shell must be
treated either as particles or holes.)

If time increases from right to left, the creation/annihilation operators are said
to be time ordered. Time ordering can be achieved by using the Wick time-ordering
operator, which for fermions reads

T [A(t1)B(t2)] =
{

A(t1)B(t2) (t1 > t2)
−B(t2)A(t1) (t1 < t2)

. (2.27)

The case t1 = t2 will be discussed later.
The creation/annihilation operators are said to be in normal order, if the particle-

creation and hole-annihilation operators appear to the left of the particle-annihilation
and hole-creation operators

c†pcpchc†h, (2.28)
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where p, h stand for particle/hole states.

• A contraction of two operators is defined as the difference between the time
-ordered and the normal-ordered products,

x y = T [xy] − N [xy]. (2.29)

In the following we shall use curly brackets to denote the normal product [118]

N [xy] ≡ {x y}. (2.30)

From these definitions it follows that the non-vanishing contractions of the electron-
field operators (B.28) are

ψ̂+(x1)ψ̂
†
+(x2) = −ψ̂†

+(x2)ψ̂+(x1) =
{

φp(x1)φ
†
p(x2) e−iεp(t1−t2)/� t1 > t2

0 t1 < t2

ψ̂−(x1)ψ̂
†
−(x2) = −ψ̂†

−(x2)ψ̂−(x1) =
{
0 t1 > t2
−φh(x1)φ

†
h(x2) e−iεh (t1−t2)/� t1 < t2

.

(2.31)

Here, ψ̂± represents the positive-/negative-energy part of the spectrum, respectively,
and φp and φh denote particle (positive-energy) and hole (negative-energy) states,
respectively.

2.2.3 Wick’s Theorem

The handling of operators in second quantization is greatly simplified by Wick’s the-
orem [250] (for an introduction, see, for instance, Fetter andWalecka [67, Sect. 8] or
Lindgren and Morrison [124, Chap.11]), which states that a product of creation and
annihilation operators Â can be written as the normal product plus all single, double
... contractions with the uncontracted operators in normal form, or symbolically

Â = { Â} + { Â}. (2.32)

A particularly useful form of Wick’s theorem is the following. If Â and B̂ are opera-
tors in normal form, then the product is equal to the normal product plus all normal-
ordered contractions between Â and B̂, or formally

Â B̂ = { Â B̂} + { Â B̂}. (2.33)

With this formulation there are no further contractions within the operators to be
multiplied. This forms the basic rule for the graphical representation of the operators
and operator relations to be discussed below.
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2.3 Time-Independent Many-Body Perturbation Theory

2.3.1 Bloch Equation

Here, we shall summarize the most important concepts of standard time-independent
many-body perturbation theory (MBPT) as a background for the further treatment.
(For more details the reader is referred to designated books, like Lindgren-Morrison,
Atomic Many-Body Theory [124].)

We are considering a number of stationary electronic states,
|Ψ α〉 (α = 1 · · · d), termed target states, that satisfy the Schrödinger equation

H |Ψ α〉 = Eα|Ψ α〉 (α = 1 · · · d). (2.34)

For each target state there exists an “approximate” or model state, |Ψ α
0 〉 (α =

1 · · · d), which is more easily accessible and which forms the starting point for the
perturbative treatment. We assume that the model states are linearly independent and
that they span amodel space. The projection operator for the model space is denoted
P and that for the complementary or orthogonal space by Q, which together form
the identity operator

P + Q = I. (2.35)

A wave operator is introduced—also known as the Møller operator [162]—which
transforms the model states back to the exact states,

|Ψ α〉 = Ω|Ψ α
0 〉 (α = 1 · · · d), (2.36)

and this operator is the same for all states under consideration.
We define an effective Hamiltonian with the property that operating on a model

function it generates the corresponding exact energy

Heff |Ψ α
0 〉 = Eα|Ψ α

0 〉 (α = 1 · · · d) (2.37)

with the eigenvectors representing the model states. Operating on this equation with
Ω from the left, using the definition (2.36), yields

Ω Heff |Ψ α
0 〉 = Eα|Ψ α〉, (2.38)

which we compare with the Schrödinger equation (2.34)

HΩ|Ψ α
0 〉 = Eα|Ψ α〉. (2.39)
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Since this relation holds for each state of the model space, we have the important
operator relation

Ω Heff P = HΩ P, (2.40)

which as known as the generalized Bloch equation.
The form above of the Bloch equation is valid independently on the choice of

normalization. In the following, we shall mainly work with the intermediate nor-
malization (IN), which implies

〈Ψ α
0 |Ψ α〉 = 1, (2.41a)

|Ψ α
0 〉 = P|Ψ α〉 (α = 1 · · · d). (2.41b)

Then we have after projecting the Schrödinger equation onto the model space

P HΩ|Ψ α
0 〉 = Eα|Ψ α

0 〉, (2.42)

and we find that the effective Hamiltonian (2.37) becomes in IN

Heff = P HΩ P. (2.43)

Normally, the multi-dimensional or multi-reference model space is applied in
connection with valence universality, implying that the same operators are used for
different stages of ionization (see further Sect. 2.5).

2.3.2 Partitioning of the Hamiltonian

For electrons moving in an external (nuclear) potential, vext, the single-electron
(Schrödinger) Hamiltonian (2.8) is

hS = − �
2

2me
∇2 + vext. (2.44)

The corresponding Schrödinger equation

hS φi (x) = εi φi (x) (2.45)

generates a complete spectrum of functions, which can form the basis for numerical
calculations. This is known to as the Furry picture. These single-electron functions
are normally referred to as (single-electron) orbitals—or spin-orbitals, if a spin
eigenfunction is adhered. Degenerate orbitals (with the same eigenvalue) form an
electron shell.
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The Hamiltonian for a many-electron system (2.11) is

H =
N∑
n

(
− �

2

2me
∇2 + vext

)
n
+

N∑
n<m

e2

4πε0 rnm
, (2.46)

where the last term represents the interelectronic interaction. For the perturbation
treatment we separate the many-electron Hamiltonian into

H = H0 + V, (2.47)

where H0 a model Hamiltonian that is a sum of single-electron Hamiltonians

H0 =
N∑
n

( − �
2

2me
∇2 + vext + u

)
n =:

N∑
n

h0(n), (2.48)

and V is a perturbation

V = −
N∑
n

un +
N∑

n<m

e2

4πε0 rnm
. (2.49)

The potential u is optional and used primarily to improve the convergence properties
of the perturbation expansion.

The antisymmetrized N -electron eigenfunctions of H0 can be expressed as deter-
minantal products of single-electron orbitals (see Appendix B)

H0 ΦA(x1, x2 · · · xN ) = E A
0 ΦA(x1, x2 · · · xN )

ΦA(x1, x2 · · · xN ) = 1/
√

N ! A{φ1(x1)φ2(x2) · · · φN (xN )}, (2.50)

whereA is an antisymmetrizing operator. The determinants are referred to as Slater
determinants and constitute our basis functions. The eigenvalues are given by

E0 =
N∑

n=1

εn, (2.51)

summed over the spin-orbitals of the determinant.
Degenerate determinants form a configuration. The model space is supposed to

be formed by one or several configurations that can have different energies. We
distinguish between three kinds of orbitals

• core orbitals, present in all determinants of the model space
• valence orbitals, present in some determinants of the model space
• virtual orbitals, not present in any determinants of the model space.
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The model space is said to be complete, if it contains all configurations that can
be formed by distributing the valence electrons among the valence orbitals in all
possible ways. In the following we shall normally assume this to be the case.

With the partitioning (2.47), the Bloch equation above can be expressed

(
Ω Heff − H0Ω

)
P = V Ω P. (2.52)

With H0 of the form (2.48) it commutes with the projection operator P . Then we
find that

Heff = P H0P + PV Ω P, (2.53)

and we shall refer to the second term as the effective interaction

W = PV Ω P. (2.54)

• The partitioning leads to the commonly used form of the generalized Bloch equa-
tion [113, 117, 124]

[
Ω, H0

]
P = Q

(
V Ω − ΩW

)
P, (2.55)

which is frequently used as the basis for many-body perturbation theory (MBPT)
in atomic or molecular applications. The last term appears only for open-shell
systems with unfilled valence shell(s) and is graphically represented by so-called
folded or backwards diagrams, first introduced by Brandow in nuclear physics
[34] and by Sandars [214] (see further below).

If the model space is completely degenerate with a single energy E0, the general
Bloch equation reduces to its original form, derived in the late 1950s by Claude
Bloch [24, 25], (

E0 − H0
)
Ω P = V Ω P − ΩW. (2.56)

This equation can be used to generate the standardRayleigh-Schrödingerperturbation
expansion, found in many text books.

The generalized Bloch equation (2.55) is valid for a general model space, which
can contain different zeroth-order energy levels. Using such an extended model
space, represents usually a convenient way of treating very closely spaced or quasi-
degenerate unperturbed energy levels, a phenomenon that otherwise can lead to
serious convergence problems. This can be illustrated by the relativistic calculation
of the fine structure of heliumlike ions, where a one-dimensional model space leads
to convergence problems for light elements, a problem that can normally be remedied
in a straightforward way by means of the extended model space [146, 195]. But the
extended model space can also lead to problems, due to so-called intruder states, as
will be further discussed below.
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With an extended model space we can separate the projection operator into the
corresponding energy components 5

P =
∑
E

PE ; H0PE = EPE . (2.57)

Operating with the general Bloch equation (2.55) on a particular component, then
yields (E − H0

)
Ω PE = Q

(
V Ω − ΩW

)
PE , (2.58)

where Q is still given by (2.35),

Q = 1 − P. (2.59)

Expanding the wave operator order by order

Ω = 1 + Ω(1) + Ω(2) + · · · (2.60)

leads to the recursive formula

(E − H0
)
Ω(n) PE = Q

(
V Ω(n−1) − (ΩW )(n)

)
PE (2.61)

or
Ω(n) PE = ΓQ(E)

(
V Ω(n−1) − (ΩW )(n)

)
PE , (2.62)

where
W (k) = PV Ω(k−1) P. (2.63)

Here,

Γ (E) = 1

E − H0
(2.64)

and
ΓQ(E) = QΓ (E) (2.65)

are known as the resolvent and the reduced resolvent, respectively [138].
The recursive formula (2.62) can generate a generalized form of the Rayleigh-

Schrödinger perturbation expansion (see [124, Chap.9]), valid also for a quasi-
degenerate model space. We see from the form of the resolvent that in each new order
of the perturbation expansion there is a denominator equal to the energy difference
between the initial and final states. This leads to theGoldstone rules in the evaluation
of the time-ordered diagrams to be consider in the following section.

5In the case of an extended model space, we shall normally use the symbol E for the different
energies of the model space.
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Even if the perturbation is energy independent, we see that the wave operator
and effective interaction will still generally be energy dependent, due to the energy
dependence of the resolvent. In first order we have

Ω(1) PE = ΓQ(E)V PE (2.66)

and in second order

Ω(2)(E)PE = ΓQ(E)
(

V Ω(1)(E) − Ω(1)(E ′)PE ′ W (1)
)

PE , (2.67)

where W (1) = PV P . Note that the wave operator in the last term operates on the
projection operator PE ′ and therefore depends on the corresponding energy E ′. We
now have

δΩ(1)(E)

δE = δΓQ(E)

δE V = ΓQ(E ′) − ΓQ(E)

E ′ − E V = −ΓQ(E)ΓQ(E ′)V

= −ΓQ(E)Ω(1)(E ′), (2.68)

and we note that the last folded term in (2.67) has a double denominator. We can
express the second-order Bloch equation as

Ω(2)(E)PE = ΓQ(E)V Ω(1)(E)PE + δΩ(1)(E)

δE W (1)(E)PE . (2.69)

In the limit of complete degeneracy space the difference ratio goes over into a
partial derivative. We shall show in later chapters that the second-order expression
above holds also when the perturbation is energy dependent (6.114).

2.4 Graphical Representation

In this section we shall briefly describe a way of representing the perturbation expan-
sion graphically. (For further details, the reader is referred to the book by Lindgren
and Morrison [124].)

2.4.1 Goldstone Diagrams

The Rayleigh-Schrödinger perturbation expansion can be conveniently represented
in terms of diagrams by means of second quantization (see above and Appendix B).

http://dx.doi.org/10.1007/978-3-319-15386-5_6
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The perturbation (2.49) becomes in second quantization

V̂ = c†i c j 〈i | f | j〉 + 1
2 c†i c†j cl ck 〈i j |g|kl〉, (2.70)

where f is the negative potential f = −u and g is the Coulomb interaction between
the electrons. When some of the states are hole states, the expression (2.70) is not in
normal order. By normal ordering the expression, zero-, one- and two-body operators
will appear [124, Eq.11.39]

V = V0 + V1 + V2, (2.71)

where

V0 =
hole∑

i

〈i | f |i〉 + 1
2

hole∑
i j

[〈i j |g|kl〉 − 〈 j i |g|kl〉]

V1 = {c†i c j } 〈i |Veff | j〉
V2 = 1

2 {c†i c†j cl ck} 〈i j |g|kl〉. (2.72)

In the one- and two-body parts the summation is performed over all orbitals. Here,

〈i |Veff | j〉 = 〈i | f | j〉 +
hole∑

k

[〈ik|g| jk〉 − 〈ki |g| jk〉] (2.73)

is known as the effective potential interaction and can be represented graphically as
shown in Fig. 2.3. The summation term represents the Hartree-Fock potential

〈i |vHF| j〉 =
hole∑

k

[〈ik|g| jk〉 − 〈ki |g| jk〉], (2.74)

where the first term is a “direct” integral and the second term an “exchange” integral.
In the Hartree-Fock model we have u = vHF, and the effective potential vanishes
[124].

We can now represent the perturbation (2.72) by the normal-ordered diagrams
in Fig. 2.1. The zero- and one-body parts are shown inmore detail in Figs. 2.2 and2.3.
In our diagrams the dotted line with the cross represents the potential interac-
tion, f = −u, and the dotted line between the electrons the Coulomb interaction,
g = e2/4πε0 r12. We use here a simplified version of Goldstone diagrams. Each
free vertical line at the top (bottom) represents an electron creation (absorption)
operator but normally we do not distinguish between the different kinds of orbitals
(core, valence and virtual) as done traditionally. There is a summation of internal
lines over all orbitals of the same category. We use generally heavy lines to indicate



2.4 Graphical Representation 25

Fig. 2.1 Graphical representation the effective-potential interaction (2.72). The heavy lines rep-
resent the orbitals in the Furry picture. The dotted line with the cross represents the potential −u
and the dotted, horizontal lines the Coulomb interaction. The zero-body and one-body parts of the
interaction are depicted in Figs. 2.2 and 2.3, respectively

Fig. 2.2 Graphical representation of the zero-body part of the effective-potential interaction (2.72).
The orbitals are summed over all core/hole states

Fig. 2.3 Graphical representation of the effective-potential interaction (2.73). For the closed orbital
lines (with no free end) there is a summation over the core/hole states. The last two diagrams
represent the “Hartree-Fock” potential, and the entire effective-potential interaction vanishes when
HF orbitals are used

that the orbitals are generated in an external (nuclear) potential, i.e., the bound-state
representation or Furry picture.

By means of Wick’s theorem we can now normal order the right-hand side (r.h.s.)
of the perturbation expansion of the Bloch equation (2.62), and

• each resulting normal-ordered term will be represented by a diagram.

The first-order wave operator (2.66)

Ω(1) PE = ΓQ(E) V PE = ΓQ(E) (V1 + V2)PE (2.75)

becomes in second quantization (2.72)

Ω(1) PE = Q

[
{c†i c j } 〈i |Veff | j〉

ε j − εi
+ 1

2 {c†i c†j cl ck} 〈i j |g|kl〉
εk + εl − εi − ε j

]
PE . (2.76)

This can be represented in the same way as the open part (V1 + V2) of the pertur-
bation (2.70) (Fig. 2.1), if we include the extra energy denominator according to the
Goldstone rules, summarized below.
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Fig. 2.4 Examples of second-order wave-operator diagrams, excluding folded diagrams

In second order we have from (2.67), using Wick’s theorem (2.33),

Ω(2) PE = ΓQ(E)
(
{V Ω

(1)
E } + {V Ω

(1)
E } − {Ω(1)

E PE ′ Veff} − {Ω(1)
E ′ PE ′ Veff}

)
PE ,

(2.77)

where the hook represents a contraction. The first, uncontracted term is represented
by combinations of the diagrams in Fig. 2.1, such as

�

� ×�
�

�

�

�
� �

(2.78)

considered as a single diagram. This diagram can be of two types.

• If both disconnected parts are open, the diagram is referred to as linked.6 If,
on the other hand, at least one of them is closed, the diagram is referred to as
unlinked.

In the unlinked part of the second term in (2.77) the closed part represents Veff , and
since the order of the operators in the normal product is immaterial, this unlinked
diagram appears also in the third term and is therefore eliminated. The last, contracted
term survives and represents the “folded” term. Here, the wave operator depends on
the energy (E ′) of the intermediate state, which might differ from the energy of the
initial state (E). We can then express the second-order wave operator by

Ω(2) PE = ΓQ(E)
(

V Ω
(1)
E − Ω

(1)
E ′ PE ′ Veff

)
linked

PE , (2.79)

where only linked diagrams are maintained (see Fig. 2.4).
The diagrams in Fig. 2.4 are second-order time-ordered Goldstone diagrams. In

these diagrams, time is supposed to run from the bottom (although the formalism is
here time independent). The diagrams are evaluated by the standard Goldstone rules
with a denominator after each interaction equal to the energy difference between

6A closed diagram has the initial as well as the final state in the model space. Such a diagram
can—in the case of complete model space—have no other free lines than valence lines. A diagram
that is not closed is said to be open.
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the (model-space) state at the bottom and that directly after the interaction (see
Appendix I and [124, Sect. 12.4]). (In later chapters we shall mainly use Feynman
diagrams, which contain all possible time orderings between the interactions.)

2.4.2 Linked-Diagram Expansion

2.4.2.1 Complete Model Space

Written more explicitly, the second-order wave operator (2.79) becomes

Ω(2) PE =
(
ΓQ(E) V ΓQ(E) V − ΓQ(E) ΓQ(E ′) V PE ′ V

)
linked

PE . (2.80)

Here, the second term has a double resolvent (double denominator, which might
contain different model-space energies), and it is traditionally drawn in a “folded”
way, as shown in the left diagram below (see, for instance, [124, Sect. 13.3])

�r �s

� �

�
�

�
��

���
�

��

���
�

��

� �
�

�
��

���
�

��

���
�

��

�c d

PE ′ PE
�a �b

� �

⇒
�a �b

�c �d

� �

� �

�r �s

PE ′

PE (2.81)

The reason for drawing the diagram folded in this way is that the two pieces—
before and after the fold—should be evaluated with their denominators indepen-
dently. In the general case, by considering all possible time-orderings between the
two pieces, together with the Goldstone evaluation rules, it can be shown that the
denominators do factorize. In a relativistic treatment, which we shall employ for the
rest of this book, the treatment is most conveniently based upon Feynman diagrams,
which automatically contain all possible time-orderings, and then it is more natural
to draw the diagram straight, as shown in the second diagram above. Factorization
then follows directly. The double bar indicates that the diagram is “folded” with a
double denominator in the upper part—one denominator with the energy of the initial
state and one with that of the intermediate model-space state. The second-order wave
operator can then be illustrated as shown in Fig. 2.5. Note that there is a minus sign
associated with the folded diagram.

The general ladder diagram (Fig. 2.5) may contain a (quasi)singularity, when the
intermediate state lies in the model space and is (quasi)degenerate with the initial
state. This singularity is automatically eliminated in the Bloch equation and leads to
the folded term. Later, in Sect. 6.8 we shall discuss this kind of singularity in more
detail in connection with energy-dependent interactions, and then we shall refer to
the finite remainder as the model-space contribution (MSC).

http://dx.doi.org/10.1007/978-3-319-15386-5_6
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Fig. 2.5 Removing the singularity from a ladder diagram leads to finite remainder, represented by
a “folded” diagram (last). The double bar represents a double denominator (with a factor of −1)

We have seen that the so-called unlinked diagrams are eliminated in the second-
order wave operator (2.79). When the model space is “complete” (see definition
above), it can be shown that unlinked diagrams disappear in all orders of perturba-
tion theory. This is the linked-cluster or linked-diagram theorem (LDE), first demon-
strated in the 1950s by Brueckner [40] and Goldstone [78] for a degenerate model
space. It holds also for a complete quasi-degenerate model space, as was first shown
by Brandow [34], using a double perturbation expansion. This was demonstrated
more directly by Lindgren [117] by means of the generalized Bloch equation (2.55),
and the result can then be formulated 7

[
Ω, H0

]
P = (

V Ω P − ΩW
)
linked P. (2.82)

This equation is a convenient basis for many-body perturbation theory, as developed,
for instance, in [124]. It will also constitute a fundament of the theory developed in
the present book.

2.4.2.2 Incomplete Model Spaces

When the model space is incomplete, i.e., does not contain all configurations that
can be formed by the valence orbitals, the expansion is not necessarily completely
linked. As first shown byMukherjee [125, 166], the linked-diagram theorem can still
be shown to hold, if the normalization condition (2.41a) is abandoned. As will be dis-
cussed later, a complete model space often has the disadvantage of so-called intruder
states, which destroy the convergence. Then also other means of circumventing this
problem will be briefly discussed.

7The Rayleigh-Schrödinger and the linked-diagram expansions have the advantage compared to,
for instance, the Brillouin-Wigner expansion, that they are size-extensive, which implies that the
energy of a system increases linearly with the size of the system. This idea was actually behind the
discovery of the linked-diagram theorem by Brueckner [40], who found that the so-called unlinked
diagrams have a non-physical non-linear energy dependence and therefore must be eliminated in
the complete expansion. The concept of size extensivity should not be confused with the term
size consistency, introduced by People [197, 198], which implies that the wave function separates
correctly when amolecule dissociates. The Rayleigh-Schrödinger or linked-diagram expansions are
generally not size consistent. The coupled-cluster approach (to be discussed below), on the other
hand, does have this property in addition to the property of size extensivity.
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2.5 All-Order Methods. Coupled-Cluster Approach

2.5.1 Pair Correlation

Instead of solving the Bloch equation order by order, it is oftenmore efficient to solve
it iteratively. By separating the second-quantized wave operator into normal-ordered
zero-, one-, two-,...body parts

Ω = Ω0 + Ω1 + Ω2 + · · · (2.83)

with

⎧⎨
⎩

Ω1 = {c†i c j } xi
j

Ω2 = 1
2 {c†i c†j cl ck} xi j

kl

etc.
(2.84)

the Bloch equation can be separated into the following coupled n-particle equations

[
Ω1, H0

]
P = (

V Ω − ΩW
)
linked, 1P[

Ω2, H0
]
P = (

V Ω − ΩW
)
linked, 2P (2.85)

etc., where
W = PV Ω P (2.86)

is the effective interaction.
Usually, the two-body operator dominates heavily, since it contains the important

pair correlation between the electrons. Therefore, a good approximation for many
cases is

Ω ≈ 1 + Ω1 + Ω2, (2.87)

which yields

[
Ω1, H0

]
P = (

V1 + V Ω1 + V Ω2 − Ω1W1
)
linked, 1P[

Ω2, H0
]
P = (

V2 + V Ω1 + V Ω2 − Ω1W2 − Ω2W1 − Ω2W2
)
linked, 2P, (2.88)

where

W1 = (
V1 + V1Ω1

)
closed, 1

W2 = (
V2 + V Ω1 + V Ω2

)
closed, 2.

(2.89)
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We see here that the equations are coupled, so that Ω1 appears in the equation of Ω2

and vice versa. This approach is known as the pair-correlation approach. Solving
these coupled equations self consistently, is equivalent to a perturbation expansion—
including one- and two-body effects—to essentially all orders. It should be noted,
though, that each iteration does not correspond to a certain order of the perturbative
expansion.

As a simple illustration we consider the simplified pair-correlation approach

Ω = Ω2, (2.90)

omitting single excitations. (This would be exact for a two-electron system using
hydrogenic basis functions, in which case there are no core orbitals, but is a good
approximation also in other cases.) The equation for Ω2 is

[
Ω2, H0

]
P = (

V + V Ω2 − Ω2W2
)
linked, 2 P. (2.91)

Operating on an initial two-electron state of energy E , the solution can be expressed

Ω2PE = ΓQ(E)
(
V + V Ω2 − Ω2W2

)
linked PE . (2.92)

Solving this iteratively, leads to

Ω
(1)
2 PE = ΓQ(E)V PE , (2.93)

Ω
(2)
2 PE = ΓQ(E)

(
V Ω

(1)
2 − Ω

(1)
2 PE ′ W (1)

2

)
PE

= ΓQ(E)V ΓQ(E)V PE − ΓQ(E)ΓQ(E ′)V PE ′ V PE ,

etc. (2.94)

where all terms are assumed to be linked. This leads to the “ladder sequence”,
illustrated in Fig. 2.6. Note that in the expression above, all energies of the first term
depend on the initial state, while in the folded term the wave operator depends on the
energy of the intermediate state (E ′) (c.f., the “dot product”, introduced in Sect. 6.8).

Operating with Ω2 in (2.84) on the initial state |ab〉, leads to the pair function

Ω2|ab〉 = xrs
ab|rs〉 = ρab(x1, x2), (2.95)

Fig. 2.6 Graphical representation of the pair function (2.96)

http://dx.doi.org/10.1007/978-3-319-15386-5_6
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Fig. 2.7 Graphical representation of the self-consistent pair equation (2.99). The last diagram
represents the “folded” term −Ω2W2. The double line represents the double denominator (double
resolvent)

which inserted in (2.88) leads to the pair equation

(
εa + εb − h0(1) − h0(2)

)
ρab(x1, x2)

=
(
|rs〉〈rs|V |ab〉 + |rs〉〈rs|V |ρab〉 − |ρcd〉〈cd|W2|ab〉

)
linked

. (2.96)

(For simplicity we work with straight product functions—not antisymmetrized—in
which case we sum over all combinations of r, s (without the factor of 1/2) with
xrs

ab = −xsr
ab.)

We can also express the pair function as

|ρab〉 = ΓQ(E) I Pair|ab〉, (2.97)

where ΓQ(E) is the reduced resolvent (2.65) and E is the energy of the initial state
|ab〉. I Pair represents the ladder sequence of Coulomb interactions (including folded
terms), corresponding to the heavy line in Fig. 2.6. Including the resolvent (final
denominator) then leads to the pair function |ρab〉. The effective interaction W2 can
be expressed as

W2 = PE ′ I Pair PE , (2.98)

which can be represented by the same diagrams as in Fig. 2.6 (with no final denom-
inator), if the final state (with energy E ′) lies in the model space. The pair function
(2.92) can now be expressed

ΓQ(E)I Pair PE = ΓQ(E)
(

V + V ΓQ(E)I Pair − ΓQ(E ′)I Pair PE ′ I Pair PE
)

PE . (2.99)

This relation can be represented graphically as shown in Fig. 2.7.

2.5.2 Exponential Ansatz: Coupled-Cluster Approach

A particularly effective form of the all-order approach is the Exponential Ansatz or
Coupled-Cluster Approach (CCA), first developed in nuclear physics by Hubbard,
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Coster and Kümmel [50, 51, 90, 107, 108]. It was introduced into quantum chemistry
by Čižek [47] and has been extensively used during the last decades. (Formore details
the reader is referred to a recent book “Recent Progress in Coupled Cluster Methods”
[246], which reviews the development of the methods since the start.) The CCA is
a non-linear approach, and the linear all-order approach (2.85), discussed above,
is sometimes inadvertently referred to as “linear CCA”(!)—a term that should be
avoided.

In the exponential Ansatz the wave operator is expressed in the form of an expo-
nential

Ω = eS = 1 + S + 1

2
S2 + 1

3! S3 + · · · , (2.100)

S being the cluster operator (in chemical literature normally denoted by T ). It can
then be shown that for a degenerate model space the cluster operator is represented
by connected diagrams only.8 This implies that the linked but disconnected diagrams
of the wave operator are here represented by the higher powers in the expansion of
the exponential.

For open-shell systems (with unfilled valence shell) it is convenient to represent
the Ansatz in the normal-ordered form, introduced by Lindgren [118, 124],

Ω = {eS} = 1 + S + 1

2
{S2} + 1

3! {S3} + · · · . (2.101)

This formhas the advantage that unwanted contractions between the cluster operators
are avoided. The cluster operator is completely connected also in this case, if the
model space is complete [118], which can be formulated by means of the Bloch
equation

[
S, H0

]
P = Q

(
V Ω P − ΩW

)
conn. (2.102)

It has been analyzed in detail by Lindgren and Muhkherjee under what conditions
the cluster operator is connected also for an incomplete model space [125].

Expanding the cluster operator in analogywith thewave-operator expansion (2.83)
in terms on one-, two-,..body operators,

S = S1 + S2 + S3 + · · · (2.103)

yields

Ω = {eS} = 1 + S1 + S2 + 1
2 {S2

1 } + {S1S2} + 1
2 {S2

2 } + 1
2 {S2

1 S2} + 1

3! {S3
1} + · · · .

(2.104)

8The distinction between linked and connected diagrams should be noted. A linked diagram can be
disconnected, if all parts are open, as defined in Sect. 2.4.
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With the approximation

S = S1 + S2 (2.105)

the cluster operators satisfy the coupled Bloch equations

[
S1, H0

]
P = (

V Ω − ΩW
)
conn, 1P[

S2, H0
]
P = (

V Ω − ΩW
)
conn, 2P,

(2.106)

illustrated in analogy with Fig. 2.7 in Fig. 2.8. These equations lead to one- and two-
particle equations, analogous to the pair equation given above (2.96). Also these
equations have to be solved iteratively, and we observe that they are coupled, as are
the corresponding equations (2.88) for the full wave operator.

The normal-ordered scheme is usually combined with a complete model space—
or complete active space (CAS)—and the valence universality. This means that the
parameters of the expansion are the same for different stages of ionization. This
approach is usually referred to as Fock-space coupled-cluster (FSCC). It is advan-
tageous in calculating energy differences between different ionization stages, like
ionization energy and affinities. A severe disadvantage is that it might lead to prob-
lems due to intruder states to be discussed further below.

For atomic systems with essentially spherical symmetry the cluster equations can
be separated into angular and radial parts,where the former can be treated analytically
and only the radial part has to have solved numerically (see, for instance, [125,
Chap.15]). For molecular systems, on the other hand, analytical basis-set functions
of Slater or Gaussian types are normally used to solve the coupled-cluster equations,
as described in numerous articles in the field.

As mentioned, the advantage of the normal ordering of the exponential Ansatz
is that a number of unwanted contractions between open-shell operators is avoided.
More recently, Mukherjee has shown that certain valence-shell contractions are actu-
ally desired, particularly when valence holes and strong relaxation are involved [95].
He then introduced a modified normal ordering

Ω = {{exp(S)}}, (2.107)

where contractions involving passive (spectator) valence lines are reintroduced com-
pared to the original normal ordering.

2.5.3 Various Models for Coupled-Cluster Calculations.
Intruder-State Problem

The early forms of coupled-cluster models were of single-reference type (SRCC)
with a one-dimensional (closed-shell) model space. In the last few decades various
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Fig. 2.8 Diagrammatic representation of the equations for the cluster operators S1 and S2 (2.106).
The circle with a cross represents the “effective potential” in Fig. 2.3. The second diagram in the
second row and the diagrams in the fourth row are examples of coupled-cluster diagrams. The last
diagram in the second row and the three diagrams in the last row are folded diagrams, where the
double line represents a double denominator (c.f. Fig. 2.7)

versions of multi-reference (MRCC) models with multi-dimensional model space
have appeared (for reviews, see e.g., [14, 125, 168]). These are essentially two
major types, known as valence-universal multi-reference (VU-MRCC) [118, 167]
and state-universal multi-reference (SU-MRCC) [98, 99] methods, respectively. In
the valence-universal methods the same cluster operators are being used for different
ionization states and therefore particularly useful for calculating ionization energies
and affinities. In the state-universal methods specific operators are used for a particu-
lar ionization stage and particularly used when different states of the same ionization
are considered or in the molecular case for studying potential energy surfaces (PES).
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A serious problem that can appear in MBPT with a multi-reference model space
is what is known as the “intruder-state-problem”. This appears when a state outside
the model space—of the same symmetry as the state under consideration—has a
perturbed energy between those of the same symmetry originating from the model
space. This will destroy the convergence of the perturbation expansion. This problem
was first observed in nuclear physics [218], but it was early observed also in atomic
physics for the beryllium atom [207]. Here, the ground state is 1s22s2 1S, and the
excited state 1s2 2p2 1S has a low unperturbed energy, while the true state lies close to
the 2s ionization limit. This implies that when the perturbation is gradually turned on,
a large number of “outside” states, 1s2 2s ns, will cross the energy of the 1s22p2 1S
state, and there will be no convergence beyond the crossing point.

The convergence problem due to intruders is particularly serious in perturbation
theory, when the states are expanded order-by-order from the unperturbed ones. In
the coupled-cluster approach, which in principle is non-perturbative, it might be
possible to find a self-consistent solution of the coupled equations without reference
to any perturbative expansion. It was first shown by Jankowski and Malinowski [93,
94, 142] that it was in fact possible to find a solution to the beryllium problem with
a complete model space. Lindroth and Mårtensson [136] solved the same problem
by means of complex rotation.

Several other methods have been developed to reduce the intruder-state problem.
One way is to reduce the model space and make it incomplete. As mentioned, the
linked character of the diagram expansion could here still be maintained by aban-
doning the intermediate normalization (2.41a) [125, 166].

Another approach to avoid or reduce the intruder-state problem is to apply an
intermediate-effective Hamiltonian, a procedure developed by the Toulouse group
(Malrieu, Durand et al.) in the mid 1980s [62]. Here, only a limited number of roots
of the secular equation are being looked for. A modified approach of the method
has been developed by Meissner and Malinowski [147] and applied to the above-
mentioned beryllium case.

A way to avoid the intruder problem completely is to study one single state at the
time, the so-called state-specific multi-reference (SS-MRCC) approach [141]. This
approach can be regarded as an extreme of the intermediate-Hamiltonian approach
and is frequently used particularly for studying potential-energy surfaces.

Another alternative to the Fock-space or valence-universal approach is the
so-called Similarity-Transformed Equation-of-Motion approach (ST-EOM), which
makes it possible to study a large number of excited states simultaneously [175, 176].
This approach is also free of intruders.

All the coupled-cluster approaches can also be applied in the relativistic formal-
ism, although applications are here still quite limited. We shall return briefly to this
problem in Chap.8.

http://dx.doi.org/10.1007/978-3-319-15386-5_8
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2.6 Relativistic MBPT. No-Virtual-Pair Approximation

In setting up a Hamiltonian for relativistic quantum mechanics it may be tempting to
replace the single-electron Schrödinger Hamiltonian in the many-body Hamiltonian
(2.11) by the Dirac Hamiltonian (see Appendix D)

hD = cα · p̂ + βmc2 + vext, (2.108)

which with the Coulomb interaction between the electrons

VC =
N∑

i< j

e2

4πε0 ri j
(2.109)

yields the Dirac–Coulomb Hamiltonian

HDC =
N∑

i=1

hD(i) + VC. (2.110)

This Hamiltonian, however, has several serious shortcomings. Firstly, it is not bound
from below, because nothing prevents the electrons from falling into the “Dirac
sea” of negative-energy electron states. A many-electron state with a mixture of
negative-energy and positive-energy electron states can then be accidentally degen-
erate with a state with only positive-energy states—a phenomenon known as the
Brown-Ravenhall disease [39]. In Chap.6 we shall derive a field-theoretical many-
body Hamiltonian that will be used in the further development. In this model there is
no “Dirac sea”, but the negative-energy states correspond to the creation of positron
states, which are highly excited. Then there can be no Brown-Ravenhall effect.

Within the conventional many-body treatment the Brown-Ravenhall effect can be
circumvented bymeans of projection operators [238],which exclude negative-energy
states, leading to the projected Dirac–Coulomb Hamiltonian

HDCproj = Λ+

[
N∑

i=1

hD(i) + VC

]
Λ+. (2.111)

Including also the instantaneous Breit interaction (see Appendix F)

VB = − e2

8πε0

∑
i<1

[αi · α j

ri j
+ (αi · r i j )(α j · r i j )

r3i j

]
, (2.112)

where αi is the Dirac alpha matrix vector for particle i (see Appendix D), leads to
the projected Dirac-Coulomb-Breit Hamiltonian

http://dx.doi.org/10.1007/978-3-319-15386-5_6
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HNVPA = Λ+
[ N∑

i=1

hD(i) + VC + VB

]
Λ+, (2.113)

which is known as the No-Virtual-Pair Approximation (NVPA). Graphical repre-
sentation of the instantaneous Breit interaction is shown in Fig. 4.5.

With the partitioning (2.47)
H = H0 + V (2.114)

we choose the model Hamiltonian to be

H0 =
N∑
i

(
hD + u

)
i =:

N∑
i

h0(i) (2.115)

and the perturbation

V = −
N∑
i

u(i) + VC + VB. (2.116)

The Dirac–Coulomb and Dirac–Coulomb–Breit Hamiltonians, which are valid
only in the Coulomb gauge (see Appendix G.2), have been extensively used in rel-
ativistic MBPT calculations and particularly in self-consistent-field calculations of
Dirac-Fock type. In the latter type of calculations the projection operators can often
be left out, since the boundary conditions usually excludes negative-energy solutions
(see the book by I.P. Grant for a modern review [79]). Several reviews on relativistic
effects in chemical systems has been published by Pekka Pyykköö [200].

NVPA is a good approximation for many purposes, and it includes all effects to
order α2 H, but it is not Lorentz covariant (see definition in the Introduction). In later
chapters we shall consider a more rigorous many-body Hamiltonian, based upon
field theory.

2.6.1 QED Effects

As mentioned, we shall refer to effects beyond the NVPA as QED effects, although
this separation is to some extent arbitrary. These effects are of two kinds

• non-radiative effects, representing effects due to negative-energy states and to
retardation of the Breit interaction, shown in the upper line of Fig. 2.9. These
effects are also referred to as the Araki-Sucher effects [5, 235, 237] and

• radiative effects, represented by the lower line of Fig. 2.9, which are “true”
quantum-electrodynamical effects due to the electron self-energy (first diagram),
vacuum polarization (next two diagrams) or vertex correction (last diagram) (see
further Chap.4).

http://dx.doi.org/10.1007/978-3-319-15386-5_4
http://dx.doi.org/10.1007/978-3-319-15386-5_4
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Fig. 2.9 Non-radiative (upper line) and radiative (lower line) “QED effects”. These diagrams are
Feynman diagrams, where the orbital lines can represent particle as well as hole or anti-particle
states (see further Chap.4). The second diagram in the first row is reducible (there is an intermediate
time with no photon), while the remaining ones are irreducible

The QED effects can also be separated into reducible and irreducible effects, where a
reducible effect is represented by a diagram that can be separated into two legitimate
diagrams by a horizontal cut, such as the second non-radiative diagram in Fig. 2.9.
Remaining diagrams are irreducible. 9

2.7 Some Numerical Results of Standard MBPT and CC
Calculations, Applied to Atoms

In the book Atomic Many-Body Theory [124, Sect. 15.5] a brief summary is given of
the situation in the late 1970s concerning the numerical application of many-body
perturbation theories. Most effective at that time to handle the electron-correlation
problem were various pair-correlation approaches, based on works of Kelly [104],
Meyer [148], Sinanŏglu [229], Nesbet [174], Kutzelnigg [112] and others. Coupled-
cluster methods were available at that time but still relatively undeveloped. Also
methods of treating open shells and the quasi-degenerate problem, using the extended
model space [117] (2.55), were available but not particularly well-known.

In the three decades that have followed, a dramatic development regarding numeri-
cal implementations has takenplace.All-ordermethods, in particular, coupled-cluster
methods, have been developed to a stage of “almost perfection”. Also the open-shell

9It should be noted that this definition leads to different classification, depending on the effects
studied. If only the energy or the effective Hamiltonan is studied, then a diagramwould be reducible
if it contains an intermediate model-space state. If, on the other hand, also the wave function or
wave operator is studied, then the diagram would be reducible if there is an intermediate state free
from photons.

http://dx.doi.org/10.1007/978-3-319-15386-5_4
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techniques have been further developed and are now routinely used. Here, two main
lines have emerged, based upon multi-reference or single-reference states. The latter
technique has been developed mainly to circumvent the intruder problem, although
there are methods of dealing with this problem also in the multi-reference case, as
was brieflymentioned above.We shall in noway try to review this immense field here
but limit ourselves to some comments concerning developments that are most rele-
vant for the theme of this book. (We refer to the previously mentioned book, edited
by Čársky et al. [246], for more details.) We also call attention to a comprehensive
review of all-order relativistic atomic calculations that has recently been published
by Safronova and Johnson [204].

The coupled-cluster approach was early applied to various molecular systems,
particularly by Čižek, Paldus and coworkers in theWaterloo group [186, 187]. Exten-
sions of the method and extensive calculations have been performed by Bartlett and
his collaborators at Gainesville [15, 199]. The paper by Purvis and Bartlett [199],
together with the simultaneous publication by People et al. [196], represent the first
applications of CCA with both single and double excitations (CCSD). Bartlett et al.
have later extended the technique to include part of triples, CCSD(T), and quadruples,
CCSD(TQ), techniques that are now widely spread.

In molecular calculations functional basis sets of Slater or Gaussian type are
normally used. For atomic systems, on the other hand, it is normally preferable
to use numerical integration of the radial coordinates. Such techniques have been
developed and applied particularly by the groups at Notre Dame, Gothenburg and
Tel Aviv.

The Notre-Dame group has for a long time performed relativistic many-body
calculations on atomic systems by applying and further developed the spline tech-
nique with piece-wise polynomial fitting [100]. This was first used for calculations
to second-order (third order in energy) of the helium atom and the sodium isoelec-
tronic sequence [101]. The method was then extended by Blundell et al. [31] to an
all-order technique (linear with singles and doubles) and applied to the Li atom and
the Be+ ion and by Plante et al. [195] to a sequence of heliumlike ions. In Table2.1
we reproduce from the latter work the contributions to the ground-state ionization
energies due to (a) all-order Coulomb interactions, (b) same with one instantaneous
Breit interaction, (c) same with TWO instantaneous Breit interactions, (d) first-order

Table 2.1 Contributions to the ground-state ionization energies of heliumlike ions

Z Coulomb Breit Double Breit QED Total

10 43.962 0.010708 0.000048 −0.004610 43.946

20 188.636 0.096696 0.000433 −0.054905 168.485

40 792.126 0.83482 0.00409 −0.57860 790.717

60 1855.119 2.97236 0.01528 −2.22984 1849.832

80 3472.330 7.51789 0.03914 −5.89519 3458.965

100 5841.499 16.0999 0.0836 −12.9704 5812.513

From [195] (in Hartrees)
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Table 2.2 Binding energies of the two lowest states of the lithium atom (in μH)

Lithium atom

2 2S 2 2P References

Expt’l 198 159 130 246

Hartree-Fock 196 304 128 637

LSD 198 159 130 219 Blundell et al. [31]

CCSD 198 154 130 221 Lindgren [119]

CCSD 198 139 130 171 Eliav et al. [65]

Table 2.3 Correlation energy of some low-lying states of the sodium atom (in μH) (from [205])

Sodium atom

3 2S 3 2P1/2 3 2P3/2 4 2S References

Expt’l 6 825 2121 2110 1415

LSD 6 835 2118 2108 1418 Safronova et al. [205]

CCSD 6 458 Salomonson-Ynnerman [211]

CCSD 6 385 Eliav et al. [65]

CCSD(T) 6 840 Salomonson-Ynnerman [211]

QED contribution (from [61]), (e) total ionization energy. Later, the Notre-Dame
group, partly together with Safronova, has extended the technique to full relativistic
CCSD, including also some triples, CCSD(T), and applied it extensively to various
atomic and ionic systems [139, 204] (see Tables2.2 and 2.3).

TheGothenburggroupdevelopednumerical non-relativistic all-order and coupled-
cluster approaches in the late 1970s and early 1980s. Ann-Marie Mårtensson (Pen-
drill) [145] developed an all-order pair program (LD)—linear with doubles without
coupled clusters—based upon the first-order pair program developed by Morrison
[72, 164], and first applied it to the helium atom. This technique was later converted
into a coupled-cluster programwith doubles (CCD)bySalomonson [129] and applied
to various atomic systems. It was also applied to open-shell systems [165, 207]—
in the second paper (concerning the beryllium atom) the famous intruder problem,
mentioned above, was probably observed for the first time in an atomic system. The
procedure of the Gothenburg group was also early extended to include singles and
applied by Lindgren in 1985 [119] (see Table2.2) and later by Salomonson et al.
[208, 211] (see Tables2.3 and 2.4).

A relativistic version of the linear all-order pair program (LD) was developed
by Eva Lindroth [135], and applied to the helium atom. This was extended to a
relativistic coupled-cluster program by Salomonson and Öster, who also developed
a newnumerical, highly accurate technique, referred to as the discretization technique
[209]. This technique was early applied relativistically as well non-relativistically
to a number of atomic systems [208, 211] and is used also in all later works of the
group.
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Table 2.4 Correlation energy of the ground state of the beryllium atom and the negative lithium
ion (in μH) (from [41])

Beryllium atom and negative lithium ion

Be Li− References

CCD −92.960 −71.148 Bukowski et al. [41]

CCD −92.961 71.266 Salomonson-Öster [208]

CCSD −93.665 72.015 Bukowski et al. [41]

CCSD −93.667 72.142 Salomonson-Öster [208]

In Tables2.2, 2.3 and 2.4 we have compared some all-order calculations for the
lithium, sodium, and beryllium atoms as well as for the Li− ion. The calculations
on Be and Li− demonstrate clearly the importance of single excitations in this case.
The results for sodium show the importance of triple excitations in this case. (The
results by Safronova et al. is probably fortuitous, indicating that effects of non-linear
coupled-cluster terms and triples accidentally cancel.) The accurate results from
numerical integrations by Salomonson et al. are sometimes used as benchmarks for
testing calculations with finite basis sets [41].

The Tel-Aviv group has applied the relativistic coupled-cluster technique with
singles and doubles (CCSD) particularly to very heavy atoms and simple molecules
(see, for instance, the review article by Kaldor and Eliav [103], as well as Tables2.2
and 2.3).



Chapter 3
Time-Dependent Formalism

In the present chapter we shall summarize the fundamentals of time-dependent per-
turbation theory. Apart from the last part (Chap.13), we shall be concerned only
with stationary problems in this book. Nevertheless, we shall find it convenient to
apply time-dependent methods. We restrict ourselves in the present chapter to the
non-relativistic formalism and return to the relativistic one in later chapters.

3.1 Transition Rate

A general time-dependent single-particle state can be expanded in stationary states
as

|χ(t, r)〉 =
∑

k

ck(t) |Ψk(r)〉 e−iωk t , (3.1)

where ωk = Ek/�. Inserted into the time-dependent Schrödinger equation (2.9)
yields with H = H0 + V (t)

∑

k

(
i�
dck(t)

dt
− ck V (t)

)
Ψk(r) e−iωk t = 0, (3.2)

and
dck(t)

dt
= − i

�

∑

k

ck(t) 〈l|V (t)|k〉 eiωlk , (3.3)

where |l〉 = Ψl(r) etc. and ωlk = ωl − ωk . If the state is |0〉 = Ψ0 at t0, then in first
order

ck(t) = − i

�

∫ t

0
dt ′ 〈l|V (t ′)|0〉 eiωl0t ′

. (3.4)
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If the perturbation is harmonic,

V (t) = F e−iωt , (3.5)

then

cl(t) = − i

�
〈l|F |0〉

∫ t

0
dt ′ ei(ωl0−ω)t ′

. (3.6)

|ck(t)|2 is the probability that the state at time t after a measurement will be in the
stationary state Ψl .

The transition rate to the state l is defined

Rl(ω) = lim
t→∞

d

dt
|cl(t)|2 = 1

�2
|〈l| F |0〉|2 F(x), (3.7)

where x = ωl0 − ω and

F(x) = lim
t→∞

d

dt

∣∣∣
∫ t

0
dt ′ eixt ′

∣∣∣
2
. (3.8)

From (A.16) in AppendixA it follows that

lim
t→∞

∫ t

0
dt ′ eixt ′ = πδ(x),

which yields F(x) = 2πδ(x) and the transition rate

Rl(ω) = 2πδ(ωl0 − ω)|〈l| F |0〉|2/�
2. (3.9)

3.2 Evolution Operator

It follows from the Schrödinger equation (2.16) that the state vector evolves in time
according to

|χS(t)〉 = e−iH(t−t0)/� |χS(t0)〉. (3.10)

This is known as the Schrödinger picture (SP), indicated by the subscript “S”. In
another representation, known as the interaction picture (IP) (see AppendixB, B.23)
the Hamiltonian is partitioned according to (2.47), H = H0+V , and the state vectors
and the operators are transformed according to

|χI(t)〉 = eiH0t/� |χS(t)〉; OI(t) = eiH0t/� OS e
−iH0t/�. (3.11)

http://dx.doi.org/10.1007/978-3-319-15386-5_2
http://dx.doi.org/10.1007/978-3-319-15386-5_2
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This implies that the state vectors are normally much more slowly varying with
time, and most of the time dependence is instead transferred to the operators that are
normally time independent in SP.

The Schrödinger equation is in IP transformed to

i�
∂

∂t
|χI(t)〉 = VI(t) |χI(t)〉 (3.12)

with the solution

|χI(t)〉 = |χI(t0)〉 − i

�

∫ t

t0

dt1 VI(t1) |χI(t1)〉. (3.13)

VI(t) is the perturbation in the interaction picture, which is assumed to be time
independent in the Schrödinger picture.

For a stationary state of energy E the time dependence (2.15) is e−iEt/�. It then
follows that the state in the IP is of the form

|χI(t)〉 = e−it (E−H0)/� |χI(t = 0)〉. (3.14)

The time-evolution operator in IP, UI(t, t0), is defined by the relation1

|χI(t)〉 = UI(t, t0) |χI(t0)〉 (t > t0). (3.15)

Evidently, we then have

UI(t, t) = 1 (3.16)

UI(t, t1) UI(t1, t2) = UI(t, t2). (3.17)

From the relation (3.10) it follows that the corresponding evolution operator in SP is

US(t, t0) = e−iH(t−t0)/�. (3.18)

Transforming (3.11) to IP then yields2

UI(t, t0) = eiH0t/� e−iH(t−t0)/� e−iH0t0/�. (3.19)

1The evolution operator does not preserve the intermediate normalization, and, furthermore, when
bound states are involved, it may contain singularities that are eliminated by the normalization
constant (see further below).
2It should be noted that generally eiH0t/�e−iHt/� �= e−iV t/� , since the operators do not necessarily
commute.

http://dx.doi.org/10.1007/978-3-319-15386-5_2
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This evolution operator satisfies the differential equation

i�
∂

∂t
UI(t, t0) = VI(t) UI(t, t0), (3.20)

which leads to the expansion3

U (t, t0) = 1 − i

�

∫ t

t0

dt1 V (t1) U (t1, t0)

= 1 − i

�

∫ t

t0

dt1 V (t1) +
(−i

�

)2 ∫ t

t0

dt1 V (t1)
∫ t1

t0

dt2 V (t2) U (t2, t0)

(3.21)

etc. By extending all integrations from t0 to t , this can be expressed [67, Fig. 6.1]

U (t, t0) = 1 − i

�

∫ t

t0
dt1 V (t1) + 1

2

(−i

�

)2 ∫ t

t0
dt1

∫ t

t0
dt2 T

[
V (t1)V (t2)

]
U (t2, t0),

(3.22)

where T is the time-ordering operator, which orders the operators after decreasing
time (without any sign change). This leads to the expansion

U1(t, t0) = − i

�

∫ t

t0

dt1 V (t1)

U2(t, t0) = 1

2

(−i

�

)2 ∫ t

t0

dt1

∫ t

t0

dt2 T
[
V (t1) V (t2)

]
(3.23)

etc., which can be generalized to [67, Eq.6.23], [92, Eqs. 4–56]

U (t, t0) =
∞∑

n=0

1

n!
(−i

�

)n ∫ t

t0

dt1 . . .

∫ t

t0

dtn T
[
V (t1) . . . V (tn)

]
. (3.24)

(We have here included the term n = 0 to replace the unity.)
We introduce the Hamiltonian density H(x) by

V (t) =
∫

d3xH(t, x). (3.25)

We do not have to specify the perturbation at this point, but we shall later assume
that it is given by the interaction between the electrons (of charge −e) and the

3The zeroth-order component is conventionally chosen to be unity. Unless specified otherwise, we
shall in the following assume that the evolution operators always are expressed in IP and leave out
the subscript I.
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electromagnetic radiation field (see AppendixE.3)

H(x) = −ψ̂†(x)ecαμ Aμ(x)ψ̂(x). (3.26)

Here, αμ is the Dirac operator (see AppendixD) and Aμ is the covariant radiation
field operator (Appendix G.2)

Aμ(x) =
√

�

2ε0ωV

∑

kr

εμr
[
a†
kr eikx + akr e−ikx

]
. (3.27)

The Hamiltonian density is time independent in the Schrödinger picture (see
Sect. 6.7).

The evolution operator (3.24) can now be expressed

U (t, t0) =
∞∑

n=0

1

n!
(−i

c�

)n ∫ t

t0

dx4
1 . . .

∫ t

t0

dx4
n T

[H(x1) . . .H(xn)
]
. (3.28)

The factor of c in the denominator is due to the fact that we now use the integration
variable x0 = ct . The integrations are performed over all space and over time as
indicated. Alternatively, this can be expressed

U (t, t0) = T

[
exp

(−i

c�

∫ t

t0

d4x H(x)

)]
. (3.29)

The evolution operator can be represented graphically be means of Goldstone
diagrams in the same way as the wave operator, discussed previously. As a simple
example, we consider the first-order interaction with a time-independent energy-
potential interaction v(x). In second quantization the evolution operator becomes

U (1)(t, t0) = − i

�

∫ t

t0

dt c†r 〈r |v(x1)|a〉 ca (3.30)

or after summing over the states

U (1)(t, t0) = − i

�

∫ t

t0

dt1

∫
d3x1 ψ̂†(x1) v(x1) ψ̂(x1), (3.31)

which is illustrated in Fig. 3.1 (left).
The two-body interaction can be given by a contraction of two perturbations

(3.26), corresponding to the exchange of one virtual photon, v(x1, x2), as will be
further discussed in Chap.4. The corresponding, second-order evolution operator
then becomes (Fig. 3.1, right)

http://dx.doi.org/10.1007/978-3-319-15386-5_6
http://dx.doi.org/10.1007/978-3-319-15386-5_3
http://dx.doi.org/10.1007/978-3-319-15386-5_4
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Fig. 3.1 Graphical
representation of the
evolution operator for
first-order potential
interaction and single-photon
exchange

Fig. 3.2 Schematic
graphical representation of
the connected one- and
two-body parts of the
evolution operator

U (2)(t, t0) = 1

2

(−i

�

)2 ∫∫ t

t0
dt1 dt2

∫∫
d3x1 d3x2 ψ̂†(x1) ψ̂†(x2) v(x1, x2) ψ̂(x2) ψ̂(x1). (3.32)

In higher orders the operator can have connected as well as disconnected parts and
can be separated into zero-, one-, two-,...body parts. The connected one- and two-
body pieces are schematically illustrated in Fig. 3.2. Expressions with uncontracted
photons fall in an extended photonic Fock space, as will be further discussed in later
chapters.

3.3 Adiabatic Damping. Gell-Mann–Low Theorem

For the mathematical treatment we shall find it convenient to apply an “adiabatic
damping” to the perturbation,

V (t) → V (t) e−γ|t |, (3.33)

where γ is a small, positive number, which implies that

H → H0 as t → ±∞. (3.34)

The expansion (3.28) then becomes

Uγ(t, t0) =
∞∑

n=0

1

n!
(−i

c�

)n

×
∫ t

t0

dx4
1 . . .

∫ t

t0

dx4
n T

[H(x1) . . .H(xn)
]
e−γ(|t1|+|t2|...+|tn |). (3.35)
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The damping is adiabatically ‘switched off’ at the end of the calculation. The evolu-
tion operator satisfies now the equation (3.20)

i�
∂

∂t
Uγ(t, t0) = (

V (t) ∓ iγ
)

Uγ(t, t0), (3.36)

where the upper sign is valid for t > 0.

3.3.1 Gell-Mann–Low Theorem

The damped perturbation (3.33) vanishes, when γt → ±∞, and the perturbed
(target) state vector approaches in these limits an eigenstate of H0,

∣∣χIγ(t)
〉 ⇒ ∣∣Φ

〉
, (3.37)

which we call the parent state. Gell-Mann and Low have shown that for t = 0 and
in the limit γ → 0, the state vector4

lim
γ→0

|χIγ(0)〉 = lim
γ→0

Uγ(0,−∞)|Φ〉
〈Φ|Uγ(0,−∞)|Φ〉 =: |Ψ 〉 (3.38)

is a solution of the time-independent Schrödinger equation

(H0 + V )|Ψ 〉 = E |Ψ 〉, (3.39)

where H0 is the model Hamiltonian (2.48) without the perturbation. Here,

E = E0 + i�γλ
〈Φ| ∂

∂λ
Uγ(0,−∞)|Φ〉

〈Φ|Uγ(0,−∞)|Φ〉 . (3.40)

This is the famous Gell-Mann–Low theorem (GML) [74], [67, p. 61], [220, p.
336], which represents one of the fundamentals of the theory presented here. The
perturbation, V , must in the limit γ → 0 be time-independent in the Schrödinger
picture, as is the case with the perturbation (3.26).

4Here, the numerator and the denominator might be singular in the limit, and it is important that
the ratio is formed before the limit is taken.

http://dx.doi.org/10.1007/978-3-319-15386-5_2
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3.4 Extended Model Space. The Generalized
Gell-Mann–Low Relation

The original Gell-Mann–Low theorem (3.38) is valid only in the single-reference
case (one-dimensional model space). The time-dependent MBPT was in the 1960s
and 1970s further developed by several groups [36, 102, 109, 163, 177, 243], mainly
in connection with nuclear calculations. We shall extend this treatment here and
prove a generalization of the Gell-Mann–Low theorem for an arbitrary model space.
This treatment follows mainly that performed in [130] (see also [67, Sect. 6]).

We choose the parent states to be the (normalized) limits of the target states for
finite γ as t → −∞, as introduced by Tolmachev [243],

∣∣Φα
〉 = Nα lim

t→−∞
∣∣χα

〉
γ

(α = 1, 2 · · · d), (3.41)

where Nα is a normalization constant. The parent functions are then eigenfunctions
of H0,

H0

∣∣Φα
〉 = Eα

0

∣∣Φα
〉
, (3.42)

but generally we do not know which eigenvalue a specific target state will converge
to.

In analogy with the single-reference case (3.38) we construct the state

∣∣Ψ α
γ

〉 = Uγ(0,−∞)
∣∣Φα

〉

〈Ψ α
0 |Uγ(0,−∞)|Φα〉 , (3.43)

which is normalized in the intermediate normalization, 〈Ψ α
0 |Φα〉 = 1.

We shall now demonstrate that this state is in the limit γ → 0 an eigenstate of the
time-independent Hamiltonian of the system for all values of α,

(
H0 + V

)∣∣Ψ α
〉 = Eα

∣∣Ψ α
〉

(α = 1, 2, · · · d). (3.44)

• This is a generalization of the original Gell-Mann–Low relation (3.38), and it
holds also for a quasi-degenerate model space with several energy levels [130].

In order to prove the theorem, we consider one term in the expansion (3.35),
recalling that the interactions are expressed in IP,

U (n)
γ (t,−∞) = 1

n!
(−i

�

)n ∫ t

−∞
dtn

∫ t

−∞
dtn−1 · · · T

[
VI(tn)VI(tn−1) · · · ] eγ(t1+t2...+tn).

(3.45)

(As long as t does not approach +∞, we can leave out the absolute signs in the
damping factor.) Using the identity
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[H0, ABC · · · ] = [H0, A] BC · · · + A[H0, B] C · · · + · · · ,

we obtain, noting that VI(t) = eit H0/�VS e−it H0/�,

∂VI(t)

∂t
= i [H0, VI(t)] (3.46)

provided that VS, the perturbation in the Schrödinger picture, is time independent.
This leads to

[
H0, VI(tn)VI(tn−1) · · · ] = −i�

(
∂

∂tn
+ ∂

∂tn−1
+ · · ·

)
VI(tn)VI(tn−1) · · · (3.47)

and

[
H0, U (n)

γ (t,−∞)
] = − 1

n!
(−i

�

)(n−1) ∫ t

−∞
dtn

∫ t

−∞
dtn−1 · · ·

× T

[(
∂

∂tn
+ ∂

∂tn−1
+ · · ·

)
VI(tn)VI(tn−1) · · ·

]
eγ(t1+t2...+tn).

When integrating by parts, each term gives the same contribution, yielding

[
H0, U (n)

γ (t,−∞)
] = −VI(t) U (n−1)

γ (t,−∞) + i� nγ U (n)
γ (t,−∞), (3.48)

where the last term originates from derivating the damping term. Introducing an
order parameter, λ,

H = H0 + λ V (t), (3.49)

the result can be expressed

[
H0, Uγ(t,−∞)

] = −VI(t) Uγ(t,−∞) + i�γλ
∂

∂λ
Uγ(t,−∞). (3.50)

By operating with the commutator on the parent function (3.41), utilizing the fact
that the parent state Φα is an eigenstate of H0, we obtain for t = 0

(
H0 − Eα

0 + V
)

Uγ(0,−∞)
∣∣Φα

〉 = i�γλ
∂

∂λ
Uγ(0,−∞)

∣∣Φα
〉
, (3.51)

where V = VI(0) or with the state (3.43)

(
H0 + V − Eα

0

) ∣∣Ψ α
γ

〉 = i�γλ
∂
∂λ

Uγ(0,−∞)|Φα〉
〈Ψ α

0 |Uγ(0,−∞)|Φα〉 . (3.52)
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(Note that at t = 0 the Schrödinger and interaction pictures are identical.) We note
from the relation (3.43), that

∂

∂λ
|Ψ α

γ 〉 = ∂

∂λ

Uγ(0,−∞)
∣∣Φα

〉

〈Ψ α
0 |Uγ(0,−∞)|Φα〉 =

∂
∂λ

Uγ(0,−∞)
∣∣Φα

〉

〈Ψ α
0 |Uγ(0,−∞)|Φα〉

− 〈Ψ α
0 | ∂

∂λ
Uγ(0,−∞)|Φα〉

〈Ψ α
0 |Uγ(0,−∞)|Φα〉

Uγ(0,−∞)
∣∣Ψ α

0

〉

〈Ψ α
0 |Uγ(0,−∞)|Φα〉 . (3.53)

Therefore, the r.h.s. of (3.52) can be expressed

i�γλ
∂
∂λ

Uγ(0,−∞)|Φα〉
〈Ψ α

0 |Uγ(0,−∞)|Φα〉 = ΔEα
γ

∣∣Ψ α
γ

〉 + iγλ
∂

∂λ

∣∣Ψ α
γ

〉
,

where

ΔEα
γ = i�γλ

〈Ψ α
0 | ∂

∂λ
Uγ(0,−∞)|Φα〉

〈Ψ α
0 |Uγ(0,−∞)|Φα〉 ,

and this yields

(
H0 + V − Eα

0 − ΔEα
γ

) ∣∣Ψ α
γ

〉 = i�γλ
∂

∂λ

∣∣Ψ α
γ

〉
. (3.54)

Provided that the perturbation expansion of |Ψ α
γ 〉 converges, the r.h.s. will vanish as

γ → 0. Then the generalized Gell-Mann–Low (GML) relation reads

∣∣Ψ α
〉 = lim

γ→0

∣∣Ψ α
γ

〉 = lim
γ→0

Uγ(0,−∞)
∣∣Φα

〉

〈Ψ α
0 |Uγ(0,−∞) |Φα〉 . (3.55)

The energy eigenvalue corresponding the Gell-Mann–Low state (3.55) becomes

Eα = lim
γ→0

[
Eα
0 + i�γλ

〈Ψ α
0 | ∂

∂λ
Uγ(0,−∞)|Φα〉

〈Ψ α
0 |Uγ(0,−∞)|Φα〉

]
. (3.56)

This expression is not very useful for evaluating the energy, since the eigenvalue
Eα
0 of the parent state is generally not known. The procedure is here used mainly

to demonstrate that the functions satisfy the Schrödinger equation. Instead we shall
derive an expression for the effective Hamiltonian (2.53), which is the natural tool
for a multi-level model space.5

5A necessary condition for the proof of the theorem given here is that the parent state (3.42) is an
eigenstate of the model Hamiltonian H0 (see 3.51). This is in conflict with the statement of Kuo et
al. [109], who claim that it is sufficient that this state has a nonzero overlap with the corresponding
target state.

http://dx.doi.org/10.1007/978-3-319-15386-5_2
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In the one-dimensional model space, singularities appear inU for unlinked terms.
In the general multi-dimensional case, singularities can appear also for linked dia-
grams that have an intermediate state in the model space. The remaining diagrams
are regular. In addition, so-called quasi-singularities can appear—i.e., very large, but
finite, contributions—when an intermediate state is quasi-degeneracy with the initial
state. All singularities and quasi-singularities are eliminated in the ratio (3.55)—in
analogy with the original Gell-Mann–Low theorem, although in the general case
there is a finite remainder, so-called model-space contribution (MSC). The elimi-
nation of these quasi-singularities represent the major advantage of the procedure
using an extended model space. The model-space contributions play a major role in
the theory we are constructing here.
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Chapter 4
S-Matrix

In Part I we have considered methods for treating electronic many-body sys-
tems within the standard relativistic Many-Body-Perturbation Theory (MBPT) and
coupled-cluster schemes, in what is known as the no-virtual-pair approximation
(NVPA). In this second part we shall include effects beyond this approximation,
which we refer to as quantum-electrodynamical (QED) effects. We concentrate on
bound-state systems, where the procedure is less developed. We shall describe three
methods for numerical calculations of such effects on such systems, developed in
the last few decades, which are all based upon field theory.1

In the present chapter we introduce themost frequently applied scheme for bound-
stateQEDcalculations, namely the S-matrix formulation. In this chapterwe shall also
come into contact with the important question of the choice of gauge. The Maxwell
equations are invariant under a certain class of gauge transformations, as shown in
AppendixG. So far, practically all QED calculations have been performed usingwhat
is known as covariant gauges, particularly the Feynman gauge,where the expressions
involved are particularly simple. However, for bound-state problems, in combining
QED with electron correlation, it is often be more advantageous to use the Coulomb
gauge. This is demonstrated, in particular, in connection with numerical applications
in Chap.9. It has been shown by several authors [1, 203] that it is perfectly legitimate
use the Coulomb gauge also in QED calculations and that this leads to results that are
renormalizable and completely equivalent to those obtained using covariant gauges.

In the next chapter we shall consider the Green’s-function method, which is fre-
quently used in various fields of physics. InChap.6we shall present themore recently

1From now on we shall for simplicity set � = 1 but maintain the remaining fundamental constants.
In this way our results will be valid in the relativistic or natural unit system as well as in the Hartree
atomic unit system. They will also be valid in the cgs unit system, as long as we stay consistently
to either the electrostatic or the magnetic version, but they will NOT be valid in the Gaussian
system that is a mixture of the two. With our choice it will still be possible to perform a meaningful
dimensional analysis (see further AppendixK).
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introduced covariant-evolution operator and Green’s-operator method, which will
form the basis for the unified approach we are developing in the chapters that follow.

Unless specified otherwise, we shall continue working in the Interaction Picture
(IP) (see Sect. 3.2).

4.1 Definition of the S-Matrix. Feynman Diagrams

4.1.1 General

The scattering matrix or S-matrix was introduced by JohnWheeler [248] andWerner
Heisenberg in the 1930s, particularly for studying the scattering processes between
elementary particles, primarily free particles. The formalism is not particularly suited
for bound-state problems but has in the last few decades been applied also to structure
calculations in connectionwithQEDcalculations (see, for instance, the review article
byMohr et al. [159] for amodern update). Concerning the application of the S-matrix
to dynamical problems, see Chap.13.

The S-matrix relates the initial state of a particle or system of particles, Φi =
Φ(t = −∞), before the interaction has taken place, to the final state after the
interaction is completed, Φf = Φ(t = +∞),

Φ(t = +∞) = S Φ(t = −∞). (4.1)

We know that the time evolution of the state vector in the interaction picture is
governed by the evolution operator (3.15), which leads to the connection

S = U (∞,−∞). (4.2)

This is assumed to hold also relativistically (see, for instance, Bjorken andDrell [22]).
With the expansion (3.35) this becomes

S =
∞∑

n=0

1

n!
(−i

c

)n ∫
dx4

1 . . .

∫
dx4

n T
[H(x1) . . .H(xn)

]
e−γ(|t1|+|t2|...|tn |), (4.3)

integrated over all space and time. The zeroth-order component is here equal to
unity (c.f., (3.21)). x is the four-dimensional coordinate vector x = (ct, x), which
explains the factor of c in the denominator. The S-matrix is—in contrast to the evo-
lution operator for finite times—Lorentz covariant in the limit of vanishing damping
(see footnote in the Introduction), which is manifestly demonstrated by its form
given here. We shall normally assume that the perturbation density is given by the
interaction between the electrons and the electromagnetic radiation field (3.26)

H(x) = −ψ̂†(x)ecαμ Aμ(x)ψ̂(x). (4.4)

http://dx.doi.org/10.1007/978-3-319-15386-5_3
http://dx.doi.org/10.1007/978-3-319-15386-5_13
http://dx.doi.org/10.1007/978-3-319-15386-5_3
http://dx.doi.org/10.1007/978-3-319-15386-5_3
http://dx.doi.org/10.1007/978-3-319-15386-5_3
http://dx.doi.org/10.1007/978-3-319-15386-5_3
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This can also is expressed

H(x) = −ψ̂ecγμ Aμ(x)ψ̂(x) = −ψ̂ec
/
A(x)ψ̂(x),

where ψ̂ = ψ̂†β and γμ = βαμ, which is the more common notation. In this
book, however, we shall base the notations on the use of Ψ †, in order to make the
formalism more compatible with that of the standard many-body theory. This will
have the consequence that some operators, like the electron propagator, will have
non-covariant forms. We shall comment upon this when appropriate.

The S-matrix can conveniently be represented by so called Feynman diagrams.
Feynman has in his famous papers from 1949 [68, 69] developed a set of rules
for evaluating the S-matrix for various elementary processes (see AppendixH), and
this has formed the basis for much of the developments that followed in quantum
electrodynamics and field theory in general (see, for instance, the books by Mandl
and Shaw [143, chap. 7] and Peskin and Schroeder [194]). This has also formed the
basis for the diagrammatic representationofmany-bodyperturbation theory (MBPT),
discussed earlier [124].

In order to represent the S-matrix by means of Feynman diagrams, it has to
be transformed into normal order, which can be performed by means of Wick’s
theorem (seeSect. 2.2). This leads to all possible (zero, single, double…)contractions
between the perturbations H and to diagrams of the type shown in Fig. 2.9. Each
normal-ordered term obtained in this process is represented by a diagram. (Details
of this process are found in standard text books, e.g., Fetter and Walecka [67] or
Lindgren–Morrison [124].) Below we shall illustrate this by a few simple examples.

4.1.2 Bound States

Even if the S-matrix formulation was initially set up for scattering problems for free
particles, we shall here be mainly concerned with applications to structure problems
for bound-state systems. Since the final time of the scattering process is t = +∞,
we cannot directly apply the Gell-Mann–Low theorem (3.40 and 3.55). Sucher [236]
has, however, modified the Gell-Mann–Low energy formula so that it can be applied
also to the S-matrix. With the S-matrix expanded in a perturbation series

S =
∑

n

S(n) (4.5)

the energy shift can be expressed

ΔE = lim
γ→0

iγ

2

∑
n〈Φ|S(n)|Φ〉
〈Φ|S|Φ〉 . (4.6)

http://dx.doi.org/10.1007/978-3-319-15386-5_2
http://dx.doi.org/10.1007/978-3-319-15386-5_2
http://dx.doi.org/10.1007/978-3-319-15386-5_3
http://dx.doi.org/10.1007/978-3-319-15386-5_3
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This energy formula can also be applied to a degenerate multi-state model space—
but not in the case of quasi-degeneracy or any other situation with several distinct
energy levels within the model space. Furthermore, in the S-matrix formulation no
information can be derived for the corresponding change of the state vector or wave
function. For these reasons the S-matrix formulation is not suited as a basis for a
unification with many-body perturbation theory, which is our main concern in this
book. We shall return to this problem in later chapters.

Before we consider some physical processes, we shall define two very impor-
tant concepts, namely the Feynman electron and photon propagators that will be
frequently used in the following.

4.2 Electron Propagator

The contraction between two electron-field operators is defined as the difference
between the time and normal orderings (see Sect. 2.2)

ψ̂(x1)ψ̂
†(x2) = T

[
ψ̂(x1)ψ̂

†(x2)
] − N

[
ψ̂(x1)ψ̂

†(x2)
]
. (4.7)

Since the vacuum expectation value vanishes for every normal-ordered product, it
follows that the contraction is equal to the vacuum expectation value of the time-
ordered product2

ψ̂(x1)ψ̂
†(x2) = 〈

0
∣∣T

[
ψ̂(x1)ψ̂

†(x2)
]∣∣0

〉

= 〈
0
∣∣Θ(t1 − t2) ψ̂(x1)ψ̂

†(x2) − Θ(t2 − t1) ψ̂†(x2)ψ̂(x1)
∣∣0

〉
, (4.8)

considering that the electron fields operators are fermions that anticommute. Θ is
the Heaviside step function (AppendixA, (A.33)).

• The Feynman electron propagator is defined (see Fig. 4.1)3

ψ̂(x1)ψ̂
†(x2) = 〈

0
∣∣T

[
ψ̂(x1)ψ̂

†(x2)
]∣∣0

〉 =: i SF(x1, x2). (4.9)

2In field theory the vacuum state is normally the “true” vacuum with no (positive-energy) particles
or photons present. In the Dirac picture this implies that the negative-energy states or “hole” states of
the “Dirac sea” are filled. Inmany-body applications without reference to field theory, the “vacuum”
is normally a closed-shell state related to the system (finite or infinite) under study, obtained for
instance by removing the valence or open-shell single-electron states. Single-electron states present
in this vacuum state are referred to as hole states and those not present as virtual or particle states.
In our unified approach we shall let hole states include negative-energy (anti-particle) states as well
as core states.
3Note that we define here the electron propagator, using ψ̂† rather than the adjoint field ψ̂ = ψ̂†β,
which leads to a non-covariant form of the propagator we denote SF. The corresponding covariant
propagator becomes SF = SFβ.

http://dx.doi.org/10.1007/978-3-319-15386-5_2
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ω

�

�

2

1

iSF(x1, x2)

Fig. 4.1 Graphical representation of the (bound-state) electron propagator. (As before, we shall
let thick vertical lines represent electron orbitals or propagators in the bound-state representation
(Furry picture) and thin lines in the free-electron representation

Separating the field operators into particle (p) and hole (h) parts, ψ̂ = ψ̂+ + ψ̂−,
above and below the Fermi surface, respectively, it follows that the expression (4.8)
is identical to

〈
0
∣∣Θ(t1 − t2) ψ̂+(x1)ψ̂

†
+(x2) − Θ(t2 − t1) ψ̂†

−(x2)ψ̂−(x1)
∣∣0

〉

= Θ(t1 − t2)φp(x1)φ†
p(x2) e

−iεp(t1−t2) − Θ(t2 − t1)φ†
h(x2)φh(x1) e−iεh(t1−t2),

using the time dependence of the field operators in the interaction picture in Appen-
dixB (B.28).

As will be demonstrated below,

• the electron propagator can be expressed as a complex integral

SF(x1, x2) =
∫

dω

2π

φ j (x1)φ†
j (x2)

ω − ε j + iη sgn(ε j )
e−iω(t1−t2), (4.10)

where η is a small, positive number.

In order to verify the integral formula (4.10), we first consider the case t1 > t2.
Here, the integrand vanishes exponentially as ω → −i∞, and we then integrate over
the negative half-plane, as illustrated in Fig. 4.2. Here, the poles appear at ω = ε j

Fig. 4.2 Complex
integration of the electron
propagator (4.10)
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when this is positive. The contribution to the integral from this pole is −2πi times
the pole value—with the minus sign due to the negative (clockwise) integration—or
−iφ j (x1)φ†

j (x2) e
−iε j (t1−t2). Similarly, when t1 < t2, we integrate over the positive

half plane with the result +iφ j (x1)φ†
j (x2) e

−iε j (t1−t2), when ε j is negative. It then
follows that iSF, as defined by the integral, is identical to the time-ordered vacuum
expectation (4.8).

• The Fourier transform of the electron propagator with respect to time is

SF(ω; x1, x2) = φ j (x1)φ†
j (x2)

ω − ε j + iη sgn(ε j )
, (4.11)

which can be regarded as the coordinate representation (see AppendixC)

SF(ω; x1, x2) = 〈x1|ŜF(ω)|x2〉 = 〈x1| j〉 〈 j |x2〉
ω − ε j + iη sgn(ε j )

(4.12)

of the operator4

ŜF(ω) = | j〉 〈 j |
ω − ε j (1 − iη)

. (4.13)

Using the relation (D.52) in AppendixD, this can also be expressed

ŜF(ω) = 1

ω − ĥD (1 − iη)
, (4.14)

where ĥD is the Dirac Hamiltonian operator.
The contraction has so far been defined only for t1 �= t2. For the bound-state

problem it is necessary to consider also equal-time contractions. We then define the
time-ordering for equal time as

T
[
ψ(x1)ψ

†(x2)
] = 1

2

[
ψ(x1)ψ

†(x2) − ψ†(x2)ψ(x1)
]

(t1 = t2). (4.15)

In this case we have

ψ(x1)ψ
†(x2) =

〈
0

∣∣∣T
[
ψ(x1)ψ

†(x2)
]∣∣∣ 0

〉
= 1

2

〈
0

∣∣∣ψ(x1)ψ
†(x2) − ψ†(x2)ψ(x1)

∣∣∣ 0
〉

= 1

2

∑

p

φp(x1) φ†
p(x2) − 1

2

∑

h

φh(x1) φ†
h(x2) = 1

2

∑

j

sgn(ε j ) φ j (x1) φ†
j (x2),

4As stated before, we use the ‘hat’ symbol to emphasize that the quantity is an operator. In cases
where this is obvious, the hat will normally be omitted.
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where j as before runs over particles and holes. This can still be expressed by the
integral above, as can be seen from the relation

1

ε j − z − iη sgn(ε j )
= ε j − z

(ε j − z)2 + η2
+ iη sgn(ε j )

(ε j − z)2 + η2

= P− 1

ε j − z
+ iπ sgn(ε j ) δ(ε j − z). (4.16)

P− stands for the principal-value integration, which does not contribute here. There-
fore, the electron-propagator expression (4.10) is valid also for equal times.

4.3 Photon Propagator

The exchange of a single photon between the electrons corresponds to a contraction
(2.29) of two photon-field operators (3.27), defined as in the electron-field case (4.7),

Aμ(x1)Aν(x2) = 〈
0
∣∣T

[
Aμ(x1)Aν(x2)

]∣∣0
〉

= 〈
0
∣∣Θ(t1 − t2)Aμ(x1)Aν(x2) + Θ(t2 − t1)Aν(x2)Aμ(x1)

∣∣0
〉

(4.17)

(the photon-field operators commute in contrast to the electron-field operators), and
in analogy with the electron propagator.

• the Feynman photon propagator is defined (see Fig. 4.3)

Aμ(x1)Aν(x2) = 〈
0
∣∣T

[
Aμ(x1)Aν(x2)

]∣∣0
〉 =: i DFμν(x1, x2). (4.18)

We shall also sometimes for convenience use the short-hand notation

DF(x1, x2) = αμαν DFμν(x1, x2), (4.19)

using the summation convention.
With Aμ = A+

μ + A−
μ we see that (4.17) is identical to

〈
0
∣∣∣Θ(t1 − t2)

[
A+

μ (x1), A−
ν (x2)

] + Θ(t2 − t1)
[
A+

ν (x2), A−
μ (x1)

]∣∣∣0
〉
,

Fig. 4.3 Graphical representation of the photon propagator

http://dx.doi.org/10.1007/978-3-319-15386-5_2
http://dx.doi.org/10.1007/978-3-319-15386-5_3
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where the square bracket with a comma between the operators represents the com-
mutator (2.12) and noting that the photon-field operators do commute.

Before evaluating the photon propagator we have to make a choice of gauge
(see AppendixG.2). In so-called covariant gauges the field components are related
by a Lorentz transformation. Most commonly used of the covariant gauges is the
Feynman gauge, because of its simplicity. In our work with combined QED and
electron correlation, however, it will for different reasons, to be discussed later, be
more advantageous to use the non-covariant Coulomb gauge. We shall demonstrate
that this is quite feasible, although not always straightforward.

