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Preface

This book is aimed at second-year graduate students in physics, electrical engineering (EE), or
materials science (MS). Its main goal is to present a rigorous introduction to electronic transport
in solids, especially at the nanometer scale, within a self-contained text (and course) and with a not-
so-hidden emphasis on computational aspects.

Understanding electronic transport in solids requires some basic knowledge of Hamiltonian
classical mechanics, quantum mechanics, condensed matter theory, and statistical mechanics. Thus,
usually, four “heavy” courses are required to acquire this background knowledge. Unfortunately, in
practice, EE and MS students may only attend a quick course on quantum mechanics at best; they
are unlikely to have ever seen the Hamiltonian formulation of classical mechanics or to have been
exposed to statistical mechanics or condensed matter beyond some quick preview, especially as far
as electronic (band) structure is concerned. MS students may be required to enroll in a class on the
electrical and optical properties of solids but this is often only a superficial introduction. Finally,
not all physics students will have seen these subjects at the depth needed. Our aim is to provide a
deep discussion of those specific subtopics of these four disciplines which are required to deal with
electronic transport, so that a single, self-contained class may suffice. This will be useful for students
who intend to work in academia or the nano-/microelectronics industry.

We assume some basic knowledge of classical mechanics (of course) and of quantum mechanics.
Therefore, only the Lagrangian and Hamiltonian formulations of classical mechanics are reviewed.
Similarly, the principles of quantum mechanics are revisited only formally, with emphasis on
canonical quantization, since this leads to its generalization to systems with infinitely many degrees
of freedom (fields) and so to second quantization, elementary excitations in solids, and scattering
processes. A bird’s-eye view of the structure of atoms, bonds, and molecules serves the purpose of
introducing some useful mathematical tools and concepts used in the text.

Topics covered in this book are: the theory of energy bands in crystals, second quantization
and elementary excitations in solids, dielectric properties of semiconductors, with an emphasis on
dielectric screening, electron scattering with phonons, plasmons, electrons, and photons, the derivation
of transport equations in semiconductors and semiconductor nanostructures, both at the quantum and
semiclassical level. The text presents examples relevant to current research, not only about Si, but also
III-V compound semiconductors, nanowires, graphene, and graphene nanoribbons. In particular, the
text gives major emphasis to plane-wave methods regarding the electronic structure of solids, both
Density Functional Theory (DFT) and empirical pseudopotentials, always paying attention to their
effect on (and numerical implementation in a description of) electron transport. The core of the text
deals with electronic transport, as we said above, with ample discussions of the transport equations
derived both in the quantum picture (the Liouville~von Neumann equation) and semiclassically (the
Boltzmann transport equation, BTE). Several methods for solving the semiclassical BTE are also
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reviewed, including the method of moments, expansions into orthogonal functions, iterative methods,
Monte Carlo, cellular automata, and direct matrix inversion.

Four appendices conclude the text. The first one presents time-independent and time-dependent
perturbation theory, as well as the Born approximation. The second appendix provides full infor-
mation, and references, about the empirical pseudopotentials that are commonly used for fcc
semiconductors. The third appendix, a quick-and-dirty introduction to the principles of special
relativity, is required to understand the “minimal” electromagnetic coupling between electrons and
photons. It also introduces the relativistic wave equation for spin-1/2 particles which, in its massless
version, describes approximately the electron dispersion in graphene. The fourth appendix pays tribute
to our emphasis on computational aspects and lists the source code of a simple computer program to
compute the band structure of Si using empirical pseudopotentials. We hope that students will enjoy
running and modifying this program.

The breath and length of the subjects presented in this text makes it impossible to cover the totality
of material presented here in a single one-semester course (typically 28 lectures of 75 min each) and
even less so in a one-quarter course. In our experience, only the basic subjects can be covered in such
a class. Subjects that may be covered “optionally,” if time allows or in a sequel of this course, have
been highlighted by an asterisk. Some are simple historical remarks or curiosities, but those that deal
with advanced topics are intentionally treated at a slightly deeper, more research-oriented level. In
these chapters and/or sections, more frequent reference is made to journal papers than to textbooks.
In the second year of a graduate program, we find it appropriate to start exposing graduate students to
the more terse and concise style used in research papers, while the students are preparing to perform
research on their own.

Richardson, TX, USA Massimo V. Fischetti
July 6, 2015 William G. Vandenberghe
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About the Notation

The use of a consistent and correct notation is always a major issue, since compromises must be
found between correctness and clarity. Here we have adopted the notation that is “conventional” in
the physics community. However, having to deal with subjects spanning a variety of subfields, we
have encountered some difficulties due to the use of the same symbols to denote different quantities
in many of these subfields. Listing some examples may also help the readers:

* The symbol g is used as electric charge in electromagnetism, as canonical position coordinate in
Lagrangian and Hamiltonian classical mechanics, and as phonon wavevector—or, more generally,
wavevector transfer—in condensed matter physics. We have avoided its use to denote charge, but
we have decided to use it both as canonical coordinate and wavevector. We felt that referring to
a position coordinate with a symbol we have not used, such as M, would have created even more
confusion.

» The symbol V usually denotes potential energy, electrostatic potential, bias applied to contacts, and
volume. We have opted for the use of €2 for volume and ¢ for the electrostatic potential, reserving
V to potential energy and voltages, and liberally used subscripts and superscripts to clarify its
meaning. Having done that, in one of the appendices, having used €2 for volume, we had to choose
a symbol to denote solid angles, almost universally denoted also by 2. We have used o for the
solid angle, since no radian frequencies are used in that appendix. But the fear of having created
confusion remains.

¢ The letter H denotes Hamiltonians. So, we have used .7# to denote Hamiltonian density. We were
forced to look for a different-looking font, 3{, when a symbol was needed to denote Hilbert spaces.

» The electric field is usually denoted by E. However, we have denoted it by F in some subfields,
in order to avoid confusion with energy, denoted by E. We have followed our usual idea of using
the symbol that is most commonly used in the literature dealing with the subject we discuss. For
example, dealing with the quantization of the electromagnetic field (Chap.9), we have used the
symbol E. However, in chapters that treat electron transport and make frequent use of the energy
E; or E(K) of electronic states, such as Chaps. 18 and 19, we have followed the usual convention
and employed the symbol F.

In summary, we have tried to adopt the notation and conventions that are most commonly used in
the literature specific to a particular subfield, even though this has forced us to use a slightly different
notation in different chapters of the book. We think that students, who are encouraged to read the
scientific literature, should become familiar with these conventions.

XXi



XXii About the Notation

Some additional comments are necessary:

1. Scalar quantities are indicated by italic symbols, vectors by bold symbols. So, for example, the
vector v has magnitude v. The vectors for the position and wavevector are denoted by lower-case
symbols (r and K) in three dimensions and by upper-case symbols (R and K) in two dimensions.

2. Hermitian operators acting on Hilbert spaces are denoted by a “hat,” A.

3. In the Dirac notation we use, |a) is a general element of a Hilbert space. Two commonly used
“bases” are the plane-wave basis |Kk) of eigenstates of the momentum operator and the eigenstates
|r) of the position operator. Obviously and ironically, in standard courses of quantum mechanics,
having defined Hilbert spaces and such, these basis vectors are commonly used, although neither
basis belongs to a Hilbert space. Indeed, the representation of these basis states in terms of
“functions” is (r'|r) = &(r —r’), which is not even a “function,” and (r'|k) = ¢**', which is not
square integrable and so does not belong to the usual single-particle Hilbert space L*(R?). The
problem is either ignored, or bypassed by defining eigen-packets, but the best answer, the definition
of “rigged” or “equipped Hilbert spaces,” is seldom discussed. We follow this “easy way out” as
well. Readers who would like to understand the mathematically correct solution could consult,
for example, .M. Gelfand and N.J. Vilenkin, Generalized Functions, vol. 4: Some Applications of
Harmonic Analysis. Rigged Hilbert Spaces (Academic Press, New York, 1964).

4. The notation Y4 represents the sum over the “quantum numbers” . Depending on whether q
represents a quantum number in the discrete or continuum spectrum, a fact that often depends
on the normalization chosen, it should be interpreted as follows: For normalization over a finite
volume £,

3@ 8la-—a0) = 5 3 fo ga
q

q

So, we tacitly imply a division by the normalization volume, and the “Dirac delta-function” should
be interpreted as a Kronecker delta. For normalization over an infinite volume in n dimensions,
instead,

Y1) 8la-a0) = s [ daf(@) Sla—a).

q

So, we imply a division by the phase-space factor (27)" and the Dirac delta-function should be
interpreted as a genuine tempered functional over a Hilbert space (to be pedantic). Therefore,
we shall be “sloppy” and consider expressions like f(q) and fy as equivalent, much to a
mathematician’s horror, but we have already horrified mathematicians by writing [ f(q) dq as
[ dq f(q), as is common in the physics community. Note, however, that occasionally it will be
necessary to show explicitly the normalization volume, for example, when decomposing an integral
over the entire normalization volume into identical integrals over unit cells of the crystal.



List of Symbols

Special symbols are defined in the text when first introduced. We list here only symbols, not defined
in the text, that have an almost universal meaning, including physical constants:

€0 Permittivity of vacuum, 8.854187817 x 10~'> F/m

Uo  Permeability of vacuum, 47 x 1077 N/A?

us  Bohr magneton, efi/(2me) = 9.27400968(20) x 10724 J/T

c Speed of light in vacuum, 2.99792458 x 10® m/s

e Magnitude of the electron charge, 1.602176565(35) x 10~1° C

h  Planck constant, 6.62606957(29) x 10734 J.s

i Reduced Planck constant, i/(27) = 1.054571726(47) x 1073 J.s

kg Boltzmann constant, 1.3806488(13) x 10~2* J/K

me;  Electron mass, 9.109 38291(40) x 103 kg

Ry Rydberg unit of energy, [e?/(47eg)]>me1/ (2h%) = 13.60569253(30) eV

XXiii



Part 1
A Brief Review of Classical and Quantum
Mechanics



Chapter 1
Canonical Quantization of Physical Systems

1.1 Overview

The electronic properties of crystals, of their dielectric behavior, of the dynamics of electrons in
solids, and of the elementary excitations with which electrons (or photons) interact, are the topics
treated in the main chapters of this text. Treating these topics requires a formal use of Quantum
Mechanics that goes beyond what is usually presented in introductory courses. In this chapter we
set the foundations of the formalism used in following chapters: We first discuss why we need a
formulation of Quantum Mechanics that goes beyond the simple single-particle Schrodinger equation.
We then review the Lagrangian and Hamiltonian formulation of Classical Mechanics, since this
leads to the formal Canonical Quantization; that is, the formalism that allows us to “quantize” any
physical system starting from its classical description. Whereas in this chapter this formalism is
applied only to systems with a finite number of degrees of freedom (so, excluding fields), in later
chapters this limitation will be lifted, following a natural extension of what is discussed here. Having
quickly reviewed the main mathematical structure on which Quantum Mechanics rests, Hilbert spaces
and bound Hermitian operators on Hilbert spaces, we finally briefly touch upon the problem of
interpreting the mathematical formalism in physical terms and present formally the interpretation
commonly known as the “Copenhagen interpretation.” We shall proceed very formally, assuming
previous knowledge of Quantum Mechanics in its simple formulation. As a result, in contrast to the
other chapters of this book, here we will use a more terse, concise, less discursive style, since we
intend to set the foundations in terms of concept and terminology used later.

As a matter of notation, operators will be denoted by symbols with “hats,” the usual mathematical
notation. In some mathematical texts they are denoted by bold symbols. However, we shall follow the
conventional notation adopted by the physics community of reserving bold characters for vectors.

1.2 Formalization of Quantum Mechanics: Why?

Quantum Mechanics, as a formal “theory” of the microscopic world as we know it today, is the fruit of
the efforts made in the 1930s to formalize the patchwork picture that had emerged in the few decades
before. As one can read from any textbook on Quantum Mechanics, the end of the nineteenth century
broke the attitude of certainty that had inspired the confidence of physicists up to that point: On the
one hand, the fact that Maxwell’s equations are not invariant under Galilean relativity, as Newton’s
equations are, together with the Michelson and Morley experiment, related to this Galilean-relativity

© Springer International Publishing Switzerland 2016 3
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4 1 Canonical Quantization of Physical Systems

issue, pointed at the need to revisit the concept of ether. This eventually led to Einstein’s theory of
special relativity [1]. On the other hand, several puzzles posed by experiments dealing with light and
matter at the microscopic scale questioned the validity of the theory of electromagnetism and classical
Statistical Mechanics to explain the spectrum of a black body, the photoelectric effect, Compton
scattering between light and electrons, and, of course, the structure and stability of the hydrogen atom,
as postulated by Bohr’s theory [2]. Planck’s work on the black-body spectrum (see, for example, [3])
[4], Einstein’s explanation of the photoelectric effect (and, implicitly, of Compton scattering) [5],
and Heisenberg’s [6] and Schrédinger’s [7] work published in 1925 and 1926, respectively, gave
each explanations of the phenomena. But these explanations were somewhat ah hoc and partial.
For example, Schrodinger’s equation could be applied successfully to explain the spectrum of the
hydrogen atom. But how to apply the same type formalism to a vibrating or rotating molecule?
Einstein’s work explained the wavelength dependence observed in the photoelectric effect. But how
to treat the electromagnetic field on the same “quantum” footing used to deal with the electrons?

In order to build a formal more general theory applicable, in particular, to crystals, we must revisit
the Hamiltonian formulation of Classical Mechanics. This will lead to a complete and consistent
procedure to “quantize” any physical system. In this chapter this will be limited to systems with a
finite number of degrees of freedom (so, system constituted by a finite number of “discrete” particles,
each of them, in turn, possibly with a finite number of discrete internal degrees of freedom, such as
spin up or down). More general systems with an infinite (actually, a continuum) number of degrees of
freedom, or “fields,” will be treated in later chapters.

1.3 Lagrangian and Hamiltonian Formulation of Classical Mechanics

1.3.1 Hamilton’s Principle

Consider a system with N degrees of freedom. N may be thought of as equal to 3n, where n is the
number of classical particles in three dimensions. Let g; be their “generalized” coordinates, with
i = 1,N. By “generalized” we mean that these coordinates are related to the position of particle o
via relations of the form rq(g1,92,...,gn). Thus, the coordinates g; may be the particles positions
in another coordinate system (polar, cylindrical, etc.), or may be the coordinates on the subspace on
which the system is forced to be by constraints (such as particles on a surface of a sphere), so that, in
this case N < 3n.

Now assume that forces induced by interactions among the particles, or due to an external source
(such as gravity or electromagnetic fields, for example), can be described by a potential energy V(q)
[where the q labels the N-dimensional vector (g;,g2,...,qy)] and let’s define the kinetic energy T of
the system:

Zmava Z (Z T g+ ar“) - (L.1)

Defining the Lagrangian function:
L(q,q) =T(q) - V(q), (1.2)

the time integral of the Lagrangian,

5]

Sla= | L(q,q)dt=0, (1.3)

n
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is called the “action” and should be considered as a “functional” of all possible trajectories [q(?),q(?)]
of the system. Hamilton’s principle states that the motion of the system, [q(¢),q(¢)], during the time
interval (#;,1,) is such that

3S(q]

This simply states that the action is an extremum when we substitute the physical trajectory [q(z), q(?)]
in the integral above of the Lagrangian functional.

1.3.2 A Primer on Variational Calculus

How do we solve the variational problem described by Eq. (1.4)? Let f(y,y,x) (with y = dy/dx) be a
functional of y and y and let’s look for the particular function y(x) for which the integral

7= ? . 3,x) dx (15)

is an extremum, with the boundary conditions y(x;) = y; and y(x3) = y. Let’s parametrize all possible
“trajectories” y(x) by a parameter A, so that the integral .# becomes a function of A,

F0) = [ Fe ) w2 ] v (16

X1

Then, our problem consists in solving

dI(A)
5 = 0. 1.7)
Now:
0.0(2) _ [ (o oy of 95
o ‘iA {8y8&+8y8l}dx' (18)
The second integral can be integrated by parts:
w of 9%y . dfdy[? 2 d [If\ Iy

Our boundary conditions require all functions to take the same values y; and y, at x; and x3, so the
first term vanishes. Thus,

oy dy (1.10)

d7() e (o daf\
92 A( )MM

Now let’s consider the variation of y around an arbitrary value Ag. Then:

0.7 o (of dof\ [ dy
(o), o= Ga3) (3), %o o
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Now set
0.7
0.9 = (M>0 da (1.12)
(9
oy = (‘M)o da , (1.13)
and
[y
0y = (‘M)o dA . (1.14)
Thus, Eq. (1.11) becomes
[ Jdf d adf _

But now note that dy is an arbitrary variation of the trajectory. The only way Eq. (1.15) can be satisfied
is when the term within parentheses vanishes, that is

of daf
?y*&afyfo' (1.16)

This is known as the Euler equation (although there are so many “Euler equations” in so many areas
of mathematics and physics!).

1.3.3 Euler-Lagrange Equations

Equation (1.4) can be solved in a very similar way, leading us to the Euler—Lagrange equations:

d JL JL

— === 1.17)
dtdg; g

Note immediately that this formulation of Classical Mechanics exhibits explicitly some conservation
laws: If the Lagrangian L does not depend explicitly on the variable g; for some j, then from Eq. (1.17)
we see that

JdL
Pi= 5 (1.18)
q;
is a constant of motion, i.e., is a conserved quantity during the time evolution of the system. In this
case, ¢; is said to be a “cyclical coordinate” while p; is called the “canonical generalized conjugate
momentum.”
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1.3.4 Hamiltonian and Hamilton’s Equations

This observation, as well as the definition of the conjugate momentum, gives the idea of transforming
the Lagrangian L into a functional of q and p, rather than of q and q. This can be done by the Legendre
transform

L(q,q,t) = H(q,p,1) Zplq, (q,4,1) . (1.19)

This is the familiar “Hamiltonian.” In order to derive the equations of motion, note that

oH oH oH
dH =) — dg; — dp;+—dr. 1.20
;aqi %‘F;api pi + o1 ( )
On the other hand, from the definition (1.19), we also have
JL oL oL
dH =) §,dp; dgi— Y — dgi— Y — dg;— — dt. 1.21
;q: Pz‘&‘;PZ qi Zl, &ql qi ; aé]i qi ot ( )

Note that the second and third terms in this equation cancel, thanks to the definition (1.18). Since
pi = dL/dq;, Bq. (1.21) becomes

oL
H =Y gidp; — Y pi dgi — 5, dr (1.22)
i i

Comparing Eqgs. (1.20) and (1.22) we arrive at the canonical Hamilton’s equations:

 OH
qi = Tp, ) (1.23)
JH
Di 7876],' ) (1.24)
together with
JH JdL
T T (1.25)

1.3.5 Poisson Brackets

A very abstract reformulation of Hamilton’s equations relies on the use of the Poisson brackets
between any two functions A(q,p) and B(q,p):

dA JB JdA JB

{A,B} = Z ( i ) . (1.26)
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We shall call any function of q and p a dynamic variable. Using this definition, it is trivial to see that
Egs. (1.23) and (1.24) can be written as

dg;

— ={g; H 1.2
5 {9i,H} , (1.27)
dp;

— ={p;,H}, 1.28
o = wiH} (1.28)

while for a general dynamic variable A(q,p):

={AH}+— . (1.29)

dA 0A
dr ot

Note also the following relations:

{ai,p} =05, {a4i,9i} =0, {pi,pj}=0. (1.30)

This reformulation of the laws of Classical Mechanics was developed in the late seventeenth [§]
and early nineteenth century [9]. At that time, it was part of the attempts to re-express Newton’s laws
in a way that made it possible to employ the symmetries of the system in order to identify constants
of motion and, as a consequence, simplify the task of finding the motion of the system. Together
with the search for a proper transformation of coordinates that rendered the symmetry transparent
(see the text by Goldstein [10] for an outstanding discussion of symmetries, generating functions, and
the Hamilton—Jacobi equations), this formal structure of Classical Mechanics represents one of the
most elegant formulations in mathematical physics. However, here we are interested in seeing how
this abstract formalization allows us to treat a general physical system from a quantum-mechanical
perspective. We shall see shortly how those “dry” and abstract equations, employing the Hamiltonian
and Poisson brackets, can be converted to a complete formulation of quantum dynamics with a simple
change of perspective and interpretation of the mathematical symbols. This change of perspective is
formally simple, but conceptually deep.

1.4 Formal Structure of Quantum Mechanics

1.4.1 Hilbert Spaces

We now introduce the basic ideas about the mathematical structure on which Quantum Mechanics
is based. Again, we shall first present in “terse” terms the mathematical concepts and we shall later
discuss the physical picture. Let’s start with some basic definitions of “abstract algebra.”

Some Definitions

¢ A ring Ris a set in which two binary operations are defined: addition and multiplication. The ring
is an abelian (i.e., multiplication is commutative) group under addition and a semigroup (i.e., the
inverse does not necessarily exist) under multiplication.

e A field (or corpus) F is a ring whose nonzero elements form a group under multiplication. Real
numbers, complex numbers, and rational numbers, for example, form well-known fields.

e A vector (or linear) space V over a field F is a set for which a binary operation (“+”, vector
addition) and a multiplication by an element of the field (scalar product) are defined such that
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l.VueVVoeF | oueV .

2. Vu,veVVa,B€F | ou+PBveV.

3. The vector addition satisfies the conditions of commutativity, associativity, and admits an
identity and an inverse element, that is

u+v=v-+u (commutativity)
u+(v+z)=(u+v)+z (associativity)
30 | Yu|0+u=u (existence of identity element)

Vu3(—u) | u+(—u) =0 (existence of inverse element)
4. The scalar product and the vector addition are compatible in the sense that

o(u+v)=ou+oav (distributivity I)

(a+B)u= cu+ Pu (distributivity IT)

(af)u=o(Bu) (compatibility)

lu=u (where 1 is the identity element in JF)

5. Linear independence: Two elements u and v of 'V are said to be linearly independent when u
cannot be expressed as scalar multiple of v and vice versa. A set of more than two vectors are
said to be linearly independent when none of them can be expressed as a linear combination of
the other vectors.

6. Dimension of V: A basis in 'V is a minimal set of » linearly independent elements u; (i = 1,n)
such that every element of 'V can be expressed as a linear combination of them. The integer n is
the “dimension” of the vector space.

* A normed vector space is a vector space in which a “norm” |Ju]| € R (or “length”) of a vector u
is defined. This defines a “metric” which allows us to define the “distance” between two vectors u
and v as ||u — v|| which can be used to define a topology.

* An inner-product vector space is a vector space in which a new binary operation (“inner product”
or “dot product”) is defined such that Vu,v € V | (u,v) € F.

* A normed inner-product vector space is a vector space in which the “norm”
inner product: |[u]| = +/(u,u).

* A topological vector space is a normed, inner-product vector space in which the topology is defined
by the norm, that is, the notion of “u and v being close” is determined by the norm |ju — v/|.

* A complete topological space is a topological space in which every Cauchy sequence has a limit. (A
Cauchy sequence is a sequence s, (n =1, o) such that Ve e RIN € Z | ||s+1 — sul| < € Vn > N).

e A Banach space B is a complete normed topological vector space.

* A Hilbert space H is a Banach space in which the norm is given by the inner product.

u|| is defined by the

In simple words, Hilbert spaces are rich mathematical entities: Their structure is well suited
to Quantum Mechanics because their linear (vector) structure captures automatically the linear
superposition principle, as we shall see below. Their topological nature inherited by a metric in turn
defined by a norm—that is, the possibility of defining distances, “proximity,” completeness, “size”
of elements—Ieads to simplified calculus. The additional fact that the norm derives from an inner
product adds to this richness, making possible to define “projections” in a natural way. An intuitive
way to view Hilbert spaces is to regard them as conventional three-dimensional space Z (i.e., the usual
vector space R? built on the field R) extended to a continuum of dimensions. Regarding the vector y
as an infinite-dimensional version of a conventional vector v, the inner product (Y, y,) corresponds
to the dot-product v - v,; the norm ||y|] to the “length” |v|.
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As in the space %, one can introduce a set of “coordinates” (xj,x,x3) by defining three linearly
independent orthogonal vectors of unit length, e;, e», and e3, and defining the ith component v; of the
vector v by projecting it onto the vector e;, v; = ;- v, so one can define a “complete basis” of elements
of the Hilbert space as a set {¢;} of orthonormal vectors (that is, such that (¢, ¢;) = &;;) and such that
any element of the Hilbert space can be represented by its coordinates yj = (¢;, ), so that

J

=2V 6=2 ()¢ (1.31)
J

In its most commonly used and simplest realization, the space of single-particle wavefunctions, the
Hilbert space is the space of all square-integrable complex functions of three real variables, L%(R?)
with the norm of a “vector” y given by

lvll= [ lw@)Par, (132

and inner product between two vectors y; and y»

(wiov) = [ wie) yalr) ar (1.33)

In the following we will use Dirac “bra-ket” notation: A vector in a Hilbert space will be denoted
by |y), and the inner product between |y;) and |y») by (y1|yn). “Kets” |y) appear on the right,
“bras” (/| appear on the left. For the special case of L?(R?), “bras” can be viewed as entering the
integral Eq. (1.32) via the “complex conjugate” of the function y. In this notation, Eq. (1.31) becomes

) =2 19)(oilw) - (1.34)
J

Formally, we can identify ; |¢;)(¢;| as the identity mapping I (or “operator,” as defined below). It is
usual to write

=3 10)(9i] - (135)
J

The right-hand side of this equation is usually called a “completeness.”

1.4.2 Operators on Hilbert Spaces

As we shall see shortly, classical dynamic variables—functions of the generalized coordinates and
their conjugate momenta, such as linear or angular momentum—are mapped to a particular class of
operators acting on Hilbert spaces—namely, bound or continuous Hermitian operators—according
to Canonical Quantization. Some mathematical definitions must be given before explaining why and
how these operators are associated with physical observables.

e Linear operators. A linear operator A on a Hilbert space H is a linear map JH — I, that is

Yue H, Au=veXH
Yu,ve H, Va,B € F, A(au+ fv) = aAu+ BAv
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Note that linear operators form a vector space themselves: If A and B are linear operators, then
also oA + BB is a linear operator. Moreover, a product AB may be defined as ABu = A(Bu) The
inverse element corresponding to A will be denoted by A . Combining the operator product and
the inverse element with the definition of the “identity operator” T such that Vu € H,Iu = u, this
defines a group. However, note that this defines a “nonabelian™ group, since in general AB 7£ BA.
The operator equal to the difference between AB and BA is called the “commutator;” [A B]
AB — BA.
* A bounded or continuous linear operator is an operator A such that

VeeR | lu—v|<e,38 R | [A(u—v)|| <&

* Hermitian adjoint operator: The Hermitian adjoint (or conjugate or transpose) At ofa (bounded)
operator A is defined as the operator such that

o~

(v,Au) = (KTV,U) ,

Vv,u e H.
* A Hermitian or self-adjoint operator is an operator which is identical to its adjoint, so that

(v,Au) = (Kv,u) ,

Vv,u e H.
e Spectrum of an operator: The spectrum of a linear operator A is the set of all its eigenvalues A;, that
is, those elements of F such that

Auv;=Au;,

where the vectors u; are the eigenvectors of A.

A few very important theorems: (1) The spectrum of a Hermitian operator on a Hilbert space 3 on
the field C is real; (2) Eigenvectors corresponding to different eigenvalues are orthogonal; and (3)
The set of its eigenvectors spans the entire Hilbert space, i.e., it forms a (complete) basis.

Let’s prove the first two theorems.

If Au = Au with u £ 0, then:

A(u,u) = (u,Au) = (Au,u) = A*(u,u)
which proves that A is real. Moreover, let’s assume that Ay = uv. Then:

A(v,u) = (v,Au) = (Av,u) = p(v,u),
but if A # u, we must have (v,u) = 0.
Another very important theorem: Two commuting Hermitian operators have common eigenvectors.
This can be easily proved as follows: Consider an eigenvector a with eigenvalue ¢ of the operator
A that commutes with the operator B. Thus:

Aa=qaa. (1.36)

Applying the operator B to both sides of this equation, we have
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BAa=Baa=oBa=ab, (1.37)
having set b = B a. On the other hand, thanks to the fact that the two operators commute:
BAa=ABa=Ab. (1.38)

Comparing the right-hand sides of Eqs. (1.37) and (1.38), we see that b is also an eigenvector of
A with the same eigenvalue of a. Therefore, either b coincides with a up to a constant ¥, so that
Ba=b= Y a, which shows that a is an eigenvector also of B with eigenvalue 7; or, alternatively,
b belongs to the same subspace of degenerate eigenvectors to which a belongs. In either case, this
shows that A and B have common eigenvectors.

The importance of the first theorem above cannot be overstated: In order for an operator to
correspond to a physical observable and for its eigenvalues to correspond to results of an experiment
aimed at measuring the value of that observable for a system in a given state, it is absolutely necessary
that all eigenvalues of the operator be real numbers, obviously.

In Dirac’s notation, an operator (observable) A acting on a vector |y) will be denoted as A|y).
The inner product between A|y;) and |y») by (wa|A|y). The quantity (A) = (w]A|y) is called the
“expectation value” of A on |w). Note that, since the observable Ais Hermitian, there is no confusion,
so one can view (A) either as the inner product of A|y) with (| or of (y|A with |y). We shall call
(w1 \:4\ |w,) the matrix element of A between |y1) and |y») and denote it by A,. Note that Ay; = A7,

that is, (ya|A|y1)* = (1 |A]yn).

1.4.3 Canonical Quantization

We are finally ready to describe in detail how any physical system described classically in Hamiltonian
terms can be treated quantum mechanically. Let’s start by describing this procedure, called “canonical
quantization,” very schematically. We shall then discuss how to interpret physically the mathematical
construct.

1. Define a Hilbert space J{ associated with the system. Vectors of this space are state vectors of the
system. Observables (or dynamical variables) are (“bounded” or “continuous”) Hermitian operators
on this space.

2. Provide a Hamiltonian classical description of the system, identifying the canonical coordinates q
and momenta p.

3. Promote the canonical variables to operators acting on the Hilbert space I+,

qi—qi, pi—pi= _ihT ; (1.39)
qi
and convert Poisson brackets {...,...} to commutators [...,...] , so that

* The idea of associating the classical momentum with the spatial derivative originates from the
theory of continuous groups called Lie groups. In rough terms, we can associate transformations
with “generating operators” and generating functions. Translations in time are associated with
energy and their infinitesimal generating operator is: “take the time derivative.” Similarly,
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translations in space are associated with momentum along the direction of the translation and
the corresponding operator is the spatial derivative along that direction. Note the analogy with
conservation laws and symmetries, by the way. One may speculate that Schrodinger “derived”
his equation starting from E = H. He then interpreted the energy E as the generating operator
of translations in time and the momentum entering the Hamiltonian H as the generating operator
of translations in space. Hence, the ihd/dt for E, the —ihV replacing p inside H. The imaginary
units come from Lie groups, since transformations are expressed as complex exponentials of the
infinitesimal generating operators. Some other constant with the units of action (h) is demanded
by dimensional considerations but, clearly, Schrodinger must have known that something related
to the Planck constant had to enter the picture.

4. In the so-called Heisenberg representation, state vectors do not evolve in time, but dynamical
variables (operators) do and they evolve according to equations of motion that are similar to the
Hamilton equations in their Poisson brackets form, Eq. (1.29):

dA

A _i A
dt ot~

- #ﬁ Al + (1.41)
5. In the so-called Schrodinger representation, instead, dynamic variables do not evolve in time but
state vectors do. The equation of motion for the state vectors is given by Schrodinger equation

which, in its most abstract and general formulation takes the form:

in ” =Hu. (1.42)

6. Equivalence of the Heisenberg and Schrodinger representations. What we can “know” about a

physical system consists of the information contained in the expectation values of the observables.

Thus, the entire physical content of the theory is captured by the time evolution of the expectation

value (u, Au) of the observable associated with the operator A, knowing that the system was initially

in the state u. Therefore, consider first the Heisenberg picture in which the state vector is fixed in
time and the observable evolves, Eq. (1.41):

d

S A = (o,

[(Hu,A(t)u) — (A(r)u,Hu)] . (1.43)

Now let’s stop for a moment and change perspective, freezing the observable at time ¢, but letting
now the state vector u evolve in time. So, let’s rewrite the last term of Eq. (1.43) as

and use now Schrédinger equation, Eq. (1.42), to express Hu(?) as if du(r) /dz. Then the expression
above becomes
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! [_m (d‘;y) ,xu@) i <zu<t>, “(j?)] = £ (), Au() (1.44)

which is once more the time evolution of the expectation value of the observable A when the system
is on the state u, now in the Schroédinger representation. This shows that the two representations
provide identical physical information about the dynamical evolution of the system.

1.4.4 The Copenhagen Interpretation

In his textbook “The Principles of Quantum Mechanics,” Dirac introduced the superposition principle
as the basic principle of Quantum Mechanics [11]. Gordon Baym followed the same approach [12].
According to this principle, a physical system can be in a linear superposition of two distinct states
(two eigenvectors of an observable corresponding, in general, to different eigenvalues of that observ-
able). A photon, for example, can be in a linear superposition of clockwise and counterclockwise
polarization, or an electron can simultaneously pass through the top and the bottom slit of a double slit.

Certainly, this principle embodies the “weirdness” of the quantum world, as it emerged from those
experiments (polarization, double slit) of the early days, and it has emerged even more strikingly in
recent experiments, especially Alan Aspect’s “proof” [13] (why this is in quote will be discussed
shortly) of the Bell inequality [14] that was originally aimed at supporting the EPR paradox [15].
We shall return briefly to these issues. However, the superposition principle per se does not provide
an interpretation of what a “state” is, of what result one will obtain from the measurement of an
observable. At a more philosophical level, it does not provide a clear “intuitive” picture of how to
define “reality” in the quantum world.

That such a satisfactory picture was in doubt emerged right from the early work by Heisenberg [6]
and Schrodinger [7]. “What is the wavefunction?” was a question that triggered a period of confusion
and intense discussion. It is fair to say that this discussion continues today.

This text is not the right venue to present an overview of all the possible interpretations that have
been offered: From Everett’s “many-worlds” interpretation [16] to Bohm’s semiclassical trajectories
in a quantum potential [17, 18], from Griffith’s and Omnes’ “consistent histories™ [19, 20] to classical
models resulting in quantum behavior in a stochastic environment [21], from the postulation of a new
universal physical constant inducing spontaneous decoherence [22], all the way to the formulation
in absence of “observers,” as demanded in the cosmological context [23]. We are interested in
computational aspects (as the saying goes: We belong to the “shut-up and compute” philosophical
school). We adopt the so-called Copenhagen interpretation since, so far, it has proven more than
adequate to tackle computational problems providing results that can be successfully compared to
experimental observations.

There is no unique way to define “the Copenhagen interpretation.” While Niels Bohr was its
champion (hence the name, from the institute he directed in Copenhagen), it emerged from ideas
originating in the late 1920s with contributions from all of the major players of the time. Its most
formal crystallization is due to Jordan [24, 25] together with Born and Heisenberg, and especially to
John von Neumann [26]. We list below the main “axioms” that most people would agree define the
Copenhagen interpretation. Violating a correct historical perspective, we formulate these axioms in
terms of the Canonical Quantization framework we have outlined above.

1. Any physical system can be in any of the states |y) belonging to the Hilbert space associated
with the system. This Hilbert vector embodies the totality of information we can obtain about
the system and there is no additional information, like “hidden variables,” local or not. The state
itself, however, is not observable.
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2. Although one may define and, in principle, measure many dynamical variables associated with
the system, only commuting observables can be measured simultaneously. Complementary
observables can be measured simultaneously only within the limitations laosed by the Heisenberg
uncertainty principle: Defining the “standard deviation” o4 = [(A2) — (A)2]'/2 for an observable
A in terms of expectation values on a state |y), if A and B are two observables, then

1 ~ ~
040s > 5 ‘([A,B}}‘ (1.45)

the equal sign being achievable only for a suitably selected “minimum uncertainty” state. For
the well-known case of position and momentum of a particle in one dimension, [%,p] = if, so
Eq. (1.45) takes the well-known form o0, > h/2.

3. (Schridinger picture). An isolated system in the state |y) will evolve in time according to the
“generalized” Schrodinger equation

d N
S lv) =Hlw). (1.46)

where H is the Hamiltonian operator.
(Heisenberg picture). Alternatively, an isolated system initially in a state |y) will remain in this
state, but observables A evolve in time according to the Hamilton equation (1.41):

0A

@i
dr ot~

- [1’.} X] 4+ = (1.47)
In terms of the dynamics of the results expected from measurements, as described below, we have
seen that the time evolution of the expectation value (A) is the same in both the Schrodinger and
Heisenberg pictures.

4. Measurements are performed by an observing apparatus (laboratory device) that obeys the laws
of classical physics.

5. Consider an observable A with eigenvector |g;) corresponding to eigenvalues q;, that is
Alai) = aila;) . (148)

Express now the state |y) (assumed normalized, {(y|y) = 1)) over the complete basis {|a;)} of
the eigenvectors of the observable A,

) =Y (aly) |aj) . (1.49)

J

Then, the coefficients o5 = (a;j|y) are called the amplitudes of the state |y) on the eigenvectors
la;) and their squared magnitudes |o;|? represent the probability that a measurement of the
observable A on the system in the state |y) will yield the result a;.

6. Upon a measurement of the observable A on the system in the state |y), if the result of the
measurement is ay,, then the system instantaneously “collapses” irreversibly into the state |a,), an
eigenstate of the observable A.

7. Once a measurement has collapsed the system into a state |a,), successive measurements of the
same observable A will always yield the same results, a,,.

8. From Egs. (1.36)—(1.38), a system can be in a state that is an eigenvector of two commuting
observables, A and B. Therefore, the two observables can be measured simultaneously and, after
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the measurement, the system can be said to possess definite values for both observables. In this
case, the observables are said to be “compatible.” If, instead, the observables do not commute,
they are called “complementary” and the system can be in an eigenstate of only one of them, not
of both simultaneously. Accordingly, “pure states” (that is, excluding mixtures due to “classical
ignorance”) that are eigenstates of an observable can be considered as linear superpositions of
other pure states that are eigenstates of compatible observables. A state cannot be thought of
as a superposition of eigenstates of complementary observables. (This, of course, allows the
mathematical representation of the systems, states, and observable, in terms of the Hilbert-space
formalism used to perform the Canonical Quantization.)

9. If two isolated systems are brought together, the total state of the larger combined system can
be thought as a “tensor product” of the states of the two systems. A fortiori, the Hilbert space
associated with the larger system is the tensor product of the Hilbert spaces associated with each
sub-system.

10. As the size of a system (often defined as the number of degrees of freedom) grows, the quantum-
mechanical laws approach those of Classical Mechanics. This is known as the “correspondence
principle” of Bohr and Heisenberg.

11. The “inner workings” of the system are hidden. Reality is exclusively what we measure and the
act of measuring defines it. In the usual paradoxical terms, ‘a tree falling in a forest does not make
any noise if there is no one to hear it.’

As a simple corollary, note that the expectation value of an observable Afora system in a state | y)
has been defined before as (A) = (y|A|y). Using the expansion (1.49), we have

(A) = (WlAly) = 3 o o (ailAlay) - (1.50)

)

Because of the orthonormality of the eigenvectors {|a;)},

(A) =3 o g aj {aila) = |oul* ;. (1.51)

i i

The coefficients ¢, as we saw before, express the probability that a measurement of A performed on
the system in a state | ) will yield the result a;. Therefore, Eq. (1.51) shows that the expectation value
of the observable A is simply the average of all possible eigenvalues, weighted by the probability of
obtaining each one of them.

1.4.5 The “Copenhagen Controversy”

The Copenhagen interpretation we have just outlined has emerged in the late 1920s amidst confusion
and controversy. Indeed, the picture of the physical world (“reality”’) that emerges from this
interpretation leaves many people unhappy and also presents some paradoxes (some would say:
“contradictions”).

At a general “intuitive” or philosophical level, “reality” ceases to exist as a concept independent
of the observer. This is what is usually known as the “logic positivist” view. The first two axioms
above imply that it is meaningless to assign a property b (say: the position of a particle) to a system
when we have measured a complementary property a (say: its momentum), even only conceptually,
regardless of measurements: Not only can we not assign a position to the particle; the particle cannot
be thought of as being endowed with a property like “position” once we have measured its momentum.
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In other words, the ultimate nature of reality is determined by the observer. Realists, like Einstein or
Schrodinger himself, never accepted this view and fought back. Einstein, in particular, claimed that
Quantum Mechanics is an incomplete theory [15] that, eventually, will need to be replaced by a better
picture that will uncover and deal explicitly with those “hidden variables” that Copenhagen dismisses.
Attempts to re-introduce realism are at the roots also of Bohm’s interpretation [17, 18], among others.

At a more technical level, axioms 6-8 coupled to axiom 9 present an intrinsic problem.
A measurement apparatus must obey the laws of classical physics. Yet, axiom 9 tells us that, since
Quantum Mechanics is assumed to be a complete theory, we could describe quantum mechanically
the larger system {original system}+{measuring apparatus}. This larger system, associated with
the tensor-product Hilbert space of the Hilbert spaces of both systems, would then be subject to
measurements performed by a third system, a new measuring apparatus. This new apparatus must
obey the laws of classical physics. Clearly, this results in a recursive process, known as the “von
Neumann chain.” Where does the quantum world end and does the classical world begin? Particularly
puzzling are the paradoxes that emerge as soon as we are willing to include the observer in the
quantum description, since we are brought into the realm of defining human consciousness and how
this affects reality [27].

Despite the severity of these problems, from a very pragmatic perspective, so far the Copenhagen
interpretation has withstood all possible tests. John Bell, another realist, intended to show how
absurd this interpretation is, by emphasizing differences between classical probabilities and quantum
probabilities that include “interference” terms. His famous “Bell inequality” [14], finally tested
experimentally [13], has confirmed the validity of the Copenhagen interpretation, raising even more
puzzles. Skeptics remain and loopholes are constantly found in the experiments to disprove Aspect’s
result, which why we wrote “proof” in quotes. Yet, it is fair to say that, as new experiments are
performed, a realist’s viewpoint becomes ever harder to defend. Theories that introduce local hidden
variables, in an attempt to restore “intuitive” reality, seem to be inconsistent with these experimental
results. Theories that attempt to achieve the same goal by assuming nonlocal hidden variables,
such as Bohm’s nonlocal quantum potential [17, 18], appear to be still consistent (or, at least, “not
inconsistent”) with experiments. However, this nonlocality introduces a feeling of “weirdness” via
“spooky actions at a distance” (a statement attributed to Einstein) that feels uncomfortable to the
realists themselves.

Richard Feynman said that Quantum Mechanics with its Copenhagen interpretation works well
“for all practical purposes.” In the rest of this text we shall leave philosophy on the side: After all,
the mathematical machinery of Quantum Mechanics works well indeed (that is, it provides results
consistent with experimental observations available at present), the rest we shall leave to after-dinner
discussions. .. However, we must admit that some issues that recently have become popular and of
practical interest (such as quantum entanglement, quantum computing, and quantum teleportation, to
mention just a few) make the problem more pressing, more practically relevant, and more severe than
we would like to believe.

Problems

1.1. (Newton’s Law) Consider a particle of mass m in three dimensions in the presence of a
potential V(r). Write the Lagrangian, the Hamiltonian, Euler-Lagrange, and Hamilton equations for
this simple system. Convince yourself that you recover Newton’s law F = ma.

1.2. (Conservation Laws) Consider the same situation of the previous problem, but now assume that
V(r) has cylindrical symmetry; that is, that it depends only on the cylindrical coordinates r and z, but
not on the angle ¢. Write the Lagrangian, Hamiltonian, Euler-Lagrange, and Hamilton equations in
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cylindrical coordinates. Finally, verify directly that the z-component, L,, of the angular momentum of
the particle is a constant of motion.

1.3. (Tunneling Across a Square Potential Barrier) Consider the tunneling problem with the
potential barrier:

0 forz<0
V()= V>0forO<z<L .
0 forz>L

Write the wavefunction as

Ae* + Be= % for 7 <0
y(z) =4 Ce*+De * for0<z<L ,
Feikz forz>L

with k = (2mE)"/? /h and x = [2m(V — E)]'/?/h.

(a) Write the system of four equations expressing the continuity of the wavefunction and its derivative
atz=0andatz=L.

(b) Find the transmission coefficient, T = |F|>/|A|>. There’s no need to solve the full system.
Be creative. Hint: Multiply the equation expressing continuity of y at z = 0 by ik and add and subtract it
from the equation expressing continuity of the derivatives at z = 0. Do a similar thing with the other two equations
(by multiplying one by x). Now it should be relatively easy to solve for F in terms of A alone. This gives you 7.

1.4. (The WKB Approximation) The Wentzel-Kramers—Brillouin (WKB) approximation to solve
the Schrodinger equation consists in writing the solution of the time-independent problem:

w2y (x)
C2m dx2

w(X)L/ {/k }

where k(x) = {2m[E — V(x)]}'/?/h. This is a good approximation if the potential V(x) varies slowly
(that is, it does not change much compared to the electron energy E when x varies over several de
Broglie wavelengths). If E — V(x) < 0, the WKB wavefunction becomes

v~ g exe{ - [ 0y ar )

where now x(x) = {2m[V(x) — E]}'/?/h.

Let’s now ignore the factor k~!/2 (which simply ensures continuity of probability current). Consider
now the previous tunneling problem (Problem 1.2.) and identify the WKB approximation to the
transmission coefficient as

+ V() y(x) =Ey(x),

as

Twxs = |y(L)|" = exp{ 2/ } (1.52)
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Compare Twkgp with the “exact” transmission coefficient 7' of the previous tunneling problem, in the
limit in which kL >> 1.

1.5. (Probability Density and Current Density) From the Schrédinger equation derive the continu-
ity equation:

ap
Ziv.S=0
> TV$=0,

where p = |¥|? is the “probability density” and S = % [PVP* — W*VY] is the “probability density

current.” It is this conservation law that makes it possible to interpret consistently the squared
amplitude of the single-particle wavefunction as a probability density.

1.6. (Some Useful “Matrix Elements’’) Calculate the matrix element between two wavefunctions
of the form

Wllor) = e and w(Kon) = el

and the perturbation potentials of the form:

(a) H o elar
(b) H o 8(r)
() H o< |r| 2
(d) H o e~ Itl/70 Polar coordinates are useful in ¢ and d.

1.7. (Second-Order Time-Independent Perturbation Theory) Extend the procedure followed in

Appendix A to find the perturbed eigenvalues E,(lz) to second order in « using time-independent
perturbation theory.
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Chapter 2
The Periodic Table, Molecules, and Bonds

2.1 Atoms: Building up the Periodic Table

In this chapter we show how the Schrédinger equation—together with a few additional concepts—can
allow us to build (conceptually) the periodic table of the elements. In turn, this will give us some ideas
about the nature of atomic orbitals, concept that constitutes the basic building block underlying the
formation of atomic bonds in molecules and crystals.

First, we need to introduce the concept of quantum number. The example of a particle in a three-
dimensional (3D) box will illustrate this. For simplicity, we treat the simpler case of a free particle.
Any text on Quantum Mechanics could—and should—be consulted to have a more complete picture
and set of examples [1-5].

2.1.1 Free Particles in Three Dimensions

The Schrodinger equation describing a particle of mass m in absence of any potential is

h*V? .0
~ ‘P(r,t)zlha Y(r,1). 2.1)

In order to solve this partial differential equation we use a technique called “separation of variables.”
Let us look for a solution of the form

¥ (r,1) = y(r) T(1), 2.2)

that is, we look for a solution expressed as the product of a function y that depends only on the spatial
coordinates r, and a function 7 that depends only on time. Thanks to the linearity of the Schrédinger
equation, the most general solution satisfying the required boundary and initial conditions can always
be written as a linear combination of solutions of this type. Therefore, the particular choice given by
Eq. (2.2) does not restrict the generality of the solution we can obtain.

Inserting Eq. (2.2) into Eq. (2.1) and dividing by ¥, we obtain

1 wV? 1 d7(r)
——— —VY(r) =i ——. 2.3
y(r) 2m y(r) =i T(r) dt 3
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Note now that the left-hand side (lhs) of this equation is a function of the spatial coordinates r only,
whereas the right-hand side (rhs) depends only on . Since r and ¢ are independent variables, we are
free to change them as we please. Therefore, the equality expressed by Eq. (2.3) can hold only if both
sides of the equation are equal to a constant. Therefore, calling this constant £, must we have

dT(t) E B
and
n*v?
— 5, V() =Ey(r). 25

Equation (2.4) has a general solution 7'(f) = Ae™" ®, where A is a constant to be determined by the
initial conditions, and @ = E. Note that, since the lhs of Eq. (2.5) is justA the Hamiltonian of the
system, this equation is exactly the eigenvalue equation for the operator H of the simple system.
Therefore, we can identify the search for the solution y as the search for the eigenvectors of the
Hamiltonian, and E as their eigenvalues. Therefore, E is just the energy of the particle.

We conclude that our solution has the form ¥(r,) = Ae ™' ®’y/(r). This represents an eigenvector
of the Hamiltonian, |y), in the Hilbert space L?(R?), that rotates in time with radian frequency .
The wavefunction y(r) = (r|y) satisfies the “time-independent” Schrédinger equation, Eq. (2.5).

Assuming that the potential energy of the particle is just a constant, Vj, we can determine y(r) by
following the same procedure of “separation of variables.” We express the Laplacian and the spatial
coordinate r in terms of their components:

W [ 9?2 02 02
_% EW(X’)}’Z)_FT)QW(x’y’Z)d‘_TZZW(’X’y’Z) +V0 II/(X,)?,Z)
=Ey(x,y,2). (2.6)
Now, let us look for a solution of the form:
W(xvyvz) = WX(X) l/fy(}’) WZ(Z)7 (27)

where v, Wy, and y; are three different functions in one variable only. Inserting this into Eq. (2.6),
we obtain

2 2 X 2w 2
g [0 v S v v T ) ) 5 |
=E y(x)yy (v) (). (2.8)

Dividing both sides by v (x) yy (v) 2 (z):

+

‘m[ww T 0 R TR o R 29

L dy) 1 dy) 1 d%(z)}_ 5

This equation tells us that the sum of three functions of different variables (x, y, and z) must always
be equal to a constant (E) for all possible values of x, y, and z. This is possible only if each function is
equal to a constant, that is
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AT i o E,, (2.10)
ol dzl//y(y)

C2moy(y)  dy? =& @1
”oo1 dyw(z)

o d (2.12)

We have indicated with E, E,, and E, three arbitrary constants subject to the condition E\ + Ey, + E;,
= E. Rewriting Eq. (2.10) as

n* Ay (x
—— Z’xz( ) (), 2.13)
its general solution has the form:
V() = Ay b, (2.14)

where A is an arbitrary multiplicative constant that will be determined below by “normalizing” the
wavefunction. In this equation

ke = —+/2mE;. (2.15)

is the wavenumber along the x-axis. We can proceed in an analogous way for the y- and z-components,
so that the full wavefunction has the form:

Y(r) = AA A, el bethatha) — 4 glkr, (2.16)

having defined the wavevector k as the vector with components (ky,ky,k;), and A is an arbitrary
constant.

Recalling that ¥(r,1) = Ae ™ ®y(r), Eq. (2.16) describes the particle as a “plane-wave” propagat-
ing in the direction of the wavevector k with wavenumber (number of wavelengths per unit length
along the direction of propagation) given by the magnitude k of k and with phase velocity ®/k. Note
that its momentum p will be ik, and the energy of the particle is E = A%k /(2m).

2.1.2 Particles in a Three-Dimensional Box

Consider again Eq. (2.5) or (2.6), but assume now that the particle is confined in a cubic box with side
length L; i.e., the potential vanishes for —L/2 < x < L/2, —L/2 <y <L/2,and —L/2 < z < L/2, but
it is infinite otherwise. Therefore, we must look for solutions of a form similar to what we have just
found for a free particle, but subject to the condition that the wavefunction vanishes at the boundary,
and outside, of the box. Therefore, we must look for solutions y;(x), yy(y), and y;(z) of the form:

wir=(7) ()
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where n, is an integer, with similar expressions being valid for y and z. The full wavefunction will

now be
y(r) = (f)) v sin (nxfx) sin (ny[ity) sin

where Q = L3 is the volume of the box and the energy of the particle will be

(”’L”Z) , 2.17)

E _ (n§+n§+n§)h2n2
T,y ImL2

Note that the normalization constant A = (8/ Q)l/ 2 in this case has been fixed by requiring that there
is unit probability of finding the electron inside the box:

| arlwmP 1.
Q

If we were considering a particle in one dimension, the particle would have only one degree of
freedom and we would need only a single “quantum number,” say, n,, to label the energy levels. In
3D, instead, the particle has 3 degrees of freedom and we now need three quantum numbers, 7y, n,y,
and n, to label the possible states (that is, the possible “types” of wavefunction) of the particle.

2.1.3 The Hydrogen Atom

The case of the H atom is conceptually similar to the case of the particle in a cubic box. Unfortunately,
it is significantly more complicated from a mathematical perspective, because the potential confining
the particle (the Coulomb potential energy is —e?/(4meqr)) is not “flat,” but depends on the distance
r from the nucleus. Indeed, the time-independent Schrédinger equation we must solve is

n*v?
[ T V(r)] y(r) = Ey(r), (2.18)
me
where V(r) = —e?/(4meor). We have used the notation m, for the mass of the particle, since we

are specifically interested in an electron around a proton. Also, we have attempted to minimize the
confusion caused by the fact that the symbol m will be used below to label a quantum number. It is true
that the potential is not constant, so separating variables in Cartesian coordinates would not work: We
would not be able to re-express this equation as the sum of terms that depends on a single variable, as
we found in Eq. (2.9). However, the potential energy V depends only on the radial coordinate r, not the
polar and azimuthal angles 6 and ¢. This spherical symmetry can be exploited to separate variables if
we employ spherical coordinates. Thus, we look for solutions of the form:

y(r) = y(r,0,0) = R(r) ©(6) @(¢). (2.19)

The “radial function” R(r) describes the way the wavefunction spreads away from the nucleus. The
“angular functions” ©(0) and @(¢) describe how the wavefunction is distributed as a function of the
polar and azimuthal angles.
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Rewriting Eq. (2.18) in spherical coordinates,

2
[sin@a <rzallf) +i (sin@aw> + L 9 ‘l/] - 2meV(r)V/

r2sin O ar ar 20 00 sinf d¢2 n?
2meE
_ h; (2.20)
and inserting Eq. (2.19), we have
1 d [/ ,dR R® d doe RO d’® 2m.V(r)
00— (P — |+ ———(sinf— |+ ——— — —LROD
20 dr (r dr> T 2sne de (Sm d9> T asnteder 2
2meE
=— h; ROD. (2.21)

Now, following the same procedure we have followed before in Cartesian coordinates, let’s divide by
RO @ the expression above:

2sin6 O d6

2 r T sin — - = - . (2.22)

1 d [ ,dR 1 1d doe 1 1de 2mV(r) 2mE
de 2sin2 0 @ d¢? K? K2

Multiplying by ?sin® @ and rearranging the result, we obtain

10, 5, (1 d[,dR 1 1d (. ,dO\ 2m[V(r)—E]
_1de 1 d ([ 2dR =S (sing2 ) - 2PV ZEL g,
®dp2 " 9{ (r dr> T 2sin6 © o (Slned(a) " 223

Now we follow the “usual” reasoning: The lhs is a function of ¢ alone, while the rhs is a function of r
and 6. Since we can vary r, 0, and ¢ independently, the only way Eq. (2.23) can hold is for both sides
to be equal to a constant. Let’s call this constant m? (where m is to be viewed, for now, as a general
complex number). Thus,

1 2o,
- 2.24
®dp2 " 224)

so that the “azimuthal” factor @ must be of the form:
D(¢) ~ e, (2.25)

up to a normalization constant. Since we require periodic (and so, single-valued in real space)
solutions, we see that m must be an integer. This condition should remind us of the De Broglie and
Bohr’s arguments to explain the discrete nature of the atomic spectra by requiring that an integer
number of wavelengths must “fit” into an orbit. Note also how the eigenvalue problem given by
Eq. (2.24) [and, more generally, Eq. (2.20)] is defined not only by the differential equation, but also
by the boundary conditions, and so by the space of functions we intend to confine our attention to;
namely, differentiable, integrable over the entire space and single-valued/periodic, in our case. This is
another way of expressing physically sensible boundary conditions. Returning to Eq. (2.23) and using

Eq. (2.24), we see that
A dRY 1 1d (46
Rr2 dr dr r2sin@ © dO de

1 1de  m*  2me[V(r) - E]
r2sin@ @ d¢?  r2sin 0 n?

