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Preface

This book is aimed at second-year graduate students in physics, electrical engineering (EE), or
materials science (MS). Its main goal is to present a rigorous introduction to electronic transport
in solids, especially at the nanometer scale, within a self-contained text (and course) and with a not-
so-hidden emphasis on computational aspects.

Understanding electronic transport in solids requires some basic knowledge of Hamiltonian
classical mechanics, quantum mechanics, condensed matter theory, and statistical mechanics. Thus,
usually, four “heavy” courses are required to acquire this background knowledge. Unfortunately, in
practice, EE and MS students may only attend a quick course on quantum mechanics at best; they
are unlikely to have ever seen the Hamiltonian formulation of classical mechanics or to have been
exposed to statistical mechanics or condensed matter beyond some quick preview, especially as far
as electronic (band) structure is concerned. MS students may be required to enroll in a class on the
electrical and optical properties of solids but this is often only a superficial introduction. Finally,
not all physics students will have seen these subjects at the depth needed. Our aim is to provide a
deep discussion of those specific subtopics of these four disciplines which are required to deal with
electronic transport, so that a single, self-contained class may suffice. This will be useful for students
who intend to work in academia or the nano-/microelectronics industry.

We assume some basic knowledge of classical mechanics (of course) and of quantum mechanics.
Therefore, only the Lagrangian and Hamiltonian formulations of classical mechanics are reviewed.
Similarly, the principles of quantum mechanics are revisited only formally, with emphasis on
canonical quantization, since this leads to its generalization to systems with infinitely many degrees
of freedom (fields) and so to second quantization, elementary excitations in solids, and scattering
processes. A bird’s-eye view of the structure of atoms, bonds, and molecules serves the purpose of
introducing some useful mathematical tools and concepts used in the text.

Topics covered in this book are: the theory of energy bands in crystals, second quantization
and elementary excitations in solids, dielectric properties of semiconductors, with an emphasis on
dielectric screening, electron scattering with phonons, plasmons, electrons, and photons, the derivation
of transport equations in semiconductors and semiconductor nanostructures, both at the quantum and
semiclassical level. The text presents examples relevant to current research, not only about Si, but also
III–V compound semiconductors, nanowires, graphene, and graphene nanoribbons. In particular, the
text gives major emphasis to plane-wave methods regarding the electronic structure of solids, both
Density Functional Theory (DFT) and empirical pseudopotentials, always paying attention to their
effect on (and numerical implementation in a description of) electron transport. The core of the text
deals with electronic transport, as we said above, with ample discussions of the transport equations
derived both in the quantum picture (the Liouville–von Neumann equation) and semiclassically (the
Boltzmann transport equation, BTE). Several methods for solving the semiclassical BTE are also
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reviewed, including the method of moments, expansions into orthogonal functions, iterative methods,
Monte Carlo, cellular automata, and direct matrix inversion.

Four appendices conclude the text. The first one presents time-independent and time-dependent
perturbation theory, as well as the Born approximation. The second appendix provides full infor-
mation, and references, about the empirical pseudopotentials that are commonly used for fcc
semiconductors. The third appendix, a quick-and-dirty introduction to the principles of special
relativity, is required to understand the “minimal” electromagnetic coupling between electrons and
photons. It also introduces the relativistic wave equation for spin-1/2 particles which, in its massless
version, describes approximately the electron dispersion in graphene. The fourth appendix pays tribute
to our emphasis on computational aspects and lists the source code of a simple computer program to
compute the band structure of Si using empirical pseudopotentials. We hope that students will enjoy
running and modifying this program.

The breath and length of the subjects presented in this text makes it impossible to cover the totality
of material presented here in a single one-semester course (typically 28 lectures of 75 min each) and
even less so in a one-quarter course. In our experience, only the basic subjects can be covered in such
a class. Subjects that may be covered “optionally,” if time allows or in a sequel of this course, have
been highlighted by an asterisk. Some are simple historical remarks or curiosities, but those that deal
with advanced topics are intentionally treated at a slightly deeper, more research-oriented level. In
these chapters and/or sections, more frequent reference is made to journal papers than to textbooks.
In the second year of a graduate program, we find it appropriate to start exposing graduate students to
the more terse and concise style used in research papers, while the students are preparing to perform
research on their own.

Richardson, TX, USA Massimo V. Fischetti
July 6, 2015 William G. Vandenberghe
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About the Notation

The use of a consistent and correct notation is always a major issue, since compromises must be
found between correctness and clarity. Here we have adopted the notation that is “conventional” in
the physics community. However, having to deal with subjects spanning a variety of subfields, we
have encountered some difficulties due to the use of the same symbols to denote different quantities
in many of these subfields. Listing some examples may also help the readers:

• The symbol q is used as electric charge in electromagnetism, as canonical position coordinate in
Lagrangian and Hamiltonian classical mechanics, and as phonon wavevector—or, more generally,
wavevector transfer—in condensed matter physics. We have avoided its use to denote charge, but
we have decided to use it both as canonical coordinate and wavevector. We felt that referring to
a position coordinate with a symbol we have not used, such as M, would have created even more
confusion.

• The symbol V usually denotes potential energy, electrostatic potential, bias applied to contacts, and
volume. We have opted for the use of Ω for volume and ϕ for the electrostatic potential, reserving
V to potential energy and voltages, and liberally used subscripts and superscripts to clarify its
meaning. Having done that, in one of the appendices, having used Ω for volume, we had to choose
a symbol to denote solid angles, almost universally denoted also by Ω . We have used ω for the
solid angle, since no radian frequencies are used in that appendix. But the fear of having created
confusion remains.

• The letter H denotes Hamiltonians. So, we have used H to denote Hamiltonian density. We were
forced to look for a different-looking font, H, when a symbol was needed to denote Hilbert spaces.

• The electric field is usually denoted by E. However, we have denoted it by F in some subfields,
in order to avoid confusion with energy, denoted by E. We have followed our usual idea of using
the symbol that is most commonly used in the literature dealing with the subject we discuss. For
example, dealing with the quantization of the electromagnetic field (Chap. 9), we have used the
symbol E. However, in chapters that treat electron transport and make frequent use of the energy
Ei or E(k) of electronic states, such as Chaps. 18 and 19, we have followed the usual convention
and employed the symbol F.

In summary, we have tried to adopt the notation and conventions that are most commonly used in
the literature specific to a particular subfield, even though this has forced us to use a slightly different
notation in different chapters of the book. We think that students, who are encouraged to read the
scientific literature, should become familiar with these conventions.

xxi



xxii About the Notation

Some additional comments are necessary:

1. Scalar quantities are indicated by italic symbols, vectors by bold symbols. So, for example, the
vector v has magnitude v. The vectors for the position and wavevector are denoted by lower-case
symbols (r and k) in three dimensions and by upper-case symbols (R and K) in two dimensions.

2. Hermitian operators acting on Hilbert spaces are denoted by a “hat,” ̂A.
3. In the Dirac notation we use, |a〉 is a general element of a Hilbert space. Two commonly used

“bases” are the plane-wave basis |k〉 of eigenstates of the momentum operator and the eigenstates
|r〉 of the position operator. Obviously and ironically, in standard courses of quantum mechanics,
having defined Hilbert spaces and such, these basis vectors are commonly used, although neither
basis belongs to a Hilbert space. Indeed, the representation of these basis states in terms of
“functions” is 〈r′|r〉 = δ (r− r′), which is not even a “function,” and 〈r′|k〉 = eik·r′ , which is not
square integrable and so does not belong to the usual single-particle Hilbert space L2(R3). The
problem is either ignored, or bypassed by defining eigen-packets, but the best answer, the definition
of “rigged” or “equipped Hilbert spaces,” is seldom discussed. We follow this “easy way out” as
well. Readers who would like to understand the mathematically correct solution could consult,
for example, I.M. Gelfand and N.J. Vilenkin, Generalized Functions, vol. 4: Some Applications of
Harmonic Analysis. Rigged Hilbert Spaces (Academic Press, New York, 1964).

4. The notation ∑q represents the sum over the “quantum numbers” q. Depending on whether q
represents a quantum number in the discrete or continuum spectrum, a fact that often depends
on the normalization chosen, it should be interpreted as follows: For normalization over a finite
volume Ω ,

∑
q

f (q) δ (q−q0)→ 1
Ω ∑q

fq δq,q0 .

So, we tacitly imply a division by the normalization volume, and the “Dirac delta-function” should
be interpreted as a Kronecker delta. For normalization over an infinite volume in n dimensions,
instead,

∑
q

f (q) δ (q−q0)→ 1
(2π)n

∫

dq f (q) δ (q−q0) .

So, we imply a division by the phase-space factor (2π)n and the Dirac delta-function should be
interpreted as a genuine tempered functional over a Hilbert space (to be pedantic). Therefore,
we shall be “sloppy” and consider expressions like f (q) and fq as equivalent, much to a
mathematician’s horror, but we have already horrified mathematicians by writing

∫

f (q) dq as
∫

dq f (q), as is common in the physics community. Note, however, that occasionally it will be
necessary to show explicitly the normalization volume, for example, when decomposing an integral
over the entire normalization volume into identical integrals over unit cells of the crystal.



List of Symbols

Special symbols are defined in the text when first introduced. We list here only symbols, not defined
in the text, that have an almost universal meaning, including physical constants:

ε0 Permittivity of vacuum, 8.854187817×10−12 F/m
μ0 Permeability of vacuum, 4π×10−7 N/A2

μB Bohr magneton, eh̄/(2mel) = 9.27400968(20)×10−24 J/T
c Speed of light in vacuum, 2.99792458×108 m/s
e Magnitude of the electron charge, 1.602176565(35)×10−19 C
h Planck constant, 6.62606957(29)×10−34 J·s
h̄ Reduced Planck constant, h/(2π) = 1.054571726(47)×10−34 J·s
kB Boltzmann constant, 1.3806488(13)×10−23 J/K
mel Electron mass, 9.109 38291(40)×10−31 kg
Ry Rydberg unit of energy, [e2/(4πε0)]

2mel/(2h̄2) = 13.60569253(30) eV
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Part I
A Brief Review of Classical and Quantum

Mechanics



Chapter 1
Canonical Quantization of Physical Systems

1.1 Overview

The electronic properties of crystals, of their dielectric behavior, of the dynamics of electrons in
solids, and of the elementary excitations with which electrons (or photons) interact, are the topics
treated in the main chapters of this text. Treating these topics requires a formal use of Quantum
Mechanics that goes beyond what is usually presented in introductory courses. In this chapter we
set the foundations of the formalism used in following chapters: We first discuss why we need a
formulation of Quantum Mechanics that goes beyond the simple single-particle Schrödinger equation.
We then review the Lagrangian and Hamiltonian formulation of Classical Mechanics, since this
leads to the formal Canonical Quantization; that is, the formalism that allows us to “quantize” any
physical system starting from its classical description. Whereas in this chapter this formalism is
applied only to systems with a finite number of degrees of freedom (so, excluding fields), in later
chapters this limitation will be lifted, following a natural extension of what is discussed here. Having
quickly reviewed the main mathematical structure on which Quantum Mechanics rests, Hilbert spaces
and bound Hermitian operators on Hilbert spaces, we finally briefly touch upon the problem of
interpreting the mathematical formalism in physical terms and present formally the interpretation
commonly known as the “Copenhagen interpretation.” We shall proceed very formally, assuming
previous knowledge of Quantum Mechanics in its simple formulation. As a result, in contrast to the
other chapters of this book, here we will use a more terse, concise, less discursive style, since we
intend to set the foundations in terms of concept and terminology used later.

As a matter of notation, operators will be denoted by symbols with “hats,” the usual mathematical
notation. In some mathematical texts they are denoted by bold symbols. However, we shall follow the
conventional notation adopted by the physics community of reserving bold characters for vectors.

1.2 Formalization of Quantum Mechanics: Why?

Quantum Mechanics, as a formal “theory” of the microscopic world as we know it today, is the fruit of
the efforts made in the 1930s to formalize the patchwork picture that had emerged in the few decades
before. As one can read from any textbook on Quantum Mechanics, the end of the nineteenth century
broke the attitude of certainty that had inspired the confidence of physicists up to that point: On the
one hand, the fact that Maxwell’s equations are not invariant under Galilean relativity, as Newton’s
equations are, together with the Michelson and Morley experiment, related to this Galilean-relativity

© Springer International Publishing Switzerland 2016
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4 1 Canonical Quantization of Physical Systems

issue, pointed at the need to revisit the concept of ether. This eventually led to Einstein’s theory of
special relativity [1]. On the other hand, several puzzles posed by experiments dealing with light and
matter at the microscopic scale questioned the validity of the theory of electromagnetism and classical
Statistical Mechanics to explain the spectrum of a black body, the photoelectric effect, Compton
scattering between light and electrons, and, of course, the structure and stability of the hydrogen atom,
as postulated by Bohr’s theory [2]. Planck’s work on the black-body spectrum (see, for example, [3])
[4], Einstein’s explanation of the photoelectric effect (and, implicitly, of Compton scattering) [5],
and Heisenberg’s [6] and Schrödinger’s [7] work published in 1925 and 1926, respectively, gave
each explanations of the phenomena. But these explanations were somewhat ah hoc and partial.
For example, Schrödinger’s equation could be applied successfully to explain the spectrum of the
hydrogen atom. But how to apply the same type formalism to a vibrating or rotating molecule?
Einstein’s work explained the wavelength dependence observed in the photoelectric effect. But how
to treat the electromagnetic field on the same “quantum” footing used to deal with the electrons?

In order to build a formal more general theory applicable, in particular, to crystals, we must revisit
the Hamiltonian formulation of Classical Mechanics. This will lead to a complete and consistent
procedure to “quantize” any physical system. In this chapter this will be limited to systems with a
finite number of degrees of freedom (so, system constituted by a finite number of “discrete” particles,
each of them, in turn, possibly with a finite number of discrete internal degrees of freedom, such as
spin up or down). More general systems with an infinite (actually, a continuum) number of degrees of
freedom, or “fields,” will be treated in later chapters.

1.3 Lagrangian and Hamiltonian Formulation of Classical Mechanics

1.3.1 Hamilton’s Principle

Consider a system with N degrees of freedom. N may be thought of as equal to 3n, where n is the
number of classical particles in three dimensions. Let qi be their “generalized” coordinates, with
i = 1,N. By “generalized” we mean that these coordinates are related to the position of particle α
via relations of the form rα(q1,q2, . . . ,qN). Thus, the coordinates qi may be the particles positions
in another coordinate system (polar, cylindrical, etc.), or may be the coordinates on the subspace on
which the system is forced to be by constraints (such as particles on a surface of a sphere), so that, in
this case N < 3n.

Now assume that forces induced by interactions among the particles, or due to an external source
(such as gravity or electromagnetic fields, for example), can be described by a potential energy V(q)
[where the q labels the N-dimensional vector (q1,q2, . . . ,qN)] and let’s define the kinetic energy T of
the system:

T(q̇) =
1
2∑α

mαv2
α =

1
2∑α

mα

(

∑
i

∂rα
∂qi

q̇i +
∂rα
∂ t

)2

. (1.1)

Defining the Lagrangian function:

L(q, q̇) = T(q̇)−V(q) , (1.2)

the time integral of the Lagrangian,

S[q] =
∫ t2

t1
L(q, q̇)dt = 0 , (1.3)
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is called the “action” and should be considered as a “functional” of all possible trajectories [q(t), q̇(t)]
of the system. Hamilton’s principle states that the motion of the system, [q(t), q̇(t)], during the time
interval (t1, t2) is such that

δS[q]
δq

= 0 . (1.4)

This simply states that the action is an extremum when we substitute the physical trajectory [q(t), q̇(t)]
in the integral above of the Lagrangian functional.

1.3.2 A Primer on Variational Calculus

How do we solve the variational problem described by Eq. (1.4)? Let f (y, ẏ,x) (with ẏ = dy/dx) be a
functional of y and ẏ and let’s look for the particular function y(x) for which the integral

I =
∫ x2

x1

f (y, ẏ,x) dx (1.5)

is an extremum, with the boundary conditions y(x1) = y1 and y(x2) = y2. Let’s parametrize all possible
“trajectories” y(x) by a parameter λ , so that the integral I becomes a function of λ ,

I (λ ) =
∫ x2

x1

f [y(x,λ ), ẏ(x,λ ),x] dx . (1.6)

Then, our problem consists in solving

∂I (λ )
∂λ

= 0 . (1.7)

Now:

∂I (λ )
∂λ

=
∫ x2

x1

{

∂ f
∂y

∂y
∂λ

+
∂ f
∂ ẏ

∂ ẏ
∂λ

}

dx . (1.8)

The second integral can be integrated by parts:

∫ x2

x1

∂ f
∂ ẏ

∂ 2y
∂x∂λ

dx =
∂ f
∂ ẏ

∂y
∂λ

∣

∣

∣

∣

x2

x1

−
∫ x2

x1

d
dx

(

∂ f
∂ ẏ

)

∂y
∂λ

dx . (1.9)

Our boundary conditions require all functions to take the same values y1 and y2 at x1 and x2, so the
first term vanishes. Thus,

∂I (λ )
∂λ

=
∫ x2

x1

(

∂ f
∂y

− d
dx
∂ f
∂ ẏ

)

∂y
∂λ

dx . (1.10)

Now let’s consider the variation of y around an arbitrary value λ0. Then:

(

∂I
∂λ

)

0
dλ =

∫ x2

x1

(

∂ f
∂y

− d
dx
∂ f
∂ ẏ

) (

∂y
∂λ

)

0
dx dλ . (1.11)
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Now set

δI =

(

∂I
∂λ

)

0
dλ , (1.12)

δy =

(

∂y
∂λ

)

0
dλ , (1.13)

and

δ ẏ =

(

∂ ẏ
∂λ

)

0
dλ . (1.14)

Thus, Eq. (1.11) becomes

δI =
∫ x2

x1

(

∂ f
∂y

− d
dx
∂ f
∂ ẏ

)

δy dx = 0 . (1.15)

But now note that δy is an arbitrary variation of the trajectory. The only way Eq. (1.15) can be satisfied
is when the term within parentheses vanishes, that is

∂ f
∂y

− d
dx
∂ f
∂ ẏ

= 0 . (1.16)

This is known as the Euler equation (although there are so many “Euler equations” in so many areas
of mathematics and physics!).

1.3.3 Euler–Lagrange Equations

Equation (1.4) can be solved in a very similar way, leading us to the Euler–Lagrange equations:

d
dt
∂L
∂ q̇i

− ∂L
∂qi

= 0 . (1.17)

Note immediately that this formulation of Classical Mechanics exhibits explicitly some conservation
laws: If the Lagrangian L does not depend explicitly on the variable qj for some j, then from Eq. (1.17)
we see that

pj =
∂L
∂ q̇j

(1.18)

is a constant of motion, i.e., is a conserved quantity during the time evolution of the system. In this
case, qj is said to be a “cyclical coordinate” while pi is called the “canonical generalized conjugate
momentum.”
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1.3.4 Hamiltonian and Hamilton’s Equations

This observation, as well as the definition of the conjugate momentum, gives the idea of transforming
the Lagrangian L into a functional of q and p, rather than of q and q̇. This can be done by the Legendre
transform

L(q, q̇, t)→ H(q,p, t) =∑
i

piq̇i −L(q, q̇, t) . (1.19)

This is the familiar “Hamiltonian.” In order to derive the equations of motion, note that

dH =∑
i

∂H
∂qi

dqi +∑
i

∂H
∂pi

dpi +
∂H
∂ t

dt . (1.20)

On the other hand, from the definition (1.19), we also have

dH =∑
i

q̇idpi +∑
i

pidq̇i −∑
i

∂L
∂ q̇i

dq̇i −∑
i

∂L
∂qi

dqi − ∂L
∂ t

dt . (1.21)

Note that the second and third terms in this equation cancel, thanks to the definition (1.18). Since
ṗi = ∂L/∂qi, Eq. (1.21) becomes

dH =∑
i

q̇idpi −∑
i

ṗi dqi − ∂L
∂ t

dt . (1.22)

Comparing Eqs. (1.20) and (1.22) we arrive at the canonical Hamilton’s equations:

q̇i =
∂H
∂pi

, (1.23)

ṗi =−∂H
∂qi

, (1.24)

together with

∂H
∂ t

=−∂L
∂ t

. (1.25)

1.3.5 Poisson Brackets

A very abstract reformulation of Hamilton’s equations relies on the use of the Poisson brackets
between any two functions A(q,p) and B(q,p):

{A,B}=∑
i=1

(

∂A
∂qi

∂B
∂pi

− ∂A
∂pi

∂B
∂qi

)

. (1.26)
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We shall call any function of q and p a dynamic variable. Using this definition, it is trivial to see that
Eqs. (1.23) and (1.24) can be written as

dqi

dt
= {qi,H} , (1.27)

dpi

dt
= {pi,H} , (1.28)

while for a general dynamic variable A(q,p):

dA
dt

= {A,H}+ ∂A
∂ t

. (1.29)

Note also the following relations:

{qi,pj}= δij , {qi,qj}= 0 , {pi,pj}= 0 . (1.30)

This reformulation of the laws of Classical Mechanics was developed in the late seventeenth [8]
and early nineteenth century [9]. At that time, it was part of the attempts to re-express Newton’s laws
in a way that made it possible to employ the symmetries of the system in order to identify constants
of motion and, as a consequence, simplify the task of finding the motion of the system. Together
with the search for a proper transformation of coordinates that rendered the symmetry transparent
(see the text by Goldstein [10] for an outstanding discussion of symmetries, generating functions, and
the Hamilton–Jacobi equations), this formal structure of Classical Mechanics represents one of the
most elegant formulations in mathematical physics. However, here we are interested in seeing how
this abstract formalization allows us to treat a general physical system from a quantum-mechanical
perspective. We shall see shortly how those “dry” and abstract equations, employing the Hamiltonian
and Poisson brackets, can be converted to a complete formulation of quantum dynamics with a simple
change of perspective and interpretation of the mathematical symbols. This change of perspective is
formally simple, but conceptually deep.

1.4 Formal Structure of Quantum Mechanics

1.4.1 Hilbert Spaces

We now introduce the basic ideas about the mathematical structure on which Quantum Mechanics
is based. Again, we shall first present in “terse” terms the mathematical concepts and we shall later
discuss the physical picture. Let’s start with some basic definitions of “abstract algebra.”

Some Definitions

• A ring R is a set in which two binary operations are defined: addition and multiplication. The ring
is an abelian (i.e., multiplication is commutative) group under addition and a semigroup (i.e., the
inverse does not necessarily exist) under multiplication.

• A field (or corpus) F is a ring whose nonzero elements form a group under multiplication. Real
numbers, complex numbers, and rational numbers, for example, form well-known fields.

• A vector (or linear) space V over a field F is a set for which a binary operation (“+”, vector
addition) and a multiplication by an element of the field (scalar product) are defined such that
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1. ∀u ∈ V ;∀α ∈ F | αu ∈ V .
2. ∀u,v ∈ V ;∀α,β ∈ F | αu+βv ∈ V.
3. The vector addition satisfies the conditions of commutativity, associativity, and admits an

identity and an inverse element, that is

u+v = v+u (commutativity)
u+(v+ z) = (u+v)+ z (associativity)
∃0 | ∀u | 0+u = u (existence of identity element)
∀u ∃(−u) | u+(−u) = 0 (existence of inverse element)

4. The scalar product and the vector addition are compatible in the sense that

α(u+v) = αu+αv (distributivity I)
(α+β )u = αu+βu (distributivity II)
(αβ )u = α(βu) (compatibility)
1u = u (where 1 is the identity element in F)

5. Linear independence: Two elements u and v of V are said to be linearly independent when u
cannot be expressed as scalar multiple of v and vice versa. A set of more than two vectors are
said to be linearly independent when none of them can be expressed as a linear combination of
the other vectors.

6. Dimension of V: A basis in V is a minimal set of n linearly independent elements ui (i = 1,n)
such that every element of V can be expressed as a linear combination of them. The integer n is
the “dimension” of the vector space.

• A normed vector space is a vector space in which a “norm” ‖u‖ ∈ R (or “length”) of a vector u
is defined. This defines a “metric” which allows us to define the “distance” between two vectors u
and v as ‖u−v‖ which can be used to define a topology.

• An inner-product vector space is a vector space in which a new binary operation (“inner product”
or “dot product”) is defined such that ∀u,v ∈ V | (u,v) ∈ F.

• A normed inner-product vector space is a vector space in which the “norm” ‖u‖ is defined by the
inner product: ‖u‖=√(u,u).

• A topological vector space is a normed, inner-product vector space in which the topology is defined
by the norm, that is, the notion of “u and v being close” is determined by the norm ‖u−v‖.

• A complete topological space is a topological space in which every Cauchy sequence has a limit. (A
Cauchy sequence is a sequence sn (n = 1, ∞) such that ∀ε ∈R ∃N ∈ Z | ‖sn+1 − sn‖< ε ∀n > N).

• A Banach space B is a complete normed topological vector space.
• A Hilbert space H is a Banach space in which the norm is given by the inner product.

In simple words, Hilbert spaces are rich mathematical entities: Their structure is well suited
to Quantum Mechanics because their linear (vector) structure captures automatically the linear
superposition principle, as we shall see below. Their topological nature inherited by a metric in turn
defined by a norm—that is, the possibility of defining distances, “proximity,” completeness, “size”
of elements—leads to simplified calculus. The additional fact that the norm derives from an inner
product adds to this richness, making possible to define “projections” in a natural way. An intuitive
way to view Hilbert spaces is to regard them as conventional three-dimensional space R (i.e., the usual
vector space R

3 built on the field R) extended to a continuum of dimensions. Regarding the vector ψ
as an infinite-dimensional version of a conventional vector v, the inner product (ψ1,ψ2) corresponds
to the dot-product v1 ·v2; the norm ||ψ|| to the “length” |v|.
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As in the space R, one can introduce a set of “coordinates” (x1,x2,x3) by defining three linearly
independent orthogonal vectors of unit length, e1, e2, and e3, and defining the ith component vi of the
vector v by projecting it onto the vector ei, vi = ei ·v, so one can define a “complete basis” of elements
of the Hilbert space as a set {φi} of orthonormal vectors (that is, such that (φj,φi) = δji) and such that
any element of the Hilbert space can be represented by its coordinates ψj = (φj,ψ), so that

ψ =∑
j

ψj φj =∑
j

(φj,ψ) φj . (1.31)

In its most commonly used and simplest realization, the space of single-particle wavefunctions, the
Hilbert space is the space of all square-integrable complex functions of three real variables, L2(R3)
with the norm of a “vector” ψ given by

‖ψ‖=
∫

R3
|ψ(r)|2 dr , (1.32)

and inner product between two vectors ψ1 and ψ2

(ψ1,ψ2) =
∫

R3
ψ∗

1 (r) ψ2(r) dr . (1.33)

In the following we will use Dirac “bra-ket” notation: A vector in a Hilbert space will be denoted
by |ψ〉, and the inner product between |ψ1〉 and |ψ2〉 by 〈ψ1|ψ2〉. “Kets” |ψ〉 appear on the right,
“bras” 〈ψ| appear on the left. For the special case of L2(R3), “bras” can be viewed as entering the
integral Eq. (1.32) via the “complex conjugate” of the function ψ . In this notation, Eq. (1.31) becomes

|ψ〉=∑
j

|φj〉〈φj|ψ〉 . (1.34)

Formally, we can identify ∑j |φj〉〈φj| as the identity mapping ̂I (or “operator,” as defined below). It is
usual to write

̂I =∑
j

|φj〉〈φj| . (1.35)

The right-hand side of this equation is usually called a “completeness.”

1.4.2 Operators on Hilbert Spaces

As we shall see shortly, classical dynamic variables—functions of the generalized coordinates and
their conjugate momenta, such as linear or angular momentum—are mapped to a particular class of
operators acting on Hilbert spaces—namely, bound or continuous Hermitian operators—according
to Canonical Quantization. Some mathematical definitions must be given before explaining why and
how these operators are associated with physical observables.

• Linear operators. A linear operator ̂A on a Hilbert space H is a linear map H→H, that is

∀u ∈H, ̂Au = v ∈H

∀u,v ∈H, ∀α,β ∈ F, ̂A(αu+βv) = α̂Au+β̂Av
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Note that linear operators form a vector space themselves: If ̂A and ̂B are linear operators, then
also α̂A+β̂B is a linear operator. Moreover, a product ̂ÂB may be defined as ̂ÂBu = ̂A(̂Bu). The
inverse element corresponding to ̂A will be denoted by ̂A−1. Combining the operator product and
the inverse element with the definition of the “identity operator” ̂I such that ∀u ∈H,̂Iu = u, this
defines a group. However, note that this defines a “nonabelian” group, since in general ̂ÂB �= ̂B̂A.
The operator equal to the difference between ̂ÂB and ̂B̂A is called the “commutator,” [̂A,̂B] =
̂ÂB− ̂B̂A.

• A bounded or continuous linear operator is an operator ̂A such that

∀ε ∈ R | ‖u−v‖< ε ,∃δ ∈ R | ‖̂A(u−v)‖< δ

• Hermitian adjoint operator: The Hermitian adjoint (or conjugate or transpose) ̂A† of a (bounded)
operator ̂A is defined as the operator such that

(v,̂Au) = (̂A†v,u) ,

∀v,u ∈H.
• A Hermitian or self-adjoint operator is an operator which is identical to its adjoint, so that

(v,̂Au) = (̂Av,u) ,

∀v,u ∈H.
• Spectrum of an operator: The spectrum of a linear operator ̂A is the set of all its eigenvalues λi, that

is, those elements of F such that

̂A ui = λi ui ,

where the vectors ui are the eigenvectors of ̂A.
A few very important theorems: (1) The spectrum of a Hermitian operator on a Hilbert space H on
the field C is real; (2) Eigenvectors corresponding to different eigenvalues are orthogonal; and (3)
The set of its eigenvectors spans the entire Hilbert space, i.e., it forms a (complete) basis.
Let’s prove the first two theorems.
If ̂Au = λu with u �= 0, then:

λ (u,u) = (u,̂Au) = (̂Au,u) = λ ∗(u,u)

which proves that λ is real. Moreover, let’s assume that ̂Av = μv. Then:

λ (v,u) = (v,̂Au) = (̂Av,u) = μ(v,u) ,

but if λ �= μ , we must have (v,u) = 0.
Another very important theorem: Two commuting Hermitian operators have common eigenvectors.
This can be easily proved as follows: Consider an eigenvector a with eigenvalue α of the operator
̂A that commutes with the operator ̂B. Thus:

̂A a = α a . (1.36)

Applying the operator ̂B to both sides of this equation, we have
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̂B ̂A a = ̂B α a = α̂B a = α b , (1.37)

having set b = ̂B a. On the other hand, thanks to the fact that the two operators commute:

̂B ̂A a = ̂A ̂B a = ̂A b . (1.38)

Comparing the right-hand sides of Eqs. (1.37) and (1.38), we see that b is also an eigenvector of
̂A with the same eigenvalue of a. Therefore, either b coincides with a up to a constant γ , so that
̂B a = b = γ a, which shows that a is an eigenvector also of ̂B with eigenvalue γ; or, alternatively,
b belongs to the same subspace of degenerate eigenvectors to which a belongs. In either case, this
shows that ̂A and ̂B have common eigenvectors.

The importance of the first theorem above cannot be overstated: In order for an operator to
correspond to a physical observable and for its eigenvalues to correspond to results of an experiment
aimed at measuring the value of that observable for a system in a given state, it is absolutely necessary
that all eigenvalues of the operator be real numbers, obviously.

In Dirac’s notation, an operator (observable) ̂A acting on a vector |ψ〉 will be denoted as ̂A|ψ〉.
The inner product between ̂A|ψ1〉 and |ψ2〉 by 〈ψ2|̂A|ψ1〉. The quantity 〈A〉 = 〈ψ|̂A|ψ〉 is called the
“expectation value” of ̂A on |ψ〉. Note that, since the observable ̂A is Hermitian, there is no confusion,
so one can view 〈A〉 either as the inner product of ̂A|ψ〉 with 〈ψ| or of 〈ψ|̂A with |ψ〉. We shall call
〈ψ1|̂A|ψ2〉 the matrix element of ̂A between |ψ1〉 and |ψ2〉 and denote it by A12. Note that A21 = A∗

12,
that is, 〈ψ2|̂A|ψ1〉∗ = 〈ψ1|̂A|ψ2〉.

1.4.3 Canonical Quantization

We are finally ready to describe in detail how any physical system described classically in Hamiltonian
terms can be treated quantum mechanically. Let’s start by describing this procedure, called “canonical
quantization,” very schematically. We shall then discuss how to interpret physically the mathematical
construct.

1. Define a Hilbert space H associated with the system. Vectors of this space are state vectors of the
system. Observables (or dynamical variables) are (“bounded” or “continuous”) Hermitian operators
on this space.

2. Provide a Hamiltonian classical description of the system, identifying the canonical coordinates q
and momenta p.

3. Promote the canonical variables to operators acting on the Hilbert space H,

qi → q̂i , pi → p̂i =−ih̄
∂
∂qi

, (1.39)

and convert Poisson brackets {. . . , . . .} to commutators [. . . , . . .] , so that

[q̂i, p̂j] = ih̄δij , [q̂i, q̂j] = 0 , [p̂i, p̂j] = 0 . (1.40)

∗ The idea of associating the classical momentum with the spatial derivative originates from the
theory of continuous groups called Lie groups. In rough terms, we can associate transformations
with “generating operators” and generating functions. Translations in time are associated with
energy and their infinitesimal generating operator is: “take the time derivative.” Similarly,
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translations in space are associated with momentum along the direction of the translation and
the corresponding operator is the spatial derivative along that direction. Note the analogy with
conservation laws and symmetries, by the way. One may speculate that Schrödinger “derived”
his equation starting from E = H. He then interpreted the energy E as the generating operator
of translations in time and the momentum entering the Hamiltonian H as the generating operator
of translations in space. Hence, the ih̄d/dt for E, the −ih̄∇ replacing p inside H. The imaginary
units come from Lie groups, since transformations are expressed as complex exponentials of the
infinitesimal generating operators. Some other constant with the units of action (h̄) is demanded
by dimensional considerations but, clearly, Schrödinger must have known that something related
to the Planck constant had to enter the picture.

4. In the so-called Heisenberg representation, state vectors do not evolve in time, but dynamical
variables (operators) do and they evolve according to equations of motion that are similar to the
Hamilton equations in their Poisson brackets form, Eq. (1.29):

d̂A
dt

=
i
h̄
[̂H,̂A]+

∂̂A
∂ t

. (1.41)

5. In the so-called Schrödinger representation, instead, dynamic variables do not evolve in time but
state vectors do. The equation of motion for the state vectors is given by Schrödinger equation
which, in its most abstract and general formulation takes the form:

ih̄
du
dt

= ̂H u . (1.42)

6. Equivalence of the Heisenberg and Schrödinger representations. What we can “know” about a
physical system consists of the information contained in the expectation values of the observables.
Thus, the entire physical content of the theory is captured by the time evolution of the expectation
value (u,̂Au) of the observable associated with the operator ̂A, knowing that the system was initially
in the state u. Therefore, consider first the Heisenberg picture in which the state vector is fixed in
time and the observable evolves, Eq. (1.41):

d
dt
(u,̂A(t)u) = (u,

d
dt
̂A(t)u)

=
i
h̄
(u, [̂H,̂A(t)]u)

=
i
h̄
[(u, ̂ĤA(t)u)− (u,̂A(t)̂Hu)]

=
i
h̄
[(̂Hu,̂A(t)u)− (̂A(t)u, ̂Hu)] . (1.43)

Now let’s stop for a moment and change perspective, freezing the observable at time t, but letting
now the state vector u evolve in time. So, let’s rewrite the last term of Eq. (1.43) as

i
h̄
[(̂Hu(t),̂Au(t))− (̂Au(t), ̂Hu(t))] ,

and use now Schrödinger equation, Eq. (1.42), to express ̂Hu(t) as ih̄ du(t)/dt. Then the expression
above becomes
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i
h̄

[

−ih̄

(

du(t)
dt

,̂Au(t)
)

− ih̄

(

̂Au(t),
u(t)
dt

)]

=
d
dt
(u(t),̂Au(t)) , (1.44)

which is once more the time evolution of the expectation value of the observable ̂A when the system
is on the state u, now in the Schrödinger representation. This shows that the two representations
provide identical physical information about the dynamical evolution of the system.

1.4.4 The Copenhagen Interpretation

In his textbook “The Principles of Quantum Mechanics,” Dirac introduced the superposition principle
as the basic principle of Quantum Mechanics [11]. Gordon Baym followed the same approach [12].
According to this principle, a physical system can be in a linear superposition of two distinct states
(two eigenvectors of an observable corresponding, in general, to different eigenvalues of that observ-
able). A photon, for example, can be in a linear superposition of clockwise and counterclockwise
polarization, or an electron can simultaneously pass through the top and the bottom slit of a double slit.

Certainly, this principle embodies the “weirdness” of the quantum world, as it emerged from those
experiments (polarization, double slit) of the early days, and it has emerged even more strikingly in
recent experiments, especially Alan Aspect’s “proof” [13] (why this is in quote will be discussed
shortly) of the Bell inequality [14] that was originally aimed at supporting the EPR paradox [15].
We shall return briefly to these issues. However, the superposition principle per se does not provide
an interpretation of what a “state” is, of what result one will obtain from the measurement of an
observable. At a more philosophical level, it does not provide a clear “intuitive” picture of how to
define “reality” in the quantum world.

That such a satisfactory picture was in doubt emerged right from the early work by Heisenberg [6]
and Schrödinger [7]. “What is the wavefunction?” was a question that triggered a period of confusion
and intense discussion. It is fair to say that this discussion continues today.

This text is not the right venue to present an overview of all the possible interpretations that have
been offered: From Everett’s “many-worlds” interpretation [16] to Bohm’s semiclassical trajectories
in a quantum potential [17, 18], from Griffith’s and Omnes’ “consistent histories” [19, 20] to classical
models resulting in quantum behavior in a stochastic environment [21], from the postulation of a new
universal physical constant inducing spontaneous decoherence [22], all the way to the formulation
in absence of “observers,” as demanded in the cosmological context [23]. We are interested in
computational aspects (as the saying goes: We belong to the “shut-up and compute” philosophical
school). We adopt the so-called Copenhagen interpretation since, so far, it has proven more than
adequate to tackle computational problems providing results that can be successfully compared to
experimental observations.

There is no unique way to define “the Copenhagen interpretation.” While Niels Bohr was its
champion (hence the name, from the institute he directed in Copenhagen), it emerged from ideas
originating in the late 1920s with contributions from all of the major players of the time. Its most
formal crystallization is due to Jordan [24, 25] together with Born and Heisenberg, and especially to
John von Neumann [26]. We list below the main “axioms” that most people would agree define the
Copenhagen interpretation. Violating a correct historical perspective, we formulate these axioms in
terms of the Canonical Quantization framework we have outlined above.

1. Any physical system can be in any of the states |ψ〉 belonging to the Hilbert space associated
with the system. This Hilbert vector embodies the totality of information we can obtain about
the system and there is no additional information, like “hidden variables,” local or not. The state
itself, however, is not observable.
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2. Although one may define and, in principle, measure many dynamical variables associated with
the system, only commuting observables can be measured simultaneously. Complementary
observables can be measured simultaneously only within the limitations posed by the Heisenberg
uncertainty principle: Defining the “standard deviation” σA = [〈̂A2〉− 〈̂A〉2]1/2 for an observable
̂A in terms of expectation values on a state |ψ〉, if ̂A and ̂B are two observables, then

σAσB ≥ 1
2

∣

∣

∣〈[̂A,̂B]〉
∣

∣

∣ (1.45)

the equal sign being achievable only for a suitably selected “minimum uncertainty” state. For
the well-known case of position and momentum of a particle in one dimension, [x̂, p̂] = ih̄, so
Eq. (1.45) takes the well-known form σxσp ≥ h̄/2.

3. (Schrödinger picture). An isolated system in the state |ψ〉 will evolve in time according to the
“generalized” Schrödinger equation

d
dt
|ψ〉= ̂H|ψ〉 , (1.46)

where ̂H is the Hamiltonian operator.
(Heisenberg picture). Alternatively, an isolated system initially in a state |ψ〉 will remain in this
state, but observables ̂A evolve in time according to the Hamilton equation (1.41):

d̂A
dt

=
i
h̄
[̂H,̂A]+

∂̂A
∂ t

. (1.47)

In terms of the dynamics of the results expected from measurements, as described below, we have
seen that the time evolution of the expectation value 〈A〉 is the same in both the Schrödinger and
Heisenberg pictures.

4. Measurements are performed by an observing apparatus (laboratory device) that obeys the laws
of classical physics.

5. Consider an observable ̂A with eigenvector |ai〉 corresponding to eigenvalues ai, that is

̂A|ai〉= ai|ai〉 . (1.48)

Express now the state |ψ〉 (assumed normalized, 〈ψ|ψ〉 = 1)) over the complete basis {|ai〉} of
the eigenvectors of the observable ̂A,

|ψ〉=∑
j

〈aj|ψ〉 |aj〉 . (1.49)

Then, the coefficients αj = 〈aj|ψ〉 are called the amplitudes of the state |ψ〉 on the eigenvectors
|aj〉 and their squared magnitudes |αj|2 represent the probability that a measurement of the
observable ̂A on the system in the state |ψ〉 will yield the result aj.

6. Upon a measurement of the observable ̂A on the system in the state |ψ〉, if the result of the
measurement is an, then the system instantaneously “collapses” irreversibly into the state |an〉, an
eigenstate of the observable ̂A.

7. Once a measurement has collapsed the system into a state |an〉, successive measurements of the
same observable ̂A will always yield the same results, an.

8. From Eqs. (1.36)–(1.38), a system can be in a state that is an eigenvector of two commuting
observables, ̂A and ̂B. Therefore, the two observables can be measured simultaneously and, after
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the measurement, the system can be said to possess definite values for both observables. In this
case, the observables are said to be “compatible.” If, instead, the observables do not commute,
they are called “complementary” and the system can be in an eigenstate of only one of them, not
of both simultaneously. Accordingly, “pure states” (that is, excluding mixtures due to “classical
ignorance”) that are eigenstates of an observable can be considered as linear superpositions of
other pure states that are eigenstates of compatible observables. A state cannot be thought of
as a superposition of eigenstates of complementary observables. (This, of course, allows the
mathematical representation of the systems, states, and observable, in terms of the Hilbert-space
formalism used to perform the Canonical Quantization.)

9. If two isolated systems are brought together, the total state of the larger combined system can
be thought as a “tensor product” of the states of the two systems. A fortiori, the Hilbert space
associated with the larger system is the tensor product of the Hilbert spaces associated with each
sub-system.

10. As the size of a system (often defined as the number of degrees of freedom) grows, the quantum-
mechanical laws approach those of Classical Mechanics. This is known as the “correspondence
principle” of Bohr and Heisenberg.

11. The “inner workings” of the system are hidden. Reality is exclusively what we measure and the
act of measuring defines it. In the usual paradoxical terms, ‘a tree falling in a forest does not make
any noise if there is no one to hear it.’

As a simple corollary, note that the expectation value of an observable ̂A for a system in a state |ψ〉
has been defined before as 〈A〉= 〈ψ|̂A|ψ〉. Using the expansion (1.49), we have

〈A〉= 〈ψ|̂A|ψ〉=∑
ij

α∗
i αj 〈ai|̂A|aj〉 . (1.50)

Because of the orthonormality of the eigenvectors {|aj〉},

〈A〉=∑
ij

α∗
i αj aj 〈ai|aj〉=∑

i

|αi|2 aj . (1.51)

The coefficients αi, as we saw before, express the probability that a measurement of ̂A performed on
the system in a state |ψ〉 will yield the result ai. Therefore, Eq. (1.51) shows that the expectation value
of the observable ̂A is simply the average of all possible eigenvalues, weighted by the probability of
obtaining each one of them.

1.4.5 The “Copenhagen Controversy”

The Copenhagen interpretation we have just outlined has emerged in the late 1920s amidst confusion
and controversy. Indeed, the picture of the physical world (“reality”) that emerges from this
interpretation leaves many people unhappy and also presents some paradoxes (some would say:
“contradictions”).

At a general “intuitive” or philosophical level, “reality” ceases to exist as a concept independent
of the observer. This is what is usually known as the “logic positivist” view. The first two axioms
above imply that it is meaningless to assign a property b (say: the position of a particle) to a system
when we have measured a complementary property a (say: its momentum), even only conceptually,
regardless of measurements: Not only can we not assign a position to the particle; the particle cannot
be thought of as being endowed with a property like “position” once we have measured its momentum.
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In other words, the ultimate nature of reality is determined by the observer. Realists, like Einstein or
Schrödinger himself, never accepted this view and fought back. Einstein, in particular, claimed that
Quantum Mechanics is an incomplete theory [15] that, eventually, will need to be replaced by a better
picture that will uncover and deal explicitly with those “hidden variables” that Copenhagen dismisses.
Attempts to re-introduce realism are at the roots also of Bohm’s interpretation [17, 18], among others.

At a more technical level, axioms 6–8 coupled to axiom 9 present an intrinsic problem.
A measurement apparatus must obey the laws of classical physics. Yet, axiom 9 tells us that, since
Quantum Mechanics is assumed to be a complete theory, we could describe quantum mechanically
the larger system {original system}+{measuring apparatus}. This larger system, associated with
the tensor-product Hilbert space of the Hilbert spaces of both systems, would then be subject to
measurements performed by a third system, a new measuring apparatus. This new apparatus must
obey the laws of classical physics. Clearly, this results in a recursive process, known as the “von
Neumann chain.” Where does the quantum world end and does the classical world begin? Particularly
puzzling are the paradoxes that emerge as soon as we are willing to include the observer in the
quantum description, since we are brought into the realm of defining human consciousness and how
this affects reality [27].

Despite the severity of these problems, from a very pragmatic perspective, so far the Copenhagen
interpretation has withstood all possible tests. John Bell, another realist, intended to show how
absurd this interpretation is, by emphasizing differences between classical probabilities and quantum
probabilities that include “interference” terms. His famous “Bell inequality” [14], finally tested
experimentally [13], has confirmed the validity of the Copenhagen interpretation, raising even more
puzzles. Skeptics remain and loopholes are constantly found in the experiments to disprove Aspect’s
result, which why we wrote “proof” in quotes. Yet, it is fair to say that, as new experiments are
performed, a realist’s viewpoint becomes ever harder to defend. Theories that introduce local hidden
variables, in an attempt to restore “intuitive” reality, seem to be inconsistent with these experimental
results. Theories that attempt to achieve the same goal by assuming nonlocal hidden variables,
such as Bohm’s nonlocal quantum potential [17, 18], appear to be still consistent (or, at least, “not
inconsistent”) with experiments. However, this nonlocality introduces a feeling of “weirdness” via
“spooky actions at a distance” (a statement attributed to Einstein) that feels uncomfortable to the
realists themselves.

Richard Feynman said that Quantum Mechanics with its Copenhagen interpretation works well
“for all practical purposes.” In the rest of this text we shall leave philosophy on the side: After all,
the mathematical machinery of Quantum Mechanics works well indeed (that is, it provides results
consistent with experimental observations available at present), the rest we shall leave to after-dinner
discussions. . . However, we must admit that some issues that recently have become popular and of
practical interest (such as quantum entanglement, quantum computing, and quantum teleportation, to
mention just a few) make the problem more pressing, more practically relevant, and more severe than
we would like to believe.

Problems

1.1. (Newton’s Law) Consider a particle of mass m in three dimensions in the presence of a
potential V(r). Write the Lagrangian, the Hamiltonian, Euler–Lagrange, and Hamilton equations for
this simple system. Convince yourself that you recover Newton’s law F = ma.

1.2. (Conservation Laws) Consider the same situation of the previous problem, but now assume that
V(r) has cylindrical symmetry; that is, that it depends only on the cylindrical coordinates r and z, but
not on the angle φ . Write the Lagrangian, Hamiltonian, Euler–Lagrange, and Hamilton equations in
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cylindrical coordinates. Finally, verify directly that the z-component, Lz, of the angular momentum of
the particle is a constant of motion.

1.3. (Tunneling Across a Square Potential Barrier) Consider the tunneling problem with the
potential barrier:

V(z) =

⎧

⎨

⎩

0 for z ≤ 0
V > 0 for 0 < z < L
0 for z ≥ L

.

Write the wavefunction as

ψ(z) =

⎧

⎨

⎩

Aeikz +Be−ikz for z ≤ 0
Ceκz +De−κz for 0 < z < L
Feikz for z ≥ L

,

with k = (2mE)1/2/h̄ and κ = [2m(V −E)]1/2/h̄.

(a) Write the system of four equations expressing the continuity of the wavefunction and its derivative
at z = 0 and at z = L.

(b) Find the transmission coefficient, T = |F|2/|A|2. There’s no need to solve the full system.
Be creative. Hint: Multiply the equation expressing continuity of ψ at z = 0 by ik and add and subtract it

from the equation expressing continuity of the derivatives at z = 0. Do a similar thing with the other two equations

(by multiplying one by κ). Now it should be relatively easy to solve for F in terms of A alone. This gives you T .

1.4. (The WKB Approximation) The Wentzel–Kramers–Brillouin (WKB) approximation to solve
the Schrödinger equation consists in writing the solution of the time-independent problem:

− h̄2

2m
d2ψ(x)

dx2 +V(x)ψ(x) = Eψ(x) ,

as

ψ(x)≈ 1

k1/2
exp

{

i
∫ x

k(x′) dx′
}

,

where k(x) = {2m[E−V(x)]}1/2/h̄. This is a good approximation if the potential V(x) varies slowly
(that is, it does not change much compared to the electron energy E when x varies over several de
Broglie wavelengths). If E−V(x)< 0, the WKB wavefunction becomes

ψ(x)≈ 1

k1/2
exp

{

−
∫ x

κ(x′) dx′
}

,

where now κ(x) = {2m[V(x)−E]}1/2/h̄.
Let’s now ignore the factor k−1/2 (which simply ensures continuity of probability current). Consider
now the previous tunneling problem (Problem 1.2.) and identify the WKB approximation to the
transmission coefficient as

TWKB = |ψ(L)|2 = exp

{

−2
∫ L

0
κ(x′) dx′

}

. (1.52)
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Compare TWKB with the “exact” transmission coefficient T of the previous tunneling problem, in the
limit in which κL >> 1.

1.5. (Probability Density and Current Density) From the Schrödinger equation derive the continu-
ity equation:

∂ρ
∂ t

+∇ ·S = 0 ,

where ρ = |Ψ |2 is the “probability density” and S = ih̄
2m [Ψ∇Ψ

∗ −Ψ ∗∇Ψ ] is the “probability density
current.” It is this conservation law that makes it possible to interpret consistently the squared
amplitude of the single-particle wavefunction as a probability density.

1.6. (Some Useful “Matrix Elements”) Calculate the matrix element between two wavefunctions
of the form

ψ(k,r) =
1

V1/2
eik·r and ψ(k′,r) =

1

V1/2
eik′·r ,

and the perturbation potentials of the form:

(a) ̂H ∝ eiq·r
(b) ̂H ∝ δ (r)
(c) ̂H ∝ |r|−2

(d) ̂H ∝ e−|r|/r0 Polar coordinates are useful in c and d.

1.7. (Second-Order Time-Independent Perturbation Theory) Extend the procedure followed in

Appendix A to find the perturbed eigenvalues E(2)
n to second order in α using time-independent

perturbation theory.
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Chapter 2
The Periodic Table, Molecules, and Bonds

2.1 Atoms: Building up the Periodic Table

In this chapter we show how the Schrödinger equation—together with a few additional concepts—can
allow us to build (conceptually) the periodic table of the elements. In turn, this will give us some ideas
about the nature of atomic orbitals, concept that constitutes the basic building block underlying the
formation of atomic bonds in molecules and crystals.

First, we need to introduce the concept of quantum number. The example of a particle in a three-
dimensional (3D) box will illustrate this. For simplicity, we treat the simpler case of a free particle.
Any text on Quantum Mechanics could—and should—be consulted to have a more complete picture
and set of examples [1–5].

2.1.1 Free Particles in Three Dimensions

The Schrödinger equation describing a particle of mass m in absence of any potential is

− h̄2∇2

2m
Ψ(r, t) = i h̄

∂
∂ t
Ψ(r, t). (2.1)

In order to solve this partial differential equation we use a technique called “separation of variables.”
Let us look for a solution of the form

Ψ(r, t) = ψ(r) T(t), (2.2)

that is, we look for a solution expressed as the product of a function ψ that depends only on the spatial
coordinates r, and a function T that depends only on time. Thanks to the linearity of the Schrödinger
equation, the most general solution satisfying the required boundary and initial conditions can always
be written as a linear combination of solutions of this type. Therefore, the particular choice given by
Eq. (2.2) does not restrict the generality of the solution we can obtain.

Inserting Eq. (2.2) into Eq. (2.1) and dividing byΨ , we obtain

− 1
ψ(r)

h̄2∇2

2m
ψ(r) = i h̄

1
T(t)

dT(t)
dt

. (2.3)
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Note now that the left-hand side (lhs) of this equation is a function of the spatial coordinates r only,
whereas the right-hand side (rhs) depends only on t. Since r and t are independent variables, we are
free to change them as we please. Therefore, the equality expressed by Eq. (2.3) can hold only if both
sides of the equation are equal to a constant. Therefore, calling this constant E, must we have

dT(t)
dt

+ i
E
h̄

T(t) = 0, (2.4)

and

− h̄2∇2

2m
ψ(r) = E ψ(r). (2.5)

Equation (2.4) has a general solution T(t) = Ae−i ωt, where A is a constant to be determined by the
initial conditions, and h̄ω = E. Note that, since the lhs of Eq. (2.5) is just the Hamiltonian of the
system, this equation is exactly the eigenvalue equation for the operator ̂H of the simple system.
Therefore, we can identify the search for the solution ψ as the search for the eigenvectors of the
Hamiltonian, and E as their eigenvalues. Therefore, E is just the energy of the particle.

We conclude that our solution has the formΨ(r, t) = Ae−i ωtψ(r). This represents an eigenvector
of the Hamiltonian, |ψ〉, in the Hilbert space L2(R3), that rotates in time with radian frequency ω .
The wavefunction ψ(r) = 〈r|ψ〉 satisfies the “time-independent” Schrödinger equation, Eq. (2.5).

Assuming that the potential energy of the particle is just a constant, V0, we can determine ψ(r) by
following the same procedure of “separation of variables.” We express the Laplacian and the spatial
coordinate r in terms of their components:

− h̄2

2m

[

∂ 2

∂x2ψ(x,y,z)+
∂ 2

∂y2ψ(x,y,z)+
∂ 2

∂ z2ψ(x,y,z)
]

+V0 ψ(x,y,z)

= E ψ(x,y,z). (2.6)

Now, let us look for a solution of the form:

ψ(x,y,z) = ψx(x) ψy(y) ψz(z), (2.7)

where ψx, ψy, and ψz are three different functions in one variable only. Inserting this into Eq. (2.6),
we obtain

− h̄2

2m

[

ψy(y) ψz(z)
d2ψx(x)

dx2 +ψx(x) ψz(z)
d2ψy(y)

dy2 +ψx(x) ψy(y)
d2ψz(z)

dz2

]

= E ψx(x)ψy(y)ψz(z). (2.8)

Dividing both sides by ψx(x)ψy(y)ψz(z):

− h̄2

2m

[

1
ψx(x)

d2ψx(x)
dx2 +

1
ψy(y)

d2ψy(y)

dy2 +
1

ψz(z)
d2ψz(z)

dz2

]

= E. (2.9)

This equation tells us that the sum of three functions of different variables (x, y, and z) must always
be equal to a constant (E) for all possible values of x, y, and z. This is possible only if each function is
equal to a constant, that is
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− h̄2

2m
1

ψx(x)
d2ψx(x)

dx2 = Ex, (2.10)

− h̄2

2m
1

ψy(y)

d2ψy(y)

dy2 = Ey, (2.11)

− h̄2

2m
1

ψz(z)
d2ψz(z)

dz2 = Ez. (2.12)

We have indicated with Ex, Ey, and Ez three arbitrary constants subject to the condition Ex +Ey +Ez

= E. Rewriting Eq. (2.10) as

− h̄2

2m
d2ψx(x)

dx2 = Exψx(x), (2.13)

its general solution has the form:

ψx(x) = Ax eikxx, (2.14)

where Ax is an arbitrary multiplicative constant that will be determined below by “normalizing” the
wavefunction. In this equation

kx =
1
h̄

√

2mEx. (2.15)

is the wavenumber along the x-axis. We can proceed in an analogous way for the y- and z-components,
so that the full wavefunction has the form:

ψ(r) = AxAyAz ei(kxx+kyy+kzz) = A eik·r, (2.16)

having defined the wavevector k as the vector with components (kx,ky,kz), and A is an arbitrary
constant.

Recalling thatΨ(r, t) = Ae−i ωtψ(r), Eq. (2.16) describes the particle as a “plane-wave” propagat-
ing in the direction of the wavevector k with wavenumber (number of wavelengths per unit length
along the direction of propagation) given by the magnitude k of k and with phase velocity ω/k. Note
that its momentum p will be h̄k, and the energy of the particle is E = h̄2k2/(2m).

2.1.2 Particles in a Three-Dimensional Box

Consider again Eq. (2.5) or (2.6), but assume now that the particle is confined in a cubic box with side
length L; i.e., the potential vanishes for −L/2 < x < L/2, −L/2 < y < L/2, and −L/2 < z < L/2, but
it is infinite otherwise. Therefore, we must look for solutions of a form similar to what we have just
found for a free particle, but subject to the condition that the wavefunction vanishes at the boundary,
and outside, of the box. Therefore, we must look for solutions ψx(x), ψy(y), and ψz(z) of the form:

ψx(x) =

(

2
L

)1/2

sin
(nxπx

L

)
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where nx is an integer, with similar expressions being valid for y and z. The full wavefunction will
now be

ψ(r) =
(

8
Ω

)1/2

sin
(nxπx

L

)

sin
(nyπy

L

)

sin
(nzπz

L

)

, (2.17)

where Ω = L3 is the volume of the box and the energy of the particle will be

Enx,ny,nz =
(n2

x +n2
y +n2

z )h̄
2π2

2mL2 .

Note that the normalization constant A = (8/Ω)1/2 in this case has been fixed by requiring that there
is unit probability of finding the electron inside the box:

∫

Ω
dr |ψ(r)|2 = 1.

If we were considering a particle in one dimension, the particle would have only one degree of
freedom and we would need only a single “quantum number,” say, nx, to label the energy levels. In
3D, instead, the particle has 3 degrees of freedom and we now need three quantum numbers, nx, ny,
and nz to label the possible states (that is, the possible “types” of wavefunction) of the particle.

2.1.3 The Hydrogen Atom

The case of the H atom is conceptually similar to the case of the particle in a cubic box. Unfortunately,
it is significantly more complicated from a mathematical perspective, because the potential confining
the particle (the Coulomb potential energy is −e2/(4πε0r)) is not “flat,” but depends on the distance
r from the nucleus. Indeed, the time-independent Schrödinger equation we must solve is

[

− h̄2∇2

2me
+V(r)

]

ψ(r) = Eψ(r), (2.18)

where V(r) = −e2/(4πε0r). We have used the notation me for the mass of the particle, since we
are specifically interested in an electron around a proton. Also, we have attempted to minimize the
confusion caused by the fact that the symbol m will be used below to label a quantum number. It is true
that the potential is not constant, so separating variables in Cartesian coordinates would not work: We
would not be able to re-express this equation as the sum of terms that depends on a single variable, as
we found in Eq. (2.9). However, the potential energy V depends only on the radial coordinate r, not the
polar and azimuthal angles θ and φ . This spherical symmetry can be exploited to separate variables if
we employ spherical coordinates. Thus, we look for solutions of the form:

ψ(r) = ψ(r,θ ,φ) = R(r)Θ(θ) Φ(φ). (2.19)

The “radial function” R(r) describes the way the wavefunction spreads away from the nucleus. The
“angular functions”Θ(θ) and Φ(φ) describe how the wavefunction is distributed as a function of the
polar and azimuthal angles.
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Rewriting Eq. (2.18) in spherical coordinates,

1
r2 sinθ

[

sinθ
∂
∂ r

(

r2 ∂ψ
∂ r

)

+
∂
∂θ

(

sinθ
∂ψ
∂θ

)

+
1

sinθ
∂ 2ψ
∂φ 2

]

− 2meV(r)

h̄2 ψ

=−2meE

h̄2 ψ. (2.20)

and inserting Eq. (2.19), we have

1
r2ΘΦ

d
dr

(

r2 dR
dr

)

+
RΦ

r2 sinθ
d

dθ

(

sinθ
dΘ
dθ

)

+
RΘ

r2 sin2 θ
d2Φ
dφ 2 − 2meV(r)

h̄2 RΘΦ

=−2meE

h̄2 RΘΦ . (2.21)

Now, following the same procedure we have followed before in Cartesian coordinates, let’s divide by
RΘΦ the expression above:

1
Rr2

d
dr

(

r2 dR
dr

)

+
1

r2 sinθ
1
Θ

d
dθ

(

sinθ
dΘ
dθ

)

+
1

r2 sin2 θ
1
Φ

d2Φ
dφ 2 − 2meV(r)

h̄2 =−2meE

h̄2 . (2.22)

Multiplying by r2 sin2 θ and rearranging the result, we obtain

− 1
Φ

d2Φ
dφ 2 = r2 sin2 θ

{

1
Rr2

d
dr

(

r2 dR
dr

)

+
1

r2 sinθ
1
Θ

d
dθ

(

sinθ
dΘ
dθ

)

− 2me[V(r)−E]

h̄2

}

. (2.23)

Now we follow the “usual” reasoning: The lhs is a function of φ alone, while the rhs is a function of r
and θ . Since we can vary r, θ , and φ independently, the only way Eq. (2.23) can hold is for both sides
to be equal to a constant. Let’s call this constant m2 (where m is to be viewed, for now, as a general
complex number). Thus,

− 1
Φ

d2Φ
dφ 2 = m2, (2.24)

so that the “azimuthal” factor Φ must be of the form:

Φ(φ)∼ e±imφ , (2.25)

up to a normalization constant. Since we require periodic (and so, single-valued in real space)
solutions, we see that m must be an integer. This condition should remind us of the De Broglie and
Bohr’s arguments to explain the discrete nature of the atomic spectra by requiring that an integer
number of wavelengths must “fit” into an orbit. Note also how the eigenvalue problem given by
Eq. (2.24) [and, more generally, Eq. (2.20)] is defined not only by the differential equation, but also
by the boundary conditions, and so by the space of functions we intend to confine our attention to;
namely, differentiable, integrable over the entire space and single-valued/periodic, in our case. This is
another way of expressing physically sensible boundary conditions. Returning to Eq. (2.23) and using
Eq. (2.24), we see that

1
Rr2

d
dr

(

r2 dR
dr

)

+
1

r2 sinθ
1
Θ

d
dθ

(

sinθ
dΘ
dθ

)

+
1

r2 sinθ
1
Φ

d2Φ
dφ 2 − m2

r2 sin2 θ
− 2me[V(r)−E]

h̄2 = 0. (2.26)
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Multiplying this equation by r2, we can rewrite it as

1
R

d
dr

(

r2 dR
dr

)

− 2m[V(r)−E]

h̄2 r2 =− 1
sinθ

1
Θ

d
dθ

(

sinθ
dΘ
dθ

)

+
m2

sin2 θ
. (2.27)

Once more, we see that the lhs is a function of r alone, while the rhs depends only on θ . Thus, both
sides must be equal to a constant, say K. Therefore, we reach the two equations:

d
dr

(

r2 dR
dr

)

− 2me[V(r)−E]

h̄2 r2R = KR, (2.28)

and

1
sinθ

d
dθ

(

sinθ
dΘ
dθ

)

+
m2Θ
sin2 θ

=−KΘ . (2.29)

We can now proceed in two ways, the first restricted to the case at hand, the second path being more
general and being related with the angular momentum operators. Let’s discuss them both. In order to
proceed from Eq. (2.29), we’ll skip some details here and simply state without proof that requiringΘ
to be single-valued implies that K must be of the form l(l+1), where l is a positive integer, much like
requiring Φ to be single-valued resulted in an integer m before. Moreover, the integer m must take
values of magnitude smaller than l (i.e., m = 0,±1,±2, . . . ,±l).∗ We should stop here for a brief comment. The statement above is the essence of what is called the
theory of “orthogonal polynomials.” The text by Arfken [6] gives an exceptionally clear overview of
the topic. When trying to solve many types of ordinary differential equations of the form Q(x)y(x)′′+
P(x)y(x)′+λy(x) = 0, it is convenient to expand the unknown solution, y(x), in a power series of x;
that is, y(x) = ∑n an xn. Inserting this series into the original differential equation, one can equate
terms of the same power of x and obtain a set of recursive relations that the coefficients an must satisfy
in order for y(x) to be a solution. One finds that when the parameter λ takes discrete values, λN, then
one can terminate the series at the term xN, all coefficients an vanishing for n ≥ N, for finite N. This
results in the generation of polynomials yN(x), that constitute a basis set on the functional space
considered; for example, in the Hilbert space L2(R) of all square-integrable complex functions of a
real variable. These can be orthogonalized or orthonormalized using the Gram–Schmidt procedure.
Hermite, Legendre, Jacobi, Laguerre, and Chebyshev polynomials belong to this class. In the context
of Quantum Mechanics, usually the parameter λ is related to the eigenvalue of the Hamiltonian and
the resulting discrete set of values λN yields the discrete spectrum, the polynomials yN being related to
the eigenvectors. We will encounter shortly two examples of such functions, the Legendre and Laguerre
polynomials.

Returning to Eq. (2.29), with these considerations we see that it must take the form:

1
sinθ

d
dθ

(

sinθ
dΘ
dθ

)

+
m2Θ
sin2 θ

+ l(l+1)Θ = 0. (2.30)

Setting x = cosθ transforms this equation into what is known as the “associated Legendre” equation
whose solutions are the “associated Legendre polynomials”

Pm
l (x) = (1− x2)m/2 dm

dxm Pl(x), (2.31)
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where the functions Pl(x) are the Legendre polynomials. Thus, we have found that the full angular
dependence of our solution has the form:

Ym
l (θ ,φ) = Pm

l (cosθ)eimφ . (2.32)

Properly normalized, so that

∫ π

0
dθ
∫ 2π

0
dφ |Ym

l (θ ,φ)|2 = 1, (2.33)

these functions are called “spherical harmonics.”
The second way to proceed from Eq. (2.29) is to consider the angular momentum operators. In

Classical Mechanics the orbital angular momentum of a particle is defined as

L = r×p, (2.34)

so that the z-component, for example, will be

Lz = xpy − ypx. (2.35)

The quantum-mechanical equivalent will be the operator

̂Lz =−i h̄

(

x
∂
∂y

− y
∂
∂x

)

. (2.36)

Note that from the basic commutation rules between the position and the momentum operators,

[x̂i, p̂j] = i h̄δij, [x̂i, x̂j] = [p̂i, p̂j] = 0, (2.37)

(where we have used the notation x1 = x, x2 = y, and x3 = z and similarly for p1, etc.) we have

[̂Lz, x̂] = i h̄ ŷ, [̂Lz, p̂x] = i h̄ p̂y, (2.38)

[̂Lz, ŷ] =−i h̄ x̂, [̂Lz, p̂y] =−i h̄ p̂x, (2.39)

and:

[̂Li,̂Lj] = i h̄ εijk h̄Lk, (2.40)

where εijk = 1 when (i, j,k) is a cyclical permutation of (1,2,3), εijk = −1 for an anti-cyclical
permutation, εijk = 0 otherwise. Defining the square magnitude of the total angular momentum,

̂L2 = ̂L2
x +̂L

2
y +̂L

2
z , (2.41)

we have

[̂L2,̂Lj] = 0. (2.42)

So, since ̂L2 commutes with any ̂Li, we can select a basis of common eigenstates of ̂L2 and ̂Lz, that is

̂L2|ψ〉= α|ψ〉, (2.43)
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and

̂Lz|ψ〉= β |ψ〉. (2.44)

In the spherical-coordinates representation we have

̂L2 = h̄2
[

1
sinθ

∂
∂θ

(

sinθ
∂
∂θ

)

+
1

sin2 θ
∂ 2

∂φ 2

]

, (2.45)

and

̂Lz =−ih̄
∂
∂φ

. (2.46)

Using these expressions, we see that Eq. (2.44) reduces to Eq. (2.24), so that m must be an integer
(positive or negative). Then, Eq. (2.43) becomes identical to Eq. (2.29) with K = l(l+1).∗ This last conclusion can also be reached in another very elegant way that bypasses the need to
consider orthogonal polynomials. We present it here, because a similar, purely algebraic, technique
will be used to deal with the harmonic oscillator when we shall discuss elementary excitations and
second quantization. Define the “raising/lowering” operators:

̂L± = ̂Lx ± i ̂Ly (2.47)

It is easy to see, using the commutation rules we have derived above, that

[̂L2,̂L±] = 0, (2.48)

(where, for clarity, we should recall that ̂L = (̂Lx,̂Ly,̂Lz), so that ̂L2 = ̂L2
x +̂L

2
y +̂L

2
z ), and

[̂Lz,̂L±] =±h̄ ̂L±. (2.49)

Applying ̂L± on an eigenstate |ψ〉 of ̂Lz with eigenvalue β , using Eq. (2.49), we have

̂LẑL±|ψ〉= [̂L±̂Lz ± h̄ |ψ〉= (β + h̄)|ψ〉. (2.50)

This expression shows that the operators ̂L± raise (+) or lower (−) the eigenstate |ψ〉 of ̂Lz to another
eigenstate of ̂Lz, now with a larger/smaller eigenvalue (β ± h̄). Since the total angular momentum is
finite, the eigenvalues β of ̂Lz must span in discrete steps the range (−mh̄, mh̄), where m is an integer,
for this raising/lowering process to terminate upwards or downwards. Therefore, the states |ψ〉 can
be labeled as |α,m〉, where α is a yet-to-be-determined eigenvalue of ̂L2. To determine α , a little
algebra using the commutation rule, Eq. (2.48), and the definitions of ̂L2 and ̂L±, shows that we must
have α = l(l+1)h̄2, where l is a positive integer, including 0, and that m must be smaller than l. Thus,
we can recast Eqs. (2.43) and (2.44) as

̂L2|l,m〉= l(l+1)h̄2|l,m〉, (2.51)

and

̂Lz|l,m〉= mh̄|l,m〉, (2.52)

with l = 0,1,2,3, . . . and m can take the 2l+1 values −l, −l+1, . . . , −1 0, 1, l−1, l.
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Leaving now the abstract algebraic domain and returning to the real-space representation of the
eigenstates, we see that the spherical harmonics are eigenfunctions of the angular momentum operator
corresponding to a total angular momentum

√

l(l+1)h̄ with projection mh̄ over the z-axis (the polar
axis). Note also that the spherical harmonics satisfy the orthogonality condition:

∫ π

0
dθ
∫ 2π

0
dφ Ym

l (θ ,φ) Y∗m′
l′ (θ ,φ) = δmm′δll′ . (2.53)

Returning to the radial function R, this must obey Eq. (2.28) with K = l(l+1):

d
dr

(

r2 dR
dr

)

− 2me[V(r)−E]

h̄2 r2R− l(l+1)R = 0. (2.54)

Now we can make use of the fact that we are dealing with a Coulomb potential and set V(r) =
−e2/(4πε0r). Thus, the radial wavefunction R(r) must satisfy the equation:

d
dr

(

r2 dR
dr

)

+
2meE

h̄2 r2R− l(l+1)R+
2me

h̄2

e2

4πε0
rR = 0. (2.55)

Let us now introduce the new dependent variable u(r) = rR(r), which obeys the equation:

− h̄2

2me

d2u
dr2 +

h̄2l(l+1)
2mer2 u− e2

4πε0r
u = Eu. (2.56)

Defining the independent variable

ρ =
(8me|E|)1/2r

h̄
, (2.57)

and a measure λ of the binding energy of the particle,

λ =
e2

4πε0h̄

(

me

2|E|
)1/2

, (2.58)

Eq. (2.56) becomes

d2u
dρ2 − l(l+1)

ρ2 u+

(

λ
ρ
− 1

4

)

u = 0. (2.59)

Clearly, at large ρ the solution behaves as u ∼ exp(±ρ/2), the minus sign being the only physically
meaningful choice. Thus, setting

u(ρ) = F(ρ)exp(−ρ/2), (2.60)

Eq. (2.59) implies

d2F
dρ2 − dF

dρ
+

[

λ
ρ
− l(l+1)

ρ2

]

F = 0. (2.61)
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Following the general procedure outlined when discussing orthogonal polynomials, one can show that
the solutions of this equation (closely related to the so-called associated Laguerre polynomials) have
an acceptable behavior in the limit ρ → ∞ only for integer values of λ (say, λ = n, where n is an
integer) larger than l so that the “radial” component of the wavefunction will be defined by the two
integers n and l < n. The index n is directly related to the energy E via Eq. (2.58).

As a result of this discussion, we see a situation similar to what we saw before in the case of
the 3D particle in the cubic box: We need three quantum numbers to label the eigenvectors (with
eigenfunctions ψnlm(r) = Rnl(r)Θlm(θ)Φm(φ) = Rnl(r)Ym

l (θ ,φ)), and eigenvalues (energy levels) of
the Hamiltonian: The “principal” (or “radial”) quantum number, n, can take the values:

n = 1, 2, 3, . . . ∞.

Usually (that is, in the absence of magnetic fields and ignoring weaker perturbations), the electron
energy depends only on this number via Eq. (2.58): When λ = n,

En =
mee4

2(4π h̄)2n2 , (2.62)

in agreement with the early result of Bohr’s model. The quantum numbers l and m are related to the
angular momentum: as we saw, l(l+ 1)h̄2 is its squared magnitude and mh̄ its component along the
polar axis. These can take the values:

l = 0, 1, . . . n−1, (n total number of values)

m =−l,−l+1, . . .0, 1, . . . l−1, l, (2l+1 total number of values).

For l = 0, we must also have m = 0. In this case the wavefunction does not depend on the angles θ
and φ . These are fully spherically symmetric wavefunctions (for every n) and are called s-waves. For
l = 1 we can have three different wavefunctions for m =−1,0,+1. These are called p-waves and can
be expressed as functions shaped like “lobes” pointing along the x-, y-, or z-axis. For l = 2 we can
have five states (m =−2,−1,0,+1,+2), called d-waves. For l = 3 we have seven f -waves, and so on.

2.1.4 Periodic Table

We are now ready to build the periodic table of the elements. We shall do it as if we were building an
onion, one “shell” at a time, from the inside out. We shall call “shell” each layer defined by a common
quantum number n, “subshells” those with common angular quantum number l. The word “orbital”
or “state” denotes any combination of quantum numbers.

Before building atoms, though, we need to know two additional facts: The existence of an
additional electronic degree of freedom (“spin”) and of “Pauli’s exclusion principle.” They will be
discussed at length later. For now, we consider them qualitatively.

Regarding spin, in addition to the three degrees of freedom that all particles have in three
dimensions (3D), most particles also possess an additional “internal” degree of freedom, s, which one
can visualize as the particle “spinning” around a polar axis, much like a spinning top or the planets.
Thus, spin is an internal angular momentum of the particle. As we just saw for the orbital angular
momentum, spin can also take only discrete values in integer or semi-integer multiple of the reduced
Planck constant. Photons, some nuclei, and some elementary particles have integer values of spin
(s = 0 or nh̄, where n is an integer.). For reasons we shall see later, these particles are called “Bosons.”
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Electrons, protons, and neutrons have half-integer spin (s = (nh̄/2)). They are called “Fermions.”
Electrons have spin h̄/2 (usually said “spin one-half”). Every electron can exist in two different spin
states: Spin “pointing up” (s = h̄/2) or “pointing down” (s = −h̄/2). Both are states with angular
momentum of magnitude h̄/2, but they differ in the direction of rotation around their axis.

Regarding Pauli’s principle, in order to explain the periodic table and the electronic structure of
the atoms, the German physicist Wolfgang Pauli had to invoke a new postulate (later demonstrated
rigorously): Given an energy level, characterized by a set of quantum numbers, it can be occupied
only by one Fermion (so, electrons). Therefore, a given hydrogen state characterized by the quantum
numbers (n, l,m), can be empty or occupied by one or two electrons (in which case an electron will
have spin up, the other spin down). Attempting to add a third electron would violate Pauli’s principle.

Let’s start with the simplest element, H. Its nucleus has a single positively charged proton and it
is surrounded by a single electron. The lowest possible orbital the electron can occupy is the “ground
state” (n = 1, l = 0, and m = 0). We use the notation 1s1, meaning that in the orbital 1(n = 1), which
is an s-wave (l = 0), we have one electron (the superscript “1”). Note that the electron is bound rather
weakly to the nucleus: the ionization energy, E1 in Eq. (2.62) is about 13.6 eV. This quantity is called
a “Rydberg” and is indicated by the symbol “Ry”. We shall use it very frequently in later chapters.
Therefore, H loses its electron quite easily; that is, it is easily ionized. This trait is common to all
elements with only one electron in the outermost shell. These elements are very reactive (think of
hydrogen reacting with oxygen!).

The next simplest element is He. Solving the Schrödinger equation for this atom already introduces
enormous complications. The wavefunction we must find is now a function of six variables, ψ(r1,r2),
r1 and r2 being the coordinates of the two electrons. Unlike the case of the hydrogen atom, in which
the potential energy is given, now the potential energy must include also the electrostatic potential
felt by each electron due to the charge of the other electron. The potential energy due to the Coulomb
interaction with the charge of the nucleus and with the “time averaged” charge distribution of the
other electron is called the “Hartree” energy. However, more subtle contributions to this potential
energy come from the fact that Pauli’s principle can also be reformulated by requiring that the total
wavefunction be antisymmetric under exchange of the two electrons, that is, ψ(r1,r2) =−ψ(r2,r1).
This property will also be discussed at length in later chapters, since it affects very strongly the
electronic properties of crystals. For now, we simply observe that this “antisymmetrization” makes
electron with spins pointing in the same direction repel each other; the opposite is true for electrons
with spins pointing in the opposite direction. The Coulomb repulsion between the electrons, therefore,
will be modified by this effect and the additional (positive or negative) change in energy is called
the “exchange” energy. An additional correction (the “correlation” energy) will be discussed in
later chapters. What matters now is that the Hartree and exchange energies depend on the spatial
distribution of the electrons, |ψ(r1,r2)|2. So, the potential energy entering the Schrödinger equation
depends on the wavefunction itself. This renders the Schrödinger equation nonlinear and only
approximate or numerical solutions can be found. The case of heavier atoms, so with a much larger
number of electrons, is, of course, extremely complicated. In later chapters we will see how one can
handle such a situation even in crystals, systems with an extremely large number of electrons. Here,
we should just keep these facts in mind and we shall deal with the problem at a qualitative level.

Returning to the He atom, its nucleus now has two protons (so that the “atomic number” of He
is Z = 2). Two neutrons are required to prevent the Coulomb repulsion between the protons from
causing a disintegration of the nucleus itself. (These are forces of a different nature, the strong nuclear
forces that we will ignore in this book.) Two electrons orbit the nucleus and, in the configuration of
the lowest possible energy, both are in the lowest-energy “shell,” provided they align their spins in
opposite directions. We use the notation 1s2. Note that we have fully populated the first “shell.” If we
were to ionize negatively the atom by adding another electron, this would have to occupy the next
higher-energy shell, n = 2, because there is no more room in the n = 1 shell. Thus, the third electron
would have to go farther away from the nucleus. So, He does not easily acquire another electron.
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On the other hand, stripping one electron away from the He atom is energetically very expensive,
since both electrons sit quite close to the doubly charged nucleus. Therefore, helium does not “like”
to lose or gain electrons (that is, becoming ionized). He, like all elements which have a fully occupied
shell, is chemically inert.

The third element, Li, has three protons in its nucleus (Z = 3), so it must have three electrons
orbiting it in order to be charge neutral. The third electron, as we just saw, must occupy the n = 2
shell, so Li will have the electronic configuration 1s22s1. It is a very reactive metal, for the reasons
we discussed dealing with H: It is very easy to strip away the lone outer electrons, leaving behind a
positive Li ion.

We now keep populating the n = 2 shell, adding another electron in the s orbital (beryllium, Be,
1s22s2 with Z = 4), then 6 more into the 3 p orbitals, adding electrons with spin up and spin down
in sequence. As we move from the reactive metals (Li and Be), we build elements with 3 “outer”
electrons (boron, B, 1s22s22p1), 4 outer electrons (carbon, C, 1s22s22p2), 5 (nitrogen, N, 1s22s22p3),
6 (oxygen, O, 1s22s22p4), and 7 outer electrons (fluorine, F, 1s22s22p5). As we do so, we move from
elements which like to lose electrons, to those who like to gain them. Eventually, with neon (Ne,
Z = 10, 1s22s22p6) we complete the n = 2 shell and we hit another inert gas, like He, unlikely to react
chemically. The eight slots we have filled while populating the n = 2 shell are the eight columns of
the periodic table. The chemical properties of any two elements having the same number of electrons
in the outer shell are very similar. So, as we fill the n = 3 shell, we start from sodium (column I, Na,
Z = 11, 1s22s22p63s1) which, having only one electron in the outer shell, behaves like Li. And we end
up with argon (column VIII, Ar, Z = 18, 1s22s22p63s23p6) which is another inert gas like He and Ne.

Things get a little more complicated now, because the energy of the 4s shell is lower than that
of the 3d shell. This is caused by the perturbation of the Coulomb energy (Hartree, exchange, and
correlation) due to the many electrons present in the system, so that the energetic “ladder” expected
from an analogy with the eigenlevels of the H atom fails significantly. The dependence of the energy
level on the quantum number l, for example, is a manifestation of this fact. So, with potassium (K) and
calcium (Ca) we fill the 4s shell, but then we go back filling the 3d shell. The fact remains that—up
until further complications caused by the f states of transition metals—each element belongs to its
own column which determines the chemical properties via the number of electrons in the outer shell.

Of interest to us are silicon (Si, Z = 14, 1s22s22p63s23p2) and germanium (Ge, Z = 32,
1s22s22p63s23p63d104s24p2) which, like C, belong to the IV column. Their 4 outer electrons are
s2p2 and can easily “hybridize” into 4 sp3 orbitals, forming the tetrahedral structure required to bond
atoms in their cubic crystal form. Elements of column III (B, Al, Ga, and In) have outer electrons
arranged as s2p1, that is, one fewer electron than in Si and Ge. Elements of column V (N, P, As, and
Sb) have outer electrons arranged as s2p3, that is, one more electron than in Si and Ge.

Finally, electrons in fully occupied shells are called “core electrons.” They do not contribute to the
chemical activity of the element. Electrons in the outer shell are called “valence electrons.”

2.2 Molecules and Bonds

The nature of chemical bonds, molecular orbitals, hybridization, and such, has been subject, and
still is, of too many studies and even controversy. Being interested in solids and electronic transport
in crystals, we can only give here a bird’s eye view. Excellent texts such as Pauling’s [7] and
Harrison’s [8] give a comprehensive and detailed account from the perspective of a chemist (Pauling,
arguably one of the fathers of the concept of chemical bond in light of Quantum Mechanics) and of a
physicist (Harrison).
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If we bring several atoms together, interesting things happen, depending on the electronic
populations of the outer shell.

1. Nothing. For example, bringing 2 Ne atoms together, both atoms retain their electronic configura-
tion unaltered, as they are both in a configuration of a completely filled outer shell with 8 electrons
(2 in s orbitals, 6 in p orbitals). This is why elements of the VIII column are called “inert” elements
(or gases).

2. Formation of an ionic bond. Let’s consider Na and Cl. Na has 1 electron in the outer s shell, Cl
7 valence electrons (2 in the s shell, 5 in the p shell). Energetically, it is advantageous for Na to
release its electron (weakly bound, as the core electrons shield the nuclear charge), while Cl “loves”
to acquire that electron to complete the filling of its outer shell. Thus, the sodium atom becomes
positively ionized (Na+) and the chlorine atom becomes negatively ionized (Cl−). Now we have a
positive (Na+) and negative (Cl−) particle which are attracted by the strong Coulomb force. The
two ions are said to have formed an “ionic bond” and stick together in the NaCl molecule (regular
kitchen salt when in crystalline form). Semiconducting crystals, like GaAs (Ga in column III, As
in column V, so this is a so-called III–V compound semiconductor), are bound in large part by
ionic bonds. Water (H2O) is similarly formed, although now the charge transfer takes place among
three atoms: The 2 H atoms give their electrons to O which has 6 valence electrons, and so it fills
its outer shell. Thus, we now have two positively charged H+ ions bound to a doubly ionized O2−
ion. Ionic bonds are usually quite strong with “binding energies” of several eV, i.e., of the order of
1–10 eV.

3. Formation of a covalent bond. Let’s consider two oxygen atoms brought together. They are in the
2s22p4 configuration in the outer shell. They would both “love” to fill their outer shells by adding
two electrons. They can do that by sticking together and sharing their two outer electrons, thus
forming the O2 molecule. They form a “covalent bond.” The situation with Si and Ge is somewhat
more complicated. They have 4 electrons in their outer shells (s2p2). They can “hybridize” to form
4 sp3 orbitals. These are linear combinations of the s orbital and of the 3 p orbitals that, when Si
atoms are arranged in a crystal, form a state with lower energy than the separate s and p orbitals.
These hybrid orbitals are arranged in a tetragonal fashion, so that each Si atom has four neighbor
Si atoms to form covalent bonds. Therefore, the Si2 molecule cannot exist, but several Si atoms
can form a “network” of tetragonal bonds and form a covalent crystal. Covalent bonds are, usually,
the strongest bonds.

4. Metallic bond. When we bring together a large number of metallic atoms (say, Li or Be), the weakly
bound single electrons belonging to each one of the many atoms are “shared” among all ions. The
ions form a “lattice” (as we shall see below dealing with crystals), the shared electrons keeping the
lattice together. The metallic bond has a strength comparable to that of ionic bonds.

5. Hydrogen bond. This is still a poorly understood bond present in water-ice, and, for example,
binding the bases to the chain of DNA molecules. A H atom between two molecules acts as a bridge
binding (somewhat weakly) the molecules together, as its lone electrons “resonates” between them.

6. Van der Waals force. Although generally a weaker effect, another type of interaction affects
solids and some relatively chemically inactive molecules. When brought together, rather than
exchanging or sharing electrons, atoms or molecules “polarize” their electronic clouds. The
resulting interaction is between electric dipoles with opposite orientation. The force decays very
quickly with distance. This is an interaction typical of flat surfaces (think of two sheets of glass)
and polymers.

Illustrations of the ionic, covalent and Van der Vaals bond are shown in Fig. 2.1. Note also that,
although we have made a sharp distinction between ionic and covalent bonds, in many cases both
types of bonds contribute: For example, in III–V compound semiconductors, a large charge transfer
causes ionicity of the bonds, but the fact that most of these crystallize into the face-centered cubic
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Fig. 2.1 Cartoon
representation of chemical
bonds: in an ionic bond,
two atoms with large
electron affinities exchange
charge, resulting in two
ionized atoms that are
attracted by the resulting
Coulomb force. In a
covalent bond, atoms with
similar or identical electron
affinities share their
valence electrons in a
bonding orbital
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structure resulting from sp3 hybridization shows that the bond is also largely covalent. Such bonds are
often characterized by specifying the degree of ionicity.

We have outlined why the chemical properties of the elements are fully determined by the valence
electrons. The number of electrons in the outer shell also determines the chemical valence of the atom.
As a general rule, electrons with fewer than 3 electrons in the outer (incomplete) shell have a chemical
valence equal to the number of electrons. For example, Li (one electron in the outer shell) has valence
I, Ga (3 electrons in the outer shell) has valence III. If the outer shell contains 6 electrons or more,
the valence of the element is 8 minus the number of electrons. Elements with a more complicated
electronic structure of the outer shell(s) can exhibit several different chemical valence numbers.

Finally, it is important to realize that during the formation of a bond, the electronic orbitals change
their structure. For example, during the formation of the O2 molecule the electrons “shared” by the
two oxygen atoms will “orbit” both cores (nuclei+core electrons), forming new orbitals by a “linear
superposition” of the wavefunctions of the 2p orbitals of each atom. As shown in the figure below,
out of these two “single atom” orbitals we form two molecular orbitals: A lower-energy “bonding
orbital” and a higher-energy “antibonding orbital,” respectively, at a slightly lower and higher energy
than the original single-atom orbitals. The bonding orbital is occupied by the two shared electrons and
it exhibits a larger charge density (that is, a larger |ψ|2) between the atoms. In other words, there is a
large probability of finding the electrons between the atoms. Thus, this orbital contributes to keeping
the atoms together. The antibonding orbital is empty and it is associated with a charge density (again,
|ψ|2), which is larger away from the bond. A bonding and an antibonding orbital are illustrated in
Fig. 2.2.

Very large molecules may consist of a very large number of atoms. For example, polymers, such
as the polyparaphenylene (PPP) chain of C atom illustrated in Fig. 2.3. In such a chain, each C atom
on the “center” atomic line is bound to three more C atoms in hybrid sp2 orbitals (note that the
notation used here differs from the notation used before: The superscript “2” now indicates that 2
p orbitals make up the hybrid orbital): The outer s orbital and three p orbitals split into three linear
combinations of the lone s and two p bonding orbitals, and a single pz orbital that “sticks out” of the
plane of the molecule. For C atoms on the outer lines of the chain, two such sp2 orbitals bond each C
atom to its two neighbors; the remaining sp2 orbital is “terminated” by an H atom. The out-of-plane
pz orbitals hybridize into a set of bonding π orbitals that extend throughout the chain (the use of
Greek letters is briefly explained at the end of the chapter). Higher-energy orbitals (the 3s and 3p)
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Ψ1 Ψ2

Ψ1+Ψ2

Ψ1–Ψ2

BONDING

ANTIBONDING

Fig. 2.2 Schematic representation of bonding and antibonding states in a diatomic molecule: Two molecular orbitals
can result from the linear superposition of the two outer-shell wavefunctions of the two atoms, a bonding orbital with
a large electron charge density between the atoms, charge that contributes to the bonding and has a lower Coulomb
energy; and an antibonding, higher-energy orbital. The Van der Waals interaction between two molecules stems from
the mutually induced charge polarization and resulting Coulomb attraction. In a H-bond, a hydrogen atom acts as a
bridge, being shared by the two atoms or molecules

C

H

lC–C,1

lC–C,2 lC–H

lC–C,1 = 0.1478 nm
lC–C,2 = 0.1396 nm
lC–H = 0.1184 nm

Fig. 2.3 The polyparaphenylene (PPP) chain. The circles denote C atoms, the little dots at the edges of the chain
denote H atoms. The lines connecting the atoms are sp2 hybrid atomic orbitals. The remaining pz orbitals in the outer
shells of the C atoms “stick” in and out of the page. They “fuse” together into a molecular π bonding orbital that
extends throughout the entire chain. They are the highest-occupied molecular orbitals, HOMO. The next higher-energy
molecular orbitals, σ∗ and π∗, are, instead, empty antibonding orbitals. They are the lowest-unoccupied molecular
orbitals, LUMO

hybridize into antibonding σ and π bonds. In this case, the polymers exhibit an energy difference
between the highest-energy occupied (hybridized) molecular orbital (HOMO) and the lowest-energy
unoccupied molecular orbital (LUMO). Such a molecule will be electrically insulating, since only
electrons occupying the delocalized LUMO (that is, spread among many atoms) can move if driven
by an electric field, but there are no electrons in these states. Other examples of molecules may be
found in which the valence hybridized orbitals are only partially occupied, so these molecules will
be good conductors, behaving as metals. These considerations will be repeated almost verbatim when
dealing with insulators and conductors in the context of crystals (solids). Strands of DNA, or even
larger proteins, can fall into any of these categories. Their electrical properties are now being exploited
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to “mark” them for medical or biological purposes, “sense” them in diagnostics, such as detecting the
change of conductivity induced by a mismatched basis in a DNA sequence. Also, electronic devices
based on single molecules are an extremely active area of research. A complete discussion of these
topics is, clearly, outside the scope of this text, although the connections are many: understanding their
physical principles, their atomic and electronic structure, and their electronic and electrical properties
requires concepts, mathematical and numerical techniques that are very similar, often identical, to
those discussed here. The text by Helgaker et al. [9] constitutes an excellent and relatively recent
overview of this fast-developing field.

Finally, note how hybrid molecular orbitals are termed with the Greek letter(s) associated with the
Latin character of the atomic orbital that enters the hybridization (s atomic orbitals hybridize into σ
molecular orbitals, p can enter into π-bonds as well as σ -bonds).

Problems

2.1. (The de Broglie Hypothesis and the Bohr Atom) The de Broglie’s assumption to explain
atomic spectra (among other things) consists in assuming that all forms of matter behave as particles
or waves, depending on the situation. For a particle of mass m, the wavelength λ of the associated
“pilot wave” will be given by

p = mv =
h
λ

Consider how de Broglie’s suggestion may explain some features of the hydrogen atom:

(a) Show that the de Broglie assumption, together with the “quantization condition” that the circular
orbit be an integer multiple of the length of the electron wavelength (that is, nλ = 2πr, where r is
the radius of the orbit, n an integer), implies that only discrete orbits are allowed.

(b) Calculate the total energy (kinetic plus potential) in each orbit characterized by an integer n. Show
that the result is identical to what is shown in Eq. (2.62).
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Part II
Crystals and Electronic Properties of Solids



Chapter 3
Crystals: Lattice, Reciprocal Lattice, and Symmetry

3.1 Overview

We are usually taught that matter can exist in three forms (or “states”): Gas, liquid, and solid.
Occasionally, a fourth state is added, plasma (a gas of ionized atoms and electrons). Sir Nevil Francis
Mott, however, disagreed: If we look at many of what we call “solids,” a small change of the ambient
temperature can induce an apparent change of their state. Butter, for example, when taken as a hard,
brittle “solid” out of the freezer, becomes softer, more malleable, when put in the warmer shelves of
the refrigerator. When left on the kitchen table on a warm day, it melts into a liquid. There are no
sharp “phase transitions” to speak of. The microscopic structure of butter remains the same: Long
organic molecules, arranged in a random fashion, are free to slide one over the other at a higher
temperature; lowering the temperature simply makes it more difficult for the molecules to move and
butter becomes “solid.” Mott would have said that, even in the freezer, butter is a liquid, as hard as it
may feel to the touch. Most people would say that butter is an “amorphous” solid, lacking an internal
regular order, being made up, instead, by atoms of molecules arranged in a random network. A proper
“solid,” instead, exhibits a phase transition—a sudden change of its behavior—when melting. This is
the property of “crystals”: Regular, periodic arrangement of atoms or molecules.

Intuitively, it is convenient to think of crystals as tiles on a floor. The shape of the tile (rectangular,
square, or hexagonal) is analogous to what is defined as “lattice.” The design on the tile (e.g., a flower)
is the analogous of what is called the “basis.” In a proper solid, the lattice defines the symmetry of the
crystal, each tile being called a “cell”; the arrangement of the atoms in each cell defines the basis.

Crystals are the main subject of this text. The reason why they are so important as to deserve a
huge literature and extensive study is, of course, the enormous role that they play in our society and
culture. Our age has been defined as the “silicon age.” The cultural and financial effects that crystals
(specifically: semiconducting crystals) have had to our society cannot be overstated. If crystals had
entered our society only through kitchen salt (cubic NaCl crystals), interest in them would have not
been so high, as much as our bodies and nervous system may need salt.

Their regular, ordered, periodic structure makes them ideal systems in which we can control the
flow of charge carriers (electrons). This order also makes it possible to study them, and so to optimize
their properties. In this chapter we shall define crystals and discuss their symmetries. In later chapters
we shall use this “order” to study their all-important electronic properties.

© Springer International Publishing Switzerland 2016
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3.2 Crystals

Crystals are regular arrangements of atoms which look identical when viewed from 2 points

r and r′ = r+Rl, (3.1)

where

Rl = l1 a1 + l2 a2 + l3 a3 (3.2)

is a translation vector with l1, l2, l3 ∈Z (the group of integers, from the German Zahlen for “numbers”)
and with fundamental translation vectors or primitive vectors a1, a2, and a3. The vector Rl is called a
lattice vector.

The lattice of the crystal is the set of all points r′ generated by translation operations T; that is, by
translating a point by a translation vector Rl: T : r → r+Rl. The basis of the crystal is the set of the
coordinates τα of all atoms within a primitive cell. The position of each atom in the crystal can be
uniquely written as

Ratom = Rl + τα . (3.3)

3.2.1 Lattice

Lattices as defined by the set of ideal (mathematical) points with the properties given above are called
“Bravais lattices,” from the studies of August Bravais [1]. In two dimensions, it is easy to see that
there is a small set—five in all—of possible lattices: Think of the number of ways we can cover
a floor using identical tiles. These five Bravais lattices are: square, rectangular, center-rectangular,
oblique, and hexagonal (or rhombic). Different lattices are considered equivalent when they can be
transformed one into the other via a simple symmetry operation (isomorphism). In three dimensions,
there are only 14 Bravais lattices. We shall not discuss them here: We shall be interested mainly in
the face-centered cubic (fcc) lattice in three dimensions, since it is the lattice that describes most
technologically significant semiconductors; and in the hexagonal lattice in two dimensions, since
graphene (and other two-dimensional materials of high scientific and technological interest, at the time
this is written) belong to this lattice. Exhaustive information about lattices and crystals can be found
in texts on crystallography (for example, the book by Borchardt-Ott [2]) or in the introductory text on
solid-state physics by Kittel [3]. This book also provides information about how crystal structures can
be observed, identified, and quantified experimentally, via X-ray or neutron diffraction.

Some definitions and properties concerning the lattice are

• The parallelepiped formed by the fundamental translation vectors is a primitive cell and its volume
is given by Ωc = |a1 × a2 · a3|. Note that repeating the unit cell, with an offset determined by all
translation vectors, fills the entire space.

• Another primitive unit cell is the Wigner–Seitz cell. The Wigner–Seitz (WS) cell can be generated
by connecting all lattice points with straight lines, bisecting these lines with planes normal to the
lines, and considering the volume enclosed by these planes.

• As we have mentioned before, the symmetry properties of a lattice allow the existence of 14 types
of Bravais lattices (those generated by Wigner–Seitz cells).

• An arbitrary plane will intersect the axes a1, a2, and a3 at distances (A,B,C) (in units of the lengths
(a1,2,3), the lattice constants). The Miller indices (l,m,n) of the plane can be found by taking the
reciprocal of the distances (1/A,1/B,1/C) and finding the smallest integers (l,m,n) having the
same ratios as the reciprocals.
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As a matter of notation, (lmn) denotes the plane defined by its Miller indices; {lmn} denotes
the family of all planes that are equivalent to the plane (lmn); [lmn] denotes the direction of the
translation vector la1 +ma2 +na3 (that, for cubic crystals, is the vector perpendicular to the planes
in the family {lmn}); < lmn >, denotes the family of all directions equivalent to the direction of
[lmn]. Also, usually a negative Miller index is indicated by a “bar” over the index; for example,
[11̄0] is the direction defined by the Miller indices (1,−1,0). Unfortunately, this notation is often
used loosely, crystallographers and physicists employing different conventions.

3.2.2 Reciprocal Lattice

Because of the translational symmetry of the crystal, any of its physical properties, described, for
example, by some function f (r), must not change under translation:

f (r+Rl) = f (r), (3.4)

for any Rl. We can express such a periodic function f as a Fourier series:

f (r) =∑
q

Aq eiq·r, (3.5)

where the Fourier coefficients Aq are given by

Aq =
1
Ωc

∫

Ωc

f (r)e−iq·r dr. (3.6)

Making use of the periodicity, Eq. (3.4), to rewrite Eq. (3.5), we have

∑
q

Aq eiq·r eiq·Rl =∑
q

Aq eiq·r. (3.7)

Clearly, this equality can hold if and only if eiq·Rl = 1. This implies that the sum must extend over a
discrete set of q, that we shall denote as Gh, such that

Gh ·Rl = 2π times an integer. (3.8)

To satisfy Eq. (3.8), Gh has the form

Gh = h1b1 +h2b2 +h3b3, (3.9)

with

b1 =
2π
Ωc

a2 ×a3, b2 =
2π
Ωc

a1 ×a3, b3 =
2π
Ωc

a1 ×a2. (3.10)

The vectors b1, b2, and b3 are called primitive reciprocal lattice vectors and they define the reciprocal
lattice. They are often referred to as G-vectors.

Similar to the real lattice, a Wigner–Seitz cell of the reciprocal lattice can be constructed. This cell
is called the first Brillouin Zone (BZ) of the lattice.
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3.2.3 Bloch’s Theorem

Bloch’s theorem is an extremely important theorem that simplifies enormously the study of electronic
states in crystals. We shall make use of it in the following to such an extent that it is hard to envision
how one could study electrons in crystals without it. It states that a wavefunction of electrons in the
(periodic) crystal potential can be labeled by a vector-index k and must satisfy the condition:

ψk(r+Rl) = eik·Rl ψk(r), (3.11)

which is equivalent to the condition:

ψk(r) = eik·r uk(r), (3.12)

where uk(r) is periodic:

uk(r+Rl) = uk(r). (3.13)

Note that this result expresses the fact that electronic wavefunctions in a crystal are plane waves
(the factor eik·r), as for electrons of momentum h̄k in free space, modulating localized wavefunctions
that originate from the orbitals of the atoms that constitute the crystal (the factor uk(r)). As we shall
see, in many cases studying the modulating “envelope” eik·r will be sufficient to derive many electronic
properties that are relevant to charge transport.

To prove Bloch’s theorem, we know that if ψ(r) is a solution, then so is ψ(r+Rl). We can choose
ψ(r) so that ψ(r+Rl) = αψ(r) and requiring |ψ(r)|2 = |ψ(r+Rl)|2, we see that we must have
|α|= 1. Bloch’s theorem is now straightforwardly obtained by writing α = eik·Rl .

An alternative proof of Bloch’s theorem uses group theory: (1) the Hamiltonian commutes with the
translation operator, (2) two commutating operators can be simultaneously diagonalized, and (3) the
eigenvalues of the group of translations are eik·Rl .

The expression for ψk(r) can be seen as that of a plane wave (a free electron) modulating a periodic
function describing the effect of the (periodic) ionic potential. However, since replacing k with k+G
describes the same wavefunction, h̄k cannot be the true momentum of the state and h̄k is referred to
as crystal momentum, not necessarily directly related to the “real” electron momentum.

Note that, whereas ψk(r) is not periodic, the only physically meaningful quantities we can derive
from it are periodic. For example, charge density, e|ψk(r)|2, is periodic:

|ψk(r+Rl)|2 =
∣

∣

∣eik·(r+Rl)
∣

∣

∣

2 |uk(r+Rl)|2 = |uk(r)|2 = |ψk(r)|2. (3.14)

3.2.4 Bragg Reflections

To better understand the meaning of the wavevector k, consider the potential of the ions as very small,
that is, as a weak perturbation of the “empty lattice.” Let us consider the Fourier series of the crystal
potential:

V(lat)(r) =∑
G

VG eiG·r, (3.15)
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and assume that a free electron (characterized by a plane wave of wavevector k) “enters” the crystal
and feels the lattice potential as a perturbation. The effect of this perturbation on the wavefunction
|k〉 = |ψk〉, given by the Bloch wave defined above, will be that of “scattering” the wave to a new
direction and wavelength, i.e., to a new wavevector k′. The matrix element for this process is

〈k′|V(lat)|k〉=∑
G

V(lat)
G δk−k′−G, (3.16)

which vanishes unless k+G = k′. Assuming that the collision between the electron and lattice is
elastic (the recoil of the lattice, much heavier, will be ignored), we can assume k = k′, so that, squaring
the relation k+G = k′:

G2 =−2 k ·G, (3.17)

which is the condition for Bragg reflection. It also determines the edge of the BZ. Therefore, the
electron wavevector k can be treated as a “quasi-momentum,” but it is restricted to be inside the BZ:
As soon as the electron wavelength approaches the BZ boundary, Bragg reflections will “destroy” the
wave.

From Bloch’s theorem and the condition for Bragg reflections, we conclude that waves with crystal
momentum h̄k and h̄k+ h̄G are equivalent. This is because a propagating wave carries with it all the
diffracted components eiG·r as well. However, the energy of the wave will depend on which G we are
considering, as we will see when dealing with energy bands in solids.

3.2.5 The Zincblende and Diamond Crystal

Most semiconductors of interest have a “tetragonal” coordination resulting from the sp3 hybridization
of the bonding orbitals. This yields a face-centered cubic (fcc) lattice with two atoms in each basis. If
the basis atoms are different, as in GaAs, this is the zincblende crystal; if the atoms are the same, as
in Si or C (diamond), this is the diamond lattice.

• The fcc primitive vectors are

a1 = a0

(

0,
1
2
,

1
2

)

, a2 = a0

(

1
2
,0,

1
2

)

, a3 = a0

(

1
2
,

1
2
,0

)

, (3.18)

where a0 is the lattice constant (see Fig. 3.1 on page 44). The fcc unit cell is shown in Fig. 3.2 and
the fcc Wigner–Seitz cell is illustrated in Fig. 3.3.

• fcc lattices have body-centered cubic (bcc) reciprocal lattices (and vice versa).
• There are 24 fundamental “point” symmetry transformations which map the cubic lattice onto

itself (the so-called Td group): All permutations of the three coordinates (six operations) times
sign-swapping two of them (four operations).

• If both atoms in the zincblende crystal are the same, the crystal gains inversion symmetry and is
now the diamond crystal. Accounting for inversions, there are 48 symmetry inequivalent operations
in all (the so-called Oh group).
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Fig. 3.1 Illustration of the
zincblende crystal in its
cubic unit cell

Fig. 3.2 Illustration of the
fundamental translation
vectors and the primitive
unit cell

Fig. 3.3 Four adjacent
Brillouin zones of the fcc
lattice
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3.3 ∗Group Theory

The effects of symmetry can be formally analyzed using algebra and more specifically “group theory.”
Using symmetry information is often useful to prove or understand why certain degeneracies appear
in the band structure or why some transitions are prohibited.

For example, that silicon is not efficient at absorbing/emitting light with an energy close to the
band gap is an immediate consequence of crystal symmetry and translational symmetry in particular.
Translational symmetry assigns a wavevector k to each state and unless translational symmetry is
broken, k has to be conserved between the final and the initial state. Now, silicon has an indirect band
gap, i.e., the valence-band minimum and conduction-band maximum have a different k-vector. The
interaction with an electromagnetic field only breaks translational symmetry very weakly because
of the long wavelength of light compared to the lattice constant. Silicon’s indirect gap means
that light absorption in silicon is prohibited to first order. Second-order interactions, where light
absorption/emission is mediated by the electron–phonon interaction, are allowed but are much less
inefficient.

However, most crystalline materials, and certainly most interesting crystalline materials, have
many symmetries other than translational symmetries. These can be rotations and reflections and
combinations thereof, such as inversions, screw displacements (combinations of rotations and
translations), glide plane operations (combinations of reflections and translations), and improper
rotations (combinations of reflections and rotations).

Group theory, as applied to crystals, is a vast subject. Here, we provide the basic elements. Texts,
such as Dresselhaus’ [4], should be consulted for a complete treatment in the context of solid-state
physics.

3.3.1 Symmetry and Groups

When studying electronic properties of semiconductors, we are interested in those symmetry
operations which preserve the energy of the system. Formally, any symmetry operation ̂T preserving
the energy must leave the Hamiltonian unchanged

̂T(̂H) = ̂H. (3.19)

Since any practical Hamiltonian contains the kinetic energy (∝ −∇2), the allowed symmetry
operations are limited to Euclidean (or rigid) transformations which have a general form

̂T : r → Mr+a (3.20)

where M is an orthogonal 3× 3 matrix and a a translation vector. For pure translations, M is the
identity matrix, for rotations around the origin and reflections through a plane containing the origin,
a = 0.

In Eq. (3.19), ̂T is written as an operator acting on an operator, i.e., the Hamiltonian. But it is more
convenient to have ̂T simply act on a Hilbert space, similar to other operators. If ̂T represents an
operator on a Hilbert space, Eq. (3.19) can be rewritten as

̂T ̂H = ̂ĤT or [̂H,̂T] = 0. (3.21)
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Symmetry operators can be shown to have four properties:

• Closure: Taking two symmetry operators ̂T1 and ̂T2, ̂T1̂H = ̂ĤT1 and ̂T2̂H = ̂ĤT2. It immediately
follows that their combination ̂T3 = ̂T1̂T2 is also a symmetry of the system:

̂T3̂H = ̂T1̂T2̂H = ̂T1̂ĤT2 = ̂ĤT1̂T2 = ̂ĤT3. (3.22)

• Identity: The identity symmetry operator ̂E : r → r is always a symmetry of the Hamiltonian:
̂ÊH = ̂H = ̂ĤE.

• Invertibility: If a symmetry operator ̂T1 is a symmetry of the system, then its inverse ̂T−1
1 , satisfying

̂T1̂T
−1
1 = ̂E = ̂T−1

1
̂T1, is also a symmetry of the system. Defining an auxiliary wavefunction ψ ′ such

that ψ = ̂T1ψ ′,

̂T−1
1
̂Hψ = ̂T−1

1
̂ĤT1ψ ′ = ̂T−1

1
̂T1̂Hψ ′ = ̂Hψ ′ = ̂ĤT−1

1
̂T1ψ ′ = ̂ĤT−1ψ. (3.23)

• Associativity: ̂T1̂T2̂H = ̂T1(̂T2)̂H which is a general property of (Euclidean) transformations.

3.3.1.1 Groups

The (abstract) algebraic structure that takes the four properties of symmetry operators (closure,
associativity, identity, and invertibility) as its axioms is the mathematical group. In solid-state physics,
we can draw on the results from group theory, but it is important to remember that group theory
is a formal abstract mathematical construct. The development of group theory has yielded many
interesting mathematical results and predates modern condensed matter physics and even Quantum
Mechanics.

A group is defined by a set of elements {a,b, . . .} and an operation a ·b= ab, often called the group
multiplication. In group theoretical language, each symmetry operation (̂T1,̂T2,̂T3) of the crystal can
be represented by an element (a,b,c) of its space group. The result of one symmetry operation acting
upon another symmetry operation (̂T3 = ̂T1̂T2) will determine the group multiplication (c = a ·b = ab)
in the space group.

For small groups, it is convenient to characterize the group by its multiplication or Cayley table.
As an example of some groups we have

• The trivial group containing only one element {e} and its group multiplication is trivially
determined as ee = e. Its multiplication table is

· e
e e

. (3.24)

• The group containing two elements {e,a} with multiplication ee = aa = 1 and ea = ae = a. This
is the smallest nontrivial group and is denoted as Z2,C2,Ci, . . . . Its multiplication table is

· e a
e e a
a a e

. (3.25)

• The cyclic group containing n elements {e,a,aa,aaa, . . . ,(a)n−1} is denoted as Zn. Each element
in the cyclical group can be represented by a complex number with unit magnitude: a = ei2π/n.
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• The group of integers Z {. . . ,−2,−1,0,1,2, . . .} where the “group multiplication” operation
corresponds to the conventional addition of numbers, i.e., 1 ·2 = 3 and 0 is the identity element. Z
is an infinite group.

• The dihedral group D3 with six elements {e,a,b,c,d, f} with multiplication table

· e a b c d f
e e a b c d f
a a e d f b c
b b f e d c a
c c d f e a b
d d c a b f e
f f b c a e d

. (3.26)

Note that contrary to the above listed groups, the multiplication table is not symmetric. This means
that the group multiplication of the dihedral group is not commutative for some elements, e.g.,
ab = d �= ba = f . Any such group where group multiplication is not commutative is known as a
nonabelian group.

For larger groups, the multiplication tables are not practical and alternative ways, such as character
tables, are used to identify groups.

Groups can be combined into new groups by taking the direct product of the groups. The direct
product of two groups G,H, with nG,nH elements {eG,aG,bG, . . .}, {eH ,aH ,bH , . . .} is a group G×H
with nGnH elements {eGeH ,eGaH ,eGbH , . . . ,aGeH ,aGaH ,aGbH , . . .}. Denoting the operations in G
and H as ·G and ·H , the group operation (multiplication) in G×H is defined by (xGxH) ·G×H (yGyH) =
(xG ·G yG)(xH ·H yH).

3.3.1.2 Space Groups

All symmetry operations in a crystal form the space group of the crystal and the symmetry operations
can be categorized as

• (i) Translations Tl : r → r+Rl

• (ii) Point symmetries R: Rotations, reflections, and combinations of rotations and reflections around
a point of choice in the crystal. If we take the origin as the point of choice, then R : r → Mr. Groups
composed of point symmetry operations around a point of choice are called point groups.

• (iii) All other operations which are combinations of translations with point symmetries including
point symmetries around a point other than the point of choice.

All of these combined form the space group of the crystal G.
The description of translation symmetry can always be done by a group T. In three dimensions, any

translation by Rl = l1a1 + l2a2 + l3a3 is a symmetry if a1,2,3 are the primitive vectors and the group of
translations is isomorphic to Z×Z×Z.

In the simplest case, any element of category (iii) can be obtained by combining a translation from
category (i) with an element of the point group R described by category (ii). In this simple case, the
space group G is said to be symmorphic and the space group is the direct product of the translation
and the point group of the system G= T×R.

In the alternative case, some elements of category (iii) are a combination of a rotation or a reflection
with a translation which is not an element of category (i). In this case, the space group is said to
be non-symmorphic. The point group R of non-symmorphic space groups is the combination of the
group formed by the elements of category (ii) together with some of the elements of category (iii).
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Specifically, those elements in category (iii) that do not differ from each other by a lattice translation
found in category (i). In group technical terms, the point group is the factor group of the space group
and the translation group: R = G\T. However, the space group is not the product of the translation
and the point group G �= T×R for non-symmorphic space groups.

3.3.2 Character Tables

The unique symmetry information of a crystal is found in its point group R and to describe these point
groups, character tables are used. In this section, we will explain what a character table is and how it
can be read.

A first concept when constructing a character table is the concept of a class. Intuitively, we can
say that “similar” symmetry operations belong to the same class. For example, a reflection along the
x− z plane belongs to the same class as a reflection along the y− z plane if the crystal also has a 90◦
rotation axis along the z-axis. Formally, two elements of a group a,b belong to the same class if an
element c exists such that

a = cbc−1. (3.27)

The second concept when constructing a character table is the concept of a (matrix) representation.
Each element in a group can be represented by a matrix Γ (a) so that the group multiplication also
holds for each matrix multiplication

Γ (a)Γ (b) = Γ (ab). (3.28)

If each element a �= b is mapped onto a different matrix Γ (a) �= Γ (b), the representation is said to be
faithful, otherwise it is an unfaithful representation. For example, for Z2, we can take

Γ (e) =
[

1 0
0 1

]

and Γ (a) =
[

0 1
1 0

]

(3.29)

or through a similarity transformation

Γ (e) =
[

1 0
0 1

]

and Γ (a) =
[−1 0

0 1

]

(3.30)

as faithful representations of dimension 2. Γ (e) = 1,Γ (a) = −1 as a faithful representation of
dimension 1 or Γ (e) = 1,Γ (a) = 1 as an unfaithful representation of dimension 1.

A representation is reducible if a similarity transformation exists that brings all representation
matrices in block-diagonal form at the same time

Γ (a) =
(

Γ (1)(a) 0
0 Γ (2)(a)

)

. (3.31)

If this is the case, Γ (1) and Γ (2) are also representations of the group and Eq. (3.31) defines the sum
of two representations Γ = Γ (1) ⊕Γ (2). If it is not possible to bring all matrices in block-diagonal
form, or equivalently, to write the representation as the sum of two or more representations, the
representation is said to be irreducible.
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Equation (3.31) defines the sum of two representations. But two representations of dimension
n1 and n2 can also be multiplied with each other, Γ (3) = Γ (1) ×Γ (2), yielding a representation of
dimension n3 = n1n2. In matrix form, the elements of Γ (3) are the Kronecker product of the matrices
in representations 1 and 2. The product of 2 representations may be reducible or irreducible.

The character χ(i)(a) of an element is the trace of its matrix in representation i:

χ(i)(a) = Tr(Γ (i)(a)). (3.32)

Some properties are noted below; required proof can be found in [5].

• The character (the trace) is invariant under similarity transformations.
• Any matrix representing two elements a,b in the same class satisfies

Γ (a) = Γ (c)Γ (b)Γ (c)−1, (3.33)

has the same eigenvalues, and consequently the same character Tr(Γ (a)) = Tr(Γ (b)).
• The characters of all elements in the group for different irreducible representations are orthogonal:

∑
a
χ(i)(a)∗χ(j)(a) =∑

C

χ(i)(C)∗χ(j)(C)NC = Nδij, (3.34)

where C sums over all classes, NC is the number of elements in class C, and N = ∑C NC the total
number of elements.

• Characters for the same element in different representations are orthogonal:

∑
i

χ(i)(C)∗χ(i)(C′) =
N

NC
δCC′ , (3.35)

where C,C′ indicate the classes of the elements under consideration.
• The characters of the sum of two representations are the sum of the characters of the representa-

tions: if Γ (3) = Γ (1)⊕Γ (2), then χ(3)(C) = χ(1)(C)+ χ(2)(C).
• The characters of the product of two representations are the product of the characters of the

representations: if Γ (3) = Γ (1)×Γ (2), then χ(3)(C) = χ(1)(C)χ(2)(C).
• The number of (inequivalent) irreducible representations always equals the number of classes.
• Any representation can be decomposed into irreducible representations in a unique way.

A character table is a table listing all characters with its rows indicating the different irreducible
representations and its columns the different classes. The first row is always the trivial repre-
sentation (χ(C) = 1) for all C. The first column is always the identity transformation E whose
representation matrices are always the identity matrix and its character (trace) is the dimension of
the representation. Character tables for all point groups can be found in [4].

The point group of a system with only inversion symmetry is denoted as Ci (isomorphic to Z2). The
character table of Ci is shown in Table 3.1 together with the character table of the dihedral group D3.
Representations of point groups denoted by a letter A,B are one-dimensional representations which
are symmetric and antisymmetric around their principle axis of rotation, respectively, E and T
representations are two- and three-dimensional representations. A subindex g,u indicates if the
representation is even (German: gerade) or odd (German: ungerade).
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Table 3.1 Character table
of the point group Ci

and D3

E i

Ag 1 1

Au 1 −1

E 2C3 3C′
2

A1 1 1 1

A2 1 1 −1

E 2 −1 0

3.3.3 Degeneracies and Selection Rules

3.3.3.1 Degeneracies

The irreducible representations of the point group of a system help to understanding degeneracies in
the band structure of a crystal. If ψ is an eigenstate of the Hamiltonian with an energy E, then so is
̂Tψ . Taking a set of orthogonal degenerate wavefunctions ψi with energy E satisfying

̂Hψi = Eψi, (3.36)

then ̂Tψi must be a linear combination of ψi:

̂Taψi =∑
i′
Γii′(a)ψi′ . (3.37)

The matrices formed by the coefficients Γii′(a) form a representation of the space group of the crystal.
If the representation is reducible, however, the degenerate states can be separated into two (or more)
sets ψ1, . . . ,ψM and ψM+1, . . . ,ψN and the symmetry operations only carry ψ1, . . . ,ψM into linear
combinations of ψ1, . . . ,ψM . In this case, symmetry does not protect the degeneracy between the
two sets but only within the set. For this reason, almost all degeneracies observed in theoretical
or experimental band structures are governed by irreducible representations of their point group.
Although accidental degeneracies are possible, most often when more degeneracy than expected is
present, it is because the system has a symmetry which was not accounted for.

As an example, consider a one-dimensional system with inversion symmetry (which is the same
as reflection in 1D) whose character table is given in Table 3.1. The simplest such system is a one-
dimensional system without any applied external potential which has the solutions ψ1,2 = e±ikx with
an energy h̄2/(2m0)k2. The matrix representation showing how inversion carries e±ikx into e∓ikx is
given in Eq. (3.29). An alternative but equivalent orthogonal set of solutions is given by ψ1,2 =
sin(x),cos(x). The matrix representation for the inversion is now given by Eq. (3.30), which shows
that the degeneracy between cos(x) and sin(x) is not protected against inversion. But cos(x) and sin(x)
are degenerate in this case (with zero potential) because the system also has translational symmetry
in addition to inversion symmetry. Breaking the translation symmetry by considering a particle
in a box x ∈ [−L/2,L/2], the solutions are cos(x(2n− 1)π/L) and sin(x2nπ/L) with n = 1,2, . . .
which correspond to Ag and Au irreducible representations, respectively, i.e., the “cos solutions” are
even under inversion Ti cos(x(2n− 1)π/L) = cos(x(2n− 1)π/L) while the “sin solutions” are odd
Ti sin(x2nπ/L) =−sin(x2nπ/L).

3.3.3.2 Selection Rules

Selection rules are the specification of which transitions are allowed under a given symmetry and a
given perturbation. The transition rates for a transition from an initial state ψi to a final state ψf under
a perturbing Hamiltonian ̂H′ are measured by the matrix element (see Appendix A):
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M =
∫

dr3ψi(r)̂H′ψf (r) =
∫

dr3f (r). (3.38)

If ψi(r) and ψf (r) are nondegenerate and H′ is invariant under the crystal symmetry, f (r) is a one-
dimensional representation of the crystal symmetry and Ta[f (r)] =αaf (r) for any symmetry operation
a. In this case, it is straightforward to derive selection rules. Applying a crystal transformation a leaves
M invariant

M =

∫

dr3 Ta[f (r)] = αa M, (3.39)

since Ta is a Euclidean transformation. The matrix element M must vanish unless αa = 1 for all a,
since (1−αa)M = 0. Equivalently, the representation of f (r) must be the trivial representation, i.e.,
the representation with all of its characters equal to unity.

In general, by identifying how the perturbing Hamiltonian behaves under the symmetry operations
of the crystal, its representation Γ (H′) of dimension nH′ can be determined. If the perturbation does not
respect the symmetry of the crystal, the representation of the Hamiltonian will be a higher-dimensional
representation (which may be reducible), although the specific perturbation will only be one of many
equivalent perturbations. For example, evaluating if a perturbation dependent on the x-coordinate is
allowed is equivalent to evaluating whether a perturbation dependent on y is allowed if the system
has a 90◦ rotation around the z-axis. If the initial or final state is degenerate because of symmetry,
selection rules will be determined between any combination of the degenerate initial or final states.

Taking ψi(r) and ψf (r) to have ni and nf -fold degeneracy and to be represented by Γ (i) and Γ (f ),
ninH′nf ψ∗

i (r)H
′ψf (r) products are possible. Applying the symmetry operations to these products, the

ninH′nf -dimensional product representation ΓM = Γ (i)×Γ (H′)×Γ (f ) is obtained. This product can
subsequently be written as a sum of irreducible representations ΓM = ∑jΓ (j). For a transition to be
allowed, the product of the representations ΓM must contain the trivial representation.

3.3.4 Application of Group Theory to Graphene

As a concrete example, we determine qualitative features of the band structure of graphene. Graphene
has a honeycomb lattice with two primitive vectors a1,2 with an angle of 60◦ between them. Taking
the origin at the center of the honeycomb, the point group of the graphene lattice has the following
symmetries:

• 2C6: Clockwise and counterclockwise rotations over 60◦ around the z-axis
• 2C3: Clockwise and counterclockwise rotations over 120◦ around the z-axis
• C2: Rotation over 180◦ around the z-axis
• 3C′

2: 3 180◦ rotations around the x-axis and equivalent (rotated over 120◦ around the z-axis)
• 3C′′

2 : 3 180◦ rotations around the y-axis and equivalent
• i: Inversion around the origin
• 2S3: Inversion and rotation over 120◦ around the z-axis
• 2S6: Inversion and rotation over 60◦ around the z-axis
• σh: Mirror symmetry through the horizontal x− y plane
• σd: 3 mirror symmetries through the x− z plane and equivalent
• σv: 3 mirror symmetries through the y− z plane and equivalent

The point group describing this symmetry has 24 elements and is called D6h, its character table is
shown in Table 3.2.
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Table 3.2 Character table of the graphene point group D6h

E 2C6 2C3 C2 3 C′
2 3 C′′

2 i 2 S3 2 S6 σh 3 σd 3 σv

A1g 1 1 1 1 1 1 1 1 1 1 1 1

A2g 1 1 1 1 −1 −1 1 1 1 1 −1 −1

B1g 1 −1 1 −1 1 −1 1 −1 1 −1 1 −1

B2g 1 −1 1 −1 −1 1 1 −1 1 −1 −1 1

E1g 2 1 −1 −2 0 0 2 1 −1 −2 0 0

E2g 2 −1 −1 2 0 0 2 −1 −1 2 0 0

A1u 1 1 1 1 1 1 −1 −1 −1 −1 −1 −1

A2u 1 1 1 1 −1 −1 −1 −1 −1 −1 1 1

B1u 1 −1 1 −1 1 −1 −1 1 −1 1 −1 1

B2u 1 −1 1 −1 −1 1 −1 1 −1 1 1 −1

E1u 2 1 −1 −2 0 0 −2 −1 1 2 0 0

E2u 2 −1 −1 2 0 0 −2 1 1 −2 0 0

To determine the graphene band structure, we consider the free electron in a “virtual” hexagonal
lattice. We assume a confining potential in the z direction so the electrons are only free in the x and y
direction and have no kz-dependence. The wavefunctions of the free electron are

ψ(r) = eiK·Rug,u(r), (3.40)

where K and R are two-dimensional vectors and u(r) is a function with crystal symmetry accounting
for the confinement in the z direction. We will consider the case where u(r) is even (ug(r)) and odd
(uu(r)) under reflection through the x− y plane.

The lowest-energy wavefunction is found for K = 0 together with a ug(r). We label this represen-
tation as [00]g and its corresponding irreducible representation is A1g. Higher-energy wavefunctions
are obtained by taking uu(r) and the thus obtained representation [00]u corresponds to the irreducible
representation A2u.

Higher-energy wavefunctions can also be obtained by taking ug(r) and selecting the plane waves
eiGi·R with

G1 =
4π√

3

(√
3

2
,

1
2

)

(3.41)

G2 =
4π√

3
(0,1) (3.42)

G3 =
4π√

3

(

−
√

3
2

,
1
2

)

(3.43)

G4 =
4π√

3

(

−
√

3
2

,−1
2

)

(3.44)

G5 =
4π√

3
(0,−1) (3.45)

G6 =
4π√

3

(√
3

2
,−1

2

)

. (3.46)
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Table 3.3 Characters for the plane waves in the hexagonal lattice

E 2C6 2C3 C2 3 C′
2 3 C′′

2 i 2 S3 2 S6 σh 3 σd 3 σv Irreps

[00]g 1 1 1 1 1 1 1 1 1 1 1 1 A1g

[11]g 6 0 0 0 2 0 0 0 0 6 2 0 A1g⊕ B1u⊕ E2g⊕ E1u

[00]u 1 1 1 1 −1 −1 −1 −1 −1 −1 1 1 A2u

Assuming a1,2 = (1,0),(1/2,
√

3/2), b1,2 = 4π/
√

3(
√

3/2,−1/2),4π/
√

3(0,1). These 6 wavefunc-
tions will yield a 6-dimensional representation of D6h which we denote as Γ [11]g . Applying all
symmetry operations and counting which wavefunctions remain invariant, we can determine the
characters for each class of symmetry operations. E leaves all wavefunctions unchanged and will give
χ [11]g(E) = 6, C6 permutes all wavefunctions 1 → 2,2 → 3, . . . yielding χ [11]g(C6) = 0, C3 permutes
1 → 3,2 → 4, . . . yielding χ [11]g(C3) = 0, a nonzero contribution comes from C′

2 which leaves Gi,i+3

unchanged. The resulting characters for all classes is given in Table 3.3.
To have an idea of what the wavefunctions corresponding to these symmetries look like, we take

the representation of C6 in Γ [11]g :

Γ [11](C6) =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 0 0 0 0 1
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(3.47)

which is the permutation matrix of dimension 6 with eigenvalues ei = eijπ/6 with j = 0, . . . ,5 and
without normalization the eigenvectors are

Vj = [1,eijπ/3,ei2jπ/3,ei3jπ/3,ei4jπ/3,ei5jπ/3].

The one-dimensional representations A1g and B1u have characters ±1, which must correspond to
the first and the fourth eigenvalues of Γ [11]g and have eigenvectors VA1g = [1,1,1,1,1,1,1] and VB1u =
[1,−1,1,−1,1,−1,1]. We can also immediately determine the two-dimensional representations
since χE2g,E1u(C6) = ∓1 (from character Table 3.2) and this can only be realized by assigning the
eigenvalues e±i2π/3 to E2g and e±iπ/3 to E1u.

Calculating the magnitude of the wavefunction at the position of the carbon atoms in the graphene
lattice τ = (0,1/

√
3), then

ψ(τ) = [ei2π/3,1,e−i2π/3,e−i2π/3,1,ei2π/3] = ei2π/3k

gives

ψA1g(τ) = ei2π/3 +1+ e−i2π/3 + e−i2π/3 +1+ ei2π/3 = 0,

and ψE2g(τ) = 0;6, ψB1u(τ) = 0 and ψE1u = 0;0, showing that only the E2g has a nonzero value for its
wavefunction at the carbon atoms where the potential is the lowest. The E2g representation will thus
have the lowest energy of the four representations.

Carbon has 4 valence atoms, graphene has 2 carbon atoms per unit cell and thus 8 atoms per
unit cell which means that 4 spin-degenerate bands will be occupied. We have already established
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Table 3.4 Character table
of the graphene point group
D3h

E σh 2C3 2S3 3 C′
2 3 σv

A′
1 1 1 1 1 1 1

A′
2 1 1 1 1 −1 −1

A′′
1 1 −1 1 −1 1 −1

A′′
2 1 −1 1 −1 −1 1

E′ 2 2 −1 −1 0 0

E′′ 2 −2 −1 1 0 0

that the lowest-energy state has A1g symmetry corresponding to [00]g and the lowest-energy band
corresponding to [11]g is the two-dimensional E1u representation, the fourth electron will occupy the
[00]u state with an A2u representation corresponding to a π-bond between the carbon pz orbitals.

At the K-point (K = (4π/3,0)), the symmetry of the lattice is reduced. For example, rotation
over 60◦ maps K onto K′ = 4π/3(1/2,

√
3/2) and K and K′ are inequivalent since K−K′ is not a

reciprocal lattice vector. Symmetries which are broken are C6, C2, C′′
2 , i, σd, and S6. The remaining

symmetry of the K-point is D3h whose character table is shown in Table 3.4.
Repeating our analysis of the occupied bands using the free-electron bands at K: we start from the

3 plane-wave functions at K:

K1,2,3 = 4π/3[(1,0),(−1/2,
√

3/2),(−1/2,−
√

3/2)]

which reduce into a two-dimensional E′ representation and an A′
1 representation. These 3 bands will be

fully occupied and similar to the case at Γ , a fourth band which is odd under vertical mirror symmetry
will be occupied. However, the lowest-energy band which is odd under vertical mirror symmetry
corresponds to a two-dimensional E′′ representation. So at K, the graphene band is degenerate (i.e., a
two-dimensional irreducible representation) but only half-occupied and graphene is a semi-metal with
a Dirac-cone at K. The semimetallic nature of graphene is protected by its symmetry.

Problems

3.1. (Equivalent Formulations of Bloch’s Theorem) Show in detail the equivalence between the
two formulations of Bloch’s theorem:

ψ(k,r+Rl) = eik·Rl ψ(k,r), (3.48)

and:

ψ(k,r) = eik·r uk(r), (3.49)

where uk(r) is periodic:

uk(r+Rl) = uk(r).

3.2. (Reciprocal Vectors of the fcc Lattice)

(a) Find the reciprocal lattice vectors of the fcc lattice. As fundamental translation vectors use
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a =
a
2
(x̂+ ŷ), b =

a
2
(ŷ+ ẑ), c =

a
2
(ẑ+ x̂),

where x̂, ŷ, and ẑ denote the unit vectors along the directions of the Cartesian axes.
(b) Find the volume of the primitive cell and the density of valence electrons in cm−3 for Si (a =

0.543 nm).
(c) Find the volume of the BZ.
(d) Using a computer program, list the first 50–100 G-vectors in order of increasing magnitude.
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Chapter 4
The Electronic Structure of Crystals: Theoretical
Framework

4.1 Overview

In this chapter we discuss the electronic properties of crystals from a formal theoretical perspective.
These are characterized mainly by the existence of allowed “energy bands” separated by “energy
gaps.” Understanding energy bands quantitatively requires solving the Schrödinger equation for many
electrons in the potential due to all ions in the crystal. For example, ignoring core electrons, a crystal
composed of N Si atoms can be viewed as a lattice of N Si+4 ions and 4N electrons embedded in the
complicated Coulomb potential due to the presence of all of these ions and of the electrons themselves.

The problem may appear daunting. However, the periodicity of the lattice leads to major
simplifications: Roughly speaking, all we have to do (so to speak. . .) is to study the electronic
properties of a single cell subject to the periodic boundary conditions that originate from the symmetry
of the lattice. Thus, we can reduce the problem to a simpler one involving “only” eight electrons and
two fourfold-ionized Si ions.