4.3.1 Feynman Gauge

In the Feynman gauge we have, using the commutation rule (G.11) in AppendixG,

[
A+

μ (x1), A−
ν (x2)

] = 1

2ε0ωV
εμrενr ′ [akr , a†

k′r ′ ] e−i(kx1−k ′x2)

= − 1

2ε0ωV
gμν δk,k′δr,r ′ e−ik(x1−x2).

With kx1 = k0x10 − k · x1 and k ′x2 = k ′
0x20 − k′ · x2 (x0 = ct, ω = ck0) this yields

for the vacuum expectation in (4.18)

〈
0
∣∣T

[
Aμ(x1)Aν(x2)

]∣∣0
〉

= − 1

2ε0ck0V
gμν

[
Θ(t1 − t2) e−ik(x1−x2) + Θ(t2 − t1) eik(x1−x2)

]

= −gμν

∑

k

1

2ε0ck0V
eik·r12

[
Θ(t1 − t2) e−ik0(x10−x20) + Θ(t2 − t1) eik0(x10−x20)

]

(4.20)

with r12 = x1 − x2. The sign of the exponent k · r12 is immaterial.
The expression in the square brackets of (4.20) can in analogy with (4.10) be

written as a complex integral

Θ(t1 − t2) e−ik0(x10−x20) + Θ(t2 − t1) eik0(x10−x20) = 2ik0

∫ ∞

−∞
dq

2π

e−iq(x10−x20)

q2 − k2
0 + iη

.

(4.21)

http://dx.doi.org/10.1007/978-3-319-15386-5_2
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Thus (see AppendixD.2),

〈
0
∣∣T

[
Aμ(x1)Aν(x2)

]∣∣0
〉 = −igμν

1

ε0cV

∑

k

eik·r12
∫ ∞

−∞
dq

2π

e−iq(x10−x20)

q2 − k2 + iη

→ −igμν
1

cε0

∫
d3k

(2π)3
eik·r12

∫ ∞

−∞
dq

2π

e−iq(x10−x20)

q2 − k2 + iη
(4.22)

with k0 = |k|, and the photon propagator (4.18) becomes in the Feynman gauge (c.f
Appendix (F.62))

DF
Fμν(x1, x2) = −gμν

cε0

∫
d3k

(2π)3
eik·r12

∫ ∞

−∞
dq

2π

e−iq(x10−x20)

q2 − k2 + iη

= −gμν

ε0

∫
d3k

(2π)3
eik·r12

∫ ∞

−∞
dz

2π

e−iz(t1−t2)

z2 − c2k2 + iη
, (4.23)

where z = cq is the energy parameter. It then follows that

• the Fourier transform of the photon propagator with respect to x0 = ct becomes
in the Feynman gauge

DF
Fμν(q; x1, x2) = −gμν

cε0

∫
d3k

(2π)3

eik·r12

q2 − k2 + iη
(4.24)

and the inverse transformation becomes

DF
Fμν(x1, x2) =

∫
dq

2π
DF

Fμν(q; x1, x2) e−iq(x10−x20). (4.25)

After integration over the angular part (see Appendix J) this becomes

DF
Fμν(q; x1, x2) = − gμν

4π2cε0r12

∫ ∞

0

2κ dκ sin κr12
q2 − κ2 + iη

, (4.26)

where κ = |k| and q = k0 is now decoupled from |k|.5 Fourier transforming
(4.25) with respect to space, yields

DF
Fμν(q; k) = −gμν

cε0

1

q2 − κ2 + iη
(4.27)

5In some literature |k| is denoted by k, but here we introduce a new notation (κ), reserving k for
the four-dimensional vector, in order to avoid confusion.



66 4 S-Matrix

or in covariant notation

DF
Fμν(k) = −gμν

cε0

1

k2 + iη
, (4.28)

where k is the four-dimensional momentum vector, k2 = k2
0 − k2.

The Fourier transforms with respect to time are similarly

DF
Fμν(z; x1, x2) = −gμν

ε0

∫
d3k

(2π)3

eik·r12

q2 − k2 + iη

= − gμν

4π2ε0r12

∫ ∞

0

2κ dκ sin κr12
z2 − c2κ2 + iη

, (4.29)

DF
Fμν(z; k) = −gμν

ε0

1

z2 − c2κ2 + iη
, (4.30)

which differ from the previous transforms with respect to momentum (4.26) and
(4.27) by a factor of c (see AppendixK.2). z = cq is the energy parameter. The
inverse transformation is here

DF
Fμν(x1, x2) =

∫
dz

2π
DF

Fμν(z; x1, x2) e−iz(t1−t2). (4.31)

4.3.2 Coulomb Gauge

Abovewe have found an expression for the photon propagator in the Feynman gauge,
andbymeans of the formulas for gauge transformation inAppendixG.2we canderive
the corresponding expressions in other gauges.

In theCoulomb gauge (G.19) the scalar part (μν = 00) of the photon propagator is

DC
F00(k) = 1

cε0k
2 . (4.32)

Transforming back to 4-dimensional space yields according to (4.23)

DC
F00(x1, x2) = 1

cε0

∫
d3k

(2π)3

eik·r12

k2

∫
dk0
2π

e−ik0(x01−x02)

= 1

4π2cε0r12

∫ ∞

0

2κ dκ sin κr12
κ2

∫
dk0
2π

e−ik0(x01−x02),
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using the relation (J.17). With x0 = ct and z = ck0 this can be expressed

DC
F00(x1, x2) = VC

e2c2

∫
dz

2π
e−iz(t1−t2), (4.33)

where VC is the Coulomb interaction (2.109). With the damping factor the integral
tends to a delta function (A.16)

DC
F00(x1, x2) ⇒ VC

e2c2
δ(t1 − t2), (4.34)

but we shall normally use the more explicit expression (4.33).
From the relation (4.33) we find that the Fourier transform with respect to time

becomes

DC
F00(z; x1, x2) = 1

4π2c2ε0r12

∫ ∞

0

2κ dκ sin κr12
κ2

= VC

e2c2
. (4.35)

The vector part of the photon propagator in the Coulomb gauge is according to
(G.19) (q = k0)

DC
Fi j (k) = − 1

cε0(k2 + iη)

(
gi j + ki k j

k2

)
, (4.36)

and transformation back to the 3-dimensional space yields

DC
Fij(q; x1, x2) = − 1

cε0

∫
d3k

(2π)3

eik·r12

q2 − k2 + iη

(
gi j + ki k j

k2

)

= − 1

cε0

∫ ∞

0

2κ dκ sin κr12
q2 − κ2 + iη

(
gi j + ki k j

k2

)

= cDC
Fij(z; x1, x2) (z = cq). (4.37)

Again, we see that these transformations differ by a factor of c.

4.4 Single-Photon Exchange

We consider now the exchange of a single photon between the electrons, represented
by the Feynman diagram in Fig. 4.4 (left). We start with a general covariant gauge,
like the Feynman gauge, and consider then the non-covariant Coulomb gauge.

http://dx.doi.org/10.1007/978-3-319-15386-5_2
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Fig. 4.4 The Feynman
representation of the
exchange of a single, virtual
photon between two
electrons. This contains two
time-orderings

4.4.1 Covariant Gauge

The second-order S-matrix (4.3) for a single-photon exchange is given by the con-
traction of the electromagnetic fields

S(2) = 1

2

(−i

c

)2 ∫∫
d4x2 d

4x1 T
[H(x2)H(x1)

]
e−γ(|t1|+|t2|). (4.38)

With the interaction density (4.4) this becomes

S(2) = (ie)2

2

∫∫
d4x2 d

4x1 T
[(

ψ†(x)αν Aν(x)ψ(x)
)
2

(
ψ†(x)αμ Aμ(x)ψ(x)

)
1

]
e−γ(|t1|+|t2|),

(4.39)

where the contraction between the radiation-field operators yields the photon prop-
agator, iDFμν (4.18), or with the short-hand notation (4.19),

S(2) = (ie)2

2

∫∫
d4x2 d

4x1 ψ†(x1)ψ
†(x2) iDF(x2, x1)ψ(x2)ψ(x1) e

−γ(|t1|+|t2|).

(4.40)
Identification with the second-quantized form (see AppendixB)

S(2) = 1
2 c†c c†d

〈
cd

∣∣S(2)
∣∣ab

〉
cbca, (4.41)

yields a particular matrix element of the S(2) matrix

〈
cd

∣∣S(2)
∣∣ab

〉 = −
∫∫

d4x2 d
4x1 φ†

c(x1)φ
†
d(x2) ie

2DF(x2, x1)

× φb(x2)φa(x1) e
−γ(|t1|+|t2|) =

∫
dz

2π

〈
cd

∣∣ − ie2 DF(z, x2, x1)
∣∣ab

〉

×
∫∫

c2dt1dt2 e
−it1(εa−εc−z) e−it2(εb−εd+z) e−γ(|t1|+|t2|), (4.42)
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using the Fourier transform (4.31). After performing the time integrations (A.18),
this becomes

〈
cd

∣∣S(2)
∣∣ab

〉 =
∫

dz

2π

〈
cd

∣∣ − ie2c2DF(z, x2, x1)
∣∣ab

〉

× 2πΔγ(εa − z − εc) 2πΔγ(εb + z − εd). (4.43)

• We introduce the single-photon interaction

I (x1, x2) = Vsp(x1, x2) = e2c2αμ
1α

ν
2 DFμν(x1, x2) = e2c2DF(x1, x2) (4.44)

with the Fourier transform with respect to time

I (z; x1, x2) = e2c2αμ
1α

ν
2 DFμν(z; x1, x2) = e2c2DF(z; x1, x2), (4.45)

which has the form of an energy potential. We shall generally express the Fourier
transform of the interaction with respect to time as

I (z; x1, x2) = e2c2αμ
1α

ν
2 DFμν(z; x1, x2) =

∫
2c2κ dκ f (κ, x1, x2)

z2 − c2κ2 + iη
, (4.46)

where f (κ, x1, x2) is a gauge-dependent function. This transform, as well as the
function f (κ, x1, x2), has the dimension of energy (or s−1 with our convention with
� = 1).6

With the notation above the S-matrix element (4.43) becomes

〈
cd

∣∣S(2)
∣∣ab

〉 =
∫

dz

2π

〈
cd

∣∣ − iI (z)
∣∣ab

〉
2πΔγ(εa − z − εc) 2πΔγ(εb + z − εd)

(4.47)

in agreement with the evaluation rules in Sect. 4.7. In AppendixA.3 it is shown that

∫
dz

2π
2πΔγ(a − z) 2πΔγ(b − z)

1

z2 − c2κ2 + iη

= 2πΔ2γ(a − b)
1

z2 − c2κ2 + iγ
, (4.48)

where we observe that the infinitesimally small quantity η, appearing in the prop-
agators in order to indicate the position of the poles, is replaced by the adiabatic
damping parameter, γ, which is a finite quantity (that eventually tends to zero). This
gives

6The constants of the expressions can be conveniently checked by dimensional analysis (see Appen-
dix K.2).
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〈
cd

∣∣S(2)
∣∣ab

〉 = 2πΔ2γ(εa + εb − εc − εd)
〈
cd

∣∣∣ − iI (z)
∣∣∣ab

〉
(4.49)

with z = cq = εa − εc. This can also be expressed

〈
cd

∣∣S(2)
∣∣ab

〉 ⇒ 2πΔ2γ(Ein − Eout)
〈
cd

∣∣ − iI (z)
∣∣ab

〉
, (4.50)

where Ein and Eout are the incoming and outgoing energies, respectively. Using the
Sucher energy formula (4.6) and the relation (A.20)

lim
γ→0

2πγΔ2γ(x) = δx,0, (4.51)

the corresponding energy shift becomes

ΔE (1) = δEin,Eout

〈
cd

∣∣I (z)
∣∣ab

〉
. (4.52)

Assuming that Φout = Φin = Φ is the antisymmetrized state

|Φ〉 = |{ab}〉 = 1√
2

[|ab〉 − |ba〉]

the first-order energy shift becomes

ΔE = 〈Φ|I (z)|Φ〉 = 〈ab|I (z)|ab〉 − 〈ba|I (z)|ab〉, (4.53)

which is consistent with the interpretation of the interaction I (z) as an equivalent
energy-dependent perturbing potential.

We have seen here that the time integration—in the limit γ → 0 – leads to

• energy conservation at each vertex with the propagator energy parameters
treated as energies.

Due to the energy conservation of the scattering process, only diagonal (“on-
the-energy-shell”) matrix elements are obtained from the analysis of the S-matrix.
Therefore, the technique cannot be used for studying quasi-degenerate states by
means of the extended-model-space technique (see Sect. 2.3). Off-diagonal elements
needed for this approach cannot be evaluated by the S-matrix formalism but can be
obtained by means of the Green’s-operator technique, described in Chap.6, which
represents an extension of the formalism.

From the above we see that in the S-matrix we shall insert

• for single-photon exchange (see Sect. 4.7)

−iI (z; x1, x2) = −ie2c2αμ
1α

ν
2 DFμν(z; x1, x2) = −ie2c2DF(z; x1, x2).

http://dx.doi.org/10.1007/978-3-319-15386-5_2
http://dx.doi.org/10.1007/978-3-319-15386-5_6
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4.4.1.1 Feynman Gauge

With the expression (4.29) of the photon propagator in Feynman gauge the corre-
sponding interaction (4.45) becomes (z = cq)

I F(z; x1, x2) = − e2

4π2ε0r12
α

μ
1α2μ

∫
2κ dκ sin κr12
q2 − κ2 + iη

. (4.54)

The corresponding f function in (4.46) then becomes

f F(κ, x1, x2) = − e2

4π2ε0
α

μ
1α2μ

sin κr12
r12

= − e2

4π2ε0
(1 − α1 · α2)

sin κr12
r12

.

(4.55)

Evaluating the integral in (4.54), using the result in Appendix J, we obtain

I F(z; x1, x2) = e2

4πε0r12
(1 − α1 · α2) ei|z|r12/c, (4.56)

which agrees with the semiclassical potential (AppendixF.73).

4.4.2 Non-covariant Coulomb Gauge

In the Coulomb gauge we separate the interaction into the instantaneous Coulomb
part and the time-dependent transverse (Breit) part,

IC = ICC + ICT . (4.57)

The transverse part of the interaction can be treated in analogy with the covariant
gauges. According to (4.44) we have

ICT (x1, x2) = e2c2αi
1α

j
2 DC

Fij(x1, x2), (4.58)

which with (4.37) yields (with z = cq)

ICT (z; x1, x2) = e2

ε0

∫
d3k

(2π)3

(
α1 · α2 − (α1 · k) (α2 · k)

k2

)
eik·r12

q2 − k2 + iη

= e2

ε0

∫
d3k

(2π)3

(
α1 · α2 − (α1 · ∇1) (α2 · ∇2)

k2

)
eik·r12

q2 − k2 + iη

= e2

4π2ε0r12

∫
2κ dκ sin κr12
q2 − κ2 + iη

(
α1 · α2 − (α1 · ∇1) (α2 · ∇2)

κ2

)
,

(4.59)
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and the corresponding f function becomes (4.46)

f CT (κ, x1, x2) = e2

4π2ε0

sin(κr12)

r12

[
α1 · α2 − (α1 · ∇1) (α2 · ∇2

κ2

]
. (4.60)

Performing the κ integration in (4.59), using the integrals in Appendix J, yields for
the transverse (Breit) part

ICT (z; x1, x2) = − e2

4πε0

[
α1 · α2

ei|z|r12

r12
− (α1 · ∇1)(α2 · ∇2)

ei|z|r12 − 1

z2 r12

]
.

(4.61)

This agrees with the semi-classical result obtained in AppendixF.2 (F.54).
The instantaneous Breit interaction is obtained by letting z ⇒ 0,

IBreit = BInst
12 = − e2

4πε0 r12

[
1
2 α1 · α2 + (α1 · r12)(α1 · r12)

2r212

]
, (4.62)

which is the interaction in the Dirac-Coulomb-Breit approximation (NVPA) (2.112)
and agrees with the expression derived in AppendixF (F.55). The instantaneous
Coulomb and Breit interactions are illustrated in Fig. 4.5.

The (instantaneous) Coulomb part of the interaction becomes, using the relations
(4.33) and (4.35),

ICC (x1, x2) = e2

4π2ε0r12

∫
2κ dκ sin κr12

κ2

∫
dz

2π
e−iz(t1−t2) = VC

∫
dz

2π
e−iz(t1−t2)

(4.63a)

ICC (z; x1, x2) = e2

4π2ε0r12

∫
2κ dκ sin κr12

κ2
= VC. (4.63b)

This leads to, using (4.43),

〈
cd

∣∣S(2)
∣∣ab

〉 =
∫

dz

2π

〈
cd

∣∣ − iVC

∣∣ab
〉
2πΔγ(εa − z − εc) 2πΔγ(εb + z − εd)

and in analogy with (4.49)

〈
cd

∣∣S(2)
∣∣ab

〉 = 〈
cd

∣∣ − iVC

∣∣ab
〉
Δ2γ(εa + εb − εc − εd).

Fig. 4.5 Instantaneous
Coulomb and Breit
interactions between the
electrons

http://dx.doi.org/10.1007/978-3-319-15386-5_2
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The Sucher energy formula (4.6) then gives the expected result for the first-order
energy shift

ΔE (1) = δEin,Eout 〈cd|VC|ab〉, (4.64)

where, as before, Ein = εa + εb is the initial and Eout = εc + εd is the final
energy. Again, this demonstrates that the interaction (4.45) represents an equivalent
interaction potential and that the energy is conserved for the scattering or S-matrix.

4.4.3 Single-Particle Potential

Finally, we consider in this subsection the simple case of an interaction between
a single electron and a time-independent external field, Aμ(x) (Fig. 4.6). Here, the
scattering amplitude becomes from (4.3) with the interaction density (4.4)

S(1) =
∫

d4x ψ̂†(x) ieαμ Aμ(x) ψ̂(x) e−γ|t |. (4.65)

In analogy with the previous cases this yields (dx0 = c dt)

〈b|S(1)|a〉 = iec〈b|αμ Aμ|a〉 2πΔγ(εa − εb). (4.66)

with Aμ = (φ/c,−A) according to (F.6) in AppendixF.
Considering a scalar energy potential, V (x) = −eφ(x) = −ecA0, the S-matrix

element becomes

〈b|S(1)|a〉 = 2πΔγ(εa − εb) 〈b| − iV |a〉. (4.67)

The Sucher energy formula (4.6) then yields the expected result

ΔE (1) = δεa ,εb 〈b|V |a〉. (4.68)

In the S-matrix we shall insert

• −iV (x) for an energy potential V (x) (see Sect. 4.7).

Fig. 4.6 Diagrammatic representation of the interaction between an electron and an external field.
The heavy lines represent electronic states in the bound-interaction picture
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Fig. 4.7 The Feynman representation of the two-photon exchange. The left diagram represents a
Coulomb and a transverse photon interaction in Coulomb gauge

4.5 Two-Photon Exchange

4.5.1 Two-Photon Ladder

We consider next the exchange of two uncrossed photons, illustrated in Fig. 4.7 (left).
Again, this is a Feynman diagram, which contains all relative time orderings of the
times involved, still with the photons uncrossed.

As before, we consider first this problem using a general covariant gauge, like
the Feynman gauge, and then we shall consider the Coulomb gauge, in particular.

In analogy with the single-photon exchange (4.47), the S-matrix of two non-
crossing photons becomes, after contracting also the electron-field operators (4.9),

S(4) = (ie)4

4!
∫∫∫∫

d4x1d
4x2d

4x3d
4x4 ψ̂†(x3)ψ̂

†(x4) iDF(x4, x3)

× iSF(x3, x1) iSF(x4, x2) iDF(x2, x1)ψ̂(x2)ψ̂(x1) e
−γ(|t1|+|t2|+|t3|+|t4|). (4.69)

The vertices can here be permuted in 4! ways, and this leads to 12 equivalent pairs,
each pair with two diagrams, related by a reflection in a vertical plane. This leads to7

S(4) = (ie)4

2

∫∫∫∫
d4x1d

4x2d
4x3d

4x4 ψ̂†(x3)ψ̂
†(x4) iDF(x4, x3)

× iSF(x3, x1) iSF(x4, x2) iDF(x2, x1)ψ̂(x2)ψ̂(x1) e
−γ(|t1|+|t2|+|t3|+|t4|).

(4.70)

This leads in analogy with the single-photon exchange (4.40) to the matrix elements8

7This factor is consistent with the rule found in many-body theory for time-ordered Goldstone
diagrams that there is a factor of 1/2 for each possible symmetry operation, like reflexion, that
transforms the diagram into itself or to another diagram in the set [124, Sect. 12.4].
8We have here an illustration of the general rules for setting up the S-matrix, given in AppendixH,
that there is (i) a factor iSF for each electron propagator, (ii) a factor −iI for each single-photon
exchange and (iii) a Δ factor for each vertex.
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〈cd|S(4)|ab〉 =
∫∫

dz

2π

dz′
2π

∫∫
dω1

2π

dω2

2π

× 〈
cd

∣∣(−i)I (z′; x4, x3) iSF(ω1; x3, x1) iSF(ω2; x4, x2) (−i)I (z; x2, x1)
∣∣ab

〉

× 2πΔγ(εa −z −ω1) 2πΔγ(εb + z −ω2) 2πΔγ(ω1 − z′ − εc) 2πΔγ(ω2 + z′ − εd ).

Integrations over ω1, ω2 then yield

〈cd|S(4)|ab〉 =
∫∫

dz

2π

dz′

2π

〈
cd

∣∣(−i)I (z′; x4, x3) iSF(εa − z; x3, x1)
× iSF(εb + z; x4, x2) (−i)I (z; x2, x1)

∣∣ab
〉

× 2πΔ2γ(εa − εc − z − z′) 2πΔ2γ(εb − εd + z + z′). (4.71)

(As shownbefore, the η parameter in the electron propagators should here be replaced
by the adiabatic damping parameter γ.) After integration over z′ we have

〈cd|S(4)|ab〉 =
∫

dz

2π

〈
cd

∣∣(−i)I (εa − εc − z; x3, x4)iSF(εa − z; x3, x1)
× iSF(εb + z; x4, x2) (−i)I (z; x2, x1)

∣∣ab
〉
2πΔ4γ(εa + εb − εc − εd).

(4.72)

To evaluate this integral is straightforward but rather tedious, andwe shall not perform
this here (see, for instance, [126]).

Next, we shall consider the special case, where we have one instantaneous
Coulomb interaction and one transverse-photon interaction (Fig. 4.7, right), using
the Coulomb gauge.

Separating the interaction according to (4.57), we now have

〈cd|S(4)|ab〉 =
∫

dz

2π

〈
cd

∣∣(−i)ICC (z; x4, x3) iSF(εa − z; x3, x1)
× iSF(εb + z; x4, x2) (−i)ICT (z; x2, x1)

∣∣ab
〉

× 2πΔ2γ(εa − εc − z) 2πΔ4γ(εa + εb − εc − εd). (4.73)

Inserting the expressions for the electron propagators (4.10) and the interaction
(4.46), this yields

〈cd|S(4)|ab〉 =
〈
cd

∣∣∣VC

∫
dz

2π

|t〉〈t |
εa − z − εt + iγt

|u〉〈u|
εb + z − εu + iγu

×
∫

2κ c2dκ f CT (κ)

z2 − c2κ2 + iη

∣∣∣ab
〉
2πΔ4γ(εa + εb − εc − εd), (4.74)

where VC is the Coulomb interaction f CT (4.63b) and f CT is given by (4.60). The
products of the propagators can be expressed
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1

εa − z − εt + iγt

1

εb + z − εu + iγu

= 1

E0 − εt − εu

[ 1

εa − z − εt + iγt
+ 1

εb + z − εu + iγu

]
(4.75)

with E0 = εa + εb. The poles are here at z = εa − εt + iγt , z = εu − εb − iγu and
z = ±(cκ − iη). Integrating the first term over the negative half plane (z = cκ − iη)
and the second term over the positive half plane (z = −cκ + iη), yields

〈cd|S(4)|ab〉
= −i

〈
cd

∣∣∣ VC
|tu〉〈tu|

E0 − εt − εu
VT

∣∣∣ab
〉
2πΔ4γ(E0 − Eout), (4.76)

where

〈tu|VT|ab〉 =
〈
tu

∣∣∣
∫

c dκ f CT (κ)

×
[ 1

εa − εt − (cκ − iγ)t
+ 1

εb − εu − (cκ − iγ)u

]∣∣∣ab
〉

(4.77)

is the transverse-photon potential. The corresponding energy shift becomes in anal-
ogy with the single-photon case (4.53)

ΔE =
〈
Φ

∣∣∣ VC
|tu〉〈tu|

E0 − εt − εu
VT

∣∣∣Φ
〉
. (4.78)

This holds when particle as well as hole states are involved.
In principle, the adiabatic damping has to be switched off simultaneously at all

vertices. If the intermediate state is not degenerate with the initial state, the damping
can be switched off at each vertex independently, which leads to energy conservation
at each vertex, using the orbital energies of the free lines and the energy parameters
of the propagators. The degenerate case, which leads to what is referred to as the
reference-state contribution, is more complicated to handle [27, 126], and we shall
not consider that further here. This kind of contribution is easier to evaluate in the
Green’s-operator formalism that we shall consider in Chap. 6.

4.5.2 Two-Photon Cross*

For two crossed photons (Fig. 4.8) the S-matrix becomes

〈cd|S(4)|ab〉 =
∫∫

dz

2π

dz′
2π

∫∫
dω1

2π

dω2

2π

× 〈
cd

∣∣(−i)I (z′; x4, x3) iSF(ω1; x4, x1) iSF(ω2; x2, x3) (−i)I (z; x2, x1)
∣∣ab

〉

× 2πΔγ(εa − z − ω1) 2πΔγ(εb − z′ − ω2) 2πΔγ(ω1 + z′ − εc) 2πΔγ(ω2 + z − εd ).

http://dx.doi.org/10.1007/978-3-319-15386-5_6
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Fig. 4.8 The Feynman
representation of the
two-photon cross

Integrations over ω1, ω2 yield

〈cd|S(4)|ab〉 =
∫∫

dz

2π

dz′

2π

〈
cd

∣∣(−i)I (z′; x4, x3) iSF(εa − z; x4, x1)
× iSF(εb − z′; x2, x3) (−i)I (z; x2, x1)

∣∣ab
〉

× 2πΔ2γ(εa − εc − z + z′) 2πΔ2γ(εb − εd + z − z′). (4.79)

Again,we consider the simpler casewithone Coulomb and one transverse interac-
tion (Fig. 4.8, right), using the Coulomb gauge. Then the diagonal element becomes

〈ab|S(4)|ab〉 =
〈
ab

∣∣∣VC

∫
dz

2π

|t〉〈t |
εa − z − εt + iγt

|u〉〈u|
εd − z − εu + iγu

×
∫

2c2κ dκ f CT (κ)

z2 − c2κ2 + iη

∣∣∣ab
〉
2πΔ4γ(0), (4.80)

using the fact that εa +εb = εc +εd . Integration over z leads in analogywith (4.77) to

〈ab|S(4)|ab〉 = −i
〈
ab

∣∣∣VC
|tu〉〈tu|

εa − εd − εt + εu
V X
T

∣∣∣ab
〉
2πΔ4γ(0), (4.81)

where V X
T is the potential

〈tu|V X
T |ab〉

=
〈
tu

∣∣∣
∫

c dκ f CT (κ)
[ 1

εa − εt − (cκ − iγ)t
− 1

εd − εu − (cκ − iγ)u

]∣∣∣ab
〉
.

(4.82)

If εt and εu have the same sign, the denominators in the expression (4.81) can be
expressed

1

εa − εt − (cκ − iγ)t

1

εd − εu − (cκ − iγ)u
,

which is in agreement with the evaluation rules for time-ordered diagrams, derived
in Appendix I.
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The two-photon ladder and the two-photon cross have been studied in great detail
by means of the S-matrix technique for the ground-state of heliumlike systems by
Blundell et al. [27] and by Lindgren et al. [126]. Some numerical results are given
in Chap.7.

In the S-matrix we shall insert

• iSF for exch electron propagator.
• −iI (z; x1, x2) = −ie2c2αμ

1α
ν
2 DFμν(z; x1, x2) = −ie2c2DF(z; x1, x2)

for each single-photon exchange, when integrating over time (see Sect. 4.7).

4.6 QED Corrections

In this section we shall consider how various first-order QED corrections—beyond
the no-virtual-pair approximation (see Sect. 2.6)—can be evaluated using the S-
matrix formulation. With this formulation only corrections to the energy can be
evaluated. In Chap.6 we shall demonstrate a way of including these effects directly
into the wave functions, which makes it possible to incorporate them into the many-
body procedure in a more systematic way. Some QED effects contain singularities
(divergences), which can be handled bymeans of regularization and renormalization,
as will be discussed in Chap. 12.

4.6.1 Bound-Electron Self-energy

When the photon is emitted from and absorbed on the same electron, we have an
effect of the electron self-energy, illustrated in Fig. 4.9. This forms the major part of
the Lamb shift, discovered experimentally by Lamb and Retherford in 1947 [116].
This was the starting point for the development of modern QED (see the book by
Schweber [221]). The second most important part of the Lamb shift is the vacuum
polarization, to be treated below.

We treat first the self-energy and start with a covariant gauge and then consider
the non-covariant Coulomb gauge.

Fig. 4.9 Diagram
representing the first-order
bound-electron self-energy.
The second diagram
represents the Coulomb part
of the self-energy in
Coulomb gauge

http://dx.doi.org/10.1007/978-3-319-15386-5_7
http://dx.doi.org/10.1007/978-3-319-15386-5_2
http://dx.doi.org/10.1007/978-3-319-15386-5_6
http://dx.doi.org/10.1007/978-3-319-15386-5_12
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4.6.1.1 Covariant Gauge

For the electron self-energy (Fig. 4.9) we can set up the expression for the S-matrix
in analogy with the single-photon exchange (4.40),

SSE = (ie)2

2

∫∫
d4x2 d

4x1 ψ†(x2) iSF(x2, x1) iDF(x2, x1)ψ(x1) e
−γ(|t1|+|t2|)

(4.83)

with summation over the internal orbital t . Considering also the equivalent case with
1 ↔ 2, the matrix element becomes

〈b|SSE|a〉 =
∫∫

dz

2π

dω

2π

〈
b
∣∣∣iSF(ω; x2, x1) (−i)I (z; x2, x1)

∣∣∣a
〉

× 2πΔγ(εa − z − ω) 2πΔγ(ω + z − εb) (4.84)

and after integration over ω

〈b|SSE|a〉 = 2πΔ2γ(εa − εb)〈b|M(2)|a〉,

whereM(2) is the second-order Feynman amplitude (see Sect. 4.7 and AppendixH),

M(2) = −iΣ(εa). (4.85)

with

Σ(εa) = i
∫

dz

2π
SF(εa − z; x2, x1) I (z; x2, x1) (4.86)

being the self-energy function.9 The Sucher energy formula (4.6) yields the corre-
sponding energy shift

ΔESE = lim
γ→0

1
2 iγ 2〈b|SSE|a〉 = δεa ,εb 〈b| Σ(εa)|a〉, (4.87)

using the relation between the Dirac delta function and the Kroenecker delta factor
in (A.20) in AppendixA.

With the expressions for the electron propagator (4.10), the bound-state self-
energy becomes

〈a|Σ(εa)|a〉 = i
〈
at

∣∣∣
∫

dz

2π

1

εa − εt − z + iηt
I (z; x2, x1)

∣∣∣ta
〉

= i
〈
at

∣∣∣
∫

dz

2π

1

εa − εt − z + iηt

∫
2c2κ dκ f (κ)

z2 − c2κ2 + iη

∣∣∣ta
〉
. (4.88)

9This is non-covariant, due to our conventions, as discussed above. The corresponding covariant
form is Σ̄(εa) = βΣ(εa), which will be discussed in detail in Chap.12.

http://dx.doi.org/10.1007/978-3-319-15386-5_12


80 4 S-Matrix

Performing the z integration, yields

〈a|Σ(εa)|a〉 =
〈
at

∣∣∣
∫

c dκ f (κ)

εa − εt − (cκ − iη)t

∣∣∣ta
〉
, (4.89)

where the f function defined in (4.46).
In the Feynman gauge we have

〈a|Σ(εa)|a〉 =
〈
at

∣∣∣
∫

c dκ f F(κ)

εa − εt − (cκ − iη)t

∣∣∣ta
〉

(4.90)

and using the function (4.55)

〈a|Σ(εa)|a〉 = − e2

4π2ε0

〈
at

∣∣∣
α

μ
1α2μ

r12

∫
c dκ sin κr12

εa − εt − (cκ − iη)t

∣∣∣ta
〉
. (4.91)

4.6.1.2 Coulomb Gauge

In theCoulombgauge the transverse part can be treated in analogywith the covariant
gauge (4.89)

〈a|Σ(εa)|a〉Trans =
〈
at

∣∣∣
∫

c dκ f CT (κ)

εa − εt − (cκ − iη)t

∣∣∣ta
〉

(4.92)

or with (4.60)

〈a|Σ(εa)|a〉Trans = e2

4π2ε0

〈
at

∣∣∣
1

r12

∫
c dκ sin κr12

εa − εt − (cκ − iη)t

×
[
α1 · α2 − (α1 · ∇1) (α2 · ∇2

κ2

]∣∣∣ta
〉
. (4.93)

For the Coulomb part we insert the expression for ICC in (4.63b) into (4.86),
yielding

Σ(εa)Coul = ie2

4π2ε0r12

∫
dz

2π
SF(εa − z; x2, x1)

∫
2κ dκ sin κr12

κ2

= i
∫

dz

2π
SF(εa − z; x2, x1) VC (4.94)

and

〈a|Σ(εa)|a〉Coul = i
〈
at

∣∣∣
∫

dz

2π

1

εa − z − εt + iηt
VC

∣∣∣ta
〉
. (4.95)
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The integral can be evaluated as a principal integral (which vanishes) and half a pole
contribution, yielding the result −i sgn(εt )/2. The self-energy then becomes

〈a|Σ(εa)|a〉Coul = 1

2
sgn(εt )

〈
at

∣∣∣VC

∣∣∣ta
〉
. (4.96)

The electron self-energy is divergent and has to be renormalized, as will be dis-
cussed in Chap.12. Some numerical results, using the Feynman gauge, are given in
Chap.7.

• In the S-matrix we shall insert −iΣ(ε) for each electron self-energy (see
Sect. 4.7).

4.6.2 Vertex Correction

The vertex correction, shown in Fig. 4.10, is a correction to the single-potential
interaction in Fig. 4.6, and the S-matrix becomes in analogy with the self-energy,
using (4.67),

〈b|SVC|a〉 =
∫∫

dz

2π

dω

2π

×
∑

t,u

∫
dx3

〈
bt

∣∣∣iSF(ω; x2, x3) (−i)V (x3) iSF(ω; x3, x1) (−i)I (z; x2, x1)
∣∣∣ua

〉

× 2πΔγ(εa − z − ω) 2πΔγ(ω + z − εb), (4.97)

where the matrix element involves integration over x1, x2. (compare (4.67)). After
integration over ω this becomes (compare (4.86))

〈b|SVC|a〉 = 2πΔ2γ(εa − εb)〈bt | − iΛ0(εa, εa, x3)V (x3) |ua〉 (4.98)

with integration over x3. Here,

Λ0(εa, εa, x3) = i
∫

dz

2π
SF(εa − z; x2, x3) SF(εa − z; x3, x1) I (z; x2, x1)

(4.99)

with integration over x1, x2 and summation over t, u. This is the first-order vertex-
correction function for a scalar-potential interaction.10

10In the first edition of this book the vertex function was defined with the opposite sign. The new
definition is more logical and has the consequence that in the S matrix the vertex correction should
be represented by −Λ in analogy with other similar insertions (see further below).

http://dx.doi.org/10.1007/978-3-319-15386-5_12
http://dx.doi.org/10.1007/978-3-319-15386-5_7
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Fig. 4.10 Diagram
representing the first-order
vertex correction

The vertex-correction function is divergent, and can be expressed

Λ0 = L + Λ0
ren, (4.100)

where L is a divergent constant and Λ0
ren is the finite, renormalized vertex function.

This is further discussed in Chap.12.

4.6.2.1 Covariant Gauge

With the expression for the electron and the photon propagators in a covariant gauge
((4.11) and (4.46)) we have, leaving out the space coordinates,

Λ0(εa, εa) = i
∫

dz

2π

1

εa − εu − z + iηu

1

εa − εt − z + iηt

∫
2c2κ dκ f (κ)

z2 − c2κ2 + iη

=
∫

c dκ f (κ)

(εa − εu − cκ + iη)(εa − εt − cκ + iη)
, (4.101)

assuming positive intermediate states. The corresponding expressions of the partic-
ular gauge is obtained by inserting the expression for f (k) in that gauge.

Comparing with the self-energy (4.89), we find for the diagonal part, t = u, what
is known as

• the Ward identity (see also Chap.12)

∂

∂εa
Σ(εa) = −Λ0(εa, εa). (4.102)

4.6.2.2 Coulomb Gauge

The transverse part in Coulomb gauge is analogous to the expression in the covariant
gauge, using the corresponding f function. For the Coulomb part we insert the
Coulomb interaction (4.63b) in expression (4.99), yielding

http://dx.doi.org/10.1007/978-3-319-15386-5_12
http://dx.doi.org/10.1007/978-3-319-15386-5_12


4.6 QED Corrections 83

Λ0(εa, εa) = i
〈
u
∣∣∣
∫

dz

2π

1

εa − εu − z + iηu

1

εa − εt − z + iηt
VC

∣∣∣t
〉

=
〈
u
∣∣∣sgn(εt )

VC

εt − εu

∣∣∣t
〉
, (4.103)

provided εt and εu have different sign. If εt = εu this becomes singular, which is
consistent with the Ward identity, since the energy derivative of the self-energy also
becomes singular (see further Chap.12).

• In the S-matrix we shall insert−iΛ0(ε, ε′) for each scalar vertex correction (see
Sect. 4.7).

4.6.3 Vacuum Polarization

The field near the atomic nucleus can give rise to a “polarization effect” in the
form of the creation of electron-positron pairs, an effect referred to as the vacuum
polarization. The first-order effect, illustrated in Fig. 4.11, forms together with the
first-order self-energy (Fig. 4.9) the leading contributions to the Lamb shift.

In order to set up the S-matrix for the leading vacuum polarization (first diagram
in Fig. 4.11), we go back to the relation (4.39) for single-photon exchange

Fig. 4.11 Diagram representing the first-order vacuum polarization according to (4.109). The
closed loop contains summation over all orbitals (particles and holes). The first and third diagrams
on the r.h.s. of the first row vanish due to Furry’s theorem (see text). The first diagram in the second
row represents the Uehling part and the final diagrams the Wichmann–Kroll part. The heavy lines
represent the bound-state orbital or propagator and the thin lines the free-electron propagator

http://dx.doi.org/10.1007/978-3-319-15386-5_12
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−
∫∫

d4x2 d
4x1 T

[(
ψ†(x)eαν Aν(x)ψ(x)

)
2

(
ψ†(x)eαμ Aμ(x)ψ(x)

)
1

]
e−γ(|t1|+|t2|),

leaving out the factor of 1/2, since we can interchange 1 and 2. The contraction
between the creation and absorption electron-field operators at vertex 2 represents
the closed orbital loop. Explicitly, writing out the spinor components, we have at this
vertex

ψ†
σ(x2)eα

ν
στ Aν(x2)ψτ (x2) = Tr

[
ψ†(x2)eα

ν Aν(x2)ψ(x2)
]
,

where “Tr” stands for the trace of the matrix, i.e., the sum of the diagonal elements.
The contraction leads here to −iSF(x2, x2) (note order between the field operators).
We then have the S-matrix element

−e2
∫∫

d4x2 d
4x1 iα

μ
1 DFνμ(x2, x1)Tr

[
αν
2(−i)SF(x2, x2)

]
e−γ(|t1|+|t2|).

With the Fourier transforms SF(ω; x2, x2) and DFνμ(z; x2, x1) the time depen-
dence is

e−it1(εb−εa−z)−γ|t1| e−it2(ω−ω+z)−γ|t2|,

and this leads after time integrations to the S-matrix element

〈b|S(2)
SE |a〉 = −2πΔγ(εa − εb − z) 2πΔγ(ω − ω + z)

× e2
∫∫

dω

2π

dz

2π

〈
b
∣∣∣ αμ

1 DFνμ(z; x2, x1)Tr
[
αν
2SF(ω; x2, x2)

]∣∣∣a
〉

(4.104)

and in the limit γ → 0, using the relation (A.32) in AppendixA,

〈b|S(2)
SE |a〉 = −2π Δ2γ(εa − εb)

× e2
∫

dω

2π

〈
b
∣∣∣ αμ

1 DFνμ(0; x2, x1)Tr
[
αν
2SF(ω; x2, x2)

]∣∣∣a
〉
. (4.105)

According to Sucher’s energy formula (4.6) we have in second order

ΔE = lim
γ→0

iγ〈Φ|S(2)|Φ〉, (4.106)

and using the relation (A.20)

ΔE = −iδ(εa, εb)

× e2
∫

dω

2π

〈
b
∣∣∣ αμ

1 DFνμ(0; x2, x1)Tr
[
αν
2SF(ω; x2, x2)

]∣∣∣a
〉
. (4.107)
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It can furthermore be shown that only ν = 0, i.e., αν = 1 will contribute here [190].
The vacuum-polarization contribution is divergent and has to renormalized, which
in this case turns out to be not too difficult (see below).

The bound-state electron propagator, SF(ω), is in operator form (4.14)

ŜF(ω) = 1

ω − ĥbau (1 − iη)
. (4.108)

Expressing the Dirac Hamiltonian for an electron in an external (nuclear) potential
vext as ĥbau = ĥfree+vext, where ĥfree is the free-electron Hamiltonian, the propagator
(4.108) can be expanded as

1

z − ĥbau(1 − iη)
= 1

z − ĥfree(1 − iη)
+ 1

z − ĥfree(1 − iη)
V

1

z − ĥfree(1 − iη)

+ 1

z − ĥfree(1 − iη)
V

1

z − ĥfree(1 − iη)
V

1

z − ĥfree(1 − iη)
+ · · ·

= 1

z − ĥfree(1 − iη)
+ 1

z − ĥfree(1 − iη)
V

1

z − ĥfree(1 − iη)

+ 1

z − ĥfree(1 − iη)
V

1

z − ĥbau(1 − iη)
V

1

z − ĥfree(1 − iη)
,

(4.109)

which leads to the expansion illustrated in Fig. 4.11.
The first and third diagrams on the r.h.s. in the first row in Fig. 4.11 vanish due to

“Furry’s theorem”. According to this theorem, a diagram will vanish if it contains a
free-electron loop with an odd number of vertices [143, Sect. 9.1]. The first diagram
in the second row represents the Uehling part [245], and the second part is the so-
called Wichmann–Kroll [249] part. The Uehling part is divergent, but Uehling was
already in 1934 able to handle this divergence and derive an analytic expression for
the renormalized potential. TheWichmann–Kroll part is finite and has to be evaluated
numerically.

Both the Uehling and the Wichmann–Kroll effects can be expressed in terms of
single-particle potentials that can be added to the external potential, used to generate
the single particle spectrum, and in this way the effects can be automatically included
in the calculations to arbitrary order (see, for instance, Persson et al. [190]). In
Table4.1 we show the result of some accurate vacuum-polarization calculations. The
diagrams above for the vacuum-polarization and the self-energy can be compared
with the corresponding many-body diagrams, discussed in Sect. 2.4 (Fig. 2.3). In the
MBPT case the internal line represent core orbitals only, while in the present case
they can represent all orbitals—particle as well as hole states.

http://dx.doi.org/10.1007/978-3-319-15386-5_2
http://dx.doi.org/10.1007/978-3-319-15386-5_2


86 4 S-Matrix

Table 4.1 Vacuum-polarization effects in the ground state of some hydrogenlike systems (in eV)
(from Persson et al. [190])

36Kr Uehling
Wichmann–Kroll

−1.35682
0.01550

54Xe Uehling
Wichmann–Kroll

−7.3250
0.1695

70Yb Uehling
Wichmann–Kroll

−23.4016
0.8283

92U Uehling
Wichmann–Kroll

−93.5868
4.9863

4.6.4 Photon Self-energy

The interaction between the photon and the electron-positron fields can give rise to
another form of vacuum polarization, illustrated in Fig. 4.12. The S-matrix for this
process can be obtained from that of single-photon exchange (4.40) by replacing
−ie2αμ

1 DFνμ(x1, x2)αν
2 by

∫∫
d4x3d

4x4 (−ie2)α
μ
1 DFμσ(x1, x3) iΠ

στ (x3, x4) (−ie2) DFτν(x4, x2)αν
2,

(4.110)
where

iΠστ (x3, x4) = ασ
3 ψ̂

†(x3)ψ̂(x3) ψ̂†(x4)ψ̂(x4)α
τ
4 = ασ

3 ψ̂(x3) ψ̂†(x4) ψ̂†(x3)ψ̂(x4)α
τ
4

= −Tr
[
ασ
3 iSF(x3, x4) iSF(x4, x3)ατ

4

]
(4.111)

is the first-order polarization tensor [143, Eqs. (7.22), (9.5)]. The contractions lead
here to the trace as in the previous case, and there is also here a minus sign due to
the closed loop.

The photon self-energy is (charge) divergent and requires a renormalization, as is
discussed further inChap.12, and after the renormalization there is a finite remainder.

Fig. 4.12 Diagram
representing the first-order
photon self-energy

http://dx.doi.org/10.1007/978-3-319-15386-5_12
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4.7 Feynman Diagrams for the S-Matrix. Feynman
Amplitude

4.7.1 Feynman Diagrams

We have in this chapter constructed S-matrix expressions for a number of Feynman
diagrams, and we summarize here the rules that can be deduced for this construction.
We also define the so-called Feynman amplitude, introduced by Richard Feynman
in his original works on quantum-field theory, which we shall find convenient to use
also in other procedures to be discussed later. These rules are also summarized in
AppendixH.

The S-matrix is given by (3.35 and 4.3)

S =
∞∑

n=0

(−i

c

)n 1

n!
∫

dx4
1 . . .

∫
dx4

n T
[H(x1) . . .H(xn)

]
e−γ(|t1|+|t2|...|tn |)

with the interaction density (4.4)

H(x) = −ψ̂†(x)ecαμ Aμ(x)ψ̂(x).

This leads to the following rules for the S-matrix: There is

• an electron-field creation/absorption operator, ψ̂†/ψ̂, for each outgoing/incoming
electron orbital;

• iecαμ at each vertex;
• i SF(x1, x2) for each electron propagator (4.9 and 4.11);
• iDFνμ for each photon propagator (4.18);
• at each vertex a factor of 2πΔγ(arg), where arg is the sum of all incoming energy
parameters minus the some of all outgoing ones;

• a factor of −1 and a trace symbol for each closed orbital loop.

This leads to, after integrating over time,

• −iI (z; x1, x2) for each a single-photon interaction (4.44);
• −iV (x) for each energy-potential interaction V (x);
• −iΣ for each electron self-energy (4.86 and 4.91);
• −iΛ0 for each scalar vertex-correction (4.99 and 4.101);

4.7.2 Feynman Amplitude. Energy Diagram

• For an irreducible S-matrix diagram (no internalmodel-space state)withn vertices,
S(n), the Feynman amplitude, M(n), is defined by (using (A.18) in AppendixA)

http://dx.doi.org/10.1007/978-3-319-15386-5_3
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〈cd|S(n)|ab〉 = 2πδ(Ein − Eout)〈cd|M(n)|ab〉 = lim
γ→0

2πΔnγ(Ein − Eout)〈cd|M(n)|ab〉,
(4.112)

where Ein, Eout are the incoming and outgoing energies, respectively (see further
AppendixH)

• The energy shift is given by the Sucher formula (4.6)

1

2
lim
γ→0

i γ n〈cd|S(n)|ab〉 (4.113)

(no denominator, when the diagram is irreducible). This yields in each order
with (A.21)

ΔE = δEin,Eout 〈cd|iM(n)|ab〉. (4.114)



Chapter 5
Green’s Functions

The Green’s function is an important tool with applications in classical as well
as quantum physics (for an introduction, see, particularly the book by Fetter and
Walecka [67, Chap.3] and also the book by Mahan [140]). More recently it has been
applied also to quantum electrodynamics, particularly by Shabaev et al. [226]. As a
background we shall first consider the classical Green’s function.

5.1 Classical Green’s Function

The classical Green’s function, G(x, x0), can be defined so that it describes the
propagation of a wave from one space-time point x0 = (t0, x0) to another space-
time point x = (t, x), known as the Huygens’ principle (see, for instance the book
by Bjorken and Dell [22, Sect. 6.2])

χ(x) =
∫

d3x0 G(x, x0)χ(x0). (5.1)

The retarded Green’s function is defined as the part of the function G(x, x0) for
which t > t0

G+(x, x0) = Θ(t − t0) G(x, x0), (5.2)

where Θ(t) is the Heaviside step function (Appendix A.33), which implies

Θ(t − t0)χ(x) =
∫

d3x0 G+(x, x0)χ(x0). (5.3)

We assume now that the function χ(x) satisfies a differential equation of
Schrödinger type
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(
i
∂

∂t
− H(x)

)
χ(x) = 0. (5.4)

Operating with the bracket on (5.3), yields

iδ(t − t0)χ(x) =
∫

d3x0

(
i
∂

∂t
− H(x)

)
G+(x, x0)χ(x0),

using the relation (A.35) in Appendix A, which implies that

• the retarded Green’s function satisfies the differential equation

(
i
∂

∂t
− H(x)

)
G+(x, x0) = iδ4(x − x0) (5.5)

—a relation often taken as the definition of the (mathematical) Green’s function.

The Green’s function can be used for solving inhomogeneous differential equa-
tions. If we have

(
i
∂

∂t
− H(x)

)
Ψ (x) = f (x), (5.6)

then the solution can be expressed

Ψ (x) =
∫

dx ′ G+(x ′, x) f (x ′). (5.7)

5.2 Field-Theoretical Green’s Function—Closed-Shell Case

5.2.1 Definition of the Field-Theoretical Green’s Function

• In the closed-shell case the field-theoretical single-particle Green’s function can
be defined [67]1

G(x, x0) =
〈
0H

∣∣T [ψ̂H(x)ψ̂†
H(x0)]

∣∣0H〉
〈0H| 0H〉 , (5.8)

where T is the Wick time-ordering operator (2.27) and ψ̂H, ψ̂†
H are the electron-

field operators in the Heisenberg representation (HP) (B.27). The state |0H〉 is the

1Different definitions of the field-theoretical Green’s function are used in the literature. The defin-
ition used here agrees with that of Itzykson and Zuber [92], while that of Fetter and Walecka [67]
differs by a factor of i.

http://dx.doi.org/10.1007/978-3-319-15386-5_2
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“vacuum in the Heisenberg representation”, i.e., the state in the Heisenberg repre-
sentation with no particles or holes. In a “closed-shell state” the single reference
or model state is identical to the vacuum state (see Sect. 2.3).

The Heisenberg vacuum is time independent and equal to the corresponding vac-
uum state in the interaction picture at t = 0, i.e.,

|0H〉 = U (0,−∞)|0〉, (5.9)

where U (t, t0) is the evolution operator (3.15) and |0〉 is the unperturbed vacuum or
the IP vacuum as t → −∞ (c.f. 3.37).

Using the relation between the electron-field operators in HP and IP (B.25)

ψ̂H(x) = U (0, t) ψ̂(x) U (t, 0), (5.10)

we can transform the Green’s function (5.8) to the interaction picture

G(x, x0) =
〈0|U (∞, 0) T

[
U (0, t)ψ̂(x)U (t, 0)U (0, t0)ψ̂

†(x0)U (t0, 0)
]

U (0, −∞)|0〉
〈0|U (∞, −∞)|0〉 .

(5.11)
For t > t0 the numerator becomes

〈0|U (∞, t) ψ̂(x)U (t, t0)ψ̂
†(x0)U (t0,−∞)|0〉 (5.12a)

and for t < t0
〈0|U (∞, t0) ψ̂†(x0)U (t0, t)ψ̂(x)U (t,−∞)|0〉, (5.12b)

using the relation (3.17). From the expansion (3.24) we obtain the identity

U (t, t0) =
∞∑

ν=0

(−i)ν

ν!
∫ t

t0

dt1 . . .

∫ t

t0

dtν T [V (t1) . . . V (tν)] e
−γ(|t1|+|t2|··· )

=
∞∑

n=0

(−i)n

n!
∫ t

t1

dt1 . . .

∫ t

t1

dtn T [V (t1) . . . V (tn)] e
−γ(|t1|+|t2|··· )

×
∞∑

m=0

(−i)m

m!
∫ t1

t0

dt1 . . .

∫ t1

t0

dtm T
[
V (t1) . . . V (tm) e−γ(|t1|+|t2|··· )] ,

(5.13)

where we have included the unity as the zeroth-order term in the summation. If we
concentrate on the ν:th term of the first sum, we have the identity (leaving out the
damping factor)

http://dx.doi.org/10.1007/978-3-319-15386-5_2
http://dx.doi.org/10.1007/978-3-319-15386-5_3
http://dx.doi.org/10.1007/978-3-319-15386-5_3
http://dx.doi.org/10.1007/978-3-319-15386-5_3
http://dx.doi.org/10.1007/978-3-319-15386-5_3
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1

ν!
∫ t

t0

dt1 . . .

∫ t

t0

dtν T [V (t1) . . . V (tν)]

=
∑

m+n=ν

1

m! n!
∫ t

t1

dt1 . . .

∫ t

t1

dtn T [· · · ]
∫ t1

t0

dt1 . . .

∫ t1

t0

dtm T [· · · ] . (5.14)

We can nowapply this identity to the first part of the numerator (5.12a),U (∞, t) ψ̂(x)

U (t, t0). The interaction times of U (∞, t), ψ̂(x) and U (t, t0) are time ordered, and
hence the result can be expressed

1

ν!
∫ ∞

t0

dt1 . . .

∫ ∞

t0

dtν T
[
V (t1) . . . V (tν) ψ̂(x)

]
. (5.15)

The same procedure can be applied to the rest of the expression (5.12a) as well as
to the other time ordering (5.12b). With the perturbation (3.25) the numerator of the
single-particle Green’s function (5.11) then becomes [67, Eq.8.9]

〈
0H

∣∣T [ψ̂H(x)ψ̂†
H(x0)]

∣∣0H〉 =
∞∑

n=0

1

n!
(−i

c

)n ∫
d4x1 . . .

∫
d4xn

× 〈0|T
[
ψ̂(x)H(x1) . . .H(xn) ψ̂†(x0)

]
|0〉 e−γ(|t1|+|t2|...)

(5.16)

with integrations over all internal times. In transforming the time-ordering to normal
ordering by means of Wick’s theorem, only fully contracted terms remain, since the
vacuum expectation of any normal-ordered expression vanishes (see Sect. 2.2).

The denominator in (5.8) becomes, using the relation (5.9),

〈0H| 0H〉 = 〈0|U (∞,−∞)|0〉 = 〈0|S|0〉,

where S is the S-matrix (4.2). Then

• the Green’s function can be expressed

G(x, x0) =
〈
0H

∣∣T [ψ̂H(x)ψ̂†
H(x0)]

∣∣0H〉
〈
0
∣∣S∣∣0〉 . (5.17)

We see that this expansion is very similar to that of the S-matrix (4.3), the main
difference being the two additional electron-field operators. Therefore,

• the Green’s function can also be expressed as

G(x, x0) =
〈
0
∣∣T [

ψ̂(x)U (∞,−∞)ψ̂†(x0)
] ∣∣0〉〈

0
∣∣S∣∣0〉 , (5.18)

http://dx.doi.org/10.1007/978-3-319-15386-5_3
http://dx.doi.org/10.1007/978-3-319-15386-5_2
http://dx.doi.org/10.1007/978-3-319-15386-5_4
http://dx.doi.org/10.1007/978-3-319-15386-5_4
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where the time-ordered product is connected to form a one-body operator. This
leads to

G(x, x0) = 1

〈0|S|0〉
∞∑

n=0

1

n!
(−i

c

)n ∫
d4x1 . . .

∫
d4xn

× 〈0|T
[
ψ̂(x)H(x1) . . .H(xn) ψ̂†(x0)

]
|0〉 e−γ(|t1|+|t2|...).

(5.19)

The Green’s function is like the S-matrix Lorentz covariant (in the limit of van-
ishing damping).

The two-particle Green’s function is defined in an analogous way

G(x, x ′; x0, x ′
0) =

〈
0
∣∣T [

ψ̂H(x) ψ̂H(x ′) ψ̂†
H(x ′

0) ψ̂†
H(x0)

] ∣∣0〉〈
0
∣∣S∣∣0〉 , (5.20)

and transforming to the interaction picture, leads similarly to

G(x, x ′; x0, x ′
0) = 1

〈0|S|0〉
∞∑

n=0

1

n!
(−i

c

)n ∫
d4x1 . . .

∫
d4xn

× 〈0|T
[
ψ̂(x)ψ̂(x ′)H(x1) . . .H(xn) ψ̂†(x ′

0)ψ̂
†(x0)

]
|0〉 e−γ(|t1|+|t2|...)

(5.21)

and analogously in the general many-particle case.
Contracting the electron-field operators has the consequence that in the diagram-

matic representation all free ends are electron propagators.
Note that the coordinates are here four-dimensional space-time coordinates,which

implies that the particles have individual initial and final times. This is in contrast to
the quantum-mechanical wave function or state vector, which has the same time for
all particles. We shall discuss this question further below.

We can transform the time-ordered products above to normal-ordered ones by
means of Wick’s theorem (see Sect. 2.2.3). Since normal-ordered products do not
contribute to the vacuum expectation value, it follows that only fully contracted
terms contribute to the Green’s function. The contractions between the electron-field
operators and the interaction operators lead to electron propagators (SF) (4.9) on the
in- and outgoing lines as well as all internal lines (see Fig. 5.1).2 This allows time to
run in both directions and both particle and hole states can be involved.

2In our notations, an orbital line between heavy dots always represents an electron propagator.

http://dx.doi.org/10.1007/978-3-319-15386-5_2
http://dx.doi.org/10.1007/978-3-319-15386-5_4
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Fig. 5.1 Graphical
representation of the one-
and two-particle Green’s
function. The orbital lines
between dots represent
electron propagators

Fig. 5.2 Green’s function
for single-photon exchange

5.2.2 Single-Photon Exchange

The Green’s function for single-photon exchange in Fig. 5.2 can be constructed in
close analogy to that of the corresponding S-matrix in Sect. 4.4,

G(x, x ′, x0, x ′
0) =

∫∫
d4x2 d

4x1 iSF(x, x1) iSF(x ′, x2)

×(−i)e2DF(x2, x1) iSF(x1, x0) iSF(x2, x ′
0) e

−γ(|t1|+|t2|). (5.22)

With the transforms (4.10) and (4.31) this becomes after integrating over the internal
times (using the relation A.20)

G(x, x ′, x0, x ′
0) = e−itω3 e−it ′ω4 eit0ω1 eit

′
0ω2

×
∫∫

d3x1 d
3x2

∫∫
dω3

2π

dω4

2π

∫∫
dω1

2π

dω2

2π

∫
dz

2π
iSF(ω3; x, x1)

× iSF(ω4; x′, x2) (−i)e2DF(z; x2, x1) iSF(ω1; x1, x0)

× iSF(ω2; x2, x′
0) 2πΔγ(ω1 − z − ω3) 2πΔγ(ω2 + z − ω4). (5.23)

In the equal-time approximation, where the particles have the same initial
and final times (t = t ′ and t0 = t ′

0), the external time dependence becomes
e−it (ω3+ω4) eit0(ω1+ω2). In the limit γ → 0 we have after z-integration ω1 + ω2 =
ω3 + ω4, and if we consider the diagram as a part of a ladder, this is equal to the
initial energy E0.

We define the Feynman amplitude for the Green’s function as the function with
the external time dependence removed. This gives

http://dx.doi.org/10.1007/978-3-319-15386-5_4
http://dx.doi.org/10.1007/978-3-319-15386-5_4
http://dx.doi.org/10.1007/978-3-319-15386-5_4
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G(x, x ′, x0, x ′
0) = Msp(x, x′; x0, x′

0) e
−i(t−t0)E0 (5.24)

and

Msp(x, x′; x0, x′
0) =

∫∫
d3x1 d

3x2

∫∫
dω3

2π

dω4

2π

∫∫
dω1

2π

dω2

2π

× iSF(ω3; x, x1) iSF(ω4; x′, x2) (−i)I (ω1 − ω3; x2, x1) iSF(ω1; x1, x0)

× iSF(ω2; x2, x′
0) 2πΔ2γ(ω1 + ω2 − ω3 − ω4), (5.25)

using the definition (4.44).
The Feynman amplitude is the same as for the S-matrix and can be evaluated

by means of the rules given above (Sect. 4.7).

5.2.3 Fourier Transform of the Green’s Function

5.2.3.1 Single-Particle Green’s Function

Assuming the Heisenberg vacuum state |0H〉 to be normalized, the single-particle
Green’s function (5.8) becomes

G(x, x0) = 〈
0H

∣∣T [
ψ̂H(x) ψ̂†

H(x0)
] ∣∣0H〉

= Θ(t − t0)
〈
0H

∣∣ψ̂H(x) ψ̂†
H(x0)

∣∣0H〉 − Θ(t0 − t)
〈
0H

∣∣ψ̂†
H(x0) ψ̂H(x)

∣∣0H〉
.

(5.26)

The retarded part (5.2) is then, using the relation (B.27) in Appendix B,

G+(x, x0) = 〈
0H

∣∣ψ̂H(x) ψ̂†
H(x0)

∣∣0H〉
= 〈

0H
∣∣ (eiHt ψ̂S(x) e−iHt

) (
eiHt0 ψ̂†

S(x0) e
−iHt0

) ∣∣0H〉
. (5.27)

Inserting between the field operators a complete set of positive-energy eigenstates of
the second-quantized Hamiltonian H (2.17), corresponding to the (N + 1)-particle
system

H |n〉 = En |n〉, (5.28)

yields the Lehmann representation

G+(x, x0) =
∑

n

〈
0H

∣∣eiHt ψ̂S(x)
∣∣n〉

e−iEn(t−t0)
〈
n
∣∣ψ̂†

S(x0) e
−iHt

∣∣0H〉
. (5.29)

summed over the intermediate states of the (N +1) system. The ground state as well
as the inserted intermediate states are eigenstates of the Hamiltonian H , and setting
the energy of the former to zero, this yields

http://dx.doi.org/10.1007/978-3-319-15386-5_4
http://dx.doi.org/10.1007/978-3-319-15386-5_4
http://dx.doi.org/10.1007/978-3-319-15386-5_2
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G+(x, x0) =
∑

n

〈
0H

∣∣ψ̂S(x)
∣∣n〉

e−iEn(t−t0)
〈
n
∣∣ψ̂†

S(x0)
∣∣0H〉

. (5.30)

Performing a Fourier transform of the Green’s function, including the adiabatic
damping e−γτ (see Sect. 3.3), yields (τ = t − t0 > 0)

G+(E; x, x0) =
∫ ∞

0
dτ eiEτ G+(τ , x, x0) = i

〈
0H

∣∣ψ̂S(x)
∣∣n〉 〈

n
∣∣ψ̂†

S(x0)
∣∣0H〉

E − En + iγ
,

(5.31)
using ∫ ∞

0
dt eiαt e−γt = i

α + iγ
. (5.32)

Analogous results are obtained for the advanced part (t < t0) of the Green’s function,
corresponding to a hole in the initial system.

The expression
〈
0H

∣∣ψ̂S(x)
∣∣n〉

represents a state Ψn(x) of the (N + 1) system in
the Schrödinger picture, and an equivalent expression of

• the Fourier transform of the Green’s function becomes

G+(E; x, x0) = i
∑

n

Ψn(x)Ψ ∗
n (x0)

E − En + iγ
. (5.33)

This implies that
• the poles of the retarded/advanced single-particle Green’s function represent

the true energies of the vacuum plus/minus one particle, relative to the vacuum
state.

In order to show that the definition (5.8) of the Green’s function is compatible
with the classical definition (5.1) and (5.5), we form the reverse transformation

G+(x, x0) = G+(τ , x, x0) =
∫

dE

2π
e−iEτ i

∑
n

Ψn(x)Ψ ∗
n (x0)

E − En + iγ
. (5.34)

We then find that
(
i
∂

∂t
− H(x)

)
G+(x, x0) =

∫
dE

2π
e−iEτ i

∑
n

E − En

E − En + iγ
Ψn(x) Ψ ∗

n (x0).

(5.35)
Letting γ → 0 and using the closure property (C.27)

∑
n

Ψn(x) Ψ ∗
n (x0) = δ3(x − x0)

http://dx.doi.org/10.1007/978-3-319-15386-5_3
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and the integral ∫
dE

2π
e−iEτ = δ(τ ) = δ(t − t0)

we confirm that the retarded part of the Green’s function (5.8) satisfies the rela-
tion (5.5) (

i
∂

∂t
− H(x)

)
G+(x, x0) = iδ4(x − x0). (5.36)

5.2.3.2 Electron Propagator

We consider now the zeroth-order single-particle Green’s function (5.19)

G0(x, x0) = 〈
0
∣∣T [ψ̂(x)ψ̂†(x0)]

∣∣0〉, (5.37)

where the vacuum and the field operators are expressed in the interaction picture.
Then we find that

• the single-particle Green’s function is identical to the Feynman electron propa-
gator (4.9) times the imaginary unit i

G0(x, x0) ≡ iSF(x, x0). (5.38)

The retardedoperator canbe transformed in analogywith theLehmann representation
above

G0+(x, x0) =
∑

n

〈
0H

∣∣ψ̂S(x)
∣∣n0

〉
e−iE0

n (t−t0)
〈
n0

∣∣ψ̂†
S(x0)

∣∣0H〉
, (5.39)

where |n0〉 are eigenstates of the zeroth-order Hamiltonian for the (N + 1)-particle
system (B.22)

H0|n0〉 = E0
n |n0〉,

and E0
n are the energies relative the vacuum. Performing the time integration, yields

the Fourier transform

G0+(x, x0, E) = i
∑

n

〈x|n0〉〈n0|x0〉
E − E0

n + iγ
. (5.40)

The corresponding advanced function becomes

G0−(x, x0, E) = −i
∑

n

〈x|n0〉〈n0|x0〉
E − E0

n − iγ
. (5.41)

Both of these results can be expressed by means of a complex integral

http://dx.doi.org/10.1007/978-3-319-15386-5_4
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G0(x, x0) = iSF(x, x0) = i
∫

dE

2π

〈x|n0〉〈n0|x0〉
E − E0

n + iγn
e−iE(t−t0), (5.42)

where γn has the same sign as E0
n , i.e., positive for particle states and negative for

hole or antiparticle states.
The zeroth-order Green’s function or electron propagator can also be expressed

in operator form as

Ĝ0(E) = iŜF(E) = i

E − H0 ± iγ
. (5.43)

5.2.3.3 Two-Particle Green’s Function in the Equal-Time
Approximation

Setting the initial and final times equal for the two particles, t = t ′ and t0 = t ′
0, the

retarded two-particle Green’s function (5.20) becomes

G+(x, x ′; x0, x ′
0) = 〈

0H
∣∣ ψ̂H(x) ψ̂H(x ′) ψ̂†

H(x ′
0) ψ̂†

H(x0)
∣∣0H〉

= 〈
0H

∣∣ (eiHt ψ̂S(x) ψ̂S(x′)e−i Ht
) (

eiHt0 ψ̂†
S(x′

0) ψ̂†
S(x0)e

−iHt0
) ∣∣0H〉

.

(5.44)

We introduce a complete set of two-particle states (5.28), which leads to the Lehmann
representation

G+(x, x ′; x0, x ′
0) =

∑
n

〈
0H

∣∣ψ̂S(x) ψ̂S(x ′)
∣∣n〉

e−iEn(t−t0)
〈
n
∣∣ψ̂†

S(x ′
0) ψ̂†

S(x0)
∣∣0H〉

(5.45)
with the Fourier transform

G+(E; x, x′; x0, x′
0) =

∑
n

〈
0H

∣∣ψ̂S(x) ψ̂S(x′)
∣∣n〉 〈

n
∣∣ψ̂†

S(x′
0, ψ̂

†
S(x0))

∣∣0H〉
E − En ± iγ

(5.46)

with the upper (lower) sign for the retarded (advanced) function. Here,
〈
n
∣∣ψ̂†

S(x0)

ψ̂†
S(x′

0)
∣∣0H〉

represents a two-particle stateΨn(x, x′) in theSchrödinger picture,which
yields the Fourier transform

G+(E; x, x′; x0, x′
0) = i

∑
n

Ψn(x, x′) Ψ ∗
n (x0, x′

0)

E − En ± iγ
. (5.47)

This implies that also in this case the poles of the Green’s function represent the
exact eigenvalues of the system, relative to the vacuum. Note that this holds in the
many-particle case only in the equal-time approximation, where there is only a single
time coordinate τ = t − t0.
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5.3 Graphical Representation of the Green’s Function*

We shall now demonstrate how the expansions of the Green’s-functions (5.19) and
(5.21) can be conveniently represented by means of Feynman diagrams [69], dis-
cussed in the previous chapter, and we start with the single-particle case.

5.3.1 Single-Particle Green’s Function

The zeroth-order Green’s function is (with our definition) identical to the Feynman
electron propagator times the imaginary unit (5.38) or equal to the contraction (4.9)

G0(x, x0) = 〈
0
∣∣T [ψ̂(x)ψ̂†(x0)]

∣∣0〉 = ψ̂(x)ψ̂†(x0) (5.48)

which we represent graphically as in Fig. 4.1

G0(x, x0) =

�

�

�

x0

x

j

(5.49)

This contains both time orderings, i.e., j represents both particle and hole/anti-
particle states.

In next order the numerator of the Green’s function (5.16) has the form

− 1

2c2

〈
0
∣∣∣
∫∫

d4x1 d
4x2 T

[
ψ̂(x)H(x1)H(x2) ψ̂†(x0)

] ∣∣∣0
〉
. (5.50)

The photon fields have to be contracted, which leads to a two-particle interaction, in
analogy with the single-photon interaction Vsp (4.44),

H(x1)H(x2) = v(x1, x2) (5.51)

with the Fourier transform with respect to time v(z; x1, x2), which we represent
graphically as

�� ���� ���
��� ���

1 2

(5.52)

http://dx.doi.org/10.1007/978-3-319-15386-5_4
http://dx.doi.org/10.1007/978-3-319-15386-5_4
http://dx.doi.org/10.1007/978-3-319-15386-5_4
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The vacuum expectation (5.50) can then be illustrated by the following picture

�

�

x

x0

〈0|T[ �� ���� ���
��� ���

1 2 ] |0〉
(5.53)

where the vertical lines represent the electron-field operators.
The procedure is now to transform the time ordering to normal ordering (see

Sect. 2.2), which we can do by means of Wick’s theorem (2.33). This leads to a
normal-ordered totally uncontracted and all possible normal-ordered single, dou-
bly, ... contracted terms. In the vacuum expectation only fully contracted terms will
survive.

We can here distinguish between two cases: either the electron-field operators
are connected to each other and disconnected from the interaction or all parts are
connected to a single piece. The former case leads to the diagrams
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where the disconnected, closed parts represent the closed first-order S-matrix dia-
grams

S(1)
cl =

��
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The diagrams in (5.54) can then be expressed G0S(1)
cl .

Connecting all parts of the expression in (5.53), leads to the diagrams
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(5.56)

These diagrams are quite analogous to the S-matrix diagrams for vacuumpolarization
and self-energy, discussed in Sect. 4.6, the only difference being that the Green’s-
function diagrams contain in- and outgoing electron propagators. We note that all
internal lines do represent electron propagators, containing particle as well as hole
states.

http://dx.doi.org/10.1007/978-3-319-15386-5_2
http://dx.doi.org/10.1007/978-3-319-15386-5_2
http://dx.doi.org/10.1007/978-3-319-15386-5_4
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We can now see that the disconnected parts of the diagrams (5.54) are eliminated
by the denominator in the definition of the Green’s function (5.8). Therefore, we
can then represent the Green’s function up to first order by connected diagrams only
(5.57).
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+
�

�

�

�
������ �� �

(5.57)

We shall now indicate that this holds also in higher orders.
Next, we consider a Green’s-function term with two two-particle interactions

�

�

〈0|T [
�� ���� ���

��� ���

�� ���� ���
��� ���

] |0〉
(5.58)

We can here distinguish different cases.
We consider first the case where both interactions are disconnected from the

electron-field operators. Leaving out the latter we then have

〈0|T[
�� ���� ���

��� ���

�� ���� ���
��� ��� ]|0〉

(5.59)

This corresponds to the vacuum expectation of the second-order S-matrix and leads
to connected diagrams
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and to the disconnected diagrams
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Fig. 5.3 Second-order connected diagrams of the one-bodyGreen’s function, assuming a two-body
interaction

We denote these diagrams by S(2)
cl = 〈0|S(2)|0〉. In addition, we have the free electron-

field operators, which combine to the zeroth-order Green’s function G0. Therefore,
we can express the corresponding GF diagrams as G0S(2)

cl .
Next, we consider the case where one of the interactions in (5.59) is closed by

itself, while the remaining part is connected. This leads to disconnected diagrams,
where the disconnected part is the closed first order (5.55) and the connected part is
identical to the connected first-order diagrams in (5.56), which we can express the
disconnected diagram as G(1)

C S(1)
cl .

Finally,we have the casewhere all diagramparts are completely connected, shown
in Fig. 5.3, which we denote by G(2)

C .
Going to third order, we find similarly that we can have G0 = G(0) combined

with the closed diagrams S(3)
cl , G(1)

C combined with S(2)
cl , G(2)

C combined with S(1)
cl and

finally completely connected G(3)
C diagrams. This leads to the sequence

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

G(0)

G(1)
C + G(0)S(1)

cl

G(2)
C + G(1)

C S(1)
cl + G(0)S(2)

cl

G(3)
C + G(2)

C S(1)
cl + G(1)

C S(2)
cl + G(0)S(3)

cl
etc.

which summarizes to

(G(0) +G(1)
C +G(2)

C +· · · )(1+ S(1)
cl + S(2)

cl +· · · ) = (G0 +GC)(1+ Scl), (5.62)
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where GC represents all connected diagrams of the numerator of the GF expression
(5.21) and Scl represents all closed S diagrams. But the last factor is the vacuum
expectation of the S matrix to all orders

〈0|S|0〉 = 1 + Scl, (5.63)

which implies that this is cancelled by the denominator in the definition (5.8). Hence,

• the single-particle Green’s function can in the close-shell case be represented
by completely connected diagrams

iG(x, x0) =
[ ∞∑

n=0

1

n!
(−1

c2

)n ∫
. . .

∫
d4x1 . . . d4x2n

×〈0|T
[
ψ̂(x)H(x1, x2) . . .H(x2n−1, x2n) ψ̂†(x0)

]
|0〉

]
conn

. (5.64)

This can also be expressed

G(x, x0) = 〈
0H

∣∣T [ψ̂H(x)ψ̂†
H(x0)]

∣∣0H〉
conn. (5.65)

The connectedness of the Green’s function can also be shown in a somewhat different
way. If the remove the two electron-field operators and the denominator from the
Green’s function expansion (5.19), then we retrieve the vacuum expectation of the
S-matrix (4.3), 〈0|S|0〉. Therefore, if the field operators are connected to each other
and the interactions among themselves, the result (after including the denominator)
is simply the zeroth-order Green’s function iG(0). If the field operators are connected
to one of the interactions, they form the connected first-order Green’s function iG(1)

conn
and the remaining interactions again form 〈0|S|0〉. Continuing the process leads to

G = G(0) + G(1)
conn + G(2)

conn + · · · , (5.66)

which proves that the single-particle Green’s function is entirely connected.

5.3.1.1 One-Body Interaction

We shall now consider the case when we in addition to the two-body interaction have
a one-body interaction of potential typ

×� (5.67)

The graphical representation can then be constructed in the same way as before,
and we then find in first order the additional diagrams

http://dx.doi.org/10.1007/978-3-319-15386-5_4
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Fig. 5.4 Additional second-order diagrams of the single-particle Green’s function—in addition to
those in Fig. 5.3—with a combination of one- and two-body interaction
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� �� ×���
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�

�

� ×�

(5.68)

The first diagram is unconnected, and the closed part is a part of 〈0|S|0〉 and hence
this diagram is eliminated by the denominator of (5.19), as before. It is not difficult to
show that the single-particle Green’s function is represented by connected diagrams
only, when we have a mixture of one- and two-body interactions. The additional
connected diagrams in second order are shown in Fig. 5.4.

5.3.2 Many-Particle Green’s Function

We now turn to the two-particle Green’s function (5.21). The zeroth-order Green’s
function is in analogy with the one-particle function (5.49) represented by

G0(x, x ′; x0, x ′
0) =

�

�

�

�

�

�

x0

x

x ′
0

x ′

= iSF(x, x0) iSF(x ′, x ′
0)

(5.69)

or a product of two Feynman electron propagators.
As mentioned before, the (initial and final) times of the two particles in principle

can be different, although we shall in most applications assume that they are equal,
as will be further discussed in the following.
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In first order we have in analogy with the single-particle case (5.53)
�

�

�

�

〈0| T [ �� ���� ���
��� ���

] |0〉
(5.70)

This can lead to disconnected diagrams, composed of the zeroth-order function (5.69)
and the closed first-order diagrams (5.55). Another type of disconnected diagrams is
the combination of zeroth-order single-particle GF and the connected first-order GF
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(5.71)

It should be noted that both parts are here considered as open (not closed).3 Finally,
we can have an open two-particle diagram

�

�

�

�

�

�

�

�
�� �

(5.72)

In second order we can have the zeroth-order two-particle Green’s function, com-
bined with second-order closed diagrams, S(2)

cl , and connected first-order diagrams
combined with first-order closed diagrams, S(1)

cl . In addition, we can have discon-
nected diagrams with two open first-order single-particle diagrams (5.56).

Continuing this process leads formally to the same result as in the single-particle
case (5.62)—the diagrams with a disconnected closed part are eliminated by the
denominator. Formally, the diagrams can still be disconnected, like (5.71), since
there is a disconnected zeroth-order Green’s function part. We shall refer to such
diagrams as linked in analogy with the situation in MBPT (Sect. 2.4). The result is
then expressed

3Generally, a diagram is considered closed if it has no free lines/propagators, like the diagrams in
(5.60) and (5.61), while an open diagram has at least one pair of free lines, like those in Fig. 5.3.
An operator or a function represented by a closed/open diagram is said to be closed/open.

http://dx.doi.org/10.1007/978-3-319-15386-5_2
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G(x, x ′; x0, x ′
0) =

[ ∞∑
n=0

1

n!
(−1

c2

)n ∫
d4x1 . . .

∫
d4x2n

× 〈0|T
[
ψ̂(x)ψ̂(x ′) v(x1, x2) . . . v(x2n−1, x2n) ψ̂†(x ′

0)ψ̂
†(x0)

]
|0〉

]
linked

,

(5.73)

a result that can easily be extended to the general many-particle case.
The two-body interactions used here correspond to two contracted interactions of

the type (4.4). Uncontracted interactions of this kind cannot contribute to the Green’s
function, since this is a vacuum expectation. Therefore, the results above can in the
single-particle case also be expressed

G(x, x0) =
∞∑

n=0

1

n!
(−i

c

)n ∫
d4x1 . . .

∫
d4xn

×〈0|T
[
ψ̂(x)H(x1) . . .H(xn) ψ̂†(x0)

]
|0〉conn, (5.74)

including even- as well as odd-order terms, and similarly in the many-particle case.
This can also be expressed

G(x, x0) = 〈
0H

∣∣T [ψ̂H(x)ψ̂†
H(x0)]

∣∣0H〉
conn. (5.75)

and in the two-particle case

G(x, x ′; x0, x ′
0) = 〈

0H
∣∣T [ψ̂H(x)ψ̂†

H(x ′)ψ̂H(x ′
0)ψ̂

†
H(x0)]

∣∣0H〉
linked (5.76)

The linked character of the Green’s function can also in the two-particle case be
shown as we did at the end on the single-particle section. If all interactions of the
expansion (5.21) are connected among themselves, they form the vacuumexpectation
value of the S-matrix, cancelling the denominator, and the electron-field operators
form the two-body zeroth-order Green’s function G(0)

2 . If one pair of field operators
are internally connected, then the remaining part is identical to the single-particle
Green’s function G1, which has been shown to be connected. The result G(0)

1 G1 is
disconnected but since both parts are open, this is linked with the convention we use.
If one pair of field operators are connected to some of the interactions and the other
pair to the remaining ones, the result is G1G1, which is also disconnected but linked.
Finally, all field operators can be connected to the interactions, which leads to the
connected two-particle Green’s function G2,conn. The remaining interactions form
〈0|S|0〉, cancelling the denominator, and the result becomes G2,conn. In summary,
the two-particle Green’s function becomes

G2 = G(0)
2 + G1,conn G1,conn + G2,conn, (5.77)

http://dx.doi.org/10.1007/978-3-319-15386-5_4
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which can be disconnected but linked. This argument can easily be generalized,
implying that

• the many-particle Green’s function in the closed-shell case is linked.