=0. (2.26)
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Multiplying this equation by 2, we can rewrite it as

1d [ ,dR\ 2m[V(r)—E] , 1 1d /. dO m?
Bl (S I R U ] P - 0— |+ ——. 2.27
Rdr (r dr) 2 smeeds \"""de ) "nte @27

Once more, we see that the lhs is a function of r alone, while the rhs depends only on 8. Thus, both
sides must be equal to a constant, say K. Therefore, we reach the two equations:

d [ ,dR 2me[V(r)—E] ,
— — | —————r"R=KR 2.2
dr (r dr) K2 " ’ (2.28)
and
1 d do m?>0
— [ sin6— —— = —KO. 2.2
sin@ do <Sm do ) T inZo 229

We can now proceed in two ways, the first restricted to the case at hand, the second path being more

general and being related with the angular momentum operators. Let’s discuss them both. In order to
proceed from Eq. (2.29), we’ll skip some details here and simply state without proof that requiring ©
to be single-valued implies that K must be of the form /(/+ 1), where [ is a positive integer, much like
requiring @ to be single-valued resulted in an integer m before. Moreover, the integer m must take
values of magnitude smaller than [ (i.e., m = 0,£1,%2,...,£]).
* We should stop here for a brief comment. The statement above is the essence of what is called the
theory of “orthogonal polynomials.” The text by Arfken [6] gives an exceptionally clear overview of
the topic. When trying to solve many types of ordinary differential equations of the form Q(x)y(x)" +
P(x)y(x)" 4+ Ay(x) = 0, it is convenient to expand the unknown solution, y(x), in a power series of x;
that is, y(x) =Y, a, X". Inserting this series into the original differential equation, one can equate
terms of the same power of x and obtain a set of recursive relations that the coefficients a, must satisfy
in order for y(x) to be a solution. One finds that when the parameter A takes discrete values, Ay, then
one can terminate the series at the term x", all coefficients a, vanishing for n > N, for finite N. This
results in the generation of polynomials yy(x), that constitute a basis set on the functional space
considered; for example, in the Hilbert space L*(R) of all square-integrable complex functions of a
real variable. These can be orthogonalized or orthonormalized using the Gram—Schmidt procedure.
Hermite, Legendre, Jacobi, Laguerre, and Chebyshev polynomials belong to this class. In the context
of Quantum Mechanics, usually the parameter A is related to the eigenvalue of the Hamiltonian and
the resulting discrete set of values Ay yields the discrete spectrum, the polynomials yy being related to
the eigenvectors. We will encounter shortly two examples of such functions, the Legendre and Laguerre
polynomials.

Returning to Eq. (2.29), with these considerations we see that it must take the form:

1 d doe m*e
E (sinoS2 )+ 7 1+ e =o. 2.30
sin@ do <Sm9d9> e IO (2.30)

Setting x = cos 6 transforms this equation into what is known as the “associated Legendre” equation
whose solutions are the “associated Legendre polynomials”

P(x) = (1 —xz)’””%Pz(x), @31)
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where the functions P;(x) are the Legendre polynomials. Thus, we have found that the full angular
dependence of our solution has the form:

Y7(6,¢) = P’ (cos6)e™?. (2.32)
Properly normalized, so that
T 2
| a6 [~ aglvyce.0)P =1, (2.33)
0 0
these functions are called “spherical harmonics.”
The second way to proceed from Eq. (2.29) is to consider the angular momentum operators. In
Classical Mechanics the orbital angular momentum of a particle is defined as
L=rxp, (2.34)
so that the z-component, for example, will be

L, =xpy — ypx. (2.35)

The quantum-mechanical equivalent will be the operator

-~ . d d
L.=—ih (x8y y&x> . (2.36)

Note that from the basic commutation rules between the position and the momentum operators,
[%i.pj] =106y, [%,%] = [pi,pj] =0, (2.37)

(where we have used the notation x; = x, x =y, and x3 = z and similarly for py, etc.) we have

L3 =ih9, [Lop=ihpy, (2.38)
L9 =—ink,  [L.p]=—ihps, (2.39)
and:
Li,Lj) =i h e hily, (2.40)
where € = 1 when (i,j,k) is a cyclical permutation of (1,2,3), €;x = —1 for an anti-cyclical

permutation, €;; = 0 otherwise. Defining the square magnitude of the total angular momentum,
P=D+L+12 (241)

we have

[L?,1;] =0. (2.42)

So, since I? commutes with any Zi, we can select a basis of common eigenstates of I* and Zz, that is

Ly) = aly), (2.43)
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and
L:w) = Blw). (2.44)
In the spherical-coordinates representation we have
~ 1 J d 1 9?
72 32 A R - 2.45
[sin@ 20 (sm 89>+sin298¢2} ’ (245)
and
~ 0
L, = —1h%. (2.46)

Using these expressions, we see that Eq. (2.44) reduces to Eq. (2.24), so that m must be an integer
(positive or negative). Then, Eq. (2.43) becomes identical to Eq. (2.29) with K = (I+1).

* This last conclusion can also be reached in another very elegant way that bypasses the need to
consider orthogonal polynomials. We present it here, because a similar, purely algebraic, technique
will be used to deal with the harmonic oscillator when we shall discuss elementary excitations and
second quantization. Define the “raising/lowering” operators:

~ ~

Li=L,+iL, (2.47)

It is easy to see, using the commutation rules we have derived above, that

A~y o~

[L*,Li] =0, (2.48)

~

(where, for clarity, we should recall that L= (Zx,zy,LZ), so that L2 = ijc +Z§ +Z§ ), and
[L,,Li]=+hL,. (2.49)
Applying ii on an eigenstate | ) ofiZ with eigenvalue 3, using Eq. (2.49), we have
LLily) = [LoL.+h|y) = (B+M)|y). (2.50)

This expression shows that the operators Zi raise (+) or lower (—) the eigenstate |y) of ZZ to another
eigenstate of Zz, now with a larger/smaller eigenvalue (B £ h). Since the total angular momentum is
finite, the eigenvalues B of ZZ must span in discrete steps the range (—mh, mh), where m is an integer,
for this raising/lowering process to terminate upwards or downwards. Therefore, the states |y) can
be labeled as |ot,m), where o is a yet-to-be-determined eigenvalue of L% To determine a, a little
algebra using the commutation rule, Eq. (2.48), and the definitions of 1% and Zi, shows that we must
have oo = I(1+ l)hz, where l is a positive integer, including 0, and that m must be smaller than I. Thus,
we can recast Eqs. (2.43) and (2.44) as

L|L,m) = I(14 1)R?|1,m), (2.51)
and
L.|1,m) = mh|l,m), (2.52)

withl=0,1,2,3,... and m can take the 21+ 1 values —1I, —I1+1, ..., —10, 1, -1, L
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Leaving now the abstract algebraic domain and returning to the real-space representation of the
eigenstates, we see that the spherical harmonics are eigenfunctions of the angular momentum operator
corresponding to a total angular momentum +//(I+ 1)% with projection m# over the z-axis (the polar
axis). Note also that the spherical harmonics satisfy the orthogonality condition:

T 2T ,
/0 de/o 4o Y7(8,0) Y (8,0) = Sy 1. (2.53)
Returning to the radial function R, this must obey Eq. (2.28) with K = I(I+1):

d ( 2dR> 2me[V(r) —E]

2
R—I(I+1)R=0. 2.54
P L 2 r (I+1) (2.54)

Now we can make use of the fact that we are dealing with a Coulomb potential and set V(r) =
—e?/(4megr). Thus, the radial wavefunction R(r) must satisfy the equation:

d [ ,dR\ 2m.E 2 2
(2 )+ MeE 2R 1+ 1R+ C =0 (2.55)

ar \" ar 1’ n* 4meg
Let us now introduce the new dependent variable u(r) = rR(r), which obeys the equation:

n dPu RA(1+1) e?

— — = Eu. 2.56
2me dr? 2mer? " 47‘ceoru " (2.56)
Defining the independent variable
8me|E|)!/?
p = BmelE) T (2.57)
h
and a measure A of the binding energy of the particle,
&2 e 1/2
=— | == 2.58
dmegh (2|E> ’ ( )
Eq. (2.56) becomes
du 1(1+1 A1
Fu _W+H (ALY (2.59)
dp?  p? p 4

Clearly, at large p the solution behaves as u ~ exp(+p/2), the minus sign being the only physically
meaningful choice. Thus, setting

u(p) = F(p)exp(—p/2), (2.60)

Eq. (2.59) implies

dp2 dp

p o p?

d’F dF P l(l+1)}F0 2.61)
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Following the general procedure outlined when discussing orthogonal polynomials, one can show that
the solutions of this equation (closely related to the so-called associated Laguerre polynomials) have
an acceptable behavior in the limit p — oo only for integer values of A (say, A = n, where n is an
integer) larger than [ so that the “radial” component of the wavefunction will be defined by the two
integers n and [ < n. The index n is directly related to the energy E via Eq. (2.58).

As a result of this discussion, we see a situation similar to what we saw before in the case of
the 3D particle in the cubic box: We need three quantum numbers to label the eigenvectors (with
eigenfunctions Wy (r) = Ry(r)Oy(0)Ppn(9) = Ru(r)Y]"(6,¢)), and eigenvalues (energy levels) of
the Hamiltonian: The “principal” (or “radial”’) quantum number, 7, can take the values:

n=1,2,3,...c.

Usually (that is, in the absence of magnetic fields and ignoring weaker perturbations), the electron
energy depends only on this number via Eq. (2.58): When A = n,

4
mee

Ey=——ss 2.62

" 2(4mh)2n?’ (262)

in agreement with the early result of Bohr’s model. The quantum numbers / and m are related to the
angular momentum: as we saw, /(I + l)h2 is its squared magnitude and m# its component along the
polar axis. These can take the values:

1=0,1,...n—1, (ntotal number of values)

m=—1,—1+1,...0, 1, ...1—1, 1, (2141 total number of values).

For [ = 0, we must also have m = 0. In this case the wavefunction does not depend on the angles 8
and ¢. These are fully spherically symmetric wavefunctions (for every n) and are called s-waves. For
[ =1 we can have three different wavefunctions for m = —1,0,+1. These are called p-waves and can
be expressed as functions shaped like “lobes” pointing along the x-, y-, or z-axis. For / = 2 we can
have five states (m = —2,—1,0,+1,+2), called d-waves. For [ = 3 we have seven f-waves, and so on.

2.1.4 Periodic Table

We are now ready to build the periodic table of the elements. We shall do it as if we were building an
onion, one “shell” at a time, from the inside out. We shall call “shell” each layer defined by a common
quantum number n, “subshells” those with common angular quantum number /. The word “orbital”
or “state” denotes any combination of quantum numbers.

Before building atoms, though, we need to know two additional facts: The existence of an
additional electronic degree of freedom (“spin”) and of “Pauli’s exclusion principle.” They will be
discussed at length later. For now, we consider them qualitatively.

Regarding spin, in addition to the three degrees of freedom that all particles have in three
dimensions (3D), most particles also possess an additional “internal” degree of freedom, s, which one
can visualize as the particle “spinning” around a polar axis, much like a spinning top or the planets.
Thus, spin is an internal angular momentum of the particle. As we just saw for the orbital angular
momentum, spin can also take only discrete values in integer or semi-integer multiple of the reduced
Planck constant. Photons, some nuclei, and some elementary particles have integer values of spin
(s = 0 or nf, where n is an integer.). For reasons we shall see later, these particles are called “Bosons.”
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Electrons, protons, and neutrons have half-integer spin (s = (nfi/2)). They are called “Fermions.”
Electrons have spin /i/2 (usually said “spin one-half”). Every electron can exist in two different spin
states: Spin “pointing up” (s = i/2) or “pointing down” (s = —/i/2). Both are states with angular
momentum of magnitude 7/2, but they differ in the direction of rotation around their axis.

Regarding Pauli’s principle, in order to explain the periodic table and the electronic structure of
the atoms, the German physicist Wolfgang Pauli had to invoke a new postulate (later demonstrated
rigorously): Given an energy level, characterized by a set of quantum numbers, it can be occupied
only by one Fermion (so, electrons). Therefore, a given hydrogen state characterized by the quantum
numbers (n,/,m), can be empty or occupied by one or two electrons (in which case an electron will
have spin up, the other spin down). Attempting to add a third electron would violate Pauli’s principle.

Let’s start with the simplest element, H. Its nucleus has a single positively charged proton and it
is surrounded by a single electron. The lowest possible orbital the electron can occupy is the “ground
state” (n =1, [ = 0, and m = 0). We use the notation lsl, meaning that in the orbital 1(n = 1), which
is an s-wave (I = 0), we have one electron (the superscript “1”). Note that the electron is bound rather
weakly to the nucleus: the ionization energy, E; in Eq. (2.62) is about 13.6 eV. This quantity is called
a “Rydberg” and is indicated by the symbol “Ry”. We shall use it very frequently in later chapters.
Therefore, H loses its electron quite easily; that is, it is easily ionized. This trait is common to all
elements with only one electron in the outermost shell. These elements are very reactive (think of
hydrogen reacting with oxygen!).

The next simplest element is He. Solving the Schrodinger equation for this atom already introduces
enormous complications. The wavefunction we must find is now a function of six variables, y(r;,r2),
r; and r; being the coordinates of the two electrons. Unlike the case of the hydrogen atom, in which
the potential energy is given, now the potential energy must include also the electrostatic potential
felt by each electron due to the charge of the other electron. The potential energy due to the Coulomb
interaction with the charge of the nucleus and with the “time averaged” charge distribution of the
other electron is called the “Hartree” energy. However, more subtle contributions to this potential
energy come from the fact that Pauli’s principle can also be reformulated by requiring that the total
wavefunction be antisymmetric under exchange of the two electrons, that is, y(ry,ry) = —y(ra,r1).
This property will also be discussed at length in later chapters, since it affects very strongly the
electronic properties of crystals. For now, we simply observe that this “antisymmetrization” makes
electron with spins pointing in the same direction repel each other; the opposite is true for electrons
with spins pointing in the opposite direction. The Coulomb repulsion between the electrons, therefore,
will be modified by this effect and the additional (positive or negative) change in energy is called
the “exchange” energy. An additional correction (the “correlation” energy) will be discussed in
later chapters. What matters now is that the Hartree and exchange energies depend on the spatial
distribution of the electrons, |y(r,r2)|?. So, the potential energy entering the Schrodinger equation
depends on the wavefunction itself. This renders the Schrodinger equation nonlinear and only
approximate or numerical solutions can be found. The case of heavier atoms, so with a much larger
number of electrons, is, of course, extremely complicated. In later chapters we will see how one can
handle such a situation even in crystals, systems with an extremely large number of electrons. Here,
we should just keep these facts in mind and we shall deal with the problem at a qualitative level.

Returning to the He atom, its nucleus now has two protons (so that the “atomic number” of He
is Z = 2). Two neutrons are required to prevent the Coulomb repulsion between the protons from
causing a disintegration of the nucleus itself. (These are forces of a different nature, the strong nuclear
forces that we will ignore in this book.) Two electrons orbit the nucleus and, in the configuration of
the lowest possible energy, both are in the lowest-energy “shell,” provided they align their spins in
opposite directions. We use the notation 1s>. Note that we have fully populated the first “shell.” If we
were to ionize negatively the atom by adding another electron, this would have to occupy the next
higher-energy shell, n = 2, because there is no more room in the n = 1 shell. Thus, the third electron
would have to go farther away from the nucleus. So, He does not easily acquire another electron.
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On the other hand, stripping one electron away from the He atom is energetically very expensive,
since both electrons sit quite close to the doubly charged nucleus. Therefore, helium does not “like”
to lose or gain electrons (that is, becoming ionized). He, like all elements which have a fully occupied
shell, is chemically inert.

The third element, Li, has three protons in its nucleus (Z = 3), so it must have three electrons
orbiting it in order to be charge neutral. The third electron, as we just saw, must occupy the n = 2
shell, so Li will have the electronic configuration 1s22s!. Tt is a very reactive metal, for the reasons
we discussed dealing with H: It is very easy to strip away the lone outer electrons, leaving behind a
positive Li ion.

We now keep populating the n = 2 shell, adding another electron in the s orbital (beryllium, Be,
15225 with Z = 4), then 6 more into the 3 p orbitals, adding electrons with spin up and spin down
in sequence. As we move from the reactive metals (Li and Be), we build elements with 3 “outer”
electrons (boron, B, 1s22s22p1), 4 outer electrons (carbon, C, 1s22s22p2), 5 (nitrogen, N, 1s22s22p3),
6 (oxygen, O, 1522s22p4), and 7 outer electrons (fluorine, F, 1s22522p5 ). As we do so, we move from
elements which like to lose electrons, to those who like to gain them. Eventually, with neon (Ne,
Z =10, 15*25%2p°) we complete the n = 2 shell and we hit another inert gas, like He, unlikely to react
chemically. The eight slots we have filled while populating the n = 2 shell are the eight columns of
the periodic table. The chemical properties of any two elements having the same number of electrons
in the outer shell are very similar. So, as we fill the n = 3 shell, we start from sodium (column I, Na,
Z =11, 15*25*2p%3s') which, having only one electron in the outer shell, behaves like Li. And we end
up with argon (column VIII, Ar, Z = 18, 15>2522p%3s23p%) which is another inert gas like He and Ne.

Things get a little more complicated now, because the energy of the 4s shell is lower than that
of the 3d shell. This is caused by the perturbation of the Coulomb energy (Hartree, exchange, and
correlation) due to the many electrons present in the system, so that the energetic “ladder” expected
from an analogy with the eigenlevels of the H atom fails significantly. The dependence of the energy
level on the quantum number /, for example, is a manifestation of this fact. So, with potassium (K) and
calcium (Ca) we fill the 4s shell, but then we go back filling the 3d shell. The fact remains that—up
until further complications caused by the f states of transition metals—each element belongs to its
own column which determines the chemical properties via the number of electrons in the outer shell.

Of interest to us are silicon (Si, Z = 14, 1s22522p63s23p2) and germanium (Ge, Z = 32,
15225%2p%3523p®3d'%45%4p?) which, like C, belong to the IV column. Their 4 outer electrons are
s%p? and can easily “hybridize” into 4 sp> orbitals, forming the tetrahedral structure required to bond
atoms in their cubic crystal form. Elements of column III (B, Al, Ga, and In) have outer electrons
arranged as szpl, that is, one fewer electron than in Si and Ge. Elements of column V (N, P, As, and
Sb) have outer electrons arranged as 52p3, that is, one more electron than in Si and Ge.

Finally, electrons in fully occupied shells are called “core electrons.” They do not contribute to the
chemical activity of the element. Electrons in the outer shell are called “valence electrons.”

2.2 Molecules and Bonds

The nature of chemical bonds, molecular orbitals, hybridization, and such, has been subject, and
still is, of too many studies and even controversy. Being interested in solids and electronic transport
in crystals, we can only give here a bird’s eye view. Excellent texts such as Pauling’s [7] and
Harrison’s [8] give a comprehensive and detailed account from the perspective of a chemist (Pauling,
arguably one of the fathers of the concept of chemical bond in light of Quantum Mechanics) and of a
physicist (Harrison).
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If we bring several atoms together, interesting things happen, depending on the electronic
populations of the outer shell.

1. Nothing. For example, bringing 2 Ne atoms together, both atoms retain their electronic configura-
tion unaltered, as they are both in a configuration of a completely filled outer shell with 8 electrons
(2 in s orbitals, 6 in p orbitals). This is why elements of the VIII column are called “inert” elements
(or gases).

2. Formation of an ionic bond. Let’s consider Na and Cl. Na has 1 electron in the outer s shell, CI
7 valence electrons (2 in the s shell, 5 in the p shell). Energetically, it is advantageous for Na to
release its electron (weakly bound, as the core electrons shield the nuclear charge), while Cl1 “loves”
to acquire that electron to complete the filling of its outer shell. Thus, the sodium atom becomes
positively ionized (Na™) and the chlorine atom becomes negatively ionized (C1™). Now we have a
positive (Na™) and negative (Cl™) particle which are attracted by the strong Coulomb force. The
two ions are said to have formed an “ionic bond” and stick together in the NaCl molecule (regular
kitchen salt when in crystalline form). Semiconducting crystals, like GaAs (Ga in column III, As
in column V, so this is a so-called III-V compound semiconductor), are bound in large part by
ionic bonds. Water (H,O) is similarly formed, although now the charge transfer takes place among
three atoms: The 2 H atoms give their electrons to O which has 6 valence electrons, and so it fills
its outer shell. Thus, we now have two positively charged HT ions bound to a doubly ionized O>~
ion. Ionic bonds are usually quite strong with “binding energies” of several eV, i.e., of the order of
1-10eV.

3. Formation of a covalent bond. Let’s consider two oxygen atoms brought together. They are in the
2522p* configuration in the outer shell. They would both “love” to fill their outer shells by adding
two electrons. They can do that by sticking together and sharing their two outer electrons, thus
forming the O, molecule. They form a “covalent bond.” The situation with Si and Ge is somewhat
more complicated. They have 4 electrons in their outer shells (s’>p?). They can “hybridize” to form
4 sp3 orbitals. These are linear combinations of the s orbital and of the 3 p orbitals that, when Si
atoms are arranged in a crystal, form a state with lower energy than the separate s and p orbitals.
These hybrid orbitals are arranged in a tetragonal fashion, so that each Si atom has four neighbor
Si atoms to form covalent bonds. Therefore, the Sip molecule cannot exist, but several Si atoms
can form a “network™ of tetragonal bonds and form a covalent crystal. Covalent bonds are, usually,
the strongest bonds.

4. Metallic bond. When we bring together a large number of metallic atoms (say, Li or Be), the weakly
bound single electrons belonging to each one of the many atoms are “shared” among all ions. The
ions form a “lattice” (as we shall see below dealing with crystals), the shared electrons keeping the
lattice together. The metallic bond has a strength comparable to that of ionic bonds.

5. Hydrogen bond. This is still a poorly understood bond present in water-ice, and, for example,
binding the bases to the chain of DNA molecules. A H atom between two molecules acts as a bridge
binding (somewhat weakly) the molecules together, as its lone electrons “resonates” between them.

6. Van der Waals force. Although generally a weaker effect, another type of interaction affects
solids and some relatively chemically inactive molecules. When brought together, rather than
exchanging or sharing electrons, atoms or molecules “polarize” their electronic clouds. The
resulting interaction is between electric dipoles with opposite orientation. The force decays very
quickly with distance. This is an interaction typical of flat surfaces (think of two sheets of glass)
and polymers.

Mlustrations of the ionic, covalent and Van der Vaals bond are shown in Fig.2.1. Note also that,
although we have made a sharp distinction between ionic and covalent bonds, in many cases both
types of bonds contribute: For example, in III-V compound semiconductors, a large charge transfer
causes ionicity of the bonds, but the fact that most of these crystallize into the face-centered cubic
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Fig. 2.1 Cartoon
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structure resulting from sp> hybridization shows that the bond is also largely covalent. Such bonds are
often characterized by specifying the degree of ionicity.

We have outlined why the chemical properties of the elements are fully determined by the valence
electrons. The number of electrons in the outer shell also determines the chemical valence of the atom.
As a general rule, electrons with fewer than 3 electrons in the outer (incomplete) shell have a chemical
valence equal to the number of electrons. For example, Li (one electron in the outer shell) has valence
I, Ga (3 electrons in the outer shell) has valence III. If the outer shell contains 6 electrons or more,
the valence of the element is 8 minus the number of electrons. Elements with a more complicated
electronic structure of the outer shell(s) can exhibit several different chemical valence numbers.

Finally, it is important to realize that during the formation of a bond, the electronic orbitals change
their structure. For example, during the formation of the O, molecule the electrons “shared” by the
two oxygen atoms will “orbit” both cores (nuclei+core electrons), forming new orbitals by a “linear
superposition” of the wavefunctions of the 2p orbitals of each atom. As shown in the figure below,
out of these two “single atom” orbitals we form two molecular orbitals: A lower-energy “bonding
orbital” and a higher-energy “antibonding orbital,” respectively, at a slightly lower and higher energy
than the original single-atom orbitals. The bonding orbital is occupied by the two shared electrons and
it exhibits a larger charge density (that is, a larger |y/|?) between the atoms. In other words, there is a
large probability of finding the electrons between the atoms. Thus, this orbital contributes to keeping
the atoms together. The antibonding orbital is empty and it is associated with a charge density (again,
|y|?), which is larger away from the bond. A bonding and an antibonding orbital are illustrated in
Fig.2.2.

Very large molecules may consist of a very large number of atoms. For example, polymers, such
as the polyparaphenylene (PPP) chain of C atom illustrated in Fig.2.3. In such a chain, each C atom
on the “center” atomic line is bound to three more C atoms in hybrid sp? orbitals (note that the
notation used here differs from the notation used before: The superscript “2” now indicates that 2
p orbitals make up the hybrid orbital): The outer s orbital and three p orbitals split into three linear
combinations of the lone s and two p bonding orbitals, and a single p, orbital that “sticks out” of the
plane of the molecule. For C atoms on the outer lines of the chain, two such sp2 orbitals bond each C
atom to its two neighbors; the remaining sp? orbital is “terminated” by an H atom. The out-of-plane
p. orbitals hybridize into a set of bonding 7 orbitals that extend throughout the chain (the use of
Greek letters is briefly explained at the end of the chapter). Higher-energy orbitals (the 3s and 3p)
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Fig. 2.2 Schematic representation of bonding and antibonding states in a diatomic molecule: Two molecular orbitals
can result from the linear superposition of the two outer-shell wavefunctions of the two atoms, a bonding orbital with
a large electron charge density between the atoms, charge that contributes to the bonding and has a lower Coulomb
energy; and an antibonding, higher-energy orbital. The Van der Waals interaction between two molecules stems from
the mutually induced charge polarization and resulting Coulomb attraction. In a H-bond, a hydrogen atom acts as a
bridge, being shared by the two atoms or molecules
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Fig. 2.3 The polyparaphenylene (PPP) chain. The circles denote C atoms, the little dots at the edges of the chain
denote H atoms. The lines connecting the atoms are sp? hybrid atomic orbitals. The remaining p, orbitals in the outer
shells of the C atoms “stick” in and out of the page. They “fuse” together into a molecular 7 bonding orbital that
extends throughout the entire chain. They are the highest-occupied molecular orbitals, HOMO. The next higher-energy
molecular orbitals, 6* and 7*, are, instead, empty antibonding orbitals. They are the lowest-unoccupied molecular
orbitals, LUMO

hybridize into antibonding ¢ and 7 bonds. In this case, the polymers exhibit an energy difference
between the highest-energy occupied (hybridized) molecular orbital (HOMO) and the lowest-energy
unoccupied molecular orbital (LUMO). Such a molecule will be electrically insulating, since only
electrons occupying the delocalized LUMO (that is, spread among many atoms) can move if driven
by an electric field, but there are no electrons in these states. Other examples of molecules may be
found in which the valence hybridized orbitals are only partially occupied, so these molecules will
be good conductors, behaving as metals. These considerations will be repeated almost verbatim when
dealing with insulators and conductors in the context of crystals (solids). Strands of DNA, or even
larger proteins, can fall into any of these categories. Their electrical properties are now being exploited
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to “mark” them for medical or biological purposes, “sense” them in diagnostics, such as detecting the
change of conductivity induced by a mismatched basis in a DNA sequence. Also, electronic devices
based on single molecules are an extremely active area of research. A complete discussion of these
topics is, clearly, outside the scope of this text, although the connections are many: understanding their
physical principles, their atomic and electronic structure, and their electronic and electrical properties
requires concepts, mathematical and numerical techniques that are very similar, often identical, to
those discussed here. The text by Helgaker et al. [9] constitutes an excellent and relatively recent
overview of this fast-developing field.

Finally, note how hybrid molecular orbitals are termed with the Greek letter(s) associated with the
Latin character of the atomic orbital that enters the hybridization (s atomic orbitals hybridize into ©
molecular orbitals, p can enter into 7-bonds as well as o-bonds).

Problems

2.1. (The de Broglie Hypothesis and the Bohr Atom) The de Broglie’s assumption to explain
atomic spectra (among other things) consists in assuming that all forms of matter behave as particles
or waves, depending on the situation. For a particle of mass m, the wavelength A of the associated
“pilot wave” will be given by

A

Consider how de Broglie’s suggestion may explain some features of the hydrogen atom:

(a) Show that the de Broglie assumption, together with the “quantization condition” that the circular
orbit be an integer multiple of the length of the electron wavelength (that is, nA = 27r, where r is
the radius of the orbit, n an integer), implies that only discrete orbits are allowed.

(b) Calculate the total energy (kinetic plus potential) in each orbit characterized by an integer n. Show
that the result is identical to what is shown in Eq. (2.62).
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Part 11
Crystals and Electronic Properties of Solids



Chapter 3
Crystals: Lattice, Reciprocal Lattice, and Symmetry

3.1 Opverview

We are usually taught that matter can exist in three forms (or “states”): Gas, liquid, and solid.
Occasionally, a fourth state is added, plasma (a gas of ionized atoms and electrons). Sir Nevil Francis
Mott, however, disagreed: If we look at many of what we call “solids,” a small change of the ambient
temperature can induce an apparent change of their state. Butter, for example, when taken as a hard,
brittle “solid” out of the freezer, becomes softer, more malleable, when put in the warmer shelves of
the refrigerator. When left on the kitchen table on a warm day, it melts into a liquid. There are no
sharp “phase transitions” to speak of. The microscopic structure of butter remains the same: Long
organic molecules, arranged in a random fashion, are free to slide one over the other at a higher
temperature; lowering the temperature simply makes it more difficult for the molecules to move and
butter becomes “solid.” Mott would have said that, even in the freezer, butter is a liquid, as hard as it
may feel to the touch. Most people would say that butter is an “amorphous” solid, lacking an internal
regular order, being made up, instead, by atoms of molecules arranged in a random network. A proper
“solid,” instead, exhibits a phase transition—a sudden change of its behavior—when melting. This is
the property of “crystals”: Regular, periodic arrangement of atoms or molecules.

Intuitively, it is convenient to think of crystals as tiles on a floor. The shape of the tile (rectangular,
square, or hexagonal) is analogous to what is defined as “lattice.” The design on the tile (e.g., a flower)
is the analogous of what is called the “basis.” In a proper solid, the lattice defines the symmetry of the
crystal, each tile being called a “cell”; the arrangement of the atoms in each cell defines the basis.

Crystals are the main subject of this text. The reason why they are so important as to deserve a
huge literature and extensive study is, of course, the enormous role that they play in our society and
culture. Our age has been defined as the “silicon age.” The cultural and financial effects that crystals
(specifically: semiconducting crystals) have had to our society cannot be overstated. If crystals had
entered our society only through kitchen salt (cubic NaCl crystals), interest in them would have not
been so high, as much as our bodies and nervous system may need salt.

Their regular, ordered, periodic structure makes them ideal systems in which we can control the
flow of charge carriers (electrons). This order also makes it possible to study them, and so to optimize
their properties. In this chapter we shall define crystals and discuss their symmetries. In later chapters
we shall use this “order” to study their all-important electronic properties.

© Springer International Publishing Switzerland 2016 39
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3.2 Crystals

Crystals are regular arrangements of atoms which look identical when viewed from 2 points
r and r=r+R,, 3.1
where
Ri=lha +ha+13a3 (3.2)

is a translation vector with /1, /5,l3 € Z (the group of integers, from the German Zahlen for “numbers”)
and with fundamental translation vectors or primitive vectors ap, ap, and a3. The vector R; is called a
lattice vector.

The lattice of the crystal is the set of all points r’ generated by translation operations T; that is, by
translating a point by a translation vector R;: 7 : r — r+ R;. The basis of the crystal is the set of the
coordinates 7, of all atoms within a primitive cell. The position of each atom in the crystal can be
uniquely written as

Raom = R+ 7¢. (3.3)

3.2.1 Lattice

Lattices as defined by the set of ideal (mathematical) points with the properties given above are called
“Bravais lattices,” from the studies of August Bravais [1]. In two dimensions, it is easy to see that
there is a small set—five in all—of possible lattices: Think of the number of ways we can cover
a floor using identical tiles. These five Bravais lattices are: square, rectangular, center-rectangular,
oblique, and hexagonal (or rhombic). Different lattices are considered equivalent when they can be
transformed one into the other via a simple symmetry operation (isomorphism). In three dimensions,
there are only 14 Bravais lattices. We shall not discuss them here: We shall be interested mainly in
the face-centered cubic (fcc) lattice in three dimensions, since it is the lattice that describes most
technologically significant semiconductors; and in the hexagonal lattice in two dimensions, since
graphene (and other two-dimensional materials of high scientific and technological interest, at the time
this is written) belong to this lattice. Exhaustive information about lattices and crystals can be found
in texts on crystallography (for example, the book by Borchardt-Ott [2]) or in the introductory text on
solid-state physics by Kittel [3]. This book also provides information about how crystal structures can
be observed, identified, and quantified experimentally, via X-ray or neutron diffraction.
Some definitions and properties concerning the lattice are

e The parallelepiped formed by the fundamental translation vectors is a primitive cell and its volume
is given by £, = |a; X a; - a3|. Note that repeating the unit cell, with an offset determined by all
translation vectors, fills the entire space.

* Another primitive unit cell is the Wigner—Seitz cell. The Wigner—Seitz (WS) cell can be generated
by connecting all lattice points with straight lines, bisecting these lines with planes normal to the
lines, and considering the volume enclosed by these planes.

* As we have mentioned before, the symmetry properties of a lattice allow the existence of 14 types
of Bravais lattices (those generated by Wigner—Seitz cells).

* An arbitrary plane will intersect the axes aj, ay, and a3 at distances (A, B, C) (in units of the lengths
(a1 2,3), the lattice constants). The Miller indices (I,m,n) of the plane can be found by taking the
reciprocal of the distances (1/A,1/B,1/C) and finding the smallest integers (/,m,n) having the
same ratios as the reciprocals.
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As a matter of notation, (Imn) denotes the plane defined by its Miller indices; {/mn} denotes
the family of all planes that are equivalent to the plane (Imn); [Imn] denotes the direction of the
translation vector /a; + ma + nas (that, for cubic crystals, is the vector perpendicular to the planes
in the family {Imn}); < Imn >, denotes the family of all directions equivalent to the direction of
[lmn]. Also, usually a negative Miller index is indicated by a “bar” over the index; for example,
[110] is the direction defined by the Miller indices (1, —1,0). Unfortunately, this notation is often
used loosely, crystallographers and physicists employing different conventions.

3.2.2 Reciprocal Lattice

Because of the translational symmetry of the crystal, any of its physical properties, described, for
example, by some function f(r), must not change under translation:

f(r+Ry) =f(r), (3.4

for any R;. We can express such a periodic function f as a Fourier series:
f(r) =3 Aq e, (3.5)
q

where the Fourier coefficients Aq are given by

1

Ag = —
4 Q. Ja.

f(r)e 9T dr. (3.6)

Making use of the periodicity, Eq. (3.4), to rewrite Eq. (3.5), we have

Y AqeldT IR =% AT (3.7)
q q

Clearly, this equality can hold if and only if /4R = 1. This implies that the sum must extend over a
discrete set of q, that we shall denote as Gy, such that

Gy, - R; = 2r times an integer. (3.8)

To satisfy Eq. (3.8), Gj, has the form

Gy, = by + haby + hsbs, (3.9
with
2 2 2
b, = 57:32 xaz, by= éza] xa3z, bz= 57231 X ap. (3.10)

The vectors by, bo, and bs are called primitive reciprocal lattice vectors and they define the reciprocal
lattice. They are often referred to as G-vectors.

Similar to the real lattice, a Wigner—Seitz cell of the reciprocal lattice can be constructed. This cell
is called the first Brillouin Zone (BZ) of the lattice.
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3.2.3 Bloch’s Theorem

Bloch’s theorem is an extremely important theorem that simplifies enormously the study of electronic
states in crystals. We shall make use of it in the following to such an extent that it is hard to envision
how one could study electrons in crystals without it. It states that a wavefunction of electrons in the
(periodic) crystal potential can be labeled by a vector-index k and must satisfy the condition:

Vi (r+Ry) = Ry (r), 3.11)
which is equivalent to the condition:
Wi(r) = " uk(r), (3.12)
where u (r) is periodic:
uk(r+R;) = ug(r). (3.13)

Note that this result expresses the fact that electronic wavefunctions in a crystal are plane waves
(the factor eik"), as for electrons of momentum 7K in free space, modulating localized wavefunctions
that originate from the orbitals of the atoms that constitute the crystal (the factor uk(r)). As we shall
see, in many cases studying the modulating “envelope” e!* will be sufficient to derive many electronic
properties that are relevant to charge transport.

To prove Bloch’s theorem, we know that if y(r) is a solution, then so is y(r +R;). We can choose
y(r) so that y(r +R;) = oy(r) and requiring |y(r)|> = |w(r + R;)|?, we see that we must have
la| = 1. Bloch’s theorem is now straightforwardly obtained by writing o = e/*R1,

An alternative proof of Bloch’s theorem uses group theory: (1) the Hamiltonian commutes with the
translation operator, (2) two commutating operators can be simultaneously diagonalized, and (3) the
eigenvalues of the group of translations are e* R,

The expression for Y (r) can be seen as that of a plane wave (a free electron) modulating a periodic
function describing the effect of the (periodic) ionic potential. However, since replacing k with k + G
describes the same wavefunction, ik cannot be the true momentum of the state and 7K is referred to
as crystal momentum, not necessarily directly related to the “real” electron momentum.

Note that, whereas yk(r) is not periodic, the only physically meaningful quantities we can derive
from it are periodic. For example, charge density, e| i (r)|?, is periodic:

. 2
[+ Ry = [ R R (4R = ()] = |yi() . (3.14)

3.2.4 Bragg Reflections

To better understand the meaning of the wavevector Kk, consider the potential of the ions as very small,
that is, as a weak perturbation of the “empty lattice.” Let us consider the Fourier series of the crystal
potential:

Vi) =Y vg T, (3.15)
G
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and assume that a free electron (characterized by a plane wave of wavevector k) “enters” the crystal
and feels the lattice potential as a perturbation. The effect of this perturbation on the wavefunction
|k) = |yk), given by the Bloch wave defined above, will be that of “scattering” the wave to a new
direction and wavelength, i.e., to a new wavevector k’. The matrix element for this process is

K VIO =3 vEY & g, (3.16)
G

which vanishes unless k + G = kK’. Assuming that the collision between the electron and lattice is
elastic (the recoil of the lattice, much heavier, will be ignored), we can assume k = &/, so that, squaring
the relation k+ G =k':

G’ =-2k-G, (3.17)

which is the condition for Bragg reflection. It also determines the edge of the BZ. Therefore, the
electron wavevector Kk can be treated as a “quasi-momentum,” but it is restricted to be inside the BZ:
As soon as the electron wavelength approaches the BZ boundary, Bragg reflections will “destroy” the
wave.

From Bloch’s theorem and the condition for Bragg reflections, we conclude that waves with crystal
momentum 7k and 7k + G are equivalent. This is because a propagating wave carries with it all the
diffracted components e/C* as well. However, the energy of the wave will depend on which G we are
considering, as we will see when dealing with energy bands in solids.

3.2.5 The Zincblende and Diamond Crystal

Most semiconductors of interest have a “tetragonal” coordination resulting from the sp> hybridization
of the bonding orbitals. This yields a face-centered cubic (fcc) lattice with two atoms in each basis. If
the basis atoms are different, as in GaAs, this is the zincblende crystal; if the atoms are the same, as
in Si or C (diamond), this is the diamond lattice.

e The fcc primitive vectors are

11 1 1 11
a] = ap (07272> , A2 =4ap (27072) , A3 =4ap (25230)3 (318)

where ag is the lattice constant (see Fig. 3.1 on page 44). The fcc unit cell is shown in Fig. 3.2 and
the fcc Wigner—Seitz cell is illustrated in Fig. 3.3.

» fcc lattices have body-centered cubic (bcc) reciprocal lattices (and vice versa).

e There are 24 fundamental “point” symmetry transformations which map the cubic lattice onto
itself (the so-called T; group): All permutations of the three coordinates (six operations) times
sign-swapping two of them (four operations).

e If both atoms in the zincblende crystal are the same, the crystal gains inversion symmetry and is
now the diamond crystal. Accounting for inversions, there are 48 symmetry inequivalent operations
in all (the so-called Oy, group).



44

Fig. 3.1 Illustration of the
zincblende crystal in its
cubic unit cell

Fig. 3.2 Illustration of the
fundamental translation
vectors and the primitive
unit cell

Fig. 3.3 Four adjacent
Brillouin zones of the fcc
lattice
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3.3 *Group Theory

The effects of symmetry can be formally analyzed using algebra and more specifically “group theory.”
Using symmetry information is often useful to prove or understand why certain degeneracies appear
in the band structure or why some transitions are prohibited.

For example, that silicon is not efficient at absorbing/emitting light with an energy close to the
band gap is an immediate consequence of crystal symmetry and translational symmetry in particular.
Translational symmetry assigns a wavevector k to each state and unless translational symmetry is
broken, k has to be conserved between the final and the initial state. Now, silicon has an indirect band
gap, i.e., the valence-band minimum and conduction-band maximum have a different k-vector. The
interaction with an electromagnetic field only breaks translational symmetry very weakly because
of the long wavelength of light compared to the lattice constant. Silicon’s indirect gap means
that light absorption in silicon is prohibited to first order. Second-order interactions, where light
absorption/emission is mediated by the electron—phonon interaction, are allowed but are much less
inefficient.

However, most crystalline materials, and certainly most interesting crystalline materials, have
many symmetries other than translational symmetries. These can be rotations and reflections and
combinations thereof, such as inversions, screw displacements (combinations of rotations and
translations), glide plane operations (combinations of reflections and translations), and improper
rotations (combinations of reflections and rotations).

Group theory, as applied to crystals, is a vast subject. Here, we provide the basic elements. Texts,
such as Dresselhaus’ [4], should be consulted for a complete treatment in the context of solid-state
physics.

3.3.1 Symmetry and Groups

When studying electronic properties of semiconductors, we are interested in those symmetry
operations which preserve the energy of the system. Formally, any symmetry operation T preserving
the energy must leave the Hamiltonian unchanged

~

T(H)=H. (3.19)

Since any practical Hamiltonian contains the kinetic energy (< —V?), the allowed symmetry
operations are limited to Euclidean (or rigid) transformations which have a general form

~

T:r— Mr+a (3.20)

where M is an orthogonal 3 x 3 matrix and a a translation vector. For pure translations, M is the
identity matrix, for rotations around the origin and reflections through a plane containing the origin,
a=»0. R

In Eq. (3.19), T is written as an operator acting on an operator, i.e., the Hamiltonian. But it is more
convenient to have T simply act on a Hilbert space, similar to other operators. If T represents an
operator on a Hilbert space, Eq. (3.19) can be rewritten as

TH=HT or [HT]=0. (3.21)
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Symmetry operators can be shown to have four properties:
¢ Closure: Taking two symmetry operators Tl and /T\z, Tlf-\l = I’-\I?l and ?21'?1 = H/T\z It immediately
follows that their combination 73 = T T, is also a symmetry of the system:

T3H = T\T>H = T\HT, = HT\T> = HT. (3.22)

* Identity: The identity symmetry operator E:r—ris always a symmetry of the Hamiltonian:
EH =H =HE.
* Invertibility: If a symmetry operator 7 is a symmetry of the system, then its inverse 7 ! satisfying

T, ?l’ l—E= f‘l’ 'T),isalsoa symmetry of the system. Defining an auxiliary wavefunction v’ such
that w =Ty,
Tflﬁu/ = Tl_lﬁfl v = ?flflﬁy/’ =Hy = I?Tl_lfl v =HT 'y. (3.23)

e Associativity: 7"1 ?QITI = ?1 (?2)1?1 which is a general property of (Euclidean) transformations.

3.3.1.1 Groups

The (abstract) algebraic structure that takes the four properties of symmetry operators (closure,
associativity, identity, and invertibility) as its axioms is the mathematical group. In solid-state physics,
we can draw on the results from group theory, but it is important to remember that group theory
is a formal abstract mathematical construct. The development of group theory has yielded many
interesting mathematical results and predates modern condensed matter physics and even Quantum
Mechanics.

A group is defined by a set of elements {a, b, ... } and an operation a-b = ab, often called the group
multiplication. In group theoretical language, each symmetry operation (/T\l , f‘z, ?3) of the crystal can
be represented by an element (a, b, ¢) of its space group. The result of one symmetry operation acting
upon another symmetry operation (T3 T1 T2) will determine the group multiplication (¢ = a-b = ab)
in the space group.

For small groups, it is convenient to characterize the group by its multiplication or Cayley table.
As an example of some groups we have

o The trivial group containing only one element {e} and its group multiplication is trivially

determined as ee = e. Its multiplication table is

e (3.24)
e|e

 The group containing two elements {e,a} with multiplication ee = aa = 1 and ea = ae = a. This

is the smallest nontrivial group and is denoted as Z;, Cy, Cj, . ... Its multiplication table is
-le
elela. (3.25)
alale
* The cyclic group containing » elements {e,a,aa,aaa,...,(a)"'} is denoted as Z,. Each element

in the cyclical group can be represented by a complex number with unit magnitude: a = ei2n/n,
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e The group of integers Z {...,—2,—1,0,1,2,...} where the “group multiplication” operation
corresponds to the conventional addition of numbers, i.e., 1 -2 = 3 and 0 is the identity element. Z
is an infinite group.

¢ The dihedral group D3 with six elements {e,a,b,c,d,f} with multiplication table

-lelalb|c|d|f
elela|b|c|d|f
alale|d|f|b|c
b|b|f|e|d|c|a. (3.26)
c|cld|f|ela|b
dld|c|la|b|f|e
flf|b|clale|d

Note that contrary to the above listed groups, the multiplication table is not symmetric. This means
that the group multiplication of the dihedral group is not commutative for some elements, e.g.,
ab = d # ba = f. Any such group where group multiplication is not commutative is known as a
nonabelian group.

For larger groups, the multiplication tables are not practical and alternative ways, such as character
tables, are used to identify groups.

Groups can be combined into new groups by taking the direct product of the groups. The direct
product of two groups G, H, with ng, ny elements {eg,ac,bg, ...}, {en,an,by,. ..} is a group G x H
with ngny elements {egey,ecan,ecbn,...,acen,acay,acbn,. .. }. Denoting the operations in G
and H as - and -y, the group operation (multiplication) in G x H is defined by (xgxg) -6xuz (Yoyu) =
(X6 ' YG)(XH "H YH)-

3.3.1.2 Space Groups

All symmetry operations in a crystal form the space group of the crystal and the symmetry operations
can be categorized as

e (i) Translations 7; : r = r+R;

* (ii) Point symmetries R: Rotations, reflections, and combinations of rotations and reflections around
a point of choice in the crystal. If we take the origin as the point of choice, then R : r — Mr. Groups
composed of point symmetry operations around a point of choice are called point groups.

e (iii) All other operations which are combinations of translations with point symmetries including
point symmetries around a point other than the point of choice.

All of these combined form the space group of the crystal G.

The description of translation symmetry can always be done by a group 7. In three dimensions, any
translation by R; = [1a; 4 haj +/3a3 is a symmetry if a; » 3 are the primitive vectors and the group of
translations is isomorphic to Z x Z x Z.

In the simplest case, any element of category (iii) can be obtained by combining a translation from
category (i) with an element of the point group R described by category (ii). In this simple case, the
space group G is said to be symmorphic and the space group is the direct product of the translation
and the point group of the system § =T x R.

In the alternative case, some elements of category (iii) are a combination of a rotation or a reflection
with a translation which is not an element of category (i). In this case, the space group is said to
be non-symmorphic. The point group R of non-symmorphic space groups is the combination of the
group formed by the elements of category (ii) together with some of the elements of category (iii).
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Specifically, those elements in category (iii) that do not differ from each other by a lattice translation
found in category (i). In group technical terms, the point group is the factor group of the space group
and the translation group: R = G\T. However, the space group is not the product of the translation
and the point group § # T x R for non-symmorphic space groups.

3.3.2 Character Tables

The unique symmetry information of a crystal is found in its point group R and to describe these point
groups, character tables are used. In this section, we will explain what a character table is and how it
can be read.

A first concept when constructing a character table is the concept of a class. Intuitively, we can
say that “similar” symmetry operations belong to the same class. For example, a reflection along the
x — z plane belongs to the same class as a reflection along the y — z plane if the crystal also has a 90°
rotation axis along the z-axis. Formally, two elements of a group a,b belong to the same class if an
element c exists such that

a=chbc L. (3.27)

The second concept when constructing a character table is the concept of a (matrix) representation.

Each element in a group can be represented by a matrix I'(a) so that the group multiplication also
holds for each matrix multiplication

I (a)I(b) =T (ab). (3.28)

If each element a # b is mapped onto a different matrix I"(a) # I'(b), the representation is said to be
faithful, otherwise it is an unfaithful representation. For example, for Z;, we can take

I(e) = Ll) ﬂ and ()= E) (1)] (3.29)

or through a similarity transformation

10 —-10
I'(e) = d I'(a)= 3.30
@=gy ma r@=| (3.30)
as faithful representations of dimension 2. I'(e) = 1,I'(a) = —1 as a faithful representation of

dimension 1 or I'(¢) = 1,I"(a) = 1 as an unfaithful representation of dimension 1.
A representation is reducible if a similarity transformation exists that brings all representation
matrices in block-diagonal form at the same time

(g
I'a) = (r 0( )r<2(>)(a))‘ (3.31)

If this is the case, I'") and I'® are also representations of the group and Eq. (3.31) defines the sum
of two representations I' = ') ¢ '@ If it is not possible to bring all matrices in block-diagonal
form, or equivalently, to write the representation as the sum of two or more representations, the
representation is said to be irreducible.
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Equation (3.31) defines the sum of two representations. But two representations of dimension
ny and np can also be multiplied with each other, I" G) =M %@, yielding a representation of
dimension n3 = nny. In matrix form, the elements of I" () are the Kronecker product of the matrices
in representations 1 and 2. The product of 2 representations may be reducible or irreducible.

The character xV (a) of an element is the trace of its matrix in representation i:

¥V (a) = Tr(I(a)). (3.32)

Some properties are noted below; required proof can be found in [5].

* The character (the trace) is invariant under similarity transformations.
* Any matrix representing two elements a,b in the same class satisfies

I'(a)=T(c)[(b)[(c)", (3.33)

has the same eigenvalues, and consequently the same character Tr(I"(a)) = Tr(I'(b)).
* The characters of all elements in the group for different irreducible representations are orthogonal:

3 @) 2V (@) =Y £ (C) 2V (C)Ne = N8, (3.34)
a C

where C sums over all classes, N¢ is the number of elements in class C, and N = Y~ N the total
number of elements.
* Characters for the same element in different representations are orthogonal:

N

S 3.35
N oceh (3.35)

Y2y =

where C,C’ indicate the classes of the elements under consideration.

* The characters of the sum of two representations are the sum of the characters of the representa-
tions: if ®) =T 1@, then ¥ (C) =y (C)+ ¥ (C).

e The characters of the product of two representations are the product of the characters of the
representations: if ') = I'(1) x '?)_ then ¥ (C) = y(V(C)x?(C).

e The number of (inequivalent) irreducible representations always equals the number of classes.

* Any representation can be decomposed into irreducible representations in a unique way.

A character table is a table listing all characters with its rows indicating the different irreducible
representations and its columns the different classes. The first row is always the trivial repre-
sentation (y(C) = 1) for all C. The first column is always the identity transformation E whose
representation matrices are always the identity matrix and its character (trace) is the dimension of
the representation. Character tables for all point groups can be found in [4].

The point group of a system with only inversion symmetry is denoted as C; (isomorphic to Z;). The
character table of C; is shown in Table 3.1 together with the character table of the dihedral group Ds.
Representations of point groups denoted by a letter A, B are one-dimensional representations which
are symmetric and antisymmetric around their principle axis of rotation, respectively, £ and T
representations are two- and three-dimensional representations. A subindex g,u indicates if the
representation is even (German: gerade) or odd (German: ungerade).
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Table 3.1 Character table

. ) E |2C; |3C)
of the point group C; E |i ~ 11 | 1
and D3 Ag (1] 1 !
Ay |1 1 | -1
A, |1 | =1
E |2 |-1 0

3.3.3 Degeneracies and Selection Rules
3.3.3.1 Degeneracies

The irreducible representations of the point group of a system help to understanding degeneracies in
the band structure of a crystal. If y is an eigenstate of the Hamiltonian with an energy E, then so is
Ty. Taking a set of orthogonal degenerate wavefunctions y; with energy E satisfying

Hy; = Ey;, (3.36)
then /fl//i must be a linear combination of y;:

T,y = 2 Ly (a)yy. (3.37)

The matrices formed by the coefficients I3y (a) form a representation of the space group of the crystal.
If the representation is reducible, however, the degenerate states can be separated into two (or more)
sets yi,..., ¥y and Wyy1,..., Yy and the symmetry operations only carry yi,..., Wy into linear
combinations of yq,...,yy. In this case, symmetry does not protect the degeneracy between the
two sets but only within the set. For this reason, almost all degeneracies observed in theoretical
or experimental band structures are governed by irreducible representations of their point group.
Although accidental degeneracies are possible, most often when more degeneracy than expected is
present, it is because the system has a symmetry which was not accounted for.

As an example, consider a one-dimensional system with inversion symmetry (which is the same
as reflection in 1D) whose character table is given in Table 3.1. The simplest such system is a one-
dimensional system without any applied external potential which has the solutions y > = etk with
an energy %2 /(2mg)k>. The matrix representation showing how inversion carries e*** into e is
given in Eq.(3.29). An alternative but equivalent orthogonal set of solutions is given by vy, =
sin(x),cos(x). The matrix representation for the inversion is now given by Eq. (3.30), which shows
that the degeneracy between cos(x) and sin(x) is not protected against inversion. But cos(x) and sin(x)
are degenerate in this case (with zero potential) because the system also has translational symmetry
in addition to inversion symmetry. Breaking the translation symmetry by considering a particle
in a box x € [-L/2,L/2], the solutions are cos(x(2n — 1)m/L) and sin(x2nm/L) with n = 1,2, ...
which correspond to A, and A, irreducible representations, respectively, i.e., the “cos solutions” are
even under inversion T; cos(x(2n — 1)m/L) = cos(x(2n — 1)x/L) while the “sin solutions” are odd
T; sin(x2nm /L) = —sin(x2nm/L).

3.3.3.2 Selection Rules
Selection rules are the specification of which transitions are allowed under a given symmetry and a

given perturbation. The transition rates for a transition from an initial state y; to a final state Yy under
a perturbing Hamiltonian H’ are measured by the matrix element (see Appendix A):
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M= / Ay (r)H wy (r) = / drif(r). (3.38)

If y;(r) and yy(r) are nondegenerate and H' is invariant under the crystal symmetry, f(r) is a one-
dimensional representation of the crystal symmetry and 7,[f (r)] = o, f (r) for any symmetry operation
a. In this case, it is straightforward to derive selection rules. Applying a crystal transformation a leaves
M invariant

M= / 4P TLf(r)] = ou M, (3.39)

since T, is a Euclidean transformation. The matrix element M must vanish unless ¢, = 1 for all a,
since (1 — o,)M = 0. Equivalently, the representation of f(r) must be the trivial representation, i.e.,
the representation with all of its characters equal to unity.

In general, by identifying how the perturbing Hamiltonian behaves under the symmetry operations
of the crystal, its representation I” (') of dimension ng can be determined. If the perturbation does not
respect the symmetry of the crystal, the representation of the Hamiltonian will be a higher-dimensional
representation (which may be reducible), although the specific perturbation will only be one of many
equivalent perturbations. For example, evaluating if a perturbation dependent on the x-coordinate is
allowed is equivalent to evaluating whether a perturbation dependent on y is allowed if the system
has a 90° rotation around the z-axis. If the initial or final state is degenerate because of symmetry,
selection rules will be determined between any combination of the degenerate initial or final states.

Taking y;(r) and y(r) to have n; and ny-fold degeneracy and to be represented by I'¥) and "),
ningny Wi (r)H yr(r) products are possible. Applying the symmetry operations to these products, the
ningpng-dimensional product representation I' = ') x T(H) 5 P'() is obtained. This product can
subsequently be written as a sum of irreducible representations I'M = % (). For a transition to be
allowed, the product of the representations I'™ must contain the trivial representation.

