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Preface

This book aims to offer an introduction to photochemistry for students with a
minimal background in physical chemistry and molecular quantum mechanics. The
focus is on the theoretical side and particularly on excited state dynamics. We
describe the main conceptual models of the photochemical and photophysical
processes that are the basis to interpret both the classical steady-state experimental
results (essentially product branching ratios and quantum yields) and the wealth of
information about excited state dynamics revealed in the last decades by
time-resolved spectroscopies. A significant but not major space will be devoted to
the computational techniques offered by quantum chemistry and molecular
dynamics.

The expected readers are students of master and of last year of bachelor courses
in Chemistry or researchers at their first approach to this field. This book differs
from most introductory textbooks in photochemistry in being more theoretically
oriented. The famous textbook by Klessinger and Michl (Excited States and
Photochemistry of Organic Molecules, Wiley, 1995) provides theoretical expla-
nations for many photochemical reactions, focussing on the potential energy sur-
faces and properties of the excited states. Our book will concentrate more on the
modeling of dynamical aspects, as can be seen from the contents.

Finally, we would like to thank Davide Accomasso, Neus Aguilera Porta, and
Meilani Wibowo who carefully read the manuscript, providing corrections and very
valuable comments.

Pisa, Italy Maurizio Persico
January 2018 Giovanni Granucci
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Chapter 1
Introduction to Photochemistry

Abstract This chapter summarizes some general concepts in photochemistry, with
two aims: to provide an overview of phenomena and empirical rules that will be dis-
cussed on theoretical grounds in the next chapters, and to present a language and some
physical laws concerning light and its interaction with matter. We shall introduce the
main differences between thermal chemistry that takes place in the ground elec-
tronic state, and photochemistry, that involves optical excitation. The first overview
of elementary photoinduced events will highlight the different ways the excitation
energy can be disposed of. We shall distinguish primary and secondary processes
and define their quantum yields. Excitation rates will be introduced in connection
with the Lambert and Beer law. Some elementary examples of photochemical kinet-
ics will be discussed. Much more extended introductions to photochemistry can be
found in well-renowned textbooks by Wayne (Principles and Applications of Photo-
chemistry. OxfordUniversity Press, Oxford, 1988 [1]),Wardle (Principles andAppli-
cations of Photochemistry. Wiley, Chichester, 2009 [2]), Turro (Modern Molecular
Photochemistry of Organic Molecules. University Science Books, Sausalito, 2010
[3]), Balzani (Photochemistry and Photophysics: Concepts Research, Applications.
Wiley, Chichester, 2014 [4]), Rohatgi-Muckerjee (Fundamentals of Photochemistry.
New Age International, New Delhi, 2017 [5]), and others.

Keywords Light · Photon · Primary and Secondary processes · Quantum yeild
Photochemical kinetics

1.1 What Is Photochemistry?

Photochemistry deals with the chemical reactions and other physicochemical
phenomena induced by the absorption of light. This definition stems from a basic
rule formulated by Grotthuss in 1917 and independently by Draper in 1842. The
Grotthuss–Draper law states that only the light absorbed by a material sample can
induce chemical transformations. In fact, if the sample is transparent light goes
through it without being attenuated, i.e., no light is absorbed (see Sect. 1.6.1). Then,
the sample can be temporarily affected; for instance, it can experience periodic oscil-
lations of its charge distribution in response to the electric field of light, but no

© Springer International Publishing AG, part of Springer Nature 2018
M. Persico and G. Granucci, Photochemistry, Theoretical Chemistry
and Computational Modelling, https://doi.org/10.1007/978-3-319-89972-5_1
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2 1 Introduction to Photochemistry

chemical reactions occur. If instead a fraction of the impinging radiation is absorbed
by the sample, chemical change can result and the amount of chemically trans-
formed substrate will be proportional to the absorbed radiation. Howmuch radiation
is adsorbed depends on experimental conditions such as the irradiation time, the
radiation intensity, and the concentration of the absorbing compound. As we shall
see, pure proportionality is observed only for simple reactions or when the outcome
of an elementary photochemical event can be singled out in a more complex mech-
anism. The exact meaning of the proportionality between absorbed radiation and
photochemical change requires the definition of some basic physical quantities, as
we shall see in the next sections.

During the nineteenth century the concept of molecule was progressively precised
and at the beginning of the next century the quantum of light, later called photon, was
introduced. This opened the way to a new formulation of the relationship between
light absorption and photochemical reaction. Stark and Einstein suggested, in close
analogy with the photoelectric effect, that an isolated molecule (in gas phase) can
absorb one photon and then undergo an elementary photoreaction act. Actually,
after photon absorption, a molecule can react in different ways or else undergo
processes that do not involve chemical transformations and are therefore labeled
as “photophysical.” A given photochemical or photophysical elementary event will
follow photon absorption with a predictable probability (the “quantum yield,” see
Sect. 1.5), which is in the first place determined by quantum dynamics. Exciting a
molecule is then very close to “playing dice,” quite at variance with the good habits
of Einstein’s God.We can therefore reformulate the Stark and Einstein law as: “every
photochemical or photophysical process is triggered by the absorption of one photon
by one molecule.” Much later, with the introduction of lasers, it was demonstrated
that two ormore photons can be absorbed at once by onemolecule when the radiation
intensity is high enough. However, in usual conditions with solar light or laboratory
lamps, the Stark–Einstein law remains valid.

1.2 Light and Photons

The previous section makes clear that we need to characterize and quantify the
“amount of light” that is absorbed by molecules in a medium. In this book we shall
use both the classical description of radiation in terms of oscillating electric and
magnetic fields, and the quantum one, based on the concept of photon, depending
on which allows for the simpler explanation of photophysical phenomena. For a
comprehensive treatment of this subject see, for instance, Cohen-Tannoudji et al [6].
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1.2.1 Monochromatic Light

A linearly polarized plane wave in vacuo is made of two related electric andmagnetic
fields E and B:

E(r, t) = E0 cos(ωt − k · r − ϕ) (1.1)

B(r, t) = B0 cos(ωt − k · r − ϕ) (1.2)

Here ω is the angular frequency, measured in rad/s and related to the frequency ν

(s−1) byω = 2πν; c is the speed of light and themodule ofk, the vector that identifies
the direction of propagation, is k = ω/c; ϕ is a phase constant. The wavelength is
λ = c/ν = 2πc/ω. The E and B vectors are orthogonal to each other and to the
propagation vector k. According to the classical theory, embodied in Maxwell’s
equations, E0 and B0 can assume any value but are related by B0 = E0/c.

In the above formulas E0 is a constant vector, i.e., both its direction and its ampli-
tude are fixed: these two assumptions correspond, respectively, to linear polarization
and to a continuous wave of infinite duration. We shall consider in Sect. 3.8 the case
of a radiation pulse of finite duration, in which the amplitude E0 depends on time.
Also the orthogonal directions of theE andB fields can change in time. For instance,
assuming k lies along the ẑ-axis, we may have:

Ex (z, t) = E0,x cos[ω(t − z/c) − ϕ]
Ey(z, t) = ±E0,y sin[ω(t − z/c) − ϕ] (1.3)

Depending on whether Ex and Ey are equal or not, we have circular or elliptic polar-
ization. The ± sign in the second equation determines the right- or left-handedness
of the polarization.

The energy density (energy per unit volume) of the electromagnetic field is

ρenergy = ε0

2

(
E2 + c2B2) = ε0 E2 (1.4)

where ε0 is the vacuum permittivity; see Appendix A. The average density over an
optical cycle, i.e., a time interval of 2π/ω or a space interval of one wavelength, is
then

U ≡ 〈
ρenergy

〉 = ε0

2
E2
0 . (1.5)

The energy going through a surface perpendicular to the propagation vector k per
time and surface unit (flux density) is called irradiance or light intensity and can be
measured in W/m2:

I = c U = cε0
2

E2
0 . (1.6)

Light also carries a linear momentum P directed along the propagation vector k.
The average density of its norm P over an optical cycle is
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〈ρP〉 = ε0

2c
E2
0 . (1.7)

Finally, circularly polarized light carries angular momentum, which is also directed
along the propagation vector, with+ sign for the left-handed polarization and− sign
for the right-handed. The J average density over an optical cycle is

〈ρJ 〉 = ε0

2ω
E2
0 . (1.8)

Linearly polarized light, which can be thought as the superposition of two right and
left circularly polarized waves with the same amplitude, frequency, and phase, owns
no net angular momentum.

1.2.2 Nonmonochromatic Light: The Radiation Spectrum

So far we have dealt with monochromatic light, characterized by one frequency ν

and one wavelength λ. Approximately monochromatic light can only be produced
in special conditions, for instance, by atomic spontaneous emission or by lasers. In
normal conditions, light is a superposition of waves like those of Eqs. (1.1), (1.2) or
(1.3), with different frequencies, polarizations, propagation directions, and phases.
Because of the linearity of Maxwell’s equations, such waves evolve independently
of each other and do not exchange energy or momentum, unless through their inter-
actions with matter. Unpolarized light is a superposition of linearly (or circularly)
polarized waves differing (at least) because of their random phases.

If we restrict ourselves to linearly polarized light traveling in a given direction
(say ẑ), the electric field can be represented as:

E(z, t) =
∫ ∞

0
Eω(ω) cos[ω(t − z/c) − ϕ(ω)] dω (1.9)

whereEω is a vector of constant direction (only its norm depends onω). This expres-
sion can be generalized to the case of nonpolarized light by adding an electric field
orthogonal to the one of Eq. (1.9), with independent Eω(ω) and ϕ(ω) functions. As
we shall see in Sect. 3.8,waves of different frequencies can be combined coherently to
yield a light pulse peaking at a given value of t − z/c and dying off at previous or later
times. Here we shall assume that the combination of different frequency components
is not coherent (no light pulse), so that the amplitude of the electric field fluctuates
but averages to a constant value over long-time intervals. The time-averaged energy
density is

Utot = ε0

2

∫ ∞

0
E2

ω(ω) dω (1.10)

and the corresponding irradiance is of course
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Itot = c ε0

2

∫ ∞

0
E2

ω(ω) dω . (1.11)

We can then define a spectral energy density

Uω(ω) = ε0 E2
ω(ω)

2
(1.12)

and a spectral irradiance

Iω(ω) = c ε0 E2
ω(ω)

2
(1.13)

meaning thatUω(ω)dω and Iω(ω)dω are the energy density and irradiance contained
in the frequency interval [ω,ω + dω]. Uω and Iω are then expressions of the light
spectrum. Notice that the spectral quantities are often formulated as functions of ν

or λ with analogous meanings, which implies, for instance,

Iν(ν) = 2π Iω(2πν) (1.14)

and

Iλ(λ) = c

λ2
Iν(c/λ) = 2πc

λ2
Iω(2πc/λ) . (1.15)

In this context, the irradiance or the energy density of a monochromatic wave of
frequency ω0 can be represented by means of a δ function (see Appendix C):

Iω(ω) = Itot δ(ω − ω0) . (1.16)

1.2.3 Photons

We switch now to an elementary quantum description of radiation, which is based
on light particles or quanta, called photons. A photon is a massless particle, traveling
at the speed of light. The vector k now indicates the direction of the photon motion.
In a monochromatic light beam each photon carries an energy

Eph = hν = hc

λ
(1.17)

where h is Planck’s constant. Given the energy density (1.5), the number of photons
per unit volume is

ρph = U

hν
= ε0E2

0

2hν
(1.18)

and their flux density or photon irradiance is
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Iph = I

hν
= cε0E2

0

2hν
. (1.19)

When necessary to avoid ambiguity, the previously defined energy flux density is
tagged as “energy” irradiance.

By dividing the averagemomentumdensity (1.7) byρph , we obtain themomentum
of one photon, Pph = hν/c. In the same way, we get the component of its angular
momentum along the k-axis, Jph = ±h/2π = ±�. The photon is a boson, since its
angular momentum is an integer in � units, with the peculiarity that the projection of
Jph on the k-axis cannot be null. A beam of linearly polarized or unpolarized light
is made of equal numbers of photons with opposite angular momenta.

Turning to nonmonochromatic light, we can define the spectral photon irradiance
as:

Iph,ω(ω) = Iω(ω)

�ω
= cε0E2

ω(ω)

2�ω
. (1.20)

For the equivalent quantities Iph,ν(ν) and Iph,λ(λ) Eqs. (1.14) and (1.15) are valid.
The total photon flux density or total irradiance is obtained by integrating the spectral
quantities:

Iph,tot =
∫ ∞

0
Iph,ω(ω) dω =

∫ ∞

0
Iph,ν(ν) dν =

∫ ∞

0
Iph,λ(λ) dλ . (1.21)

Notice that there is no direct relationship between Iph,tot and Itot , except in the case
of monochromatic light.

1.3 Photochemistry Versus Thermal Chemistry

The electronic excitations that trigger photochemical and photophysical events
require energies roughly in the interval 100–1000 kJ/mol (1–10 eV, or
24–240 kcal/mol). These energies are of the right order of magnitude to break bonds
or cause other major molecular rearrangements: in fact, the excitation often consists
in bringing an electron from a bonding or nonbonding orbital to an antibonding one.
The corresponding wavelengths go from 1200 to 120 nm, encompassing all the vis-
ible spectrum (λ ∈ [400, 750] nm), a large part of the ultraviolet (UV, λ ∈ [10, 400]
nm) and the near-infrared (NIR, λ ∈ [750, 1500] nm).

The flux of light (or any other form of energy) going through a material system
puts it in a state of nonequilibrium. A (normally small) fraction of molecules will
populate excited states with energies much higher than the average. To quantify such
a departure from equilibrium we must take into account the average time spent by a
molecule in one of the excited states normally accessed through light absorption. A
reasonable value for such “lifetime” is τ = 10−9 s. Suppose we irradiate compound
A during a given time, say one hour, in order to convert it to B. If nearly all molecules
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of A must be excited at least once during one hour, a fraction τ/3600 of them will
be in the excited state at every instant during the experiment. With τ = 10−9 s,
the excited fraction would be about 3 · 10−13. The population of an excited state
at thermal equilibrium is proportional to the factor exp(−ΔE/KBT ), where KB is
Boltzmann’s constant and ΔE is the energy difference with respect to the ground
state (lowest energy level). With ΔE = 400 kJ/mol, again a reasonable value, in
order to reach the same population of excited molecules as in the photochemical
experiment we must raise the temperature to T = 1670 K. This would destroy most
molecular samples.

Where is the difference? Heating the whole sample pours energy in all the trans-
lational, rotational, and vibrational modes of all molecules, many of which will
certainly react in unwanted ways. On the contrary, the optical excitation puts energy
only in the few happy molecules that absorb a photon and get electronically excited.
This allows to promote reactions that would not occur in thermal chemistry, in the
first place endothermic reactions that would be thermodynamically nonviable. Of
course, the excited molecules dispose of the excess energy by transferring it to the
surrounding molecules, by emitting radiation or by storing it as chemical energy
in the reaction products: every single molecule can channel its surplus energy in a
different way.

Besides the energetic aspects, we shall see that excitation of molecules with pho-
tons in the above energy range changes the electronic wavefunction. This means that
some bonds are weakened, others may be strengthened, and the molecular equilib-
rium geometry and the charge distribution are altered as well as the interactions with
surrounding molecules. All these changes contribute to differentiate the photoreac-
tivity from the ground state thermal chemistry.

1.4 An Overview of Photochemical and Photophysical
Processes

In this section we shall list the main photochemical and photophysical phenomena
that can occur after photoexcitation, with some comments about energy disposal
which is one of the main differences between thermal and photochemical reactivity.
We shall also anticipate some data about typical timescales, since they determine the
competition between the energetically viable primary processes.

The usual ways to indicate the excitation of molecule A are

A + hν → A∗ (1.22)

or
A

hν−→ A∗ (1.23)
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The star suffix indicates an electronically excited species. The photon absorption
event is often described as extremely fast, although the realmeaning of this simplified
view will be made clear in Chap. 3. Just after excitation, the molecule can be thought
of as keeping the same geometry it had in the ground state, which is a classical
view of the Franck–Condon principle. Then, in the new electronic state, the nuclei
experience different forces and will start moving, which can give place to a small
rearrangement of the molecular geometry or to more important changes, including
chemical reactions. The processes undergone directly by the excited species A∗ are
labeled as “primary.” The competition among all the possible primary processes is
basically determined by their relative rates. The primary products may give place
to further “secondary” reactions or photophysical events. Here is a list of primary
processes:

• Ionization:
A∗ → A+ + e− (1.24)

Ionization normally requires high energies, needed to extract an electron from
the neutral molecule, and is an extremely fast process. The ionization energy or
ionization potential is at least 8–10 eV for molecules in gas phase not containing
metal atoms. The corresponding wavelengths are about 120–150 nm. The excess
energy is mostly converted into kinetic energy of the emitted electron. In fact,
when a molecule produces two fragments of any nature the conservation of both
energy and momentum requires that their translational energies E1 and E2 in a
common center of mass reference frame are

E1 = m2

m1 + m2
Etot E2 = m1

m1 + m2
Etot (1.25)

wheremi is the mass of fragment i and Etot = E1 + E2 is the total kinetic energy.
• Luminescence:

A∗ → A + hν ′ (1.26)

Luminescence is the spontaneous emission of a photon of frequency ν ′, associated
with a transition of the excited molecule to a lower state, usually the ground state.
ν ′ can be different from the exciting frequency ν and usually ν ′ < ν, because
other processes convert part of the excitation energy into heat (i.e., mostly into
vibrational energy) before and after photon emission. Rates of emission can vary
over a verywide range, depending onwhether the transition is spin- and symmetry-
allowed or forbidden. When luminescence is due to a spin-allowed transition then
it is called fluorescence, otherwise, phosphorescence. Large rate constants are only
found for fluorescence and can be of the order of 1 ns−1.

• Radiationless decay:
A∗ → A (1.27)

In this case the electronic transition is not accompanied by photon emission, nor by
a chemical reaction. While the molecule switches to the ground state or to a lower
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excited state, its energy must be conserved, so a certain amount of electronic
energy will be converted into vibrational energy. The latter will be transferred
to the environment, within times of the order of 10 ps in condensed phase and
much more slowly in gas phase. Ultrafast decays occur in less than 100 fs, but
spin-changing radiationless transitions can be much slower, in the μs range or
even more. Radiationless transitions between states belonging to the same spin
manifold are called “internal conversion” (IC). When the initial and final state are
of different spin the process is called “intersystem crossing” (ISC).

• Quenching:
A∗ + B → A + B (1.28)

The excitedmolecule A∗ interacts with the quencher B and transfers to it part of the
excitation energy. When they move apart, none of them is electronically excited
and the excess energy has been transferred to the nuclear degrees of freedom
(vibrational, rotational, and translational) of both molecules, much in the same
way as in the case of unimolecular radiationless decay. In all bimolecular processes
of course the rate depends on the concentrations of both species, [A∗] and [B].
However, in order to comparewith the rates of unimolecular processes the common
factor [A∗] is irrelevant and one can adopt the point of viewof a singleA∗ molecule.
With an efficient quencher B at reasonable concentrations (or partial pressures in
gas phase), quenching can compete with unimolecular processes if the lifetime of
A∗ is 1 ns or longer. These considerations apply also to excitation transfer, charge
transfer, and bimolecular reactions (see below).

• Excitation transfer or sensitization:

A∗ + B → A + B∗ (1.29)

As in quenching, the excited sensitizer A∗ donates energy to B, but the transferred
energy is sufficient to electronically excite the acceptor. As a consequence, a minor
fraction of the excitation energy goes into the nuclear degrees of freedom.

• Photoisomerization:
A∗ → B (1.30)

The excited molecule A isomerizes to B and reverts to the ground state by radia-
tionless decay. The photon energy is used to overcome the activation barrier of the
reaction by performing part of the structural change in the excited state. A detailed
analysis of the dynamics, performed by experimental or theoretical means, may
reveal the temporal relationship of the two events, isomerization and radiationless
transition: in fact, they may turn out to be essentially simultaneous. If the A →
B isomerization is endothermic, a usually minor fraction of the photon energy is
stored as chemical energy while the rest is dissipated in the environment.

• Photodissociation:
A∗ → B + C (1.31)
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In a photodissociation reaction a substantial part of the photon energy is used to
break a chemical bond, possibly producing two radicals. Moreover, one of the
two fragments or both can be in an excited state. The remaining energy will be
found as vibrational, rotational, and translational energy of both fragments. In gas
phase, the relative translational energy will be partitioned according to Eq. (1.25).
As we shall see, A∗ can be metastable with respect to bond breaking, in which
case a preemptive radiationless decay to the ground state or other slow events
may be required before dissociation can take place: the whole phenomenon is then
called predissociation. The alternative case, of a molecule that dissociates while
remaining in the excited state, is qualified as “direct” dissociation.

• Electron transfer:
A∗ + B → A+ + B− (1.32)

or
A∗ + B → A− + B+ (1.33)

An excited molecule is at once a better electron donor and electron acceptor than
in its ground state. Once the ion pair has been created, much energy can be needed
to separate the two charged partners against the Coulomb potential. Polar solvents
can greatly facilitate the separation by specific solvation and bulk dielectric effects.

• Bimolecular reaction:
A∗ + B → C + D (1.34)

There are many kinds of bimolecular reactions in which one of the reagents is an
excited species and two products are formed. Most of them consist in the transfer
of atoms or groups, for instance, hydrogen abstraction and proton transfer. The
available energy, which is a function of the exo- or endothermicity of the reaction,
will be found in the nuclear degrees of freedom of the products.

• Addition reaction:
A∗ + B + M → AB + M (1.35)

Here M is a “third body” that does not react but is necessary to withdraw part of
the available energy from the product AB, that would otherwise be unstable. In
fact, even starting from the ground state reactants A+B, a reaction yielding AB
would be fully reversible without energy dissipation and even more so by adding
the photon energy. In a gas mixture, M can be any molecule and a three-body
collision is needed. Actually the last requirement can be relaxed for sufficiently
large molecules, because many vibrational modes can share the excess energy
making extremely unlikely for enough energy to be channeled into a reaction
coordinate. Then, two-body collisions with other molecules can take place at later
times and cool down the “hot” reaction product AB. In condensed phase, the role
of M is played by the nuclear degrees of freedom of the medium (solvent, pure
liquid or solid or other matrices) and can be taken for granted.
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ISC = intersystem crossing

IC = internal conversion

P = phosphorescence

F = fluorescence

A = photon absorption

PF

ISC

ISCIC

IC

A

T1

S1S2

S0

Fig. 1.1 Example of Jablonski diagram. Symbols: A, photon absorption; F, fluorescence; IC, inter-
nal conversion; ISC, intersystem crossing; P, phosphorescence

The energetic relationships of states and photophysical processes can be graphi-
cally represented by the Jablonski diagrams, as shown in Fig. 1.1. According to the
photochemical nomenclature, the electronic states are named after their spin multi-
plicity: Sn for singlets and Tn for triplets, the two most important spin manifolds for
most molecules with an even number of electrons. The suffix n is 0 for the ground
state and numbers the excited states starting from S1 and T1 according to their energy
ordering. In the diagram, every electronic state is represented by a schematic lad-
der of vibrational states. The radiative processes (absorption and luminescence) are
indicated by straight arrows and the nonradiative ones by undulating arrows.

In Fig. 1.1 we have represented the nonradiative processes by a horizontal wavy
line plus a vertical one, to distinguish two conceptually different events: the first is
the electronic transition by which energy is conserved, at least in isolated molecules;
the second is the vibrational energy loss to the environment, leading to “thermaliza-
tion” or “vibrational relaxation,” i.e., to the population of the lowest vibrational and
rotational levels according to Boltzmann’s statistics. For simplicity, the Jablonski
diagrams often feature slanted wavy arrows to represent both processes at once. In
the example of Fig. 1.1 a hypothetical molecule is excited to the S2 state with a cer-
tain amount of vibrational energy, which is determined by the exciting wavelength.
The vibrational energy excess is readily lost (typical times are of the order of 10 ps
in condensed phase), then IC to S1 follows with subsequent thermalization. At this
point three kinds of transitions are in competition: IC or fluorescence emission can



12 1 Introduction to Photochemistry

lead to the ground state, while ISC populates T1. From the triplet state the decay to
S0 can take place by phosphorescence emission or ISC. Actually in many cases the
vibrational relaxation and the electronic transitions (especially IC between excited
states) occur in the same timescale and considerably affect each other, so the slanted
arrows can be a closer representation of the physical reality.

Many of the products of primary events are reactive species that readily undergo
“secondary” chemical or photophysical transformations. For instance, starting from
neutral molecules with even numbers of electrons, neutral radicals are produced by
homolytic photodissociation and hydrogen abstraction, oppositely charged ion pairs
by proton transfer; radical cations by photoionization and electron transfer; and
radical anions too by the last process. All these species are likely to react in different
ways and times, depending on the environment. The photosensitization produces
excited species that can undergo substantially the same processes listed above as
“primary.” The ground state products of several primary events, radiationless decay
in the first place, are endowed with a large amount of energy in the nuclear degrees
of freedom and can give place to “hot ground state” reactions that would not occur
at normal temperatures.

1.5 Quantum Yields

To any well-identified photochemical or photophysical process X we can associate a
quantum yield Φ, which is by definition the ratio between the number of molecules
undergoing that process and the number of absorbed photons:

ΦX ≡ number of molecules undergoing process X

number of absorbed photons
. (1.36)

If more than one light absorbing compound is present, we only count the photons
absorbed by the species originating the chain of events to which process X belongs.
The process X , however complex and not known in detail, can be univocally identified
on the basis of a chemical product it generates or a molecular state it populates: for
instance, we can talk about the triplet quantum yield of a given compound, without
knowing through which sequence of radiationless transitions its triplet states are
populated. If, as usual, one absorbed photon corresponds to one excitedmolecule, the
denominator of Eq. (1.36) is equal to the number of excited molecules. The quantum
yield is measured over a given interval of time, which is assumed to encompass
all possible occurrences of X : for instance, if X is an excited state process, the
measurement time must be much longer than the lifetime. Alternatively, in a steady-
state situation as to the (fast) process X , the quantum yield can be evaluated as a rate
ratio:

ΦX = rate of process X

rate of photon absorption
. (1.37)
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Here the rates can be expressed as molecules or moles per unit time (mol·s−1), or,
as usual in chemistry, also per unit volume (mol·s−1L−1). In the latter case we have
instantaneous and local rates and quantum yields, which can change in time and
space as functions of the sample conditions (concentrations, temperature, etc).

Since all the excited molecules A∗ will eventually undergo one of the events that
transform or deactivate the excited state, the sumof the quantumyields of the primary
processes must equal one:

∑

X∈primary processes

ΦX = 1 (1.38)

Of course none of the yields ΦX can be larger than one. This rule can help distin-
guishing primary and secondary processes.

As an example, consider the four reactions of Chapman’s cycle that maintain the
(almost) steady concentration of ozone in the stratosphere [7]:

O2
hν−→ 2 O (1.39)

O2 + O + M → O3 + M (1.40)

O3 + O → 2 O2 (1.41)

O3
hν−→ O2 + O (1.42)

The primary step in the production of ozone is the photodissociation of molecular
oxygen, reaction (1.39), which requires excitation wavelengths below 240 nm, cor-
responding to the O2 dissociation energy of 498 kJ/mol. At these wavelengths, the
photodissociation quantum yield in rarefied air is practically 1: it is the only primary
process observed, because bond breaking is the fastest way to get rid of the surplus
energy. Being absorbed by O2 itself and also by O3, solar UV light with such wave-
lengths becomes progressively less intense by decreasing altitude. At the base of the
stratosphere (about 15 km), practically no O2 photodissociation occurs. This limits
the ozone production at low altitudes.

The association reaction (1.40) requires a three-body collision. The rate at which
an oxygen atom experiences such an event is proportional to PO2 · Ptot (partial pres-
sure of O2 times total pressure), therefore it decreases very fast with altitude. This is
why the ozone production also vanishes progressively beyond 40 km. De facto, the
ozone concentration peaks between 20 and 28 km. The quantum yield for the pro-
duction of ozone due to the secondary reaction (1.40) can be as high as 2 in the lower
stratosphere, because two O atoms are produced per absorbed photon and both have
a high probability to undergo the three-body collision before being involved in other
reactions. Instead, at mid-altitudes in the stratosphere reaction (1.41) becomes com-
petitive because of the increase of O3 concentration and decrease of total pressure.
Therefore, the quantum yield for the production of ozone from the photodissociation
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of O2 declines. The photodissociation of O3, reaction (1.42), contributes to stabilize
the O3 concentration at low levels.

Reaction (1.41) presents a small activation barrier and therefore can be speeded
up by catalyzers. The most important catalytic cycle is:

O3 + Cl → O2 + ClO (1.43)

O + ClO → O2 + Cl (1.44)

Chlorine atoms are mainly supplied by chlorofluorocarbons, very stable synthetic
compounds that are not destroyed until they reach the stratosphere. Here the C-Cl
bonds are photodissociated by UV light, as in

CF3Cl
hν−→ CF3 · +Cl (1.45)

This is the source ofCl atoms that catalyze the conversion ofO3 toO2.Reaction (1.44)
restores theCl atomused by reaction (1.43). If a single Cl atomgoes through the cycle
n times, the quantum yield of ozone destruction following the photodissociation of
CH3Cl is n, which can be of the order of thousands. Since the cycle (1.43)–(1.44)
also converts an oxygen atom to O2, thus eliminating a precursor of ozone, the real
loss of ozone molecules per absorbed photon is 2n.

1.6 Photochemical Kinetics

In the previous sections we provided some data about typical timescales of pho-
tochemical and photophysical phenomena. Actually it is useful to distinguish two
categories of time-dependent regimes, dynamics and kinetics. We can define dynam-
ics as the time evolution of the molecular properties that are all connected to the
time-dependent wavefunction. Then, in principle, all photoinduced processes, such
as structural changes or electronic transitions, belong to the realm of dynamics.
However, in many cases a single molecule or molecular aggregate does not undergo
any important change, apart from small thermal fluctuations, for long-time intervals.
This occurs, for instance, in gas phase, where a molecule can remain in a time-
independent state until a collision triggers a reaction event or a transition to another
state. Moreover, when slow and gradual transitions between two stationary states
take place, the probabilistic nature of quantum mechanics allows us to treat a large
sample as composed of molecules that still occupy the initial state andmolecules that
already populate the final one. If the reactive collisions or the population changes
occur according to well-defined rates, we can switch to kinetics and describe the
macroscopic phenomena by rate equations. Still, at molecular level, we shall need
dynamics for a detailed understanding of the processes and to compute their rates.
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This book is mainly devoted to dynamics, but we shall also present some basics of
photochemical kinetics in order to bridge the gap with the macroscopic description.

1.6.1 Excitation Rate

Themolecular excitation by light absorption, if the irradiance is not too high, consists
of relatively rare transitions to an excited state, the interval between two events being
much longer than the time needed for the molecule to get back to the ground state.
Let us consider a thin layer of any homogeneous material, crossed perpendicularly
by a beam of light. Each molecule in the layer has got a probability P(ν)dνdt of
absorbing a photon of frequency within the frequency interval [ν, ν + dν] during the
time dt . P is proportional to the number of photons that happen to be close to the
molecule during a time unit, i.e., to the spectral photon irradiance:

P(ν) dν dt = σ(ν) Iph,ν(ν) dν dt . (1.46)

Since both sides of this equation are pure numbers, σ is a surface area, called the
“absorption cross section” of the molecule. The cross section is not directly related
to any geometric section of the molecule and is usually much smaller, but it is an
extensive quantity (a protein molecule absorbs much more than a single amino acid).
For small molecules σ can be of the order of 10−20 m2 or much less, depending on
the frequency. In going through a layer of thickness dl, the rate of photon absorption
in the interval [ν, ν + dν] will be

N S dl P(ν) dν = N S dl σ(ν) Iph,ν(ν) dν (1.47)

where N is the number density of molecules, S is the considered layer surface, and
then NSdl is the number of molecules in that portion of the layer. Since this is a
fraction of the photons within the frequency interval dν that are going through the
surface S, we see that the irradiance decreases by

d Iph,ν = −N σ(ν) Iph,ν(ν) dl . (1.48)

This differential equation can be integrated to yield the expression of the irradiance
as a function of the length l of the pathway covered by the light in the absorbing
medium, called the “optical pathway”:

Iph,ν(ν, l) = Iph,ν(ν, 0) e−N σ(ν) l (1.49)

where Iph,ν(ν, 0) is the irradiance of the incident light. This is the Lambert–Beer law,
most often written in terms of molarity and energy irradiance, and with a base 10
exponential (instead of number density, photon irradiance, and base e, respectively):
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Iν(ν, l) = Iν(ν, 0) 10−M ε(ν) l . (1.50)

The units commonly used for l are cm, so the molar extinction coefficient ε(ν) is
expressed in mol−1L cm−1 and its relationship to σ is:

σ / m2 = Cε,σ ε / mol−1L cm−1 (1.51)

where the conversion factor is

Cε,σ = ln(10)

10NA
= 3.8235 · 10−25 . (1.52)

The absolute value of the exponent in the RHS of Eq. (1.50) is called absorbance (A
or sometimes A10 to specify that we are using a base 10 exponential):

A(ν) ≡ log10

(
Iν(ν, 0)

Iν(ν, l)

)
= M ε(ν) l . (1.53)

If more than one species absorbs at frequency ν, the expression of the absorbance
modifies to

A(ν) =
∑

K

MK εK (ν) l (1.54)

where MK and εK are the molarity and the extinction coefficient of the molecular
species K .

FromEq. (1.48) we obtain the rate at whichmolecules of the species K are excited
by photons in the range [ν, ν + dν], in a unit volume:

[Rexc,K (ν) dν] / m−3s−1 = NK σK (ν) Iph,ν(ν)dν . (1.55)

From here onward we drop the dependence of Iph,ν on the position in space that
can vary according to the irradiation conditions. Notice that the value of Iph,ν(ν)dν
is invariant versus the choice of units for ν: actually one can also replace ν with λ,
using Iph,λ(λ)dλ, as already discussed in Sect. 1.2.2. In the usual chemical units

[Rexc,K (ν) dν] / mol L−1s−1 = Cε,σ MK εK (ν) Iph,ν(ν)dν (1.56)

or
[Rexc,K (λ) dλ] / mol L−1s−1 = Cε,σ MK εK (λ) Iph,λ(λ) dλ . (1.57)

In order to obtain the total rate for a finite frequency interval we must integrate:

R(νa ,νb)
exc,K =

∫ νb

νa

Rexc,K (ν) dν =
∫ λa

λb

Rexc,K (λ) dλ (1.58)
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where of course λa,b = c/νa,b. In this expression the excitation rate Rexc,K con-
tains the factor MK (or NK if we use the molecular cross section). By dropping the
concentration factor we get a “rate constant”

J (νa ,νb)
exc,K / s−1 = Cε,σ

∫ νb

νa

εK (ν) Iph,ν(ν) dν . (1.59)

The excitation rate is then expressed like in thermal chemistry, as J (νa ,νb)
exc,K NK or

J (νa ,νb)
exc,K MK . If the radiation spectrum is limited to a sufficiently narrow bandwidth

[νa, νb], it is reasonable to define the weighted average of the extinction coefficient

εK =
∫ νb
νa

εK (ν) Iph,ν(ν) dν

Iph,tot
(1.60)

and analogously for the cross section σ K . Then, formally, the excitation rate constant
is simply the product of a molecular quantity times the total irradiance:

J (νa ,νb)
exc,K / s−1 = σ K Iph,tot = Cε,σ εK Iph,tot . (1.61)

1.6.2 Rates of Photochemical Reactions and Photophysical
Processes

To formulate the rate of a process triggered by photon absorption, we must decide
whether the excited state decay is fast or slow. In this context, fast means much
shorter than the time resolution afforded by the experimental equipment. If so, we
can resort to the approximation that after photon absorption the unimolecular primary
processes occur (almost) instantaneously. If fast transitions between different excited
states take place, in the kinetic treatment they can be overlooked too. The rate of a
fast process X is then simply determined by an integral of the absorption factor
σK (ν) Iph,ν(ν) times the quantum yield ΦX,K (ν). As in the case of the excitation
rates, we define a photochemical rate constant as

JX,K / s−1 = Cε,σ

∫ ∞

0
εK (ν) Iph,ν(ν) ΦX,K (ν) dν (1.62)

and the rate is obtained by multiplying JX,K by the concentration:

RX,K / m−3s−1 = JX,K NK (1.63)

RX,K / mol L−1s−1 = JX,K MK (1.64)
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We see that, once the spectrum of the exciting light is fixed, the photochemical rate
constant is proportional to the total irradiance.

Equation (1.62) can be simplified if the quantum yield is approximately constant
in the frequency interval [νa, νb] and vanishes elsewhere. This is rather common: for
instance, in gas phase the photodissociation quantum yield of a small molecule with
dissociation energy Ediss is almost one for ν > Ediss/h and drops to zero below this
threshold (see also the last part of Sect. 3.11). In such cases, we can write

JX,K 
 J (νa ,νb)
exc,K ΦX,K . (1.65)

When using monochromatic light of frequency νexc these relationships simplify
without approximations:

JX,K = J (νexc)
exc,K ΦX,K (νexc) = Cε,σ εK (νexc) Iph,tot ΦX,K (νexc) . (1.66)

For this reason, and for a better reproducibility, many experiments are performed
with monochromatic light.

The case in which the decay of the excited state(s) of molecule K is slow enough
as to be monitored with the available techniques calls for a kinetic treatment that
takes into account their transient populations. However, it is not always possible to
define a set of rate constants for the primary processes, because the excited state
dynamics may depend on a complex interplay of structural changes, energy transfer
to the environment and radiationless electronic transitions, as will be discussed in
Chaps. 4 and 5. A typical case in which the definition of rate constants for a kinetic
treatment is viable occurs when the electronically excited molecules can become
thermally equilibrated as to their nuclear degrees of freedom by interaction with the
environment. In condensed phase, this requires lifetimes much longer than 10 ps,
which are not uncommon.

As an example, it has became clear thanks to experimental and theoretical work
that the excited state dynamics of benzophenone is a rather complicated sequence
of fast transitions of IC and ISC type, involving S2 (the state connected with S0
by the strongest optical transition), S1, T2, and higher triplets (see [5, 8, 9] and
refs. therein). Almost 100% of the benzophenone molecules end up in the lowest
triplet state, T1. Then, a slow ISC to the ground state takes place, in competition
with phosphorescence emission. Given its high triplet quantum yield and the long
lifetime of its T1 state, benzophenone is a good triplet sensitizer. Triplet sensitization
is used to populate the triplet states of other molecules in which the ISC from singlet
to triplet states is not efficient. A further advantage is the possibility to irradiate with
longerwavelengths than those needed to directly excite the energy acceptor, when the
absorbing singlet states of the latter absorb at short wavelengths.Moreover, in certain
cases it may be convenient to bypass the singlet states of the acceptor, when they
would undergo undesired reactions. In Fig. 1.2 we show the Jablonski diagrams of
benzophenone and of naphthalene. The triplet quantum yield of the latter, in benzene
at 29 ◦C, is ΦT = 0.39 and that of phosphorescence is ΦP = 0.03. That means that
39% of the excited naphthalene molecules populate T1, while the others decay to
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Fig. 1.2 Jablonski diagrams: benzophenone and naphthalene

the ground state by IC and fluorescence emission. Moreover, only about 7% of the
molecules that populate T1 emit a photon instead of decaying to the ground state
by ISC. When adding benzophenone to the solution, the phosphorescence emission
of naphthalene becomes more intense and its ΦP increases. In optimal conditions,
i.e., by irradiating at λ = 366 nm, where only benzophenone absorbs, and with a
sufficiently high concentration of naphthalene, ΦP goes up to 0.07. In a series of
classical experiments, Lamola et al [9] showed that by linking in onemolecule the two
chromophores, the sensitization becomes very efficient. The alkyl chain connecting
benzophenone and naphthalene in the compound of Fig. 1.3 does not affect the optical
spectra of the chromophores. By irradiating at λ = 366 nm, benzophenone is excited
in the n → π∗ band but the phosphorescence spectrum is almost identical to that
of naphthalene. With λ = 313 nm, naphthalene is excited and the phosphorescence
spectrum is the same as before, but its quantum yield is higher than in naphthalene.
What happens is that the excitation is transferred first from S1 of naphthalene to S1
of benzophenone, and then from T1 of benzophenone to T1 of naphthalene. Since the
ISC of benzophenone is muchmore efficient than that of naphthalene, this alternative
pathway adds a significant contribution to the triplet quantum yield of naphthalene.
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Fig. 1.3 Benzophenone and
naphthalene chromophores
in one compound

1.6.3 Photoisomerization with Thermal Direct and Reverse
Reaction

Many compounds can exist in different isomeric forms that can be interconverted by
photochemical and/or thermal reactions. In the absence of light the thermal isomer-
izations produce a mixture of isomers at equilibrium. Here we shall consider two
isomers, A and B, of which A is the more stable. The photoisomerization

A
hν−→ B (1.67)

occurs with quantum yield ΦA→B and the thermal reactions

A −→ B (1.68)

and
B −→ A (1.69)

have rate constants KA→B and KB→A. Spiropyrans and spiroxazines are classes of
compounds which, in suitable conditions, only undergo these three reactions. The
less stable isomer B is an open ring form that absorbs visible light, whereas isomer
A only absorbs UV light. As a consequence, by exposure to a source of UV light,
including sunlight, a material containing such dyes becomes colored, while in the
dark it reverts to transparency. Because of this property they are used to manufacture
photochromic sunglasses (Fig. 1.4).

N O

X

colorless form

hν or Δ
Δ N

δ+

X

O δ−

colored form

X = CH: spiropyran
X = N: spiroxazine

Fig. 1.4 Examples of spiropyran and spiroxazine photochromic compounds
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The concentrations of A and B obey the kinetic law

−d [A]

dt
= d [B]

dt
= (JA→B + KA→B) [A] − KB→A [B] =

= (JA→B + KA→B + KB→A) [A] − KB→A Ctot

(1.70)

where Ctot indicates the sum of the A and B molarities, constant in time. As noted
in Sect. 1.6.2, the photochemical rate constant JA→B is proportional to Iph,tot . With
monochromatic light, JA→B = Cε,σ εA(νexc) Iph,tot ΦA→B(νexc). The general solu-
tion of this equation is

[A] = P e−t/τ + Q . (1.71)

By replacing [A] with this expression in Eq. (1.70) one finds

τ−1 = JA→B + KA→B + KB→A (1.72)

and

Q = KB→A Ctot τ = KB→A

JA→B + KA→B + KB→A
Ctot . (1.73)

While τ and Q are determined by the constants contained in Eq. (1.70), P depends
instead on the initial conditions, namely on the A concentration at t = 0, [A]0:

P = [A]0 − Q . (1.74)

For instance, if at t = 0 we have an equilibrium mixture, [A]0 = Ctot KB→A/

(KA→B + KB→A). Q is the asymptotic concentration of A that is approached when
t � τ in what is called the “photostationary state.” The asymptotic concentration
ratio is

[B]∞
[A]∞

= JA→B + KA→B

KB→A
. (1.75)

JA→B can be increased either by using a higher irradiance, or a wavelength at
which the product εAΦA→B is larger. As a result, the conversion of A to B at any
time is more complete and the photostationary state is approached faster, i.e., τ

is smaller (see Fig. 1.5). In the photostationary state, which can be very far from
the thermodynamic equilibrium, the photochemical and thermal rates compensate
each other: (JA→B + KA→B) [A] = KB→A [B]. When the light is switched off the
system reverts to equilibrium with a similar first-order kinetics, but more slowly
(τ−1

therm = KA→B + KB→A).
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Fig. 1.5 Photoisomerization kineticswith thermal direct and reverse reaction. The time dependence
of the ratio [B]/ ([A] + [B]) is plotted for two values of the irradiance, the higher one double than
the lower one. The irradiation is switched off after 150 s. The dashed lines show the photostationary
value of the ratio that would be reached after a long irradiation

1.6.4 Reversible Photoisomerization

When the photoisomerization does not change substantially the electronic structure,
as in the cis–trans isomerization, usually both isomers absorb light and react photo-
chemically in similar ways. If the thermal reaction rates can be neglected, the kinetic
equation is

− d [A]

dt
= d [B]

dt
= JA→B [A] − JB→A [B] = (JA→B + JB→A) [A] − JB→A Ctot .

(1.76)
This equation has the same structure as (1.5): the main difference consists in the
physical meaning of the JB→A constant. The general solution is still given by Eq.
(1.71), with P = [A]0 − Q, but

τ−1 = JA→B + JB→A (1.77)

and

Q = JB→A

JA→B + JB→A
Ctot . (1.78)

The reaction lifetime τ is now inversely proportional to the irradiance, while the
asymptotic concentration ratio is independent on the irradiance:

[B]∞
[A]∞

= JA→B

JB→A
= εAΦA→B

εBΦB→A
. (1.79)
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Fig. 1.6 Kinetics of trans → cis and cis → trans azobenzene photoisomerization in methanol.
The solution is irradiated alternatively with λ = 334 nm and λ = 436 nm for periods of 200 s. The
irradiance at λ = 436 nm is twice that at λ = 334 nm, to compensate for the lower absorption. The
concentrations are computed from the following data: at λ = 334 nm, εtrans=16980 M−1 cm−1,
εcis=1100 M−1 cm−1, Φtrans→cis=0.15, Φcis→trans=0.30; at λ = 436 nm, εtrans=490 M−1 cm−1,
εcis=1140 M−1 cm−1; Φtrans→cis=0.22, Φcis→trans=0.63 (from Gauglitz et al [10]). The dashed
lines indicate the asymptotic fraction of the cis isomer that would be obtained for the given λexc

Therefore, the only way to change the asymptotic composition of the isomeric mix-
ture is to change the excitation wavelength, i.e., the extinction coefficients εA and εB .
Notice that also the quantum yields depend on λ, but normally to a lesser extent. In
Fig. 1.6 we show how trans- and cis-azobenzene can be reversibly interconverted
by using UV and visible light.

Problems

1.1 Compute the energy, in kJ/mol, of an infrared photon with frequency 1500 cm−1

and of a visible photon with wavelength 500 nm.

1.2 Compare the irradiance of sunlight in the visible part of the spectrum (about
500 W/m2 in a clear day) with: (1), the irradiance of a 1 mW He–Ne laser with a
beam diameter of 1mm and, (2) the irradiance of a 100W tungsten lamp at a distance
of 2 meters, assuming that 2% of its power is converted into visible light.

1.3 Amolecule is exposed to monochromatic light with λ = 500 nm and irradiance
100W/m2. How frequently does it absorb a photon, if its molar absorption coefficient
at 500nm is ε = 1000 mol−1 L cm−1?
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1.4 The chlorofluorocarbons are photodissociated in the stratosphere only when
they reach an altitude where UV light with sufficiently short wavelengths is present.
CCl3CF3 does not absorb significantly at λ > 220 nm. The C-Cl dissociation energy
is about 330 kJ/mol. Are short wavelengths needed for the photodissociation because
of the absorption spectrum of CCl3CF3 or because of the C-Cl bond strength?

1.5 Compute the lifetimes of T1 and S1 of benzophenone and its phosphorescence
quantum yield. The same for naphthalene, with the addition of its fluorescence quan-
tum yield. Use the lifetime of each process indicated in Fig. 1.2 (remember that the
inverse of a lifetime is the rate constant of the process).

1.6 In the example of photochromic reaction kinetics discussed in Sect. 1.6.3, sup-
pose the experiment with high irradiance is repeated at a higher temperature, so that
KA→B increases by 80% and KB→A by 50%. Based on the data that can be inferred
from Fig. 1.5, which fraction of B is expected at 150 s?
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Chapter 2
Molecular States

Abstract This chapter will introduce the quantum mechanical equation of motion,
i.e., the time-dependent Schrödinger equation. We will show how the separation of
variables can be exploited to partition the molecular wavefunction in translational,
rotational, vibrational, and electronic components, with special emphasis on the
Born–Oppenheimer approximation and its breakdown. We shall then provide an
overview of the electronic structure and reactivity of excited states commonly found
in organic molecules.

Keywords Molecular states · Born · Oppenheimer approximation
Electric excited states · Photochemical reactions

2.1 The Time-Dependent Schrödinger Equation

In the first sections of this chapter we develop the quantum mechanical theory of
molecular states. The basic physical principles can be found in any textbook of
quantum mechanics, for instance in Merzbacher [1] or Sakurai and Napolitano [2].
For more chemical approaches, see Atkins and Friedman [3] or Levine [4] among
others. Good introductions to excited states and the theory of photochemistry are
Michl and Bonačić-Koutecký [5] and Klessinger and Michl [6].

In nonrelativistic quantum mechanics the time evolution of a physical system is
given by the time-dependent Schrödinger equation (TDSE):

i�
dΨ (x, t)

dt
= ĤΨ (x, t) (2.1)

where Ĥ is the Hamiltonian operator. The physical state of the system is described
by the wavefunction Ψ , which depends on time t and on the collection of spatial and
spin coordinates x of all the particles belonging to the system.
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The Hamiltonian operator is linear, as most of the other operators that appear
in this book. That is: Ĥ(c1Ψ1 + c2Ψ2) = c1 ĤΨ1 + c2 ĤΨ2, where c1 and c2 are
complex coefficients. Therefore, the TDSE is also linear, which has a very important
consequence: a linear combination of distinct solutions of the TDSE is still a solution.
This is the superposition principle.

The quantity |Ψ (x, t)|2 dx is proportional to the probability of finding the system
in the interval of coordinates dx. More precisely, for each particle i we consider
an infinitesimal volume dr3i and a given value of the z spin component si . We can
integrate |Ψ (x, t)|2 over the whole range of each space coordinate and sum over all
the allowed spin values. This operation can be for simplicity indicated as an integral
over the vector x or, in Dirac’s notation (see Appendix B), as the scalar product of
state |Ψ 〉 with itself:

I =
∫
all space

|Ψ (x, t)|2 dx ≡ 〈Ψ |Ψ 〉 (2.2)

If I is a finite quantity,Ψ (x, t) can be divided by the factor
√
I (thanks to the linearity

of the TDSE), obtaining a normalized wavefunction Ψ ′ = I−1/2 Ψ . In that case,

〈
Ψ ′ ∣∣Ψ ′ 〉 = I−1 〈Ψ |Ψ 〉 = 1 (2.3)

and ρ(x, t) = ∣∣Ψ ′(x, t)
∣∣2 exactly corresponds to the probability density of finding

the system in x.
Contrary to what happens in classical mechanics, the TDSE is first order in the

time derivative. Therefore, once the wavefunction has been specified at some time
t0, the physical state of the system is univocally determined at any t . In particular,
Ψ (x, t0) is easily propagated to an infinitesimally close time t0 + dt

Ψ (x, t0 + dt) = Ψ (x, t0) + dΨ (x, t0)
dt

dt

= Ψ (x, t0) − idt

�
Ĥ(t0)Ψ (x, t0)

= Û (t0, t0 + dt)Ψ (x, t0)

(2.4)

where only the first-order terms in dt have been retained and

Û (t0, t0 + dt) = 1 − idt

�
Ĥ(t0) (2.5)

is the infinitesimal time evolution operator from time t0 to t0 +dt . The above expres-
sion for Û (t0, t0 + dt) is generally valid, even for a time-dependent Hamiltonian.
Note that the wavefunction Ψ (x, t) is inherently a complex-valued quantity: In fact,
as Û (t0, t0 + dt) contains the imaginary unit, even if we start with a real Ψ at t0, it
will become complex at later (or previous) times.
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2.1.1 Observables

Let X̂ be a linear operator. Its adjoint X̂† is defined by requiring that the equality

∫
all space

ψ∗ X̂†φdx =
∫
all space

φ∗ X̂ψdx (2.6)

is valid for any pair of wavefunctions φ and ψ . In Dirac notation:

〈
ψ

∣∣∣X̂†
∣∣∣φ
〉
=
〈
φ

∣∣∣X̂
∣∣∣ψ
〉

∀ φ,ψ . (2.7)

An operator X̂ is said to be Hermitian if X̂ = X̂†, or equivalently

〈
ψ

∣∣∣X̂
∣∣∣φ
〉
=
〈
φ

∣∣∣X̂
∣∣∣ψ
〉∗ ∀ φ,ψ . (2.8)

The complex number λ is an eigenvalue of X̂ if X̂φ = λφ, and φ is the corresponding
eigenfunction. The spectrum of an operator is the full set of its eigenvalues. For a
Hermitian operator we have that the eigenvalues are real numbers and the eigenvec-
tors are mutually orthogonal (or at least they can be chosen so as to be orthogonal)
and represent a basis for the vector space on which the operator is defined.

In quantum mechanics a physical observable is associated with a Hermitian oper-
ator. For example, for position x̂ , linear momentum p̂x and kinetic energy T̂ we
have:

x̂ = x p̂ = −i�
∂

∂x
T̂ = − �

2

2m
∇2 . (2.9)

The spectrum of a Hermitian operator X̂ can be discrete, Eq. (2.10), or continuous,
Eq. (2.11):

X̂φi = λiφi i = 1, 2, . . . (2.10)

X̂φλ = λφλ λ ∈ R . (2.11)

The eigenfunctions of an observable Ô with a discrete spectrum are normalizable in
the sense ofEq. (2.3),while those of an observablewith a continuous spectrum require
a different normalization because the integral (2.2) does not exist (see Appendix C).
In fact, a wavefunction is normalizable only if it tends to zero when any space coor-
dinate takes values far from a limited interval (“bound state”): but this requirement
is satisfied only by some “special” eigenfunctions (those satisfying the boundary
conditions), making the spectrum discrete.

We now consider a system in a physical state described by the normalized wave-
function Ψ (t), and an observable Ô with a discrete spectrum: Ôφi = λiφi . We
assume that Ô is not explicitly dependent on time. We choose the eigenfunctions φi

to be orthonormal, i.e.,
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〈
φi

∣∣φ j
〉 = δi j . (2.12)

The wavefunction Ψ (t) can be expanded on the basis of the eigenfunctions of Ô:

Ψ (t) =
∑
i

ci (t)φi (2.13)

and exploiting Eq. (2.12) we have ci (t) = 〈φi |Ψ 〉. Assuming thatΨ (t) is normalized
we have

∑
i |ci (t)|2 = 1. The averaged measured value of the observable is the

expectation value:

〈
Ψ

∣∣∣Ô
∣∣∣Ψ
〉
=
∑
i, j

ci (t)
∗c j (t)

〈
φi

∣∣∣Ô
∣∣∣φ j

〉

=
∑
i

|ci (t)|2 λi .
(2.14)

Note that
〈
Ψ

∣∣∣Ô
∣∣∣Ψ
〉
is a real quantity. According to the quantum theory of measure-

ment, a single determination of the observable Ô can only give one of its eigenvalues
λi and |ci (t)|2 is the probability of finding the system in the eigenstate φi .

If the observable Ô has a continuous spectrum, Ôφλ = λφλ, its eigenvectors
cannot be normalized as the integral 〈φλ |φλ 〉 diverges. However, a different normal-
ization condition may be imposed:

〈φλ |φλ′ 〉 = δ(λ − λ′) (2.15)

where δ(x) is the Dirac delta function; see Appendix C. In this way we have, for a
normalized wavefunction Ψ (t)

Ψ (t) =
∫

c(λ, t)φλdλ

c(λ, t) = 〈φλ |Ψ 〉
〈Ψ |Ψ 〉 = 1 =

∫
|c(λ, t)|2 dλ

(2.16)

and the expectation value is

〈
Ψ

∣∣∣Ô
∣∣∣Ψ
〉
=
∫∫

c(λ, t)∗c(λ′, t)
〈
φλ

∣∣∣Ô
∣∣∣φλ′

〉
dλdλ′

=
∫

|c(λ, t)|2 λdλ .

(2.17)

Similar to the discrete case, |c(λ, t)|2 is the probability density of finding the system
in the eigenstate ψλ.
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An important example is offered by linear momentum. The eigenvalue equation
for p̂x is

− i�
∂φp(x)

∂x
= pφp(x) (2.18)

which is solved by the plane waves φp = Aeipx/�, with p ∈ (−∞,+∞). Note that a
complex value of p would give divergent eigenvectors, physically inacceptable. The
constant A is determined requiring

∫ +∞

−∞
φ∗
p(x)φp′(x)dx = δ(p − p′) . (2.19)

Remembering that, from Fourier analysis

δ(x) = 1

2π

∫ +∞

−∞
eikxdk (2.20)

we get A = 1/
√
2π�. Therefore

φp(x) = eipx/�

√
2π�

. (2.21)

According to (2.16), a normalized wavefunction Ψ (x, t) can be written as

Ψ (x, t) =
∫ +∞

−∞
Ψ̃ (p, t)

eipx/�

√
2π�

dp (2.22)

and
∣∣∣Ψ̃ (p, t)

∣∣∣2 dp is the probability of finding the momentum in the interval

[p, p+dp] at time t . So, Ψ̃ (p, t) corresponds to the wavefunction in the momentum
representation. Note that we have as well

Ψ̃ (p, t) =
∫ +∞

−∞
Ψ (q, t)

e−ipx/�

√
2π�

dx . (2.23)

Moreover from Eq. (2.16):

∫ +∞

−∞
|Ψ (x, t)|2 dx =

∫ +∞

−∞

∣∣∣Ψ̃ (p, t)
∣∣∣2 dp (2.24)

which is consistent with the fact the norm is conserved by a Fourier transform.
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2.1.2 Stationary States

The eigenvalue equation for the Hamiltonian operator:

Ĥψk = Ekψk (2.25)

is called time-independent Schrödinger equation, and the corresponding eigenvectors
are the stationary states. We assume here that Ĥ is not directly dependent on time
(otherwise, the concept of stationary state would be meaningless). In that case the
TDSE is formally solved by Ψ (t) = Û (t0, t)Ψ (t0), where

Û (t0, t) = e−i(t−t0)Ĥ/� (2.26)

is the time evolution operator for the finite time interval t − t0. We stress here that
the above equation is only valid if Ĥ is time independent. It is clear from Eq. (2.1)
that the stationary states play a very important role. If the system considered, at a
given time t0, is found on ψk , so that Ψ (t0) = ψk , we have

Ψ (t) = e−iEk (t−t0)/�ψk (2.27)

as it may be readily verified by using the time evolution operator or by direct sub-
stitution in the TDSE. Therefore, the time evolution of ψk is just a time-dependent
phase factor: when the system is in a stationary state, the probability density |Ψ |2
and the other measurable quantities are constant in time. Moreover, the TDSE with
the initial condition Ψ (t = 0) ≡ Ψ (0) is solved by

Ψ (t) =
∑
k

〈ψk |Ψ (0) 〉 e−iEk t/�ψk (2.28)

so that the knowledge of the stationary states allows to easily obtain the time evolution
of the system.

Using Eq. (2.28) we see that the mean value of energy is conserved, i.e., constant
in time:

〈
Ψ

∣∣∣Ĥ
∣∣∣Ψ
〉
=
∑
k,l

〈ψk |Ψ (0) 〉∗ 〈ψl |Ψ (0) 〉 e−i(El−Ek )t/�

〈
ψk

∣∣∣Ĥ
∣∣∣ψl

〉

=
∑
k

|〈ψk |Ψ (0) 〉|2 Ek

(2.29)

where we have exploited Eq. (2.25) and the orthonormality of the stationary states.
Moreover, the probability of measuring energy Ek , which is |〈ψk |Ψ (0) 〉|2, is also
invariant in time. This means the distribution of energy values obtained by a large
number of measurements on a system always prepared in the same state at time t = 0
is independent on the elapsed time.
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By the same argument, a physical observable is conserved if its associated operator
Ô is not directly dependent on time and has a common set of eigenvectors with
Ĥ , which corresponds to say that [Ĥ , Ô] = 0. Therefore, an observable which
commutes with the Hamiltonian is a constant of motion, otherwise its mean value
evolves as

〈
Ψ

∣∣∣Ô
∣∣∣Ψ
〉
=
∑
k,l

〈ψk |Ψ (0) 〉∗ 〈ψl |Ψ (0) 〉 e−i(El−Ek )t/�

〈
ψk

∣∣∣Ô
∣∣∣ψl

〉
. (2.30)

In the general case in which the Hamiltonian has both a discrete and a continuous
spectra, Eq. (2.28) generalizes to

Ψ (t) =
∑
k

〈ψk |Ψ (0) 〉 e−iEk t/�ψk +
∫

〈ψE |Ψ (0) 〉 e−iEt/�ψE dE (2.31)

where we have assumed the normalization condition 〈ψE |ψE ′ 〉 = δ(E − E ′) (see
Appendix C).

2.2 Molecular Dynamics and the Separation of Variables

In the previous section we have seen that the TDSE is easily solved if the eigenstates
of the Hamiltonian are known. In this sense, the complete solution of the eigenvalue
Eq. (2.25) allows to determine in full the dynamic behavior of amolecular system. Let
us consider a molecule with Nn nuclei and Ne electrons. The molecular Hamiltonian
is

Ĥmol = T̂n + T̂e + Vel + V̂s (2.32)

T̂n = −
Nn∑
α

�
2

2Mα

∇2
α T̂e = − �

2

2me

Ne∑
i

∇2
i (2.33)

where index α runs on nuclei and i on electrons, and Mα and me are nuclear and
electronicmasses, respectively. T̂n and T̂e constitute the nuclear and electronic kinetic
energy, while Vel+ V̂s represents the electromagnetic interaction among the particles.
In particular, the multiplicative operator Vel is the electrostatic interaction

Vel = e2

4πε0

⎡
⎣ Ne∑

i< j

1∣∣ri − r j

∣∣ −
Ne∑
i

Nn∑
α

Zα

|ri − Rα| +
Nn∑

α<β

ZαZβ∣∣Rα − Rβ

∣∣
⎤
⎦ (2.34)

where Zα are the atomic numbers and −e is the electronic charge. The operator V̂s

represents smaller interaction terms, depending on the spins of electrons and nuclei,
some of which are important in photochemistry, as it will be discussed in Sect. 2.4.
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However, neglecting V̂s one is left with the electrostatic Hamiltonian

Ĥmol,SF = T̂n + T̂e + Vel (2.35)

where the subscript SF stands for “spin free.” Even with this simplification, to
solve the eigenvalue equation for the molecular Hamiltonian represents a formidable
task, which may be undertaken as such only for a very small number of particles.
It is therefore necessary to introduce some simplifications, which are based on the
concept of separation of variables. As we shall see in this chapter, this concept is
particularly important because of the physical representation of a molecular system
and of its dynamics that it provides.

2.2.1 Independent Variables

We consider a Hamiltonian operator which is dependent on two groups of variables
Ĥ(x, y). If we have Ĥ(x, y) = ĤA(x) + ĤB(y), the variables x and y are separable:
the probability density to find the system in x is independent on y and vice versa.
In fact, if ψA,i are the eigenstates of ĤA, so that ĤA(x)ψA,i (x) = EA,iψA,i (x), and
similarly for ĤB(y), the stationary states ψi j are given by the products ψA,iψB, j

Ĥ(x, y)ψi j (x, y) = (ĤA(x) + ĤB(y))ψA,i (x)ψB, j (y)

= (EA,i + EB, j )ψi j (x, y) .
(2.36)

In this way, in the stationary state ψi j the probability density for finding the system
in x, y is the product of the probabilities for x and y

∣∣ψi j (x, y)
∣∣2 = ∣∣ψA,i (x)

∣∣2 ∣∣ψB, j (y)
∣∣2 (2.37)

which confirms that the two events are mutually independent.
The same is true for a time-dependent state, if the wavefunction at a given time

t = 0 is the product of two factors, one dependent on x and the other on y:

Ψ (x, y, 0) = ΨA(x)ΨB(y)

=
[∑

i

AiψA,i (x)

]⎡
⎣∑

j

B jψB, j (y)

⎤
⎦ (2.38)

where Xi = 〈
ψX,i |ΨX

〉
, with X = A, B. By applying the time evolution operator

(2.26) we see that the separation of the variables is preserved in time



2.2 Molecular Dynamics and the Separation of Variables 33

Ψ (x, y, t) =
[∑

i

AiψA,i (x)e−iEA,i t/�

]⎡
⎣∑

j

B jψB, j (y)e−iEB, j t/�

⎤
⎦ . (2.39)

Note that, if x and y are not separable, it is always possible to write Ĥ(x, y) =
ĤA(x)+ ĤB(y)+ ĤAB(x, y), and since the eigenvectors of ĤA and ĤB have anyway
to represent complete sets we may write

Ψ (x, y, 0) =
∑
i j

Ci jψA,i (x)ψB, j (y) (2.40)

where Ci j = 〈
ψA,iψB, j |Ψ

〉
. To put the above equation in the form of (2.38) one

would have to evaluate the coefficients Ai and Bj in such a way that Ai B j = Ci j .
But that system has, in general, no solution (more equations than unknowns).

As a simple example of separation of variables we may consider two molecules,
A and B, very far from each other so that they do not interact. Then, the total Hamil-
tonian is just the sum of the molecular Hamiltonians of A and B. The wavefunctions
are products as in Eq. (2.36) or (2.39): molecule A behaves in a way that is com-
pletely independent to what happens to B and vice versa. Moreover, their energies
are separately conserved. However, if A and B get closer, their mutual interaction
is no longer negligible, so the time-dependent wavefunction is not in the form of
Eq. (2.39). Nevertheless, if the coupling between A and B is small, it may be treated
as a perturbation, taking the products ψA,i (x)ψB, j (y) as zero-order stationary states.
If the system, at time t = 0, is found in one of these zero-order states, it will evolve in
time, populating the other states. This means that energy can be exchanged between
A and B: an energy transfer between systems that are approximately independent,
but coupled by a small perturbation, is typically governed by the Fermi golden rule
(see Sect. 3.11 and Chap.6).

2.2.2 Separation of Translation and Rotation

The state of an isolated molecule does not change if the system as a whole (or,
equivalently, the fixed reference frame) is translated or rotated. In other words, the
molecular Hamiltonian is invariant with respect to rotations and translations so that it
commutes with the respective operators, which are represented by the total linear and
angular momentum P̂ and Ĵ (generators of infinitesimal translations and rotations,
respectively). As a consequence, P and J are conserved quantities, as much as in
classical mechanics (for the relationship between infinitesimal transformations and
constants of motion, see for instance, Merzbacher [1]).