General theorems are available to compute the band structure of solids: Most notably, several
schemes are based on some approximation of the potential of the ions and all “other electrons,”
reducing them to a fixed pseudopotential which includes the effect of all other electrons, so that we
can use a single-electron picture. In addition, we can rely on Bloch’s theorem (Chap. 3, Sect. 3.2.3)
which tells us how to express the complicated wavefunction as a product of a simple “free electron
envelope” wavefunction and a complicated “fast-wiggling” wavefunction, the same in each cell. Thus,
each electronic state is labeled by something which resembles the wavevector of a free electron, k,
and can be written as

ψk(r) =
1

Ω 1/2
eik·r uk(r) , (4.1)

called a Bloch function where we should recall that uk has the periodicity of the lattice. This is just
Eq. (3.12) with the normalization to the volume of the lattice, Ω explicitly introduced. Notice that,
similar to the symmetries of the crystal in “real space” of all spatial coordinates r (as discussed in
the previous chapter), there are also corresponding symmetries in the space of all wavevectors k: For
example, the state of an electron traveling along the x-axis of cubic crystal will be described by a
wavefunction identical to that associated to an electron traveling along the z-axis, provided we replace
kx with kz. These symmetries allow us to consider only the first Brillouin Zone (BZ) of the crystal.
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It is enough to consider the Bloch wavefunctions with k inside the first BZ in order to obtain full
knowledge of the electronic properties of the lattice. These are tremendous simplifications afforded
by the symmetry of crystals.

Despite these powerful simplifications and approximations, the problem is still mathematically
somewhat convoluted. So, having set the general theoretical scheme and having reached the point of
computing the band structure of solids, at first we shall ignore quantitative aspects and discuss instead
the band structure of solids only from a qualitative point of view.

We shall first present and discuss the full Hamiltonian of the crystal (without any simplification),
consisting of kinetic and potential energy terms for both the nuclei and the electrons. We shall then
decouple the motion of the ions (much heavier and slower) from that of the electrons (the so-called
adiabatic approximation). The motion of the ions will be considered as semiclassical (since the ions
are heavier, their wavelength will be very short, making classical mechanics a good approximation in
describing their motion) and close to equilibrium. The description of the ionic motion so “linearized”
around their equilibrium position (lattice vibrations or phonons) will be briefly considered. It will be
revisited later in the context of the quantum theory of many-body systems. We shall then consider
the electron Hamiltonian so decoupled from the ionic motion. We shall deal with the issue of how
to approximate the complicated many-electron system with the picture of a single electron in the
presence of the potential of the ions and all other electrons. In the next chapter, we shall move to the
problem of how to solve the single-electron Schrödinger equation and obtain the band structure of
solids. In this chapter, instead, we shall conclude by discussing only qualitative features of the band
structure.

4.2 The Hamiltonian of a Crystal

The crystal can be described by the coordinates ri and Rl,α of the electrons and nuclei, respectively,
and by their conjugate momenta pi and Pl,α , respectively. Thus, the total Hamiltonian of the crystal
will be

̂H =∑
i

p̂2
i

2mel
+

1
2∑i,j

e2

4πε0|ri − rj| +∑l,α
̂P2

l,α
2Mα

+
1
2 ∑

l,α ,l′,α ′
U(Rl,α −Rl′,α ′)+∑

i,α
V(α)(ri −Rl,α) . (4.2)

The first 2 terms describe the kinetic energy of the electrons and their potential energy due to the
Coulomb interactions among all electron pairs (the factor 1/2 in front due to the fact that the sum ∑i,j
would count each pair twice). The next two terms represent the kinetic and potential energy of the
nuclei interacting via a potential U. Finally, the last term represents the potential energy of an electron
in the presence of all the ions with charge eZα located at Rl,α = Rl + τα . It is useful to recall that, in
our notation, Rl identifies the lattice point (or, equivalently, cell coordinate or translation vector) l and
τα the coordinate of ion α in the cell.

We have assumed that all electrons (core and valence/conduction) appear in the Hamiltonian above.
Actually, since the state of the core electrons does not differ significantly when considering free
ions and ions in the crystal (their binding energy being so large), it is customary to assume that
the “nuclear” potentials V(α) and U are actually ionic potentials, so that only outer-shell electrons
(valence for insulators and semiconductors, conduction for metals) appear in Eq. (4.2). For the time
being, we shall ignore this difference and discuss the implications of each choice below. So, the terms
“nuclear” and “ionic” will be interchangeable.
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Note that the complexity of the problem is enormous. First, we must deal with the sheer size of the
problem: For Si, for example, assuming pure nuclear potentials, we have N nuclei and 14N electrons.
Thus, the full wavefunction will depend on 15N ×3 variables. In addition, in order to account for the
Fermionic nature of the electrons and for Pauli’ principle, we must antisymmetrize the wavefunction
under exchange of all pairs of electron coordinates. This is an obvious generalization of what we
discussed when presenting qualitatively the He atom. Finally, whereas we know the form of the bare
Coulomb potential due to an ion with charge eZα is V(α)(r) = Zαe2/(4πε0r), the electron–electron
and the inter-ionic potentials U depend on the distribution of the electron charge, which is a function of
the wavefunction (that is, of the unknown). This renders the problem nonlinear. The crystal symmetry
will simplify the problem, obviously. But, equally obviously, we must look for reasonable ways to
approximate and simplify the picture.

4.2.1 The Adiabatic Approximation

The first approximation we invoke relies on the observation that the nuclei are much heavier than the
electrons, usually by a factor of 104 or more. Therefore, the velocity of the nuclei will be 102 times
smaller than that of the electrons. It is reasonable to assume that, even if the ions move away from
their equilibrium (lowest-energy) position, the electrons will adjust instantaneously to the new nuclear
positions. In other words, the electrons can be assumed to follow the nuclear motion “adiabatically.”
Therefore, we can “decouple” the nuclear and electronic wavefunctions and express the full crystal
wavefunction Ξ(R,r) as:

Ξ(R,r)≈Φ(R)ΨR(r) , (4.3)

where R and r indicate the whole collection of nuclear and electronic coordinates. In other words,
Eq. (4.3) says that the nuclear wavefunction, Φ(R), is not quantum mechanically correlated to the
electronic coordinates (each nucleus carries its own electronic “cloud” with itself, as the electrons
follow the nuclear motion instantaneously) and that the electronic wavefunction,ΨR(r), depends on
the nuclear coordinate R as a “parameter,” but not on the nuclear wavefunctions, instead adjusting
instantaneously to the nuclear positions.

An equivalent way to understand the adiabatic approximation is to write explicitly the time
dependence in Eq. (4.3):

Ξ(R,r, t)≈Φ(R, t)ΨR(r, t) . (4.4)

Since the time dependence of Ψ is so much faster than that of Φ , we can see that the electronic
component Ψ “sees” Φ as a constant as Ψ itself oscillates at a high frequency. On the other hand,
the nuclear component Φ will see a time-average of the electron density |Ψ |2, since Ψ will have
undergone many (∼102) oscillations while Φ varies slowly. Therefore, it is appropriate to consider
the ionic/nuclear and electronic motion as “decoupled” (or “disentangled”) in the sense described
above.

Having embraced this first approximation, the Schrödinger equation for the crystal, using the
crystal Hamiltonian Eq. (4.2), and the adiabatic approximation, can be written as

ΨR(r) ̂HL Φ(R)+Φ(R) ̂Hel ΨR(r)+ ̂H′ Φ(R)ΨR(r) = E Φ(R)ΨR(r) , (4.5)

where:

̂HL =∑
l,α

̂P2
l,α

2Mα
+

1
2 ∑

l,α ,l′,α ′
U(Rl,α −Rl′,α ′) (4.6)
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is the lattice Hamiltonian,

̂Hel =∑
i

p̂2
i

2mel
+∑

i,l,α
V(α)(ri −Rl,α)+

1
2∑i,j

e2

4πε0|ri − rj| , (4.7)

is the electronic Hamiltonian with the nuclear coordinates R appearing as parameters, and the term

̂H′ Φ(R)ΨR(r) = ̂HL ΨR(r) Φ(R)−ΨR(r) ̂HL Φ(R)

=Φ(R) ̂HL ΨR(r)∼−Φ(R) ∑
α

h̄2

2Mα
∇2ΨR(r) (4.8)

is the term which we neglect in the adiabatic approximation: it is of relative weight m/M, as mentioned
above, since ∇2ΨR(r)∼ ∑i k2

i ∼ melNel.
The adiabatic approximation is often referred to as the Born–Oppenheimer approximation. Of

course, the fact that the ions may move away from their equilibrium positions does have an effect on
the potential energy of the electrons. At very high temperatures these deviations may be very large:
after all, at some sufficiently high temperature the crystal will melt! But at room temperature, in most
solids these deviations are quite small and can be treated as small perturbations. In Chap. 13 we shall
consider this small coupling between the electrons and the ionic motions. Since, as we shall see in
Chap. 9, Sect. 9.4, the ionic motion is quantized into eigenmodes call phonons, this coupling is called
the electron–phonon interaction.

4.2.2 The Ionic Hamiltonian (Phonons)

The nuclear (or ionic) Hamiltonian ̂HL can be simplified by assuming, as anticipated above, that
the nuclei do not move appreciable away from their equilibrium position. The general problem of
finding the equilibrium positions of the nuclei is straightforward in principle, but daunting in practice,
even within the adiabatic approximation: We should assume a given set of ionic coordinates R, solve
the associated electronic Schrödinger equation, such as Eq. (4.11) below, find the total energy of the
system, repeat the process assuming a new set of ionic coordinates, and look for the ionic configuration
which gives us the lowest total energy. Newton-like schemes—amounting to the calculation of the
forces acting on the nuclei—can be employed, but the procedure is still enormously complex. Recently
(in the last 20 years) significant progress has been made, still using the adiabatic approximation, but
using algorithms coupling “simulated annealing” with a fictitious Newtonian dynamics for the ions to
improve the convergence to the lowest-energy ionic configuration. These techniques—developed by
Roberto Car and Michele Parrinello [1]—now allow us to deal with systems of thousands of atoms.
But we shall not go into the details of these sophisticated approaches. For now, we shall assume that we
know “somehow” (experimentally, from total-energy calculations, from Car–Parrinello techniques)
the lattice structure, and assume that the ions are at rest (or, at least, that their displacement away from
their equilibrium positions is small enough to be considered a small perturbation).

So, having made the approximation that the nuclei are close to equilibrium, we can write Rα =

R(0)
α +uα , where uα is the small displacement away from the equilibrium position R(0)

α . We can then
expand the inter-ionic (or inter-nuclear) potential U(Rl,α −Rl′,α ′) around equilibrium:

U(Rl,α −Rl′,α ′)≈ U(0) +
1
2
∇l,α∇l′,α ′ U(0) ul,α ul′,α ′ , (4.9)
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where the subscript 0 means that the quantity is evaluated at the equilibrium position (U(0) =U(R(0)
l,α−

R(0)
l′,α ′), for example). The notation ∇l,α stands for the vector (∂/∂Rl,αx,∂/∂Rl,αy,∂/∂Rl,αz). Note

that the first-order term (involving the gradient of U) vanishes, since we are at equilibrium, so that
all forces acting on the ions/nuclei cancel. The “matrix” Dα ,β = 1

4∇α∇βU (which is evaluated at the
equilibrium position) therefore represents the force-matrix (or dynamical matrix) for the ions/nuclei.
Using this expansion of the inter-ionic potential and setting U(0) = 0, since it is just a rescaling of the
zero-reference for energies, the full ionic Hamiltonian becomes

̂HL =∑
l,α

[

̂P2
l,α

2Mα
+ ∑

l′,α ′
Dl,α ,l′,α ′ ûl,α ûl′,α ′

]

, (4.10)

which is a collection of coupled harmonic oscillators with conjugate variables ̂Pl,α and ûl,α . These
variables can be reduced to normal modes by diagonalizing the dynamical matrix, so that Eq. (4.10)
takes the form of a sum over Hamiltonians of harmonic oscillators. This will give rise to acoustic and
optical ionic waves. Upon quantization (as we shall see later in Chap. 9, Sect. 9.4), they will be called
phonons. They are plane waves, weakly interacting with each other via anharmonic terms, that is, the
higher-order terms which we have neglected in Eq. (4.9).

4.2.3 The One-Electron Approximation: Hartree and Hartree–Fock

Considering now the electronic Hamiltonian ̂Hel, the associated Schrödinger equation is

[

∑
i

p̂2
i

2mel
+∑

i,l,α
V(α)(ri −R(0)

l,α)+
1
2∑i,j

e2

4πε0|ri − rj|

]

Ψ(r1,r2, . . . ,rNel)

= EΨ(r1,r2, . . . ,rNel) , (4.11)

where we have expressed explicitly the dependence on the electron coordinates, have indicated with
Nel the total number of electrons in the system, and we have omitted the subscript R, since we consider
the nuclei in their equilibrium positions.

The problem, though simplified, is still unsolvable. Recall, for example, that the electronic
wavefunction Ψ(r1,r2, . . . ,rNel) must be antisymmetrized under all exchanges of any two electron
indices in order to obey Pauli’s principle.∗ To see this, ignore spin and consider a 2-electron system with a normalized solution ψ(r1,r2) of
the associated Schrödinger equation. The linear combination (1/21/2)[ψ(r1,r2)−ψ(r2,r1)] is the
required antisymmetric wavefunction. We see that if we try to place both electrons in the same state—
so that swapping electrons results in the same state, that is ψ(r1,r2) = ψ(r2,r1)—the wavefunction
vanishes, as required by Pauli’s principle. If we want to account for spin, the situation is a little more
complicated. The total wavefunction is now the product of the spatial and the spin wavefunctions.
So, we can either have a symmetric spatial component and an antisymmetric spin component, or vice
versa: In the first case, the electrons can form a “singlet” state of vanishing total spin (anti-parallel
spins). Now we can form an antisymmetric spin state, [|+〉|−〉−|−〉|+〉]/21/2, and a symmetric spatial
wavefunction, (1/21/2)[ψ(r1,r2)+ψ(r2,r1)]. In the second case, the electrons can be in any of three
spins states of total spin s = 1 and sz = −1,0,+1 (a symmetric triplet of spin states), so that the
spatial component of their wavefunction must be antisymmetric.

The first step towards a further simplification of the problem is to use one of the most common tools
in solid-state physics: The self-consistent field approximation: We shall consider only one electron at
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the time, assuming that the effect of all other electrons can be lumped into an average field. This field
will have to be solved self-consistently, since it depends on the density (and so wavefunctions) of all
other electrons, and on the requirement that Pauli’s principle is obeyed.

The easier way to reformulate the problem under this approximation is to follow Hartree [2]
ignoring spin (and so antisymmetrization issues) and assuming that we can write the total electronic
Hamiltonian as the sum of single-electron Hamiltonians, ̂Htot = ̂H1 + ̂H2 + · · ·+ ̂HNel accounting for
the self-consistent field, obtaining the single-electron “Hartree equations”:

[

− h̄2

2mel
∇2 +V(lat)(r)+∑

j �=i

e2

4πε0

∫ ψ∗
j (r

′)ψj(r′)
|r− r′| dr′

]

ψi(r) = wiψi(r) . (4.12)

The sum extends over all occupied states, but not over i itself. We have defined the “lattice potential”

V(lat)(r) = ∑l,α V(α)(r − R(0)
l,α). The integral term represents the electrostatic potential due to the

charge density e|ψj(r)|2 of the j-th electron, so that the sum constitutes the “mean field” due to
all other electrons. Consistently with this approximation, the full wavefunction is expressed as the
product of single-electron wavefunctions,Ψ = ψ1ψ2 . . .ψNel . Hartree suggested a variational solution
for Eq. (4.12): We “guess” a functional form for all ψj’s expressed in terms of some parameters.
We then vary these parameters in order to minimize the energy 〈Ψ |̂HH|Ψ〉. The interpretation of the
parameter wi is a little tricky. It may be tempting to call it the “single electron energy.” However,
we can never specify uniquely a single-particle energy in an interacting system: We can always add
energy to one electron and subtract it from another without changing the total energy. Moreover, if
we remove a single particle from the system, we do not change the total energy by simply subtracting
the total energy of the particle we have removed. On the contrary, we also modify the total energy of
the system by removing the interaction between all other particles and the one we have removed. As a
result, if we compute the total energy of the system we do not find ∑i wi, as expected if the wi’s were
single-electron energies, but, instead, we find

〈Ψ |̂HH |Ψ〉
〈Ψ |Ψ〉 =∑

i

wi − 1
2 ∑i,j

e2

4πε0

∫ ψ∗
j (r

′)ψj(r′)ψ∗
i (r)ψi(r)

|r− r′| drdr′ , (4.13)

because ∑i wi accounts twice for the mutual interaction between pairs. The last term in Eq. (4.13)
expresses this correction. More about the meaning of wi below.

An improved approximation consists in accounting for the required wavefunction antisymmetriza-
tion. The wavefunction must be formed from single-electron wavefunctions ψi(ri) via the Slater
determinant:

Ψ(r1,r2, . . . ,rNel) =
1√
Nel!

∣

∣

∣

∣

∣

∣

∣

∣

ψ1(r1) ψ1(r2) . . . ψ1(rNel)

ψ2(r1) ψ2(r2) . . . . . .

. . . . . . . . . . . .

ψNel(r1) . . . . . . . . .

∣

∣

∣

∣

∣

∣

∣

∣

. (4.14)

Using this form of the wavefunction to calculate the expectation value of the Hamiltonian given by
Eq. (4.11) and employing a variational method to minimize this expectation value, one obtains finally
the “Hartree–Fock equations”:

[

− h̄2

2mel
∇2 +V(lat)(r)+∑

j �=i

e2

4πε0

∫ ψ∗
j (r

′)ψj(r′)
|r− r′| dr′

]

ψi(r)

−∑
j �=i

e2

4πε0
ψj(r)

∫ ψ∗
j (r

′)ψi(r′)
|r− r′| dr′ = wiψi(r) . (4.15)
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These equations are still only approximations, since accounting for the full Slater determinant would
lead to an infinite series of equations. But the essence of the Hartree–Fock approximation is the
correction due to the last term on the left-hand side of Eq. (4.15). This is the exchange energy
resulting from having exchanged the indices i and j of one single-electron wavefunction in the previous
term. Physically, the exchange energy results from the fact that electrons in antisymmetrized spatial
wavefunctions tend to “repel” each other—in order not to occupy the same “state”—and so the
Coulomb repulsion (positive potential energy) is lowered. This explains the sign of the exchange
term. The total energy is indeed lowered by an amount:

− 1
2 ∑i,j,i �=j

e2

4πε0

∫ ψ∗
i (r

′)ψj(r′)ψ∗
j (r)ψi(r)

|r− r′| dr dr′ . (4.16)

Note the indices swapped with respect to Eq. (4.13) above. Recall that we are still dealing with
approximations. Customarily, the difference between the “exact” energy and the Hartree–Fock result
is called correlation energy. Quantum calculations have been performed for the homogeneous electron
gas. This last component of the total energy can loosely be attributed to the fact that electrons tend
to have a correlated spatial distribution, further reducing their Coulomb repulsion. Finally, Koopmans
has shown that the parameters wi in the Hartree–Fock single-particle equation, Eq. (4.15), has the
magnitude (but opposite sign) of the ionization energy for that state in the crystal [3].

However, in most of the following we shall bypass the difficulty of accounting for them and we
shall assume that the lattice potential, V(lat), is the self-consistent lattice potential which includes
the (screening) repulsive Coulomb effect of all other electrons in the self-consistent mean-field
approximation. This self-consistent potential, thanks to the symmetry of the problem, will retain
its periodicity in the lattice structure. However, it is useful to mention that in self-consistent band-
structure calculation methods, the exchange (or exchange-correlation) energy has been approximated
with a “functional” of the electron density (and, so, of all single-electron wavefunctions). Its 1/r
dependence implies a form ∼ ρ(r)1/3 for this functional, usually called the Kohn–Sham functional
[4]. It is usually calculated assuming a free-electron model, as we shall see in the next chapter. Thus,
the single-electron Schrödinger equation often used has the form

{

− h̄2

2mel
∇2 +V(lat)(r)+V(xc)[ρ(r)]

}

ψ(r) = wi ψ(r) , (4.17)

where the exchange-correlation term has the form V(xc)(ρ) ∝ ρ1/3 and, once more, we should recall
that V(lat) includes the screening of all other electrons via the Hartree term, as we shall see in the
next chapter. Note that, since the Kohn–Sham functional is a functional of the electron density, this
theoretical approach is also known as Density Functional Theory (DFT).

4.3 Energy Bands: A Bird’s Eye View

We are now ready to derive the band structure of solids by solving the single-electron Schrödinger
equation in the Hartree approximation. Before delving into technical details, let’s consider the
qualitative picture of the band structure which emerges when we bring many atoms together into
a lattice.
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4.3.1 Coupling Atoms

Consider two Si atoms, widely separated, as in Fig. 4.1 which shows the Coulomb potential around
each nucleus (∝ 1/r, where r is the distance from the nuclei), the energy of the 3 occupied levels, and
their electronic configuration. Let’s recall here the important fact that there are eight states available in
the n = 3 energy level, two 3s-states and six 3p-states. However, Si has only 4 electrons in this shell,
so that the outermost (valence) shell is only half-occupied.

Now let’s bring the nuclei much closer, so that the potential around each nucleus is affected
significantly by the other atom. This is illustrated schematically in Fig. 4.2. The “core” levels (n = 1
and n= 2) do not significantly feel the perturbation caused by the other nucleus, but the highest-energy
occupied level n = 3 does feel a dramatic change. The n = 3 orbitals now spread over both nuclei.
Clearly, their energy will change, because the potential itself has changed. Qualitatively, what happens
is that, starting from the original hybrid sp3 orbitals of a single atoms, we will have a “distortion”
of each of them, caused by the new potential. In addition, we may form two superpositions of the
orbitals, much like we had formed the hybrid sp3. One superposition corresponds to orbitals with a
large electron probability density between the nuclei. This is a “bonding orbital,” since these “shared
electrons” constitute a covalent bond. Since the electrons in this orbital sit close to the attractive nuclei,
the energy of this orbital is low. The other linear combination of orbitals we may form corresponds
to orbitals having a small electron density between the nuclei. These orbitals are “antibonding,” since
they do not contribute to the covalent bond between the two Si atoms. Their energy will be higher,
since the electrons, on average, sit farther away from the nuclei.

The net effect is that the fourfold degenerate energy levels corresponding to the two sp3 orbitals of
the two separate atoms, each containing one (of a possible maximum of 2) electrons, have split into
two lower-energy bonding states (each with a slightly different energy) and two higher-energy (also
each at a slightly different energy) antibonding states. The electrons will occupy the lowest-energy
states to form the bond. The antibonding states will remain unoccupied.

1s2

2s22p6

3s23p2

= 3(sp3)4

1s2

2s22p6

3s23p2 = 3(sp3)4

(only half full)

SiSi

Fig. 4.1 Schematic illustration of the ionic potentials of two isolated Si atoms. The horizontal lines show qualitatively
the energy levels of the 2s and 2p “core” stets and of the 3s and 3p valence orbitals



4.3 Energy Bands: A Bird’s Eye View 65

Fig. 4.2 Schematic
illustration of the ionic
potentials of the two Si
atoms shown in the
previous figure, but now
assumed to be in close
proximity, as in the Si
crystal. Whereas the core
levels—indicated by the
horizontal lines—are not
affected by the proximity
of the other atom, the
valence states split into
(occupied) bonding states
and (unoccupied)
antibonding states at a
higher-energy

1s2

2s22p6

3s23p2 = 3(sp3)4

1s2

2s22p6

3s23p2 = 3(sp3)4
3(sp3)8 (empty)

3(sp3)8 (full)

Si Si

Let’s now imagine what happens when we bring together three Si atoms: They will bond together
forming a set of three occupied bonding states (at three different but very similar energies) and three
antibonding unoccupied states.

4.3.2 Energy Bands

Now let’s consider a Si crystal formed by, roughly, N = 1022 atoms. What happens now is very similar
to what we have seen in the case of two and three atoms. The N atoms will contribute a total of
8N possible sp3 orbitals, originally all at the same energy. They will split into 4N occupied orbitals
contributing to the bond and 4N empty antibonding orbitals. The energy of each of the 4N bonding
orbitals will be very close to that of any other bonding state. Indeed, they will spread over an energy
interval of a few tens of an eV and we will have roughly 1022 energy levels in this small energy
range. They are so many and so close together, that it makes sense to look at them as a “continuum”
of infinitely many states populating an energy band. Since this is the band of bonding states made
up using the valence electrons, it is called the valence band of the crystal. Similarly, the set of 4N
antibonding orbitals will also form a band of unoccupied states. These states are spread away from
the atoms throughout the whole crystal. Assuming we found a way to occupy one of these states (later
on we shall see how to do this), the electron in this state will not be “forced” to bind the nuclei, but
will be free to move around the crystal. If we apply an electric field, the electron will be free to move
according to the external force, thus contributing to the conduction of current. Therefore, the band of
antibonding states is called the conduction band of the crystal.

The valence and conduction bands are separated by an energy gap whose existence stems from
considerations similar to those which caused the presence of forbidden energies in the isolated Si
atom.
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4.3.3 Metals, Insulators, Semiconductors

We have just seen that the 4N valence electrons in a Si crystal occupy the entire valence band. On the
other hand, the conduction band, which could contain also 4N electrons, is completely empty.

Suppose that we apply an electric field to a Si crystal at a very low temperature (by placing in
contact with two metallic plates, for example, at the opposite ends of the crystal). In principle, the
electrons would “like” to respond to the field and move away from the negatively charged plate
towards the positively charged plate. But “motion” requires gaining kinetic energy. Therefore, the
electrons in the valence band should acquire a bit of extra energy in order to move. But since the
valence band is full and we are assuming an empty conduction band (low temperature), they may gain
energy only by “jumping” to the next available empty states in the conduction band. But this jump
requires a large amount of energy (about 1.1 eV at room temperature in Si). Therefore, the electrons
cannot move, so no current will flow in the crystal, despite the electric field we have applied. In other
words, a “perfect” Si crystal at a very low temperature (we’ll see below why we stress the word
“perfect”) behaves like an insulator.

Not all crystals are like Si. For example, if we take a crystal of N Na ions, the valence band will
be constituted by 2N states emerging from the s orbitals of each Na ion, but only N electrons populate
the band, the “energy gap” now lying at a much larger energy. Therefore, the valence band will be
only partially occupied, in this case half full, and electrons can acquire an arbitrarily small amount of
energy from the applied electric field. Therefore, current will flow in Na: Sodium is a conductor. Other
metals, instead, have “overlapping bands.” The absence of a gap makes good electrical conductors,
much like Na.

Glass (silicon dioxide, SiO2, in its amorphous form) is another insulator, like Si, but its band
gap is about one order of magnitude larger than that of Si (for Si we have seen that Eg ≈ 1.1 eV,
while for SiO2 we have Eg ≈ 9.2 eV). This gap is now much larger than the thermal energy and it
is very difficult to place electrons in the conduction band. Deep ultraviolet light or the application
of extremely high electric field, larger than 108-to-109 V/m, are two ways one can achieve this, but
these are extreme conditions that we ignore here, although they are concerns in ultra-small electronic
devices. Therefore, glass will behave like an insulator even at elevated temperatures.

Figure 4.3 shows qualitatively the difference between semiconductors, insulators, and semicon-
ductors. The difference between semiconductors and insulators is only quantitative: If the forbidden
energy gap is very large, even the presence of impurities or a high temperature cannot modify the
insulating properties of the material. For semiconductors, instead, thermal excitation of electrons
across the gap or the addition of a small number of selected foreign atoms (impurities or “dopants”)
can alter dramatically their properties. We shall see how this process (doping) is intentionally done.

Fig. 4.3 Schematic
illustration of the energy
bands in insulators,
semiconductors, and metals
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4.3.4 The Kronig–Penney Model

Before moving to methods used to calculate energy bands in solids, let’s translate into mathematical
terms the intuitive approach followed above. Let’s consider a simple, well-known example, called the
Kronig–Penney model. It can be solved almost analytically and it exhibits most of the features we
will find in more realistic models. Consider a periodic potential consisting in many wells of width a
and energetic depth U0 separated by potential barriers of width b. This is a one-dimensional “crystal”
with a unit cell of size a+ b. Let’s choose x = −b and x = a as cell boundaries. We assume that the
well occupies the region 0 < x < a, the barrier occupies the region −b < x < 0 (Fig. 4.4).

The Schrödinger equation we must solve takes the form

d2ψa

dx2 +α2ψa = 0 for 0 < x < a

and

d2ψb

dx2 +β 2ψb = 0 for −b < x < 0

with α = (2melE)1/2/h̄ and

β =

{

iβ−; β− = [2mel(U0 −E)]1/2 0 < E < U0

β+; β+ = [2mel(E−U0)]
1/2 E > U0

.

It is convenient to write the solutions as:

ψa(x) = Aa sin(αx)+Ba cos(αx)

ψb(x) = Ab sin(βx)+Bb cos(βx)

(later replacing sin and cos with sinh and cosh if necessary).
In order to find the coefficients Aa, Ba, Ab, and Bb, we must consider four boundary conditions:

The first two express continuity of the wavefunction at the potential “steps”:

ψa(0) = ψb(0)

dψa

dx

∣

∣

∣

∣

0
=

dψb

dx

∣

∣

∣

∣

0
,

Fig. 4.4 One-dimensional
periodic potential used in
the Kronig–Penney model b a

U0

E

x



68 4 The Electronic Structure of Crystals: Theoretical Framework

and two more express periodicity:

ψa(a) = eik(a+b) ψb(−b)

dψa

dx

∣

∣

∣

∣

a
= eik(a+b) dψb

dx

∣

∣

∣

∣−b
.

These conditions imply

Ba = Bb

αAa = βAb

Aa sin(αa)+Ba cos(αa) = eik(a+b) [−Ab sin(βb)+Bb cos(βb)]

αAa cos(αa)−αBa sin(αa) = eik(a+b) [βAb cos(βb)+βBb sin(βb)]

Using the first two equations, we can eliminate Ab and Bb from the last two:

Aa[sin(αa)+(α/β )eik(a+b) sin(βb)]+Ba[cos(αa)− eik(a+b) cos(βb)] = 0

Aa[α cos(αa)−αeik(a+b) cos(βb)]+Ba[−α sin(αa)−β eik(a+b) sin(βb)] = 0

We have reduced the problem to the solution of a linear homogeneous system in two unknowns.
A nonzero solution exists only if the determinant of the matrix above vanishes. This simplifies to:

−α
2 +β 2

2αβ
sin(αa)sin(βb)+ cos(αa)cos(βb) = cos[k(a+b)]

This equation provides implicitly the “dispersion” E(k). “Energy gaps” arise whenever the magnitude
of the lhs exceeds unity. The dispersion can be analyzed inside the BZ (i.e., for −π/(a+ b) < k ≤
π/(a+b) since a+b is the fundamental translation “vector” and Gn = 2πn/(a+b) are the reciprocal
lattice “vectors.” Alternatively, one can plot E(k) in an “extended zone” picture. In doing so, one can
see that the dispersion (i.e., the energy-wavevector relation) is quasi-parabolic near the zone center
(electron- or hole-like), it is “flat” (zero slope) at the zone-edge, and it approaches the parabolic
dispersion of a free-electron at high energies.

Problems

4.1. (Si Molecules)

(a) Why doesn’t the Si2 molecule exist?
(b) Why, on the other hand, does the SiH4 molecule exists? It is called “silane.”

4.2. (An Alternative Form of the Kronig–Penney Model) An alternative way to see how energy
bands arise consists in solving a problem very similar to the Kronig–Penney model. Consider a one-
dimensional periodic potential energy

V(x) == eV0

∞

∑
n=−∞

δ (x−na) . (4.18)
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This defines a potential energy that vanishes everywhere except at the lattice positions xn = na where
it exhibits “spike” of amplitude eV0. Therefore, a is the periodicity of this lattice. Find the form of
the Bloch waves, keeping in mind that at the locations xn the first derivative of the wavefunction is
discontinuous. Find also a graphic procedure to obtain the dispersion E(k).
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Chapter 5
The Electronic Structure of Crystals:
Computational Methods

5.1 Overview

In the previous chapter we have outlined the general theoretical framework required to formulate the
problem of finding the electronic properties of solids as a single-electron problem. Here we discuss in
detail the most significant methods that can be used to solve the problem quantitatively. We start by
describing methods based on the expansion of the unknown (Bloch) wavefunction into plane waves,
explain why a “brute force” solution would not work, and introduce the concepts of orthogonalized
plane waves (OPW) and model potentials that lead to pseudopotentials. We discuss their use in their
“empirical” form, but, in their self-consistent implementation, they lead to density functional theory
(DFT). This will be discussed separately in the next chapter, given the important role that it plays in
solid-state physics, materials science, and nanoelectronics. We also present other methods not based
on plane-wave expansions, namely tight-binding and k ·p perturbation theory. For each method, we
shall present some significant examples.

Since the topic treated here is so vast, we shall unavoidably skip some important “details.” Texts
exclusively devoted to the study of the electronic spectrum of crystals abound and, if additional
details are needed, these details can be found there. In particular, Harrison presents an overview of
the pseudopotential and tight-binding approximations [1]; the concept of pseudopotential, introduced
by Hellman in 1935 [2], is reviewed, both as empirical model potential and ab initio, by Austin et al.
[3], Harrison [4], and Heine [5]. Its most recent ab initio formulations are discussed, for example, by
Kaxiras [6] and Pisani [7]. The use of linear combinations of atomic orbitals (also known as the tight-
binding approximation) was introduced and discussed by Slater [8]. More details about the use of k ·p
perturbation theory are given by Luttinger and Kohn [9] and Kane [10], authors who first introduced it.
A discussion about its application to the study of the valence bands of Si and Ge can be found in
Kittel’s text [11]. Finally, the development of the all-important exchange-correlation functional can
be followed historically in the original articles [12, 13].

5.2 Plane Waves

Consider the single-electron Schrödinger equation (4.17) above. For the time being, we shall ignore
exchange-correlation effects. We make use of Bloch’s theorem, so that, by expanding the general
solution over products of Bloch functions, we shall arrive at a matrix form for the Hamiltonian.
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In principle, the associated eigenvalue problem can be solved, of course. However, we shall see that,
in practice, unless we do something about the lattice potential, it will be the size of the problem which
will make it computationally impossible to solve.

We wish to solve the Schrödinger equation

− h̄2∇2

2mel
ψ(r)+V(lat)(r)ψ(r) = E ψ(r) . (5.1)

Since the lattice potential V(lat)(r) is periodic, we use Bloch’s theorem and consider the wavefunction

ψ(k,r) =
1

Ω 1/2
eik·r ∑

G
ukG eiG·r .

Inserting this into the Schrödinger equation, we obtain

h̄2

2mel
∑
G

|k+G|2ukGei(k+G)·r +V(lat)(r) ∑
G

ukG ei(k+G)·r

= E(k)∑
G

ukG ei(k+G)·r .

Now we can use a “standard technique” to solve equations in Fourier-transformed form: Multiplying
it by e−i(k+G′)·r and integrating over the whole volume of the crystal, this equation leads to

[

h̄2

2mel
|k+G|2 −E(k)

]

ukG +∑
G′

VGG′ ukG′ = 0 , (5.2)

where VGG′ = V(lat)
G−G′ is the Fourier transform of the lattice potential, V(lat)(r). This linear homoge-

neous problem has nontrivial solutions only if the determinant of the coefficients vanishes, that is:

Det

∣

∣

∣

∣

∣

∑
G′

{[

h̄2

2mel
|k+G|2 −E(k)

]

δGG′ +VGG′

}

∣

∣

∣

∣

∣

= 0 . (5.3)

The term VGG′ can be simplified using its periodicity:

VGG′ =
1
Ω

∫

Ω
e−iG·r V(lat)(r) eiG′·r dr ,

assuming that the wavefunctions have been properly normalized to the volume Ω of the crystal.
Now recall that V(lat) is the sum of the ionic potentials in the WS cell. Since we must deal with

indices for both cells and ions in each cell, we shall use, as usual, indices l, m,. . . for the cells, reserving
the indices α , β , etc., for the Nions ions in each cell. If the ions in the WS cell are at positions τα
(α = 1,Nions) (relative to the origin in each cell), then:

V(lat)(r) =∑
l,α

V(α)(r−Rl − τα) ,
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where V(α) is the potential of ion α . Then, setting G′′ = G−G′:

VGG′ =
1
Ω ∑l,α

∫

Ω
e−iG′′·r V(α)(r−Rl − τα) dr

=
1
Ω ∑l,α

e−iG′′·Rl

∫

Ω
V(α)(r−Rl − τα) e−iG′′·(r−Rl) dr . (5.4)

Setting r′ = r−Rl − τα as dummy integration variable, we can rewrite this equation as:

VGG′ =
1
Ω ∑l,α

e−iG′′·Rl

∫

Ω
V(α)(r′) e−iG′′·(r′+τα ) dr′

=∑
α

e−iG′′·τα 1
NcellΩc

∑
l

e−iG′′·Rl

∫

Ω
V(α)(r′) e−iG′′·r′ dr′ , (5.5)

whereΩc is the volume of the cell. Since the ionic potentials V(α)(r) are short-range, being “screened”
by the other valence electrons, they decay very quickly at large distances. Thus, we can neglect the
contribution to the integral coming from points r′ outside the WS cell and assume that:

∫

Ω
V(α)(r′) e−iG′′·r′ dr′ ≈

∫

Ωc

V(α)(r′) e−iG′′·r′ dr′ . (5.6)

Since ∑l e−iG′′·Rl = Ncell, the number of cells in the volume Ω , we finally obtain

VGG′ =∑
α

e−i(G−G′)·τα 1
Ωc

∫

Ωc

V(α)(r) e−i(G−G′)·r dr

=∑
α

e−i(G−G′)·τα V(α)
G−G′ . (5.7)

In the simple case of mono-atomic lattices (such diamond, Si, or Ge), all ionic potentials in each cell
are the same, so, dropping the unnecessary index α , we can rewrite this final expression in the simpler
form:

VGG′ =∑
α

e−i(G−G′)·τα 1
Ωc

∫

Ωc

V(r) e−i(G−G′)·r dr

= S(G−G′) VG−G′ . (5.8)

The factor S(G) depends only on the location of the ions within the WS cell and is called the structure
factor. The factor VG is the Fourier transform of the atomic potential within the WS cell and is called
the form factor.

A numerical solution of this problem can be obtained by considering a large-enough number, NG,
of G-vectors. The NG eigenvalues, En(k), give the dispersion in NG bands, the NG eigenvectors
give the wavefunctions. The problem arises when we consider the number of G-vectors which we
should retain. If we take for V(α) the bare ionic potential, V(α)(r−Rα) = −e2/(4πε0|r−Rα |), we
must account for the extremely short wavelengths that core electrons will have near the “singularity”

r = Rα . In other words: the Fourier components V(α)
G decay all too slowly with increasing magnitude

of G. For a typical crystal, the rank of the eigenvalue problem we would have to solve would approach



74 5 The Electronic Structure of Crystals: Computational Methods

or even exceed 106. Even with the computing power available today, this is a nontrivial difficulty.
It was an impossible task in the early days of semiconductor physics. Some approximation is definitely
required.

5.2.1 Orthogonalized Plane Waves

The reason why the simple plane-wave method requires so many plane-waves stems, as we saw, from
the necessity to solve also for the core states. Yet, these do not deviate significantly, or even at all,
from their free-atom form. Moreover, the valence and conduction states should be orthogonal to these
states. Therefore, it appears that the many high-frequency plane waves which create troubles are not
even necessary. Thus, from these considerations, Herring [14] and later Callaway [15], had the idea
of expanding the unknown single-electron wavefunctions over the subset of plane waves which are
orthogonal to the core states. This is called the orthogonalized plane-wave (OPW) method.

One starts by defining normalized core eigenstates centered at individual ion positions (assumed to
be frozen in their equilibrium position):

|t, l,α〉= ψt(r−Rl,α) , (5.9)

where the index t (we are quickly running out of letters of any alphabet to label our many indices!)
labels the core level. We assume that these states are known from calculations of the atomic structure.
OPWs then may be written as:

|OPWk〉= |k〉−∑
t,l,α

|t, l,α〉〈t, l,α|k〉 , (5.10)

where

〈t, l,α|k〉= 1
Ω

∫

ψ∗
t (r−Rl,α) eik·r dr (5.11)

does not depend on l because of the periodicity of the lattice. Although the OPWs are not orthogonal to
each other, they are orthogonal to all core states and form a complete basis for the conduction/valence
states, which is what matters. We can now follow exactly the same procedure used above for
plane waves and we will obtain a secular equation similar to Eq. (5.3) but, now, the coefficients
〈OPWG|V|OPWG′ 〉 will decay much faster with increasing magnitudes G and G′, so that the size
of the problem will be largely reduced.

5.3 The Concept of Pseudopotential

The idea of OPW leads directly to another idea: Without going into the trouble of calculating the core
wavefunctions in order to deal with OPW, is there a way to modify the ionic potentials themselves—
let’s call them pseudopotentials—so that we will obtain directly valence wavefunctions that are
orthogonal to the core states? Roughly speaking, this has been done following two logically different,
but computationally very similar, paths. One path, followed by Harrison [4], relies on a more formal
reformulation of the problem to extract this “pseudopotential” directly from the definition of OPWs.
The second path, more intuitive and proposed originally by Hellman, Animalu, Heine, and co-
workers [2, 3, 5], could be called a search for “model potentials” that give us the “correct” results
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for the valence states, giving up intentionally any information about the core states: After all, they are
not needed since they do not influence significantly (or at all) the bonding properties of the crystal
and, so, its electronic structure. Let us consider them both, discussing first the more formal approach.

5.3.1 From OPWs to Pseudopotentials

Consider again the OPWs, Eq. (5.10) and introduce the projection operator

Π̂ = ∑
t,l,α

|t, l,α〉〈t, l,α| , (5.12)

so that Eq. (5.10) can be written as:

|OPWk〉= (1− Π̂)|k〉 . (5.13)

The “real” wavefunction can be expanded as:

|ψ〉= (1− Π̂) ∑
k

ak|k〉 . (5.14)

Substitution of this expansion into the initial Schrödinger equation, Eq. (5.1), will give us back
the OPW method. Instead, consider the equation above and rewrite it in terms of the “pseudo-
wavefunction” |φ〉:

|ψ〉= (1− Π̂)|φ〉 . (5.15)

Note that φ(r) is identical to the real wavefunction ψ(r) outside the cores, since the projector Π
vanishes there, but it is not necessarily orthogonal to the core states inside the cores. Hopefully, φ will
be smooth inside the cores.

Let us now derive an equation for φ(r) = 〈r|φ〉 by substituting Eq. (5.15) into Eq. (5.1):

− h̄2

2mel
∇2φ(r)+V(lat)(r)φ(r)−

[

− h̄2

2mel
∇2 +V(lat)(r)

]

Π̂φ(r)

+EΠ̂φ(r) = Eφ(r) . (5.16)

Now notice that, since

− h̄2

2mel
∇2ψt,α(r)+V(lat)(r) ψt,α(r) = Et,α ψt,α(r)

(an equation expressing the fact that the core states are, after all, eigenstates of the original
Hamiltonian) and from the definition of Π̂ , Eq. (5.12), we have

[

− h̄2

2mel
∇2 +V(lat)(r)

]

Π̂ =∑
t,α

Et,α |t,α〉〈t,α| . (5.17)



76 5 The Electronic Structure of Crystals: Computational Methods

Thus, we can rewrite Eq. (5.16) as:

− h̄2

2mel
∇2φ(r)+ [V(pseudo)φ ](r) = Eφ(r) , (5.18)

where the pseudopotential has been defined as:

V(pseudo) = V(lat)(r)+∑
t,l,α

(E−Et,α) |t, l,α〉〈t, l,α| . (5.19)

Note that, transformed back into real space, this pseudopotential will be “nonlocal”, since its action
(as an operator) on the unknown wavefunction would involve an integration of the unknown with the
core wavefunction 〈t,α|r〉. Equation (5.18) is called the pseudopotential equation. It can be rewritten
explicitly as:

[

− h̄2

2mel
∇2 +V(lat)(r)

]

φ(r)

+∑
t,α

(E−Et,α) ψt,α(r−Rl,α)
∫

ψ∗
t,α(r

′)φ(r′) dr′ = Eφ(r). (5.20)

Note that the eigenvalue E is identical to the eigenvalue corresponding to the exact eigenfunctions.
Indeed, let’s assume that in Eq. (5.20) above we had a different eigenvalue E′. Then, multiplying this
equation by the “exact” wavefunction ψ∗ and integrating, we would get:

E
∫

ψ∗φ dr = E′
∫

ψ∗φ dr , (5.21)

since the second term in Eq. (5.20) vanishes because of the orthogonality between ψ and the
core states. Equation (5.21) shows that either the exact wavefunction is orthogonal to the pseudo-
wavefunction or, when not, they have the same energy.

5.3.2 Model Potentials

An alternative way to reach the concept of pseudopotential relies on the idea of looking for a model
potential that gives us wavefunctions that are “correct” (that is: identical to the “real” wavefunctions)
outside the cores, no matter how inaccurate these “pseudo-wavefunctions” will be inside the cores.
If we manage to do this, the binding properties of the crystal will be represented correctly. Similarly,
we shall obtain the correct information about the energies of the valence and conduction states.

Figure 5.1 illustrates this idea: The dashed blue line describes (in cartoon fashion) the bare

ionic potential. Large frequency components (that is, slowly decaying Fourier components V(α)
q as

q increases) still persist because of the fast variation of the ionic potential near the ion cores. The
pseudopotentials are indicated by the red solid line and results from “chopping” the potential around
the cores. The resulting Schrödinger equation will have the correct form outside the cores and will
give us the correct wavefunctions in these regions provided we use the correct boundary conditions
at the core boundaries (that is, we must somehow enforce that the pseudo-wavefunctions have the
“correct” value and radial derivatives at the core boundaries).

It is easy to see the advantage of this formulation: we have eliminated all high-q Fourier

components of V(α)
q , thus reducing significantly the size of our problem.
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Fig. 5.1 Schematic illustration of the concept of “pseudopotential”: Within the “core” region the singularity of the all-
electron, bare ionic potential is removed and replaced by a smoother function. The wavefunction inside the core is not
physically meaningful, but as long as its value and the value of its radial derivative coincide with those of the “exact”
wavefunction outside the core, the structure of the valence electrons, of the atomic bonds, and of the crystal structure
will be correct. [Figure adapted from “Sketch Pseudopotentials” by Wolfram Quester. Original uploader was Wquester
at en.wikipedia—Transferred from en.wikipedia; transferred to Commons by User:Leyo using CommonsHelper.self-
made with inkscape. Licensed under Public Domain via Wikimedia Commons]

Note that the “model potential” by Animalu and Heine and Harrison’s pseudopotential are
essentially the same concept. Indeed it can be proven that in Eq. (5.19) above we may replace E−Et,α
with any function of E, t, and α and still reach the same result Eq. (5.21). This flexibility allows us to
use the Animalu–Heine’s model potential. Note also Harrison’s pseudopotential is nonlocal [see the
integral in Eq. (5.20)]. Indeed, nonlocal pseudo- and model-potentials are often more accurate. But
local approximations may work and have been employed.

5.3.3 Density Functional Theory

Regardless of the perspective we take, we can construct our pseudo (or model) potential for any ion
(say, Si, to fix the ideas) by solving self-consistently the Schrödinger equation for the Si atom using
only the valence electrons. That is, we build a parametrized model potential which represents the bare
nuclear Si potential (−4e2/(4πε0r)) with the additional screening by the ten core electrons 1s22s22p6.
We solve the Schrödinger equation for the four valence electrons (using the Kohn–Sham “density
functional” in the Hartree–Fock approximation, for example, as we have seen in Eq. (4.17) in the
previous chapter) by varying the parameters until we reproduce the known spectrum of the Si atom.
This fixes the pseudopotential of the Si+4 ion. We now insert this model potential into our Schrödinger
equation Eq. (4.17) and solve it self-consistently with the charge of the valence electrons in the crystal.
The pseudopotentials used in this DFT approaches are known as self-consistent pseudopotentials,
since we require a solution of a nonlinear Schrödinger equation in which a portion of the potential is
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a functional of the unknowns (the electron density, as so the wavefunctions). While this scheme used
to severely underestimate the energy gaps of most semiconductors (for example, the indirect gap of Si
was underestimated by a factor of 2 in past decades), recent refinements of the model potentials and on
the expression for the density functional, now render this method the algorithm of choice providing
great accuracy. The self-consistency of this method allows its general applicability and portability,
a virtue that model potentials (or the empirical pseudopotentials treated in the next section) do not
possess. For example, unlike empirical pseudopotentials, the model potential for the Ga ion can be
used to calculate the band structure of GaAs, GaN, GaP, etc. It also allows for calculations in strained
materials, of defects in crystals, of ionic motion such as phonons (since the new electronic charge
following the redistribution of the ions can be calculated). Given the increasingly important role that
this method is playing in the communities of condensed matter physics, chemistry, biological sciences,
materials science, and nanoelectronics, we shall discuss it in more depth in the next chapter.

5.3.4 Empirical Pseudopotentials (EP)

For practical applications, a much simpler approximation is usually employed: Describing the Fourier
transform (or series) of the pseudopotential with a parametrized algebraic expression (or simply by the
values of its discrete components), the pseudopotential is treated in a fully empirical fashion, those
parameters becoming simply quantities that are fitted to experimental results, such as band gaps at
symmetry points in the first BZ, electron dispersion (when available), optical absorption, or electro-
reflectance data.

One such empirical expression is given by Friedel et al. [16]:

V(Si)(q) =
b1(q2 −b2)

b3 eb4q2 −1
. (5.22)

The parameters b1, b2, b3, and b4 are determined by such a fitting procedure to experimental
information. Local forms, such Eq. (5.22), have been used extensively and successfully. Examples,
as well as alternative explicit forms for V(pseudo)(q) for various ions, parameters, and results, are
discussed in a separate chapter and in Appendix B.

Further improvements to this local formulation of the pseudo- (or model) potential can be obtained
by adding nonlocal terms, consistent with Harrison’s result, as in Eq. (5.19). These terms essentially
give us more freedom to extend the energy range over which we can expect to obtain a good match
between the values of the wavefunction and its radial derivatives at the core boundary. Therefore, we
can expect results that will be more reliable over a larger energy range, especially in the conduction
band, after having fitted the parameters to experimental data obtained in a narrow energy range
(usually, close to the band-gap or Fermi surface). Chelikowsky and Cohen [17] have expressed
these corrections as additional terms—to be added to the local potential entering the one-electron
Schrödinger equation—as terms that project the valence wavefunction in a subspace orthogonal to
core states of angular momentum l. They express these terms in the energy-dependent form:

Vα ,NL(r,E) =
∞

∑
l

Al(E) fl(r) Πl , (5.23)

where Al(E) represents the depth of the l-th angular momentum component of the ionic potential, fl(r)
attempts to simulate the radial component of the core states to which the valence wavefunctions must
be orthogonal, and Πl is the operator that projects onto the eigen-subspace of the angular momentum
operator with quantum number l. In other words, this is just Eq. (5.19), having assumed that the core
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states lie in a subspace orthogonal to the projection identified by Eq. (5.23). For the semiconductors
considered by Chelikowsky and Cohen, only terms with l = 0, 1, or 2 are required.

Empirical pseudopotentials are extremely powerful, since very few parameters are needed in order
to obtain information about many properties of the crystals: Its band structure (that is, the electronic
excitation spectrum or electron dispersion), its optical properties, and its dielectric properties, among
others. If information about the vibrational eigenmodes of the crystal (phonons) is available, they can
also provide the matrix elements for electron–phonon interactions.

When facing the problem of calculating the band structure of bulk crystals, very few parameters

indeed are required: Since V(pseudo,α)
q is needed only for q = G [see Eqs. (5.3) and (5.7)] and since

V(pseudo,α)
G decays very quickly with increasing magnitude of G, very few values of V(pseudo,α)

G are
needed. For example, for cubic crystals the first G vectors are the eight vectors (±1,±1,±1) of
length G2 = 3 (in units of 2π/a), the vectors (±2,0,0), (0,±2,0), and (0,0,±2) (called the “star” of
vectors (2,0,0)), all of length G2 = 4; the star of vectors (2,2,0) of length G2 = 8, the star of vectors
(1,1,3) of length G2 = 11, etc. Since the pseudopotential, by symmetry, depends on the magnitude G

of G, we must determine the first Fourier coefficients—the “form factors”— V(pseudo,α)
G2=3

, V(pseudo,α)
G2=4

,

V(pseudo,α)
G2=8

, V(pseudo,α)
G2=11

,. . . Typically the empirical pseudopotential is truncated before reaching the star

of the (4,0,0) vectors of length G2 = 16, so we have only four (complex) parameters that we are free
to vary in order to fit experimental data. For Si and Ge, one can use only real form factors and, noticing
that the structure factor, S(G), vanishes on the star G2 = 4 by symmetry, only three parameters are
required to obtain a very accurate band structure.

Figure 5.2 shows one of the most commonly used forms of the local empirical pseudopotential
of Si. Note the abrupt truncation for q > 3.5 × 2π/a. Of course, the full expression for the ionic
pseudopotential, V(pseudo,α)(q), as given, for example, by Eq. (5.22), is needed when the lattice is
distorted (when computing the change of the band structure caused by strain, for example), or when
altering the periodicity of the crystal. This is the case when considering the “supercells” needed
to study nanostructures, as discussed in Chap. 7. In these cases, the G vectors will change, so a
knowledge of the empirical pseudopotential is needed for all values of q.

Fig. 5.2 A commonly
used local empirical
pseudopotential for Si.
This is the form proposed
in [16]
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We conclude this section with a brief discussion about the merits and shortcomings of empirical
vs. self-consistent pseudopotentials.

Empirical pseudopotentials present the advantage of yielding the band structure of a crystal that
matches experimental data. This, of course, is the very definition of the term “empirical.” However,
their “calibration” is performed only on a subset of known properties and additional properties, in
general unknown, can be predicted. For example, having calibrated the empirical pseudopotential
of Si to known band gaps and effective masses at the bottom of the conduction band, one can
calculate effective masses in higher-energy local band minima. Similarly, the pseudo-wavefunctions
and pseudopotentials can be used to calculate electron–phonon matrix elements, as we discuss in
Chap. 13. These results can be used in high-field transport studies. Moreover, as long as the crystal
structure is not distorted too much, studies can be reliably performed to assess the effect of small
distortion (such a moderate strain) or to obtain the electronic structure in small structures, such as thin
films or nanowires. This will be amply discussed in Chap. 7. But herein lies also their major drawback:
The pseudopotentials are fitted to a specific structure. They embed, in their empirical nature, the spatial
distribution of the valence electrons in this particular structure. This distribution determines how the
real bare ionic potential is screened by valence charges. If the atomic configuration is altered, this
distribution, and so also the shape of the screened ionic potential, will change. Therefore, empirical
pseudopotentials can be trusted only when studying systems whose atomic configurations is not too
different from the configuration to which they had been calibrated. A striking example is given by the
fact that the empirical pseudopotential of Ga to be used in GaAs, for example, is not the same one that
needs to be used to study GaSb, for example. The different size and electronic configuration of Ga in
the GaAs lattice, bonded to As, is different from its electronic configuration in the GaSb lattice, now
bonded to Sb.

The ab initio (or self-consistent) pseudopotentials used by DFT, instead, exhibit complementary
advantages and disadvantages. They are “portable,” in the sense that they are calibrated to isolated
ions, so that the valence electrons are free to re-adjust to changing environment and atomic configura-
tions. Indeed, DFT calculations are now extremely reliable in predicting the atomic configuration
itself. On the other hand, since DFT is essentially a “ground state” theory [12, 13], there is no
guarantee that the conduction bands will be treated correctly. This is indeed their major drawback,
although recently significant progress has been made to solve this problem from both a theoretical
and computational perspective.

5.4 Other Approximate Methods

So far, in this chapter we have considered only approaches to calculate the electronic properties
of crystals based on plane-wave expansions. Alternative methods are available, based on different
basis functions or on different approximations. Here we discuss two of the most common methods
employed: The tight-binding method, based on expressing the unknown wavefunctions on the basis
of localized atomic orbitals (LCAO is the term used mainly in chemistry), and the numerically
convenient k ·p perturbation theory.

5.4.1 Tight-Binding

The tight-binding approach is probably the simplest from a conceptual perspective. It’s related to
what’s called Linear Combination of Atomic Orbitals (LCAO) in chemistry.
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Suppose that we know the atomic orbitals of the atoms constituting the crystal, ψt(r− rα), where
t denotes the set of quantum numbers that label the atomic orbitals and rα denotes, as usual, the
coordinate of the ion α . For a given t we can always consider a linear combination of these orbitals
(all having the same energy in each isolated ion). The idea indeed is to form such a combination and
treat the “overlap” between the orbitals as the perturbation which will give rise to the band structure.

Thus, consider the linear combination:

φt(r) =∑
l,α

cl,αψt(r−Rl,α) , (5.24)

where, as usual, the ionic coordinates Rl,α should be intended as the equilibrium positions. Of course,
the wavefunction must still obey the requirements imposed by the periodicity of the lattice, and so it
must be of Bloch form. This implies that the coefficients cl,α must be equal to eik·Rl,α , so that

φk,t(r) =
1

N1/2 ∑
l,α

eik·Rl,α ψt(r−Rl,α) , (5.25)

where N is the number of orbitals we add. Note that if we assume that the orbitals ψt are correctly
normalized, φk,t will be also correctly normalized only if the overlap among the atomic orbitals
vanishes, so that the normalization will be correct only at zero-th order. Since the states ψt are
eigenstates of the isolated ions, each with potential υ(r− rα), they satisfy the Schrödinger equation

[

− h̄2

2mel
∇2 +V(α)(r− rα)

]

ψt(r− rα) = Et ψt(r− rα) . (5.26)

The Schrödinger equation we wish to solve is

[

− h̄2

2mel
∇2 +V(lat)(r)

]

φk,t(r) = Ek φk,t(r) , (5.27)

where, as usual:

V(lat)(r) =∑
l,α

V(α)(r−Rl,α) . (5.28)

Inserting the linear combination Eq. (5.25) into the left-hand side of Eq. (5.27), we have

[

− h̄2

2mel
∇2 +V(lat)(r)

]

1

N1/2 ∑
l,α

eik·Rl,α ψt(r− rα)

=∑
l,α

[

Et + ∑
l];l′β �=lα

V(α)(r− rl′,β )

]

eik·rα 1

N1/2
,ψt(r−Rl,α) . (5.29)

where N = NcellNion is the total number of ions in the crystal. In order to simplify the notation, for now
we lump into the single index α the couple of indices l,α , so now α runs over all ions in the crystal.
With this simplified notation, the expectation value of the energy of the state φk,t can be written as:
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〈Ek〉=
∫

φ∗k,t(r) [−h̄2/(2mel)∇2 +V(lat)(r)] φk,t(r) dr
∫

φ∗k,t(r) φk,t(r) dr

= Et +
(1/N) ∑α,β

∫

ψ∗
t (r−Rβ ) ∑γ �=β V(γ)υ(r−Rγ ) ψt(r−Rα ) exp[ik · (Rα −Rβ )]dr

∫

φ∗k,t(r) φk,t(r) dr
. (5.30)

To leading order, we can assume that the normalization integral in the denominator is unity, as we
noticed above. Also, keeping in mind that the overlap terms are assumed to be small, three-center
integrals (that is, terms for which α �= β �= γ above) will be of at least one highest order in our
perturbation expansion. Thus, we can ignore them and retain in the sum only terms for which either
α = β or α = γ .

The terms with α = β give a contribution of the form:

Et +
1
N∑α

∫

ψ∗
t (r−Rα) ∑

γ �=α
V(γ)(r−Rγ) ψt(r−Rα) dr . (5.31)

Note that this term does not depend on k and it is simply the expectation value at each ion α of the
potential due to all other ions γ . By symmetry, it does not depend on α and it can be written as:

Et +
∫

ψ∗
t (r−Rα) ∑

γ �=α
V(γ)(R−Rγ) ψt(r−Rα) dr . (5.32)

Since the potential V(α) of each ion is negative, this term is also negative and it expresses the binding
energy of the crystal. It does not contribute to the band structure because of its independence of k.

The terms for which α = γ are of the form:

Et +
1
N ∑
α ,β �=α

eik·(Rα−Rβ )
∫

ψ∗
t (r−Rβ ) V(α)(r−Rα) ψt(r−Rα) dr . (5.33)

Again, by symmetry these terms do not depend on α , so that once more the sum divided by N can be
taken as equal to any one term of the sum. Also, taking the origin at Rβ this sum can be rewritten as:

Et + ∑
α ,Rα �=0

eik·Rα
∫

ψ∗
t (r) V(α)(r−Rα) ψt(r−Rα) dr . (5.34)

This is the main result of the tight-binding approximation: The energy of the atomic orbital Et is
modified by k-dependent (band-structure) effects. Their strength depends on the amount of overlap
among atomic orbitals. Thus, the method constitutes a good approximation if the overlap is not too
large.

In general, several (n) atomic orbitals will be considered and the matrix

〈t′|̂Hk|t〉=
∫

φ ∗k,t′(r) [−h̄2/(2mel)∇2 +V(lat)(r)] φk,t(r) dr

can be considered. Manipulating it as done above, one can obtain an effective tight-binding
Hamiltonian of the form:

〈t′|̂Hk|t〉= Etδt′t +Tt′t(k) .
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where the “off diagonal” terms

Ttt′(k) = ∑
rα �=0

eik·Rα
∫

ψ∗
t′ (r) V(α)(r−Rα) ψt(r−Rα) ,

involve overlap integrals of atomic orbitals. These terms can be calculated from known Hartree–Fock
atomic orbitals or may even be the input for fully self-consistent calculations, known as DFT tight-
binding. More commonly the “hopping integrals” appearing in the integrand of the expression above
for Ttt′(k) are treated as empirical (fitting) parameters (empirical tight-binding). The resulting matrix
can be diagonalized, yielding the band structure. Of course, as for plane-wave methods, DFT can be
used to calculate self-consistently the atomic orbitals and the overlap integrals. If a sufficiently large
number of atomic orbitals is considered, the method becomes fully equivalent to the “conventional”
plane-wave DFT method.

Common approximations made to deal with semiconductors include s and p3 states, often
augmented by excited s∗ or d5 orbitals to compensate for the neglected higher-energy orbitals (the
so-called sp3s∗ and sp3d5 models). The red curves in Figs. 5.4, 5.5, and 5.6 (pages 87–89) show the
band structures of Si, Ge, and GaAs computed with the sp3s∗ model of Peter Vogl and co-workers [18].

A simpler example we can consider here is the energy band originating from s orbitals. Let’s also
assume an ideal cubic lattice. The integral we must consider is the term corresponding to Eq. (5.34)
above:

λ =
∫

ψ∗
t (r) υ(r− rα) ψt(r− rα) dr , (5.35)

which for s states is the same for all neighbor ions. Then, the correction to the energy of the atomic
orbital takes the form:

λ ∑
α

e−ik·rα = 2λ (coskxa+ coskya+ coskza) , (5.36)

where the sum extends only over the nearest neighbors. Since the potential υ is attractive, λ < 0. The
band structure will be of the form:

EAO −2|λ |(coskxa+ coskya+ coskza) . (5.37)

Note that the energy-correction increases quadratically as we move away from the zone-center.
Expanding Eq. (5.37) in powers of k we have

EAO −2|λ |
(

3− k2aa

2
+ · · ·

)

= EAO −6|λ |− h̄2k2

2m∗ + · · · (5.38)

where the effective mass is m∗ = h̄2/(2a2|λ |).

5.4.2 k ·p Method and Effective Mass

The k ·p perturbation theory is of a nature different from the methods we have discussed so far. Yu
and Cardona’s text [19] presents a more comprehensive overview than what we provide here.
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Consider again the Schrödinger equation we must solve, Eq. (5.1):

− h̄2∇2

2mel
ψ(r)+V(lat)(r)ψ(r) = E ψ(r) . (5.39)

Using Bloch’s theorem by setting ψ(r) = ψk(r) = uk(r)eik·r, inserting it into Eq. (5.39) and setting
p = (h̄/i)∇, we obtain

1
2mel

(h̄k+ p̂)2uk +V(lat)(r)uk = Ekuk . (5.40)

The idea now is to assume that we know the solutions at a particular point k0 and consider the
terms depending on k−k0 as a perturbation. We can chose any point k0, but usually the point k0 = 0
is chosen. So, let’s assume that we know how to solve

1
2mel

p̂2u(n)0 +V(lat)(r)u(n)0 = E(n)
0 u(n)0 , (5.41)

where the index n labels the band index. To order k the leading perturbation term in Eq. (5.40) is

̂H1 =
h̄

mel
k · p̂ ,

(hence the name of the method), and to second-order

̂H2 =
h̄2k2

2mel

̂I .

Thus, the first-order correction to the eigenvalue E(r)
0 will be

E(r)
1 =

h̄
mel

k · 〈u(r)0 |p̂|u(r)0 〉 . (5.42)

If the crystal has a center of symmetry, the matrix element must vanish. So, we must consider second-
order perturbation theory:

E(r)
2 =

h̄2k2

2mel
+

h̄2

m2
el
∑
s

|k · 〈u(r)0 |p̂|u(s)0 〉|2
E(r)

0 −E(s)
0

. (5.43)

Let’s define the “effective mass tensor” mij (where i and j runs over the coordinate-indices x, y, z) via:

mel

m∗
ij
= δij +

2
mel
∑
s

〈u(r)0 |p̂i|u(s)0 〉〈u(s)0 |p̂j|u(r)0 〉
E(r)

0 −E(s)
0

, (5.44)

relation which is known as the f-sum rule. Then, the energy at the k-point to second-order will be

E(r) = E(r)
0 +

h̄2

2 ∑i,j
kikj

m∗
ij
. (5.45)
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Note that the dispersion of free electrons is modified by (energetically) “nearby” bands, since the effect
of a band s is seen from Eq. (5.43) or (5.44) to be inversely proportional to the energetic separation

E(r)
0 −E(s)

0 . If only one band matters, then, since the momentum matrix element is of the order of h̄/a

(a is the lattice constant), setting ΔE = E(r)
0 −E(s)

0 , we have

mel

m∗ ∼ 1+
2h̄2

mela2ΔE
. (5.46)

In the special case of the valence bands of cubic semiconductors, as we shall see, the three topmost
bands are degenerate at the center of the Brillouin Zone, which is the symmetry point Γ. Therefore,
we must use degenerate perturbation theory. This requires the full diagonalization of the perturbation
Hamiltonian on the three-dimensional subspace spanned by the degenerate eigenvectors, that is, the
matrix with elements:

〈r|̂Hk·p|s〉=
(

E(r)
0 +

h̄2k2

2mel

)

δr,s +
h̄2

m2
el
∑
i,j

kikj〈r|p̂i|s〉〈s|p̂j|r〉 , (5.47)

having indicated with |r〉 the (degenerate) valence states u(r)0 (r). For Si and Ge, Dresselhaus, Kip, and
Kittel [11], have proposed to use as unperturbed states u0. These are the orbitals which transform like
yz, zx, and xy (which are a basis for the representation of the cubic point group at the symmetry point
Γ); they have angular dependence of their wavefunctions of the form sinθ cosθ cosφ , sinθ cosθ cosφ ,
and sin2 θ cosφ sinφ . On symmetry arguments, they show that the matrix to be diagonalized (that is,
whose eigenvectors give the structure of the three topmost valence bands) has the form:

̂Hk·p =

⎡

⎢

⎣

Lk2
x +M(k2

y + k2
z ) Nkxky Nkxkz

Nkxky Lk2
y +M(k2

x + k2
z ) Nkykz

Nkxkz Nkykz Lk2
z +M(k2

x + k2
y)

⎤

⎥

⎦ , (5.48)

where the coefficients L, M, and N can either be fitted empirically or calculated from more complicated
band-structure calculations or even tight-binding approximations using known atomic orbitals.

Figure 5.3 on page 86 shows the valence band structure of Si, also under biaxial tensile strain,
computed with k · p perturbation theory, Eq. (5.48), (red dashed lines) compared with the results
obtained using nonlocal empirical pseudopotentials.

5.5 A Computational Example

We conclude with a few computational examples that illustrate the results of the various methods just
discussed to calculate the band structure of important semiconductors.

Figures 5.4, 5.5, and 5.6 show the band structure of Si, Ge, and GaAs calculated with nonlocal
empirical pseudopotentials. Let’s review briefly the procedure followed, but we shall consider only
the simpler local approximation.

The starting point is the secular equation (5.3) with an expression for the Fourier coefficients of the
(local) pseudopotential given by Eq. (5.7):

VG = V(1)
G e−iG·τ1 +V(2)

G e−iG·τ2 . (5.49)
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Fig. 5.3 The valence band
structure of Si under biaxial
tensile strain, computed
with k ·p perturbation
theory, Eq. (5.48), (red
dashed lines) compared
with the results obtained
using nonlocal empirical
pseudopotentials
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In these cubic fcc crystals, such as Si and GaAs, the two ions in the primitive cell are at coordinates
τ1 = (0,0,0) and τ2 = (a/4)(1,1,1), where a (= 0.543 nm for Si) is the lattice constant. This is seen
in the left frame of Fig. 3.1: The Ga and As ions are the “black” ion at the bottom left vertex and the
“white” ion to which it is bonded. It is actually more convenient to shift the origin of our coordinates
to the mid-point between the ions, so that τ1 = τ = (a/8)(1,1,1) and τ2 = −τ = −(a/8)(1,1,1).
Then, Eq. (5.49) becomes

VG = V(1)
G e−iG·τ +V(2)

G eiG·τ

= [V(1)
G +V(2)

G ]cos(G · τ)− i [V(1)
G −V(2)

G ]sin(G · τ) . (5.50)

This can be re-expressed in terms of a symmetric and an antisymmetric part:

VG = S(S)(G)V(S)
G − iS(A)(G)V(S)

A ,
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Fig. 5.4 At left, the band structure of Si calculated using the nonlocal empirical pseudopotentials of Chelikowsky and
Cohen [17] with spin–orbit corrections (thick black lines), using the local empirical pseudopotentials of Cohen and
Bergstresser [20] (dashed black lines), and employing the sp3s∗ tight-binding model of Vogl and co-workers [18] (thin
red lines). At right, the density of states calculated from the nonlocal band structure at left

where

S(S)(G) = cos(G · τ) ,

and

S(A)(G) = sin(G · τ) ,

and, in terms of the atomic pseudopotentials V1 and V2 of the two ions in the cell,

V(S)
G =

1
2
(V(1)

G +V(2)
G ) ,

V(A)
G =

1
2
(V(1)

G −V(2)
G ) ,

where

VG,i =
2
Ωa

∫

Vi(r) e−iG·rdr,

where i = 1,2 and Ωa is the atomic volume. We see immediately that for the diamond structure (Si
and Ge), V(A) = 0. Moreover, S(S)(2,0,0) = 0, so that we do not need VG for G2 = 4. Therefore, for
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Fig. 5.5 As in Fig. 5.4, but for Ge

Si and Ge we need only the symmetric form factors VG2=3, VG2=8 an VG2=11. For III–V compound
semiconductors we need also the antisymmetric components, including VG2=4. In total, we need three
real numbers for Ge and Si, three complex numbers (i.e., six real numbers) for III–V semiconductors.

The first such calculation—for cubic and zincblende type semiconductors of interest when dealing
with semiconductor devices—was performed by Cohen and Bergestresser [20] for 14 semiconductors
of the diamond and zincblende structure. For a given k, a set of G-vectors was employed, so
that h̄2|k+G|2/(2mel) < Ecutoff. The proper choice of this energy “cut-off energy,” Ecutoff, gave a
maximum magnitude G of about 7, resulting in about 20 G-vectors (so they employed “20 plane-
waves”). This resulted in an eigenvalue problem, Eq. (5.2) of rank 20. For each k-vector, they obtained
20 eigenvalues. The first 4 give the 4 values En(k) of the valence bands, with n = 1,4. The other
eigenvalues correspond to the 16 conduction bands of lowest-energy. By moving k along symmetry
directions in the first Brillouin Zone, they obtained plots similar to those shown in Figs. 5.4, 5.5,
and 5.6.

Today, solving numerically large eigenvalue problems is routine, so that much larger matrices and
typically much larger values for the cutoff energy Ecutoff are chosen, resulting in 100–200 plane waves.
In Chap. 7 we shall see that the study on nanostructures, handled by considering them periodic with
a large period, requires including a number of plane waves of the order of 104 to 106. Algorithms
based on fast Fourier transforms (FFT) avoid the need to store these huge matrices while “spectral
folding methods” limit the calculations only to eigenvalues within a narrow energy range of interest,
thus saving both memory and computation time. As we have already explained, the form factors are
determined empirically, by fitting the obtained band structure to experimental information regarding
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Fig. 5.6 As in Fig. 5.4, but for GaAs

the density of states, the values of the energy splittings at symmetry points, and also about the effective
masses (which we shall discuss below) at the top of the valence bands and the bottom of the conduction
bands. The plots shown here have been obtained using about 120 plane waves and nonlocal empirical
pseudopotentials of the form Eq. (5.19) and accounting also for spin–orbit interaction (discussed
below), as given by Chelikowski and Cohen [17].

5.6 Qualitative Features of the Band Structure of Semiconductors

5.6.1 The Valence Bands in the Nearly-Free-Electron Model

It is useful to consider the general features of the four (doubly degenerate) valence bands of fcc
semiconductors. First of all, the first Brillouin Zone (BZ) of the fcc lattice is shown in Fig. 3.3 on
page 44. It is the volume enclosed by the planes kx = ±1, ky = ±1, kz = ±1, (the “little squares”
parallel to the family of {1,0,0} planes) and the {1,1,1} planes ±kx ± ky ± kz = 1.5 (all k-vectors
measured in units of 2π/a). The principal symmetry points we shall consider are: (1) the zone-center,
k = (0,0,0), called the Γ point; (2) the 6 points k = (±1,0,0), (0,±1,0, and (0,0,±1), called the X
points; the 8 points k = (1/2)(±1,±1,±1), called the L points. Additional symmetry points shown
are the K and U symmetry points (which are actually equivalent) and the W symmetry point. The
48-fold symmetry of the point group Oh implies that a volume only 1/48 the size of the entire BZ is
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Fig. 5.7 The structure of
the valence bands of Si
calculated using nonlocal
pseudopotentials. Note the
nearly free-electron
dispersion of the
lowest-energy band
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sufficient to describe the band structure. This volume, defined by all points in the first octant (kx > 0,
ky > 0, kz > 0) such that kx + ky + kz < 1.5, 1 ≥ kx ≥ ky ≥ kz, is called the irreducible wedge of the
first BZ.

Assume that the form factors VG are small, so that, from Eq. (5.3), in the first band (G′ = 0) we
have

E(k)≈ h̄2k2

2mel
, (5.51)

as for free electrons. This “free electron” dispersion must be still be made compatible with the crystal
structure, so it’s actually called the nearly-free electron model. Equation (5.51) describes a parabolic
band. Indeed in most semiconductors the first valence band is quite parabolic (see Figs. 5.3 or 5.7
on pages 86 and 90). We know that there are four valence bands, since diamond and zincblende
semiconductors have four valence electrons and there are two atoms in each WS cell. Thus, the eight
valence electrons will occupy four valence bands, two electrons in each band. Within this simple
model, it is possible to calculate the Fermi energy, as it parallels the calculation in the case of the
free-electron gas: At zero temperature, electrons will occupy a sphere of radius kF such that:

2
(2π)3

∫

k<kF

dk =
k3

F

3π2 =
8

ΩWS
, (5.52)

where ΩWS = a3/4 is the volume of the WS cell. Therefore, the Fermi energy will be

EF =
h̄2k2

F

2mel
=

h̄2

2mel

(

3π2 8
ΩWS

)2/3

≈ 12 eV (5.53)
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for Si (a = 0.543 nm). As shown in the plot below, the width of the valence bands is indeed consistent
with this free-electron estimate.

As k moves away from the zone-center at Γ towards the edge of the zone, in general we would
find a gap. Parenthetically, we note that Si has some strange properties at the zone-edge at X because
of its time-reversal symmetry related to the fact that both ions in the cell are Si ions and there is an
additional reflection symmetry. In the so-called extended-zone scheme, we would continue outside
the first BZ with the parabolic dispersion. In the plot below, note how at the point X the first band
“bounces back” into the BZ. This is the reduced-zone scheme: Instead of going into the second BZ,
we remain within the first BZ, but set G′ = (±1,±1,±1)(2π/a) into Eq. (5.3), if we hit the zone-
edge at L, set G′ = (±2,0,0)(2π/a) (and equivalent vectors) if we hit the zone-edge at X, etc. The
second band continues to be parabolic, but the third and fourth valence bands are more complicated,
because moving into the third and fourth BZs requires adding G-vectors which are not simply along
the direction in which we move. In general, these bands are much flatter, since the k-vector does not
change appreciably as it crosses the third and fourth zones along, say, the [100] direction. This is why
these bands appear very different from free-electron bands.

5.6.2 The Origin of the Energy Gaps

Let’s consider again Eq. (5.2) in a simplified context to understand the origin of the band gaps.
Following Ridley [21], we rewrite that equation:

[

h̄2

2mel
|k+G|2 −E(k)

]

ukG +∑
G′

VGG′ ukG′ = 0 . (5.54)

We saw before that when the form factors are weak the solution of Eq. (5.54) is given approximately by

E(k)≈ h̄2

2mel
|k+G|2 , (5.55)

provided ukG �= 0. Let’s consider first the nondegenerate case in which ukG �= 0 only for one particular
G-vector, say Ga, and set Ea = h̄2|k + Ga|2/(2mel). We can also set ukGa = 1 without loss of
generality, since we are free to multiply the wavefunction by an arbitrary (normalization) constant.
Then, a first-order correction to the solution Eq. (5.55) will be obtained by computing the first-order
corrections to the coefficients ukGb , with Gb �= Ga, coefficients which were assumed to vanish at
zero-th order:

ukGb =∑
G′

VGb−G′ ukG′

h̄2|k+G′|2/(2mel)−Eb
≈ VGb−Ga ukGa

Ea −Eb
, (5.56)

having set Eb = h̄2|k+Gb|2/(2mel). Inserting this result into Eq. (5.54) we obtain

E(k)≈ Ea +∑
G′

|VG′−Ga |2
Ea −E′ , (5.57)

where E′ = h̄2|k+G′|2/(2mel). We see once more that bands “repel”: The proximity of other bands
(that is: other values of G in the reduced-zone scheme) at higher energies (E′ >Ea) depresses the value
of Ea. Bands at lower energies have the opposite effect. All bands push the a-band away, energetically.
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Consider now the simple degenerate case in which we can obtain the same energy via Eq. (5.55)
for two distinct vectors Ga and Gb. We must consider the system

{

[Ea −E(k)]ukGa +VGa−Gb ukGb = 0
[Eb −E(k)]ukGb +VGb−Ga ukGa = 0

. (5.58)

Setting ΔG = |Ga − Gb|, the requirement that the determinant of the system of equations (5.58)
vanishes yields

[Ea −E(k)][Eb −E(k)]−|VΔG|2 = 0 , (5.59)

with solutions:

E(k) =
1
2
(Ea +Eb)± 1

2
[(Ea +Eb)

2 −4(EaEb −|VΔG|)2]1/2 . (5.60)

Recall now our assumptions that we have two degenerate bands at zero-th order. Therefore, set Ea =Eb

above and

E(k) = Ea ±|VΔG| , (5.61)

which shows that we have a gap of magnitude 2|VΔG| at this k-point. As we saw above when discussing
the nearly-free-electron model, often degenerate free-electron values are obtained at the zone-edge.
Indeed, these are exactly the points where we usually see the formation of gaps.

5.6.3 The Spin–Orbit Interaction

A final effect of significant importance in dealing with the structure of the bands of semiconductors
(especially the valence bands near their maximum) is the so-called spin–orbit interaction. This is
an effect which also matters in atoms. It originates from the fact that in the laboratory frame of
reference, the charge of the nucleus (with core states) generates a pure electrostatic field, but the
orbiting electron sees this field as a magnetic field, as if it were generated by the nucleus which
appears to be a moving charge when “riding” with the electron around the nucleus. The electron also
has a magnetic dipole generated by its spin. The spin–orbit interaction is just the interaction between
the spin-induced magnetic dipole and the magnetic field seen by the electron. This interaction lifts the
degeneracy between spin down and spin up electronic states in the absence of inversion symmetry.

The Hamiltonian for this interaction can be obtained classically: If μ is the magnetic moment
associated with the electron spin and B is the magnetic field caused by the orbital motion of the
electron, their interaction energy will be

Hso =−μ ·B . (5.62)

Now, recall that the magnetic field seen by a particle moving with velocity v in the presence of an
electric field E is

B =−v
c
×E . (5.63)
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∗ Although this derives from the relativistic transformation of the electromagnetic field, it can be
derived simply using the requirement that in the frame in which the electron is at rest, only the
Coulomb force of the charged nucleus acts on it. However, in the frame in which the electron moves
with velocity v and the nucleus is at rest, only the Lorentz force acts on the electron. The two forces
must be equal. From this, Eq. (5.63) follows.

Writing v = p/mel for the electron velocity in terms of its momentum, we have

Hso =− 1
melc

μ ·E×p . (5.64)

Now recall that the electric field is just the gradient of the electrostatic potential φ and its radial
component is the only non-vanishing component:

E =−1
r

dφ
dr

r , (5.65)

so that Eq. (5.64) becomes

Hso =
1

2melcr
dφ
dr

μ · r×p , (5.66)

with an additional factor of 1/2, which is discussed below. Now notice that L = r×p is the orbital
angular momentum and μ = eS/(2melc), where S is the spin angular momentum operator.∗ See Jackson’s text [22], Sect. 5.6, to see that the magnetic moment M of a particle of charge q,
mass m, and angular momentum L is given by M = q L/(2melc). This semiclassical result actually is
violated in the present case: The magnetic moment caused by the electron spin is a little more than a
factor of 2 larger than expected. The explanation of this anomaly is one of the most striking successes
of the relativistic Dirac equation—which predicts a factor of 2—and of Quantum Electrodynamics
(QED), which explains the remaining tiny discrepancy. However, this factor of almost 2 is almost
exactly canceled by the so-called Thomas factor: We have expressed the interaction energy Eq. (5.64)
in the frame in which the electron is at rest. Moving to the laboratory frame in which the nucleus is
at rest, results in the appearance of an extra factor 1/2 in the expression for the potential energy of
the interaction. This is caused by the relativistic time dilatation between the electron and the nuclear
rest frames. This time dilatation decreases the (Thomas) precession frequency of the electron, and so
the interaction energy. Thus, except for a very small correction due to the fact that the gyro-magnetic
ratio of the electron is 2.00232. . . , and not exactly 2, our result will be quantitatively correct.

Thus, the Hamiltonian (now an operator) for the spin–orbit interaction is

Ĥso =
e

2m2
elc

2r

dφ
dr
̂L ·̂S . (5.67)

We have briefly discussed before the properties of the angular momentum operators in Quantum
Mechanics. Here we summarize just a few results applied to the three topmost valence states, which
are p-like waves:

1. The eigenvalues and eigenstates |l〉 of the square of the general angular momentum operator ̂L2 are
given in terms of an integer (orbital, spin of Bosons) or half-integer (spin of Fermions) index l:

̂L2 |lm〉= l(l+1) h̄2 |lm〉 .



94 5 The Electronic Structure of Crystals: Computational Methods

2. The three components ̂Lx, ̂Ly, and ̂Lz of the angular momentum do not commute with each other but
each of them commutes with ̂L2. Therefore, eigenstates of the total angular momentum are always
degenerate, corresponding to different eigenstates of one of the components above, usually taken
to be ̂Lz. These eigenstates |lm〉 are given by the eigenvalue equation:

̂Lz |lm〉= mel h̄ |lm〉 ,

m being an integer or half-integer ranging from −l to +l.
3. Angular momenta add vectorially, as in Classical Mechanics.

Now, in the simplest approximation the first valence band is made up of s-states with zero orbital
angular momentum, so that the spin–orbit interaction does not alter its energy. On the contrary, the
three highest-energy valence bands have orbital angular momentum l= 1 and, obviously, the electrons
have spin angular momentum s = ±1/2. The total angular momentum J results from the vector sum
of ̂L and ̂S, so that

̂J2 = ̂L2 +̂S2 +2̂L ·̂S .

Therefore, the expectation value 〈L ·S〉 can be expressed in terms of the known expectation values of
̂J, ̂L, and ̂S as follows:

〈̂L ·̂S〉= 1
2
〈̂J2 −̂L2 −̂S2〉= h̄2

2
[j(j+1)− l(l+1)− s(s+1)] . (5.68)

For p-states, we can have spin and orbital angular momentum parallel, so that we have a fourfold—
two bands × two spins—degenerate state (j = 3/2 and m =±3/2,±1/2). Or spin and orbital angular
momentum may be anti-parallel, so that we have a doubly degenerate—two spins only—state (j= 1/2
and m = ±1/2). Therefore, finally, from Eqs. (5.67) and (5.68) we deduce for the two states j = 3/2
an expectation value 〈̂L ·̂S〉 = h̄2/2, whereas for the j = 1/2 state we have 〈̂L ·̂S〉 = −h̄2, so that the
two j-states are split by an energy:

Δso =
3h̄2e

4m2
elc

2r

dφ
dr

. (5.69)

The energy of the doubly degenerate j = 3/2 states is shifted up by an amount Δso/3 while that of
the j = 1/2 state is shifted down by an amount −2Δso/3. The j = 3/2 states correspond to band
usually called the heavy-hole and light-hole bands, the lone j = 1/2 state is called the split-off band,
for obvious reasons. The magnitude of the spin–orbit energy Δso varies from a negligibly small values
in C, to a few meVs (44 meV in Si), to several tenths of one eV (∼300 meV in Ge, and to the order
of 1 eV or more in heavier elements, such as Sn or Pb). This is because the strength of the spin–
orbit interaction obviously depends on the expectation value of the radius of the electronic orbit.
Therefore, the closer the electrons to the nucleus, the stronger is the term (dφ/dr)/r in Eq. (5.69).
This is why heavier elements usually have a larger spin–orbit coupling. Comparing the band structure
of Si (Fig. 5.4 on page 87) with that of Ge (Fig. 5.5 on page 88), we can see the effect of the spin–
orbit interaction: Note for Ge the large energy difference between the bands at the Γ-point for the
three highest-energy valence bands. The splitting extends throughout the BZ. In the much lighter Si
(Fig. 5.4 on page 87), the splitting is much smaller, barely visible in the energy scale of the plot.
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5.6.4 The k ·p Structure of the Bands of fcc Semiconductors Near
Band-Extrema

We have already seen on page 83 how k ·p perturbation theory can be used to calculate the effective
masses in the neighborhood of the Γ point. We also saw that degenerate perturbation theory is
necessary. Kane has obtained the following expressions (which we shall not derive) using 4 × 4
matrices (three valence bands and the lowest-energy conduction band at Γ) [10]:

1. The conduction band at Γ is spherical and (at the lowest order) parabolic with a dispersion
approximately given by

Ec(k) = Egap,Γ+
h̄2k2

2m∗
c
, (5.70)

where the conduction band effective mass is given by

mel

m∗
c
= 1+

2p2
c,v

3m

(

2
Egap,Γ

+
1

Egap,Γ+Δso

)

, (5.71)

where Egap,Γ is the direct gap at the Γ point, and pc,v is the momentum matrix element between the
s conduction band and the p valence band(s). For Ge, 2p2

v,c/mel = 22.5 eV; for GaAs, 2p2
v,c/mel =

21.5 eV.
2. The “heavy hole” dispersion is given by

Ehh(k) =
h̄2k2

2m∗
hh

, (5.72)

with m∗
hh = 1. Note the “wrong” sign of the dispersion: The effect of more remote bands is required

to obtain the correct sign for the mass.
3. The “light hole” dispersion is given by

Elh(k) =− h̄2k2

2m∗
lh
, (5.73)

with

mel

m∗
lh
=

4p2
cv

3mEgap,Γ
−1 . (5.74)

4. The “split-off hole” dispersion is given by

Eso(k) =−Δso − h̄2k2

2m∗
so

, (5.75)

with

mel

m∗
so

=
2p2

cv

3m(Δso +Egap,Γ)
−1 . (5.76)
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Fig. 5.8 Equi-energy contours for the three highest-energy valence bands of a Si inversion layer subject to a
confining perpendicular field of 106 V/cm [23]. At left, we illustrate the equi-energy lines for a surface on the (1,0,0)
crystallographic plane; at center at right are the cases for the (1,1,0) and for the (1,1,1) surfaces, respectively, Although
this plot illustrates the shape of the equi-energy contour lines in a more complicated situation, qualitatively it illustrates
the strong anisotropy and warping of the valence bands for fcc group IV semiconductors or for III–V compound
semiconductors. (Reprinted with permission from M.V. Fischetti, Z. Ren, P.M. Solomon, M. Yang, and K. Rim, J.
Appl. Phys. vol. 94, p. 1079 (2003). Copyright 2003, AIP Publishing LLC)

5. Warping. Accounting for the effect of additional bands, the two topmost valence bands (hh and lh)
are degenerate at k = 0 and are “warped” with dispersion

Ehh/lh(k) =− h̄2

2mel
{Ak2 ± [B2k4 +C2(k2

xk2
y + k2

yk2
z + k2

z k2
x)]

1/2} , (5.77)

where in Si A = 4.0, B = 1.1, and C = 4.1, which correspond to m∗
hh ≈ 0.49mel and m∗

lh ≈ 0.16mel.
For Ge, instead, A = 13.1, B = 8.3, and C = 12.5, which correspond to m∗

hh ≈ 0.28mel and
m∗

lh ≈ 0.044mel. Note, however, that the valence bands are so warped (as shown in Fig. 5.8) and
nonparabolic that the use of the effective mass is always questionable. Figure 5.8 shows equi-
energy surfaces for the Si valence bands, illustrating their strong anisotropy.

6. Nonparabolicity. As one moves away from the Γ point, the dispersion becomes increasingly
non-spherical and nonparabolic. The latter effect is often captured to the leading order by a
nonparabolicity parameter αnp, such that, in terms of the parabolic dispersion γ(k) = h̄2k2/(2m∗),
the nonparabolic dispersion, E(k), becomes

E(k)≈ γ(k)[1+αnpγ(k)] . (5.78)

Since the parameter αnp is almost always negative, we see that the dispersion tends to be “flattened”
by nonparabolic corrections.

7. Conduction dispersion at the L and X symmetry points. The minima of the conduction bands at (or
close to) the symmetry points L and X are described by prolate ellipsoidal equi-energy surfaces
characterized by a longitudinal (mL) and a transverse (mT) effective mass:

E(k) =
h̄2

2

(

k2
L

mL
+

k2
T1 + k2

T2

mT

)

, (5.79)

where kL, kT1, and kT2 are the components of the k-vector along the longitudinal and the two
transverse axes of the ellipsoid. The minima of conduction bands of Si (near the X symmetry
points) and of Ge (near the L symmetry points) are of this type.

Figure 5.8 illustrates these peculiar properties for the valence bands.
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Problems

5.3. (Hole Effective Masses) Using Eq. (5.78) and the values for the k · p parameters A, B, and C
listed there for Si and Ge, calculate the effective masses for the heavy- and light-hole bands along the
[100], [110], and [111] directions. Note that the values quoted here are averaged over all directions, so
your results along specific directions do not have to be identical to these “average” values.

5.4. (Group Velocity and Nonparabolicity) Using the approximate k · p nonparabolic correction,
Eq. (5.78), assuming γ(k) = h̄2k2/(2m∗), derive the expression for the electron group velocity
∇kE(k)/h̄, as a function of k to first-order in the nonparabolicity parameter αnp. The physical meaning
of the group velocity will be discussed in Chap. 8, Sect. 8.1.3.
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Chapter 6
Density Functional Theory

6.1 Overview

For many problems in physics, it is important to know the properties of the ground state. And while
in principle it is possible to determine the exact ground state for a given many-body Hamiltonian,
in practice it is impossible for almost any nontrivial system. Fortunately, in many systems a good
approximation of the ground state properties can be determined computationally using Density
Functional Theory (DFT).

In this chapter we present an introduction to DFT. The emphasis will be on its applications
to electronic transport, but for those interested in a more in-depth treatment of DFT, we refer
to specialized text books. Those already cited in the introduction of Chap. 3 represent a good
example [1, 2]. In Sect. 6.2, we present the theoretical justification of DFT through the Hohenberg–
Kohn theorem and the most popular way of evaluating the density functional through the Kohn–Sham
formalism. In the subsequent sections, we show how DFT can be used to compute the equilibrium
positions of the atoms and the band structure.

6.2 Theoretical Basis for DFT

The ground state of any system is the lowest-state eigenstate of its Hamiltonian. The ground state
wavefunctionΨ0 is the solution of the equation:

̂HΨ0(r1,r2, . . . ,rN) = E0 Ψ0(r1,r2, . . . ,rN), (6.1)

where E0 is the smallest eigenvalue of the Hamiltonian ̂H that describes the electrons in the lattice
using the Born–Oppenheimer approximation discussed in Chap. 4, Sect. 4.2.1:

̂H =∑
i

[

− h̄2

2mel
∇2

i +V(lat)(ri)+∑
j<i

e2

4πε0|ri − rj|

]

, (6.2)

where V(lat)(r) is, as usual, the potential energy due to the ions.
The problem, of course, lies in the fact that the potential V(lat)(r) is the sum of the ionic potentials

screened by the electron charge. This charge density is a function of the electron wavefunctions, which
are the unknowns of the problem. In addition, the Coulomb repulsion among the electrons (the last

© Springer International Publishing Switzerland 2016
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term in Eq. (6.2)) can be approximated as a Hartree term, plus exchange and correlation corrections
that are difficult to express for an inhomogeneous electron gas. The major idea of DFT lies in the
fact that, in the ground state of this system, these exchange and correlation effects depend only on
the electron (charge) density of the system. This important result is part of what are known as the
Hohemberg–Kohn theorems [3] and leads to an important but rigorous simplification of the problem:
the full potential entering Eq. (6.2) can be expressed as a Hartree term (in principle straightforward to
calculate via a solution of the Poisson equation) and an additional exchange-correlation energy that is
a functional, F[n(r)], of the electron density only. Hence the term “density functional.”

To put these ideas in a more precise form, the ground state electron density is

n(r) = N
∫

. . .
∫

dr3
2 . . .dr3

N |Ψ(r,r2, . . . ,rN)|2 , (6.3)

with N the number of particles in the ground state. In the ground state, this can now be found by
minimizing the “density functional” F[n(r)]. For simplicity, we do not consider the effects of spin or
magnetic fields, nor do we consider the case where the ground state is degenerate.

In the absence of degeneracy, for each potential due to the ions, V(lat)(r), there is one ground state
wavefunction, Ψ0. At the same time, if Ψ0 is known, V(lat)(r) can be determined up to a constant
through Eqs. (6.1)–(6.2). Furthermore, for each Ψ0 there is a unique charge density, n(r), through
Eq. (6.3). Finally, as we have already mentioned, Hohenberg and Kohn have shown, using reductio ad
absurdum, that each charge density is uniquely related to a potential and thus to a ground state [3].
Therefore, we can conclude that there is a one-to-one correspondence between the ground state charge
density and the ground state wavefunctions, n(r) ↔Ψ0, so that a wavefunction functional Ψ0[n(r)],
and so also an energy functional F[n(r)], exists. The remaining problem, of course, is to determine
the form of this functional.

Remembering that Ψ0 is the ground state, 〈Ψ | ̂H | Ψ〉 reaches a minimum (E0) for Ψ = Ψ0.
Therefore, minimizing the density functional

F[n(r)] = 〈Ψ0[n(r)] | ̂H |Ψ0[n(r)]〉 (6.4)

with respect n(r) results in the ground-state charge-density for the Hamiltonian ̂H.
Equation (6.4) gives an exact expression for the density functional. However, evaluating the exact

density functional is equally computationally prohibitive as solving for the ground state wavefunction.
Luckily, approximate density functionals suitable for an efficient numerical evaluation have been
developed. The results obtained using these functionals generally compare favorably to experimental
results.

The most commonly used expression for the density functional F[n(r)] is its Kohn–Sham form [4].
It relies on the fact that the density of the valence electrons in a crystal changes “slowly” when
compared, for example, to the fast spatial variation of the density of the strongly confined core
electrons. Therefore, one may rely approximately on the results obtained from an exact quantum-
mechanical treatment of the homogeneous electron gas (as discussed, for example, in Kittel’s [5],
Mahan’s [6], or Fetter and Walecka’s [7] excellent texts): The functional can be approximated
by a functional of the local density, F[n(r)] ∼ n(r)1/3, as in the Thomas–Fermi model originally
formulated by Dirac [8]. We shall mention below more sophisticated approaches that go beyond this
approximation that appropriately called the local density approximation (LDA).

As a result of this discussion, we reach the Kohn–Sham equation as a single-particle Schrödinger
equation [4]:

(

− h̄2

2mel
∇2 + veff(r)

)

φi(r) = wi φi(r) (6.5)
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whose solutions φi(r) are known as the Kohn–Sham orbitals and where veff(r) is an effective “local”
potential that captures the effects of the Coulomb interaction together with exchange and correlation
effects. Recall that the eigenvalues wi are difficult to interpret physically, as we had already discussed
in the context of the Hartree–Fock approximation (see Chap. 4, Sect. 4.2.3). Another tricky assumption
we have to make at this point is to assume that the charge density of the non-interacting electron
system described by Eq. (6.5) coincides with that of the interacting system [with the Hamiltonian
from Eq. (6.2)]. In other words, that the Slater determinant, representing the correct form of the
wavefunction of a system of non-interacting particles, represents the wavefunction also of the system
of interacting electrons. With this assumption, the charge density can be expressed in a simple way:

n(r) =
N

∑
i

|φi(r)|2 . (6.6)

Calculating the kinetic energy using the Kohn–Sham orbitals, the density functional can be written as:

F[n(r)] =∑
i

∫

dr φ ∗i (r)∇2φi(r)+
∫

dr V(lat)(r) n(r)

+
e2

8πε0

∫

dr
∫

dr′
n(r)n(r′)
|r− r′| +Exc[n(r)] . (6.7)

Minimizing the density functional amounts to setting:

veff(r) = V(lat)(r)+
e2

4πε0

∫

dr
n(r′)
|r− r′| +

δExc[n(r)]
δn(r)

(6.8)

and to solving Eq. (6.5) self-consistently.
Finally, using the LDA approximation for the exchange-correlation functional Exc[n(r)] [8, 9]:

Exc,LDA[n(r)] =
∫

d r n(r) εxc[n(r)], (6.9)

where εxc(n) is the exchange-correlation energy of a homogeneous electron gas, ∼ n(r)1/3.
An improved approximation which can still be evaluated efficiently is the generalized gradient

approximation (GGA) [10–12]. This approximation amounts to accounting (to the next order) for
corrections to the exchange-correlation energy due to the “slow” spatial variations of the electron gas
that, after all, is not strictly homogeneous in a crystal. The exchange-correlation functional in this next
approximation is written in the following form that includes the simplest nonlocal correction one can
think of, namely, the gradient of the density:

Exc,GGA[n(r)] =
∫

dr εxc[n(r),∇n(r)] n(r). (6.10)

There are reasons why this is called the “generalized” gradient approximation. Indeed, the issue
is more complicated than it seems: A naïve use of an expression that includes the gradient of the
density, unfortunately, violates important conservation laws (namely: particle-number conservation).
Therefore, an appropriate “generalization” is in order. We shall leave it at that, since the issue is too
subtle and specialized for the purpose of this book. On the same “specialized” note, we observe that
another, yet more involved, set of functionals are nowadays commonly used, the so-called hybrid
functionals [13, 14]. In this “hybrid” form, Exc,hybrid[n(r)] contains the exchange term taken to be a
linear combination of the exchange of a conventional DFT functional, such as LDA or PBE [15] (see
below), and the exchange energy obtained from the Hartree–Fock approximation.
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6.3 ∗ Relevance of DFT Calculations for Electronic Transport

Computer programs that use DFT to calculate atomic positions, electronic structure, phonon spectra
(and more) have now become so sophisticated that, in a way, there is almost an “industry.” DFT
software packages are available that come in forms based on local atomic orbitals, all electrons (not
based on pseudopotential), and, of course, plane waves. In addition, several packages are available
to compute the atomic pseudopotentials themselves. The discussion of this chapter demands that
we present some significant results, so that we may show what DFT can really do. Moreover, we
wish to extend the discussion to subjects that are directly relevant to electron transport—namely
and mainly, the calculation of the vibrational properties of a crystal, phonons, since they are the
source of the main scattering processes for electrons moving in solids. In order to do so, we
consider one such software package, the Vienna ab initio Simulation Package (VASP) [16–19]. VASP
uses a plane-wave basis set for the Kohn–Sham orbitals. To reduce the size of the basis set, an
extension of the pseudopotential method, the projector-augmented plane-wave method, is used [20].
Fast-Fourier Transforms (FFTs) are used to diagonalize efficiently the Kohn–Sham Hamiltonian.
Moreover, optimized pseudopotentials for each atom are available from the extensive library included
in the package. We shall not discuss these sophisticated choices. However, we must provide some
detail, mainly for scientific “correctness” and for the sake of the occasional expert reader who may
wonder about the exact procedure followed to obtain the results shown here. But, once more, from the
perspective of this book, these are just “details” that the non-expert should not be concerned about.

6.3.1 Performing a DFT Calculation

In this somewhat “specialized section,” we outline the process one must follow to use such a DFT
package, VASP in our case, to perform a typical calculation.

As a first step, one must specify the atomic species, of course, and the following main system
parameters:

• Unit cell basis vectors (a1, a2, a3)
• Basis atom types and positions (τi)
• Density functional to be used (LDA vs GGA)
• Numerical approximations: K-point grid, energy cutoff/basis set, convergence threshold

VASP draws this information from four input files: POSCAR, POTCAR, KPOINTS, and INCAR. The
file POSCAR contains the unit cell parameters. POTCAR contains the pseudopotential information,
that is, which atoms one is considering. KPOINTS contains the size of the grids of the k points, either
in the irreducible wedge or in the first BZ, that are required to store wavefunctions and to perform the
necessary integrations. INCAR, finally, contains the remaining information: the cutoff energy used to
limit the number of G vectors employed (and so, the size of the eigenvalue problem to be solved);
information concerning additional ground state properties to be calculated (such as the forces on
each atom); requests for additional output, such as the Kohn–Sham potential or the core charge, and
computational parallelization parameters.

For example, when studying crystalline silicon the input will reflect the following properties and/or
computational options:

• Silicon forms an fcc lattice with a lattice constant a = 5.431 and its basis vectors are (a/2,a/2,0),
(a/2,0,a/2) and (0,a/2,a/2).

• There are two silicon atoms in the unit cell: taking the first atom at (0,0,0), the second atom can
be found at (a/4,a/4,a/4).
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• One may chose the most popular density functional in solid-state physics, the Perdew–Burke–
Ernzerhof (PBE) implementation of the GGA [15].

• The grid of k points is generated automatically through a method known as “Monckhorst–Pack.”
For example, one may request a 10×10×10 Monckhorst–Pack K-point grid and the default cutoff
energy and convergence threshold. This determines the numerical accuracy required to halt the
self-consistent iteration required by the solution of the Kohn–Sham nonlinear eigenvalue problem.

As a result of this input, one obtains a ground state energy of E = −10.8eV. Note that this value
depends on the kind of pseudopotential chosen and is only meaningful relative to other ground state
energies. The total ground state density for a cubic cell consisting of four primitive cells, averaged
along the [100] direction, is shown in Fig. 6.1 (left). The largest part of the electronic charge density
can be found around the ions and will have no impact on the binding energy. When only considering
the valence charge, i.e., without the charge contribution of the core electrons, shown in Fig. 6.1
(right), the charge density is still strongly peaked near the ions. Only a fraction of the valence
charge is involved in the binding of neighboring atoms. To further smoothen the charge density and
enable a reduction in the number of plane waves, plane-wave DFT codes base their calculations on
pseudopotential-based Kohn–Sham orbitals. The resulting “pseudized” charge is shown in Fig. 6.2.

Fig. 6.1 Total ground state
density (top) and valence
band ground state density
(bottom) averaged along
the [100] direction for a
silicon unit cell containing
eight atoms
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Fig. 6.2 Pseudized charge
obtained averaging along
the [100] direction

6.3.2 Determining the Lattice Constant and Crystal Structure

The ground state energy is only defined up to a constant and thus is not meaningful on its own.
However, changing the lattice constant and recomputing the ground state energy for each lattice
configuration enables us to determine the configuration with the smallest ground state energy. This
process can be performed manually or one can also perform “atomic relaxation” studies. In this case,
starting from an initial “guess” for the positions of the atoms (usually the experimental values, when
known), the total ground state energy of the system is calculated for various configurations obtained by
displacing atoms slightly from the initial positions. Calculating the derivatives of the total energy with
respect to the ionic displacements, one can calculate the forces acting on each atom and, by methods
such as steepest descent or the Car–Parrinello algorithm [21], one can pinpoint the equilibrium atomic
configuration. However, caution should be exercised: There is no guarantee that a structure will relax
to a minimal energy state, since the system can evolve towards a local minimum or a saddle point
and remain “stuck” there. Giving an occasional stochastic “kick” out of a possible local minimum, as
done in the “simulated annealing” algorithm [21], can minimize this danger.

As an example of a “system calibration” for bulk Si performed by varying the lattice constant
manually, Fig. 6.3 shows the binding energy for 100 different values of the lattice constant, ranging
from a = 5 to a = 6. The minimum ground state energy is found for a = 5.43, which is in excellent
agreement with experimental data. This is a general feature of the DFT codes available at present: The
value of the calculated band gaps remains somewhat underestimated. This is not surprising, since,
as we saw, DFT is essentially a ground state theory (although progress is being made to extend its
validity). However, the determination of the equilibrium atomic configuration is extremely reliable.
Again, this is not surprising, exactly for the same reason.

In the following chapter we shall consider in detail how empirical pseudopotentials can be used
to study what are called “low-dimensionality” or “nano” structures. These are thin slabs, nanowires,
nanodots obtained by terminating the infinite lattice. Therefore, the periodicity (translation symmetry)
is broken. Since the use of plane waves demands periodicity, this is recovered employing “supercells.”
This procedure is described in detail in Chap. 7, Sect. 7.1. Using the same procedure, two-dimensional
materials and slabs can also be modeled using DFT, provided a supercell is constructed in the direction
perpendicular to the surface. As an example, consider the interesting case of graphene. As explained
in Sect. 3.3.4, this is a two-dimensional film of carbon atoms arranged in an hexagonal honeycomb
structure:
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Fig. 6.3 Ground state
energy versus lattice
constant for silicon
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• Graphene’s basis vectors are (a/2,a
√

3/2,0), (a/2,−a
√

3/2,0), and (0,0,c) where we take c = 3a
• The two carbon atoms can be found at (0,0,0) and (a/3,a/3,0)
• We opt for the PBE functional
• We use a 10 × 10 × 10 Monckhorst–Pack K-point grid and use default energy cutoff and

convergence threshold.

Taking a = 2.46, the ground state energy is −18.45eV.
As an example of the relaxation process we have mentioned above, it is possible to determine the

equilibrium structure of buckled hexagonal monolayer structures, like silicene and germanene. Such
a structure is shown in Figs. 13.12 and 13.13, page 304. In a buckled hexagonal structure, the two
atoms in the unit cell can be found at (0,0,0) and at (a/3,a/3,b) where b is the buckling distance.
DFT allows the simulation of hexagonal lattices with a lattice constant that varies from a = 2 up
to a = 5.5. Employing a supercell with height c = 5a, the buckling distance is found by specifying
an initial buckling distance binit = 0.01c, which is subsequently relaxed by VASP to an equilibrium
buckling distance bbuckling. In Fig. 6.4, the ground state energy for the relaxed buckled hexagonal
lattices of C, Si, Ge, and Sn is shown. For carbon, a single minimum is observed which corresponds
to the graphene lattice. For silicon, germanium, and tin, two minima can be distinguished. The phase
corresponding to the first minimum is called the “high-buckled phase” and has a smaller lattice
constant and a larger buckling distance compared to the second minimum, the “low-buckled phase.”
The high-buckled phase is metallic, while the band structure of the low-buckled phase resembles that
of graphene. However, for germanium and tin the effects of spin–orbit coupling undoubtedly will play
a significant role. This effect is not accounted for in these examples.
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6.3.3 Calculating the Band Structure

As we have already mentioned, despite the fact that, in principle, DFT only gives information about
the ground state properties, it has become routine in the scientific community to assume that the Kohn–
Sham orbitals give an approximation of the electronic band structure. The problem with this attitude
is that the Kohn–Sham orbitals are not the real electronic states. As a not unexpected consequence,
“DFT band structures” generally grossly underestimate the band gap in semiconductors and even
predict small-gap semiconductors, such as InAs, to be metals.

Nevertheless, DFT band structures generally do paint a good qualitative picture for most materials.
For example, silicon is correctly predicted to be an indirect-gap semiconductor with its conduction
band minimum along the Δ direction. And often, DFT is the only (and therefore, automatically, the
best) method to perform ab initio calculations of the band structure that is computationally feasible.
Additionally, when experimental data are available, it is possible to use hybrid exchange-correlation
functionals [13, 14] that use a Hartee–Fock/LDA mixing that can be tuned to obtain a “correct” band
structure [13, 14, 22].

In Fig. 6.5, we show the silicon DFT band structure calculated using the PBE functional [15].
To obtain the band structure along high symmetry directions, first the ground state charge density is
calculated by discretizing it on a 10×10×10 grid. Subsequently, a “non-self-consistent” calculation
is performed by taking the Kohn–Sham potential to compute the band structure at any chosen k-point.
Figure 6.5 shows the band structure from the L symmetry point to the Γ-point, the X-point, the U/K-
point, and the back to the Γ-point again.

The maximum of the valence band occurs at the Γ-point, while the minimum of the conduction
band occurs along the Γ-X axis, in agreement with the experimentally observed band structure.
The DFT value of the band gap calculated using the PBE functional is 0.6eV. This is a strong
underestimation of the experimentally observed 1.12eV band gap. A better optimization of hybrid
functionals (called the “HSE03 functional measures”), one can obtain a value of the band gap of
1.15eV, in much better agreement with experiments.

DFT also has the ability to deal with spin–orbit coupling of the electrons. This topic is discussed
in Chap. 5, Sect. 5.6.3. Generally, the effects of spin–orbit coupling have only a small effect on the
structural properties but they are important for the electronic band structure, especially for heavy
elements.

Fig. 6.5 Silicon
bandstructure calculated
using the PBE
exchange-correlation
functional L Γ X U/K Γ
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Fig. 6.6 Hartree part
(solid) and total
Kohn–Sham (dashed)
potential averaged on the
(x,y) plane for a silicon
10-atom slab along the
[100] direction. Circles
indicate the positions of the
silicon atoms. The Hartree
part can be seen to
converge to the vacuum
potential much more
rapidly than the total
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6.3.4 Calculating the Workfunction and Band Offsets

Other quantities of interest in semiconductor devices are the material workfunction, i.e., the difference
between the vacuum level and the Fermi level, and the band offsets between two different materials,
i.e., the energy difference between the top of the valence band or the bottom of conduction band of
the two materials.

For metals, the Fermi level is readily available from DFT calculations. For semiconductors, instead,
doping will determine the position of the Fermi level with respect to the valence and the conduction
bands. The potential energy of vacuum is obtained by constructing a slab with a surface facing the
vacuum. Averaging the Kohn–Sham potential along the direction of the slab surface on the (x,y) plane,
illustrated in Fig. 6.6, the vacuum potential energy is obtained. In practice, it is more convenient to
average the Hartree term of the effective Kohn–Sham potential, since it converges towards the vacuum
potential more rapidly when compared to the effective Kohn–Sham potential.

The workfunction is defined as the energy required to remove for an electron from the semicon-
ductor the vacuum. In technical terms, the workfunction is the difference between the potential energy
of an electron in vacuum and the Fermi level of the semiconductor. In Fig. 6.6, the vacuum energy is
6.07 eV, the Fermi level is 0.64 eV, and the resulting workfunction is 5.43 eV. However, since these
results are relative to silicon, which is a semiconductor, the position of the Fermi level is not uniquely
defined. The offsets with respect to the valence band (5.91 eV) and the conduction band (5.04 eV)
are meaningful measures in semiconductors as long as the band gap is calculated correctly. Also,
when considering experimental results, it is important to remember that the workfunction is a surface
property and that the introduction of additional dipoles on the surface of any material will change its
workfunction.

Similar to the workfunction, the offsets of the valence and conduction band between two
semiconductors (s1 and s2) can be calculated using DFT. As a first step, a DFT calculation is
performed on a supercell containing both semiconductors. Averaging the Kohn–Sham potential (or the
Hartree part of the Kohn–Sham potential) over the (x,y) plane and over the length of the original
unit cell in the z direction, the difference between the average potential ΔṼ = Ṽs2 − Ṽs1 in both
semiconductors can be obtained. As a second step, a DFT band structure calculation is performed
for the bulk cell for both semiconductors (with appropriate strain, if the compounds are not lattice-
matched) and the difference of the conduction and valence with respect to the average potential,
Ẽv/c1/2 = Ev/c1/2 − Ṽs1/2, is calculated. The band for the valence and conduction bands can now be
calculated as ΔEv/c = Ẽv/c2 − Ẽv/c1 −ΔṼ .

Figure 6.7 shows the potential, averaged on the (x,y) plane, in a SiGe heterostructure. The
difference between the average potential in the silicon and the germanium layer is ΔṼ = 2.32eV.
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Fig. 6.7 Hartree part of
the Kohn–Sham potential
for a SiGe heterostructure
supercell averaged along
the x− y direction (solid
line). Open circles indicate
the position of silicon
atoms while filled circles
indicate the position of
germanium atoms. The
difference between the
smoothened potential
(dashed) in the silicon and
the germanium region is
ΔṼ = 2.32eV
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Computing the silicon and the germanium band structures using hybrid functionals, the silicon and
germanium band gaps are 1.18 and 0.24eV, respectively. The germanium band gap is smaller than
that of bulk germanium because of the strain required to lattice-match the germanium with the silicon.
The computed band offsets are ΔEv = 0.89eV and Δc =−0.05eV which is in line with experimental
observations that the conduction bands of silicon and germanium are almost aligned.

6.3.5 Calculating the Phonon Spectrum

As we have mentioned before, DFT can also be used to calculate the phonon spectrum within the
harmonic approximation. This is discussed in Chap. 9, Sect. 9.4. Moreover, the use of DFT to calculate
the strength of the all-important electron–phonon interaction is discussed in Chap. 13. Thus, it is
probably convenient for many readers to peruse those sections before returning to the present section
for a second reading.

The calculation of the phonon spectrum requires the knowledge of the dynamical matrix. This, in
turn, is calculated from the second-order force constants [see Eq. (9.93) at page 204]:

D̃ijγγ ′(l
′′) =−∂Fj(l′γ ′)

∂Rl,γ ,i
, (6.11)

where l and l′ are the indices labeling the primitive cells, γ and γ ′ are the indices labeling the atoms
in each cell, and i, j are indices running over the three spatial dimensions. Therefore, if Rl is a lattice
point and τγ is the position of atom γ within the cell, Rl,γ = Rl + τγ . Finally, in Eq. (6.11), the index
l′′ is such that Rl′′ = Rl −Rl′ . The quantity F(l′γ ′) is the force acting on the atom at Rl′γ ′ .∗ Numerically, the force constants can be obtained in two equivalent ways: (1) from the forces
calculated from the change of the total energy for structures with slightly displaced atomic positions,
which is the method we have mentioned before and is known as the “small displacement method”;
or (2) using density functional perturbation theory (DFPT) [23]. We shall not discuss this advanced
method here. When using the small displacement method, the construction of a supercell consisting
of repeated unit cells is required for small unit cells, so as to enable the description of non-
nearest neighbor interactions. In the case of DFPT, there is no general real-space expression for
the dynamical matrix and a new calculation is required at each k-point of interest.

A VASP post-processing package, called PHONOPY, permits the construction of a set of 3×3×3
Si supercells with small atom displacements. DFT is used to obtain the forces acting on each atom
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Fig. 6.8 Silicon phonon
spectra calculated by DFT
using the small
displacement method and a
3×3×3 supercell
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for each of these supercells, thus obtaining the force constants. Following a specific path in reciprocal
space (going from the L-point (π/a,π/a,π/a) to the Γ-point (0,0,0), the X-point (2π/a,0,0), the
U/K-point (π/(2a),2π/a,π/(2a))/(3π/(2a),3π/(2a),0) back to the Γ-point with 100-points along
each line), PHONOPY can be used to construct and diagonalize the dynamical matrix for each of the
k-points along this path. The resulting phonon spectrum is plotted in Fig. 6.8. This can be compared
with the result obtained using the valence shell model [24–26], shown in Chap. 9, Fig. 9.1 on page 206.

Problems

The following problems are appropriate for a class on Computational Physics and assume access to a
DFT software package.

6.1. (The Band Structure of Si)

(a) Compute the silicon ground state charge density and energy using a DFT package (e.g., VASP,
Quantum espresso, . . . ).

(b) Compute how the ground state energy of fcc Si changes when the lattice constant is increased
from 5 AA to 6 AA.

(c) Compute band structure of Si from the results of (a) above.

6.2. (Phonons in Si) Compute the phonon spectrum of fcc Si using PHON or PHONOPY.

6.3. (Graphenei) Compute the band structure of graphene using DFT.

6.4. (Silicene) Silicene is the Si equivalent of graphene. However, it is not flat in an sp2 bonding
configuration, but it “buckles” into sp3 bonding with unsaturated, dangling “out-of-plane” bonds.
While we would prefer to use the suffix “ene” for unbuckled, sp2-coordinated 2D lattices and “ane”
for the buckled, sp3-coordinated lattices, in the literature “silicane” denotes the buckled structure,
whereas “silicane” denotes a buckled structure with the dangling bonds terminated by some functional
group, usually by H. Having clarified this detail, construct the buckled hexagonal lattice of silicene
with lattice constant 2.7 and determine the buckling distance by performing a relaxation.
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6.5. (A Thin Si Slab)

(a) Construct a slab of Si, passivate it with hydrogen, and relax the atomic positions. See how the
atoms at the surface relax.

(b) Using the slab from (a), determine the energy of the valence and conduction band of Si with
respect to the potential energy in vacuum. This is the workfunction of Si.
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Chapter 7
∗ Electronic Structure of Low-Dimensionality Systems

The use of plane waves and empirical pseudopotentials—presented in Chap. 5, Sect. 5.3.4—to
calculate the band structure of semiconductors (and other crystals) has proven useful to gain insight
into the electronic excitation spectrum of solids. The “empirical’ nature implies loss of strong
predictive power and of “portability” of ionic (pseudo)potentials, but it results in a vast simplification
of the numerical problem when compared to the ab initio methods presented in Chap. 6. Moreover,
the small degree of “fitting” allowed by the technique affords, by definition, excellent agreement with
experimental data. Since our focus is on electronic transport, not on structure calculations per se,
empirical pseudopotentials represent the best choice to perform accurate calculations.

In this chapter we consider the use of empirical pseudopotentials to study the electronic structure
(and, in later chapters, transport properties) of low-dimensional structures. These are regular
assemblies of atoms that are arranged approximately in their bulk configurations, but the fact that they
are “finite” (as opposite to the ideal infinite crystals we call “bulk”), thus presenting free surfaces
(or surfaces interfacing dielectrics), gives rise to new physical properties that have proven to be
extremely interesting from a scientific and technological perspective. For example, thin Si films
are used as active channels in metal-oxide-semiconductor (MOS) field-effect transistors (FETs), as
implemented in their Si-on-insulator (SOI) form. They are, in a way, “nanostructures,” since these
films are only a few nanometers thick. Electrons confined in these structures behave like particles
in a box along the confinement direction. As a consequence, the band structure of these thin films,
or “slabs,” differs significantly from the band structure of bulk Si, since it has to reflect the discrete
energy levels resulting from the confinement-induced quantization. Their electronic, transport, and
even optical properties differ significantly from their bulk properties. For example, whereas bulk Si
or Ge are indirect-gap semiconductors, when grown in the form of ultra-thin slabs, an effect called
“band folding” (that is, the projection of the band structure along the crystallographic direction
perpendicular to the film) renders them direct-gap materials. Electrons in these two-dimensional
structures behave as a two-dimensional electron gas (2DEG), whose properties have been studied
extensively [1]. More recently, technological fabrication and synthesis methods have made it possible
to create films as thin as a single atomic layer. Graphene [2], silicene, germanene, stannanane, and
transition-metal dichalcogenides (TMDs, such as MoS2, for example) are extremely interesting for
their peculiar physical and electronic properties (high carrier mobility, superconductivity, their nature
as topological insulators, to name a few properties that we shall not discuss here) and also for
possible use in electronic devices. Similarly, electronic states in semiconductor nanowires—that can
be viewed as ultra-narrow slabs—will be affected by confinement-induced quantization along two
dimensions. Electrons in these structures will behave like a one-dimensional electron gas (1DEG),
whose electronic, transport, dielectric, and optical properties will also be significantly different from
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those of their bulk counterparts. Finally, “zero-dimensional” structures, such as small regular clusters
of atoms (‘quantum dots’), have raised interest for their possible applications in photovoltaic solar
cells and solid-state injection lasers.

The fact that these structures do not exhibit the periodicity of bulk crystals demands some change
in the theoretical approach used to study them, if we wish to use plane-wave methods. This is done in a
simple (but computationally heavy) way, by rendering these structures artificially periodic, replicating
them spatially along the directions of the broken translational symmetry. This is the concept of
“supercell” that will be discussed next. Several structures that exhibit two-dimensional and one-
dimensional electronic behavior will be studied next. In each case, we shall provide even minute
details, such as the positions of the atoms, the lattice translation vectors, and the pseudopotential
employed (in Appendix B), so that it will be possible to write an actual computer program using the
algorithms presented in Chap. 5, Sect. 5.3.4. In this chapter we shall also provide a more complete and
up-to-date list of references, more along the style of a technical article.

The bulk of this chapter, as well as Appendix B, is extracted from [3] and from a chapter of the book
“Nano-Electronic Devices: Semiclassical and Quantum Transport Modeling,” edited by D. Vasileska
and Stephen M. Goodnick (Springer, New York, 2011) [4]. Text, when extracted verbatim, and figures
are here reproduced with permission from the publisher.

7.1 The Supercell Concept for Nanostructures

The “supercell” method is conceptually a trivial extension of the standard “bulk” plane-wave method,
in which the primitive cell of the crystal (containing only two atoms in the fcc semiconductors of
interest here) is considered. If, instead of bulk homogeneous solids, we are interested in studying
finite structures, instead of employing the primitive lattice cell, a larger cell is considered, for example
composed of many Si cells replicated N times along the z-axis to form a Si layer of thickness Na0

(where a0 is the Si lattice constant) and Nv empty cells (“vacuum”), resulting in a cell of total
extension (N +Nv)a0 along the z-axis (see Fig. 7.1, left). This is the kind of supercell required to
deal with inversion layers, thin semiconductor bodies, or quantum wells. Similarly, the cell may
be extended along two directions (see Fig. 7.1, center), mimicking a quantum wire. A sufficiently
“padding” consisting in a sufficiently large number of “vacuum cells” (just an isolation, several cells
long, between adjacent structures) or insulating cells between adjacent layers or wires will guarantee
avoiding artifacts due to the possible coupling between them (as in a superlattice).

It is important to note a useful feature of the empirical pseudopotential method: An external
potential can be added without any significant additional numerical cost. This is particularly important,
since these nanostructures are employed in situations that require an external applied bias to drive
the electrons. As it is done for the ionic (pseudo)potentials, the external potential is also artificially
rendered periodic with the period of the supercell. Therefore, we must consider its non-vanishing
Fourier components that are of the form:

V(ext)
G =

1
Ωsc

∫

Ωsc

dr V(ext)(r) e−iG·r , (7.1)

where Ωsc is the volume of the supercell. In the case of homogeneous 2DEGs, in which the artificial
periodicity extends in one dimension (inversion layers, quantum wells, and thin bodies), V(ext)(r)
and the external potential is assumed to depend only on the “confinement direction” z, Eq. (7.1)
simplifies to
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Fig. 7.1 Left: Supercell scheme illustrating the choice of the supercell for an AB hetero-structure (A or B could be
replaced by vacuum for free-standing films). Center: The same but for the case of a nanowire. Right: 2D Brillouin
Zones for the (100), (110), and (111) fcc faces showing the conventional notation for symmetry points and symmetry
lines and the “path” followed on the (100) face to plot the dispersion shown in the following figures

V(ext)
G = δG‖,0 V(ext)

G(L)
z

= δG‖,0
1
Lz

∫ Lz

0
dz V(ext)(z) e−iG(L)

z z , (7.2)

where Lz is the extension of the 1D supercell in the z direction and G‖ is the projection of the reciprocal
lattice wavevector G on the (x,y) plane (the plane of the surface or interface). In the case of 1DEGs,
such as graphene nanoribbons, nanowires, or carbon nanotubes, V(ext)(r) will depend only on the
in-plane coordinates R, so that

V(ext)
G = δGz,0 V(ext)

G‖
= δGz,0

1
A

∫

A
dR V(ext)(R) e−iG‖·R , (7.3)

where A is the cross-sectional area of the 2D supercell.
Therefore, accounting also for the presence of an external potential, the electronic structure of the

system will be obtained by solving the eigenvalue problem:

∑
G′

[

h̄2

2m
|k+G|2δG,G′ +V(lat)

G−G′ +V(ext)
G−G′

]

u(n)G′,k = En(k) u(n)G,k . (7.4)
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Note that we still use the full three-dimensional wavevector k. However, we note that the dispersion

En(k) and the wavefunctions u(n)G,k do not depend “appreciably” on kz (the component perpendicular to
the surface/interfaces) in the case of 2DEGs, and do not depend on K (the components on the cross-
sectional plane) in the case of 1DEGs. By “appreciably” we mean to say that this is true as long as
the electrons are confined, i.e., that they lie energetically below the energy of the vacuum. Therefore,
under these circumstances, k may be considered the wavevector projected on the plane (or direction)
perpendicular to the confinement direction (or plane) (see Fig. 7.1, right, illustrating the 2D Brillouin
Zones of a face-centered cubic lattice, for example). As usual, we have indicated with V(lat) the lattice
(pseudo)potential resulting from the sum over all ions α in the supercell of the ionic pseudopotentials

V(pseudo,α)
G , normalized to each atomic volume Ωα multiplied by the “structure factor” e−iG·τα :

V(lat)
G =

1
Ωsc
∑
α

e−iG·τα Ωα V(pseudo,α)
G , (7.5)

where τα is the position of ion α in the supercell. From now on, we shall drop the superscript
“pseudo” and simply write Vα ,G for the ionic pseudopotentials. The wavefunction corresponding to
the eigenvalue En(k) is given by the Bloch expression:

ψ(n)
k (r) =

1
Ωsc

eik·r ∑
G

u(n)G,k eiG·r . (7.6)

This method is “exact” (within the EP framework), but it can handle only closed systems. Thus, it is
ideally suited to treat low-dimensionality confined cases, but it must be augmented by other techniques
when we must deal with transport (i.e., open boundary conditions) problems. This will be discussed
in Chap. 17.

In Appendix B we provide complete information about the form of the empirical pseudopotentials
used in the examples we shall give below. We shall now discuss various examples of structures
resulting in 2DEGs and 1DEGs.

7.2 Thin Layers (Thin Films and 2DEG, Graphene)

Electrons confined in two dimensions, the 2DEG, have been studied extensively, starting from the
surface of liquid He, to electrons in the inversion layers of MOSFETs, to those in hetero-structures,
and recently, in crystalline sheets one-atom-thick with the atoms arranged, usually, in a honeycomb
hexagonal lattice. The reviews given by Ando et al. [1] and Geim and Novoselov [2] illustrate the
physical and technological importance of these structures. Here we discuss how the use of empirical
pseudopotentials can give us insight about the electronic properties of these systems.

7.2.1 Thin Si Layers

Inversion layers of Si MOSFETs constitute, historically, the first example of a 2DEG that has given
us results of high scientific and technological importance. Although the existence of a 2DEG had
been predicted early on, it was first observed in 1964 [1]. The quantum confinement caused by a
large electric field pushing the electrons against the Si–SiO2 interface results in a quantization of
the electron wavevector along the direction perpendicular to the interface. Therefore, the electron
dispersion consists of two-dimensional “subbands,” each describing electrons free to move on the
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plane of the interface, but with the component of their wavevector perpendicular to the interface
constrained by quantization, much as the textbook case of a one-dimensional particle in a box.
In Chap. 8, Sect. 8.2.1, we shall discuss this situation in detail within the context of the effective-
mass approximation. As bulk Si is replaced by thin Si “bodies” (to use the jargon used in the
Very Large Scale Integration—VLSI—community), additional confinement results from the finite
thickness of the “slab.” As confinement gains importance, electrons will be pushed to higher
energies, beyond the validity of the effective-mass approximation. A correct description of the
electronic structure of these systems renders mandatory the use of “atomistic” theoretical studies,
such as DFT, empirical pseudopotentials, tight-binding, or k ·p models. Here we see how empirical
pseudopotentials can handle this problem.

7.2.1.1 (100) Surfaces

Thin Si layers with (100) surfaces, mimicking thin SOI or FinFET channels on (100) wafers, are
created by considering the usual fcc real-space primitive translation vectors

a1 = (a0/2) (1,1,0) , a2 = (a0/2) (−1,1,0) (7.7)

on the (x,y) plane (a0 = 0.543 nm being the Si lattice constant), but extending the cell in the z direction
defining the translation vector

a3 = a0(0,0,N +Nv) , (7.8)

where N is an integer indicating the number of Si cells (of thickness aSi) considered and Nv is the
number of vacuum cells used to isolate the periodically repeated Si layers. Si atoms are then placed
in the supercell spanned by the translation vectors a1, a2, and a3 starting with the 4 atoms in the first
(non-primitive) cell with coordinates:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

τ1 = (0,0,0)
τ2 = (a0/4) (1,1,1)
τ3 = (a0/4) (0,2,2)
τ4 = (a0/4) (−1,1,3)

, (7.9)

and proceeding with 4N − 4 additional atoms labeled by the index i = 4j+ 1 (with j = 1,N) with
coordinates:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

τ4j+1 = τ1 + ja0ẑ
τ4j+2 = τ2 + ja0ẑ
τ4j+3 = τ3 + ja0ẑ
τ4j+4 = τ4 + ja0ẑ

, (7.10)

where ẑ is the unit vector along z and j = 1, N −1.
Clearly, at the “free” surfaces, there will be sp3 orbitals that remain dangling, because of the

missing atoms. These would cause the appearance of additional states mainly localized around the
dangling orbitals (often called “dangling bonds”) with an associated energy band that often falls in
the energy gap. This is seen in nature, where indeed these “surface states” historically have created
technological problems: For example, at the interface between Si and SiO2, dangling bonds can trap
and de-trap electrons, causing unwanted charging of the interface. This is also seen in calculations,
and we shall show an example below. We should also remark that these dangling orbitals are not
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the lowest-energy configuration of a free surface. Under appropriate conditions, the free surface
“reconstructs”: For example, on a free Si (111) surface (with lone sp3 orbitals pointing straight out
of the surface), two surface atoms will move closer together to form a “bridging” covalent bond out
of the two dangling orbitals. This results in a new periodic atomic arrangement at the surface: It is
a reconstruction in which straight lines of Si–Si “dimers” form a new periodic structure, in this case
called “2× 1”: The un-reconstructed periodic structure consists of a 1-cell-by-1-cell (1× 1) pattern
that now changes into 2 cells merging together via the dimers in a new “2-cells-by-one-cell” pattern.
This also results in the “merging” of the bonds along the line of the dimers, forming an extended π
orbital. Other reconstructions exist, depending on how the surface is processed: (2n+ 1)× (2n+ 1)
(the most common being the 7×7 reconstruction obtained at temperatures above 750 K); or a slightly
different 2× 1 reconstruction of the (100) surface. DFT can predict these reconstructions. Here, we
assume that the surface, instead, remains unchanged in terms of its crystalline form. This is usually
the morphology that is obtained experimentally when the free surface is “passivated” by an insulator.

The most convenient way to “passivate” our theoretical surface is to attach a H atom to each
dangling orbital. This process is called “termination” of the surface. Empirical pseudopotentials for
H that avoid the appearance of surface states are given in Appendix B. In our case of a (100) surface,
we must terminate each surface cell with four hydrogen atoms at the following locations:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

τH,1 = τ1 +0.158 a0(−1,1,−1)
τH,2 = τ1 +0.158 a0(+1,−1,−1)
τH,3 = τ4N +0.158 a0(−1,1,1)
τH,4 = τ4N +0.158 a0(1,−1,1)

. (7.11)

The length of the Si–H bond, given here as 0.158 a0, has been determined empirically, but it is not
too different from the bond length observed experimentally. The positions of the H atoms are simply
obtained by placing them along the direction of the dangling sp3 orbital.