3.3.4 Application of Group Theory to Graphene

As a concrete example, we determine qualitative features of the band structure of graphene. Graphene
has a honeycomb lattice with two primitive vectors aj > with an angle of 60° between them. Taking
the origin at the center of the honeycomb, the point group of the graphene lattice has the following
symmetries:

e 2C¢: Clockwise and counterclockwise rotations over 60° around the z-axis
e 2(Cj5: Clockwise and counterclockwise rotations over 120° around the z-axis
¢ (,: Rotation over 180° around the z-axis

 3C%: 3 180° rotations around the x-axis and equivalent (rotated over 120° around the z-axis)
 3C%: 3 180° rotations around the y-axis and equivalent

* i: Inversion around the origin

e 285 Inversion and rotation over 120° around the z-axis

e 2S¢ Inversion and rotation over 60° around the z-axis

e op: Mirror symmetry through the horizontal x — y plane

* 0g: 3 mirror symmetries through the x — z plane and equivalent

* 0y: 3 mirror symmetries through the y — z plane and equivalent

The point group describing this symmetry has 24 elements and is called Dgy, its character table is
shown in Table 3.2.
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Table 3.2 Character table of the graphene point group Dy,

1 | -1 | -2 0 0 | -2 | -1 1 2 0 0
-1 | -1 2 0 0 | -2 1 1 | -2 0 0

E |2Cs 2C; C, 3C, 3C4 i 283 |2S¢ |ow |304 |30,
A | 1 1 1 1 1 1 1 1 1 1 1 1
Ay | 1 1 1 1| -1 | -1 1 1 1 1| -1 | -1
B, 1 |—I 1| -1 1| -1 1| -1 1| -1 1| -1
By 1 | —1I 1| -1 | -1 1 1| -1 1 -1 | -1 1
Ei, | 2 1 | -1 |2 0 0 2 1 /-1 =21 o0 0
By |2 | -1 | —1 2 0 0 2 | -1 | -1 21 0 0
INF 1 1 1 1 1| -1 [ =1 [ =1 | =1 |=1 | =1
A | 1 1 1 1 | -1 | =1 | -1 | =1 | -1 | -1 1 1
B | 1 | -1 1| -1 1| -1 | -1 1 -1 1| -1 1
By | 1 | -1 1| -1 | -1 1| -1 1| -1 1 1| -1

2

2

To determine the graphene band structure, we consider the free electron in a “virtual” hexagonal
lattice. We assume a confining potential in the z direction so the electrons are only free in the x and y
direction and have no k,-dependence. The wavefunctions of the free electron are

y(r) =e® Ry, ,(r), (3.40)
where K and R are two-dimensional vectors and u(r) is a function with crystal symmetry accounting
for the confinement in the z direction. We will consider the case where u(r) is even (u,(r)) and odd
(1, (r)) under reflection through the x — y plane.

The lowest-energy wavefunction is found for K = 0 together with a u,(r). We label this represen-
tation as [00], and its corresponding irreducible representation is Aj,. Higher-energy wavefunctions
are obtained by taking u,(r) and the thus obtained representation [00], corresponds to the irreducible
representation Ay,,.

Higher-energy wavefunctions can also be obtained by taking u,(r) and selecting the plane waves

elGi'R with
4 (V3 1
G = -z 3.41
1 \/§< > 72> (340D

4
=—(0,1 42
G, \ﬁ((h) (3.42)

dm [ V31

4n [ V31
Gy = % (272> (3.44)

(0,—1) (3.45)

G4 (ﬂ ) (3.46)
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Table 3.3 Characters for the plane waves in the hexagonal lattice

E |2C¢ |2C3 (Cp |3C, |3CY |i 283 |2S6 |on 304 |30, |Irreps

00, |1 |1 1 1 1 1 1 1 1 1 |1 1 Ajg
[11], |6 |0 0 0 2 0 0 0 0 6 |2 0 A1gD B1y® Ep® Eyy
0o, |1 |1 1 I | -1 -1 /-1 |-1 | -1 | =1 |1 1 Agy

Assuming a; » = (1,0),(1/2,4/3/2), by 2 = 41 //3(v/3/2,—1/2),41/+/3(0,1). These 6 wavefunc-
tions will yield a 6-dimensional representation of Dg; which we denote as I” (11, Applying all
symmetry operations and counting which wavefunctions remain invariant, we can determine the
characters for each class of symmetry operations. E leaves all wavefunctions unchanged and will give
M (E) = 6, Cg permutes all wavefunctions 1 — 2,2 — 3,... yielding y!'ls(Cy) = 0, C3 permutes
1 —3,2—=4,... yielding x[“]g (C3) = 0, a nonzero contribution comes from C’2 which leaves G; ;43
unchanged. The resulting characters for all classes is given in Table 3.3.

To have an idea of what the wavefunctions corresponding to these symmetries look like, we take
the representation of Cg in I'[!s:

(00000 1]
100000
010000
001000
000100
1000010]

ricy) = (3.47)

which is the permutation matrix of dimension 6 with eigenvalues e¢; = eVm/0 with j=0,...,5 and
without normalization the eigenvectors are

ijm/3 Ji2jm/3 i3jm/3 Li4jm/3 isjm/3
Vj:[l,e//,e-’/,e-’/,e in/3 el3im/3],

The one-dimensional representations A1, and By, have characters &1, which must correspond to
the first and the fourth eigenvalues of Mg and have eigenvectors Vy,, = (1,1,1,1,1,1,1] and V,, =
[I,—1,1,—1,1,—1,1]. We can also immediately determine the two-dimensional representations
since yF2F1(Cq) = F1 (from character Table 3.2) and this can only be realized by assigning the
eigenvalues eti27/3 o E>g and eFi/3 10 Ey,.

Calculating the magnitude of the wavefunction at the position of the carbon atoms in the graphene
lattice 7 = (0,1//3), then

W(T) — [ei27r/37 17efi2rc/37efi2n:/3, 1,ei2ﬂ/3] ei27r/3k

gives
l//Alg(T) — l27/3 | pei2/3 | o—i2m/3 |y Gi2m/3 0,

and Y, (7) = 0;6, yp,, (1) = 0 and yg,, = 0;0, showing that only the E, has a nonzero value for its
wavefunction at the carbon atoms where the potential is the lowest. The E», representation will thus
have the lowest energy of the four representations.

Carbon has 4 valence atoms, graphene has 2 carbon atoms per unit cell and thus 8 atoms per
unit cell which means that 4 spin-degenerate bands will be occupied. We have already established
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Table 3.4 Character table

. E o, |2C3 [2S3 |3C, |30,
of the graphene point group N1 1 1 1 1 1
D3y, 1
Al |1 1 1 1| -1 | -1
Al |1 | -1 1 -1 1| -1
A/Z’ 1| -1 1 —1 —1 1
E |2 2 | -1 | -1 0 0
E" |2 | -2 | -1 1 0 0

that the lowest-energy state has A, symmetry corresponding to [00], and the lowest-energy band
corresponding to [11], is the two-dimensional E|, representation, the fourth electron will occupy the
[00], state with an A,, representation corresponding to a 7-bond between the carbon p, orbitals.

At the K-point (K = (47/3,0)), the symmetry of the lattice is reduced. For example, rotation
over 60° maps K onto K’ = 47/3(1/2,+/3/2) and K and K’ are inequivalent since K — K’ is not a
reciprocal lattice vector. Symmetries which are broken are Cg, C», Cg , I, 04, and Sg. The remaining
symmetry of the K-point is D3;, whose character table is shown in Table 3.4.

Repeating our analysis of the occupied bands using the free-electron bands at K: we start from the
3 plane-wave functions at K:

K1,2,3 = 477:/3[(170)7 (_1/27 \/§/2), (_1/27 —\/§/2)]
which reduce into a two-dimensional E’ representation and an A/ representation. These 3 bands will be
fully occupied and similar to the case at I", a fourth band which is odd under vertical mirror symmetry
will be occupied. However, the lowest-energy band which is odd under vertical mirror symmetry
corresponds to a two-dimensional E” representation. So at K, the graphene band is degenerate (i.e., a

two-dimensional irreducible representation) but only half-occupied and graphene is a semi-metal with
a Dirac-cone at K. The semimetallic nature of graphene is protected by its symmetry.

Problems

3.1. (Equivalent Formulations of Bloch’s Theorem) Show in detail the equivalence between the
two formulations of Bloch’s theorem:

vk r+R)) =e*® y(k r), (3.48)
and:
v(k,r) =e*T 1y (r), (3.49)
where u (r) is periodic:

uk (r+Ry) = ug(r).

3.2. (Reciprocal Vectors of the fcc Lattice)

(a) Find the reciprocal lattice vectors of the fcc lattice. As fundamental translation vectors use
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a

(®+9), b=

a
where %, J, and Z denote the unit vectors along the directions of the Cartesian axes.
(b) Find the volume of the primitive cell and the density of valence electrons in cm—> for Si (@ =
0.543 nm).

(¢c) Find the volume of the BZ.
(d) Using a computer program, list the first 50—100 G-vectors in order of increasing magnitude.
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Chapter 4
The Electronic Structure of Crystals: Theoretical
Framework

4.1 Overview

In this chapter we discuss the electronic properties of crystals from a formal theoretical perspective.
These are characterized mainly by the existence of allowed “energy bands” separated by “energy
gaps.” Understanding energy bands quantitatively requires solving the Schrodinger equation for many
electrons in the potential due to all ions in the crystal. For example, ignoring core electrons, a crystal
composed of N Si atoms can be viewed as a lattice of N Si™* ions and 4N electrons embedded in the
complicated Coulomb potential due to the presence of all of these ions and of the electrons themselves.

The problem may appear daunting. However, the periodicity of the lattice leads to major
simplifications: Roughly speaking, all we have to do (so to speak...) is to study the electronic
properties of a single cell subject to the periodic boundary conditions that originate from the symmetry
of the lattice. Thus, we can reduce the problem to a simpler one involving “only” eight electrons and
two fourfold-ionized Si ions.

General theorems are available to compute the band structure of solids: Most notably, several
schemes are based on some approximation of the potential of the ions and all “other electrons,”
reducing them to a fixed pseudopotential which includes the effect of all other electrons, so that we
can use a single-electron picture. In addition, we can rely on Bloch’s theorem (Chap. 3, Sect. 3.2.3)
which tells us how to express the complicated wavefunction as a product of a simple “free electron
envelope” wavefunction and a complicated “fast-wiggling” wavefunction, the same in each cell. Thus,
each electronic state is labeled by something which resembles the wavevector of a free electron, K,
and can be written as

1 .
Wi(r) = 5i e Ty (r) (4.1)

called a Bloch function where we should recall that uy has the periodicity of the lattice. This is just
Eq. (3.12) with the normalization to the volume of the lattice, €2 explicitly introduced. Notice that,
similar to the symmetries of the crystal in “real space” of all spatial coordinates r (as discussed in
the previous chapter), there are also corresponding symmetries in the space of all wavevectors k: For
example, the state of an electron traveling along the x-axis of cubic crystal will be described by a
wavefunction identical to that associated to an electron traveling along the z-axis, provided we replace
ky with k,. These symmetries allow us to consider only the first Brillouin Zone (BZ) of the crystal.
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It is enough to consider the Bloch wavefunctions with k inside the first BZ in order to obtain full
knowledge of the electronic properties of the lattice. These are tremendous simplifications afforded
by the symmetry of crystals.

Despite these powerful simplifications and approximations, the problem is still mathematically
somewhat convoluted. So, having set the general theoretical scheme and having reached the point of
computing the band structure of solids, at first we shall ignore quantitative aspects and discuss instead
the band structure of solids only from a qualitative point of view.

We shall first present and discuss the full Hamiltonian of the crystal (without any simplification),
consisting of kinetic and potential energy terms for both the nuclei and the electrons. We shall then
decouple the motion of the ions (much heavier and slower) from that of the electrons (the so-called
adiabatic approximation). The motion of the ions will be considered as semiclassical (since the ions
are heavier, their wavelength will be very short, making classical mechanics a good approximation in
describing their motion) and close to equilibrium. The description of the ionic motion so “linearized”
around their equilibrium position (lattice vibrations or phonons) will be briefly considered. It will be
revisited later in the context of the quantum theory of many-body systems. We shall then consider
the electron Hamiltonian so decoupled from the ionic motion. We shall deal with the issue of how
to approximate the complicated many-electron system with the picture of a single electron in the
presence of the potential of the ions and all other electrons. In the next chapter, we shall move to the
problem of how to solve the single-electron Schrodinger equation and obtain the band structure of
solids. In this chapter, instead, we shall conclude by discussing only qualitative features of the band
structure.

4.2 The Hamiltonian of a Crystal

The crystal can be described by the coordinates r; and R; o, of the electrons and nuclei, respectively,
and by their conjugate momenta p; and P; , respectively. Thus, the total Hamiltonian of the crystal
will be

22 2 P2
~ p: 1 e Lo
H= i 4+ = )
; 2mel 2 % 47'66()‘1',' — I'j| Lo 2Ma
1
+= Y UR—Ryg)+Y VO —R). (4.2)
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The first 2 terms describe the kinetic energy of the electrons and their potential energy due to the
Coulomb interactions among all electron pairs (the factor 1/2 in front due to the fact that the sum 3, ;
would count each pair twice). The next two terms represent the kinetic and potential energy of the
nuclei interacting via a potential U. Finally, the last term represents the potential energy of an electron
in the presence of all the ions with charge eZ, located at R; o, = R; + 7. It is useful to recall that, in
our notation, R; identifies the lattice point (or, equivalently, cell coordinate or translation vector) / and
T the coordinate of ion ¢ in the cell.

We have assumed that all electrons (core and valence/conduction) appear in the Hamiltonian above.
Actually, since the state of the core electrons does not differ significantly when considering free
ions and ions in the crystal (their binding energy being so large), it is customary to assume that
the “nuclear” potentials V() and U are actually ionic potentials, so that only outer-shell electrons
(valence for insulators and semiconductors, conduction for metals) appear in Eq. (4.2). For the time
being, we shall ignore this difference and discuss the implications of each choice below. So, the terms
“nuclear” and “ionic” will be interchangeable.
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Note that the complexity of the problem is enormous. First, we must deal with the sheer size of the
problem: For Si, for example, assuming pure nuclear potentials, we have N nuclei and 14N electrons.
Thus, the full wavefunction will depend on 15N x 3 variables. In addition, in order to account for the
Fermionic nature of the electrons and for Pauli’ principle, we must antisymmetrize the wavefunction
under exchange of all pairs of electron coordinates. This is an obvious generalization of what we
discussed when presenting qualitatively the He atom. Finally, whereas we know the form of the bare
Coulomb potential due to an ion with charge eZy is V(%) (r) = Zye?/(4meor), the electron—electron
and the inter-ionic potentials U depend on the distribution of the electron charge, which is a function of
the wavefunction (that is, of the unknown). This renders the problem nonlinear. The crystal symmetry
will simplify the problem, obviously. But, equally obviously, we must look for reasonable ways to
approximate and simplify the picture.

4.2.1 The Adiabatic Approximation

The first approximation we invoke relies on the observation that the nuclei are much heavier than the
electrons, usually by a factor of 10* or more. Therefore, the velocity of the nuclei will be 10? times
smaller than that of the electrons. It is reasonable to assume that, even if the ions move away from
their equilibrium (lowest-energy) position, the electrons will adjust instantaneously to the new nuclear
positions. In other words, the electrons can be assumed to follow the nuclear motion “adiabatically.”
Therefore, we can “decouple” the nuclear and electronic wavefunctions and express the full crystal
wavefunction Z(R,r) as:

Z(R,r) = ®(R) W(r), 4.3)

where R and r indicate the whole collection of nuclear and electronic coordinates. In other words,
Eq. (4.3) says that the nuclear wavefunction, ®@(R), is not quantum mechanically correlated to the
electronic coordinates (each nucleus carries its own electronic “cloud” with itself, as the electrons
follow the nuclear motion instantaneously) and that the electronic wavefunction, ¥k (r), depends on
the nuclear coordinate R as a “parameter,” but not on the nuclear wavefunctions, instead adjusting
instantaneously to the nuclear positions.

An equivalent way to understand the adiabatic approximation is to write explicitly the time
dependence in Eq. (4.3):

ZE(R,r,1) ~ O(R,t) W(r,1) . 4.4)

Since the time dependence of ¥ is so much faster than that of @, we can see that the electronic
component ¥ “sees” @ as a constant as ¥ itself oscillates at a high frequency. On the other hand,
the nuclear component @ will see a time-average of the electron density |¥|?, since ¥ will have
undergone many (~10?) oscillations while @ varies slowly. Therefore, it is appropriate to consider
the ionic/nuclear and electronic motion as “decoupled” (or “disentangled”) in the sense described
above.

Having embraced this first approximation, the Schrodinger equation for the crystal, using the
crystal Hamiltonian Eq. (4.2), and the adiabatic approximation, can be written as

Y (r) HL ®(R)+ @(R) Hy ¥ (r) + H ®(R) ¥(r) = E ®(R) Y(r) (4.5)

where:
Hy = TJ’Z’“ ! R ,—R 4.6
L—l% M, +§ l‘a%a/ URpo—Ry o) (4.6)
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is the lattice Hamiltonian,
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is the electronic Hamiltonian with the nuclear coordinates R appearing as parameters, and the term
H' ®(R) ¥r(r) = Hy ¥R (r) ®(R) - ¥k (r) HL O(R)

V2R (r) (4.8)

= ®(R) Hi. ¥r(r) ~ —P(R) N

is the term which we neglect in the adiabatic approximation: it is of relative weight m/M, as mentioned
above, since V2Y&(r) ~ ¥ kl-2 ~ Mgl Ne].

The adiabatic approximation is often referred to as the Born—Oppenheimer approximation. Of
course, the fact that the ions may move away from their equilibrium positions does have an effect on
the potential energy of the electrons. At very high temperatures these deviations may be very large:
after all, at some sufficiently high temperature the crystal will melt! But at room temperature, in most
solids these deviations are quite small and can be treated as small perturbations. In Chap. 13 we shall
consider this small coupling between the electrons and the ionic motions. Since, as we shall see in
Chap. 9, Sect. 9.4, the ionic motion is quantized into eigenmodes call phonons, this coupling is called
the electron—-phonon interaction.

4.2.2 The Ionic Hamiltonian (Phonons)

The nuclear (or ionic) Hamiltonian Hy, can be simplified by assuming, as anticipated above, that
the nuclei do not move appreciable away from their equilibrium position. The general problem of
finding the equilibrium positions of the nuclei is straightforward in principle, but daunting in practice,
even within the adiabatic approximation: We should assume a given set of ionic coordinates R, solve
the associated electronic Schrodinger equation, such as Eq. (4.11) below, find the total energy of the
system, repeat the process assuming a new set of ionic coordinates, and look for the ionic configuration
which gives us the lowest total energy. Newton-like schemes—amounting to the calculation of the
forces acting on the nuclei—can be employed, but the procedure is still enormously complex. Recently
(in the last 20 years) significant progress has been made, still using the adiabatic approximation, but
using algorithms coupling “simulated annealing” with a fictitious Newtonian dynamics for the ions to
improve the convergence to the lowest-energy ionic configuration. These techniques—developed by
Roberto Car and Michele Parrinello [1]—now allow us to deal with systems of thousands of atoms.
But we shall not go into the details of these sophisticated approaches. For now, we shall assume that we
know “somehow” (experimentally, from total-energy calculations, from Car—Parrinello techniques)
the lattice structure, and assume that the ions are at rest (or, at least, that their displacement away from
their equilibrium positions is small enough to be considered a small perturbation).

So, having made the approximation that the nuclei are close to equilibrium, we can write Ry =
R(O,O ) +u,, where uy, is the small displacement away from the equilibrium position REZO )
expand the inter-ionic (or inter-nuclear) potential U(R;,o — Ry o) around equilibrium:

. We can then

1
URie—Ry o)~ U 4 5 V1aVeo U v v 4.9)
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where the subscript 0 means that the quantity is evaluated at the equilibrium position (U®) = U (Rg(g —
R ), for example). The notation V;  stands for the vector (d/dR; gx,d/IR;0y,d /IR az). Note

U !
thlatathe first-order term (involving the gradient of U) vanishes, since we are at equilibrium, so that
all forces acting on the ions/nuclei cancel. The “matrix” Dy g = %Va Vg U (which is evaluated at the
equilibrium position) therefore represents the force-matrix (or dynamical matrix) for the ions/nuclei.
Using this expansion of the inter-ionic potential and setting U®) = 0, since it is just a rescaling of the

zero-reference for energies, the full ionic Hamiltonian becomes

D2

~ P
Hy = Z " + z Do Qo Oy g | (4.10)
Lo M o T 7 '

which is a collection of coupled harmonic oscillators with conjugate variables E’a and 10y . These
variables can be reduced to normal modes by diagonalizing the dynamical matrix, so that Eq. (4.10)
takes the form of a sum over Hamiltonians of harmonic oscillators. This will give rise to acoustic and
optical ionic waves. Upon quantization (as we shall see later in Chap. 9, Sect. 9.4), they will be called
phonons. They are plane waves, weakly interacting with each other via anharmonic terms, that is, the
higher-order terms which we have neglected in Eq. (4.9).

4.2.3 The One-Electron Approximation: Hartree and Hartree—Fock

Considering now the electronic Hamiltonian ﬁel, the associated Schrodinger equation is

¥Y(ry;,rp,....r
47r60|r,7r,| ( 1,12, ) Nel)

2L+Z v (r,—RY) 4 - z
=EY¥(ry,r2,...,rN,) , 4.11)

where we have expressed explicitly the dependence on the electron coordinates, have indicated with
N¢ the total number of electrons in the system, and we have omitted the subscript R, since we consider
the nuclei in their equilibrium positions.

The problem, though simplified, is still unsolvable. Recall, for example, that the electronic

wavefunction ¥ (ry,r2,...,ry, ) must be antisymmetrized under all exchanges of any two electron
indices in order to obey Pauli’s principle.
* To see this, ignore spin and consider a 2-electron system with a normalized solution y(ry,r2) of
the associated Schridinger equation. The linear combination (1/2'/2)[y(r1,ry) — w(ra,ry)] is the
required antisymmetric wavefunction. We see that if we try to place both electrons in the same state—
so that swapping electrons results in the same state, that is y(ry,r2) = y(ra,r| )—the wavefunction
vanishes, as required by Pauli’s principle. If we want to account for spin, the situation is a little more
complicated. The total wavefunction is now the product of the spatial and the spin wavefunctions.
So, we can either have a symmetric spatial component and an antisymmetric spin component, or vice
versa: In the first case, the electrons can form a “singlet” state of vanishing total spin (anti-parallel
spins). Now we can form an antisymmetric spin state, [|+)|=) — |=)|+)]/2"/2, and a symmetric spatial
wavefunction, (1/2'/2)[y(r1,r2) + y(r2,r1)]. In the second case, the electrons can be in any of three
spins states of total spin s = 1 and s, = —1,0,+1 (a symmetric triplet of spin states), so that the
spatial component of their wavefunction must be antisymmetric.

The first step towards a further simplification of the problem is to use one of the most common tools
in solid-state physics: The self-consistent field approximation: We shall consider only one electron at
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the time, assuming that the effect of all other electrons can be lumped into an average field. This field
will have to be solved self-consistently, since it depends on the density (and so wavefunctions) of all
other electrons, and on the requirement that Pauli’s principle is obeyed.

The easier way to reformulate the problem under this approximation is to follow Hartree [2]
ignoring spin (and so antisymmetrization issues) and assuming that we can write the total electronic
Hamiltonian as the sum of single-electron Hamiltonians, ﬁ,(,, =H, +f12 + -+ + Hy,, accounting for
the self-consistent field, obtaining the single-electron “Hartree equations”:

2 lat lI/J (/) / : —
Zmelv + vt +/§: 4ﬂ60/ P r,| dr' | yi(r) = wiyi(r) . (4.12)

The sum extends over all occupied states, but not over i itself. We have defined the “lattice potential”

v (p) = Yl @) (r — R;Sﬁ). The integral term represents the electrostatic potential due to the
charge density e\y/j( )]? of the j-th electron, so that the sum constitutes the “mean field” due to
all other electrons. Consistently with this approximation, the full wavefunction is expressed as the
product of single-electron wavefunctions, ¥ = vy ... yy,,. Hartree suggested a variational solution
for Eq. (4.12): We “guess” a functional form for all y;’s expressed in terms of some parameters.
We then vary these parameters in order to minimize the energy <T|ﬁH|T>. The interpretation of the
parameter w; is a little tricky. It may be tempting to call it the “single electron energy.” However,
we can never specify uniquely a single-particle energy in an interacting system: We can always add
energy to one electron and subtract it from another without changing the total energy. Moreover, if
we remove a single particle from the system, we do not change the total energy by simply subtracting
the total energy of the particle we have removed. On the contrary, we also modify the total energy of
the system by removing the interaction between all other particles and the one we have removed. As a
result, if we compute the total energy of the system we do not find Y, w;, as expected if the w;’s were
single-electron energies, but, instead, we find

(PIHuP) < 1 v () y () () yi(r)
Sy = 2 2247%0 / e drdr’ (4.13)

because Y,;w; accounts twice for the mutual interaction between pairs. The last term in Eq. (4.13)
expresses this correction. More about the meaning of w; below.

An improved approximation consists in accounting for the required wavefunction antisymmetriza-
tion. The wavefunction must be formed from single-electron wavefunctions y;(r;) via the Slater
determinant:

vi(ry) wi(rz) ... yi(ry,)

1
¥(r,ry, .,rNe]):T]' va(ri) ya(r2) . (4.14)
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Using this form of the wavefunction to calculate the expectation value of the Hamiltonian given by

Eq. (4.11) and employing a variational method to minimize this expectation value, one obtains finally
the “Hartree—Fock equations”:

2 lat lIlj ( /) / .
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These equations are still only approximations, since accounting for the full Slater determinant would
lead to an infinite series of equations. But the essence of the Hartree—Fock approximation is the
correction due to the last term on the left-hand side of Eq.(4.15). This is the exchange energy
resulting from having exchanged the indices i and j of one single-electron wavefunction in the previous
term. Physically, the exchange energy results from the fact that electrons in antisymmetrized spatial
wavefunctions tend to “repel” each other—in order not to occupy the same ‘“state”—and so the
Coulomb repulsion (positive potential energy) is lowered. This explains the sign of the exchange
term. The total energy is indeed lowered by an amount:

drdr . (4.16)
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Note the indices swapped with respect to Eq.(4.13) above. Recall that we are still dealing with
approximations. Customarily, the difference between the “exact” energy and the Hartree—Fock result
is called correlation energy. Quantum calculations have been performed for the homogeneous electron
gas. This last component of the total energy can loosely be attributed to the fact that electrons tend
to have a correlated spatial distribution, further reducing their Coulomb repulsion. Finally, Koopmans
has shown that the parameters w; in the Hartree—Fock single-particle equation, Eq. (4.15), has the
magnitude (but opposite sign) of the ionization energy for that state in the crystal [3].

However, in most of the following we shall bypass the difficulty of accounting for them and we
shall assume that the lattice potential, via) s the self-consistent lattice potential which includes
the (screening) repulsive Coulomb effect of all other electrons in the self-consistent mean-field
approximation. This self-consistent potential, thanks to the symmetry of the problem, will retain
its periodicity in the lattice structure. However, it is useful to mention that in self-consistent band-
structure calculation methods, the exchange (or exchange-correlation) energy has been approximated
with a “functional” of the electron density (and, so, of all single-electron wavefunctions). Its 1/r
dependence implies a form ~ p(r)l/ 3 for this functional, usually called the Kohn—Sham functional
[4]. It is usually calculated assuming a free-electron model, as we shall see in the next chapter. Thus,
the single-electron Schrodinger equation often used has the form

h2
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where the exchange-correlation term has the form V(*¢) (p)e<p 1/3 and, once more, we should recall
that V(20 includes the screening of all other electrons via the Hartree term, as we shall see in the
next chapter. Note that, since the Kohn—Sham functional is a functional of the electron density, this
theoretical approach is also known as Density Functional Theory (DFT).

4.3 Energy Bands: A Bird’s Eye View

We are now ready to derive the band structure of solids by solving the single-electron Schrodinger
equation in the Hartree approximation. Before delving into technical details, let’s consider the
qualitative picture of the band structure which emerges when we bring many atoms together into
a lattice.
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4.3.1 Coupling Atoms

Consider two Si atoms, widely separated, as in Fig. 4.1 which shows the Coulomb potential around
each nucleus (< 1/r, where r is the distance from the nuclei), the energy of the 3 occupied levels, and
their electronic configuration. Let’s recall here the important fact that there are eight states available in
the n = 3 energy level, two 3s-states and six 3p-states. However, Si has only 4 electrons in this shell,
so that the outermost (valence) shell is only half-occupied.

Now let’s bring the nuclei much closer, so that the potential around each nucleus is affected
significantly by the other atom. This is illustrated schematically in Fig.4.2. The “core” levels (n =1
and n = 2) do not significantly feel the perturbation caused by the other nucleus, but the highest-energy
occupied level n = 3 does feel a dramatic change. The n = 3 orbitals now spread over both nuclei.
Clearly, their energy will change, because the potential itself has changed. Qualitatively, what happens
is that, starting from the original hybrid sp® orbitals of a single atoms, we will have a “distortion”
of each of them, caused by the new potential. In addition, we may form two superpositions of the
orbitals, much like we had formed the hybrid sp>. One superposition corresponds to orbitals with a
large electron probability density between the nuclei. This is a “bonding orbital,” since these “shared
electrons” constitute a covalent bond. Since the electrons in this orbital sit close to the attractive nuclei,
the energy of this orbital is low. The other linear combination of orbitals we may form corresponds
to orbitals having a small electron density between the nuclei. These orbitals are “antibonding,” since
they do not contribute to the covalent bond between the two Si atoms. Their energy will be higher,
since the electrons, on average, sit farther away from the nuclei.

The net effect is that the fourfold degenerate energy levels corresponding to the two sp® orbitals of
the two separate atoms, each containing one (of a possible maximum of 2) electrons, have split into
two lower-energy bonding states (each with a slightly different energy) and two higher-energy (also
each at a slightly different energy) antibonding states. The electrons will occupy the lowest-energy
states to form the bond. The antibonding states will remain unoccupied.

Si Si

3s%3p? = 3(sp?)*
(only half full)

2322p6

2322p6

1s° || 1s

Fig. 4.1 Schematic illustration of the ionic potentials of two isolated Si atoms. The horizontal lines show qualitatively
the energy levels of the 2s and 2p “core” stets and of the 3s and 3p valence orbitals
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Let’s now imagine what happens when we bring together three Si atoms: They will bond together
forming a set of three occupied bonding states (at three different but very similar energies) and three
antibonding unoccupied states.

4.3.2 Energy Bands

Now let’s consider a Si crystal formed by, roughly, N = 10?% atoms. What happens now is very similar
to what we have seen in the case of two and three atoms. The N atoms will contribute a total of
8N possible sp? orbitals, originally all at the same energy. They will split into 4N occupied orbitals
contributing to the bond and 4N empty antibonding orbitals. The energy of each of the 4N bonding
orbitals will be very close to that of any other bonding state. Indeed, they will spread over an energy
interval of a few tens of an eV and we will have roughly 10> energy levels in this small energy
range. They are so many and so close together, that it makes sense to look at them as a “continuum”
of infinitely many states populating an energy band. Since this is the band of bonding states made
up using the valence electrons, it is called the valence band of the crystal. Similarly, the set of 4N
antibonding orbitals will also form a band of unoccupied states. These states are spread away from
the atoms throughout the whole crystal. Assuming we found a way to occupy one of these states (later
on we shall see how to do this), the electron in this state will not be “forced” to bind the nuclei, but
will be free to move around the crystal. If we apply an electric field, the electron will be free to move
according to the external force, thus contributing to the conduction of current. Therefore, the band of
antibonding states is called the conduction band of the crystal.

The valence and conduction bands are separated by an energy gap whose existence stems from
considerations similar to those which caused the presence of forbidden energies in the isolated Si
atom.
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4.3.3 Metals, Insulators, Semiconductors

We have just seen that the 4N valence electrons in a Si crystal occupy the entire valence band. On the
other hand, the conduction band, which could contain also 4N electrons, is completely empty.

Suppose that we apply an electric field to a Si crystal at a very low temperature (by placing in
contact with two metallic plates, for example, at the opposite ends of the crystal). In principle, the
electrons would “like” to respond to the field and move away from the negatively charged plate
towards the positively charged plate. But “motion” requires gaining kinetic energy. Therefore, the
electrons in the valence band should acquire a bit of extra energy in order to move. But since the
valence band is full and we are assuming an empty conduction band (low temperature), they may gain
energy only by “jumping” to the next available empty states in the conduction band. But this jump
requires a large amount of energy (about 1.1eV at room temperature in Si). Therefore, the electrons
cannot move, so no current will flow in the crystal, despite the electric field we have applied. In other
words, a “perfect” Si crystal at a very low temperature (we’ll see below why we stress the word
“perfect”) behaves like an insulator.

Not all crystals are like Si. For example, if we take a crystal of N Na ions, the valence band will
be constituted by 2N states emerging from the s orbitals of each Na ion, but only N electrons populate
the band, the “energy gap” now lying at a much larger energy. Therefore, the valence band will be
only partially occupied, in this case half full, and electrons can acquire an arbitrarily small amount of
energy from the applied electric field. Therefore, current will flow in Na: Sodium is a conductor. Other
metals, instead, have “overlapping bands.” The absence of a gap makes good electrical conductors,
much like Na.

Glass (silicon dioxide, SiO,, in its amorphous form) is another insulator, like Si, but its band
gap is about one order of magnitude larger than that of Si (for Si we have seen that E, ~ 1.1eV,
while for SiO, we have E, = 9.2¢eV). This gap is now much larger than the thermal energy and it
is very difficult to place electrons in the conduction band. Deep ultraviolet light or the application
of extremely high electric field, larger than 108-to-10° V/m, are two ways one can achieve this, but
these are extreme conditions that we ignore here, although they are concerns in ultra-small electronic
devices. Therefore, glass will behave like an insulator even at elevated temperatures.

Figure 4.3 shows qualitatively the difference between semiconductors, insulators, and semicon-
ductors. The difference between semiconductors and insulators is only quantitative: If the forbidden
energy gap is very large, even the presence of impurities or a high temperature cannot modify the
insulating properties of the material. For semiconductors, instead, thermal excitation of electrons
across the gap or the addition of a small number of selected foreign atoms (impurities or “dopants’)
can alter dramatically their properties. We shall see how this process (doping) is intentionally done.

INSULATOR SEMICONDUCTOR METAL
EMPTY PARTIALLY
FULL
E

Fig. 4.3 Schematic
illustration of the energy
bands in insulators,
semiconductors, and metals
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4.3.4 The Kronig—Penney Model

Before moving to methods used to calculate energy bands in solids, let’s translate into mathematical
terms the intuitive approach followed above. Let’s consider a simple, well-known example, called the
Kronig—Penney model. It can be solved almost analytically and it exhibits most of the features we
will find in more realistic models. Consider a periodic potential consisting in many wells of width a
and energetic depth Uy separated by potential barriers of width b. This is a one-dimensional “crystal”
with a unit cell of size a 4 b. Let’s choose x = —b and x = a as cell boundaries. We assume that the
well occupies the region 0 < x < a, the barrier occupies the region —b < x < 0 (Fig.4.4).
The Schrodinger equation we must solve takes the form

d2
ety =0 for0<x<a
and
d2
dxu;b-i-ﬁzlllb:() for —b<x<0

with o0 = (2mg E)"/? /i and

B = {iﬁ§ B- = [2ma(Uy—E)]'? 0 < E < Uy
a ﬁ+; ﬁ+:[2mel(E*U0)]1/2 E> U '

It is convenient to write the solutions as:
W, (x) = A, sin(ax) + B, cos(ox)
Wp(x) = Ap sin(Bx) + By, cos(Px)

(later replacing sin and cos with sinh and cosh if necessary).
In order to find the coefficients A,, B;, Ap, and Bj, we must consider four boundary conditions:
The first two express continuity of the wavefunction at the potential “steps”:

Va (O) =W (0)

dya| _ dys
dr [, dw

)

0

Fig. 4.4 One-dimensional X
periodic potential used in
the Kronig—Penney model b a
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and two more express periodicity:

Va(a) = Py, (—b)
dyg _ oik(a+h) dy;,
dx a dx —b .
These conditions imply
B, =By
A, = BAp

Agsin(oa) + B, cos(aa) = e*@0) [—A, sin(Bb) + By cos(Bb)]

oA, cos(oa) — oB, sin(oa) = @) [BA, cos(Bb) + BBy sin(Bb))]
Using the first two equations, we can eliminate A, and Bj, from the last two:

Aulsin(aa) + (o) B)e* @) sin(Bb)] + Bu[cos(aa) — @) cos(Bb)] = 0

Adlorcos(aa) — 0 @) cos(Bb)] + By[—asin(aa) — B @) sin(Bb)] = 0

We have reduced the problem to the solution of a linear homogeneous system in two unknowns.
A nonzero solution exists only if the determinant of the matrix above vanishes. This simplifies to:
o’ + B2
208

sin(owa) sin(fb) + cos(aa) cos(Bb) = coslk(a+ b))

This equation provides implicitly the “dispersion” E(k). “Energy gaps” arise whenever the magnitude
of the lhs exceeds unity. The dispersion can be analyzed inside the BZ (i.e., for —/(a+b) < k <
n/(a+Db) since a+ b is the fundamental translation “vector” and G, = 2nn/(a+ b) are the reciprocal
lattice “vectors.” Alternatively, one can plot E(k) in an “extended zone” picture. In doing so, one can
see that the dispersion (i.e., the energy-wavevector relation) is quasi-parabolic near the zone center
(electron- or hole-like), it is “flat” (zero slope) at the zone-edge, and it approaches the parabolic
dispersion of a free-electron at high energies.

Problems

4.1. (Si Molecules)

(a) Why doesn’t the Sip molecule exist?
(b) Why, on the other hand, does the SiH4 molecule exists? It is called “silane.”

4.2. (An Alternative Form of the Kronig-Penney Model) An alternative way to see how energy
bands arise consists in solving a problem very similar to the Kronig-Penney model. Consider a one-
dimensional periodic potential energy

V(x)==eVy i O(x—na) . (4.18)

Nn=—oo
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This defines a potential energy that vanishes everywhere except at the lattice positions x,, = na where
it exhibits “spike” of amplitude eV(. Therefore, a is the periodicity of this lattice. Find the form of
the Bloch waves, keeping in mind that at the locations x,, the first derivative of the wavefunction is
discontinuous. Find also a graphic procedure to obtain the dispersion E(k).
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Chapter 5
The Electronic Structure of Crystals:
Computational Methods

5.1 Overview

In the previous chapter we have outlined the general theoretical framework required to formulate the
problem of finding the electronic properties of solids as a single-electron problem. Here we discuss in
detail the most significant methods that can be used to solve the problem quantitatively. We start by
describing methods based on the expansion of the unknown (Bloch) wavefunction into plane waves,
explain why a “brute force” solution would not work, and introduce the concepts of orthogonalized
plane waves (OPW) and model potentials that lead to pseudopotentials. We discuss their use in their
“empirical” form, but, in their self-consistent implementation, they lead to density functional theory
(DFT). This will be discussed separately in the next chapter, given the important role that it plays in
solid-state physics, materials science, and nanoelectronics. We also present other methods not based
on plane-wave expansions, namely tight-binding and k - p perturbation theory. For each method, we
shall present some significant examples.

Since the topic treated here is so vast, we shall unavoidably skip some important “details.” Texts
exclusively devoted to the study of the electronic spectrum of crystals abound and, if additional
details are needed, these details can be found there. In particular, Harrison presents an overview of
the pseudopotential and tight-binding approximations [1]; the concept of pseudopotential, introduced
by Hellman in 1935 [2], is reviewed, both as empirical model potential and ab initio, by Austin et al.
[3], Harrison [4], and Heine [5]. Its most recent ab initio formulations are discussed, for example, by
Kaxiras [6] and Pisani [7]. The use of linear combinations of atomic orbitals (also known as the tight-
binding approximation) was introduced and discussed by Slater [8]. More details about the use of k- p
perturbation theory are given by Luttinger and Kohn [9] and Kane [10], authors who first introduced it.
A discussion about its application to the study of the valence bands of Si and Ge can be found in
Kittel’s text [11]. Finally, the development of the all-important exchange-correlation functional can
be followed historically in the original articles [12, 13].

5.2 Plane Waves

Consider the single-electron Schrédinger equation (4.17) above. For the time being, we shall ignore
exchange-correlation effects. We make use of Bloch’s theorem, so that, by expanding the general
solution over products of Bloch functions, we shall arrive at a matrix form for the Hamiltonian.
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In principle, the associated eigenvalue problem can be solved, of course. However, we shall see that,
in practice, unless we do something about the lattice potential, it will be the size of the problem which
will make it computationally impossible to solve.

We wish to solve the Schrodinger equation

V2
- 2me)

w(r) + VI (r)y(r) = E y(r) . (.1

Since the lattice potential V(12! (r) is periodic, we use Bloch’s theorem and consider the wavefunction

l[/(k,l‘) — eik-r 2 UKG eiG-r )
G

Ql/2

Inserting this into the Schrodinger equation, we obtain

2

2mel

z |k+G|2ukGei(k+G)~r+V(lat)(r) zukG ei(k-‘rG)'l‘
G G

— E(k)z UG ei(k+G)-r )
G

Now we can use a “standard technique” to solve equations in Fourier-transformed form: Multiplying

it by e ik+G) T gng integrating over the whole volume of the crystal, this equation leads to
hz
{ |k+G|2—E(k)} uk(;+z Voo ukgr =0, (5.2)
2mel G/

where Vg = V((;la:)G, is the Fourier transform of the lattice potential, V{4 (r). This linear homoge-

neous problem has nontrivial solutions only if the determinant of the coefficients vanishes, that is:

Det

>

ey 2m

h2
H |k+G|2—E(k)} 6G(;/+VG(;/}| =0. (5.3)
el
The term Vg can be simplified using its periodicity:
1 ; o
Voo = 5 /Q e—1G~r V(lat) (l‘) e1G T dr ’

assuming that the wavefunctions have been properly normalized to the volume 2 of the crystal.

Now recall that V(129 is the sum of the ionic potentials in the WS cell. Since we must deal with
indices for both cells and ions in each cell, we shall use, as usual, indices [, m,. . . for the cells, reserving
the indices o, 3, etc., for the Njys ions in each cell. If the ions in the WS cell are at positions T
(0 = 1, Njons) (relative to the origin in each cell), then:

Vi@ =Y v@(r—R —14),
Lo
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where V(%) is the potential of ion c. Then, setting G’ = G — G’:
l el
Veg = — / e 6Ty (r R, — 1) dr
GG 0 I,Zoc’ o ( 1 o)
1 et/ iG"
==y e IR / V@ (r—R;—1,) e ¢ R gp | 5.4
Q =~ Q

Setting r' = r — R; — T, as dummy integration variable, we can rewrite this equation as:

1 alll Falll J/
Vg = 5 Z e iG"R / V(a)(r/) e"iG (' +10) dr’
Lo Q

PPt/ 1 iG" iG"-r'
_ e 16" 1 e IG"R / V(a) ) e G gy , (5.5)
%’ Neett€2c 2[’ Q ( )

where €2, is the volume of the cell. Since the ionic potentials %) (r) are short-range, being “screened”
by the other valence electrons, they decay very quickly at large distances. Thus, we can neglect the
contribution to the integral coming from points r’ outside the WS cell and assume that:

/ V) e 6" gy & [ vOE) e 6" gy (5.6)
o Q

Since Y e G R — Ncell, the number of cells in the volume €2, we finally obtain

: / 1 : ; /
Virgr = —i(G-G')1q _~ V(Oc) —i(G-G')r d
GG % e Q. Ja. (r)e r
=3 6yl (5.7)
o

In the simple case of mono-atomic lattices (such diamond, Si, or Ge), all ionic potentials in each cell
are the same, so, dropping the unnecessary index o/, we can rewrite this final expression in the simpler
form:

L V(r) e 1(G=6)r gp

V ;) = efi(G*G/)'Ta .
GG %, 2 Jo,

=S(G-G) Vg_¢ - (5.8)

The factor S(G) depends only on the location of the ions within the WS cell and is called the structure
factor. The factor Vg is the Fourier transform of the atomic potential within the WS cell and is called
the form factor.

A numerical solution of this problem can be obtained by considering a large-enough number, Ng,
of G-vectors. The Ng eigenvalues, E,(k), give the dispersion in Ng bands, the Ng eigenvectors
give the wavefunctions. The problem arises when we consider the number of G-vectors which we
should retain. If we take for V(%) the bare ionic potential, V(%) (r — Ry) = —e?/(47meg|r — Ry)), we
must account for the extremely short wavelengths that core electrons will have near the “singularity”
r = Ry, In other words: the Fourier components V((}a) decay all too slowly with increasing magnitude
of G. For a typical crystal, the rank of the eigenvalue problem we would have to solve would approach
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or even exceed 10°. Even with the computing power available today, this is a nontrivial difficulty.
It was an impossible task in the early days of semiconductor physics. Some approximation is definitely
required.

5.2.1 Orthogonalized Plane Waves

The reason why the simple plane-wave method requires so many plane-waves stems, as we saw, from
the necessity to solve also for the core states. Yet, these do not deviate significantly, or even at all,
from their free-atom form. Moreover, the valence and conduction states should be orthogonal to these
states. Therefore, it appears that the many high-frequency plane waves which create troubles are not
even necessary. Thus, from these considerations, Herring [14] and later Callaway [15], had the idea
of expanding the unknown single-electron wavefunctions over the subset of plane waves which are
orthogonal to the core states. This is called the orthogonalized plane-wave (OPW) method.

One starts by defining normalized core eigenstates centered at individual ion positions (assumed to
be frozen in their equilibrium position):

t,l,00) = yi(r—Ryq) , (5.9)

where the index ¢ (we are quickly running out of letters of any alphabet to label our many indices!)
labels the core level. We assume that these states are known from calculations of the atomic structure.
OPWs then may be written as:

|OPWy) = [K) — Y |, a) (1,1, alK) (5.10)

t,lo

where
1 .
(L olk) = & / W' (r—Ryg) e*T dr (5.11)

does not depend on [ because of the periodicity of the lattice. Although the OPWs are not orthogonal to
each other, they are orthogonal to all core states and form a complete basis for the conduction/valence
states, which is what matters. We can now follow exactly the same procedure used above for
plane waves and we will obtain a secular equation similar to Eq. (5.3) but, now, the coefficients
(OPWg|V|OPW¢/) will decay much faster with increasing magnitudes G and G', so that the size
of the problem will be largely reduced.

5.3 The Concept of Pseudopotential

The idea of OPW leads directly to another idea: Without going into the trouble of calculating the core
wavefunctions in order to deal with OPW, is there a way to modify the ionic potentials themselves—
let’s call them pseudopotentials—so that we will obtain directly valence wavefunctions that are
orthogonal to the core states? Roughly speaking, this has been done following two logically different,
but computationally very similar, paths. One path, followed by Harrison [4], relies on a more formal
reformulation of the problem to extract this “pseudopotential” directly from the definition of OPWs.
The second path, more intuitive and proposed originally by Hellman, Animalu, Heine, and co-
workers [2, 3, 5], could be called a search for “model potentials” that give us the “correct” results
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for the valence states, giving up intentionally any information about the core states: After all, they are
not needed since they do not influence significantly (or at all) the bonding properties of the crystal
and, so, its electronic structure. Let us consider them both, discussing first the more formal approach.

5.3.1 From OPWs to Pseudopotentials

Consider again the OPWs, Eq. (5.10) and introduce the projection operator

n="y |tLa)tlLal, (5.12)
tl,a
so that Eq. (5.10) can be written as:
|OPWy) = (1 —IT)|K) . (5.13)

The “real” wavefunction can be expanded as:

ly)=(1-1) Y alk) . (5.14)
k

Substitution of this expansion into the initial Schrodinger equation, Eq.(5.1), will give us back
the OPW method. Instead, consider the equation above and rewrite it in terms of the “pseudo-
wavefunction” |¢):

ly) = (1-11)|9) . (5.15)

Note that ¢(r) is identical to the real wavefunction y(r) outside the cores, since the projector IT
vanishes there, but it is not necessarily orthogonal to the core states inside the cores. Hopefully, ¢ will
be smooth inside the cores.

Let us now derive an equation for ¢ (r) = (r|¢) by substituting Eq. (5.15) into Eq. (5.1):

w2 "2 .
- %VZ‘P(Y) + VI (r)g(r) — —%Vz + V()| 19 (r)
+EIM¢(r) =E¢(r) . (5.16)

Now notice that, since

712

2mel

V2 a(r) + v (r) Via(r) = Er o Yra(r)

(an equation expressing the fact that the core states are, after all, eigenstates of the original
Hamiltonian) and from the definition of IT, Eq. (5.12), we have

2
—h—v2+v<‘m>(r) N=Y Eqlto)tal. (5.17)
2mel 1o
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Thus, we can rewrite Eq. (5.16) as:

h2
B 2mel

V29 (r) + [V )g)(r) = E9(r) , (5.18)

where the pseudopotential has been defined as:

yeseedd) — v (r) 4 3 (E—Epq) |1,1,0) (1,1, 0] (5.19)

tlo

Note that, transformed back into real space, this pseudopotential will be “nonlocal”, since its action
(as an operator) on the unknown wavefunction would involve an integration of the unknown with the
core wavefunction (z, o¢|r). Equation (5.18) is called the pseudopotential equation. It can be rewritten
explicitly as:

h2V2+v<‘*“><r>] o(r)

Zmel

+ 3 (B Era) Vot —Ria) [ Wiat)0() dr' = B (r). (5.20)

Note that the eigenvalue FE is identical to the eigenvalue corresponding to the exact eigenfunctions.
Indeed, let’s assume that in Eq. (5.20) above we had a different eigenvalue E’. Then, multiplying this
equation by the “exact” wavefunction y* and integrating, we would get:

E/Www:E/w¢ﬁ, (5.21)

since the second term in Eq.(5.20) vanishes because of the orthogonality between y and the
core states. Equation (5.21) shows that either the exact wavefunction is orthogonal to the pseudo-
wavefunction or, when not, they have the same energy.

5.3.2 Model Potentials

An alternative way to reach the concept of pseudopotential relies on the idea of looking for a model
potential that gives us wavefunctions that are “correct” (that is: identical to the “real” wavefunctions)
outside the cores, no matter how inaccurate these “pseudo-wavefunctions” will be inside the cores.
If we manage to do this, the binding properties of the crystal will be represented correctly. Similarly,
we shall obtain the correct information about the energies of the valence and conduction states.
Figure 5.1 illustrates this idea: The dashed blue line describes (in cartoon fashion) the bare

ionic potential. Large frequency components (that is, slowly decaying Fourier components V((la) as
q increases) still persist because of the fast variation of the ionic potential near the ion cores. The
pseudopotentials are indicated by the red solid line and results from “chopping” the potential around
the cores. The resulting Schrodinger equation will have the correct form outside the cores and will
give us the correct wavefunctions in these regions provided we use the correct boundary conditions
at the core boundaries (that is, we must somehow enforce that the pseudo-wavefunctions have the
“correct” value and radial derivatives at the core boundaries).

It is easy to see the advantage of this formulation: we have eliminated all high-g Fourier

components of V((la), thus reducing significantly the size of our problem.
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Fig. 5.1 Schematic illustration of the concept of “pseudopotential”’: Within the “core” region the singularity of the all-
electron, bare ionic potential is removed and replaced by a smoother function. The wavefunction inside the core is not
physically meaningful, but as long as its value and the value of its radial derivative coincide with those of the “exact”
wavefunction outside the core, the structure of the valence electrons, of the atomic bonds, and of the crystal structure
will be correct. [Figure adapted from “Sketch Pseudopotentials” by Wolfram Quester. Original uploader was Wquester
at en.wikipedia—Transferred from en.wikipedia; transferred to Commons by User:Leyo using CommonsHelper.self-
made with inkscape. Licensed under Public Domain via Wikimedia Commons]

Note that the “model potential” by Animalu and Heine and Harrison’s pseudopotential are
essentially the same concept. Indeed it can be proven that in Eq. (5.19) above we may replace E — E; o
with any function of E, ¢, and o and still reach the same result Eq. (5.21). This flexibility allows us to
use the Animalu—Heine’s model potential. Note also Harrison’s pseudopotential is nonlocal [see the
integral in Eq. (5.20)]. Indeed, nonlocal pseudo- and model-potentials are often more accurate. But
local approximations may work and have been employed.

5.3.3 Density Functional Theory

Regardless of the perspective we take, we can construct our pseudo (or model) potential for any ion
(say, Si, to fix the ideas) by solving self-consistently the Schrédinger equation for the Si atom using
only the valence electrons. That is, we build a parametrized model potential which represents the bare
nuclear Si potential (—4e? /(4meqr)) with the additional screening by the ten core electrons 1s22s22pS.
We solve the Schrodinger equation for the four valence electrons (using the Kohn—Sham “density
functional” in the Hartree—-Fock approximation, for example, as we have seen in Eq.(4.17) in the
previous chapter) by varying the parameters until we reproduce the known spectrum of the Si atom.
This fixes the pseudopotential of the Si** ion. We now insert this model potential into our Schrodinger
equation Eq. (4.17) and solve it self-consistently with the charge of the valence electrons in the crystal.
The pseudopotentials used in this DFT approaches are known as self-consistent pseudopotentials,
since we require a solution of a nonlinear Schrddinger equation in which a portion of the potential is
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a functional of the unknowns (the electron density, as so the wavefunctions). While this scheme used
to severely underestimate the energy gaps of most semiconductors (for example, the indirect gap of Si
was underestimated by a factor of 2 in past decades), recent refinements of the model potentials and on
the expression for the density functional, now render this method the algorithm of choice providing
great accuracy. The self-consistency of this method allows its general applicability and portability,
a virtue that model potentials (or the empirical pseudopotentials treated in the next section) do not
possess. For example, unlike empirical pseudopotentials, the model potential for the Ga ion can be
used to calculate the band structure of GaAs, GaN, GaP, etc. It also allows for calculations in strained
materials, of defects in crystals, of ionic motion such as phonons (since the new electronic charge
following the redistribution of the ions can be calculated). Given the increasingly important role that
this method is playing in the communities of condensed matter physics, chemistry, biological sciences,
materials science, and nanoelectronics, we shall discuss it in more depth in the next chapter.

5.3.4 Empirical Pseudopotentials (EP)

For practical applications, a much simpler approximation is usually employed: Describing the Fourier
transform (or series) of the pseudopotential with a parametrized algebraic expression (or simply by the
values of its discrete components), the pseudopotential is treated in a fully empirical fashion, those
parameters becoming simply quantities that are fitted to experimental results, such as band gaps at
symmetry points in the first BZ, electron dispersion (when available), optical absorption, or electro-
reflectance data.

One such empirical expression is given by Friedel et al. [16]:

_ bi(¢*—by)

V(Si)(q) — b1

(5.22)

The parameters b, by, b3, and b4 are determined by such a fitting procedure to experimental
information. Local forms, such Eq. (5.22), have been used extensively and successfully. Examples,
as well as alternative explicit forms for V(pse”d")(q) for various ions, parameters, and results, are
discussed in a separate chapter and in Appendix B.

Further improvements to this local formulation of the pseudo- (or model) potential can be obtained
by adding nonlocal terms, consistent with Harrison’s result, as in Eq. (5.19). These terms essentially
give us more freedom to extend the energy range over which we can expect to obtain a good match
between the values of the wavefunction and its radial derivatives at the core boundary. Therefore, we
can expect results that will be more reliable over a larger energy range, especially in the conduction
band, after having fitted the parameters to experimental data obtained in a narrow energy range
(usually, close to the band-gap or Fermi surface). Chelikowsky and Cohen [17] have expressed
these corrections as additional terms—to be added to the local potential entering the one-electron
Schrodinger equation—as terms that project the valence wavefunction in a subspace orthogonal to
core states of angular momentum /. They express these terms in the energy-dependent form:

oo

VonL(r,E) =Y A(E) fi(r) Ty , (5.23)
1

where A;(E) represents the depth of the /-th angular momentum component of the ionic potential, f;(r)
attempts to simulate the radial component of the core states to which the valence wavefunctions must
be orthogonal, and IT; is the operator that projects onto the eigen-subspace of the angular momentum
operator with quantum number /. In other words, this is just Eq. (5.19), having assumed that the core
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states lie in a subspace orthogonal to the projection identified by Eq. (5.23). For the semiconductors
considered by Chelikowsky and Cohen, only terms with [ =0, 1, or 2 are required.

Empirical pseudopotentials are extremely powerful, since very few parameters are needed in order
to obtain information about many properties of the crystals: Its band structure (that is, the electronic
excitation spectrum or electron dispersion), its optical properties, and its dielectric properties, among
others. If information about the vibrational eigenmodes of the crystal (phonons) is available, they can
also provide the matrix elements for electron—phonon interactions.