The translational invariance, which implies the conservation of the total momen-
tum, leads to the separation of the center of mass coordinates. To this aim, a transfor-
mation of the Cartesian coordinates of electrons and nuclei has to be done. As such
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a transformation does not mix the different Cartesian components x , y, and z among
them, we will show it for x only. In particular, we consider a generic system of N
particles with coordinates xa and masses ma . We define, in matrix notation

⎡
⎢⎢⎢⎣

XCM

x ′
2
...

x ′
N

⎤
⎥⎥⎥⎦ = A

⎡
⎢⎢⎢⎣

x1
x2
...

xN

⎤
⎥⎥⎥⎦ (2.41)

with

A =

⎡
⎢⎢⎣

m1
M

m2
M . . . mN

M

B

⎤
⎥⎥⎦ . (2.42)

Here XCM is the center of mass coordinate, M = ∑
a ma is the total mass, and B

is a (N − 1) × N matrix of constant coefficients. We want x ′
2, . . . , x

′
N to represent

internal coordinates: they must be invariant in a translation. Imposing that the x ′
a are

unaltered when the xa are changed to xa + Δx we obtain the following relations for
the rows of B

N∑
a=1

Bba = 0 ∀b = 1, . . . , N − 1 (2.43)

The interaction terms Vel and V̂s in the molecular Hamiltonian are functions of the
relative positions of the particles. Hence, they do not depend on the center of mass
coordinates. For the kinetic energy T̂ we first observe that, using the chain rule for
differentiation

∇x = At∇x ′ (2.44)

where ∇x is a column vector collecting the terms ∂/∂xa and

∇ t
x ′ =

(
∂

∂X ′
CM

,
∂

∂x ′
2

, . . . ,
∂

∂x ′
N

)
. (2.45)

The superscript t indicates transposition of vectors and matrices. Then

T̂ = −�
2

2
∇ t

xM
−1∇x = −�

2

2
∇ t

x ′AM−1At∇x ′ (2.46)

whereM is a diagonal matrix withMaa = ma .We note at this point that (AM−1)1a =
1/M . Using this relation and Eq. (2.43) we obtain

(AM−1At )1b = 0 ∀b = 2, . . . , N (2.47)
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so that the kinetic energy does not contain terms coupling XCM with the other coor-
dinates x ′

b. In particular we have

T̂ = − �
2

2M

∂2

∂X2
CM

− �
2

2

N∑
b=2

N∑
a=1

B2
b′a
ma

∂2

∂x ′2
b

− �
2
N−1∑
c=2

N∑
b>c

N∑
a=1

Bb′a Bc′a

ma

∂

∂x ′
b

∂

∂x ′
c

(2.48)
where for the indices of thematrixBwe used the shorthand b′ = b−1 and c′ = c−1.
The matrix B may be determined (not univocally) requiring that

N∑
a=1

Bba Bca

ma
= 0 for b �= c (2.49)

so as to avoid cross terms in the kinetic energy (last termofEq. (2.48)). Themain prob-
lem in this way to proceed for a molecule is that such kind of transformation would
mix the electronic and the nuclear coordinates, which is definitely not desirable,
because it would complicate the expression of the potential energy. What is usually
done instead is to mix only the nuclear coordinates among them in such a way that
Eq. (2.49) is satisfied. The new electronic coordinates are then defined with respect to
the center of mass of the nuclei alone. In this way the distinction between nuclei and
electrons is preserved. Moreover, the kinetic energy does not contain nuclear/nuclear
and nuclear/electronic cross terms, but just a small electronic/electronic cross term,
usually neglected.

In any case, whatever the choice of B (giving for granted that condition (2.43)
is fulfilled), the above procedure allows to separate the center of mass coordinates
RCM from the other (internal) ones. We have then

Ĥmol(RCM ,qint ) = − �
2

2M

(
∂2

∂X2
CM

+ ∂2

∂Y 2
CM

+ ∂2

∂Z2
CM

)
+ Ĥmol,int (qint ) (2.50)

where qint collectively labels the 3(Nn + Ne − 1) internal coordinates. A stationary
state ψ may therefore be written as a product

ψ = eiP·RCM/�

(2π�)3/2
ψint (qint ) (2.51)

where Ĥmol,intψint = Eintψint , and the corresponding energy is given by the sum

E = P2

2M
+ Eint . (2.52)

The rotational invariance of themolecular Hamiltonian entails the conservation of
total angular momentum. However, it is not possible to separate exactly the rotational
motion. Let us consider a Cartesian reference system centered in the center of mass
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of the molecule. To separate the rotational motion one has first to define a vector
ω representing the angular velocity of rotation of the whole molecule, which plays
the same role as ṘCM for translations, and then to set up a reference frame rotating
at angular velocity ω. If the system is formed by only two particles, the vector ω is
easily defined, because in the reference frame centered in the center of mass, the two
particles necessarily rotate at the same angular velocity ω = J/μr2, where μ is the
reduced mass and r is the interparticle distance. Of course, in general we may always
define ω in such a way that J = Iω, where I is the inertia tensor. However, I is not
known a priori: its form depends on the positions of all the particles constituting the
molecular system. Therefore, apart from the simple case of a two-particle system, the
rotational motion cannot be separated exactly. An approximate separation is however
possible: we shall come back on this point in Sect. 2.5.

2.3 The Born–Oppenheimer Approximation and Its
Breakdown: The Nonadiabatic Couplings

In a molecule, the interaction between electrons and nuclei is never negligible. In
fact, at least in bound states it is the Hamiltonian term with the largest mean value
in module. As a consequence, the complete separation of nuclear and electronic
variables is not possible, not even approximately. However, the electron mass is at
least three orders ofmagnitude smaller than the nuclearmasses, so that the timescales
for the respective motions are different (femtoseconds for nuclei and attoseconds for
electrons). This entails a different kind of separation of variables. We start observing
that a given eigenfunction ψ(r,R) of the molecular Hamiltonian can always be
written in this way

ψ(r,R) = ϕ(r;R)χ(R) (2.53)

where r andR collect the electronic and nuclear Cartesian coordinates, respectively.
For the sake of simplicity the dependence on spin, which does not play a relevant
role in this context, is omitted. We also assume that ψ is normalized. In the above
equation ϕ and χ are, respectively, electronic and nuclear wavefunctions. In fact,
we want |χ(R)|2 to be the probability density to find the nuclei in R, which can be
obtained by integrating |ψ(r,R)|2 with respect to the electronic coordinates:

|χ(R)|2 =
∫ +∞

−∞
|ϕ(r;R)χ(R)|2 dr31 . . . dr3Ne

. (2.54)

This identity requires ϕ(r;R) to be normalized for any fixed set of nuclear coordi-
nates:

〈ϕ |ϕ 〉r = 1 ∀ R . (2.55)
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Here and in the following, a subscript added to a bracket expression indicates the
integration variables, when needed for clarity. Moreover, |ϕ(r;R)|2 (which is given
by the ratio |ψ |2 / |χ |2) represents the probability density to find the electrons in r,
once the nuclei have been fixed in the positionsR: it is then a conditional probability.
Note that ϕ(r;R) is by no means a nuclear wavefunction, but of course it depends
parametrically on the nuclear coordinates R.

The Born–Oppenheimer (BO) approximation consists in assuming specific forms
of the electronic and the nuclear wavefunctions, consistent with the above require-
ments (2.54) and (2.55). In particular, the electronic wavefunctions are defined as
the eigenfunctions of the electronic Hamiltonian Ĥel :

Ĥel = Ĥmol − T̂n = T̂e + Vel + V̂s (2.56)

Ĥel(r,R)ϕk(r;R) = Uk(R)ϕk(r;R) (2.57)

whereUk(R) is the electronic energy and k is the index enumerating the eigenstates.
The energies and wavefunctions so defined are called “adiabatic.” Since Ĥel is Her-
mitian, we can require 〈ϕk |ϕl 〉r = δkl . Given that the electronic motion is much
faster than the nuclear one, it is assumed that the electronic energy Uk plays the
role of potential energy surface for the nuclear motion. In particular, the nuclear
wavefunctions belonging to the electronic potential energy surface (PES)Uk(R) are
determined as eigenfunctions of the nuclear Hamiltonian Ĥ (k)

n

Ĥ (k)
n = T̂n +Uk (2.58)

Ĥ (k)
n (R)χkv(R) = Ekvχkv(R) (2.59)

where v is the index enumerating the nuclear (vibrational) states and Ekv is the total
energy. In the above, R represents the 3Nn Cartesian coordinates of the nuclei, or
the 3Nn − 6 internal coordinates, after separation of translations and rotations. In
the latter case Mα have to be replaced by the relevant reduced masses in T̂n , and
we assume anyway that the internal coordinates are fixed and orthogonal (i.e., they
verify Eqs. (2.41) and (2.49)), so that T̂n keeps the diagonal form of Eq. (2.33).

Within the BO approximation, a given eigenstate of the molecular Hamiltonian is
equal to the “vibronic” product ϕk(r;R)χkv(R), and the corresponding energy is Ekv

(see Eqs. (2.57) and (2.59)). To judge about the quality of the BO approximation, let
us evaluate the matrix elements of Ĥmol between BO functions. We have

〈
ϕlχlu

∣∣∣Ĥmol

∣∣∣ϕkχkv

〉
=
〈
χlu

∣∣∣
〈
ϕl

∣∣∣T̂n + Ĥel

∣∣∣ϕk

〉
r

∣∣∣χkv

〉
R

=
〈
χlu

∣∣∣
〈
ϕl

∣∣∣T̂n
∣∣∣ϕk

〉
r
+Ukδkl

∣∣∣χkv

〉
R

=
〈
χlu

∣∣∣V̂ BO
kl + (T̂n +Uk)δkl

∣∣∣χkv

〉
R

=
〈
χlu

∣∣∣V̂ BO
kl

∣∣∣χkv

〉
R

+ Ekvδlkδuv

(2.60)
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where we have exploited Eqs. (2.57) and (2.59). The form of the operators V̂ BO
kl can

be obtained observing that, if both ϕ and χ depend on x :

∂2ϕχ

∂x2
= ∂2ϕ

∂x2
χ + 2

∂ϕ

∂x

∂χ

∂x
+ ϕ

∂2χ

∂x2
. (2.61)

We have therefore

V̂ BO
kl = −

∑
α

�
2

2Mα

[
t (α)
kl + 2g(α)

kl

∂

∂Rα

]
(2.62)

where

g(α)
kl (R) =

〈
ϕk

∣∣∣∣ ∂

∂Rα

∣∣∣∣ϕl

〉
t (α)
kl (R) =

〈
ϕk

∣∣∣∣ ∂2

∂R2
α

∣∣∣∣ϕl

〉
(2.63)

are the α components of the nonadiabatic coupling vectors gkl and tkl . If the nona-
diabatic couplings are small, the off-diagonal terms of Ĥmol in the basis represented
by the BO functions ϕkχkv will also be small (see Eq. (2.60)), and the products ϕkχkv

will be good approximations of stationary states. In that case, from the point of view
of the time evolution, if the molecular system is found at a given time on the elec-
tronic state ϕk , it will stay on ϕk , and the time evolution of the nuclei will be ruled
by the potential energy surface Uk(R).

2.3.1 Properties of Nonadiabatic Couplings

We start noting that the matrix of nonadiabatic couplings g(α) is anti-Hermitian. We
have in fact:

gkl + g∗
lk = 〈ϕk |∇Rϕl 〉 + 〈∇Rϕk |ϕl 〉 = ∇R 〈ϕk |ϕl 〉 = 0. (2.64)

If spin terms are neglected, the electronic Hamiltonian is real and its wavefunctions
can always be chosen as real. Then, gkl is antisymmetric and gkk = 0.

The term tkl containing the second derivatives is, in general, neither symmetric
nor antisymmetric; its diagonal elements tkk merely represent a modification of the
adiabatic energies Uk . In particular, by replacing Uk with

U ′
k = Uk −

∑
α

�
2

2Mα

t (α)
kk (2.65)

in the nuclear Hamiltonian Ĥ (k)
n , one has V̂ BO

kk = 0, at least for real electronic
functions. Therefore, the BO interaction only couples vibronic wavefunctions ϕkχkv

and ϕlχlu belonging to different electronic states (k �= l). By deriving g(α)
kl with
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respect to Rα we get a relation involving the second derivative coupling

t (α)
kl = ∂g(α)

kl

∂Rα

−
〈
∂ϕk

∂Rα

∣∣∣∣ ∂ϕl

∂Rα

〉
(2.66)

which can be recast in the following form

t (α)
kl = ∂g(α)

kl

∂Rα

+
∑
m

g(α)
km g

(α)
ml (2.67)

where the index m runs over a complete set of adiabatic states. In a region where the
adiabatic states ϕk depend smoothly on R, both gkl and a fortiori tkl are expected to
be small.

By deriving both members of Eq. (2.57) with respect to the nuclear coordinates
one has

∇R(Ĥel) |ϕl〉 + Ĥel∇R |ϕl〉 = |ϕl〉 ∇RUl +Ul∇R |ϕl〉 (2.68)

By premultiplying by 〈ϕl | we get Hellmann–Feynman’s theorem for the energy gra-
dient:

∇RUl =
〈
ϕl

∣∣∣∇R Ĥel

∣∣∣ϕl

〉
(2.69)

By premultiplying by 〈ϕk | (with k �= l) we get a useful Hellmann–Feynman like
expression for the nonadiabatic couplings

gkl =
〈
ϕk

∣∣∣∇R Ĥel

∣∣∣ϕl

〉

Ul −Uk
(k �= l) . (2.70)

According to the above expression, for nuclear geometries where the energy dif-
ference Ul − Uk is large, gkl is expected to be small. Conversely, in regions where
Ul −Uk → 0 the coupling gkl diverges and the BO approximation is not reliable.

2.3.2 Validity of the BO Approximation

According to Eqs. (2.60) and (2.65), we can rewrite the molecular Hamiltonian in
this form

Ĥmol =
∑
k

|ϕk〉 (T̂n +U ′
k) 〈ϕk | +

∑
k

∑
l �=k

|ϕk〉 V̂ BO
kl 〈ϕl | (2.71)

= Ĥ BO + V̂ BO (2.72)
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which is appropriate for real ϕk (otherwise one has to take into account that gkk �=
0). The above partition is suited for a perturbative development (see for instance,
Merzbacher [1] or Atkins and Friedman [3]): ĤBO is the zero-order Hamiltonian,
and its eigenvectors and eigenvalues are the BO vibronic states ϕkχkv and energies
Ekv. The first-order correction to the energies is zero, as V̂ BO

kk = 0. If the potential
energy Uk has not been corrected according to Eq. (2.65), the first-order correction
is just

E (1)
kv = −

∑
α

�
2

2Mα

〈
χkv

∣∣∣t (α)
kk

∣∣∣χkv

〉
. (2.73)

The second-order correction to Ekv and the first-order correction to ψ
(0)
kv = ϕkχkv

are given by

E (2)
kv = −

∑
l �=k

∑
u

∣∣V BO
kv,lu

∣∣2
Elu − Ekv

(2.74)

ψ
(1)
kv = −

∑
l �=k

∑
u

V BO
lu,kv

Elu − Ekv
ϕlχlu . (2.75)

Therefore, the BO approximation is valid for a given vibronic state ϕkχkv if the
condition ∣∣V BO

kv,lu

∣∣� |Ekv − Elu | (2.76)

is verified for all l, u (with l �= k).
The vibronic states ϕ0χ0v, where ϕ0 is the ground electronic state, are coupled

through the matrix elements V BO
0v,lu only with excited electronic states l ≥ 1. Now, in

most closed shell molecules, at geometries close to the ground state minimum, the
energy differenceUl−U0 is quite large (usually of the order of 0.1 a.u.). Large energy
differences, as suggested by Eq. (2.70), correspond to small nonadiabatic couplings,
so the BO approximation is well justified for the ground state. More in detail, we
start by noting that the order of magnitude of the electronic energy differences is
determined by the strong Coulomb potentials that bind the electrons to the nuclei.
On the contrary, the PESs that bind the atoms together in the molecule have rela-
tively shallow minima, so the much larger nuclear masses give place to vibrational
levels with energy separations �ω one or two orders of magnitude smaller than the
electronic ones (remember that a vibrational frequency is ω = (k/μ)1/2, where k is
the force constant and μ the reduced mass). As we have seen, the nonadiabatic cou-
plings derive from the action of the nuclear kinetic energy operator on the electronic
wavefunctions. In comparison with the kinetic energy of a vibration (at most ≈ 0.01
a.u. for the lowest vibrational states) the nonadiabatic coupling matrix elements are
much smaller. This is because the derivatives with respect to nuclear coordinates of
the electronic wavefunctions are much smaller than those of the vibrational ones. In
fact, the former do not change drastically for the displacement of, say, 1 bohr, while
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the latter may have several nodes, maxima andminimawithin the same interval (even
the v = 0 wavefunction normally goes from almost zero to the maximum value and
back to zero in a fraction of bohr). Then, the denominators of Eqs. (2.74) and (2.75)
are much larger than the nonadiabatic couplings, if we consider low-lying vibrational
levels. For larger values of the vibrational quantum number v, the energy difference
Elu − E0v decreases and χ0v explores a larger portion of the nuclear configurational
space, making more likely to reach regions where Ul − U0 is small. In these con-
ditions, it may be important to take into account the nonadiabatic couplings. This
amounts to say that for highly distorted molecular geometries (e.g., at a transition
state) the BO approximation is less valid than at the equilibrium geometry.

The excited electronic states behave in a very different way. In fact, for any
vibronic state ϕkχkv belonging to an electronically excited state ϕk (k ≥ 1) we may
find some state ϕlχlu withUl < Uk , such that Elu − Ekv � 0. Normally, χlu will be a
highly excited vibrational state showing many oscillations (see Fig. 2.1), so that the
matrix element V BO

kv,lu will be very small, because positive and negative contributions
to the integral cancel out. Nevertheless, the two vibronic states are almost degenerate,
giving rise to a potentially large perturbative correction, i.e., a non-negligible mixing
of ϕkχkv with ϕlχlu . Therefore, if the molecular system is prepared in the state ϕkχkv,
it will evolve in time, populating nonradiatively the vibronic states close in energy,
which amounts to convert electronic energy into vibrational energy (see also Fig. 1.1).
Note that when the energy difference Uk − Ul increases the nonadiabatic coupling
V BO
kv,lu becomes smaller so that the larger is the amount of electronic energy which

has to be transformed in nuclear kinetic energy, the less likely is the process. If the
χlv belong to the continuous spectrum of dissociative states of Ul , the radiationless
transition from ϕkχkv to these states can lead to the dissociation of the molecule (a
process called electronic predissociation, see Sect. 3.10).

x

x

x

Fig. 2.1 Interaction of vibronic states in a diatomic molecule
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2.3.3 Time Evolution in the BO Framework

A time-dependent molecular wavefunction can be expressed using the Born–Huang
expansion

Ψ (R, r, t) =
∑
k

Θk(R, t)ϕk(r;R) (2.77)

where the sum is extended to all the electronic states, and Θk(R, t) is a nuclear
wavepacket belonging to the electronic state ϕk . The total wavefunction Ψ and the
ϕk are normalized, so that Pk(t) = ∫ |Θk(R, t)|2 dR represents the probability (or
population) of the electronic state ϕk at time t . Note that

∑
k Pk(t) = 1, irrespective

of time. The equation of motion for the nuclear wavepackets is found by inserting
the Born–Huang expansion (2.77) in the TDSE. Considering real functions ϕk we
get

i�
dΘk

dt
=
(
T̂n +U ′

k

)
Θk +

∑
l �=k

V̂ BO
kl Θl . (2.78)

The first term of the RHS of the above equation leads to the concept of nuclear
wavefunctions Θk(R, t) evolving on potential energy surfaces U ′

k(R). The second
term describes population transfer to nuclear wavepackets belonging to different
electronic states, i.e., nonradiative transitions. This is the physical representation of
the dynamics of a molecular system to which we make reference throughout this
book.

The quantum wavepacket view of the molecular dynamics has a classical coun-
terpart in which the nuclear positions and momenta are well defined and change in
time according toNewton’s equations. The potential energy surfaces of the electronic
states determine the forces to which the nuclei are subjected. We shall see in Chap. 4
how this classical view of the nuclear motion is justified, but we anticipate it here
because chemistry and photochemistry are most frequently discussed in a language
that refers to classical physics. It is worth here to anticipate the Franck–Condon
principle (see Chap. 3), asserting that the electronic excitation does not affect instan-
taneously the nuclear dynamics, which changes only afterward under the influence
of a different potential energy surface. In the quantum language, this means that,
under certain conditions, the wavepacket is promoted from the initial electronic state
to the final one without change. In the classical language, the nuclear positions and
momenta remain the same upon excitation and, if we take as starting geometry the
equilibrium geometry of the ground electronic state, the molecules end up in a cor-
responding point of the excited PES called the Franck–Condon point. In both cases,
after excitation the nuclear dynamics runs on the new PES and therefore can differ
radically from what it was in the initial state.
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2.4 The Electrostatic Approximation: Spin and Magnetic
Couplings

In the electrostatic approximation we neglect the spin terms in the electronic Hamil-
tonian, which is written as (see Eq. (2.35))

Ĥel,SF = T̂e + Vel . (2.79)

The total electronic spin Ŝ =∑Ne
i ŝi commuteswith Ĥel,SF so that, in the electrostatic

approximation, the electronic wavefunctions ϕk(x;R) can be chosen as eigenstates
of Ŝ2 and Ŝz

Ŝ2ϕk(x;R) = �
2Sk(Sk + 1)ϕk(x;R) (2.80)

Ŝzϕk(x;R) = �MSkϕk(x;R) (2.81)

where x collects the spin and space electronic degrees of freedom. For a given value
of Sk , the projection MSk of the spin on a quantization axis has 2Sk + 1 different
values, which correspond to the same energy.

To be more specific, the electronic wavefunctions ϕk are usually built from one-
electron states, called spin-orbitals, written as the product of a space part (the orbital)
times a spin part

θ(r, s) = φ(r)σ (s) . (2.82)

The one-electron spin function σ can be chosen to be α or β, with

ŝzα = �

2
α (2.83)

ŝzβ = −�

2
β . (2.84)

We assume here that the orbitals are orthonormalized:
〈
φi

∣∣φ j
〉 = δi j . In obeyance

with the antisymmetry of the electronic wavefunction with respect to the exchange of
two electrons, we expand ϕk as a combination of antisymmetrized products of spin-
orbitals, in which each spin-orbital can accommodate only one electron (the Pauli
exclusion principle). A single antisymmetrized product of n spin-orbitals, including
the normalization factor, can be written as

θi1 ∧ θi2 ∧ · · · ∧ θin = 1√
n!

∣∣∣∣∣∣∣∣∣

θi1(x1) θi1(x2) · · · θi1(xn)
θi2(x1) θi2(x2) · · · θi2(xn)

...
...

...

θin (x1) θin (x2) · · · θin (xn)

∣∣∣∣∣∣∣∣∣
(2.85)
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and it is called a Slater determinant. The spin-orbitalsmust be different, otherwise the
Slater determinant vanishes (see Levine [4] or McWeeny [7] for a deeper discussion
of the representation of electronic wavefunctions).

2.4.1 Singlet and Triplet Wavefunctions

A couple of paired electrons in the same orbital φa is necessarily described by a
wavefunction of this kind

φa(r1)φa(r2)
[
α(s1)β(s2) − β(s1)α(s2)√

2

]
(2.86)

where the spin factor corresponds to a singlet state (i.e., S = 0 and, necessarily,
Ms = 0). This can be shown making use of the fundamental commutation relations,
valid for angular momentum operators

[
Ŝx , Ŝy

]
= i�Ŝz ,

[
Ŝy, Ŝz

]
= i�Ŝx ,

[
Ŝz, Ŝx

]
= i�Ŝy , (2.87)

from which, defining
Ŝ± = Ŝx ± iŜy (2.88)

one gets
Ŝ2 = Ŝ+ Ŝ− + Ŝ2z − �Ŝz . (2.89)

Here we use capital letters for the components of the n-particle spin operator: Ŝλ =∑n
i=1 ŝi,λ, with λ = x, y, z,+ or −. Each ŝi,λ operates only on spin functions of

the i th electron. ŝ+ and ŝ− are the raising and lowering operators for spin, such that
ŝ−α = β, ŝ+α = 0, ŝ−β = 0 and ŝ+β = α (this implies a consistent choice of phase
factors between the α and β functions). We have then

Ŝ2 [α(s1)β(s2) − β(s1)α(s2)] =
Ŝ+ Ŝ− [α(s1)β(s2) − β(s1)α(s2)] =

Ŝ+ [β(s1)β(s2) − β(s1)β(s2)] = 0 .

(2.90)

From the point of view of the total spin, it does not matter how many paired
couples one has, so that we can focus on the unpaired electrons only. Of course, with
one unpaired electron we have a doublet: S = 1/2 and two choices for MS , ±1/2.
With two unpaired electrons we get a triplet and a singlet. The three components of
the triplet are



2.4 The Electrostatic Approximation: Spin and Magnetic Couplings 45

φaφb − φbφa√
2

·

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

αα S = 1, MS = 1

αβ + βα√
2

S = 1, MS = 0

ββ S = 1, MS = −1

(2.91)

where we have used the convention that in a product of monoelectronic func-
tions, the ordering of the terms corresponds with that of the particles (i.e., φaφb ≡
φa(r1)φb(r2)). The MS = 0 component can be obtained by applying Ŝ− to αα. Note
that the triplet has a symmetric spin part and an antisymmetric space part. At vari-
ance, for the singlet we have an antisymmetric spin part (see (2.86)) and a symmetric
space part

φaφb + φbφa√
2

αβ − βα√
2

(S = 0) (2.92)

This has important consequences on the energetics: the triplet wavefunction (2.91)
goes to zero when r1 → r2, while the singlet one, Eq. (2.92), does not. So, in a
singlet state the electrons can get closer and the electron–electron repulsion is larger.
Therefore, a singlet state is higher in energy than the corresponding triplet where
the electrons occupy the same spin-orbitals. From the quantitative point of view,
the energy difference between the two wavefunctions (2.92) and (2.91) is given by
2Kφa ,φb , where Kφa ,φb is the exchange integral of the two singly occupied orbitals

Kφa ,φb =
∫

φ∗
a (r1)φ

∗
b (r2)φb(r1)φa(r2)
|r1 − r2| dr1dr2 (2.93)

in atomic units (see Appendix A).
If the ground-state wavefunction ϕS0 is approximated as in Eq. (2.86) and that of

an excited singlet ϕSn as in Eq. (2.92), the transition matrix elements of one-electron
operators between the two states are very simple. For a general spinless one-electron
operator D̂ =∑Ne

i d̂(ri ) we have

〈
ϕS0

∣∣∣D̂
∣∣∣ϕSn

〉
= √

2
〈
φa

∣∣∣d̂
∣∣∣φb

〉
(2.94)

independently of the presence of other doubly occupied orbitals in S0 and Sn . There-
fore, to evaluate the radiative transition probability between S0 and S1 (see Sect. 3.5)
one just needs μφaφb

. Because of the orthogonality of the spin factors between sin-

glets and triplets,
〈
ϕS0

∣∣∣D̂
∣∣∣ϕTn

〉
= 0, no matter what level of approximation is used

for the wavefunctions of the two states.
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We could proceed considering more unpaired electrons (for a more systematic
approach, see, e.g., de Graaf and Broer [8]). However, in most organic molecules the
ground electronic state is well represented by a wavefunction in which each occupied
orbital has two electrons (often called a closed shell) and the lowest lying excited
states are singlets or triplets with no more than two unpaired electrons (see also
Sect. 1.4). Therefore, the above discussion is sufficient to approach spin problems in
many molecular systems.

2.4.2 Spin–Orbit Coupling

As we have seen, in the electrostatic approximation the molecular Hamiltonian does
not depend on spin. Therefore, the components of an electronic spin multiplet, which
share the same space parts (see e.g., (2.91)), are degenerate. More importantly, two
electronic states ϕk and ϕl having different spin part do not interact (i.e., V̂ BO

kl = 0)
so that the time evolution of the corresponding nuclear wavepackets does not lead to
any population transfer between Θk and Θl . It is therefore mandatory to include the
small interaction terms dependent on electronic spin in the electronic Hamiltonian
to account for radiative and nonradiative “spin-forbidden” processes (i.e., ISC and
phosphorescence, see Fig. 1.1). The most important interaction in this respect is the
spin–orbit (SO) coupling, which is considered in the present section.

An appraisal of the SO interaction can be obtained by the following argument of
classical electromagnetism. With the spin of the electron comes a magnetic moment

μs = −ge
e

2me
s (2.95)

where ge = 2.002319 . . . is a dimensionless factor (the g-factor) characteristic of
the electron spin. Note that for the orbital angular momentum the g-factor is 1. The
magnetic momentμs interacts with the magnetic field experienced by the electron as
it moves through the electric field E produced by a charged particle. Let us consider
a nucleus with charge Ze at rest in the origin. In a reference frame centered on
the electron, the nucleus moves with velocity v and gives rise to a magnetic field
B = v × E/c2, which interacts with the magnetic moment of the electron through
the energy term−μs ·B. The classical evaluation of the magnetic fieldB is, however,
grossly inaccurate, the correct relativistic expression being one half of the classical
value, as first pointed out by Thomas in 1926. Reverting to the inertial reference
frame centered on the nucleus, v changes its sign so that

ĥSO = −μs · B = −μs · E × p
2mec2

(2.96)

= geZe2

16πε0m2
ec

2

s · l
r3

(2.97)
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is the one-electron spin–orbit Hamiltonian (l = r × p). However, it is clear from
the above that a correct account of the spin–orbit interaction would imply a full
relativistic approach, which is far beyond the aim of this book (see, e.g., Greiner’s
textbooks [9, 10]). In the following, we will limit ourselves to show some of the most
used spin–orbit Hamiltonians, giving just a brief comment about their derivation.

The relativistic quantum mechanical equation of motion for the free electron is
the Dirac equation, where the wavefunction has four components, as it can describe
an electron or a positron with spin ±1/2. In particular, positive energy solutions
of the Dirac equation represent electrons, while negative energy solutions represent
positrons. The four components of the wavefunction are coupled, nevertheless a
simplification of the Dirac equation can be obtained by applying a transformation
which reduces the coupling between electronic and positronic solutions, yielding a
two-component one-electron Hamiltonian, fromwhich the spin–orbit interaction can
be extracted. However, such a transformation may be performed in many different
ways, and correspondingly different forms of the SO interaction are obtained. In
particular, three among the most well-known SO Hamiltonian are, for one electron
in an external potential V = −Z/r (using atomic units) [11]

ĥ Pauli
SO = α2Z

2

s · l
r3

(2.98)

ĥDK H
SO = α2ZQ

s · l
r3

Q where Q =
(

c2

c2 + p2 + c
√
c2 + p2

)1/2

(2.99)

ĥ ZORA
SO = 2α2W (∇V × p) · s = 2α2ZW

s · l
r3

where W = c4

(2c2 − V )2

(2.100)

Here α is the dimensionless fine structure constant, α = e/4πε0�c � 1/137. In the
above equations one has ge = 2. In fact, the departure of the electron g-factor from
2 is not accounted for by the Dirac equation. Note that the Pauli SO Hamiltonian of
Eq. (2.98) corresponds to the one obtained in Eq. (2.97) by classical ad hoc arguments
(apart from the different units). The Douglas–Kroll–Hess (DKH) and zero-order
regular approximation (ZORA) Hamiltonians of Eqs. (2.99) and (2.100) are more
involvedwith respect to the Pauli one, but present the advantage of being variationally
stable (i.e., they are bounded from below).

TheZORAHamiltonian [12] ismostly used in the framework of density functional
theory (DFT). In its expression, the SO coupling is accounted by the one-electron
Hamiltonian shown above (middle part of Eq. (2.100)), where V contains the nuclear
attraction and the electron Coulomb and correlation-exchange potentials.

When the interaction among the particles in a molecular system is taken into
account (which is not an easy task in relativistic quantum mechanics and therefore
involves several approximations) one obtains for the Pauli and the DKH spin–orbit
Hamiltonians [7, 13, 14], using again atomic units



48 2 Molecular States

Ĥ BP
SO = α2

2

⎡
⎣∑

i,ν

Zν

liν
r3iν

· si −
∑
i �= j

li j
r3i j

· (si + 2s j )

⎤
⎦ (2.101)

Ĥ DK H
SO = 2α2

⎡
⎣∑

i,ν

Ai Ki Zν

liν
r3iν

· si Ki Ai −
∑
i �= j

Ai Ki A j
li j
r3i j

· (si + 2s j )A j Ki Ai

⎤
⎦

(2.102)

with

Ai =
(
Ei + c2

2Ei

)1/2

Ki = c2

Ei + c2
Ei =

√
p2i c

2 + c4 (2.103)

where BP stands for Breit–Pauli. Here riν = ri − Rν , and liν = riν × pi represents
the orbital angular moment of electron i around nucleus ν. Similarly ri j = ri − r j ,
and li j = ri j × pi is the angular moment of electron i around electron j . Therefore,
in the above SO Hamiltonians, the first part of the second sum is the “spin–same
orbit” interaction, and the second part “spin–other orbit.”

Due to the presence of the 1/r3 term, the largest contribution in the SO interaction
comes from the electrons that are close to the nuclei. For this reason, and also because
of the dependence on the nuclear charge, the SO interaction increases with the atomic
numbers of the nuclei: this is the so-called heavy atom effect. As a rough rule of
thumb, with second-row atoms one may expect an order of magnitude of 10 cm−1

for the SO coupling, which increases by a factor of 10 if third-row atoms are present.
From the computational point of view, the BP and DKH Hamiltonians are quite

expensive, in particular because of the presence of two-electron terms (second sum in
Eqs. (2.101) and (2.102)). Therefore, they are often approximated with one-electron
SO Hamiltonians in which the two-electron terms are neglected and the nuclear
charges Zν are replaced by empirically determined effective charges Zeff

ν . A more
refined approach would consist in incorporating the effect of the two-electron terms
with a mean-field approach. An effective one-electron SO Hamiltonian can be for-
mally written in this way

Ĥ eff
SO = D · S =

∑
i

di · si (2.104)

where D is a spin-free one-electron operator. In the simple effective charge approx-
imation di = 1

2α
2∑

ν Z
eff
ν r−3

iν li , but more elaborated formulations have been pro-
posed [14]. Note thatD and di are imaginary andHermitian (like the angular momen-
tum operators li ), so their diagonal matrix elements with real wavefunctions are
zero. Let us now evaluate the SO coupling between the triplet and the singlet states
defined in Eqs. (2.91) and (2.92). Using the effective one-electron SO Hamiltonian
Ĥ eff

SO defined above we get
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〈
S
∣∣∣Ĥ eff

SO

∣∣∣ T (1)
〉
= 1

2
√
2

2∑
i=1

〈φaφb + φbφa |di | φaφb − φbφa〉 · 〈αβ − βα |si | αα〉

= 1√
2

(〈φb |d| φb〉 − 〈φa |d| φa〉) · 〈β |s| α〉 = 0 (2.105)

〈
S
∣∣∣Ĥ eff

SO

∣∣∣ T (−1)
〉
= 1

2
√
2

2∑
i=1

〈φaφb + φbφa |di | φaφb − φbφa〉 · 〈αβ − βα |si | ββ〉

= 1√
2

(〈φa |d| φa〉 − 〈φb |d| φb〉) · 〈α |s| β〉 = 0 (2.106)

〈
S
∣∣∣Ĥ eff

SO

∣∣∣ T (0)
〉
= 1

4

2∑
i=1

〈φaφb + φbφa |di | φaφb − φbφa〉 · 〈αβ − βα |si | αβ + βα〉

= �

2

(〈
φa

∣∣∣d̂z
∣∣∣φa

〉
−
〈
φb

∣∣∣d̂z
∣∣∣φb

〉)
= 0 (2.107)

where S labels the singlet state, and T (m) represents the component of the triplet
state with Ms = m, and we exploited the fact that 〈φ |d| φ〉 = 0 for any real orbital
φ. Therefore, very low SO coupling is expected between a singlet state and a triplet
state sharing the same spatial configuration. This is a manifestation of the El-Sayed
rules, of which we shall see examples in the next sections.

2.5 Vibrational and Rotational States

In the framework of the BO approximation, the nuclear Hamiltonian Ĥ (k)
n for a

molecular system in the electronic state ϕk is given by Eq. (2.58). We assume that
Ĥ (k)

n is written in terms of the Cartesian coordinates of the nuclei, in an inertial refer-
ence frame centered in the nuclear center of mass, so as to separate the translational
motion. The eigenfunctions of Ĥ (k)

n describe the nuclear internal (i.e., vibrational)
motion as well as the rotation of the molecule as a whole. Of course in this way
we are completely neglecting the contribution of the electronic angular momentum
(including spin) to the total angular momentum of the molecule. However, the inter-
action between the electronic rotation and the nuclear motion is normally of little
interest in photochemistry: for example, the roto-electronic coupling may lead to
transitions between different electronic states but it is usually negligible with respect
to nonadiabatic couplings. In fact, the latter take larger values especially in regions
of degeneracy or near degeneracy between potential energy surfaces.

The potential energy surface Uk may have several minima, which correspond
to different isomers or conformers. Let R(k)

eq be the nuclear Cartesian coordinates
defining one of these minima. Assuming that the nuclear motion is confined in the
vicinity of R(k)

eq , the rotation of the molecule can be approximately separated from
the internal motions as follows
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Ĥ (k)
n � Ĥ (k)

rot + Ĥ (k)
vib (2.108)

Ĥ (k)
rot = 1

2
Jn(I(k))−1Jn (2.109)

where Jn is the nuclear angularmomentum and I(k) is the inertia tensor for the nuclear
configuration corresponding to R(k)

eq . The vibrational Hamiltonian Ĥ (k)
vib has the same

functional form as Ĥ (k)
n of Eq. (2.58), but is written in terms of the Cartesian coordi-

nates in the rotating reference frame where I(k) is diagonal (i.e., in the principal axis
system of the molecule). In this way any roto-vibrational coupling between nuclear
internal and rotationalmotions is neglected.Note however that these couplings are not
connecting different electronic states, so that they are not able to promote electronic
transitions. For simplicity, in the following sections we will drop the superscript (k)

indicating the electronic state to which the vibrational and rotational Hamiltonians
are referred.

2.5.1 Rotational States

In the rotating reference frame referred above the Hamiltonian Ĥrot simplifies to

Ĥrot = Ĵ 2
nξ

2Iξξ

+ Ĵ 2
nη

2Iηη

+ Ĵ 2
nζ

2Iζ ζ

(2.110)

where ξ, η, ζ label the three components of the rotating frame. The eigenfunctions
of Ĥrot are the rotational functions, which depend on the Euler angles α, β, and γ

relating the fixed reference frame (x, y, z) to the rotating one (ξ, η, ζ ). As a con-
sequence of the isotropy of space the angular momentum (in the present case the
nuclear angular momentum) is a conserved quantity. Then, the rotational Hamilto-
nian Ĥrot commutes with Ĵ 2

n and Ĵnz ; its eigenstates ψ JM
rot can be written as linear

combinations of the rigid spherical rotor wavefunctions, which represent a complete
basis and correspond to the Wigner functions D(J )

KM

ψ JM
rot =

J∑
K=−J

C (J )
K D(J )

KM(α, β, γ ) . (2.111)

TheWigner functions are common eigenfunctions of the set of commuting operators
Ĵ 2
n , Ĵnz and Ĵnζ , so that

Ĵ 2
n D

(J )
KM = �

2 J (J + 1)D(J )
KM

Ĵnz D
(J )
KM = �MD(J )

KM

Ĵnζ D
(J )
KM = �K D(J )

KM .

(2.112)
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Jn being an orbital angular momentum, the quantum number J takes only integer
values, and so do M and K , which go from −J to J . Contrary to Ĵnz , in general Ĵnζ

does not commute with Ĥrot , so that D
(J )
KM are not, in general, eigenfunctions of the

rotational Hamiltonian: to find the ψ JM
rot and the corresponding rotational energies

one has to evaluate the matrix element of Ĥrot on the basis of the Wigner functions
and diagonalize.

If two of the three principal moments of inertia are equal, the molecule is called
a symmetric top. In that case we can define Iξξ = Iηη = Ia and Iζ ζ = Ib so that Ĥrot

simplifies to

Ĥrot = 1

2Ia
( Ĵ 2

n − Ĵ 2
nζ ) + 1

2Ib
Ĵ 2
nζ (2.113)

which shows that Ĵnζ commutes with Ĥrot . Therefore the eigenstates ψ JM
rot of the

rotational Hamiltonian are also eigenfunctions of Ĵnζ and directly correspond (apart
from a normalization factor) to the Wigner functions D(J )

KM , with eigenvalues Erot
J K

given by

Erot
J K = �

2

2Ia
J (J + 1) + �

2

2

(
1

Ib
− 1

Ia

)
K 2 . (2.114)

For a spherical top all the three principal moments of inertia are equal: Iξξ =
Iηη = Iζ ζ = I . Hence, Ĥrot and the rotational energy further simplify

Ĥrot = Ĵ 2
n

2I

Erot
J = �

2

2I
J (J + 1) .

(2.115)

In general, the rotational energy of a molecular system cannot depend on the
orientation of the molecule with respect to the fixed reference frame; i.e., it cannot
depend on the quantum number M (again, this is due to the isotropy of space).
Therefore, the rotational levels are 2J+1 times degenerate. The degeneracy increases
to 2(2J + 1) for symmetric tops (note in fact that Erot

J K = Erot
J,−K in that case) and

to (2J + 1)2 for spherical tops, where Erot
J is independent on K . We note that

the rotational energies increase quadratically with J , so the spacing between the
levels J and J + 1 increases linearly. Since the number of states (degenerate or
not) with a given J also increases quadratically, the density of states ρ(Erot ) is
roughly proportional to J , i.e., to

√
Erot . By density of states we mean the ratio

Nst/ΔE , where Nst is the number of states in the (small) interval of energies ΔE .
Of course we can consider ρ as an almost continuous function of Erot only if Nst is
very large. ρ can be seen as the product of degeneracy times the average reciprocal
spacing between rotational levels. For low J , the spacings are of the order of �

2/Iλ,
where Iλ is a component of the inertia tensor. We get the largest spacings, up to tens
of cm−1, for small molecules made of light atoms. Going to larger molecules, the
moments of inertia increase rapidly, because the contributions of more atoms sum
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up and their distances from the center of mass increase. As a result, for medium
to large molecules and/or large J it is often reasonable to neglect the quantization
of levels and to consider the overall rotation of the molecule as a classical motion.
We also note that, when talking about the molecular ground state, one usually refers
to the electronic and vibrational degrees of freedom, while rotations (and a fortiori
translations) are not considered, because a number of rotational states are always
populated, except at extremely low temperatures.

2.5.2 Vibrational States

The nuclear internal (or vibrational) motion is described by the vibrational Hamil-
tonian Ĥvib. The eigenvalue equation for Ĥvib is greatly simplified if the nuclear
motion is confined in a neighborhood of the minimum pointReq . In fact, in that case
the potential energy function U can be expanded in a Taylor series centered in Req

and truncated at the second order

U (X) = U0 + 1

2

∑
α,β

KαβXαXβ + . . . (2.116)

where U0 = U (Req), X = R − Req is the vector collecting the Cartesian displace-
ments from the minimum point and

Kαβ = ∂2U

∂Xα∂Xβ

∣∣∣∣
X=0

. (2.117)

We define the symmetric matrix K′ of the mass weighted Cartesian force constants

K ′
αβ = (MαMβ)−1/2Kαβ . (2.118)

Let L be the orthogonal matrix which diagonalizes K′, in such a way that LtK′L
is the diagonal matrix collecting the eigenvalues ω2

r of K′. We have then, up to the
second order

U = U0 + 1

2

∑
r

ω2
r Q

2
r (2.119)

where
Qr =

∑
α

Lαr Xα

√
Mα (2.120)
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are the normal coordinates. Note that, as Q = 0 is a minimum of U , ω2
r ≥ 0 for

all coordinates; i.e., the ωr are all real. The potential U cannot depend on the 6
coordinates describing translations and rotations of the system as a whole; therefore,
6 of the ωr will be equal to 0 (5 in the case Req corresponds to a linear arrangement
of nuclei). In terms of the normal coordinates Ĥvib is given by a sum of equivalent
terms, each one depending on a single Qr

Ĥvib = U0 +
∑
r

ĥharm(Qr )

ĥharm(Qr ) = −�
2

2

∂2

∂Q2
r

+ 1

2
ω2
r Q

2
r

(2.121)

where ĥharm(Qr ) is the Hamiltonian of a harmonic oscillator with unit mass and
frequencyωr (seeAppendix F). In thisway, the eigenvalue equation Ĥvibχv = Evib

v χv

can be solved exactly. We have

χv(Q1, . . . , Qs) =
s∏

r=1

χvr (Qr )

Evib
v = U0 +

s∑
r=1

�ωr

(
vr + 1

2

) (2.122)

where s = 3Nn−6 (or s = 3Nn−5) is the number of internal coordinates, the integer
vr gives the degree of excitation of the normal mode r , v is formally a compound
index collecting all the vr , and χvr (Qr ) is a harmonic oscillator eigenfunction. In the
ground vibrational state all the vr are equal to zero and the corresponding vibrational
energy is Evib

0 = ∑
r �ωr/2, which is called the zero-point energy (ZPE). In a

polyatomic molecule the vibrational frequencies ωr/2π (or better the wavenumbers
ωr/2πc) take values in the range 10–4000 cm−1.

The harmonic approximation referred above describes correctly the nuclear
motion only for small oscillations of the nuclei around Req , i.e., for the lowest
vibrational states. For larger vr , the portion of potential energy surface U explored
by the nuclei increases (more rapidly for the normal modes with smaller frequencies)
and the anharmonic terms neglected in Eq. (2.121) become important. Usually, the
harmonic approximation overestimates the potential energy U in certain regions of
the PES, for instance, for large bond distances. As a consequence, taking into account
the anharmonicity, the energy levels of a given normal mode are not anymore evenly
spaced, but rather the energy difference between two successive levels v and v + 1
decreases with v.

A more important consequence of anharmonicity is that an exact eigenfunction of
Ĥvib cannot bewritten as the product of harmonic oscillator eigenstates ofEq. (2.122).
In other words, the normal modes are coupled: the vibrational excitation can be
transferred from a normal mode to another. In particular, if the system is prepared
with some degree of vibrational excitation concentrated in a single normal mode,
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it will evolve transferring the excitation to the other modes. This phenomenon is
called intramolecular vibrational energy redistribution (IVR) and is usually quite
fast in polyatomic molecules (see Sect. 4.3). IVR depends on the density of vibra-
tional states and on their coupling. Clearly, it has a strong influence on the kinetics
of thermal unimolecular reactions, which depend on the ability to concentrate the
available vibrational energy along the reaction coordinate. For example, in the Rice,
Ramsperger, Kassel, and Marcus (RRKM) theory of unimolecular reactions it is
assumed that the vibrational energy is statistically distributed among the oscillators:
the microcanonical rate constant, which depends on the probability of gathering
enough energy in the reaction coordinate, is then related to the density of vibrational
states of the reactant [15].

By applying the harmonic approximation, the density of vibrational states is easily
obtained if we make the simplifying assumption that all the vibrational frequencies
are equal, so that ωr = ω0 for all r = 1, . . . , s. In this way, the vibrational levels
are evenly spaced by the same amount �ω0, and their energy only depends on ω0

and on the total number of vibrational quanta q = ∑
r vr . The degeneracy of a

level corresponds to the number of ways q objects (the vibrational quanta) can be
distributed among s boxes (the oscillators), and the density of vibrational states
(number of states per unit energy) is obtained dividing the degeneracy by �ω0

ρvib = 1

�ω0

(q + s − 1)!
q!(s − 1)! . (2.123)

Clearly ρvib is a rapidly increasing function of q. In particular, when q is large (i.e.,
for q � s), using the Stirling approximation q! � √

2πq(q/e)q and (1+s/q)q � es

we obtain

ρvib � qs−1

�ω0(s − 1)! = Es−1

(�ω0)s(s − 1)! (2.124)

where E = q�ω0 is the excess vibrational energy above the ZPE. A large value
for q corresponds to the classical limit for the oscillators (large energy with respect
to �ωr ). Actually, the classical expression for the density of states of a system of s
oscillators can be easily worked out [16] without assuming that all the ωr are equal.
In fact, from the classical point of view, dε/�ωr is the number of states in the energy
interval from ε to ε + dε (for any ε > 0) for a harmonic oscillator with frequency
ωr . Then, the total number of states of a system of s harmonic oscillators having
energies less than a given value E is

Ncl(E) =
(

s∏
r=1

�ωr

)−1 ∫
· · ·
∫

ε1+...+εs≤E

dε1 . . . dεs (2.125)

where εr ≥ 0 for all r = 1, . . . , s. The integral in the above expression is the volume
of the simplex Ts(E), defined as the region of R

s such that
∑

r xr ≤ E and xr ≥ 0
for all r (a triangle for s = 2 and a tetrahedron for s = 3). It can be shown that
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Table 2.1 Density of vibrational states in the harmonic approximation. The vibrational energy E
above theZPE is given in cm−1 andρvib in states/cm−1. The density of stateswas obtained evaluating
first N (E) by the Beyer–Swinehart [17] exact counting algorithm and then performing numerical
differentiation. We used experimental vibrational frequencies, from NIST (https://cccbdb.nist.gov)

Molecule Nn s E ρvib

NH3 4 6 5000 6 · 10−3

NH3 4 6 10000 8 · 10−2

NH3 4 6 30000 5

CH4 5 9 5000 0.01

CH4 5 9 10000 0.6

CH4 5 9 30000 300

Acetone 10 24 5000 103

Acetone 10 24 10000 7 · 105
Acetone 10 24 30000 1012

Benzene 12 30 5000 3 · 102
Benzene 12 30 10000 3 · 105
Benzene 12 30 30000 5 · 1012

the volume of Ts(E) is given by Es/s!, so that the classical expression for the total
number of states is

Ncl(E) =
(

s∏
r=1

�ωr

)−1
Es

s! (2.126)

which, derived with respect to E , gives the density of states

ρcl
vib =

(
s∏

r=1

�ωr

)−1
Es−1

(s − 1)! . (2.127)

As expected, ρvib coincides with ρcl
vib in the limit of large E (see Eq. (2.124)). In

any case, taking the anharmonicity into account, ρvib is expected to grow with the
vibrational energy even faster than the harmonic expressions reported above.

In Table 2.1 we show a few values of ρvib for some selected molecules, obtained
by exact count of the number of states, in the harmonic approximation. Even with
a very modest number of atoms (say, larger than 4) the density of states rapidly
becomes so high to challenge the resolution of any experimental apparatus.

https://cccbdb.nist.gov
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Fig. 2.2 Atomic orbitals and
hybridization. Isodensity
contour lines, unevenly
spaced. Solid and dashed
lines are used to represent
positive and negative values
of the functions

2.6 Electronic States of Polyatomics and Photoreactivity

2.6.1 Molecular Orbitals

As already discussed in Sect. 2.4, the electronic wavefunctions are often written
in the form of antisymmetrized products of one-electron functions: the molecular
(spin)orbitals. In fact, the approximation of considering the motions of the electrons
as independent from each other works surprisingly well, provided the mandatory
requirement of antisymmetry is taken into account. The shape of a molecular orbital
is then determined by the electrostatic interaction with the nuclei and with the mean-
field generated by the motion of the other electrons.

In the following we will rely on the simplest description of the molecular orbitals,
which consists in approximating them as linear combinations of atomic orbitals. It is
often convenient to consider “hybrid” atomic orbitals, which present the advantage
of being oriented in space more conveniently for the formation of chemical bonds.
For example, with atomic orbitals s and p, three main types of hybrids can be built
(sp, sp2, and sp3) as shown in Fig. 2.2, although one may have any intermediate
shape between pure s and pure p.

From the combinations of two atomic orbitals of two adjacent atoms we get a
molecular orbital which describes the chemical bond in a schematic way. Themixing
is influenced by the relative energy of the two atomic orbitals and by their interaction
which, in turn, may be taken as proportional to their overlap. Four typical cases in this
respect are shown in Fig. 2.3. The shape of a molecular orbital depends on the kind
of atomic orbitals which are mixed: in the simplest case (H2), combining the two 1s
orbitals we get a bonding (σ ) and an antibonding (σ ∗) orbital with axial symmetry, as
shown in Fig. 2.4. The other orbitals shown in Fig. 2.4 are suited, for example, to the
description of the C-H bond in an alkane, where the σ orbital is obtained by mixing
one of the four sp3 hybrids of the carbon atom with the 1s of H. In double and triple
bonds, themolecular orbitals are formedcombining twoparallel p orbitals orthogonal
to the bond axis. We have in this case π and π∗ orbitals, characterized by a nodal
plane containing the bond axis (see Fig. 2.5). In this case, the interaction between
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a b

a − b

a + b

Degenerate atomic orbitals
with weak interaction

a b

a − b

a + b

Degenerate atomic orbitals
with strong interaction

a

b
b − λsa

a + λsb

Atomic orbitals with different
energies, weak interaction

a

b

b − λla

a + λlb

Atomic orbitals with different
energies, strong interaction

Fig. 2.3 Four typical cases of interaction between two atomic orbitals a and b. The energy levels
of atomic and molecular orbitals are shown as black and red thick lines, respectively. λs is a small
mixing coefficient, while λl is a larger one

Fig. 2.4 Molecular orbitals,
type σ

atomic orbitals is normally weaker with respect to the σ bonds.Nonbonding orbitals,
indicated as n, are atomic orbitals or hybrids that already contain two electrons (“lone
pairs”) before the bonds are formed and therefore do not mix with other orbitals as
in Fig. 2.3. This happens when the s and p orbitals and their hybrids contain more
than four valence electrons, as in N, O, P, S and the halogens. As a rule of thumb the
energetic ordering of the molecular orbitals is then σ < π < n < π∗ < σ ∗.

The electronic ground state S0 of an organic molecule, at least in the vicinity
of its equilibrium geometry, is well described by a configuration in which the first
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Fig. 2.5 Molecular orbitals,
type π

Ne/2 molecular orbitals are occupied (stable organic species have usually an even
number of electrons). Therefore, the lowest lying excited electronic states (S1 and T1)
have a couple of unpaired electrons and are obtained by promoting an electron from
the highest occupied molecular orbital (HOMO) to the lowest unoccupied molecular
orbital (LUMO). Once that the double occupation characteristic of the ground state is
abandoned, the number of ways the electrons can be placed in the molecular orbitals
increases: therefore, the energetic separation between excited states is usually much
smaller than the energy difference between S1 and S0. Things may be much more
complicated for molecules containing transition metal complexes, with partly filled
d or f shells (not covered here).

In the following the features of the lowest lying excited electronic states in organic
molecules are analyzed on the basis of the frontier orbitals (HOMO and LUMO)
involved in the excitation.

2.6.2 Excited States σ → σ ∗

A molecule only containing single bonds and no lone pairs, as an alkane, only has
valence orbitals ofσ andσ ∗ types. In this case the frontier orbitalsHOMOandLUMO
are a σ and a σ ∗, respectively, so that S1 and T1 are approximately described by singly
excited configurations σ → σ ∗. We will only consider the frontier orbitals, which
are occupied in a different way in the ground and in the excited states. Assuming
that the two frontier orbitals σ and σ ∗ describe the bond between two atoms A and B
in the molecular system considered, they can be represented in terms of two atomic
orbitals a and b (centered respectively on A and B), as in Fig. 2.3

σ(r) = a(r) + λb(r)√
1 + λ2

(2.128)

σ ∗(r) = b(r) − λa(r)√
1 + λ2

. (2.129)
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For the sake of simplicity, here we have assumed that a and b are orthogonal: s =
〈a |b 〉 = 0. Of course this is in general not the case for two atomic orbitals belonging
to different atoms, especially if they have to form a bonding MO. However, one
can orthogonalize two atomic orbitals, generating orbitals as similar as possible to
the original ones (see Appendix E). The mixing coefficient λ > 0 depends on the
internuclear distance RAB and on the chemical environment. In particular, if we
assume A more electronegative than B, then λ ≤ 1. Note that λ = 1 when A and B
are identical (symmetric case, see Fig. 2.3).Moreover, increasing RAB the interaction
becomes smaller, so that λ tends to zero, and the two molecular orbitals σ and σ ∗
boil down to a and b (except in the symmetric case where λ = 1 independently of
RAB).

According to Sect. 2.4, the electronic wavefunctions for S0, S1, and T1, omitting
the spin factors, can be approximated as

ϕS0 = σ 2 = a2 + λ2b2 + λ(ab + ba)

1 + λ2
(2.130)

ϕS1 = σσ ∗ + σ ∗σ√
2

= (1 − λ2)(ab + ba) + 2λ(b2 − a2)

(1 + λ2)
√
2

(2.131)

ϕT1 = σσ ∗ − σ ∗σ√
2

= ab − ba√
2

. (2.132)

Here, as in Sect. 2.4, a2 ≡ a(r1)a(r2), ab ≡ a(r1)b(r2), etc. In valence bond (VB)
theory, the functions a2 and b2 are called ionic structures, while ab±ba is a neutral,
or covalent, structure. The triplet wavefunction contains no ionic structures: this is a
general result, due to the fact that two electrons in the same orbital make a symmetric
space factor that necessarily goes with an antisymmetric (singlet) spin factor.

The ground-state function of Eq. (2.130) has a qualitatively wrong behavior at
large RAB (see Fig. 2.6). In fact, the ionization potentials of atoms or groups are
normally much larger than their electronic affinities, so that the ground-state disso-
ciation of an isolated molecule is homolytic (ionic dissociation normally occurs in
polar solvents). Therefore, the ionic configurations should disappear from ϕS0 for
large RAB , and this is evidently not the case in Eq. (2.130), neither in the symmetric
(λ = 1) nor in the nonsymmetric (λ → 0) case: the wavefunction (2.130) overesti-
mates the importance of the ionic configurations. A better representation for S0 could
be obtained by writing ϕS0 as a linear combination of the three singlet configurations
which can be built with two electrons in two molecular orbitals

ϕS0 = C0σ
2 + C1

σσ ∗ + σ ∗σ√
2

+ C2σ
∗2 (2.133)

where the coefficientsC0,C1, andC2 are determined byminimizing the energy ES0 =〈
ϕS0

∣∣∣Ĥel

∣∣∣ϕS0

〉
, i.e., by diagonalizing Ĥel on the basis of the three configurations. This

is an example of application of the “configurations interaction” (CI) method.
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σ σ

σσ

σ σ

σ

σ

Fig. 2.6 Potential energy curves for σ → σ ∗ states. RAB is the distance between the two atoms
giving rise to the σ bond

The same procedure could be applied to S1: note in fact that the asymptotic behav-
ior of ϕS1 of Eq. (2.131) is also incorrect, as the S1 wavefunction should correlate
with the ionic configuration a2 (corresponding to A−B+) for large RAB (see Fig. 2.6).
Due to the attractive long-range electrostatic interaction between the two ionsA− and
B+, the S1 potential energy curve along RAB normally has a minimum, but shallower
and with a larger equilibrium distance with respect to the ground state, because of
the antibonding effect of the σ ∗ orbital, which is occupied by one electron. In the
symmetric case S1 is given by a combination of the two ionic structures, with the
same weight (a “zwitterionic” state). Conversely, if the difference in electronegativ-
ity between A and B is large, at short distances S0 and S1 will mainly have ionic and
neutral character, respectively. At large RAB the situation is reversed: therefore, in
that case, the potential energy curve of the ionic VB structure must cross that of the
covalent structure for some value of the distance. At that point, the potential energy
curves of S0 and S1 may get close, too. This subject will be developed in greater
detail in Sect. 5.1.

The potential energy curve of T1, which has a neutral wavefunction, is usually
repulsive and correlates with the same asymptote as the ground state (see Fig. 2.6).

Besides valence excited states, for small molecules one has also to consider “Ryd-
berg” states, which can be described as excitations from an occupied orbital (σ in the
present case) to a Rydberg orbital. The latter is a very diffuse hydrogen-like orbital,
because an electron in a Rydberg orbital sees the rest of the molecule approximately
as a point charge. A Rydberg orbital is indicated by the generic symbol Ry, or by
the symbol of the hydrogenoid orbital it resembles: 3s, 3p, 3d, 4s ... The energies of



2.6 Electronic States of Polyatomics and Photoreactivity 61

Rydberg states form series converging to the energy of the cation and can be fitted
by the following formula

En � IP − Ry

(n − δ)2
(2.134)

where IP is the ionization potential, Ry = meα
2c2/2 is the Rydberg energy, n is

the principal quantum number of the singly occupied hydrogen-like orbital, and δ is
the so-called quantum defect, which takes into account the deviation from the point
chargemodel.Often the firstσ → Ry Rydberg states are found at lower energieswith
respect to σ → σ ∗, but they usually show quite low radiative transition probabilities,
rapidly decreasing with n, because of the small overlap of the Rydberg orbitals with
the MO occupied in the ground state. For the same reason, the exchange integral
Kσ,Ry is expected to be small, and therefore the energetic splitting between the
singlet and triplet states sharing the same σ → Ry configuration is normally small
(see Eq. (2.93)). Usually the potential energy surface of a Rydberg state looks like
that of the corresponding cation, as the electron in the Rydberg orbital is weekly
affected by changes in the molecular geometry. Large molecules, which cannot be
approximated as point charges, do not show well-characterized Rydberg states.

2.6.3 Excited States n → σ ∗

According to the energetic ordering of molecular orbitals referred above, in molecu-
les containing σ bonds and lone pairs, such as water, ammonia, alcohols, ethers, the
frontier orbitals are n and σ ∗. Then, the first excited states are normally of n → σ ∗
character (or n → Ry in small molecules). At variance with σ → σ ∗, the excited
singlet n → σ ∗ has a homolytic dissociation, giving rise to two neutral fragments,
like S0. In fact, if A is the atom containing the lone pair n, when the A-B bond
is broken, A will have two nonbonding orbitals (n1 and n2, probably very close
in energy). It will be therefore possible to place the unpaired electron in n1 or n2,
producing two degenerate or quasi-degenerate singlets.

As a simple example we consider the water photolysis [18, 19]. The first excited
singlet state of water has a mixed valence/Rydberg character (i.e., it can be repre-
sented as a combination of the n → σ ∗ and n → 3s configurations). The corre-
sponding absorption band, with a maximum at 166nm, has a weak intensity and is a
continuum, which is the signature of a dissociative potential energy surface. In fact,
the n → σ ∗ configuration has a repulsive potential energy surface and the S1 state,
which has a substantial Rydberg character at the S0 equilibrium geometry, evolves
to become a valence n → σ ∗ state when the O-H bond is stretched. The orbital cor-
relation diagram of Fig. 2.7 shows that the ground state and the n → σ ∗ singlet are
degenerate at dissociation, where two equivalent configurations may be produced
placing the unpaired electron on the OH moiety in one of the two degenerate p
orbitals of the oxygen atom. This simple description is also suited to the dissociation
of O-H and O-C bonds in alcohols and ethers.
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Fig. 2.7 Schematic orbital
correlation diagram for the
OH bond dissociation in a
water molecule. The
occupation of the orbitals is
referred to the ground state.
For the orbitals of the water
molecule (which is assumed
to lie in the yz plane) the C2v
symmetry labels are shown.
The OH fragment lies on the
z-axis

σ a1

σ b1

sp2(O) a1

px(O) b2

σ∗ a1

σ(OH)

sp(O)

px(O), py(O)

s(H)

H2O H + OH

2.6.4 Excited States π → π∗

In monoalkenes the frontier orbitals are π and π∗, so the first excited states have
π → π∗ character (in small molecules, low-lying Rydberg states may be present
as well). The same mixing scheme as in Eqs. (2.128) and (2.129) can be applied to
π orbitals. In particular, in this case the two mixing atomic orbitals a and b (two p
orbitals of two C atoms) are likely to have very similar energies, so that the mixing
coefficient λ will be close to 1. Then, at the equilibrium geometry of S0, both ionic
and covalent structures are expected to contribute to the ground-state wavefunction,
while the π → π∗ S1 state is mainly described by the zwitterionic configuration
a2 −b2. The π bond can be broken without dissociating the molecule, with a torsion
around the bond axis. Such a torsion represents the reaction coordinate for the cis–
trans isomerization; see Fig. 2.8. Along this coordinate, the energy of the ground
state increases, until the torsion angle is about 90◦, and at the same time the energy
of S1 decreases.

At 90◦ degree of rotation, which corresponds to a geometry close to the transition
state for the thermal cis–trans isomerization, the two p orbitals are perpendicular
to each other and their interaction is close to zero. Therefore, their combinations
π and π∗ are degenerate, or nearly degenerate. The S0 state is well described by a
diradical configuration ab + ba, while S1 and S2 are ionic. In particular, if the two
fragments are perfectly equivalent (symmetric case), S1 and S2 are well described
by the two zwitterionic combinations a2 − b2 and a2 + b2, respectively. Conversely,
in an asymmetric case where, say, a2 is lower in energy than b2, given the negligible
interaction between a and b, S1 and S2 will be well described by pure a2 and b2 ionic
states, respectively. In other words, at geometries close to the transition state for the
isomerization, the zwitterionic states are very polarizable. Note that an asymmetry
between the two centers can always be produced by a geometrical deformation:
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λ

λ

Fig. 2.8 Energies of the electronic states of a monoalkene CHR=CHR′, as a function of the torsion
angle R-C-C-R′. The leading configurations for the different states are also shown, in terms of
atomic orbitals, at the ground-state equilibrium geometry and at 90◦ of torsion. In a symmetric
case (i.e., with R = R′) the parameter λ is equal to 1, while it tends to zero when an asymmetry is
introduced (see text)

for example, the pyramidalization of the carbon atom A, with hybridization going
from sp2 to sp3, slightly lowers the energy of the a2 ionic configuration. Therefore
along that coordinate the energy of S1 slightly decreases, while the energy of S0
increases: eventually, the two states may cross. In any case, with that deformation
the energy difference between S1 and S0 is further reduced with respect to the value
at the transition state for cis–trans isomerization. Hence in that region, which can be
accessed very easily on the S1 surface from the Franck–Condon point, nonadiabatic
transitions between the two electronic states are very likely to happen. For that
reason, alkene molecules which are free to rotate around the C-C double bond and
to pyramidalize one of the two carbon atoms, after electronic excitation show a very
fast decay to S0, and are therefore not fluorescent.
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It is evident from Fig. 2.8 that electronic excitation of a monoalkene may easily
lead to isomerization: in fact, when the molecule goes back to the ground state from
a geometry close to the transition state, it follows the S0 potential energy surface
ending with either a trans or cis final geometry, independently of the starting isomer
on S0.