7.2.1.2 (110) Surfaces

For the (110) surface, instead, the cell is described by the translation vectors:

a1 = a0/
√

2(1,0,0) , a2 = a0(0,1,0) (7.12)

on the (x,y) plane and it is extended in the z direction using the translation vector

a3 = a0/
√

2(0,0,N +Nv) . (7.13)

Atoms contained in the first cell have coordinates:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

τ1 = (0,0,0)
τ2 = (a0/4) (0,1,2/

√
2)

τ3 = (a0/2) (1/
√

2,1,1/
√

2)
τ4 = (a0/4) (2/

√
2,3,0)

. (7.14)

The atomic coordinates for the remaining 4N − 4 atoms in the supercell are obtained from the
coordinates given above by translating them by an amount ja0/

√
2 (j=1, N) along the z direction,

as in Eq. (7.10). Of course, we must terminate the surface dangling bonds with H atoms, as we have
done for the (100) surface.
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7.2.1.3 (111) Surfaces

Finally, for the (111) surface one may choose, among many possible equivalent selections of
translation vectors:

a1 = (a0/
√

2) (1,0,0) , a2 = (a0/2) (1/
√

2,
√

3/2,0) (7.15)

on the (x,y) plane. The cell is extended along the z by defining the translation vector

a3 = (a0
√

3) (0,0,N +Nv) . (7.16)

As we just said, this is not the only possible selection. For example, choosing a′1 =
a0/2(1/

√
2,−√3/2,0) instead of a1, one would obtain the same end result, since a′1 = a1 − a2.

In this case one must consider six atoms in the first cell. Their coordinates are
⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

τ1 = (0,0,0)
τ2 = a0 (0,0,

√
3/4)

τ3 = a0 (0,1/
√

6,1/
√

3)
τ4 = a0 (0,1/

√
6,
√

3/4+1/
√

3)
τ5 = a0 (1/(2

√
2),1/(2

√
6),2/

√
3)

τ6 = a0 (1/(2
√

2),1/(2
√

6),2/
√

3+
√

3/4)

. (7.17)

As usual, atomic coordinates for the remaining 6N − 6 atoms in the supercell are obtained by
translating the coordinates above by an amount ja0

√
3 (j=1, N) along the z direction and dangling

bonds at the free surfaces are terminated with H atoms.

7.2.1.4 Band-Structure Calculations

Our interest is in the electron transport properties of the structure. The calculation of the band structure
is, obviously, the first step. By itself, it shows immediately something extremely interesting (see
Fig. 7.2): A thin Si film becomes a direct-gap structure. This is the result of projecting the bulk BZ
onto the 2D BZ. Of the six minima of the conduction band, one each along the equivalent {100}
directions, those along the [100] and the [100] directions are projected at the center of the 2D BZ,
the Γ symmetry point. The top of the valence band, already at the center of the 3D BZ, will also be
projected on the center of the 2D BZ. Therefore, provided that the energy of the other four minima
of the conduction band—that lie along the [010], [010], [001], and [001] directions—does not exhibit
a lower energy, the band gap will now be at Γ. This is the result of what is called band folding. We
should add that we actually expect the minima along the [100] and [100] directions to be at a lower
energy. Indeed, thinking of particle in a box, the ground state energy is proportional to 1/m∗, where m∗
is the effective mass. In our case, this mass will be the longitudinal mass, mL for these minima, while
it will be the much smaller (≈ 0.19 mel vs. ≈ 0.91 mel), for the minima at X, so the widening of the
gap caused by the quantum confinement is expected to be larger for the minima at X than for those at
Γ. (As a matter of terminology, the quantized states in the conduction band at Γ are called “unprimed”
states, those at rmX “primed.”) This is indeed seen in Fig. 7.2. Attempts to exploit this new property
of thin Si in optical applications have been frequent. The crucial issue is the practical realization of a
film thin enough to prevent decoherence of the electron wavefunctions (via collisions with phonons,
defects, interface imperfections), so that quantization and band folding can be achieved.
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Fig. 7.2 Band structure of a (100) Si slab in vacuum terminated by H atoms. The slab thickness is 9 Si cells (left), 5
cells (center), and 2 cells (right). Note the direct gap caused by band folding, the quantized subbands in the conduction
and valence bands, the widening of the gap caused by the confinement, and, barely visible, the lifting of the twofold
degeneracy of the unprimed states (known as “valley splitting”) caused by the symmetry breaking due to the external
potential. Note also at the X-point the presence of two additional 2D valleys. The red dashed lines are parabolic bands
(conduction) and k ·p approximations to the problem (calculated assuming vanishing wavefunction at the Si–vacuum
interface) illustrating the significant effect of the EP band structure. The spin–orbit interaction has been neglected to
obtain these results to gain computational speed. Finally, the zero of the energy has been set arbitrarily at the top of the
valence bands. [Used from M.V. Fischetti, Bo Fu, S. Narayanan, and J. Kim, in Nano-Electronic Devices: Semiclassical
and Quantum Transport Modeling, Dragica Vasileska and Stephen M. Goodnick eds. (Springer, New York, 2011), pp.
183–247, with kind permission from Springer Science+Business Media]

A second quantity in which we are mostly interested is the ballistic conductance. This concept
is defined in Chap. 17, Sect. 17.2.1. It represents the “quantum conductance,” 2e2/h, multiplied by
the number of conductive channels (bands and state in each band) available for an electron to travel
through the structure [see Eq. (17.11)]. It can be viewed as a first semi-quantitative way to characterize
the ability of the structure to carry current. Therefore, it helps us to identify the best structures for
potential applications. In our case, comparing films of different thickness, of different materials, and
with surfaces cleaved along different crystallographic planes is an excellent first step to achieve this
goal.

Coming now to computational details, Eq. (7.4) can be solved conventionally using the Si and H
pseudopotentials from the literature. As an example, here we show results obtained using the local
empirical pseudopotentials from [5, 6] (see Appendix B, Table B.1).

The density of states is computed using the two-dimensional version of the Gilat–Raubenheimer
algorithm described below (see the introduction of Chap. 12 and, in that chapter, Eq. (12.37) and the
paragraph following this equation for the notation and meaning of the symbols):

D2D(E) = 2 ∑
n

∫

dk
(2π)2 δ [En(k)−E] =

1
2π2∑

′

jn

L(wjn)

|∇2DEjn| . (7.18)

The ballistic conductance along the direction characterized by the unit vector n̂ can be computed in a
similar way:

G2D(E) = 2 e2 ∑
n

∫

d
(2π)2 υn(k) · n̂ δ [En(k)−E] =

e2

πh∑
′

jn

∇2DEjn · n̂
|∇2DEjn| L(wjn) , (7.19)
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where υn(k) is the group velocity in band n at the point k and the integration must be extended only
over states whose group velocity along the direction n̂ is positive.

Figure 7.2 shows the band structure of (100) Si layers of thickness equal to 9aSi, 5aSi, and 2aSi, all
separated by a vacuum 2aSi “thick.” The obvious results are, as already pointed out, the appearance of
a direct gap and of many subbands. Several details, most appreciated by specialists and mentioned here
for completeness, are also evident. For example, the appearance of an additional doubly degenerate
conduction band at the X point, a band already obtained by Esseni and Palestri [7] using a linear
combination of bulk bands (LCBB) and denoted by them as M3, M4. Such a band is completely
missed by simpler models based on the effective-mass approximation and has significant effects on
electron transport, as we shall see in Chap. 13, Sect. 13.4.1. In Fig. 7.2 one can also see the expected
widening of the gap as the film is made thinner. A quantitative summary of this observation is given
by Fig. 7.3 that shows the dependence of the energy gap on the thickness of the film.

As stated before, an external potential V(ext)(z) can be added in Eq. (7.4). This is particularly
relevant to the practical case of channels in Si MOSFETs, since these are heavily biased by the
gate contact that is used to modulate the electron density, and so the current in the transistor. It may
be appropriate to return to this section after having read the discussion given in Sect. 8.2.1: There the
same problem is tackled using the effective-mass approximation. In Figure 7.4 we show the squared
amplitude of the lowest-lying unprimed/primed conduction-band and valence-band wavefunctions
(averaged over the area of the cell on the (x,y) plane) obtained in the presence of a “triangular well”

potential whose Fourier components V(ext)
Gz

are given by aSiFs(N +Nv)/2 for Gz = 0 and:

V(ext)
Gz

=
iFs

Gz
, (7.20)

where Fs is the surface field (= 5 × 105 V/cm in Fig. 7.4). Note the oscillation of the fast-
varying periodic component of the Bloch function and the expected slow-varying envelope.
Figures 7.5, 7.6, 7.7, 7.8, 7.9, and 7.10 show details of the band structure and DOS near the gap
for 2-cell, 3-cell, and 9-cell thin Si layers (the latter ones in the presence of a constant confining field)
with surfaces of different orientations, while Fig. 7.11 compares the DOS obtained using the supercell
method with what is obtained for parabolic bands for various surface orientations.



120 7 ∗ Electronic Structure of Low-Dimensionality Systems

–1.5

–1.0

–0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

– – – – –
H Γ D X H

2 cells Si (no spin–orbit)
2 cells vacuum

E
N

E
R

G
Y

 (
 e

V
 )

0 1 2 3 4 5 6
–1.5

–1.0

–0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5
0 2 4 6 8 10 12

G (103 S/cm)

G along [110]

G along [100]

DOS (1015 eV–1 cm–2)

Fig. 7.4 Squared amplitude—averaged over a cell on the plane of the slab—of the wavefunctions in a 9-cell-thick
Si layer in vacuo with H termination and a triangular-well potential with a field of 5× 105 V/cm. At left are shown
the wavefunctions of the unprimed states, at center those of the primed electron states, and at right the hole states.
[Used from M.V. Fischetti, Bo Fu, S. Narayanan, and J. Kim, in Nano-Electronic Devices: Semiclassical and Quantum
Transport Modeling, Dragica Vasileska and Stephen M. Goodnick eds. (Springer, New York, 2011), pp. 183–247, with
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7.2.2 III–V Hetero-Channels

Hetero-structures composed of thin layers of III–V compound semiconductors constitute the building
blocks of most opto-electronic devices that we use daily, such as light-emitting diodes (LEDs), and
injection lasers. The book by Bastard and collaborators [8] gives a review of the subject.

These hetero-structures are typically fabricated using a crystal-growth technique called Molecular
Beam Epitaxy (MBE): In a chamber kept under very high vacuum, beams of the desired elements
are aimed at a substrate. By keeping the desired ratio of elements according to the stoichiometry of
the compound to be grown, atomic layers of the desired material can be deposited. This technique
allows excellent control of the chemical composition of the layers, of their crystal structure, and of
their thickness. Binary III–V compound semiconductors, such as GaAs or InAs, can be grown on
a substrate, usually consisting of InP wafers that can be obtained commercially in relatively large
diameters. Ternary alloys, such as InxGa1−xAs, can also be grown by controlling the ratio of the In,
Ga, and As beams. In typical applications, compounds that are “lattice matched” to the InP substrate
are preferred. Indeed, the ternary alloy composed of a mole fraction x of InAs and a mole fraction
(1− x) of GaAs, denoted by InxGa1−xAs, in general has a lattice constant different from that of InP.
Only when x = 0.53 does the ternary alloy have the same lattice constant. This is very desirable, since
it eliminates concerns caused by strain. If strain is desired, or a non-lattice-matched alloy is desired
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Fig. 7.5 Band structure (left), density of states, and ballistic conductance along the [100] and [110] directions (right) of
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(for example, using a larger In mole fraction to control the electronic properties), strained layers can
be grown without crystalline defects up to a critical thickness. Beyond this critical thickness, it will be
energetically more favorable to relieve the stress by creating crystal defects, such as stacking faults.

A typical application is represented by quantum-well lasers. Layers of GaAs are grown first, then
several nm of In0.53Ga0.47As are grown afterwards, and GaAs is deposited again. Since the band
alignment of these materials is such that the conduction-band bottom of In0.53Ga0.47As sits at a lower
energy than that of GaAs, a confining quantum well is formed. Similarly, a quantum well for holes
is formed in the valence bands. When carriers are injected into the structure, electrons and holes will
loose energy and be captured by the well. They will then recombine radiatively emitting light. Keeping
the structure in an electromagnetic cavity, stimulated emission will occur, that is, the laser action.

Optical applications have made hetero-structure a thriving industry. However, the low effective
mass and related high velocity of electrons in most III–V compound semiconductors have triggered
interest by the VLSI industry, attracted by their potential use as active channels in fast transistors. The
structure that we consider here is indeed a typical research application of this type.

Regarding the theoretical study of these structures, ternary alloys require a comment. We have
seen how to use pseudopotentials, empirical or self-consistent, to study Si or GaAs. In order to study
a ternary alloy, InxGa1−xAs, for example, in principle we should consider a supercell large enough to
contain a fraction x/2 of In atoms, a fraction (1−x)/2 of Ga atoms, and a fraction 1/2 As atoms, all in
zincblende cells. Clearly, we would need to consider very large cells. Moreover, we would be able to
study structures with a limited number of mole fractions x (that must result in commensurate integer
number of atoms). Most important, we would have to perform a very large number of calculations,
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Fig. 7.6 Band structure (left), density of states, and ballistic conductance along the [110] and [112] directions (right) of
a (111) Si slab. The film is 3-cell (3

√
3a0) thick, H terminated and 1 cell of vacuum separates the periodically repeated

films. A constant field of 5 × 105 V/cm is applied perpendicularly to the slab to mimic a triangular-well confining
potential

each for a different random spatial distribution of In and Ga atoms. The common way to bypass this
problem is to use what is normally called the virtual crystal approximation (VCA). We consider a
zincblende lattice composed of As atoms and “virtual” In/Ga atoms obtained by interpolating linearly

their properties, their pseudopotentials in our case. To be explicit, the pseudopotential V(In/Ga)
x of this

virtual atom will be obtained from the pseudopotentials V(In)(q) and V(Ga)(q) of In and Ga in InAs
and GaAs, respectively, as the linear combination:

V(In/Ga)
x (q) = x

ΩIn

Ωsc
V(In)(q)+(1− x)

ΩGa

Ωsc
V(Ga)(q) , (7.21)

where ΩIn and ΩGa are the (normalization) atomic volumes of In and Ga in InAs and GaAs,
respectively, and Ωsc is the volume of the cell or supercell of the structure we intend to study. Clearly,
this approximation lets us perform a much simpler calculation. The price we pay is some loss of
accuracy, especially our inability to study fluctuations present in the system. For example, the band
structure we will obtain for In0.53Ga0.47As will be “smooth,” as in a binary alloy. In reality, free
electrons will feel fluctuations going from one cell of InAs to the next of GaAs, resulting in alloy
scattering. This effect will have to be treated in some other way. For completeness, regarding the
VCA we also mention that the lattice constant of ternary alloys is usually estimated using Vegard’s
law [9], which consists in a linear interpolation of the lattice constants of the binary compounds. If
aA is the lattice constant of the binary compound A (think of A as InAs), and aB is the lattice constant
of the binary compound B (think of B as GaAs), then the lattice constant aAB,x of the ternary alloy
AxB1−x (think of InxGa1−xAs) will be

aAB,x = x aA +(1− x)aB +bx(1− x) , (7.22)

where we have added a “bowing parameter” b that reflects deviations from linearity. On a similar note,
a rule-of-thumb to estimate the valence- and conduction-band discontinuities at interfaces is the so-
called Anderson’s 60/40 rule [10], which states that in a type-I band alignment (in which the band gap
of the smaller-gap material is fully contained within the gap of the larger-gap material), 60 % of the
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√
2,0)(2π/a0). Note that the energetic ordering of these

minima is opposite to what shown in Fig. 7.10 because the large nonparabolicity of the dispersion around the twofold
minimum along the [110] direction weighs heavily at the high energies shown here for this very thin film. [Used from
M.V. Fischetti, Bo Fu, S. Narayanan, and J. Kim, in Nano-Electronic Devices: Semiclassical and Quantum Transport
Modeling, Dragica Vasileska and Stephen M. Goodnick eds. (Springer, New York, 2011), pp. 183–247, with kind
permission from Springer Science+Business Media]

difference of the band gaps shows as the offset of the conduction bands, 40 % as valence-band offset.
Both Vagard’s law and Anderson’s rule have found successful applications in a limited number of
cases, but they should be considered as empirical rules with limited validity. For example, Anderson’s
rule has been applied to some III–V hetero-structures, but we saw in Chap. 6, Sect. 6.3.4 a counter-
example to Anderson’s rule for the Si–Ge system: In that system, almost all of the difference of the
band gaps shows as a valence-band offset.

As it has been the case for Si inversion layers, the use of the effective-mass approximation
has provided early insight. However, additional complications arise in the context of III–V hetero-
structures. These are mainly due to the smaller potential barriers that confine the electrons. The
Si–SiO2 interface presents a barrier of about 3 eV to conduction electrons. For all practical purposes,
this can be approximated by an infinite barrier (unless one wishes to worry about the tiny detail of
the penetration of the wavefunction inside the oxide). But the band discontinuities present in hetero-
structures are about one order of magnitude smaller. This presents the advantage of opening the path
to the fabrication and use of superlattices: periodic repetition of a hetero-structure. However, the
disadvantage from a theoretical viewpoint is that now electrons can easily move across interfaces (this
is the whole point, after all!), but issues arise: How do we “match” the wavefunction across interfaces?
And if transport occurs on the plane of the interface with electronic wavefunctions extending in both
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Fig. 7.8 Band structure (left), density of states, and ballistic conductance along the [110] and [112] directions (right) of
a (111) Si slab. The film is 3-cell (3
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potential. [Used from M.V. Fischetti, Bo Fu, S. Narayanan, and J. Kim, in Nano-Electronic Devices: Semiclassical
and Quantum Transport Modeling, Dragica Vasileska and Stephen M. Goodnick eds. (Springer, New York, 2011), pp.
183–247, with kind permission from Springer Science+Business Media]

the GaAs and the InGaAs layers, what in-plane effective mass do we use? Atomistic calculations can
help. We consider here the specific case of a rather complicated hetero-structure and show how one can
tackle these problems. Note that the use of the supercell method renders this structure a “superlattice,”
but we shall be interested on the effect that the results will have on electron transport “on the plane,”
as opposed to what is called “vertical transport,” since we consider this structure as the channel of a
III–V-based MOSFET.

The structure we consider consists a (100) lattice-matched (to InP, as we have explained before)
In0.53Ga0.47As/InP/Al48In0.52As hetero-channel that mimics a typical III–V MOSFET channel. The
supercell used in the calculation consists of a composite In0.53Ga0.47As/InP channel with a 4-cell-thick
In0.53Ga0.47As layer, an equally thick InP layer, and of an “insulating” 3-cell-thick Al48In0.52As back
layer. Figure 7.12 shows the band alignment and the electronic structure obtained using the empirical
pseudopotentials from Zunger’s group [11–13] with parameters listed in Table B.5 of Appendix B.
These parameters have been calibrated to obtain the “correct” band alignment and, so, the confining
wells. Since insulators such as HfO2 or Al2O3 are used to passivate and insulate layers, it is interesting
to see the effect of replacing the weakly insulating Al0.48In0.52As back layer with an “ad-hoc” insulator
mimicking HfO2 (with empirical pseudopotentials reported in the literature). This is shown in the
right panel of Fig. 7.12. This insulator behaves even too realistically: We can see the appearance of
“interface states” (with wavefunctions localized at the InP/insulator interface) in this case. They give
rise to an energy band within the gap, exactly as dangling bonds do in real life.
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Fig. 7.9 Band structure (left), density of states, and ballistic conductance along the [100] and [110] directions (right)
of a (100) Si slab as in the left frame of Fig. 7.2, but with a triangular-well potential with a field of 5×105 V/cm.
The zero for the energy has been set at the top of the valence bands in the absence of the applied field, as in the
left frame of Fig. 7.2, to judge the shift of the subband energies in the presence of the external field. [Used from
M.V. Fischetti, Bo Fu, S. Narayanan, and J. Kim, in Nano-Electronic Devices: Semiclassical and Quantum Transport
Modeling, Dragica Vasileska and Stephen M. Goodnick eds. (Springer, New York, 2011), pp. 183–247, with kind
permission from Springer Science+Business Media]

Figure 7.13 shows the variation of the energy gap as a function of the thickness of the composite
channel, while Fig. 7.14 shows how the band structure is modified by the application of a parabolic
potential (mimicking the potential of an inversion layer) of the form:

V(ext)(z) = V0

(

1− 2z
L
+

z2

L2

)

, (7.23)

(where L is the extension of the supercell in the z direction, L = aInPN, with N the total number of
cells employed and V0 = FsL/2 is the total voltage drop in the cell expressed in terms of the surface
field Fs) with Fourier components FsL/3 for Gz = 0 and

V(ext)
Gz

=−Fs

2

(

2
LG2

z
− i

Gz

)

(7.24)

for Gz �= 0. Figure 7.14 presents results obtained for Fs = ±5 × 105 V/cm, for electron and hole
confinement, respectively. These are of interest in the study of n- and p-channel devices. Finally, the
electron and hole wavefunctions in the In0.53Ga0.47As/InP/Al48In0.52As hetero-layer for the cases of
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Fig. 7.10 Band structure (left), density of states, and ballistic conductance along the [001] and [110] directions (right)
of a (110) Si slab 9-cell (9a0/

√
2) thick with a triangular-well potential with a field of 5×105 V/cm. Comparing with

Fig. 7.7, note that the twofold minimum K = (0,0.15)(2π/a0) is now at an energy about 12 meV higher than the
fourfold minimum at K = (0.85/

√
2,0)(2π/a0). From estimates based on conventional effective masses [1] we expect

this same ordering, but an energy difference of about 28 meV. The difference is likely due to nonparabolic effects.
[Used from M.V. Fischetti, Bo Fu, S. Narayanan, and J. Kim, in Nano-Electronic Devices: Semiclassical and Quantum
Transport Modeling, Dragica Vasileska and Stephen M. Goodnick eds. (Springer, New York, 2011), pp. 183–247, with
kind permission from Springer Science+Business Media]

flat-band, electron and hole confinement are shown in Fig. 7.15. Note how potentially intricate issues
(such as matching the wavefunctions at interfaces, determining the effective mass to be used when the
wavefunction extends over two materials, etc.) are bypassed by the supercell method. The shape of the
envelope of the wavefunctions agrees with our naïve expectations based on the band discontinuities
shown and on the “envelope” idea.

Figure 7.16 shows the large nonparabolicity of the InGaAs conduction band, an effect that
obviously translates into significant effects on electron transport and on the gate capacitance of
InGaAs-based devices. Finally, the right frame of Fig. 7.17 shows the 2D band structure of this
“superlattice” in the left frame and the corresponding dispersion calculated keeping the 2D in-plane
wavevector K at the Γ-point while varying the z-component, kz, along the direction perpendicular to
the interfaces. Dispersionless curves (i.e., kz-independent) are expected for purely two-dimensional,
confined states. This is indeed the case at low energies both in the conduction and valence bands.
At higher energies we can see the onset of a dispersion, a symptom of the delocalized nature
of states (superlattice “minibands”) whose energy exceeds the confinement energy caused by the
band alignment at the In0.53Ga0.47As/Al0.48Ga0.52As interface. Strikingly different is the case of the
free-standing H-terminated Si layer of Fig. 7.5: The strong confinement due to the large vacuum
workfunction causes an almost completely dispersionless behavior for energies as large as 5 eV in
the conduction band, as clearly seen in Fig. 7.18.
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Fig. 7.11 Density of states of the (100), (110), and (111) Si slabs of the previous figures (solid black line) compared to
the DOS calculated using a two-ladder (for the (100) and (110) surfaces) or one-ladder (for the (111) surface) parabolic
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to the “parabolic” value of 0.109 eV (0.184 eV). [Used from M.V. Fischetti, Bo Fu, S. Narayanan, and J. Kim, in Nano-
Electronic Devices: Semiclassical and Quantum Transport Modeling, Dragica Vasileska and Stephen M. Goodnick eds.
(Springer, New York, 2011), pp. 183–247, with kind permission from Springer Science+Business Media]
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7.2.3 Graphene

Graphene constitutes the first example of a 2DEG confined not by band discontinuities between two
different materials, but by the ionic potentials of the atoms arranged in a two-dimensional lattice.
Once more, we refer to the review paper by Geim and Novoselov [2], who first studied and produced
graphene layers by “exfoliating” graphite (that is, by stripping a single layer with scotch tape) and
were awarded the Nobel prices in Physics in 2010 for this work.∗ Actually, the existence of two-dimensional crystals was a surprise for many. In the mid-late 1960s,
Mermin and Wagner [14, 15], and Hohenberg [16] proved that crystals in two (and one) dimension(s)
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Fig. 7.14 In-plane dispersion for an InGaAs/InP/AlInAs hetero-channel under flat-band conditions (left), with a
parabolic potential with a surface electric field of 106 V/cm (center, confinement for electrons) and −106 V/cm (right,
confinement for holes). [Used from M.V. Fischetti, Bo Fu, S. Narayanan, and J. Kim, in Nano-Electronic Devices:
Semiclassical and Quantum Transport Modeling, Dragica Vasileska and Stephen M. Goodnick eds. (Springer, New
York, 2011), pp. 183–247, with kind permission from Springer Science+Business Media]

cannot exist. The argument, often formulated in rather abstract terms of Quantum Field Theory,
states that the spontaneous breaking of a continuous symmetry (in our case: the continuous rotational
symmetry that must be broken in order to form a crystal that does not possess a continuous symmetry)
in two or fewer dimensions cannot occur at a finite (nonzero) temperature, because the correlation
of the associated massless Goldstone bosons would diverge. . . We can explain it in a simpler way.
However, even this “simple” explanation may be understood after having assimilated the concepts
presented in Chap. 9, Sect. 9.4, and in Chap. 10, Sect. 10.1.5.
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Fig. 7.15 Conduction- and valence-band wavefunctions in an InGaAs/InP/AlInAs channel (each layer 6-cell thick)
under flat-band condition (left) or in the presence of a parabolic potential with a surface electric field of 106 V/cm
(center, confinement for electrons) and −106 V/cm (right, confinement for holes), as in the previous figure. This plot
emphasizes the main strength of the method: Complicated issues related to matching envelope wavefunctions at hetero-
interfaces, nonparabolic effects, the value of the in-plane effective mass when electronic wavefunction spans several
different materials, etc. are all bypassed in the “correct” way. [Used from M.V. Fischetti, Bo Fu, S. Narayanan, and
J. Kim, in Nano-Electronic Devices: Semiclassical and Quantum Transport Modeling, Dragica Vasileska and Stephen
M. Goodnick eds. (Springer, New York, 2011), pp. 183–247, with kind permission from Springer Science+Business
Media]

Fig. 7.16 Band structure
near the bottom of the
conduction band for the
superlattice shown in the
previous figure. The
anisotropy of the bands as
well as the large
nonparabolic effects is
clearly visible. The dashed
lines illustrate the parabolic
dispersion obtained using
the effective mass
calculated from the
curvature of the dispersion
at the bottom of the
conduction band
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Consider first a three-dimensional crystal. The number of quantized vibrational modes of a lattice
(phonons) at temperature T is given by the Bose–Einstein distribution, Eq. (10.27), which we can
rewrite in the form:

〈Nq〉th =
1

exp
(

kBT
h̄ωq

)

−1
, (7.25)
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Fig. 7.17 The 2D band structure of the hetero-layer of the previous figures (left) is shown against the dispersion along
the “transverse” kz direction for (kx,ky) = 0 (the Γ point of the 2D BZ, right). The vertical dashed lines at right
show the size of the BZs along the kz direction (a0 = 0.586 nm) equal to 1/18 (2π/a0). For fully 2D states the energy
is dispersionless, that is, independent of kz. However, as the energy of the subband-bottoms exceeds the confinement
energy caused by the In0.53Ga0.47As/Al0.48Ga0.52As band alignment, the states become “extended 3D states” and acquire
the “normal” bulk (superlattice miniband) dispersion. From this plot one can extract an In0.53Ga0.47As/Al0.48Ga0.52As
conduction-band discontinuity ΔEc ≈ 0.5 eV and a valence-band discontinuity ΔEv ≈ 0.2 eV. Plots of this type are useful
in judging the correctness of the band alignment caused by the choice of the interpolation of the bulk pseudopotentials
as q → 0

where kB is Boltzmann’s constant and ωq is the frequency of the phonon. This is a wave of ions
oscillating around their equilibrium positions, moving along the direction of the wavevector q with
wavelength λ = q/(2π). Those waves that represent essentially propagation of sound in the crystal,
the so-called acoustic phonons, have a frequency that depends linearly on their wavevector for
large wavelengths; that is, assuming an isotropic crystal (the same in all directions), ωq ≈ csq,
where cs is the velocity of sound. Therefore, for long wavelengths (i.e., q → 0) we can approximate
〈Nq〉th ≈ kBT/(h̄csq). The volume density, N/Ω , of these “acoustic waves” with wavelength larger
than some arbitrary wavelength λmax will be obtained by integrating the number of phonons at a given
wavelength over all wavelengths larger than λmax; or, equivalently, for all wavevectors smaller than
qmax = 2π/λmax:

N
Ω

≈
∫

q≤qmax

dq
(2π)3

kBT
h̄csq

=
kBT

2π2h̄cs

∫ qmax

0
dq q =

kBT
h̄csqmax

q3
max

4π2 . (7.26)

Whatever this number might be, it is finite.
Now, instead of a three-dimensional crystal, consider a two-dimensional one. Looking at one

example of phonons in a two-dimensional crystal, the phonon frequencies in graphene shown in
Fig. 13.6 in Chap. 13, we see that the phonons labeled “ZA” have a frequency that, for Q → 0, goes
to zero as aQ2, where a is some constant whose values do not matter in this discussion. (We denote
by upper-case letters quantities in two dimensions.) These are waves associated with carbon atoms
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Fig. 7.18 The 2D band structure of the H-terminated free-standing Si layer of Fig. 7.5 (left frame) is shown against
the dispersion along the “transverse” kz direction for (kx,ky) = 0 (the Γ point of the 2D BZ, right frame), as in the
previous figures. Note the absence of any appreciable dispersion up to an energy of about 5 eV, indicating the quantum
confinement caused by the high vacuum workfunction. This is also emphasized at left: Curves of different colors
correspond to calculations performed varying the in-plane components K of the wavevector on the 2D BZ and selecting
values of 0.05 (red dashed lines), 0.10 (blue dotted lines), and 0.25 2π/a0 (green dot-dashed lines) for the out-of-plane
component kz. The 2D band structure is once more independent of kz for energies up to 5 eV in the conduction band

that move “up and down,” out of the plane of the graphene sheet. The reason why now the frequency
goes to zero faster at long wavelength is due to the fact that there are no atoms “above and below.”
Therefore, the restoring force that causes the atoms to oscillate above and below the plane is due to the
“diagonal” pull of other atoms on the plane. This makes the out-of-plane “spring constant” smaller
as the wavelength increases, as a simple geometrical argument shows. This is an intrinsic property of
two-dimensional systems. Now, let’s compute the areal density, N2D/A, of these out-of-plane acoustic
waves with wavelength larger than λmax:

N
A

≈
∫

Q≤Qmax

dQ
(2π)2

kBT
h̄aQ2 =

kBT
2π h̄a

∫ Qmax

0
dQ

1
Q

→ ∞ . (7.27)

The problem results from two effects arising from the reduced dimensionality of the crystal: First,
comparing to the three-dimensional case, we have gained a factor of Q in the denominator because
of the different ZA phonon frequency. Moreover, we have also lost a factor of Q in the numerator,
because of the different phase-space in two dimensions. The important result is that the energy of
these out-of-plane waves is so small that they can be excited in infinite numbers. The crystal would
just disintegrate, oscillating out of the plane with increasing amplitude at longer wavelength.

So: Why does graphene exist? Simply because it comes in finite size and it deviates from full
planarity. Graphene usually comes in the form of “flakes.” Moreover, even in large areas, unavoidably
it forms ripples. The length-scale set by the size of the flakes and by the ripples is what sets a nonzero
lower limit for the integral in Eq. (7.27), so that the logarithmic singularity is avoided. We should
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Fig. 7.19 Top left: Primitive translation vectors and position of the atoms (dots) for graphene. Bottom left: Hexagonal
2D Brillouin Zone of graphene, main symmetry points, and trajectory in k-space employed in the plot at right. Right:
Band structure for graphene obtained using the Kurokawa (solid lines) and Mayer (dashed lines) pseudopotentials.
A separation of 10

√
3a0/2 along z has been assumed between adjacent sheets. The bands highlighted in color and

indicated by arrows are the σ∗ (blue) and π∗ (red) singlet bands whose interaction and hybridization result in an
interesting and unexpected behavior of the band gap in single-wall zigzag (n,0) carbon nanotubes of small diameter.
The use of Kurokawa pseudopotentials, in particular, yields relatively small energies for the π∗-singlet band along the
M-Γ line (≈ 2.5 eV above the Fermi level, compared to energies three times as large obtained using the self-consistent
LDA [18, 19]). (Reprinted with permission from M.V. Fischetti, J. Kim, S. Narayanan, Z.-Y. Ong, C. Sachs, D.K. Ferry,
and S.J. Aboud, J. Phys.: Cond. Matter vol. 25, 473202 (2013). Copyright 2013, Institute of Physics)

stress that Mermin himself commented that his results may nevertheless allow the existence of “two-
dimensional systems of less than astronomical size to display crystalline order.”

The band structure of graphene presents extremely interesting features. Using a simple tight-
binding model, its band structure shows the absence of a gap, with the valence and conduction
bands crossing with an almost-linear dispersion at the symmetry point K (see Fig. 7.19). This linear
dispersion and the degree of freedom associated with the two triangular sublattices, usually called
A-sublattice and B-sublattice, make it possible to describe this dispersion with a Dirac equation
[see Eq. (C.44) in Appendix C] for massless electrons with spin replaced by the A/B-sublattice
“pseudospin”. A full discussion of this connection between graphene and massless Dirac Fermions
can be found in [17]. Now we should return to our main discussion, namely, the use of empirical
pseudopotentials to calculate the band structure of graphene.

The band structure of an infinite graphene sheet can be calculated assuming the sheet is a supercell

layer separated periodically by the neighbor sheets by a distance N a0
√

3
2 [see Eq. (7.28) below], thus

using 1D supercells as in the case of thin Si layers or hetero-layers discussed above. Examples of
results available in the literature, with which one can compare the quality of results obtained by using



7.3 Nanowires, Nanotubes, and Nanoribbons 133

empirical pseudopotentials, are those by Reich [18] and by Khoshnevisan [19] for graphene and also
the (5,5) CNT (see below). These results have been obtained using ab initio calculations.

The real-space structure of graphene can be described by a two-atom 2D unit cell with basis
vectors [17]:

a1 =
a0
√

3
2

(1,
√

3,0) , a2 =
a0
√

3
2

(−1,
√

3,0) , a3 =
a0
√

3
2

(0,0,N) , (7.28)

where a0 is the bond length ≈ 0.142 nm and N (=10 in the results presented below) is the separation
between sheets along the z-axis. The coordinates of the two C atoms in the cell are

τ1 = a0 (0,1,0) , τ2 = a0 (0,2,0) , (7.29)

while the basis vectors in reciprocal space are

b1 =
4π
3a0

(√
3

2
,

1
2
,0

)

, b2 =
4π
3a0

(

−
√

3
2

,
1
2
,0

)

, b3 =
4π
3a0

(

0,0,

√
3

2N

)

. (7.30)

Figure 7.19 shows the basis geometry in real and reciprocal space, as well as the band struc-
ture obtained using the Kurokawa [20] and Mayer [21] empirical pseudopotentials described in
Appendix B.

Compared to ab initio results [18, 19], employing the Kurokawa carbon pseudopotential results
in the “correct” behavior. Of particular interest is the behavior of the extended π (bonding) and π∗
(antibonding) orbitals that result from the pz atomic orbital of each C atom sp2-bonded to three other
C atoms on the plane. The energies of these π-π∗ bands are “correct” for energies close to the Fermi
level. Most important, we see the correct band-crossing (“Dirac” point) at the K symmetry point,
arguably the most interesting feature of the graphene band structure. However, these results are not in
complete agreement with the DFT results. In particular, a set of bands at Γ appear at a lower energy
than in the ab initio results. These bands compress the π-π∗-band energetic separation near k = 0. The
Mayer pseudopotential, being an empirical one-electron model, by definition fails to account for the
2s valence states and also misses many higher-energy states. Nevertheless, it reproduces satisfactorily
the π-π∗-band energetic separation near the Fermi level. The Fermi velocity at the Dirac point is
calculated to be about υF ≈ 9.5×107 cm/s when using the Kurokawa pseudopotentials and ≈ 8.8×107

cm/s when using the Mayer pseudopotentials, both values in good agreement with DFT results. These
are all about 15 % smaller than experimental data. Theoretical calculations that can reproduce this
experimental value [22] must rely on a model (called GW, G standing for the Green’s function and
W for the screened electron–electron potential), that goes beyond DFT and that we shall not attempt
to discuss here. Aryasetiawan and Gunnarsson [23] give a detailed description of this method that
is known to yield values for the band gap that are in better agreement with experiments than those
obtained using DFT.

7.3 Nanowires, Nanotubes, and Nanoribbons

Scaling VLSI devices to the nanometer scale presents several challenges. The main concern is the
ever-growing power density. The complementary metal-oxide-semiconductor (CMOS) technology
has addressed this issue in the past, by always placing an n-channel and a p-channel device in series
between the electric ground and the power supply, so that, except during switching, there is no direct
path for the current to flow from the power supply to ground. Switching is when the “real action”
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happens, but it is a temporary condition that happens only 10–15 % of the time (“duty cycle”). This
all works fine, as long as the devices do not “leak” current when they are in their “off” state. As
devices shrink, this leakage becomes larger, because the gate finds it more and more difficult to push
all charge carriers outside the channel: The electric field lines originating from the gate now tend
to be terminated at the source and drain contacts, that are ever closer, rather than at the substrate,
as is desired. Therefore, having the gate increasingly closer to the active region of the channel
becomes imperative if we wish to “turn off” the devices. The best scenario in this electrostatic battle
is constituted by very thin and narrow channels surrounded by the gate. The concept of Si “fins”
surrounded by a gate on three sides has led to FinFETs. But even better is the idea of having thin and
narrow bodies surrounded by the gate from all sides. This amounts to considering nanowires. Hence,
the great interest in one-dimensional structures, and 1DEG.

The term “one dimensional” is probably used a bit too liberally: One-dimensional conduction
properly occurs only when the linear dimensions of the cross section of the wire are smaller than
the electron coherence length. That is, when electrons do not scatter appreciably along the cross-
sectional dimension, and a constructive interference pattern of standing waves can be sustained, thus
leading to quantization of momentum on the cross-sectional plane. Here, we shall assume that this
is the case. Small nanowires (NWs) and carbon nanotubes (CNTs) represent such structures. Clearly,
their small cross-sectional dimensions will cause both a relaxation of the atoms at the edges of the
structure and strong confinement on the cross-sectional plane. We shall discuss amply the latter issue.
Regarding a possible, if not likely, atomic relaxation at the edges of these small structures, it is indeed
an issue. Judicious use of DFT to obtain the relaxed atomic position and empirical pseudopotentials
to obtain the band structure seems to be a good compromise between convenience and accuracy. We
shall present below, dealing with circular cross-section Si NWs, an example of this problem.

7.3.1 Si Nanowires

We have considered Si nanowires with their axis along the [100], [110], and [111] directions. For those
who wish to compare the results obtained using empirical pseudopotentials with published results,
the literature is rich. Covering a variety of models employed, we may mention that Nehari [24] and
Neophytou [25] have employed a tight-binding model; Sacconi et al. [26] have used a technique
called “linear combination of bulk bands” (LCBB); Scheel and collaborators [27] have employed
empirical tight-binding (ETB). Finally, Lee and co-workers [28] have performed first-principles
(DFT) calculations. Here we consider both rectangular cross-section nanowires, easier to study, and
circular cross-section wires, perhaps of a geometry closer to what is obtained experimentally.

7.3.1.1 Rectangular Cross-Section Nanowires

For the rectangular cross-section nanowires, consider rectangular supercells with sides Na0 long and
H terminations using the Zunger pseudopotentials. For [100] wires with (110) sides, the supercell is
square and constructed by considering the cell defined by the translation vectors a1, a2, and a3:

⎧

⎨

⎩

a1 = a0 (1/2,1/2,0)
a2 = a0 (−1/2,1/2,0)
a3 = a0 (0,0,1)

, (7.31)
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and atomic coordinates τα :

⎧

⎪

⎪

⎨

⎪

⎪

⎩

τ1 = a0 (0,0,0)
τ2 = a0 (1/4,1/4,1/4)
τ3 = a0 (0,1/2,1/2)
τ4 = a0 (−1/4,1/4,3/4)

. (7.32)

For a square-section nanowire with (110) sides, this cell is replicated Nc times in the “diagonal”
directions x= y and x=−y. An additional layer of atoms is added to obtain a symmetric configuration
(see Fig. 7.20, left) and Nv cells of vacuum padding are added. The resulting supercell is now spanned
by the translation vectors:

⎧

⎨

⎩

b1 = a0Nt (1/2,1/2,0)
b2 = a0Nt (−1,1,0)
b3 = a0 (0,0,1)

, (7.33)

where Nt = Nc + Nv. The supercell has a cross section of size
√

2Nta0 ×
√

2Nta0 and contains
(4Nc(Nc + 1) + 1) Si atoms plus additional (8Nc + 4) H atoms terminating the dangling bonds at
the surface of the wire. The Si–H distance was taken to be 0.158

√
3 a0 in all cases, as we saw before

discussing the termination of Si surfaces.
For [110] wires, instead (using the same notation as above):

⎧

⎨

⎩

a1 = (a0/
√

2) (1,0,0)
a2 = a0 (−0,1,0)
a3 = (a0/

√
2) (0,0,1)

, (7.34)

⎧

⎪

⎪

⎨

⎪

⎪

⎩

τ1 = a0 (0,0,0)
τ2 = a0 (0,1/4,1/(2

√
2))

τ3 = a0 (1/(2
√

2),1/2,1/(2
√

2))
τ4 = a0 (1/(2

√
2),3/4,0)

. (7.35)

For a rectangular cross-section nanowire with (001) and (110) sides, this cell is replicated Nxc times
along the x direction and Nyc times along the y direction, adding, as before, an additional layer of
atoms to obtain a symmetric configuration in each direction (see Fig. 7.20, center) and Nv cells of
vacuum padding are added. The resulting supercell is now defined by the translation vectors:

⎧

⎨

⎩

b1 = a0(Nxc +Nv)
√

2 (1,0,0)
b2 = a0(Nyc +Nv) (0,1,0)
b3 = a0

√
2 (0,0,1)

. (7.36)

The area of the rectangular cross section of the supercell is now
√

2(Nxc+Nv)a0×(Nyc+Nv)a0. This
supercell contains (4NxcNyc +2Nyc +Nxc +1) Si atoms and additional (4Nxc +4Nyc +4) H atoms.

Nanowires with their axis along the [111] directions are a bit more complicated and are
computationally more demanding, since their period along the axis of the wire is much larger
(unfortunately, the semiconductors of interest do not possess body-centered cubic symmetry!). First,
construct a cell spanned by the translation vectors:
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Fig. 7.20 Left: Position of the Si atoms (and hydrogen terminations) for a 4-cell × 4-cell square cross-section nanowire
with side 1.535 nm long, axis along the [100] direction, and sides on the (110) planes. The blue dashed line indicates
the size of the supercell including one cell of vacuum—of thickness a0/

√
2—separating adjacent wires. Right: Position

of the Si and H atoms for a 4-cell × 4-cell rectangular cross-section nanowire of dimension 1.5384 × 2.172 nm with
axis along the [110] direction and sides on the (001) and (110) planes. In this case the vacuum “padding” separating the
wires to form the 2D supercell (indicated by the dashed blue lines) has a thickness of

√
2a0 along the x direction and

2a0 along y, including the space occupied by the H terminations

⎧

⎨

⎩

a′1 = (a0/
√

2) (1,0,0)
a′2 = [a0/(2

√
2)] (1,

√
3,0)

a′3 = a0 (0,0,
√

3)
, (7.37)

containing six atoms with coordinates:
⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

τ1 = a0 (0,0,0)
τ2 = a0 (0,0,

√
3/4)

τ3 = (a0/
√

3) (0,1/
√

2,1)
τ4 = a0 (0,1/

√
6,
√

3/4+1/
√

3)
τ5 = a0 (1/(2

√
2),1/(2

√
6),2/

√
3)

τ6 = a0 (1/(2
√

2),1/(2
√

6),2/
√

3+
√

3/4)

. (7.38)

Note in that in Eq. (7.37) the length of the vector a′3 (i.e., a0
√

3) is much larger than in the previous
cases of [100] and [110] wires, a0 and a0/

√
2, respectively. Replicating this cell on the cross-sectional

(x,y) plane along the directions determined by a′1 and a′2 results in a diamond-shaped cross section.
Thus, by combining two cells, a cell is obtained with a rectangular cross section on the (x,y) plane.
The perpendicular translation vectors are

⎧

⎨

⎩

a1 = a0 (1/
√

2,0,0)
a2 = a0 (0,

√

3/2,0)
a3 = a0 (0,0,

√
3)

, (7.39)

and the cell now contains 12 atoms with coordinates given by Eq. (7.38) above for i = 1, 6 and
by τ i+6 = τ i +a′2. Replicating this cell Nxc times along x and Nyc times along y yields a rectangular
cross-section wire with sides on the (110) and (112) faces (see Fig. 7.21 for such a cell with additional
vacuum padding). The supercell translation vectors are now:
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Fig. 7.21 As in the
previous figure, but for a Si
4-cell × 3-cell nanowire
with axis along the [111]
direction and with (110)
and (112) sides
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√

3/2,0)
b3 = a0

√
3 (0,0,1)

. (7.40)

The resulting supercell has a cross section of area (Nxc+Nv)a0/
√

2×(Nyc+Nv)a0
√

3/2 and contains
(12NxcNyc +2Nxc +6Nyc +2) Si atoms and additional (8Nxc +12Nyc +6) H atoms.

In the case of nanowires, our interests are similar to those that motivate us in the case of thin
films and hetero-layers. The band structure and the ballistic conductance are the main results that
give us information about the electron transport properties of these structures before worrying about
scattering, which, of course, will be the focus of the following chapters.

Figures 7.22 and 7.23 shows the band structure for square-section Si NWs with sides 2–5 cells
long separated by 1 cell of “vacuum.” Note the energy gap increasing with decreasing wire size
(as expected). The density of states of all subbands n is calculated from its definition:

D1D(E) = 2∑
n,i

∫

dE′

2π

∣

∣

∣

∣

dEn(kz,n,i)

dkz

∣

∣

∣

∣

−1

δ (E′ −E) , (7.41)

where the index i labels the pn ≥ 0 solutions kz,n,i such that E(kz,n,i) = E′ and En(kz) is the dispersion
in (sub)band n. The ballistic conductance, G1D(E), along the wire axis at energy E is given by

G1D(E) = 2e2 1
2 ∑n

∫

dkz

2π
υn(kz) δ [En(kz)−E]

= 2e2 1
2 ∑n,i

∫

dE′

2π
υn(kz,n,i)

∣

∣

∣

∣

dEn(kz,n,i)

dkz

∣

∣

∣

∣

−1

δ (E′ −E) =
2e2

h
1
2∑n

pn , (7.42)

where υn(kz,n,i) is the group velocity (1/h̄)dEn(kz,n,i)/dkz at the kz-point kz,n,i, and the factor of
1/2 in the equation above reflects the fact that the sum should be performed only over kz-points
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Fig. 7.22 Band structure
of four square cross-section
H-terminated [100] Si
nanowires with sides of
four different lengths. The
wires are separated by a
one-cell thickness of
vacuum. The results have
been obtained using a
cutoff energy of 8 Ry and
empirical pseudopotentials
from [5]. [Used from
M.V. Fischetti, Bo Fu,
S. Narayanan, and J. Kim,
in Nano-Electronic
Devices: Semiclassical and
Quantum Transport
Modeling,
Dragica Vasileska and
Stephen M. Goodnick eds.
(Springer, New York,
2011), pp. 183–247, with
kind permission from
Springer Science+Business
Media]
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corresponding to a positive group velocity υn(kz,n,i), and so, by symmetry, over 1/2 of the entire 1D
BZ. The ballistic conductance of free-standing [100], [110], and [111] nanowires of similar rectangular
cross sections is shown in Fig. 7.24. Note the larger conductance for both electrons and holes in
the [100] wire and the smaller conductance of the [111] nanowire whose many bands are “flat” and
exhibit few crossings. Finally, Fig. 7.25 shows the squared wavefunctions for the six lowest-energy
conduction-band states for the [100] wire with sides 2 cell-long separated by 1 vacuum cell.
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Fig. 7.23 Band structure,
density of states, and
conductance of
free-standing H-terminated
[100] (top) and [110]
(bottom) Si nanowires with
an (“almost” for the [110]
wire) square cross section
of the indicated dimensions
with 2 cells of vacuum
padding. [Used from
M.V. Fischetti, Bo Fu,
S. Narayanan, and J. Kim,
in Nano-Electronic
Devices: Semiclassical and
Quantum Transport
Modeling,
Dragica Vasileska and
Stephen M. Goodnick eds.
(Springer, New York,
2011), pp. 183–247, with
kind permission from
Springer Science+Business
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7.3.1.2 Circular Cross-Section Nanowires

Although nanowires with square or rectangular cross section can be fabricated (for example, etching
narrow and short Si “fins”), more conventional processing yields NWs with rather irregular cross
sections, resembling circles or ellipses rather than squares. Here we consider ideal Si NWs with a
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Fig. 7.24 Valence-band (left) and conduction-band (right) ballistic conductance of the [100], [110], and [111] Si
nanowires of the previous figures. The zero-energy has been set at the band-edge in both plots. [Used from
M.V. Fischetti, Bo Fu, S. Narayanan, and J. Kim, in Nano-Electronic Devices: Semiclassical and Quantum Transport
Modeling, Dragica Vasileska and Stephen M. Goodnick eds. (Springer, New York, 2011), pp. 183–247, with kind
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Fig. 7.25 Squared amplitude—averaged over a supercell along the axial direction—of the wavefunctions of the six
lowest-energy conduction-band states in the smallest [100] square cross-section Si nanowire of the previous figure.
The contour lines are drawn at intervals of 0.1 |ψ|2max, where |ψ|2max is the maximum of the squared amplitude of the
wavefunction. The square with sides 2aSi/

√
2 = 0.768 nm long indicated by the dashed lines shows the “nominal” size

of the Si square, while the surrounding area is vacuum, 1 cell thick. Note the wavefunctions “spilling” into the vacuum
especially at higher energy. In particular, note in the last frame how the highest-energy state exhibits tunneling into the
neighboring supercell, indicating that a thicker vacuum is necessary in order to “isolate” the wire
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Fig. 7.26 Positions of the Si and H atoms for circular cross-section [100] Si NWs with diameter of 1 nm (left) and 2 nm
(right)

circular cross section. Note that when the diameter of the NW shrinks, the word “circular” becomes
ill-defined, since, ultimately, the wires are made of cubic cells.

For circular cross-section nanowires we have considered similar cells, but truncated on the cross-
sectional plane in order to obtain cross sections as circular as possible. Figure 7.26 shows the atomic
positions for H-terminated [100] Si NWs with diameters of 1 and 2 nm. The band structure, density
of states, and ballistic conductance for 1-to-2.5 nm Si nanowires are shown in Fig. 7.27. The squared
amplitudes of the wavefunctions of the lowest-energy conduction-band states for the 2 nm diameter
NW are illustrated in Fig. 7.28.

We have mentioned before the possibility, or even likelihood, that atoms may relax at the edges of
these structures. Figure 7.29 shows the positions of the Si atoms in a circular cross-section NW with
a diameter of 1 nm, as taken as the positions in the bulk, or by allowing them to relax, using DFT. The
differences in the resulting band structure are not dramatic, but these small differences may matter in
transport studies.

Note that in these small wires the ground state wavefunctions have polar symmetry (being
characterized by an angular momentum quantum number l = 0), but the first excited state has
quadrupole symmetry (l = 2). This is due to the fact that the states at Γ originate from a superposition
of states in the four ellipsoidal equi-energy surfaces with transverse and longitudinal masses along
the principal x and y directions. A smaller energy is thus obtained for states whose “lobes” probe the
larger longitudinal mass by extending along the positive and negative x and y directions, resulting in a
fourfold symmetry. On the contrary, the dipole-like (l = 1) states result from states whose lobes probe
the smaller transverse mass, thus yielding a larger kinetic energy. Finally, the dependence of the band
gap as a function of nanowire diameter is shown in Fig. 7.30. The expected D−2-dependence is seen,
deviations at the smallest diameters being caused by the finite confinement potential.

7.3.2 Graphene Nanoribbons

Graphene, of course, has attracted so much interest because of its structural and electronic properties.
In particular its high carrier mobility has excited engineers, its Dirac-like dispersion, pseudospin,
and analogy with concepts derived from Quantum Field Theory have excited physicists. However, in
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Fig. 7.27 Band structure,
DOS, and ballistic
conductance for two
circular cross-section
H-terminated Si nanowires
with diameter of 1 nm (top)
and 2.5 nm (bottom)
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practical terms, the absence of a gap renders graphene unsuitable for (or, in any event, very hard to
apply to) nanoelectronics applications. Graphene nanoribbons, on the other hand, do possess a gap in
some of their many possible atomic arrangements. Therefore, we consider here two types of graphene
nanoribbons (GNRs): Those obtained by “cutting” a strip out of a graphene sheet with cuts along
“armchair” lines, resulting in GNRs with armchair edges (AGNRs), or along zigzag lines, obtaining
zigzag-edge GNRs (ZGNRs). So, looking at the top-left picture in Fig. 7.19, AGNRs are obtained by
cutting an infinite graphene sheet along two parallel lines along the vertical axis, while ZGNRs are
obtained with cuts along the direction of the primitive vector a1.

GNRs can be described by their chirality and their width characterized by the number Na of
atomic lines. For AGNRs, the dependence of the energy gap on their width follows three types of
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Fig. 7.28 Square
amplitude of the
wavefunctions of the 18
lowest-energy
conduction-band states for
the 2 nm diameter
H-terminated [100] Si NWs
of the previous figures. The
angular momentum
quantum number l indicates
the most significant
lowest-l component of each
wavefunction
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Fig. 7.29 Atomic positions of Si atoms in a circular cross-section nanowire as taken from the bulk (top left) and after
having relaxed the structure using DFT (top right). The two bottom frames show the band structure calculated using
empirical pseudopotentials and DFT before relaxation, and DFT on the fully relaxed structure. (Figures kindly provided
by Dr. Shela Aboud)

trends, depending on whether Na = 3p, 3p + 1, or 3p + 2 [see Fig.7.31 for the geometry of such
an armchair (AGNR)]. Tight-binding calculations [29–31] and calculations based on the massless
Dirac equation [32, 33] predict Eg,3p ≥ Eg,3p+1 > Eg,3p+2 = 0, so 3p+ 2-type GNRs are predicted
to be semimetallic. On the contrary, ab initio DFT (LDA and GW) calculations [34–36] predict
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Fig. 7.30 Diameter
dependence of the band gap
of H-terminated circular
cross-section Si nanowires.
The expected dependence
on inverse of the square of
the diameter is seen with
deviations at the smallest
diameters due to the finite
height of the Si–vacuum
confining potential barrier
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Eg,3p+1 ≥ Eg,3p > Eg,3p+2 �= 0. Thus, all GNRs should be semiconducting, the difference between
tight-binding and ab initio results originating mainly, according to Son et al. [34], from the change of
the C–C bond length along the edges. However, as we shall see, the use of empirical pseudopotentials
results in the same ab-initio behavior without accounting for this effect, hinting, instead, at some
inherent inadequacy of the tight-binding method. The cause of this extremely interesting behavior of
the energy gap of AGNRs is intrinsically related to the aromatic properties of these chains. We shall
discuss it shortly.

It should be also noted that there is no experimental information about the band gap of AGNRs of a
given width. It is still almost impossible to control the width of GNRs down to a single atomic line. As
a result, experiments usually give information about the behavior of system of GNRs with different
widths, therefore washing out interesting “fluctuations.” At present, we must trust theoretical results.
On this note, we should note that calculation performed using the GW method we mentioned before
yields values for the band gaps that are much larger than those obtained using empirical pseudopoten-
tials or DFT. For example, one may compare the results reported in [34] with those given in [36].

The important point is that the empirical pseudopotential approach is able to reproduce the behavior
found using first-principle calculations even without accounting for the edge-bonds distortion. The use
of Kurokawa pseudopotential also accounts for the correct behavior of bare-edge states. The main
problems with these local pseudopotentials stem from their empirical non-self-consistent nature
leading to their inability to predict the correct semiconducting behavior of zigzag-edge nanoribbons.
In these ribbons, spin polarization plays a major role and accounting for this effect requires self-
consistent methods including exchange-correlation (actually, mainly exchange). In addition, and
possibly unrelated to this, is the problem that, when applied to carbon nanotubes, they predict an
excessively low energy of the π∗ singlet in CNTs of some chirality (as in the (n,0) CNTs with
n ≤ 10 discussed below), in disagreement with first-principle results. We must wait for experimental
information before blaming DFT, GW, or empirical pseudopotentials.

7.3.2.1 Armchair-Edge GNRs

We have promised to revisit in some detail the extremely peculiar dependence of the band gap of
AGNRs on ribbon-width. A brilliant explanation has been given by Dr. Aboud in [3]. Here we quote
her verbatim.

However this feature, required from a practical perspective, exhibits a qualitative behavior significantly different
from the more customary particle-in-a-box situation in which the zero-point energy (and so the gap) increases
monotonically with increasing confinement. Instead, one observes the emergence of three families of AGNRs
characterized by the number of atomic layers Na along the width of the AGNR (see Fig. 7.31), the energy gap
oscillating as Na takes the values 3p, 3p+1, or 3p+2, where p is an integer. This “peculiar” behavior is due to
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Fig. 7.31 Left: Projection on the (x,z) plane of the supercell used to treat an Na = 9 armchair-edges graphene
nanoribbon. The dashed lines define the supercell—including the 3 vacuum “cells” separating adjacent ribbons—while
the thick dots show the C atoms in the supercell, the thinner dots simply showing the periodically replicated structure of
the ribbon. Hydrogen terminations are shown as circles. A distance of 4

√
3a0 between planes has been assumed in the

calculations by defining a primitive translation vector of such a length along the direction perpendicular to the plane of
the ribbon. Right: Band structure and density of states for the bare-edge 9-AGNR illustrated at right. Results obtained
using Kurokawa (solid lines) and Mayer (dashed lines) pseudopotentials are shown. Note the bands associated with edge
states resulting from the edge-C dangling bonds. Here and in the following graphene ribbons are separated by Nv

√
3a0,

with Nv = 4 (unlike the choice of Nv = 3 made to sketch the ribbon in the left panel of this figure), along the plane of the
ribbon and by Ny

√
3a0, with Ny = 3, along the direction perpendicular to the sheets. The energy has been set to zero at

the top of the valence band. (Reprinted with permission from M.V. Fischetti, J. Kim, S. Narayanan, Z.-Y. Ong, C. Sachs,
D.K. Ferry, and S.J. Aboud, J. Phys.: Cond. Matter vol. 25, 473202 (2013). Copyright 2013, Institute of Physics)
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the spatial distribution of the Clar resonance structures (i.e., Clar sextets) [37]. This is a well-characterized effect
in the chemistry community, most notably for explaining the behavior of poly-aromatic hydrocarbons [38], and
it has been recognized by Ezawa [30, 31] in the electronics community. We shall refer to this property as the
“claromatic” behavior (or “claromaticity”) of AGNRs [39].
In simple terms, in aromatic compounds C atoms are bonded with sp2-coordination, the remaining (pz) bonds
forming the π band. However, one alternative possible way to visualize the formation of the π band is to consider
these bonds resonating among different C atoms as in a benzene ring. In graphene and AGNRs we can draw the
hexagonal lattice and connect neighboring C atoms with double bonds wherever possible. In so doing, we obtain
a structure in which some of the hexagonal rings will have three double-bonded C atoms. These rings are labeled
‘Clar sextets’. Note that the presence of two adjacent Clar sextets is not allowed, as this would imply the presence
of C atoms with 5 bonds. In graphene, clearly there is no unique configuration (pattern) of Clar sextets: We can
consider many equivalent patterns, the structure resonating among all of these possible patterns, thus forming the
π band. Each possible configuration of Clar sextets is called a ‘Kékule pattern’. In AGNRs, when the edge bonds
are terminated by a single H atom, the edge-rings will be necessarily Clar sextets because the terminating H atoms
force single edge-bonds. This will happen at both edges. Therefore, depending on the width of the ribbon, we may
have three possible cases: 1. two possible resonating Kékule patterns exist. The π-electrons will be delocalized
throughout the ribbon creating resonant paths in the center region of the ribbon, they will contribute to the binding
of the structure, and this will give rise to a large gap/ionization energy. 2. Only one resonant Kékule pattern is
possible. The π-electrons are localized at the edges of the ribbon leading to a less stable structure and a small gap.
3. Many possible Kékule patterns can be formed, some delocalizing and some localizing the electrons, yielding an
intermediate gap. These three different possibilities occur respectively for ribbons with width given by a number
of atomic lines Na = 3p+1 (two Kékule patterns), Na = 3p (one Kékule pattern), and Na = 3p+2 (many Kékule
patterns) giving rise to the band gap scaling Eg,3p+1 > Eg,3p > Eg,3p+2. If we terminate the edges with, say, H2
instead, the opposite will happen, since the edge rings will be prevented from being Clar sextets by the double
terminating edge bonds and the appearance of Kékule patterns (claromaticity) as a function of ribbon-width
will be different. We note parenthetically that this behavior is absent in zigzag-edge GNRs (ZGNRs). Also, the
lack of a gap in these structures makes them less interesting for nanoelectronics applications; as a consequence
electron transport in ZGNRs has not been studied as extensively as in AGNRs and we shall ignore them here.
Nevertheless, a discussion of their [local empirical pseudopotential]-based band-structure is given below.
The Kékule patterns can be visualized through computationally generated Scanning Tunneling Microscope
(STM) images using the wavefunctions (which can be obtained from DFT or EP) through the Tersoff-Hamann
approximation [40, 41] of the STM current:

I(x,y,z,U) =∑
n
|Ψn(x,y,z)|2 [f (EF −En)− f (EF + eU−En)] , (7.43)

where EF is the Fermi energy, U is the applied potential, and En is the energy in band n corresponding to
the wavefunction Ψn. A plot of the calculated STM images from DFT simulations using the “Vienna Ab
Initio Simulation Package” (VASP) [42–44] is shown in Figs. 7.32 and 7.33 for Na = 9, 10 and 11 AGNRs.
These VASP simulations have been performed using the projector-augmented wave method (PAW). Exchange-
correlation is represented with the revised Perdew-Burke-Ernzerhof (PBE) model of the generalized gradient
approximation (GGA). A plane wave cutoff of 550 eV was applied with a Γ -centered Monkhorst-Pack mesh
of 11×1×1 in k-space. A Methfessel-Paxton Gaussian smearing of order 1 with a width of 0.05 was used to
accelerate convergence. Geometric optimization was performed with the conjugate-gradient algorithm until the
absolute value of the forces was less than 0.3 eV/Å. Optimization of the graphene unit cell resulted in a C–C
bond length of 1.426 Å. The wavefunctions are sampled at a distance z = 0.2 nm above the AGNRs and a value
of eU =−0.5 eV (which captures the highest two valence bands) was chosen for the applied potential energy.
In comparison, empirical tight binding (ETB) calculations [29–31] and calculations based on the Weyl (massless
Dirac) equation [32, 33] have found a different width-dependence compared to DFT and EP and predict
Eg,3p > Eg,3p+1 > Eg,3p+2 = 0, so 3p+ 2 GNRs are predicted to be semimetallic. This is due to the inability
of nearest-neighbours-only models to capture the basic physics of the resonant Clar structures, as noted by
Zhao et al. [45]. On the contrary, ab initio DFT (LDA and with GW corrections) calculations [34–36] also
predict Eg,3p+1 ≥ Eg,3p > Eg,3p+2 �= 0, which implies that all AGNRs are semiconducting. This reveals a
big shortcoming of ETB (in its nearest-neighbor implementation) compared to ab initio results. While Son
et al. [34] have emphasized the importance of the relaxation of the edge C–C bonds, we find that this is a
secondary contribution to the width-dependence of the AGNR band gap. Indeed we find the same ab initio
behavior ourselves even without accounting for this effect. Note also that the value of the calculated band gap
increases dramatically when performing GW calculations (compare the results of [34] with those of [36], for
example).”
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Fig. 7.32 Illustration of the possible Clar resonances in graphene and armchair-edge graphene nanoribbons. (Figure
kindly provided by Dr. Shela Aboud)

Fig. 7.33 Illustration of the possible Clar resonances in armchair-edge graphene nanoribbons superimposed to DFT
calculations of the electron charge density in the highest-energy conduction band. Figures kindly provided by Dr. Shela
Aboud

After this rather long preamble about the band gap of ANGRs, we can discuss now how this
behavior is captured by empirical pseudopotentials. The supercell employed to treat an AGNR is
described by the primitive translation vectors in real space

a1 = ((Nc +Nv)
√

3a0,0,0) , a2 = (0,Ny

√
3a0,0) , a3 = (0,0,3a0) , (7.44)

where a0 ≈ 0.1422 nm is the “standard” C–C bond length and Nc is the number of cells between the
edges (i.e., along the x direction). Nc is related to the width parameter of the ribbon [34], Na, via
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Na = 2Nc (for even Na) or Na = 2Nc + 1 (for odd Na). Also, Nv is the number of cells separating the
ribbons along the x (transverse) direction, and Ny is the number of cells of extension

√
3a0 separating

the planes on which adjacent ribbons lie (in the “vertical” y direction). All results presented below
have been obtained using Nv = 4 and Ny = 3. In each supercell there will be 4Nc +2 (odd Na) or 4Nc

(even Na) atoms. The four atoms in the cell adjacent to the “left” edge will have coordinates:

τ1 = (0,0,0) , τ2 = a0

(√
3

2
,0,

1
2

)

, τ3 = a0

(√
3

2
,0,

3
2

)

, τ4 = a0 (0,0,2) . (7.45)

The remaining atom coordinates can be obtained by translating these coordinates Nc −1 times by an
amount j

√
3a0 (with j = 1,Nc −1) along the positive x direction:

τ4j+1 = τ1 + j
√

3 a0x̂ , τ4j+2 = τ2 + j
√

3 a0x̂ ,

τ4j+3 = τ3 + j
√

3 a0x̂ , τ4j+4 = τ4 + j
√

3 a0x̂ . (7.46)

For odd Na two more C atoms must be added at the “right” edge by translating atoms 1 and 4 in
Eq. (7.45) by an amount

√
3a0Nc:

τ4Nc+1 = τ1 +Nc
√

3 a0x̂ , τ4Nc+2 = τ4 +Nc
√

3 a0x̂ . (7.47)

The dangling sp2 σ orbitals of the edge C atoms can be saturated by adding H atoms along the
direction of the missing C–C bonds assuming a C–H bond length equal to that of methane (CH4),
0.10919 nm.

The case of zigzag-edge C nanoribbons (ZGNRs) is similarly treated by defining the primitive
translation vectors:

a1 = ((Nc +Nv) 3 a0,0,0) , a2 = (0,Ny a0,0) , a3 = (0,0,
√

3 a0) , (7.48)

and the coordinates of the four atoms in the cell adjacent to the “left” edge:

τ1 = a0

(

0,0,

√
3

2

)

, τ2 = a0

(

1
2
,0,0

)

,

τ3 = a0

(

3
2
,0,0

)

, τ4 = a0

(

2,0,

√
3

2

)

. (7.49)

The remaining atomic coordinates are obtained by replicating Nc −1 times the coordinates of the first
four C atoms by translating them by an amount j3a0 (with j = 1,Nc−1) along the positive x direction:

τ4j+1 = τ1 + j3a0x̂ , τ4j+2 = τ2 + j3a0x̂ ,

τ4j+3 = τ3 + j3a0x̂ , τ4j+4 = τ4 + j3a0x̂ . (7.50)

Termination of the edge-C dangling bonds can be done by adding two H atoms bonded to the first and
last C atom in the supercell.

Figure 7.31 (right) shows the band structure of a “bare” (as opposite to H-terminated) 9-AGNR.
Note that the use of the Mayer pseudopotentials yields a reasonable energy gap (when compared
to first-principle results [34]) and also a reasonable dispersion for the topmost valence band and
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Fig. 7.34 Band structure
and density of states for an
Na = 7 (left) and Na = 5
(right) armchair-edge
graphene nanoribbon with
H termination of the edge
C atoms. Note that while
tight-binding models
predict a semimetallic (no
gap) behavior for the
5-AGNR, empirical
pseudopotentials yield
semiconducting behavior
even in the absence of the
distortion of the edge C–C
bonds found by
first-principle
calculations [34]. [Used
from M.V. Fischetti, Bo Fu,
S. Narayanan, and J. Kim,
in Nano-Electronic
Devices: Semiclassical and
Quantum Transport
Modeling,
Dragica Vasileska and
Stephen M. Goodnick eds.
(Springer, New York,
2011), pp. 183–247, with
kind permission from
Springer Science+Business
Media]
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lowest-energy conduction bands, while missing by definition other valence bands, several highest-
energy conduction bands, and also the well-known edge states which enter the π-π∗ gap. These
states are clearly noticeable in the results obtained by using the Kamakura pseudopotentials: These
pseudopotentials account for all bands, yield a reasonable gap at k = 0, as well as the edge states
which can be removed by H termination [46]. This is shown in Fig. 7.34. Note that using the Kurokawa
pseudopotentials, the gaps are in agreement with the first-principles, non-GW-corrected results of [34],
as shown in Fig. 7.35. Only for the smallest-width ribbon (3-AGNR) the gap is noticeably smaller
than what obtained from first-principle calculations, presumably because of the growing importance
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Fig. 7.35 The three ladders of the band gap at k = 0 as a function of ribbon-width for armchair-edge graphene
nanoribbons. These results have been obtained using the Kurokawa’s pseudopotentials with H-terminated sp2 σ C
edge bonds and are in excellent qualitative agreement and good quantitative agreement with the non-GW-corrected
DFT+LDA calculation of Son et al. [34]. GW corrections yield much large gaps for the quasiparticle energy [36], while
tight-binding models predict qualitatively incorrect gaps and an incorrect ordering of the three ladders [34]
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Fig. 7.36 Atomic structure of polyparaphenylene (PPP). Note the similarity with a 3-AGNR from which it differs only
for the different C–C bond lengths (assumed there to be 0.1422 nm for all C–C bonds) and also for the C–H bond lengths
(assumed to be 0.10919 nm for the 3-AGNR)

of edge-bond distortion noticed by Son et al. [34]. It should be remarked that experiments [47] have
not confirmed this chirality dependence of the band gap. Querlioz and co-workers have attributed this
to disorder of the chirality (or, equivalently, line-edge roughness) [48]. Tseng et al. [49] have similarly
argued that the clustering of the gap around values corresponding to the largest 3p+1 gap is the result
of line-edge roughness (LER or simply ER) which allows electron transmission only at the largest
“local” gap.

A structure similar to that of a 3-AGNR is given by the polyparaphenylene (PPP) chain, which
is identical to an H-terminated 3-AGNR, but with different C–C and C–H bond lengths, as seen in
Fig. 7.36. Figure 7.37 shows the band structure, DOS, and ballistic conductance of PPP. As for the
case of the 3-AGNR, the energy gap obtained using the Kurokawa pseudopotentials (≈ 1.2 eV) is
lower than what is measure experimentally [50] (≈ 2.4 eV), in agreement with LDA calculations [34].
It appears that the small gap is due to the appearance of an “additional” band in the gap, as it will be
discussed below when dealing with (n,0) nanotubes.
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Fig. 7.37 Band structure
(left), DOS, and ballistic
conductance (right) of PPP
calculated using the
Kurokawa
pseudopotentials. Note that
the gap between the bottom
CB and second
highest-energy VB is
similar to the experimental
value, but an “additional”
band enters the gap
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7.3.2.2 Zigzag-Edge GNRs

In Fig. 7.38 we show the band structure of an Na=4 zigzag-edge graphene nanoribbon (4-ZGNR) and
of an 8-ZGNR obtained using the Mayer pseudopotentials with dangling bonds for the edge C atoms
and using the Kurokawa pseudopotentials with H-terminated C edge bonds. Note that in this case both
choices of pseudopotentials result in semimetallic behavior, the π and π∗ bands overlapping slightly,
in agreement with the results obtained by Ezawa [31] (who, however, also predicts metallic behavior
for Na = 2p+ 2 armchair nanoribbons) and with the LDA results by Pisani et al. [51] for mono-
hydrogenated non-magnetic nanoribbons. Although the shape of the bands appears qualitatively in
agreement with the LDA results of [36], the semimetallic behavior of this ZGNR emerges from the
fact that we have not accounted for spin polarization effects [52].

One can speculate about other possible shortcomings of the empirical pseudopotential approach.
The obvious first concern stems from a possible inaccuracy of the empirical C pseudopotentials
themselves. However, while Kurokawa’s C pseudopotentials were calibrated to the diamond structure,
the H pseudopotentials had been fit to the electronic structure of trans-polyacetylene, which resembles
very closely the hydrogenated edges of ZGNRs. The neglect of the spin–orbit interaction may
constitute another possible cause of concern. On the one hand, Kan and co-workers [53] have shown
that the ZGNR bands are not spin-degenerate. However, spin polarization of edge states is known
to emerge not from the spin–orbit interaction which is very small in C [54], but from another type
of interaction said to be Hubbard-like. We shall not delve into this issue here. There is more: Kan
et al. have also shown that ZGNRs may be metallic or semiconducting depending on the functional
groups (H, NH2, CH3, and NO2) used to terminate the sp2 σ orbitals of the edge C atoms. This would
point at some possibly wrong assumptions made in terminating these orbitals with the Kurokawa’s H
pseudopotential and assuming the CH4 C–H bond length. A final possible source of concerns may be
the distortion of the edge C–C bonds emphasized by Son et al. [34] or of the C–H edge bonds.

Despite these doubts and concerns, the overall picture that emerges from calculations based on
empirical pseudopotentials is qualitatively in agreement with more sophisticated approaches and
captures the essential physical ingredients, especially the Claromatic behavior of GNRs.
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Fig. 7.38 Band structure
and density of states for an
Na = 4 graphene
nanoribbon (4-ZGNR, top),
and of an 8-ZGNR
(bottom) with zigzag edges
obtained using the Mayer
pseudopotentials with bare
edges (dashed lines) and
the Kurokawa
pseudopotentials with H
termination of the edge C
atoms (solid lines). In both
cases the ZGNRs exhibit
semimetallic behavior, in
agreement with Ezawa’s
tight-binding results [31]
and Pisani’s
“non-magnetic” LDA
calculations [51]. A gap is
expected to open when
accounting for spin
polarization effects, as
shown by first-principle
self-consistent LSDA
calculations [34, 51]. [Used
from M.V. Fischetti, Bo Fu,
S. Narayanan, and J. Kim,
in Nano-Electronic
Devices: Semiclassical and
Quantum Transport
Modeling,
Dragica Vasileska and
Stephen M. Goodnick eds.
(Springer, New York,
2011), pp. 183–247, with
kind permission from
Springer Science+Business
Media]
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7.3.3 Carbon Nanotubes

In the previous section, we have discussed two types of GNRs: Those with armchair edges and those
with zigzag edges. We had defined them, looking at the top-left picture in Fig. 7.19, as obtained by
cutting an infinite graphene sheet along two parallel lines along the vertical axis (armchair) or along
direction of the primitive vector a1 (zigzag). These are just two particular crystallographic directions.
In general, we can define a chiral vector

Cm,n = ma1 +na2 . (7.51)

If we denote the direction of the vector Cm,n with (m,n), then zigzag direction corresponds to (n,0),
the armchair direction to (n,n). Figure 7.39 illustrates the geometry. Suppose now that we cut a ribbon
along the (n,0) direction and roll it so that the two armchair edges are brought together. This gives
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Fig. 7.39 The chiral directions (left) and a schematic representation of armchair, zigzag, and chiral CNTs

us a “tube” whose direction along the circumference of a cross section is zigzag. We call this an
(n,0) zigzag carbon nanotube, or (n,0) CNT. Similarly, cutting an (n,n) ribbon and rolling it over
to bring the two zigzag edges together, we obtain a tube with an armchair cross section, an (n,n)
CNT. This is illustrated in the right frame of Fig. 7.39. CNTs can also be obtained by cutting along
arbitrary directions. In this case, the crystallographic lines appear to be twisted along the CNT, as
shown by the rightmost CNT in the figure. These CNTs are called chiral. The chirality of CNTs affects
enormously their electronic properties. We have seen that in GNRs the structure of the Clar resonances
causes zigzag-edge GNRs to be metallic, armchair-edge GNRs to be semiconducting. These properties
carry over to CNTs for exactly the same reasons, their claromaticity, just generalized to arbitrary
chiral directions m,n: CNTs are metallic if |n−m| is a multiple of 3, a different manifestation of
the oscillations of the band gap of AGNRs. Thus, all armchair CNTs, (n,n), are metallic. After all,
they can be thought as a rolled-up ZGNR, which is metallic. Parenthetically, note the small size
of CNTs: Their diameter D is determined by the chirality via simple geometric considerations, as
D = (m2 +n2 +nm)1/2a/π , where a ≈ 0.246 is the lattice constant of graphene.

We can finally perform the calculation of these interesting electronic properties of CNTs. The
atomic positions required as input to set-up the empirical pseudopotential Hamiltonian can be either
painfully calculated “by hand” or, more conveniently, using the on-line Java tool TubGen v3.3 [55].
Comparison can be made with the qualitative analysis by Ajiki and Ando [17], by Reich [18],
Gulseren [56], Sharma [57], and Miyake and Saito [58, 59] for the diameter dependence of zigzag
semiconducting nanotubes, and by Mayer [21] and Khoshnevisan [19] for the band structure of (5,5)
and (10,0) CNTs. Figure 7.40 shows the position of the C atoms in a (5,5) armchair nanotube and
in a (13,0) zigzag CNT, while in Fig. 7.41 we show the band structure and density of states for these
CNTs. These data have been obtained using a supercell with square cross section of sides 1 and
1.4 nm long for the (5,5) and (13,0) CNTs and both the Kurokawa and Mayer pseudopotentials with
a cutoff energy of 15 Ry. (The use of a larger cutoff, 25 Ry, does not show appreciable effects on
the calculated band structure, as far as the few bands close to the Fermi level are concerned.) Results
using a real-space approach [60] are also shown in the case of the (5,5) nanotube. The small difference
obtained by using real-space or k-space methods can be attributed to the truncation at high spatial
frequencies (large G-vectors) by the latter more than by the proximity of the “neighbor” nanotube
implied by the supercell periodicity. Indeed, increasing the size of the supercell beyond twice the
diameter of the nanotube does not cause any appreciable difference in the results of the supercell
k-space method, as shown in Fig.7.42. In all cases the Mayer pseudopotentials yield the correct
behavior of the π and π∗ bands near the Fermi level, but miss by construction the deeper 2s and
2p valence states as well as many additional higher-energy states. By contrast, the pseudopotentials
proposed by Kurokawa yield results much closer to ab initio results in the cases of (5,5) and large-
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Fig. 7.40 Positions of the C atoms in an armchair (5,5) (left) and in a zigzag (13,0) (right) CNT

diameter (n,0) CNTs. However, in the latter cases [see, for example, the case of (10,0) nanotubes
shown in Fig. 7.42] the π∗ singlet is pushed within the π-π∗ doublet gap resulting in an energy gap
at Γ much lower than expected from ab initio calculations [18, 56]. Blase [61] and later Gulseren
et al. [56] have attributed this to σ∗ − π∗ hybridization due to the high curvature of small-radius
CNTs, an effect which seems to be overestimated by the Kurokawa pseudopotentials (see the σ∗
and π∗ singlet bands for graphene already mentioned as responsible for this effect in the caption of
Fig. 7.19). First-principles calculations predict metallic behavior for all (n,0) CNTs for n ≤ 6, the
Kurokawa empirical pseudopotentials predict this behavior for n ≤ 9, while employing the Mayer
one-electron pseudopotentials results in metallic behavior only for n = 3p (p = integer) for any n,
since these pseudopotentials do not account for the σ∗ and π∗ singlet bands.

Looking at Fig. 7.43 we should also note that for zigzag nanotubes with a diameter smaller than
about 2 nm (that is, for (n,0) CNTs with n≤ 5), the Kurokawa pseudopotentials fail quite dramatically,
always yielding semimetallic behavior and unexpected dispersion.

Once more, we should spend a few words of caution regarding the “correctness” (or lack
thereof) of results obtained using the Mayer or Kurokawa pseudopotentials. We have compared
these results with “first-principles” calculations (usually DFT+LDA and the occasional GGA or
GW correction) [18, 19, 56]. The energy gaps and dispersion found in these papers are not always
consistent among themselves. For example, the MP3 (Quantum Chemistry) approach followed by
Bulusheva et al. [62] yields significantly different gaps, while the quality of experimental data on the
gap dependence on tube diameter, all of them from the same Harvard group [63–65], is hard to assess,
given the daunting practical difficulty of isolating CNTs of the same chirality (and, so, diameter).
Also, the small density of states associated with the π∗-singlet band could render it hard to detect
optically and electrically.

Finally, Figs. 7.44 and 7.45 show the contour plots of the squared amplitude of the wavefunctions
of the three lowest-energy and three highest-energy conduction- and valence-band states for the (5,5)
and (13,0) nanotubes, respectively.
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Fig. 7.41 Band structure and density of states (DOS) of the metallic armchair (5,5) CNT (left) and of the semiconduct-
ing (13,0) zigzag CNT (right). The energy has been set to zero at mid-gap or band crossing, which is approximately
equal to the Fermi level. The dispersion has been obtained using the “bulk C” local empirical pseudopotentials of
Kurokawa et al. [20] (solid lines), and those of Mayer [21] (dashed lines), which should provide better results since
they have been calibrated to graphene. However, the value of the band gap obtained using Kurokawa’s pseudopotentials
(0.574 eV) agrees with the values obtained using LDA [57] and CGA [56] (yielding, respectively, 0.669 and 0.625 eV)
much better than the result (0.817 eV) obtained using Mayer’s pseudopotentials. For the (5,5) CNT results obtained by
Zhang and Polizzi [60] using a real-space approach with Mayer’s pseudopotentials are also shown (circles). [Used from
M.V. Fischetti, Bo Fu, S. Narayanan, and J. Kim, in Nano-Electronic Devices: Semiclassical and Quantum Transport
Modeling, Dragica Vasileska and Stephen M. Goodnick eds. (Springer, New York, 2011), pp. 183–247, with kind
permission from Springer Science+Business Media]
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Fig. 7.42 Band structure and density of states (DOS) of the semiconducting (10,0) zigzag CNT obtained, as in Fig. 7.41,
using the “bulk C” local empirical pseudopotentials of Kurokawa et al. [20] (solid lines), and those of Mayer [21]
(dashed lines). The energy has been set to zero at mid-gap or band crossing, which is approximately equal to the Fermi
level. These results are obtained using a supercell with square cross section of 1.2 nm. The use of a slightly larger
supercell (1.5 nm) yields very similar results, with the bands shifting by no more than 20 meV, as shown in the bottom
frames. Note that the value of the band gap obtained using Kurokawa’s pseudopotentials (0.1443 eV) is significantly
smaller than the values obtained using LDA [57] and GGA [56] (0.764 eV in both cases) because of the presence
of the π∗ singlet band (shown by a red dotted line) which the choice of Kurokawa pseudopotentials pushes to low
energies inside the π-π∗ doublet gap. However, the magnitude of the π-π∗ doublet gap (0.8695 eV) is much closer to
the expected value. Results obtained using Mayer’s pseudopotentials yield a much larger gap, 1.0141 eV. [Used from
M.V. Fischetti, Bo Fu, S. Narayanan, and J. Kim, in Nano-Electronic Devices: Semiclassical and Quantum Transport
Modeling, Dragica Vasileska and Stephen M. Goodnick eds. (Springer, New York, 2011), pp. 183–247, with kind
permission from Springer Science+Business Media]
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Fig. 7.43 Top: Maximum (minimum) energy of the conduction π∗-bands (valence π-bands) as a function of diameter
of (n,0) CNTs obtained using the Kurokawa pseudopotentials. Note the quasi-periodic oscillations of the π−π∗ gap as
n varies between 3p (with p an integer), corresponding to a very small gap which would vanish in absence of curvature
effects, 3p+ 2 and 3p+ 1, the latter case yielding the largest gap in analogy with the situation observed for graphene
nanoribbons in Fig. 7.35. Note, however, that the hybridization of the σ∗ and π∗ orbitals caused by the increasing
curvature of the CNTs at small diameters pushes the energy of the π∗-singlet states within the π−π∗ gap for n smaller
than about 15 and ultimately closes the gap for n < 10. First-principle results predict this “gap closing” for n < 7,
instead [56]. Results for n < 5 are suspect because of the very large curvature effects which have to be treated using
first-principle methods. Bottom: As in the top frame, but showing results obtained using the Mayer pseudopotentials.
Note the correct periodic oscillations of the gap with chiral number n with period 3. However, the inability of the Mayer
pseudopotentials to yield the singlet π∗ and σ∗ bands results in the prediction of semiconducting behavior also for
small-diameter nanotubes, notably, the (4,0) and (5,0) CNTs. [Used from M.V. Fischetti, Bo Fu, S. Narayanan, and
J. Kim, in Nano-Electronic Devices: Semiclassical and Quantum Transport Modeling, Dragica Vasileska and Stephen
M. Goodnick eds. (Springer, New York, 2011), pp. 183–247, with kind permission from Springer Science+Business
Media]
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Fig. 7.44 Contour plots of the squared amplitude of the wavefunctions—averaged over a cell along the axial
direction—of the three highest-energy bands below the Fermi level (top) and the lowest-energy bands above the
Fermi level (bottom) at the point kz=0 for a (5,5) metallic CNT. Clearly evident are the pz orbitals. The Kurokawa
pseudopotentials have been used to obtain the results presented in this figure
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Fig. 7.45 Contour plots of the squared amplitude of the three highest-energy valence bands (top) and the lowest-energy
conduction bands (bottom) at the point kz = 0 for a (13,0) semiconducting CNT, as in the previous figure
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Chapter 8
Single-Electron Dynamics in Crystals

8.1 Equations of Motion for Electrons in Crystals

Having discussed the rather complicated band structure of semiconductors and nanostructures, we
must now consider how single electrons will behave in these complicated energy bands under the
action of an external force.

We shall first consider a remarkable simplification of the very complicated Schrödinger equation
which results from adding a potential V(ext)(r, t) to the lattice potential itself. Under some restrictive
conditions, we shall obtain an equation very similar to the Schrödinger equation for an electron in
free space, the major modification being the dispersion (described often by an effective mass) and
the meaning of the “wavefunction” itself, which will now be the “envelope” of the periodic Bloch
part. This is the so-called envelope or effective mass approximation that has been originally derived
by Luttinger and Kohn [1]. We shall then consider what are known as the acceleration and Feynman
theorems, which will allow us to treat the electron moving under an external field E with equations
similar to those valid for electrons in free space.

8.1.1 The Envelope Approximation

From Bloch’s theorem, we know that the general solution of the Schrödinger equation in the lattice is
labeled by a wavevector k and a band index n and has the Bloch form:

ψnk(r) =
1

Ω 1/2
eik·r u(n)k (r) =

1

Ω 1/2
eik·r ∑

G
u(n)k+G eiG·r . (8.1)

Consider now adding an external potential V(ext)(r) to the lattice potential. We assume that the external
potential is weak enough so that it does not cause transitions to other bands, so that we may consider
only one band, labeled by m, with dispersion Em(k). We also assume that this weak potential does not

cause changes of the Bloch component u(m)
k (r) = ∑G u(m)

k+G eiG·r. Under these assumptions we wish
to show that the wavefunction in a small-enough neighborhood of k0 can be approximated by:

ψm(r) = φ(r) u(m)
k0

(r) = φ(r) ∑
G

u(m)
k0+G eiG·r
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164 8 Single-Electron Dynamics in Crystals

and the “envelope” φ(r) satisfies the wave equation:

[Em(−i∇)+ eV(ext)(r)] φ(r) = E φ(r) . (8.2)

Let’s prove this statement.
The full Schrödinger equation including explicitly the lattice potential is

[

− h̄2

2m
∇2 +V(lat)(r)+V(ext)(r)

]

ψ(r) = E ψ(r) . (8.3)

Let’s expand the full wavefunction ψ into a series of Bloch functions (8.1) as follows:

ψ(r) =∑
n,k

cnk ψnk(r) =
1

Ω 1/2 ∑
n,k

cnk eik·r ∑
G

u(n)k+G eiG·r . (8.4)

Since each Bloch function ψnk is an eigenvector of the Eq. (8.3) when V(ext)=0, inserting the
expansion (8.4) into Eq. (8.3) we get

∑
n,k

[

Enk cnk ψnk(r)+V(ext)(r) cnk ψnk(r)
]

= E ∑
n,k

cnk ψnk(r) . (8.5)

Now let’s multiply both sides of this equation by ψ∗
mk′ and integrate over the entire volume. Note that:

∑
n,k

cnk

∫

ψ∗
mk′(r) ψnk(r) dr =

1
Ω ∑n,k ∑G,G′

cnk u(m)∗
k′+G′ u(n)k+G

∫

ei(k+G−k′−G′)·r dr

and the integral on the right hand side will be nonzero only if k−k′+G−G′ = 0. If we restrict k
and k′ within the first BZ (which we can always do, from the definition (8.1) of Bloch waves), this
condition can be met only when k− k′ = 0 and G−G′ = 0 separately. Thus the expression above
becomes

∑
n

cnk′ ∑
G′

u(m)∗
k′+G′ u(n)k′+G′ =∑

n
cnk′ δnm = cmk′ , (8.6)

since Bloch waves in different bands at the same k-point are eigenvectors with different eigenvalues
and so are orthogonal. Using Eq. (8.6), we obtain from Eq. (8.5) (switching the roles of k and k′):

Emk cmk +∑
nk′

cnk′
∫

ψ∗
mk V(ext)(r) ψnk′(r) = E cmk . (8.7)

So far we have simply recast the original Schrödinger equation (8.3) into a matrix form, but we have
accomplished nothing. Let’s now consider the matrix element of the external potential,

〈mk|V(ext)|nk′〉=
∫

ψ∗
mk(r) V(ext)(r) ψnk′(r) dr . (8.8)
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Let’s write the potential in terms of its Fourier components:

V(ext)(r) =∑
q

V(ext)
q eiq·r , (8.9)

and insert this into Eq. (8.8):

〈mk|V(ext)|nk′〉= 1
Ω ∑q

V(ext)
q

∫

u(m)∗
k (r) u(n)k′ (r) e−i(k′−k−q)·r dr . (8.10)

Now express the integration over the entire volume Ω into the sum of integrations over cells l by
writing r = Rl +ρ:

〈mk|V(ext)|nk′〉 = 1
Ω ∑q

V(ext)
q ∑

l

e−i(k′−k−q)·Rl

×
∫

Ω
u(m)∗

k (ρ) u(n)k′ (ρ) e−i(k′−k+q)·ρ dρ . (8.11)

The term ∑l e−i(k′−k−q)·Rl will be nonzero only when k′ −k−q = G′′, where G′′ is some vector of
the reciprocal lattice, while the integrals of the Bloch components over the cell volume Ωc will be
equal in all cells. Therefore:

〈mk|V(ext)|nk′〉= 1
Ω ∑

qG′′
Ncells V(ext)

q δk′−k−q,G′′
∫

Ωc

u(m)∗
k (ρ) u(n)k′ (ρ) e−iG′′·ρ dρ

=∑
G′′

V(ext)
k′−k−G′′

1
Ωc

∫

Ωc

u(m)∗
k (r) u(n)k′ (r) e−iG′′·ρ dρ , (8.12)

since Ω =ΩcNcells. Now notice that, looking at Eq. (8.1), u(n)k+q+G′′(ρ)e−iG′′·ρ= u(n)k+q(ρ). Therefore:

〈mk|V(ext)|nk′〉=∑
G′′

V(ext)
k′−k−G′′

1
Ωc

∫

Ωc

u(m)∗
k (ρ) u(n)k′ (ρ) dρ . (8.13)

This new form of the matrix element (8.8) now allows us to make two additional approximations to
further simplify the problem.

1. If the external potential is varying slowly enough to have nonzero Fourier components Vq only for

small values of q, we can retain only the term with G′′=0 above, that is, V(ext)
k′−k.

2. Let’s assume that the wave packet we have considered originally, Eq. (8.4), is a spatially broad
packet (that is, extending over several lattice cells), so it is narrow in k-space, and only a small
range of k-vectors centered around a value k0 is involved.

3. Since only small values of q = |k−k′| are retained thanks to assumption 1 above, if we assume
that the Bloch components do not vary too quickly with k, then it reasonable to assume also that

u(n)k′ (ρ)≈ u(n)k (ρ) and

∫

Ωc

u(m)∗
k (ρ) u(n)k′ (ρ) dρ ≈

∫

Ωc

u(m)∗
k (ρ) u(n)k (ρ) dρ ≈Ωc δm,n ,

as one can see following the same procedure followed to arrive at Eq. (8.6).
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Then, finally:

〈mk|V(ext)|nk′〉 ≈ Vk′−k δm,n . (8.14)

Our starting Schrödinger equation (8.7) in matrix form now has the simpler appearance:

Emk cmk +∑
k′

V(ext)
k′−k cmk′ = E cmk , (8.15)

which shows that the potential is weak enough to prevent interband transitions. We are thus able to
restrict Eq. (8.3) to a single band.

Let’s now define the envelope wavefunction in band m via:

φ(r) =
1

Ω 1/2 ∑
k

cmk eik·r , (8.16)

that is, the same expression we used to define the full, “exact” wavefunction given by Eq. (8.4),
but having replaced the Bloch functions ψnk with plane waves eik·r. Thus, from the definition (8.4),
recalling that only a few k-vectors around k0 are involved

ψ(r) =
1

Ω 1/2 ∑
k

cmk eik·r ∑
G

u(m)
k+G e−iG·r

≈ 1

Ω 1/2 ∑
k

cmk eik·r ∑
G

u(m)
k0+G e−iG·r

= φ(r) u(m)
k0

(r) , (8.17)

which is the same expression for a Bloch wave with the envelope φ(r) replacing the plane-wave
modulation eik·r. Thus, in the presence of a weakly varying external potential, the function φ
“modulates” the periodic component u(m)

k0
, much like plane waves modulate them in the absence of

a perturbation. The analogy with free electrons is immediate: A plane wave is the solution in the
absence of any potential, the wavefunction φ is the solution in the presence of the potential. In a

lattice, eik·ru(m)
k0

is the solution in the presence of the lattice potential only, φ(r)u(m)
k0

is the solution
in the presence of an additional potential. Indeed, it is easy to see now that the envelope φ obeys the
equation:

[Em(−i∇)+V(ext)(r)] φ(r) = E φ(r) , (8.18)

where Em(k) is the dispersion in band m. This can be easily proved by inserting Eq. (8.17) into (8.18)
and reaching Eq. (8.15).

Equation (8.18) is known under many names. When we use the effective mass concept and
approximate E(k)≈ h̄2k2/(2m∗), Eq. (8.18) becomes

[

− h̄2

2m∗∇
2 +V(ext)(r)

]

φ(r) = E φ(r) , (8.19)

which is identical to the Schrödinger equation. Therefore, it takes the name of “effective mass”
equation (or approximation). Probably, in its more general form, it should take the name of “envelope”
wave equation. It was first derived by Slater and by Kohn and Luttinger, and it is sometimes called the
Kohn–Luttinger equation.
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8.1.2 Effective Mass

We have already introduced the concept of “effective mass” before, dealing with the k ·p perturbation
theory [see Eq. (5.44)]. The usefulness of this concept can be understood as follows. Semiconductors
are characterized by full valence bands, empty conduction bands, and a relatively small energy gap
between the valence and conduction bands. “Doping” results in the introduction of excess electrons
occupying the bottom of the conduction band, or the elimination of some electrons from the valence
bands (which is viewed as the introduction of holes occupying the top of the valence band). Thus, the
“action” happens at the top of the valence band and/or at the bottom of the conduction band. At these
extrema of the bands we can expand the dispersion as:

E(k) = E(k0)+
1
2
(k−k0) ·∇2

kE(k)
∣

∣k0 · (k−k0)+ · · ·

(the first-order term in ∇E vanishes since we are at an extremum of the band). Thus, replacing the
“momentum” (measured from the band extremum k0)

k−k0 →−i∇

thanks to the envelope approximation, we have

E(−i∇) = E(k0)+
1
2
(−i∇) ·∇2

kE(k)
∣

∣k0 · (−i∇)+ · · ·

= E(k0)− 1
2∑ij

∂E
∂ki∂kj

∣

∣k0

∂
∂xi

∂
∂xj

+ · · · . (8.20)

Let’s now set E(k0) = 0 by a suitable choice of the reference energy and let’s measure k from k0.
Let’s ignore higher-order terms in the expansion above. Let’s define the inverse “effective mass”
tensor 1/m∗

ij via:

1
m∗

ij
=

1

h̄2

∂E
∂ki∂kj

∣

∣k0 .

Then

E(k)≈∑
ij

h̄2kikj

2m∗
ij

and the envelope wave equation, Eq. (8.18), becomes

[

−∑
ij

h̄2

2m∗
ij

∂
∂xi

∂
∂xj

+ eV(ext)(r)

]

ψ(r) = E ψ(r) ,

which, as we have already noticed, looks like a “conventional” Schrödinger equation.
For GaAs, the effective mass in the CB is actually a scalar (since the first CB is formed by s-type

orbitals), m∗ ≈ 0.063 m0. For Si, the first CB has ellipsoidal equi-energy surfaces, so that the effective
mass tensor is diagonal along the [100] crystal direction:
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m =

⎛

⎝

mL 0 0
0 mT 0
0 0 mT

⎞

⎠ ,

where mL ≈ 0.91 m0 and mT ≈ 0.19 m0.

8.1.3 Group Velocity and Acceleration Theorems

We have established so far that—under the approximations listed on pages 163–166 and with the
expansion (8.20)—we can eliminate the complicated periodic potential V(lat) from our problem,

“hide” the periodic Bloch component u(m)
k (with the aforementioned exceptions which we shall

encounter) and work only with the envelope wavefunction φ , solution of a quasi-free Schrödinger
equation in the presence of the weakly varying external potential V(ext). In other words, we can treat
electrons as they were in free space, not in the crystal, provided we replace their mass. How far can we
extend the analogy? Are we also able to describe the motion of the electron wavepacket (8.4) as if we
were in free space? In particular, how does the electron momentum evolve with time in the presence
of an external electric field? And how does the electron velocity evolve?

We shall answer these questions “rigorously” below. But, first, let’s give a compact intuitive
answer: We know from the “correspondence principle” of Quantum Mechanics that the center of
motion of a wave packet can be obtained from classical mechanics by considering the quantum
Hamiltonian and rendering it “classical” by replacing −ih̄∇ with the momentum h̄k. Thus, we can
consider the equivalent classical Hamiltonian stemming from Eq. (8.18):

Hcl(p,r) = E(p/h̄)+V(ext)(r).

Then, from the Hamilton equations of motion (see page 7) and recall that p = h̄k):

v =
dr
dt

= ∇pE(p/h̄) =
1
h̄
∇kE(k) ,

and

dk
dt

=
1
h̄

dp
dt

=−1
h̄
∇V(ext)(r) =

F
h̄
=− e

h̄
E ,

where F is the (conservative) force from the potential V and E is the electric field.
This shows that the electron velocity is simply the group velocity of a packet, as for electromagnetic

waves with dispersion ω(k) = E(k)/h̄ and the electron “crystal momentum” h̄k (which is not the
“real momentum” since adding any G-vector to it does not alter anything, simply shifting the electron
to another equivalent BZ) evolves with time as if it were the “real” momentum. Clearly, this nice
picture must be justified more rigorously, since the assumption that we can use the equivalent classical
Hamiltonian Hcl is, so far, unjustified.

We shall now prove the following two “acceleration theorems”:

Theorem 1. If a spatially and temporally constant electric field E is applied to the crystal, then

dk
dt

=− e
h̄

E , (8.21)

and the electron remains in the same band.



8.1 Equations of Motion for Electrons in Crystals 169

Theorem 2. If 〈v〉 is the expectation value of the electron velocity in a state |nk〉, then:

〈v〉= i
h̄
〈[̂H, r̂]〉= 1

h̄
∇kEn(k) , (8.22)

in the absence of magnetic fields.

Consider first Theorem 2, since its validity will be used to prove Theorem 1.

Proof of Theorem 2. Consider the matrix element

〈nk|[̂H, r̂]|nk〉=
∫

u(n)∗k (r)e−ik·r [̂H, r̂] u(n)k (r)eik·r dr . (8.23)

Now,

∇k(e
−ik·r

̂H eik·r ) =−i e−ik·r r ̂H eik·r + i e−ik·r
̂H r eik·r = i e−ik·r [̂H,r] eik·r . (8.24)

Now note that

H(p,r) eik·r = eik·r H(p+k,r) .

Thus:

〈nk|[̂H, r̂]|nk〉=−i
∫

u(n)∗k (r) ∇k(e
−ik·r

̂H eik·r) u(n)k (r) dr

=−i
∫

u(n)∗k (r) ∇k[̂H(p+k,r)] u(n)k (r) dr . (8.25)

Now we use what’s known as the Feynman or Hellmann–Feynman theorem: If the Hamiltonian ̂H
depends on a parameter λ , then:

∂
∂λ

〈nk|̂H|nk〉=
〈

nk

∣

∣

∣

∣

∣

∂ ̂H
∂λ

∣

∣

∣

∣

∣

nk

〉

. (8.26)

Thus Eq. (8.25) becomes −i∇kEn(k) and we get the final result:

〈v〉= i
h̄
〈nk|[̂H, r̂]|nk〉= 1

h̄
∇kEn(k) . (8.27)

Proof of Theorem 1. If the external force due to the field is −eE, the rate at which the electron energy
(call it W to avoid confusion with the magnitude E of the electric field) will be

dW
dt

=−e E · 〈v(k)〉=− e
h̄

E · ∇kEn(k) . (8.28)

Since En(k) does not depend on time, being the dispersion of the crystal, any time dependence of the
electron energy must be associated with the time variation of k. Thus we must also have

dW
dt

=
dk
dt

· ∇kEn(k) . (8.29)
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So, from Eqs. (8.28) and (8.29):

dk
dt

=− e
h̄

E , (8.30)

or, writing F =−eE for the force,

d(h̄k)
dt

= F . (8.31)

This result may be derived more rigorously using time-dependent perturbation theory using −eE ·r as
perturbing Hamiltonian (see Ridley’s text [2], pages 48 and 49 or Kittel’s book [3]) or expressing the
electric field in terms of a vector potential and “Houston accelerated waves” (See Kittel’s book again,
same chapter).
∗ Let’s reproduce here Kittel’s first proof: When using perturbation theory, it would be tempting to
account for the presence of the electric field via a scalar potential φ = −er ·F. But the fact that this
potential is unbound would create some mathematical problems. Instead, let’s express the electric
field in terms of a vector potential

A =−E t , (8.32)

which yields the electric field via the general expression:

E =−∇φ − ∂A
∂ t

. (8.33)

Then the Hamiltonian can be written as:

̂H =
1

2m
(p+ eA)2 +V(lat)(r) =

1
2m

(p+ eEt)2 +V(lat)(r) . (8.34)

In writing Eq. (8.34) we have employed what is known as the minimal coupling: In the presence
of an electromagnetic field, the Schrödinger equation for a single electron can be written by simply
replacing the momentum operator p̂ with p̂+eA. This ultimately originates from considerations based
on the theory of special relativity, as briefly discussed in Appendix C.

The Hamiltonian given by Eq. (8.34) retains the periodicity of the lattice, thanks to the fact that we
have used the vector potential. Therefore, the solutions must have the Bloch form

φk(r,E, t) = eik·r u(n)k (r,E, t) , (8.35)

where t should be viewed as a parameter. Note that in this formulation k remains a good quantum
number, unaffected by the field (this is indeed the scheme often used in the context of “accelerated”
or “Houston” waves). Now notice that the kinetic energy term in the Hamiltonian acting on such a
Bloch wave will be (p+ eEt+ h̄k)2/(2m). If we now compare the kinetic energy terms for the two

Bloch waves u(n)k (r,E, t) and u(n)k′ (r,E, t
′), we see that the Hamiltonians will be equal only if

eEt+ h̄k = eEt′+ h̄k′ , (8.36)

or

dk
dt

=− e
h̄

E (8.37)
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so that states at k, t are identical to those at k′, t′. Thus, an electron which is in the state k at t=0, at a
later time t will still be in the same state k, but all of its other properties, including its kinetic energy,
will be those corresponding to the state which was originally k−Et/h̄.

Finally, an “adiabatic” argument due to Kohn and Shockley shows that the electron remains in the
same band if the change of the Hamiltonian during a period 1/ωnm (where h̄ωnm = En(k)−Em(k) is
the “interband” energy) is smaller than h̄ωnm itself,

∂ ̂H
∂ t

1
ωnm

<< h̄ωnm , (8.38)

condition which is met very easily. Note, however, that interband tunneling is the most notable
exception to this “rule.”

For electrons in nondegenerate bands the result (8.30) may be generalized to the case of weak
magnetic fields B:

dk
dt

=− e
h̄
(E+v×B) . (8.39)

Recall that we have called “crystal momentum” the quantity h̄k. It is the momentum associated
with the envelope, ignoring the (much larger) momentum associated with the cell-periodic Bloch
component uk. If we assume parabolic bands, E(k) = h̄2k2/(2m∗), we will have v(k) = h̄k/m∗, or
h̄k = m∗v (having indicated simply with v the group velocity. The total momentum, instead, will be
p = mv, so that the ratio between the crystal and total momentum will simply be m∗/m.

Note that for holes the picture is the same: The top of the VB has a “negative” effective mass.
However, talking about “missing electrons” (“holes”) is more convenient and this is accomplished by
considering these fictitious particles as positively charged (that is, moving in the opposite directions
as electrons under an external field), and by “flipping” all signs in the equations of motion, thus
recovering a positive mass. Unfortunately, the structure of the valence bands is more complicated: The
parabolic approximation breaks down very early, the effective mass is highly anisotropic, and three
bands are energetically very close (degenerate at the center of the BZ, spin–orbit coupling reducing
the degeneracy to two bands). Thus, one needs to consider always at two bands (the so-called heavy
and light hole bands), often three (the “split-off” band).

8.2 Some Important Applications

We now discuss several important applications of the simplified description of the electron dynamics
we have just outlined.

8.2.1 The Two-Dimensional Electron Gas

Chapter 7 has discussed in detail the band structure of low-dimensionality structures. Sections 7.2.1
and 7.2.2, in particular, have dealt with thin layers of Si and III–V compound semiconductors also in
the presence of a confining vertical field. The envelope approximation we have just considered actually
permits vastly simpler calculations if we are content with limiting our attention to low-energy states
(that is, electronic states whose energy is only a few thermal energies, kBT , away from the minimum of
the conduction band or the maximum of the valence band(s)). This is an interesting range of energies,
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since electronic transport in semiconductor structures involves, usually, only electrons or holes close
to equilibrium, so with a small kinetic energy.

Consider, for example, a III–V hetero-structure like the complicated multi-layer shown in Fig. 7.12.
If we are interested only in low-energy states, it is enough to consider the InGaAs layer. Indeed, in any
device (transistor or injection laser) based on such a structure, these low-energy states will be the most
occupied and considering only the active role of this layer will provide a sufficient physical picture in
most cases. If the potential barriers (the conduction band offset) confining the electrons in this layer
are sufficiently larger than the electron energies of interest, we can approximate the InGaAs quantum
well (QW) with the prototypical “box” of elementary texts of Quantum Mechanics, assuming infinite
potential “walls” at both sides.

Now, consider Eq. (8.18). The minimum of the conduction band of InGaAs occurs at the Γ point.
The high symmetry of this point implies that, at low energies, a single isotropic, effective mass m∗ will
suffice to approximate the electron dispersion. Therefore, in the form given by Eq. (8.19), and having
separated the variables in the usual way, the envelope equation Eq. (8.18) describes free electrons
moving on the plane of the interfaces (the 2DEG indeed) using a one-dimensional Schrödinger
equation for a free electron in a “box,” (the only difference being a smaller mass, m∗). This causes the
quantum confinement that we had painfully obtained in Sect. 7.2.2. In the limited range of validity
implied by the validity Eq. (8.18) and of the approximations we have just made to simplify the
hetero-structure, the problem has been converted from a numerically laborious supercell/empirical
pseudopotential problem to the solution of the Schrödinger equation for an electron in a box, an easy
homework problem for an undergraduate course of Quantum Mechanics.

Indeed, this simple approach has guided the development of electronic devices based on III–
V hetero-structures. Clearly, subtle problems abound: How do we match the wavefunctions at the
interfaces between different materials (say, between InGaAs and InP in our case), if we wish
to account for the finite height of the confining barriers? How do we account for nonparabolic
corrections, extremely strong in small-mass, small-gap semiconductors, if the well is very narrow
and even the ground state is at an energy high enough to require nonparabolic corrections? The
literature on the subject is extremely vast. Ultimately, for the very narrow nanostructures of current
interest, accurate “atomistic” calculations based on empirical pseudopotentials or tight-binding should
guide our study. But Eq. (8.18) is a tool that can be used to obtain qualitatively (and, sometimes,
quantitatively) correct information with little effort.

Another important example has been considered in Sect. 7.2.1: The case of electrons in a Si
inversion layer. As shown in Fig. 8.1, the potential energy at the Si–SiO2 interface in a MOSFET
exhibits a “notch.” If we consider the wavelength of an electron at equilibrium (called its “thermal
wavelength”), this is given by the de Broglie relation λth = h/pth = 2π/kth, where pth = h̄kth is the
average momentum of electrons at thermal equilibrium. For the average carrier energy at thermal
equilibrium we have Eth = (3/2)kBT = h̄2k2

th/(2m∗), so that, at 300 K,

λth =
2π h̄

(3m∗kBT)1/2
≈ 6.2

(m0

m∗
)1/2

nm. (8.40)

Consider the Si–SiO2 interface in inversion/strong inversion. The electron density ns (the “sheet
density” per unit area) is of the order of 1011-to-1013 cm−2, corresponding to an interface field
Fs = ens/εs of the order of 104-to-106 V/cm as it can be easily derived from Gauss law. Thus, an
electron of thermal energy ((3/2)kBT ≈ 40 meV) will be “squeezed” by the field against the interface
over a confining distance Δz ≈ 3kBT/(2Fs), very much like the particle in a box considered a few
paragraphs above. This distance is of the order of 40-to-0.4 nm, comparable or even smaller than the
electron thermal wavelength. We are not allowed to ignore the wave-like nature of electrons when
we confine them so tightly: We expect that discrete energy levels will emerge from the confinement.
If we confine a particle in a region of width Δz, by Heisenberg’s principle the particle momentum
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Fig. 8.1 Top: Self-consistent potential energy (black solid line) and electron wavefunctions ζμ (z) (color lines; solid for
the “unprimed ladder,” dashed for the “primed” ladder) for the three lowest-energy eigenstates in a Si inversion layer.
The electron sheet density is 6×1012 cm−2. Middle: An enlarged version of the plot at the top. Bottom: Comparison of
the electron density distribution calculated classically (that is, ignoring quantization) and quantum mechanically

will suffer an uncertainty Δk ∼ 1/Δz, so that the confined particle will have a minimum energy
E0 ∼ h̄2Δk2/(2m∗)∼ h̄2/(2Δz2m∗), called the “zero-point energy.” In strong inversion this energy may
be comparable to (or even larger than) the thermal energy, and quantum effects due to the confinement
should not be ignored. The major changes to the classical picture that these quantum-mechanical
correction provides are

1. The electron charge in inversion layers is removed somewhat (typically by a length Δt of the order
of 1.0 nm) from the interface. This causes a reduction of the gate capacitance in accumulation, Cox,
since the “effective” thickness of the oxide is increased by the amount εox/εSiΔt.

2. The threshold voltage shifts to higher values, since we must move the Fermi level in the inversion
layer to an energy higher by an amount ∼ E0 (the “zero-point” energy mentioned above).

3. The properties of electron transport (and so, in particular, the electron mobility) are modified, since
both the “shape” of the wavefunctions and the density of states are modified.

∗ The rigorous treatment of this problem is somewhat laborious, since it requires the solution of
a coupled, nonlinear problem that requires an iterative approach. It is convenient to proceeds as
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follows: The envelope equation, Eq. (8.18), contains an external potential energy term, V(ext)(r) =
−eφ (ext) (φ (ext) is the electrostatic potential), which must be obtained from a solution of Poisson
equation

∇ · [ε∇V(ext)(r)] = e2 [p(r)−NA(r)−n(r)] , (8.41)

where NA, n, and p are the volume densities of the acceptors (p-type doping) impurities, and of the
free electrons, and holes, respectively. The acceptor density is assumed as constant, whereas p can be
treated using a classical model. We review it here for convenience.

p =
1

2π2

(

2mh

h̄2

)3/2 ∫ ∞

0
dE E1/2 f [E(k)]

=
1
4

(

2m∗kBT

π h̄2

)3/2 2√
π

∫ ∞

0

x1/2

1+ ex−η dx , (8.42)

where to reach the last expression we have changed the integration variable to x = E/(kBT), we
have set η = EF/(kBT). Also, mh is some approximation for the hole effective mass, EF is the Fermi
level measured from the top of the valence band (so EF(x) = V(x)−Egap) and we have multiplied
and divided by 2/

√
π to recover the expression for the pre-factor usually employed in the literature,

labeled Nv below, the “effective density of states” in the valence band. This integral cannot be solved
in closed form, but it is a well-known integral (appropriately called Fermi–Dirac integral of order 1/2
and labeled by F1/2(η)). So, the hole density is usually written in terms of this integral as:

p =
1
4

(

2mhkBT

π h̄2

)3/2

F1/2(η) = Nv F1/2(η) , (8.43)

having defined Nv = (1/4)[(2mhkBT)/(π h̄2)]3/2. In the limit of nondegenerate statistics (which we
can assume here for NA < 1018 cm−3 or so), η is very large and negative so that:

2√
π

∫ ∞

0

x1/2

1+ ex−η dx ≈ 2√
π

∫ ∞

0
x1/2 eη−x dx = eη , (8.44)

and:

p(z)≈ Nv e[V
(ext)(z)−Egap]/(kBT) , (8.45)

when measuring energies from the Fermi level.
Now let us return to the problem at hand. Because of the symmetry of the problem, assuming that

the z axis is perpendicular to the plane of the Si–SiO2 interface, assuming to be on the technological
important {1,0,0} plane, we see that all dependent variables of the problem depend only on z.
Therefore, Eq. (8.41) simplifies to:

d
dz

[

ε
d
dz

V(ext)(z)

]

= e2 [p(z)−NA −n(z)] . (8.46)

We can also separate variables in Eq. (8.18), writing the wavefunctions as:

ψ(r) =
1

A1/2
eiK·R ζ (z) . (8.47)
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Here A is the normalization area on the (x,y) plane of the interface, on which electrons move freely
as a 2DEG, and K and R denote the two-dimensional wavevector and coordinate on this plane. The
function ζ (z) is a solution, yet to be determined, of the equation:

− h̄2

2mz

d2

dz2 ζ (z)+V(ext)(z)ζ (z) = E ζ (z) . (8.48)

The quantity mz requires a brief discussion. For the {1,0,0} interface we have assumed, Si exhibits six
equivalent minima of the conduction band, four with the light transverse effective mass, mT, along z,
and two with the heavy longitudinal effective mass, mL, along that direction. Therefore, we must solve
two different Eq. (8.48), one for each value, mT or mL, for the mass mz. From each of these eigenvalue
problems we will obtain two “ladders” of eigenstates, usually termed the “unprimed” and “primed”
ladders, depending on whether mz = mT or mz = mL. The calculation of the electron charge density is
a bit complicated. Having solved the two Eq. (8.48), we must calculate which states are occupied at
equilibrium using the Fermi–Dirac distribution. This, regrettably, requires another long digression.

Let’s proceed as follows. Consider a fully closed system with a discrete spectrum (such as a QW or
inversion layer) with eigenvalues and eigenfunctions Eμ and ζμ , respectively. Let’s also assume that
we are at thermal equilibrium at temperature T. Then the occupation of each state will be determined
by the Fermi–Dirac distribution. In 1D, the occupation of a state at energy Eμ will be simply given by
fFD(Eμ) = {1+ exp[(Eμ −EF)/(kBT)]}−1 where EF is the Fermi level and kB is Boltzmann constant.
However, this is not true for a 3D system: In this case, there are two more degrees of freedom labeled
by a continuous “index,” the in-plane wavevector K. Thus, we must first calculate the density of states
of our system for a given total energy E, find the Fermi energy for a given electron density, and finally,
calculate the spatial distribution of the electric charge.

The density of states (DoS) at a given energy E is defined as:

D(E) = 2∑
μ

∫

dK
(2π)2 δ [Eμ(K)−E] , (8.49)

where Eμ(K) =Eμ− h̄2K2
x/(2mx)− h̄2K2

y/(2my), the first factor of 2 is due to spin degeneracy, and mx

and my are the appropriate masses on the (x,y)-plane. Here the energy Eμ is an eigenvalue of the 1D
Schrödinger problem discussed above, the additional term being the kinetic energy in the “other” two
dimensions in which the 2D electron gas (2DEG) is confined. A simple free-electron-like dispersion
has been assumed with a mass m which we may regard as an “effective mass.” The integration of
Eq. (8.49) is easily done:

D(E) =
2

(2π)2∑
μ

∫ ∞

0
dKK

∫ 2π

0
dφ δ [Eμ(K)−E]

=
1
π ∑μ

∫ ∞

0
dE′ δ [Eμ +E′ −E] =

md

π h̄2 ∑
μ
θ(E−Eμ) , (8.50)

where θ(x) is the step function equal to zero if x < 0, to 1 otherwise. The quantity md =
√

mxmy is the
DOS mass on the (x,y) plane. The relation between the electron density and the Fermi level can be
obtained in a similar way:

n = 2∑
μ

∫

dK
(2π)2 fFD[Eμ(K)] , (8.51)
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which can be integrated as follows:

n =
2

(2π)2∑
μ

∫ ∞

0
dKK

∫ 2π

0
dφ fFD[Eμ(K)]

=
mdkBT

π h̄2 ∑
μ

∫ ∞

(Eμ−EF)/(kBT)
dη

1
1+ eη

, (8.52)

having introduced the integration variable η = (Eμ + E(K)− EF)/(kBT). Thus, multiplying the
numerator and denominator of the integrand in the last expression by e−η :

n =
mdkBT

π h̄2 ∑
μ

∫ ∞

(Eμ−EF)/(kBT)
dη

e−η

1+ e−η

=
mdkBT

π h̄2 ∑
μ

ln
[

1+ e(EF−Eμ )/(kBT)
]

. (8.53)

This expression allows us to determine the Fermi level EF for a given electron density n. Newton’s
method, the bisection method, or a combination of these two methods (i.e., bisection at first, then a
switch to Newton’s method once we are getting close to the solution) can be used. Once the Fermi
energy has been obtained, the density of electrons in an eigenlevel μ can be calculated from:

nμ =
mdkBT

π h̄2 ln
[

1+ e(EF−Eμ )/(kBT)
]

, (8.54)

so the electron density distribution will be:

n(z) =
mdkBT

π h̄2 ∑
μ

ln
[

1+ e(EF−Eμ )/(kBT)
]

|ζμ(z)|2 , (8.55)

since any state in the level μ (that is, regardless of the value of the in-plane wavevector K) will
contribute with the same probability distribution |ζμ(z)|2.

We are finally close to the end! We start from some initial guess for the external potential V(ext)(z)
taking, for example, from the depletion approximation [4]. We solve Eq. (8.48) twice, once for each
value of the mass mz. We insert the eigenvalues Eμ and eigen-wavefunction, ζμ(z) just obtained into
Eq. (8.55) to obtain the electron density n(z) by summing over the twofold and fourfold degenerate
valleys (one per mass mz). The DOS mass entering this equation, md, is just mT for the ellipsoids
with effective mass mL, and (mlmT)

1/2 for the ellipsoids with effective mass mL (see Problem 8.1.).
We then use Eq. (8.44) [or Eq. (8.45), if appropriate] to calculate p(z) and insert it, together with
n(z), into the Poisson equation, Eq. (8.46). The “new” potential energy, V(ext)(z), is inserted back
into the Schrödinger equation Eq. (8.48) and this iterative procedure continues until some criterion
of convergence is met. Details are given in the review of 2DEG by Ando and co-workers [5]. Here
we show the result in Fig. 8.1. This figures shows not only the potential energy obtained from this
self-consistent procedure, but also comparison between the electron distribution obtained quantum
mechanically and classically. Quantum effects result in a shift of the electron charge away from the
interface, an example of the common “quantum repulsion from a barrier,” that has important practical
effects.
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8.2.2 Zener–Bloch Oscillations and the Stark Ladder

Considering a crystal with a homogeneous electric field, Eq. (8.21) can be used to evaluate the time
dependence of the electron wavevector:

k(t) =− e
h̄

E t . (8.56)

But we know that periodicity holds in reciprocal space also. Under the constant acceleration the
wavevector will eventually exit the first BZ. If we adopt the reduced-zone scheme, it will return inside
the BZ. Thus, the electron velocity will reverse sign and the electron will undergo spatial oscillations.
These are called Zener–Bloch oscillations. Assume for simplicity that we apply a field along the x-
axis, so that only kx changes with time with periodicity 2π/a. The oscillation will have a period T
such that

eE
h̄

T =
2π
a

, (8.57)

corresponding to a frequency

ωZB =
aeE

h̄
. (8.58)

This implies that electrons are “trapped” into quantized levels of spatial extent LZB such that 2eELZB =
Eband, where Eband is the width of the band, thus:

LZB =
Eband

2eE
. (8.59)

Figure 8.2 illustrates the origin of these “levels,” effect usually referred to as the “Stark ladder,” for
the obvious similarity to the Stark effect in atoms. For a typical semiconductor a ≈ 0.5 nm, so from
Eq. (8.58) for an electric field of strength ≈105 V/cm, we have ωZB ≈ 1013/s. Note that in this picture
the application of an electric field does not result in charge transport! The electrons simply oscillate
with spatial amplitude given by LZB above but, on average, they do not move. These oscillations
also provide the potential for excellent generators of THz radiation. The reason why Zener–Bloch
oscillations have not been observed experimentally (despite strong efforts) and why crystals do carry
current is obviously due to the existence of scattering. In order for Zener–Bloch oscillations to occur,
the electron must be accelerated without undergoing collisions for times 1/ωZB longer than the
average collision time τ , or

ωZBτ >> 1. (8.60)

Usually τ is shorter than 10−12 s, often as short as 10−14 s, so that ZB oscillations are prevented from
occurring.

8.2.3 Landau Levels

Another important application of the equation describing the electron dynamics is the study of their
behavior in the presence of a magnetic field. From classical electrodynamics we know that a charged
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Fig. 8.2 Schematic
illustration of the Stark
ladder
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particle moving on the (x,y) plane, in the presence of a uniform and constant magnetic field along the
z axis, moves along circular orbits (cyclotron orbits) on the plane. In particular, in a finite sample, the
Lorentz force acting on the electrons results in the “Hall effect”: A voltage arises along the y direction
when an electric field is applied along the x direction. This corresponds to what is called the “Hall
conductance” σxy. A quantum-mechanical treatment of this system yields different and interesting
results. The orbital energy is quantized into what are called “Landau levels” [6] that are degenerate:
Many electrons can occupy the same orbit. The number of states corresponding to the same cyclotron
radius (or Landau level) increases linearly with the strength of the magnetic field. It is this quantization
of the orbits that results in the quantization of the Hall conductance of a 2DEG: Changing the density
of the 2D electrons by applying a “gate” bias, the Hall conductance σxy exhibits plateaus in steps of
the “universal conductance” e2/h (h is the Planck’s constant). This is called the “integer Quantum
Hall effect” (IQHE) [7]. It was observed for the first time by von Klitzing in 1978 (and interpreted in
1980). For this discovery he was awarded the Nobel Prize for Physics 5 years later.

If we consider the effect of a magnetic field, we can employ Eq. (8.39) to look at the time evolution
of the electron wavevector. Let’s assume that the magnetic field B is a uniform field along the z
direction. Then, the equations of motion read (in SI units):

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

h̄
dkx

dt
=− eBvy

h̄
dky

dt
=eBvx

h̄
dkz

dt
=0.

(8.61)

Assuming parabolic bands (E = h̄2k2/2m∗), the equations for the x and y components of the
wavevector become
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⎧

⎪

⎪

⎨

⎪

⎪

⎩

dkx

dt
=− eB

m∗ ky

dky

dt
=

eB
m∗ kx.

(8.62)

Taking the time derivative of one equation and inserting into the other we get

⎧

⎪

⎪

⎨

⎪

⎪

⎩

d2kx

dt2 =−ω2
c kx

d2ky

dt2 =−ω2
c ky,

(8.63)

whereωc = eB/m∗ is the cyclotron frequency. We see that electrons move along closed orbits k2
x +k2

y =
constant in the x,y-plane, while translating along the z-axis as free particles. So far this is exactly the
same picture which describes the motion of a classical electron. To account for quantum effects we
must consider the envelope wave equation [see Eq. (8.19)]:

1
2m∗ [p̂+ eA]2φ(r) = E φ(r) , (8.64)

where A is the vector potential

A =

(

−y
B
2
,x

B
2
,0

)

. (8.65)

Actually, Eq. (8.19) was derived under a different set of circumstances: Here we consider a
perturbation of the kinetic energy, while Eq. (8.19) was derived considering a perturbation of the
potential energy. So, it is not at all obvious that we may use the effective mass approximation.
Nevertheless, perturbation theory may be used to show that Eq. (8.64) is approximately correct (see
Ridley’s text for a proof). Then, inserting the expression (8.65) into Eq. (8.64), we have

̂H =
1

2m∗ [p̂+ eA]2 =
p̂2

2m∗ +
eBh̄
4m∗ (−ykx + xky)+

e2B2

8m∗ (x
2 + y2) . (8.66)

With a few manipulations of this expression, Eq. (8.64) can be rewritten as:

{

p̂2

2m∗ +
1

2m∗

[

(

1
2

m∗ωcx+ h̄ky

)2

+

(

1
2

m∗ωcy− h̄kx

)2
]}

φ(r)

=

[

E+
h̄2

2m∗ (k
2
x + k2

y)

]

φ(r) . (8.67)

As remarked by Ridley [2], apart for the term p̂2/(2m∗), this is the equation for a classical particle
orbiting with frequency ωc on the x,y-plane. Thus, we can rewrite this equation as:

[

p̂2

2m∗ +
1
2

m∗ωcR2
]

φ(r) = E′ φ(r) , (8.68)

where E′ = E+ h̄2k2
z/(2m∗), R is the radius of the classical orbit, and we know that k2

x + k2
y = k2

R is a
constant. The energy E′ will be the energy of the uniform translation along the z axis, h̄2k2

z/(2m∗), plus
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the energy—dependent on a particular value of kR—due to the orbital motion. We can now reformulate
Eq. (8.68) in order to show more clearly the separation of these two motions:

[

p̂2
z

2m∗ +
̂P2

2m∗ +
1
2

m∗ωcR2

]

φ(r) =
(

E+
h̄2k2

z

2m∗

)

φ(r) , (8.69)

where ̂P is the momentum on the x,y-plane. If we separate the orbital (x,y) variables from the z
variable, we can write φ(r) = ζ (z)X(R) and we see that the equation for ζ describes simply the
uniform motion along z, while the equation for X is the equation of a harmonic oscillator. Thus the
total energy will be the sum of the two terms:

E′ =
h̄2k2

z

2m∗ +

(

n+
1
2

)

h̄ωc , (8.70)

and

φ(r) = Ceikzz Hn

[

(

m∗ω
h̄

R

)1/2
]

e−m∗ωcR2/(2h̄) , (8.71)

where Hn is the Hermite polynomial of nth degree.
The energy levels labeled by the quantum number n are called “Landau levels.” They are clearly

degenerate, since we can select kx and ky in many ways while obtaining the same “orbital” energy. We
can view these states as the classical states, each kR giving a different energy, now “lumped” together
by quantum effects. In order to estimate the resulting degeneracy, gB, note that the number of states in
a “shell” of width ΔkR in the kx,ky-plane will be, as usual:

gB =
1

(2π)2 2πkRΔkR =
kRΔkR

2π
. (8.72)

On the other hand, the total change of the “orbital” energy h̄2k2
R/(2m∗) as we vary kR over this shell

must be equal to the energy “jump” h̄ωc:

d
dkR

(

h̄2k2
R

2m∗

)

ΔkR = h̄ωc , (8.73)

which implies

kRΔkR =
m∗

h̄
ωc . (8.74)

From Eqs. (8.72) and (8.74) we get

gB =
1

2π
m∗

h̄
ωc =

eB
2π h̄

. (8.75)

As in the case of Zener–Bloch oscillations, Landau levels may be observed only if the electron
manages to orbit at least once before scattering:

ωcτ >> 1 or μB >> 1 , (8.76)

where μ = eτ/m∗ is the electron mobility (as we shall see later). This condition is met relatively easily
at low temperatures and with magnetic fields of a few Tesla.
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8.2.4 Plasma Oscillations

Let’s consider a semiconductor doped n-type with a density ND donors per cm3. By charge neutrality
obviously we will have a density n0 = ND of electrons in the conduction band. In this average picture
nothing interesting happens. However, if we bring the semiconductor at a nonzero temperature, the
thermal, random motion of the electrons in the background of positive charges (we assume here the
“jellium” model, in which the dopants are taken to be a uniform “jell-O” background of charge) will
cause an occasional deviation of the electron density, δn = n−n0, in some regions of the crystal. How
do these deviations δn vary with time?

Let’s write the equations which control the dynamics of the electrons. First, we have the equation
of motion

dk
dt

=− e
h̄

E , (8.77)

(here E is the electric field). Second, we have Gauss law,

∇ ·E =− e
εs
δn , (8.78)

(where εs is the dielectric constant of the semiconductor) which relates the divergence of the electric
field to the charge density, and, finally, we have charge conservation expressed by the continuity
equation

dn
dt

=−∇ · (vn) . (8.79)

Let’s assume parabolic bands, so that the electron velocity is simply v = h̄k/m∗. Let’s take the time
derivative of Eq. (8.79):

d2δn
dt2 =− d

dt
∇ · (vn) =−∇ · d

dt
(vn) . (8.80)

Let’s ignore second-order effects, so that we can ignore the derivatives of n on the rhs of the last
equation. Then:

d2δn
dt2 =−∇ ·

(

dv
dt

n

)

≈− h̄
m∗ n0 ∇ ·

(

dk
dt

)

. (8.81)

Let’s now use Eqs. (8.77) and (8.78) on the rhs of this equation:

d2δn
dt2 =

en0

m∗ ∇ ·E =− e2n0

εsm∗ δn . (8.82)

Introducing the “Plasma frequency” ω2
p = en0/(εsm∗) we can write this equation as:

d2δn
dt2 =−ω2

p δn, (8.83)

with solution δn ∝ eiωpt which shows that the electron density δn oscillates with frequency ωp. We
should view this as an “eigenmode” of the gas of conduction electrons. When excited by thermal
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effects or other external perturbations, the electron gas exhibits a “collective behavior”: Density-waves
of electrons travel through the crystal, all at a frequency ωp. This is the first example we meet of an
elementary excitation of the solid. We shall revisit this concept, as well as the particular examples of
plasma waves, in the following.