5.3.3 Self-Energy. Dyson Equation

All diagrams of the one-particle Green’s function can be expressed in the form

G(x, x0) = G(x, x0) +
∫∫

d4dx1d
4dx2 G0(x, x1) (−i)Σ(x1, x2) G0(x2, x0),

(5.78)
where Σ(x2, x1) represents the self-energy. This can be represented as shown in
Fig. 5.5, i.e., as the zeroth-order Green’s function plus all self-energy diagrams.

Some of the second-order self-energy diagrams in Figs. 5.3 and 5.4 have the form
of two first-order diagrams, connected by a zeroth-order GF. All diagrams of that
kind can be represented as a sequence of proper self-energy diagrams, Σ∗, which
have the property that they cannot be separated into lower-order diagrams by cutting
a single line. This leads to the expansion of the total self-energy shown in Fig. 5.6,
where the crossed box represents the proper self-energy. The single-particle Green’s
function can then be represented as shown in Fig. 5.7,which corresponds to theDyson
equation for the single-particle Green’s function.

Fig. 5.5 The single-particle
Green’s function expressed
in terms of the self-energy

Fig. 5.6 Expansion of the
total self-energy in terms of
proper self-energies. The
crossed box represents the
proper self-energy Σ∗

Fig. 5.7 Graphical
representation of the Dyson
equation for the
single-particle Green’s
function (5.79), using the
proper self-energy Σ∗
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Fig. 5.8 Graphical representation of the Dyson equation for the two-particle Green’s function
(5.80). The crossed box represents the proper two-particle self-energy

G(x, x0) = G0(x, x0) +
∫∫

d4x1d
4x2 G0(x, x2) (−i)Σ∗(x2, x1) G(x1, x0).

(5.79)

Similarly, the Dyson equation for two-particle Green’s function becomes

G(x, x ′; x0, x ′
0) = G0(x, x ′; x0, x ′

0)

+
∫∫∫∫

d4x1d
4x2d

4x ′
1d

4x ′
2G0(x, x ′; x2, x ′

2) (−i)

×Σ∗(x2, x ′
2; x1, x ′

1)G(x1, x ′
1; x0, x ′

0). (5.80)

This equation is illustrated in Fig. 5.8, where the crossed box represents the proper
two-particle self-energy. This is equivalent to the Bethe–Salpeter equation, discussed
in Sect. 8.3 and Chap.10.

5.3.4 Numerical Illustration

Here, we shall illustrate the application of the Green’s-function technique for many-
body calculation by the electron affinity of the calcium atom (Table5.1). The negative
calcium ion is a very delicate system, with a very feeble binding energy, and it has

Table 5.1 Electron affinity of Ca atom (in meV)
4p1/2 4p3/2 Reference

Theory 19 −13 Salomonson [210]

Theory 22 −18 Avgoustoglou [12]

Theory 49 −18 Dzuba [12]

Expt’l 24, 55 −19.73 Petrunin (1996)

Expt’l 18, 4 Walter [247]

Expt’l 17, 5 Nadeau [171]

http://dx.doi.org/10.1007/978-3-319-15386-5_8
http://dx.doi.org/10.1007/978-3-319-15386-5_10
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been quite difficult to determine this quantity experimentally as well as theoretically.
It is only recently that it has been possible to obtain reasonable agreement.

The calculation of Salomonson et al. is performed by means of the Green’s-
function method, that of Dzuba et al. by many-body perturbation theory and that of
Avgoustoglou by all-order pair-correlation method.

5.4 Field-Theoretical Green’s Function—Open-Shell Case*

In this section we shall indicate how the Green’s-function concept could be extended
to the open-shell case, when the model states are separated from the vacuum state.
It is recommended that Chap.6 is first studied, where the treatment is more akin to
the normal situation in MBPT, discussed in Sect. 2.3. We shall leave out most details
here and refer to the treatment of the covariant evolution operator and the Green’s
operator, which is quite equivalent. In the present section we shall in particular look
into the special approach due to Shabaev [226].

5.4.1 Definition of the Open-Shell Green’s Function

In the general open-shell case singularities of the Green’s function can appear also
for connected diagrams, as in the covariant evolution operator (see below). If we
consider a sequence of ladder diagrams of single-photon exchange, V , as discussed
in the next chapter (Fig. 6.5), considering only particle states (no-pair), the Feynman
amplitude for the Green’s function is the same as for the covariant evolution operator
(6.35) with no model-space states,

M = 1 + ΓQ(E0) V (E0) + ΓQ(E0) V (E0) ΓQ(E0) V (E0) + · · · , (5.81)

where

ΓQ(E0) = Q

E0 − H0 + iγ
= |rs〉〈rs|

E0 − εr − εs + iγ

is the reduced resolvent (2.65) and E0 is the energy parameter (of the Fourier trans-
form) of the Green’s function. The GF becomes singular, when there is an interme-
diate state |rs〉 of energy E0. Including the residuals after removing the singularities
(model-space contributions), leads as shown below (6.167) to a shift of the energy
parameter, E0 → E = E0 + ΔE ,

M = 1 + ΓQ(E) V (E) + ΓQ(E) V (E)ΓQ(E) V (E) + · · · . (5.82)

This is a Brillouin-Wigner perturbation expansion, and it can be summed to

M = 1

E − H + iγ
= |n〉〈n|

E − En + iγ
(5.83)

http://dx.doi.org/10.1007/978-3-319-15386-5_6
http://dx.doi.org/10.1007/978-3-319-15386-5_2
http://dx.doi.org/10.1007/978-3-319-15386-5_6
http://dx.doi.org/10.1007/978-3-319-15386-5_6
http://dx.doi.org/10.1007/978-3-319-15386-5_2
http://dx.doi.org/10.1007/978-3-319-15386-5_6
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with H = H0 + V (E) and |n〉 represents the exact eigenstates of the system with the
energy En . This agrees with the Fourier transform of the GF derived above (5.33),
demonstrating that the transform has poles at the exact energies. Consequently, this
holds also in the open-shell case.

The Green’s-function technique yields information only about the energy of the
system. This is in contrast to the Green’s-operator formalism, to be treated in the
next chapter, which can give information also about the wave function or state vector
of the system under study.

5.4.2 Two-Time Green’s Function of Shabaev

The use of the Green’s-function technique for atomic calculations has been further
developed by Shabaev et al. [226] under the name of the “two-time Green’s func-
tion” (which is equivalent to the equal-time approximation, discussed above). This
technique is also applicable to degenerate and quasi-degenerate energy states, and
we shall outline its principles here.

We return to the extended-model concept, discussed in Sect. 2.3. Given are a
number of eigenstates (target states) of the many-body Hamiltonian

H |Ψ α〉 = Eα|Ψ α〉 (α = 1 · · · d). (5.84)

The corresponding model states are in intermediate normalization the projections on
the model space

|Ψ α
0 〉 = P|Ψ α〉 (α = 1 · · · d). (5.85)

The model states are generally non-orthogonal, and following Shabaev we intro-
duce a “dual set” {|Ψ̃ β

0 〉}, defined by

|Ψ̃ β
0 〉〈Ψ α

0 | = |Ψ β
0 〉〈Ψ̃ α

0 | = δα,β . (5.86)

Then the standard projection operator becomes

P =
∑
β∈D

|Ψ̃ β
0 〉〈Ψ β

0 | =
∑
β∈D

|Ψ β
0 〉〈Ψ̃ β

0 | (5.87)

with the summation performed over the model space D. We also define a alternative
projection operator as

P =
∑
β∈D

|Ψ β
0 〉〈Ψ β

0 | P−1 =
∑

β

|Ψ̃ β
0 〉〈Ψ̃ β

0 |. (5.88)

Then
P|Ψ̃ α

0 〉 = |Ψ α
0 〉 and P−1|Ψ α

0 〉 = |Ψ̃ α
0 〉. (5.89)

http://dx.doi.org/10.1007/978-3-319-15386-5_5
http://dx.doi.org/10.1007/978-3-319-15386-5_2
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The Fourier transform of the retarded Green’s function is generally (5.33)

G+(E; x, x0) = i
∑

n

〈x|Ψn〉〈Ψn|x0〉
E − En + iγ

, (5.90)

wherewe let x, x0 represent the space coordinates of all outgoing/incoming particles.
It then follows that

∮
Γn

dE G+(E; x, x0) = −2π 〈x|Ψn〉〈Ψn|x0〉 (5.91)

and ∮
Γn

E dE G+(E; x, x0) = −2π 〈x|Ψn〉En〈Ψn|x0〉, (5.92)

where Γn is a closed contour, encircled in the positive direction and containing the
single target energy En and no other pole. (This holds if all poles are distinct. In the
case of degeneracy we can assume that an artificial interaction is introduced that lifts
the degeneracy, an interaction that finally is adiabatically switched off.) This yields
the relation [226, Eq. (44)]

En =
∮
Γn

E dE G+(E; x, x0)∮
Γn
dE G+(E; x, x0)

. (5.93)

Following Shabaev, we also introduce a “projected” Green’s function by

g+(E; x, x0) = i
∑
β∈D

〈x|Ψ β
0 〉〈Ψ β

0 |x0〉
E − Eβ + iγ

, (5.94)

which is the coordinate representation (see Appendix C.3) of the corresponding
operator

ĝ+(E) = i
∑
β∈D

|Ψ β
0 〉〈Ψ β

0 |
E − Eβ + iγ

= i
∑
β∈D

P|Ψ β〉〈Ψ β |P
E − Eβ + iγ

, (5.95)

operating only within the model space.
The effective Hamiltonian (2.53) is defined by

Heff |Ψ α
0 〉 = Eα|Ψ α

0 〉

and we can then express this operator as

Heff =
∑
β∈D

|Ψ β
0 〉Eβ〈Ψ̃ β

0 | = HeffP−1, (5.96)

http://dx.doi.org/10.1007/978-3-319-15386-5_2
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where
Heff =

∑
β∈D

= |Ψ β
0 〉Eβ〈Ψ β

0 |. (5.97)

From the definition (5.94) it follows that

Heff = − 1

2π

∮
E dE g+(E), (5.98)

where the integration contour contains the energies of all target states. As before, we
assume that the poles are distinct.

Expanding the effective Hamiltonian (5.96) order-by-order leads to

Heff = H(0)
eff + H(1)

eff − H(0)
effP (1) + · · · . (5.99)

The first-order operator Heff becomes

H(1)
eff = − 1

2π

∮
E dE g(0)

+ (E), (5.100)

where

g(0)
+ (E; x, x0) = i

∑
β∈D

〈x|Ψ β
0 〉〈Ψ β

0 |x0〉
E − Eβ + iγ

. (5.101)

The effective Hamiltonian above is non-hermitian, as in the MBPT treatment in
Sect. 2.3. It can also be given a hermitian form [226], but we shall maintain the non-
hermitian form here, since it makes the formalism simpler and the analogy with the
later treatments more transparent.

5.4.3 Single-Photon Exchange

We shall now apply the two-time Greens function above to the case of single-photon
exchange between the electrons, discussed above (Fig. 5.2). We shall evaluate the
contribution to the effective Hamiltonian in the general quasi-degenerate case. In the
equal-time approximation the (first-order) Green’s function (5.25) is given by

G(1)(x, x ′, x0, x ′
0) = Msp

(1)(x, x′; x0, x′
0) e

−it (ω3+ω4) eit0(ω1+ω2) (5.102)

and the first-order Feynman amplitude is given by (5.23)

http://dx.doi.org/10.1007/978-3-319-15386-5_2
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M(1)
sp (x, x′; x0, x′

0) = −i
∫∫

dω3

2π

dω4

2π

∫∫
dω1

2π

dω2

2π

× SF(ω3; x, x1) SF(ω4; x′, x2) I (ω1 − ω3; x2, x1)

× SF(ω1; x1, x0) SF(ω2; x2, x′
0) 2πΔ2γ(ω1 + ω2 − ω3 − ω4)

(5.103)

after integrations over z.
The Fourier transform of the Green’s function with respect to t and t0 is

G(1)(E ′, E) =
∫∫

dt

2π

dt0
2π

eiE
′t eiEt0 G(1)(x, x ′, x0, x ′

0)

= Δγ(E ′ − ω3 − ω4)Δγ(E − ω1 − ω2)M(1)
sp (x, x′; x0, x′

0)

(5.104)

or

G(1)(E ′, E) = −i
∫∫

dω3

2π

dω1

2π
× SF(ω3; x, x1) SF(E ′ − ω3; x′, x2) I (ω1 − ω3; x2, x1)

× SF(ω1; x1, x0) SF(E − ω1; x2, x′
0) 2πΔ2γ(E ′ − E) (5.105)

after integrations over ω2, ω4. With the expression for the electron propagator (4.12)
the matrix element of the Green’s function becomes

〈
rs

∣∣G(1)(E ′, E)
∣∣tu〉 =

〈
rs

∣∣∣
∫∫

dω3

2π

dω1

2π

× 1

ω3 − εr + iγu

1

E ′ − ω3 − εs + iγs
I (ω1 − ω3)

× 1

ω1 − εt + iγt

1

E − ω1 − εu + iγu

∣∣∣tu
〉
2πΔ2γ(E ′ − E).

(5.106)

With |rs〉 and |tu〉 in the model space, this is the same as the matrix element of
the projected Green’s function (5.94), considering only poles corresponding to the
relevant target states. We define the single-energy Fourier transform by

G(E) =
∫

dE ′

2π
G(E ′, E), (5.107)

http://dx.doi.org/10.1007/978-3-319-15386-5_4
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which yields

〈
rs

∣∣G(1)(E)
∣∣tu〉 = −i

〈
rs

∣∣∣
∫∫

dω3

2π

dω1

2π
I (ω1 − ω3)

× 1

E − εr − εs

[
1

ω3 − εr + iγr
+ 1

E − ω3 − εs + iγs

]

× 1

E − εt − εu

[
1

ω1 − εt + iγt
+ 1

E − ω1 − εu + iγu

] ∣∣∣tu
〉
.

(5.108)

We assume here that the initial and final states lie in the model space with all
single-particle states involved being particle states. The relevant poles are here

E = εt + εu = Ein and E = εr + εs = Eout.

The contribution of the first pole is

−i

2πi

〈
rs

∣∣∣
∫∫

dω3

2π

dω1

2π
I (ω1 − ω3)

× Ein

Ein − Eout

[
1

ω3 − εr + iγ
+ 1

Ein − ω3 − εs + iγ

]

×
[

1

ω1 − εt + iγ
+ 1

Ein − ω1 − εu + iγ

] ∣∣∣tu
〉
. (5.109)

The last bracket yields −2πiΔγ(ω1 − εt ), and integration over ω1 yields

i
〈
rs

∣∣∣
∫

ω3 I (εt − ω3)

× Ein

Ein − Eout

[
1

ω3 − εr + iγ
+ 1

Ein − ω3 − εs + iγ

] ∣∣∣tu
〉
. (5.110)

Similarly the other pole yields

i
〈
rs

∣∣∣
∫

dω1

2π
I (ω1 − εr )

× Eout

Ein − Eout

[
1

ω1 − εt + iγ
+ 1

Eout − ω1 − εu + iγ

] ∣∣∣tu
〉

(5.111)

The matrix element ofP (1) is similar with Ein and Eout in the numerator removed.
Thematrix element ofH(0)

effP (1) is obtained bymultiplying by Eout, and the first-order
contribution then becomes
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〈rs|H (1)
eff |tu〉 = i

〈
rs

∣∣∣
∫

dω3

2π
I (εt − ω3)

×
[

1

ω3 − εr + iγ
+ 1

Ein − ω3 − εs + iγ

] ∣∣∣tu
〉
. (5.112)

The photon interaction is in the Feynman gauge given by (4.46)

I (q; x1, x2) =
∫

2c2κ dκ f F (κ; x1, x2)

q2 − c2κ2 + iη
(5.113)

with f F given by (4.55). This gives

I (εt − ω3) =
∫

2c2κ dκ f F (κ; x1, x2)

(εt − ω3)2 − c2κ2 + iη
(5.114)

with the poles atω3 = εt ±(−iη). Integrating the relation (5.112) overω3 then yields

〈rs|H (1)
eff |tu〉 =

〈
rs

∣∣∣
∫

cdκ f F

[
1

εt − εr − (κ − iη)
+ 1

εu − εs − (κ − iη)

] ∣∣∣tu
〉
.

(5.115)

This agrees with the result obtained with the Green’s-operator method in the next
chapter (6.23). The latter result is more general, since it is valid also when the
initial and/or final states lie in the complementary Q space, in which case the result
contributes to the wave function or wave operator.

In contrast to the S-matrix formulation the Green’s-function method is applicable
also when the initial and final states have different energies, which makes it possible
to evaluate the effective Hamiltonian in the case of an extended model space and to
handle the quasi-degenerate situation.

The two-time Green’s function has in recent years been successfully applied
to numerous highly charged ionic systems by Shabaev, Artemyev et al. of the
St. Petersburg group for calculating two-photon radiative effects, fine structure sepa-
rations and g-factors of hydrogenic systems [6, 9, 252, 254]. Some numerical results
are given in Chap.7.

http://dx.doi.org/10.1007/978-3-319-15386-5_4
http://dx.doi.org/10.1007/978-3-319-15386-5_4
http://dx.doi.org/10.1007/978-3-319-15386-5_6
http://dx.doi.org/10.1007/978-3-319-15386-5_7


Chapter 6
The Covariant Evolution Operator
and the Green’s-Operator Method

The third method we shall consider for numerical QED calculations on bound states
is the Covariant-Evolution operator (CEO), developed during the last decade by the
Gothenburg group [130, 131, 132]. This procedure is based upon the non-relativistic
time-evolution operator, discussed in Chap.3, but made relativistically covariant in
order to be applicable in relativistic calculations. This method has the advantage
over the two methods discussed previously, the S-matrix procedure and the Green’s-
function procedure, that it can be used perturbatively, and the perturbations can be
included in the wave function—not only added to the energy. It then forms a con-
venient basis for a covariant relativistic many-body perturbation procedure, where
electron correlation and quantum electrodynamics are systematically combined. For
two-electron systems this is fully compatible with the Bethe–Salpeter equation. This
question will be the main topic for the rest of the book.

6.1 Definition of the Covariant Evolution Operator

In the standard time-evolution operator (3.15), U (t, t0), time is assumed to evolve
only forwards in the positive direction, which implies that t ≥ t0. Internally, time
may run also backwards in the negative direction, which in the Feynman/Stückelberg
interpretation [69, 234] represents the propagation of hole or antiparticle states with
negative energy. However, all internal times (ti ) are limited to the interval ti ∈ [t, t0],
and therefore this operator is not covariant.

In the S-matrix (4.2) the initial and final times are t0 = −∞ and t = +∞,
respectively,which implies that the internal integrations do run over all times,making
the concept Lorentz covariant.1

In order to make the time-evolution operator generally applicable for relativistic
calculations, all internal integrations have to run over all times. This can be achieved

1See footnote in the Introduction.
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Fig. 6.1 Comparison between the standard evolution operator, the Green’s function and the covari-
ant evolution operator for single-photon exchange in the equal-time approximation

by inserting electron propagators on the free lines and letting all vertices run over all
times. This leads to what is referred to as the covariant evolution operator (CEO),
introduced by Lindgren, Salomonson and coworkers in the early 2000s [120, 123,
130, 131, 132].

The CEO is, as well as the S-matrix and the Green’s function, a field-theoretical
concept, and the perturbative expansions of these objects are quite similar. Since the
integrations are performed over all times, these objects are normally represented by
Feynman diagrams instead of time-ordered Goldstone diagrams, discussed earlier
(Sect. 2.4).

The evolution operator contains generally (quasi)singularities, when it is unlinked
or when an intermediate state lies in the model space. Later in this chapter we shall
see how these singularities can be removed for the CEO, leading to what we refer to
as the Green’s operator, since it is quite analogous to the Green’s function, which is
also free of singularities.

As mentioned, the covariant perturbation expansion we shall formulate here leads
for two-particle systems ultimately to the full Bethe–Salpeter (BS) equation [131].
In principle, the BS equation has separate time variables for the individual particles,
which makes it manifestly covariant. This is, in principle, also the case for the CEO
and the Green’s operator as well as for the Green’s function. In most applications,
however, times are equalized, so that the objects depend only on a single—initial
and final—time, which is known as the equal-time approximation. This makes the
procedure in line with the standard quantum-mechanical picture, where the wave
function has a single time variable,Ψ (t, x1, x2 · · · ), but the covariance is then partly
lost. (This issue was discussed at some length in the Introduction.) Here, we shall
mainly work with this approximation in order to be able to combine the procedure
with the standard many-body perturbation theory.

As a first illustration we consider the single-photon exchange with the standard
evolution operator (Fig. 6.1, left), the Green’s function (middle) and the CEO (right).
In the standard evolution operator only particle states (positive-energy states) are
involved in the lines in and out. Therefore, this operator is NOT Lorentz covariant.
In the Green’s function there are electron propagators on the free lines, involving
particle as well as hole states (positive- and negative-energy states), and the internal

http://dx.doi.org/10.1007/978-3-319-15386-5_2
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times can flow in both directions between −∞ and +∞, which makes the concept
covariant. In the CEO electron propagators are inserted as well as electron-field
operators on the free lines of the standard evolution operator with integration over
the space coordinates.We can then see theCEOas theGreen’s functionwith electron-
field operators attached to the free ends. This makes the CEO into an operator, while
the Green’s function is a function.

• We generally define the Covariant Evolution Operator (CEO) in the single-
particle case by the one-body operator2

U 1
Cov(t, t0) =

∫∫
d3x d3x0 ψ̂†(x)

〈
0H

∣∣∣T [
ψ̂H(x)ψ̂†

H(x0)
]∣∣∣0H

〉
ψ̂(x0). (6.1)

We use here the same vacuum expectation in the Heisenberg representation as
in the definition of the Green’s function (5.8) with two additional electron-field
operators, ψ̂†(x) and ψ̂(x0), with space integrations over x, x0. In contrast to the
Green’s function, we shall assume here that the number of photons does not need to
be conserved.When this number is conserved, the vacuum expectation is a number
and represents the corresponding Green’s function (the norm is here unity). The
space integration makes the electron-field operators attached to this function, as
illustrated in Fig. 6.2, left (c.f. Fig. 5.1, left).

• In analogy with the expression (5.18) for the Green’s function, we can also express
the one-body covariant evolution operator as

U1
Cov(t, t0) =

∫∫
d3x d3x0 ψ̂†(x)〈0|T [

ψ̂(x) U1(∞,−∞) ψ̂†(x0)
]|0〉ψ̂(x0). (6.2)

• In expanding the S-matrix (see 5.16), we obtain

U1
Cov(t, t0) =

∞∑
n=0

1

n!
∫∫

d3x d3x0
(−i

c

)n
∫

d4x1 · · ·
∫

d4xn

× ψ̂†(x)
〈
0
∣∣∣T

[
ψ̂(x)H(x1) · · ·H(xn) ψ̂†(x0)

]∣∣∣0
〉
ψ̂(x0) e

−γ(|t1|+|t2|··· ),
(6.3)

where the operators are connected to form a one-body operator.
• Similarly, the two-particle CEO becomes—in analogy with the corresponding
Green’s function (5.21) and Fig. 5.1 (right)—

2An “n-body operator” is an operator with n pairs of creation/absorption operators (for particles),
while an “m-particle” function or operator is an object of m particles outside our vacuum. In
principle, n can take any value n ≤ m, although we shall normally assume that n = m.

http://dx.doi.org/10.1007/978-3-319-15386-5_5
http://dx.doi.org/10.1007/978-3-319-15386-5_5
http://dx.doi.org/10.1007/978-3-319-15386-5_5
http://dx.doi.org/10.1007/978-3-319-15386-5_5
http://dx.doi.org/10.1007/978-3-319-15386-5_5
http://dx.doi.org/10.1007/978-3-319-15386-5_5
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Fig. 6.2 One- and
two-particle covariant
evolution operators

U2
Cov(t, t ′; t0, t ′0) =

∞∑
n=0

1

n!
∫∫∫∫

d3x d3x′d3x0 d
3x′

0

(−i

c

)n
∫

d4x1 · · ·
∫

d4xn

× ψ̂†(x)ψ̂†(x ′)
〈
0
∣∣∣T

[
ψ̂(x)ψ̂(x ′)H(x1) · · ·H(xn) ψ̂†(x ′

0)ψ̂
†(x0)

]∣∣∣0
〉

× ψ̂(x ′
0)ψ̂(x0) e

−γ(|t1|+|t2|··· ), (6.4)

connected to form a two-body operator.

We see here that in the graphical representation each free end has an electron prop-
agator with an electron-field operator attached to it (c.f. Fig. 5.1).

6.2 Lowest-Order Single-Particle Covariant Evolution
Operator

We consider now the single-particle covariant evolution operator (6.3) in lowest
order, represented by the first diagram in Fig. 6.3. It is given by the expression

U1
Cov(t, t0) =

(−i

c

)2 ∫∫
d3x d3x0ψ̂

†(x)ψ̂(x)

∫∫
d4x1d

4x2

× H(x1)H(x2)
〈
0
∣∣∣T

[
ψ̂(x)ψ̂(x ′)H(x1) · · ·H(xn) ψ̂†(x ′

0)ψ̂
†(x0)

]∣∣∣0
〉

× ψ̂†(x0)ψ̂(x0) e
−γ(|t1|+|t2|), (6.5)

connected to form a one-body operator (cf., Eq. 4.39). The factor of 1/2 is eliminated
by considering only one of the permutations of the vertices 1 and 2. We assume that
we have a perturbation V (x1, x2) of the self-energy type with no external lines,
defined by

Fig. 6.3 First-order
single-particle CEO. In the
diagram to the right it is
assumed that the initial time
t0 → −∞

http://dx.doi.org/10.1007/978-3-319-15386-5_5
http://dx.doi.org/10.1007/978-3-319-15386-5_4


6.2 Lowest-Order Single-Particle Covariant Evolution Operator 121

H(x1)H(x2) = ψ̂†(x1) iV (x1, x2)ψ̂(x2). (6.6)

This gives

U1
Cov(t, t0) = 1

c2

∫∫
d3x d3x0 ψ̂†(x)

×
{ ∫∫

d4x1d
4x2 iSF(x, x2) (−i)V (x2, x1)iSF(x1, x0) e

−γ(|t1|+|t2|)
}

ψ̂(x0).

(6.7)

The expression in the curly brackets is the corresponding Green’s function (5.19)
(the denominator does not contribute in first- order). The CEO contains additional
electron creation/annihilation operators and integration over the space coordinates
at the initial and final times.

When the initial state is unperturbed, it implies with the adiabatic damping
(Sect. 3.3) that the initial time t0 → −∞. From the definition of the electron propa-
gator (4.8) it can be shown that, as t0 → −∞,

∫
d3x0 iSF(x, x0) ψ̂(x0) ⇒ ψ̂(x), (6.8)

when the incoming state is a particle state. Therefore, we can leave out the propagator
on the incoming line, as illustrated in the second diagram in Fig. 6.3, corresponding
to the expression

U 1
Cov(t,−∞) = 1

c2

∫
d3x ψ̂†(x)

×
{ ∫∫

d4x1d
4x2 iSF(x, x2) (−i)V (x2, x1); e−γ(|t1|+|t2|)

}
ψ̂(x1). (6.9)

The matrix elements become

〈r |U 1
Cov(t,−∞)|a〉 = eitεr

∫∫
dt1dt2

〈
r
∣∣∣iSF(x, x2) (−i)V (x2, x1)

∣∣∣a
〉

× e−it1εa e−γ(|t1|+|t2|)

= eit (εr −ω1)

∫∫
dt1dt2

∫∫
dω

2π

dω1

2π

×
〈
r
∣∣∣iSF(ω1, x, x2) (−i)V (ω, x2, x1)

∣∣∣a
〉

× e−it1(εa−ω)e−it2(ω−ω1) e−γ(|t1|+|t2|). (6.10)

The electron propagator has the time dependence e−iω1(t−t2) (4.10) and the perturba-
tion is assumed to have a similar dependence, e−iω(t2−t1). Integration over the times
leads to 2πΔγ(ω − ω1) and 2πΔγ(εa − ω) (see Appendix A.3), and the integrations

http://dx.doi.org/10.1007/978-3-319-15386-5_5
http://dx.doi.org/10.1007/978-3-319-15386-5_3
http://dx.doi.org/10.1007/978-3-319-15386-5_4
http://dx.doi.org/10.1007/978-3-319-15386-5_4
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over the omegas in the limit γ → 0 yield ω = ω1 = εa . The space integrations are
incorporated in the matrix element and d4x = c d3x dt .

The result can then be expressed

U 1
Cov(t,−∞)|a〉 = e−it (εa−εr )

∣∣∣r
〉〈

r
∣∣∣iSF(εa) (−i)V (εa)

∣∣∣a
〉
, (6.11)

leaving out the space coordinates. εa is the initial energy that we shall denote E0,
and εr can be replaced by the zeroth-order Hamiltonian H0, operating on the final
state |r〉, yielding

U 1
Cov(t,−∞)|a〉 = e−it (E0−H0)|r〉〈r |M1(E0)|a〉. (6.12)

M1(E0) is the Feynman amplitude for the first-order single-particle CEO (c.f. 5.23)

〈r |M1|a〉 =
〈
r
∣∣∣iSF(E0) (−i)V (E0)

∣∣∣a
〉
. (6.13)

This is consistent with the S-matrix result (4.67) and in agreement with the Feynman
rules given in Appendix H.

6.3 Single-Photon Exchange in the
Covariant-Evolution-Operator Formalism

We shall now consider the exchange of a single photon between the electrons in the
covariant-evolution-operator formalism.We consider here a general covariant gauge
(see Sect. 4.3), like the Feynman gauge, and we shall later consider the non-covariant
Coulomb gauge.

The CEO for the exchange of a single photon, when the initial times t0, t ′
0 → −∞

is represented by diagrams in Fig. 6.4. In analogy with the single-particle case (6.9)
it is given by the expression

Fig. 6.4 The evolution-operator diagram for single-photon exchange

http://dx.doi.org/10.1007/978-3-319-15386-5_5
http://dx.doi.org/10.1007/978-3-319-15386-5_4
http://dx.doi.org/10.1007/978-3-319-15386-5_4
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Usp(t, t ′; −∞) =
∫∫

d3x d3x′ ψ̂†(x)ψ̂†(x ′)

×
{
1

2

∫∫
d4x1 d

4x2 iSF(x, x1)iSF(x ′, x2)

(−i)e2DF(x2, x1) e
−γ(|t1|+|t2|)

}
ψ̂(x2)ψ̂(x1), (6.14)

where DF is given by (4.19). Considering only one permutation of the vertices, the
factor of 1/2 is, as before, eliminated. This leads to the matrix element

〈rs|Usp(t, t ′; −∞)|ab〉 = ei(tεr +t ′εs )

∫∫
dt1dt2

〈
rs

∣∣iSF(x, x1)

× iSF(x ′, x2) (−i)e2c2DF(x2, x1)
∣∣ab

〉
× e−i(t1εa+t2εb) e−γ(|t1|+|t2|). (6.15)

Introducing the Fourier transforms SF(ω1; x, x1) och SF(ω2; x′, x2) and apply-
ing the equal-time approximation (t = t ′), the initial time dependence becomes
e−it (ω1+ω2−εr −εs ). Since in the limit γ → 0 ω1 + ω2 = εa + εb = E0 is the initial
energy and εr + εs is the final energy, we have in this limit

〈rs|Usp(t,−∞)|ab〉 = e−it (E0−εr −εs ) 〈rs|Msp|ab〉 (6.16)

or
Usp(t,−∞)|ab〉 = e−it (E0−H0) |rs〉〈rs|Msp|ab〉, (6.17)

where Msp represents the Feynman amplitude in analogy with the single-particle
case (6.12). This yields

〈rs|Msp|ab〉 =
〈
rs

∣∣∣
∫∫

dω1

2π

dω2

2π

∫
dz

2π
iSF(ω1; x, x1) iSF(ω2; x′, x2)

× (−i)I (z; x2, x1) 2πΔγ(εa − z − ω1) 2πΔγ(εb + z − ω2)

∣∣∣ab
〉
, (6.18)

where I represents the single-photon interaction (4.44). After integration over ω1,ω2

this becomes in the limit γ → 0

〈rs|Msp|ab〉 =
〈
rs

∣∣∣
∫

dz

2π
iSF(εa − z) iSF(εb + z)(−i)I (z)

∣∣∣ab
〉
, (6.19)

again leaving out the space coordinates.
This demonstrates that the Feynman amplitude for the evolution operator is the

same as for the S-matrix and for the Green’s function and can be evaluated by the
same rules, given in Appendix H.

http://dx.doi.org/10.1007/978-3-319-15386-5_4
http://dx.doi.org/10.1007/978-3-319-15386-5_4
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Inserting the expressions for the propagator (4.10) and the interaction (4.46), then
yields

〈rs|Msp|ab〉
=

〈
rs

∣∣∣ i
∫

dz

2π

1

εa − z − εr + iγr

1

εb + z − εs + iγs

∫
2c2κ dκ f (κ)

z2 − c2κ2 + iη

∣∣∣ab
〉
.

(6.20)

With the identity (4.75), this can be expressed

〈rs|Msp|ab〉 = 1

E0 − εr − εs
〈rs|Vsp|ab〉 (6.21)

or

Msp(x, x′)|ab〉 = 1

E0 − H0
Vsp|ab〉, (6.22)

where Vsp is the potential for single-photon exchange (4.77),

〈rs|Vsp|ab〉
=

〈
rs

∣∣∣
∫ ∞
0

c dκ f (κ)
[ 1

εa − εr − (cκ − iγ)r
+ 1

εb − εs − (cκ − iγ)s

]∣∣∣ab
〉
.

(6.23)

The evolution operator (6.17) then becomes

Usp(t,−∞)
∣∣ab

〉 = e−it (E0−H0)

E0 − H0
Vsp|ab〉. (6.24)

The results above hold in any covariant gauge, like the Feynman gauge. They
do hold also for the transverse part in the Coulomb gauge by using the transverse
part of the f function (4.60).

The result (6.23) is identical to the Green’s-function result (5.115), when the final
state, |rs〉, lies in the model space. In the covariant-evolution-operator case the
final state can also lie in the complementary Q space, in which case the evolution
operator contributes to the wave function/operator.

The covariant-evolution-operator result (6.23) can be represented bymeans of two
time-ordered Feynman diagrams, as shown in Fig. 6.4. We then see formally that the
denominators are given essentially by the Goldstone rules of standard many-body
perturbation theory [66, Sect. 12.4], i.e., the unperturbed energy minus the energies
of the orbital lines cut by a horizontal line, in the present case including also −cκ

http://dx.doi.org/10.1007/978-3-319-15386-5_4
http://dx.doi.org/10.1007/978-3-319-15386-5_4
http://dx.doi.org/10.1007/978-3-319-15386-5_4
http://dx.doi.org/10.1007/978-3-319-15386-5_4
http://dx.doi.org/10.1007/978-3-319-15386-5_4
http://dx.doi.org/10.1007/978-3-319-15386-5_5
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cutting the photon line3, provided that we interpret the photon exchange as composed
of TWO perturbations (see further Sect. 6.7 and Chap.9).

When the initial and final states have the same energy, the potential (6.23) above
becomes

〈cd|Vsp|ab〉 =
〈
cd

∣∣∣
∫ ∞

0

2κ dκ f (κ)

q2 − κ2 + iγ

∣∣∣ab
〉
, (6.25)

where cq = εa − εc = εd − εb, which is the energy-conservative S-matrix result
(4.46 and 4.52).

Wehave seenhere that the covariant evolutionoperator for single-photon exchange
has the time dependence e−it (E0−H0), which differs from that of the non-relativistic
evolution operator (3.20). We shall return to this question at the end of this chapter.

6.4 Ladder Diagrams

By generalizing the treatment in the two previous sections, we can construct the
covariant evolution operator for a “ladder diagram”, i.e., a sequence of interactions
that are reducible in the sense that it can be separated into legitimate CEO diagrams.
We consider first a second-order one-body ladder, illustrated to the left in Fig. 6.5.
In analogy with (6.9) we have

U (t;−∞) = 1

c4

∫
d3x ψ̂†(x)

∫∫∫∫
d4x1 d

4x2 d
4x3 d

4x4 iSF(x, x4) (−i) V (x4, x3)

× iSF(x3, x2) (−i) V (x2, x1) e
−γ(|t1|+|t2|+|t3|+|t4|) ψ̂(x1), (6.26)

where V is the potential interaction (6.6), previously used. Fourier transforming the
operators and integrating of the times and the energy parameters, we find that all
parameters become equal to the initial energy εa , and

〈r |U (t;−∞)|a〉 = e−it (εa−εr )〈r |M|a〉, (6.27)

where M is the Feynman amplitude

〈r |M|a〉 = 〈
r
∣∣iSF(εa)(−i)V (εa)iSF(εa)(−i)V (εa)

∣∣a〉
. (6.28)

All space integrations are included in the matrix element. The electron propagator
can be expressed (4.14)

3It should be observed that a Goldstone diagram is generally distinct from a “time-ordered Feynman
diagram”, as is further analyzed in Appendix I.

http://dx.doi.org/10.1007/978-3-319-15386-5_9
http://dx.doi.org/10.1007/978-3-319-15386-5_4
http://dx.doi.org/10.1007/978-3-319-15386-5_4
http://dx.doi.org/10.1007/978-3-319-15386-5_3
http://dx.doi.org/10.1007/978-3-319-15386-5_4
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SF(εa) = |i〉〈i |
εa − εi

= 1

εa − ĥD

, (6.29)

which is identical to resolvent operator (2.64).
We assume now that we operate on a general model space that might contain

several energies. Operating on a part with energy E , with projection operator PE , we
have

U (t;−∞)PE = e−it (E−H0)MPE (6.30)

with

MPE = iSF(E)(−i)V (E)iSF(E)(−i)V (E)PE = Γ (E)V (E)Γ (E)V (E)PE (6.31)

and

SF(E) = Γ (E) = 1

E − H0
. (6.32)

In a similar way one finds that the two-photon ladder to the right in Fig. 6.5 yields

MPE = Γ (E) Vsp(E) Γ (E) Vsp(E)PE , (6.33)

where the potential is given by (6.23) and illustrated in Fig. 6.6

〈rs|Vsp(E)|tu〉
=

〈
rs

∣∣∣
∫ ∞

0
c dκ f (κ)

[ 1

E − εr − εu − (cκ − iγ)r
+ 1

E − εt − εs − (cκ − iγ)s

]∣∣∣tu
〉
.

(6.34)

This potential depends on the energy (E) of the initial state.
The procedure can be generalized to a sequence of arbitrary interactions

MPE = [
1 + Γ (E) V (E) + Γ (E) V (E) Γ (E) V (E) + · · · ]PE , (6.35)

and the corresponding part of the evolution operator is according to (6.17)

U (t,−∞) PE = e−it (E−H0)
[
1 + Γ (E) V (E) + Γ (E) V (E) Γ (E) V (E) + · · · ]PE . (6.36)

Fig. 6.5 Second-order
ladder diagrams (6.33)

http://dx.doi.org/10.1007/978-3-319-15386-5_2
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Fig. 6.6 The single-photon
exchange as a part of a
ladder diagram. This
depends on the energy of the
initial state

This evolution operator can be singular due to intermediate and/or final model-space
states, and the singularities can be eliminated by means of counterterms, leading to
model-space contributions, MSC, to be discussed below. The evolution operator
without any model-space states becomes4

U0(t, −∞) PE = e−it (E−H0)
[
1 + ΓQ(E) V (E) + ΓQ(E) V (E) ΓQ(E) V (E) + · · · ]PE , (6.37)

where ΓQ(E) = QΓ (E) is the reduced resolvent (2.65).
It should be observed that

• in the equal-time approximation the interactions and the resolvents as well as
the time factor of the ladder without MSC all depend on the energy of the initial,
unperturbed state.

The MSC will affect the energy parameter of the interaction as well as that of the
time factor, as will be demonstrated below.

We have seen that the Covariant Evolution Operator can be evaluated by means
of the standard Feynman rules, like the S-matrix and the Green’s function (see
Sect. 4.7 and Appendix H). We also see the close analogy with the standard MBPT
in Chap.2 (see also [124]). This is the basis for employing the CEO in combining
MBPT and QED, to be discussed in the following chapters.

6.5 Multi-Photon Exchange

6.5.1 General

We shall now briefly consider the general case of multi-photon exchange. We can
describe this by means of a general many-body potential, which we can separate into
one-, two-,... body parts,

V = V1 + V2 + V3 + · · · (6.38)

4In the covariant formalism we need a time dependence also on the zeroth-order component (see
6.96), in contrast to the standard evolution operator (3.21).

http://dx.doi.org/10.1007/978-3-319-15386-5_2
http://dx.doi.org/10.1007/978-3-319-15386-5_4
http://dx.doi.org/10.1007/978-3-319-15386-5_2
http://dx.doi.org/10.1007/978-3-319-15386-5_3
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Fig. 6.7 Graphical representation of the one-body part of the effective potential (6.38), containing
the one-body potential in Fig. 6.8 as well as irreducible one-body potential diagrams, including
radiative effects

and which contains all irreducible interactions, defined in Sect. 2.6.1. By iterating
such a potential, also all reducible interactions will be generated, making the expan-
sion complete. In Figs. 6.7 and 6.9 we illustrate the one- and two-body parts of
this potential, including radiative effects—vacuum polarization, self-energy, vertex
correction (see Sect. 2.6)—which, of course, have to be properly renormalized (see
Chap.12).

The one-body potential contains an effective-potential interaction (Fig. 6.8) in
analogy to that in ordinary MBPT (2.73). In the effective potential here, however,
the internal lines can be hole lines as well as particle lines. This implies that the sec-
ond diagram on the r.h.s. in Fig. 6.8 contains the direct Hartree–Fock potential as well
as the radiative effect of vacuum polarization and the last diagram the exchange part
of the HF potential as well as the electron self-energy (both radiative effects properly
renormalized). All heavy lines here represent orbitals in the external (nuclear) poten-
tial, which implies that the vacuum polarization contains the Uehling potential [245]
(see Sect. 4.6) as well as the Wichmann–Kroll [249] correction, discussed earlier in
Sect. 4.6.

Fig. 6.8 Graphical representation of the “extended” effective potential interaction. This is analo-
gous to the effective potential in Fig. 2.3, but the internal lines represent here all orbitals (particles
as well as holes). This implies that the last two diagrams include the (renormalized) vacuum polar-
ization and self-energy

http://dx.doi.org/10.1007/978-3-319-15386-5_2
http://dx.doi.org/10.1007/978-3-319-15386-5_2
http://dx.doi.org/10.1007/978-3-319-15386-5_12
http://dx.doi.org/10.1007/978-3-319-15386-5_2
http://dx.doi.org/10.1007/978-3-319-15386-5_4
http://dx.doi.org/10.1007/978-3-319-15386-5_4
http://dx.doi.org/10.1007/978-3-319-15386-5_2


6.5 Multi-Photon Exchange 129

Fig. 6.9 The two-body part of the effective potential (6.38) contains all irreducible two-body
potential diagrams

6.5.2 Irreducible Two-Photon Exchange*

We consider next the general two-photon exchange, illustrated in Fig. 6.10, still
assuming the equal-time approximation and unperturbed initial state.

6.5.2.1 Uncrossing Photons

Generalizing the result for single-photon exchange, we find that the kernel of the
first (ladder)diagram becomes (see the rules in Sect. 4.7 and Appendix H)

iSF(x, x3) iSF(x ′, x4) (−i)e2DF(x4, x3) iSF(x3, x1)

iSF(x4, x2) (−i)e2DF(x2, x1). (6.39)

This leads to the Feynman amplitude in analogy with (6.18)

Msp(x, x′; x0, x′
0) =

∫∫∫∫
dω1

2π

dω2

2π

dω3

2π

dω4

2π

∫∫
dz

2π

dz′
2π

iSF(ω3; x, x3)

× iSF(ω4; x′, x4) (−i)I (z′; x4, x3) iSF(ω1; x3, x1) iSF(ω2; x4, x2)

× (−i)I (z; x2, x1) 2πΔγ(εa − ω1 − z) 2πΔγ(εb − ω2 + z)

× 2πΔγ(ω1 − z′ − ω3) 2πΔγ(ω2 + z′ − ω4). (6.40)

Integration over ω1, ω2 leads to

http://dx.doi.org/10.1007/978-3-319-15386-5_4
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Fig. 6.10 Covariant-
evolution-operator diagrams
for two-photon ladder and
“cross”

Msp(x, x′) =
∫∫

dω3

2π

dω4

2π

∫∫
dz

2π

dz′

2π
iSF(ω3; x, x3) iSF(ω4; x′, x4)

× (−i)I (z′; x4, x3) iSF(εa − z; x3, x1) iSF(εb + z; x4, x2)

× (−i)I (z; x2, x1) 2πΔ2γ(εa − z − z′ − ω3) 2πΔ2γ(εb + z + z′ − ω4)

(6.41)

and over ω3, ω4

Msp(x, x′) =
∫∫

dz

2π

dz′

2π
iSF(εa − z − z′; x, x3) iSF(εb + z + z′; x′, x4)

× (−i)I (z′; x4, x3) iSF(εa − z; x3, x1) iSF(εb + z; x4, x2)

× (−i)I (z; x2, x1). (6.42)

Integration over z′ leads to the denominators

1

E − εr − εs

[ 1

εa − εr − z − (cκ′ − iγ)r
+ 1

εb − εs + z − (cκ′ − iγ)s

]
,

and the remaining part of the integrand is

1

E − εt − εu

[ 1

εa − εt − z + iγt
+ 1

εb + z + iγu

] 1

z2 − c2κ2 + iη
.

6.5.2.2 Crossing Photons

For the crossed-photon exchange in Fig. 6.10 (right) the corresponding result is

Msp(x, x′; x0, x′
0) =

∫∫∫∫
dω1

2π

dω2

2π

dω3

2π

dω4

2π

∫∫
dz

2π

dz′
2π

iSF(ω3; x, x4)

× iSF(ω4; x′, x2) (−i)I (z′; x4, x3) iSF(ω1; x4, x1) iSF(ω2; x2, x3)

× (−i)I (z; x2, x1) 2πΔγ(εa − ω1 − z) 2πΔγ(εb − ω2 − z′)
× 2πΔγ(ω1 − z′ − ω3) 2πΔγ(ω2 + z − ω4). (6.43)
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Integration over the omegas yields

Msp(x, x′) =
∫∫

dz

2π

dz′

2π
iSF(εa + z′ − z; x, x4) iSF(εb + z − z′; x′, x2)

× (−i)I (z′; x4, x3) iSF(εa − z; x4, x1)

× iSF(εb − z; x2, x3) (−i)I (z; x2, x1). (6.44)

Integration over z′ leads to the denominators

1

E − εr − εs

[ 1

εa − εr − z − (cκ′ − iγ)r
+ 1

εb − εs + z − (cκ′ − iγ)s

]
,

and the remaining part of the integrand is

1

εa − εt − z + iγt

1

εb − εu − z + iγu

1

z2 − c2κ2 + iη
.

To evaluate the integrals above is quite complicated, but they are considered in
detail in [130, Appendix A2] and in the Ph.D. thesis of Björn Åsén [10]. The two-
photon effects have been evaluated for heliumlike ions, and some results are shown
in the following chapter.

6.5.3 Potential with Radiative Parts

Two-photon potentials with self-energy and vacuum-polarization insertions can also
be evaluated in the Green’s-operator formalism, as discussed in [130]. We shall not
consider this any further here, but return to these effects in connection with the
many-body-QED procedure in Chap.8.

6.6 Relativistic Form of the Gell-Mann–Low Theorem

We have in Chap.3 considered the non-relativistic form of the Gell-Mann–Low
theorem, and we now extend this to the relativistic formalism. This theorem plays a
fundamental role in the formalism we are developing here.

We start with
• a conjecture that the time evolution of the relativistic state vector is governed by

the CEO in the equal-time approximation (in the interaction picture), in analogy
with the situation in the non-relativistic case (3.15) (c.f. [22, Sect. 6.4]),

∣∣χα
Rel

(t)
〉 ∝ UCov(t, t0)

∣∣χα
Rel

(t0)
〉
. (6.45)

http://dx.doi.org/10.1007/978-3-319-15386-5_8
http://dx.doi.org/10.1007/978-3-319-15386-5_3
http://dx.doi.org/10.1007/978-3-319-15386-5_3
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(The evolution operator does not conserve the intermediate normalization.) We
shall later demonstrate that this conjecture is consistent with the standard quantum-
mechanical picture (6.170) (see also 10.13).
It can now be shown as in the non-relativistic case in Sect. 3.4 that the conjecture
above leads to a

• relativistic form of the Gell-Mann–Low theorem for a general quasi-degenerate
model space5

∣∣χα
Rel

(0)
〉 = ∣∣Ψ α

Rel

〉 = lim
γ→0

UCov(0,−∞)
∣∣Φα

Rel

〉
〈Ψ0

α
Rel

| UCov(0,−∞) |Φα
Rel

〉 , (6.46)

which is quite analogous to the non-relativistic theorem (3.55). Here, |Φα
Rel

〉 is, as
before, the parent state (3.41), i.e., the limit of the corresponding target state, as
the perturbation is adiabatically turned off,

∣∣Φα
Rel

〉 = Nα lim
t→−∞

∣∣χα
Rel

(t)
〉
. (6.47)

(Nα is a normalization constant) and |Ψ0
α
Rel

〉 = P|Ψ α
Rel

〉 is the (intermediately
normalized) model state.

• The state vector |Ψ α
Rel

〉 satisfies a relativistic eigenvalue equation, analogous to
the non-relativistic (Schrödinger-like) Gell-Mann–Low equation (3.44),

(
H0 + VF

) ∣∣Ψ α
Rel

〉 = Eα
∣∣Ψ α

Rel

〉
, (6.48)

where VF is the perturbation, used in generating the evolution operator (see 6.52).

In proving the relativistic form of the GML theorem, we observe that the covariant
evolution operator differs from the corresponding non-relativistic operator mainly by
the addition of pairs of electron-field operators. It then follows that the commutator
of H0 with the covariant operator is the same as with the nonrelativistic operator,
which implies that the proof in Sect. 3.4 can be used also in the covariant case.

A condition for the GML theorem to hold is, as in the non-relativistic case, that the
perturbation is time-independent in the Schrödinger picture (apart from damping),
which is the case here.

6.7 Field-Theoretical Many-Body Hamiltonian
in the Photonic Fock Space

In the unified procedure we are developing here we shall mainly apply the Coulomb
gauge, which is most appropriate for the combined MBPT-QED calculations (see,
in particular, Chap. 9). (That it is quite possible to use the Coulomb gauge in QED

5As pointed out before, the numerator and denominator might here be separately singular in the
limit, and only the ratio is regular.

http://dx.doi.org/10.1007/978-3-319-15386-5_10
http://dx.doi.org/10.1007/978-3-319-15386-5_3
http://dx.doi.org/10.1007/978-3-319-15386-5_3
http://dx.doi.org/10.1007/978-3-319-15386-5_3
http://dx.doi.org/10.1007/978-3-319-15386-5_3
http://dx.doi.org/10.1007/978-3-319-15386-5_3
http://dx.doi.org/10.1007/978-3-319-15386-5_9
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calculation has been demonstrated among others by Adkins [1], Rosenberg [203]
and others.) In this gauge we separate the interaction between the electrons in the
instantaneous Coulomb interaction and the transverse interaction, with the Coulomb
part being (2.109)

VC =
N∑

i< j

e2

4πε0 ri j
. (6.49)

The exchange of a virtual transverse photon between the electrons is represented by
TWO perturbations of the one-body perturbation

vT(t) =
∫

d3x H(t, x) (6.50)

with the perturbation density given by (4.4),

H(x) = H(t, x) = −ψ̂†(x) ecαμ Aμ(x) ψ̂(x) (6.51)

with Aμ being the quantized, transverse radiation field (see Appendix F.2). The total
perturbation is then

VF = VC + vT. (6.52)

The perturbation (6.51) represents the emission/absorption of a photon. Therefore,
with this perturbation the GML equation works in a photonic Fock space6, where
the number of photons is not preserved. This perturbation is time-independent in the
Schrödinger picture, as required for the GML relation (see B.16 and G.2). (This is
clearly demonstrated also by the form of the interaction given in Sect. 8.1.2.)

The model many-body Hamiltonian we shall apply is primarily a sum of Dirac
single-electron Hamiltonians in an external (nuclear) field (Furry picture) (2.108)

hD = cα · p̂ + βmc2 + vext. (6.53)

(As before, we may include an optional potential, u, in the model Hamiltonian
(2.48)—and subtract the same quantity in the perturbation—in order to improve
the convergence rate for many-electron systems.)

However, since the number of photons is no longer constant in the space we work
in, we have to include in the model Hamiltonian also the radiation field, HRad (see
Appendices G.12 and B.20), yielding

H0 =
∑

hD + HRad. (6.54)

6Also the Fock space is a form of Hilbert space, and therefore we shall refer to the Hilbert space
with a constant number of photons as the restricted (Hilbert) space and the space with a variable
number of photons as the (extended) photonic Fock space (see Appendix A.2).

http://dx.doi.org/10.1007/978-3-319-15386-5_2
http://dx.doi.org/10.1007/978-3-319-15386-5_4
http://dx.doi.org/10.1007/978-3-319-15386-5_8
http://dx.doi.org/10.1007/978-3-319-15386-5_2
http://dx.doi.org/10.1007/978-3-319-15386-5_2
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The full field-theoretical many-body Hamiltonian will then be

H = H0 + VF = H0 + VC + vT, (6.55)

sometimes also referred to as the many-body Dirac Hamiltonian. This leads with
the GML relation (6.48) to the corresponding Fock-space many-body equation7

HΨ = EΨ. (6.56)

In comparing our many-body Dirac Hamiltonian with the Coulomb-Dirac-Breit
Hamiltonian of standard MBPT (2.113), we see that we have included the radiation
field, HRad, and replaced the instantaneous Breit interaction with the transverse field
interaction, vT, in addition to removing the projection operators.

Using second quantization (see Appendices B and E),

• the field-theoretical many-body Hamiltonian in the photonic Fock space (6.55)
becomes in the Coulomb gauge

H =
∫

d3x ψ̂†(x)
(

c α · p̂ + βmc2 + vext(x) − ecαμ Aμ(x)
)
ψ̂(x)

+HRad + 1

2

∫∫
d3x1 d

3x2 ψ̂†(x1) ψ̂†(x2)
e2

4πε0r12
ψ̂(x2) ψ̂(x1), (6.57)

where vext(x) is the external (nuclear) field of the electrons (Furry picture). In
the Coulomb gauge the operator Aμ(x) represents only the transverse part of the
radiation field.

• By treating the Coulomb and the transverse photon interactions separately, a
formal departure is made from a fully covariant treatment. However, this pro-
cedure is, when performed properly, in practice equivalent to the use of a fully
covariant gauge.

In a covariant gauge the entire electron-electron interaction is expressed bymeans
of the field term and the Coulomb part is left out. We define the covariant wave-
operator in analogy with the non-relativistic case (2.36)8

|Ψ α〉 = ΩCov|Ψ α
0 〉 (α = 1 . . . d) (6.58)

but now acting in the extended photonic Fock space. The Gell-Mann–Low relation
(6.48) can then be expressed

7This equation is not completely covariant, because it has a single time, in accordance with the
established quantum-mechanical picture. This is the equal-time approximation, mentioned above
and further discussed later. In addition, a complete covariant treatment would require that also the
interaction between the electrons and the nucleus is treated in a covariant way by means of the
exchange of virtual photons (see, for instance, [227]).
8In the following we shall leave out the subscript “Rel”.

http://dx.doi.org/10.1007/978-3-319-15386-5_2
http://dx.doi.org/10.1007/978-3-319-15386-5_2
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(
H0 + VF

)
ΩCov

∣∣Ψ α
0

〉 = Eα ΩCov

∣∣Ψ α
0

〉
. (6.59)

The effective Hamiltonian is defined as before (2.37),

Heff |Ψ α
0 〉 = Eα|Ψ α

0 〉,

which leads to
Heff = P(H0 + VF)ΩCovP. (6.60)

The covariant effective interaction is defined

W = Heff − P H0P, (6.61)

yielding
W |Ψ α

0 〉 = (Eα − Eα
0 )|Ψ α

0 〉 (6.62)

and
W = PVFΩCovP. (6.63)

This is a Fock-space relation, where the number of photons is not conserved. The
corresponding relation in the restricted space without uncontracted photons will be
given in Sect. 6.11 (6.174).

The many-body Fock-space relation (6.56) can be solved iteratively in the same
way as the corresponding standardmany-body equation, as long as no virtual pairs are
involved. (In the case such pairs are present, the perturbations have to be evaluated by
other means, as will be discussed particularly in Chap.8.) This is the basic principle
of the covariant relativistic many-body perturbation procedure we shall develop in
this book. How this can be accomplished will be discussed in the following. First,
we shall introduce the important concept of the Green’s operator.

6.8 Green’s Operator

6.8.1 Definition

The vacuum expectation used to define the Green’s function (5.8) contains singulari-
ties in the form of unlinked diagrams, where the disconnected closed part represents
the vacuum expectation of the S-matrix. This is a number, and it then follows that
the singularities can be eliminated by dividing by this number. For the covariant evo-
lution operator (CEO) (6.1) the situation is more complex, since this in an operator,
and the disconnected parts will also in general be operators. Therefore, we shall here
proceed in a somewhat different manner. This will lead to a more general concept,
valid also in the multi-reference case (quasi-degeneracy).

http://dx.doi.org/10.1007/978-3-319-15386-5_2
http://dx.doi.org/10.1007/978-3-319-15386-5_8
http://dx.doi.org/10.1007/978-3-319-15386-5_5
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As mentioned earlier,
• we shall refer to the regular part of the Covariant-Evolution Operator as the

Green’s operator—in the single-particle case denoted G(t, t0)—due to its great
similaritywith theGreen’s function.We define the single-particle Green’s operator
by the relation9

U (t, t0)P = G(t, t0) · PU (0, t0)P, (6.64)

where P is the projection operator for the model space, and analogously in the
many-particle case. Below we shall demonstrate that this definition leads to an
operator that is regular.

The heavy dot in the definition of the Green’s operator implies that the operator
acts on the intermediate model space state at the position of the dot.

The definition above implies that the interactions and the resolvents to the left
of the dot depend on the energy of the model-space state at the position of the dot.
If we operate to the right on the part of the model space PE of energy E and the
intermediate model-space state lies in the part PE ′ of energy E ′, we can express the
two kinds of products as

⎧⎪⎨
⎪⎩

APE ′ B PE = A(E) PE ′ B(E)PE

A · PE ′ B PE = A(E ′) PE ′ B(E)PE

(6.65)

with the energy parameter of A equal to E in the first case and to E ′ in the second
case. By the hooks we indicate that the operators must be connected by at least one
contraction. We shall soon see the implication of this definition.

6.8.2 Relation Between the Green’s Operator
and Many-Body Perturbation Procedures

From the conjecture (6.45) and the definition (6.64) we have (leaving out the damp-
ing)

|χα(t)〉 = NαU (t,−∞)|Φα〉 = NαG(t,−∞) · PU (0,−∞)P|Φα〉, (6.66)

where Nα is the normalization constant

Nα = 1

〈Ψ α
0 |U (0,−∞|Φα〉 , (6.67)

9TheGreen’s operator is closely related—but not quite identical—to the reduced covariant evolution
operator, previously introduced by the Gothenburg group [130].
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making the state vector intermediately normalized for t = 0. Here, |Φα〉 is the parent
state (6.47), and |Ψ α〉 = NαU (0,−∞)|Φα〉 is the target state (for t = 0). The model
state is

|Ψ α
0 〉 = P|Ψ α〉 = Nα PU (0,−∞)|Φα〉.

This leads directly to
• the relation

∣∣χα(t)
〉 = G(t,−∞)

∣∣Ψ α
0

〉
, (6.68)

which implies that the time dependence of the relativistic state vector is governed
by the Green’s operator.

• Therefore, the Green’s operator can be regarded as a time-dependent wave oper-
ator.

• For the time t = 0 we have the covariant analogue of the standard wave operator
of MBPT (2.36)

|χα(0)〉 = |Ψ α〉 = ΩCov|Ψ α
0 〉 (6.69)

with
ΩCov = G(0,−∞). (6.70)

It follows directly from the definition (6.64) that

PG(0,−∞)P = P, (6.71)

and the relation above can also be expressed

ΩCov = 1 + QG(0,−∞). (6.72)

We note here that it is important that the Green’s operator is defined with the dot
product (6.64). The definition of the wave operator (2.36) can be expressed

|Ψ α〉 = ΩCov · P|Ψ α〉 = ΩCov · PU (0,−∞)|Φα〉, (6.73)

indicating that the energy parameter of thewave operator depends on the intermediate
model-space state.

We shall now derive a general relation between the covariant effective interaction
(6.63) and theGreen’s operator. Assuming that the time dependence of the relativistic
state vector is the same as that of the non-relativistic one (2.15) (whichwill be verified
in Sect. 6.11), i.e., in the interaction picture

∣∣χα(t)
〉 = e−it (Eα−H0)

∣∣χα(0)
〉 = e−it (Eα−H0)

∣∣Ψ α
〉
, (6.74)

or

i
∂

∂t

∣∣χα(t)
〉 = (Eα − H0)|χα(t)〉, (6.75)

http://dx.doi.org/10.1007/978-3-319-15386-5_2
http://dx.doi.org/10.1007/978-3-319-15386-5_2
http://dx.doi.org/10.1007/978-3-319-15386-5_2
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we obtain with the relation (6.68) for the time t = 0

i

(
∂

∂t

∣∣χα(t)
〉)

t=0

= i

(
∂

∂t
G(t,−∞)

)
t=0

|Ψ α
0 〉 = (Eα − H0)|Ψ α〉. (6.76)

Here, the rhs becomes, using the GML relation (6.48) and the wave-operator relation
(6.69),

(H − H0)|Ψ α〉 = VF|Ψ α〉 = VFΩCov|Ψ α
0 〉. (6.77)

This relation holds for all model states, which leads us to the important operator
relation for the entire model space

RP = i

(
∂

∂t
G(t,−∞)

)
t=0

P = VFΩCovP, (6.78)

referred to as the reaction operator. Projecting this onto the model space, yields
according to the relation (6.63)

• the covariant relativistic effective intercation

W = PRP = PVFΩCovP = P
(
i
∂

∂t
G(t,−∞)

)
t=0

P. (6.79)

This is a relation in the photonic Fock space, to be compared with the corresponding
relation in the restricted space (6.174).

Our procedure here is based upon quantum-field theory, and the Green’s operator
can be regarded as a field-theoretical extension of the traditional wave-operator
concept of MBPT, and it serves as a connection between field theory and MBPT.

6.8.2.1 Fourier Transform of the Green’s Operator

Generalizing the results in Sect. 6.2, we find that the single-particle Green’s operator
can generally be written in the form

G(t,−∞) =
∫

d3x
∫

d4x1 ψ̂†(x)iSF(x, x1)(−i)R̂ψ̂(x1), (6.80)

where R̂ is an insertion of self-energy type (see Fig. 6.3). This holds for the perturbed
part of the Green’s operator with at least one interaction, excluding the zeroth-order
part,G(0) (6.96), with no interaction. Operating on a part of themodel space of energy
E , this becomes in operator form

G(t,−∞) PE = e−it (E−H0)iSF(E) (−i)R̂PE = e−it (E−H0)
1

E − H0
R̂PE , (6.81)
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where
1

E − H0
R̂PE = MPE (6.82)

is the Feynman amplitude. Applying the formula (6.78), we find that the operator R̂
is identical to the reaction operator R.

The perturbed Green’s operator (6.81) is of the form

G(t,−∞) = e−it (E−H0)MPE (6.83)

and the Fourier transform becomes

G(E)PE =
∫

dt eiEtG(t,−∞)PE (6.84)

or
G(E)PE = 2πδ(E − E + H0)MPE . (6.85)

It then follows that
∫

dE

2π
E G(E) = (E − H0)M = R, (6.86)

which can be compared with the relation (5.98) for the Green’s function.

6.8.2.2 The Green’s Operator for Infinite Initial and Final Times

We have so far considered the Green’s operator for infinite negative initial time
and finite final times. The Green’s operator for infinite initial and final times has
interesting properties that we shall now explore.

Letting the final time be t → +∞, we have in analogy with (6.8)

∫
d3x ψ̂†(x) iSF(x, x1) ⇒ ψ̂†(x1). (6.87)

We then get from (6.80) for the perturbed part

G(∞,−∞) =
∫

d4x1 ψ̂†(x1) (−i)R ψ̂(x1) (6.88)

and

〈b|iG(∞,−∞)|a〉 =
∫

dt1 e
−it1(εa−εb)〈b|R|a〉.

http://dx.doi.org/10.1007/978-3-319-15386-5_5
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Integration over the time leads to energy conservation

〈b|iG(∞,−∞)|a〉 = 2πδ(εa − εb)〈b|R|a〉. (6.89)

By means of the relation (6.79) we then obtain the important relation

PiG(∞,−∞)P = 2πδ(Ein − Eout)W, (6.90)

where W = Heff − P H0P is the effective interaction (6.61). (The zeroth-order com-
ponent is here excluded from the Green’s operator.) Thus, we see that the Green’s
operator for infinite initial and final times is closely related to the effective Hamil-
tonian. We shall find this property quite useful in dealing with dynamical processes
in Chap.13.

If there are no intermediate model-space states, then the perturbed part of
G(∞,−∞) is identical to the corresponding part of the evolution operator
U (∞,−∞) and hence also of the S-matrix (4.2). We then have the correspond-
ing relation in the free-electron case,

PiS P = 2πδ(Ein − Eout)W, (6.91)

where only the perturbed part of the S-matrix with at least one interaction appears.

6.9 Model-Space Contribution

The model-space contributions (MCS), i.e., the contributions due to model-space
states in the expansion of the evolution operator, play an important role in the theory
we are here developing. They lead to singularities, andwe shall nowdemonstrate how
these singularities can be eliminated in the general multi-reference case. We assume
that the initial time is t0 = −∞. We also work in the equal-time approximation,
where all final times are the same.

In general, we still operate in the extended photonic Fock space, where the number
of free photons is not conserved. We initially consider single-photon exchanges and
shall later consider multi-photon irreducible interactions.

We start by expanding the relation (6.64) order by order, using the fact that
U (0)(0)P = P . We assume that the model space can have different energies,

and we start from a particular energy, E , and assume that a possible intermediate
model-space state has the energy E ′

U (0)(t, E)PE = G(0)(t, E)PE
U (1)(t, E)PE = G(1)(t, E)PE + G(0)(t, E ′) · PE ′U (1)(0)PE
U (2)(t, E)PE = G(2)(t, E)PE + G(1)(t, E ′) · PE ′U (1)(0)PE + G(0)(t, E ′) · PU (2)(0)PE
U (3)(t, E)PE = G(3)(t, E)PE + G(2)(t, E ′) · PE ′U (1)(0)PE + G(1)(t, E ′) · PU (2)(0)PE

+ G(0)(t, E ′) · PU (3)(0)PE (6.92)

http://dx.doi.org/10.1007/978-3-319-15386-5_13
http://dx.doi.org/10.1007/978-3-319-15386-5_4
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etc. (For clarity, we insert the energy parameter in the operator symbol, which should
not be confused with the Fourier transform (6.85), discussed above.)

Solving the equations (6.92) for the Green’s operator, we then have

G(0)(t, E)PE = U (0)(t, E)PE
G(1)(t, E)PE = U (1)(t, E)PE − G(0)(t, E ′) PE ′U (1)(0, E)PE
G(2)(t, E)PE = U (2)(t, E)PE − G(0)(t, E ′) PE ′U (2)(0, E)PE − G(1)(t, E ′) PE ′U (1)(0, E)PE
G(3)(t, E)PE = U (3)(t, E)PE − G(0)(t, E ′) PE ′U (3)(0, E)PE − G(1)(t, E ′) PE ′U (2)(0, E)PE

− G(2)(t, E ′) PE ′U (1)(0, E)PE (6.93)

etc., which can be summarized as

G(t, E)PE = U (t, E)PE − G(t, E ′) PE ′
[
U (0, E) − 1

]
PE . (6.94)

We shall demonstrate that the negative terms above, referred to as counterterms, will
remove the singularities of the evolution operator.

It follows directly from the definition of the dot product above that the singularities
due to disconnected parts are exactly eliminated by the counterterms. Therefore, we
need only consider the connected (ladder) part, and we consider a fully contracted
two-body diagram as an illustration (Fig. 6.5). It is sufficient for our present purpose
to consider only positive intermediate states, as in (6.35).

6.9.1 Lowest Orders

From (6.36) it follows that the evolution operator can be expressed

U (t, E)PE = e−it (E−H0) U (0, E)PE = G(0)(t, E) U (0, E)PE , (6.95)

where the zeroth-order evolution operator is

U (0)(t, E) = G(0)(t, E) = e−it (E−H0), (6.96)

which is also the zeroth-order Green’s operator.10

The first-order evolution operator becomes

U (t, E)(1) PE = G(0)(t, E) U (1)(0, E)PE . (6.97)

Including the counterterm (6.93), gives the first-order Green’s operator

G(1)(t, E)PE = G(0)(t, E)(PE ′ + Q)U (1)(0, E)PE − G(0)(t, E ′)PE ′U (1)(0, E)PE ,

(6.98)

10Compare footnote in Sect. 6.4.
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where we observe that the Green’s operator in the counterterm has the energy para-
meter E ′.

The terms with intermediate PE ′ become

(
G(0)(t, E) − G(0)(t, E ′)

)
PE ′U (1)(0, E)PE . (6.99)

But

PE ′U (1)(0, E)PE = PE ′Γ (E) V (E)PE = PE ′
1

E − H0
V (E)PE = PE ′

V (E)

E − E ′ PE ,

(6.100)
and the terms above become11

G(1)
1 (t, E)PE = δG(0)(t, E)

δE PE ′ V (E)PE . (6.101)

The difference ratio is defined

δG(0)(t, E)

δE = G(0)(t, E) − G(0)(t, E ′)
E − E ′ ⇒ ∂G(0)(t, E)

∂E , (6.102)

which turns into a derivative at complete degeneracy.
Then we can express the first-order Green’s operator as

G(1)(t, E)PE = G(0)(t, E)ΓQ V PE + δG(0)(t, E)

δE PE ′ V (E)PE . (6.103)

The elimination process is illustrated in Fig. 6.11.
Applying the formula (6.79) to the first-order Green’s operator (6.103), we find

that the first-order effective interaction becomes12

W (1) = PE
(
i
∂

∂t
G(1)(t, E)

)
t=0

PE = PE ′ V PE (6.104)

This gives

G(1)(t, E)PE = G(1)
0 (t, E)PE + δG(0)(t, E)

δE W (1), (6.105)

11We use the convention that the subscript denotes the number of model-space states (“folds”),
intermediate or final, and the superscript in brackets the order of perturbation.
12G(0)(t, E) = e−it (E−H0) and G0(t, E)PE = G(0)(t, E) U0(0, E)PE = G(0)(t, E)

(
(1 +

QU0(0, E))
)
PE , which gives PE ′

(
i ∂
∂t G(0)(t, E)

)
t=0

PE = PE ′
(
i ∂
∂t G0(t, E)

)
t=0

PE = 0 and

PE ′
(
i ∂
∂t

δG(0)

δE
)

t=0
PE = PE ′

(
i ∂
∂t

δG0
δE

)
t=0

PE = PE ′ PE .
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Fig. 6.11 Illustration of the elimination of singularity of the first-order evolution operator, due to a
final model-space state. The double bar represents the difference ratio/derivative of the zeroth-order
Green’s operator (c.f. Fig. 6.12)

where G(1)
0 (t, E)PE = G(0)(t, E)ΓQ(E)V PE . The second term in (6.105) lies in the

model space, while the first term in lies in the complementary Q space.
The result (6.104) is the natural result from the viewpoint of standard perturbation

theory, but it should be observed that this is based upon the Fock-space relation (6.79)
and NOT on the classical relation (2.54)

W = PV Ω P. (6.106)

The latter does not hold generally in the photonic Fock space, although it does in
this particular case. We shall soon see a case when it does not hold.

From (6.96) we have

∂G(0)(t, E)

∂E = −itG(0)(t, E) = −it e−it (E−H0), (6.107)

which is imaginary and vanishes for t = 0. This contribution—times the effective
interaction—is the first-order correction to the time exponent, as discussed in detail
in Sect. 6.11.

In second order the Green’s operator without folds becomes identical to the cor-
responding covariant evolution operator (6.37)

G(2)
0 (t, E)PE = U (2)

0 (t, E) = G(0)(t, E) ΓQ(E)V (E)ΓQ(E)V (E)PE . (6.108)

If there is only a final model-space state we have in analogy with (6.101)

δG(0)(t, E)

δE PE ′ V (E)ΓQ(E)V (E)PE PE . (6.109)

Applying the relation (6.79), we find that the second-order effective interaction with-
out folds becomes

W (2)
0 = PEV (E)ΓQ(E)V (E)PE . (6.110)

If there is only an intermediate model-space state, the evolution operator (6.108)
becomes

http://dx.doi.org/10.1007/978-3-319-15386-5_2
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G(0)(t, E) ΓQ(E)V (E)PE ′U (1)(E)PE = G(1)
0 (t, E)PE ′U (1)(E)PE . (6.111)

Including the counterterm, yields in analogy with the first-order case (6.101)

δG(1)
0 (t, E)

δE PE ′ V (E)PE . (6.112)

If there is also a final model-space state, we should include the second part of the
first-order Green’s operator (6.105) and replace G(1)

0 by the full first-order Green’s
operator. This gives the entire second-order Green’s operator

G(2)(t, E)PE = G(2)
0 (t, E)PE + δG(0)(t, E)

δE W (2)
0 + δG(1)(t, E)

δE W (1). (6.113)

Here, the first term represents the part without model-space states, the second term
that with only a final model-space state and the last term that with an intermediate
and possible also a final model-space state.

The second-order elimination process, due to an intermediate model-space state,
is illustrated in Fig. 6.12, and the corresponding part of the Green’s operator is illus-
trated in Fig. 6.13. This process is quite analogous to the appearance of folded dia-
gram, discussed in connection with standard MBPT (2.81) but yields, in addition, a
derivative of the energy-dependent potential (see below). Since we are here dealing
with Feynman diagrams, it is more logical to draw the “folded” part straight, indi-
cating the position of the “fold” by a double bar from which the denominators of the
upper part are to be evaluated. (The elimination process in first-order has no analogy
in standard MBPT, since there final model-space states do not appear in the wave
function.)

Fig. 6.12 Elimination of the singularity of the second-order evolution operator, due to an interme-
diate model-space state. This leads to a residual contribution that corresponds to the folded diagram
in standard many-body perturbation theory (Fig. 2.5) but contains, in addition, a derivative of the
energy-dependent potential. Furthermore, there can be a singularity at the final state, as in first order
(see Fig. 6.11)

http://dx.doi.org/10.1007/978-3-319-15386-5_2
http://dx.doi.org/10.1007/978-3-319-15386-5_2
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Fig. 6.13 Elimination of the singularity of the second-order evolution operator due to an interme-
diate model-space state

For t = 0 we have from (6.113)

QG(2)(0, E)PE = ΓQ(E)V (E)ΓQ(E)V (E) PE + Q
δG(1)(t, E ′, E)

δE PE ′ W (1) PE ,

(6.114)

which is quite analogous to the corresponding second-orderwave operator in ordinary
time-independent perturbation theory (2.69). The only difference is here that the
derivative of the first-order Green’s operator leads in addition to the standard folded
term to a term with the energy-derivative of the interaction. This term is sometimes
referred to as the reference-state contribution [159], but here we shall refer to both
terms as the model-space contribution (MSC), which is more appropriate in the
general multi-reference case.

From the second-order expression (6.113) we obtain, using the expression for the
covariant effective interaction (6.79), the second-order effective interaction13

W (2) = W (2)
0 + δW (1)

δE W (1). (6.115)

We note here that there is a model-space contribution (second term), which has
no analogy in the classical energy-independent formalism (6.106). Since the wave
operator beyond zeroth order lies in the Q space, there can be noMSC in the standard
second-order effective interaction. This is an example, when the classical and the
field-theoretical (Fock-space) treatments lead to different results.

The Fock-space result can be understood in the following way. The first-order
interaction can be looked upon as illustrated in Fig. 6.14 (see Sect. 8.1.2). Considering
the case with two retarded photons, the wave operator can be represented by the two
diagrams below

13From the previous footnote we have PE ′′ i ∂
∂t

(
δG(1)

δE
)

t=0
PE ′ W (1) PE = PE ′′ i ∂

∂t

(
δG(1)

0 (t,E ′)
δE +

δ2G(0)(t,E ′)
δE2 W (1) + δG(0)(t,E ′)

δE
δW (1)

δE
)

t=0
PE ′ W (1) PE = PE ′′ PE ′ W (1) PE + PE ′′ δW (1)

δE W (1) PE .

http://dx.doi.org/10.1007/978-3-319-15386-5_2
http://dx.doi.org/10.1007/978-3-319-15386-5_8
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Fig. 6.14 Illustration of the single-photon exchange in Fock space. The first diagram represents
the first-order wave operator with an uncontracted photon, which is then contracted by a second
interaction to form a full single-photon interaction (right)

These diagrams represent the wave operator in the photonic Fock space with the
intermediate state in Q and P spaces, respectively. In the first diagram there is an
energy denominator that yields the energy dependence and in the second diagram
a double denominator that yields the energy derivative. Closing these parts by the
second part of the single-photon interaction (6.52), yields the two contributions in
(6.115).

We have assumed so far that in the ladder all interactions are identical.
If the interactions are different, some precaution is required. We see in the second-
order expression that the differential/derivative in the last term should refer to the
SECOND interaction, while if we treat this in an order-by-order fashion we would
get the differential of the FIRST interaction. If the interactions are in order V1 and
V2, then last term above becomes

δ(ΓQ V2)

δE PE ′ V1PE , (6.116)

(leaving out the arguments). This issue will be further discussed below.

6.9.2 All Orders*

The procedure performed above can be generalized to all orders of perturbation
theory. The treatment here follows mainly those of [131, 132] but is more general.

We consider first an evolution operator in the form (6.37) with a general energy-
dependent interaction, V (E), and with all intermediate and finalmodel-space states
removed,
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U0(t, E)PE = G(0)(t, E)
(
1 + ΓQ(E)V (E) + ΓQ(E)V (E)ΓQ(E)V (E) + · · ·

)
PE ,

(6.117)
with G(0)(t, E) given by (6.96). This also represents the Green’s operator with no
model-space states, G0(t, E).

The evolution operator with exactly one intermediate or final model-space state
(or “fold”) can be expressed

U1(t, E) = G0(t, E)PE ′
(

U0(0, E) − 1
)

PE (6.118)

and the corresponding counter term (6.94)

G0(t, E ′)PE ′
(

U0(0, E) − 1
)

PE , (6.119)

where the parameter of the first operator is now the energy of the intermediate state.
This leads to the Green’s operator with exactly one fold

G1(t, E) = δG0(t, E)

δE PE ′ W0PE , (6.120)

where

W0(E)PE = P
(

V (E) + V (E)ΓQ(E)V (E) + · · ·
)

PE (6.121)

in analogy with the low-order cases.14

The Green’s operator with just a final fold is obtained by replacing G0 (the all-
order operator without folds) by the zeroth-order operator, G(0),

δG(0)(t, E)

δE PE ′ W0PE . (6.122)

14The rules for differentiating are as follows

δG
δE = GE − GE ′

E − E ′ ; δ

δE
( δG

δE V
)

=
(

δG
δE

)
EVE − (

δG
δE

)
E ′ VE ′

E − E ′

=
(

δG
δE

)
EVE − (

δG
δE

)
E ′ VE + (

δG
δE

)
E ′ VE − (

δG
δE

)
E ′ VE ′

E − E ′ = δ2G
δE2 V + δG

δE
δV

δE
δ

δE V 2 = δ

δE VE ′′ VE = VE ′′
VE − VE ′

E − E ′ = V
δV

δE .

This can be generalized to
δn(AB)

δEn
=

n∑
m=0

δm A

δEm

δn−m B

δEn−m

(see further [132, Appendix B]).



148 6 The Covariant Evolution Operator and the Green’s-Operator Method

Applying here the formula (6.79), demonstrates that W0 is the all-order effective
interaction without folds, extending the relations (6.104) and (6.110),

The evolution operator with two folds can be expressed in analogy with (6.118)

U2(t, E)PE = G0(t, E)PE ′′
(

U0(0, E) − 1
)

PE ′
(

U0(0, E) − 1
)

PE . (6.123)

The two leftmost factors represent the first-order expression (6.118), and after elim-
inating the singularity, we can replace this by the operator (6.101), yielding the
Green’s operator with two folds (intermediate and/or final)

G2(t, E) = δG1(t, E ′)
δE ′ PE ′ W0(E)PE .