When facing the problem of calculating the band structure of bulk crystals, very few parameters
indeed are required: Since V((lp seudo,cr) is needed only for q = G [see Egs. (5.3) and (5.7)] and since

V((f seudo,x) decays very quickly with increasing magnitude of G, very few values of Vg) seudo.0) e

needed. For example, for cubic crystals the first G vectors are the eight vectors (£1,+1,41) of
length G = 3 (in units of 27 /a), the vectors (£2,0,0), (0,42,0), and (0,0,=+2) (called the “star” of
vectors (2,0,0)), all of length G> = 4; the star of vectors (2,2,0) of length G> = 8, the star of vectors
(1,1,3) of length G® = 11, etc. Since the pseudopotential, by symmetry, depends on the magnitude G

(pseudo,or) +,(pseudo, )
Veos Voo

,. .. Typically the empirical pseudopotential is truncated before reaching the star

of G, we must determine the first Fourier coefficients—the “form factors”—
V(szsil;do,a)’ V(szsiuldlo,oc)
of the (4,0,0) vectors of length G*> = 16, so we have only four (complex) parameters that we are free
to vary in order to fit experimental data. For Si and Ge, one can use only real form factors and, noticing
that the structure factor, S(G), vanishes on the star G> = 4 by symmetry, only three parameters are
required to obtain a very accurate band structure.

Figure 5.2 shows one of the most commonly used forms of the local empirical pseudopotential
of Si. Note the abrupt truncation for g > 3.5 x 27/a. Of course, the full expression for the ionic
pseudopotential, V(P$e1d0.%) (4 as given, for example, by Eq.(5.22), is needed when the lattice is
distorted (when computing the change of the band structure caused by strain, for example), or when
altering the periodicity of the crystal. This is the case when considering the “supercells” needed
to study nanostructures, as discussed in Chap.7. In these cases, the G vectors will change, so a
knowledge of the empirical pseudopotential is needed for all values of g.

0.2 I I I I

Vpseudo (Ry)

Fig. 5.2 A commonly

used local empirical

pseudopotential for Si. -1.2
This is the form proposed

in [16] q (2n/a)
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We conclude this section with a brief discussion about the merits and shortcomings of empirical
vs. self-consistent pseudopotentials.

Empirical pseudopotentials present the advantage of yielding the band structure of a crystal that
matches experimental data. This, of course, is the very definition of the term “empirical.” However,
their “calibration” is performed only on a subset of known properties and additional properties, in
general unknown, can be predicted. For example, having calibrated the empirical pseudopotential
of Si to known band gaps and effective masses at the bottom of the conduction band, one can
calculate effective masses in higher-energy local band minima. Similarly, the pseudo-wavefunctions
and pseudopotentials can be used to calculate electron—phonon matrix elements, as we discuss in
Chap. 13. These results can be used in high-field transport studies. Moreover, as long as the crystal
structure is not distorted too much, studies can be reliably performed to assess the effect of small
distortion (such a moderate strain) or to obtain the electronic structure in small structures, such as thin
films or nanowires. This will be amply discussed in Chap. 7. But herein lies also their major drawback:
The pseudopotentials are fitted to a specific structure. They embed, in their empirical nature, the spatial
distribution of the valence electrons in this particular structure. This distribution determines how the
real bare ionic potential is screened by valence charges. If the atomic configuration is altered, this
distribution, and so also the shape of the screened ionic potential, will change. Therefore, empirical
pseudopotentials can be trusted only when studying systems whose atomic configurations is not too
different from the configuration to which they had been calibrated. A striking example is given by the
fact that the empirical pseudopotential of Ga to be used in GaAs, for example, is not the same one that
needs to be used to study GaSb, for example. The different size and electronic configuration of Ga in
the GaAs lattice, bonded to As, is different from its electronic configuration in the GaSb lattice, now
bonded to Sb.

The ab initio (or self-consistent) pseudopotentials used by DFT, instead, exhibit complementary
advantages and disadvantages. They are “portable,” in the sense that they are calibrated to isolated
ions, so that the valence electrons are free to re-adjust to changing environment and atomic configura-
tions. Indeed, DFT calculations are now extremely reliable in predicting the atomic configuration
itself. On the other hand, since DFT is essentially a “ground state” theory [12, 13], there is no
guarantee that the conduction bands will be treated correctly. This is indeed their major drawback,
although recently significant progress has been made to solve this problem from both a theoretical
and computational perspective.

5.4 Other Approximate Methods

So far, in this chapter we have considered only approaches to calculate the electronic properties
of crystals based on plane-wave expansions. Alternative methods are available, based on different
basis functions or on different approximations. Here we discuss two of the most common methods
employed: The tight-binding method, based on expressing the unknown wavefunctions on the basis
of localized atomic orbitals (LCAO is the term used mainly in chemistry), and the numerically
convenient k - p perturbation theory.

5.4.1 Tight-Binding

The tight-binding approach is probably the simplest from a conceptual perspective. It’s related to
what’s called Linear Combination of Atomic Orbitals (LCAO) in chemistry.
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Suppose that we know the atomic orbitals of the atoms constituting the crystal, W, (r —r ), where
t denotes the set of quantum numbers that label the atomic orbitals and r, denotes, as usual, the
coordinate of the ion ¢. For a given ¢ we can always consider a linear combination of these orbitals
(all having the same energy in each isolated ion). The idea indeed is to form such a combination and
treat the “overlap” between the orbitals as the perturbation which will give rise to the band structure.
Thus, consider the linear combination:

r) =Y cLa¥i(r—Riq) (5.24)
Lo

where, as usual, the ionic coordinates R; , should be intended as the equilibrium positions. Of course,
the wavefunction must still obey the requirements imposed by the periodicity of the lattice, and so it
must be of Bloch form. This implies that the coefficients ¢; o must be equal to e®Ria 5o that

1 .
Oi(r) = 7 D e yy(r—Rya) (5.25)
N Lo

where N is the number of orbitals we add. Note that if we assume that the orbitals y; are correctly
normalized, ¢x, will be also correctly normalized only if the overlap among the atomic orbitals
vanishes, so that the normalization will be correct only at zero-th order. Since the states y; are
eigenstates of the isolated ions, each with potential v (r —ry,), they satisfy the Schrodinger equation

2
{ f — V2yyle )(r—ra)} Y (r—rg) =E y(r—ry) . (5.26)

2me]

The Schrodinger equation we wish to solve is

[ 2melvz+vh‘()} Orci(r) = Ex Orci(r) (5.27)

where, as usual:

vim) =Y v@(r—R;,) . (5.28)

Lo

Inserting the linear combination Eq. (5.25) into the left-hand side of Eq. (5.27), we have

n’ i
[_Zmel +Vim }Nl/z 2 R yi(r — 1)

-3

Lo

: 1
E+ Y V@@r- r,,ﬁ)] T s V(E = Rig) (5.29)
Il B#la

where N = N¢e1NVjon 1S the total number of ions in the crystal. In order to simplify the notation, for now
we lump into the single index o the couple of indices /, o, so now ¢ runs over all ions in the crystal.
With this simplified notation, the expectation value of the energy of the state ¢ ; can be written as:
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J 9, (x) (=72 / (2me) V2 4+ VI (r)] ¢y (x) dr
J 0k (1) 9 (r) dr

(1/N zaB fl[/t (I‘ Rﬁ) zwéﬁ V ( R}/) l]/t(l‘—Ra) exp[ik~(Ra—Rﬁ)]dr
J 0k (r) ¢ico(r) dr '

(Ex) =

=E+

(5.30)

To leading order, we can assume that the normalization integral in the denominator is unity, as we
noticed above. Also, keeping in mind that the overlap terms are assumed to be small, three-center
integrals (that is, terms for which o # 8 # y above) will be of at least one highest order in our
perturbation expansion. Thus, we can ignore them and retain in the sum only terms for which either
oa=Bora=y.

The terms with & = B give a contribution of the form:

1
E,+N2/w;‘ ~Ry) Y VP (r—R,) yi(r—Ry)dr. (5.31)
a e

Note that this term does not depend on k and it is simply the expectation value at each ion ¢ of the
potential due to all other ions y. By symmetry, it does not depend on « and it can be written as:

E,+/1,/,* “Ry) 3 VO(R-R,) yi(r—Ry) dr. (5.32)
r#e

Since the potential V(%) of each ion is negative, this term is also negative and it expresses the binding
energy of the crystal. It does not contribute to the band structure because of its independence of k.
The terms for which o = 7y are of the form:

Et-s-% 2 ek (Ra—Rpg) /‘Vt*(r_RB) V<"‘)(r—Ra) v, (r—Ry) dr. (5.33)
a,f#a k

Again, by symmetry these terms do not depend on ¢, so that once more the sum divided by N can be
taken as equal to any one term of the sum. Also, taking the origin at Ry this sum can be rewritten as:

E+ Y ékRe /1// (r—Ry) Wi(r—Ry) dr. (5.34)
o,Re#0

This is the main result of the tight-binding approximation: The energy of the atomic orbital E; is
modified by k-dependent (band-structure) effects. Their strength depends on the amount of overlap
among atomic orbitals. Thus, the method constitutes a good approximation if the overlap is not too
large.

In general, several (n) atomic orbitals will be considered and the matrix

(' |Hlr) = / O (1) [/ (2me) V2 + VI (£)] 9ico(r) dr

can be considered. Manipulating it as done above, one can obtain an effective tight-binding
Hamiltonian of the form:

(¢|Hy|t) = Ei8p, + Ty, (K) .
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where the “off diagonal” terms

To() = 3 e [y VO r—Ro) vilr—Ra)
ro#0

involve overlap integrals of atomic orbitals. These terms can be calculated from known Hartree—Fock
atomic orbitals or may even be the input for fully self-consistent calculations, known as DFT tight-
binding. More commonly the “hopping integrals” appearing in the integrand of the expression above
for T, (k) are treated as empirical (fitting) parameters (empirical tight-binding). The resulting matrix
can be diagonalized, yielding the band structure. Of course, as for plane-wave methods, DFT can be
used to calculate self-consistently the atomic orbitals and the overlap integrals. If a sufficiently large
number of atomic orbitals is considered, the method becomes fully equivalent to the “conventional”
plane-wave DFT method.

Common approximations made to deal with semiconductors include s and p* states, often
augmented by excited s* or d° orbitals to compensate for the neglected higher-energy orbitals (the
so-called sp>s* and sp>d® models). The red curves in Figs. 5.4, 5.5, and 5.6 (pages 87—-89) show the
band structures of Si, Ge, and GaAs computed with the sp3s* model of Peter Vogl and co-workers [18].

A simpler example we can consider here is the energy band originating from s orbitals. Let’s also
assume an ideal cubic lattice. The integral we must consider is the term corresponding to Eq. (5.34)
above:

A:i/uﬁu)v@—qh)wxr—nﬁdr, (5.35)

which for s states is the same for all neighbor ions. Then, the correction to the energy of the atomic
orbital takes the form:

Ay e KTa — ) (coskya+ coskya +coska) (5.36)

o

where the sum extends only over the nearest neighbors. Since the potential v is attractive, A < 0. The
band structure will be of the form:

Exo —2|A|(coskea+ coskya+cosk.a) . (5.37)

Note that the energy-correction increases quadratically as we move away from the zone-center.
Expanding Eq. (5.37) in powers of k we have

n*k?
2m*

k2a“

EAO—2|},|(3— —|—~~~>:EAO—6)~|— +--- (5.38)

where the effective mass is m* = 1% /(2a%|A]).

5.4.2 Kk-p Method and Effective Mass

The k - p perturbation theory is of a nature different from the methods we have discussed so far. Yu
and Cardona’s text [19] presents a more comprehensive overview than what we provide here.
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Consider again the Schrodinger equation we must solve, Eq. (5.1):

V2
- 2me)

v(r)+ VI (r)y(r) = E y(r) . (5.39)

Using Bloch’s theorem by setting y/(r) = i (r) = uy(r)e™®", inserting it into Eq. (5.39) and setting
p = (i/i)V, we obtain

(PK + P) 2y + VI (£) iy = By - (5.40)

Zmel

The idea now is to assume that we know the solutions at a particular point Ko and consider the
terms depending on k — Kq as a perturbation. We can chose any point Kq, but usually the point kg = 0
is chosen. So, let’s assume that we know how to solve

2mell3 zu(()n) + V(lat)(r)”(gn) = E(()”)”(()n) )

5.41)
where the index n labels the band index. To order k the leading perturbation term in Eq. (5.40) is

~ /]
Hl = 7kf’7
Me)

(hence the name of the method), and to second-order

~ R~
Hy = 1.

B 2me;

Thus, the first-order correction to the eigenvalue E(()r> will be
hi
EV = k- ) plul’y (5.42)
Mg

If the crystal has a center of symmetry, the matrix element must vanish. So, we must consider second-
order perturbation theory:

o _ 11 [k (g g

E ) (5.43)
? a5 EV-EY

2m61 m

Let’s define the “effective mass tensor” m;; (where i and j runs over the coordinate-indices x, y, z) via:

ma_ g 2 s (g g 1)

: (5.44)
ij el s Ey) —Eg)

relation which is known as the f-sum rule. Then, the energy at the k-point to second-order will be

R kik;
E“>:Ef{’+—2 L
2 55 m

(5.45)
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Note that the dispersion of free electrons is modified by (energetically) “nearby” bands, since the effect
of a band s is seen from Eq. (5.43) or (5.44) to be inversely proportional to the energetic separation

E(()r> — ESY). If only one band matters, then, since the momentum matrix element is of the order of 7i/a

(a is the lattice constant), setting AE = Eér) — E(()S), we have

(5.46)

In the special case of the valence bands of cubic semiconductors, as we shall see, the three topmost
bands are degenerate at the center of the Brillouin Zone, which is the symmetry point I'". Therefore,
we must use degenerate perturbation theory. This requires the full diagonalization of the perturbation
Hamiltonian on the three-dimensional subspace spanned by the degenerate eigenvectors, that is, the
matrix with elements:

- 2k n VIR
(r|Hipls) = (E(()r) + 2) Ors+—5 Y kik;(rlpils) (s|pj|r) , (5.47)
MMel me iy

having indicated with |r) the (degenerate) valence states u(()r) (r). For Si and Ge, Dresselhaus, Kip, and
Kittel [11], have proposed to use as unperturbed states ug. These are the orbitals which transform like
¥z, zx, and xy (which are a basis for the representation of the cubic point group at the symmetry point
I'); they have angular dependence of their wavefunctions of the form sin 6 cos 8 cos ¢, sin 6 cos 6 cos ¢,
and sin® @ cos ¢ sin ¢. On symmetry arguments, they show that the matrix to be diagonalized (that is,
whose eigenvectors give the structure of the three topmost valence bands) has the form:

LI +M(k; +k2) Nkky Nik.k,
Hy.p = Nkyky L2+ M (K2 + k2) Nkyk, , (5.48)
Nk k, Nkyk, LI +M(k} + k)

where the coefficients L, M, and N can either be fitted empirically or calculated from more complicated
band-structure calculations or even tight-binding approximations using known atomic orbitals.

Figure 5.3 on page 86 shows the valence band structure of Si, also under biaxial tensile strain,
computed with k - p perturbation theory, Eq. (5.48), (red dashed lines) compared with the results
obtained using nonlocal empirical pseudopotentials.

5.5 A Computational Example

We conclude with a few computational examples that illustrate the results of the various methods just
discussed to calculate the band structure of important semiconductors.

Figures 5.4, 5.5, and 5.6 show the band structure of Si, Ge, and GaAs calculated with nonlocal
empirical pseudopotentials. Let’s review briefly the procedure followed, but we shall consider only
the simpler local approximation.

The starting point is the secular equation (5.3) with an expression for the Fourier coefficients of the
(local) pseudopotential given by Eq. (5.7):

Ve =Vl 6Ty yJe 6 (5.49)
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In these cubic fcc crystals, such as Si and GaAs, the two ions in the primitive cell are at coordinates
71 =(0,0,0) and 72 = (a/4)(1,1,1), where a (= 0.543 nm for Si) is the lattice constant. This is seen
in the left frame of Fig. 3.1: The Ga and As ions are the “black” ion at the bottom left vertex and the
“white” ion to which it is bonded. It is actually more convenient to shift the origin of our coordinates
to the mid-point between the ions, so that 7, = 7 = (a/8)(1,1,1) and 7, = —t = —(a/8)(1,1,1).
Then, Eq. (5.49) becomes

Vg = V((}l)e—iG‘r + V((;z)eiG‘r
= VO + v cos(G-1)—i [VS) = V] sin(G - 7) . (5.50)
This can be re-expressed in terms of a symmetric and an antisymmetric part:

Ve = SO(G)VY) —is@(G)v
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Fig. 5.4 At left, the band structure of Si calculated using the nonlocal empirical pseudopotentials of Chelikowsky and
Cohen [17] with spin—orbit corrections (thick black lines), using the local empirical pseudopotentials of Cohen and
Bergstresser [20] (dashed black lines), and employing the sp3s* tight-binding model of Vogl and co-workers [18] (thin
red lines). At right, the density of states calculated from the nonlocal band structure at left

where

SO(G) =cos(G-1) ,
and

SW(G) =sin(G- 1) ,

and, in terms of the atomic pseudopotentials V| and V; of the two ions in the cell,

sy 1, a 2
L),

_1!

Ve =V,

v

where
Vo= l/V(r) e 1CTdr
N Qd i )

where i = 1,2 and €, is the atomic volume. We see immediately that for the diamond structure (Si
and Ge), V) = 0. Moreover, $¢(2,0,0) = 0, so that we do not need V¢ for G> = 4. Therefore, for



88 5 The Electronic Structure of Crystals: Computational Methods

—
> 1r/ 7
() |
~ /A ~ ///'\\
> 0F — sp -
Sg —— nonlocal pseudopot with so
L - - - local pseudopot 18
=z -1r \ 7
L . \

4] / r

\ \ \ \ \
0 1 2 3 4 5 6

DENSITY OF STATES (102 eV'cm™)

X Z W Q L A
Fig. 5.5 As in Fig. 5.4, but for Ge

Si and Ge we need only the symmetric form factors V;2_3, Vg an Viz2_ ;. For III-V compound
semiconductors we need also the antisymmetric components, including V;2_,. In total, we need three
real numbers for Ge and Si, three complex numbers (i.e., six real numbers) for III-V semiconductors.

The first such calculation—for cubic and zincblende type semiconductors of interest when dealing
with semiconductor devices—was performed by Cohen and Bergestresser [20] for 14 semiconductors
of the diamond and zincblende structure. For a given k, a set of G-vectors was employed, so
that A% |k + G|?/(2me)) < Eeuosy- The proper choice of this energy “cut-off energy,” Ecypofr, gave a
maximum magnitude G of about 7, resulting in about 20 G-vectors (so they employed “20 plane-
waves”). This resulted in an eigenvalue problem, Eq. (5.2) of rank 20. For each k-vector, they obtained
20 eigenvalues. The first 4 give the 4 values E,(k) of the valence bands, with n = 1,4. The other
eigenvalues correspond to the 16 conduction bands of lowest-energy. By moving k along symmetry
directions in the first Brillouin Zone, they obtained plots similar to those shown in Figs.5.4, 5.5,
and 5.6.

Today, solving numerically large eigenvalue problems is routine, so that much larger matrices and
typically much larger values for the cutoff energy Eoff are chosen, resulting in 100-200 plane waves.
In Chap. 7 we shall see that the study on nanostructures, handled by considering them periodic with
a large period, requires including a number of plane waves of the order of 10* to 10°. Algorithms
based on fast Fourier transforms (FFT) avoid the need to store these huge matrices while “spectral
folding methods” limit the calculations only to eigenvalues within a narrow energy range of interest,
thus saving both memory and computation time. As we have already explained, the form factors are
determined empirically, by fitting the obtained band structure to experimental information regarding
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Fig. 5.6 As in Fig. 5.4, but for GaAs

the density of states, the values of the energy splittings at symmetry points, and also about the effective
masses (which we shall discuss below) at the top of the valence bands and the bottom of the conduction
bands. The plots shown here have been obtained using about 120 plane waves and nonlocal empirical
pseudopotentials of the form Eq.(5.19) and accounting also for spin—orbit interaction (discussed
below), as given by Chelikowski and Cohen [17].

5.6 Qualitative Features of the Band Structure of Semiconductors

5.6.1 The Valence Bands in the Nearly-Free-Electron Model

It is useful to consider the general features of the four (doubly degenerate) valence bands of fcc
semiconductors. First of all, the first Brillouin Zone (BZ) of the fcc lattice is shown in Fig. 3.3 on
page 44. It is the volume enclosed by the planes k, = &1, k, = £1, k, = %1, (the “little squares”
parallel to the family of {1,0,0} planes) and the {1,1,1} planes +k, £k, £k, = 1.5 (all k-vectors
measured in units of 27t /a). The principal symmetry points we shall consider are: (1) the zone-center,
k = (0,0,0), called the T point; (2) the 6 points k = (£+1,0,0), (0,%1,0, and (0,0, £1), called the X
points; the 8 points k = (1/2)(%1,£1,=£1), called the L points. Additional symmetry points shown
are the K and U symmetry points (which are actually equivalent) and the W symmetry point. The
48-fold symmetry of the point group Oy implies that a volume only 1/48 the size of the entire BZ is
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sufficient to describe the band structure. This volume, defined by all points in the first octant (k, > 0,
ky > 0, k; > 0) such that ky + k, +k; < 1.5, 1 > ky > k, > ki, is called the irreducible wedge of the
first BZ.

Assume that the form factors Vg are small, so that, from Eq. (5.3), in the first band (G’ = 0) we
have

K2k?
~ 2mey ’

E(k) (5.51)

as for free electrons. This “free electron” dispersion must be still be made compatible with the crystal
structure, so it’s actually called the nearly-free electron model. Equation (5.51) describes a parabolic
band. Indeed in most semiconductors the first valence band is quite parabolic (see Figs.5.3 or 5.7
on pages 86 and 90). We know that there are four valence bands, since diamond and zincblende
semiconductors have four valence electrons and there are two atoms in each WS cell. Thus, the eight
valence electrons will occupy four valence bands, two electrons in each band. Within this simple
model, it is possible to calculate the Fermi energy, as it parallels the calculation in the case of the
free-electron gas: At zero temperature, electrons will occupy a sphere of radius kg such that:

2 7ﬁ78

dk— b _ 5 5.52
(2m)3 /k<kF 3n2 Qs 022

where Qws = a® /4 is the volume of the WS cell. Therefore, the Fermi energy will be

Pk 8\’
Ep=—F = 372 ~12eV 5.53
T 2my 2mg ( d Qws> © 633
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for Si (a = 0.543 nm). As shown in the plot below, the width of the valence bands is indeed consistent
with this free-electron estimate.

As k moves away from the zone-center at I' towards the edge of the zone, in general we would
find a gap. Parenthetically, we note that Si has some strange properties at the zone-edge at X because
of its time-reversal symmetry related to the fact that both ions in the cell are Si ions and there is an
additional reflection symmetry. In the so-called extended-zone scheme, we would continue outside
the first BZ with the parabolic dispersion. In the plot below, note how at the point X the first band
“bounces back” into the BZ. This is the reduced-zone scheme: Instead of going into the second BZ,
we remain within the first BZ, but set G’ = (£1,£1,41)(27/a) into Eq.(5.3), if we hit the zone-
edge at L, set G’ = (£2,0,0)(27/a) (and equivalent vectors) if we hit the zone-edge at X, etc. The
second band continues to be parabolic, but the third and fourth valence bands are more complicated,
because moving into the third and fourth BZs requires adding G-vectors which are not simply along
the direction in which we move. In general, these bands are much flatter, since the k-vector does not
change appreciably as it crosses the third and fourth zones along, say, the [100] direction. This is why
these bands appear very different from free-electron bands.

5.6.2 The Origin of the Energy Gaps

Let’s consider again Eq.(5.2) in a simplified context to understand the origin of the band gaps.
Following Ridley [21], we rewrite that equation:

hZ
2—|k+G|2—E(k) uG + Y., Voo ke =0 (5.54)
mel G/

We saw before that when the form factors are weak the solution of Eq. (5.54) is given approximately by

h2

E(k) ~ e
€

(5.55)

provided ugg # 0. Let’s consider first the nondegenerate case in which uyg 7 0 only for one particular
G-vector, say Gy, and set E, = h2|k+ G.|?/(2m;). We can also set ugg, = 1 without loss of
generality, since we are free to multiply the wavefunction by an arbitrary (normalization) constant.
Then, a first-order correction to the solution Eq. (5.55) will be obtained by computing the first-order
corrections to the coefficients uxg,, with G, # G, coefficients which were assumed to vanish at
zero-th order:

V6,6 Uk VG,-G, UG,
UG, = 2, = j’2 r b , (5.56)
G h ‘k-l-G‘ /(Zme])—Eb E,—E,
having set Ej, = h%|k 4+ Gyp|?/(2me)). Inserting this result into Eq. (5.54) we obtain
Vo
~E, +Z| G—Gal , (5.57)

E,—FE

where E' = 12|k + G'|?/(2me)). We see once more that bands “repel”: The proximity of other bands
(that is: other values of G in the reduced-zone scheme) at higher energies (E' > E,,) depresses the value
of E,. Bands at lower energies have the opposite effect. All bands push the a-band away, energetically.
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Consider now the simple degenerate case in which we can obtain the same energy via Eq. (5.55)
for two distinct vectors G, and G;,. We must consider the system

{ [E, — E(K)]uxg, + VGG, UxG, =0 _ (5.58)
[Ep — E(K)]uxg, + VG,—a, UG, =0

Setting AG = |G, — Gy, the requirement that the determinant of the system of equations (5.58)
vanishes yields

[Ea — E(K)][E» — E(K)] — |Vag|* =0, (5.59)

with solutions:

1 1
E(K) = 5 (Ea+Ey) % 5 [(Ea+ Ep)* ~ 4(EaEp ~ [Vac])]'* (5.60)
Recall now our assumptions that we have two degenerate bands at zero-th order. Therefore, set E, = E},
above and

E(k) = E, %+ |Vacl (5.61)

which shows that we have a gap of magnitude 2|V| at this k-point. As we saw above when discussing
the nearly-free-electron model, often degenerate free-electron values are obtained at the zone-edge.
Indeed, these are exactly the points where we usually see the formation of gaps.

5.6.3 The Spin-Orbit Interaction

A final effect of significant importance in dealing with the structure of the bands of semiconductors
(especially the valence bands near their maximum) is the so-called spin—orbit interaction. This is
an effect which also matters in atoms. It originates from the fact that in the laboratory frame of
reference, the charge of the nucleus (with core states) generates a pure electrostatic field, but the
orbiting electron sees this field as a magnetic field, as if it were generated by the nucleus which
appears to be a moving charge when “riding” with the electron around the nucleus. The electron also
has a magnetic dipole generated by its spin. The spin—orbit interaction is just the interaction between
the spin-induced magnetic dipole and the magnetic field seen by the electron. This interaction lifts the
degeneracy between spin down and spin up electronic states in the absence of inversion symmetry.

The Hamiltonian for this interaction can be obtained classically: If u is the magnetic moment
associated with the electron spin and B is the magnetic field caused by the orbital motion of the
electron, their interaction energy will be

Ho=—u-B. (5.62)

Now, recall that the magnetic field seen by a particle moving with velocity v in the presence of an
electric field E is

B=_YXE. (5.63)
C
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* Although this derives from the relativistic transformation of the electromagnetic field, it can be
derived simply using the requirement that in the frame in which the electron is at rest, only the
Coulomb force of the charged nucleus acts on it. However, in the frame in which the electron moves
with velocity v and the nucleus is at rest, only the Lorentz force acts on the electron. The two forces
must be equal. From this, Eq. (5.63) follows.

Writing v = p/m; for the electron velocity in terms of its momentum, we have

1
Hy, = — u-Exp. (5.64)

e C

Now recall that the electric field is just the gradient of the electrostatic potential ¢ and its radial
component is the only non-vanishing component:

1d¢

E=—— 5.65
PP (5.65)
so that Eq. (5.64) becomes
1 d
Hy = de ‘TXP, (5.66)
2mecr dr

with an additional factor of 1/2, which is discussed below. Now notice that L. = r x p is the orbital
angular momentum and y = eS/(2mec), where S is the spin angular momentum operator.

* See Jackson’s text [22], Sect. 5.6, to see that the magnetic moment M of a particle of charge q,
mass m, and angular momentum L is given by M = q L /(2meic). This semiclassical result actually is
violated in the present case: The magnetic moment caused by the electron spin is a little more than a
factor of 2 larger than expected. The explanation of this anomaly is one of the most striking successes
of the relativistic Dirac equation—which predicts a factor of 2—and of Quantum Electrodynamics
(QED), which explains the remaining tiny discrepancy. However, this factor of almost 2 is almost
exactly canceled by the so-called Thomas factor: We have expressed the interaction energy Eq. (5.64)
in the frame in which the electron is at rest. Moving to the laboratory frame in which the nucleus is
at rest, results in the appearance of an extra factor 1/2 in the expression for the potential energy of
the interaction. This is caused by the relativistic time dilatation between the electron and the nuclear
rest frames. This time dilatation decreases the (Thomas) precession frequency of the electron, and so
the interaction energy. Thus, except for a very small correction due to the fact that the gyro-magnetic
ratio of the electron is 2.00232. .., and not exactly 2, our result will be quantitatively correct.

Thus, the Hamiltonian (now an operator) for the spin—orbit interaction is

. do ~ ~
Ay ¢ ¥r3. (5.67)

- 2m§] c2r dr

We have briefly discussed before the properties of the angular momentum operators in Quantum
Mechanics. Here we summarize just a few results applied to the three topmost valence states, which
are p-like waves:

1. The eigenvalues and eigenstates |/) of the square of the general angular momentum operator 12 are
given in terms of an integer (orbital, spin of Bosons) or half-integer (spin of Fermions) index /:

L |Im) = 1(1+1) 1 |Im) .
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2. The three components Zx, Zy, and ZZ of the angular momentum do not commute with each other but

each of them commutes with Z2. Therefore, eigenstates of the total angular momentum are always
degenerate, corresponding to different eigenstates of one of the components above, usually taken
to be L,. These eigenstates |lm) are given by the eigenvalue equation:

L. |lm) = me; 1 |Im)

m being an integer or half-integer ranging from —/ to +/.
3. Angular momenta add vectorially, as in Classical Mechanics.

Now, in the simplest approximation the first valence band is made up of s-states with zero orbital
angular momentum, so that the spin—orbit interaction does not alter its energy. On the contrary, the
three highest-energy valence bands have orbital angular momentum / = 1 and, obviously, the electrons
have spin angular momentum s = +1/2. The total angular momentum J results from the vector sum
of L and §, so that

P =I2+$212L-S.

Therefore, the expectation value (L - S) can be expressed in terms of the known expectation values of
J, L, and S as follows:

L-S)==(P-1*-5 = h—2[1(1+1)71(1+1)7s(s+1)] (5.68)

N\*—‘

For p-states, we can have spin and orbital angular momentum parallel, so that we have a fourfold—
two bands x two spins—degenerate state (j = 3/2 and m = +3/2,+1/2). Or spin and orbital angular
momentum may be anti-parallel, so that we have a doubly degenerate—two spins only—state (j = 1/2
and m = £1/2). Therefore, finally, from Egs. (5.67) and (5.68) we deduce for the two states j = 3/2
an expectation value (L - S) 1% /2, whereas for the j = 1/2 state we have (L S> = —Hh?, so that the
two j-states are split by an energy:

3h%e  do

Aso=—5—F5 — -
4m§1c2r dr

(5.69)

The energy of the doubly degenerate j = 3/2 states is shifted up by an amount Ay,/3 while that of
the j = 1/2 state is shifted down by an amount —2A,,/3. The j = 3/2 states correspond to band
usually called the heavy-hole and light-hole bands, the lone j = 1/2 state is called the split-off band,
for obvious reasons. The magnitude of the spin—orbit energy Ag, varies from a negligibly small values
in C, to a few meVs (44 meV in Si), to several tenths of one eV (~300meV in Ge, and to the order
of 1eV or more in heavier elements, such as Sn or Pb). This is because the strength of the spin—
orbit interaction obviously depends on the expectation value of the radius of the electronic orbit.
Therefore, the closer the electrons to the nucleus, the stronger is the term (d¢ /dr)/r in Eq. (5.69).
This is why heavier elements usually have a larger spin—orbit coupling. Comparing the band structure
of Si (Fig.5.4 on page 87) with that of Ge (Fig.5.5 on page 88), we can see the effect of the spin—
orbit interaction: Note for Ge the large energy difference between the bands at the I'-point for the
three highest-energy valence bands. The splitting extends throughout the BZ. In the much lighter Si
(Fig. 5.4 on page 87), the splitting is much smaller, barely visible in the energy scale of the plot.
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5.6.4 The k- p Structure of the Bands of fcc Semiconductors Near
Band-Extrema

We have already seen on page 83 how k- p perturbation theory can be used to calculate the effective
masses in the neighborhood of the I' point. We also saw that degenerate perturbation theory is
necessary. Kane has obtained the following expressions (which we shall not derive) using 4 x 4
matrices (three valence bands and the lowest-energy conduction band at ') [10]:

1. The conduction band at T is spherical and (at the lowest order) parabolic with a dispersion
approximately given by

n2i?
Ec(k) = Egpr + Tmé‘ ) (5.70)

where the conduction band effective mass is given by

) ) 1
Ml _ 4 2o ( + ) : (5.71)
m 3m \Egpr Egpr+Aso

where Eg,p 1 is the direct gap at the I' point, and p.  is the momentum matrix element between the
s conduction band and the p valence band(s). For Ge, 2p?2 . /m = 22.5 eV, for GaAs, 2}737C [mel =
21.5¢eV. '

2. The “heavy hole” dispersion is given by

K2k?

Enn(k) = Ee (5.72)
hh

with m{; = 1. Note the “wrong” sign of the dispersion: The effect of more remote bands is required
to obtain the correct sign for the mass.
3. The “light hole” dispersion is given by

n2 i
E =—— .
nk) = =3 (5.73)
with
4 2
ﬁggzz Pev . (5.74)
my,  3mEgpr
4. The “split-off hole” dispersion is given by
n2Kk?
Em&):—Am—i%g, (5.75)
with
2 2
Ml P (5.76)

miy,  3m(Aso+ Egapr)
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Fig. 5.8 Equi-energy contours for the three highest-energy valence bands of a Si inversion layer subject to a
confining perpendicular field of 106 V/em [23]. At left, we illustrate the equi-energy lines for a surface on the (1,0,0)
crystallographic plane; at center at right are the cases for the (1, 1,0) and for the (1, 1, 1) surfaces, respectively, Although
this plot illustrates the shape of the equi-energy contour lines in a more complicated situation, qualitatively it illustrates
the strong anisotropy and warping of the valence bands for fcc group IV semiconductors or for III-V compound
semiconductors. (Reprinted with permission from M.V. Fischetti, Z. Ren, PM. Solomon, M. Yang, and K. Rim, J.
Appl. Phys. vol. 94, p. 1079 (2003). Copyright 2003, AIP Publishing LLC)

5.

Warping. Accounting for the effect of additional bands, the two topmost valence bands (hh and lh)
are degenerate at k = 0 and are “warped” with dispersion

h2
By (K) = =~ {AR? £ [B*K* + C2(K2kE + K22 + K2k)] 2} (5.77)
(&

where in SiA =4.0, B= 1.1, and C = 4.1, which correspond to m};, =~ 0.49m, and my, ~ 0.16m1,.
For Ge, instead, A = 13.1, B = 8.3, and C = 12.5, which correspond to my, ~ 0.28m and
my, = 0.044m,. Note, however, that the valence bands are so warped (as shown in Fig. 5.8) and
nonparabolic that the use of the effective mass is always questionable. Figure 5.8 shows equi-
energy surfaces for the Si valence bands, illustrating their strong anisotropy.

. Nonparabolicity. As one moves away from the I" point, the dispersion becomes increasingly

non-spherical and nonparabolic. The latter effect is often captured to the leading order by a
nonparabolicity parameter iy, such that, in terms of the parabolic dispersion y(k) = h2k%/(2m*),
the nonparabolic dispersion, E(k), becomes

E(k) =~ y(K)[1 + anpy(K)] . (5.78)

Since the parameter o, is almost always negative, we see that the dispersion tends to be “flattened”
by nonparabolic corrections.

. Conduction dispersion at the L and X symmetry points. The minima of the conduction bands at (or

close to) the symmetry points L and X are described by prolate ellipsoidal equi-energy surfaces
characterized by a longitudinal () and a transverse (m) effective mass:

[ I W
E) = (5 thn ) (5.79)
2 my, mr

where ki, kt1, and k1, are the components of the k-vector along the longitudinal and the two
transverse axes of the ellipsoid. The minima of conduction bands of Si (near the X symmetry
points) and of Ge (near the L symmetry points) are of this type.

Figure 5.8 illustrates these peculiar properties for the valence bands.
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Problems

5.3. (Hole Effective Masses) Using Eq.(5.78) and the values for the k - p parameters A, B, and C
listed there for Si and Ge, calculate the effective masses for the heavy- and light-hole bands along the
[100], [110], and [111] directions. Note that the values quoted here are averaged over all directions, so
your results along specific directions do not have to be identical to these “average” values.

5.4. (Group Velocity and Nonparabolicity) Using the approximate k - p nonparabolic correction,
Eq. (5.78), assuming y(k) = h%*k*/(2m*), derive the expression for the electron group velocity
VKE(K)/h, as a function of k to first-order in the nonparabolicity parameter or,p. The physical meaning
of the group velocity will be discussed in Chap. 8, Sect. 8.1.3.
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Chapter 6
Density Functional Theory

6.1 Overview

For many problems in physics, it is important to know the properties of the ground state. And while
in principle it is possible to determine the exact ground state for a given many-body Hamiltonian,
in practice it is impossible for almost any nontrivial system. Fortunately, in many systems a good
approximation of the ground state properties can be determined computationally using Density
Functional Theory (DFT).

In this chapter we present an introduction to DFT. The emphasis will be on its applications
to electronic transport, but for those interested in a more in-depth treatment of DFT, we refer
to specialized text books. Those already cited in the introduction of Chap.3 represent a good
example [1, 2]. In Sect. 6.2, we present the theoretical justification of DFT through the Hohenberg—
Kohn theorem and the most popular way of evaluating the density functional through the Kohn—Sham
formalism. In the subsequent sections, we show how DFT can be used to compute the equilibrium
positions of the atoms and the band structure.

6.2 Theoretical Basis for DFT

The ground state of any system is the lowest-state eigenstate of its Hamiltonian. The ground state
wavefunction ¥ is the solution of the equation:

HW(r1,r2,...,r5) = Eo ¥o(r1,12,..., 1Y), (6.1)

where Ej is the smallest eigenvalue of the Hamiltonian H that describes the electrons in the lattice
using the Born—Oppenheimer approximation discussed in Chap. 4, Sect. 4.2.1:
~ 72 &2
H=Y |-V 4+ v+ ¥

Jj<i

(6.2)

2mel 47C€0|I',‘ — I'j‘ ’
where Va0 (r) is, as usual, the potential energy due to the ions.

The problem, of course, lies in the fact that the potential y(lat (r) is the sum of the ionic potentials
screened by the electron charge. This charge density is a function of the electron wavefunctions, which
are the unknowns of the problem. In addition, the Coulomb repulsion among the electrons (the last

© Springer International Publishing Switzerland 2016 99
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term in Eq. (6.2)) can be approximated as a Hartree term, plus exchange and correlation corrections
that are difficult to express for an inhomogeneous electron gas. The major idea of DFT lies in the
fact that, in the ground state of this system, these exchange and correlation effects depend only on
the electron (charge) density of the system. This important result is part of what are known as the
Hohemberg—Kohn theorems [3] and leads to an important but rigorous simplification of the problem:
the full potential entering Eq. (6.2) can be expressed as a Hartree term (in principle straightforward to
calculate via a solution of the Poisson equation) and an additional exchange-correlation energy that is
a functional, F[n(r)], of the electron density only. Hence the term “density functional.”
To put these ideas in a more precise form, the ground state electron density is

n(r):N/.../dr%...dr;v |¥(r,ra,....rx0) %, (6.3)

with N the number of particles in the ground state. In the ground state, this can now be found by
minimizing the “density functional” F|[n(r)]. For simplicity, we do not consider the effects of spin or
magnetic fields, nor do we consider the case where the ground state is degenerate.

In the absence of degeneracy, for each potential due to the ions, V(120 (r), there is one ground state
wavefunction, ¥). At the same time, if ¥ is known, y(1at) (r) can be determined up to a constant
through Egs. (6.1)-(6.2). Furthermore, for each ‘¥ there is a unique charge density, n(r), through
Eq. (6.3). Finally, as we have already mentioned, Hohenberg and Kohn have shown, using reductio ad
absurdum, that each charge density is uniquely related to a potential and thus to a ground state [3].
Therefore, we can conclude that there is a one-to-one correspondence between the ground state charge
density and the ground state wavefunctions, n(r) <> ‘¥, so that a wavefunction functional ¥[n(r)],
and so also an energy functional F|[n(r)], exists. The remaining problem, of course, is to determine
the form of this functional.

Remembering that ¥ is the ground state, (‘' | H | ¥) reaches a minimum (Ep) for ¥ = .
Therefore, minimizing the density functional

Fln(x)] = (¥[n(v)] | H | Ho[n(r)]) (6.4)

with respect n(r) results in the ground-state charge-density for the Hamiltonian .

Equation (6.4) gives an exact expression for the density functional. However, evaluating the exact
density functional is equally computationally prohibitive as solving for the ground state wavefunction.
Luckily, approximate density functionals suitable for an efficient numerical evaluation have been
developed. The results obtained using these functionals generally compare favorably to experimental
results.

The most commonly used expression for the density functional F[n(r)] is its Kohn—Sham form [4].
It relies on the fact that the density of the valence electrons in a crystal changes “slowly” when
compared, for example, to the fast spatial variation of the density of the strongly confined core
electrons. Therefore, one may rely approximately on the results obtained from an exact quantum-
mechanical treatment of the homogeneous electron gas (as discussed, for example, in Kittel’s [5],
Mahan’s [6], or Fetter and Walecka’s [7] excellent texts): The functional can be approximated
by a functional of the local density, F[n(r)] ~ n(r)'/3, as in the Thomas—Fermi model originally
formulated by Dirac [8]. We shall mention below more sophisticated approaches that go beyond this
approximation that appropriately called the local density approximation (LDA).

As a result of this discussion, we reach the Kohn—Sham equation as a single-particle Schrodinger
equation [4]:

2
( "y + veff(l‘)> 0i(r) = w; ¢i(r) (6.5)

2me]
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whose solutions ¢;(r) are known as the Kohn—Sham orbitals and where ve(r) is an effective “local”
potential that captures the effects of the Coulomb interaction together with exchange and correlation
effects. Recall that the eigenvalues w; are difficult to interpret physically, as we had already discussed
in the context of the Hartree—Fock approximation (see Chap. 4, Sect. 4.2.3). Another tricky assumption
we have to make at this point is to assume that the charge density of the non-interacting electron
system described by Eq.(6.5) coincides with that of the interacting system [with the Hamiltonian
from Eq.(6.2)]. In other words, that the Slater determinant, representing the correct form of the
wavefunction of a system of non-interacting particles, represents the wavefunction also of the system
of interacting electrons. With this assumption, the charge density can be expressed in a simple way:

N
n(r) =3 |oi(r)] . (6.6)
Calculating the kinetic energy using the Kohn—Sham orbitals, the density functional can be written as:

Fin(o)] =3, [ dr ¢ (1)V26,(x) + [ dr VI (x) n(r)

e , n(r)n(r’)
- /dr /dr W—FExc[n(r)] . (6.7)

+87r

Minimizing the density functional amounts to setting:

e / e M) SEn(r)]

_ yat)
Veff(r) \% (I') + dme +

6.8
"r—r| " on(r) ©8)
and to solving Eq. (6.5) self-consistently.
Finally, using the LDA approximation for the exchange-correlation functional Exc[n(r)] [8, 9]:

ExeLoa[n(r)] = / d £ n(r) exe[n(r)], 6.9)

where e (n) is the exchange-correlation energy of a homogeneous electron gas, ~ n(r)l/ 3,

An improved approximation which can still be evaluated efficiently is the generalized gradient
approximation (GGA) [10-12]. This approximation amounts to accounting (to the next order) for
corrections to the exchange-correlation energy due to the “slow” spatial variations of the electron gas
that, after all, is not strictly homogeneous in a crystal. The exchange-correlation functional in this next
approximation is written in the following form that includes the simplest nonlocal correction one can
think of, namely, the gradient of the density:

Exeoaln(r)] = / dr exc[n(r), Va(r)] n(r). (6.10)

There are reasons why this is called the “generalized” gradient approximation. Indeed, the issue
is more complicated than it seems: A naive use of an expression that includes the gradient of the
density, unfortunately, violates important conservation laws (namely: particle-number conservation).
Therefore, an appropriate “generalization” is in order. We shall leave it at that, since the issue is too
subtle and specialized for the purpose of this book. On the same “specialized” note, we observe that
another, yet more involved, set of functionals are nowadays commonly used, the so-called hybrid
functionals [13, 14]. In this “hybrid” form, Exc hybria[n(r)] contains the exchange term taken to be a
linear combination of the exchange of a conventional DFT functional, such as LDA or PBE [15] (see
below), and the exchange energy obtained from the Hartree—Fock approximation.



102 6 Density Functional Theory
6.3 * Relevance of DFT Calculations for Electronic Transport

Computer programs that use DFT to calculate atomic positions, electronic structure, phonon spectra
(and more) have now become so sophisticated that, in a way, there is almost an “industry.” DFT
software packages are available that come in forms based on local atomic orbitals, all electrons (not
based on pseudopotential), and, of course, plane waves. In addition, several packages are available
to compute the atomic pseudopotentials themselves. The discussion of this chapter demands that
we present some significant results, so that we may show what DFT can really do. Moreover, we
wish to extend the discussion to subjects that are directly relevant to electron transport—namely
and mainly, the calculation of the vibrational properties of a crystal, phonons, since they are the
source of the main scattering processes for electrons moving in solids. In order to do so, we
consider one such software package, the Vienna ab initio Simulation Package (VASP) [16-19]. VASP
uses a plane-wave basis set for the Kohn—Sham orbitals. To reduce the size of the basis set, an
extension of the pseudopotential method, the projector-augmented plane-wave method, is used [20].
Fast-Fourier Transforms (FFTs) are used to diagonalize efficiently the Kohn—Sham Hamiltonian.
Moreover, optimized pseudopotentials for each atom are available from the extensive library included
in the package. We shall not discuss these sophisticated choices. However, we must provide some
detail, mainly for scientific “correctness” and for the sake of the occasional expert reader who may
wonder about the exact procedure followed to obtain the results shown here. But, once more, from the
perspective of this book, these are just “details” that the non-expert should not be concerned about.

6.3.1 Performing a DFT Calculation

In this somewhat “specialized section,” we outline the process one must follow to use such a DFT
package, VASP in our case, to perform a typical calculation.

As a first step, one must specify the atomic species, of course, and the following main system
parameters:

¢ Unit cell basis vectors (aj, aj, a3)

» Basis atom types and positions (7;)

¢ Density functional to be used (LDA vs GGA)

* Numerical approximations: K-point grid, energy cutoff/basis set, convergence threshold

VASP draws this information from four input files: POSCAR, POTCAR, KPOINTS, and INCAR. The
file POSCAR contains the unit cell parameters. POTCAR contains the pseudopotential information,
that is, which atoms one is considering. KPOINTS contains the size of the grids of the k points, either
in the irreducible wedge or in the first BZ, that are required to store wavefunctions and to perform the
necessary integrations. INCAR, finally, contains the remaining information: the cutoff energy used to
limit the number of G vectors employed (and so, the size of the eigenvalue problem to be solved);
information concerning additional ground state properties to be calculated (such as the forces on
each atom); requests for additional output, such as the Kohn—Sham potential or the core charge, and
computational parallelization parameters.

For example, when studying crystalline silicon the input will reflect the following properties and/or
computational options:

* Silicon forms an fcc lattice with a lattice constant a = 5.431 and its basis vectors are (a/2,a/2,0),
(a/2,0,a/2) and (0,a/2,a/2).

» There are two silicon atoms in the unit cell: taking the first atom at (0,0,0), the second atom can
be found at (a/4,a/4,a/4).
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* One may chose the most popular density functional in solid-state physics, the Perdew—Burke—
Ernzerhof (PBE) implementation of the GGA [15].

e The grid of k points is generated automatically through a method known as “Monckhorst—Pack.”
For example, one may request a 10 x 10 x 10 Monckhorst—Pack K-point grid and the default cutoff
energy and convergence threshold. This determines the numerical accuracy required to halt the
self-consistent iteration required by the solution of the Kohn—Sham nonlinear eigenvalue problem.

As a result of this input, one obtains a ground state energy of £ = —10.8eV. Note that this value
depends on the kind of pseudopotential chosen and is only meaningful relative to other ground state
energies. The total ground state density for a cubic cell consisting of four primitive cells, averaged
along the [100] direction, is shown in Fig. 6.1 (left). The largest part of the electronic charge density
can be found around the ions and will have no impact on the binding energy. When only considering
the valence charge, i.e., without the charge contribution of the core electrons, shown in Fig. 6.1
(right), the charge density is still strongly peaked near the ions. Only a fraction of the valence
charge is involved in the binding of neighboring atoms. To further smoothen the charge density and
enable a reduction in the number of plane waves, plane-wave DFT codes base their calculations on
pseudopotential-based Kohn—Sham orbitals. The resulting “pseudized” charge is shown in Fig. 6.2.

Fig. 6.1 Total ground state
density (fop) and valence
band ground state density
(bottom) averaged along
the [100] direction for a
silicon unit cell containing
eight atoms
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6.3.2 Determining the Lattice Constant and Crystal Structure

The ground state energy is only defined up to a constant and thus is not meaningful on its own.
However, changing the lattice constant and recomputing the ground state energy for each lattice
configuration enables us to determine the configuration with the smallest ground state energy. This
process can be performed manually or one can also perform “atomic relaxation” studies. In this case,
starting from an initial “guess” for the positions of the atoms (usually the experimental values, when
known), the total ground state energy of the system is calculated for various configurations obtained by
displacing atoms slightly from the initial positions. Calculating the derivatives of the total energy with
respect to the ionic displacements, one can calculate the forces acting on each atom and, by methods
such as steepest descent or the Car—Parrinello algorithm [21], one can pinpoint the equilibrium atomic
configuration. However, caution should be exercised: There is no guarantee that a structure will relax
to a minimal energy state, since the system can evolve towards a local minimum or a saddle point
and remain “stuck” there. Giving an occasional stochastic “kick” out of a possible local minimum, as
done in the “simulated annealing” algorithm [21], can minimize this danger.

As an example of a “system calibration” for bulk Si performed by varying the lattice constant
manually, Fig. 6.3 shows the binding energy for 100 different values of the lattice constant, ranging
from a =5 to a = 6. The minimum ground state energy is found for a = 5.43, which is in excellent
agreement with experimental data. This is a general feature of the DFT codes available at present: The
value of the calculated band gaps remains somewhat underestimated. This is not surprising, since,
as we saw, DFT is essentially a ground state theory (although progress is being made to extend its
validity). However, the determination of the equilibrium atomic configuration is extremely reliable.
Again, this is not surprising, exactly for the same reason.

In the following chapter we shall consider in detail how empirical pseudopotentials can be used
to study what are called “low-dimensionality” or “nano” structures. These are thin slabs, nanowires,
nanodots obtained by terminating the infinite lattice. Therefore, the periodicity (translation symmetry)
is broken. Since the use of plane waves demands periodicity, this is recovered employing “supercells.”
This procedure is described in detail in Chap. 7, Sect. 7.1. Using the same procedure, two-dimensional
materials and slabs can also be modeled using DFT, provided a supercell is constructed in the direction
perpendicular to the surface. As an example, consider the interesting case of graphene. As explained
in Sect. 3.3.4, this is a two-dimensional film of carbon atoms arranged in an hexagonal honeycomb
structure:
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* The two carbon atoms can be found at (0,0,0) and (a/3,a/3,0)

*  We opt for the PBE functional

e We use a 10 x 10 x 10 Monckhorst—Pack K-point grid and use default energy cutoff and
convergence threshold.

Taking a = 2.46, the ground state energy is —18.45¢eV.

As an example of the relaxation process we have mentioned above, it is possible to determine the
equilibrium structure of buckled hexagonal monolayer structures, like silicene and germanene. Such
a structure is shown in Figs. 13.12 and 13.13, page 304. In a buckled hexagonal structure, the two
atoms in the unit cell can be found at (0,0,0) and at (a/3,a/3,b) where b is the buckling distance.
DFT allows the simulation of hexagonal lattices with a lattice constant that varies from a = 2 up
to a =5.5. Employing a supercell with height ¢ = 5a, the buckling distance is found by specifying
an initial buckling distance bipi; = 0.01¢, which is subsequently relaxed by VASP to an equilibrium
buckling distance bpuckiing. In Fig. 6.4, the ground state energy for the relaxed buckled hexagonal
lattices of C, Si, Ge, and Sn is shown. For carbon, a single minimum is observed which corresponds
to the graphene lattice. For silicon, germanium, and tin, two minima can be distinguished. The phase
corresponding to the first minimum is called the “high-buckled phase” and has a smaller lattice
constant and a larger buckling distance compared to the second minimum, the “low-buckled phase.”
The high-buckled phase is metallic, while the band structure of the low-buckled phase resembles that
of graphene. However, for germanium and tin the effects of spin—orbit coupling undoubtedly will play
a significant role. This effect is not accounted for in these examples.
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6.3.3 Calculating the Band Structure

As we have already mentioned, despite the fact that, in principle, DFT only gives information about
the ground state properties, it has become routine in the scientific community to assume that the Kohn—
Sham orbitals give an approximation of the electronic band structure. The problem with this attitude
is that the Kohn—Sham orbitals are not the real electronic states. As a not unexpected consequence,
“DFT band structures” generally grossly underestimate the band gap in semiconductors and even
predict small-gap semiconductors, such as InAs, to be metals.

Nevertheless, DFT band structures generally do paint a good qualitative picture for most materials.
For example, silicon is correctly predicted to be an indirect-gap semiconductor with its conduction
band minimum along the A direction. And often, DFT is the only (and therefore, automatically, the
best) method to perform ab initio calculations of the band structure that is computationally feasible.
Additionally, when experimental data are available, it is possible to use hybrid exchange-correlation
functionals [13, 14] that use a Hartee—Fock/LDA mixing that can be tuned to obtain a “correct” band
structure [13, 14, 22].

In Fig. 6.5, we show the silicon DFT band structure calculated using the PBE functional [15].
To obtain the band structure along high symmetry directions, first the ground state charge density is
calculated by discretizing it on a 10 x 10 x 10 grid. Subsequently, a “non-self-consistent” calculation
is performed by taking the Kohn—Sham potential to compute the band structure at any chosen k-point.
Figure 6.5 shows the band structure from the L symmetry point to the I"-point, the X-point, the U/K-
point, and the back to the I'-point again.

The maximum of the valence band occurs at the I'-point, while the minimum of the conduction
band occurs along the I'-X axis, in agreement with the experimentally observed band structure.
The DFT value of the band gap calculated using the PBE functional is 0.6eV. This is a strong
underestimation of the experimentally observed 1.12eV band gap. A better optimization of hybrid
functionals (called the “HSEO3 functional measures”), one can obtain a value of the band gap of
1.15eV, in much better agreement with experiments.

DFT also has the ability to deal with spin—orbit coupling of the electrons. This topic is discussed
in Chap. 5, Sect.5.6.3. Generally, the effects of spin—orbit coupling have only a small effect on the
structural properties but they are important for the electronic band structure, especially for heavy
elements.

Fig. 6.5 Silicon
bandstructure calculated
using the PBE
exchange-correlation
functional
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6.3.4 Calculating the Workfunction and Band Offsets

Other quantities of interest in semiconductor devices are the material workfunction, i.e., the difference
between the vacuum level and the Fermi level, and the band offsets between two different materials,
i.e., the energy difference between the top of the valence band or the bottom of conduction band of
the two materials.

For metals, the Fermi level is readily available from DFT calculations. For semiconductors, instead,
doping will determine the position of the Fermi level with respect to the valence and the conduction
bands. The potential energy of vacuum is obtained by constructing a slab with a surface facing the
vacuum. Averaging the Kohn—Sham potential along the direction of the slab surface on the (x,y) plane,
illustrated in Fig. 6.6, the vacuum potential energy is obtained. In practice, it is more convenient to
average the Hartree term of the effective Kohn—Sham potential, since it converges towards the vacuum
potential more rapidly when compared to the effective Kohn—Sham potential.