The first band in the absorption spectrum of monoalkenes has mixed character
π → π∗ and Rydberg and peaks around 180–200 nm. It is very broad, given the
different shapes of the S0 and S1 potential energy surfaces, as shown in Fig. 2.8.

The energetic separation between two π → π∗ T1 and S1 states is large: in fact,
given the substantial overlap between |π | and |π∗|, the exchange integral Kππ∗ is
not small, except when the double bond is twisted. The T1 potential energy surface
has a behavior similar to S1 with respect to the torsion around the double bond axis
and is closer to S0: population of the T1 state, when feasible, may lead to cis–trans
isomerization as well.

2.6.5 Excited States n → π∗

In nonconjugated molecules like imines, carbonyl compounds, azocompounds,
where the double bond involves an atom with a lone pair, the frontier orbitals are
n and π∗, so the first excited states have n → π∗ character. There are significant
differences between n → π∗ and π → π∗ states. In particular, the singlet–triplet
energetic separation is smaller for n → π∗ states than for π → π∗ states. In fact, n
and π∗ orbitals occupy quite different space regions, so that concerning the exchange
integrals we have Knπ∗ � Kππ∗ . This has an important consequence on the photo-
physics, since with a smaller energy difference, the ISC S1 → T1 is easier. Therefore,
systems with n → π∗ transitions have larger triplet quantum yield with respect to
molecules with π → π∗ states only. For example, in acetone the n → π∗ states S1
and T1 have minima at about 3.8 and 3.5 eV above the ground state, respectively.
Now, the spin–orbit coupling between S1 and T1 is very small because of the El-Sayed
rules (about 1 cm−1), see Sect. 2.4. However, the π → π∗ state T2, with minimum at
about 4.5 eV above S0, is not far from S1 and the SO coupling S1/T2 is not negligible
(about 60 cm−1). As a result, the triplet quantum yield of acetone is close to 1 (at
least at excitation energies below the threshold for C-C bond dissociation, which is
a process in competition with ISC).

Another remarkable difference is due to the fact that, for symmetry reasons, the
μnπ∗ is zero or close to zero. Hence the radiative transition from S0 is (almost) dipole
forbidden for n → π∗ states (see Eq. (2.94)), at variance with the π → π∗ states.
Let us consider, for example, a carbonyl compound: the C=O group has a local
C2v symmetry, with n and π∗ belonging to b1 and b2 irreducible representations, so
μnπ∗ = 0 (see also Sect. 3.7). The C2v symmetry may be disrupted by the groups
linked to the carbonyl; however, μnπ∗ will be small, as n and π∗ are localized on
the C=O, for a nonconjugated carbonyl compound. In the absorption spectrum the
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n → π∗ transitions have molar extinction coefficients roughly in the range εmax ≈
10–100 mol−1 L cm−1, while for π → π∗ states one may easily have εmax ≈ 104.

In the absorption spectrum of nonconjugated carbonyl compounds the n → π∗
band is found at about 300 nm and usually has an extended vibrational structure.
In fact, at variance with S0 which has a planar structure, in the n → π∗ state the
carbon atom tends to pyramidalize, with an ibridation going from sp2 to sp3, due to
the antibonding interaction of the π∗ electron. The π → π∗ band is usually found
around 190 nm.

In compounds with a C=N or a N=N double bond (imines or azocompounds,
respectively) the ground and the first excited states S1 and T1 show a behavior sim-
ilar to that of Fig. 2.8 with respect to the torsion about the double bond. However,
the energy gap between S1 and T1, which have n → π∗ character, is smaller, while
S1 is normally lower in energy than in alkenes. For example, in azomethane the first
absorption band has maximum at about 360 nm. In general, imines and azocom-
pounds are not fluorescent and photoisomerize with a mechanism similar to that of
alkenes.

2.6.6 Excited States of Conjugated Systems

The distinctive feature of a conjugated π system with 2nc centers is that, being the π

orbitals delocalized, the energy gap between two consecutive π orbitals (hence the
HOMO-LUMO gap) decreases with nc, in analogy with the levels of a particle in a
box. The π → π∗ transitions are therefore displaced at lower energies, as shown in
Fig. 2.9. If present, n → π∗ transitions show a similar behavior, but to a lesser extent
(the energy of the n orbital being not affected by the extension of the π system).
Therefore, increasing nc, n → π∗ and π → π∗ bands tend to approach, with the
n → π∗ absorption disappearing below the more intense π → π∗ one for nc large
enough. For that reason in Fig. 2.9 the plot is interrupted at nc = 3 for n → π∗
bands.

In aromatic compounds the first absorption band is again displaced to shorter
wavelengths, because aromaticity stabilizes the ground state: for instance, the S1
absorption band in hexatriene peaks at 270 nm, while in benzene it is found at
about 250 nm. Moreover, the easy torsion of the double bonds in linear polyenes
completely obscures the vibrational structure, which is instead quite apparent in the
first absorption band of aromatic compounds. A quite analogous effect is instead the
shift to longer wavelengths which is observed by extending the conjugated systems:
from 250 nm in benzene we go to 270 nm in naphthalene, 345 nm in anthracene,
and 470 nm in tetracene. Polycyclic aromatic hydrocarbons (PAH) are quite rigid,
so the S1 PES cannot get close to the S0 one, as it does by double-bond torsion in
linear polyenes. As a result, the S1 lifetime is long and PAH compounds are often
fluorescent, see Table 2.2.

In general n → π∗ triplets have larger radiative transition rates with respect
to π → π∗ triplets. In fact, due to the El-Sayed rules, n → π∗ triplet states are
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Fig. 2.9 Vertical transition energies π → π∗ in conjugated systems, from absorption max-
ima. Simple polyenes, H(CH=CH)ncH; diphenylpolyenes, Ph-(CH=CH)nc -Ph; aldehydes, CH3-
(CH=CH)nc−1-CHO; carboxylic acids, CH3-(CH=CH)nc−1-COOH. For aldehydes with nc = 1-3,
the n → π∗ transition is shown as well. Data from [20]

Table 2.2 Photophysical properties of selected aromatic compounds in solution. τS is the singlet
lifetime. ΦF and ΦT are the fluorescence and triplet quantum yields, respectively. Data from [21,
22]

Molecule τS (ns) ΦF ΦT

Benzene 34 0.06 0.25

Naphthalene 96 0.19 0.75

Anthracene 6 0.27 0.71

Phenanthrene 57 0.14 0.73

Pyrene 650 0.65 0.37

Chrysene 45 0.12 0.85

Tetracene 6 0.17 0.62
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more strongly coupled and therefore mixed with π → π∗ singlets, which in turn
have large transition dipoles with S0. Therefore, molecules where S1 and T1 have
n → π∗ character usually have ΦP � ΦF (where ΦF and ΦP are the fluorescence
and phosphorescence quantum yields, respectively). This happens in many carbonyl
compounds, especially the aromatic ones. For example, benzophenone has ΦF ≈
10−5 and ΦP � 0.9 (in rigid glasses at 77 K).

2.6.7 Charge Transfer States

Molecules containing electron-rich (donor, D) and electron-poor (acceptor, A) moi-
eties are called push–pull systems. Considering A and D as separate entities, one
expects for A a large electron affinity and for D a small ionization potential. In
other words, the LUMO of A is particularly low in energy, while HOMO of D is
particularly high. In these systems the first excited state usually corresponds to the
transition HOMO(D) → LUMO(A): a charge transfer (CT) state. An organic chem-
istry example is represented by the so-calledReichardt’s dye of Fig. 2.10, but this kind
of excited states is very common in transition metal complexes, because different
oxidation states of the metal center are accessible at relatively low energies.

If A and D belong to different molecules we may have intermolecular charge
transfer states. An example is the A/D complex tetracyanoethylene/1,2,4,5-tetra-
methylbenzene. In this case the dipole moment, which is 1.3 D in the ground state,
increases in the charge transfer state up to 11.6 D. The presence of the charge transfer
state can be detected from the absorption spectrum, where a low energy band, not
corresponding to localized excitations in A or D (or combinations of these) appears.
The charge transfer band is usually broad and featureless, as the interaction between
A and D is clearly quite different in the ground and in the CT state.

⊕
N

O

hν
N

O

Fig. 2.10 Charge transfer in the Reichardt’s dye (pyridynium N-phenolate betaine, PNPB). The
ground-state dipole moment of PNPB is 15 D. Upon excitation it decreases in modulus to 6 D,
reversing its direction
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2.7 Unimolecular Photochemical Reactions in Organic
Molecules

We give here a short account of the photochemical reactivity of organic molecules,
considering only some of the main photochemical processes. More information on
organic photochemistry can be found in Klán and Wirz [23] or Turro et al. [24].

2.7.1 Photoisomerization of Alkenes

In the ground state, the cis–trans isomerization in alkenes has a high activation energy
(around 250 kJ/mol in monoalkenes, see Fig. 2.8) and requires therefore high tem-
peratures, or the use of a catalyzer. In any case, in the end the (thermodynamic) equi-
librium mixture of the two isomers is obtained. At variance, the photoisomerization
is usually easy and fast, and both cis → trans and trans → cis photoisomerizations
can be obtained. In particular, at the photostationary state, the ratio between the two
isomers is given by (see Eq. (1.79))

[cis]
[trans] = εtransΦtrans→cis

εcisΦcis→trans
(2.135)

and, as already observed in Sect. 1.6.4, may in principle be modified by tuning the
excitation wavelength.

The quantum yields Φtrans→cis and Φcis→trans depend mainly on the potential
energy surfaces of S0 and S1. Typically one has Φtrans→cis and Φcis→trans close to
0.5, with a slightly larger value for the reaction leading to the more stable isomer.

2.7.2 Electrocyclic Reactions

Alkenes with a conjugated π system may give rise to ring-closure and/or ring-
opening “electrocyclic” reactions. In an electrocyclic ring-closure, nc conjugated
double bonds are reduced to nc − 1, and a new σ bond is formed between the two
terminal carbon atoms of the π system. These reactions may happen either thermally
or photochemically. Clearly, in the latter case it is easy to obtain a photostationary
state which is far from the thermodynamic equilibrium: in fact, the ring-opened com-
pound, with an additional double bond, absorbs at longer wavelengths and can be
selectively excited. To form the σ bond between the two terminal carbon atoms, the
groups bonded to them have to move out of the plane of the conjugated π system.
As shown in Fig. 2.11, that motion can be conrotatory or disrotatory, ending in two
stereochemically distinct products.
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Fig. 2.11 Conrotatory and
disrotatory ring-closure in an
electrocyclic reaction R R

disrotatory
R R

R R
conrotatory R

R

Table 2.3 Stereochemistry of an electrocyclic reaction

Electrons involved (2nc) Thermal reaction Photochemical reaction

4n Conrotatory Disrotatory

4n + 2 Disrotatory Conrotatory

Fig. 2.12 Orbital correlation
scheme for the electrocyclic
ring-closure of a diene. The
molecular orbitals involved
are labeled according to the
irreps of the C2 and the Cs
symmetry groups, which are
relevant for conrotatory or
disrotatory mechanism,
respectively. The full lines
connecting the orbitals of the
reactant and the product refer
to the conrotatory pathway,
the dashed lines to the
disrotatory one

b, a

a, a

b, a

a, a

a, a

b, a

a, a

b, a

Electrocyclic reactions are concerted processes. In fact, as shown in Table 2.3,
there is a sharp correlation between the number of π electrons in the ring-opened
system (2nc) and the stereochemistry of the product. This correlation is different
for photochemical and thermal reactions and can be explained by the Woodward–
Hoffmannprinciple of conservation of orbital symmetry [25], as schematically shown
inFig. 2.12 for the butadiene/cyclobutene system.Note in fact that along a conrotatory
(respectively, disrotatory) pathway a C2 (respectively, Cs) symmetry is kept, and the
orbital symmetry is conserved during the reaction. In particular, focussing on the
photochemical process, the HOMO and LUMO (the second and third orbital in
Fig. 2.12) are both occupied with one electron. Then an activation barrier is expected
following the conrotatory path,where orbitals are labeled according to the irrepsa and
b of the Cs symmetry group, as the LUMO of the reactant correlates with LUMO+1
of the product. Conversely, the disrotatory mechanism appears to be favorable, as
HOMO and LUMO of the reactant correlate with LUMO and HOMO of the product.
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Quite the opposite is true for the thermal reaction, which prefers the conrotatory
pathway. Note that symmetry conservation is just a way to identify which orbitals of
the reactant can be gradually transformed into which orbitals of the reaction product.
In fact, the orbital correlations can also be establishedwithout reference to symmetry,
on the basis of continuous transformations along a reaction pathway.

2.7.3 Sigmatropic Reactions

In sigmatropic rearrangements one has a conjugated π system formed by carbon
atoms C2–Cns plus an aliphatic (sp3) carbon atom C1 connected to C2: a hydrogen
atommigrates fromC1 toCns and the double bonds are displaced accordingly. Similar
to the electrocyclic processes, sigmatropic rearrangements are concerted reactions,
and one may have stereospecific thermal or photochemical sigmatropic rearrange-
ments, with a stereochemical course depending on the number of electrons involved
in the reaction, ns +1. For example, for a diene we have a thermal shift “[1, 5] supra”

R
D

5

4 3

2

1
H

R R

Δ R

D
H R

R (2.136)

where, thanks to the deuteration, we can see that the hydrogen atom has migrated
from C1 to C5 remaining on the same side of the molecular plane (suprafacial shift).
A sigmatropic rearrangement where the hydrogen atom crosses the plane of the π

system is called antarafacial.
The correlation between the number of electrons involved in the rearrangement

(the ns − 1 π and the two σ electrons of the C-H bond) and the stereochemistry is
shown in Table 2.4. Being a concerted process, a sigmatropic rearrangement involves
a cyclic intermediate with partly broken C1-H and partly formedCns -H bonds. There-
fore an antarafacial shift is only possible if the molecule has an helicoidal twist such
that C1 and Cns can be found on top of each other. As a consequence, monoolefins
are stable

(2.137)

Table 2.4 Stereochemistry of a sigmatropic rearrangement

Electrons involved
(ns + 1)

Shift Thermal reaction Photochemical
reaction

4n [1, 3], [1, 7] . . . antara supra

4n + 2 [1, 5], [1, 9] . . . supra antara
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as the shift [1, 3] cannot be antarafacial, and the photochemical shift [1, 3] supra
would require UV light with λ < 200 nm.

The stereochemical behavior shown in Table 2.4 can be explained considering
the cyclic intermediate referred above. In that system, HOMO and LUMO orbitals
are obtained from the linear combination of the 1s orbital of the H atom which
is transferred and the SOMO (singly occupied molecular orbital) of the remaining
molecular fragment. In turn, the SOMO is a π orbital of a conjugated system with
ns centers and ns electrons (note that in the intermediate C1 and Cns belong to the
π system, both contributing with one electron and a partly hybridated p orbital).
In a suprafacial mechanism, a SOMO with an even number of nodes has a bonding
interaction with the 1s orbital: in fact, in that case the linear combination of p
orbitals which represents the SOMO is such that the p orbitals on C1 and Cns are in
phase. Noting that ns is odd and the number of nodes in the SOMO is (ns −1)/2, we
obtain the correlation Table 2.4 for thermal reactions. Concerning the photochemical
process, one has to consider the interaction of the 1s orbital with SOMO+1, which
of course has (ns + 1)/2 nodes, yielding an inverted stereospecificity with respect
to the thermal reaction.

The stereochemistry of a sigmatropic rearrangement in which atoms or groups
different from hydrogen are transferred, can be analyzed in a similar way. However,
if the unpaired electron of the migrating group is in a p orbital, as in the methyl
radical, it can establish bonding interactions with p or hybrid orbitals of opposite
signs on C1 and Cns , so inverting the rules of Table 2.4.

2.7.4 Photodissociation of Carbonyl Compounds

The carbonyl compounds have a rich photochemistry. Here we focus on the “Norrish
type I” reaction, which is the photodissociation of the C-C bond in α position with
respect to C=O. In aliphatic aldehydes and ketones S1 and T1 have n → π∗ character
and are close in energy, with similar potential energy surfaces and efficient ISC.
Therefore, the α-cleavage (as well as other photochemical processes) may take place
either in S1 or in T1.

The Norrish type I reaction involves quite a complex rearrangement of molecular
orbitals (see Fig. 2.13). In particular, considering the following α-cleavage

R

O
hν R C O + CH3

(2.138)

we have in short a mixing between the nonbonding p orbital of the oxygen atom
(p(O)), singly occupied after the n → π∗ transition, and the doubly occupied
σ C-CH3 bond (σ(CC)). At dissociation p(O) is practically unaltered, but its occu-
pation increases from 1 to 2 electrons. In other words, the singly occupied p(O)

behaves as an electrophilic center with respect to the σ(CC) orbital, leading to the
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Fig. 2.13 Orbital correlation scheme for theNorrish type I reaction (2.138). The left panel describes
the α-cleavage, ending with a bent R-C=O acyl group, which progressively becomes linear in the
right panel

breaking of the C-C bond. The acyl radical R-C=O is bent in the ground state, with
the unpaired electron in the sp2 hybrid of the carbonylic C atom. It has a low-lying
excited state where the unpaired electron occupies the π∗ orbital. That excited state
has a linear equilibrium geometry, where sp2 becomes p(C) which in turn mixes
with p(O) to give a pair of π , π∗ orbitals. Hence, at the linear geometry the two
states of the acyl radical are degenerate as the unpaired electron can choose between
two equivalent π∗ orbitals. This is a manifestation of the Renner–Teller effect, see
Sect. 5.4.4.

The S0 and T1 states of the reactant correlate with the bent ground state of the
acyl radical, while S1 correlates with the linear excited state. Therefore, the potential
energy surface of T1 is normally more favorable to the photodissociation than that of
S1. Usually the primary process of Eq. (2.138) is followed by the second α-cleavage,
which may lead to decarbonylation if the two radicals recombine.

The energy needed for the α-cleavage is close to the S0 → S1 excitation energy
of the carbonyl compound. Then, photodissociation is easily inhibited. In condensed
phase, the small amount of excess vibrational energy in the excited state can be
rapidly transferred to the environment (see Sect. 4.5), leading to the recombination
of the radical pair: this is an example of solvent cage effect. As a rule, in small
saturated ketones like acetone the photodissociation occurs in the gas phase but is
inhibited in solution. Moreover, the α-cleavage does not occur in aromatic ketones,
like benzophenone, where the C-C bond is stabilized by conjugation. Conversely, the
photodissociation is easy in strained cyclic ketones (cyclobutanone, cyclopentanone)
or if the radicals produced are particularly stable. For example
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O hν
+ CO

(2.139)

2.8 Solvent Effects on Absorption and Emission Spectra

The interaction with a solvent has an influence on the shape and the position of bands
of a chromophore in electronic spectroscopy. As to the shape, the spectral bands of
a molecule in solution are broader than in gas phase because of fluctuations in the
solute-solvent interactions. In fact, such interactions change slightly among solute
molecules and in time, and so do the energy differences between their electronic
and vibrational levels. This is an important source of inhomogeneous broadening,
meaning the broadening due to the inhomogeneous conditions experienced by the
absorbing or emitting molecules (see Sect. 3.5). In this section, we will make some
qualitative considerations about the shift in the absorption and emission bands of a
solute in different solvents, a phenomenon called solvatochromism. For deeper and
more extended discussions the interested reader is referred to references [26–28].

As discussed in Sect. 2.6, in organicmolecules the electronic excited states involve
electronic promotions to virtual orbitals (LUMO, LUMO+1, etc.) which are more
diffuse with respect to the occupied orbitals. As a result, excited states have usually
larger polarizabilities with respect to the ground state, thus stronger stabilization by
van derWaals interactionwith a solvent. This effect, always present, causes a red shift
in the absorption and emission spectra. Dispersion interactions may be important,
for instance, in the case of “stacked” aromatic molecules, where two polarizable π

systems are close to each other. For polar molecules, electrostatic interactions are
usually stronger and may override the red shift due to dispersion.

For a polar molecule, it is important to consider that the ground-state dipole
moment μ0 may differ from that of the excited state responsible of the absorption
or the emission, μe. When the solute is in the ground state, the solvent molecules
close to it are oriented in agreement to μ0. In particular, μ0 gives rise to a field
which determines the induced dipole moments of the surrounding solvent molecules
(and possibly orients the permanent dipoles, if the solvent is polar) in such a way to
minimize the interaction energy. In turn, the solvent molecules give rise to a “reaction
field” that polarizes the solute itself. Upon absorption the solute dipole moment
suddenly changes to μe and, in agreement with the Franck–Condon principle, the
permanent dipole moments of the solvent are not able to quickly reorient. Instead, the
induced dipoles of the solvent readjust almost instantaneously to the new dipole μe.
The absorption spectrum is a snapshot of this nonequilibrium state. What happens
in emission depend on the time required for the reorganization of solvent molecules
around the solute: if this is short compared to the fluorescence lifetime, the solvent
shell is in equilibrium with the emitter, stabilizing it and causing a red shift of
the fluorescence, the entity of which depends on the solvent polarity (note that the
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Table 2.5 Solvatochromic shifts of absorption bands. Themaximum absorptionwavelength (λmax ,
nm) for the given band (n → π∗, π → π∗ or CT) is reported. PNPB is the molecule shown in
Fig. 2.10, for which the color of the solution is indicated in parenthesis. εr is the dielectric constant
of the solvent. Data from [26, 29]

Solvent Pyrimidine Benzophenone Benzophenone PNPB

Molecule εr n → π∗ n → π∗ π → π∗ CT

n-hexane 1.89 – 347 248 –

Anisole 4.33 – – – 771 (yellow)

Ether 4.34 290 344 249 –

Acetone 20.7 – – – 667 (green)

Isopentanol 14.7 – – – 583 (blue)

Acetonitrile 37.5 287 339 251 –

Ethanol 25.1 – 332 252 550 (violet)

Methanol 32.6 280 331 253 516 (red)

Water 78.5 271 322 258 453

ground state will also be out of equilibrium after photon emission, so contributing to
the red shift). This is what happens in many cases for fluorescent molecules in low
viscosity solvents. Conversely, if the solvent relaxation is slow and/or the lifetime
of the excited state is too short, the fluorescence is emitted from the nonequilibrium
Franck–Condon state, with no shift due to reorganization.

In general, n → π∗ transitions entail a sizeable decrease in polarity. In fact,
in a n → π∗ state an electron is displaced from a nonbonding orbital, usually
localized in an outlying region, to a more central and delocalized orbital. Therefore,
the interaction with the solvent stabilizes more the ground than the excited n → π∗
state, and the resulting blue shift of the absorption band increases with the solvent
polarity (see Table 2.5). Especially large blue shift are expected in protic solvents,
where the n lone pair is involved in a hydrogen bond. This may lead to the inversion
of n → π∗ and π → π∗ bands in solution. In particular, the S1 state may change
its nature from n → π∗ in the gas phase to π → π∗ in solution, with important
consequences on themolecular photochemistry and photophysics. In fact, as we shall
see in Sect. 3.11, fluorescence and other slow processes normally take place in the
S1 state (Kasha’s rule). As an example, 1-pyrenecarboxaldehyde shows an increase
of the fluorescence quantum yield by three orders of magnitude when changing the
solvent from cyclohexane to methanol, because the emission rate of the π → π∗
state is much higher than that of the n → π∗ state [30].

O
H

1-pyrenecarboxaldehyde



2.8 Solvent Effects on Absorption and Emission Spectra 75

In acidic media the heteroatom that provides the n orbital may be protonated: in that
limiting case the lone pair is not anymore available and the n → π∗ band disappears.
Of course, charge transfer transitions are strongly affected by the interaction with a
polar solvent, due to the large difference between the ground and the excited state
polarity, see Table 2.5. The Reichardt’s dye of Fig. 2.10, thanks to its impressive
solvatochromism, can be used as a polarity probe.

2.9 Computational Note: The Determination of Electronic
Excited States

This short section is devoted to readers that are at least minimally acquainted with
quantum chemistry methods. Excellent textbooks, both at introductory level [4, 31]
andmore advanced [7, 32], can be consulted for a deeper understanding of theory and
techniques. Here we shall be concerned with the application of quantum chemistry
to the determination of the properties of excited states and in particular of their PESs
and spectra.

The simplest approximate method to solve the time-independent Schrödinger
equation Ĥelϕ = Uϕ for the electronic ground state of a molecular system is repre-
sented by the Hartree–Fock self consistent field (SCF) theory, where ϕ is written in
the form of a single Slater determinant. Usually, the SCF method provides a good
qualitative description of the ground state of organic molecules near to their equi-
librium geometry. One could extend the SCF theory to excited states, however we
know from Sect. 2.6 that in most cases an excited state cannot be represented by just
one Slater determinant, so the Hartree–Fock approximation is normally qualitatively
wrong for excited states. For the same reason, the SCF method cannot be used to
obtain a potential energy surface: in fact, it behaves incorrectly at dissociation (see
Sect. 2.6.2), close to a transition state, and in general in degeneracy situations, where
it is mandatory to consider more than one Slater determinant.

The methods which build on the SCF determinant Φ0 to obtain a more refined
(ground state) wavefunction are called single-reference. Examples are single-
reference configurations interaction (CI) and coupled cluster (CC). In most cases
it is possible to obtain from these methods excited state wavefunctions and/or ener-
gies. However, the description is clearly biased in favor of the ground state (e.g., the
molecular orbitals are optimized for it). Moreover, problems are expected in regions
where the single determinant approximation is not valid.

To have a balanced treatment of ground and excited states one has to rely on
multireferencemethods, which also allow for full PES exploration. In particular, the
most used version of multiconfigurational SCF (MCSCF) is complete active space
SCF (CASSCF), in which a set of active electrons and orbitals is defined, and a full
CI within that set is performed. This is effective from the computational point of
view and simplifies the choice of the configurations to include in the wavefunction.
However, in many cases a valence CASSCF calculation gives too high S0 → Sn
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Franck–Condon transition energies. Loosely speaking, this is due to the fact that
normally, at the ground-state geometry, the ionic configurations are more important
in the description of singlet excited states than for S0. Now, in CASSCF the orbitals
are optimized in an averaged field corresponding to a neutral charge distribution,
and therefore are more suited to covalent than to ionic configurations [33, 34], thus
introducing a bias in favor of S0. This phenomenon may be especially important
for π → π∗ states (see Sect. 2.6.4), less for n → π∗ states. To obtain quantitative
agreement with experimental spectroscopic data, the CASSCF results can be refined
either variationally, bymultireference CI (MRCI) or, more commonly, perturbatively
(using CASPT2 [35] or NEVPT2 [36]). However, due to the high computational cost
of these multireference methods, their applicability is limited to small molecules
(say, ∼20 second row atoms).

An alternative to ab initiomethods is provided by density functional theory (DFT),
a single-reference scheme for which excited state properties are available from the
“time-dependent” approach (TD-DFT). Due to its low computational cost, TD-DFT
is usually the method of choice for large systems, and in many cases, at geometries
close to the ground-state minimum, gives results in good agreement with the best
ab initio methods. At distorted geometries it suffers from the problems of single-
reference methods mentioned above.

Problems

2.1 Consider a one dimensional system described by the following Hamiltonian

Ĥ(x) = − �
2

2m

d2

dx2
− Fx (F > 0)

appropriate, for example, for a particle of mass m and charge q in the presence of a
constant electric field E0 (in that case F = qE0). Working in the momentum repre-
sentation (use x = i�d/dp), evaluate the time evolution of a Gaussian wavepacket,
i.e., find Ψ (p, t) given Ψ (p, 0) = (2α/π)−1/4 exp(−αp2), with α > 0.

2.2 The potential energy of a Morse oscillator is V (x) = D(1− e−a(x−x0))2, where
D is the well depth. The corresponding energy eigenvalues are

Ev = �ω(v + 1/2) + �
2ω2

4D
(v + 1/2)2 ω = a

√
2D/m

where v = 0, 1, . . . and m is the mass of the oscillator. Evaluate the density of
states for a single Morse oscillator and use it to obtain a classical expression (i.e.,
without taking into account the quantization of energy) for the density of states of
two noninteracting identical Morse oscillators.
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2.3 Inmoleculeswhere S1 and T1 are close in energy, the “inverse” ISC from T1 to S1
may be characterized by a non-negligible rate constant KinvI SC . Compute KinvI SC for
acetone, according to the following data/assumptions: (i) the molecule is isolated,
so that its energy is constant, and in particular E = 1 eV above the ZPE of T1;
(ii) the lifetimes of S1 and T1 are long enough to reach microcanonical equilibrium
before decaying to S0; (iii) the adiabatic (i.e., minimum-minimum) energy difference
between S1 and T1 is ΔE = 0.25 eV; (iv) S1 and T1 have the same vibrational
frequencies; (v) the rate constant for the ISC S1 → T1 is KI SC = 3.5 ns−1.

2.4 Four different Slater determinants can be written with two electrons in two
orbitals. The related matrix elements of Hel are

〈
φi ∧ φi

∣∣∣Ĥel

∣∣∣φi ∧ φi

〉
= 2εi + Jii〈

φi ∧ φ j

∣∣∣Ĥel

∣∣∣φi ∧ φ j

〉
= εi + ε j + Ji j〈

φi ∧ φ j

∣∣∣Ĥel

∣∣∣φi ∧ φ j

〉
= −Ki j

with i, j = 1, 2 and where φi (respectively, φi ) label a spin-orbital with spin part α
(respectively, β). εi are the orbital energies (ε1 ≤ ε2). Ji j are the Coulomb integrals,

representing the electrostatic repulsion between the two charge clouds |φi |2 and
∣∣φ j

∣∣2.
K12 is the exchange integral, see Eq. (2.93). Both the Coulomb and the exchange
integrals are positive quantities and we assume Jii > Ji j . Write ϕS0 , ϕS1 and ϕT1
in terms of the three Slater determinants φ1 ∧ φ1, φ1 ∧ φ2, and φ1 ∧ φ2. Evaluate
the corresponding energies. Which one is the ground state when the two orbitals are
degenerate (i.e., ε1 = ε2)?
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Chapter 3
Electronic Excitation and Decay

Abstract This chapter deals with the optical excitation processes that bring about
transitions between electronic states and with some of the dynamical processes that
may follow. The excited states created by photon absorption can be nonstationary
under two basic aspects: first, they can undergo radiationless electronic transitions
(nonadiabatic dynamics), and second, internal motions can occur in the new poten-
tial energy surface as the nuclear wavefunction or “wavepacket” evolves in time
(adiabatic dynamics). After presenting the basic aspects of optical excitation, in this
chapter we shall consider the slow radiationless transitions between electronic states
caused by nonadiabatic or spin–orbit couplings. The adiabatic dynamics, i.e., the
nuclear motion in a single potential energy surface, will be dealt with in the next
chapter. Finally, in Chap.5 we shall tackle the ultrafast nonadiabatic transitions that
occur when two or more PESs are close in energy. In such events, the nonadiabatic
dynamics and the nuclear motion are inextricably coupled. To begin with, we shall
introduce and make use of some important formalisms, such as the time-dependent
perturbation theory or the relationship between autocorrelation functions and spectra.
In presenting such concepts and tools, we shall focus rather on their physicalmeaning
and their applicability to real phenomena, than on the mathematical formalism.

Keywords Rabi oscillations · Time dependent perturbation theory
Autocorrelation function · Franck-Condon factors · Fermi golden rule
Quasi-continuum

3.1 Constant and Time-Dependent Perturbations

Several common phenomena in molecular physics can be described as a system,
initially in a stationary state, being perturbed by an external force that drives a
dynamical response. For instance, the source of perturbation can be a static electric
or magnetic field, a light pulse, or the interaction with an approaching molecule. If
we call Ĥ (0) the Hamiltonian of the unperturbed system, and V̂ the perturbation,
then the complete Hamiltonian is

Ĥ = Ĥ (0) + V̂ (3.1)
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A formally similar situation can also be found in the absence of external perturbations,
when the full molecular Hamiltonian is split in two terms, Ĥ (0) and V̂ , and one can

assume the initial state to be an eigenstate
∣
∣
∣ψ

(0)
i

〉

of Ĥ (0):

Ĥ (0)
∣
∣
∣ψ

(0)
i

〉

= εi

∣
∣
∣ψ

(0)
i

〉

. (3.2)

Let us write the time-dependent wavefunction as a linear combination of the ψ
(0)
j

eigenstates:

|ψ(t)〉 =
∑

j

c j (t) e
−iε j t/�

∣
∣
∣ψ

(0)
j

〉

. (3.3)

As we know from Sect. 2.1.2, without the perturbation V̂ this expression would
represent the time evolution of the system with constant coefficients: c j (t) = c j (0).
By using this expansion, the time-dependent Schrödinger equation

i�
d

dt
|ψ(t)〉 = Ĥ |ψ(t)〉 (3.4)

becomes

∑

j

[

ċ j − iε j

�
c j

]

e−iε j t/�

∣
∣
∣ψ

(0)
j

〉

= − i

�

∑

j

c j e
−iε j t/�

[

ε j + V̂
] ∣
∣
∣ψ

(0)
j

〉

. (3.5)

Thanks to the introduction of the exponential factors exp(−iε j t/�) in Eq. (3.3) the
terms −iε j c j/� cancel out. We can single out the time derivative of coefficient ci by

multiplying on the left both members of this equation by
〈

ψ
(0)
i

∣
∣
∣:

ċi = − i

�

∑

j

c j e
iωi j t Vi j ∀ i (3.6)

where
Vi j =

〈

ψ
(0)
i

∣
∣
∣V̂

∣
∣
∣ψ

(0)
j

〉

(3.7)

and
ωi j = εi − ε j

�
. (3.8)

The (3.6) are a set of coupled equations, one for each ci coefficient, the solution of
which yields the full information about the time evolution of the system. The squared
module of each coefficient in the development (3.3), Pi = |ci (t)|2, is the probability
of finding the system in state ψ

(0)
i at time t , also called the state population. When

the probability Pi increases in time, we say that transitions occur from other states
ψ

(0)
j to state ψ

(0)
i . According to Eq. (3.6) this is possible only when at least one other
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ψ
(0)
j state is populated (i.e., c j �= 0) and Vi j �= 0. This is the basis of all “selection

rules,” in spectroscopy as in other aspects of molecular dynamics. When Vi j �= 0 we
say that the perturbation V̂ “couples” states ψ

(0)
i and ψ

(0)
j . The Vi j matrix element

is called the “coupling” or “interaction” between the two states.
Notice that, as far as Ĥ (0) �= Ĥ , the quantity

∑

j

∣
∣c j

∣
∣
2
ε j is not the total energy

of the system; at best, it is an approximation of it, valid for small couplings Vi j .
However, if V̂ depends on time, there may be times at which Ĥ (0) coincides with the
total Hamiltonian. For instance, if the system is perturbed by a light pulse, before the
pulse is switched on and after it dies off we have V̂ = 0: so, the

∣
∣c j

∣
∣
2
probabilities

correctly describe the molecular energy distributions before and after the interaction
with the light pulse.

3.2 Light–Molecule Interaction

Since we are particularly interested in the light absorption process, we shall consider
the case where V̂ is the radiation–molecule interaction. Molecules interact with light
mainly through the electric field. Consider, for instance, electric andmagnetic dipoles
with the usual orders of magnitude of 1 a.u., i.e., respectively, two proton/electron
charges separated by 1 bohr, and the orbital or spin angularmomentum of an electron.
Since the field magnitudes in Eqs. (1.1) and (1.2) are related by E0 = cB0, the field-
dipole interaction is about 100 times larger for the electric field than for the magnetic
one. As we shall see, the effect of such perturbations in many circumstances is
proportional to the square of the interaction, so the electric field of light affects a
molecule about 104 times more than the magnetic field.

The interaction energy of a molecule with a time- and space-dependent electric
field is, in atomic units

V̂ = −
∑

α

Zαrα · E(rα, t) +
∑

i

ri · E(ri , t) (3.9)

where α numbers the nuclei and i the electrons. For UV, visible or NIR light of
interest in photochemistry, the wavelengths we consider are larger than 100nm, i.e.,
much larger than many molecules or at least of the part of a molecule where the
excitation is localized. As a consequence, in Eq. (3.9) we can replace E(ri , t) with
its value at an arbitrary location r0 within the molecule, for instance, its center of
mass. Then, we shall drop the dependence on position and write

V̂ = −µ · E(t) (3.10)

where
µ =

∑

α

Zαrα −
∑

i

ri (3.11)
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is the molecular dipole. For obvious reasons, this is called the dipolar approx-
imation. The matrix elements Vi j are then related to the dipole matrix elements

µi j =
〈

ψ
(0)
i |µ| ψ(0)

j

〉

:

Vi j = −µi j · E(t) . (3.12)

For simplicity, we shall consider a linearly polarized wave, Eq. (1.1), dropping
the constant term −k · r0 that can be incorporated in the phase ϕ:

E(t) = E0 cos(ωt − ϕ) . (3.13)

The phase may be important in particular conditions (light pulses with a duration
of few optical cycles or, more generally, radiation very suddenly switched on or
off). In such cases, one must remember that molecules in different positions will
experience different electric fields because of the term −k · r0 included in ϕ. More
general formulations can be envisaged, e.g., the elliptic or circular polarization as in
Eq. (1.3).

In some of the following sections we shall focus on radiation pulses, described
by a vector E0(t) (the “pulse envelope”) that depends on time, usually with a much
slower variation with respect to cos(ωt). If E0(t) tends to zero for t → ±∞ fast
enough, its Fourier transform

Ẽ0(Δω) = (2π)−1/2
∫ +∞

−∞
E0(t) e

−iΔωt dt (3.14)

together with the carrier frequency ω, defines the spectrum of the radiation pulse:

Ẽ(ω′) = 1

2

[

eiϕẼ0(ω
′ + ω) + e−iϕẼ0(ω

′ − ω)
]

(3.15)

(each component of a time-dependent vector is independently Fourier transformed).
Notice that, if E0(t) is a smoothly varying function, Ẽ0(Δω)will peak aroundΔω =
0. Then, the frequency distribution expressed by Eq. (3.15) will have two peaks, one
due to the term Ẽ0(ω

′ + ω) at ω′ � −ω and the other due to the term Ẽ0(ω
′ − ω)

at ω′ � ω. We can define the duration of the pulse in various ways, for instance, as
the full width at half maximum (FWHMt ) of the function E2

0(t). Similarly, we have a
width FWHMω in the frequency domain, by considering the FWHM of the function
∣
∣
∣Ẽ0(Δω)

∣
∣
∣

2
. If the pulse envelope is modified by a scaling factor α to E0(αt), the

pulse duration changes to FWHMt/α and the frequency width to α FWHMω. So, for a
given pulse shape, longer pulses correspond to narrower frequency distributions and
the product FWHMt FWHMω is not altered by scaling.
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3.3 The Two-State Model: Rabi Oscillations

We shall first tackle an exactly solvable model, involving two states ψ
(0)
1 and ψ

(0)
2

with a constant interaction. For simplicity, we assume the diagonal elements of

the perturbation V̂ to vanish:
〈

ψ
(0)
i

∣
∣
∣V̂

∣
∣
∣ ψ

(0)
i

〉

= 0 (this requirement could be relaxed

without spoiling the exact solvability of themodel). The off-diagonalmatrix elements
of V̂ will be called V12 = V and V21 = V ∗. The coupled equations (3.6) reduce to

{

ċ1 = −i�−1 c2 V e−iω21t

ċ2 = −i�−1 c1 V
∗ eiω21t (3.16)

By differentiating both equations we get

{

c̈1 = −�
−1 [iċ2 + c2ω21] V e−iω21t

c̈2 = −�
−1 [iċ1 − c1ω21] V ∗ eiω21t (3.17)

In the right hand sides c1, c2, ċ1 and ċ2 can be replaced by expressions obtained from
Eq. (3.16), in order to decouple the differential equations for the two coefficients:

⎧

⎪⎨

⎪⎩

c̈1 = −|V |2
�2

c1 − iω21ċ1

c̈2 = −|V |2
�2

c2 + iω21ċ2

(3.18)

Notice that such a decoupling operation is not warranted for more than two states.
A solution of each of these equations can be sought in the form of an exponential
function. For instance, by trying c1 = exp(iΩt) in the first equation, one obtains the
condition

Ω2 + ω21Ω − |V |2
�2

= 0 . (3.19)

This condition is satisfied for two values of Ω:

Ω± = 1

2

[−ω21 ± (ω2
21 + 4 |V |2 /�

2)1/2
]

. (3.20)

The same is obtained for the second equation, except that the sign ofΩ± is reversed.
Since there are two solutions, with ±Ω+ and ±Ω−, for each equation, the general
solutions are {

c1 = A+eiΩ+t + A−eiΩ−t

c2 = B+e−iΩ+t + B−e−iΩ−t (3.21)

However, the c1 and c2 coefficients are related through Eq. (3.16) and the normal-
ization of the wavefunction. Suppose the system at t = 0 is in state ψ

(0)
1 , i.e., c1 = 1

and c2 = 0. Then A+ + A− = 1 and B+ = −B−. By substitution either in the first
or in the second of Eq. (3.16) one finds:
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A+ = − Ω−
Ω+ − Ω−

, A− = Ω+
Ω+ − Ω−

, B− = −B+ = �

V

Ω+Ω−
Ω+ − Ω−

. (3.22)

Then, the population of the “final” state ψ
(0)
2 turns out to be

P2(t) = |c2(t)|2 = 4 |V |2
Δε2 + 4 |V |2 sin2

(
ΩR t

2

)

. (3.23)

Here Δε = �ω21 = ε2 − ε1 and

ΩR = �
−1

√

Δε2 + 4 |V |2 (3.24)

is called the Rabi frequency. Of course |c1(t)|2 = 1 − |c2(t)|2. We see that the final
state populations oscillate in timewith a period 2π/ΩR . After half a period P2 reaches
for the first time its maximum

Pmax = P2(π/ΩR) = 4 |V |2
Δε2 + 4 |V |2 = 1

α2 + 1
(3.25)

which is a Lorentzian function of the parameter α = Δε/|2V |. For |V | 
 |Δε| the
population approaches 1, but only with Δε = 0 (degenerate states) can we obtain a
complete switch to the final state (“population inversion”). Note that the long-time
average (or the average over a period 2π/ΩR) of P2 is just half of Pmax , so it depends
on α in the same way.

�ΩR is simply the energy difference between the eigenvalues of the two-state
Hamiltonian (see AppendixA). In fact, the oscillatory behavior of the state popula-
tions in the two-state model is the simplest example of a general rule: if the eigenen-
ergies EJ of the populated eigenstates |ΨJ 〉 are equispaced, i.e., EJ+1 = EJ + ΔE ,
then all the properties of the system oscillate in time with a frequency that depends
on the energy spacing ΔE . In fact, the time-dependent wavefunction is

|Ψ (t)〉 =
∑

J

|ΨJ 〉 〈ΨJ |Ψ (0) 〉 e−iEJ t/� (3.26)

and the expectation value of an observable Â is

〈

Ψ (t)
∣
∣
∣ Â

∣
∣
∣ Ψ (t)

〉

=
∑

J,J ′
〈Ψ (0) |ΨJ 〉

〈

ΨJ

∣
∣
∣ Â

∣
∣
∣ΨJ ′

〉

〈ΨJ ′ |Ψ (0) 〉 e−iΔE(J ′−J )t/� .

(3.27)
All the time-dependent factors exp[−iΔE(J ′ − J )t/�] share the common period
T = 2π�/ΔE , corresponding to the frequency Ω = ΔE/�, so the same value of
any given property recurs after a time interval T .

It is easy to extend the above results (3.23) and (3.24) to the case of a periodic
perturbation, but then an approximation is needed to get a closed-form solution. If
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V12(t) = W cos(ωt − ϕ) = W

2

(

ei(ωt−ϕ) + e−i(ωt−ϕ)
)

(3.28)

Eq. (3.16) are replaced by

⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

ċ1 = −i�−1 c2
W

2

[

e−i(ω21−ω)te−iϕ + e−i(ω21+ω)teiϕ
]

ċ2 = −i�−1 c1
W

2

[

ei(ω21−ω)teiϕ + ei(ω21+ω)te−iϕ]

(3.29)

Ifω � ω21 > 0, the exponentials e±i(ω21+ω)t oscillate at a much larger frequency than
e±i(ω21−ω)t . The high-frequency terms integrate to almost zero, so their contributions
to ci (t) after several optical cycles can be neglected: this is called the “rotating wave
approximation” (RWA). Vice versa, with ω21 < 0 the RWA consists in neglecting
the high-frequency terms e±i(ω21−ω)t . With only one exponential term left, Eq. (3.29)
shows the same structure as (3.16):

⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

ċ1 = −i�−1 c2
W

2
e±iϕ e−i(ω21±ω)t

ċ2 = −i�−1 c1
W

2
e∓iϕ ei(ω21±ω)t

(3.30)

These equations would be identical to the (3.16) by replacing V with We±iϕ/2 and
ω21 with ω21 ± ω (here the± sign is opposite to the sign of ω21). Then, the final state
population is

P2(t) = W 2

�2Δω2 + W 2
sin2

(
ΩR t

2

)

. (3.31)

Here, the Rabi frequency is

ΩR =
√

Δω2 + W 2/�2 (3.32)

and Δω = ω − |ω21| will be called the detuning of the radiation frequency with
respect to the transition frequency. The maximum population Pmax of the final state
is still given by the Lorentzian function of Eq. (3.25), but here α = �Δω/W . The
population inversion is obtained only when the resonance condition Δω = 0 is met:
this means that the absorbed photon energy �ω equals the energy gap |Δε|. How-
ever, the final state can be populated at nonresonant frequencies, and the tolerance
on the detuning can be measured as the half-width at half maximum (HWHM) of the
Lorentzian (3.25), which is HWHMω = |W |/�. So, a stronger molecule-radiation cou-
pling corresponds to a broader lineshape in the frequency domain. The time needed
to reach the maximum P2 population at resonance is Δt = π/ΩR = π�/|W |. In
other words, we need a “rectangular pulse” of this duration, called a “π pulse,” to
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Fig. 3.1 Dynamics of a two-level system with radiation. Colored curves, RWA results; black
curves, numerically exact calculations. Upper panel: state 2 population P2(t) with ω21 = 0.10 a.u.,
W = 0.01 a.u. and two different radiation frequencies. Middle panel: P2(t) with ω21 = 0.10 a.u.,
ω = 0.105 a.u. and different radiation–molecule couplings. Lower panel: long-time average of P2
as a function of the field frequency, with W = 0.01 and two different transition frequencies
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produce a full population inversion. The product Δt HWHMω is π , in agreement with
what we found in Sect. 3.2 concerning the properties of a finite radiation pulse.

The RWA is a poor approximation when the detuning Δω is of the same order
of magnitude as |ω21|, because then one cannot assume ||ω21| − ω|  ||ω21| + ω|.
However, even in this case Eq. (3.31) yields Pmax  1 when Δω 
 HWHMω. So,
the RWA absorption profile as a function of Δω is close to the exact one, as far as
HWHMω  |ω21|, i.e., |W |  |Δε|. Figure3.1 illustrates the accuracy of the RWA
in various cases, by comparison with virtually exact numerical calculations. The
narrow peaks that appear at approximately ω21/3 and ω21/5 are due to multiphoton
resonances that cannot be accounted for by the RWA in the form we have applied it
(see Ref. [1] for this topic that exceeds the scope of this book).

3.4 Time-Dependent Perturbation Theory

Let us recall here the set of coupled equations (3.6) that were derived without approx-
imations:

dci
dt

= − i

�

∑

j

c j (t) e
i(εi−ε j )t/�

〈

ψ
(0)
i

∣
∣
∣V̂

∣
∣
∣ψ

(0)
j

〉

∀ i .

In order to find a general solution for an arbitrary number of states, we now introduce
the first-order perturbative approximation that consists in evaluating the RHS of
these equations by replacing the c j (t) coefficients with their initial values. This
approximation is only valid if the perturbation is applied for a short time. As we shall
see, how short this time interval must be depends on the strength of the perturbation,
i.e., on the magnitude of the relevant Vi j matrix elements. The main advantage of
first-order time-dependent perturbation theory (TDPT) is to decouple Eq. (3.6), i.e.,
to enable us to evaluate each time- dependent coefficient independently of the others.
In fact, time integration yields

ci (t) = ci (t0) − i

�

∑

j

c j (t0)
∫ t

t0

eiωi j t ′Vi j (t
′) dt ′ (3.33)

where �ωi j ≡ hνi j = εi − ε j . The initial time t0 can be any time at which the coef-
ficients c j (t0) are known.

Let’s assume for simplicity that one state, ψ(0)
0 , is initially populated, i.e.,

c0 = 1
ci = 0 ∀ i �= 0 .

(3.34)

Then, from Eq. (3.33) we get
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ci (t) = − i

�

∫ t

t0

eiωi0t ′Vi0(t
′) dt ′ ∀ i �= 0 . (3.35)

Inmany cases, only off-diagonal couplings exist, i.e., Vii = 0, so at t = 0: dc0/dt = 0.
This shows that the approximations c0 � 1 in such cases is valid to second order in
t . If Vi0(t) vanishes sufficiently fast for large |t | and we take as the starting time
t0 = −∞, the total effect of the perturbation over its whole duration is related to the
Fourier transform of the Vi0(t) function:

ci (∞) = − i

�

∫ ∞

−∞
eiωi0t ′Vi0(t

′) dt ′ = − i

�
(2π)1/2 Ṽi0(−ωi0) . (3.36)

The population of state i is then

|ci (∞)|2 = 2π

�2

∣
∣
∣Ṽi0(−ωi0)

∣
∣
∣

2
. (3.37)

If a different time interval is considered, say [t0, t], formally we can write a
relationship similar to (3.36) by zeroing the interaction matrix element outside the
chosen interval:

ci (t) = −i
(2π)1/2

�
Ṽ ′
i0(−ωi0) (3.38)

with
V ′
i0(t

′) = Vi0(t ′) for t ′ ∈ [t0, t]
V ′
i0(t

′) = 0 for t ′ /∈ [t0, t] .
(3.39)

Note that the first-order TDPT approximation does not preserve the normalization
of the wavefunction, because |c0|2 remains 1 at all times, while the other probabilities
are in general nonvanishing for t > t0. Of course, according to the exact solution of
Eq. (3.6), |c0|2 decreases in time at least shortly after the perturbation begins to take
effect, since

|c0|2 = 1 −
∑

i(�=0)

|ci (t)|2 . (3.40)

It follows that the first-order TDPT approximation, i.e., using the initial values of the
coefficients in evaluating the RHS of Eq. (3.6), is only valid when

∑

i(�=0)

|ci (t)|2  1 . (3.41)

In fact this requirement ensures at once that c0 is close to 1 and all the other ci
coefficients are small enough as to be neglected (“perturbative limit”). To fulfill this
condition for an infinite time interval the Fourier transform of the perturbation must
be negligibly small:



3.4 Time-Dependent Perturbation Theory 89

∑

i(�=0)

∣
∣
∣Ṽi0(−ωi0)

∣
∣
∣

2  �
2

2π
. (3.42)

For a finite time interval, the same must hold for V ′
i0, which is always true if t − t0

is small enough.

3.5 Excitation by a Continuous Wave

As a first example of application of TDPT we shall consider the perturbation caused
by a continuous electromagnetic wave:

E(t) = E00 cos(ωt − ϕ) (3.43)

where E00 is constant in time. If the light is switched on at t = 0 and we examine the
molecular wavefunction at a later time t , we get the same result as with a radiation
pulse of duration t . From Eq. (3.35) we get the coefficient of state ψi (from now on
we drop the superscript (0) to indicate the exact eigenstates in the absence of radiation
and we shall indicate their energies with E instead of ε):

ci (t) = i

�
µi0 · E00

∫ t

0
cos(ωt ′ − ϕ) eiωi0t ′ dt ′ =

= i

2�
µi0 · E00

∫ t

0

[

e−iϕ ei(ωi0+ω)t ′ + eiϕ ei(ωi0−ω)t ′
]

dt ′ =

= 1

2�
µi0 · E00

[

e−iϕ ei(ωi0+ω)t − 1

ωi0 + ω
+ eiϕ

ei(ωi0−ω)t − 1

ωi0 − ω

]

.

(3.44)

Here too we can apply the RWA, neglecting the term with ωi0 + ω if ωi0 > 0 and
the one with ωi0 − ω if ωi0 < 0. When the transition goes from a lower to an upper
level (ωi0 > 0), a photon of frequency approximately equal to ωi0 is absorbed. On
the contrary, when the initial level is higher than the final one (ωi0 < 0), a photon of
frequency ∼ |ωi0| is emitted. In the RWA, the final coefficient of state i is then

ci (t) = ± 1

2�
µi0 · E00 e

±iϕ 1 − e∓iΔωi0t

Δωi0
. (3.45)

Here the ± sign is plus for photon absorption and minus for stimulated emission,
whileΔωi0 = ω − |ωi0| is the detuning for the 0 → i transition. The corresponding
population is

Pi (t) = |ci (t)|2 =
∣
∣µi0 · E00

∣
∣
2

�2

[
sin(Δωi0 t/2)

Δωi0

]2

. (3.46)
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Fig. 3.2 Plot of f (ω, t) = sin2(ωt/2)

ω2 as a function of ω = 2πc/λ (left panel) and as a function

of t (right panel)

WithΔω �= 0, the function f (Δω, t) = sin2(Δωt/2)/Δω2 oscillates in time from
0 to Δω−2, with a period 2π/Δω (see Fig. 3.2). For Δω = 0, f (Δω, t) increases
quadratically in time:

lim
Δω→0

[
sin(Δωt/2)

Δω

]2

= t2

4
. (3.47)

Considering f (Δω, t) as a function of Δω, we see a main peak centered at Δω = 0
that gets taller and narrower as the time interval t increases (see again Fig. 3.2 and
animation 3.1). In fact, the two zeroes that bracket the peak occur at Δω = ±2π/t ,
while all other maxima decrease approximately as Δω2. This means that a rela-
tively weak periodic field acting for a time interval t long enough can hardly induce
transitions if the detuning exceeds h/t . For instance, with t = 1 ps the resonance
conditionω � |ω12| is obeyedwith an error bar HWHMω ≈ 10 cm−1, whilewith t = 1
ns, HWHMω ≈ 10−2 cm−1.

In many real situations, the values of ω12 and ω are not precisely defined and their
uncertainties largely exceed HWHMω. For instance, different molecules in a sample
can experience slightly different environments which modify the transition energy
Ei − E0. Moreover, as we shall see in Sect. 3.10, instead of a single-state ψi (or
ψ0) we may deal with many or infinite states with (slightly) different energy levels
and transition dipoles. These two sources of “broadening” of the spectral lines are
called “inhomogeneous broadening” and “homogeneous broadening,” respectively,
because the first originates from the inhomogeneity of the sample, while the second
is inherent to the single molecule spectral properties.

The field frequency ω can also cover a rather wide interval, in which case the
light is not monochromatic, as that of normal lamps: even when the emitters are gas
phase atoms, inhomogeneous broadening works in the same way as in the irradiated
sample, affecting the emission frequency. In this case E00 becomes a function of
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ω and the electric field is given as an integral over a range of frequencies as in
Eq. (1.9). We shall therefore compute the transition probability by integrating the
expression (3.46) as a function of the detuning Δωi0, with approximations based on
the assumption that HWHMω is much smaller than the variation of ω and/or ωi0. We
assume µi0 · E00 to be constant within a small interval of a few HWHMω units around
Δωi0 = 0. Outside this interval the integrand is negligibly small, so we can set the
integration limits to ±∞:

Pi (t) =
∣
∣µi0 · E00

∣
∣
2

�2

∫ +∞

−∞
sin2(Δωi0 t/2)

Δω2
i0

dΔωi0 = π
∣
∣µi0 · E00

∣
∣
2

2�2
t . (3.48)

Since the probability of being in state ψi increases linearly with time, we can define
a constant transition rate

dPi
dt

= π
∣
∣µi0 · E00

∣
∣
2

2�2
. (3.49)

We remind that this expression holds in the TDPT approximation; i.e., when the
population of state ψ0 is very close to 1. Therefore

dPi
dt is actually the transition rate

constant, which multiplies the number of molecules in stateψ0 in kinetic treatments.
In isotropic samples, typically gases or liquids, we find molecules with random

orientations. If we consider a Cartesian frame with the z axis in the E00 direction and
theµi0 orientation given by the polar angles θ and φ, the average value of

∣
∣µi0 · E00

∣
∣
2

is obtained by integrating over both angles:

∣
∣µi0 · E00

∣
∣
2 = μ2

i0E
2
00

4π

∫ 2π

0
dφ

∫ π

0
cos2 θ sin θ dθ = 1

3
μ2
i0E

2
00 . (3.50)

So, in isotropic samples the average transition rate constant is

dPi
dt

= πμ2
i0E

2
00

6�2
. (3.51)

Considering the relationship between E2
00 and the energy density or the spectral

irradiance (see Sect. 1.2.2), we get

dPi
dt

= πμ2
i0Uω

3�2ε0
= μ2

i0Uν

6�2ε0
= μ2

i0 Iν
6�2ε0c

. (3.52)

The proportionality coefficient between the 0 → i transition rate and the energy
density Uν is called the Einstein’s B0,i coefficient and within the approximations
made here, it is proportional to the square of the transition dipole moment. For
the i → 0 transition with stimulated emission the theory developed in this section
predicts the same rate constant as for photon absorption, so Bi,0 = B0,i or, more
generally
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Bi, j = Bj,i = μ2
i j

6�2ε0
. (3.53)

In atomic units:

Bi, j = Bj,i = 2πμ2
i j

3
. (3.54)

To relate the Einstein coefficients with the experimental spectra, let us consider
an absorption band in the interval [νa, νb], made of one or more 0 → i transitions.
From Sect. 1.6.1 we know that the excitation rate per unit volume (1 m3) is

R(νa ,νb)
exc = N

∫ νb

νa

σ(ν) Iph,ν(ν) dν = ln(10) N

10 NA

∫ νb

νa

ε(ν) Iph,ν(ν) dν (3.55)

where N is the number density (m−3), σ is the absorption cross section and ε the
molar extinction coefficient in mol−1 L cm−1. On the other hand, from Eqs. (3.52)
and (3.53) we have

R(νa ,νb)
exc = N

∑

i

B0,i Iν(νi0)

c
= N

∑

i

B0,i Iph,ν(νi0) hνi0

c
(3.56)

where the index i runs over the transitions with frequencies falling in the interval
[νa, νb]. If we consider Iph,ν(ν) as constant, equating the RHS of Eqs. (3.55) and
(3.56) yields

∑

i

νi0 B0,i = c

h

∫ νb

νa

σ(ν) dν = ln(10) c

10 NAh

∫ νb

νa

ε(ν) dν (3.57)

i.e.,

∑

i

νi0 μ2
i0 = 3�ε0c

π

∫ νb

νa

σ(ν) dν = 3 ln(10) �ε0c

10 πNA

∫ νb

νa

ε(ν) dν . (3.58)

We now define the dimensionless quantity called “oscillator strength,” either for a
single spectral line:

fi j = 4πme

3�e2
νi j μ2

i j (3.59)

or for the whole band:

f (νa, νb) = 4πme

3�e2
∑

i

νi0 μ2
i0 = 4 ln(10) ε0mec

10 NAe2

∫ νb

νa

ε(ν) dν . (3.60)

The conventional factor that makes the oscillator strength dimensionless is
4πme/(3�e2) = 1.40955 · 1042 s·m−2C−2. Equation (3.60) can be rewritten as
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f (νa, νb) = 1.4407 · 10−19
∫ νb

νa

ε(ν) dν = 4.3190 · 10−9
∫ νb

νa

ε(ν) dν (3.61)

where, in the second integral, the frequency unit is cm−1 instead of Hz.
Equations (3.57–3.60) show that the quantities νi0 B0,i , νi0 μ2

i0, and fi0, all pro-
portional to each other, are additive contributions to the absorption spectrum, while
B0,i or μ2

i0 are not. So, when spectral lines that are broadened coalesce to a single
band, with or without a structure (i.e., distinguishable peaks), their fi0 add up to
make the total f (νa, νb) of the band. Of course, any interaction that causes a broad-
ening can also alter the oscillator strengths, but the comparison between two different
situations (say, for instance, gas phase and solution) should be based on (a sum of)
the oscillator strengths. The same holds for the comparisons between theory, which
very often only determines transition frequencies and dipole moments, and experi-
ment, which offers spectral bands with variable heights and widths depending on the
environment and other conditions, but fairly invariant oscillator strengths.

3.6 Spontaneous Emission

In 1916Einstein showed that photon absorption and stimulated emissionwould never
lead to a state of equilibriumbetweenmatter and radiation and concluded that a differ-
ent emission mechanismmust exist [2]. Equilibrium between molecules and photons
is not the common situation in photochemical experiments and in natural (planetary
or cosmic) conditions. Most frequently, hot objects emit light that is absorbed by the
colder ones or escapes in regions where matter is rarefied. However, we can imag-
ine a system where photons are confined (by mirror walls) and a gas of atoms or
molecules absorbs and emits light. The interactions among molecules and between
molecules and photons allow the exchange of energy among all components (note
that photons do not interact among themselves). So, if the system is thermostated,
in the long term the population Ni of any molecular state |i〉 will be proportional to
exp(−Ei/KBT ). The equilibrium distribution of photons in the frequency spectrum
gives place to the spectral energy density

Uν(ν) = 8π hν3

c3
[

ehν/KBT − 1
]−1

(3.62)

which is the famous “black body” formula proposed by Max Planck in 1900.
If we consider any twomolecular states i and j , with Ei < E j , therewill be i → j

transitions with photon absorption and j → i transitions with stimulated emission.
Both transition rates will be proportional to Bi, j Uν(νi j ) and to the respective popula-
tions of the initial states. Since Ni > N j , more photonswill be absorbed than emitted,
which is the normal situation when a sample at room temperature is irradiated with
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UV or visible light. However, this condition is incompatible with thermodynamical
equilibrium, so we need another kind of j → i transitions to balance absorption and
emission. In the equation

N j A ji + N j Bi jUν(νi j ) = Ni Bi jUν(νi j ) (3.63)

the LHS is the emission rate and the RHS is the absorption rate. The new term N j A ji

contains the unknown quantity A ji which can be determined using Eqs. (3.62) and
(3.63):

A ji = Ni − N j

N j
Bi jUν(νi j ) = [

e(E j−Ei )/KBT − 1
]

Bi jUν(νi j ) = 8π hν3
i j

c3
Bi j .

(3.64)
We see that the Einstein coefficient A ji does not depend on the energy density of
radiation nor on temperature. Since the emission associated with such transitions
occurs even in the absence of radiation, it is called “spontaneous emission.” The
relationship between A ji and Bi j = Bji is valid for any pair of states, whether they
are coupled (mainly) through the electric or magnetic dipole. In the dipolar approx-
imation, Eq. (3.53) allows to write explicitly

A ji = 8π2 ν3
i j μ2

i j

3�ε0c3
(3.65)

or, in atomic units,

A ji = 4ω3
i j μ2

i j

3c3
. (3.66)

While the stimulated emission adds to the impinging radiation with the same fre-
quency, direction of propagation and polarization, the spontaneous emission only
depends on the molecular properties. In particular, for dipole allowed transitions
the direction of propagation and the polarization depend on the orientation of the
transition dipole moment (see, for instance, Lakowicz [3]). For isotropic samples,
the spontaneous emission is isotropic as well. Spontaneous emission prevails in hot
light sources: stars, hot lamps, or flames. Lasers are instead based on stimulated
emission: “laser” is an acronym for “Light Amplification by Stimulated Emission of
Radiation.” For stimulated emission to prevail on absorption, one needs an inversion
of population, i.e., the upper level must be more populated than the lower one. For
the various ways to achieve such condition and the uses of lasers in chemistry see,
for instance, Andrews [4].
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3.7 Vibrational Structure of Electronic Spectra

The absorption or emission of UV, visible, or NIR light implies a transition between
electronic states, which is often complemented by a certain degree of vibrational
excitation. We shall assume that the exciting light is sufficiently monochromatic
as to promote transitions between vibronic eigenstates. In the Born–Oppenheimer
approximation, the initial and final wavefunctions are the products ϕlχlu e ϕkχkv ,
respectively. If the molecule is initially in the electronic ground state, i.e., usually the
S0 singlet state, then l = 0. At room temperature, the vibrational state too is normally
the lowest in energy (u = 0). Exceptions are due to low-frequency vibrations, when
present, having hν of the order of KBT or lower, in which case some of the first
vibrational states can have non-negligible populations. This means that normally the
initial molecular geometry is close to the equilibrium one in S0.

FromSect. 3.5we know that the intensity of an absorption band, i.e., the integrated
area under the corresponding peak of the extinction coefficient ε(ν), is proportional
to ν00,kv μ2

00,kv . For emission bands, the relevant factor is ν3
0u,10 μ2

0u,10, where the
electronic index 1 refers to the S1 state. In fact, as we shall see in Sect. 3.11, the
higher excited states usually decay in a very short time to S1, and fluorescence
emission then follows. If the triplet states are populated by ISC, then T1 is normally
the emitting state (phosphorescence). Moreover, if the excited state lifetime is long
enough and the transfer of vibrational energy to the environment is efficient, as
normal in condensed phase, by far the most populated vibrational state is the lowest
one, just as in S0 (see Sect. 4.5). Figures3.3, 3.4, and 3.5 illustrate these concepts:
they show schematically the potential energy curvesU0 andU1, belonging to S0 and
S1, the relevant vibrational levels and the transitions giving place to absorption and
fluorescence bands.