Continuing this process leads to

Gn(t, E) = δGn−1(t, E ′)
δE ′ PE ′ W0(E)PE , (6.124)

and

G(t, E)PE =
(
G0(t, E) + G1(t, E) + G2(t, E) + · · ·

)
PE

=
[
G0(t, E) +

(δG0(t, E)

δE + δG1(t, E)

δE + · · ·
)

W0

]
PE

or

G(t, E)PE = G0(t, E)PE + δG(t, E)

δE W0PE . (6.125)

Here, the last term represents all intermediate/final folds due to model-space states.
This relation is valid for the entire model space and it is consistentwith [132, Eq. (54)]
but more general. The expressions given here are valid for all times and for the final
state in P as well as Q spaces. The corresponding wave-operator relation is obtained
by setting t = 0.

If we apply the relation (6.79) to the relation (6.125), we find the corresponding
relation for the effective interaction

W = W0 + δW

δE W0, (6.126)

where W0 represents the effective interactionwithoutmodel-space contributions and
W the full interaction, including such contributions (MSC).15

15 δG
δE = δG(0)

δE + δG(1)

δE + · · · ; PE
(
i ∂
∂t G0(t, E)

)
t=0

PE = 0; PE
(
i ∂
∂t

δG(0)

δE
)

t=0
PE = 1;

PE
(
i ∂
∂t

δG(1)

δE
)

t=0
PE = PE i ∂

∂t
δ

δE
(

δG(0)

δE W (1)
)

t=0
PE = δW (1)

δE ;
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Fig. 6.15 Graphical representation of the open part of the third-order Green’s operator (6.127)

The third-order Green’s operator becomes, using the formula (6.125),

G(3) = G(3)
0 + δG(2)

δE W (1) + δG(1)

δE W (2)
0 + δG(0)

δE W (3)
0

= G(3)
0 + δG(2)

0

δE W (1) + δG(2)
1

δE W (1) + δG(1)

δE W (2)
0 + δG(0)

δE W (3)
0 . (6.127)

Here, W (n)
0 represents the effective interaction of order n without intermediatemodel-

space states. The last term does not contribute to the wave operator at t = 0. That
part, going into the Q space is illustrated in Fig. 6.15.

We can find an alternative expression for the folded term in (6.125) by considering

G = G0 + G1 + G2 + · · · ,

where Gm represents the Green’s operator with exactly m (intermediate or final)
model-state states. From the relation (6.124) we find

G1 = δG0

δE W0

G2 = δG1

δE W0 = δ

δE
(δG0

δE W0

)
W0 = δ2G0

δE2
W 2

0 + δG0

δE
δW0

δE W0

= δ2G0

δE2
W 2

0 + δG0

δE W1. (6.128)

Wn represents the effective interaction with exactly n folds, and it follows from
(6.126) that

Wn = δWn−1

δE W0. (6.129)

PE i ∂
∂t

(
δG(2)

δE
)

t=0
PE =PE i ∂

∂t

(
δG(0)

δE
δW (2)

0
δE

)
t=0

PE

+PE i ∂
∂t

(
δ2G(1)

δE2 W (1) + δG(1)

δE
δW (1)

δE
)

t=0
PE = δW (2)

0
δE + δ2W (1)

δE2 W (1) + δW (1)

δE
2

= δW (2)
0

δE + δW (2)
1

δE = δW (2)

δE ⇒ PE i ∂
∂t

(
δG
δE

)
t=0

PE = 1 + δW (1)

δE + δW (2)

δE + · · · = 1 + δW
δE .
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Similarly,

G3 = δG2

δE W0 = δ3G0

δE3
W 3

0 + δ2G0

δE2

δW0

δE W 2
0 + δ2G0

δE2
W1 W0 + δG0

δE
δW1

δE W0

or

G3 = δ3G0

δE3
W 3

0 + δ2G0

δE2
2W1 W0 + δG0

δE W2.

Summing this sequence, leads to

G = G0 + δG0

δE (W0 + W1 + W2 + · · · )

+ δ2G0

δE2
(W 2

0 + 2W0W1 + · · · ) + δ3G0

δE3
(W 3

0 + · · · ) + · · · . (6.130)

It can be shown by induction [131] that this leads to

G = G0 +
∞∑

n=1

δnG0

δEn

(
W0 + W1 + W2 + · · · )n

. (6.131)

Here,
W = W0 + W1 + W2 + · · · (6.132)

is the total effective interaction, yielding

G(t, E)PE = G0(t, E)PE +
∑
n=1

δnG0(t, E)

δEn
W n PE . (6.133)

This relation is consistent with the results in [131, Eq. (100)] and [132, Eq.61], where
more details of the derivations are given. As the previous relation (6.125), it is valid
for all times and with the final state in Q as well as P space. In case the interactions
are different, the derivatives should be taken of the latest interactions.

We can find a corresponding equation for the effective interaction by expanding
(6.126) order-by order,

W (2) = W (2)
0 + δW (1)

δE W (1); (6.134)

W (3) = W (3)
0 + δW (2)

δE W (1) + δW (1)

δE W (2)
0 . (6.135)

From this sequence we can derive the analogue of (6.133) for the effective interaction

W (E)PE = W0(E)PE +
∑
n=1

δn W0(E)

δEn
W n PE . (6.136)
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Fig. 6.16 Graphical representation of the third-order effective interaction (6.137)

This gives

W (3) = W (3)
0 + δW (2)

0

δE W (1) + δW (1)

δE W (2) + δ2W (1)

δE2

(
W (1)

)2
, (6.137)

which can easily be shown to be identical to the previous result (6.135). This is
illustrated in Fig. 6.16 (compare Fig. 6.15).

The treatment here can, in principle, be generalized by replacing the single-
photon potential by the complete irreducible multi-photon exchange potential (6.38)
in Fig. 6.9.

6.9.2.1 Regularity and Linkedness of the Green’s Operator

It follows from the treatment here that the counterterms eliminate all singularities so
that the Green’s operator is completely regular at all times.

It also follows that all parts of the expansions above are linked, so this demonstrates
that
• the Green’s operator is completely linked also in the multi-reference case.
• The linkedness of the single-particle Green’s operator can be expressed, using
(6.3),

G(t, t0) =
[ ∞∑

n=0

1

n!
∫∫

d3x d3x0

(−i

c

)n
∫

d4x1 . . .

∫
d4xn

×
〈
0
∣∣∣ψ̂†(x)T

[
ψ̂(x)H(x1) · · ·H(xn) ψ̂†(x0)

]
ψ̂(x2)

∣∣∣0
〉
e−γ(|t1|+|t2|··· )

]

linked+folded

(6.138)

and similarly in the many-particle case.
• This represents a field-theoretical extension of the linked-diagram theorem of

standard many-body perturbation theory (2.82).

http://dx.doi.org/10.1007/978-3-319-15386-5_2
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6.10 Bloch Equation for Green’s Operator*

We nowwant to transform the general expression above for the Green’s operator into
a general Bloch-type of equation (2.55) that, in principle, can be solved iteratively
(self-consistently). Iterations can be performed, only if the in- and outgoing states
contain only particle states of positive energy (no holes). Therefore, we assume this
to be the case. If we have an interaction with hole states in or out, we can apply a
Coulomb interaction, so that all in- and outgoing states are particle states, as will be
discussed further in later chapters.

We work for the moment in the restricted Hilbert space with complete single-
photon (or multi-photon) interactions.

We want to have an equation of the form

[G(n), H0
]
P = VG(n−1) P + folded (6.139)

or
G(n) PE = ΓQ

(
VG(n−1) + folded

)
PE , (6.140)

where V is the latest interaction.
We start from the relation (6.125),

G0 = G(0) + δG
δE W0, (6.141)

where
G = G0 + G1 + G2 + · · · .

Here,
G0 = G(0)(1 + ΓQ V + ΓQ V ΓQ V + · · · ), (6.142)

and Gm is the Green’s operator with exactly m intermediate/final folds (model-space
states),

Gm = δGm−1

δE W0. (6.143)

Similarly, the total effective interaction is (6.132)

W = W0 + W1 + W2 + · · · , (6.144)

where Wm is the effective interaction (6.129) with m folds and

Wm = δWm−1

δE W0. (6.145)

http://dx.doi.org/10.1007/978-3-319-15386-5_2
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The folded contribution of order n > 0 is according to (6.140)

G(n) − ΓQ VG(n−1) = G(n)
0 + G(n)

1 + G(n)
2 + · · ·

− ΓQ VG(n−1)
0 − ΓQ VG(n−1)

1 − ΓQ VG(n−1)
2 − · · · . (6.146)

In the case of no folds we have

G(n)
0 − ΓQ VG(n−1)

0 = 0. (6.147)

In the case of a single fold we have

Δ1 = G(n)
1 − ΓQ VG(n−1)

1 =
(δG0

δE W0

)(n) − ΓQ V
(δG0

δE W0

)(n−1)
.

Here, all terms cancel except thosewhere the last factor ofΓQ V is being differentiated
in the first part of Δ1. Those terms do not appear in the second part of the difference.

We then have

Δ1 =
(δ∗G0

δE W0

)(n)

, (6.148)

where we have introduced the notation δ∗, with the asterisk indicating that the dif-
ferentiation applies only to the last interaction, ΓQ V , including the associated
resolvent,16

δ∗(ΓQ VaΓQ Vb · · · )
δE = δ(ΓQ Va)

δE ΓQ Vb · · · (6.150)

and, in addition, differentiation of G(0) in case there is no ΓQ V factor.17

In the case of two folds we have from (6.146), using (6.143),

Δ2 = G(n)
2 − ΓQ VG(n−1)

2 =
(δG1

δE W0

)(n) − ΓQ V
(δG1

δE W0

)(n−1)

=
[

δ

δE
(δG0

δE W0

)
W0

](n)

− ΓQ V

[
δ

δE
(δG0

δE W0

)
W0

](n−1)

=
[
δ2G0

δE2

(
W0

)2](n)

− ΓQ V

[
δ2G0

δE2

(
W0

)2](n−1)

16Distinguishing the various interactions, we can write

G0 = G(0)(1 + ΓQ V1 + ΓQ V1ΓQ V2 + · · · ); Δ1 =
[ δG0

δE − ΓQ V1
δG0

δE
]
W0

=
[ δG(0)

δE + G0
δ(ΓQ V1)

δE
(
1 + ΓQ V2 + · · · )]W0 =: δ∗G0

δE W0;
(6.149)

17It should be noted that an irreduciblemulti-photon potential is here regarded as a single interaction.
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+
[
δG0

δE W1

](n)

− ΓQ V

[
δG0

δE W1

](n−1)

.

With the convention above we can express the double folds18

Δ2 =
(δ∗G0

δE W1

)(n) +
(δ∗G1

δE W0

)(n)

,

where, according to (6.145),

W1 = δW0

δE W0. (6.152)

Continuing this process leads to the total folded contribution

(δ∗G0

δE + δ∗G1

δE + · · · + · · ·
) (

W0 + W1 + · · ·
)

= δ∗G
δE W.

We then have the generalized Bloch equation for an arbitrary energy-dependent
interaction (V)

G = G(0) + ΓQ VG + δ∗G
δE W, (6.153)

where W is given by (6.144) and the asterisk represents derivation with respect
to the last interaction ΓQ V and with respect to G(0) when no factor of ΓQ V is
present.19

This equation is valid also when the interactions are different, and then it should
be interpreted as (n > 0)

18

[ δ2G0

δE2 − ΓQ V1
δ2G0

δE2

](
W0

)2 =
[

δ2G(0)

δE2 + δG(0)

δE
δ(ΓQ V1)

δE
(
1 + ΓQ V2 + · · · )

+G(0) δ2(ΓQ V1)

δE2

(
1 + ΓQ V2 + · · · ) + G(0) δ(ΓQ V1)

δE
δ(ΓQ V2)

δE
× (

1 + ΓQ V3 + · · · ) + · · ·
](

W0
)2

= δ
δE

(
δ∗G0
δE

) (
W0

)2 =: δ∗G1
δE W0. (151)

19

δ∗G
δE = δ∗G0

δE + δ∗G1

δE + δ∗G2

δE + · · · (6.154)

δ∗G0

δE = δG(0)

δE + δΓQ V

δE G0 and
δ∗Gn

δE = δ

δE
( δ∗Gn−1

δE
)

W0, (6.155)
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G(n) = ΓQ VnG(n−1) +
n−1∑
m=1

δ∗G(m)

δE W (n−m), (6.156)

where Vn is the last interaction and the operator G(m) is formed by the m last
interactions and W (n−m) by the (n − m) first ones.

We can check the formula (6.153) in second order, where it yields

G(2) = ΓQ VG(1) + δG(0)

δE W (2) + δ∗G(1)

δE W (1). (6.157)

With

G(1) = G(0)ΓQ V + δG(0)

δE W (1) (6.158)

from (6.105) and
δ∗G(1)

δE = G(0) δΓQ V

δE + δ2G(0)

δE2
W (1) (6.159)

this becomes

G(2) = G(2)
0 + ΓQ V

δG(0)

δE W (1) + δG(0)

δE W (2) + G(0) δΓQ V

δE W (1) + δ2G(0)

δE2

(
W (1)

)2
,

(6.160)
which can easily be shown to be identical to (6.113). For t = 0 this becomes

Ω(2) = G(2)(0) = ΓQ V ΓQ V + δ(ΓQ V )

δE W (1), (6.161)

which goes over into the second-order wave operator OS standard MBPT, when the
perturbation is energy independent (2.69).

We can see that in the case of energy-independent interactions the Bloch equation
(6.153) generally reduces to the standard Bloch equation (2.55), since

δ∗G
δE = −ΓQG. (6.162)

The similarity between the Bloch equations for the Green’s operator and the stan-
dard MBPT wave operator demonstrates that the perturbation expansion based upon
the CEO or Green’s function is completely compatible with the standard procedure.
Therefore it can serve as a convenient basis for a unified procedure, where QED
and Coulomb interactions can, in principle, be mixed arbitrarily.

http://dx.doi.org/10.1007/978-3-319-15386-5_2
http://dx.doi.org/10.1007/978-3-319-15386-5_2
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6.11 Time Dependence of the Green’s Operator.
Connection to the Bethe–Salpeter Equation*

6.11.1 Single-Reference Model Space

Operating with the relation (6.133) on a model function, Ψ0, of energy E0, yields

G(t, E0)
∣∣Ψ0

〉 =
[
G0(t, E) +

∞∑
n=1

δnG0(t, E)

δEn

(
ΔE

)n
]
E=E0

∣∣Ψ0
〉
, (6.163)

where G0 is the Green’s operator without model-space states (6.117) and G is the full
Green’s operator, including model-space contributions (MSC). We have here used
the fact (6.62) that

W |Ψ0〉 = (E − E0)|Ψ0〉 = ΔE |Ψ0〉. (6.164)

The expansion (6.163) is a Taylor series with the effect of shifting the energy para-
meter from the unperturbed energy, E0, to the fully perturbed energy, E . Hence, the
result can be expressed

G(t, E0)|Ψ0〉 = G0(t, E)|Ψ0〉. (6.165)

This implies that the sum in (6.133), representing

• the model-space contributions (MSC) to all orders, has the effect of shifting the
energy parameter from the model energy E0 to the target energy E.

From the relation (6.37) we have the Green’s operator for the ladder without MSC
in the present case

G0(t, E0)|Ψ0〉 = e−it (E0−H0)

×
[
1 + ΓQ(E0) V (E0) + ΓQ(E0) V (E0)ΓQ(E0) V (E0) + · · ·

]
|Ψ0〉.

(6.166)

The result (6.165) then implies that the Green’s operator with model-space contri-
butions becomes

G(t, E0)|Ψ0〉 = G0(t, E)|Ψ0〉 = e−it (E−H0)

×
[
1 + ΓQ(E) V (E) + ΓQ(E) V (E)ΓQ(E) V (E) + · · ·

]∣∣Ψ0
〉
,

(6.167)
• shifting also the energy parameter of the time dependence, which is a conse-
quence of the fact that the zeroth-order Green’s operator, G(0) (6.96), is also being
modified by the expansion (6.133).
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This leads to

i
∂

∂t
G(t, E0)

∣∣Ψ0
〉 = (E − H0)G(t, E0)

∣∣Ψ0
〉

(6.168)

and with (6.70) to

(
i
∂

∂t
G(t, E0)

)
t=0

∣∣Ψ0
〉 = (E − H0)Ω

∣∣Ψ0
〉
, (6.169)

results that are consistent with those in Sect. 6.8.2.
The time dependence of theGreen’s operator is according to the relation (6.68) the

same as that of the relativistic state vector. It then follows from the relation (6.167)
that the time-dependence of the state vector is (in the interaction picture)

|χ(t)〉 = e−it (E−H0) |Ψ 〉, (6.170)

consistent with the assumption (6.74) and with the elementary quantum-mechanical
result ((2.15) and (3.11)).

Setting the time t = 0 in (6.167), yields with the identity (6.70),
Ω|Ψ0〉 = G(0, E0)|Ψ0〉, the corresponding relation for the wave operator

|Ψ 〉 = Ω|Ψ0〉 =
[
1 + ΓQ(E) V (E) + ΓQ(E) V (E)ΓQ(E) V (E) + · · ·

]∣∣Ψ0
〉
,

(6.171)
which is the generalized form of the Brillouin–Wigner expansion of the wave oper-
ator.

From the relation (6.121) we have the effective interaction without folds

W0(E0)
∣∣Ψ0

〉 = P
(

V (E0) + V (E0)ΓQ(E0)V (E0) + · · ·
)∣∣Ψ0

〉
. (6.172)

It can be shown in the same way as for the wave function that inclusion of the MSC
(folds) leads to the replacement E0 → E and to the expression for the full effective
interaction (6.132)

W
∣∣Ψ0

〉 = W0(E)
∣∣Ψ0

〉 = P
(

V (E) + V (E)ΓQ(E)V (E) + · · ·
)∣∣Ψ0

〉
, (6.173)

which is the generalized Brillouin–Wigner expansion of the effective interaction.
This can also be expressed

W
∣∣Ψ0

〉 = PV (E)Ω
∣∣Ψ0

〉
, (6.174)

using the expression (6.171) for the wave operator. Note that the energy parameter of
the interaction is here the full energy. From the relation (6.174) and the expression
(6.79) for the effective interaction we have the alternative expression

http://dx.doi.org/10.1007/978-3-319-15386-5_2
http://dx.doi.org/10.1007/978-3-319-15386-5_3
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W
∣∣Ψ0

〉 = P(E − H0)Ω
∣∣Ψ0

〉
. (6.175)

Equation (6.174) is an expression for the effective interaction in the restricted
Hilbert space with no uncontracted photons, equivalent to the photonic-Fock-space
relation (6.63). This is analogous to theMBPT result (2.54), but now the perturbation
is energy dependent.

It should be noted that the expression above contains the full energy of the target
state in question. If we look at the first term in (6.173), we can expand the energy
perturbatively

PV (E)P = PV (E0)P + P
δV (E)

δE
ΔE P + · · · (6.176)

The second term is consistent with the folded term in (6.115). Again we see that
the shift in the energy parameter is due to the model-space contributions. This
illustrates the fact that the expressions above with the full energy parameter acting
in the restricted space with no uncontracted photons are equivalent to the Fock-
space relations with the unperturbed parameter, discussed earlier in the chapter.

From the relation (6.171) we have

Q(E − H0)Ω
∣∣Ψ0

〉
= Q(E − H0)

[
1 + ΓQ(E) V (E) + ΓQ(E) V (E)ΓQ(E) V (E) + · · ·

]∣∣Ψ0
〉

= Q
[
V (E) + V (E)ΓQ(E) V (E) + · · ·

]∣∣Ψ0
〉 = QV (E)Ω

∣∣Ψ0
〉
,

using the fact that the resolvent is ΓQ(E) = Q/(E − H0). Combining this with
(6.174) and (6.175), leads to the Schrödinger-like equation in the restricted space

(
H0 + V (E)

)
|Ψ 〉 = E |Ψ 〉 (6.177)

and an energy-dependent Hamilton operator

H = H0 + V (E). (6.178)

These relations can be compared with the corresponding GML relations (6.48 and
6.55) in the photonic Fock space. The equation (6.177) is identical to the effective-
potential form of the Bethe–Salpeter equation (10.20).

It should be observed that the Hamiltonian (6.178) in the restricted Hilbert space
is derived starting from the Gell-Mann–Low relation (6.55) in the photonic Fock
space without any further assumptions.

As before, we can generalize this treatment by replacing the single-photon poten-
tial V by the irreducible multi-photon potential in Fig. 6.9.

http://dx.doi.org/10.1007/978-3-319-15386-5_2
http://dx.doi.org/10.1007/978-3-319-15386-5_10
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6.11.2 Multi-reference Model Space

We shall now investigate the time dependence of the Green’s operator in a general,
quasi-degenerate model space. We start from the relation (6.133)

G(t, E)PE = G0(t, E)PE +
∞∑

n=1

δnG0(t, E)

δEn
W n PE , (6.179)

valid in the general multi-reference (quasi-degenerate) case. As before, PE is the part
of the model space with energy E and W is given by (6.79). This can formally be
expressed as a relation, valid in the entire model space,

G(t, H∗
0 )P = G0(t, H∗

0 )P +
∞∑

n=1

δnG0(t, H∗
0 )

δ(H∗
0 )n

(
W ∗)n

P. (6.180)

where the symbol A∗ implies that the operator A operates directly on the model-
space state to the right. Thus, H∗

0 B PE = EB PE = B H∗
0 PE . Similarly, H∗

eff B|Ψ α
0 〉 =

Eα B|Ψ α
0 〉 = B H∗

eff |Ψ α
0 〉.

From (6.62) we have

W |Ψ α
0 〉 = P(Eα − H0)|Ψ α

0 〉 (6.181)

or in operator form
W ∗ = H∗

eff − P H∗
0 P. (6.182)

Then the expansion (6.180) leads in analogy with (6.133) to

G(t, H∗
0 ) P = G0(t, H∗

eff) P. (6.183)

From (6.166) we have

G0(t, E)PE = e−it (E−H0)

×
[
1 + ΓQ(E) V (E) + ΓQ(E) V (E)ΓQ(E) V (E) + · · ·

]
PE (6.184)

or generally

G0(t, H∗
0 )P = e−it (H∗

0 −H0)

×
[
1 + ΓQ(H∗

0 ) V (H∗
0 ) + ΓQ(H∗

0 ) V (H∗
0 )ΓQ(H∗

0 ) V (H∗
0 ) + · · ·

]
P. (6.185)
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This leads in analogy with (6.167) to

G(t, H∗
0 )P = G0(t, H∗

eff)P = e−it (H∗
eff−H0)

[
1 + ΓQ(H∗

eff) V (H∗
eff)

+ ΓQ(H∗
eff) V (H∗

eff)ΓQ(H∗
eff) V (H∗

eff) + · · ·
]

P. (6.186)

From this we conclude that
• the general time dependence of the Green’s operator is given by

i
∂

∂t
G(t, H∗

0 )P = (H∗
eff − H0)G(t, H∗

0 )P. (6.187)

Using PG(0, H∗
0 )P = PΩ P = P , this gives with (6.182)

P

(
i
∂

∂t
G(t, H∗

0 )

)
t=0

P = P(H∗
eff − H0)G(0, H∗

0 )P = W ∗, (6.188)

which is the expected result.
In analogy with (6.174) we have

W ∗ = PV (H∗
eff)Ω P (6.189)

and similarly in analogy with (6.178) the generalized Hamilton operator

H = H0 + V (H∗
eff). (6.190)

and the Schrödinger-like equation

(
H0 + V (Eα)

)
|Ψ α〉 = Eα|Ψ α〉. (6.191)

This agrees with the equation derived in [131, Eq.133]. When the potential is the
complete irreduciblemulti-photon potential, this is equivalent to theBethe–Salpeter-
Bloch equation, discussed in Chap.10 (10.30).

http://dx.doi.org/10.1007/978-3-319-15386-5_10


Chapter 7
Examples of Numerical Calculations
of One- and Two-Photon QED Effects

In this chapter we shall give some numerical illustrations of the three QED methods
described in Part II, the S-matrix, the two-time Green’s-function and the covariant
evolution operator (CEO) methods, applied to evaluation of one-and two-photon
exchange. Effects beyond that level will be discussed in the following chapters.

7.1 S-Matrix

7.1.1 Electron Self-energy of Hydrogenlike Ions

In the early days of quantum electrodynamics the effects were calculated analytically,
applying a double expansion inα and Zα. For high nuclear charge, Z , such an expan-
sion does not work well, and it is preferable to perform the evaluation numerically to
all orders of Zα. The first numerical evaluations of the electron self-energy on heavy,
many-electron atoms were performed by Brown et al. in the late 1950s [38] and by
Desiderio and Johnson in 1971 [56], applying a scheme devised by Brown et al. [37]
(see Sect. 12.3).

An improved method for self-energy calculations, applicable also for lighter
systems, was developed and successfully applied to hydrogenlike ions by Peter
Mohr [149, 154, 156–158]. The energy shift due to the first-order electron self-energy
is conventionally expressed as

ΔE = α

π

(Zα)4

n3
F(Zα)mc2, (7.1)

where n is the main quantum number. The function F(Zα) is evaluated numerically,
and some results are given in Table7.1.
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Table 7.1 The F(Zα)

function for the ground state
of hydrogenlike mercury

Reference F(Zα)

Desiderio and Johnson [56] 1.48

Mohr [153] 1.5032(6)

Blundell and Snyderman [28] 1.5031(3)

Mohr [149] 1.5027775(4)

To perform accurate self-energy calculations numerically for low Z is complicated
due to slow convergence. Mohr has estimated the first-order Lamb shift (self-
energy + vacuum polarization) by means of elaborate extrapolation from heavier
elements and obtained the value 1057.864(14)MHz for the 2s−2p1/2 shift in neutral
hydrogen [156], in excellent agreement with the best experimental value at the time,
1057.893(20)MHz. More recently, Jentschura, Mohr and Soff [96] have extended
the method of Mohr in order to calculate directly the self-energy of light elements
down to hydrogen with extremely high accuracy. Accurate calculations have also
been performed for highly excited states [97].

The original method of Mohr was limited to point-like nuclei but was extended to
finite nuclei in a workwithGerhard Soff [161]. An alternativemethod also applicable
to finite nuclei has been devised by Blundell and Snyderman [28, 29].

7.1.2 Lamb Shift of Hydrogenlike Uranium

In high-energy accelerators, like that at GSI in Darmstadt, Germany, highly charged
ions up to hydrogenlike uranium can be produced. For such systems the QED effects
are quite large, and accurate comparison between experimental and theoretical results
can here serve as an important test of the QED theory in extremely strong electro-
magnetic fields—a test that has never been performed before.

The first experimental determination of the Lamb-shift in hydrogenlike uranium
was made by the GSI group (Stöhlker, Mokler et al.) in 1993 [233]. The result was
429(23) eV, a result that has gradually been improved by the group, and the most
recent value is 460.2(4.6) eV [232]. The shift is here defined as the experimental
binding energy compared to the Dirac theory for a point nucleus, implying that it
includes also the effect of the finite nuclear size. In Table7.2 we show the various
contributions to the theoretical value. The self-energy contribution was evaluated by
Mohr [149] and the finite-nuclear-size effect by Mohr and Soff [161]. The vacuum-
polarization, including the Wichmann–Kroll correction (see Sect. 4.6.3), was eval-
uated by Persson et al. [190]. The second-order QED effects, represented by the
diagrams in Fig. 7.1, have also been evaluated. Most of the reducible part was eval-
uated by Persson et al. [189]. The last two irreducible too-loop diagrams are much
more elaborate to calculate and have only recently been fully evaluated by Yerokhin
et al. [256]1

1See Sect. 2.6.

http://dx.doi.org/10.1007/978-3-319-15386-5_4
http://dx.doi.org/10.1007/978-3-319-15386-5_2
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Table 7.2 Ground-state Lamb shift of hydrogenlike uranium (in eV, mainly from [159])

Correction Value Reference

Nuclear size 198.82

First-order self-energy 355,05 [149, 161]

Vacuum polarization −88.59 [190]

Second-order effects −1.57

Nuclear recoil 0.46

Nuclear polarization −0.20

Total theory 463.95

Experimental 460.2 (4.6)

Fig. 7.1 Second-order contributions to the Lamb shift of hydrogenlike ions (c.f. Fig. 5.3)

Themain uncertainty of the theoretical calculation on hydrogenlike uranium stems
from the finite-nuclear-size effect, which represents almost half of the entire shift
from the Dirac point-nuclear value. Even if the experimental accuracy would be
significantly improved, it will hardly be possible to test with any reasonable accuracy

http://dx.doi.org/10.1007/978-3-319-15386-5_5
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the second-order QED effects, which are only about one percent of the nuclear-size
effect. For that reason other systems, like lithium-like ions, seem more promising
for testing such effects.

7.1.3 Lamb Shift of Lithiumlike Uranium

The 2s − 2p1/2 Lamb shift of lithiumlike uranium was measured at the Berkeley
HILAC accelerator by Schweppe et al. in 1991 [222]. The first theoretical evaluations
of the self-energy was performed by Cheng et al. [46] and the complete first-order
shift, including vacuum polarization by Blundell [26], Lindgren et al. [128], and
Persson et al. [189], the latter calculation including also some reducible second-
order QED effects. Later, more complete calculations were performed by Yerokhin
et al. [254]. The results are summarized in Table7.3.

In lithiumlike systems the nuclear-size effect is considerably smaller than in
the corresponding hydrogenlike system and can be more easily accounted for. The
second-order QED effects in Li-like uranium are of the same order as the present
uncertainties in theory and experiment, and with some improvement these effects
can be tested. Therefore, systems of this kind seem to have the potential for the most
accurate test of high-field QED at the moment.

7.1.4 Two-Photon Non-radiative Exchange
in Heliumlike Ions

Accurate S-matrix calculations of the non-radiative two-photon exchange for
heliumlike ions (ladder and cross), corresponding to the Feynman diagrams in
Fig. 7.2, have been performed byBlundell et al. [27] and by Lindgren et al. [126]. The

Table 7.3 2s − 2p1/2 Lamb shift of lithiumlike uranium (in eV)

Correction [26] [189] [254]

Relativistic MBPT 322.41 322.32 322.10

1. Order self-energy −53.94 −54.32

1. Order vacuum polarization (12.56) 12.56

1. Order self-energy + vac. pol. −41.38 −41.76 −41.77

2. Order self-energy + vac. pol. 0.03 0.17

Nuclear recoil (0.10) (−0.08) −0.07

Nuclear polarization (0.10) (0.03) −0.07

Total theory 280.83(10) 280.54(15) 280.48(20)

Experimental 280.59(9)
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Fig. 7.2 Feynman diagrams
representing the two-photon
exchange (ladder and cross)
for heliumlike ions

results are illustrated in Fig. 7.3 (taken from [126]). In the figure the contributions
are displayed versus the nuclear charge, relative to the zeroth-order non-relativistic
ionization energy, Z2/2 (in atomic Hartree units). The vertical scale is logarithmic,
so that −1 corresponds to α, −2 to α2 etc.

For low Z the first-order Coulomb interaction is proportional to Z , the first-order
Breit interaction to Z3α2, and the first-order Lamb shift to Z4α3. For high Z we can
replace Zα by unity, and then after dividing by Z2, all first-order effects tend to α
as Z increases, as is clearly seen in the top picture of Fig. 7.3 (see also Fig. 9.1 and
Table9.1).

An additional Coulomb interaction reduces the effect for small Z by a factor of Z .
Therefore, the Coulomb–Coulomb interaction, i.e., the leading electron correlation,
is in first order independent of Z and the Coulomb–Breit interaction proportional to
Z2α2. The screened Lamb shift is proportional to Z3α3 and the second-order Breit
interaction (in the no-pair approximation) to Z4α4. After division with Z2, we see
(second picture of Fig. 7.3) that all second-order effects tend to α2.

The third picture in Fig. 7.3 shows the effect of the retarded Coulomb–Breit and
Breit–Breit interactions without and with virtual pairs. For low Z these effects are
one order of α smaller than the corresponding unretarded interactions with no virtual
pairs, while for high Z they tend—rather slowly—to the same α2 limit. It is notable
that for the Coulomb–Breit interactions the retardation and virtual pairs have nearly
the same effect but with opposite sign. For the Breit–Breit interactions the effects
of single and double pairs have opposite sign and the total effect changes its sign
around Z = 40.

More recently, Mohr and Sapirstein have performed S-matrix calculations also
on the excited states of heliumlike ions and compared with second-order MBPT
calculations in order to determine the effect of non-radiative QED, retardation and
virtual pairs [160], and some results are shown in Table7.4.

7.1.5 Electron Correlation and QED Calculations
on Ground States of Heliumlike Ions

The two-electron effect on the ground-state energy of some heliumlike ions has
been measured by Marrs et al. at Livermore Nat. Lab. by comparing the ionization
energies of the corresponding heliumlike and hydrogenlike ions [144]. (The larger
effect due to single-electron Lamb shift is eliminated in this type of experiment.)

http://dx.doi.org/10.1007/978-3-319-15386-5_9
http://dx.doi.org/10.1007/978-3-319-15386-5_9
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One- and two-photon exchangeOne- and two-photon exchange

Fig. 7.3 Various contributions to the ground-state energy ofHe-like ions. The top picture represents
the first-order contributions, themiddle picture the second-order contributions in the NVPA as well
as the screened Lamb shift, and the bottom picture contributions due to retardation and virtual pairs.
The values are normalized to the non-relativistic ionization energy, and the scale is logarithmic
(powers of the fine-structure constant α)
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Table 7.4 Two-photon effects on some excited states of heliumlike ions (in μHartree, from [160])

Z 2 3S1 2 3P0 2 3P2

30 MBPT −49 541 −88 752 −75 352

QED −8.7 145 77.6

50 MBPT −53 762 −123 159 −79 949

QED 64 1340 767

80 MBPT −66 954 −251 982 −93

QED 966 9586 5482

Table 7.5 Two-electron effects on the ground-state energy of heliumlike ions (in eV, from [192])

Z Plante et al. Indelicato et al. Drake Persson et al. Expt’l

32 562.0 562.1 562.1 562.0 562.5 ± 1.5

54 1028.4 1028.2 1028.8 1028.2 1027.2 ± 3.5

66 1372.2 1336.5 1338.2 1336.6 1341.6 ± 4.3

74 1574.8 1573.6 1576.6 1573.9 1568 ± 15

83 1880.8 1886.3 1881.5 1876 ± 14

Fig. 7.4 Feynman diagrams representing the two-electron screened vacuum polarization and
self-energy

Persson et al. [192] have calculated the two-electron contribution by adding to the
all-orderMBPT result the effect of two-photonQED (see Fig. 7.4), using dimensional
regularization (see Chap.12). The results are compared with the experimental results
as well as with other theoretical estimates in Table7.5. The results of Drake were
obtained by expanding relativistic and QED effects in powers of α and Zα, using
Hylleraas-type of wave functions [61]. The calculations of Plante et al. were made by
means of relativistic MBPT and adding first-order QED corrections taken from the
work of Drake [195], and the calculations of Indelicato et al. were made by means
of multi-configurational Dirac-Fock with an estimate of the Lamb shift [91]. The
agreement between experiments and theory is quite good, although the experimental
accuracy is not good enough to test the QED parts, which lie in the range 1–5eV. The
agreement between the various theoretical results is also very good—only the results
of Drake are somewhat off for the heaviest elements, which is due to the shortcoming
of the power expansion.

http://dx.doi.org/10.1007/978-3-319-15386-5_12
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7.1.6 g-Factor of Hydrogenlike Ions. Mass
of the Free Electron

The Zeeman splitting of hydrogenlike ions in a magnetic field is another good test
of QED effects in highly charged ions. The lowest-order contributions to this effect
are represented by the Feynman diagrams in Fig. 7.5.

The bound-electron g-factor can be expanded as [193]

gJ = −2

{
1

3

[
1 + 2

√
1 − (Zα)2

]
1 + α

π

(
1

2
+ (Zα)2

12
+ · · ·

)}
, (7.2)

where Z is the nuclear charge. The first term represents the relativistic value with a
correction from the Dirac value of orderα2. The second term, proportional toα is the
leading QED correction, known as the Schwinger correction, and the following term,
proportional to α3, is the next-order QED correction, first evaluated by Grotsch [84].

Numerical calculations to all orders in Zα have been performed by Blundell
et al. [30] (only self-energy part, (b, c) in Fig. 7.5) and by the Gothenburg group [18,
193] (incl. the vacuum polarization (d, e)). The results are displayed in Fig. 7.6,
showing the comparison between the Grotsch term (the leading QED correction
beyond the Schwinger correction) and the numerical result. (The common factor of
2α/π has been left out.) The vacuum-polarization data include the Wichmann-Kroll
correction in addition to the Uehling correction, and both sets of data include the
Breit screening in addition to the Coulomb one. More accurate calculations have
later been performed by the St Petersburg group, including also two-loop corrections
and the nuclear recoil [255, 257].

The g-factors of hydrogenlike ions have been measured with high accuracy by
the Mainz group, using an ion trap of Penning type [16, 85]. The accuracy of the
experimental and theoretical determinations is so high that the main uncertainty is
due to the experimentalmass of the electron. Some accurate date forH-like carbon are
shown in Table7.6. By fitting the theoretical and experimental values, a value of the

(a) (b) (c) (d) (e)

Fig. 7.5 Feynman diagrams representing the lowest-order contributions to the Zeeman effect of
hydrogenlike ions.Diagrams (b) and (c) represent the leading self-energy correction to the first-order
effect (a) and (d) and (e) the leading vacuum-polarization correction
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Fig. 7.6 The full first-order, numerically evaluated, QED correction to the g j value of hydrogenlike
ions, compared with the leading analytical (Grotsch) term (7.2). Both results are first-order in α
but the numerical result is all order in Zα, while the Grotsch result contains only the leading term
(from [193]). A common factor 2α/π is left out

Table 7.6 Theoretical contributions to the g-factor of hydrogenlike carbon (mainly from [17])

Correction Value

Dirac theory 1.998 721 3544

Finite nuclear-size corr. +0.000 000 0004

Nuclear recoil +0.000 000 0876

Free-electron QED, first order +0.002 322 8195

Free-electron QED, higher orders +0.000 003 5151

Bound-electron QED, first order +0.000 000 8442

Bound-electron QED, higher orders −0.000 000 0011

Total theory 2.001 041 5899

electron mass (in atomic mass units) me = 0.0005485799093(3), is deduced from
the carbon experiment and the value me = 0.0005485799092(5) from a similar
experiment on oxygen [16]. These results are four times more accurate than the
previously accepted value, me = 0.0005485799110(12) [152]. The new value is
now included in the latest adjustments of the fundamental constants [150, 151].
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7.2 Two-Time Green’s-Function and the Covariant
Evolution Operator Method, Applied to He-Like Ions

The two-time Green’s function and the covariant evolution operator (CEO) methods
have the important advantage over the S-matrix formulation that they can be applied
also to quasi-degenerate energy levels. As a first illustration we consider here the
evaluation of some fine-structure separations of the lowest P state of heliumlike ions,
shown Table7.7. The calculations of Plante et al. [195] are relativistic many-body
calculations in the NVPA scheme (see Sect. 2.6) with first-order QED-energy correc-
tions, taken from the work of Drake [61]. The calculations by Åsén et al. [10, 123],
were preformed with the newly developed CEO method, described in the previous
chapter. This was the first numerical evaluation of (non-radiative) QED effects on
quasi-degenerate energy levels. It can be noted that the energy of the 1s2p 3P1 state,
which a linear combination of the closely spaced states 1s2p1/2 and 1s2p1/3, could
not be evaluated by the S-matrix formulation due to the close degeneracy (see, for
instance, the above-mentioned work of Mohr and Sapirstein [160]). Later, calcula-
tions have also been performed on these systems by the St Petersburg group, using the
two-time-Green’s-function method [9], where also the radiative parts are evaluated
numerically.

The accuracy of the experimental fine-structure results is in most cases not suf-
ficient to test the second-order corrections evaluated by Åsen and Artemyev. One
exception is the care of Fluorine (Z = 9), where the accuracy seems to be sufficient
to test even higher-order QED effects. At present theory cannotmatch the experimen-
tal accuracy here, but this might form a good testing ground for the new combined
QED-correlation procedure, discussed in the following chapters.

As a second illustration we consider some laser and X-ray transition energies for
He-like ions in Table7.8. The transition 1s2s 1S0 − 1s2p 3P1 for He-like silicon has
beenmeasured extremely accurately byMyers et al. [57]. Corresponding calculations
have been performed by Artemyev et al. [9], using the two-time Green’s function and
Plante et al. [195], using relativistic MBPT with first-order QED correction. Here,
it can be seen that the experiment is at least two orders of magnitude more accurate
then the theoretical estimates. Also here the combined higher-order MBPT-QED
corrections are expected to be significant.

In the same tablewe show a comparison between experimental and theoretical val-
ues for some the X-ray transition 1s2 1S0 → 1s2p 1P1. The experimental values are
taken from [9], for Z = 23 and 26 the weighted average of two experimental results
is taken. The experimental value for Z = 22 (Ti) is taken from Chantler [43]. The
agreement between the two theoretical results is excellent. The agreement between
theory and experiments is in most cases also quite good, but in a few cases discrepan-
cies up to three standard deviations. It is argued whether this is accidental or not [43],
as will by further discussed in Chap.9.

http://dx.doi.org/10.1007/978-3-319-15386-5_2
http://dx.doi.org/10.1007/978-3-319-15386-5_9
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Table 7.8 Comparison between theory and experiments for some transition energies of
heliumlike ions

1s2s 1S0 − 1s2p 3P1 (in cm−1)

Z Myers et al. Plante et al. Experimental

14 7230.585(6) 7229(2) 7231.1

1s2 1S0 → 1s2p 1P1 (in eV)

Z Artemyev et al. Plante et al. Experimental

16 2460.629 2460.628 2460.649(9)

18 3159.582 3159.580 3159.553(38)

19 3510.462(1) 3510.459 3510.58(12)

21 4315.412(1) 4315.409 4315.54(15)

22 4749.644(1) 4749.639 4749.85(7)

23 5205.165(1) 5205.154 5205.15(12)

24 5682.068(1) 5682.061 5682.32(40)

26 6700.435(1) 6700.423 6700.80(15)

32 10280.218(3) 10280.185 10280.70(22)

Table 7.9 Two-photon calculations on the 1s2s 1S, 3S states of heliumlike ions (in μHartree, first
two columns from Åsén et al. [11], last column from Mohr and Sapirstein [160])

Z 2 3S0 2 3S1 2 3S1

10 MBPT −116 005 −47 638

QED 6.2 −1.2

18 MBPT −119 381 −48 158

QED 3.8 4.6

30 MBPT −128 349 −49 542 −49 541

QED 93 6.9 8.7

60 MBPT −177 732 −57 025 −57 023

QED 2358 216 224

The CEO method has also been applied by Åsén et al. [10, 11] to evaluate the
two-photon diagrams in Fig. 7.2 for the first excited S states of some heliumlike ions.
The results are compared with relativistic MBPT results, in order to determine the
non-radiative QED effects, as in Table7.4. The results are shown in Table7.9, where
comparison is also made with some results of Mohr and Sapirstein [160].



Part III
Unification of Many-Body

Perturbation Theory
and Quantum Electrodynamics



Chapter 8
Beyond Two-Photon Exchange: Combination
of Quantum Electrodynamics and Electron
Correlation

In Part I we have considered some standard methods for many-body calculations
on electronic systems. These methods are well developed and can treat dominating
electron-correlation effects to essentially all orders of perturbation theory. In Part II
we have considered three differentmethods for numericalQEDcalculations on bound
electronic systems, which have been successfully applied to various problems. The
latter methods are, however, in practice limited to one- and two-photon exchange,
implying that electron correlation can only be treated in lowest order. For many
systems the electron correlation is of great importance, and in order to be able to
evaluate the QED effects accurately, it may be necessary to take into account also
how the quantum-electrodynamical effects are affected by electron correlation.
This implies going beyond second order and requires that new methods have to be
developed.

One of the three methods discussed for QED calculations, the covariant evolution
operator (CEO) method, has the advantage over the other two that it can also deal
with perturbations of the wave function, not only of the energy. It can be used in a
perturbative way and therefore forms a suitable basis for a combined QED-MBPT
procedure, as we shall demonstrate in this third part. When all effects are considered,
this is equivalent to the relativistically covariant Bethe–Salpeter equation, valid
also in the multi-reference case and referred here to as the Bethe–Salpeter–Bloch
equation.

In this work we shall apply the equal-time approximation, discussed in Chap.6.
Furthermore, it is important to work with the Coulomb gauge, particularly when
radiative QED effects are involved, as will be demonstrated in connection with the
numerical results, presented in the following chapter.

© Springer International Publishing Switzerland 2016
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8.1 Non-radiative QED Effects, Combined with Electron
Correlation

We shall first treat the non-radiative QED effects—the retardation and the virtual
electron-positron pairs—to see how they can be combined with electron correlation.

8.1.1 Single-Photon Exchange with Virtual Pairs

In the treatment of single-photon exchange inChap.6 the incoming statewas assumed
to be unperturbed. We shall now generalize this treatment and allow the incoming
state to be perturbed, involving particle as well as hole states.

To start with, we shall work in the standard Hilbert space, assuming that the
interactions are complete, and we shall return to the Fock-space case in the following
section.

With the Coulomb gauge the total interaction is according to (4.57) separated into
a Coulomb and a transverse part (see Fig. 8.1)

IC = ICC + ICT . (8.1)

The corresponding single-photon interaction is similarly separated into

Vsp = VC + VT. (8.2)

We start with the transverse part and consider the Coulomb part later.

8.1.1.1 Transverse Part

The kernel of the transverse part of the single-photon exchange in Coulomb gauge
is in analogy with (6.18) given by (Fig. 8.2)

i SF(x, x1) i SF(x
′, x2) (−i)ICT (x2, x1) i SF(x1, x0) i SF(x2, x

′
0) e

−γ(|t1|+|t2|). (8.3)

Fig. 8.1 In the Coulomb
gauge the single-photon
exchange is separated into a
Coulomb and a transverse
(Breit) part

http://dx.doi.org/10.1007/978-3-319-15386-5_6
http://dx.doi.org/10.1007/978-3-319-15386-5_4
http://dx.doi.org/10.1007/978-3-319-15386-5_6
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Fig. 8.2 Time-ordered
evolution-operator diagrams
for single-photon exchange,
transverse part

The external time dependence is (with the notations in the figure) in the equal-time
approximation in analogy with the previous case (6.16)

e−it(ω3+ω4−εr−εs) eit0(ω1+ω2−εt−εu).

As before, we can argue that in the limit γ → 0 ω1 + ω2 = ω3 + ω4 = E , i.e., equal
to the initial energy (E), and the time dependence becomes

e−it(E−εr−εs) eit0(E−εt−εu).

We then have the relation

UT(t, t0) = e−it(E−H0) MT e
it0(E−H0), (8.4)

whereMT is the corresponding Feynman amplitude, defined as before (6.17). This
yields

MT(x, x′; x0, x′
0) = 1

2

∫∫∫∫
dω1

2π

dω2

2π

dω3

2π

dω4

2π

∫
dz

2π
iSF(ω3; x, x1)

× iSF(ω4; x′, x2) (−i)ICT (z; x2, x1) iSF(ω1; x1, x0) iSF(ω2; x2, x′
0)

× 2πΔγ(ω1 − z − ω3) 2πΔγ(ω2 + z − ω4), (8.5)

leaving out the internal space integrations. (The factor of 1/2 is, as before, eliminated
when considering a particular permutation of the vertices.)

After integrations over ω2, ω3, ω4, the amplitude becomes

MT(x, x′, x0, x′
0) = 1

2

∫∫
dω1

2π

dz

2π
iSF(ω1 − z; x, x1) iSF(E − ω1 + z; x′, x2)

× (−i)ICT (z; x2, x1) iSF(ω1; x1, x0) iSF(E − ω1; x2, x′
0).

(8.6)

Inserting the expressions for the electron propagator (4.10) and the interaction (4.46),
a specific matrix element becomes

http://dx.doi.org/10.1007/978-3-319-15386-5_6
http://dx.doi.org/10.1007/978-3-319-15386-5_6
http://dx.doi.org/10.1007/978-3-319-15386-5_4
http://dx.doi.org/10.1007/978-3-319-15386-5_4
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〈rs|MT|ab〉 =
〈
rs

∣∣∣ − i
∫

dω1

2π

∫
dz

2π

1

ω1 − z − εr + iγr

1

E − ω1 + z − εs + iγs

× 1

ω1 − εt + iγt

1

E − ω1 − εu + iγu

∫
2c2κ dκ f CT (κ)

z2 − c2κ2 + iη

∣∣∣ab
〉
,

(8.7)

where f CT is the transverse part of the f function in Coulomb gauge (4.60). Integration
over z now yields—in analogy with the treatment in Chap.6—

MT = (−i)2
∫

dω1

2π

∫
c dκ f CT (κ)

times the propagator expressions

1

E − εr − εs

[
1

ω1 − εr − (cκ − iγ)r
+ 1

E − ω1 − εs − (cκ − iγ)s

]

and
1

E − εt − εu

[
1

ω1 − εt + iγt
+ 1

E − ω1 − εu + iγu

]
.

We have now four combinations that contribute depending on the sign of the
orbital energies (after integration over ω1):

sgn(εr) �= sgn(εt) : sgn(εt)

εt − εr − (cκ − iγ)r

sgn(εs) = sgn(εt) : sgn(εt)

E − εt − εs − (cκ − iγ)s

sgn(εu) = sgn(εr) : sgn(εu)

E − εr − εu − (cκ − iγ)r

sgn(εu) �= sgn(εs) : sgn(εu)

εu − εs − (cκ − iγ)s

(8.8)

times (−i).
TheFeynman amplitude for the transverse part of the single-photon exchange now

becomes
MT = Γ (E) iVT(E) Γ (E), (8.9)

where Γ (E) is the resolvent (2.64). This yields for the present process

〈
rs

∣∣MT(E)
∣∣tu〉 = i

E − εr − εs

〈
rs

∣∣∣VT(E)

∣∣∣tu
〉 1

E − εt − εu
, (8.10)

http://dx.doi.org/10.1007/978-3-319-15386-5_4
http://dx.doi.org/10.1007/978-3-319-15386-5_6
http://dx.doi.org/10.1007/978-3-319-15386-5_2
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where VT(E) is now the generalized transverse-photon potential

〈
rs

∣∣VT(E)
∣∣tu〉 =

〈
rs

∣∣∣
∫

c dκ f CT (κ)

[
± t±r∓

εt − εr ± cκ

± t±s±
E − εt − εs ∓ cκ

± u±r±
E − εr − εu ∓ cκ

± u±s∓
εu − εs ± cκ

] ∣∣∣tu
〉
.

(8.11)

Here, t± etc. represent projection operators for particle/hole states, respectively. The
upper or lower sign should be used consistently in each term, inclusive the sign in
the front, but all combinations of upper and lower signs in the four term should be
used, corresponding to the 16 time-ordered combinations, shown in Fig. 8.3.

It should be noted that the expression above is valid also for the entire interaction
in any covariant gauge, using the appropriate f function.

We shall now illustrate the potential (8.11) by giving explicit expressions in a few
cases. In the next subsection we shall see how these combinations can be evaluated
in a more systematic way.

No virtual pairs

� �

�t �u
�� �

�r �s

E
� �

The potential becomes here

〈
rs

∣∣VT(E)
∣∣tu〉 =

〈
rs

∣∣∣
∫

c dκ f CT (κ)

×
[

1

E − εr − εu − cκ
+ 1

E − εt − εs − cκ

] ∣∣∣tu
〉
, (8.12)

and the Feynman amplitude agrees with the previous result (6.23). This agrees with
the result of the evaluation of the corresponding time-ordered diagram according to
the rules of Appendix I.

Single hole in (t)
The potential becomes here

〈
rs

∣∣VT(E)
∣∣tu〉 =

〈
rs

∣∣∣
∫

c dκ f CT (κ)

×
[ −1

εt − εr − cκ
+ 1

E − εr − εu − cκ

] ∣∣∣tu
〉
, (8.13)

http://dx.doi.org/10.1007/978-3-319-15386-5_6
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Fig. 8.3 All 16 time-ordered diagrams corresponding to the transverse single-photon exchange
given by (8.11)

� �
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�
��t

�
�

��r

�u
�s

� �

E

which can also be expressed

〈
rs

∣∣VT(E)
∣∣tu〉 = − (E − εt − εu)

×
〈
rs

∣∣∣
∫

c dκ f CT (κ)
1

εt − εr − cκ

1

E − εr − εu − cκ

∣∣∣tu
〉
, (8.14)
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and the denominators of the Feynman amplitude become

− 1

E − εr − εs

1

εt − εr − cκ

1

E − εr − εu − cκ
. (8.15)

This agrees with the evaluation rules of Appendix I. We see here that one of the
resolvents in (8.9) can be singular (“Brown–Ravenhall effect”), which is eliminated
by the potential.

Single hole out (r)

� �

� �

�t
�u
�s

�
�

�

�
�
�

�
�

��r

E
The potential (8.11) becomes

〈
rs

∣∣VT(E)
∣∣tu〉 =

〈
rs

∣∣∣
∫

c dκ f CT (κ)

×
[

1

εt − εr + ck
+ 1

E − εt − εs − cκ

] ∣∣∣tu
〉
. (8.16)

The denominators can here be expressed

(E − εr − εs)
1

εt − εr + cκ

1

E − εt − εs − cκ
, (8.17)

and the denominators of the Feynman amplitude becomes

1

εt − εr + cκ

1

E − εt − εs − cκ

1

E − εt − εu − cκ
, (8.18)

which agrees with the evaluation rules of Appendix I.

Double hole in t, u
The potential (8.11) is here

〈
rs

∣∣VT(E)
∣∣tu〉 =

〈
rs

∣∣∣
∫

c dκ f CT (κ)

×
[ −1

εt − εr − cκ
+ −1

εu − εs − cκ

] ∣∣∣tu
〉
, (8.19)
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� �

� �

�
�

�
�

�
��u�

�
�

�
�

��t �� �

�r �s

E
and the denominators of the Feynman amplitude become

−1

E − εr − εs

[
1

εt − εr − cκ
+ 1

εu − εs − cκ

]
1

E − εt − εu
. (8.20)

We shall demonstrate explicitly here that this agrees with the evaluation rules of
Appendix I. With one time-ordering t34 > t2 > t > −∞ and ∞ > t34 > t2 the time
integrations yield

(−i)3
∫ −∞

t34

dt2 e
−id2t2

∫ ∞

t2

dt34 e
−id34t34

∫ −∞

t2

dt1 e
−id1t1 . (8.21)

Together with the alternative time ordering 1 ↔ 2 this becomes

−1

d1234d34

[
1

d1
+ 1

d2

]
(8.22)

with the notations of Appendix I, which is identical to the result (8.20). Note that
this is NOT in agreement with the standard Goldstone rules of MBPT [124].

Single hole in and out (t, s)

�u

�
�

�
�

�
�

�s

�
�

�
�

�
��t

�r

� �
� �

� ��

�

�

E
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�r
�

�
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��

�
�
��

�
���
s

��
�
��

�
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��

�
��t

� �
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�

�

E
The potential (8.11) yields

〈
rs

∣∣VT(E)
∣∣tu〉 =

〈
rs

∣∣∣
∫

c dκ f CT (κ)

[ −1

εt − εr − cκ

+ −1

E − εt − εs + cκ
+ 1

E − εu − εr − cκ
+ 1

εu − εs + cκ

]∣∣∣tu
〉
.

(8.23)
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Using the notations of Appendix I,

d1 = εt − εr − cκ; d2 = εu − εs + cκ; d3 = εa − εt − cκ;
d4 = εb − εu + cκ; d34 = E − εt − εu;

d134 = E − εr − εu − cκ; d234 = E − εt − εs + cκ; d1234 = E − εr − εs,

the bracket above becomes

− 1

d1
− 1

d234
+ 1

d2
+ 1

d134
= d1234d34

d134d234

[
1

d2
− 1

d1

]
, (8.24)

and the denominators of the Feynman amplitude (8.10)

1

d134d234

[
1

d2
− 1

d1

]
= 1

d1d2

[
1

d134
− 1

d234

]
, (8.25)

which agrees with the rules of Appendix I.

8.1.1.2 Coulomb Interaction

The Coulomb part of the interaction is obtained in a similar way (see Fig. 8.4). In
analogy with (8.5) we now have

MC = 1

2

∫∫
dω1

2π

dω3

2π

∫
dz

2π
iSF(ω1) iSF(E0 − ω1)(−i)ICC iSF(ω3) iSF(E0 − ω3),

leaving out the space coordinates. After z integration, using (4.63b), and with the
explicit form of the propagators this leads to

〈rs|MC|ab〉 =
〈
rs

∣∣∣ − i
∫∫

dω1

2π

dω3

2π

1

ω1 − εr + iγr

1

E0 − ω1 − εs + iγs

× VC
1

ω3 − εt + iγt

1

E0 − ω3 − εu + iγu

∣∣∣ab
〉

=
〈
rs

∣∣∣ ± i

E0 − εr − εs
VC

1

E0 − εt − εu

∣∣∣ab
〉
, (8.26)

Fig. 8.4 Same as Fig. 8.3 for the Coulomb interaction

http://dx.doi.org/10.1007/978-3-319-15386-5_4
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where VC is the Coulomb interaction (2.109). Here, the plus sign is used if sgn(εt) =
sgn(εu) = sgn(εr) = sgn(εs) and the minus sign if sgn(εt) = sgn(εu) �= sgn(εr) =
sgn(εs).

8.1.2 Fock-Space Treatment

We shall now see how the general single-photon potential (8.11) can be evaluated in
a systematic way by working in the photonic Fock space. We shall also be able to
evaluate the potential with one or several crossing Coulomb interactions. This part
follows largely the presentation in [132] and the PhD thesis ofDanielHedendahl [86].

We have seen earlier that with the perturbation (6.51)

H(x) = H(t, x) = −ψ̂†(x) ecαμAμ(x) ψ̂(x) (8.27)

the wave function partly lies in an extended photonic Fock space, where the number
of photons is no longer conserved. According to the Gell-Mann–Low theorem we
have a Schrödinger-like equation (6.48) in that space

(H0 + VF)|Ψ α〉 = Eα|Ψ α〉, (8.28)

where VF is the perturbation (6.52) with the Coulomb and the transverse Fock-space
parts, VF = VC + vT.

In working in the extended space with uncontracted perturbations it is necessary
to include in the model Hamiltonian (H0) also the energy operator of the photon
field (6.54)

H0 = H0 + cκ a†i (k) ai(k), (8.29)

where κ = |k|.
The wave operator is, as before, given by the Green’s operator at t = 0 (6.70),

which may now contain uncontracted photon terms,

|Ψ α〉 = Ω|Ψ α
0 〉. (8.30)

|Ψ α
0 〉 = P|Ψ α〉 is the corresponding model state, which lies entirely within the

restricted space with no uncontracted photons.
The expression for single transverse-photon exchange is given by (6.34)

〈rs|Vsp|tu〉
=

〈
rs

∣∣∣
∫ ∞

0
c dκ f (κ)

[
1

E − εr − εu − (cκ − iγ)r
+ 1

E − εs − εt − (cκ − iγ)s

] ∣∣∣tu
〉
.

(8.31)

http://dx.doi.org/10.1007/978-3-319-15386-5_2
http://dx.doi.org/10.1007/978-3-319-15386-5_6
http://dx.doi.org/10.1007/978-3-319-15386-5_6
http://dx.doi.org/10.1007/978-3-319-15386-5_6
http://dx.doi.org/10.1007/978-3-319-15386-5_6
http://dx.doi.org/10.1007/978-3-319-15386-5_6
http://dx.doi.org/10.1007/978-3-319-15386-5_6
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In the Coulomb gauge these expressions involve the functions f CT , given by (4.60)

f CT (κ) = e2

4π2ε0

[
α1 · α2

sin(κr12)

r12
− (α1 · ∇1) (α2 · ∇2)

sin(κr12)

κ2 r12

]
. (8.32)

By means of the expansion theorem

sin κr12
κr12

=
∞∑
l=0

(2l + 1)jl(κr1)jl(κr2) Cl(1) · Cl(2), (8.33)

where jl(κr) are radial Bessel functions and Cl vector spherical harmonics [124],
we can express the function f CT as a sum of products of single-electron operators
[132, App. A]

f CT (κ) =
∞∑
l=0

[
V l
G(κr1) · V l

G(κr2) + V l
sr(κr1) · V l

sr(κr2)
]
, (8.34)

where

V l
G(κr) = e

2π
√

ε0

√
κ(2l + 1) jl(κr)αCl, (8.35a)

V l
sr(κr) = e

2π
√

ε0

√
κ

2l + 1

[√
(l + 1)(2l + 3) jl+1(κr) {αCl+1}l

+ √
l(2l − 1) jl−1(κr) {αCl−1}l

]
. (8.35b)

In (8.32) the first term represents theGaunt interaction and the second term the scalar
retardation, which together form the Breit interaction (see Appendix F.2). The terms
in the expansion—which are all time independent in the Schrödinger picture—will
together with the Coulomb interaction (VC = e2/4πr12) form the time-independent
perturbation

VF = VC + V l
G(κr) + V l

sr(κr). (8.36)

8.1.2.1 Transverse-Photon Potential

We consider now the general transverse-photon exchange treated above (8.11), com-
bined with Coulomb interactions. We consider first the case where no virtual pairs
are present.

http://dx.doi.org/10.1007/978-3-319-15386-5_4
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Fig. 8.5 Expansion of the equation (8.38) in the photonic Fock space, no virtual pairs, leading to
single-photon exchange, including folded diagrams. The second and third diagrams represent Ω l

in (8.38) and the last three diagrams the full single-photon exchange with one Coulomb interaction,
ΩCsp in (8.39)

We consider first a single Coulomb perturbation

Ω(1)PE = ΓQ(E)VCPE , (8.37)

where PE is the projection operator for a sector of the model space of energy E . Then
we perturb this by one of the V l terms (8.34), representing part of the transverse
interaction, using the generalized Bloch equation (6.156)1 (here, G(1) = ΓQV l),

Ω lPE = ΓQ(E)V lΩ(1)PE + δ
(
ΓQV l

)
δE W (1)

= ΓQ(E)V lΩ(1)PE − ΓQ(E)ΓQ(E ′)V l W (1) (8.38)

with W (1) = PE ′VCPE . Here,

ΓQ(E) = Q

E − εr − εu − cκ

is the reduced resolvent (2.65), which contains the term −cκ due to the crossing
photon (8.29).

The first term in (8.38) with a single denominator (resolvent) yields part of the
potential (6.23), and the second term with the energy derivative or a double denom-
inator represents the folded or model-space contribution. These terms correspond to
the second and third diagrams in the Fig. 8.5. We have here indicated by a single line
the single denominator and by the double line the double denominator.

We complete the single-photon exchange (+Coulomb) between the electrons by
adding a second perturbation V l to (8.38) (with somewhat simplified notations),

ΩCsp = ΓQV
lΩ l − ΓQΩspW

(1)

1Even if the perturbations used here are energy independent, we shall find it convenient to use the
more general formalism.

http://dx.doi.org/10.1007/978-3-319-15386-5_6
http://dx.doi.org/10.1007/978-3-319-15386-5_2
http://dx.doi.org/10.1007/978-3-319-15386-5_6
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ΩCsp = ΓQ V lΓQV
l︸ ︷︷ ︸Ω(1) − ΓQ V lΓQΓQV

l︸ ︷︷ ︸W (1) − ΓQ ΓQV
lΓQV

l︸ ︷︷ ︸W (1), (8.39)

omitting multiple folds. These terms are illustrated by the last three diagrams of
Fig. 8.5.

There is no derivative term here as in (8.38), since the intermediate state between
the V l perturbations lies in the Q space (photonic Fock space). On the other hand,
there is a standard folded term −ΓQΩspW (1), last term in (8.39).

Summing over κ and l, considering photon emission from both electrons and
including the Gaunt as well as the scalar-retardation parts (8.34), then V lΓQV l cor-
responds to the single-photon exchange potential Vsp (8.31) and −V lΓQΓQV l to the
energy derivative of that potential. The last term in (8.39) represents the standard
folded term −ΓQΩW . This can also be expressed

ΩCsp = ΓQVspΩ
(1) + ΓQ

δVsp

δE W (1) − ΓQΓQVsp W
(1)

= ΓQVspΩ
(1) + δ(ΓQVsp)

δE W (1), (8.40)

which is consistent with the Bloch equation (6.156).
We see that

• the energy dependence of the single-photon-exchange potential is generated by
a single energy denominator and the energy derivative (difference ratio) by a
double denominator (folded contribution).

8.1.2.2 Crossing Coulomb Interactions. No Virtual Pairs

After the first interaction V l (8.38) it is possible to add one or more Coulomb inter-
actions, before closing the photon interaction, yielding

Ω l
C = ΓQVCΩ l, (8.41)

corresponding to the first two diagrams in Fig. 8.6. Again, there is no MSC here,
since the intermediate state lies in the Fock space. Closing the photon by a second
V l interaction, gives rise to the retarded photon exchange with a crossing Coulomb
interaction

ΩspC = ΓQV
lΩ l

C = ΓQV
lΓQVCΩ l. (8.42)

This corresponds to the last two diagrams in the figure.
Inserting the expression for Ω l (8.38), the expression above becomes

ΩspC = ΓQV
lΓQVC

[
ΓQV

lΩ(1) − ΓQΓQV
l W (1)

]
. (8.43)

In a similar way several Coulomb interactions could be inserted.

http://dx.doi.org/10.1007/978-3-319-15386-5_6
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Fig. 8.6 Perturbingwith one or several Coulomb interactions before closing the retarded interaction
gives rise to a retarded photon interaction with Coulomb crossings. The first two diagrams represent
Ω l

C in (8.41) and the last two ΩspC in (8.42)

Fig. 8.7 By emitting several
photons before closing the
first one can give rise to
irreducible multi-photon
exchange

A second perturbation V l can also be applied without contracting the first one,
leading to diagrams indicated by he second and third diagrams in Fig. 8.7, but this is
beyond the approximation of single-transverse-photon we are concerned with here.

8.1.2.3 Crossing Coulomb Interactions. Virtual Pairs

Illustration. The iterative procedure of the previous subsection works well in the no-
pair situation, when the repeated single-photon exchange leads to reducible diagrams
of ladder type, which means that they can be separated into legitimate diagrams.

In the presence of virtual pairs we have to use a different procedure. We consider
now a first-order Coulombwave function with a single hole out (Fig. 8.8a), perturbed
by the general potential VT (8.11), including virtual pairs,

Ωsp = ΓQVTΩ
(1) + δ(ΓQVT)

δE Ω(1)W. (8.44)

To generate the first term we perturb Ω(1) by the first part V l of the transverse
photon (8.34), represented by diagram (b). Closing with a second V l perturbation,
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(a) (b) (c) (d) (e)

Fig. 8.8 Generating a photon interaction with crossing Coulomb in the presence of a virtual pair

the relevant part of VT with a hole out is given by (8.13), yielding for the first term,
represented by diagram (c),

Ωsp = 1

E − εr − εs

[
−〈s+|V l|u+〉〈r+|V l|t−〉

εt − εr − cκ
+ 〈s+|V l|u+〉〈r+|V l|t−〉

E − εr − εu − cκ

]
〈t−u+|VC|ab〉.

(8.45)

This canbe comparedwith the correspondingno-pair expression (8.43). In the expres-
sion above the resolvents are replaced by the denominators from the potential (8.11).

Before closing the photon, we can apply a Coulomb interaction, as in the previous
case. This is illustrated in the last two diagram in the figure and corresponds to

Ωsp = − 1

E − εr − εs

〈s+|V l|u+〉〈r+u+|VC|r′+u′+〉〈r′+|V l|t−〉
(E − εr − εu − cκ)(E − ε′

r − ε′
u − cκ)(εt − εr − cκ)

×〈t−u′
+|VC|ab〉. (8.46)

It can be remarked that there seems to be a crossing Coulomb interaction also
in figure (c), before applying the last Coulomb. But this Coulomb is applied before
the transverse-photon transmission has started and therefore not really a “crossing”.
In fact, these interactions are separable in time and therefore reducible in the sense
we use the word here. The second Coulomb, on the other hand, is applied while the
photon is “in the air”, and therefore is a crossing in a strict sense.

Full treatment. We shall now generalize the treatment above and consider all 16
combinations of the single-photon exchange (8.11) (see Fig. 8.3), essentially in a
single shot.

Inserting the full potential (8.11), we have

Ωsp = 〈r|V l|t〉 〈s|V l|u〉 〈tu|VC|ab〉
E − εr − εs

×
[
± t±r∓

εt − εr ± cκ
± t±s±

E − εt − εs ∓ cκ
± u±r±

E − εr − εu ∓ cκ
± u±s∓

εu − εs ± cκ

]
.

(8.47)

This can be evaluated in the following way. We first construct a matrix representing
the matrix element 〈r|V l|t〉, separated into four blocks, depending on particle/hole
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Fig. 8.9 The matrix
elements 〈r|V1|t〉, separated
according particle/hole in/out

Fig. 8.10 Coulomb matrix
element separated into four
blocks, according
particle/hole in/out

Fig. 8.11 Result of
multiplying the matrices in
Figs. 8.10 and 8.9. The t line
represents particle as well as
hole states

in/out, as shown in Fig. 8.9. This will be multiplied by a similar matrix representing
the Coulomb matrix 〈tu|VC|ab〉 in Fig. 8.10 with the result shown in Fig. 8.11.

Multiplying the resulting matrix by a matrix representing 〈s|V l|u〉 yields the final
matrix in Fig. 8.12. We have here also indicated the denominators in (8.47). “A−B”
in the upper left corner indicates that the denominator is +A and −B when t is a
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Fig. 8.12 Result of multiplying the matrices in Figs. 8.10 and 8.9. The t line represents particle as
well as hole states

particle and a hole, respectively. “−A −B” in the upper right corner indicates that
the denominators are −A as well as −B, when t is a hole and no denominator when
a particle. (A, B, C, D represent the four denominators in the general potential.)

The terms can also be determined from the following table:
r particle: t hole −A; u particle +C
r hole: t particle +A; u hole −C
s particle: t particle +B; u hole: −D
s hole: t hole −B; u particle +D

It is possible also in the general case to insert crossing Coulomb interactions, as
indicated in the illustration (8.46). This is the case when the orbitals u and r or t
and s are of the same kind (particle or hole). It is relatively straightforward when
either of these pairs are particle states, and this case is also likely to be the more
important. When u and r are both particle states, there will be an additional Coulomb
matrix element and a denominator of C-type, as in the illustration above (8.46). The
situation is similar when t and s are both particle states.

The derivative of the potential can be obtained as before, remembering that only
the resolvents are energy dependent.

8.1.3 Continued Iteration. Combination of Non-radiative
QED with Electron Correlation

In many applications wewant to have an expression for the wave operator in the form
of a Bloch equation, where we start from a wave operator,ΩI, of energy-independent
interactions, such as the Coulomb pair function with t = 0 (see Fig. 2.6),

ΩI = 1 + ΓQVC + ΓQVCΓQVC + · · · + folded, (8.48)

http://dx.doi.org/10.1007/978-3-319-15386-5_2
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Fig. 8.13 A single energy-dependent interaction is added to a pair function of energy-independent
interactions in Fig. 2.6. The final state is here in the Q space and the state immediately before the
last interaction can be in the P or Q space

and then add a single energy-dependent interaction, V . The continued inclusion of
Coulomb interactions can then be made iteratively, as long as no negative-energy
states are involved.

We assume that the final state of the pair function lies in the complementary Q
space as illustrated in Fig. 8.13.

The Bloch equation (6.153) is then of the form

G = ΓQVΩI + δ∗G
δE WI, (8.49)

where WI is the effective interaction, due to the pair function,

WI = PVCΩIP. (8.50)

The order-by-order expansion yields

G(1) = Ω
(1)
I + δG(0)

δE W (1)
I = ΓQVC + δG(0)

δE W (1)
I ; (8.51)

G(2) = ΓQVΩI
(1) + δG(0)

δE W (2)
I + δ∗G(1)

δE W (1)
I

= ΓQVΓQVC + δG(0)

δE W (2)
I + δΓQV

δE W (1)
I + δ2G(0)

δE2

(
W (1)

I

)2; (8.52)

G(3) = ΓQVΩI
(2) + δG(0)

δE W (3)
I + δ∗G(1)

δE W (2)
I + δ∗G(2)

δE W (1)
I

= ΓQVΩI
(2) + δG(0)

δE W (3)
I + δΓQV

δE W (2)
I + 2

δ2G(0)

δE2
W (1)

I W (2)
I

+δΓQV

δE ΓQVCW
(1)
I + δ2ΓQV

δE2

(
W (1)

I

)2 + δ3G(0)

δE3

(
W (1)

I

)3
. (8.53)

http://dx.doi.org/10.1007/978-3-319-15386-5_2
http://dx.doi.org/10.1007/978-3-319-15386-5_6
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ΩI andWI contain only energy-independent interactions with all possible folds. The
energy derivatives of G(0) (6.107) vanish for t = 0, which implies that these terms do
not contribute to the wave operator (6.70), Ω = G(t = 0). (The first time derivative,
on the other hand, does contribute to the effective interaction (6.79).)

The third-order wave operator becomes

Ω(3) = ΓQVΩI
(2) + δΓQV

δE W (2)
I + δΓQV

δE ΓQVCW
(1)
I + δ2ΓQV

δE2

(
W (1)

I

)2
, (8.54)

which agrees with the previous result (6.127) (Fig. 6.15). This can be generalized to

Ω = 1 + ΓQVΩI +
∑
m=1

δm(ΓQV )

δEm
ΩI W

m
I . (8.55)

This is a generalization of the first-order result (8.44). Note that the wave operatorΩI

contains the unity (8.48), which implies that there can be a model-space contribution
(folded term) directly after the Coulomb interactions, as indicated in Fig. 8.13.

We can understand the appearance of the sequence of difference ratios above in
the following way. Each model-space contribution (MSC) should contain a differ-
entiation of all the following interactions. In ΩI the last interaction is not involved,
and therefore a differentiation of ΓQV for each model-space state in ΩI is required.

Next, we consider the corresponding case for the effective interaction, i.e., when
the final state lies in the model space, as illustrated in Fig. 8.14 (left).

From the relations (6.134) and (6.137) we have

W (2) = W (2)
0 + δW (1)

δE W (1); (8.56)

W (3) = W (3)
0 + δW (2)

0

δE W (1) + δW (1)

δE W (2) + δ2W (1)

δE2

(
W (1)

)2
(8.57)

(see Fig. 6.16). Here,
W (2)

0 = PVΓQVCP = PVΩI
(1)P,

Fig. 8.14 The effective
interaction, (8.61),
corresponding to the Green’s
operator in Fig. 8.13 (left)
and after continued Coulomb
iterations right

http://dx.doi.org/10.1007/978-3-319-15386-5_6
http://dx.doi.org/10.1007/978-3-319-15386-5_6
http://dx.doi.org/10.1007/978-3-319-15386-5_6
http://dx.doi.org/10.1007/978-3-319-15386-5_6
http://dx.doi.org/10.1007/978-3-319-15386-5_6
http://dx.doi.org/10.1007/978-3-319-15386-5_6
http://dx.doi.org/10.1007/978-3-319-15386-5_6
http://dx.doi.org/10.1007/978-3-319-15386-5_6
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and
W (3)

0 = PVΓQVCΓQVCP = PVΩ
(2)
I0 P, (8.58)

where Ω
(2)
I0 is the second-order pair function without model-space state. The second

term in (8.57) is

δW (2)
0

δE W (1) = P
δV

δE ΩI
(1)W (1) + PV

δΓQVC

δE W (1). (8.59)

The last term can be expressed PVΩ
(2)
I1 P, i.e., the second-order pair function with

one fold, which together with (8.58) forms the expression PVΩI
(2)P, where ΩI

(2)

is the entire second-order wave operator (with and without folds). The third-order
effective interaction can then be expressed

W (3) = PVΩ(2)P + P
δV

δE ΩI
(1)W (1) + P

δV

δE W (2) + P
δ2V

δE2

(
W (1)

)2
, (8.60)

which in analogy with (8.55) can be generalized to

W = PVΩIP + P
∑ δmV

δEm
ΩI W

m. (8.61)

This is illustrated in Fig. 8.14 (left). Also here we observe that there can be a model-
space contribution (fold) directly after the pair function.

Finally, we can add additional energy-independent interactions perturbatively, as
long as no virtual pairs are involved, as illustrated to the right in Fig. 8.14. We can
use the standard Bloch equation in this iteration procedure (Sect. 2.3.1).

The energy-dependent potential is here assumed to be the retarded electrostatic
interaction between the electrons, which can include crossing energy-independent
interactions as well as virtual pairs, as shown above and demonstrated numeri-
cally in [86] (see Chap.9). As shown above (8.8), it is also possible to include the
combination of crossing energy-independent interactions and virtual pairs, although
this has not yet been implemented.

In the next section we shall discuss the similar treatment of radiative effects,
electron self-energy and vertex correction.

8.2 Radiative QED Effects, Combined with Electron
Correlation

Weshall now analyze how the radiativeQEDcorrections—electron self-energy, ver-
tex correction and vacuum polarization—can be treated within the Green’s-operator
formalism and combined with the electron correlation—in analogy with the non-

http://dx.doi.org/10.1007/978-3-319-15386-5_2
http://dx.doi.org/10.1007/978-3-319-15386-5_9


8.2 Radiative QED Effects, Combined with Electron Correlation 197

radiative interactions, treated in the previous section. We consider a two-electron
system and start with the second-order cases with a single Coulomb interaction, i.e.,
first-order screened self-energy and lowest-order vertex correction. These are both
singular, but we shall see that the singularities cancel. Details of the renormalization
process are described in Chap.12.

8.2.1 Two-Electron Screened Self-Energy and Vertex
Correction in Lowest Order

We consider first the first-order Coulomb screened self-energy and vertex correction
for He-like systems, illustrated in Fig. 8.15. We start with assuming the final state
lies in the model space, i.e., considering the effective interaction.

The bound-state self-energy can be expanded into a zero-potential, one-potential
and many-potential parts (see Fig. 8.16)

Σbou = Σ free
zp + Σ free

op + Σ free
mp . (8.62)

The potential used is that of the generating Dirac equation for the bound orbitals,
normally the nuclear potential, Vnuc. The free-electron (zero-potential) self-energy

Fig. 8.15 Second-order Coulomb screened self-energy and vertex correction for He-like systems.
Diagrams (2B) and (2Ax) are divergent

Fig. 8.16 Expanding the bound-state self-energy into zero-, one-, and many-potential terms. The
heavy vertical lines represent the bound-state orbitals, generated in an extern (nuclear) potential,
and the thin lines represent free-electron states

http://dx.doi.org/10.1007/978-3-319-15386-5_12
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can be expressed (12.37)

Σ free(ω, p) = Σ free
zp = βA + B(αμpμc − βmc2) + βC(αμpμc − βmc2)2, (8.63)

where A = δmc2 is the mass counterterm, employed in the mass renormalization,
the second term represents the charge divergence and the third term is the finite
renormalized free-electron self-energy, Σ free

ren .
2 The divergence lies entirely in the

zero-potential or free-electron part.
The scalar vertex-correction parameter is expressed (4.100)

Λ0 = L + Λ0
ren, (8.64)

where Λ0 is the unrenormalized vertex-correction parameter (4.98 and 12.42), Λ0
ren

the renormalized one, and L is the divergence constant. Also here, the divergence
lies entirely in the free-electron part, and hence

Λ0,free = L + Λ0,free
ren . (8.65)

The one-potential part of the bound-state self-energy becomes

Σ free
op (ω, p) = Λ0,freeVnuc = (L + Λ0,free

ren )Vnuc. (8.66)

The mass-renormalized bound-state self-energy then becomes, after including
also the many-potential part in (8.62),

Σbou
massren = Σ = B(αμpμc − βmc2) + Σ free

ren + (L + Λ0,free
ren )Vnuc + Σ free

mp . (8.67)

In this chapter we shall in the following always understand that the bound-state
self-energy is mass-renormalized, and we denote that simply by Σ .

It follows from the Ward identity (4.102) that

B = −L. (8.68)

Our bound-state orbitals satisfy the Dirac equation (D.43)

HD|a〉 = [ − cαμ(p̂μ + eAμ) + βmec
2
]|a〉 = 0. (8.69)

Therefore, when operating on such an orbital, we can replace the bracket in the first
term in (8.67) by −ecαμAμ, which for the scalar potential, Vnuc, becomes (D.42)

2This differs from the conventional expression found in most textbooks by a factor of β, due to
the fact that we base our formalism on Ψ † rather than on Ψ̄ = Ψ †β. Multiplying the expr Lession
(8.63) by β, yields

¯Σ free = βΣ free = A + B(�p − mc2) + C(�p − mc2)2,

which is the expression commonly used.

http://dx.doi.org/10.1007/978-3-319-15386-5_12
http://dx.doi.org/10.1007/978-3-319-15386-5_4
http://dx.doi.org/10.1007/978-3-319-15386-5_4
http://dx.doi.org/10.1007/978-3-319-15386-5_12
http://dx.doi.org/10.1007/978-3-319-15386-5_4


8.2 Radiative QED Effects, Combined with Electron Correlation 199

−ecA0 = −eφ(x) = Vnuc.