The workfunction is defined as the energy required to remove for an electron from the semicon-
ductor the vacuum. In technical terms, the workfunction is the difference between the potential energy
of an electron in vacuum and the Fermi level of the semiconductor. In Fig. 6.6, the vacuum energy is
6.07 eV, the Fermi level is 0.64 eV, and the resulting workfunction is 5.43 eV. However, since these
results are relative to silicon, which is a semiconductor, the position of the Fermi level is not uniquely
defined. The offsets with respect to the valence band (5.91eV) and the conduction band (5.04¢eV)
are meaningful measures in semiconductors as long as the band gap is calculated correctly. Also,
when considering experimental results, it is important to remember that the workfunction is a surface
property and that the introduction of additional dipoles on the surface of any material will change its
workfunction.

Similar to the workfunction, the offsets of the valence and conduction band between two
semiconductors (sl and s2) can be calculated using DFT. As a first step, a DFT calculation is
performed on a supercell containing both semiconductors. Averaging the Kohn—Sham potential (or the
Hartree part of the Kohn—Sham potential) over the (x,y) plane and over the length of the original
unit cell in the z direction, the difference between the average potential AV = \752 — V¢ in both
semiconductors can be obtained. As a second step, a DFT band structure calculation is performed
for the bulk cell for both semiconductors (with appropriate strain, if the compounds are not lattice-
matched) and the difference of the conduction and valence with respect to the average potential,
E, se12 =Eyje10 — Vi /2, 1s calculated. The band for the valence and conduction bands can now be
calculated as AE, . = Ejcy — Eyje1 —AV.

Figure 6.7 shows the potential, averaged on the (x,y) plane, in a SiGe heterostructure. The
difference between the average potential in the silicon and the germanium layer is AV = 2.32eV.
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Computing the silicon and the germanium band structures using hybrid functionals, the silicon and
germanium band gaps are 1.18 and 0.24eV, respectively. The germanium band gap is smaller than
that of bulk germanium because of the strain required to lattice-match the germanium with the silicon.
The computed band offsets are AE, = 0.89eV and A, = —0.05eV which is in line with experimental
observations that the conduction bands of silicon and germanium are almost aligned.

6.3.5 Calculating the Phonon Spectrum

As we have mentioned before, DFT can also be used to calculate the phonon spectrum within the
harmonic approximation. This is discussed in Chap. 9, Sect. 9.4. Moreover, the use of DFT to calculate
the strength of the all-important electron—phonon interaction is discussed in Chap. 13. Thus, it is
probably convenient for many readers to peruse those sections before returning to the present section
for a second reading.

The calculation of the phonon spectrum requires the knowledge of the dynamical matrix. This, in
turn, is calculated from the second-order force constants [see Eq. (9.93) at page 204]:

~ aF;(I
Dy (I') = ‘aﬁé,y{) : (©6.11)
where [ and [ are the indices labeling the primitive cells, ¥ and ¥ are the indices labeling the atoms
in each cell, and i,j are indices running over the three spatial dimensions. Therefore, if R; is a lattice
point and T is the position of atom y within the cell, R;, = R; + 7,. Finally, in Eq. (6.11), the index
I" is such that Ry = R; — Ry. The quantity F('y’) is the force acting on the atom at Ry .
* Numerically, the force constants can be obtained in two equivalent ways: (1) from the forces
calculated from the change of the total energy for structures with slightly displaced atomic positions,
which is the method we have mentioned before and is known as the “small displacement method”;
or (2) using density functional perturbation theory (DFPT) [23]. We shall not discuss this advanced
method here. When using the small displacement method, the construction of a supercell consisting
of repeated unit cells is required for small unit cells, so as to enable the description of non-
nearest neighbor interactions. In the case of DFPT, there is no general real-space expression for
the dynamical matrix and a new calculation is required at each K-point of interest.

A VASP post-processing package, called PHONOPY, permits the construction of a set of 3 x 3 x 3
Si supercells with small atom displacements. DFT is used to obtain the forces acting on each atom
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for each of these supercells, thus obtaining the force constants. Following a specific path in reciprocal
space (going from the L-point (7/a,/a,m/a) to the T-point (0,0,0), the X-point (277/a,0,0), the
U/K-point (n/(2a),2x/a,nt/(2a))/(3x/(2a),31/(2a),0) back to the T-point with 100-points along
each line), PHONOPY can be used to construct and diagonalize the dynamical matrix for each of the
k-points along this path. The resulting phonon spectrum is plotted in Fig. 6.8. This can be compared
with the result obtained using the valence shell model [24-26], shown in Chap. 9, Fig. 9.1 on page 206.

Problems

The following problems are appropriate for a class on Computational Physics and assume access to a
DFT software package.

6.1. (The Band Structure of Si)

(a) Compute the silicon ground state charge density and energy using a DFT package (e.g., VASP,
Quantum espresso, ... ).

(b) Compute how the ground state energy of fcc Si changes when the lattice constant is increased
from 5 AA to 6 AA.

(c) Compute band structure of Si from the results of (a) above.

6.2. (Phonons in Si) Compute the phonon spectrum of fcc Si using PHON or PHONOPY.
6.3. (Graphenei) Compute the band structure of graphene using DFT.

6.4. (Silicene) Silicene is the Si equivalent of graphene. However, it is not flat in an sp?> bonding
configuration, but it “buckles” into sp®> bonding with unsaturated, dangling “out-of-plane” bonds.
While we would prefer to use the suffix “ene” for unbuckled, sp>-coordinated 2D lattices and “ane”
for the buckled, sp3-coordinated lattices, in the literature “silicane” denotes the buckled structure,
whereas “silicane” denotes a buckled structure with the dangling bonds terminated by some functional
group, usually by H. Having clarified this detail, construct the buckled hexagonal lattice of silicene
with lattice constant 2.7 and determine the buckling distance by performing a relaxation.
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6.5. (A Thin Si Slab)

(a) Construct a slab of Si, passivate it with hydrogen, and relax the atomic positions. See how the

(b

R

11.

12.

13.
14.

15.
16.
17.
18.
19.

20.
21.

22.

23.

24.

25.
26.

atoms at the surface relax.
) Using the slab from (a), determine the energy of the valence and conduction band of Si with
respect to the potential energy in vacuum. This is the workfunction of Si.
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Chapter 7
* Electronic Structure of Low-Dimensionality Systems

The use of plane waves and empirical pseudopotentials—presented in Chap. 5, Sect.5.3.4—to
calculate the band structure of semiconductors (and other crystals) has proven useful to gain insight
into the electronic excitation spectrum of solids. The “empirical’ nature implies loss of strong
predictive power and of “portability” of ionic (pseudo)potentials, but it results in a vast simplification
of the numerical problem when compared to the ab initio methods presented in Chap. 6. Moreover,
the small degree of “fitting” allowed by the technique affords, by definition, excellent agreement with
experimental data. Since our focus is on electronic transport, not on structure calculations per se,
empirical pseudopotentials represent the best choice to perform accurate calculations.

In this chapter we consider the use of empirical pseudopotentials to study the electronic structure
(and, in later chapters, transport properties) of low-dimensional structures. These are regular
assemblies of atoms that are arranged approximately in their bulk configurations, but the fact that they
are “finite” (as opposite to the ideal infinite crystals we call “bulk”), thus presenting free surfaces
(or surfaces interfacing dielectrics), gives rise to new physical properties that have proven to be
extremely interesting from a scientific and technological perspective. For example, thin Si films
are used as active channels in metal-oxide-semiconductor (MOS) field-effect transistors (FETSs), as
implemented in their Si-on-insulator (SOI) form. They are, in a way, “nanostructures,” since these
films are only a few nanometers thick. Electrons confined in these structures behave like particles
in a box along the confinement direction. As a consequence, the band structure of these thin films,
or “slabs,” differs significantly from the band structure of bulk Si, since it has to reflect the discrete
energy levels resulting from the confinement-induced quantization. Their electronic, transport, and
even optical properties differ significantly from their bulk properties. For example, whereas bulk Si
or Ge are indirect-gap semiconductors, when grown in the form of ultra-thin slabs, an effect called
“band folding™ (that is, the projection of the band structure along the crystallographic direction
perpendicular to the film) renders them direct-gap materials. Electrons in these two-dimensional
structures behave as a two-dimensional electron gas (2DEG), whose properties have been studied
extensively [1]. More recently, technological fabrication and synthesis methods have made it possible
to create films as thin as a single atomic layer. Graphene [2], silicene, germanene, stannanane, and
transition-metal dichalcogenides (TMDs, such as MoS,, for example) are extremely interesting for
their peculiar physical and electronic properties (high carrier mobility, superconductivity, their nature
as topological insulators, to name a few properties that we shall not discuss here) and also for
possible use in electronic devices. Similarly, electronic states in semiconductor nanowires—that can
be viewed as ultra-narrow slabs—will be affected by confinement-induced quantization along two
dimensions. Electrons in these structures will behave like a one-dimensional electron gas (1DEG),
whose electronic, transport, dielectric, and optical properties will also be significantly different from
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those of their bulk counterparts. Finally, “zero-dimensional” structures, such as small regular clusters
of atoms (‘quantum dots’), have raised interest for their possible applications in photovoltaic solar
cells and solid-state injection lasers.

The fact that these structures do not exhibit the periodicity of bulk crystals demands some change
in the theoretical approach used to study them, if we wish to use plane-wave methods. This is done in a
simple (but computationally heavy) way, by rendering these structures artificially periodic, replicating
them spatially along the directions of the broken translational symmetry. This is the concept of
“supercell” that will be discussed next. Several structures that exhibit two-dimensional and one-
dimensional electronic behavior will be studied next. In each case, we shall provide even minute
details, such as the positions of the atoms, the lattice translation vectors, and the pseudopotential
employed (in Appendix B), so that it will be possible to write an actual computer program using the
algorithms presented in Chap. 5, Sect. 5.3.4. In this chapter we shall also provide a more complete and
up-to-date list of references, more along the style of a technical article.

The bulk of this chapter, as well as Appendix B, is extracted from [3] and from a chapter of the book
“Nano-Electronic Devices: Semiclassical and Quantum Transport Modeling,” edited by D. Vasileska
and Stephen M. Goodnick (Springer, New York, 2011) [4]. Text, when extracted verbatim, and figures
are here reproduced with permission from the publisher.

7.1 The Supercell Concept for Nanostructures

The “supercell” method is conceptually a trivial extension of the standard “bulk” plane-wave method,
in which the primitive cell of the crystal (containing only two atoms in the fcc semiconductors of
interest here) is considered. If, instead of bulk homogeneous solids, we are interested in studying
finite structures, instead of employing the primitive lattice cell, a larger cell is considered, for example
composed of many Si cells replicated N times along the z-axis to form a Si layer of thickness Nag
(where aq is the Si lattice constant) and N, empty cells (“vacuum”), resulting in a cell of total
extension (N + Ny)ao along the z-axis (see Fig.7.1, left). This is the kind of supercell required to
deal with inversion layers, thin semiconductor bodies, or quantum wells. Similarly, the cell may
be extended along two directions (see Fig.7.1, center), mimicking a quantum wire. A sufficiently
“padding” consisting in a sufficiently large number of “vacuum cells” (just an isolation, several cells
long, between adjacent structures) or insulating cells between adjacent layers or wires will guarantee
avoiding artifacts due to the possible coupling between them (as in a superlattice).

It is important to note a useful feature of the empirical pseudopotential method: An external
potential can be added without any significant additional numerical cost. This is particularly important,
since these nanostructures are employed in situations that require an external applied bias to drive
the electrons. As it is done for the ionic (pseudo)potentials, the external potential is also artificially
rendered periodic with the period of the supercell. Therefore, we must consider its non-vanishing
Fourier components that are of the form:

(ex) _ 1 G-
4% =02 Jo. dr V() e 16T (7.1)

where 2 is the volume of the supercell. In the case of homogeneous 2DEGs, in which the artificial
periodicity extends in one dimension (inversion layers, quantum wells, and thin bodies), y(exy (r)
and the external potential is assumed to depend only on the “confinement direction” z, Eq.(7.1)
simplifies to
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Fig. 7.1 Left: Supercell scheme illustrating the choice of the supercell for an AB hetero-structure (A or B could be
replaced by vacuum for free-standing films). Center: The same but for the case of a nanowire. Right: 2D Brillouin
Zones for the (100), (110), and (111) fcc faces showing the conventional notation for symmetry points and symmetry
lines and the “path” followed on the (100) face to plot the dispersion shown in the following figures
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where L, is the extension of the 1D supercell in the z direction and Gy is the projection of the reciprocal
lattice wavevector G on the (x,y) plane (the plane of the surface or interface). In the case of 1DEGs,
such as graphene nanoribbons, nanowires, or carbon nanotubes, V(e’“)(r) will depend only on the
in-plane coordinates R, so that

X 28 1 —iGy-
V((;e t) _ 5G7,0 V((;eH 0 _ 5G270 T /A drR V(ext)(R) ¢ IGIR , (7.3)

where A is the cross-sectional area of the 2D supercell.
Therefore, accounting also for the presence of an external potential, the electronic structure of the
system will be obtained by solving the eigenvalue problem:

1> 2 (lat) (ext) (n) (n)
% ﬁ|k+G| 8.6 + Vo—o T Vo Uork = Ey (k) UGk - 74
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Note that we still use the full three-dimensional wavevector k. However, we note that the dispersion
E, (k) and the wavefunctions ugl)k do not depend “appreciably” on k; (the component perpendicular to
the surface/interfaces) in the case of 2DEGs, and do not depend on K (the components on the cross-
sectional plane) in the case of 1DEGs. By “appreciably” we mean to say that this is true as long as
the electrons are confined, i.e., that they lie energetically below the energy of the vacuum. Therefore,
under these circumstances, k may be considered the wavevector projected on the plane (or direction)
perpendicular to the confinement direction (or plane) (see Fig. 7.1, right, illustrating the 2D Brillouin
Zones of a face-centered cubic lattice, for example). As usual, we have indicated with vt the lattice
(pseudo)potential resulting from the sum over all ions ¢ in the supercell of the ionic pseudopotentials

V((}p SeUdO’a), normalized to each atomic volume €, multiplied by the “structure factor” e G Ta;
1 1 _iG- seudo,
V((;at) _ 5 2 e~ iGTa Q, V((}pseu 0,0) ) (7.5)
SC o

where T, is the position of ion ¢ in the supercell. From now on, we shall drop the superscript
“pseudo” and simply write V,, ¢ for the ionic pseudopotentials. The wavefunction corresponding to
the eigenvalue E, (k) is given by the Bloch expression:

n 1 ik-r n iG-r
wﬁ)(r)ZQfe" %uﬁ;)k eler . (1.6)

SC

This method is “exact” (within the EP framework), but it can handle only closed systems. Thus, it is
ideally suited to treat low-dimensionality confined cases, but it must be augmented by other techniques
when we must deal with transport (i.e., open boundary conditions) problems. This will be discussed
in Chap. 17.

In Appendix B we provide complete information about the form of the empirical pseudopotentials
used in the examples we shall give below. We shall now discuss various examples of structures
resulting in 2DEGs and 1DEGs.

7.2 Thin Layers (Thin Films and 2DEG, Graphene)

Electrons confined in two dimensions, the 2DEG, have been studied extensively, starting from the
surface of liquid He, to electrons in the inversion layers of MOSFETs, to those in hetero-structures,
and recently, in crystalline sheets one-atom-thick with the atoms arranged, usually, in a honeycomb
hexagonal lattice. The reviews given by Ando et al. [1] and Geim and Novoselov [2] illustrate the
physical and technological importance of these structures. Here we discuss how the use of empirical
pseudopotentials can give us insight about the electronic properties of these systems.

7.2.1 Thin Si Layers

Inversion layers of Si MOSFETsS constitute, historically, the first example of a 2DEG that has given
us results of high scientific and technological importance. Although the existence of a 2DEG had
been predicted early on, it was first observed in 1964 [1]. The quantum confinement caused by a
large electric field pushing the electrons against the Si—SiO, interface results in a quantization of
the electron wavevector along the direction perpendicular to the interface. Therefore, the electron
dispersion consists of two-dimensional “subbands,” each describing electrons free to move on the
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plane of the interface, but with the component of their wavevector perpendicular to the interface
constrained by quantization, much as the textbook case of a one-dimensional particle in a box.
In Chap. 8, Sect.8.2.1, we shall discuss this situation in detail within the context of the effective-
mass approximation. As bulk Si is replaced by thin Si “bodies” (to use the jargon used in the
Very Large Scale Integration—VLSI—community), additional confinement results from the finite
thickness of the ‘“slab.” As confinement gains importance, electrons will be pushed to higher
energies, beyond the validity of the effective-mass approximation. A correct description of the
electronic structure of these systems renders mandatory the use of “atomistic” theoretical studies,
such as DFT, empirical pseudopotentials, tight-binding, or k - p models. Here we see how empirical
pseudopotentials can handle this problem.

7.2.1.1 (100) Surfaces

Thin Si layers with (100) surfaces, mimicking thin SOI or FinFET channels on (100) wafers, are
created by considering the usual fcc real-space primitive translation vectors

a; = (ap/2) (1,1,0), ap=(ap/2) (—1,1,0) 7.7)

on the (x,y) plane (a9 = 0.543 nm being the Si lattice constant), but extending the cell in the z direction
defining the translation vector

a3 = ag(0,0,N+Ny) (7.8)

where N is an integer indicating the number of Si cells (of thickness as;) considered and Ny is the
number of vacuum cells used to isolate the periodically repeated Si layers. Si atoms are then placed
in the supercell spanned by the translation vectors aj, a,, and a3 starting with the 4 atoms in the first
(non-primitive) cell with coordinates:

T = (070,0)

= (ao/4) (1,1,1)

T = (a0/4) (0,2.2) 79
T4 = (00/4) <_15 1’3)

and proceeding with 4N — 4 additional atoms labeled by the index i = 4j + 1 (with j = 1,N) with
coordinates:

Taj+1 = T1 +jaoZ
T4jp2 = T2 +jaol
T4j+3 = T3 +jaok
T4jp4 = T4+ jaol

) (7.10)

where Z is the unit vector along zand j =1, N — 1.

Clearly, at the “free” surfaces, there will be sp3 orbitals that remain dangling, because of the
missing atoms. These would cause the appearance of additional states mainly localized around the
dangling orbitals (often called “dangling bonds™) with an associated energy band that often falls in
the energy gap. This is seen in nature, where indeed these “surface states” historically have created
technological problems: For example, at the interface between Si and SiO,, dangling bonds can trap
and de-trap electrons, causing unwanted charging of the interface. This is also seen in calculations,
and we shall show an example below. We should also remark that these dangling orbitals are not
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the lowest-energy configuration of a free surface. Under appropriate conditions, the free surface
“reconstructs”: For example, on a free Si (111) surface (with lone sp> orbitals pointing straight out
of the surface), two surface atoms will move closer together to form a “bridging” covalent bond out
of the two dangling orbitals. This results in a new periodic atomic arrangement at the surface: It is
a reconstruction in which straight lines of Si—Si “dimers” form a new periodic structure, in this case
called “2 x 1”: The un-reconstructed periodic structure consists of a 1-cell-by-1-cell (1 x 1) pattern
that now changes into 2 cells merging together via the dimers in a new ‘“2-cells-by-one-cell” pattern.
This also results in the “merging” of the bonds along the line of the dimers, forming an extended 7
orbital. Other reconstructions exist, depending on how the surface is processed: (2n+ 1) x (2n+ 1)
(the most common being the 7x7 reconstruction obtained at temperatures above 750 K); or a slightly
different 2 x 1 reconstruction of the (100) surface. DFT can predict these reconstructions. Here, we
assume that the surface, instead, remains unchanged in terms of its crystalline form. This is usually
the morphology that is obtained experimentally when the free surface is “passivated” by an insulator.

The most convenient way to “passivate” our theoretical surface is to attach a H atom to each
dangling orbital. This process is called “termination” of the surface. Empirical pseudopotentials for
H that avoid the appearance of surface states are given in Appendix B. In our case of a (100) surface,
we must terminate each surface cell with four hydrogen atoms at the following locations:

Ty =71 +0.158 ap(—1,1,-1)
Ty = 71 +0.158 ap(+1,—-1,-1)
TH;3 = T4y +0.158 ap(—1,1,1)
TH4 = T4y +0.158 a()(l,fl,l)

(7.11)

The length of the Si—H bond, given here as 0.158 ag, has been determined empirically, but it is not
too different from the bond length observed experimentally. The positions of the H atoms are simply
obtained by placing them along the direction of the dangling sp* orbital.

7.2.1.2 (110) Surfaces

For the (110) surface, instead, the cell is described by the translation vectors:
a; =ap/V2(1,0,0), ay=ag(0,1,0) (7.12)
on the (x,y) plane and it is extended in the z direction using the translation vector
a3 =ag/V2(0,0,N+Ny) . (7.13)
Atoms contained in the first cell have coordinates:

0,0,0)

ap/4) (0,1,2/\/2)
ao/2) (1/v/2,1,1/v2)
ao/4) (2/v2,3,0)

~ N N

T =
0 (7.14)
73 =
T4 =

The atomic coordinates for the remaining 4N — 4 atoms in the supercell are obtained from the
coordinates given above by translating them by an amount jag/ V2 (j=1, N) along the z direction,
as in Eq. (7.10). Of course, we must terminate the surface dangling bonds with H atoms, as we have
done for the (100) surface.
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7.2.1.3 (111) Surfaces

Finally, for the (111) surface one may choose, among many possible equivalent selections of
translation vectors:

a; = (aO/\fz) (17070) , A2 = (aO/Z) (1/\67 mvo) (7.15)

on the (x,y) plane. The cell is extended along the z by defining the translation vector
a3 = (apV/3) (0,0,N+Ny) . (7.16)

As we just said, this is not the only possible selection. For example, choosing a'; =
ap/2(1/v/2,—+/3/2,0) instead of aj, one would obtain the same end result, since a’; = aj — a,.
In this case one must consider six atoms in the first cell. Their coordinates are

71 = (0,0,0)

T2 = agp (0,0,v/3/4)

T3 = A (0,1/\@,1/\/5)

T4 =ao (0,1/v6,V3/4+1/V/3)

ts = a0 (1/(2v2),1/(2V8),2/3)
to=ao (1/(2v2),1/(2v8),2/v/3 + v/3/4)

(7.17)

As usual, atomic coordinates for the remaining 6N — 6 atoms in the supercell are obtained by
translating the coordinates above by an amount jag\/3 (j=1, N) along the z direction and dangling
bonds at the free surfaces are terminated with H atoms.

7.2.1.4 Band-Structure Calculations

Our interest is in the electron transport properties of the structure. The calculation of the band structure
is, obviously, the first step. By itself, it shows immediately something extremely interesting (see
Fig.7.2): A thin Si film becomes a direct-gap structure. This is the result of projecting the bulk BZ
onto the 2D BZ. Of the six minima of the conduction band, one each along the equivalent {100}
directions, those along the [100] and the [100] directions are projected at the center of the 2D BZ,
the T symmetry point. The top of the valence band, already at the center of the 3D BZ, will also be
projected on the center of the 2D BZ. Therefore, provided that the energy of the other four minima
of the conduction band—that lie along the [010], [010], [001], and [001] directions—does not exhibit
a lower energy, the band gap will now be at T. This is the result of what is called band folding. We
should add that we actually expect the minima along the [100] and [100] directions to be at a lower
energy. Indeed, thinking of particle in a box, the ground state energy is proportional to 1 /m*, where m*
is the effective mass. In our case, this mass will be the longitudinal mass, my for these minima, while
it will be the much smaller (= 0.19 mg; vs. = 0.91 mg), for the minima at X, so the widening of the
gap caused by the quantum confinement is expected to be larger for the minima at X than for those at
T. (As a matter of terminology, the quantized states in the conduction band at T are called “unprimed”
states, those at rmX “primed.”) This is indeed seen in Fig.7.2. Attempts to exploit this new property
of thin Si in optical applications have been frequent. The crucial issue is the practical realization of a
film thin enough to prevent decoherence of the electron wavefunctions (via collisions with phonons,
defects, interface imperfections), so that quantization and band folding can be achieved.
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Fig. 7.2 Band structure of a (100) Si slab in vacuum terminated by H atoms. The slab thickness is 9 Si cells (lef?), 5
cells (center), and 2 cells (right). Note the direct gap caused by band folding, the quantized subbands in the conduction
and valence bands, the widening of the gap caused by the confinement, and, barely visible, the lifting of the twofold
degeneracy of the unprimed states (known as “valley splitting”) caused by the symmetry breaking due to the external
potential. Note also at the X-point the presence of two additional 2D valleys. The red dashed lines are parabolic bands
(conduction) and k - p approximations to the problem (calculated assuming vanishing wavefunction at the Si—vacuum
interface) illustrating the significant effect of the EP band structure. The spin—orbit interaction has been neglected to
obtain these results to gain computational speed. Finally, the zero of the energy has been set arbitrarily at the top of the
valence bands. [Used from M.V. Fischetti, Bo Fu, S. Narayanan, and J. Kim, in Nano-Electronic Devices: Semiclassical
and Quantum Transport Modeling, Dragica Vasileska and Stephen M. Goodnick eds. (Springer, New York, 2011), pp.
183-247, with kind permission from Springer Science+Business Media]

A second quantity in which we are mostly interested is the ballistic conductance. This concept
is defined in Chap. 17, Sect. 17.2.1. It represents the “quantum conductance,” 2¢*/h, multiplied by
the number of conductive channels (bands and state in each band) available for an electron to travel
through the structure [see Eq. (17.11)]. It can be viewed as a first semi-quantitative way to characterize
the ability of the structure to carry current. Therefore, it helps us to identify the best structures for
potential applications. In our case, comparing films of different thickness, of different materials, and
with surfaces cleaved along different crystallographic planes is an excellent first step to achieve this
goal.

Coming now to computational details, Eq. (7.4) can be solved conventionally using the Si and H
pseudopotentials from the literature. As an example, here we show results obtained using the local
empirical pseudopotentials from [5, 6] (see Appendix B, Table B.1).

The density of states is computed using the two-dimensional version of the Gilat—-Raubenheimer
algorithm described below (see the introduction of Chap. 12 and, in that chapter, Eq. (12.37) and the
paragraph following this equation for the notation and meaning of the symbols):

_ dk _ 1 / L(an)
I (E) =2 ; / 27 S[Eq(k)—E] = 27:2% VanEp] (7.18)

The ballistic conductance along the direction characterized by the unit vector i can be computed in a
similar way:

o2 d - o ﬁ / VzDEjn-ﬁ ‘
G(E) =2 / e V()R OB~ E) = ﬂh% Vo] L) (7.19)
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where v, (k) is the group velocity in band n at the point k and the integration must be extended only
over states whose group velocity along the direction i is positive.

Figure 7.2 shows the band structure of (100) Si layers of thickness equal to 9as;, 5as;, and 2ag;, all
separated by a vacuum 2asg; “thick.” The obvious results are, as already pointed out, the appearance of
a direct gap and of many subbands. Several details, most appreciated by specialists and mentioned here
for completeness, are also evident. For example, the appearance of an additional doubly degenerate
conduction band at the X point, a band already obtained by Esseni and Palestri [7] using a linear
combination of bulk bands (LCBB) and denoted by them as M3, M4. Such a band is completely
missed by simpler models based on the effective-mass approximation and has significant effects on
electron transport, as we shall see in Chap. 13, Sect. 13.4.1. In Fig. 7.2 one can also see the expected
widening of the gap as the film is made thinner. A quantitative summary of this observation is given
by Fig. 7.3 that shows the dependence of the energy gap on the thickness of the film.

As stated before, an external potential V(eX) (z) can be added in Eq.(7.4). This is particularly
relevant to the practical case of channels in Si MOSFETS, since these are heavily biased by the
gate contact that is used to modulate the electron density, and so the current in the transistor. It may
be appropriate to return to this section after having read the discussion given in Sect. 8.2.1: There the
same problem is tackled using the effective-mass approximation. In Figure 7.4 we show the squared
amplitude of the lowest-lying unprimed/primed conduction-band and valence-band wavefunctions
(averaged over the area of the cell on the (x,y) plane) obtained in the presence of a “triangular well”

potential whose Fourier components Vgi ) are given by agiFs(N + Ny)/2 for G, = 0 and:
Ve = == (7.20)

where F is the surface field (= 5 x 10° V/ecm in Fig.7.4). Note the oscillation of the fast-
varying periodic component of the Bloch function and the expected slow-varying envelope.
Figures 7.5, 7.6, 7.7, 7.8, 7.9, and 7.10 show details of the band structure and DOS near the gap
for 2-cell, 3-cell, and 9-cell thin Si layers (the latter ones in the presence of a constant confining field)
with surfaces of different orientations, while Fig. 7.11 compares the DOS obtained using the supercell
method with what is obtained for parabolic bands for various surface orientations.
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Fig. 7.4 Squared amplitude—averaged over a cell on the plane of the slab—of the wavefunctions in a 9-cell-thick
Si layer in vacuo with H termination and a triangular-well potential with a field of 5 x 10° V/cm. At left are shown
the wavefunctions of the unprimed states, at center those of the primed electron states, and at right the hole states.
[Used from M.V. Fischetti, Bo Fu, S. Narayanan, and J. Kim, in Nano-Electronic Devices: Semiclassical and Quantum
Transport Modeling, Dragica Vasileska and Stephen M. Goodnick eds. (Springer, New York, 2011), pp. 183-247, with
kind permission from Springer Science+Business Media]

7.2.2 III-V Hetero-Channels

Hetero-structures composed of thin layers of III-V compound semiconductors constitute the building
blocks of most opto-electronic devices that we use daily, such as light-emitting diodes (LEDs), and
injection lasers. The book by Bastard and collaborators [8] gives a review of the subject.

These hetero-structures are typically fabricated using a crystal-growth technique called Molecular
Beam Epitaxy (MBE): In a chamber kept under very high vacuum, beams of the desired elements
are aimed at a substrate. By keeping the desired ratio of elements according to the stoichiometry of
the compound to be grown, atomic layers of the desired material can be deposited. This technique
allows excellent control of the chemical composition of the layers, of their crystal structure, and of
their thickness. Binary III-V compound semiconductors, such as GaAs or InAs, can be grown on
a substrate, usually consisting of InP wafers that can be obtained commercially in relatively large
diameters. Ternary alloys, such as In,Ga;_,As, can also be grown by controlling the ratio of the In,
Ga, and As beams. In typical applications, compounds that are “lattice matched” to the InP substrate
are preferred. Indeed, the ternary alloy composed of a mole fraction x of InAs and a mole fraction
(1 —x) of GaAs, denoted by In,Ga;_,As, in general has a lattice constant different from that of InP.
Only when x = 0.53 does the ternary alloy have the same lattice constant. This is very desirable, since
it eliminates concerns caused by strain. If strain is desired, or a non-lattice-matched alloy is desired



7.2 Thin Layers (Thin Films and 2DEG, Graphene) 121

G (108 S/cm)

0.0 05 1.0 1.5 20 25 3.0
3.5 T T T T <
>
)
6 1.0l (111) surface F, = 5x10° V/cm (triangular well) _] 1.0k _
E 3 cells Si (no spin—orbit)
Z 05| 1cellvacuum - 05 Galong[110]
——————— G along [112]
0.0

-0.5

1.0

-1.5

DOS (10"® eV cm™2)

Fig. 7.5 Band structure (leff), density of states, and ballistic conductance along the [100] and [110] directions (right) of
a (100) Si slab as in the right frame of Fig. 7.2. [Used from M.V. Fischetti, Bo Fu, S. Narayanan, and J. Kim, in Nano-
Electronic Devices: Semiclassical and Quantum Transport Modeling, Dragica Vasileska and Stephen M. Goodnick eds.
(Springer, New York, 2011), pp. 183-247, with kind permission from Springer Science+Business Media]

(for example, using a larger In mole fraction to control the electronic properties), strained layers can
be grown without crystalline defects up to a critical thickness. Beyond this critical thickness, it will be
energetically more favorable to relieve the stress by creating crystal defects, such as stacking faults.

A typical application is represented by quantum-well lasers. Layers of GaAs are grown first, then
several nm of Ings53Gag47As are grown afterwards, and GaAs is deposited again. Since the band
alignment of these materials is such that the conduction-band bottom of Ing 53Gag 47As sits at a lower
energy than that of GaAs, a confining quantum well is formed. Similarly, a quantum well for holes
is formed in the valence bands. When carriers are injected into the structure, electrons and holes will
loose energy and be captured by the well. They will then recombine radiatively emitting light. Keeping
the structure in an electromagnetic cavity, stimulated emission will occur, that is, the laser action.

Optical applications have made hetero-structure a thriving industry. However, the low effective
mass and related high velocity of electrons in most III-V compound semiconductors have triggered
interest by the VLSI industry, attracted by their potential use as active channels in fast transistors. The
structure that we consider here is indeed a typical research application of this type.

Regarding the theoretical study of these structures, ternary alloys require a comment. We have
seen how to use pseudopotentials, empirical or self-consistent, to study Si or GaAs. In order to study
a ternary alloy, In,Ga;_,As, for example, in principle we should consider a supercell large enough to
contain a fraction x/2 of In atoms, a fraction (1 —x)/2 of Ga atoms, and a fraction 1/2 As atoms, all in
zincblende cells. Clearly, we would need to consider very large cells. Moreover, we would be able to
study structures with a limited number of mole fractions x (that must result in commensurate integer
number of atoms). Most important, we would have to perform a very large number of calculations,
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Fig. 7.6 Band structure (lef?), density of states, and ballistic conductance along the [110] and [112] directions (right) of
a (111) Si slab. The film is 3-cell (3v/3ap) thick, H terminated and 1 cell of vacuum separates the periodically repeated
films. A constant field of 5 x 103 V/cm is applied perpendicularly to the slab to mimic a triangular-well confining
potential

each for a different random spatial distribution of In and Ga atoms. The common way to bypass this
problem is to use what is normally called the virtual crystal approximation (VCA). We consider a
zincblende lattice composed of As atoms and “virtual” In/Ga atoms obtained by interpolating linearly
their properties, their pseudopotentials in our case. To be explicit, the pseudopotential ngln/ G2 of this
virtual atom will be obtained from the pseudopotentials V(") (¢) and V(G?) (¢) of In and Ga in InAs

and GaAs, respectively, as the linear combination:

(In/Ga) o O (In) QG
Ve =x—0YV +(1—x
(@) =5 o2 VI (g)+ (1) T

VG (q), (7.21)
where Q, and Qg, are the (normalization) atomic volumes of In and Ga in InAs and GaAs,
respectively, and € is the volume of the cell or supercell of the structure we intend to study. Clearly,
this approximation lets us perform a much simpler calculation. The price we pay is some loss of
accuracy, especially our inability to study fluctuations present in the system. For example, the band
structure we will obtain for Ings53Gag47As will be “smooth,” as in a binary alloy. In reality, free
electrons will feel fluctuations going from one cell of InAs to the next of GaAs, resulting in alloy
scattering. This effect will have to be treated in some other way. For completeness, regarding the
VCA we also mention that the lattice constant of ternary alloys is usually estimated using Vegard’s
law [9], which consists in a linear interpolation of the lattice constants of the binary compounds. If
ay is the lattice constant of the binary compound A (think of A as InAs), and ag is the lattice constant
of the binary compound B (think of B as GaAs), then the lattice constant a4p , of the ternary alloy
A;B_, (think of In,Ga;_,As) will be

aapx =xas+ (1 —x)ap+bx(1—x), (7.22)

where we have added a “bowing parameter” b that reflects deviations from linearity. On a similar note,
a rule-of-thumb to estimate the valence- and conduction-band discontinuities at interfaces is the so-
called Anderson’s 60/40 rule [10], which states that in a type-I band alignment (in which the band gap
of the smaller-gap material is fully contained within the gap of the larger-gap material), 60 % of the
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Fig. 7.7 Band structure (lef?), density of states, and ballistic conductance along the [001] and [110] directions (right)
of a (110) Si slab The slab is 2-cell (2ag/+/2) thick and H terminated. A similar thickness of vacuum padding
has been employed. The twofold degenerate absolute minimum of the conduction band is at K = (0,0.15)(27/ao),
while a fourfold degenerate minimum is at K = (0.85/1/2,0)(27/ap). Note that the energetic ordering of these
minima is opposite to what shown in Fig. 7.10 because the large nonparabolicity of the dispersion around the twofold
minimum along the [110] direction weighs heavily at the high energies shown here for this very thin film. [Used from
M.V. Fischetti, Bo Fu, S. Narayanan, and J. Kim, in Nano-Electronic Devices: Semiclassical and Quantum Transport
Modeling, Dragica Vasileska and Stephen M. Goodnick eds. (Springer, New York, 2011), pp. 183-247, with kind
permission from Springer Science+Business Media]

difference of the band gaps shows as the offset of the conduction bands, 40 % as valence-band offset.
Both Vagard’s law and Anderson’s rule have found successful applications in a limited number of
cases, but they should be considered as empirical rules with limited validity. For example, Anderson’s
rule has been applied to some III-V hetero-structures, but we saw in Chap. 6, Sect. 6.3.4 a counter-
example to Anderson’s rule for the Si—Ge system: In that system, almost all of the difference of the
band gaps shows as a valence-band offset.

As it has been the case for Si inversion layers, the use of the effective-mass approximation
has provided early insight. However, additional complications arise in the context of III-V hetero-
structures. These are mainly due to the smaller potential barriers that confine the electrons. The
Si—SiO, interface presents a barrier of about 3 eV to conduction electrons. For all practical purposes,
this can be approximated by an infinite barrier (unless one wishes to worry about the tiny detail of
the penetration of the wavefunction inside the oxide). But the band discontinuities present in hetero-
structures are about one order of magnitude smaller. This presents the advantage of opening the path
to the fabrication and use of superlattices: periodic repetition of a hetero-structure. However, the
disadvantage from a theoretical viewpoint is that now electrons can easily move across interfaces (this
is the whole point, after all!), but issues arise: How do we “match” the wavefunction across interfaces?
And if transport occurs on the plane of the interface with electronic wavefunctions extending in both
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Fig. 7.8 Band structure (lef?), density of states, and ballistic conductance along the [110] and [112] directions (right) of
a (111) Si slab. The film is 3-cell (3v/3ap) thick, H terminated and 1 cell of vacuum separates the periodically repeated
films. A constant field of 5 x 10° V/cm is applied perpendicularly to the slab to mimic a triangular-well confining
potential. [Used from M.V. Fischetti, Bo Fu, S. Narayanan, and J. Kim, in Nano-Electronic Devices: Semiclassical
and Quantum Transport Modeling, Dragica Vasileska and Stephen M. Goodnick eds. (Springer, New York, 2011), pp.
183-247, with kind permission from Springer Science+Business Media]

the GaAs and the InGaAs layers, what in-plane effective mass do we use? Atomistic calculations can
help. We consider here the specific case of a rather complicated hetero-structure and show how one can
tackle these problems. Note that the use of the supercell method renders this structure a “superlattice,”
but we shall be interested on the effect that the results will have on electron transport “on the plane,”
as opposed to what is called “vertical transport,” since we consider this structure as the channel of a
[II-V-based MOSFET.

The structure we consider consists a (100) lattice-matched (to InP, as we have explained before)
Ing 53Gag.47As/InP/Alsglng 55 As hetero-channel that mimics a typical III-V MOSFET channel. The
supercell used in the calculation consists of a composite Ing s3Gag 47 As/InP channel with a 4-cell-thick
Ing 53Gag.47As layer, an equally thick InP layer, and of an “insulating” 3-cell-thick Al4gIng 50 As back
layer. Figure 7.12 shows the band alignment and the electronic structure obtained using the empirical
pseudopotentials from Zunger’s group [11-13] with parameters listed in Table B.5 of Appendix B.
These parameters have been calibrated to obtain the “correct” band alignment and, so, the confining
wells. Since insulators such as HfO, or Al,O3 are used to passivate and insulate layers, it is interesting
to see the effect of replacing the weakly insulating Alg 4gIng spAs back layer with an “ad-hoc” insulator
mimicking HfO, (with empirical pseudopotentials reported in the literature). This is shown in the
right panel of Fig.7.12. This insulator behaves even too realistically: We can see the appearance of
“interface states” (with wavefunctions localized at the InP/insulator interface) in this case. They give
rise to an energy band within the gap, exactly as dangling bonds do in real life.
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Fig. 7.9 Band structure (leff), density of states, and ballistic conductance along the [100] and [110] directions (right)
of a (100) Si slab as in the left frame of Fig.7.2, but with a triangular-well potential with a field of 5x10° V/em.
The zero for the energy has been set at the top of the valence bands in the absence of the applied field, as in the
left frame of Fig.7.2, to judge the shift of the subband energies in the presence of the external field. [Used from
M.V. Fischetti, Bo Fu, S. Narayanan, and J. Kim, in Nano-Electronic Devices: Semiclassical and Quantum Transport
Modeling, Dragica Vasileska and Stephen M. Goodnick eds. (Springer, New York, 2011), pp. 183-247, with kind
permission from Springer Science+Business Media]

Figure 7.13 shows the variation of the energy gap as a function of the thickness of the composite
channel, while Fig.7.14 shows how the band structure is modified by the application of a parabolic
potential (mimicking the potential of an inversion layer) of the form:

2 2
Vel =V (1-Z 42 7.23
@=Vo(1-T+75) (7.23)
(where L is the extension of the supercell in the z direction, L = aj,pN, with N the total number of

cells employed and Vy = F5L/2 is the total voltage drop in the cell expressed in terms of the surface
field Fs) with Fourier components F5L/3 for G, = 0 and

(CX‘):_B 2 i 24
Ve, 2 (LG% GZ> (7.24)

for G. # 0. Figure 7.14 presents results obtained for Fy = 45 x 10° V/cm, for electron and hole
confinement, respectively. These are of interest in the study of n- and p-channel devices. Finally, the
electron and hole wavefunctions in the Ing 53Gag 47As/InP/Alsglng 55 As hetero-layer for the cases of
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Fig. 7.10 Band structure (left), density of states, and ballistic conductance along the [001] and [110] directions (right)
of a (110) Si slab 9-cell (9ap/+/2) thick with a triangular-well potential with a field of 5x 10° V/cm. Comparing with
Fig.7.7, note that the twofold minimum K = (0,0.15)(27/ap) is now at an energy about 12meV higher than the
fourfold minimum at K = (0.85/+/2,0)(27/ag). From estimates based on conventional effective masses [1] we expect
this same ordering, but an energy difference of about 28 meV. The difference is likely due to nonparabolic effects.
[Used from M.V. Fischetti, Bo Fu, S. Narayanan, and J. Kim, in Nano-Electronic Devices: Semiclassical and Quantum
Transport Modeling, Dragica Vasileska and Stephen M. Goodnick eds. (Springer, New York, 2011), pp. 183-247, with
kind permission from Springer Science+Business Media]

flat-band, electron and hole confinement are shown in Fig. 7.15. Note how potentially intricate issues
(such as matching the wavefunctions at interfaces, determining the effective mass to be used when the
wavefunction extends over two materials, etc.) are bypassed by the supercell method. The shape of the
envelope of the wavefunctions agrees with our naive expectations based on the band discontinuities
shown and on the “envelope” idea.

Figure 7.16 shows the large nonparabolicity of the InGaAs conduction band, an effect that
obviously translates into significant effects on electron transport and on the gate capacitance of
InGaAs-based devices. Finally, the right frame of Fig.7.17 shows the 2D band structure of this
“superlattice” in the left frame and the corresponding dispersion calculated keeping the 2D in-plane
wavevector K at the T-point while varying the z-component, k;, along the direction perpendicular to
the interfaces. Dispersionless curves (i.e., k,-independent) are expected for purely two-dimensional,
confined states. This is indeed the case at low energies both in the conduction and valence bands.
At higher energies we can see the onset of a dispersion, a symptom of the delocalized nature
of states (superlattice “minibands”) whose energy exceeds the confinement energy caused by the
band alignment at the Ing s3Gag 47As/Alg.43Gag 50 As interface. Strikingly different is the case of the
free-standing H-terminated Si layer of Fig.7.5: The strong confinement due to the large vacuum
workfunction causes an almost completely dispersionless behavior for energies as large as 5eV in
the conduction band, as clearly seen in Fig. 7.18.
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Fig. 7.11 Density of states of the (100), (110), and (111) Si slabs of the previous figures (solid black line) compared to
the DOS calculated using a two-ladder (for the (100) and (110) surfaces) or one-ladder (for the (111) surface) parabolic
band structure with longitudinal and transverse masses of 0.19 and 0.91 m. For the (100) surface note that the energy
of the ground state unprimed (primed) subband obtained using the supercell method is 0.103 eV (0.158 eV), compared
to the “parabolic” value of 0.109 eV (0.184 eV). [Used from M.V. Fischetti, Bo Fu, S. Narayanan, and J. Kim, in Nano-
Electronic Devices: Semiclassical and Quantum Transport Modeling, Dragica Vasileska and Stephen M. Goodnick eds.
(Springer, New York, 2011), pp. 183-247, with kind permission from Springer Science+Business Media]
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Fig. 7.12 Lefr: Band diagram showing the discontinuities/alignments for a (100) lattice-matched (to InP)
Ing 53Gag 47As/InP/Alsglng spAs periodic hetero-structure resulting from the Zunger’s atomic pseudopotentials and
accounting for spin—orbit interaction. Center: Band structure for the system at left with 4-cells/4-cells/3-cells layer
thickness (1 cell = 1 InP cell = 0.586 nm). Right: Band structure for a system as in the frames at left, but with the
AllnAs “insulator” replaced by an ad-hoc polar insulator mimicking the band alignment of HfO,. Note the emergence of
interface states, caused by the presence of the insulator. As in the thin Si case, for convenience the spin—orbit interaction
has been neglected here. [Used from M.V. Fischetti, Bo Fu, S. Narayanan, and J. Kim, in Nano-Electronic Devices:
Semiclassical and Quantum Transport Modeling, Dragica Vasileska and Stephen M. Goodnick eds. (Springer, New
York, 2011), pp. 183-247, with kind permission from Springer Science+Business Media]

7.2.3 Graphene

Graphene constitutes the first example of a 2DEG confined not by band discontinuities between two
different materials, but by the ionic potentials of the atoms arranged in a two-dimensional lattice.
Once more, we refer to the review paper by Geim and Novoselov [2], who first studied and produced
graphene layers by “exfoliating” graphite (that is, by stripping a single layer with scotch tape) and
were awarded the Nobel prices in Physics in 2010 for this work.

* Actually, the existence of two-dimensional crystals was a surprise for many. In the mid-late 1960s,
Mermin and Wagner [14, 15], and Hohenberg [16] proved that crystals in two (and one) dimension(s)
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Fig. 7.13 Variation of the band gap of the AllnAs/InGaAs/InP quantum-well structure as a function of InGaAs
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Fig. 7.14 In-plane dispersion for an InGaAs/InP/AllnAs hetero-channel under flat-band conditions (left), with a
parabolic potential with a surface electric field of 10° V/em (center, confinement for electrons) and —10° V/em (right,
confinement for holes). [Used from M.V. Fischetti, Bo Fu, S. Narayanan, and J. Kim, in Nano-Electronic Devices:
Semiclassical and Quantum Transport Modeling, Dragica Vasileska and Stephen M. Goodnick eds. (Springer, New
York, 2011), pp. 183-247, with kind permission from Springer Science+Business Media]

cannot exist. The argument, often formulated in rather abstract terms of Quantum Field Theory,
states that the spontaneous breaking of a continuous symmetry (in our case: the continuous rotational
symmetry that must be broken in order to form a crystal that does not possess a continuous symmetry)
in two or fewer dimensions cannot occur at a finite (nonzero) temperature, because the correlation
of the associated massless Goldstone bosons would diverge. .. We can explain it in a simpler way.
However, even this “simple” explanation may be understood after having assimilated the concepts
presented in Chap. 9, Sect. 9.4, and in Chap. 10, Sect. 10.1.5.
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Fig. 7.15 Conduction- and valence-band wavefunctions in an InGaAs/InP/AllnAs channel (each layer 6-cell thick)
under flat-band condition (leff) or in the presence of a parabolic potential with a surface electric field of 10° V/cm
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J. Kim, in Nano-Electronic Devices: Semiclassical and Quantum Transport Modeling, Dragica Vasileska and Stephen
M. Goodnick eds. (Springer, New York, 2011), pp. 183-247, with kind permission from Springer Science+Business
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Fig. 7.16 Band structure
near the bottom of the
conduction band for the
superlattice shown in the
previous figure. The
anisotropy of the bands as
well as the large
nonparabolic effects is
clearly visible. The dashed
lines illustrate the parabolic
dispersion obtained using
the effective mass
calculated from the
curvature of the dispersion
at the bottom of the
conduction band
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Consider first a three-dimensional crystal. The number of quantized vibrational modes of a lattice
(phonons) at temperature T is given by the Bose—FEinstein distribution, Eq.(10.27), which we can

rewrite in the form:

<Nq>th =

1
kT

exp (

hoog

(7.25)
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Fig. 7.17 The 2D band structure of the hetero-layer of the previous figures (left) is shown against the dispersion along
the “transverse” k. direction for (ky,ky) = 0 (the T point of the 2D BZ, right). The vertical dashed lines at right
show the size of the BZs along the k, direction (a9 = 0.586 nm) equal to 1/18 (27 /ay). For fully 2D states the energy
is dispersionless, that is, independent of k.. However, as the energy of the subband-bottoms exceeds the confinement
energy caused by the Ing 53Gag 47As/Alp 48Gag 5o As band alignment, the states become “extended 3D states” and acquire
the “normal” bulk (superlattice miniband) dispersion. From this plot one can extract an Ing 53Gag 47As/Aly4gGag 50As
conduction-band discontinuity AE; ~ 0.5 eV and a valence-band discontinuity AE, ~ 0.2 eV. Plots of this type are useful
in judging the correctness of the band alignment caused by the choice of the interpolation of the bulk pseudopotentials
asqg— 0

where kg is Boltzmann’s constant and ®q is the frequency of the phonon. This is a wave of ions
oscillating around their equilibrium positions, moving along the direction of the wavevector q with
wavelength A = q/(2m). Those waves that represent essentially propagation of sound in the crystal,
the so-called acoustic phonons, have a frequency that depends linearly on their wavevector for
large wavelengths; that is, assuming an isotropic crystal (the same in all directions), w,; =~ csq,
where cg is the velocity of sound. Therefore, for long wavelengths (i.e., ¢ — 0) we can approximate
(Nq)tn =~ kT /(ficsq). The volume density, N/, of these “acoustic waves” with wavelength larger
than some arbitrary wavelength Ayax will be obtained by integrating the number of phonons at a given
wavelength over all wavelengths larger than Amax; or, equivalently, for all wavevectors smaller than

dmax = 277-'/2'11121)(-'

N dq kgT knT — [dmax kT 3
LY / 9 % _ B / dgq= 22 dmax (7.26)
Q g<gmx (2T)3 hesq  2m2hes Jo hCsqmax 4T

Whatever this number might be, it is finite.

Now, instead of a three-dimensional crystal, consider a two-dimensional one. Looking at one
example of phonons in a two-dimensional crystal, the phonon frequencies in graphene shown in
Fig. 13.6 in Chap. 13, we see that the phonons labeled “ZA” have a frequency that, for Q — 0, goes
to zero as aQ?, where a is some constant whose values do not matter in this discussion. (We denote
by upper-case letters quantities in two dimensions.) These are waves associated with carbon atoms
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Fig. 7.18 The 2D band structure of the H-terminated free-standing Si layer of Fig.7.5 (left frame) is shown against
the dispersion along the “transverse” k; direction for (ky,k,) = 0 (the T point of the 2D BZ, right frame), as in the
previous figures. Note the absence of any appreciable dispersion up to an energy of about 5 eV, indicating the quantum
confinement caused by the high vacuum workfunction. This is also emphasized at left: Curves of different colors
correspond to calculations performed varying the in-plane components K of the wavevector on the 2D BZ and selecting
values of 0.05 (red dashed lines), 0.10 (blue dotted lines), and 0.25 27 /ay (green dot-dashed lines) for the out-of-plane
component k. The 2D band structure is once more independent of k, for energies up to 5eV in the conduction band

that move “up and down,” out of the plane of the graphene sheet. The reason why now the frequency
goes to zero faster at long wavelength is due to the fact that there are no atoms “above and below.”
Therefore, the restoring force that causes the atoms to oscillate above and below the plane is due to the
“diagonal” pull of other atoms on the plane. This makes the out-of-plane “spring constant” smaller
as the wavelength increases, as a simple geometrical argument shows. This is an intrinsic property of
two-dimensional systems. Now, let’s compute the areal density, Naop /A, of these out-of-plane acoustic
waves with wavelength larger than Amax:

A" Jo<omy (2m)? haQ?  2mha

N dQ kT kT [Qmx 1
~ Q ks B / — oo, (7.27)
0

The problem results from two effects arising from the reduced dimensionality of the crystal: First,
comparing to the three-dimensional case, we have gained a factor of Q in the denominator because
of the different ZA phonon frequency. Moreover, we have also lost a factor of Q in the numerator,
because of the different phase-space in two dimensions. The important result is that the energy of
these out-of-plane waves is so small that they can be excited in infinite numbers. The crystal would
Jjust disintegrate, oscillating out of the plane with increasing amplitude at longer wavelength.

So: Why does graphene exist? Simply because it comes in finite size and it deviates from full
planarity. Graphene usually comes in the form of “flakes.” Moreover, even in large areas, unavoidably
it forms ripples. The length-scale set by the size of the flakes and by the ripples is what sets a nonzero
lower limit for the integral in Eq. (7.27), so that the logarithmic singularity is avoided. We should
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Fig. 7.19 Top left: Primitive translation vectors and position of the atoms (dots) for graphene. Bottom left: Hexagonal
2D Brillouin Zone of graphene, main symmetry points, and trajectory in k-space employed in the plot at right. Right:
Band structure for graphene obtained using the Kurokawa (solid lines) and Mayer (dashed lines) pseudopotentials.
A separation of 10v/3ag/2 along z has been assumed between adjacent sheets. The bands highlighted in color and
indicated by arrows are the o* (blue) and ©* (red) singlet bands whose interaction and hybridization result in an
interesting and unexpected behavior of the band gap in single-wall zigzag (n,0) carbon nanotubes of small diameter.
The use of Kurokawa pseudopotentials, in particular, yields relatively small energies for the 7*-singlet band along the
M-T line (= 2.5 eV above the Fermi level, compared to energies three times as large obtained using the self-consistent
LDA [18, 19]). (Reprinted with permission from M.V. Fischetti, J. Kim, S. Narayanan, Z.-Y. Ong, C. Sachs, D.K. Ferry,
and S.J. Aboud, J. Phys.: Cond. Matter vol. 25, 473202 (2013). Copyright 2013, Institute of Physics)

stress that Mermin himself commented that his results may nevertheless allow the existence of “two-
dimensional systems of less than astronomical size to display crystalline order.”

The band structure of graphene presents extremely interesting features. Using a simple tight-
binding model, its band structure shows the absence of a gap, with the valence and conduction
bands crossing with an almost-linear dispersion at the symmetry point K (see Fig. 7.19). This linear
dispersion and the degree of freedom associated with the two triangular sublattices, usually called
A-sublattice and B-sublattice, make it possible to describe this dispersion with a Dirac equation
[see Eq.(C.44) in Appendix C] for massless electrons with spin replaced by the A/B-sublattice
“pseudospin”. A full discussion of this connection between graphene and massless Dirac Fermions
can be found in [17]. Now we should return to our main discussion, namely, the use of empirical
pseudopotentials to calculate the band structure of graphene.

The band structure of an infinite graphene sheet can be calculated assuming the sheet is a supercell

layer separated periodically by the neighbor sheets by a distance N “”%ﬁ [see Eq. (7.28) below], thus
using 1D supercells as in the case of thin Si layers or hetero-layers discussed above. Examples of
results available in the literature, with which one can compare the quality of results obtained by using
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empirical pseudopotentials, are those by Reich [18] and by Khoshnevisan [19] for graphene and also
the (5,5) CNT (see below). These results have been obtained using ab initio calculations.

The real-space structure of graphene can be described by a two-atom 2D unit cell with basis
vectors [17]:

R S L EN RV Y RPN

a] = (0,0,N) , (7.28)
where ay is the bond length ~ 0.142 nm and N (=10 in the results presented below) is the separation
between sheets along the z-axis. The coordinates of the two C atoms in the cell are

71 =ao (0,1,0), T>=ap (0,2,0), (7.29)

while the basis vectors in reciprocal space are

A (V3 1 ar [ V31 A V3
bj=—|—,2,0 b=—|—-—7,5,0 b;=—10,0,— ] . 7.30
1 3610 ( 7 '’ > ) 2 3a0< IR ) ; 3 3610 ( ) 72N> ( )

Figure 7.19 shows the basis geometry in real and reciprocal space, as well as the band struc-
ture obtained using the Kurokawa [20] and Mayer [21] empirical pseudopotentials described in
Appendix B.

