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Preface to the Third Edition

Eight years have passed since the publication of the second edition of Quantum
Optics, so I used the opportunity of this third edition to correct several errors and
misprints, as well as to include some new material.

Chapter 18 was enlarged and we included a section on ‘Generalized Measure-
ments: POVM’s’. This is an interesting topic and has several applications like
quantum state discrimination, which is discussed in the Appendix G.

Chapter 21 was enlarged as to include a section on ‘Entanglement Distillation’.
The original idea of Bennett et al. consisted in using several copies of a given state
and with local operations and classical communication, and sacrificing some of the
copies, get fewer states with enhanced Entanglement.

We also included in this present version a new chapter Chap. 22, dealing with
Quantum Correlations.

Quantum correlations have played a central role in modern quantum optics and
quantum communications, as well as many other fields, not only in physics, but
other sciences as well, as biology, chemistry, etc. We deal with this subject from
two different viewpoints, the first one related to Entanglement and the definition of
separable states and the second one related to the quantum version of the Classical
Information Theory, leading to the concept of Quantum Discord. I would like to
thank Dominique Spehner for a very stimulating discussion on the geometrical
interpretation of the quantum correlations and Janos Bergou for recent discussion on
POVM’s and quantum state discrimination. I relied heavily on his notes and book,
when discussing such topics in this third edition. Finally I have enlarged Chap. 7
on Phase Space description as to include more details on the Wigner Distribution.
I thank Raul Coto for helping me to improve this chapter as well as Raul Coto and
Vitalie Eremeev for editing and correcting various chapters of the present edition.

Santiago, Chile Miguel Orszag
January, 2016
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Preface to the Second Edition

Seven years have passed since the publication of Quantum Optics, so I used the
opportunity of this second edition to correct several errors and misprints, as well as
to include some new material.

Chapter 20 was enlarged as to include a section on ‘Decoherence Free Sub-
spaces’. This is an interesting topic for those readers interested in Quantum
Computation, Teleportation and Cryptography, because tools have been developed
to find “a quiet corner in Hilbert space,” that is, a region free from the damaging
interaction with the environment. Several examples and applications are also given
in this section.

Also, we include in this present version Chap. 21, dealing with the basics of
quantum computation as well as the study of quantum entanglement.

Quantum entanglement is one of the most relevant quantum mechanical proper-
ties and crucial to understand a whole family of phenomena as well as applications
such as quantum teleportation, quantum cryptography, etc. We describe first the
entanglement for pure states, developing the Schmidt decomposition and then deal
with the more complicated mixed state entanglement. For the mixed case, we cover
the well-known Peres–Horodecki criteria for positive partial transposition.

At the end of the chapter, and as an exciting application, we cover the quantum
teleportation protocol, as originally described by Bennet et al.

Chapter 22 deals with topics such as the no-cloning theorem, the Universal
Quantum Copying Machine as a concept, and how to implement it using a logical
circuit made of quantum gates. Both the fidelity and the entanglement of the copies
are calculated for the duplicator and triplicator. The last topic of this chapter includes
the discussion of a simple model of a stochastic quantum processor that rotates a
qubit and how to improve its efficiency, including additional program qubits.

I thank Mr. Paul Blackburn for helping me in the drawings, Ms. Maritza
Hernandez for reading the new chapters and also editing some figures, Mr. Sergio
Dagach for re-reading the entire manuscript, and Mr. Juan Acuña for helping me
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x Preface to the Second Edition

with the figures and editing the book. Finally, I thank Dr. Thorsten Schneider and
Ms Jacqueline Lenz, from Springer, and MS Sunayana Jain (Integra Software, India)
for their friendly collaboration in the preparation of this second edition.

Santiago, Chile Miguel Orszag
January, 2007



Preface to the First Edition

This graduate textbook originated from lectures given by the author at the Universi-
dad Católica de Chile in Santiago as well as at the University of New Mexico. Also,
material has been drawn from short summer courses given in Rio de Janeiro and
Caracas.

Chapter 1 is devoted to some basic ideas of interaction of radiation and matter,
starting from Einstein’s ideas of emission and absorption and ending with an
elementary laser theory.

Quantum mechanical description of the atom–radiation interaction is dealt with
in Chap. 2, including Rabi’s oscillations and Bloch’s equations.

Chapter 3 contains the basic quantization of the electromagnetic field, while
Chaps. 4, 5, and 6 study special states of the electromagnetic field and quantum
theory of coherence.

The Jaynes–Cummings model, which describes in a fully quantized manner the
atom–radiation interaction, is studied in the Chap. 8, along with the phenomena of
collapse and revival. We also introduce the dressed state description that is useful
when studying resonance fluorescence (Chap. 10).

Real physical systems are open, that is, one must always consider dissipative
mechanisms, including the electromagnetic losses in the cavity walls or atomic
decay. All these effects can be considered in great detail, studying system–reservoir
interactions, leading to Master and Fokker–Planck equations. These reservoirs can
also be phase dependent, effect that can modify the decay rate of an atom (Chap. 9).
As we mention before, Chap. 10 is entirely devoted to resonance fluorescence, and
the study and observation, for the first time, of photon antibunching.

The invention of the laser, in the 1960s, opened up a new area of research,
baptized as Quantum Optics. This discovery allowed the growth of new fields as
nonlinear optics and non-linear spectroscopy. The semiclassical theory, first, and the
quantum theory of the laser were well developed by the late 1960s. The quantum
theory of the laser, from the master equation and Langevin equation approach is
extensively treated in the Chaps. 11 and 12, respectively. We have also added some
more recent material, including the micromaser and the effect of the pump statistics,
as a form of noise reduction scheme. Although pump statistics did not play any role
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in the original laser theory, recent experiments and theoretical calculations showed
that one could reduce considerably the photon number fluctuations if one is careful
enough in pumping the atoms in an orderly way.

We further study the quantum noise reduction in correlated emission lasers and
generation of squeezed states, typically, from a parametric oscillator. These subjects
are studied in Chaps. 13 and 14, respectively. In Chap. 14, we also introduce the
input–output theory, which is very appropriate to describe the parametric oscillator
and other nonlinear optical systems.

Quantum phase is a controversial subject, even today and which started with
Dirac (Chap. 15). Optical experiments most of the time deal with direct or indirect
measurement of a phase. For this reason, I felt it was important to include it in this
textbook, even if it may not be a closed subject.

The last five chapters deal with more recent topics in quantum and atom optics.
The Monte Carlo method and the stochastic Schrödinger equation (Chap. 16) are
recent tools to attack optical problems with losses. Theoretically, it shows a different
point of view from the more traditional way through master or Fokker–Planck
equations, and it is convenient for practical simulations.

Measurements in optics, and physics in general, play a central role. This was
recognized early in the history of quantum mechanics.

We introduce the reader the notions of quantum standard limits and quantum non-
demolition measurements (Chap. 18). A detailed example is studied, in connection
with the quantum non-demolition (QND) measurement of the photon number in
a cavity. Also continuous measurements are studied. A somewhat related subject,
decoherence (Chap. 20), is quite relevant for quantum computing. This intriguing
phenomenon is connected to dissipation and measurement.

Finally, a little outside the scope of Quantum Optics, we have included the topics
of atom optics (Chap. 17) and trapped ions (Chap. 19). These are fast-growing areas
of research.

Throughout the years, I have collaborated with many colleagues and students,
who directly or indirectly contributed to this work, in particular G.S. Agarwal,
Claus Benkert, Janos Bergou, Wilhelm Becker, Luiz Davidovich, Mary Fuka, Mark
Hillery, María Loreto Ladron de Guevara, Jack K. McIver, Douglas Mundarain,
Ricardo Ramírez, Juan Carlos Retamal, Luis Roa, Jaime Röessler, Bernd Rohwed-
der, Carlos Saavedra, Wolfgang Schleich, Marlan O. Scully, Herbert Walther, K.
Wodkiewicz, Nicim Zagury, F.X. Zhao, Sh.Y. Zhu. I thank them all.

I want to thank Prof. Juan Carlos Retamal for reading and correcting the whole
manuscript, Dr. H. Lotsch for the encouragement of writing this book, and Prof.
Hernan Chuaqui and Mr. Jaime Fernandez for the invaluable help with the computer-
generated figures and photography.

Finally, last but not least as they say, I would like to thank my wife Marta
Montoya (Martita) for her love and constant support in this project.

Santiago, Chile Miguel Orszag
November 1998



No te escapes
Ahora
Me ayudarás. Un dedo,
una palabra,
un signo
tuyo
y cuando
dedos, signos, palabras
caminen y trabajen
algo
aparecerá en el aire inmóvil,
un
solidario sonido en la ventana,
una estrella en la terrible paz nocturna,
entonces
tu dormirás tranquilo,
tu vivirás tranquilo:
será parte
del sonido que acude a tu ventana,
de la luz que rompió la soledad.

From: Odas Elementales, Pablo Neruda1

1Neruda, P.: Antología Fundamental. (PEHUEN Editores, Santiago, Chile (1988)
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Chapter 1
Einstein’s Theory of Atom–Radiation
Interaction

In this chapter, we study spontaneous and stimulated emission phenomenologically,
as well as an elementary laser theory.

In 1917, Einstein [1] formulated a theory of spontaneous, stimulated emission
and absorption, based on purely phenomenological considerations. His results allow
to understand in a qualitative way the basic ingredients of the atom-radiation
interaction, and could be useful to describe the processes of absorption, light
scattering by atoms, stimulated emission in a variety of laser and maser systems,
etc. This happened after Planck found that the spectral distribution of the blackbody
radiation could be explained by quantizing the energy [2], and Einstein had
explained the photoelectric effect [3] assuming energy packets that were later called
photons (See Fig. 1.1, 1921).

Einstein’s Theory is based on reasonable postulates which will be justified more
rigorously later when we will treat the same problem using Quantum Mechanics.
The present arguments are of a heuristic nature [1].

Recently I found a derivation of Planck’s radiation formula which is based upon the basic
assumption of quantum theory and which is related to Wien’s original consideration: in
this derivation, the relationship between the Maxwell distribution and the chromatic black-
body distribution plays a role. The derivation is of interest not only because it is simple,
but especially because it seems to clarify somewhat the at present unexplained phenomena
of emission and absorption of radiation by matter. I have shown, on the basis of a few
assumptions, about emission and absorption of radiation by molecules, which are closely
related to quantum theory, that molecules distributed in temperature equilibrium over states,
in a way which is compatible with quantum theory, are in dynamic equilibrium with
Planck’s radiation. In this way, I deduced in a remarkably simple and general manner,
Planck’s formula. [4]

© Springer International Publishing Switzerland 2016
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2 1 Einstein’s Theory of Atom–Radiation Interaction

Fig. 1.1 Albert Einstein
1921

1.1 The A and B Coefficients

We assume a closed cavity with N identical atoms, with two relevant bound state
energy levels that we shall label by Eb and Ea quasi resonant with the thermal
radiation produced by the cavity walls at a temperature. Let

„! D Ea � Eb : (1.1)

We will also assume that there is an external source of electromagnetic energy, for
example, a light beam crossing the cavity, and we may be interested in the scattering
losses of such a beam.

The average energy density (over a cycle) can be written as

U.!/ D UT.!/C UE.!/ : (1.2)

The total energy density, will, in general be a function of position and frequency,
however, for the sake of simplicity, we consider it to be only a slow varying function
of frequency. The labels T and E refer to thermal and external sources.

Energy-conserving processes are spontaneous emission of a photon, stimulated
emission and absorption, as described in Fig. 1.2.

Let Aab be the probability/time for the atom to spontaneously decay from level
a to b, emitting a photon of energy „!. On the other hand, if the atom is in state
b, there will be a probability/time for absorption that will be proportional to the
electromagnetic energy present in the cavity, that is the absorption rate will be
BbaU.!/. The two processes described above are quite reasonable.

Now, Einstein proposed, that in order to re-discover Planck’s radiation law, it
is absolutely necessary to assume a third type of process called stimulated
emission, and the corresponding rate is defined as BabU.!/.

So far, we will consider Aab;Bba;Bab; as phenomenological constants.
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Fig. 1.2 The three processes
in the atom-field interaction.
Absorption, stimulated
emission and spontaneous
emission

We can now write a Rate Equation. Calling Nb and Na the populations of the
lower and upper levels respectively, and Nb C Na D N, N being the total number of
atoms, then

dNb

dt
D �dNa

dt
D AabNa C BabU.!/Na
„ ƒ‚ …

� NbBbaU.!/
„ ƒ‚ …

(1.3)

where the terms grouped in the first curly bracket represent the emission and in the
second, the absorption.

1.2 Thermal Equilibrium

We will consider the equilibrium condition on (1.3), that is

dNb

dt
D 0 ; (1.4)

so, that if we have only thermal electromagnetic energy .UE D 0/, then:

UT.!/ D Aab

Bab.
Bbagb
Babga

exp.ˇ„!/ � 1/
; (1.5)

where we have assumed a Boltzmann distribution for the level populations,
weighted with their respective degeneracies gb and ga

Nb

Na
D gb exp.�ˇEb/

ga exp.�ˇEa/
D gb

ga
exp.ˇ„!/ : (1.6)
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A comparison of (1.5) with Planck’s blackbody energy distribution:

UT.!/ jPlanckD „!3
�2c3.exp.ˇ„!/ � 1/

(1.7)

gives us

Bba

Bab

gb

ga
D 1 ; (1.8)

„!3
�2c3

D Aab

Bab
: (1.9)

From (1.8) to (1.9), we can see that there are two equations for three coefficients,
that is only one of them is independent.

1.3 Photon Distribution and Fluctuations

If we quantize the thermal photons as

En D n„! ; (1.10)

then the probability for n photons at Temperature T
�

ˇ D .kT/�1
�

is given by the
usual Boltzmann factor

Pn D exp.�ˇEn/
P

n exp.�ˇEn/
D exp.�ˇ.n C 1/„!/ Œexp.ˇ„!/ � 1� ; (1.11)

but as

hni D 1

exp.ˇ„!/ � 1
; (1.12)

we finally get

Pn D hnin

.hni C 1/nC1 ; (1.13)

which is the Bose–Einstein distribution for thermal photons.
We can also express Pn in terms of the level populations

Pn D
�

gbNa

gaNb

�n �

1 � gbNa

gaNb

�

(1.14)
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thus showing that, if gb D ga, one cannot achieve population inversion by only
thermal excitation of the atoms (Na � Nb in order to have Pn � 1).

It is left to the reader to prove that

.�n/2 � hn2i � hni2 D hni C hni2 : (1.15)

In the next two sections, we will apply these simple ideas to the atomic excitation
by an external light source and an elementary laser theory .

1.4 Light Beam Incident on Atoms

We assume here that we have a cavity filled with atoms interacting with an external
light beam whose frequency is resonant with a pair of atomic levels, consistent with
Einstein’s description of the atom–radiation interaction. As we saw in a previous
section, three important processes take place. One important fact is that stimulated
emission from the excited atom tends to remain in the same electromagnetic mode,
thus tending to amplify the incident radiation. On the other hand, spontaneous
emission is isotropic in all spatial directions and independent of the direction of
the incident beam [5].

If we neglect the spatial dependence of the radiation in the cavity (thin cavity),
then U D constant and one easily finds a solution for (1.3)

Nb.t/ D
�

N0
b � N.A C BU/

A C 2BU

�

exp Œ�.A C 2BU/t�C N.A C BU/

A C 2BU
(1.16)

where we have assumed gb D ga D 1; thus Bba D Bab D B, and N0
b is the initial

population of the lower level.
In the particular case N0

b D N, that is all the atoms are initially in the lower
energy level, then

Na

N
D �.1 � exp.��// (1.17)

with � � BU
.AC2BU/ and � � t.A C 2BU/.

In steady state .� �! 1/, we have

Na

N
D 1

2C A
BU

: (1.18)

We notice again that even when the stimulated emission term (BU) is much
stronger than the spontaneous emission one by, for example having a large energy on
the external light beam, one can at best achieve equal population in the two levels.
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If we now disconnect the external light source, the (1.3) becomes

dNa

dt
D �NaA (1.19)

thus Na.t/ D N0
a exp.�At/, describing the exponential decay of the upper level

population or spontaneous emission. The average lifetime of the upper level is
�R D A�1.

1.5 An Elementary Laser Theory

A simplified view of the process of amplification of light can be formulated based
on Einstein’s ideas on the fundamental processes in the atom–radiation interaction
[6].

As in the previous sections, we consider two level atoms, resonant with the
electromagnetic field. Also, for the moment, we will neglect the effects of the
spontaneous emission. The corresponding rate equations are

dNb

dt
D �WbanNb C WabnNa ; (1.20)

dNa

dt
D WbanNb � WabnNa ; (1.21)

where n is the number of photons in the cavity and Wij is the transition rate from
level i to j.

We can also define the population difference D D Na � Nb that obeys

dD

dt
D �2WnD (1.22)

where we have set Wba D Wab D W; consistent with the previous arguments.
On the other hand, one also has a rate equation for the photons, namely,

dn

dt
D WnD � n

Tc
; (1.23)

where we have included the term � n
Tc

to account for the photons coming out of the
cavity.
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The two coupled equations read

dD

dt
D �2WnD � 1

T1
.D � D0/ ; (1.24)

dn

dt
D WnD � n

Tc
:

In the first equation of (1.24), we have included a phenomenological term

� 1

T1
.D � D0/

that accounts for the spontaneous decay and pump action. T1 being a characteristic
lifetime associated with the decay of the population. Also, D0 is the equilibrium
population in the absence of photons.

The equations given by (1.24) are called laser rate equations. These equations,
although, as mentioned before, are a simplified version of the fully quantum
mechanical laser theory, allow us to study some basic characteristics of the laser
action, such as steady state, it’s stability and the laser threshold.