The transition dipole for the l, u → k, v transition is the result of two integrations,
one over the electronic coordinates and one over the nuclear ones. The electronic
transition dipole, computed for a given set of nuclear coordinates R, is

µlk(R) = 〈ϕl(R) |µ| ϕk(R)〉r . (3.67)

If the ϕl and ϕk have different spin multiplicities, the matrix element vanishes and
the transition is “spin-forbidden.” Such transition occur because of the existence
of magnetic couplings, both between radiation and molecules and, more important,
between molecular states of different spin (see Sect. 2.4). µlk can also be zero by
symmetry, when the productϕlϕk belongs to an irreducible representation of the point
group that none of the components of the µ vector does match. For instance, in the
C2v group, x, y, and z belong to the B2, B1, and A1 representations, so the transitions
between A1 and A2 states are “symmetry-forbidden,” and those between B1 and
B2 states as well. Note that the symmetry considerations concern the equilibrium
geometry Req of the starting state, but in polyatomics a symmetric geometry can
always be modified by molecular vibrations, in such a way that µlk(R) �= 0. The
matrix element of the dipole between vibronic states is
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equilibrium geometries are similar. The red dot indicates the Franck–Condon point
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Fig. 3.5 Potential energy
curves and electronic
spectra. The Franck–Condon
point in the excited PES is
above the dissociation limit
along the coordinate Qr . The
red dot indicates the
Franck–Condon point
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µlu,kv = 〈

χlu

∣
∣µlk(R)

∣
∣ χkv

〉

R . (3.68)

The completeness of the basis of vibrational states χkv leads to the sum rule:

∑

v

μ2
lu,kv = 〈

χlu

∣
∣μ2

lk

∣
∣χlu

〉

. (3.69)

If the transition is symmetry-allowed, i.e., µlk(Req) �= 0, one can apply the Franck–
Condon approximation, i.e., consider µlk(R) as constant and replace it by its value
at the equilibrium geometry. Then

µlu,kv � µlk(Req) 〈χlu |χkv 〉 (3.70)

and ∑

v

μ2
lu,kv � μ2

lk(Req) . (3.71)

If the relative intensities of the vibrational sub-bands are approximately proportional
to the squared overlap integrals 〈χlu |χkv 〉2, the strongest band in the absorption
spectrum is due to the χkv state that best overlaps with χ00.

In Fig. 3.3we show the potential energy curves of S0 and S1 and the related absorp-
tion and emission spectra. We represent the case where the U0 and U1 are similar
and their minima approximately coincide. Then, the largest overlap is obtained for
v = 0 (0-0 band), while all the upper states, with one or more nodes, give place to
much weaker sub-bands at higher frequencies. Overall, the whole electronic band
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is narrow and shows one or very few peaks. The same occurs in emission, with the
difference that the weaker sub-bands are at lower frequencies than the 0-0 one.

Consider now the case of two quite different potential energy surfaces, with min-
ima at substantially different geometries. In Fig. 3.4, U0 and U1 are displaced along
a coordinate Qr , with the equilibrium value of Qr larger in S1 than in S0. In such
a case, the most intense sub-band in the absorption spectrum is due to a transition
to a vibrational level that puts the inner turning point close to the Franck–Condon
point (it would be the outer turning point for a displacement of the minima in the
opposite direction).1 In fact, the first maximum in the χ1v wavefunction is close to
that of χ00 and its first node is sufficiently far on the right (see Fig. 3.4). The overlaps
with other χ1v wavefunctions, both higher and lower in energy, decrease gradually,
so that overall the electronic band is quite broad. Similarly, in the emission band the
strongest peak corresponds to a χ0u state with the outer turning point close to the
minimum geometry in the excited state.

In the last example (Fig. 3.5), Qr is a bond stretching coordinate and presents a
very shallow minimum in the excited state. The Franck–Condon point is well above
dissociation, so the states that best overlap χ00 belong to the dissociative continuum
and will be indicated by χ0ε, where ε is the asymptotic kinetic energy (see Appendix
C). Then, the Franck–Condon factor 〈χ00 |χ0ε 〉2 is a function of ε and the absorption
band profile is smooth, without peaks corresponding to the quantized vibrational
levels. The maximum of the band occurs again in correspondence to a vibrational
level such that the turning point approximately coincides with the Franck–Condon
point (note that here only the inner turning point exists). After excitation above the
dissociation threshold, the molecule promptly dissociates and no fluorescence can be
observed. This kind of photodissociation is called “direct,” meaning it takes place in
the same electronic state where the molecule was initially excited. Predissociation,
on the contrary, requires a nonadiabatic transition to occur (see Sect. 3.10). In con-
clusion, we see that the maximum intensity of a band coincides approximately with
the vertical excitation energy, i.e., the energy difference between the two PESs at
the equilibrium geometry in the initial state. Remember, however, that this statement
relies on the hypothesis that only the v = 0 state is populated in the initial electronic
state, plus at most some of the closest lying vibrational states. For fluorescence (or
phosphorescence to which the same considerations apply), this assumption is only
true when the vibrational energy loss of the chromophore occurs in a time much
shorter than the excited state lifetime (see Sects. 4.3 and 4.5). The electronic bands
can be structured, i.e., show one or more “progressions” belonging to discrete vibra-
tional levels, or featureless, because the final states belong to a dissociative continuum
(this can also occur in emission bands of exciplexes, see Sect. 6.3). However, vibra-
tional progressions can be blurred and give place to essentially continuous bands
because of line broadening and the closeness of vibrational levels: this frequently

1In classical mechanics, the motion of a particle in one dimension has a turning point when the
potential and the total energies are equal, i.e., the kinetic energy vanishes. For a bound state in
quantum mechanics, the potential energy coincides with the eigenenergy in at least two points: the
inner turning point, Qi , and the outer one, Qo, with Qi < Qo. The Franck–Condon point is the
point in the excited PES corresponding to the equilibrium geometry of the ground state.



3.7 Vibrational Structure of Electronic Spectra 99

occurs for large molecules and in condensed phase. In all cases, the broadness of
the electronic band is an indication of how much the PESs differ. The only sub-band
the absorption and fluorescence spectra have in common normally corresponds to
the 0-0 transition between S0 and S1, which can be easily identified if both spec-
tra have been recorded. The frequency of this transition corresponds to the energy
difference between the minima of S0 and S1 (the “adiabatic” energy difference), in
the approximation of neglecting the change in the zero point energies between the
two PESs. As a last remark, we remind the basic asymmetry between absorption
and spontaneous emission: when using monochromatic light, the former occurs at a
well-defined frequency with little uncertainty, while the latter unavoidably produces
the whole spectrum.

3.8 Excitation by Radiation Pulses

We now consider the excited state created by a radiation pulse of the form

E(t) = E0(t) cos(ωt − ϕ) (3.72)

already discussed at the end of Sect. 3.2. By combining Eqs. (3.15) and (3.36) we
find

ci (∞) = (2π)1/2i

�
µi0 · Ẽ(−ωi0) =

= π1/2i

21/2�
µi0 ·

[

eiϕ Ẽ0(ω − ωi0) + e−iϕ Ẽ0(−ω − ωi0)
]

.

(3.73)

Once againwe apply theRWA, keeping only the term Ẽ0(ω − ωi0) ifωi0 > 0 (photon
absorption) and the term Ẽ0(−ω − ωi0) ifωi0 < 0 (photon emission). Then, the final
coefficient of state i is

ci (∞) = π1/2i

21/2�
e±iϕ µi0 · Ẽ0(±Δωi0) . (3.74)

Here the detuningΔωi0 = ω − |ωi0| gets the plus sign for photon absorption and the
minus sign for stimulated emission. The final-state probability is

Pi (∞) = |ci (∞)|2 = π

2�2

∣
∣
∣µi0 · Ẽ0(±Δωi0)

∣
∣
∣

2
. (3.75)

So, according to the conclusions of Sect. 3.2, we see that the range of final energy
levels with non-negligible populations is within a few units of FWHMω from the carrier
frequencyω. To obtain a better resolution, i.e., a smaller bandwidth FWHMω, the pulse
duration must be proportionally increased.
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Consider, for instance, the commonly assumed Gaussian pulse

E0(t) = Emax e
−t2/4τ 2

(3.76)

and its Fourier transform

Ẽ0(Δω) = √
2 Emax τ e−τ 2Δω2

. (3.77)

The final coefficient of state i is then

ci (∞) = i
π1/2τ

�
µi0 · Emax e

±iϕ e−τ 2Δω2
i0 (3.78)

and its population is

|ci (∞)|2 = πτ 2
∣
∣µi0 · Emax

∣
∣
2

�2
e−2τ 2Δω2

i0 . (3.79)

The pulse duration is FWHMt = 2
√
2 ln 2 τ and the bandwidth is FWHMω = √

2 ln 2/τ .
In terms of standard deviations, the (half) length of the pulse is τ and the frequency
resolution is 1/2τ . So, for a Gaussian pulse the (energy) x (time) uncertainty product
is �/2. This relationship is mathematically analogous to Heisenberg’s uncertainty
principle (see, for instance,Merzbacher [5] or Sakurai [6]): in both cases theGaussian
shape corresponds to the smallest possible uncertainty product.

3.9 Spectrum and Autocorrelation Function

We define the “autocorrelation function” of a time-dependent wavefunction as the
superposition of two wavefunctions taken at different times. If we consider the times
0 and t , the autocorrelation function is

A(t) = 〈Ψ (t) |Ψ (0) 〉 . (3.80)

Assuming the Hamiltonian is not time-dependent, as Ĥ (0) in the previous sections,
we develop |Ψ 〉 in the basis of its eigenstates:

|Ψ (0)〉 =
∑

i

ci |ψi 〉 (3.81)

and
|Ψ (t)〉 =

∑

i

ci e
−iEi t/� |ψi 〉 . (3.82)
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The autocorrelation function is then

A(t) =
∑

i

|ci |2 eiEi t/� . (3.83)

The energy spectrum of Ψ is given by the eigenenergies Ei and by the associated
probabilities |ci |2. If we want to express it as a frequency distribution, we make use
of δ functions:

S(ω) =
∑

i

|ci |2 δ(ω − Ei/�) . (3.84)

It is interesting to realize that the spectrum is connected with the autocorrelation
function by a Fourier transform:

Ã(ω) = (2π)−1/2
∑

i

|ci |2
∫ +∞

−∞
ei(Ei /�−ω)t dt =

= (2π)1/2
∑

i

|ci |2 δ(Ei/� − ω) = (2π)1/2 S(ω) .
(3.85)

The vice versa is of course true:

S̃(t) = (2π)−1/2
∑

i

|ci |2
∫ +∞

−∞
δ(ω − Ei/�)e−iωt dω =

= (2π)−1/2
∑

i

|ci |2 e−iEi t/� = (2π)−1/2 A(−t) .
(3.86)

So, the energy spectrum and the autocorrelation function in principle contain the
same information.

The eigenstates may belong to a continuum spectrum, in which case the expansion
(3.81) is replaced by

|Ψ (0)〉 =
∫ ∞

Emin

c(E) |ψE 〉 dE (3.87)

where |ψE 〉 denotes the state of energy E . The spectrum is then simply

S(ω) = � |c(�ω)|2 . (3.88)

Notice that |c(E)|2 is a probability density in the energy domain, so its dimensions
are (energy)−1. The autocorrelation function in this case is

A(t) =
∫ ∞

Emin

|c(E)|2 eiEt/� dE . (3.89)

It is easy to see that the relationships (3.85) and (3.86) also hold for a continuum
spectrum.



102 3 Electronic Excitation and Decay

The nonstationary state |Ψ (0)〉 can be generated by a light pulse. Suppose an atom
ormolecule is initially in state |G〉 (the ground state or another low-lying state). After
a radiation pulse, according to TDPT the state of the system is |G〉 + |Ψexc〉, where

|Ψexc(0)〉 = π1/2i

21/2�
eiϕ

∑

i

µi,G · Ẽ0(Δωi,G) |ψi 〉 . (3.90)

Here we have reset the zero of the time scale just after the end of the almost instanta-
neous pulse. This amounts to ignore the phase factors exp(−iEi t/�) associated with
each state |ψi 〉, which is a good approximation in the conditions discussed below. The
same approximation will be applied again in other contexts, namely in Eqs. (3.114)
and (4.1). The ψi states can be, for instance, the vibrational states of the excited
PES involved in an electronic absorption band. If the states |ψi 〉 that compose |Ψexc〉
are well separated in energy from |G〉, we can forget about the latter because the
interesting dynamics will occur in the excited state. In fact, only the state |Ψexc〉,
which is not stationary, will evolve in time even after the light pulse has died off.

We shall assume the light pulse to be very short, so that (1) we can neglect the
internal dynamics of the system during the pulse itself and (2) we can take Ẽ0(Δωi,G)

as independent on Δωi,G for all the states involved in the transition: Ẽ0(Δωi,G) �
Ẽ0(0). These two requirements are indeed equivalent. As we know from Sect. 2.1.2,
the properties of the system evolve in time as a combination of complex exponentials
of the kind e−i(Ei−E j )t/�. Now, the fastest oscillating terms contain the highest and
the lowest energies, Emax and Emin , and have a period 2π�/(Emax − Emin). So, the
first condition requires that FWHMt  �/(Emax − Emin). The second conditionmeans
that the pulse bandwidth is much larger than the whole absorption band: FWHMω 

(Emax − Emin)/�. Since the dimensionless product FWHMtFWHMω has a value of a
few units (4 ln 2 for a Gaussian pulse), the two conditions are simultaneously either
satisfied or not satisfied. Then

|Ψexc(0)〉 = π1/2i

21/2�
eiϕ Ẽ0(0) ·

∑

i

µi,G |ψi 〉 . (3.91)

The energy spectrum is

S(ω) = π

2�2

∑

i

∣
∣
∣Ẽ0(0) · µi,G

∣
∣
∣

2
δ(ω − Ei/�) . (3.92)

We see that the strength of each spectral line is proportional to its squared transition
dipole, just as in the standard steady-state absorption spectrum obtained by scanning
the same frequency range with (almost) monochromatic light.2 If the approximation

2Actually there is a difference between S(ω) and a standard spectrum: in Eq. (3.92) only the com-
ponent of µi,G along the light polarization matters, so in principle the S(ω) function depends on
the orientation of each molecule, while normally the spectra of isotropic samples are averaged
over all orientations. This is not important if all the spectral lines involved have the same polar-
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of constant Ẽ0(Δωi,G) is not quite valid, at the end of the pulse the S(ω) function
will be similar to the standard spectrum, but somewhat altered. Equations (3.85) and
(3.86) are then relationships between the absorption spectrum of state |G〉 and the
autocorrelation function of the excited state created by a light pulse. This result is in
principle more accurate, the shorter is the pulse.

To illustrate how the autocorrelation function can be connected with measurable
dynamic properties of the system, we discuss a very simple model. Suppose that
only two states close in energy, |B〉 and |D〉, are within the frequency range covered
by the radiation pulse. |B〉 and |D〉 are not eigenstates of the Hamiltonian: they
are coupled by a small interaction V = |V |eiγ and their energy expectation values
are εB and εD . |B〉 is a “bright state,” i.e., it is coupled to the ground state by a
nonvanishing transition dipole µB,G . |D〉 is instead a “dark state,” i.e., µD,G = 0.
The exact eigenstates (see AppendixD) are

|ψ1〉 = cos θ |B〉 + sin θe−iγ |D〉
|ψ2〉 = − sin θ |B〉 + cos θe−iγ |D〉 (3.93)

where

tg θ = (εD − εB) −
√

(εD − εB)2 + 4 |V |2
2|V | . (3.94)

The corresponding eigenenergies are

E± = 1

2

[

εD + εB ±
√

(εD − εB)2 + 4 |V |2
]

. (3.95)

where the − for ψ1 and the + sign for ψ2. The relevant transition dipoles are then

μ1,G = 〈ψ1 |µ|G〉 = cos θ µB,G

μ2,G = 〈ψ2 |µ|G〉 = − sin θ µB,G
(3.96)

and the excited wavefunction is

|Ψexc(0)〉 = cos θ |ψ1〉 − sin θ |ψ2〉 = |B〉 . (3.97)

Here we have dropped the inessential constant factors of Eq. (3.91), so that |Ψexc(0)〉
is normalized. The excitation by a very short pulse only populates the bright state
and not the dark one. We see that we are just in the conditions of the two-state
Rabi problem. The population of state |B〉, which is the squared module of the
autocorrelation function, will oscillate as

ization, i.e. all the µi,G vectors are parallel, because then we can replace
∣
∣
∣Ẽ0(0) · µi,G

∣
∣
∣

2
with

∣
∣
∣Ẽ0(0)

∣
∣
∣

2 ∣
∣µi,G

∣
∣2 cos2 α, where α is the angle between the light polarization and the µi,G vectors.

In this case, the molecular orientation only affects the common factor cos2 α and not the relative
weights of the spectral lines.
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|〈Ψexc(t) |Ψexc(0) 〉|2 = 1 − 4 |V |2
(εD − εB)2 + 4 |V |2 sin2

(
ΩR t

2

)

(3.98)

where

ΩR = �
−1

√

(εD − εB)2 + 4 |V |2 . (3.99)

The population of the bright state may be monitored by time-resolved fluorescence
or stimulated emission, while the dark state is neutral with respect to these detection
techniques. So, one can experimentally measure the autocorrelation function. The
normalized spectrum, which is measured by steady-state absorption spectroscopy, is

S(ω) = cos2 θ δ(ω − E−/�) + sin2 θ δ(ω − E+/�) . (3.100)

We leave to the reader as an exercise to verify that the spectrumand the autocorrelation
function are connected by Fourier transforms as shown in the general case.

3.10 Predissociation and Fermi’s Golden Rule

Many atomic and molecular processes can be modeled as a small set of bound
states interacting with one or more continuum sets of dissociative states. The bound
levels can be “embedded” in the continuum; i.e., their energies fall above the lowest
continuum limit. As a result, the system can be “prepared” in a bound state which is
“metastable,” i.e., may decay irreversibly into the dissociative states. Typical cases
are:

• The Auger electron emission [7]. After core electron ionization of an atom, a
valence electron can fill the core hole and the energy so released can be disposed
of by emitting another electron (or an X-ray photon). We can identify a state with
a core hole where all electrons are bound, and several continuum sets with holes
in different valence shells and a free electron. The interaction of the bound state
with the continuum states determines the Auger electron emission rate.

• The electronic predissociation. One or more bound vibrational states belonging
to a molecular electronically excited state are populated by photon absorption.
If their energies are higher than the dissociation limit of other electronic states
(for instance, the ground state), a radiationless transition (internal conversion or
intersystem crossing) can lead to molecular dissociation.

• The vibrational predissociation. A bound state where high frequency vibrational
modes are excited can be populated either through a mere vibrational transition
caused by IR light, or through an electronic transition caused by UV-visible light
leading to some degree of vibrational excitation. If the dissociation limit for the
elongation of a weak bond is lower than the available vibrational energy, the bound
state is embedded in a dissociative continuum made of states with less energy in
high-frequency modes and more energy in the low-frequency dissociative mode.
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Fig. 3.6 Predissociation

This is a common situation inweakly boundmolecular complexes. The anharmonic
terms in the PES can transfer energy from the high to the low-frequency modes,
so causing dissociation.

Electronic predissociation is an important dissociation mechanism for diatomic
and polyatomic molecules. The relationship between the electronic PESs and
the vibrational states involved is illustrated in Fig. 3.6. We shall consider Born–
Oppenheimer states, expressed as products of electronic and nuclear factors
ϕk(r;R)χk,v(R), where r and R are the electronic and the nuclear coordinates,
respectively. We shall here tackle the excitation and decay processes for the sim-
ple case of one bound state |B〉 ≡ ∣

∣ϕkχk,v
〉

, embedded in a continuum of dissociative
states |Dε〉 ≡ ∣

∣ϕlχl,ε
〉

. Here each dissociative state is identified by its energy ε, while
the bound state has got the integer index v and energy εk,v . In Fig. 3.6, k = 1, l = 0
and v = 0. The dissociative wavefunction χ0,ε plotted in the figure is degenerate with
the bound state χ1,0: ε = ε1,0.

The generic symbols |B〉 and |Dε〉 are here used because the model we are going
to discuss can be used for other processes, besides electronic predissociation due to
internal conversion or intersystem crossing. In the partition of the total Hamiltonian
used throughout this section, Ĥ (0) is the Born–Oppenheimer electrostatic Hamilto-
nian and V̂ is either the nonadiabatic coupling if the states k and l belong to the same
spin multiplicity or the spin–orbit coupling if k and l have different spins. To model
the vibrational predissociation process, Ĥ (0) would be the harmonic approximation
Hamiltonian and V̂ the coupling due to anharmonic terms.

The states |B〉 and |Dε〉 are eigenstates of Ĥ (0):

Ĥ (0) |B〉 = εB |B〉 (3.101)
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and
Ĥ (0) |Dε〉 = ε |Dε〉 . (3.102)

The continuum states are normalized to the δ of energy, i.e.,

〈

Dε

∣
∣D′

ε

〉 = δ(ε − ε′) (3.103)

(see AppendixC). The perturbation only couples the bound and the continuum states:

〈

B
∣
∣
∣V̂

∣
∣
∣ B

〉

= 0 ,
〈

Dε

∣
∣
∣V̂

∣
∣
∣ Dε

〉

= 0 ,
〈

B
∣
∣
∣V̂

∣
∣
∣ Dε

〉

= VB(ε) ,
〈

Dε

∣
∣
∣V̂

∣
∣
∣ B

〉

= V ∗
B (ε) .

(3.104)

In the energy region close to εB and far from other bound states, the exact eigenstates
are essentially linear combinations of |B〉 and of the continuum states:

|E〉 = |B〉 〈B |E 〉 +
∫ ∞

εdiss

|Dε〉 〈Dε |E 〉 dε (3.105)

where εdiss is the lower limit for the continuum energies (in the electronic predisso-
ciation process, this is the dissociation limit for state ϕl). The |E〉 states are normal-
ized just as the |Dε〉 ones:

〈

E
∣
∣E ′ 〉 = δ(E − E ′). Using the development (3.105), the

eigenvalue equation
Ĥ |E〉 = E |E〉 (3.106)

becomes

(εB − E + V̂ ) |B〉 〈B |E 〉 +
∫ ∞

εdiss

(ε − E + V̂ ) |Dε〉 〈Dε |E 〉 dε = 0 . (3.107)

Premultiplying either by 〈B| or by 〈Dε| one gets, respectively

(E − εB) 〈B |E 〉 =
∫ ∞

εdiss

VB(ε) 〈Dε |E 〉 dε =
〈

B
∣
∣
∣V̂

∣
∣
∣ E

〉

(3.108)

and
(E − ε) 〈Dε |E 〉 = V ∗

B (ε) 〈B |E 〉 . (3.109)

From Eq. (3.108) we see that the coefficient 〈B |E 〉 is proportional to the coupling

strength
〈

B
∣
∣
∣V̂

∣
∣
∣ E

〉

and inversely proportional to E − εB . So, for weak couplings and

E far from εB , 〈B |E 〉 becomes negligible. When the potential energy surfaces Uk

and Ul are well separated, the couplings VB(ε) tend to be small. The reason is that
the χl,ε wavefunction has many nodes in the coordinate region where χk,v has none
or few (see Fig. 3.6). In fact, the “wavelength” of a vibrational wavefunction is a
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decreasing function of its kinetic energy, so for two (almost) degenerate vibrational
states belonging to electronic termswith a large potential energy gap the wavelengths
must be very different. As a consequence, integrals containing the product of two
such wavefunctions are small and tend to decrease with the energy gap between
the two PESs. In typical electronic predissociation conditions, the range of E − εB
values where the coefficient 〈B |E 〉 is not negligible can vary from  1 cm−1 to
several cm−1 (as we shall see, these ranges correspond to the experimentally known
linewidths). Outside that range, |E〉 can be essentially identifiedwith the dissociative
state |Dε〉 of the same energy.

Suppose now the molecule is initially in an eigenstate |G〉, for which the adiabatic
and the electrostatic approximations are quite accurate (this is usually the case for the
ground state), so that we can assume |G〉 = ∣

∣ϕ0χ0,v′
〉

. We then excite the molecule
with a radiation pulse of carrier frequency ω � εB − EG , where EG is the eigenen-
ergy of state |G〉. Perturbation theory, Eq. (3.74), tells us that the final coefficient of
state |E〉 is

c(E) = π1/2i

21/2�
eiϕ 〈E |µ|G〉 · Ẽ0(ω − ωE,G) . (3.110)

Here ωE,G = (E − EG)/�. In this expression, the transition dipole moment can be
decomposed using Eq. (3.105):

〈E |µ|G〉 = 〈E |B 〉 〈B |µ|G〉 +
∫ ∞

εdiss

〈E |Dε 〉 〈Dε |µ|G〉 dε � 〈E |B 〉 〈B |µ|G〉 .

(3.111)
The approximation of neglecting the 〈Dε |µ|G〉 integrals is normally a very goodone,
again because of the fast oscillations of the χk,ε wavefunction. This is the reason why
high overtones, i.e., transitions to high lying vibrational states, cannot be observed
spectroscopically without resorting to multiphoton absorption. Notice that the argu-
ment we use here is the same we applied to the coupling matrix elements VB(ε), but
the conclusion is somewhat different, because the contribution to 〈Dε |µ|G〉we have
neglected adds to the much larger 〈B |µ|G〉 transition dipole, while the effect of the
coupling VB(ε), however small, is just what we want to study. The transition dipole
(3.111) is therefore proportional to 〈E |B 〉, so it also vanishes for large |E − εB |.
The coefficient of state |E〉 is then

c(E) = π1/2i

21/2�
eiϕ 〈E |B 〉 〈B |µ|G〉 · Ẽ0(ω − ωE,G) . (3.112)

If the pulse is short enough, such that FWHMω largely exceeds the width of the absorp-
tion line, we can introduce the approximation Ẽ0(ω − ωE,G) � Ẽ0(0), thus

c(E) = π1/2i

21/2�
eiϕ 〈B |µ|G〉 · Ẽ0(0) 〈E |B 〉 . (3.113)

The excited state is then
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|Ψexc(0)〉 � π1/2i

21/2�
eiϕ 〈B |µ|G〉 · Ẽ0(0)

∫ ∞

Emin

|E〉 〈E |B 〉 dE =

= π1/2i

21/2�
eiϕ 〈B |µ|G〉 · Ẽ0(0) |B〉 .

(3.114)

Apart from the constant coefficient, the square module of which is the excitation
probability, this is just the |B〉 state. The heuristic interpretation is that one cannot
directly populate the “dark” states |Dε〉, but only the “bright” state |B〉. However,
remember that this is only true for a short pulse with a poor frequency resolution that
does not enable to distinguish among eigenstates with slightly different energies.

Let us turn to the field-free time evolution of the initial state |B〉. We shall write
the time-dependent wavefunction as

|Ψ (t)〉 = b(t)e−iεB t/� |B〉 +
∫ ∞

εmin

dε(t) e
−iεt/� |Dε〉 dε (3.115)

with b(0) = 1 and dε(0) = 0. For this wavefunction the TDSE yields, in analogy
with Eq. (3.6):

ḃ(t) = − i

�

∫ ∞

εmin

dε(t) e
−i(ε−εB )t/� VB(ε) dε (3.116)

and

ḋε(t) = − i

�
b(t) ei(ε−εB )t/� V ∗

B (ε) . (3.117)

We note that the integrand in Eq. (3.116) is negligible if |ε − εB | largely exceeds the
linewidth, because then the |E〉 eigenstates practically coincide with the |Dε〉 states
and their population tends to vanish. From Eq. (3.117) we get

dε(t) = − i

�
V ∗
B (ε)

∫ t

0
b(t ′) ei(ε−εB )t ′/� dt ′ (3.118)

and substituting this result into Eq. (3.116):

ḃ(t) = − 1

�2

∫ ∞

εmin

[∫ t

0
b(t ′) e−i(ε−εB )(t−t ′)/� dt ′

]

|VB(ε)|2 dε . (3.119)

This equation must be solved to get b(t), which is directly connected with the auto-
correlation function: A(t) = b∗(t) exp(iεBt/�). The solution can be easily found by
introducing two approximations: to replace the integration limit εmin with −∞ and
to consider VB(ε) as constant. Both approximations are based on the fact that the
integrand vanishes when |ε − εB | is much larger than the linewidth, so they are quite
appropriate for very small linewidths. By putting VB(ε) � VB(εB) we get
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ḃ(t) � − 1

�2
|VB(εB)|2

∫ t

0
b(t ′)

[∫ ∞

−∞
e−i(ε−εB )(t−t ′)/� dε

]

dt ′ =

= |2πVB(εB)|2
�

∫ t

0
b(t ′) δ(t − t ′) dt ′ = π |VB(εB)|2

�
b(t)

(3.120)

(see AppendixC for the properties of the δ function). The solution of this differential
equation is any combination of the two exponentials exp(±t/2τ). Actually, we must
choose exp(−t/2τ) for t > 0 and exp(t/2τ) for t < 0 to avoid a divergence (we
shall see later why we are also interested in negative times). So, we can write

b(t) = e−|t |/2τ (3.121)

and
|b(t)|2 = e−|t |/τ (3.122)

where

τ = �

2π |VB(εB)|2 . (3.123)

We see that the population of the bound state decays exponentially, with a rate con-
stant τ−1 that is proportional to |VB(εB)|2, i.e., the squared module of the interaction
between |B〉 and the dissociative state degenerate with it. This result is the celebrated
Fermi Golden Rule.

The autocorrelation function of |Ψ (t)〉 is

A(t) = e−|t |/2τ+iεB t/� (3.124)

and its Fourier transform yields the spectrum

S(ω) = � |〈B |E 〉|2 = (2π)−1
∫ +∞

−∞
e−|t |/2τ e−i(ω−εB/�)t dt =

= (2πτ)−1

(ω − εB/�)2 + (2τ)−2
= � |VB(εB)|2

(E − εB)2 + π2|VB(εB)|4 .

(3.125)

This is a Lorentzian function, centered at E = �ω = εB , with the linewidth FWHMω =
τ−1 = 2π |VB(εB)|2 /�. We see that the linewidth is inversely proportional to the
lifetime and both are determined by |VB(εB)|2. For instance, a linewidth of 1 cm−1

corresponds to τ = 5.3 ps. A light pulse much shorter than τ produces an excited
state without appreciable interference with the decay process. On the other hand, its
frequency width is large enough as to guarantee the approximation of constant Ẽ0

within a range of several linewidths.
In Fig. 3.7 we see the results of two simulations for a system with VB(ε)2 =

0.5 cm−1, which corresponds to a linewidth FWHMω = 3.14 cm−1. According to
Fermi’s rule the lifetime is τ = 1890 fs. The excitation from the ground state is
done with a constant amplitude pulse as in the Rabi model, tuned to the G → B
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Fig. 3.7 Plot of the probability of the bright state |〈Ψ (t) |B 〉|2 as a function of time. The excitation
is made with a pulse of constant amplitude. In the left panel the duration of the pulse is Δt = 200
fs and in the right one is 2000 fs

transition. Two different pulse lengths Δt are used and the amplitude is adjusted in
order to obtain aπ pulse: E0 〈G |μ| B〉 Δt = π (see end of Sect. 3.3). In the left panel
Δt = 200 fs  τ , so the interference between the excitation and decay processes is
minimal: at the end of the pulse the population of the bound state, PB , is almost 1.
The bandwidth FWHMω of the light pulse (see Fig. 3.2) is of the order of 200 cm−1,
much larger than the absorption linewidth. These are the ideal conditions described
above. On the contrary, when Δt = 2000 fs the FWHMω of the light pulse reduces to
about six times the linewidth. Moreover, a considerable loss of population by decay
to the continuum states takes place during the excitation. However, in both cases the
computed PB(t) function is perfectly fitted by the exponential exp[−(t − Δt/2)/τ ]
for t > Δt .

Without the approximation of constant VB(ε), the decay of the |B〉 population and
the line shape would not be simple exponential and Lorentzian functions, respec-
tively. The exact line shape S(ω) can be found by solving the coupled equations
(3.108) and (3.109) for the 〈B |E 〉 coefficient, while the decay law A(t) is deter-
mined by the integro-differential equation (3.119). A famous paper by U. Fano [8]
shows how to go beyond the constant VB approximation. Of course A(t) can be
used to determine S(ω), as we have done in this section, or vice versa. The same
is true if either quantity is determined experimentally: in principle, high-resolution
spectroscopy or time-resolved techniques yield the same information.

3.11 Excited State Decay to a Quasi-continuum

The results of the previous section are valid beyond the case ofweak couplingbetween
one bright bound state |B〉 and a continuum of dark dissociative states |Dε〉. First of
all, the same treatment can be applied to several bound states, when their spectral
lines are too wide to be treated separately (see again Ref. [8]).
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Fig. 3.8 Diagram for the excitation and decay of a bright state interacting with a quasi-continuum
of dark states. No attempt is made to represent the different level densities, which increase sharply
as functions of the vibrational energy

More important, the dark states to which the bright one decays are not necessarily
dissociative. In fact, the essential feature is that there is a high density ρ of dark states
around the energy of the bright state |B〉 (see Fig. 3.8). This is the case in polyatomics
when the two PESs towhich the vibrational states belong arewell separated in energy
and therefore the vibrational energy in the lower PESmust be large. In fact, the density
of states increases with energy and with the number of atoms or vibrational modes
(see Sect. 2.5.2). A state with several vibrational quanta is “dark,” i.e., its transition
dipole to the ground state is practically zero even if each mode is not excited by
more than one or two quanta. This is normally true whether the initial and final state
belong to the same electronic term, as |G〉 and |D〉 in Fig. 3.8, or not, as |G〉 and
∣
∣D′〉 in the same figure. The reason is that, contrary to state |G〉, the wavefunctions
of |D〉 or ∣

∣D′〉 contain many nodes that may concern several normal coordinates but
have basically the same effect as those of the dissociative wavefunction of Fig. 3.6.
Also the nonadiabatic or spin–orbit couplings between the bright state |B〉 and the
almost degenerate vibrational states of the lower electronic terms |D〉 and ∣

∣D′〉 are
weak, for the same reason.
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The treatment of this problem is quite analogous to that of a true continuum, except
that instead of integrals for the continuum states |Dε〉 we have here summations for
the discrete states |DK 〉. In particular, Eq. (3.119) is replaced by

ḃ(t) = − 1

�2

∑

K

[∫ t

0
b(t ′) e−i(εK−εB )(t−t ′)/� dt ′

]
∣
∣VB,K

∣
∣
2

(3.126)

where VB,K =
〈

B
∣
∣
∣V̂

∣
∣
∣ DK

〉

. If the density of states is very high, one can define an

average
∣
∣VB,K

∣
∣
2
for the |DK 〉 states having εK ∈ [ε, ε + δε]. The (large) number of

states in this (small) interval is ρ(ε)δε. We shall indicate the average as |VB(ε)|2
and we can go back to the integral formulation (3.119) by replacing |VB(ε)|2 with
|VB(ε)|2ρ(ε):

ḃ(t) = − 1

�2

∫ ∞

εmin

[∫ t

0
b(t ′) e−i(ε−εB )(t−t ′)/� dt ′

]

|VB(ε)|2 ρ(ε) dε . (3.127)

We now apply the same approximations as in the previous section and in particular
we assume the product of squared coupling times state density to be constant. In
this way we get Fermi’s Golden Rule for a quasi-continuum of states, where the
exponential lifetime is

τ = �

2π |VB(εB)|2ρ(εB)
(3.128)

and the lineshape is

S(ω) = (2πτ)−1

(ω − εB/�)2 + (2τ)−2
= � |VB(εB)|2 ρ(εB)

(E − εB)2 + π2
[

|VB(εB)|2ρ(εB)
]2 . (3.129)

In one of the simplest models to which these equations can be applied, proposed
by Bixon and Jortner [9], the dark levels are equispaced (εK+1 = εK + Δε) and
VB,K = V is independent on K . Actually the numerical simulations of Fig. 3.7 were
performed by using this model, with a sufficiently high density of states ρ = 1/Δε.
It is interesting to see what happens when the density ρ is lower, i.e., the sep-
aration between consecutive levels is comparable with the linewidth � FWHMω =
2π |VB(εB)|2ρ(εB). Within the Bixon-Jortner model this means Δε ≈ V . Figure3.9
shows the results obtained with Δε = 2 cm−1 and V = 1 cm−1. With such a low
density of states, another parameter of the Bixon-Jortner model becomes impor-
tant, namely the difference εC − εB , where εC is the dark level closest to εB . In our
example, the two closest levels differ from εB by ±Δε.

The upper panel of Fig. 3.9 shows the time dependence of the bright-state prob-
ability with such parameters. After an exponential decay in agreement with Fermi’s
rule down to very low values of PB(t), we see a sudden revival of the population.
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Fig. 3.9 Plot of the probability of the bright state PB(t) = |〈Ψ (t) |B 〉|2 as a function of time. The
excitation is made with a pulse of constant amplitude and duration of 200 fs. Upper panel: Bixon-
Jortner model with Δε = 2 cm−1 and V = 0.5 cm−1. Middle panel: the same with two random
sequences of εK levels and VB,K couplings. Lower panel: average probability obtained from 50
random choices of the εK and VB,K
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Fig. 3.10 Fluorescence and structure

This is due to the fact that the three eigenstates with the largest populations, i.e.,
those closest in energy to the bright state are approximately equispaced. Because of
the symmetric distribution of εK levels around εB , one of the eigenvalues is just εB
and the nearest ones are εB ± 2.68 cm−1. So, as discussed in Sect. 3.3, we expect
recurrencies at times multiple of about 12.5 ps. Although instructive, this example is
not realistic, because in the radiationless transitions between electronic states we can
hardly find equispaced levels. As a variant of the Bixon-Jortner model, we show in
the middle panel of Fig. 3.9 the results obtained with two different random sequences
of εK levels and VB,K couplings, still keeping the same average density of states ρ

and coupling |VB |2. In this case the initial exponential decay is followed by irregular
oscillations. In a molecular sample, with molecules in slightly different situations,
for instance, because of the interactions with the environment, one would observe
an averaged situation. The lower panel in Fig. 3.9 shows the averaged result of 50
simulations with different random sequences of levels and couplings. The random
oscillations are averaged out, but after about 5 ps the exponential decay is replaced
by a slow increase. Overall, these results illustrate the fact that the decay of the ini-
tial (bright) state of an isolated molecule is truly irreversible only with a very high
density of final (dark) states.

The irreversible decay of electronically excited states can be observed even with
a relatively low density of states if the final state populations are depleted by further
processes. For instance, collisions in gas phase or interactions with the neighboring
molecules in condensed phase lead to vibrational energy transfer. The time scale of
such a process in solution is normally of the order of 10 ps. The population of the
vibrationally excited states |DK 〉 is then transferred to lower levels and cannot replete
the initial state |B〉. In practice, a slow decay characterized by a lifetime in the ns
range or longer is very often perfectly exponential: in fact, the almost ubiquitous final
state depleting processes override any long-time revival of the initial state population.

As already discussed, the coupling matrix elements between vibronic states are
small when the numbers of nodes of the two vibrational wavefunctions are very dif-
ferent. As the number of nodes of the vibrational wavefunction in the lower electronic
state increases with the energy gap between the two PESs, so decrease the coupling
and the transition rate. Typically, the internal conversion from S1 to S0 is slow in fairly
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rigid molecules, as for instance naphthalene (see Sect. 1.6.2). For such molecules, S1
lifetimes are at least 1 ns or much longer. However, when the molecular geometry
can undergo large rearrangements, as for instance by twisting a double bond, the S1
and S0 PESs can get much closer and the S1 lifetime decreases dramatically. A clue
about different lifetimes in analogous compounds is the fluorescence quantum yield,
which is inversely proportional to the S1 lifetime. Figure3.10 shows two examples of
the effect of structural rigidity imposed to otherwise flexible molecules. In Chap.5
we shall analyze the fast decay of excited states and we shall see that it is often
related to the intersection of potential energy surfaces.

The energy gaps between excited singlet states are usually much smaller than the
gap between S1 and S0, and similarly for triplets. As already discussed in Chap. 2, the
“crowding” of states beyond S1 is due to the many ways one can promote an electron
from bonding or nonbonding orbitals to the virtual ones, for approximately the same
energetic cost, especially in large molecules. It follows that the internal conversion
between excited electronic states of the same spin is usually very fast, with typical
times of 1 ps or less. No matter which state the molecule was initially excited to, in
a very short time it will be found in S1 or, if ISC is very efficient, in T1. Kasha’s rule
states that fluorescence is related to S1 → S0 transitions, irrespective of the exciting
wavelength. In a similar way, phosphorescence normally starts from T1. Other slow
processes, such as bimolecular reactions between partners that need to collide in gas
phase or meet by diffusion in liquid phase, also occur only after the excited molecule
has decayed to S1 or T1. Moreover, as already anticipated, in condensed phase the
vibrational energy loss to the environment is also fast, so in a short time only the
lowest vibrational level(s) of S1 or T1 are populated. In this way, the exciting photon
wavelength does not affect the fluorescence and phosphorescence spectra, nor their
quantum yields and those of slow photoreactions. Exceptions to Kasha’s rule are very
fast processes, such as direct photodissociations or the twisting of double bonds, that
may outcompete the decay of higher excited states. Other interesting exceptions are
molecules such as azulene, where the S2 − S1 and S1 − S1 energy gaps are both large
and almost equal: as a result, fluorescence from S2 can be observed.

3.12 Computational Note: Franck–Condon Factors and
Coupling Matrix Elements

The calculation of absorption and emission spectra is a common task, which aims
at assigning the experimental bands and at predicting optical properties of new
molecules andmaterials.We have reviewed in the previous chapter how the electronic
problem is tackled by deploying several quantum chemistry methods. The compari-
son with recorded electronic spectra or their prediction is often done by resorting to
simplifying assumptions. For instance, vertical energy differences are put in relation
with the intensity maxima of absorption and emission bands. More accurately, adi-
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abatic energy differences are computed to approximate the 0-0 vibronic transition
frequencies.

The oscillator strength of absorption or emission bands is often predicted by
rewriting the sum rules (3.69) and (3.71) as

f (νa, νb) � 2me

3�2e2
ΔEvert

∑

v

μ2
l0,kv = 2me

3�2e2
ΔEvert

〈

χl0

∣
∣μ2

lk

∣
∣χl0

〉

(3.130)

and

f (νa, νb) � 2me

3�2e2
ΔEvert μ2

lk(Req) . (3.131)

Here νa and νb are the boundaries of the spectral band, l is the starting electronic state
where only the v = 0 is assumed to be populated, andΔEvert is the vertical excitation
energy which replaces as an average the individual hνl0,kv transition energies. The
second formula, Eq. (3.131) only applies to symmetry-allowed transitions and for
the symmetry-forbidden ones just predicts vanishing oscillator strengths. The first
one, Eq. (3.130), is more accurate and allows to evaluate the strength of symmetry-
forbidden transitions. The χl0 wavefunction can be approximated by a normal mode
treatment and, in the same spirit, µlk(R) can be expanded in the normal coordinates
system as

µlk(Q) � µlk(0) +
∑

r

(
∂µlk

∂Qr

)

Q=0

Qr . (3.132)

Of course, for symmetry-forbidden transitions the first term vanishes, as well as all
the terms concerning total-symmetric coordinates. With these approximations, the
〈

χl0

∣
∣μ2

lk

∣
∣χl0

〉

integral is easily computed. Anharmonic potentials and more general
µlk(Q) functions can be dealt with by numerical integration, for few coordinates
(see, for instance, the treatment of the n → π∗ transition in trans-azobenzene [10]).
Anharmonicity can be particularly important for large amplitude motions with low
vibrational frequencies, in which case not only the lowest vibrational state is popu-
lated at room temperature. For suchmodes it is reasonable to approximate the nuclear
motion by classical mechanics and sample many points along nuclear trajectories to
compute averaged spectra. In this way one can treat very large systems and simulate
the effect of solvents or other environments as well (see Refs. [11–13] for examples
and details on the techniques).

The prediction of the structure of an l → k electronic band requires the deter-
mination of the vibrational states χkv . This can be done again within the harmonic
approximation, although anharmonicity is here more important because of the higher
vibrational levels which are involved.Moreover, one is here confrontedwith themore
difficult task of computing Franck–Condon factors in many coordinates, taking into
account that two different normal mode systems are associated with the two PESs
(Duschinsky effect) [14].
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To evaluate the internal conversion rates one needs the matrix elements

Vlu,kv =
〈

χlu

∣
∣
∣
∣
∣
−

∑

α

�
2

Mα

[
1

2
t (α)
kl + g(α)

kl

∂

∂Rα

]
∣
∣
∣
∣
∣
χkv

〉

. (3.133)

If the vibrational wavefunctions are once again obtained within the normal modes
approximation, it is convenient to rewrite the nonadiabatic coupling operator using
the normal coordinates Q pertaining to state k:

Vlu,kv =
〈

χlu

∣
∣
∣
∣
∣
−�

2
∑

r

[
1

2
t (r)kl (Q) + 2g(r)

kl (Q)
∂

∂Qr

]
∣
∣
∣
∣
∣
χkv

〉

. (3.134)

Thedifferential operator ∂
∂Qr

applies to the factorizedwavefunctionχkv = ∏

s χvs (Qs)

(see Sect. 2.5.2), namely to the factor χvr (Qr ):

∂

∂Qr
χvr (Qr ) =

(ωr

2�

)1/2 [

v1/2
r χvr−1(Qr ) − (vr + 1)1/2χvr+1(Qr )

]

. (3.135)

Then, the couplingmatrix elements (3.134) reduce tomatrix elements of the functions
t (r)kl (Q) and g(r)

kl (Q), which can be expanded in the same way as µkl , Eq. (3.132). The
same can be donewith the spin–orbit coupling, which does not imply a differentiation
of the vibrational wavefunctions. Once the electronic matrix elements have been
replaced by linear functions of the Qr s, closed formulas are available for the relevant
integrals.However, the number of integrals to be computed can be huge, as the density
of the statesχkv increases combinatoriallywith the size of themolecule and the energy
difference between states k and l (see Sect. 2.5.2). Some of the different strategies
devised to tackle this computational problem are presented in Refs. [14–17], with
examples of applications. In simpler cases, anharmonic coordinates such as single
bond torsions can also be taken into account [16, 17].

Problems

3.1 A system irradiated with a continuous wave as in Eq. (3.43), tuned to the tran-
sition between states 1 and 2, can be considered a two-state system, as far as its
interaction with light is concerned, provided other states cannot be populated. Let
us consider a molecule initially in its ground state (state 1). We want to transfer the
whole population of state 1 to a vibronic level (state 2) that lies 20000 cm−1 higher
up. There are other vibronic levels at 19900 and 20100 cm−1. Apply Rabi theory
to estimate the minimum duration of a rectangular pulse that can achieve this task
still keeping the population of the nearby levels lower than 10−4. Assume all the
transition dipole moments between the ground and the excited states to be about
equal.
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3.2 Solve the two-state problem with constant V coupling by time-dependent per-
turbation theory. Compare the TDPT solution with the exact Rabi formula and show
that the approximate solution is accurate for short times, in two cases: (A) |V |  Δε

and (B) Δε = 0.

3.3 Verify that the spectrum/autocorrelation relationships (3.85) and (3.86) also
hold for a continuum spectrum, i.e., that they are consistent with Eqs. (3.88) and
(3.89).

3.4 Derive the Rabi expression (3.98) from the spectrum of two states, one bright
and one dark, given in Eq. (3.100). Make use of the connection between spectrum
and autocorrelation function.

3.5 Derive the expression of the oscillator strength of an absorption or emission
electronic band by applying approximations (3.131) and (3.132) and the normal
coordinate treatment. Use the atomic units system and the formulas of AppendixF.
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Chapter 4
Wavepacket Dynamics and Geometrical
Relaxation

Abstract In this chapter we shall present the dynamics that takes place after elec-
tronic excitation, under the influence of the new potential energy surface (PES).
Nonadiabatic transitions to other electronic states will be assumed to be slow enough
as to be neglected, so we shall qualify this topic as “adiabatic dynamics.” We shall
examine the basic features of quantum wavepacket dynamics, and we shall find that
some details of the excitation process affect the nature and the time evolution of the
excited state even after the end of the radiation pulse. We shall see how, in certain
conditions, quantum dynamics can be described with classical concepts, that are
easier to grasp and provide the common language of qualitative arguments about
reaction dynamics. The effects of the chemical environment on the dynamics of
excited molecules will also be considered, trying to distinguish between interactions
that change the PES and energy flow processes, i.e., the “static” and the “dynamic”
effects, respectively.

Keywords Franck-Condon excitation · Adiabatic dynamics · Ehrenfest theorem
Intramolecular vibrational energy redistribution · Thermalization · Environmental
effects

4.1 Franck–Condon Excitation

We now explore the excitation by light pulses even shorter than in the previous
chapter, down to few fs, i.e., the realm of “femtochemistry” that was opened in
the 1980s by pioneers such as Ahmed Zewail [1]. A 10 fs pulse has a bandwidth
FWHMω larger than 1500 cm−1, so it can excite simultaneously several vibrational
states, depending on the spacing of the vibrational levels. The “interesting” vibra-
tional modes in photochemistry often have low frequencies, because they are asso-
ciated with shallower minima than in the ground state: along such coordinates large
amplitudemotions occur, leading to conformational changes, isomerizations or other
reactions.

We consider therefore the excitation from the vibronic state ϕ0χ0,u , belonging to
the ground electronic term, to a set of states ϕkχk,v with different vibrational quantum
numbers v. According to Eq. (3.74) the excited wavefunction will be
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|Ψexc〉 = π1/2i

21/2�
eiφ

∑

v

∣∣ϕkχk,v
〉
µkv,0u · Ẽ0(Δωkv,0u) (4.1)

where µkv,0u = 〈
ϕkχk,v |µ| ϕ0χ0,u

〉
is the transition dipole moment and Δωkv,0u =

ω − (Ekv − E0u)/� is the detuning. Here we adopt the Born–Oppenheimer electro-
static approximation because we have seen in Sects. 3.10 and 3.11 that the coupling
with vibrationally excited dark states can be neglected as far as the excitation with
short light pulses is concerned. As before, we shall also replace Ẽ0(Δωkv,0u) with its
value at zero detuning, although the wider range of the final energies Ekv makes this
approximation less accurate. So, leaving aside the inessential factors, we get

|Ψexc〉 =
∑

v

∣∣ϕkχk,v
〉
µkv,0u · êp (4.2)

where êp is the polarization versor of the exciting light. This expression describes
a nuclear “wavepacket” in the electronic state ϕk with a shape that depends on the
vibrational eigenstates χk,v and their transition dipoles µkv,0u , but not on the fea-
tures of the radiation pulse, provided it is short enough. By wavepacket we mean a
nonstationary normalizable wavefunction and this term is most often used for well-
localized distributions in the coordinate space. A generalization of Eq. 4.2 to more
electronic states can be envisaged if their PESs are close enough. A further simplifi-
cation is possible when the Franck–Condon approximation is valid, i.e., in the case
of dipole allowed electronic transitions. We assume µkv,0u � µk,0(R

(eq)

0 )〈χk,v

∣∣χ0,u 〉
where R(eq)

0 are the equilibrium coordinates in the ground state. Then

|Ψexc〉 = µk,0(R
(eq)

0 ) · êp
∑

v

∣∣ϕkχk,v
〉 〈χk,v

∣∣χ0,u 〉 = µk,0(R
(eq)

0 ) · êp
∣∣ϕkχ0,u

〉
.

(4.3)
The last equality stems from the completeness of the

∣∣χk,v
〉
set of vibrational states as

a basis for wavefunctions of the nuclear coordinates (actually it is sufficient to assume
that theχ0,u function can be expanded on a subset of theχk,v with energieswell within
the bandwidth of the light pulse). The excitation then generates a wavepacket with
the same shape as the initial vibrational wavefunction χ0,u , translated into the excited
PES of state ϕk . This is called a “Franck–Condon” excitation, and the region of the
excited PES occupied by the wavepacket is called the Franck–Condon region. Of
course in the new PES the χ0,u wavepacket is not anymore a vibrational eigenstate,
so it will evolve in time as shown in the next section. On the contrary a long pulse
with a good frequency resolution (small FWHMω) allows to select a single vibrational
eigenstate in the upper potential, thus creating a stationary state (apart from the
almost ubiquitous decay to lower states, with or without photon emission).

In classical terms, it is often stated that the excitation process is so fast that the
positions and momenta of the nuclei cannot change. What happens is then a “vertical
excitation” whereby the point representing the molecule in the nuclear phase space
(coordinates and momenta) is translated from the ground-state PES to the excited
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one. From the above considerations about the relationship between ultrashort pulses
and the generation of well-localized excited wavepackets, we see that the shorter the
pulse, the closer to the real process is the vertical excitation assumption.

4.2 Vibrational Wavepacket Dynamics

When a wavepacket representing the nuclear motion is sufficiently well localized in
the nuclear phase space, it moves in a way that can be approximately described by
Newton-like equations. For objects with a large mass and momentum the indetermi-
nation on both position and momentum is physically irrelevant and Newton’s laws
of dynamics apply. Nuclei, especially lower down in the periodic table, are heavy
enough as to be treated by classical mechanics as a first approximation, although
important details, such as the quantization of vibrational levels and tunneling, are lost.
Ehrenfest’s theorem shows that there is a relationship between quantum wavepacket
dynamics and Newton’s laws even for light particles.

Consider the time dependence of the expectation value of an observable Â, for
a wavepacket ψ(x, t). Here x is the collection of the particles coordinates xi . From
the TDSE, Eq. (2.1), we have:

d

dt

〈
ψ

∣∣∣ Â
∣∣∣ψ

〉
=

〈
dψ

dt

∣∣∣∣ Â
∣∣∣∣ψ

〉
+

〈
ψ

∣∣∣∣ Â
∣∣∣∣
dψ

dt

〉
= i

�

〈
ψ

∣∣∣
[
Ĥ , Â

]∣∣∣ψ
〉

. (4.4)

In the Hamiltonian Ĥ , we must distinguish the potential energy term V (x) and the
kinetic energy

T̂ = −
∑

j

�
2

2m j

∂2

∂x2j
. (4.5)

Here m j is the mass of the particle associated with the x j coordinate. If Â is one of
the coordinates, say xi , it commutes with V (x) but not with T̂ . By indicating with
the shorthand 〈xi 〉 its expectation value, we can write

d 〈xi 〉
dt

= i

�

〈
ψ

∣∣∣
[
T̂ , xi

]∣∣∣ ψ
〉
=

〈
p̂i

〉

mi
(4.6)

where p̂i is the linear momentum operator associated with the coordinate xi . Note
that only the derivative with respect to xi contributes to the commutator. Consider
now the time derivative of the expectation value of p̂i . Here the only contribution to
the commutator is due to V (x):

d
〈
p̂i

〉

dt
= i

�

〈
ψ

∣∣∣∣−i�

[
V (x),

∂

∂xi

]∣∣∣∣ψ
〉

= −
〈
∂V

∂xi

〉
. (4.7)
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Ehrenfest’s equations (4.6) and (4.7) are the quantum equivalent of Newton’s equa-
tions, i.e.,

ẋi = pi
mi

and ṗi = −∂V

∂xi
. (4.8)

The difference is that Ehrenfest’s equations of course apply to the expectation values
of xi , p̂i and ∂V/∂xi , i.e., to averages taken over all coordinates, while Newton’s
equations concern a single point in the phase space. Knowing 〈xi 〉 and

〈
p̂i

〉
is a

very valuable information if the coordinate and momentum distributions are sharply
peaked around the average values, but of course the indetermination principle limits
the localization of a wavepacket in both variables.

The shape of the potential energy function is also important. Let’s expand V (x)
as a Taylor series of Δx = x − 〈x〉:

V (x) = V (〈x〉) + ΔxtG(〈x〉) + 1

2
ΔxtH(〈x〉)Δx + O

(|Δx|3) (4.9)

where G is the gradient of V (x) and H its Hessian matrix. Then

∂V

∂xi
= Gi (〈x〉) +

∑

j

Hi j (〈x〉)Δx j + O
(|Δx|2) (4.10)

When we take the average of this distribution the linear term containing the Hessian
does not contribute, so by neglecting the terms of the order of |Δx|3 in the potential
we get 〈

∂V

∂xi

〉
�

(
∂V

∂xi

)

〈x〉
. (4.11)

Then, the time evolution of 〈x〉 and 〈p〉 does not depend on the average of G, but
just on its value in 〈x〉. This result is even closer to classical mechanics than Eq. (4.7)
and is valid as far as the wavepacket is sufficiently localized in space; otherwise one
cannot neglect the higher powers of |Δx|.

For harmonic potentials Eq. (4.11) is exact, so the evolution of 〈x〉 and 〈p〉 is
perfectly classical. By converting to the normal coordinates system (see Sect. 2.5), the
motion is periodic along each coordinate Qα . The periodicity of quantum dynamics
is amore general property of the harmonic oscillator and is due to the equal spacing of
the energy levels Ev = (v + 1/2)�ω. The time-dependent wavefunction for a given
mode Q can be expressed as

χ(Q, t) =
∞∑

v=0

cv e
−i(v+1/2)ωt χv(Q) = e−iωt/2

∞∑

v=0

cv e
−ivωt χv(Q) (4.12)

where the χv are the vibrational eigenfunctions. All the exp(−ivωt) factors are peri-
odic functions of time,with a commonperiodT = 2π/ω. So, apart from the irrelevant
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factor exp(−iωt/2), the system is back to the initial wavefunction at times that are
integer multiples of T : χ(Q, nT ) = χ(Q, 0). Moreover, at half-integer multiples of
T all coefficients with even v take their initial values, while those with odd v change
in sign, so the wavefunction converts to the specular image of the initial one with
respect to the equilibrium point Q = 0, i.e., χ(Q, T/2 + nT ) = χ(−Q, 0).

Putting together the concepts of Franck–Condon excitation, Ehrenfest’s theorem
and the harmonic approximation, we can sketch the short-time dynamics as follows:

1. Excitation by an ultrashort pulse creates a localized nuclear wavepacket in an
excited state PES. The wavepacket resembles the starting vibrational state in the
ground-state PES.

2. Radiationless transitions to other states can be neglected, unless they are very
fast, as in the presence of conical intersections (see next chapter). The dynamics
is therefore “adiabatic.”

3. The center of the wavepacket moves in the excited PES according to classical
mechanics, as far as the wavepacket is sufficiently well localized in the coordinate
space.

4. If the excited PES is approximately harmonic and the wavepacket can be decom-
posed as a product of factors, each depending on one normal coordinate, it will
oscillate along each coordinate according to the relative frequency.

Note that the harmonic approximation is usually a good one for the lowest vibra-
tional levels in the ground-state PES and yields wavefunctions that are factorized
in the normal coordinatesQ(gs): χv(Q(gs)) = ∏

r χ(r)
vr (Q(gs)

r ). In the Franck–Condon
approximation, this wavepacket is translated into the excited state PESwithoutmodi-
fication.However, independent oscillations along each normal coordinate, as referred
to in the last point of the above list, only occur if the wavepacket is factorized as
a function of the excited state normal coordinates Q(ex). Unfortunately the Q(ex)

are linear combinations of the Cartesian coordinates of the nuclei just as the Q(gs),
but with different coefficients. The factorization of χv in the Q(ex) coordinates is
therefore approximately true only if one can neglect the difference between the two
normal coordinates systems, i.e., the so-called Duschinsky effect.

Figures 4.1, 4.2, and 4.3 illustrate the relationship between the excitation process
and the adiabatic dynamics for one-dimensional potentials, i.e., for a model diatomic
molecule in which we consider two electronic states. The transition dipole moment
is assumed to be independent on the internuclear distance and the radiation pulse
has a Gaussian shape as in Eq. (3.76). Its amplitude has been kept sufficiently low as
to be in the first-order TDPT regime, the excitation probability being less than 1%
in all cases: however, the results illustrated in this section are based on numerically
exact calculations. The carrier frequencyω is tuned to the vibronic transition with the
largest Franck–Condon factor, i.e., to χe,24 for the harmonic potentials and to χe,40

for the Morse ones (see Fig. 4.1). Figures4.2 and 4.3 show the average internuclear
distance 〈R〉 in the excited state as a function of time.

In the harmonic model 〈R〉 undergoes perfectly periodic oscillations between two
turning points. With an ultrashort pulse (τ = 10 fs) the requirements for a Franck–
Condon excitation are fulfilled; thus the inner turning point is close to the equilibrium
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Fig. 4.1 Harmonic and Morse potentials for the diatomic molecule model with two electronic
states.The vibrational levels and wavefunctions shown are χg,0 (electronic ground state, v = 0),
which is practically the same for either the harmonic and the Morse potential; χe,24 and χe,40,
which are the wavefunctions with the largest overlap with χg,0, respectively for the harmonic and
the Morse excited potentials

τ = 250 fs
τ = 60 fs
τ = 10 fs

time, ps

R

21.510.50

8

7.5

7

6.5

6

5.5

5

4.5

4

Fig. 4.2 Plot of the average internuclear distance 〈R〉 of a diatomic molecule as a function of
time, for a wavepacket created in the excited electronic state by an ultrashort radiation pulse. The
radiation pulse is Gaussian as in Eq. (3.76), centered at t = 0, and three different pulse lengths τ

have been simulated. The ground and excited potentials are assumed to be the harmonic functions
of Fig. 4.1
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Fig. 4.3 Plot of the average internuclear distance 〈R〉 as in Fig. 4.2, but with the Morse potentials
depicted in Fig. 4.1

distance in the ground state (4 bohr). With a longer pulse (60 fs) the oscillation
amplitude is much reduced, because few vibrational states in the upper potential
are populated and the initial wavepacket is not a faithful image of the ground-state
vibrational wavefunction translated in the excited PES. With τ = 250 fs only the
χe,24 state is populated, so the excited wavefunction is practically stationary and
〈R〉 is constant in time. Animations 4.1–4.3 show the time dependence of the excited
wavepacket, plotted as |χ(R)|2 in arbitrary units. One can appreciate that the Franck–
Condon excitation with τ = 10 fs creates a well-localized wavepacket that maintains
this character indefinitely although its width in the R coordinate undergoes periodic
changes. The 60 fs pulse creates a much broader wavepacket, with the two most
pronounced maxima at the turning points and a periodic alternation among which of
the two is prevalent. The animation for the 250 fs pulse confirms that the wavepacket
is almost perfectly stationary. We also note that, with the shortest pulse, the growth
of the wavepacket due to optical excitation is much faster than, and almost decoupled
from, the motion in the excited state potential. On the contrary, with the intermediate
pulse (60 fs), the excitation process and the vibrational dynamics occur in the same
timescale.

Switching from the harmonic to the Morse potentials (see Fig. 4.3 and Anima-
tions 4.4–4.6), the most important features remain similar, but not quite. The main
difference occurs in a relatively long timescale (few ps), after excitation with the
ultrashort pulse of 10 fs. We observe a steady decrease in the amplitude of the 〈R〉
oscillations, and the animation shows that the initially well-localized wavepacket
spreads out, occupying the whole classically allowed region. One can detect oscil-
lations from left to right and back (similarly to the harmonic case with the 60 ps
pulse), but the shape of the wavepacket is less regular. The lack of periodicity of
the dynamics in anharmonic potentials is a manifestation of a frequently met feature
of quantum dynamics, called “decoherence.” Decoherence occurs when different
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components of a wavefunction (here, the vibrational eigenstates) do not keep the
same relationships among them while evolving in time. In the case of anharmonic
potentials the reason is dephasing (i.e., change of the relative phases) of the coeffi-
cients of the eigenstates: in fact, the coefficients do not change with a common time
period as those of Eq. (4.12), because the vibrational levels in the Morse potential
are not equispaced. This is confirmed by comparing the dynamics triggered by the
τ = 10 and τ = 60 fs pulses: with the latter, as already seen in the harmonic case,
very few vibrational eigenstates are significantly populated (those with v = 39, 40
and 41), so the wavepacket is delocalized and the amplitude of the 〈R〉 oscillations
is initially smaller than with the 10 fs pulse. However, the amplitude decreases much
more slowly than with the 10 fs pulse and the animation shows almost no decoher-
ence effects. The reason is that dephasing is minimal, because the E40 − E39 and
E41 − E40 energy differences are almost equal. Decoherence is much faster when
the wavepacket is expanded on a dozen of states, as with the shorter pulse, because
then the spread in the energy differences is larger.

The above results highlight the importance of considering the uncertainties of xi
and p̂i , in addition to their averages. The squared uncertainties (second moments or
variances) are

Δx2i = 〈
ψ

∣∣(xi − 〈xi 〉)2
∣∣ψ

〉 = 〈
ψ

∣∣x2i
∣∣ ψ

〉 − 〈xi 〉2 (4.13)

and
Δp2i = 〈

ψ
∣∣( p̂i − 〈

p̂i
〉
)2

∣∣ψ
〉 = 〈

ψ
∣∣ p̂2i

∣∣ψ
〉 − 〈

p̂i
〉2

. (4.14)

The equations of motion for these two quantities can be deduced as follows:

d

dt

〈
ψ

∣∣(xi − 〈xi 〉)2
∣∣ψ

〉 = i

�

〈
ψ

∣∣∣[Ĥ , x2i ]
∣∣∣ψ

〉
− 2 〈xi 〉 d 〈xi 〉

dt
. (4.15)

Using the rule [ Â, B̂Ĉ] = B̂[ Â, Ĉ] + [ Â, B̂]Ĉ for the first term and Ehrenfest’s
theorem for the second one, we get:

d

dt

〈
ψ

∣∣(xi − 〈xi 〉)2
∣∣ψ

〉 = i

�

〈
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〉
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〈
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〉

mi
=
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i
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(4.16)
We similarly find:

d

dt
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〉
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(4.17)
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These equations too have classical analogues. Consider a set of classical trajectories
with different initial conditions for a system of particles, that give place to a distri-
bution of values for the variables xi and pi . We define averages over all trajectories
for these variables and their second moments, and we indicate them as xi , pi , and so
on, to distinguish them from the quantum expectation values. Equation (4.8) trivially
yield the time dependence of x and pi :

d

dt
xi = pi

mi
and

d

dt
pi = −

(
∂V

∂xi

)
. (4.18)

For the second moments we get

d

dt
(xi − xi )

2 = 2(xi − xi )
(
ẋi − ẋi

) = 2m−1
i (xi − xi ) (pi − pi ) (4.19)

d

dt
(pi − pi )

2 = −2(pi − pi )

(
∂V

∂xi
− ∂V

∂xi

)
. (4.20)

We see that Eqs. (4.19) and (4.20) are perfectly analogue to Eqs. (4.16) and (4.17),
except that in the quantum case p̂i does not commute with xi and V (x), so we have
the sum of two distinct quantities such as xi p̂i and p̂i xi instead of the classical
expression 2xi pi . The physical meaning of both pairs of equations concerns the
correlation between positions, momenta, and forces, which ismore easily understood
in classical terms. According to Eq. (4.19) the xi distribution broadens in time if
xi − xi and pi − pi are mostly of the same sign, whereas it narrows if xi and pi
tend to deviate from their averages in opposite directions. Equation (4.20) similarly
means that the pi distribution spreads out when the momentum pi and the force
−∂V/∂xi deviate from their averages in a concordant way, while it narrows when
the deviations are discordant.