Compared to ab initio results [18, 19], employing the Kurokawa carbon pseudopotential results
in the “correct” behavior. Of particular interest is the behavior of the extended 7 (bonding) and 7*
(antibonding) orbitals that result from the p, atomic orbital of each C atom sp?-bonded to three other
C atoms on the plane. The energies of these 7-7* bands are “correct” for energies close to the Fermi
level. Most important, we see the correct band-crossing (“Dirac” point) at the K symmetry point,
arguably the most interesting feature of the graphene band structure. However, these results are not in
complete agreement with the DFT results. In particular, a set of bands at I" appear at a lower energy
than in the ab initio results. These bands compress the 7-7*-band energetic separation near k = 0. The
Mayer pseudopotential, being an empirical one-electron model, by definition fails to account for the
2s valence states and also misses many higher-energy states. Nevertheless, it reproduces satisfactorily
the 7m-m*-band energetic separation near the Fermi level. The Fermi velocity at the Dirac point is
calculated to be about Vg ~ 9.5 x 107 cm/s when using the Kurokawa pseudopotentials and ~ 8.8 x 107
cm/s when using the Mayer pseudopotentials, both values in good agreement with DFT results. These
are all about 15 % smaller than experimental data. Theoretical calculations that can reproduce this
experimental value [22] must rely on a model (called GW, G standing for the Green’s function and
W for the screened electron—electron potential), that goes beyond DFT and that we shall not attempt
to discuss here. Aryasetiawan and Gunnarsson [23] give a detailed description of this method that
is known to yield values for the band gap that are in better agreement with experiments than those
obtained using DFT.

7.3 Nanowires, Nanotubes, and Nanoribbons

Scaling VLSI devices to the nanometer scale presents several challenges. The main concern is the
ever-growing power density. The complementary metal-oxide-semiconductor (CMOS) technology
has addressed this issue in the past, by always placing an n-channel and a p-channel device in series
between the electric ground and the power supply, so that, except during switching, there is no direct
path for the current to flow from the power supply to ground. Switching is when the “real action”
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happens, but it is a temporary condition that happens only 10-15 % of the time (“‘duty cycle”). This
all works fine, as long as the devices do not “leak” current when they are in their “off” state. As
devices shrink, this leakage becomes larger, because the gate finds it more and more difficult to push
all charge carriers outside the channel: The electric field lines originating from the gate now tend
to be terminated at the source and drain contacts, that are ever closer, rather than at the substrate,
as is desired. Therefore, having the gate increasingly closer to the active region of the channel
becomes imperative if we wish to “turn off” the devices. The best scenario in this electrostatic battle
is constituted by very thin and narrow channels surrounded by the gate. The concept of Si “fins”
surrounded by a gate on three sides has led to FinFETs. But even better is the idea of having thin and
narrow bodies surrounded by the gate from all sides. This amounts to considering nanowires. Hence,
the great interest in one-dimensional structures, and 1DEG.

The term “one dimensional” is probably used a bit too liberally: One-dimensional conduction
properly occurs only when the linear dimensions of the cross section of the wire are smaller than
the electron coherence length. That is, when electrons do not scatter appreciably along the cross-
sectional dimension, and a constructive interference pattern of standing waves can be sustained, thus
leading to quantization of momentum on the cross-sectional plane. Here, we shall assume that this
is the case. Small nanowires (NWs) and carbon nanotubes (CNTs) represent such structures. Clearly,
their small cross-sectional dimensions will cause both a relaxation of the atoms at the edges of the
structure and strong confinement on the cross-sectional plane. We shall discuss amply the latter issue.
Regarding a possible, if not likely, atomic relaxation at the edges of these small structures, it is indeed
an issue. Judicious use of DFT to obtain the relaxed atomic position and empirical pseudopotentials
to obtain the band structure seems to be a good compromise between convenience and accuracy. We
shall present below, dealing with circular cross-section Si NWs, an example of this problem.

7.3.1 Si Nanowires

We have considered Si nanowires with their axis along the [100], [110], and [111] directions. For those
who wish to compare the results obtained using empirical pseudopotentials with published results,
the literature is rich. Covering a variety of models employed, we may mention that Nehari [24] and
Neophytou [25] have employed a tight-binding model; Sacconi et al. [26] have used a technique
called “linear combination of bulk bands” (LCBB); Scheel and collaborators [27] have employed
empirical tight-binding (ETB). Finally, Lee and co-workers [28] have performed first-principles
(DFT) calculations. Here we consider both rectangular cross-section nanowires, easier to study, and
circular cross-section wires, perhaps of a geometry closer to what is obtained experimentally.

7.3.1.1 Rectangular Cross-Section Nanowires

For the rectangular cross-section nanowires, consider rectangular supercells with sides Nag long and
H terminations using the Zunger pseudopotentials. For [100] wires with (110) sides, the supercell is
square and constructed by considering the cell defined by the translation vectors ay, a;, and a3:

a; =ap (1/2,1/2,0)
a, =ap (—1/2,1/2,0) , (7.31)
a3 = ap (0,0,1)
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and atomic coordinates T,:

71 =ap (0,0,0)

Tzfag(l/4 1/4,1/4)

3=ap (0,1/2,1/2)
(—1/4,1/4,3/4)

(7.32)

4 =dy

For a square-section nanowire with (110) sides, this cell is replicated N, times in the “diagonal”
directions x =y and x = —y. An additional layer of atoms is added to obtain a symmetric configuration
(see Fig. 7.20, left) and N, cells of vacuum padding are added. The resulting supercell is now spanned
by the translation vectors:

b; = agMN; (1/2, 1/2,0)
by = aoN; (—1,1,0) (7.33)
b3 =Aq (0,0,1)

where N = N; + N,. The supercell has a cross section of size V2Nwag X v/2Nag and contains
(4N.(N;+ 1)+ 1) Si atoms plus additional (8N, +4) H atoms terminating the dangling bonds at
the surface of the wire. The Si—H distance was taken to be 0.158 v/3 ag in all cases, as we saw before
discussing the termination of Si surfaces.

For [110] wires, instead (using the same notation as above):

a; = (aO/\ﬁ) (1’070)
a = qao (—0, 1,0) s (7.34)
a3 = (Clo/\@) (0,0, l)

(0,0,0)

T =ao (0,1/4,1/(2v2))
(1/(2v2),1/2,1/(2v2))
(1/(2v2),3/4,0)

(7.35)

For a rectangular cross-section nanowire with (001) and (110) sides, this cell is replicated Ny times
along the x direction and Ny, times along the y direction, adding, as before, an additional layer of
atoms to obtain a symmetric configuration in each direction (see Fig.7.20, center) and Ny cells of
vacuum padding are added. The resulting supercell is now defined by the translation vectors:

b; = ag(Nxec +Ny)v2 (1,0,0)
by = ap(Nye +Ny) (0,1,0) . (7.36)
b3 = apVv/2 (0,0, 1)

The area of the rectangular cross section of the supercell is now ﬂ(Nxc +Ny)ag x (Nye 4 Ny)ag. This
supercell contains (4NxcNyc +2Nyc 4 Nxc + 1) Si atoms and additional (4N + 4Ny +4) H atoms.

Nanowires with their axis along the [111] directions are a bit more complicated and are
computationally more demanding, since their period along the axis of the wire is much larger
(unfortunately, the semiconductors of interest do not possess body-centered cubic symmetry!). First,
construct a cell spanned by the translation vectors:
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Fig. 7.20 Left: Position of the Si atoms (and hydrogen terminations) for a 4-cell x 4-cell square cross-section nanowire
with side 1.535 nm long, axis along the [100] direction, and sides on the (110) planes. The blue dashed line indicates
the size of the supercell including one cell of vacuum—of thickness aq/+/2—separating adjacent wires. Right: Position
of the Si and H atoms for a 4-cell x 4-cell rectangular cross-section nanowire of dimension 1.5384 x 2.172 nm with
axis along the [110] direction and sides on the (001) and (110) planes. In this case the vacuum “padding” separating the
wires to form the 2D supercell (indicated by the dashed blue lines) has a thickness of v/2aq along the x direction and
2ay along y, including the space occupied by the H terminations

a’y = (ao/V2) (1,0,0)

a'y=[a0/(2V2)] (1,v/3,0) , (7.37)
3/3 =q (0,07 \B)
containing six atoms with coordinates:
T = qap (0,0,0)
Tr = ap (0,0,\/§/4)
3= (a0/v3) (0,1/V2,1) (7.38)

T4 =ao (0,1/v6,V3/4+1/V/3)
s =ao (1/(2v2),1/(2v6),2/V3)
6 =ao (1/(2v2),1/(2V6),2/V3+/3/4)

Note in that in Eq. (7.37) the length of the vector a’3 (i.e., aopV/3) is much larger than in the previous
cases of [100] and [110] wires, ag and ag/+/2, respectively. Replicating this cell on the cross-sectional
(x,y) plane along the directions determined by a’; and a’; results in a diamond-shaped cross section.
Thus, by combining two cells, a cell is obtained with a rectangular cross section on the (x,y) plane.
The perpendicular translation vectors are

a; =aqo (1/\/57030)

ay =ao (0,1/3/2,0) ,
a3 =dao (ana \@)

(7.39)

and the cell now contains 12 atoms with coordinates given by Eq.(7.38) above for i = 1, 6 and
by i+ = T; +a’>. Replicating this cell Ny times along x and Ny, times along y yields a rectangular
cross-section wire with sides on the (110) and (112) faces (see Fig. 7.21 for such a cell with additional
vacuum padding). The supercell translation vectors are now:
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b3 = ap\/3 (0,0, 1)

The resulting supercell has a cross section of area (Nyc +Ny)ao/v/2 x (Nyc+Ny)ag+/3/2 and contains
(12NxcNyc + 2Ny + 6Ny +2) Si atoms and additional (8 Ny + 12Ny +6) H atoms.

In the case of nanowires, our interests are similar to those that motivate us in the case of thin
films and hetero-layers. The band structure and the ballistic conductance are the main results that
give us information about the electron transport properties of these structures before worrying about
scattering, which, of course, will be the focus of the following chapters.

Figures 7.22 and 7.23 shows the band structure for square-section Si NWs with sides 2-5 cells
long separated by 1 cell of “vacuum.” Note the energy gap increasing with decreasing wire size
(as expected). The density of states of all subbands 7 is calculated from its definition:

dE’
Zp(E 22 /

where the index i labels the p, > 0 solutions k. , ; such that E(k; ,;) = E' and E, (k;) is the dispersion
in (sub)band n. The ballistic conductance, Gp(E), along the wire axis at energy E is given by

Gip(E ;/ [En(k;) — E]
Y 21 Z/dE’ komi)

where v, (k) is the group velocity (1/h)dE,(k;n;)/dk, at the k,-point k,,;, and the factor of
1/2 in the equation above reflects the fact that the sum should be performed only over k,-points

-1
A& ( ””) S(E'—E), (7.41)

2e 1
S(E'—E) - Zan, (7.42)
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Fig. 7.22 Band structure
of four square cross-section
H-terminated [100] Si
nanowires with sides of
four different lengths. The
wires are separated by a
one-cell thickness of
vacuum. The results have
been obtained using a
cutoff energy of 8 Ry and
empirical pseudopotentials
from [5]. [Used from

M.V. Fischetti, Bo Fu,

S. Narayanan, and J. Kim,
in Nano-Electronic
Devices: Semiclassical and
Quantum Transport
Modeling,

Dragica Vasileska and
Stephen M. Goodnick eds.
(Springer, New York,
2011), pp. 183-247, with
kind permission from
Springer Science+Business
Media]
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corresponding to a positive group velocity v, (k. ;), and so, by symmetry, over 1/2 of the entire 1D
BZ. The ballistic conductance of free-standing [100], [110], and [111] nanowires of similar rectangular
cross sections is shown in Fig. 7.24. Note the larger conductance for both electrons and holes in
the [100] wire and the smaller conductance of the [111] nanowire whose many bands are “flat” and
exhibit few crossings. Finally, Fig.7.25 shows the squared wavefunctions for the six lowest-energy
conduction-band states for the [100] wire with sides 2 cell-long separated by 1 vacuum cell.
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Fig. 7.23 Band structure, 2
density of states, and G (2e%/h)
conductance of
free-standing H-terminated
[100] (top) and [110]
(bottom) Si nanowires with
an (“almost” for the [110]

wire) square cross section ol ,
of the indicated dimensions Si[100] 8 Ry Zunger
with 2 cells of vacuum L =1.535 nm

2 vacuum cells

padding. [Used from
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in Nano-Electronic
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Quantum Transport
Modeling,
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Stephen M. Goodnick eds.
(Springer, New York,
2011), pp. 183-247, with
kind permission from
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7.3.1.2 Circular Cross-Section Nanowires
Although nanowires with square or rectangular cross section can be fabricated (for example, etching

narrow and short Si “fins”), more conventional processing yields NWs with rather irregular cross
sections, resembling circles or ellipses rather than squares. Here we consider ideal Si NWs with a
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Fig. 7.24 Valence-band (lefr) and conduction-band (right) ballistic conductance of the [100], [110], and [111] Si
nanowires of the previous figures. The zero-energy has been set at the band-edge in both plots. [Used from
M.V. Fischetti, Bo Fu, S. Narayanan, and J. Kim, in Nano-Electronic Devices: Semiclassical and Quantum Transport
Modeling, Dragica Vasileska and Stephen M. Goodnick eds. (Springer, New York, 2011), pp. 183-247, with kind
permission from Springer Science+Business Media]
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Fig. 7.25 Squared amplitude—averaged over a supercell along the axial direction—of the wavefunctions of the six
lowest-energy conduction-band states in the smallest [100] square cross-section Si nanowire of the previous figure.
The contour lines are drawn at intervals of 0.1 |y|2,,,, where |2, is the maximum of the squared amplitude of the
wavefunction. The square with sides 2as; //2 = 0.768 nm long indicated by the dashed lines shows the “nominal” size
of the Si square, while the surrounding area is vacuum, 1 cell thick. Note the wavefunctions “spilling” into the vacuum
especially at higher energy. In particular, note in the last frame how the highest-energy state exhibits tunneling into the
neighboring supercell, indicating that a thicker vacuum is necessary in order to “isolate” the wire
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Fig. 7.26 Positions of the Si and H atoms for circular cross-section [100] Si NWs with diameter of 1 nm (leff) and 2 nm
(right)

circular cross section. Note that when the diameter of the NW shrinks, the word “circular” becomes
ill-defined, since, ultimately, the wires are made of cubic cells.

For circular cross-section nanowires we have considered similar cells, but truncated on the cross-
sectional plane in order to obtain cross sections as circular as possible. Figure 7.26 shows the atomic
positions for H-terminated [100] Si NWs with diameters of 1 and 2 nm. The band structure, density
of states, and ballistic conductance for 1-to-2.5 nm Si nanowires are shown in Fig. 7.27. The squared
amplitudes of the wavefunctions of the lowest-energy conduction-band states for the 2 nm diameter
NW are illustrated in Fig. 7.28.

We have mentioned before the possibility, or even likelihood, that atoms may relax at the edges of
these structures. Figure 7.29 shows the positions of the Si atoms in a circular cross-section NW with
a diameter of 1 nm, as taken as the positions in the bulk, or by allowing them to relax, using DFT. The
differences in the resulting band structure are not dramatic, but these small differences may matter in
transport studies.

Note that in these small wires the ground state wavefunctions have polar symmetry (being
characterized by an angular momentum quantum number / = 0), but the first excited state has
quadrupole symmetry (/ = 2). This is due to the fact that the states at I" originate from a superposition
of states in the four ellipsoidal equi-energy surfaces with transverse and longitudinal masses along
the principal x and y directions. A smaller energy is thus obtained for states whose “lobes” probe the
larger longitudinal mass by extending along the positive and negative x and y directions, resulting in a
fourfold symmetry. On the contrary, the dipole-like (/ = 1) states result from states whose lobes probe
the smaller transverse mass, thus yielding a larger kinetic energy. Finally, the dependence of the band
gap as a function of nanowire diameter is shown in Fig. 7.30. The expected D~2-dependence is seen,
deviations at the smallest diameters being caused by the finite confinement potential.

7.3.2 Graphene Nanoribbons

Graphene, of course, has attracted so much interest because of its structural and electronic properties.
In particular its high carrier mobility has excited engineers, its Dirac-like dispersion, pseudospin,
and analogy with concepts derived from Quantum Field Theory have excited physicists. However, in
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Fig. 7.27 Band structure,
DOS, and ballistic
conductance for two
circular cross-section
H-terminated Si nanowires
with diameter of 1 nm (top)
and 2.5 nm (bottom)
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practical terms, the absence of a gap renders graphene unsuitable for (or, in any event, very hard to
apply to) nanoelectronics applications. Graphene nanoribbons, on the other hand, do possess a gap in
some of their many possible atomic arrangements. Therefore, we consider here two types of graphene
nanoribbons (GNRs): Those obtained by “cutting” a strip out of a graphene sheet with cuts along
“armchair” lines, resulting in GNRs with armchair edges (AGNRs), or along zigzag lines, obtaining
zigzag-edge GNRs (ZGNRs). So, looking at the top-left picture in Fig. 7.19, AGNRs are obtained by
cutting an infinite graphene sheet along two parallel lines along the vertical axis, while ZGNRs are
obtained with cuts along the direction of the primitive vector a;.

GNRs can be described by their chirality and their width characterized by the number N, of
atomic lines. For AGNRs, the dependence of the energy gap on their width follows three types of
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Fig. 7.28 Square
amplitude of the
wavefunctions of the 18
lowest-energy
conduction-band states for
the 2 nm diameter
H-terminated [100] Si NWs
of the previous figures. The
angular momentum
quantum number / indicates
the most significant
lowest-/ component of each
wavefunction
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Fig. 7.29 Atomic positions of Si atoms in a circular cross-section nanowire as taken from the bulk (fop left) and after
having relaxed the structure using DFT (top right). The two bottom frames show the band structure calculated using
empirical pseudopotentials and DFT before relaxation, and DFT on the fully relaxed structure. (Figures kindly provided
by Dr. Shela Aboud)

trends, depending on whether N, = 3p, 3p+ 1, or 3p + 2 [see Fig.7.31 for the geometry of such
an armchair (AGNR)]. Tight-binding calculations [29-31] and calculations based on the massless
Dirac equation [32, 33] predict E; 3, > Eg3p11 > Eg3p2 = 0, so 3p + 2-type GNRs are predicted
to be semimetallic. On the contrary, ab initio DFT (LDA and GW) calculations [34-36] predict
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E¢3pi1 > Eg3p > Eg3p12 # 0. Thus, all GNRs should be semiconducting, the difference between
tight-binding and ab initio results originating mainly, according to Son et al. [34], from the change of
the C—C bond length along the edges. However, as we shall see, the use of empirical pseudopotentials
results in the same ab-initio behavior without accounting for this effect, hinting, instead, at some
inherent inadequacy of the tight-binding method. The cause of this extremely interesting behavior of
the energy gap of AGNRs is intrinsically related to the aromatic properties of these chains. We shall
discuss it shortly.

It should be also noted that there is no experimental information about the band gap of AGNRs of a
given width. It is still almost impossible to control the width of GNRs down to a single atomic line. As
a result, experiments usually give information about the behavior of system of GNRs with different
widths, therefore washing out interesting “fluctuations.” At present, we must trust theoretical results.
On this note, we should note that calculation performed using the GW method we mentioned before
yields values for the band gaps that are much larger than those obtained using empirical pseudopoten-
tials or DFT. For example, one may compare the results reported in [34] with those given in [36].

The important point is that the empirical pseudopotential approach is able to reproduce the behavior
found using first-principle calculations even without accounting for the edge-bonds distortion. The use
of Kurokawa pseudopotential also accounts for the correct behavior of bare-edge states. The main
problems with these local pseudopotentials stem from their empirical non-self-consistent nature
leading to their inability to predict the correct semiconducting behavior of zigzag-edge nanoribbons.
In these ribbons, spin polarization plays a major role and accounting for this effect requires self-
consistent methods including exchange-correlation (actually, mainly exchange). In addition, and
possibly unrelated to this, is the problem that, when applied to carbon nanotubes, they predict an
excessively low energy of the m* singlet in CNTs of some chirality (as in the (r,0) CNTs with
n < 10 discussed below), in disagreement with first-principle results. We must wait for experimental
information before blaming DFT, GW, or empirical pseudopotentials.

7.3.2.1 Armchair-Edge GNRs

We have promised to revisit in some detail the extremely peculiar dependence of the band gap of
AGNRs on ribbon-width. A brilliant explanation has been given by Dr. Aboud in [3]. Here we quote
her verbatim.

However this feature, required from a practical perspective, exhibits a qualitative behavior significantly different
from the more customary particle-in-a-box situation in which the zero-point energy (and so the gap) increases
monotonically with increasing confinement. Instead, one observes the emergence of three families of AGNRs
characterized by the number of atomic layers N, along the width of the AGNR (see Fig.7.31), the energy gap
oscillating as N, takes the values 3p, 3p+ 1, or 3p+ 2, where p is an integer. This “peculiar” behavior is due to
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Fig. 7.31 Left: Projection on the (x,z) plane of the supercell used to treat an N, = 9 armchair-edges graphene
nanoribbon. The dashed lines define the supercell—including the 3 vacuum “cells” separating adjacent ribbons—while
the thick dots show the C atoms in the supercell, the thinner dots simply showing the periodically replicated structure of
the ribbon. Hydrogen terminations are shown as circles. A distance of 4v/3ag between planes has been assumed in the
calculations by defining a primitive translation vector of such a length along the direction perpendicular to the plane of
the ribbon. Right: Band structure and density of states for the bare-edge 9-AGNR illustrated at right. Results obtained
using Kurokawa (solid lines) and Mayer (dashed lines) pseudopotentials are shown. Note the bands associated with edge
states resulting from the edge-C dangling bonds. Here and in the following graphene ribbons are separated by Ny+/3a,
with Ny =4 (unlike the choice of N, = 3 made to sketch the ribbon in the left panel of this figure), along the plane of the
ribbon and by N, V3ag, with N, =3, along the direction perpendicular to the sheets. The energy has been set to zero at
the top of the valence band. (Reprinted with permission from M.V. Fischetti, J. Kim, S. Narayanan, Z.-Y. Ong, C. Sachs,
D.K. Ferry, and S.J. Aboud, J. Phys.: Cond. Matter vol. 25, 473202 (2013). Copyright 2013, Institute of Physics)
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the spatial distribution of the Clar resonance structures (i.e., Clar sextets) [37]. This is a well-characterized effect
in the chemistry community, most notably for explaining the behavior of poly-aromatic hydrocarbons [38], and
it has been recognized by Ezawa [30, 31] in the electronics community. We shall refer to this property as the
“claromatic” behavior (or “claromaticity”’) of AGNRs [39].

In simple terms, in aromatic compounds C atoms are bonded with sp*>-coordination, the remaining (p,) bonds
forming the 7 band. However, one alternative possible way to visualize the formation of the 7 band is to consider
these bonds resonating among different C atoms as in a benzene ring. In graphene and AGNRs we can draw the
hexagonal lattice and connect neighboring C atoms with double bonds wherever possible. In so doing, we obtain
a structure in which some of the hexagonal rings will have three double-bonded C atoms. These rings are labeled
‘Clar sextets’. Note that the presence of two adjacent Clar sextets is not allowed, as this would imply the presence
of C atoms with 5 bonds. In graphene, clearly there is no unique configuration (pattern) of Clar sextets: We can
consider many equivalent patterns, the structure resonating among all of these possible patterns, thus forming the
7 band. Each possible configuration of Clar sextets is called a ‘Kékule pattern’. In AGNRs, when the edge bonds
are terminated by a single H atom, the edge-rings will be necessarily Clar sextets because the terminating H atoms
force single edge-bonds. This will happen at both edges. Therefore, depending on the width of the ribbon, we may
have three possible cases: 1. two possible resonating Kékule patterns exist. The m-electrons will be delocalized
throughout the ribbon creating resonant paths in the center region of the ribbon, they will contribute to the binding
of the structure, and this will give rise to a large gap/ionization energy. 2. Only one resonant Kékule pattern is
possible. The r-electrons are localized at the edges of the ribbon leading to a less stable structure and a small gap.
3. Many possible Kékule patterns can be formed, some delocalizing and some localizing the electrons, yielding an
intermediate gap. These three different possibilities occur respectively for ribbons with width given by a number
of atomic lines N; = 3p 41 (two Kékule patterns), N, = 3p (one Kékule pattern), and N; = 3p 42 (many Kékule
patterns) giving rise to the band gap scaling Eg 3,11 > Eg3p > Eg3p42. If we terminate the edges with, say, Hp
instead, the opposite will happen, since the edge rings will be prevented from being Clar sextets by the double
terminating edge bonds and the appearance of Kékule patterns (claromaticity) as a function of ribbon-width
will be different. We note parenthetically that this behavior is absent in zigzag-edge GNRs (ZGNRs). Also, the
lack of a gap in these structures makes them less interesting for nanoelectronics applications; as a consequence
electron transport in ZGNRs has not been studied as extensively as in AGNRs and we shall ignore them here.
Nevertheless, a discussion of their [local empirical pseudopotential]-based band-structure is given below.

The Kékule patterns can be visualized through computationally generated Scanning Tunneling Microscope
(STM) images using the wavefunctions (which can be obtained from DFT or EP) through the Tersoff-Hamann
approximation [40, 41] of the STM current:

1(x,5,2,U) = 3 [%(6,,2) [ (B — En) —f (Eg + U — Ey)], (7.43)

where Er is the Fermi energy, U is the applied potential, and E, is the energy in band n corresponding to
the wavefunction ‘¥,. A plot of the calculated STM images from DFT simulations using the “Vienna Ab
Initio Simulation Package” (VASP) [42—44] is shown in Figs.7.32 and 7.33 for N, = 9, 10 and 11 AGNRs.
These VASP simulations have been performed using the projector-augmented wave method (PAW). Exchange-
correlation is represented with the revised Perdew-Burke-Ernzerhof (PBE) model of the generalized gradient
approximation (GGA). A plane wave cutoff of 550eV was applied with a I"-centered Monkhorst-Pack mesh
of 11x1x1 in k-space. A Methfessel-Paxton Gaussian smearing of order 1 with a width of 0.05 was used to
accelerate convergence. Geometric optimization was performed with the conjugate-gradient algorithm until the
absolute value of the forces was less than 0.3 eV/A. Optimization of the graphene unit cell resulted in a C—C
bond length of 1.426 A. The wavefunctions are sampled at a distance z = 0.2 nm above the AGNRs and a value
of eU = —0.5eV (which captures the highest two valence bands) was chosen for the applied potential energy.
In comparison, empirical tight binding (ETB) calculations [29-31] and calculations based on the Weyl (massless
Dirac) equation [32, 33] have found a different width-dependence compared to DFT and EP and predict
Eg3p > Eg3p11 > Eg3p0 = 0, 50 3p+2 GNRs are predicted to be semimetallic. This is due to the inability
of nearest-neighbours-only models to capture the basic physics of the resonant Clar structures, as noted by
Zhao et al. [45]. On the contrary, ab initio DFT (LDA and with GW corrections) calculations [34-36] also
predict Eg3,11 > Eg3, > Eg3p42 7# 0, which implies that all AGNRs are semiconducting. This reveals a
big shortcoming of ETB (in its nearest-neighbor implementation) compared to ab initio results. While Son
et al. [34] have emphasized the importance of the relaxation of the edge C—C bonds, we find that this is a
secondary contribution to the width-dependence of the AGNR band gap. Indeed we find the same ab initio
behavior ourselves even without accounting for this effect. Note also that the value of the calculated band gap
increases dramatically when performing GW calculations (compare the results of [34] with those of [36], for
example).”
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Fig. 7.32 Tllustration of the possible Clar resonances in graphene and armchair-edge graphene nanoribbons. (Figure
kindly provided by Dr. Shela Aboud)

NA=3p

Fig. 7.33 Illustration of the possible Clar resonances in armchair-edge graphene nanoribbons superimposed to DFT
calculations of the electron charge density in the highest-energy conduction band. Figures kindly provided by Dr. Shela
Aboud

After this rather long preamble about the band gap of ANGRs, we can discuss now how this
behavior is captured by empirical pseudopotentials. The supercell employed to treat an AGNR is
described by the primitive translation vectors in real space

a; = ((Ne +Ny)V3a0,0,0) ,  a = (0,N,v/3ap,0), a3 = (0,0,3ap) , (7.44)

where ag ~ 0.1422 nm is the “standard” C—C bond length and N. is the number of cells between the
edges (i.e., along the x direction). N, is related to the width parameter of the ribbon [34], N,, via
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N, = 2N, (for even N,) or N, = 2N, + 1 (for odd N,). Also, Ny is the number of cells separating the
ribbons along the x (transverse) direction, and N, is the number of cells of extension v/3a separating
the planes on which adjacent ribbons lie (in the “vertical” y direction). All results presented below
have been obtained using Ny = 4 and N, = 3. In each supercell there will be 4N, +2 (odd N,) or 4N,
(even N,) atoms. The four atoms in the cell adjacent to the “left” edge will have coordinates:

3 1 3 3
Tl = (03070) 9 1:2 =dap ({3072> ) T3 =4ao ({7012> 9 T4:Cl() (07072) . (745)

The remaining atom coordinates can be obtained by translating these coordinates N, — 1 times by an
amount jv/3ag (with j = 1, N, — 1) along the positive x direction:

Tyjr1 = Ti+jV3aok, Tao=To+jV3aok,

Tyjp3 = T3 +j V3aok, Tajira=Ta+jV3aok. (7.46)

For odd N, two more C atoms must be added at the “right” edge by translating atoms 1 and 4 in
Eq. (7.45) by an amount V3agN.:

T4N+1 = T1 +Ne V3 apX , Tan.4+2=Ts+Nc \@aofi . (7.47)

The dangling sp? o orbitals of the edge C atoms can be saturated by adding H atoms along the
direction of the missing C—C bonds assuming a C—H bond length equal to that of methane (CHy),
0.10919 nm.

The case of zigzag-edge C nanoribbons (ZGNRs) is similarly treated by defining the primitive
translation vectors:

a; = ((Ne +Ny) 3a0,0,0), ay=(0,N, ap,0), a3=(0,0,v/3ap), (7.48)

and the coordinates of the four atoms in the cell adjacent to the “left” edge:

V3 1
71 =4ao (anaz ; T2 =ag (27070> )

3 3
T3 = ag (2,0,0) C Ta=ap <2,07\2[> . (7.49)

The remaining atomic coordinates are obtained by replicating N. — 1 times the coordinates of the first
four C atoms by translating them by an amount j3ag (with j = 1,N. — 1) along the positive x direction:

Tair1 = T1 +j3ao% ,  Tajy2 = T2 +j3a0% ,

Taj+3 = T3 +j3aok ,  Tajya = T4 +j3aok . (7.50)

Termination of the edge-C dangling bonds can be done by adding two H atoms bonded to the first and
last C atom in the supercell.

Figure 7.31 (right) shows the band structure of a “bare” (as opposite to H-terminated) 9-AGNR.
Note that the use of the Mayer pseudopotentials yields a reasonable energy gap (when compared
to first-principle results [34]) and also a reasonable dispersion for the topmost valence band and
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lowest-energy conduction bands, while missing by definition other valence bands, several highest-
energy conduction bands, and also the well-known edge states which enter the m-7* gap. These
states are clearly noticeable in the results obtained by using the Kamakura pseudopotentials: These
pseudopotentials account for all bands, yield a reasonable gap at k = 0, as well as the edge states
which can be removed by H termination [46]. This is shown in Fig. 7.34. Note that using the Kurokawa
pseudopotentials, the gaps are in agreement with the first-principles, non-GW-corrected results of [34],
as shown in Fig.7.35. Only for the smallest-width ribbon (3-AGNR) the gap is noticeably smaller
than what obtained from first-principle calculations, presumably because of the growing importance
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Fig. 7.35 The three ladders of the band gap at k = 0 as a function of ribbon-width for armchair-edge graphene
nanoribbons. These results have been obtained using the Kurokawa’s pseudopotentials with H-terminated sp?> ¢ C
edge bonds and are in excellent qualitative agreement and good quantitative agreement with the non-GW-corrected
DFT+LDA calculation of Son et al. [34]. GW corrections yield much large gaps for the quasiparticle energy [36], while
tight-binding models predict qualitatively incorrect gaps and an incorrect ordering of the three ladders [34]
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Fig. 7.36 Atomic structure of polyparaphenylene (PPP). Note the similarity with a 3-AGNR from which it differs only
for the different C—C bond lengths (assumed there to be 0.1422 nm for all C—C bonds) and also for the C—H bond lengths
(assumed to be 0.10919 nm for the 3-AGNR)

of edge-bond distortion noticed by Son et al. [34]. It should be remarked that experiments [47] have
not confirmed this chirality dependence of the band gap. Querlioz and co-workers have attributed this
to disorder of the chirality (or, equivalently, line-edge roughness) [48]. Tseng et al. [49] have similarly
argued that the clustering of the gap around values corresponding to the largest 3p + 1 gap is the result
of line-edge roughness (LER or simply ER) which allows electron transmission only at the largest
“local” gap.

A structure similar to that of a 3-AGNR is given by the polyparaphenylene (PPP) chain, which
is identical to an H-terminated 3-AGNR, but with different C—C and C—H bond lengths, as seen in
Fig.7.36. Figure 7.37 shows the band structure, DOS, and ballistic conductance of PPP. As for the
case of the 3-AGNR, the energy gap obtained using the Kurokawa pseudopotentials (= 1.2eV) is
lower than what is measure experimentally [50] (= 2.4 eV), in agreement with LDA calculations [34].
It appears that the small gap is due to the appearance of an “additional” band in the gap, as it will be
discussed below when dealing with (7,0) nanotubes.
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7.3.2.2 Zigzag-Edge GNRs

In Fig. 7.38 we show the band structure of an N,=4 zigzag-edge graphene nanoribbon (4-ZGNR) and
of an 8-ZGNR obtained using the Mayer pseudopotentials with dangling bonds for the edge C atoms
and using the Kurokawa pseudopotentials with H-terminated C edge bonds. Note that in this case both
choices of pseudopotentials result in semimetallic behavior, the 7 and 7* bands overlapping slightly,
in agreement with the results obtained by Ezawa [31] (who, however, also predicts metallic behavior
for N, = 2p + 2 armchair nanoribbons) and with the LDA results by Pisani et al. [51] for mono-
hydrogenated non-magnetic nanoribbons. Although the shape of the bands appears qualitatively in
agreement with the LDA results of [36], the semimetallic behavior of this ZGNR emerges from the
fact that we have not accounted for spin polarization effects [52].

One can speculate about other possible shortcomings of the empirical pseudopotential approach.
The obvious first concern stems from a possible inaccuracy of the empirical C pseudopotentials
themselves. However, while Kurokawa’s C pseudopotentials were calibrated to the diamond structure,
the H pseudopotentials had been fit to the electronic structure of trans-polyacetylene, which resembles
very closely the hydrogenated edges of ZGNRs. The neglect of the spin—orbit interaction may
constitute another possible cause of concern. On the one hand, Kan and co-workers [53] have shown
that the ZGNR bands are not spin-degenerate. However, spin polarization of edge states is known
to emerge not from the spin—orbit interaction which is very small in C [54], but from another type
of interaction said to be Hubbard-like. We shall not delve into this issue here. There is more: Kan
et al. have also shown that ZGNRs may be metallic or semiconducting depending on the functional
groups (H, NH,, CH3, and NO») used to terminate the sp2 o orbitals of the edge C atoms. This would
point at some possibly wrong assumptions made in terminating these orbitals with the Kurokawa’s H
pseudopotential and assuming the CH4 C—H bond length. A final possible source of concerns may be
the distortion of the edge C—C bonds emphasized by Son et al. [34] or of the C—H edge bonds.

Despite these doubts and concerns, the overall picture that emerges from calculations based on
empirical pseudopotentials is qualitatively in agreement with more sophisticated approaches and
captures the essential physical ingredients, especially the Claromatic behavior of GNRs.
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7.3.3 Carbon Nanotubes

In the previous section, we have discussed two types of GNRs: Those with armchair edges and those
with zigzag edges. We had defined them, looking at the top-left picture in Fig.7.19, as obtained by
cutting an infinite graphene sheet along two parallel lines along the vertical axis (armchair) or along
direction of the primitive vector a; (zigzag). These are just two particular crystallographic directions.
In general, we can define a chiral vector

Cm,n =ma; +nap . (7.51)
If we denote the direction of the vector C,, , with (m,n), then zigzag direction corresponds to (n,0),

the armchair direction to (n,n). Figure 7.39 illustrates the geometry. Suppose now that we cut a ribbon
along the (n,0) direction and roll it so that the two armchair edges are brought together. This gives
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Fig. 7.39 The chiral directions (/eft) and a schematic representation of armchair, zigzag, and chiral CNTs

us a “tube” whose direction along the circumference of a cross section is zigzag. We call this an
(n,0) zigzag carbon nanotube, or (n,0) CNT. Similarly, cutting an (n,n) ribbon and rolling it over
to bring the two zigzag edges together, we obtain a tube with an armchair cross section, an (n,n)
CNT. This is illustrated in the right frame of Fig.7.39. CNTs can also be obtained by cutting along
arbitrary directions. In this case, the crystallographic lines appear to be twisted along the CNT, as
shown by the rightmost CNT in the figure. These CNTs are called chiral. The chirality of CNTs affects
enormously their electronic properties. We have seen that in GNRs the structure of the Clar resonances
causes zigzag-edge GNRs to be metallic, armchair-edge GNRs to be semiconducting. These properties
carry over to CNTs for exactly the same reasons, their claromaticity, just generalized to arbitrary
chiral directions m,n: CNTs are metallic if |n — m| is a multiple of 3, a different manifestation of
the oscillations of the band gap of AGNRs. Thus, all armchair CNTSs, (n,n), are metallic. After all,
they can be thought as a rolled-up ZGNR, which is metallic. Parenthetically, note the small size
of CNTs: Their diameter D is determined by the chirality via simple geometric considerations, as
D = (m*+n®+nm)'/?a/x, where a ~ 0.246 is the lattice constant of graphene.

We can finally perform the calculation of these interesting electronic properties of CNTs. The
atomic positions required as input to set-up the empirical pseudopotential Hamiltonian can be either
painfully calculated “by hand” or, more conveniently, using the on-line Java tool TubGen v3.3 [55].
Comparison can be made with the qualitative analysis by Ajiki and Ando [17], by Reich [18],
Gulseren [56], Sharma [57], and Miyake and Saito [58, 59] for the diameter dependence of zigzag
semiconducting nanotubes, and by Mayer [21] and Khoshnevisan [19] for the band structure of (5,5)
and (10,0) CNTs. Figure 7.40 shows the position of the C atoms in a (5,5) armchair nanotube and
in a (13,0) zigzag CNT, while in Fig. 7.41 we show the band structure and density of states for these
CNTs. These data have been obtained using a supercell with square cross section of sides 1 and
1.4 nm long for the (5,5) and (13,0) CNTs and both the Kurokawa and Mayer pseudopotentials with
a cutoff energy of 15 Ry. (The use of a larger cutoff, 25 Ry, does not show appreciable effects on
the calculated band structure, as far as the few bands close to the Fermi level are concerned.) Results
using a real-space approach [60] are also shown in the case of the (5,5) nanotube. The small difference
obtained by using real-space or k-space methods can be attributed to the truncation at high spatial
frequencies (large G-vectors) by the latter more than by the proximity of the “neighbor” nanotube
implied by the supercell periodicity. Indeed, increasing the size of the supercell beyond twice the
diameter of the nanotube does not cause any appreciable difference in the results of the supercell
k-space method, as shown in Fig.7.42. In all cases the Mayer pseudopotentials yield the correct
behavior of the 7w and m* bands near the Fermi level, but miss by construction the deeper 2s and
2p valence states as well as many additional higher-energy states. By contrast, the pseudopotentials
proposed by Kurokawa yield results much closer to ab initio results in the cases of (5,5) and large-
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Fig. 7.40 Positions of the C atoms in an armchair (5,5) (left) and in a zigzag (13,0) (right) CNT

diameter (n,0) CNTs. However, in the latter cases [see, for example, the case of (10,0) nanotubes
shown in Fig. 7.42] the ©* singlet is pushed within the m-7* doublet gap resulting in an energy gap
at I' much lower than expected from ab initio calculations [18, 56]. Blase [61] and later Gulseren
et al. [56] have attributed this to 6" — n* hybridization due to the high curvature of small-radius
CNTs, an effect which seems to be overestimated by the Kurokawa pseudopotentials (see the ¢*
and 7* singlet bands for graphene already mentioned as responsible for this effect in the caption of
Fig.7.19). First-principles calculations predict metallic behavior for all (n,0) CNTs for n < 6, the
Kurokawa empirical pseudopotentials predict this behavior for n < 9, while employing the Mayer
one-electron pseudopotentials results in metallic behavior only for n = 3p (p = integer) for any n,
since these pseudopotentials do not account for the ¢* and 7* singlet bands.

Looking at Fig. 7.43 we should also note that for zigzag nanotubes with a diameter smaller than
about 2 nm (that is, for (rn,0) CNTs with n < 5), the Kurokawa pseudopotentials fail quite dramatically,
always yielding semimetallic behavior and unexpected dispersion.

Once more, we should spend a few words of caution regarding the “correctness” (or lack
thereof) of results obtained using the Mayer or Kurokawa pseudopotentials. We have compared
these results with “first-principles” calculations (usually DFT+LDA and the occasional GGA or
GW correction) [18, 19, 56]. The energy gaps and dispersion found in these papers are not always
consistent among themselves. For example, the MP3 (Quantum Chemistry) approach followed by
Bulusheva et al. [62] yields significantly different gaps, while the quality of experimental data on the
gap dependence on tube diameter, all of them from the same Harvard group [63—65], is hard to assess,
given the daunting practical difficulty of isolating CNTs of the same chirality (and, so, diameter).
Also, the small density of states associated with the m*-singlet band could render it hard to detect
optically and electrically.

Finally, Figs. 7.44 and 7.45 show the contour plots of the squared amplitude of the wavefunctions
of the three lowest-energy and three highest-energy conduction- and valence-band states for the (5,5)
and (13,0) nanotubes, respectively.
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Fig. 7.41 Band structure and density of states (DOS) of the metallic armchair (5,5) CNT (left) and of the semiconduct-
ing (13,0) zigzag CNT (right). The energy has been set to zero at mid-gap or band crossing, which is approximately
equal to the Fermi level. The dispersion has been obtained using the “bulk C” local empirical pseudopotentials of
Kurokawa et al. [20] (solid lines), and those of Mayer [21] (dashed lines), which should provide better results since
they have been calibrated to graphene. However, the value of the band gap obtained using Kurokawa’s pseudopotentials
(0.574 eV) agrees with the values obtained using LDA [57] and CGA [56] (yielding, respectively, 0.669 and 0.625¢eV)
much better than the result (0.817 eV) obtained using Mayer’s pseudopotentials. For the (5,5) CNT results obtained by
Zhang and Polizzi [60] using a real-space approach with Mayer’s pseudopotentials are also shown (circles). [Used from
M.V. Fischetti, Bo Fu, S. Narayanan, and J. Kim, in Nano-Electronic Devices: Semiclassical and Quantum Transport
Modeling, Dragica Vasileska and Stephen M. Goodnick eds. (Springer, New York, 2011), pp. 183-247, with kind
permission from Springer Science+Business Media]
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Fig. 7.42 Band structure and density of states (DOS) of the semiconducting (10,0) zigzag CNT obtained, as in Fig. 7.41,
using the “bulk C” local empirical pseudopotentials of Kurokawa et al. [20] (solid lines), and those of Mayer [21]
(dashed lines). The energy has been set to zero at mid-gap or band crossing, which is approximately equal to the Fermi
level. These results are obtained using a supercell with square cross section of 1.2nm. The use of a slightly larger
supercell (1.5 nm) yields very similar results, with the bands shifting by no more than 20 meV, as shown in the bottom
frames. Note that the value of the band gap obtained using Kurokawa’s pseudopotentials (0.1443 eV) is significantly
smaller than the values obtained using LDA [57] and GGA [56] (0.764 eV in both cases) because of the presence
of the m* singlet band (shown by a red dotted line) which the choice of Kurokawa pseudopotentials pushes to low
energies inside the 7-7* doublet gap. However, the magnitude of the m-7* doublet gap (0.8695 eV) is much closer to
the expected value. Results obtained using Mayer’s pseudopotentials yield a much larger gap, 1.0141eV. [Used from
M.V. Fischetti, Bo Fu, S. Narayanan, and J. Kim, in Nano-Electronic Devices: Semiclassical and Quantum Transport
Modeling, Dragica Vasileska and Stephen M. Goodnick eds. (Springer, New York, 2011), pp. 183-247, with kind
permission from Springer Science+Business Media]
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Fig. 7.43 Top: Maximum (minimum) energy of the conduction 7*-bands (valence m-bands) as a function of diameter
of (n,0) CNTs obtained using the Kurokawa pseudopotentials. Note the quasi-periodic oscillations of the & — * gap as
n varies between 3p (with p an integer), corresponding to a very small gap which would vanish in absence of curvature
effects, 3p+2 and 3p + 1, the latter case yielding the largest gap in analogy with the situation observed for graphene
nanoribbons in Fig.7.35. Note, however, that the hybridization of the ¢* and ©* orbitals caused by the increasing
curvature of the CNTs at small diameters pushes the energy of the 7*-singlet states within the 7 — 7* gap for n smaller
than about 15 and ultimately closes the gap for n < 10. First-principle results predict this “gap closing” for n < 7,
instead [56]. Results for n < 5 are suspect because of the very large curvature effects which have to be treated using
first-principle methods. Bottom: As in the top frame, but showing results obtained using the Mayer pseudopotentials.
Note the correct periodic oscillations of the gap with chiral number n with period 3. However, the inability of the Mayer
pseudopotentials to yield the singlet 7* and ¢* bands results in the prediction of semiconducting behavior also for
small-diameter nanotubes, notably, the (4,0) and (5,0) CNTs. [Used from M.V. Fischetti, Bo Fu, S. Narayanan, and
J. Kim, in Nano-Electronic Devices: Semiclassical and Quantum Transport Modeling, Dragica Vasileska and Stephen
M. Goodnick eds. (Springer, New York, 2011), pp. 183-247, with kind permission from Springer Science+Business
Media]
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Chapter 8
Single-Electron Dynamics in Crystals

8.1 Equations of Motion for Electrons in Crystals

Having discussed the rather complicated band structure of semiconductors and nanostructures, we
must now consider how single electrons will behave in these complicated energy bands under the
action of an external force.

We shall first consider a remarkable simplification of the very complicated Schrodinger equation
which results from adding a potential y(ext) (r,1) to the lattice potential itself. Under some restrictive
conditions, we shall obtain an equation very similar to the Schrodinger equation for an electron in
free space, the major modification being the dispersion (described often by an effective mass) and
the meaning of the “wavefunction” itself, which will now be the “envelope” of the periodic Bloch
part. This is the so-called envelope or effective mass approximation that has been originally derived
by Luttinger and Kohn [1]. We shall then consider what are known as the acceleration and Feynman
theorems, which will allow us to treat the electron moving under an external field E with equations
similar to those valid for electrons in free space.

8.1.1 The Envelope Approximation

From Bloch’s theorem, we know that the general solution of the Schrodinger equation in the lattice is
labeled by a wavevector k and a band index » and has the Bloch form:

L e () Ik (n)  _iG-
II/nk(r):me Ty (r):me r%“ukﬂ;e T (8.1)

Consider now adding an external potential ylext) (r) to the lattice potential. We assume that the external
potential is weak enough so that it does not cause transitions to other bands, so that we may consider
only one band, labeled by m, with dispersion E,, (k). We also assume that this weak potential does not
cause changes of the Bloch component ul((m) (r)=Y¢ u:("jr)c ¢'6'T. Under these assumptions we wish
to show that the wavefunction in a small-enough neighborhood of k( can be approximated by:

Y1) = 0(r) 1" (1) = 6(r) Y 1) €67
G

© Springer International Publishing Switzerland 2016 163
M. Fischetti, W.G. Vandenberghe, Advanced Physics of Electron Transport in Semiconductors
and Nanostructures, Graduate Texts in Physics, DOI 10.1007/978-3-319-01101-1_8



164 8 Single-Electron Dynamics in Crystals

and the “envelope” ¢ (r) satisfies the wave equation:

[Ep(=iV) +eVE(r)] o(r) =E ¢(r) . (8.2)

Let’s prove this statement.
The full Schrodinger equation including explicitly the lattice potential is

2
—;—mw + VI (p) 4 VED (£) | y(r) = E y(r) . (8.3)

Let’s expand the full wavefunction y into a series of Bloch functions (8.1) as follows:
1 ik- iG-
r)= Zk ek Yu(r) = 577 chnk e % W) 6T (8.4)

Since each Bloch function y,x is an eigenvector of the Eq.(8.3) when viext=q, inserting the
expansion (8.4) into Eq. (8.3) we get

z |:Enk Cnk Wnk(r) + V<eXt)( ) Cnk lIfnk ] E z Cnk lI/nk ) (8.5)
nk nk

Now let’s multiply both sides of this equation by y~,, and integrate over the entire volume. Note that:

i(k+G—K—G).
an / Vo (T) Wik (T o) 2 Z Cnk ”k'+c' ”k+)G / ei(kt T dr
k

n, nk G,G/

and the integral on the right hand side will be nonzero only if k — k' + G — G’ = 0. If we restrict k
and K’ within the first BZ (which we can always do, from the definition (8.1) of Bloch waves), this
condition can be met only when k —k’ = 0 and G — G’ = 0 separately. Thus the expression above
becomes

2 Cuk Z ’+G/ uk/+G/ Z Cnk! Bum = Conke (8.6)
n G

since Bloch waves in different bands at the same k-point are eigenvectors with different eigenvalues
and so are orthogonal. Using Eq. (8.6), we obtain from Eq. (8.5) (switching the roles of k and k'):

Enk ka+zc"k/ /mek eXt)( ) Wk (r) = E ik - (8.7
nk/

So far we have simply recast the original Schrédinger equation (8.3) into a matrix form, but we have
accomplished nothing. Let’s now consider the matrix element of the external potential,

(mk| VO k') = / Wi (1) VO (1) g (r) dr . (8.8)
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Let’s write the potential in terms of its Fourier components:

CXt z V (ext) 1q r , (89)

and insert this into Eq. (8.8):

1

(mk|VE |k = > vy / “(r) ) (r) e KO g (8.10)
q

Now express the integration over the entire volume €2 into the sum of integrations over cells / by
writing r = Ry + p:

1 .
<mk‘v(ext)|nk/> _ 5 z V((lext) z e—1(k —k—q)-R;
q 1
. /Q " (p) ) (p) e 1K KFWP gp ®.11)
The term ¥, e~ ~k~0R: ]| be nonzero only when k' —k — q = G”, where G” is some vector of

the reciprocal lattice, while the integrals of the Bloch components over the cell volume 2. will be
equal in all cells. Therefore:

(mk]|V(]nk’) = %MBW®HQLmeMwW@
aG" e
=2 g lc /Q u"" () uly) (1) e 7€ P dp (8.12)
since 2 = Q:Ncepis. Now notice that, looking at Eq. (8.1), “1(2 e (p)e’iG”"’ = u&)q(p). Therefore:
(mk|VE Ky = 3 v ¢ 5 / p) ull (p) dp . (8.13)

G//

This new form of the matrix element (8.8) now allows us to make two additional approximations to
further simplify the problem.

1. If the external potential is varying slowly enough to have nonzero Fourier components V only for

small values of ¢, we can retain only the term with G”=0 above, that is, V(w) .

2. Let’s assume that the wave packet we have considered originally, Eq. (8. 4) is a spatially broad
packet (that is, extending over several lattice cells), so it is narrow in k-space, and only a small
range of k-vectors centered around a value Ky is involved.

3. Since only small values of ¢ = |k — k'| are retained thanks to assumption 1 above, if we assume

that the Bloch components do not vary too quickly with k, then it reasonable to assume also that

w4 (p) ~ " (p) and

Lo eyl prdp = [ i (p) ) (p) dp ~ @ 8

as one can see following the same procedure followed to arrive at Eq. (8.6).
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Then, finally:
(mK| V) 1K'y & Vig_ic Sn - (8.14)
Our starting Schrodinger equation (8.7) in matrix form now has the simpler appearance:

Eni cmk+2v o e = E c (8.15)

which shows that the potential is weak enough to prevent interband transitions. We are thus able to
restrict Eq. (8.3) to a single band.
Let’s now define the envelope wavefunction in band m via:

1 .
o(r)=——= Y cuc e, (8.16)

that is, the same expression we used to define the full, “exact” wavefunction given by Eq.(8.4),
but having replaced the Bloch functions v with plane waves e!*™. Thus, from the definition (8.4),
recalling that only a few k-vectors around kg are involved

1 ik-r m —iGr
v = 5 Zkae“ Zu.iﬁce ¢

~ ik-r —1G<r
~ 91/2 Z Cmk © Z ”k0+c

o(r) " (r) | (8.17)

which is the same expression for a Bloch wave with the envelope ¢(r) replacing the plane-wave
modulation e*T. Thus, in the presence of a weakly varying external potential, the function ¢
“modulates” the periodic component ulirg), much like plane waves modulate them in the absence of
a perturbation. The analogy with free electrons is immediate: A plane wave is the solution in the
absence of any potential, the wavefunction ¢ is the solution in the presence of the potential. In a
lattice, eik'rul({';') is the solution in the presence of the lattice potential only, ¢(r)ul({';l) is the solution
in the presence of an additional potential. Indeed, it is easy to see now that the envelope ¢ obeys the

equation:

[En(—iV) + VY (r)] ¢(r) =E ¢(r) , (8.18)

where E,, (k) is the dispersion in band m. This can be easily proved by inserting Eq. (8.17) into (8.18)
and reaching Eq. (8.15).

Equation (8.18) is known under many names. When we use the effective mass concept and
approximate E(k) ~ 1*k*/(2m*), Eq. (8.18) becomes

" g2 v m) om = o) (8.19)

2 *

which is identical to the Schrodinger equation. Therefore, it takes the name of “effective mass”
equation (or approximation). Probably, in its more general form, it should take the name of “envelope”
wave equation. It was first derived by Slater and by Kohn and Luttinger, and it is sometimes called the
Kohn—Luttinger equation.
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8.1.2 Effective Mass

We have already introduced the concept of “effective mass” before, dealing with the k - p perturbation
theory [see Eq. (5.44)]. The usefulness of this concept can be understood as follows. Semiconductors
are characterized by full valence bands, empty conduction bands, and a relatively small energy gap
between the valence and conduction bands. “Doping” results in the introduction of excess electrons
occupying the bottom of the conduction band, or the elimination of some electrons from the valence
bands (which is viewed as the introduction of holes occupying the top of the valence band). Thus, the
“action” happens at the top of the valence band and/or at the bottom of the conduction band. At these
extrema of the bands we can expand the dispersion as:

E() = E(ko) + 5 (k — ko) - VRE(K) [, (ko) -

(the first-order term in VE vanishes since we are at an extremum of the band). Thus, replacing the
“momentum” (measured from the band extremum Kg)

k—ko— —iV

thanks to the envelope approximation, we have

E(-iV) = E(ko) + 1(—iV) -ViE(K) ’ko (—iV)+

Jd d

= Eko) “Zakak b T an

(8.20)

Let’s now set E(kg) = 0 by a suitable choice of the reference energy and let’s measure k from k.
Let’s ignore higher-order terms in the expansion above. Let’s define the inverse “effective mass”
tensor 1/my; via:

1 1 JE

my i Okidk; i
Then

n2kik;
2ml.*j

E(K) ~ z

and the envelope wave equation, Eq. (8.18), becomes

oo 9 (ext)
*Z%ETXJ,JFEV (r)| w(r)=Ewy(r),
ij i

which, as we have already noticed, looks like a “conventional” Schrédinger equation.

For GaAs, the effective mass in the CB is actually a scalar (since the first CB is formed by s-type
orbitals), m* ~ 0.063 myg. For Si, the first CB has ellipsoidal equi-energy surfaces, so that the effective
mass tensor is diagonal along the [100] crystal direction:
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my, 0 0
m= 0 mp O ,
0 0 mr

where mp, =~ 0.91 my and mt ~ 0.19 my.