1.5.1 Threshold and Population Inversion

Assuming initially a low photon number (say 1), amplification of the number of
photons will occur only if

dn

dt
D .WD.0/� 1

Tc
/ > 0 :

or, equivalently,

D.0/ D D0 > Dthresh D 1

WTc
: (1.25)

From the above analysis two conclusions can be drawn:

1. There is a laser threshold condition given in the inequalities (1.25). Laser action
only takes place if the initial inversion is above the threshold value. Usually, the
equilibrium population is equal to the initial one, so the inequality can be referred
to the equilibrium value.

2. Clearly, D0 is positive, which implies Na > Nb, that is population inversion is
required, and it has to be enough to compensate for the cavity losses. One would
like to have Dthresh as small as possible, which implies either Tc or W large, or
both. A large Tc means that we need a high-quality optical cavity. On the other
hand, high W implies to choose a pair of levels with a large dipole moment.
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1.5.2 Steady State

The steady-state condition reads

2WnD C 1

T1
.D � D0/ D 0 ; (1.26)

n.WD � 1

Tc
/ D 0 : (1.27)

There are two possible solutions to the steady-state equations

(i) n D 0, D D D0,
which is the case of trivial equilibrium with the pump and no photons in the
cavity.

(ii)

D D 1

TcW
D Dthresh ; (1.28)

n D D0 � Dthresh

2WDthreshT1
D .D0 � Dthresh/

Tc

2T1
: (1.29)

A serious limitation of this model is that if n.0/ D 0; then n.t/ D 0; for all times.
The laser does not get started even if D0 > Dthresh: The reason for this limitation
is the absence of the quantum noise because of spontaneous emission, which was
introduced in the present treatment in a ad hoc manner. A quantum laser theory does
not have this limitation, because the quantum noise and the spontaneous emission
appear in a natural way.

As we can see from (1.29), the only possibility to have a positive steady-state
photon number is if D0 > Dthresh:

1.5.3 Linear Stability Analysis

If we call n1 and D1 the steady-state values, then we write these quantities, as their
steady-state value plus a small deviation, that is

n.t/ D n1 C "n.t/ ; (1.30)

D.t/ D D1 C "D.t/ : (1.31)
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Linearizing (1.24), up to order ", we easily get

d"D

dt
D �2W.n1"D C D1"n/� 1

T1
"D ; (1.32)

d"n

dt
D W.n1"D C D1"n/� "n

Tc
:

We look now for a solution of the form

�

"D

"n

�

D exp.�t/

�

"D.0/

"n.0/

�

; (1.33)

and get two algebraic coupled equations

.�C 2Wn1 C 1

T1
/"D.0/C 2WD1"n.0/ D 0 ; (1.34)

�Wn1"D.0/C .� � WD1 C 1

Tc
/"n.0/ D 0 : (1.35)

From (1.34) to (1.35), we get the secular equation

.�C 2Wn1 C 1

T1
/.� � WD1 C 1

Tc
/C 2W2n1D1 D 0 : (1.36)

In order to have a stable solution, one must have

Re
˚

�j
�

< 0 for j D 1; 2 :

1.5.3.1 For the Case I

.D D D0; n D 0/

�1 D � 1

T1
; (1.37)

�2 D WD0 � 1

Tc
; (1.38)

therefore, the above solution is stable only if WD0 � 1
Tc < 0, that is for the laser

below threshold. On the other hand, for WD0 � 1
Tc > 0, the n D 0 solution becomes

unstable.
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Fig. 1.3 Behaviour of the
steady-state photon number
versus population

1.5.3.2 For the Case II

The two roots are

�1;2 D 1

2

(

� D0

DthreshT1
˙
�

.
D0

DthreshT1
/2 � 4W.D0 � D thresh/

T1

� 1
2

)

(1.39)

It is evident that the solution is only stable if D0 > Dthresh.
Finally, this stability analysis is depicted in Fig. 1.3.

Problems

1.1 Prove the thermal photon distribution given by (1.13).

1.2 Prove that, for a thermal distribution, the correct expression for fluctuations of
the photon number is given by (1.15).

1.3 Verify that for U D constant, the solution of (1.3) is given by (1.16).
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Chapter 2
Atom–Field Interaction: Semiclassical Approach

In this chapter, we study the resonant interaction between atoms and light. The
Bloch’s equations are derived, and by adding a relaxation term, various decay effects
are included.

We describe here various aspects that appear in the interaction between a
collection of atoms or molecules with light.

The basic phenomena may be understood using exactly soluble models and they
often are excellent approximations of the real experiments.

The so-called semiclassical models, such as the ones presented in this chapter,
describe a classical field interacting with quantum mechanical atoms.

A fully quantum mechanical model is described in Chap. 8.
Furthermore, here, we will deal with quasiresonant phenomena, where the elec-

tromagnetic field frequency almost coincides with the energy difference between a
pair of atomic levels. In this context, we will often use the concept of “two-level
atom”.

This situation is described in the Fig. 2.1.
The two-level atom is characterized by the ground state j bi and an excited state

j ai with energies „!b and „!a: The detuning ı is defined by

ı � .!a � !b/� ! D !ab � ! : (2.1)

The strength of the interaction is usually measured by the so-called Rabi
frequency that depends on resonance on the square root of the number of photons.

For the calculation of the transition rates, consider an atom interacting with a
sinusoidal field

E.t/ D eE0 cos!t ; (2.2)

which is switched on in t D 0. e represents the unit vector along the polarization of
the field. We will show that the presence of higher excited states can be neglected,
when the transition frequencies are very different from !:

© Springer International Publishing Switzerland 2016
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Fig. 2.1 Quasi-resonant
interaction between a
two-level atom and the
electromagnetic radiation,
with a detuning ı

We start with the time-dependent Schrödinger equation

i„@ 
@t

D .H0 C H0/ : (2.3)

H0 represents the time-independent Hamiltonian of the free atom and H0 is the
time-dependent atom field interaction, that in the electric dipole approximation can
be written as (e being negative for the electron)

H0 D �eE � r D �eE0.e � r/ cos!t : (2.4)

Because Ho is the Hamiltonian of the free atom, one can write

i„@‰
@t

D .H0/‰ ; (2.5)

with solutions of the form

‰ D  n.r/ exp.
�iEnt

„ / ; (2.6)

where  n.r/ and En are the eigenfuctions and eigenvalues of H0

H0 n.r/ D En n.r/ : (2.7)

The functions  n.r/ satisfy the usual orthonormality conditions

Z

dr �
n .r/ m.r/ D ınm : (2.8)
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The above wavefunctions will serve as a convenient basis to expand the
wavefunction of the time-dependent problem

 .r; t/ D
X

n

Cn.t/ n.r/ exp.�i!nt/ ; (2.9)

with

!n � En

„ :

Substituting (2.9) in (2.3) we get

i„X
n

.
dCn

dt
� i!nCn/ n.r/ exp.�i!nt/ D X

n

EnCn n.r/ exp.�i!nt/ (2.10)

�eEo.e � r/
X

n

Cn n.r/ exp.�i!nt/ cos!t:

The second term on the left-hand side cancels the first term on the right-hand
side, thus getting, after multiplication by  �

m from the left and integration

i„dCm

dt
D Eo

2

X

n

dmnCn.t/ Œexp i.!mn C !/t C exp i.!mn � !/t� ; (2.11)

where

!mn D !m � !n D 1

„ .Em � En/ ; (2.12)

dmn D j e j
Z

dr �
m.r/.e � r/ n.r/ :

Now, let us assume that initially the atom is at the state  k.r/, in other words:

Ck.t D 0/ D 1; (2.13)

Cn.t D 0/ D 0; n ¤ k :

As a first approximation, we replace Cn.t/ by Cn.0/ in (2.11), getting

i„dCm

dt
D Eo

2
dmk Œexp i.!mk C !/t C exp i.!mk � !/t� ; (2.14)
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Fig. 2.2 The function
sin

.!mk �!/t
2

.!mk�!/
is sharply peaked

around ! D !mk

and integrating

Cm.t/ � Cm.0/ D � Eo

2„dmk

�

exp i.!mk C !/t � 1
.!mk C !/

C exp i.!mk � !/t � 1

.!mk � !/

�

;

(2.15)
and for m ¤ k we get

Cm.t/ D �i
Eo

„ dmk

(

exp
h

i.!mk C !/
t

2

i sin .!mkC!/t
2

.!mk C !/

C exp
h

i.!mk � !/ t

2

i sin .!mk�!/t
2

.!mk � !/

)

: (2.16)

As we can easily see from the Fig. 2.2, the function:

1

.!mk � !/
sin

.!mk � !/t

2
(2.17)

is sharply peaked around !mk ' !, for large t.
As we can see from the above discussion, for those states with !mk very different

from !; the transition probability is indeed very small, thus justifying the two-level
approximation [1].

In (2.16), !mk is negative for emission and positive for absorption, thus the main
contribution comes from the first term in the first case and from the second term for
absorption.
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Now, we return to the two-level model from Fig. 2.1 and assume that initially the
atom is in its lower level b. The transition probability to a is

j Ca.t/ j2D j dab j2 E2o
4„2

 

sin
	
!ab�!
2




t
	
!ab�!
2




!2

: (2.18)

The result given in (2.18) is approximate and represents for j Ca.t/ j2� 1 the
probability for stimulated absorption.

2.1 Broad-Band Radiation Spectrum

Now, we modify our previous analysis by considering a broad-band light, rather
than a monochromatic one. Because the average electromagnetic energy density per

unit volume is 	oE2o
2
; and because U.!/ is the spectral energy, such that U.!/d!

represents the field energy per unit volume and in the frequency interval ! and
! C d!, we just replace E2o by 2U.!/d!

	o
and integrate over the spectrum, getting

j Ca.t/ j2D j dab j2
2	o„2

Z

d!U.!/

 

sin
	
!ab�!
2




t
	
!ab�!
2




!2

(2.19)

and assuming U.!/ to be slowly varying with !, we get the approximate result:

j C2.t/ j2' j dab j2
2	o„2 U.!ab/

Z

d!

 

sin
	
!ab�!
2




t
	

!ab�!
2




!2

; (2.20)

D � j dab j2
	o„2 U.!ab/t :

From (2.20), we see that the absorption probability per unit time is proportional
to the energy density, as in Einstein’s theory. In order to get the B coefficient, we
have to average over all the directions, because

j dab j2 � jj e j
Z

dr �
a .r/.e � r/ b.r/ j2

� jj e j
Z

dr �
a .r/r b.r/ j2 cos2 


� j
�

j e j
Z

dr �
a .r/r b.r/

�

j2 1
3
;
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so, finally

j Ca.t/ j2
t

D �p2ab

3	o„2U.!ab/ � BbaU.!ab/ ; (2.21)

p2ab Djj e j
Z

dr �
a .r/r b.r/ j2 ; (2.22)

so, we may write

Bba D �p2ab

3	o„2 : (2.23)

2.2 Rabi Oscillations

Instead of the general expansion given in (2.9), consider two levels only

 .r; t/ D C0
b.t/ b.r/ exp.�i!bt/C C0

a a.r/ exp.�i!at/ : (2.24)

Making use of (2.11) for this particular case, we get

i„dC0
b

dt
D Eodba

2
C0

a.t/ fexp Œ�i.!ab � !/t�C exp Œ�i.!ab C !/t�g ; (2.25)

i„dC0
a

dt
D Eodab

2
C0

b.t/ Œexp i.!ab � !/t C exp i.!ab C !/t� :

Defining

Cb;a D exp

�

˙i
ıt

2

�

C0
b;a

and performing the rotating wave approximation to neglect the rapidly varying term
exp i.!ab C !/t versus the exp i.!ab � !/t term, we write

dCb

dt
D � i

2

�

�ıCb C Eodba

„ Ca

�

; (2.26)

dCa

dt
D � i

2

�

ıCa C Eodab

„ Cb

�

: (2.27)
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We can write (2.26) and (2.27) in a matrix form

d

dt

�

Cb.t/
Ca.t/

�

D �i

2

��ı Eodba„
Eodab„ ı

� �

Cb.t/
Ca.t/

�

: (2.28)

The eingenvalues of (2.28) are �R, where

R �
q

ı2 C R2o; (2.29)

Ro � j Eodba

„ j :

Normally, Ro is referred to as the Rabi frequency [2–4].
The solution of (2.28) is

2

4

Cb.t/

Ca.t/

3

5 D
2

4

cos Rt
2

C iı
R sin Rt

2
�i Eodba

R„ sin Rt
2

�i Eodab
R„ sin Rt

2
cos Rt

2
� iı

R sin Rt
2

3

5

2

4

Cb.0/

Ca.0/

3

5 : (2.30)

To take a simple example, if we start from the lower state ŒCb.0/ D 1�, the
transition probability for absorption is

j Ca.t/ j2 D j Ro

R
j2 sin2

Rt

2
: (2.31)

2.3 Bloch’s Equations

Equation (2.25) describes exactly the interaction between a two-level atom and the
radiation field

i
dC0

b

dt
D �C0

a.t/ exp.�i!abt/ cos!t ;

i
dC0

a

dt
D ��C0

b.t/ exp.i!abt/ cos!t ;

where � � Eodba„ :

A general treatment involves the density matrix.



20 2 Atom–Field Interaction: Semiclassical Approach

Define

�bb D j C0
b j2 ; (2.32)

�aa D j C0
a j2 ;

�ba D C0
bC0�

a D ��
ab :

Of course, the property Tr� D 1 is automatically satisfied because

�bb C �aa Dj C0
b j2 C j C0

a j2D 1 : (2.33)

We differentiate �ij with respect the time, getting

d�ij

dt
D C0

i

dC0�
j

dt
C C�0

j

dC0
i

dt
; (2.34)

and replacing (2.32) into (2.34), we get (making use of the rotating-wave approxi-
mation)

d�aa

dt
D �d�bb

dt
D � i

2
�� exp Œi.!ba � !/t� �ba C i

2
� exp Œ�i.!ba � !/t� �ab ;

d�ba

dt
D d��

ab

dt
D i

2
� exp Œ�i.!ba�!/t� .�bb � �aa/ : (2.35)

Equation (2.35) is the optical Bloch Equation.
In order to introduce dissipative effects, we can modify (2.11)

i„dCm

dt
D Eo

2

X

n

dmnCn.t/ fexp Œi.!mn C !/t�C exp Œi.!mn � !/t�g

(2.36)

�i„m

2
Cm ;

where we have added a relaxation term. In the absence of coupling, the relaxation
term will generate a solution

j Cm.t/ j2Dj Cm.0/ j2 exp � t : (2.37)

Obviously, such a decay constant in Schrödinger’s equation does not preserve the
norm.
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2.4 Decay to an Unobserved Level

The effect on the density matrix is as follows:

d�ij

dt
D C0

i

dC0�
j

dt
C C�0

j

dC0
i

dt
(2.38)

D ./nodissipation � i C j

2
�ij :

For population levels, this leads to an exponential decay �ii.t/ _ exp.�it/:
As the spontaneous decay process will emit a photon, we find that the number

of spontaneously emitted photons will be proportional to i�ii; and the intensity of
spontaneously emitted photons will be a measure of the decaying level.

2.5 Decay Between Levels

If we consider the spontaneous emission between the two levels (Fig. 2.1), then the
upper state will decay as

d

dt
�aa D ��aa : (2.39)

On the other hand, this event will increase the population in level b, so

d

dt
�bb D �bb : (2.40)

The calculation of  comes from a quantum electrodynamical theory called the
Wigner–Weisskopf Theory, that will be covered in a later chapter. It involves the
interaction of an atom with an infinite number of harmonic oscillators, at zero
temperature, that is in the vacuum state.

On the other hand, the off diagonal term will decay as

d

dt
�ab D �

2
�ab : (2.41)

Equation (2.41) can be proven with a fully quantum mechanical analysis.
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The Bloch Equations, with losses can be written as

d�aa

dt
D � i

2
�� exp Œi.!ba � !/t� �ba C i

2
� exp Œ�i.!ba � !/t� �ab (2.42)

��aa D �d�bb

dt
;

d�ba

dt
D d��

ab

dt
D i

2
� exp Œ�i.!ba � !/t� .�bb � �aa/ �  0

2
�ba ;

where T1 D 1


is the longitudinal relaxation time and T2 D 2
 0

is the transverse
relaxation time, and  0 D  C coll; and we have introduced the collision frequency
coll in a ad-hoc manner.

2.6 Optical Nutation

An interesting case that has exact solution is when !ba D ! and initially �aa D
�ba D 0. The solution in this case is

�aa.t/ D
j�j2
2

2

2
C j � j2

�

1 �
�

cos�t C 3

4�
sin�t

�

exp �3 t

4

�

; (2.43)

� �
r

j � j2 �
2

16
:

The result given in (2.43) is illustrated in the Fig. 2.3.
We notice that the oscillations occur when the Rabi frequency � is much bigger

than the damping  .

Fig. 2.3 Atomic population
of the upper level versus time
for various ratios of 

�
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Problem

2.1 Prove that the solution given by (2.43) satisfies (2.35).
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Chapter 3
Quantization of the Electromagnetic Field

In this chapter, we quantize the electromagnetic field and find the commutation
relations between the various components of the electric, magnetic fields and the
vector potential.