8.2.5 Shallow-Impurity States

The last example deals with the use of the “envelope” approximation, Eq. (8.18). It is to study this
particular problem that Luttinger and Kohn first derived this equation. In doped semiconductors
ionized impurities are introduced so that one obtains a controllable density of electrons in the
conduction band (or holes in the valence bands, for p-type doping). How can we describe the electronic
states associated with each impurity? How can we estimate the ionization energy of the dopant atoms,
so that we can understand under which conditions the impurities will be ionized? This is actually the
problem which Kohn and Luttinger studied to derive Eq. (8.18) itself. This is indeed the prototypical
problem for which the approximations made earlier to derive the envelope equation hold true: The
potential of the impurity can be approximately described as

Vimp(r)≈− e
4πεsr

, (8.84)

which is exactly the potential of the hydrogen atom, with one major difference: The dielectric constant
of semiconductors is about a factor of 10 (often more) larger than the permittivity of vacuum. Thus,
the potential will be a factor of 10 (often more) weaker. The radius of the ground state of the hydrogen
atom (the Bohr radius) is given by

aB =
4πε0h̄2

e2m
≈ 0.05nm, (8.85)

while the energy of the ground state (the ionization energy) is the Rydberg constant:

Ry =
1
2

(

e2

4πε0

)2
m

h̄2 ≈ 13.6eV. (8.86)

We see that in a semiconductor the radius of the “narrowest” orbit will be a factor of (m/m∗)(εs/ε0)∼
102 larger, since the effective mass is often a factor of 10 smaller than the electron mass. This gives
orbital radii of tens of nm, several cells wide. Conversely, the “effective Rydberg,” Ry∗, will be a factor
of (m/m∗)(εs/ε0)

2 ∼ 103 smaller, and so of the order of a few tens of meV.
These estimates should be viewed as “sanity” checks to justify the use of the hydrogen-like

potential (8.84): The orbits are large enough to allow the use of the macroscopic dielectric constant
and ignore anisotropic effects which are surely going to matter at small distances (remnants of the
sp3 tetragonal bond-charge). The potential at these large distances will be weak and slowly varying,
so that the use of the envelope equation (8.18) is fully justified. The small ionization energies are
consistent with our naïve expectation that the dopants will be ionized at all but the lowest (<20 K or
so) temperatures.
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Problems

8.1. (DOS Effective Mass in Si) Show that the two-dimensional density-of-states effective mass to
be used in Eq. (8.55) is just mT for the ellipsoids with effective mass mz = mL, it is (mLmT)

1/2 for the
ellipsoids with effective mass mz = mT, as stated in the text.
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Chapter 9
Elementary Excitations in Solids

9.1 Lagrangian and Hamiltonian Formulation for Fields

Second quantization is necessary when we want to study many-particle effects. Historically, it was
born out of the relativistic description of particles, since ordinary Quantum Mechanics (QM) could
not handle it: The number of particles is fixed in conventional QM, but a relativistic description must
allow for creation and annihilation of particles. It soon became apparent that this new description
was extremely useful in describing solid-state phenomena and statistical mechanics, since second
quantization, dealing with fields, is intrinsically a description of systems with infinitely many (. . . well,
very many indeed in solid-state systems, albeit not infinitely many. . . ) degrees of freedom. It is thus
very well suited to describe collective phenomena as elementary excitations above the ground state:
Elementary excitations—such as phonons, plasmons, magnons, etc.—can be created (emissions) and
destroyed (absorption), similarly to relativistic particles. In addition, for small perturbations away
from equilibrium, the Hamiltonian can often be linearized and algebraically manipulated so that it
takes the form of the Hamiltonian of a collection of harmonic oscillators (as we shall see for free
electrons, plasmons, and phonons below). These manipulations often take the name of Bogoliubov
transformations. [These have been first introduced in 1947 by Nicolai Bogoliubov in the context of
superfluidity [1]. Since his original paper is in Russian, the interested reader may find the subject
amply discussed, in English, in the text by Blaizot and Ripka [2]]. So, the whole machinery of simple
harmonic oscillators can be used to handle the much more complicated collective excitations.

In “first quantization” (i.e., conventional QM), we start by describing the system classically in the
Lagrangian form. We then translate the description into the Hamiltonian form, so that the equations of
motion are expressed in terms of Poisson brackets between the Hamiltonian, the dynamical variables
(observables), and the canonical coordinates (generalized coordinates and conjugate momenta).
Quantization is finally performed by promoting the dynamic variables to operators on a suitable
Hilbert space and converting the Poisson brackets to commutators. In second quantization, we follow
a similar route: Think of a system as described by the generalized coordinates φi, where i runs over
the degrees of freedom of the system. As the number of degrees of freedom approaches infinity, we
replace the discrete index i with a continuum of indices r and our generalized coordinates become a
field φ(r). Thus, we start from a Lagrangian description of the system in terms of Lagrangian fields (as
done, classically, in elasticity theory), convert it to a Hamiltonian description, and convert the fields to
operators on some (more complicated) Hilbert space, promoting the Poisson brackets involving fields
to commutators (or anticommutators, as discussed below).
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The use of the term “second quantization” is due to the fact that the first fields to be quantized were
solutions of the Dirac equation. Thus, the procedure appeared to be a quantization of wavefunctions,
already quantized in conventional QM, and so it seemed that we had quantized the system twice.
But this is not the right way of looking at it: What we have done is to have dropped altogether the
concept of “particle” as the primary concept and replaced it with fields, from which particles (or
“quasi-particles”, in solid-state physics) will emerge as excitations of the field away from its ground
state.

In this chapter we shall first review the Lagrangian and Hamiltonian formulations of fields
and describe the canonical quantization procedure in a general case. We shall then apply this
procedure first to the Schrödinger field. Finally, we shall discuss two examples of great relevance
to charge transport in solids: plasmons and phonons. We will conclude with the quantization of the
electromagnetic field. Although this is not an elementary excitation of a solid, the formalism is similar
and its application to condensed-matter physics are many and important.

The Lagrangian and Hamiltonian formulation of fields and their quantization can be found in many
texts of Quantum Field Theory (QFT). Lurié’s is an old-time favorite [3]. A concise but exceptionally
clear presentation in the context of non-relativistic fields can be found in Schiff’s text [4]. His rigorous
presentation represents one of very few examples that can be found in a text not exclusively dedicated
to many-body problems or to QFT. In the context of many-body problems in condensed matter theory,
the texts by Fetter and Walecka [5] and Mahan [6] are the most comprehensive and clear.

9.1.1 Classical Lagrangian Density

We discuss how, knowing how to deal with a system with a finite number of degrees of freedom,
we can describe in Lagrangian and Hamiltonian terms a system with infinitely many (actually, a
continuum) of degrees of freedom. A typical example we could consider is the displacement of a
violin string. At each location x along the string, the displacement of the string from its equilibrium
position is φ(x). We would like to find a Lagrangian and Hamiltonian description of the “plucked”
string. Clearly, we have way too many degrees of freedom, one for each location x.

Therefore, instead of defining a Lagrangian, we define a Lagrangian density at each location x:

L

(

φ ,
∂φ
∂x

,
∂φ
∂ t

,x, t

)

, (9.1)

so that the Lagrangian is obtained by integrating over the length D of the string:

L(t) =
∫ D

0
L

(

φ ,
∂φ
∂x

,
∂φ
∂ t

,x, t

)

dx. (9.2)

The equations of motion can be obtained from a generalized Hamilton principle requiring

δI = δ
∫ t2

t1
L(t) dt = δ

∫ t2

t1

∫ D

0
L

(

φ ,
∂φ
∂x

,
∂φ
∂ t

,x, t

)

dx dt = 0. (9.3)

Following a generalized version of the procedure followed before (pages 5–6), this variational
principle leads to Euler–Lagrange equations of the form

d
dt
∂L
∂ φ̇

+
d
dx

(

∂L
∂ (∂φ/∂x)

)

− ∂L
∂φ

= 0. (9.4)
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In three dimensions and in the case of several “fields” φi, the Euler–Lagrange equations become

d
dt
∂L
∂ φ̇i

+
3

∑
k=1

d
dxk

(

∂L
∂ (∂φi/∂xk)

)

− ∂L
∂φi

= 0 for j = 1,2, ... (9.5)

It is convenient to introduce the functional derivative of L with respect to φi as:

δL
δφi

=
∂L
∂φi

−
3

∑
k=1

∂
∂xk

(

∂L
∂ (∂φi/∂xk)

)

(9.6)

This notation has the advantage of allowing us to ignore the dependence of the Lagrangian density on
the spatial derivatives of φ . Similarly,

δL
δ φ̇i

=
∂L
∂ φ̇i

(9.7)

which is simpler looking, since L does not depend on the spatial gradients of φ̇i. Thus, Eq. (9.5) takes
the simpler-looking form:

d
dt
δL
δ φ̇i

− δL
δφi

= 0, (9.8)

which is formally similar to the “usual” Euler–Lagrange equations.

9.1.2 Conjugate Momenta and Classical Hamiltonian Density

We can push the analogy with the usual Hamiltonian theory even further: Let’s define the conjugate
momenta (which are fields now!):

πi =
δL
δ φ̇i

, (9.9)

and the Hamiltonian:

H =
∫

H dr, (9.10)

where H is the Hamiltonian density:

H =∑
k

πkφ̇k −L . (9.11)
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9.1.3 Hamilton’s Equations

We can show that the Euler–Lagrange equations (9.8) become the Hamilton equations:

δH
δφk

=−π̇k,
δH
δπk

= φ̇k. (9.12)

Finally, given any function A which can be represented as the integral of a density A ,

A =

∫

A dr, (9.13)

one can show that its time derivative is given by:

dA
dt

= {A,H}+ ∂A
∂ t

, (9.14)

where the symbol {. . . , . . .} is the obvious generalization of the Poisson brackets:

{A,B}=
∫

∑
k

(

δA
δφk

δB
δπk

− δA
δπk

δB
δφk

)

dr =
∫

{A((r),B(r)} dr. (9.15)

where the Poisson bracket at a given point has been defined as:

{A(r),B(r′)}=∑
k

[

δA(r)
δφk

δB(r′)
δπk

− δA(r)
δπk

δB(r′)
δφk

]

. (9.16)

Note that the following relations hold for the Poisson brackets between canonical variables (see the
analogous relations Eq. (1.30) for systems with a finite number of degrees of freedom):

{φi(r),πj(r′)}= δijδ (r− r′), {φi(r),φj(r′)}= 0, {πi(r),πj(r′)}= 0, (9.17)

9.1.4 Canonical Quantization of Fields

The procedure to be followed in order to quantize the field φ is strictly parallel to the canonical
quantization scheme outlined on pages 12–14, although several issues are significantly more
complicated:

1. We define/select/guess the Hilbert space associated with the system. As we shall see below, this
task is not as straightforward as in the case of “conventional” QM. Let’s defer to a later section a
short discussion on this issue. For the moment let’s just say that we shall work on what’s called
“Fock space” F .

2. We re-express the field equations (Maxwell equations, the wave equation for the strings of our
“quantum violin,” Dirac equation, or even Schrödinger equation, as we shall see below) in their
Hamiltonian formulations.
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3. We promote the fields φ and π to operators acting on the Hilbert space F . These operators will
satisfy the canonical commutation rules (CCRs):

[φ̂i(r), π̂j(r′)] = ih̄ δijδ (r− r′) ; [φ̂i(r), φ̂j(r′)] = 0 ; [π̂i(r), π̂j(r′)] = 0. (9.18)

4. The equation of motion will follow from the “usual” commutation rules with the Hamiltonian (in
the Heisenberg representation).

9.2 Quantization of the Schrödinger Field: Electrons

Let’s consider, as a first example, the quantization of the Schrödinger Field. This example—in addition
to being relevant since it constitutes the basic framework needed to describe also electrons in a
crystal—shows how the Hamiltonian of free (that is: non-interacting among themselves) particles can
be written as the sum of Hamiltonians of harmonic oscillators, each oscillator corresponding to one
particular single-electron state, each excited state of each oscillator representing the presence of one
particle in that particular state. The main new ingredient we shall encounter is the anticommutation
rules (instead of “commutation” rules) the electron operators must obey in order to satisfy Pauli’s
exclusion principle.

9.2.1 The Lagrangian and Hamiltonian Densities

As we said, the main idea is to consider the “usual” Schrödinger equation

ih̄
∂ψ
∂ t

=− h̄2

2m
∇2ψ+V(r, t) ψ, (9.19)

but consider the functionψ(r) as a “classical field” (much like the electric field of Maxwell’s equation,
or the displacement field of our violin string), rather than a “wavefunction.” “Classical” here means
“not yet quantized.” The next step consists in finding a Lagrangian density (a functional of the
electronic wavefunction ψ) which gives us back the Schrödinger equation. It can be shown that:

L (ψ, ψ̇, t) = ih̄ψ∗(r, t)
∂ψ(r, t)
∂ t

− h̄2

2m
∇ψ∗(r, t) ·∇ψ(r, t)−V(r, t) ψ∗(r, t) ψ(r, t). (9.20)

Indeed, using the usual variational procedure which yields the Euler equations, one finds that the field
ψ(r, t) which corresponds to an extremum of the Lagrangian L(t) =

∫

drL (ψ, ψ̇, t) is a solution of
the equation

ih̄
∂ψ
∂ t

=− h̄2

2m
∇2ψ+V(r, t) ψ, (9.21)

i.e., Schrödinger equation, which is what we wanted.
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Actually, using Eq. (9.8) one would obtain the complex conjugate of Eq. (9.21). Equivalently,
instead of varying ψ to derive Eq. (9.8) from Eq. (9.3), one may vary the complex conjugate of
Eq. (9.20) over ψ∗ and obtain the Lagrange equation

d
dt
δL ∗

δψ̇∗
i
− δL ∗

δψ∗
i
= 0, (9.22)

from which Eq. (9.21) follows.
Now we define the canonical momentum density

π(r, t) =
δL

δ (∂ψ/∂ t)
= i h̄ ψ∗(r, t), (9.23)

and the Hamiltonian density:

H (ψ,π, t) = π(r, t)
∂ψ(r, t)
∂ t

−L (r, t) =− ih̄
2m

∇π ·∇ψ− i
h̄

V πψ. (9.24)

We are now ready to quantize the field ψ .

9.2.2 Canonical Quantization and Commutation Rules

Second quantization is now performed by promoting the functions ψ and π to operators satisfying the
equal-time CCRs, which are a generalization of the canonical Poisson brackets between coordinates
and momenta in the classical description of systems with a finite number of degrees of freedom:

[ψ̂(r, t), π̂(r′, t)] = ih̄δ (3)(r− r′) ; [ψ̂(r, t), ψ̂(r′, t)] = 0 ; [π̂(r, t), π̂(r′, t)] = 0, (9.25)

which, in turn, imply

[ψ̂(r, t), ψ̂†(r′, t)] = δ (3)(r− r′) ; [ψ̂(r, t), ψ̂(r′, t)] = 0 ; [ψ̂†(r, t), ψ̂†(r′, t)] = 0. (9.26)

Note that Hamilton’s equations become

˙̂ψ =
δ ̂H
δ π̂

=
∂ ̂H
∂ π̂

−∑
k

∂ ̂H
∂ (∂ π̂/∂xk)

=− i
h̄

Vψ̂+
ih̄
2m
∇2ψ̂, (9.27)

which is the original Schrödinger equation, while the other equation,

˙̂π =−δ
̂H

δψ̂
=−∂

̂H

∂ψ̂
+∑

k

∂ ̂H
∂ (∂ψ̂/∂xk)

=
i
h̄

Vπ̂− ih̄
2m
∇2π̂, (9.28)

is simply the complex-conjugate equation, as can be seen using Eq. (9.23).
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9.2.3 The Hamiltonian as a Collection of Harmonic Oscillators

At this point, a crucial step consists in expanding the field as:

ψ̂(r, t) =∑
μ

ĉμ(t) uμ(r), (9.29)

ψ̂†(r, t) =∑
μ

ĉ†
μ(t) u∗μ(r), (9.30)

where the (numeric) functions uμ are the stationary eigenfunctions of Eq. (9.21) with eigenvalues Eμ .
The label μ will actually be a set of three labels (in addition to the degree of freedom associated to
spin, ignored for the time being), possibly belonging to a continuous spectrum, for electrons in three
dimensions. It may be just the three components of the k-vector when V = 0, it may be the set of
integers (n, l,m) for atomic orbitals, or any other set of “quantum numbers.” Now, the crucial step:
Some algebra shows that the Hamiltonian (the spatial integral of the Hamiltonian density) can be
written as:

̂H(t) =∑
μ

Eμ ĉ†
μ(t) ĉμ(t). (9.31)

∗ In order to derive this expression we need to derive the (anti)commutation rules for the operators
ĉμ and ĉ†

μ , which follow from the (anti)commutation rules for the field, Eqs. (9.25) and (9.26): As we
will discuss below, the only non-vanishing (anti)commutators are

[ĉμ , ĉ
†
μ ′ ] = δμ ,μ ′ , (9.32)

all other (anti)commutators vanishing. We also need to remark that the expression given by Eq. (9.24)
for the Hamiltonian density is ambiguous when interpreted in the operator sense, since the product AB
of two numbers can be written as AB or BA. But if these quantities are operators such that [̂A,̂B] �= 0,
we must decide which of the two expressions we should use. Commonly the “symmetrized” product
(̂ÂB+ ̂B̂A)/2 is employed. In so doing, we reach the result:

̂H(t) =∑
μ

[

Eμ ĉ†
μ(t) ĉμ(t)+

1
2

]

, (9.33)

instead of Eq. (9.31). The term 1/2 will be discussed below, but we ignore it for the moment.
It is convenient here to review the algebraic method can be used to quantize a simple harmonic

oscillator in one dimension. Its Hamiltonian is

̂H =
p̂2

2M
+

Kx̂2

2
. (9.34)

Define the operators:

â± =
1

(2M)1/2
p̂± i

(

K
2

)1/2

x̂. (9.35)
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Note that â†
+ = â− and that, using the commutation rule [p̂, x̂] =−ih̄:

̂H = â+â−+
1
2

h̄ω = â−â+− 1
2

h̄ω, (9.36)

where ω = (K/M)1/2. Note also that

[â+, â−] =−h̄ω, [̂H, â±] =±h̄ω a±. (9.37)

Using these algebraic relations, we can construct the entire spectrum of the Hamiltonian (9.34) using
the ground state and the operators a±. Indeed, suppose that we know the ground state |0〉, such that:

̂H|0〉= E0|0〉. (9.38)

Using the first of Eq. (9.37),

̂Hâ+|0〉= (E0 + h̄ω) â+|0〉, (9.39)

which shows that starting from the ground state |0〉 we can “create” excited states by applying
repeatedly the “creation” (or “raising”) operator â+. What is left to do in order to find the eigenvalues
corresponding to these states is to find the ground state energy E0. Note that

̂Hâ−|0〉= (E0 − h̄ω)â−|0〉. (9.40)

Since we have assumed that E0 is the lowest possible energy, this equation implies that â−|0〉 must
not exists, that is, â−|0〉= 0. But from the first part of Eq. (9.36),

â+â−|0〉= 0 →
(

̂H− 1
2

h̄ω
)

|0〉= 0. (9.41)

This has the form of the eigenvalue equation for the ground state, so that E0 = h̄ω/2. Therefore, the
eigenstates of ̂H are the states |n〉= ân

+|0〉 with eigenvalues En = (n+1/2)h̄ω .
The “raising” operator â+ corresponds to the creation operator ĉ†

μ , the ‘lowering’ operator â− to
the annihilation operator ĉμ defined above. They satisfy exactly the same algebraic and commutation
relations.

Note now the similarity of Eq. (9.31) with the Hamiltonian of the harmonic oscillator. We are going
to use this fact to draw an algebraic analogy with the “ladder operator” formalism of the quantum
harmonic oscillator to discover the eigenstates of the Hamiltonian. Let’s define the “position” and
“momentum” operators:

q̂μ =

(

Eμ
2

)1/2

(ĉμ + ĉ†
μ), p̂μ =−i

(

Eμ
2

)1/2

(ĉμ − ĉ†
μ). (9.42)

Then, we see that the Hamiltonian can be rewritten as

̂H(t) =∑
μ

1
2

[(

p̂2
μ + q̂2

μ
)−Eμ

]

, (9.43)
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which is indeed the Hamiltonian of a collection of harmonic oscillators if we identify the operators ĉμ
and ĉ†

μ with the “usual” lowering (annihilator) and raising (creator) operators for each oscillator μ .
The term “−Eμ” inside the square brackets in Eq. (9.43) corrects for the zero-point energy of the

infinitely many oscillators μ . It is clearly a troublesome diverging term. The reasons for its appearance
are very deep and are briefly discussed below. It is usually referred to as the “energy of the vacuum.”
It is just a constant (albeit an infinite one!) and if we decide to measure all energies from this value,
we can ignore it.

9.2.4 Anticommutation Rules

We have performed canonical quantization by employing the commutation rules Eqs. (9.25) and (9.26)
above. However, these do not guarantee that Pauli’s exclusion principle will be obeyed. Jordan and
Wigner have shown that we can fix this problem by employing canonical anticommutation rules
(CAR)

[ψ̂(r, t), π̂(r′, t)]+ = ih̄δ (3)(r− r′)

[ψ̂(r, t), ψ̂(r′, t)]+ = 0

[π̂(r, t), π̂(r′, t)]+ = 0,

(9.44)

(where [̂A,̂B]+ = ̂ÂB+ ̂B̂A) instead of Eq. (9.25) above. These imply also:

[ψ̂(r, t), ψ̂†(r′, t)]+ = δ (3)(r− r′)

[ψ̂(r, t), ψ̂(r′, t)]+ = 0

[ψ̂†(r, t), ψ̂†(r′, t)]+ = 0.

(9.45)

The reason behind the selection of anti-commutation rules is very deep. Streater and Whightman,
in their book entitled “PCT, Spin, Statistics, and all that” [7] have shown that free particles of half-
integer spin must be associated with a quantum field ψ̂(r) such that the CAR, Eq. (9.45) are satisfied,
or one would violate at least one of several “axioms” (relativistic invariance, causality, locality, etc.)
which constitute the foundation of QFT. Similarly, for integer-spin particles, the field must be such
that the “CCRs” are valid:

[ψ̂(r, t), ψ̂†(r′, t)]− = δ (3)(r− r′), (9.46)

all other commutators vanishing, as we saw before. An intuitive way to understand the spin-statistics
theorem relies on the following argument. The need to symmetrize (under exchange of two particles)
many-particle wavefunctions of integer-spin particles and antisymmetrize those of half-integer-spin
particles stems from the fact that rotations by an angle θ introduce a phase eisθ for particles with
spin s. Exchanging two particles amounts to rotating the vector connecting the two particles by an
angle θ = π . If the spin is a half-integer, this results in a change of sign. Unfortunately, this argument
is not rigorously valid. The “correct” proof must rely on relativity and on the invariance of the theory
under Lorentz transformations. The argument is involved and interested readers could find it presented
in excruciating detail in the text by Streater and Wightman we have mentioned before.

One should add that the Schrödinger equation does not deal with spin, so we may, at this stage,
choose commutators instead. Indeed, the same Schrödinger equation applies to all particles, Fermions
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or not. But in choosing commutators, we would run into troubles, because we would not get Fermi–
Dirac statistics. And since we will have to account for spin later, we might as well start with
anticommutators.

9.2.5 Fock Space for Fermions

In this framework, the states of a many-electron system belong to a complicated functional space built
as follows. Let’s consider only free electrons, so that the index μ is the 3D-wavevector k and the
functions uμ = uk are plane waves, and let’s start with the “vacuum” state |0〉, that is, the ground state
of the system. This is the state in which each oscillator k is in its ground state. Its energy diverges,
because of the zero-point term 1/2 in Eq. (9.33) above. But we should think as subtracting this energy
from the zero of our energy scale and carry on ignoring this problem. As we have just seen, the
operator ĉk and its conjugate ĉ†

k can be viewed as lowering and raising operators, respectively. The
latter can be thought as creating an electron in the eigenstate k of the momentum operator when acting
on the vacuum state. Thus, the wavefunction corresponding to this state will simply be:

uk(r) = 〈r|ĉ†
k|0〉=

1

(2π)3/2
e−ik·r (9.47)

that is, just the corresponding one-particle plane wave in the real-space representation. The operator
ĉ†

k is called a “creation” operator. Let’s call |k〉 = ĉ†
k|0〉 the state in which there is only one electron

in the system and this electron is in an eigenstate k. This is an eigenstate of the Hamiltonian with
eigenvalue Ek. The conjugate operator ĉk destroys an electron in the state k. Thus ĉk|k〉 = |0〉. The
fact that we deal with fermions (and not bosons) translates into the property that the operators ĉk and
ĉ†

k′ satisfy the canonical anticommutation rules:

[ĉk, ĉ
†
k′ ]+ = δk,k′ , [ĉk, ĉk′ ]+ = 0, [ĉ†

k, ĉ
†
k′ ]+ = 0. (9.48)

Note now that:

ĉ†
kĉk|0〉= (1− ĉkĉ†

k)|0〉= |0〉− |0〉= 0, (9.49)

that is, the “zero” vector (not to be confused with the vacuum state!). Similarly:

ĉ†
kĉk|k〉= ĉ†

k|0〉= |k〉, (9.50)

so that the operator nk = ĉ†
kĉk is a sort of “number” operator, which counts the number of electrons in

the state k.
Note that if we try to add another k-electron to the state k we get

ĉ†
k|k〉= ĉ†

kĉ†
k|0〉=−ĉ†

kĉ†
k|0〉, (9.51)

the last step relying on the CAR, so we must have ĉ†
k|k〉 = 0 for this equation to be valid. Indeed,

this is just Pauli’s principle: We can’t put two electrons in the same state. This follows directly from
having used anticommutation rules for the creation and annihilation operators.
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Let’s also note the following:

̂H |k〉=∑
k′

Ek′ ĉ†
k′ ĉk′ ĉ

†
k |0〉. (9.52)

Let’s now use the anticommutation rule ĉk′ ĉ
†
k = δk,k′ − ĉ†

kĉk′ :

̂H |k〉=∑
k′

Ek′ ĉ
†
k′(δk′,k − ĉ†

kĉk′)|0〉. (9.53)

Note that the second term inside the parentheses, ĉ†
k′ ĉ

†
kĉk′ |0〉, vanishes, since the first operator on the

right annihilates an electron k′ in the vacuum state, which yields zero. Thus,

̂H|k〉= Ekĉ†
k|0〉= Ek |k〉. (9.54)

This shows that indeed the state |k〉= ĉ†
k|0〉 is an eigenstate of the Hamiltonian with eigenvalue Ek.

From the discussion above, it follows that an arbitrary state of our many-electron system can be
written as:

|{nλ}〉= |n1n2 . . .nN〉= (ĉ†
1)

n1(ĉ†
2)

n2 . . .(ĉ†
N)

nN |0〉, (9.55)

where the integers ni are restricted to taking only the values 0 or 1 and the indices 1,2, . . .N label
wavevectors k1, k2, . . .kN (and also spin indices, if necessary). The notation |{nλ}〉 identifies all
possible combinations λ of N-electron states. Note that these states are already antisymmetric. For
example, the wavefunction of a 2-electron state will be

〈r′,r|k′,k〉= 〈r′,r|ĉ†
k′ ĉ

†
k|0〉=

1√
2

1
(2π)3 ( eik′·r′ eik·r − eik·r′ eik′·r ). (9.56)

The general state |n1n2 . . .nN〉 is obviously an eigenstate of the Hamiltonian with eigenvalue n1E1 +
n2E2 + . . ., as one can show following the derivation we have used above to reach Eq. (9.54).

So far we have considered a Schrödinger field, which does not account for spin. If we add it to the
picture and label with σ =±1/2 the spin variable, we have the new CAR:

[ĉσk , ĉ
σ ′†
k′ ]+ = δσ ,σ ′ δk,k′ , (9.57)

all other anticommutators vanishing. Everything carries on as before, the only complication being
related to the fact that for many-electron states the antisymmetrization of the wavefunctions must
account for the quantum-mechanical rules of adding angular momenta. Thus, we will have four types
of antisymmetrized 2-electron states: One spin-singlet state, with a symmetric spatial component of
the wavefunction, and three spin-triplet states, with an antisymmetric spatial component.

Starting from the “usual” single-particle Hilbert space H, L2(R3)⊗ S, (where ⊗ means ‘tensor
product’ of vector spaces and S is the 1/2-spin-space, the space associated with the two-dimensional
irreducible representation of the special unitary group SU(2)), the total functional space associated
with the many-electron system can be formally defined as:

H ⊕ H⊗H ⊕ H⊗H⊗H . . .=
∞

∑
N=1

⊕
N

∏
j=1

⊗H, (9.58)

which—after proper topological closure and compactification—is called Fock space.
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∗ Out of curiosity, it is interesting to note here a major difference between first and second
quantization, a difference which is the deep source of the infinite zero-point energy we saw above
and of many other infinities which affect QFT: In ordinary QM (first quantization), there is only one
Hilbert space—up to unitary transformations. That’s the reason Heisenberg’s matrix-mechanics and
Schrödinger’s wave equation are actually the same thing, just viewed in two different, but equivalent,
representations. Not so in many-body theory or QFT: For every Hamiltonian, there is only one
representation which is “correct.” Unfortunately, Fock-space is the representation of free particles.
As soon as we turn on any interactions, problems arise because we are in the wrong representation.
Renormalization is a typical problem. This sad state of things is known as “Haag’s theorem” [8, 9],
which is known to state that the interaction picture exists only if there is no interaction. Ultimately,
this depends on the following consideration: From axiom 9 of the Copenhagen interpretation (Chap. 1,
page 16), the Hilbert space associated with two isolated systems brought together is the tensor product
of the Hilbert spaces associated with the two systems. When the two systems are strongly coupled, any
arbitrary state of the coupled system cannot necessarily be expressed as the tensor product of two
states of the isolated systems. However, the set of these tensor-product states constitutes a complete
basis in the larger Hilbert space and we can always express any arbitrary state of the strongly coupled
systems as a linear superposition of these basis states. This is true for an arbitrary large, but finite,
number of systems. So, for example, it is true for a system of N interacting electrons, as long as N
is finite. But this property fails when N → ∞, which is the definition of Fock space. In other words,
an arbitrary state of the interacting electrons does not belong to Fock space. “Constructive QFT”
is the branch of theoretical physics which attempts to “construct” a proper representation for every
interaction, thus bypassing renormalization problems.

9.3 Quantization of the Charge Density: Plasmons

As a second example, let’s consider the plasma oscillations of an electron gas that we saw already
on page 181. This is a very interesting example which shows clearly how “elementary excitations”
emerge: We know how to solve the problem of electrons in a crystal when the system is in its ground
state: The ions are “frozen” in their equilibrium positions and the electrons are all in their lowest-
energy state, filling all states up to the Fermi level. In tackling the problem of what happens when
electrons acquire additional energy (via an external perturbation, typically) while interacting among
themselves via long-range Coulomb interactions is quite a complicated task. So, we “linearize” the
problem by assuming that only first-order deviations from the ground state occur. In retaining only
the leading terms of the interaction Hamiltonian (in our case, the Coulomb potential energy) we
retain only terms quadratic in the deviation from the ground state. By decomposing the system into
normal modes (by taking Fourier transforms in the example below), the Hamiltonian will be the recast
into the form of the sum of many Hamiltonians, each corresponding to a different wavelength, and
each being the sum of a kinetic energy term (quadratic in the velocity or canonically conjugate
momenta) and a potential energy term (quadratic in the displacement coordinates, which are the
canonical coordinates). Thus, for each wavelength there will be a corresponding Hamiltonian of a
single harmonic oscillator. We can now “quantize” these oscillators using the Dirac algebraic method
of raising (creation) and lowering (annihilation) operators, as we saw for the Schrödinger field. These
are just the creation and annihilation operators for each wavelength. So, for each wavelength there
may be no corresponding excitation at all (the oscillator is in its ground state), one excitation (the
oscillator is in its first excited state), etc. Looking back at the Schrödinger field, there each excitation
was interpreted as one electron “created” at a given wavelength. Here, in complete analogy, we shall
call these excitations “quasi particles.” The suffix “on” attached to the name given to these excitations
(plasmons, phonons, magnons, etc.) reflects this analogy.
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So, let’s tackle the problem of the plasma excitations of a homogeneous, bulk electron gas. It will be
instructive, at the end, to compare the resulting normalization of the plasmon field with the result of
simpler semiclassical energetic arguments.

9.3.1 Lagrangian Density

The classical Lagrangian density of the electron gas can be written as:

L (u̇,φ) =
1
2

n m u̇(r) · u̇(r)− 1
2
δρ(r) φ(r), (9.59)

where en= ρ is the uniform charge density, m is the electron mass, φ(r) is the potential, and u(r) is the
displacement of the electron gas at position r. This displacement is related to the charge fluctuations
δρ(r) via the continuity equation:

δρ(r)
ρ

=−∇ ·u(r). (9.60)

Thus, Poisson equation can be written as:

∇2φ(r) =
δρ(r)

εs
=− ρ

εs
∇ ·u(r), (9.61)

where εs is the dielectric constant of the solid.

9.3.2 Going to Fourier Transforms

We consider, as usual, their Fourier decomposition:

φ(r) =∑
q
φq eiq·r, (9.62)

and

u(r) =∑
q

uq eiq·r. (9.63)

Equation (9.61) implies

−∑
q

q2φqeiq·r =−i
ρ
εs
∑
q

q ·uq eiq·r. (9.64)

Since plasmons are longitudinal oscillations, q ·uq = quq, so that φq = iρ uq/(εsq). Keeping in mind
that the total energy must be real, we should replace the terms u̇(r) · u̇(r) and δρ(r) φ(r) in the
expression for the Lagrangian density Eq. (9.59) with u̇(r)∗ · u̇(r) and δρ(r)∗ φ(r), respectively. Then,
the kinetic energy can be written as:
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T =
1
2

∫

dr n m u̇(r)∗ · u̇(r) = 1
2

n m ∑
q

u̇∗
−q · u̇q, (9.65)

where the dots indicate derivatives with respect to time. The potential energy can be calculated
ignoring second-order corrections to the charge density, that is, by treating ρ(r) = en as a constant in
Eq. (9.60), as we had done before when dealing with classical plasma oscillations. This is where the
“linearization” approximation comes into play. Then:

V =
1
2

∫

dr δρ(r)∗φ(r) = +
1
2

e2n2

εs
∑
q

u∗
−q ·uq. (9.66)

Thus, from Eqs. (9.65) and (9.66), the Lagrangian for the system can be written as:

L = T −V =
1
2

n m ∑
q

u̇∗
−q · u̇q − 1

2
e2n2

εs
∑
q

u∗
−q ·uq. (9.67)

9.3.3 The Hamiltonian

Let’s now define the Hamiltonian. First, we define the canonical conjugate momentum

πq =
∂L
∂ u̇q

=
∂T
∂ u̇q

= n m u̇∗
q. (9.68)

Then, we apply the usual Legendre transform to get the Hamiltonian H = T +V:

H =
1
2∑q

{

1
nm

π∗−q ·πq +
e2n2

εs
u∗
−q ·uq

}

. (9.69)

9.3.4 Canonical Quantization

Quantization can be now performed imposing the CCRs

[ûi,q, π̂j,q′ ] = ih̄ δij δqq′ . (9.70)

Following a standard procedure, we rewrite the Hamiltonian as

̂H =
1
2 ∑q

[ ̂P†
−q
̂Pq + ̂Q

†
−q
̂Qq ], (9.71)

having set:

̂Pq =
π̂q

(nm)1/2
, (9.72)
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̂Qq =

(

e2n2

εs

)1/2

ûq. (9.73)

Let’s now define, as usual, the creation and annihilation operators via the relations:

̂Qq =

(

h̄ωP

2

)1/2

(b̂q + b̂†
−q), (9.74)

̂Pq = i

(

h̄ωP

2

)1/2

(b̂q − b̂†
−q), (9.75)

where we have introduced the plasma frequency ωP = [(e2n)/(εsm)]1/2. Thus, finally, the Hamiltonian
Eq. (9.69) becomes

̂H =
h̄ωP

2 ∑
q

{

b̂†
qb̂q + b̂qb̂†

q
}

. (9.76)

Using the definitions (9.72)–(9.75) and the CCR (9.70), the only non-vanishing commutator for the
operators b̂†

q and b̂q is

[b̂†
q, b̂q] =− 1

ωP

(

en
εsm

)1/2

=−1. (9.77)

This shows that the operators b̂†
q and b̂q behave like raising (creation) and lowering (annihilation)

operators, so that the Hamiltonian Eq. (9.76) becomes a collection of harmonic oscillators

̂H = h̄ωP∑
q

{

b̂†
qb̂q +

1
2

}

, (9.78)

while the displacement field and the potential can be expressed in terms of the creation and
annihilation operators

ûq =

(

h̄ωPεs

2e2n2

)1/2

(b̂†
−q + b̂q), (9.79)

φ̂q =− i
q

(

h̄ωP

2εs

)1/2

(b̂†
−q + b̂q). (9.80)

As usual, the diverging contribution in Eq. (9.78) will be ignored and we shall write

̂H = h̄ωP∑
q

b̂†
qb̂q. (9.81)
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9.3.5 Fock Space for Bosons

The Hilbert-like space associated with the system of bosons (as plasmons carry no spin) can be
constructed essentially in the same way we saw above for the case of Schrödinger Fermions. The
obvious difference is that, since we use commutation instead of anticommutation rules, we can put as
many particles as we wish in each quantum state. Thus, the most general state of Fock space will have
the form

|{Nλ}〉= |N1N2 . . .NN〉= (b̂†
1)

N1(b̂†
2)

N2 . . .(b̂†
N)

NN |0〉, (9.82)

where now states with Ni > 1 will also exist. Note that the squared norm of a state |Nq〉 will be Nq!,
so that states of the form (9.82) must be normalized by dividing by

√

Nq!.

9.3.6 A Calculation: Thermal Expectation Value of the Plasmon Field

Let’s assume that we are at thermal equilibrium. Since plasmons have zero spin, their population will
obey the Bose–Einstein statistics and the thermal average 〈Nq〉th of the number Nq of plasmons of
momentum q present at temperature T will be given by:

〈Nq〉th =

[

exp

(

h̄ωq

kBT

)

−1

]−1

. (9.83)

If we want to calculate the thermally averaged root-mean-square (rms) amplitude of the field
associated with the plasmons, we can first calculate the expectation value of the (squared) amplitude
on the Fock state | Nq〉= (Nq! )−1/2 (b̂†

q)
Nq | 0〉 (where | 0〉 is the vacuum) containing Nq plasmons of

wavevector q. This is

〈Nq | φ̂ †
q φ̂q | Nq〉 = h̄ωP

2εs

1
q2 〈0|(b̂q)

Nq(b̂[q + b̂†
q)(b̂

†
q + b̂q)(b̂

−†
q )Nq |0〉

=
h̄ωP

2εs

1
q2 (1+Nq +N−q). (9.84)

We can then take the thermal average of this expression, so that:

〈φ̂q〉th =

(

h̄ωP

2εs

1
q2

)1/2

(1+2〈Nq〉th)
1/2. (9.85)

Setting Nq = 0 above, it shows that the plasmon zero-point motion at wavevector q is associated with
a field of rms amplitude

| φq |=
(

h̄ωP

2εs

)1/2 1
q
. (9.86)
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9.3.7 A Semiclassical Analogy

Can we obtain this result without going through the procedure of canonical quantization? Stern and
Ferrel [10] have provided the following semiclassical argument, based on energetic considerations:
Let us write the magnitude of the plasmon field at wavevector q as:

Eq,ω(r, t) = aq cos(q · r−ωPt), (9.87)

so that the electrostatic potential is

φq,ω(r, t) =−aq

q
sin(q · r−ωPt). (9.88)

For harmonic oscillators such as plasmons, the time-averaged kinetic energy, 〈T〉, is equal to the time-
averaged potential energy, 〈U〉time. Thus, the total energy, W, associated with the zero-point plasmon
field over a volume Ω , including its own self-energy (which explains the absence of the factor 1/2 in
front of the integral below), will be

W = 〈T〉time + 〈U〉time = 2〈U〉time = 2

〈
∫

Ω
dr φ ∗q,ω(r) ρq,ω(r)

〉

time
= εs | aq |2 Ω , (9.89)

where εs must be understood to be the high-frequency dielectric constant ε∞ in our case, since ρq,ω(r)
is just a microscopic polarization charge, so that only the background (i.e., valence) dielectric response
should be considered. Quantum mechanically, this energy must represent the zero-point plasmon
energy within the volume Ω , so that W = 1

2 h̄ωPΩ , which implies

| φq |= | aq |
q

=

(

h̄ωP

2εs

)1/2 1
q
, (9.90)

in agreement with Eq. (9.86).

9.4 Quantization of the Vibrational Degrees of Freedom: Phonons

In the first part of this text we had a quick look at the ionic Hamiltonian (see pages 60–61), but we left
it there, promising to come back and revisit this term. Here we shall do just that as usual rewriting it
in such a way that we will end up with a collection of harmonic oscillators. A very useful reading that
may fill the many gaps we are going to leave open is the well-known text by Ziman [11], a book that
does not show its age.

9.4.1 Canonical Quantization

Let R(0)
lγ be the equilibrium position of the ion (labeled by the index γ inside the unit cell l) and let

δRlγ be its displacement from R(0)
lγ . Let also Rl be the coordinate-origin of the cell l. In terms of the

momentum coordinate of ion γ in cell l, Plγ = Mγδ Ṙlγ , where Mγ is the mass of the ion, the ionic
Hamiltonian is
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Hion =
1
2 ∑lγ

⎡

⎣

P2
lγ

Mγ
+ ∑

l′ �=l,γ ′
∑
ij

∂ 2U(R(0)
lγ −R(0)

l′γ ′)

∂Rlγ i ∂Rl′γ ′j
δRlγi δRl′γ ′j

⎤

⎦ , (9.91)

where U is the total potential energy of the lattice. Note that here the indices i and j run over the
spatial-coordinate indices x,y,z. Using Bloch’s theorem we can now expand δRlγ in its spatial Fourier
coefficients at wavevector q and assume a time dependence eiωt:

δRlγ =
1

(NcellMγ)1/2 ∑
q
ξ qγ eiq·Rl eiωt, (9.92)

where Ncell is the number of cells in the crystal. It should be noted that the periodicity of the lattice
implies that the ‘polarization vector’ ξ qγ does not depend on the cell index l, the entire dependence

on the cell being absorbed by the phase eiq·Rl . We also define the “lattice Fourier transform” of the
dynamical matrix as

Dijγγ ′(q) =∑
l′′

D̃ij γγ ′(l
′′) eiq·(Rl−Rl′ ), (9.93)

where

D̃ijγγ ′(l
′′) =−

∂ 2U(R(0)
lγ −R(0)

l′γ ′)

∂Rlγ i ∂Rl′γ ′j
, (9.94)

where Rl′′ = Rl −Rl′ . Inserting the expansion (9.92) into the equations of motion determined by the
Hamiltonian (9.91), for each q we obtain the homogeneous linear system

∑
jγγ ′

[

D̃ijγγ ′(q)+ω2 δij δγγ ′
]

ξqγ ′j = 0, (9.95)

where D̃ijγγ ′(q) = Dijγγ ′(q)/(MγMγ ′)
1/2. The associated secular equation determines the eigenfrequen-

cies ωqη of oscillations labeled by a “branch index” η running over 3 (one LA and 2 TA) acoustic
modes and over 3(Nions −1) optical modes, Nion being the number of ions in the primitive cell.

Formally, the eigenvalue problem given by Eq. (9.95) sets the framework that allows us to quantize
the vibrational modes of the lattice. In practice, if we need to obtain a quantitatively accurate phonon
spectrum, we need to calculate somehow the dynamical matrix. This requires the knowledge of the
forces acting on the ions of the crystal. We have seen in Chap. 6, Sect. 6.3.5, how DFT can be used
for this purpose. Alternative semi-empirical models have also been proposed in the past, when DFT
was not computationally viable as it is today. Without going into details, we may mention here the
Born-von Kármán model [12], the “Keating’s valence force field” model [13], or the “valence shell
model” [14–16]. These models are largely empirical, relying on the lattice symmetry, on the nature
of the bond and ion–ion potential, and employ parameters related, of course, to the elastic properties
of the crystal (Fig. 9.1).

Figure 9.2 on page 208 shows the dispersion for the three optical and three acoustic phonons in
Si obtained using the ‘valence shell model’ mentioned above. These spectra can be compared to the
results shown in Fig. 6.8 in Chap. 6, Sect. 6.3.5, page 109, obtained using the ab initio method of DFT.

Returning to the general formulation of the problem, we can now write the general solution of the
equations of motion as follows: Let’s normalize the polarization vectors ξ qγ for each eigenmode η and

call e(η)qγ the unit vectors so obtained. We can now express the general solution as a linear combination
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of these normalized eigenmodes, Eq. (9.92), with coefficients Qqη which will play the role of
canonical coordinates. Note that these coefficients are determined up to an overall multiplicative
constant, which will be set by the CCR conditions below. We can view this as a simple rotation

of the basis vectors. Thus, we can write for the “displacement field” δR(η)
lγ for each mode η :

δR(η)
lγ =

1

(NcellM)1/2 ∑
q

e(η)qγ Qqη eiq·Rl . (9.96)

We can now define a conjugate momentum

P(η)
lγ = δ Ṙ(η)

lγ =

(

M
Ncell

)1/2

∑
q

e(η)qγ Pqη eiq·Rl , (9.97)

and quantize the system by promoting the canonical variables Pqη and Qqη to operators on Fock space
and imposing the CCR (as phonons do not carry spin)

[̂Qqη ,̂Pq′η ′ ] = ih̄ δqq′ δηη ′ , [̂Pqη ,̂Pq′η ′ ] = 0, [̂Qqη , ̂Qq′η ′ ] = 0. (9.98)

Then, using Eqs. (9.95)–(9.97), the ion Hamiltonian (9.91) becomes

̂Hion =
1
2 ∑qη

[ ̂P†
−qη̂Pqη +ω2

qη ̂Q
†
−qη ̂Qqη ]. (9.99)

Once more, this is the Hamiltonian of a collection of harmonic oscillators (phonons). Defining the
annihilations and creation operators (going to the infinite-volume normalization):

̂Qqη =

(

h̄
2ωqη

)1/2

(b̂qη + b̂†
−qη), (9.100)

̂Pqη = i

(

h̄ωqη

2

)1/2

(b̂qη − b̂†
−qη), (9.101)

finally the phonon Hamiltonian can be rewritten in terms of the creation and annihilation operators as:

̂Hion =∑
qη

h̄ωqη b̂†
qη b̂qη (9.102)

(ignoring as usual the diverging zero-point contribution) in analogy with Eqs. (9.31) and (9.81).
Note that now, since phonons carry no spin, the creations and annihilation operators b̂†

qη and b̂qη
satisfy commutation rules like Eq. (9.48) for the electron operators, but with commutators in place of
anticommutators.

9.4.2 A Simple Example: A Linear Chain

Let’s consider the simpler case of a 1D chain of atoms of mass M. We can drop the indices i, j (since
we are in 1D) as well as the indices γ (since we consider only one atom in each 1D cell). We may
remain for the time being at the classical level, since quantization does not affect the phonon spectrum.
The ionic Hamiltonian becomes
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Fig. 9.1 Silicon phonon
spectra calculated using a
model known as “valence
shell model”
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Hion =
1
2 ∑l

[

P2
l

2M
+∑

l′
Dll′δRlδRl′

]

.

Note that:

Dl,l′ = Dl−l′,0 by translation symmetry

and

∑
l

D0,l = 0 since for equal shifts δRl the crystal energy does not change.

Put it differently, since D0,l is the force acting on the ion 0 due to ion l, the equation above states
that at equilibrium the total force due to all other ions acting on the ion 0 must vanish. The Hamilton
equation for the ionic momentum will be

Ṗl =−∂Hion

∂δRl
=−∑

l′
Dll′δRl′ ,

or

M
d2δRl

dt2 =−∑
l′

Dll′δRl′ ,

Let’s also make the simplifying assumption that each ion interacts only with its nearest neighbor (so
that we can solve the problem “by hand” and not numerically). Then:

M
d2δRl

dt2 = Dl,lδRl +Dl,l+1δRl+1 +Dl,l−1δRl−1.
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By translation symmetry Dl,l = D0,0. Without loss of generality we can consider the case l = 0. So we
can consider only the elements D0,0, D0,±1, and D±1,0. Using again the translation symmetry we have

D0,1 = D−1,0,

but since Dll′ = Dl′l (it’s only a switch in the order of the derivatives), we also have

D0,1 = D1,0,

so that D0,1 = D1,0 = D−1,0 = D0,−1.
By the property ∑l D0,l = 0 above we have

D0,0 +D0,1 +D0,−1 = 0 → D0,0 =−2 D1,0.

Let’s simply call D = D1,0 (the “spring” constant of the inter-ionic force). Then the Hamilton equation
of motion becomes simply:

M
d2δRl

dt2 = D [−2 δRl +δRl+1 +δRl−1 ].

Now let’s set

δRl = eq eiqla eiωt,

where a is the equilibrium distance between the ions in the chain (our “lattice constant”). Then:

−M ω2 = D [ 2 cos(qa)−2 ],

becomes our trivial “secular equation” from which we obtain the dispersion

ω = 2
∣

∣

∣sin
(qa

2

)∣

∣

∣

(

D
M

)1/2

.

Note that the periodicity in 2π/a for q defines the BZ of the 1D chain.

9.4.3 Types of Phonons

As noted, in a 3D cell having Nions ions, there will be three acoustic phonons (no relative motion
between ions, the whole cell vibrates) and three (Nions −3) optical phonons (characterized by relative
displacements among ions in the same cell). The former are purely acoustic waves (like density
waves) which affect electrons by modifying (linearly) the band structure with microscopic stress
(they act like waves distorting the lattice constant as they travel). This effect is called “deformation
potential” interaction after Bardeen and Shockley. Optical phonons in polar materials (such as GaAs)
additionally carry an associated dipole field which scatters electrons in an obvious matter.
Acoustic and optical phonons can be “transverse” or “longitudinal,”, depending on whether the
displacement δR (also called “polarization”) is normal or parallel to the direction of travel q.
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k

δR

Acoustic, transverse (TA)

δR ⊥ k

Optical, transverse (TO)
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Acoustic, longitudinal (LA)
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Optical, longitudinal (LO)
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Fig. 9.2 Schematic illustration of the atomic displacement associated with acoustic and optical, transverse and
longitudinal phonons in a diatomic linear chain. Acoustic modes (top and third lines) involve an in-phase displacement
of all ions in a cell, here denoted by red and blue dots. Optical modes (second and fourth lines) are associated with ions
in a given cell moving out-of-phase. Transverse modes (top two lines) are associated with an ionic displacement along
the normal to the direction of propagation of the wave (to the right in this diagram), whereas for longitudinal excitations
(two bottom lines) the displacement is parallel to the direction of propagation (or wavevector)

9.5 Quantization of the Electromagnetic Fields: Photons

So far we have considered “excitations” of the ions + electrons system. By this we mean that in dealing
with phonons, for example, we have identified the “vacuum” state |0〉 with the ground state of the
ionic Hamiltonian (that is: ions at rest in their equilibrium positions). Excited states are realized
by applying the creation operator to the ground state, thus obtaining states such as |qη〉 = b̂†

qη |0〉
describing the excitation of a phonon of polarization η and wavevector q. Similarly, plasmons are
“collective” excitations of the electronic Hamiltonian. And, in a way, even electronic states |k〉= ĉ†

k|0〉
can be viewed as electrons excited from the valence band into the conduction band, if we view the
state |0〉 as the state in which all electrons populate the valence band (up to the Fermi level), which is
the ground state of a semiconductor crystal at zero temperature. We could take as index μ the crystal
momentum k and a band index n, so that the functions ukn(r) in Eq. (9.30), on page 193, would be
Bloch functions in band n, and |kn〉 = ĉ†

kn|0〉 would correspond to the excitation of an electron into
the conduction band n.
In this section we temporarily abandon the environment of a crystal and consider instead the
electromagnetic field in free space. The formalism will be the same, but now the ground state
|0〉 will be electromagnetic vacuum. Considering the quantization of the electromagnetic field in
vacuum will allow us to introduce “photons” as particles (treated on the same footing as electrons
before) and will allow us to later calculate the Einstein’s coefficients appearing in the matrix elements
of radiative processes. Indeed, this is the first and foremost example of a field requiring “second
quantization” in order to reconcile the particle/wave nature of photons.

The procedure we follow here intentionally avoids a relativistic formulation of the electromagnetic
field as a gauge theory. Essentially, we follow Heitler’s book [17]: Originally published by Clarendon
Press in 1936, in many ways it remains useful “for all practical purposes.”
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9.5.1 Maxwell’s Equations

Consider Maxwell’s equation in SI units:

∇ ·D = ρ , (9.103)

∇ ·B = 0, (9.104)

∇×E =−∂B
∂ t

, (9.105)

∇×H = J+
∂D
∂ t

. (9.106)

In vacuum and in the absence of external sources (J = 0, ρ = 0), recalling that D = εE, B = μH, and
that εμ = 1/c2, we have

∇ ·E = 0, (9.107)

∇ ·B = 0, (9.108)

∇×E =−∂B
∂ t

, (9.109)

∇×B =
1
c2

∂E
∂ t

. (9.110)

9.5.2 Lagrangian Density

Recalling the expression for the energy of the electromagnetic field, we could immediately write
down the Hamiltonian, express it in terms of Fourier components of the fields or potentials (that is,
electromagnetic plane waves) and “quantize” the result. However, let’s follow the canonical procedure,
starting from the definition of the Lagrangian density:

L =
ε

2
E2 − 1

2μ
B2 =

ε

2
(Ȧ+∇φ)2 − 1

2μ
(∇×A)2, (9.111)

having introduced the usual scalar and vector potentials φ and A such that

E =−Ȧ−∇φ , B = ∇×A. (9.112)

Note that Eqs. (9.108) and (9.109) are automatically satisfied thanks to the definitions (9.112). The
remaining Maxwell’s equations, Eqs. (9.107) and (9.110), must be derived from the Euler–Lagrange
equations. The first one,

∂
∂ t

(

∂L
∂ φ̇

)

+∑
j

∂
∂xj

(

∂L
∂ (∂φ/∂xj)

)

− ∂L
∂φ

= 0 (9.113)

results in

∇2φ = 0, (9.114)
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which is Eq. (9.107). The second Lagrange equation, which we can write in a somewhat “sloppy”
vector notation as

∂
∂ t

(

∂L
∂ Ȧ

)

+∑
j

∂
∂xj

(

∂L
∂ (∂A/∂xj)

)

− ∂L
∂A

= 0, (9.115)

results in the equation:

ε
∂
∂ t

(Ȧ+∇φ)− 1
μ
∇×∇×A = 0, (9.116)

which is Eq. (9.110).

9.5.3 Hamiltonian Density

Let’s now define the canonical conjugate momentum density:

P =
∂L
∂ Ȧ

= ε(Ȧ+∇φ), (9.117)

so that the Hamiltonian density will be

H = P · Ȧ−L =
ε

2
(Ȧ+∇φ)2 +

1
2μ

(∇×A)2 − ε(Ȧ+∇φ) ·∇φ

=
1
2

(

P2

ε
+

(∇×A)2

μ

)

− ε(Ȧ+∇φ) ·∇φ . (9.118)

When integrated over the entire space—in order to get the Hamiltonian—the last term in the
expression above vanishes. Indeed integrating it by parts:

ε

∫

(Ȧ+∇φ) ·∇φ dr =
∫

P ·∇φ dr =−
∫

φ ∇ ·P dr = 0, (9.119)

by Green’s (or “divergence” or “Gauss”) theorem, assuming that P vanishes at infinity or satisfies
periodic boundary conditions at the edge of the normalization volume. Therefore:

H =
∫

H dr =
1
2

∫
[

P2

ε
+

(∇×A)2

μ

]

dr. (9.120)

Let’s now represent the potentials as plane waves of polarization λ and wavevector k:

A(r, t) =
1

V1/2 ∑
kλ

qkλ (t) ekλ eik·r + cc, (9.121)

and

P(r, t) =
1

V1/2∑
kλ

pkλ (t) ekλ eik·r + cc, (9.122)
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where V is the normalization volume and ekλ is the polarization vector. Then, using the orthonormal-
ization of the polarization vectors, the Hamiltonian can be written in terms of the ‘Fourier coefficients’
qkλ and pkλ as follows:

H =∑
kλ

(

1
ε

p∗−kλpkλ +
k2

μ
q∗−kλqkλ

)

. (9.123)

Equation (9.123)—as one could have seen also earlier in Eq. (9.120)—is taking the desired shape of
the Hamiltonian of a collection of harmonic oscillators. Let’s now recast it in the usual form involving
creation and annihilation operators.

9.5.4 Equations of Motion

In order to do that, let’s see what type of time dependence the quantities qkλ and pkλ will exhibit,
after having been promoted to operators following the usual canonical quantization. The equations of
motion for them can be derived by noticing that they obey the CCR:

[q̂kλ , p̂
†
k′λ ′ ] = [q̂†

kλ , p̂k′λ ′ ] = ih̄ δk′k δλ ′λ . (9.124)

Then:

˙̂qkλ =
1
ih̄

[q̂kλ ,H] =
1
ih̄ ∑k′λ ′

1
ε
[q̂kλ , p̂

†
k′λ ′ ] p̂k′λ ′ =

1
ε
∑
k′λ ′

δk′k δλ ′λ p̂k′λ ′ =
p̂kλ
ε

. (9.125)

Similarly,

˙̂pkλ =
1
ih̄

[p̂kλ ,H] =−k2

μ
q̂kλ . (9.126)

Taking the time derivative of Eq. (9.125) and using Eq. (9.126), we have

¨̂qkλ =
˙̂pkλ
ε

=− k2

εμ
q̂kλ . (9.127)

This has the general solution:

q̂kλ (t) = ̂Akλ eikct +̂A†
kλ e−ikct. (9.128)

Inserting this result into Eq. (9.125), we obtain

p̂kλ (t) = icεk̂Akλ eikct − icεk̂A†
kλ e−ikct. (9.129)

The “coefficients” ̂Akλ and ̂A†
kλ exhibit all of the properties of annihilation and creation operators

except for an overall normalization. Indeed, from the CCRs (9.124) and from the definitions (9.128)
and (9.129) we have

[̂Akλ ,̂A
†
k′λ ′ ] =− h̄

2kcε
δk′kδλλ ′ . (9.130)
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Therefore, it is convenient to define instead:

q̂kλ (t) =

(

h̄
2kcε

)1/2

[âkλ eikct + â†
−kλ e−ikct], (9.131)

p̂kλ (t) = ik

(

ε

μ

)1/2 ( h̄
2kcε

)1/2

[âkλ eikct − â†
−kλ e−ikct], (9.132)

or, inverting these relations:

âkλ = e−ikct
(

kcε
2h̄

)1/2 [

q̂kλ −
i
k

(μ
ε

)1/2
p̂−kλ

]

, (9.133)

and

â†
kλ = eikct

(

kcε
2h̄

)1/2 [

q̂kλ +
i
k

(μ
ε

)1/2
p̂−kλ

]

, (9.134)

Then, the CCRs become

[âkλ , â
†
k′λ ′ ] = δk′kδλλ ′ , (9.135)

and the Hamiltonian (9.123) becomes

̂H =∑
kλ

h̄ck

[

â†
kλ âkλ +

1
2

]

→ ∑
kλ

h̄ωk â†
kλ âkλ , (9.136)

having ignored the “usual” diverging zero-point term and having used the fact that kc = ωk is the
energy of a photon of frequency ν = ωk/(2π).

9.5.5 The Quantum Field and the Importance of Second Quantization

In addition to the many reasons why second quantization is necessary, we wish to point out another
aspect that is not commonly emphasized. From Eq. (9.131) we see how the “position” operator q̂kλ
can be expressed in terms of the single-photon operators âkλ and â†

kλ . Similarly, Eq. (9.132) relates
the “momentum” operator p̂kλ to the same quantities. In turn, Eqs. (9.121) and (9.122) tell us how to
express the vector and scalar potentials (via the momentum operator Pkλ ) in terms of the operators
q̂kλ and p̂kλ . As a result, we can express the vector and scalar potentials in terms of âkλ and â†

kλ . For
example:

̂A(r, t) =
1
V ∑kλ

(

h̄
2kcε

)1/2

[âkλ eikct + â†
−kλ ] ekλ e−ikcteik·r. (9.137)

From this—and the corresponding equation for ˙̂A+∇φ̂—we can derive the amplitude of the electric
and magnetic fields:
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̂B(r, t) = ∇× ̂A(r, t) =
i
V ∑kλ

(

h̄
2kcε

)1/2

[âkλ eikct + â†
−kλ e−ikct] (k× ekλ ) eik·r, (9.138)

and

̂E(r, t) =
̂P(r, t)

ε
=

i
V ∑kλ

k
ε

(

h̄
2kcμ

)1/2

[âkλ eikct − â†
−kλ e−ikct] ekλ eik·r. (9.139)

This is the basic result of second quantization: It tells us the amplitude of the field associated to
a single quantum of excitation. Without second quantization, how could we know the strength of
the electric field associated to a photon? Similar relations apply to electrons: Eq. (9.80) gives us the
amplitude of the (scalar) potential associated to a single quantum of plasma excitations. Similarly,
Eq. (9.100), together with Eq. (9.96), allows us to calculate the displacement of each ion in terms of
the phonon creation and annihilation operators:

δ ̂R(η)
lγ =

1

(NMγ)1/2 ∑
qη

e(η)qγ

(

h̄
2ωqη

)1/2

(b̂qη + b̂†
−qη) eiq·Rl . (9.140)

The algebraic rules allowing us to evaluate easily expectation values of the creation and annihilation
operators on the ground state |0〉 will ultimately allow us to calculate the strength of interactions
between electrons and these excitations (phonons, plasmons, photons), a result which we could not
have accomplished without the information, given by second quantization, regarding the strength of
the field carried by a single excitation.

Problems

9.1. Consider spinless particles in free space described by the Schrödinger field (so that the creation
and annihilation operators satisfy the canonical commutation rules). Consider the total number
operator

̂N =∑
k

n̂k =∑
k

ĉ†
kĉk.

Show that ̂N is a constant of motion, that is, that

ih̄ ˙̂N = [̂N, ̂H] = 0.

For ̂H you should use Eq. (9.31) and you must also show first that Eq. (9.31) follows from the spatial
integration of the Hamiltonian density, Eq. (9.24).

9.2. A vector of Fock space representing nk bosons with wavevector k can be written as

|Nk〉= (ĉ†
k)

Nk |0〉.

(a) Show that the norm α of |Nk〉 is given by α = Nk!1/2.
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(b) Consider the “position” and “momentum” operators q̂k and p̂k given by Eq. (9.42) (with μ = k).
Show that, with the proper normalization:

〈〈Nk|q̂k|Nk +1〉〉th = 〈〈Nk +1|q̂k|Nk〉〉th =

(

Ek

2

)1/2

(〈Nk〉th +1)1/2,

and that

〈〈Nk|p̂k|Nk +1〉〉th =− 〈〈Nk +1|p̂k|Nk〉〉th =−i

(

Ek

2

)1/2

(〈Nk〉th +1)1/2,

all other matrix element vanishing.

9.3. Why does the energy h̄ωqη of the acoustic branch of phonons goes to zero as q → 0? What is the
physical reason?

9.4. Dealing with the quantization of the electromagnetic field, we have considered “free space”; that
is, we have assumed no charge or current, ρ = 0 and j = 0. Now show that in the presence of charges
and currents, the Lagrangian density has the form

L =
εE2

2
+

B2

2μ
+α ρφ +β j ·A.

Determine the constants α and β so that the Euler–Lagrange equations yield Maxwell’s equations,
Eqs. (9.103) and (9.106).
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Chapter 10
Elements of Quantum Statistical Mechanics

10.1 Quantum Statistical Mechanics

With a few exceptions, up to this point we have considered quantum systems in pure states. That is,
we have considered the system to be in a particular state associated with either a wavefunction ψ or a
particular state in Fock space, |nk〉. In practice, such a characterization applies only to systems simple
enough to give us a realistic hope of measuring accurately in which state the system finds itself. The
electronic state of an isolated hydrogen atom or the spin of a single electron may be examples of
such simple systems. However, as soon as the system becomes sufficiently large (that is, it has many
degrees of freedom), such a description becomes “unrealistic.”

On the one hand we can never hope to measure accurately the position and velocity (or, quantum
mechanically, the wavefunctions) of all molecules in a macroscopic volume of gas, or of all electrons
and ions in a semiconductor chip. This “admission of ignorance” forces us to describe such large
systems in a statistical—rather than deterministic—fashion. On the other hand, while one may
consider such an “admission of ignorance” a practical consideration which, in principle, should
not affect the deep nature of how we describe the system, it is probably correct to regard such
“ignorance” an intrinsic property of large, macroscopic systems [1]. It is such ignorance, after
all, which forces us to lose information about the system, thus introducing irreversibility into our
description of the physical world. And the irreversible flowing of time can hardly be considered a
“practical consideration” which, in principle, could be ignored when describing the world!

In order to describe macroscopic systems, “Statistical Mechanics” has been developed starting
from Maxwell, Gibbs, Boltzmann, and moving into “Quantum Statistical Mechanics” (Einstein’s
early “quantum” work). We cannot discuss it here as accurately and deeply as the subject deserves.
However, in order to understand the deep problems surrounding the issue of charge transport in solids
(an irreversible process: your laptop gets hot and heat cannot be fully recovered into more ordered
forms of energy, so the second law of Thermodynamics teaches us), we must at least mention some
concepts of Quantum Statistical Mechanics. Texts such as Jancel’s [2] and the “encyclopedic” volumes
by Zubarev and collaborators [3, 4] should be consulted by interested readers.
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216 10 Elements of Quantum Statistical Mechanics

10.1.1 Statistical Ensembles

The basic idea needed to account for our “ignorance” consists in introducing the concept of a
“statistical ensemble” (originally devised by Gibbs). Rather than considering a single chunk of
semiconductor, we consider an ideal collection of N identically prepared copies of our original
chunk. In conventional (i.e., deterministic) mechanics, classical or quantum, we describe with infinite
accuracy the state of the system by specifying, for example, in which of the possible wavefunctions
Ψα(r1,r2, . . . ,rNp) (states labeled by an index α—which can vary from 1 to Nstates—and functions of
the coordinates ri (i = 1,Np) of the particles constituting the system) we shall find the system. Thus,
we specify a particular α .

In Statistical Mechanics, instead, we consider a large number of systems Nsystems and subsequently
specify the number of systems in state α , nα . Equivalently, we shall talk of one system and the
probability Pα = nα/Nsystems of finding the system in the state α .

Most commonly, three ensembles are considered:

• The microcanonical ensemble describing a system with fixed volume in which all possible states
with a given energy E and number of particles N have equal probability of being occupied.

• The canonical ensemble describing a system with fixed volume and fixed number of particles
N but with a given expectation value for the energy 〈E〉 of the ensemble determined by the
temperature (T).

• The grand canonical ensemble describing a system with fixed volume but with a given expectation
value for the number of particles 〈N〉 and the energy of the ensemble determined by the chemical
potential (μ) and the temperature, respectively.

10.1.2 Density Matrix

The properties of an ensemble are determined by the states in the system Ψα together with the
probability Pα = nα/Nsystems that the system is in this state. However, it is convenient to combine
the probability and the wavefunction into a single entity “the density matrix” which is defined as

ρ(r,r′) =∑
α
Ψ ∗
α (r

′)PαΨα(r) (10.1)

in real-space form in first quantization or

ρ̂ =∑
α
| α〉Pα〈α | (10.2)

in first or second quantization in bra-ket notation.
The density matrix behaves as an operator yielding the probability that a system is in a given

state as

ρ̂ | α〉= Pα | α〉. (10.3)

All probabilities, which are the eigenvalues of the density matrix, have to be numbers between 0 and 1
and the sum of all probabilities has to equal one, which results in the property Tr(ρ̂) = 1. The overall
expectation value of an observable ̂O for an ensemble is given by
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〈̂O〉=∑
α

Pα〈α | ̂O | α〉= ∑
αα ′

Pα〈α | α ′〉〈α ′ | ̂O | α〉 (10.4)

=∑
α
〈α | ρ̂̂O | α〉 (10.5)

= Tr(ρ̂̂O) . (10.6)

where we have used the orthogonality Pα/α ′ 〈α | α ′〉 = Pαδαα ′ and the completeness of the basis
α: ∑α | α〉〈α |= 1.

Equation (10.6) can be applied in the single-particle picture where ρ̂ and ̂O are conventional
matrices and the trace is the sum of the diagonal elements. But Eq. (10.6) applies equally well in the
second quantized picture where ρ̂ and ̂O are operators acting on Fock space and the trace is defined
in Eq. (10.5) and the sum runs over a complete set of states spanning Fock space.

The amount of information contained in a quantum ensemble is given by its von Neumann
entropy [5]:

S =−kBTr(ρ̂log(ρ̂)) (10.7)

and using the definition of the density matrix, the entropy can be rewritten using the probabilities for
each state to occur

S =−kB∑
α

Pα logPα . (10.8)

When kB is taken to be unity, Eq. (10.8) is Shannon’s entropy from information theory. Equation (10.8)
is also Gibbs’ entropy from Classical Mechanics when Pα is taken as the probability of a state
occurring in a classical ensemble.

If a system is in a pure stateΨα , the system is in an extremely ordered state and there is no real need
to invoke an ensemble. Nevertheless, an ensemble describing a pure state has Pα ′ = δαα ′ , Pα ′ logPα ′ =
0 and an entropy S = 0. On the other hand, if the system is in a completely random state Pα =
1/Nsystems and the entropy reaches a maximum S = log(Nsystems) where Nsystems measures the number
of degrees of freedom in the system. In Sect. 10.1.4, we will derive the grand canonical ensemble as
an ensemble with only two constraints: a fixed expectation value of its energy and a fixed expectation
value of the number of particles in the system. All other degrees of freedom are unrestricted and
any state which satisfies both constraints is equally probable. Mathematically, the grand canonical
ensemble is the ensemble with maximizing the entropy whilst satisfying both constraints.

10.1.3 Examples of Density Matrices

To familiarize ourselves with the density matrix, we consider the spin of an electron. For the electron,
there are two are spin states available, |+〉 and |−〉, spin up and spin down along the z-axis. The
density matrix

ρ̂ =

[

1/2 0
0 1/2

]

, (10.9)

corresponds to an ensemble of totally unpolarized electrons (P+ = P− = 0.5). The ensemble spin
expectation value will be

〈σz〉= Tr[σ̂zρ̂ ] =
1
2

Tr[σ̂z] = 0 , (10.10)
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as well as 〈σx,y〉= 0 recalling that

σ̂x =

[

0 1
1 0

]

, σ̂y =

[

0 i
−i 0

]

, σ̂z =

[

1 0
0 −1

]

. (10.11)

On the other hand, the density matrix

ρ̂ =

[

1 0
0 0

]

, (10.12)

corresponds to an ensemble of completely polarized, spin-up electrons. The ensemble average of the
spin will be

〈σz〉= Tr[σ̂zρ̂] = σz,11 = 1 . (10.13)

Thus, the electrons are all in pure spin-up states.
Now let’s consider our electrons as being in a (coherent) superposition of spin-up and spin-down

states. The state vector corresponding to this situation is

|s〉= 1√
2
[(1,0)+(0,1)] =

1√
2
(1,1) . (10.14)

The density matrix built out of this state will be

ρ̂ = s∗s =
1
2

[

1 1
1 1

]

, (10.15)

〈σx〉= 1 and 〈σy〉= 〈σz〉= 0.
Note that, unlike in Eqs. (10.9) and (10.12) considered above, the off-diagonal elements are

nonzero in Eq. (10.15). The off-diagonal elements represent the fact that the system is in a coherent
superposition of quantum states. This has no classical analogue and is a feature of Quantum
Mechanics.

10.1.4 The Grand Canonical Ensemble

Without any knowledge about a system, there is no preference with regard to the system being in one
state compared to another and each state is assumed to be occupied by a particle with equal probability:
pα = pα ′ . However, some knowledge is available: an isolated system is subject to the conservation of
energy. Even if our description of the system and its Hamiltonian is only approximate, the total energy
of the system must remain unchanged. The ensemble describing a closed system of which the total
energy is known is called the microcanonical ensemble and has pα = δEα ,E/NE where E is the energy
of the microcanonical ensemble, Eα is the energy of state α , δEα ,E equals 1 when E = Eα and 0
otherwise, and Nα = ∑α δEα ,E the total number of states with energy E.

Considering an electrical contact, however, the assumption that our contact is an isolated system
is no longer valid because there is exchange of energy, e.g., with phonons, and exchange of particles,
e.g., with another contact. If our contact is connected to—or is a part of—a large reservoir, energy and
particles can flow back and forth between the contact and the reservoir. Such a system is described by
the grand canonical ensemble.
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If the contact and the reservoir are in equilibrium, the expectation value of the energy and the
number of particles flowing out of the contact into the reservoir vanish (d〈E〉/dt = d〈N〉/dt = 0).
The microcanonical requirement that the total energy of the system E is known is now replaced by
the requirement that the expectation value of the total energy 〈E〉 is known. For the microcanonical
ensemble we implicitly assumed the number of particles remained unchanged but for our contact
described by the grand canonical ensemble, the expectation value on the number of particles 〈N〉 is
taken to be known.

An expression for the grand canonical ensemble (ρGC) can be obtained by finding the ensemble
which maximizes the entropy while satisfying Tr(̂Hρ̂) = 〈E〉 and Tr(̂Nρ̂) = 〈N〉. Any density matrix
further has the property Tr(ρ̂) = 1.

Mathematically, the entropy maximum can be found by imposing δS = 0 while introducing
Lagrange multipliers (β0, βE, and βN) for the different constraints

δTr
(

β0ρ̂+βE ̂Hρ̂+βN ̂Nρ̂− kBρ̂log(ρ̂)
)

= 0,or, (10.16)

Tr
((

β0̂I +βE ̂H+βN ̂N − kBlog(ρ̂)− kB̂I
)

δ ρ̂
)

= 0 (10.17)

for any δ ρ̂ , which requires

β0̂I +βE ̂H+βN ̂N − kBlog(ρ̂)− kB̂I = 0. (10.18)

Solving for ρ̂ and relabeling the Lagrange multipliers gives the grand canonical ensemble in its usual
form

ρ̂ = exp
(

−β (̂H−μ ̂N)
)

/Z (10.19)

The Lagrange multipliers have been relabeled: β = βE/kB = 1/kBT , μ = βN/βE, and β0 ensure that
Tr(ρ̂) = 1 which is accomplished by introducing the partition function

Z = Tr
(

exp
(

−β (̂H−μ ̂N)
))

. (10.20)

If the Hamiltonian is diagonalized by the operators ĉk, the grand canonical ensemble is given by

ρ̂ = 1/Z∏
k

exp
(

−β (Ek −μ)ĉ†
kĉk

)

. (10.21)

10.1.5 Distribution Functions

The probability that a single-particle state k is occupied in a many-particle system described by an
ensemble ρ̂ is called the distribution function and is defined as

f (k) = Tr(ĉ†
kĉkρ̂) . (10.22)

Equation (10.22) can be evaluated for the grand canonical ensemble using some algebra. A
first relation valid for any ensemble follows from the commutation/anticommutation properties of
bosons/fermions

Tr(ĉkĉ†
kρ̂)∓Tr(ĉ†

kĉkρ̂) = 1. (10.23)
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For Fermions, Eq. (10.23) is an expression of Pauli’s principle as it states that the sum of the
probabilities of finding an electron and not finding an electron (or finding a hole) Tr(ĉkĉ†

kρ̂) equals
unity. Invoking the invariance of the trace with respect to cyclic permutation gives Tr(ĉkĉ†

kρ̂) =
Tr(ĉ†

kρ̂ ĉk) and we proceed by writing Tr(ĉ†
kρ̂ ĉk) as a function of Tr(ĉ†

kĉkρ̂).
Keeping the grand canonical ensemble in mind, the commutation/anticommutation relations can

be applied inside the exponential to yield a second relation

exp
(

−β (Ek −μ)ĉkĉ†
k

)

= exp(−β (Ek −μ))exp
(

∓β (Ek −μ)ĉ†
kĉk

)

. (10.24)

From the series expansion of the exponential exp(ĉĉ†) = ĉĉ† + ĉĉ†ĉĉ†/2 + · · · , it follows that
exp(ĉĉ†)ĉ = ĉexp(ĉ†ĉ) and furthermore for fermions ĉĉ = 0 and thus exp(±ĉ†ĉ)ĉ = ĉ. Using the
diagonal representation of the grand canonical ensemble [Eq. (10.21)], knowing that ĉk commutes
with ĉk′ for k �= k′ and using Eq. (10.24)

ρ̂ ĉk = exp(β (Ek −μ))ĉkρ̂ . (10.25)

resulting in the relation

Tr(ĉkĉ†
kρ̂) = exp(β (Ek −μ))Tr(ĉ†

kĉkρ̂). (10.26)

Substituting Eq. (10.26) into Eq. (10.23) results in the Bose–Einstein distribution for Bosons and the
Fermi–Dirac distribution for Fermions

f (k) =
1

eβ (Ek−μ)∓1
. (10.27)

Note that the distribution is only a function of the energy and it is more common to write f (E)
compared to f (k).

In practice, formally using the ensemble of a many-particle system is a tedious process and the
distribution function provides a much more convenient entity. Moreover, the distribution function
contains sufficient information to evaluate the expectation value of all single-particle operators.
Considering a single-particle operator

̂O =∑
kk′

〈k | ̂O | k′〉ĉ†
kĉk′ , (10.28)

the expectation value of the ensemble is

〈̂O〉= Tr(ρ̂̂O) =∑
kk′

〈k | ̂O | k′〉Tr(ρ̂ ĉkĉ′k) (10.29)

=∑
k

f (k)〈k | ̂O | k〉. (10.30)

The last step is a consequence of ρ being diagonalized by the k basis. For example, in real-space
notation the charge density can be computed as

ρ(r) =∑
k

f (k)|ψk(r)|2 (10.31)

where ψk(r) is the solution of the single-particle Schrödinger equation.
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10.1.6 Equation of Motion for the Density Matrix

When the eigenstates of the ensemble are not eigenstates of the Hamiltonian of the system, the
ensemble will evolve over time. The evolution is determined by the time-dependent Schrödinger
equation

ih̄
∂Ψ
∂ t

= ̂HΨ . (10.32)

The time dependence of the density matrix is easily derived:

ih̄
∂ ρ̂
∂ t

= ih̄∑
α

(

∂ |α〉
∂ t

pα〈α|+ |α〉pα ∂ 〈α|∂ t

)

= (̂H|α〉pα〈α|− |α〉pα〈α|̂H = [̂H, ρ̂] (10.33)

where, as usual, [̂A,̂B] = ̂ÂB− ̂B̂A the commutator.
This equation has the same form of a famous equation in classical Statistical Mechanics, the

“Liouville” equation, in which the commutator is obviously replaced by a Poisson bracket and the
density matrix is replaced by the classical distribution function. This quantum mechanical analogue
is known as the Liouville–von Neumann equation. Note two main considerations which differentiate
the time evolution of the density matrix ρ̂ from that of an observable:

1. The time evolution of an observable ̂Q is given by Heisenberg’s equation

[̂Q, ̂H] = ih̄
∂ ̂Q
∂ t

. (10.34)

Note the sign difference comparing with Eq. (10.33).
2. Observables ̂Q evolve in time in the Heisenberg representation, but are constant in the Schrödinger

representation. The density matrix ρ̂ behaves in the opposite way: It is constant in the Heisenberg
representation, it evolves in time in the Schrödinger representation.

For these two reasons it is customary to call ρ̂ a “matrix” rather than an “operator.” It is, of course, an
operator mathematically speaking. Yet, it does not behave exactly as an observable.
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Chapter 11
Dielectric Properties of Semiconductors

11.1 Outline

In this section we discuss the response of the semiconductor to a perturbing potential. The practical
reason which forces us to discuss this subject is, of course, our need to handle the problem of carriers
which scatter with the external potential. Unfortunately, any external perturbation causes not only the
“single-particle” scattering process we are interested in, but also a “many-body” rearrangement of all
electrons, valence and conduction, as well as of the ions (especially if the crystal is ionic). Thus, we
must consider both the electronic and the ionic dielectric properties. This rearrangement modifies the
scattering potential, so that the scattering event depends on these many-body effects as well.

In introductory textbooks of electromagnetic theory, the effect is “lumped” into a dielectric constant
of the medium: If E is the “external” electric field applied to a dielectric medium, this field will induce
a redistribution of the charges in the medium which will give rise to an additional polarization field P.
Assuming a linear relation between the perturbation E and the “response” P (a typical example of
what is indeed known as “linear response theory”), we write

P = χ E , (11.1)

where χ (the Greek letter “chi”) is called the “dielectric susceptibility.” Therefore, the total electric
displacement field D resulting from both the applied field E and the response P of the medium will be

D = ε0(E+P) = ε0(E+ χ E) = ε0(1+ χ)E = ε E , (11.2)

where ε, the dielectric constant, absorbs the effect of the polarization charges.
Such a “macroscopic averaging” may be too much of a simplification in our case. In general, the

response of the system depends on both the wavelength and the frequency of the external perturbation.
In addition, semiconductors are not isotropic media. Thus a single dielectric “constant” is actually a
frequency and wavevector dependent matrix. We shall derive it in a few cases, assuming for the spatial
and temporal dependence of the perturbation a simple harmonic form of the type eiq·reiωt. Assuming
a “linear response,” we can always Fourier-decompose any external perturbation, function of space
and time, analyze each Fourier component, one at the time, and derive the response of the system for
a particular value of q and ω . Adding the response at all wavelengths and frequencies at the end, we
may recover the response under the arbitrary perturbation.
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224 11 Dielectric Properties of Semiconductors

11.2 Ionic Response

Let’s consider first the response of the ions, which we shall treat in rather simple terms.

11.2.1 Optical Phonons in a Linear Chain

Let’s go back to our example of a linear chain of ions (page 205) and modify the problem slightly, so
that we now have two ions per “cell,” as illustrated Fig. 11.1. The ions are connected by springs with
elastic constant D, as before. The ions have alternating masses, M and m, as shown, with M > m. The
equilibrium distance between two adjacent atoms is a.

The equations of motion can be derived by writing two equations, one for the displacement u1 of
the atoms of mass M and another one for the displacement u2 of the atoms of mass m. So, denoting
by u1,j the displacement of the ion of mass M at location ja and by u2,j the displacement of the ion of
mass m at location (j+1)a, the equations of motion are

M
d2u1,j

dt2 = D(u2,j −u1,j) + D(u2,j−1 −u1,j) . (11.3)

m
d2u2,j

dt2 = D(u1,j+1 −u2,j) + D(u1,j −u2,j) . (11.4)

Defining

u1,j = υ1 ei(2jqa−ωt) , (11.5)

u2,j = υ2 ei(2jqa−ωt) , (11.6)

the equations of motion become

−M ω2 υ1 = Dυ2 − Dυ1 + Dυ2e−2iqa − Dυ1 , (11.7)

−m ω2 υ2 = Dυ1e2iqa − Dυ2 + Dυ1 − Dυ2 , (11.8)

or:

(M ω2 − 2D)υ1 + D(1 + e−2iqa)υ2 = 0 , (11.9)

D(1 + e2iqa)υ1 + (m ω2 − 2D)υ2 = 0 . (11.10)

This 2 × 2 linear homogeneous system (which is exactly the system given by Eq. (9.95) in the more
general case considered above) admits nontrivial solutions only if the determinant of the coefficients
vanishes, that is

(M ω2 − 2D)(m ω2 − 2D) − D2(1 + e2iqa)(1 + e−2iqa) = 0 . (11.11)

m m mM MM M

a

Fig. 11.1 Schematic illustration of a linear diatomic chain of atoms with different masses
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The two solutions of these quadratic equations are

ω2
± =

D
mM

{

(m+M) ± [(m+M)2 −4mM sin2(qa)
]1/2
}

. (11.12)

The choice of the “plus” sign leads to an “optical” branch that at low wavelengths (q → 0) and at short
wavelengths, approaching the zone boundary (q → π/(2a)), behaves as

ω2
+ →

{

2D
(

1
m + 1

M

)

for q → 0
2D
m for q → π

2a .
(11.13)

The choice of the “minus” sign yields an acoustic mode:

ω2
− →

{

D
M+m a2 q2 → c2

s q2 for q → 0
2D
M for q → π

2a .
(11.14)

The optical solution corresponds to a mode in which the two different ions oscillate out of phase, the
acoustic solution corresponds to a mode in which the different ions oscillate in phase.

11.2.2 Response in the Infrared

Now consider Eqs. (11.7) and (11.8) and focus on the long-wavelength (infrared) limit qa → 0 when
adding the perturbation of an electric field Ee−iωt: Assuming a positive charge e for the ion with mass
M and negative charge −e for the ion with mass m, those equations become

−M ω2 υ1 = 2D(υ2 −υ1) + eE , (11.15)

−m ω2 υ2 = 2D(υ1 −υ2) − eE . (11.16)

Dividing the first equation by M, the second one by m, and subtracting the second from the first, we
obtain

υ2 −υ1 =
eE/μ

(2D/μ)−ω2 , (11.17)

where μ is the “reduced mass” 1/(m−1 +M−1). From Eq. (11.13) we recognize that 2D/μ = ω2
TO is

the squared frequency of the optical mode in the diatomic linear chain.
Now, the application of the external field E has caused a polarization of the pair, the negative ion

moving in the opposite direction of the positive ion. Thus, this polarization results in an additional
electric field

Pion =
1

ε(∞)
eN(υ2 −υ1) =

1
ε(∞)

e2N/μ
ω2

TO −ω2
E , (11.18)

where N is the number of ion pairs per unit volume and ε(∞) is the dielectric constant in absence
of the ionic response (so, at a frequency large enough so that the ions cannot respond). Note the
resonant behavior at the frequency ωTO. In general, this resonant behavior of Eq. (11.18) translates
into a frequency dependence of the form:

εion(ω) = ε(∞) + [ε(0)− ε(∞)]
ω2

TO

ω2
TO −ω2

, (11.19)



226 11 Dielectric Properties of Semiconductors

where ωTO in the case of a 3D crystal (more general than our simple 1D chain) is the frequency
of the transverse optical modes at long wavelengths. What Eq. (11.19) tells us is that the dielectric
“constant” approaches a smaller value ε(∞) at frequencies so large that the ions do not respond to the
external perturbation. Thus ε(∞) = εs, the “static” electronic dielectric constant of the semiconductor
[see below, Eq. (11.42)]. As the frequency decreases, the ions begin to respond and, after having gone
through the resonance at ωTO, their response results in a larger dielectric “constant” ε(0). The factor
ε(0)−ε(∞) = e2N/(μω2

TO) represents the contribution of ions to the dielectric response and it is also
known as the “oscillator strength” or “f -strength.” Note that Eq. (11.19) can also be written as:

εion(ω) = ε(∞)
ω2

LO −ω2

ω2
TO −ω2

, (11.20)

where ωLO is such that εion(ωLO) = 0. This shows that the dielectric constant is negative for
ωTO < ω < ωLO, which means that electromagnetic waves do not propagate through the crystal:
they will be damped, as the polarization of the crystal is in the opposite direction of the external field,
thus canceling it. To see this mathematically, recall that in a dielectric medium the relation between
wavevector and frequency of an electromagnetic wave is

k2 =
ε(ω)
ε0c2 ω

2 . (11.21)

Whenever ε < 0, k will acquire an imaginary part which tells us that the wave becomes damped.
We have yet to understand the physical meaning of ωLO. Since

∇ ·D = ε(ω)∇ ·E = 0 , (11.22)

assuming E = E0eik·r, for transverse modes we will have k ·E0 = 0, so that Eq. (11.22) is trivially
satisfied when ε(ω) �= 0. However, when we deal with longitudinal modes, we satisfy Eq. (11.22)
with ε(ω) = 0. We see that longitudinal modes correspond to the zeros of the dielectric function,
transverse modes correspond to its poles. We also see from Eq. (11.19) and the property ε(ωLO) = 0
that

ωLO =

[

ε(0)
ε(∞)

]1/2

ωTO . (11.23)

This expression is known as the Lyddane–Sachs–Teller relation.
Note, finally, that since D(ω) = ε(ω)E(ω), and since in the absence of external charges D(ω) = 0,

transverse modes must have a vanishing microscopic electric field E(ω). Instead, longitudinal modes
can have E(ω) �= 0 and still have D(ω) = 0, since ε(ωLO) = 0. Thus, electrons will interact via polar
interactions only with longitudinal modes.

11.3 Electronic Response

Let’s now consider the response of the electrons under an external perturbing potential. We shall
not discuss the problem in its full generality: Even for the case of a homogeneous and isotropic
electron gas the problem has a long and complicated history. Instead, we shall rely on two main
simplifications.
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1. First, we shall restrict our discussion to the so-called longitudinal response. We shall assume that
our medium is isotropic (in some case thanks to a suitable transformation, such as the Herring–
Vogt transformation of k-space coordinates usually employed to “isotropize” the Si equi-energy
ellipsoids) [1], or we shall only consider the longitudinal polarization field, that is, the microscopic
field (generated by the redistribution of the charges under the external field) along the direction
of the external field itself. Transverse components, such as those which may arise from transverse
vector potentials in dynamic situations, will be ignored. A notable example of a situation where
“local transverse fields” may be important is discussed when dealing with a microscopic theory of
the electron–phonon interaction

2. The second approximation we shall embrace consists in assuming a “quasi-equilibrium” carrier
distribution. This approximation, dictated exclusively by practical computing difficulties, will be
discussed below.

The textbooks by Fetter and Walecka [2] and Mahan [3], as usual, provide a precious source of
additional details and clarifications.

11.3.1 Random Phase Approximation

Let’s consider a “free” semiconductor, i.e. a semiconductor described by the Schrödinger equation
Eq. (5.1). Let’s denote by ̂H0 the free Hamiltonian at the left-hand side of Eq. (5.1), by ψk,μ(r) =
〈r|k,μ〉 the (Bloch) plane waves which are the eigenfunctions of the lattice Hamiltonian ̂H0 with
eigenvalues Eμ(k) for each band μ .

If we apply an external perturbation described by the potential ϕ(ex)(r, t), the charges in the semi-
conductor will rearrange themselves, causing an additional “polarization potential” (or “screening
potential”) ϕ(pol)(r, t) which modifies the original external potential. Thus, the “actual” potential in
the material will be the sum of the external perturbation and of the polarization potential,

ϕ(r, t) = ϕ(ex)(r, t) + ϕ(pol)(r, t) . (11.24)

We are interested in describing the total potential ϕ , since this is the effective perturbation acting on
the material. We may think of ϕ(ex) as the “bare” potential of a positively charged donor impurity
in n-type Si, described by the 1/r Coulomb potential, while ϕ will be the screened potential felt by
the conduction electrons, resulting from a single positive charge of the impurity ion and from the
negative cloud of free conduction electrons attracted by the impurity. Two approximations are very
commonly made to reduce the complexity of the problem: First, different Fourier components of
the perturbation and of the response of the system are considered independently. Cross-terms mixing
different “wavelengths” are ignored, on the grounds that their phases will vary wildly, resulting in their
cancelation. This is the so-called Random Phase Approximation (RPA). We thus transform this many-
body problem to a single-particle problem, thanks to this “mean-field” approximation. Secondly, we
assume that both the external and the polarization potentials are weak perturbations of the “free”
Hamiltonian ̂H0. This is the so-called “linear screening approximation” which allows us to express
the polarization charge in simple first-order perturbation theory.

Thanks to the RPA, we can state the problem more simply: Let’s expand the external perturbation
in plane waves:

ϕ(ex)(r, t) =∑
q
ϕ(ex)

q e−iq·r−iωt , (11.25)
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having assumed a simple harmonic time dependence. Then, we are interested in finding the “relative
dielectric” function ε(r)(q,ω) = ε(q,ω)/ε0, where ε0 is the vacuum permittivity, such that

ϕ(ex)
q = ϕq −ϕ(pol)

q = ε(r)(q,ω) ϕq , (11.26)

or ϕq = ϕ(ex)
q /ε(q,ω) and so ε(q,ω)/ε0 = 1−ϕ(pol)

q /ϕq. The usefulness of this expression lies in
the fact that, once we know the dielectric function ε(q,ω), the knowledge of the simple external
potential is sufficient to determine the net response of the system, without having to re-evaluate the
self-consistent redistribution of the charges internally to the system.

We shall proceed as follows: First, we shall employ the approximation of linear response to
determine the “new” wavefunctions of the system under the perturbation of the net potential ϕ ,
assuming that it is known. From the perturbed wavefunctions we shall derive the “polarization”
charge,

ρ(pol)(r, t) =∑
q
δρq e−iq·r−iωt , (11.27)

and, from this, the polarization potential. Summing the external and polarization potentials, we shall
finally solve for the net potential self-consistently.

Now we express the wavefunctions, φ (μ)k (r, t), of the perturbed system (lattice Hamiltonian plus

perturbing potential) in terms of the unperturbed wavefunctions ψ(μ)
k (r, t) = 〈r, t|k,μ〉, using first-

order perturbation theory (see pages 437–443):

φk,μ(r, t) = ψ(μ)
k (r, t) + δψk,μ(r, t)

= ψ(μ)
k (r, t) + ∑

k′,μ ′

e〈k′,μ ′|ϕ|k,μ〉
Eμ(k)−Eμ ′(k′)+ h̄ω+ ih̄s

ψ(μ ′)
k′ (r, t) (11.28)

and

φ ∗k,μ(r, t) = ψ(μ)∗
k (r, t) + δψ(μ)∗

k (r, t)

= ψ(μ)∗
k (r, t) + ∑

k′,μ ′

e〈k,μ |ϕ|k′,μ ′〉
Eμ(k)−Eμ ′(k′)− h̄ω− ih̄s

ψ(μ ′)∗
k′ (r, t) . (11.29)

Parenthetically, here we use the Greek letter μ to indicate the band index, instead of the “usual” index
n, in order to avoid confusion with the electron density.∗ These expressions are likely to present a surprise, as they contain a “strange” imaginary term
±ih̄s in the denominator. Its origin lies in the fact that when we have a continuous spectrum, we
must “regularize” the behavior of the coefficient appearing in the equation above when k′ → k. The
standard “trick” is to add a small imaginary part to the denominator, do the calculations, and at
the end take the limit s → 0. This is also known as taking the “principal part” of the integral. We
shall discuss it at length below, understanding what it means physically. For the time being, we may
ignore it.

From Eq. (11.25) and with some manipulations with Bloch waves, we have

〈k′,μ ′|ϕ|k,μ〉= ϕk−k′ ∑
G

〈k′+G,μ ′|ei(k−k′)·r|k,μ〉 . (11.30)
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The “new” charge density is obtained by summing the individual contributions e|φk,μ |2 over all
occupied states φk,μ . Denoting by p(k,μ) the occupation of each state—not necessarily the equi-
librium occupation number—we have

ρ(r, t) = e∑
k,μ

p(k,μ) |φ (μ)k (r, t)|2

= e∑
k,μ

p(k,μ) |ψ(μ)
k (r, t) + δψ(μ)

k (r, t)|2

� ρ0(r, t) + e2 ∑
k,μ

p(k,μ) ψ(μ)∗
k (r, t)

× ∑
G,k′,μ ′

ϕk−k′ 〈k′+G,μ ′|ei(k−k′)·r|k,μ〉
Eμ(k)−Eμ ′(k′)+ h̄ω+ ih̄s

ψ(μ ′)
k′ (r, t) + cc , (11.31)

where cc means “complex conjugate.” Now notice that under the sums we may swap the dummy

variables k with k′ and μ with μ ′ in the cc term. Finally, expressing the product ψ(μ)∗
k (r, t)ψ(μ ′)

k′ (r, t)
in terms of its Fourier transform,

ψ(μ)∗
k (r, t) ψ(μ ′)

k′ (r, t) =∑
q
〈k,μ |eiq·r|k′,μ ′〉 e−iq·r

= ∑
G′

〈k,μ |ei(k′−k)·r|k′+G′,μ ′〉 e−i(k′−k)·r (11.32)

and setting q = k′ −k, we obtain

δρ(r, t) = e2 ∑
k,μ
∑

G,q,μ ′

[p(k,μ)−p(k+q,μ ′)]|〈k+q+G,μ ′|eiq·r|k,μ〉|2
Eμ(k)−Eμ ′(k+q)+ h̄ω+ ih̄s

×ϕq e−iq·r . (11.33)

Comparing Eq. (11.27) with Eq. (11.32), we see that

δρq = e2 ∑
G,k,μ ,μ ′

[p(k,μ)−p(k+q,μ ′)]|〈k+q+G,μ ′|eiq·r|k,μ〉|2
Eμ(k)−Eμ ′(k+q)+ h̄ω+ ih̄s

ϕq . (11.34)

Using Poisson equation, ∇2ϕ(pol) = −δρ/ε0, we can easily express the Fourier components of the
polarization potential in terms of the Fourier components of the charge variation δρq:

ϕ(pol)
q =

δρq

q2ε0
. (11.35)

Combining Eqs. (11.26), (11.34), and (11.35), we can finally identify the dielectric function with

ε(r)(q,ω) = 1 − e2

q2ε0
∑

G,k,μ ,μ ′

[p(k,μ)−p(k+q,μ ′)]|〈k+q+G,μ ′|eiq·r|k,μ〉|2
Eμ(k)−Eμ ′(k+q)+ h̄ω+ ih̄s

. (11.36)
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Fig. 11.2 Diagrams explaining the meaning of the Random Phase Approximation. These diagrams are called Goldstone
diagrams. Vertical arrows represent electrons traveling forward in time; horizontal dashed lines represent interactions
via a bare potential Vq, uq,ω represents the screened interaction. Vertices count the number of times the interaction
enters as a factor, i.e., the perturbation order of the interaction. The RPA amounts to assuming only diagrams containing
“Fermion loops” dominate. This is true at large electron densities

∗The validity of the RPA. The RPA can be formulated simply as follows: Suppose that Vq is the
Fourier component of the potential through which electrons interact. We want to calculate the
screened potential uqω . The frequency ω here appears because we wish to account also for the
dynamic response of the other electrons that screen Vq. We proceed by considering the electrons
interacting with another particle by considering a perturbation series in which the first term (zero-th
order) represents the bare interaction; the first-order term represents the electron interacting with the
mediation of another electron in the surrounding electron gas; and the Nth-order term represents the
interaction mediated by n surrounding electrons. Graphically, we may represent the electron in its
initial state |k〉 as an arrow propagating forward in time, an arrow pointing upwards in the diagram
shown in Fig. 11.2. A horizontal dashed line represents an interaction that terminates at the position
of whatever the electron is interacting with (an impurity, another electron, and such). At zero-th order
(that is, for the unscreened potential), the electron interacts via Vq. This is the topmost diagram. At the
next order in our perturbation series, the only process that appears is a process in which the original
electron interacts with another electron, exchanging momentum q, and the interaction now terminates
via this electron. From first-order perturbation theory, this term contributes a factor

Vq
n−k(1−nk+q)

Ek+q −E−k + h̄ω
. (11.37)

There are no other terms at first order. There will be n processes of this type, if n is the total number
of electrons in the gas. At the next order, there will be processes that simply add another intermediate
electron (the left-most diagram in the bottom line of diagrams). There will now be n2 of them, since
each one of the “loops” shown in the figure can be chosen in n different ways, one per electron in
the gas. If we add all terms of the sum, we have a geometric series of powers of terms given by
Eq. (11.37). Equations (11.36) and (11.45) represent exactly the sum of this series. Indeed, consider
again Eq. (11.26) and rewrite it in terms of a geometric series of a susceptibility (or polarizability)
χ(q,ω) as
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ϕq = ϕ(ext)
q + χ(q,ω)ϕq = ϕ(ext)

q + χ(q,ω)ϕ(ext)
q + χ(q,ω)2ϕ(ext)

q + · · ·

=
ϕ(ext)

q

1 − χ(q,ω)
=

ϕ(ext)
q

ε(q,ω)
, (11.38)

where we have set ε0 = 1 for convenience. This is exactly the sum of the RPA perturbation series at
all orders in the interaction.

This method was first proposed by Bohm and Pines in the early 1950s [4–7], but the question
arose about the validity of this approximation. Indeed, at a given order N ≥ 2, there will be other
diagrams that do not contain loops: For example, the last second-order diagram shown in Fig. 11.2
that contains a self-interaction of the intermediate electron, or other diagrams consisting of a lower-
order diagram and a disconnected loop. All of these diagrams are ignored by the RPA, making it
a somewhat dubious approximation. Only a few years later, in 1957, Gell–Mann and Bruckner [8]
showed that, at any given order, the number of these other diagrams is of the order of at most nN−1,
whereas, as we just saw, there are ∼ nN diagrams containing loops. (For example, the second second-
order diagram shown in the figure appears only n times, because the same electron interacts at four
vertices. On the contrary, there are n2 two-loop diagrams.) These are exactly those processes that
involve a different wavevector, q′, thus mixing the various wavelengths. Therefore, at large electron
densities, the RPA is justified.

11.3.2 Special Limits (Long-Wavelength, Static, Response of 2DEGs
and 1DEGs)

11.3.2.1 Static Dielectric Constant

We are interested in situations in which the occupation of the states, p(k,μ), is the occupation of the
perfect crystal at zero temperature, plus a small perturbation representing the free carriers. Thus,

p(k,μ) = p0(k,μ) + f (k,μ) , (11.39)

where p0 is unity for all states in the valence bands, zero otherwise, and f is the distribution of free
electrons (holes) in the conduction (valence) bands. It is convenient to separate the contributions of
the two different populations, since the population p0 is largely unaffected by the free carriers, and the
free carriers themselves matter almost exclusively in our context.

Considering the dielectric response of the valence electrons, we note that almost all of the
perturbing potentials ϕ we have to deal with are characterized by frequencies much smaller than
the gap of the semiconductor. The Coulomb potential responsible for interband impact ionization
represents a notable exception. Since contributions to the sum in Eq. (11.36) can be nonzero only
when p(k,μ)= 1 and p(k+q,μ ′)= 0, or vice versa, the largest contributions will come from occupied
(empty) states |k,μ〉 and empty (occupied) states |k+q,μ ′〉 whose energy difference is the smallest.
In other words, only states across the valence–conduction gap ought to be considered. Ignoring this
special case, we can perform the sum over the topmost valence band and the lowest-lying conduction
band, μ = υ and μ ′ = c. We can use the “sum rule” (which we shall not prove):

∑
f

(Ef −Ei)|〈f |eiq·r|i〉|2 = h̄2q2

2mel
, (11.40)
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which is an extension of the sum rule for oscillator strengths. Assuming Ec(k+q)−Ev(k) � Egap,
which holds approximately for wavelengths 1/q long enough to result in almost “vertical” transitions
between k and k+q, and assuming also, as mentioned above, that h̄ω � Egap, we have

∑
G

|〈k+q+G,c|eiq·r|k,υ〉|2 =
h̄2q2

2melEgap
. (11.41)

Here Egap is the separation between the valence and conduction band, averaged over the entire BZ.
In practice, since the largest contributions to the sum in Eq. (11.36) come from regions of high
DOS, the direct gap at the symmetry point X represents a good approximation to the quantity Egap

considered here. Thus, from Eqs. (11.36) and (11.41), accounting for a factor of 2 resulting from the
cases p(k,c) = 1, p(k+q,υ) = 0, and p(k,υ) = 0, p(k+q,c) = 1, we have

ε(r)(q,0) � 1 +

(

h̄ωP

Egap

)2

≡ ε
(r)
s , (11.42)

where the bulk, valence-band plasma frequency is given by

ωP =

(

e2nv

ε0m

)1/2

. (11.43)

This is the static dielectric constant of the semiconductor, which approaches a constant at the long
wavelength we have considered.

11.3.2.2 Response of the Free Carriers

Considering now the response of the free carriers, we restrict ourselves to carriers in a single band,
since the corresponding denominator is often (but not always!) the smallest. We shall also consider
here only perturbations such that q � G, so that the matrix element of eiq·r between states in the same
band becomes unity, that is,

∑
G

|〈k+q+G,μ |eiq·r|k,μ〉|2 � ∑
G

|〈k+q+G,μ |k,μ〉|2 � 1 . (11.44)

A notable case for which this approximation fails is the case of zone-edge phonons, whose screening
must be treated by retaining the matrix element above. Then, dropping for now the band indices, we
can now rewrite Eq. (11.36) as follows

ε(q,ω)
εs

= 1 − e2

q2εs
∑
k

f (k)− f (k+q)
E(k)−E(k+q)+ h̄ω+ ih̄s

. (11.45)

Except for the static dielectric constant εs in place of the vacuum value, ε0, this is exactly the so-
called Lindhard’s expression valid for a free electron gas. As a matter of convenience, we introduce a
“screening wavevector” β (q,ω) and recast Eq. (11.45) in the form:

ε(q,ω) = εs

[

1 +
β 2(q,ω)

q2

]

. (11.46)
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Fig. 11.3 Real and
imaginary parts of the bulk
Si dielectric function at a
nondegenerate electron
concentration of 1018 cm−3

computed using either the
numerical-RPA expression
(solid lines) or the
nondegenerate high-T
expression (dashed lines)
as a function of Q at the
plasma frequency (a) or at
the Thomas–Fermi
screening wavelength βs,3D

(b). (Reprinted with
permission from
M.V. Fischetti,
J. Appl. Phys. 89, 1232
(2001). Copyright 2001,
AIP Publishing LLC)
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Thus, the final answer to our initial problem (“What is the ‘net’ potential ϕ(r, t), once the external
perturbation ϕ(ex)(r, t) is known?”) can be expressed as

ϕ(r, t) =∑
q

ϕ(ex)
q

ε(r)(q,ω)
eiq·reiωt . (11.47)

The evaluation of the electronic component of the dielectric function requires the knowledge of the
electron distribution function p(k). In transport problems, this may actually be the main unknown,
so that self-consistent schemes are required. But even when p is known (as in thermodynamic
equilibrium), the evaluation of the RPA expression Eq. (11.36) or even (11.45) is, in general, quite
complicated. Therefore, we shall now consider various cases in which this expression, ultimately
needed to screen the scattering potentials, can be evaluated in closed form. This can be done by
employing a simple effective mass, parabolic band approximations for the conduction band, and
assuming that the distribution function is well approximated by its thermal equilibrium value. Indeed,
screening is particularly important in high density regions of the devices. In these regions the large
density results in a small resistivity and, as a consequence, in small electric fields that prevent
significant deviations from equilibrium (small “carrier heating”). Thus, we may set f (k) � f0(k),
the equilibrium distribution function.

We shall now derive well-known expressions for the dielectric constant in the static- and long-
wavelength limits, obtaining the Debye–Hückel/Thomas–Fermi expression and the semiclassical
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Fig. 11.4 As in Fig. 11.3,
but for the degenerate case
corresponding to an
electron concentration of
1020 cm−3. (Reprinted with
permission from
M.V. Fischetti,
J. Appl. Phys. 89, 1232
(2001). Copyright 2001,
AIP Publishing LLC)
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plasma frequency, respectively. Afterwards, we shall derive more general expressions—valid at all
wavelengths and frequencies—in the two limits of a nondegenerate, high-temperature electron gas,
and of a degenerate gas at zero temperature. Figures 11.3 and 11.4 (from Ref. [9]) give an example of
the dielectric response of free carriers in Si, calculated using the RPA.

Static Debye–Hückel/Thomas–Fermi Screening. For static perturbations (e.g., impurity scattering),
we set h̄ω = 0 and employ the following approximations valid at long wavelengths:

E(k+q)−E(k)� q ·∇kE(k) , (11.48)

f0(k+q)− f0(k)� q · ∂ f0
∂E

∇kE(k) , (11.49)

so that

ε(q,0) � εs − e2

q2

∫

dE D(E)

(

−∂ f0
∂E

)

= εs +
e2

q2

∫

dE D(E)

(

− ∂ f0
∂EF

)

, (11.50)

where D(E) is the density of states at energy E. Thus, we obtain the static screening parameter at long
wavelengths:

β 2
s =

e2

εs

∫

dE D(E)

(

∂ f0
∂EF

)

=
e2

εs

∂n
∂EF

. (11.51)
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In the nondegenerate case (i.e., at very high temperatures), ∂n/∂EF � n/(kBT) and we have the
Debye–Hückel expression:

β 2
DH � e2n

εskBT
. (11.52)

In the opposite case of a degenerate gas (low temperature), ∂ f/∂EF � δ (E −EF) and we have the
Thomas–Fermi expression:

β 2
TF � e2

εs
D(EF) =

e2

εs

3n
2EF

. (11.53)

Plasma Oscillations. We can consider now the opposite limit of dynamic effects at long wavelengths,
i.e., the limit q → 0. Let’s recast Eq. (11.45) as follows (ignoring the imaginary part):

ε(q,ω)
εs

= 1− e2

εsq2∑
k

{

f (k)
E(k)−E(k+q)+ h̄ω

− f (k+q)
E(k)−E(k+q)+ h̄ω

}

. (11.54)

Inside the second sum let’s set k′ =−k−q:

ε(q,ω)
εs

= 1− e2

εsq2

{

∑
k

f (k)
E(k)−E(k+q)+ h̄ω

−∑
k′

f (−k′)
E(−k′ −q)−E(−k′)+ h̄ω

}

. (11.55)

Since E(−k′) = E(k′) and f (−k′) = f (k′):

ε(q,ω)
εs

= 1− e2

εsq2

{

∑
k

f (k)
E(k)−E(k+q)+ h̄ω

−∑
k′

f (k′)
E(k′+q)−E(k′)+ h̄ω

}

. (11.56)

Relabeling k the dummy variable k′ inside the second term:

ε(q,ω)
εs

= 1− e2

εsq2∑
k

f (k)
{

1
E(k)−E(k+q)+ h̄ω

− 1
E(k+q)−E(k)+ h̄ω

}

= 1− e2

εsq2∑
k

f (k)
{

1
E(k)−E(k+q)+ h̄ω

+
1

E(k)−E(k+q)− h̄ω

}

, (11.57)

which we can write as

ε(q,ω)
εs

= 1 +
e2

εsq2∑
k

2f (k)[E(k)−E(k+q)]
(h̄ω)2 − [E(k)−E(k+q)]2

. (11.58)

Now let’s expand for small deviation q from k as we had done above in Eq. (11.49), but retaining also
terms of order q2 (for reasons we shall understand soon enough):

E(k)−E(k+q) ≈ −∇kE(k) ·q − 1
2

q ·∇2E(k) ·q . (11.59)
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Inserting this into Eq. (11.58) we see that the term linear in q integrates out to zero, since it is odd in q.
Thus the first non-vanishing term will be (1/2)q ·∇2E(k) ·q = (q2/2)∂ 2E/∂q2 = h̄2q2/(2m∗). Thus:

ε(q,ω)
εs

= 1 − e2

εsq2∑
k

f (k)h̄2q2

m∗(h̄ω)2 . (11.60)

Since we have ignored spin,

∑
k

f (k) = n . (11.61)

Thus, Eq. (11.60) becomes

ε(q,ω)
εs

= 1 − e2m
εsω2 = 1 − ω2

P

ω2 , (11.62)

where ωP is the plasma frequency associated with the free carriers. It is given by the expression after
Eq. (9.75), with the density of electrons in the valence bands replaced by the (much smaller) density
of free carriers. The singularity of the dielectric function identifies the frequency of the plasma modes.
By expanding the numerator to higher orders in q and considering also the imaginary part of ε, one
could draw a very close analogy between this (quantum) treatment of the eigenmodes of the electron
gas and the classical picture we drew before when dealing with the root-mean-square (rms) amplitude
of the field associated with plasmons.
Nondegenerate Screening at High Temperature. In the nondegenerate limit (i.e., f0(k) �
exp[−E(k)/(kBT)]), we can do better, by finding an expression which describes a general dynamical
situation for arbitrary wavelengths, and which reduces to the Debye–Hückel expression in the static-
and long-wavelength limits. Following Fetter and Walecka [2], we can convert the sum in Eq. (11.45)
into an integral over k. We obtain (the derivation is outlined on pages 237–242):

Re[β 2(q,ω)]� β 2
DH

(

mkBT

2h̄2q2

)1/2
{

Φ

[

(

m
2kBT

)1/2(ω
q
+

h̄q
2mel

)

]

−Φ
[

(

m
2kBT

)1/2(ω
q
− h̄q

2mel

)

]}

(11.63)

Im[β 2(q,ω)]� β 2
DH

(

πmω2

2kBTq2

)1/2

exp

(

− mω2

2kBTq2 − h̄2q2

8mkBT

)

sinh[h̄ω/(2kBT)]
h̄ω/(2kBT)

, (11.64)

where

Φ(x) =
1

π1/2
P
∫ +∞

−∞
dy

e−y2

x− y
(11.65)

is the real part of the plasma dispersion function [10] and m is replaced by the effective mass of
the lowest-lying valley or conduction band (or valence, for holes). Useful asymptotic and series
expansions for the function Φ are



11.3 Electronic Response 237

Φ(x)�

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

1
x

(

1+
1
2

x−2 + · · ·
)

x � 1

2x

(

1− 2
3

x2 + · · ·
)

x � 1,

so that

g1(x)�

⎧

⎪

⎨

⎪

⎩

8π
x2

(

1+
8π
x2 + · · ·

)

x � 1

1− x
2

24π + · · ·x � 1.

In the static limit, ω → 0, we have

β (q,ω → 0)2 → β 2
DH g1(q�) , (11.66)

where

�=

(

2π h̄2

mkBT

)1/2

is the thermal wavelength and

g1(x) =
2π1/2

x
Φ
(

x

4π1/2

)

.

At long wavelengths, we recover the static Debye–Hückel expression, β (q → 0,0)→ βDH, while at
short distances screening effects disappear as 1/q2. The imaginary part of the dielectric function is
related to the lifetime of the electron response: As a function of ω it peaks at the plasma frequency,
while the full-width at half-maximum corresponds to the lifetime plasmons have before decaying into
single-particle excitations (electrons “surfing” the waves), a process called “Landau damping.”∗ Derivation of Eqs. (11.63) and (11.64). First of all, we must prove the following identity:

1
x− x0 ± iη

=P ∓ iπδ (x− x0) , (11.67)

where P means that we should take the “Cauchy principal value” (or “part”) when integrating. This
identity goes under various names, such as Sokhotski–Weierstrass or Sokhotski–Plemelj theorem
(“Sochocki” is the Polish spelling, transliterations vary).

In order to prove this, we must recall Cauchy’s theorem and the “residue” theorem: If f (z) is
a function of the complex variable z with poles at zj (that is, singularities of the “benign” form
f (z)∼ aj/(z− zj) where aj = Res[f (zj)] is called the “residue” of f at zj), then:

∮

f (z) dz = 2πi∑
j

Res[f (zj)] , (11.68)

where the integration contour is a closed loop, the integration path runs counterclockwise around the
contour, and the sum extends over all residues enclosed by the contour. This is the “residue” theorem.
In particular, if f is analytic (i.e., does not have singularities) inside the contour, then the integral
along the closed loop will vanish (Cauchy’s theorem).



238 11 Dielectric Properties of Semiconductors

Now let’s consider the integral:

∮

C

f (z)
z− x0

dz , (11.69)

where f (z) is a function which is analytic everywhere (which means f has infinitely many derivatives
on the entire complex plane) and the closed contour C is illustrated below in Fig. 11.5.

Since we do not enclose the singularity within the contour,

∮

C

f (z)
z− x0

dz = 0 . (11.70)

Note that the residue of the integrand at z = x0 is f (x0) and, so, integrating along the full little circle
around the pole x0 we get 2πif (x0). If we integrate clockwise around the upper half of the circle—
as indicated in the Fig. 11.5—we get −iπf (x0). Therefore, breaking the integration contour into its
components:

∮

C

f (z)
z− x0

dz = lim
η→0

∫ x0−η

∞

f (x)
x− x0

dz +
∫

C0

f (z)
z− x0

dz

+ lim
η→0

∫ ∞

x0+η

f (x)
x− x0

dz +
∫

C∞

f (z)
z− x0

dz

=P
∫ ∞

−∞
f (x)

x− x0
dz − iπf (x0) +

∫

C∞

f (z)
z− x0

dz = 0, (11.71)

having defined the Cauchy principal value:

P
∫ ∞

−∞
f (x)

x− x0
dz = lim

η→0

(
∫ x0−η

∞

f (x)
x− x0

dz +
∫ ∞

x0+η

f (x)
x− x0

dz

)

. (11.72)

But the integration along the entire contour can be written as the integration over the upper semi-
circle at infinity and the integration along the real axis:

∮

C

f (z)
z− x0

dz =
∫ ∞

−∞
f (x)

x− x0
dz +

∫

C∞

f (z)
z− x0

dz , (11.73)

and so, from Eqs. (11.71) and (11.72):

Fig. 11.5 Integration
contour used in Eq. (11.68) x0

Re(z)

Im(z)

C∞

C0
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∫ ∞

−∞
f (x)

x− x0
dz =P

∫ ∞

−∞
f (z)

z− x0
dz − iπf (x0) . (11.74)

This may seem like a roundabout way of proving our statement, since we could have simply rewritten
the integral over the real axis in the desired form without having to deal with the integration over the
closed contour. However, having integrated over the entire contour C, we can now note that if we had
chosen to integrate counterclockwise around the lower-half little circle C0 around x0 we would have
obtained a contribution of +iπf (x0), but we would have enclosed the pole inside the big contour, so
that we would have had on the left-hand side of Eq. (11.71) the term 2iπf (x0) instead of 0. Bringing
the term to the left-hand side, it would add up with +iπf (x0) giving −iπf (x0), as before. This shows
that we can go around the singularity either clockwise or counterclockwise and still obtain the same
result.

Yet, one arbitrary choice still remains. So far we have chosen to close the contour by integrating
over the path C∞ in the upper half of the complex plane. This can be rephrased mathematically by
moving the singularity at z = x0 slightly below the real axis, thus setting x0 → x0 − iη , so that closing
the loop along c∞ would not give us any residue. Thus, it is often convenient to rewrite Eq. (11.74) as

∫ ∞

−∞
f (x)

x− x0 + iη
dz =P

∫ ∞

−∞
f (x)

x− x0
dz − iπf (x0) , (11.75)

which is equivalent to Eq. (11.67) after integration.
On the contrary, we might as well have chosen to close the loop by integrating over the lower half

of the complex plane by setting x0 → x0 + iη . We would have obtained the same result, but the sign of
the δ -function term would have been opposite:

∫ ∞

−∞
f (x)

x− x0 − iη
dz =P

∫ ∞

−∞
f (x)

x− x0
dz + iπf (x0) . (11.76)

What does the choice of the sign mean physically? To understand this, we must go back to time-
dependent perturbation theory: From pages 439–443, assuming that the perturbation was present at
t →−∞, the fifth equation may be rewritten as

ak(t) =−1
h̄

∫ t

−∞
Hkj(t

′) e−i(Ek/h̄−Ej/h̄+ω)t′ dt′ . (11.77)

Replacing k → k, j → k + q, and Hkj → ϕq in our continuum case, we see that the denominator
E(k)−E(k+q)+ h̄ω in Eq. (11.45) originates from the integration above, having assumed that the
perturbation ϕ(ex)(r, t) has the harmonic time dependence e−iωt shown in Eq. (11.25). Therefore,
adding a term ±ih̄s to E(k)−E(k+ q) + h̄ω is equivalent to assuming that the time dependence
of the perturbation is of the form e±ste−iωt. Physically this is called an “adiabatic turn-on” of the
perturbation: If we select E(k)− E(k + q) + h̄ω + ih̄s, the perturbation acquires an exponential
damping backwards in time, which means that the perturbation was turned on slowly in the past
(at t → ∞) and the perturbed wavefunction responds after the perturbation has been turned on.
This corresponds to the choice of a retarded wavefunction. Conversely, the opposite choice for
the sign would correspond to an advanced wavefunction. In general, it is the particular boundary
or initial condition of our problem which fixes the sign-choice for the “regularizing” term e±st.
For example, If we were dealing with emission and absorption of phonons, we could consider the
retarded wavefunction in the case of absorption (the phonon present at t →−∞ results in a perturbed
wavefunction at later times), the advanced wavefunction in the case of emission (the wavefunction
causes the presence of the perturbing phonon at later times). In both cases, the turn-on and turn-off
are called “adiabatic” because the limit s → 0 is always implied and this corresponds to a turn-on
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(or turn-off) which is infinitely slow. In our case, the choice of the retarded wavefunction leads us to
the sign-choice we have made so far.

Let’s now consider Eq. (11.45) and convert the sum over k into an integral:

ε(q,ω)
εs

= 1 − e2

q2εs

∫

dk
(2π)3

f (k)− f (k+q)
E(k)−E(k+q)+ h̄ω+ ih̄s

. (11.78)

Let’s consider the integral

I =
∫

dk
(2π)3

f (k)− f (k+q)
E(k)−E(k+q)+ h̄ω+ ih̄s

. (11.79)

Let’s define

k′ = k +
1
2

q , (11.80)

so that

k = k′ − 1
2

q , k + q = k′+
1
2

q , dk = dk′ . (11.81)

Then:

I =
∫

dk′

(2π)3

f (k−q/2)− f (k′+q/2)
E(k′ −q/2)−E(k′+q/2)+ h̄ω+ ih̄s

. (11.82)

Since we integrate over the entire k-space, we can let k′ → −k′ inside the first integral. Since
f (k) = f (−k), we can rewrite this integral as

I =
∫

dk′

(2π)3 f (k+q/2)

{

1
E(k′+q/2)−E(k′ −q/2)+ h̄ω+ ih̄s

− 1
E(k′ −q/2)−E(k′+q/2)+ h̄ω+ ih̄s

}

. (11.83)

Now:

E(k′+q/2) =
h̄2

2mel

(

k2 +
1
4

q2 +k ·q
)

, (11.84)

E(k′ −q/2) =
h̄2

2mel

(

k2 +
1
4

q2 −k ·q
)

, (11.85)

so:

I =
∫

dk′

(2π)3 f (k+q/2)

{

1

h̄ω+ ih̄s+(h̄2/m)k ·q − 1

h̄ω+ ih̄s− (h̄2/m)k ·q

}

. (11.86)

Let’s now use Boltzmann statistics with Fermi level EF (indeed we are within the high-temperature,
nondegenerate approximation) and introduce cylindrical coordinates with the z-axis along the
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direction of q:

k = k⊥ + q̂kz , (11.87)

where q̂ is the unit vector along the direction of q. Then:

I = eβEF

∫

dk⊥
(2π)2 exp

(

−β h̄2k2
⊥

2mel

)
∫

dkz

2π
exp

(

−β h̄2(kz +q/2)2

2mel

)

×
{

1

h̄ω+ ih̄s+(h̄2/m)kzq
− 1

h̄ω+ ih̄s− (h̄2/m)kzq

}

, (11.88)

where, as usual, β = 1/(kBT). The integration over k⊥ can be done easily: Going to polar coordinates
and setting E⊥ = h̄2k2

⊥/(2mel), so that k⊥dk⊥ = (m/h̄2)dE⊥, we have

∫

dk⊥
(2π)2 exp

(

−β h̄2k2
⊥

2mel

)

=
∫ 2π

0
dφ
∫ ∞

0

dk⊥
(2π)2 k⊥ e−β h̄2k2

⊥/(2mel)

=
1

2π
m

h̄2

∫ ∞

0
dE⊥ e−βE⊥ =

m

2π h̄2β
. (11.89)

In order to handle the remaining integral over kz, let’s set the new integration variable (writing
now k for kz):

x2 =
β h̄2

2mel

(

k+
q
2

)2
,

k+
q
2
=

(

2mel

β h̄2

)1/2

x ,

dk =

(

2mel

β h̄2

)1/2

dx ,

h̄2kq
m

=

(

2h̄2

mβ

)1/2

qx−Eq ,

(11.90)

where Eq = h̄2q2/(2mel). Thus we have

I =
meβEF

2πβ h̄2

(

2mel

β h̄2

)1/2 ∫ ∞

−∞
dx e−x2

{

1

h̄ω+ ih̄s+Eq − [2h̄2/(mβ )]1/2qx

− 1

h̄ω+ ih̄s−Eq +[2h̄2/(mβ )]1/2qx

}

, (11.91)

or, setting

x± =

(

mβ
2h̄2

)1/2 1
q

[

h̄ω ± h̄2q2

2mel
+ ih̄s

]

, (11.92)

we now have
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I =
meβEF

2πβ h̄2

m

2π h̄2q

∫ ∞

−∞
dx

{

e−x2

x−+ x
− e−x2

x++ x

}

. (11.93)

Now we make use of Eq. (11.67). Considering first the real part, defining the “plasma dispersion
function”

Φ(y) =
1

π1/2
P
∫ ∞

−∞
dx

e−x2

x− y
, (11.94)

after a little algebra we get

Re(I ) =
n

h̄q

(

1
2

mβ
)1/2

[Φ(y−) −Φ(y+)] , (11.95)

where

y± =

(

βm
2

)1/2 (ω
q
± h̄q

2mel

)

. (11.96)

This leads to Eq. (11.63). The imaginary part, Eq. (11.64), should follow quite easily now from the
imaginary part of Eq. (11.93) using (11.67) as well.
Degenerate Screening at Low Temperature. In the opposite limit of a degenerate electron gas at low
temperature, we can approximate the Fermi function f0(k) with a step function at the Fermi level.
Then, the screening wavevector becomes

β (q,ω)2 � β 2
TF

{

1
2
+

1
8η3

[

[(γ+η2)2 −η2] ln

∣

∣

∣

∣

η+η2 + γ
η−η2 − γ

∣

∣

∣

∣

+(γ−η2)2 −η2] ln

∣

∣

∣

∣

η+η2 − γ
η−η2 + γ

∣

∣

∣

∣

]}

, (11.97)

where η = q/(2kF) and γ = (h̄ω+ is)/(4EF). In the limit q → 0 we find

ε(q,ω)
εs

= 1− ω2
p

ω2

(

1+
3
5
υFq2

ω2

)

, (11.98)

where υF = h̄kF/m is the Fermi velocity, which shows how higher-order corrections to Eq. (11.60)
introduce a (weak) dispersion for the plasma modes. In the static limit, Eq. (11.97) becomes

β (q,0)2 � β 2
TF

{

1
2
+

4k2
F −q2

8kFq
ln

∣

∣

∣

∣

2kF +q
2kF −q

∣

∣

∣

∣

}

. (11.99)

As q → 0 this expression tends to the Thomas–Fermi expression Eq. (11.53), while screening effects
become weaker at short distances, similarly to what is implied by the high-temperature limit,
Eq. (11.66). These results have been obtained by Stern [11].
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11.3.2.3 ∗Screened Impurity and Friedel’s Sum Rule

A particularly important application is given by the static potential of an ionized impurity, such as
dopant impurities in semiconductors. Let’s assume that the impurity has a net charge eZ, and let’s
keep the discussion as simple as possible. From Eq. (11.45), the full expression Eq. (11.63), the static
limit Eq. (11.66), and from the approximate expressions for the plasma dispersion function, we have

ϕ(r) =
eZ
εs
∑
q

eiq·r

q2 +β (q,0)2 =
eZ
εsr

−i
4π2

∫ ∞

−∞
dq q

eiqr

q2 +β (q,0)2 , (11.100)

having assumed that the screening wavevector depends only on the magnitude of q, since the impurity
potential does not depend on time. At large distances away from the impurity (r >> 1/β ), we can
approximate β with its long-wavelength limit, Eq. (11.51), obtaining the well-known Yukawa-type
potential:

ϕ(r) =
eZ

4πεsr
e−βsr . (11.101)

As we have seen, the particular form of the screening parameter β (q,0) may be quite complicated,
depending on the approximation embraced. Thus, expression (11.101) above will fail at short
distances, when the q-dependence of β (q,0), as given in Eq. (11.66), is important. Therefore, the
scattering cross section obtained from Eq. (11.101) above may be inaccurate. However, we can
follow a completely different path to derive a particular condition on β , valid generally for arbitrary
potentials. We shall consider the simpler case of zero temperature, but the general formulation at
arbitrary temperature can be obtained by modifying all sums up to the Fermi level as sums over all
states weighted by their thermal occupation.

In the absence of the impurity, the electron gas consists of states occupied to the Fermi level.
Instead of considering plane waves in a box, as usually done, we can consider a spherical volume and
express the plane waves in spherical harmonics.∗ We write the Laplace operator in polar coordinates and write Schrödinger equation as

− h̄2

2m∗
1

r2 sinθ

[

sinθ
∂
∂ r

(

r2 ∂ψ
∂ r

)

+
∂
∂θ

(

sinθ
∂ψ
∂θ

)

+
1

sinθ
∂ 2ψ
∂φ 2

]

+V(r)ψ = Eψ . (11.102)

Separating variables, we find that the azimuthal component Φ(φ) must satisfy the equation

1
Φ(φ)

∂ 2Φ
∂φ 2 = constant . (11.103)

Since we require single-valued solutions, the constant must be equal to −m2, where m is an integer,
so that Φ(φ) = e±imφ . The polar componentΘ(θ) must satisfy the equation:

1
sinθ

∂
∂θ

(

sinθ
∂Θ
∂θ

)

− m2

sin2 θ
Θ =− l(l+1)Θ , (11.104)
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where the “separation constant” has been set to the total angular momentum quantum number
l(l+1). Finally, the radial component of the wavefunction must satisfy the equation:

− h̄2

2m∗
1
r2

d
dr

(

r2 dR
dr

)

+

[

h̄2l(l+1)
2m∗r2 +V(r)

]

R(r) = E R(r) . (11.105)

At large distances r the potential V becomes negligible and the solution of Eq. (11.105) is the spherical
Bessel function jkl(r) (where as usual k = (2m∗E)1/2/h̄). Its asymptotic behavior at large r is ∼
sin(kr−πl/2)/r.

Each state is then labeled by the magnitude of the k-vector and by its angular momentum quantum
number l:

ψk,l(r,θ) ∼ 1
r

sin

(

kr− 1
2

lπ
)

Pl(cosθ) , (11.106)

(where Pl(x) is the Legendre polynomial of order l) at large distances. We assume that the
wavefunctions vanish on some boundary r = R, where R is sufficiently large so that the (screened)
potential vanishes. Therefore, the allowed values of k are labeled by an integer n such that knR =
nπ +πl/2. The number of electrons, NR, in the volume can be obtained by counting all states up to
the Fermi level, that is

NR ∼ 2 ∑
n<nF, l≤n

(2l+1) , (11.107)

where a factor 2 comes from spin, the factor (2l+ 1) represents the number of all possible angular
momentum states for each l, and the maximum “allowed” radial quantum number nF is set by the
Fermi level, i.e., nF = kFR/π− l/2. If we now introduce the impurity potential, the radial component
of the new wavefunction obeys the equation:

[

− 1
r2

d
dr

(

r2 d
dr

)

+
l(l+1)

r2 +
2me

h̄2 ϕ(r)− k2
]

Rl,k(r) = 0 . (11.108)

Now, thanks to the spherical symmetry of the scattering potential, we know that at large distances the
angular dependence of the wavefunction must remain unaltered. All the external potential can do is to
shift the phases of the partial radial waves. This is known as the partial-wave method [12]. Therefore,
at large distances the wavefunctions can be approximated by

φk,l(r,θ) ∼ 1
r

sin

[

kr− 1
2

lπ+ηl(k)

]

Pl(cosθ) , (11.109)

where ηl(k) is the phase shift of the partial wave, given by

sin[ηl(k)] =−2melek

h̄2

∫ ∞

0
dr r2jl(kr)Rl,k(r)ϕ(r). (11.110)

Note that in the Born approximation, we assume that all shifts are small and we substitute Rl,k(r) with
its “free particle” expression Rl,k(r)� jl(kr), so that

ηBorn
l (k)�−2melek

h̄2

∫ ∞

0
dr r2j2l (kr)ϕ(r). (11.111)
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It is easy to see that the phase shift results in additional electrons being placed in the volume: For
every l-state, the maximum index nF is increased by ηl(kF)/π . Therefore, the change in the number
of electrons in the volume is given by

δNR =
2
π ∑l

(2l+1)ηl(kF). (11.112)

This extra charge must be accounted for by the electrons required to screen the perturbing potential.
Therefore, since precisely Z electrons are needed to neutralize the charge of the impurity at large
distances, we must have

Z =
2
π ∑l

(2l+1)ηl(kF). (11.113)

This is Friedel’s sum rule [13]. This result depends only on the assumption that the Fermi level is
unchanged far away from the impurity and that the perturbing potential must be neutralized by excess
carriers at some finite distance.

In the presence of a general potential, we can compute the scattering cross section as follows. We
start with a screened potential of the Yukawa form (11.101), where β is now treated as a parameter
to be determined. We compute the phase shifts and fix β so that Friedel’s sum rule, Eq. (11.113), is
satisfied. Finally, we obtain the cross section from the well-known formula

σ(k,θ) =
1
k2

∣

∣

∣

∣

∣

∑
l

(2l+1)sin[ηl(k)]e
iηl(k)Pl(cosθ)

∣

∣

∣

∣

∣

2

. (11.114)

This result is usually more accurate than the use of the matrix element ϕq, as in the Born
approximation. In particular, the difference between attractive and repulsive Coulomb scattering
(which vanishes in the Born approximation), the charge oscillations associated with either the
wavefunctions (11.109) or the screening parameter (11.66), and the general dependence of β on q
will be accounted for.

11.3.2.4 ∗Two-Dimensional Screening

The response of a two-dimensional electron (or hole) gas to an external perturbation can be analyzed
in the same way. There are, however, slight complications caused mainly by the fact that carriers can
occupy many subbands. Therefore, it is useful to derive here a general expression for screening caused
by carriers in inversion layers or quantum wells. A complete discussion can be found in the Ando–
Fowler–Stern review [14], in Ridley’s text [15], but a specific discussion has been given by Dahl
and Sham [16]. Here we shall simplify somewhat the picture. In particular, we shall consider here
only longitudinal screening. Intersubband excitations, considered by Dahl and Sham, can play a non-
negligible role, particularly in (resonant) dynamic situations and give rise to a transverse component
of the polarizability, since intersubband transitions cause a redistribution of the charge density in the
direction normal to plane of quantization.