The consequences of such correlations for quantum dynamics are most clearly
illustrated by the Animations 4.1 and 4.4, which show the motion of well-localized
wavepackets created by Franck–Condon excitation. While the wavepacket oscillates
back and forth, its width in the R coordinate also changes. The width variation of
course is perfectly periodic in the harmonic potential and only approximately so in the
Morse one. The ground-state v = 0 eigenfunction that is translated into the excited
PES by an ultrashort pulse is a minimum uncertainty Gaussian wavepacket with
vanishing average momentum. Its R and P̂ (the associate momentum) distributions
are independent, so the expression Eq.4.16 vanishes. However, if put in a constant
potential, the wavepacket would spread out indefinitely in the R coordinate, while
its momentum distribution would remain unchanged. Also in a linear potential, with

constant ∂V/∂R, the wavepacket would spread, but in this case
〈
P̂

〉
would change in

time according to (4.7), still keeping the same distribution of P̂ −
〈
P̂

〉
. We easily see

why a swarm of trajectories with the same distributions of coordinates and momenta
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as the Gaussian wavepacket mimics well the wavepacket behavior, at least for short
times: trajectories with P > P soon or later will be at the forefront of the swarm,
while those with P < P will lag behind, which produces a broadening of the swarm
corresponding to a positive result for the average (4.19). To counteract this broad-
ening effect, one needs a potential with positive curvature, such as to decrease the
momentum in regions where (R − 〈R〉)(P − 〈P〉) > 0 and to increase it when the
two factors are opposite in sign. The curvature that exactly annihilates the broadening
effect is by definition that of the harmonic oscillator of which the wavepacket is an
eigenfunction. Larger curvatures have a narrowing effect and smaller curvatures, as
in our model, permit a temporary broadening (see the animations referred to above).

Negative curvatures occur at saddle points, such as one finds in n → π∗ or
π → π∗ excited states along the double-bond torsional coordinate of imines or azo-
compounds. In that case, the wavepacket initially broadens and then splits in two
components, one on each side of the saddle point. The two components will corre-
spond to distinct photoisomerization pathways. The pathways may be equivalent, if
the PES is symmetric, as is the case when starting from planar structures. A good
example is the trans → cis photoisomerization of azobenzene [2, 3], as illustrated
in Fig. 4.4. In other cases, the PES is not symmetric with respect to the torsional
coordinate and the two pathways are not equivalent, one of them leading more easily
to the reaction product. This is the case for the cis → trans photoisomerization of
azobenzene, also shown in Fig. 4.4. In fact, the cis isomer exists in two enantiomeric
conformers and, starting from each of them, the torsion of the double bond can
increase the distance of the two phenyl rings or push them closer. In the former case

two non-equivalent pathways
cis → trans

two equivalent pathways
trans → cis

Fig. 4.4 Photoisomerization of azobenzene. Two equivalent pathways exist for the trans → cis
conversion and two nonequivalent ones for the cis → trans conversion
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the chirality is conserved till the achiral product is formed, while in the latter case
a chirality inversion occurs. Simulations show that the chirality conserving pathway
is preferred when exciting in the n → π∗ band, while the more energetic π → π∗
excitation overrides this bias [2, 3].

4.3 Intramolecular Vibrational Energy Redistribution

Aswe have seen, the electronic excitation is normally associatedwith a certain degree
of vibrational excitation. Depending on the light wavelength, bandwidth, and polar-
ization, a single vibrational eigenstate or a time-dependent wavepacket may be pro-
duced. In both cases, the vibrational energy in the excited state is hν − (Ek,0 − E0,u).
Here E0,u is the energy of the starting state and Ek,0 is the energy of the lowest vibra-
tional state in the excited PES k. This relationship is exact in the case of monochro-
matic light and is usually a good approximation of the mean value of the wavepacket
energy when using broadband light pulses. In polyatomics, if the vibrational energy
excess is a few thousands cm−1 or more, it is hard to populate a chosen eigenstate,
because the huge density of states (see Table 2.1) prevents to resolve single levels.
However, even when the outcome is a nonstationary wavepacket, i.e., a superposition
of eigenstates, the initial distribution of the vibrational excitation is not statistical but
can privilege one or a few vibrational modes. This bias depends on the character-
istics of the exciting light and on the transition dipoles between the initial vibronic
state ϕ0χ0,u and the possible final states ϕkχk,v. The transition dipoles in turn depend
very much on the shapes of the initial and final PESs through the Franck–Condon
factors 〈χ0,u

∣∣χk,v 〉; see Eq.3.70. As a consequence, excitation will mostly concern
vibrational coordinates along which the two PESs are sharply different, as we have
seen in Sect. 3.7.

Franck–Condon excitation and its classical analogue, vertical excitation, pro-
vide the simplest illustration of the above considerations. The center of the excited
wavepacket approximately lies, in the normal coordinate systemQ(ex) of the excited
PES, in the position ΔQ, which is determined by the difference between the equi-
librium geometries of ground and excited state. Classically, for each normal mode,
ΔQα is the maximum elongation of the oscillatory motion that follows the excita-
tion. Eα = ω2

αΔQ2
α/2 is the classical normal mode vibrational energy and is a good

approximation for the quantum mechanical expectation value too. The short-time
dynamics is determined by the ΔQα elongations and Eα energies, so for instance if
Eα for a bond stretching coordinate exceeds the dissociation energy, bond breaking
is likely to occur promptly. However, the Eα distribution of energies in the vibra-
tional modes does not remain unaltered for many oscillations, mainly because of
anharmonicity. This phenomenon is called “internal” or ‘intramolecular vibrational
energy redistribution” (IVR). The IVR is important in photochemistry, because sev-
eral elementary processes can happen only when enough energy is concentrated in
one or few vibrational modes. IVR can provide or subtract energy to a particular
vibrational mode, so triggering or inhibiting such “activated” processes. Examples
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are bond breakings (when the corresponding potential energy curve is bound), all
reactions that require to overcome potential energy barriers, and radiationless decay
processes that only occur when high energy surface crossings are reached (see next
chapter).

As already observed in Sect. 3.10, the harmonic vibrational Hamiltonian (2.121)
can be taken as a zero-order approximation, while the anharmonic terms provide a
perturbation that promotes transitions between the zero-order eigenstates. Transitions
will be fast between almost degenerate states strongly coupled by the anharmonic
terms. The coupling matrix elements depend on the shape of the potential and on
the vibrational quantum numbers of the states involved: in general, the magnitude of
the anharmonic terms in the potential increases with the amplitude of the vibrational
motions. For instance, if we add a cubic potential term of the form krst Qr QsQt
to the zero-order Hamiltonian (2.121), we couple vibrational states differing by
one quantum in each of the three modes. Suppose a state with quantum numbers
vr , vs, vt for the Qr , Qs, Qt modes is initially populated. This state is coupled to
eight states with v′

r = vr ± 1, v′
s = vs ± 1, v′

t = vt ± 1 by the cubic potential. Their
energies differ from the initial one by ± ωr ± ωs ± ωt , which may be accidentally
a small energy if the sum of two frequencies approximately coincides with the third
one. In a large molecule, with a rich choice of frequencies, it is very probable to
find almost degenerate states that are coupled by cubic or higher order terms. In our
example, the coupling matrix element is

〈
vr , vs , vt |krst Qr Qs Qt | v′r , v′s , v′t

〉 = krst

[
max(vr , v′r )max(vs , v′s)max(vt , v′t ) �

3

8ωr ωs ωt

]1/2

(4.21)
where max(n, n′) is the larger of the two numbers. Considering that the classical
amplitude of the oscillation along the Qr coordinate is [(2vr + 1)�/ωr ]1/2, we see
that the coupling increases roughly proportionally to the amplitudes of the three
modes. In fact the IVR is faster for high vibrational levels and low frequencies,
because both the couplings and the number of almost degenerate states are larger.
Typical times for the transfer of energy among different modes can be of the order
of 1 ps. The IVR can be much slower if the initial state has one quantum in a high-
frequency mode, and all other modes are of much lower frequency: this is the case
in the phenomenon of vibrational predissociation (see Sect. 3.10).

For an isolated molecule with constant energy Evib, at sufficiently long times the
microcanonical equilibrium distribution will be established. In quantum mechan-
ics, this means every state with energy close to Evib has the same probability to be
populated. In classical mechanics, the probability density, as a function of the coor-
dinates Q and momenta P, is the same for all points in the phase space with total
energy Evib. These two statements are not equivalent, namely they imply different
energy distributions in the vibrational modes. Note that the lowest possible energy in
classical mechanics coincides with the potential energy at the equilibrium geometry,
while in quantum mechanics it is the zero-point energy

∑Nmodes
r=1 �ωr/2. Therefore in

this context we shall take as zero of the energy scale these two different references
when discussing classical and quantummechanical energies, respectively (this holds
both for Etot and for the single-mode energies). The microcanonical classical energy
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Fig. 4.5 Average energy stored in each vibrational mode as a function of the total energy, according
to the microcanonical distribution for a tetratomic molecule with harmonic frequencies of 200, 300,
500, 800, 1200, and 2000 cm−1. The plotted energies, both Etot and the single-mode ones, take as
reference the ZPE for the quantum distribution and the minimum of the PES for the classical one

distribution is very simple: all modes share the same fraction of the total energy, so
the energy per mode is Etot/Nmodes (“equipartition”). The quantization of vibrational
levels implies a basic change in the statistics, which reduces the energy share of the
high-frequency modes with respect to the low-frequency ones. To understand this,
consider the limiting case of �ωr > Etot : only the vr = 0 state can be populated for
the mode Qr , so its energy excess is zero. The opposite limit is reached when the
average available energy per mode, Etot/Nmodes , is much larger than all frequencies:
then the quantization of the levels becomes irrelevant and the equipartition principle
is verified. Figure4.5 shows the average mode energies 〈Er 〉Etot

as functions of Etot

for a tetratomicmoleculewith frequencies 200, 300, 500, 800, 1200, and 2000 cm−1.
We note that the quantum distribution is very irregular for small Etot , because there
are few ways to distribute the energy in the six modes. For Etot � 2000 cm−1, as
the number of degenerate states is very large, the dependence on Etot becomes more
regular. In this regime, the two low-frequency modes (200 and 300 cm−1) share the
same average energy, so in a sense they obey the equipartition principle. However,
their energies are larger than the classical one, because the other modes have smaller
shares that decrease progressively with the mode frequency. Therefore we see that
the classical and the quantum microcanonical distributions in general differ for all
modes and total energies.



132 4 Wavepacket Dynamics and Geometrical Relaxation

4.4 Static Environmental Effects

In Sect. 2.8 we discussed the environmental effects on the absorption and emission
spectra, which are essentially due to modifications of the ground and excited state
PESs and wavefunctions caused by the medium. Such effects can be labeled as
“static,” in the sense that the modifications are not time dependent and concern the
stationary states of the system.

A quantitative description of the static effects may be based on a full optimization
of the medium coordinates, which can be a reasonable option for a chromophore
embedded in a crystal or adsorbed on a solid surface. However, normally such an
optimization is only partially representative of the physical reality because of the
existence ofmultipleminima in the energy landscape and because of thermalmotions
that affect the relative positions and orientations of interacting molecules.

A more comprehensive definition must involve the thermal averaging over the
medium coordinates or states. An approximate way to define and compute the static
effects of the environment on amolecule of interest is to treat themedium as a contin-
uum characterized by its macroscopic response properties, such as the permittivity
ε or the refraction index n. In fact, such properties reflect not only the molecular
features of the medium, but also the appropriate statistical averaging. An important
consequence is that the potential energy surfaces defined by this approach include
the entropic contribution, i.e., are free energy functions of the internal coordinates
of the molecule embedded in the dielectric: after averaging over the medium coordi-
nates, the only parameter describing the dielectric is its polarization [4]. The simplest
example that illustrates this concept is the interaction energy of a set of point charges
in a dielectric fluid:

Uint =
∑

i> j

Qi Q j

4πεRi j
. (4.22)

This formula is just the Coulomb law as in vacuo, except that themedium permittivity
ε replaces ε0 in the denominator. It accounts for the much easier ionic dissociation
in solvents, especially the polar ones, with respect to gas phase, both in thermal
chemistry and in photochemistry. Equation (4.22) does not take into account the
polarization free energy of the medium, that would diverge. In fact, according to
Born, the interaction free energy of a spherically symmetric ion of charge Q wholly
contained in a spherical cavity of radius R with the surrounding polarized dielectric
is ΔGint = −(ε − ε0)Q2/(4πεR), while the dielectric polarization free energy is
ΔGpol = (ε − ε0)Q2/(8πεR), so the total free energy change for introducing the
ion in the cavity is

ΔGBorn = − (ε − ε0)Q2

8πεR
. (4.23)

This formula shows that smaller ions/cavities andmore polar solvents yield larger sol-
vation energies. A further step forward is to consider the polarization of the molecule
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embedded in the dielectric. For instance, Onsager found that the free energy of a
dipole μ with polarizability α placed at the center of a spherical cavity of radius R is

ΔGOnsager = − ε − ε0

4πε0(2ε + ε0)

μ2

R3 − 2 ε−ε0
2ε+ε0

α
. (4.24)

This formula can be used to analyze the solvation energies of different electronic
states (spectral shifts) or conformations.

The concepts applied in these particular cases can be generalized to any charge
distribution of the molecule(s) embedded in the medium and to cavities reproducing
the molecular shape, by using numerical methods to solve the electrostatic problem.
Moreover the electrostatic potential generated by the polarizedmedium can be added
to the molecular Hamiltonian to take fully into account its effect on the electronic
wavefunctions by quantum chemistry methods [4–9]. In this way one can define free
potential energy functions for the ground and the excited states.

4.5 Dynamic Environmental Effects

Of course, the excited state dynamics is affected by any modification of the PESs,
including the “static” environmental effects described in the previous section. Par-
ticularly important are the electrostatic interactions with the medium in systems
that undergo electron or proton transfer. Especially relevant to photochemistry are
changes in the energy gaps between electronic states and in the accessibility of cross-
ing seams [8, 10, 11] (see next chapter).

However, the medium does not equilibrate instantaneously in response to fast
geometry changes or electronic transitions of an embedded molecule [6–8]. First of
all, the internal motions of an excited molecule can be hindered by repulsive forces
due to the proximity of othermolecules that do not giveway promptly enough. This is
especially important for large amplitude motions that characterize (photo)chemical
reactions such as bond dissociations and isomerizations. All condensed media affect
the excited state dynamics, but the tight packing in crystals and other structuredmedia
(for instance reaction sites in biological molecules or hydrogen bonded solvents) are
particularly effective in hindering the reaction dynamics. In photochemistry, part of
the photon energy can be spent to break the “solvent cage” or similar barriers and
also the transfer of momentum to the surrounding molecules can deviate the nuclear
trajectory of the reacting molecule. Some examples of caging effects on the quantum
yields have been thoroughly analyzed by computational simulations as well as by
time-resolved spectroscopy: among others, the photodissociation of nitrosamines
[12] and azomethane [12, 13] or the photoisomerization of azobenzene [14] and its
derivatives [15].

Even the electrostatic response of themedium is not instantaneous. In solution one
can distinguish a fast polarization due to changes in the electronic wavefunctions and
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a slow one due to the reorientation and displacement of the solvent molecules. The
fast polarization is frequency dependent and can be quantified by the refraction index,
while the slow one is most important for polar solvents where it yields the largest
contribution to the static permittivity. Fast charge rearrangements of the solute such
as electron or proton transfers may be therefore energetically destabilized because
the medium does not relax dielectrically in comparably short times, causing a sort
of “dielectric friction.” See refs. [5, 7, 10] for deeper discussions on this topic.

To the systematic delay effects discussed above one must add the random thermal
fluctuations of the environment: together, they result in instantaneous interactions that
depart from themean values corresponding to the statically modified PESs as defined
above and can be labeled as “dynamic” effects. In photochemistry, one ubiquitous
consequence is the energy transfer from the excited chromophores to the medium
or, to a lesser extent, the other way around: only in very rarefied gases or molecular
beams the dynamics of a single molecule can be considered as energy conserving. In
this context, Langevin-type models play a role analogous to the dielectric continuum
ones and are very useful to understand and to predict semiquantitatively the con-
densed state photodynamics [12, 16, 17]. They mimic the effect of the medium on
the nuclear dynamics by a friction term added to the nuclear equations of motion. As
friction can only subtract energy to the molecule, a corresponding stochastic force
can be added, in order to obtain thermal equilibrium in the long term. We then see
that, within the continuum approximations, static and dynamic effects are perfectly
separated. However, since basically the same intermolecular interactions (electro-
statics, dispersion, repulsion, and so on) are involved both in the static and in the
dynamic effects, a rigorous distinction cannot be made without a reference to an
arbitrary equilibrium state or to ad hoc approximations.

The vibrational energy transfer between interacting molecules is conceptually
similar to IVR. One can extend the model discussed in the previous section by con-
sidering two or more molecules as a single one. The vibrational Hamiltonian of the
“supermolecule,” in the harmonic approximation, provides the zero-order descrip-
tion of the system, and the anharmonic terms couple the normal modes as before.
However, some differences must be highlighted. First, the relative translational and
rotational motions of the molecules often give place to multiple minima, all acces-
sible at thermal energies, and in a normal mode treatment they usually correspond
to low-frequency modes with very anharmonic potentials: such motions are there-
fore not correctly treated in the one-minimum harmonic approximation. Second,
the anharmonic interaction terms between modes localized on different molecules
are normally smaller than the intramolecular ones, so the intermolecular vibrational
energy transfer is slower, usually requiring times closer to 10 ps than to 1 ps. Third,
after a sufficiently long time each molecule will be thermally equilibrated with its
environment, i.e., the occupation of each energy level will obey Boltzmann statistics.
In the harmonic approximation, for the normal mode Qr the population of state vr is

Pvr = e−�ωr vr /KBT
(
1 − e−�ωr /KBT

)
. (4.25)
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Fig. 4.6 Average energy stored in each vibrational mode as a function of temperature, according
to the canonical distribution for a tetratomic molecule with harmonic frequencies of 200, 300, 500,
800, 1200, and 2000 cm−1. The plotted single-mode energies take as reference the ZPE for the
quantum distribution and the minimum of the PES for the classical one

As a result, the energy stored in each vibrational mode, averaged over time or over
a large molecular sample, is

〈Er 〉T = �ωr

e�ωr /KBT − 1
. (4.26)

Note that this energy does not include the ZPE. The 〈Er 〉 energies as functions of
temperature are shown in Fig. 4.6 for the same model molecule of Fig. 4.5, where
the microcanonical distribution was plotted. Again, according to classical mechanics
the equipartition principle holds, yielding simply 〈Er 〉 = KBT . For KBT 	 �ωr the
quantum distribution approaches the classical one:

〈Er 〉T = KBT − �ωr

2
+ O

[(
�ωr

KBT

)3
]

. (4.27)

We see that the coincidence of the quantum and classical results in this limiting
case is much more closely verified if we set the zero of the energy scale at the PES
minimum for both, i.e., if we add the ZPE to the quantum average energies shown in
Fig. 4.6. The relationship between themicrocanonical and the canonical distributions
involves the density of states ρ(Etot ):
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〈Er 〉T =
∫ ∞
0 〈Er 〉Etot

e−Etot/KBTρ(Etot ) dEtot∫ ∞
0 e−Etot/KBTρ(Etot ) dEtot

(4.28)

〈Er 〉T is an average over all total energies and the large Etot contributions tend to
reduce the population difference between high and low frequencies with respect to
the microcanonical distribution, as we can see by comparing Figs. 4.5 and 4.6. A
qualitative difference is that the microcanonical 〈Er 〉Etot

for each mode depends on
the number and frequencies of the other modes, while the canonical 〈Er 〉T does not.

Thus far, the adiabatic molecular dynamics as described in this chapter can be
summarized as follows:

• The light absorption process creates a wavepacket in the excited PES. This
wavepacket is normally time dependent. More seldom, it can be stationary if the
exciting light is sufficiently monochromatic. In both cases, the wavepacket can be
endowed with a certain amount of vibrational energy, depending on the photon
energy. This energy excess is distributed in the vibrational modes according to the
shapes of the initial and final PESs, in a nonstatistical way.

• If the wavepacket is not stationary, it moves downhill in the excited PES, i.e.,
the molecular geometry starts changing toward the closest minimum. This phe-
nomenon, often called “geometrical relaxation,” can be very fast (down to few
femtoseconds), depending on the frequency of the involved vibrations. Oscilla-
tions along one or more internal coordinates may follow.

• In isolated polyatomics, the vibrational excitation is redistributed among all modes
(IVR) and in few picoseconds it can approach the microcanonical equilibrium
distribution. The initial nonstatistical distribution is forgotten.

• In gas phase, collisions will slowly transfer the vibrational excitation to other
molecules, at a rate proportional to the total pressure. In the long run, the average
amount of vibrational energy and its distribution among the modes will be those
expected on the basis of the medium temperature. In condensed phase, the thermal
equilibration (“thermalization”) times are of the order of 10 ps. The loss of vibra-
tional energy to the medium gradually reduces the ability of the excited molecule
to overcome potential energy barriers or to reach bond dissociation limits.

After thermalization the lowest vibrational level is the most populated, almost exclu-
sively for all vibrational modes with �ωr 	 KBT . So, even if in the previous steps
the excited molecule was able to explore a wide range of conformations thanks to
its vibrational energy excess, eventually it settles in a minimum of the PES and the
geometrical relaxation is fully accomplished. Activated processes then obey the same
kind of kinetics as thermal reactions.

The events described above normally occur in overlapping timescales and can be
interrupted by radiationless transitions to lower states. Such transitions can be ultra-
fast (<1 ps) as described in the next chapter, in which case the excited molecules
will not reach neither the microcanonical nor the canonical statistical limit. If, on
the contrary, the transitions are slow as discussed in Chap. 3, at least the IVR and
often also the thermalization will approach completion. In any case, after switching
to a lower PES the system will be again endowed with a vibrational energy excess.
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The amount of vibrational energy can be easily larger than after optical excitation,
especially when the molecule lands on the ground-state PES that usually presents
deep minima. As a consequence, the processes of geometrical relaxation, IVR, and
thermalization will take place again in the new PES. Before complete thermal equi-
libration takes place, in the ground state some processes with large energy barriers
may still occur (“hot ground-state” chemistry) thanks to the residual energy excess.

4.6 Computational Note: QuantumWavepacket Dynamics
and Classical Trajectories

Aswehave seen in the previous sections, the adiabatic excited state dynamics depends
on the excitation regime, on the details of the PESs, as well as on static and dynamic
environmental effects. Several processes can be distinguished, ideally and also in ad
hoc experiments, but normally they overlap in time: for instance, IVR can be studied
on its own in rarefied gases, but is intertwined with the vibrational energy loss to
the environment in condensed phase. The complexity of excited state dynamics,
even when limited to the adiabatic regime, can be tackled by simulation methods
that reproduce computationally the time evolution of the excited molecule. Several
methods are available to solve the TDSE for nuclearmotion and describe the quantum
wavepacket dynamics, but classical trajectory approaches are also commonly used
because they allow to deal with large systems and long simulation times.More details
about computational methods will be given in Sect. 5.5, where the simulation of fast
nonadiabatic processes is discussed. In fact, such processes cannot be separated from
the nuclear dynamics, so most of the approaches in use for nonadiabatic dynamics
are also suitable and were originally developed for the simpler adiabatic case.

It is however worth to comment here how the classical ansatz is appropriate to
describe nuclear dynamics. We saw in Sect. 4.2 that certain average properties of a
quantum wavepacket (positions, momenta, and their variances) obey the same equa-
tions of motion as in classical mechanics. This is the basis for replacing quantum
with classical dynamics, which is done by running swarms of classical trajectories
with the same initial distributions of coordinates and momenta as in the quantum
wavepacket. The above average properties offer a rather complete description of the
dynamics as far as the wavepacket is well localized. The stationary vibrational states
in molecules are in fact fairly localized, and ultrashort pulses create equally localized
wavepackets in the excited PESs. So, in the short time the adiabatic quantum dynam-
ics is well reproduced by a swarm of trajectories. At longer times, the wavepackets
tend to delocalize, so their properties are not anymore described satisfactorily by
the simple averages and variances of positions and momenta (think for instance of
a wavepacket that splits into different reaction channels). Phenomena such as tun-
neling or the interference of different components of a wavepacket are not properly
described by classical mechanics, although ad hoc corrections have been envisaged
[18, 19]. The differences in the quantum and classical microcanonical and canonical
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energy distributions between vibrational modes at equilibrium have been illustrated
in Sects. 4.3 and 4.5. Of particular concern is the role of the zero-point energy in
classical dynamics, because due to IVR this amount of energy can be used to reach
regions of the PES (transition states or high energy conical intersections) that in
quantum dynamics are not accessible. In part, such differences can be reduced by
freezing the high-frequency nonreactive modes that contribute most to the problem.

A last observation concerns the excitation process, which deeply affects the pho-
tophysical and photochemical dynamics as shown in Sect. 4.2. In the computational
simulations of excited state dynamics, this aspect is often drastically simplified,
by assuming a certain form of the “initial” excited wavepacket: either the excit-
ing light is supposed to be close to monochromatic and the simulation starts with
a vibronic eigenstate in the Born–Oppenheimer approximation; or, more often, a
Franck–Condon excitation is postulated and the ground-state v = 0 wavefunction is
translated to the excited PES. Similar assumptions can be applied to create the initial
swarm of trajectories in classical dynamics, by vertical excitation from the ground-
state distribution of coordinates and momenta, or by imposing a narrow range of
energies in the excited state. Quantum mechanical methods can be complemented
with a light–molecule Hamiltonian term, normally in the form of Eq. (3.10), in order
to deal correctly with the excitation process. The same can be done in classical trajec-
tory treatments, but some problematic issues arise, mainly because of the unphysical
interference between the initial and final state long after a partial transfer of pop-
ulation has taken place. This is due to a general failure of classical (independent)
trajectories in multistate systems to reproduce the phenomenon of quantum decoher-
ence (see Sect. 5.5 and Ref. [20]).

Problems

4.1 Calculate the averages and uncertainties of x and p̂ for the χv eigenfunction of
the harmonic oscillatorwithmassM , frequencyω, and equilibriumposition xe.Verify
that for v = 0 we have the minimum uncertainty product ΔxΔp = �/2. Compare
the uncertainty of x in state v with the classical amplitude of the oscillation for the
same energy. Make use of the relationships listed in Appendix F.

4.2 Calculate the vibrational energy in the final state for the Franck–Condon exci-
tation between one-dimensional harmonic PESs defined as:

U1 = 1

2
Mω2

1(R − R1)
2 and U2 = ΔEadia + 1

2
Mω2

2(R − R2)
2

Make use of the relationships listed in Appendix F.

4.3 Prove the relationship (4.17).

4.4 Prove the relationship (4.6).
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4.5 Prove the relationship (4.21).

4.6 Find all theways the vibrational energy of 1000 cm−1, in excess of the ZPE, can
be distributed among the three normalmodes of a triatomicmoleculewith frequencies
200, 300, and 500 cm−1. What is the microcanonical energy distribution in the three
modes for this molecule? Same question if each frequency is sixfold degenerate, as
in the case of six weakly interacting identical molecules.

4.7 Quinoline has a much higher fluorescence quantum yield in polar solvents than
in the apolar ones, just as 1-pyrenecarboxaldehyde (see Sect. 2.8) and for the same
reason. A TD-DFT calculation for the isolated molecule shows that the two lowest
excited states are S1 of n → π∗ type and S2, π → π∗, with an energy difference of
18 kJ/mol. The respective oscillator strengths for transitions from and to the ground
state are 0.0019 and 0.0435, so the emission rate of the π → π∗ state is about 20
times larger than that of the n → π∗ state. The molecular dipole in the n → π∗ state
is 0.79 a.u. and in the π → π∗ state, 1.79 a.u. Estimate the free energy difference
between the two states in benzene and ethanol, using Onsager’s formula, Eq. (4.24)
and neglecting the polarizability term. The relative permittivities of benzene and
ethanol are ε/ε0 = 2.3 and 24.5, respectively. The R3 parameter can be evaluated
from the molecular volume, using the density of quinoline, 1.093 g/cm3 and its
molecular weight, 129.16.

4.8 Compute how many states have an equilibrium population larger than 1%,
according to the canonical distribution at T = 300 K, Eq.4.25, with mode frequen-
cies of 100, 400, and 1000 cm−1.

4.9 Watch Animations 4.1 and 4.4 and obtain from them the two oscillation peri-
ods, Th for the harmonic potential and Tm for the Morse one. To which frequencies
ω = 2π/T do they correspond? Compare these frequencies with the vibrational fre-
quencies of the two oscillators.
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Chapter 5
Fast Nonadiabatic Dynamics

Abstract In this chapter we present the fast dynamics of a molecular system in
regions (avoided crossings, conical intersections) where the Born–Oppenheimer
approximation breaks down because the electronic and the nuclear motion are
strongly coupled. When a nuclear wavepacket reaches a region where the PESs are
close to each other, the nonadiabatic transitions are far from being negligible, and
time-dependent perturbation theory cannot be applied. We will show that, in spite of
the strong interplay between electronic and nuclear motion, interesting information
can be obtained from an approximated mixed quantum/classical model, which leads
to the celebrated Landau–Zener formula. Moreover, the main features of conical
intersections will be described in some detail.

Keywords Nonadiabatic dynamics · Avoided crossings · Landau-Zener
Conical intersections · Berry’s phase · Surface hopping

5.1 Noncrossing Rule and Avoided Crossings

In Sects. 3.10 and 3.11 we argued that large energy gaps imply slow nonadiabatic
transitions. Here we want to explore what happens when the PESs get close to
each other. Given a pair of electronic adiabatic states |ϕ1〉 and |ϕ2〉, our first aim is to
understand under which circumstances their respective energiesU1 andU2 can reach
a degeneracy point Qx where U1(Qx ) = U2(Qx ). More complicated intersections
involving three or more states are not considered in this chapter (however, in some
cases |ϕ1〉 and |ϕ2〉 have to be doubly degenerate; see Sect. 5.4.5). We assume the
other states to be far in energy, so that their coupling with |ϕ1〉 and |ϕ2〉 is small and
we can limit ourselves to consider the subspace spanned by these two states. Let |η1〉,
|η2〉 be an orthogonal basis of that subspace. According to Appendix D we have

|ϕ1〉 = cos θ |η1〉 + sin θ |η2〉
|ϕ2〉 = − sin θ |η1〉 + cos θ |η2〉 (5.1)

which can be written in matrix form as |ϕ〉 = |η〉C, where
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C =
(
cos θ − sin θ

sin θ cos θ

)
(5.2)

and θ ∈ R given by Eq. (D.4). The eigenenergies U1, U2 are (see (D.2))

U2,1 =
H11 + H22 ±

√
ΔH 2 + 4H 2

12

2
(5.3)

where ΔH = H22 − H11 and Hi j =
〈
ηi

∣∣∣Ĥel

∣∣∣ η j

〉
. Here and in most of this chapter

we are assuming that H12 is real. As it will be shown in Sect. 5.4.5, this assumption
is justified in many cases. It follows from the above equation that the degeneracy
points Qx are such that {

ΔH(Qx ) = 0

H12(Qx ) = 0
(5.4)

We focus here on the case of one internal coordinate (s = 1), appropriate for a
diatomic molecule. Then, we have two equations to solve and only one unknown,
which means the equality U1 = U2 cannot be satisfied. This is the so-called non-
intersection rule: two potential energy curves cannot cross, if the two states have
the same space and spin symmetry. In fact, as long as the two states have different
symmetry, H12(Q) vanishes identically, so we are left with only one equation and the
nonintersection rule does not hold. For example, singlet and triplet states can cross,
in the electrostatic approximation for Ĥel .

Of course H11 and H22 can cross, because |η1〉 and |η2〉 are not eigenstates of Ĥel .
When ΔH = 0 one has U2 −U1 = 2 |H12|: if the coupling between |η1〉 and |η2〉
is small, we may have regions where U1 and U2 are very close. These regions are
called avoided crossings.

An example is offered by the ground and the first excited singlet state of alkali
halides. Their wavefunctions will be labeled as ϕ1 and ϕ2, to keep the numbering
of this section. Let us consider in particular NaCl. Approximately, ϕ1 and ϕ2 are
linear combinations of the ionic Na+Cl− and of the covalent Na··Cl configurations,
and we choose, respectively, η1 and η2 to represent these configurations. At short
NaCl internuclear distances Q, the ground state ϕ1 is mainly described by η1, while
at dissociation ϕ1 = η2. As already discussed in Sect. 2.6.2, the energies of η1 and
η2 (H11 and H22) must cross, and in NaCl the crossing is found at large Q. In
fact, at medium/large NaCl distances (say, Q > 10 bohr) we have, in atomic units,
H11(Q) = −1/Q + Δ, where Δ � 0.056 hartree is the difference between the ion-
ization potential of Na (0.189 hartree) and the electron affinity of Cl (0.133 hartree).
Herewe have neglected themutual polarization of the two ionsNa+ andCl−, which is
however expected to give a small contribution at large Q. In the same energy scale we
have H22(Q) = 0. Imposing H11(Qx ) = H22(Qx ) we get Qx = 1/Δ � 17.9 bohr,
which is indeed a large internuclear distance,where the above expressions for H11 and
H22 are expected to be sufficiently accurate. Now, ϕ1 and ϕ2 (hence also η1 and η2)
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Fig. 5.1 Avoided crossing in NaCl. The adiabatic quantities U1 and U2 and g12 are represented
with full lines, while dashed lines are used for H11, H12, and H22. The crossing region is enlarged
in the two insets. All data in atomic units

have the same symmetry, so H12 �= 0 and the two adiabatic energiesU1 andU2 cannot
cross. However H12(Qx ) is very small: in fact the two wavefunctions η1 and η2 differ
for the location of one electron in two different orbitals, belonging respectively to the
Cl atom or to the Na atom, and the coupling H12 is related to the overlap between the
two orbitals (see Appendix E). In particular H12(Qx) � 1.5 · 10−4 hartree for NaCl,
so the crossing is very tightly avoided; see Fig. 5.1.

In going through the avoided crossing region, the adiabatic states exchange their
description, as it can be appreciated from Fig. 5.1. This is a distinctive feature of an
avoided crossing, together with the large value of the nonadiabatic coupling g12.

In terms of the basis set |η〉, indicating with νi j = 〈
ηi |∂/∂Q| η j

〉
the “derivative”

or “dynamical” coupling, we have
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g12 = C+
1

〈
η

∣∣∣∣ ∂

∂Q

(∣∣∣∣ η
〉
C2

)

= ν12 + C+
1

∂C2

∂Q

= ν12 − ∂θ

∂Q

(5.5)

where C1 and C2 are the first and the second column of matrix C of Eq. (5.2), and
we exploited the antisymmetry of the matrix νi j for real functions. From the NaCl
example referred above it is clear that the term ∂θ/∂Q is large only in the crossing
region, where |ΔH | ∼ |H12|, in agreement with Eq. (2.70). Moreover ν12 is expected
to be close to zero, as η1(Q) and η2(Q) retain their character at all internuclear
distances and do not undergo abrupt changes. This leads to the concept of diabatic
states, as discussed in the following section.

In a typical weakly avoided crossing, we consider the area under the function
g12 between two values Qa and Qb placed, respectively, well before and after the
crossing:

∣∣∣∣
∫ Qb

Qa

g12(Q) dQ

∣∣∣∣ �
∣∣∣∣
∫ Qb

Qa

∂θ

∂Q
dQ

∣∣∣∣ = |θ(Qa) − θ(Qb)| � π

2
(5.6)

The last equality holds because of the state switching that occurs in going from Qa

to Qb: ϕ1 � η1 and ϕ2 � η2 before the crossing and vice versa after the crossing.
Since θ is the switching parameter, it must go from about 0 to ±π/2. The above
relationship can be used to verify that the state switching is actually complete and
that no admixing of other states occurs in the avoided crossing region.

5.2 Diabatic States

When the nonadiabatic coupling is large, it may be convenient to replace the elec-
tronic adiabatic states with a set of functions which annihilates, or reduces, the
coupling. These electronic functions are called diabatic states [1–4]. A good exam-
ple is offered by the ionic and neutral states of NaCl; see Sect. 5.1 and Fig. 5.1:
clearly, one has to perform a large number of calculations in the crossing region
in order to reproduce correctly the shape of U1(Q), U2(Q), and g12(Q), while the
corresponding diabatic quantities H11, H22, and H12 change smoothly with Q and
can be fitted with simple functions.

Let us define a new orthonormal set |η〉 of electronic basis functions, obtained as
linear combinations of the adiabatic set |ϕ〉

|η〉 = |ϕ〉T (5.7)
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where T is unitary. Note that T is the inverse of matrix C of Eq. (5.2). The ηk are
strictly diabatic functions if all the derivative coupling matrices

ν(α) =
〈
η

∣∣∣∣ ∂

∂Qα

∣∣∣∣ η
〉

= T+g(α)T + T+ ∂T
∂Qα

(5.8)

vanish ∀α. Here g(α) is the matrix collecting the nonadiabatic couplings g(α)
kl . From

imposing ν(α) = 0 for a complete set of diabatic functions follows that the second
derivative couplings also vanish (according to Eq. (2.67)) and that the ηk cannot
depend on the nuclear coordinates

∂ |ηk〉
∂Qα

=
∑
j

∣∣η j
〉 〈

η j

∣∣∣∣ ∂ηk

∂Qα

〉
= 0 . (5.9)

Then, a trivial solution for ν(α) = 0 is found by choosing ηk(r) = ϕk(r;Q0), where
Q0 is a fixed set of nuclear internal coordinates. The completeness of the basis
ensures that Eq. (5.7) is satisfied for any Q, with Tkl(Q) = 〈ϕk(Q) |ϕl(Q0) 〉. This is
the so-called crude diabatic basis. Of course the trivial solution is not unique.

According to Eq. (5.8), imposing ν(α) = 0 we get

∂T
∂Qα

+ g(α)T = 0 ∀α (5.10)

which is the set of differential equations that must be satisfied by the adiabatic-to-
diabatic transformation matrix T. The above expression can be made more com-
pact by introducing the vectors of matrices g = (g(1), g(2), . . . , g(s)) and F = gT =
(g(1)T, . . . , g(s)T), obtaining

F = −∇T . (5.11)

If the electronic functionsϕk are real,F is a real vector field (actually amatrix of vector
fields) and the real function T (actually a matrix of functions) is the corresponding
scalar potential. In other words, F has to be conservative. A necessary condition for
F to admit a potential is to be irrotational

∂F(α)

∂Qβ

= ∂F(β)

∂Qα

(5.12)

as it follows from the Schwartz theorem on partial derivatives applied toT. Replacing
F = gT in Eq. (5.12) and using (5.11) we arrive at the following relation for the
nonadiabatic couplings

∂g(α)

∂Qβ

− ∂g(β)

∂Qα

− [
g(α), g(β)

] = 0 ∀α, β . (5.13)
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Since we know that Eq. (5.11) can be actually solved (by the trivial solutions referred
above), the (5.13) has to be fulfilled by the nonadiabatic coupling. In fact

∂g(α)
kl

∂Qβ

− ∂g(β)

kl

∂Qα

=
〈

∂ϕk

∂Qβ

∣∣∣∣ ∂ϕl

∂Qα

〉
−
〈

∂ϕk

∂Qα

∣∣∣∣ ∂ϕl

∂Qβ

〉
(5.14)

moreover

(g(α)g(β))kl =
∑
m

g(α)
km g

(β)

ml = −
〈

∂ϕk

∂Qα

∣∣∣∣ ∂ϕl

∂Qβ

〉
(5.15)

where we have exploited the completeness of the adiabatic basis. Equation (5.13) is
then easily recovered from (5.14) and (5.15).

In practical problems, the crude diabatic basis is of very limited utility, as one is
usually interested in a small number of electronic states (and anyway it is not possible
to treat numerically the infinite number of states in a complete Hilbert space for a
realistic molecular system). Let us therefore consider a subspace S containing the
NS adiabatic states of interest. The orthogonal subspace is labeled R and normally
is infinite-dimensional. We assume that g(α)

kl , for all Qα , is vanishingly small when
ϕk ∈ S and ϕl ∈ R. As a consequence, it can be shown that the same property holds
for the second derivative couplings t (α)

kl , so S is “decoupled” from R. In practice, in
the absence of regions of degeneracy or near degeneracy between adiabatic energies
belonging to the two orthogonal subspaces, it can be assumed that S and R are
decoupled to a good approximation. Within S, the diabatic basis has to depend on
Q, as in general the expansion of ϕk(Q0) in terms of the ϕl(Q) is not limited to the
functions belonging to S, even if S is decoupled from R. Let us indicate with Sg the
restriction to S of g, so that Sg is a vector of NS × NS matrices, and the same for SF.
In general, a NS × NS unitary matrix T solving SF = −∇T (which is the restriction
to S of Eq. (5.10)) cannot be found. In fact, the necessary condition (5.12) for SF
would lead to Eq. (5.13) for Sg, which is not, in general, true: taking into account
that

(Sg(α)Sg(β))kl =
ϕm∈S∑
m

g(α)
km g

(β)

ml = −
〈

∂ϕk

∂Qα

∣∣∣∣ ∂ϕl

∂Qβ

〉
−

ϕi∈R∑
i

g(α)
ki g

(β)

il (5.16)

we get
∂ Sg(α)

∂Qβ

− ∂ Sg(β)

∂Qα

− [
Sg(α), Sg(β)

] = A

Akl =
ϕi∈R∑
i

[
g(α)
ki g

(β)

il − g(β)

ki g(α)
il

]
.

(5.17)

Note that, even if g(α)
ki with ϕk ∈ S and ϕi ∈ R is assumed to be very small, the

elements of the matrix A are obtained from a sum running on an infinite number
of terms which may therefore yield a non-negligible contribution, in general. On
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the other hand, the necessary condition (5.12) is always trivially satisfied in one
coordinate Qα (i.e., for β = α), and in principle Eq. (5.10) restricted to S can be
integrated for a single Qα . Therefore, the strict diabatization can be performedwithin
S for a diatomic molecule, in principle.

To summarize, it is possible to find a unitary matrix T transforming a truncated
adiabatic basis into a strictly diabatic one only for one internal coordinate at a time
(or along a given path).

In view of these difficulties, the diabatic states are usually defined using less strict
conditions than the exact cancelation of the dynamical couplings. In practice, the
νkl are requested to be minimal, or however negligibly small. The corresponding ηk
are then called quasi-diabatic states. Obviously the quasi-diabatic basis cannot be
uniquely defined, and many different methods have been devised to their evaluation
(for a short review see [5]). To cite only a simple example, one could rely onmolecular
properties: for instance, the transition dipole moment can be used to define dark and
bright diabatic states; space localization to define excitonic states, and so on.

The nonadiabatic couplings g(α)
kl are expressed in terms of the quasi-diabatic basis

in this way

g(α)
kl = (Ul −Uk)

−1C+
k

∂H
∂Qα

Cl + C+
k ν(α)Cl (5.18)

where Ck is the kth column of the diabatic-to-adiabatic matrix C (the inverse of
matrix T). The residual derivative coupling between quasi-diabatic functions is usu-
ally neglected: anyway, the g(α)

kl are large in near-degeneracy regions, where the
first term dominates. Equation (5.18) represents a very convenient way to evaluate

the nonadiabatic couplings, as the elements Hkl =
〈
ηk

∣∣∣Ĥel

∣∣∣ ηl
〉
of matrix H are, by

construction, smooth functions of Q.
Also time evolution is particularly simple in the quasi-diabatic basis. The Born–

Huang expansion of the total wavefunction Ψ (Q, r, t) becomes

Ψ (Q, r, t) =
∑
k

Θk(Q, t)ηk(r;Q) (5.19)

where here Θk(Q, t) are the nuclear wavepackets on the quasi-diabatic states. Their
time evolution is given by (compare Eq. (2.78))

i�
dΘk

dt
= T̂nΘk +

∑
l

HklΘl (5.20)

where we have neglected the residual derivative couplings between quasi-diabatic
functions, which ought to be small. As noted above, the Hkl are smooth functions of
Q, while in the adiabatic expression (2.78) both U ′

k and V̂ BO
kl contain terms which

diverge at degeneracy points (see Sect. 5.4).
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5.3 Landau–Zener Rule

As discussed in Sect. 5.1, in avoided crossing regions the nonadiabatic coupling is
large and the energy difference is small; therefore nonradiative transitions between
electronic states are very likely. This problem was first tackled by Landau and Zener
in 1932, using a classical approximation for the nuclear motion [6, 7]. In particular,
it is assumed that the classical description is acceptable for the nuclei, at least as a
first approximation, so that the nuclear motion is given by a classical trajectoryQ(t).
Then, we consider a time-dependent Schrödinger equation only for the electrons

i�
dΨel(r, t;Q(t))

dt
= Ĥel(Q(t))Ψel(r, t;Q(t)) (5.21)

where the parametric dependence of the electronicwavefunctionΨel andHamiltonian
Ĥel on the nuclear trajectory Q(t) has been made explicit. Note in particular that
Ĥel , as well as its eigenfunctions and eigenvalues, depend on time through Q(t).
Therefore, the time evolution operator (2.26) cannot be applied. The Ψel can be
expanded in terms of the adiabatic basis

Ψel(t) =
∑
l

al(t)e
−iγl (t)ϕl γl(t) = 1

�

∫ t

0
Ul(Q(t ′))dt ′ (5.22)

where e−iγl (t) is the so-called dynamical phase, as opposed to the “static” phase that
would be present for a time-independent Hamiltonian (see, for example, Eq. (3.3)).
Inserting the above expansion in Eq. (5.21) we obtain

∑
l

ȧlϕle
−iγl = −

∑
l

ale
−iγl ϕ̇l . (5.23)

Multiplying both sides by ϕ∗
k and integrating on the electronic coordinates we get

the differential equation for the adiabatic coefficients ak

ȧk = −
∑
l

al(t)e
−i(γl (t)−γk (t)) 〈ϕk |ϕ̇l 〉 (5.24)

and, according to the chain derivative rule, we have

〈ϕk |ϕ̇l 〉 =
∑

α

g(α)
kl Q̇α (5.25)

We see that the variation of the coefficients ak (and thus the probability to make
a transition from an adiabatic state to another) depends on the scalar product
between the nuclear velocity and the nonadiabatic coupling vectors, which is anal-
ogous to the coupling terms g(α)

kl
∂

∂Rα
of Eq. (2.62). Note however that in this mixed
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quantum/classical approximation the second derivative couplings t (α)
kl do not play

any role. The phase factor exp[−i(γl − γk)] is a dephasing term, which oscillates
rapidly in time when the energy difference Ul −Uk is large, leading to very small
integrated transition probabilities between states well separated in energy.

The electronic wavefunction Ψel can also be expanded in terms of the diabatic
basis

Ψel(t) =
∑
l

dl(t)e
−iγ d

l (t)ηl γ d
l (t) = 1

�

∫ t

0
Hll(Q(t ′))dt ′ . (5.26)

We assume the dynamical couplings between diabatic wavefunctions to vanish and
we proceed as in the adiabatic case to obtain

ḋk = − i

�

∑
l(�=k)

dl(t)e
−i(γ d

l (t)−γ d
k (t))Hkl(t) (5.27)

from which it appears that the transitions between diabatic states are due to the

electronic coupling terms Hkl =
〈
ηk

∣∣∣Ĥel

∣∣∣ ηl
〉
. In the following, we will work in the

diabatic representation, as the setup of the model is easier and it leads to simpler
equations.

Let us consider a two-state system (η1 and η2), with one nuclear coordinate Q.
The Landau–Zener model is completely defined by setting

ΔH(Q) = H22(Q) − H11(Q) = FΔQ

H12(Q) = H12 (real constant)

Q(t) = Qx + vt

(5.28)

where ΔQ = Q − Qx and F represents the difference in the slopes of H22(Q) and
H11(Q), assumed to be linearly dependent on Q. It is also assumed that the nuclei
move at constant velocity v. Within this model, the nonadiabatic coupling g12(Q)

can be determined by means of the general equation (5.41)

g12(Q) = − β/2

1 + β2ΔQ2
β = F

2H12
. (5.29)

Apart from the global sign, which can be positive or negative according to the sign
of β, g12(Q) is a Lorentzian function, centered at Q = Qx , with maximum height
F/4H12 andFWHM = |4H12/F |.Hence, in termsof the adiabatic representation, the
strong interaction region, where the nonadiabatic couplings are large and transitions
between the electronic adiabatic states are likely, is centered at Qx and has a width
of the order of 4H12/F .

Note that the Landau–Zener model is adequate to describe a weakly avoided
crossing at Qx . In fact, if the amplitude δQ ≈ |H12/F | of the crossing region is small
enough, one may approximateΔH(Q) and H12(Q) taking just the first nonzero term
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in their Taylor development at Qx , as in Eq. (5.28). Moreover, the approximation of
constant nuclear velocity v is correct if the time δQ/v ≈ |H12/Fv| needed to cross
the strong interaction region is small enough.

If we apply Eq. (5.26) to the Landau–Zener model we get the following system
of coupled differential equations

⎧⎪⎪⎨
⎪⎪⎩
ḋ1 = − i

�
H12d2(t) exp

{
− i

�

∫ t

0
ΔHdt ′

}
= − i

�
H12d2(t)e

−iFvt2/2�

ḋ2 = − i

�
H12d1(t)e

iFvt2/2�

(5.30)

with the starting condition d1(−∞) = 1 and d2(−∞) = 0 (only η1 is initially pop-
ulated). As discussed above, the Landau–Zener model is expected to give a realistic
description of an avoided crossing if H12 is small, which corresponds to a weak
diabatic transition probability (see Eq. (5.27)). Therefore, we can apply the time-
dependent perturbation theory at first order, which amounts in assuming d1 � 1 at
all times. Within this approximation, after the passage through the crossing we have

d2(+∞) � − i

�
H12

∫ +∞

−∞
eiFvt

2/2�dt = −H12

√
2π

� |vF |e
i(π/2±π/4) (5.31)

where the positive sign has to be chosen if vF > 0 and vice versa. Here we have
exploited the relation

∫ +∞
−∞ exp(−αx2)dx = (π/α)1/2,which is valid for any complex

number α with Re(α) ≥ 0. The diabatic transition probability Pdia in a passage
through the crossing is given by |d2(+∞)|2

Pdia � 2πH 2
12

� |vF | . (5.32)

Note that Pdia is proportional to the strength of the electronic coupling and to the time
H12/ |vF | needed to pass through the crossing. Actually, Eq. (5.30) can be solved
exactly in the asymptotic limit, yielding

Pdia = 1 − exp

{
−2πH 2

12

� |vF |
}

. (5.33)

The approximate and the exact solutions tend to coincide for small H 2
12/(� |vF |),

i.e., when the Landau–Zener model is physically viable. Far from the crossing, the
adiabatic states coincide with the diabatic ones and the nonadiabatic coupling van-
ishes (see Fig. 5.1). In particular, assuming β > 0, we have ϕ1 � η1 for Q � Qx

and ϕ2 � η1 for Q � Qx . Therefore, the probability to change adiabatic state corre-
sponds to the probability to stay in the same diabatic state: Padia = 1 − Pdia . Hence

Padia = exp

{
−2πH 2

12

� |vF |
}

(5.34)
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which is the celebratedLandau–Zener formula for the adiabatic transition probability.
Examples of application of the Landau–Zener formula are given as problems at the
end of this chapter.

5.4 Conical Intersections

Weget back to the topic of Sect. 5.1, considering now the general case of a polyatomic
molecule (s > 1). The nonintersection rule is no longer valid with more than one
internal coordinate. For example, with two coordinates Q1 and Q2 the two-equations
system (5.4) in principle can be solved, so wemay have one (or several) points where
U1 = U2. With three coordinates we may haveU2 = U1 on a curve. In general, with
s internal coordinates the set of points where U1 = U2, if any, has dimension s − 2.

Let us consider the Taylor expansion of the diabatic quantities ΔH and H12 at a
degeneracy point Qx (for later convenience it is useful to consider 2H12)

ΔH(Q) = q · (Q − Qx ) + · · ·
2H12(Q) = h · (Q − Qx ) + · · · (5.35)

where
q = ∇ΔH(Qx ) and h = 2∇H12(Qx ). (5.36)

As in the previous sections we assume here H12 ∈ R. We define the two versors
x̂ = q/q and ŷ = h/h, where q and h are the norms of q and h, respectively. Then
Eq. (5.35) becomes, at first order

ΔH(Q) = qx and 2H12(Q) = hy (5.37)

where x = x̂ · (Q − Qx ) and y = ŷ · (Q − Qx ) are the displacements from the
degeneracy point along the two versors. We can always assume, without losing
generality, that the two vectors q and h are orthogonal. In fact, the diabatic basis
is not uniquely defined: in particular, it is determined up to a constant orthogonal
transformation, which can be chosen in such a way that q · h = 0.

The Hamiltonian matrix at the first order in the displacement from Qx is

Hel = s
2

· (Q − Qx )

(
1 0
0 1

)
+ 1

2

(−qx hy
hy qx

)
(5.38)

where s = ∇H11(Qx ) + ∇H22(Qx ) and we have set the energy scale so that H11

(Qx ) = H22(Qx ) = 0. The corresponding adiabatic energies are then (see Eq. (5.3))

U2,1 = 1

2

(
s · (Q − Qx ) ±

√
(qx)2 + (hy)2

)
. (5.39)
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With s = 0, the above function of x and y is a double cone of whichU1 andU2 are the
upper and the lower part and touch in the vertex. The double cone is circular if q = h
and elliptic if q �= h. The term s · (Q − Qx ) can be split into two contributions: one
is due to the component of Q − Qx lying in the plane spanned by the vectors q and
h, and the other is due to the orthogonal component. The first contribution is linear
in x and y and has the effect to tilt the axis of the double cone, while the second does
not depend on x and y and therefore leaves the double cone geometry unaltered.

If ∇ΔH(Qx ) �= 0 and ∇H12(Qx ) �= 0 the degeneracy point Qx is called conical
intersection [8]. The set of points of dimension s − 2whereU1 = U2, i.e., the conical
intersection points, is called crossing seam. Because in the vicinity of a crossing seam
nonadiabatic transitions are very likely, the lowest parts of the crossing seam in the
upper adiabatic PES act as a funnel, i.e., a region of the PES where decay to lower
states is fast.

The nonadiabatic coupling vector g12 can be obtained in terms of the diabatic
matrix elements exploiting Eqs. (5.5) and (D.5)

g12 = −∇θ(Q) = − ∇ tg(2θ)

2(1 + tg2(2θ))
(5.40)

Then

g12 = ΔH∇H12 − H12∇ΔH

ΔH 2 + 4H 2
12

(5.41)

At first order in the displacement from the conical intersection Qx we have

g12 = qh

2(q2x2 + h2y2)
(−x̂ y + ŷx) (5.42)

where we have used Eqs. (5.36) and (5.37). In polar coordinates x = r cosφ and
y = r sin φ we obtain

g12 =
(

qh

q2 cos2 φ + h2 sin2 φ

)
êφ

2r
(5.43)

where êφ = −x̂ sin φ + ŷ cosφ is a versor in the direction of increasing φ. It is clear
from the above equations that the coupling g12, for r → 0, lies on the plane spanned
by q and h and diverges as 1/r (see Fig. 5.2). Moreover, is interesting to note that
the line integral of g12 along a small circle C in the q—h plane centered at a conical
intersection point gives

∮
C
g12 · dQ = ±

∫ 2π

0
g12 · êφrdθ = ±π (5.44)

where the signdepends on the directionof rotation.This result is due to the presenceof
the discontinuity at the intersection. In fact, for a two-state systemwe have, according
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Fig. 5.2 Nonadiabatic coupling vector g12 close to a conical intersection, Eq.5.42 with q = h. In
the left panel, g(x)

12 (x, y) and g(y)
12 (x, y) are represented as functions of x , for some fixed values of

y, with dashed and full lines, respectively. In the right panel g12 is represented by arrows in the x-y
plane, having length proportional to the norm of g12

to (5.13), ∂g(α)
12 /∂Qβ − ∂g(β)

12 /∂Qα = 0 for all α, β, which ensures the circulation
of g12 is equal to zero in a simply connected region where g12 is continuous and
derivable.

5.4.1 Classification of Conical Intersections

There are several ways to classify conical intersections. Considering the symmetry
of the electronic states involved in the intersection, we may have symmetry-required
intersections when the two states in Qx belong to the same degenerate irreducible
representation of a non-Abelian symmetry group. In fact, in that case the Jahn–
Teller theorem (see Sect. 5.4.4) ensures that the degeneracy is removed at first order
in the displacement from Qx , which means the degeneracy point has to be a conical
intersection. If the two states have different symmetry inQx the conical intersection
is called symmetry-allowed, and finally we may have an intersection of two states
belonging to the same nondegenerate representation of the molecular point group.

According to another classification scheme a conical intersection is called peaked
if it represents a local minimum ofU2, and sloped otherwise. On the potential energy
surface of the upper stateU2, a peaked intersection is normally more easily accessed
than a sloped one, so that it usually represents a more efficient funnel to the lower
state. Note anyway that in both types of conical intersections, peaked or sloped, the
slope of the lower state PES pulls the system away from the intersection region.
For this reason, the transitions from upper to lower states tend to be irreversible
in polyatomic molecules and/or in condensed phase, where the excess vibrational
energy is promptly redistributed among other modes (see Sects. 4.3 and 4.5).
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Fig. 5.3 Conical intersections in azomethane

The case of symmetry-allowed conical intersection is particularly easy to visu-
alize. In particular, let QS and QA be a symmetric and a nonsymmetric coordinate,
respectively (i.e., QS leaves unaltered the molecular symmetry, while QA removes
some symmetry element). We consider, for example, S0 and S1 in azomethane, CH3-
N=N-CH3. In the cis-trans isomerization pathway the C2 symmetry is kept, and
we can choose the torsion angle CNNC as the QS coordinate, and the antisymmet-
ric combination of the two CNN bending angles as the QA coordinate. The ground
state has A symmetry, while S1 (n → π∗) has B symmetry. Then, as far as QA = 0,
H12 = 0, so by varying QS with QA set to zero we may find a point where ΔH = 0
and the two potential energy curves do cross. Now, fixing QA to a (small) nonzero
value, the symmetry is removed and, along QS , the crossing becomes avoided (the
smaller is the value of |QA|, themore tightly avoided is the crossing). For azomethane,
at CNNC � 90◦ the ground state has a maximum and S1 a minimum, giving place
to two conical intersections in the space of the two coordinates here considered (see
Fig. 5.3). Actually, if other coordinateswere considered, the two conical intersections
might turn out to belong to the same crossing seam.

In azobenzene the maximum of the S0 PES along the CNNC dihedral, at
CNNC � 90◦, practically coincides with the minimum of the S1 n → π∗ state: we
have therefore a peaked conical intersection, located at about 90◦ of torsion of the
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CNNC angle, which acts as a very efficient funnel. In fact, the S1 lifetime is well
below 1 ps in the gas phase, especially if the cis isomer is excited. At CNNC = 0◦
or 180◦ (i.e., either for the trans or for the cis isomer) the CNN angles have larger
equilibrium values for S1 than for S0. For example, the trans isomer has CNN = 115◦
for S0 and CNN = 129◦ for S1. So, opening the CNN angles the S0 PES rises more
steeply with respect to S1, leading to a sloped conical intersection, which actually
belongs to the same crossing seam as the peaked one referred above. Clearly, after
S0 → S1 excitation the vibrational coordinate CNN gets excited (see Sect. 3.7), and
the sloped conical intersection may be reached, giving rise to “early” decay to S0
(i.e., at transoid or cisoid geometries), which in turn leads to a decrease of the pho-
toisomerization quantum yield. This phenomenon is more important for the trans
than for the cis isomer, due to the fact that the torsion of the CNNC dihedral after
excitation is much faster for the latter. So, in azobenzene the cis → trans photoiso-
merization quantum yieldΦcis→trans is close to 0.6, whileΦtrans→cis is considerably
lower (about 0.3 after n → π∗ excitation).

In monoalkenes the S0 and S1 PES are still quite separated at 90◦ of torsion around
the double bond. However, as discussed in Sect. 2.6.4, the two states get closer by
pyramidalization of one of the two carbon atoms. In ethylene, this leads to a conical
intersection, which is evidently very easily accessed from the Franck–Condon point.
As a consequence, the S1 lifetime in ethylene is very short (∼102 fs).

In acetone a crossing is found between the S1 and T1 n → π∗ states by stretching
the C-O bond and keeping the C2v geometry of the ground state minimum. Taking
into account the spin–orbit coupling, such a crossing is actually a symmetry-allowed
conical intersection. In fact, as for the spatial part S1 and T1 both belong to the same
A2 irrep, but considering also the symmetry of the spin part, the three components of
the triplet actually belong to the B1, B2, and A1 irreps (while the singlet retains A2

symmetry). The S1/T1 spin–orbit coupling is therefore zero atC2v geometry, and the
degeneracy is removed along nonsymmetric coordinates. In general, the true cross-
ings of singlet and triplet PESs become avoided crossings or conical intersections
when the spin–orbit coupling is introduced in the Hamiltonian. In the approximation
of neglecting the coupling among the triplet degenerate states, one can identify a
linear combination of them that interacts with the crossing singlet, and two noninter-
acting orthogonal combinations. So, in this approximation, only one triplet PES gives
place to avoided crossings or conical intersections with the singlet one, while the two
other degenerate PESs cross the singlet one without constraints. Some consequences
for nonadiabatic dynamics are examined in Ref. [9].

5.4.2 Branching Plane (Real Hamiltonian)

The plane spanned by the two vectorsq andh defined inEq. (5.36) is called branching
plane. As far as the first-order approximation is valid, only a displacement from
Qx in the branching plane is able to produce a value different from zero for ΔH
and/or H12, so removing the degeneracy. On the contrary, the degeneracy is kept
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if the displacement is orthogonal to q and h; see Eq. (5.35). The branching plane
represents therefore the space, of dimension 2, where the degeneracy of a conical
intersection is removed at first order. We stress here that this is just the most common
possibility, as conical intersections with branching spaces of dimension 3 or 5 do
exist (see Sect. 5.4.5).

Given the arbitrariness in the definition of the diabatic basis, the identification
of the branching plane is easier if the two vectors q and h are expressed in terms
of adiabatic quantities. To this aim, we first observe that, near an intersection point,
Eq. (5.18) can be rewritten as

(Ul −Uk)gkl = C+
k ∇HCl (5.45)

Note that, asUl −Uk tends to zero,gkl diverges,whereas the term (Ul −Uk)C+
k ν(α)Cl

vanishes. Moreover, from the Hellmann–Feynman theorem we have

∇Uk = C+
k ∇HCk . (5.46)

We already know from Eq. (5.42) that g12 lies on the branching plane, and the multi-
plication of the nonadiabatic coupling by the energy difference is effective in elimi-
nating the divergence at the degeneracy pointQx . Setting ΔU = U2 −U1 and using
the columns of C of Eq. (5.2) for C1 and C2 we obtain

∇ΔU = ∇ΔH cos(2θ) − 2∇H12 sin(2θ)

2ΔUg12 = ∇ΔH sin(2θ) + 2∇H12 cos(2θ).
(5.47)

Therefore, letting

w1 = ∇ΔU (Qx ) and w2 = 2ΔU (Qx)g12(Qx ) (5.48)

it is evident that the space spanned by the two vectors w1 and w2 is the branching
plane.

The knowledge of the branching plane may be useful, for example, to find the
minimumenergy point of a crossing seam. In fact, starting from any point of the seam,
the search for theminimumcan be done in a direction orthogonal tow1 andw2, so that
the degeneracy is maintained. However, the evaluation of the nonadiabatic couplings
is quite expensive from the computational point of view, so this procedure is not
necessarily the most effective. Finding the minimum energy point of a crossing seam
is important in order to assess the energetic accessibility of the seam and therefore
its relevance in the photodynamics of the molecular system.

5.4.3 Geometric Phase

When an adiabatic electronic wavefunction is transported around a closed path it
acquires a phase, which is called geometric phase, or Berry’s phase [10–13]. In
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particular, the phase factor is just +1 and therefore irrelevant, if the loop does not
enclose a conical intersection, but is−1when the loop contains a conical intersection.

Let us consider first an example to illustrate this behavior. The H3 molecule,
in the symmetric D3h conformation, has a degenerate 2E ′ electronic ground state.
According to the Jahn–Teller theorem, this geometry corresponds to a symmetry-
required crossing seam. Let us consider a path, enclosing the seam, in which two of
the three atoms are cyclically brought closer (see Fig. 5.4). For simplicity we assume
that the three atoms are, at all geometries considered here, far apart enough to neglect
the overlap between the 1s orbitals, as well as the contribution of ionic configurations
(with two electrons in the same 1s orbital) to the ground-state wavefunction. In this
way, a reasonable approximation for the ground-state wavefunction can be obtained
from a linear combination of the three Slater determinants

Φ1 = φa ∧ φb ∧ φc Φ2 = φa ∧ φb ∧ φc Φ3 = φa ∧ φb ∧ φc (5.49)

where φa (respectively, φa) labels a 1s spinorbital centered on atomHa and with spin
part α (respectively, β). Here we limit ourselves to consider the electronic functions
with MS = 1/2, which is correct in the electrostatic approximation; see Sect. 5.4.5.
At the D3h geometry (labeled “O” in Fig. 5.4), the doubly degenerate 2E ′ electronic
states are

Ha

HaHa

Hb

Hb

Hb

Hb

Hc

Hc

HcHc

Ha

O

Fig. 5.4 A closed path around the crossing seam in H3
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ϕ1(O) = 1√
2

(Φ1 − Φ2)

ϕ2(O) = 1√
6

(2Φ3 − Φ1 − Φ2) .