We start with the source-free Maxwell’s equations

r � B D 0 ; (3.1)

r 	 E D �@B
@t
; (3.2)

r � E D 0 ; (3.3)

r 	 H D @D
@t
; (3.4)

together with

B D �oH ; (3.5)

D D "oE ;

where �o; "o are magnetic permeability and permittivity of free space, obeying the
relation �o"o D c�2. The (3.1) and (3.2) are automatically satisfied when one
defines the vector and scalar potentials (A and V)

B D r 	 A ; (3.6)

E D �@A
@t

� rV :
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As Maxwell’s equations are gauge invariant, we choose the Coulomb gauge that
is particularly useful when dealing with non-relativistic electrodynamics

r � A D 0 ; (3.7)

V D 0 :

With the above gauge, (3.3) is automatically satisfied and both B and E can be
expressed in terms of A only.

If we now substitute (3.6) into (3.4), we get the wave equation for the vector
potential

r2A D 1

c2
@2A
@t2

: (3.8)

Now, we perform the standard separation of variables

A.r; t/ D
X

m

s

„
2!m"o

�

am.t/um.r/C a�m.t/u
�
m.r/

�

; (3.9)

that after substitution into (3.8) gives

r2um.r/C !2m
c2

um.r/ D 0 ; (3.10)

@2am

@t2
C !2mam D 0 ;

where
!2m

c2
is the separation constant.

Obviously,

am.t/ D am exp.�i!mt/ ; (3.11)

a�m.t/ D a�m exp.Ci!mt/ :

Both am.t/ and a�m.t/ are, for the time being, a pair of complex conjugate
numbers. Later on, when we will quantize the field, they will be interpreted as an
operator and its harmonic conjugate.

Depending on the boundary conditions, the um.r/ functions could be sinusoidal
(cavity) or exponentials (traveling waves). For plane waves:

um.r/ D em exp ikm�rp
v

; (3.12)
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where k2m D !2m
c2

, v is the volume and the Coulomb gauge condition implies em �
km D 0, which is the transversality condition for the m-th mode, thus allowing two
possible and mutually orthogonal polarizations, contained in a plane perpendicular
to km.

Therefore, the subscript m signifies the various modes including the two polar-
ization states. The allowed values of k are determined by the boundary conditions.
If we take periodic boundary conditions for a cube of volume L3, then we require
that

A.rCLO{/ D A.rCLj/ D A.rCLk/ D A.r/ ; (3.13)

which implies

km D 2�

L
.m1O{Cm2jCm3k/ ;

m1;m2;m3; being integer numbers.
The vectors um.r/ satisfy the orthogonality condition

Z

u�
m.r/un.r/dv D ımn : (3.14)

The final form for the vector potential A is

A.r; t/ D
X

m

s

„
2!m"ov

em
˚

am exp Œi.km�r�!mt/�C a�m exp Œ�i.km�r�!mt/�
�

:

(3.15)

From (3.6), we can also write

E.r; t/ D i
X

m

s

„!m

2"ov
em
˚

am exp Œi.km�r�!mt/� � a�m exp Œ�i.km�r�!mt/�
�

;

(3.16)

H.r; t/ D � i

c�o

X

m

s

„!m

2"ov
em	 ^

km fam exp Œi.km�r�!mt/�

�a�m exp � Œi.km�r�!mt/�
�

: (3.17)
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The total energy of the multimode radiation field is given by

H D 1

2

Z

."oE2 C �oH2/dv (3.18)

D 1

2

Z

."o.
@A
@t
/2 C ��1

o .r 	 A/2/dv

D
X

m

„!m.ama�m C a�mam/ �
X

m

Hm :

In the last step to obtain (3.18), we used (3.17) and (3.14).
We preserved the order of a�m; am, for future purposes. Now they are just numbers.
Now the quantization is trivial. The am obey the same differential equation as a

harmonic oscillator, so the quantization rule is [1]

�

am; a
�
n

� D ınm ; (3.19)
�

am; an

� D 0 ;
�

a�m; a
�
n

� D 0 :

We remind the reader that the standard connection between the a and a�

operators, with the usual p and q is given by (1 mode)

a D 1p
2„! .!q C ip/ ; (3.20)

a� D 1p
2„! .!q � ip/ ;

so that:

1

2
.p2 C .!q/2/ D „!

�

a�a C 1

2

�

: (3.21)

For many modes, and dropping the zero point energy, the energy and momentum
are given by

H D
X

m

„!m.a
�
mam/ ; (3.22)

G D
X

m

„kma�mam : (3.23)
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We notice that in the Schrödinger picture, the vector potential is

A.r; 0/ D
X

m

s

„
2!m"ov

em
˚

am exp Œi.km�r/�C a�m exp Œ�i.km�r/�� : (3.24)

Here, we use the notation that am is a Schrödinger operator, whereas am.t/ is its
Heisenberg version.

Now, we interpret am and a�m as the annihilation and creation operators for this
particular oscillator, or for this particular mode of the radiation field.

3.1 Fock States

The operator Nm D a�m am is the photon number of the m-th mode.
We define a basis that can be written as a product of state vectors for each mode,

because they are independent, as follows

j n1i j n2i : : : j n1i Dj n1; n2; ::n1i

such that both Nm and the Hamiltonian are diagonal in this basis.
For one mode

a�a j ni D n j ni ; (3.25)

H j ni D „!
�

a�a C 1

2

�

j ni D „!
�

n C 1

2

�

j ni D En j ni : (3.26)

From the commutation rule (3.19), we can simply infer that

a� j ni D p
n C 1 j n C 1i ; (3.27)

a j ni D p
n j n � 1i :

Similarly, for a multimode field.
We also notice that the energy of the ground state is

h0 j H j 0i D 1

2

X

m

„!m ; (3.28)

which, of course, diverges, originating a conceptual difficulty with the whole
quantization procedure.



30 3 Quantization of the Electromagnetic Field

In most practical situations, however, one does not measure absolute energies,
but rather energy changes, so that the infinite zero-point energy does not generate
any divergences.

To generate any Fock state of the k-th mode j nki, from the vacuum, we just have
to apply (3.27) several times, getting

j nki D .a�k/
nk

p
nkŠ

j 0i ; (3.29)

nk D 0; 1; 2 : : : :

These Fock or number states are orthogonal

hnk j mki D ınm ; (3.30)

and complete

1
X

nkD0
j nkihnk jD 1 : (3.31)

3.2 Density of Modes

As we saw,

km D 2�

L
.m1O{Cm2jCm3k/ ; (3.32)

so we may ask the following question: How many normal modes are contained in a
cavity of volume v D L3?

Each set of integer numbers .m1;m2;m3/ correspond to two traveling wave
modes, because we have two polarizations. These correspond to a point in the
Fig. 3.1:

In an infinitesimal volume element dm1dm2dm3, the number of modes is

dn D 2dm1dm2dm3 ; (3.33)

and according to (3.32), we get

dn D 2

�

L

2�

�3

dkxdkydkz D 2

�

L

2�

�3

dk : (3.34)
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Fig. 3.1 Normal modes in a
cavity

Now, letting L ! 1, the sums become integrals and

1

L3
X

m

Œ�L ! 1!
�

1

2�

�3 Z Z Z

Œ�dk : (3.35)

If one goes to polar coordinates, we can also write

dn D 2

�

L

2�

�3

dkxdkydkz D 2

�

L

2�

�3

k2dkd� ; (3.36)

where d� is an element of solid angle about k.
As !2 D c2k2, one can write

dn D 2

�

L

2�c

�3

!2d!d� ; (3.37)

and the number of normal modes per unit volume, with angular frequencies between
! and ! C d!, and per solid angle d� is

dn

d�L3
D 2!2

.2�c/3
d! � g.!/d! ; (3.38)

where g.!/ is the mode density.

3.3 Commutation Relations

Using the commutation relations (3.19) one can write [1]

�

Ai.r/;Ej.rK/
� D � i„

2v"0

X

l;�

.el� /i.el� /j Œexp.ikl:j/C cc� ; (3.39)

� D r � rK:
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In the above expression, we have replaced m ! .l; �/, in order to separate the
propagation vector index (l) from that of the polarization .�/:

Now, the three vectors el1;el2;
^
kl are mutually orthogonal. So, in the three-

dimensional space, one may write:

j el1ihel1 j C j el2ihel2 j C j ^
klih

^
kljD 1 ; (3.40)

so, taking i and j components of the above relation, one gets

X

�D1;2
.el� /i.el� /j D ıij � .kl/i .kl/j

k2l
D ıij�

^
.kl/i

^
.kl/j : (3.41)

We substitute the result of (3.41) into the commutation relation (3.39), getting

�

Ai.r/;Ej.rK/
� D � i„

v"0

X

l

�

ıij�
^
.kl/i

^
.kl/j

�

exp.ikl:j/ ; (3.42)

where the sum over l now covers both positive and negative integers, because

^
k�l

^D �kl : (3.43)

Letting L ! 1, and making use of (3.35),we can write

�

Ai.r/;Ej.rK/
� D � i„

"0
ıT

ij .r � rK/ ; (3.44)

where ıT
ij .r � rK/ is the transverse ı function defined as

ıT
ij .r � rK/ D 1

.2�/3

Z Z Z

dk
�

ıij�
^
.k/i

^
.k/j

�

exp.ik:j/ : (3.45)

Following the same procedure, the reader can show that

�

Ai.r; t/;Aj.rK; t/
� D 0 ; (3.46)

�

Ei.r; t/;Ej.rK; t/
� D 0 ; (3.47)

�

Bi.r; t/;Bj.rK; t/
� D 0 : (3.48)

Actually, to show the above commutation relation, one can work in the
Schrödinger picture, with time-independent operators, and if the above is true,
then it is also true in the Heisenberg picture, at equal times.
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Problems

3.1 Prove that the j ni state can be expressed in terms of the vacuum state as

j ni D .a�/np
nŠ

j 0i :

3.2 Show the following commutation relations

�

a; a�n
� D n.a�/n�1 ;

�

an; a�
� D n.a/n�1 :

3.3 The commutation relations of the Problem 3.2 can be generalized. Prove that

�

a; f .a; a�/
� D @f

@a�
;

�

a�; f .a; a�/
� D � @f

@a
;

exp.�˛a�a/f .a; a�/ exp.˛a�a/ D f .ae˛; a�e�˛/:

(Appendix A)

3.4 Show that

ŒAk.r/;El.rK/� D �i„ı
T
kl.r � rK/
"0

:

3.5 Show that

�

Ei.r; t/;Bj.rK; t/
� D 0; i D j

D �i„ @
xk
ı.�/; i; j; k D 1; 2; 3

D i„ @
xk
ı.�/; i; j; k D 1; 3; 2 :

and � D r � rK:
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Chapter 4
States of the Electromagnetic Field I

In this chapter, we study the coherent states and the thermal radiation.
The coherent states were introduced by Glauber [1] and Sudarshan [2] defined

as the eigenstate of the annihilation operator. For a single mode

a j ˛i D ˛ j ˛i; (4.1)

where ˛ is a complex number.
Expanding the coherent state in the Fock basis

j ˛i D
1
X

nD0
cn j ni; (4.2)

we easily get

a j ˛i D
1
X

nD1
cn

p
n j n � 1i (4.3)

D ˛

1
X

nD0
cn j ni;

from which we get the following recursion relation

cn
p

n D ˛cn�1: (4.4)

The solution of (4.4) gives

cn D ˛n

p
nŠ

co:
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The coefficient co is found from normalization

h˛ j ˛i D 1 Dj co j2
X

n

j ˛ j2n

nŠ
Dj co j2 exp j ˛ j2 (4.5)

so that we can now write the expansion

j ˛i D exp

�

�j ˛ j2
2

�

X

n

˛n

p
nŠ

j ni: (4.6)

4.1 Further Properties

4.1.1 Coherent States Are Minimum Uncertainty States

We write the usual relation between a; a� and q; p

a D 1p
2„! .!x C ip/; (4.7)

a� D 1p
2„! .!x � ip/;

with Œx; p� D i„, or equivalently .�x/2.�p/2 
 „2
4

.
By inverting the relations (4.7) and taking the expectation value over a coherent

state, one gets

hxi˛ D
r „
2!

h˛ j .a C a�/ j ˛i; (4.8)

D
r „
2!
.˛ C ˛�/;

and

hx2i˛ D „
2!

h˛ j .a C a�/2 j ˛i (4.9)

D „
2!
.1C .˛ C ˛�/2/;

so

.�x/2˛ D hx2i˛ � hxi2˛ D „
2!
: (4.10)
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In a similar way, one finds

.�p/2˛ D „!
2
; (4.11)

so that

.�x/2˛.�p/2˛ D „2
4
;

and the coherent states are Minimum uncertainty states (MUS).

4.1.2 Coherent States Are Not Orthogonal

h˛ j ˇi D exp

�

�1
2
.j ˛ j2 C j ˇ j2/

�

X

nm

hm j ˛
nˇ�m

p
nŠmŠ

j ni

D exp

�

�1
2
.j ˛ j2 C j ˇ j2/

�

exp.˛ˇ�/;

or put it differently

j h˛ j ˇi j2D exp
	� j ˛ � ˇ j2
 : (4.12)

4.1.3 Coherent States Are Overcomplete

We now calculate
R

d2˛ j ˛ih˛ j where d2˛ D .dRe˛/.dIm˛/ W
Z

d2˛ j ˛ih˛ jD
X

nm

j nihm jp
nŠmŠ

Z

d2˛ exp
	� j ˛ j2
˛n˛�m: (4.13)

It is convenient to write ˛ D r exp i�, so

Z

d2˛ j ˛ih˛ jD
X

nm

j nihm jp
nŠmŠ

Z

rdr exp
	�r2




rnCm
Z

d� exp i.n � m/�;

(4.14)
but

Z

d� exp Œi.n � m/�� D 2�ınm
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so
Z

d2˛ j ˛ih˛ jD 2�
X

n

j nihn j
nŠ

Z

dr exp
	�r2




r2nC1; (4.15)

and defining " � r2, the integral of (4.15) can be written as

1

2

Z

"ne�"d" D nŠ

2
:

The last result combined with (4.15) gives us finally

Z

d2˛ j ˛ih˛ jD �: (4.16)

4.1.4 The Displacement Operator

We define the displacement operator as [1]

D.˛/ D exp.˛a� � ˛�a/: (4.17)

We make use of the BCH relation (see Appendix A)

e.ACB/ D eAeBe� 1
2
ŒA;B�; (4.18)

valid if ŒA; ŒA;B�� D ŒB; ŒA;B�� D 0:

We now use the BCH relation to the displacement operator and apply it to the
vacuum state

D.˛/ j 0i D exp.˛a� � ˛�a/ j 0i (4.19)

D exp.˛a�/ exp.�˛�a/ exp

�

�j ˛ j2
2

�

j 0i

D exp.�j ˛ j2
2

/ exp.˛a�/ exp.�˛�a/ j 0i

D exp.�j ˛ j2
2

/ exp.˛a�/ j 0i

D exp.�j ˛ j2
2

/

1
X

nD0

˛n

nŠ
.a�/n j 0i;

so, finally

D.˛/ j 0i Dj ˛i: (4.20)



4.1 Further Properties 39

In the last step, we used the property

.a�/n j 0i D p
nŠ j ni: (4.21)

From (4.20), we can see that a coherent state is just the vacuum displaced by
D.˛/:

Other property of the displacement operator can be derived using (Appendix A)

exp."A/B exp.�"A/ D B C " ŒA;B�C "2

2
ŒA; ŒA;B��C : : : (4.22)

Now, we can easily calculate:

D�.˛/aD.˛/ D a C ˛;

D�.˛/a�D.˛/ D a� C ˛�:

4.1.5 Photon Statistics

By simple inspection of the expansion of the coherent states in terms of Fock
states 4.6, one gets

Pn �j Cn j2Dj hn j ˛i j2D exp.� j ˛ j2/ j ˛ j2n

nŠ
: (4.23)

Equation (4.23) is saying that the probability of having n photons in a coherent
state obeys a Poisson statistics.

We can easily calculate the average photon number and variance

hni D h˛ j a�a j ˛i Dj ˛ j2; (4.24)

hn2i D h˛ j a�aa�a j ˛i D h˛ j a�a j ˛i C h˛ j a�2a2 j ˛i Dj ˛ j2 C j ˛ j4;

so that .�n/2 D hn2i � hni2 D hni, which is expected from the Poisson statistics.

4.1.6 Coordinate Representation

We would like to find the quantity: hq0 j ˛i:
Making use (3.20), we write [3]

a j ˛i D 1p
2„! .!q C ip/ j ˛i; (4.25)



40 4 States of the Electromagnetic Field I

and multiplying (4.25) by hq0 j from the left, we get

hq0 j .!q C ip/ j ˛i D
p
2„!˛hq0 j ˛i (4.26)

D .!q C „ @

@q0 /hq0 j ˛i:

A more convenient way of writing (4.26) is

dhq0 j ˛i
hq0 j ˛i D

"r

2!

„ ˛ � !

„ q0
#

dq0: (4.27)

The solution of (4.27) is

hq0 j ˛i D
� !

�„
� 1
4

exp

 

� !

2„q02 C
r

2!

„ ˛q0 � j ˛ j2 C˛2
2

!

; (4.28)

where the result given by (4.28) was obtained using the normalization condition
R C1

�1 dq0 j hq0 j ˛i j2D 1, and defining ˛ D r exp.i�/, with � D 0.

4.2 Mixed State: Thermal Radiation

A pure state implies a perfect knowledge of the state of our system. If that is not the
case, we have the mixed case, where we know our state only probabilistically. In
general, we write

� D
X

R

pR j RihR j; (4.29)

and the expectation value of any operator O can be expressed as

hOi D
X

S

hS j �O j Si D Tr.�O/ D (4.30)

X

S

hS j
X

R

pR j RihR j O j Si D
X

R

pRhR j O j Ri;

where j Si is an arbitrary set of orthogonal and complete states.
A property of � is that Tr f�g D P

S

P

R PRhS j RihR j Si D P

R PR D 1, which
just implies that probability conservation should also hold for mixed states.