Assuming that the external perturbation is isotropic in the plane of confinement, it is convenient to
express it in terms of its Fourier–Bessel expansion:

ϕ(ex)(R,z, t) = 2π
∫

dQ Q J0(QR) ϕ(ex)
Q (z)eiωt, (11.115)
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where J0 is the spherical Bessel function of order 0 and the variables R and Q denote the coordinate
and wavevector in the quantization plane and z is the coordinate normal to the plane. The electron
wavefunctions in each subband labeled by μ can be written as

ψ(μ)
K (R,z) = eiK·Rζ (μ)(z)∑

G
eiG·ruG(k,0)≡ |K,μ〉. (11.116)

Under the net perturbation ϕ =ϕ(ex)+ϕ(pol), the wavefunctions are modified, similarly to Eq. (11.28),
as follows

ψ(μ)
K (R,z)→ φ (μ)K (R,z) = ψ(μ)

K (R,z)+ ∑
K′,μ ′

e〈K′,μ ′|ϕ|K,μ〉
Eμ(K)−Eμ ′(K′)+ h̄ω+ ih̄s

ψ(μ ′)
K′ (R,z). (11.117)

We have noticed before that the matrix element 〈K′,μ ′|ϕ|K,μ〉 is, in principle, a quite complicated
object, since it involves the Bloch wavefunctions themselves. However, assuming as we did before
that the external perturbation is of wavelength much longer than any nonzero G-vector, the overlap
term over Bloch factors yields unity and

〈K′,μ ′|ϕ|K,μ〉 � ϕK−K′,μμ ′ ≡
∫

dz ζ (μ)(z) ϕK−K′(z) ζ (μ
′)(z). (11.118)

In complete analogy with the derivation of Eq. (11.34), we have for the Fourier–Bessel components
of the induced charge density:

δρQ(z) = 2e2 ∑
K,μ ,μ ′

[gμ f (2D)(K,μ)−gμ ′ f
(2D)(K+Q,μ ′)]

Eμ(K)−Eμ ′(K+Q)+ h̄ω+ ih̄s
ϕQ,μμ ′ζμ(z)ζμ ′(z), (11.119)

where we have indicated by gμ the degeneracy of the μ th subband and with f (2D) the Fermi–
Dirac distribution for the two-dimensional dispersion. The form of the Poisson equation replacing
Eq. (11.35) in a two-dimensional context is less transparent. Indeed, both in the case of inversion
layers as well as of quantum wells, the discontinuity of the permittivity εs across interfaces, such as the
Si–SiO2 or GaAs–AlxGa1−xAs interfaces, should be handled by the appropriate boundary conditions,
reflecting the presence of image charges. In order to keep the discussion at a general level, we need to
consider the Green’s function GQ(z,z′) such that

(

d2

dz2 −Q2
)

GQ(z,z
′) = δ (z− z′), (11.120)

subject to the boundary conditions appropriate to the geometry at hand. A notable example is the
geometry of two semi-infinite media (namely, Si and SiO2 characterized by the dielectric constants εs

and εox), for which we have (see Ando–Fowler–Stern [14]):

GQ(z,z
′) =

1
2Q

[

e−Q|z−z′|+
εs − εox

εs + εox
e−Q(z+z′)

]

. (11.121)

Expressions for more complicated geometries have been given by Dahl and Sham [16]. Then, from
Eq. (11.120) we can obtain the self-consistent equation for the net potential:

ϕQ(z) = ϕ(ex)
Q (z)+

∫

dz′ GQ(z,z
′)
δρQ(z′)

εs
. (11.122)
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Only the matrix elements over the envelope wavefunctions ζ (μ)(z) are required in order to evaluate
the scattering rates caused by the perturbation ϕ(ex). From Eqs. (11.118), (11.119), and (11.122) we
have

ϕQ,μμ ′ = ϕ(ex)
Q,μμ ′ − ∑

λ ,λ ′

β (2D)
λλ ′ (Q,ω)

Q
GQ,μμ ′,λλ ′ ϕQ,λλ ′ , (11.123)

where the “form factor” G is given by

GQ,μμ ′,λλ ′ = 2
∫

dzdz′ QGQ(z,z
′)ζ (μ)(z)ζ (μ

′)(z)ζ (λ )(z′)ζ (λ
′)(z′), (11.124)

and the two-dimensional screening wavevector is given by

β (2D)
μμ ′ (Q,ω) =

e2

2εs
∑
K

gμ f (2D)(K,μ)−gμ ′ f
(2D)(K+Q,μ ′)

Eμ ′(K+Q)−Eμ(K)− h̄ω− ih̄s
. (11.125)

The self-consistent Eq. (11.123) can be recast in terms of a dielectric matrix:

ϕQ,μμ ′ = ∑
λλ ′

[εμμ ′,λλ ′(Q,ω)]−1ϕ(ex)
Q,λλ ′ , (11.126)

where

εμμ ′,λλ ′(Q,ω) = δμμ ′δλλ ′ −
β (2D)
λλ ′ (Q,ω)

Q
GQ,μμ ′,λλ ′ . (11.127)

The problem of finding the net potential from the external perturbation is now translated to the problem
of inverting this dielectric matrix.

As described by Eq. (11.126), the problem is a complicated one. A relative simplification can be
obtained by noting that terms of GQ,μ ,μ ′,λλ ′ with λ ′ different from λ do not contribute to a net change
of the charge in the layer, but simply to a polarization of the charge in the direction normal to the
plane of quantization. This is seen by integrating Eq. (11.119) along z: for λ �= λ ′ we have δρQ = 0.
Thus we can consider only the “longitudinal” dielectric function, by retaining only “diagonal” terms

GQ,μμ ′,λλ and setting β (2D)
λλ ≡ β (2D)

λ . Thus, the change of the charge density becomes proportional
to the expectation value of the potential in each subband, which is the customary assumption. The
problem given by Eq. (11.126) can now be solved in two steps. First, the “diagonal” problem μ = μ ′ is
solved by inverting the matrix εμμ ,λλ (Q,ω). Once the diagonal matrix elements ϕQ,μμ ,λλ are known,
the off-diagonal terms can be evaluated directly from Eq. (11.126).

Equation (11.125) is very similar to the Lindhard expression, Eq. (11.45), and we can obtain a
closed-form expression for it in the same limits considered above. We shall consider only the diagonal

(in the subband indices) screening wavevector β (2D)
Q,μμ .

Static Screening, Long-Wavelength Limit. For static perturbations, we proceed along the path followed
to derive Eq. (11.48) obtaining

β (2D)
s,μ =

e2

2εs

∫

dE Dμ(E)

[

∂ f (2D)(k,μ)
∂EF

]

=
e2

2εs

∂nμ
∂EF

, (11.128)
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where Dμ and nμ refer to the DOS and density in the μ th subband, respectively. In the nondegenerate
case (i.e., at high temperatures), ∂nμ/∂EF � nμ/(kBT) and we obtain the two-dimensional equivalent
of the Debye–Hückel limit:

β (2D)
DH,μ � e2nμ

2εskBT
. (11.129)

In the opposite case of a degenerate gas (low temperature), ∂ f/∂EF � δ (E −EF) and we have the
equivalent of the Thomas–Fermi expression:

β (2D)
TF,μ � e2

2εs
Dμ(EF) =

e2

2εs

gμmd,μ

π h̄2 , (11.130)

for occupied subbands, md,μ being the DOS effective mass in the μ th subband. Note that this
expression implies, somewhat counter-intuitively, that the screening wavevector is independent of the
density of free carriers. This depends on our perhaps oversimplified assumption of ignoring higher-
order terms in Q in order to derive Eq. (11.128). We shall see below [Eq. (11.139)] that a more accurate
derivation overcomes this difficulty, at least partially. However, it is generally true that screening in
the two-dimensional quantum limit depends weakly on the density of free carriers, as compared to the
bulk case.

Two-Dimensional Plasma Oscillations. Proceeding in analogy with Eqs. (11.60) and (11.62), we
obtain in the limit of long wavelengths and high frequencies, h̄ω� Eμ(K+Q)−Eμ(K) for all states
of interest:

β (2D)
μ (Q,ω)� e2gμnμ

2εsmμω2 Q2. (11.131)

This expression, when substituted into the dielectric matrix, Eq. (11.127), is still quite complicated. In
the simple case of only one subband (μ = 0) occupied, and in the isotropic case described by a single
effective mass mμ , we have

ε0(Q,ω)
εs

� 1− ω(2D)
P (Q)2

ω2 , (11.132)

where the “plasma frequency” now exhibits a strong dispersion, unlike the almost dispersionless
behavior of the bulk plasmons:

ω(2D)
P (Q)2 =

e2n0

2εsm0
Q GQ,00,00 � e2n0

2ε̄m0
Q, (11.133)

where in deriving the last expression we have ignored the thickness of the two-dimensional layer (i.e.,
ζ (0)(z)� δ (z)) to evaluate explicitly the form factor G , we have considered the geometry of two semi-
infinite media [i.e., the Green function is given by Eq. (11.121)], and we have set ε̄= (εs+εox)/2. The
presence of boundaries will alter the dispersion of the plasma modes, because of the Q-dependence of
the form factor G . A notable case is the presence of a gate insulator of finite thickness: In the limit of
a very thin insulator, the dependence of the plasma frequency on Q will actually become linear [14].

Nondegenerate Screening at High Temperature. In the high-temperature limit, we can follow once
more Fetter and Walecka as we have done before in the case of three dimensions, the only difference
being an overall factor 2/�μ . Thus, in analogy with Eqs. (11.63) and (11.64), we have
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Re[β (2D)
μ (Q,ω)]� β (2D)

DH,μ
π1/2

Q�μ

{

Φ

[

(

mμ

2kBT

)1/2(ω
Q

+
h̄Q

2mμ

)

]

−Φ
[

(

mμ

2kBT

)1/2(ω
Q

− h̄Q
2mμ

)

]}

(11.134)

Im[β (2D)
μ (Q,ω)]� β (2D)

DH,μ
π h̄ω

Q�μkBT
exp

(

− mμω2

2kBTQ2 − h̄2Q2

8mμkBT

)

sinh[h̄ω/(2kBT)]
h̄ω/(2kBT)

. (11.135)

In the long-wavelength limit we have

β (2D)
μ (Q,ω → 0)� β (2D)

DH,μg1(Q�μ). (11.136)

Screening in the Quantum Limit. In the so-called extreme quantum limit of zero temperature, the
two-dimensional electron gas is fully degenerate and we assume that only the ground state subband
is occupied. Under these conditions Stern has obtained an analytic expression for the dielectric
function [11]:

β (2D)(Q,ω) =
e2m0n0

h̄2kFQ

{[

C+(A
2
+−1)1/2 +C−(A2

−−1)1/2 − Q
2kF

]

+ i
[

D−(1−A2
+)

1/2 +D−(1−A2
−)

1/2
]}

, (11.137)

where

A± =
Q

2kF
± ω
υFQ

,

and

{

C± = sgn(A±)
D± = 0

|A±|> 1,

{

C± = 0
D± = 1

|A±|< 1.

In the long-wavelength limit, Q → 0, the expression above provides higher-order (in Q) corrections to
the dispersion of the plasma modes, exactly as we found in three dimensions:

ε(2D)(Q,ω)
εs

→ 1−
[

ω(2D)
p (Q)2 +

3εs

4ε̄
Q2υ2

F

]

1
ω2 , (11.138)

while in the static limit, ω → 0, we find

β (2D)(Q,ω)→
{

β (2D)
TF Q < 2kF

β (2D)
TF {1− [1− (2kF/Q)2]1/2} Q > 2kF,

(11.139)

thus overcoming the counter-intuitive results of Eq. (11.130) that the screening length does not depend
on density in the degenerate limit.



250 11 Dielectric Properties of Semiconductors

Finally, we consider the two-dimensional version of the screened impurity potential and Friedel’s
sum rule: By arguments similar to those used to derive Eq. (11.113) we have, in the limit of zero
temperature and only one subband occupied:

Z =
2
π

g0

∞

∑
l=−∞

ηl(kF), (11.140)

where g0 is the degeneracy of the ground state subband, while the cross section derived from the
partial-waves analysis is

σ(k,θ) =
2
πk

∞

∑
l=−∞

∣

∣

∣ei[lθ+ηl(k)] sin[ηl(k)]
∣

∣

∣

2
. (11.141)

Problems

11.1. (Interface Plasma Oscillations). Consider a bulk doped semiconductor with an electron
concentration n. Assume that the semiconductor is terminated with a flat surface covered by an
insulator with static dielectric constant εins. So, we have the semiconductor in the half-space z ≤ 0
and the insulator in the half-space z > 0. Assume the long-wavelength limit, so that the dielectric
function of the semiconductor is given by Eq. (11.62). At the semiconductor/insulator interface there
will be a polarization charge that is responsible for the discontinuity of the z-component of an
electric field, so that ε(q,ω)Ez(z = 0−) = εinsEz(z = 0+). Assume that this electric field has the form
E0 exp(iq · r + iωt). Show that in this system there will be an interface plasma oscillation with
frequency ωSP = ωP/

√

1+(εins/εs).

11.2. (Plasma Oscillations of a 2DEG). Equation (11.133) shows that the frequency of plasma
oscillations of a 2DEG, ωP(Q), vanishes as their wavelength grows to infinity. On the contrary, in
the same limit the plasma frequency of a 3DEG remains constant and nonzero. In simple physical
terms, explain why this must be so.

11.3. (Screened Coulomb Potential). Show that using the static Debye–Hückel expression,
Eq. (11.52), to express the dielectric function, Eq. (11.47), of a bulk semiconductor, the screened
Coulomb potential due to a charge e takes the Yukawa form:

V(screened)(r) =
e2

4πεs

e−βDHr

r
. (11.142)
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Part IV
Electron Scattering in Solids



Chapter 12
Generalities About Scattering in Semiconductors

12.1 Scattering Theory

So far, we have considered only ideal crystals at equilibrium and the elementary excitations associated
with the ionic and electronic degrees of freedom, phonons and plasmons, respectively. However, we
have not considered the interaction between these excitations. This was indeed our original plan:
In Chap. 4 we wrote the total crystal Hamiltonian (see pages 58–63), and, thanks to the Born–
Oppenheimer approximation, we considered the electronic states assuming that the ions are frozen
in their equilibrium positions. Later, in Chap. 9, Sect. 9.4, we have considered the ionic excitations
away from equilibrium, but we have not considered the effects of their displacement on the structure
of the electronic states. Using first-order perturbation theory (or, equivalently, a linear-response
approximation), we shall describe these effects as “collisions” between electrons and phonons.

Collisions are indeed crucial phenomena which allow us to understand most of the electrical
properties of crystals, since they control their conductivity. In addition to electron–phonon collisions,
we shall also consider the electron collisions in the screened Coulomb field of an ionized impurity
(such as a dopant), the “transitions” (more than scattering or collisions) induced by electromagnetic
fields (electron–photon or “radiative” processes), and electron–electron collisions which result from
fluctuations of the (Hartree or Hartree–Fock) mean field. The use of perturbation theory implies that
Fermi’s Golden Rule and the first Born approximation will be our main tools to evaluate the frequency
at which these processes occur.

We shall first consider in general terms the form these scattering rates take in the case of electrons
moving in bulk crystals in three dimensions. However, we have seen that electrons (and holes) can be
confined in two dimensions (2DEG) in inversion layers of MOS field-effect transistors, in the quantum
wells present in hetero-structures, and in the mono-atomic planes of graphene, silicene, or transition-
metal dichalcogenides (TMDs). They can also be confined in one dimension (1DEG), as in nanowires
or carbon nanotubes (CNTs). Therefore, we shall also consider the scattering rates for these confined
electrons.

Chapters 13, 14, and 15 will discuss in detail how scattering rates for electron/phonon,
electron/ionized-impurity, and electron/electron interactions can be evaluated numerically and in
closed form within the effective-mass approximation and in other specific cases. In this chapter,
instead, we shall provide practical “recipes” to calculate the collision rates numerically, using the
band structure of the crystal obtained using one of the computational schemes discussed in Chaps. 5
and 6. We shall also discuss the use of these algorithms for a two-dimensional BZ, resulting actually
in a much simpler formulation [see Eq. (12.37) below]. The one-dimensional case is simpler yet, as
we shall see.

© Springer International Publishing Switzerland 2016
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12.2 Scattering in Three Dimensions

12.2.1 Scattering Rates

We consider the case of an infinite crystal without any external potential applied (such as from the
bias applied at contacts). In this case, we know that the electronic states—unperturbed by whatever
“scattering” perturbation we shall consider shortly—are described by the Bloch wavefunctions:

ψ(n)
k (r) =

1

Ω 1/2
eik·r ∑

G
u(n)G,k eiG·r , (12.1)

where Ω , as usual, is the normalization volume, k is the wavevector, and n is the index labeling the
band. This is an over-idealized situation and one may wonder why it should be considered at all.
Indeed, we want to study how electrons move in the crystal and this motion requires some electric
field that drives the electrons. We also wish to understand how they scatter with perturbations.

The reason why Bloch functions matter at all is explained in Chap. 18. To anticipate and summarize
that discussion in rough terms, assume that indeed an electric field is applied externally. Assume
also that the length-scale over which the potential energy associated with the external field changes
significantly is much larger than the distance between two collisions suffered on average by the
electron, the so-called mean free path or coherence length. By “changes significantly” we mean a
change comparable to the electron kinetic energy or to the thermal energy kBT .∗ As a side comment, we may also add the effect of a spatially dependent doping profile as a potential
source of variations of the potential energy. In this case, mean free path and coherence length are
different concepts, since loss of coherence requires collisions with scatterers that possess internal
degrees of freedom, such as phonons or other electrons, so that “memory” of the phase of a Bloch
wave is indeed lost after the collision. We shall discuss this issue in Chap. 18.

In these conditions, the electron will have “lost memory” of its quantum state before the last
collision by the time its potential energy has changed significantly. This corresponds to situations in
which all spatial variations induced by the external field are slow enough. In this case, one can ignore
the spatial dependence of the electron wavefunction caused by the changing external potential, since
“coherent” transport, characterized by a pure wavefunction, will not occur. Moreover, things do not
change appreciably, as seen by the electron, between two collisions. Then, we can assume that locally,
over the distance between successive collisions, the crystal appears almost field-free and approximate
satisfactorily the electron wavefunction with the Bloch wave of the ideal crystal. This is the regime of
semiclassical transport, since, besides the obvious role played by Quantum Mechanics in determining
the band structure and Bloch wavefunction, scattering occurs “locally,” ignoring interference effects
between the wavefunctions scattered by other collisions that have occurred previously, and ignoring
also the effect that the variation of the potential over the mean free path has on the wavefunction itself.

As a result, scattering processes handled in this ideal, field-free, uniform crystal do play a major
role when we wish to study electron transport in systems whose size exceeds the electron coherence
length. Most textbooks that deal with electron transport in solids make use of this approximation.
Only when we move to the study of electron transport over small distances, such as in nanostructures,
do quantum effects play a major role in transport. We are indeed interested in these situations and in
the next sections of this chapter we will take a more general viewpoint and deal with the problem of
treating collisions in these cases.

According to the assumptions just discussed, here we consider a crystal without any external
potential (besides the perturbations we wish to study, of course) and an electron in band n with a
3D wavevector k scattering with a perturbing potential

V(η)(r, t) =∑
q

V(η)
q eiq·r eiω(η)

q t . (12.2)
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The index η here labels a general perturbation. However, in writing the perturbation in this form, we
are considering a perturbation that varies spatially as a plane wave of wavelength λ = 2π/q and that
oscillates in time with a radian frequency ωηq that may in general depend on the wavevector q. Such a
perturbation will generally correspond to some excitation of the lattice with energy h̄ωηq . Phonons are
a typical example of this type, with the “index” η now identifying the branch, TA, LA, TO, or LO.
This is the most general case of a perturbation. In fact, if a perturbation does not exhibit a harmonic
dependence on space or time, the linearity of perturbation theory allows us to decompose it into its
Fourier components, study each component separately, and “reassemble” the full response at the end.
Perturbations that do not depend on time, such as the potential of an impurity or defect in the crystal,
can be treated in a similar way. However, in this case and strictly speaking, we should use the first
Born approximation. Since its result usually coincides with time-dependent perturbation theory, as
expressed by Fermi’s Golden Rule (see Appendix A), for simplicity we shall limit our discussion to
this time-dependent case, unless explicitly noted.∗ A comment regarding the notation. Since we conduct our discussion in the context of second
quantization, the states we consider are states in Fock space. However, as we shall see in detail
in the next chapter, Chap. 13, page 274, all the perturbation we shall consider, with the exception
of the long-range Coulomb interactions among electrons, will have nonzero matrix elements only
when involving an initial and final state that differ only in the occupation of one electronic state.
Therefore, we shall use a simplified notation to express the matrix element, writing only the quantum
numbers (wavevector, band, spin) describing the initial and final states of the electron affected
by the perturbation. The notation will be identical to the notation used in ordinary Quantum
Mechanics, but additional effects will appear (Pauli blocking, stimulated and spontaneous emissions,
for example), as explained by the discussion starting on page 274. So, we should keep in mind
that we are still in a second-quantization formulation of the problem, even though the simplified
notation misleadingly may suggest a single-electron picture. Furthermore, the elementary excitations
with which electrons interact—we shall consider only phonons here—are usually assumed to remain
at thermal equilibrium, since we are considering weak coupling between these excitations and the
electron gas. Therefore, their occupation, in principle affected by scattering, will appear only via
their Bose–Einstein thermal occupation.

So, from Fermi’s Golden Rule, the frequency at which such a perturbation scatters an electron can
be expressed as

1
τη(k,n)

=
2π
h̄ ∑

k′n′q
|〈k′n′|V(η)

q |kn〉|2 δ [En(k)−En′(k
′)± h̄ω(η)

q ] . (12.3)

As we have just discussed, we compute the matrix element for this process using the bulk Bloch
wavefunctions. Therefore:

〈k′n′|V(η)
q |kn〉= 1

Ω
V(η)

q

∫

dr ei(k−k′)·r ∑
GG′

u(n
′)∗

G′,k′ u(n)G,k ei(G−G′+q)·r . (12.4)

We can proceed in the conventional way by expressing r as the sum of a lattice vector Rl and a vector
ρ spanning a single cell. Then:

〈k′n′|V(η)
q |kn〉= 1

Ω
V(η)

q ∑
l
∑
GG′

ei(k−k′+G−G′+q)·Rl

×
∫

Ωc

dρ u(n
′)∗

G′,k′ u(n)G,k ei(k−k′+G−G′+q)·ρ . (12.5)
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The sum over lattice sites yields Ncell∑G′′ δ (k − k′ + q − G′′), i.e., the argument of the complex
exponential must be some reciprocal-lattice vector G′′ = G−G′ in order to obtain a non-vanishing
contribution. Thus, with some renaming of the dummy G-vectors, we can write

〈k′n′|V(η)
q |kn〉=∑

G
δ (q+k−k′+G) V(η)

k−k′+G
1
Ωc

×
∫

Ωc

dρ ∑
G′G′′

u(n
′)∗

G′′,k′ u(n)G′,k ei(G+G′−G′′)·ρ . (12.6)

We have intentionally left this expression in a form that can be simplified. Indeed, the last factor is the
“overlap” factor,

I
(3D)

k,k′,n,n′;G =
1
Ωc

∫

Ωc

dρ ∑
G′G′′

u(n
′)∗

G′′,k′ u(n)G′,k ei(G+G′−G′′)·ρ

=
1
Ωc

∫

Ωc

dρ u(n
′)∗

k′ (ρ) eiG·ρ u(n)k (ρ) , (12.7)

expressed also in terms of the Bloch waves u(n)k (r) = ∑G u(n)G,keiG·r. Now note that

∫

Ωc

dρ eiG·ρ =Ωc δG,0 , (12.8)

so that Eq. (12.7) can also be written in a much simpler and more transparent form:

I
(3D)

k,k′,n,n′;G =∑
G′

u(n
′)∗

G′−G,k′ u(n)G′,k . (12.9)

Thus, noticing that in Eq. (12.3) the sum over q now reduces to a discrete sum over Gs, we reach the
final expression:

1
τη(k,n)

=
2π
h̄ ∑

k′n′
∑
G

|V(η)
k−k′+G I

(3D)
k,k′,n,n′;G|2 δ [En(k)−En′(k

′)± h̄ω(η)
k−k′+G] . (12.10)

We should remark that, although we have explicitly written ω(η)
k−k′+G as a G-dependent quantity,

crystal symmetry requires the dispersion to be periodic in k-space, so that the G dependence is trivial.
The same observation applies to several equations below.

Now notice that contributions to the sum over G resulting from vectors of large magnitude G
decrease quickly as G grows. This is due to the fact that the exponential inside the overlap factor (12.7)
will oscillate fast as G grows beyond the spectral range of the Bloch functions. Moreover, the

magnitude of the matrix element V(η)
q often decreases quickly at large q (as in Coulomb interactions,

polar electron–phonon coupling,. . . ). In these circumstances large-G contributions will be small.
Therefore, it is acceptable in most instances to consider only the smallest G (i.e., G=0, corresponding
to N or Normal processes) in the sum above:

1
τη(k,n)

=
2π
h̄ ∑

k′n′
|V(η)

k−k′ I
(3D)

k,k′,n,n′ |2 δ [En(k)−En′(k
′)± h̄ω(η)

k−k′ ] , (12.11)

with the understanding that the transfer wavevector k−k′ must be mapped inside the first Brillouin
Zone (BZ).
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12.2.2 ∗Numerical Evaluation

The numerical evaluation of the scattering rates when the electron band structure is known numerically
from, say, DFT or empirical pseudopotential calculations could be the topic of an entire textbook,
so we shall not render the presentation heavier than necessary by discussing numerical issues in
depth. Interested readers may find numerical details in articles authored by one of the authors of this
book [1, 2].

Briefly: it is assumed that the band structure has been calculated numerically and tabulated over a
discrete mesh of k-points—a set of points labeled {ki}—throughout the BZ, so that interpolation may
be used to calculate the dispersion En(k) and its gradient∇kEn(k) for an arbitrary k-point. Algorithms
to calculate the density of states have been devised by Gilat and Raubenheimer [3, 4] and these can
be used to calculate the scattering rates. These algorithms assume that the dispersion in each 3D
mesh element (“cube”), labeled by an index j and with “central energy” Ejn, can be linearized around
the center of the cube. Therefore, one can estimate the maximum and minimum energy spanned
by each cube j. This permits the identification of all cubes that are allowed by energy conservation
to contain the final state after a collision. Moreover, the density of states in each cube at a given
energy E can be calculated from the area, A(wjn), of the surface obtained by cutting the cube with a
plane perpendicular to the gradient ∇Ejn at the center of the cube and displaced from the center by a
length wjn (in reciprocal space) (E−Ejn)/|∇Ejn| along the direction of ∇Ejn. This method, originally
applied to calculate the phonon DOS in crystals, yields results much more accurate than those obtained
using naïve histograms to approximate numerically the delta-function. As we have mentioned in the
introduction of this chapter, we shall use an analogous scheme also to deal with scattering in two
dimensions [see Eq. (12.37) below]. Again: The one-dimensional case is much simpler.

Therefore, we assume that we have discretized the BZ with “cubes” centered around points kj, and
some method for band-structure calculations has been used to calculate the energy Ejn and energy
gradient ∇Ejn at the “center point” kj for band n. Using the Gilat–Raubenheimer scheme we have
already outlined [3, 4], the scattering rate is calculated numerically from the following expression:

1
τη(k,n)

≈ 2π
h̄ ∑

′

jn′
|V(η)

k−kj
I

(3D)
k,kj,n,n′ |

2 1
(2π)3

A(wjn′)

|∇Ejn′ |
, (12.12)

where [1/(2π)3]A(wjn′)/|∇Ejn′ | is the Gilat–Raubenheimer density of states in the jth cube in band n′,
and the primed-sum symbol indicates that the sum extends only over “energy-conserving” cubes.

12.3 Scattering in Two Dimensions

12.3.1 Scattering Rates

Let’s now consider the case of scattering in two-dimensional transport, such as for electrons of the
2DEG present in inversion layers, quantum wells, thin films, and 2D systems such as graphene.
However, we must note that here we shall consider a “bulk” perturbation given by Eq. (12.2). This
form exhibits a spatial dependence also on the z direction, perpendicular to the (x,y) plane of the
2DEG. This is the case, for example, of scattering with bulk phonons in an inversion layer, or
scattering with ionized impurities. On the contrary, in pure 2D structures, such as ultra-thin films
or 2D materials, like graphene, some perturbations will also be purely two-dimensional, most notably
“confined” phonons (or “slab modes”). In this case, the perturbation will not depend on z and will be
of the form
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V(η)(R, t) =∑
Q

V(η)
Q eiQ·R eiω(η)

Q t . (12.13)

We shall consider such a “true” two-dimensional case in Sect. 13.4.2 when we will discuss electron–
phonon scattering in graphene. Here, instead, we shall retain the z-dependent, bulk form of Eq. (12.2).
This applies to the case of electrons in a Si inversion layer interacting with bulk Si phonons and
ionized impurities. However, the difference is not a major one: The case of a pure 2D perturbation can
be treated following the discussion we give here, and simply setting equal to 1 the many factors of
eiqzz appearing in the equations below.

In this case, using the supercell approach to describe the system, the electron wavefunction has the
same form of Eq. (12.1), although the number of G-vectors required is much larger, as a consequence
of the larger (super)cell. For reasons that will become clear shortly, we rewrite Eq. (12.1) in a very
slightly modified notation:

ψ(n)
k (r) =

1

Ω 1/2
(2D)

L1/2
c

eiK·R eikzz ∑
G

u(n)G,k eiG·r . (12.14)

We have simply rewritten the normalization volume Ω as Ω2DLc, where Ω2D is the normalization
area of the 2D system and Lc is the periodicity of the supercell along the direction perpendicular to
the 2D system. Moreover, we have split the “envelope” eik·r into the product of an on-plane 2D plane
wave, eiK·R, and a plane wave, eikzz, along the direction normal to the plane. Moreover, R and K are
the on-plane spatial coordinates and wavevectors, and z and kz are the corresponding out-of-plane
variables. We shall comment shortly on the obvious fact that the electron dispersion in this situation
is not expected to depend on kz. What we must emphasize now is that, as we saw in the previous
section, scattering rates calculated using this wavefunction will reflect the situation of a homogeneous
2D system, free from externally applied variation of the potential energy. As such, they will be useful
to treat “semiclassical 2D transport.”

However, there is a more general way to view the content of this section on “scattering in 2D.”
Suppose that we have to study a 3D structure, uniform on the (x,y) plane, but now with a strong
variation of the potential along the z direction. Think of a very short p−n diode, infinite and uniform
on the (x,y) plane, but with contacts at z = 0 and z = L and a strong bias applied between these two
contacts. The study of electron transport in this system using empirical pseudopotentials, for example,
requires solving a Schrödinger equation with “open” boundary conditions at z = 0 and z = L; that is,
with boundary conditions that account for the possibility of injecting waves from the contacts. This
will be discussed in Chap. 17. The fact that the crystal symmetry is preserved on the (x,y) plane still
makes it possible to use plane waves on this plane. But the loss of periodicity along the z direction
requires care. We can assume that spatial variations along z, caused by the varying doping profile and
by the external bias, are slow over a unit cell. This is a condition much less restrictive than assuming
a slow variation over an electron mean free path or coherence length, since these usually are much
larger. In this case, we can step beyond “semiclassical transport,” since we can consider the full “exact”
wavefunction as it varies along z without assuming it is a plane wave. Indeed, the slow variation of
the inhomogeneities over a unit cell allows us to consider a generalization of Eq. (12.14) as follows

ψ(n)
k (r) =

1

Ω 1/2
2D L1/2

c

eiK·R ∑
G
φ (n)G,k(z) eiG·r . (12.15)

Note that we have replaced the plane-wave envelope eikzz of the ideal, homogeneous crystal, with a

more general dependence on z expressed by the “Bloch factors” φ (n)G,k(z), now z-dependent. We shall
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not worry here about the differential equation that these terms, φ (n)G,k(z), must obey. The interested
readers may satisfy their curiosity looking at the gory details given in a technical paper [5]. We should
note that, taking this perspective, the “band index” n now takes an altogether different meaning: In
addition to labeling bands, it is also a quantum number that labels the continuum spectrum of waves
injected by the contacts. We shall retain the notation n, but we should keep in mind that this variable
may actually be continuous. In this case, the area Ω2D and length Lc take a different meaning: Ω2D

becomes the area of the supercell and Lc the length of the device.
The conclusion we draw from taking this more general perspective is that the formalism presented

in this section can be viewed in two completely different ways: Scattering in “real” 2D systems
with electrons confined on the (x,y) plane, or, instead, scattering in 3D, but accounting for strong
inhomogeneities along the z direction.

If we are interested in studying transport of electrons confined in 2D, we should recall that we are
describing the system within the supercell approach. This means that we could use, in principle, a
full 3D description of transport and express the scattering rates with the expression we have derived
in the previous sub-section. This is implied by the form of Eq. (12.14), which, after all, is identical
to the “bulk” form of Eq. (12.1). This would be a way to describe transport in a mixed bulk/confined
situation. Two important such cases are those of 1. electrons in an inversion layer which are confined in
two dimensions at low energy, but become fully delocalized bulk electrons at energies larger than the
potential energy deep in the substrate and 2. electrons undergoing “vertical transport” in a superlattice
and undergoing “trapping” into 2D quantum-well states. This mixed “bulk/2D” problem has been
investigated in the past and we see that the supercell approach can provide—at least in principle—a
viable and correct solution.

Yet, ignoring for simplicity these cases, it is convenient to note that whenever we deal only with

fully confined states on the (x,y) plane, their energy En(k) = En(K,kz) and Bloch coefficients u(n)G,k =

u(n)G,K,kz
do not depend on the “out-of-plane” component kz of their wavevector, as seen in Figs. 7.17

and 7.18. Therefore, in Eq. (12.3) the sum (or integral) over kz is trivial.
If, instead, we view the problem as 3D transport in a system open along z, then the kz-dependence

disappears altogether in Eq. (12.14), since kz is not a good “quantum number” anymore, since it is an
eigenvalue of the translation operator along z (and so, also of the momentum’ operator p̂z) that does
not commute with the Hamiltonian because of the loss of homogeneity along z.

In either case, it is convenient to make use of this independence from kz and reduce the numerical
complexity of the problem by writing the scattering rate of an electron in band (or subband) n and

in-plane wavevector K due to a perturbation potential V(η)
q as a sum only over 2D states as follows

1
τη(K,n)

=
2π
h̄ ∑

K′n′q
|〈K′n′|V(η)

q |Kn〉|2 δ [En(K)−En′(K
′)± h̄ω(η)

q ] . (12.16)

The matrix element 〈K′n′|V(η)
q |Kn〉 is given by

〈K′n′|V(η)
q |Kn〉= 1

ALc

∫

dz
∫

dR ψ∗
K′n′(R,z) V(η)

q eiqzz eiQ·R ψKn(R,z) , (12.17)

where the wavefunctions can be expressed as

ψKn(r) =
eiK·R

Ω 1/2
2D L1/2

c
∑
G
φ (n)G,K(z) eiG·r =

1

Ω 1/2
2D L1/2

c
∑
G

ei(K+G‖)·R φG,K(z)e
iGzz . (12.18)
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We shall proceed retaining the nontrivial z-dependence of the wavefunctions. Of course, the case
of scattering for electrons in a pure 2DEG will simplify considerably. We shall point out these
simplifications at the end of the process.

Using Eq. (12.18), we can write the matrix element above as

〈K′n′|V(η)
q |Kn〉= 1

Ω2DLc
V(η)

q ∑
GG′

∫

dR ei(K−K′+G‖−G′
‖+Q)·R

×
∫

dz φ (n
′)∗

G′,K′(z) ei(qz+Gz−G′
z)z φ (n)G,K(z) . (12.19)

Now, proceeding as we did above in order to obtain Eq. (12.5), we write R = Rl +ρ , where Rl is a
2D lattice site and ρ the 2D vector spanning the 2D cell. Thus:

1
Ω2D

∑
GG′

∫

dR ei(K−K′+G‖−G′
‖+Q)·R

fG,G′,K,K′

=
1
Ω2D

∑
GG′
∑

l

ei(K−K′+G‖−G′
‖+Q)·Rl

∫

Ω2D

dρ ei(K−K′+G‖−G′
‖+Q)·ρ

fG,G′,K,K′ , (12.20)

where we have indicated with fG,G′,K,K′ the z-integral in Eq. (12.19). As before, the sum over 2D
lattice sites yields a non-vanishing contribution only when K−K′+Q is equal to some vector of the
2D reciprocal lattice, G′′

‖ . Then, relabeling the dummy variables G′′ as G, G as G′, and G′ as G′′,
Eq. (12.20) becomes

∑
G‖
δ (K−K′+Q+G‖) ∑

G′G′′

∫

Ω2D

1
Ω2D

dρ ei(G‖+G′
‖−G′′

‖)·ρ fG′,G′′,K,K′ . (12.21)

Now, using the result of Eq. (12.21) into Eq. (12.19), we obtain

〈K′n′|V(η)
q |Kn〉=∑

G‖
δ (K−K′+Q+G‖) V(η)

Q,qz ∑
G′G′′

1
Ω2D

∫

Ω2D

dρ ei(G‖+G′
‖−G′′

‖)·ρ

× 1
Lc

∫

dz φ (n
′)∗

G′′,K′(z) ei(qz+G′
z−G′′

z )z φ (n)G′,K(z) . (12.22)

Thus the scattering rate is given by

1
τη(K,n)

=
2π
h̄ ∑

K′n′

∫

dqz

2π ∑G‖

∣

∣

∣

∣

∣

V(η)
K−K′+G‖,qz ∑

G′G′′

1
Ω2D

∫

Ω2D

dρ ei(G‖+G′
‖−G′′

‖)·ρ

× 1
Lc

∫

dz φ (n
′)∗

G′′,K′(z) ei(qz+G′
z−G′′

z )z φ (n)G′,K(z)

∣

∣

∣

∣

2

×δ [En(K)−En′(K
′)± h̄ω(η)

K−K′+G‖,qz
] . (12.23)
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Finally, recalling that the equivalent of Eq. (12.8) holds also in two dimensions, we can rewrite this
expression as

1
τη(K,n)

=
2π
h̄ ∑

K′n′

∫

dqz

2π ∑G‖

∣

∣

∣

∣

∣

V(η)
K−K′+G‖,qz

× ∑
G′
‖G′

zG′′
z

∫

dz
Lc
φ (n

′)∗
G‖+G′

‖,G
′′
z ,K′(z) ei(qz+G′

z−G′′
z )z φ (n)G′

‖,G
′
z,K

(z)

∣

∣

∣

∣

∣

2

×δ [En(K)−En′(K
′)± h̄ω(η)

K−K′+G‖,qz
] . (12.24)

Considering as before only N processes (i.e., collapsing the sum over G‖ to the lone term Ḡ‖
needed to map K−K′ inside the first 2D BZ), we have

1
τη(K,n)

≈ 2π
h̄ ∑

K′n′

∫

dqz

2π

∣

∣

∣

∣

∣

V(η)
K−K′,qz ∑

G‖GzG′
z

∫

dz
Lc
φ (n

′)∗
G‖,G′

z,K′(z)

× ei(qz+Gz−G′
z)z φ (n)G‖,Gz,K

(z)

∣

∣

∣

∣

∣

2

δ [En(K)−En′(K
′)± h̄ω(η)

K−K′,qz
] . (12.25)

To express this result in a more compact notation better suited to simplifications, it is convenient to
define the functions:

ξ (n)G‖K(z) =
1

L1/2
c
∑
Gz

φ (n)G,K(z) eiGzz . (12.26)

Then, from Eq. (12.25) we have

I
(2D)

K,K′,n,n′,G‖
(qz) =∑

G′
‖
∑

G′
zG′′

z

∫

dz
Lc
φ (n

′)∗
G‖+G′

‖,G
′′
z ,K′(z) ei(qz+G′

z−G′′
z )z φ (n)G′

‖,G
′
z,K

(z)

=
∫

dz ∑
G′
‖

ξ (n
′)∗

G‖+G′
‖,K

′(z) eiqzz ξ (n)G′
‖,K

(z) . (12.27)

For N processes this becomes simply:

I
(2D)

K,K′,n,n′(qz) =
∫

dz ∑
G‖
ξ (n

′)∗
G‖,K′(z) eiqzz ξ (n)G‖,K

(z) . (12.28)

Using this expression for the overlap factor, Eq. (12.24) becomes

1
τη(K),n

=
2π
h̄ ∑

K′n′

∫

dqz

2π ∑G‖

∣

∣

∣ V(η)
K−K′+G‖,qz

I
(2D)

K,K′,n,n′;G‖
(qz)
∣

∣

∣

2

× δ [En(K)−En′(K
′)± h̄ω(η)

K−K′+G‖,qz
] . (12.29)
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With this notation, the scattering rate obtained by accounting for N processes only reduces to

1
τη(K,n)

=
2π
h̄ ∑

K′n′

∫

dqz

2π

∣

∣

∣ V(η)
K−K′,qz

I
(2D)

K,K′,n,n′(qz)
∣

∣

∣

2

× δ [En(K)−En′(K
′)± h̄ω(η)

K−K′,qz
] . (12.30)

Note that for semiclassical two-dimensional transport of a 2DEG (inversion layers, hetero-
channels, etc.) with confinement handled using the supercell method, the scattering rate will be given

exactly by Eqs. (12.24) or (12.30) using the wavefunctions ξ (n)G‖,K
(z) given by Eq. (12.26) with constant

(i.e., independent of z) Bloch coefficients φ (n)G,K(z) = u(n)G,K and overlap factors given by Eqs. (12.27)
or (12.28).

Before seeing how these simplifications affect the expression for the scattering rate, we should

remark that no additional simplifications are possible when the full wavefunctions ξ (n)G‖,K
(z) [see

Eqs. (12.26) and (12.27)] must be used. This case presents the obvious numerical difficulty caused by

the size of the array ξ (n)G,K(z) we must store: Even in cases in which the z-dependence is absent (cases

B1 and B2 above, for example), storing these (complex) wavefunctions for ∼ 103 G-vectors at each
of the ∼ 103 K-points used to tabulate the band structure over the wedge of the BZ and for each of the
∼ 10 bands n requires ∼ 0.1 GB of storage. However, when the “transverse” modes are bulk modes,
as in cases B1 and B2, an additional simplification—employed throughout in the following—can be
obtained by embracing the pure “envelope” approximation by ignoring the Bloch components eiG‖·R

in Eq. (12.19) and considering only “envelope” wavefunctions averaged over a unit cell in the (x,y)

plane. This is fully equivalent to ignoring overlap-factor effects in 3D [i.e., setting I
(3D)

k,k′,n,n′;G = 1 in
Eqs. (12.3), (12.10), and (12.12)]. Then, from the full wavefunction ψKn(R,z) given by Eq. (12.18)
we can extract z-only-dependent “envelopes”:

ζ (n)K (z) =
1

L1/2
c
∑
Gz

φ (n)G‖=0,Gz,K
(z) eiGzz . (12.31)

We have referred to these functions as “envelopes,” since they represent the envelope approximation
on the plane of the interface, varying—if at all—only over length-scales larger than the size of the
in-plane unit cell. Thus, being cavalier about the fact that we neglect Bloch-overlap effects, this con-

stitutes a satisfactory approximation whenever the perturbation V(η)
Q,qz

has negligible contributions at
large spatial in-plane frequencies Q. In practice this approximation amounts to selecting G′

‖ = G‖ = 0
in Eq. (12.19) obtaining

〈K′n′|V(η)
q |Kn〉 ≈ 1

Ω2D
V(η)

q ∑
GzG′

z

∫

dR ei(K−K′+Q)·R (12.32)

×
∫

dz
Lc
φ (n

′)∗
0,G′

zK′(z) ei(qz+Gz−G′
z)z φ (n)0,Gz,K

(z) (12.33)

= V(η)
q δK−K+Q,0

∫

dz ζ (n
′)∗

K′ (z) eiqzz ζ (n)K (z) (12.34)
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so that the 2D overlap factor I (2D)
K,K′,n,n′;G‖

(qz) becomes simply:

Ĩ
(2D)

K,K′,n,n′(qz) ≈
∫

dz ζ (n
′)∗

K′ (z) eiqzz ζ (n)K (z) , (12.35)

which, except for the more complicated subband dispersion, allows us to formulate the scattering
rate Eq. (12.30) in terms of its “usual” expression in 2D that can be derived, for example, using the
effective-mass approximation. In this case, in Chap. 8, Sect. 8.2.1, we saw that the wavefunctions are

given by Eq. (8.47) on page 174 and have the form Ω−1/2
2D eiK·R ζ (z). The z-dependence is absorbed

into the function ζ (z) that takes the place of the appropriately named function ζ (n)K (z) defined here.
Scattering rates of the form Eq. (12.30) with “overlap factors” Eq. (12.35) have been extensively
used in the literature to study electron transport in inversion layers and quantum wells. The original
derivation dates back to work by Price [6] and Brian Ridley (results discussed in his more recent
and excellent textbook [7]). These results are reviewed in Chap. 13, Sect. 13.4 for electron–phonon
interactions, and in Chap. 14, Sect. 14.8, for electron-impurity scattering.

12.3.2 ∗Numerical Evaluation

In order to obtain a numerically computable expression, let’s consider again the more generally
valid expression, Eq. (12.29). In analogy with Eq. (12.12), having discretized the 2D BZ with squares
centered at points Kj, we can write

1
τη(K,n)

≈ 2π
h̄ ∑

′

jn′

∫

dqz

2π ∑G‖

∣

∣

∣V
(η)
K−Kj+G‖,qz

I
(2D)

K,Kj,n,n′;G‖
(qz)
∣

∣

∣

2 1
(2π)2

L(wjn′)

|∇2DEjn′ |
. (12.36)

Here [1/(2π)2] L(wjn)/∇2DEjn is the density of states on band n′ in the jth square of side ΔK with
energy Ejn′ and gradient ∇2DEjn′ at the center of the square, Kj. A simple reduction of the Gilat–
Raubenheimer scheme to two dimensions implies that

L(w) =

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

ΔK
cosα

(w ≤ w0)

w1 −w
cosα sinα

(w0 ≤ w ≤ w1),

(12.37)

where w0 = (ΔK/2)(cosα− sinα), w1 = (ΔK/2)(cosα+ sinα), α is the angle between the Kx-axis
and ∇2DEjn, w = (Efinal −Ejn)/|∇2DEjn|, and Efinal is the final energy for a particular process and
square j.

Note that, although not explicitly indicated here, the density of final states in the “energy-
conserving” element (j,n′), L(wjn′)/∇2DEjn′ , appears inside the integration over the perpendicular
wavevector transfer qz since, in general, the energy transfer during the collision may depend also on
qz, as it is the case, for example, with scattering of electrons in an inversion layer with bulk phonons
when retaining the full dispersion, h̄ωQ,qz, of the phonons. This leads to a very expensive numerical
task.
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12.4 Scattering in One Dimension

12.4.1 Scattering Rates

As we have done in the previous section, let’s consider how to handle scattering processes for electrons
confined along two dimensions and free to move only along one direction, say along the z-axis. This
amounts to considering semiclassical transport in 1D structures, such as nanowires or nanotubes with
their axial direction on the z-axis. However, in complete analogy to the discussion with which we
opened Sect. 12.3, we can take a more general approach and consider, for example, scattering for 3D
electrons moving inside a structure that is inhomogeneous on the (x,y) plane, but uniform along the
z-axis.

The scattering rate must be evaluated considering the wavefunctions given by

ψkzn(r) =
eikzz

Ω 1/2
2D L1/2

c
∑
G
φ (n)G,kz

(R) eiG·r =
1

Ω 1/2
2D L1/2

c
∑
G

ei(kz+Gz)z φ (n)G,kz
(R)eiG‖·R , (12.38)

where Ω2D now denotes the area of the supercell and L is the normalization length. For a pure 1DEG
(electrons in NWs or CNTs), n labels the quantized states and the 1D wavevector kz represents the

wavevector of the plane waves along the homogeneous direction z. In this case, the function φ (n)G,kz
(R)

will not depend on the in-plane coordinate R. As we have done in the previous section, we shall
discuss, at the end of the laborious calculation, the simplification that this fact affords.

So, for an electron in subband (or continuum state) n and longitudinal wavevector (in 1D it is
actually a wavenumber) kz:

1
τη(kz,n)

=
2π
h̄ ∑

k′zn′
∑
q

∣

∣

∣〈k′zn′|V(η)
q |kzn〉

∣

∣

∣

2
δ [En(kz)−En′(k

′
z)± h̄ω(η)

q ] . (12.39)

The matrix element can be calculated in the usual way:

〈k′zn′|V(η)
q |kzn〉=V(η)

q ∑
G′

zG′′
z

∫

dz
1
L

ei(kz−k′z+G′
z−G′′

z +qz)z (12.40)

×
∫

dR
Ω2D

∑
G′G′′

φ (n
′)∗

G′′,K′(R) φ (n)G′,K(R) ei(Q+G′−G′′)·R (12.41)

= ∑
Gz

V(η)
q δ (kz − k′z +qz +Gz) I

(1D)
kz,k′z,n,n′;Gz

(Q) . (12.42)

In this expression Ω2D can be either the normalization area (2D open boundary-conditions simula-
tions) or the area of the supercell (1DEG transport), L can be either the width of the supercell or the
normalization length. Also, we have used the usual property of the sum of ei(kz−k′z+G′

z−G′′
z +qz)zl over

1D-lattice sites zl to obtain the term∑Gz δ (kz−k′z+qz+Gz) and the 1D overlap factor I (1D)
kz,k′z,n,n′;Gz

(Q)

is given by

I
(1D)

kz,k′z,n,n′
(Q) = ∑

G′
zG′′

z

1
Lc

∫

Lc

dρ ei(G′
z−G′′

z +Gz)ρ

×
∫

dR
Ω2D

∑
G′G′′

φ (n
′)∗

G′′,k′z
(R) φ (n)G′,kz

(R) ei(Q+G′−G′′)·R . (12.43)
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We can express this overlap factor I (1D)
kz,k′z,n,n′;Gz

(Q) in terms of the following wavefunctions analogous
to Eq. (12.26):

ξ (2D)(n)
Gz,kz

(R) =
1

Ω 1/2
2D

∑
G‖
φ (n)G,kz

(R)eiG‖·R . (12.44)

Then:

I
(1D)

kz,k′z,n,n′;Gz
(Q) =

∫

dR ∑
G′

z

ξ (2D)(n′)∗
Gz+G′

z,k′z
(R) eiQ·R ξ (2D)(n)

G′
z,kz

(R) , (12.45)

which, for N processes simplifies to

I
(1D)

kz,k′z,n,n′
(Q) =

∫

dR ∑
Gz

ξ (2D)(n′)∗
Gz,k′z

(R) eiQ·R ξ (2D)(n)
Gz,kz

(R) . (12.46)

Using this expression for I (1D)
kz,k′z,n,n′;Gz

(Q), we have

1
τη(kz,n)

=
2π
h̄ ∑

k′zn′

∫

dQ
(2π)2 ∑

Gz

∣

∣

∣V
(η)
Q,kz−k′z+qz+Gz

I
(1D)

kz,k′z,n,n′;Gz
(Q)
∣

∣

∣

2

× δ [En(kz)−En′(k
′
z)± h̄ω(η)

Q,kz−k′z+Gz
]. (12.47)

Considering N processes (i.e., retaining in the sum above only the term Gz which brings k′z−kz within
the 1D BZ), we have

1
τη(kz,n)

≈ 2π
h̄ ∑

k′zn′

∫

dQ
(2π)2

∣

∣

∣V
(η)
Q,kz−k′z+qz

I
(1D)

kz,k′z,n,n′
(Q)
∣

∣

∣

2

× δ [En(kz)−En′(k
′
z)± h̄ω(η)

Q,kz−k′z
]. (12.48)

Note that in most cases this expression is deceptively simple: In the case of elastic scattering (namely,
impurity scattering, edge- or surface-roughness scattering, or acoustic phonon scattering in the elastic
approximation) or scattering with dispersionless excitations, usually only a small number of k′z are
available as final states. In the following we shall leave the expressions for the scattering rates in their
most general forms, although the algorithm described for their numerical evaluation will be implicitly
simplified thanks to this consideration.

An important observation we should make is that Eq. (12.47) or (12.48) represents also the
scattering rates in semiclassical 1D transport along z with 2D confinement handled using the 2D

supercell method. In this case, the Bloch coefficients in Eq. (12.44), φ (n)G,kz
(R), collapse to u(n)G,kz

,
independent of R.

Embracing the (in-plane) envelope approximation—which is a sensible approximation when we
are dealing with semiclassical transport along z and we can simplify Eqs. (12.45) or (12.46)—we can
express the wavefunctions in analogy to Eq. (12.31) as

ζ (2D)(n)
kz

(R) =
1

Ω 1/2
2D

∑
G‖
φ (n)G‖,Gz=0,kz

(R) eiG‖·R . (12.49)
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so that the overlap factor I (1D)
kz,k′z,n,n′

(Q) reduces to

Ĩ
(1D)

kz,k′z,n,n′
(Q) =

∫

dR ζ (2D)(n′)∗
k′z

(R) eiQ·R ζ (2D)(n)
kz

(R) . (12.50)

12.4.2 ∗Numerical Evaluation

Regarding the numerical evaluation of the general expression—Eq. (12.47) or its normal-process
approximation, Eq. (12.48), possibly with the overlap factor approximated as in Eq. (12.50)—let’s
assume that the kz-axis has been discretized into bins of length Δkz indexed by an integer j and centered
around the point kzj. The density of states into each bin will be |dEn/dkz,j|. Thus:

1
τη(kz,n)

≈ 2π
h̄

∗
∑
jn′

∫

dQ
(2π)2

∣

∣

∣V
(η)
Q,kz−kzj+qz

I
(1D)

kz,kzj,n,n′(Q)
∣

∣

∣

2 1
2π

∣

∣

∣

∣

dEn′

dkzj

∣

∣

∣

∣

−1

, (12.51)

in analogy with the expressions given by Eq. (12.12) derived before [see also Eq. (13.63) below].

Problems

12.1. (Overlap Intergral)

(a) Compute Eq. (12.9) for k and k′ for G = 0 and G = b1 for silicon using the code in Appendix D.
(b) Building on the result from problem the first part of the problem, compute ∑G |Vk−k′+GI

3D|2
from Eq. (12.10) for V(k) = e(−|k|2/|b1|2).
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Chapter 13
Electron–Phonon Interactions

In this chapter we consider the interaction between electrons and phonons. This subject, which is of
utmost importance, since it deals with an intrinsic collision process that affects strongly electronic
transport, is discussed very extensively in the literature. The early book by Ziman [1] remains one of
the most complete treatment of this topic.

In general, two types of interactions can be distinguished: The first, called deformation potential
interaction [2], is related to how the displacement of an atom changes the potential near the atom which
is being displaced. The second, called Fröhlich interaction, describes the effect of the long-range
electric fields caused by the displacement of the atoms. The former is active in all solids. The latter
interaction, instead, depends on a long-range dipole field that can arise only when the displaced atoms
have excess and opposite charges. Therefore, it is present only in ionic (polar) materials. We shall
not discuss the additional polar coupling of electrons with acoustic phonons (piezoelectric coupling),
since it affects electronic transport only weakly and at low temperatures.

In Sect. 13.1, we discuss how the strength of the deformation-potential interaction can be computed
theoretically. The need to discuss it in greater depth is due to the fact that the “scattering potential”
itself is a function of the ionic displacement and of the perturbation it causes to the electronic structure
itself. This adds complexity, since its computation couples to the models used to describe both the
lattice dynamics and the electronic spectrum. On the other hand, it presents the advantage of allowing
ab initio calculations, or as close to “first-principles” as the models affords, such as DFT and the rigid-
ion approximation based on empirical pseudopotentials. On the contrary, polar interactions are usually
treated with the Fröhlich model that yields a scattering potential independent of the electronic structure
itself. Therefore, in Sect. 13.2 we discuss in some depth the deformation-potential concept and how
the deformation-potential interaction affects scattering. Fröhlich’s approach to treat polar electron–
phonon interactions is considered in Sect. 13.3. We then consider scattering with phonons for a 2DEG
in Sect. 13.4 and for a 1DEG in Sect. 13.5. In both cases we consider nonpolar and polar interactions
treated in a general way as well as, more specifically, with the effective-mass approximations, giving
examples of each. We conclude in Sect. 13.6 with a brief discussion of scattering with coupled modes
phonon-plasmon modes, important in polar semiconductors (or at interfaces with polar insulators) at
the high densities at which many devices operate.
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13.1 General Formalism and the Rigid-Ion Approximation

The deformation-potential interaction is due to the effect which an ionic displacement, associated with
a phonon, has on the ionic potential and consequently on the electron energy. It is called a nonpolar
interaction, because the electrons do not feel any long-range electric (dipole) field, but feel simply
the perturbation caused by the fact that the ions in the electronic Hamiltonian are not frozen in their
equilibrium positions Rlγ . Both acoustic and optical phonons cause this interaction, although there are
subtle differences between the two.

13.1.1 General Formalism

We have seen in Chap. 9, Eq. (9.24), that the electronic component of the Hamiltonian, Eq. (9.19),
with a general potential energy V(r) can be written as [see Eqs. (9.24) and (9.31)]:

̂Hel =
∫

dr
[(

− ih̄
2m

)

∇π̂(r) ·∇ψ̂(r) − 1
h̄
π̂(r)V(r)ψ̂(r)

]

=∑
nk

Enkĉ†
nkĉnk , (13.1)

while the ionic component takes the form given by Eqs. (9.91) and (9.102):

̂Hion =
1
2 ∑lγ

⎡

⎣

P2
lγ

Mγ
+ ∑

l′ �=l,γ ′γ
∑
ij

∂ 2U(R(0)
lγ −R(0)

l′γ ′)

∂Rlγ i ∂Rl′γ ′j
δRlγ i δRl′γ ′j

⎤

⎦

= ∑
ηq

h̄ω(η)
q ̂b

†
qη ̂bqη . (13.2)

These two Hamiltonians have been decoupled thanks to the (adiabatic) Born–Oppenheimer
approximation. In Chap. 4, when we were describing the approximations made to derive Eq. (13.1),
we emphasized the fact that lattice potential energy V(lat)(r) entering the total potential energy V(r)
(that includes also the Hartree energy and exchange-correlation effects) was assumed to be due to the
ions frozen in their equilibrium positions. This, indeed, is the assumption that allowed us to decouple
the electron Hamiltonian from the Hamiltonian of the ions. In Sect. 4.2.1 we “promised” that we
were going to consider in some perturbative way the effect that small deviation of the ions from their
equilibrium positions. Here we keep our promise: Now it’s time to find the effect of the displacement
of the ions away from their equilibrium position on the electron energy.

Proceeding as we have done in dealing with phonons, we consider the change of the ionic potential
up to terms which depend linearly on the ionic displacement:

δU(r) ≈ ∑
lγ

∂U(r)
∂Rlγ

· δRlγ . (13.3)

We will discuss a specific way to compute ∂U(r)/∂Rlγ shortly, by invoking the rigid-ion approx-
imation, but for now we assume that the change in the lattice potential with respect to a lattice
displacement can be obtained in some way.
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We can express the displacement of the ion γ in cell l in terms of the creation and annihilation
operators of phonons of momentum q and branch η via Eqs. (9.96) and (9.100):

δ ̂U(r)≈ ∑
lγ

1

(NcellMγ)1/2

∂U(r)
∂Rlγ

· ∑
qη

e(η)qγ ̂Qqγ eiq·Rl

=∑
qη
∑
lγ

1

(NMγ)1/2

(

h̄

2ω(η)
q

)1/2

(̂bqη + ̂b
†
−qη) e(η)qγ · ∂U(r)

∂Rlγ
eiq·Rl . (13.4)

The correction to the energy of the electrons due to the displacement Eq. (13.4) results simply from
the electrostatic energy of the electron density ρ̂(r) = ψ̂†(r)ψ̂(r) interacting with the potential energy
δ ̂U(r). Thus:

̂Hep =

∫

dr ψ̂†
(r) δ ̂U(r) ψ̂(r) , (13.5)

which should be regarded as the perturbation term due to the electron–phonon coupling. Using the
expansions in Bloch functions

ψ̂(r) =
1

Ω 1/2 ∑
nk

ĉnk eik·r uk(r) , (13.6)

and

ψ̂†(r) =
1

Ω 1/2 ∑
nk

ĉ†
nk e−ik·r u∗k(r) , (13.7)

we have (omitting the band index n for simplicity)

̂Hep =
1
Ω ∑kk′

∑
qη
∑
lγ

1

(NMγ)1/2

(

h̄

2ω(η)
q

)1/2

× eiq·Rl ĉ†
k′ (
̂bqη + ̂b

†
−qη) ĉk e(η)qγ ·Mlkk′γ (13.8)

with

Mlkk′γ =
∫

Ω
dr u∗k′(r)

∂U(r)
∂Rlγ

uk(r) ei(k−k′)·r . (13.9)

Because of the periodicity of U(r), the matrix elements Mlkk′ with different sub-indices l are
related. Specifically, we can rewrite

Mlkk′γ = ei(k−k′)·Rl

∫

Ω
dr u∗k′(r)

∂U(r)
∂Rlγ

uk(r) ei(k−k′)·(r−Rl)

= ei(k−k′)·Rl Mkk′γ (13.10)



272 13 Electron–Phonon Interactions

and the quantity

Mkk′γ =
∫

Ω
dr u∗k′(r)

∂U(r)
∂Rlγ

uk(r) ei(k−k′)·(r−Rl) (13.11)

is independent of l, since the integrand only depends on r−Rlγ and the integration is taken over the
entire volume.

In Eq. (13.8) the sum over l only applies to the phase factor of the displacement vectors eiq·Rl and
the matrix elements Mlkk′γ and the sum can be evaluated

∑
l

eiq·Rl ei(k−k′)·Rl Mkk′γ = Mkk′γ Ncell ∑
G
δ (q− (k−k′)+G) . (13.12)

Processes where G is nonzero, while q,k, and k′ are inside the Brillouin Zone, are known as Umklapp
processes. These occur when k−k′ falls outside the first Brillouin Zone.

The delta-function enables the evaluation of the sum over k′,k, or q. We choose to evaluate the
sum over k′, obtaining the expression for the electron–phonon interaction

̂Hep =∑
qk

(

Ncell

Mcell

)1/2

∑
γη

(

Mcell

Mγ

)1/2
(

h̄

2ω(η)
q

)1/2

×ĉ†
k+q(

̂bqη + ̂b
†
−qη)ĉke(η)qγ ·Mkk′γ . (13.13)

13.1.2 The Rigid-Ion Approximation

One possible way to treat the deformation-potential electron–phonon interaction is to assume that the
total electron potential energy U(r) is simply the lattice potential, V(lat)(r); that is, we assume that the
total potential energy can be decomposed into a potential associated with each ion:

U(r) ≈ V(lat)(r) =∑
lγ

V(γ)(r−Rlγ) (13.14)

where V(γ)(r) is the potential associated with an atom of type γ located at R = 0. The gradient of the
potential with respect to ion displacement can then be computed as

∂V(lat)(r)
∂Rlγ

=−∇V(γ)(r−Rlγ). (13.15)

Note that here we are assuming that, when displaced, the ionic potential does not change but
simply shifts rigidly. For this reason, this approximation is known as the rigid-ion approximation.
It ignores the fact that valence electrons will redistribute themselves as the ions move away from their
equilibrium positions (which is, in essence, dielectric screening). We may consider this as a higher-
order effect ignored in our linear-response picture. But, clearly, this remains an approximation.

Expressing the ionic potential in terms of its Fourier components:

V(γ)(r−Rlγ) = V(γ)(r−Rl − τγ) =∑
κ

V(γ)
κ eiκ ·(r+Rl+τγ ) , (13.16)
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we have

∇V(γ)(r−Rl − τγ) = i ∑
κ
κ V(γ)

κ eiκ ·(r+Rl) , (13.17)

having absorbed the factor eiκ ·τγ inside the Fourier component V(γ)
κ .

We can repeat our analysis of the electron–phonon interaction starting from Eq. (13.8):

̂Hep =
1
Ω ∑kk′

∑
qη
∑
lγ

1

(NMγ)1/2

(

h̄

2ω(η)
q

)1/2

× eiq·Rl ĉ†
k′ (
̂bqη + ̂b

†
−qη) ĉk e(η)qγ · (iκ) V(γ)

κ

×
∫

dr eiκ ·(r−Rl) u∗k′(r) uk(r) ei(k−k′)·r . (13.18)

Again, the sum over l can be replaced by a sum over Dirac deltas:

∑
l

ei(q−κ)·Rl = Ncell ∑
G
δ (q−κ+G) , (13.19)

while the integral involving Bloch functions vanishes unless k′ −k+κ =G [see Eq. (8.11), page 165].
Thus:

̂Hep = ∑
kqG

(

Ncell

Mcell

)1/2

∑
γη

(

Mcell

Mγ

)1/2
(

h̄

2ω(η)
q

)1/2

i(q+G) · e(η)qγ V(γ)
q+G

× Ik+q+G,k ĉ†
k+q+G (̂bqη + ̂b

†
−qη) ĉk . (13.20)

It is important to emphasize here that this equation implies that acoustic and optical phonons exhibit
a vastly different behavior in how they couple with electrons at long wavelengths, that is, as q → 0.
Consider for simplicity Si, a crystal with two atoms per unit cell at positions τ1 = (0,0,0) and τ2 =
(a0/4)(1,1,1). Choosing the origin mid-way between the two atoms, we can write their positions as
τ1 = (a0/8)(1,1,1) = τ and τ2 = −τ . At long wavelengths, the displacement of the two ions due to

an acoustic phonons will be in phase and with the same magnitude, e(ac)
01 = eei(q+G)·τ ≈ eeiG·τ ≈ e(ac)

02 .
Considering in the sum over reciprocal-space wavevectors G in Eq. (13.20) a pair G and −G, the
sum over the ions yields a contribution ∼ e ·G {cos[(q+G) · τ ]− cos[(q−G) · τ ]}. This vanishes
as q → 0. On the contrary, for long-wavelength optical phonons, the ionic displacements are out of

phase, e(ac)
01 ≈ eeiG·τ ≈ −e(ac)

02 . Therefore, the sum over the same pair of opposite G vectors and over
the ionic coordinates results in a term of the form ∼ e ·G {sin[(q+G) · τ]− sin[(q−G) · τ ]}. This
now tends to a constant, as q → 0. In more quantitative terms, the sum over each pair G and −G and
over ionic coordinates yields a contribution

2 i VG eη · [q cos(G · τ) + G (q · τ) ] ∑
G′

u(n)∗K,G′+G u(n)K,G′ , (13.21)

for acoustic phonons, and a contribution

2 VG sin(G · τ) (q+G) · eη ∑
G′

u(n)∗K,G′+G u(n)K,G′ , (13.22)
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for optical phonons. Here we have employed the symmetry property

∑
G′

u(n)∗K,G′+G u(n)K,G′ = ∑
G′

u(n)∗K,G′−G u(n)K,G′ , (13.23)

a consequence of the lattice symmetry. Equations (13.21) and (13.22) imply that at long wavelengths
(small q) the coupling between electrons and acoustic phonons vanishes, whereas the coupling
between electrons and optical phonons approaches a constant. Physically, this behavior originates
from the fact that at long wavelengths the presence of acoustic phonons represents simply a uniform
(adiabatic) translation of the entire lattice, so electrons remain unaffected. On the contrary, in the
same limit q → 0, optical phonons represent a uniform shift of one set of ions with respect to another,
so that electrons are affected by the “strained” crystal structure. The quantities given by Eqs. (13.21)
and (13.22) have dimensions of energy per unit length and, when summed over all pairs of G vectors,
are usually called “deformation potentials” (for reasons that we shall see shortly) and are denoted by
Δacq and (DK)0, respectively.

In order to simplify the notation, we shall adopt the convention that all phonon wavevectors must
be mapped into the first BZ, whenever necessary. We now define the electron–phonon coupling
constant as:

Aqη =∑
Gγ

(

h̄

2ρxω
(η)
q

)1/2

i(q+G) · e(η)qγ V(γ)
q+G , (13.24)

having absorbed the factor (Mcell/Mγ)
1/2 as a different normalization of the Fourier transform of the

ionic potential (so that it’s normalized to the atomic volume rather than to the cell volume) and having
converted the wavefunction (or field) normalization from a box-normalization to the infinite-volume
normalization, so that the crystal mass density ρx appears in this expression. Thus,

̂Hep = ∑
kqη

Aqη Ik+q,k ĉ†
k+q (̂bqη + ̂b

†
−qη) ĉk . (13.25)

Note the physical meaning of Eq. (13.25): It represents the annihilation of an electron of momentum

k, the creation (the term ̂b
†
−qη ) or annihilation (the term ̂bqη ) of a phonon of branch η and momentum

q, and, finally, the creation of an electron with momentum k+q. Thus, it can be viewed as the transfer
of momentum q from/to a phonons to/from an electron. Note that the only nonzero matrix elements
of the Hamiltonian Eq. (13.25) are those which differ by one phonon and having an electron state |k〉
swapped with a state |k+q〉.∗ A technical but important discussion. The last statement relies on the following considerations. The
Hilbert space of the system, by axiom 9 of the Copenhagen interpretation (see Chap. 1, Sect. 1.4.4),
is the tensor product of the Fock space associated with the electrons, and the Fock space associated
with the phonons. If the electron–phonon coupling is weak, we may assume the general state of the
system is just the tensor product of a state |{nki}〉, describing a configurations of electrons, nki (=0
or 1, in absence of spin) of them in a single-electron state |ki〉, and of the state |{Nqj}〉, describing a
configurations of phonons, Nqj of them in a single-phonon state |qj〉 (ignoring for clarity the index η
labeling the phonon branches). Thus,

|{nki},{Nqj}〉 = |{nki}〉|{Nqj}〉
= N (ĉ†

k1
)nk1 (ĉ†

k2
)nk2 (ĉ†

k3
)nk3 . . . |0〉el

×(̂b†
q1
)Nq1 (̂b†

q2
)Nq2 (̂b†

q2
)Nq3 . . . |0〉ph , (13.26)
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where N accounts for the normalization constants and |0〉el and |0〉ph are the vacuum states for
electrons and phonons, respectively. (Note such a “decoupling” is not rigorously correct. There are
examples of systems, such as in semiconductors excited by sub-picosecond laser pulses and studied
at the femto-second time scale, whose experimentally observed behavior can be understood only
by describing them with fully coupled electron–phonon states. We shall not consider these peculiar
cases.) From the form of the Hamiltonian given by Eq. (13.25) above, a general matrix element has
the form

〈{nki}′〈|{Nqj}]′|ĉ†
k+q (̂bq + ̂b

†
−q) ĉk |{nki}〉|{Nqj}〉

= 〈{nki}′|ĉ†
k+q ĉk|{nki}〉 〈{Nqj}′|(̂bq + ̂b

†
−q)|{Nqj}〉 , (13.27)

having used the fact that electron and phonon operators commute.
Consider first the first term. It can only be nonzero when the state |{nki}〉 contains one electron

in the single-electron state |k〉, because the annihilation operator ĉk will act on the electron vacuum
and yield zero, unless it “finds” on its right an operator ĉ†

k with which it can anticommute, yielding 1.
Similarly, the state 〈{nki}′| must contain an electron in state |k+q〉, otherwise the creation operator
ĉ†

k+q—that behaves as a annihilation operator when acting to the left—would annihilate the electron
vacuum for that state. However, if the initial Fock state, |{nki}〉, contains already an electron in
the state |k+ q〉, the creator ĉ†

k+q would attempt to place another electron in the same state. The
anticommutation rules prevent this, as we saw in Chap. 9, Eq. (9.51). Therefore, the matrix element
vanishes in this case. This is a consequence of Pauli’s exclusion principle and is called Pauli blocking:
An electron can scatter only into an unoccupied state. Therefore, we see that the only nonzero matrix
elements of the Hamiltonian Eq. (13.25) are those between an initial Fock state (a “ket” on the right)
corresponding to an electron configuration containing an electron in the state k and no electrons in
the state k+q, and a final Fock state (a “bra” on the left) with an electron in the state k+q, and
no electrons in the state k, all other electrons remaining unaffected. Accounting for the additional
spin degree of freedom will permit a given state to be occupied by two electrons, provided they are in
different spin states, but it will not change qualitatively these conclusions.

Dealing with the second factor in this equation is a bit more complicated. This is the sum of two

terms: 〈{Nqj}′| ̂bq|{Nqj}〉 and 〈{Nqj}′| ̂b
†
−q|{Nqj}〉. Consider the first term. If the initial state |{Nqj}〉

contains no phonons of momentum q, the annihilator ̂bq acts directly on the vacuum state for the
single-phonon state |q〉 and this term vanishes. If, instead, the state |{Nqj}〉 contains Nq phonons

in the single-phonon state |q〉, the annihilator ̂bq will convert this state into a state containing only
Nq − 1 phonons. Therefore, the state 〈{Nqj}′| must contain Nq − 1 phonons (for the matrix elements
to be nonzero. If that were not the case, the two states would be orthogonal, since they would be
eigenstates of the phonon Hamiltonian corresponding to different eigenvalues). For the same reason,
the two states must contain the same number of phonons for all other states. Therefore, the only
nonzero matrix elements (ignoring phonons with different wavevectors, they do not matter in this
argument) will be of the form:

1

[(Nq −1)!]1/2 [Nq!]1/2 ph〈0|(̂bq)
Nq−1

̂bq (̂b†
q)

Nq |0〉ph , (13.28)

where the pre-factor expresses the normalization of these states, as shown below. The “central” ̂b
transforms the initial state of Nq phonons into a state with Nq − 1 phonons. This can be seen by
shifting this central ̂b to the right. Each of the Nq steps requires a commutation that results in the
inner product between the states that contain Nq − 1 phonons, whose norm is

√

(Nq −1)!. By the
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time we shift it all the way to the right, thus annihilating the vacuum, we are left with a factor of
Nq (Nq − 1)!. Accounting for the initial normalization factors in the denominator of Eq. (13.28), the
net result is that this matrix element is equal to Nq(Nq −1)!/

√

(Nq −1)!Nq!, or
√

Nq.
For similar reasons, the second term is nonzero only when we have Nq phonons contained in the

state |{Nqj}〉 and Nq + 1 in the state 〈{Nqj}′|. So, it has the similar form, except for a minus sign
in front of q. This reflects the fact that the emission processes subtract momentum from the electron.
The symmetry of all crystals we consider makes this an irrelevant difference for the purpose of this
discussion. Therefore, we shall ignore the “minus” sign and write the only non-vanishing matrix
element as:

1

[(Nq +1)!]1/2 [Nq!]1/2 ph〈0|(̂bq)
Nq+1

̂b
†
q (̂b†

q)
Nq |0〉ph . (13.29)

We can proceed as we just did for the first term, now shifting the “central” ̂b† all the way to the left,
so that it will annihilate (since on the left annihilation and creation are swapped by the conjugation)
the vacuum state. In so doing, we will be left with a factor of (Nq + 1)Nq! resulting from the steps
required to shift the operator to the right and by the squared norm of the states containing Nq phonons.
Therefore, this matrix element is equal to (Nq +1)Nq!/

√

(Nq +1)!Nq!, or
√

Nq +1.
We are almost ready to conclude: If we assume that the “large” crystal is not perturbed

significantly by the few free electrons moving around, we can also assume that its temperature will
not increase too much. At thermal equilibrium, the number of phonons with wavevector q (or −q,
justifying the fact that we have ignored the minus sign) is given by the Bose–Einstein distribution
function:

〈Nq〉th =
1

e(h̄ωq)/(kBT) − 1
. (13.30)

Therefore, we conclude that the only nonzero matrix elements of the electron–phonon Hamiltonian,
Eq. (13.25), are those between initial and final electron Fock states that are identical, except for the
fact that they contain one electron in the initial state k and one in the final state k+ q. Moreover,
they represent the same phonon states, except for the fact that they contain Nq phonons in the
initial state and Nq ± 1 phonons in the final states. These matrix elements represent absorption of a

phonon, yielding a contribution 〈Nq〉1/2
th from the phonon states, or emission, yielding a contribution

(1 + 〈Nq〉th)
1/2. The squared matrix element is proportional to the scattering (transition) rate.

Therefore, absorption processes are proportional to 〈Nq〉th, the number of phonons presents at thermal
equilibrium. This is a result that is intuitively clear: The probability per unit time of absorbing a
phonon is proportional to the number of phonons available to be absorbed. On the contrary, the
probability of emitting a phonon of wavevector q is proportional to Nq + 1. This is unexpected.
The “1” represents spontaneous emission processes; the term 〈Nq〉 represents stimulated emission
processes.

These coefficients that depend on the occupation of boson states solve a very big problem with
“conventional” Quantum Mechanics. Consider a H atom in an excited state 2p, say. This is a
stationary state of the Schrödinger equation. As such, in absence of any perturbation, the electron
should remain in that state forever. Yet, we know that the electron will eventually decay to the 1s
ground state by emitting a photon. Why? We shall see that the electromagnetic field can be quantized.
The rates at which electrons emit or absorb photons can be formulated exactly in the same way we
have formulated phonon emission and absorption processes. The spontaneous emission term is what
causes the electron decay. It is due to the fact that the absence of photons does not amount to absence
of a perturbation. It simply means that the electromagnetic field is in its ground state (the vacuum
state). But the electron field can “resonate” with this vacuum and spontaneous emission is the result.
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A similar “resonance” explains the “stimulated” emission, a process that is the basic principle of
which lasers (Light Emission via Stimulated Emission Radiation) are based.

From this discussion it follows that for absorption processes only terms of the following form will
be nonzero (ignoring the branch-index η to simplify the notation):

Aq 〈Nq −1|̂bq|Nq〉〈nk+q +1;nk −1|ĉ†
k+qĉk|nk+q;nk〉

=Aq

√

(1−nk+q)nkNq . (13.31)

We shall replace later the occupation numbers Nq with the thermal populations 〈Nq〉th. For emission
processes the only non-vanishing matrix elements will be of the form:

Aq 〈N−q +1|̂b†
−q|N−q〉〈nk−q +1;nk −1|ĉ†

k−qĉk|nk−q;nk〉

= Aq

√

(1−nk−q)nk(1+N−q) , (13.32)

having indicated with nk the electron number and with Nq the phonon number.∗ Regarding the normalization of Fock states for bosons mentioned above: Consider the state

containing two phonons, |2〉 = ̂b†
̂b

†|0〉, having omitted the index q. Let’s compute its norm using

the commutation rule bb† = 1+ ̂b
†
̂b:

〈2|2〉= 〈0|̂b̂b̂b†
̂b

†|0〉= 〈0|̂b(1+ ̂b†
̂b)̂b

†|0〉 〈0|̂b̂b†|0〉 + 〈0|̂b̂b†
̂b̂b

†|0〉

= 1 + 〈0|̂b̂b†
(1+ ̂b

†
̂b)|0〉= 1 + 〈0|̂b̂b†|0〉= 2 . (13.33)

In general one can follow the same procedure to find (try it with 〈3|3〉):
〈N|N〉= N! . (13.34)

Now consider, for example, the term 〈N −1|̂b|N〉 in Eq. (13.31) above:

〈N −1|̂b|N〉 = 1

[(N −1)!N!]1/2
〈0|̂bN−1

̂b̂b
†N |0〉= 1

[(N −1)!N!]1/2
〈0|̂bN

̂b
†N |0〉

=

(

N!N!
(N −1)!N!

)1/2

〈N|N〉= N1/2 . (13.35)

Note that the terms involving the electron number simply represent the effect of “Pauli blocking”,
we can create an electron with wavevector k+ q only if that state is available (that is: nk +q = 0).
More interesting is the appearance of the phonon numbers that arise from the normalization mentioned
at page 202. When squared inside Fermi’s Golden Rule, they give rise to the “Einstein” coefficients
〈Nq〉th for absorption, 〈Nq〉th + 1 for emission: Stimulated emission is simply a result of the
commutation rules!

The result of this long discussion is an expression for the nonpolar electron–phonon scattering rate.
This is simply Eq. (12.10) (or its non-Umklapp approximation, Eq. (12.11)) of Chap. 12:

1
τη(k,n)

=
2π
h̄ ∑

k′n′
∑
G

|Ak−k′+G,η I
(3D)

k,k′,n,n′;G|2
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Fig. 13.1 Total electron–phonon scattering rate at 300 K in Si calculated using the band structure obtained using
nonlocal empirical pseudopotentials and the rigid-ion approximation (dashed red line, labeled “IBM-Urbana 1991,”
from [3]) compared to the scattering rates obtained by other groups. Data shown by the thick yellow line (“Urbana
1993–1994”) are from [4], those shown by a black solid line (“IBM-1988”) are from [5], those shown by a dashed blue
line (“Osaka 1994”) are from [6], and, finally, the data shown by dashed cyan line are from [7]

×δ [En(k)−En′(k
′)± h̄ω(η)

k−k′+G] . (13.36)

A numerical evaluation can proceed as described in the previous chapter. Figure 13.1 shows the
electron–phonon scattering rates in Si at 300 K calculated in [3] from Eq. (13.36) using empirical
pseudopotentials and the rigid-ion approximation. Using the ensemble Monte Carlo method described
in Chap. 19, Sects. 19.4.1 (19.4.1.2), they reproduce the experimentally measured mobility and drift-
velocity field characteristics.

13.2 Deformation Potentials and the Harrison Interaction

Calculation of the nonpolar electron–phonon scattering rates using Eq. (13.36), just obtained with
much pain, have become possible only recently, in the last couple of decades or so. Even more
laborious are calculations based on the first-principles approaches outlined in Sect. 13.2.1 above.
Historically, the problem of calculating the “coupling constant” Aq was solved, at least for electrons at
low energy, by employing the powerful connection between “deformation potentials” and the nonpolar
interaction between electrons and acoustic phonons that was uncovered by Bardeen and Shockley [2]
in 1950. Indeed, they have proposed an elegant method to estimate the electron/acoustic-phonon
matrix element when electrons are close to the bottom of the conduction band (or holes close to the
top of the valence band) from known parameters known as deformation potentials, hence the name of
this type of interaction.

When we compress or dilate a crystal, say by changing the lattice constant a → a+ u, the band
structure changes. In particular, the energy of the conduction band minimum moves by an amount

ΔEc = Ec(a+u)−Ec(a) ≈ dEc

da
u .
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In 3D, ΔEc is proportional to the change of the volume ΔΩ which, for a lattice displacement u is given
by ΔΩ =Ω∇ ·u, so that

ΔEc =Ω
dEc

dΩ
∇ ·u ∼ q Δac . (13.37)

The constantΩdEc/dΩ is called “deformation potential” for the conduction band. Let’s denote it here
by Δac, although, depending on the particular valley and valence/conduction band considered, several
other symbols are used in the literature (such as E1 or Ξ ).

If we consider acoustic phonons of a sufficiently long wavelength (that is, spanning many cells),
we can approximate the effect of the density-wave associated with acoustic phonons (consisting of
alternating crests/troughs of compression/dilation, compression/dilation. . . .) as having locally the
same effect of a uniform, global compression or dilation of the crystal. Therefore, we can identify
the uniform displacement u, defined above, with the ionic displacement δRlγ and the local shift of the
band-edge with Δac. This “fluctuating” conduction-band edge is what causes the electrons to scatter.

With these simplifications, ignoring for now selection rules due to the symmetries, so replacing the

dot-product e(η)qγ · (q+G) simply with q, we can approximate the electron–phonon coupling constant
Aqη in Eq. (13.24) with

Aqac ≈ Δac q

(

h̄

2ρxω
(ac)
q

)1/2

. (13.38)

This is consistent with the discussion that had led us to Eq. (13.21) above. Thus, the squared matrix
element for electron/acoustic-phonon scattering takes the form:

|〈k′| ̂Hac|k〉|2 = h̄Δ2
acq2

2ρxω
(ac)
q

(

〈Nq〉th +
1
2
± 1

2

)

,

where ρx is the density of the crystal, the “plus” sign refers to emissions, the “minus” sign to
absorption processes. Note that the frequency of acoustic phonons (in Si there are two transverse
modes—TA—and a single longitudinal mode—LA) can be well approximated by a linear relation

ω(ac)
q ≈ csq, where cs is the sound velocity, transverse or longitudinal, as appropriate. Therefore, the

matrix element grows with momentum transfer and we see that scattering with acoustic phonons is a
“large-angle scattering,” very effective in “randomizing” the electron direction and momentum. This
has a great effect on the mobility. A more correct expression for the deformation-potential interaction
in the ellipsoidal valleys in Si and Ge has been given by Herring and Vogt in 1956 [8]. In terms of the
uniaxial shear and dilation deformation potentials Ξu and Ξd, respectively, the isotropic deformation
potential Δac appearing in Eq. (13.37) above is replaced by:

ΔLA = Ξd + Ξu cos2 θq , (13.39)

for collisions assisted by LA phonons and

ΔLA = Ξu cosθq sinθq , (13.40)

where θq is the angle between the longitudinal axis of the ellipsoid and the phonon momentum q.
A similar expression, due to Harrison [9], holds for optical phonons simply replacing the frequency

ωq and deformation potential Δac with their “optical” counterparts ω (op) and Δop. Note that the main
difference lies in what we have discussed regarding Eqs. (13.20) and (13.22): Whereas for the acoustic
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strain the energy change depends on the gradient of the displacement (the strain ∝ ∇ ·u), for optical
distortions of the lattice the energy change is affected mainly by the displacement itself, so the q-
dependence in Eq. (13.37) above disappears. In the literature one finds many “optical deformation
potentials.” Usually the notation (DtK)op is used, so that:

|〈k′| ̂Hop|k〉|2 =
(DtK)2

oph̄

2Ωρxω(op)

(

〈Nop〉th +
1
2
± 1

2

)

.

Within the effective-mass approximation, assuming a single isotropic valley with an effective mass m∗.
The calculation of the scattering rates for emission and absorption of optical phonons is relatively
simple, since the frequency of optical phonons is roughly independent of q, and so is the occupation
number 〈Nop〉th. Thus, with simple integrations:

1
τop(E)

=
(DtK)2

opm∗3/2

21/2π h̄3ρxω(op)

[

〈Nop〉th(E+ h̄ω(op))1/2

+(1+ 〈Nop〉th)(E− h̄ω(op))1/2
]

, (13.41)

where, of course, emission should be included only if E > h̄ω(op).
For acoustic phonons things are more complicated, since the phonon energy depends on the phonon

wavevector q, and so does the Bose factor 〈Nq〉th. A common approximation embraced to simplify the
problem is to assume that the phonon energy is smaller that the thermal energy kBT (at sufficiently
high T and for sufficiently small q), so that nq ≈ kBT/(h̄ω(as)) = kBT/(h̄csq) and to ignore also the
energy lost or gained in a collision, if the phonon energy is much smaller than the electron energy.
These two approximations are called the equipartition and the elastic approximations, respectively.
Having made these approximations, the scattering rate becomes

1
τ LA,TA(E)

=
21/2Δ2

LA,TAm∗3/2kBT

π h̄4ρxc2
s

E1/2 . (13.42)

Nonpolar scattering with acoustic phonons controls the low-field electron mobility in nonpolar
semiconductors, such as Si and Ge. Also important are processes in which short-wavelength phonons,
both acoustic and optical, assist transition from one valley to another. Scattering among the regions
close to the six equivalent minima in Si, scattering from the Γ valley into the L or X valleys in GaAs
are notable examples. Note also that some of the selection rules we have ignored before do play a role.
For example, by symmetry considerations Harrison scattering [9] in the six Si X-valleys vanishes for
electron states exactly on the Δ symmetry line from Γ to X. Figure 13.1 shows the total electron–
phonon and hole-phonon scattering rates at 300 K in Si calculated using the nonlocal empirical
pseudopotential band structure and the numerical procedure described in Chap. 12, Sect. 12.2.2.

13.2.1 Deformation Potentials From First Principles in Bulk Si

As an example of how to use “first principles” (i.e., DFT) calculations to calculate for the deformation
potentials that may be used in simpler models, we consider here the calculation of the deformation
potentials in bulk Si.
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Starting from Eq. (13.13), DFT can provide all the required information, namely, the phonon
displacement vectors, the gradient of the potential energy with respect to the ion displacement, and
the wavefunctions:

• The phonons and their displacement vectors can be calculated as we have shown in Chap. 6.
• To obtain the gradient of the potential with respect to ion displacement, we can displace each

atom from its equilibrium position (R(0)
l ) in each direction α = x,y,z in the unit cell to a position

R(0)
l +δα . The gradient of the potential energy with respect to atom displacement is then obtained

using finite differences

[

∂U(r)
∂R0l

]

α
≈

UH(r)|Rl=R(0)
l +δα

− UH(r)|Rl=R(0)
l −δα

2|δα | . (13.43)

We note that an advantage of using a DFT-based approach is that the screening of the ionic potential
by the valence electrons is automatically accounted for.

• For the wavefunctions, we can take the Kohn–Sham wavefunctions for the unit cell where each
atom is in its equilibrium position. We transform the wavefunctions from reciprocal to real space
by performing an inverse Fourier transform onto the grid used for the potential energy.

We show the resulting deformation potentials obtained in [10] for an electron making a transition
from the valence band to the conduction band in silicon in Fig. 13.2. The matrix elements have been
translated into deformation potentials using

DKν
kk′ =∑

l

Mkk′l · eνql

√

Mcell

Ml
. (13.44)

The electron is taken to start at the top of the valence band (Γ) making a transition to somewhere in
the conduction band along the L−Γ−X path.

There is a first caveat in a numerical evaluation of the deformation potential related to the choice of
the real-space grid for r. In Eq. (13.11), the integration is taken over the volume of the entire latticeΩ ,
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Fig. 13.2 Silicon deformation potentials for tunneling from the top of the valence band towards the conduction band
calculated from VASP using the PBE functional. For BTBT, the values are taken at 0.85 in the Γ −X direction and
measure DTA = 3.5× 108 eV/cm, DTO = 1.0× 109 eV/cm, and DLO = 2.3× 109 eV/cm. (Reprinted with permission
from W.G. Vandenberghe and M.V. Fischetti, Appl. Phys. Lett. vol. 106, 013505 (2015). Copyright 2015, AIP
Publishing LLP)
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but numerically it is satisfactory to integrate over a small volume, since the gradient of the potential
energy is screened by the valence electrons and quickly decays away from the atom that is being
moved. Calculating the matrix element over a single cell and over multiple unit cells, one can see that
an integration over a single unit cell is satisfactory, provided that the coordinates are chosen such that
r = Rl lies at the center of the unit cell.

A second caveat is related to the degeneracy of the initial electronic states (mk), the final electronic
states or (nk+q) or the phonon branches (νq). In case of degeneracy, the band or branch index is not
sufficient to determine the state uniquely and simply writing the deformation between conduction band
and valence band as “Dν

cvkq” is ambiguous. For example the valence band at Γ is threefold degenerate
in absence of spin-orbit coupling and the different wavefunctions rotate like px, py and pz orbitals. For
the phonons, the TA and the TO phonons are degenerate: if we take the phonon wavevector along the
x-direction, the transverse phonon displacements will lie in the y− z plane. Therefore, depending on
which linear combination of the valence band wavefunctions is taken and the direction of the phonon
displacement vectors, different values for “Dν

cvkq” are obtained. This ambiguity can be removed
without spending the effort to symmetrize the different degenerate wavefunctions and polarization
vectors if the deformation potential between valence and conduction band Dν

cvkq is defined as the
largest deformation potential upon rotation of the wavefunctions and phonon displacement vectors in
the subspace of the degeneracies. Numerically, Dν

cvkq can be obtained by constructing a tensor out
of the deformation potentials of the different degenerate bands and phonon branches and taking the
largest multilinear singular value. In the case of silicon, looking at the valence band and phonon branch
degeneracies is satisfactory and an ordinary singular value decomposition yields the deformation
potentials.

As can be seen in Fig. 13.2, there is no interaction between the LA phonon along the (100) (Δ)
direction. This result can also be obtained directly from group theory: Along the (100) (Δ) direction,
the Oh Si symmetry group reduces to C4v and the conduction band has Δ1 symmetry while the upper
(heavy) valence band is twofold degenerate and has Δ5 symmetry and the lower (light) valence band
has Δ′2 symmetry [11, 12]. For the phonons, the LA has Δ1 symmetry, the LO has Δ′2 symmetry and
the TA and the TO have Δ5 symmetry. Transitions between the Δ′2 valence band and the conduction
band cannot be mediated by an LA phonon since Δ′2 ⊗ Δ1 ⊗ Δ1 = Δ′2 does not contain the trivial
representation Δ1.

13.3 The Fröhlich Interaction

In polar semiconductors optical phonons do generate long-range dipole fields with which electrons
interact. In order to evaluate the interaction Hamiltonian, first let’s recall that only longitudinal modes
give rise to a dipole field (see page 226). The dipole field associated with LO phonons will obviously
be proportional to the displacement,

P =Bq (̂bq + ̂b
†
−q) , (13.45)

having omitted the index η , since we deal only with the LO branch (there is only one LO branch in
the semiconductors we are interested in, all having two ions in each unit cell).

In order to evaluate the coupling constant Bq, we can proceed as follows (see the analogous
procedure described in Sect. 9.4.2 on page 205). Let’s write the electrostatic potential due to the dipole
field caused by the LO phonons as well as the (plasma) response of the carriers, if any:

φq(r, t) = φ (0)q cos(q · r−ω(LO)t) . (13.46)
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Let’s now consider the energy associated with this potential. Since phonons and plasmons in the
harmonic and linear-response approximations, respectively, are represented as harmonic oscillations,
the time-averaged total energy associated with these excitations is simply twice the time-averaged
potential energy, 〈Uq〉time. This, in turn, is the electrostatic (self)energy of the polarization charge
density ρq(r, t) in the presence of the potential φq(r, t) caused by the polarization charge itself. We
may express this potential energy in two alternative equivalent ways: From the expression (13.46) for
the potential, the density of the polarization charge associated with the LO mode can be obtained from
the Poisson equation

ρq(r, t) = ε∇2φq(r, t) , (13.47)

so that over a volume Ω :

〈Wq〉time = 2〈Uq〉time =
2
Ω

∫

Ω
dr φq(r, t)ρq(r, t)

=
2
Ω

εq2φ (0)2q

∫

Ω
dr cos2(q · r) = εq2|φ (0)q |2 . (13.48)

Alternatively, we can express 〈Wq〉time in terms of the electrostatic energy of the field Eq =−∇φq:

〈Wq〉= 2
Ω

〈
∫

Ω
dr ε |Eq(R, t)|2

〉

time
, (13.49)

which yields the same result of Eq. (13.48) above. We now use a semiclassical argument as our final
step: We set the quantity 〈Wq〉 equal to the zero-point energy, h̄ω(LO)/2, of the quantized excitation.
Thus:

φ 2
q =

h̄ω(LO)

2q2ε
. (13.50)

Before identifying this with the coupling constant Bq, we must recall that the field φq is associated
not only to the LO phonons, but it includes also the possible response of free carriers and of additional
ionic modes. Whatever we include is determined by our choice of ε. In order to isolate the contribution
of the LO modes, note that if we use in Eq. (13.50) the static dielectric function εlow = ε(ωlow)
evaluated at a frequency ωlow << ω(LO), then we allow the LO phonons to respond fully. If, on
the other hand, we set εhi = ε(ωhi) evaluated at a frequency ωhi >> ω(LO), then we prevent the LO
phonons from responding. Therefore,

φ 2
q = e2 h̄ω(LO)

2q2

(

1
εhi

− 1
εlow

)

, (13.51)

accounts only for the fraction of the potential energy due to the LO phonons alone. Therefore,
identifying the expression for φq above with the coupling constant Bq in Eq. (13.45), we arrive at
the following expression for the interaction Hamiltonian [13]:

̂H
(LO)
ep = e2 ∑

kq

[

h̄ω(LO)

2q2

(

1
εhi

− 1
εlow

)

]1/2

c†
k+q(

̂bq + ̂b
†
−q)ck . (13.52)

When only a single LO mode is present and in the absence of free carriers able to screen the
interaction, typically one sets εhi = ε∞ and εlow = ε0.
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The numerical evaluation of the scattering rates for emission and absorption processes caused
by the perturbing Hamiltonian given by Eq. (13.52) does not present the same level of difficulty we
encountered when dealing with nonpolar electron–phonon interactions. As we have mentioned before,
the Fröhlich potential does not depend on the lattice dynamics—except via the phonon frequency—or
on the effect it has on the electronic states, as it was the case for the deformation-potential interaction.

Therefore, it involves a straightforward use of Eq. (12.12) with matrix elements V(η)
k−k′ replaced by

δU(pop)
k−kj

, with δU(pop)
q given by Eq. (13.102).

Within the effective-mass approximation, the calculation of the scattering rate for this interaction
proceeds in the usual way. Considering first emission processes, we have for the rate at which an
electron with wavevector k emits any LO phonon:

1

τ(em)
LO (k)

=
2π
h̄

∫

dq
(2π)3 |〈Nq −1;nk+q,1−nk| ̂H(LO)

ep |Nq;1−nk+q,nk〉|2

×δ [E(k)−E(k+q)− h̄ω(LO)] , (13.53)

having considered the only matrix elements which will give a non-vanishing contribution and having
assumed dispersionless LO phonons. Thus, inserting Eq. (13.52) into (13.53) we have

1

τ(em)
LO)

(k)
=

2π
h̄

e2h̄ω(LO)

2

(

1
εhi

− 1
εlow

)

(1+ 〈NLO〉th)

×
∫

dq
(2π)3

1
q2 δ [E(k)−E(k+q)− h̄ω(LO)] . (13.54)

It is convenient to express q in polar coordinates with the z-axis along k. Thus, in the simple case of
parabolic, spherical bands with effective mass m∗, we can write the argument of the delta-function as:

E(k)−E(k+q) =− h̄2q2

2m∗ − h̄2kq
m∗ cosθ , (13.55)

so that, after the trivial integration over the azimuthal angle φ we have

1

τ(em)
LO)

(k)
=

e2ω(LO)(1+ 〈NLO〉th)

4π

(

1
εhi

− 1
εlow

)

×
∫ ∞

0
dq
∫ π

0
dθ sinθ δ

[

h̄2q2

2m∗ +
h̄2kq
m∗ cosθ + h̄ω(LO)

]

. (13.56)

Now consider the integral over the polar angle: Changing the integration variable θ to x =
(h̄2kq/m∗)cosθ , this integral becomes

∫ π

0
dθ sinθ δ

[

h̄2q2

2m∗ +
h̄2kq
m∗ cosθ + h̄ω(LO)

]

=
1
a

∫ a

−a
dx δ (x+b) , (13.57)
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with a= h̄2kq/m∗ and b= h̄2q2/(2m∗)+ h̄ω(LO). This integral yields 1/a=m∗/(h̄2kq) if the argument
of the delta-function vanishes for some x in the interval [−a,+a], that is for

|a| ≥ |b| → h̄2q2

2m∗ + h̄ω(LO) ≤ h̄2kq
m∗ ,

or

q− ≤ q ≤ q+ , (13.58)

with

q± = k ±
(

k2 − 2m∗ω(LO)

h̄

)1/2

=

(

2m∗

h̄2

)1/2

[E1/2 ± (E− h̄ω(LO))1/2] , (13.59)

provided E > h̄ω(LO) (otherwise the integral vanishes, expressing the fact that the electron must have
a kinetic energy larger than h̄ω(LO) to emit a phonon). Thus, finally, for E > h̄ω(LO):

1

τ(em)
LO (k)

= θ(E− h̄ω(LO))
e2m∗ω(LO)(1+ 〈NLO〉th)

4π h̄2k

(

1
εhi

− 1
εlow

)
∫ q+

q−
dq

1
q

= θ(E− h̄ω(LO))
e2m∗ω(LO)(1+ 〈NLO〉th)

4π h̄2k

(

1
εhi

− 1
εlow

)

× ln

(√
E+
√

E− h̄ω(LO)

√
E−
√

E− h̄ω(LO)

)

, (13.60)

where the function θ(x) is the Heaviside step function, θ(x) = 1 for x > 0, θ(x) = 0 for x ≤ 0.
For absorption processes we find, following identical steps:

1

τ(abs)
LO (k)

=
e2m∗ω(LO)〈NLO〉th

4π h̄2k

(

1
εhi

− 1
εlow

)

ln

(√

E+ h̄ω(LO) +
√

E
√

E+ h̄ω(LO)−√
E

)

. (13.61)

Note the typical behavior of Coulomb processes: The scattering rate increases at first with the density
of states for small E, but at larger kinetic energy it decays as 1/k ≈ 1/

√
E. The reason is quite simple:

At increasingly large kinetic energies, any Coulomb potential appears to be an increasingly smaller
relative perturbation, thus affecting the electron to an increasingly smaller extent.

Fröhlich scattering, obviously absent in covalent materials like Si and Ge (for which the absence
of ionic polarization implies εlow = εhi), is the dominant scattering process affecting the mobility of
III–V compound semiconductors. It also enters quite heavily in the dielectric breakdown of insulators
(usually ionic materials—often amorphous) at very high electric fields: As long as the electric field is
low enough, LO-scattering keeps the electrons at relatively low kinetic energies. In this low-energy
range the scattering rates 1/τ LO(E) increases with increasing E. But if the electric field increases
above some critical value, electrons will be accelerated to the range of higher kinetic energies in which
1/τ LO(E) decreases with increasing E: As they reach higher E, electrons will scatter less frequently,
thus losing a smaller fraction of their kinetic energy to LO-phonons, thus gaining from the field even
more kinetic energy,. . . etc. This diverging process, called electron run-away, could trigger dielectric
breakdown in the absence of additional inelastic processes.
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Finally, recall that we have so far ignored completely the overlap integral Ik+q+G,k, having taken
it as equal to unity. Just to show that this approximation may be less than satisfactory in some
important case, it is worth stating—without proof—a result due to Fawcett [14]: For polar materials
characterized by a nonparabolic conduction band with nonparabolicity parameter αnp, the scattering
rate given by Eq. (13.61) above should be replaced by the following expression:

1

τ(em/abs)
LO (k)

= θ(E′)
e2ω(LO)m∗1/2

25/2π h̄

(

1
εhi

− 1
εlow

)

1−2αnpE′

γ(E)
cpop

×
{

apop ln

[

|γ(E)1/2 + γ(E′)1/2|
|γ(E)1/2 − γ(E′)1/2|

]

+ bpop

}

×(〈NLO〉th +1/2±1/2) γ(E′)1/2(1+2αnpE′) , (13.62)

where E′ = E(k)∓ h̄ω(LO) and γ(E) is simply the parabolic dispersion h̄2k2/(2m∗). The effect of the
overlap integral is seen in the terms:

apop = 2(1−αnpE′)(1−αnpE) − αnp[γ(E)+ γ(E′)]2,

bpop = 2αnp[γ(E)γ(E′)]1/2[4(1−αnpE′)(1−αnpE)

−αnp[γ(E)+ γ(E′)] ,

and

cpop = [4(1−αnpE′)(1−αnpE) (1−2αnpE′)(1−2αnpE)]−1 .

The step function θ(E′) is obviously always unity for absorption processes, but it accounts for the
energy threshold for emission. This expression is rigorously valid for spherical valleys, while it can
be derived for arbitrary ellipsoidal valleys by approximating

q ≡ |k−k′| �
(

md

mel

)1/2

q∗,

in the denominator of the matrix element given in Eq. (13.52).

13.4 Electron–Phonon Interaction for a 2DEG

For a 2DEG confined by the geometry of the system—such as in quantum wells of two-dimensional
structures like graphene—or by the geometry and a confining potential—such as in inversion layers—
we can repeat exactly the discussion we have just presented for electrons in bulk crystals. The general
expressions have been given in the previous chapter, Sect. 12.3.1. There we have considered a bulk
perturbation of the form given by Eq. (12.2). We will give an important example of a two-dimensional
perturbation of the form (12.13) in Sect. 13.4.2, namely, the interaction of a 2DEG with the two-
dimensional phonons in graphene. Here we shall consider briefly the additional difficulties one must
face when evaluating numerically the scattering rates using a full band structure. We shall then
consider some specific cases that can be simplified when adopting the effective-mass approximation.
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So, worrying first about calculations within the scheme of DFT or when employing the rigid-ion
approximation, we should note that Eq. (12.36) still requires the numerical evaluation of a double
integral: First over the z-component of the momentum transfer, qz, then over the z-coordinate, hidden

within the overlap factor I (2D)
K,Kj,n,n′;G‖

(qz). The latter integration cannot be reduced to any closed-form

expression since the wavefunctions are known only numerically. However, in some special cases the
integration over qz can be performed analytically. We shall consider explicitly below, in Sect. 13.4.2,
the complications we have to face in the case of graphene. Here we just observe that from a numerical
perspective, considering only N-processes—and so ignoring Umklapp processes, is justified in many
cases. We denote by δU(η) the change of the electron potential energy—nonpolar or polar—due to

a phonon of branch η , and by δU(η)
q its Fourier components. Note that these depend also on the

frequency via the phonon dispersion ωη)q . Therefore, with this notation, Eq. (12.30) can be evaluated
numerically as:

1

τ(η)n (K)
≈ 2π

h̄ ∑
′

jn′

∫

dqz

2π

∣

∣

∣δU(η)
K−Kj,qz

I
(2D)

K,Kj,n,n′(qz)
∣

∣

∣

2 1
(2π)2

L(wjn′)

|∇2DEjn′ |
. (13.63)

We now consider two important examples: The calculation of the nonpolar electron–phonon
scattering rates in Si inversion layers and in graphene. They both constitute, of course, cases of great
practical interest, although they differ in the fact that in the first case we deal with bulk phonons, in
the latter with two-dimensional modes. Since details about the numerical calculations are very similar,
and since we have treated the interaction with bulk perturbations in the previous chapter, we provide
them here only for the more subtle case of graphene, as we have already mentioned.

13.4.1 Electron Transport in Si Inversion Layers: Monte Carlo Results

As an example of the implementation of this general scheme to a concrete case of technological inter-
est, we consider what empirical pseudopotentials can tell us about the electron–phonon interaction
and electron transport in Si inversion layers or Si thin films. These results have been presented in [15].
They have been obtained using the rigid-ion approximation described above in Sect. 13.1, assuming
semiclassical transport using the Monte Carlo technique to solve the Boltzmann transport equation
(BTE), described in Chap. 19, Sect. 19.4.1 below.

Consider the 12-cell-thick Si layer already considered in Chap. 7, Sect. 7.2.1. This may be viewed
as a prototypical thin body of SOI FETs, of a FinFET or other double-gate device. The major
difference is that the layer is bounded by vacuum, rather than by an insulator, so we expect a slightly
stronger confinement due to the larger Si-vacuum barrier (that is, workfunction, ∼4.5 eV).

Zunger’s pseudopotential [16] without spin-orbit interaction is used to calculate the band structure.
An external potential inducing a sheet electron charge of 1013 electrons/cm2 is applied. Starting from
a classical Poisson solution for the external potential and taking its Fourier transform as in Eq. (7.2),
Eq. (7.4) is solved. From the wavefunctions, Eq. (12.31), averaged over a cell on the (x,y)-plane (i.e.,
on the plane of the surfaces), and their equilibrium Fermi occupation, the total charge can be obtained
by summing over the (discretized) 2D BZ and Poisson’s equation may then be solved in real space. The
process is iterated until convergence is reached. The resulting band structure is shown in Fig. 13.3, left.
Note once more the rather complicated structure near the X symmetry point. In Chap. 7, Sect. 7.2.1.4,
we have already emphasized this feature recalling the previous observation by Esseni and Palestri [17].
Here we will see the role this structure plays in determining the high-field transport properties.

The implementation of the rigid-ion approximation in two dimensions differs from the three-
dimensional implementation we have discussed. We shall present it in detail for the case of graphene,
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Fig. 13.3 Left: Band structure of a 12-cell-thick H-terminated Si layer in the presence of a self-consistent potential
inducing an electron sheet density of 1013 cm−2. Right: Nonpolar electron–phonon scattering rates at 300 K in the layer
at left calculated using either the full (K,K′)-dependent overlap factor, Eq. (13.104) (black solid line and symbols), or
the approximated expression from Eq. (13.106) (red dashed line, open symbols). (Used from M.V. Fischetti, Bo Fu,
S. Narayanan, and J. Kim, in Nano-Electronic Devices: Semiclassical and Quantum Transport Modeling, Dragica
Vasileska and Stephen M. Goodnick Eds. (Springer, New York, 2011), pp. 183–247, with kind permission from Springer
Science+Business Media)

in Sect. 13.4.2 below. Here we shall only mention that the nonpolar scattering rates with acoustic
and optical phonons are computed at 300 K using either the full Eq. (13.104)—which accounts

for the dependence of the overlap factor F
(2D)
K′Knn′ on the initial and final wavevectors, K and K′,

respectively—or on the simplified expression Eq. (13.106)—where K0 is the wavevector at the valley
minima, Γ for the “unprimed” ladder or X for the primed ladder of states. Scattering with ionized
impurities, fixed charges, and surface roughness are ignored, wishing to obtain the intrinsic band-
structure-dependent transport properties. The scattering rates calculated with these two methods and
averaged over electron energy are shown in Fig. 13.3, right. Note the smaller rates obtained when using

the full (K,K′)-dependent overlap factor F (2D)
K′Knn′ , since this accounts also for the overlap between the

initial and final Bloch states.
An ensemble Monte Carlo method, discussed in Chap. 19, Sect. 19.4.1.2, and similar to the scheme

described in [18] is employed to obtain the energy vs. field and drift-velocity vs. field characteristics
shown in Fig. 13.4. Two features should be noted: First, when using either model to compute the
scattering rates, the electron velocity saturates at a value (∼ 5-to-6 ×106 cm/s) much lower than the
value of the saturated velocity of electrons in bulk Si at 300 K (≈107 cm/s). As discussed at length
in [18], several experimental results have yielded such low values for the saturated velocity, but no
study based on the effective-mass approximation, even with nonparabolic corrections, has been able
to reproduce the experimental observations. Second, the use of the lower scattering rates obtained
when using the full (K,K′)-dependent overlap factor, Eq. (13.104), results in a higher electron average
energy (see right panel of Fig. 13.4), but in an even lower saturated electron velocity. As shown
in Fig. 13.5, this is due to an enhanced population of the “primed” states near the higher-mass X
symmetry point. This constitutes a significant example of how the accurate evaluation of the band
structure of small confined structures can produce results significantly different from those one may
obtain using the effective-mass approximation.

We should note in passing that the Monte Carlo technique employed here can be easily extended
to study 2D or 1D transport in other small structures. The main problems we must face consist in
determining the correct physical models to be employed to handle electronic scattering, especially
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Fig. 13.4 Electron average energy (left) and drift velocity (right) as a function of field on the plane of the layer using
the two models for the scattering rates as in Fig. 13.3. In either case the electron velocity saturates at a value much
smaller than in bulk Si, consistent with experimental results so far left unexplained by models based on the effective-
mass subband structure. (Used from M.V. Fischetti, Bo Fu, S. Narayanan, and J. Kim, in Nano-Electronic Devices:
Semiclassical and Quantum Transport Modeling, Dragica Vasileska and Stephen M. Goodnick Eds. (Springer, New
York, 2011), pp. 183–247, with kind permission from Springer Science+Business Media)
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Fig. 13.5 Population of—somewhat arbitrarily defined—regions of the 2D BZ around the Γ and X symmetry points,
corresponding roughly to the unprimed and primed subband ladders. The larger occupation of the primed states—which
exhibit a significantly larger conductivity mass—yields the lower saturated velocity and higher average energy observed
at high fields in Fig. 13.4. (Used from M.V. Fischetti, Bo Fu, S. Narayanan, and J. Kim, in Nano-Electronic Devices:
Semiclassical and Quantum Transport Modeling, Dragica Vasileska and Stephen M. Goodnick Eds. (Springer, New
York, 2011), pp. 183–247, with kind permission from Springer Science+Business Media)

accounting for the presence of localized phonons in small structures, for scattering with interface or
surface roughness, charges, and excitations and, of course, for long- and short-range carrier-carrier
scattering. This last process will be discussed in Chap. 15.
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13.4.2 Electron–Phonon Interaction in Graphene

As done in Sect. 13.4.1 for the case of Si films, we can use empirical pseudopotentials, apply the
rigid-ion approximation (Sect. 13.1), assume semiclassical transport treated with the Monte Carlo
technique (see Sect. 19.4.1), and study semiclassical electron transport in graphene (see Sect. 7.2.3).
These results have been presented in [19]. A full list of references can be found there, in addition to
many additional details.

13.4.2.1 Electron–Phonon Hamiltonian

Here we present in its complicated details the entire derivation of the electron–phonon scattering rate
using the rigid-ion approximation. The unavoidable repetition of the discussion of Sect. 13.1) is a
necessary evil, since many important details and approximations concern explicitly the calculations in
two dimensions, the interaction with two-dimensional phonons, particularly for the case of graphene.

As we saw in Eq. (13.5), the electron–phonon perturbation Hamiltonian due to a phonon of mode
(or branch) η can be expressed as:

̂H
(η)
ep =

∫

dr ρ(r, t) δU(η)(r, t) , (13.64)

where ρ is the electron charge and δU(η) is the change of the lattice (pseudo)potential due to the
presence of phonons of branch η . Using the rigid-ion approximation, we set δU(η) = δV(η), as before.

It is worth recalling here our general rule about the notation: We use lower-case bold characters
for 3-vectors, upper-case bold characters for 2-vectors on the (x,y) plane of the graphene sheet (or
thin layer, the formalism is identical). The z axis is along the direction perpendicular to the sheet.
Exceptions to this rule are the vectors G of the reciprocal lattice of the supercell (since this is a
universal notation), so G‖ will denote their projection on the plane of the sheet.

Using a supercell of volume Ωc (=Ω2D Lc = (3/2)
√

3 a2
C Lc, where aC ≈ 0.142 nm is the C-C

bond length and Lc is the extension of the supercell along the direction z perpendicular to the graphene
sheet) to describe the electronic excitations, the change of the lattice potential can be written as:

δV(η)(r, t) =
1

NcellΩc
∑
l,γ
∇V(γ)(r− rl − τγ) · δR(η)

l,γ (t) , (13.65)

where the index l labels the Ncell 3D (super)cells, γ labels the ion in each cell, δR(η)
l,γ is the

displacement of ion γ in cell l due to the presence of a phonon of mode η , V(γ) is the pseudopotential

of ion γ , rl = (Rl,zl) is the coordinate of each (super)cell, and δR(η)
l,γ (t) is the coordinate of ion γ in

each cell. Using the Fourier decomposition for the ionic (pseudo)potential,

V(γ) =∑
κ

V(γ)
κ eiκ ·(r−rl−τγ ) , (13.66)

and the expression for the ionic displacement:

δR(η)
l,γ (t) =∑

Q

⎛

⎝

h̄

2ρxω
(η)
Q

⎞

⎠

1/2

e(γ)Q,η ei(Q·Rl−ω(η)
Q t) (̂b†

−Q,η +
̂bQ,η), (13.67)
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(where ρx is the mass density (per unit area) of the crystal, ω(η)
Q the frequency of a phonon of branch

η with 2D wavevector Q, and e(γ)Q,η is its polarization and ̂bQ,η and ̂b†
Q,η its annihilation and creation

operators), Eq. (13.65) can be written as:

δV(η)(r, t) =
1

NcellΩc
∑
l,γ
∑
κ

iκ V(γ)
κ eiκ ·(r−rl−τγ )

×∑
Q

e(γ)Q,η

⎛

⎝

h̄

2ρxω
(η)
Q

⎞

⎠

1/2

ei(Q·Rl−ω(η)
Q t) (̂b†

−Q,η +
̂bQ,η) . (13.68)

Now let’s recall that:

1
Ncell

∑
κ
∑

l

ei(Q−κ‖)·Rl eiκzzl =∑
κ
∑
G′′
δκ ,q+G′′ , (13.69)

having set q = (Q,0), having indicated with κ‖ the projection of κ on the (x,y) plane of the graphene
sheet and with κz its out-of-plane component. As usual, G is the (3D) vector of the reciprocal lattice
of the supercell. Thus, Eq. (13.64) can be written as:

̂H
(η)
ep = ∑

n,n′
∑

Q,G′′
i(q+G′′) · ∑

γ
e(γ)Q,η

1
Ωc

V(γ)
q+G′′ eiG′′·τγ

⎛

⎝

h̄

2ρxω
(η)
Q

⎞

⎠

1/2

×ei(q+G”)·r eiω(η)
Q t ĉ†

K+Q,n′ (
̂b†
−Q,η +

̂bQ,η) ĉK,n , (13.70)

where ĉK,n is the annihilator of a Bloch electron of 2D crystal momentum h̄K in band n and

having absorbed a phase factor eiq·τγ into the polarization vector e(γ)Q,η . Since τγ is on the plane of

the sheet (z = 0), for mono-atomic structures (so that V(γ) does not depend on γ) and absorbing
the normalization to the cell volume and the form factor inside V(γ) itself, we can rewrite this
expression as:

̂H
(η)
ep = ∑

n,n′
∑

Q,G′′
i(q+G′′) Vq+G′′ · ∑

γ
e(γ)Q,η eiG′′

‖ ·τγ
⎛

⎝

h̄

2ρxω
(η)
Q

⎞

⎠

1/2

×ei(q+G”)·r eiω(η)
Q t ĉ†

K+Q,n′ (
̂b†
−Q,η +

̂bQ,η) ĉK,n . (13.71)

Note that, since V(γ)
q does not depend on γ (the pseudopotential is the same carbon pseudopotential

for all atoms), we have taken it outside the sum over ions and dropped the superscript γ . Note also that
coupling between electrons and the out-of-plane modes acoustic and optical modes (denoted by ZA

and ZO) vanishes identically at first order: For these out-of-plane modes e(γ)Q,η has nonzero components

along z so Q · e(γ)Q,η = 0 and the terms involving the G vectors will give a vanishing contribution
when summed. The physical reason for this vanishing coupling is the inability of the electrons in
the graphene sheet to modify their wavefunction along z, so the inability to support a change in
physical momentum along the direction perpendicular to the layer. If perturbed wavefunctions were
used, instead of the equilibrium unperturbed states, then a small coupling may arise. Higher-order
processes—consisting of the simultaneous emission or absorption of two ZA phonons—are allowed.
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However, their study requires accounting also for the higher-order, anharmonic coupling of out-of-
plane (ZA) with in-plane (TA and LA) phonons. This renders the process relatively weak, therefore
we shall not discuss this problem here.

13.4.2.2 Electron–Phonon Matrix Element

If only a real-space expression for the wavefunction is available, the calculation of the matrix element

of the form 〈K′n′| ̂H(η)
ep |Kn〉 (using an obvious simplified notation, as discussed in Chap. 12, page 257)

must be performed employing the real-space form Eq. (13.70) of the Hamiltonian and performing a
real-space integration. Thus the only non-vanishing matrix elements will be of the form:

〈K′n′| ̂H(η)
ep |Kn〉 =∑

G
D

(η)
K′−K,G

∫

dr ψ(n′)∗
K′ (r) ei(q+G)·r ψ(n)

K (r) , (13.72)

where now q = (K′ −K,0) and the “deformation potential” D
(η)
QG is defined below.

If, on the contrary, a Fourier decomposition of the electronic Bloch states is available, the
calculation of the matrix elements can be performed in k-space. Then Eq. (13.72) takes the form:

〈K′n′| ̂H(η)
ep |Kn〉 = 1

NcellΩc
∑

GG′G′′
∑
q

D
(η)
Q,G′′

∫

dR ei(K−K′+G‖−G′
‖+Q+G′′

‖)·R

×
∫

dz ei(Gz−G′
z+G′′

z )z u(n
′)∗

K′,G′ u(n)K,G , (13.73)

where the coefficients u(n)K,G are the Fourier coefficients of the periodic part of the Bloch functions

ψ(n)
K (r) and we have defined

D
(η)
Q,G = i(q+G) · ∑

γ
e(γ)Q,η Vq+G eiG·τγ AQ,η , (13.74)

with

A 2
Q,η =

⎛

⎝

h̄

2ρxω
(η)
Q

⎞

⎠

{ 〈NQ,η〉th

1+ 〈NQ,η〉th

}

, (13.75)

where NQ,η is the occupation number of phonons of wavevector Q and branch η and the upper (lower)
symbol within curly bracket should be taken for absorption (emission) processes. Performing the
spatial integrations this expression reduces to:

〈K′n′| ̂H(η)
ep |Kn〉= ∑

G,G′
D

(η)
K′−K,G′−G u(n

′)∗
K′,G′ u(n)K,G . (13.76)

Rewriting this expression as:

〈K′n′| ̂H(η)
ep |Kn〉= ∑

G,G′
D

(η)
K′−K,G′ u(n

′)∗
K′,G+G′ u(n)K,G , (13.77)
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the presence of G′ in the last term reminds us of Umklapp processes. Thus, considering only Normal
processes, for acoustic phonons one can approximate Eq. (13.77) as:

〈K′n′| ̂H(η)
ep |Kn〉 ≈ D

(η)
K′−K,0 ∑

G
u(n

′)∗
K′,G u(n)K,G , (13.78)

in which the first term plays the role of a deformation potential ∼ |K′ −K|Δ(η) and the second term
the role of a simple overlap integral between the “rigid ion wavefunctions” in each cell.

Note that in Eqs. (13.73)–(13.78) there appears to be a dependence on the size of the supercell via
the normalization volumeΩc =Ω2DLc. In the limit of a supercell extending infinitely far along z (that
is, for Lc → ∞) this dependence is canceled by the sum over Gz since

1
Lc
∑
Gz

→ 1
2π

∫

dGz . (13.79)

Thus, large cells will be required to guarantee this independence of the result on the size of the
supercell. But in approximating Eq. (13.77) by ignoring Umklapp processes as in Eq. (13.78) this
“theoretical” independence on supercell volume would be lost even in the infinite-volume limit. In
order to retain this property the normalization volume must be modified. To see how to correctly
normalize the pseudopotentials it is convenient to reach Eq. (13.78) by first setting G‖ = 0 and then
taking the infinite-volume limit, Eq. (13.79), obtaining for the “acoustic deformation potential”

i ∑
γ

Q · e(γ)Q,η AQ,η
1
Ω2D

∫ ∞

−∞
dGz

2π
V(|Q+Gzẑ|) , (13.80)

where we have put in evidence the normalization 1/Ωc (so leaving V un-normalized), we have used
explicitly the fact that the atoms are on the plane of the sheet so that their coordinates τγ have vanishing
z-components, and we have considered only the in-plane modes. One can now rewrite the last term in
this expression as:

1
Ω2D

∫ ∞

−∞
dGz

2π
V(|Q+Gzẑ|) ≈ V(Q)

1
Ω2DtQ

(13.81)

where the quantity tQ is defined as:

1
tQ

=
1

V(Q)

∫ ∞

−∞
dq
2π

V(|Q+qẑ|) . (13.82)

For small Q

1
t0

≈ 2
V(0)

∫ ∞

0

dq
2π

V(q) . (13.83)

is the reciprocal of the “range” of the pseudopotential or, equivalently, the reciprocal of the thickness
of the graphene sheet (which for Kurokawa’s C pseudopotentials is about 0.1713 nm). Using this last
expression for any Q, in Eq. (13.83) the pseudopotential now should be normalized not to the supercell
volume Ω2DLc, but to the “effective” volume Ω2Dt0 of a “3D graphene cell.”

This discussion shows that an approximation probably better than Eq. (13.78) may be obtained by
considering only Normal in-plane processes by setting G‖ = 0 in Eq. (13.77), but retaining the sum

over Gz in the “deformation potential” D
(η)
K′−K,G appearing in Eq. (13.77):
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〈K′n′| ̂H(η)
ep |Kn〉 ≈ ∑

Gz

D
(η)
K′−K,G‖=0,Gz ∑

G
u(n

′)∗
K′,G u(n)K,G , (13.84)

an approximation which we shall call “in-plane no-Umklapp.” See Fig. 13.7 for the scattering rates
calculated using this approximation.

Finally, faster calculations may be used by considering acoustic and optical deformation potentials
independent of the phonons wavevector Q fitted to more sophisticated approximations. In particular,
in order to account correctly for the absence of the ZA modes, one may use Eq. (13.84) in place of the

term ∑GD
(η)
K′−K,G the term:

∑
G

D
(η)
K′−K,G ≈

∣

∣

∣

∣

∣

∑
γ

e(γ)Q,η ·Q
∣

∣

∣

∣

∣

Δ(η)ac (13.85)

for the acoustic phonons and a simple constant,

∑
G

D
(η)
K′−K,G ≈ (DK)

(η)
op (13.86)

for the optical phonons. See Fig. 13.8 for the scattering rates calculated using these approximations
with the same deformation potential Δac for all acoustic branches and the same value of (DK)op for
the optical branches.

It is interesting to express the matrix element using the wavefunctions

ξ (n)K,G‖
(z) =

1
Lc
∑
Gz

u(n)K,G eiGzz , (13.87)

where Lc is the extension of the supercell along the out-of-plane direction. Then Eq. (13.76) can be
rewritten as:

〈K′n′| ̂H(η)
ep |Kn〉= ∑

G‖,G′
‖,G

′′
z

D
(η)
K′−K,G′

‖−G‖,G′′
z

∫

dz ξ (n
′)∗

K′,G′
‖
(z) eiG′′

z z ξ (n)K,G‖(z) . (13.88)

Ignoring Bloch-overlap effects we may replace the wavefunctions ξ (n)K,G‖
(z) with the cell-averaged

functions ζ (n)K (z) = ξ (n)K,G‖=0(z) so that

〈K′n′| ̂H(η)
ep |Kn〉 ≈ ∑

G
D

(η)
K′−K,G

∫

dz ζ (n
′)∗

K′ (z) eiGzz ξ (n)K (z) , (13.89)

which is a simplified version of Eq. (13.78). (Note that we have assumed G‖ = 0 for the wavefunctions
but we cannot do this for the coupling constant D , since the coupling strength depends strongly on
the presence of the G-terms.) If the out-of-plane extension of the wavefunction is small compared to

the in-plane lattice constant (as it is the case in graphene), then one can approximate ζ (n)K (z) ∼ δ (z),
as in a purely 2D sheet, so that, for the acoustic modes

〈K′n′| ̂H(η)
ep |Kn〉 ≈ ∑

G
D

(η)
K′−K,G , (13.90)

which can be regarded once more as the “deformation potential” ∼ |K′ −K|Δ(η).
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13.4.2.3 Dielectric Screening

We have already observed that the rigid-ion approximation assumes that the valence electrons shift
rigidly as the ions are displaced. Therefore, their response, neglected by this approach, must be
accounted for, somehow. The obvious path to follow is to screen the electron–phonon interaction
accounting for the dielectric response of the electrons as we have done in Chap. 11. Graphene is a
“pathological” case. Indeed, given the strong dielectric response of graphene (as evident, for example,
from the reduction of the optical phonon energy, called Kohn anomaly, seen in the phonon spectrum
and by the limited validity of the Born–Oppenheimer approximation), the theoretical situation is a
bit “confused.” The problem lies in the fact that graphene is neither a gapped dielectric (so that
valence electrons do not respond at the phonon energies because these are usually much smaller
than the gap), nor a metal (in which electrons respond instantaneously, the Born–Oppenheimer
assumption): Graphene does not exhibit a gap, so electrons can respond at the frequency of the
phonons. But the DOS at the Fermi level vanishes, so that this response is “sluggish.” In other
words: Detailed calculations are necessary. We may screen the electron–phonon matrix element using
a model available in the literature, Wunsch’s screening model [20], obtained in the random phase
approximation (RPA):

〈K′n′| ̂H(η)
ep |Kn〉 → 〈K′n′| ̂H(η)

ep |Kn〉
1 − [e2/(2κ0Q)]ΠRPA(Q,ωQη)

, (13.91)

where Q−|K−K′|. The dynamic (RPA) polarizability of graphene is given by Wunsch as:

ΠRPA(Q,ω) =
Π(Q,ω)

1− [e2/(2κ0Q)]Π(Q,ω)
, (13.92)

with

Π(Q,ω) =−iπ
F(Q,ω)

h̄2υ2
F

+ ΔP(1)(Q,ω) , (13.93)

where

ΔP(1)(Q,ω) =− gEF

2π h̄2υ2
F

+
F(Q,ω)

h̄2υ2
F

{

G

(

h̄ω+2EF

h̄υFQ

)

− θ
(

2EF − h̄ω
h̄υFQ

−1

)

×
[

G

(

2EF − h̄ω
h̄υFQ

)

− iπ
]

− θ
(

h̄ω−2EF

h̄υFQ
+1

)

G

(

h̄ω−2EF

h̄υFQ

)}

. (13.94)

The functions F(Q,ω) and G(x) are defined by:

F(Q,ω) =
g

16π
h̄υ2

FQ2
√

ω2 −υ2
FQ2

, (13.95)

G(x) = x
√

x2 −1 − ln
(

x+
√

x2 −1
)

, (13.96)

EF is the Fermi level measured from the Dirac point, υF the Fermi velocity, and g = gvgs is the
product of the spin and valley degeneracy. Note that for intrinsic (un-doped and un-gated) graphene,
ΔP(1)(Q,ω) = 0.
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13.4.2.4 Electron–Phonon Scattering Rates

Now that we have obtained an expression for the matrix elements, we can now calculate the scattering
rates. As we have already seen many times, the first-order rate at which a 2D electron of crystal
momentum h̄K in band n will emit or absorb a phonon of branch η can be written as:

1

τ(η)n (K)
=

2π
h̄

∫

dK′

(2π)2

∣

∣

∣

∣

∣

∑
G,G′

D
(η)
K′−K,G′−G u(n

′)∗
K′,G′ u(n)K,G

∣

∣

∣

∣

∣

2

× δ (En(K)−En(K′)∓ h̄ωK−K′,η) , (13.97)

the upper (lower) sign in the energy-conserving delta describing absorption (emission) processes. To
compute it numerically, we can follow the “usual” procedure: We first discretize the 2D BZ with
squares centered at points Kj, and write Eq. (13.97) as:

1

τ(η)n (K)
≈ 2π

h̄ ∑
′
jn′

∣

∣

∣

∣

∣

∑
G,G′

D
(η)
Kj−K,G′−G u(n

′)∗
Kj,G′ u(n)K,G

∣

∣

∣

∣

∣

2
1

(2π)2

L(wjn′)

|∇2DEjn′ |
. (13.98)

Here [1/(2π)2] L(wjn)/∇2DEjn is the density of states on band n′ in the energy-conserving jth square
of side ΔK with energy Ejn′ and gradient ∇2DEjn′ at the center of the square, Kj. Also, the “primed”
sum over j and n′ implies that only energy-conserving squares should be considered. This is simply
the Gilat–Raubenheimer scheme in 2D, already discussed in Chap. 12, Sect. 12.3.2.

The last remaining piece of information we need has to do with the phonons. The calculations
require knowledge of the phonon spectrum and of the polarization vectors. DFT or any of the empirical
models discussed in Chap. 9. Section 9.4.1 can be used for this purpose. Figure 13.6 shows the phonon
spectrum calculated employing the Born–von Kármán model.

To give an idea of the computational complexity involved, the results shown in Figs. 13.7, 13.8,
and 13.9 have been obtained using three different meshes in k-space: A “coarse” mesh of 40× 40
rectangular elements covering the rectangular section of the BZ including the (triangular) irreducible
wedge of the 2D Brillouin Zone and a similar triangle completing the rectangle; a “fine” mesh of
40×40 rectangular elements covering a similar section of linear dimensions five times smaller around
the K symmetry point; a “superfine” mesh covering the same section but with 80×80 elements. For
the tabulation and interpolation of the phonon dispersion, a mesh of 300× 520 rectangular elements
covering the same section has been used.