With B = −L it then follows that the (charge) divergent parts of (8.67) vanish, and
(8.67) becomes

Σbou
ren = Σren = Σ free

ren + Λ0,free
ren Vnuc + Σ free

mp . (8.70)

For the energy derivative of the mass-renormalized bound-state self-energy (8.67)
we have

δΣ

δE = B + δΣ free
ren

δE + δΛ0,free
ren

δE Vnuc + δΣ free
mp

δE = B + δΣren

δE , (8.71)

using E = p0c and α0 = 1.
The power expansion of the effective interaction can be generated from the general

equation (6.126)

W = W0 + δW

δE W0, (8.72)

whereW0 represents the operatorwithout intermediatemodel-space states. In second-
order this becomes

W (2) = W (2)
0 + W (2)

1 = W (2)
0 + δW (1)

δE W (1). (8.73)

For the first-order Coulomb screened self-energy with an intermediate Q state, dia-
gram (2A) in Fig. 8.15, there is no model-space contribution. This part is represented
by the first term in (8.73), which becomes

W (2)
0 ⇒ 〈P|ΣΓQVC|P〉 = 〈P|ΣrenΓQVC|P〉, (8.74)

whereΣren is the renormalized bound-state self-energy (8.71) and VC is the Coulomb
interaction. This diagram is obviously regular.

With an intermediate model-space state, diagram (2B), we have a model-space
contribution (MSC), corresponding to the second term in (8.73),

δW (1)

δE W (1) ⇒ 〈P|δΣ
δE |P〉W (1), (8.75)

whereW (1) at the bottom is 〈P|VC|P〉 and the self-energy derivative is given in (8.70).
This has the singularity BW (1).

The diagram (2C) yields the same result as (2A).
The diagram (2D) corresponds to

δW (1)

δE W (1) ⇒ 〈P|δW
(1)

δE |P〉〈P|Σ |P〉, (8.76)

http://dx.doi.org/10.1007/978-3-319-15386-5_6
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which vanishes, since the Coulomb interaction is energy independent.
The first-order vertex correction, diagram (2Ax), becomes

〈P|Λ0VC|P〉 = 〈P|(L + Λ0
ren)VC|P〉, (8.77)

using the relation (8.64). This has the singularity

〈P|LVC|P〉 = LW (1).

It follows from the Ward identity (8.68), that the singularity in the self-energy and
vertex diagrams exactly cancel in second order. The remaining finite parts of the
self-energy (2B) and the vertex correction (2Ax) then become

〈
P
∣∣∣δΣren

δE
∣∣∣P

〉
W (1) +

〈
P
∣∣∣Λ0

renVC

∣∣∣P
〉
. (8.78)

Due to the Ward identity we have

Λ0
ren = −δΣren

δE . (8.79)

8.2.2 All Orders

We now generalize the treatment above to the case with a pair function with an
arbitrary number of Coulomb interactions (8.48) as input (see Fig. 8.17)

ΩI = 1 + ΓQVC + ΓQVCΓQVC + · · · + folded. (8.80)

Fig. 8.17 Self-energy and vertex correction for He-like systems screened by a pair function with
an arbitrary number of Coulomb interactions. The diagrams (PB) and (PAx) are divergent
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We can now apply the formula (8.61), yielding

W = PΣΩIP + P
δΣ

δE ΩIWI + P
δ2Σ

δE2
ΩIW

2
I + · · · . (8.81)

Here,WI is the effective interaction associated with the Coulomb pair function (8.50)

WI = PVCΩIP,

which includes themodel-space contributions of the pair function. The corresponding
equation for the vertex correction is obtained by replacing Σ by Λ0VC.

When there is a Q state directly before the self-energy, we have diagram (PA)

W = PΣQΩIP, (8.82)

which is regular.
When there is a P state directly before the self-energy, we have from (8.81)

(diagram PB)

P
δΣ

δE WI + P
δ2Σ

δE2
W 2

I + · · · . (8.83)

The first term has the singularity BWI.
The vertex correction with aQ state directly before the correction, diagram (PAx),

becomes

PΛ0VCQΩIP + P
δ(Λ0VC)

δE QΩIWI + · · · . (8.84)

This has a singularity LWI that cancels that of the divergent self-energy diagram.
The finite remaining part of the vertex diagram is

WVxQ = PΛ0
renVCQΩIP + P

δΛ0
ren

δE VCQΩIWI + · · · (8.85)

The vertex correction with a P state directly before the correction, diagram (PBx),
becomes

WVxP = P
δΛ0

δE VCWI + · · · = P
δΛ0

ren

δE VCWI + · · · , (8.86)

which is regular.
Possible model-space states within the pair function will lead to additional sin-

gularities, which all cancel.
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Fig. 8.18 All-order screened self-energy and vertex correction for He-like systems

8.2.3 Continued Coulomb Iterations

Wecan also have additional Coulomb interactions after the self-energy/vertex correc-
tion in analogy with the situation discussed in Sect. 8.1.3 and illustrated in Fig. 8.18.
We then start with diagrams with the final state in the Q space, representing a wave
operator, as illustrated in the first two diagrams in Fig. 8.18. Then the Coulomb iter-
ations can be continued, as in the previous case (Sect. 8.1.3), yielding the complete
electron correlation, as shown in the last two diagrams of the figure.

It is expected that the singularities should cancel each other in each order of the
perturbation, but we have not been able to show this explicitly beyond second order.

8.3 Higher-Order QED. Connection to the Bethe–Salpeter
Equation. Coupled-Cluster-QED

In the two last sectionswehavedemonstratedhow the electron correlation to all orders
can be combined in a systematic way with first-order non-radiative and radiative
QED interactions, respectively.3 Reducible multi-photon effects can be included in
the wave operator or Green’s operator by means of iterations, as will be discussed
in the present section. For practical reasons, it is not possible, for the time being, to
treat irreducible, multi-photon QED effects in the same manner. The procedure will
eventually lead to the Bethe–Salpeter equation that has been previously discussed in
Sect. 6.11 and will be treated in more detail in Chaps. 10 and 11.

3As mentioned, the terms “reducible” and irreducible” are used differently if dealing with open
wave-operator diagrams or closed effective-operator diagrams (see Sect. 2.6.1).

http://dx.doi.org/10.1007/978-3-319-15386-5_6
http://dx.doi.org/10.1007/978-3-319-15386-5_10
http://dx.doi.org/10.1007/978-3-319-15386-5_11
http://dx.doi.org/10.1007/978-3-319-15386-5_2
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8.3.1 General QED (Single-Transverse-Photon) Potential

In principle, we can include all perturbations we have treated so far in a formal “QED
potential”,

V STP = VC + VT + VTC + VSE + VVx, (8.87)

as illustrated in Fig. 8.19, containing

• Coulomb interaction (VC)
• Transverse photon with virtual pairs (VT)
• Transverse photon with virtual pairs and crossing Coulomb interactions (VTC)
• Self-energy insertions (VSE)
• Vertex corrections (VVx)
• Vacuum polarization.

Such a potential could then be used perturbatively in the sameway as ordinary poten-
tials, when no virtual pairs are involved, which represents the dominating part (c.f.,
Sect. 8.1.1). As before, we restrict ourselves here to first-order interactions, involving
a single transverse photon. As mentioned, multi-photon interactions could not be
handled in this way at present. The process with a single transverse photon, on the
other hand, is feasible and expected to be quite accurate, as will be demonstrated in
the following chapter.

If the potential has hole states in or out, we add additional Coulomb interactions,
so that all in- and outgoing states are particle states, illustrated in Fig. 8.20. Then it
will be possible to use the potential iteratively.

Fig. 8.19 Feynman diagrams representing the single-transverse-photon potential (8.87). We
assume that the electron vacuum polarization is included in the orbitals. When there are hole
states in and out, we assume that additional Coulomb interaction are inserted, so that only particle
states appear in and out (see Fig. 8.20)
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Fig. 8.20 Illustration of the modified potential (8.87), which can be iterated. It has only positive-
energy states in and out and is free from the Brown–Ravenhall effect

The general QED potential can be combinedwith electron correlation by applying
Coulomb interactions before and after theQEDpotential, using the general equations
(8.55 and 8.61), in the same way as the retarded potential in Sect. 8.1.3, illustrated
in Fig. 8.14.

8.3.2 Iterating the QED Potential. Connection
to the Bethe–Salpeter Equation

We shall now see how the general single-transverse-photon potential (8.87) can
be combined with the standard MBPT procedure, leading to a unified relativistic
MBPT-QED procedure, which ultimately corresponds to the famous Bethe–Salpeter
equation.

Iterating the Potential

The single-photon potential (8.87) can be iterated, thereby generating reducible
multi-photon exchange (see Sect. 2.6.1), as illustrated in Fig. 8.21.

The continued iterations can be expressed by means of the generalized Bloch
equation (6.153)

Ω = 1 + ΓQV
STPΩ + δ∗Ω

δE W, (8.88)

which can be represented by the Dyson-type equation in Fig. 8.22. This is anal-
ogous to the equation in Fig. 10.4 in Chap.10, representing the Bethe–Salpeter–

Fig. 8.21 Iteration of the
potential leads to a reducible
diagrams

http://dx.doi.org/10.1007/978-3-319-15386-5_2
http://dx.doi.org/10.1007/978-3-319-15386-5_6
http://dx.doi.org/10.1007/978-3-319-15386-5_10
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Fig. 8.22 Dyson-type equation, representating of the Bloch equation (8.88). The last diagram
represents the “folded” term, i.e., the last term of the equation

Bloch equation (which is a generalization of the standard Bethe–Salpeter equation
to a general, multi-referencemodel space. (Compare also the correspondingGreen’s-
function diagram in Fig. 5.8.)

The procedure discussed here represents the complete treatment of the single-
transverse-photon potential (8.87) and represents the dominating part of the QED
effects. In order to get further, also irreducible combinations of transverse interactions
should be included (see Fig. 6.9). This would correspond to the full Bethe–Salpeter–
Bloch equation—so far without singles. The missing singles can in principle be
generated by applying the coupled-cluster procedure, discussed in the next section.

In the next section we shall describe how the QED potential (8.87) can be used
in a coupled-cluster expansion, in analogy with the standard procedure of MBPT,
described in Sect. 2.5. Then also single-particle effects can be included in a systematic
way, and the procedure would be even closer to the complete Bethe–Salpeter–Bloch
procedure. This approach will also make it possible to apply the procedure to more
than two electrons.

It should be noted that the procedure discussed in the previous section with a
single QED potential with electron correlation normally leads to a good result much
faster than the full BS equation, where all effects are carried to high order.

The Bethe–Salpeter equation will be further analyzed in Chap.10 and the renor-
malization procedure will be discussed in Chap.12.

8.3.3 Coupled-Cluster-QED Expansion

With the interactions derived above we can construct an effective QED-Coupled-
Cluster procedure in analogy with that employed in standard MBPT, described in
Sect. 2.5 (see [133]). Considering the singles-and-doubles approximation (2.105)

S = S1 + S2, (8.89)

the MBPT/CC equations are illustrated in Fig. 2.8. In order to obtain the correspond-
ing equations with the covariant potential in Chap.6, we make the replacements
illustrated in Fig. 8.23, which leads to the equations, illustrated in Fig. 8.24.

http://dx.doi.org/10.1007/978-3-319-15386-5_5
http://dx.doi.org/10.1007/978-3-319-15386-5_6
http://dx.doi.org/10.1007/978-3-319-15386-5_2
http://dx.doi.org/10.1007/978-3-319-15386-5_10
http://dx.doi.org/10.1007/978-3-319-15386-5_12
http://dx.doi.org/10.1007/978-3-319-15386-5_2
http://dx.doi.org/10.1007/978-3-319-15386-5_2
http://dx.doi.org/10.1007/978-3-319-15386-5_2
http://dx.doi.org/10.1007/978-3-319-15386-5_6
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Fig. 8.23 Replacements to be made in the CC equations in Fig. 2.8 in order to generate the cor-
responding CC-QED equations (c.f. Figs. 6.7 and 6.8). The wavy line in the second row represents
the modified potential USTP with only particle states in and out

Fig. 8.24 Diagrammatic representation of the QED-coupled-cluster equations for the operators S1
and S2. The second diagram in the second row and the diagrams in the fourth row are examples
of coupled-cluster diagrams. The last diagram in the second row and the three diagrams in the last
row represent folded terms (c.f. the corresponding standard CC equations in Fig. 2.8)

http://dx.doi.org/10.1007/978-3-319-15386-5_2
http://dx.doi.org/10.1007/978-3-319-15386-5_6
http://dx.doi.org/10.1007/978-3-319-15386-5_6
http://dx.doi.org/10.1007/978-3-319-15386-5_2
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Fig. 8.25 Diagrammatic representing of the QED-coupled-cluster term 1
2 S

2
2 with standard pair

functions (left) and one and two inserted QED pair function, defined in Fig. 8.22, (right)

The CC-QED procedure can also be applied to systems with more than two elec-
trons. For instance, if we consider the simple approximation (2.101)

Ω = 1 + S2 + 1

2
{S22},

then we will have in addition to the pair function also the coupled-cluster term,
illustrated in Fig. 8.25 (left). Here, one or both of the pair functions can be replaced
by the QED pair function in Fig. 8.22 (right) in order to insert QED effects on this
level. In addition, of course, single-particle clusters can be included, as in the two-
particle case discussed above (Fig. 8.23).

We can summarize the results obtained here in the following way:

• When all one- and two-particle effects are included, the Green’s-operator-
QED procedure is fully compatible with the two-particle Bethe–Salpeter(-Bloch)
equation—including singles.

• The advantage of the Green’s-operator-QED procedure is—thanks to the com-
plete compatibility with the standard MBPT procedure—that the QED potentials
need to be included only in cases where the effect is expected to be sufficiently
important.

The procedure described here is based on the use of the Coulomb gauge (6.57),
and therefore not strictly covariant. As mentioned, however, in practice it is equiv-
alent to a fully covariant procedure, and, furthermore, it seems to be the only
feasible way for the time being of treating effects beyond two-photon exchange
in a systematic fashion (see the following chapter, where numerical results of the
procedure are presented).

http://dx.doi.org/10.1007/978-3-319-15386-5_2
http://dx.doi.org/10.1007/978-3-319-15386-5_6


Chapter 9
Numerical Results of Combined MBPT-QED
Calculations Beyond Second Order

In this chapter we reproduce some numerical results recently published by the
Gothenburg group of the combined procedure of quantum electrodynamics and elec-
tron correlation for heliumlike ions [89]. This goes beyond the two-photon results
presented in Chap.7.

9.1 Non-radiative QED Effects in Combination with
Electron Correlation

9.1.1 Two-Photon Exchange

In Chap.7 (Fig. 7.3) we showed the results of two-photon-exchange calculations for
the ground-state of heliumlike ions, including crossing photons and virtual electron-
positron pairs, using the S-matrix formulation. In Table9.1 we compare these results
with those obtained by Hedendahl et al. [86] in testing the new Green’s-operator
(GO) method, described in the previous chapters. In the first numerical column
“NVPA” represents “No-virtual-Pair-Approximation” (see Sect. 2.6), i.e., the unre-
tarded approximation without virtual pairs, and the following two columns the effect
of retardation with no virtual pairs and the effect of virtual pairs with no crossing
Coulomb interactions, respectively. The agreement,which is found to be very good, is
also displayed in Fig. 9.1, where the solid lines represent the old S-matrix results and
the red squares those of the new covariant method. As before, the scale is logarithmic
and the norm is the non-relativistic ionization energy.

The old S-matrix calculations were made with the Feynman gauge, while in the
new covariant calculations the Coulomb gauge was used. The reason for the latter
choice is that these calculations will later be extended to higher orders, and then it
is more effective to use the Coulomb gauge.
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Table 9.1 Comparison between two-photon non-radiative effects for He-like ions ground states,
evaluated with the S-matrix (see Fig. 7.3) and the Green’s-operator (GO) method, described in
Chap.6, from Hedendahl [86] (see Fig. 9.1, in μHartree)

Z Method Coul.-Breit
NVPA

Coul.-Breit.
Retard.

VP Coul.Breit
Uncrossed.

6 S-matrix −1054.2 31.4 −10.1

6 GO −1054.9 31.5 −10.0

10 S-matrix −2870.4 122.3 −45.9

10 GO −2871.0 122.4 −45.9

14 S-matrix −5515 293.0 −121.5

14 GO −5517 292.8 −121.2

18 S-matrix −8947 553.1 −247.3

18 GO −8950 553.3 −248.2

30 S-matrix −23629 1909.2 −1008

30 GO −23632 1909.9 −1010

Fig. 9.1 Comparison of some two-photon exchange contributions for the ground-state of some
heliumlike ions—Coulomb-Breit NVPA, Coulomb-Breit retardation, and Coulomb-Breit virtual
pairs, no correlation, obtained by S-matrix calculations (see Fig. 7.3) (heavy lines) and by means of
the Green’s-operator (GO) procedure (squares), described in this chapter (see Table9.1, c.f. Fig. 7.3
in Chap.7) (from [86])

9.1.2 Non-radiative Effects. Beyond Two-Photon Exchange

In this section we present results of calculations for some He-like ions of the com-
bination of non-radiative QED effects (retardation and virtual pairs) and electron

http://dx.doi.org/10.1007/978-3-319-15386-5_7
http://dx.doi.org/10.1007/978-3-319-15386-5_6
http://dx.doi.org/10.1007/978-3-319-15386-5_7
http://dx.doi.org/10.1007/978-3-319-15386-5_7
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correlation, beyond two-photon effects, as described in Sect. 8.1.3. The results of the
calculations, shown in Table9.2 and displayed in Fig. 9.2, are taken from [86]. For
comparison, the effect of two-photon exchange, taken from Chap.7, is given in the
first five columns.

The top line of the Fig. 9.2, representing the Coulomb-Breit interaction with cor-
relation without virtual pairs, includes the instantaneous Breit interaction (2.112)
in addition to the retardation part. The former part lies within the no-virtual-pair
approximation (NVPA) and is therefore NOT a QED effect with the definition given
in Sect. 2.6.1. In order to obtain the pure QED effect, the instantaneous part is sub-
tracted, represented by the second line from the top and shown in the sixth numerical
column in Table9.2. The next line represents the same effect with Coulomb cross-
ings, and shown in the following column of the table. The correlational effect of
virtual pairs (only non-crossing) is represented by the bottom line of the figure and
shown in the last column of the table.

The combination of retardation and virtual pairs is evaluated by the generalized
potential (8.11). The effect of crossingCoulomb interactions,with andwithout virtual
pairs, is evaluated as described in Sect. 8.1.2. The corresponding Feynman diagrams
are shown at the bottom of the figure (see also Figs. 9.3 and 9.4).

In the Fig. 9.2 we have for comparison also indicated the effect due to dou-
bly retarded two-photon interactions (thin black line), estimated from the S-matrix
results. This comparison demonstrates the important result that—starting from
single-photon exchange—for light and medium-heavy elements the effect of elec-
tron correlation in combination with a single retarded photon ismuchmore impor-
tant than a second retarded photon.

Table 9.2 The non-radiative QED effects (retardation and virtual pairs) for the ground state of
He-like ions, calculated by Hedendahl [86] (see also Fig. 9.2)

Z Two-photon Correlation

Coul.-
Coul

Coulomb-Breit Breit-Breit NVP retard. Virt.
pairs

Virt.pairs NVP ret. Virt.p. NVP ret Virt.p. Non-
cross

Crossing Non-
cross

10 0.69 3.32 −2.74 0.35 −0.92 −1.1 0.5 0.2

14 1.78 7.97 −7.11 1.07 −1.82 −1.9 0.9 0.4

18 3.57 15.05 −14.2 2.48 −2.82 −2.7 1.3 0.6

24 7.86 30.5 −30.9 6.54 −4.03 −4.2 2.1 0.9

30 14.3 51.9 −55.4 13.9 −4.21 −5.7 2.9 1.3

42 34.8 112.0 −128.8 43.4 +1.51 −9.0 5.0 2.0

50 55 164 −11.5 6.5 2.4

The first five columns represent the effect of two-photon exchange and the remaining ones the effect
of correlation, beyond two-photon exchange (in meV)

http://dx.doi.org/10.1007/978-3-319-15386-5_8
http://dx.doi.org/10.1007/978-3-319-15386-5_7
http://dx.doi.org/10.1007/978-3-319-15386-5_2
http://dx.doi.org/10.1007/978-3-319-15386-5_2
http://dx.doi.org/10.1007/978-3-319-15386-5_8
http://dx.doi.org/10.1007/978-3-319-15386-5_8
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Fig. 9.2 The effect of electron correlation beyond two-photon exchange for the ground-state of
heliumlike ions—Coulomb-Breit NVPA, Coulomb-Breit retardation with and without Coulomb
crossings, andCoulomb-Breit virtual pairs, allWITHelectron correlation (seeTable9.2, c.f. Fig. 9.1)
(from [86]). For comparison the effect of pure retarded two-photon exchange without additional
correlation is also indicated

Fig. 9.3 Retarded transverse
interaction with electron
correlation and with one and
several Coulomb crossings

Fig. 9.4 Diagrams
representing the combination
of non-radiative QED
perturbation (retardation,
virtual pair) and electron
correlation, evaluated by
Hedendahl [86]
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9.2 Radiative QED Effects in Combination with Electron
Correlation. Coulomb Gauge

Next, we consider the numerical evaluation of radiative QED effects (electron self-
energy, vacuum polarization and vertex correction) in combination with electron
correlation.

Until recently, all calculations of radiative QED effects have been performed
with the Feynman gauge, or some other covariant gauge, like the Jennie gauge (see
App. G). But the use of the non-covariant Coulomb gauge has definite advantages,
particularly when radiative QED effects are combined with electron correlation, as
we shall now demonstrate.

The use of the Coulomb gauge in evaluating radiative QED effects is more com-
plicated than using the Feynman gauge, but a working procedure has recently been
developed by Hedendahl and Holmberg of the Gothenburg group [87, 88] by means
of dimensional regularization, based upon the works of Adkins [1, 2] (see Chap.12).
The procedure was first tested on the ground state of hydrogen like systems, as will
be demonstrated below.

The electron propagator of the bound-state self-energy operator can be expanded
into the free-electron propagator (zero-potential term) and a single-potential and a
many-potential term, as illustrated in Fig. 8.16 in the previous chapter. The potential is
here that of theDirac equation, generating the bound-state orbitals. The zero-potential
and single-potential parts are singular and can be regularized, using dimensional
regularization, as described in Chap. 12. The many-potential term is finite and can
be evaluated by subtracting the zero- and one-potential terms from the bound-state
self-energy, using the partial-wave expansion.

The calculations of Hedendahl and Holmberg were performed in the Coulomb as
well as the Feynman gauge, and the results are expressed by means of the function

ΔESE = α

π
(Zα)4mc2F(Zα). (9.1)

The results are shown in Table9.3, where the gauge invariance is clearly demon-
strated. It is interesting to note that the numerical accuracy is considerably higher in
the Coulomb gauge. The reason for this is that the many-potential term, where the
main numerical uncertainty originates from, is considerably smaller in that gauge
(see [87] for further details).

9.2.1 Radiative Effects. Two-Photon Effects

The two-photon radiative effects (screened electron self-energy and vacuum-
polarization as well as vertex correction) were evaluated for heliumlike ions in the
late 1990’s in the Feynman gauge by Sunnergren in his Ph.D. thesis at Gothenburg
university, using the S-matrix formalism [239], and at about the same time by the

http://dx.doi.org/10.1007/978-3-319-15386-5_12
http://dx.doi.org/10.1007/978-3-319-15386-5_8
http://dx.doi.org/10.1007/978-3-319-15386-5_12
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St Petersburg group [8, 253], using the two-time Green’s function. This involves the
effects, illustrated in Fig. 7.4. The results of the calculations are shown in Table9.4.
The agreement between the two calculations is excellent.

The two-photon electron self-energy and vertex correction have more recently
been evaluated using the Coulomb as well as the Feynman gauge by Holmberg
et al. [89], and the results are shown in Table9.5. For simplicity, these calculations
contain only Coulomb screening, while the results in Table9.4 contain also Breit
screening. (The effect of Breit screening can be estimated by comparing the second-
order results.) The results in Table9.5 are separated into “irreducible part”, i.e.,
the self-energy without the model-space contribution (MSC), referred to as “wave-
function contribution”, and the “reducible part” (MSC) together with the vertex
correction. The latter two contributions have singularities (charge divergence) that
cancel each other and are therefore taken together. (Individually, they are not well-
defined.) In addition, the irreducible part is separated into the zero-, one- and many-
potential contributions (see Fig. 8.16), and the MSC and vertex contributions are

Table 9.3 Values of the function F(Zα) in (9.1) for the self-energy of the ground state of hydro-
genlike ions (from Hedendahl and Holmberg [87])

Z Coulomb gauge Feynman gauge

18 3.444 043(9) 3.444 04(3)

26 2.783 762(3) 2.783 77(1)

36 2.279 314(2) 2.279 316(7)

54 1.181 866 2(6) 1.781 868(3)

66 1.604 461 5(4) 1.604 462(2)

82 1.487 258 4(4) 1.487 259(1)

92 1.472 424 1(4) 1.472 425(1)

Table 9.4 Two-photon vacuum polarization and electron-self-energy contributions to the of
ground-state energy of some heliumlike ions, using the Feynman gauge (in eV)

Z Vacuum pol. Self-energy

Sunnergren Artemyev Sunnergren Yerokhin

18 0.0072 −0.1116

24 0.0173 −0.2278

32 0.0427 0.0427 −0.4659 −0.4659

44 0.1226 −1.0490

54 0.255 0.0255 −1.815 −1.815

66 0.557 0.557 −3.224 −3.223

74 0.908 0.908 −4.590 −4.590

83 1.549 1.550 −6.726 −6.726

92 2.630 2.630 −9.781 −9.780

(From Sunnergren [239], Yerokhin et al. [253], and Artemyev et al. [8])

http://dx.doi.org/10.1007/978-3-319-15386-5_7
http://dx.doi.org/10.1007/978-3-319-15386-5_8
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separated into the zero-potential part and “Beyond”, i.e., the remaining one- and
many-potential parts.

When all effects are included, the result should be gauge independent, as is also
found to be the case numerically to a high degree of accuracy. It is very striking to
compare the individual contributions in the two gauges. In the Feynman gauge there
are very large cancellations between the various contributions, which is not at all the
case in the Coulomb gauge. In the Coulomb gauge, the irreducible part represents
about 90% of the total effect, and the reducible part of the self-energy together with
the vertex correction the remaining 10%. In the Feynman gauge the relations are
quite different. This has important consequences for the higher-order calculations.

9.2.2 Radiative Effects. Beyond Two-Photon Exchange

The combination of radiative QED effects and electron correlation, beyond two-
photon exchange, has been discussed in Sect. 8.2. Some numerical results, obtained
in the Coulomb gauge by Holmberg et al. [89] for the ground state of He-like ions
are given in Table9.6.

The complete numerical evaluation of the model-space contributions of the self-
energy and the vertex correction are prohibitively time consuming beyond second
order in any gauge. Only the irreducible part and the zero-potential part of the remain-
ing pieces are manageable and have been calculated. In second order it was found
that in the Coulomb gauge these parts represented the entire effect within a few
percent. It is reasonable to assume that something similar will hold also in higher
orders. This yields the results given in Table9.6. The results using the Feynman
gauge, on the other hand, look quite different, and it is not possible to obtain any
reasonable results without a complete calculation. In the approximation shown in
the table the Feynman-gauge results behave quite “unphysically”, decreasing with
increasing nuclear charge and being of the “wrong” sign.

The conclusion is that it in going beyond second order, sensible results can at
present only be obtained using the Coulomb gauge.

The effect beyond two-photon exchange discussed here is the combined effect of
electron self-energy and electron correlation, here confined tomultiple instantaneous
Coulomb interactions with no virtual pairs. Effects beyond that represent higher-
order effects that should be quite small compared to the main correlational effect.
Therefore, the results given here can be expected to approximate well all effects
beyond two-photon exchange.

The effect of high-order vacuumpolarization has also been evaluated byHolmberg
et al. [89] and found to be an order smaller than the corresponding self-energy effects,
as is the case also in lower orders.

http://dx.doi.org/10.1007/978-3-319-15386-5_8
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Table 9.6 Correlational effects on the radiative QED for the ground state of He-like ions, beyond
two-photon exchange, from Holmberg et al. [89], c.f., Table9.5 (in meV)

Z Irreducible part Zero-potential Total

Zero-pot. One-pot. Many-pot. Total wf MSC Vertex Estimated

Coulomb gauge
14 3.47(3) −0.0275(2) −0.451(3) 2.99(4) 0.87 −0.63 3.23(4)

18 4.79(2) 0.143(1) −0.691(4) 4.24(3) 1.16 −0.73 4.67(3)

24 6.77(2) 0.585(6) −1.104(6) 6.25(3) 1.54 −0.76 7.03(3)

30 8.702(8) 1.22(1) −1.569(9) 8.36(3) 1.82 −0.61 9.57(3)

50 14.82(1) 5.17(5) −3.30(2) 16.69(7) 2.15 1.10 20.0(1)

Feynman gauge
14 −164.82(3) 71.80(3) 12.17(1) −80.85(6) −30.7 66.5 −45

18 −142.39(2) 59.7(5) 11.57(1) −71.1(5) −24.3 54.2 −41

24 −118.48(1) 47.8(4) 10.79(2) −59.9(4) −17.6 41.6 −36

30 −101.51(1) 40.2(1) 10.25(1) −51.1(1) −13.0 33.2 −31

50 −69.6(1) 29.9(1) 19.3(1) −20.5(1) −4.9 19.4 −6

9.3 Comparison with Experiments

Extensive high-accuracy calculations of the X-ray energies of highly-charged heli-
umlike ions have been performed by Artemyev et al. using the two-time Green’s
function [9], as well as by Plante et al. using the relativistic MBPT with first-order
QED corrections to the energy [195]. The agreement with experiments is in most
cases quite good, but Chantler et al. claim that there are significant discrepancies [43,
44]—for medium-heavy elements up to the order of 100meV. The calculations of
Artemyev et al. are of second order with an estimate of higher-order effects, while
those of Plante et al. include correlational effects (but no QED) beyond second order.
One question is, therefore, if the claimed discrepancies could be due to omitted
higher-order effects.

In Table9.7 we compare the estimated higher-order effects of Artemyev et al. [9]
with those third-order effects recently calculated byHolmberg et al. [89]. (The results
of Table9.6 are here reduced by about 20% to take into account the fact that negative-
energy states are not included.) We can see that the higher -order effects are underes-
timated byArtemyev et al. particularly for heavier elements. Nevertheless, the effects
are much too small to be responsible to the discrepancies claimed by Chantler.

The findings of Chantler et al. have recently been challenged by Kubic̆ek
et al. [105], who found excellent agreement between their experiments and the
above-mentioned second-order calculations. These results are consistent with the
conclusions drawn above.
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Table 9.7 Comparison
between the higher-order
QED effects for the ground
states of He-like ions,
calculated by Holmberg
et al. [89], and those
estimated by Artemyev
et al. [9] (in meV)

Z Holmberg 2015
(calc)

Artemyev 2005
(est’d)

14 1.8(2) 0.8

18 2.8(3) 0.9

24 4.0(5)

30 5.6(8) −0.2

50 11(2) −7.7(50)

9.4 Outlook

The results presented above represent the effect of one transverse photon in combi-
nation with electron correlation of high order. Results of several transverse photons,
namely so-called reducible effects (see Sect. 8.3), combined with electron correla-
tion can also be evaluated. The effect of irreducible QED effects with correlation,
which can be expected to be extremely small in most cases, is on the other hand
beyond reach for the moment, but the effect can be estimated by replacing the trans-
verse photons beyond the first one by instantaneous Breit interactions (2.112).

The calculations performed so far with the procedure described here concern the
ground states of heliumlike ions. By extending the calculations to excited states, it
will be possible to make detailed comparison with experimental data. For instance,
very accurate data exist for some heliumlike ions, as shown in Table7.7. In some
of these cases the experimental results are at least two orders of magnitude more
accurate than the best theoretical estimates made so far. In such cases it might in not
too distant a future be possible for the first time to observe QED effects also beyond
second order.

http://dx.doi.org/10.1007/978-3-319-15386-5_8
http://dx.doi.org/10.1007/978-3-319-15386-5_2
http://dx.doi.org/10.1007/978-3-319-15386-5_7


Chapter 10
The Bethe–Salpeter Equation

In this chapter we discuss the Bethe–Salpeter equation and its relation to the proce-
dure we have developed so far.We shall start by summarizing the original derivations
of the equation by Bethe and Salpeter and by Gell-Mann and Low, which repre-
sented the first rigorous covariant treatments of the bound-state problem. We shall
demonstrate that this field-theoretical treatment is completely compatible with the
presentation made here. The treatments of Bethe and Salpeter and of Gell-Mann and
Low concern the single-reference situation, while our procedure is more general.
Later in this chapter we extend the Bethe–Salpeter equation to the multi-reference
case, which will lead to what we refer to as the Bethe–Salpeter–Bloch equation in
analogy with corresponding equation in MBPT.

10.1 The Original Derivations of the Bethe–Salpeter
Equation

The original derivations of the Bethe–Salpeter equation by Salpeter and Bethe [213]
and by Gell-Mann and Low [74] were based upon procedures developed in the late
1940s for the relativistic treatment of the scattering of two or more particles by
Feynman [68, 69], Schwinger [223, 224], Tomanaga [244] and others, and we shall
here summarize their derivations.

10.1.1 Derivation by Salpeter and Bethe

Salpeter and Bethe [213] start their derivation from the Feynman formalism of the
scattering problem [68, 69], illustrated in terms of Feynman graphs. A Feynman
diagram represents in Feynman’s terminology the “amplitude function” or “ker-
nel” for the scattering process, which in the case of two-particle scattering, denoted

© Springer International Publishing Switzerland 2016
I. Lindgren, Relativistic Many-Body Theory,
Springer Series on Atomic, Optical, and Plasma Physics 63,
DOI 10.1007/978-3-319-15386-5_10
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Fig. 10.1 Examples of Feynman graphs representing scattering amplitudes in (10.1) and (10.2)
of the Salpeter–Bethe paper [213]. The first diagram is irreducible, while the second is reducible,
since it can be separated into two allowed diagrams by a horizontal cut

K (3, 4; 1, 2), is the probability amplitude for one particle propagating from one
space-time point x1 to another x3 and the other particle from space-time x2 to x4.
For the process involving one irreducible graph G(n), i.e., a graph that cannot be
separated into two simpler graphs, as illustrated in Fig. 10.1 (left part), the kernel is
given by (in Feynman’s notations)

K (n)(3, 4; 1, 2) = − i
∫∫∫∫

dτ5 . . . dτ8 K+a(3, 5)K+b(4, 6)

× G(n)(5, 6; 7, 8) K+a(7, 1)K+b(8, 2), (10.1)

where K+a, K+b represent free-particle propagators (positive-energy part). For a
process involving two irreducible graphs, the kernel illustrated in the right part of
the figure becomes

K (n,m)(3, 4; 1, 2) = −i
∫∫∫∫

dτ5 . . . dτ8 K+a(3, 5)K+b(4, 6)

× G(n)(5, 6; 7, 8) K (m)(7, 8; 1, 2). (10.2)

This leads to the sequence illustrated in Fig. 10.2, where G∗ represents the sum of all
irreducible two-particle self-energy graphs. From this Salpeter and Bethe arrived at
an integral equation for the total kernel

K (3, 4; 1, 2) = K+a(3, 1)K+b(4, 2) − i
∫∫∫∫

dτ5 . . . dτ8 K+a(3, 5)K+b(4, 6)

× G∗(5, 6; 7, 8) K (7, 8; 1, 2). (10.3)

This is the equation for the two-particle Greens function (5.80) in the form of aDyson
equation, in our notations written as

http://dx.doi.org/10.1007/978-3-319-15386-5_5
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Fig. 10.2 Graphical representation of the expansion of the Feynman kernel in terms of irreducible
graphs

Fig. 10.3 Graphical representationof the integral equation (10.3) for theFeynmankernel of Salpeter
and Bethe—identical to the Dyson equation for the two-particle Green’s function (Fig. 5.8)

G(x, x ′; x0, x ′
0) = G0(x, x

′; x0, x ′
0) +

∫∫∫∫
d4x1d

4x2d
4x ′

1d
4x ′

2

× G0(x, x
′; x2, x ′

2) (−i)Σ∗(x2, x ′
2; x1, x ′

1)G(x1, x
′
1; x0, x ′

0)

(10.4)

and depicted in Fig. 10.3 (see also Fig. 5.8). Note that the two-particle kernel K in the
terminology of Feynman and Salpeter–Bethe corresponds to our Green’s function
G, and the irreducible interaction G∗ corresponds to our proper self-energy Σ∗.
The proper (or irreducible) self-energy is identical to the irreducible two-particle
potential in Fig. 6.9. Furthermore, the electron propagators are in the Feynman–
Salpeter–Bethe treatment free-particle propagators. Note that the intermediate lines
in Fig. 10.3 represent a Green’s function, where the singularities are eliminated.

Salpeter and Bethe then argued that a similar equation could be set up for the
bound-state wave function. Since the free lines of the diagrams in the Feynman
formulation represent free particles, they concluded that the first (inhomogeneous)
term on the r.h.s. could not contribute, as the bound-state wave function cannot
contain any free-particle component. This leads in their notations to the homogeneous
equation

Ψ (3, 4) = −i
∫∫∫∫

dτ5 . . . dτ8 K+a(3, 5)K+b(4, 6)G
∗(5, 6; 7, 8) Ψ (7, 8). (10.5)

http://dx.doi.org/10.1007/978-3-319-15386-5_5
http://dx.doi.org/10.1007/978-3-319-15386-5_5
http://dx.doi.org/10.1007/978-3-319-15386-5_6
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Fig. 10.4 Graphical representation of the inhomogeneous Bethe–Salpeter equation (10.6). Σ∗
represents the proper self-energy, which contains all irreducible interaction graphs and is identical to
the irreducible two-particle potential in Fig. 6.9. This equation can be comparedwith that represented
in Fig. 8.22, valid also in the multi-reference case

This is the famousBethe–Salpeter equation. In the Furry picturewe use here, where
the basis single-electron states are generated in an external (nuclear) potential, the
inhomogeneous term does survive, and the equation becomes in our notations

Ψ (x, x ′) = Φ(x, x ′) +
∫∫∫∫

d4x1d
4x2d

4x ′
1d

4x ′
2

× G0(x, x
′; x2, x ′

2) (−i)Σ∗(x2, x ′
2; x1, x ′

1) Ψ (x1, x
′
1). (10.6)

This is the inhomogeneous Bethe–Salpeter equationwe shall use, and it is graphically
depicted in Fig. 10.4.

10.1.2 Derivation by Gell-Mann and Low

The derivation of Gell-Mann and Low [74] starts from the “Feynman two-body
kernel”, used in the definition of theGreen’s function (5.20) (in their slightlymodified
notations),

K (x1, x2; x3, x4) = 〈
Ψ0

∣∣T [ψ̂H(x1)ψ̂H(x2)ψ̂
†
H(x4)ψ̂

†
H(x3)]

∣∣Ψ0
〉
. (10.7)

T is the time-ordering operator (2.27) and ψ̂H, ψ̂†
H are the particle-field operators

in the Heisenberg representation. Ψ0 is the vacuum (ground state) of the interacting
system in the Heisenberg picture, |0H〉.

In an Appendix of the same paper Gell-Mann and Low derive a relation between
the interacting (Ψ0) and the non-interacting (Φ0) vacuum states (both in the interac-
tion picture)

cΨ0 = U (0,−∞)Φ0

〈Φ0|U (0,−∞)|Φ0〉 , (10.8)

http://dx.doi.org/10.1007/978-3-319-15386-5_6
http://dx.doi.org/10.1007/978-3-319-15386-5_8
http://dx.doi.org/10.1007/978-3-319-15386-5_5
http://dx.doi.org/10.1007/978-3-319-15386-5_2
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which is the famous Gell-Mann–Low theorem (3.38), discussed previously. Here, c
is a normalization constant (equal to unity in the intermediate normalization that we
use). This can be eliminated by considering

1 = 〈Ψ0|Ψ0〉 = 〈Φ0|U (∞,−∞)|Φ0〉
c2〈Φ0|U (∞, 0)|Φ0〉〈Φ0|U (0,−∞)|Φ0〉 . (10.9)

Inserting the expression (10.8) into the kernel (10.7), utilizing the relation (10.9),
yields

K (x1, x2; x3, x4) = 〈Φ0|U (∞, 0)T [ψ̂H(x1)ψ̂H(x2)ψ̂
†
H(x4)ψ̂

†
H(x3)]U (0,−∞)|Φ0〉

〈Φ0|U (∞,−∞)|Φ0〉 ,

(10.10)

which is equivalent to the field-theoretical definition of the Green’s function
G(x1, x2; x3, x4) in (5.20).

Gell-Mann and Low then conclude that expanding the expression above in a
perturbation series leads to the two-body kernel of Feynman in terms of Feynman
diagrams, as we have performed in Chap.5. This is identical to the expansion given
by Salpeter and Bethe, and hence leads also to the integral equation (10.3). Gell-
Mann and Low then use the same arguments as Salpeter and Bethe to set up the
Bethe–Salpeter equation (10.5) for the wave function. In addition, they argue that
single-particle self-energy parts can easily be included by modifying the single-
particle propagators.

The derivation of Gell-Mann and Low, which starts from the field-theoretical
definition of the Green’s function, has a firm field-theoretical basis. This is true, in
principle, also of the derivation of Salpeter and Bethe, which is based upon Feynman
diagrams for scattering of field-theoretical origin.

In the next subsection we shall see how the Bethe–Salpeter equation can be mo-
tivated from the graphical form of the Dyson equation in Fig. 10.3.

10.1.3 Analysis of the Derivations of the Bethe–Salpeter
Equation

Wecan understand theBethe–Salpeter equation graphically, if we let theDyson equa-
tion in Fig. 10.3 act on the zeroth-order state, Φ(x0, x ′

0), which we represent by two
vertical lines without interaction. (The treatment can easily be extended to the situa-
tion, where themodel function is a linear combination of straight products.) From the
relation (6.8) we see that the electron propagator acting on an electron-field operator
(with space integration) shifts the coordinates of the operator. Therefore, acting with
the zeroth-order Green’s function on the model function, shifts the coordinates of
the function according to

http://dx.doi.org/10.1007/978-3-319-15386-5_3
http://dx.doi.org/10.1007/978-3-319-15386-5_5
http://dx.doi.org/10.1007/978-3-319-15386-5_5
http://dx.doi.org/10.1007/978-3-319-15386-5_6
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Fig. 10.5 Graphical illustration of (10.11) and (10.12)

Φ(x, x ′) =
∫∫

d3x0 d3x′
0 G0(x, x

′; x0, x ′
0)Φ(x0, x

′
0). (10.11)

This is illustrated in Fig. 10.5 (left) and corresponds to the first diagram on the rhs
of Fig. 10.4. Similarly, operating with the full Green’s function in Fig. 10.5 on the
model function leads to

Ψ (x, x ′) =
∫∫

d3x0 d3x′
0 G(x, x ′; x0, x ′

0)Φ(x0, x
′
0), (10.12)

illustrated in Fig. 10.5 (right). Then the entire equation (10.6), illustrated in Fig. 10.4,
is reproduced.

The equation (10.12) is consistent with the definition of the classical Green’s func-
tion (5.1), which propagates a wave function from one space-time point to another
pair—in our case from one pair of space-time point to another. This equation can
also be expressed as an operator equation

|Ψ (t, t ′)〉 = G(t, t ′; t0, t ′0) |Ψ (t0, t
′
0)〉, (10.13)

where G is the Green’s operator, introduced in Sect. 6.8. The coordinate representa-
tion of this equation

〈x, x′|Ψ (t, t ′)〉 = 〈x, x′|G(t, t ′; t0, t ′0)|x0, x′
0〉 〈x0, x′

0|Ψ (t0, t
′
0)〉 (10.14)

is identical to (10.12).
This implies that

• the Green’s function is the coordinate representation of the Green’s operator
and that

• the four-times Green’s operator represents the time propagation of the two-
particle Bethe–Salpeter state vector.

In the equal-time approximation this is consistent with our previous result (6.68) and
with our conjecture (6.45).

It is of interest to compare the Bethe–Salpeter equation (10.6), depicted in
Fig. 10.4, with the Dyson equation for the combined QED-electron-correlation

http://dx.doi.org/10.1007/978-3-319-15386-5_5
http://dx.doi.org/10.1007/978-3-319-15386-5_6
http://dx.doi.org/10.1007/978-3-319-15386-5_6
http://dx.doi.org/10.1007/978-3-319-15386-5_6
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effects in Fig. 8.22. If in the latter more and more effects are included in the QED
potential, then the Coulomb interactions, represented by the standard pair function,
become insignificant. Then this equation is identical to the Bethe–Salpeter equation.
To solve the original BS equation iteratively, however, is extremely tedious and often
very slowly converging, due to the dominating Coulomb interaction. As mentioned
in the previous chapter, the QED-correlation equation is expected to be a faster road
to reach the same goal. One- and two-photon exchange in the QED potential will
very likely yield extremely good results, while such effects in the BS equation will
often be quite insufficient, due to the often dominating Coulomb interaction (c.f. the
discussion about the QED methods in Part II).

10.2 Quasi- and Effective-Potential Approximations.
Single-Reference Case

In the equal-time approximation, where we equalize the (outgoing) times of the two
particles in theBethe–Salpeter equation (10.6),we canmake a Fourier transformation
of it with a single energy parameter as in the treatment of the single-particle Green’s
function in Sect. 5.2.3. The Q part, falling outside the model space, then leads to

Q Ψ (E) = Q G0(E) (−i)Σ∗(E) Ψ (E), (10.15)

leaving out the space coordinates and integrations.
Replacing the zeroth-order Green’s function with the resolvent (5.43)

G0(E) = i

E − H0
, (10.16)

we obtain

Q(E − H0) Ψ (E) = QΣ∗(E) Ψ (E). (10.17)

If we identify the proper self-energy with the generalized potential (8.11)

V (E) = Σ∗(E), (10.18)

the equation above leads together with the relation (6.174)

P(H − H0)ΩΨ (E) = PV (E)Ψ (E) (10.19)

to
• the effective-potential form of the Bethe–Salpeter equation

(E − H0)|Ψ 〉 = V (E)|Ψ 〉, (10.20)

http://dx.doi.org/10.1007/978-3-319-15386-5_8
http://dx.doi.org/10.1007/978-3-319-15386-5_5
http://dx.doi.org/10.1007/978-3-319-15386-5_5
http://dx.doi.org/10.1007/978-3-319-15386-5_8
http://dx.doi.org/10.1007/978-3-319-15386-5_6
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frequently used in various applications. This equation was also derived above, using
the Green’s operator only (6.177).

The equation (10.20) can also be expressed

|Ψ 〉 = |Ψ0〉 + Q

E − H0
V (E)|Ψ 〉, (10.21)

where Ψ0 is the model state Ψ0 = PΨ . This is equivalent to the Lippmann-
Schwinger equation [137], frequently used in scattering theory. Formally, (10.20)
can also be expressed in the form of the time-independent Schrödinger equation

HΨ = EΨ, (10.22)

where H is the energy-dependent Hamiltonian

H(E) = H0 + V (E). (10.23)

The equation (10.20) operates entirely in the restrictedHilbert spacewith constant
number of photons. This can be related to the equivalent equation (6.48), derived by
means of the Gell-Mann–Low theorem, which operates in the photonic Fock space.
We can then regard the equation above as the projection of the Fock-space equation
onto the restricted space.

10.3 Bethe–Salpeter–Bloch Equation. Multi-reference
Case*

We can extend the treatment above to the general multi-reference case. From the
expression (6.167), using the fact that the Green’s operator at time t = 0 is identical
to the wave operator (6.70), we have in the single-reference case (one-dimensional)
model space

|Ψ 〉 = Ω|Ψ0〉 = [
1 + ΓQ(E) V (E) + ΓQ(E) V (E)ΓQ(E) V (E) + · · · ] ∣∣Ψ0

〉
,

(10.24)

where |Ψ0〉 is the model state, |Ψ0〉 = P|Ψ 〉, and

ΓQ(E) = Q

E − H0

is the reduced resolvent (2.65).

http://dx.doi.org/10.1007/978-3-319-15386-5_6
http://dx.doi.org/10.1007/978-3-319-15386-5_6
http://dx.doi.org/10.1007/978-3-319-15386-5_6
http://dx.doi.org/10.1007/978-3-319-15386-5_6
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Operating on (10.24) from the left with Q(E − H0) now yields

Q(E − H0)|Ψ 〉 = QV (E)|Ψ 〉, (10.25)

which is identical to (10.17) with the identification (10.18).
For a general multi-dimensional (quasi-degenerate) model space we have

similarly
Q(Eα − H0)|Ψ α〉 = QV (Eα)|Ψ α〉 (10.26)

and
P(Eα − H0)|Ψ α〉 = PV (Eα)|Ψ α〉. (10.27)

This leads to
(Eα − H0)|Ψ α〉 = V (Eα)|Ψ α〉 (10.28)

or in operator form
(H∗

eff − H0)ΩP = V (H∗
eff)ΩP, (10.29)

using the notations introduced in Sect. 6.11. But

H∗
effΩP = ΩHeff P = ΩH0P + ΩW,

which yields the commutator relation

[Ω, H0] P = V (H∗
eff)ΩP − ΩPW, (10.30)

where according to (6.189) W = PV (H∗
eff)ΩP . Here, the energy parameter of

V (H∗
eff) is given by the model-space state to the far right, while the energy parameter

of Ω of the folded term depends on the intermediate model-space state (see footnote
in Sect. 6.8). This equation is valid in the generalmulti-reference (quasi-degenerate)
situation and represents an extension of the effective-potential form (10.20) of the
Bethe–Salpeter equation. Due to its close resemblance with the standard Bloch equa-
tion of MBPT (2.55), we refer to it as the Bethe–Salpeter–Bloch equation. This is
equivalent to the generalized Bethe–Salpeter equation, derived in Chap.6 (6.191).

In analogy with the MBPT treatment in section (2.5), we can separate the BS-
Bloch equation into

[Ω1, H0] P = (
V (H∗

eff)ΩP − ΩPW (H∗
0 )P

)
linked,1

[Ω2, H0] P = (
V (H∗

eff)ΩP − ΩPW (H∗
0 )P

)
linked,2

(10.31)

etc. It should be noted that the potential operator V (H∗
eff) is an operator or matrix

where each element is an operator/matrix. In the first iteration we set Heff = H0 and
in the next iteration Heff = H0 + W (1) etc. Continued iterations correspond to the

http://dx.doi.org/10.1007/978-3-319-15386-5_6
http://dx.doi.org/10.1007/978-3-319-15386-5_6
http://dx.doi.org/10.1007/978-3-319-15386-5_6
http://dx.doi.org/10.1007/978-3-319-15386-5_2
http://dx.doi.org/10.1007/978-3-319-15386-5_6
http://dx.doi.org/10.1007/978-3-319-15386-5_2
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sum term in the expression (6.133), representing the model-space contributions. The
two-particle BS-Bloch equation above is an extension of the ordinary pair equation,
discussed in Sect. 2.5 (Fig. 2.6).

TheBethe–Salpeter–Bloch equation leads to aperturbation expansionofRayleigh-
Schrödinger or linked-diagram type, analogous to the that of standard MBPT expan-
sions. It differs from the standard Bloch equation by the fact that the Coulomb
interaction is replaced by all irreducible multi-photon interactions.

Solving the BS-Bloch equation (10.30) is NOT equivalent to solving the single-
state equation for a number of states. The Bloch equation (10.30) leads to a
Rayleigh/Schrödinger/linked-diagram expansion with folded terms that is size exten-
sive. The single-state equation (10.20), on the other hand, leads to a Brillouin-Wigner
expansion (see footnote in Sect. 2.4), that is not size extensive.

Due to the very complicate form of the potential of the Bethe–Salpeter–Bloch
equation, it is very difficult to handle this equation in its full extent. In the previous
chapters we have considered a simpler way of achieving essentially the same goal.

10.4 Problems with the Bethe–Salpeter Equation

There are several fundamental problems with the Bethe–Salpeter equation and with
relativistic quantum mechanics in general, as briefly mentioned in the Introduction.
Dyson says in his 1953 paper [64] that this is a subject “full of obscurities and un-
solved problems”. The question concerns the relation between the three-dimensional
and the four-dimensional wave functions. In standard quantum mechanics the three-
dimensional wave function describes the system at a particular time, while the four-
dimensional two-particle wave function describes the probability amplitude for find-
ing particle one at a certain position at a certain time and particle two at another
position at another time etc. The latter view is that of the Bethe–Salpeter equation,
and Dyson establishes a connection between the two views. The main problem is
here the individual times associated with the particles involved, the physical mean-
ing of which is not completely understood. This problem was further analyzed by
Wick [251] and Cutkoski [53] and others. The relative time of the particles leads to
a number of anomalous or spurious states—states which do not have non-relativistic
counterparts. This problemwas analyzed in detail in 1965 byNakanishi [172], and the
situation was summarized in 1997 in a comprehensive paper by Namyslowski [173].

The Bethe–Salpeter equation was originally set up for the bound-state problem
involving nucleons, such as the ground state of the deuteron. The equation has lately
been extensively used for scattering problems in quantum chromodynamics, quark-
quark/antiquark scattering. The equation has also been used for a long time in high-
accuracy works on simple atomic systems, such as positronium, muonium, hydrogen
and heliumlike ions. The problems with the BS equation, associated with the relative
time, are most pronounced at strong coupling and assumed to be negligible in atomic
physics, due to the veryweak coupling. One important question is, of course, whether
this is true also in the very high accuracy that is achieved in recent time.

http://dx.doi.org/10.1007/978-3-319-15386-5_6
http://dx.doi.org/10.1007/978-3-319-15386-5_2
http://dx.doi.org/10.1007/978-3-319-15386-5_2
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To attack the BS equation directly is very complicated, and for that reason vari-
ous approximations and alternative schemes have been developed. The most obvious
approximation is to eliminate the relative time of the particles, the equal-time ap-
proximation or external-potential approach. The first application of this technique
seems to be have beenmade in the thesis of Sucher in the late 1950s [235, 237] for the
evaluation of the leading QED corrections to the energy levels of the helium atom.
This work has been extended by Douglas and Kroll [60] and by Drake et al. [259,
262], as will be further discussed in the Chap. 11. Another early application of an
effective-potential approach was that of Grotch and Yennie [83] to obtain high-order
effects of the nuclear recoil on the energy levels of atomic hydrogen. They derived
an “effective potential” from scattering theory and applied that in a Schrödinger-like
equation. A similar approach was applied to strongly interacting nucleons in the
same year by Gross [81], assuming one of the particles was “on the mass shell”.
Related techniques have been applied to bound-state QED problems among others
by Caswell and Lepage [42] and by Bodwin et al. [32]. A more formal derivation of
a “quasi- potential” method for scattering as well as bound-state problems was made
by Todorov [242], starting from the Lippmann–Schwinger scattering theory [137].

Several attempts have been made to correct for the equal-time approximation.
Sazdjian [216, 217] has converted the BSE into two equations, one for the relative
time and one eigenvalue equation of Schrödinger type. Connell [49] has developed
a series of approximations, which ultimately are claimed to lead to the exact BSE.
The approaches were primarily intended for strong interactions, but Connell tested
the method on QED problems.

http://dx.doi.org/10.1007/978-3-319-15386-5_11


Chapter 11
Analytical Treatment of the Bethe–Salpeter
Equation

11.1 Helium Fine Structure

The leading contributions to the helium fine structure beyond the first-order rela-
tivistic contribution (NVPA, see, Sect. 2.6) were first derived in 1957 by Araki [5]
and Sucher [235, 237], starting from the Bethe–Salpeter (BS) equation [213]
and including the non-relativistic as well as the relativistic momentum regions.
Following the approach of Sucher et al., Douglas and Kroll [60] have derived all
terms of order α4 H(artree),1 where no contributions in the relativistic region were
found. The same approach was later used by Zhang [259, 264] to derive corrections
of order α5 logα H and of order α5 H in the non-relativistic region and recoil cor-
rections to order α4m/M H (see also [261]). Later some additional effects of order
α5 H due to relativistic momenta were found by Zhang and Drake [263]. The radia-
tive parts are treated more rigorously by Zhang in a separate paper [260]. Using a
different approach, Pachucki and Sapirstein [181] have derived all contributions of
order α5 H and reported some disagreement with the early results of Zhang [259].2

We shall here follow the approach of Sucher in his thesis [237]. This is based
directly on the BS equation, which makes it possible to identify the contributions in
terms of Feynman diagrams and therefore to compare them with the results obtained
in the previous chapters. This approach of Sucher is closely followed by Douglas
and Kroll [60] and by Zhang [259], and we shall in our presentation make frequent
references to the corresponding equations of Sucher (S), Douglas and Kroll (DK),
and Zhang (Z).

1H(artree) is the energy unit of theHartree atomic unit system (see Appendix K.1). In the relativistic
unit system the energy unit is mc2 = α−2H .
2The present chapter is largely based upon the paper [121].
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11.2 The Approach of Sucher

The treatment of Sucher starts from the Bethe–Salpeter equation (10.5), which in
our notations (10.6) reads, leavings out the inhomogeneous term (S 1.1, DK 2.5),

Ψ (x, x′) =
∫∫∫∫

d4x1d
4x2d

4x′
1d

4x′
2

× G ′
0(x, x

′; x2, x′
2) (−i)Σ∗(x2, x′

2; x1, x′
1) Ψ (x1, x

′
1). (11.1)

G ′
0 is the zeroth-order two-particle Green’s function, dressed with all kinds of single-

particle self-energies. Σ∗ is identical to the irreducible potential V (Fig. 6.9). The
undressed zeroth-order Green’s function is, using the relation (5.38),

G0(x, x
′; x2, x′

2) = G0(x, x2)G0(x
′, x′

2) = iSF(x, x2) iSF(x
′, x′

2) (11.2)

and the corresponding dressed function is then

G ′
0(x, x

′; x2, x′
2) = G(x, x2)G(x′, x′

2) = iS′
F(x, x2) iS

′
F(x

′, x′
2), (11.3)

where G is the full single-particle Green’s function, generated in the field of the
nucleus (Furry representation) (see Fig. 5.1) and S′

F the correspondingly dressed
electron propagator. The Green’s functions satisfy the relation (5.36) (S 1.5)

(
i
∂

∂t
− h1

)
G(x, x0) = iδ4(x − x0), (11.4)

which leads to (S 1.6, DK 2.19)

(
i
∂

∂t
− h1

) (
i

∂

∂t′
− h2

)
Ψ (x, x′) = i

∫∫∫∫
d4x1d

4x2d
4x′

1d
4x′

2

× δ4(x − x2) δ4(x′ − x′
2) Σ∗(x2, x′

2; x1, x′
1) Ψ (x1, x

′
1)

= i
∫∫

d4x1d
4x′

1 Σ∗(x, x′; x1, x′
1) Ψ (x1, x

′
1), (11.5)

where h1,2 are the Dirac single-electron Hamiltonians for electron 1 and 2.
We assume that the wave function is of the form

Ψ (x, x′) = Ψ (T , τ , x, x′) = e−iET Ψ (τ , x, x′), (11.6)

where T = (t + t′)/2 is the average time and τ = t − t′ is the relative time. Then

i
∂

∂t
Ψ (x, x′) =

(
E/2 + i

∂

∂τ

)
Ψ (x, x′)

http://dx.doi.org/10.1007/978-3-319-15386-5_10
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i
∂

∂t′
Ψ (x, x′) =

(
E/2 − i

∂

∂τ

)
Ψ (x, x′),

leading to (S 1.9, DK 2.23)

(
E/2 + i

∂

∂τ
− h1

)(
E/2 − i

∂

∂τ
− h2

)
Ψ (τ , x, x′)

= i
∫

dτ1

∫∫
d3x1d3x′

1 Σ∗(τ , x, x′; τ1, x1, x′
1) Ψ (τ1, x1, x′

1), (11.7)

leaving out the average time.
Sucher then transfers to themomentum representation, but we shall here still work

in the coordinate representation with a Fourier transform only of the time variables.
We define the Fourier transform with respect to time

F(ε) =
∫

dτ eiετ F(τ ) (11.8)

and the inverse transformation

F(τ ) =
∫

dε

2π
e−iετ F(ε). (11.9)

Fourier transforming (11.7) with respect to τ , yields

(E/2 + ε − h1) (E/2 − ε − h2) Ψ (ε, x1, x′
1)

= i
∫

dτ1

∫∫
d3x1d3x′

1 Σ∗(ε, x, x′; τ1, x1, x′
1) Ψ (τ1, x1, x′

1). (11.10)

Performing the Fourier transform of the rhs with respect to τ1, yields

∫
dτ1

∫∫
dε′

1

2π

dε1
2π

e−iε′
1τ1 e−iε1τ1 Σ∗(ε, x, x′; ε′

1, x1, x
′
1) Ψ (ε1, x1, x′

1)

=
∫∫

dε′
1

2π

dε1
2π

2πδ(ε1 + ε′
1)Σ∗(ε, x, x′; ε′

1, x1, x
′
1) Ψ (ε1, x1, x′

1) (11.11)

or (S 1.16)

(E/2 + ε − h1) (E/2 − ε − h2) Ψ (ε, x1, x′
1)

= i
∫

dε1
2π

∫∫
d3x1d3x′

1 Σ∗(ε, x, x′; −ε1, x1, x′
1) Ψ (ε1, x1, x′

1). (11.12)

Following Sucher, we express the relation (11.10) in operator form

F̂ |Ψ 〉 = ĝ |Ψ 〉. (11.13)



234 11 Analytical Treatment of the Bethe–Salpeter Equation

The operator F̂ has the (diagonal) coordinate representation

〈ε, x, x′|F |ε, x, x′〉 = (E/2 + ε − h1) (E/2 − ε − h2) (11.14)

and the operator ĝ has the (non-diagonal) representation

〈ε, x, x′|ĝ|ε1, x1, x′
1〉 = i

2π
〈ε, x, x′|Σ̂∗|ε1, x1, x′

1〉. (11.15)

We expand the interaction into
ĝ = ĝc + ĝΔ, (11.16)

where ĝc represents the Columbic part of ĝ

ĝc = i

2π
Îc (11.17)

and Îc is the Coulomb interaction with the (diagonal) coordinate representation

〈ε, x, x′|Îc|ε, x, x′〉 = e2

4π|x − x1| . (11.18)

ĝΔ represents the remaining part of ĝ

ĝΔ = ĝT + gT×c + ĝT×c2 + ĝT×T + · · · + ĝrad, (11.19)

where ĝT represents a single transverse photon, ĝT×c and ĝT×c2 a transverse photon
with one and two crossing Coulomb interactions, respectively, ĝT×T with two irre-
ducible transverse photons, and finally ĝrad all radiative corrections. This corresponds
to the diagrams shown in Fig. 11.1

With the decomposition (11.16) the relation (11.13) becomes (S 1.30, DK 3.6)

|Ψ 〉 =
(
F̂ − ĝΔ

)−1
ĝc |Ψ 〉 (11.20)

Fig. 11.1 Diagrammatic representation of the approximation in (11.19), used by Sucher
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with the coordinate representation

〈ε, x, x′|Ψ 〉 = 〈ε, x, x′|
(
F̂ − ĝΔ

)−1 |ε2, x2, x′
2〉〈ε2, x2, x′

2|ĝc|ε1, x1, x′
1〉〈ε1, x1, x′

1|Ψ 〉
(11.21)

or noting that the representation of ĝc is diagonal

〈ε, x, x′|Ψ 〉 = 〈ε, x, x′|
(
F̂ − ĝΔ

)−1 |ε1, x1, x′
1〉 ĝc 〈ε1, x1, x′

1|Ψ 〉. (11.22)

Sucher defines the equal-time wave function (S 1.32, DK 3.8)

Φ(x, x′) =
∫

dεΨ (ε, x, x′) (11.23)

or in operator form

|Φ〉 = |ε〉〈ε|Ψ 〉, (11.24)

which gives with (11.22)

〈ε, x, x′|Ψ 〉 = 〈ε, x, x′|
(
F̂ − ĝΔ

)−1 |x1, x′
1〉 ĝc 〈x1, x′

1|Φ〉. (11.25)

Summing over ε with the replacement (11.17), this can be expressed (S 1.34)

|Φ〉 = i
∫

dε

2π

(
F̂ − ĝΔ

)−1
Îc |Φ〉. (11.26)

Using the identity (S 1.35, DK 3.11)

(A − B)−1 ≡ A−1 + A−1B(A − B)−1, (11.27)

the BSE (11.26) becomes (DK 3.12)

|Φ〉 = i
∫

dε

2π

[
F̂−1 + F̂−1ĝΔ(F̂ − ĝΔ)−1

]
Îc |Φ〉. (11.28)

The inverse of the operator OF is

F̂−1 = 1

E/2 + ε − ĥ1

1

E/2 − ε − ĥ2
, (11.29)
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which is a product of electron propagators in operator form (4.14)

F̂−1 = ŜF(E/2 + ε) ŜF(E/2 − ε). (11.30)

In the coordinate representation (4.12)

SF(ω; x, x0) = 〈x|j〉 〈j|x0〉
ω − εj + iη sgn(εj)

= 〈x|j〉 〈j|x0〉
ω − εj + iη

Λ+ + 〈x|j〉 〈j|x0〉
ω − εj − iη

Λ−. (11.31)

Integration over ε then yields (S 1.44, DK 3.24)

∫
dε

2π
F−1 = −i

〈x, x′|rs〉〈rs|x0, x′
0〉

E − εr − εs
(Λ++ − Λ−−) , (11.32)

which is also the negative of the Fourier transform of the zeroth-order Green’s func-
tion −G0(E; x, x0; x′, x′

0), or in operator form

∫
dε

2π
F̂−1 = −G0(E) = − i

E − ĥ1 − ĥ2
(Λ++ − Λ−−) . (11.33)

Equation (11.28) then becomes (S 1.47, DK 3.26)3

[
h1 + h2 + (Λ++ − Λ−−) Ic + D i

∫
dε

2π
F−1gΔ(F − gΔ)−1Ic

]
Φ = E Φ,

(11.34)

where
D = E − h1 − h2. (11.35)

This is the starting point for the further analysis.
The operator on the lhs can be written in the form Hc + HΔ, where

Hc = h1 + h2 + Λ++IcΛ++ (11.36)

is the Hamiltonian of the no-(virtual-) pair Dirac-Coulomb equation (Z 16)

Hc Ψc = Ec Ψc (11.37)

and

HΔ = Λ++Ic(1 − Λ++) − Λ−−Ic + D i
∫

dε

2π
F−1gΔ(F − gΔ)−1Ic = HΔ1 + HΔ2

(11.38)

3In the following we leave out the hat symbol on the operators.

http://dx.doi.org/10.1007/978-3-319-15386-5_4
http://dx.doi.org/10.1007/978-3-319-15386-5_4
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is the remaining “QED part” (S 2.3, DK 3.29, Z 17). The first part HΔ1 represents
virtual pairs due to the Coulomb interaction and the second part effects of transverse
photons (Breit interaction).

In order to include electron self-energy and vacuum polarizations, the electron
propagators (5.37) are replaced by propagators with self-energy insertions Σ(ε),
properly renormalized (DK 2.10),

S′(ε) = |r〉〈r|
ε − εr + βΣ(ε) + iηr

. (11.39)

Also renormalized photon self-energies have to be inserted into the photon lines.

11.3 Perturbation Expansion of the BS Equation

The effect of the QED Hamiltonian (11.38) can be expanded perturbatively, using
the Brillouin–Wigner perturbation theory,

ΔE = E−Ec = 〈Ψc|V+VΓ V+VΓ VΓ V+· · · |Ψc〉 = 〈Ψc| V

1 − Γ V
|Ψc〉, (11.40)

where Γ is the reduced resolvent (2.65)

Γ = ΓQ(E) = Q

E − Hc
= 1 − |Ψc〉〈Ψc|

E − Hc
= 1 − |Ψc〉〈Ψc|

Dc
(11.41)

with
Dc = E − Hc. (11.42)

The unperturbed wave function is in our case one solution of the no-pair Dirac-
Coulomb equation (11.37), Ψc, and we can assume that the perturbation is expanded
in other eigenfunctions of Hc. Q is the projection operator that excludes the state Ψc

(assuming no degeneracy). This leads to the expansion (S 2 19–21, DK 3.43, Z 28)

ΔE(1) = 〈Ψc|HΔ|Ψc〉, (11.43a)

ΔE(2) = 〈Ψc|HΔΓHΔ|Ψc〉, (11.43b)

ΔE(3) = 〈Ψc|HΔΓHΔΓHΔ|Ψc〉, (11.43c)

etc.

http://dx.doi.org/10.1007/978-3-319-15386-5_5
http://dx.doi.org/10.1007/978-3-319-15386-5_2
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Since Λ++|Ψc〉 = |Ψc〉 and Λ−−|Ψc〉 = 0, it follows that 〈Ψc|HΔ1|Ψc〉 ≡ 0, and
the first-order correction becomes (DK 3.44)

ΔE(1) = 〈Ψc|HΔ2|Ψc〉 = 〈Ψc|D i
∫

dε

2π
F−1JF−1Ic|Ψc〉 (11.44)

and (DK 3.45)
J = gΔ(1 − F−1gΔ)−1. (11.45)

The second-order corrections are (DK 3.46)4

ΔE(2)
a = 〈Ψc|HΔ1 Γ HΔ1|Ψc〉 = −〈Ψc|IcΛ−− Γ Λ−−Ic|Ψc〉, (11.46a)

ΔE(2)
b = 〈Ψc|HΔ1 Γ HΔ2|Ψc〉 = 〈Ψc|IcΛ−− DΓ i

∫
dε

2π
F−1JF−1Ic|Ψc〉,

(11.46b)

ΔE(2)
c = 〈Ψc|HΔ2 Γ HΔ1|Ψc〉 = 〈Ψc|D i

∫
dε

2π
F−1JF−1Ic Γ Λ−−Ic|Ψc〉,

(11.46c)

ΔE(2)
d = 〈Ψc|HΔ2 Γ HΔ2|Ψc〉

= 〈Ψc|D i
∫

dε

2π
F−1JF−1Ic Γ D i

∫
dε

2π
F−1JF−1Ic|Ψc〉. (11.46d)

These formulas can be simplified, noting that

Λ−−ΓD = Λ−−
Q

E − Hc
(E − h1 − h2), (11.47)

which, using the relation (11.42), becomes (DK 3.41)

Λ−−ΓD = Λ−−
(
1 + Λ++IcΛ++

E − Hc

)
= Λ. (11.48)

According to DK ΔE(2)
a , ΔE(2)

c and ΔE(3) do not contribute to the fs in order
α4 (Hartree). This holds also in the next order according to Zhang, but ΔE(3) will
contribute to the singlet energy in that order. In the relativistic momentum region the
second-order part ΔE(2)

a contributes to the energy already in order α3 H and to the
fine structure in order α5 H [259, p. 1256].

Using the relation (11.42), we have Ec −Hc = Dc −Λ++DcΛ++, and the no-pair
equation (11.37) can be written (DK 3.51)

(Dc − Λ++Ic) Ψc = 0. (11.49)

4Note that the two Ic in (11.46a) are missing from [60, Eq.3.46]. Equation (11.46b) agrees with
[259, Eq.30] but not with [60], where the factor IcL++ should be removed.
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Then the second-order correction ΔE(2)
b (11.46b) can be expressed

ΔE(2)
b = 〈Ψc|(Ic − Dc) i

∫
dε

2π
F−1JF−1Ic|Ψc〉. (11.50)

This can be combined with the first-order correction ΔE(1) (11.44), yielding

〈Ψc|(Ic + ΔE) i
∫

dε

2π
F−1JF−1Ic|Ψc〉 (11.51)

with
ΔE = E − Ec = D − Dc. (11.52)

Here, the ΔE term differs in sign from (DK 3.54) and (Z 37).
The reason for the discrepancy between our result here and those of DK and Z,

seems to be that the latter make the replacement (DK 3.48)

F−1 = S1S2 ≡ (S1 + S2)
(
S−1
1 + S−1

2

)−1 = S1 + S2
E − h1 − h2

= D−1 (S1 + S2) ,

(11.53)

which follows from (11.30), and then approximate D with Dc in the second-order
expression.

11.4 Diagrammatic Representation

To continue we make the expansion (DK 3.45, Z 32)

J = gΔ(1 − F−1gΔ)−1 = gΔ + gΔF−1gΔ + · · · , (11.54)

where thefirst term represents irreducible terms and the remaining ones are reducible.
Furthermore, we make the separation (DK 3.53, Z 12)

gΔ = gT + Δg, (11.55)

where gT represents the interaction of a single transverse photon and Δg the
irreducible multi-photon exchange of (11.19). The first-order expression (11.44)
becomes

ΔE(1) = 〈Ψc|D i
∫

dε

2π
F−1

[
gT + gTF−1gT + Δg + · · · ]F−1Ic|Ψc〉, (11.56)
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(a) (b) (c) (d) (e) (f)

(g) (h)

Fig. 11.2 Diagrammatic representation of the first-order expression (11.56)

and the leading terms are illustrated in Fig. 11.2. The first term can be expanded in
no-pair and virtual-pair terms (a–c)

ΔE(1) = 〈Ψc|D i
∫

dε

2π
F−1gTF−1(Λ++ + Λ+− + Λ−+ + Λ−−)Ic|Ψc〉. (11.57)

The second term in (11.56) represents in lowest order two reducible transverse pho-
tons (d) and the third term irreducible (inclusive radiative) multi-photon part, (e–h).

Similarly, the second-order expressions above become

ΔE(2)
a = −〈Ψc|IcΛ−− Γ Λ−−Ic|Ψc〉, (11.58a)

ΔE(2)
b = 〈Ψc|IcΛ−− i

∫
dε

2π
F−1

[
gT + gTF−1gT + Δg + · · ·

]
F−1Ic|Ψc〉, (11.58b)

ΔE(2)
c = 〈Ψc|i

∫
dε

2π
F−1

[
gT + gTF−1gT + Δg + · · ·

]
F−1Ic Λ−−Ic|Ψc〉, (11.58c)

ΔE(2)
d = 〈Ψc|D i

∫
dε

2π
F−1 [gT + · · · ]F−1Ic ΓD i

∫
dε

2π
F−1 [gT + · · · ]F−1Ic|Ψc〉.

(11.58d)

This is illustrated in Fig. 11.3. The first second-order contribution (11.58a) represents
two Coulomb interactions with double pair (Fig. 11.3a) and the next contribution
(11.58b) in lowest order a transverse photon and a Coulomb interaction with double
pair (b). The third contribution represents in lowest order one transverse photon
and two Coulomb interactions with a double pair (c). The last term represents two
reducible transverse photons with at least one Coulomb interaction (d).
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(a) (b) (c) (d)

Fig. 11.3 Diagrammatic representation of the second-order expressions (11.58a–11.58d)

11.5 Comparison with the Numerical Approach

In previous chapters we have described an approach that has recently been developed
by the Gothenburg group and that is largely equivalent to solving the Bethe–Salpeter
equation numerically. Numerical results were presented in Chap.9. This procedure
is based upon the covariant-evolution-operator approach and the Green’s-operator
technique, described previously, and to a large extent upon the numerical techniques
developed by the group and applied to numerous atomic systems (see Sect. 2.7). This
new technique has the advantage over the analytical approach that all relativistic
effects are automatically included in the procedure. This simplifies the handling
appreciably, and it corresponds to the treatment of the entire Sect. 4 of Douglas and
Kroll [60] or to Sect. 7 in the paper of Zhang [259].

The numerical technique can handle one retarded photon with arbitrary number
of crossing Coulomb interactions together with virtual electron-positron pairs as
well as first-order radiative QED effects. This corresponds to most of the terms
gT + gT×c + gT×c2 + · · · of the expansion in (11.19) and to the numerous formulas
of Sect. 5 of Douglas-Kroll and of Sect. 4 of Zhang.

Also part of the multi-photon effect can be treated numerically by iterating
reducible interactions with a single transverse photon, corresponding to the oper-
ator gTFgT in the formulas above with crossing Coulomb interactions. These
effects are treated in Sect. 6 of Douglas and Kroll. The irreducible interaction with
several transverse photons cannot be teated at present with the numerical technique,
but this can be approximated with one retarded and one or several unretarded photons
(instantaneous Breit).

http://dx.doi.org/10.1007/978-3-319-15386-5_9
http://dx.doi.org/10.1007/978-3-319-15386-5_2


Chapter 12
Regularization and Renormalization

(See, for instance, Mandl and Shaw [143, Chap.9] and Peskin and Schroeder [194,
Chap.7].)

In the previous chapters we have evaluated some radiative effects in the S-matrix
(Chap. 4) and Green’s-operator formalisms (Chap. 8). In the present chapter we shall
discuss the important processes of renormalization and regularization in some detail.

Many integrals appearing in QED are divergent, and these divergences can be
removed by replacing the bare electron mass and charge by the corresponding phys-
ical quantities. Since infinities are involved, this process of renormalization is a
delicate matter. In order to do this properly, the integrals first have to be regularized,
which implies that the integrals are modified so that they become finite. This has
to be done so that the process is gauge-independent. After the renormalization, the
regularization modification is removed. Several regularization schemes have been
developed, and we shall consider some of them in this chapter. If done properly, the
way of regularization should have no effect on the final result.

12.1 The Free-Electron QED

12.1.1 The Free-Electron Propagator

The wave functions for free electrons are given by (D.28) in Appendix D

{
xφp+(x) = (2π)−3/2 u+(p) eip· x e−iEpt

φp−(x) = (2π)−3/2 u−(p) eip· x eiEpt , (12.1)
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where p is the momentum vector and p+ represents positive-energy states (r = 1, 2)
andp− negative-energy states (r = 3, 4).Ep = cp0 = √

c2p2 + m2c4. The coordinate
representation of the free-electron propagator (4.10) then becomes

〈x1|ŜfreeF |x2〉 =
∫

dω

2π

∑
p,r

φp,r(x1)φ†
p,r(x2)

ω − εfreep (1 − iη)
e−iω(t1−t2), (12.2)

where εfreep is the energy eigenvalue of the free-electron function (Ep = |εfreep |). The
Fourier transform with respect to time then becomes

〈x1|ŜfreeF |x2〉 =
∑
p,r

φp,r(x1)φ†
p,r(x2)

ω − εfreep (1 − iη)
⇒

=
∫

d3p
(2π)3

∑
r

ur(p) u†r (p)
eip·(x1−x2)

ω − εfreep (1 − iη)

=
∫

d3p
(2π)3

[
u+(p) u†+(p)

1

ω − Ep (1 − iη)

+u−(p) u†−(p)
1

ω + Ep (1 − iη)

]
eip(x1−x2).

The square bracket above is the Fourier transform of the propagator, and using the
relations (D.38, D.39), this becomes1

SfreeF (ω,p) = 1

2

[
1

ω − Ep (1 − iη)
+ 1

ω + Ep (1 − iη)

]

+ α · p + βmc

2p0

[
1

ω − Ep (1 − iη)
− 1

ω + Ep (1 − iη)

]

= ω + cα · p + βmc2

ω2 − E2
p + iη

= ω + cα · p + βmc2

ω2 − (c2p2 + m2c4) (1 − iη)

= 1

ω − (cα · p + βmc2) (1 − iη)
(12.3)

with E2
p = c2p20 = c2p2 + m2c4 and αβ = −βα. This can also be expressed

SfreeF (ω,p) = 1

ω − hfreeD (p) (1 − iη)
, (12.4)

where hfreeD (p) is the momentum representation of the free-electron Dirac Hamil-
tonian operator, ĥfreeD (p̂), (D.21).