8.1.3 Group Velocity and Acceleration Theorems

We have established so far that—under the approximations listed on pages 163—166 and with the
expansion (8.20)—we can eliminate the complicated periodic potential V(2 from our problem,
“hide” the periodic Bloch component ul({m) (with the aforementioned exceptions which we shall
encounter) and work only with the envelope wavefunction ¢, solution of a quasi-free Schrodinger
equation in the presence of the weakly varying external potential V(X! In other words, we can treat
electrons as they were in free space, not in the crystal, provided we replace their mass. How far can we
extend the analogy? Are we also able to describe the motion of the electron wavepacket (8.4) as if we
were in free space? In particular, how does the electron momentum evolve with time in the presence
of an external electric field? And how does the electron velocity evolve?

We shall answer these questions “rigorously” below. But, first, let’s give a compact intuitive
answer: We know from the “correspondence principle” of Quantum Mechanics that the center of
motion of a wave packet can be obtained from classical mechanics by considering the quantum
Hamiltonian and rendering it “classical” by replacing —iAV with the momentum %k. Thus, we can
consider the equivalent classical Hamiltonian stemming from Eq. (8.18):

Ha(p,r) = E(p/h) +V(x).

Then, from the Hamilton equations of motion (see page 7) and recall that p = 7ik):

dr 1
=YV E(p/h) = - VLE(k
v= T = VE(p/n) = 1 ViEK),

and
dk  Tdp  1_ F e
_——= = — = —— :—:—7E
@ ha - RV m=g=—7E,

where F is the (conservative) force from the potential V and E is the electric field.

This shows that the electron velocity is simply the group velocity of a packet, as for electromagnetic
waves with dispersion @(k) = E(k)/A and the electron “crystal momentum” 7k (which is not the
“real momentum” since adding any G-vector to it does not alter anything, simply shifting the electron
to another equivalent BZ) evolves with time as if it were the “real” momentum. Clearly, this nice
picture must be justified more rigorously, since the assumption that we can use the equivalent classical
Hamiltonian H is, so far, unjustified.

We shall now prove the following two “acceleration theorems”:

Theorem 1. If a spatially and temporally constant electric field E is applied to the crystal, then

dk e
—=——E 8.21
i ZE (8.21)

and the electron remains in the same band.
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Theorem 2. If (v) is the expectation value of the electron velocity in a state |nk), then:
PO
(v) = Z ([H,1]) = 7 VkE, (k) , (8.22)

in the absence of magnetic fields.
Consider first Theorem 2, since its validity will be used to prove Theorem 1.

Proof of Theorem 2. Consider the matrix element

(nk|[H, £]|nk) = / ! () *T (7,1 ul" (r)e™T dr . (8.23)
Now,
Vk(e—ikl‘ I/_} eik~l‘ ) — 71 e—ik-l’ r I/_} eikl‘ +1 e—ikl‘ H r eik‘l‘ — 1 e—ik-l’ [ﬁ,r] eik~l‘ . (824)

Now note that
H(p,r) e*" =c*T H(p+k,r).
Thus:
(k| [H, §]|nK) = —i / W (1) Vigle *T B &%) 4 (1) dr

— / W (6) Vi (p + k. 1)) il (x) dr (8.25)

Now we use what’s known as the Feynman or Hellmann—Feynman theorem: If the Hamiltonian H
depends on a parameter A, then:

~

d ~ JH
5 (nk|H|nk) = <nk 57

nk> . (8.26)

Thus Eq. (8.25) becomes —iVkE, (k) and we get the final result:

i

(V) = 1 (k| AL Fllnk) = £ Vi (k) (8:27)

Proof of Theorem 1. If the external force due to the field is —¢E, the rate at which the electron energy
(call it W to avoid confusion with the magnitude E of the electric field) will be

dw e
o= —¢E- (V) =—2E - ViE(K). (8.28)

Since E, (k) does not depend on time, being the dispersion of the crystal, any time dependence of the
electron energy must be associated with the time variation of k. Thus we must also have

dw  dk
o= VEa(k) (8.29)
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So, from Egs. (8.28) and (8.29):

dk e
—=——E 8.30
a 7 (8.30)
or, writing F = —¢E for the force,
d(7k)
=F. 8.31
ar (8.31)

This result may be derived more rigorously using time-dependent perturbation theory using —¢E - r as
perturbing Hamiltonian (see Ridley’s text [2], pages 48 and 49 or Kittel’s book [3]) or expressing the
electric field in terms of a vector potential and “Houston accelerated waves” (See Kittel’s book again,
same chapter).

* Let’s reproduce here Kittel’s first proof- When using perturbation theory, it would be tempting to
account for the presence of the electric field via a scalar potential ¢ = —er -F. But the fact that this
potential is unbound would create some mathematical problems. Instead, let’s express the electric
field in terms of a vector potential

A=-Et, (8.32)

which yields the electric field via the general expression:

oA
E=-V¢p— —. 8.33
0-, (8.33)
Then the Hamiltonian can be written as:
g_ L 2yl - L 2y ylay
H= . (p+eA) + Vi (r) = - (p+eEr)”+ Vi (r) . (8.34)

In writing Eq. (8.34) we have employed what is known as the minimal coupling: In the presence
of an electromagnetic field, the Schrodinger equation for a single electron can be written by simply
replacing the momentum operator p with p+ eA. This ultimately originates from considerations based
on the theory of special relativity, as briefly discussed in Appendix C.

The Hamiltonian given by Eq. (8.34) retains the periodicity of the lattice, thanks to the fact that we
have used the vector potential. Therefore, the solutions must have the Bloch form

o (r,E,1) = e*" 1" (r,E,1) , (8.35)
where t should be viewed as a parameter. Note that in this formulation k remains a good quantum
number, unaffected by the field (this is indeed the scheme often used in the context of “accelerated”

or “Houston” waves). Now notice that the kinetic energy term in the Hamiltonian acting on such a

Bloch wave will be (p+ eEt +1k)?/(2m). If we now compare the kinetic energy terms for the two

Bloch waves ul((n) (r,E,t) and ul((lf) (r,E,7), we see that the Hamiltonians will be equal only if

eEt + ik = eEf + 1K' | (8.36)

or

&K__°g (8.37)
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so that states at K, t are identical to those atK','. Thus, an electron which is in the state k at t=0, at a
later time t will still be in the same state K, but all of its other properties, including its kinetic energy,
will be those corresponding to the state which was originally k —Et/h.

Finally, an “adiabatic” argument due to Kohn and Shockley shows that the electron remains in the
same band if the change of the Hamiltonian during a period 1/ @y, (Where h®,y, = E,(K) — E;y(K) is
the “interband” energy) is smaller than iy, itself,

oH 1
Jt (O

<< hoym , (8.38)

condition which is met very easily. Note, however, that interband tunneling is the most notable
exception to this “rule.”

For electrons in nondegenerate bands the result (8.30) may be generalized to the case of weak
magnetic fields B:

dk e
Pl h(E+V><B). (8.39)

Recall that we have called “crystal momentum” the quantity %k. It is the momentum associated
with the envelope, ignoring the (much larger) momentum associated with the cell-periodic Bloch
component uy. If we assume parabolic bands, E(k) = #%k?/(2m*), we will have v(k) = hik/m"*, or
nk = m*v (having indicated simply with v the group velocity. The total momentum, instead, will be
p = mv, so that the ratio between the crystal and total momentum will simply be m* /m.

Note that for holes the picture is the same: The top of the VB has a “negative” effective mass.
However, talking about “missing electrons” (“holes”) is more convenient and this is accomplished by
considering these fictitious particles as positively charged (that is, moving in the opposite directions
as electrons under an external field), and by “flipping” all signs in the equations of motion, thus
recovering a positive mass. Unfortunately, the structure of the valence bands is more complicated: The
parabolic approximation breaks down very early, the effective mass is highly anisotropic, and three
bands are energetically very close (degenerate at the center of the BZ, spin—orbit coupling reducing
the degeneracy to two bands). Thus, one needs to consider always at two bands (the so-called heavy
and light hole bands), often three (the “split-off” band).

8.2 Some Important Applications

We now discuss several important applications of the simplified description of the electron dynamics
we have just outlined.

8.2.1 The Two-Dimensional Electron Gas

Chapter 7 has discussed in detail the band structure of low-dimensionality structures. Sections 7.2.1
and 7.2.2, in particular, have dealt with thin layers of Si and III-V compound semiconductors also in
the presence of a confining vertical field. The envelope approximation we have just considered actually
permits vastly simpler calculations if we are content with limiting our attention to low-energy states
(that is, electronic states whose energy is only a few thermal energies, kg T, away from the minimum of
the conduction band or the maximum of the valence band(s)). This is an interesting range of energies,
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since electronic transport in semiconductor structures involves, usually, only electrons or holes close
to equilibrium, so with a small kinetic energy.

Consider, for example, a III-V hetero-structure like the complicated multi-layer shown in Fig. 7.12.
If we are interested only in low-energy states, it is enough to consider the InGaAs layer. Indeed, in any
device (transistor or injection laser) based on such a structure, these low-energy states will be the most
occupied and considering only the active role of this layer will provide a sufficient physical picture in
most cases. If the potential barriers (the conduction band offset) confining the electrons in this layer
are sufficiently larger than the electron energies of interest, we can approximate the InGaAs quantum
well (QW) with the prototypical “box” of elementary texts of Quantum Mechanics, assuming infinite
potential “walls” at both sides.

Now, consider Eq. (8.18). The minimum of the conduction band of InGaAs occurs at the I" point.
The high symmetry of this point implies that, at low energies, a single isotropic, effective mass m* will
suffice to approximate the electron dispersion. Therefore, in the form given by Eq. (8.19), and having
separated the variables in the usual way, the envelope equation Eq. (8.18) describes free electrons
moving on the plane of the interfaces (the 2DEG indeed) using a one-dimensional Schrédinger
equation for a free electron in a “box,” (the only difference being a smaller mass, m*). This causes the
quantum confinement that we had painfully obtained in Sect.7.2.2. In the limited range of validity
implied by the validity Eq.(8.18) and of the approximations we have just made to simplify the
hetero-structure, the problem has been converted from a numerically laborious supercell/empirical
pseudopotential problem to the solution of the Schrodinger equation for an electron in a box, an easy
homework problem for an undergraduate course of Quantum Mechanics.

Indeed, this simple approach has guided the development of electronic devices based on III-
V hetero-structures. Clearly, subtle problems abound: How do we match the wavefunctions at the
interfaces between different materials (say, between InGaAs and InP in our case), if we wish
to account for the finite height of the confining barriers? How do we account for nonparabolic
corrections, extremely strong in small-mass, small-gap semiconductors, if the well is very narrow
and even the ground state is at an energy high enough to require nonparabolic corrections? The
literature on the subject is extremely vast. Ultimately, for the very narrow nanostructures of current
interest, accurate “atomistic” calculations based on empirical pseudopotentials or tight-binding should
guide our study. But Eq. (8.18) is a tool that can be used to obtain qualitatively (and, sometimes,
quantitatively) correct information with little effort.

Another important example has been considered in Sect.7.2.1: The case of electrons in a Si
inversion layer. As shown in Fig. 8.1, the potential energy at the Si-SiO, interface in a MOSFET
exhibits a “notch.” If we consider the wavelength of an electron at equilibrium (called its “thermal
wavelength”), this is given by the de Broglie relation Ay, = h/py, = 27 /ky, where py, = Tiky, is the
average momentum of electrons at thermal equilibrium. For the average carrier energy at thermal
equilibrium we have Ey, = (3/2)kgT = 1°k3, /(2m*), so that, at 300K,

2rh mg 1/2

Consider the Si—SiO; interface in inversion/strong inversion. The electron density ng (the “sheet
density” per unit area) is of the order of 10''-to-10'3 cm™2, corresponding to an interface field
Fs = eng /e of the order of 10*-to-10° V/cm as it can be easily derived from Gauss law. Thus, an
electron of thermal energy ((3/2)kpT =~ 40 meV) will be “squeezed” by the field against the interface
over a confining distance Az = 3kgT/(2F5), very much like the particle in a box considered a few
paragraphs above. This distance is of the order of 40-to-0.4 nm, comparable or even smaller than the
electron thermal wavelength. We are not allowed to ignore the wave-like nature of electrons when
we confine them so tightly: We expect that discrete energy levels will emerge from the confinement.
If we confine a particle in a region of width Az, by Heisenberg’s principle the particle momentum
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Fig. 8.1 Top: Self-consistent potential energy (black solid line) and electron wavefunctions §, (z) (color lines; solid for
the “unprimed ladder,” dashed for the “primed” ladder) for the three lowest-energy eigenstates in a Si inversion layer.
The electron sheet density is 6 x 10'2 cm~2. Middle: An enlarged version of the plot at the top. Bottom: Comparison of
the electron density distribution calculated classically (that is, ignoring quantization) and quantum mechanically

will suffer an uncertainty Ak ~ 1/Az, so that the confined particle will have a minimum energy
Eo ~ W2 AK? ) (2m*) ~ 12 / (2Az2m*), called the “zero-point energy.” In strong inversion this energy may
be comparable to (or even larger than) the thermal energy, and quantum effects due to the confinement

should not be ignored. The major changes to the classical picture that these quantum-mechanical
correction provides are

1. The electron charge in inversion layers is removed somewhat (typically by a length At of the order
of 1.0 nm) from the interface. This causes a reduction of the gate capacitance in accumulation, Coy,
since the “effective” thickness of the oxide is increased by the amount € /€s;At.

2. The threshold voltage shifts to higher values, since we must move the Fermi level in the inversion
layer to an energy higher by an amount ~ Ej (the “zero-point” energy mentioned above).

3. The properties of electron transport (and so, in particular, the electron mobility) are modified, since
both the “shape” of the wavefunctions and the density of states are modified.

* The rigorous treatment of this problem is somewhat laborious, since it requires the solution of
a coupled, nonlinear problem that requires an iterative approach. It is convenient to proceeds as
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follows: The envelope equation, Eq. (8.18), contains an external potential energy term, V(em(r) =
—e¢(©V (9XV s the electrostatic potential), which must be obtained from a solution of Poisson
equation

V- [eVVE(r)] = &2 [p(r) — Na(r) —n(r)] (8.41)

where Nya, n, and p are the volume densities of the acceptors (p-type doping) impurities, and of the
free electrons, and holes, respectively. The acceptor density is assumed as constant, whereas p can be
treated using a classical model. We review it here for convenience.

p=gs ()" [ am e ek

o2 \ 2

1 (2mkgT\Y? 2 = X2
_ L (zm ksl 47/ S (8.42)
4 h? Vi Jo 1+4e

where to reach the last expression we have changed the integration variable to x = E/(kgT), we
have set 1 = Eg/(kgT). Also, my, is some approximation for the hole effective mass, Er is the Fermi
level measured from the top of the valence band (so Eg(x) = V(x) — Egap) and we have multiplied
and divided by 2/+/T to recover the expression for the pre-factor usually employed in the literature,
labeled Ny below, the “effective density of states” in the valence band. This integral cannot be solved
in closed form, but it is a well-known integral (appropriately called Fermi—Dirac integral of order 1/2
and labeled by 7, /2(11) ). So, the hole density is usually written in terms of this integral as:

1 (2mpkgT
4

3/2
p=1 (P2) " Fan =N Fan). 343

having defined Ny = (1/4)[(2mukpT)/(7h?))*/2. In the limit of nondegenerate statistics (which we
can assume here for Ny < 10'8cm™3 or s0), 1 is very large and negative so that:

2 o xl/Z 2 oo |
~ — /2 n—x = n
\/ﬁ/o 1+eX*”dx ﬁ/O xoel T dv=ets ©4
and.:
p(2) = Ny eV @~ Egpl/ (K T) (8.45)

when measuring energies from the Fermi level.

Now let us return to the problem at hand. Because of the symmetry of the problem, assuming that
the z axis is perpendicular to the plane of the Si—-SiO, interface, assuming to be on the technological
important {1,0,0} plane, we see that all dependent variables of the problem depend only on z.
Therefore, Eq. (8.41) simplifies to:

d d
— e =V ()| =€ [p(z) —Na—n(z)] . (8.46)
dz | dz

We can also separate variables in Eq. (8.18), writing the wavefunctions as:

1 .
y(r) = 17 KR ¢(2) . (8.47)



8.2 Some Important Applications 175

Here A is the normalization area on the (x,y) plane of the interface, on which electrons move freely
as a 2DEG, and K and R denote the two-dimensional wavevector and coordinate on this plane. The
function £(z) is a solution, yet to be determined, of the equation:

h2 dz ext
" om, dzzC()+V @28 =EL(z). (8.48)

The quantity m, requires a brief discussion. For the {1,0,0} interface we have assumed, Si exhibits six
equivalent minima of the conduction band, four with the light transverse effective mass, mrt, along z,
and two with the heavy longitudinal effective mass, my, along that direction. Therefore, we must solve
two different Eq. (8.48), one for each value, mt or my, for the mass m,. From each of these eigenvalue
problems we will obtain two “ladders” of eigenstates, usually termed the “unprimed” and “primed”
ladders, depending on whether m, = mt or m; = my.. The calculation of the electron charge density is
a bit complicated. Having solved the two Eq. (8.48), we must calculate which states are occupied at
equilibrium using the Fermi—Dirac distribution. This, regrettably, requires another long digression.

Let’s proceed as follows. Consider a fully closed system with a discrete spectrum (such as a QW or
inversion layer) with eigenvalues and eigenfunctions E,, and {y, respectively. Let’s also assume that
we are at thermal equilibrium at temperature T. Then the occupation of each state will be determined
by the Fermi—Dirac distribution. In 1D, the occupation of a state at energy Ey will be simply given by
feo(Ey) = {1 +exp[(Ey —Er)/(kgT)]} ! where Eg is the Fermi level and kg is Boltzmann constant.
However, this is not true for a 3D system: In this case, there are two more degrees of freedom labeled
by a continuous “index,” the in-plane wavevector K. Thus, we must first calculate the density of states
of our system for a given total energy E, find the Fermi energy for a given electron density, and finally,
calculate the spatial distribution of the electric charge.

The density of states (DoS) at a given energy E is defined as:

E):z%/ %5[@(}()-1@], (8.49)

where Ey (K) = E,, — 2 K2 /(2m,) — th}z,/(2my), the first factor of 2 is due to spin degeneracy, and m,
and my, are the appropriate masses on the (x,y)-plane. Here the energy E,; is an eigenvalue of the 1D
Schrodinger problem discussed above, the additional term being the kinetic energy in the “other” two
dimensions in which the 2D electron gas (2DEG) is confined. A simple free-electron-like dispersion
has been assumed with a mass m which we may regard as an “effective mass.” The integration of
Eq. (8.49) is easily done:

2 oo 2
)= G Sy KK || do SlEu(K) ]

1 « / /
) /0 dE' S[E, +E —E| = % S 0(E—E,), (8.50)
T i

where 0(x) is the step function equal to zero if x < 0, to 1 otherwise. The quantity mq =  /Tixiny is the

DOS mass on the (x,y) plane. The relation between the electron density and the Fermi level can be
obtained in a similar way:

n= 22 / 2np fep[Eu(K)] | (8.51)
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which can be integrated as follows:

oo 2
— (23:)22 /0 dKK A d¢ fip[Ey(K)]

mdkBT / 1
8.52
Th? Z Ey—Eg)/(ksT) M yen (8.52)

having introduced the integration variable N1 = (E, + E(K) — Eg)/(kgT). Thus, multiplying the
numerator and denominator of the integrand in the last expression by e ":

mdkBT / e "
Th? Z Ey kBT 1 +e N
= mdk}zT S In [1 4 e(ErE)/(ksT)] (8.53)
Tt g

This expression allows us to determine the Fermi level Eg for a given electron density n. Newton’s
method, the bisection method, or a combination of these two methods (i.e., bisection at first, then a
switch to Newton’s method once we are getting close to the solution) can be used. Once the Fermi
energy has been obtained, the density of electrons in an eigenlevel |1 can be calculated from:

_ maksT (Ex—Ey)/(kgT)
= 1n[1—|—e u } (8.54)

S
=

so the electron density distribution will be:

n(z) = m;kBT21 [1+e<EF Eq)/ "BT} 14(2)2 (8.55)

since any state in the level L (that is, regardless of the value of the in-plane wavevector K) will
contribute with the same probability distribution |{y (z)|*.

We are finally close to the end! We start from some initial guess for the external potential V<e’“)( )
taking, for example, from the depletion approximation [4]. We solve Eq. (8.48) twice, once for each
value of the mass m;. We insert the eigenvalues Ey; and eigen-wavefunction, §,(z) just obtained into
Eq. (8.55) to obtain the electron density n(z) by summing over the twofold and fourfold degenerate
valleys (one per mass m;). The DOS mass entering this equation, mq, is just mr for the ellipsoids
with effective mass my, and (mlmT)l/ 2 for the ellipsoids with effective mass my, (see Problem 8.1.).
We then use Eq.(8.44) [or Eq.(8.45), if appropriate] to calculate p(z) and insert it, together with
n(z), into the Poisson equation, Eq.(8.46). The “new” potential energy, V) (z), is inserted back
into the Schrodinger equation Eq. (8.48) and this iterative procedure continues until some criterion
of convergence is met. Details are given in the review of 2DEG by Ando and co-workers [5]. Here
we show the result in Fig. 8.1. This figures shows not only the potential energy obtained from this
self-consistent procedure, but also comparison between the electron distribution obtained quantum
mechanically and classically. Quantum effects result in a shift of the electron charge away from the
interface, an example of the common “quantum repulsion from a barrier,” that has important practical
effects.
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8.2.2 Zener—Bloch Oscillations and the Stark Ladder

Considering a crystal with a homogeneous electric field, Eq. (8.21) can be used to evaluate the time
dependence of the electron wavevector:

k(r) = —%E ‘. (8.56)
But we know that periodicity holds in reciprocal space also. Under the constant acceleration the
wavevector will eventually exit the first BZ. If we adopt the reduced-zone scheme, it will return inside
the BZ. Thus, the electron velocity will reverse sign and the electron will undergo spatial oscillations.
These are called Zener—Bloch oscillations. Assume for simplicity that we apply a field along the x-
axis, so that only k, changes with time with periodicity 27 /a. The oscillation will have a period T
such that

E 2
iy (8.57)
h a
corresponding to a frequency
aeE

This implies that electrons are “trapped” into quantized levels of spatial extent Lzg such that 2eELzg =
Evand, Wwhere Ey,,q is the width of the band, thus:

_ Eband
2¢E

Lz (8.59)

Figure 8.2 illustrates the origin of these “levels,” effect usually referred to as the “Stark ladder,” for
the obvious similarity to the Stark effect in atoms. For a typical semiconductor a ~ 0.5 nm, so from
Eq. (8.58) for an electric field of strength ~10° V/cm, we have wzg ~ 10'3/s. Note that in this picture
the application of an electric field does not result in charge transport! The electrons simply oscillate
with spatial amplitude given by Lzg above but, on average, they do not move. These oscillations
also provide the potential for excellent generators of THz radiation. The reason why Zener-Bloch
oscillations have not been observed experimentally (despite strong efforts) and why crystals do carry
current is obviously due to the existence of scattering. In order for Zener—Bloch oscillations to occur,
the electron must be accelerated without undergoing collisions for times 1/@zp longer than the
average collision time 7, or

wzRT >> 1. (8.60)

Usually 7 is shorter than 10125, often as short as 10~ s, so that ZB oscillations are prevented from
occurring.

8.2.3 Landau Levels

Another important application of the equation describing the electron dynamics is the study of their
behavior in the presence of a magnetic field. From classical electrodynamics we know that a charged
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Fig. 8.2 Schematic ENERGY ENERGY
illustration of the Stark
ladder
NO FIELD
E,
~band
plane waves Stark ladder
WITH FIELD
X X

particle moving on the (x,y) plane, in the presence of a uniform and constant magnetic field along the
z axis, moves along circular orbits (cyclotron orbits) on the plane. In particular, in a finite sample, the
Lorentz force acting on the electrons results in the “Hall effect”: A voltage arises along the y direction
when an electric field is applied along the x direction. This corresponds to what is called the “Hall
conductance” Oyy. A quantum-mechanical treatment of this system yields different and interesting
results. The orbital energy is quantized into what are called “Landau levels” [6] that are degenerate:
Many electrons can occupy the same orbit. The number of states corresponding to the same cyclotron
radius (or Landau level) increases linearly with the strength of the magnetic field. It is this quantization
of the orbits that results in the quantization of the Hall conductance of a 2DEG: Changing the density
of the 2D electrons by applying a “gate” bias, the Hall conductance oy, exhibits plateaus in steps of
the “universal conductance” ¢? /h (h is the Planck’s constant). This is called the “integer Quantum
Hall effect” (IQHE) [7]. It was observed for the first time by von Klitzing in 1978 (and interpreted in
1980). For this discovery he was awarded the Nobel Prize for Physics 5 years later.

If we consider the effect of a magnetic field, we can employ Eq. (8.39) to look at the time evolution
of the electron wavevector. Let’s assume that the magnetic field B is a uniform field along the z
direction. Then, the equations of motion read (in SI units):

dky
B
dr

dk
h dity :erx (861)

=—eBv,

3k

=0.
dt

Assuming parabolic bands (E = h?k?/2m*), the equations for the x and y components of the
wavevector become
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dk, eB
—E=——k
e m (8.62)
dky, eB r
dt m* "
Taking the time derivative of one equation and inserting into the other we get
d’k,
@ ek
5 (8.63)
dvky, 2
%k

where @, = eB/m" is the cyclotron frequency. We see that electrons move along closed orbits k)% + k}z, =
constant in the x, y-plane, while translating along the z-axis as free particles. So far this is exactly the
same picture which describes the motion of a classical electron. To account for quantum effects we
must consider the envelope wave equation [see Eq. (8.19)]:

[ 2 _
%[pr} o(r)=E ¢(r), (8.64)

where A is the vector potential

B B

Actually, Eq.(8.19) was derived under a different set of circumstances: Here we consider a
perturbation of the kinetic energy, while Eq. (8.19) was derived considering a perturbation of the
potential energy. So, it is not at all obvious that we may use the effective mass approximation.
Nevertheless, perturbation theory may be used to show that Eq. (8.64) is approximately correct (see
Ridley’s text for a proof). Then, inserting the expression (8.65) into Eq. (8.64), we have

A2 22
p eBh e“B
g (ke aky) o

H= o pteAl =5 —+ (2 +57) - (8.66)

2m*

With a few manipulations of this expression, Eq. (8.64) can be rewritten as:

ﬁZ 1 1 2 1 2
o + - <2m wc)C-‘v-hky) + (27’” wcy_hkx) d)(l‘)

2

h
= {E+ e (k2 +k§)} o(r). (8.67)
As remarked by Ridley [2], apart for the term p?/(2m*), this is the equation for a classical particle
orbiting with frequency @, on the x, y-plane. Thus, we can rewrite this equation as:

Pl R? =F 8.68
Lok o) = E o(r). (5.68)

where E' = E + 72k?/(2m*), R is the radius of the classical orbit, and we know that k2 + k)z, =kXisa
constant. The energy E’ will be the energy of the uniform translation along the z axis, i’zzkz2 /(2m*), plus
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the energy—dependent on a particular value of kg—due to the orbital motion. We can now reformulate
Eq. (8.68) in order to show more clearly the separation of these two motions:

D2

P2 LR ke
—m*O.R =|(E 8.69
where P is the momentum on the x,y-plane. If we separate the orbital (x,y) variables from the z
variable, we can write ¢(r) = {(z)X(R) and we see that the equation for { describes simply the
uniform motion along z, while the equation for X is the equation of a harmonic oscillator. Thus the
total energy will be the sum of the two terms:

k2
£ = Zmi T <n T ;) haoe |, (8.70)
and
_ X 1/2 .
¢(r) = Ce** H,, [(mhwR> ] e R /(2h) (8.71)

where H,, is the Hermite polynomial of nth degree.

The energy levels labeled by the quantum number n are called “Landau levels.” They are clearly
degenerate, since we can select k, and k, in many ways while obtaining the same “orbital” energy. We
can view these states as the classical states, each kg giving a different energy, now “lumped” together
by quantum effects. In order to estimate the resulting degeneracy, gp, note that the number of states in
a “shell” of width Ak, in the k,, k,-plane will be, as usual:

1 krAkg
= —— 2mwkrAkg = .
88 = (g2 “HROMR = o

(8.72)

On the other hand, the total change of the “orbital” energy 7"12k12Q /(2m*) as we vary kg over this shell
must be equal to the energy “jump” im,:

d [(1k;
— Akr =1 8.73
dkR (Zm* ) R wC bl ( )
which implies
kpAkg = ’%wc . (8.74)
From Egs. (8.72) and (8.74) we get
1 m* eB
8B = o ?(Dc =oh (8.75)

As in the case of Zener—Bloch oscillations, Landau levels may be observed only if the electron
manages to orbit at least once before scattering:

o.T>>1 or UuB>>1, (8.76)

where L = eT/m™ is the electron mobility (as we shall see later). This condition is met relatively easily
at low temperatures and with magnetic fields of a few Tesla.
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8.2.4 Plasma Oscillations

Let’s consider a semiconductor doped n-type with a density Np donors per cm>. By charge neutrality
obviously we will have a density ngp = Np of electrons in the conduction band. In this average picture
nothing interesting happens. However, if we bring the semiconductor at a nonzero temperature, the
thermal, random motion of the electrons in the background of positive charges (we assume here the
“jellium” model, in which the dopants are taken to be a uniform “jell-O” background of charge) will
cause an occasional deviation of the electron density, 5n = n— ng, in some regions of the crystal. How
do these deviations 6n vary with time?
Let’s write the equations which control the dynamics of the electrons. First, we have the equation
of motion
dk e
—=—-E 8.77
a 2 (8.77)
(here E is the electric field). Second, we have Gauss law,
e
V-E=—— 6n, (8.78)
€s

(where ¢ is the dielectric constant of the semiconductor) which relates the divergence of the electric
field to the charge density, and, finally, we have charge conservation expressed by the continuity
equation

dn

T=-v.(w). (8.79)

Let’s assume parabolic bands, so that the electron velocity is simply v = fik/m*. Let’s take the time
derivative of Eq. (8.79):

d*8n _d

7 —aV -(vn) = -V -—(vn) . (8.80)

Let’s ignore second-order effects, so that we can ignore the derivatives of n on the rhs of the last

equation. Then:
d*6n dv h dk
dr? v (dtn) m* no V <dt) (8.81)

Let’s now use Eqs. (8.77) and (8.78) on the rhs of this equation:

62n0

2
don _ eno 0 5n . (8.82)

V.E= _

dr? m* €gm

Introducing the “Plasma frequency” a)lg = eny/(esm™) we can write this equation as:

d?8n
7 = o, (8.83)

with solution &7 o< €@’ which shows that the electron density dn oscillates with frequency . We
should view this as an “eigenmode” of the gas of conduction electrons. When excited by thermal
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effects or other external perturbations, the electron gas exhibits a “collective behavior”: Density-waves
of electrons travel through the crystal, all at a frequency @,. This is the first example we meet of an
elementary excitation of the solid. We shall revisit this concept, as well as the particular examples of
plasma waves, in the following.

8.2.5 Shallow-Impurity States

The last example deals with the use of the “envelope” approximation, Eq. (8.18). It is to study this
particular problem that Luttinger and Kohn first derived this equation. In doped semiconductors
ionized impurities are introduced so that one obtains a controllable density of electrons in the
conduction band (or holes in the valence bands, for p-type doping). How can we describe the electronic
states associated with each impurity? How can we estimate the ionization energy of the dopant atoms,
so that we can understand under which conditions the impurities will be ionized? This is actually the
problem which Kohn and Luttinger studied to derive Eq. (8.18) itself. This is indeed the prototypical
problem for which the approximations made earlier to derive the envelope equation hold true: The
potential of the impurity can be approximately described as

e
4regr’

Vimp(r) = (8.84)
which is exactly the potential of the hydrogen atom, with one major difference: The dielectric constant
of semiconductors is about a factor of 10 (often more) larger than the permittivity of vacuum. Thus,
the potential will be a factor of 10 (often more) weaker. The radius of the ground state of the hydrogen
atom (the Bohr radius) is given by

Amegh?
ap = 0L~ 0.05nm, (8.85)
e~m

while the energy of the ground state (the ionization energy) is the Rydberg constant:

1 &2 2 m
Ry=—- | — — =~ 13.6¢eV. .
Y 2 (47r€0> K2 3.6e (8.86)

We see that in a semiconductor the radius of the “narrowest” orbit will be a factor of (m/m*)(es/eo) ~
10? larger, since the effective mass is often a factor of 10 smaller than the electron mass. This gives
orbital radii of tens of nm, several cells wide. Conversely, the “effective Rydberg,” Ry*, will be a factor
of (m/m*)(es/€0)* ~ 10% smaller, and so of the order of a few tens of meV.

These estimates should be viewed as “sanity” checks to justify the use of the hydrogen-like
potential (8.84): The orbits are large enough to allow the use of the macroscopic dielectric constant
and ignore anisotropic effects which are surely going to matter at small distances (remnants of the
sp> tetragonal bond-charge). The potential at these large distances will be weak and slowly varying,
so that the use of the envelope equation (8.18) is fully justified. The small ionization energies are
consistent with our naive expectation that the dopants will be ionized at all but the lowest (<20K or
sO) temperatures.
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Problems

8.1. (DOS Effective Mass in Si) Show that the two-dimensional density-of-states effective mass to
be used in Eq. (8.55) is just mr for the ellipsoids with effective mass m, = my, it is (mLmT)l/2 for the
ellipsoids with effective mass m, = mr, as stated in the text.
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Chapter 9
Elementary Excitations in Solids

9.1 Lagrangian and Hamiltonian Formulation for Fields

Second quantization is necessary when we want to study many-particle effects. Historically, it was
born out of the relativistic description of particles, since ordinary Quantum Mechanics (QM) could
not handle it: The number of particles is fixed in conventional QM, but a relativistic description must
allow for creation and annihilation of particles. It soon became apparent that this new description
was extremely useful in describing solid-state phenomena and statistical mechanics, since second
quantization, dealing with fields, is intrinsically a description of systems with infinitely many (. .. well,
very many indeed in solid-state systems, albeit not infinitely many...) degrees of freedom. It is thus
very well suited to describe collective phenomena as elementary excitations above the ground state:
Elementary excitations—such as phonons, plasmons, magnons, etc.—can be created (emissions) and
destroyed (absorption), similarly to relativistic particles. In addition, for small perturbations away
from equilibrium, the Hamiltonian can often be linearized and algebraically manipulated so that it
takes the form of the Hamiltonian of a collection of harmonic oscillators (as we shall see for free
electrons, plasmons, and phonons below). These manipulations often take the name of Bogoliubov
transformations. [These have been first introduced in 1947 by Nicolai Bogoliubov in the context of
superfluidity [1]. Since his original paper is in Russian, the interested reader may find the subject
amply discussed, in English, in the text by Blaizot and Ripka [2]]. So, the whole machinery of simple
harmonic oscillators can be used to handle the much more complicated collective excitations.

In “first quantization” (i.e., conventional QM), we start by describing the system classically in the
Lagrangian form. We then translate the description into the Hamiltonian form, so that the equations of
motion are expressed in terms of Poisson brackets between the Hamiltonian, the dynamical variables
(observables), and the canonical coordinates (generalized coordinates and conjugate momenta).
Quantization is finally performed by promoting the dynamic variables to operators on a suitable
Hilbert space and converting the Poisson brackets to commutators. In second quantization, we follow
a similar route: Think of a system as described by the generalized coordinates ¢;, where i runs over
the degrees of freedom of the system. As the number of degrees of freedom approaches infinity, we
replace the discrete index i with a continuum of indices r and our generalized coordinates become a
field ¢ (r). Thus, we start from a Lagrangian description of the system in terms of Lagrangian fields (as
done, classically, in elasticity theory), convert it to a Hamiltonian description, and convert the fields to
operators on some (more complicated) Hilbert space, promoting the Poisson brackets involving fields
to commutators (or anticommutators, as discussed below).

© Springer International Publishing Switzerland 2016 187
M. Fischetti, W.G. Vandenberghe, Advanced Physics of Electron Transport in Semiconductors
and Nanostructures, Graduate Texts in Physics, DOI 10.1007/978-3-319-01101-1_9



188 9 Elementary Excitations in Solids

The use of the term “second quantization” is due to the fact that the first fields to be quantized were
solutions of the Dirac equation. Thus, the procedure appeared to be a quantization of wavefunctions,
already quantized in conventional QM, and so it seemed that we had quantized the system twice.
But this is not the right way of looking at it: What we have done is to have dropped altogether the
concept of “particle” as the primary concept and replaced it with fields, from which particles (or
“quasi-particles”, in solid-state physics) will emerge as excitations of the field away from its ground
state.

In this chapter we shall first review the Lagrangian and Hamiltonian formulations of fields
and describe the canonical quantization procedure in a general case. We shall then apply this
procedure first to the Schrodinger field. Finally, we shall discuss two examples of great relevance
to charge transport in solids: plasmons and phonons. We will conclude with the quantization of the
electromagnetic field. Although this is not an elementary excitation of a solid, the formalism is similar
and its application to condensed-matter physics are many and important.

The Lagrangian and Hamiltonian formulation of fields and their quantization can be found in many
texts of Quantum Field Theory (QFT). Lurié’s is an old-time favorite [3]. A concise but exceptionally
clear presentation in the context of non-relativistic fields can be found in Schiff’s text [4]. His rigorous
presentation represents one of very few examples that can be found in a text not exclusively dedicated
to many-body problems or to QFT. In the context of many-body problems in condensed matter theory,
the texts by Fetter and Walecka [5] and Mahan [6] are the most comprehensive and clear.

9.1.1 C(lassical Lagrangian Density

We discuss how, knowing how to deal with a system with a finite number of degrees of freedom,
we can describe in Lagrangian and Hamiltonian terms a system with infinitely many (actually, a
continuum) of degrees of freedom. A typical example we could consider is the displacement of a
violin string. At each location x along the string, the displacement of the string from its equilibrium
position is ¢ (x). We would like to find a Lagrangian and Hamiltonian description of the “plucked”
string. Clearly, we have way too many degrees of freedom, one for each location x.

Therefore, instead of defining a Lagrangian, we define a Lagrangian density at each location x:

¢ 99
=, = .1
$<¢, ax7at7‘x7t>7 (9 )
so that the Lagrangian is obtained by integrating over the length D of the string:
P ¢ 99
L(t) = —, = . 2
0= (050 50m) & ©2)
The equations of motion can be obtained from a generalized Hamilton principle requiring
15) 15) D a a
M:(S/ L(t)dt:S/ / $<¢,¢,¢,x,t> dx d = 0. 9.3)
I t 0 dx’ dt

Following a generalized version of the procedure followed before (pages 5-6), this variational
principle leads to Euler—Lagrange equations of the form

do¥ d % 07
w55 s (a0a59) 35 O O
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In three dimensions and in the case of several “fields” ¢;, the Euler—Lagrange equations become

doz 3 d( 0L )_a.,zﬂ
9(

; T == =0 forj=1,2,... .
dt ‘9¢i +k§‘1 dxk a(Pi/axk) a(Pi 0 orj 1< (9 5)

It is convenient to introduce the functional derivative of £ with respect to ¢; as:

57 9% & 9 ( ¥
- 5

= _ _ ( —_ 9.6
6¢i 8¢l k=1 8Xk a¢i/axk) ( )

This notation has the advantage of allowing us to ignore the dependence of the Lagrangian density on
the spatial derivatives of ¢. Similarly,

52 0%
8¢ 9o

9.7
which is simpler looking, since .# does not depend on the spatial gradients of ¢;. Thus, Eq. (9.5) takes
the simpler-looking form:

162 84
dr 5¢, 5¢, o

0, 9.8)

which is formally similar to the “usual” Euler-Lagrange equations.

9.1.2 Conjugate Momenta and Classical Hamiltonian Density

We can push the analogy with the usual Hamiltonian theory even further: Let’s define the conjugate
momenta (which are fields now!):

A
= 5—., 9.9)
o
and the Hamiltonian:
H= /%” dr, (9.10)

where 7 is the Hamiltonian density:

H =Y m— L. 9.11)
k
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9.1.3 Hamilton’s Equations

We can show that the Euler-Lagrange equations (9.8) become the Hamilton equations:

O0H . O0H

56~ = . 9.12)

Finally, given any function A which can be represented as the integral of a density <7,
A:/;z% dr, 9.13)

one can show that its time derivative is given by:

dA dA
o = AH o (9.14)
where the symbol {...,...} is the obvious generalization of the Poisson brackets:
0A 6B 6A OB
ABY= [ Yoo — o) dr= . .
an = 2<5¢k 51 5 5¢k) ar = [ {A((),B()} dr 9.15)

where the Poisson bracket at a given point has been defined as:

8B(r')  8A(r) SB(r’)} 9.16)

Al v} = 2[5% om ome  S¢x

Note that the following relations hold for the Poisson brackets between canonical variables (see the
analogous relations Eq. (1.30) for systems with a finite number of degrees of freedom):

{0i(r), m(x")} = 68(r—x'),  {@i(r),¢;(r)} =0,  {m(r),m(r)} =0, ©.17)

9.1.4 Canonical Quantization of Fields

The procedure to be followed in order to quantize the field ¢ is strictly parallel to the canonical
quantization scheme outlined on pages 12—14, although several issues are significantly more
complicated:

1. We define/select/guess the Hilbert space associated with the system. As we shall see below, this
task is not as straightforward as in the case of “conventional” QM. Let’s defer to a later section a
short discussion on this issue. For the moment let’s just say that we shall work on what’s called
“Fock space” .%.

2. We re-express the field equations (Maxwell equations, the wave equation for the strings of our
“quantum violin,” Dirac equation, or even Schrodinger equation, as we shall see below) in their
Hamiltonian formulations.
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3. We promote the fields ¢ and 7 to operators acting on the Hilbert space .#. These operators will
satisfy the canonical commutation rules (CCRs):

~

[0i(r), (1)) =ih §6(r—x') 1 [6i(r), ()] =01 [&(r), ()] =0. (9.18)

4. The equation of motion will follow from the “usual” commutation rules with the Hamiltonian (in
the Heisenberg representation).

9.2 Quantization of the Schrodinger Field: Electrons

Let’s consider, as a first example, the quantization of the Schrodinger Field. This example—in addition
to being relevant since it constitutes the basic framework needed to describe also electrons in a
crystal—shows how the Hamiltonian of free (that is: non-interacting among themselves) particles can
be written as the sum of Hamiltonians of harmonic oscillators, each oscillator corresponding to one
particular single-electron state, each excited state of each oscillator representing the presence of one
particle in that particular state. The main new ingredient we shall encounter is the anticommutation
rules (instead of “commutation” rules) the electron operators must obey in order to satisfy Pauli’s
exclusion principle.

9.2.1 The Lagrangian and Hamiltonian Densities

As we said, the main idea is to consider the “usual” Schrodinger equation

oy o,
ih—=——V V(r,t 9.19
ihor=—2 Vy+V(ry, 9.19)
but consider the function y(r) as a “classical field” (much like the electric field of Maxwell’s equation,
or the displacement field of our violin string), rather than a “wavefunction.” “Classical” here means
“not yet quantized.” The next step consists in finding a Lagrangian density (a functional of the
electronic wavefunction y) which gives us back the Schrodinger equation. It can be shown that:

0 >
Ly v1) = by (x, 1) ‘”;:’” — VY ) VY () = V() YD v, 920

Indeed, using the usual variational procedure which yields the Euler equations, one finds that the field
y(r,t) which corresponds to an extremum of the Lagrangian L(t) = [dr.Z(y,\/,1) is a solution of
the equation

P ?
iha—‘i’ — VYV v, 9.21)

i.e., Schrodinger equation, which is what we wanted.
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Actually, using Eq.(9.8) one would obtain the complex conjugate of Eq.(9.21). Equivalently,
instead of varying y to derive Eq.(9.8) from Eq.(9.3), one may vary the complex conjugate of
Egq.(9.20) over y* and obtain the Lagrange equation

déz* o6
—— =0 9.22
dr oy, oy 7 ©22)
Sfrom which Eq. (9.21) follows.
Now we define the canonical momentum density
807
=————=ihy" 9.23
ﬂ(r,t) S(aw/at) 1 ‘I/ (l',l), ( )
and the Hamiltonian density:
dy(r,1) ih i
. = — =—— -Vy— - . .
H(y,m,t) = n(r,1) 3 Z(r,1) . Vr-Vy hV Ty (9.24)

We are now ready to quantize the field y.

9.2.2 Canonical Quantization and Commutation Rules

Second quantization is now performed by promoting the functions y and 7 to operators satisfying the
equal-time CCRs, which are a generalization of the canonical Poisson brackets between coordinates
and momenta in the classical description of systems with a finite number of degrees of freedom:

[W(r,0), 20, 0)] =irdD (e —r') ;. [W(r,0), ¥, 0] =0; [#(r,0),7(,1)] =0, (9.25)
which, in turn, imply
e, 9 (0] = 80 (e —r) s (W), 9] =05 [97(r0), 9 (0] =0.  (9:26)
Note that Hamilton’s equations become

SH oA 0N _ iy gy 9.27)

V=752 ~ oz —§ d0r/ox)  h V7 2m

which is the original Schrodinger equation, while the other equation,

H oA i i,
7 +§ 309/9%) = V-V, (9.28)

KK
7

ﬁ':

is simply the complex-conjugate equation, as can be seen using Eq. (9.23).
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9.2.3 The Hamiltonian as a Collection of Harmonic Oscillators

At this point, a crucial step consists in expanding the field as:

P, 0) = (1) uu(r), (9.29)
u

U, =Y &, (1) uy (x), (9.30)
u

where the (numeric) functions u, are the stationary eigenfunctions of Eq. (9.21) with eigenvalues E,,.
The label p will actually be a set of three labels (in addition to the degree of freedom associated to
spin, ignored for the time being), possibly belonging to a continuous spectrum, for electrons in three
dimensions. It may be just the three components of the k-vector when V = 0, it may be the set of
integers (n,l,m) for atomic orbitals, or any other set of “quantum numbers.” Now, the crucial step:
Some algebra shows that the Hamiltonian (the spatial integral of the Hamiltonian density) can be
written as:

H(t) =Y Ey &) eu1). (9.31)
u

* In order to derive this expression we need to derive the (anti)commutation rules for the operators
¢y and 6L which follow from the (anti)commutation rules for the field, Egs. (9.25) and (9.26): As we
will discuss below, the only non-vanishing (anti)commutators are

ey,

] = O 9.32)

all other (anti)commutators vanishing. We also need to remark that the expression given by Eq. (9.24)
Jfor the Hamiltonian density is ambiguous when interpreted in the operator sense, since the product AB
of two numbers can be written as AB or BA. But if these quantities are operators such that [X,B} #0,
we must decide which of the two expressions we should use. Commonly the “symmetrized” product
(AB + BA)/2 is employed. In so doing, we reach the result:

. 1
H(t) =Y |Eue)(1r) eu()+ ik (9.33)
u

instead of Eq. (9.31). The term 1/2 will be discussed below, but we ignore it for the moment.
It is convenient here to review the algebraic method can be used to quantize a simple harmonic
oscillator in one dimension. Its Hamiltonian is

%) 22
A S
H= 0+ 9.34)
Define the operators:
. L (KN
a+ = M)12 pti (2) X (9.35)
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Note that &', = a_ and that, using the commutation rule [p,3] = —ih:

ho, (9.36)

lay,a-] = —ho, [H,ai]=+hoas. (9.37)

Using these algebraic relations, we can construct the entire spectrum of the Hamiltonian (9.34) using
the ground state and the operators ay. Indeed, suppose that we know the ground state |0), such that:

HI|0) = Eo|0). (9.38)
Using the first of Eq. (9.37),
Ha |0) = (Ep + ho) a,|0), (9.39)

which shows that starting from the ground state |0) we can “create” excited states by applying
repeatedly the “creation” (or “raising”) operator a... What is left to do in order to find the eigenvalues
corresponding to these states is to find the ground state energy Ey. Note that

Ha_|0) = (Ey—hw)a_|0). (9.40)

Since we have assumed that Ey is the lowest possible energy, this equation implies that a_|0) must
not exists, that is, a_|0) = 0. But from the first part of Eq. (9.36),

a,a_10)=0 — (1?1 - ;hw) 0) =0. (9.41)
This has the form of the eigenvalue equation for the ground state, so that Ey = hw /2. Therefore, the
cigenstates of H are the states |n) = a”|0) with eigenvalues E,, = (n+1/2)ho.

The “raising” operator a4 corresponds to the creation operator éL the ‘lowering’ operator a_ to
the annihilation operator ¢y, defined above. They satisfy exactly the same algebraic and commutation
relations.

Note now the similarity of Eq. (9.31) with the Hamiltonian of the harmonic oscillator. We are going
to use this fact to draw an algebraic analogy with the “ladder operator” formalism of the quantum
harmonic oscillator to discover the eigenstates of the Hamiltonian. Let’s define the “position” and
“momentum’” operators:

E, 1/2 (Ey 1/2
c}u:(z) @u+eh), ﬁﬂz—l(z) (Eu—eh). (9.42)

Then, we see that the Hamiltonian can be rewritten as

H0 =% 5 [(P+ai) —Eu ], 9.43)
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which is indeed the Hamiltonian of a collection of harmonic oscillators if we identify the operators &,
and GL with the “usual” lowering (annihilator) and raising (creator) operators for each oscillator p.

The term “—E);” inside the square brackets in Eq. (9.43) corrects for the zero-point energy of the
infinitely many oscillators u. It is clearly a troublesome diverging term. The reasons for its appearance
are very deep and are briefly discussed below. It is usually referred to as the “energy of the vacuum.”
It is just a constant (albeit an infinite one!) and if we decide to measure all energies from this value,
we can ignore it.

9.2.4 Anticommutation Rules

We have performed canonical quantization by employing the commutation rules Egs. (9.25) and (9.26)
above. However, these do not guarantee that Pauli’s exclusion principle will be obeyed. Jordan and
Wigner have shown that we can fix this problem by employing canonical anticommutation rules
(CAR)

[li/(l’, t)? J (rlvt)]+ =0 (9.44)

o~

(where [A,ﬁh_ = AB + BA) instead of Eq. (9.25) above. These imply also:

(e, 0,9 (1)) =89 (xr—r)
[§(r,0), ¥(r' ;1)) =0 (9.45)
9 (5,0, 07 (1)) = 0.

The reason behind the selection of anti-commutation rules is very deep. Streater and Whightman,
in their book entitled “PCT, Spin, Statistics, and all that” [7] have shown that free particles of half-
integer spin must be associated with a quantum field {(r) such that the CAR, Eq. (9.45) are satisfied,
or one would violate at least one of several “axioms” (relativistic invariance, causality, locality, etc.)
which constitute the foundation of QFT. Similarly, for integer-spin particles, the field must be such
that the “CCRs” are valid:

(0,97 ()] = 8F (r— 1), (9.46)

all other commutators vanishing, as we saw before. An intuitive way to understand the spin-statistics
theorem relies on the following argument. The need to symmetrize (under exchange of two particles)
many-particle wavefunctions of integer-spin particles and antisymmetrize those of half-integer-spin
particles stems from the fact that rotations by an angle 6 introduce a phase ¢*® for particles with
spin s. Exchanging two particles amounts to rotating the vector connecting the two particles by an
angle 0 = r. If the spin is a half-integer, this results in a change of sign. Unfortunately, this argument
is not rigorously valid. The “correct” proof must rely on relativity and on the invariance of the theory
under Lorentz transformations. The argument is involved and interested readers could find it presented
in excruciating detail in the text by Streater and Wightman we have mentioned before.

One should add that the Schrédinger equation does not deal with spin, so we may, at this stage,
choose commutators instead. Indeed, the same Schrédinger equation applies to all particles, Fermions
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or not. But in choosing commutators, we would run into troubles, because we would not get Fermi—
Dirac statistics. And since we will have to account for spin later, we might as well start with
anticommutators.

9.2.5 Fock Space for Fermions

In this framework, the states of a many-electron system belong to a complicated functional space built
as follows. Let’s consider only free electrons, so that the index u is the 3D-wavevector k and the
functions u, = uy are plane waves, and let’s start with the “vacuum” state |0), that is, the ground state
of the system. This is the state in which each oscillator k is in its ground state. Its energy diverges,
because of the zero-point term 1/2 in Eq. (9.33) above. But we should think as subtracting this energy
from the zero of our energy scale and carry on ignoring this problem. As we have just seen, the
operator ¢k and its conjugate 6; can be viewed as lowering and raising operators, respectively. The
latter can be thought as creating an electron in the eigenstate k of the momentum operator when acting
on the vacuum state. Thus, the wavefunction corresponding to this state will simply be:

1 .
(1) = {rl2f0) = 557 e ik (9.47)

that is, just the corresponding one-particle plane wave in the real-space representation. The operator
6;; is called a “creation” operator. Let’s call |k) = ¢, |0) the state in which there is only one electron
in the system and this electron is in an eigenstate k. This is an eigenstate of the Hamiltonian with
eigenvalue Ex. The conjugate operator ¢k destroys an electron in the state k. Thus ¢x|k) = |0). The
fact that we deal with fermions (and not bosons) translates into the property that the operators ¢k and
6:{, satisfy the canonical anticommutation rules:

e, el) =G [eiobw]s =0, [ef,el]y =0. (9.48)
Note now that:
&hex]0) = (1—axe])[0) = [0) —[0) =0, (9.49)
that is, the “zero” vector (not to be confused with the vacuum state!). Similarly:
erex|k) = 2f]0) = |k), (9.50)
so that the operator ng = G;iék is a sort of “number” operator, which counts the number of electrons in
the state k.
Note that if we try to add another k-electron to the state k we get
o lk) = ¢fef]0) = —efef |0y, (9.51)
the last step relying on the CAR, so we must have 6l;|k> = 0 for this equation to be valid. Indeed,

this is just Pauli’s principle: We can’t put two electrons in the same state. This follows directly from
having used anticommutation rules for the creation and annihilation operators.
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Let’s also note the following:

HIK) =Y Ey el awe] |0). (9.52)
k/

Let’s now use the anticommutation rule ¢y élT( =&k — 5£5k’1

HIK) =Y Evel (8 x—efew)|0). (9.53)
k/

Note that the second term inside the parentheses, 6;, 6:;6](/ |0), vanishes, since the first operator on the
right annihilates an electron k' in the vacuum state, which yields zero. Thus,

H|k) = Exé]|0) = Ex |K). (9.54)

This shows that indeed the state |k) = 6£|0> is an eigenstate of the Hamiltonian with eigenvalue Ej.
From the discussion above, it follows that an arbitrary state of our many-electron system can be
written as:

[{na}) = Imina...ny) = (@)™ (€3)™ ... ()™ 0), (9.55)

where the integers n; are restricted to taking only the values O or 1 and the indices 1,2,...N label
wavevectors Kj, kp,...ky (and also spin indices, if necessary). The notation |{n, }) identifies all
possible combinations A of N-electron states. Note that these states are already antisymmetric. For
example, the wavefunction of a 2-electron state will be

. 11
(', x|k k) = (v ,r[e], 2} |0) = —=

V2 (2n)

The general state |njny . ..ny) is obviously an eigenstate of the Hamiltonian with eigenvalue n;E} +
nmyE, + ..., as one can show following the derivation we have used above to reach Eq. (9.54).

So far we have considered a Schrodinger field, which does not account for spin. If we add it to the
picture and label with ¢ = +1/2 the spin variable, we have the new CAR:

( iK1 ik-r_eik'l'/ eik/‘r). (956)

[él?’alf/ T]+ = 50',6’ 5](,1(’) 9.57)

all other anticommutators vanishing. Everything carries on as before, the only complication being
related to the fact that for many-electron states the antisymmetrization of the wavefunctions must
account for the quantum-mechanical rules of adding angular momenta. Thus, we will have four types
of antisymmetrized 2-electron states: One spin-singlet state, with a symmetric spatial component of
the wavefunction, and three spin-triplet states, with an antisymmetric spatial component.