The final results regarding electron transport in graphene are shown in Figs. 13.10 and 13.11.
The calculated electron mobility is in rough agreement with the experimental data available. The
experimental results are often affected by the poor quality of the graphene sheet available. It usually
comes in the form of “flakes,” several micrometer in size. This may be the unavoidable result of
the Mermin–Wagner–Hohenberg theorem discussed in Sect. 7.2.3. Defects, impurities, charges in
the supporting insulating substrates, and the problem of determining accurately the electron density
(needed to extract the mobility from the measured conductivity) all contribute to a high level of
uncertainty. Nevertheless, we should stress the fact that calculations that use as empirical parameters
only the C pseudopotential (and these are fitted to the electronic structure of diamond, not even to
graphene!) and the phonon spectra (that could be obtained theoretically from DFT) are able to predict
electronic properties to a surprising level of accuracy.
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Fig. 13.6 The phonon dispersion used here, calculated using a fourth-nearest-neighbors Born–von Kármán model. The
modes are identified by their character, but zone-edge LO and LA modes are degenerate and a unique identification
is impossible. Thus, in the following figures, labels such “LA” and “LO” should be interpreted somewhat loosely.
(Reprinted with permission from M.V. Fischetti, J. Kim, S. Narayanan, Z.-Y. Ong, C. Sachs, D.K. Ferry, and S.J. Aboud,
J. Phys.: Cond. Matter vol. 25, 473202 (2013). Copyright 2013, Institute of Physics)
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Fig. 13.7 Left: Total electron–phonon scattering rates in graphene at 300 K using the “in-plane no-Umklapp”
approximation, Eq. (13.84). Right: As in the left frame, but zooming on the low-energy range.
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Fig. 13.8 Left: Total electron–phonon scattering rates in graphene at 300 K using constant deformation potentials (thick
lines) defined by Eqs. (13.85) and (13.86) without accounting for dielectric screening, for the phonon-polarization factor
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∣ or for the overlap integral, ∑G u(n
′)∗

K′,G u(n)K,G, between initial and final electron wavefunctions, in order to

reproduce the simple approximation often used in transport models. Note the “step” in the scattering rate observed
as soon as intravalley K −K and K −K′ emission processes become available. This step results from having ignored
the K −K′ overlap factors (whose effect is seen at right). Fitting these rates to those calculated using the rigid-ion
model with the in-plane no-Umklapp approximation (thin lines) requires different intra- and inter-valley deformation
potentials, as indicated. Right: As in the left frame, but the “empirical” deformation potentials have now been screened
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Fig. 13.9 Comparison of
the total electron–phonon
scattering rates at the
indicated electron
densities. (Reprinted with
permission from
M.V. Fischetti, J. Kim,
S. Narayanan, Z.-Y. Ong,
C. Sachs, D.K. Ferry, and
S.J. Aboud, J. Phys.: Cond.
Matter vol. 25, 473202
(2013). Copyright 2013,
Institute of Physics)
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Fig. 13.10 Longitudinal
(top) and transverse
(bottom) electron mobility
in graphene at 300 K as a
function of electric field
along the [10] direction
calculated using the Monte
Carlo method. The various
curves are parametrized by
the electron density.
(Reprinted with permission
from M.V. Fischetti,
J. Kim, S. Narayanan,
Z.-Y. Ong, C. Sachs,
D.K. Ferry, and
S.J. Aboud, J. Phys.: Cond.
Matter vol. 25, p. 473202
(2013). Copyright 2013,
Institute of Physics)
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Fig. 13.11 Average electron energy (left) and drift velocity (right) in graphene at 300 K as a function of electric field
along the [10] direction calculated using the Monte Carlo method. The various curves are parametrized by the electron
density. (Reprinted with permission from M.V. Fischetti, J. Kim, S. Narayanan, Z.-Y. Ong, C. Sachs, D.K. Ferry, and
S.J. Aboud, J. Phys.: Cond. Matter vol. 25, 473202 (2013). Copyright 2013, Institute of Physics)
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13.4.3 Scattering Rates in the Effective-Mass Approximation

When embracing the effective-mass approximation to describe the band structure, the task is greatly

simplified, of course. The major difficulty lies in the evaluation of the overlap factors, I (2D)
K,Kj,n,n′(qz),

that enter the squared matrix element. More specifically the evaluation of the term
∫

dqz

2π

∣

∣

∣δU(η)
K−Kj, qz

I
(2D)

K,Kj,n,n′(qz)
∣

∣

∣

2
. (13.99)

We now discuss specific examples in which this term can be simplified. We consider the following
perturbation potentials δU(η):

δU(LA,TA)
q =

[

h̄Δ2
LA,TA(q)q

2

2ρxω
(LA,TA)
q

]1/2{ 〈N(LA,TA)
q 〉1/2

th

(〈N(LA,TA)
q 〉th +1)1/2

}

, (13.100)

for nonpolar scattering with acoustic phonons of branch η in a crystal of mass density ρx, with

wavevector q, frequency ω(η)
q , Bose occupation number 〈N(η)

q 〉th, deformation potential (possibly
q-dependent) Δη(q);

δU(op)
q =

[

h̄(DK)2
op

2ρxω(op)

]1/2{ 〈N(op)
q 〉1/2

th

(〈N(op)
q 〉th +1)1/2

}

, (13.101)

for nonpolar scattering with optical phonons with optical deformation potential (DK)op;

δU(pop)
q =

eF

qεr(q,ω(LO))

{

〈N(LO)
q 〉1/2

th

(〈N(LO)
q 〉th +1)1/2

}

, (13.102)

with F 2 = (h̄ω(LO)
q /2)(1/εhi −1/εlow) for polar scattering with optical phonons (εr(q,ω) being the

relative dielectric function, and εhi and εlow the optical and static dielectric constants).

13.4.3.1 Nonpolar Phonon Scattering, Momentum-Independent Matrix Element

Nonpolar scattering with acoustic and optical phonons can be simplified dramatically when the matrix
element is assumed to be momentum-independent and the phonon energy is considered constant (zero

for acoustic phonons, dispersionless for optical phonons). Thus neither h̄ω(η)
q nor δUη

q depend on qz

and the only qz dependence occurs within the overlap factor. Thus the term (13.99) can be handled as
follows:

|V(η)|2
∫

dqz

2π

∣

∣

∣

∣

∫

dz ζ (n
′)∗

K′ (z) eiqzz ζ (n)K (z)

∣

∣

∣

∣

2

= |δU(η)|2
∫

dz
∫

dz′ ζ (n
′)∗

K′ (z) ζ (n)K (z) ζ (n
′)

K′ (z′) ζ (n)∗K (z′)
∫

dqz

2π
eiqz(z−z′)

= |δU(η)|2
∫

dz ζ (n
′)∗

K′ (z) ζ (n)K (z)ζ (n
′)

K′ (z) ζ (n)∗K (z)

= |δU(η)|2
∫

dz
∣

∣

∣ζ (n
′)∗

K′ (z)
∣

∣

∣

2 ∣
∣

∣ζ (n)K (z)
∣

∣

∣

2
= |δU(η)|2 F (2D)

K,K′,n,n′ . (13.103)
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In this case Eq. (12.30) simplifies to:

1

τ(η)n (K)
≈ 2π

h̄
|δU(η)|2 ∑

K′n′
F

(2D)
K,K′,n,n′ δ [En(K)−En′(K

′)± h̄ω(η)] . (13.104)

In the more complicated case in which the wavefunctions ξ (n)G‖,K
(z) given by Eq. (12.26) is required,

then the factor F (2D)
K,K′,n,n′ in Eq. (13.103) becomes instead:

F
(2D)
K,K′,n,n′ ==

∫

dz

∣

∣

∣

∣

∣

∣

∑
G‖
ξ (n

′)∗
G‖K′(z) ξ

(n)
G‖K(z)

∣

∣

∣

∣

∣

∣

2

. (13.105)

If one is interested in transport not too far from equilibrium (as in mobility calculations), then one
can assume that the carriers populate only regions of the first BZ not too far from a band extremum K0.
Then one can ignore the K-dependence of the wavefunctions and reduce the computational burden by
having to calculate only a single overlap factor for each pair of (sub)bands (n,n′). So, the simplest
possible expression for the scattering rate can be derived from Eq. (13.104):

1

τ(η)n (K)
≈ 2π

h̄
|V(η)|2F (2D)

K0,K0,n,n′ ∑
K′n′

δ [En(K)−En′(K
′)± h̄ω(η)

=
2π
h̄

|V(η)|2∑
n′

F
(2D)
K0,K0,n,n′ D

(n′)[En(K)± h̄ω(η)] , (13.106)

where D (n)(E) is the density of states in (sub)band n at energy E. Clearly, Eq. (12.29) can be simplified
by using any (or any combination) of the approximations we have considered here (N-process
only, q-independent scattering potential, q-independent dispersion, K-independent wavefunctions),
depending on the particular physical system and conditions considered.

13.4.3.2 Fröhlich Scattering

In the case of Fröhlich scattering, the perturbation δU(pop) can be approximated by a potential
screened using a Debye–Hückel wavevector βDH, Eq. (11.52) in Chap. 11—approximated either by
the 2D expression (e2/εs)ns/(kBT) (we ignore for now multisubband screening, and the dynamic
effects discussed in Sect. 11.3.2.4) or by the 3D expression, [(e2n)/(kBT)]1/2—becomes

V(pop,DH)
q =

eF

(q2 +β 2
DH)

1/2

{

〈NLO〉1/2
th

(〈NLO〉th +1)1/2

}

=
Cpop

(q2 +β 2
DH)

1/2
(13.107)

and therefore, Eq. (13.99) becomes

C2
pop

∫

dz
∫

dz′ ζ (n
′)∗

K′ (z) ζ (n
′)

K′ (z′) ζ (n)K (z) ζ (n)∗K (z′)
∫

dqz

2π
eiqz(z−z′)

q2
z +Q2 , (13.108)
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where Q = (|K−K′|2 +β 2
DH)

1/2. The integral over qz above is easily evaluated:

I
(2D)

pop =
∫

dqz

2π
eiqz(z−z′)

q2
z +Q2 = π

e−|z−z′|Q

Q
, (13.109)

so that the scattering rate can be written as:

1

τ(pop)
n (K)

≈ 2π
h̄

∗
∑
jn′

C2
pop

1
(2π)2

L(wjn′)

|∇2DEjn′ |
1

2Qj

×
∫

dz
∫

dz′ ζ (n
′)∗

Kj
(z) ζ (n

′)
Kj

(z′) e−|z−z′|Qj ζ (n)K (z) ζ (n)∗K (z′) , (13.110)

where Qj = (|K−Kj|2 +β 2
DH)

1/2. Writing gK,K′,n,n′(z) = ζ (n
′)∗

K′ (z)ζ (n)K (z), the overlap factor (the last
factor in the equation above) can be written as:

∫

dz
∫

dz′ gK,K′,n,n′(z
′) e−|z−z′|Qj g∗K,K′,n,n′(z)

= 2 Re

{
∫ ∞

0
dz g∗K,K′,n,n′(z) e−Qz

∫ z

0
dz′ gK,K′,n,n′(z

′) eQz′
}

, (13.111)

an expression which shows explicitly that the overlap factor is real and provides a form more amenable
to numerical integration. Indeed the numerical advantage provided by Eq. (13.111) consists in the fact
that the “inner” integral over z′ depends on z only via the upper integration limit as the integrand
does not depend on z. Of course one can approximate gK,K′,n,n′(z) with gK0,K0,n,n′(z), where K0 is
the location of the band extremum, in order to reduce the number of integrals to be evaluated and
tabulated.

When the supercell method is employed and the wavefunctions ξ (n)G‖,K(z) given by Eq. (12.26)

should be used, bypassing the pure envelope approximation, in the Eq. (13.111) gK,K′,n,n′(z) should
be replaced by

gK,K′,n,n′(z) =∑
G‖
ξ (n

′)∗
G‖,K′(z) ξ

(n)
G‖,K

(z) , (13.112)

in order to obtain the correct matrix element.

13.5 Electron–Phonon Interaction for a 1DEG

Of course, having discussed electron–phonon scattering in bulk semiconductors and for a 2DEG,
we must also at least mention its one-dimensional counterpart. As we have done in the previous
section, we shall first see in general what a full-band calculation entails and then consider specific
cases within the effective-mass approximation. Observations similar to those made before should be
repeated here. We shall consider bulk perturbations, so we shall not consider the complications related
to low-dimensional phonon modes. We should also emphasize again that the validity of any treatment
of electronic transport based on the single-particle approximation is very doubtful in one dimension.
In Chap. 15, Sect. 15.2.1, we shall mention that Coulomb interparticle interactions in one dimension
usually result in the breakdown of the single-particle picture and in the appearance of a collective state
called Luttinger liquid. We can only keep this in mind and regard results obtained in the single-particle
picture as only “suggestive” at best.
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In a full-band context, Eq. (12.51) requires the evaluation of a four-dimensional integral (2D in Q
and 2D in R “hidden” within I

(1D)
kz,kzj,n,n′(Q)). In general cases—such as inelastic, anisotropic scattering

with dispersive acoustic phonons—not much can be done to simplify the problem. One has to evaluate

the overlap factor I (1D)
kz,kzj,n,n′(Q)—possibly using some 2D fast Fourier transform (FFT) algorithm—

and then perform the remaining 2D integral over the 2D momentum-transfer Q.
We present two examples of these of DFT (and empirical pseudpotentials) to calculate the transport

properties of a 1DEG: Silicane nanoribbons and graphene nanoribbons.

13.5.1 Deformation Potentials and Electron Mobility in Silicane
NRs and AGNRs

Silicane is almost the exact Si equivalent of graphene, but only “almost.” Although not universally
accepted, common terminology reserves the suffix “ene” to sp2-coordinated atomic sheets. Thus,
silicene would be the exact equivalent of graphene. The suffix “ane,” instead, denotes a “buckled” sp3-
coordinated arrangement, as in silicane. This “buckling” has interesting consequences. Nanoribbons,
as we saw for the case of GNRs, are desired because they exhibit a band gap. However, the presence
of the Clar resonance causes the bang gap of AGNRs to exhibit “strange” claromatic oscillations.
This would be very hard to control, should we desire to use them in electronics. Silicane nanoribbons,
however, are not affected by Clar resonances because of their sp3 bonding. For this reason, there
is interest in Si NRs. Of course, we shall ignore complicated issues regarding their stability. As
we saw for the case of graphene, two-dimensional crystals are always under the Damocles’ sword
of the Mermin–Wagner–Hohenberg theorem discussed at the beginning of Sect. 7.2.3. DFT can be
used to study the atomic relaxation of Si NRs and, with additional techniques we shall not discuss
here, the so-called ab initio thermodynamics, that permits the extension of zero-temperature DFT to
finite temperatures. Results reported in [21] show that Si NRs would be the natural byproduct of the
instability of an infinite silicane sheet: Under ambient conditions, two-dimensional silicane sheets will
spontaneously break into stable one-dimensional ribbons.

Figures 13.12 and 13.13—also from [21]—show the atomic structure of Si NRs. We should note
that this constitutes another example in which DFT plays a crucial role in determining how the
structure “really looks like.” Figure 13.14 shows the band structure calculated using the four possible
combinations of unrelaxed/relaxed atomic coordinates and calculations using DFT or empirical
pseudopotentials, as described in Chap. 7.

Having established the atomic structure, DFT can be used to calculate the electron–phonon matrix
elements, scattering rates, and electron mobility (see Chap. 19). Figure 13.15 shows the resulting
scattering rates, Fig. 13.16 the electron mobility. This quantity depends on the electron density and
this is shown in the figure. Avoiding complicated details, it should be noted that the calculated low-
field electron mobility shows a strong dependence on the crystallographic orientation of the edge of
the ribbon, because of differences in the effective mass and momentum relaxation rates along the two
transport directions (armchair and zigzag). Most important, that the electron mobility in zigzag-edge
Si NRs is predicted to be approximately twenty times higher than in AGNRs. This case is illustrated
in Figs. 13.17, 13.18, and 13.19.
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Fig. 13.12 Atomic configurations of (a) 11-aSiNR and (b) 8-zSiNR. All the Si (gold balls) dangling bonds are
passivated by H (white balls). Note the H atoms passivate the dangling bonds in alternating pairs at the top and bottom
sides of the monolayer (chair-like). The charge carrier transport occurs along the z-direction which is equivalent to [112]
and [101] of bulk Si for aSiNR and zSiNR, respectively. (Reprinted figure with permission from J. Kim, M.V. Fischetti,
and S. Aboud, Phys. Rev. B vol. 86, 205323 (2012). Copyright 2012 by the American Physical Society)
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Fig. 13.13 Atomic configuration of an unrelaxed (a) and a relaxed (b) 4-zSiNR used for empirical pseudopotential
(EP) and DFT calculations, respectively. The buckling height is indicated by Δy for the unrelaxed geometry, and by
Δy1 (inner Si-Si atoms) and Δy2 (edge Si-Si atoms) for the relaxed geometry. (Reprinted figure with permission from
J. Kim, M.V. Fischetti, and S. Aboud, Phys. Rev. B vol. 86, 205323 (2012). Copyright 2012 by the American Physical
Society)
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Fig. 13.14 Electronic
band structure of a
4-zSiNR and 7-aSiNR
using EPs (a) and (c) and
DFT (b) and (d) with
unrelaxed (dotted lines)
and fully relaxed (solid
lines) geometry. The zero
for the energy is set at the
top of the valence band.
The insets show in detail
the structure of the
conduction band the its
bottom, set to zero in this
case. (Reprinted figure with
permission from J. Kim,
M.V. Fischetti, and
S. Aboud, Phys. Rev. B
vol. 86, 205323 (2012).
Copyright 2012 by the
American Physical
Society)
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13.5.2 Scattering Rates in the Effective-Mass Approximation

We have seen in Sect. 13.4.3 that the use of the effective-mass approximation reduces enormously
the complexity involved in the evaluation of the overlap factors entering the electron–phonon matrix
elements for a 2DEG. The same is obviously true also in the case of 1DEG. The overlap factor

I
(1D)

kz,k′z,n,n′
(Q) appearing in Eq. (12.48) can be simplified following a similar approach. Considering

specific examples for the q-dependence of δU(η)
q , as done before for the 2D case, we can perform part

of the task analytically in handling the term:

∫

dQ
(2π)2

∣

∣

∣δU(η)
Q,kz−kz+qz

I
(1D)

kz,kz,n,n′(Q)
∣

∣

∣

2
. (13.113)
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Fig. 13.15 Total electron–phonon momentum relaxation rate accounting for emission and absorption of acoustic and
optical phonons, the acoustic and optical emission and absorption processes. (Reprinted figure with permission from
J. Kim, M.V. Fischetti, and S. Aboud, Phys. Rev. B vol. 86, 205323 (2012). Copyright 2012 by the American Physical
Society)

Fig. 13.16 Phonon-limited electron mobility as a function of electron line-density nl for a 7-zSiNR (squares) and a
11-aSiNR (circles) at T = 300 K. (Reprinted figure with permission from J. Kim, M.V. Fischetti, and S. Aboud, Phys.
Rev. B vol. 86, 205323 (2012). Copyright 2012 by the American Physical Society)

We consider the same cases we have considered above for scattering in a two-dimensional system

13.5.2.1 Nonpolar Phonon Scattering, Momentum-Independent Matrix Element

Assuming (as we have done before in the 2D case) that the perturbation term δU(η)
q given by

Eq. (13.100) or by Eq. (13.101) does not depend on q, and neither does h̄ω(η)
q , then the term (13.113)

can be written as:

|δU(η)|2
∫ Q

(2π)2

∣

∣

∣

∣

∫

dR ζ (2D)(n′)∗
k′z

(R) eiQ·R ζ (2D)(n)
kz

(R)

∣

∣

∣

∣

2

= |δU(η)|2
∫

dR
∫

dR′ ζ (2D)(n′)
k′z

(R′) ζ (2D)(n)∗
kz

(R′)
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Fig. 13.17 Acoustic
deformation potential Δac
in AGNRs shown as a
function of ribbon width
calculated from DFT.
(Reprinted with permission
from M.V. Fischetti,
J. Kim, S. Narayanan,
Z.-Y. Ong, C. Sachs,
D.K. Ferry, and
S.J. Aboud, J. Phys.: Cond.
Matter vol. 25, 473202
(2013). Copyright 2013,
Institute of Physics)

Fig. 13.18 (a) Calculated total momentum relaxation rate in AGNRs shown as a function of electron kinetic energy
measured from the bottom of the conduction band. (b) Low-field mobility vs. electron line density for an 8-, 9-, and
10-AGNR. (Reprinted with permission from M.V. Fischetti, J. Kim, S. Narayanan, Z.-Y. Ong, C. Sachs, D.K. Ferry, and
S.J. Aboud, J. Phys.: Cond. Matter vol. 25, 473202 (2013). Copyright 2013, Institute of Physics)

× ζ (2D)(n′)∗
k′z

(R) ζ (2D)(n)
kz

(R)

∫

dQ
(2π)2 eiQ·(R−R′)

= |δU(η)|2
∫

dR
∣

∣

∣ζ (2D)(n′)
k′z

(R)
∣

∣

∣

2 ∣
∣

∣ζ (2D)(n)
kz

(R)
∣

∣

∣

2
= |δU(η)|2 F (1D)

kz,k′z,n,n′
, (13.114)

and the nonpolar electron–phonon scattering rate (η = TA, LA, op) becomes simply:

1

τ(η)n (kz)
≈ 2π

h̄

∣

∣

∣δU(η)
∣

∣

∣

2

∑
k′zn′

F
(1D)
kz,k′z,n,n′

δ [En(kz)−En′(k
′
z)± h̄ω(η)] (13.115)
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Fig. 13.19 (a) Phonon-limited electron mobility in AGNRs using Kubo–Greenwood formula with full-band structure.
(b) The same, but using the effective-mass approximation with effective masses calculated from EP (solid symbols)
and DFT (open symbols). (Reprinted with permission from M.V. Fischetti, J. Kim, S. Narayanan, Z.-Y. Ong, C. Sachs,
D.K. Ferry, and S.J. Aboud, J. Phys.: Cond. Matter vol. 25, 473202 (2013). Copyright 2013, Institute of Physics)

Ignoring the kz-dependence of the envelope wavefunctions, this simplifies further to:

1

τ(η)n (kz)
≈ 2π

h̄

∣

∣

∣δU(η)
∣

∣

∣

2

∑
k′zn′

F
(1D)
kz0,kz0,n,n′ δ [En(kz)−En′(k

′
z)± h̄ω(η)]

=
2π
h̄

∣

∣

∣δU(η)
∣

∣

∣

2

∑
n′

F
(1D)
kz0,kz0,n,n′ D

(n′)[En(kz)± h̄ω(η)] , (13.116)

where D (n)(E) is the density of states at energy E in (sub)band n. However, if we wish to retain the full
dependence of the wavefunctions on the G vectors avoiding any use of the envelope approximation,

using Eqs. (12.44) and (12.46), all we have to do is to replace the form factor F (1D)
kz,k′z,n,n′

with the more
general expression [see Eq. (13.105)]:

F
(1D)
kz,k′z,n,n′

=
∫

dR

∣

∣

∣

∣

∣

∑
Gz

ξ (2D)(n′)∗
Gz,k′z

(R) ξ (2D)(n)
Gz,kz

(R)

∣

∣

∣

∣

∣

2

. (13.117)

13.5.2.2 Fröhlich Scattering

In the case of Fröhlich scattering, expressing the scattering potential as in Eq. (13.107) with βDH

approximated by the 3D bulk expression [(e2n)/(kBT)]1/2, the term (13.113) can be rewritten as:

C2
pop

∫

dR
∫

dR′ gkz,k′z,n,n′(R) g∗kz,k′z,n,n′(R
′)
∫

dQ
(2π)2

eiQ·(R−R′)

Q2 +ΔQ2 , (13.118)

where Cpop is defined implicitly by Eq. (13.107), ΔQ = [(kz − k′z)2 +β 2
DH]

1/2, and

gkz,k′z,n,n′(R) = ζ (2D)(n′)∗
k′z

(R) ζ (2D)(n)
kz

(R) .) (13.119)
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The integral over the 2D variable Q in Eq. (13.118) can be written as:

I
(1D)

pop =
1

(2π)2

∫ ∞

0
dQ

Q
Q2 +ΔQ2

∫ 2π

0
dφ eiQΔRcosφ , (13.120)

where ΔR = |R−R′|. Evaluating the angular integral gives us 2πJ0(QΔR) so that:

I
(1D)

pop =
1

2π

∫ ∞

0
dQ

Q J0(QΔR)
Q2 +ΔQ2 =

1
2π

K0(ΔQΔR) , (13.121)

where J0 and K0 are Bessel functions. Thus, Eq. (12.51) can be expressed as:

1

τ (pop)
n (kz)

≈ C2
pop

h̄

∗
∑
jn′

∣

∣

∣

∣

dEn′

dkzj

∣

∣

∣

∣

−1

×
∫

dR
∫

dR′ gkz,kzj,n,n′(R) g∗kz,kzj,n,n′(R
′) K0(ΔQj|R−R′|) , (13.122)

where ΔQj = [(kz − kzj)
2 + β 2

DH]
1/2. The Bessel function K0(x) can be evaluated using its integral

representation

K0(x) =
∫ ∞

1
dt

e−xt
√

t2 −1
, (13.123)

tabulated, and interpolated during the evaluation of Eq. (13.122). Notice that we have not reduced
the number of integrations we must perform, but we have replaced the Q-integration involving a
potentially fast-varying complex exponential with the integration over the “smooth” wavefunctions.
In addition, the integrand is now a symmetric function of R and R′, so that it needs to be evaluated
only over 1/2 of the 4D “hyperspace” (R,R′).

Whenever the use of the full wavefunctions given by Eq. (12.44) is required, we must replace the
term gkz,k′z,n,n′(R) given by Eq. (13.119) with the expression

gkz,k′z,n,n′(R) =∑
Gz

ξ (2D)(n′)∗
Gz,k′z

(R) ξ (2D)(n)
Gz,kz

(R) (13.124)

in the equations above.

13.6 Dielectric Screening and Coupled Plasmon/LO-Phonon Modes

We consider here another interesting example of electrons scattering with a hybrid surface excitation,
that is, an elementary excitation that results from the simultaneous presence of two excitations,
plasmons and optical phonons, whose electric fields and charges interact in a peculiar way to give
rise to a new excitation. To make things even more interesting, these excitations exist in the 2DEG of
a polar semiconductor present in a QW. These excitations are discussed by Ridley [22].

Specifically, consider a polar material (say, as usual, GaAs, to fix the ideas) in which electrons are
affected by polar Fröhlich scattering. Suppose that the semiconductor is n-type doped, so that there is a
uniform density of n electrons per cubic centimeter. Clearly, the interaction between electrons and the
LO phonons will be screened by these free electrons, since the electrons feel the dipole field associated
with the LO phonons and respond to it by screening it. However, things are a little complicated.
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For very small electrons densities, the interaction can be assumed to be essentially unscreened: The
plasma frequency is very small (as it vanishes as n1/2 as n → 0), so that the free electrons cannot
respond to the oscillating dipole field of the LO phonons. But if we consider increasing densities, we
soon reach a situation where the plasma frequency, ωP = [e2n/(ε∞m∗)]1/2 and the frequency ω(LO) of
the phonons become comparable. What this means physically is that the field due to the LO phonons
excites the plasma of the free electrons. This plasma responds near resonance causing, in turn, the
phonons to oscillate differently under the action of the longitudinal field of the plasma oscillations. In
other words: plasmons affect phonons and phonons affect plasmons. The two modes are not decoupled
(or “independent”) any longer. Rather, the system will exhibit oscillations at some new frequency and
we cannot talk any more of LO phonons and plasmons as independent entities. The excitations of the
systems are now “coupled phonon-plasmon modes.”

In order to evaluate the frequency and the nature of these coupled modes we must go back to
the basic definition of longitudinal excitations. We must recall that when we discussed the dielectric
response of the ions, we saw that longitudinal excitations are those for which the dielectric function
vanishes. In this case, indeed, we can have a nonzero electric field E with a vanishing macroscopic
displacement field D. The full dielectric function of the system, accounting for both the ionic and the
electronic response can be obtained from Eqs. (11.19) and (11.36) in the long-wavelength limit:

ε(ω) = ε∞

(

1− ω2
P

ω2

)

+ (ε0 − ε∞)
ω(TO)2

ω(TO)2 −ω2
. (13.125)

In order to calculate the frequency of the longitudinal modes we find that ε(ω) = 0 for ω =ω±, where
ω± are the two solutions of the algebraic equation:

ω4 − ω2(ω2
P +ω(LO)2) + ω2

Pω(TO)2 = 0, (13.126)

or:

ω2
± =

1
2

{

(ω2
P +ω(LO)2) ±

[

(ω2
P +ω(LO)2)2 −4ω2

Pω(TO)2
]1/2
}

. (13.127)

Note that for n → 0 we have

ω2
± → (1/2)(ω(LO)2 ±ω(LO)2) , (13.128)

while in the opposite limit n → ∞ we have

ω2
± → (1/2)[ω2

P ± (ω2
P −2ωTO2]) , (13.129)

so that the lower-frequency mode has a dispersion ω− vanishing in the limit of small density and
asymptotically approaching the unscreened phonon frequency ωTO in the limit of very large densities.
In the same limits the dispersion of the high-frequency approaches ω(LO) and ωP, respectively. The
top-left frame of Fig. 13.20 shows the dispersion of the two modes as a function of electron density
for the case of GaAs.

The calculation of the rate at which electrons scatter with these modes can proceed along the same
path we have followed to reach Eq. (13.61), but a few comments and modifications are necessary.
First, neither of the two modes is purely a phonon nor a plasmon. One must sort out the plasmon and
phonon content of each coupled mode in order to evaluate its coupling with the electrons. The text
by Ridley [22] (page 332) discusses this issue, as well as the scattering strength, from a vary nice
“mechanical” perspective. Here we follow a more empirical approach. It may be shown (but we’ll
state the results without a rigorous proof) that the phonon content of each mode is given by:
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Fig. 13.20 Top left: Spectrum of the coupled TO-phonon/plasmon modes as a function of electron density. Top right:
The phonon and plasmon content of each mode. Bottom: Scattering rates for the electron/hybrid mode interaction

P(ω±) =
ω2±−ω2

P

ω2
+−ω2−

. (13.130)

The result should be at least “intuitively” correct: If the dispersion tracks exactly the plasma
dispersion, the excitations are indeed a pure plasmon and its phonon content vanishes. Moreover,
if we define similarly the plasmon content as

Q(ω±) =
ω2±−ω(LO)2

ω2
+−ω2−

, (13.131)

we have P(ω±) = 1−Q(ω±) from Eq. (13.129), which shows that the plasmon and phonon content
of each mode do indeed add up to unity, as it should be. The top-right frame of Fig. 13.20 shows that
the high-frequency mode is mostly phonon-like at small densities, but it becomes mostly a plasmon
at large densities. The opposite is true for the low-frequency mode.

The scattering strength can be estimated following the semiclassical approach on pages 282–285:
We may calculate the total energy of the field associated with each mode and set it equal to the zero-
point energy h̄ω±/2 of the mode. We can then isolate the contribution of the phonon-component of
each mode by considering the dielectric response when the phonon responds fully, the response when
the phonon is assumed to be “frozen,” and, finally, take the difference between these two fields and
assign it exclusively to the phonon contribution to the field. Thus, the “bare” scattering strength

h̄ω(LO)

(

1
εhi

− 1
εlow

)

(13.132)
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of the “bare” (i.e., unscreened) LO-modes is replaced by:

S(ω±) = P(ω±) h̄ω±
(

1
εhi(ω±)

+
1

εlow(ω±)

)

, (13.133)

where

εhi(ω±) = ε∞

(

1− ω2
P

ω2±

)

, (13.134)

(the limit ω→∞ has been taken in the ionic part of Eq. (13.125) to account for the fact that the phonon
does not respond) and

εlow(ω±) = ε∞

(

1− ω2
P

ω2±

)

+ (ε0 − ε∞) = ε0 − ε∞
ω2

P

ω2±
, (13.135)

having taken the limit ω → 0 in the ionic part of Eq. (13.125) to account for the fact that the phonon
responds fully. The last (bottom) frame of the following figure shows the scattering strength for both
modes. Of interest is the comparison with the bare scattering strength, Eq. (13.132) (yellow line): The
“screened” scattering strength is larger than the unscreened one! To our knowledge, this phenomenon
was first noticed by Rydley himself and it is called “anti-screening”, for obvious reasons.

Problems

13.1. Plot the nonpolar scattering rate with acoustic and optical phonons, given by Eq. (13.42) on
page 280, as a function of electron energy in the range 0<E ≤ 1 eV. Use the following values (roughly
related to Si):

(DtK)op = 109 eV/cm,
Δac = 10 eV,
m∗ = 0.32m0 (where m0 is the free-electron mass),
ρx = 2.33 gr/cm3,
h̄ω(op) = 0.061 eV,
cs = 5×105 cm/sec.

13.2. (a) Do the same for the polar Fröhlich scattering, Eqs. (13.60) and (13.61). Use the following
parameters (approximately correct for GaAs):

m∗ = 0.063 m0,
h̄ω(LO) = 0.036 eV,
εlow = 10.92 ε0,
εlow = 12.9 ε0.

(b) Compare the result with the result of Problem 13.3.. Discuss how the different energy dependence
will affect electron transport.

13.3. Consider the metal-vacuum interface located at z = 0, the metal filling the entire half-space
z ≥ 0, vacuum filling (!?) the half-space z < 0. The dielectric function in the metal in the long-
wavelength limit is given by:
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εM(ω) = ε0

(

1− ω2
P

ω2

)

, (13.136)

where ε0 is the vacuum permittivity. In the metal a solution of Laplace’s equation ∇2φ = 0 is

φM(x,z) = Acos(kx) e−kz , (13.137)

so that EMz = kAcos(kx) e−kz and EMx = kAsin(kx) e−kz are the z and x components of the electric
field.

(a) Show that in the vacuum (that is, for z < 0)

φ0(x,z) = Acos(kx) ekz , (13.138)

satisfies the boundary condition that the tangential component of E be continuous at the metal-
vacuum boundary; i.e., find E0x.

(b) Recalling that DM = εM(ω)EM and that D0 = ε0E0, show that the boundary condition that
the normal component of D be continuous at the boundary requires εM(ω) = −ε0, so that, by
Eq. (13.136), the frequency of the interface plasma oscillation, ωs, will be ωP/

√
2.

13.4. Consider now the interface between an insulator (for z < 0) and a semiconductor (z ≥ 0) which
at z = 0 behaves like a two-dimensional electron gas. The dielectric function of the insulator can be
written as:

εi(ω) = εi∞ + (εi0 − εi∞)
ω(TO)2

ω(TO)2 −ω2
. (13.139)

The dielectric function of the 2D electron gas can be written as:

ε2D(Q,ω) = ε∞

(

1− ω2
P(Q)

ω2

)

, (13.140)

where Q is the 2D wavevector on the plane of the interface, and ω2
P(Q) = e2n2DQ/(ε∞m∗) is the

frequency of the two-dimensional plasma of density n2D (in units of carriers per unit area) which
depends on Q (unlike the bulk plasma). Following the same procedure of Problem 13.1. (that is:
expressing the potential in the insulator and semiconductor with Eqs. (13.137) and (13.138) and
imposing the continuity of Ex and Dz = ε(ω)Ez across the interface) find the dispersion of the coupled
phonon-plasmon modes at the interface as a function of Q. Note that you should get something
resembling the results shown in Fig. 13.20, page 311, but now Q plays the role of the density n in
that figure.
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Chapter 14
Scattering with Ionized Impurities

14.1 Overview

So far, we have considered almost exclusively ideal crystals, looking at their properties in their
intrinsic form. Therefore, we have intentionally avoided the intricate task of dealing with defects and
imperfections and how these may affect the electronic properties and transport. This is not to say that
deviations from ideality are not important: quite the contrary. They have governed the progress of the
microelectronics industry, the main concern behind this text, and they influence even more heavily
other practical applications of physics and material science: Just think of metallurgy or polymer
science and their applications to the steel or plastic industry. However, we have to limit the scope of
our discussion. One exception to the “ideal crystal” philosophy we have followed so far is represented
by dopants in semiconductors. They may be arguably considered one of their “intrinsic” features,
given their importance. Therefore, in this chapter we shall look, albeit a bit too cursorily (this is one
of the shortest chapters of the book), at the interaction between free carriers and ionized impurities.

In most applications, electrons and holes must carry current in the presence of a large concentration
of dopants. By design, these impurities are ionized, so that the free carriers resulting from the
ionization can contribute to the current-carrying process. Therefore, each impurity gives rise to a
Coulomb field which, in the absence of screening, is long-range. The motion of the charge carriers,
electrons and holes, will obviously be affected by this field. Here, we evaluate the scattering rate
between electrons and the field due to these ionized impurities. A comprehensive, albeit a bit dated,
discussion of the subject can be found in [1].

14.2 Electron-Impurity Hamiltonian

Assume that we have ND ionized impurities in a volume Ω and that they are located at positions ri

for i = 1,ND. If V(imp)(r− ri) is the potential due to impurity i, then the Hamiltonian expressing the
electron–impurity interactions will be, obviously,

̂Himp =
e
Ω

ND

∑
i=1

∫

dr ψ̂†(r) V(imp)(r− ri) ψ̂(r) . (14.1)

Before proceeding, we must pause and discuss a major difference between electron–phonon and
electron-impurity scattering. Scattering with phonons—as with any other excitation with internal
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degrees of freedom—is inherently “phase-breaking.” In other words, it is irreversible in time, as a
single collision removes from the system information about its phase: We assume that the thermal
bath to which phonons belong is so large (that is, it has so many degrees of freedom) that we
cannot possibly keep track of the information carried by a single phonon. This information is lost—
either because of our inability to record this information or because of the fast “decoherence” or
loss of information intrinsic to any large system—so that the system behaves irreversibly, like any
thermodynamic system. Impurities, on the other hand, do not carry any internal degree of freedom:
The momentum transferred by an electron to the impurity is extremely small: Recall that each impurity
is strongly bonded to the whole lattice, so that the momentum transferred to the lattice is of the order of
mel/Mlattice ≈ 0. Thus, we can consider the impurity as a fixed (in space and time) potential. It follows
that, in principle, we could solve the exact Schrödinger equation in the presence of the potential due
to all of the impurities and we would have a perfectly reversible, non-dissipative system. In other
words, we could lump the Hamiltonian (14.1) into the unperturbed Hamiltonian and stop talking
about impurity scattering altogether. The effect of the presence of the impurities in transport would
be that of modifying the wavefunctions, and so the transmission amplitude across the sample, via the
coherent interaction between the electron wavefunction and the impurity potential.

However, some sort of loss of information is likely to arise from another consideration. In
writing Eq. (14.1) we have assumed that the positions of all the impurities are precisely known. In
experimental situations this is clearly not true: One must regard experiments on charge transport in a
given sample as an ensemble average over many configurations α , each configuration corresponding
to a different set of random (but still yielding the same average impurity density) impurity positions,
{ri}α . One may regard this either as an averaging over many different, equally “prepared” samples
or as an average over different (microscopically large but macroscopically small) parts of the sample.
In doing this average, all interference among partial waves scattered from different impurities is lost
(or “averaged out”), as in the usual random phase approximation. Thus we are brought to an average
expression for Eq. (14.1):

〈 ̂Himp〉config =
eND

Ω

∫

dr ψ̂†(r) V(imp)(r) ψ̂(r) = nD

∫

dr ψ̂†(r) eV(r) ψ̂(r) , (14.2)

where nD is the average impurity concentration.
By now it should be clear how to calculate the scattering rate for the electron–impurity interaction.

This seems to be a simple matter of inserting the Fourier components, V(imp)
q , into Eqs. (12.10)

or (12.11),

1

τ(imp)(k,n)
=

2π
h̄ ∑

k′n′
∑
G

|V(imp)
k−k′+G I

(3D)
k,k′,n,n′;G|2 δ [En(k)−En′(k

′)] (14.3)

and proceed as usual.
Things are more interesting than this. First, the scattering potential, V(imp)(r), cannot be taken as

the bare Coulomb potential of the ionized impurity: Both valence electrons and conduction electrons,
when present in significant concentrations, will screen the potential. This actually helps, since the
Coulomb potential has an infinite range and it is well known that the cross section for scattering
with a bare Coulomb potential diverges. Moreover, when the impurities are sufficiently diluted, we
can consider them as isolated and screen them one at a time with whatever model of static dielectric
screening we choose from Chap. 11. However, as the concentration of the impurity grows (around
the high 1018 impurities/cm3 in Si, for example), this approach begins to fail, as discussed below
in Sect. 14.5. At high impurity concentrations additional problems arise: Impurities may cluster as
the solid-solubility limit is reached, which is the case in Si for impurity concentrations well above
1020/cm3. The dopant atoms are also close enough for the bound states in the impurity potential,
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quite shallow (a few tens of meV), to delocalize, as electrons can tunnel among donor impurities, thus
forming impurity bands that distort the band structure near the edge of the conduction band (or the
valence band, for acceptors). Moreover, in Appendix A we see that the first Born approximation is
valid only when the scattered wave is weak and does not affect significantly the incident wave. When
impurities are close together, interference among the many waves scattered by the many impurities
renders this assumption invalid. The Born approximation is also valid for electrons at an energy
sufficiently large for their wavevector to satisfy the condition k >> (2m∗U0)/(β h̄2), where m∗ is
the electron effective mass, β is the screening parameter. The energy U0 is some measure of the depth
of the scattering “well” that, in our case, is the energy of the impurity states (only a few tens of meV, as
just mentioned). It follows that the Born approximation fails for those low-energy electrons in which
we are most interested when we wish to calculate their mobility, for example. Finally, we should
recall once more the aforementioned issue about the “averaging” we need to perform over the spatial
distribution of the impurities in order to reach the regime of dissipative semiclassical transport.

In this chapter we shall employ the first Born approximation: We are interested in the effect
that ionized impurities have on electron transport when they affect it significantly. This happens at
relatively high concentrations of impurities (donors/acceptors) and, usually by charge neutrality, of
electrons/holes. The large density of free carriers will result in very localized impurity potentials, so
that electrons can be considered as having a sufficiently “high-energy” even at thermal equilibrium.
We shall consider a spatial distribution of impurities already averaged. As just mentioned, a discussion
is given in Sect. 18.2.1. We shall discuss here mainly how to screen the impurity potentials and we
will address briefly the other remaining concerns. We shall consider explicit cases within the effective-
mass approximation. The main issue is the physics of the collision process itself and on the nature of

the potential. Once this is understood, inserting the appropriate expression for V(imp)
q into Eq. (14.3)

is a straightforward matter of following the recipe given in Chap. 12.

14.3 Electron-Impurity Scattering Rates

To start, let’s consider the impurity potential V(imp)(r) as the bare Coulomb potential

eV(r) =
Ze2

4πεsr
, (14.4)

where Z is the ionization of the impurity (typically Z=1) and εs is the static, valence band dielectric
constant of the semiconductor. The Fourier components of V(imp) are

eVq =
Ze2

εsq2 . (14.5)

Now we can follow the path we’ve followed in Eqs. (12.5) and (12.6) to obtain (dropping the symbol
of ensemble average, we shall assume as implicitly taken in the following):

̂Himp = e nD ∑
kqG

Ik+q+G;k ĉ†
k+q+G V(imp)

q ĉk , (14.6)

having assumed that only intra-band processes are significant. This is indeed true, since the Coulomb
potential is not sufficiently strong to trigger interband processes. Assuming Normal processes and
ignoring the overlap factor, we may write more simply:
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̂Himp ≈ e nD ∑
kq

ĉ†
k+q V(imp)

q ĉk . (14.7)

We are now ready to calculate the scattering rate:

1

τ(imp)(k)
= nD

2π
h̄ ∑q

|< k+q| ̂Himp|k > |2 δ [E(k+q)−E(k)] (14.8)

=
Z2e4nD

4π2ε2
s h̄

∫

dq
δ [E(k+q)−E(k)]

q4 (14.9)

=
Z2e4nD

2πε2
s h̄

∫ ∞

0

dq
q2

∫ π

0
dθ sinθ δ

(

h̄2q2

2m∗ +
h̄2kq
m∗ cosθ

)

. (14.10)

Now, with the usual change of integration variable x = (h̄2kq/m∗)cosθ inside the angular integral we
have

∫ ∞

0

dq
q2

∫ π

0
dθ sinθ δ

(

h̄2q2

2m∗ +
h̄2kq
m∗ cosθ

)

=
m∗

h̄2k

∫ 2k

0

dq
q3 . (14.11)

The upper integration limit 2k results from the fact that we require the argument of the δ -function to
vanish in order to have a nonzero contribution. This happens only when cosθ ≤ 1 or q ≤ 2k, so that

1

τ(imp)(k)
=

Z2e4m∗nD

2πε2
s h̄3k

∫ 2k

0

dq
q3 =

Z2e4m∗1/2nD

23/2π h̄2ε2
s

1

E1/2

∫ 2k

0

dq
q3 . (14.12)

The obvious problem with this expression lies in the fact that the integral diverges. This is a well-
known result: The quantum-mechanical cross section for scattering with a bare Coulomb potential
diverges as a result of the infinite range of the potential. Clearly, we must consider the effect of
dielectric screening of the bare potential of the impurities. Several models have been proposed in the
past, each with its own merits and especially accurate in a limited range of impurity densities.

14.4 The Brooks–Herring Model

The first model we consider is based on the simple assumption that the impurity potential, Eq. (14.4),
should be screened statically by the static free-carrier dielectric function with screening wavevector β
given by Eq. (11.50) or (11.52) [see also Eqs. (11.97) and (11.99)]. Thus [2, 3]:

eVq =
Ze2

εs(q2 +β 2)
. (14.13)

Equation (14.10) then becomes

1
τ BH(k)

=
Z2e4nD

2πε2
s h̄

∫ ∞

0
dq

q2

[q2 +β 2]2

∫ π

0
dθ sinθ δ

(

h̄2q2

2m∗ +
h̄2kq
m∗ cosθ

)

=
2Z2e4m∗nD

π h̄3ε2
s

k
β 2(β 2 +4k2)

. (14.14)
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In our context, this form was first proposed by Brooks and Herring, hence the subscript BH in the
formula above. Note that screening, via the term β , removes the divergence of the integral at q → 0,
that is, at long distances. Indeed screening makes the Coulomb potential a “short range” potential.
The source of the divergence we have met before was due to the fact that electrons feel the potential
of the impurity at all distances. Screening eliminates this problem.

14.5 The Conwell–Weisskopf Model

Mahan, however, has noticed an inconsistency in the way screening is employed in the Brooks–
Herring approach [4]: On the one hand, in deriving the scattering rate (14.14), we assume that
electrons are plane waves: Indeed, our initial and final states are pure plane waves and all electrons
participate equally in the scattering process. On the other hand, we also assume that all electrons
participate fully in the screening process. We are clearly double-counting the electrons. Having
observed this inconsistency, Mahan proceeded with variational calculations trying to determine the
actual electron wavefunctions in a homogeneous electron system in the presence of ionized impurities.
The results showed that at small densities electrons do indeed “pile up” around the attractive potentials
of donors (or away from the repulsive potential of acceptors), as implied by Debye–Hückel screening.
But at larger densities, when the inter-impurity separations, the inter-electron separation, and the
screening length β−1 become comparable (about 1–3 nm in Si at densities of the order of 1018 to
1019/cm3), the electron wavefunctions are spread almost uniformly, without “piling up” around the
impurities: The average distance between the impurities is now smaller than the electron wavelength,
so that these are not able to screen the potential. This effect is partially accounted for by the
q-dependence of β in the better model of Eqs. (11.63) and (11.64) on page 236. Therefore, at
large densities it makes more sense to go back to the original model proposed by Conwell and
Weisskopf [5]. They assumed that the Coulomb potential is unscreened. However, electrons can
interact only with the nearest impurity, an assumption consistent with our earlier assumption of
independent collisions with impurities implicit in Eq. (14.2). In order to see the implications of this
model, it is convenient to define the average inter-impurity separation r0 such that

nD =
1

4πr3
0/3

→ r0 =

(

3
4πnD

)1/3

. (14.15)

This will be the maximum “impact parameter” of the collision. The Fourier components of the
Coulomb potential so “chopped” at large distances will be

V(CW)
q =

Ze2

εsq

∫ r0

0
dr sin(qr) =

Ze2

εsq2 [1− cos(qr0)] . (14.16)

Thus:

1
τ CW(k)

=
Z2e4

2π h̄ε2
s

∫ ∞

0
dq

1
q2 [1− cos(qr0)]

2
∫ π

0
dθ sinθ δ

(

h̄2q2

2m∗ +
h̄2kq
m∗ cosθ

)

. (14.17)

Proceeding as usual with the azimuthal integral, we finally obtain

1
τ CW(k)

=
Z2e4m∗nDr3

0

2π h̄3ε2
s

F (2kr0) , (14.18)
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where

F (x) =
1
x

∫ x

0
dt

(1− cos t)2

t3 .

Note that the scattering rate (14.18) does not depend on the impurity density nD, as can be seen
from Eq. (14.15). There are several variations of these expressions, one such variation relying on the
use of the bare Coulomb potential at infinity, but “chopping” the integration over q above. However,
the essence of the method remains unaltered: Rather than relying on dielectric screening to avoid
the divergence at q → 0 in Eq. (14.11), the cutoff at small q is obtained from the maximum impact
parameter allowed. If the impact parameter exceeds r0 (however this might be defined), then another
impurity will exhibit a smaller impact parameter and scattering will occur via that second impurity
center.

14.6 Ridley’s Statistical Screening Model

Ridley [6] (see also Ridley’s text [7], pp. 148–152) has attempted to find a model reconciling the
BH and CW approaches. He notices that in the CW approach the impurity with the smallest impact
parameter is always chosen, even if it happens to be farther away from another impurity with a larger
impact parameter. This is inconsistent with a true two-body, single-scattering-center collision. This
leads us to consider the probability that another scattering center may be closer, even if it happens to
be associated with a larger impact parameter. This method (which we shall not discuss further and
is known as “Ridely’s statistical screening” [6]) results in a correction to the BH scattering rate as
follows

1
τ R(k)

=
υ(k)

d

{

1− exp

[

d
τBH(k)υ(k)

]}

, (14.19)

where υ(k) is the group velocity and d = (2πnD)
−1/3 is the average inter-impurity distance. This

model has been applied successfully to calculate the mobility in III-V hetero-structures. In the so-
called high electron mobility transistors (HEMTs), electrons are induced in a narrow-gap channel
(InGaAs, for example) by inserting a very narrow line of dopants in the larger-gap AlGaAs layer
that acts as a gate insulator. The process of introducing this single-atom line of donor dopants, called
“delta-doping,” is easily performed during the MBE growth of the hetero-structure. Electrons resulting
from these donors will transfer from the AlGaAs layer to the InGaAs channel and contribute to the
conduction. Scattering now occurs between electrons in the channel and donors a few nanometers
away in the adjacent AlGaAs layer. This process, called remote impurity scattering, is clearly strongly
affected by Ridley’s statistical screening.

14.7 ∗Additional Corrections to the Impurity Potential

There are several, even more sophisticated, models which attempt to find a better approximation to
the potential of the substitutional impurity. An article by Chattopadhaya and Qeisser [1] discusses the
state of the art. Since impurity scattering is important in determining the carrier mobility in heavily
doped semiconductors, and since the average doping of semiconductors increases with the shrinking
dimensions of the devices, it is easy to understand why there is such an interest. See [8].
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A first correction is an attempt to account for wavelength-dependent screening by valence electrons.
So far, screening by valence electrons has been treated simply via the static dielectric constant εs, but
some dependence on the wavelength may be included. Here we follow almost verbatim the discussion
presented in [8], consider the case of donors in Si, and start by following Nara and Morita [9]. They
consider the bare core potential, V(ZI,n;r), of a substitutional donor n-fold ionized, taken isotropic
since only core electrons are considered. They express this as

V(ZI,n;r) =− e2

4πε0r
[ n+(ZI −n) e−σIr] , (14.20)

where ε0 is the permittivity of vacuum and the atomic radii 1/σI are obtained from a fit to the Hartree–
Fock potential. Their values are of the order of 0.01 nm for the species usually considered (1/σI =
0.0124 nm for Si4+, 0.0111 nm for P5+, 0.0148 nm for As5+, and 0.0156 nm for Sb5+), consistent
with the use of the vacuum permittivity ε0 in Eq. (14.20).

Valence electrons are now brought in first as frozen in their anisotropic, perfect-lattice distribution.
Thus, the net potential of the substitutional impurity, vi(r), is obtained by replacing the Si4+ ion with
the n-fold ionized donor, that is

vimp(r) = V(ZI,n;r)−V(ZSi,4;r) . (14.21)

Finally, in the linear-response approximation, the valence electrons are allowed to readjust and screen
vimp(r) via the static valence dielectric function of Si, εv(q). A possible model for εv(q)—by no means
unique, but approximated by a convenient analytic expression—has the following isotropic form:

ε0

εv(q)
=

Aq2

q2 +a2 +
Bq2

q2 +b2 +
Cc2

q2 + c2 , (14.22)

where A= 1.175, B=−0.175, C = ε0/εs ≈ 0.08547, a= 0.7572, b= 0.3123, and c= 2.044, a, b, and
c being in atomic units. Finally, the Fourier components of the screened isotropic impurity potential,
V(imp)(q), become

V(imp)(q) =
e2

εv(q)
HI(q)

q2 , (14.23)

where

HI(q) = (n−4) + (ZI −n)
q2

q2 +σ2
I

− (ZSi −4)
q2

q2 +σ2
Si

, (14.24)

where n = 3 for acceptors, n = 5 for donors. Equation (14.23) should replace the Fourier transform
of the impurity potential we have used before in Eq. (14.13) or, appropriately “chopped” at large
distances, in Eq. (14.16).

In practice, these corrections do not matter too much quantitatively. Only at very large energies,
when the electron approaches the impurities at very short distances (large q) one sees some differences
between different donor or acceptor species, because of some differences in the core potentials of
different ions. These are known as “central cell” corrections.

Friedel’s sum rule [10] (discussed in Chap. 11, Sect. 11.3.2.3), as well as partial-waves approaches
[11, 12], can tackle another interesting problem. The Born approximation we have used so far does
not distinguish between repulsive and attractive potentials. Yet, we expect some differences: In the
case of attractive potentials (electron-donors) the electronic wavefunction gets closer to the impurity
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core than in the case of repulsive potentials (electron-acceptors). Partial-wave analysis (which we saw
above dealing with Friedel’s sum rule, page 243) that goes beyond the first-order Born approximation,
can account for this difference. The practical interest lies in the context of transport of electrons (holes)
in the p-type (n-type) base of n−p−n (p−n−p) bipolar transistors. These so-called minority carrier
mobilities are indeed experimentally observed to be different (usually larger, as expected) than the
majority carrier mobilities. Finally, note that connected to Friedel’s sum rule, that essentially forces
us to “count” electrons correctly, is the “double counting” problem noticed by Mahan [4] that we have
already discussed.

14.8 ∗Electron-Impurity Scattering for a 2DEG

As we saw in Chap. 13, when dealing with scattering in low dimensions, Eq. (12.36) still requires
the numerical evaluation of a double integral: First over the z-component of the momentum transfer,

qz, then over the z-coordinate, hidden within the overlap factor I (2D)
K,Kj,n,n′;G‖

(qz). The latter integration

cannot be reduced to any closed-form expression since the wavefunctions are known only numerically.
As we saw in the case of the electron–phonon interaction, in some special cases the integration over
qz can be performed analytically. So, for example, the term corresponding to Eq. (13.107) becomes

V(imp,DH)
q =

e2

εs(q2 +β 2
DH)

=
Cimp

q2 +β 2
DH

, (14.25)

where:

C2
imp

∫

dz
∫

dz′ ζ (n
′)∗

K′ (z) ζ (n
′)

K′ (z′) ζ (n)K (z) ζ (n)∗K (z′)
∫

dqz

2π
eiqz(z−z′)

(q2
z +Q2)2 . (14.26)

The evaluation of the integral over qz is a bit more involved. Let’s write this integral as

I
(2D)

imp =
1

2π

∫

dx
eipx

(x2 +Q2)2 , (14.27)

having set p = z− z′ and having renamed x the dummy integration variable qz. Let’s consider the case
p > 0 and let’s integrate by parts:

I
(2D)

imp =
1

2π

∫

dx
1

(x− iQ)2

eipx

(x− iQ)2 =
1

2π
−1

x− iQ
eipx

(x+ iQ)2

∣

∣

∣

∣

∞

−∞

+
1

2π

∫

dx
1

x− iQ
d
dx

[

eipx

(x+ iQ)2

]

. (14.28)

The first term on the right-hand side vanishes and we are left with an integrand which for Im(x) > 0
now has as singularity only a pole at x = iQ:

I
(2D)

imp =
1

2π

∫

dx
eipx

x− iQ
ip(x+ iQ)−2
(x+ iQ)3 . (14.29)

Since we have assumed p > 0, we can integrate over the upper half of the complex plane enclosing
the single pole x = iQ, and obtain
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I
(2D)

imp =
1
4

e−pQ

Q3 (pQ+1) . (14.30)

The case p < 0 can be treated similarly by integrating over the lower half of the complex plane. Thus,
we can express the impurity scattering rate as

1

τ(imp)
n (K)

≈ Nimp
2π
h̄ ∑

′

jn′
C2

imp
1

(2π)2

L(wjn′)

|∇2DEjn′ |
1

4Q3
j

×
∫

dz
∫

dz′ ζ (n
′)∗

Kj
(z) ζ (n

′)
Kj

(z′) e−|z−z′|Qj [|z− z′|Qj +1] ζ (n)K (z) ζ (n)∗K (z′) ,

(14.31)

where Nimp is the concentration of impurities. The overlap factor entering the last equation can be
split into a term identical to the factor appearing in Eq. (13.110) – which can be recast in the form of
Eq. (13.111)—and another term,

∫

dz
∫

dz′ ζ (n
′)∗

Kj
(z) ζ (n

′)
Kj

(z′) e−|z−z′|Qj |z− z′|Qj ζ
(n)
K (z) ζ (n)∗K (z′), (14.32)

which can be rewritten as

Qj

∫

dz
∫

dz′ g∗K,K′,n,n′(z
′) e−|z−z′|Qj |z− z′| gK,K′,n,n′(z)

= 2 Qj Re

{
∫ ∞

0
dz gK,K′,n,n′(z) e−Qz

∫ z

0
dz′ g∗K,K′,n,n′(z

′) eQz′(z− z′)
}

,

(14.33)

or:

= 2 Qj Re

{
∫ ∞

0
dz gK,K′,n,n′(z) z e−Qz

∫ z

0
dz′ g∗K,K′,n,n′(z

′) eQz′
}

− 2Qj Re

{
∫ ∞

0
dz gK,K′,n,n′(z) e−Qz

∫ z

0
dz′ g∗K,K′,n,n′(z

′) z′ eQz′
}

. (14.34)

As discussed in Chap. 13, the advantage of expressing the overlap factor in terms of Eq. (14.34) is
that the inner integral over z′ depends on z only via its upper integration limit. Thus, as we saw in
Eq. (13.111), it can be evaluated as a discrete sum storing partial results and recalling these partial
results when performing the “outer” integration over z. Thus, evaluating the double integral (14.34)
actually requires the same number of operations required to perform two 1D integrals. In other words,
the computational effort scales with Nz (the number of z points) rather than N2

z , as it may at first appear
from a look at Eq. (14.31), or Nz ×Nqz , as in Eq. (13.99).

14.9 ∗Electron-Impurity Scattering for a 1DEG

We can obtain a similar simplification also when dealing with impurity scattering. Using Eq. (14.25)
we can rewrite the term

∫

dQ
(2π)2

∣

∣

∣V
(imp)
Q,kz−k′z+qz

I
(1D)

kz,k′z,n,n′
(Q)
∣

∣

∣

2
(14.35)
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as

C2
imp

∫

dR
∫

dR′ gkz,k′z,n,n′(R) g∗kz,k′z,n,n′(R
′)
∫

dQ
(2π)2

eiQ·(R−R′)

(Q2 +ΔQ2)2 , (14.36)

where ΔQ = [(kz − k′z)2 +β 2
DH]

1/2 and

gkz,k′z,n,n′(R) = ζ (2D)(n′)∗
k′z

(R) ζ (2D)(n)
kz

(R) . (14.37)

as defined in Chap. 13, after Eq. (13.118). The integral over Q can be rewritten as

I
(1D)

imp =
1

(2π)2

∫ ∞

0
dQ

Q
(Q2 +ΔQ2)2

∫ 2π

0
dφ eiQΔRcosφ . (14.38)

Treating the angular integral as we did above in Eq. (13.120) we find

I
(1D)

imp =
1

2π

∫ ∞

0
dQ

QJ0(QΔR)
(Q2 +ΔQ2)2 . (14.39)

Unlike what we found when dealing with Eq. (13.121), in this case there is no elegant closed-form
expression for this integral. However, one can evaluate numerically, tabulate, and interpolate the
function

Kimp(x) =
∫ ∞

0
dt

tJ0(t)
(t2 + x2)2 , (14.40)

so that the overlap factor can be written in the compact form

Iimp =
(ΔR)2

2π
Kimp(ΔQΔR) , (14.41)

suitable for numerical evaluation and Eq. (12.51) can be expressed as

1

τ(imp)
n (kz)

≈ NimpC2
imp

h̄ ∑′

jn′

1
2π

∣

∣

∣

∣

dEn′

dkzj

∣

∣

∣

∣

−1

×
∫

dR
∫

dR′ gkz,kzj,n,n′(R) g∗kz,kzj,n,n′(R
′) Kimp(ΔQj|R−R′|) |R−R′|2, (14.42)

an expression which has the same properties (i.e., symmetry and smoothness) as Eq. (13.122). Once
more, Eq. (13.124) instead of Eq. (13.119) should be used to evaluate the matrix elements above
whenever the wavefunctions given by Eq. (12.44) are required.

Problems

14.1. Assume a semiconductor described by a parabolic electron dispersion with an effective
mass m∗. Plot the Brooks–Herring and the Conwell–Weisskopf electron-impurity scattering rates
[Eqs. (14.14) and (14.18), respectively] as a function of electron kinetic energy in the range 0–1 eV.
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Assume a density nd of 1016 donor impurities/cm3. Redo the calculation assuming now a density of
1020/cm3. Which model gives the largest scattering rate in each case? Can you explain your results in
physical terms?
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Chapter 15
Coulomb Interactions Among Free Carriers

In Sect. 4.2.3 (pages 61 and following) we have considered a “mean field” approximation to treat
the Coulomb interactions among valence electrons. The same approximation is usually embraced
also when dealing with free carriers (say: electrons in the conduction band of an n-type doped
semiconductor). This approximation is obtained by replacing the “fluctuating” interparticle Coulomb
potential with a smoother Hartree potential obtained by averaging out (spatially and temporally) the
instantaneous and local potential over all electron configurations. The Hartree–Fock approximation is
similar, since it only adds exchange effects, but it employs the same averaging procedure. In order to
re-capture the “fluctuating” nature of the interaction, we must consider the random deviations from
the average (“fluctuations”) of the electron positions and of the associated potential. A well-known
theorem in condensed matter physics, the fluctuation-dissipation theorem, relates these fluctuations to
the spectrum of the impedance of the system. We shall not discuss this theorem here, but it is obvious
that these fluctuations will affect electronic transport.

We shall discuss first inter-carrier scattering processes with the conduction (electron–electron) or
valence (hole–hole) bands, or even interband processes, in which electrons remain in the conductions
bands and holes in the valence bands. We shall then consider higher-energy interband processes
in which the energy exchange between two particles exceeds the energy of the band gap, so that
an electron can be excited from the valence band across the gap to the conduction band (impact
ionization).

Although not directly relevant to treat electronic transport, Coulomb interactions modify signif-
icantly some electronic properties of semiconductors when a very high density of free carriers is
present. This is the case of very heavily doped semiconductors, in which the high density of dopants
also causes interesting effects. Therefore, we shall conclude this chapter with a brief discussion of
some of these effects. A correct treatment of the subject requires delving into the complicated subject
of a quantum electron gas, a subject that goes beyond the scope of this text. Therefore, we shall
mention a few basic concepts, thus keeping the discussion at a very basic level.

15.1 The Electron–Electron Hamiltonian

Consider a gas of interacting electrons in the absence of any other external perturbation. Ignoring spin,
for now, the Hamiltonian has the “obvious” form:

̂Hee =
1
2

∫

dr
∫

dr′ ψ̂†(r′, t) ψ̂(r′, t) V(r′ − r) ψ̂†(r, t) ψ̂(r, t) , (15.1)
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where V(r) = e2/(4πε∞r) is the Coulomb potential expressing the interaction among the elec-
trons. The term ψ̂†(r, t) ψ̂(r, t) is just the density operator which satisfies the expected property
∫

dr ψ̂†(r, t) ψ̂(r, t) = ∑k ĉ†
k(t) ĉk(t). Using Eqs. (9.29) and (9.30) (page 193), the Hamiltonian

(15.1) can be written as

̂Hee =
1
2 ∑k,p,q

Vq ĉ†
k+q ĉ†

p−q ĉk ĉp , (15.2)

where Vq = e2/(ε∞q2) is the Fourier transform of the Coulomb potential. We use the high-frequency
dielectric response ε∞ for now. We shall worry later about the response of the electrons to this potential
(that is, dielectric screening). This expression has a simple interpretation: The Coulomb Hamiltonian
destroys two electrons in the states k and p and creates two new electrons in states k+q and p−q
via the exchange of momentum h̄q.

In the Hartree or Hartree–Fock approximation, we would look at a single electron of wavevector
k and replace the effect of all “other” electrons by considering only the limit q → 0 (that is, a spatial
average over large distances), so that we would retain only the “diagonal” part of ĉ†

p−qĉp, that is,

the number operator n̂p = ĉ†
pĉp. We would then take a suitable ensemble average, 〈n̂p〉 = Tr(ρ̂ n̂p),

over the electron ensemble, obtaining just the average charge density −e〈n̂p〉. This would result in
the average “mean field” felt by each electron. On the contrary, now we want to isolate deviations
from this mean field. Thus, we shall assume that the Hartree (or Hartree–Fock) potential is subtracted
and isolated into another term eVHartree(r) in the Hamiltonian and assume that Eq. (15.2) represents
only deviations from the mean field. Thus, we should consider in the Hamiltonian above the terms
ĉ†

p−qĉp as actually representing the “fluctuating” part ĉ†
p−qĉp −〈ĉ†

p−qĉp〉. Similarly, the term ĉ†
k+qĉk

represents the fluctuating part ĉ†
k+−qĉk −〈ĉ†

k+qĉk〉. In Chap. 18—that deals with the derivation of the
Boltzmann transport equation from the quantum transport equation—we shall see how this is done
“exactly” (see Sect. 18.2). For now, we shall simply consider the Hamiltonian Eq. (15.2) as expressing
the effect of these fluctuations of the gas away from the mean field.

In a series of four beautiful articles published in the Physical Review in the early 1950s, David
Bohm and his student David Pines studied the effects of Eq. (15.2) and reached the following general
conclusions [1–4]:

When the magnitude q of the momentum-transfer q is small, the interaction of an electron with
all of the other electrons occurs via “collective excitations”: The “initial” electron with wavevector
k triggers (via emission or absorption) a plasma wave in the surrounding gas of free carriers.
The interaction is an electron–plasmon collision. (Plasmons have been considered in Chap. 9,
Sect. 9.3.) It may be characterized by the same procedure we have followed to study the Fröhlich
interaction, simply replacing the coupling constant (h̄ωLO/2)[1/εhi − 1/εlow] with (h̄ωP/2)(1/ε∞)
[see Eqs. (13.51), (13.53), (13.54) of Chap. 13.3]. Note, however, that in this process momentum is not
lost by the electron gas: It is simply re-distributed among electrons.

On the contrary, when the magnitude q of the momentum transfer grows beyond a certain limit,
plasmons cease to be good excitations: They decay into single-particle excitations. Think of a surfer
extracting energy from the wave as the surfer’s velocity matches the (phase) velocity of the wave.
Similarly, when the wavelength of the plasmon matches the Fermi wavelength, electrons at the Fermi
surface will “surf” the plasmon, thus absorbing energy from it and damping it. This damping occurs
via excitations of electrons from the “Fermi sea” which gain the plasma energy. This process is called
Landau damping. Energy and momentum conservation allow this process to happen whenever the
plasmon wavevector q satisfies the condition

E(kF +q) − E(kF) = h̄ωP , (15.3)
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Fig. 15.1 The two lines
show the solutions of
Eq. (15.4). When the gas is
excited with a wavevector
that lies outside the region
between the two lines, the
excitation is a plasmon.
When wavevector lies in
the region between the two
lines, plasmons decay into
single-particle excitations.
This is the “single-particle
region”
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2 −2kFq) ≤ h̄ωP ≤ h̄2

2m∗ (q
2 +2kFq) . (15.4)

For q in this range of values, the interaction between an electron and all other free electrons occurs
via single-particle (two-body) collisions, as in the case of a classical collision between two charged
particles.

These conclusions are illustrated in Fig. 15.1: The two lines show the solutions of Eq. (15.4). When
the excitation of the electron gas occurs at a wavelength corresponding to a wavevector in the region
to the upper-left (low-q, long-range interactions) or lower-right of the two lines, the excitation is a
plasmon, i.e., a collective motion of the whole gas. But if the wavevector lies in the region between
the two lines, then the velocity of the plasmon matches the Fermi velocity and plasmons decay into
single-particle excitations. This is the “single-particle region.”

We have already mentioned how to calculate the rate at which plasmons scatter electrons in the
long-wavelength limit. Usually, this interaction has the effect of thermalizing the electrons, as all
interparticle collisions do. This is a general result of detailed balance and it is discussed in Sect. 18.2.3.
However, it is not a process that absorbs energy or momentum from the gas. So, in homogeneous
situations, its effects are relatively minor (if we are willing to concede that thermalization is a “minor”
effect). Not so in inhomogeneous situations: There, electrons that behave strongly off-equilibrium in a
low-density region may scatter with plasmons that are presented elsewhere. For example, an electron
in the channel of a transistor may excite plasmons in the source contact as it leaves the source itself.
In this case, momentum is lost from the portion of the electron gas that carries the current and it
is transferred to a region where inelastic collisions will ultimately damp the plasmon before it has
the chance of “returning” the momentum to the current-carrying electrons in the channel. If we are
interested exactly in studying the behavior of those low-density regions (think of the channel of a
transistor), then electron–plasmon collisions can have a very strong effect on electron transport. These
cases have been studied by Lugli and Ferry [5, 6], for example, and are also discussed in [7, 8]. So,
we shall now consider electron–electron collisions in the single-particle region.
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15.2 Single-Particle Short-Range Collisions

We must consider the Hamiltonian given by Eq. (15.2). Since we are considering single-electron states,
we simplify the notation in the usual way, by writing the matrix elements between single-electron
states, ignoring the complicated notation of states in Fock space. However, contrary to what we have
done so far, we must consider initial states that refer to two-particle states. This will introduce some
complications because we must consider the antisymmetrized form of these states, according to the
anticommutation rules for Fermions.

Another complication we have to face is caused by the fact that collisions in which an amount ΔE
of energy is exchanged are associated with a time t ∼ h̄/ΔE, and so to a frequency ΔE/h̄. In our case,
this can be understood when realizing that, as seen by one electron, the potential caused by the other
electron appears time-dependent, as the other electron moves by. Therefore, if we want to account for
the screening effects of the surrounding electron gas, we must use the full dynamic expression for the
dielectric constant. This dynamic screening was discussed in Chap. 11, Sect. 11.3.2.2 [see Eq. (11.45)
with Eq. (11.65), for example] and it reflects the fact that the electron gas must respond on the time
scale of this varying interaction potential.

Note also that we consider semiclassical transport. Therefore, we consider a slow spatial
dependence of all quantities and assume that, locally, we can approximate the electron gas with a gas
locally in a homogeneous situation, although not necessarily at equilibrium. Therefore, a quantity such

as the electron “distribution” in band m and (crystal) momentum p, 〈n̂(m)
p (t)〉 = Tr[ρ̂ ĉ(m)†

p (t)ĉ(m)
p (t)]

can be considered locally at each position r and we can define a distribution function in phase-space,

f (p,m,r, t), that coincides “locally” with each 〈n̂(m)
p (t)〉 at each position r at each time t.

Finally, for completeness, we must note that corrections to the first Born approximation are often
required. The partial-wave formalism we have mentioned in the previous chapter can be used also in
this case.

After this long introduction, we summarize our task by saying that we must evaluate the matrix
element of the dynamically screened Coulomb potential between antisymmetrized wavefunctions of
spin-1/2 particles, also accounting for the difference between repulsive and attractive interactions with
phase-shift corrections.

Thus, for a “primary” particle of crystal momentum k in band n, the Coulomb scattering rate at
location r at time t is approximated by

1

τ(ee)(k,r,n)
=

2π
h̄ ∑

G,m,n′,m′

∫

dp
(2π)3 f (p,m,r, t)

∫

dk′

(2π)3 |M(kn,pm;k′n′,p′m′;G)|2

×δ [En(k)+Em(p)−En′(k
′)−Em′(p′)][1− f (k′,n′,r, t)]

[1− f (p′,m′,r, t)]. (15.5)

The explanation of the symbols and of the assumptions and approximations made to obtain this
expression requires some attention: The final and initial states for two scattering particles “1” and
“2” are

|kn,pm〉= 1√
2
[|k1n1〉|p2m2〉 ± |p1m1〉|k2n2〉] (15.6)

and

|k′n′,p′m′〉= 1√
2
[|k′

1n1′〉|p′
2m′

2〉∓ |p′
1m1′〉|k′

2n′2〉] . (15.7)
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Momentum is of course conserved, so that the final state of the scattering “partner” has crystal
momentum h̄p′ = h̄k+ h̄p− h̄k′. The ±/∓ sign entering these expressions should be clarified. In
case of scattering between two distinguishable particles (such as in electron–hole collisions), the two-
particle state is symmetric, so the “+” sign should be used. In the case of scattering between two
indistinguishable spin-1/2 particles (electron–electron or hole–hole collisions), we have to consider
the effect of spin. The total angular momentum, S, of the two-particle system is either zero, when
the spins of the two particles are anti-parallel (up and down), or 1, when the spins are parallel (up–
up or down–down). In the first case, the spin wavefunction is antisymmetric and there is only one
state (S=0, Sz=0) of angular momentum. This is called a singlet state. The spatial dependence of the
two-particle wavefunction must be symmetrized [“+” sign in Eqs. (15.6) and (15.7)], so that the total
wavefunction (spatial dependence and spin) is antisymmetric. On the contrary, when the particles have
parallel spins, the spin wavefunction now can only be symmetric and there are three possible angular
momentum states: Sz = 0 and Sz = ±1. This is called a triplet state. Now the spatial component
of the wavefunction must be antisymmetric [“minus” sign in Eqs. (15.6) and (15.7)], since the spin
component is symmetric.

The quantity f (k,m,r, t) is the “distribution function,” i.e., the phase-space density at the phase-
space location (r,p) in band m, at time t, normalized so that the real-space density at r is

n(r, t) = 2∑
m

∫

dk
(2π)3 f (k,m,r, t) .

Note that in Eq. (15.5) the integral over the states of the “partner” electrons of crystal momentum
h̄p is done over 1/2 of them, since the sum over spin states is assumed to be already included in
the matrix element (with the associated overlap factors), as we shall see shortly. Note that f is, in
principle, an unknown in our problem. Indeed, in general we want to study the effect of electron–
electron interactions in off-equilibrium situations. Some self-consistent scheme must be employed
to solve simultaneously the transport equations—in order to obtain information about f —and the
collision rate that enters the transport equations themselves. We shall discuss this issue below.

The quantity M(kn,pm;k′n′,p′m′;G) is the Coulomb matrix element. In the case of scattering
between two indistinguishable particles (electron–electron or hole–hole), it is the antisymmetrized
Coulomb matrix element obtained by summing over all spin states: If

Md =
e2

εs

Ikn,k′n′Ipm,p′m′

|k−k′+G|2 +β 2(qd,ωd)
, (15.8)

where β (q,ω) is defined below, is the matrix element for what we call the direct process (km) →
(k′m′), (pn)→ (p′n′), and

Mx =
e2

εs

Ikn,p′m′Ipm,k′n′

|k−p′+G|2 +β 2(qx,ωx)
(15.9)

is the matrix element for the exchange process (km)→ (p′n′), (pn)→ (k′m′), the matrix element for
scattering of spin-1/2 particles is given by the sum of the scattering probability in the singlet state and
the scattering probability in the triplet state, i.e.

|M|2 = 1
4
|Md +Mx|2 + 3

4
|Md −Mx|2 = |Md|2 + |Mx|2 − 1

2
|M∗

dMx +MdM∗
x |. (15.10)

The last “interference term,” the “exchange term,” is responsible for depressing the cross section at
small relative energies, k−p � β .
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Fig. 15.2 Effect of
dynamic screening on the
short-range interparticle
scattering rate for a
parabolic band model of Si
at 300 K. Three cases are
shown: the dotted line is
for the case of static
Debye–Hückel screening,
the dashed line for a
wavevector dependent
static screening parameter,
corresponding to a
“head-on” collision.
Finally, the solid line is
relative to the case of a
collision in which one
electron is at rest in the
frame of the electron gas
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In the case of scattering between distinguishable particles (electron–hole scattering), these terms
do not appear. Since, after integration, |Md|2 and |Mx|2 yield the same result, one could obtain an
equivalent result by ignoring spin altogether and replacing the integral over p above with twice that,
i.e., by summing over all spin states. Figure 15.2 (right frame) shows the effect of (anti)symmetrization
on the short-range scattering rate for a simple parabolic band of Si at 300 K.

The quantity β (q,ω) is the dynamic screening parameter, i.e. the quantity such that the dielectric
function can be written as ε(q,ω)/εs = 1+β (q,ω)2/q2. It must be evaluated at the crystal momentum
transfer qd = |k−k′+G|, and at the energy transfer h̄ωd = En(k)−En′(k′) for the “direct” process,
at qx = |k − p′ + G|, and at h̄ωx = En(k)− Em′(p′) for the exchange process. Figure 15.3 shows
the ratio of the dynamic screening parameter to the conventional Debye–Hückel form (left frame)
and the interparticle scattering rate as a function of electron energy obtained by adopting several
approximations (right frame).

We have indicated with Ikn,k′n′ the overlap integral between the Bloch states, accounting for
the sum over spin states. Finally, phase-shift corrections—obtained via the partial-wave analysis we
have seen before dealing with Friedel’s sum rule—can be implemented and some of the following
figures show the effect of these corrections (labeled as “phase shift”). They do indeed yield a different
scattering rate for repulsive (weaker scattering) and attractive (stronger) interactions.

At low relative energies, Goodnick and Lugli [9], in dealing with scattering between indistinguish-
able particles, have assumed that only the direct term |Md|2 matters (since the interaction between
electron of parallel spins is reduced by exclusion) thus effectively obtaining a scattering rate equal to
half the rate for indistinguishable particles.

15.2.1 ∗Numerical Evaluation and Scattering in Low-Dimensionality Systems

Before continuing our discussion, we should emphasize that, using a numerically computed band
structure (e.g., from DFT or empirical pseudopotentials), the numerical evaluation of the short-range
Coulomb interparticle scattering rate is quite laborious. The same Gilat–Raubenheimer scheme can
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Fig. 15.3 Ratio of the dynamic and static screening parameter to the Thomas–Fermi approximation β as a function
of momentum transfer (left) and the interparticle scattering rate as a function of electron energy in a variety of
approximations (right): classical particles (no spin), spin-1/2 but no phase-shift corrections, and spin-1/2 with phase-
shift corrections for attractive and repulsive potentials, the latter being of course appropriate to e–e scattering

be used, although now it will become more complicated because of a double search for two-particle
states that conserve energy and crystal momentum. Details and examples concerning transport of
energetic electrons in small Si devices are given in [10]. Given these complications, in the following
we shall limit ourselves to discussing some commonly used approximations. As usual, interested
readers should consult the references we have provided.

Problems arise also during the implementation of these scattering processes in numerical studies
of electron transport. The first problem is due to the necessity of separating the short-range, single-
particle Coulomb interactions from the long-range (plasmon) effects that may be already included
semiclassically when the transport equations are solved self-consistently with Poisson’s equation (a
time-dependent Hartree term). Another problem is related to the fact that the distribution of scattering
electrons, f , in Eq. (15.2), is an unknown. Conventional Monte Carlo methods can be extended to
handle both difficulties. Suitable mesh sizes can be selected to avoid double-counting (or neglecting)
long-range interactions. Suitable time steps can guarantee stability and proper inclusion of plasma
effects. Finally, statistical sampling of neighboring electrons (in ensemble Monte Carlo simulations
that deal with thousands of particles at a given time) permits a stochastic evaluation of the unknown
as the simulation progresses. This is indeed one of the major advantages afforded by the Monte Carlo
method. Algorithms based on expansions of the distribution function and partial differential equations
(algorithms we shall review in the last chapter) cannot easily solve these problems.

Electron–electron scattering in two dimensions can also be treated on the same footing. While
the formalism is exactly the same, a minor simplification comes from the reduced dimensionality of
the phase-space for the two-particle states. The unscreened matrix elements can be calculated in a
straightforward way, once the “confined” wavefunctions ζν(z) are known. Using the effective-mass
approximation, discussed in Sect. 8.2.1, the task is eminently doable. The major numerical problem
lies in computing the screened interaction potential. Since we must deal with electrons making also
intersubband transitions, the matrix elements, that couple an initial state |Kν ,Pμ〉 to a final state
|K′ν ′,P′μ ′〉, are N2

sub×N2
sub matrices for each set of K,P,K′, and P′. Nsub is the number of eigenstates

(subbands) considered. This requires setting up and inverting an N2
sub ×N2

sub dielectric matrix given
by Eq. (11.127) of Chap. 11, Sect. 11.3.2.4. It is easy to appreciate the complication since, even using
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as few as 10 subbands, these are 100 × 100 matrices and each of the 104 elements of the bare
potential and of the dielectric matrix has to be computed performing a numerical integration. This
must be performed for each momentum-transfer Q and energy-transfer h̄ω needed. Doable, but not
straightforward or painless!

Things are much more interesting in one dimension. An interacting 1DEG in most circumstances
will behave as a collective system known as a Luttinger liquid [11, 12]. This causes a breakdown of
the single-particle picture that constitutes the foundation of this discussion about short-range Coulomb
interactions. All of these issues are extremely complicated, going beyond the scope of this textbook.
We can only reiterate our invitation to consult the literature.

15.2.2 ∗Some Common Approximations

Even ignoring the complication due to the presence of the unknown distribution of partner particles,
f , the calculation of the scattering rate given by Eq. (15.5) is extremely difficult. Therefore, several
simplifications have been used. We review some of the most commonly used approximations.

The effect of degeneracy, represented by the factors (1− f ) in Eq. (15.5), is often included by
replacing the distribution functions f with their equilibrium values,

f (k,m,r, t)� f0[k,m,Tp,EF], (15.11)

where f0(k,m,T,EF) = {1+exp[(Em(k)−EF)/(kBT)]}−1 is the Fermi–Dirac function at temperature
T for band m and Fermi energy EF, Tp is the equivalent particle temperature. Note that both
this degeneracy correction as well as the appearance of the distribution function in the screening
corrections render the transport problem nonlinear: Typically, we use scattering rates to solve the
transport problem in which f is the unknown. But when the scattering rates depend on f itself,
either iterative or self-consistent schemes are devised, or the dependence of f on the rates must be
approximated. In typical cases, as we have seen here, a Fermi expression with an equivalent electron
temperature is used.

Accordingly, dynamic screening may be treated in the high-temperature, nondegenerate limit valid
for a single parabolic and spherical valley, as we have seen in Eqs. (11.63) and (11.64). We have
already seen, in the left frame of Fig. 15.2, the ratio of the squared dynamic screening parameter to the
squared Debye–Hückel parameter for the case of a “parabolic” relative energy transferω = h̄q2/(2md)
in Si, where md is the DOS effective mass. The same figure also shows the behavior of the static
screening parameter β 2(q,0).

Figure 15.4 shows—at the left—the short-range electron–electron scattering as a function of
electron energy in Si at 300 K at a uniform field of 200 kV/cm, averaged self-consistently over the
distribution function during Monte Carlo runs at the two densities indicated. At the right we see the
short-range electron–electron scattering as a function of electron energy in Si at 300 K at a density of
1018 cm−3 at a field of 100 kV/cm. The effect of spin and dynamic screening is also shown. Figure 15.5
shows the same information, but at a field of 200 kV/cm and at a density of 1020 cm−3.

15.2.3 Electron–Electron Scattering in the Parabolic Band Approximation

In the simple case in which a parabolic approximation is used, the electron–electron scattering rate
between two electrons can be evaluated analytically when ignoring degeneracy effects, Umklapp
processes, and taking the overlap integrals as unity. Note the words in italic: Eq. (15.5) expresses the
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Fig. 15.4 Left: short-range, single-particle electron–electron scattering rates in Si determined via Monte Carlo
simulations in a homogeneous system with an applied electric field of 50 (circles), 100 (open squares), and 200 kV/cm
(dots). The electron density is assumed to be 1018/cm3. The rates are first calculated numerically via Eq. (15.2) using the
Si band structure obtained using nonlocal empirical pseudopotentials. Dynamic RPA screening in the high-temperature
approximation and phase-shift corrections are included. The scattering rates are calculated for each possible two-particle
state. During the Monte Carlo simulation, for a given electron, a scattering partner is selected randomly within a
sphere with radius equal to the screening length. This approximates stochastically the integration over the unknown
distribution f of “partner” electrons that appears in Eq. (15.2). Having reached steady state, the rates are cumulatively
stored and are shown here as a scatter plot. The noise is due, of course, to the statistical error related to the stochastic
sampling of the distribution function. Right: the same as in the left frame, but for a field of 100 kV/cm and employing the
distinguishable-particles approximation (labeled “no spin”) and ignoring phase-shift corrections (circles), or accounting
for antisymmetrization and phase-shift corrections, but using static (dots) or dynamic screening (pen red squares). Note
how assuming classical statistics of distinguishable particles decreases the scattering rate, while dynamic screening
increases the collision frequency

collision rate for a given “primary” electron of wavevector k in band n with any other electron in the
system. Here we consider the collision rate between our primary electron and one particular “partner”
electron with wavevector p in band m, lumping the effect of all other electrons into the electron
density n(r, t) appearing as a multiplicative factor. In other words, we approximate f (p′,m′,r, t) with
n(r, t)δmm′δ (p−p′).

Therefore, Eq. (15.5) simplifies to

1

τ(ee)(kn,pm,r, t)
=

2π
h̄

e4n(r, t)
4ε2
∞
∑
k′
δ [E(k)+E(p)−E(k′)−E(p′)]

×
{

1

(|k′ −k|2 +β 2
d )

2
+

1
(|k′ −p|2 +β 2

x )
2 − 2

(|k′ −k|2 +β 2
d )(|k′ −p|2 +β 2

x )

}

, (15.12)

where βd is evaluated at q = k′ −k and h̄ωd = E(k′)−E(k) while βx is evaluated at q = k′ −p and
h̄ωx = E(k′)−E(p). Additional approximations are required in order to reach an analytic expression:
First, dielectric screening must be considered only in the long-wavelength static limit. The justification
lies in the fact that dynamic screening corrections are typically very small. Note, however, that this is
not true in general: In cases where a “hot” electron interacts with a pool of “cold” electrons (such as
an electron entering the drain region of a highly biased MOSFET), the large energy transfer renders
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Fig. 15.5 As in the left
frame of Fig. 15.4, but at a
higher field and density.
Note how the scattering
rate now increases with
increasing electron energy,
especially when using
dynamic screening:
higher-energy electrons on
average exchange more
energy, rendering dynamic
screening effects weaker.
In other words: they move
too fast so that the
surrounding electron gas
becomes unable to respond
and screen the interaction
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either the direct or the exchange matrix element essentially unscreened, thus rendering the interaction
stronger than what static screening would suggest. When static screening is considered, the screening
parameter takes the form:

β 2 � β 2
s g1(qλ ),

where

λ =

(

2π h̄2

mredkBT

)1/2

g1(x) =
2π1/2

x
Φ
(

x

4π1/2

)

.

At the long wavelengths which dominate scattering when screening is not too strong, β � βs.
Intervalley processes must also be ignored, since the valley separation would appear to the fourth
power in the denominators of the Coulomb matrix elements, thus depressing their contribution.

Using these approximations, Eq. (15.12) can be integrated analytically. It is convenient to work in
the center-of-mass frame by setting

g = k−p , g′ = k′ −p′,

so that

|k−k′|= 1
2
|g−g′|,

keeping also in mind that p′ = k+p−k′. Then:

E(k)+E(p)−E(k′)−E(p′) =
h̄2g2

2m∗ − h̄2g′2

2m∗ .
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Consider now just the first (direct) term inside the integral in Eq. (15.12):

πe4n(r, t)
2h̄ε2

∞

∫

dg′

(2π)3

δ [E(g)−E(g′)
[|g−g′|2/4+β 2]2

. (15.13)

This expression is identical to the integration we had to perform in order to calculate the electron-
impurity scattering rate and we find

e4n(r, t)m∗

2π h̄3ε3
∞

g
β 2(g2 +β 2)

. (15.14)

Accounting for the other two terms, we finally obtain

1

τ(ee)
self (g)

� e4m∗gn(r, t)

2πε2
s h̄3

[

1
β 2

s (β 2
s +4g2)

− ln(1+4g2/β 2
s )

8g2(β 2
s +2g2)

]

. (15.15)

Note that the cross section, σ = 2m∗/(τnh̄g), corresponding to this process equals the result reported
by Ridley (see Eq. (4.136) of his textbook [13]). Replacing 2g with kr = |k−p|, Eq. (15.15) takes the
form:

1

τ(ee)(kr)
� e4m∗krn(r, t)

4πε2
s h̄3

[

1
β 2

s (β 2
s + k2

r )
− ln(1+ k2

r /β 2
s )

2k2
r (β 2

s + k2
r /2)

]

. (15.16)

For the case of spinless, distinguishable particles (i.e., classical statistics, unsymmetrized wavefunc-
tions) and using the first Born approximation, the equation above reduces to the (familiar?) form:

1

τ(ee)(kr)
� e4m∗krn(r, t)

4πε2
s h̄3

1
β 2

s (β 2
s + k2

r )
, (15.17)

since only the first term in Eq. (15.16) contributes. This is a result of “classical mechanics.” This limit
is reached in the limit of high relative energies: In this limit, kr/βs � 1, exchange does not play a
dominant role, because particles can approach one another even if they have parallel spins, since the
large relative energy pushes them sufficiently close. Not so in the opposite limit of small relative
energies, kr/βs � 1. In this case Eq. (15.16) approaches half of the classical result,

1

τ(ee)
self (kr)

→ e4m∗krn(r, t)

8πε2
s h̄3β 4

s

(

kr

βs
→ 0

)

,

since particles with parallel spins remain separated by the exclusion principle and their interaction
vanishes. This is the limit considered by Goodnick and Lugli [9].

15.2.4 Impact Ionization

Another example of electron–electron collisions is “impact ionization.” This is essentially a two-body
collision, identical to what we have discussed above, but it involves interband transitions: Picture
an electron traveling in the conduction band with a large kinetic energy. If this energy is sufficiently
large, this “primary” electron can collide with an electron in the valence band, “kicking” this “partner”
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electron into the conduction band, leaving a “secondary” hole in the valence band. This process,
which is the inverse of the Auger recombination mechanism, is responsible for avalanche breakdown
phenomena in semiconductors and semiconductor devices.∗In 1922 Lise Meitner published a paper discussing a yet-not uncovered process by which an
electron in an excited state of a many-electron atom can decay to a lower-energy state: Instead of
following the most likely process of decaying by emitting a photon, it can drop into an empty core
level and transfer its energy to another electron in the atom, kicking it out of its “orbit” [14]. This
emitted electron is called an Auger electron and the process, for historical reason, takes its name
from the French physicist Pierre Victor Auger, who discovered the effect the following year [15].
Unfortunately, it does not take its name from Lise Meitner, who proposed it first. This is not the first
episode that has seen history treat Lise Meitner unfairly.

The formal expression for the ionization rate can be obtained following a path very similar to the
path we have followed above to calculate the collision rate for short-range electron–electron collisions.
Within the Born approximation, the rate, 1/τ(ii)(kn), at which an electron of quasi-momentum h̄k in
band n creates an electron–hole pair is given by Sano et al. [16], Fischetti el al. [17]:

1

τ(ii)(kn)
=

2π
h̄ ∑GG′

∑
nvn′cn′′c

∫

dk′

(2π)3

∫

dp′

(2π)3 |MGG′(kn,pnv;k′n′c,p
′n′′c )|2

δ [En(k)+Env(p)−En′c(k
′)−En′′c (p

′)] , (15.18)

where En(k) is the energy of the state k in band n, and M is the (anti)symmetrized screened Coulomb
matrix element obtained by adding the scattering probabilities in the singlet and triplet states (as we
saw before):

|MGG′ |2 = |Md|2 + |Mx|2 − 1
2
|M∗

dMx +M∗
xMd| (15.19)

Md and Mx being the “direct” and “exchange” matrix elements,

Md = e2 ε−1
GG′(qd,ωd)

IG(kn;k′n′c)IG′(pnv;p′n′′c )
|qd +G|2 , (15.20)

Mx = e2 ε−1
GG′(qd,ωx)

IG(kn;p′n′′c )IG′(pnv;k′n′c)
|qx +G|2 . (15.21)

Here qd, h̄ωd and qx, h̄ωx are the direct and exchange quasi-momentum and energy transfers,
respectively, defined as

qd = k−k′ h̄ωd = En(k)−En′c(k
′) (15.22)

qx = k−p′ h̄ωx = En(k)−En′′c (p
′). (15.23)

The vectors k′, p, and p′ are the quasi-momenta of the final state of the primary particle and of the
initial and final states of the “partner” particle, respectively. By momentum conservation they are
related via p′ = k+p−k′, up to a vector of the reciprocal lattice, already accounted for in the sums
entering Eq. (15.18). The functions IG(kn;k′n′) are overlap integrals between Bloch states, summed
over spin states σ =±:

|IG(kn;k′n′)|2 = 1
2 ∑σσ ′

|IG(knσ ;k′n′σ ′)|2 , (15.24)
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where:

IG(knσ ;k′n′σ ′) =
1
Ωc

∫

cell
dr u(σ

′)
k′n′ (r)

∗ u(σ)kn (r) eiG·r , (15.25)

where Ωc is the cell volume and u(σ)kn (r) = ∑G u(σ)G (kn)eiG·r is the periodic part of the
(pseudo)wavefunction. Finally, the sum over reciprocal lattice wavevectors G in Eq. (15.18) includes
Normal (G = 0) as well as Umklapp (G �= 0) processes (referred to as N- and U-processes in the
following). A similar expression, with the obvious changes, describes the rate for hole-initiated
processes.

The difficulties in the evaluation of Eq. (15.18) are of both a physical and numerical nature, since,
given the large energies involved, any form of approximation for the electron dispersion is going to
be less than satisfactory (except for very few cases, like small band-gap materials). The full-band
structure must be used if we want to get realistic results and this requires intensive state-of-the-art
numerical work.

Physically, the major difficulty lies in choosing an accurate yet manageable expression for the
(dynamic) dielectric matrix εGG′(q,ω). Within the Random Phase Approximation (RPA), we saw
that the dielectric function is given by the “usual” Lindhard expression:

εGG′(q,ω) = ε0 δGG′ − e2

|q+G|2 ∑nn′k

fn′(k+q)− fn(k)
En′(k+q)−En(k)+ h̄ω

×〈k,n|e−i(q+G)·r|k+q,n′〉〈k+q,n′|ei(q+G′)·r|k,n〉 , (15.26)

where ε0 is the permittivity of vacuum and fn(k) the occupation of the state |k,n〉 of quasi-momentum
k in band n. It is customary to consider only the longitudinal response (i.e., the diagonal terms of
the dielectric function) and it is convenient to separate Eq. (15.26) into the two terms representing the

response of the valence electrons ε
(v)
GG (simply written now as ε

(v)
G ) and of the free carriers, by setting

fn(k) = f 0
n (k)+pn(k), f 0

n (k) being unity for all states in the valence bands, zero otherwise, and pn(k)
being the population of the free carriers. Thus, Eq. (15.26) can be recast as follows

εG(q,ω) = ε
(v)
G (q,ω)

[

1+ ε
(v)−1
G (q,ω)

ε0β 2(q+G,ω)
|q+G|2

]

, (15.27)

having made use of a free-carrier screening parameter β 2(q,ω) defined as

β 2(q,ω) =−e2

ε0
∑
nn′k

pn′(k+q)−pn(k)
En′(k+q)−En(k)+ h̄ω

|〈k,n|e−iq·r|k+q,n′〉|2 . (15.28)

An approximation usually tacitly made consists in considering only the G-vector which minimizes
the denominator of the Coulomb matrix elements, because of their small contribution (as |q+G|−4)
at short wavelengths in Eq. (15.18). Thus, one can drop the subscript G and write simply ε(q,ω),
understanding that all vectors in k-space must be mapped to the first BZ. The calculation can proceed
by ignoring the contribution of the free carriers, and employing the RPA and the pseudopotential
band structure to evaluate ε(v)(q,ω) while retaining its frequency dependence. In general, though,
in treating the response of the carriers in the valence bands, the static approximation [i.e., setting
ω = 0 in Eq. (15.26)] is a satisfactory simplification, since the energy exchanged in a pair-
production process in realistic situations is relatively small (<3 eV or so), so that the static value is
adequate. So, several approximations have been made, ranging from the use of the static, wavevector
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dependent expression for ε(v)(q) to approximating ε0β 2(q)/ε(v)(q) with β 2
s , the “usual” Thomas–

Fermi screening parameter (e2/εs)∂nf/∂EF, where EF is the Fermi level , εs = ε(v)(q = 0) is the
static, long-wavelength dielectric function of the semiconductor, and nf the density of free carriers, so
that

ε(q) � ε(v)(q)
[

1+
β 2

s

q2

]

. (15.29)

This expression approaches correctly ε(v)(q) at short wavelengths, and is generally valid at long
wavelengths, independent of the form of ε(v)(q). Note also that dynamic corrections—in principle
important in treating the response of the free carriers whose plasma energy is much lower than the
typical energy exchanged in ionization events—become negligible at long wavelengths, so that the use
of a static β (q,ω) appears justified in this context. Finally, in an attempt to simplify the calculation as
much as possible, one may consider the static, long-wavelength limit for the response of the valence
carriers, by setting εv(q) = εs at all wavelengths, despite its questionable validity, and the Thomas–
Fermi approximation for the free carriers. One possibility is the use of Eq. (15.29), using an expression
proposed by Nara and Morita [18] [see page 321, Eq. (14.22)] for ε(v)(q), and assuming a small
density of free electrons (say, nf = 1016 cm−3), so that the Thomas–Fermi expression for β 2

s reduces
to its nondegenerate Debye–Hückel form e2nf/(εskBT).

From a numerical point of view, local [19] or nonlocal [20] empirical pseudopotentials have been
used to evaluate the band structure and the pseudo-wavefunctions for 152 points in the irreducible
wedge of the first Brillouin zone (BZ). The evaluation of Eq. (15.18) provides an anisotropic ionization
rate as a function of the quasi-momentum k of the ionizing carrier and of the band index n.

In addition to the “correct” evaluation of the anisotropic ionization rate expressed by Eq. (15.18),
other useful approximations can be employed. The first one, the “constant matrix element” (CME)
approximation, emphasizes the role played (or, more likely, not played) by the matrix element in
determining the energy dependence of the ionization rate. Accordingly, one assumes that the Coulomb
matrix element M in Eq. (15.18) is a constant, equal to its average value over all k-points in the whole
BZ, over all bands, and over both N- and U-processes. Thus:

|MGG′ |2 � 〈M2〉= e4a4
0

(2π)4 ε2
s

m2 , (15.30)

where m is a number of order 1 and:

1

τ(ii)CME(kn)
� 2π

h̄
〈M2〉 ∑

G
∑

nvn′cn′′c

∫

dp
(2π)3 δ (k+p−k′ −p′+G)

×
∫

dk′

(2π)3

∫

dp′

(2π)3 δ [En(k)+Env(p)−En′c(k
′)−En′′c (p

′)] . (15.31)

Note that we have explicitly re-introduced the delta-function expressing momentum conservation in
the first (trivial) integral in the equation above, in order to make it clear in the following how the CME
and the random-k approximations can be related. The actual value of the average matrix element 〈M2〉
can be determined, whenever Eqs. (15.18) and (15.31) exhibit the same isotropic energy dependence,
by adjusting its value in Eq. (15.31) in order to match the result of Eq. (15.18).

An even stronger approximation has been suggested by Kane in the case of electron-initiated
ionizations in Si [21]. It consists in assuming that the kinematics of the ionization process is not
controlled by momentum conservation, but mainly by the (joint) density of states available to the
final (recoil and ionized) particles. This is expected to be approximately true when momentum
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randomization via U-processes is the most probable pair-production channel. In this case, many
nonzero G-vectors contribute in the sum in Eq. (15.31) above. Thus, it is sensible to make the
approximation, known as the random-k approximation [21], of replacing the many “spikes” of the
momentum-conserving delta-function with a uniform sampling of the entire Brillouin Zone, thus
rewriting Eq. (15.31) as

1

τ(ii)CME→relax)(kn)
=

2π
h̄

〈M2〉 ∑
nvn′cn′′c

∫

BZ

dp
ΩBZ

×
∫

dk′

(2π)3

∫

dp′

(2π)3 δ [En(k)+Env(p)−En′c(k
′)−En′′c (p

′)] , (15.32)

where now, in place of the sum over G-vectors, p runs over the Brillouin Zone, restricted only by
energy conservation. Now recall that the volume of the Brillouin Zone, ΩBZ, is given by (4π/a)3/
2 = (2π)3/Ωc, and employ the identity:

∫

dE Dc/v(E) = 2 ∑
nc/v

∫

dk
(2π)3 ,

where Dc and Dv are the densities of states in the conduction and valence bands, respectively,
accounting for spin degeneracy and always measuring energies from the band extrema with (kinetic
hole) energies taken as positive in the valence bands. Thus, the ionization rate obtained within the
CME approximation and having relaxed momentum conservation reduces to

1

τ(ii)rk (E)

=
2π
h̄
Ωc

8
〈M2〉

∫ E−Eg

0
dEc

∫ E−Eg−Ec

0
dEv Dc(Ec)Dv(Ev)Dc(E−Eg −Ec −Ev), (15.33)

where Eg is the energy gap and noting that (2π)3/(8 ΩBZ) = Ωc/8 and having considered throughout
electron-initiated processes, to fix the ideas. The quality of this approximation can be judged by
whether the value of 〈M2〉 in Eq. (15.33) required to fit quantitatively the CME results matches the
value used in Eq. (15.31).

Finally, we should mention the popular Keldysh form of the ionization rate [22],

1

τ(ii)(kn)
=

P
τep(Eth)

(

E−Eth

Eth

)2

, (15.34)

where Eth is some ionization-threshold energy, P a coupling parameter related to the Coulomb matrix
element, and τep(Eth) is either the carrier-phonon scattering rate at threshold, according to Keldysh’s
original formulation [22], or the energy relaxation rate at threshold, according to Ridley’s lucky drift
theory [23]. This expression has been used extensively in the past, treating the parameters P and Eth

as fitting quantities.
In Figs. 15.6 and 15.7 we see the ionization rates for electrons in Si as well as the so-called

ionization coefficient, αii, the number of pairs created per unit length in the presence of a uniform
electric field F:

αii(F) =
1

vd(F)

∫

dk
(2π)3

fF(k)
τ(ii)(k)

, (15.35)
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Fig. 15.7 Ionization coefficients calculated using a Monte Carlo technique and the rates shown in the previous figure.
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where vd(F) is the average electron drift velocity in the field F and fF is the electron distribution. An
empirical expression commonly used is

αii(F) =
eFth

Eth
e−Fth/F ,

where Fth is some threshold field and Eth the energy threshold for pair generation.
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15.3 ∗Long-Range Coulomb Interactions and Band-Gap Narrowing

We stated in the introduction of this chapter that when a high density of free carriers is present in
a semiconductor, some electronic properties are strongly modified. A reduction of the band gap, a
phenomenon called band-gap narrowing, clearly affects the operation of electron devices and the
optical properties of the material. We conclude this chapter with a brief overview of the problem.

The subject of Coulomb interactions in an electron gas has been discussed for decades. Even
for the “simple” case of a homogeneous electron gas the calculations are daunting, because of the
complex nature of the many-body interactions with exchange and correlation effects, as well as of
the interactions between the electrons and the “jellium” of the background positive charge required
to keep the system at charge neutrality, without “exploding” as a result of Coulomb repulsion. Here
we shall discuss the basic features of this system in a classical picture, mentioning later the main
quantum-mechanical corrections [24–26]. We follow quite strictly the excellent account given by
Mahan [27].

15.3.1 Classical Model

Consider a homogeneous electron gas of density n = N/Ω , where N is the number of electrons and
Ω the volume occupied by the gas. Ignoring Coulomb interactions, the total energy W per electron is
purely the Fermi kinetic energy KF:

W = KF =
g
n

∫

dk
(2π)3 E0(k) fFD[E0(k)] , (15.36)

where fFD(E) = {1+exp[(E0−EF)/(kBT)]}−1 is the equilibrium Fermi function at temperature T , kB

is the Boltzmann constant, E0(k) is the g-fold degenerate electron dispersion, and the Fermi energy
EF is determined so that

n = g
∫

dk
(2π)3 fFD[E0(k)] . (15.37)

In the simplest possible picture, the Hartree model, the spatial distribution of both electrons and
background positive charge (donors), required by charge neutrality, is assumed to be homogeneous
and uniform. In this model the Coulomb interaction between electrons and donors vanishes. The first
correction to this model consists in what Kittel calls the “modified Hartree” approximation. In this
model one assumes that the electrons still constitute a uniform distribution of charge, but they are now
embedded in a lattice of background, positively charged, point-like donors. Customarily, one thinks
of the donor potential as statically screened by the electrons according to the Debye–Hückel theory,
resulting in a Yukawa-like potential e−βsr/(4πε∞s r), where βs = [(e2/ε∞s )(∂n/∂EF)]

1/2 is the screening
parameter, ε∞s being the static (valence) permittivity of Si, and e the magnitude of the electron charge.
However, as we already saw when dealing with the potential of an ionized impurity, Mahan, employing
quantum-mechanical variational calculations, has shown that this picture is correct only at moderate
densities (∼1019 cm−3 or below in Si), but at higher densities the assumption of a uniform electron
distribution gives better agreement with the variational results. This is because the Yukawa-model
over-counts the electrons: On the one hand, they are assumed to completely screen the donors, and
so to be fully localized around each dopant ion. On the other hand, they are assumed to be uniformly
distributed.
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In order to compute the Coulomb energy of this model system, in principle one should follow
a procedure similar to what is required to compute the Madelung energy in crystals and derive the
positions of the donors by minimizing their total energy. Here we assume the impurities frozen in a
cubic lattice, and consider spherical volumes of radius r0 = [3/(4πn)]1/3 around each donor. Thus,
the total energy per dopant (i.e., in a volume (4/3)πr3

0 around each impurity) of the electron gas and
background point-like donors will be lowered by the electron-impurity Coulomb attraction,

δWed ≈ − e2

(4/3)πr3
0

∫ r0

0
dr

r
ε∞s

=−3
2

e2

4πε∞s r0

= −3
2

(

4π
3

)1/3 e2n1/3

4πε∞s
≈−2.418 κ n1/3, (15.38)

where κ = e2/(4πε∞s ), and raised by the Coulomb repulsion of the uniform electron distribution with
itself within an elemental spherical volume,

δWee ≈ e2

[(4/3)πr3
0]

2

∫ r0

0
dr

4
3
πr3 4πr2 1

4πε∞s r

=
3
5

e2

4πε∞s r0
=

3
5

(

4π
3

)1/3 e2n1/3

4πε∞s
≈ 0.967 κ n1/3. (15.39)

Note that the mutual donor–donor repulsion vanishes in this model, since the impurities in different
volume elements are viewed as fully screened by the surrounding electrons when frozen in their
minimum-energy configuration. Therefore, the total energy per impurity atom due to the Coulomb
interaction will be

δWC = δWed + δWee ≈ −1.451 κ n1/3. (15.40)

Depending on the configuration of the impurities, one may actually obtain for the “Madelung
coefficient” 1.451 above a slightly different value of 1.444 for close-packed fcc, hcp, or bcc lattices.
Here, we shall not worry about these numerically small differences.

At densities low enough for the standard Debye–Hückel screening to be valid, an expression given
by Lanyon and Tuft [28] may more appropriately replace Eq. (15.40),

δWC =−3
4
κ βs. (15.41)

As discussed by Mahan, the numerical values provided by Eqs. (15.40) and (15.41) are very similar
in the range of densities of interest here, since the three characteristic lengths one can consider,
the inverse wavevector at the Fermi surface kF, the screening length β−1

s , and the average donor
separations r0, are not too different in Si.

In the presence of random motion, induced by the Fermi kinetic energy and, at nonzero temper-
atures, by the electron–phonon interactions, the electrons will move around their “frozen” uniform
configuration and set-up a fluctuating potential whose spatial Fourier components are identified with
plasmons. In this case the total energy δWC will re-distribute into a potential energy, δUC, and a
kinetic energy component δKC. The virial theorem can be used to estimate the time-average of the
kinetic energy δKC once δWC is known. Since for N particles interacting via a central potential V(r),
a function only of the interparticle distance r,

〈δKC〉= 1
2

〈

∑
i �=j

∇iV(ri − rj) · ri

〉

time

, (15.42)
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where the brackets 〈. . .〉time denote time-average, for a purely Coulomb system

〈δKC〉time =−1
2
〈δUC〉time , (15.43)

so that (dropping the time-average brackets here and in the following, since we shall deal exclusively
with time- or ensemble average, equivalent by the ergodic theorem)

δKC ≈ 1.451 κ n1/3 . (15.44)

The final quantity to consider is the shift of the chemical potential, δμ , (in principle different
from the Fermi energy EF for interacting particles, as discussed below) induced by the Coulomb
interactions among the N electrons and the ND donors. At zero temperature or, more generally, in
degenerate situations, δμ gives the electron contribution to the narrowing of the energy gap. In general
the chemical potential μ of a grand canonical ensemble is defined as (see any text on Statistical
Mechanics, such as Kubo’s 1965 book [29]):

μ =
1
Ω

∂F
∂n

, (15.45)

at constant temperature and volume Ω , where F = Wtot − TS is the (Helmholtz) free energy of the
system, Wtot being its total energy and S its entropy. Therefore, at zero temperature the change of the
chemical potential caused by the Coulomb interactions will be

δμ =
1
Ω

∂δWC,tot

∂n
, (15.46)

where δWC,tot = NDδWC is the total Coulomb energy of the system. Keeping the volume Ω constant
means that the identity ND = N should be used only after having taken the derivative. Thus

δμ =
∂
∂N

(ND δWC) =−0.481 κ n1/3 . (15.47)

Ignoring band-tailing and renormalization of the electron dispersion, since the total number of
particles remains constant when accounting for Coulomb interactions, this shift of the chemical
potential must be accompanied by an equal downward shift of the reference energy, that is, the bottom
of the conduction band, δECB = δμ .

15.3.2 Quantum Corrections

The modified Hartree model considered so far ignores the effect of the electron spin: Since Pauli’s
principle prevents electrons with parallel spins from getting too close to each other, their mutual
Coulomb repulsion will be reduced by an amount known as the exchange energy, δWx. For Si the
exchange energy per particle is given by Mahan [27]

δWx =−3
4

e2ΛkF

4π2ε∞s
≈ −0.3861 κ n1/3 , (15.48)
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where Λ = (mL/mT)
1/3 (tan−1 δ/δ ), δ = [(mL/mT)− 1]1/2, and mt/l denoting the transverse/longi-

tudinal mass in the six ellipsoidal valleys of the Si conduction band. This second correction amounts
to the Hartree–Fock results. The difference between this result and the energy of the ground state
one would obtain performing an “exact” calculation is called the “correlation” energy [30]: The
electrons are not uniformly distributed, but the energy of the system is lowered when accounting
for a correlation of electron wavefunctions (or positions) which minimizes their mutual Coulomb
repulsion. In the range of densities considered here, an expression for the correlation energy, δWcorr,
has been given by Gell-Mann and Brueckner:

δWcorr =−0.096 + 0.00622 lnrs (15.49)

while Nozières and Pines give [31]:

δWcorr =−0.115 + 0.0031 lnrs , (15.50)

where the unit of energy is the Rydberg (≈32.1 meV in Si) and rs is the average separation r0 in units
of the Bohr radius (≈1.92 nm in Si), so that rs ≈ 3.231 (n/1018)−1/3, where the electron density n is
measured in cm−3. Re-expressing Eq. (15.40) in atomic units, we have

δWC =− 1.798
rs

, (15.51)

while the exchange term, Eq. (15.48), is

δWx =− 0.479
rs

, (15.52)

so we see that the correlation energy can be neglected, while ignoring the exchange term, Eq. (15.48),
amounts to underestimating the Coulomb energy by about 26 %. Correspondingly, the kinetic energy
of the system will be modified only by a small term, usually called “correlation kinetic energy.” We
have discussed this energy before, in Chap. 4, Sect. 4.2.3, and commented on the extreme difficulty
they pose to theoretical calculations. The texts by Mahan [24], Kittel [25], Fetter and Walecka [26],
and two of the pioneering original papers on the subject, the articles by Gell-Mann and Brueckner [30]
and by Nozières and Pines [31], give an idea of the complication. Theoretical work on the physics of
a quantum electron gas continues to be actively performed to this day.

These corrections to the total energy of the electron gas at high densities are some of the causes
of the well-known band-gap narrowing in semiconductors: We have already noticed above how the
Coulomb interactions in a classical three-dimensional electron gas cause a shift δECB =−0.481κn1/3

of the bottom of the conduction band. Mahan has evaluated the shifts of the chemical potential δμx =
[e2/(4π2ε∞s )]kFΛ ≈ −0.515 κ n1/3 and δμcorr associated with exchange and correlation effects, and
so the corresponding shifts δECB. When accounting also for the contribution to the Coulomb energies
due to the (minority) hole in the valence band (hole–donor and hole–electron interaction), Mahan has
accounted for all of the contributions to the band-gap narrowing, with the exception of band-tailing,
not discussed here. These are due to the close proximity of impurities at high density: As already
mentioned in Sect. 14.2, the shallow electronic states in the impurity potential merge together to form
a band of delocalized states, the so-called impurity band. Given the shallow energy of these states, in
the gap but close either to the bottom of the conduction band (donors) or the top of the valence band
(acceptors), they extend the density of states inside the gap with exponential “tails.”
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The major conclusion of this discussion is that the semiclassical model does indeed err in ignoring
exchange and correlation, especially exchange, since its contribution can be dominant. Yet, the
qualitative picture resulting from the classical model gives a clear physical picture insight and even
correct trends.

Finally, regarding the possible implementation of these physical effects in “practical” simulations
of electron transport in bulk solids devices, we mention that Monte Carlo simulations have been
performed in “test cases” of periodic “chunks” of Si [7] and in devices [8, 32]. At high density, spatial
fluctuations of the electron density oscillating at the plasma frequency cause an effective reduction of
the total electron energy, equivalent to a narrowing of the band gap. This is shown in Fig. 15.8. Details
about these calculations can be found in the references.
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Fig. 15.8 (a): kinetic energy shift, δKC, and total kinetic energy, KF + δKC, obtained from Monte Carlo simulations
including the short-range electron-impurity scattering with the Conwell–Weisskopf (CW, dots) or Brooks–Herring (BH,
circles) models. The result at the highest electron density has been extracted from the simulation of the source and drain
regions of Si MOSFETs. (b): Negative of the band-gap narrowing obtained from self-consistent Poisson/Monte Carlo
simulations in the degenerate (solid line labeled “low-T”) and nondegenerate (solid line labeled “high-T”) cases, from
Mahan’s theory [27] (dashed line), and experimental data for the “apparent electrical gap” (open symbols) and optical
gap (solid symbols) from the references cited in [7]. (Reprinted with permission from M.V. Fischetti, J. Appl. Phys. vol.
89, p. 1205 (2001). Copyright 2001, AIP Publishing LLC)
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Problems

15.1.

(a) Using a parabolic dispersion for the conduction and valence bands, assuming the same effective
mass m∗ in both bands, and assuming a direct gap, derive Keldysh’s expression, Eq. (15.34), for
the impact ionization rate.

(b) Using, instead, the random-k approximation and Eq. (15.33), what exponent n would you obtain
for a power-law (E−Eth)

n form of the impact ionization scattering rate?
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Chapter 16
Radiative Processes: The Dipole Approximation

The interaction of electromagnetic radiation with matter is another vast subject. We have already
cited the early theoretical book by Heitler [1] that describes it in a second-quantized form. A more
recent review of the state of the art can be found in the text edited by Singh [2]. A discussion more
specific to semiconductors is given by Pankove’s lectures [3], whereas a discussion of electron–photon
interactions in nanostructures is given in the recent text by Weiner and Nunes [4]. Clearly, light-
emitting diodes, semiconductor injection lasers, and detectors are all devices of great technological
importance that rely on efficient electron–photon interactions.

Here we present only briefly the main process of photon emission and absorption by a crystal using
perturbation theory, the full-band structure of the crystal, and the basic dipole approximation.

16.1 Electron–Photon Hamiltonian

So far we have considered processes in which electrons either did not gain or lose energy (elastic
processes, as impurity scattering), or in which energy is exchanged within the lattice (with ions, as
in electron–phonon interactions, or with other electrons). These are called “non-radiative” processes,
since energy is not transferred to radiation (that is, electromagnetic waves, light). Here let’s consider
processes in which electrons interact with light. We shall focus on light absorption across the band
gap and mention only the existence of other processes.

We have already used before [Eqs. (8.34) and (8.64) in Chap. 8] the fact that the Hamiltonian of
an electron in the presence of an electromagnetic field can be obtained from the Hamiltonian in the
absence of the field but replacing the electron momentum p̂ = −ih̄∇ with p̂+ eA, where A is the
vector potential. Therefore, the single-electron Schrödinger equation reads

ih̄
∂ψ
∂ t

=
1

2mel
(p̂+ eA)2ψ − eϕ(r)ψ . (16.1)

Assuming that the electrostatic potential ϕ vanishes (so, assuming a purely electromagnetic field, such
as in interactions with light) and retaining only terms first order in the “perturbation” A, we have

ih̄
∂ψ
∂ t

=− h̄2

2mel
∇2ψ + ih̄

e
mel

A ·∇ψ . (16.2)
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The Lagrangian density yielding Eq. (16.2) via the Euler–Lagrange equations is [see Eq. (9.8) on
page 189]:

L (ψ, ψ̇, t) = ih̄ψ∗ ∂ψ
∂ t

− h̄2

2mel
∇ψ∗ ·∇ψ + ih̄

e
mel

ψ∗A ·∇ψ , (16.3)

so that we can identify the perturbation Lagrangian with the last term. Therefore the perturbation
Hamiltonian density will be

Hem(ψ,π, t) =− e
mel

π A ·∇ψ = ih̄
e

mel
ψ∗A ·∇ψ . (16.4)

Using the second-quantized version of the vector potential [Eq. (9.137), page 212] in terms of the
photon creation and annihilation operators, we can write the Hamiltonian as (using a finite-volume
normalization):

̂Hem =
∫

dr ̂H em(ψ̂, π̂, t) = ih̄
e

mel

∫

dr ψ̂†
̂A ·∇ψ̂

= ∑
kk′qλnn′

ih̄
e

mel

(

h̄
2ε∞ωq

)1/2

ĉ†
k′(
̂bqλ + ̂b

†
−qλ )ĉk eqλ

· 1
Ω

∫

dr e−ik′·r u∗k′n′(r) e−iq·r ∇ eik·r ukn(r) , (16.5)

where n and n′ are band indices. This expression is identical to the expression we have derived before
for the electron–phonon interaction. The only nonzero matrix elements are those in which the final
state differs from the initial by the presence of one fewer or one additional photon of momentum q and
polarization λ (for absorption and emission processes, respectively, associated with the terms ̂bqλ and
̂b

†
−qλ ) and by the conversion of the wavevector of one electron from k to k′. Such a matrix element

will have the form:

〈k′,n′| ̂Hem|k,n〉 = ieh̄
mel
∑
qλ

{

N1/2
qλ

(1+Nqλ )
1/2

}

(

h̄
2ε∞ωq

)1/2

× eqλ · 1
Ω

∫

dr e−ik′·r u∗k′n′(r) e−iq·r ∇ eik·r ukn(r) ,

(16.6)

the factor Nqλ being valid for absorption, 1+Nqλ for emission.

16.1.1 The Dipole Approximation

If the wavelength of the photon is much longer than the electron wavelength (which is always the case
up into the visible/UV portion of the spectrum), we can set e−iq·r ≈ 1 and

〈k′,n′| ̂Hem|k,n〉 ≈ ∑
qλ

{

Nqλ
1+N−qλ

}

ieh̄
mel

(

h̄
2ε∞ωq

)1/2

×eqλ · 1
Ω

∫

dr e−ik′·r u∗k′n′(r) ∇ eik·r ukn(r) . (16.7)
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This is called the “dipole approximation.” Now:

∫

dr e−ik′·r u∗k′n′(r) ∇ eik·r ukn(r)

=
∫

dr ei(k−k′)·r u∗k′n′(r) ∇ ukn(r) +
∫

dr e−ik′·r u∗k′n′(r) ukn(r)∇eik·r . (16.8)

The second term contains an integral which is significantly different from zero only when k′ ≈ k.
In this case the periodic parts of the Bloch functions uk′n′(r) and ukn(r) are orthogonal and the
exponential is slowly varying. Therefore the second integral is usually neglected. The first term can
be treated in the “usual” way, by splitting the integral over the entire volume into a sum of integrals
over individual cells by setting r → Rl + r:

〈k′n′| ̂Hem|kn〉 ≈ ieh̄
mel
∑
qλ

{

N1/2
qλ

(1+Nqλ )
1/2

}

(

h̄
2ε∞ωq

)1/2

× eqλ · ∑
l

ei(k−k′)·Rl
1
Ω

∫

Ωc

dr u∗k′n′(r)∇ ukn(r)

=
ieh̄
mel
∑
qλ

{

N1/2
qλ

(1+N−qλ )
1/2

}

(

h̄
2ε∞ωq

)1/2

× eqλ · 1
Ωc

∫

Ωc

dr u∗kn′(r)∇ ukn(r) δk′k , (16.9)

since Ncells/Ω = 1/Ωc. Thus, the optical matrix element vanishes unless k′ = k. Only “vertical (or
direct) transitions” can happen. Transitions which involve a change in (crystal) momentum can only
happen at higher orders in perturbation theory, requiring extra momentum which must be provided by
phonons, traps, and such.

Now let’s define the “momentum matrix element” between the periodic part of two Bloch
functions:

〈n′|p̂|n〉=− ih̄
Ωc

∫

Ωc

dr u∗kn′(r)∇ ukn(r) . (16.10)

Then:

〈k′n′| ̂Hem|kn〉 ≈ − e
mel
∑
qλ

{

N1/2
qλ

(1+N−qλ )
1/2

}

(

h̄
2ε∞ωq

)1/2

eqλ · 〈n′|p̂|n〉 . (16.11)

Note that this is the most notable example of a type of transition for which the form of the Bloch
functions matters. In particular, well-known selection rules apply. For example, the momentum matrix
between atomic orbitals is nonzero only when the azimuthal quantum number mJ of the final and initial
orbitals differs by zero or one. Similarly in a crystal, photon absorption can occur only between bands
whose orbital character satisfies this selection rule. In addition, the knowledge of the Bloch functions
is required to calculate the matrix element (16.11).
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16.2 Transition Rates

The rate at which a photon of momentum q and polarization λ is absorbed by an electron of
wavevector k in band n can be calculated from Fermi’s Golden Rule:

Wabs,n =
2π
h̄

∫

dk
(2π)3 ∑

n′

h̄e2

2ε∞ωqm2
el

Nqλ |eqλ · 〈n′|p̂|n〉|2 δ [En(k)−En′(k)− h̄ωqλ ]

≈ πe2

m2
elωε∞

Nω ∑
n′

|eqλ · 〈n′|p̂|n〉|2 Dj,n,n′(h̄ω) , (16.12)

where Dj,n,n′(E) =
∫

dk/[(2π)3]δ [En(k)− En′(k)− E] is the joint density of states at energy E in
bands n and n′. On the contrary, for the rate at which an electron of wavevector k in band n emits a
photon, we have (assuming spontaneous emission only):

Wemiss,n =
2π
h̄

∫

dq
(2π)3 ∑

n′

h̄e2

2ε∞ωqm2
el

|eqλ · 〈n′|p̂|n〉|2 δ [En′(k+q)−En(k)− h̄ωqλ ]

=
πe2

m2
elε∞

|〈n′|p̂|n〉|2ave

∫

q2dq
8π3ω

=
πe2

m2
elε∞

|〈n′|p̂|n〉|2ave

∫

d(h̄ω)D(h̄ω) ,

(16.13)

where |〈n′|p̂|n〉|ave is the dipole matrix element summed over all bands and averaged over the photon
polarizations and D(h̄ω) = ω2/(2π2υ3

ω) is the photon density of states expressed as a function of the
phase velocity υω = ω/q.

16.2.1 Absorption Spectrum

In the particular case in which n′ labels the conduction band and n the valence band, the matrix
element for the process in which a photon of momentum q and polarization λ is absorbed by the
solid, triggering the excitation of an electron from the valence to the conduction band, will be

〈kc| ̂Hem|kv〉 ≈ − e
mel

Nqλ

(

h̄
2ε∞ωq

)1/2

eqλ · 〈c|p̂|v〉 . (16.14)

The absorption rate will be, according to Eq. (16.12):

I(h̄ω) =
πe2

m2
elε∞ω

Nω

∫

dE |e · 〈c|p̂|v〉|2Dj(E+ h̄ω−Egap)

×[1− fc(E+ h̄ω−Egap)] fv(E) , (16.15)

where Dj is the joint DOS summed over all bands and fv and fc the Fermi occupation factors in the
valence and conduction band, respectively. Assuming a completely full VB and empty CB,

I(h̄ω) ≈ πe2

m2
elε∞ω

Nω

∫

dE |e · 〈c|p̂|v〉|2Dj,c(E+ h̄ω−Egap) . (16.16)
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The absorption spectrum of a direct-gap semiconductor will show a sharp threshold at h̄ω = Egap. For
indirect-gap materials, instead, a weaker and softer threshold occurs at the gap, since the help of a
phonon is necessary to conserve momentum and the matrix element in Eq. (16.15) is replaced by a
second-order electron–phonon–photon matrix element.

One important feature of the absorption spectrum of several semiconductors is the appearance of
“exciton peaks.” When an electron–hole pair is formed by the absorption of a photon, the pair can
remain weakly bound, as in a hydrogen atom. The binding energy of the pair will be exactly the
binding energy of the H atom in its ground state, corrected for the different dielectric constant and
for the reduced electron–hole mass, 1/mred = 1/me +1/mh, (where me and mh are the masses of the
conduction- and valence-band extrema, respectively):

ΔE =
e2

(4πε∞)2

mred

2h̄2 . (16.17)

Thus, the absorption spectrum shows a peak at a photon frequency h̄ω = Egap −ΔE (see Fig. 5.4 in
Ridley’s book [5]).

Given the important application to photovoltaic solar cells, absorption spectra have been calculated
for a variety of semiconductors (see the text by Haug and Koch [6], for example). In Fig. 16.1 we
give a different example of what can be calculated using empirical pseudopotentials and the theory
discussed in this chapter. This figure shows the energy distribution of electrons and holes generated
(as pairs, obviously) in bulk GaAs at steady state under the illumination of the sun at sea level. These
results have been obtained by calculating the absorption rates from the transition rates in the integrand
of Eq. (16.12) for all bands n, by integrating over the solar spectrum, and integrating also over all
electrons and holes generated at a particular energy. The solar spectrum is well known: The National
Renewable Energy Laboratory provides solar spectra at all latitudes for length of path through the
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Fig. 16.1 Energy distribution of electrons and holes generated (as pairs) in GaAs under illumination from the sun at
sea level. These results have been obtained by calculating the absorption rates from the integrand of Eq. (16.12) for all
bands n, integrating over the solar spectrum, and integrating over all electrons and holes generated at a particular energy.
The solar spectrum is taken from well-known standards, in this case at sea level for a 1.5 air mass global, known as
“AM1.5G”
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atmosphere (that varies with time of the day and latitude, of course) [7]. This is known as the “air
mass.” The situation is highly idealized: Photons are assumed to be present everywhere in the bulk
of the crystal whereas, in reality, they will be absorbed in the first few micrometers from the surface;
generated carriers are assumed to be swept away as soon as they are generated, but, in reality, space-
charge will build up while drift diffusion and thermalization will occur. Nevertheless, these effects
can be accounted for in computer simulations in order to estimate the theoretical maximum quantum
efficiency (that is, pairs generated per incident photon) and the actual efficiency of a device. Note how
electrons and holes are generated at high energies. In conventional solar cells, most of this energy is
lost to heat (phonons), as carriers decay to the extremum of their bands before being collected and
contributing to the generation of electrical power. Harnessing this wasted energy is clearly one of the
goals of current research and understanding carrier generation, recombination, and transport at this
high energy is of paramount importance.

16.3 Radiative and Non-radiative Transitions

The theoretical scheme we have employed so far can be used in a variety of different situations.
Electronic transitions can occur within the conduction band, from valence to conduction band, from
valence or conduction band to localized defect or impurity states (traps). They can be radiative (when
assisted by photons) or non-radiative. We have seen the cases of photon, phonon, and Coulomb matrix
elements at first order. The general transition rate can be evaluated using first-order perturbation theory
(Fermi’s Golden Rule or Born approximation for direct transitions). The major cases we have not
treated are transitions involving traps (which requires the knowledge of the localized wavefunction,
often hard to estimate), transitions involving large energy exchange (such as a conduction electron
being trapped into a localized state energetically located around the middle of the gap) which
may require multi-phonon processes (such as emission of many phonons or processes relying on
anharmonic corrections to the phonon Hamiltonian), or even more complicated processes in which
the lattice rearranges itself. Ridley’s text describes in Chap. 5 radiative transitions of types different
from the valence-to-conduction direct absorption we have considered above: Free-carrier absorption
(that is, absorption of a photon by a free electron in the conduction band, involving an analysis
of the requirements posed by energy and momentum conservation), photo-ionization of localized
states of exciton absorption (requiring some discussion of the localized or excitonic wavefunctions),
indirect transitions (assisted by phonons and so requiring second-order perturbation theory), and
light scattering by free electrons (which depends on the second-order term e2A2/(2mel), we have
so far neglected in Eq. (16.1)). In Chap. 6 Ridley discusses non-radiative transitions. While the details
(mainly dictated by energy/momentum conservation and by the particular form of the initial/final
wavefunctions involved) change significantly from one case to the next, the general scheme employed
is always the same. We shall not discuss these issues in detail, as the examples we have seen so far
should be sufficient to give the gist of the matter.

Problems

16.1. Given the AM1.5G solar spectrum, Φ(λ ) (photons/(m2s eV)), write the equations necessary to
obtain the data shown in Fig. 16.1 starting from Eq. (16.12).

16.2. This is the inverse problem of the previous one: Given the data shown in Fig. 16.1, write the
equations required to obtain the absorption spectrum of Si, knowing the AM1.5G solar spectrum,
Φ(λ ) (photons/(m2s eV).
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Chapter 17
Overview of Quantum-Transport Formalisms

17.1 Overview

In Chap. 12, Sect. 12.2.1, we discussed the reason why it made sense to calculate scattering rates
using Bloch functions. We explained that when an external bias results in a small change of the
electron potential energy over the distance it takes the electron to lose memory of its phases, we
can assume that “locally” the electron sees a homogeneous environment, with an electric field small
enough to affect only minimally the band structure and the electron wavefunction. In other words,
we restricted ourselves to situations in which “things change” over distances so long that quantum
interference effects are small enough to be ignored. Collisions are so frequent that we cannot talk of a
coherent “wavefunction” extending over distances so long. This led us to the regime of semiclassical
transport. On the other hand, we have dedicated an entire long chapter, Chap. 7, to the study of the
electronic structure in systems of nanometer dimensions. We have justified such a strong interest on
structures with small “lateral” dimensions (thickness of a film or diameter of a NW, for example) by
saying that such tiny dimensions are necessary when also the “length” decreases: Good electrostatic
behavior of electronic devices requires scaling all dimensions at the same time. Therefore, in these
tiny nanostructures, narrow/thin and short, the assumption that transport occurs semiclassically is
likely to be unrealistic.

The term Quantum Transport is interpreted in many different ways. For example, clearly semiclas-
sical transport in a narrow NW is affected by quantization effects. This may be viewed as “quantum,”
in some sense. However, if the NW is very long, then transport can still be treated semiclassically. Here
by “quantum transport” we mean transport treated beyond the semiclassical approximation, retaining
possible coherence of the electronic wavefunctions over distances comparable to the length of the
region of interest (e.g., the length of a channel of a NW-FET).

In Quantum Field Theory (QFT), the full information of a system is contained into the expectation
value of the quantum field on the vacuum state:

G(r, t;r′, t′) = 〈0|ψ̂†(r′, t′) ψ̂(r, t)|0〉 . (17.1)

(We shall be cavalier about the time-ordering here, the problem will be considered below in
Sect. 17.2.5.) This is called a Green’s function and its Fourier transform, 〈0|ĉ†

kĉk|0〉, is called the
propagator. Once this quantity is known, we can calculate every property of the system. Indeed the
difficult part of the task is to calculate the field ψ̂(r, t). All interactions among particles and with
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external perturbations are included in the expression of the field itself. Starting from the known field
of free particles, ψ̂0(r, t), perturbation theory is usually employed to calculate some approximate
expression for the interacting propagator.

In our case, a similar quantity plays the role of the propagator. Recall that our system is composed
of many particles, usually interacting not only among themselves, but also with the surrounding
“thermal bath” (i.e., the phonons of the crystal), with impurities and other elementary excitations.
The number of degrees of freedom is so large, that we must seek help from Statistical Mechanics,
as discussed in Chap. 10. Therefore, the equivalent of Eq. (17.1) will be the statistical average of the
field:

G(r, t;r′, t′) = Tr
[

ρ̂ ψ̂†(r′, t′) ψ̂(r, t)
]

= 〈ψ̂†(r′, t′) ψ̂(r, t)〉 . (17.2)

For homogeneous systems at equilibrium, the grand canonical density matrix is often used. This
allows for an elegant connection between Eqs. (17.1) and (17.2): The time evolution in the former is
of the form exp[(i/h̄)̂Ht], while the equilibrium density matrix has the form exp(−β ̂H), (where, to
conform to the usual convention in the many-body/statistical-mechanics community, we temporarily
use β = 1/kBT to denote the inverse temperature). A rotation of the former to imaginary time
transforms QFT to equilibrium quantum Statistical Mechanics, also know as Euclidean QFT, with
the corresponding imaginary time Green’s functions known as the “Matsubara” Green’s functions.
Results from QFT can be used to study equilibrium in many-body systems. The two-volume textbook
by Zubarev, Morozov, and Ropke[1, 2] gives an ample and deep discussion of this topic. However,
our case is more complicated. First, we are interested in systems that are driven off-equilibrium
by the applied bias. Second, our systems are highly inhomogeneous, because, once more, of the
applied bias and, in most cases, a compositional inhomogeneity due to different materials used for
active layers—often heterogeneous as in III–V hetero-structures, contacts, or insulating layers. The
former consideration requires going beyond Statistical Mechanics. Moreover, the inhomogeneity of
the system means that, in most cases, we have to work hard just to calculate the unperturbed field
(or wavefunctions in a simpler first quantization approximation). The inhomogeneity also prevents us
from employing periodic boundary conditions, since our system is open. Therefore, we will have also
to determine the proper boundary conditions to adopt.