(5.50)

At the C2v geometry “A” (see Fig. 5.4) the ground state ϕ1 is obtained by pairing the
spin of the two nearest atoms Ha and Hb so as to obtain a singlet, which becomes a
doublet adding the third electron

ϕ1(A) = 1√
2

(Φ1 − Φ2) . (5.51)

Now we want to transport ϕ1 from “A” to “B” with continuity, i.e., without abrupt
phase changes. To this aim we impose 〈ϕ1(A) |ϕ1(B) 〉 > 0, obtaining

ϕ1(B) = 1√
2

(Φ1 − Φ3) . (5.52)

We then go from “B” to “C”

ϕ1(C) = 1√
2

(Φ2 − Φ3) (5.53)

and from “C” to “A” again

ϕ′
1(A) = 1√

2
(Φ2 − Φ1) . (5.54)

Then, the electronic wavefunction ϕ1, transported around a closed loop encircling a
conical intersection, has changed its sign.

In general, let us consider one of the adiabatic electronic functions of our two-state
system, for example ϕ1(Q) = η1 cos θ(Q) + η2 sin θ(Q), where the dependence of
ϕ1 and θ on the nuclear coordinates Q has been made explicit. The parameter θ(Q)

is determined by Eq. (D.5)

tg(2θ) = −2H12

ΔH
. (5.55)

Let then C be an infinitesimal closed path on the branching plane, encircling the
conical intersection atQx . Note that any infinitesimal displacement orthogonal to the
branching plane keeps the degeneracy and cannot turn around the intersection. Given
that C is infinitesimal we can use Eq. (5.37) for ΔH and H12. We have therefore, on
C

tg(2θ) = − hy

qx
(5.56)
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Fig. 5.5 Closed paths in the plane (x ′, y′), containing (left) or not (right) the conical intersection

where, as in Eq. (5.37), x and y are the displacements from the intersection point
along the two (orthogonal) versors x̂ and ŷ. It is convenient to rescale the coordinates
as x ′ = qx and y′ = hy. At this pointwe can switch to polar coordinates: x ′ = r cos γ

and y′ = r sin γ . Then
tg(2θ) = − tg γ (5.57)

so we can choose θ = −γ /2, and |ϕ1〉 becomes (see Eq. (5.1))

|ϕ1〉 = cos
γ

2
|η1〉 − sin

γ

2
|η2〉 . (5.58)

If the closed loop C contains a conical intersection, the angle γ goes from a given
starting value γi to γi ± 2π , which means the sign of ϕ1 has changed (see Fig. 5.5).
On the contrary, ifC does not contain a conical intersection, the angle γ simply goes
from γi to γi , and the phase of the wavefunction does not change.

With only two nuclear coordinates it is easy to see that what we have shown
above for an infinitesimal path can be extended to a closed loop of arbitrary shape,
by stretching with continuity the infinitesimal path and exploiting the fact that the
geometric phase does not change in a loop not encircling a conical intersection. Note
then thatwe have no sign change aswell if the loop contains two conical intersections.
In general, when transported around a closed path containing n conical intersections,
the electronic wavefunction is multiplied by (−1)n . Things are more complicated if
the number s of internal coordinates is larger than 2, as we have to make a clear-cut
distinction between a loop encircling or not encircling a conical intersection (which
is easier in two dimensions). In that case it is better to reverse the argument: if a sign
change is found by transporting the wavefunction around a closed loop of arbitrary
shape, the surface bounded by the closed loop has to contain a conical intersection.
This fact can be exploited to locate conical intersections in nuclear configurational
space.



160 5 Fast Nonadiabatic Dynamics

Because of the geometric phase, in the presence of a conical intersection an adia-
batic electronic state ϕk is a multivalued function. Of course, the total wavefunction
has to be single-valued, and as a consequence the nuclear part must be multivalued,
too. Hence, the presence of the conical intersection induces a coupling between the
electronic and the nuclear motion, even when the nonadiabatic effects are negligible.
Actually, we could exploit the fact that the adiabatic wavefunctions are defined up
to Q-dependent phase factors, by setting

ϕ̃k(r;Q) = eiΩk (Q)ϕk(r;Q) (5.59)

in such a way that ϕ̃k is single-valued. The nonadiabatic couplings are not invariant
in this “gauge” transformation

g̃kl(Q) = ei(Ωl−Ωk )gkl(Q) + iδkl∇Ωl(Q) . (5.60)

Note in particular that, while with a real Hamiltonian ϕk can always be chosen real-
valued so that gkk = 0, ϕ̃k is complex andwe have g̃kk = i∇Ωk .We know from (2.64)
that g̃kk is imaginary; therefore Ωk is real.

The geometric phase was first discovered by Longuet–Higgins [14] for a two-state
system (as the one considered above) and then generalized by Berry [12]. According
to Berry, we takeQ as a set of time-dependent external parameters (similarly to Sect.
5.3). Let us consider a closed path C in the Q space, which is covered in the time
interval [0, T ], so that Q(0) = Q(T ). Using the relation g̃kk = i∇Ωk and the chain
derivative rule we obtain

Ω̇k(t) = ∇Ωk · Q̇ = −ig̃kk · Q̇ (5.61)

Then, the accumulated phase Ω
(C)
k in the closed path C is

Ω
(C)
k = Ωk(T ) − Ωk(0) = −i

∫ T

0
g̃kk · Q̇dt = −i

∮
C
g̃kk · dQ. (5.62)

Given that ϕ̃k is single-valued, it follows from from Eq. (5.59) that the phase factor
acquired by ϕk in the closed pathC is exp(−iΩ(C)

k ). Note thatΩ(C)
k has two important

properties: it depends on the shape of the path C and not on the velocity at which C
is covered, and it is invariant in the gauge transform referred above (see Eq. (5.60)).
In fact, for any continuous and derivable f , both g̃kk and g̃kk + i∇ f have the same
circulation. It is for these reasons that the phase Ωk is called geometric.

In the two-state case considered above we can choose Ω1 = Ω2 = γ /2. More-
over, assuming for simplicity q = h, we have g12 = −∇γ /2 = −∇Ω1 = ig̃11. Then,
in a small circle around a conical intersection we get, according to Eq. (5.44):
exp(−iΩ(C)

k ) = e±iπ = −1.
In Fig. 5.6 and in the Animation 5.1 we show the time evolution of a wavepacket

going through a conical intersection. The two-dimensional model system considered
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Fig. 5.6 Wavepacket going through a conical intersection. The upper panels show the adiabatic
PESs U1, U2 (left) and the diabatic coupling H12 (right) of the 2D (QS and QA) model system
considered. Energies and coordinates are given in atomic units. The conical intersection is located
at QS = 3 and QA = 0. Four snapshots of the adiabatic wavepacketΘ1 at different times are shown
as contour plots of the probability density |Θ1(QS, QA)|2

features a symmetry-allowed conical intersection, with the diabatic coupling H12

being an odd function of the antisymmetric coordinate QA. The dynamics is essen-
tially adiabatic: at time t = 0 only the lower state is populated, and the population
transfer to the upper state at later times is negligible. The starting wavepacket is
Gaussian in both coordinates but, after traversing the conical intersection, it shows a
node at QA = 0, as if it had been sliced by the conical intersection. This can be seen
as a manifestation of Berry’s phase: the two wings of the wavepacket, that go around
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the intersection on opposite sides, gain opposite phases, giving rise to destructive
interference.

When performing numerical calculations of wavepacket dynamics using
Eq. (2.78), of course onewants to deal with single-valued nuclearwavepackets. Then,
the adiabatic Born–Huang expansion of Eq. (2.77) has to be expressed in terms of
the single-valued electronic functions ϕ̃k . In this way, to correctly deal with conical
intersections, the geometric phase factors eiΩk have to be explicitly introduced in
the wavepacket dynamics. On the contrary, no special care is needed when working
in the diabatic basis (Eq. (5.20)), which is not made of eigenfunctions of Ĥel and
therefore is free from the complexities associated with energy degeneracies.

5.4.4 The Jahn–Teller Effect

We consider a case in which the two states ϕ1 and ϕ2, in the degeneracy point Qx ,
belong to the same degenerate irreducible representation Γϕ of a non-Abelian point
group. Our aim is to establish if Qx is a stable conformation against a deformation
which reduces the symmetry and removes the degeneracy (i.e., whether Qx can be
a stationary point for U1 and U2). At first order in the displacement ΔQ = Q − Qx ,
the matrix elements Hi j of Ĥel in the diabatic basis are given by

Hi j (Q) = H0δi j + ∇Hi j (Qx ) · ΔQ + O(|ΔQ|2) (5.63)

where H0 = U1(Qx ) = U2(Qx ) represents the degenerate electronic energy at the
symmetric configuration Qx . In a small neighborhood of Qx , the diabatic states can
be identified with the two degenerate electronic states at Qx . For a given nuclear
internal coordinate Qα

∂Hi j (Qx )

∂Qα

=
〈
ηi

∣∣∣∣∣
∂ Ĥel(Qx )

∂Qα

∣∣∣∣∣ η j

〉
. (5.64)

It is convenient to take as internal coordinates the normal modes, as these can be clas-
sified according to the irreducible representation of the point group of the molecule.
We are interested in a normal mode Qα which removes the symmetry and con-
sequently the degeneracy. Therefore, the irreducible representation to which Qα

belongs, ΓQα
, cannot be the totally symmetric one, ΓA. Moreover, the integral (5.64)

is nonzero only if the direct product of irreducible representations Γϕ ⊗ Γϕ ⊗ ΓQα

contains ΓA. As it is apparent from Eqs. (5.3) and (5.63), if ∂Hi j/∂Qα �= 0 in Qx , a
displacement along Qα removes the degeneracy at first order in ΔQα . In that case,
Qx cannot be a stationary point forU1 andU2, and in particular it represents a conical
intersection. It was first proved by Jahn and Teller [15] that, for a nonlinear poly-
atomic molecule, it is indeed always possible to find a normal mode Qα such that
Γϕ ⊗ Γϕ ⊗ ΓQα

contains ΓA.
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On the contrary, for linear polyatomic molecules in degenerate electronic states
(i.e., belonging to one of the bidimensional irreducible representations �, Δ, etc.,
of C∞v or D∞v symmetry groups) the linear terms (5.64) are zero by symmetry. The
degeneracy is removed upon bending at the second order (the Renner–Teller effect).
In this case the intersection betweenU1 andU2 is not of the conical type, and in fact
the geometric phase effect is absent.

5.4.5 Complex Hamiltonian and Kramers Degeneracy

In the previous section of the present chapter we always assumed that, at least in the
vicinity of the crossing, a two-state systemcanbe used as a reasonable approximation,
and that H12 is a real-valued function. However, in the general case both assumptions
must be relaxed. To understand why, it is convenient to consider the time-reversal
symmetry.

The symmetry operation called time reversal changes the sign of time, so it has
the effect to reverse the motion of the system, inverting the sign of linear and angular
momentum (see, for example, Sakurai [10] or Merzbacher [16]). As in classical
mechanics, an isolated system (or even a system subject to an external conservative
field) is symmetric under time reversal. In particular, if T̂ is the time-reversal operator,
for a system symmetric with respect to time reversal we must obtain the same result
if the system is evolved for a time dt and then T̂ is applied, or applying first the time
reversal and then evolving for a time −dt . Using the infinitesimal time evolution
operator (2.5) we get, for any state |Ψ 〉

(
1 − idt

�
Ĥ

)
T̂ |Ψ 〉 = T̂

(
1 + idt

�
Ĥ

)
|Ψ 〉 (5.65)

so −iĤ T̂ = T̂ iĤ . If T̂ were a linear operator we would obtain −Ĥ T̂ = T̂ Ĥ , which
is an absurd result (it would imply that, for any |ΨE 〉 eigenstate of Ĥ with eigenvalue
E , T̂ |ΨE 〉 would be eigenstate of Ĥ with eigenvalue −E). Then, we must admit
that T̂ i = −iT̂ , in such a way that Ĥ T̂ = T̂ Ĥ for our system symmetric under time
reversal. Therefore, T̂ has to be an antilinear operator

T̂ (a |Ψ1〉 + b |Ψ2〉) = a∗T̂ |Ψ1〉 + b∗T̂ |Ψ2〉 (5.66)

where a and b are complex numbers. As time reversal is a symmetry operation, it has

to conserve the norm of the wavefunction:
〈
T̂Ψ

∣∣∣T̂Ψ
〉
= 〈Ψ |Ψ 〉. However, given

that T̂ is antilinear, it cannot be unitary. We rather have

〈
T̂Ψ

∣∣∣T̂Φ
〉
= 〈Ψ |Φ 〉∗ . (5.67)
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The two Eqs. (5.66) and (5.67) define T̂ as an antiunitary operator.
As observed above, we expect angular momentum to change sign under time

reversal:
T̂ ĴT̂−1 = −Ĵ (5.68)

where Ĵ represent either spatial or spin (or total) angular momentum. Note in fact
that, in this way, T̂ commutes with the rotation operator e−iĴ·n̂θ/� (here n̂ and θ are
the rotation axis versor and the rotation angle), which is indeed a desirable property.
Using Eq. (5.68) and the angular momentum commutation relations it is possible to
show that

T̂ | j,m〉 = (−1)meiγ j | j,−m〉 (5.69)

where γ j is a real number independent on m and | j,m〉 is an eigenvector of Ĵ 2 and
Ĵz with eigenvalues �

2 j ( j + 1) and �m, respectively. The above equation is valid
both for integer and half-integer j .

Let us now consider the operator T̂ 2. Apparently the symmetry operation T̂ 2

should leave the system unaltered, as much as a rotation of 2π . We obtain

T̂ 2 | j,m〉 = (−1)me−iγ j T̂ | j,−m〉 = (−1)2 j | j,m〉 (5.70)

which means T̂ 2 = 1 for j integer and T̂ 2 = −1 for j half-integer: it appears there-
fore that T̂ 2 is actually equivalent to a rotation of 2π .

Considering in particular electronic wavefunctions, in which we are interested
here, we have

T̂ 2ϕ = (−1)Neϕ (5.71)

where Ne is the number of electrons. Note that this result is valid in general, for
any electronic wavefunction ϕ. In fact, the spin part of ϕ can always be expanded in
terms of the eigenstates of Ŝ2 and Ŝz , for which Eq. (5.70) applies (and for the same
reason the spatial part is symmetric with respect to T̂ 2). Now, if ϕ is eigenstate of
Ĥel and T̂ commutes with Ĥel , then also ϕ′ = T̂ϕ is eigenstate of Ĥel , with the same
eigenvalue. If ϕ′ and ϕ are actually the same state we have ϕ′ = aϕ, where a is a
complex number. Then

T̂ 2ϕ = T̂ T̂ϕ = T̂ϕ′ = a∗T̂ϕ = |a|2 ϕ (5.72)

and comparing with (5.71) we obtain |a|2 = (−1)Ne , which can only be valid if
Ne is even. Therefore, with an odd number of electrons ϕ and T̂ϕ are necessarily
different. As a consequence, in a system symmetric with respect to time reversal so
that Ĥel T̂ = T̂ Ĥel and with an odd number of electrons, all the eigenstates of Ĥel

are at least doubly degenerate. This is the so-called Kramers degeneracy.
Because ofKramers degeneracy, a conical intersectionmay involve four electronic

states rather than two. In fact we can distinguish three different cases.
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Case A. System symmetric with respect to time reversal (Ĥel T̂ = T̂ Ĥel) with an
even number of electrons.We have T̂ 2 = 1 andwe can always choose a time-reversal
adapted basis of electronic functions ηi such that T̂ηi = ηi . Then

〈
ηi

∣∣∣Ĥel

∣∣∣ η j

〉
=
〈
T̂ηi

∣∣∣Ĥel

∣∣∣ T̂η j

〉
=
〈
T̂ηi

∣∣∣T̂ Ĥelη j

〉
=
〈
ηi

∣∣∣Ĥel

∣∣∣ η j

〉∗
(5.73)

where the last equality follows from (5.67). Therefore, all the matrix elements of
Ĥel are real, irrespective of the form of Ĥel itself. This is the case which has been
considered in the previous sections of this chapter.

Case B. System symmetric with respect to time reversal with an odd number
of electrons. Because of Kramers degeneracy, a crossing of two potential energy
surfaces U1 and U2 actually involves not two but four states: ϕ1, ϕ2, T̂ϕ1, and T̂ϕ2.
We consider then the time-reversal adapted basis of electronic functions η1, η2, T̂η1,
and T̂η2. Thematrix of Ĥel in the time-reversal adapted basis can be simplified taking
into account that, in the present case, T̂ 2 = −1 and T̂ commutes with Ĥel

〈
T̂ηi

∣∣∣Ĥel

∣∣∣ T̂η j

〉
=
〈
T̂ 2ηi

∣∣∣T̂ Ĥel T̂η j

〉∗ =
〈
T̂ 2ηi

∣∣∣Ĥel

∣∣∣ T̂ 2η j

〉∗ = H∗
i j (5.74)

where, as usual,
〈
ηi

∣∣∣Ĥel

∣∣∣ η j

〉
= Hi j and we also exploited (5.67) in the first equality.

Proceeding in the same way we obtain

〈
T̂ηi

∣∣∣Ĥel

∣∣∣ ηi
〉
= 0〈

T̂ηi

∣∣∣Ĥel

∣∣∣ η j

〉
= −H∗

iT j (i �= j)
(5.75)

were HiT j =
〈
ηi

∣∣∣Ĥel

∣∣∣ T̂η j

〉
. The matrix of Ĥel in the basis η1, η2, T̂η1 and T̂η2 is

therefore ⎛
⎜⎜⎝

H11 H12 0 H1T 2

H∗
12 H22 −H1T 2 0
0 −H∗

1T 2 H11 H∗
12

H∗
1T 2 0 H12 H22

⎞
⎟⎟⎠ (5.76)

Its diagonalization gives the two doubly degenerate eigenvalues U1 and U2

U2,1 = 1

2

(
H11 + H22 ±

√
ΔH 2 + 4 |H12|2 + 4 |H1T 2|2

)
. (5.77)

As a consequence, five conditions have to be imposed in order to have U1 = U2

ΔH = 0

Re{H12} = 0 Im{H12} = 0

Re{H1T2} = 0 Im{H1T 2} = 0

(5.78)
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so the branching space actually has dimension 5 in the present case. This has an
impact on the geometric phase as well, which shows in this case a more complicated
behavior with respect to Sect. 5.4.3.

Note however that, in the absence of spin–orbit coupling (as in the H3 molecule
considered in Sect. 5.4.3), H12 is real and H1T 2 = 0: in fact, according to (5.69),
the spin of T̂η2 is reversed with respect to η2 (so, either H12 = 0 or H1T 2 = 0). The
4 × 4 matrix (5.76) reduces to two identical and uncoupled 2 × 2 matrices. We are
therefore back to the case of branching space of dimension 2.

In general, it can be shown that H1T 2 = 0 if the molecule has Cs symmetry, or
higher. In that case, with complex H12, the branching space has dimension 3 (three
conditions to impose for U1 = U2).

Case C. System not symmetric with respect to time reversal (Ĥel T̂ �= T̂ Ĥel). This
is the case, for example, of a molecule in an external magnetic field. The Kramers
degeneracy is removed, but H12 is, in general, complex. We have therefore a three-
dimensional branching space.

Wewant now to evaluate the phaseΩ
(C)
k (see Eq. (5.62)) in the present context of a

complex-valuedHamiltonian [12, 13].Weconsider for simplicity a three-dimensional
nuclear configurational space so that, due to Stokes’ theorem, the circulation of g̃kk
on C corresponds to the flux of a vector Vk = ∇ × g̃kk across a surface SC bounded
by C

Ω
(C)
k = −i

∮
C
g̃kk · dQ = −i

∫
SC

Vk · dS . (5.79)

Clearly ∇ · Vk = 0, so the flux of Vk across a closed surface vanishes (unless the
enclosed volume contains a degeneracy point,where g̃kk has a singularity). Therefore,
the last integral in Eq. (5.79) only depends on the closed path C , and not on the
peculiar choice of the surface SC . We have

Vk = ∇ × g̃kk (5.80)

= 〈∇ϕ̃k |×| ∇ϕ̃k〉 (5.81)

=
∑
m �=k

〈∇ϕ̃k |ϕ̃m 〉 × 〈ϕ̃m |∇ϕ̃k 〉 (5.82)

=
∑
m �=k

〈
ϕk

∣∣∣∇ Ĥel

∣∣∣ϕm

〉
×
〈
ϕm

∣∣∣∇ Ĥel

∣∣∣ϕk

〉
(Uk −Um)2

(5.83)

where we used the relation ∇ × ( f ∇g) = ∇ f × ∇g and Eq. (2.70) for the nonadi-
abatic couplings. The sum is extended to a complete basis set of adiabatic wave-
functions; the term withm = k is excluded as 〈∇ϕ̃k |ϕ̃k 〉 is purely imaginary and the
vector product with its complex conjugate vanishes. It is particularly evident from
Eq. (5.82) that Vk is independent on the phases of the electronic functions. It is then
not necessary to use the single-valued ϕ̃m . Moreover, Vk is imaginary: considering a
real Hamiltonian, we can choose ϕm as real so that Vk = 0 and Ω

(C)
k vanishes. This
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result for Ω
(C)
k does not contradict what is reported in Sect. 5.4.3. In fact, the Stokes

theorem requires the function g̃kk to be differentiable on SC , so Eq. (5.79) is only
applicable if the surface SC does not contain the intersection point, where g̃kk has a
singularity.

Let us consider now a two-state system. In the vicinity of a conical intersection,
at first order in the displacement, the complex-valued Hamiltonian matrix in the
diabatic basis can be written in this form (see Eq. (5.38))

Hel =
(

z x − iy
x + iy −z

)
= xσ x + yσ y + zσ z (5.84)

apart from a scalar quantity, irrelevant in the present context, and with a suitable
scaling for the three nuclear internal coordinates x , y, and z we are considering. The
above Hamiltonian is appropriate for cases B or C (note in particular that with only
three internal degrees of freedom we have at least Cs symmetry, so H1T 2 vanishes,
and it is not necessary to take into account explicitly Kramers degeneracy). The 2 × 2
matrices σ x , σ x , and σ x are the so-called Pauli spin matrices

σ x =
(
0 1
1 0

)
σ y =

(
0 −i
i 0

)
σ z =

(
1 0
0 −1

)
(5.85)

as they correspond, apart from a factor �/2, to the matrix representations of Ŝx ,
Ŝy , and Ŝz for a spin 1/2 system. It is convenient to introduce polar coordinates:
x = r sin θ cosφ, y = r sin θ cosφ, and x = r cos θ . It is then easily verified that the
two eigenvectors of (5.84) are

|ϕ1〉 = − sin

(
θ

2

)
|η1〉 + eiφ cos

(
θ

2

)
|η2〉

|ϕ2〉 = cos

(
θ

2

)
|η1〉 + eiφ sin

(
θ

2

)
|η2〉

(5.86)

with eigenvalues U1 = −r and U2 = r . From Eq. (5.84) we immediately obtain
∇Hel = σ , where σ is the vector collecting the Pauli matrices. We are now ready to
evaluate the vectorsVk . To this aim, a convenient way to proceed is to recognize that

V1 =
〈
ϕ1

∣∣∣∇ Ĥel

∣∣∣ϕ2

〉
×
〈
ϕ2

∣∣∣∇ Ĥel

∣∣∣ϕ1

〉
4r2

=
〈
ϕ1

∣∣∣∇ Ĥel × ∇ Ĥel

∣∣∣ϕ1

〉
4r2

(5.87)

where the second equality follows from the completeness of the basis and the van-

ishing vector product of
〈
ϕ1

∣∣∣∇ Ĥel

∣∣∣ϕ1

〉
with itself. Then, taking advantage of the

commutation properties of Pauli matrices ([σ x , σ y] = 2iσ z , etc.), which stem from
angular momentum commutation rules, we get



168 5 Fast Nonadiabatic Dynamics

V1 = i
〈ϕ1 |σ | ϕ1〉

2r2
= −i

r̂

2r2
(5.88)

where r̂ is the unit vector in the direction r = (x, y, z). Analogously, V2 = ir̂/2r2.
We have then, from Eq. (5.79)

Ω
(C)
1 = −

∫
SC

r̂

2r2
· dS = −1

2

∫
C
dω (5.89)

and Ω
(C)
2 = −Ω

(C)
1 . Here dω is the solid angle element: we choose SC so that the

last integral in the above formula represents the solid angle subtended by the closed
circuit C at the degeneracy point (remember that the integral is independent on the
peculiar choice of the surface SC ). For example, considering a closed loop with
constant θ we obtain

Ω
(C)
1 = −π(1 − cos θ). (5.90)

Note in particular that after a closed loopC in any plane containing the conical inter-
section, ϕ1 acquires a phase factor equal to exp(iΩ(C)

1 ) = e−iπ = −1 if C encloses
the degeneracy point (and a factor 1 in the other case). The same for ϕ2. This is in
agreement with what we obtained for the case of a bidimensional branching space
(real Hamiltonian).

We end this section by noting that the relation Vk = ∇ × g̃kk between Vk and
g̃kk is the same as that connecting the magnetic field B and the vector potential A in
electrodynamics. Actually, the identification of g̃kk with a vector potential becomes
clearer taking into account that the TDSE (2.78) can be written in the following
way, considering only a single state ϕ̃kΘk = ϕkeiΩkΘk (i.e., setting gkl = tkl = 0 for
l �= k)

i�
dΘk

dt
=
[
1

2
(P − i�g̃kk)

2 +Uk

]
Θk (5.91)

where P is the vector collecting the nuclear momentum operators P̂α = −i�∂/∂Qα

conjugated to the mass-weighted nuclear coordinates Qα = √
MαRα . Here we con-

sidered a single-valued electronic state ϕ̃k , in such away that the nuclearwavefunction
is also single-valued. The above Eq. (5.91) has the same mathematical form as that
of a charged particle in an external magnetic field with vector potential proportional
to ig̃kk . As noted above, with a real Hamiltonian such a field (which is invariant in
the gauge transformation g̃kk → g̃kk + i∇ f with a single-valued f ) is zero every-
where except at a conical intersection, where ig̃kk has a singularity. For this reason
the vector potential term in Eq. (5.91) cannot be eliminated by a single-valued gauge
transformation.
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5.5 Computational Note: Methods for Nonadiabatic
Dynamics

We consider here some of the most widely used methods for the description
of nonadiabatic processes, such as excited state decay, photoisomerizations, pho-
todissociations, energy transfer, and charge transfer, taking place on an ultrafast
(sub-picosecond) or fast timescale (say, up to a few tens of ps). Slow nonadiabatic
transitions are better tackled by perturbation methods; see Chap. 3.

The numerical integration of the TDSE (2.78), in the form deriving from the adi-
abatic Born–Huang expansion (2.77), requires the knowledge of the PESs Uk(Q)

and of the nonadiabatic couplings gkl(Q) and tkl(Q), in the whole region of nuclear
coordinates that is accessible to the wavepackets Θk . Which electronic states must
be included in the expansion and which regions of the PESs will be explored by the
wavepackets depend on the initial conditions and particularly on the total energy, but
also on the duration of the dynamics of interest. As an alternative, we can express
the TDSE in the diabatic representation, Eq. (5.20), and then we need the diabatic
quantities Hkl(Q)) for all the electronic states considered. In principle, this means
that the adiabatic or diabatic PESs and couplings must be evaluated a priori for a suf-
ficiently large number of points of the nuclear configuration space and then expressed
as analytic functions of the internal coordinates Q. For polyatomic molecules, the
fitting or interpolation of the computed electronic quantities is a very cumbersome
task, even taking into account the simplifications introduced by the diabatic rep-
resentation. In part for this reason, approximated approaches in which the nuclear
motion is described classically are very popular. In fact, due to the local character of
classical mechanics, a “direct” (or “on-the-fly”) strategy can be easily adopted, such
that the electronic calculations are performed when needed, during the integration
of the dynamical equations [17, 18]. In particular, for each time step in a nuclear
classical trajectory, one just needs to evaluate the electronic energies and interstate
couplings, plus the forces acting on the nuclei, at a single molecular geometry. Of
course, the classical approximation is justified on the basis of the relatively large
nuclear masses and is valid as far as quantum effects such as zero-point vibrations,
tunneling, and interference can be ignored (see Chap. 4).

In the following, we will distinguish between quantum wavepacket dynamics
(QWD) and classical trajectory approaches. In someQWDmethods an effort is made
to keep the nuclear motion as local as possible, for example by using nonspreading
and traveling basis functions, such that the direct strategy can be applied. In classical
trajectory approaches, the quantum effects that are ignored in the first place can be
reintroduced by ad hoc provisions of the method.

5.5.1 Quantum Wavepacket Dynamics

Assuming that the electronic quantities (either the adiabaticUk , gkl(Q) and tkl(Q) or
the diabatic Hkl(Q)) are known, the numerical integration of the TDSE for the nuclear
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wavepackets Θk is still computationally very demanding. In fact, the computational
burden involved in a brute-force numerical integration grows exponentially with the
number s of vibrational degrees of freedom. For example, we could represent Θk on
a grid of points, obtained dividing in n parts the interval of values of Qα of interest,
for all α, ending up with a grid of ns points.

The method that best combines efficiency and accuracy in tackling this difficult
problem is themulticonfigurational time-dependentHartree (MCTDH) [19], inwhich
the wavepackets are expanded in terms of “configurations” ΦI

Θk(Q, t) =
∑
I

AI,k(t)ΦI (Q, t) . (5.92)

Each configuration is built as a Hartree product (i.e., a simple product, as opposed
to the antisymmetrized products that are necessary for electrons) of “single-particle
functions” (SPFs), in the form

ΦI (Q, t) =
∏
α

ξI,α(Qα, t) . (5.93)

In a fast nonadiabatic dynamics the nuclear degrees of freedom are normally strongly
correlated, so that it is mandatory to adopt a multiconfigurational approach (i.e., to
consider more than one configuration per wavepacket). Using more than one con-
figuration allows to represent correctly the splitting of the wavepacket into different
pathways, for instance those leading to distinct photodissociation products. If enough
configurations are added, the numerical time-dependent wavefunction converges to
the exact solution. In the standard version of MCTDH, the SPFs are expanded on a
time-independent basis set of one-dimensional functions with time-dependent coef-
ficients. Each SPF is therefore a contraction of the time-independent basis, suitable
to represent the wavepacket: the number of SPFs needed to reach convergence is
then expected to be small, at least if compared with the number of time-independent
basis functions.

The equations of motions for the coefficients AI,k and the SPFs are obtained using
the Dirac–Frenkel time-dependent variational principle

〈
δΨ

∣∣∣∣i� ∂

∂t
− Ĥ

∣∣∣∣Ψ
〉

= 0 (5.94)

where δΨ is an infinitesimal variation of the wavefunction, obtained by changing the
parameters it contains (i.e., the coefficients AI,k and those determining the SPFs, in
the present case). The resulting equation of motions are complex, but their number is
much smaller if compared to the set of equations obtained by using directly the time-
independent basis set. We sketch here a derivation of the time-dependent variational
principle (5.94), following Raab [20]. We assume that the wavefunction Ψ has a
given analytic form and depends on a set of parameters, collected in the vector a.
The time derivative of Ψ is then
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Ψ̇ =
∑
j

D j (a)ȧ j with Dj = ∂Ψ

∂a j
(5.95)

For given values a of the parameters, let us consider the vector space M(a), con-
taining the functions

∑
j D j (a)b j . In practice, M(a) is a subspace of the Hilbert

space to which Ψ belongs, collecting the variations δΨ that are allowed by the
assumed analytic form of Ψ . Then, we define an approximate solution of the TDSE
by requesting the norm ||Ψ̇ − ÂΨ || to be minimum (here we have set Â = Ĥ/i�
for simplicity of notation). Assuming the M(a) subspace to be closed, the projec-
tion theorem [21] warrants that there is in M(a) only one vector Ψ̇ minimizing the
distance with ÂΨ (a), which is obtained by setting b j = ȧ j , and that, for such a
vector, Ψ̇ − ÂΨ is orthogonal to M(a). In other words, since δΨ ∈ M(a), we have〈
δΨ

∣∣∣Ψ̇ − ÂΨ
〉
= 0, which corresponds to Eq. (5.94).

Several variants of the MCTDH method are available [22–24] in which the SPFs
are expressed in terms of nonspreading and traveling Gaussian wavepackets

ξI,α =
(
2aI,α

π

)1/4

exp
[−aI,α(Qα − Q̄ I,α)2 + i P̄I,α(Qα − Q̄ I,α)/�

]
. (5.96)

Here Q̄ I,α(t) and P̄I,α(t) represent the time-dependent “central” values of the coor-
dinate Qα and its associated momentum. The advantage in doing this is twofold.
First, the expansion in a fixed basis set may become very expensive for large ampli-
tudemotions, and this is very effectively avoided resorting to the travelingGaussians.
Moreover, some locality is introduced in the configurations (in fact, eachΦI is a prod-
uct of frozen Gaussians peaking at the center Q̄I (t)). This can be exploited to define
approximated on-the-fly strategies. To cite only one example, in the Full Multiple
Spawning (FMS) method [25] the configurations centers Q̄I (t) and momenta P̄I (t)
are evolved in time according to classical mechanics, in agreement with Ehrenfest
theorem (see Sect. 4.2). The electronic adiabatic basis is considered, and the matrix
elements ofUk(Q) and V̂ BO

kl (see Sect. 2.3) in the configurations, needed for the time
evolution of the coefficients AI,k , are computed in an approximated way using only
local quantities. For example, a first-order approximation for the matrix elements of
Uk(Q) is

〈ΦI |Uk | ΦJ 〉 � 〈ΦI |ΦJ 〉Uk(Q̄I J ) (5.97)

and similarly for V̂ BO
kl . Here Q̄I J is the centroid of the product ΦI (Q)ΦJ (Q). In

this way, the full-time evolution from time t to t + Δt only requires the evaluation
of the adiabatic energies, their gradients, and the nonadiabatic couplings in the cen-
ters Q̄I (t) and centroids Q̄I J (t). An FMS calculation is normally started with one
configuration associated to a given electronic state k. Then, more configurations are
added (“spawned”) during the time evolution to describe the population transfer to
other electronic states or to classically forbidden regions on Uk (tunneling).
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5.5.2 Nonadiabatic Classical Trajectories

Many different approaches have been developed in this context; here we focus on the
simplest one, in which the nuclear motion is described by a classical trajectoryQ(t),
while the electronic wavefunction Ψel(r, t;Q(t)) is evolved according to the TDSE
(5.21). To reproduce approximately the quantum wavepacket dynamics, a swarm of
many trajectories is run, each trajectory being independent of the others. Proceeding
as in Sect. 5.3, the Ψel is expanded in terms of the adiabatic basis functions ϕk ,
obtaining Eq. (5.24) for the time evolution of the expansion coefficients ak(t), which
can be recast in the equivalent form

ρ̇kl = −iωklρkl +
∑
j

(ρk jG jl − ρ jlGk j ) (5.98)

where ωkl = (Uk −Ul)/� and Gkl = 〈ϕk |ϕ̇l 〉 = gkl · Q̇. Moreover

ρkl = aka
∗
l e

−i(γk−γl ) (5.99)

is the electronic density matrix, including the dynamical phase factors of Eq. (5.22).
Note that ρkk(t) = |ak |2 represents the probability of state k for the given trajectory.

The nuclear trajectory Q(t) is obtained by integrating the Newton equations of
motion. There are two main algorithms according to the form assumed for the poten-
tial energy V (Q) driving the nuclearmotion. The Ehrenfest or “mean-field” approach
is characterized by the following expression

V (Q) =
〈
Ψel

∣∣∣Ĥel

∣∣∣Ψel

〉
=
∑
k

|ak |2Uk . (5.100)

The forces acting on the nuclei are obtained by requiring the conservation of the total
energy E = ∑

α Mα Q̇2
α/2 + V (Q) (i.e., by setting dE/dt = 0). Since the nuclear

trajectory is determined by an averaged potential, the Ehrenfest method is expected
to work correctly in surface crossing situations, but it may evidently give rise to
artifacts when the electronic states are well separated in energy.

An alternative strategy with respect to mean-field is adopted in the “Surface Hop-
ping” method [17, 26, 27], where the nuclei always move on the PES of a given
state k (the “current” state), i.e., V (Q) = Uk(Q). During the time evolution, the cur-
rent state can suddenly change from k to l (an event called a “hop”) according to
nonadiabatic transition probabilities that depend on how the state probabilities ρll

change in time. The surface hopping method was proposed and initially developed
by Tully [28], to whom is due the most widely used algorithm for the evaluation of
transition probabilities, called “fewest switches.” In particular, it is assumed that the
time evolution of the probability ρkk(t) is given by a master equation
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ρ̇kk(t) =
∑
l �=k

(ρllWlk − ρkkWkl) (5.101)

where the positive quantity Wlk represents the transition rate from state l to state
k. From Eq. (5.98) we have ρ̇kk(t) = −2

∑
l �=k Re{ρlkGkl}, which can be put in the

above form by defining the transition rates in this way

Wkl = max{0, Bkl}
ρkk

Wlk = max{0,−Bkl}
ρll

(5.102)

where
Bkl = 2Re{ρlkGkl} . (5.103)

Therefore, the transition probability Tk→l from the current state k to l in the time
interval Δt is

Tk→l =
∫ t+Δt
t ρkkWkldt

ρkk(t)
. (5.104)

With this definition of Tk→l the hops are performed only if there is a net flux of
probability from state k to another state in the time interval Δt considered: it is for
that reason that the algorithm is called “fewest switches.” Of course, Tl→k is just
disregarded: if k is the current state, the trajectory cannot hop from l to k. In practice,
a surface hopping calculation follows this scheme:

1. Many trajectories are run. The starting conditions (i.e., the initial nuclear coordi-
nates Q and velocities Q̇) are sampled from a suitable distribution.

2. For each trajectory, the time evolution from t to t + Δt is performed integrating
numerically theNewton equations ofmotion for the nuclei on the current state PES
Uk and Eq. (5.24) for the electronic wavefunction Ψel . The transition probability
Tk→l is evaluated and used to decide, according to a stochastic algorithm, whether
to hop from state k to another state l. If the hop occurs, l becomes the current
state and the nuclear trajectory starts evolving on the PES Ul .

3. After a hop from k to l, the velocities of the nuclei are rescaled to compensate
for the sudden variation Ul −Uk in the potential energy, so enforcing energy
conservation along the trajectory. In the case of an upward hop (Ul > Uk), if
Ul −Uk is larger than the current nuclear kinetic energy, no adjustment of the
velocities is able to ensure energy conservation. In that case, the hop is rejected.

4. Time-dependent or final properties are computed by averaging over the full swarm
of trajectories. To this aim, only the current state of each trajectory is considered.
For example, the electronic contribution to the energy is given by the current state
PES, and the population of a given electronic state l is the fraction of trajectories
�l(t) that are running on that state.

At variance with the mean-field approach, the surface hopping method depends
on the representation used (diabatic or adiabatic) and works best if the electronic
wavefunction Ψel is expanded in terms of the adiabatic functions, as assumed here.
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In fact, the nuclei are expected to follow the (uniquely determined) adiabatic PESs
rather than the diabatic ones, at least far from strong interaction regions (curve or
surface crossings).Moreover, it is evident that the picture of sudden hops is physically
sound only if the interaction between electronic states is highly localized in space, as
is the case for the adiabatic representation (see Fig. 5.1). Otherwise, the mean-field
approach would be better suited.

One of the most serious drawbacks in mixed quantum–classical methods like
surface hopping or mean-field is the lack of “quantum decoherence”. Let us consider
the full quantum expression for the electronic density matrix

ρ
(q)

kl (Q) = 〈ϕk |Ψ 〉 〈Ψ |ϕl 〉 = Θk(Q)Θ∗
l (Q) (5.105)

where we have used the Born–Huang expansion of Eq. (2.77) for the wavefunction
Ψ , and the integration is performed on the electronic coordinates. The superscript q
is used to distinguish the above full quantum expression from the semiclassical one
of Eq. (5.99). As the wavepackets Θk(Q) and Θl(Q) propagate on the two different
PESs Uk and Ul , they evolve toward distinct regions of the phase space, so reducing
progressively the interference between them, which is what we call quantum deco-
herence. In fact, if the two wavepackets are localized far from each other in the Q
coordinates space, ρ(q)

kl itself tends to vanish, andwith it all couplingmatrix elements.
If instead Θk(Q) and Θl(Q) still overlap in the Q space, but are well separated in
the momentum space (one is fast and the other is slow or they travel in different
directions), the matrix elements of nonadiabatic operators or other couplings will
also vanish. In both cases no population transfer will occur any more between them.
Even if some coherence remains (ρ(q)

kl �= 0), it is important to realize that the phases
acquired by the wavepackets along different pathways affect their interference and
any further population transfer.

The semiclassical electronic density matrix of Eq. (5.99) behaves in a very differ-
entway: for a given trajectory,ρkl vanishes only if (at least) one of the two coefficients
ak and al is zero. In fact, consider, for example, a trajectory roaming through an inter-
action region where some population transfer takes place. Because the same point
of the phase space represents the system in all the electronic states, no decoherence
occurs. All the couplings (nonadiabatic, spin–orbit, etc.) will remain effective. Even
wandering for a long time in regions where the couplings are negligible would not
eliminate the coherences ρkl (see Eq. (5.98)), so if the trajectory enters again an
interaction region it can give place to unphysical interference effects.

Mean-field methods present the additional drawback that all the electronic states
contribute to the calculation of the observables, such as quantum yields or transient
spectra, but the nuclear trajectories are driven by the average potential. As a result, the
trajectories in general do not conform to each potential energy surface and can evolve
in quite unphysical ways. Considering surface hopping, the quantum decoherence
would be achieved if the electronic wavefunction collapsed smoothly on the current
state k, i.e., if in time ak → 1 and al → 0 for l �= k. Since this collapse is not ensured
byEq. (5.98), ad hoc corrections have been introduced to force it [26, 27, 29].Overall,
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apart from cases where interference or tunneling effects play amajor role, usually the
surface hopping method (with corrections for decoherence) describes correctly the
ultrafast nonadiabatic dynamics of molecular systems. Slower processes are more
difficult to reproduce because of other drawbacks, in part analyzed in Chap. 4.

Problems

5.1 Consider the ionic/neutral avoided crossing in NaCl (see Fig. 5.1). Evaluate,
considering Na and Cl atoms at room temperature (T = 300 K), the probability
Padia to stay on the neutral state when the avoided crossing is gone through, using
the Landau–Zener formula. Use the data given in Sect. 5.1 for H12 and F .

5.2 Consider a collision between the two ionsNa+ andCl−. Evaluate the probability
to have, after the collision, Na+ and Cl−. As in the previous problem, use the data
given in Sect. 5.1 and neglect any thermal contribution to the kinetic energy in
evaluating the nuclear velocity. Note that in a collision the molecule goes twice
through the avoided crossing region.

5.3 Find the transformation of the two diabatic states |η1〉 and |η2〉 which makes
orthogonal the vectors q and h of Eq. (5.36). Consider a real Hamiltonian.

5.4 For a system with only two electronic states, express the second derivative
couplings t (α)

i j (i, j = 1, 2) as functions of g(α)
12 , assuming the adiabatic functions ϕ1

and ϕ2 to be real-valued. Use this result to find an explicit expression for t12 (i)
for the Landau–Zener model and (ii) close to a conical intersection (use Eq. (5.42),
considering only the two coordinates x and y, and assuming q = h). In the latter case,
which kind of singularity have at the conical intersectionU1 and the “corrected” PES
U ′

1 of equation (2.65)?

5.5 Consider a system with two electronic states and two nuclear coordinates x and
y, with the following diabatic Hamiltonian

Hel =
(
x2 xy
xy y2

)
.

The two adiabatic PES U1 and U2 are degenerate in (x, y) = (0, 0), which is not a
conical intersection point. The aboveHamiltonian could be appropriate, for example,
in a Renner–Teller context. Show that the geometric phase vanishes for any closed
path, containing or not the degeneracy point.
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Chapter 6
Charge and Energy Transfer Processes

Abstract In this chapter we shall present the peculiar features of charge and excita-
tion energy transfer processes (CT and ET) that are of basic importance in photosyn-
thesis, photovoltaics, and other areas of biochemistry and technology. The migration
of charge or excitation energy between distinct chromophores implies a dramatic
change in the electronic wavefunction, so the general nonadiabatic theory we have
already discussed also applies to these processes. However, some peculiar features
distinguish charge and energy transfer from other nonadiabatic processes. If the two
chromophores are placed in two molecules free to move in gas or liquid phase,
the transition can only take place during a collision or encounter, so the kinetics of
bimolecular processes plays an essential role. However, just because their interaction
is a basic requirement for the process to occur, in structured biological or artificial
photosystems the single units are fixed at suitable relative positions and orientations.
In typical situations, such arrangements also determine easily discernable spectral
features. Whenever the interaction between the involved chromophores is not too
large, the initial and final electronic states of the CT or ET process constitute a phys-
ically sound diabatic representation, which allows to analyze theoretically the main
features of the dynamics.

Keywords Charge transfer · Energy transfer · Quenching · Sensitization
Exciton coupling

6.1 Gas-Phase Collisions

The most relevant bimolecular processes in photochemistry are reactions, excitation
energy transfers (ET), and charge transfers (CT). For a bimolecular event to occur,
the two partners must get close enough; i.e., we need what is called a collision in gas
phase or an encounter in liquid phase.

In gas phase, we can take as reference a systemmade of rigid spheres. The kinetic
theory of gases provides the number of collisions per unit time and unit volume
between identical spheres:

Ncoll = 8

(
πKBT

MX

)1/2

R2
X C2

X (6.1)
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where RX, MX, and CX are the radius, mass, and concentration (number density) of
the spheres. In a mixture, the number of collisions between spheres of the X and Y
types is

Ncoll =
(
8πKBT

μXY

)1/2

R2
XY CX CY (6.2)

where μXY = MXMY/(MX + MY) and RXY = RX + RY. In general, the rate of a
bimolecular process (number of events per unit volume and unit time) can be written
as

Vbim = K CX CY (6.3)

K =
(
8KBT

πμXY

)1/2

σbim (1 + δXY)−1 / s−1molc−1m3 (6.4)

or, if the concentrations are expressed as molarities

K = 1000 NA

(
8KBT

πμXY

)1/2

σbim (1 + δXY)−1 / s−1mol−1L . (6.5)

Here NA is Avogadro’s number and 1000 is the conversion factor from m3 to
liters. The factor (1 + δXY)−1 takes into account the fact that the colliding pairs
for X ≡ Y are half than in the case X �= Y . The quantity σbim (a surface area) is
called the cross section of the bimolecular process. For the collision of rigid spheres,
σbim = π(RX + RY)2 is a merely geometrical parameter. Its meaning is that the two
spheres collide if their centers try to get nearer than the sum of the radii, which is like
aiming at a round target with radius RX + RY. For real molecules, the cross section
depends on the process we are interested in and on the properties of the quantum
states of the colliding partners. The cross sections of low probability events are much
smaller than the size of the twomoleculeswould imply.A common example is offered
by activated processes that can only occur when the kinetic energy in the center of
mass system is larger than the activation barrier E∗. This fact is basically taken into
account by the Arrhenius factor exp(−E∗/KBT ) that appears in the expression of
the reaction cross sections. The need for particular reciprocal orientations between
the colliding partners and the low probability of certain quantum transitions may also
concur in reducing the cross section.

Rotational and translational energy transfers take place practically every time
two molecules collide. Transitions that change the vibrational energy of one or both
partners (transfer of vibrational energy or conversion of vibrational into rotational
and translational energies, or vice versa) are normally less probable, because they
involve transitions between well-separated quantum levels. The separation of the
vibrational motion from the other ones is most effective when only few modes of
high frequency are present: for instance, the vibrational thermalization of N2 in He
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is estimated to be 107 times slower than the rotational one. In less extreme cases,
however, collisions thermally equilibrate all kinds of nuclear motion within ≈10−8 s
at standard temperature and pressure.

6.2 Encounters in Solution

The diffusion of a solute in a liquid is slower than that of a component in a gasmixture.
On the other hand, when two solute molecules are brought in contact, they normally
interact for a longer time than two collision partners: in this sense, an encounter in
solution can be much more effective than a gas-phase collision in causing an energy
or charge transfer process. Both the rate of encounters and the probability Pbim that
a given bimolecular event takes place at each encounter concur in determining the
rate of the process.

If we assume diffusion to obey Fick’s law, the net number of molecules that cross
a surface S per unit time is

Φ = −D
dN

dz
S (6.6)

where N is the concentration (molecules/m3), z is a coordinate perpendicular to the
surface, and D (m2/s) is the diffusion coefficient, which depends on the properties
of the solute and of the solvent, and on temperature. This law is valid in the absence
of forces pushing the molecules in a given direction. We first focus our attention on
one molecule Y and investigate how many molecules X per unit time interact with
it. Since both X and Y diffuse, the relevant D coefficient in our case is the sum of
their diffusion coefficients: D = DX + DY. If we take a spherical surface of radius
R and center in Y , the net flux of X molecules entering the sphere is

Φ = 4πD R2 dNX

dR
. (6.7)

Here we are assuming that no potential term attracts X toward Y or repels it, until
they get to a sufficiently small “interaction distance” Rint . This is not the case with
long-range electrostatic forces, for instance when dealing with ions (see the Debye–
Huckel theory of electrolytes). Φ is the difference between the ingoing flux Φin and
the outgoing one Φout : Φ = Φin − Φout . At R > Rint , the steady-state concentra-
tion of X would be constant, unless a bimolecular process occurring at R ≤ Rint

“annihilates” the X molecules: this sink creates a concentration gradient and a net
flux. By “annihilates” we mean that the X molecules are identified by their chemical
nature and quantum state, so they cease to exist if any reaction, CT or ET process,
converts them into different products (other chemical species and/or different elec-
tronic states). The fate of the products is irrelevant to the discussion of the diffusion
process (this statement implies the assumption that the products do not affect the
diffusion of the reagents). If some X molecules can “survive” the encounter with Y
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(Pbim < 1), they will feed an outgoing flux Φout . The larger the Φout is, the smaller
the net flux Φ and the gradient dNX/dr . On the contrary, Φin is not affected by the
bimolecular process. Φ cannot depend on R in a steady state, otherwise the number
of X molecules in a spherical layer would change in time. Then, we can connect Φ

to the asymptotic concentration of X, NX(∞), by a simple integral:

NX(∞) = NX(R) +
∫ ∞

R

dNX

dR′ dR′ =

= NX(R) + Φ

4πD

∫ ∞

R
R′−2 dR′ = NX(R) + Φ

4πDR
.

(6.8)

This equation holds for any R and Pbim , but if we take Pbim = 1 and R = Rint it
simplifies because within the interaction sphere (R ≤ Rint ) the concentration NX(R)

vanishes, so the term NX(R) disappears.Moreover, Pbim = 1 impliesΦout (Rint ) = 0
and Φin(Rint ) = Φ. So we get

Φin(Rint ) = 4πD Rint NX(∞) . (6.9)

If the volume contained in the spheres of radius Rint centered on the Y molecules is
negligible with respect to that of the whole solution, which is true at low concentra-
tions, we can identify NX(∞) with the bulk concentration of X. Then the number of
encounters per unit time and per unit volume is

Renc = 4π (DX + DY) Rint NX,bulk NY,bulk . (6.10)

With Pbim < 1, Φin and Renc remain the same, but Φout (Rint ) = Φin(Rint ) (1 −
Pbim), so Φ = Φin(Rint ) Pbim . By combining Eqs. (6.8) and (6.9) we get

NX(R) = NX(∞) − Φin(Rint ) Pbim
4πDR

= NX(∞)

[
1 − Pbim Rint

R

]
. (6.11)

In Fig. 6.1 we show the steady-state concentration of X in two cases, with Pbim = 1
and with Pbim < 1.

The rate of the bimolecular process is Renc Pbim . Using molarities for the concen-
trations:

− d [X]

dt
= K [X] [Y] (6.12)

with
K = 4000 π NA (DX + DY) Rint Pbim . (6.13)

The diffusion coefficients depend on the molecular interactions between solvent
molecules and with the solutes. They can be approximately parameterized with ref-
erence to the solvent viscosity and the solute size. The Stokes–Einstein relationship
is valid for spherical particles of radius R:
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Fig. 6.1 Concentration of the solute X as a function of its distance from Y

Table 6.1 Viscosity of some solvents at 20◦ C (Pa·s)
Water 0.0010

Organic solvents, not highly structured 0.0002 ÷ 0.0020

Ethylene glycol, CH2OH − CH2OH 0.0200

Glycerol, CH2OH − CHOH − CH2OH 1.490

D = KBT

6πηR
(6.14)

where η is the viscosity, expressed in Pa·s (≡ kg · m−1s−1). Then:

K = 2000 RgasT Rint (RX + RY)

3 η RXRY
Pbim . (6.15)

If the solutes are approximately spherical and Rint 
 (RX + RY), we see that the
rate constant does not depend too much on the size of the solutes.

The viscosity decreases rapidly with temperature (for liquid water, it is 0.0013
Pa·s at 10◦C and 0.00028 at 100◦C). Moreover, it increases with the molecular size
and with the degree of association of the solvent molecules, for instance with the
number of intermolecular hydrogen bonds each molecule can form (see Table6.1).
In the most common solvents, we find K/Pbim ≈ 109 ÷ 1010 l · mol−1 · s−1. When
Pbim 
 1, we say that the kinetics of the process is “diffusion controlled.”
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6.3 Electronic Energy Transfers

When a collision in gas phase or an encounter in solution occurs, we can consider
the system made up by the two molecules as one “supermolecule” and investigate its
dynamics with the same tools we developed in the previous chapters for unimolecular
processes. If the supermolecule splits again to yield the samemolecules as before the
collision/encounter or new ones, the quantum state of the products will depend on the
transitions occurred during the interaction time. The supermolecule approach is then
suitable to treat energy and charge transfer processes as electronic transitions between
well-defined initial and final states. Note that, while the internal degrees of freedom
of a molecule (vibrational and electronic) are not or only weakly coupled with the
overall translation and rotation, for two interactingmolecules themutual translational
and orientational coordinates become internal coordinates of the supermolecule that
can exchange energy with the other degrees of freedom (see the discussion at the end
of Sect. 6.1 concerning vibrational energy).

Starting from an electronically excited molecule X∗, two kinds of energy transfer
processes can occur. In one, the species X∗ goes back to the ground state because of
the interaction with Y, and the latter, although normally accepting a certain amount
of energy, remains in the electronic ground state:

X∗ + Y −→ X + Y . (6.16)

This is a mere quenching of X∗. If instead Y is promoted to an excited state, we talk
about electronic excitation transfer or “sensitization”:

X∗ + Y −→ X + Y∗ . (6.17)

In both cases, as in other nonadiabatic processes, part of the initially available energy
is converted into vibrational, rotational, and translational energy shared by the two
partners and eventually lost to the medium as depicted in the two Jablonski diagrams
of Fig. 6.2. For the excitation transfer to occur, the Y∗ state must be lower in energy
than X∗ or at most slightly higher. In the latter case, Y and/or X∗ must possess some
extra vibrational energy, possibly supplied by the exciting photon or due to thermal
fluctuations.

The nature of the processes (6.16) and (6.17) allows to define a set of diabatic
electronic states based on the localization of the excitation and suitable to describe
the energy transfer dynamics [1–4]. The initial state is

|ηi 〉 ≡ |ϕX∗ϕY〉 (6.18)

where on the RHS we have antisymmetrized products of the wavefunctions repre-
senting X in the excited state and Y in the ground state. We are here assuming the
orbitals of X and Y to be orthogonal, which is not compatible with perfect local-
ization on either molecule (see Appendix E). An approximate localization of the ϕ
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X∗+Y

X+Y

electronic excitation transfer

X∗+Y

X+Y

quenching

Fig. 6.2 Jablonski diagrams for energy transfer

states is sufficient for qualitative considerations, but small overlaps of nonorthog-
onal wavefunctions or the partial delocalization of the orthogonal ones can affect
quantitative predictions. The final state for quenching is

∣∣η f
〉 ≡ |ϕXϕY〉 (6.19)

and for the electronic excitation transfer

∣∣η f
〉 ≡ |ϕXϕY∗ 〉 . (6.20)

The matrix element Hi, f =
〈
ηi

∣∣∣Ĥel

∣∣∣ η f

〉
that determines the transition rate may van-

ish because the two states differ by symmetry or spin. Symmetry selection rules are
fundamental for very simple processes such as atom–atom and atom–diatom col-
lisions, where certain symmetry elements are necessarily present. For polyatomic
molecules, which are free to approach each other with arbitrary mutual orientations,
symmetry is less important, but in Sect. 6.4.4 we shall examine situations where the
interacting molecules are constrained in fixed positions, often in symmetric patterns
as in crystals.

Spin selection rules affect all electronic transitions. As we have seen in Sect. 2.4,
the spin state of the system can change because of magnetic interactions (ISC), the
spin–orbit coupling being usually the most important. In the absence of heavy atoms,
ISC is a slow process and hardly occurs during bimolecular interactions. However,
when dealing with spin multiplets, i.e., states with nonzero total spin, there exist
combinations of the initial states and of the final ones that correspond to the same
supermolecule spin. Then, the individual X and Y spins are allowed to change,
without changing the spin of the whole system. Two spins SX and SY can sum up as
parallel vectors to yield the highest spinmultipletwith SX+Y = SX + SY or lower spin
multiplets with SX+Y decreased by 1, 2, etc., in � units, down to SX+Y = |SX − SY|.
These rules, due to Wigner, define the allowed supermolecule spin states in the
absence of ISC. The states up to SX+Y = 2 are shown in Table6.2 (note that we omit
the cases with SX < SY, not to repeat the same line with X and Y exchanged). A
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Table 6.2 Spin state combinations that yield up to S = 2

molecule X molecule Y supermolecule X + Y

S = 0 (singlet) S = 0 (singlet) S = 0 (singlet)

S = 0 (singlet) S = 1/2 (doublet) S = 1/2 (doublet)

S = 0 (singlet) S = 1 (triplet) S = 1 (triplet)

S = 0 (singlet) S = 3/2 (quadruplet) S = 3/2 (quadruplet)

S = 0 (singlet) S = 2 (quintuplet) S = 2 (quintuplet)

S = 1/2 (doublet) S = 1/2 (doublet) S = 0 (singlet) or S = 1 (triplet)

S = 1/2 (doublet) S = 1 (triplet) S = 1/2 (doublet) or S = 3/2 (quadruplet)

S = 1/2 (doublet) S = 3/2 (quadruplet) S = 1 (triplet) or S = 2 (quintuplet)

S = 1 (triplet) S = 1 (triplet) S =0 (singlet), S = 1 (triplet) or S = 2
(quintuplet)

typical example in thermal chemistry is the formation of a bond between two radicals
(two doublet states) that join to yield a singlet ground-state molecule (if the triplet
state is formed, the interaction between the two radicals is substantially repulsive,
see Fig. 2.6). In photochemistry, a molecule can dissociate starting from an excited
singlet or triplet state, producing two fragments that are doublets (for instance, it
has been shown that the photodissociation of the acetone molecule can follow both
pathways [5]).

When the supermolecule splits again into X and Y, their spin states can differ
from the initial ones. In fact, we see from Table6.2 that the same spin state of X
+ Y can correspond to different combinations of states of X and Y. If no charge
transfer occurs, the parity of the number of unpaired electrons is conserved, so X
and Y cannot switch from integer to semi-integer spin or vice versa. Even with
this additional limitation, we see that several kinds of energy transfer processes are
possible:

• Quenching of a singlet excited state:

X(S1) + Y(S0) −→ X(S0) + Y(S0) . (6.21)

• Quenching of a doublet excited state:

X(D1) + Y(S0) −→ X(D0) + Y(S0) . (6.22)

• Excitation transfer within the singlet manifold:

X(S1) + Y(S0) −→ X(S0) + Y(S1) . (6.23)

• Excitation transfer within the triplet manifold:

X(T1) + Y(S0) −→ X(S0) + Y(T1) . (6.24)
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This process is also called triplet sensitization and is exploited to populate the
triplet state of a molecule Y that does not undergo ISC efficiently, by using a
“sensitizer” X which has instead a high triplet yield (see Sect. 1.6.2).

• Triplet quenching by oxygen:

X(T1) + O2(
3�−

g ) −→ X(S0) + O2(
1Δg,

1 �+
g ) . (6.25)

The ground state of the oxygen molecule is a triplet, but there are two low-lying
singlet states, 1Δg,

1 �+
g , so O2 can accept energy from most organic molecules in

their excited triplet states. Oxygen is therefore an efficient triplet quencher. The
singlet oxygen state 1Δg is long-lived and cytotoxic.

• Triplet–triplet annihilation:

X(T1) + X(T1) −→ X(S1) + X(S0) . (6.26)

This is an “energy pooling” process where the energy of two lower-lying triplets
is used to populate a higher-lying singlet. The X(S1) species may fluoresce, with a
lifetime equal to half of that of the triplet [6, 7]. This kind of delayed fluorescence
is labeled as “type P” because it was first studied in pyrene.

• Singlet fission:
X(S1) + X(S0) −→ X(T1) + X(T1) . (6.27)

This process is the reverse of the previous one. A singlet with sufficiently high
energy donates part of it to a neighboring molecule, so producing twomolecules in
the triplet state. This process may be used to improve photovoltaics yields, because
it can exploit short wavelength photons to produce two electron/hole pairs instead
of one.

Besides the interactionmatrix element Hi, f =
〈
ηi

∣∣∣Ĥel

∣∣∣ η f

〉
, the cross section σbim

and the probability Pbim for any of these processes also depend on how close to each
other the potential energy surfaces of ηi and η f can get, during the interaction of the
two molecules. If the diabatic PESs do cross, giving place to adiabatically avoided
crossings or conical intersections, the transition probability can be large, whereas
two PESs that are well separated at all geometries make the radiationless transitions
unlikely. For instance, electronic quenching by collisions with rare gas atoms has
small cross sections because their interaction with most molecules is repulsive both
for the ground and for the excited state andgives place to approximately parallel PESs.
This is due to the closed shell configuration of the rare gas atoms and to their lack
of low-lying antibonding orbitals that could mix with the molecular orbital hosting
the excited electron. A much studied example are the alkali-rare gas interaction
potentials, such as those originating from the 2S and 2P1/2,3/2 states of Na, with one
electron in the 3s or 3p orbitals, and the ground state of Xe, as shown in Fig. 6.3
[8]. Rare gases are used as solid matrices or nanodroplets, as well as in gas phase, to
cool the translational, rotational, and vibrational degrees of freedom of molecules,
without quenching their electronic excitation.
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Fig. 6.3 Potential energy curves for the interaction of Na(2S, 3s) and Na(2P, 3p) with different
collision partners. Upper panel: Na+Xe; middle panel: Na+Cd; lower panel: Na+CO, collinear
approach



6.3 Electronic Energy Transfers 189

An attractive interaction is instead established between Na(3p) and atoms with a
smaller energy gap between occupied and virtual orbitals, such as Cd (see Fig. 6.3).
The lowest potential energy curves in this case are those of 2
 states, with a small
energy difference due to spin–orbit coupling between the 2
3/2 and 2
1/2 states
(parallel and antiparallel orientation of spin and orbital angular momenta, respec-
tively) [9]. A system which is bound in an excited state but not in the ground state is
called an exciplex or excimer. When the excited state is sufficiently long-lived, one
can observe light emission at longer wavelengths with respect to the isolated excited
species. Similarly, aromatic molecules in solution can form fluorescent excimers.
For instance, at low concentrations, pyrene shows a fluorescence band with a clear
vibrational structure between 370 and 430 nm, while by increasing the concentration
one observes a structureless band between 420 and 550 nm, with λmax = 480 nm,
due to excimer formation.

If the interaction is strongly attractive in the excited state and repulsive in the
ground state, the two potential energy curves tend to cross. Such is the case of Na
approaching collinearly CO, because binding interactions are established between
the electron of Na in a 3p orbital perpendicular to the CO axis and the empty π∗
orbital of CO, as well as between the empty 3s orbital of Na and the lone pairs of
CO. The charge transfer configuration Na+CO− also contributes to strengthen the
attractive interaction in the excited state. On the contrary, in the Na ground state
the 3s electron and the lone pairs of CO repel each other. In Fig. 6.3 we show the
crossing of the 2�+ and 2
 curves for the collinear approach of Na and CO [10].
When considering bent geometries, the 2�+ state becomes 2A′ and the 2
 state
originates a pair of 2A′ and a 2A′′ states. The two 2A′ states therefore give place to a
conical intersection, near which the exciplex switches very easily to the ground state
and dissociates. The quenching of Na(2p) by CO molecules is very efficient, with
cross sections of the order of 20–50 Å2, and the same happens with other molecules
containing π bonds, such as nitrogen and ethylene.