1In the following we shall for simplicity denote the electron physical mass by m instead of me.

http://dx.doi.org/10.1007/978-3-319-15386-5_4
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Fig. 12.1 Diagram
representing the first-order
free-electron self-energy

Formally, we can write (12.3) in a covariant four-component form with ω = cp0
andwith cp0 disconnected fromEp = √

c2p2 + m2c4—knownas off themass-shell.
Then we have

cSfreeF (ω,p) = 1

p0 − α · p − βmc
= p0 + α · p + βmc

p20 − (p2 + m2c2) (1 − iη)
= ( �p + mc)β

p2 − m2c2

or

SF
free

(p) = cSfreeF (ω,p)β = SfreeF (p)β = 1

�p − mc + iη
(12.5)

with �p = γσpσ = βασpσ = β(p0 − α · p) = (p0 + α · p) β (see Appendix D).
(Note, that the two transforms differ by a factor of c.)2

12.1.2 The Free-Electron Self-Energy

The S-matrix for the first-order free-electron self-energy (Fig. 12.1) is obtained from
(4.84), (4.44) with the momentum functions (12.1) after time integrations

S(2)(ω;p′, r′,p, r) = e2c2
∫

dz

2π

∫∫
d3x d3x′ u†r′(p′) e−ip′·x′

× αν iSfreeF (ω − z; x′, x)αμur(p) eip·x iDFμν(z, x′ − x).
(12.6)

The relation between the momentum and coordinate representations are

SfreeF (ω; x′, x) =
∫

d3q
(2π)3

SfreeF (ω,q) eiq·(x′−x) (12.7)

DFνμ(z; x′, x) =
∫

d3k
(2π)3

Dfree
Fνμ(z, k) e

ik·(x′−x). (12.8)

2Here, SfreeF (p) is the non-covariant electron propagator, defined by means of Ψ † in the formulas

(4.9), while SF
free

(p) is the corresponding covariant expression, defined by means of Ψ̄ = Ψ †β.

http://dx.doi.org/10.1007/978-3-319-15386-5_4
http://dx.doi.org/10.1007/978-3-319-15386-5_4
http://dx.doi.org/10.1007/978-3-319-15386-5_4
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Integration over the space coordinates then yields

S(2)(ω;p′, r′,p, r) = e2c2
∫

d3q
(2π)3

∫
d3k

(2π)3
δ3(p − q − k) δ3(p′ − q − k)

× u†r′(p′)
∫

dz

2π
ανSfreeF (ω − z, k) αμ Dfree

Fνμ(z, k) ur(p)

(12.9)

and integration over q

S(2)(ω;p′, r′, p, r) = δ3(p′ − p) u†r′(p′) (−i)Σ free(ω,p) ur(p), (12.10)

where

Σ free(ω,p) = ie2c2
∫

dz

2π

∫
d3k

(2π)3
ανSfreeF (ω − z, k)αμDFνμ(z, k). (12.11)

In the covariant form we have, using z = ck0,

Σ free(p) = ie2c2
∫

d4k

(2π)4
ανSfreeF (p − k)αμDFνμ(k), (12.12)

which is the free-electron self-energy function. With the covariant form (12.5) of the
free-electron propagator this yields in terms of gamma matrices (γν = βαν)

Σ̄ free(p) = βΣ free(p) = ie2c2
∫

d4k

(2π)4
γν 1

�p− � k − mc + iη
γμDFνμ(k).

(12.13)

This can also be expressed

Σ̄ free(p) = βΣ free(p) = ie2c2
∫

d4k

(2π)4
γν �p− � k + mc

(p − k)2 − m2c2 + iη
γμDFνμ(k).

(12.14)

In the Feynman gauge we have with the photon propagator (4.28) and the commuta-
tion rules in Appendix (D.61)

Σ̄ free(p) = βΣ free(p) = 2ie2c

ε0

∫
d4k

(2π)4

�p− � k − 2mc

(p − k)2 − m2c2 + iη

1

k2 + iη
.

(12.15)

http://dx.doi.org/10.1007/978-3-319-15386-5_4
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Fig. 12.2 Diagram
representing the first-order
free-electron vertex
correction

12.1.3 The Free-Electron Vertex Correction

We consider first the single interaction with an external energy potential (Appendix
D.44) −eασAσ Fig. 12.2 (left). The S-matrix (4.3) is given by

S(1)(ω′,ω;p′r′,pr,q) = iec
∫

d3x u†r′(p′) e−ip′·x ασAσ(x) ur(p) eip·x (12.16)

or

S(1)(ω′,ω;p′r′,pr,q) = iec δ3(p − p′) u†r′(p′)ασAσ(p − p′) ur(p), (12.17)

where Aσ(q) is the Fourier transform of Aσ(x).
Thevertex-modified free-electron self-energydiagram inFig. 12.2 (right) becomes

similarly

S(3)(ω′,ω; p′r′,pr) = (ie)3c2
∫

dz

2π

∫∫∫
d3x1 d3x2 d3x3 u

†
r′ (p

′) e−ip′·x′

× αν iSfreeF (ω′ − z, x′, x′′)ασ Aσ(x′′) αμ iSfreeF (ω − z, x′′, x) ur(p) eip·x

× iDFμν(z, x′ − x). (12.18)

In analogy with (12.9) this becomes

S(3)(ω′,ω;p′r′,pr) = e3c2
∫

d3q
(2π)3

∫
d3q′

(2π)3

∫
d3q′′

(2π)3

∫
d3k

(2π)3
u†r′ (p

′)

× δ3(p − q − k) δ3(p′ − q′ − k) δ3(q − q′ + q′′)
∫

dz

2π
αν SfreeF (ω′ − z,q′)

× ασ Aσ(q′′) αμ SfreeF (ω − z,q) ur(p)DFμν(z, k) (12.19)

and after integrations over q, q′, and q′′ (c.f. 4.99)

S(3)(ω′,ω;p′r′,pr) = ie δ3(p − p′) u†r′(p′)Λσ(ω′,ω;p′,p)Aσ(p − p′) ur(p),

(12.20)

http://dx.doi.org/10.1007/978-3-319-15386-5_4
http://dx.doi.org/10.1007/978-3-319-15386-5_4
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where

Λσ(ω′,ω;p′,p) = ie2c2
∫

dz

2π

∫
d3k

(2π)3
ανSfreeF (ω′ − z,p′ − k)

× ασSfreeF (ω − z,p − k)αμDFνμ(z, k) (12.21)

is the vertex correction function. This can be expressed in analogy with the free-
electron case (12.5)

Λσ(p′, p) = ie2c
∫

d4k

(2π)4
ανSfreeF (p′ − k)ασSfreeF (p − k)αμDFνμ(k)

and in covariant form

Λσ(p′, p) = βΛσ(p′, p) = ie2c
∫

d4k

(2π)4
γμ

1

�p ′− � k − mc + iη
γσ

× 1

�p− � k − mc + iη
γμDFνμ(k). (12.22)

In the Feynman gauge this becomes

Λσ(p′, p) = βΛσ(p′, p) = ie2

ε0

∫
d4k

(2π)4
γμ

1

�p ′− � k − mc + iη
γσ

× 1

�p− � k − mc + iη
γμ 1

k2 + iη
. (12.23)

Comparing (12.22) with the self-energy function (12.13), we find for p = p′ the
Ward identity [143, (9.60)] (see 4.102)

∂

∂cpσ
Σ(p) = −Λσ(p, p). (12.24)

Obviously, this relation holds independently of the gauge.

12.2 Renormalization Process

We shall here derive expressions for the mass and charge renormalization in terms
of counterterms that can be applied in evaluating the QED effects on bound states.
The process of regularization will be treated in the next section.

http://dx.doi.org/10.1007/978-3-319-15386-5_4
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Fig. 12.3 Dyson equation for the dressed bare-mass electron propagator

12.2.1 Mass Renormalization

We consider now a bare electron with the mass m0. The corresponding free-electron
propagator (12.5) is then

SF
bare(ω,p) = 1

�p c − m0c2 + iη
β (12.25)

with ω = cp0.
We now “dress” the bare-electron propagator with all kinds of self-energy inser-

tions in the same way as for the bound-electron propagator in Fig. 5.7. This corre-
sponds to the S-matrix in operator form3

iSF(ω,p) + iSF(ω,p)(−i)Σ(ω,p) iSF(ω,p) + · · · = iSF(ω,p)

1 − Σ(ω,p) SF(ω,p)
,

(12.26)

which leads to

SF
bare,dressed(ω,p) = 1

�p c − m0c2 − βΣ∗
bare(ω,p) + iη

β, (12.27)

illustrated in Fig. 12.3. Here, the box represents the irreducible or proper self-energy
insertions, Σ∗

bare(ω,p), illustrated in Fig. 12.4. We shall in the following refer to this
as the free-electron self-energy, Σ free(ω,p),

Σ∗
bare(ω,p) = Σ free(ω,p). (12.28)

3Note that Σ(ω,p) has the dimension of energy and that the product Σ(ω,p) SF(ω,p) is dimen-
sionfree (see Appendix K).

http://dx.doi.org/10.1007/978-3-319-15386-5_5


250 12 Regularization and Renormalization

Fig. 12.4 Expansion of the proper self-energy operator for a bare electron

To lowest order the free-electron self-energy is in analogy with (4.86)

Σ free(ω,p) = i
∫

dω

2π
SbareF (ω,p) Ibare(ω;p), (12.29)

where Ibare is the interaction (4.44) in the momentum representation with the elec-
tronic charge replaced by the bare charge, e0.

The bare-electron propagator itself is also associated with a bare-electron charge
(e0) at each vertex. The dressing of the electron propagator leads to a modification
of the electron mass as well as of the electron charge. One part of the free-electron
self-energy is indistinguishable from the mass term in the electron propagator and
another part is indistinguishable from the electronic charge, and these parts give rise
to the mass renormalization and the charge renormalization, respectively. The mod-
ification of the electron charge is here compensated by a corresponding modification
of the vertex (to be discussed below), so that there is no net effect on the electron
charge in connection with the electron self-energy. On the other hand, there is a real
modification of the electron charge in connection with the modification of the photon
propagator, as we shall discuss later.

Instead of working with the bare-electron mass and charge with self-energy inser-
tions,we can use thephysicalmass and charge and introduce corresponding countert-
erms (see, for instance, [92, p. 332]). The free-electron propagator with the physical
electron mass, m, is (12.5)

SF
free(ω,p) = 1

�p c − mc2 + iη
β, (12.30)

and it has its poles “on the mass shell”, �p = mc (see Appendix D.33). The dressed
propagator (12.27) should have the same pole positions, which leads with

m = m0 + δm (12.31)

to
δmc2 = βΣ free(ω,p)

∣∣ �p=mc
. (12.32)

This is the mass counterterm. We can now in the dressed operator (12.27) replace
m0c2 by

mc2 − βΣ free(ω,p)
∣∣ �p=mc

,

http://dx.doi.org/10.1007/978-3-319-15386-5_4
http://dx.doi.org/10.1007/978-3-319-15386-5_4
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which leads to

SF
free,ren(ω,p) = 1

�p c − mc2 − βΣ free
ren (ω,p) + iη

β, (12.33)

where
Σ free

ren (ω,p) = Σ free(ω,p) − Σ free(ω,p)
∣∣ �p=mc. (12.34)

This represents the mass-renormalization. Both the free-electron self-energy and
the mass counterterms are divergent, while the renormalized self-energy is finite.

12.2.2 Charge Renormalization

12.2.2.1 Electron Self-Energy

The pole values (residues) of the dressed bare electron propagator should also be the
same as for the physical propagator, including the associated electronic charges. The
physical propagator (12.30) with the electronic charge

e2SfreeF (ω,p) = e2

� p c − mc2 + iη
β

has the pole value βe2/c. The dressed propagator (12.27) with the bare electron
charge is

e20
�p c − m0c2 − βΣ free(ω,p) + iη

β = e20
�p c − mc2 − βΣ free

ren (ω,p) + iη
β

and its pole value at the pole �p = mc is

lim�p→mc

1

c

e20( �p − mc)

�p c − mc2 − βΣ free
ren (ω,p) + iη

β = 1

c

e20
1 − β ∂

∂c �p Σ free
ren (ω,p)

∣∣ �p=mc
+ iη

β,

using l’Hospital’s rule. This gives us the relation

e2 = e20
1 − ∂

∂cβ �pΣ free
ren (ω,p)

∣∣ �p=mc

(12.35)

or

e2 = e20

(
1 + ∂

∂cβ �p Σ free
ren (ω,p)

∣∣∣ �p=mc
− · · ·

)
. (12.36)
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Here, the second term, which is divergent, represents the first-order charge renor-
malization.

The covariant form of the free-electron self-energy, based upon the use of Ψ̄ in
the matrix elements is usually expressed as [143, (9.26)]

Σ̄ free(ω,p) = βΣ free(ω,p) = A + B( �p c − mc2) + C( �p c − mc2)2,

which leads to the corresponding non-covariant expression based upon the use ofΨ †

(see 8.63)

Σ free(ω,p) = βA + B(αμpμc − βmc2) + βC(αμpμc − βmc2)2. (12.37)

It then follows that the constantA is associated to themass renormalization (12.32),

A = βΣ free(ω,p)
∣∣ �p=mc = δmc2 (12.38)

and B with the charge renormalization,

B = ∂

∂cp0
Σ free(ω,p)

∣∣ �p=mc. (12.39)

From (12.36) it follows that for the charge renormalization due to the dressing of the
electron propagator becomes

e = e0(1 + B/2 + · · · ). (12.40)

The constantC represents the renormalized free-electron self-energy that is finite.

12.2.2.2 Vertex Correction

The modification of the vertex function, shown in Fig. 12.2, can be represented by

ie0Γ
σ(p, p′) = ie0α

σ + ie0Λ
σ(p, p′), (12.41)

where e0 is the “bare” electron charge. The vertex correction is divergent and can be
separated into a divergent part and a renormalized, finite part

Λσ(p, p′) = Lασ + Λσ
ren(p, p

′). (12.42)

The divergent vertex part corresponds to a charge renormalization, in first order being

e = e0(1 + βL). (12.43)

http://dx.doi.org/10.1007/978-3-319-15386-5_8
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But this should be combined with the charge renormalization due to the dressing of
the electron propagators (12.40), which yields

e = e0(1 + βL + βB), (12.44)

since there are two propagators associated with each vertex. Due to theWard identity
(12.24), (4.102) we have B = −L with the consequence that the charge renormal-
ization due to the electron self-energy and the vertex correction exactly cancel. This
holds also in higher orders.

12.2.2.3 Photon Self-Energy

We first transform the first-order photon self-energy (4.110) to the momentum rep-
resentation, using

DFνμ(x1, x3) =
∫

d4k

(2π)4
e−ik(x1−x3)DFνμ(k),

DFνμ(x4, x2) =
∫

d4k

(2π)4
e−ik′(x4−x2)DFνμ(k

′),

SF(x3, x4) =
∫

d4q

(2π)4
e−iq(x3−x4)SF(q),

SF(x4, x3) =
∫

d4q

(2π)4
e−iq′(x4−x3)SF(q

′). (12.45)

The space integrations over x3 and x3 gives rise to the delta functions δ4(k − q + q′)
and δ4(k′ − q + q′), yielding with the bare electron charge e20,

∫
d4k

(2π)4
ie20α

μ
1DFνμ(k) iΠ

στ
3,4(k) ie

2
0α

ν
2DFνμ(k),

iΠστ
3,4(k) =

∫
d4q

(2π)4
Tr

[
iασ

3SF(q) iα
τ
4SF(q − k)

]
. (12.46)

The photon self-energy represents a modification of the single-photon exchange,
illustrated in Fig. 12.5,

ie20DFνμ(k) ⇒ ie20DFνμ(k) + ie20DFμσ(k) iΠστ (k) ie20DFτν(k) + · · · . (12.47)

With the form (4.28) of the photon propagator in the Feynman gauge this becomes

−ie20
cε0

gμν

k2 + iη
⇒ −ie20

cε0

gμν

k2 + iη
+ −ie20

cε0

gμσ

k2 + iη
iΠστ (k)

−ie20
cε0

gτν

k2 + iη
.

(12.48)

http://dx.doi.org/10.1007/978-3-319-15386-5_4
http://dx.doi.org/10.1007/978-3-319-15386-5_4
http://dx.doi.org/10.1007/978-3-319-15386-5_4
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Fig. 12.5 Diagram representing the first-order vacuum polarization of the single photon (first-order
photon self-energy)

From the Lorentz covariance it follows that the polarization tensor must have the
form

Πστ (k) = −gστA(k2) + kσkτB(k2), (12.49)

and it can be shown that in this case only the second term can contribute [22, p.
155], [143, p. 184]. This reduces the expression above to

−ie20
cε0

gμν

k2 + iη
⇒ −ie20

cε0

gμν

k2 + iη

[
1 − e20

cε0

A(k2)

k2 + iη

]

≡ −ie20
cε0

gμν

k2 +
(

e20
cε0

)
A(k2) + iη

. (12.50)

The expression above represents the modification of the photon propagator due
to the photon self-energy. It is infinite and it can be interpreted as a change of the
electronic charge—or charge renormalization—indexcharge renormalization—in
analogy with the mass renormalization treated above.

The photon propagator has a pole at k2 = 0, corresponding to the zero photon
mass (c.f. the free-electron propagator in (12.5)), and the pole value is proportional
to the electron charge squared, e02. If

A(k2 = 0) = 0, (12.51)

then also the modified propagator has a pole at the same place with a pole value
proportional to

e20

1 + e20
cε0

dA(k2)
dk2

∣∣
k2=0

. (12.52)

This cannot be distinguished from the bare charge and represents the physical electron
charge,

e2 = e20

1 + e20
cε0

dA(k2)
dk2

∣∣
k2=0

≈ e20

[
1 − e20

cε0

dA(k2)

dk2
∣∣
k2=0

]
, (12.53)

which is the charge renormalization.
The polarization tensor may have a finite part that vanishes at k2 = 0,Πren, which

is the renormalized photon self-energy. This is physically observable.
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12.2.2.4 Higher-Order Renormalization

The procedure described above for the first-order renormalization can be extended
to higher orders. A second-order procedure has been described by Labzowsky and
Mitrushenkov [115] and by Lindgren et al. [127], but we shall not be concerned with
that further here.

12.3 Bound-State Renormalization. Cut-Off Procedures

Before applying the renormalization procedure, the divergent integrals have to mod-
ified so that they become finite, which is the regularization procedure. Details of
this process depends strongly on the gauge used. Essentially all QED calculations
performed so far have been carried out in the so-called covariant gauges (see Appen-
dix G), preferably the Feynman gauge. As we have mentioned previously, and as will
be discussed in more detail in the next chapter, it is essential to be able to perform
the calculations in the Coulomb when QED is combined with electron correlation.
Therefore, we shall in this chapter consider the renormalization procedures also in
the Feynman as well as in the Coulomb gauge.

Several regularization procedures have been developed, and the conceptually sim-
plest ones are the cut-off procedures. The most well-known of these procedure is that
of Pauli-Willars and another is the so-called partial-wave regularization. An more
general and more sophisticated procedure is the dimensional regularization, which
has definite advantages and is frequently used today. We shall consider this process
in great detail in the following.

12.3.1 Mass Renormalization

When we express the Dirac Hamiltonian (2.108) with the physical mass

�D = cα · p̂ + βmc2 + vext , (12.54)

we have to include the mass counterterm (12.32) in the perturbation density (6.51)

H(x) = −ecψ̂†(x)αμAμ(x) ψ̂(x) − δmc2 ψ̂†(x)βψ̂(x). (12.55)

http://dx.doi.org/10.1007/978-3-319-15386-5_2
http://dx.doi.org/10.1007/978-3-319-15386-5_6
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Fig. 12.6 Diagram
representing the
renormalization of the
first-order self-energy of a
bound electron

The bound-electron self-energy operator is given by (4.86)

〈r|Σbou(εa)|a〉 =
〈
rt

∣∣∣
∫

dz

2π
iSbouF (εa − z; x2, x1) I(z; x2, x1)

∣∣∣ta〉, (12.56)

and subtracting the corresponding mass-counterterm yields the renormalized self-
energy operator

〈r|Σbou
ren (εa)|a〉 = 〈r|Σbou(εa) − βδmc2|a〉, (12.57)

illustrated in Fig. 12.6. Here, both terms contain singularities, which have to be
eliminated, which is the regularization process.

In the regularization process due to Pauli and Villars [188], [143, (9.21)], the
following replacement is made in the photon propagator

1

k2 + iη
⇒ 1

k2 − λ2 + iη
− 1

k2 − Λ2 + iη
, (12.58)

which cuts off the ultraviolet and possible infrared divergence.

12.3.2 Evaluation of the Mass Term

(See Mandl and Shaw [143, Sect. 10.2])
On the mass shell, � p = mc, the free-electron self-energy (12.15) becomes [143,
(10.16)]

δm c2 = β

c

[
Σ free(p)

]
�p=mc = −i

2e2

ε0

∫
d4k

(2π)4

� k + mc

k2 − 2pk + iη

1

k2 + iη
.

(12.59)
In order to evaluate this integral, we apply the Pauli-Villars regularization scheme,
which we can express as

1

k2 + iη
⇒ 1

k2 − λ2 + iη
− 1

k2 − Λ2 + iη
= −

∫ Λ2

λ2

dt

(k2 − t + iη)2
. (12.60)

http://dx.doi.org/10.1007/978-3-319-15386-5_4
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By means of the identity (J.4) in Appendix J with a = k2 − t and b = k2 − 2pk we
can express the mass term

δm c2 = 4ie2

ε0

∫
d4k

(2π)4

∫ Λ2

λ2
dt

∫ 1

0
dx

( � k + mc)x

[k2 − 2pk(1 − x) − tx]3 . (12.61)

With the substitutions q = −p(1− x) and s = −tx the k integral becomes, using the
integrals (J.8) and (J.9) and � p = mc,

∫
d4k

(2π)4

( � k + mc)x

[k2 + 2qp + s]3 = i

32π2

mc x(2 − x)

m2c2(1 − x)2 + tx
, (12.62)

yielding

δmc2 = e2mc

8π2ε0

∫ 1

0
dx (2 − x) ln

Λ2x + m2c2(1 − x)2

λ2x + m2c2(1 − x)2
. (12.63)

This is logarithmically divergent as Λ → ∞ with the leading term being

δmc2 = e2mc

8π2ε0

∫ 1

0
dx (2 − x)

[
ln

Λ2

m2
+ ln

x

(1 − x)2

]
. (12.64)

To evaluate the second part of the integral we need the following formulas

∫
dx ln x = x ln x − x

∫
dx x ln x = x2 ln x

2
− x2

4
, (12.65)

which leads to

I =
∫ 1

0
dx (2 − x) ln

x

(1 − x)2
= 3

4
. (12.66)

In all unit systems with � = 1 the factor e2
/
4πε0 = cα, whereα is the fine-structure

constant (see Appendix K), and the mass term (12.59) becomes

δm(Λ) c2 = 3αmc2

2π

(
ln

(
Λ

mc

)
+ 1

4

)
. (12.67)

12.3.3 Bethe’s Nonrelativistic Treatment

Bethe’s original non-relativistic treatment of the Lamb shift [19] is of great historical
interest, and it also gives some valuable insight into the physical process. Therefore,
we shall briefly summarize it here.
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From the relation (4.91) we have the bound-state self-energy, using the Feynman
gauge (4.55),

〈x2|Σbou(εa)|x1〉 = − e2c

4πε0 r12
〈x2|αμ|t〉

∫ ∞

0

dκ sin κr12
εa − εt − cκ sgnεt

〈t|αμ|x1〉,
(12.68)

where r12 = |x1 − x2|. For small k values and positive intermediate states, this
reduces to

Σbou(εa) = − e2c

4π2ε0
αμ|t〉

∫ ∞

0

κ dκ

εa − εt − cκ
〈t|αμ. (12.69)

The scalar part of αμα
μ cancels in the renormalization, leaving only the vector part

to be considered,

Σbou(εa) = e2c

4π2ε0
α|t〉 ·

∫ ∞

0

κ dκ

εa − εt − cκ
〈t|α. (12.70)

The corresponding operator for a free electron in the state p+ (see Fig. 12.1) is

Σ free(p+) = e2c

4π2ε0
α|q+〉 ·

∫ ∞

0

κ dκ

εp+ − εq+ − cκ
〈q+|α , (12.71)

restricting the intermediate states to positive energies. In the momentum representa-
tion this becomes

〈
p′

+
∣∣Σ free(p+)

∣∣p+
〉 = e2c

4π2ε0
〈p′

+|α|q+〉 ·
∫ ∞

0

κ dκ

εp+ − εq+ − cκ
〈q+|α|p+〉.

(12.72)

But since α is diagonal with respect to the momentum, we must have q = p = p′.
Thus,

〈
p′

+
∣∣Σ free(p+)

∣∣p+
〉 = −δ3p′,p

e2

4π2ε0

∣∣〈p+|α|p+〉∣∣2
∫ ∞

0
dκ. (12.73)

Obviously, this quantity is infinite. Inserting a set of complete states, this becomes

〈
p′

+
∣∣Σ free(p+)

∣∣p+
〉 = −δ3p′,p

e2

4π2ε0
〈p+|α|t〉 · 〈t|α|p+〉

∫ ∞

0
dκ. (12.74)

The free-electron self-energy operator can then be expressed

Σ free(p+) = −δ3p′,p
e2

4π2ε0
α|t〉 ·

∫ ∞

0
dκ 〈t|α , (12.75)

http://dx.doi.org/10.1007/978-3-319-15386-5_4
http://dx.doi.org/10.1007/978-3-319-15386-5_4
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which should be subtracted from the bound-electron self-energy operator (12.70).
We can assume the intermediate states t to be identical to those in the bound case.
This gives the renormalized self-energy operator

Σbou
ren (εa) = e2

4π2ε0
α|t〉 ·

∫ ∞

0
dκ

εa − εt

εa − εt − cκ
〈t|α. (12.76)

The expectation value of this operator in a bound state |a〉 yields the renormalized
bound-electron self-energy in this approximation, i.e., the corresponding contribution
to the physical Lamb shift,

〈
a

∣∣Σbou
ren (εa)

∣∣ a〉 = e2

4π2ε0 r12
〈a|α|t〉 · 〈t|α|a〉

∫ ∞

0
dκ

εa − εt

εa − εt − cκ
. (12.77)

This result is derived in a covariant Feynmangauge,where the quantized radiation has
transverse as well as longitudinal components. In the Coulomb gauge only the former
are quantized. Since all three vector components above yield the same contribution,
we will get the result in the Coulomb gauge by multiplying by 2/3. Furthermore, in
the non-relativistic limit we have α → p/c, which leads to

〈
a

∣∣Σbou
ren (εa)

∣∣ a〉 = e2

6π2c2ε0 r12
〈a|p|t〉 · 〈t|p|a〉

∫ ∞

0
dκ

εa − εt

εa − εt − cκ
, (12.78)

which is essentially the result of Bethe.
Numerically, Bethe obtained the value 1040MHz for the shift in the first excited

state of the hydrogen atom,which is very close to the value 1000MHzobtained exper-
imentally by Lamb andRetherford. Later, the experimental shift has been determined
to be about 1057MHz. Bethe’s results was, of course, partly fortuitous, considering
the approximations made. However, it was the first successful performance of a
renormalization procedure and represented a breakthrough in the theory of QED.

We can note that the non-relativistic treatment leads to a linear divergence of the
self-energy, while the relativistic treatment above gives only a logarithmic diver-
gence.

12.3.4 Brown-Langer-Schaefer Regularization

The bound-state electron propagator can be expanded into a zero-potential term, a
one-potential term and a many-potential term
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Fig. 12.7 Expanding the bound-state self-energy in free-electron states according to (4.109)

SbouF (ω, x2, x1) = SfreeF (ω, x2, x1)

+
∫

d3x3 SfreeF (ω, x2, x3) v(x3)SfreeF (ω, x3, x1)

+
∫

d3x3d3x4 SfreeF (ω, x2, x4) v(x4)SbouF (ω, x4, x3) v(x3)SfreeF (ω, x3, x1),

(12.79)

which leads to the expansion of the bound-electron self-energy, as illustrated in
Fig. 12.7,

〈a|Σbou(εa)|a〉 =
〈
at

∣∣∣
∫

dz

2π
SfreeF (εa − z; x2, x1) I(z; x2, x1)

∣∣∣ta〉

+
〈
at

∣∣∣
∫

d3x3

∫
dz

2π
SfreeF (εa − z; x2, x3) v(x3)SfreeF (εa − z; x3, x1) I(z; x2, x1)

∣∣∣ta〉

+
〈
at

∣∣∣
∫

d3x3d3x4

∫
dz

2π

∫
d3x3d3x4 SfreeF (ω, x2, x4) v(x4)SbouF (ω, x4, x3) v(x3)

× SfreeF (ω, x3, x1) I(z; x2, x1)
∣∣∣ta〉, (12.80)

where I(z; x2, x1) represents the single-photon interaction (4.45). We can then
express this as

〈a|Σbou(εa)|a〉 = 〈a|Σfree(εa)|a〉 − 〈a|ecAσΛσ
free(εa)|a〉 + 〈a|Σmp|a〉. (12.81)

Here, the first term on the r h s is the average of the free-electron self-energy in the
bound state |a〉, the second term a vertex correction (4.99) with v(x) = −eασAσ ,
and the last term the “many-potential” term.

We can now use the expansion (12.37) of the free-electron self-energy in (12.81),
where the first term (A) will be eliminated by themass-counterterm in (12.57).We are
then left with the average of themass-renormalized free-electron self-energy (12.34),
which is still charge divergent. If we separate the vertex operator in a divergent and
a renormalized part according to (12.42), it follows from (12.44) that the charge-
divergent parts cancel, and we are left with three finite contributions, the mass-
renormalized free-electron self-energy (12.34), the many-potential term (12.79) and
the finite part of the vertex correction (12.42)

http://dx.doi.org/10.1007/978-3-319-15386-5_4
http://dx.doi.org/10.1007/978-3-319-15386-5_4
http://dx.doi.org/10.1007/978-3-319-15386-5_4


12.3 Bound-State Renormalization. Cut-Off Procedures 261

〈r|Σbou
ren (εa)|a〉 = 〈r|Σ free

ren (εa)|a〉 − 〈r|eAσΛσ
free,ren(εa)|a〉 + 〈r|Σmp|a〉. (12.82)

This is themethod ofBrown,Langer, andSchaefer [37], introduced already in 1959. It
was first applied by Brown and Mayers [38] and later by Desidero and Johnson [56],
Cheng et al. [45, 46] and others. The problem in applying this expression lies in
the many-potential term, but Blundell and Snyderman [28] have devised a method
of evaluating this terms numerically with high accuracy (and the remaining terms
analytically).

We can also express the renormalized, bound self-energy (12.57) as

〈r|Σbou
ren (εa)|a〉 =

(
〈r|Σbou(εa)|a〉 − 〈r|Σ free(εa)|a〉

)

+
(
〈r|Σ free(εa)|a〉 − 〈r|βδmc2|a〉

)
, (12.83)

where the second term is the renormalized free-electron self-energy (12.34),
evaluated between bound states. This is illustrated in Fig. 12.8. The mass term can
be evaluated by expanding the bound states in momentum representation

〈r|βδmc2|a〉 = 〈r|p′, r′〉〈p′, r′|Σ free(εp)|p, r〉〈p, r|a〉, (12.84)

as illustrated in Fig. 12.9. The relation (12.83) can then be written

〈r|Σbou
ren (εa)|a〉 = 〈

r
∣∣Σbou(εa) − Σ free(εa)

∣∣a〉
+ 〈

r
∣∣p′, r′〉〈p′, r′|Σ free(εa) − Σ free(εp)|p, r〉〈p, r

∣∣a〉, (12.85)

where we note that the in the last term the energy parameter of the self-energy
operator is equal to the energy of the free particle.

In this way the leadingmass-divergence term is eliminated, while the parts are still
charge-divergent, but this divergence is cancelled between the parts. The elimination
of the mass-renormalization improves the numerical accuracy.

Peter Mohr has developed the method further and included also the one-potential
part of the expansion in the two parts, thereby eliminating also the charge diver-
gence. In this way very accurate self-energies have been evaluated for hydrogenic
systems [153, 155, 157].

Fig. 12.8 Illustration of the method of Brown, Langer and Schaefer
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Fig. 12.9 Expansion of the
mass term in momentum
space

12.3.5 Partial-Wave Regularization

An alternative scheme for regularizing the electron self-energy is known as the
partial-wave regularization (PWR), introduced independently by the Gothenburg
and Oxford groups [128, 201].

12.3.5.1 Feynman Gauge

Using the expansion (8.33)

sin κr12
κr12

=
∞∑
l=0

(2l + 1)jl(κr1)jl(κr2)Cl(1) · Cl(2), (12.86)

the expression (4.91) for the bound-state self-energy in the Feynman gauge can be
expressed

Σbou(εa) = − e2

4π2ε0

∞∑
l=0

(2l + 1)
∫ ∞
0

cκ dκ
αμjl(κr)C

l|t〉 · 〈t|αμjl(κr)C
l

εa − εt − cκ sgn(εt)
(12.87)

with a summation over the intermediate bound state |t〉, Similarly, for the free electron

Σ free(ω) = − e2

4π2ε0

∞∑
l=0

(2l + 1)
∫ ∞

0
cκ dκ

αμjl(κr)Cl|q, s〉 · 〈q, s| αμjl(κr)Cl

ω − εq − cκ sgn(εq)
,

(12.88)

summed over free-electron states |q, r〉. Here,ω is the free-running energy parameter
and εq represents the energy of the free-electron state |q, s〉. On the mass shell,
ω = εp = √

c2p2 + m2c4, this becomes

Σ free(εp) = − e2

4π2ε0

∞∑
l=0

(2l + 1)
∫ ∞

0
cκ dκ

αμjl(κr)Cl |q, s〉 · 〈q, s| αμjl(κr)Cl

εp − εq − cκ sgn(εq)
.

(12.89)

http://dx.doi.org/10.1007/978-3-319-15386-5_8
http://dx.doi.org/10.1007/978-3-319-15386-5_4
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ThePWRcanbe combinedwith theBrown-Langer-Schaefermethoddiscussed above
by expanding the remaining terms in (12.83) in a similar way.

The free-electron self-energy is diagonal with respect to the to the momentum p,
when all partial waves are included, but this is NOT the case for a truncated sum.
Furthermore, it has non-diagonal elements with respect to the spinor index r.

12.3.5.2 Coulomb Gauge

In analogy with the Feynman-gauge result (12.87), the transverse part of the self-
energy in Coulomb gauge becomes

Σbou,trans(εa) = − e2

4π2ε0

∞∑
l=0

(2l + 1)
∫ ∞
0

cκ dκ

× αjl(κr)C
l |t〉 · 〈t|αjl(κr)C

l − (α · ∇)jl(κr)C
l |t〉〈t|(α · ∇)jl(κr)C

l/κ2

εa − εt − cκ sgn(εt)
,

(12.90)

using the expression (4.93). The corresponding mass term becomes in analogy with
(12.89)

Σ free,trans(εp) = − e2

4π2ε0

∞∑
l=0

(2l + 1)
∫ ∞

0
cκ dκ

× αjl(κr)Cl |q, s〉 · 〈q, s|αjl(κr)Cl − (α · ∇)jl(κr)Cl |q, s〉〈q, s|(α · ∇)jl(κr)Cl/κ2

εp − εq,s − cκ sgn(εq)
.

(12.91)

The Coulomb part in Coulomb gauge is obtained similarly from (4.94)

Σ(εa)
bou,Coul = e2

8π2ε0r12
sgn(εt)

×
∞∑
l=0

(2l + 1)
∫ ∞

0
2κ dκ jl(κr)Cl|t〉 · 〈t|jl(κr)Cl, (12.92)

using the value −i sgn(εt)/2 for the integral, and the corresponding mass term

Σ(εa)
free,Coul = e2

8π2ε0r12
sgn(εt)

×
∞∑
l=0

(2l + 1)
∫ ∞

0
2κ dκ jl(κr)Cl|q, s〉 · 〈q, s|jl(κr)Cl. (12.93)

http://dx.doi.org/10.1007/978-3-319-15386-5_4
http://dx.doi.org/10.1007/978-3-319-15386-5_4
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The main advantage of the PWR is that the bound- and free-electron self-energies
are calculated in exactly the same way, which improves the numerical accuracy,
compared to the standard procedure, where the mass term is evaluated analytically
(12.67). Since all terms are here finite, no further regularization is needed. The
maximum L value, Lmax, is increased until sufficient convergence is achieved. This
scheme has been successfully applied in a number of cases [128, 201].

It has been shown by Persson, Salomonson, and Sunnergren [191], that themethod
of PWR gives the correct result in lowest order with an arbitrary number of Coulomb
interactions, while a correction term is needed when there is more than one magnetic
interaction. This is due to the double summation over partial waves and photon
momenta, which is not unique due to the infinities involved.

12.4 Dimensional Regularization in Feynman Gauge*

The most versatile regularization procedure developed so far is the dimensional
regularization, which is nowadays frequently used in various branches of field theory.
In treating the number of dimensions (D) as a continuous variable, it can be shown
that the integrals of the radiative effects are singular only whenD is an integer. Then
by choosing the dimensionality to be 4− ε, where ε is a small, positive quantity, the
integrals involved will be well-defined and finite. After the renormalization one lets
the parameter ε → 0. This method has been found to preserve the gauge invariance
and the validity of theWard identity to all orders. The method was developed mainly
by ’t Hooft and Veltman in the 1970’s [241] (see, for instance, Mandl and Shaw [143,
Chap.10], Peskin and Schroeder [194, Chap.7] and Snyderman [231]).

12.4.1 Evaluation of the Renormalized Free-Electron
Self-Energy in Feynman Gauge

We start now from the form (12.14) of the free-electron self-energy in the Feynman
gauge and the photon propagator in momentum space (4.28)

βΣ free(p) = ie2c2
∫

d4k

(2π)4
γν �p− � k + mc

(p − k)2 − m2c2 + iη
γμDFνμ(k)

= − ie2c

ε0

∫
d4k

(2π)4
γμ

�p− � k + mc

(p − k)2 − m2c2 + iη
γμ 1

k2 + iη
. (12.94)

http://dx.doi.org/10.1007/978-3-319-15386-5_4
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Using the Feynman integral (J.2) (second version) with a = k2 and b = (p − k)2 −
m2c2, this can be expressed

βΣ free(p) = − ie2c

ε0

∫ 1

0
dx

∫
d4k

(2π)4

γμ

( �p− � k + mc
)
γμ

[
k2 + (p2 − 2pk − m2c2)x

]2 . (12.95)

We shall now evaluate this integral using non-integral dimension D = 4 − ε,

βΣ free(p) = − ie2c

ε0

∫ 1

0
dx

∫
dDk

(2π)D

γμ

( �p− � k + mc
)
γμ

[
k2 + (p2 − 2pk − m2c2)x

]2
= 2ie2c

ε0

∫ 1

0
dx

∫
dDk

(2π)D

(1 − ε/2)( �p − � k) − (2 − ε/2) mc[
k2 + (p2 − 2pk − m2c2)x

]2
(12.96)

after applying the anti-commutation rules for the gammamatrices in Appendix D.62.
With the substitutions q = −px and s = (p2 − m2c2)x this becomes

βΣ free(p) = 2ie2c

ε0

∫ 1

0
dx

∫
dDk

(2π)D

(1 − ε/2)( �p − � k) − (2 − ε/2) mc[
k2 + 2kq + s

]2 , (12.97)

which is of the form of (G.23) and (G.24). This leads to

βΣ free(p) = − 2e2c(mc)−ε

ε0(4π)D/2

∫ 1

0
dx

Γ (ε/2)

Γ (2)

[
(1 − ε/2)(�p − �p x) − (2 − ε/2) mc

] (
m2c2

w

)ε/2

(12.98)

with w = q2 − s = [
m2c2 − p2(1− x)

]
x. The Gamma function can be expanded as

(see Appendix G.4)

Γ (ε/2) = 2

ε
− γE + · · ·

with γE = 0.5722... being Euler’s constant, and furthermore

1

(4π)D/2
= 1

(4π)2

(
1 + ε

2
ln 4π + · · ·

)

(
m2c2

w

)ε/2

= 1 − ε

2
ln

( w

m2c2

)
+ · · · .
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This yields

Γ (ε/2)

(4π)D/2

(
m2c2

w

)ε/2

= 1

4π2

(
2/ε − γE + · · ·

) (
1 + ε

2
ln 4π + · · ·

) (
1 − ε

2
ln

(
w/m2c2

) + · · ·
)

= 1

4π2

[
Δ − ln

( w

m2c2
+ · · ·

)]
, (12.99)

where

Δ = 2

ε
− γE + ln 4π + · · · . (12.100)

This leads to

βΣ free(p) = −2K

[ ∫ 1

0
dx

( �p− �p x − 2mc
)[

Δ − ln
( w

m2c2
+ · · ·

)]

−
∫ 1

0
dx

( �p− �p x + mc
)]

(12.101)

with

K = e2c

ε0(4π)2
= c2 α

4π
. (12.102)

We write the denominator in (12.98) as

w = m2c2xX ; X = 1 − p2

m2c2
(1 − x) = [

ρ + (1 − ρ)x
]

with

ρ = m2c2 − p2

m2c2
. (12.103)

We then express the integral (12.101) as 2K(A + B + C) with

A = −
∫ 1

0
dx

( �p − �p x − 2mc
)
Δ +

∫ 1

0
dx

( �p − �p x − mc
)
,

B =
∫ 1

0
dx ( �p − �p x − 2mc) ln x,

C =
∫ 1

0
dx ( �p − �p x − 2mc) ln

[
ρ + (1 − ρ)x

]
.
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To evaluate this integral we can use the formulas (12.65), yielding

∫ 1

0
dx ln(1 − x) = −1 ;

∫ 1

0
dx x ln(1 − x) = −3/4 ,

∫ 1

0
dx ln

[
ρ + (1 − ρ)x

] = −1 − ρ ln ρ

1 − ρ
,

∫ 1

0
dx x ln

[
ρ + (1− ρ)x

] = ρ

(1 − ρ)

(
1+ ρ ln ρ

1 − ρ

)
− 1

4(1 − ρ)2

(
1+ 2ρ2 ln ρ − ρ2

)
,

which gives
A = −( �p /2 − 2mc)Δ + ( �p /2 − mc),

B = −3 �p /4 + 2mc,

C = − �p ρ

(1 − ρ)

(
1+ ρ ln ρ

1 − ρ

)
+ �p
4(1 − ρ)2

(
1+ 2ρ2 ln ρ −ρ2

)
−( �p −2mc

) (
1 + ρ ln ρ

1 − ρ

)

=�p
[
− 1

(1 − ρ)

(
1 + ρ ln ρ

1 − ρ

)
+ ρ2 ln ρ

2(1 − ρ)2
+ 1 + ρ

4(1 − ρ)

]
+ 2mc

(
1 + ρ ln ρ

1 − ρ

)
.

Subtracting the on-the-mass-shell value ( �p = mc, ρ = 0), yields for the A and
B terms

(A + B)ren = − �p − mc

2

(
Δ + 1

2

)
.

For the C term the on-shell value is 5mc/4, yielding

Cren = − �p
{

ρ(2 − ρ) ln ρ

2(1 − ρ)2
+ ρ

(1 − ρ)
+ 3

4

}
+ mc

{
2ρ ln ρ

1 − ρ
+ 3

4

}
.

The total on-shell value (mass-counter term) becomes

δmc2 = mc2 α

4π

(
3Δ + 4 + · · · ). (12.104)

Collecting all parts we obtain the following expression for themass-renormalized
free-electron self-energy
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βΣ free(p) = −c2 α

4π

[(
�p − mc

) (
Δ + 2 + ρ

1 − ρ
+ ρ(2 − ρ) ln ρ

(1 − ρ)2

)

+ ρmc

1 − ρ

(
1 − 2 − 3ρ

1 − ρ
ln ρ

)]

(12.105)

with ρ = (m2c2− �p 2)/m2c2. This agrees with the result of Snyderman [231, 239].
Here,Δ represents the charge divergence, which vanishes on themass-shell, �p = mc.

12.4.2 Free-Electron Vertex Correction in Feynman Gauge

Next, we consider the free-electron vertex correction (12.23)

βΛσ(p′, p) = ie2

ε0

∫
d4k

(2π)4
γμ

�p ′− � k + mc

(p ′ − k)2 − m2c2 + iη
γσ

× �p− � k + mc

(p − k)2 − m2c2 + iη
γμ 1

k2 + iη
. (12.106)

The Feynman parametrization (J.4), similar to that in the self-energy case, a = k2,
b = (k − p)2 − m2c2, and c = (k − p ′)2 − m2c2, yields

βΛσ(p′, p) = 2ie2

ε0

∫ 1

0
dx

∫ 1−x

0
dy

∫
d4k

(2π)4

× γμ( �p ′− � k + mc)γσ( �p − � k + mc)γμ

[
k2 + (p2 − 2pk − m2c2)x + (p′2 − 2p ′k − m2c2)y

]3 .

With q = −(px + p′y) and s = p2x + p′2y − m2c2(x + y) the denominator is of the
form k2 + 2kq + s

βΛσ(p′, p ) = 2ie2

ε0

∫ 1

0
dx

∫ 1−x

0
dy

∫
dDk

(2π)D

γμ(�p ′− � k + mc)γσ(�p − � k + mc)γμ

(k2 + 2kq + s)3

= 2ie2

cε0

∫ 1

0
dx

∫ 1−x

0
dy

[
C0 + C1 + C2

]
,
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where the index indicates the power of � k involved,

C0 =
∫

dDk

(2π)D

γμ( �p ′ + mc)γσ( �p + mc)γμ

(k2 + 2kq + s)3
,

C1 =
∫

dDk

(2π)D

γμ(− � k)γσ( �p + mc)γμ + γμ( �p ′ + mc)γσ(− � k)γμ

(k2 + 2kq + s)3
,

C2 =
∫

dDk

(2π)D

γμ � kγσ � kγμ

(k2 + 2kq + s)3
.

The coefficientsC0 andC1 are convergent and we can let ε → 0.With the formula
(G.23) (n = 3) and the contraction formulas (D.62) we then have

C0 = i

(4π)2

( �p + mc)γσ( �p ′ + mc)

w

with
w = s − q2 = s − (px + p′y)2.

Similarly, we have for the numerator in C1

γμ(−� k)γσ( �p + mc)γμ + γμ( �p ′ + mc)γσ(−� k)γμ = 2( �p γσ � k+ � kγσ �p ′)− 8mckσ

and with (G.24)

C1 = i

(4π)2

�p γσ �q+ �qγσ �p ′ − 4mcqσ

w
.

The C2 coefficient is divergent and has to be evaluated with more care. Then the
situation is analogous to that of the self-energy (12.98). The numerator becomes

γμ � kγσ � kγμ = −(2 − ε) � kγσ � k − �̃ kγ̃σ �̃ k

and

C2 = −
∫

dDk

(2π)D

(2 − ε) � kγσ � k + �̃ kγ̃σ �̃ k
(k2 + 2kq + s)3

,

which can be evaluated with (G.25).
The evaluation of the integrals above is straightforward but rather tedious. The

complete result is found in [231].



270 12 Regularization and Renormalization

12.5 Dimensional Regularization in Coulomb Gauge

12.5.1 Free-Electron Self-Energy in the Coulomb Gauge

For ourmain purpose of combiningMBPT andQED it is important to be able to apply
the dimension regularization also in the Coulomb gauge. Analytical expressions for
this process have been derived by Adkins [1] and further analyzed by Holmberg [88]
(see also [122]).

We start from the expression (12.14)

βΣ free(p) = ie2c2
∫

d4k

(2π)4
γν �p− � k + mc

(p − k)2 − m2c2 + iη
γμDFνμ(k). (12.107)

For the photon propagator we use the expressions (4.32) and (4.36)

DC
Fμν(k; k) = 1

cε0

[
δμ,0δν,0

k2
− δμ,iδν,j

(
gij + kikj

k2

)
1

k2 + iη

]
. (12.108)

The three terms in the propagator correspond to the Coulomb, Gaunt and scalar-
retardation parts, respectively, of the interaction (4.59).

The Coulomb part of the self-energy becomes

ie2c

ε0

∫
d4k

(2π)4

γ0( �p− � k + mc)γ0

(p − k)2 − m2c2 + iη

1

k2 + iη
(12.109)

= ie2c

ε0

∫
d4k

(2π)4

p̃ − k̃ + mc

(p − k)2 − m2c2 + iη

1

k2 + iη
, (12.110)

using the commutation rules in Appendix (D.61). With q = −p and s = p2 − m2c2

the denominator is of the form k2+2kq+ s andwe can apply the formulas (G.26) and
(G.27) without any further substitution (n = 1). This gives with k0 → q0 = −p0,
ki → qiy = −piy,γ·k = −γiki → −γ·py andw = p2y2+(1−y)yp20−(p2−m2c2)y

ie2c (mc)ε

ε0

∫
dDk

(2π)D

p̃ − k̃ + mc

k2 + 2kq + s + iη

1

k2 + iη

= e2c

ε0 (4π)D/2

∫ 1

0

dy√
y

[
γ · p(1 − y) + mc

] Γ (ε/2)

(w/m2c2)ε/2
.

Using (12.99) this yields the Coulomb contribution

K
∫ 1

0

dy√
y

(
γ · p (1 − y) + mc

)(
Δ − ln(yX)

)

http://dx.doi.org/10.1007/978-3-319-15386-5_4
http://dx.doi.org/10.1007/978-3-319-15386-5_4
http://dx.doi.org/10.1007/978-3-319-15386-5_4
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with K = e2c/(ε0 (4π)2) and w = m2c2y X, X = 1 + (p2/m2c2)(1 − y). This leads
to

K
∫ 1

0

dy√
y

(
(γ · p (1 − y) + mc

)(
Δ − ln y − lnX

)
,

and the Coulomb part becomes (times K)

(
4

3
γ · p + 2mc

)
Δ +

(
32

9
γ · p + 4mc

)
−

∫ 1

0

dy√
y

(
(γ · p (1 − y) + mc

)
lnX.

(12.111)

The Gaunt term becomes, using (12.107) and the second term of (12.108),

− ie2c

ε0

∫
d4k

(2π)4

γi( �p − � k + mc)γi

(p − k)2 − m2c2 + iη

1

k2 + iη
. (12.112)

Thedenominator is here the sameas in the treatment of the self-energy in theFeynman
gauge, and we can use much of the results obtained there.4

In analogy with (12.95) we then have

− ie2c

ε0

∫ 1

0
dx

∫
d4k

(2π)4

γi
( �p− � k + mc

)
γi

[
k2 + (p2 − 2pk − m2c2)x

]2
= − ie2c

ε0

∫ 1

0
dx

∫
d4k

(2π)4

(3 − ε)mc − (2 − ε)( �p − � k) − p̃ + k̃[
k2 + (p2 − 2pk − m2c2)x

]2 (12.113)

after inserting the Feynman integral (J.2) and applying the commutation rules in
Appendix (D.62).

With the substitutions k → −q = px and s = (p2 − m2c2)x the equation above
leads after applying (G.23, G.24) in analogy with (12.98) to

− ie2c

ε0

∫ 1

0
dx

∫
dDk

(2π)D

(3 − ε)mc − (2 − ε)(�p − � k) − p̃ + k̃[
k2 + 2kq + s)

]2
= e2c

ε0(4π)D/2

∫ 1

0
dx

[
(3 − ε)mc − (2 − ε) �p (1 − x) − p̃(1 − x)

] Γ (ε/2)

(w/ε)ε/2

= e2c

ε0(4π)D/2

∫ 1

0
dx

[
− (1 − x)

(
3γ0p0 − γ · p) + 3mc + ε

(
(1 − x) �p − mc

)] Γ (ε/2)

(w/ε)ε/2
,

4Weuse the convention thatμ, ν, . . . represent all four components (0,1,2,3),while i, j, . . . represent
the vector part (1,2,3).



272 12 Regularization and Renormalization

where w = q2 − s = p2x2 − (p2 − m2c2)x = m2c2xY . This yields (times K)

−
∫ 1

0
dx

{[
(1 − x)

(
3γ0p0 − γ · p) − 3mc

][
Δ − ln(xY)

]
− 2

(
(1 − x) �p − mc

)}
,

using the relation (12.99) and the fact that εΔ → 2 as ε → 0. Then the Gaunt
part becomes

[
− 1

2

(
3γ0p0 − γ · p) − 3mc

]
Δ − 5

4
γ0p0 − 1

4
γ · p + mc +

∫ 1

0
dx

[
(1 − x)

(
3γ0p0 − γ · p) − 3mc

]
ln Y .

(12.114)

Finally, the scalar-retardation part becomes similarly, using the third term of
(12.108) and the commutation rules (D.60),

− ie2c

ε0

∫
d4k

(2π)4

γiki ( �p − � k + mc) γjkj
(p − k)2 − m2c2 + iη

1

k2
1

k2 + iη

= ie2c

ε0

∫
d4k

(2π)4

γikiγjkj( �p − � k − mc) − 2γiki(kjpj − kjkj)

(p − k)2 − m2c2 + iη

1

k2
1

k2 + iη

= − ie2c

ε0

∫
d4k

(2π)4

�p − k̃ − mc + 2γiki kjpj/k
2

(p − k)2 − m2c2 + iη

1

k2 + iη

with γikiγjkj = −k2 = −kiki. With the same substitutions as as in the Gaunt case
this becomes

− ie2c

ε0

∫ 1

0
dx

∫
dDk

(2π)D

�p − k̃ − mc + 2γiki kjpj/k
2

[
k2 − 2pkx + (p2 − m2c2)x

]2 . (12.115)

With the substitutions k → −q = px and s = (p2 −m2)x the first part is of the form
(G.23) and (G.24) and becomes

e2c

ε0(4π)D/2

∫ 1

0
dx

[ �p − p̃ x − mc
] Γ (ε/2)

wε/2
(12.116)

and with (12.99)

K
∫ 1

0
dx

[ �p − p̃ x − mc
] (

Δ − ln(xY)
)

(12.117)

with K = e2c/(ε0 (4π)2) and w being the same as in the Gaunt case, w = q2 − s =
p2x2 − p2x + m2c2x = m2c2xY .

The second part of (12.115) is of the form (G.28) and becomes (kikj → qi qj y2 =
pi pj x2y2 in first term, → − 1

2 gij = − 1
2 δij in second)
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K
∫ 1

0
dx

∫ 1

0
dy

√
y

{
2γipi p

i pj p
j Γ (1 + ε/2)

w1+ε/2
− γjpj

Γ (ε/2)

wε/2

}

K
∫ 1

0
dx

∫ 1

0
dy

√
y

{
2γipi pjpj
m2c2

xy

Z
− γjpj

(
Δ − ln(xyZ)

)}

= K
∫ 1

0
dx

∫ 1

0
dy

√
y

{
2γ · pp2
m2c2

xy

Z
+ γ · p

(
Δ − ln(xyZ)

)}

with w = xy
[ − p2xy + p20x − p2 +m2c2

] = xy
[
p2(1− xy) − p20(1− x) +m2c2

] =
m2c2Zxy

Integration by parts of the first term yields (times K), noting that dZ/dy = −p2x,

−
∫ 1

0
dx

[√
y y 2γ · p ln Z

]1
0
+ 3

∫ 1

0
dx

∫ 1

0
dy

√
y γ · p ln Z.

The total scalar-retardation part then becomes (with Z(y = 1) = Y )

∫ 1

0
dx

[ �p − p̃ x − mc
] (

Δ − ln(xY)
)

−
∫ 1

0
dx 2γ · p ln Y

+ 3
∫ 1

0
dx

∫ 1

0
dy

√
y γ · p ln Z +

∫ 1

0
dx

∫ 1

0
dy

√
y γ · p

(
Δ − ln(xyZ)

)

or

∫ 1

0
dx

(
γ0p0(1 − x) − γ · p(1 + x) − mc

) (
Δ − ln x

)
+

∫ 1

0
dy

√
y γ · pΔ

−
∫ 1

0
dx

(
γ0p0(1 − x) − γ · p(1 − x) − mc

)
ln Y

−
∫ 1

0
dx

∫ 1

0
dy

√
y γ · p ln(xy) + 2

∫ 1

0
dx

∫ 1

0
dy

√
y γ · p ln(xy)

− 3
∫ 1

0
dx

∫ 1

0
dy

√
y γ · p ln Z,

which gives5

5 ∫ 1

0
dx

∫ 1

0
dy

√
y ln(xy) = −10

9
;

∫ 1

0
dx x

∫ 1

0
dy

√
y ln(xy) = − 1

18
;

∫ 1

0
dx x

∫ 1

0
dy y

√
y ln(xy) = − 9

50
.
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(1
2

γ0p0 − 5

6
γ · p − mc

)
Δ + 3

4
γ0p0 − 5

36
γ · p − mc

−
∫ 1

0
dx

(
γ0p0(1 − x) − γ · p(1 − x) − mc

)
ln Y − 3

∫ 1

0
dx

∫ 1

0
dy

√
y γ · p ln Z.

Summarizing all contributions yields the mass-renormalized free-electron self-
energy in Coulomb gauge

βΣ free(p) = − c2 α

4π

[
−

(
�p − mc

)
Δ − 1

2
γ0p0 + 19

6
γ · p −

∫ 1

0

dy√
y

(
γ · p (1 − y) + mc

)
lnX

+ 2
∫ 1

0
dx

[
(1 − x) �p − mc

]
ln Y +

∫ 1

0
dx

∫ 1

0
dy

√
y 2γ · p ln Z

]
,

(12.118)

where we have subtracted the mass term (�p = mc), mc(3Δ + 4). (The expressions
for X,Y ,Z are given in the text.) This is in agreement with the result of Adkins [1].

The treatment of the vertex correction is more complex andwill not be reproduced
here. Interested readers are referred to the papers by Adkins [2] and Holmberg [88].
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Chapter 13
Dynamical Bound-State Processes

So far, we have in this book dealt only with static problems, i.e., structure-related
problems in atomic and molecular physics. Since the perturbations in QED are
energy—or time-dependent, we have developed a time-dependent formalism, but
we have so far not studied really time-dependent or dynamical processes.

The standard procedure for dealing with dynamical processes for free or unbound
particles is the S-matrix formalism. When bound states are involved, however, this
procedure may fail due to possible intermediate model-space states, which might
make the S-matrix singular. In the previous chapters we have learned how to handle
this problem in connection with static problems, and we shall now see that the same
procedure can be used also in dynamical problems.

In energy calculations for static systems we are mainly concerned with the real
part of the effective Hamiltonian. It follows from the so-called optical theorem for
scattering processes that the scattering cross section is proportional to the imaginary
part of this operator, which explains why essentially the same procedure can be used
in the two—seemingly quite different—cases.

We have also seen in Chap.6 (Sect. 6.8) that the Green’s operator for all times can
be regarded as the S-matrix with all intermediate model-space singularities removed.
This implies that this concept is ideal for dealingwith dynamical processes, involving
bound states, and that the whole machinery developed in the previous chapter can
be utilized also in this case. This will be demonstrated in this final part of the main
text of the book. The presentation here follows mainly that given recently by the
Gothenburg group [134].

Experimental tests are presently being performed at GSI in Darmstadt concerning
possible QED effects in dynamical processes [7].
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13.1 Optical Theorem for Free and Bound Particles

A basic tool for dealing with dynamical processes of various kind is the so-called
optical theorem for free particles (see, for instance, Peskin and Schroeder [194]
(Chap. 7), and we begin this part by deriving this theorem and extend it to the case
when also bound states are involved.

13.1.1 Scattering of Free Particles. Optical Theorem

The amplitude τ for a scattering process for free particles from an initial state |p〉 to
a final state 〈q| is related to the S-matrix by

〈q|S|p〉 = 2π iδ(Ep − Eq) τ (p → q), (13.1)

where it is assumed that the S-matrix contains at least one interaction.
It is convenient to introduce the operators T and T † by

S = 1 + iT ; S† = 1 − iT †, (13.2)

where † represents hermitean adjoint. The relation (13.1) can then be expressed

〈q|T |p〉 = 2πδ(Ep − Eq) τ (p → q), (13.3)

since the unit part of S does not contribute.
Since S is unitary, we have

1 = SS† = 1 + i(T − T †) + T †T, (13.4)

or
− i(T − T †) = T †T . (13.5)

By considering the diagonal element of this equation and inserting a complete set of
intermediate states on the rhs, we have

− i〈p|T − T †|p〉 =
∑

q

〈p|T †|q〉〈q|T |p〉 =
∑

q

〈q|T |p〉∗〈q|T |p〉 (13.6)

or1

2Im〈p|T |p〉 =
∑

q

〈q|T |p〉∗〈q|T |p〉 =
∑

q

∣∣〈q|T |p〉∣∣2. (13.7)

1Note that the imaginary part of a complex number, z = x + iy, is y, not iy, i.e., the imaginary part
is a real number.

http://dx.doi.org/10.1007/978-3-319-15386-5_7


13.1 Optical Theorem for Free and Bound Particles 279

The diagonal element of T represents the amplitude of the forward-scattering
process.

With the relation (13.3) we then have the important relation

2Im〈p|T |p〉 ⇒
∑

q

∣∣〈q|T |p〉∣∣2 =
∑

q

∣∣∣2πδ(Ep − Eq)τ (p → q)

∣∣∣
2
. (13.8)

This implies that the imaginary part of the forward scattering amplitude is propor-
tional to the total cross section, which is the optical theorem.

The forward scattering amplitude becomes imaginary when an intermediate state
goes on-shell (degenerate with the initial and final states), and therefore we only
have to consider these cases. Cutkosky [194, p. 236] has given the following rules
for applying the optical theorem to a Feynman diagram:

• Cut through all diagrams of the forward-scattering amplitude in all possible ways
such that the cut propagators can simultaneously be put on shell;

• For each cut, replace 1/(p2 − m2 + iη) by −2π iδ(p2 − m2) in each propagator
and then perform the loop integrals;

• Sum the imaginary contributions for all possible cuts.

13.1.2 Optical Theorem for Bound Particles

When bound states are involved in the process, discrete intermediate model-space
states may appear, which require a special treatment, as we have seen in previous
chapters, so-called model-space contributions (MSC).

We have seen in Chap.6 (6.91) that the imaginary unit times the S-matrix for free
particles is closely related to the effective interaction or the effective Hamiltonian.
In that relation only the perturbed part of the S-matrix enters, and with the relation
(13.2) we can express this as

PT P = −2πδ(Ein − Eout)W. (13.9)

Then we have
PIm(T )P = 2πδ(Ein − Eout)Im(−Heff), (13.10)

since PH0P does not have any imaginary part. The corresponding relation holds for
the Green’s operator (6.90).

http://dx.doi.org/10.1007/978-3-319-15386-5_6
http://dx.doi.org/10.1007/978-3-319-15386-5_6
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• It then follows that the form

2Im〈p| − Heff |p〉 =
∑

q

2πδ(Ep − Eq)

∣∣∣τ(p → q)

∣∣∣
2

(13.11)

of the optical theorem is valid for free as well as bound particles.

Theoptical theorem in its original form is applicable to the scattering of free particles,
but by transforming it to a form involving the effective Hamiltonian instead of the
S-matrix, it has a form that will hold also when bound states are involved.

In order to evaluate 2Im(−Heff), we can use the same Cutkosky rules as before,
slightly changed:

• Make a cut in all diagrams of the effective Hamiltonian in all possible ways so
that the cut state can be degenerate with the initial and final states;

• For each cut, replace the singularity 1/(A + iη) by a principle integral and
−π iδ(A) (cf. (4.16)) and for the possible remainingdiscrete degeneracies evaluate
the model-space contributions;

• Sum all imaginary contributions.

The optical theorem in the form given here is not restricted to scattering problems,
but can be applied also to other dynamical processes, like atomic transitions, as will
be demonstrated in the following section. In the subsection that then follows we shall
consider a scattering problem, radiative recombination.

13.2 Atomic Transition Between Bound States

As a first application of the Green’s-operator technique to study dynamical processes
we calculate the transition probability and transition rate of atomic transitions
between two bound states (see Sect. 3.1).

The Feynman diagrams in Fig. 13.1 represent the transition (in lowest order)
between two bound states, which can be regarded as a scattering process, where

Fig. 13.1 Lowest-order process in radiative decay (left) and photon-induced excitation (right). The
solid lines represent an electron in an initial bound state (a) and final bound state (b), moving in the
nuclear potential. A photon k = (cκ,−k) is emitted

http://dx.doi.org/10.1007/978-3-319-15386-5_4
http://dx.doi.org/10.1007/978-3-319-15386-5_3
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Fig. 13.2 Applying the
optical theorem in lowest
order, left forward
“scattering amplitude”, right
after the cut

one bound state is transferred to another bound state under the emission (or absorp-
tion) of a photon. If the energy of the absorbed photon is large enough, the target may
be ionized and the outgoing photon being free (or “quasi-free”). This is the process
of photoionization, which will be discussed briefly in the next section in connection
with the process of radiative recombination.

The corresponding “forward scattering amplitude” is shown in Fig. 13.2 (left).
We assume that the photon-field operators are contracted, but since we shall only be
concerned with the imaginary part of the S-matrix, we do not have to worry about
the singularity and renormalization of the self-energy.

The Green’s operator for all times, which in this case is identical to the S-matrix
(since there are no model-space contributions, see Chap.6), is given by means of the
Feynman rules for the S-matrix (see Appendix H, [143, Chap.7]

〈a|S|a〉 = 〈a|G(∞,−∞)|a〉 = 2πδ(Ein − Eout)〈a|iecαμAμiΓ iecαν Aν |a〉
(13.12)

or, using the relation (13.9),

〈a|W |a〉 = 〈a|ecαμAμΓ ecαν Aν |a〉, (13.13)

where Γ is the electron propagator (4.10) or resolvent (2.64)

Γ = Γ (εa) = |q〉〈q|
εa − εn − cκ + iη

, (13.14)

q = (n, k) and k stands for the four-dimensional k vector k = (cκ,−k).
The “forward scattering amplitude” becomes imaginary only when there is a

degeneracy (see the Cutkosky rules above), and we then replace 1/(A + iη) by a
principle integral and −π iδ(A). In the present case we then make the replacement

Γ → P− iπδ(εa − εn − cκ), (13.15)

http://dx.doi.org/10.1007/978-3-319-15386-5_6
http://dx.doi.org/10.1007/978-3-319-15386-5_4
http://dx.doi.org/10.1007/978-3-319-15386-5_2
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i.e., a principal integral and half a pole. This gives

Im〈a| − Heff |a〉 = πδ(εa − εb − cκ)〈a|ecαμAμ|q〉〈q|ecαμAμ|a〉, (13.16)

since H0 does not have any imaginary part, or

2Im〈a| − Heff |a〉 = 2πδ(εa − εb − cκ)|〈q|ecαμAμ|a〉|2. (13.17)

We assume here that the intermediate state is the degenerate state q = (b, k). This
degeneracy lies in a continuum, since the photon energy is free. Therefore, there is
no model-space contribution, which appears only when the degeneracy is a discrete
state.

The expression (13.17) represents the decay rate, Rab(ω) (3.9), where ω = cκ =
εa − εb, from the state |a〉 to the state |b〉. This relation has been applied by Barberie
and Sucher [13] aswell as by Sapirstein et al. [215] in studying the decay rate between
bound states of hydrogen like ions.

13.2.1 Self-Energy Insertion on the Incoming Line

Next, we consider a self-energy insertion on the incoming line of the process in
Fig. 13.2. The forward-scattering diagram is given to the left and the situation after
a cut at the place indicated to the right. The evolution operator or S-matrix of the
latter becomes after applying the standard Feynman rules

〈a|U |a〉 = 2πδ(Ein − Eout)
〈
a
∣∣∣iAiΓ iAiΓ (−i)Σ

∣∣∣a
〉
, (13.18)

where A = ecαμAμ and Σ stands for self-energy insertion

Σ = Σ(εa) = Σ(εp − cκ). (13.19)

With the relation (13.9) this becomes

〈a| − W |a〉 = −
〈
a
∣∣∣AΓ AΓ Σ

∣∣∣a
〉
. (13.20)

The cut indicated in the figure corresponds to the leftmost singularity, when the
intermedate state lies in the model space (ΓP )

−
〈
a
∣∣∣AΓP AΓ Σ

∣∣∣a
〉
= − P− + iπδ(εa − εb − cκ)〈a|A|b, k〉〈b, k|AΓ Σ |a〉

(13.21)

http://dx.doi.org/10.1007/978-3-319-15386-5_3
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and
〈
a
∣∣∣2Im(−Heff)

∣∣∣a
〉
= 2iπδ(εa − εb − cκ)〈a|A|b, k〉〈b, k|AΓ Σ |a〉. (13.22)

After the cut the photon energy is fixed, and then the other possible bound-state
singularity lies in a discrete environment and gives rise to amodel-space contribution,
as discussed in Chap.6, involving the derivative of all interactions appearing to the
left of the singularity,

〈
a
∣∣∣2Im(−Heff)

∣∣∣a
〉
= 2iπδ(εa − εb − cκ)

〈
a
∣∣∣

δ

δE
(
A|b, k〉〈b, k|A

)
|b, k〉〈b, k|Σ

∣∣∣a
〉
.

(13.23)

The other singularity does not correspond to any process where a photon is
involved.

There can also be a cut inside the lower self-energy in Fig. 13.3,which corresponds
to the inverted process, shown in Fig. 13.4. Then we have instead of (13.22)

〈
a
∣∣∣2Im(−Heff)

∣∣∣a
〉
= 2iπδ(εa − εb − cκ)〈a|ΣΓ A|b, k〉〈b, k|A|a〉. (13.24)

In this case there is a model-space contribution due to the leftmost singularity,
yielding

〈
a
∣∣∣2Im(−Heff)

∣∣∣a
〉
= 2iπδ(εa − εb − cκ)〈a|

(
δΣ(E)

δE
)

E=εa

|a〉〈a|A|b, k〉〈b, k|A|a〉.

(13.25)

Fig. 13.3 Self-Energy
insertion on the incoming
line

http://dx.doi.org/10.1007/978-3-319-15386-5_6
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Fig. 13.4 Inversion of
diagram in Fig. 13.3

The non-singular contributions become

−
〈
a
∣∣∣AΓP AΓ Σ

∣∣∣a
〉
= − P− + iπδ(εa − εb − cκ)〈a|A|b, k〉〈b, k|AΓQΣ |a〉

(13.26)

and
〈
a
∣∣∣2Im(−Heff)

∣∣∣a
〉
= 2iπδ(εa − εb − cκ)〈a|A|b, k〉〈b, k|AΓQΣ |a〉. (13.27)

13.2.2 Self-Energy Insertion on the Outgoing Line

The self-energy insertion on the outgoing line is indicated in Fig. 13.5. In applying
the optical theorem we can here cut the diagram at two places. Cutting the diagram
at the upper singularity (indicated in the figure), yields

Fig. 13.5 Self-energy
insertion on the outgoing line
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〈
a
∣∣∣2Im(−Heff)

∣∣∣a
〉
= 2iπδ(εa − εb − cκ)〈a|A|b, k〉〈b, k|AΣΓ A|a〉. (13.28)

Here, the model-space contribution becomes

〈
a
∣∣∣2Im(−Heff )

∣∣∣a
〉
= 2iπδ(εa − εb − cκ)

〈
a
∣∣∣

δ

δE
(
A|b, k〉〈b, k|AΣ(E)

)

E=εa
|b, k〉〈b, k|A

∣∣∣a
〉
.

(13.29)

Cutting the diagram at the lower singularity, yields

= 2iπδ(εa − εb − cκ)〈a|AΓ Σ A|b, k〉〈b, k|A|a〉 (13.30)

with the model-space contribution

〈
a
∣∣∣2Im(−Heff)

∣∣∣a
〉
= 2iπδ(εa − εb − cκ)

〈
a
∣∣∣
(

δΣ(E)

δE
)

E=εa

|b, k〉〈b, k|AΣΓ A
∣∣∣a

〉
.

(13.31)

13.2.3 Vertex Correction

A vertex correction on the first-order atomic transition in Fig. 13.2 is illustrated in
Fig. 13.6 with the cut at the upper singularity. This leads to the S-matrix

Fig. 13.6 Vertex correction
on the atomic transition
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〈
a
∣∣S

∣∣a
〉 = 2πδ(Ein − Eout)

〈
a
∣∣ − iΛ iΓ iA

∣∣p
〉

(13.32)

with contractions between the field operators. Λ stands for the vertex-correction
interaction Λ = ecΛμAμ (see Sect. 12.1.3). The corresponding part of the effective
interaction becomes

〈
a
∣∣ − W

∣∣a
〉 = 〈

a
∣∣ΛΓ A

∣∣a
〉
. (13.33)

A cut at the propagator yields the imaginary part

2Im〈a| − Heff |a〉 = 2πδ(εa − εb − cκ)〈p|Λ|b, k〉〈b, k|A|p〉. (13.34)

There is an inverted diagram, corresponding to the cut at the lower singularity,
yielding

2Im〈a| − Heff |a〉 = 2πδ(εa − εb − cκ)〈a|Λ|b, k〉〈b, k|A|a〉. (13.35)

We have now evaluated all first-order QED corrections to the atomic transition
between two bound states (Fig. 13.1).

The self-energy that is not cut as well as the vertex correction have to me renor-
malized, as discussed in Chap.12. The energy derivative of the self-energy has in
addition a charge divergence that is cancelled against the vertex correction, due to
the Ward identity (12.24).

The energy derivative of the electron-photon interaction A = ecαμAμ leads to a
change in the photon energy due to other perturbations.

13.3 Radiative Recombination

As a second application of the Green’s-operator technique of a dynamical process we
shall study the process of radiative recombination, i.e., where a quasi-free electron,
moving in the field of an atomic nucleus, will recombine with an ion (or a bare
nucleus) under the emission of a photon, as illustrated in Fig. 13.7, a process that
has been studied experimentally at the GSI in Darmstadt. It has also been studied
theoretically by Shabaev et al. [225, 228], using the two-photon Green’s function
and by the Gothenburg group, using the Green’s and the Green’s operators [134].

http://dx.doi.org/10.1007/978-3-319-15386-5_12
http://dx.doi.org/10.1007/978-3-319-15386-5_12
http://dx.doi.org/10.1007/978-3-319-15386-5_12
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Fig. 13.7 Lowest-order process in radiative recombination. The heavy solid line represents an
electron in a bound state and a thin double-line a “quasi-free” electron in the continuum, moving
in the nuclear potential

Essentially the same procedure can be used in this case as in the previous
case with radiative decay, the main difference being that the incoming orbital is
“quasi-free”, i.e., an essentially unbound electron moving in an external (nuclear)
potential.

13.3.1 Lowest

In analogy with (13.13) we have the forward-scattering amplitude in lowest order
(see Fig. 13.8)

〈p|W |p〉 = 〈p|ecαμAμΓ ecαν Aν |p〉, (13.36)

where Γ is the electron propagator (4.10) or resolvent (2.64)

Γ = Γ (εp) = |q〉〈q|
εp − εn − cκ + iη

, (13.37)

and p represents a quasi-free electronic state (double thin line).

Fig. 13.8 Applying the
optical theorem in lowest
order, left forward scattering
amplitude, right after the cut

http://dx.doi.org/10.1007/978-3-319-15386-5_4
http://dx.doi.org/10.1007/978-3-319-15386-5_2
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Instead of (13.16) we now have

〈p|Im(Heff)|p〉 = −πδ(εp − εn − cκ)〈p|ecαμAμ|q〉〈q|ecαν Aν |p〉, (13.38)

where q is the degenerate state q = (a, k). From the optical theorem the contribution
to the forward-scattering amplitude then becomes

2Im〈p| − Heff |p〉 = 2πδ(εp − εa − cκ)〈p|ecαμAμ|q〉〈q|ecαμAμ|p〉. (13.39)

13.3.2 Self-Energy Insertion on the Bound State

Next, we consider the case when there is a self-energy insertion in the bound state,
for which the forward-scattering amplitude is represented by the Feynman diagram
in Fig. 13.9 (cf. Sect. 13.2.2). The evolution operator is given by

〈p|U |p〉 = 2πδ(Ein − Eout) 〈p|iAiΓ (−i)Σ iΓ iA|p〉, (13.40)

where, as before, A stands for A = ecαμAμ and Σ is the self-energy insertion. The
corresponding part of the effective iteration is

〈p| − W |p〉: − 〈p|AΓ ΣΓ A|p〉, (13.41)

which contains singularities. Applying the Cutkosky rules, we cut the diagram at the
two places where it can have a degeneracy, leading to

− 〈p|AΓPΣΓ A|p〉 = − P− + iπδ(εp − εa − cκ)〈p|A|q〉〈q|ΣΓ A|p〉, (13.42)

− 〈p|AΓ ΣΓP A|p〉 = − P− + iπδ(εp − εa − cκ)〈p|AΓ Σ |q〉〈q|A|p〉. (13.43)

Fig. 13.9 Self-energy on the
bound state
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The remaining singularities lie in a discrete environment, and hence give rise to a
model-space contribution (MSC)

− 〈p|AΓPΣΓ A|p〉 → iπδ(εp − εa − cκ)

〈
p

∣∣∣∣
δ

δE
(
A
∣∣q

〉〈
q
∣∣Σ(E − cκ)

)
E=εp

∣∣q
〉〈
q
∣∣A

∣∣∣∣p
〉
,

(13.44)

− 〈p|AΓ ΣΓP A|p〉 → iπδ(εp − εa − cκ)

〈
p

∣∣∣∣

(
δA

δE

)

E=εp

∣∣q
〉〈
q
∣∣Σ

∣∣q
〉〈
q
∣∣A

∣∣∣∣p
〉
.

(13.45)

We then find

2Im〈p| − Heff |p〉 = 2πδ(εp − εa − cκ)

×
〈
p

∣∣∣∣A|q〉〈q∣∣ΣΓQ A + AΓQΣ
∣∣q

〉〈
q
∣∣A + δ

δE
(
A
∣∣q

〉〈
q
∣∣Σ

)
E=εp

∣∣q
〉〈
q
∣∣A

+
(

δA

δE

)

E=εp

∣∣q
〉〈
q
∣∣Σ

∣∣q
〉〈
q
∣∣A

∣∣∣∣p
〉
. (13.46)

13.3.3 Vertex Correction

The forward scattering amplitude with a vertex correction is illustrated in Fig. 13.10
and represented by the effective interaction

〈
p
∣∣U

∣∣p
〉 = 2πδ(Ein − Eout)

〈
p
∣∣iΛ iΓ iA

∣∣p
〉

or 2πδ(Ein − Eout)
〈
p
∣∣iA iΓ iΛ

∣∣p
〉

(13.47)

Fig. 13.10 Scattering with a
vertex correction
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with contractions between the field operators. Λ stands, as before, for the vertex-
correction interaction Λ = ecΛμAμ. The corresponding part of the effective inter-
action becomes

〈
p
∣∣ − W

∣∣p
〉 = 〈

p
∣∣ − ΛΓ A

∣∣p
〉

or
〈
p
∣∣ − AΓ Λ

∣∣p
〉
. (13.48)

Making a cut at the degeneracy, leads to

〈p| − ΛΓP A|p〉 = P − iπδ(εp − εa − cκ)〈p| − Λ|q〉〈q|A|p〉, (13.49)

〈p| − AΓPΛ|p〉 = P − iπδ(εp − εa − cκ)〈p| − A|q〉〈q|Λ|p〉. (13.50)

There are no MSC in this case. This leads to

2Im〈p| − Heff |p〉 = 2iπδ(εp − εa − cκ)
[〈
p
∣∣Λ|q〉〈q|A|p〉 + 〈p|A|q〉〈q|Λ∣∣p

〉]
.

(13.51)

13.3.4 Self-Energy Insertion on the Free-Electron State

When there is a self-energy insertion in the (quasi)free electron state, the forward
scattering amplitude is represented by the Feynman diagram in Fig. 13.11 (left),
corresponding to the evolution operator

〈p|U |p〉 = 2πδ(Ein − Eout)
〈
p
∣∣∣iAiΓ iAiΓ (−i)Σ

∣∣∣p
〉
, (13.52)

which leads to
〈p| − W |p〉 = −

〈
p
∣∣∣AΓ AΓ Σ

∣∣∣p
〉
. (13.53)

The leftmost singularity corresponds to

−
〈
p
∣∣∣AΓP AΓ Σ

∣∣∣p
〉
= −P + iπδ(εp − εa − cκ)〈p|A|q〉〈q|AΓ Σ |p〉 (13.54)

and
〈
p
∣∣∣2Im(−Heff)

∣∣∣p
〉
= 2iπδ(εp − εa − cκ)〈p|A|q〉〈q|AΓ Σ |p〉 (13.55)

The other singularity does not correspond to any process of physical interest.
There is no MSC here.
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There is also an inverted diagram with a self-energy on the outgoing line. This
lead to

〈p|2Im(−Heff )|p〉 = 2πδ(εp − cκ − εa)

〈
p

∣∣∣∣A
∣∣q

〉〈
q
∣∣AΓ Σ + ΣΓ A|q〉〈q|A

∣∣∣∣p
〉

= 2πδ(εp − cκ − εa)

〈
p

∣∣∣∣A|q〉〈q|A |n〉〈n|
εp − εn + iη

Σ + Σ
|n〉〈n|

εp − εn + iη
A|q〉〈q|A

∣∣∣∣p
〉
.

(13.56)

Since the states n are here continuous, the singularity leads to a principal integral
and half a pole, of which only the former contributes to the imaginary part.

13.3.5 Scattering Amplitude

By summing all contributions of 2Im〈p|T |p〉 for this particular process, we have
according to (13.11)

2Im〈p| − Heff |p〉 = 2πδ(Ep − Eq)
∣∣τ(p → q)

∣∣2. (13.57)

All contributions above are of the form

2Im〈p| − Heff |p〉 = 2πδ(Ep − Eq)
〈
p
∣∣ · ∣∣p

〉
, (13.58)

leading to 〈
p
∣∣ · · · ∣∣p〉 = ∣∣τ(p → q)

∣∣2. (13.59)

This gives

Fig. 13.11 Scattering with a
self-energy correction on the
free electron
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∣∣τ(p → q)
∣∣2 =

〈
p
∣∣∣A

∣∣∣q
〉

×
〈
q

∣∣∣∣A + ΣΓQ A +
(

δΣ

δE

)

E=εp

∣∣q
〉〈
q
∣∣A + Λ + A

|n〉〈n|
εp − εn + iη

Σ

∣∣∣∣p
〉

+
〈
p

∣∣∣∣AΓQΣ + 2

(
δA

δE

)

E=εp

∣∣q
〉〈
q
∣∣Σ + Λ + Σ

|n〉〈n|
εp − εn + iη

A

∣∣∣∣q
〉〈
q
∣∣∣A

∣∣∣p
〉
.