Starting from the “usual” single-particle Hilbert space H, L>(R3) ® 8, (where ® means ‘tensor
product’ of vector spaces and § is the 1/2-spin-space, the space associated with the two-dimensional
irreducible representation of the special unitary group SU(2)), the total functional space associated
with the many-electron system can be formally defined as:

e N
Ho HOoH & HoHoH...= Y & [[oXK, (9.58)
N=1 j=I

which—after proper topological closure and compactification—is called Fock space.
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* Out of curiosity, it is interesting to note here a major difference between first and second
quantization, a difference which is the deep source of the infinite zero-point energy we saw above
and of many other infinities which affect QFT: In ordinary QM (first quantization), there is only one
Hilbert space—up to unitary transformations. That’s the reason Heisenberg’s matrix-mechanics and
Schrodinger’s wave equation are actually the same thing, just viewed in two different, but equivalent,
representations. Not so in many-body theory or QFT: For every Hamiltonian, there is only one
representation which is “correct.” Unfortunately, Fock-space is the representation of free particles.
As soon as we turn on any interactions, problems arise because we are in the wrong representation.
Renormalization is a typical problem. This sad state of things is known as “Haag’s theorem” [8, 9],
which is known to state that the interaction picture exists only if there is no interaction. Ultimately,
this depends on the following consideration: From axiom 9 of the Copenhagen interpretation (Chap. 1,
page 16), the Hilbert space associated with two isolated systems brought together is the tensor product
of the Hilbert spaces associated with the two systems. When the two systems are strongly coupled, any
arbitrary state of the coupled system cannot necessarily be expressed as the tensor product of two
states of the isolated systems. However, the set of these tensor-product states constitutes a complete
basis in the larger Hilbert space and we can always express any arbitrary state of the strongly coupled
systems as a linear superposition of these basis states. This is true for an arbitrary large, but finite,
number of systems. So, for example, it is true for a system of N interacting electrons, as long as N
is finite. But this property fails when N — oo, which is the definition of Fock space. In other words,
an arbitrary state of the interacting electrons does not belong to Fock space. “Constructive QFT”
is the branch of theoretical physics which attempts to “construct” a proper representation for every
interaction, thus bypassing renormalization problems.

9.3 Quantization of the Charge Density: Plasmons

As a second example, let’s consider the plasma oscillations of an electron gas that we saw already
on page 181. This is a very interesting example which shows clearly how “elementary excitations”
emerge: We know how to solve the problem of electrons in a crystal when the system is in its ground
state: The ions are “frozen” in their equilibrium positions and the electrons are all in their lowest-
energy state, filling all states up to the Fermi level. In tackling the problem of what happens when
electrons acquire additional energy (via an external perturbation, typically) while interacting among
themselves via long-range Coulomb interactions is quite a complicated task. So, we “linearize” the
problem by assuming that only first-order deviations from the ground state occur. In retaining only
the leading terms of the interaction Hamiltonian (in our case, the Coulomb potential energy) we
retain only terms quadratic in the deviation from the ground state. By decomposing the system into
normal modes (by taking Fourier transforms in the example below), the Hamiltonian will be the recast
into the form of the sum of many Hamiltonians, each corresponding to a different wavelength, and
each being the sum of a kinetic energy term (quadratic in the velocity or canonically conjugate
momenta) and a potential energy term (quadratic in the displacement coordinates, which are the
canonical coordinates). Thus, for each wavelength there will be a corresponding Hamiltonian of a
single harmonic oscillator. We can now “quantize” these oscillators using the Dirac algebraic method
of raising (creation) and lowering (annihilation) operators, as we saw for the Schrodinger field. These
are just the creation and annihilation operators for each wavelength. So, for each wavelength there
may be no corresponding excitation at all (the oscillator is in its ground state), one excitation (the
oscillator is in its first excited state), etc. Looking back at the Schrodinger field, there each excitation
was interpreted as one electron “created” at a given wavelength. Here, in complete analogy, we shall
call these excitations “quasi particles.” The suffix “on” attached to the name given to these excitations
(plasmons, phonons, magnons, etc.) reflects this analogy.
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So, let’s tackle the problem of the plasma excitations of a homogeneous, bulk electron gas. It will be
instructive, at the end, to compare the resulting normalization of the plasmon field with the result of
simpler semiclassical energetic arguments.

9.3.1 Lagrangian Density
The classical Lagrangian density of the electron gas can be written as:
. ) . 1
Z(0,9) =5 nmu(r)-u(r) - 5p(r) ¢(r), (9.59)

where en = p is the uniform charge density, m is the electron mass, ¢ (r) is the potential, and u(r) is the
displacement of the electron gas at position r. This displacement is related to the charge fluctuations
0p(r) via the continuity equation:

0P[) _ g ). (9.60)

Thus, Poisson equation can be written as:

Vo) = 2P0 _ Py ym), 9.61)

€s €s

where ¢ is the dielectric constant of the solid.

9.3.2 Going to Fourier Transforms

We consider, as usual, their Fourier decomposition:

O(r) =, ¢q €97, (9.62)
q
and
u(r) = uge”. (9.63)
q
Equation (9.61) implies
2 iqr __ - B iqr
=Y gt =—1 = Y qrug 97 (9.64)
q € q

Since plasmons are longitudinal oscillations, q - uq = qu,, so that ¢, =ip u,/(¢sq). Keeping in mind
that the total energy must be real, we should replace the terms u(r) - u(r) and dp(r) ¢(r) in the
expression for the Lagrangian density Eq. (9.59) with u(r)*-u(r) and §p(r)* ¢(r), respectively. Then,
the kinetic energy can be written as:
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1 e 1 e
T:E/drnmu(r) ~u(r):§nm%u,q-uq, (9.65)

where the dots indicate derivatives with respect to time. The potential energy can be calculated
ignoring second-order corrections to the charge density, that is, by treating p(r) = en as a constant in
Eq. (9.60), as we had done before when dealing with classical plasma oscillations. This is where the
“linearization” approximation comes into play. Then:

V*l/d6()*()*+162n22 . (9.66)
=3 rpr(pr_zesqufquq. .

Thus, from Egs. (9.65) and (9.66), the Lagrangian for the system can be written as:
2

D uty g (9.67)

q

1 é*n
2 €

1 s
L:T—V:Enmzq:u,q-uq—

9.3.3 The Hamiltonian

Let’s now define the Hamiltonian. First, we define the canonical conjugate momentum

oL aT .
nq:T%:T%:nmuq. (968)

Then, we apply the usual Legendre transform to get the Hamiltonian H =7 + V:

1 . 621’12 .
HZEZ % ﬂ,q'ﬂ?quTsu,(ruq . (969)

9.3.4 Canonical Quantization

Quantization can be now performed imposing the CCRs
[t1i q; R q] = ift 8y Ogq- (9.70)

Following a standard procedure, we rewrite the Hamiltonian as

H=> % [P Pq+0" 4041, 9.71)
having set:
Py=—a 9.72)
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. 22\ /2
Qq= ( ) fiq. (9.73)

€s

Let’s now define, as usual, the creation and annihilation operators via the relations:

R Fioop 2
Oq = <2> (bg+b" ), (9.74)
. hop V2 .
Pa=i (") Ga-bly) ©.75)

where we have introduced the plasma frequency wp = [(¢?n) /(€gm)]'/?. Thus, finally, the Hamiltonian
Eq. (9.69) becomes

= or 3 {bibq+bebi}. (9.76)
q

Using the deﬁnitions (9.72)—(9.75) and the CCR (9.70), the only non-vanishing commutator for the
operators by and by is

P 1 en 12
[bmbq] =—— | — =—1. 9.77)

€Esm

This shows that the operators Bji and Bq behave like raising (creation) and lowering (annihilation)
operators, so that the Hamiltonian Eq. (9.76) becomes a collection of harmonic oscillators

. JUUE |
H=hop), {bgbq + 2} , (9.78)
q

while the displacement field and the potential can be expressed in terms of the creation and
annihilation operators

. hiwpeg 12 - o
g = (262}12) (B o+ bo), 9.79)
N i [ hop 172 . A
=1 ( o > (b + o). 9.80)

As usual, the diverging contribution in Eq. (9.78) will be ignored and we shall write

H=hapy bjbg. 9.81)
q



202 9 Elementary Excitations in Solids
9.3.5 Fock Space for Bosons

The Hilbert-like space associated with the system of bosons (as plasmons carry no spin) can be
constructed essentially in the same way we saw above for the case of Schrodinger Fermions. The
obvious difference is that, since we use commutation instead of anticommutation rules, we can put as
many particles as we wish in each quantum state. Thus, the most general state of Fock space will have
the form

{NLY) = [NiN2...Ny) = (BDN (BN ... (bl)VV |0), (9.82)

where now states with N; > 1 will also exist. Note that the squared norm of a state |[Nq) will be Ng!,
so that states of the form (9.82) must be normalized by dividing by /Ng!.

9.3.6 A Calculation: Thermal Expectation Value of the Plasmon Field

Let’s assume that we are at thermal equilibrium. Since plasmons have zero spin, their population will
obey the Bose—Einstein statistics and the thermal average (Nq)n of the number Ny of plasmons of
momentum ¢ present at temperature 7 will be given by:

—1
(Ng)tn = [exp (Z:’;) - 1} : (9.83)

If we want to calculate the thermally averaged root-mean-square (rms) amplitude of the field
associated with the plasmons, we can first calculate the expectation value of the (squared) amplitude
on the Fock state | Ng) = (Ng! )~'/? (IA)J;)NQ | 0) (where | 0) is the vacuum) containing Nq plasmons of
wavevector (. This is

PN haop 1 A A Armr A A
(Na | b |Na) = 320 5 {01(ba)" s (big +-53) (B +-Ba) (b )10
hop 1
We can then take the thermal average of this expression, so that:
) hop 1\"/?
o= () (1200 ©0.85)

Setting Ng = 0 above, it shows that the plasmon zero-point motion at wavevector q is associated with
a field of rms amplitude

[ hop 12
|¢q|—<2€s> 7 (9.86)



9.4 Quantization of the Vibrational Degrees of Freedom: Phonons 203
9.3.7 A Semiclassical Analogy

Can we obtain this result without going through the procedure of canonical quantization? Stern and
Ferrel [10] have provided the following semiclassical argument, based on energetic considerations:
Let us write the magnitude of the plasmon field at wavevector q as:

Eqw(r.t) =aq cos(q-r— wpt), (9.87)

so that the electrostatic potential is
ag .
Pg.0(r,1) = 2 sin(q - r — wpt). (9.88)

For harmonic oscillators such as plasmons, the time-averaged kinetic energy, (T, is equal to the time-
averaged potential energy, (U)me- Thus, the total energy, W, associated with the zero-point plasmon
field over a volume €2, including its own self-energy (which explains the absence of the factor 1/2 in
front of the integral below), will be

W = (T )time + (U)time = 2(U)time = 2 </-(2 dr ‘Pq*,w(r) Pq7w(r)> =6 ag ‘2 Q, (9.89)

time

where €; must be understood to be the high-frequency dielectric constant € in our case, since py ()
is just a microscopic polarization charge, so that only the background (i.e., valence) dielectric response
should be considered. Quantum mechanically, this energy must represent the zero-point plasmon
energy within the volume €2, so that W = % hwp 2, which implies

a hioop 1/2 1
|¢>q||=|qq|=<26 ) pt (9.90)
S

in agreement with Eq. (9.86).

9.4 Quantization of the Vibrational Degrees of Freedom: Phonons

In the first part of this text we had a quick look at the ionic Hamiltonian (see pages 60—61), but we left
it there, promising to come back and revisit this term. Here we shall do just that as usual rewriting it
in such a way that we will end up with a collection of harmonic oscillators. A very useful reading that
may fill the many gaps we are going to leave open is the well-known text by Ziman [11], a book that
does not show its age.

9.4.1 Canonical Quantization

Let RI(;,)) be the equilibrium position of the ion (labeled by the index ¥ inside the unit cell /) and let
(0)
ly
momentum coordinate of ion y in cell [, P, = M76R1y, where M, is the mass of the ion, the ionic
Hamiltonian is

ORyy be its displacement from R;.’. Let also R; be the coordinate-origin of the cell /. In terms of the
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92U UR <0>7R(,0>)
Hion = 5 Z + > Z—Ssz SRiy;| (9.91)
o= ly ’y 11751’,}/ ij aR]yl aer J

where U is the total potential energy of the lattice. Note that here the indices i and j run over the
spatial-coordinate indices x,y,z. Using Bloch’s theorem we can now expand SR,y in its spatial Fourier
coefficients at wavevector q and assume a time dependence ¢'®’:

1

— N & RO (9.92)
(]vcelljwy)l/2 % qar

SRy, =

where N, is the number of cells in the crystal. It should be noted that the periodicity of the lattice
implies that the ‘polarization vector’ éqy does not depend on the cell index /, the entire dependence
on the cell being absorbed by the phase ¢! 4R/, We also define the “lattice Fourier transform” of the
dynamical matrix as

Dijry (@) = XDy (') Rk, 9.93)
where
2 (0) (0)
D ( i ) _M (9.94)

where Ry = R; — Ry. Inserting the expansion (9.92) into the equations of motion determined by the
Hamiltonian (9.91), for each q we obtain the homogeneous linear system

% [Dyjyy (@) + 0% 8 8] Eqyj =0, (9.95)
JV

where Djjyy (q) = Dyjyy (q)/(MyM,) 1/2, The associated secular equation determines the eigenfrequen-
cies wqy of oscillations labeled by a “branch index” 1 running over 3 (one LA and 2 TA) acoustic
modes and over 3(Njons — 1) optical modes, Nig, being the number of ions in the primitive cell.

Formally, the eigenvalue problem given by Eq. (9.95) sets the framework that allows us to quantize
the vibrational modes of the lattice. In practice, if we need to obtain a quantitatively accurate phonon
spectrum, we need to calculate somehow the dynamical matrix. This requires the knowledge of the
forces acting on the ions of the crystal. We have seen in Chap. 6, Sect. 6.3.5, how DFT can be used
for this purpose. Alternative semi-empirical models have also been proposed in the past, when DFT
was not computationally viable as it is today. Without going into details, we may mention here the
Born-von Karman model [12], the “Keating’s valence force field” model [13], or the “valence shell
model” [14-16]. These models are largely empirical, relying on the lattice symmetry, on the nature
of the bond and ion—ion potential, and employ parameters related, of course, to the elastic properties
of the crystal (Fig.9.1).

Figure 9.2 on page 208 shows the dispersion for the three optical and three acoustic phonons in
Si obtained using the ‘valence shell model’ mentioned above. These spectra can be compared to the
results shown in Fig. 6.8 in Chap. 6, Sect. 6.3.5, page 109, obtained using the ab initio method of DFT.

Returning to the general formulation of the problem, we can now write the general solution of the
equations of motion as follows: Let’s normalize the polarization vectors & qy for each eigenmode 17 and

call e((g,) the unit vectors so obtained. We can now express the general solution as a linear combination
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of these normalized eigenmodes, Eq.(9.92), with coefficients Qqn which will play the role of
canonical coordinates. Note that these coefficients are determined up to an overall multiplicative
constant, which will be set by the CCR conditions below. We can view this as a simple rotation

)

of the basis vectors. Thus, we can write for the “displacement field” SRE; for each mode n:

SR[) =

1 i
N7 2 Qan (9.96)
ce q

We can now define a conjugate momentum

M

(m _ spm) _
Ply _5R1y = (Nceu

12 '
) Y el Py €9R, (9.97)
q

and quantize the system by promoting the canonical variables Py, and Qqy to operators on Fock space
and imposing the CCR (as phonons do not carry spin)

[Qqn,Pq/n/] =1ih Sqq/ 67171/7 [P(m,Pq/n/] = O, [Qqn,Qq/n/] =0. (998)
Then, using Egs. (9.95)—(9.97), the ion Hamiltonian (9.91) becomes

~

1 ~ ~ ~ ~
Hion =5 3 [ PLqyPan + @3y 0" Qan | (9.99)
qan

Once more, this is the Hamiltonian of a collection of harmonic oscillators (phonons). Defining the
annihilations and creation operators (going to the infinite-volume normalization):

N A 1/2 A ot
Qqn = (2%”) (bgn +bqy); (9.100)
~ . [ ho, 12 A
Pgy =i (;") (bgn —b" ) (9.101)

finally the phonon Hamiltonian can be rewritten in terms of the creation and annihilation operators as:

Hign =Y, hoogn bl ban (9.102)
qn

(ignoring as usual the diverging zero-point contribution) in analogy with Egs.(9.31) and (9.81).
Note that now, since phonons carry no spin, the creations and annihilation operators Bjm and i’qn
satisfy commutation rules like Eq. (9.48) for the electron operators, but with commutators in place of
anticommutators.

9.4.2 A Simple Example: A Linear Chain

Let’s consider the simpler case of a 1D chain of atoms of mass M. We can drop the indices i,j (since
we are in 1D) as well as the indices Y (since we consider only one atom in each 1D cell). We may
remain for the time being at the classical level, since quantization does not affect the phonon spectrum.
The ionic Hamiltonian becomes
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Note that:
D,y =D;_yp by translation symmetry
and

zDoJ =0 since for equal shifts OR; the crystal energy does not change.
]

Put it differently, since Dy is the force acting on the ion O due to ion /, the equation above states
that at equilibrium the total force due to all other ions acting on the ion 0 must vanish. The Hamilton
equation for the ionic momentum will be

, aI_Iion
Pr=— — N DydRy,
1 85R1 ; 1 li
or
d25R1
e — 2. DuwdRy,
t 7

Let’s also make the simplifying assumption that each ion interacts only with its nearest neighbor (so
that we can solve the problem “by hand” and not numerically). Then:

d25R[
M? =Dy ;8R;+D;110R1 41+ Dy - 10R;_1.
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By translation symmetry D;; = Dy . Without loss of generality we can consider the case / = 0. So we
can consider only the elements Dy o, Do +1, and D o. Using again the translation symmetry we have

Dy =D,
but since Dy = Dy, (it’s only a switch in the order of the derivatives), we also have
Do,1 =Dy,

so that D(),] = D],O = D*l,O = D07,] .
By the property } ;Do ; = 0 above we have

Dyo+Do,1 +Do—1=0—Dgo=—2Djp.

Let’s simply call D = D1 ¢ (the “spring” constant of the inter-ionic force). Then the Hamilton equation
of motion becomes simply:

d*6R
MTQZ =D [-28R+8R11+6R_1 ].

Now let’s set
SR =e, (idla eiwt,
where a is the equilibrium distance between the ions in the chain (our “lattice constant’). Then:
~M ®* =D [2 cos(qa) —2],

becomes our trivial “secular equation” from which we obtain the dispersion

o=2fin($)| ()

Note that the periodicity in 27 /a for ¢ defines the BZ of the 1D chain.

9.4.3 Types of Phonons

As noted, in a 3D cell having Njq,s ions, there will be three acoustic phonons (no relative motion
between ions, the whole cell vibrates) and three (Njons — 3) optical phonons (characterized by relative
displacements among ions in the same cell). The former are purely acoustic waves (like density
waves) which affect electrons by modifying (linearly) the band structure with microscopic stress
(they act like waves distorting the lattice constant as they travel). This effect is called “deformation
potential” interaction after Bardeen and Shockley. Optical phonons in polar materials (such as GaAs)
additionally carry an associated dipole field which scatters electrons in an obvious matter.

Acoustic and optical phonons can be “transverse” or “longitudinal,’, depending on whether the
displacement SR (also called “polarization”) is normal or parallel to the direction of travel q.
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Fig. 9.2 Schematic illustration of the atomic displacement associated with acoustic and optical, transverse and
longitudinal phonons in a diatomic linear chain. Acoustic modes (top and third lines) involve an in-phase displacement
of all ions in a cell, here denoted by red and blue dots. Optical modes (second and fourth lines) are associated with ions
in a given cell moving out-of-phase. Transverse modes (fop two lines) are associated with an ionic displacement along
the normal to the direction of propagation of the wave (to the right in this diagram), whereas for longitudinal excitations
(two bottom lines) the displacement is parallel to the direction of propagation (or wavevector)

9.5 Quantization of the Electromagnetic Fields: Photons

So far we have considered “excitations” of the ions + electrons system. By this we mean that in dealing
with phonons, for example, we have identified the “vacuum” state |0) with the ground state of the
ionic Hamiltonian (that is: ions at rest in their equilibrium positions). Excited states are realized
by applying the creation operator to the ground state, thus obtaining states such as |qn) = IA):rm|0>
describing the excitation of a phonon of polarization 71 and wavevector ¢. Similarly, plasmons are
“collective” excitations of the electronic Hamiltonian. And, in a way, even electronic states |k) = &, |0)
can be viewed as electrons excited from the valence band into the conduction band, if we view the
state |0) as the state in which all electrons populate the valence band (up to the Fermi level), which is
the ground state of a semiconductor crystal at zero temperature. We could take as index tt the crystal
momentum k and a band index n, so that the functions uk,(r) in Eq. (9.30), on page 193, would be
Bloch functions in band n, and [kn) = & |0) would correspond to the excitation of an electron into
the conduction band n.
In this section we temporarily abandon the environment of a crystal and consider instead the
electromagnetic field in free space. The formalism will be the same, but now the ground state
|0) will be electromagnetic vacuum. Considering the quantization of the electromagnetic field in
vacuum will allow us to introduce “photons” as particles (treated on the same footing as electrons
before) and will allow us to later calculate the Einstein’s coefficients appearing in the matrix elements
of radiative processes. Indeed, this is the first and foremost example of a field requiring “second
quantization” in order to reconcile the particle/wave nature of photons.

The procedure we follow here intentionally avoids a relativistic formulation of the electromagnetic
field as a gauge theory. Essentially, we follow Heitler’s book [17]: Originally published by Clarendon
Press in 1936, in many ways it remains useful “for all practical purposes.”
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9.5.1 Maxwell’s Equations

Consider Maxwell’s equation in ST units:

V-D=p, (9.103)
V.B=0, (9.104)
oB
VXE=-—" (9.105)
VxH:JJr%—]t). (9.106)

In vacuum and in the absence of external sources (J = 0, p = 0), recalling that D = €E, B = uH, and
that ey = 1/c?, we have

V-E=0, (9.107)
V-B=0, (9.108)
JB
VXE=——+— .10
X 5 (9.109)
1 JE
VxB=— —. 1
X 7 (9.110)

9.5.2 Lagrangian Density

Recalling the expression for the energy of the electromagnetic field, we could immediately write
down the Hamiltonian, express it in terms of Fourier components of the fields or potentials (that is,
electromagnetic plane waves) and “quantize” the result. However, let’s follow the canonical procedure,
starting from the definition of the Lagrangian density:

_ € 1o € b 2
# =SB 5 B =S (AL Vo) - 5 (Vxa), ©.111)

having introduced the usual scalar and vector potentials ¢ and A such that
E=-A-Vp, B=VxA. 9.112)

Note that Egs. (9.108) and (9.109) are automatically satisfied thanks to the definitions (9.112). The
remaining Maxwell’s equations, Egs. (9.107) and (9.110), must be derived from the Euler-Lagrange

equations. The first one,
d (0% 0 0.7 0L
—_— — == —-———=0 9.113
o1 ( 2 ) 5y <a<a¢/axj>> 3 G119

results in

V29 =0, (9.114)
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which is Eq.(9.107). The second Lagrange equation, which we can write in a somewhat “sloppy”
vector notation as

d Z 0¥
o ( ) zax, ( aA/ax,)> oA 0 G-113)
results in the equation:
z(A+V )—leVxA—o (9.116)
€ 5 (0] M =0, .

which is Eq. (9.110).

9.5.3 Hamiltonian Density

Let’s now define the canonical conjugate momentum density:

0¥ .

so that the Hamiltonian density will be
1 .
H=P-A-ZL = (A+V¢) + ﬂ(V xA)? —e(A+V9¢)-Vo

1 (P2 N (VxA)?

3 (B )—e(A+V¢)-V¢. 9.118)

2

When integrated over the entire space—in order to get the Hamiltonian—the last term in the
expression above vanishes. Indeed integrating it by parts:

e/(A+V¢)~V¢dr:/P~V¢ dr:f/d) V-Pdr=0, (9.119)

by Green’s (or “divergence” or “Gauss”) theorem, assuming that P vanishes at infinity or satisfies
periodic boundary conditions at the edge of the normalization volume. Therefore:

P2 (VxA)?
H= / HC dr / { + (X)] dr. (9.120)
-2 € u
Let’s now represent the potentials as plane waves of polarization A and wavevector k:
1 ik
A(r,f) = iz % qia (1) ey, €T +cc, (9.121)

and

1 .
P(r)= s S i (1) e €T +cc, (9.122)
v kA
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where V is the normalization volume and ey is the polarization vector. Then, using the orthonormal-
ization of the polarization vectors, the Hamiltonian can be written in terms of the ‘Fourier coefficients’
qxy. and py,, as follows:

1, 2,
H= % (6 PiaPxa ﬂqkaqkl ) . (9.123)

Equation (9.123)—as one could have seen also earlier in Eq. (9.120)—is taking the desired shape of
the Hamiltonian of a collection of harmonic oscillators. Let’s now recast it in the usual form involving
creation and annihilation operators.

9.5.4 Equations of Motion

In order to do that, let’s see what type of time dependence the quantities gy, and pi; will exhibit,
after having been promoted to operators following the usual canonical quantization. The equations of
motion for them can be derived by noticing that they obey the CCR:

@i Pyoy] = a5 Prar] = i S S (9.124)
Then:
. 1., 1 L. 5 . 1 . Pxa
o = i L H = 5 3 sy Prwr = 2 3, Sk & prow = = (9.125)
ih ik o € € €
Similarly,
b =~ o H) =~ (9.126)
Pxa = in kA 1] = m qdx.- .

Taking the time derivative of Eq. (9.125) and using Eq. (9.126), we have

A 2
N Pxa k=,
=— = . 9.127
B = =, pm dxa ( )
This has the general solution:
Gua (1) = Ay, &+ AL e (9.128)

Inserting this result into Eq. (9.125), we obtain
Pra (t) = icekAyy, e —icekA], e . (9.129)

The “coefficients” XM and Xb exhibit all of the properties of annihilation and creation operators
except for an overall normalization. Indeed, from the CCRs (9.124) and from the definitions (9.128)
and (9.129) we have

n

5 B (9.130)

[Akl 7A|T(/)U] =
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Therefore, it is convenient to define instead:

R no\ 12 o A .
Q1) = (che> g, % +at | e, (9.131)
e\ 12 no\ 12 . '
ﬁu(t)Zik(u) (che) g e —a ;e M), (9.132)
or, inverting these relations:
A _iker [ kce 12 . i /2
g, = ek (27@) [qk,l—k('l:) p_m], (9.133)
and
g (ke AT i
by, = <2h) [qkwk(e) p_u], 9.134)
Then, the CCRs become
[ a51,0] = S, (9.135)

and the Hamiltonian (9.123) becomes

~ e 1 .

H=Y hck [abakl +2} — Y hox a), g, (9.136)
kA kA

having ignored the “usual” diverging zero-point term and having used the fact that kc = w is the

energy of a photon of frequency v = ok /(27).

9.5.5 The Quantum Field and the Importance of Second Quantization

In addition to the many reasons why second quantization is necessary, we wish to point out another
aspect that is not commonly emphasized. From Eq. (9.131) we see how the “position” operator gy,
can be expressed in terms of the single-photon operators &, and &Ll. Similarly, Eq. (9.132) relates
the “momentum” operator py; to the same quantities. In turn, Egs. (9.121) and (9.122) tell us how to
express the vector and scalar potentials (via the momentum operator Py, ) in terms of the operators
gx. and Py, . As a result, we can express the vector and scalar potentials in terms of @y, and &Ll. For
example:

N 1 Nk X ket jik-
A(r,r) = v % <2kce> [y, € +a' ] ey e e (9.137)

From this—and the corresponding equation for K + Vd—we can derive the amplitude of the electric
and magnetic fields:
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N - i n \/2 4 4 .
B(r,) =V xA(r,1) = % D <2k> [ e +at e (kxeyy) €T, (9.138)
KA (63
and
= Pro) ik n N b ik-
E(r,t) = = V% g (2kc,u> [ty €T =@y, e ] ey €T (9.139)

This is the basic result of second quantization: It tells us the amplitude of the field associated to
a single quantum of excitation. Without second quantization, how could we know the strength of
the electric field associated to a photon? Similar relations apply to electrons: Eq. (9.80) gives us the
amplitude of the (scalar) potential associated to a single quantum of plasma excitations. Similarly,
Eq. (9.100), together with Eq. (9.96), allows us to calculate the displacement of each ion in terms of
the phonon creation and annihilation operators:

- 1 B\ <
5R(’7> - - em) () (b +bi ) AR (9.140)
O (NMy)1/2 % 7\ 20¢n s an

The algebraic rules allowing us to evaluate easily expectation values of the creation and annihilation
operators on the ground state |0) will ultimately allow us to calculate the strength of interactions
between electrons and these excitations (phonons, plasmons, photons), a result which we could not
have accomplished without the information, given by second quantization, regarding the strength of
the field carried by a single excitation.

Problems

9.1. Consider spinless particles in free space described by the Schrodinger field (so that the creation
and annihilation operators satisfy the canonical commutation rules). Consider the total number
operator

Show that N is a constant of motion, that is, that
ihN = [N, H] = 0.

For H you should use Eq. (9.31) and you must also show first that Eq. (9.31) follows from the spatial
integration of the Hamiltonian density, Eq. (9.24).

9.2. A vector of Fock space representing ng bosons with wavevector k can be written as

INi) = (2,)"]0).

(a) Show that the norm o of |Ni) is given by o = Ni!1/2,
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(b) Consider the “position” and “momentum” operators g and pk given by Eq. (9.42) (with u = k).
Show that, with the proper normalization:

B\ 12
(Vi 1) = (O 1l = () (O + 1)1
and that
1/2
~ ~ . Ek 1/2
(N |px Nk + 1)) g, = — (N + 1[pk|Nk)) g, = —i > (M) +1)777,

all other matrix element vanishing.

9.3. Why does the energy 7iwqy, of the acoustic branch of phonons goes to zero as g — 0? What is the
physical reason?

9.4. Dealing with the quantization of the electromagnetic field, we have considered “free space”; that
is, we have assumed no charge or current, p = 0 and j = 0. Now show that in the presence of charges
and currents, the Lagrangian density has the form

€E? B? )
$—7+ﬂ+ap¢+BJ~A.

Determine the constants ¢ and 3 so that the Euler-Lagrange equations yield Maxwell’s equations,
Eqgs. (9.103) and (9.106).
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Chapter 10
Elements of Quantum Statistical Mechanics

10.1 Quantum Statistical Mechanics

With a few exceptions, up to this point we have considered quantum systems in pure states. That is,
we have considered the system to be in a particular state associated with either a wavefunction y or a
particular state in Fock space, |nk). In practice, such a characterization applies only to systems simple
enough to give us a realistic hope of measuring accurately in which state the system finds itself. The
electronic state of an isolated hydrogen atom or the spin of a single electron may be examples of
such simple systems. However, as soon as the system becomes sufficiently large (that is, it has many
degrees of freedom), such a description becomes “unrealistic.”

On the one hand we can never hope to measure accurately the position and velocity (or, quantum
mechanically, the wavefunctions) of all molecules in a macroscopic volume of gas, or of all electrons
and ions in a semiconductor chip. This “admission of ignorance” forces us to describe such large
systems in a statistical—rather than deterministic—fashion. On the other hand, while one may
consider such an “admission of ignorance” a practical consideration which, in principle, should
not affect the deep nature of how we describe the system, it is probably correct to regard such
“ignorance” an intrinsic property of large, macroscopic systems [1]. It is such ignorance, after
all, which forces us to lose information about the system, thus introducing irreversibility into our
description of the physical world. And the irreversible flowing of time can hardly be considered a
“practical consideration” which, in principle, could be ignored when describing the world!

In order to describe macroscopic systems, “Statistical Mechanics” has been developed starting
from Maxwell, Gibbs, Boltzmann, and moving into “Quantum Statistical Mechanics” (Einstein’s
early “quantum” work). We cannot discuss it here as accurately and deeply as the subject deserves.
However, in order to understand the deep problems surrounding the issue of charge transport in solids
(an irreversible process: your laptop gets hot and heat cannot be fully recovered into more ordered
forms of energy, so the second law of Thermodynamics teaches us), we must at least mention some
concepts of Quantum Statistical Mechanics. Texts such as Jancel’s [2] and the “encyclopedic” volumes
by Zubarev and collaborators [3, 4] should be consulted by interested readers.
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10.1.1 Statistical Ensembles

The basic idea needed to account for our “ignorance” consists in introducing the concept of a
“statistical ensemble” (originally devised by Gibbs). Rather than considering a single chunk of
semiconductor, we consider an ideal collection of N identically prepared copies of our original
chunk. In conventional (i.e., deterministic) mechanics, classical or quantum, we describe with infinite
accuracy the state of the system by specifying, for example, in which of the possible wavefunctions
Yo (ry,ra,. .. ,er) (states labeled by an index ot—which can vary from 1 to Ng,ees—and functions of
the coordinates r; (i = 1,N,) of the particles constituting the system) we shall find the system. Thus,
we specify a particular o.

In Statistical Mechanics, instead, we consider a large number of systems Ngyseems and subsequently
specify the number of systems in state ¢, ny. Equivalently, we shall talk of one system and the
probability Py = ngy /Nsystems of finding the system in the state .

Most commonly, three ensembles are considered:

* The microcanonical ensemble describing a system with fixed volume in which all possible states
with a given energy E and number of particles N have equal probability of being occupied.

e The canonical ensemble describing a system with fixed volume and fixed number of particles
N but with a given expectation value for the energy (E) of the ensemble determined by the
temperature (7).

» The grand canonical ensemble describing a system with fixed volume but with a given expectation
value for the number of particles (N) and the energy of the ensemble determined by the chemical
potential (i) and the temperature, respectively.

10.1.2 Density Matrix

The properties of an ensemble are determined by the states in the system ¥, together with the
probability Py, = ngy /NsysmmS that the system is in this state. However, it is convenient to combine
the probability and the wavefunction into a single entity “the density matrix” which is defined as

2*}/* YPo ¥y (1) (10.1)
in real-space form in first quantization or
p=2lo)Palo| (10.2)
o

in first or second quantization in bra-ket notation.
The density matrix behaves as an operator yielding the probability that a system is in a given
state as

plo)="Py|a). (103)

All probabilities, which are the eigenvalues of the density matrix, have to be numbers between 0 and 1
and the sum of all probabilities has to equal one, which results in the property Tr(p) = 1. The overall
expectation value of an observable O for an ensemble is given by
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(0) =Y Pola| O] ) =Y Pola| ) (o | O] ) (10.4)
=Y (a|pO|e) (10.5)
=Tr(pO) . (10.6)

where we have used the orthogonality P, q (0 | &) = Py 0y and the completeness of the basis
o S| o) |= 1. A

Equation (10.6) can be applied in the single-particle picture where p and O are conventional
matrices and the trace is the sum of the diagonal elements. But Eq. (10.6) applies equally well in the
second quantized picture where p and O are operators acting on Fock space and the trace is defined
in Eq. (10.5) and the sum runs over a complete set of states spanning Fock space.

The amount of information contained in a quantum ensemble is given by its von Neumann
entropy [5]:

§ = —kpTr(plog(p)) (10.7)

and using the definition of the density matrix, the entropy can be rewritten using the probabilities for
each state to occur

S=—kg Y PologPq . (10.8)
o

When kg is taken to be unity, Eq. (10.8) is Shannon’s entropy from information theory. Equation (10.8)
is also Gibbs’ entropy from Classical Mechanics when P, is taken as the probability of a state
occurring in a classical ensemble.

If a system is in a pure state ¥, the system is in an extremely ordered state and there is no real need
to invoke an ensemble. Nevertheless, an ensemble describing a pure state has Py = Oy, Po/10gP o =
0 and an entropy S = 0. On the other hand, if the system is in a completely random state P, =
1/ Nsystems and the entropy reaches a maximum § = log(Nsystems) where Ngygems measures the number
of degrees of freedom in the system. In Sect. 10.1.4, we will derive the grand canonical ensemble as
an ensemble with only two constraints: a fixed expectation value of its energy and a fixed expectation
value of the number of particles in the system. All other degrees of freedom are unrestricted and
any state which satisfies both constraints is equally probable. Mathematically, the grand canonical
ensemble is the ensemble with maximizing the entropy whilst satisfying both constraints.

10.1.3 Examples of Density Matrices

To familiarize ourselves with the density matrix, we consider the spin of an electron. For the electron,
there are two are spin states available, |+) and |—), spin up and spin down along the z-axis. The
density matrix

. [1/2 0
p—[ 0 1/2] : (10.9)

corresponds to an ensemble of totally unpolarized electrons (P. = P_ = (0.5). The ensemble spin
expectation value will be

() = Ti{6:p] = 56 =0, (10.10)
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as well as (0, ) = 0 recalling that

~ |01 ~ |01 ~ |10
GX—LO} , oy—[_io] , O'z—|:0_]]. (10.11)

On the other hand, the density matrix

. [10
p= {00} , (10.12)

corresponds to an ensemble of completely polarized, spin-up electrons. The ensemble average of the
spin will be

(o) =Tt[6pl =011 =1. (10.13)
Thus, the electrons are all in pure spin-up states.

Now let’s consider our electrons as being in a (coherent) superposition of spin-up and spin-down
states. The state vector corresponding to this situation is

1 1
s)=—[(1,0)+(0,1)] = — (1,1) . 10.14
)= 75 L0+ 0.0] = 5 (1.1) (10.14)
The density matrix built out of this state will be
A 1|11
= * = - 1.1
p=s's 2{11}’ (10.15)

() =1 and (63) = (6z) =0.

Note that, unlike in Egs. (10.9) and (10.12) considered above, the off-diagonal elements are
nonzero in Eq. (10.15). The off-diagonal elements represent the fact that the system is in a coherent
superposition of quantum states. This has no classical analogue and is a feature of Quantum
Mechanics.

10.1.4 The Grand Canonical Ensemble

Without any knowledge about a system, there is no preference with regard to the system being in one
state compared to another and each state is assumed to be occupied by a particle with equal probability:
Pa = Po'- However, some knowledge is available: an isolated system is subject to the conservation of
energy. Even if our description of the system and its Hamiltonian is only approximate, the total energy
of the system must remain unchanged. The ensemble describing a closed system of which the total
energy is known is called the microcanonical ensemble and has py, = O, £/Ng where E is the energy
of the microcanonical ensemble, Ey is the energy of state o, g, £ equals 1 when E = E, and 0
otherwise, and Ny = Y, g, £ the total number of states with energy E.

Considering an electrical contact, however, the assumption that our contact is an isolated system
is no longer valid because there is exchange of energy, e.g., with phonons, and exchange of particles,
e.g., with another contact. If our contact is connected to—or is a part of—a large reservoir, energy and
particles can flow back and forth between the contact and the reservoir. Such a system is described by
the grand canonical ensemble.



10.1 Quantum Statistical Mechanics 219

If the contact and the reservoir are in equilibrium, the expectation value of the energy and the
number of particles flowing out of the contact into the reservoir vanish (d(E)/dtr = d(N)/d¢t = 0).
The microcanonical requirement that the total energy of the system E is known is now replaced by
the requirement that the expectation value of the total energy (E) is known. For the microcanonical
ensemble we implicitly assumed the number of particles remained unchanged but for our contact
described by the grand canonical ensemble, the expectation value on the number of particles (N) is
taken to be known.

An expression for the grand canonical ensemble (pgc) can be obtained by finding the ensemble
which maximizes the entropy while satisfying Tr(Hp) = (E) and Tr(Np) = (N). Any density matrix
further has the property Tr(p) = 1.

Mathematically, the entropy maximum can be found by imposing 6S = 0 while introducing
Lagrange multipliers (o, Bg, and By) for the different constraints

S6Tr (ﬁ@—&—ﬁgﬁf)—i—[ﬁffﬁ —kBﬁlog(;S)) =0,or, (10.16)
Tr ((ﬁo7+ BeH + ByN — kslog(p) —kBY) 5 ) -0 (10.17)

for any 6, which requires
Bol -+ BeH + BN — kglog(p) — kgl = 0. (10.18)

Solving for p and relabeling the Lagrange multipliers gives the grand canonical ensemble in its usual
form

p = exp (—ﬁ(H—pﬁ)) /¥ (10.19)

The Lagrange multipliers have been relabeled: 8 = Bg/kg = 1/kgT, u = Bn/BE, and By ensure that
Tr(p) = 1 which is accomplished by introducing the partition function

¥ =Tr (exp (—ﬁ(ﬁ—uﬁ))). (10.20)

If the Hamiltonian is diagonalized by the operators ¢y, the grand canonical ensemble is given by

p=1/2T] exp (fﬁ(Ek - u)qﬁek) . (10.21)
k

10.1.5 Distribution Functions

The probability that a single-particle state k is occupied in a many-particle system described by an
ensemble p is called the distribution function and is defined as

f(K) = Tr(eexp) - (10.22)

Equation (10.22) can be evaluated for the grand canonical ensemble using some algebra. A
first relation valid for any ensemble follows from the commutation/anticommutation properties of
bosons/fermions

At

Tr(eképp) F Tr(efexp) = 1. (10.23)



220 10 Elements of Quantum Statistical Mechanics

For Fermions, Eq.(10.23) is an expression of Pauli’s principle as it states that the sum of the

probabilities of finding an electron and not finding an electron (or finding a hole) Tr(ékél'(p) equals
unity. Invoking the invariance of the trace with respect to cyclic permutation gives Tr(ckckp) =
Tr(@i;ﬁ k) and we proceed by writing Tr(éiﬁék) as a function of Tr(éiékf)).

Keeping the grand canonical ensemble in mind, the commutation/anticommutation relations can
be applied inside the exponential to yield a second relation

exp (—B(Ex — )t ) = exp (B (Ex— 1)) exp (FB(Bx — w)eex) (10.24)
From the series expansion of the exponential exp(¢e') = éef +é¢fee’ /2 + -+, it follows that
exp(¢eh)e = ¢exp(e'¢) and furthermore for fermions é¢ = 0 and thus exp(+¢¢)¢ = ¢. Using the

diagonal representation of the grand canonical ensemble [Eq.(10.21)], knowing that &k commutes
with &, for k # K’ and using Eq. (10.24)

Pk = exp(B(Ex — 1))ekp- (10.25)

resulting in the relation

Tr(exeyp) = exp(B(Ex — 1)) Tr(¢féxp)- (10.26)

Substituting Eq. (10.26) into Eq. (10.23) results in the Bose—Einstein distribution for Bosons and the
Fermi—Dirac distribution for Fermions

1

f(k)= PEIF] (10.27)
Note that the distribution is only a function of the energy and it is more common to write f(E)
compared to f (k).

In practice, formally using the ensemble of a many-particle system is a tedious process and the
distribution function provides a much more convenient entity. Moreover, the distribution function
contains sufficient information to evaluate the expectation value of all single-particle operators.

Considering a single-particle operator

0=Y(k|0|K)eew, (10.28)
KK’

the expectation value of the ensemble is

(0) =Tr(p0) = ¥ (k | O | K)Tr(péxcy) (10.29)
KK’
_Zf k|O|K). (10.30)

The last step is a consequence of p being diagonalized by the k basis. For example, in real-space
notation the charge density can be computed as

Zf )| Wk (r) (10.31)

where k() is the solution of the single-particle Schrodinger equation.
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10.1.6 Equation of Motion for the Density Matrix

When the eigenstates of the ensemble are not eigenstates of the Hamiltonian of the system, the
ensemble will evolve over time. The evolution is determined by the time-dependent Schrédinger
equation

L0

The time dependence of the density matrix is easily derived:

(9l Y

R

H=1[H,p) (10.33)

(H|a)po (| - |o)palot

where, as usual, [K , E] — AB — BA the commutator.

This equation has the same form of a famous equation in classical Statistical Mechanics, the
“Liouville” equation, in which the commutator is obviously replaced by a Poisson bracket and the
density matrix is replaced by the classical distribution function. This quantum mechanical analogue
is known as the Liouville—von Neumann equation. Note two main considerations which differentiate
the time evolution of the density matrix p from that of an observable:

1. The time evolution of an observable @ is given by Heisenberg’s equation

[0,H] = i< (10.34)
ot
Note the sign difference comparing with Eq. (10.33).
2. Observables @ evolve in time in the Heisenberg representation, but are constant in the Schrédinger
representation. The density matrix p behaves in the opposite way: It is constant in the Heisenberg
representation, it evolves in time in the Schrodinger representation.

For these two reasons it is customary to call p a “matrix” rather than an “operator.” It is, of course, an
operator mathematically speaking. Yet, it does not behave exactly as an observable.
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Chapter 11
Dielectric Properties of Semiconductors

11.1 Outline

In this section we discuss the response of the semiconductor to a perturbing potential. The practical
reason which forces us to discuss this subject is, of course, our need to handle the problem of carriers
which scatter with the external potential. Unfortunately, any external perturbation causes not only the
“single-particle” scattering process we are interested in, but also a “many-body” rearrangement of all
electrons, valence and conduction, as well as of the ions (especially if the crystal is ionic). Thus, we
must consider both the electronic and the ionic dielectric properties. This rearrangement modifies the
scattering potential, so that the scattering event depends on these many-body effects as well.

In introductory textbooks of electromagnetic theory, the effect is “lumped” into a dielectric constant
of the medium: If E is the “external” electric field applied to a dielectric medium, this field will induce
a redistribution of the charges in the medium which will give rise to an additional polarization field P.
Assuming a linear relation between the perturbation E and the “response” P (a typical example of
what is indeed known as “linear response theory”), we write

P=yE, (11.1)

where x (the Greek letter “chi”) is called the “dielectric susceptibility.” Therefore, the total electric
displacement field D resulting from both the applied field E and the response P of the medium will be

D=c)E+P)=¢(E+xE)=cy(l+y)E=¢E, (11.2)

where ¢, the dielectric constant, absorbs the effect of the polarization charges.

Such a “macroscopic averaging” may be too much of a simplification in our case. In general, the
response of the system depends on both the wavelength and the frequency of the external perturbation.
In addition, semiconductors are not isotropic media. Thus a single dielectric “constant” is actually a
frequency and wavevector dependent matrix. We shall derive it in a few cases, assuming for the spatial
and temporal dependence of the perturbation a simple harmonic form of the type ¢l97e!®’. Assuming
a “linear response,” we can always Fourier-decompose any external perturbation, function of space
and time, analyze each Fourier component, one at the time, and derive the response of the system for
a particular value of q and @w. Adding the response at all wavelengths and frequencies at the end, we
may recover the response under the arbitrary perturbation.

© Springer International Publishing Switzerland 2016 223
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11.2 Ionic Response

Let’s consider first the response of the ions, which we shall treat in rather simple terms.

11.2.1 Optical Phonons in a Linear Chain

Let’s go back to our example of a linear chain of ions (page 205) and modify the problem slightly, so
that we now have two ions per “cell,” as illustrated Fig. 11.1. The ions are connected by springs with
elastic constant D, as before. The ions have alternating masses, M and m, as shown, with M > m. The
equilibrium distance between two adjacent atoms is a.

The equations of motion can be derived by writing two equations, one for the displacement u; of
the atoms of mass M and another one for the displacement u, of the atoms of mass m. So, denoting
by u;; the displacement of the ion of mass M at location ja and by u5 ; the displacement of the ion of
mass m at location (j 4 1)a, the equations of motion are

dzb;zl‘j =D(uzj—urj) + D(uzj—1 —uyj) . (11.3)
mdz‘j#’ = D(uyj1 —uz;) + D(uyj—uay) . (11.4)
Defining
up; = vy el¥aa=on (11.5)
U = vy i) (11.6)
the equations of motion become
—M ©* vy =Dvy — Dv; + Dve %4 — puyy (11.7)
—m ®* v, = DV1e** — Dv, + Dv, — DV, , (11.8)
or:
(M @* — 2D)v; + D(1 + e 2491, =0, (11.9)
D(1 + *)v; + (m w* — 2D)v, =0. (11.10)

This 2 x 2 linear homogeneous system (which is exactly the system given by Eq. (9.95) in the more
general case considered above) admits nontrivial solutions only if the determinant of the coefficients
vanishes, that is

(M @* — 2D)(m @* — 2D) — D*(1 + e*49)(1 4 e %4%) =0. (11.11)

M m M m M m M
\N-AN-@ W AN-@N-AN-0
a

Fig. 11.1 Schematic illustration of a linear diatomic chain of atoms with different masses
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The two solutions of these quadratic equations are

Wl = m% {Onb) & [om+1)* — dmsind (ga)) '} (11.12)

The choice of the “plus” sign leads to an “optical” branch that at low wavelengths (¢ — 0) and at short
wavelengths, approaching the zone boundary (¢ — 7/(2a)), behaves as

1 1
0 _ 12D Gi+gy) forg = 0 (11.13)
* % forq — 5 .

The choice of the “minus” sign yields an acoustic mode:

M+m
w- — 20 x

D 2 2 )
a — ciq” forg— 0
2 q sq" forg (1L14)
M forg — 5 -

The optical solution corresponds to a mode in which the two different ions oscillate out of phase, the
acoustic solution corresponds to a mode in which the different ions oscillate in phase.

11.2.2 Response in the Infrared

Now consider Egs. (11.7) and (11.8) and focus_ on the long-wavelength (infrared) limit ga — 0 when
adding the perturbation of an electric field Ee~'®": Assuming a positive charge e for the ion with mass
M and negative charge —e for the ion with mass m, those equations become

—M ®® vy =2D(v2— ;) + ¢E, (11.15)

—m @* vy =2D(v; — V) — ¢E. (11.16)

Dividing the first equation by M, the second one by m, and subtracting the second from the first, we
obtain

eE/u

2= G-

11.17)
where (1 is the “reduced mass” 1/(m~! +M~"). From Eq. (11.13) we recognize that 2D/ = ®% is
the squared frequency of the optical mode in the diatomic linear chain.

Now, the application of the external field E has caused a polarization of the pair, the negative ion
moving in the opposite direction of the positive ion. Thus, this polarization results in an additional
electric field

1 1 &N/u
Plon*E(m) eN(UZ*UI)*TOO) WE’ (11.18)

where N is the number of ion pairs per unit volume and (o) is the dielectric constant in absence
of the ionic response (so, at a frequency large enough so that the ions cannot respond). Note the
resonant behavior at the frequency @wro. In general, this resonant behavior of Eq. (11.18) translates
into a frequency dependence of the form:

2
6m@hd@+k@—¢w&§%;, (11.19)
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where wro in the case of a 3D crystal (more general than our simple 1D chain) is the frequency
of the transverse optical modes at long wavelengths. What Eq. (11.19) tells us is that the dielectric
“constant” approaches a smaller value €(0) at frequencies so large that the ions do not respond to the
external perturbation. Thus €(o0) = ¢, the “static” electronic dielectric constant of the semiconductor
[see below, Eq. (11.42)]. As the frequency decreases, the ions begin to respond and, after having gone
through the resonance at wro, their response results in a larger dielectric “constant” €(0). The factor
€(0) — €(e0) = €2N/(uw?,) represents the contribution of ions to the dielectric response and it is also
known as the “oscillator strength” or “f-strength.” Note that Eq. (11.19) can also be written as:

4 — oo ofp — @
€ion (@) = €( )a)%o—wz’ (11.20)

where @po is such that €jo,(r o) = 0. This shows that the dielectric constant is negative for
@10 < ® < WLo, which means that electromagnetic waves do not propagate through the crystal:
they will be damped, as the polarization of the crystal is in the opposite direction of the external field,
thus canceling it. To see this mathematically, recall that in a dielectric medium the relation between
wavevector and frequency of an electromagnetic wave is

K= E(wz)wz. (11.21)
€ncC

Whenever € < 0, k will acquire an imaginary part which tells us that the wave becomes damped.
We have yet to understand the physical meaning of @y o. Since

V-D=¢(w)V-E=0, (11.22)

assuming E = Eoe® T, for transverse modes we will have k - Eg = 0, so that Eq. (11.22) is trivially
satisfied when €(w) # 0. However, when we deal with longitudinal modes, we satisfy Eq. (11.22)
with e(w) = 0. We see that longitudinal modes correspond to the zeros of the dielectric function,
transverse modes correspond to its poles. We also see from Eq. (11.19) and the property €(w; o) =0
that

6( ) 1/2
w0 = { ] @rO - (11.23)
€(>)

This expression is known as the Lyddane—Sachs—Teller relation.

Note, finally, that since D(®) = €(®)E(®), and since in the absence of external charges D(®w) =0,
transverse modes must have a vanishing microscopic electric field E(®). Instead, longitudinal modes
can have E(®) # 0 and still have D(®) = 0, since €(@Lo) = 0. Thus, electrons will interact via polar
interactions only with longitudinal modes.

11.3 Electronic Response

Let’s now consider the response of the electrons under an external perturbing potential. We shall
not discuss the problem in its full generality: Even for the case of a homogeneous and isotropic
electron gas the problem has a long and complicated history. Instead, we shall rely on two main
simplifications.
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1. First, we shall restrict our discussion to the so-called longitudinal response. We shall assume that
our medium is isotropic (in some case thanks to a suitable transformation, such as the Herring—
Vogt transformation of k-space coordinates usually employed to “isotropize” the Si equi-energy
ellipsoids) [1], or we shall only consider the longitudinal polarization field, that is, the microscopic
field (generated by the redistribution of the charges under the external field) along the direction
of the external field itself. Transverse components, such as those which may arise from transverse
vector potentials in dynamic situations, will be ignored. A notable example of a situation where
“local transverse fields” may be important is discussed when dealing with a microscopic theory of
the electron—phonon interaction

2. The second approximation we shall embrace consists in assuming a “quasi-equilibrium” carrier
distribution. This approximation, dictated exclusively by practical computing difficulties, will be
discussed below.

The textbooks by Fetter and Walecka [2] and Mahan [3], as usual, provide a precious source of
additional details and clarifications.

11.3.1 Random Phase Approximation

Let’s consider a “free” semiconductor, i.e. a semiconductor described by the Schrodinger equation
Eq.(5.1). Let’s denote by Hy the free Hamiltonian at the left-hand side of Eq.(5.1), by i, (r) =
(r|k,u) the (Bloch) plane waves which are the eigenfunctions of the lattice Hamiltonian Hy with
eigenvalues £, (k) for each band u.

If we apply an external perturbation described by the potential ¢(¢X) (r,1), the charges in the semi-
conductor will rearrange themselves, causing an additional “polarization potential” (or “screening
potential”) ¢ PV (r,7) which modifies the original external potential. Thus, the “actual” potential in
the material will be the sum of the external perturbation and of the polarization potential,

o(r,1) = ™ (r,1) + PV (r,7) . (11.24)

We are interested in describing the total potential ¢, since this is the effective perturbation acting on
the material. We may think of (p(e") as the “bare” potential of a positively charged donor impurity
in n-type Si, described by the 1/r Coulomb potential, while ¢ will be the screened potential felt by
the conduction electrons, resulting from a single positive charge of the impurity ion and from the
negative cloud of free conduction electrons attracted by the impurity. Two approximations are very
commonly made to reduce the complexity of the problem: First, different Fourier components of
the perturbation and of the response of the system are considered independently. Cross-terms mixing
different “wavelengths” are ignored, on the grounds that their phases will vary wildly, resulting in their
cancelation. This is the so-called Random Phase Approximation (RPA). We thus transform this many-
body problem to a single-particle problem, thanks to this “mean-field” approximation. Secondly, we
assume that both the external and the polarization potentials are weak perturbations of the “free”
Hamiltonian Hy. This is the so-called “linear screening approximation” which allows us to express
the polarization charge in simple first-order perturbation theory.

Thanks to the RPA, we can state the problem more simply: Let’s expand the external perturbation
in plane waves:

P (r,1) =Y i e-iar-ior (11.25)
q
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having assumed a simple harmonic time dependence. Then, we are interested in finding the “relative
dielectric” function € (q, ®) = €(q, ) /€o, where € is the vacuum permittivity, such that

o™ = g — o = (q,0) ¢y (1126)

or Qg = (p((lex)/e(q,w) and so €(q,w)/€p = 1— (pépon/(pq. The usefulness of this expression lies in
the fact that, once we know the dielectric function €(q, ), the knowledge of the simple external
potential is sufficient to determine the net response of the system, without having to re-evaluate the
self-consistent redistribution of the charges internally to the system.

We shall proceed as follows: First, we shall employ the approximation of linear response to
determine the “new” wavefunctions of the system under the perturbation of the net potential ¢,
assuming that it is known. From the perturbed wavefunctions we shall derive the “polarization”
charge,

P (r.) = 3, py e e 127)
q

and, from this, the polarization potential. Summing the external and polarization potentials, we shall
finally solve for the net potential self-consistently.

Now we express the wavefunctions, (/’)15“ ) (r,1), of the perturbed system (lattice Hamiltonian plus

perturbing potential) in terms of the unperturbed wavefunctions l//é“ )(r,t) = (r,1]k, i), using first-

order perturbation theory (see pages 437-443):

Onpu(r,0) = Y (r,1) + Syicu(r,1)

— ™ ek, 1|k, 1) W) (g
Vic () kzu Eu (k) — Ey (k') + ho +ihs Yo (r1)

(11.28)

and

O (r,0) = " (r1) + Sy (r,0)

() e(k,ulo|k’,u’) (')
=y (1) + Ey () Fy (K) — hio s yt ) (e,1) (11.29)

K ,u'

Parenthetically, here we use the Greek letter ( to indicate the band index, instead of the “usual” index
n, in order to avoid confusion with the electron density.

* These expressions are likely to present a surprise, as they contain a “strange” imaginary term
+ifis in the denominator.