An example of a mixed state is the thermal radiation. For thermal equilibrium
at temperature T, the probability Pn that one mode of the field in excited with n
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photons is given by the usual Boltzmann factor

Pn D
exp

�

� En
KBT

�

P

n exp
�

� En
KBT

� : (4.31)

The zero point energy cancels when the quantized energy is substituted, and using a
shorthand notation

Z D exp

�

� „!
KBT

�

; (4.32)

the probability can be written as

Pn D Zn

P

n Zn
: (4.33)

The denominator of the above expression can be easily summed, as a geometrical
series

X

n

Zn D 1

1 � Z
;

giving

Pn D .1 � Z/Zn D
�

1 � exp

�

� „!
KBT

��

exp

�

�n„!
KBT

�

: (4.34)

Therefore, the density operator for a mixed one-mode thermal state is given by

�thermal D

D
�

1 � exp

�

� „!
KBT

��

X

n

exp

�

�n„!
KBT

�

j nihn j;

D
�

1 � exp

�

� „!
KBT

��

X

n

exp

�

�„!a�a

KBT

�

j nihn j

D
�

1 � exp

�

� „!
KBT

��

exp

�

�„!a�a

KBT

�

D
X

n

hnin
th

.1C hnith/nC1 j nihn j : (4.35)
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In the last line, we used the relation

Pn D hnin
th

.1C hnith/nC1 ; (4.36)

which can be easily proven as follows

hnith D
X

n

nPn D .1 � Z/
X

n

nZn (4.37)

D .1 � Z/Z
@

@Z

X

n

Zn

D Z

1 � Z
;

thus, the average photon number is

hnith D 1

exp
�

„!
KBT

�

� 1
: (4.38)

From (4.38), the reader can easily verify (4.36), for the photon statistics of a
one-mode thermal state.

The obvious extension of (4.35) is, for the multimode case,

�thermal D
X

fnkg
˘k

.hnkith/
nk

.1C hnkith/nkC1 j fnkgihfnkg j : (4.39)

Problems

4.1 Show that the eigenstate of the creation operator does not exist.

4.2 Show that

a� j ˛ih˛ jD .˛� C @

@˛
/ j ˛ih˛ j;

and

j ˛ih˛ j a D .˛ C @

@˛� / j ˛ih˛ j :

4.3 Show that if a state is initially coherent

j  ; 0i Dj ˛i;
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then at t D t it will still be coherent

j  ; ti Dj ˛ exp.�i!t/i:

4.4 For a collection of oscillators in thermal equilibrium at temperature T, one can
write

P.q;T/ D
1
X

nD0
Pn j  n.q/ j2D

P

n exp.�ˇEn/ j  n.q/ j2
P

n exp.�ˇEn/
;

P.p;T/ D
1
X

nD0
Pn j �n.p/ j2D

P

n exp.�ˇEn/ j �n.p/ j2
P

n exp.�ˇEn/
;

with ˇ D 1
KBT :

Show that the result is

P.q;T/ D
exp

�

� q2

2�2q

�

q

2��2q

;

P.p;T/ D
exp

�

� p2

2�2p

�

q

2��2p

;

with

�2q D „
2m!

coth

� „!
2KBT

�

;

�2p D „m!

2
coth.

„!
2KBT

/:

Also, verify that

�q�p D KBT

!
;

for KBT � „! and

�q�p D „
4�

for KBT � „!:
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4.5 Show that for a pure state, the condition

�2 D �

is a necessary and sufficient one.
Also, verify that for a mixed state

Tr
˚

�2
�

< 1:

4.6 Coherent state with an unknown phase.
Let ˛ Dj ˛ j exp.i'/, with ' unknown and uniformly distributed. Then show

that

� D 1

2�

Z 2�

0

jj ˛ j exp.i'/ihj ˛ j exp.i'/ j d'

D
1
X

nD0
exp.� j ˛ j2/ j ˛ j2n

nŠ
j nihn j :

We can see that the phase ignorance washes out the off diagonal elements.

4.7 Define the characteristic function or “momentum generating function” (see also
Chap. 7) as:

CA.�/ D
1
X

nD0

.i�/n

nŠ
hAni:

Show that

hAni D .
@

@.i�/
/nCA.�/ j�D0;

CA.�/ D Tr.� exp.i�A//;

CA.�/ D
Z

P.AK=�/ exp.i�AK/dAK;

where AK is an eigenvalue of A and P.AK=�/ the corresponding probability density.
Hint: To prove the last property, use the second one for a continuous spectrum.

4.8 Let the operator A in the Problem 4.7 be

A D a C �a�:
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For a harmonic oscillator in a pure state ˛, show that

CA.�/ D exp

�

�1
2
�2� C i.˛�� C ˛/

�

;

hAi D ˛�� C ˛;

�2A D hA2i � hAi2 Dj  j2;

P.AK=�/ D 1
q

2��2A

exp

�

� .AK� hAi/2
2�2A

�

:

The last property shows that the distribution is Gaussian.
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Chapter 5
States of the Electromagnetic Field II

In this chapter, we deal with the general properties of squeezed states. We also
describe two methods of detection of these states.

5.1 Squeezed States: General Properties and Detection

We define the quadrature operators X and Y [1]

X D a C a�

2
D
r

!

2„q ; (5.1)

Y D a � a�

2i
D
r

1

2„! p :

The name “quadrature” appears naturally if one replaces the expressions (5.1) in
the quantized electric field

E(1 mode) D i

s

„!
2"ov

em
�

a exp.�i!t C ik � r/�a� exp.i!t � ik � r/
�

;

(5.2)

D 2

s

„!
2"ov

em ŒX sin.!t � k � r/ � Y cos.!t � k � r/� ;

thus appearing as factor-operators in front of the sin and cos functions.
The X and Y are Hermitian operators obeying the commutation relation

ŒX;Y� D i

2
; (5.3)

© Springer International Publishing Switzerland 2016
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or

h.�X/2ih.�Y/2i 
 1

16
: (5.4)

In the case of the coherent states, according to (4.10) and (4.11), one can write

h.�X/2i D 1

4
; h.�Y/2i D 1

4
: (5.5)

From the quadrature perspective, a coherent state is a minimum uncertainty state
with equal fluctuations in both quadratures.

Furthermore, since

h.X C iY/i˛ D hai˛ D ˛ ; (5.6)

so

hXi˛ D Re f˛g ; (5.7)

hY/˛ D Im f˛g :

Pictorially, a coherent state can be represented, in the complex plane, as an error
circle of diameter 1

2
and its center displaced by ˛ (Fig. 5.1).

If there is a state for which either X or Y has a dispersion less than 1
4
, at the

expense of the other quadrature, then its representation in the complex plane takes
the form of an ellipse and we call this state a squeezed state [2, 3]. Of course, we
may generalize our treatment, not only to squeeze along the X or Y axis, but along

Fig. 5.1 Phase space
representation of a coherent
(displaced circle) and a
squeezed state (displaced
ellipse)
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any pair of axes

X1 D ae�i� C a�ei�

2
; (5.8)

Y1 D ae�i� � a�ei�

2i
:

One can check easily that X1;Y1 obey the same commutation relation as X and Y

ŒX1;Y1� D i

2
; (5.9)

h.�X1/
2ih.�Y1/

2i 
 1

16
:

From (5.8), we show that

�X1 D �X cos� C�Y sin� ; (5.10)

�Y1 D ��X sin � C�Y cos� ;

where�O � O � hOi .
Then, we define a squeezed state by h.�X1/2i or h.�Y1/2i less than 1

4
, for

some �:
We denote by hW X12 Wi the normal ordered average, then

hW X1
2 Wi D 1

4

�ha�2i exp.2i�/C ha2i exp.�2i�/C 2ha�ai� ; (5.11)

and

hX1
2i D 1

4

�ha�2i exp.2i�/C ha2i exp.�2i�/C 2ha�ai C 1
�

; (5.12)

so that hW �X12 Wi D h�X12i � 1
4
, and for a squeezed state hW �X12 Wi < 0:

If we represent the density operator � as (we will see the details in the Chap. 7)

� D
Z

P.˛/ j ˛ih˛ j d2˛ ;

then

hW �X1
2 Wi D

Z

P.˛/.�X1
2/˛d2˛ ; (5.13)

where .�X12/˛ is just �X12 with a �! ˛; a� �! ˛�:
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Thus

.�X1
2/˛ D 1

4

�

�˛� exp.i�/C�˛ exp.�i�/
�2
; (5.14)

and the squeezing condition can be written as

hW �X1
2 Wi D 1

4

Z

P.˛/
�

�˛� exp.i�/C�˛ exp.�i�/
�2

d2˛ < 0 ; (5.15)

and since Œ�˛� exp.i�/C�˛ exp.�i�/�2 is real and positive, squeezing can only
take place if P.˛/ is not a positive definite probability density.

5.1.1 The Squeeze Operator and the Squeezed State

We define a squeeze operator as

S.�/ D exp

�

1

2
.��a2 � �a�2/

�

; (5.16)

which is a unitary transformation, and � � r exp.i
/ is called the squeeze
parameter.

With the help of (4.22), we can define a generalized annihilation operator as

A D S.�/aS�.�/ (5.17)

D a cosh r C a� exp i
 sinh r

� �a C �a� :

As we can see � � cosh r; � � exp.i
/ sinh r and
�

A;A�
� D 1:

The coherent squeezed state is defined as (one mode) [4]:

j ˛; �i D D.˛/S.�/ j 0i : (5.18)

Inverting the (5.17), one can also write

a D �A � �A� ; (5.19)

a� D �A� � ��A :
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5.1.2 The Squeezed State Is an Eigenstate of A

A j ˛; �i D AD.˛/S.�/ j 0i (5.20)

D S.�/aS�.�/D.˛/S.�/ j 0i :

One can prove that

D.˛/S.�/ D S.�/D.ˇ/ ; (5.21)

with

ˇ � ˛ cosh r C ˛� exp.i
/ sinh r : (5.22)

Replacing (5.21) in (5.20), we get

A j ˛; �i (5.23)

D S.�/aD.ˇ/ j 0i D S.�/a j ˇi
D ˇS.�/ j ˇi D ˇS.�/D.ˇ/ j 0i D ˇD.˛/S.�/ j 0i
D ˇ j ˛; �i :

Pictorially, a squeezed state in phase space is the vacuum (represented by a circle
in the origin), which is first squeezed into an ellipse, tilted by 


2
and then displaced

by ˛ (See Fig. 5.1).

5.1.3 Calculation of Moments with Squeezed States

With the help of (5.19) and (5.21), we find

h˛; � j a j ˛; �i D h˛; � j �A � �A� j ˛; �i (5.24)

D �ˇ � �ˇ�

D ˛:

In a similar way, one can find

h˛; � j a�a j ˛; �i � hnisq (5.25)

D h0 j S�.�/D�.˛/a�aD.˛/S.�/ j 0i
D h0 j S�.�/D�.˛/a�D.˛/D�.˛/aD.˛/S.�/ j 0i
D h0 j S�.�/.a� C ˛�/.a C ˛/S.�/ j 0i ;
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and since h0 j S�.�/a�S.�/ j 0i; h0 j S�.�/aS.�/ j 0i are linear combinations of a
and a� averaged over the vacuum state, will give no contribution, and

hnisq D h0 j S�.�/.a�a/S.�/ j 0iC j ˛ j2 (5.26)

D h0 j S�.�/a�S.�/S�.�/aS.�/ j 0iC j ˛ j2
D h0 j �a� cosh r � a exp.�i
/ sinh r

� �

a cosh r � a� exp.i
/ sinh r
� j 0i

C j ˛ j2
D sinh2 rC j ˛ j2 :

Finally, using a similar procedure, one can verify that

ha2isq D ˛2 � cosh r sinh r exp.i
/ : (5.27)

5.1.4 Quadrature Fluctuations

We calculate

h�X21isq D h0 j S�.�/D�.˛/�X1D.˛/D
�.˛/�X1D.˛/S.�/ j 0i (5.28)

D h0 j S�.�/
1

4
Œexp.�i�/.a C ˛ � hai/

C exp.i�/.a� C ˛� � ha�i/�2 S.�/ j 0i

D 1

4
h0 j S�.�/

�

exp.�i�/a C exp.i�/a�
�2

S.�/ j 0i

D 1

4

�

exp.�2i�/h�; 0 j a2 j �; 0i C exp.2i�/h�; 0 j a�2 j �; 0i

C1C 2h�; 0 j a�a j �; 0i� :

We take 
 D 2�, thus getting

h�X21isq D 1

4

	

1C 2 sinh2 r � 2 cosh r sinh r



(5.29)

D e�2r

4
:

Similarly

h�Y21 isq D e2r

4
: (5.30)
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If we now go back to the original quadratures, we readily find

h.�X/2isq D 1

4

�

exp.�2r/ cos2



2
C exp.2r/ sin2




2

�

; (5.31)

h.�Y/2isq D 1

4

�

exp.�2r/ sin2



2
C exp.2r/ cos2




2

�

:

We notice, from the above expressions, that the variances are independent of the
coherent amplitude ˛:

The squeezing condition for the quadrature operator X

h.�X/2isq <
1

4
;

is satisfied if

cos 
 > tanh r ;

and its minimum value is

h.�X/2isq D exp.�2r/

4
;

for 
 D 0:

The squeezing condition for Y is

cos 
 < � tanh r:

Finally, it is easy to verify that:

h.�X/2isqh.�Y/2isq D 1

16

�

cosh2.2r/ sin2 
 C cos2 

�

:

The above formula takes the minimum uncertainty value (MUS), for 
 D 0 or

 D � ,

h.�X/2isqh.�Y/2isq D 1

4
:

5.1.5 Photon Statistics

The photon distribution of a coherent squeezed state can be written as

Pn Dj hn j ˛; �i j2 ;
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where

hn j ˛; �i D 1p
nŠ cosh r

�

1

2
exp.i
/ tanh r

� n
2

	 exp

�

�1
2
.j ˛ j2 C˛�2 exp i
 tanh r/

�

	Hn

"

˛ C ˛� exp i
 tanh r

.2 exp i
 tanh r/
1
2

#

;

where Hn is the Hermite polynomial of degree n [5, 6].

5.2 Multimode Squeezed States

In general, the squeezed states experimentally generated are not single mode, but
rather, they cover a certain frequency band.

We consider, here, for example, a two-mode squeezed state, defined as

j ˛C; ˛�; �i D DC.˛C/D�.˛�/SC�.�/ j 0i ; (5.32)

where

D˙.˛˙/ D exp
h

˛˙a�˙ � ˛�̇ a˙
i

; (5.33)

are the coherent displacement operators for the two modes described by the
destruction operators aC and a�, and

SC�.�/ D exp
�

��aCa� � �a�Ca��
�

; (5.34)

which is the two-mode squeezing operator and j 0i the two-mode vacuum state.
Similarly to (5.17), we have

SC�.�/a˙SC�.�/� D a˙ cosh r C a�� exp.i
/ sinh r : (5.35)

Using the above properties enable us to calculate various expectation values of
combinations of creation and destruction operators

ha˙i D ˛˙ ; (5.36)

haCa�i D ˛C˛� � exp.i
/ sinh r cosh r D ha�aCi;
haCaCi D ˛2C ;
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ha�a�i D ˛2� ;

ha�CaCi D j ˛C j2 C sinh2 r ;

ha��a�i D j ˛� j2 C sinh2 r :

As we can see from the above results, the squeezing affects only the diagonal
photon number for each mode and the off diagonal two-mode expectation values.

5.3 Detection of Squeezed States

As we saw in the previous section, the quadrature fluctuations of squeezed light have
a dependence on the phase 
 of the squeezing parameter.

In principle, we can detect the squeezed signal by four different methods:

(a) Direct photodetection,
(b) Ordinary homodyne detection,
(c) Balanced homodyne detection,
(d) Heterodyne detection.

The first method of direct photodetection is not the most convenient one, although
simple, because the advantage of the phase-dependent squeezed light is lost, and
one can associate antibunching or sub-Poissonian photon counting statistics to
an incoming squeezed signal. However, both effects can also be measured with
non-squeezed light, so we really need a phase-sensitive method to display the
characteristics of the squeezed input.

Therefore, our discussion will be centered on the two homodyne detection
methods, and we will also mention some aspects of the heterodyne detection.

5.3.1 Ordinary Homodyne Detection

In the Fig. 5.2, we show the schematic arrangement of the homodyne detection. In
the case of ordinary homodyne detection [7–9], only three of the four ports will be
used, and in the case of balanced homodyne detection, all four ports are used.