6.4 Localized Excitations and Energy Transfer
Mechanisms

We shall consider two subsystems X and Y, such as two molecules or two distinct
chromophores in the same molecule. Each subsystem can be the seat of electronic
excitation, but in the adiabatic eigenstates of the whole system the excitation may be
delocalized, i.e., distributed over both centers. As already observed in the previous
section, the localized description is a good starting point to describe energy trans-
fer phenomena, especially when the initial and final states are definitely localized
because of the physical separation of X and Y. The localized states provide a sound
physical example of diabatic states, and their interaction matrix elements determine
the transition cross sections or probabilities.
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6.4.1 Group Functions

In this section we shall tackle the problem of defining localized excitations by intro-
ducing the concept of “group functions” with “strong orthogonality” conditions (see
McWeeny [11], Sect. 14.1). The advantage is that the matrix elements of the Hamil-
tonian are given by simple formulas and can be related to properties of the X and
Y subsystems, so leading to a better understanding of the energy transfer processes.
The group functions are antisymmetric electronic wavefunctions ΨX,K and ΨY,L for
the X and Y subsystems, respectively. The space and spin coordinates of the nX elec-
trons of X will be called xi and those of the nY electrons of Y, y j . We build ΨX,K and
ΨY,L as CI expansions using a set of orthogonal MOs, each of them being localized
on either the subsystem X or Y. Such MOs can be obtained for instance by HF or
CASSCF calculations for the whole system, followed by a localization procedure
based on rotations within each subset of doubly occupied, active or virtual orbitals.
Because of the limitations imposed by the preservation of orthogonality, a complete
localization will not be achieved unless X and Y are very far apart, but we assume
it is possible to attribute each MO to either X or Y (see Appendix E). We define the
subspaces SX and SY, each spanned by all the Slater determinants of nS electrons
that only occupy MOs belonging to subsystem S. The ΨX,J wavefunctions are built
with determinants of only one of the two subspaces and therefore belong to either
SX or SY. Charge transfer configurations, with the numbers of electrons in X and Y
different from nX and nY, are therefore not included in our treatment. We require
orthonormalization within each set of group functions:

〈
ΨX,K

∣∣ΨX,K ′
〉 = δK ,K ′ ,

〈
ΨY,L

∣∣ΨY,L ′
〉 = δL ,L ′ . (6.28)

We shall analyze the properties of states |K , L〉 of the whole system that are
represented by antisymmetrized products of group functions Â ΨX,KΨY,L . We must
therefore consider transpositions of electrons from ΨX,K to ΨY,L , which brings out
the strong orthogonality property. This means that the product of two wavefunctions
ΨX,K and ΨY,L that happen to share at least one electron vanishes when integrated
over the space coordinates of just that electron, because of the MOs orthogonality.

For instance
∫

Ψ ∗
X,K (x1, x2 . . . xnX) ΨY,L(x1, y2 . . . ynY) dr

3
1 = 0 (6.29)

(here r1 stands for the space coordinates contained in x1).
The electronic Hamiltonian can be partitioned into local (X and Y) terms and

interaction terms of zero-, one-, and two-electron type:

Ĥel = ĤX + ĤY + ĤXY (6.30)

and
ĤXY = VXY,nn + ĤXY,en + ĤYX,en + ĤXY,ee . (6.31)
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ĤX and ĤY are the electronic Hamiltonians of X and Y, respectively, including
the respective nuclear repulsion terms. If α and β number the nuclei of X and Y,
respectively:

VXY,nn =
∑
α∈X

∑
β∈Y

ZαZβ

rαβ

(6.32)

ĤXY,en = −
nX∑
i=1

∑
β∈Y

Zβ

rβi
(6.33)

ĤYX,en = −
nY∑
j=1

∑
α∈X

Zα

rα j
(6.34)

ĤXY,ee =
nX∑
i=1

nY∑
j=1

1

ri j
(6.35)

(here and in the following we use atomic units).
The matrix elements between products of group functions can be worked out in

the same way as the Slater rules (see McWeeny [11], Sect. 14.1). In our case, with
only two factors, a general matrix element is

〈
K , L

∣∣∣Ĥel

∣∣∣ K ′, L ′
〉
= VXY,nn δK ,K ′ δL ,L ′+

+
〈
ΨX,K

∣∣∣ĤX + ĤXY,en

∣∣∣ΨX,K ′
〉

δL ,L ′+
+

〈
ΨY,L

∣∣∣ĤY + ĤYX,en

∣∣∣ΨY,L ′
〉

δK ,K ′+
+JXY,KK ′LL ′ − KXY,KK ′LL ′ .

(6.36)

Here

JXY,KK ′LL ′ = nXnY
〈
ΨX,KΨY,L

∣∣[r(x1, y1)]−1
∣∣ΨX,K ′ΨY,L ′

〉
KXY,KK ′LL ′ = nXnY

〈
ΨX,KΨY,L

∣∣∣[r(x1, y1)]−1 P̂XY
∣∣∣ ΨX,K ′ΨY,L ′

〉 (6.37)

and r(x1, y1) is the distance between the electrons with coordinates x1 and y1, while
P̂XY is the exchange operator between the electrons x1 and y1.

We can choose the group functions to be eigenfunctions of ĤX within the subspace

SX, so that
〈
ΨX,K

∣∣∣ĤX

∣∣∣ ΨX,K ′
〉
= EX,K δK ,K ′ . If X and Y do not interact, EX,K is the

eigenenergy in the isolated X subsystem, but in general it will depend on the X −
Y relationship because the SX and SY subspaces do change according to how their
orthogonality is implemented. Similarly, the matrix elements of ĤY can be related
to its eigenvalues EY,L . The matrix elements then simplify as shown in Eqs. (6.38)
and (6.39). For the K , L state energy we have
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〈
K , L

∣∣∣Ĥel

∣∣∣ K , L
〉
= EX,K + EY,L + VXY,nn +

〈
ΨX,K

∣∣∣ĤXY,en

∣∣∣ΨX,K

〉
+

+
〈
ΨY,L

∣∣∣ĤYX,en

∣∣∣ΨY,L

〉
+ JXY,KK LL − KXY,KK LL .

(6.38)

When the electronic transition concerns one of the two subsystems, say X, the
relevant off-diagonal matrix element is

〈
K , L

∣∣∣Ĥel

∣∣∣ K ′, L
〉
=

〈
ΨX,K

∣∣∣ĤXY,en

∣∣∣ ΨX,K ′
〉
+ JXY,KK ′LL − KXY,KK ′LL . (6.39)

The only interactions that count concern electrons of X with nuclei and electrons of
Y. This is the case of pure quenching, as in the processes (6.21) and (6.22) seen in
the previous section.

In energy transfer processes where the electronic transition affects both subsys-
tems, we only have two-electron terms:

〈
K , L

∣∣∣Ĥel

∣∣∣ K ′, L ′
〉
= JXY,KK ′LL ′ − KXY,KK ′LL ′ (6.40)

(this result holds even in the case the group functions are not eigenfunctions of ĤX

and ĤY). Let us consider first the processes involving triplet states. We shall treat the
important case of singlet-to-singlet energy transfer in the next section.

6.4.2 Triplet Sensitization and Singlet Fission

In triplet sensitization, process (6.24), ΨX,K and ΨY,L ′ are triplets, while ΨX,K ′ and
ΨY,L are ground-state singlets, so JXY,KK ′LL ′ = 0 and only KXY,KK ′LL ′ contributes to
the interactionmatrix element. In the KXY,KK ′LL ′ integral the electron in x1 appears in
theΨX,K andΨY,L ′ wavefunctions,while the electron in y1 appears inΨY,L andΨX,K ′ :
in both cases the wavefunctions are approximately localized on the two different
subsystems,X andY, so their products are everywhere small. As the distance between
X and Y increases, the localization ofMOs and wavefunctions becomes rapidly quite
complete because the limitations due to the orthogonality requirement vanish, so the
interaction between the initial and final states is only effective in the short range (see
again Appendix E). A similar result is obtained using a simplified representation of
the group wavefunctions as single two-electron Slater determinants:

Â ΨX,KΨY,L = Â ΨX,T1,1ΨY,S0 = |abcc| (6.41)

and
Â ΨX,K ′ΨY,K ′ = Â ΨX,S0ΨY,T1,1 = |aacd| (6.42)
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Fig. 6.4 Molecular orbital scheme for triplet sensitization. Upper panel: MS = 1 component of
the triplets (the MS = −1 component is quite analogous); lower panel, MS = 0 component. The
encircled plus signs indicate the in-phase combination of Slater determinants corresponding to the
spin function (αβ + βα)/

√
2

(in the notation we are using for the Slater determinants, φ is a spinorbital with α

spin, and φ is one with β spin). These are the triplets with MS = 1 (the second index
in T1,1), but the same conclusions hold for MS = 0 or −1, i.e., T1,0 and T1,−1 (see
scheme 6.4). The initial and final states differ by two spin-orbitals, so

〈
K , L

∣∣∣Ĥel

∣∣∣ K ′, L ′
〉
= 〈

bc
∣∣r−1

12

∣∣ ad〉 − 〈
bc

∣∣r−1
12

∣∣ da〉 = − 〈
bc

∣∣r−1
12

∣∣ da〉
. (6.43)

In the singlet fission process (6.27) the initial state is S1 in X and S0 in Y and will
be indicated as |K L〉 = ∣∣ΨX,S1ΨY,S0

〉
. The general expression of the final state, i.e.,

the singlet combination of two triplets, is

∣∣ΨXY,1(T T )

〉 = 3−1/2
(∣∣ΨX,T1,1ΨY,T1,−1

〉 − ∣∣ΨX,T1,0ΨY,T1,0

〉 + ∣∣ΨX,T1,−1ΨY,T1,1

〉)
.

(6.44)
We see that the final state is described by a combination of three products of group
functions. For each of the three terms in this expression, the matrix element with the
initial state contains two products of singlet and triplet states, both for X and for Y,
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so here again the only nonvanishing contribution is −KXY,KK ′LL ′ . The same holds
for the reverse process of triplet–triplet annihilation. So:

〈
ΨX,S1ΨY,S0

∣∣∣Ĥel

∣∣∣ΨXY,1(T T )

〉
= −nXnY

×
〈
ΨX,S1ΨY,S0

∣∣∣[r(x1, y1)]−1 P̂XY
∣∣∣ΨX,T1,1ΨY,T1,−1 − ΨX,T1,0ΨY,T1,0 + ΨX,T1,−1ΨY,T1,1

〉
.

(6.45)
Even choosing a simplified description based on four MOs, here we need more than
two Slater determinants. The singlet excitation localized on X is

Â ΨX,S1ΨY,S0 = 2−1/2
(|abcc| − |abcc|) . (6.46)

If the local triplets are approximated by single excitations a → b and c → d, the
expression (6.44) becomes

ΨXY,1(T T ) = 12−1/2 (
2|abcd| − |abcd| − |abcd| − |abcd| − |abcd| + 2|abcd|) .

(6.47)
Then,

〈
ΨX,S1ΨY,S0

∣∣∣Ĥel

∣∣∣ΨXY,1(T T )

〉
=

(
3

2

)1/2 (〈
bb

∣∣r−1
12

∣∣ cd〉 − 〈
aa

∣∣r−1
12

∣∣ cd〉)
. (6.48)

Other interactions, in particular through charge transfer states, may contribute sig-
nificantly to coupling the initial and final state [12]. All of them are short-range
interactions, as in the case of triplet sensitization.

6.4.3 Singlet-to-Singlet Excitation Energy Transfer: Dexter
and Förster Mechanisms

In the case of excitation transfer within the singlet manifold, both integrals in
Eq. (6.40) are generally nonvanishing. For the same reasons already seen in the pre-
vious section when discussing the triplet sensitization and singlet fission processes,
the KXY,KK ′LL ′ integral decreases much faster than JXY,KK ′LL ′ when X and Y get far
apart. When the exchange interaction is important, i.e., in the short range (a few Å),
we say that the “Dexter mechanism” is acting [13]. A different regime, the “Förster
mechanism,” is reached when the closest atoms of X and Y are ≈10 Å apart or more
[14]. Then, the exchange interaction is negligible and

〈
K , L

∣∣∣Ĥel

∣∣∣ K ′, L ′
〉

 JXY,KK ′LL ′ =

∫
ρX,KK ′(r1) ρY,LL ′(r2)

r12
dr31 dr32 . (6.49)

Here r1 and r2 are the positions of the electrons with space and spin coordinates x1
and y1, respectively, r12 = |r2 − r1| and
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ρX,KK ′(r1) = nX
∑

s1...snX

∫
ΨX,K (x1 . . . xnX) ΨX,K ′(x1 . . . xnX) dr

3
2 . . . dr3nX (6.50)

is the transition density matrix for the K and K ′ states. The sum over the spins
s1 . . . snX makes it a spinless density matrix. ρY,LL ′(r2) is defined similarly. We see

that the
〈
K , L

∣∣∣Ĥel

∣∣∣ K ′, L ′
〉
coupling is formally the Coulomb interaction between

two charge distributions, so it is potentially long range.
If the distance betweenXandY is larger than the dimensions of the chromophores,

we can apply a multipole expansion to evaluate the (6.49) integral (see for instance
Bottcher, [15]). We call R the vector connecting two points within X and Y, respec-
tively (the “centers” of the multipole expansion). Now we redefine r1 and r2 as the
positions of the electrons of X and Y within two Cartesian frames with the origins
in the respective centers.1 Then, r12 must be rewritten as |R + r2 − r1| and

1

r12
= 1

R
+ (r1 − r2) · R

R3 + 3[(r1 − r2) · R]2
2R5

− (r1 − r2)2

2R3 + O(R−4) =

= 1

R
+ (r1 − r2) · R

R3 +

+
3

[
(r1 · R)2 + (r2 · R)2 − 2(r1 · R)(r2 · R)

]
−

[
r21 + r22 − 2r1 · r2)

]
R2

2R5
+ O(R−4) .

(6.51)
When inserted in Eq. (6.49), the term 1/R and all the terms of this development that
only depend on r1 or r2 do not contribute to the integral because of the orthogonality
relationships (6.28). So, neglecting the terms proportional to R−4 or higher powers,
we remain with

〈
K , L

∣∣∣Ĥel

∣∣∣ K ′, L ′
〉





∫

ρX,KK ′(r1) ρY,LL ′(r2)
r1 · r2 R2 − 3(r1 · R)(r2 · R)

R5
dr31 dr32 =

= µX,KK ′ · µY,LL ′ R2 − 3(µX,KK ′ · R)(µY,LL ′ · R)

R5
=

= μX,KK ′μY,LL ′

R3
(sin α sin β cosφ − 2 cosα cosβ) .

(6.52)

Here µX,KK ′ and µY,LL ′ are the K → K ′ and L → L ′ transition dipoles of X and Y,
respectively. Moreover, as shown in Fig. 6.5, α is the angle between µX,KK ′ and R,
β is the angle between µY,LL ′ and R, and φ is the dihedral angle between the planes
(µX,KK ′ ,R) and (µY,LL ′ ,R). Equation (6.52) shows how the coupling that causes
the energy transfer depends on the mutual orientation of the two chromophores. For

1The centers ofX andY can be placed rather arbitrarily, the only requirement being that the distances
r1 and r2 are much smaller than R. For instance, acceptable choices are the center of mass of each
chromophore or the analogous center of charge for the total charge distributions of the orbitals
involved in the K → K ′ and L → L ′ transitions.
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Y,LL

X,KK

R

Fig. 6.5 Dipole–dipole coupling

instance, if both dipoles are perpendicular to R and to each other, the interaction
vanishes. Moreover, the interaction is proportional to R−3.

Once again, we can simplify the wavefunctions to single excitations involving a
minimum number of MOs, as shown in scheme Fig. 6.6. The initial state is the same
as in singlet fission, see Eq. (6.46). The final state is

Â ΨX,S0ΨY,S1 = 2−1/2
(|aacd| − |aacd|) (6.53)

and therefore
〈
ΨX,S1ΨY,S0

∣∣∣Ĥel

∣∣∣ΨX,S0ΨY,S1

〉
= 2

〈
ac

∣∣r−1
12

∣∣ bd〉 − 〈
ac

∣∣r−1
12

∣∣ db〉 . (6.54)

At large distance, where the exchange integral
〈
ac

∣∣r−1
12

∣∣ db〉 is negligible, we
just have the Coulomb interaction between the two transition densities ρX(r1) =√
2 a(r1)b(r1) and ρY(r2) = √

2 c(r2)d(r2).
The energetics of excitation transfer is represented in Fig. 6.2.We shall callΔE00,X

and ΔE00,Y the transition energies of X and Y between the lowest vibrational levels
(v = 0) of S0 and S1. If X has undergone thermal equilibration (see Sect. 4.5) before
the excitation transfer event, its energy must be close to ΔE00,X. After the excitation
transfer, X can be found in any vibrational level of S0 with energy Evib,X ≤ ΔEXY =
ΔE00,X − ΔE00,Y. The energy loss of X is then ΔE00,X − Evib,X, and it may be
equated to a virtual transition energy hν ∈ [ΔE00,Y,ΔE00,X] that potentially belongs
to the fluorescence spectrum of X (no implication is here meant about the actual
probability of emitting a photon of frequency ν). At the same time, Y acquires the
same amount of energy hν that may be thought as a transition energy belonging to
the absorption spectrum of Y, again without reference to the absorption probability.
This results in a vibrational energy excess Evib,Y = ΔEXY − Evib,X = hν − ΔE00,Y.

A closer relationshipwith the emission spectrumofX and the absorption spectrum
of Y can be worked out within the dipolar approximation, as in Eq. (6.52). The
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Fig. 6.6 Molecular orbital scheme for singlet-to-singlet energy transfer. The encircled minus signs
indicate the out-of-phase combination of Slater determinants corresponding to the spin function
(αβ − βα)/
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2

excitation transfer rate constant KET = 1/τET can be evaluated by Fermi’s Golden
Rule, as in Eq. (3.128). The matrix element between the initial and final vibronic
states is

〈
K , 0, L , 0

∣∣∣Ĥel

∣∣∣ K ′, u, L ′, v
〉




 μX,K ,0,K ′,u μY,L ,0,L ′,v

R3
(sin α sin β cosφ − 2 cosα cosβ) .

(6.55)

Here K , 0, L , 0 are the electronic and vibrational indexes of the initial state (we
assume both chromophores to be in the ground vibrational state), and K ′, u, L ′, v
are the indexes of the final state. In particular, the vibrational energy of state u is
Evib,X = ΔE00,X − hν, while that of state v is Evib,Y = hν − ΔE00,Y. We are also
assuming that the direction of the transition dipoles is substantially independent
on the molecular geometry, so that the angular factor is not affected by integration
over the vibrational coordinates. This assumption is in agreement with the Franck–
Condon approximation (see Sect. 4.1), which is usually valid for allowed transitions:
note that of course the dipole–dipole interaction is not so important when one or both
transitions are forbidden. The density of states of Eq. (3.128) is here the product of the
densities of vibrational levels for the final states of X and Y, ρX(Evib,X) ρY(Evib,Y).
To apply Fermi’s Golden Rule we must average over the possible final states, i.e.,
over the virtual photon energy hν:

KET = 4π2(sin α sin β cosφ − 2 cosα cosβ)2

R6

×
∫ ΔE00,X

ΔE00,Y

μ2
X,K ,0,K ′,u ρX(Evib,X) μ2

Y,L ,0,L ′,v ρY(Evib,Y) dν .
(6.56)

We remind that the final vibrational levels u and v and their energies Evib,X and
Evib,Y are all functions of ν. In the integrand, the factor μ2

X,K ,0,K ′,u ρX(Evib,X) is
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proportional to the emission probability of X per unit energy (or frequency ν), while
μ2
Y,L ,0,L ′,v ρY(Evib,Y) is proportional to the absorption probability of Y, so the rate

constant depends on the overlap of the fluorescence spectrum of X with the absorp-
tion spectrum of Y. Moreover, KET decreases with the distance between the two
chromophores, proportionally to R−6. Although this is quite a steep decrease, the
Förster mechanism acts at longer distances than the Dexter mechanism: in fact, as
already seen, the importance of the latter depends on the overlap of theX andYwave-
functions and therefore its decrease with R is roughly exponential (see Appendix
E). The angular factor determines the dependence of KET on the mutual orientation
of the transition dipoles of X and Y. In solution or in any other isotropic medium,
it is appropriate to average over the α, β, and φ angles: then, the angular factor is
replaced by the constant 2/3.

The excitation transfer based on these principles is often called FRET, acronym
of “Förster resonance energy transfer” or “fluorescence resonance energy transfer,”
because it switches off the fluorescence of X and switches on the fluorescence of Y.
Note that FRET should not be confused with the emission of a photon by the excited
X, followed by absorption of the same photon by a Y molecule. The latter process
can occur without any direct interaction of X and Y and is effective to much larger
distances. Considering that the irradiance of the light emitted by a pointwise source
decreases as the inverse square distance, the probability that a given Y molecule
captures the emitted photon is proportional to R−2. However, FRET is much more
effective in the intermediate range (tens ofÅ).More on FRET theory and applications
can be found in Govorov et al. [16] and in Medintz and Hildebrandt [17].

6.4.4 Exciton Coupling

In many circumstances the chromophores occupy fixed positions and orientations
in space, as in molecular crystals or in metal complexes. The biological evolution
and the research in the field of functional materials have created assemblies of sim-
ilar or identical chromophores that absorb light and transfer the excitation to other
chromophores with specific purposes, such as to concentrate the energy in a reactive
center. This is called the “antenna effect” and operates for instance in photosynthetic
complexes [4]. When the chromophore-to-chromophore interactions are stable in
time and the excited states are close in energy, it is easy to observe typical alterations
in the spectrum with respect to the isolated molecules.

Let us start with the two chromophores model already presented in the previous
section. The adiabatic electronic states can be described as linear combinations of
the group functions products:

|ΨI 〉 =
∑
K ,L

CK ,L |K , L〉 . (6.57)
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However, the ground state is usually well represented by the diabatic state with
K = L = 0, with all other coefficients quite negligible, because its energy separation
from other states is much larger than the couplings (6.39) and (6.40). Even a localized
excitation |K , 0〉 or |0, L〉 with energy well separated from that of other states is a
good approximation of an exact eigenstate.

We shall therefore focus on pairs of states |K , 0〉 and |0, L〉 that are degenerate
or almost so. This is a common situation if the chromophores are identical or differ
by small details, such as their chemical environments: for instance, two nucleic acid
bases in close positions of theDNAchain but with different neighbors. The two local-
ized states |K , 0〉 and |0, L〉, the “excitons,” will then give place to a pair of linear
combinations that represent (possibly partially) delocalized states. The Hamiltonian

matrix elements can be called HKK =
〈
K , 0

∣∣∣Ĥel

∣∣∣ K , 0
〉
, HLL =

〈
L , 0

∣∣∣Ĥel

∣∣∣ L , 0
〉

and HKL = HLK =
〈
K , 0

∣∣∣Ĥel

∣∣∣ L , 0
〉
. The adiabatic energies and states are (see

Appendix D):

E1,2 =
HLL + HKK ±

√
ΔH 2 + 4H 2

K L

2
. (6.58)

(here ΔH = HKK − HLL and the choice of signs is such that E1 ≤ E2) and

|ψ1〉 = cos θ |0, L〉 + sin θ |K , 0〉
|ψ2〉 = − sin θ |0, L〉 + cos θ |K , 0〉 (6.59)

with

tg θ =
ΔH −

√
ΔH 2 + 4H 2

K L

2HKL
. (6.60)

As we see from Table6.3, when the coupling is larger than the ΔH energy differ-
ence the excitation is delocalized, in state Ψ1 as well as in Ψ2. On the contrary, when
the coupling is weak (smaller than ΔH ), the state Ψ1 is more similar to the lower in
energy among |K , 0〉 and |0, L〉, whileΨ2 resembles the higher of the two. Note that,
even if Ψ2 may be initially populated by optical excitation, normally after a short
time the system ends up in Ψ1 because of internal conversion followed by energy
loss to the environment. Therefore, if the excitation is fully or partially localized, it
will mostly belong to the chromophore with the lower excitation energy.

The transition dipole moments between the ground state and the two adiabatic
states are:

µ01 = cos θ µY,0L + sin θ µX,0K

µ02 = − sin θ µY,0L + cos θ µX,0K .
(6.61)

We now recall that the photon absorption rates are proportional to the Einstein B
coefficients, i.e., to the squares of the transition dipole moments (see Sect. 3.5). It is
easy to show that the sum of the excitation rates is the same for the two noninter-
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Table 6.3 Localization of the excitation according to the diabatic states energies and coupling

State
energies

HKL ΔH vs HKL θ 
 |Ψ1〉 
 |Ψ2〉 


HKK > HLL — |HKL | �
|ΔH |

0 |0, L〉 |K , 0〉

HKK 
 HLL > 0 |HKL | �
|ΔH |

−π/4
|0, L〉 − |K , 0〉√

2

|0, L〉 + |K , 0〉√
2

HKK 
 HLL < 0 |HKL | �
|ΔH |

π/4
|0, L〉 + |K , 0〉√

2

|K , 0〉 − |0, L〉√
2

HKK < HLL — |HKL | �
|ΔH |

±π/2 ± |K , 0〉 ∓ |0, L〉

acting subsystems X and Y, as for the two adiabatic states of the whole system with
interaction:

μ2
01 + μ2

02 = μ2
X,0K + μ2

Y,0L . (6.62)

So, the overall transition rate is unaffected by the interaction and by the resulting
delocalization. However, the individual bands do change when X and Y interact.
The resonance frequencies are of course shifted as the transition energies go from
HLL and HKK to E1 and E2. Moreover, the transition dipoles change according to
Eq. (6.61). In our convention (see Appendix D), cos θ is positive and the sign of sin θ

is opposite to that of HKL . So, whether µY,0L and µX,0K add or subtract to yield
µ01 and µ02 depends on the sign of HKL .2 In general the stronger band may belong
either to the lower or to the higher adiabatic state.

A special and important case is that of two (almost) identical chromophores with
Förster interaction, such as biphenyls, binaphthyls, or bilirubins [19]. Their excited
states are then (almost) degenerate,μX,0K 
 μY,0L and cos θ 
 | sin θ | 
 1/

√
2. The

interaction is determined by the dipoles themselves according to Eq. (6.55). If, for
instance, the transition dipoles are both parallel to R, we have

HKL = −2μX,0KμY,0L

R3

 −2μ2

R3
(6.63)

2Some of the readers may be used to think that the sign of interaction or transition matrix elements
does not matter: in fact, it depends on the arbitrary signs of the wavefunctions, whichmust not affect
the physics. Actually, if more than two states are involved, the relationships between the signs of
matrix elements can be important (multiphoton processes are a typical example). Here we have
three states, 00, 0L , and K0, and three matrix elements (the fact that two are vectors is irrelevant):
HKL ,µX,0K , and µY,0L . If we arbitrarily change the sign of the ground state 00, µX,0K and µY,0L
get reversed, and so do µ01 and µ02, with no effect on the spectral properties. If we change the
sign of 0L , the signs of HKL , µY,0L , and sin θ also change, so µ01 is reversed and µ02 remains
unchanged, and again the physics is not affected. Same considerations for the K0 state. A similar
situation with interesting dynamical consequences is described in [18].
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where μ is the geometrical average of μX,0K and μY,0L . Then, μ01 
 √
2μ and

μ02 
 0. This means the lower state is bright and the upper state is dark. A more
frequent situation is that both dipoles are perpendicular to R. This is the case, e.g.,
for π → π∗ transitions in planar π systems superimposed (“stacked”) face-to-face,
such configurations being stabilized by dispersion interactions. Then

HKL = μX,0KμY,0L

R3
cosφ 
 μ2

R3
cosφ . (6.64)

It is easy to show that μ02 ≥ μ01 for any value of φ. The largest difference is found
when μX,0K and μY,0L are parallel or antiparallel, in which case μ02 
 √

2μ and
μ01 
 0. Again, we have a dark and a bright state, but this time the latter has the
higher energy. In such cases, by comparing the absorption band of the two (almost)
identical monomers with that of the dimer one observes an hypsochromic shift, i.e.,
a displacement of the absorption maximum by a frequency Δν 
 μ2/(hR3).

As we have seen in Chap.3, a short coherent pulse of light will excite the system
in a bright state, even if this is not an eigenstate of the molecular Hamiltonian. The
bright state is a linear combination of excited states that carries all the dipole strength
within the frequency bandwidth of the pulse. Consider an assembly of interacting
chromophores Xi with close lying locally excited states |exci 〉. If their transition
dipoles with the ground state are 〈gs |µ| exci 〉 = µi , the bright state is

|B〉 = N
∑
i

ep · µi |exci 〉 (6.65)

where N is the normalization factor and ep is the polarization versor of the exciting
light. As already observed in Sect. 3.9, if all the µi vectors are parallel, the compo-
sition of the bright state does not depend on the light polarization. Any state |D〉,
orthogonal to |B〉 within the subspace spanned by the |exci 〉, is dark:

ep · 〈gs |µ| D〉 =
∑
i

ep · 〈gs |µ| exci 〉 〈exci |D 〉 = 〈B |D 〉 = 0 . (6.66)

Clearly, the bright state |B〉 can be quite delocalized over all or some of the chro-
mophores. After a pulse of appropriate central frequency and bandwidth, the initial
state |B〉 will undergo a time evolution that is determined, at least initially, by the
localized state energies and couplings, and will entail a migration of the excitation
in space, from chromophore to chromophore. However, nonadiabatic transitions and
vibrational energy loss to the environment will bring the system into the lowest
excited eigenstate at intermediate times, and eventually of course to the ground state.
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6.5 Charge or Electron Transfer

Charge transfer (CT) and electron transfer are two synonyms for redox reactions.
Those involving excited states are extremely important both in photosynthesis and
in solar energy conversion technologies. A general CT process can be summarized
as

Xn+ + Ym+ −→ X(n+1)+ + Y(m−1)+ (6.67)

where X acts as electron donor and Y as acceptor. Here n and m can be any integer,
usually larger or equal to -1; i.e., X and Y may be anions, cations, or neutral species.
Of course, two of the reactants or products have at least one unpaired electron,
and often all of the species involved are open shells, for instance transition metal
complexes. We shall consider three kinds of processes: the thermal redox reactions
for which the basic theory was established by Marcus, the photochemical reactions
initiated by a localized excitation, and those following a charge transfer excitation
(see Sect. 2.6). The two last processes will be qualified as “photoinitiated” CT and
“optical” CT, respectively [20].

In this section we shall also consider the thermal reactions, not only for the sake of
comparison with the photochemical CT, but also because their mechanism in many
cases involves a sudden change in the electronic configuration and therefore requires
a treatment of nonadiabatic dynamics to be correctly described. The orbital schemes
for the thermal and the photoinitiated CT are shown in Fig. 6.7, where the reactant
X is thought of as a closed shell neutral species and Y+ as a radical cation (this
particular choice of charges, n = 0 and m = 1 for the reactants, does not limit the
generality of the discussion that follows). In the optical CT the charge separation is
achieved, at least to a good extent, during the excitation process. Then, during the
structural rearrangements that may follow the excitation, no change of the electronic
configuration is required to complete the redox reaction. For the thermal process, the
initial state indicated in Fig. 6.7 is

Â ΨX,S0ΨY,D0 = | . . . aac| . (6.68)

Here we are assuming the orbitals to be orthonormal (and therefore not perfectly
localized) as in Sect. 6.4.1. The dots stand for all other doubly occupied orbitals not
directly involved in the electron transfer. D0 indicates the ground-state doublet of
the X+ and Y+ radical cations. The final state is

Â ΨX,D0ΨY,S0 = | . . . acc| . (6.69)

The interaction matrix element is then
〈
ΨX,S0ΨY,D0

∣∣∣Ĥel

∣∣∣ΨX,D0ΨY,S0

〉
= −hac −

∑
i

(
2

〈
ai

∣∣r−1
12

∣∣ ci 〉 − 〈
ai

∣∣r−1
12

∣∣ ic〉) .

(6.70)
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Fig. 6.7 Molecular orbital scheme for electron transfer. Upper panel, thermal ground-state process.
Lower panel, photoinitiated process. The encircledminus sign indicates the out of phase combination
of Slater determinants corresponding to the spin function (αβ − βα)/

√
2

The sum runs over all the doubly occupied orbitals of both reactants and products. All
the contributions contain the products of two orbitals localized in the two different
subsystems (a and c in the monoelectronic and in the Coulomb integrals, a and i or
c and i in the exchange one). The interaction is therefore short range.

For the photoinitiated process the initial state is

Â ΨX,SnΨY,D0 = 2−1/2
(| . . . abc| − | . . . abc|) (6.71)

and the final one is the same as before. Then
〈
ΨX,SnΨY,D0

∣∣∣Ĥel

∣∣∣ΨX,D0ΨY,S0

〉
=

= −2−1/2

[
hbc + 〈

ab
∣∣r−1

12

∣∣ ca〉 + ∑
i

(
2

〈
bi

∣∣r−1
12

∣∣ ci 〉 − 〈
bi

∣∣r−1
12

∣∣ ic〉)
]

.
(6.72)
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Again, all the contributions contain products of orbitals belonging to X and Y, so
the interaction is short range. This means that in both cases, when X and Y are not
close to each other or connected by conducting bridges, the coupling between the
two diabatic states is very small.

In all the electron transfer processes occurring in condensed phase the static
effect of the environment is of paramount importance, because the different charge
distributions of ground-state reactants, excited and transition states, and products,
entail different interactions with the environment. Marcus’ theory of thermal CT
reactions highlights such effects [21]. For each of the two centers X and Y we focus
on a coordinate that affects its interaction with the environment, say RX and RY,
respectively. It is particularly easy to identify such coordinates for metal complexes,
as the breathing coordinates of the first ligand or solvent shells. For instance, in a
complex with only one kind of ligands, often all the ligands are placed at the same
distance, RX or RY, from the metal center. If, instead, the distances of the ligands are
different, we can take as RX (or RY) an average distance. Normally, as the charge
of the metal increases, the equilibrium distance of the ligands decreases. So, if Xn+
is the donor and Ym+ the acceptor, the electron transfer will cause a decrease of the
equilibrium value of RX and an increase of that of RY. The model represented in
Fig. 6.8 is constructed according to the above considerations. The potential energy
surfaces of two diabatic states,ΨX,S0ΨY,D0 andΨX,D0ΨY,S0 , are built as sums ofMorse
functions of RX and RY. To the diabatic PES of the products a constant ΔEr = −12
kcal/mol is added. The distance between X and Y is assumed to be constant, so
the interaction

〈
ΨX,S0ΨY,D0

∣∣∣Ĥel

∣∣∣ΨX,D0ΨY,S0

〉
has a fixed value of 2 kcal/mol. The

products are more stable than the reactants by 12 kcal/mol. The adiabatic potential
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Fig. 6.8 Ideal trajectories in two solvent or ligand coordinates for electron transfer. Left panel:
ground-state PES and thermal pathway (blue line). Right panel: excited PES and photochemical
pathways (blue lines). The dots indicate minima in the ground-state PES and the corresponding
Franck–Condon points. The dashed line shows the crossing seam between diabatic surfaces. The
green contour levels are spaced by 1 kcal/mol, the red ones by 10 kcal/mol. Some of the latter are
marked with the relative energy in kcal/mol
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Tv

E∗

| Er |

X∗+Y

X++Y

X++Y

X+Y+

X+Y+

increasing RX, decreasing RY

Fig. 6.9 Electron transfer processes seen along the combined RX, RY coordinate

energy surfaces are obtained by diagonalizing the 2×2 Hamiltonian matrix in the
diabatic basis. In the plots of the two adiabatic PES, a dashed curve indicates the
crossing seam between the diabatic ones (there is no crossing of the adiabatic PESs,
because the interaction matrix element is nowhere zero). In the plot, the minimum
below the dashed curve represents the adiabatic ground state of the reactants, X+Y+,
while the minimum above the seam represents the products, X++Y. The excited
state has just the opposite character with respect to the ground state. Along the
crossing seam the energy gap between the two adiabatic PES is minimum and equal

to 2
〈
ΨX,S0ΨY,D0

∣∣∣Ĥel

∣∣∣ΨX,D0ΨY,S0

〉
. The charge switch that occurs near the transition

state would go from very smooth for larger values of the interaction to quite sudden
for an almost vanishing interaction.

The thermal reaction has a transition state that corresponds to the minimum along
the crossing seam: in Fig. 6.8 the reaction pathway is drawn as a blue curve. Marcus’
evaluation of the activation energy was based on a simplified representation of the
PES, where the diabatic potentials are harmonic with the same force constant for
both coordinates and both surfaces and the interaction between them is neglected
for this purpose. Then the crossing seam is a straight line in the RX, RY plane. The
transition state also lies on a straight pathway joining the reactants and products
minima. Along such pathway the potential energy curves look as in Fig. 6.9, where
the thermal mechanism is shown as the green pathway. With a little algebra one finds
that the activation energy is
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ΔE∗ = (ΔEr + λ)2

4λ
. (6.73)

Here ΔEr is the reaction energy, i.e., the energy difference between products and
reactants. The λ parameter is the “reorganization energy,” i.e., the surplus of energy
the products X++Y would have if the ligands or solvent molecules did not readapt
to the new charge distribution. In the model it is computed as the energy of X++Y
at the equilibrium values of RX and RY for X+Y+, or vice versa. We shall call ΔX

and ΔY the differences in the equilibrium values of RX and RY between reactants
and products. Then

λ = K

2

(
Δ2

X + Δ2
Y

)
(6.74)

where K is the unified force constant of both coordinates. We see that the vertical
excitation energy of X+Y+ to the charge transfer state X++Y is Tv = λ + ΔEr

(remember that ΔEr < 0 in Figs. 6.8 and 6.9). Vice versa, the excitation energy of
X++Y to the state X+Y+ is λ − ΔEr , so one can obtain the reorganization energy
if both charge transfer bands can be identified in the spectra. The activation energy
can also be written

ΔE∗ = T 2
v

4(Tv − ΔEr )
. (6.75)

It should be noted that, with a proper statistical treatment of all the coordinates
(or states) of the chemical environment of the redox pair (ligands, solvent, etc.),
all the energies that appear in Eqs. (6.73)–(6.75) would be replaced by free ener-
gies, as discussed in Sect. 4.4. In conclusion, the thermal reaction rate will therefore
contain an Arrhenius factor exp(−ΔE∗/KBT ) that can be related to the reaction
energy and to a spectral quantity. However, once the transition state is reached,
the X+Y+ state must be converted adiabatically to X+ + Y; i.e., a transition must
occur between the two diabatic states. Marcus evaluated the transition probabil-
ity through the Landau–Zener rule, the key parameter being the matrix element〈
ΨX,S0ΨY,D0

∣∣∣Ĥel

∣∣∣ ΨX,D0ΨY,S0

〉
. When this interaction is very small, the probability

that an electron jumps from X to Y is low and most molecules will keep going uphill
on the initial diabatic PES, until they turn and go back to the reactants minimum.
On the contrary, when the interaction is strong, the probability of staying on the
ground-state adiabatic PES is high and a pure transition state theory treatment is
adequate.

The optical mechanism corresponds to the blue arrows in Fig. 6.8, right panel, and
to the red pathway in Fig. 6.9. In this case, the system is directly excited to the charge
transfer excited state, i.e., to the other diabatic state. A steep slope, corresponding
to the rearrangement of the chemical environment, brings the system to the crossing
seam and beyond. Now a weak interaction makes probable to continue on the same
diabatic PES and to reach the products minimum, so the quantum yield will be high.
However, if the interaction between X and Y is really small, also the charge transfer
band in the absorption spectrum will be weak.
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Light absorption can also populate a local excited state of X, Sn , higher in energy
than the charge transfer one or close to it. This is the beginning of the photoinitiated
mechanism (blue pathway in Fig. 6.9). The next step is internal conversion from Sn
to the charge transfer state, driven by the coupling

〈
ΨX,SnΨY,D0

∣∣∣Ĥel

∣∣∣ΨX,D0ΨY,S0

〉
,

Eq. (6.72). Again this coupling can be very small if X and Y are too far apart, so this
transition may suffer the competition of other quenching mechanisms of X. Once on
the X++Y PES, the dynamics is similar to that of the optical mechanism.

6.6 Computational Note: Diabatic States for ET and CT
Studies

As we have seen in this chapter, the diabatic representation based on localization
of charge and excitation is a quite natural choice for the analysis of ET and CT
phenomena. However, when tackling the computational problem, one finds once
again that practically all quantum chemistry methods are devoted to approximate the
energies and properties of adiabatic eigenstates. Yet there are also some important
technical reasons to switch to a (quasi-)diabatic basis in this context.

A first good reason is that the size of many molecular systems under study, espe-
cially the multichromophoric ones, calls for “divide and conquer” strategies [1–4,
20, 22, 23]. So, instead of computing the adiabatic states of the whole system, one
determines the state energies of each molecular unit or subunit and the interactions
between pairs of such units. More often the DFT and TD-DFT methods are applied,
but also wavefunction approaches such as coupled cluster and CASSCF plus per-
turbation. In so doing, the strategy is intrinsically diabatic. For excitation transfer,
the state ηi can be defined as the ground state for all chromophores except for the
i th chromophore, which is excited. For charge transfer, the diabatic states differ
according to where the exchanged electron is localized. The adiabatic eigenstates
are obtained by diagonalizing the Hamiltonian matrix H, the elements of which are

Hi j =
〈
ηi

∣∣∣Ĥel

∣∣∣ η j

〉
. For spatially well-separated chromophores that interact through

Förster’s mechanism, the diabatic states can be assumed to be orthogonal. In other
cases, as in Dexter’s ET and generally in CT, the diabatic basis is nonorthogonal. In
this case, the effective interaction between two centers i and j , taking into account
the overlap Si j = 〈

ηi
∣∣η j

〉
, is

Vi j = 2Hi j − Si j (Hii + Hj j )

2(1 − S2i j )
. (6.76)

Nonorthogonal CI methods can also be applied to the whole system, using the
nonorthogonal local orbitals [24].

All the state energies and interaction matrix elements are subject to important
environmental effects. Obvious static effects are the different stabilization of ground
and excited states of the various chromophores and, even more important, of oxi-
dized/reduced species. Electrostatic interactions between chromophores and between
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charged species are screened by polar or polarizable media, especially in the long-
range, as is the case with Förster coupling. It is often found that the stabilization of
localized excitations or redox states due to the environment, being markedly spe-
cific of their peculiar charge distribution, bonding and structure, makes the diabatic
representation even more suitable to treat ET and CT [1]. As already mentioned,
continuum models of the environment in many cases offer a satisfactory description
of these static effects and can also, more schematically, take into account the dynamic
polarizability of dielectric media. Specific interactions require to represent all parts
of the microenvironment at atomic scale, possibly treating (part of) the environment
by force fields (see Curutchet and Mennucci for a thorough discussion of different
options [4]).

The diabatic representation may also facilitate the integration of the TDSE to
simulate fast nonadiabatic processes. When two or more states are close in energy
and are weakly coupled, as is the case with similar molecules loosely interacting,
the system finds itself very often close to a crossing seam. Every time a wavepacket
or a trajectory goes through the crossing line between two diabatic PESs, since the
electronic coupling is weak, the nonadiabatic couplings g12 and t12 present narrow
and tall peaks, as in theNaCl avoided crossing of Sect. 5.1. For a trajectory, thismeans
the nonadiabatic coupling changes in time very suddenly, making the numerical
integration of the TDSE quite inaccurate unless very small time steps are used.
Even if the dynamics is treated in the adiabatic representation, an auxiliary “local
diabatization” can avoid this drawback [25]. In principle, the nonlocal nature of
quantumwavepackets should prevent the occurrence of such sudden events.However,
the evaluation of couplingmatrix elements between static or traveling basis functions
in MCTDH methods suffers of similar drawbacks. Modeling the dependence of the
electronic structure on the internal coordinates by effective Hamiltonian in diabatic
representations is a good solution also in this case [26–28].

Several ways to define (quasi)-diabatic representations have been proposed. Most
of them consist in an orthogonal transformation (“rotation”) of the subset of adiabatic
states {. . . ψk . . .} that are energetically accessible during the process under study, to
produce the diabatic basis:

{. . . ηi . . .} = {. . . ψk . . .}T . (6.77)

The adiabatic to diabatic rotation T can be determined by various ad hoc local-
ization criteria. A general diabatization method consists in constructing (normally
nonorthogonal) diabatic templates and in rotating the adiabatic basis to achieve max-
imum overlap with the templates [29, 30]. If localization is the goal, the templates
can be defined as products of X and Y wavefunctions, representing the ground and
excited states of the two subsystems. Once the rotation T has been computed, it can
be applied to the diagonal matrix of the adiabatic energies E to get the Hamiltonian
in the diabatic basis:

H(dia) = T† E T . (6.78)

The diagonal and off-diagonal elements of H are the diabatic state energies and the
interactions between localized excitations, respectively.
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The use of localized molecular orbitals (LMO) is necessary to define group func-
tions and greatly facilitates any diabatization procedure, such as the one just sketched.
Nonorthogonal LMOs can be produced by applying quantum chemistry methods
(DFT, CASSCF, etc.) separately to single molecules or fragments that compose the
whole system, as in the divide and conquer strategies seen above. Orthogonal LMOs
can be produced by many localization procedures that are usually applied separately
to different subsets of MOs. For instance, the many-electron wavefunction can be
kept invariant by applying orthogonal localizing transformations to the occupied and
virtual MOs obtained by HF or DFT calculations, and the same can be done with
CASSCF by further separating the active MOs. Some localization algorithms were
proposed with the aim of improving the efficiency of the configuration interaction
method, as for instance the Foster–Boys procedure [31] that minimizes the second
moments of the electron densities |φi |2 associated with the LMOs, or the Edmiston–
Ruedenberg one [32], that maximize the self-repulsion. These two criteria make no
explicit reference to the molecular structure. Other methods tend instead to place the
LMOs in particular regions, i.e., near bonds, atoms, or groups of atoms [33–39]. Of
particular interest in this context are the procedures put forward by de Silva et al.
[40] and by Zhang and Li [38], which allow to choose the groups of atoms in which
the user wants to bring the LMOs.

As a last remark, we feel that energy transfer and charge transfer, among other
subjects of this textbook, are one of the fields in which the broadest variety of theoret-
ical models and computational methods is being proposed and tested in the last years,
probably because of the challenging problems posed by the attempt of understanding
fundamental biological processes and of contributing to technological advancements.

Problems

6.1 In a study of the quenching of excited anthraquinone (C14H8O2) by electron
transfer to amines in gas phase [41], the bimolecular rate constant with pyridine
(C5H5N) was found to be 2.3 · 10−19 s−1 molc−1 m3, at T = 433 K. Compute the
cross section and compare it with the geometrical cross section, obtained by consid-
ering two rigid spheres with volumes equal to the molecular volumes. To evaluate the
volumes, use the density of solid anthraquinone (1.308 g/cm3) and of liquid pyridine
(0.982 g/cm3).

6.2 Compute the average time between two gas-phase collisions and between two
encounters in solution, for a givenmolecule. Make the following “standard” assump-
tions: hard spheres with radii = 4 Å and molecular masses = 100 a.m.u., T = 300
K, P = 1 atm, concentration of the other solute 1 mol/L, viscosity of the solvent
10−3 kg·m−1s−1.



210 6 Charge and Energy Transfer Processes

Table 6.4 Wavelengths (nm) of S1 and T1 0–0 bands

compound S1 T1

A Anthracene 378 681

B Perylene 435 795

C Tetracene 477 954

D Pentacene 536 1440

E Rubrene 519 1033

6.3 The wavelengths of the 0–0 bands of the S0 − S1 and S0 − T1 transitions are
listed inTable6.4 for five polynuclear aromatic hydrocarbons.Which donor–acceptor
pairs satisfy the energy requisites to exhibit FRET? Same question for triplet sensi-
tization. Which compounds are likely to undergo singlet fission? And which triplet–
triplet annihilation?

6.4 Prove Eq. (6.62). Canwewrite a similar relationship for the oscillator strengths?

6.5 Consider an array on n identical chromophores put at the n vertices of a regular
polygon, and the n corresponding diabatic states ηi of energy Eex in which the
excitation is localized in chromophore i (excitons). Assume their transition dipoles
are all parallel and the coupling between the excitons is of Förster type. What is the
form of the bright state? We shall apply the approximation that the only important
couplings are those between first neighbors, with strength V . How good is this
approximation, depending on n? Is the bright state an eigenstate within the subspace
spanned by the excitons? What is its energy?

6.6 Three identical chromophores A, B, and C are placed at the vertices of an equi-
lateral triangle. Their absorption transition dipoles have a component μr which is

Fig. 6.10 Transition dipole
moments for three
chromophores symmetrically
placed at the vertices of an
equilateral triangle

CB

A

CB

A

R

RR
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radial with respect to the center of the triangle and a component μp perpendicular
to the ABC plane, as shown in Fig. 6.10. Note that this could be a model for transi-
tions centered in the equatorial ligands of a trigonal pyramid complex. The distance
between the chromophores is R. Show that the excitation transfer dynamics among
the four ligands, such as can be observed after a radiation pulse, has a period

T = 8π�R3

12μ2
p + 21μ2

r

.

Calculate the period with R = 15 bohr, μp = 0.5 a.u., and μr = 1 a.u.

6.7 Same as the previous problem, but with a square arrangement. Four identical
chromophores A, B,C , and D are placed at the vertices of a square. Their absorption
transition dipoles have a component μr which is radial with respect to the center of
the square and a component μp perpendicular to the ABCD plane. The side of the
square has length R. Show that the excitation transfer dynamics among the four
ligands, such as can be observed after a radiation pulse, has a period

T = 4π�R3(
4 + √

2
)

μ2
p + 2

(
3 + √

2
)

μ2
r

.

Calculate the period with R = 15 bohr, μp = 0.5 a.u., and μr = 1 a.u.

6.8 Prove Marcus’ relationship, Eq. (6.73).
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Appendix A
Physical Constants and Conversion Factors

The values of physical constants and conversion factors listed in this appendix are
taken from NIST (https://physics.nist.gov/cuu/Constants/). According to the uncer-
tainties quoted by NIST, all the digits here provided are correct.

Physical Constants, International System of Units (SI)

Name Symbol Numerical value Units

Planck constant h 6.626070 · 10−34 J·s
Planck constant/2π � 1.054572 · 10−34 J·s
Bohr radius a0 0.529177 · 10−10 m
Electron mass me 9.109384 · 10−31 kg
Neutron mass mn 1.674927 · 10−27 kg
Proton mass m p 1.672622 · 10−27 kg
Atomic mass constant mu 1.660539 · 10−27 kg
Elementary charge e 1.602177 · 10−19 C
Electric constant ε0 8.854188 · 10−12 F m−1

Speed of light in vacuo c 2.99792458 · 108 m s−1

Avogadro constant NA 6.022141 · 1023
Boltzmann constant K B 1.38065 · 10−23 J K−1

Molar gas constant R 8.31446 J mol−1 K−1

Energy Conversion Factors

From / to kJ/mol kcal/mol hartree eV cm−1

kJ/mol 1 0.239006 3.80880 · 10−4 0.0103643 83.5935
kcal/mol 4.184000 1 1.59360 · 10−3 0.0433641 349.755
Hartree 2625.50 627.509 1 27.21139 2.194746 · 105
eV 96.4853 23.0605 0.03674932 1 8065.544
cm−1 0.0119627 2.859144 · 10−3 4.556335 · 10−6 1.239842 · 10−4 1
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Atomic Units

Physical constant or observable a.u. value SI unit Conversion factor from
a.u. to SI SI to a.u.

Electron mass, me 1
Elementary charge, e 1
Planck constant, h 2π
Planck constant/2π (�) 1
Proton mass, m p 1836.153
Atomic mass constant 1822.888
Bohr radius, a0 1
Electric constant, ε0 (4π)−1

Hartree energy, Eh 1
Rydberg energy, Ry 1/2
Speed of light 137.035999
Mass kg 9.109384 · 10−31 1.097769 · 1030
Length Å 0.529177 1.889726
Time fs 0.02418884 41.341373
Charge C 1.602177 · 10−19 6.241509 · 1018
Dipole C·m 8.47835 · 10−30 1.179475 · 1029

The atomic unit of energy is also called “hartree” and the unit of length, “bohr.”
The Ångström (1Å = 10−10 m) is one of the most used units for length in molecular
science.

The debye is a CGS unit, also much used in molecular science, equal to 3.33564 ·
10−30 C·m. The conversion factor from a.u. to debye is 2.541746, and from debye
to a.u. is 0.3934303.

The angular frequencyω in atomic units is numerically equal to the corresponding
energy �ω.



Appendix B
Dirac’s Notation and Operator Algebra

In the notation introduced by Dirac [1, 2], a quantum mechanical state is represented
as a ket, for instance |ψ〉. The set of all the physically meaningful states of a system is
a vector space S, because of the linearity of the time-dependent Schrödinger equation.
In the vector space S we indicate the scalar product of |ψi 〉 and

∣
∣ψ j

〉

as
〈

ψi

∣
∣ψ j

〉

. We
assume the states to be explicitly represented by wavefunctionsψ that depend on the
space (xi , yi and zi ) and spin (si ) coordinates of N particles, collected in the vector

x ≡ {x1, y1, z1, s1 . . . xi , yi , zi , si . . . xn, yn, zn, sn} ≡ {r1, s1 . . . ri , si . . . rn, sn}
(B.1)

The “bracket” notation is a useful shorthand for the analytical definition of the scalar
product between two wavefunctions, which is

〈

ψi

∣
∣ψ j

〉 =
∑

s1...sn

∫ +∞

−∞
ψ∗

i (x)ψ j (x) dx1 dy1 dz1 . . . dxn dyn dzn (B.2)

Here we sum over all the integer or half-integer values allowed for the z component
of the spin of each particle, and we integrate over the three Cartesian coordinates,
again for each particle.We see that this definition is consistent with the basic property
of scalar products:

〈

ψ j |ψi
〉 = 〈

ψi

∣
∣ψ j

〉∗
(B.3)

Now suppose
∣
∣ψ j

〉

is a linear combination of other states:

∣
∣ψ j

〉 =
∑

k

ck |φk〉 (B.4)

Then
〈

ψi

∣
∣ψ j

〉 =
∑

k

ck 〈ψi |φk 〉 (B.5)
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i.e., the scalar product is linear in the second vector. But, if a similar expansion is
done for |ψi 〉, i.e.,

|ψi 〉 =
∑

dk |φk〉 (B.6)

we have
〈

ψi

∣
∣ψ j

〉 =
∑

k

d∗
k

〈

φk

∣
∣ψ j

〉

(B.7)

The complex conjugate coefficients in Eq. (B.7) introduce an apparent lack of sym-
metry between the first and second vector of the scalar product. This asymmetry can
be removed by defining a dual space S′, the elements of which are in biunivocal
relationship with those of S and are indicated by the “bra” symbol 〈ψ |. If |ψi 〉 is the
linear combination (B.6), the corresponding bra is

〈ψi | =
∑

d∗
k 〈φk | (B.8)

Then, the scalar product can be seen as a “simple” product of a bra and a ket and is
linear in the combination coefficients of both of them.

Operators convert a ket into another ket: Ô |ψ〉 = |φ〉. We are interested in linear
operators, i.e., operators that obey the rule:

Ô
∑

k

ck |φk〉 =
∑

k

ck Ô |φk〉 (B.9)

An operator is defined when we know the result of its application to any ket in the
vector space. We shall be mainly concerned with operators that map the vector space

S into itself; i.e., if |ψ〉 ∈ S, then also Ô |ψ〉 ∈ S. The expression
〈

ψi

∣
∣
∣Ô

∣
∣
∣ψ j

〉

=
〈

ψi

∣
∣φ j

〉

is then defined as the product of 〈ψi | times the ket
∣
∣φ j

〉 = Ô
∣
∣ψ j

〉

. The
adjoint of an operator is indicated with a superscript dagger and is defined by

〈

ψi

∣
∣
∣Ô†

∣
∣
∣ψ j

〉

=
〈

ψ j

∣
∣
∣Ô

∣
∣
∣ψi

〉∗ ∀ |ψi 〉 ,
∣
∣ψ j

〉 ∈ S (B.10)

If Ô† = Ô , the operator Ô is said to be Hermitian.
The expression |ψi 〉

〈

ψ j

∣
∣ is a linear operator. In fact, if we apply it to any ket |φ〉,

we get the ket |ψi 〉 times a constant that is linear in |φ〉:
(|ψi 〉

〈

ψ j

∣
∣
) |φ〉 = |ψi 〉

〈

ψ j |φ 〉 (B.11)

If the ket |ψi 〉 is normalized, i.e., 〈ψi |ψi 〉 = 1, we see that P̂i = |ψi 〉 〈ψi | is a
projector, i.e., an Hermitian operator with the idempotency property P̂2 = P̂ . If
{|ψ1〉 . . . |ψn〉} are a set of orthonormal vectors, i.e.,

〈

ψi

∣
∣ψ j

〉 = δi j , then it easy to
verify that
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P̂ =
n
∑

i=1

|ψi 〉 〈ψi | (B.12)

is also a projector.
We say that the vectors {|ψ1〉 . . . |ψn〉} form a basis for space S if any ket |φ〉 ∈ S

can be expressed as a linear combination of the basis elements:

|φ〉 =
n
∑

i=1

ci |ψi 〉 ∀ |φ〉 ∈ S (B.13)

If the |ψi 〉 are orthonormal, the projector

Ê =
n
∑

i=1

|ψi 〉 〈ψi | (B.14)

is the identity operator; i.e., its application leaves unchanged any vector:

Ê |φ〉 = |φ〉 ∀ |φ〉 ∈ S (B.15)

In fact, by applying the expression (B.14), often called “the resolution of identity,”
to the second member of Eq. (B.13) we find

n
∑

i=1

n
∑

j=1

|ψi 〉 c j
〈

ψi

∣
∣ψ j

〉 =
n
∑

i=1

n
∑

j=1

|ψi 〉 c j δi j =
n
∑

i=1

ci |ψi 〉 (B.16)

which shows the original vector is left unchanged. And, if we apply Ê to the first
member we get

Ê |φ〉 =
n
∑

i=1

|ψi 〉 〈ψi |φ 〉 (B.17)

whereby we see that the expansion coefficients are ci = 〈ψi |φ 〉. The resolution of
the identity can be used to express an operator through its representative matrix O:

Ô = Ê Ô Ê =
n
∑

i, j=1

|ψi 〉
〈

ψi

∣
∣
∣Ô

∣
∣
∣ψ j

〉 〈

ψ j

∣
∣ =

n
∑

i, j=1

|ψi 〉 Oi j
〈

ψ j

∣
∣ (B.18)

The eigenvectors of Hermitian or unitary operators that map the vector space S
into itself constitute a basis and can be chosen to be orthonormal. So, if the |ψi 〉 are
orthonormal eigenvectors of Ô , Eq. (B.18) simplifies to
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Ô =
n
∑

i=1

|ψi 〉 λi 〈ψi | (B.19)

where λi is the eigenvalue associated with the eigenvector |ψi 〉. The last equation
allows us to define functions of operators. Given an ordinary function of complex
variable f (z), if every λi belongs to the domain of f (z), we define

f (Ô) =
n
∑

i=1

|ψi 〉 f (λi ) 〈ψi | (B.20)

Two operators Â and B̂ are said to commute if

[ Â, B̂] ≡ Â B̂ − B̂ Â = 0 (B.21)

The expression in square brackets, an operator, is called the commutator of Â and B̂.
If twoHermitian operators commute, we can find a basis of orthonormal eigenvectors
|ψi 〉 of both operators:

Â |ψi 〉 = λi |ψi 〉
B̂ |ψi 〉 = μi |ψi 〉 (B.22)

To ascertain in which quantum state the system is, we can measure the physical
observable represented by operator Â. Suppose the result of the measure is λi . If
this is a nondegenerate eigenvalue, i.e., one state is associated with it, we know that
the system is in state |ψi 〉. But, if λi is a degenerate eigenvalue, the system can be
in any of the two or more eigenstates associated with it, or in a linear combination
of them. Then, to distinguish among these eigenstates, one must measure another
property of the system, represented by an operator that has a basis of eigenvectors in
common with Â. If we choose B̂, the result of the measure may be a nondegenerate
eigenvalue μi , so the problem of determining the state of the system is solved. Or,
μi can be degenerate, but all the eigenstates associated with it, except |ψi 〉, have
eigenvalues of Â different from λi : then, the state of the system is still univocally
determined. The last possibility is that two or more eigenstates correspond to the
eigenvalues λi and μi , so that the ambiguity persists. In this case we must look for a
third observable that commutes with the first two, and so on. In the end, when every
eigenstate is characterized by a unique set of eigenvalues, we say that a “complete set
of commuting observables” has been identified. Note that we must avoid to include
in the set a function of an operator Â already selected, because its eigenvalues would
have the same degeneracy pattern as those of Â.

For more complete and rigorous treatments, see, for instance, Dirac [1], Dennery
and Krzywicki [2], or Merzbacher [3].
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Appendix C
The Dirac δ Function and the Normalization of
Continuum States

The Dirac δ function is a generalized function or distribution.We use its properties in
many instances and particularly to treat on the same footing discrete and continuous
spectral decompositions. The δ function is defined with reference to the succession

dn(x) =
√

n

π
e−nx2

with n = 1, 2 . . . (C.1)

By definition
∫ +∞

−∞
δ(x) g(x) dx = g(0) (C.2)

for all good functions g(x). Good functions are functions of a real variable for which
all derivatives exist and such that

lim
x→±∞ xm dng

dxn
= 0 ∀m, n ≥ 0 (C.3)

The proper value of δ(x) is zero for x �= 0, and no proper value exists for x = 0.
The main properties of the δ function are:

∫ +∞

−∞
δ(x) dx = 1 (C.4)

∫ +∞

−∞
δ(x) f (x) dx = f (0) (C.5)

provided f (x) is continuous in the neighborhood of x = 0.

∫ +∞

−∞
eiωx dx = 2πδ(ω) (C.6)
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∫ b

a
δ(y(x)) f (x) dx =

∑

i

f (xi )

∣
∣
∣
∣

dy

dx

∣
∣
∣
∣

−1

x=xi

(C.7)

where the index i runs over all the zeros xi of the function y(x) with xi ∈ (a, b).
The zeros must be nondegenerate, i.e., (dy/dx)x=xi �= 0. If a zero falls at one of the
integration limits (xi = a or xi = b), we can apply Eq. (C.7) by counting only half
of the contribution relative to xi .

∫ x

−∞
δ(x ′) dx ′ = H(x) (C.8)

where H is the Heaviside function

H(x) = 0 ∀x < 0
H(x) = 1 ∀x > 0

(C.9)

For a more rigorous treatment of distributions and of the δ function, see textbooks
of mathematics for physicists such as Dennery and Krzywicki [1] or Arfken, Weber
and Harris [2].

In the previous section we introduced Dirac’s notation for the elements of a vector
space and in particular for the quantum states. The eigenstates of an operator Ô are
associated with the respective eigenvalues, although in case of degeneracy the same
eigenvalue is associated with more than one eigenstate. The degeneracy ambiguity
is solved by identifying a complete set of commuting observables. Another com-
plication is that, in many cases, we have to deal with sets of eigenvalues that are
continuous, i.e., can be any real number in a certain interval. For instance, the eigen-
values of the Hamiltonian for a molecular system are in part made of discrete energy
levels (those corresponding to bound states) and in part by two kinds of continua: the
dissociative continuum, made of the vibrational states above the dissociation thresh-
old reached when two or more groups of atoms get far apart from each other, and the
electronic continuum, corresponding to ionization.

When the eigenvalue spectrum is continuous, we see that we cannot number the
eigenstates as in Eq. (B.19). Leaving aside for simplicity the degenerate case, we can
identify each eigenstate by its eigenvalue:

Ô |ψλ〉 = λ |ψλ〉 (C.10)

Now, if we want to generalize the resolution of identity, Eq. (B.14), we can write

Ê =
n
∑

i=1

|ψi 〉 〈ψi | +
∫ λmax

λmin

|ψλ〉 〈ψλ| dλ (C.11)

Here the index i runs over the states of the discrete spectrum, if any, while the inte-
gration range covers the whole continuum spectrum (usually λmax = ∞). If |ψi 〉 and



Appendix C: The Dirac δ Function and the Normalization of Continuum States 225

|ψλ〉 are eigenstates of a normal operator, they are or can be chosen to be orthogonal,
so Ê

∣
∣ψ j

〉 = ∣
∣ψ j

〉

as already seen in Appendix B. For a continuum state we have

Ê |ψλ′ 〉 =
∫ λmax

λmin

|ψλ〉 〈ψλ |ψλ′ 〉 dλ (C.12)

Since eigenvectors with different eigenvalues are orthogonal, for λ �= λ′ we have no
contribution to the integral. If we want this expression to yield |ψλ′ 〉, we must require

〈ψλ |ψλ′ 〉 = δ(λ − λ′) (C.13)

We shall then say that |ψλ〉 is “normalized to the δ of λ.”
A simple example is provided by the dissociative states of diatomic molecules.

The potential has a minimum at the equilibrium distance and then raises gradually
(but not always monotonically) to an asymptote for large R. For energies larger than
the asymptotic energy U∞ the spectrum is continuous. In the asymptotic region,
starting from a sufficiently large distance Rasy , the wavefunction of energy E is
χE (R) = N (E) cos(k R − φ), where k = √

2μ(E − U∞)/�,μ is the reduced mass,
and φ is a phase that depends on E and on the shape of the potential for R < Rasy .
Wewant to determine the normalization factor N (E) so that 〈χE |χE ′ 〉 = δ(E − E ′).
The orthogonality of the χE and χE ′ eigenfunctions for E ′ �= E is guaranteed. For
E ′ → E we have an improper integral where the contribution of the finite interval
[0, Rasy] is irrelevant in comparison with the semi-infinite interval [Rasy,∞]. So, for
the purpose of determining the normalization factor we can replace the wavefunction
at R < Rasy with the asymptotic form and require:

N (E) N (E ′)
∫ ∞

0
cos(k R − φ) cos(k ′ R − φ′) dR = δ(E − E ′) (C.14)

where k ′ and φ′ are the wavenumber and phase relative to E ′. We see that the orthog-
onality of wavefunctions with k ′ �= k is still guaranteed, so we can concentrate on
the case k ′ → k and φ′ → φ. After converting the cosine functions to exponentials
the first member becomes

N (E) N (E ′)
4

[

e−i(φ+φ′)
∫ ∞

0
ei(k+k ′)RdR + ei(φ+φ′)

∫ ∞

0
e−i(k+k ′)RdR+

+e−i(φ−φ′)
∫ ∞

0
ei(k−k ′)RdR + ei(φ−φ′)

∫ ∞

0
e−i(k−k ′)RdR

]

=

= N (E) N (E ′)
4

∫ +∞

−∞
e−i(k−k ′)RdR = π N 2(E)

2
δ(k − k ′)

(C.15)
We get a normalization to the δ of the wavenumber k if we put N 2(E) = 2/π , but
in order to normalize to the δ of energy we need to convert δ(k − k ′) to δ(E − E ′):
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δ(k − k ′) = δ

[√
2μ

�

(√

E − U∞ − √

E ′ − U∞
)]

=
√

2�2(E − U∞)

μ
δ(E − E ′)

(C.16)
The last passage makes use of Eq. (C.7). So, the normalization factor we need is:

N (E) =
[

2μ

π2�2(E − U∞)

]1/4

(C.17)
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Appendix D
Two-State Eigenvector Problem

Although this problem is trivial, it is convenient to write out its solution that is
referred to more than once in this book, in order to use the same formulation in
all cases. By doing so, we shall remove some arbitrariness which is intrinsic of
eigenvector problems (signs or phase factors and ordering of eigenvectors), by setting
our conventional choices.