(13.60)

This is of the form

∣∣τ(p → q)
∣∣2 = 〈

p
∣∣A

∣∣q
〉〈
q
∣∣A + X

∣∣p
〉 + 〈

p
∣∣Y

∣∣q
〉〈
q
∣∣A

∣∣p
〉
, (13.61)

But since this is a real number, it is also equal to

∣∣τ(p → q)
∣∣2 = 〈

p
∣∣A

∣∣q
〉〈
q
∣∣Y †

∣∣p
〉 + 〈

p
∣∣A + X†

∣∣q
〉〈
q
∣∣A

∣∣p
〉

(13.62)

and to

∣∣τ(p → q)
∣∣2 = 1

2

〈
p
∣∣A

∣∣q
〉〈
q
∣∣A + X + Y †

∣∣p
〉 + 1

2

〈
p
∣∣A + X† + Y

∣∣q
〉〈
q
∣∣A

∣∣p
〉
.

(13.63)

This leads to the approximate amplitude

τ(p → q) ≈ 〈
q
∣∣A + 1

2 (X + Y †)

∣∣∣p
〉
, (13.64)

which corresponds to

∣∣τ(p → q)
∣∣2 ≈

〈
p
∣∣∣A + 1

2 (X† + Y )
∣∣q

〉〈
q
∣∣A + 1

2 (X + Y †)

∣∣∣p
〉
. (13.65)

This gives

τ(p → q) ≈
〈
q

∣∣∣∣A + ΣΓQ A + Σ
∣∣q

〉〈
q
∣∣
(

δA

δE
)

E=εp

+ 1

2

(
δΣ

δE
)

E=εp

∣∣q
〉〈
q
∣∣A + Λ + A

|n〉〈n|
εp − εn + iη

Σ

∣∣∣∣p
〉
. (13.66)

This result agrees with those of Shabaev et al. [228] and Lindgren et al. [134], in the
latter case apart from sign difference for the vertex part, which is due to different
sign convention (see Sect. 4.6.2).

The self-energies and vertex corrections that are not affected by the cuts have to
be properly renormalized. For the effects affected by the cut the renormalization does
not contribute to the imaginary part.

http://dx.doi.org/10.1007/978-3-319-15386-5_4
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Fig. 13.12 Lowest-order
process in photoionization

It can be noted that the derivative of the self-energy appears only once in the
cross-section, which explains the factor of one half in the amplitude. The derivative
of the photon energy, on the other hand, appears twice and hence appears with the
factor of unity in the amplitude.

The effect of the vacuum polarization is not included here but can be evaluated
in very much the same way, and in doing so, we find also here agreement with the
result of Shabaev et al.

13.3.6 Photoionization

In the process of photoionization an incoming photon interacts with a target atom
or molecule, which is being ionized. This is the reverse of the process of radiative
recombination, treated in the previous subsection, and the expressions for the various
processes can directly be written down (Fig. 13.12).



Chapter 14
Summary and Conclusions

The all-order forms of many-body perturbation theory (MBPT), like the coupled-
cluster approach (CCA), have been extremely successful in calculations on atomic
and in particular on molecular systems. Here, the dominating parts of the electron
correlation can be evaluated to essentially all orders of perturbation theory.

A shortcoming, however, of the standardMBPT/CCA procedures is that quantum
electrodynamics (QED) can only be included in a very limited fashion (first-order
energy). Particularly for highly charged systems, QED effects can be quite important.
Certain experimental data on such systems are now several orders of magnitude
more accurate than the best available theoretical calculation. In order to account for
such data theoretically, it will be necessary to include—among other things—the
combination of quantum electrodynamics and many-body perturbation theory.

The procedure presented in this book, which is based upon quantum-field the-
ory, describes—for the first time—a road towards a rigorous unification of QED
and MBPT. The procedure is based upon the covariant evolution operator, which
describes the time evolution of the relativistic wave function or state vector.

The covariant evolution operator contains generally singularities that can be elim-
inated. This leads to the Green’s operator, which is a generalization of the wave-
operator concept in standard many-body theory. The procedure is for two-electron
systems fully compatible with the relativistically covariant Bethe–Salpeter equation,
but it is more versatile.

The procedure is—in contrast to the standard Bethe–Salpeter equation—
applicable to a general multi-reference (quasi-degenerate) model space. It can also
be combined with the coupled-cluster approach and is, in principle, applicable to
systems with more than two electrons.

In principle, the Green’s operator—as well as the Bethe–Salpeter equation—
has individual times for the particles involved. Most applications, though, employ
the equal-time approximation, where the times are equalized, in order to make the
procedure consistent with the quantum-mechanical picture.

The Green’s operator for time t = 0 corresponds to the wave operator used in
standard MBPT, and the time derivative at t = 0, operating within the model space,
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to the many-body effective interaction. This connects the field-theoretical procedure
with the standard MBPT.

The formalism presented here has been tested numerically by the Gothenburg
atomic theory group, and in cases where comparison can be made with the more
restricted S-matrix formulation, very good agreement is reported.

In order to go beyond two-photon exchange, it is necessary to combine the quan-
tum electrodynamics with electron correlation in a systematic way. When radiative
QED effects are involved, it is necessary in such a case to use the Coulomb gauge
in order to get sensible results with reasonable efforts, and such calculations have
recently been performed. The use of the Coulomb gauge also has other advantages
in dealing with QED in combination with electron correlation.

Any experimental verification of the higher-order QED effects beyond second
order has not yet been performed, but the experimental accuracy is in several cases
so high that such a test would be feasible.

The Green’s-operator procedure was primarily developed for evaluating QED
effects in static properties on bound-state systems. It has turned out, however, that
the procedure is equally well applicable to dynamic problems, like scattering cross
sections and transitions rates. In such cases the standard S-matrix procedure fails
due to singularities appearing when internal model-space states are involved, which
can be eliminated in the same way as in structure problems. This has recently been
applied by the Gothenburg group and corresponding experiments are presently being
performed by other groups, and it might in the near future be possible to detect QED
effects in such processes.



Appendix A
Notations and Definitions

A.1 Four-Component Vector Notations

A four-dimensional contravariant vector is defined1

x = xμ = (x0, x1, x2, x3) = (x0, x) = (ct, x), (A.1)

where μ = 0, 1, 2, 3 and x is the three-dimensional coordinate vector x =
(x1, x2, x3) ≡ (x, y, z). The four-dimensional differential is

d4x = cdt − d3x and d3x = dx dy dz.

A corresponding covariant vector is defined

xμ = (x0, x1, x2, x3) = gμνxν = (x0,−x) = (ct,−x), (A.2)

which implies that
x0 = x0 x = −xi (i = 1, 2, 3). (A.3)

gμν is a metric tensor, which can raise the so-called Lorentz indices of the vector.
Similarly, an analogous tensor can lower the indices

xμ = gμνxν . (A.4)

These relations hold generally for four-dimensional vectors.
There are various possible choices of the metric tensors, but we shall use the

following

1In all appendices D-M we display complete formulas with all fundamental constants. As before,
we employ the Einstein summation rule with summation over repeated indices.
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gμν = gμν =

⎛
⎜⎜⎝
1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

⎞
⎟⎟⎠ . (A.5)

The four-dimensional scalar product is defined as the product of a contravariant
and a covariant vector:

ab = aμbμ = a0b0 − a · b, (A.6)

where a · b is the three-dimensional scalar product

a · b = axbx + ayby + azbz.

The covariant gradient operator is defined as the gradient with respect to a con-
travariant coordinate vector:

∂μ = ∂

∂xμ
=
(1

c

∂

∂t
,∇
)
, (A.7)

and the contravariant gradient operator analogously

∂μ = ∂

∂xμ
=
(1

c

∂

∂t
,−∇

)
. (A.8)

∇ is the three-dimensional gradient operator

∇ = ∂

∂x
êx + ∂

∂y
êy + ∂

∂z
êz,

where (êx, êy, êz) are unit vectors in the coordinate directions.
The four-dimensional divergence is defined

∂μAμ = 1

c

∂A0

∂t
+ ∇ · A = ∇A, (A.9)

where ∇ · A is the three-dimensional divergence

∇ · A = ∂Ax

∂x
+ ∂Ay

∂y
+ ∂Az

∂z
.

The d’Alembertian operator is defined

� = ∂μ∂μ = 1

c2
∂2

∂t2
− ∇2 = ∇2, (A.10)
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where

∇2 = Δ = ∂2

∂x2
+ ∂2

∂y2
+ ∂2

∂z2

is the Laplacian operator.

A.2 Vector Spaces

Notations

X, Y , .. are sets with elements x, y, ..
x ∈ X means that x is an element in the set X.
N is the set of nonnegative integers. R is the set of real numbers. C is the set of
complex numbers.
Rn is the set of real n-dimensional vectors. Cn is the set of complex n-dimensional
vectors.
A ⊂ X means that A is a subset of X.
A ∪ B is the union of A and B. A ∩ B is the Intersection of A and B.
A = {x ∈ X : P} means that A is the set of all elements x in X that satisfy the
condition P.
f : X → Y represents a function or operator, which mens that f maps uniquely the
elements of X onto elements of Y .
A functional is a unique mapping f : X → R (C) of a function space on the space of
real (complex) numbers.
The set of arguments x ∈ A for which the function f : A → B is defined is the
domain, and the set of results y ∈ B which can be produced is the range.
(a, b) is the open interval {x ∈ R : a < x < b}. [a, b] is the closed interval
{x ∈ R : a ≤ x ≤ b}.
sup represents the supremum, the least upper bound of a set
inf represents the infimum, the largest lower bound of a set.

Basic Definitions

A real (complex) vector space or function space X is an infinite set of elements, x,
referred to as points or vectors, which is closed under addition, x + y = z ∈ X, and
under multiplication by a real (complex) number c, cx = y ∈ X. The continuous
functions f (x) on the interval x ∈ [a, b] form a vector space, alsowith some boundary
conditions, like f (a) = f (b) = 0.
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A subset of X is a subspace of X if it fulfills the criteria for a vector space.
A norm of a vector space X is a function p : X → [0,∞] with the properties

• (1) p(λx) = |λ|p(x)
• (2) p(x + y) ≤ p(x) + p(y) for all real λ (λ ∈ R) and all x, y ∈ X
• (3) that p(x) = 0 always implies x = 0.

The norm is written p(x) = ||x||. We then have ||λx|| = |λ| ||x|| and ||x + y|| ≤
||x|| + ||y|| and ||x|| = 0 ⇒ x = 0. If the last condition is not fulfilled, it is a
seminorm.

A vector space with a norm for all its elements is a normed space, denoted
(X, ||·||). The continuous functions, f (x), on the interval [a, b] form a normed space
by defining a norm, for instance, ||f || = [ ∫ b

a dt |f (t)|2]1/2. By means of the Cauchy-
Schwartz inequality, it can be shown that this satisfies the criteria for a norm [80,
p. 93].

If f is a function f : A → Y and A ⊂ X, then f is defined in the neighborhood
of x0 ∈ X, if there is an ε > 0 such that the entire sphere {x ∈ X : ||x − x0|| < ε}
belongs to A [80, p. 309].

A function/operator f : X → Y is bounded, if there exists a number C such that

sup
0 �=x∈X

[ ||fx||
||x||

]
= C < ∞.

Then C = ||f || is the norm of f . Thus, ||fx|| ≤ ||f || ||x|| .
A function f is continuous at the point x0 ∈ X, if for every δ > 0 there exists

an ε > 0 such that for every member of the set x : ||x − x0|| < ε we have
||fx − fx0|| ≤ δ [80, p. 139]. This can also be expressed so that f is continuous at
the point x0, if and only if fx → fx0 whenever xn → x0, {xn} being a sequence in X,
meaning that fxn converges to fx0, if x converges to x0 [240, p. 70].

A linear function/operator is continuous if and only if it is bounded [54, p. 22], [80,
pp. 197, 213].

A functional f : X → R is convex if

f (tx + (t − 1)y) ≤ tf (x) + (t − 1)f (y)

for all x, y ∈ X and t ∈ (0, 1).
A subset A ⊂ X is open, if for every x ∈ A there exists an ε > 0 such that the

entire ball Br(x) = {y ∈ X| ||y − x|| < ε} belongs to A, i.e., Br(x) ⊂ A [23, p. 363],
[80, p. 98], [240, p. 57].

A sequence {xn} , where n is an integer (n ∈ N), is an infinite numbered list
of elements in a set or a space. A subsequence is a sequence, which is a part of a
sequence.

A sequence {xn ∈ A} is (strongly) convergent towards x ∈ A, if and only if
for every ε > 0 there exists an N such that ||xn − x|| < ε for all n > N [80,
p. 95, 348].
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A sequence is called a Cauchy sequence if and only if for every ε > 0 there exists
an N such that ||xn − xm|| < ε for all m, n > N . If a sequence {xn} is convergent,
then it follows that for n, m > N

||xm − xn|| = ||(xn − x) + (x − xm)|| ≤ ||xn − x|| + ||xm − x|| < 2ε

which means that a convergent sequence is always a Cauchy sequence. The opposite
is not necessarily true, since the point of convergence need not be an element of
X [55, p. 44].

A subset A of a normed space is termed compact, if every infinite sequence of
elements in A has a subsequence, which converges to an element in A. The closed
interval [0,1] is an example of a compact set, while the open interval (0,1) is noncom-
pact, since the sequence 1, 1/2, 1/3... and all of its subsequences converge to 0, which
lies outside the set [240, p. 149]. This sequence satisfies the Cauchy convergence
criteria but not the (strong) convergence criteria.

A dual space or adjoint space of a vector space X, denoted X∗, is the space of all
functions on X.

An inner or scalar product in a vector space X is a function 〈·, ·〉 : X × X → R
with the properties (1)

〈x,λ1y1 + λ2y2〉 = λ1〈x, y1〉 + λ2〈x, y2〉, 〈x, y〉 = 〈y, x〉

for all x, y, y1, y2 ∈ X and all λj ∈ R , and (2) 〈x, x〉 = 0 only if x = 0.

Special Spaces

Banach Space

A Banach space is a normed space in which every Cauchy sequence converges to a
point in the space.

Hilbert Space

ABanach spacewith the norm ||x|| = +√〈x, x〉 is called aHilbert space [23, p. 364].

Fock Space

AFock space is aHilbert space, where the number of particles is variable or unknown.
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A.3 Special Functions

Dirac Delta Function

We consider the integral ∫ L/2

−L/2
dx eikx. (A.11)

Assuming periodic boundary conditions, e−iLx/2 = eiLx/2, limits the possible k values
to k = kn = 2πn/L. Then

1

L

∫ L/2

−L/2
dx eiknx = δkn,0, (A.12)

where δn,m is the Kronecker delta factor

δn,m =
{

1 if m = n
0 if m �= n

. (A.13)

If we let L → ∞, then we have to add a ‘damping factor’ e−γ|x|, where γ is a
small positive number, in order to make the integral meaningful,

∫
dx

2π
eikx e−γ|x| = γ

π

1

k2 + γ2
, (A.14)

which in the limit can be seen as a definition of the Dirac delta function,

lim
γ→0

∫ ∞

−∞
dx

2π
eikx e−γ|x| = lim

γ→0

γ

π

1

k2 + γ2
= δ(k). (A.15)

Formally, we write this relation as

∫ ∞

−∞
dx

2π
eikx = δ(k). (A.16)

Defining a Δ function by

Δγ(k) = γ

π

1

k2 + γ2
, (A.17)

we then have
lim
γ→0

Δγ(k) = lim
γ→0

Δnγ(k) = δ(k). (A.18)
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The integral over the Δ function can easily be found to be equal to unity

∫ ∞

−∞
dk Δγ(k) = 1, (A.19)

using residue calculus, and since it in the limit becomes equal to zero in all points
except k = 0, it satisfies all conditions of the δ function.

The Δ function also has the following property

lim
γ→0

πγ Δγ(k) = lim
γ→0

γ2

k2 + γ2
=
{
1, k = 0
0, k �= 0

}
= δk,0, (A.20)

which is the Kronecker delta factor. The same is true for any value of n,

lim
γ→0

nπγ Δnγ(k) = δk,0. (A.21)

In three dimensions equation (A.12) goes over into

1

V

∫
V
d3x eikn·x = δ3(kn, 0) = δ(knx, 0) δ(kny, 0) δ(knz, 0). (A.22)

In the limit where the integration is extended over the entire three-dimensional space,
we have in analogy with (A.16)

∫
d3x

(2π)3
eik·x = δ3(k). (A.23)

Integrals Over Δ Functions

We consider now the integral

∫ ∞

−∞
dx δ(x − a) f (x) = lim

γ→0

∫ ∞

−∞
dx Δγ(x − a) f (x)

= 1

2π
lim
γ→0

∫ ∞

−∞
dx

2γ

(x − a)2 + γ2
f (x). (A.24)

The integral can be evaluated using residue calculus and leads to

∫ ∞

−∞
dx δ(x − a) f (x) = f (a). (A.25a)
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provided the function f (x) has no poles. In three dimensions we have similarly

∫
d3x δ(x − x0) f (x) = f (x0). (A.25b)

integrated over all space.
The relations above are often taken as the definition of the Dirac delta function,

but the procedure applied here is more rigorous.
Next, we consider the integral over two Δ functions

∫
dx Δγ(x − a)Δη(x − b) = 1

(2π)2

∫
dx

2γ

(x − a)2 + γ2

2η

(x − b)2 + η2

= 1

4π2i

∫
dx
[ 1

x − a − iγ
− 1

x − a + iγ)

]

× 2η

(x − b + iη)(x − b − iη)

= 1

2πi

[ 1

b − a − i(γ + η)
− 1

b − a + i(γ + η)

]

= 1

2π

2(γ + η)

(a − b)2 + (γ + η)2
(A.26)

after integrating the first term over the negative and the second term over the positive
half plane. Thus,

∫
dx Δγ(x − a)Δη(x − b) = Δγ+η(a − b), (A.27)

and we see that here the widths of the Δ functions are added.
Nowweconsider some integralswith theΔ functions in combinationwith electron

and photon propagators that are frequently used in the main text.
First, we consider the integral with one Δ function and an electron propagator

(4.10)

∫
dω

1

ω − εj + iη
Δγ(εa − ω) =

∫
dω

2π

1

ω − εj + iη

2γ

(εa − ω)2 + γ2

=
∫

dω

2π

1

ω − εj + iη

2γ

(εa − ω + iγ)(εa − ω − iγ)
.

The pole of the propagator yields the contribution Δγ(εa − εj), which vanishes in
the limit γ → 0, if εa �= εj. Nevertheless, we shall see that this pole has a significant
effect on the result.

http://dx.doi.org/10.1007/978-3-319-15386-5_4
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Integrating above over the positive half plane, with the single pole εa + iγ, yields

1

εa − εj + iγ + iη
,

and integrating over the negative half plane, with the two poles εj − iη, εa − iγ,
yields

− 2iγ

(εa − εj + iγ + iη)(εa − εj − iγ + iη)
+ 1

εa − εj − iγ + iη
= 1

εa − εj + iγ + iη
,

which is identical to the previous result. We observe here that the pole of the prop-
agator, which has a vanishing contribution in the limit γ → 0, has the effect of
reversing the sign of the iγ term.

The γ parameter originates from the adiabatic damping and is small but finite,
while the η parameter is infinitely small and only determines the position of the pole
of the propagator. Therefore, if they appear together, the γ term dominates, and the
η term can be omitted. This yields

∫
dω

1

ω − εj + iη
Δγ(εa − ω) = 1

εa − εj + iγ
, (A.28)

noting that the η parameter of the propagator is replaced by the damping
parameter γ.

Secondly, we consider the integral with the photon propagator (4.31)

.

∫
dω

1

ω2 − κ2 + iη
Δγ(εa − ω) = 1

2κ

∫
dω

2π

[ 1

ω − κ + iη
− 1

ω + κ − iη

]

2γ

(εa − ω + iγ)(εa − ω − iγ)
= 1

2κ

[ 1

εa + iγ − κ + iη
− 1

εa − iγ + κ − iη

]

= 1

ε2a − (κ − iγ − iη)2
(A.29)

or, neglecting the η term,

∫
dω

1

ω2 − κ2 + iη
Δγ(εa − ω) = 1

ε2a − κ2 + iγ
, (A.30)

noting that κ ≥ 0.

http://dx.doi.org/10.1007/978-3-319-15386-5_4
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Finally, we consider the integrals of two Δ functions and the propagators. With
the electron propagator we have

∫
dω

1

ω − εj + iη
Δγ(εa − ω)Δγ(εb − ω)

= 1

(2πi)2

∫
dω

1

ω − εj + iη

[ 1

εa − ω − iγ
− 1

εa − ω + iγ)

]

×
[ 1

εb − ω − iγ
− 1

εb − ω + iγ)

]
.

Here, three of the combinations with poles on both sides of the real axis contribute,
which yields

1

2πi

[
1

(εb − εj + iγ)(εa − εb − 2iγ)
+ 1

(εa − εj + iγ)(εb − εa − 2iγ)

− 1

(εa − εj + iγ)(εb − εj + iγ)

]
.

The last two terms become

1

εa − εj + iγ

[ 1

εb − εa − 2iγ
− 1

εb − εj + iγ

]
≈ 1

(εb − εa − 2iγ)(εb − εj + iγ)
,

neglecting an imaginary term in the numerator. This leads to

∫
dω

1

ω − εj + iη
Δγ(εa − ω)Δγ(εb − ω) ≈ 1

εa − εj + iγ
Δ2γ(εa − εb).

(A.31)

Similarly, we find for the photon propagator

∫
dω

1

ω2 − κ2 + iη
Δγ(εa − ω)Δγ(εb − ω) ≈ 1

ε2a − κ2 + iγ
Δ2γ(εa − εb).

(A.32)

Formally, we can obtain the integral with propagators by replacing the Δ function
by the corresponding Dirac delta function, noting that we then have to replace the
imaginary parameter η in the denominator by the damping factor γ.
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The Heaviside Step Function

The Heaviside step function is defined

Θ(t) = 1 t′ > t

= 0 t′ < t. (A.33)

The step function can also be given the integral representation

Θ(t) = i lim
ε→0

∫ ∞

−∞
dω

2π

e−iωt

ω + iε
(A.34)

from which we obtain the derivative of the step function

dΘ(t)

dt
= lim

ε→0

∫ ∞

−∞
dω

2π

ω

ω + iε
e−iωt = δ(t), (A.35)

where δ(t) is the Dirac delta function.



Appendix B
Second Quantization

B.1 Definitions

(See, for instance, [124, Chap. 11], [220, Chap. 5]). In second quantization—also
known as the number representation—a state is represented by a vector (see Appen-
dix C.1) |n1, n2, . . .〉, where the numbers represent the number of particles in the
particular basis state (which for fermions can be equal only to one or zero).

Second quantization is based upon annihilation/creation operators cj/c
†
j , which

annihilate and create, respectively, a single particle. If we denote by |0〉 the vacuum
state with no particle, then

c†j |0〉 = |j〉 (B.1)

represents a single-particle state. In the coordinate representation (C.19) this corre-
sponds to the wave function

φj(x) = 〈x|j〉, (B.2)

satisfying the single-electron Schrödinger or Dirac equation. Obviously, we have

cj|0〉 = 0. (B.3)

For fermions the operators satisfy the anti-commutation relations

{c†i , c†j } = c†i c†j + c†j c†i = 0

{ci, cj} = cicj + cjci = 0

{c†i , cj} = c†i cj + cjc
†
i = δij, (B.4)

where δij is the Kronecker delta factor (A.13). It then follows that

c†i c†j |0〉 = −c†j c†i |0〉, (B.5)

© Springer International Publishing Switzerland 2016
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which means that c†i c†i |0〉 represents an antisymmetric two -particle state, which we
denote in the following way2

c†i c†j |0〉 = |{i, j}〉. (B.6)

The antisymmetric form is required for fermions by the quantum-mechanical rules.
A corresponding bra state is

〈0|clck = 〈{k, l}|, (B.7)

and it then follows that the states are orthonormal.
In the coordinate representation the state above becomes

〈x1x2|{i, j}〉 = 1√
2

[
φi(x1)φj(x2) − φj(x1)φi(x2)

]
. (B.8)

Generalizing this to a general many-particle system, leads to an antisymmetric prod-
uct, known as the Slater determinant,

〈x1, x2, . . . , xN |c†ac†b . . . c†N |0〉 = 1√
N ! Det{a, b, . . . , N}

= 1√
N !

∣∣∣∣∣∣∣∣

φ1(x1) φ1(x2) . . . φ1(xN )

φ2(x1) φ2(x2) . . . φ2(xN )

. . . . . .

φN (x1) φN (x2) . . . φN (xN )

∣∣∣∣∣∣∣∣
. (B.9)

For an N-particle system we define one- and two-particle operators by

F =
n∑

n=1

fn (B.10)

G =
n∑

m<n=1

gmn, (B.11)

respectively, where the fn and the gmn operators are identical, differing only in the
particles they operate on. In second quantization these operators can be expressed
(see, for instance, [124, Sect. 11.1])3

F̂ = c†i 〈i|f |j〉 cj

Ĝ = 1

2
c†i c†j 〈ij|g|kl〉 clck (B.12)

2We shall follow the convention of letting the notation |i, j〉 denote a straight product function
|i, j〉 = φi(x1)φj(x2), while |{i, j}〉 represents an antisymmetric function.
3Occasionally, we use a ‘hat’ on the operators to emphasize their second-quantized form.We employ
also the Einstein summation rule with summation over all indices that appear twice. Note the order
between the annihilation operators.



Appendix B: Second quantization 311

etc. (note order between the operators in the two-particle case). Here,

〈i|f |j〉 =
∫

d3x1 φ†
i (x1) f φj(x1)

braijg|kl〉 =
∫∫

d3x1 d3x2 φ†
i (x1)φ

†
j (x2) g φk(x1)φl(x2). (B.13)

We can check the formulas above by evaluating

〈{cd}|Ĝ|{ab}〉 = 〈{cd}∣∣1
2

c†i c†j 〈ij|g|kl〉 clck

∣∣{ab}〉

= 1

2

〈
0
∣∣cdcc c†i c†j 〈ij|g|kl〉 clck c†ac†b

∣∣0〉. (B.14)

Normal ordering the operators, yields

clck c†ac†b|0〉 = δk,aδl,b − δl,aδk,b

and similarly
〈0|cdcc c†i c†j = δi,dδj,c − δj,cδi,d .

Then we have
〈{cd}|Ĝ|{ab}〉 = 〈cd|g|ab〉 − 〈dc|g|ab〉

which agrees with the results using determinantal wave functions (see, for instance,
[124, Eq. (5.19)])

〈{cd}|Ĝ|{ab}〉 = 1

2

(〈cd| − 〈dc|)Ĝ(|ab〉 − |ba〉). (B.15)

We define the electron field operators in the Schrödinger representation (3.10)
by

ψ̂S(x) = cj φj(x); ψ̂†
S(x) = c†j φ†

j (x). (B.16)

Then the second-quantized one-body operator can be expressed

F̂ =
∫

d3x c†i φ
∗
i (x) f cjφj(x) =

∫
d3x ψ̂†

S(x) f ψ̂S(x) (B.17)

http://dx.doi.org/10.1007/978-3-319-15386-5_3
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and similarly with the two-body operator

Ĝ = 1

2

∫∫
d3x1d3x2 ψ̂†

S(x1)ψ̂
†
S(x2) g ψ̂S(x2)ψ̂S(x1). (B.18)

The non-relativistic Hamiltonian for an N-electron system (2.11) consists of a
single-particle and a two-particle operator

H1 =
N∑

n=1

(
− �

2

2m
∇2

n + vext(xn)
)

=
N∑

n=1

h1(n)

H2 =
N∑

m<n

e2

4πε0 rmn
=

N∑
m<n

, h2(m, n) (B.19)

and in second quantization this can be expressed

Ĥ =
∫

d3x1 ψ̂†
S(x1) h1 ψ̂S(x1) + 1

2

∫∫
d3x1 d3x2 ψ̂†

S(x1) ψ̂†
S(x2) h2 ψ̂S(x2) ψ̂S(x1).

(B.20)

B.2 Heisenberg and Interaction Pictures

In an alternative to the Schrödinger picture, the Heisenberg picture (HP), the states
are time independent and the time-dependence is transferred to the operators,

|ΨH〉 = |ΨS(t = 0)〉 = eiĤt/�|ΨS(t)〉; ÔH = eiĤt/�ÔS e−iĤt/�. (B.21)

In perturbation theory the Hamiltonian is normally partitioned into a zeroth-order
Hamiltonian H0 and a perturbation V (2.47),

Ĥ = Ĥ0 + V̂ . (B.22)

We can then define an intermediate picture, known as the interaction picture (IP),
where, the operators and state vectors are related to those in theSchrödinger picture by

|ΨI(t)〉 = eiĤ0t/� |ΨS(t)〉; ÔI(t) = eiĤ0t/� ÔS e
−iĤ0t/�. (B.23)

The relation between the Heisenberg and the interaction pictures is4

|ΨH〉 = eiĤt/�e−iĤ0t/�|ΨI(t)〉; ÔH(t) = eiĤt/�e−iĤ0t/� ÔI e
iĤ0t/�e−iĤt/�.

(B.24)

4Note that Ĥ and Ĥ0 generally do not commute, so that in general eiĤt/�e−iĤ0t/� �= eiV̂ t/� .

http://dx.doi.org/10.1007/978-3-319-15386-5_2
http://dx.doi.org/10.1007/978-3-319-15386-5_2
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Using the relation (3.18), we then have

|ΨH〉 = U (0, t)|ΨI(t)〉; ÔH(t) = U (0, t) ÔI U (t, 0). (B.25)

The state vector of time-independent perturbation theory corresponds in all pictures
considered here to the time-dependent state vectors with t = 0,

|Ψ 〉 = |ΨH〉 = |ΨS(0〉) = |ΨI(0)〉. (B.26)

In the Heisenberg picture (B.21) the electron-field operators (B.16) become

ψ̂H(x) = eiĤt/� ψ̂S(x) e−iĤt/�; ψ̂†
H(x) = eiĤt/� ψ̂†

S(x) e−iĤt/� (B.27)

and in the interaction picture (IP) (B.23)

ψ̂I(x) = eiĤ0t/�ψ̂S(x) e−iĤ0t/� = eiĤ0t/�cj φj(x) e−iĤ0t/�

= cj φj(x) e−iεj t/� = cj φj(x)

ψ̂†
I (x) = c†j φ†

j (x) eiεj t/� = c†j φ†
j (x), (B.28)

where φj(x) is an eigenfunction of H0. We also introduce the time-dependent cre-
ation/annihilations operators in the IP by

cj(t) = cj e−iεj t/�; c†j (t/�) = c†j eiεj t/�, (B.29)

which gives
ψ̂I(x) = cj(t)φj(x); ψ̂†

I (x) = c†j (t)φ†
j (x). (B.30)

From the definition (B.23) we have

∂

∂t
ÔI(t) = ∂

∂t

[
eiĤ0t/� ÔS e

−iĤ0t/�

]
= i

�

[
H0, ÔI(t)

]
. (B.31)

http://dx.doi.org/10.1007/978-3-319-15386-5_3
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Representations of States and Operators

C.1 Vector Representation of States

A state of a system can be represented by the wave function or Schrödinger function
Ψ (x), where x stands for all (space) coordinates. If we have a complete basis set
available in the same Hilbert space (see Appendix A.2), {φj(x)}, then we can expand
the function as

Ψ (x) = ajφj(x) (C.1)

with summation over j according to the Einstein summation rule. If the basis set is
orthonormal, implying that the scalar or inner product satisfies the relation

〈i|j〉 =
∫

dx φ†
j φj(x) = δi,j, (C.2)

then the expansion coefficients are given by the scalar product

aj =
∫

dx φ†
j Ψ (x) = 〈j|Ψ 〉. (C.3)

These numbers form a vector, which is the vector representation of the state Ψ or
the state vector,

∣∣Ψ 〉 =

⎛
⎜⎜⎜⎜⎝

〈1|Ψ 〉
〈2|Ψ 〉

·
·

〈N |Ψ 〉

⎞
⎟⎟⎟⎟⎠

. (C.4)

Note that this is just a set of numbers—no coordinates are involved. N is here the
number of basis states, which may be finite or infinite. [The basis set need not be

© Springer International Publishing Switzerland 2016
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numerable and can form a continuum in which case the sum over the states is replaced
by an integral.] The basis states are represented by unit vectors |j〉

∣∣1〉 =

⎛
⎜⎜⎜⎜⎝

1
0
0
·
·

⎞
⎟⎟⎟⎟⎠

∣∣2〉 =

⎛
⎜⎜⎜⎜⎝

0
1
0
·
·

⎞
⎟⎟⎟⎟⎠

etc. (C.5)

The basis vectors are time independent, and for time-dependent states the time
dependence is contained in the coefficients

|Ψ (t)〉 = aj(t)|j〉. (C.6)

|Ψ 〉 is a ket vector, and for each ket vector there is a corresponding bra vector

〈
Ψ
∣∣ = (a∗

1, a∗
2, . . .

)
, (C.7)

where the asterisk represents complex conjugate. It follows from (C.1) that

a∗
j = 〈Ψ |j〉. (C.8)

The scalar product of two general vectors with expansion coefficients aj and bj,
respectively, becomes

〈Ψ |Φ〉 = a∗
j bj (C.9)

with the basis vectors being orthonormal. This is identical to the scalar product of
the corresponding vector representations

〈Ψ |Φ〉 = (a∗
1, a∗

2, . . .
)
⎛
⎜⎜⎝

b1
b2
·
·

⎞
⎟⎟⎠ . (C.10)

The ket vector (C.4) can be expanded as

|Ψ 〉 = |j〉〈j|Ψ 〉. (C.11)

But this holds for any vector in the Hilbert space, and therefore we have the formal
relation in that space

|j〉〈j| ≡ I, (C.12)
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where I is the identity operator. This is known as the resolution of the identity. Using
the expression for the coefficients, the scalar product (C.9) can also be expressed

〈Ψ |Φ〉 = 〈Ψ |j〉〈j|Φ〉, (C.13)

which becomes obvious, considering the expression for the identity operator.

C.2 Matrix Representation of Operators

The operators we are dealing with have the property that when acting on a function
in our Hilbert space they generate another (or the same) function in that space,

ÔΨ (x) = Φ(x) (C.14)

or with vector notations
Ô|Ψ 〉 = |Φ〉. (C.15)

Expanding the vectors on the l.h.s according to the above, yields

|i〉〈i|Ô|j〉〈j|Ψ 〉 = |Φ〉. (C.16)

Obviously, we have the identity

Ô ≡ |i〉〈i|Ô|j〉〈|j. (C.17)

The numbers 〈i|Ô|j〉 arematrix elements

〈i|Ô|j〉 =
∫

dx φ†
i (x) Ô φj(x), (C.18)

and they form the matrix representation of the operator

Ô ⇒
⎛
⎝

〈1|Ô|1〉 〈1|Ô|2〉 · · ·
〈2|Ô|1〉 〈2|Ô|2〉 · · ·

· · · · · · · · ·

⎞
⎠ .

Standard matrix multiplication rules are used in operations with vector and matrix
representations, for instance,
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Ô|Ψ 〉 = |Φ〉 ⇒
⎛
⎝

〈1|Ô|1〉 〈1|Ô|2〉 · · ·
〈2|Ô|1〉 〈2|Ô|2〉 · · ·

· · · · · · · · ·

⎞
⎠ ,

⎛
⎜⎜⎜⎜⎝

〈1|Ψ 〉
〈2|Ψ 〉

·
·

〈N |Ψ 〉

⎞
⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎝

〈1|Φ〉
〈2|Φ〉

·
·

〈N |Φ〉

⎞
⎟⎟⎟⎟⎠

,

where
〈k|Φ〉 = 〈k|Ô|j〉〈j|Φ〉,

summed over the index j.

C.3 Coordinate Representations

Representation of Vectors

The coordinate representation of the ket vector |Ψ 〉 (C.4) is denoted 〈x|Ψ 〉, and this
is identical to the corresponding state or (Schrödinger) wave function

〈x|Ψ 〉 ≡ Ψ (x); 〈Ψ |x〉 ≡ Ψ †(x). (C.19)

This can be regarded as a generalization of the expansion for the expansion coef-
ficients (C.1), where the space coordinates correspond to a continuous set of basis
functions.

The basis functions φj(x) have the coordinate representation 〈x|j〉, and the coor-
dinate representation (C.1) becomes

〈x|Ψ 〉 = aj φj(x) = aj 〈x|j〉. (C.20)

The scalar product between the functions Ψ (x) and Φ(x) is

〈Ψ |Φ〉 =
∫

dx Ψ †(x)Φ(x), (C.21)

which we can express as

〈Ψ |Φ〉 =
∫

dx 〈Ψ |x〉〈x|Φ〉. (C.22)

We shall assume that an integration is always understood, when Dirac notations of
the kind above are used, i.e.,

〈Ψ |Φ〉 = 〈Ψ |x〉〈x|Φ〉, (C.23)
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in analogy with the summation rule for discrete basis sets. This leads to the formal
identity

|x〉〈x| ≡ I, (C.24)

which is consistent with the corresponding relation (C.12) with a numerable basis
set.

Closure Property

From the expansion (C.1) we have

Ψ (x) =
∫

dx′ φ†
j (x

′) Ψ (x′)φj(x). (C.25)

This can be compared with the integration over the Dirac delta function

Ψ (x) =
∫

dx′ δ(x − x′) Ψ (x′), (C.26)

which leads to the relation known as the closure property

φ†
j (x

′)φj(x) = δ(x − x′) (C.27)

(with summation over j). In Dirac notations this becomes

〈x|j〉〈j|x′〉 = δ(x − x′)

or
〈x|I|x′〉 = δ(x − x′), (C.28)

which implies that the delta function is the coordinate representation of the
identity operator (C.12). Note that there is no integration over the space coordinates
here.

Representation of Operators

The coordinate representation of an operator is expressed in analogy with that of a
state vector

Ô ⇒ 〈x|Ô|x′〉 = Ô(x, x′), (C.29)
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which is a function of x and x′. An operator Ô acting on a state vector |Ψ 〉 is
represented by

〈xÔ|Ψ 〉 ⇒ 〈x|Ô|x′〉〈x′|Ψ 〉 =
∫

dx′ Ô(x, x′) Ψ (x′), (C.30)

which is a function of x.



Appendix D
Dirac Equation and the Momentum
Representation

D.1 Dirac Equation

Free Particles

The standard quantum-mechanical operator representation

E → Ê = i�
∂

∂t
; p → p̂ = −i�∇; x → x̂ = x, (D.1)

where E, p, x represent the energy, momentum and coordinate vectors and Ê, p̂, x̂
the corresponding quantum-mechanical operators, was early used to obtain the non-
relativistic Schrödinger equation (2.9). If we apply the same procedure to the rela-
tivistic energy relation

E2 = c2p2 + m2
ec4, (D.2)

where c is the velocity of light in vacuum and me the mass of the electron, this would
lead to

− �
2 ∂2ψ(x)

∂t2
=
(

c2p̂2 + m2
ec4
)

ψ(x), (D.3)

which is the Schrödinger relativistic wave equation. It is also known as the Klein-
Gordon equation. In covariant notations (see AppendixA.1) it can be expressed

(
�
2� + m2

ec2
)
ψ(x) = 0. (D.4)

In contrast to the non-relativistic Schrödinger equation (2.9) the Klein-Gordon
equation is non-linear in the time derivative (energy) and therefore the superposition
principle cannot be applied for energies. Furthermore, there is no time-evolution
operator, as discussed in Sect. 3.2. In order to obtain an equation that is first order in
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the time derivative and still consistentwith the energy relation (D.2) and the quantum-
mechanical substitutions (D.1), Dirac proposed the form for a free electron5

i�
∂ψ(x)

∂t
=
(

cα · p̂ + βmec2
)

ψ(x), (D.5)

where α and β are constants (but not necessarily pure numbers). This equation is
the famous Dirac equation for a relativistic particle in free space.

The equivalence with the equation (D.3) requires

(cα·p̂ + βmec2)(cα·p̂ + βmec2) ≡ c2p̂2 + m2
ec4,

which leads to
⎧⎨
⎩

α2
x = α2

y = α2
z = β2 = 1

αxαy + αyαx = 0 (cyclic)
αβ + βα = 0,

(D.6)

where “cyclic” implies that the relation holds for x → y → z → x.
The solution proposed by Dirac is that α and β are given by the so-called Dirac

matrices

α =
(
0 σ
σ 0

)
; β =

(
1 0
0 −1

)
, (D.7)

where σ = (σx,σy,σz) are the Pauli spin matrices

σx =
(
0 1
1 0

)
; σy =

(
0 −i
i 0

)
; σz =

(
1 0
0 −1

)
. (D.8)

The Dirac matrices anticommute

αβ + βα = 0. (D.9)

With the covariant four-dimensional momentum vector (A.2) pμ = (p0,−p), and
the corresponding vector operator in the coordinate representation

p̂μ =
(

p̂0,−p̂
)

=
(
i�

c

∂

∂t
, i�∇

)
, (D.10)

the Dirac equation (D.5) becomes

(
cp̂0 − cα · p̂ − βmec2

)
ψ(x) = 0. (D.11)

5We use here the “hat” symbol to indicate themomentum operators in the coordinate representation.
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With
αμ = (1,α) (D.12)

and αμp̂μ = p̂0 − α · p̂ we obtain the covariant form of the Dirac Hamiltonian
for a free-particle

ĤD = −cαμp̂μ + βm2
ec (D.13)

and the corresponding Dirac equation

(
cαμp̂μ − βmec2

)
ψ(x) = 0. (D.14)

With the Dirac gamma matrices
γμ = βαμ (D.15)

this can also be expressed (β2 = 1)

(
γμp̂μ − mec

)
ψ(x) = ( ˆ� p − mec

)
ψ(x) = 0, (D.16)

where ˆ� p is the “p − slash” operator

ˆ� p = γμp̂μ = βαμp̂μ = β
(
p̂0 − α · p̂). (D.17)

Separating the wave function into space and time parts,

ψ(x) = φp(x) e−iεpt/�, (D.18)

we have
ψ(x) = p̂0φp(x) = εp

c
φp(x). (D.19)

The time-independent part of the Dirac equation (D.5) becomes

ĥfree
D (p̂)φp(x) = εp φp(x), (D.20)

where
ĥfree
D = cα · p̂ + βmec2 (D.21)

is the corresponding part of the free-electron Dirac Hamiltonian. The time-
independent part of the Dirac equation can now be expressed

(
β

εp

c
− βα·p̂ − mec

)
φp(x) = (βp̂0 − βα·p̂ − mec

)
φp(x) = 0. (D.22)
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Here, φp(x) is a four-component wave function, which can be represented by

φp(x) = 1√
V

ur(p) eip· x; p̂φp(x) = pφp(x). (D.23)

eip· x represents a plane wave, and ur(p) is a four-component vector function of the
momentum p. For each p there are four independent solutions (r = 1, 2, 3, 4). The
parameter p in our notations φp and εp represents p and r or, more explicitly,

φp(x) = φp,r(x); εp = εp,r .

With the wave function (D.23) the Dirac equation (D.22) leads to the following
equation for the ur(p) functions

(
β

εp

c
− β α ·p − mec

)
ur(p) = 0

or (
εp/c − mec −σ · p

σ · p −εp/c − mec

)
ur(p) = 0, (D.24)

where each element is a 2×2 matrix. This eqn has two solutions for each momentum
vector p:

u+(p) = N+
(

εp/c + mec
σ · p

)
; u−(p) = N−

( −σ · p
−εp/c + mec

)
(D.25)

corresponding to positive (r = 1, 2) and negative (r = 3, 4) eigenvalues, respec-
tively. Defining the momentum component p0—to be distinguished from the corre-
sponding operator component p̂0 (D.10)—by

|εp| = Ep = cp0; p0 =
√
p2 + m2

ec2, (D.26)

we have
u+(p) = N+

(
p0 + mec

σ · p
)

; u−(p) = N−
( −σ · p

p0 + mec

)
. (D.27)

The corresponding eigenfunctions (D.23) are

φp+(x) = 1√
V

u+(p) eip· x e−iEpt/�; φp−(x) = 1√
V

u−(p) eip· x eiEpt/�, (D.28)
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including the time dependence according to (D.18) and (D.26). We note that

⎧⎨
⎩

p̂0φp+(x) = Ep

c p̂0φp+(x) = p0φp+(x);

p̂0φp−(x) = −Ep

c p̂0φp−(x) = −p0φp−(x).

The vectors

u(p) = u+(p) and v(p) = u−(−p) = N−
(

σ · p
p0 + mec

)
(D.29)

satisfy the equations

( � p − mec) u(p) = 0 and ( � p + mec) v(p) = 0, (D.30)

where
�p = β(p0 − α ·p) (D.31)

is the momentum function—or operator in momentum representation—
corresponding to the operator ˆ�p (D.17) in coordinate space. Note that the nega-
tive energy solution corresponds here to the momentum −p for the electron (or +p
for the hole/positron).

It should be observed that in the covariant notation p0 is normally disconnected
from the energy (D.26), i.e.,

p0 �=
√
p2 + m2

ec2. (D.32)

This is known as off the mass shell. When the relation (D.26) holds, it is referred to
as on the mass shell, which can also be expressed

p2 = p20 − p2 = m2
ec2. (D.33)

This is often expressed
�p = mec, (D.34)

which, however, is not a real identity. The corresponding operator relation holds,
when operating on an eigenfunction to the Dirac free-particle equation (D.16).

Normalization
Several different schemes for the normalization of the u matrices have been used
(see, for instance, Mandl and Shaw [143, Chap. 4]). Here, we shall use

u†
r′(p) ur(p) = δr′,r, (D.35)
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which leads to

|u+(p)|2 = |N+|2(p0 + mec,σ · p)
(

p0 + mec
σ · p

)

= |N+|2(p0 + mec)2 + (σ · p)2 = |N+|2 2p0 (p0 + mec), (D.36)

using (σ · p)2 = p2 = p20 − m2
ec2. This gives

N+ = 1√
2p0 (p0 + mec)

(D.37)

and the similarly for N−.
With the normalization above we have

u+(p) u†
+(p) = |N+|2

(
p0 + mec

σ · p
) (

p0 + mec, σ · p)

= 1

2p0

(
p0 + mec σ · p

σ · p p0 − mec

)
= p0 + α·p + βmec

2p0
(D.38)

and similarly

u−(p) u†
−(p) = p0 − (α · p + βmec)

2p0
, (D.39)

which gives

u+(p) u†
+(p) + u−(p) u†

−(p) = I. (D.40)

Dirac Equation in an Electromagnetic Field

Classically, the interaction of an electron with electromagnetic fields is given by the
“minimal substitution” (E.15), which in covariant notations can be expressed6

p̂μ → p̂μ + eAμ (D.41)

6In many text books the minimal substitution is expressed as p̂μ → p̂μ + e
c Aμ, because a mixed

unit system, like the cgs system, is being used. In the SI system—or any other consistent unit
system—the substitution has the form given in the text. The correctness of this expression can be
checked by means of dimensional analysis (see Appendix K).
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with the four-dimensional potential being

Aμ(x) =
(φ(x)

c
,−A(x)

)
. (D.42)

This implies that the Dirac Hamiltonian (D.13) becomes

HD = −cαμ(p̂μ + eAμ) + βmec2, (D.43)

and that the interaction with the fields is given by the term

Hint = −ecαμAμ. (D.44)

D.2 Momentum Representation

Representation of States

Above in Sect.C.3 we have considered the coordinate representation of a state vector,
φa(x) = 〈x|a〉. An alternative is the momentum representation, where the state
vector is expanded in momentum eigenfunctions. A state |a〉 is then represented by
φa(pr) = 〈pr|a〉, which are the expansion coefficients of the state in momentum
eigenfunctions

〈x|a〉 = 〈x|pr〉〈pr|a〉 (D.45)

with summations over p and r. The expansion coefficients become

〈pr|a〉 =
∫

d3x 〈pr|x〉〈x|a〉 =
√

1

V

∫
d3x e−ip·x u†

r (p)φa(x). (D.46)

In the limit of continuous momenta the sum over p is replaced by an integral and V
replaced by (2π)3.

Note that the momentum representation is distinct from the Fourier transform.
The latter is defined as

〈p|a〉 = ur(p)〈pr|a〉 =
√

1

V

∫
d3x e−ip·x φa(x)

→ (2π)−3/2
∫

d3x e−ip·x φa(x), (D.47)

using the identity (D.40).
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In analogy with (C.23) we have

〈a|b〉 = 〈a|p, r〉〈p, r|b〉, (D.48)

which yields
|p, r〉〈p, r| ≡ I (D.49)

with implicit summation/integration over p and summation over r.

Representation of Operators

Coordinate representation of an operator Ô: O(x2, x1) = 〈x2|Ô|x1〉
Momentum representation of an operator Ô: O(p2r2,p1r1) = 〈p2r2|Ô|p1r1〉. Trans-
formation between the representations

〈p2r2|Ô|p1r1〉 =
∫∫

d3x2 d3x1 〈p2r2|x2〉〈x2|Ô|x1〉〈x1|p1r1〉. (D.50)

The corresponding Fourier transform is according to (D.47)

ur2(p2)〈p2r2|Ô|p1r1〉 u†
r1(p1). (D.51)

Any operator with a complete set of eigenstates can be expanded as

Ô = |j〉 εt 〈j| where Ô|j〉 = εt |j〉. (D.52)

This gives the coordinate and momentum representations

〈x2|Ô|x1〉 = 〈x2|j〉 εj 〈j|x1〉 (D.53a)

〈p2r2|Ô|p1r1〉 = 〈p2, r2|j〉 εj 〈j|p1r1〉. (D.53b)

Closure Property for Momentum Functions

In three dimensions we have the closure property (C.27)

φ†
j (x)φj(x′) = δ3(x − x′), (D.54)
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and for a continuous set of momentum eigenfunctions this becomes

∫
d3p φ†

pr(x)φpr(x′) = δ3(x − x′) (D.55)

with summation over r. This can also be expressed

〈x|pr〉〈pr|x〉 = δ3(x − x′) (D.56)

also with integration over p. From the closure property (D.54) we have

φ†
j (p, r)φj(p′, r′) = δr,r′δ3(p − p′), (D.57)

which leads to
〈p, r|j〉〈j|p′, r′〉 = δr,r′δ3(p − p′). (D.58)

D.3 Relations for the Alpha and Gamma Matrices

From the definition of the alpha matrices and the definitions in Appendix A we find
the following useful relations:

αμαμ = 1 − α2 = −2

αμααμ = ααμαμ = −2α

αμβαμ = β − αβα = 4β

αμβαμ = β + αβα = −2β

αμ�Aαμ = αμβασAσαμ = 4 �A (D.59)

where � A is defined in (D.17). The gamma matrices satisfy the following anti-
commutation rule:

γνγμ + γμγν = 2gμν

�A �B+ �B �A = 2AB (D.60)

This leads to

γμγνγμ = −2γμ

γμ �Aγμ = −2 �A
γμγμ = 4

γμγνγμ = −2γμ

γμ �Aγμ = −2 �A
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γ0γ0 = γ0γ0 = 1

γσγ0 = γ0γ̃σ

�Aγ0 = γ0Ã

γ0γσγ0 = γ̃σ

γ0 �A γ0 = Ã

γ0γσγτγ0 = γ̃σγ̃τ

γ0 �A �B γ0 = ÃB̃

γ0γβγσγτγ0 = γ̃βγ̃σγ̃τ

γ0 �A �B �C γ0 = ÃB̃C̃ (D.61)

where Ã = γ0A0 − γiAi = γ0 + γ·A.
With the number of dimensions being equal to 4 − ε, to be used in dimensional

regularization (see Chap.12), the relations become

γμγμ = 4 − ε

γμγσγμ = −(2 − ε)γσ

γμ �Aγμ = −(2 − ε) �A
γμγσγτγμ = 4gστ − εγσγτ

γμ �A �Bγμ = 4AB − ε �A �B
γμγβγσγτγμ = −2γτγσγβ + εγβγσγτ

γiγ
i = 3 − ε

γiγ
σγi = −(2 − ε)γσ − γ̃σ

γi �Aγi = −(2 − ε) �A − Ã

γiγ
σγτγi = 4gστ − γ̃σγ̃τ − εγσγτ

γi �A �B γi = 4AB − ÃB̃ − ε �A �B
γiγ

βγσγτγi = −2γτγσγβ − γ̃β γ̃σγ̃τ + εγβγσγτ

γi �A �B �C γi = −2 �C �B �A − ÃB̃C̃ + ε �A �B �C (D.62)

http://dx.doi.org/10.1007/978-3-319-15386-5_12


Appendix E
Lagrangian Field Theory

Concerning notations, see Appendix A.

E.1 Classical Mechanics

In classical mechanics the Lagrangian function for a system is defined

L = T − V, (E.1)

where T is the kinetic energy and V the potential energy of the system. Generally,
this depends on the coordinates qi, the corresponding velocities q̇i = ∂qi

∂t and possible
explicitly on time (see, for instance, [219, Sect. 23])

L(t; q1, q2 . . . ; q̇1, q̇2 . . .). (E.2)

The action is defined

I =
∫

dt L(t; q1, q2 . . . ; q̇1, q̇2 . . .). (E.3)

The principle of least action implies that

δI(q1, q2 . . . ; q̇1, q̇2 . . .) = 0, (E.4)

which leads to the Lagrange equations

d

dt

(
∂L

∂q̇i

)
− ∂L

∂qi
= 0. (E.5)
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The Hamilton function can be defined

H = piq̇i − L, (E.6)

where pi is the canonically conjugate momentum to the coordinate qi

pi = ∂L

∂q̇i
. (E.7)

It then follows that
∂H

∂pi
= q̇i = ∂qi

∂t
. (E.8a)

Furthermore, from the definitions above and the Lagrange equations we have

∂H

∂qi
= −ṗi. (E.8b)

These are Hamilton’s canonical equations of motion.
We consider a general function of time and the coordinates and canonicalmomenta

f (t; pi, qi). Then the total derivative with respect to time becomes

df

dt
= ∂f

∂t
+ ∂f

∂qi

∂qi

∂t
+ ∂f

∂pi

∂pi

∂t
= ∂f

∂t
+ ∂f

∂qi

∂H

∂pi
− ∂f

∂pi

∂H

∂qi
. (E.9)

With the Poisson bracket of two functions A and B, defined by

{A, B} = ∂A

∂qi

∂B

∂pi
− ∂B

∂qi

∂A

∂pi
(E.10)

the derivative can be expressed

df

dt
= ∂f

∂t
+ {f , H}. (E.11)

For a single-particle system in one dimension (x) the kinetic energy is T = p2/2m,
where m is the mass of the particle. This yields

L = p2

2m
− V = mv2

2
− V,

where v = ẋ is the velocity of the particle. Furthermore, piq̇i = pẋ = p2/m = mv2,
yielding with (E.6)

H = p2

2m
+ V = mv2

2
+ V,
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which is the classical energy expression. The canonically conjugatemomentum (E.7)
is then

p = ∂L

∂ẋ
= ∂L

∂v
= mv,

which is the classical momentum.

Electron in External Field

The Lagrangian for an electron (charge -e) in an external field, Aμ = (φ(x)/c,−A
)
,

is [143, p. 25]
L(x, ẋ) = 1

2 mẋ2 − eA·ẋ + eφ(x), (E.12)

where the last two terms represent (the negative of) a velocity-dependent potential.
The conjugate momentum corresponding to the variable x is then according to (E.7)

pi → p = mẋ − eA. (E.13)

Using the relation (E.6), we get the corresponding Hamilton function

H = p · ẋ − L = 1
2 mẋ2 − eφ(x) = 1

2m

(
p + eA

)2 − eφ(x). (E.14)

We see that the interaction with the fields (φ,A) is obtained by means of the substi-
tutions

H → H − eφ(x) p → p + eA, (E.15)

known as the minimal substitutions.
The corresponding equations ofmotion can be obtained either from theLagrange’s

or Hamilton’s equation of motion. We then have

d

dt

(
∂L

∂q̇i

)
→ d

dt
(mẋ − eA)

and
∂L

∂qi
→ −e∇(A · ẋ) + e∇φ(x).

The same equations are obtained from the Hamilton’s equations of motion (E.8b).
The total time derivative can in analogy with (E.9) be expressed

d

dt
= ∂

∂t
+ dx

dt

∂

∂x
+ · · · = ∂

∂t
+ ẋ ·∇,
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giving
d

dt
(mẋ − eA) = mẍ − e

∂A
∂t

− e(ẋ ·∇)A.

From the identity
ẋ × (∇ × A) = ∇(A · ẋ) − (ẋ · ∇)A

we then obtain the equations of the motion

mẍ = e∇φ(x) + e
∂A
∂t

− e ẋ × (∇ × A) = −e
(
E + v × B

)
(E.16)

with v = ẋ being the velocity of the electron. This is the classical equations ofmotion
for an electron of charge −e in an electromagnetic field. The right-hand side is the
so-called Lorentz force on an electron in a combined electric and magnetic field. This
verifies the Lagrangian (E.12).

E.2 Classical Field Theory

In classical field theory we consider a Lagrangian density of the type

L = L(φr, ∂μφr), (E.17)

where φr = φr(x) represent different fields and

∂μφr = ∂φr

∂xμ
. (E.18)

The requirement that the action integral

I =
∫

d4x L(φr, ∂μφr) (E.19)

be stationary over a certain volume leads to the Euler-Lagrange equations

∂L
∂φr

− ∂μ
∂L

∂(∂μφr)
= 0. (E.20)

The field conjugate to φr(x) is

πr(x) = ∂L
∂φ̇r

, (E.21)
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where the “dot” represents the time derivative. The Lagrangian function is defined

L(t) =
∫

d3xL(φr, ∂μφr). (E.22)

The Hamiltonian density is defined

H(x) = πr(x)φ̇r(x) − L(φr, ∂μφr). (E.23)

In quantized Lagrangian field theory the fields are replaced by operators, satisfy-
ing the Heisenberg commutation rules at equal times [143, Eq. (2.31)]

[
φ̂μ(x), π̂

ν(x′)
] = i� δμ,ν δ3(x − x′) (E.24)

with the remaining commutations vanishing. In our applications the quantized field
will normally be the electron field in the interaction picture (B.28) or the electro-
magnetic field (G.2).

E.3 Dirac Equation in Lagrangian Formalism

From the Dirac equation for a free electron (D.14) we can deduce the corresponding
Lagrangian density

L(x) = ψ̂†(x)
(
i�c αμ∂μ − βmec2

)
ψ̂(x). (E.25)

Using the relation (B.17), the space integral over this density yields the corresponding
operator

L =
∫

d3xL(x) = i�c αμ∂μ − βmec2 = c αμpμ − βmec2 (E.26)

(with p̂μ = i� ∂μ) and the corresponding Hamilton operator (E.6)

H = −L = −c αμpμ + βmec2, (E.27)

since the fields are time independent. This leads to the Dirac equation for a free
electron (D.14).

We can also apply the Euler-Lagrange equations (E.20) on the Lagrangian (E.25),
which leads to

∂μ
∂L

∂(∂μψ̂)
= ∂μ

(
ψ̂†(x) i� c αμ

)

∂L
∂ψ̂

= −ψ̂†(x)βmec2
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and
∂μi� c αμψ̂†(x) + βmec2ψ̂†(x) = 0

with the hermitian adjoint

(− i� c αμ∂μ + βmec2
)
ψ̂(x) = 0, (E.28)

which is consistent with the Dirac equation for the free electron.
In the presence of an electromagnetic field we make the minimal substitution

(D.41)

pμ → pμ + eAμ(x) or ∂μ → ∂μ − ie

�
Aμ(x), (E.29)

which leads to the Lagrangian density in the presence of an electromagnetic field

L(x) = ψ̂†(x)
(
c αμpμ − βmec2 + ecαμAμ(x)

)
ψ̂(x). (E.30)

This gives the corresponding Hamiltonian density

H(x) = ψ̂†(x)
(− c αμpμ + βmec2 − ecαμAμ(x)

)
ψ̂(x), (E.31)

where the last term represents the interaction density

Hint(x) = −ψ̂†(x) ecαμAμ(x)ψ̂(x). (E.32)

The corresponding Hamilton operator can then be expressed

Ĥ =
∫

d3x1 ψ̂†(x1)
(− c αμpμ + βmec2 − ecαμAμ(x)

)
ψ̂(x1). (E.33)



Appendix F
Semiclassical Theory of Radiation

F.1 Classical Electrodynamics

Maxwell’s Equations in Covariant

The Maxwell equations in vector form are7.

∇ · E = ρ/ε0 (F.1a)

∇ × B = 1

c2
∂E
∂t

+ μ0 j (F.1b)

∇ · B = 0 (F.1c)

∇ × E + ∂B
∂t

= 0 (F.1d)

where ρ is the electric charge density and j the electric current density. Equation (F.1c)
gives

B = ∇ × A (F.2)

where A is the vector potential. From (F.1d) it follows that the electric field is of the
form

E = −∂A
∂t

− ∇φ (F.3)

7As in the previous Appendices the formulas are here given in a complete form and valid in any
consistent unit system, like the SI system (see Appendix K)
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where φ is the scalar potential. The equations (F.1a) and (F.1b) give together with
(F.3) and (F.2)

−∇2φ − ∂

∂t
∇ · A = ρ/ε0 = cμ0 j0,

(
∇2A − 1

c2
∂2A
∂2t

)− ∇
(
∇ · A + 1

c2
∂φ

∂t

)
= −μ0 j, (F.4)

using the vector identity ∇ × (∇ × A) = ∇(∇ · A) − ∇2A. Here, j0 = cρ (with
ε0μ0 = c−2) is the scalar or “time-like” part of the four-dimensional current density

j = jμ = (cρ, j), (F.5)

where the vector part is the three-dimensional current density j. Similarly, the four-
dimensional vector potential

Aμ = (φ/c,A) Aμ = (φ/c,−A) (F.6)

has the scalar part φ/c and the vector partA.With the d’Alambertian operator (A.10),
these equations can be expressed8

�φ − ∂

∂t

(∇A
) = cμ0 j0, (F.7)

� A + ∇(∇A
) = μ0 j, (F.8)

which leads toMaxwell’s equations in covariant form

� A − ∇(∇A) = μ0 j (F.9)

or
∂ν∂

νAμ − ∂μ(∂νAν) = μ0 jμ. (F.10)

Electromagnetic-Field Lagrangian

We introduce the field tensor [143, Eq.5.5]

Fμν = ∂νAμ − ∂μAν . (F.11)

8Concerning covariant notations, see Appendix A.1.
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Then we find for instance

F01 = ∂1A0 − ∂0A1 = ∂φ/c

∂x
− ∂Ax

∂ct
= Ex,

F12 = ∂2A1 − ∂1A2 = ∂Ax

∂y
− ∂Ay

∂x
= Bz,

etc., leading to the matrix

Fμν =

⎛
⎜⎜⎝

0 Ex/c Ey/c Ey/c
−Ex/c 0 Bx −Bz

Ey/c −Bz 0 Bx

−Ez Bx −Bx 0

⎞
⎟⎟⎠ . (F.12)

The Maxwell equations (F.10) can now be expressed [143, Eq.5.2]

∂νFμν = μ0 jμ, (F.13)

using the identity
∂ν∂

μAμ ≡ ∂μ∂νAμ.

With φr = Aμ the Euler-Lagrange equations (E.20) becomes

∂L
∂Aμ

− ∂ν
∂L

∂(∂νAμ)
= 0. (F.14)

Using the field tensor (F.11) and the form of the metric tensor (A.5), we have

FμνFμν = (∂νAμ − ∂μAν)(∂
νAμ − ∂μAν)

= (∂νAμ − ∂μAν)(g
νσ∂σgμπAπ − gμσ∂σgνπAπ). (F.15)

Here, μ and ν are running indices that are summed over, and we can replace them
with μ′ and ν ′, respectively. The derivative with respect to fixed μ and ν then gives

∂

∂(∂νAμ)
Fμ′ν ′Fμ′ν ′ = Fμν − Fνμ + Fμ′ν ′gν ′νgμ′μ − Fν ′μ′gμ′νgν ′μ = 4Fμν . (F.16)

We then find that with the Lagrangian

L = − 1

4μ0
FμνFμν − jμAμ (F.17)

the Euler-Lagrange equations (F.14) lead to the Maxwell equations (F.13).
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With the same Lagrangian the conjugate fields (E.21) are

πμ(x) = ∂L
∂Ȧμ

= 1

c

∂L
∂(∂0Aμ)

, (F.18)

where the dot represents the time derivative and ∂0 = ∂
∂x0

= 1
c

∂
∂t = ∂0. Using the

relation (F.16), this yields

πμ(x) = − 1

μ0c
Fμ0(x). (F.19)

The Hamiltonian is given in terms of the Lagrangian by [143, 5.31]

H =
∫

d3x sN{πμ(x)Ȧμ(x) − L}, (F.20)

where N{} represents normal order [124, Chap. 11] (see Sect. 2.2).

Lorenz Condition

The Lorenz condition is9

∇A = ∂μAμ = ∇ · A + 1

c2
∂φ

∂t
= 0, (F.21)

and with this condition the Maxwell equations get the simple form

� A = μ0 j. (F.22)

Then also the electro-magnetic fields have particularly simple form, given in (G.2).

Continuity Equation

Operating on Maxwell’s equations (F.9) with ∇ yields:

∇ (�A) − ∇ ∇(∇A) = μ0∇j.

Since � = ∇2 and ∇ commute, this leads to the continuity equation

∇j = ∂μjμ = 0. (F.23)

9This condition is named after the Danish physicist Ludvig Lorenz, not to be confused with the
more well-known Dutch physicist Hendrik Lorentz (note the different spelling).

http://dx.doi.org/10.1007/978-3-319-15386-5_2
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Gauge Invariance

A general gauge transformation is represented by

A ⇒ A + ∇Λ, (F.24)

where Λ is an arbitrary scalar.

Inserted into the Maxwell equations (F.9), this yields:

� (∇Λ) − ∇(∇∇Λ) = � (∇Λ) − ∇(�Λ) = 0,

which shows that the Maxwell equations are gauge invariant.

Coulomb Gauge

Transverse and Longitudinal Field Components

The vector part of the electromagnetic field can be separated into transverse
(divergence-free) and longitudinal (rotation-free) components

A = A⊥ + A‖; ∇ · A⊥ = 0; ∇ × A‖ = 0. (F.25)

The electric field can be similarly separated

E = E⊥ + E‖; E⊥ = −∂A⊥
∂t

; E‖ = −∂A‖
∂t

− ∇φ,

while the magnetic field has only transverse components due to the relation (F.2).
The separated field equations (F.4) then become

∇2φ + ∂

∂t
∇ · A‖ = −ρ/ε0, (F.26a)

(
∇2A‖ − 1

c2
∂2A‖
∂2t

)− ∇
(
∇ · A‖ + 1

c2
∂φ

∂t

)
= −μ0 j‖, (F.26b)

(
∇2 − 1

c2
∂2

∂2t

)
A⊥ = −μ0jT. (F.26c)

The longitudinal and the scalar or ‘time-like’ components (A‖,φ) represent the
instantaneous Coulomb interaction and the transverse components (A⊥) represent
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retardation of this interaction and all magnetic interactions, as well as the electro-
magnetic radiation field (see Sect. F.2).

The energy of the electromagnetic field is given by

Erad = 1

2

∫
d3x
[
1

μ0

∣∣B∣∣2 + ε0
∣∣E∣∣2

]

= 1

2

∫
d3x
[
1

μ0

∣∣B∣∣2 + ε0
∣∣E⊥
∣∣2
]

+ 1

2

∫
d3x ε0

∣∣E‖
∣∣2. (F.27)

The last term represents the energy of the instantaneous Coulomb field, which is
normally already included in the hamiltonian of the system. The first term represents
the radiation energy.

Semiclassically, only the transverse part of the field is quantized, while the lon-
gitudinal part is treated classically [206, Chaps. 2, 3]. It should be noted that the
separation into transverse and longitudinal components is not Lorentz covariant and
therefore, strictly speaking, not physically justified, when relativity is taken into
account. It can be argued, though, that the separation (as made in the Coulomb
gauge) should ultimately lead to the same result as a covariant gauge, when treated
properly.

In a fully covariant treatment also the longitudinal component is quantized. The
field is then represented by virtual photons with four directions of polarizations.
A real photon can only have transverse polarizations.

The Coulomb gauge is defined by the condition

∇ · A(x) = 0. (F.28)

Using the Fourier transform

A(x) =
∫

d4k A(k) e−ikx, (F.29)

this condition leads to

∂Ai

∂xi
=
∫

d4k Ai(k)(−i)ki e−ikx = 0

or
A(k) · k = 0. (F.30)

This is also known as the transversally condition and implies that there is no longi-
tudinal component of A. Maxwell’s equations then reduce to

∇2φ = −ρ/ε0. (F.31)
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This has the solution

φ(x) = 1

4πε0

∫
d3x′ ρ(x′)

|x − x′| , (F.32)

which is the instantaneous Coulomb interaction.
In free space the scalar potential φ can be eliminated by a gauge transformation.

Then the Lorenz condition (F.21) is automatically fulfilled in the Coulomb gauge.
The field equation (F.4) then becomes

∇2A − 1

c2
∂2A
∂2t

= 0. (F.33)

The relativistic interaction with an atomic electron (D.44) is then in the Coulomb
gauge given by

Hint = ec α · A⊥ (F.34)

and in second quantization (see Appendix B)

Ĥint =
∑

ij

c†j 〈i|ec α · A⊥|j〉 cj, (F.35)

where c†, c represent creation/annihilation operators for electrons. In the interaction
picture this becomes

Ĥint,I(t) =
∑

ij

c†i 〈i|ec α · A⊥|j〉 cj ei(εi−εj)t/�. (F.36)

F.2 Quantized Radiation Field

Transverse Radiation Field

Classically the transverse components of the radiation field can be represented by
the vector potential [206, Eq.2.14]

A(x, t) =
∑
k

2∑
p=1

[
ckp εp ei(k·x−ωt) + c∗

kp εp e−i(k·x−ωt)
]
, (F.37)

where k is the wave vector, ω = c|k| the frequency, and ckp /c∗
kp represent the

amplitude of the wave with the a certain k vector and a certain polarization εp. The
energy of this radiation can be shown to be equal to [206, p. 22]

Erad = 2ε0
∑
kp

ω2 c∗
kp ckp = ε0

∑
kp

ω2
(
c∗
kp ckp + ckr c∗

kp

)
. (F.38)
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By making the substitution

ckp →
√

�

2ε0 ωV
akp and c∗

kp →
√

�

2ε0 ωV
a†

bkp,

where a†
kp, /akp are photon creation/annihilation operators, the radiation energy goes

over into the hamiltonian of a collection of harmonic oscillators

Hharm.osc = 1
2

∑
kp

�ω (akp a†
kp + a†

kp akp).

Therefore, we can motivate that the quantized transverse radiation field can be rep-
resented by the operator [206, Eq.2.60]

A⊥(x, t) =
∑
k

√
�

2ε0ωV

2∑
p=1

[
akp εp ei(k·x−ωt) + a†

kp εp e−i(k·x−ωt)
]
.

(F.39)

Breit Interaction

The exchange of a single transverse photon between two electrons is illustrated by
the time-ordered diagram (left) in Fig.F.1, where one photon is emitted at the time t1
and absorbed at a later time t2. The second-order evolution operator for this process,
using the interaction picture, is given by (see Sect. 3.2)

U (2)
γ (0,−∞) =

(−i

�

)2 ∫ 0

−∞
dt2 Ĥint,I(t2)

∫ 0

−∞
dt1 Ĥint,I(t1) eγ(t1+t2), (F.40)

where γ is the parameter for the adiabatic damping of the perturbation. The interac-
tion Hamiltonians are in the Coulomb gauge given by (F.36) with the vector potential
(F.39)

Fig. F.1 Diagrammatic representation of the exchange of a single, transverse photon between two
electrons (left). This is equivalent to a potential (Breit) interaction (right)

http://dx.doi.org/10.1007/978-3-319-15386-5_3
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Ĥint,I(t1) =
∑
k1

√
�

2ε0ω1V

2∑
p1=1

c†r
〈
r
∣∣(a†kp ec α · εkp e−ik·x)

1

∣∣a〉 ca e−it1(εa−εp−�ω1)/� ,

Ĥint,I(t2) =
∑
k2

√
�

2ε0ω2V
,

2∑
p2=1

c†s
〈
r
∣∣(akp ec α · εkp eik·x

)
2

∣∣a〉 cb e−it2(εb−εs+�ω2)/� ,

(F.41)

which leads to the evolution operator

U (2)
γ (0,−∞) = −c†r cac†s cb

∑
k

e2c2

2� ε0V
√

ω1ω2

×
∑
p1p2

〈
rs
∣∣(akp α · εp eik·x

)
2

(
a†
kp α · εp e−ik·x)

1

∣∣ab
〉× I, (F.42)

where I is the time integral. The contraction between the creation and annihilation
operators (G.10) yields (ω = ω1 = ω2)

∑
p1p2

〈
rs
∣∣(akp α · εp eik·x

)
2

(
a†
kp α · εp e−ik·x)

1

∣∣ab
〉

=
2∑

p=1

〈
rs
∣∣(α · εp)2 (α · εp)1 e−ik·r12 (r12 = x1 − x2). (F.43)

The time integral in (F.42) is

I =
∫ 0

−∞
dt2 e−it2(εb−εs+�ω+iγ)/�

∫ t2

−∞
dt1 e−it1(εa−εr−�ω+iγ)/�

= − 1

(cq + cq′ + 2iγ)(cq − ω + iγ)
(F.44)

with cq = (εa − εr)/� and cq′ = (εb − εs)/�.
The result of the opposite time ordering t1 > t2 is obtained by the exchange 1 ↔ 2

(r12 ↔ −r12), a ↔ b, and r ↔ s, and the total evolution operator, including both
time-orderings, can be expressed

U (2)
γ (0,−∞) = c†r cac†s cb

e2c2

2�ε0ωV

∑
k

2∑
p=1

〈
rs
∣∣(α · εp)1(α · εp)2 M

∣∣ab
〉

(F.45)

with

M = e−ik·r12

(cq + cq′ + 2iγ)(cq − ω + iγ)
+ eik·r12

(cq + cq′ + 2iγ)(cq′ − ω + iγ)
. (F.46)
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This can be compared with the evolution operator corresponding to a potential inter-
action B12 between the electrons, as illustrated in the right diagram of Fig.F.1,

U (2)
η (0,−∞) = c†r cac†s cb 〈rs|B12|ab〉

(−i

�

) ∫ 0

−∞
dt e−it(εa+εb−εr−εs+iη)/�

= c†r cac†s cb

�

〈rs|B12|ab〉
cq + cq′ + iη

. (F.47)

Identification then leads to

B12 = e2c2

2ε0ωV

∑
kp

(α · εp)1(α · εp)2

[ e−ik·r12

cq − ω + iγ
+ eik·r12

cq′ − ω + iγ

]
. (F.48)

We assume now that energy is conserved by the interaction, i.e.,

εa − εr = εs − εb or q + q′ = 0. (F.49)

It is found that the sign of the imaginary part of the exponent is immaterial (see
Appendix J.2), and the equivalent interaction then becomes

B12 = e2

ε0V

∑
kp

(α · εp)1(α · εp)2
ei k·r12

q2 − k2 + iγ
(F.50)

with ω = ck.
The εp vectors are orthogonal unit vectors, which leads to [206, Eq.4.312]

3∑
p=1

(α · εp)1(α · εp)2 = α1 · α2. (F.51)

This gives 2∑
p=1

(α · εp)1(α · εp)2 = α1 · α2 − (α1 · k̂)(α2 · k̂), (F.52)

assuming ε3 = k̂ to be the unit vector in the k direction. The interaction (F.50) then
becomes in the limit of continuous momenta (Appendix D)

B12 = e2

ε0

∫
d3k

(2π)3

[
α1 · α2 − (α1 · k̂)(α2 · k̂)] ei k·r12

q2 − k2 + iγ
. (F.53)

With the Fourier transforms in Appendix J this yields the retarded Breit interaction

BRet
12 = − e2

4πε0

[
α1 · α2

ei|q|r12

r12
− (α1 · ∇1)(α2 · ∇2)

ei|q|r12 − 1

q2 r12

]
. (F.54)
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Setting q = 0, we obtain the instantaneous Breit interaction (real part)

BInst
12 = − e2

4πε0

[
α1 · α2

r12
+ 1

2 (α1 · ∇1)(α2 · ∇2) r12

]

or using

(α1 · ∇1)(α2 · ∇2) r12 = −α1 · α2

r12
+ (α1 · r12)(α1 · r12)

r312

we arrive at

BInst
12 = − e2

4πε0 r12

[
1
2 α1 · α2 + (α1 · r12)(α1 · r12)

2r212

]
, (F.55)

which is the standard form of the instantaneous Breit interaction.

Transverse Photon Propagator

We shall now consider both time-orderings of the interaction represented in the
Fig.F.2 simultaneously. The evolution operator can then be expressed

U (2)
γ (0,−∞) =

(−i

�

)2 ∫ 0

−∞
dt2

∫ 0

−∞
dt1 T

[
Ĥint,I(t2) Ĥint,I(t1)

]
e−γ(|t1|+|t2|), (F.56)

where

T
[
Ĥint,I(t2) Ĥint,I(t1)

] =
⎧⎨
⎩

Ĥint,I(t2) Ĥint,I(t1) t2 > t1

Ĥint,I(t1) Ĥint,I(t2) t1 > t2.
(F.57)

Fig. F.2 The two
time-orderings of a
single-photon exchange can
be represented by a single
Feynman diagram
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In the Coulomb gauge the interaction is given by (F.36) and the vector potential is
given by (F.39). The evolution operator for the combined interactions will then be

U (2)
γ (0, −∞) = −c†r cac†s cb

e2c2

�2

×
∫ 0

−∞
dt2

∫ 0

−∞
dt1 T

[
(α · A⊥)1 (α · A⊥)2

]
e−it1(εa−εr+iγ)/� e−it2(εb−εs+iγ)/�.

(F.58)

Here
T
[
(α · A⊥)1 (α · A⊥)2

] =
∑
kp

�

2ωε0V
(α · εp)1 (α · εp)2

×
⎧⎨
⎩

e−i(k1·x1−ωt1) ei(k2·x2−ωt2) t2 > t1

e−i(k2·x2−ωt2) ei(k1·x1−ωt1) t1 > t2

or with r12 = x1 − x2 and t12 = t1 − t2.

T
[
(α · A⊥)1 (α · A⊥)2

] = �

ε0

2∑
p=1

(α · εp)1 (α · εp)2
1

V

∑
k

e∓i(k·r12−ωt12)

2ω
, (F.59)

where the upper sign is valid for t2 > t1. This yields

U (2)
γ (0,−∞) = −c†r cac†s cb

e2c2

ε0�2

∫ 0

−∞
dt2

∫ 0

−∞
dt1

×
2∑

p=1

(α · εp)1 (α · εp)2
1

V

∑
k

e∓i(k·r12−ωt12)

2ω
e−icq t12 eγ(t1+t2),

(F.60)

utilizing the energy conservation (F.49).
The boxed part of the equation above is essentially the photon propagator (4.23)

DF(1, 2) = 1

V

∑
k

e∓i(k·r12−ωt12)

2ω
⇒
∫

d3k
(2π)3

e∓i(k·r12−ωt12)

2ω
. (F.61)

This can be represented by a complex integral

DF(1, 2) = i
∫

d3k
(2π)3

∫
dz

2π

eizt12

z2 − ω2 + iη
eik·r12 , (F.62)

where η is a small, positive quantity. As before, the sign of the exponent ik · r12 is
immaterial. The integrand has poles at z = ±(ω− iη), assuming ω to be positive. For
t2 > t1 integration over the negative half plane yields 1

2ω eiω t12 eik·r12 and for t1 > t2

http://dx.doi.org/10.1007/978-3-319-15386-5_4
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integration over the positive half plane yields 1
2ω e−iω t12 eik·r12 , which is identical to

(F.61). The evolution operator (F.60) can then be expressed

U (2)
γ (0,−∞) = −c†r cac†s cb

e2c2

ε0�

∫ 0

−∞
dt2

∫ 0

−∞
dt1

×
2∑

p=1

(α · εp)1 (α · εp)2 DF(1, 2) e−icq t12/� eγ(t1+t2)�. (F.63)

Comparison with the Covariant Treatment

It is illuminating to compare the quantization of the transverse photons with the fully
covariant treatment, to be discussed in the next chapter. Then we simply have to
replace the sum in (F.42) by the corresponding covariant expression

2∑
p1p2=1

(akp α · εp)1 (a†
kp α · εp)2 ⇒

3∑
p1p2=0

(akp αμεμp)1 (a†
kp ανενp)2. (F.64)

The commutation relation (G.10) yields

3∑
p1p2=0

(akp αμεμp)1 (a†
kp ανενp)2 = α1 · α2 − 1. (F.65)

We thenfind that the equivalent potential interaction (F.50) under energy conservation
is replaced by

V12 = −e2

ε0

∫
d3k

(2π)3

(
1 − α1 · α2

) ei k·r12

q2 − k2 + iγ
(F.66)

and with the Fourier transform given in Appendix J.2

V12 = e2

4πε0 r12

(
1 − α1 · α2

)
ei|q|r12 . (F.67)

We shall nowcompare thiswith the exchange of transverse photons, treated above.
We then make the decomposition

1 − α1 · α2 =
⎧⎨
⎩
1 − (α1 · k̂)(α2 · k̂)

−α1 · α2 + (α1 · k̂)(α2 · k̂).
(F.68)
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The last part, which represents the exchange of transverse photons, is identical to
(F.52), which led to theBreit interaction. The first part, which represents the exchange
of longitudinal and scalar photons, corresponds to the interaction

VC = −e2

ε0

∫
d3k

(2π)3

[
1 − (α1 · k̂)(α2 · k̂)] ei k·r12

q2 − k2 + iγ
. (F.69)

This Fourier transform is evaluated in Appendix J.3 and yields

VC = −e2

ε0

∫
d3k

(2π)3

(
1 − q2

k2

) ei k·r12

q2 − k2 + iγ
= e2

ε0

∫
d3k

(2π)3

ei k·r12

k2 − iγ
, (F.70)

provided that the orbitals are generated in a local potential. Using the transform in
Appendix J.2, this becomes

VCoul = e2

4πε0 r12
. (F.71)

Thus, we see that the exchange of longitudinal and scalar photons corresponds
to the instantaneous Coulomb interaction, while the exchange of the transverse
photons corresponds to the Breit interaction. Note that this is true only if the orbitals
are generated in a local potential.