A lossless symmetric beam splitter mixes the squeezed signal asig with a local
oscillator aLO, with t and r being the transmission and reflection coefficients
respectively, so one can write

�

d1
d2

�

D
�

r t
t r

��

aLO

asig

�

; (5.37)
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Fig. 5.2 Schematic
arrangement of a homodyne
detector

and the unitarity of the

�

r t
t r

�

matrix imposes the conditions

jr j2 C j t j2 D 1 ; (5.38)

rt� C r�t D 0:

If we write r Dj r j exp.i
r/; t Dj t j exp.i
t/, the second condition from (5.38)
becomes

j r jj t j fexp Œi.
r � 
t/�C exp Œ�i.
r � 
t/�g D 0;

or, since j r j; j t j¤ 0


r � 
t D �

2
: (5.39)

In the ordinary homodyne detection j r j<< j t j while in the balanced detection
j r j D j t j D 1p

2
:

Now, we calculate the number of photons hd1d1i measured in the detector #1,
assumed 100 % efficient, and also assuming that the local oscillator is in a coherent
state j ˛LO Dj ˛LO j exp.i�LO/i

hd�1d1i D hn1i (5.40)

D h.t�a�sig C r�a�LO/.tasig C raLO/i
D j r j2j ˛LO j2 C2 j r jj t jj ˛LO j hX1.�/iC j t j2 ha�sigasigi ;
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with

X1.�/ D 1

2

h

asig exp.�i�/C a�sig exp.i�/
i

; (5.41)

� D �LO C 
r � 
t D �

2
C �LO :

Normally, the homodyne detectors use strong local oscillators, that is

j r j2j ˛LO j2>>j t j2 ha�sigasigi; (5.42)

and one can approximately write

hd|
1d1i D hn1i Dj r j2j ˛LO j2 C2 j r jj t jj ˛LO j hX1.�/i : (5.43)

One can also calculate the variance of n1. The result is

h�n21i Dj r j2j ˛LO j2 �j r j2 C4 j t j2j h�X1.�/
2i� : (5.44)

As we can see, with r< < t, the photon number fluctuations at the detector #1 is
determined by the quadrature fluctuations of the phase-dependent squeezed signal.

5.3.2 Balanced Homodyne Detection

An alternative detection scheme that eliminates the large local oscillator term of
the fluctuations in the direct homodyne case is to take the photocurrent difference
between the two exit ports [10–12] that is (also in this balanced case r D t D 1p

2
)

n12 D d�1d1 � d�2d2 (5.45)

D i.a�sigaLO � asiga�LO/ :

We leave the reader to show that

hn12i D 2 j ˛LO j hX1.�/i ; (5.46)

h�n212i D 4 j ˛LO j2 h�X21.�/i ;

where again we have assumed that the local oscillator is coherent and much stronger
than the input signal.

We notice that for a squeezed signal, h�X1.�/2i < 1
4
, and therefore, the

fluctuations of the photon number difference h�n212i <j ˛LO j2 is sub-Poissonian.
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This result would seem no different from the direct or ordinary homodyne
detection scheme; however, here we have the phase dependence to check that the
origin of the sub-Poissonian nature of the photocurrent is due to the squeezed field,
on one hand, and we have been able to eliminate the large coherent amplitude of the
local oscillator, on the other hand.

If we consider a more realistic detector, with a quantum efficiency �, the above
result is modified [1], and calling m12 the photoncount

hm12i D 2� j ˛LO j hX1.�/i ; (5.47)

h�m2
12i D � j ˛LO j2 ˚1C �

�

4h�X21.�/i � 1
��

:

These results coincide with (5.46) for � D 1:

5.3.3 Heterodyne Detection

Heterodyne detection is appropriate when dealing with a two-mode squeezed state.
For more details, the interested reader is referred to [1].

Problems

5.1 Prove that for an ideal squeezed state

.�n/2 D j ˛ j2
�

exp.�2r/ cos2.� � 


2
/C exp.2r/ sin2.� � 


2
/

�

C2 sinh2 r cosh2 r ;

where ˛ Dj ˛ j exp i�:

5.2 If we define

g.2/.0/ D ha�a�aai
ha�ai2 ;

and

.Q/Mandel D h.�n/2i � hni
hni ;
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prove that for a squeezed vacuum

g.2/.0/sq D 3C 1

hni ;

.Q/MandelKsq D 2hni C 1 ;

so that the squeezed vacuum shows photon bunching and Super-Poissonian statistics
(Chap. 6).

5.3 Show that in balanced homodyne detection, with a quantum efficiency �, the
average and fluctuations of the photocouns are

hm12i D 2� j ˛LO j hX1.�/i ;
h�m2

12i D � j ˛LO j2 ˚1C �
�

4h�X21.�/i � 1
��

:

5.4 If j Xi are eigenstates of X, show that, for 
 D 0

j hX j ˛; ri j2D
�

2 exp 2r

�

� 1
2

exp
��2.X � Re f˛g/2 exp.2r/

�

;

thus showing that squeezed states are Gaussian wavepackets.

5.5 Show that for a squeezed state, the maximum and minimum values of the
QMandel factor are given by [1]

Qmax D exp.2r/ � 1; � D 
 C �

2
;

Qmin D exp.�2r/ � 1; � D 


2
:
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Chapter 6
Quantum Theory of Coherence

In this chapter, we study Glauber’s quantum theory of coherence and photon
counting.

This theory was formulated originally by Glauber [1], where he considers the
process of photon detection, which plays a central role.

The basic process involved in the detection is the absorption of a photon and the
corresponding generation of a photoelectron, measured through an electric current.
This type of detector is insensitive to phases and spontaneous emission. This simple
Glauber’s model is an ideal detector, sensitive to what we define as the positive
frequency component of the field (proportional to the annihilation operator of the
field)

EC.r; t/ D i
X

k

s

„!k

2	o
akuk;�.r/ exp.�i!kt/ ; (6.1)

uk;�.r/ De� exp .ik � r/p
v

; (6.2)

E D ECCE� ; (6.3)

E� D .EC/� : (6.4)

with e� being the polarization vector. Also, in this model, the detector atoms are in
the ground state, so that only absorption takes place. As it is only the annihilation
part EC.r; t/ of the field that takes place in the photodetection process, there is a
real asymmetry between EC.r; t/ and E�.r; t/ in a way that the actual detection is
more closely related to EC.r; t/ than the total field E:

An ideal photodetector would also have an infinite band, responding to a field at
time t and a negligible spatial extension.
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The transition probability from an initial state j  ii and a final state j  f i is
proportional to

Wif Dj h f j EC j  ii j2 : (6.5)

As we will see, this is a first-order approximation.
In general, the final state of the field is not known, so we have to sum over all the

possible final states

Ii.r; t/ D
X

f

j h f j EC j  ii j2 (6.6)

D
X

f

h i j E� j  f ih f j EC j  ii

D h i j E�EC j  ii ;

giving us an average field intensity. In the last step, we made use of the completeness
of the final states.

If the initial state is a mixed one, then we have to use the density matrix, and
write

hIi.r; t/i D Tr
˚

�E�.r; t/EC.r; t/
�

: (6.7)

We now define the first-order coherence function:

G.1/.x; x0/ D Tr
˚

�E�.x/EC.x0/
�

; (6.8)

where x and xKare x D .r; t/ and x0 D .r0; t0/:
The first-order coherence function appears typically in the interference exper-

iments. To describe more sophisticated experiments, like the coincidence experi-
ments of Handbury Brown and Twiss, it is useful to define an n-th order coherence
function

G.n/.x1; x2::xnI xnC1; : : : x2n/ D Tr.�E�.x1/ : : :E�.xn/EC.xnC1/ : : :EC.x2n// :

(6.9)

We will later discuss the analytical properties of these functions.
One, in principle, could have a more general definition of coherence functions

with unequal number of creation and annihilation operators. However, these func-
tions are not particularly useful in the typical photoncounting measurement.
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6.1 One-Atom Detector

We now consider the detailed photodetection process. Imagine, for simplicity, as a
first approach to the detection problem, that we have an one-atom photodetector,
which can undergo photoabsorption transitions such as the photoelectric effect. We
will calculate the probability for this type of transition to occur, within a given time
interval. The Hamiltonian of the system is

H D H0;at C Ho;f C HI ; (6.10)

where H0;at is the free atom, H0;f the free field and HI the interaction between both.
HI is in the Schrödinger picture and therefore time independent. However, when one
goes into the interaction picture, it becomes time-dependent:

H1 D exp

�

i.H0;at C H0;f /t

„
�

HI exp

�

� i.H0;at C H0;f /t

„
�

(6.11)

D �e
X



q .t/ � E.r; t/ ;

where r represents the position of the atomic nucleus and q the position of the 
electron, relative to the nucleus.

The Schrödinger equation for the system is

i„ @
@t

j  .t/i D H1 j  .t/i ; (6.12)

and its solution, to first order is

j  .t/i D U.t; to/ j  .to/i (6.13)

'


1C 1

i„
Z t

to

dt0H1.t
0/
�

j  .to/i :

Now, suppose that initially the system is in the state j bi j ii, where j ii is
the initial state of the field and j bi the ground state of the atom. We ask for the
probability for the system to be in the excited state j ai and with a final state of the
field j f i: Using Schrödinger Equation with the interaction Hamiltonian H1, we can
write

ha; f j U.t; to/ j b; ii (6.14)

D 1

i„
Z t

to

dt0ha; f j H1.t
0/ j b; ii

D ie

„
X



Z t

to

dt0ha j q .t0/ j bih f j E.r0; t0/ j ii :
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The atomic matrix element can be evaluated starting from

q .t0/ D exp

�

iHo;att0

„
�

q .0/ exp

�

� iHo;att0

„
�

; (6.15)

and therefore

ha j
X



q .t0/ j bi D dab exp.i!abt0/ ; (6.16)

dab D ha j
X



q .0/ j bi :

Thus, using (6.14) and (6.16)

ha; f j U.t; to/ j b; ii D ie

„
X



Z t

to

dt0 exp.i!abt0/dab � h f j E.r0; t0/ j ii : (6.17)

We can now replace the electric field in the above expression, which consists
in the sum of two operators. The emission operator E�.r; t/ contains the negative
frequencies of the form exp.i!t/ for ! > 0;which will produce a rapidly oscillating
term in (6.17), and can be safely neglected, when compared with the annihilation
operator EC.r; t/:

We now calculate the square of the absolute value of (6.17) and sum over the
final states, getting

X

f

j ha; f j U.t; to/ j b; ii j2 (6.18)

D
� e

„
�2
Z t

to

Z t

to

dt0dt00 expŒi!ab.t
00 � t0/�

X

�;�

d�
ab;�dab;�hi j E�

� .r; t
0/EC

� .r; t
00/ j ii ;

where, to derive the last result, we used the completeness of the final states and the
relation h f j EC j ii D hi j E� j f i�:

As the initial state j ii is rarely known, we must add over all initial states, we
finally get the transition probability

pb!a D
2

4

X

f

j ha; f j U.t; to/ j b; ii j2
3

5

av.i/

(6.19)

D
� e

„
�2X

�;�

Z t

to

Z t

to

dt0dt00 exp
�

i!ab.t
00 � t0/

�

d�
ab;�dab;�
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Tr
h

�E�
�.r; t

0/EC
� .r; t

00/
i

D
� e

„
�2X

�;�

Z t

to

Z t

to

dt0dt00 exp
�

i!ab.t
00 � t0/

�

d�
ab;�dab;�

G.1/
�;�.rt0; rt00/ :

So far, we have discussed the case of discrete final electronic states. Perhaps a
more realistic model is to consider a continuum of states, characterized by a density
of states g.!ab/, so (6.19) should be replaced by

p.t/ D
Z

g.!ab/pb!a.t/d!ab : (6.20)

For a broad-band detector, g is practically a constant and the integral over
frequencies gives us

Z C1

�1
d!ab expŒi!ab.t

00 � t0/� D 2�ı.t00 � t0/ ; (6.21)

and

p.t/ D
X

�;�

S��

Z t

t0

G.1/
��.r; t

0I r; t0/dt0 ; (6.22)

with

S�;� � 2�
� e

„
�2X

a

R.a/d�
ab;�dab;�ı.! � !ab/ :

We notice that in the last expression, we have averaged over all final states, using
R.a/ as a weight.

Differentiating (6.22), we get, for the rate of transition probability, or counting
rate

w.1/ D dp.t/

dt
D
X

�;�

S��G.1/
�� .r; tI r; t/ : (6.23)

If we finally put a polarization filter in front of the counter, then

w.1/ D sG.1/.r; tI r; t/ (6.24)

with s D Sii, i being the direction of the polarization.
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The ideal photon counter is, thus, proportional to the first-order correlation
function, evaluated at a single point and at a single time. AA real detector, of course,
has many atoms.

6.2 The n-Atom Detector

The photon counter we have discussed so far consisted in a single atom. We will see
that a many-atom detector will be useful to study higher-order correlation functions
of the field.

The type of experiment we are thinking in is the coincidence type, where n-atom
detectors are placed in positions r1;r2:::rn. There will be a shutter opening at t D 0

and closing at t D t. We ask for the probability pn.t/ for each atom to absorb a
photon, after a time interval t. It is clear that for this purpose, we must apply n-th
order perturbation theory.

The time evolution operator

U.t; 0/ D
1
X

nD0

.�i/n

nŠ

Z t

0

dt1 : : :
Z t

0

dtnT ŒH1.t1/ : : :H1.tn/� (6.25)

�
1
X

nD0
U.n/.t; 0/ ; (6.26)

where T is Dyson’s time ordering operator.
Now we assume that there is no direct interaction among the atoms. Then the

interaction Hamiltonian, assuming the field linearly polarized in the x-direction, is

H1.t/ D �e
X

j

xj.t/E.rj; t/ �
X

j

H1;j.t/ : (6.27)

Replacing the Hamiltonian in Dyson’s expansion, we get different type of terms.
The ones with repeated H1;j.t/ correspond to atoms that absorbed more than one
photon and do not contribute to pn.t/. There are, on the other hand, nŠ terms in
which H1;j.t/ appears only once, and they are all equal after time ordering. Thus,
save for this factor

U.n/.t; 0/ / .�i/n
Z t

0

dt1 : : :
Z t

0

dtnT ŒH1;1.t1/ : : :H1;n.tn/� (6.28)

D .ie/n
Z t

0

dt1 : : :
Z t

0

dtnT
�un

j xj.tj/E.C/.rj; tj/
�

;

where only the positive frequency part was considered, in an approximation similar
to the one-atom detector case.
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Taking the square modulus of the matrix elements of (6.28) between an initial
and a final state, summing over those final states and averaging over the initial ones,
we readily get for the probability pn.t/ W

pn.t/ D sn
Z t

0

dt01 : : :
Z t

0

dt0nG.n/.r1; t
0
1 : : : rn; t

0
nI rn; t

0
n : : : r1; t

0
1/ ; (6.29)

where all detectors are broad band with sensitivity s. Also

G.n/.x1 : : : xnI xnC1 : : : x2n/ � (6.30)

Tr
�

�E.�/.x1/ : : :E.�/.xn/E
.C/.xnC1/ : : :E.C/.x2n/

�

;

where, again xj D .rj; tj/:
We thus far considered that the n atoms undergoing absorption as a part of a

single detector, which in a way is similar to having n detectors, each consisting of a
single atom.

Now, if instead, the shutter in each atom is closed at different times, that is the
j-th atoms shutter closes at tj, then instead of (6.29) we get

pn.t1 : : : tn/ D sn
Z t1

0

dt01 : : :
Z tn

0

dt0nG.n/.r1; t01:::rn; t
0
nI rn; t

0
n:::r1; t

0
1/ ; (6.31)

and the n-th fold coincidence rate is given by

w.n/.t1 : : : tn/ D @n

@t1 : : : @tn
pn.t1 : : : tn/ (6.32)

D snG.n/.r1; t1 : : : rn; tnI rn; tn : : : r1; t1/ :

Equation (6.32) is telling us that a coincidence experiment with ideal detectors
give us a measure of the higher-order correlation functions.

We remark here that the present theory is only approximate to the lowest order.
Higher-order corrections are, however, typically, extremely small.

6.3 General Properties of the Correlation Functions

The n-th order correlation function was defined as the expectation value

G.n/.x1 : : : xnI xnC1 : : : x2n/ � TrŒ�E.�/.x1/ : : :E.�/.xn/E
.C/.xnC1/ : : :E.C/.x2n/� :
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As a first property, we notice that if there is an upper bound on the number of
photons present in the field, then G.n/.x1 : : : xnI xnC1 : : : x2n/ must vanish identically
for n larger than the upper bound M.

To be more specific, if the field density operator is written as

� D
X

n;m

Cn;m j nihm j ; (6.33)

and if Cn;m D 0 for n or m larger than M, then

E.C/.x1/ : : :E.C/.xp/� D 0 ; (6.34)

for p > M, simply because the number of times the annihilation operator is applied
to the density matrix is larger than the number of photons available in the field.
Thus, G.p/ D 0 for p > M:

Another property can be derived from the identity

Tr.A�/ D Tr.A/� (6.35)

valid for any linear operator A.
Applying this identity to G.n/.x1 : : : xnI xnC1 : : : x2n/, we get

h

G.n/.x1 : : : xnI xnC1 : : : x2n/
i� D Tr

h

E.�/.x2n/ : : :E
.�/.xnC1/E.C/.xn/ : : :E

.C/.x1/�
i

D Tr
h

�E.�/.x2n/ : : :E
.�/.xnC1/E.C/.xn/ : : :E

.C/.x1/
i

(6.36)

D
h

G.n/.x2n : : : xnC1I xn : : : x1/
i

;

where we made use of the Hermitian character of � and the invariance of the trace
under cyclic permutation.

As a consequence of the commutation properties of E.�/ and E.C/, we can freely
permute the arguments .x1; x2; : : : xn/ and .xnC1; xnC2; : : : x2n/ without changing
G.n/, but we cannot interchange any of the first n arguments with any of the
remaining n, because the corresponding operators do not commute.