In a basis of two orthonormal states |1〉 and |2〉 the Hamiltonian is represented by

the matrix elements Hi j =
〈

i
∣
∣
∣Ĥ

∣
∣
∣ j
〉

. If H12 = H21 ∈ R, the eigenvector coefficients

can also be chosen real:

|ψ1〉 = cos θ |1〉 + sin θ |2〉
|ψ2〉 = − sin θ |1〉 + cos θ |2〉 (D.1)

where θ ∈ R is the only parameter to be determined, thanks to the orthonormality
constraints that are automatically satisfied by Eq.D.1. The solutions of the secular
equation are the eigenvalues E− and E+:

E± =
H11 + H22 ±

√

ΔH 2 + 4H 2
12

2
(D.2)

whereΔH = H22 − H11. If we associate the lowest eigenvalue, E−, to the first eigen-
state, |ψ1〉, we get {

H11 cos θ + H12 sin θ = E− cos θ

H21 cos θ + H22 sin θ = E− sin θ
(D.3)

Provided H12 �= 0, these equations are solved by putting

tg θ =
ΔH −

√

ΔH 2 + 4H 2
12

2H12
(D.4)

which can also be written as
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tg(2θ) = −2H12

ΔH
(D.5)

The coefficients are obtained with the usual formulas

cos θ = 1
√

1 + tg2 θ
and sin θ = tg θ

√

1 + tg2 θ
(D.6)

Here we have arbitrarily chosen cos θ > 0, so the sign of sin θ is the same as that
of tg θ . As we see from Eq. (D.4), tg θ is opposite in sign to H12. If H12 = 0, |ψ1〉
coincides with either |1〉 or |2〉, whichever is the lower in energy. So, if ΔH >

0, | cos θ | = 1 and sin θ = 0 and vice versa if ΔH < 0. If the Hamiltonian matrix
depends on one or more parameters, as in the case of the electronic Hamiltonian that
is a function of the nuclear coordinates, one can use the arbitrariness in the sign of
the eigenvectors to ensure continuity as H12 → 0.

If H12 is complex, say H12 = |H12| eiγ and H21 = |H12| e−iγ with γ ∈ R, the
eigenvector coefficients are in general complex too. It is, however, possible to reduce
the problem to the real case, by multiplying the basis states by suitable phase factors.
For instance, by replacing |2〉 with e−iγ |2〉, the Hamiltonian matrix is real again,
with |H12| instead of H12 and H21. So, the solutions are

E± = H11 + H22 ±
√

ΔH 2 + 4 |H12|2
2

(D.7)

and
|ψ1〉 = cos θ |1〉 + sin θ e−iγ |2〉
|ψ2〉 = − sin θ |1〉 + cos θ e−iγ |2〉 (D.8)

with

tg θ = ΔH −
√

ΔH 2 + 4 |H12|2
2|H12| . (D.9)



Appendix E
Orbital Localization and Orthogonality

Localized molecular orbitals (MOs) are a key concept to discuss phenomena such
as charge and excitation transfer (see Chap.6) and also a useful tool to improve
computational efficiency. Theoretical developments, however, may require that all
MOs are orthogonal, and this may limit the extent of localization. In this appendix
we work out a very simple example that clarifies this aspect.

We consider two equivalent 1s orbitals of two hydrogen atoms, labeled χa and
χb:

χα(r) = π−1/2 e−|r−Rα | . (E.1)

Here we use atomic units andRα is the position of the nucleus, with α = a or b. The
overlap integral of the two orbitals is

Sab = 〈χa |χb 〉 = e−R

(

1 + R + 1

3
R2

)

(E.2)
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Fig. E.1 Two equivalent and orthogonal combinations of hydrogen 1s orbitals. The two functions
are plotted along the internuclear axis, chosen to be the z-axis. The nuclei are 2 bohr apart from
each other
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Fig. E.2 Symmetric orthogonalization of two hydrogen 1s orbitals a and b. Overlap Sab, ε coeffi-
cient (see Eq. (E.4)), Coulomb and exchange integrals for the orthonormal orbitals, as functions of
the internuclear distance R. Dotted lines: 1/R function that approximates the Coulomb integral at
large distances, and an exponential function fitting the exchange integral for R > 2.5 bohr

Here R is the internuclear distance |Ra − Rb|.
We shall define two equivalent and orthonormal orbitals

ϕa = χa − ε χb
(

1 − 2εSab + ε2
)1/2

ϕb = χb − ε χa
(

1 − 2εSab + ε2
)1/2 .

(E.3)

The orthogonality of ϕa and ϕb requires

ε =
1 ±

√

1 − S2
ab

Sab
. (E.4)

We choose the solution with the minus sign to minimize the “queue” of the ϕa orbital
on the b nucleus and vice versa. The orbitals we obtain this way are shown in Fig. E.1.
This is the simplest example of Löwdin’s symmetric orthogonalization [1], a method
to transform a set of nonorthogonal (but normalized) basis functions {. . . χi . . .} into
an orthonormal one {. . . ϕi . . .}:

{. . . ϕi . . .} = {. . . χi . . .} S−1/2 (E.5)

where S is the overlap matrix (Si j = 〈

χi

∣
∣χ j

〉

). It can be shown [2] that this method
yields a set of functions that are as close as possible to the original ones in the sense
of least squares; i.e.,

∑

i 〈ϕi − χi |ϕi − χi 〉 is minimized. So, starting from atomic
orbitals, one gets the set of orthogonal functions that are most localized.
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The interactions between electrons placed in the ϕa and ϕb orbitals are represented
by the Coulomb and exchange integrals

〈

ϕaϕb

∣
∣r−1

12

∣
∣ϕaϕb

〉

and
〈

ϕaϕb

∣
∣r−1

12

∣
∣ϕbϕa

〉

. (E.6)

Figure E.2 shows the dependence of Sab, ε and the two-electron integrals on the
internuclear distance. As the internuclear distance increases the overlaps between
the χα functions and between the charge distributions ρα = −χ2

α tend to zero. So,
the queue of each ϕα orbital on the other nucleus, that is proportional to ε, tends
to vanish and ϕα → χα . Therefore, when R is large enough the Coulomb integral
approaches the interaction of two nonoverlapping spherical charge distributions, i.e.,
tends to 1/R as shown in Fig. E.2 (note that this interaction is perfectly balanced
by the nucleus–electron attractions plus the nucleus–nucleus repulsion). At the same
time the exchange integral decreases much faster, because the integrand contains
two factors ϕa(ri )ϕb(ri ), with i = 1, 2, that are everywhere small when the two
orbitals are not overlapping. The dependence of the exchange integral on R beyond an
intermediate distance (say 2.5 bohr) can be approximated by an exponential function,
as shown in Fig. E.2.
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Appendix F
The Harmonic Oscillator

The harmonic oscillator is one of the most prominent paradigms in physics, but is
also a system with some important peculiarities, in particular at dynamical level [1,
2, 3, 4, 5], as first noted by Galileo. Here we shall review, without deriving them,
some of the basic properties of the quantum harmonic oscillator. More complete
treatments can be found in almost any textbook on quantum mechanics, for instance
Merzbacher [6], Chaps. 5 and 10.

The harmonic oscillator Hamiltonian is

Ĥ = 1

2m
p̂2

x + mω2

2
(x − xe)

2 (F.1)

where p̂x = −i�d/dx . We replace x and p̂x by the dimensionless coordinates q and
p̂:

q =
√

mω

�
(x − xe) and p̂ = 1√

�mω
p̂x = −i

d

dq
. (F.2)

Then Ĥ takes a more symmetric quadratic form:

Ĥ = �ω

2

(

p̂2 + q2
)

. (F.3)

The eigenvalues of Ĥ are

En = �ω

(

n + 1

2

)

for n = 0, 1, 2... (F.4)

and the corresponding eigenfunctions are

χn(q) = Nn Hn(q) e−q2/2 = Nn Hn

(√

mω

�
(x − xe)

)

e− mω
2�

(x−xe)
2

(F.5)
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Here the Hn are the Hermite orthogonal polynomials that can be derived from Ro-
driguez’ formula

Hn(q) = (−1)n eq2 dn

dqn
e−q2

(F.6)

resulting in
H0(q) = 1
H1(q) = 2q
H2(q) = 4q2 − 2
H3(q) = 8q3 − 12q
H4(q) = 16q4 − 48q2 + 12
...

(F.7)

The normalization factor is

Nn = 1√
2nn!

(mω

π�

)1/4
. (F.8)

The eigenfunction χn has n nodes and is an even or odd function of q or x − xe, the
parity being that of the quantum number n. The χn obey a simple recursion formula
that can be expressed as a property of the Hermite polynomials:

Hn+1(q) = 2q Hn(q) − 2nHn−1(q) . (F.9)

Alternatively, one can define the ladder operators

â = q + i p̂√
2

and â† = q − i p̂√
2

(F.10)

with the following properties:

â χn(q) = √
n χn−1(q) (F.11)

â† χn(q) = √
n + 1 χn+1(q) . (F.12)

From Eq. (F.10) one gets

q = â + â†

√
2

and p̂ = â − â†

√
2i

. (F.13)

These relationships are quite useful to compute matrix elements of q, p̂, x , p̂x , as
well as their powers and products. For instance

〈χn |x | χn′ 〉 = xeδn,n′ + 〈χn |x − xe| χn′ 〉 = xeδn,n′ +
√

�

mω
〈χn |q| χn′ 〉 (F.14)
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and

〈χn |q| χn′ 〉 = 1√
2

〈

χn

∣
∣â + â†

∣
∣χn′

〉 =
√

n + 1

2
δn+1,n′ +

√

n

2
δn−1,n′ . (F.15)
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Appendix G
Animations

This appendix contains the captions for the animations that illustrate some time-
dependent properties discussed in Chaps. 3, 4 and 5.

• Animation 3.1
This animation shows the change in time of the function

f (ω, t) =
[
sin(ω t/2)

ω

]2

which is discussed in Sect. 3.5. During the animation the frequency scale changes
twice, to adapt to the shrinking width of the function. The maximum at ω = 0 is
kept equal to 1; i.e., we actually plot f (ω, t) multiplied by the factor 4/t2.
The purpose is to show how the spectral resolution, achieved by exciting with a
continuous wave pulse of light, improves with the length of the pulse.

• Animation 4.1
In this animation we show the dynamics of a wavepacket which is created by
electronic excitation by a radiation pulse.
One coordinate is considered, and both the ground and the excited state have
harmonic potential energy curves (see Fig. 4.1), namely:

Ug(R) = 1

2
Kg(R − Rg)

2

and

Ue(R) = 1

2
Ke(R − Re)

2

where Rg = 4 bohr, Re = 5.5 bohr, Kg = 0.075 a.u., Ke = 0.0144 a.u. The re-
duced mass is 30000 a.u.
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The radiation pulse is Gaussian, with the electric field given by:

E(t) = Emax e−t2/4τ 2
sin(ω t)

In this simulation, τ = 10 fs. The transition dipole is considered constant and
equal to 1 a.u. The electric field amplitude Emax = 0.001 is sufficiently small as
to be in the perturbative regime, but the simulation is numerically exact and does
not make use of perturbation theory.
The excited wavepacket is represented as its squared module, |Θe(R)|2.

• Animation 4.2
The same as in animation 4.1, but with a longer pulse, τ = 60 fs.

• Animation 4.3
The same as in animation 4.1, but with a still longer pulse, τ = 250 fs.

• Animation 4.4
In this animation we show the dynamics of a wavepacket which is created by
electronic excitation by a radiation pulse, just as in the previous ones, but the two
potential energy curves are Morse functions (see Fig. 4.1). Namely:

Ug(R) = Dg
(

1 − e−αg(R−Rg)
)2

and
Ue(R) = De

(

1 − e−αe(R−Re)
)2

where Rg = 4 bohr, Re = 5.5 bohr, Dg = 0.15 a.u., De = 0.08 a.u., αg = 0.5 a.u.,
and αe = 0.3 a.u. The reduced mass is 30000 a.u.
The radiation pulse is Gaussian, with the electric field given by:

E(t) = Emax e−t2/4τ 2
sin(ω t)

In this simulation, τ = 10 fs. The transition dipole is considered constant and
equal to 1 a.u. The electric field amplitude Emax = 0.001 is sufficiently small as
to be in the perturbative regime, but the simulation is numerically exact and does
not make use of perturbation theory.
The excited wavepacket is represented as its squared module, |Θe(R)|2.

• Animation 4.5
The same as in animation 4.4, but with a longer pulse, τ = 60 fs.

• Animation 4.6
The same as in animation 4.4, but with a still longer pulse, τ = 250 fs.

• Animation 5.1
This animation shows a wavepacket going through a conical intersection. The
potential energy surfaces are depicted in Fig. 5.6. We simulated the dynamics
in two coordinates, QS and Q A, and the conical intersection point is at QS = 3

https://doi.org/10.1007/978-3-319-89972-5_4
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Appendix G: Animations 239

and Q A = 0 bohr. Although the numerical calculations are done in the diabatic
representation, in practice the wavepacket moves on the lower adiabatic surface
only.
The adiabatic wavepacket Θ1 is shown as contour plots of the probability density
|Θ1(QS, Q A, t)|2. The purpose is to show the effect of the geometric phase, as
discussed in Sect. 5.4.3.
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Solutions

Problems of Chap. 1

1.1 If λ−1 = 1500 cm−1 = 1.5 · 105 m−1, E = hc/λ = 2.9797 · 10−20 J. For a
mole, and using kJ instead of J, E = 2.9797 · 10−20 · NA/1000 = 17.94 kJ/mol.
More simply, use the conversion factor from cm−1 to kJ/mol, 0.0119627 (see Ap-
pendix A).
A wavelength of 500 nm corresponds to λ−1 = 109/500 m−1 = 107/500 cm−1 =
20000 cm−1 = 20000 · 0.0119627 kJ/mol = 239.25 kJ/mol.

1.2 The He–Ne laser delivers 10−3 W on a surface of π · 10−6 m2, so the irradiance
is 10−3/(π · 10−6) = 318 W/m2.
The power of the tungsten lamp emitted in the visible spectrum is 2 W. At a distance
of 2 m it is spread on a spherical surface of 4π · 22 = 50.3 m2, so the irradiance is
2/50.3 = 0.0398 W/m2.

1.3 With ε = 1000mol−1 L cm−1, a thin layer of thickness l m,with a concentration
of 1 mol/L, absorbs a fraction ln(10) · 1000 · 100 · l = 2.3 · 105l of the impinging
light. If the irradiance is 100 W/m2, a layer of area 1 m2 absorbs 2.3 · 107l W. Since
at λ = 500 nm one photon has the energy of 239.25 kJ/mol (see Problem 1.1), the
layer would absorb 2.3 · 107l/239250 = 96.2 l mol of photons per second. In the
volume of the layer, l m3, there are 1000 l mol, so each molecule absorbs in the
average 96.2 l/(1000 l) = 0.0962 photons per second, i.e., a photon every 10.4 s.

1.4 If, to excite CCl3CF3, we need λ > 220 nm, the photon energy is hν >

107/220 = 45450 cm−1. The C-Cl dissociation energy is 330 kJ/mol = 27600 cm−1

(see the conversion factor in Appendix A). Then, the photon energy is well above
the bond dissociation energy and the limiting factor for the photodissociation is the
absorption spectrum.

1.5 The lifetime of T1 of benzophenone is determined by the rates of ISC and
phosphorescence: τT1 = (1/0.06 + 1/0.007)−1 = 0.0063 s. The rate of ISC starting
from S1 is so much higher than the rate of any other process involving this state
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that it coincides with its lifetime. Since the triplet quantum yield of benzophenone is
practically 1, its phosphorescence quantum yield is the emission rate τ−1

P times the
triplet lifetime: ΦP = τT1/τP = 0.0063/0.007 = 0.90.
For naphthalene we have similarly: τT1 = 2.4 · 10−6 s = 2.4 μs and τS1 = (1/2 +
1 + 1/2)−1 = 0.5 μs. The triplet quantum yield is (1/2)/((1/2 + 1 + 1/2) = 0.25,
so ΦP = 0.25 τT1/τP = 0.0017. The fluorescence quantum yield is τS1/τF = 0.5.

1.6 In the experiment of Fig. 1.5, at 150 s we have practically the asymptotic con-
centrations. If we increase the thermal rate constants to K ′

A→B = 1.8 · K A→B and
K ′

B→A = 1.5 · K B→A, the asymptote is approached even faster, so a fortiori at 150 s
we have [B]

[A] � [B]∞
[A]∞ = JA→B

K ′
B→A

+ K ′
A→B

K ′
B→A

The last equality stems from Eq. (1.75). Now, with the old rate constants we had
[B]∞/[A]∞ = 3.44 (data read from Fig. 1.5). At thermal equilibrium, [B]/[A] =
K A→B/K B→A = 0.111 (data taken again from Fig. 1.5), so JA→B/K B→A = 3.44 −
0.11 = 3.33.With the new rate constants, K ′

A→B/K ′
B→A = 0.111 · 1.8/1.5 = 0.133

and JA→B/K ′
B→A = 3.33/1.5 = 2.22.Then, [B]∞/[A]∞ = 2.22 + 0.13 = 2.35and

the fraction of B is 0.70.

Problems of Chap. 2

2.1 In the momentum representation we have Ĥ(p) = p2/2m − i�Fd/dp. The
stationary states ψE (p) are found by solving the time-independent Schrödinger
equation

dψE

dp
+ i

�F

(
p2

2m
− E

)

ψE = 0

which gives

ψE (p) = 1√
2π�F

exp

[
i

�F

(

Ep − p3

6m

)]

with a normalization factor such that 〈ψE |ψE ′ 〉 = δ(E − E ′). According to (2.31)
we have

Ψ (p, t) =
∫ +∞

−∞
〈ψE |Ψ (0) 〉 e−iEt/�ψEdE

=
(
2α

π

)1/4 e−ip3/6�Fm

2π�F

∫ +∞

−∞
e−αx2

eix
3/6�Fm

∫ +∞

−∞
ei(p−Ft−x)E/�FdEdx .

According to (C.6) the integral in dE is proportional to a Dirac δ (in particular it
corresponds to 2π�Fδ(p − Ft − x)), so we finally obtain

Ψ (p, t) =
(
2α

π

)1/4

exp

[

i
(p − Ft)3 − p3

6�Fm
− α(p − Ft)2

]

.

https://doi.org/10.1007/978-3-319-89972-5_1
https://doi.org/10.1007/978-3-319-89972-5_1
https://doi.org/10.1007/978-3-319-89972-5_1
https://doi.org/10.1007/978-3-319-89972-5_1
https://doi.org/10.1007/978-3-319-89972-5_2
https://doi.org/10.1007/978-3-319-89972-5_2


Solutions 243

2.2 For a single Morse oscillator, the number of levels with energy ≤ Ev is just
v + 1. Therefore

N (Ev) = v + 1 = 2D

�ω

(

1 − √

1 − Ev/D
)

+ 1

2

and the density of states ρ(E) is obtained by differentiating N (E) with respect to E :
ρ(E) = (�ω

√
1 − E/D)−1. The classical density of states (i.e., without taking into

account the quantization of energy) for two noninteracting Morse oscillators ρcl
2 (E)

can be obtained from the convolution of two ρ(E)

ρcl
2 (E) =

∫ E

0
ρ(E − x)ρ(x)dx = 2D

�2ω2
arcsin

(
E

2D − E

)

for E < D.

2.3 We have

S1
K I SC−−−−⇀↽−−−−

KinvI SC

T1
[T1]
[S1] = K I SC

KinvI SC
.

At microcanonical equilibrium, the population ratio [T1]/[S1] is given by the corre-
sponding ratio of the vibrational states densities ρT1(E)/ρS1(E − ΔE) =
(1/0.75)23 = 747, using Eq. (2.127). Then KinvI SC = 4.7 µs−1.

2.4 According to Eqs. (2.86), (2.91), and (2.92) we have

ϕS0 = φ1 ∧ φ1

ϕT1 = (φ1 ∧ φ2 + φ1 ∧ φ2)/
√
2

ϕS1 = (φ1 ∧ φ2 − φ1 ∧ φ2)/
√
2 .

ThenUS0 =
〈

ϕS0

∣
∣
∣Ĥel

∣
∣
∣ϕS0

〉

= 2ε1 + J11,UT1 = ε1 + ε2 + J12 − K12, andUS1 = ε1 +
ε2 + J12 + K12. Therefore UT1 − US0 = ε2 − ε1 + J12 − J11 − K12 (and of course
US1 − UT1 = 2K12). As we assumed J12 < J11, T1 is the ground state when ε1 = ε2.

Problems of Chap. 3

3.1 In order to transfer the whole population to the excited level, we need a π

pulse, i.e., a pulse of duration Δt = �/W . Of course the frequency must be tuned
to the 1 → 2 transition; i.e., it must be 20000 cm−1. The coupling parameter W is
|μ12 · E00|. To be sure that the populations of the nearby states do not exceed 10−4,
we consider the maxima of the final state probability according to the Rabi formula
(3.31):

Pmax = W 2

�2Δω2 + W 2

https://doi.org/10.1007/978-3-319-89972-5_2
https://doi.org/10.1007/978-3-319-89972-5_2
https://doi.org/10.1007/978-3-319-89972-5_2
https://doi.org/10.1007/978-3-319-89972-5_2
https://doi.org/10.1007/978-3-319-89972-5_3
https://doi.org/10.1007/978-3-319-89972-5_3
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For small values of Pmax , W 2 � �
2Δω2, so to keep Pmax < 10−4 we simply

need |W | < 10−2
�|Δω|. Since |Δω| = 100 cm−1, in atomic units we have W <

4.5 · 10−6, so Δtmin = 220000 a.u. = 5.3 ps.

3.2 With constant V and Δε �= 0, Eq. (3.35) yields

c2(t) = − V ∗

Δε

(

eiΔε t/� − 1
)

and

|c2(t)|2 = 2|V |2
Δε2

[

1 − cos

(
Δε t

2�

)]

= 4|V |2
Δε2

sin2
(

Δε t

2�

)

.

The exact Rabi solution, Eq. (3.23), is

|c2(t)|2 = 4|V |2
Δε2 + 4|V |2 sin2

(√

Δε2 + 4|V |2 t

2�

)

.

We see that, with |V | � Δε, the TDPT solution approximates the exact one, with a
slightly larger amplitude and a slightly smaller oscillation frequency:

4|V |2
Δε2

= 4|V |2
Δε2 + 4|V |2

(

1 + 4|V |2
Δε2

)

and

Δε

2�
=

√

Δε2 + 4|V |2
2�

(

1 + 4|V |2
Δε2

)−1/2

�
√

Δε2 + 4|V |2
2�

(

1 − 2|V |2
Δε2

)

.

With Δε = 0, Eq. (3.35) yields

c2(t) = − iV ∗t

�

and

|c2(t)|2 = |V |2t2

�2
.

The exact Rabi solution, Eq. (3.23), in this case is simply

|c2(t)|2 = sin2
( |V | t

�

)

=
[

|V | t

�
− 1

6

( |V | t

�

)3
+ O(t5)

]2

= |V |2t2

�2

[

1 − |V |2t2

3�2
+ O(t4)

]

.

This solution is acceptably accurate if t � �/|V |.
3.3 The Fourier transform of A(t) as given by Eq. (3.89) is

https://doi.org/10.1007/978-3-319-89972-5_3
https://doi.org/10.1007/978-3-319-89972-5_3
https://doi.org/10.1007/978-3-319-89972-5_3
https://doi.org/10.1007/978-3-319-89972-5_3
https://doi.org/10.1007/978-3-319-89972-5_3
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Ã(ω) = (2π)−1/2
∫ +∞

−∞
dt
∫ ∞

Emin

|c(E)|2 eiEt/� e−iωt dE =

= (2π)1/2
∫ ∞

Emin

|c(E)|2 δ(E/� − ω) dE = (2π)1/2 � |c(�ω)|2 = (2π)1/2 S(ω) .

Equation (3.85) is therefore satisfied and, of course the same is true for Eq. (3.86):

S̃(t) = (2π)−1/2
∫ +∞

−∞
� |c(�ω)|2 e−iωt dω =

= (2π)−1/2
∫ +∞

−∞
� |c(E)|2 e−iEt/� dE = (2π)−1/2 A(−t) .

3.4 The autocorrelation function of the bright state is

A(t) =
∫ +∞

−∞
S(ω) eiωt dω =

= cos2 θ

∫ +∞

−∞
δ(ω − E−/�) eiωt dω + sin2 θ

∫ +∞

−∞
δ(ω − E+/�) eiωt dω =

= cos2 θ eiE−t/� + sin2 θ eiE+t/� .

The population of the bright state is then

|A(t)|2 = cos4 θ + sin4 θ + cos2 θ sin2 θ
[

ei(E+−E−)t/� + e−i(E+−E−)t/�

]

=

= cos4 θ + sin4 θ + 2 cos2 θ sin2 θ − 2 cos2 θ sin2 θ

[

1 − cos

(√

(εB − εD)2 + 4|V |2
�

)]

=

= 1 − 4 tg2 θ

(1 + tg2 θ)2
sin2

(
ΩRt

2

)

.

If we put α = (εB − εD)/|2V | and use Eq. (3.94) for tgθ , the amplitude of the oscil-
lation is

4 tg2 θ

(1 + tg2 θ)2
= 4

[

α − √
1 + α2

1 + (α − √
1 + α2)2

]2

=

= 4

[(

α −
√

1 + α2
)−1 + α −

√

1 + α2

]−2

= 1

1 + α2
.

We see that both the oscillation frequency and its amplitude are the expected ones,
in agreement with Eq. (3.98).

3.5 In atomic units, Eq. (3.130) reads

f (νa, νb) � 2

3
ΔEvert

〈

χl0

∣
∣μ2

lk

∣
∣χl0

〉

.

From the truncated development (3.132), the squared electronic transition dipole is

https://doi.org/10.1007/978-3-319-89972-5_3
https://doi.org/10.1007/978-3-319-89972-5_3
https://doi.org/10.1007/978-3-319-89972-5_3
https://doi.org/10.1007/978-3-319-89972-5_3
https://doi.org/10.1007/978-3-319-89972-5_3
https://doi.org/10.1007/978-3-319-89972-5_3
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μ2
lk(Q) � μ2

lk(0) + 2μlk(0) ·
∑

r

(
∂μlk

∂ Qr

)

Q=0
Qr +

∑

r,s

(
∂μlk

∂ Qr

)

Q=0
·
(

∂μlk

∂ Qs

)

Q=0
Qr Qs .

We remember that
χl0 =

∏

t

χ
(t)
0 (Qt )

where χ
(t)
0 is the vt = 0 eigenfunction of the harmonic oscillator for the normal mode

Qt in the initial electronic state l. When we insert the above expression of μ2
lk(Q) in

the matrix element
〈

χl0

∣
∣μ2

lk

∣
∣χl0

〉

we obtain three contributions. The first is

〈

χl0

∣
∣μ2

lk(0)
∣
∣χl0

〉 = μ2
lk(0) .

This is the dominant contribution for symmetry-allowed transitions, and if we limit
ourselves to this term, we get the equivalent of Eq. (3.131):

f (νa, νb) � 2

3
ΔEvert μ2

lk(0) .

The second contribution vanishes. In fact, it is a sum term, one for each mode,
where the only variable is Qr , and

〈

χ
(r)
0 |Qr | χ(r)

0

〉

= 0 because [χ(r)
0 ]2 is an even

function of Qr , so the integrand is odd.
The third contribution contains off-diagonal terms with products Qr Qs , with

r �= s, which also vanish because the integrand is an odd function of both coordinates.
Only the terms with r = s are nonzero. Making use of the ladder operators âr and
â†

r (see AppendixF), their contribution turns out to be

2

3
ΔEvert

∑

r

(
∂μlk

∂ Qr

)2

Q=0

〈

χ
(r)
0

∣
∣Q2

r

∣
∣χ

(r)
0

〉

=

= 1

3
ΔEvert

∑

r

ω−1
r

(
∂μlk

∂ Qr

)2

Q=0

〈

χ
(r)
0

∣
∣(â + â†)2

∣
∣χ

(r)
0

〉

=

= 1

3
ΔEvert

∑

r

ω−1
r

(
∂μlk

∂ Qr

)2

Q=0

.

This is normally the dominant term for symmetry-forbidden transitions.

Problems of Chap. 4

4.1 From Eq. (F.14) we get:
〈χv |x | χv〉 = xe

https://doi.org/10.1007/978-3-319-89972-5_3
https://doi.org/10.1007/978-3-319-89972-5_4
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The momentum matrix element can be expressed in terms of the ladder operators:

〈

χv

∣
∣ p̂x

∣
∣χv

〉 = −i

√

�Mω

2

〈

χv

∣
∣â − â†

∣
∣χv

〉 = 0

Actually there is a more general proof, not based on the properties of the harmonic
oscillator, that the mean value of p̂ is zero for real wavefunctions that vanish at
x → ±∞. In fact:

∫ +∞

−∞
ψ(x)

dψ(x)

dx
dx = [

ψ2(x)
]∞
−∞ −

∫ +∞

−∞
dψ(x)

dx
ψ(x) dx

The integral in the LHS is equal to minus itself, so it must vanish.
We now consider the variances:

Δx2 = 〈

χv

∣
∣(x − xe)

2
∣
∣χv

〉 = �

2Mω

〈

χv

∣
∣(â + â†)2

∣
∣χv

〉 = �(2v + 1)

2Mω

Δp2 = 〈

χv

∣
∣p2

∣
∣χv

〉 = −�Mω

2

〈

χv

∣
∣(â − â†)2

∣
∣χv

〉 = �Mω(2v + 1)

2

The indetermination product is

Δx Δp = �(2v + 1)

2

which takes the minimum value �/2 for v = 0.
The classical amplitude of oscillation is obtained by equating the total energy

with the potential energy:

�ω

(

v + 1

2

)

= 1

2
Mω2Δx2

cl

We get Δxcl =
(

�(2v + 1)

Mω

)1/2

. This result differs from the quantum mechanical

uncertainty Δx by just a factor
√
2, which is quite reasonable since Δxcl is the

maximum elongation whereas Δx is the “root-mean-square” elongation.

4.2 The total energy is made of potential + kinetic energy. With respect to the
minimum of the excited state, ΔEadia , the average potential energy is:

〈U 〉 = 1

2
Mω2

2

〈

χ1,0

∣
∣(R − R2)

2
∣
∣χ1,0

〉

The eigenfunction χ1,0(R) belongs to the initial electronic state 1, so we shall use
the associated ladder operators that allow to write

R = R1 +
√

�

2Mω1
(â + â†)
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Then

〈U 〉 = 1

2
Mω2

2

〈

χ1,0

∣
∣
∣
∣
∣
∣

[

R1 − R2 +
√

�

2Mω1
(â + â†)

]2
∣
∣
∣
∣
∣
∣

χ1,0

〉

When developing the square, the linear terms in â and â† do not contribute, so we
are left with:

〈U 〉 = 1

2
Mω2

2(R1 − R2)
2 + �ω2

2

4ω1

The first term in the RHS is the potential energy of the center of the wavepacket (the
same one would calculate for vertical excitation in classical terms). The second term
is the contribution due to the curvature of the U2 potential: if ω2 = ω1, it would be
just the potential energy of the χ1,0 eigenfunction in the initial state. Finally, we need
the kinetic energy contribution:

〈T 〉 = 1

2M

〈

χ1,0

∣
∣
∣P̂2

R

∣
∣
∣χ1,0

〉

= −�ω1

4

〈

χ1,0

∣
∣(â − â†)2

∣
∣χ1,0

〉 = �ω1

4

which is, of course, the same average kinetic energy as in the initial state. In total,
the vibrational energy is

Evib = 1

2
Mω2

2(R1 − R2)
2 + �ω2

2

4ω1
+ �ω1

4

With respect to the ZPE in the final state:

Evib − ZPE = 1

2
Mω2

2(R1 − R2)
2 + �(ω1 − ω2)

2

4ω1

4.3

d

dt

〈

ψ
∣
∣( p̂i − 〈

p̂i
〉

)2
∣
∣ψ

〉 =
= i

�

〈

ψ

∣
∣
∣

[

Ĥ , ( p̂i − 〈

p̂i
〉

)2
]∣
∣
∣ψ

〉

=

= i

�

〈

ψ
∣
∣( p̂i − 〈

p̂i
〉

)
[

V (x), p̂i
] + [

V (x), p̂i
]

( p̂i − 〈

p̂i
〉

)
∣
∣ψ

〉 =

=
〈

ψ

∣
∣
∣
∣
( p̂i − 〈

p̂i
〉

)

[

V (x),
∂

∂xi

]

+
[

V (x),
∂

∂xi

]

( p̂i − 〈

p̂i
〉

)

∣
∣
∣
∣
ψ

〉

=

= −
〈

ψ

∣
∣
∣
∣
( p̂i − 〈

p̂i
〉

)
∂V

∂xi
+ ∂V

∂xi
( p̂i − 〈

p̂i
〉

)

∣
∣
∣
∣
ψ

〉

=

= −
〈

ψ

∣
∣
∣
∣
( p̂i − 〈

p̂i
〉

)

(
∂V

∂xi
−
〈
∂V

∂xi

〉)

+
(

∂V

∂xi
−
〈
∂V

∂xi

〉)

( p̂i − 〈

p̂i
〉

)

∣
∣
∣
∣
ψ

〉
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The last equality stems from the fact that p̂i − 〈

p̂i
〉

multiplied by a constant averages
to zero.

4.4
d 〈xi 〉
dt

= i

�

〈

ψ

∣
∣
∣

[

T̂ , xi

]∣
∣
∣ψ

〉

= i

2�mi

〈

ψ
∣
∣
[

p̂2
i , xi

]∣
∣ψ

〉 =
= i

2�mi

〈

ψ
∣
∣ p̂i

[

p̂i , xi
] + [

p̂i , xi
]

p̂i

∣
∣ψ

〉 = 〈pi 〉
mi

4.5 The variable Qr can be replaced by
√

�/(2ωr )(âr + â†
r ) and similarly for Qs

and Qt . Then:

〈

vr , vs , vt |Qr Qs Qt | v′
r , v′

s , v′
t

〉 =
=
(

�
3

8ωr ωsωt

)1/2 〈

vr , vs , vt

∣
∣
∣(âr + â†

r )(âs + â†
s )(ât + â†

t )

∣
∣
∣ v′

r , v′
s , v′

t

〉

=

=
(

�
3

8ωr ωsωt

)1/2
〈

vr
∣
∣âr + â†

r

∣
∣ v′

r

〉 〈

vs
∣
∣âs + â†

s

∣
∣ v′

s

〉 〈

vt

∣
∣
∣ât + â†

t

∣
∣
∣ v′

t

〉

=

=
{

�
3[(vr + 1)δvr+1,v′

r
+ vr δvr−1,v′

r
][(vs + 1)δvs+1,v′

s
+ vsδvs−1,v′

s
][(vt + 1)δvt+1,v′

t
+ vt δvt−1,v′

t
]

8ωr ωsωt

}1/2

This result is expressed more compactly in Eq. (4.21).

4.6 There are four ways to distribute 1000 cm−1 in the threemodes with frequencies
200, 300, and 500 cm−1. The numbers of quanta per mode are in the first three
columns of TableG.1. The next three columns show the energies E1, E2, and E3

stored in the modes for each choice of vibrational quantum numbers. Below are
the averages obtained with the same weight (1/4) for each set of quantum numbers:
〈E1〉 = 400 cm−1, 〈E2〉 = 225 cm−1, and 〈E3〉 = 375 cm−1. The distribution is
irregular (the middle frequency has got the lowest energy) because it depends on the
(very few) combinations of three energies multiplied by integer numbers that sum
up to 1000 cm−1.

If every mode is n-fold degenerate, the number of states which can be obtained
by putting vi quanta in that mode is

gi = (n + vi − 1)!
vi !(n − 1)!

(see Sect. 2.5.2). For the set of quantum numbers v1, v2, v3 the total degeneracy is
g1g2g3 (last column of TableG.1). The last line of the table shows the average mode
energies in the degenerate case, obtained using as weights the products g1g2g3,
normalized to their sum. We see that, because we now consider many more states
(930), the average energy decreases regularly from the first to the third mode.

4.7 The simplified Onsager formula, expressed in atomic units, is

ΔG Onsager = − κ − 1

2κ + 1

μ2

R3

https://doi.org/10.1007/978-3-319-89972-5_4
https://doi.org/10.1007/978-3-319-89972-5_2


250 Solutions

Table G.1 Microcanonical distribution in three modes. Energies in cm−1

No degeneration Sixfold degeneracy

v1 v2 v3 E1 E2 E3 g1 g2 g3 g1g2g3

5 0 0 1000 0 0 252 1 1 252

2 2 0 400 600 0 21 21 1 441

1 1 1 200 300 500 6 6 6 216

0 0 2 0 0 1000 1 1 21 21

Average, no deg.
Average, deg.= 6

400
507

225
354

375
139

The molecular volume is the ratio of the molecular mass to the density:

VM = MM

NAρ
cm3 = MM

NAρ
1024 Å3

Then

R3 = 3VM

4π
= 46.8 Å3 = 316 bohr3

With κ = 2.3 (benzene) we get ΔG Onsager = −1.2 kJ/mol for the n → π∗ state and
−6.2 kJ/mol for the π → π∗ state. With κ = 24.5 (ethanol) we get ΔG Onsager =
−2.5 kJ/mol and −12.5 kJ/mol, respectively. So, in benzene the difference in ΔG
between the two states is reduced by 5 kJ/mol: 18 − 6.2 + 1.2 = 13 kJ/mol, while
in ethanol it is reduced by twice as much: 18 − 12.5 + 2.5 = 8.0 kJ/mol. Remember
that all these values are only rough estimates and more accurate calculations may
confirm that the π → π∗ state in polar solvents is almost degenerate or lower that
the n → π∗ one, so explaining the more intense fluorescence obtained in the latter
environment.

4.8 If the quantum number vr in Eq. (4.25) could assume any real value, one might
solve the equation for the unknown vr to obtain a given probability Pvr :

vr = K B T

�ωr
ln

(
1 − e−�ωr /K B T

Pvr

)

Since Pvr is a decreasing function of vr , the result we are looking for is the largest
integer that is smaller than the value computed by this formula. With T = 300 K,
K B T = 208.5 cm−1. With Pvr = 10−2 and a frequency of 100 cm−1, the above
formula yields vr = 7.6, with 400 cm−1 it yields vr = 2.3, and with 1000 cm−1 it
yields vr = 0.96. So, the last vr with a population larger than 10−2 is 7, 2, and 0,
respectively. The number of states significantly populated, according to this standard,
is 8, 3, and 1, respectively.

https://doi.org/10.1007/978-3-319-89972-5_4
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4.9 The two periods are approximately Th = 220 fs and Tm = 270 fs. They corre-
spond to the frequencies ωh = 6.9 · 10−4 a.u. and ωm = 5.6 · 10−4 a.u. The vibra-
tional frequency of the harmonic oscillator is

√
K/M = 6.93 · 10−4 a.u., in good

agreement with the oscillation period.
The vibrational levels of a Morse oscillator obey a simple formula (see Problem

2.2). The basic vibrational frequency is 6.9 · 10−4 a.u., somewhat higher than that
desumed from the oscillation period. However, as discussed in Sect. 4.2, the excited
wavepacket is a superposition of stationary states with the largest coefficients for
vibrational quantum numbers close to 40. According to the above-mentioned for-
mula, the levels around v = 40 are separated by about 5.7 · 10−4 a.u., in much better
agreement with the “measured” period.

Problems of Chap. 5

5.1 From the equipartition theorem Mv2 = K B T , where M is the reduced mass of
the diatomic molecule and v is the velocity on the neutral potential energy curve
(i.e., the velocity at which the ionic/neutral crossing is traversed). We have then
v = 1.93 · 10−4 a.u. Using atomic units |F | = Q−2

x = Δ2, where Δ is the difference
between the ionization potential of Na and the electron affinity of Cl. Taking the
numerical values for H12 and Δ from Sect. 5.1 we obtain Padia = 0.792.

5.2 Let us first evaluate the Landau–Zener probability Padia . In this respect, the only
difference with the previous problem is the kinetic energy in the crossing region,
which in the present case corresponds to Δ. Then, v = √

2Δ/M = 2.10 · 10−3 a.u.
and Padia = 0.979. After the first passage through the crossing the populations of
the ionic and the covalent state are, respectively, P ≡ Padia and 1 − P . After the
second passage the population of the ionic state is made of two contributions: (1 −
P)(1 − P) and P2, coming, respectively, from the covalent and the ionic state. The
probability of the ionic state after the collision is therefore 1 + 2P(P − 1) = 0.959.

5.3 With a real Hamiltonian the wavefunctions can be taken as real. We consider an
orthogonal transformation not dependent on the nuclear coordinates, leading to the
new diabatic basis

∣
∣η′

1

〉 ∣
∣η′

2

〉

∣
∣η′

1

〉 = |η1〉 cos θ + |η2〉 sin θ
∣
∣η′

2

〉 = − |η1〉 sin θ + |η2〉 cos θ .

We have then to determine θ as a function of q and h. The two vectors q and h in
the new basis are

q′ = Ct
2∇H(Qx )C2 − Ct

1∇H(Qx )C1

h′ = 2Ct
1∇H(Qx )C1

where Ct
1 = (cos θ, sin θ) and Ct

2 = (− sin θ, cos θ). We have therefore

q′ = q cos(2θ) − h sin(2θ)

h′ = q sin(2θ) + h cos(2θ) .

https://doi.org/10.1007/978-3-319-89972-5_4
https://doi.org/10.1007/978-3-319-89972-5_5
https://doi.org/10.1007/978-3-319-89972-5_5
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The condition to impose is q′ · h′ = 0. We obtain

q2 cos(2θ) sin(2θ) − h2 cos(2θ) sin(2θ) + q · h(cos2(2θ) − sin2(2θ)) = 0

which gives

tg(4θ) = 2q · h
h2 − q2

where q and h are the norms of q and h, respectively.

5.4 Using Eq. (2.66) and taking into account that g(α)
i i = 0 for real wavefunctions,

we obtain immediately

t (α)
11 = t (α)

22 = −
(

g(α)
12

)2
and t (α)

12 = ∂g(α)
12

∂ Qα

.

For the Landau–Zener model we have, using Eq. (5.29)

t12(Q) = − β3ΔQ

(1 + β2ΔQ2)2
.

Close to a conical intersection, using Eq. (5.42) with q = h we obtain

t12 = xy

(x2 + y2)2
(x̂ − ŷ) .

According to (5.39) U1 has a cusp at the conical intersection. For U ′
1 we have

U ′
1 = U1 − �

2

2

∑

α

t (α)
11

Mα

= U1 + �
2

2

∑

α

(

g(α)
12

)2

Mα

so that U ′
1 is discontinuous (it diverges) at the intersection.

5.5 Equation (5.1) gives the adiabatic states in terms of the diabatic ones, with
tg(2θ) = −2H12/ΔH , according to (D.5). We have then

tg(2θ) = − 2xy

y2 − x2
= − tg(2γ ) .

In the last equation we switched to polar coordinates x = r cos γ and y = r sin γ .
We can therefore choose θ = −γ , obtaining

|ϕ1〉 = |η1〉 cos γ − |η2〉 sin γ

|ϕ2〉 = |η1〉 sin γ + |η2〉 cos γ .

https://doi.org/10.1007/978-3-319-89972-5_2
https://doi.org/10.1007/978-3-319-89972-5_5
https://doi.org/10.1007/978-3-319-89972-5_5
https://doi.org/10.1007/978-3-319-89972-5_5
https://doi.org/10.1007/978-3-319-89972-5_5
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Traveling along a closed path C , γ returns to its initial value γi if C does not contain
the degeneracy point, while it goes from γi to γi ± 2π if C contains the degeneracy
point (see Fig. 5.5). In either case both |ϕ1〉 and |ϕ2〉 retain their sign.
Problems of Chap. 6

6.1 We calculate the cross section from Eq. (6.4):

σbim =
(

πμ

8K B T

)1/2

K =
(

π NAμ

8RT

)1/2

K = 5.8 · 10−22 m2 = 0.058 Å2 .

The reduced mass μ was computed from the molecular masses:

μ = 208.22 · 79.10
208.22 + 79.10

10−3

NA
kg = 0.0573

NA
kg .

The hard sphere cross section can be evaluated from the molecular volumes. For
anthraquinone Vmol = 208.22 · 1024/(NAρ) = 264 Å2. For pyridine Vmol = 79.10 ·
1024/(NAρ) = 133 Å2. The respective radii are then Rmol = (3Vmol/4π)1/3 = 4.0
Å and 3.2 Å, respectively. Then, σ = 160 Å2, about 3000 times the real one. This
means it takes an average of about 3000 collisions with pyridine molecules to quench
an excited anthraquinone molecule.

6.2 In gas phase the overall rate of collisions is given by Eq. (6.2). The number of
collisions a single X molecule undergoes per unit time is computed putting the num-
ber density CX = 1. In the formula we have: μXY = 100 /(2 · 103 NA) = 0.05/NA

kg and CY = NA P/(RT ) = 2.45 · 1025. So the collision rate is 4.35 · 108 s−1 and
the average time between two collisions is its inverse, i.e., 2.3 ns.

In solution the rate for hard sphere encounters is given by Eq. (6.10). The num-
ber density of Y is 1000 NA molec/m3, and the concentration of X is put equal
to 1. The diffusion coefficients, multiplied by Avogadro’s number, are NA D =
Rgas T/(6πηR) = 3.31 · 1014 m2/s. If Rint = RX + RY , the rate of encounters is
6.7 · 109 s−1 and the average time between two encounters is 0.15 ns.

6.3 FRET requires thefluorescence spectrumof the donor, atλ ≥ λ00(S1), to overlap
with the absorption spectrumof the acceptor,λ ≤ λ00(S1). Soλ00(S1)must be shorter
for the donor than for the acceptor. Viable donor–acceptor pairs are: A-B, A-C, A-D,
A-E, B-C, B-D, B-E, C-D, C-E, E-D.

For triplet sensitization the same rule holds for λ00(T1) and the viable pairs happen
to be the same.

For singlet fission we want 2(ET1 − ES0) ≤ ES1 − ES0 , which translates into
2λ00(S1) ≤ λ00(T1). This relationship is obeyed by C and D. Actually C and E are
very close to the limit. Triplet–triplet annihilation requires just the opposite, i.e.,
2(ET1 − ES0) ≥ ES1 − ES0 , so in principle A and B should do it, while low yields
may be obtained for C and E.

https://doi.org/10.1007/978-3-319-89972-5_5
https://doi.org/10.1007/978-3-319-89972-5_6
https://doi.org/10.1007/978-3-319-89972-5_6
https://doi.org/10.1007/978-3-319-89972-5_6
https://doi.org/10.1007/978-3-319-89972-5_6


254 Solutions

6.4

μ2
01 + μ2

02 = ∣
∣cos θ μY,0L + sin θ μX,0K

∣
∣
2 + ∣

∣− sin θ μY,0L + cos θ μX,0K

∣
∣
2 =

= cos2 θμ2
Y,0L + sin2 θμ2

X,0K + 2 sin θ cos θμY,0L · μX,0K +
+ sin2 θμ2

Y,0L + cos2 θμ2
X,0K − 2 sin θ cos θμY,0L · μX,0K =

= μ2
X,0K + μ2

Y,0L .

The oscillator strengths contain energy or frequency factors as in Eqs. (3.59) and
(3.131), so in principle the simplifications that lead to the above rule for the squared
transition dipoles cannot be applied. However, since in Sect. 6.4.4 we are considering
transitions with about the same frequency, both before and after exciton coupling, a
similar relationship approximately holds also for the oscillator strengths.

6.5 Since the transition dipoles are parallel, according to Eq. (6.65) all the coeffi-
cients of the bright state |B〉 are equal. So, if we want it normalized:

|B〉 = n−1/2
n
∑

i=1

|ηi 〉 .

As to the approximation of neglecting the couplingswith other chromophores beyond
first neighbors, with n = 3 it is not an approximation, since there are only first
neighbors. With a square of side L in length, the distance between second neighbors
is the diagonal, which is

√
2L long. The dipole–dipole coupling decreases with R−3,

so the coupling we are neglecting is 2−3/2 V � 0.35 V . In general the distance
between second neighbors is 2L cos(π/n), so for large n the coupling tends to V/8.

The Hamiltonian of the system is:

Ĥ = Eex

n
∑

j=1

∣
∣η j

〉 〈

η j
∣
∣ + V

n−1
∑

j=1

(∣
∣η j

〉 〈

η j+1
∣
∣ + ∣

∣η j+1
〉 〈

η j
∣
∣
) + |ηn〉 V 〈η1| + |η1〉 V 〈ηn | .

It is easy to see that

Ĥ |B〉 = n−1/2 Eex

n
∑

i=1

|ηi 〉 + n−1/2 2V
n
∑

i=1

|ηi 〉 = (Eex + 2V ) |B〉 .

We see that the bright state is an eigenstate with energy Eex + 2V .

6.6 Using Eq. (6.52) we find that the interaction between any two transition dipoles
is:

V = 1

R3

[

μ2
p + μ2

r sin(π/6) sin(5π/6) − 2μ2
r cos(π/6) cos(5π/6)

]

= 4μ2
p + 7μ2

r

4R3 .

https://doi.org/10.1007/978-3-319-89972-5_3
https://doi.org/10.1007/978-3-319-89972-5_3
https://doi.org/10.1007/978-3-319-89972-5_6
https://doi.org/10.1007/978-3-319-89972-5_6
https://doi.org/10.1007/978-3-319-89972-5_6
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The Hamiltonian matrix in the basis of the three localized excitations |A〉, |B〉, and
|C〉 is therefore:

H =
⎛

⎝

El V V
V El V
V V El

⎞

⎠

where El is the transition energy for the single chromophore. The eigenvalues of this
matrix are given by the secular equation:

(El − E)3 + 2V 3 − 3V 2(El − E) = 0 .

There are two eigenvalues, E1 = El − V and E2 = El + 2V . The eigenvalue E1 is
degenerate and corresponds to the eigenstates

|1〉 = 6−1/2 (2 |A〉 − |B〉 − |C〉)

and
∣
∣1′〉 = 2−1/2 (|B〉 − |C〉) .

The eigenvalue E2 corresponds to the eigenstate

|2〉 = 3−1/2 (|A〉 + |B〉 + |C〉)

Any excitation that populates states associated with both eigenvalues generates a
non–stationary state. If C1, C1′ , and C2 are the initial coefficients of the three states,
the excited state will evolve in time as

|ψ(t)〉 = C1 e
−iE1t/� |1〉 + C1′ e−iE1t/�

∣
∣1′〉 + C2 e

−iE2t/� |2〉 =
= e−i(El−V )t/�

(

C1 |1〉 + C1′
∣
∣1′〉 + C2 e

−3iV t/� |2〉) .

We see that, apart from the irrelevant phase factor that is common to all terms, this
expression contains the periodic factor exp(−3iV t/�), with frequency ω = 3V in
a.u., and period

T = 2π

ω
= 8π R3

4μ2
p + 21μ2

r

a.u.

With R = 15 bohr, μp = 0.5 a.u., and μr = 1 a.u., T � 3500 a.u. � 85 fs.

6.7 Using Eq. (6.52) we find that the interaction between the transition dipoles of
two adjacent chromophores is:

V12 = μ2
p + μ2

r sin
2(π/4) + 2μ2

r cos
2(π/4)

R3
= 2μ2

p + 3μ2
r

2R3
.

The coupling between dipoles at opposite vertices is instead:

https://doi.org/10.1007/978-3-319-89972-5_6
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V13 = μ2
p + 2μ2

r

2
√
2R3

.

The Hamiltonian matrix in the basis of the four localized excitations |A〉, |B〉, |C〉,
and |D〉 is therefore:

H =

⎛

⎜
⎜
⎝

El V12 V13 V12

V12 El V12 V13

V13 V12 El V12

V12 V13 V12 El

⎞

⎟
⎟
⎠

where El is the transition energy for the single chromophore. On the basis of sym-
metry, the eigenstates are

|φ1〉 = 1

2
(|A〉 − |B〉 + |C〉 − |D〉)

|φ2〉 = 1

2
(|A〉 + |B〉 − |C〉 − |D〉)

|φ2′ 〉 = 1

2
(|A〉 − |B〉 − |C〉 + |D〉)

|φ1〉 = 1

2
(|A〉 + |B〉 + |C〉 + |D〉) .

It is easy to see that the associated eigenvalues are

E1 = El − 2V12 + V13, E2 = E2′ = El − V13, E3 = El + 2V12 + V13 .

These three levels are not equispaced, so in principle one would not expect a periodic
behavior. However, it is easy to see that the first eigenstate is dark. Calling |gs〉 the
ground state:

〈gs |μ| φ1〉 = μA − μB + μC − μD = 0 .

Then, optical excitation leaves us with three states on two levels:

|ψ(t)〉 = e−iE2t/�
(

C2 |2〉 + C2′
∣
∣2′〉) + C3 e

−iE3t/� |3〉 =
= e−i(El−2V12+V13)t/�

(

C2 |2〉 + C2′
∣
∣2′〉 + C3 e

−2i(V12+V13)t/� |3〉) .

We see that, apart from the irrelevant phase factor that is common to all terms,
this expression contains the periodic factor exp(−2i(V12 + V13)t/�), with frequency
ω = 2(V12 + V13) in a.u., and period

T = 2π

ω
= 4π R3

(4 + √
2)μ2

p + 2(3 + √
2)μ2

r

a.u.

With R = 15 bohr, μp = 0.5 a.u., and μr = 1 a.u., T � 4200 a.u. � 100 fs.
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6.8 The two potentials for reactants and products can be written, respectively, as

Ur (ΔRX,ΔRY) = K

2
(ΔR2

X + ΔR2
Y)

Up(ΔRX,ΔRY) = ΔEr + K

2

[

(ΔRX − ΔX)2 + (ΔRY − ΔY)2)
]

where ΔRX and ΔRY are the displacements of RX and RY from the equilibrium
position of the reactants, while ΔX and ΔY are the displacements needed to go from
reactants to products. We first locate the crossing seam between the two diabatic
surfaces and then minimize the energy to find the transition state. The crossing seam
is given by (ΔRX,ΔRY) that satisfy the constraint Ur = Up:

K

2
(ΔR2

X + ΔR2
Y) = ΔEr + K

2

[

(ΔRX − ΔX)2 + (ΔRY − ΔY)2)
] =⇒

ΔEr + K

2

[

Δ2
X − 2ΔXΔRX + Δ2

Y − 2ΔYΔRY
] = 0 =⇒

ΔRY = Δ−1
Y

(
ΔEr

K
+ Δ2

X + Δ2
Y

2
− ΔXΔRX

)

.

So, in correspondence of the crossing seam, we have

Ur = Up = K

2

[

ΔR2
X + Δ−2

Y

(
ΔEr

K
+ Δ2

X + Δ2
Y

2
− ΔXΔRX

)2
]

.

The minimum of this function of ΔRX is found for

ΔRX = ΔX
ΔEr + K (Δ2

X + Δ2
Y)/2

K (Δ2
X + Δ2

Y)
= ΔX

ΔEr + λ

2λ

(remember that λ = K (Δ2
X + Δ2

Y)/2). Also ΔRY takes a similar form:

ΔRY = ΔY
ΔEr + λ

2λ

and the transition energy is

ΔE∗ = K

2
(Δ2

X + Δ2
Y)

(ΔEr + λ)2

4λ2
= (ΔEr + λ)2

4λ
.
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A
Absorption cross section, 15
Absorption spectrum, 95
Acetone, 155, 186
Activation energy, 205
Addition reaction, 10
Adiabatic states, 37
Antarafacial, 70
Antenna effect, 198
Aromatic compounds, 65, 72, 189, 210
Auger effect, 104
Autocorrelation function, 100, 109, 118
Avoided crossing, 142, 150, 155, 175, 187,

208
Azobenzene, 22, 114, 129, 133, 155
Azomethane, 133, 154
Azophenathrene, 114
Azulene, 115

B
Berry’s phase, 156
Bimolecular processes, 9, 179
Black body frequency distribution, 93
Boltzmann distribution, 7, 11, 134
Born–Huang expansion, 42, 147, 162, 169,

174
Born–Oppenheimer approximation, 36, 95,

105, 120, 138
Branching space, 155, 165, 168

Breit Pauli, 47
Bright state, 103, 108, 110, 112, 118, 200,

201

C
Carbonyl compounds, orbital correlation di-

agram, 71
Carbonyl compounds, photodissociation, 71
CASPT2, 76
CASSCF, 75, 190, 207, 208
CF3Cl, 14
CFC, 14
Chapman’s cycle, 13
Charge transfer, 67, 202
Chlorofluorocarbons, 14
Classical trajectories, 127, 137, 148, 169,

172
Collisions, 179, 209
Configurations interaction, 59, 75, 190
Conical intersection, 151, 157, 162, 164,

168, 175, 187
Conical intersection, peaked and sloped, 153
Conical intersections and symmetry, 153
Conjugated systems, 65
Conrotatory, 68
Continuous wave, 89
Coulomb integral, 191
Coupled cluster, 75
Coupling between quantum states, 81
Covalent structure, 59
Crossing seam, 152, 208
Cross section, 180
CT, 67
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D
Dark state, 103, 108, 110, 112, 118, 201
Delocalized excited states, 198
Dephasing, 126, 149
Derivative coupling, 143
Dexter mechanism, 194
DFT, 75, 76, 207, 208
Diabatic basis, crude, 144
Diabatic basis, strict, 144
Diabatic states, 144, 156, 160, 162, 169, 175,

184, 187, 189, 204, 207
Diabatic templates, 208
Diabatization, 147, 208
Diffusion, 181
Diffusion coefficient, Stokes–Einstein rela-

tionship, 182
Diphenylcyclobutene, 114
Dipole–dipole interaction, 195, 200, 210
Diradical structure, 62
Direct dissociation, 98
Disrotatory, 68
Douglas Kroll Hess, 47
Dynamical coupling, 38
Dynamical phase, 148
Dynamic couplings, 143
Dynamics versus kinetics, 14

E
Einstein coefficients, 91, 94, 199
Electrocyclic reactions, 68
Electronic predissociation, 104
Electronic spectrum, 95
Electronic wavefunction, 37
Electron transfer, 10, 202
El-Sayed rule, 48, 64
Emission spectrum, 95
Encounters, 181, 209
Energy-time uncertainty, 100
Energy transfer, 19, 114, 134, 184
Ethylene, 155
Exchange integral, 45, 191
Excitation rate, 15
Excitation transfer, 9, 184
Excited states, π → π∗, 62
Excited states, σ → σ ∗, 58
Excited states, n → σ ∗, 61
Excited states, n → π∗, 64
Excited states, Rydberg, 60
Exciton coupling, 198
Expectation value, 28
Extinction coefficient, 16

F
Fermi golden rule, 33, 104, 109, 112, 197
Fick law, 181
Fine structure constant, 47
FMS, 171
Förster mechanism, 194
Förster resonance energy transfer, 198
Fourier transform, 82, 88, 101
Franck–Condon excitation, 119, 129, 247
Franck–Condon principle, 8, 42
FRET, 198

G
Geometric phase, 156
Grotthuss and Draper law, 2
Group functions, 190

H
H3, 157
Hamiltonian, electronic, 37
Hamiltonian, electrostatic, 32
Hamiltonian, molecular, 32
Hamiltonian, nuclear, 37
Hamiltonian, rotational, 49
Hamiltonian, spin–orbit, 47
Hamiltonian, vibrational, 53
Harmonic approximation, 53
Harmonic oscillator, 53, 247
Hartree product, 170
Heavy atom effect, 48
Hellmann–Feynman theorem, 39, 156
HOMO, 57
Homogeneous broadening, 90

I
IC, 8
Inertia tensor, 49
Inhomogeneous broadening, 73, 90
Interaction between quantum states, 81
Internal conversion, 8, 199, 207, 208
Intersystem crossing, 8, 199
Intramolecular energy transfer, 19
Intramolecular vibrational energy redistribu-

tion, 129, 130, 136
Ionic structure, 59
Ionization, 8
Irradiance, 3
ISC, 8
IVR, 53, 129
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J
Jablonski diagram, 11, 18, 184
Jahn-Teller theorem, 157, 162

K
Kasha rule, 75, 115
Kinetics, 14
Kramers degeneracy, 164

L
Lambert and Beer law, 16
Landau–Zener rule, 148, 175, 206
Lifetime, 6
Light absorption, 15
Light, circularly polarized, 4
Light, energy density, 3
Light, linearly polarized, 3
Light-molecule interaction, 81
Light, momentum, 3
Light, monochromatic, 3, 18, 95
Light, non monochromatic, 4
Light, polarization, 6
Light pulse, 4, 82, 99
Light spectrum, 4
Line shape, 100
Local diabatization, 208
Localized excited states, 184, 189, 198
Localized molecular orbitals, 190, 209
Lone pair, 56
Lorentzian function, 84
Luminescence, 8
LUMO, 57

M
Magnetic field of light, 3, 81
Marcus theory of redox reactions, 204
MCSCF, 75
MCTDH, 170
Metastable states, 104
Momentum, mean value, 247
Momentum representation, 29
MRCI, 76

N
NaCd excimer, 189
NaCl, 143
Na–CO collisions, 189
Na Xe collisions, 187
Near infrared light, 6
NEVPT2, 76

Nitrosamines, 133
Nonadiabatic coupling, 38, 143, 152
Non-crossing rule, 141, 151
Nonorthogonal configuration interaction,

207
Normalization, 26, 28
Norrish type I reaction, 71
Nuclear wavefunction, 37
Nuclear wavepacket, 42, 120, 121, 137, 147,

169

O
Observable, 27
Operator, antilinear, 164
Operator, antiunitary, 164
Operator, Hermitian, 27
Operator, linear, 26
Optical charge transfer, 206
Optical cycle, 3
Optical pathway, 15
Orbital, 43
Orbital, π , 56
Orbital, σ , 56
Orbital, antibonding, 56
Orbital, bonding, 56
Orbital, hybrid, 56
Orbital, molecular, 56
Orbital, non bonding, 56
Orbital, Rydberg, 60
Oxygen, 187
Ozone, 13

P
PAH, 65
PES, 37
Photochemical reaction rate, 17
Photochemical vs thermal reactions, 6
Photochemistry, definition, 1
Photochromism, 20
Photodissociation, 9, 71, 98
Photoinitiated charge transfer, 202, 207
Photoisomerization, 9, 20
Photoisomerization, cis-trans, 22, 62, 68,

129
Photon, 2, 5
Photon irradiance, 5
Photophysical processes, 2
Planck. Max, 93
Plane wave, 3
Predissociation, 10, 41, 104
Primary processes, 7
Pyrene, 187, 189
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Q
Quantum decoherence, 126, 174
Quantum yield, 12
Quasi-continuum, 110
Quasi-diabatic states, 147, 207
Quencher, 9, 187
Quenching, 9, 184, 186
Quenching of Na∗, 189

R
Rabi frequency, 84
Rabi oscillations, 83
Radiation frequency, 3
Radiationless decay, 8, 104
Radiation pulse, 82, 99, 123
Rates of photophysical processes, 17
Recurrencies, 84
Reichardt’s dye, 67
Renner-Teller effect, 163
Resonance, 85, 90
Rotating wave approximation, 85, 89
Rotational energy, 50
Rotational states, 50
Rotational states, degeneracy, 51
Rotational states, density of, 51
Rotation, separation of, 35
RRKM, 53
RWA, 85

S
SCF, 75
Schrödinger equation, time-dependent, 25,

80
Schrödinger equation, time-independent, 30
Secondary processes, 12
Selection rules, 81
Sensitization, 9, 184, 192
Separation of variables, 32
Sigmatropic reactions, 70
Sign of interaction matrix elements, 200
Sign of transition dipole moments, 200
Simplex, 55
Singlet fission, 187, 193
Singlet wavefunction, 44
Slater determinant, 44
Solvatochromism, 73
Solvent shift, 73
SOMO, 71
Spectral irradiance, 5, 6
Spectrum of an operator, 27
Spin-forbidden transitions, 95

Spin magnetic moment, 46
Spin operator, 44
Spinorbital, 43
Spin-orbit coupling, 47
Spin state, 43
Spiropyran, 20
Spiroxazine, 20
Spontaneous emission, 93
Stark and Einstein law, 2
Stationary states, 30
Stilbene, 114
Stimulated emission, 89
Stratosphere, 13
Strong orthogonality, 190
Superposition principle, 26
Suprafacial, 70
Surface hopping, 172
Symmetry-forbidden transitions, 95

T
TD-DFT, 76, 207
TDSE, 25, 42
Thermalization, 181
Time-dependent perturbation theory, 79, 87
Time-dependent variational principle, 170
Time evolution operator, 26, 30
Time reversal, 163
Transition density matrix, 195
Transition state, 205
Translation, separation of, 33
Triplet sensitization, 192
Triplet–triplet annihilation, 187, 194
Triplet wavefunction, 44
Two-state model, 83

U
Ultraviolet light, 6
Unimolecular reactions, 53, 68

V
Vertical excitation, 129
Vibrational energy, 52
Vibrational predissociation, 104
Vibrational states, 52
Vibrational states, density of, 54
Vibrational structure of electronic spectra,

95
Vibronic states, 37
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Viscosity, 183
Visible light, 6

W
Water, orbital correlation diagram, 61
Water, photolysis, 61
Wavelength, 3
Wigner functions, 50

Wigner rules, 185
Woodward–Hoffmann principle, 68

Z
ZORA, 47
ZPE, 53
Zwitterionic structure, 59, 62
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