In very general terms, approaches that deal with the strong off-equilibrium situation fall into
two categories: The first category includes mainly the Non-Equilibrium Green’s Function (NEGF)
approach. This method was originally developed by Keldysh [3] and by Kadanoff and Baym [4] and
today it is very popular. The second category consists in approaches based on the density matrix.
This is the very same Green’s function given by Eq. (17.2), but evaluated at equal times, t′ = t.
These methods lead to various Master-equation approaches—discussed in [5], including techniques
to introduce irreversibility via the so called Lindblad equation. They also lead to approaches based
on the Semiconductor Bloch Equations—formulation that is discussed in [6] and [7]. These are, more
appropriately, formulations that deal more with the excited states of the system than with electronic
transport per se; indeed, their main application has been in the study of ultra-fast optical excitations.
Also based on the density matrix is the use of the transform of ρ̂ called the Wigner or Wigner–
Weyl transform. This leads to the so-called Wigner functions approach—discussed in [8, 9], and in
[10], for example—whose major appeal relies on its intuitive similarity to the Boltzmann-equation
formulation of semiclassical transport. Additional approaches such as the Bohm trajectory method
[11] or on Feynman path integrals [12, 13] have been proposed, but NEGF- and density-matrix-based
approaches remain the most popular choice. Jacoboni’s [14] and Datta’s [15] books brilliantly survey
the state of the art, albeit with very different perspectives.

We shall proceed as follows: First, we shall worry about what is required to calculate the
unperturbed, free fields (wavefunctions). As we have observed, this is a necessary and nontrivial
task in our inhomogeneous systems. It also provides already some information about the current that
a device will carry under ideal, ballistic conditions. The off-equilibrium conditions do not present
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any particular problem in this case. We shall present a general procedure, the Quantum Transmitting
Boundary Method (QTBM) [16]—fully equivalent and even more efficient than the ballistic NEGF, to
deal with open systems. The effective-mass approximation will be used for notational simplicity. Full-
band treatments have been discussed by the NEMO group [17] using tight-binding, or by Choi and Ihm
[18] or one of us [19] using empirical pseudopotentials. Since ballistic transport is an over-idealization
of reality, we shall discuss briefly the NEGF and the Winger function approaches. In the next chapter
we will deal with the density-matrix approach, motivated mainly by the (doomed) attempt to derive
the semiclassical Boltzmann transport equation. However, in so doing, we shall derive the transport
equation including dissipation in the restricted case of ultra-short devices and weak scattering.

17.2 Ballistic Transport

The system we have in mind is a general bounded region in real space. We may consider this as a
region in empty space delimited by some boundary or, more appropriately for the subject of this book,
a solid crystalline “chunk,” of homogeneous or inhomogeneous composition, bounded by barriers
that prevent electrons from “spilling” outside this region. To fix the idea, think of a Si slab or
an InGaAs NW bounded by ideal insulators. In previous chapters we have discussed at length the
electronic structure of such a “chunk.” However, we have assumed that this region extended infinitely
in three dimensions (bulk crystals), in two dimensions (thin films, graphene, 2DEG in general), or in
one dimension (NWs, GNRs, CNTs). In the last two cases, these systems were “closed” in one or two
dimensions, but open and periodic along the remaining dimension(s). Therefore, a NW is “closed” on
the cross-sectional plane, but periodic along its axial direction.

The situation we wish to consider now is different. If our “chunk” were closed in all dimensions,
we would treat it as a zero-dimensional electron gas, that is, a quantum dot, assuming that scattering
does not break the coherence of the electrons within the chunk itself. However, now we assume that
the system is “open” over a finite number of small regions on its boundary. These “openings” are
thought to be in contact with conducting “wires” along which electrons can travel. We shall call these
“openings” contacts and refer to our “chink” as the device. The system is now “open,” in the sense that
electrons can move in-and-out of the device. We should also assume that, in general, these contacts
are kept at different chemical potentials (Fermi levels) by applying an external bias.

It is convenient to consider first electronic states in the contacts. We shall label them by (α,k).
The label k refers to a continuous quantum number; α is an additional quantum number labeling the
different solutions with the same k. For example, if the contact is thought to be a straight nanowire, k
will label the electron wavevector along the axial direction of the NW, α will label the (sub)bands. If
the system consists of a thin Si film on the (x,y) plane, infinitely extended along y, but of finite length
L along x, with contacts at x = 0 and x = L, the contacts themselves will be infinitely extended along
y, In this case, k will actually be a two-dimensional wavevector K (representing the wavevector of the
electrons injected or extracted by the contacts) and α will label the subbands.

Since we are interested in calculating the current that flows in the device, we must first solve the
Schrödinger equation:

[

−∇
2

2m
+ V(tot)(r)

]

ψα(r;k) = Eα(k) ψα(r;k) , (17.3)

where V(tot) is the total electron potential energy. In general, we may view this as the single-particle
equation used to deal with a crystal, so that V(tot) will include the lattice potential, Hartree, and
exchange-correlation contributions in addition to whatever external potential results from the applied
bias. In this case, the mass m will be the free-electron mass mel. Instead, when employing the simpler
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effective-mass approximation, the mass m should be interpreted as some effective mass m∗ and V(tot)

will represent only the Hartree potential (obtained by some self-consistent solution of Eq. (17.3) and
Poisson equation, along the lines of the discussion of Sect. 8.2.1). Note that in considering Eq. (17.3)
we are implicitly assuming that we are interested in the steady-state (stationary) behavior of the device.
We shall worry later about the time dependence.

Equation (17.3) is, of course, a second-order, linear differential equation that requires boundary
conditions in order to determine a unique solution. When dealing with bulk semiconductors or
nanostructures in previous chapters, we have assumed periodic or closed boundary conditions. Now
the situation is very different, exactly for the reasons mentioned before: The system is open. We shall
consider below how to determine the proper open boundary conditions. Now we can see quite simply
how, having solved Eq. (17.3), we can calculate the current flowing across the device. Recall that
associated with each wavefunction ψα is a quantum-mechanical probability current:

Jα(r;k) =
h̄

2mi
[ψ∗
α(r;k)∇ψα(r;k)− (∇ψ∗

α(r;k))ψα(r;k)] (17.4)

=
h̄
m

Im [ψ∗
α(r;k)∇ψα(r;k)] . (17.5)

Therefore, the probability current through a contact is obtained by integrating over a surface covering
the contact:

Jα(k) =
∫

contact
dS ·Jα(r;k) . (17.6)

The total electrical current flowing through the contact can be obtained by weighing each wavefunc-
tion with its probability of occupation fα(k) and multiplying it by the elementary charge,

I = − e∑
α

∫

dk
2π

fα(k) Jα(k) . (17.7)

assuming that the wavefunctions are normalized:

∫

dr ψ∗
α(r;k) ψα(r;k) = 2π δαα ′ δ (k− k′) . (17.8)

The current computed in this way is called the ballistic current since no additional scattering process,
such as the electron–phonon interaction, is taken into account.

17.2.1 Quantum Conductance

It is instructive to consider the very simple case of a one-dimensional system described by a single
effective mass m∗ and identical contacts at the left and at the right and without a barrier in the
device region. In this case, k represents the wavevector of the injected waves and the index α
is not necessary. Moreover, the wavefunctions in the contacts are plane waves ψ(x) = eikx, each
wavefunction carrying a probability current J = h̄k/m∗. When a sufficiently small bias Vbias is applied
between the left and right contacts, we can assume that the wavefunctions are still plane waves and
carry a current h̄k/m across the device. While the effect of the bias on the wavefunctions is assumed
to be negligible, the occupation of the states is still determined by the bias. Only states with k in the
range k ∈ [kmin,kmax] (with E(kmax)−E(kmin) = eVbias) contribute to the current, since states above
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E(kmax) are unoccupied and the left-going and right-going fluxes of electrons in states below E(kmin)
cancel. As a consequence, the total current is

Imax =−e
∫ kmax

kmin

dk
2π

h̄k
m

=− e
2π

h̄(k2
max − k2

min)

2m
=−e

E(kmax)−E(kmin)

h
. (17.9)

Since E(kmax)−E(kmin) =−eVbias,

Gquantum = 2
dImax

dVbias
=

2e2

h
≈ 7.748×10−5 S = 2/RK (17.10)

where the factor 2 stems from spin degeneracy. Another more general and powerful way to formulate
this expression is the make use of Landauer’s formula [20]:

Gquantum =
e2

π h̄ ∑ν
Tν , (17.11)

where ν now denotes the number of conduction “channels” and Tβ is the transmission probability
of each channel. For ballistic transport in a one-dimensional system (a NW, a CNT, or a GNR,
to fix the ideas) α will represent the number of quantized states (subbands) and Tα = 1 is their
transmission probability. We have made use of this expression in Chap. 7, when calculating the
ballistic conductance at a given energy, Eq. (7.42). A related quantity is the von Klitzing constant
RK ≈ 25813Ω which gives the resistance of a channel without spin degeneracy.

17.2.2 Open Boundary Conditions

We now wish to return to the problem of establishing the correct open boundary conditions for
Eq. (17.3) in the presence of an arbitrary potential. The method, commonly referred to as the QTBM,
is described in general two-dimensional cases in [16] from a theoretical perspective, whereas [21]
presents several interesting applications.

The first step is to investigate how a local change of the potential affects the ballistic current. Recall
that we have divided the system into a device region and two or more leads (or contacts).∗ This separation of the system into a “device”—within which one assumes non-equilibrium—and
“contacts”—kept at equilibrium—is artificial and ultimately not justified from a physics perspective:
These external reservoirs are assumed to remain at thermal equilibrium, to absorb particles (waves)
and inject them in an ideal fashion. However, they are assumed to remain at equilibrium and “field-
free” even in the region adjacent to the device region. This violates current continuity, of course
(equilibrium contacts carry no current, so that at the contact/device boundary the current density is
discontinuous). Moreover, scattering is assumed to be infinitely strong within the reservoirs, so that we
may justify why we keep them at equilibrium. However, some relaxation time and distance are required
for waves entering the contacts to relax. Therefore, there will be a transition region between device and
contact in which the device and the contacts interact. Several quantum-transport schemes account for
these effects. For now, we shall consider this device/contact distinction as a mathematically necessary
evil, since we need a boundary to study a finite region and we need boundary conditions to solve our
transport equations, whatever form these may take.

The potential is assumed to be uniform inside the leads but changing in the device region. Take,
for example, a one-dimensional device with a left and a right lead, the left lead ending at x = 0 and
the right lead starting at x = L:
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V(x) =

⎧

⎨

⎩

VL x ≤ 0
VD(x) 0 < x < L

VR x ≥ L
. (17.12)

The solutions of the Schrödinger equation for a device with leads will obviously depend on the
particular shape of VD(x). However, in general two types of solutions can be distinguished: extended
and bound states. Extended (or propagating) states are a linear combination of plane waves inside the
leads and they may carry current, in a way similar to how plane waves carry current. Extended states
have a continuous spectrum. Bound states, on the other hand, do not behave like plane waves inside
the leads but, rather, decay exponentially into the leads, bound states can not carry current and they
have a discrete spectrum.

In one dimension, a necessary and sufficient condition for the presence of bound states is VD <
min(VL,VR). For example, in the trivial case where VD(x) = VL = VR, the set of plane waves eikx

form a complete set of solutions labeled by a continuous quantum number k and no bound states exist,
since VD ≮ VL,R. In higher dimensions, no simple criterion for the presence of bound states exists.

The solutions of interest for quantum transport are the extended states. The general procedure to
determine the extended states is as follows:

• Choose a lead s, solve the Schrödinger equation in the lead, and select an incoming wavefunction
ψs,α(r;kI) which has its current flowing towards the device. The wavefunction has an energy
Esα(kI). In our one-dimensional example, the incoming wave is a plane wave eikIx with kI > 0
if the wave is incoming in the left lead and kI < 0 otherwise.

• Determine an algebraic set of solutions with energy E = Es,α(kI) for the Schrödinger equation in
all leads (including the chosen lead). The solutions need not be normalizable, so exponentially
decaying or growing solutions are acceptable as well at this point. In practice, this is done by
rewriting the Schödinger equation from an E(k)-eigenvalue problem to a k(E)-eigenvalue problem.
Solving the latter is referred to as solving the complex band structure, since not only real k but also
complex k are found. In our one-dimensional example, each lead has two solutions, e±ikL,Rx with

h̄2k2
L,R/(2m)+VL,R = E or kL,R =±

√

2m/h̄2(E−VL,R).
• Divide the algebraic solutions obtained for each lead into four categories: (i) exponentially

decaying into the lead (growing towards the device); (ii) current flowing into the lead (out of
the device); (iii) current flowing out of the lead (into the device); (iv) exponentially growing into
the lead (decaying towards the device). The incoming wave will belong to (iii). The number of
independent extended states with energy E is given by the total number of solutions in category
(iii) for all leads.

• Solve the Schrödinger equation inside the device region with boundary conditions based on the
algebraic solutions inside the leads. The boundary conditions should be chosen so that in all but
the chosen lead, the solutions belong to categories (i–ii).This is referred to as imposing transmitting
boundary conditions. In the chosen lead l, the solutions belong to categories (i–ii) in addition to the
incoming wavefunction which belongs to category (iii). If a wavefunction is found which satisfies
the device Schrödinger equation and only has solutions belonging to what we define as category
(i–ii) in all leads, this wavefunction is a bound state.

17.2.2.1 Rectangular Barrier

It is convenient at this stage to see how this method can be applied in practice to a simple one-
dimensional system, determining the extended states for a potential that represents a rectangular
barrier in one dimension.
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Consider a potential that is the same in the left and right leads, VL = VR = 0, and a rectangular
barrier obtained by setting the device potential VD(x) = VD > 0.

• We choose an incoming wave from the left eikx with k, so that VD > E = h̄2k2/(2m) > 0. This
energy-range brings us to a situation of quantum-mechanical tunneling where transmission is
classically prohibited.

• The solutions in the left and right lead are ψ±
L,R(x) = e±ikx with kL = kR = k =

√

2m/h̄2E.

• ψ−
L (x) and ψ+

R (x) belong to category (ii) and ψ+
L (x) and ψ−

R (x) belong to category (iii). In this
case no elements belong to category (i) and (iv).

• The two independent solutions in the device region are ψ±
D (x) = e±κx with κ =

√

2m/h̄2(VD −E)

which means ψ(x) = d+eκx + d−e−κx. For an incoming component from the left, we must find
a solution which is a linear combination of two wavefunctions ψ±

L (x) in the left lead and just the
outgoing ψ+

R (x) in the right lead. Therefore, in the right lead, we have ψ(x) = teikx which translates
into a boundary condition dψ(x)/dx = ikψ(x) at x = L:

κ(d+eκL −d−e−κL) = ik(d+eκL +d−e−κL)

d+(κ− ik)eκL = d−(κ+ ik)e−κL. (17.13)

In the left lead ψ(x) = eikx + re−ikx and we require continuity of ψ(x) and its first derivative:

[

1 1
ik −ik

][

1
r

]

=

[

1 1
κ −κ

][

d+

d−

]

. (17.14)

Eliminating r yields a second relation between d+ and d−:

2ik = (ik+κ)d++(ik−κ)d− (17.15)

and using Eq. (17.13), we obtain

d± =
2ik(κ± ik)e∓κL

(ik+κ)2e−κL +(ik−κ)2eκL . (17.16)

The coefficient of the transmitted wave can now be determined

teikL = d+eκL +d−e−κL =
4ikκ

(ik+κ)2e−κL +(ik−κ)2eκL . (17.17)

The reflected wave could similarly determined from r = d++d−−1.

With the extended state fully determined, we can calculate its current most easily in the right lead:

J(k) = |t|2h̄k/m =
h̄k
m

1

1+V2
D sinh(κL)2/(4E(VD −E))

, (17.18)

Current continuity ensures that an evaluation of J = h̄/m Im(ψ(x)dψ(x)/dx) in the left lead (|t|2 =
1−|r|2) or inside the device yields the same result. For large barrier-widths, the tunneling current can
be seen to exponentially decrease ∝ exp(−2κL).
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17.2.3 Normalization

Setting the coefficient of the incoming wave to 1 means that the extended wavefunctions are
normalized, that is

∫

dr ψ∗
sα ′(r;k′)ψsα(r;k) = 2π δll′ δαα ′δ (k− k′) (17.19)

and the current is

I = −e∑
sα

∫

dk
2π

Jsα(k) fsα(k) (17.20)

where fsα(k) gives the occupation of each state.
The wavevector of the incoming wave k together with the band index α do not present a unique

set of quantum numbers; an alternative set of quantum numbers is the energy E together with an
index β distinguishing between the possible incoming wavefunctions with that energy. The index β
runs over all roots for k satisfying E−Eα(k) = 0 corresponding to an incoming wave. To maintain
normalization, the wavefunction has to be multiplied by a coefficient ψβ (r;E) =

√|dk/dE|ψα(r;k)
so we now have

∫

dr ψ∗
α ′β ′(r;E′) ψαβ (r;E) = 2π δαα ′ δββ ′δ (E−E′) (17.21)

and the current is

I =−e∑
sα

∫

dE
2π

fsα(E)Jsα(E) = −e∑
sα

∫

dE
2π h̄

fsα(E)Tsα(E) (17.22)

where Tsα(E) = h̄Jsα(E) is dimensionless, has a maximum value of 1 and is called the transmission
coefficient. The transmission coefficient is the same as that in Landauer’s formula [Eq. (17.11)] and
can be interpreted as the probability that an electron will be able to pass through the potential barrier
in the device. In the classical limit, T = 1 if the incoming electron has an energy exceeding the barrier
and T = 0 otherwise.

17.2.4 Numerical Approach

With modern computing power, many quantum transport problems can be solved numerically in a
very short time. In a numerical setting the QTBM presents the recipe for determining the extended
states. In the following, we outline the general numerical procedure to find the extended states on the
basis of a two-dimensional potential with a left and a right lead:

V(x,y) =

⎧

⎨

⎩

VL(y) x ≤ 0
VD(x,y) 0 < x < L
VR(y) L ≤ x

. (17.23)

We determine the wavefunctions ψ(x,y) assuming the device has a width W so that ψ(x,0) =
ψ(x,W) = 0.
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17.2.4.1 Discretization

The first step in a numerical approach is to discretize the Hamiltonian and the wavefunction. We
discretize on nx and ny points in the device region in the x and y direction, respectively. This gives the
coordinates x1D

jX
= jXΔx and yjY =(jY+1)Δy with jX = 0 . . .nx−1, jY = 0 . . .ny−1 and Δx= L/(nx−1),

Δy = W/(ny +1). But to write the Hamiltonian as a matrix acting on a vector, we need a single index
j rather than two indices jX and jY. This can be accomplished by taking j = jY +nyjX and consequently
jX(j) = �j/ny� and jY(j) = j mod nx.

In single-index notation, xj = x1D
jX(j)

and yj = y1D
jY(j)

, the wavefunction ψj =ψ(xj,yj) and the potential
Vj = V(xj,yj) = VD(xj,yj). The action of the Hamiltonian on the wavefunction can be written
as a matrix-vector product and the Schrödinger equation becomes ̂Hψ = Eψ . The Hamiltonian
contribution can be separated into the kinetic energy in the x direction (̂Tx), the kinetic energy in
the y direction (̂Ty), and the potential energy (V) so that ̂Hψ = (̂Tx + ̂Ty + ̂V)ψ .

The contribution of the potential energy Vψ can be evaluated as the multiplication of the
wavefunction ψ with a diagonal matrix with Vj on its diagonal. The kinetic energy in the y direction
can be approximated using finite differences and becomes

− h̄2

2m
d2

dy2ψ(x,y)
∣

∣

∣

∣

x=xj,y=yj

≈ −EΔy(ψj−1 +ψj+1 −2ψj) (17.24)

with EΔy = h̄2/(2m(Δy)2). Equation (17.24) is not applicable for the points next to the y = 0 or y = W
boundary (jY(j) = 0 or jY(j) = ny − 1). At these points the boundary condition ψ(x,0) = ψ(x,W)
applies and ψj−1 or ψj+1 needs to be removed from Eq. (17.24). Overall, the kinetic energy in the
y-direction can be computed by multiplying ψjXny...(jX+1)ny−1 with a tridiagonal matrix of size ny ×ny:

̂T1D
y =−EΔyD2y =−EΔy

⎡

⎢

⎢

⎢

⎢

⎢

⎣

−2 1 0 . . . · · ·
1 −2 1 . . . · · ·
...

...
...

. . .
...

...
...

· · · . . . 1 −2 1
· · · . . . 0 1 −2

⎤

⎥

⎥

⎥

⎥

⎥

⎦

(17.25)

where ̂Dy2 is defined as a tridiagonal matrix with 1 on its off-diagonals and −2 on its diagonal.
The matrix ̂Ty acting on ψ is then a block-diagonal matrix replicating ̂T1D

y nx times on its diagonal.

Or employing the Krönecker product ̂Ty = ̂I1D
x ⊗ ̂T1D

y where ̂I1D
x is the identity matrix of dimension

nx ×nx. The kinetic energy in the x direction would similarly be ̂Tx0 = ̂T1D
x0 ⊗̂Iy with ̂T1D

x0 =−EΔx̂D2x

if ψ(−Δx,y) and ψ(L+Δx,y) were to vanish.
The overall structure of the Hamiltonian (̂Tx + ̂Ty + ̂V) including the leads is

̂Hwith leads

⎡

⎢

⎢

⎢

⎢

⎢

⎣

·
ψ−ny···−1

ψ0...ny−1

ψny...2ny−1

·

⎤

⎥

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

. . .
...

...
...

. . .

. . . H−1,−1 H−1,0 0 . . .

. . . H0,−1 H0,0 H0,1 . . .

. . . 0 H1,0 H1,1 . . .

. . .
...

...
...

. . .

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

...
ψ−ny···−1

ψ0...ny−1

ψny...2ny−1
...

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(17.26)

where HjX ,j′X are ny × ny matrices. If an expression for ψ−ny···−1 is available, the Hamiltonian can be
truncated to the device region
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̂H

⎡

⎢

⎣

ψ0...ny−1

ψny...2ny−1
...

⎤

⎥

⎦=

⎡

⎢

⎣

H0,0 H0,1 . . .

H1,0 H1,1 . . .
...

...
. . .

⎤

⎥

⎦

⎡

⎢

⎣

ψ0...ny−1

ψny...2ny−1
...

⎤

⎥

⎦+

⎡

⎢

⎣

H1Lψ−ny···−1

0
...

⎤

⎥

⎦ . (17.27)

where we have indicated by H1L = H−1,0 the part of the Hamiltonian lost through truncation.

17.2.4.2 Complex Band Structure

To find all algebraic solutions in the leads, we make use of the periodicity of the potential
inside the leads so all solutions {. . . ,ψ−2ny···−ny−1,ψ−ny···−1,ψ0...ny−1, . . .} can be written as
{. . . ,λ 2

Lβ φ ,λLβ φLβ ,φLβ , . . .} and φLβ must satisfy

(H1Lλ 2
Lβ +H0LλLβ +H†

1L)φLβ = EλLβ φLβ (17.28)

where H1L = H−1,−2 = H0,−1, H0L = H−1,−1 = H0,0, and H†
1L = H−1,0. Equation (17.28) is a second-

order eigenvalue problem which can be rewritten as a generalized eigenvalue problem of twice the
rank

[

0 I
−H†

1L EI −H0L

][

φLβ
λLβ φLβ

]

= λLβ

[

I 0
0 H1L

][

φLβ
λLβ φLβ

]

. (17.29)

17.2.4.3 Quantum Transmitting Boundary Conditions

We first consider the case where we only apply transmitting boundary conditions on the left-hand side,
e.g., if the incoming component comes from the right-hand side. This means that the wavefunction in
the left lead has to be a linear combination of the ny outgoing/decaying waves (category i–ii) in the
left lead:

ψ0...ny−1 = ∑
β∈(i−ii)

cLβ φLβ =ΦLcL. (17.30)

where ΦL is the matrix composed of φLβ in its columns. cLβ are a set of coefficients and cL is the
vector composed of cLβ so that ΦLcL denotes a matrix-vector product.

Knowing that inside the leads, each mode β is multiplied by λLβ when moving to the next xj,
ψ−ny···−1 =∑β∈i−ii cLβλLβ φLβ =ΦLΛLcL ifΛL is a diagonal matrix with λLβ as its elements. Together
with Eq. (17.30), this establishes the relationship:

ψ−ny···−1 =ΦLΛLΦ−1
L ψ0...ny−1 (17.31)

resulting in the definition of the self-energy ΣL imposing the transmitting boundary conditions:

H1Lψ−ny···−1 = H1LΦLΛLΦ−1
L ψ0...ny−1 ≡ ΣLψ0...ny−1. (17.32)
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If an extended state with an incoming component from the left-hand side is determined, the
wavefunction is

ψ0...ny−1 = φI + ∑
β∈i−ii

cLβ φLβ = φI +ΦLcL (17.33)

ψ−ny···−1 = λIφI + ∑
β∈i−ii

cLβλLβ φLβ= λIφI +ΦLΛLcL (17.34)

with φI the incoming component with a corresponding λI = eikIΔx. The remainder after the truncation
of the Hamiltonian is now

H1Lψ−ny···−1 = ΣLψ0...ny−1 − (ΣL −H1LλI)φI. (17.35)

17.2.4.4 Determining the Extended States

We are now in a position to apply the general procedure to a numerical determination of the extended
states:

• Choosing a wave with wavevector k inside the leads and setting ψ−ny···−1 = φ , ψ−2ny···−ny−1 =

eikΔxφ , and ψ0...ny−1 = e−ikΔxφ . Substituting this wavefunction into the discretized Schrödinger
equation results in an E(k) eigenvalue problem:

(

H1LeikΔx +H0L +H†
1Le−ikΔx

)

φ = Eφ (17.36)

where H1L,H0L are H−1,0,H0,0 for a wave incoming from the left and H0R,H1R are
Hnx−1,nx−1,Hnx−1,nx for a wave incoming from the right.

• Determine all algebraic solutions φLβ for the left lead using Eq. (17.29) and similarly for the right
lead substituting H1L,H0L with H1R,H0R.

• The solutions with |λβ | > 1 are exponentially growing into the lead (category iv), |λβ | < 1 are
decaying into the lead (category i) and |λβ |= 1 are states which carry current (category ii–iii). The
current can be calculated through the Hellmann-Feynman theorem (see Chap. 8, Sect. 8.1.3), by
calculating the matrix element with

Jβ =
dE
dh̄k

=
1
h̄
φ †
β

d̂H
dk
φβ =

iΔx
h̄
φ †
β (H1λβ −H†

1λ
∗
β )φβ . (17.37)

Assemble all φβ corresponding to outgoing/decaying waves into a matrix ΦL,R. In our example

of a two-dimensional potential, ΦL,R will be orthonormal and Φ−1
L,R = Φ†

L,R but for a general

Hamiltonian this is not the case and Φ−1
L,R has to be computed through matrix inversion.

• Take all outgoing/decaying φβ in the left and the right lead and construct ̂ΣL = H1LΦLΛ−1
LΦL

and

similarly ̂ΣR = H1RΦRΛRΦ−1
R . Solve the linear system

(ÊI − ̂H0 − ̂Σ)ψ = C (17.38)



372 17 Overview of Quantum-Transport Formalisms

with

̂Σ =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

ΣL 0 . . . · ·
0 0 . . . · ·
...

...
. . .

...
...

· · . . . 0 0
· · . . . 0 ΣR

⎤

⎥

⎥

⎥

⎥

⎥

⎦

and C =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

CL

0
...
0

CR

⎤

⎥

⎥

⎥

⎥

⎥

⎦

(17.39)

where for a wave incoming from the left CL = (H1LeikΔxIy −ΣL)φI and CR = 0, or, for a wave
incoming from the right CL = 0 and CR = (HReikΔx −ΣR)φI.

17.2.5 Green’s Function Approach

An alternative approach to solve the previous problem is to employ the Green’s functions of the
Schrödinger equation. In this section, we will limit ourselves to the single-particle picture and
the results we obtain will be equivalent to that of the previous section. For a complete treatment
see Ref. [22].∗ Green’s functions are not only used for solving the Schrödinger equation but also any inhomoge-
neous differential equation

̂Lf (x) = g(x) (17.40)

where L is a linear operator can be solved by first computing the Green’s function

LG(x,x′) = δ (x− x′). (17.41)

If we subsequently know f0(x), the homogeneous solution of ̂Lf0(x) = 0, then a general solution of
Eq. (17.40) is

f (x) = f0(x)+
∫

dx′G(x,x′)g(x′) (17.42)

for any g(x).
If the linear operator has translational invariance, the Green’s function only depends on x−x′ and

can be written using a Fourier transform

G(x,x′) =
∫

dk
2π

eik(x−x′)G(k). (17.43)

Taking the case where the linear operator is L = d2/dx2, multiplying Eq. (17.41) with eikx and
integrating over x, the Green’s function G(k) must satisfy

k2G(k) = 1 (17.44)

and the Green’s function simply is: G(k) = 1/k2. The differential equation in Eq. (17.41) has been
turned into an algebraic equation, Eq. (17.44).



17.2 Ballistic Transport 373

17.2.5.1 Green’s Function of the Schrödinger Equation

In the single-particle picture, we can define the Green’s function as an operator ̂G(E) satisfying

(ÊI − ̂H)̂G(E) =̂I (17.45)

where ̂I is the identity operator ̂Iψ = ψ and ̂H the Hamiltonian. A true Green’s function is obtained
by writing the Green’s function in a real-space basis

G(r,r′;E) = 〈r | ̂G(E) | r′〉. (17.46)

If the eigenvalues and eigenfunctions of the Hamiltonian are known

̂H =∑
α
| α〉Eα〈α |, (17.47)

computing the Green’s function explicitly is straightforward

̂G0(E) =∑
α
| ψα〉 1

E−Eα
〈ψα | (17.48)

provided the spectrum of Eα is discrete. For a closed system, this is indeed the case and Eq. (17.48)
is an analytic function with poles for E = Eα . If ̂H is represented by a matrix, the Green’s function is
simply the matrix inverse of the difference between the energy and the Hamiltonian

̂G0(E) = (ÊI − ̂H)−1. (17.49)

If the system is open, the spectrum becomes continuous and the Green’s function no longer has
poles except in the presence of bound states. For plane waves in one dimension, we can diagonalize
the Hamiltonian

̂H =
∫ ∞

−∞
dk
2π

| k〉E(k)〈k | (17.50)

with E(k) = h̄2k2/(2m) and we would straightforwardly write the Green’s function as

̂G(E) =
∫ ∞

−∞
dk
2π

| k〉 1
E−E(k)

〈k | (17.51)

but unfortunately the expression for the Green’s function is a divergent integral for any E > 0. A way
to circumvent this problem is to add or subtract an infinitesimal complex number so the integral over
k avoids the singularities

limη→0+
̂G(E± iη) = ̂G±(E). (17.52)

For a continuous spectrum ̂G+(E) and ̂G−(E) are different and the former is called the retarded
Green’s function while the latter is called the advanced Green’s function. The retarded and the
advanced Green’s functions are each other’s Hermitian conjugate.
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The retarded Green’s function for the plane waves in one dimension is

GR,1D(x,x′;E) =
∫ ∞

−∞
dk
2π

eik(x−x′)

E+ iη−E(k)
. (17.53)

The poles at k =±k(E) =±
√

E2m/h̄2 are shifted by an amount iηk = iηdk/dE(k), which means that
the negative pole k =−k(E) is shifted to below the real line since dE/dk is negative and the positive
pole is moved above the real line.

(

E+ iη− h̄2

2m
d2

dx2

)

G+(x,x′;E) = δ (x− x′). (17.54)

For x > x′, ei(k(E)+iη)(x−x′) decays for x → ∞ while ei(−k(E)−iη)(x′−x) grows for x → ∞. As a
consequence, only the positive root k = k(E) is allowed for the retarded Green’s function for x > x′:
G+(x,x′;E) = d+eik(E)(x−x′). For x < x′, only the solution decaying for x → −∞ is allowed and
G(x,x′;E) = d−e−ik(E)(x−x′). Calculating the second derivative at x = x′, the boundary conditions for
d+ and d− can be determined yielding the Green’s function

G+(x,x′;E) =− im

h̄2k
eik|x−x′|. (17.55)

17.2.5.2 Spectral Function

The difference between the retarded and the advanced Green’s function is called the spectral function

̂A(E) = i(̂G+(E)− ̂G−(E)) (17.56)

and the spectral function is a Hermitian operator which is a solution of the Schrödinger equation

̂ĤA(E) = îH(̂G+(E)− ̂G−(E))

= i
(

(ÊG+(E)−̂I + iη ̂H)− (ÊG−(E)−̂I − iη ̂H)
)

→ ÊA.

Going back to the expansion for the retarded and the advanced Green’s function, the spectral function
can be identified as an operator projecting into the subspace with a given energy

̂A = i
∫

∑
α

dk
2π

| kα〉
(

1
E+ iη−Eα(k)

− 1
E− iη−Eα(k)

)

〈kβ |

=∑
α

∫

dk | kα〉δ (E−Eα(k))〈kα |

= ∑
kα if Eα (k)=E

| kα〉
∣

∣

∣

∣

dk
dEα(k)

∣

∣

∣

∣

〈kα | (17.57)

If a distribution function f (E) is available, the density operator can be computed as

ρ̂ =
∫

dE
2π

f (E) ̂A(E). (17.58)
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17.2.5.3 Numerical Approach

In a numerical approach, the Hamiltonian is discretized and becomes a matrix and similarly the
Green’s functions are discretized and become matrices. In a way similar to the transmitting boundary
conditions in the Schrödinger approach, for those sites near the lead, the truncation of the matrix
introduces contact terms.

For a system with leads, we define the retarded and the advanced Green’s function to be the
solution of

(ÊI − ̂H0 − ̂Σ+,−(E))G+,−(E) = I. (17.59)

The terms ̂Σ+,−(E) are called the retarded and the advanced self-energies and since ̂G−(E) = ̂G+(E)†,
̂Σ−(E) = ̂Σ+(E)†. As we explained in our derivation of the Green’s function for plane waves in one
dimension, the Green’s functions have to decay inside the leads and adding iη to the energy selects
the components with a velocity dE/d(h̄k) going into the leads. As a consequence, the expression for
̂Σ+(E) is exactly the same as that obtained for Σ in Eq. (17.39).

In general the spectral functions ̂A(E) = i(̂G+(E)− ̂G−(E)) carry the same current to the left as to
the right and do not carry total current. So to enable the description of a system which carries current
a further subdivision is required. A natural way to subdivide the system is to separate the spectral
function into a spectral function of extended states with an incoming component form the left ̂AL(E)
and a separate function of extended states with an incoming component from the right AR(E). To
enable this subdivision, we rewrite the spectral function using Eq. (17.59)

̂A(E) = i(̂G+(E)− ̂G−(E)) (17.60)

= i
(

̂G+(E)(ÊI − ̂H0 − ̂Σ−(E))̂G−(E)− ̂G+(E)(ÊI − ̂H0 − ̂Σ+(E))̂G−(E)
)

= îG+(E)(̂Σ+(E)− ̂Σ−(E))̂G− (17.61)

≡ ̂G+(E) ̂Γ (E)̂G−(E) (17.62)

where ̂Γ (E) can be separated by inspecting ̂Σ in Eq. (17.39). Assigning ̂ΓL,R(E) = i(̂ΣL,R(E)−
̂ΣL,R(E)†), we can write

̂Γ (E) = ̂Γ big
L (E)+ ̂Γ big

R (E) =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

̂ΓL(E) 0 . . . · ·
0 0 . . . · ·
...

...
. . .

...
...

· · . . . 0 0
· · . . . 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

+

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 0 . . . · ·
0 0 . . . · ·
...

...
. . .

...
...

· · . . . 0 0
· · . . . 0 ̂ΓR(E)

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

. (17.63)

where the superscript big denotes that the matrices ̂Γ big
R,L have the dimension of the entire device

compared to ̂ΓR,L which only have the size of the contact terms. The left and right spectral function
are given by

̂AL,R(E) = ̂G
+(E) ̂Γ big

L,R (E)̂G
−(E). (17.64)

Assigning a separate distribution function to the left and the right lead, a non-equilibrium energy-
resolved density matrix carrying current is obtained

ρ̂(E) =
∫

dE
2π

fL(E)̂AL(E)+ fR(E)̂AR(E) (17.65)
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and its current is computed as

I =−eTr(̂Jρ) (17.66)

with J the current operator.
To compute the current at the left lead for an injected wave from the right, we have

J =
i
h̄

(

ψ†
0...ny−1H1Lψ−ny···−1 − c.c.

)

(17.67)

=
i
h̄

(

ψ†
0...ny−1ΣLψ0...ny−1 − c.c.

)

(17.68)

=
1
h̄
ψ†

0...ny−1ΓLψ0...ny−1 . (17.69)

Since the spectral function AR(E) is only composed of extended states with an incoming component
from the right, the current associated with AR(E) can be calculated from J(E) = Tr(AR(E)ΓL)/h̄ =
T(E)/h̄ with the transmission coefficient

TR→L = Tr(̂AR(E) ̂ΓL(E)) = Tr(̂G+(E) ̂ΓR(E)̂G
−(E) ̂ΓL(E)) = T(E) , (17.70)

which equals the current associated with AL(E)

TL→R = Tr(̂G+(E) ̂ΓL(E)̂G
−(E) ̂ΓR(E)) = Tr

(

(̂G+(E) ̂ΓL(E)̂G
−(E) ̂ΓR(E))

†
)

= T(E) . (17.71)

The total current in the system can be computed from

I =−e
∫

dE
2π h̄

(fL(E)− fR(E))T(E) . (17.72)

Note that T(E) defined in this way can exceed 1 if more than one injected wave from the left and right
is available.

17.3 Non-equilibrium Green’s Functions

In the previous section we have dealt with Green’s functions but not accounted for any many-body
effects making the Green’s function approach in the previous section just a mathematical technique to
solve the Schrödinger equation. In a many-body system, NEGFs can be defined yielding the NEGF
formalism, also called the Keldysh–Kadanoff-Baym (KKB) formalism [3, 4].

Most commonly four Green’s functions which are variations of Eq. (17.2) are used, paying
particular attention to the time-ordering. They are called the “lesser,” the “greater,” the “retarded,”
and the “advanced” Green’s function:

G<(r,r′; t, t′) =
i
h̄
〈ψ̂†(r, t′)ψ̂(r′, t)〉 (17.73)

G>(r,r′; t, t′) = − i
h̄
〈ψ̂(r, t)ψ̂†(r′, t′)〉 (17.74)
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GR(r,r′; t, t′) = θ(t− t′)(G>(r,r′; t, t′)−G<(r,r′; t, t′)) (17.75)

GA(r,r′; t, t′) = θ(t′ − t)(G<(r,r′; t, t′)−G>(r,r′; t, t′)). (17.76)

The field operators are in the Heisenberg picture and the expectation value (〈〉) corresponds to the
trace over the density matrix describing the system.

At steady state, the Green’s functions depend only on the difference between the two time-
arguments t− t′. Fourier transforming with respect to t− t′ results in the energy-dependent Green’s
functions G<,>,R,A(r,r′;E). The lesser Green’s function is like an energy-resolved density matrix
and determines where the electrons can be found: the charge density is computed from the diagonal
elements of the lesser Green’s function

n(r) =−
∫

dE
2π

iG<(r,r;E) . (17.77)

The greater Green’s function determines where electrons cannot be found, or, where the holes can be
found

p(r) =
∫

dE
2π

iG>(r,r;E) . (17.78)

The retarded Green’s function is a measure for where electrons will flow if they are injected at r while
the advanced Green’s function is a measure of how electrons flow if current is extracted at r.

In the absence of inelastic scattering, the relations between the Green’s functions are

(ÊI − ̂H0)G
R(r,r′;E) −

∫

dr1 ΣR(r,r1;E)GR(r1,r′;E) = δ (r− r′) (17.79)

G<,>(r,r′;E) =
∫

dr1

∫

dr2 GR(r,r1;E)Σ>,<(r1,r2;E)GA(r2,r′;E) , (17.80)

where the retarded, greater, and lesser self-energy ΣR,<,>(r,r′;E) account for the interactions in the
system.

Ignoring all interactions, The Green’s function formalisms become equivalent to the QTBM to
solve the Schrödinger equation and GR(r,r′;E) = G+(r,r′;E), from Sect. 17.2.5. The only non-
vanishing elements in the retarded self-energies are those associated with the truncation of the matrix
at the left and the right lead ̂ΣR

L,R(E). For ̂ΣR
R (E), the subscript R refers to the retarded nature of the

self-energy while the subscript refers to the right lead. Assigning a different Fermi level to the waves
with an incoming component from the left or right corresponds to setting the lesser self-energy

̂Σ<(E) = − fL(E)[̂ΣR
L (E)− ̂ΣR

L (E)
†] − fR(E)[̂ΣR

R (E)− ̂ΣR
R (E)

†] (17.81)

yielding ̂G<(E) = iρ̂(E) from Eq. (17.65).

In the NEGF formalism, the current can be calculated from the retarded Green’s function:

J =
−eh̄
m

∫

dE
2π

limr→r′(∇−∇′)G<(r,r′;E) . (17.82)

To treat interactions such as the electron–phonon interaction, the self-consistent Born approxima-
tion can be invoked establishing a relationship between the self-energies and the Green’s functions.
The exact relationship is based on the interactions under consideration, e.g., the electron–phonon
interaction but nearest neighbor, local or even more drastic approximations are often required to
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make a numerical solution possible. Indeed, from a numerical point of view, an exact treatment of
collisions appears to be a daunting problem: In principle, the full inversion of a very large dense matrix
is required. Exact solutions have been found in small molecular devices[23] or approximating the
collisions as local, diagonal processes[24]. A general solution, though, remains unattainable. For this
reason, the NEGF formalism is usually applied in its ballistic form. We have already observed that
this is a fully equivalent—and numerically less efficient—way to implement the QTBM.

17.4 Wigner Distribution Functions

The Wigner function is a quantum-mechanical analogue of the Boltzmann distribution function and is
defined as the Wigner–Weyl transformation, which is related to the Fourier transform, of the reduced
density matrix ρ(r,r′) = 〈ψ̂†(rt)ψ̂(r′t)〉:

f (r,p, t) =
∫

Ω
ds e−is·p/h̄ρ(r+ s/2,r− s/2, t). (17.83)

The meaning of the term “reduced” will be made clear in Sect. 18.1.2: Basically, only the degrees of
freedom of a single electron are considered, having “traced out” all other degrees of freedom, such
as those of the thermal bath. Note also that the density matrix is an equal-time Green’s function. We
shall not get into the spiny issue of what one loses by assuming t = t′ in Eq. (17.2).

Similar to the Boltzmann distribution function, the probability of finding a particle at a position r
is given by

n(r, t) =
∫

dp
(2π h̄)3 f (r,p, t) (17.84)

while the electrical current can be computed from

J(r, t) = −e
∫

dp
(2π h̄)3 (p/m)f (r,p, t). (17.85)

The kinetic equation for the Wigner function is given by:

∂
∂ t

f (r,p, t)+
p
m
·∇rf (r,p, t)−

∫

dk′

(2π h̄)3 Vw(r,p−p′)f (r,p′, t) =

(

∂ f
∂ t

)

coll
, (17.86)

where Vw(r,p) is a nonlocal kernel given by:

Vw(r,p) =
1
i

∫

ds
(2π)3

[

V
(

r+
s
2

)

−V
(

r− s
2

)]

e−ip·s . (17.87)

The collision term (∂ fw/∂ t)coll that has to be used to account for scattering events due to the electron–
phonon or electron–electron interactions is not easily written. Usually, a Master-like collisional
integral is used. This has the same form that appears in the Master equation and in the Boltzmann
equation. It will be derived in the next chapter. However, finding its correct expression remains an
elusive goal. If the NEGF approach finds in collisions a major computational stumbling block, the
Wigner formalism has to yet find the correct way to even writing the effect of collisions.
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One way to describe transport is by considering the steady-state solution under the application of
boundary conditions corresponding to a set of leads. In one dimension with open boundaries at x = 0
and x = L, the boundary conditions of the Wigner distribution are given by

f (0,k)|k>0 = fL(k) (17.88)

f (L,k)|k<0 = fR(k) (17.89)

where fL,R(k) give the distribution of the electrons inside the left and right contact.
The choice of the correct boundary conditions is another spiny issue that has raised concerns [25],

since in their simplest formulation they may lead to non-uniqueness of the solution of the Wigner
equation, possibly leading to non-physical solutions.
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Chapter 18
∗From Liouville–von Neumann to Boltzmann:
The Semiclassical Limit

18.1 “Deriving” the Boltzmann Equation

Our goal is to derive the semiclassical Boltzmann transport equation (BTE) from the Liouville–von
Neumann equation (10.33). We should immediately point out that this is an impossible task, at least
at present. Even on purely classical terms, the “derivation” of the BTE is a goal which has eluded
several attempts, including—and, obviously, starting with—Boltzmann himself. The crucial fact we
should appreciate is the following: The physical content of the Liouville–von Neumann equation,
as derived in Chap. 10, Eq. (10.33), is not different from the content of the Schrödinger equation.
Indeed, we have “derived it” from it. As such, the Liouville–von Neumann equation represents purely
ideal physical systems which behave in a fully reversible way: By switching t to −t in Eq. (10.32)
we simply get the complex-conjugate equation that expresses the identical physical picture. Thus,
the system can be “moved in time” in either direction. On the other hand, the BTE will express
systems which behave “irreversibly.” The introduction of the “arrow of time” (as it is often called in the
literature) remains a matter of speculation even today. The book by Zurek summarizes the status of our
understanding [1]. In the quantum-mechanical context, the issue is rendered even more complicated
by considerations related to the point at which we can make a transition from the quantum mechanical,
microscopic description of the world to the classical, macroscopic description. This is related to
confusion regarding the interpretation of measurement in Quantum Mechanics (what differentiates
the measuring system from the measured system? question known as the “von Neumann chain”), and
so of the “collapse” of the wavefunction, the loss of coherence, . . . In a few words: To the plethora of
issues regarding the interpretation of Quantum Mechanics.

Therefore, it should be clear that we cannot “derive” the BTE. Our goal is to see how one may
proceed along this path and see at which stage we must “throw our hands in the air” and invoke
heuristic considerations. They will be plausible considerations, realistic, and sensible. But they will
be “guesses” nevertheless.

Our plan of action is the following: We shall consider first a closed system of electrons (that is,
no electron is allowed to leave or enter the volume) in thermal contact with a system of phonons (the
“thermal bath”). The system will be assumed to occupy a finite volume, to be at finite temperature,
and we shall consider the time evolution of that portion of the density matrix which is related only
to the degrees of freedom of a single electron. This is the so-called reduced density matrix that we
shall define below. It will be at this point—while considering this time evolution—that we will have
to take the “huge plunge” in order to transform our description from reversible and non-dissipative
to an irreversible and dissipative picture. Then we shall “open” the system, now allowing electrons
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to enter and leave the volume. Finally, under some approximations, we shall consider the effect of
inhomogeneity (that is, consider what happens when a spatially varying potential is added to the
picture). The role of other interactions—impurity and electron–electron—will be considered next.

Similar “derivations” have been given in 1955 in formidable pieces of work by Luttinger and
Kohn [2] (accounting for electron-impurity interactions), by van Hove [3] (analyzing the form that
interactions must have in order to yield irreversibility), and by Argyres [4] later on (accounting for
electron–phonon interactions). On classical terms, a wonderful book by Carlo Cercignani on Ludwig
Boltzmann’s life (scientific and not) presents an account of Boltzmann’s struggle to “prove” his
equation (that is, irreversibility, statement technically known as the H-theorem) [5].

Before diving into this discussion, we should briefly mention the history of the Master equation,
since our goal consists essentially in recovering a scattering operator of the form that appears not
only in the BTE (the “collisional integral” at the right-hand side of the BTE), but also in the Master
equation.

Wolfgang Pauli derived the Master equation in 1928 [6] looking at the equation of motion for the
density matrix, Eq. (10.33), Chap. 10, and attempting to use it to describe how a system driven off-
equilibrium approaches thermodynamic equilibrium. Provided we assume that at every time step the
phases of states of the system are randomized, then the occupation ρα of any eigenstate |α〉 of the
Hamiltonian evolves in time according to the Master equation:

dρα
dt

= ∑
β

[Wαβρα − Wβαρβ ] , (18.1)

where Wαβ is the transition rate from state |β 〉 to state |α〉. Note that ρα is just the diagonal element
ραα of the density matrix of the system. The randomization of the phases required by Pauli to obtain
Eq. (18.1) essentially ensures that all off-diagonal elements, ραβ with α �= β , disappear because of
the cancellation of the random phases. Since the Master equation is irreversible, while it has been
“derived” from the reversible Liouville–von Neumann equation, it is clear that this randomization of
the phases is the key element that introduces irreversibility. This is not surprising: By ignoring the
off-diagonal elements of the density matrix, that express interference between any two eigenstates
|α〉 and |β 〉, we lose information and thus generate entropy.

In 1955, Léon Van Hove showed that Eq. (18.1) can be obtained without requiring a randomization
of the phases at every time step [3]. If the interactions causing the transition rates Wαβ are interactions
with a system with a large number of degrees of freedom, it is sufficient to consider particular classes
of initial states and Eq. (18.1) will follow. Interactions with phonons are of this type. Van Hove
described two possible classes of initial states that satisfy his requirements: The class of states that
initially are a superposition of energy eigenstates in a narrow energy range; or, on the opposite side,
initial states that are linear superpositions of energy eigenstates in a very wide energy range. He went
on to clarify that other such classes may exists, but he could not identify any other class. We shall
revisit these ideas in the following, but it is convenient to keep them here, at the beginning of our
discussion.

18.1.1 The Total Hamiltonian

The system we consider is a finite volume of semiconductor in thermal contact with a heat bath, so
that—in the absence of external forces—electrons are in equilibrium with phonons within the volume.
These phonons, in turn, are in equilibrium with the bath. The “bath” is a system so large that its
energy is not appreciably altered when it attempts to keep the phonons in the system at equilibrium
by exchanging energy with them. To simplify the notation, we shall ignore spin indices for now.
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Thus, the total Hamiltonian of the system will be

̂H = ̂Hel + ̂Hph + ̂Hep . (18.2)

Here ̂Hel is the electron Hamiltonian, which is the second-quantized version of the single-electron
Hamiltonian:

̂H(1 el)
el = ̂T + V(H)(r) , (18.3)

where ̂T is the kinetic energy operator. It could be simply −h̄2∇2/(2m∗) in some effective-mass
approximation, or it could be E(−i∇) in the Kohn–Luttinger equation, more generally. We shall
leave it quite general for now. The term V(H) is the Hartree potential. To express the many-electron
Hamiltonian, we denote by |i〉 and Ei the eigenstates and eigenvalues of the free single-electron
Hamiltonian. Thus:

̂Hel = ∑
i

Ei ĉ†
i ĉi . (18.4)

To fix the ideas, the wavefunction ψi(r) = 〈r|ĉ†
i |0〉 is just the conventional single-particle

wavefunction, i.e., an eigenstate of the non-second-quantized free Schrödinger equation in the
presence of the potential energy V(H)(r). Note that the index i actually denotes a set of 3 indices, such
as the wavevector k when V(H)(r) = 0. Therefore, the index i is a very general index that lumps all
quantum numbers, discrete and continuous, in a compact way. It is equivalent to the pair of indices
(α,k) used in the previous chapter.

The phonon Hamiltonian has the form

̂Hph = ∑
qη

h̄ωqη b̂†
qη b̂qη , (18.5)

and the electron–phonon Hamiltonian has the form [Eq. (9.102)]:

̂Hep = iα ∑
ijqη

[ F
(η)
ij (q)ĉ†

i b̂qη ĉj − F
(η)∗
ij (q)ĉ†

j b̂†
−qη ĉi ] . (18.6)

This expression can be derived easily from Eq. (13.25), Chap. 13, defining

iαF (η)
ij (q) = 〈i|AqηIij eiq·r|j〉 . (18.7)

This is just a change of representation going from the basis set of plane waves used to define the
operators ĉk and ĉ†

k used, to the more general basis set of states |i〉 used here to define the creation
and annihilation operators ĉ†

i and ĉi. The dimensionless parameter α has been formally factored out
in order to let us expand in powers of α . It is just a mathematical device which allows us to use
perturbation theory at various orders of α .
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18.1.2 The Reduced Density Matrix

Our system is constituted by electrons and ions (phonons). But what we are really interested in are
electrons. Actually: Single electrons. We “admit our ignorance,” being unable to get a full description
of the large number of ionic and electronic degrees of freedom. Thus, we are really interested in what
is known as the reduced, single-electron density matrix:

ρ̂el(t) = ∑
ij

〈ĉ†
i ĉj〉t |i〉〈j| = ∑

ij

Trel Trph[ρ̂(t)ĉ†
i ĉj] |i〉〈j| . (18.8)

Its matrix elements (ij) are (as a function of time)

ρel,ij(t) = 〈ĉ†
i ĉj〉t = Trel Trph[ρ̂(t)ĉ†

i ĉj] . (18.9)

The reduced density matrix ρ̂el singles out the single-electron elements while we take the trace (that
is, we average over) all other degrees of freedom due to ions and all other electrons represented by the
full density matrix ρ̂(t).

18.1.3 Equations of Motion

Let’s now work in the interaction picture (or interaction representation) in which observables evolve
according to the “free” Hamiltonian ̂Hel + ̂Hph while states evolve according to the perturbation
Hamiltonian ̂Hep.

∗ At this point it is appropriate to recall that the expectation value at time t of an observable ̂A on a
state |ψ〉 is

〈ψ(t = 0)| e−(i/h̄)̂H0t e−(i/h̄)̂H′t
̂A(t = 0) e(i/h̄)̂H′t e(i/h̄)̂H0t|ψ(t = 0)〉 ,

where we have denoted by ̂H0 the free Hamiltonian ̂Hel + ̂Hph and by ̂H′ the perturbation ̂Hep. In the
Schrödinger picture, this expectation value is written as:

S〈ψ(t)| ̂A(t = 0) |ψ(t)〉S ,

where the state evolves in time as |ψ(t)〉S = e(i/h̄)(̂H′+̂H0)t|ψ(t = 0)〉. In the Heisenberg picture, this is
written as:

〈ψ(t = 0)| ̂AH(t) |ψ(t = 0)〉 ,

where the observable evolves in time as ̂AH(t) = e−(i/h̄)(̂H0+̂H
′)t
̂A(t = 0) e(i/h̄)(̂H′+̂H0)t. Finally, in the

interaction picture, the expectation value is written as:

I〈ψ(t)| ̂AI(t) |ψ(t)〉I ,

where |ψ(t)〉I = e(i/h̄)̂H′t|ψ(t = 0)〉 and ̂AI(t) as ̂AI(t) = e−(i/h̄)̂H0t
̂A(t = 0) e(i/h̄)̂H0t. We should also

recall that the density matrix evolves in time with the dynamics that controls the time evolution of the
states.
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Therefore, in this representation (a mix of the Schrödinger and Heisenberg representations) the
time evolution of ρ̂ is controlled only by ̂Hep:

∂ ρ̂(I)(t)
∂ t

= − i
h̄
[̂H(I)

ep (t), ρ̂(I)(t)] , (18.10)

where [., .] denotes the conventional commutator and the superscripts (I) remind us that we are indeed
working in the interaction representation. Integrating once Eq. (18.10), we obtain

ρ̂(I)(t) = ρ̂(I)(0) − i
h̄

∫ t

0
dt′ [̂H(I)

ep (t
′), ρ̂(I)(t′)] . (18.11)

Inserting this into the right-hand side of Eq. (18.10) to have

∂ ρ̂(I)(t)
∂ t

= − i
h̄
[̂H(I)

ep (t
′), ρ̂(I)(0)] − 1

h̄2

∫ t

0
dt′ [̂H(I)

ep (t), [̂H
(I)
ep (t

′), ρ̂(I)(t′)]] . (18.12)

The equivalent expression for the reduced density matrix can be obtained by tracing the expression
above over the ionic and electronic degrees of freedom:

∂ 〈ĉ†
i ĉj〉t

∂ t
=− i

h̄
Trel Trph{ [̂H(I)

ep t), ρ̂(I)(0)] ĉ†
i ĉj}

− 1

h̄2

∫ t

0
dt′ Trel Trph {[̂H(I)

ep (t), [̂H
(I)
ep (t

′), ρ̂(I)(t′)]] ĉ†
i ĉj} . (18.13)

We have to spend a few words about the initial density matrix ρ̂(I)(0). First, we shall assume that
the electron–phonon coupling is weak enough to allow us to factorize the full density matrix into
separate and diagonal electronic and ionic components:

ρ̂(I)(t) = ρ̂(I)el (t)⊗ ρ̂(I)ph (t) , (18.14)

where the phonon part of the density matrix is assumed to be diagonal, thanks to the phase-breaking
occurring between the heat bath and the device. Thus:

ρ̂(I)ph (t) = ∑
{nq}

ρ̂ph{nq}(t) |{nq}〉〈{nq}| . (18.15)

Here we have used the shorthand |{nq}〉 to indicate a general state in the phonon Fock space. The
general state of the full electron+phonon Fock space will be denoted as |{Nn}{nq}〉.

Regarding the electronic component of ρ̂ , we should have in mind the situation in which our
“chunk” of semiconductor is sealed off from the external world (that is, electrons cannot enter or
exit the “chunk”) for t < 0. Let’s call “contacts” the external world and “device” the chunk. At t = 0
we let the contacts “flood” the device, close it again, and at later times we watch the device re-
adjust to a new steady-state situation, in equilibrium with the reservoirs, the external bias, and its own
internal dynamics. We always assume the contacts to be reservoirs in thermal equilibrium with the
environment, and to be described by a purely diagonal density matrix, the occupation of each state
being determined by the Fermi–Dirac factor. Actually, some off-diagonal terms cannot vanish, if we
want to represent electrons in the reservoirs as characterized by a dephasing length λφ . However, here
we shall assume that the devices we are interested in have active regions L < λφ , so that we can ignore
the finite size of the injected electrons when analyzing transport over such a short length-scale and
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assume that they are described by fully delocalized wavefunctions. Therefore, we can assume that at
t = 0 the electronic density matrix is diagonal of the form:

ρ̂(I)el (0) = ∑
{Nn}

ρ{Nn} |{Nn}〉 〈{Nn}| , (18.16)

where |{Nn}〉 is a state of Fock space in the notation given above and the occupation ρ{Nn} of each
many-particle state |{Nn}〉 is just the Fermi function at the total energy E{Nn} = ∑Nn∈{Nn} Nn En.

Let’s anticipate a bit what we are going to find out. First, note that we would like to be able to
ignore the off-diagonal terms of the (reduced) density matrix. The first term at the rhs of Eq. (18.13),
usually called a “memory” term (since it depends on the state of the system at t = 0), in general is
quite troublesome. However, as we shall see, our assumption of a diagonal phonon density matrix will
make it vanish.

The analysis of the second term at the rhs of Eq. (18.13) requires additional work and assumptions.
In dealing with the electron–phonon [4] or electron-impurity interaction [2], the crucial argument
has been given by van Hove [3]. It is essentially an argument based on the large number of degrees of
freedom of either the thermal bath—for phonons—or the random distribution of very many dopants—
as shown by Kohn and Luttinger—which shows that for off-diagonal elements of the density matrix
the second-order terms of Eq. (18.13) give rise to “out-scattering” terms (at least, when we bypass
the assumption of a diagonal density matrix at the initial time, as it will be clear below), but the
“in-scattering” terms vanish. Therefore, off-diagonal elements can decay, but they cannot grow. If
the initial configuration of the system (or, in our case, of the reservoirs) is diagonal, one can ignore
the off-diagonal elements. Note that an additional source of off-diagonal elements does not conserve
energy on a short time scale during a collision: In very fast transients as scattering occurs, the electrons
can be in virtual intermediate states which are superpositions of eigenstates of the Hamiltonian. Their
existence implies that there exist off-diagonal terms of the density matrix describing the “occupation”
of the cross-terms arising from these superpositions. But here we shall take the “usual” approximation
of completed collisions (Fermi’s Golden Rule) and ignore these effects.

Now, the first term at the right-hand side of Eq. (18.13) can be explicitly written as:

Trph Trel {[̂Hep, ρ̂(0)]ĉ†
i ĉj}= Trel

⎧

⎨

⎩

∑
{nq}

ρ̂el(0)
[

〈{nq}|̂Hepρ̂ph(0) |{nq}〉 ĉ†
i ĉj

− 〈{nq}|ρ̂ph(0) ̂Hep |{nq}〉 ĉ†
i ĉj

] }

. (18.17)

Since ̂Hep changes one phonon occupation number by one unit, this term vanishes, as we had
anticipated.

Let’s now consider the more complicated second-order term in Eq. (18.13). We consider only
second-order terms in α , so we can replace ρ̂(t′) with ρ̂(0). Indeed ρ̂ changes in time only under
the action of the perturbation Hamiltonian, so at any given time its deviation from the initial value is
of the order α and we may ignore it. So, expanding the commutators, this term reads

− 1

h̄2

∫ t

0
dt′ ∑

{Mm}
∑
{nq}

[

〈{Mm}{nq}| ̂H(I)
ep (t) ̂H

(I)
ep (t

′) ρ̂(I)(0) ĉ†
i ĉj |{nq}{Mm}〉

+ 〈{Mm}{nq}| ρ̂(I)(0) ̂H(I)
ep (t

′) ̂H(I)
ep (t) ĉ†

i ĉj |{nq}{Mm}〉
− 〈{Mm}{nq}| ̂H(I)

ep (t) ρ̂(I)(0) ̂H
(I)
ep (t

′) ĉ†
i ĉj |{nq}{Mm}〉

− 〈{Mm}{nq}| ̂H(I)
ep (t

′) ρ̂(I)(0) ̂H(I)
ep (t) ĉ†

i ĉj |{nq}{Mm}〉
]

. (18.18)
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Our assumption of a diagonal phonon density matrix shows that Hamiltonian terms of the form
b̂†

qη b̂q′η contribute only if q = q′. Thus, in the following we will extract from the expectation values
the phonon terms

〈b̂†
qη b̂q′η〉t ≈ ∑

{nq}
〈{nq}| ρ̂ph(0) b̂†

qη b̂q′η |{nq}〉

= ∑
{nq}

ρ̂ph{nq}(0) 〈{nq}| b̂†
qη b̂q′η |{nq}〉 = nqη δqq′ , (18.19)

where nqη is the Bose–Einstein occupation number for phonons of mode η . Similarly:

〈b̂qη b̂†
q′η〉t = (nqη +1) δqq′ . (18.20)

Note that the weak coupling approximation has allowed us to assume that the phonon bath remains
always at thermal equilibrium, because we have used ρ̂ph(0) in place of ρ̂ph(t). Coherent phonon and
electron–phonon effects are indeed higher-order corrections. A side benefit of this simplification is

that the scattering kernel W(η±)
im below—see Eq. (18.27)—becomes a function of t− t′ rather than of t

and t′ separately, a fact which allows us to go to the van Hove limit.
The first term (an out-scattering term, since it will yield a negative contribution to ∂ρii/∂ t,

thus corresponding to scattering “out” of the state |i〉) at the right-hand side of Eq. (18.18) can be
decomposed into a phonon emission term (containing the term b̂qη b̂†

qη ) and a phonon-absorption term

(containing b̂†
qη b̂qη ). Mixed terms containing b̂†

qη b̂†
qη or b̂qη b̂qη do not contribute, as they vanish on

diagonal terms. Using Eq. (18.20), the absorption term can be written as

− α2

h̄2

∫ t

0
dt′ ∑

qη
∑
{Nn}

ρel{Nn} nqη 〈{Nn}|ĉ†
i ĉj ∑

lm

ĉ†
l ĉm ∑

hr

ĉ†
h ĉr |{Nn}〉

× F
(η)
lm (q)F (η)∗

hr (q) e−(i/h̄)(El−Em+h̄ωqη )t e−(i/h̄)(Eh−Er−h̄ωqη )t′ . (18.21)

The six-particle term 〈{Nn}|ĉ†
i ĉj ĉ†

l ĉm ĉ†
h ĉr|{Nn}〉 can now be handled in the following way

intimately related to van Hove’s original argument: Note that the expression above is just

∑
{Nn}

ρ{Nn}〈{Nn}|̂H(I)
ep (t) ̂H

(I)
ep (t

′) ĉ†
i ĉj|{Nn}〉 . (18.22)

Let us now insert a completeness into Eq. (18.22):

∑
{Mm}{Nn}

ρ{Mm}〈{Nn}|̂H(I)
ep (t) |{Mm}〉〈{Mm}|̂H(I)

ep (t
′) ĉ†

i ĉj|{Nn}〉 . (18.23)

This term is now a genuine “van Hove term”: It expresses the transition from an initial state
̂H(I)

ep (t′)ĉ†
i ĉj|{Nn}〉 to a final state ̂H(I)

ep (t)|{Nn}〉 via a sum over a very large number of the many-
electron intermediate states |{Mm}〉. When the phases of the initial and final states differ, the phases
of the intermediate states will interfere destructively as we sum over very many (say N) electron states
and the contribution to the double sum in Eq. (18.23) will be limited to “diagonal” processes, yielding
a contribution ∼ O(N). If, instead, the initial and final states have identical phases, the phases of
the intermediate states will interfere constructively and we will have a contribution ∼ O(N2) from
all terms to the sum. Therefore, in the limit of infinitely many electronic degrees of freedom, only

states ̂H(I)
ep (t′)ĉ†

i ĉj|{Nn}〉 and ̂H(I)
ep (t)|{Nn}〉, which have identical phases, will give a non-vanishing

contribution to the sum in Eq. (18.21). The question now is to find out when this happens.
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Since in Eq. (18.21) we consider transitions originating at time t′ ranging from the initial time 0
to the final time t, if we restrict our attention to final times t large enough (∼ O(α−2)) we see that in
the multiple sums in Eq. (18.21) constructive phase interference will occur only for terms for which
El −Em = −(Eh −Er), and this constructive interference among the phases occurs at times t′ ∼ t.

Only under these conditions do the phases of ̂H(I)
ep (t′)|{Nn}〉 and of ̂H(I)†

ep (t)|{Nn}〉 match. Thus, in
turn, in order for our phases of the initial and final states to match fully, we must have i = j, so that the
phases of |{Nn}〉 and ĉ†

i ĉj|{Nn}〉 also match. Thus, we reach the conclusion that off-diagonal terms
(i �= j) drop out of the picture. Note that this depends on several assumptions: (1) we can truncate the
perturbation expansion at second-order (relying on the weakness of the electron–phonon interaction),
so that we may replace ρ̂(I)(t) with ρ̂(I)(0), (2) that ρ̂(I)(0) is diagonal, a condition we find in a small-
enough region of the semiconductor, and (3) that we consider the dynamics only at large enough times.
As we shall see below when taking the van Hove limit, this allows us to assume completed collisions.
At short times off-diagonal elements matter (those corresponding to the off-shell virtual states present
at short times during a collision process).

Now we look at each of the surviving “diagonal” terms and see that only terms l = r, m = h should
be retained, so that we are left with terms of the form 〈{Nn}|ĉ†

i ĉi ĉ†
l ĉm ĉ†

m ĉl|{Nn}〉. We must now have

ĉm ĉ†
m ĉl|{Nn}〉 = ĉl ĉ†

i ĉi|{Nn}〉 . (18.24)

We should have either i = m or i = l. The first set of terms will yield a vanishing contribution since
the term 〈ĉ†

i ĉi ĉiĉ
†
i ĉm ĉ†

m〉 always vanishes (a state |{Nn}〉 either contains an electron in state |i〉, so
that ĉiĉ

†
i |{Nn}〉 = 0, or it does not, in which case ĉ†

i ĉi|{Nn}〉 = 0). Thus, we are left with the second
set of terms in the sum which yields terms of the form

〈{Nn}|ĉ†
i ĉi ĉ†

i ĉm ĉ†
m ĉi|{Nn}〉 = 〈{Nn}|ĉ†

i ĉi ĉm ĉ†
m|{Nn}〉 . (18.25)

Now we can use the “usual” Hartree–Fock factorization

〈ĉ†
i ĉiĉmĉ†

m〉 ≈ 〈ĉ†
i ĉi〉[1−〈ĉ†

mĉm〉] − 〈ĉ†
i ĉm〉[δim −〈ĉ†

mĉi〉]. (18.26)

Inserting this expression into the out-scattering term (18.21), the second term at the rhs of the
expression above drops out and we can rewrite the out-scattering terms in the form:

−
∫ t

0
dt′

1
2 ∑mη

K(η+)
mi (t− t′) ρi(t

′) [1−ρm(t
′)] , (18.27)

having defined the phonon-absorption rate:

K(η+)
mi (t− t′) =

2

h̄2 α
2 ∑

q
|F (η)

mi (q)|2 nqη e−(i/h̄)(Ei−Em+h̄ωqη )(t−t′) . (18.28)

In these equations we have written simply ρi(t) for the diagonal elements 〈ĉ†
i ĉi〉t of the reduced density

matrix.
The second term in the integrand of Eq. (18.18) gives the same contribution, but with the “energy

phase” of opposite sign, that is, it gives the complex conjugate of the term we have just derived.
Thus, adding these two terms we have

(

∂ρi

∂ t

)

out
= − ∑

mη

∫ t

0
dt′ Re[K(η+)

mi (t− t′)] ρi(t
′) [1−ρm(t

′)] , (18.29)
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The third and fourth terms in Eq. (18.18) are “in-scattering terms” which can be handled in an
identical way. Thus, accounting for all of the terms second order in α:

(

∂ρi

∂ t

)

= ∑
mη

∫ t

0
dt′
{

Re[K(η+)
im (t− t′)] ρm(t

′) [1−ρi(t
′)]

− Re[K(η+)
mi (t− t′)] ρi(t

′) [1−ρm(t
′)]
}

, (18.30)

which has been called the “pre-Master equation” by Zwanzig [7].
Note that despite having forced the phonons to be at equilibrium, despite having taken the Hartree–

Fock approximation, this equation is still symmetric under time-reversal and it shows how collisions
at time t depend on the history of the system at all earlier times t′. In order to proceed we need the
equivalent of the assumption originally made by Boltzmann of “molecular chaos” (Stosszahlansatz:
The assumption that collisions depend only on the instantaneous variables before the collisions, not
on the previous history going back to the previous collision) is what is needed to avoid this “memory”
in classical systems. Here we need another powerful and somewhat mysterious “trick”: We now take
the “van Hove limit”: We set τ = α2(t − t′) (where, recall, α is the dimensionless strength of the

interaction), Gim(τ) = Re[W(η+)
im (t)], and Pi(τ) = ρi(t). Then, the out-scattering terms above can be

rewritten as follows:

(

∂Pi

∂τ

)

out
= − ∑

mη

∫ τ/α2

0
dτ ′ Gim(τ ′) Pi(τ−α2τ ′)[1 − Pm(τ−α2τ ′)] . (18.31)

Now, in the limit t → ∞ and α2 → 0, whilst τ remains constant, the factors containing the
“populations” P can be taken outside the time integral. The remaining factor

∫ ∞
0 dτ ′G(τ ′) contains

a time exponential [see the exponential in Eq. (18.28)] whose imaginary part (the principal part of the
integral) is absorbed into the bare energy Ei as a self-energy correction and whose real part gives the
energy-conserving delta-function π h̄δ (Em −Ei), provided we regularize those integrals by adding an
exponential damping term e−ητ and let η → 0. Note that this is the only step which breaks the time-
reversal invariance of the problem! Irreversibility does not arise from the Hartree–Fock factorization.
It does not even arise from the random-phase assumption (infinite-volume limit, infinitely many
degrees of freedom, etc.) used to invoke the van Hove “diagonal” argument. It only arises from
the regularization of the complex time exponentials. Physically, the time scale η−1 is a mysterious
“decoherence” time scale which allows us to complete the collision and get the delta-function. Thus,
Eq. (18.29) becomes

(

∂ρi

∂ t

)

out
= − ∑

m
W(η+)

mi ρi(t) [1 − ρm(t)] , (18.32)

where the “golden-rule” transition rate is

W(η±)
mi =

2π
h̄
α2 ∑

q
|F (η)

im (q)|2
(

1
2
± 1

2
+nqη

)

δ (Ei −Em ∓ h̄ωqη) . (18.33)

Accounting for the other terms (in-scattering) in Eq. (18.18), accounting for all phonon branches η
and both emission and absorption processes (±), we finally obtain the Master equation in the presence
of electron–phonon interactions:

∂ρi

∂ t
= ∑

mη±

{

W(η±)
im ρm(1−ρi) − W(η±)

mi ρi(1−ρm)
}

. (18.34)
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We should stress again that taking the van Hove limit by “completing” the collisions is a
clear mathematical step required to regularize the integral. Yet, physically, its justification remains
mysterious. Herein lies the mystery of the onset of the “arrow of time.”∗ Although we have explicitly written the equation of motion for the diagonal elements of the density
matrix, it is interesting to consider also the dynamics for the off-diagonal elements, ρij with i �= j:

∂ρij

∂ t
=

1
ih̄
(Ei −Ej)ρij(t)

+ ∑
mη±

{

δij W(η±)
im ρmm(1−ρij)− 1

2
[W(η±)

mi +W(η±)
mj ]ρij(1−ρmm) +

}

. (18.35)

Note that the off-diagonal elements can only decay, since only the first term on the rhs survives when
i �= j. The system “decoheres,” unless some external driving force injects linear superpositions of
eigenstates into the system.

18.1.4 Boundary Effects: The “Contacts” of an Open System

So far we have considered a “closed” system: Our “device” has been populated at t = 0, but left closed
thereafter, so that no electrons could leave or enter the device. Let’s now consider an open system:
The internal dynamics—so the “reshuffling” of the occupation ρi of the states |i〉—is described by
Eq. (18.34) above, but now we must somehow account for the fact that electrons can be exchanged
between the device and some external reservoirs of electrons. Let’s assume that these are ohmic
“contacts”: They are extremely large reservoirs of electrons kept at thermal equilibrium by the strong
scattering occurring within them. Their overall occupation is essentially unchanged by subtraction or
addition of a few electrons to or from any of their electronic states, thanks to their large size, and they
are assumed to inject electrons whenever the occupation ρi of the state |i〉 falls below the equilibrium
occupation fi (the Fermi function in the contact) and absorb electrons without any reflection. For
simplicity, let’s start by considering a one-dimensional device of length L (along the z-axis). We then
have two contacts, one at the left (say, at z = 0) and one at the right (at z = L). Each state |i〉 will
be doubly degenerate since at each energy we will have two states: One corresponding to an electron
injected from the left, partially reflected back to the left and partially transmitted to the right, say
|i〉+ and one corresponding to an electron injected from the right contact, |i〉−. The two contacts will
be characterized by the Fermi levels EF,L and EF,R, respectively. Thus, we can augment the Master
equation (18.34) by the terms:

(

∂ρi

∂ t

)

left
= Φi,L (ρi − fi,L) (18.36)

expressing the exchange of electrons with the left “contact,” where fi,L = {1 + exp[(Ei −
EF,L)/kBT)]}−1 is the Fermi function of the left contact, and

(

∂ρi

∂ t

)

right
= Φi,R (ρi − fi,R) (18.37)

for the right contact, where fi,R = {1+ exp[(Ei −EF,R)/kBT)]}−1 is the Fermi function of the left
contact. The terms Φi,L and Φi,R are flux terms. In our one-dimensional example they will have the
form:
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Φi,L =
υi,z,L

Li+
, (18.38)

where υi,z is the component of the velocity of an electron at energy Ei perpendicular to the device-
contact boundary and Li is the normalization required to normalize the wavefunction 〈z|i〉+ so that

1
Li+

∫ L

0
dz |〈z|i〉+|2 = 1 , (18.39)

and similarly for the states |i〉−. Thus, the total transport equation will be

∂ρis

∂ t
= ∑

mη±ss′

{

W(η±)
isms′ ρms′(1−ρis) − W(η±)

ms′is ρis(1−ρms′)
}

+ Φi,s (ρis − fi,s) , (18.40)

where s,s′ =± and the label s of the contact term is L for s =+ and R for s =−.
Note that the treatment of “contacts” we have just given is phenomenological: It makes sense, but
there is no formal justification available to prove the uniqueness (or even the correctness) of the
expressions (18.36)–(18.38) above.

Figure 18.1 illustrates schematically ballistic transport in an open system. Figures 18.1 and 18.2
illustrate how the Master equation describes dissipative transport in the “small” open system.

Fig. 18.1 Schematic illustration of ballistic electron transport in an open system, in this case an n+− i− n+ “diode”:
Waves are injected from the left contact, transmitted to the right and partially reflected (red lines). Similarly, waves
are injected from the right contact (blue lines), partially transmitted to the left or reflected. The occupation of these
states in the ballistic regime is controlled by the Fermi–Dirac distributions at the left and right contact. The left and
right contacts (or reservoirs) are held at different chemical potentials (Fermi levels) by an externally applied bias. The
electron potential energy (solid black line) is determined by solving Poisson equation with charge given by the dopants
and the electron charge obtained from Schrödinger equation. Therefore, Poisson and Schrödinger equations must be
solved self-consistently
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Fig. 18.2 The same schematic situation illustrated in Fig. 18.1, but now the occupation of the electronic states is
determined not only by Fermi–Dirac distribution of the contacts, but also by the Master scattering operator that accounts
for electronic transitions among all electronic states (green arrows). This scattering operator accounts for collisions only
to first order, so the procedure is correct only in small structures

18.1.5 Inhomogeneous Transport in Long Devices: The BTE

Equation (18.40) is valid, as we have discussed, when the size L of the “device” is smaller than the
dephasing length (the mean free path for inelastic collisions) λφ . So, it may be our final transport
equation if we were to deal exclusively with very small devices or “chunks” of semiconductor. If,
instead, we have to deal with devices of much larger dimensions, we are in the opposite limit of
contacts injecting wavepackets which are much smaller than the active region of the device, L >> λφ .
We can now proceed as follows.

Let’s consider first Eq. (18.10), but now taking the matrix elements of ρ̂ over eigenstates of the
field-free (i.e., V(H)(r) = 0) free-electron Hamiltonian, i.e., plane waves such that ̂T |k〉 = Ek|k〉,
where k = (K,kz). Then, in place of Eq. (18.40), in the nondegenerate limit (that is, 1−ρk′k′ ≈ 1)
one obtains

∂ρkk

∂ t
= ∑

k′ �=k

[Wk;k′ ρk′k′ − Wk′;k ρkk] +
i
h̄
〈k|[ρ̂(I)(t),−eϕ]|k〉 +

(

∂ρkk

∂ t

)

res
, (18.41)

where −eϕ(r) is the electrostatic potential associated with the Hartree potential V(H)(r) introduced
in Eq. (18.3) and the last term is just the reservoir (or “contact”) term discuss above. Let’s now divide
the region (0,L) into intervals of length δ z << λφ , so that in each interval we are brought back to
the limit of delocalized packets and negligible off-diagonal elements of the density matrix. Under the
assumption that the potential ϕ varies slowly over the average electron wavelength, in each interval
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we can consider the field as constant, i.e., −eϕj(z) ≈ −eϕ(zj)+ eFj(z− zj) in the jth interval. Note
that now the index j labels spatial positions, not electronic states, since these are now labeled by the
wavevector k. Therefore, to first order in α and in the electric field Fj (denoted by F in this and in the
following chapter, to avoid confusion with the energy E):

i
h̄
〈k|[ρ ,−eϕj]|k〉 = −eFj

h̄
∂ρkk

∂kz
. (18.42)

This expression follows from the fact that as the momentum operator is just the derivative with respect
to spatial coordinates (i.e., pz =−ih̄∂/∂ z), so the operator position is just the derivative with respect
to momentum coordinates, that is z = i∂/∂kz, as it follows either from simple considerations on
Fourier transforms or from the commutation rule [z,pz] = ih̄. In addition, embracing the semiclassical
limits, one can assume that the fluxes in and out of each interval consist of particles with completely
randomized phases, so that, in analogy with Eq. (18.38):

(

∂ρkk

∂ t

)

res, j
= [ ρ j+1

kk −ρ j
kk]

υz,j

δ z
. (18.43)

(where, in the case of simple parabolic bands υz,j = h̄kz,j/m∗ and h̄kz,j = [2m∗(Ek + eϕj)]
1/2)

for all intervals not “touching” the contacts. The factor δ z in the denominator originates from the
normalization of the plane waves to unity in each interval. In the limit of vanishing λφ/L, δ z → 0,

the diagonal elements ρ j
kk become the “distribution function” f (k,zj, t), the discrete index j can be

replaced by continuous variables, and Eqs. (18.41)–(18.43) yield

∂ρkk

∂ t
= ∑

k′ �=k

[Wk;k′ ρk′k′ − Wk′;k ρkk] − eF(z)
h̄

∂ρkk

∂kz
+ υz

∂ρkk

∂ z
, (18.44)

which is the Boltzmann equation for an inhomogeneous (in the z direction) system, subject to the
boundary conditions:

(

∂ρkk

∂ t

)

res,L
= υzj+

(

∂ρkk

∂ z

)

z=0
. (18.45)

and
(

∂ρkk

∂ t

)

res,R
= − υzj−

(

∂ρkk

∂ z

)

z=L
. (18.46)

We can generalize Eq. (18.44) to three dimensions:

∂ f (r,k, t)
∂ t

= −dr
dt

·∇rf (r,k, t) − dk
dt

·∇kf (r,k, t)

+ ∑
k′

[ W(k,k′)f (r,k′, t) − W(k′,k)f (r,k, t) ] , (18.47)

which, using the equations of motion and introducing the electrostatic potential φ(r) such that
−∇rφ(r) = F, becomes

∂ f (r,k, t)
∂ t

= −1
h̄
∇kE(k) ·∇rf (r,k, t) + e∇rϕ(r, t) ·∇kf (r,k, t)

+ ∑
k′

[ W(k,k′)f (r,k′, t) − W(k′,k)f (r,k, t) ] . (18.48)
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Fig. 18.3 Schematic illustration of the physical picture described by the Boltzmann transport equation. In phase-space,
the horizontal axis represents the spatial coordinates of a particle, the vertical axis their momenta. Electrons in a system
are distributed in phase-space. Drift due to an external spatially dependent driving force (an electric field) has the
main effect of pushing the distribution along the vertical axis, by accelerating them, as well as along the horizontal
axis as particles move. Diffusion, instead, spreads the distribution spatially. Collisions “reshuffle” electrons within the
distribution

Figure 18.3 illustrates the phenomenological interpretation of the BTE: The total variation with
respect to time of the distribution function is due to drift (electrons exit the infinitesimal phase-space
volume drdk or enter it from the outside because of the electric field which moves electrons along
the k-axis), diffusion (in or out the infinitesimal phase-space volume drdk as electron diffuse in real
space, so along the r-axis), or scattering.

18.1.6 Review of the Assumptions Behind the BTE

It is useful to recall the several approximations we have been forced to make in order to reach the
BTE:

1. Plane waves of the form eik·r (or the corresponding plane-wave “envelopes” times a Bloch factor
in a semiconductor) describe an electron with well-defined momentum but uniformly distributed in
space. Instead, an electron localized in space must be described by a “wave packet” which consists
of a linear superposition of plane waves. Thus, as a consequence of Heisenberg’s principle, we
must have some uncertainty about the electron position as well as about its momentum. However,
we have assumed that the size of the device is much larger than the size of the electron wave packet
(given heuristically by the dephasing length λφ ) and that the energy scales of interest (mainly,
the applied bias) are much larger than the uncertainty implied by the “spread” of the electron
momentum. Therefore, we have assumed that the electron can be described by its well-defined
position r and its well-defined (crystal) momentum h̄k, as it if were a classical particle.



18.2 Coulomb Interactions 395

2. The electric field and all other perturbations are weak enough so that we can use the envelope
approximation to describe the motion of electrons (or holes) in a semiconductor.

3. All collision processes are independent, instantaneous, local in space, and are perturbations weak
enough to justify the use of first-order perturbation theory, Fermi’s Golden Rule or the first Born
approximation.

4. As a consequence, all collision processes depend only on the local, instantaneous electron
variables, without retaining memory of where and when the previous collision happened. This
is the equivalent of Boltzmann’s assumption of “molecular chaos” which is essential to arrive at
irreversible dynamics.

18.2 Coulomb Interactions

In the previous discussion we have considered a system consisting of an electron gas and phonons.
We have seen that the interactions between the two systems are of the van Hove type, a property that
is necessary (but not sufficient!) to obtain a Master-type collisional operator and irreversibility. Here
we wish to consider Coulomb interactions and see whether or not these are also of the van Hove type.

We have already emphasized several times that scattering with impurities is, by itself, not of the
van Hove type: Ignoring phonons, in a small structure with a few dopants, we can describe electronic
transport exactly solving self-consistently the Schrödinger equation with open boundary conditions
and Poisson equation. This is routinely done using the ballistic version of the non-equilibrium Green’s
functions (NEGFs) [8, 9] or the quantum transmitting boundary method (QTBM) [10]. This is a fully
reversible problem. Indeed, the conductance observed in systems at the nanoscale, such as in point-
contacts, exhibits experimentally a fully reproducible “noise,” which is just a reflection of the electrons
being transmitted across the potential due to a particular spatial configuration of impurities. What is
necessary to render this process irreversible is an average over various spatial configurations of the
impurities. This is indeed the main result obtained by Kohn and Luttinger [2]. We shall see here how
this is done.

Electron–electron interactions, on the other hand, are of the van Hove type, as long as the system
contains a “large” number of electrons. This resembles the requirement we made before regarding
phonons: In this case, it is the large number of degrees of freedom of the electron gas that results
in the randomization of the phases required to reach a collision operator of the Master type. As
important byproducts of our discussion on electron–electron interactions, we will see how the mean-
field approximations (Hartree and Hartree–Fock) emerge and how these interactions drive the system
towards a Fermi–Dirac distribution.

18.2.1 Scattering with Ionized Impurities

In order to account for electrons scattering with ionized impurities in our transport model, we
must consider again the Hamiltonian given by Eq. (14.6) in Chap. 15. The various forms for the
Fourier components of the potential that we may consider are given by Eq. (14.5) (unscreened), by
Eq. (14.13) (screened, with a suitable expression for the screening parameter β ), or, more generally,
by Eq. (14.23). In the representation provided by the basis states |i〉 the Hamiltonian takes the form:

̂Hei =

Nimp

∑
α=1

V(imp,α)
ji ĉ†

j ĉi , (18.49)
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where

V(imp,α)
ji = ∑

q
〈j|V(imp,α)(q)eiq·(r−rα )|i〉 . (18.50)

The superscript α appearing in these terms is related to the fact that we are assuming that the impurities
are distributed in the system in a particular configuration characterized by this index. As already
mentioned before, we will have to average over all possible configurations α in order to obtain an
irreversible physical picture.

The equation of motion for the reduced density matrix, Eq. (18.8) is similar to Eq. (18.13):

∂ 〈ĉ†
i ĉj〉t

∂ t
=− i

h̄
(Ei −Ej)〈ĉ†

i ĉj〉t − i
h̄

Trel { [̂H(I)
ei (t), ρ̂

(I)(0)] ĉ†
i ĉj}

− 1

h̄2

∫ t

0
dt′ Trel{ [̂H(I)

ei (t), [
̂H(I)

ei (t
′), ρ̂(I)(t′)]] ĉ†

i ĉj} . (18.51)

With the usual assumptions, the first-order (memory) term can be written as:

− i
h̄ ∑{Nn}

∑
lm
∑
α
ρ{Nn} V(imp,α)

ml 〈{Nn}|[ĉ†
mĉlĉ

†
i ĉj − ĉ†

i ĉjĉ
†
mĉl]|{Nn}〉 . (18.52)

For diagonal elements (i = j) only terms for which m = l give nonzero contributions:

− i
h̄ ∑{Nn}

∑
l
∑
α
ρ{Nn} V(imp,α)

ll 〈{Nn}|ĉ†
l ĉlĉ

†
i ĉi|{Nn}〉 . (18.53)

But these terms vanish. For off-diagonal terms we must have m = j and l = i, so that the sum (18.52)
becomes

− i
h̄ ∑{Nn}

∑
α
ρ{Nn} V(imp,α)

ji 〈{Nn}|[ĉ†
j ĉiĉ

†
i ĉj − ĉ†

i ĉjĉ
†
j ĉi]|{Nn}〉 , (18.54)

that is

− i
h̄ ∑α

V(imp,α)
ji [〈ĉ†

j ĉj〉−〈ĉ†
i ĉi〉] . (18.55)

Considerations about averaging over an ensemble of impurity configurations, {rα}, will be discussed
at length below. Here note that summing incoherently over many impurity positions will result in
random cancellations of the phase of Eq. (18.50) in Eq. (18.55), unless i = j. Thus, once more, we can
ignore the memory term in Eq. (18.51).

The second-order terms can be handled in the usual way we have already followed twice, but there
are two noteworthy differences: In first place, the Coulomb potential is not a weak perturbation and
halting the perturbative expansion at the second order must be justified on the grounds of “diluted
impurities.” Second, when expressing van Hove’s argument as in Eq. (18.23), we can recover the
usual “random phase” argument provided we average these second-order terms over a large ensemble
of configurations {rα} of the impurities. That is, Eq. (18.23) is replaced by

∑
{rα}

∑
{Mm}{Nn}

ρ{Mm} ∑
αβ

〈{Mm}|ĉj ̂H
(I)(α)
ei (t) |{Nn}〉〈{Nn}|̂H(I)(β )

ei (t′) ĉ†
i |{Mm}〉 . (18.56)
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For a given configuration {rα} of impurities in a given device, van Hove’s argument cannot apply.
Rather, we must think of averaging Eq. (18.56) over N configurations {rα}. In so doing, “diagonal”
terms α = β yield a contribution ∼ O(N2) to the sum, in which case we must have i = j by
the usual van Hove argument. If, instead, α �= β , only ∼ O(N) terms contribute to the sum, and
they will have a non-vanishing contribution also if i �= j. Thus, in the limit of an infinitely large
ensemble of configurations (N → ∞), we can ignore off-diagonal terms. In other words: Now it is
not the large number of degrees of freedom (electronic or of the phonon bath) which determines
the dominant role played by diagonal elements. Rather, it is the sampling over a larger number of
different configurations of the impurities. Each device—in other words—remains dissipation free and
the dynamic remains time-reversal invariant. But we recover dissipation when averaging over many
macroscopically identical but microscopically different devices.

Assuming a diagonal density matrix at t = 0, employing the arguments above, and going to the
usual van Hove limit, we reach the Master equation:

∂ρi

∂ t
= ∑

j

[

W(imp)
ij ρj(1−ρi) − W(imp)

ji ρi(1−ρj)
]

, (18.57)

(up to injection/extraction terms due to the contacts), where the scattering rate W(imp)
im is given by the

first Born approximation:

W(imp)
ji =

2π
h̄
δ (Ei −Ej)

∣

∣

∣

∣

∣

Nimp

∑
α

V(imp,α)
ij

∣

∣

∣

∣

∣

2

→ 2π
h̄
δ (Ei −Ej)

Nimp

∑
α=1

∣

∣

∣V
(imp,α)
ij

∣

∣

∣

2
, (18.58)

where the last step relies on the configuration average. In the special case of uniform doping and
employing plane waves (that is, |i〉= |k〉),

V(imp,α)
k,k′ = ei(k−bfk′)·rα v(imp)

k−k′ , (18.59)

where we have indicated with v(imp)
q the Fourier coefficients of the potential of a single impurity.

Therefore,

W(imp)
k,k′ =

2π
h̄
δ (Ek −Ek′)

Nimp

Ω
|vimp(k−k′)|2 , (18.60)

as we had found before [see Eq. (14.10), page 318] noticing that nD = Nimp/Ω . Note now that
Eq. (18.57) is valid for devices short enough so that L << λφ . For longer devices we can follow the
same procedure we have followed above to reach the BTE. The rhs of Eq. (18.57) will then become
simply the rhs of the BTE.

18.2.2 Electron–Electron Scattering

The treatment of the electron–electron interaction is more cumbersome, but we can follow a logical
path completely analogous to what we have done for the electron–phonon interaction. We should
emphasize that we are mainly interested in establishing whether the effect of interparticle interactions
on the time evolution of the density matrix can also be described by a scattering operator of the Master
type. Therefore, we restrict our attention to single-particle processes and ignore the collective plasma
excitations. These cannot be captured by our perturbation-theory approach that does not account
explicitly for the feedback of the electron-density fluctuations on the electric field.
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In our basis of states |i〉 the electron–electron Coulomb Hamiltonian takes the form

̂Hee =
1
2 ∑

i′,j′,i,j
Vi′j′ij ĉ†

i′ ĉ†
j′ ĉi ĉj , (18.61)

where the matrix element Vi′j′ij is given by:

Vi′j′ij = ∑
q
〈i′j′|Vq|ij〉 , (18.62)

in analogy with Eq. (18.7). Of course, Vq = e2/(εq2) are the Fourier coefficients of the Coulomb
potential. The dielectric constant (or function) in this expression represents the dielectric response of
the electrons in the valence band, εv(q)≈ εs, since we are considering transport of free carriers.

The equation of motion for the density matrix will be

∂ ρ̂(I)(t)
∂ t

= − i
h̄
[̂H(I)

ee (t), ρ̂(I)(t)] , (18.63)

which, to second order in the perturbation term can be rewritten as:

∂ ρ̂(I)(t)
∂ t

= − i
h̄
[̂H(I)

ee (t), ρ̂(I)(0)] − 1

h̄2

∫ t

0
dt′ [̂H(I)

ee (t), [̂H
(I)
ee (t

′), ρ̂(I)(t′)]] . (18.64)

The equation of motion for the reduced density matrix will be

∂ 〈ĉ†
i ĉj〉t

∂ t
=− i

h̄
Trel { [̂H(I)

ee (t), ρ̂(I)(0)] ĉ†
i ĉj}

− 1

h̄2

∫ t

0
dt′ Trel{ [̂H(I)

ee (t), [̂H
(I)
ee (t

′), ρ̂(I)(t′)]] ĉ†
i ĉj} . (18.65)

As we have done previously, it is useful to anticipate the physical picture that we are going
to uncover. The first term at the rhs of Eq. (18.65) (the “memory” term), is in general quite
troublesome. However, the choice of basis functions we make (eigenstates of the self-consistent
Poisson–Schrödinger problem), makes this term vanish in the Hartree–Fock (or “mean field,” or
also “random-phase”) approximation. Had we used a different set of basis functions (plane waves,
as commonly done), the first term would be responsible for a strong growth of off-diagonal elements
ρkk′ since, obviously, any inhomogeneous potential would mix different plane waves via acceleration
terms. This term is, indeed, the field-term appearing in the Boltzmann equation. So, we pay the (CPU-
time) price of solving the self-consistent Poisson–Schrödinger problem, but we get rewarded by the

lack of the first-order term (in ̂H(I)
ee (t)) of Eq. (18.65).

The analysis of the last term at the rhs of Eq. (18.65) requires additional thought. When dealing
with the electron–phonon or electron-impurity interaction, we had used van Hove’s argument to
show that, for off-diagonal elements of the density matrix, the second-order terms of Eq. (18.65) are
negligible when compared to the diagonal elements, thanks to the many degrees of freedom of the
heat bath or to the incoherent averaging over many impurity configurations. In the present context,
we must make a similar approximation of “infinitely many degrees of freedom” on the number of
electrons in the system. Here the discussion becomes conceptually very difficult: We must face the
problem of determining how fast a system of how many degrees of freedom will decohere and exhibit
irreversibility. We shall assume our devices are “big” enough (have sufficiently many electrons) to
benefit from the randomization of phases when we look at one electron interacting with many others.
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This will lead us to a situation similar to what was found in the case of systems interacting only
with the phonon bath. Now the major difference consists in the fact that we must make throughout
the assumption of a diagonal density matrix at the initial time. Indeed, off-diagonal terms of the
density matrix do not decay when only interparticle Coulomb interactions are accounted for, but they
do not grow either. So, for a system containing “many” electrons, initially assumed “diagonal,” and
simultaneously in contact with the phonon bath, we can consider only the diagonal elements. On
the other side, there are cases in which this assumption is violated: Single-electron transistors, for
example, would have to be treated with the inclusion of off-diagonal terms as well.

We can now write explicitly the second term at the rhs of Eq. (18.65). Omitting for simplicity a
phase e−(i/h̄)(El′+Em′−El−Em)t which does not modify our arguments, we have

Trel {[̂H(I)
ee (t), ρ̂(I)(0)] ĉ†

i ĉj}

=
1
2 ∑{Nn}

∑
{Mm}

ρ{Nn} ∑
l′m′lm

Vl′m′lm [〈{Mm}|ĉ†
l′ ĉ

†
m′ ĉlĉm|{Nn}〉 〉{Nn}|ĉ†

i ĉj|{Mm}〉

− 〈{Mm}|ĉ†
i ĉj|{Nn}〉 〈{Nn}|ĉ†

l′ ĉ
†
m′ ĉlĉm|{Mm}〉]

=
1
2 ∑{Nn}

ρ{Nn} ∑
l′m′lm

Vl′m′lm 〈{Nn}|[ĉ†
i ĉjĉ

†
l′ ĉ

†
m′ ĉlĉm − ĉ†

l′ ĉ
†
m′ ĉlĉmĉ†

i ĉj]|{Nn}〉 , (18.66)

where in the last step we have switched the order of the factors inside the sums and have removed the
completeness ∑{Mm} |{Mm}〉〈{Mm}|.

Before proceeding, note one important (and troublesome) complication: In the following we
will have to assume that the Fock states (ĉ†

1)
n1(ĉ†

2)
n2 . . .(ĉ†

N)
nN |0〉 are all orthogonal (we’ll talk

about normalization later on). This is not generally true for scattering states. We shall ignore this
complication, as done so many times before in the literature: Since these mixed (off-diagonal) terms
are proportional to the product of the reflection and transmission coefficients of the states, the cross-
terms are non-negligible only in a small range of energies, when scattering states are half transmitted
and half reflected. For large currents (small barriers, almost all states transmitted) or small currents
(large barriers, or off-state for FETs), this approximation is satisfactory.

With this assumption, now notice that each term 〈{Nn}|ĉ†
i ĉjĉ

†
l′ ĉ

†
m′ ĉlĉm|{Nn}〉 in the sum above is an

inner product between the two states ĉ†
m′ ĉlĉm|{Nn}〉 and ĉl′ ĉ

†
j ĉi|{Nn}〉. The only non-vanishing terms

in the sums will be those for which m′ = j (the only creation terms) and either m = i, l = l′ or m = l′,
l = i. Thus we have terms of the form

〈{Nn}|ĉ†
i ĉjĉ

†
l ĉ†

j ĉlĉi|{Nn}〉 and 〈{Nn}|ĉ†
i ĉjĉ

†
mĉ†

j ĉiĉm|{Nn}〉 . (18.67)

For diagonal terms of the density matrix (i.e., i = j) these terms can be recast in the form
−〈{Nn}|ĉ†

i ĉiĉ
†
l ĉl|{Nn}〉 and 〈{Nn}|ĉ†

i ĉiĉ†
mĉm|{Nn}〉 (having used the fact that nini = ni for Fermions)

whenever i �= l or i �= m, respectively. (The terms i = l or i = m are just self-energy terms which we
assume lumped into the dispersion of the free electrons.) In the Hartree–Fock approximation (required
to close the hierarchy of infinite equations involving Green’s function of an increasing number of
particles, as it is already clear), we shall factor the expectation values 〈ĉ†

mĉmĉ†
l ĉl〉t as 〈ĉ†

mĉm〉t 〈ĉ†
l ĉl〉t.

Then, accounting for both types of terms of the form (18.67) and for both terms in the commutator, we
get an overall contribution of the form ∑l(Vlili −Vliil)ρi(t)ρl(t). This is just the Hartree and exchange
component of the potential felt by electrons in the single-particle state |i〉 under the electrostatic
influence of a mean field caused by all other electrons in states |l〉. In other words, this is the Hartree
(with exchange corrections, so, actually, Hartree–Fock) energy included in the self-consistent potential
entering the electron Hamiltonian [Eq. (18.3)]. Therefore we must ignore these terms in order to avoid
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double-counting them. As a parenthetical remark, at this point we would recover plasma excitations
by retaining the small-q fluctuations ĉ†

i ĉi −〈ĉ†
i ĉi〉, accounting for their effect on the Hartree potential

and for the feedback of the potential on the fluctuations themselves. This was indeed the main result
of Bohm’s and Pines’ work [11].

Off-diagonal terms of the density matrix, terms of the form (18.67), after factorization into mean-
field (Hartree–Fock) single-particle expectation values, have the same physical meaning, and shall
be similarly ignored. In conclusion, if we are willing to ignore the exchange interaction—or if we
assume that we have already accounted for it in the Hartree–Fock term of the unperturbed electron
Hamiltonian ̂Hel—, the first-order term in Eq. (18.65) vanishes for our choice of basis functions.

Consider now the third term at the right-hand side of Eq. (18.65). First of all, note that we shall
consider only the leading-order (first Born) approximation of the Coulomb interactions. Therefore,

to second order in ̂H(I)
ee , we can replace ρ̂(I)(t′) with ρ̂(I)(0). This is the “weak coupling limit” also

employed by van Hove to derive the Master equation. Expanding the commutator, this takes the form

− 1

h̄2

∫ t

0
dt′ ∑

{Mm}

[

〈{Mm}| ̂H(I)
ee (t) ̂H

(I)
ee (t

′) ρ̂(I)(0) ĉ†
i ĉj |{Mm}〉

+ 〈{Mm}| ρ̂(I)(0) ̂H(I)
ee (t

′) ̂H(I)
ee (t) ĉ†

i ĉj |{Mm}〉
− 〈{Mm}| ̂H(I)

ee (t) ρ̂(I)(0) ̂H
(I)
ee (t

′) ĉ†
i ĉj |{Mm}〉

− 〈{Mm}| ̂H(I)
ee (t

′) ρ̂(I)(0) ̂H(I)
ee (t) ĉ†

i ĉj |{Mm}〉
]

. (18.68)

Let us consider the first term (an out-scattering term) within the square brackets at the right-hand
side. Ignoring a phase factor exp[i(Ei−Ej)t] which does not affect our arguments and which collapses
to unity for diagonal terms, the integrand of this term has the form:

1
4 ∑

{Mm}{Nn}
∑

l′m′lm
∑

h′r′hr

ρ{Mm} Vl′m′lm Vh′r′hr e−(i/h̄)[El′+Em′−El−Em] t

× e−(i/h̄)[Eh′+Er′−Eh−Er ] t′ 〈{Nn}|ĉ†
l′ ĉ

†
m′ ĉlĉmĉ†

h′ ĉ
†
r′ ĉhĉr|{Mm}〉〈{Mm}|ĉ†

i ĉj|{Nn}〉 . (18.69)

Now we switch the order of the factors and eliminate the completeness to obtain:

1
4 ∑

{Mm}
∑

l′m′lm
∑

h′r′hr

ρ{Mm} Vl′m′lm Vh′r′hr e−(i/h̄) [El′+Em′−El−Em] t

× e−(i/h̄) [Eh′+Er′−Eh−Er ] t′ 〈{Mm}|ĉ†
i ĉjĉ

†
l′ ĉ

†
m′ ĉlĉmĉ†

h′ ĉ
†
r′ ĉhĉr|{Mm}〉 . (18.70)

We can now proceed in a way which is intimately related to van Hove’s original argument: Note
that the expression above is just

∑
{Mm}

ρ{Mm}〈{Mm}|̂H(I)
ee (t) ̂H

(I)
ee (t

′) ĉ†
i ĉj|{Mm}〉 . (18.71)

Let us now insert a completeness into Eq. (18.71):

∑
{Mm}{Nn}

ρ{Mm}〈{Mm}|̂H(I)
ee (t) |{Nn}〉〈{Nn}|̂H(I)

ee (t
′) ĉ†

i ĉj|{Mm}〉 . (18.72)
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This term is now of the “genuine van Hove form” we have encountered before: Stating the same
considerations we stated before when dealing with electron–phonon scattering, we note that this term

expresses the transition from an initial state ̂H(I)
ee (t′)ĉ†

i ĉj|{Mm}〉 to a final state ̂H(I)†
ee (t)|{Mm}〉 via a

sum over a very large number of the many-electron intermediate states |{Nn}〉. When the phases of
the initial and final states differ, the phases of the intermediate states will interfere destructively as we
sum over very many (say N) electron states and the contribution to the double sum in Eq. (18.72) will
be limited to “diagonal’ processes, yielding a contribution ∼ O(N). If, instead, the initial and final
states have identical phases, the phases of the intermediate states will interfere constructively and
we will have a contribution ∼ O(N2) from all terms to the sum. Therefore, in the limit of infinitely

many electronic degrees of freedom, only states ̂H(I)
ee (t′)ĉ†

i ĉj|{Mm}〉 and ̂H(I)†
ee (t)|{Mm}〉 which have

identical phases will give a non-vanishing contribution to the sum in Eq. (18.70).
This “phase matching” considerations have to account for the time-dependent phases in

Eq. (18.70). Again, let’s proceed as we did before. Since in Eq. (18.69) we consider transitions
originating at time t′ ranging from the initial time 0 to the final time t, if we restrict our attention to
final times t large enough (∼ O(α−2

ee ), where αee is some measure of the strength of the Coulomb
interaction among electrons), we see that in the multiple sums in Eq. (18.70) constructive phase
interference will occur only for terms for which El′ +Em′ −El−Em =−(Eh′ +Er′ −Eh−Er), and this
constructive interference among the phases occurs at times t′ ∼ t. Only under these conditions do the

phases of ̂H(I)
ee (t′)|{Mm}〉 and of ̂H(I)†

ee (t)|{Mm}〉 match. Thus, in turn, in order for our phases of the
initial and final states to match fully, we must have i = j, so that the phases of |{Mm}〉 and ĉ†

i ĉj|{Mm}〉
also match. Thus, we reach the conclusion that also in the case of interparticle Coulomb interactions
the off-diagonal terms (i �= j) drop out of the picture. Note that this depends on the same assumptions
(1)–(3) stated on page 388. In addition, we have had to assume that our system consists of a number
of electrons large enough to make the “infinite volume limit” valid, so that the sum in Eq. (18.72) is
over so many incoherent intermediate states as to cancel destructively all their random phases.

Having established that only terms such that i = j survive in the sum in Eq. (18.70), let’s consider
the many-particle Green’s functions in the sum (18.70) to derive an expression for the electron–
electron transition rate. We already know that we must have El′ +Em′ −El −Em = −(Eh′ +Er′ −
Eh −Er) in Eq. (18.70). This is not sufficient to “collapse” any indices in the sum when the energy
levels Ei are degenerate. Thus, let’s consider again each term of the sum in Eq. (18.70). These have
the form

〈{Mm}|ĉ†
i ĉiĉ

†
l′ ĉ

†
m′ ĉlĉmĉ†

h′ ĉ
†
r′ ĉhĉr|{Mm}〉 . (18.73)

First note that terms such that l = m and l′ = m′ should be ignored because they are Hartree
contributions already included in the self-consistent potential V(H)(R) in Eq. (18.3). Similarly, terms
l = l′ and m = m′ are self-energy (or “correlation”) terms and should also be ignored. Note that this is
completely equivalent to the statements made by Haas, Rossi, and Kuhn [12]: They state that scattering
terms arise only at second order when one looks at the deviation of the two-particle Green’s functions
from their factorized Hartree–Fock form, that is, terms of the form 〈ĉ†cc†ĉ〉 - 〈ĉ†ĉ〉〈ĉ†ĉ〉. This is
indeed equivalent to ignoring the Hartree terms.

Now, using the fact that 〈{Mm}|ĉ†
i ĉi = ni〈{Mm}|, we see that Eq. (18.73) expresses the inner

product of the two states ĉ†
h′ ĉ

†
r′ ĉhĉr|{Mm}〉 and ĉ†

mĉ†
l ĉm′ ĉl′ |{Mm}〉. Non-vanishing terms will belong to

four possible classes: Those for which l′ = h, m′ = r, l = h′, m = r′ correspond to “direct” processes;
those for which l′ = r, m′ = h, l = r′, and m = h′ correspond to “exchange” processes; finally, two
mixed terms, corresponding to l′ = h, m′ = r, l = r′, m = h′, and l′ = r, m′ = h, l = h′, m = r′, appear
with a negative sign because they can be reduced to the same form of the previous terms via an
additional anticommutation. Let’s consider only the direct terms for which l′ = h, m′ = r, l = h′, and
m = r′, adding the contribution of the other terms later. Then, from Eq. (18.70) we have
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1
4 ∑

{Mm}
̂∑l′m′lm ρ{Mm} |Vl′m′lm|2 e−(i/h̄) [Ei+Em−El′−Em′ ] (t − t′)

×〈{Mm}|ĉ†
i ĉiĉ

†
l′ ĉ

†
m′ ĉlĉmĉ†

l ĉ†
mĉl′ ĉm′ |{Mm}〉, (18.74)

where the symbol ̂∑ reminds us that the sum extends over l �= l′,m, m′ �= l,m. We shall write simply
∑ in place of ∑̂ in the following, but we should keep in mind that Hartree and self-energy terms must
be excluded from the sums. Performing an even number of anticommutations,

〈{Mm}|ĉ†
i ĉiĉ

†
l′ ĉ

†
m′ ĉlĉmĉ†

l ĉ†
mĉl′ ĉm′ |{Mm}〉 → 〈{Mm}|ĉ†

i ĉiĉl′ ĉ
†
l′ ĉm′ ĉ†

m′ ĉ
†
mĉmĉ†

l ĉl|{Mm}〉,
having switched the primed and unprimed indices for convenience (which we are allowed to do under
the multiple sums). Proceeding as before, non-vanishing contributions will be given only by states
|{Mm}〉 containing single-electron states |m〉 but not |l′〉 such that:

ĉ†
m′ ĉ

†
mĉmĉ†

l ĉl|{Mm}〉 = ĉ†
m′ ĉl′ ĉ

†
l′ ĉ

†
i ĉi|{Mm}〉, (18.75)

so that only terms for which i = l or i = m will contribute equally to the sum, i.e., we can consider
only one class of these terms and multiply the result by a factor 2 at the end. The remaining three
pairings of the indices {m′l′ml} with {r′h′rh} discussed above give terms essentially identical, but
with different permutations of the indices of the matrix elements Vm′l′ml. Collecting all four terms and
recalling that ĉ†

i ĉiĉ
†
i ĉi = ĉ†

i ĉi, finally we have for the first term of Eq. (18.68):

− 1

h̄2

∫ t

0
dt′ ∑

l′m′m

1
2
|Vl′m′im − Vm′l′im|2

× e−(i/h̄)[Ei+Em−El′−Em′ ](t−t′) 〈ĉm′ ĉ†
m′ ĉl′ ĉ

†
l′ ĉ

†
mĉmĉ†

i ĉi〉t′ δij

= − 1
2

∫ t

0
dt′ ∑

l′m′im
Kl′m′il(t− t′) 〈ĉm′ ĉ†

m′ ĉl′ ĉ
†
l′ ĉ

†
mĉmĉ†

i ĉi〉t′ δij . (18.76)

Note that the term |Vl′m′im − Vm′l′im|2 takes this form thanks to the antisymmetrization of the two-
particle states. Had we included spin in our formulation, we would have found identical terms for spin-
triplet states, but terms containing instead |Vl′m′im + Vm′l′im|2 for spin-singlet states, since the spatial
component of the two-electron wavefunction must be symmetrized for antisymmetric spin (singlet)
states. Let’s now invoke the usual Hartree–Fock factorization, the usual Markov approximation, and
write simply ρi(t) for the diagonal elements 〈ĉ†

i ĉi〉t of the reduced density matrix. Then Eq. (18.76)
can be recast in the “intuitive” form:

− 1
2

∫ t

0
dt′ ∑

l′m′m
Kl′m′il(t− t′) ρi(t

′) ρl(t
′) [1 − ρl′(t

′)] [1 − ρm′(t′)] δij . (18.77)

The second term in the integrand at the right-hand side of Eq. (18.68) gives a similar contribution, but
with the “energy phase” of opposite sign, that is, it gives the complex conjugate of the term we just
derived. Thus, the “out-scattering” component [the first two terms at the right-hand side of Eq. (18.68)]
of the equation describing the time evolution of the diagonal elements of the reduced density matrix
will have the form:
(

∂ρi

∂ t

)

out
= − ∑

l′m′m

∫ t

0
dt′ Re [ Kl′m′il(t− t′) ] ρi(t

′) ρl(t
′) [1 − ρl′(t

′)] [1 − ρm′(t′)] . (18.78)
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As we have done before, we now take the van Hove limit: We set τ = α2(t− t′) (where, recall, α is
the dimensionless strength of the interaction), Glmij(τ) = Re[Klmij(t)], and Pi(τ) = ρi(t). Then:

(

∂Pi

∂τ

)

out
=− ∑

l′m′m

∫ τ/α2

0
dτ ′ Gl′m′il(τ ′)

× Pi(τ−α2τ ′) Pl(τ−α2τ ′) [1 − Pl′(τ−α2τ ′)] [1 − Pm′(τ−α2τ ′)] , (18.79)

we take the limit t → ∞ and α2 → 0, whilst τ remains constant, and Eq. (18.78) becomes

(

∂ρi

∂ t

)

out
= − ∑

l′m′m
W(ee)

l′m′il ρi(t) ρl(t) [1 − ρl′(t)] [1 − ρm′(t)] , (18.80)

where, assuming that the total spin of 2-electron states is randomly distributed among singlet and
triplet states, the transition rate is

W(ee)
lmij =

2π
h̄

[

1
4

∣

∣

∣V
(d)
lmij + V(x)

lmij

∣

∣

∣

2
+

3
4

∣

∣

∣V
(d)
lmij − V(x)

lmij

∣

∣

∣

2
]

δ (Em +El −Ei −Ej) , (18.81)

that is, the second-order Coulomb matrix element (first Born approximation). In Eq. (18.81) we have

defined the “direct” matrix element V(d)
lmij as in Eq. (18.62), while the “exchange” matrix element is

similarly defined as:

V(x)
i′j′ij = ∑

q
〈i′j|Vq|ij′〉 . (18.82)

Now let’s consider the first of the in-scattering terms, that is, the third term inside the integral at
the right-hand side of Eq. (18.68). This integrand has the form:

1
4 ∑

{Mm}{Nn}
∑

l′m′lm
∑

h′r′hr

ρ{Mm} Vl′m′lm Vh′r′hr

× e−(i/h̄)[El′+Em′−El−Em] t e−(i/h̄)[Eh′+Er′−Eh−Er ] t′

× 〈{Nn}|ĉ†
l′ ĉ

†
m′ ĉlĉm|{Mm}〉〈{Mm}|ĉ†

h′ ĉ
†
r′ ĉhĉrĉ

†
i ĉj|{Nn}〉 . (18.83)

Proceeding in the usual way, van Hove’s argument tells us that only diagonal terms survive (i.e.,
i = j) and we will have a non-vanishing contribution to the sum only from four classes of terms. Let’s
consider now, as an example, only one class of these four (direct, exchange, and two mixed processes)
classes of terms, the direct terms for which h = l′, r = m′, h′ = l, and r′ = m, as done above. We can
switch the order of the sums, get rid of the completeness and obtain, in full analogy with Eq. (18.74):

1
4 ∑

{Mm}
∑

l′m′lm
ρ{Mm} |Vl′m′lm|2 e−(i/h̄) [El′+Em′−El−Em] (t − t′)

×〈{Mm}|ĉ†
l ĉ†

mĉl′ ĉm′ ĉ†
i ĉiĉ

†
l′ ĉ

†
m′ ĉlĉm|{Mm}〉 . (18.84)

We can see that only terms for which i = l′ or i = m′ will give non-vanishing contributions (because if
it were i = l or i = m we would have two identical annihilation operators acting on the state |{Mm}〉).
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Both cases can be lumped into terms of identical forms. For example, for i = l′ we have terms like

〈{Mm}|ĉ†
l ĉ†

mĉiĉm′ ĉ†
i ĉiĉ

†
i ĉ†

m′ ĉlĉm|{Mm}〉 . (18.85)

With a few anticommutations this term can be rewritten as:

〈{Mm}|[1− ĉ†
i ĉi]ĉiĉ

†
i ĉm′ ĉ†

m′ ĉ
†
mĉmĉ†

l ĉl|{Mm}〉 . (18.86)

But a term containing ĉiĉi is identically zero, so only the term

〈{Mm}|ĉiĉ
†
i ĉm′ ĉ†

m′ ĉ
†
mĉmĉ†

l ĉl|{Mm}〉 (18.87)

survives. Invoking once more the Hartree–Fock and Markov approximations, going to the large-time
van Hove limit, and noticing that the contribution of the remaining term in Eq. (18.68) is the complex
conjugate of Eq. (18.84), we finally obtain the Master equation:

∂ρi

∂ t
= ∑

lmm′

{

W(ee)
im′lm ρl(t) ρm(t) [1 − ρi(t)] [1 − ρm′(t)]

− W(ee)
lm′im ρi(t) ρm(t) [1 − ρl(t)] [1 − ρm′(t)] } . (18.88)

Similarly to the previous discussion regarding impurity scattering, Eq. (18.88) represents the
collisional integral of the BTE when considering large “devices” requiring the use of the BTE instead
of the Master equation.

18.2.3 Equilibrium and Detailed Balance

We now want to verify that the BTE satisfies the basic requirement of yielding the equilibrium
distribution in the absence of an external field or for a closed system. Let’s ignore here scattering
with ionized impurities and other elastic processes (namely, acoustic phonons in our approximation)
since, clearly, they have no effect on the energy distribution of the carriers. Let’s also assume a small
device, so that we can use the Master equation (but the analysis carries identically to the case of the
BTE in the absence of a field). First of all, let’s write the Master Equation (ME) in its full glory in
terms of the occupation ρi per single state (and spin):

∂ρi

∂ t
= Φi [fi −ρi] + ∑

j

{

W(ph)
ij ρj[1−ρi] − W(ph)

ji ρi[1−ρj]
}

+∑
jlm

{

W(ee)
ijlm ρlρm[1−ρi][1−ρj] − W(ee)

lmij ρiρj[1−ρl][1−ρm]
}

, (18.89)

where fi = 1/{1−exp[(Ei −E(s)
F ]/(kBT)} is the Fermi function of the sth contact at energy Ei(k), and

Φi is the flux of the state i into the device from contact s.
At equilibrium the injection term Φi [fi −ρi] clearly vanishes for ρi = fi. This is the situation found

in ballistic transport.
Let’s consider now the inelastic (optical) phonon-scattering term. Detailed balance requires

W(ph)
ij ρj[1−ρi] = W(ph)

ji ρi[1−ρj] . (18.90)
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Let’s assume Ei < Ej. Then the transition j → i must be assisted by phonon emission, so that Wij =
D(1+Nop), where D is a constant, while, obviously, we must have Wji = DNop. Thus:

ρj[1−ρi]

ρi[1−ρj]
=

W(ph)
ji

W(ph)
ij

=
Nop

1+Nop
= e(Ei−Ej)/(kBT) . (18.91)

So, we must have

ρieEi/(kBT)

1−ρi
=
ρjeEj/(kBT)

1−ρj
. (18.92)

Since this must be true for every i and j, each of these terms must be equal to a constant independent
of i or j. Let’s call it K−1. This implies that

ρi =
1

1+KeEi/(kBT)
. (18.93)

The constant K must be determined by the normalization of ρi so that ∑iρi = N, the total number of
electrons in the system. It follows that K = e−EF/(kBT). This shows that the inelastic phonon scattering
term of the ME vanishes only if ρi = αifi at the temperature set by the phonon bath.

Let’s consider now the electron–electron scattering term. Detailed balance requires for any two
states i and l:

Til ρl [1−ρi] = Tli ρi [1−ρl] , (18.94)

where Til = ∑jm W(ee)
ijlm ρm[1−ρj]. Therefore:

ρl[1−ρi]

ρi[1−ρl]
=
∑jm W(ee)

ijlm ρm [1−ρj]

∑jm W(ee)
lmij ρj [1−ρm]

. (18.95)

Unlike what we found for the electron–phonon interaction, we cannot “derive” the equilibrium
function from the properties of the scattering kernels, since there is no thermal bath setting the
temperature of the system. Rather, we now assume that ρi has the desired form, fi and see whether
this is consistent with the Coulomb term of the ME and detailed balance. If ρi = fi, then ρm[1−ρj] =

ρj[1−ρm]e[Em−Ej]/(kBT). Thus, the left-hand side of Eq. (18.95) above will be e(Ei−El)/(kBT). The right-
hand side will be

∑jm W(ee)
ijlm ρj [1−ρm] e[Em−Ej]/(kBT)

∑jm W(ee)
lmij ρj [1−ρm]

. (18.96)

Since W(ee)
ijlm =W(ee)

lmij , and using the fact that Em−Ej =Ei−El since Coulomb interactions conserve the

total energy of the pair, Eq. (18.96) is also equal to e(Ei−El)/(kBT). Thus, the electron–electron scattering
term of the ME also vanishes at equilibrium. Note that this interparticle scattering term vanishes when
ρi is a (Fermi–Dirac) equilibrium solution at any temperature. Thus, it is easy to understand that
electron–electron collisions will drive off-equilibrium distribution functions towards a Fermi–Dirac
distribution. Since these processes conserve total energy, the temperature defining this distribution
will be the “thermal” temperature at the average energy of the off-equilibrium state.
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Chapter 19
Solution Methods for Semiclassical Transport

In the previous chapter, Chap. 18, we have “derived” the Boltzmann transport equation (BTE) for the
particular system of electrons in a crystal. The quotes bracketing the word “derive” are required for
reasons that should now be obvious. However, this equation has been originally written by Ludwig
Boltzmann in 1872 in a much more general context: After all, in 1872 physicists were still arguing
whether or not atoms exist and the electron had not been yet discovered (it was discovered by J.J.
Thomson only 25 years later, in 1897). The captivating book by Carlo Cercignani [1] reads as a
mystery novel while telling Boltzmann’s life and his search for the elusive proof of the so-called H-
theorem; that is, for the identification of the cause of irreversibility, of what makes time flow only in
one direction.

The BTE has been applied to a variety of kinetic problems, from gases to neutron transport.
Therefore, there exists a vast literature, both in the mathematics as well as in the physics community.
Here we discuss how one may solve it only in the limited context of our perspective, electron transport
in crystals.

Of course, interest in searching for a solution in this context has been largely triggered by the
microelectronics industry. Therefore, analytical and numerical methods devised to solve the BTE
are often intrinsically and tightly intertwined with methods to simulate the electrical behavior of
semiconductor devices. In this context, general overviews can be found in the texts by Jacoboni [2]
that goes beyond semiclassical transport; by Hess, that emphasizes the physics [3]; and by Taur and
Ning [4], more specific to electron devices.

We should add that the “pioneering” period, spanning the years from the 1950s to the mid-1990s,
has seen tremendous activity, obviously related to the exponential growth of the VLSI industry and the
associated miniaturization of devices. The “hot electron” crisis of the 1980s–1990s has also stimulated
the search for more sophisticated, computationally demanding physical models that stimulated even
more activity. This “golden period” is now over: Devices are so small, the applied bias reduced to such
a level, that interest is shifting to quantum transport. Nevertheless, semiclassical transport, described
by the BTE and treated numerically with the methods described below, remains a work-horse in the
VLSI industry, even though active research has shifted away from it as the many device-simulation
software packages available have rendered this field a “commodity.”

As an important matter of notation, note that in this chapter we use the symbol E for the kinetic
energy of the charge carriers, the symbol F for the electric field. In doing this, we follow the usual
convention in the scientific and technical literature that deals with approximate methods to treat
semiclassical transport in semiconductor devices.

© Springer International Publishing Switzerland 2016
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19.1 Overview

The BTE, Eq. (18.47), is a partial integro-differential equation, possibly also nonlinear when the
collision rates W depend on the distribution function f itself. This is indeed the case when dealing
with Coulomb interactions that must be screened via the Lindhard formula in which f (k) enters. It
is no surprise that a general solution in closed form does not exist, except in some special cases, like
at equilibrium. Mathematically speaking, existence and uniqueness proofs have not been provided,
except in particular oversimplified cases. Therefore solutions of the BTE must be obtained either under
simplifying approximations (for example, under homogeneous conditions and small electric fields,
which allow us to linearize the BTE with respect to the field), or numerically (such as when using the
Monte Carlo method) or, often and sadly, numerically and under simplifying approximations.

Below we shall consider a few methods of solution. The first one, the method of moments,
consists in giving up on the idea of obtaining the full distribution function f (r,k, t) being satisfied,
instead, with the knowledge of averages of physical quantities (such as carrier density, velocity,
energy, etc.) over the distribution function. These averages—that we shall call ensemble averages
and denote by the symbol 〈. . .〉ens—are essentially averages of powers of k, such as 〈km(r, t)〉ens =
[1/n(r, t)]

∫

dkf (r,k, t)km (where n is the carrier density), which is called the m-th moment of f .
This results in the reduction of the partial integro-differential equation (18.47) to a system of partial
differential equations (PDEs). The limiting cases in which equations are sought only for density and
velocity (drift-diffusion approximation, DD) or density, velocity, and average energy (hydrodynamic
or energy transport model) are of significant importance because of their widespread use in the
simulation of electronic devices. While the advantage of this method lies obviously in its reduced
computational cost, the disadvantage lies in the fact that we must consider only a few moments in
order to deal with a numerically tractable system of equations. The neglected terms (higher-order
moments) may become significant in some situations, but we have no way of accounting for them.
The appearance of hard-to-define “relaxation times” in the model and the issue of the “closure” (as
we shall see below) are also causes of concern.

The second method (or set of methods, which we shall label as expansion methods) is of a similar
nature: The unknown f (r,k, t) is expanded into suitable basis functions (spherical harmonics or other
orthogonal polynomials) and, having inserted these expansions into the BTE, equations are found for
the coefficients of the expansion, coefficients that are functions of position and time. This also results
in PDEs, so that the problem is simplified. Clearly, the expansion must be truncated at some level. As
it was the case for the method of moments, any truncation will result in errors in some cases.

Solutions of the full BTE can be also obtained by iterative techniques. These techniques consist
in starting from a “guess” f0 for the solution, in inserting this guess into the collision integral, and
in solving the resulting PDE, thus obtaining a new solution f1 and iterating the process. One can also
seek a direct solution by discretizing the BTE, thus converting it into a large matrix-inversion problem.
Finally, solutions can be obtained by particle methods. We will discuss the weighted particle method,
the scattering matrix method, and the cellular automata method. Of course, it is the Monte Carlo
method that provides the physically most accurate solution, albeit a stochastic one.

19.2 The Moments Method

The moments method is arguably the most popular method used to solve the BTE. Historically, the
first theoretical results about the properties of charge transport in semiconductors, how these properties
could be used in diodes and transistors, and the first quantitative simulations of electron devices have
all been based on this method. Shockley’s early paper [5] gives such an example. The literature is so
vast that we can only refer to texts that review some aspects of the problems, such as Selberherr’s [6]
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and Hänsch’s [7] books on the drift-diffusion approximation. A text edited by Hess, Leburton, and
Ravaioli in 1991 [8] gives a picture of the state of the art at that time during the “golden period.”

The moments method consists in deriving from Eq. (18.47) PDEs for “ensemble averages” of
various quantities Q(k),

〈Q(r, t)〉ens =
2

n(r, t)

∫

dk
(2π)3 Q(k)f (k,r, t) , (19.1)

where n(r, t) = 2
∫

dk f (k,r, t)/(2π)3 is the carrier density (note the appearance of a factor of 2 for
spin), and where the functions Q are powers of the group velocity v(k) = h̄k/m∗, which, for parabolic
and spherical bands, are equivalent to powers of the crystal momentum k.

Taking the first moment amounts to integrating the BTE over k-space, i.e., Q(k) = 1. Thus, we
obtain simply the continuity equation:

∂n
∂ t

=
1
e
∇ · j , (19.2)

where the current density j is defined as

j =−2e
∫

dk
(2π)3 v(k)f (k,r, t) =−en〈v〉ens . (19.3)

Two alternative approaches can be followed in order to derive a continuity equation for the second
moment.

The first approach is a straightforward application of the “moment method”: we multiply the BTE
by the group velocity, h̄k/m∗, and integrate, obtaining the current continuity equation:

ji = e τ̃p,i ∑
j

∂j(n〈υiυj〉ens)− e2n
τ̃p,i

m∗ ∑
j

Fj

〈

υi
∂ f
∂υj

1
f

〉

ens
+ τ̃p,i

∂ ji
∂ t

= eτ̃p,i∑
j

∂j(n〈υiυj〉ens)+ e2n
τ̃p,i

m∗ Fi + τ̃p,i
∂ ji
∂ t

, (19.4)

having assumed a reasonable boundary condition for f as |v| → ∞, so that 〈υi(∂ f/∂υj)/f 〉ens =−δij.
The particular form of momentum (or velocity) relaxation time, τ̃p,i, which we must employ in order
to be consistent with the BTE is given by

1
τ̃p,i

≡ 〈υi/τp,i〉ens

〈υi〉ens
=

2
n〈υi〉ens

∫

dk′

(2π)3

∫

dk
(2π)3 [υi(k)−υi(k′)]W(k′,k)f (k,r, t) , (19.5)

where the “microscopic” momentum relaxation time τp,i is defined by

1
τp,i(k)

=

∫

dk′

(2π)3

[

1− υi(k′)
υi(k)

]

W(k′,k) . (19.6)

It is useful to recall here that the quantities W(k′,k) are the probabilities per unit time that a carrier will
make a transition from a state |k〉 to a state |k′〉 via any of the collision processes we have considered
in previous chapters. Here we shall use the term microscopic to indicate relaxation times that are
functions of k. They can be directly obtained from the knowledge of the scattering kernels W(k′,k),
without taking any average over the distribution function. With the term macroscopic, instead, we
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refer to relaxation times obtained by averaging the microscopic counterpart over the ensemble, objects
which are more directly related to measurable quantities, such as mobility, diffusion constant, or
thermal diffusivity, among others.

The second approach has a more rigorous appearance, although it does not always lead to a simple
concept of “momentum relaxation time.” Instead of multiplying the BTE by the group velocity, we
first define a “formal” relaxation time as the solution of the integral equation:

1
τp,i(k)

=
∫

dk′

(2π)3

[

1− υi(k′)τp,i(k′)
υi(k)τp,i(k)

]

W(k′,k) . (19.7)

This cumbersome definition is the rigorous expression one can obtain from a linearization of the
BTE in the applied field [3, 9–13], as illustrated by Eq. (19.42) below [10]. Of course, the concept
of relaxation time itself is useful only when it can be evaluated easily from the microscopic models
employed to obtain the “scattering rate”

1
τ(k)

=
∫

dk′

(2π)3 W(k′,k) . (19.8)

For elastic and isotropic scattering, Eq. (19.7) can be evaluated easily, since it reduces to the familiar
form

1
τp,i(k)

=
∫

dk′

(2π)3 (1− cosθ)W(k′,k) , (19.8)

where θ is the angle between k and the i-axis. Even for isotropic but inelastic scattering (e.g.,
intervalley scattering with optical and acoustic phonons) a proper relaxation time can be defined
and Eq. (19.8) coincides with Eq. (19.6). In general, though, for inelastic and anisotropic collisions
(such as polar scattering with optical phonons in polar semiconductors), the relaxation time is defined
only “formally” by Eq. (19.7). More sophisticated approaches are needed to derive even a simple
expression for the mobility [10, 11, 14], as we shall mention below.

We now multiply the BTE by υi(k)τp,i(k) and integrate. Thus, assuming that W(k′,k) does not
depend on position, we get the differential equation for the second moment, expressing again current
continuity:

ji = e∑
j

〈τp,i∂j(nυiυj)〉ens − e2n
h̄ ∑j

Fj

〈

υiτp,i
∂ f
∂kj

1
f

〉

ens
+
∂
∂ t

〈jjτp,i〉ens . (19.9)

Note that Eqs. (19.4) and (19.9) are identical. Yet, macroscopic quantities are represented as averages
of different microscopic variables and each form is better suited to a different application, as we shall
see below.

Coming to the third moment, multiplying the BTE by the total “kinetic energy tensor,” Eij(k) =
h̄2kikj/(2m∗), and integrating, one obtains

∂
∂ t

(n〈Eij〉ens) =−∑
l

∂l(n〈Eijυl〉ens)+
en
h̄ ∑l

Fl

〈

Eij
∂ f
∂kl

1
f

〉

ens
− n〈Eij〉ens

τ̃w,ij
, (19.10)

where the relaxation times τ̃w,ij are defined as

1
τ̃w,ij

=
2

n〈Eij〉ens

h̄2

2m∗

∫

dk′

(2π)3

∫

dk
(2π)3 (kikj − k′ik

′
j)W(k′,k) f (k,r, t) .
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For simplicity, only the trace of the equations above is considered, thus obtaining the much simpler-
looking expression for conservation of the kinetic energy E(k) = h̄2k2/(2m∗):

∂
∂ t

(n〈E〉ens) =−∇ · (n〈Ev〉ens)+ enF · 〈v〉ens − n〈E〉
τ̃w

, (19.11)

where the trace of the average “energy relaxation time” τ̃w is given by

1
τ̃w

=
2

n〈E〉ens

∫

dk′

(2π)3

∫

dk
(2π)3 [E(k)−E(k′)] W(k′,k) f (k,r, t) . (19.12)

Even higher-order moments can be considered, but we shall stop here, since the system of
Eqs. (19.2), (19.9), and (19.12), coupled also to the Poisson equation

∇ · (εF) =−en+ρd , (19.13)

contains the essential ingredients needed to discuss the main approximations made by the moments
method to handle electronic transport. Also, it illustrates nicely the main approximations which are
required to make the problem tractable and which are widely employed in device simulations.