Another set of properties can be derived from the positive definite character of
the operator A�A, so that

Tr.A�A/ 
 0 ; (6.37)

for any linear operator A.
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To show the above inequality, we write

Tr.�A�A/ D
X

k

pkhk j A�A j ki (6.38)

D
X

k;m

pkhk j A� j mihm j A j ki

D
X

k;m

pk j hm j A j ki j2
 0 ;

because pk and j hm j A j ki j2
 0:

There are several interesting cases:

(a) A D E.C/.x1/, then applying the inequality (6.37), we get

G.1/.x1; x1/ 
 0 : (6.39)

(b) A D E.C/.x1/ : : :E.C/.xn/; we get directly

G.n/.x1 : : : xnI xn : : : x1/ 
 0 : (6.40)

(c) A D Pn
jD1 �jE.C/.xj/; where �j is a set of arbitrary complex numbers. In this

case, we get

X

i;j

��
i �jG

.1/.xi; xj/ 
 0 ; (6.41)

thus the set of correlation functions G.1/.xi; xj/ forms a matrix coefficient for
the quadratic form of the �s. Such a matrix has a positive determinant, thus

For n D 1 we get (6.39).
For n D 2 we get

G.1/.x1; x1/G
.1/.x2; x2/ 
j G.1/.x1; x2/ j2 ; (6.42)

which is a simple generalization of Schwartz’s identity.

6.4 Young’s Interference and First-Order Correlation

Consider Young’s experiment in the Fig. 6.1.
We consider the positive frequency component of the field

EC.r; t/ D EC
1 .r; t/C EC

2 .r; t/ ; (6.43)
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Fig. 6.1 Young’s double slit
experiment

where EC
i .r; t/ is the spherical wave field produced at the pinhole i, observed at the

screen 2

EC
i .r; t/ D EC

i

�

ri; t � si

c

�
�

1

si

�

exp i.ksi � !t/ ; (6.44)

and EC
i

	

ri; t � si
c




is the field at the pinholes. Denoting

xi D
�

ri; t � si

c

�

; (6.45)

i D 1; 2

and s1 � s2 D R, then

EC.r; t/ D 1

R

�

EC
1 .x1/ exp i.ks1 � !t/C EC

2 .x2/ exp Ci.ks2 � !t/
�

; (6.46)

and one can write the intensity as

I D �Tr
�

�E�.r; t/EC.r; t/
�

(6.47)

D �
�

G.1/.x1; x1/C G.1/.x2; x2/C 2Re exp Œik.s1 � s2/�G
.1/.x1; x2/

�

;

where � scales as 1
R2
:

The first two terms are the intensities from each pinhole, with the other one
blocked and the third term is the interference.

Writing

G.1/.x1; x2/ Dj G.1/.x1; x2/ j exp.i‰/ ; (6.48)

then

I D �
�

G.1/.x1; x1/C G.1/.x2; x2/C 2 cos.�/ j G.1/.x1; x2/ j� (6.49)

with � D ‰ C k.s1 � s2/:
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To have a maximum interference term or maximum visibility, we have to
maximize j G.1/.x1; x2/ j. However, this quantity is limited by the inequality

j G.1/.x1; x2/ j�
q

G.1/.x1; x1/G.1/.x2; x2/ ; (6.50)

which leads us to the definition of the first-order normalized correlation function

g.1/.x1; x2/ D G.1/.x1; x2/
p

G.1/.x1; x1/G.1/.x2; x2/
: (6.51)

The condition of full first-order coherence is satisfied if

g.1/.x1; x2/ D exp.i‰/ ; (6.52)

or

j g.1/.x1; x2/ jD 1 : (6.53)

One usually defines a quantity called the visibility, as

v D Imax � Imin

Imax C Imin
(6.54)

D 2 j G.1/.x1; x2/ j
G.1/.x1; x1/C G.1/.x2; x2/

;

and for equal intensities in the two pinholes

v Dj g.1/.x1; x2/ j : (6.55)

For full first-order coherence, v D 1 and it corresponds to the maximum
visibility.

A more general definition of coherence is related to the factorization of the
correlation functions.

For a first-order coherence, the first-order correlation function factorizes

G.1/.x1; x2/ D ".x1/".x2/ : (6.56)

Obviously, for a state that is an eigenstate of EC.x/; that is an eigenstate of
the annihilation operator, this factorization holds. This is precisely the case of the
coherent states.

In a similar way, n-th order optical coherence implies

G.n/.x1; x2::xn; ::x2n/ D ".x1/".x2/ : : : ".x2n/ ; (6.57)

which again is satisfied by coherent states.
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To finish this section, we point out that although the first-order correlation
function can be evaluated quantum mechanically, the difference between the
classical and the quantum predictions in first-order coherence may be difficult to
detect. In both cases, 0 �j g.1/.x1; x2/ j� 1:

In the second-order coherence effects, the differences are more striking.

6.5 Second-Order Correlations: Photon
Bunching and Antibunching

The second-order normalized correlation function is defined as [6]

g.2/.r1t1; r2t2I r2t2; r1t1/ D hE�.r1; t1/E�.r2; t2/EC.r2; t2/EC.r1; t1/i
hE�.r1; t1/EC.r1; t1/ihE�.r2; t2/EC.r2; t2/i

:

(6.58)

In this section, we will consider only parallel light beams (z-direction), so that
the space time coordinates .z1; t/; .z2; t2/ enter in g.2/ only as a phase difference:

� D t2 � t1 C z1 � z2
c

: (6.59)

We start the subject with a brief review of some classical aspects.

6.5.1 Classical Second-Order Coherence

We consider a beam of light described by a classical intensity I1.t/; which is time-
dependent and averaged over each cycle.

In general, the intensity will show random fluctuations, if one is dealing, for
example, with a source of chaotic light.

We will assume that the light sources under study are stationary and ergodic, in
such a way that ensemble averages are equal to time averages.

Classically, the second-order correlation function may be defined as

g.2/11 .t/ D hI1.t/I1.0/i
I1
2

; (6.60)

where the average is over a long series of pairs of intensity measurements separated
by a fixed time t and I1 D hI1i is a time-independent average, due to the stationary
assumption.
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In a different type of experiment, we may measure intensities at different
positions r1; r2, then the relevant second-order correlation function is

g.2/12 .t/ D hI1.t/I2.0/i
I1I2

: (6.61)

The classical correlation functions satisfy a series of inequalities

(a) As the intensity is positive

g.2/12 .t/ 
 0 : (6.62)

(b) As hI21i 
 I1
2
, then

g.2/11 .0/ 
 1 : (6.63)

(c) In a more general case, and according to the Cauchy’s inequality

hI21ihI22i 
 hI1I2i2 : (6.64)

Fixing the time t, between the two measurements on the two beams, then

g.2/11 .0/g
.2/
22 .0/ 


h

g.2/12 .t/
i2

; (6.65)

and for a single beam, g.2/11 .0/ D g.2/22 .0/ and

g.2/11 .0/ 
 g.2/12 .t/ : (6.66)

In many cases, the fluctuations of the cycle-averaged intensities are too rapid for
direct observation, and the measurement reflects some average of the fluctuations
over some typical response time of the detector. However, we do have nowadays fast
detectors, and let us assume that its response time is much faster than the coherence
time of the light, so that effectively, we have instantaneous measurements of the
intensity.

If, furthermore, the ergodic hypothesis is satisfied, then the time average may be
replaced by statistical averages, denoted by angle brackets.

We take a model of chaotic light emitted by a collision broadened light source.
In this model, the elastic collisions break up the wave radiated by single atoms,

in discrete sections, where each section has a constant phase that abruptly ends with
a collision.
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Suppose that we have light of intensity I0 from n radiating atoms, the phase of
the field emitted from the i-th atom being a random variable �i: Then, one can write

E.t/ D E1.t/C E2.t/C : : :C En.t/

D E0fexp Œi�1.t/�C exp i Œ�2.t/�C : : :C exp i Œ�n.t/�g ;

where each atom has been associated with the same amplitude and field frequency
but with phases that are completely independent.

The instantaneous average value of the square of the intensity is

I21.0/ D I20 j exp.i�1/C exp.i�2/C : : :C exp.i�n/ j4 : (6.67)

The only non-zero contributions come from the terms in which each factor is
multiplied by its complex conjugate. These are

I21.0/ D I20

2

4

n
X

iD1
j exp.i�i/ j4 C

X

i¤j

j 2 exp i.�i � �j/ j2
3

5 (6.68)

D I20
�

2n2 � n
�

:

If we further average, considering a Poissonian distribution of incoming atoms,
with a mean n, and n2 D n2 C n, then

hI21.0/iPoiss D I20.2n2 C n/ : (6.69)

Also, as hI1.0/iPoiss D nI0, we have

g.2/11 .0/ D 2C 1

n
: (6.70)

The standard theory of chaotic light considers a very large number of atoms
radiating, that is, the limit n ! 1; g.2/11 .0/ D 2:

More generally, one can consider a large number of radiating atoms, and the
summation over the phases is treated as a random walk. As a result of such a theory,
one gets the probability distribution for the instantaneous intensity I1

P.I/ D 1

I1
exp � I1

I1
; (6.71)

giving g.2/11 .0/ D 2; in agreement with our previous result.
Normally, when one deals with a single beam of light, we skip the lower indices,

and for chaotic light, we will just write g.2/.0/ D 2:
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6.5.2 Quantum Theory of Second-Order Coherence

The quantum mechanical normalized second-order correlation function g2.�/ is
positive, so that the inequality

1 
 g.2/.�/ 
 0 ; (6.72)

is identical to the classical range.
However, the classical inequalities given in (6.63) and (6.66) are, in general, no

longer true.
Even for zero time delay, in the quantum mechanical case, the only true

inequality is

1 
 g.2/.0/ 
 0 : (6.73)

and as classically g2.0/ jclass
 1, there is an interesting range:

1 > g.2/.0/ 
 0 ; (6.74)

that is a purely quantum mechanical range.
For a single mode field, the normalized correlation functions become simpler,

and one can write

g.2/.�/ D ha�a�aai
ha�ai2 ; (6.75)

which can also be written in terms of the photon-number operator

g.2/.�/ D hn.n � 1/i
hni2 (6.76)

D 1C h.�n/2i � hni
hni2 :

We observe that for a single mode field, there is no time dependence (the �-
dependent phase factor cancels) in g.2/.�/.

A few simple examples of g.2/.�/ are

(a) For an j ni state

g.2/.�/ D .n � 1/

n
; n 
 2 (6.77)

and g.2/.�/ D 0 for n D 0; 1.
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(b) For a coherent state j ˛i, h.�n/2i D hni and g.2/.�/ D 1: It is convenient to
define a momentum generating function Q(s) as

Q.s/ D
1
X

nD0
.1 � s/nP.n/ ; (6.78)

where P.n/ is the probability of having n photons in the field.
One immediately sees that

hni D � d

ds
Q.s/ js D 0; (6.79)

h.�n/2i D hn2i � hni2

D .
d

ds
/2Q.s/ js D 0 �hni.hni � 1/ ;

and also

g.2/ D 1

hni2 .
d

ds
/2Q.s/ js D 0 : (6.80)

In general, light with g.2/ D 1 is second-order coherent or Poissonian (as
in the case of the coherent state), g.2/ > 1 super-Poissonian and g.2/ < 1 sub-
Poissonian.

(c) Squeezed States.

From Chap. 5, we saw that

.�n/2 D j ˛ j2
�

exp.�2r/ cos2
�

� � 


2

�

C exp.2r/ sin2
�

� � 


2

��

(6.81)

C2 sinh2 r cosh2 r ;

with

˛ Dj ˛ j exp i� : (6.82)

With the above expression and (6.76), one can evaluate g.2/.0/:
In the Fig. 6.2, we show the second-order correlation function of the squeezing

parameter r, with constant average photon number. We can see that for � D 

2

one
can minimize h�ni2sq and we can get sub-Poissonian light. On the other hand, for
very many other combinations of the parameters, the light is super-Poissonian.

If g.2/.�/ < g.2/.0/, there is a tendency for photons to arrive in pairs, a situation
referred to as photon bunching.

The reverse situation g.2/.�/ > g.2/.0/ is called photon antibunching, occurring
typically, when an atom emits a photon and right after that, there is an anticorrelation



6.6 Photon Counting 77

Fig. 6.2 The second-order
correlation function of the
coherent squeezed state
(After [5])

for a second photon to be emitted, considering that the atom requires a finite time to
go back to its excited state to be ready to emit a second photon.

For very long times, there is no longer any correlation and g.2/.�/ j�!1! 1.
Thus, a field with g.2/.0/ < 1 will always be antibunched over some time scale,

which is the quantum mechanical case with no classical analog.
Photon antibunching and sub-Poissonian statistics get sometimes mixed up in

the literature, getting the wrong impression that they correspond to the same thing.
Although they are related, they are not the same.

Mandel [2] derived a formula, for stationary fields

V.n/� hni D hni2
T2

Z CT

�T
d�.T� j � j/ �g.2/.�/� 1

�

; (6.83)

with V.n/ D hn2i�hni2:When a field has g.2/.�/ < 1 for all � , then V.n/�hni < 0
and exhibits a sub-Poissonian statistics. However, we may have the case g.2/.�/ >
g.2/.0/ (antibunching), which exhibits super-Poissonian statistics .g.2/.�/; g.2/.0/ >
1/, for some time interval �:

6.6 Photon Counting

The probability distribution p(n,t,T) of registering n photoelectrons in the interval
t; t C T is given by the relation

p.n;T/ D
Z 1

0

�

˛I.t/T
�n

nŠ
exp

��˛I.t/T
�

P
�

I.t/
�

dI.t/ ; (6.84)
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where ˛ is a quantum efficiency of the detector and I.t/ is the average intensity

I.t/ D 1

T

Z tCT

t
dt0I.t0/ : (6.85)

P.I.t// is the probability density of I.t/, considered as a random variable.
This formula was derived in Mandel [3], using classical arguments.
The two basic assumptions in this derivation are

(a) The probability of registering a photoelectric count in a short time interval �t
is linear with �t and with the instantaneous intensity I(t).

(b) Different photon counts are statistically independent.

However, as the photoelectric effect is a quantum mechanical phenomena, the
above assumptions were not completely satisfactory and Mandel et al. (6.84),
using first-order perturbation theory, with a Semiclassical model, where the field
is classical and the detector quantum mechanical [4].

He considered a model of photodetector that consisted in a group of independent
atoms interacting with the radiation field. The result showed that the probability of
photoemission is proportional to I(t)

P.t/�t D ˛I.t/�t ; (6.86)

˛; again being the quantum efficiency that depends on the detector parameters.
We also assume that the light falling on the detector is quasi monochromatic and

that �t is much smaller than the coherence time of the light tc: This coherence time
gives the time scale over which intensity changes take place.

From the assumption that different photoelectric emissions are statistically
independent events, it follows that the probability to have n photoelectric emissions,
in a finite time interval t; t C T is a Poisson distribution

pr.n; t;T/ D
�

˛I.t;T/T
�n

nŠ
exp

��˛I.t;T/T
�

: (6.87)

To see how (6.87) follows from (6.86) [5], we divide the interval t; t C T in a
large number N of subintervals, with �t D T

N :

Let zk be a random variable taking the values 0 or 1, depending respectively,
whether or not there has been a photoemission in the interval tC.k�1/�t; tC.k/�t,
for k D 1; 2 : : :N. The total number of photoemissions is then

n D
N
X

kD1
zk : (6.88)
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Now, we define a generating function Gr.�; t;T/ as

Gr.�; t;T/ D
X

n

.1 � �/npr.n; t;T/ : (6.89)

If we assume that all the zk are independent, we find that

Gr.�; t;T/ D h.1 � �/ni (6.90)

D huN
kD1.1 � �/zk i

D uN
kD1h.1� �/zk i :

As zk is either 0 or 1, .1� �/zk D 1 � �zk, and therefore

Gr.�; t;T/ D uN
kD1 Œ1 � �p.zk D 1/� (6.91)

D uN
kD1

�

1 � �˛I.t C k�t/�t
�

���!
N!1 exp

�

�˛�
Z tCT

t
I.t0/dt0

�

D exp
��˛�TI.t/

�

;

and as

pr.n; t;T/ D .�1/n
nŠ

@n

@�n
Gr.�; t;T/ j�D1 ; (6.92)

we get (6.87).
The probability pr.n; t;T/ represents the distribution of readings of the photon

count obtained in a series of experiments, all of them with the same initial time t.
Normally in experiments, the situation is rather different. Measurements are not in
parallel but in series, that is, one conducts only one counting measurement at a time,
followed by successive counting periods, consecutively rather than simultaneously,
and the outcome of such a sequence of measurements is an average of pr.n; t;T/
over the starting times t. Thus, we write

p.n;T/ D h
�

˛I.t;T/T
�n

nŠ
exp

��˛I.t;T/T/
�it (6.93)

where hit means an average over the initial times t.
The photon count distribution can be further simplified, in the case of counting

times T << tc, in which case the intensity is basically a constant during the counting
time, and we can write

I.t;T/ D I.t/ : (6.94)
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With the usual ergodic hypothesis that time averages can be replaced by ensemble
averages, and considering the intensity distribution P.I.t//, one can write

p.n;T/ D
Z

dI.t/P.I.t//
Œ˛I.t/T�n

nŠ
expŒ�˛I.t/T� ;

which is precisely (6.84).
Our discussion shows that the fluctuations in the photoelectric emission may be

regarded as due to two causes

1. Intrinsic fluctuations in the detection process. This is due to the random ejection
of photoelectrons, regardless of the intensity fluctuations of the light falling on
the detector, resulting in a Poisson distribution.