If instead of the separation (F.68) we would separate the photons into the scalar
part (p = 0) and the vector part (p = 1, 2, 3),

1 − α1 · α2 =
⎧⎨
⎩
1

−α1 · α2,

(F.72)

then the result would be

V Ret
Coul = e2

4ıε0 r12
ei|q|r12

V Ret
Gaunt = − e2

4πε0 r12
α1 · α2 ei|q|r12 , (F.73)

which represents the retarded Coulomb and the retarded magnetic (Gaunt) inter-
action. This implies that the longitudinal photon represents the retardation of the
Coulomb interaction, which is included in the Breit interaction (F.54).

If we would set q = 0, then we would from (F.73) retrieve the instantaneous
Coulomb interaction (F.71) and

− e2

4πε0
α1 · α2, (F.74)
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which is known as the Gaunt interaction. The Breit interaction will then turn into the
instantaneous interaction (F.55). This will still have some effect of the retardation of
the Coulomb interaction, although it is instantaneous.

We shall see later that the interactions (F.73) correspond to the interactions in
the Feynman gauge (4.56), while the instantaneous Coulomb and Breit incinerations
correspond to the Coulomb gauge.

http://dx.doi.org/10.1007/978-3-319-15386-5_4


Appendix G
Covariant Theory of Quantum
Electro Dynamics

G.1 Covariant Quantization. Gupta–Bleuler Formalism

With theLorenz condition (F.21)∂μAμ = 0 theMaxwell equations have a particularly
simple form (F.22)

� A = μ0j. (G.1)

In this case the covariant electromagnetic radiation field can be expressed in analogy
with the semiclassical expression (F.39) and represented by the four-component
vector potential [143, Eq.5.16]10

Aμ(x) = A+
μ (x) + A−

μ (x) =
√

�

2ωε0V

∑
kr

εμr
[
akr e−ikx + a†

kr eikx
]
. (G.2)

However, different equivalent choices can be made, as further discussed in Sect.G.2.
Here, we use the covariant notations

k = kμ = (k0, k); k0 = ω/c = |k|; kx = ωt − k · x,

defined in Appendix A.1, and r = (0, 1, 2, 3) represents the four polarization states.
Normally, the polarization vector for r = 3 is defined to be along the k vector—
longitudinal component—and for r = 1, 2 to be perpendicular—transverse compo-
nents. The component r = 0 is referred to as the time-like or scalar component (see
Sect. F.1).

10This is expressed in the interaction picture (IP). In the Schrödinger picture (SP) the time depen-
dence is eliminated (c.f. (B.16)).
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The electromagnetic-fields components are Heisenberg operators and should sat-
isfy the canonical commutation (quantization) rules (E.24) at equal times

[
Aμ(t, x),πν(t, x′)

] = i�δμ,ν δ3(x − x′), (G.3)

where πν(x) is the conjugate field (E.21). With the Lagrangian (F.17) the field π0

vanishes according to the relation (F.19), which is inconsistent with the quantization
rule (G.3). In order to remedy the situation, we add a term − λ

2μ0

(
∂νAν

)2
to the

Lagrangian (F.17), where λ is an arbitrary constant [92, Eq.1–49, Eq.3–98]

L = − 1

4μ0
FμνFμν − λ

2μ0

(
∂νAν

)2 − jμAμ. (G.4)

We can rewrite the extra term as

− λ

2μ0

(
∂νg

νσAσ

)(
∂νAν

)
.

Then the conjugate field (F.19) becomes [92, Eq.3–100]

πμ(x) = ∂L
∂(∂0Aμ)

= − 1

cμ0
Fμ0 − λ

μ0
g0μ∂νAν (G.5)

and π0 �= 0 for λ �= 0.
The extra term in the Euler-Lagrange equations (F.14) leads to

λ

2μ0
∂ν

∂

∂(∂νAμ)

(
∂νg

νσAσ

)(
∂νAν

) = λ

μ0
∂νg

νμ
(
∂σAσ

)

= λ

μ0
∂μg

μμ
(
∂σAσ

) = λ∂μ
(
∂σAσ

)
.

The Maxwell equations (F.10) then take the modified form [92, Eq.3–99]

∂ν∂
νAμ − (1 − λ) ∂μ(∂νAν) = μ0jμ. (G.6)

Setting λ = 1 we retrieve the same simple form of Maxwell’s equations as with
the Lorenz condition (G.1)—without introducing this condition explicitly. This is
usually referred to as the Feynman gauge.

The Lagrangian (G.4) is incompatible with the Lorenz condition, and to resolve
the dilemma this condition is replaced by its expectation value

〈Ψ |∂μAμ|Ψ 〉 = 0, (G.7)

which is known as the Gupta–Bleuler proposal [143, 5.35].
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In the Feynman gauge the commutation relations (G.3) become [143, 5.23]

[
Aμ(t, x), Ȧν(t, x′)

] = ic2μ0�gμν δμ,ν δ3(x − x′). (G.8)

To satisfy this relation, we can assume that the polarization vectors fulfill the orthog-
onality/completeness relations [143, Eq.5.18, 19]

εμrεμr′ = grr′∑
r

grrεμrενr = gμν, (G.9)

and the photon creation and absorption operators the commutation relation [143,
Eq.5.28]

[
akr, a†

k′r′
] = −δk,k′ grr′ . (G.10)

Considering that the g-matric (A.5) used is diagonal, this leads to

∑
rr′

[
εμrakr, ενr′a†

k′r′
] =

∑
rr′

εμrενr′
[
akr, a†

k′r′
] = −gμ,νδk,k′ , (G.11)

and then it follows that the field operators (G.2) satisfy the commutation relation
(G.8).

With the Lagrangian (G.4) and the conjugate fields Eq. (G.5) the Hamiltonian of
the free field (F.20) becomes in the Feynman gauge (λ = 1) [143, Eq.5.32]

HRad = −
∑
k,r

�ω grr a†
krakr . (G.12)

G.2 Gauge Transformation

G.2.1 General

The previous treatment is valid in the Feynman gauge, where the Maxwell equations
have the form (G.1), and we shall here investigate how the results will appear in other
gauges.

The interaction between an electron and the electromagnetic field is given by the
Hamiltonian interaction density (D.44)

Hint = jμAμ, (G.13)
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where jμ is the current density. The Maxwell equations are invariant for a gauge
transformation (F.24) A ⇒ A + ∇Λ, which transforms this interaction to

Hint = jμAμ ⇒
(

Aμ + ∂Λ

∂xμ

)
jμ.

Integration over space leads after partial integration to

∫
d3x

∂Λ

∂xμ
jμ = −

∫
d3x

∂jμ
∂xμ

Λ = 0.

Since Λ is arbitrary, it follows that

∂jμ
∂xμ

= δμjμ = ∇j = 0,

which is the continuity equation (F.23). In analogy with (F.30) the corresponding
relation in the k space is

jμ(k) kμ = 0. (G.14)

The single-photon exchange is represented by the interaction (4.44)

I(x2, x1) = e2c2αμ
1α

ν
2DFνμ(x2, x1), (G.15)

which corresponds to the interaction density jμDFνμ jν . In view of the relation (G.14)
it follows that the transformation

DFνμ(k) ⇒ DFνμ(k) + kμfν(k) + kν fμ(k),

where fμ(k) and fν(k) are arbitrary functions of k,will leave the interactionunchanged.

G.2.2 Covariant Gauges

In a covariant gauge the components of the electro-magnetic field are expressed in
a covariant way. We shall consider three gauges of this kind.

G.2.2.1 Feynman Gauge

The photon propagator in the Feynman gauge is given by the expression (4.28)

DFνμ(k) = −gμν

cε0

1

k2 + iη
. (G.16)

http://dx.doi.org/10.1007/978-3-319-15386-5_4
http://dx.doi.org/10.1007/978-3-319-15386-5_4
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G.2.2.2 Landau Gauge

With

fμ(k) = 1

cε0

kμ

(k2 + iη)2

the propagator (G.16) becomes

DFμν(k) = − 1

cε0

1

k2 + iη

(
gμν − kμkν

k2 + iη

)
. (G.17)

This leads to kμDFμν = 0, which is consistent with the Lorenz condition (F.21)

∇A = ∂μAμ = 0

G.2.2.3 Fried-Yennie Gauge

With

fμ(k) = 1

2cε0
(1 − λ)

kμ

(k2 + iη)2

the propagator (G.16) becomes

DFμν(k) = − 1

cε0

1

k2 + iη

(
gμν − (1 − λ)

kμkν

k2 + iη

)
. (G.18)

With λ = 1 this yields the Feynman gauge and with λ = 0 we retrieve the Landau
gauge.Thevalueλ = 3yields theFried-Yennie gauge [70],whichhas some improved
properties, compared to the Feynman gauge, in the infrared region.

G.2.3 Non-covariant Gauge

We consider only one example of a non-covariant gauge, the Coulomb gauge, which
is of vital importance in treating the combined QED-correlation problem. Here, the
Coulomb interaction is treated differently from the transverse part.

G.2.3.1 Coulomb Gauge

With

f0 = 1

2cε0

1

k2 + iη

k0
k2

; fi = − 1

2cε0

1

k2 + iη

ki

k2
(i = 1, 2, 3)
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the propagator (G.16) can be expressed

DF00(k) = 1

cε0

( 1
k2

0

0 1
k2+iη

(
δi,j − kikj

k2

)
)

, (G.19)

where the first row/column corresponds to the component μ = 0 and the second
row/column to μ = 1, 2, 3.

This leads to kiDFij = 0, which is consistent with the Coulomb condition (F.30)

∇·A = ∂iAi = 0 (i = 1, 2, 3).

G.3 Formulas for Dimensional Regularization

The formulas above can be generalized to be used in dimensional regularization (see
Sect. 12.4), where the number of dimensions is non-integer (mainly fromAdikins [1],
see also ’t Hooft and Veltman [241]).

Following the book by Peskin and Schroeder [194], we can by means of Wick
rotation evaluate the integral

∫
dDl

(2π)D

1

(l2 − Δ)m
= i(−1)m

∫
dDl

(2π)D

1

(l2E + Δ)m

= i(−1)m
∫

dΩD

(2π)4

∫ ∞

0
dl0E

lD−1
E

(l2E + Δ)m
.

We have here made the replacements l0 = il0E and l = lE and rotated the integration
contour of lE 90o, which with the positions of the poles should give the same result.
The integration over dDlE is separated into an integration over the D-dimensional
sphere ΩD and the linear integration over the component l0E . This corresponds in
three dimensions to the integration over the two-dimensional angular coordinates
and the radial coordinate (see below).

∫
dDk

(2π)D

1

(k2 + s + iη)n
= i(−1)n

4πD/2

Γ (n − D/2)

Γ (n)

1

sn−D/2
(G.20)

∫
d4k

kμ

(k2 + s + iη)n
= 0 (G.21)

∫
dDk

(2π)D

kμkν

(k2 + s + iη)n
= i(−1)n

4πD/2

Γ (n − D/2 − 1)

Γ (n)

1

sn−D/2−1
(G.22)

http://dx.doi.org/10.1007/978-3-319-15386-5_12
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G.3.1 Covariant Gauge

Compared to Adkins [1] Eqs. (A1a), (A3), and (A5a):

p → −q; M2 → −s; ω → D/2; α → n; ξ → n; Q = p → −q;
× Aμν → gμν; Δ → w = q2 − s

∫
dDk

(2π)D

1

(k2 + 2kq + s + iη)n
= i(−1)n

(4π)D/2

1

Γ (n)

Γ (n − D/2)

wn−D/2
(G.23)

∫
dDk

(2π)D

kμ

(k2 + 2kq + s + iη)n
= − i(−1)n

(4π)D/2

1

Γ (n)
qμ Γ (n − D/2)

wn−D/2
(G.24)

∫
dDk

(2π)D

kμkν

(k2 + 2kq + s + iη)n

= i(−1)n

(4π)D/2

1

Γ (n)

[
qμqν Γ (n − D/2)

wn−D/2
+ gμν

2

Γ (n − 1 − D/2)

wn−1D/2

]
(G.25)

G.3.2 Non-covariant Gauge

Compared to Adkins [1] Eqs. (A1b), (A4), (A5b):

p → −q; M2 → −s; ω → D/2; α → n; β → 1; ξ → n + 1; k2 → −k2;
×Q = py → −qy;

Aμν → gμν + δμ,0δν,0
1 − y

y
; (AQ)μ → −qμy − δμ0 (1 − y)q0

Δ → w = q2y2 + (1 − y)yq2
0 − sy + λ2(1 − y)

= −q2y2 + yq2
0 − sy + λ2(1 − y)

∫
dDk

(2π)D

1

(k2 + 2kq + s + iη)n

1

k2 − λ2

= i(−1)n

(4π)D/2

1

Γ (n + 1)

∫ 1

0
dy yn−1−1/2 Γ (n + 1 − D/2)

wn+1−D/2
(G.26)
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∫
dDk

(2π)D

kμ

(k2 + 2kq + s + iη)n

1

k2 − λ2
= − i(−1)n

(4π)D/2

1

Γ (n)

×
∫ 1

0
dy yn−1−1/2[qμy + δμ,0 q0(1 − y)

]

× Γ (n + 1 − D/2)

wn+1−D/2 (G.27)

� k → − �q y − γ0q0(1 − y) = γ·q y − γ0q0

∫
dDk

(2π)D

kμkν

(k2 + 2kq + s + iη)n

1

k2 − λ2

= i(−1)n

(4π)D/2

1

Γ (n)

×
∫ 1

0
dy yn−1−1/2

[{[
qμy + δμ,0 q0(1 − y)

][
qνy + δν,0 q0(1 − y)

]}

× Γ (n + 1 − D/2)

wn+1−D/2

− 1

2

{[
gμν + δμ,0δν,0(1 − y)/y

]}Γ (n − D/2)

wn−D/2

]
(G.28)

� k → γ·q y − γ0q0 in first part and � k � k → −1

2

[
γμγμ + (1 − y)/y

]
in second.

∫
dDk

(2π)D

kikμkj

(k2 + 2kq + s + iη)n

1

k2 − λ2

= − i(−1)n

(4π)D/2

1

Γ (n)

×
∫ 1

0
dy yn−1−1/2

[{
qiqμqjy3 + qiqμqjδμ0(1 − y)y2

}Γ (n + 1 − D/2)

wn+1−D/2

+1

2

{
y
(
giμqj + gμjqi + gjiqμ

)+ δμ0 gij q0(1 − y)
}Γ (n − D/2)

wn−D/2

]
(G.29)

G.4 Gamma Function

The Gamma function can be defined by means of Euler’s integral

Γ (z) =
∫ ∞

−∞
dt tz−1e−t . (G.30)
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For integral values we have the relation

Γ (n) = (n − 1)! (G.31)

and generally
Γ (z) = (z − 1)Γ (z − 1). (G.32)

The Gamma function can also be expressed by means of

1

Γ (z)
= zeγEz

∞∏
n=1

(
1 + z

n

)
e−z/n, (G.33)

where γE is Euler’s constant, γE = 0.5772...
The Gamma function is singular, when z is zero or equal to a negative integer.

Close to zero the function is equal to

Γ (ε) = 1

ε
− γE + O(ε), (G.34)

which follows directly from the expansion above. We shall now derive the corre-
sponding expression close to negative integers.

G.4.1 z = −1 − ε

1

Γ (−1 − ε)
= −(1 + ε) e−γE(1+ε)

∞∏
n=1

(
1 − 1 + ε

n

)
e(1+ε)/n (G.35)

The first few factors of the product
∏

are (to orders linear in ε)

−ε e1+ε = −ε e1(1 + ε)

(
1 − 1 + ε

2

)
e(1+ε)/2 = 1

2
(1 − ε) e1/2(1 + ε/2)

(
1 − 1 + ε

3

)
e(1+ε)/3 = 2

3
(1 − ε/2) e1/3(1 + ε/3)

(
1 − 1 + ε

4

)
e(1+ε)/4 = 3

4
(1 − ε/3) e1/4(1 + ε/4)
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which in the limit becomes

−eγE

(
1 + ε

[
1 − 1/2 − 1/(2 · 3) − 1/(3 · 4) − · · · ]

)
≈ −eγE

using the expansion

1 + 1/2 + 1/3 + 1/4 + · · · + 1/M ⇒ lnM + γE (G.36)

This gives

Γ (−1 − ε) = 1

ε
+ γE − 1 + O(ε). (G.37)

This can also be obtained from (G.32).

G.4.2 z = −2 − ε

1

Γ (−2 − ε)
= −(2 + ε) e−γE(2+ε)

∞∏
n=1

(
1 − 2 + ε

n

)
e(2+ε)/n (G.38)

The first few factors of the product
∏

are (to orders linear in ε)

−
(
1 + ε

)
e2+ε = −(1 + ε) e2(1 + ε)

−ε/2 e(2+ε)/2 = −ε/2 e1(1 + ε/2)

(
1 − 2 + ε

3

)
e(2+ε)/3 = 1

3
(1 − ε) e2/3(1 + ε/3)

(
1 − 2 + ε

4

)
e(2+ε)/4 = 2

4
(1 − ε/2) e2/4(1 + ε/4)

(
1 − 2 + ε

5

)
e(2+ε)/5 = 3

5
(1 − ε/3) e2/5(1 + ε/5),

which in the limit becomes

e2γE
(
1 + ε

[
5/2 − 2/(1 · 3) − 2/(2 · 4) − 2/(3 · 5) − · · ·

])
≈ e2γE(1 + ε).
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This gives

Γ (−2 − ε) = −1

2

[1
ε

+ γE − 1 − 1/2 + O(ε)
]
. (G.39)

This is consistent with the formula

Γ (2z) = (2π)−1/222z−1/2Γ (z)Γ (z + 1/2). (G.40)

The step-down formula (G.32) yields

Γ (−3 − ε) = 1

2 · 3
[1
ε

+ γE − 1 − 1/2 − 1/3
]
, (G.41)

which can be generalized to

Γ (−N − ε) = (−1)N−1

N !
[
1

ε
+ γE −

N∑
n=1

1

n

]
. (G.42)



Appendix H
Feynman Diagrams and Feynman Amplitude

In this appendix we shall summarize the rules for evaluating Feynman diagrams of
the different schemes, discussed in this book. These rules are based on the rules
formulated by Feynman for the so-called Feynman amplitude, a concept we shall
also use here.

H.1 Feynman Diagrams for the S-Matrix

The S-matrix is given by (4.3)

S =
∞∑

n=0

1

n!
(−i

c

)n
∫

dx41 . . .

∫
dx4n T

[H(x1) . . .H(xn)
]
e−γ(|t1|+|t2|...|tn|), (H.1)

where (4.4)
H(x) = −ψ̂†(x)ecαμAμ(x)ψ̂(x). (H.2)

The Feynman diagram for the S-matrix is constructed by means of the following
rules:

• There is an outgoing orbital line for each electron-field creation operator

�
�

��
ψ̂†(x)

• and an incoming orbital line for each electron-field absorption operator

�

�

��
ψ̂(x)
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• There is a factor of −iecαμ at each vertex

μ � −iecαμ

• For an interaction H(x) = −ψ̂†(x) ecαμAμ(x)ψ̂(x) this leads to (including the
factor −i from the vertex)

μ Aμ� iecαμAμ

• For each energy potential V = −ecA0 this becomes

×�� −iV

• There is an electron propagator for each contracted pair of electron-field operators:

�ω

�

�

��
1

2
ψ̂(x1)ψ̂†(x2) = i SF(x2, x1) = i

∫
dω
2π SF(ω; x2, x1)

• and a photon propagator for each contracted pair of photon-field operators:

�z
� �1,μ ν,2� Aμ(x1)Aν(x2) = iDFνμ(x2, x1) = i

∫
dz
2π DFνμ(z; x2, x1)

• Thus, there is a photon interaction, including the vertices, for each photon
exchange,

�z
� �μ, 1 ν, 2�

∫
dz
2π (−i)I(z; x2, x1) = ∫ dz

2π (−i) e2c2αμ
1α

ν
2DFνμ(z; x2, x1)
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• For the Coulomb interaction this becomes

1 � �2 −iVC = −i e2

4πε0r12

• Each electron self-energy leads, including the vertices, to

�

�

�

−iΣ
�

�

• and each vertex correction

�

�

�

−iΛμ

�

�

�μ

• At each vertex space and time integrations are performed. The time integration
leads to an integral 2πΔγ(arg), where the argument is equal to incoming minus
outgoing energy parameters. For an irreducible diagram with no internal model-
space state, the gammas can go to zero independently at each vertex, which leads
to energy conservation at each vertex as well as to an over-all energy conservation
for the entire diagram.

• A factor of −1 and a trace symbol for each closed orbital loop;

H.2 Feynman Amplitude

S-Matrix
For an irreducible S-matrix diagram the Feynman amplitude, M, is defined by (see
Sect. 4.7.2)

S = 2πδ(Ein − Eout)M, (H.3)

where Ein, Eout are the incoming and outgoing energies, respectively. This implies
that the rules for the Feynman amplitude are largely the same as for the Feynman
diagram.

For corresponding diagrams the Feynman amplitude is the same also for the
Green’s function and the covariant-evolution operator, which are given by

G(x; x0)PE = e−i(t−t0)E MPE (H.4)

http://dx.doi.org/10.1007/978-3-319-15386-5_4
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and
U (t,−∞)PE = e−it(E−H0) MPE , (H.5)

respectively, operating on a model-space state of energy E .
Illustrations

�

�
×�

A:−i

−iV
a

a

�
�

�

�
×�

B:−i

iSF
−iV

� �

� �

�� �−i Vsp

C:−i

� �
� �

�iSF �iSF

� �

�� �−i Vsp

D:1

� �
� �

�iSF �iSF
�� �−i Vsp

�iSF �iSF
� �

� �
E:i

� �
� �

�iSF �iSF
�� �−i Vsp

�iSF �iSF
� � −iIPair
� �
F:1

� � −iIPair
� �

� �

�iSF �iSF
�� �−i Vsp

�iSF �iSF
� � −iIPair

� �

G:−i

� �
� �

� � −iIPair
� �

�iSF �iSF

�iSF �iSF
�� �−i Vsp

�iSF �iSF
� � −iIPair

� �
H:1

Diagram A is a first-order S-matrix with a potential interaction, and the Feynman
amplitude is

M = −iV

and the S-matrix
S = 2π δ(Ein − Eout)M

and the energy shift
ΔE = 〈a|iM|〉a = 〈a|V |a〉.

Diagram B is the corresponding CEO and Green’s-operator diagram. The Feyn-
man amplitude is

MPE = iSF(−i)V PE = SFV PE = 1

E − H0
V PE
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and the CEO
U (t,−∞)PE = e−it(E−H0)MPE ,

which yields the same shift.
Diagram C is a first-order S-matrix for single-photon exchange (Sect. 4.4), and

the Feynman amplitude is
M = −iVsp(E0).

Diagram D is a corresponding CEO diagram with the unperturbed state as input
and with outgoing electron propagators (Sect. 6.3). Here, there are three energy para-
meters and two subsidiary conditions. This leaves one non-trivial integration, giving
a factor of −i. This gives a factor of i2(−i)2 = 1 and

M = Γ (E0) Vsp(E0).

Diagram E is a first-order CEO diagram with incoming and outgoing electron
propagators (Sect. 8.1.1).Here, there are five parameters and three conditions, leaving
two non-trivial integrations. This gives the factor i4(−i)3 = i and (8.9)

M = Γ (E0) iVsp(E0) Γ (E0).

Diagram F is a first-order covariant evolution-operator diagram with incoming
pair function (Sect. 6.4). This gives i4(−i)4 = 1

M = IPairΓ (E0) Vsp(E0)Γ (E0) IPair.

Diagram G is an S-matrix diagram with incoming and outgoing pair functions
(Sect. 6.4). This gives i4(−i)5 = −i and

M = −iIPairΓ (E0) Vsp(E0)Γ (E0) IPair.

Diagram H is a first-order covariant evolution-operator diagram with incoming
and outgoing pair functions (Sect. 6.4). Here, there are 7 parameters and 4 subsidiary
conditions, yielding i6(−i)6 = 1 and

M = Γ (E0) IPairΓ (E0) Vsp(E0)Γ (E0) IPair.

http://dx.doi.org/10.1007/978-3-319-15386-5_4
http://dx.doi.org/10.1007/978-3-319-15386-5_6
http://dx.doi.org/10.1007/978-3-319-15386-5_8
http://dx.doi.org/10.1007/978-3-319-15386-5_8
http://dx.doi.org/10.1007/978-3-319-15386-5_6
http://dx.doi.org/10.1007/978-3-319-15386-5_6
http://dx.doi.org/10.1007/978-3-319-15386-5_6


Appendix I
Evaluation Rules for Time-Ordered Diagrams

In non-relativistic (MBPT) formalism all interaction times are restricted to the inter-
val (t,−∞), and the Goldstone diagrams are used for the graphical representation. In
the relativistic (QED) formalism, on the other hand, times are allowed in the entire
interval (∞,−∞), and then Feynman diagrams, which contain all possible time
orderings, are the relevant ones to use.

For computational as well as illustrative purpose it is sometimes useful also in the
relativistic case to work with time-ordered diagrams. It should be observed, though,
that time-ordered Feynman diagrams are distinct from Goldstone diagrams, as we
shall demonstrate here.11

When only particles states (above the Fermi level) are involved, time runs in the
positive direction, and the time-evolution operator can be expressed (3.21)

U (t,−∞) = 1 − i
∫ t

−∞
dt1 V (t1) + (−i)2

∫ t

−∞
dt1 V (t1)

∫ t1

−∞
dt2 V (t2) + · · · ,

(I.1)

where V (t) is the perturbation in the interaction picture (3.25)

V (t) = −
∫

d3x ψ̂†(x)ecαμAμ(x) ψ̂(x). (I.2)

Core states and negative energy states are regarded as hole states below the Fermi
level with time running in the negative direction. Then the corresponding time inte-
gration should be performed in the negative direction.

11The treatment here is partly based upon that in [130, Appendices C and D].

© Springer International Publishing Switzerland 2016
I. Lindgren, Relativistic Many-Body Theory,
Springer Series on Atomic, Optical, and Plasma Physics 63,
DOI 10.1007/978-3-319-15386-5

371

http://dx.doi.org/10.1007/978-3-319-15386-5_3
http://dx.doi.org/10.1007/978-3-319-15386-5_3


372 Appendix I: Evaluation Rules for Time-Ordered Diagrams

I.1 Single-Photon Exchange

t

�a

�r

�
�

�z

1

2

�b

�s

E
We consider first the time-ordered diagram for single-photon exchange with only

particle states involved. The time restrictions are here

t > t2 > t1 > −∞,

which corresponds to the evolution operator (I.1)

(−i)2
∫ t

−∞
dt2 V (t2) e

−it2d2

∫ t2

−∞
dt1 V (t1) e

−it1d1 . (I.3)

The contraction of the radiation-field operators gives rise to a photon propagator
(4.18)

Aν(x2)Aμ(x1) = iDFνμ(x2, x1),

and this leads to the interaction (4.46)

I(x2, x1) = e2c2αμ
1α

ν
2DFνμ(x2, x1) =

∫
dz

2π
e−iz(t2−t1)

∫
2c2k dk f (k; x1, x2)

z2 − c2k2 + iη
.

The time dependence at vertex 1 then becomes e−it1d1 , where

d1 = εa − εr − z + iγ.

This parameter is referred to as the vertex value and given by the incoming minus
the outgoing orbital energies/energy parameters at the vertex. Similarly, we define

d2 = εb − εs + z + iγ

d12 = d1 + d2 = E − εr − εs (I.4)

with E = εa + εb. This leads to the time integrals

(−i)2
∫ t

−∞
dt2 e

−it2d2

∫ t2

−∞
dt1 e

−it1d1 = e−it d12

d12

1

d1
. (I.5)

http://dx.doi.org/10.1007/978-3-319-15386-5_4
http://dx.doi.org/10.1007/978-3-319-15386-5_4
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Together with the opposite time ordering, t > t1 > t2 > −∞, the denominators
become

1

d12

(
1

d1
+ 1

d2

)
= 1

E − εr − εs

(
1

εa − εr − z + iγ
+ 1

εb − εs + z + iγ

)
. (I.6)

This leads to the Feynman amplitude (6.18)

Msp = i
∫

dz

2π

1

E − εr − εs

(
1

εa − εr − z + iγ
+ 1

εb − εs + z + iγ

)

×
∫

2c2k dk f (k)

z2 − c2k2 + iη
(I.7)

or

〈rs|Msp|ab〉 = 1

E − εr − εs
〈rs|Vsp(E)|ab〉 (I.8)

with

Vsp(E) =
∫

c dk f (k)

(
1

εa − εr − ck + iγ
+ 1

εb − εs − ck + iγ

)
. (I.9)

If the interaction is instantaneous, then the time integral becomes

− i
∫ t

−∞
dt12 e

−it12d12 = e−it d12

d12
= e−it (E−εr−εs)

E − εr − εs
, (I.10)

which for t = 0 is the standard MBPT result.

I.2 Two-Photon Exchange

Next, we consider the diagrams in Fig. I.1.
We extend the definitions of the vertex values:

d1 = εa − εt − z; d2 = εb − εu + z; d3 = εt − εr − z′ d4 = εu − εs + z′

d12 = d1 + d2 = E − εt − εu; d13 = εa − εr − z − z′; d24 = εb − εs + z + z′

d123 = E − εr − εu − z′; d124 = E − εt − εs + z′; d1234 = E − εr − εs,

i.e., given by the incoming minus the outgoing energies of the vertex. There is a
damping term ±iγ for integration going to ∓∞.

http://dx.doi.org/10.1007/978-3-319-15386-5_6
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Fig. I.1 Time-ordered Feynman diagrams for the two-photon ladder with only particle states (left)
and with one and two intermediate hole states (right)

No Virtual Pair

We consider now the first diagram above, where only particle states are involved.
We assume that it is reducible, implying that the two photons do not overlap in time.
Then the time ordering is

t > t4 > t3 > t2 > t1 > −∞.

This leads to the time integrations

(−i)4
∫ t

−∞
dt4 e

−it4d4

∫ t4

−∞
dt3 e

−it3d3

∫ t3

−∞
dt2 e

−it2d2

∫ t2

−∞
dt1 e

−it1d1

= e−it d1234

d1234 d123 d12 d1
. (I.11)

Changing the order between t1 and t2 and between t3 and t4 leads to the denominators

1

d1234

(
1

d123
+ 1

d124

)
1

d12

( 1

d1
+ 1

d2

)
. (I.12)

Here, all integrations are being performed upwards, which implies that all denomi-
nators are evaluated from below.

If the interaction 1-2 is instantaneous, then the integrations become

(−i)3
∫ t

−∞
dt4 e

−it4d4

∫ t4

−∞
dt3 e

−it3d3

∫ t3

−∞
dt12 e

−it12d12

= e−it d1234

d1234 d123 d12
(I.13)
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and together with the other time ordering

e−it d1234

d1234

(
1

d123
+ 1

d124

)
1

d12
. (I.14)

If both interactions are instantaneous, we have

(−i)2
∫ t

−∞
dt34 e

−it34d34

∫ t34

−∞
dt12 e

−it12d12 = e−it d1234

d1234 d12
, (I.15)

consistent with the MBPT result [124, Sect. 12.2].

Single Hole

Next, we consider the two-photon exchange with a single hole, represented by the
second diagram above. We still assume that the diagram is reducible, implying that
the two photons do not overlap in time. The time ordering is now

t > t4 > t3 > t2 > −∞ and ∞ > t1 > t4,

but the order between t1 and t is not given.
If this is considered as a Goldstone diagram, all times (including t1) are restricted

to tn < t, which leads to

∫ −∞

t
dt1 e

−it1d1

∫ t1

−∞
dt4 e

−it4d4

∫ t4

−∞
dt3 e

−it3d3

∫ t3

−∞
dt2 e

−it2d2

= − e−it d1234

d1234 d234 d23 d2
. (I.16)

Note that the last integration is being performed in the negative direction, due to the
core hole. This is illustrated in Fig. I.2 (left).

Considered as a Feynman diagram, the time t1 can run to +∞, which leads to

∫ t4

∞
dt1 e

−it1d1

∫ t

−∞
dt4 e

−it4d4

∫ t4

−∞
dt3 e

−it3d3

∫ t3

−∞
dt2 e

−it2d2

= e−it d1234

d1234 d1 d23 d2
. (I.17)

Here, the last integration is still performed in the negative direction, this time from
+∞ to t4, and this leads to a result different from the previous one. In the Goldstone
case all denominators are evaluated from below, while in the Feynman case one of
them is evaluated from above (see Fig. I.2, right). For diagrams diagonal in energy
we have d1234 = 0, and hence d1 = −d234, which implies that in this case the two
results are identical.
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Fig. I.2 Time-ordered Goldstone and Feynman diagrams, respectively, for two-photon exchange
with one virtual pair. In the latter case one denominator (at vertex 1) is evaluated from above

Let us next consider the third diagram in Fig. I.1, where the time ordering is

t > t4 > t1 > t3 > t2 > −∞.

Here, all times are limited from above in the Goldstone as well as the Feynman
interpretation, and this leads in both cases to

∫ t

−∞
dt4 e

−it4d4

∫ −∞

t4

dt1 e
−it1d1

∫ t1

−∞
dt3 e

−it3d3

∫ t3

−∞
dt2 e

−it2d2

= − e−it d1234

d1234 d123 d23 d2
. (I.18)

Double Holes

The last diagram in Fig. I.1, also reproduced in Fig. I.3, represents double virtual pair.
Considered as a Goldstone diagram, the time ordering is

t > t2 > t1 > t4 > t3 > −∞,

which yields

∫ t

−∞
dt2 e

−it2d2

∫ t2

−∞
dt1 e

−it1d1

∫ t1

−∞
dt4 e

−it4d4

∫ t4

−∞
dt3 e

−it3d3

= e−it d1234

d1234 d134 d34 d3
. (I.19)

This is illustrated in Fig. I.3 (left).
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Fig. I.3 Time-ordered Goldstone and Feynman diagrams, respectively, for two-photon exchange
with two virtual pairs. In the latter case two denominators, (at vertices 1 and 2) is evaluated from
above

Considered as a Feynman diagram, we have instead ∞ > t2 > t1, which leads to

∫ t

−∞
dt4 e

−it4d4

∫ t4

−∞
dt3 e

−it3d3

∫ t4

∞
dt1 e

−it1d1

∫ t1

∞
dt2 e

−it2d2

= e−it d1234

d1234 d3 d12 d2
, (I.20)

where two integrations are performed in the negative direction.

I.3 General Evaluation Rules

Wecan now formulate evaluation rules for the two types of diagrams considered here.
For (non-relativistic) Goldstone diagrams the rules are equivalent to the standard
Goldstone rules [124, Sect. 12.2]

• There is a matrix element for each interaction.
• For each vertex there is a denominator equal to the vertex sum (sum of vertex
values: incoming minus outgoing orbital energies and z + iγ for crossing photon
line (leading to -ck after integration) below a line immediately above the vertex.

• For particle/hole lines the integration is performed in the positive/negative direc-
tion.

For the relativistic Feynman diagrams the same rules hold, with the exception
that

• for a vertex where time can run to +∞ the denominator should be evaluated from
above with the denominator equal to the vertex sum above a line immediately
below the vertex (with z − iγ for crossing photon line, leading to +ck).



Appendix J
Some Integrals

J.1 Feynman Integrals

In this sectionwe shall derive some integrals, which simplifymanyQED calculations
considerably (see the books of Mandl and Shaw [143, Chap. 10] and Sakurai [206,
Appendix E], and we shall start by deriving some formulas due to Feynman.

We start with the identity

1

ab
= 1

b − a

∫ b

a

dt

t2
. (J.1)

With the substitution t = b + (a − b)x this becomes

1

ab
=
∫ 1

0

dx

[b + (a − b)x]2 =
∫ 1

0

dx

[a + (b − a)x]2 . (J.2)

Differentiation with respect to a, yields

1

a2b
= 2

∫ 1

0

xdx

[b + (a − b)x]3 . (J.3)

Similarly, we have

1

abc
= 2

∫ 1

0
dx
∫ x

0
dy

1

[a + (b − a)x + (c − b)y]3

= 2
∫ 1

0
dx
∫ 1−x

0
dy

1

[a + (b − a)x + (c − a)y]3 . (J.4)
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Next we consider the integral

∫
d4k

1

(k2 + s + iη)3
= 4π

∫
|k|2d|k|

∫ ∞

−∞
dk0

(k2 + s + iη)3
.

The second integral can be evaluated by starting with

∫ ∞

−∞
dk0

k20 − |k|2 + s + iη
= iπ√|k|2 − s

,

evaluated by residue calculus, and differentiating twice with respect to s. The integral
then becomes

∫
d4k

1

(k2 + s + iη)3
= 3iπ2

2

∫ |k|2d|k|
(|k|2 + s)5/2

= iπ2

2s
. (J.5)

The second integral can be evaluated from the identity

x2

(x2 + s)5/2
= 1

(x2 + s)3/2
− s

(x2 + s)5/2

and differentiating the integral

∫
dx√

x2 + s
= ln

(
x +

√
x2 + s

)
,

yielding ∫
x2

(x2 + s)5/2
= 1

3s
.

For symmetry reason we find

∫
d4k

kμ

(k2 + s + iη)3
= 0. (J.6)

Differentiating this relation with respect to kν , leads to

∫
d4k

kμkν

(k2 + s + iη)4
= gμν

3

∫
d4k

1

(k2 + s + iη)3
= iπ2gμν

6s
, (J.7)

using the relations (A.4) and (J.5).
By making the replacements

k ⇒ k + q and s ⇒ s − q2,
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the integrals (J.5) and (J.6) lead to

∫
d4k

1

(k2 + 2kq + s + iη)3
= iπ2

2(s − q2)
(J.8)

and

∫
d4k

kμ

(k2 + 2kq + s + iη)3
= −

∫
d4k

qμ

(k2 + 2kq + s + iη)3
= − iπ2qμ

2(s − q2)
, (J.9)

respectively, Differentiating the last relation with respect to qν , leads to

∫
d4k

kμkν

(k2 + 2kq + s + iη)4
= iπ2

12

[ gμν

s − q2
+ qμqν

(s − q2)2

]
(J.10)

Differentiating the relation (J.8) with respect to s, yields

∫
d4k

1

(k2 + 2kq + s + iη)4
= iπ2

6(s − q2)2
, (J.11)

which can be generalized to arbitrary integer powers ≥ 3

∫
d4k

1

(k2 + 2kq + s + iη)n
= iπ2 (n − 3)!

(n − 1)!
1

(s − q2)n−2
. (J.12)

This can also be extended to non-integral powers

∫
d4k

1

(k2 + 2kq + s + iη)n
= iπ2 Γ (n − 2)

Γ (n)

1

(s − q2)n−2
(J.13)

and similarly

∫
d4k

kμ

(k2 + 2kq + s + iη)n
= −iπ2 Γ (n − 2)

Γ (n)

qμ

(s − q2)n−2
(J.14)

∫
d4k

kμkν

(k2 + 2kq + s + iη)n
= iπ2

Γ (n − 3)

2Γ (n)

[
(2n − 3) qμq.ν

(s − q2)n−2 + gμν

(s − q2)n−3

]
. (J.15)
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J.2 Evaluation of the Integral
∫ d3k

(2π)3
eik·r12

q2−k2+iη

Using spherical coordinates k = (η, θ,φ), (η = |k|), we have with d3k =
η2dη sinΘ dΘ dΦ and r12 = |x1 − x2|
∫

d3k
(2π)3

eik·(x1−x2)

q2 − k2 + iη
= (2π)−2

∫ ∞

0

η2 dη

q2 − κ2 + iη

∫ π

0
dΘ sinΘ eiκr12 cosΘ

= − i

4π2 r12

∫ ∞

0

κ dκ
(
eiκr12 − e−iκr12

)
q2 − κ2 + iη

= − i

8π2 r12

∫ ∞

−∞

κ dκ
(
eiκr12 − e−iκr12

)

q2 − κ2 + iη
, (J.16)

where we have in the last step utilized the fact that the integrand is an even function
of κ. The poles appear at κ = ±q(1+ iη/2q). eiκr12 is integrated over the positive and
e−iκr12 over the negative half-plane, which yields −e±iqr12/(4π r12) with the upper
sign for q > 0. The same result is obtained if we change the sign of the exponent in
the numerator of the original integrand. Thus, we have the result

∫
d3k

(2π)3

e±ik·(x1−x2)

q2 − k2 + iη
= 1

4π2r12

∫ ∞

0

2κ dκ sin(κr12)

q2 − κ2 + iη
= − ei|q|r12

4π r12
. (J.17)

The imaginary part of the integrand, which is an odd function, does not contribute
to the integral.

J.3 Evaluation of the Integral
∫ d3k

(2π)3
(α1 · k̂)(α2 · k̂) eik · r12

q2−k2+iη

The integral appearing in the derivation of the Breit interaction (F.53) is

I2 =
∫

d3k
(2π)3

(α1 · k)(α2 · k) eik·r12

q2 − k2 + iη

= −(α1 · ∇1)(α2 · ∇2)

∫
d3k

(2π)3

eik·r12

k2(q2 − k2 + iη)
. (J.18)

Using (J.16), we then have

I2 = − i

8π2 r12
(α1 · ∇1)(α2 · ∇2)

∫ ∞

−∞

dκ
(
eiκr12 − e−iκr12

)

(q2 − κ2 + iη)

= 1

4π2 r12
(α1 · ∇1)(α2 · ∇2)

∫ ∞

0

2κ dκ sin(kr12)

κ2(q2 − κ2 + iη)
. (J.19)
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The poles appear at κ = 0 and κ = ±(q + iη/2q). The pole at κ = 0 can be treated
with half the pole value in each half plane. For q > 0 the result becomes

− 1

4π r12

eiqr12−1

q2

and for q > 0 the same result with−q in the exponent. The final result then becomes

∫
d3k

(2π)3
(α1 · k)(α2 · k) eik·r12

q2 − k2 + iη

= − 1

4π r12
(α1 · ∇1)(α2 · ∇2)

ei|q|r12−1

q2

= 1

4π2 r12
(α1 · ∇1)(α2 · ∇2)

∫ ∞

0

2κ dκ sin(κr12)

κ2(q2 − κ2 + iη)
. (J.20)

Assuming that our basis functions are eigenfunctions of the Dirac hamiltonian ĥD,
we can process this integral further. Then the commutator with an arbitrary function
of the space coordinates is

[
ĥD, f (x)

] = c α · p̂ f (x) + [U, f (x)
]
. (J.21)

The last term vanishes, if the potential U is a local function, yielding

[
ĥD, f (x)

] = c α · p̂ f (x) = −ic α · ∇ f (x). (J.22)

In particular [
ĥD, eik·x

] = −ic α · ∇ eik·x = c α · k̂ eik·x. (J.23)

We then find that

(α · ∇)1(α · ∇)2 eik·x = 1

c2

[
hD, eik·x

]
1

[
hD, eik·x

]
2

(J.24)

with the matrix element

〈
rs
∣∣(α · ∇)1(α · ∇)2 eik·x

∣∣ ab
〉 = q2 eik·x, (J.25)

using the notation in (F.49). The integral (J.18) then becomes

I2 =
∫

d3k
(2π)3

(α1 · k̂)(α2 · k̂) eik·r12

q2 − k2 + iη
=
∫

d3k
(2π)3

q2

k2
eik·r12

q2 − k2 + iη
,

(J.26)

provided that the orbitals are generated by a hamiltonian with a local potential.



Appendix K
Unit Systems and Dimensional Analysis

K.1 Unit Systems

SI System

The standard unit system internationally agreed upon is the SI system or System
Internationale.12 The basis units in this system are given in the following table

Quantity SI unit Symbol
Length Meter M
Mass Kilogram kg
time second s
electric current ampere A
thermodynamic temperature kelvin K
amount of substance mole mol
luminous intensity candela cd

For the definition of these units the reader is referred to the NIST WEB page (see
footnote). From the basis units—particularly the first four—the units for most other
physical quantities can be derived.

12For further details, see The NIST Reference on Constants, Units, and Uncertainty (http://physics.
nist.gov/cuu/Units/index.html).
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Relativistic or “Natural” Unit System

In scientific literature some simplified unit system is frequently used for convenience.
In relativistic field theory the relativistic unit system is mostly used, where the first
four units of the SI system are replaced by

Quantity Relativistic unit Symbol Dimension
mass rest mass of the electron m kg
velocity light velocity in vacuum c ms−1

action Planck’s constant divided by 2π � kgm2s−1

dielectricity dielecticity constant of vacuum ε0 A2s4 kg−1m−3

In the table also the dimension of the relativistic units in SI units are shown. From
these four units all units that depend only on the four SI units kg, s, m, A can be
derived. For instance, energy that has the dimension kgm−2m−2 has the relativistic
unit mec2, which is the rest energy of the electron (≈511 keV). The unit for length is

�

mec
= λ/2π ≈ 0, 386 × 10−12 m,

where λ is Compton wavelength and the unit for time is 2πc/λ ≈ 7, 77 × 10−4 s.

Hartree Atomic Unit System

In atomic physics the Hartree atomic unit system is frequently used, based on the
following four units

Quantity Atomic unit Symbol Dimension
mass rest mass of the electron m kg
electric charge absolute charge of the electron e As
action Planck’s constant divided by 2π � kgm2s−1

dielectricity dielectricity constant of vacuum times 4π 4πε0 A2s4 kg−1m−3

Here, the unit for energy becomes

1H = me4

(4πε0)2�3
,
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which is known as the Hartree unit and equals twice the ionization energy of the
hydrogen atom in its ground state (≈27.2 eV). The atomic unit for length is

a0 = 4πε0�
2

me2
,

known as the Bohr radius or the radius of the first electron orbit of the Bohr hydrogen
model (≈0,529 × 10−10 m). The atomic unit of velocity is αc, where

α = e2

4πε0c�
(K.1)

is the dimensionless fine-structure constant (≈1/137,036). Many units in these two
systems are related by the fine-structure constant. For instance, the relativistic length
unit is αa0.

cgs Unit Systems

In older scientific literature a unit system, known as the cgs system, was frequently
used. This is based on the following three units

Quantity cgs unit Symbol
length centimeter cm
mass gram g
time second s

In addition to the three units, it is necessary to define a fourth unit in order to be
able to derive most of the physical units. Here, two conventions are used. In the
electrostatic version (ecgs) the proportionality constant of Coulombs law, 4πε0, is
set equal to unity, and in the magnetic version (mcgs) the corresponding magnetic
constant, μ0/4π, equals unity. Since these constants have dimension, the systems
cannot be used for dimensional analysis (see below).

The most frequently used unit system of cgs type is the so-called Gaussian unit
system, where electric units are measured in ecgs and magnetic ones in mcgs. This
implies that certain formulaswill lookdifferently in this system, compared to a system
with consistent units. For instance, the Bohr magneton, which in any consistent unit
system will have the expression

μB = e�

2m
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will in the mixed Gaussian system have the expression

μB = e�

2mc
,

which does not have the correct dimension. Obviously, such a unit system can easily
lead to misunderstandings and should be avoided.

K.2 Dimensional Analysis

It is often useful to check physical formulas bymeans of dimensional analysis, which,
of course, requires that a consistent unit system, like the SI system, is being used.
Below we list a number of physical quantities and their dimension, expressed in SI
units, which could be helpful in performing such an analysis.

In most parts of the book we have set � = 1, which simplifies the formulas. This
also simplifies the dimensional analysis, and in the last column below we have (after
the sign ⇒) listed the dimensions in that case.

[force] = N = kgm

s2
⇒ 1

ms

[energy] = J = Nm = kgm2

s2
⇒ 1

s

[action, �] = Js = kgm2

s
⇒ 1

[electric potential] = V = J

As
= kgm2

As3
⇒ 1

As2

[electric field, E] = V/m = kgm

As3
⇒ 1

Ams2

[magnetic field, B] = Vs/m2 = kg

As2
⇒ 1

Am2s

[vector potential, A] = Vs/m = kgm

As2
⇒ 1

Ams

[momentum, p] = kgm

s
⇒ 1

m

[charge density, ρ] = As

m3
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[current density, j] = A

m2

[μ0] = N/A2 = kgm

A2s2
⇒ 1

A2ms

[ε0] = [1/μ0c2] = A2s4

kgm3
⇒ A2s3

m

Fourier Transforms

DFνμ(x1, x2) =
∫

dz

2π
DFνμ(z; x1, x2) e−iz(t2−t1)

[A(ω, x)] = s[A(x)]

[A(ω, k)] = sm3[A(x)]

[A(k)] = m4[A(x)]

Photon Propagator

[DFνμ(x, x)] ⇒ 1

A2m2s2

[ε0DFνμ(x, x)] ⇒ s

m3

[ε0DFνμ(k)] ⇒ sm

[ε0DFνμ(k0, x)] ⇒ s

m2

[ε0DFνμ(t, x)] ⇒ 1

m2

[ε0DFνμ(z, x)] ⇒ s2

m3
z = ck0

[ε0DFνμ(z, k)] ⇒ s2

[e2c2DFνμ(z, x) = I(z, x)] ⇒ 1

s

[e2

ε0

]
⇒ m

s
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Electron Propagator

SF(x, x) ⇒ 1

m3

SF(z, x) ⇒ s

m3

SF(z, k) ⇒ s

SF(k) = cSF(z, k) ⇒ m

S-Matrix

S(x, x) ⇒ 1

S(z, x) ⇒ s

S(z, k) ⇒ m4

Self-Energy

Σ(z) ⇒ 1

s

Σ(z, x) ⇒ 1

sm3

Σ(z, k) ⇒ 1

s

Σ(k) ⇒ m

s2

Vertex

Λ(z, k) ⇒ 1

Λ(p, p′) ⇒ m

s



References

1. Adkins, G.: One-loop renormalization of Coulomb-gauge QED. Phys. Rev. D 27, 1814–1820
(1983)

2. Adkins, G.: One-loop vertex function in Coulomb-gauge QED. Phys. Rev. D 34, 2489–2492
(1986)

3. Adkins, G.S., Fell, R.N.: Bound-state formalism for positronium. Phys. Rev. A 60, 4461–4475
(1999)

4. Adkins, G.S., Fell, R.N., Mitrikov, P.M.: Calculation of the positronium hyperfine interval
using the Bethe-Salpeter formalism. Phys. Rev. A 65, 042103 (2002)

5. Araki, H.: Quantum-electrodynamical corrections to energy-levels of helium. Prog. Theor.
Phys. (Jpn.) 17, 619–642 (1957)

6. Artemyev, A.N., Beier, T., Plunien, G., Shabaev, V.M., Soff, G., Yerokhin, V.A.: Vacuum-
polarization screening corrections to the energy levels of heliumlike ions. Phys. Rev. A 62(1–
8), 022116 (2000)

7. Artemyev, A.N., Holmberg, J., Surzhykov, A.: Radiative recombination of bare uranium;
QED-corrections to the cross section and polarization. Phys. Rev. A 92, 042510 (2015)

8. Artemyev, A.N., Shabaev, V.M., Yerokhin, V.A.: Vacuum polarization screening correction
to the ground-state energy of two-electron ions. Phys. Rev. A 56, 3529–3554 (1997)

9. Artemyev, A.N., Shabaev, V.M., Yerokhin, V.A., Plunien, G., Soff, G.: QED calculations of
the n = 1 and n = 2 energy levels in He-like ions. Phys. Rev. A 71, 062104 (2005)

10. Åsén, B.: QED effects in excited states of helium-like ions. Ph.D. thesis, Department of
Physics, Chalmers University of Technology and University of Gothenburg, Gothenburg,
Sweden (2002)

11. Åsén, B., Salomonson, S., Lindgren, I.: Two-photon exchange QED effects in the 1s2s 1S and
3S states of heliumlike ions. Phys. Rev. A 65, 032516 (2002)

12. Avgoustoglou, E.N., Beck,D.R.: All-order relativisticmany-body calculations for the electron
affinities of Ca−, Sr−, Ba−, and Yb− negative ions. Phys. Rev. A 55, 4143–4149 (1997)

13. Barbieri, R., Sucher, J.: General theory of radiative corrections to atomic decay rates. Nucl.
Phys. B 134, 155–168 (1978)

14. Bartlett, R.J.: Coupled-cluster approach to molecular structure and spectra: a step toward
predictive quantum chemistry. J. Phys. Chem. 93, 1697–1708 (1989)

15. Bartlett, R.J., Purvis, G.D.: Many-body perturbation theory, coupled-pair many-electron the-
ory, and the importance of quadruple excitations for the correlation problem. Int. J. Quantum
Chem. 14, 561–581 (1978)

16. Beier, T., Djekic, S., Häffner, H., Indelicato, P., Kluge, H.J., Quint, W., Shabaev, V.S., Verdu,
J., Valenzuela, T., Werth, G., Yerokhin, V.A.: Determination of electron’s mass from g-factor
experiments on 12C+5 and 16O+7. Nucl. Instrum. Methods 205, 35 (2003)

© Springer International Publishing Switzerland 2016
I. Lindgren, Relativistic Many-Body Theory,
Springer Series on Atomic, Optical, and Plasma Physics 63,
DOI 10.1007/978-3-319-15386-5

391



392 References

17. Beier, T., Häffner, H., Hermanspahn, N., Karshenboim, S.G., Kluge, H.J.: New determination
of the electron’s mass. Phys. Rev. Lett. 88, 011603-1–011603-4 (2002)

18. Beier, T., Lindgren, I., Persson,H., Salomonson, S., Sunnergren, P.,Häffner,H.,Hermanspahn,
N.: gj factor of an electron bound in a hydrogenlike ion. Phys. Rev. A 62, 032510 (2000)

19. Bethe, H.A.: The electromagnetic shift of energy levels. Phys. Rev. 72, 339–341 (1947)
20. Bethe, H.A., Salpeter, E.E.: An Introduction to Relativistic Quantum Field Theory. Quantum

Mechanics of Two-Electron Atoms. Springer, Berlin (1957)
21. Bjorken, J.D., Drell, S.D.: Relativistic Quantum Fields. Mc-Graw-Hill Publishing Co., New

York (1964)
22. Bjorken, J.D., Drell, S.D.: Relativistic Quantum Mechanics. Mc-Graw-Hill Publishing Co.,

New York (1964)
23. Blanchard, P., Brüning, E.: Variational Methods in Mathematical Physics. A Unified

Approach. Springer, Berlin (1992)
24. Bloch, C.: Sur la détermination de l’etat fondamental d’un système de particules. Nucl. Phys.

7, 451–58 (1958)
25. Bloch, C.: Sur la théorie des perurbations des etats liés. Nucl. Phys. 6, 329–47 (1958)
26. Blundell, S.: Calculations of the screened self-energy and vacuum polarization in Li-like,

Na-like, and Cu-like ions. Phys. Rev. A 47, 1790–1803 (1993)
27. Blundell, S., Mohr, P.J., Johnson, W.R., Sapirstein, J.: Evaluation of two-photon exchange

graphs for highly charged heliumlike ions. Phys. Rev. A 48, 2615–2626 (1993)
28. Blundell, S., Snyderman, N.J.: Basis-set approach to calculating the radiative self-energy in

highly ionized atoms. Phys. Rev. A 44, R1427–R1430 (1991)
29. Blundell, S.A.: Accurate screened QED calculations in high-Zmany-electron ions. Phys. Rev.

A 46, 3762–3775 (1992)
30. Blundell, S.A., Cheng, K.T., Sapirstein, J.: Radiative corrections in atomic physics in the

presence of perturbing potentials. Phys. Rev. A 55, 1857–1865 (1997)
31. Blundell, S.A., Johnson, W.R., Liu, Z.W., Sapirstein, J.: Relativistic all-order calculations of

energies and matrix elements for Li and Be+. Phys. Rev. A 40, 2233–2246 (1989)
32. Boldwin, G.T., Yennie, D.R., Gregorio,M.A.: Recoil effects in the hyperfine structure of QED

bound states. Rev. Mod. Phys. 57, 723–782 (1985)
33. Borbely, J.S., George, M.C., Lombardi, L.D., Weel, M., Fitzakerley, D.W., Hessel, E.A.:

Separated oscillatory-fieldmicrowavemeasurement of the 2 3P1−2 3P2 fine structure interval
of atomic helium. Phys. Rev. A 79, 60503 (2009)

34. Brandow, B.H.: Linked-cluster expansions for the nuclear many-body problem. Rev. Mod.
Phys. 39, 771–828 (1967)

35. Breit, G.: Dirac’s equation and the spin-spin interaction of two electrons. Phys. Rev. 39,
616–624 (1932)

36. Brown, G.E., Kuo, T.T.S.: Structure of finite nuclei and the nucleon-nucleon interaction. Nucl.
Phys. A 92, 481–494 (1967)

37. Brown, G.E., Langer, J.S., Schaeffer, G.W.: Lamb shift of a tightly bound electron. I. Method.
Proc. R. Soc. Lond. Ser. A 251, 92–104 (1959)

38. Brown, G.E., Mayers, D.F.: Lamb shift of a tightly bound electron. II. Calculation for the
K-electron in Hg. Proc. R. Soc. Lond. Ser. A 251, 105–109 (1959)

39. Brown, G.E., Ravenhall, D.G.: On the interaction of two electrons. Proc. R. Soc. Lond. Ser.
A 208, 552–559 (1951)

40. Brueckner, K.A.: Many-body problems for strongly interacting particles. II. Linked cluster
expansion. Phys. Rev. 100, 36–45 (1955)

41. Bukowski, R., Jeziorski, B., Szalewicz, K.: Gaussian geminals in explicitly correlated coupled
cluster theory including single and double excitations. J. Chem. Phys. 110, 4165–4183 (1999)

42. Caswell, W.E., Lepage, G.P.: Reduction of the Bethe-Salpeter equation to an equivalent
Schrödinger equation, with applications. Phys. Rev. A 18, 810–819 (1978)

43. Chantler, C.T.: Testing three-body quantum-electrodynamics with trapped T20+ Ions: evi-
dence for a Z-dependent divergence between experimental and calculation. Phys. Rev. Lett.
109, 153001 (2012)



References 393

44. Chantler, C.T., et al.: New X-ray measurements in Helium-like Atoms increase discrepancy
between experiment and theoretical QED. arXiv-ph, p. 0988193 (2012)

45. Cheng, K.T., Johnson, W.R.: Self-energy corrections to the K-electron binding energy in
heavy and superheavy atoms. Phys. Rev. A 1, 1943–1948 (1976)

46. Cheng, T.K., Johnson, W.R., Sapirstein, J.: Screend lamb-shift calculations for lithiumlike
uranium, sodiumlike platimun, and copperlike gold. Phys. Rev. Lett. 23, 2960–2963 (1991)
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246. Čársky, P., Paldus, J., Pittner, J. (eds.): Recent Progress in Coupled Cluster Methods: Theory

and Applications. Springer, New York (2009)
247. Walter, C., Peterson, J.: Shape resonance in Ca− photodetachment and the electron affinity

of Ca(1S). Phys. Rev. Lett. 68, 2281–84 (1992)
248. Wheeler, J.A.: On the mathematical description of light nuclei by the method of resonating

group structure. Phys. Rev. 52, 1107–1122 (1937)
249. Wichmann, E.H., Kroll, N.M.: Vacuum polarization in a strong Coulomb field. Phys. Rev.

101, 843–859 (1956)
250. Wick, C.G.: The evaluation of the collision matrix. Phys. Rev. 80, 268–272 (1950)
251. Wick, G.C.: Properties of Bethe-Salpeter wave functions. Phys. Rev. 96, 1124–1134 (1954)
252. Yerokhin, V.A., Artemyev, A.N., Beier, T., Plunien, G., Shabaev, V.M., Soff, G.: Two-electron

self-energy corrections to the 2p1/2 − 2s transition energy in Li-like ions. Phys. Rev. A 60,
3522–3540 (1999)

253. Yerokhin, V.A., Artemyev, A.N., Shabaev, V.M.: Two-electron self-energy contributions to
the ground-state energy of helium-like ions. Phys. Lett. A 234, 361–366 (1997)



References 401

254. Yerokhin, V.A., Artemyev, A.N., Shabaev, V.M., Sysak, M.M., Zherebtsov, O.M., Soff, G.:
Evaluation of the two-photon exchange graphs for the 2p1/2 − 2s transition in Li-like Ions.
Phys. Rev. A 64, 032109-1–032109-15 (2001)

255. Yerokhin, V.A., Indelicato, P., Shabaev, V.M.: Self-energy corrections to the bound-electron
g factor in H-like ions. Phys. Rev. Lett. 89, 134001 (2002)

256. Yerokhin, V.A., Indelicato, P., Shabaev, V.M.: Two-loop self-energy correction in high-Z
hydrogenlike ions. Phys. Rev. Lett. 91, 073001 (2003)

257. Yerokhin, V.A., Indelicato, P., Shabaev, V.M.: Evaluation of the self-energy correction to the
g factor of S states in H-like ions. Phys. Rev. A 69, 052203 (2004)

258. Zelevinsky, T., Farkas, D., Gabrielse, G.: Precision measurement of the three 23PJ helium fine
structure intervals. Phys. Rev. Lett. 95, 203001 (2005)

259. Zhang, T.: Corrections to O(α7(lnα)mc2) fine-structure splittings and O(α6(lnα)mc2)
energy levels in helium. Phys. Rev. A 54, 1252–1312 (1996)

260. Zhang, T.: QED corrections to O(α7 mc2) fine-structure splitting in helium. Phys. Rev. A 53,
3896–3914 (1996)

261. Zhang, T.: Three-body corrections to O(α6) fine-structure in helium. Phys. Rev. A 56, 270–
277 (1997)

262. Zhang, T., Drake, G.W.F.: A rigorous treatment of O(α6 mc2) QED corrections to the fine
structure splitting of helium. J. Phys. B 27, L311–L316 (1994)

263. Zhang, T., Drake, G.W.F.: Corrections to O(α7 mc2) fine-structure splitting in helium. Phys.
Rev. A 54, 4882–4922 (1996)

264. Zhang, T., Yan, Z.C., Drake, G.W.F.: QED Corrections of O(mc2α7 lnα) to the fine structure
splitting of helium and He-like ions. Phys. Rev. Lett. 77, 1715–1718 (1996)



Index

A
Action integral, 334
Adiabatic damping, 48
All-order method, 29
Annihilation operator, 309
Antisymmetry, 20

B
Banach space, 301
Bethe–Salpeter equation, 3, 108, 117, 158,

177, 202, 219, 231
effective potential form, 226

Bethe–Salpeter–Bloch equation, 6, 160, 177,
219, 226

Bloch equation
for Green’s operator, 152
generalized, 19, 21

Bra vector, 316
Breit interaction, 1, 36, 344, 346
Brillouin–Wigner expansion, 157
Brown-Ravenhall effect, 2, 36, 183

C
Cauchy sequence, 301
Charge renormalization, 252
Closure property, 319
Complex rotation, 35
Configuration, 20
Conjugate momentum, 13, 332
Continuity equation, 340
Contraction, 16
Contravariant vector, 297
Coordinate representation, 62, 318
Counterterms, 141

Coupled-cluster approach, 29, 31
normal-ordered, 32

Coupled-cluster expansion, 1
Coupled-cluster-QED expansion, 205
Covariance, 2
Covariant evolution operator, 117
Covariant evolution operator method, 3
Covariant vector, 297
Creation operator, 309
Cut-Off procedure, 255
Cutkosky rules, 279

D
D’Alembertian operator, 298
Damping factor, 302
De Broglie’s relations, 11
Delta function, 302
Difference ratio, 142
Dimensional analysis, 385
Dimensional regularization, 167, 255
Dirac-Coulomb Hamiltonian, 36
Dirac delta function, 302
Dirac equation, 2, 321
Dirac matrices, 322
Dirac sea, 36
Discretization technique, 40
Dot product, 136
Dynamical process, 7, 140, 277
Dyson equation, 107, 220, 249

E
Effective Hamiltonian, 5, 18

intermediate, 35
Effective interaction, 21, 29

© Springer International Publishing Switzerland 2016
I. Lindgren, Relativistic Many-Body Theory,
Springer Series on Atomic, Optical, and Plasma Physics 63,
DOI 10.1007/978-3-319-15386-5

403



404 Index

Einstein summation rule, 315
Electron field operators, 311
Electron propagator, 60, 97
Energy diagram, 87
Equal-time approximation, 94, 118, 123,

177, 225, 229
Equations of the motion, 334
Euler-Lagrange equations, 334
Evolution operator, 44
Exponential Ansatz, 31

normal-ordered, 32
External-potential approach, 5, 229

F
Feynman amplitude, 79, 87, 94, 109, 112,

122, 179, 365, 367
Feynman diagram, 27, 38, 59, 87, 124, 365
First quantization, 11
Fock space, 134, 301

photonic, 6, 48, 133
Fock-space coupled-cluster, 33
Folded diagram, 21
Fourier transform, 62
Free-electron propagator, 244
Functional, 299
Furry picture, 19, 25
Furry’s theorem, 85

G
Gamma function, 360
Gauge

Coulomb, 57, 66, 75, 80, 341, 351, 357
covariant, 57, 64, 122, 124, 356
Feynman, 57, 64, 80, 351, 354, 356
Fried-Yennie, 357
Landau, 357
non-covariant, 357

Gauge invariance, 341
Gauge transformation, 355
Gaunt interaction, 187, 351
Gell-Mann–Low theorem, 48, 49

relativistic, 131
G-factor, 168
Goldstone diagram, 23
Goldstone rules, 22, 26, 124
Green’s function, 3, 89

projected, 111
two-time, 110

Green’s operator, 117, 135
Fourier transform, 138
time dependence, 156

Green’s operator method, 3, 117

Grotsch term, 168
Gupta–Bleuler formalism, 353

H
Hamilton operator, 336
Hamiltonian density, 335, 336
Hartree-Fock model, 24
Heaviside step function, 307
Heisenberg commutation rules, 335
Heisenberg picture, 222, 312
Heisenberg representation, 90
Helium fine structure, 231
Hilbert space, 301
Hole state, 117
Hylleraas function, 5, 167

I
Incomplete model space, 28
Interaction density, 336
Interaction picture, 44
Intermediate normalization, 19
Intersection, 299
Intruder state, 21, 33
Irreducible diagram, 38, 128

K
Ket vector, 316
Klein-Gordon equation, 321
Knstantaneous Breit interaction, 72
Kronecker delta factor, 302, 303

L
Lagrange equations, 331
Lagrangian density, 334, 336
Lagrangian function, 335
Lamb shift, 2, 78, 83, 162, 259
Laplacian operator, 299
Lehmann representation, 95
Linked diagram, 26, 105
Linked-diagram theorem, 1
Lippmann-Schwinger equation, 226
Lorentz covariance, 2, 37, 58, 93, 117
Lorentz force, 334
Lorentz transformation, 2
Lorenz condition, 340

M
Many-body Dirac Hamiltonian, 134
Mass counterterm, 250
Mass renormalization, 251, 255



Index 405

Matrix elements, 317
Matrix representation, 317
Maxwell’s equations, 338
Maxwell’s equations form, 337
Metric tensor, 297
Minimal substitution, 333, 336
Model state, 18
Model space, 18

complete, 21
extended, 21

Model-space contribution (MSC), 27, 53,
127, 140, 145

Momentum representation, 327
Multi-photon exchange, 127

N
Non-radiative effects, 37
Norm, 300
Normal order, 16
No-virtual-pair approximation, 2, 36

O
Off the mass-shell, 245
Optical theorem, 277–279

P
Pair correlation, 29
Parent state, 49, 50, 132
Partitioning, 19
Pauli spin matrices, 322
Pauli-Willars regulaization, 256
Perturbation

Brillouin-Wigner, 109
Rayleigh-Schrödinger, 1, 22

Photoionization, 281, 293
Photon propagator, 63
Photonic Fock space, 186
Poisson bracket, 13, 332
Polarization tensor, 86
Principal-value integration, 63

Q
QED effects, 37, 57, 78

non-radiative, 178
radiative, 196

Quantization condition, 13
Quasi-degeneracy, 21, 53, 60
Quasi-potential approximation, 4
Quasi-singularity, 53

R
Radiative effects, 37
Radiative recombination, 7, 281, 286
Reaction operator, 138
Reducible, 125
Reducible diagram, 38, 128, 204
Reference-state contribution, 76, 145
Regularization, 78, 243

Brown-Langer-Schaefer, 259
dimensional, 264
partial-Wave, 262
Pauli-Willars, 255

Renormalization, 78, 243
charge, 251
mass, 249

Resolution of the identity, 317
Resolvent, 22

reduced, 22

S
Scalar potential, 338
Scalar product, 298
Scalar retardation, 187
Scattering ampltude, 291
Scattering cross section, 277
Scattering matrix, 58
Schrödinger equation, 13
Schrödinger picture, 44
Schwinger correction, 168
Second quantization, 14, 309
Self-energy, 107

electron, 37, 78, 161, 245, 251
photon, 86, 253
proper, 107

Sequence, 300
Set, 299
Size consistency, 28
Size extensive, 228
Size extensivity, 28, 228
Slater determinant, 20, 310
S-matrix, 3, 58, 161
Spin-orbital, 20
Spline, 39
State-specific approach, 35
State-universality, 34
Subset, 299
Sucher energy formula, 59

T
Target states, 18
Time-ordering, 46

Wick, 16



406 Index

Trace, 84, 86
Transition rate, 7, 43, 44, 280
Transverse-photon, 76
Two-time Green’s function, 3

U
Uehling potential, 85, 128
Union, 299
Unit system, 385

cgs, 387
Hartree, 386
mixed, 326
natural, 386
relativistic, 57, 386
SI, 385

Unlinked diagram, 26

V
Vacuum polarization, 2, 37, 83, 86
Valence universality, 19, 34
Vector potential, 337
Vector space, 299
Vertex correction, 37, 81, 247, 252

W
Ward identity, 82, 248, 286
Wave operator, 18
Wichmann–Kroll potential, 85
Wick’s theorem, 17


	Preface to the Second Edition
	Preface to the First Edition
	Contents
	Acronyms
	1 Introduction
	1.1 Standard Many-Body Perturbation Theory
	1.2 Quantum Electrodynamics
	1.3 Bethe--Salpeter Equation
	1.4 Helium Atom. Analytical Approach
	1.5 Field-Theoretical Approach to Many-Body Perturbation Theory
	1.6 Dynamical Processes

	Part I Basics. Standard Many-body  Perturbation Theory
	2 Time-Independent Formalism
	2.1 First Quantization
	2.1.1 De Broglie's Relations
	2.1.2 The Schrödinger Equation

	2.2 Second Quantization
	2.2.1 Schrödinger Equation in Second Quantization*
	2.2.2 Particle-Hole Formalism. Normal Order and Contraction
	2.2.3 Wick's Theorem

	2.3 Time-Independent Many-Body Perturbation Theory
	2.3.1 Bloch Equation
	2.3.2 Partitioning of the Hamiltonian

	2.4 Graphical Representation
	2.4.1 Goldstone Diagrams
	2.4.2 Linked-Diagram Expansion

	2.5 All-Order Methods. Coupled-Cluster Approach
	2.5.1 Pair Correlation
	2.5.2 Exponential Ansatz: Coupled-Cluster Approach
	2.5.3 Various Models for Coupled-Cluster Calculations. Intruder-State Problem

	2.6 Relativistic MBPT. No-Virtual-Pair Approximation
	2.6.1 QED Effects

	2.7 Some Numerical Results of Standard MBPT and CC Calculations, Applied to Atoms

	3 Time-Dependent Formalism
	3.1 Transition Rate
	3.2 Evolution Operator
	3.3 Adiabatic Damping. Gell-Mann--Low Theorem
	3.3.1 Gell-Mann--Low Theorem

	3.4 Extended Model Space. The Generalized Gell-Mann--Low Relation

	Part II Bound-State Quantumelectrodynamics: One- and Two-Photon Exchange
	4 S-Matrix
	4.1 Definition of the S-Matrix. Feynman Diagrams
	4.1.1 General
	4.1.2 Bound States

	4.2 Electron Propagator
	4.3 Photon Propagator
	4.3.1 Feynman Gauge
	4.3.2 Coulomb Gauge

	4.4 Single-Photon Exchange
	4.4.1 Covariant Gauge
	4.4.2 Non-covariant Coulomb Gauge
	4.4.3 Single-Particle Potential

	4.5 Two-Photon Exchange
	4.5.1 Two-Photon Ladder
	4.5.2 Two-Photon Cross*

	4.6 QED Corrections
	4.6.1 Bound-Electron Self-energy
	4.6.2 Vertex Correction
	4.6.3 Vacuum Polarization
	4.6.4 Photon Self-energy

	4.7 Feynman Diagrams for the S-Matrix. Feynman Amplitude
	4.7.1 Feynman Diagrams
	4.7.2 Feynman Amplitude. Energy Diagram


	5 Green's Functions
	5.1 Classical Green's Function
	5.2 Field-Theoretical Green's Function---Closed-Shell Case
	5.2.1 Definition of the Field-Theoretical Green's Function
	5.2.2 Single-Photon Exchange
	5.2.3 Fourier Transform of the Green's Function

	5.3 Graphical Representation of the Green's Function*
	5.3.1 Single-Particle Green's Function
	5.3.2 Many-Particle Green's Function
	5.3.3 Self-Energy. Dyson Equation
	5.3.4 Numerical Illustration

	5.4 Field-Theoretical Green's Function---Open-Shell Case*
	5.4.1 Definition of the Open-Shell Green's Function
	5.4.2 Two-Time Green's Function of Shabaev
	5.4.3 Single-Photon Exchange


	6 The Covariant Evolution Operator  and the Green's-Operator Method
	6.1 Definition of the Covariant Evolution Operator
	6.2 Lowest-Order Single-Particle Covariant Evolution Operator
	6.3 Single-Photon Exchange in the Covariant-Evolution-Operator Formalism
	6.4 Ladder Diagrams
	6.5 Multi-Photon Exchange
	6.5.1 General
	6.5.2 Irreducible Two-Photon Exchange*
	6.5.3 Potential with Radiative Parts

	6.6 Relativistic Form of the Gell-Mann--Low Theorem
	6.7 Field-Theoretical Many-Body Hamiltonian  in the Photonic Fock Space
	6.8 Green's Operator
	6.8.1 Definition
	6.8.2 Relation Between the Green's Operator  and Many-Body Perturbation Procedures

	6.9 Model-Space Contribution
	6.9.1 Lowest Orders
	6.9.2 All Orders*

	6.10 Bloch Equation for Green's Operator*
	6.11 Time Dependence of the Green's Operator �
	6.11.1 Single-Reference Model Space
	6.11.2 Multi-reference Model Space


	7 Examples of Numerical Calculations  of One- and Two-Photon QED Effects
	7.1 S-Matrix
	7.1.1 Electron Self-energy of Hydrogenlike Ions
	7.1.2 Lamb Shift of Hydrogenlike Uranium
	7.1.3 Lamb Shift of Lithiumlike Uranium
	7.1.4 Two-Photon Non-radiative Exchange  in Heliumlike Ions
	7.1.5 Electron Correlation and QED Calculations  on Ground States of Heliumlike Ions
	7.1.6 g-Factor of Hydrogenlike Ions. Mass  of the Free Electron

	7.2 Two-Time Green's-Function and the Green's-Operator �

	Part III Unification of Many-Body Perturbation Theory and Quantum Electrodynamics
	8 Beyond Two-Photon Exchange: Combination of Quantum Electrodynamics and Electron Correlation
	8.1 Non-radiative QED Effects, Combined with Electron Correlation
	8.1.1 Single-Photon Exchange with Virtual Pairs
	8.1.2 Fock-Space Treatment
	8.1.3 Continued Iteration. Combination of Non-radiative QED with Electron Correlation

	8.2 Radiative QED Effects, Combined with Electron Correlation
	8.2.1 Two-Electron Screened Self-Energy and Vertex Correction in Lowest Order
	8.2.2 All Orders
	8.2.3 Continued Coulomb Iterations

	8.3 Higher-Order QED. Connection to the Bethe--Salpeter Equation �
	8.3.1 General QED (Single-Transverse-Photon) Potential
	8.3.2 Iterating the QED Potential. Connection  to the Bethe--Salpeter Equation
	8.3.3 Coupled-Cluster-QED Expansion


	9 Numerical Results of Combined MBPT-QED Calculations Beyond Second Order
	9.1 Non-radiative QED Effects in Combination with Electron Correlation
	9.1.1 Two-Photon Exchange
	9.1.2 Non-radiative Effects. Beyond Two-Photon Exchange

	9.2 Radiative QED Effects in Combination with Electron Correlation �
	9.2.1 Radiative Effects. Two-Photon Effects
	9.2.2 Radiative Effects. Beyond Two-Photon Exchange

	9.3 Comparison with Experiments
	9.4 Outlook

	10 The Bethe--Salpeter Equation
	10.1 The Original Derivations of the Bethe--Salpeter Equation
	10.1.1 Derivation by Salpeter and Bethe
	10.1.2 Derivation by Gell-Mann and Low
	10.1.3 Analysis of the Derivations of the Bethe--Salpeter Equation

	10.2 Quasi- and Effective-Potential Approximations. Single-Reference Case
	10.3 Bethe--Salpeter--Bloch Equation. Multi-reference Case*
	10.4 Problems with the Bethe--Salpeter Equation

	11 Analytical Treatment of the Bethe--Salpeter Equation
	11.1 Helium Fine Structure
	11.2 The Approach of Sucher
	11.3 Perturbation Expansion of the BS Equation
	11.4 Diagrammatic Representation
	11.5 Comparison with the Numerical Approach

	12 Regularization and Renormalization
	12.1 The Free-Electron QED
	12.1.1 The Free-Electron Propagator
	12.1.2 The Free-Electron Self-Energy
	12.1.3 The Free-Electron Vertex Correction

	12.2 Renormalization Process
	12.2.1 Mass Renormalization
	12.2.2 Charge Renormalization

	12.3 Bound-State Renormalization. Cut-Off Procedures
	12.3.1 Mass Renormalization
	12.3.2 Evaluation of the Mass Term
	12.3.3 Bethe's Nonrelativistic Treatment
	12.3.4 Brown-Langer-Schaefer Regularization
	12.3.5 Partial-Wave Regularization

	12.4 Dimensional Regularization in Feynman Gauge*
	12.4.1 Evaluation of the Renormalized Free-Electron Self-Energy in Feynman Gauge
	12.4.2 Free-Electron Vertex Correction in Feynman Gauge

	12.5 Dimensional Regularization in Coulomb Gauge
	12.5.1 Free-Electron Self-Energy in the Coulomb Gauge


	Part IV Dynamical Processes with Bound States
	13 Dynamical Bound-State Processes
	13.1 Optical Theorem for Free and Bound Particles
	13.1.1 Scattering of Free Particles. Optical Theorem
	13.1.2 Optical Theorem for Bound Particles

	13.2 Atomic Transition Between Bound States
	13.2.1 Self-Energy Insertion on the Incoming Line
	13.2.2 Self-Energy Insertion on the Outgoing Line
	13.2.3 Vertex Correction

	13.3 Radiative Recombination
	13.3.1 Lowest
	13.3.2 Self-Energy Insertion on the Bound State
	13.3.3 Vertex Correction
	13.3.4 Self-Energy Insertion on the Free-Electron State
	13.3.5 Scattering Amplitude
	13.3.6 Photoionization


	14 Summary and Conclusions
	Appendix ANotations and Definitions
	Appendix BSecond Quantization
	Appendix CRepresentations of States and Operators
	Appendix D Dirac Equation and the MomentumRepresentation
	Appendix E Lagrangian Field Theory
	Appendix F Semiclassical Theory of Radiation
	Appendix G Covariant Theory of QuantumElectro Dynamics
	Appendix H Feynman Diagrams and Feynman Amplitude
	Appendix I Evaluation Rules for Time-Ordered Diagrams
	Appendix J Some Integrals
	Appendix K Unit Systems and Dimensional Analysis
	References
	Index