It should be noticed that, so far, we have accomplished nothing: The moment equations have the
exterior appearance of simpler equations than the original BTE, since we have converted an integro-
differential equation in seven variables into PDEs in four variables. Yet, the averages 〈. . .〉 appearing
in the moment equations require the knowledge of the unknown f . This is the first hurdle that the
moments methods have to overcome in order to render the problem tractable: one must be able to
downgrade these functionals of f to simple functions of one (or more) of the variables entering the
problem. This transition is the step where most of the physical information is lost. A second hurdle is
also quite evident: Were we wishing to consider only the first moment, Eq. (19.2), we would have no
way of coupling transport (i.e., j) into the Poisson equation. Thus, one must also consider (at least)
Eq. (19.9). As it stands, the first term at the right-hand side involves the moment of higher order, whose
behavior is controlled by Eq. (19.10) or (19.11). Similarly, if we wanted to stop at the third moment,
Eq. (19.10) or (19.11), we would have to find some way of handling the term 〈Ev〉ens, which is the
fourth moment obeying a differential equation we have not even derived. In general, the hierarchy of
the moment equations leads unavoidably to equations for the n-th moment involving the (n+ 1)-st
moment, because of the “drift” term v ·∇f in the BTE, which leads to a higher power of v when taking
moments. The chain must be somehow closed. The search for these closure relations is the second
major hurdle the moments methods must face. Two “popular” choices are the so-called drift-diffusion
and hydrodynamic approximations.

19.2.1 The Drift-Diffusion Approximation

In the drift-diffusion (DD) approximation [5, 7, 15], only the first two moments are considered. The
continuity equation, Eq. (19.2), and the Poisson equation, Eq. (19.13), pose no concerns. Care must
be exercised when dealing with the current conservation equation, Eq. (19.4) or (19.9).

When Eq. (19.9) is chosen as second moment, the system can be “closed” (i.e., rendered
independent from higher moments) by noticing that, if we assume that f is a Boltzmann distribution
at temperature T (i.e., f � exp{−[E(k)− EF]/(kBT)}, where EF is the local Fermi level), then
the tensor Dij = 〈τp,iυiυj〉ens can be related to the other tensor entering the same equation, μij =
−(e/h̄)〈τp,iυi(∂ f/∂kj)/f 〉ens, by the well-known Einstein relation,
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Dij =
kBT

e
μij , (19.14)

where kB is the Boltzmann constant and T is the “electron temperature,” which in the DD
approximation is always taken to be the lattice temperature T0. This relation also suggests the way the
“mobility” functional μij could be reduced to a simple constant (or, at most, a function of the variables
r, n, j, or F): If we restrict ourselves to the analysis of devices in which the carriers are always not
too far from thermal equilibrium, we can adopt Eq. (19.14) as our closure relation, assume that both
D and μ (the diffusion constant and mobility of the carriers, respectively) are constant quantities (at
most functions of position via the spatially varying doping density), whose values are given by the
ohmic (i.e., zero-field limit) values, and we can write Eq. (19.2) in the solvable form:

j = e∇(Dn)+ enμF , (19.15)

having also assumed steady state (no explicit time dependence) to simplify the picture. We have also
assumed that τp does not depend explicitly on position, so that we could bring the diffusion constant
inside the gradient. This is a tricky issue, since D (and D̃ as well) may depend on position either
via the average 〈. . .υiυj〉ens, which should remain inside the spatial gradient, or via the relaxation
time, which should remain outside the gradient. Note also that we have replaced tensors with scalars
(their diagonal elements, assumed to be equal) thanks to the spherical symmetry of the distribution
function at equilibrium. This is not necessarily true at high fields. It should be noted that under the
same approximations of thermal equilibrium at the lattice temperature, the mobility μ is given by the
well-known Kubo–Greenwood formula [12, 13], after integrating over the polar angle and converting
the integration over k to an integration over the energy E, via the DOS, D(E):

μ = − 2e
3nm∗

∫ ∞

0
dE D(E) E τp(E)

∂ f0
∂E

=
2e

3nm∗kBT0

∫ ∞

0
dE D(E) E τp(E) f0(E) , (19.16)

where f0 is the Boltzmann equilibrium distribution function at the lattice temperature T0, and τp is
given by Eq. (19.7) or (19.8).

When Eq. (19.4) is chosen as second moment, closure is obtained in an identical way, by noticing
that the Einstein relation still relates the diffusion tensor, now defined as D̃ij = τ̃p,i〈υiυj〉ens, to the
mobility tensor, μ̃ij = eτ̃p,i/m∗, at equilibrium. Taking the isotropic approximation (i.e., considering
only the diagonal elements of these tensors and assuming they are all equal), we have

D̃ ≡ τ̃p

3
〈υ2〉ens =

2
3
τ̃p

m∗ 〈E〉ens � τ̃p

m∗ kBT =
kBT

e
μ̃ . (19.17)

The “third moment,” given by the average kinetic energy, 〈E〉ens, or carrier temperature T , has been
simply replaced by its value, (3/2)kBT , for a Maxwell–Boltzmann distribution, in order to obtain the
last expression at the right-hand side of Eq. (19.17). From this expression we obtain D̃ = τ̃pkBT/m∗.
Substituting these expressions into Eq. (19.4), we find

j = e ∇(D̃n) + e n μ̃F , (19.18)

where D̃ is actually neither inside nor outside the gradient. Usually, it is placed either inside or outside
the gradient, depending on the assumptions made (i.e., no position dependence of τ̃p and no position
dependence of the average energy 〈υ2〉ens, respectively), as discussed before.

Note that the definition Eq. (19.17) for the mobility μ̃ does not lead immediately to the Greenwood–
Kubo definition of mobility [12, 13] in the linear regime. To see that the two definitions given by
Eqs. (19.16) and (19.17) coincide, we restrict ourselves to the linear regime, and employ the linearized
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solution of the BTE given by Eq. (19.42) below. Then:

μij ≡− e
m∗

〈

τp,iυi
∂ f
∂υj

1
f

〉

ens
�− e

kBT
〈τp,iυiυj〉ens → e

m∗
〈τpE〉ens

〈E〉 , (19.19)

where the last step involves taking the diagonal elements μii to be equal. On the other side, we have,
by our definition:

μ̃ij ≡ e
m∗ τ̃p,i ≡ e

m∗
〈υi〉ens

〈υi/τp,i〉ens
. (19.20)

Now, at equilibrium and using the linearized solution of the BTE, Eq. (19.42) below,

〈υi〉ens

〈υi/τp,i〉ens
→ 〈τpE〉ens

〈E〉ens
,

in agreement with expression (19.19). The choice of either formulation of the current continuity
equation is simply a matter of preference. The formulation given by Eqs. (19.9) and (19.15)
emphasizes the possibility of calculating directly the macroscopic parameters D and μ from the
knowledge of the microscopic scattering kernels, W(k′,k), although this is only possible in the
linear regime. Also, this formulation shows very clearly the conditions under which a momentum
relaxation time can be defined in a useful way, i.e., calculable from Eq. (19.7). For these reasons,
this is the preferred approach when placing emphasis on the physics of the approximation [3, 9–13].
The alternative formulation, given by Eqs. (19.4) and (19.18), involves a definition of the momentum
relaxation time, τ̃p, Eq. (19.5), which is more cumbersome to evaluate from “first principles.”
However, this is the single ensemble average entering the model, since both D̃ and μ̃ are defined
in terms of τ̃p. Once a model for the relaxation time is provided, the entire problem is specified. This
is the reason why this formulation is (often implicitly) chosen in the engineering community.

Despite the dramatic approximations we have adopted to arrive at the simple form Eq. (19.15),
the time-dependent term we have ignored involves the time derivative of the average 〈jτp〉ens. We
do not know how to evaluate this term without invoking, once more, the approximation of thermal
equilibrium for f and some specific form for the (not ensemble averaged) relaxation time τp(k). Notice
that the approximation made so far assumes that the Einstein relation holds “locally,” i.e., at every
position. This will be true only if the device is so large that in the neighborhood of every point the
carriers are always so strongly thermalized as to be always at local equilibrium with the field. Thus,
mobility and diffusion are always related by the Einstein equation. In addition, in a homogeneous
situation, Eq. (19.15) implies

j = enμF ,

so that the carrier velocity is given by μF, as it follows from the definition of current density,
Eq. (19.3). Again, this implies that the carriers must scatter so often in the neighborhood of any given
point, as to achieve local equilibrium with the field. In summary, the DD approximation outlined so
far can be expected to represent correctly the dynamics of the carriers whenever one can neglect the
variation of the field over some multiple of the mean distance a carrier covers between successive
collisions (the mean free path, λ ), and whenever fields are small enough to maintain the carriers at
near equilibrium with the lattice, i.e.,

eFλ ≤ h̄ω ∼ kBT , (19.21)

where h̄ω the average energy lost per collision, which is usually of the order of the thermal energy,
kBT , or of the phonon energy.
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“Hot-carrier effects,” such as velocity saturation, and a decrease of the diffusion constant and
mobility at fields larger than the ohmic limit (19.21), have been empirically introduced by rendering D
and μ functions of the local field [16]. For example, a very “popular” model is the Caughey–Thomas
model [17],

μ(F) = μ0[1+(μ0F/υsat)
2]−1/2 ,

where μ0 is the ohmic mobility, and υsat is the saturated velocity. Similarly, the modeling of
the mobility in Si inversion layers, of utmost practical importance in the simulation of metal-
oxide-semiconductor field-effect transistors (MOSFETs), requires some modification, because of the
presence of a large “transverse” field which pushes the carriers towards the interface with the gate
insulator. The choice of the best “mobility models” has become an art and correct choices have led to
remarkable successes in explaining the electrical behavior of devices small enough and under electric
fields large enough to violate most of the approximations under which DD applies [18]. Attempts have
also been made to extend the range of applicability of DD models to situations in which relatively
large field gradients cause velocity overshoot. A one-dimensional model proposed by Thornber [19]
consists in adding to the expression enμF for the current density, Eq. (19.15), a term proportional to
the gradient of the field, nμL∂F/∂x, where L is a parameter having dimension of length expressing
some sort of momentum relaxation length. Price [20] and Artaki [21] have proposed analytic and
Monte Carlo methods to evaluate the coefficient L.

It is difficult to establish the history of the DD approximation, since it was born with semiconductor
physics itself. Shockley’s book [5] is probably one of the preferred sources for the semiconductor
equations (19.2) and (19.15). An equally notably “ancient” formulation is given in [22]. Application
to device simulations has flourished in the late 1960s, leading to a well established and numerically
sophisticated sets of algorithms. The DD approach remains the foundation of device simulation even
at present. The ultimate reason why the simple DD approximation is still so useful lies in the fact
that transport parameters are easily fit to experimental data or extrapolated “from the past.” Its
predictive power is limited to the electrostatic behavior of the device in the “off” state. This is of
paramount importance from a power-dissipation point of view and Poisson equation remains always
valid, regardless of how poorly electron transport is treated.

19.2.2 Hydrodynamic Approximation

As we mentioned in the introduction of this chapter, hot-carrier effects have been a major source of
concern in the 1980s–1990s, as devices were miniaturized but the applied voltage was kept constant
at 5 V, thus causing increasingly higher electric fields that drive electrons to strong off-equilibrium
conditions. In the much shorter, nanometer-scale devices that are of interest today, these effects are
also important, since transport approaches the ballistic regime. The electron kinetic energy is now
reduced, since the applied bias has been scaled to below 1 V. As a consequence, the violation of the
“locality rule” discussed above can be included in the model by going one step further and considering
the third moment, Eq. (19.10) or (19.11). Assuming again that the distribution function is mainly
isotropic, so using Eq. (19.10) or (19.11), this equation can be recast in the form

∂
∂ t

(n〈E〉ens) =−∇ ·S+ j ·F− n〈E〉ens

τ̃w
, (19.22)

where the energy flux S = n〈Ev〉ens is the troublesome term involving a higher moment. In this form,
this equation has a very transparent meaning: the variation per unit time of the energy contained in an
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infinitesimal volume of real space, n〈E〉ens, is given by the “Joule heating” caused by the field which
accelerates the carriers within the volume, j ·F, less the energy lost to the lattice, corresponding to the
collision term n〈E〉/τ̃w, expressed in the relaxation time approximation, less again the energy flux,
∇ ·S, that represents the energy density which leaves the volume in a unit time. In order to overcome
the “impasse” caused by the energy flux, a fourth moment, one can decompose the average total
kinetic energy 〈E〉 into a “drift” and a “thermal” component:

〈E〉ens =
1
2

m∗〈υ〉2
ens +

1
2

m∗〈υ2 −〈υ〉2
ens〉ens ≡ 1

2
m∗〈υ〉2

ens +
3
2

kBT , (19.23)

where what should have been a temperature tensor, Tij = m∗〈(υi −〈υi〉ens)(υj −〈υj〉ens)〉ens/(3kB),
has been reduced to a scalar by taking its trace. Thus, the energy flux vector S can be decomposed
into a “drift” term, which is only related to the second moment, and a “heat” term, Q, still containing
troublesome fourth moments:

S =
1
2

nm∗〈υ〉2
ens〈v〉ens +

3
2

nkBT〈v〉ens +Q , (19.24)

where

Q =
1
2

nm∗〈(v−〈v〉ens)(υ2 −〈υ〉2
ens)〉ens . (19.25)

Finally, the heat flux, representing the flux of the “random” component of the total kinetic energy, can
be related to a moment of lower order, the electron temperature, T , via a phenomenological Fourier
heat diffusion law, which constitutes the desired closure relation:

Q =−κ∇T . (19.26)

This relation plays the role of the Einstein relation, Eq. (19.14), employed to express the third moment
D in terms of the second moment μ . The thermal conductivity κ is given by the Wiedemann–Franz
law:

κ =

(

5
2
+ chd

)(

kB

e

)2

neμT , (19.27)

where the value of the parameter chd is still subject of investigation, ranging from 0 to −2.1 (or even
−2.5, which amounts to suppressing altogether the role of Q).

We have already seen that we have different choices to derive the current continuity equation,
Eq. (19.15) or (19.18), depending on whether we take strictly the second moment, or the slightly
different averages considered in Eq. (19.9). When dealing with the energy continuity equation, there
is an even wider range of choices. The algebraic manipulations, approximations, and even the choice
of closure relation leading to the set of equations obtained from the first three moments of the BTE
differ significantly among published works. In view of the absence of a “standard” model, we shall
present here one of the most general set of equations, known as the hydrodynamic approximation (see,
for example, [23] for some additional details). Some discussion about alternative forms will follow.

The expression we are going to reproduce below has been obtained rigorously by Rudan and
Odeh [23]. We start by revisiting the current continuity equation in the form of Eq. (19.4) and
express the diffusion constant, τ̃p,i〈υiυj〉ens, in terms of the second-order moment, T , by using the
decomposition into “thermal” and “drift” components of the velocity. Thus,
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τ̃p,i〈υiυj〉ens = τ̃p,i〈(υi −〈υi〉ens)(υj −〈υj〉ens)〉ens + τ̃p,i〈υi〉ens〈υj〉ens

≡ D̃ij + τ̃p,i
jijj
e2n

→ D̃0

(

T
T0

)

+ τ̃p
j · j
e2n

,

the last expression being obtained within the isotropic approximation by taking the trace. The
“diffusion constant” Dij has been defined in analogy with the equilibrium case, and it has been
decomposed into its linear dependence on carrier temperature and a function D̃0, which we can write
as D̃0 = kBT0τ̃p/m∗, so that for the mobility we have μ̃ = eτ̃p/m∗ = D̃0/(kBT0), where the subscript
0 refers to quantities evaluated at equilibrium at the lattice temperature. Then, employing the closure
Eq. (19.26), the set of equations (19.2), (19.4), and (19.10), coupled to the Poisson equation (19.13),
in the by now familiar isotropic and time-independent form, can be written as

∇ · (εF) =−en+ρd , (19.28)

∇ · j = 0 , (19.29)

j− τ̃p

e
(j ·∇) j

n
= eD̃0(

T
T0

)∇(n)+
enD̃0

kBT0
∇(kBT − eϕ) , (19.30)

∇ ·Q ≡−∇ · (κ∇T) =
kB

e
j ·
[

3
2
∇T − T

n
∇n

]

+
nkBT0

τ̃p,w
, (19.31)

in the unknowns n, ϕ , and j (or, equivalently, v =−j/(en)), and the electron temperature T . Note how
the spatial variation of D̃ has been handled correctly: the position dependence of τ̃p is lumped into D̃0,
which is outside the gradient, while the variation of the “temperature” 〈(υ −〈υ〉ens)

2〉ens is retained
inside the gradient. The momentum relaxation time τ̃p is given by Eq. (19.5), for any component i,
and the combined relaxation rate, 1/τ̃p,w, above is given by

1
τ̃p,w

=
m∗〈υ〉2

ens

kBT0

1
τ̃p

− 1
2

[

m∗〈υ〉2
ens

kBT0
+3

(

T
T0

−1

)]

1
τ̃w

, (19.32)

where the relaxation rate, 1/τ̃w, is given by Eq. (19.12). At this point, one must employ some
independent models in order to express the relaxation times as functions of the set of variables at
our disposal, now richer than the set available in drift diffusion: r, n, j, F, and T . Since “nonlocality”
is one of the major effects that the hydrodynamic model attempts to include, typically one chooses a
dependent variable, such as T , to model the collision dynamics via the relaxation times. This contrasts
the dependence of μ and D on the field F (an independent variable, as far as transport is concerned),
which rendered them purely local functions. Bypassing this “local” approximation is what renders
the hydrodynamic model capable of tackling situations with strong fields, so that the carriers are not
necessarily assumed to be at local equilibrium with the field.

The hydrodynamic approximations represent a significant improvement over the DD approxi-
mation, since, as we have already noted, carriers are allowed to acquire energy in the field and
their dynamics is not necessarily described by local quantities. Yet, in going from the BTE to the
hydrodynamic formulation (or to any other higher-order moments approximation) we have clearly
paid a price in three ways.

First, we have lost a large amount of information: We must content ourselves with the knowledge
of some averages (the moments) over the distribution function f . Detailed information about, say,
the high-energy part of the distribution is lost, since most averages are insensitive to this component.
Yet, some applications (such as predictions of breakdown voltage) may depend crucially on this lost
information.
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Second, the closure relation (19.26) has been criticized repeatedly. Indeed, it represents the major
issue in the moments method: Each moment is always coupled to the next higher moment and, as
higher moments are considered, the physical meaning of a “closure” becomes less obvious. As in
the DD equation (19.15), very large density gradients would result in unreasonably large carrier
“diffusion” velocities. This has been clearly identified as a big problem in simple non-self-consistent
simulations of short bases of bipolar transistors. Therefore, in Eq. (19.31) large temperature gradients
are consistent with unreasonably large heat currents. This feeds back into the carrier velocity via
Eq. (19.31) and “anomalous velocity overshoot” is observed in very small n+-n-n+ diodes, called
“ballistic” diodes only for historical reasons. More rigorous corrections to the Wiedemann–Franz
law have been obtained by utilizing the principles of extended thermodynamics, accounting for
viscosity effects [24]. Good results have also been obtained by either ignoring the convective term
(τ̃p/e)(j ·∇)(j/n) in Eq. (19.30), leading to the class of approximations usually known as energy
transport (ET) models (discussed below), or by ignoring the “drift” energy m∗υ2/2 with respect to the
thermal energy, (3/2)kBT . This is indeed an excellent approximation in Si at room temperature, down
to very small distance scales and large fields. Only in the presence of very large field gradients (i.e.,
large variations of the electric field over a mean free path) and/or of strongly anisotropic scattering
processes, such as Fröhlich scattering, does the drift component of the kinetic energy becomes
significant, which happens in materials with a long mean free path (like most III–V compound
semiconductors) and at sufficiently low temperatures. More recent developments have resulted in
a rigorous formulation of the problem using the entropy-maximization principle [25].

Third, we are forced to employ approximate models for the relaxation times. These models clearly
imply, unfortunately in a very indirect way, some particular property of the distribution function, but
it is nearly impossible to identify uniquely their “shape,” not to mention the functional dependence
on k or E and T , of f , as various models are proposed. Situations in which the distribution deviates
significantly from whatever “shape” is tacitly assumed by the models, will be mishandled. This is
particularly true for the momentum relaxation rate, whose energy dependence is much stronger than
the dependence exhibited by τw(E). Indeed, Monte Carlo (MC) simulations show it to be practically
“flat” above the threshold of optical phonon emission, at least in covalent materials. Popular models
for the relaxation times employed in various hydrodynamic simulations include:

• The simple extraction of this quantity from the MC simulation of transport in homogeneous
situations [26],

τ̃w =
w−w0

eF(T)υd(T)
, (19.33)

τ̃p =
m∗υd(T)

eF(T)
, (19.34)

where T is the average temperature of the carriers at the field F. This is taken to be 2〈E〉/(3kB) to
a good degree of approximation, at least in the absence of strong overshoot or streaming motion.
The quantities υd(T) and F(T) are the drift velocity and the field itself, expressed as a function
of T by inverting the υd-vs.-F and T-vs.-F relations obtained from the MC simulations. Clearly,
situations in which the distribution function deviates significantly from the homogeneous case will
pose some problems, as discussed in [27].

• The model by Baccarani and Wordeman [28],

τ̃w =
m∗μ0

2e
T0

T
+

3
2

kBμ0

eυ2
sat

TT0

T +T0
, (19.35)

τ̃p =
m∗μ0

e
T0

T
, (19.36)

where μ0 is the ohmic mobility at the lattice temperature T0,
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• The model by Hänsch and Miura-Mattausch [7, 29], for the momentum relaxation rate, expressed
as a function of the current density, j, and of the energy flux density, S:

τ̃p =

(

A+B
j ·S
j2

)−1

, (19.37)

where A and B are adjustable constants, in principle functions of the lattice temperature.
• The model proposed by Lee and Tang [30], which fixes the constants A and B in the previous

equation in terms of the energy relaxation time, τ̃w, the saturated velocity, υsat, and the low-field
mobility, μ0:

τ̃p =
m∗μ0

e

[

1− 3μ0

2τ̃wυ2
sat

(

kBT0

e
+

2
5

S
j

)]−1

. (19.38)

The wealth of models available is a clear indication of the seriousness of the problem and of
the importance of a correct selection of the relaxation times. Let’s consider again the “anomalous
overshoot problem” in n+-n-n+ diodes. While, as we said above, the Wiedemann–Franz law has been
almost universally blamed, one should also note that the large temperature gradient, ∇T , observed
around the n-n+ junctions, is not due to a fast energy relaxation, but simply to the fact that the
concentration of “cold” carriers in the contact (the n+ region) increases sharply, while the relaxation
of the carriers coming from the n-channel is washed out in the sea of cold carriers. In other words,
the distribution at the junction and for some distance inside the “drain” is strongly “bimodal”: a cold
component due to the carriers at equilibrium in the drain is added to the hot component of carriers
arriving from the channel. No moment method (and no other methods based on expansion, as those
described in the next section) can handle such a situation and the “bimodality” of the distribution is
lost. This loss of information is reflected in an artificially high ∇T . The real solution of the problem
appears to consist not so much in altering Eq. (19.27) at large ∇T , but in including the “correct” ∇T
(i.e., only the component of the hot carriers) in the equation and the correct τ̃p appropriate to the
bimodal distribution. This has been shown by Anile and Mascali [31], who have accounted for the
presence of these two (hot and cold) fluids in the system.

The model given by Eq. (19.37) above is perhaps the most successful attempt to obviate the
problem of the anomalous overshoot with a redefinition of the momentum relaxation time, since it
relates τ̃p only to the energy-carrying component of the distribution, but it really does not address
the real physical problem. In general, transport situations in which f exhibits a strong bimodal (or
quasi-ballistic) behavior cannot be handled by any moment scheme. Perturbing away from ballistic
transport (rather than away from equilibrium) would be the correct way to go and has been attempted
in particular cases [32]. The major question remains of establishing the length-scale and the energy
scale at which the moments methods would begin to show their limits. In a very “hand-waving”
fashion, we can express the range of validity of the hydrodynamic approximation (or of ET models)
as a requirement on the gradient of the electric field, rather than on the (stronger) conditions on the
strength of the field itself which applies to DD models, Eq. (19.21)

1
|F|
∣

∣

∣

∣

∂F
∂x

∣

∣

∣

∣

λ ≤ 1 , (19.39)

i.e., the electric field should vary significantly over a length-scale not too much smaller than a few
mean free paths.
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19.2.3 Energy Transport

For completeness, we should mention a method which, historically, led to the hydrodynamic or energy
transport models, the drifted Maxwellian approximation [9]. If we assume a priori that the unknown
f has the form:

f ∼ exp

[

− h̄2(k−kd)
2

2m∗kBTe

]

, (19.40)

and substitute this expression into the BTE, we derive equations for the “drift wavevector” kd and
the electron temperature Te, which are very similar to the hydrodynamic equations for the first-
and second-order moments, 〈k〉ens and T , respectively. This method has a very transparent physical
interpretation and exhibits very clearly the form of the distribution function which is assumed, with
all the limitations it carries. This approximation is probably a reasonable one at large carrier densities,
when strong interparticle scattering is very effective in thermalizing the distribution function, as we
have shown in Sect. 18.2.3. The power of this method consists in providing qualitative information
about hot-carrier transport, but it depends on such a strong approximation on the final solutions that
quantitative information should not be sought. It is in particular the concept of “electron temperature”
as a specifier for the shape of the distribution function which should be analyzed carefully.

The historical development of the moments method originated in 1962 with a paper by Stratton [9],
applicable to the case of uniformly doped semiconductors, who considered the energy balance beyond
the ohmic regime derived from the Ansatz (19.40), thus effectively considering the third moment of
the BTE. Bløtekjær [33] extended the method to nonuniform situations, in 1970. Over the years the
method was subject to modifications and applied to a variety of situations.

19.3 ∗Expansion Methods

Another possible strategy one may employ to solve the BTE is to expand the unknown distribution
function into a complete basis of orthogonal functions, insert this expansion into the BTE, and
derive PDEs for the coefficients of each term of the expansion. Therefore, the main task consists in
finding some sound physical argument that permits to halt the expansion to a finite, preferably small,
number of basis functions, showing that only the first few terms of the expansion are sufficient to
capture qualitatively the physics of the problem. For example, the distribution function is spherically
symmetric at equilibrium if one assumes isotropic bands. The presence of a weak electric field should
distort the distribution only slightly away from spherical symmetry. In the limit of a vanishing field,
this is simply the linear-response theory on which the Kubo–Greenwood formula relies. Therefore,
expanding the unknown distribution function over spherical harmonics, one expects that only a few
terms will be sufficient to capture the deviations from spherical symmetry.

19.3.1 The Spherical Harmonics Expansion

Indeed, historically, the Spherical Harmonics Expansion (SHE) was the first expansion proposed in
the literature. The first applications of the BTE to electronic transport in semiconductors dealt with
a study of the carrier mobility in the ohmic regime (i.e., the F → 0 limit) [10, 11]. In this limit, one
assumes that the distribution function is essentially the spherically symmetric Boltzmann equilibrium
function, f0, with small non-spherical corrections proportional to cosθ , where θ is the angle between
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the field F and the crystal momentum k. In a steady-state, homogeneous situation, one can write

f (k)� f0(E)+ f1(E)cosθ . (19.41)

Substituting this expression into the BTE and retaining only terms linear in F, one finds [10]:

f1(E) =−eFh̄k
m∗ τp(E)

∂ f0
∂E

, (19.42)

where τp(E) is the total momentum relaxation time, obtained from Eq. (19.7), after having integrated
over all angles in the isotropic approximation and having expressed the remaining integral over the
magnitude of k as an integral over the energy E. Note that the Kubo–Greenwood formula, Eq. (19.16),
is immediately derived from Eq. (19.42) above. As we have already remarked, for isotropic and/or
elastic scattering processes τp(E) can be rigorously defined, as it does not depend on f itself. In
other cases (most notably, polar optical scattering, which is neither isotropic nor elastic), such a
simple expansion, while formally possible, does not accomplish anything, since τp(E) remains a
full functional of f , and alternative, more sophisticated strategies are required to obtain the ohmic
mobility [14, 34, 35].

The basic idea leading to Eq. (19.41) can be extended naturally to a more general situation. The
k-space dependence of the distribution function can be expanded over a basis of orthogonal functions,
the coefficients of each term being functions of position in real space (and, possibly, time). The
scattering kernels W(k′,k) in the collision integrals can also be expanded over the same basis. Finally,
the expansions can be introduced into the BTE, and the coefficients of each of the basis functions set
equal in order to derive a hierarchy of PDEs in the variables r and t. By truncating the expansion at a
suitable level, the solutions of these coupled differential equations provide a solution of the BTE.

Many different implementations of the SHE method have been proposed, even accounting for full-
band effects [36–39]. In the case of a stationary but space-dependent problem, a variable reference
frame of unit vectors, {Ĵ(r), ê1(r), ê2(r)}, is defined at every point in space. The vector Ĵ lies along the
direction of the current density j, ê1 lies in the plane defined by Ĵ and the electric field and is normal
to Ĵ, while ê2 is normal to the other two vectors. Spherical bands are assumed for the semiconductor,
but an arbitrary “band shape” E(k) can be easily considered. Then, the distribution function can be
expanded as

f (k,r) = f (k,θ ,φ ,r) =∑
l

l

∑
m=−l

f m
l (r,k)Ym

l (θ ,φ) , (19.43)

where the functions Ym
l are the spherical harmonics, and θ and φ are the polar and azimuthal angles,

respectively, in the frame whose polar axis is along Ĵ. It is also assumed that the scattering kernels
W(k′,k) depend only on the magnitudes k and k′ of k and k′, and on the angle ξ between them. Thus,
one can expand the total kernel as

W(k′,k) = W(k,ξ ) =∑
l

Wl(k)Pl(cosξ ) , (19.44)

where Pl is the Legendre polynomial of order l. Many scattering processes can easily be considered,
such as the isotropic and elastic scattering with acoustic phonons, the inelastic isotropic scattering
with optical phonons, the elastic anisotropic scattering with ionized impurities, and impact ionization.
Considering only nonpolar materials, in order to avoid the “troublesome” inelastic and anisotropic
Fröhlich scattering, and assuming that the distribution is azimuthally symmetric, so that only the m= 0
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harmonics are retained, truncating the expansion to the f2 term, substituting Eqs. (19.43) and (19.44)
into the BTE, and equating coefficients of polynomials of the same order l, one obtains the equations:

Ĵ ·∇f1 + f1∇ · Ĵ+ eF · Ĵ
(

∇Ef1 +
γ ′

γ
f1

)

=
3cop

υ
{D(E+ h̄ω(op))[(〈Nop〉th +1)f0(E+ h̄ω(op))−〈Nop〉thf0(E)]

−D(E− h̄ω(op))[(〈Nop〉th +1)f0(E)−〈Nop〉thf0(E− h̄ω(op))]} , (19.45)

Ĵ ·∇f0 +
2
5

Ĵ ·∇f2 +
3
5

f2∇ · Ĵ

=−eF · Ĵ
(

∇Ef0 +
2
5
∇Ef2 +

3γ ′

5γ
f2

)

− f1
λ

, (19.46)

2Ĵ ·∇f1 + f1∇ · Ĵ+ eF · Ĵ
(

2∇Ef1 − γ ′

γ
f1

)

+
3f1
λ

= 0 , (19.47)

ê1 ·∇f1 − f1a · Ĵ = eF · ê1

(

∇Ef1 − γ ′

2γ
f1

)

, (19.48)

ê2 ·∇f1 + f1b · Ĵ = 0 . (19.49)

In these equations, γ(E) = h̄2k2/(2m∗), the total mean free path, λ (E) = υ(E)τ(E), is defined in
terms of the group velocity υ and of the total scattering rate, 1/τ(E), as a function of electron energy,
and the symbol ′ means differentiation with respect to E. The quantities cop, 〈Nop〉th, and h̄ω(op) are,
respectively, the coupling constant, the Bose–Einstein phonon occupation number, and the energy of
the optical phonon. They have been shown explicitly to emphasize the ability of the model to account
for inelastic processes. The vectors a and b above are defined by

∂ Ĵj

∂xi
= aiê1,j +biê2,j . (19.50)

The five equations of system (19.43)–(19.44) and Eq. (19.50) are sufficient to determine fully the three
unknowns fi(r) and the two degrees of freedom for the unit vector Ĵ(r). Note that only the function f0
is needed to obtain the averages n and 〈E〉ens of the carrier density and kinetic energy, while only f1 is
needed to obtain the average velocity 〈v〉ens, or, equivalently, the current density j. The effort to obtain
these quantities is thus comparable to the effort required when employing the moments method.

19.3.2 Other Expansions and Their Validity

Alternative expansions may be devised, such as expansions over the Hermite polynomials, and have
been attempted [7, 40, 41].

The question which we must ask is what advantage these expansion methods give us in solving
device-related problems. It is useful to compare vis-à-vis the moments method with the expansion
method. On first thought, the expansion method presents a major improvement over the moments
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method, since it solves the two major difficulties of the former approach: We do not have to look for
a closure relation, and we do not have to resort to phenomenological models in order to express the
relaxation times as functions of the available variables. This is accomplished essentially by accounting
for the (hopefully) dominant traces (i.e., the sum of the diagonal or “near diagonal” entries) of all even
order moments via f0, the traces of all odd order moments via f1, thus neglecting only the entries far-
off the diagonal of higher-order moments. These should vanish for moderately symmetric distribution
functions. On a deeper level, however, one realizes that truncating the expansion at some arbitrary
order amounts to some form of “closure.” It also appears that both methods rely on essentially the
same approximation of the distribution function. Indeed, what the expansion method requires is a fast
convergence of the expansion, so that ignoring higher-order terms, such as f3 in the system (19.43)–
(19.44), does not cause major errors in the evaluation of the lower-order coefficients f0, f1, and f2.
We are lacking, at present, a rigorous mathematical criterion defining the range of convergence of the
expansion (19.43) (or similar expansions over different basis functions). It appears that while some
“functional” convergence may be obtained in most interesting cases, point-wise convergence may be
questionable. For example, even in a time-independent and homogeneous situation, the high-energy
components of the coefficients fi seem to be roughly constant, thus implying a lack of convergence at
high energies. If we consider again the case of a bimodal distribution, such as what is observed in very
short n+-n-n+ diodes, it is clear that many terms in any expansion are required to represent correctly
the distribution and even the more relaxed “functional” convergence (such as the convergence of mean
values, such as 〈E〉ens) may require too many terms in the expansion to make the method practical.
Thus, one can expect that the expansion method will exhibit the same problems also exhibited by the
moments method. Indeed, while within the context of the moments methods we implicitly ask that
the distribution function be “well behaved” (i.e., not too far from a Maxwellian of some sort, so that
the first moments may characterize it well enough), a roughly equivalent form of requirement is also
needed by the expansion method. It appears that, after all, the expansion method may simply allow to
establish more rigorously which functional form of the distribution function is required in order to be
able to describe transport in a simpler way. The moments method hides these requirements under the
thick cover of the relaxation rates, thus obscuring this important issue. But, from a practical point of
view, the two methods appear to be similar.

19.4 Particle-Based Methods

Both of the methods we have seen so far, the moments and the expansion methods, essentially make
use of the same basic approximation: They both start from the premise that the distribution function
does not deviate “too much” from its equilibrium form. Here “too much” means that, whereas in
principle these methods are “exact” (just retain an infinite number of moments or terms in the
expansion), in practice we can obtain numerically a solution in an efficient way only if we retain
just a few terms. Moreover, these models handle complicated band structures and device geometries
in a rather cumbersome fashion, often implementing the full-band electron dispersion only via the
density of states and group velocity expressed as functions of the electron energy, thus in some angle-
averaged form. This is a major drawback: As interest shifts to the study of electronic transport in
small nanostructures, band-structure effects become dominant (see Chap. 7, Sect. 7.3.1, to see how
much the electron dispersion in a Si nanowire differs from that of bulk Si, for example) and transport
begins to approach the ballistic regime, dramatically different from equilibrium. Historically, we have
already mentioned that hot-electron effects, so important in the VLSI technology of the 1980s and
1990s, also demanded the use of better models to represent the band structure and electronic transport
at energies much higher than a few kBTs. Now, these considerations, origination from our interest in
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smaller and smaller structures, make it necessary to consider methods of solutions that do not rely
on any assumption of being near equilibrium and that can fully account for band-structure effects.
Additional complications related to our concerns about the validity of semiclassical transport have
been discussed in the previous chapter.

Therefore, we discuss here methods that attempt to solve the BTE even in strong off-equilibrium
situations. Most of these methods are based on the concept of “particles.” In this context, these should
be considered numerical entities that “probe” the distribution function in phase-space. The Monte
Carlo method is the prototypical embodiment of these methods. But we shall also discuss methods like
the weighted particle scheme, cellular automata, and even the transmission (or scattering) matrices
methods, that we shall consider “particle-based,” since the matrices themselves have to be calculated
and stored using some particle-based method.

For the reader who wishes to go deeper into the physical foundation and formulation of these
methods, the text by Hockney and Eastwood constitutes a basic reference [42]. The Monte Carlo
method applied to electronic transport in semiconductors is clearly presented in the text by Jacoboni
and Lugli [43] and in the review articles by Price [44] and Jacoboni and Reggiani [45].

19.4.1 The Monte Carlo Method

19.4.1.1 Overview

The MC method is based on a stochastic solution of the BTE. It was first devised in the early days
of digital computers to study neutron transport in nuclear fission [46]. In the context of electron
transport in crystals, it was first introduced by Kurosawa in 1966 [47]. It was shown to be fully
equivalent to a solution of the BTE by Fawcett and co-workers [48]. The Malvern group (for example,
see [49]) soon afterwards applied it to the study of high-field electron transport in III–V compound
semiconductors. The Modena group (see [45] and references therein) applied it to the study of electron
and hole transport in Si and Ge.

In order to get a quick idea of how the method works, it is convenient to look at the way the BTE
can be reformulated as a path integral, known as the Chamber’s formulation [50, 51]. For simplicity,
we express it here in the simpler form valid in homogeneous situations:

f (k, t) =
1

(2π)3

∫ ∞

0
ds exp

[

−
∫ s

0
ds′ τ−1

(

k− eF
h̄

s′
)]

×
∫

dk′ f (k′, t− s) W

(

k− eF
h̄

s,k′
)

, (19.51)

where τ−1(k) is the total scattering rate. This equation can be interpreted as follows: the distribution
function at k and time t can be traced back to the sum over all “past” distributions at any past time
t− s, by considering all particles which were at k′ at that time, scattered into the state k− eFs/h̄, and
survived without scattering from time s to time t, which happens with probability

P(t− s, t) = exp

[

−
∫ s

0
ds′ τ−1

(

k− eF
h̄

s′
)]

. (19.52)

We can reproduce this sequence of events by proceeding as follows:
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1. We start with a particle in some initial k-state and position in real space. These initial conditions
reflect the physical initial condition of the system.

2. We calculate, for all scattering processes of type r, the rate

1
τr(k)

=
∫

dk′

(2π)3 Wr(k,k′) , (19.53)

and the “total” scattering rate:

1
τ(k)

=∑
r

1
τr(k)

. (19.54)

3. We calculate the duration s of the ballistic flight of the particle, according to the probability (19.52)
above. We do this “stochastically,” by selecting a random number ξ in the interval (0,1), and setting
ξ = P(s). Since the integral in the exponent can be quite troublesome to evaluate numerically, the
“self-scattering” algorithm due to Rees can be employed [51, 52]: One adds to the “real” scattering
rate a fictitious scattering process with renders 1/τ(k) constant, i.e., independent of k. Calling Γ
this constant, one simply has P(s) = exp(−Γ s), so that s = − ln(ξ )/Γ . Alternatively, one only
considers very small time steps, so that P(s)� 1− s/τ(k), and k can be considered constant.

4. Once s is known, the equations of motion for a free particle under the action of the field are
integrated from the initial time to time s.

5. At the end of the flight, we select the scattering process with a probability given by their relative
weight τ(k)/τr(k). One of these scattering processes may be a self-scattering process, if this is
the chosen algorithm, or the particle may not scatter at all, if a fixed time step s is chosen and
ξ > s/τ(k). In either case, the particle remains in its original k-state. If a “real” scattering process
is chosen, we let the particle scatter to a new state, according to the probability W(k,k′).

6. We store the desired “ensemble averages,” by updating the appropriate statistical estimators, update
the time, and proceed to step 1 above.

19.4.1.2 Single Particle and Ensembles

Two basic schemes may be used: a single-particle simulation, in which only one particle at a time is
simulated, or an “ensemble” MC simulation, in which the time evolution of an ensemble of particles is
simulated. Typically, in device simulations the latter scheme is preferred. If a self-consistent solution
of the Poisson equation is desired, before closing the loop above, a few additional steps are necessary
to feed the new particle positions into the updated field:

1. We assign the charge of each particle to the mesh used to solve the Poisson equation. Several
schemes are possible. Hockney’s and Estwood’s book discusses them in detail [42].

2. We solve the Poisson equation in the mesh, by solving the associated finite element or finite
difference discretized matrix problem.

3. We compute the components of the field on the nodes of the mesh.
4. We interpolate the field back to the particle positions. Here the subtle issue of self-forces enters the

picture: we have to make sure that the field due to a particle, when interpolated back to the position
of the same particle, does not give rise to any unphysical force.

As stated in this simple test case we have employed to outline all methods of solution, the MC
method appears quite simple and intuitive. Indeed, while a rigorous proof can be provided that such
a “direct” simulation is actually equivalent to the solution of the BTE [48], the method amounts to
a conceptually simple simulation of the motion of semiclassical particles and their collisions. This
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intellectual simplicity is the main advantage of the method: However, others may find the method
unsatisfactory, because of the stochastic (i.e., not exact in this sense) nature of the solution. Many
engineers will not tolerate the long computation times caused by this stochastic nature in order to
reduce the “noise” (or, more properly, the “variance”) of the desired information. On the other side,
the entire emphasis is on the physical models. The scattering kernels W(k,k′) can be rendered explicit
functions of position, of time, functionals of the distribution function, and still the resulting BTE is
solved exactly (from the viewpoint of a physicist), without invoking approximations on the shape of
the distribution function, on the symmetry of the band structure, on the existence of relaxation times,
etc. In this sense, the MC method provides a “physically” exact solution of the BTE. We are only
limited by the amount of physics we are able to put into the BTE itself (and by our patience in waiting
for the evaluation of the model!).

19.4.1.3 Comparison with Other Techniques

As just stated, the main advantage of the MC method in device simulation is its simple implementation
and the possibility of keeping the number of approximations to a minimum. The high computational
cost is its major drawback. It is hard for the authors of this book to maintain an unbiased view of the
issue and compare in an absolutely objective way various approaches. Yet, when comparing the MC
method to other methods we have reviewed in this chapter, a few considerations should be kept in
mind.

Very frequently comparisons based on performance, measured by speed of execution per “bias
point,” are reported. It is important to make these comparisons on an “equi-physics” basis, by
comparing different methods using the same physical models. The MC method excels in its ability
to incorporate physical models beyond what other techniques can handle. Thus, a “fair” comparison
is sometimes impossible. An example is provided by the fact that most MC programs handle with
relative ease realistic band-structure models, such as ellipsoidal valleys (as for Si and Ge) (see
the original work cited in [45]), including nonparabolic corrections, multi-valley materials, such as
GaAs [49], ternary alloys of III–V compound semiconductors, strained alloys, or even band structures
derived from pseudopotential calculations [53–60]. We have indeed seen in Chap. 13 examples of
ensemble Monte Carlo simulations used to calculate the mobility and velocity field characteristics in
thin Si layers (Sect. 13.4.1, Figs.13.4 and 13.5) and in graphene (Sect. 13.4.2, Figs. 13.10 and 13.11).
Equally important, we should also emphasize that ensemble MC simulations can handle Coulomb
carrier–carrier interactions, processes that play an increasingly important role in nanometer-scale
devices. Alternative methods struggle dealing with these processes, that are therefore regarded as
“negligible effects.”

Methods based on the moments of the BTE, or on expansions over orthogonal functions, make
many simplifying assumptions based on spherical and/or parabolic and single valley band structures.
For example, the hydrodynamic model, when applied to multi-valley semiconductors, requires a
separate set of equations for each valley, thus increasing the time required to obtain a solution and
creating nontrivial convergence problems. Expansion methods rely heavily on quasi-spherical valleys
(i.e., valleys for which a simple transformation of k-space coordinates, due to Herring and Vogt [61],
can be applied to reduce the problem to spherical symmetry), with more general (and realistic) band
structures representing rather formidable implementation tasks. Indeed, too many terms would be
required by the SHE to account for the high anisotropy of the full-band structure. This is the reason
why full-band effects are usually included only in some angle-averaged fashion, by expressing energy,
density of states, and group velocity as functions of the carrier energy [36, 37].

MC methods are intrinsically amenable to geometries of higher dimensionality, which represent
almost exclusively a memory management problem rather than a problem of execution speed. An
example may be a comparison between the MC method and any other method based on PDEs in
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a one-dimensional, homogeneous, steady-state situation. The MC technique is intrinsically three-
dimensional both in real space and in k-space, so that such a simple problem is a poor test of the MC
method. A homogeneous situation favors alternative methods, while the MC algorithm gains from the
space-independence of the problem only marginally (averages can be taken over the entire simulated
region and noise can be brought down to acceptable levels in a shorter time), yet it solves the BTE
in its full seven-dimensional form anyway. But if we now consider space-dependent problems, and
move from a one-dimensional to a three-dimensional geometry, only the Poisson solver—a relatively
minor item in the overall computing budget—represents an increased computational burden in self-
consistent Monte Carlo/Poisson simulations. This is not so for deterministic methods based on PDEs,
whose computational demands increase in a very significant way. Therefore, as the use of simulation
programs handling 2 or 3 real-space dimensions becomes mandatory in the engineering community,
due to the reduction of linear and vertical dimensions, the computational cost of MC simulations
becomes comparable to that of alternative methods.

The real limit of MC methods can be inferred by recalling the “intuitive” correspondence between
simulation and “reality” that these methods embrace. Slow devices will be “harder” to simulate using
MC techniques than fast devices. Thus, paradoxically, a 10μm MOSFET is prohibitive: since at best
we can expect a 0.1 ns source-to-drain transit time, we are about 2 orders of magnitude beyond what
typical ensemble MC schemes can afford to do (typically simulation times of the order of 1–10 ps).
Similarly, the full switch-off of a non-field-aided n-p-n bipolar device requires that low mobility
holes leave the base under a very low field. The resulting time constant is, again, of the order of
several nanoseconds. It should be noted, however, that “slow” devices are usually “large” devices, for
which the DD approximation should be fully satisfactory. Thus, the MC method becomes impractical
exactly in those situations for which the method is not needed anyway. Low current situations, usually
controlled by electrostatics (e.g., the subthreshold characteristics of the device), are also hard to tackle
with MC techniques, because of the inherently large noise in this situation. Again, when electrostatics
dominate, MC methods are not necessary and should be avoided.

Related to this is the issue of “rare events.” Because of the finite number of particles that can
be used in the simulation, events that occur with a low probability (e.g., that depend on the high-
energy tail of the electron energy distribution) cannot be captured, or are affected by an unacceptably
high statistical noise. For example, if we are interested in studying the injection of hot electrons
from Si into SiO2, we must simulate electrons at energies approaching or exceeding the conduction-
band discontinuity between Si and SiO2, approximately 3 eV. Even if very high electric fields are
present in the semiconductor, only a fraction ∼ 10−9-to-10−6 of the electrons will be present at these
energies. Clearly, one cannot employ 109 particles in the simulation to have 1 of them at these energies.
Variance reduction techniques exist that can bypass this problem, by assigning different statistical
weights to particles occupying different regions of phase-space (or even real space, as in low-density
regions). These methods, already known in the “early days” of MC simulations [62, 63], have been
successfully implemented in our context [64]. The problem remains that these techniques require a
priori knowledge of the rare event that requires statistical amplification. Unknown, unexpected rare
events are likely to remain hidden.

These criteria notwithstanding, MC simulation should not be used to mindlessly generate sets of
current–voltage characteristics. As we noted above, and as it has been stressed in the literature, the
DD approximation is often sufficient to obtain terminal currents. The main strength of MC simulators
lies in their physical basis. Given the sometimes blind approximations made by faster simulation
approaches, MC programs should be used to calibrate both the parameters entering those simpler
approaches as well as our mind-set about the internal physics of electronic transport inside the device.
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19.4.2 ∗Cellular Automata

Despite the high degree of nonlocality exhibited by the BTE, it has been shown by the Munich
group [65, 66] that it can be translated into a lattice gas automaton with only local interactions in
space and probabilistic rules. The major step is the replacement of the physical ballistic trajectories
of the carriers between collisions with probabilistic rules, so that the drift terms in the BTE become
local in space. This method has been termed Cellular Automata (CA).

Following Kometer and co-workers [65, 66], the starting point is the discretization of the BTE in
phase-space and time. Real space is divided into cells, centered around sites {Ri}. Assuming only
two-dimensional geometries, the cells are taken to be hexagons with a lattice spacing a of a few nm,
so that the index i runs from 1 to 105–106. Similarly, k-space is divided into shells of thickness ΔK
centered around the values {Ks}, with s running from 1 to 20 or more, and divided into 60◦ segments,
each labeled by an index q, corresponding to group velocities pointing to nearest-neighbor real-space
cells. The spacing ΔK is chosen so that the lowest energy spacing is of the order of the optical phonon
energy. Each cell in discretized phase-space can be labeled formally by (R,K), where R stands for
the index i of the real-space cell, and K stands for the pair of indices s and q.

The BTE, discretized in this fashion, can be written as

n(R,K, t+Δt) = n(R,K, t)

+ ∑
R′=RNN

[pT(R′,R,K)n(R′,K, t)−pT(R,R′,K)n(R,K, t)]

+ ∑
R′=RNN

{[pF(R,K′,K)+pcoll(R,K′,K)] n(R,K′, t)

− [pF(R,K,K′)+pcoll(R,K,K′)] n(R,K, t) } ,

(19.55)

where the first sum is performed over the cells RNN, the nearest-neighbor cells, n(R,K, t) is an integer
expressing the occupancy of the cell (R,K), defined in such a way that the average over an ensemble
of lattice gas automata—indicated by 〈. . .〉CA and realized by averaging over 100 cells or so—yields
the usual ensemble average:

〈n(R,K, t)〉CA = 2
∫

Ω(R)
dr
∫

Ω(K)

dk
(2π)3 f (k,r, t) . (19.56)

The volumes Ω(R) and Ω(K) are the volumes of a cell in real and k-space, respectively. The
scattering probabilities pT, pF, and pcoll entering Eq. (19.55) are defined as follows: The ensemble
average of the collision probability pcoll is the integral of the scattering kernel Wr(k,k′) (note that we
have explicitly expressed its possible dependence on position) between the cells K and K′:

〈pcoll(R,K,K′)〉CA =
Ω

Ω(K)

∫

Ω(K′)
dk′

∫

Ω(K)

dk
(2π)3 Wr(R,k,k′)Δt . (19.57)

Ω is the normalization volume. The diffusion term (dr/dt) ·∇rf in the BTE yields the “transfer”
probability from one cell in real space to the one of the six nearest neighbors:

〈pT(R,R′,K)〉CA =
υ(K)Δt

a
δ
(

(R′ −R)

a
− K

|K|
)

, (19.58)
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where υ(K) is the group velocity. This is actually a Boolean variable, taking values 0 or 1, implying
that the particle will remain in the same cell in real space after time Δt with probability 1−υΔt/a,
or will move to the nearest neighbor in the direction K/|K| with probability υΔt/a. On average, the
particle will travel at its group velocity υ . Finally, the drift term, −eF ·∇kf , in the BTE gives rise to
an effective scattering probability

〈pF(R,K,K′)〉CA =
Δt

τfree(R,K)

OΔk(K,K′)
Ω(K)

, (19.59)

where OΔk(K,K′) is the volume of the cell K which overlaps with the cell K′ after the shift K →
K+ eFτfree/h̄ under the action of the field for a time τfree given by the mean free time of the electron
in cell:

1
τfree(R,K)

=
1
Δt∑K′

〈pcoll(R,K,K′)〉CA , (19.60)

provided τ does not change too much in the shift above.
The basic algorithm for evolution through a single time step of duration Δt is:

1. Initialize the particles in the device, label them in phase- space.
2. For each particle, evaluate k-space scattering at each site R, by selecting a final state K′ with

probability pF(R,K,K′)+pcoll(R,K,K′), and transfer the particle from (R,K) to (R,K′).
3. Evaluate real-space “scattering” by selecting a final cell with probability pT(R,R′,K′), remain-

ing in the same site with probability 1 − pT(R,R′,K′), moving to that site with probability
pT(R,R′,K′). In the latter case, transfer to the state (R′,K′).

4. Evaluate the cell occupation n(R,K, t).
5. Solve the Poisson equation.

The procedure continues through a loop over time steps, as in any other conventional simulation.
The basic criteria for an accurate simulation are related to the choice of the quantities Δt and a:
The “velocity” a/Δt must be larger than any physical velocity in the system, so that the kinematics
are treated correctly. The time step Δt implies, via the probabilistic treatment of the kinematics, a
fictitious diffusion constant which must be much smaller than any physical diffusion in the system.
Typically, for GaAs at room temperature, Δt = 1 fs and a= 1 nm are satisfactory choices.

This method has been applied to the study of complex devices, especially scaled MOSFETs [67]
and two-dimensional GaAs MESFETs [68, 69]. Yet, from a “philosophical” point of view, it appears
to be very similar to the MC method, in that it shifts the emphasis away from a complex algo-
rithmic/mathematical formulation of the BTE (even oversimplifying the kinematics, with simplistic
band-structure models, and the dynamics, with simplistic collision terms) to a perhaps not-so-elegant
technique which, on the other side, gives more intellectual freedom to enhance the physical models.

19.4.3 ∗Weighted Particle Method

A deterministic particle simulation approach has been proposed by Degond and co-workers [70, 71].
It can be considered a variant of the Monte Carlo technique, in the sense that the ballistic transport of
(super)particles is explicitly simulated between collisions. However, while the MC method evaluates
the collision integral stochastically, this method employs the particles as quadrature points to evaluate
the collision integral itself. In order to do so, the effect of the collisions is not accounted for by
changing the particle trajectories, but rather by changing their “weights,” which thus carry the whole
information about the distribution function.
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The starting point of the method is the approximation of the distribution function by its particle
representation: Each particle, labeled by the index i, is assigned a k-space volume ωi and a weight wi.
The distribution function is then approximated as a sum over delta functions at the particle locations.
Assuming, for simplicity, a homogeneous situation,

f (k, t) � ∑
i

ωi wi(t) δ [k−ki(t)] , (19.61)

where ki(t) evolves according to the free equations of motion (i.e., ki(t) = ki(0)− eFt/h̄). Using this
approximation, the collision integral becomes

Qi(t)�∑
j

ωj{W[kj(t),ki(t)]wj(t)−W[ki(t),kj(t)]wi(t)} , (19.62)

and the BTE reduces to a system of ordinary differential equations for the weights:

dwi(t)
dt

= Qi(t) . (19.63)

One can now start from an “educated guess” on the initial weights (such as those associated with a
Maxwellian), assume the appropriate boundary conditions on a closed domain for the k-vectors, and
solve Eq. (19.63) above. All “ensemble averages” can be easily obtained from the known weights. In
order to make the evaluation of the collision integrals Qi(t) as fast as possible, approximations to the
scattering kernels using velocity-randomization (i.e., isotropic) are preferred. A very careful analysis
of the stability, accuracy, and error estimates of the method has been provided [70, 71].

19.4.4 ∗The Scattering Matrix Approach

The “Scattering Matrix Approach” (SMA) originates from the “flux method,” proposed by McKelvey
and co-workers in 1961 [72]. It is not a “particle-based” method, but we discuss it here because the
basic building blocks of the methods, the scattering matrices themselves, are usually calculated and
stored using the Monte Carlo method. In some very broad sense, it can be viewed as a variation of the
Monte Carlo method and of the cellular automata method.

Consider a one-dimensional geometry and divide the semiconductor into thin slabs with a given
field, doping density, etc. defined in each slab. Let’s denote by a+ (b−) the flux of carriers entering the
slab from the left (right), and a− (b+) the flux of carriers leaving the slab on the left (right), so that a
refers to fluxes at the left, b to fluxes at the right, the superscript “+” to right-traveling fluxes, and the
superscript “−” to left-going fluxes. In each slab, define a matrix,

S =

[

t r′

r t′

]

, (19.64)

where t, t′, r, and r′ are the transmission and reflection probabilities associated with the slab for the
fluxes incident from the left and from the right, respectively. Then, an intuitive formulation of current
continuity requires

[

b+

a−

]

= S
[

a+

b−

]

, (19.65)
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together with the conditions t+ r = 1 and t′+ r′ = 1. One can now analyze the whole device: the i-th
slab is centered at the coordinate zi, and it is characterized by a doping Ni and an electric field Fi. Two
scattering matrices associated with adjacent slabs i and i+1 are combined in an algebraic rule called
“cascading”: if Sc is the “cascaded” matrix, its elements are given by

tc =
titi+1

1− r′iri+1
, (19.66)

r′c = r′i+1 +
r′iti+1t′i+1

1− r′iri+1
, (19.67)

rc = ri +
tit′iri+1

1− r′iri+1
, (19.68)

t′c =
t′it

′
i+1

1− r′iri+1
. (19.69)

By cascading all the matrices associated with the slabs, one obtains

[

b+R
a−L

]

= Sc

[

a+L
b−R

]

, (19.70)

where the subscript L represents the left contact, the subscript R the right contact. Assuming local
thermodynamic equilibrium at the contacts, one can easily evaluate the incoming fluxes:

a+L = 2
∫

υ(g)z >0

dk
(2π)3 υ

(g)
z (k) f0,L(k) , (19.71)

b−R = 2
∫

υ(g)z <0

dk
(2π)3 υ

(g)
z (k) f0,R(k) , (19.72)

where f0,L and f0,R are Fermi–Dirac distributions evaluated at the Fermi level at the left and right
contacts, as specified by the boundary conditions. The problem (19.70) can be solved and various
quantities of interest can be derived. For example, the current at the left contact can be obtained,
assuming the case of electrons, as

JL =−e(a+L −a−L ) , (19.73)

and similar for the right contact. The electron density follows trivially:

nL =
a+L +a−L
υ(g)

z

, (19.74)

where υ(g)
z is the velocity with which carriers are injected from the left at the contact, as averaged over

the distribution f0,L considered in Eq. (19.71) above. In order to evaluate carrier and current densities
within the device, one defines “transfer matrices” Ti, which relate the left and right fluxes in each
slab:

[

b+i
b−i

]

= Ti

[

a+i
a−i

]

=

[

ti − r′iri/t′i r′/t′i
−r/t′i 1/t′i

][

a+i
a−i

]

. (19.75)
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Since the contact fluxes a+L and a−L are known from the procedure described above, one can obtain
the fluxes in and out of an arbitrary slab by working from the left contact to that slab via repeated
applications of the transfer matrices. Thus:

[

b+i
b−i

]

= T1T2 . . .Ti

[

a+L
a−L

]

. (19.76)

The algorithm just described has been extended by the group at Purdue University [73, 74], in order
to evaluate not only ensemble averages but also a discretized form of the distribution function. The
idea is to decompose each flux into its k-modes. If the BZ is divided into M elemental volumes, the
transmission and reflection coefficients become M×M matrices, and each scattering matrix becomes
a 2M × 2M matrix. The entire algorithm proceeds in exactly the same way, but now one is able to
obtain at each slab the carrier density in each of the M modes, i.e., the distribution function in the
elemental volume in the BZ corresponding to the given mode. It can be shown that the SMA is fully
equivalent to a solution of the BTE [75].

The amount of memory required to store the scattering matrices can be minimized by discretizing
the longitudinal modes (i.e., the k-vector along the direction of the field) and only one of the transverse
modes, averaging it over the azimuthal angle, thanks to the azimuthal symmetry of the problem.
Iterative schemes can be employed to solve the problem. In the simplest case, one imposes periodic
boundary conditions at the left and the right contacts. Thus, Eq. (19.70) becomes an eigenvalue
problem. This is solved by “guessing” an incident flux from the left computing the outgoing flux
to the right, using the result as a new incoming flux from the left, and repeating the procedure until
the desired convergence is reached.

It is clear that both the kinematics and the dynamics are hidden within the scattering matrices.
Nothing has been said about the physics of the problem (band structure, collision kernels, etc.) until
the scattering matrices are specified. Typically, Monte Carlo simulations are employed to evaluate
the scattering matrices and build a “library” of them, each for a given field, doping concentration,
etc. It is clear that memory requirements [76] can easily exceed any practical limit. Schemes have
been devised to minimize the storage problem, by assuming field-free slabs coupled to voltage steps
between adjacent slabs. Any field can be mimicked by an appropriate slab thickness and step height.

The method has the advantage of being intuitive, and of requiring no approximations of the physics,
being gated in this respect by the physics employed in the MC code used to generate the library
of scattering matrices. It is also amenable to the study of some quantum effects, such as tunneling
and, more generally, “vertical transport,” by promoting the transmission and reflection coefficients
to complex numbers obtained by computing the quantum-mechanical transmission and reflection
amplitudes for step potentials or across potential barriers. There are, however, severe problems with
the method in general. First, it is easy to understand that the simulation of two-dimensional geometries
would require an impractical effort in terms of memory management. Attempts have been made to
couple this method to the expansion method, described above, in order to minimize the memory
requirements. Secondly, numerical problems of the form of accuracy and propagation of round-off
errors may plague the cascading of many scattering matrices and the multiplication of many transfer
matrices. Related to this problem is the possible propagation of the intrinsic “noise” (or “variance”)
of the MC method, when used to generate the library of scattering matrices, which may be amplified
by the cascading process. Finally, the convergence of the iterative scheme may become a source of
concerns.
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19.5 ∗Direct Solutions

Several techniques have been proposed to solve the BTE without the help of moments, relaxation
times, or truncated expansions. This is partially due to the justifiable desire to assess how well those
methods approximate the “exact” solution. Among the various methods employed in the relative
long history of the BTE applied to electronic transport in solids, the most interesting are iterative
techniques, the direct solutions of the BTE attempting to express it in a finite difference form.

19.5.1 The Iterative Technique

For uniform systems, we have seen before that the BTE can be recast into the Chamber’s path integral
form, Eq. (19.51) [50, 51]. One can now attempt to solve this equation by iterations, as first suggested
by Budd [77] (curiously, at the same conference at which the MC method was first proposed). As it is
usually done in iterative approaches, one can substitute to the unknown f by an arbitrary function, f0,
at the right-hand side, calculate a new f1 at the left-hand side by performing the integrations indicated
over the paths k− eFt/h̄, substitute the newly found f1 in the right-hand side, and proceed with the
iteration until some convergence criterion is met. A particular application of the iterative technique is
the study of time transients, starting from a known initial distribution f0. The self-scattering algorithm
can be employed also in this case: A fictitious scattering kernel, Wself(k,k′), is introduced, so that the
total scattering rate, 1/τ(k), is independent of k and equal to a constant, Γ [51, 52]. In this fictitious
self-scattering process, the state of the particle does not change, i.e., nothing happens to the particle.
If Γ � 1/τ(k), successive iterations exhibit now the property [78] that, if fn and fn+1 are the results
of two successive iterations,

fn+1(k)� fn(k)+
1
Γ
∂ fn(k; t)
∂ t

, (19.77)

and the iteration acquires the physical meaning of time evolution. Among the advantages of the
iterative procedure is the possibility of employing arbitrarily complicated scattering kernels and band
structures. The major difficulty lies in the solution of spatially inhomogeneous problems. Caution
should also be exercised in the analysis of error propagation through the iteration, since round-off
errors and algorithmic errors in the numerical evaluation of the many integrals may be hard to estimate
and to keep under control. A slow convergence is also a potential problem. These issues have been
analyzed in [51].

The iterative method has been applied only to a limited set of problems [79], because of the
aforementioned limitations. Most interestingly, one of the most well-known applications has been
on the study of the time dependence of polar optical runaway of electrons in SiO2 [80]. In the mid-
1990s, the method was revived by Leung and Childs [81] to study spatially transient distributions in
silicon. A variation of the iterative technique, the “transaction method,” has been proposed by Iizuka
and Fukuma [82]. In some sense, this is a method bridging the iterative technique to the direct solution
methods mentioned below: The BTE is recast into the integral Chambers form, k-space is discretized,
and the scattering term [the last factor in the integrand in Eq. (19.51) above] is treated as a set of
discrete transitions (or “transactions”) between states, now represented as “cells.” Starting from a
“zero-time” (or “last-minute,” in the language of Iizuka and Fukuma) distribution, the distribution is
evolved by one time step (of the order of an appropriate inverse self-scattering time) by first accounting
for the “transactions” in k-space, and by translating each cell under the action of the field, until the
required final time is reached. Once more, only homogeneous cases with azimuthal symmetry have
been considered so far.



19.5 ∗Direct Solutions 433

We should note that finding directly a solution of the BTE in inhomogeneous situations in three
spatial dimensions and bulk transport remains computationally prohibitive. However, structures in
which quantum confinement forces transport to occur in one dimension are within reach. Nanowires,
nanoribbons, and ultra-narrow fins in FinFETs belong to this class. In these cases, the transport
variables are fewer, just one spatial coordinate, z, the wavenumber kz, and time. Scattering is also
simplified, since a carrier can only scatter either forward or backward. Such a major reduction in the
phase-space allows us to solve directly the BTE. The work by Jin et al. [83] is just an example in
which transport in Si NWs has been studied in this way.

19.5.2 Direct Matrix Inversion

The starting BTE, Eq. (18.47), may be discretized in phase-space and time and, similarly to the
Chambers formulation above, may be reduced to a large matrix-inversion problem. For a detailed
description, see the text by Nag [84]. It is quite evident that, depending on the level of coarseness
adopted to discretize k-space and real space, the matrix may easily reach impractical sizes. So far,
only spatially homogeneous problems have been handled. Even in these cases, practical storage and
execution speed requirements force a poor discretization of k-space. Perhaps, the speed and memory
capabilities of future computers will render this method practical also for interesting problems.

Problems

19.3. (Electron Mobility in the Effective-Mass Approximation and Matthiessen’s Rule)

(a) Use the Kubo–Greenwood formula to calculate the electron mobility at 300 K, μac, limited by
scattering with acoustic phonons in Si. Use Eq. (13.42), obtained in the elastic, equipartition
approximation. For simplicity, use an isotropic effective mass m∗ = 0.32mel, consider scattering
only with LA phonons with ΔLA = 10 eV, longitudinal sound velocity cL = 9× 103 m/s, and a
crystal mass density ρ = 5.33 g/cm3. Compare your result with the experimental value of about
1,500 cm2/V·s. Why do you think your result is different?

(b) Repeat the same calculation to calculate the electron mobility, μop, limited by nonpolar scattering
with optical phonons. Use Eq. (13.41) with (DK)op = 5×108 eV/cm, and a phonon energy h̄ωop

= 61 meV. Use Matthiessen’s rule to calculate the total phonon-limited mobility, μph:

1
μph

=
1
μac

+
1
μop

. (19.78)

Has the agreement with the experimental value improved?
(c) Finally, calculate the electron mobility, μimp, limited by scattering with ionized impurities. Use

Eq. (14.14) with Debye–Hückel screening, Eq. (11.52). Calculate also how this mobility depends
on the concentration of impurities nD. Above which impurity density does impurity scattering
become more important than phonon scattering?
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Appendix A
Review of Time-Independent and Time-Dependent
Perturbation Theory

A.1 Stationary (Time-Independent) Perturbation Theory

In most applications we treat in this text we must solve the following type of problems: a physical
system described by a total Hamiltonian ̂Htot which can be decomposed into a term ̂H0—which we
can somehow treat “exactly”—and a term α ̂H(t) (in general dependent on time t) which usually
renders the problem intractable; that is, we do not know how to diagonalize the full Hamiltonian
̂H0 +α ̂H(t). Almost invariably, with a few exceptions usually worth a Nobel prize, the problem is
handled by limiting ourselves to the case in which the troublesome term α ̂H(t) is “small” (a concept
to be somehow quantified) compared to ̂H0. This is reflected by the statement that the dimensionless
quantity α , which we have factored out of the term α ̂H(t), is small compared to 1. In this case, we
treat α ̂H(t) as a small “perturbation” and solve the problem by expressing the solutions (eigenvalues
and eigenvectors) as series of powers of α . Typically, we shall be satisfied with the first term, or,
occasionally, the first two terms.

Let’s consider first the case in which ̂H(t) does not depend on time. As we just said, we are
assuming that the problem we must solve

(̂H0 + α ̂H) |φn〉 = Wn |φn〉 (A.1)

is too complicated. However, we have assumed that α is small and that we are able to solve the
“unperturbed” problem ̂H0|ψn〉=En|ψn〉. Then, one can show that, to second order in α , the perturbed
eigenvalues Wn are given by

Wm = Em + α Hmm + α2 ∑
n �=m

|Hnm|2
Em −En

+ o(α3) , (A.2)

where Hmn = 〈ψn|̂H|ψm〉=
∫

ψ∗
n (r)̂Hψm(r)dr, and, to first order, the perturbed eigenfunctions are

|φm〉 = |ψm〉 + α ∑
n �=m

Hnm

Em −En
|ψn〉 (A.3)

The proof of these statements proceeds as follows: Let us expand |φn〉= |ψn〉+α|φ (1)n 〉+α2|φ (2)n 〉+
· · · and Wn = En + αE(1)

n + α2E(2)
n + · · · . Inserting these expressions into the initial Schrödinger
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equation we have

(̂H0 + α ̂H) (|ψn〉+α|φ (1)n 〉+α2|φ (2)n 〉+ · · ·)
= (En +αE(1)

n +α2E(2)
n + · · ·) (|ψn〉+α|φ (1)n 〉+α2|ψ(2)

n 〉+ · · ·) (A.4)

Equating now the terms of the same order in α appearing at both sides of the equation, we have

̂H0|ψn〉= En|ψn〉 to order α0; this is the unperturbed problem (A.5)

̂H|ψn〉+ ̂H0|φ (1)n 〉 = E(1)
n |ψn〉+En|φ (1)n 〉 to order α . (A.6)

Writing now |φ (1)n 〉= ∑i ani|ψi〉, this equation becomes

̂H|ψn〉+ ̂H0∑
i

ani|ψi〉 = E(1)
n |ψn〉+En∑

i

ani|ψi〉 . (A.7)

Multiplying this by 〈ψl| and integrating

Hln +Elanl = E(1)
n δln +Enanl. (A.8)

For l = n, we obtain immediately E(1)
n = Hnn. For l �= n, instead, we have

anl =
Hln

En −El
(A.9)

Extending to second order, extensions that we shall need in later sections, if we equate terms of order
α2 at the left- and right-hand sides of Eq. (A.4), we have

̂H0|φ (2)n 〉 + ̂H|φ (1)n 〉 = En|φ (2)n 〉 + E(1)
n |φ (1)n 〉 + E(2)

n |ψn〉 . (A.10)

Expanding now |φ (1)n 〉 and |φ (2)n 〉 over the (complete) basis of the states |ψm〉, we have

φ (1)n 〉 = ∑
m

a(1)nm |ψm〉 , (A.11)

and

φ (2)n 〉 = ∑
m

a(2)nm |ψm〉 . (A.12)

Inserting now these expansions into Eq. (A.10), we have

̂H0| ∑
m

a(2)nm |ψm〉 + ̂H ∑
m

a(1)nm |ψm〉 = En ∑
m

a(2)nm |ψm〉+E(1)
n ∑

m
a(1)nm |ψm〉

+E(2)
n |ψn〉 . (A.13)

Taking now the inner product of this equation with 〈ψn|:

c(2)nn En + ∑
m

a(1)nmHnm = c(2)nn En + a(1)nn E(1)
n + E(2)

n . (A.14)
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The first term on the left-hand side (lhs) is equal to the first term on the right-hand side (rhs). Using

now the fact that a(1)nm = Hmn/(En −Em) and E(1)
n = Hnn, we have

E(2)
n = ∑

m�=n

HmnHnm

En −Em
= ∑

m�=n

|Hmn|2
En −Em

. (A.15)

In typical situations, the perturbation ̂H breaks a symmetry of the unperturbed Hamiltonian ̂H0.
For example, we may consider an isolated atom (so, a spherically symmetric Hamiltonian ̂H0) in
the presence of a weak electric or magnetic field (giving rise, respectively, to the Stark and Zeeman
effects). These fields may be viewed as perturbations which break the spherical symmetry. In these
cases, looking at the expressions above for the second-order correction to the eigenvalue Wm and
the first-order corrections to the eigenstate |φm〉, we see that we may run into problems. Indeed the
spherical symmetry of ̂H0 implies that it will commute with the angular momentum operators ̂L and
̂Lz. Therefore, each eigenstate |n > of ̂H0 will also be labeled by the angular momentum quantum
numbers l and m (so, as a mater of notation specific to this problem, the |φn〉 → |φn,l,m〉). However,
the energy En will not depend on l or m, thanks to the spherically symmetry. Since the perturbed
eigenvalues are given by a simple extension of the equation given above:

Wn = En + α Hnlm,nlm + α2 ∑
n′,l′,m′ �=n,l,m

|Hn′l′m′,nlm|2
En −En′

+ o(α3) , (A.16)

problems will occur in the sum whenever we consider terms with l �= l′, m �= m′, but n = n′, since the
denominator will vanish. In these cases, we have to modify slightly our approach following what is
known under the name of “degenerate perturbation theory.” Indeed we could bypass the difficulty we
have just emphasized if we could modify the matrix elements Hn′l′m′,nlm → H′

n′l′m′,nlm, so that

H′
nl′m′,nlm = 〈φ ′nl′m′ |H|φ ′nlm〉 = λnlm δll′ δmm′ . (A.17)

Clearly, this amounts to a diagonalization of the perturbation Hamiltonian ̂H in each eigenspace
corresponding to the same eigenvalue En of the unperturbed Hamiltonian. Thus, the states |φ ′nlm〉
constitute the new basis of eigenvectors in each subspace with eigenvectors λnlm. Therefore the new
expression for the second-order corrections to the energy,

Wnlm = En + α λnlm + α2 ∑
n′ �=n;l′m′

|H′
n′l′m′,nlm|2

En −En′
+ o(α3) , (A.18)

is now free from singularities. Obviously, this diagonalization also removes the singularities appearing
in the first-order corrections to the eigenstates.

A.2 Time-Dependent Perturbation Theory

Let us consider now the more general case in which the perturbation term is time-dependent:

[̂H0 + ̂H(t)] |Φ〉 = ih̄
∂ |Φ〉
∂ t

. (A.19)
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As in the previous case, we know that ̂H0|ψn〉= En|ψn〉 and, from the time evolution of the eigenstates
of the unperturbed Hamiltonian, |Ψn〉 = |Ψn(t)〉 = e−iEnt/h̄|ψn〉. Writing |Φ(t)〉 = ∑an(t)|Ψn〉, we
have ∂ |Φ(t)〉/∂ t = ∑n[ȧn − (i/h̄)Enan]|Ψn〉. Inserting this into the original equation, we obtain

[̂H0 + ̂H(t)]∑
n

an(t)|Ψn〉 = ∑
n
[ih̄ȧn(t)+Enan(t)]|Ψn〉 , (A.20)

or:

∑an(t)(̂H0 −En)|Ψn〉 + ∑
n
[an̂H(t)− ih̄ȧn]|Ψn〉 = 0 . (A.21)

The first term vanishes. Multiplying by 〈Ψl|, integrating, and recalling that 〈Ψl(t)|Ψn(t)〉 = δln, we
have

∑
n
[an(t)Hln(t)e

i(El−En)t/h̄ − ih̄ȧnδln] = 0 . (A.22)

Defining the quantity h̄ωln = El −En, this equation can be rewritten as

ih̄ȧl = ∑
n

an(t) Hln eiωlnt . (A.23)

We now assume that at t = 0 the system was in the state |ψj〉, so that aj(0) = 1, all other a(0)’s
vanish. We also assume that the term ̂H is “weak,” so that the coefficients an in the rhs can be taken
as constant. Then:

aj(t) ≈ 1 − i
h̄

∫ t

0
Hjj(t) dt → 1 − i

h̄
Hjj t for constant H turned on at t = 0 (A.24)

ak(t) ≈ − i
h̄

∫ t

0
Hkj(t) eiωkjt dt → Hkj

h̄ωkj
(1 − eiωkjt) for k �= j . (A.25)

Now, the probability of finding the system in the state k �= j at time t will be Pk(t) = |ak(t)|2. The
“transition rate” (that is, probability per unit time) will be Pk(t)/t, that is

1
t

∣

∣

∣

∣

Hkj

h̄ωkj
( 1 − eiωkjt)

∣

∣

∣

∣

2

=

∣

∣

∣

∣

2Hkj

Ek −Ej

∣

∣

∣

∣

2 1
t

sin2
(

Ek −Ej

2h̄
t

)

= |Hkj|2 4sin2[(Ek −Ej)t/(2h̄)]

[Ek −Ej]2t
. (A.26)

One can show that

lim
t→∞

4 sin2[(Ek −Ej)t/(2h̄)]

[Ek −Ej]2t
=

2π
h̄
δ (Ek −Ej) , (A.27)

where δ (x) is the “Dirac delta function(al)” that has the property:

∫ ∞

−∞
f (x) δ (x)dx = f (0) . (A.28)
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Saying that the Dirac delta is a functional, and not a function, means that this expression has a rigorous
mathematical meaning only under integration over E(k). It is indeed by multiplying both sides of
Eq. (A.27) by an arbitrary, well-behaved function f [E(k)] that one proves its validity. In more correct
mathematical terms, the functional δ is a linear mapping between a space of complex-valued functions
and the field of complex numbers C such that for any function f in the functional space, δ [f ] = f (0).
Therefore:

transition rate j → k =
2π
h̄

|Hkj|2 δ (Ek −Ej) , (A.29)

which is the famous “Fermi’s Golden Rule.” For a harmonic perturbation, ̂H(t) = ̂H(0)e−iωt, we
obtain a similar expression:

S(j → k) =
2π
h̄

|Hkj|2 δ (Ek −Ej −ω) , (A.30)

A.3 The First Born Approximation

The problem we wish to consider now is slightly different. We consider, as before, a problem
whose solutions |ψn〉 are known, ̂H0|ψn〉 = En|ψn〉, considering specifically free particles in three
dimensions, so that |ψn〉 is a plane wave,

〈r|ψk〉 =
1

Ω 1/2
eik·r , (A.31)

having replaced the “quantum number” n with the wavevector k and having normalized the wave-
function to the volume Ω . As in Eq. (A.1), we consider adding a weak, time-independent perturbing
scattering perturbation ̂H(r) that is “localized”; that is, nonzero only in a small region around the
origin and vanishes at infinity. Assuming that |ψn〉 represents a wave with energy E = h̄2k2/(2m)
incident from infinity, we wish to calculate the scattering cross section.

The scattered wave, |φ〉, is a solution of Eq. (A.1) that we can write as

[

h̄2

2m
∇2 + H(r)

]

φ(r) = E φ(r) , (A.32)

or

[

∇2 + k2]φ(r) =
2m

h̄2 φ(r) . (A.33)

This is the Helmholtz equation that can be solved using Green’s functions:

φ(r) = ψ(r) − 2m

h̄2

∫

dr′
eik·(r−r′)

4π|r− r′| H(r′) . (A.34)

Considering the scattered wave φ(r) very far from the region where the scattering potential is nonzero,
r >> r′, to first order in r′/r we can approximate |r− r′| with r− r̂ · r′ · r̂, where r̂ is the unit vector
along the direction of r. Looking at the scattered wavevector along the direction of r, that is, setting
k′ = kr̂, we can rewrite Eq. (A.34) as
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φ(r) =
1

Ω 1/2

[

eik·r +
eik′·r

r
f (k,k′)

]

, (A.35)

where:

f (k,k′) =
mΩ 1/2

2π h̄2

∫

dr′ e−ik′·r′ H(r′) φ(r′) . (A.36)

In Eq. (A.35), the first term inside the square bracket represents the un-scattered wave, while the
second term represents a wave scattered in the direction of r with amplitude given by the function
f (k,k′). Note that scattering is elastic, so k = k′.

Equations (A.35) and (A.36) give us a solution only formally, since the unknown function φ(r)
appears inside the integral at the right-hand side of Eq. (A.36). The Born approximation consists in a
series of approximations: at the lowest order, we assume that the scattered wave is very weak, so that
as r →∞ it is negligible. Then, we can replace the unknown wave φ(r) with the incident wave ψ(r) =
〈r|ψ〉 inside the integral Eq. (A.36). The Born series of approximations can continue: calculating the
scattered wave by replacing the unknown wave φ(r) with the incident wave ψ(r) in Eq. (A.36) and
inserting the result into Eq. (A.35), we obtain a better approximation to the scattered wave. We can
now repeat the process, replacing this new expression for the scattered wave into Eq. (A.36) and
repeat, every iteration being known as the n-th Born approximation.

The differential cross section can be obtained as follows. The incident flux is j =
(h̄/m)Im[ψ∗∇ψ] = h̄k/(mV). The outgoing flux is j′ = (h̄/m)Im[φ ∗∇φ ] = [h̄k′/(mV)]|f (k,k′)|2/r′.
Therefore, the differential cross section per infinitesimal solid angle dω is dσ/dω = r′2j′/j =
|f (k,k′)|2. We can write the total scattering cross section as

σ =
∫

k=k′
dω |f (k,k′)|2 . (A.37)

Assuming now that we have many scattering centers, say Nsc, sufficiently “diluted,” so that each of
them can be treated as independent of all other scattering centers, we can define a frequency, 1/τ(k),
at which incident particles with wavevector k will experience collisions as

1
τ(k)

= jNscσ = Nsc
h̄k
mV

∫

k=k′
dω |f (k,k′)|2

=
Nsc

Ω
2π
h̄

∫

dk′
∣

∣

∣

∣

∫

dr′ e−ik′·r′ H(r′) φ(r′)
∣

∣

∣

∣

2

δ [E(k)−Ek′] , (A.38)

where the last step is a bit “tricky”: it involves use of the Dirac delta-function to express the angular
integral over the surface k′ = k as a volume integral and a change of variables, from k to E.

Employing now the first Born approximation, this equation becomes

1
τ(k)

= Nsc
2π
h̄

∫

dk′ |〈k′|̂H|k〉|2 δ [E(k)−E(k′)] . (A.39)

Note that this equation is identical to the Fermi’s Golden Rule, Eq. (A.29), integrated over all final
states. Note, however, that the physical situations considered, as well as the approximations made,
to obtain these equations are very different. Fermi’s Golden Rule applies to weak time-dependent
perturbations. The first Born approximation applies to time-independent scattering potentials that are
localized and weak enough to lead to scattered waves of very small amplitude. It can also be shown
that the first Born approximation becomes more accurate when the incident particle has a large energy,
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typically when k >> (2mλU0)/h̄2, where U0 is the strength of the scattering potential (the height of a
barrier, depth of a well) and λ is a length over which the scattering potential is localized (for example,
the inverse screening parameter β for the screened Coulomb potential of an ionized impurity). Also,
Eq. (A.39) is valid only when the scattering centers are sufficiently diluted. The distinction between
Fermi’s Golden Rule and the first Born approximation is seldom made clear in the literature.



Appendix B
Local Empirical Pseudopotential Parameters

B.1 Overview

In Chap. 7 examples are given regarding the use of the supercell method to study Si inversion layers
and nanowires, III–V hetero-channels, graphene sheets, and C nanotubes (CNTs). These structures
have been treated by employing several forms of local empirical pseudopotentials presented in the
literature. Since lack of “portability” is one of the major drawbacks of the empirical nature of the
technique, care must be taken in employing the model pseudopotential best suited to the system of
interest. In this appendix we list the form of the pseudopotentials employed. Tables and portions of
the text are reproduced from [1].

B.2 Silicon, Germanium (and Hydrogen) I

Zhang et al. [2] have employed the following empirical form for the Si local pseudopotential:

V(Si)(q) =
b1(q2 −b2)

b3eb4q2 −1
, (B.1)

which results in the correct workfunction, so that it can be used to study free-standing Si layers
bounded by vacuum. The surface states which may arise from the dangling bonds can be removed by
terminating them with H, whose local empirical pseudopotential is given by the expression [3]:

V(H)(q) =

{

b0 +b1q+b2q2 +b3q3 for (q ≤ 2)
b−1/q+b−2/q2 +b−3/q3 +b−4/q4 for (q > 2)

. (B.2)

A form identical to Eq. (B.1) has been employed by Reboredo and Zunger [4] for Ge. Table B.1 lists
the parameters appearing in Eqs. (B.1) and (B.2) as well as the cutoff energy Ecutoff which determines
the number of plane waves (i.e., of G-vectors) used via the relation h̄2G2/(2m) ≤ Ecutoff. Note that
in this and in the following tables the pseudopotential is assumed to be normalized to the atomic
volume in the relaxed crystal and all parameters are expressed in Rydberg atomic units (i.e., energy in
Rydberg, length in Bohr units).
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Table B.1 Local pseudopotential parameters for Si and H from Zunger’s group [2–4]

b0 b1 b2 b3 b4 b−1 b−2 b−3 b−4 Ecutoff

Ge 0.584954 2.344131 3.24496 0.64970 5

Si 0.53706 2.19104 2.05716 0.48716 4.5

H −0.2832 0.019604 0.12462 −0.03790 0.05796 −0.7754 1.9384 −2.044 8

The Ge and Si pseudopotentials are normalized to the atomic volume of the Ge and Si ions in Ge and Si crystals.
The H pseudopotential is also normalized to the Si atomic volume

Table B.2 Local
pseudopotential parameters
for Si and Ge from the
Bell-Labs group [5]

a1 a2 a3 a4 a5 a6 Ecutoff

Si 106.0686/ΩSi 2.2278 0.6060 −1.9720 5.0 0.3 5

Ge 54.4512/ΩGe 2.3592 0.7400 −0.3800 5.0 0.3 5

B.3 Silicon and Germanium II

For the study of systems containing both Si and Ge atoms, Friedel et al. [5] have employed the
following form for the Fourier transform of the local pseudopotential:

V(Si,Ge)(q) =
a1(q2 −a2)

ea3(q2−a4) +1

1
2

[

tanh

(

a5 −q2

a6

)

+1

]

, (B.3)

similar to Eq. (B.1) but with an additional large-q cutoff (given by the hyperbolic-tangent factor)
within square brackets above. Using the parameters listed in Table B.2 one can obtain the correct
band alignment of Si and Ge, but not the correct workfunction.

B.4 Carbon and Hydrogen

The band structure of bulk C has been studied by Kurokawa et al. [6] using the following interpolation
for the local pseudopotential, fully equivalent to the pseudopotential in Eq. (B.3) apart from the large-q
cutoff:

V(C)(q) =
b1(b3q2 −b2)

eb3q2−b4 +1
, (B.4)

and, for H a rescaling of Eq. (B.2). These parameters have been used to study the amorphous C–H-
based crystallites, but the C pseudopotential yields—quite surprisingly—reasonable results also for
graphene and CNTs, as shown below. Note that, like in the cases considered above of Si and III–
V compound semiconductors, several other empirical pseudopotentials have been given for C in the
diamond structure, for both local [7] and nonlocal [8] models. However, Kurokawa et al. provide an
expression which is both suitable for interpolation as well as yielding the correct workfunction for C in
the diamond structure. In addition, in combination with the associated local empirical pseudopotential
for H, also given by Kurokawa and co-workers, the electronic structure of trans-polyacetylene is
correctly reproduced. This is significant, since these C pseudopotentials appear to reproduce both the
hybridized sp3 tetragonal diamond bonding coordination as well as the planar sp2 (with pz out-of-
plane orbitals hybridizing into π∗ orbitals) coordination found in graphene, nanoribbons, and, with
the addition of curvature effects we discuss in Chap. 7, also nanotubes. Using a cutoff energy of 25 Ry
the plane-wave method used here yields an indirect Γ′25-Δ1 gap of about 5.0 eV and values consistent
with Kurokawa’s results for the direct Γ′25-Γ2, X4-X1, and L′

3-L3 gaps. For numerical convenience we
have employed a cutoff energy of 15 Ry which yields similar values for the direct gap, but a slightly
smaller value for the indirect Γ′25-Δ1 gap of 4.2 eV. We have spot-checked our results for graphene,
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Table B.3 Local pseudopotential parameters for C and H from Kurokawa et al. [6]

b0 b1 b2 b3 b4 b−1 b−2 b−3 b−4 Ecutoff

C 1.781 1.424 0.354 0.938 15

H −0.397 0.02759 0.1754 −0.0531 0.0811 −1.086 2.71 −2.86 15

The pseudopotentials are normalized to atomic volume of C in diamond

Table B.4 Local pseudopotential parameters for C from Mayer [9] normalized to the atomic volume of C in
diamond

A1 A2 A3 a1 a2 a3 b1 b2 b3 Ecutoff

C 0.7796 2.1837 −7.2698 0.12126 1.9148 0.60078 −2.68574 −0.11989 2.27101 15

nanoribbons, and CNTs employing a larger cutoff of 25 Ry without finding any significant difference.
One such example will be shown below. Table B.3 lists the parameters appearing in the expressions
above. One-electron empirical local pseudopotential for C fitted to the band structure of graphene
has been proposed by Mayer [9]. The real-space form of the potential is given by the sum of three
Gaussians:

V(C)(r) = −
3

∑
j=1

Aj e−ajr
2
, (B.5)

so that its Fourier-transformed expression will be

V(C)(q) =
3

∑
j=1

bj e−q2/(4aj) , (B.6)

with bj = −(π/aj)
3/2Aj. Table B.4 lists the relevant parameters. Note that these are one-electron

empirical forms which would provide only one valence band per diamond primitive cell, so they may
be suitable for transport, but not to handle the physics of the nanostructures of interest.

B.5 III–V Compound Semiconductors

Pseudopotentials for many group-III and group-V elements have been provided by Zunger’s group:
as, Al, and Ga in [10, 11], P in [11], and In in [12]. The form chosen for the q-dependence of the ionic
pseudopotential is the sum of four Gaussians as follows:

V(III−V)(q) =
4

∑
j=1

aje
−bj(q−cj)

2
[1−dje

−fjq
2
] , (B.7)

where we have added the factor [1 − dje−fjq
2
] to further adjust the band alignments among

In0.53Ga0.47As, InP, and Al0.48In0.52As. The parameters are chosen in order to fit the bulk band
structure, of course, but also to provide the correct band alignment among the various elements, thus
making it possible to study the electronic states of hetero-structures. Table B.5 lists the values of the
parameters entering Eq. (B.7), as always in atomic units, and assuming that the ionic pseudopotentials
are normalized to the volume of the ion in the relaxed crystal. Note that these parameters should be
used with small cutoff energies (5 Ry) and with spin–orbit interaction. When the spin–orbit interaction
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Table B.5 Local pseudopotential parameters for group-III and group-V elements from Zunger’s group [10–12]

Al Ga In As (in GaAs and InAs) As (in AlAs) P N

Ωa 111.3 131.4 169.75 145.2 145.2 139.2 75.0

a1 −1.32712 −1.24498 −1.13393 −1.05821 −1.10411 −1.02821 −0.2262800

a2 0.158114 0.0464357 0.046658 −0.0434312 −0.00368081 −0.049431 −0.9268300

a3 0.0601648 0.0366517 0.0322835 0.10569 0.0921512 0.11769 0.2372800

a4 0.0174946 −0.0133385 −0.0123714 −0.0021763 0.0174946 0.012176 0.208300

b1 1.59819 1.52748 2.15 0.959327 0.972439 0.870327 1.816013

b∗1 1.51748a 1.70 0.949327a 0.860327b

b2 2.10827 0.574047 0.15 2.94679 5.50601 3.18679 0.918842

b3 0.527745 0.959082 0.57 0.820922 1.18638 0.470922 0.909593

b4 11.2708 11.2708 13.75 6.53145 6.53147 5.81145 13.51921

c1 0.0 0.0 0.0 0.0 0.0 0.0 0.0

c2 1.77453 2.01935 2.25 0.85164 1.22845 0.88964 0.85177

c3 2.5955 2.09782 2.45 1.22436 1.35897 1.02836 1.55591

c4 2.93581 2.93581 2.73 2.46808 2.46793 2.4008 2.62852

d1 0.08 0.0 0.0 0.0 0.0 0.04 -

f1 5.00 0.0 0.0 0.0 0.0 5.00 -

The correction factor b∗1 to be used in absence of spin–orbit interaction has been determined in this work. A cutoff
energy Ecutoff of 5 Ry should be employed when using these parameters. The band-alignment parameters dj and
fi are all zero, except for the parameters d1 and f1 for Al and P shown in the last rows. The pseudopotentials are
normalized to the atomic volumes Ωa indicated (in atomic units) in the first row
aOnly in GaAs
bOnly in AlP and InP, not in GaP

Table B.6 Local
pseudopotential parameters
for the InGaAs system
from Zunger’s group [13]

Ga In As

b1 55.738 107.76 48.54

b2 2.793 1.915 2.536

b3 3.209 3.460 1.463

b4 0.238 0.414 0.4937

A cutoff energy Ecutoff of 5 Ry
should be employed when using
these parameters. The pseudopoten-
tials shown here have been already
multiplied by the atomic volume

is ignored, small corrections should be made to the width of the deeper Gaussian (the parameter b1),
resulting in the parameter indicated by b∗1 in the Table B.5. Alternative forms for the empirical
pseudopotentials for In, Ga, and As in the InAs, GaAs, and InGaAs system have been provided by
Kim et al. [13]. The form of the pseudopotentials as a function of q is identical to Eq. (B.1) with the
addition of strain-related terms. The coefficients are given in Table B.6. These pseudopotentials have
not been used here.
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Appendix C
Quick Overview of Special Relativity and the “Minimal”
Electron–Photon Coupling

C.1 Principles of Special Relativity

Here we shall discuss very succinctly the basic principles of special relativity. There are two reasons
for doing this.

First, when introducing optical devices, we saw that the electron–photon perturbation Hamiltonian
is given by [see Chap. 16, Eq. (16.4), for example]:

̂Hphot =
ieh̄

melc
A ·∇ . (C.1)

(The speed of light, c, is within parentheses: it appears when using Gaussian units, it does not when
using SI units. In this appendix, we use Gaussian units, more commonly used in the physics literature
dealing with the electromagnetic field.) This interaction term can be obtained by starting from the free-
electron Hamiltonian p2/(2m) and replacing the electron momentum p̂ with p̂− êA/c. (The factor of
c in the denominators appears when using Gaussian units, which are more convenient in this context
and we shall use them here. Note also that here e represents the charge of a particle with sign.) The
reason behind this substitution relies on some basic principles of special relativity and it is worth
understanding how this comes about.

The second reason stems from the recent popularity of graphene as a “promising” material for
nanoelectronics applications. The band structure of graphene shows a unique feature: at the Fermi
level the dispersions of the valence and conduction bands cross as straight lines. This E(k) relation
resembles the dispersion of relativistic massless particles and it has triggered interest in exploiting
what is known about relativistic massless spin-1/2 particles in order to understand the electronic
properties of graphene. Such particles are described by a spin-1/2 relativistic wave equation (the Dirac
equation for zero-mass spin-1/2 Fermions), so that it is interesting to see how the Schrödinger equation
can be generalized to satisfy the principle of relativistic invariance.

C.1.1 Galilean Invariance and Maxwell’s Equations

As soon as Maxwell’s equation were formulated, it became clear that there was a major difference
with respect to Newton’s law. Let’s start with Newton’s second law,
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F = ma or F = m
d2x
dt2 . (C.2)

and consider this same equation as could be written by somebody (called an “observer”) which is
moving with respect to us with uniform velocity u. Let’s assume that we and the other observer use a
reference frame with parallel x-, y-, and z-axes, that the other observer moves along the x-axis, so that
u = (u,0,0), and that the origin of the two reference frames coincides at a fixed instant in time which
we take t = 0. Then, calling (x,y,z) our frame and (x′,y′,z′) the other observer’s frame, an object
located at a point (x,y,z) in our frame will be located at a point (x′,y′,z′) in the observer’s frame, such
that

x′ = x − ut
y′ = y
z′ = z

. (C.3)

Therefore, expressing Newton’s second law in the “primed” frame,

F = m
d2x′

dt2 = m
d2(x−ut)

dt2 = m
d2x
dt2 − du

dt
= m

d2x
dt2 . (C.4)

In other words, Newton’s law retains the same algebraic form in all frames which are moving with
uniform velocity with respect to our frame. This principle can be generalized by saying that the laws
of mechanics are valid in all “inertial frames.” An observer, by performing experiments, cannot tell
whether he/she is moving with respect to other inertial frames. This is the principle of Galilean
relativity, since it was proposed (noted, discovered, invented?. . . the choice of a term is a matter of
deep philosophical discussions) by Galileo. Consider now Maxwell’s equations. For simplicity, let’s
just consider a wave equation:

(

∇2 − 1
c2

∂ 2

∂ t2

)

ψ = 0 . (C.5)

Let’s apply the transformation Eq. (C.3). Since in the “unprimed” frameψ(x,y,z, t)=ψ(x′+ut,y,z, t),
so that ∂ψ/∂x′ = ∂ψ/∂x+(1/u)∂ψ/∂ t, we find

(

∇2 − 1
c2

∂ 2

∂ t2 − 2u
c2

∂ 2

∂x∂ t
− u2

c2

∂ 2

∂x2

)

ψ = 0 . (C.6)

What a mess! The form of the equation has been completely altered by the transformation! In
hindsight, we already knew it had to be so: after all, magnetic fields caused by moving charges must
disappear when we use a frame in which the charges are at rest. Therefore, the E and B fields do not
transform correctly under the Galilean transformation Eq. (C.1). Moreover, the Lorentz force depends
explicitly on the velocity of the particle, so that the form of the equation will differ in a different
inertial frame. Historically, this is also related to the difficulty of understanding electromagnetic
waves: sound waves are oscillations of the medium in which they propagate. But electromagnetic
waves are oscillations of what?

In order to fix the situation we have three alternatives we can choose from:

1. Maxwell’s equations are wrong. The correct equations, yet to be discovered, are invariant under
Galilean transformations.
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2. Galilean invariance is valid for mechanics, not for electromagnetism. This is the historical solution
before Einstein: the “ether” determines the existence of the “absolute frame” in which the ether is
at rest and Maxwell’s equations hold.

3. Galilean invariance is wrong. There is a more general invariance—yet to be discovered—
which preserves the form of Maxwell’s equation. Classical mechanics is incorrect and must be
reformulated so that it is invariant under this new transformation.

Having to choose between abandoning Maxwell (option 1) or Newton (option 3), physicists chose the
easier option 2. Einstein, instead, decided to follow the third option, guided by two postulates:

1. Postulate of relativity: All physical laws must “look the same” in all frames moving with uniform
velocity with respect to each other.

2. Postulate of the constancy of the speed of light: The speed of light is the same (numerically the
same!) independent of the velocity of the observer or of its source. This stems logically from the
Michelson–Morley experiment of 1887, but the result could have been explained “saving” ether
and using the Lorentz–Fitzgerald contractions.

Armed with these postulates, Einstein set out to build a new set of transformations between inertial
frames. Maxwell’s equation is now invariant under this new set of transformations, but Newtonian
mechanics has to be modified: if two frames move at a relative speed much smaller than the
speed of light, the “new” transformations approach the usual Galilean transformation and Newton is
approximately correct. But for relative velocities approaching the speed of light, the laws of mechanics
deviate enormously from Newton’s laws.
It is impossible to pay justice to special relativity in such a short time. We shall only discuss those
few concepts which are required to answer our original question of why we perform the substitution
p̂ → p̂− (e/c)̂A.

C.1.2 Lorentz Transformations

Consider the same two frames (“primed” K′ and “unprimed” K frames) considered above. Assume
now that at t = 0 (the time at which the origins of the two frames coincided. . . at least when looking at
our clock. . . !) a ray of light was emitted from the origin. Since light travels at the same speed in both
frames, we must have for the wavefronts of the emitted light:

ct2 − x2 − y2 − z2 = 0 and ct′2 − x′2 − y′2 − z′2 = 0 , (C.7)

so that, assuming that space–time is isotropic and homogeneous,

ct2 − x2 − y2 − z2 = λ (u)[ct′2 − x′2 − y′2 − z′2] . (C.8)

The function λ (u) is a possible velocity-dependent change of scale between the two frames. However,
since going from K to K′ must involve the same transformation as going from K′ to K with a sign-
flip for u, we must have λ = 1. Using the notation x0 = ct, x1 = x, x2 = y, and x3 = z, Eq. (C.8) is
satisfied if:

x′0 = γ(x0 − βx1)

x′1 = γ(x1 − βx0)

x′2 = x2

x′3 = x3

, (C.9)
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where

β =
u
c

and γ = (1−β 2)−1/2 . (C.10)

The transformations, Eq. (C.9), are called “Lorentz transformations.” Obviously the inverse
transformations read

x0 = γ(x′0 + βx′1)
x1 = γ(x′1 + βx′0)
x2 = x′2
x3 = x′3

, (C.11)

Note that, unlike the Galilean transformations, now time and space transform together: simultaneous
events in one frame will not be simultaneous in another frame. Indeed consider two events (ct1,x1)
and (ct2,x2). Thanks to Eq. (C.8), their “distance”

s12 = c2(t1 − t2)
2 −|x1 −x2|2 (C.12)

is an “invariant” (that is, it’s the same in all inertial frames). If s12 > 0, the separation between the
events is said to be “time-like”: it is always possible to find a transformation (actually with β =
|x1−x2|/(c|t1− t2|)) such that in the transformed frame the two events are at the same spatial location,
separated only by time. If s12 < 0, the separation between the events is said to be “space-like”: it is
always possible to find a Lorentz transformation such that in the transformed frame the two events are
simultaneous, separated only spatially. If, finally, s12 = 0, the separation is said to be “light-like”: one
event lies on the “light-cone” of the other.

C.1.3 Proper Time and Time Dilatation

Since “time” has become an observer-dependent quantity, when dealing with moving particles it is
convenient to consider the time in the frame in which the particle is at rest. If v(t) is the velocity of
the moving particle in “our” frame, consider the invariant:

ds2 = dxμdxμ = c2dt2 −dx2 −dy2 −dz2

= c2dt2 − v2dt2 = c2(1− v2/c2)dt2 = c2dt2/γ2 . (C.13)

Since this quantity is invariant (that is, it is numerically the same in all inertial frames), in the frame
in which the particle is at rest it will be ds2 = c2dτ2, where τ is the time in that frame. This time is
called “proper time.” If the particle travels over a time interval τ2 −τ1 in its proper time, as seen by us
the time interval will stretch to the interval t2− t1 obtained by integrating Eq. (C.13) along the particle
trajectory:

t2 − t1 =
∫ τ2

τ1

dτ γ(τ) =
∫ τ2

τ1

dτ
√

1− v(τ)2/c2
. (C.14)

Since γ > 1, the time interval we observe, t2 − t1, is longer than the proper time interval τ2 − τ1. This
has been experimentally verified: the μ-mesons (actually, leptons) produced by cosmic-ray hits in the
upper atmosphere, often reach the ground. Since the lifetime of the μ-meson is about 2.2μs, even
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at the speed of light the particle could not travel more than about 660 m before decaying. Yet, they
can easily be detected after having traveled distances more than two orders of magnitude longer (the
thickness of the atmosphere, of the order of 105 m). This is because their lifetime, as observed by us,
is stretched enormously, as these particles travel at speeds approaching the speed of light.

C.1.4 Lorentz Contraction

Consider a rod of length L′ at rest in the K′ frame. Let the ends of the rod be at x′ = x′1 and x′ = x′2,
so that L′ = x′2 − x′1. What is the length of the rod in our K frame? By the Lorentz transformations,
Eq. (C.9) (which we must use since when we measure the length of the rod we measure its ends at the
same time in our frame), we have

L = x2 − x1 =
1
γ
(x′2 − x′1) =

L′

γ
< L′ . (C.15)

The rod in our frame appears shorter than in its rest frame. This is the Lorentz–Fitzgerald contraction
which was postulated (without proof or arguments behind) in order to explain the Michelson–Morley
experiment.

C.1.5 Addition of Velocities

Let’s consider the Lorentz transformation

dx0 = γ(dx′0 + βdx′1)
dx1 = γ(dx′1 + βdx′0)
dx2 = dx′2
dx3 = dx′3

. (C.16)

In our K frame, the velocity v = cdx1/dx0 of a particle moving with velocity v′ = cdx′1/dx′0 in the K′
frame will be

v = c
dx1

dx0
= c

dx′1 +βdx′0
dx′0 +βdx′1

= c
dx′0(dx′1/dx′0 +β )

dx′0(1+βdx′1/dx′0)
=

v′+u
1+ v′u/c2 . (C.17)

Note how the particle velocity v′ and the frame velocity u add, as seen by us: In the limit of small
velocities, v ≈ v′ + u, as usual. But as either v′ or u approaches c, the denominator grows and the
sum-velocity v as seen by us cannot exceed c. This is consistent with the second postulate.
Note that the 4-vector

Uμ = (γc,γu) (C.18)

transforms like the coordinate vector xμ .
Note the we shall use the contravariant (e.g., xμ ) and covariant (e.g., xμ = gμνxν ) notation. Using the
metric (+,−,−,−) for μ = 0,3 we have xμ = (x0,x) but xμ = (x0,−x)). Thus xμxμ = x2

0 −x ·x.
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C.1.6 4-Momentum

In classical mechanics the momentum and energy of a particle are

E = E(0) + 1
2 mu2

p = mu
. (C.19)

(We warn the reader that in this Appendix the total energy of a particle is indicated by the symbol
E, while the electric field is indicated by the vector (bold) symbol E. The magnitude of the electric
field is never used, so no confusion should arise.) The term E(0) is a constant which refers to the rest
energy of the particle. It is usually ignored in non-relativistic discussions.
In order to generalize these concepts, we can start by finding arbitrary functions of the velocity, E (u)
and M (u), such that

E = E (u)
p = M (u)u

, (C.20)

with the constraints [dictated by the fact that we want to recover Eq. (C.19) in the limit u → 0]:

∂E
∂u2 (0) = m

2

M (0) = m

. (C.21)

The general expressions for the functions E and M can be obtained by analyzing the elastic collision
of two identical particles and require momentum and energy conservation in two inertial frames K and
K′. We’ll skip the derivation (see Jackson, Classical Electrodynamics, Sect. 11.5) and simply state the
result: the general form for these two functions consistent with the two postulates, and energy and
momentum conservation is

E (u) = γmc2

M (u) = γm
. (C.22)

Note that in the limit u → 0, E = γmc2 → mc2+mu2/2, which is the classical result with a rest energy
mc2.
From this we can define an energy–momentum 4-vector, pμ :

pμ = (γmc,γmu) = (E/c,γmu) = mUμ , (C.23)

having used Eq. (C.18) in the last step.
The invariant length of the energy–momentum 4-vector is

pμpμ = p2
0 − |p|2 = E2/c2 − γ2m2u2 = γ2(m2c2 −m2u2) = m2c2 . (C.24)

Finally, from this expression we can write the energy E of a particle as

E =
√

c2p2 +m2c4 . (C.25)
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C.1.7 Lorentz Force

Our goal now is to re-express the Lorentz force (recall that we are using Gaussian units here):

dp
dt

= e
(

E +
u
c
×B
)

(C.26)

in a manifestly covariant form and find a Hamiltonian from which Eq. (C.26) may be derived.
First, let’s rewrite Eq. (C.26) in terms of the proper time τ and add to it the equation expressing the
power-balance dE/dτ = (e/c)u ·E, so that we can employ the 4-vector pμ :

dp
dτ

= γ
dp
dt

= eγE + eγ
u
c
×B =

e
c
(U0 + U×B)

dp0

dτ
= γ

dp0

dt
= γ

e
c

u ·E =
e
c

U ·E.
(C.27)

∗Defining the electromagnetic field tensor:

Fμν =

⎛

⎜

⎜

⎝

0 −Ex −Ey −Ez

Ex 0 −Bz By

Ey Bz 0 −Bx

Ez −By Bx 0

⎞

⎟

⎟

⎠

, (C.28)

we can write Eq. (C.27) in the manifestly covariant form:

dpμ

dτ
=

e
c

FμνUν . (C.29)

We must now find a Hamiltonian function whose dynamic equations (the Hamilton equations of
motion) yield the Lorentz force equation. To do this correctly it would be necessary to develop a bit
of Lagrangian theory. So, here we follow a “pragmatic approach”: let’s define the Hamiltonian:

H =
√

c2[cp− (e/c)A]2 +m2c4 + eΦ , (C.30)

where Φ is the scalar potential. Considering that the particle velocity in terms of p and A is (as it
follows from Lagrangian theory):

u =
cp− eA

√

(p− (e/cA)2 +m2c4
, (C.31)

with some algebra one can verify that the Hamilton equations of motion (i = 1,2,3):

∂H
∂xi

=
dpi

dτ
(C.32)

are equivalent to the Lorentz force equation [the first of the two Eq. (C.27)]. Comparing this expression
with Eq. (C.25) we see that the interaction between a charged particle and the electromagnetic field
has been accounted for by replacing the particle momentum p with p−(e/c)A. Restoring SI units and
keeping in mind that here e represents the charge of the particle, for an electron with negative charge
−e, this is indeed p+ eA, which is what we wanted to show.
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C.2 Relativistic Wave Equations

C.2.1 The Klein–Gordon Equation

One possible way to “derive” (wrong term, but let’s ignore deep philosophical discussions!)
Schrödinger’s equation is to write the energy–momentum dispersion for a free particle of mass m,

E =
p2

2m
, (C.33)

set E → ih̄∂/∂ t, p → −ih̄∇, and view Eq. (C.33) as operators acting on a vector ψ in some Hilbert
space H . Thus:

E =
p2

2m
→ − h̄2

2m
∇2ψ(r, t) = ih̄

∂
∂ t
ψ(r, t) , (C.34)

which is the wave equation for non-relativistic particles. Searching for a relativistic wave equation,
we should start by replacing the non-relativistic energy–momentum relation given by Eq. (C.33) with
its relativistic counterpart given by Eq. (C.25). We immediately encounter a big problem: Eq. (C.25)
contains a square root. As innocent as this may seem, viewing this equation in terms of operators
would yield a mathematically very nasty outcome: taking the square root of a linear differential
operator yields a nonlocal, unbound (so, not continuous in the operator sense) operator. As a first,
alternative approach, let’s avoid this “square-root” issue by considering the square of Eq. (C.25):

E2 = c2p2 + m2c4 → −h̄2 ∂ 2

∂ t2 φ(r, t) = −c2h̄2∇2φ +m2c4φ(r, t) , (C.35)

or

(c2h̄2�2 +m2c4) φ(r, t) = 0 , (C.36)

where the d’Alembert operator is defined as �2 = (1/c2)∂ 2/∂ t2−∇2 and φ represents the relativistic
state vector. This is called the “Klein–Gordon equation.” In relativistic Quantum Mechanics it is
customary to use units in which c = h̄ = 1, so the Klein–Gordon equation, Eq. (C.36), is written
simply as

(�2 +m2) φ(x) = [∂μ∂ μ +m2]φ(x) = 0 , (C.37)

where x is the 4-vector (r, t), inner products have the metric (−,−,−,+), and �2 takes the form
∂ 2/∂ t2 −∇2 = ∂μ∂ μ , the latter form having been written using the notation ∂μ = ∂/∂xμ and also the
“usual” relativistic convention according to which the index μ runs over the 4 dimensions and the sum
is implied over repeated indices. The Klein–Gordon equation is relativistically covariant, as desired,
but its interpretation as a wave equation for a single particle (so, not as a second-quantization field
equation) is problematic for two major reasons. First, plane-wave solutions of Eq. (C.37) are of the
form φ(r, t) = exp[−i(k ·r−Et)] with both positive and negative energies, E =±√

k2 +m2. One may
attempt to interpret the negative-energy waves as anti-particles of the positive-energy solutions, but
this interpretation encounters problems as soon as interactions are introduced. For example, adding
the interaction with the electromagnetic field, ∂μ → ∂μ − ieAμ , we get an equation which admits
transitions between negative- and positive-energy solutions. This problem affects all relativistic first-
quantization formulations and can be bypassed only in second quantization. More serious is a second
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problem specific to the Klein–Gordon equation: the charge-current 4-vector

jμ(x) = i[∂μφ ∗(x)φ(x)−φ ∗(x)∂μφ(x)] , (C.38)

obeys the conservation law

∂ μ jμ(x) = 0 , (C.39)

as it follows directly from Eq. (C.37), but attempting to identify ρ(x) = −ij0(x) = −i[φ̇ ∗(x)φ(x)−
φ ∗(x)φ̇(x)] as a probability density yields negative values. For example, for an eigenstate of energy
E, ρ(x) = 2Eφ ∗(x)φ(x), which is negative for negative E. One may simply ignore negative-energy
solutions, but, yet again, interactions can induce transitions to those and the interpretation becomes
really problematic.

C.2.2 The Dirac Equation

A second approach is quite different. We saw that squaring Eq. (C.25) results in negative-energy
solutions and negative probability densities. On the other hand, retaining the square root is not an
option, since it results in nonlocal, unbound operators. But looking at the expression

E2 = p2 +m2 (C.40)

one is reminded of the “factorization” of the form A2 = α2 + β 2 as AA∗ where A = α + iβ . This
looks like a clean way to take some sort of “square root.” The quantity i (the imaginary unit) does the
trick when we consider the “two-dimensional” form AA∗ = α2 +β 2, but we need other mathematical
objects in the four-dimensional case we are considering here. We require E2 =m2+p2 to be expressed
in a form of the type (βm+α ·p)(βm−α ·p), where α and β are mathematical entities yet to be
determined. The relation we just wrote can be satisfied only if βαi +αiβ = 0 and αiαj +αjαi = 0 for
i �= j (so that all the unwanted cross-terms vanish) and α2

i = β 2 = 1. This implies that the quantities
β and α must be matrices. It turns out that these quantities (with algebraic properties related to the
so-called quaternions) have to be 4×4 matrices and can be represented in terms of the Pauli matrices
as follows

γ i =

(

0 σi

−σi 0

)

, γ0 =

(

I 0
0 −I

)

(C.41)

where i = 1,3, I is the 2×2 identity matrix, and σi are the Pauli matrices:

σ1 =

(

0 1
1 0

)

σ2 =

(

0 −i
i 0

)

σ3 =

(

1 0
0 −1

)

. (C.42)

∗In the literature one may find several different conventions regarding the definitions of the Dirac
matrices, the difference originating from the different convention used for the metric: a 4-vector x
can be defined as (x0,x) with (+,−,−,−) metric, as done here. Alternatively, x can be defined as
(x,x4) = (x, ix0) with purely imaginary x4 and Euclidean metric (+,+,+,+).

Note that these matrices obey the anticommutation laws:

[γμ ,γν ]+ = 2 gμν , (C.43)
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where gμν = gμν is the diagonal metric tensor (+,−,−,−). To see that these matrices accomplish
what we set out to do, let’s write the wave equation

(−iγμ∂μ +m)ψ(x) = 0
(

or
(

−iγμ∂μ +
mc
h̄

)

ψ(x) = 0 with units restored, x0 = ct
)

, (C.44)

where ψ is now a 4-vector ψα , where α = 0,3. This index can be viewed as a spin-index × a
sign-index labeling the sign of the energy (positive for electrons, negative for positrons, in Dirac’s
original interpretation) and spin for the spin-1/2 case. If we multiply the Dirac equation, Eq. (C.44),
by (−iγλ ∂λ −m), we have

(−iγλ ∂λ −m)(−iγμ∂μ +m)ψ(x) = (−γλ γμ∂λ ∂μ −m2)ψ(x) = 0 . (C.45)

Now, expressing γλ γμ∂λ ∂μ as 1/2 the sum of this quantity and itself, swapping the name of the dummy
indices λ and μ in the second term, noticing that ∂λ∂μ = ∂ μ∂λ , and using the anticommutation
properties, Eq. (C.43), we can write this as

[

1
2
(γλ γμ∂λ ∂μ + γμγλ ∂λ ∂μ)+m2

]

ψ(x)

=

(

1
2
[γλ ,γμ ]+∂λ∂μ +m2

)

ψ(x) = (∂ μ∂μ +m2)ψ(x) = 0 , (C.46)

which is the Klein–Gordon equation. So, we have effectively “squared” the dispersion and Dirac’s
equation can be viewed as a sort of square root of the Klein–Gordon equation.

C.2.2.1 Solution of the Dirac Equation

Plane-wave solutions of Dirac’s equation can be obtained as follows. Let’s express the desired solution
in the form

ψ(x) = w(k,E) ei(k·r−iEt) , (C.47)

where w(k,E) is a four-component spinor which satisfies the equation

(γ0E− γ ·k+m)w(k,E) = 0 . (C.48)

Let us now write w(k,E) in terms of two two-component objects w+ and w−:

w(k,E) =

(

w+(k,E)
w−(k,E)

)

. (C.49)

The quantities w± must satisfy the two coupled two-component equations:

σ ·kw− = (E−m)w+

σ ·kw+ = (E+m)w− .
(C.50)
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For m �= 0 it is convenient to employ the rest frame of the particle. We have either

E = m

{

w+ �= 0
w− = 0

, (C.51)

or

E = −m

{

w+ = 0
w− �= 0

. (C.52)

The nonzero component w± can be chosen arbitrarily, so it is convenient to consider them as
eigenvalues of σ z. Thus we have the four solutions:

⎛

⎜

⎜

⎝

1
0
0
0

⎞

⎟

⎟

⎠

⎛

⎜

⎜

⎝

0
1
0
0

⎞

⎟

⎟

⎠

⎛

⎜

⎜

⎝

0
0
1
0

⎞

⎟

⎟

⎠

⎛

⎜

⎜

⎝

0
0
0
1

⎞

⎟

⎟

⎠

. (C.53)

The first two solutions correspond to particles of energy E = m with spin up and down, respectively,
while the latter solutions correspond to particles of energy E = −m. The existence of negative-
energy solutions constitute the problem which, as mentioned above, affects all first-quantization
relativistic formulations. Dirac suggested that these solutions should be interpreted as anti-particles
(i.e., positrons in the case of electrons). Note how spin, introduced as an ad hoc new degree of freedom
in conventional Quantum Mechanics, now emerges naturally from the formulation of a relativistic
wave equation. This constitutes a major success of Dirac’s theory.

For arbitrary k the solutions are

uk,σ = wσ (k,Ek) =

(

Ek +m
2m

)1/2
(

ξσ
σ ·k

Ek+mξσ

)

, (C.54)

(for σ = 1,2) and

vk,σ = wσ (−k,−Ek) =

(

Ek +m
2m

)1/2
(

σ ·k
Ek+mξσ
ξσ

)

. (C.55)

In these expressions ξ1 =

(

1
0

)

and ξ2 =

(

0
1

)

. Considering now the case m = 0 (as for the early

theories of neutrinos or looking at the analogy with the dispersion in graphene), we can choose the 4
independent 4-component spinors [in place of Eqs. (C.54) and (C.55)]:

uk,σ =
1√
2

(

ζσ
σ ·k

k ζσ

)

, (C.56)

(for σ = 1,2) and

vk,σ =
1√
2

( σ ·k
k ζσ
ζσ

)

, (C.57)
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corresponding to the negative- and positive-energy dispersion E = ±k on the “light cone.” The 2-
component spinors ζσ are now chosen not as eigenstates of σz, but as eigenstates of the “helicity”
σ ·k/k:

σ ·n ζ1 = ζ1

σ ·n ζ2 = −ζ2 ,
(C.58)

where n = k/k is the unit vector along the direction of motion. This is rendered necessary by a
profound difference between massless and massive particles: for massive particles one is free to
select arbitrarily the rest-frame form of w± in Eqs. (C.51)–(C.55), since one can choose to define
the polarization in the rest frame along any arbitrary direction. On the contrary, for massless particles
traveling at the speed of light there is no such a thing as a “rest frame” and the polarization must be
measured along the direction of motion, k/k.



Appendix D
Pseudopotential Code for Silicon Band Structure

In this appendix, we give a MATLAB code yielding silicon’s bandstructure using the empirical
pseudopotential method. To compute the bandstructure: choose a directory, copy the code listed below
into a file named “pseudo_silicon.m,” and run the matlab script by typing “pseudo_silicon.”

function E=pseudo_silicon(a, b_ep, tau, E_cut, k)
% pseudo_silicon calculates and plots the bandstructure using
% pseudopotentials
%
% E = pseudo_silicon(a0, b, n_atoms, tau, E_cut)
% a0 - lattice constant in atomic units
% b_ep - 4 coefficients for pseudopotential
% V_q = b_ep(1)*( q^2-b_ep(2) )./(b_ep(3)*exp( b_ep(4)*q^2 )-1);
% n_atoms - number of atoms
% tau - matrix made of columns indicating position of each atom
% E_cut - cut-off energy in Rydbergs
%
% E = bulk_pseud_william() calls pseudo_silicon(a0,
% b_ep, n_atoms, tau, E_cut) with default values
%
% @author William Vandenberghe

%% Constants
ryd_m = 5.2917725e-11;
ryd_eV = 13.6;

if nargin==5 % Calculate and plot the eigenvalues

% Define the pseudopotential function
V_q = @(q_in) b_ep(1)*( q_in.^2-b_ep(2) ) ...

./(b_ep(3)*exp( b_ep(4)*q_in.^2 ) -1);

nk=size(k,1); % Number of k-points
n_atoms=size(tau,2);
%%%%

%%%% Generate all relevant reciprocal vectors
% Generators of the group of reciprocal vectors for FCC
b=2*pi*a’^-1;
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% Generate all linear combinations of the generators within
% Manhattan distance 2
nGxyz=ceil(2*sqrt(E_cut./(b.^2*ones(3,1))));

cx=(-nGxyz(1):nGxyz(1))’;
cy=(-nGxyz(2):nGxyz(2))’;
cz=(-nGxyz(3):nGxyz(3))’;
G=[ kron(kron(cx,cy.^0),cz.^0) ...

kron(kron(cx.^0,cy),cz.^0) ...
kron(kron(cx.^0,cy.^0),cz) ]*b;

% Retain all reciprocal vectors within the cut-off
G = G(G.^2*ones(3,1)<E_cut,:);
% Number of G-vectors
nG = size(G,1);
%%%%

%%%% Generate the potential part of the Hamiltonian
% Matrix containing differences between G and G’ (size 3*nG^2)
GmG2=(kron(ones(1,nG),G)-kron(ones(nG,1),reshape(G’,1,3*nG)));
VGG=zeros(nG); % Initialize potential part of the Hamiltionian
for i_atom=1:n_atoms

VGG=VGG+b_ep(5)/abs(det(a)) ...

*exp(-1i*(GmG2)*kron(eye(nG),tau(:,i_atom))) ...
.*V_q(sqrt(abs(GmG2).^2*kron(eye(nG),ones(3,1))));

end

nE=3*n_atoms;
E=zeros(nk,nE); % Initialize the eigenvalues
for i_k=1:nk

% Generate the kinetic part of the Hamiltonian for k_i
T=spdiags(sum(abs(G+ones(nG,1)*k(i_k,:)).^2,2),0,nG,nG);
% Calculate the eigenvalues
E(i_k,:)=sort(real(eigs(T+VGG,nE,-18/ryd_eV)));

end
%%%%

%%%% Plot the bandstructure in electronvolt
plot((E-max(E(:,2*n_atoms)))*ryd_eV); axis([1 nk -15 6]);
xlabel(’k’); ylabel(’E (eV)’);
fprintf(’The band gap is %1.2feV\n’, ...

min(E(:,2*n_atoms+1)*ryd_eV)-max(E(:,2*n_atoms)*ryd_eV))
%%%%

elseif nargin==0 % Call the default values

a0=5.43e-10/ryd_m;

b_ep=[ 0.53706 2.19104 2.05716 0.48716 a0^3/8];
% Values from Zhang et al., Phys. Rev. B 48, 11204 (1993)

a=a0*[[.5,.5,0];[.5,0,.5];[0,.5,.5]]; % Unit cell
tau=a0/8*[[-1 -1 -1];[1 1 1]]’; % Atom positions

E_cut = 10.5;

kmax=2*pi/a0;
dk =.05*kmax;
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%%%% Generate array of k-values for which the bandstructure
% has to be solved
k =[(kmax*sqrt(3)/2:-dk:0)’*[1 1 1]/sqrt(3) ; ...

(0:dk:kmax)’*[1 0 0] ; \ldots
(0:dk:kmax/2/sqrt(2))’.^0*[kmax 0 0] + ...

(0:dk:kmax/2/sqrt(2))’*[0 1 1]/sqrt(2) ; ...
(kmax*3*sqrt(2)/4:-dk:0)’*[0 1 1]/sqrt(2)];

E = pseudo_silicon(a, b_ep, tau, E_cut, k);

end
return
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multi-phonon processes, 356
multiplication table, 46

N
nanoribbon, 141–154
nanotube, 153–155
nanowire, 113, 134–141
nearly-free electron model, 89
Newton’s method, 176
non-dissipative, 381
non-equilibrium Green’s function, 362, 395
non-radiative transitions, 351, 356
nonparabolicity, 96, 126, 172, 286
nonpolar electron-phonon interaction, 284
nonpolar electron-phonon scattering, 277, 287
nonpolar interaction, 270
nonpolar scattering, 306
normal process, 258, 293
normed inner-product, 9
normed vector space, 9
nuclear Hamiltonian, 60
nuclear potential, 58

O
one-dimensional electron gas, 113
open boundary conditions, 365–366
open system, 391
optical deformation potential, 280
optical phonon, 204, 207, 404
optical phonons, 280, 282, 309–312

dielectric response, 224–225
orbital angular momentum, 93
orbital energy, 180
orbital overlap, 81
orbital radius, 182
orthogonalized plane-waves, 74
oscillator strength, 226
out-scattering, 386
overlap factor, 258, 265, 286
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P
parabolic bands, 119
parabolic potential, 125
particles in a three-dimensional box, 23–24
passivation, 116
Pauli blocking, 275, 277
Pauli’s principle, 62, 220, 345
periodic table, 30–36
phonon, 203–207

acoustic, 207
canonical quantization, 203–205
linear chain, 207
longitudinal, 207
optical, 207
polarization, 207
transverse, 207

phonons, 60, 61
linear chain, 205

photon
equations of motion, 211–212
Hamiltonian density, 211
quantum field, 212–213

photon absorption, 352
photon emission, 352
photons, 208, 213

Hamiltonian density, 210
Lagrangian density, 209–210

piezoelectric coupling, 269
plane-wave, 23
plasma frequency, 181, 347
plasma levels, 181–182
plasma waves, 182
plasmons, 198, 203

canonical quantization, 201, 200–201
Fock space, 202
Hamiltonian, 200
Lagrangian density, 199
semiclassical analogy, 203
thermal expectation value, 202

point group, 47
Poisson bracket, 7, 187
polyparaphenylene, 34, 35, 151
PPP, 34, 35, 151
pre-Master equation, 389
primed ladders, 175
primitive cell, 40
primitive vectors, 40
primitive volume, 40
product

normed inner, 9
scalar, 8, 9

projection operator, 75
projector-augmented plane-wave method,

102
propagator, 361
pseudo-wavefunction, 75
pseudopotential, 57, 74–80
pseudospin, 132
pure states, 215
pure translations, 45

Q
quantization effects, 361
quantization of the electromagnetic fields:photons,

208–213
quantization of the Schrödinger field

electrons, 191–198
plasmons, 198–203

quantization of the vibrational degrees of
freedom:phonons, 207, 203–207

quantum confinement, 114
quantum field theory, 188, 361
quantum number, 21
quantum statistical mechanics, 215–221
quantum transmitting boundary conditions, 370–371
quantum transmitting boundary method, 395
quantum transport, 361
quantum well, 172, 261
quasi-particle, 188

R
radiative transitions, 356
random phase approximation, 339
random-k approximation, 341
random-phase approximation, 227–231, 316, 396
reciprocal lattice, 41
reciprocal lattice vectors, 41
rectangular barrier, 366–367
reduced density matrix, 384, 396
reduced electron-hole mass, 355
reduced mass, 225
reflection, 45
relaxation time, 409
remote impurity scattering, 320
reversible, 381
Ridley’s statistical screening model, 320
ring (mathematics), 8
rotation, 45
Rydberg, 31

S
scalar product, 8, 9
scanning tunneling microscope, 147
scattering

electron-electron, 397–404
ionized impurities, 395–397

scattering in one dimension, 266–268
numerical evaluation, 268
scattering rates, 266–268

scattering in three dimensions, 256–259
numerical evaluation, 259
scattering rates, 256–258

scattering in two dimensions, 259–265
numerical evaluation, 265
scattering rates, 259–265

scattering matrix approach, 429–431
scattering potential, 269
scattering rate, 410
scattering strength, 311
scattering theory, 255
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Schrödinger equation, 13
Schrödinger field, 188
Schrödinger representation, 13
screened scattering strength, 312
screw displacement, 45
second quantization, 188
self forces, 424
self-adjoint, 11
self-consistency, 176
self-consistent pseudopotentials, 77
self-energy, 370
self-forces, 424
self-scattering, 424, 432
semiclassical one-dimensional transport, 267
semiclassical transport, 256

cellular automata, 427–428
direct matrix inversion, 433
direct solutions, 432–433
drift-diffusion approximation, 411–414
energy transport, 419
expansion methods, 419–422
hydrodynamic approximation, 414–418
iterative technique, 432–433
method of moments, 408–419
Monte Carlo methods, 423–426
other expansions, 421–422
particle-based methods, 422–431
scattering matrix approach, 429–431
spherical harmonics expansion, 419–421
weighted particle method, 428–429

semiclassical two-dimensional transport, 264
semiconductor Bloch equation, 362
semiconductor equations, 414
separation of variables, 21
shallow-impurity states, 182
Shannon’s entropy, 217
short-range potential, 319
Si-SiO2 interface, 114
silicane, 303
silicene, 105, 303
silicon thin layers, 114–119

(100) surfaces, 115–116
(110) surfaces, 116
(111) surfaces, 117
band structure calculations, 117–119

simulated annealing, 60
single-particle region, 329
single-particle short-range collisions, 330–342

common approximations, 334
low-dimensionality systems, 332–334

singlet bands, 145, 155
singlet state, 331
slab, 104, 111, 115, 363
Slater determinant, 62
Sokhotski-Plemelj theorem, 237
Sokhotski-Weierstrass theorem, 237
solar spectrum, 355
space groups, 47–48
spectrum, 11

spherical coordinates, 24
spherical harmonics, 27
spherical harmonics expansion, 419–421
spin angular momentum, 93
spin-orbit interaction, 92–94

Hamiltonian, 93
split-off band, 94, 95, 171
spontaneous emission, 276, 354
Stark ladder, 177
static dielectric constant, 226, 231–232
statistical average, 362
statistical ensembles, 216
statistical mechanics, 215–221
stimulated emission, 276, 277
Stosszahlansatz, 389
structure factor, 73
subband, 261, 266
sublattice, 132
supercell, 112–114
surface reconstruction, 116
symmetry, 45–46
symmorphic space groups, 47

T
Tersoff-Hamann approximation, 147
thermal bath, 362
thermal energy, 171, 256, 417
thermal equilibrium, 172
thermal phonon population, 277
thermal wavelength, 172
thin layers, 114
Thomas-Fermi model, 100
Thomas-Fermi screening, 340
tight-binding method, 80–83, 147
time evolution, 381
time-dependent Schrödinger equation, 221
topological space, 9
total Hamiltonian, 382–383
total scattering rate, 424
transaction method, 432
transfer matrix, 430
transform, Legendre, 7
translation operation, 40
translational symmetry, 41
transverse mass, 175
transverse phonon, 207
triplet state, 331
trivial group, 46
two-dimensional electron gas, 114–133, 171

electron-phonon interaction, 286–287
two-dimensional screening, 245–250
two-dimensional wavevector, 175
types of phonons, 207

U
Umklapp process, 272, 287, 293, 294
unprimed ladders, 175



474 Index

V
vacuum level, 107
valence band, 45, 65
Van der Waals force, 33
van Hove term, 387
variance reduction technique, 426
variational calculus, 5–6
VASP, 147
vector addition, 8
vector potential, 209, 351
vector space (mathematics), 8
Vegards law, 122
velocity overshoot, 417
virial theorem, 344
virtual crystal approximation, 122
von Neumann entropy, 217

W
wave packet, 394

wavenumber, 266
wavevector, 23, 42
weak coupling limit, 400
weighted particle method, 428–429
Wiedemann-Franz law, 415, 417, 418
Wigner-Seitz cell, 40
workfunction, 107, 126

Y
Yukawa potential, 343

Z
ZA phonon, 291
Zener-Bloch oscillation, 177
zero-time distribution, 432
zigzag nanoribbon, 142, 152
zincblende crystal, 43
ZO phonon, 291
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