2. Fluctuations in the intensity.

As a result, usually the photoelectron distribution is not a Poissonian.
Making use of the expression for p.n;T/, we can calculate the average number

of photon counts, as well as various moments.
For the average

hni D
X

n

np.n;T/ (6.95)

D
Z 1

0

1
X

nD0
dI.t/P.I.t//n

�

˛I.t/T
�n

nŠ
exp

��˛I.t/T
�

D
Z 1

0

dI.t/P.I.t//˛TI.t/
1
X

nD1

�

˛I.t/T
�n�1

.n � 1/Š exp
��˛I.t/T

�

D ˛ThI.t/i :
Similarly, one finds

hn2i D ˛2T2hI.t/2i C ˛ThI.t/i; (6.96)

h.�n/2i D hn2i � hni2 D ˛2T2
�hI.t/2i � hI.t/i2�C ˛ThI.t/i :

6.6.1 Some Simple Examples

1. Constant intensity
I(t) D I
In this case, the averaging procedure is unnecessary, and one gets the Poisson

distribution

p.n;T/ D hnin

nŠ
exp.�hn// : (6.97)
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with

hni D ˛TI : (6.98)

2. P.I.t// D exp
�

� I.t/
I

�

I
:

This corresponds to a chaotic light source. The photon count probability is

p.n;T/ D 1

I

Z

dI.t/ exp

 

� I.t/

I

! ( �

˛I.t/T
�n

nŠ

)!

exp
��˛I.t/T

�

(6.99)

D hnin

.1C hni/nC1 :

Thus, for short counting times, the photon count distribution for chaotic light
is similar to the photon distribution of a single-mode thermal light. However, the
difference is that this photon count distribution applies to any chaotic light, in
general with many modes.

6.6.2 Quantum Mechanical Photon Count Distribution

A fully quantum mechanical description of photon-counting was first derived by
Kelly and Kleiner [6, 7]. The result is similar to the classical expression

p.n;T/ D hW
�

˛I.T/T
�n

nŠ
exp

�

.�˛I.T/T/
� Wi : (6.100)

The only difference with the classical expression is the :: symbol, indicating
normal ordering. In (6.100), I.T/ is defined as

I.T/ D 1

T

Z T

0

I.t/dt (6.101)

D 1

T

Z T

0

E.�/.r; t/E.C/.r; t/dt :

For the case of a single radiation mode, the above formula simplifies to

p.n;T/ D Tr

�

� W .�a�a/n

nŠ
exp.��a�a/ W

�

; (6.102)
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with

� � ˛
„!T

2"0� :
(6.103)

The parameter � is usually called the quantum efficiency of the detector. We also
notice that in the case of a single mode, p.n;T/ is time independent.

Expanding the exponential in (6.102), one can write

p.m;T/ D
X

n

Pn

�

�m

mŠ

� 1
X

lD0
.�1/l �

l

lŠ
hn j .a�/mCl.a/mCl j ni ; (6.104)

where Pn D hn j � j ni:
By making use of (3.27), the above result can be simplified to

p.m;T/ D
X

n

Pn

�

�m

mŠ

� n�m
X

lD0
.�1/l �

l

lŠ

nŠ

.n � m � l/Š
; (6.105)

D
1
X

n D m

Pn

�

n
m

�

�m.1 � �/n�m :

This form of the photocount distribution is the Bernoulli Distribution and has a
physical interpretation as follows: the probability of a photon being counted during
the period T is the quantum efficiency �; thus the probability of counting m out
of n photons is proportional to the probability of counting m photons �m times the
probability of not counting n-m photons .1 � �/n�m. Now, the only fixed number
in this analysis is m, the number of detected photons after the given interval, so the
total probability of counting m-photons has to involve a sum from n D m to 1,
weighted by two factors. The first one is the probability of having n photons to start
with Pn, and the second factor is related to the indistinguishability of the photons.

6.6.3 Particular Examples

It is simple to calculate the following cases:
Coherent state,

Pn D .n/n

nŠ
exp.�n/; (6.106)

p.m;T/ D .�n/m

mŠ
exp.��n/ :
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Filtered single-mode chaotic light,

Pn D .n/n

.1C n/1Cn
; (6.107)

p.m;T/ D .�n/m

.1C �n/mC1 :

Problems

6.6 Prove (6.81) and (6.81).

6.7 Prove (6.96).
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Chapter 7
Phase Space Description

In this chapter, we consider an alternative way of studying quantum phenomena,
using c-number functions in the phase space.

In general, a full description of the state of the electromagnetic field is given
by the density operator. However, there are various ways in which the field can be
described by complex functions of ˛: These methods are of considerable practical
interest, because one is dealing with functions rather than operators.

The most common representations in phase space are the P Glauber’s distribu-
tion, the Q Wigner representations.

The Wigner distribution is the one that resembles more closely to the classical
probability. On the other hand, the P distribution originates from representing the
density operator as an ensemble of coherent states and the Q representation is a
description of the density matrix through its diagonal elements, again, in a coherent
state basis.

7.1 Q-Representation: Antinormal Ordering

The definition of the Q distribution function is

Q.˛; ˛�/ � 1

�
h˛ j � j ˛i : (7.1)

There are a number of properties associated to the Q-function.
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7.1.1 Normalization

Tr f�g D 1 D Tr

�

1

�

Z

d2˛ j ˛ih˛ j �
�

D 1

�

Z

d2˛h˛ j � j ˛i ;

which implies

Z

d2˛Q.˛; ˛�/ D 1 : (7.2)

7.1.2 Average of Antinormally Ordered Products

We calculate the averages of the type

har.a�/si D Tr
�

ar.a�/s�
�

D Tr

�

1

�

Z

d2˛ j ˛ih˛ j .a�/s�ar

�

D 1

�

Z

d2˛Tr
�j ˛ih˛ j .a�/s�ar

�

D 1

�

Z

d2˛h˛ j .a�/s�ar j ˛i ;

so, we finally write

har.a�/si D
Z

d2˛.˛�/s˛rQ.˛; ˛�/ : (7.3)

7.1.3 Some Examples

Coherent state

� Dj ˛0ih˛0 j ;

which gives

Q.˛; ˛�/ D 1

�
j h˛0 j ˛i j2D 1

�
exp

	� j ˛ � ˛0 j2
 : (7.4)
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Number state

� Dj nihn j ;

Q.˛; ˛�/ D 1

�
j h˛ j ni j2D 1

�
exp.� j ˛ j2/

�

.j ˛ j2/n
nŠ

�

: (7.5)

We notice that the Q function is independent of the phase of ˛, and the maximum
is located at j ˛ j2D n:

Thermal state

� D
�

1 � exp

�

�„!
kT

��

X

n

j nihn j exp

�

�n„!
kT

�

; (7.6)

Q.˛; ˛�/ D
1 � exp

�

� „!
kT

�

�

X

n

exp

�

�n„!
kT

�

�

exp
	� j ˛ j2
� j ˛ j2n

nŠ
;

so that

Q.˛; ˛�/ D
1 � exp

�

� „!
kT

�

�
exp



� j ˛ j2
�

1 � exp

�

�„!
kT

���

: (7.7)

It is simple to show that

h˛pi D h˛�pi D 0 ; (7.8)

by observing that

h˛pi D hapi _ hn j ap j ni D 0 :

Also,

haa�i D hj ˛ j2i D
�

1 � exp

�

�„!
kT

���1
: (7.9)

In the particular limit kT ! 0, we get haa�i D hj ˛ j2i D 1, which is the correct
answer, because at T D 0 , hni D 0:

7.1.4 The Density Operator in Terms of the Function Q

We pose the following question: Is it possible to construct the density matrix, once
the Q function is known?
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Starting from a coherent state

j ˛i D exp

�� j ˛ j2
2

�

X

n

˛n

p
nŠ

j ni ;

and using the definition of the Q function (7.1), we write

Q.˛; ˛�/ � 1

�
h˛ j � j ˛i (7.10)

D exp.� j ˛ j2/
�

X

n;m

hn j � j mip
nŠmŠ

˛m˛�n

�
X

n;m

Qn;m˛
m˛�n :

From (7.10), we get

Q.˛; ˛�/ exp j ˛ j2

D
X

n0;m0;r

Qn0;m0˛m0Cr˛�n0Cr

rŠ

D 1

�

X

n;m

hn j � j mi˛m˛�n

p
nŠmŠ

:

Comparing equal powers in ˛ and ˛�, we get

X

r

Qn�r;m�r

rŠ
�

p
nŠmŠ D hn j � j mi ; (7.11)

thus answering the question posed at the beginning of this section.

7.2 Characteristic Function

There are three characteristic functions, defined in a normal, antinormal and
symmetric (Wigner) way

XN.�/ D Tr
�

� exp.�a�/ exp.���a/
�

; (7.12)

XA.�/ D Tr
�

� exp.���a/ exp.�a�/
�

;

XW.�/ D Tr
�

� exp.�a� � ��a/
�

:
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The antinormal characteristic function is related to the Q distribution:

XA.�/ D Tr
�

� exp.���a/ exp.�a�/
�

(7.13)

D 1

�

Z

d2˛h˛ j exp.�a�/� exp.���a/ j ˛i

D
Z

d2˛ exp.���˛ C �˛�/Q.˛/ ;

thus, the two functions are Fourier transforms of each other, in a two dimensional
space.

7.3 P Representation: Normal Ordering

The Glauber-Sudarshan P function is defined as

� D
Z

d2˛P.˛; ˛�/ j ˛ih˛ j : (7.14)

If one allows P.˛; ˛�/ to be singular, this representation always exists for
any density operator. However, for certain quantum states, P.˛; ˛�/ may become
negative, thus in general, this function cannot be interpreted as a probability density.

7.3.1 Normalization

Starting from

Tr .�/ D 1

D
Z

d2˛P.˛; ˛�/
X

n

hn j ˛ih˛ j ni

D
Z

d2˛P.˛; ˛�/h˛ j ˛i ;

we conclude that
Z

d2˛P.˛; ˛�/ D 1 : (7.15)



90 7 Phase Space Description

7.3.2 Averages of Normally Ordered Products

Here, we compute the normally ordered averages

ha�rasi D Tr
	

a�ras�

 D Tr

	

as�a�r



D
Z

d2˛P.˛; ˛�/Tr
	

as j ˛ih˛ j a�r



;

so, we get

ha�rasi D
Z

d2˛P.˛; ˛�/˛s˛�r : (7.16)

As we can see, the average of a normally ordered product can be written as a
c-number integral in the two-dimensional complex plane.

7.3.3 Some Interesting Properties

7.3.3.1 The Q Function Is a Gaussian Convolution of P

As per the definition of the Q-function

Q.˛/ D 1

�
h˛ j � j ˛i

D 1

�

Z

h˛ j ˇihˇ j P.ˇ/d2ˇ j ˛i ;

or

Q.˛/ D 1

�

Z

exp.� j ˛ � ˇ j2/P.ˇ/d2ˇ : (7.17)

7.3.3.2 P Is the Fourier Transform of XN

XN.�/ D Tr
�

� exp.�a�/ exp.���a/
�

D Tr

�Z

d2˛P.˛; ˛�/ j ˛ih˛ j exp.�a�/ exp.���a/

�

;
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or finally

XN.�/ D
�Z

d2˛P.˛; ˛�/ exp.�˛� � ��˛/
�

: (7.18)

7.3.4 Some Examples

7.3.4.1 Coherent State

� D j ˛0ih˛0 j; (7.19)

P.˛; ˛�/ D ı.˛ � ˛0/ :

7.3.4.2 Thermal State

To obtain P.˛; ˛�/, we first calculate XA and XN: Because

� D
�

1� exp �
�„!

kT

��

X

n

j nihn j exp

�

�n„!
kT

�

;

one can define

s D
�

1 � exp

�

�„!
kT

��

; (7.20)

� � x C iy ;

˛ D r C ik ;

then

XA.�/ D s

�

Z

d2˛ exp.�˛� � ��˛/ exp.�s j ˛ j2/

D s

�

Z

dr
Z

dk exp

"

�s

�

r � iy

s

�2

� s

�

k C ix

s

�2
#

exp

�

�x2 C y2

s

�

or

XA.�/ D exp

�

�j � j2
s

�

: (7.21)
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Now, we proceed to calculate the normally ordered characteristic function.
By definition

XN.�/ D Tr
�

� exp.�a�/ exp.���a/
�

D Tr
�

� exp.���a/ exp.�a�/
�

exp j � j2 ;

so that

XN.�/ D XA.�/ exp j � j2 : (7.22)

so, for the thermal state, we get

XN.�/ D exp

�

�j � j2 .1 � s/

s
:

�

(7.23)

Finally, we calculate P.˛/ as the Fourier transform of the normally ordered
characteristic function

P.˛/ D 1

�2

Z

d2� exp.˛�� � ˛��/ exp

�

�j � j2 .1 � s/

s

�

D 1

�2

Z

dx
Z

dy exp

�

2i.kx � ry/ � .1 � s/

s
.x2 C y2/

�

D s

�.1 � s/
exp

�

�j ˛ j2 s

1 � s

�

;

or written in a different way

P.˛/ D 1

�

�

exp

�„!
kT

�

� 1

�

exp



� j ˛ j2
�

exp

�„!
kT

�

� 1

��

: (7.24)

For this system, P is a well-behaved function, a Gaussian [1].
When T! 0, P.˛/ becomes a very sharp function of ˛: In the other extreme, that

is when T! 1

P.˛/ ! „!
kT

exp

�

� j ˛ j2 „!
kT

�

;

which is the same as the high temperature limit of the Q function and basically
corresponds to a classical Boltzmann distribution.
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7.3.4.3 Number State

This is a case where one cannot find a functional form solution for the P function,
but only in terms of derivatives of the delta function. The result is (for an j ni state)

P.˛/ D exp j ˛ j2
nŠ

�

@2

@˛@˛�

�n

ı2.˛/ : (7.25)

7.3.4.4 For a Squeezed State, P.˛/ Is Negative.

This was already shown in (5.15).

7.4 The Wigner Distribution: Symmetric Ordering

The first quasi probability distribution was introduced by Wigner [2], to study
quantum corrections to classical statistical mechanics. We will designate the Wigner
distribution by W.

The original idea was to reformulate Schrödinger’s equation, and it found many
applications in quantum chemistry, statistical mechanics and quantum optics.

In our context, we define the Wigner function W.˛; ˛�/ as the Fourier transform
of the symmetric characteristic function XW

W.˛; ˛�/ D 1

�2

Z

d2� exp.��˛� C ��˛/XW .�; �
�/ : (7.26)

Historically, the Wigner function was defined in terms of position and momentum
as

W.x; p/ D 1

2�„
Z C1

�1
d� exp.� i

„p�/hx C �

2
j � j x � �

2
i (7.27)

where the definition includes the factor 1
2�„ to ensure normalization

Z

dx
Z

dpW.x; p/ D 1:
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In the case of pure states, we can write, for a 2n dimensional space

W.x1; x2 : : : :xnI p1 : : : :pn/ D .
1

2�„ /
n
Z

: : : :

Z

d�1::d�n 
�.x1 � �1

2
; : : : :xn � �n

2
/

	 .x1 C �1

2 1
; : : : :xn C �1

2
/

exp.� i

„ .p1
�1

2
C : : : :C pn

�n

2
//

7.4.1 Marginals

If we integrate both sides of the Eq. (7.27) over p, we find

Z C1

�1
dpW.x; p/ D

Z C1

�1
d� exp.� i

„p�/hx C �

2
j � j x � �

2
i 1

2�„
Z C1

�1
dp

	 exp.� i

„p�/; (7.28)

where the last factor in Eq. (7.28) is 1
2�„

R C1
�1 dp exp.� i

„ p�/ D ı.�/; so we readily
find

Z C1

�1
dpW.x; p/ D

Z C1

�1
d� exp.� i

„p�/hx C �

2
j � j x � �

2
iı.�/ D

D hx j � j xi � W.x/;

that is, if we integrate the Wigner function over the momentum variable, we get the
probability distribution W.x/ for the position.

Similarly, if we integrate the Wigner function over the position, we get the
momentum distribution [3].

7.4.2 Product Rule

There is an interesting property of the Wigner distribution, is the trace product rule,
where the trace of the product of two operators A and B is given by the product of
their corresponding Wigner distributions, integrated in phase space

Tr.AB/ D 2�„
Z C1

�1

Z C1

�1
dxdpAW.x; p/BW.x; p/;
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where

AW.x; p/ D 1

2�„
Z C1

�1
d� exp.� i

„p�/hx C �

2
j A j x � �

2
i;

BW.x; p/ D 1

2�„
Z C1

�1
d� exp.� i

„p�/hx C �

2
j B j x � �

2
i:

In particular, if B D �, we have

hAi D Tr.A�/ D 2�„
Z C1

�1

Z C1

�1
dxdpAW.x; p/W.x; p/;

that is, the quantum mechanical expectation value can be calculated as a classical
average.

7.4.3 Moments

The moments of W.˛; ˛�/ are equal to the averages of symmetrically ordered prod-
ucts of creation and annihilation operators. These products denoted by

˚

ara�s
�

sym

are defined as the expansion coefficient of �s.���r/ in .�a� � ��a/rCs:

We give here some examples

˚

a2a�2
�

sym D 1

6

�

a�2a2 C a�aa�a C a�a2a� C aa�2a C aa�aa� C a2a�2
�

;

˚

aa�2
�

sym D 1

3

�

a�2a C a�aa� C aa�2
�

etc:

With the above definition, one can write

exp.�a� � ��a/ D
X

r;s

�s.���/r

rŠsŠ

˚

ara�s
�

sym : (7.29)

Now, by partial integration of (7.26), we get

Z

d2˛˛r˛�sW.˛; ˛�/ D
�

@

@�

�s �

� @

@��

�r

XW.�; �
�/ j�D0 ; (7.30)



96 7 Phase Space Description

and making use of (7.12), we readily get

h˚ara�s
�

symi D
Z

d2˛˛r˛�sW.˛; ˛�/ :

Problems

7.1 Normal ordering.
Let

A D
X

n;m

Anma�nam

be normally ordered.
Show that

hAi D 1

�

Z

P.˛/
X

n;m

Anm˛
�n˛md2˛:

7.2 Show that if

A D .a�a/2;

then its normal and antinormal ordered version are

�

.a�a/2
�

normal D a�2a2 C .a�a/;
�

.a�a/2
�

antinormal D a2a�2 � 3.aa�/C 1:

7.3 Let us assume that an operator A is normally ordered. Then, we substitute

a ! z;

a� ! z�

and define the result as

A.n/.z; z�/:

Similarly, if A is antinormally ordered, we define a A.a/.z; z�/: For example, from
the previous problem, we can write

A.n/.z; z�/ D j z j4 C j z j2;
A.a/.z; z�/ D j z j4 �3 j z j2 C1 :
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Now, we define the N and A operators whose effect in a given operator is
to rearrange it as to transform it to normal and antinormal form respectively. For
example

N Œa�2a2 C .a�a/� D a�2a2 C .a�a/ ;

AŒa�2a2 C .a�a/� D a2a�2 C .aa�/ :

Show that

aa�nam D N
�

a C @

@a�

�

a�nam :

Hint: use the commutation relation

�

a; a�n
� D na�n�1 :

7.4 If F.n/.a�; a/ is a normally ordered operator, show, using the notation of the
Problem (7.3), that

aF.n/.a�; a/ D N
�

a C @

@a�

�

F.n/.a�; a/;

F.n/.a�; a/a� D N
�

a� C @

@a

�

F.n/.a�; a/ :

7.5 Show, using the same notation as in the Problems (7.3) and (7.4), that for a
product of two normally ordered operators (the product is of course not normally
ordered)

F.n/.a�; a/G.n/.a�; a/ D NF.n/
�

a�; a C @

@a�

�

F.n/.a�; a/ :
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Chapter 8
Atom–Field Interaction

In this chapter, we study the atom–field interaction in the usual and dressed picture.
We also address the problems of Rabi oscillations and the collapse and revivals.

8.1 Atom–Field Hamiltonian and the Dipole Approximation

The Hamiltonian for an atom interacting with an electromagnetic field, may be
written as

H D 1

2m
Œp � eA.r; t/�2 C eV.r/C Hr ; (8.1)

where p is the momentum of the electron, V.r/ the Coulomb potential, A the vector
potential of the field and Hr the free radiation field.

We now make use of a unitary transformation [1]:

j  .t/i D exp

�

ier
„ � A.r; t/

�

j �.t/i � U j  .t/i ; (8.2)

so Schrödinger equation can be written as

i„@ j  .t/i
@t

D H j  .t/i (8.3)

i„U
@ j �.t/i
@t

C i„@U

@t
j �.t/i D HU j �.t/i :
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Multiplying (8.3) by U� D U�1 from the left, we get

i„@ j �.t/i
@t

D H0 j �.t/i; (8.4)

H0 � U�HU � i„U� @U

@t
: (8.5)

The second term in (8.5) can be written as

� i„U� @U

@t
D er � @A

@t
D �er � E.r; t/ ; (8.6)

where in the last equation we used (3.6), (3.7), and H0 becomes

H0 D U�HU � er � E.r; t/ : (8.7)

We have to calculate U�HU.

U�HU D 1

2m
U�p2U � e

m
A � U�pU C e2

2m
A2 C eV.r/C Hr ; (8.8)

where we used the fact that only the p-dependent terms are affected by the
transformation and that

P3
lD1 Œpl;Al� D �i„Pl

@Al
@xl

D 0 in the Coulomb gauge,
thus p � A D A � p.

As

Œ pi;U� D �i„@U

@xi
D eU

@.r � A/

@xi
; (8.9)

therefore

� e

m
A � .U�pU/ D � e

m
A � U� ŒUp C eUr.r � A/� (8.10)

D � e

m
A � p � e2

m
A � r .r � A/ :

Next, we calculate

3
X

iD1

�

p2i ;U
� D

X

i

�

pi Œ pi;U�C Œ pi;U� pi

�

(8.11)

D
X

i

�

Œ pi; Œ pi;U��C 2 Œ pi;U� pi

�

:
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Now, from (8.9), one can write

Œ pi; Œ pi;U�� D e

�

pi;U
@.r � A/
@xi

�

D �ie„ @

@xi

�

U
@.r � A/
@xi

�

(8.12)

D U

(

�ie„@
2.r � A/
@2xi

C e2
�

@.r � A/
@xi

�2
)

;

so

�

p2;U
� D U

n

�ie„r2.r � A/C e2 Œr.r � A/�2 C 2er. r � A/ � p
o

: (8.13)

With (8.9) and (8.13) we get for U�HU:

U�HU: D e2

2m
A2 C eV.r/:C Hr C p2

2m
C e„
2im

r2.r � A/C e2

2m
Œr.r � A/�2

(8.14)

C e

m
r.r � A/ � p� e

m
A � p � e2

m
A � Œr.r � A/� :

Now

@

@xi
.r � A/ D Ai C r � @A

@xi
; (8.15)

X

i

�

@

@xi
.r � A/

�2

D A2 C
X

i; j

2Aixj
@Aj

@xi
C
X

i; j;k

xjxk
@Aj

@xi

@Ak

@xi
;

r2.r � A/ D
X

i; j

xi
@2A

@x2j
:

In the last term, we used r � A D 0.
Finally, one can write

U�HU D eV.r/:C p2

2m
C Hr C e

m

X

xi
@Ai

@xj
pj (8.16)

C e„
2mi

X

i; j

xi
@2Ai

@x2j
C e2

2m

X

i; j;k

xixj
@Ai

@xk

@Aj

@xk

D H0 C er � E:
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The standard dipole approximation assumes that, in the case of plane waves,

A D Ao exp.�i!t C ik � r/ (8.17)

� Ao exp.�i!t C ik � r0/ D A.r0/ ;

where r0 is the position of the atomic nucleus, provided the radiation wavelength
is several orders of magnitude larger than the atomic size. In that case, all the
derivatives of the vector potential are neglected, and one gets

H0 D eV.r/:C p2

2m
C Hr � er � E.r; t/ (8.18)

or

H0 D „
X

i

!i j iihi j CHr � er � E.r; t/ ;

where j ii are the unperturbed atomic states with eigenenergies „!i:

8.2 A Two-Level Atom Interacting with a Single Field Mode

In the case of a two-level atom interacting with one mode of the field, the interaction
Hamiltonian in the dipole approximation can be written as:

H1 D �er � E.r/ : (8.19)

We can assume one mode for instance when we have a high quality electromag-
netic cavity. Thus, for this particular case, is more convenient to have stationary
rather than traveling waves. The one mode electric field can be written as

E.z; t/ D ".a C a�/ sin kz ; (8.20)

where " �
q

„!
	ov

is the field per photon, and the Hamiltonian can be written as

H1 D „g.�C C ��/.a C a�/ ; (8.21)

with g � � "d
„ sin kz , d D erab � e and the � are the usual Pauli spin matrices

defined as

�C D
�

0 1

0 0

�

; �� D
�

0 0

1 0

�

; (8.22)
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�x D
�

0 1

1 0

�

; �y D
�

0 �i
i 0

�

;

�z D
�

1 0

0 �1
�

:

Same as in the Semiclassical case, we have assumed that the dipole induced by
the field has only non-diagonal matrix elements and that the two states considered
here have opposite parity so that raa D rbb D 0, thus the r operator is proportional
to .�C C ��/. The complete Hamiltonian is

H D „!ab

2
�z C „!a�a C „g.�C C ��/.a C a�/ : (8.23)

We notice, in the above expression, that the zero energy level was taken halfway
between the two atomic levels, so that the unperturbed atomic energies are ˙„!ab

2
.

The four terms appearing in the interaction part of the Hamiltonian have the
following simple interpretation:

a�C: one photon is absorbed and the atom is excited from state b!state a.
a���: emission of a photon and de-excitation of the atom.

These two processes are energy conserving. We will show that for a very weak
coupling constant, they vary slowly in time. On the other hand, the terms a��C and
a�� do not conserve the energy. They represent:

a��C: one photon is emitted and the atom is excited.
a��: one photon is absorbed and the atom gets de-excited.

These processes are shown in the Fig. 8.1.
The straight arrows represent atomic levels and the wavy ones photons. Lines

towards (away) the interaction point correspond to destruction (creation) of states.
To see the time dependence of all these processes, we go to the interaction picture

H.I/
1 D „g exp.i!ta�a/.a C a�/ exp.�i!ta�a/ (8.24)

exp

�

it

�
!ab
2
0

0 �!ab
2

���

0 1

1 0

�

exp

�

�it

�
!ab
2
0

0 �!ab
2

��

:

Making use of the properties:

exp.i!ta�a/.a C a�/ exp.�i!ta�a/ D a exp.�i!t/C a� exp.i!t/ ;

exp

�

it

�
!ab
2
0

0 �!ab
2

���

0 1

1 0

�

exp

�

�it

�
!ab
2
0

0 �!ab
2

��

D �C exp.i!abt/C �� exp.�i!abt/ :
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Fig. 8.1 Four processes in
the atom–field interaction.
The processes a and b
conserve the energy

Replacing the above results into H.I/
1 , we get

H.I/
1 .t/ D „gf�Ca exp Œ�i.! � !ab/t�C ��a� exp Œi.! � !ab/t� (8.25)

C��a exp Œ�i.! C !ab/t�C a��C exp Œi.! C !ab/t�g :
The rotating wave approximation, as in the Semiclassical theory, con-

sists of neglecting the rapidly oscillating terms ��a exp Œ�i.! C !ab/t� C
a��C exp Œi.! C !ab/t�. Going back to the Schrödinger picture, the Hamiltonian
in the dipole and rotating wave approximations is

H D Ho C H1 D „!ab

2
�z C „!a�a C „g.a�C C ��a�/ : (8.26)

This is the Jaynes–Cummings Hamiltonian, and it will be very useful in
describing various physical effects.

8.3 The Dressed State Picture: Quantum Rabi Oscillations

We begin by taking the unperturbed states j a; ni; j b; n C 1i, eigenstates of H0

H0 j a; ni D „
�!ab

2
C n!

�

j a; ni ; (8.27)

H0 j b; n C 1i D „
h

�!ab

2
C .n C 1/!

i

j b; n C 1i : (8.28)
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Now, the interaction couples only j a; ni to j b; n C 1i , for each n, and no other
states; therefore, we can consider the subspace 	n D fj a; ni; j b; n C 1ig and the
total Hamiltonian can be written as [2, 3]

H D
X

n

Hn ; (8.29)

where Hn acts only in 	n and can be written as

Hn D „!
�

n C 1

2

��

1 0

0 1

�

C „
2

�

ı 2g
p

n C 1

2g
p

n C 1 �ı
�

; (8.30)

and one can easily diagonalize the above Hamiltonian, getting the following
eigenvalues

E1n D „!
�

n C 1

2

�

C „
2

Rn ; (8.31)

E2n D „!
�

n C 1

2

�

� „
2

Rn ; (8.32)

with

ı D !ab � !; (8.33)

Rn D
p

ı2 C 4g2.n C 1/ :

The corresponding eigenstates are

j 1ni D cos 
n j a; ni C sin 
n j b; n C 1i ; (8.34)

j 2ni D � sin 
n j a; ni C cos 
n j b; n C 1i ;

with

cos 
n D 2g
p

n C 1
p

.Rn � ı/2 C 4g2.n C 1/
: (8.35)

Also, it is simple to prove that

sin 2
n D 2g
p

n C 1

Rn
; (8.36)

cos 2
n D ı

Rn
;

tan 2
n D 2g
p

n C 1

ı
:
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We can write

� j 1ni
j 2ni

�

D
�

cos 
n sin 
n

� sin 
n cos 
n

� � j a; ni
j b; n C 1i

�

(8.37)

� R.
n/

� j a; ni
j b; n C 1i

�

:

These are the dressed states, as opposed to the ‘bare’ states j a; ni and j b; n C1i.
Diagrammatically, the dressed state eigenvalues are pictured in the

Fig. 8.2, where we plot energy versus !ab for different n-values.
In a particularly simple case ı D 0 and sin 
n D cos 
n D 1p

2
, the states and

eigenvalues are

j 1ni D Œj a; niC j b; n C 1i� 1p
2
; (8.38)

j 2ni D .� j a; niC j b; n C 1i/ 1p
2
; (8.39)

and

E1n D „!
�

n C 1

2

�

C „g
p

n C 1 ; (8.40)

E2n D „!
�

n C 1

2

�

� „g
p

n C 1 : (8.41)

Fig. 8.2 Energy levels of the
dressed and bare states versus
!ab, for different n subspaces
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Finally, we will look, in this section, into the problem of the quantum Rabi
oscillations.

If one writes

j  .t/i D exp

�

� iHt

„
�

j  .0/i ; (8.42)

and introducing a unit operator in terms of the dressed states, we readily get

j  .t/i D
1
X

nD0

2
X

jD1
exp

�

� iEjt

„
�

j j; nihj; n j  .0/i ; (8.43)

where Ej are the eigenvalues corresponding to the dressed states.
Now, we can write the state vector in terms of both dressed and bare basis, as

follows:

j  .t/i D
X

n

ŒCan j a; ni C Cb;nC1 j b; n C 1i� (8.44)

D
X

n

ŒC1n j 1ni C C2;n j 2ni� :

In the rotating frame at a frequency
	

n C 1
2




!, we can write (8.43) as

�

C1n.t/
C2n.t/

�

D
�

exp
	�i Rn

2
t



0

0 exp
	

i Rn
2

t



��

C1n.0/

C2n.0/

�

(8.45)

and also making use of (8.37), we can write

�

Can.t/
CbnC1.t/

�

D R�1.
n/

�

exp
	�i Rn

2
t



0

0 exp
	

i Rn
2

t



�

R.
n/

�

Can.0/

CbnC1.0/

�

(8.46)

or

�

Can.t/
CbnC1.t/

�

D (8.47)

2

4

cos Rn
2

t � iıR�1
n sin Rn

2
t �2ig

p
n C 1R�1

n sin Rn
2

t

�2ig
p

n C 1R�1
n sin Rn

2
t cos Rn

2
t C iıR�1

n sin Rn
2

t

3

5

�

Can.0/

CbnC1.0/

�
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If, initially, the atom is in the upper state and ı D 0, we get

j Can.t/ j2D cos2 g
p

n C 1t ; (8.48)

j CbnC1.t/ j2D sin2 g
p

n C 1t : (8.49)

This is the quantum Rabi oscillation.

8.4 Collapse and Revivals

With the Jaynes–Cummings Hamiltonian, one has, in principle, the time evolution
of the system. Of course, there are also the initial conditions [4].

The simplest case is when one knows precisely the energy level of the atom,
which is suddenly brought into a cavity with a definite photon number.

Usually in experiments, one can only specify, for example, the statistics of the
cavity field, that is the probability of having a given number of photons.

We will deal with the general case. Consider the state vector  .n; t/ that evolves
from an initial state with exactly n photons. When this field has an unknown photon
number, specified only by a probability Pm for having m photons, then at time t, the
probability of being in a given k state .k D a; b/ is

Pk.t/ D
1
X

mD0
Pm j hm;  k j  .m; t/i j2D

1
X

mD0
Pm j Ck;m.t/ j2 ; (8.50)

and the photon distribution

pn.t/ D
X

m D 0 (8.51)

k D a; b1Pm j hn;  k j  .m; t/i j2 (8.52)

D Pn j Ca;n.t/ j2 CPn�1 j Cb;n.t/ j2 :
One would expect that the superposition of periodic solutions might produce

destructive interference, thus a collapse. This indeed occurs [5].
An interesting example is the case of a two-level atom that encounters a cavity

at temperature T, whose photon number distribution is the one mode Bose–Einstein
distribution, with a probability for m photons, given by

Pm.T/ D 1

1C n

�

n

1C n

�m

; (8.53)

n D
�

exp

�„!
kT

�

� 1

��1
;

h�n2i D hni2 C hni :
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Fig. 8.3 The population
inversion for a two-level atom
initially in the upper state
interacting with a thermal
field and mean photon
numbers hnith D 0; 1; 4; 9; 99

(After [4])

In the Fig. 8.3, we show the population inversion w.t/ D Pa.t/ � Pb.t/ for an
initially excited two-level atom interacting with a single-mode thermal field. The

time axis has been scaled to an adimensional time � D gt
p

n
2
: The first curve shows

the Rabi’s oscillations when the atom enters an empty cavity. The subsequent curves
show an increasing average photon number. As we can observe, there is a wide range
of Rabi frequencies, for which there is no trace of population inversion. The collapse
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time, for large n is of the order of [6]

t�1c Š g
p

n : (8.54)

The time scale of the Fig. 8.3 has been chosen in such a way that in each case,
the collapse occurs at � D 2.

A particular and interesting example where the collapse can be studied in detail
is the case when the initial field is a coherent state, where one can study also the
revivals [7].

In this case, the probability for an excited atom is

Pa.t/ D
X

n

Pn j Ca;n.t/ j2D exp.� j ˛ j2/
X

n

j ˛ j2n

nŠ
cos2.g

p
n C 1t/ ; (8.55)

and for short times .gt <<j ˛ j/ can be approximated to

Pa.t/ D 1

2
C 1

2
cos.2gt j ˛ j/ exp

��.gt/2
�

: (8.56)

This case is described in the Fig. 8.4.
As we can see, as the field becomes more intense, the Rabi oscillations persist

for longer intervals, until the destructive interference between the oscillations takes
over. Basically, the relevant range of Rabi frequencies is g

p
n C�n ! g

p
n ��n;

the inverse of which is the collapse time, so

t�1c � g ; (8.57)

which is independent of the average photon number.
Also, the effect of revival is quite remarkable, that is, after a certain time, the

Rabi’s oscillations reappear. This was studied first by Eberly et al. [7] and others
[7–9]. The revival time is tr D tc2�

p
n.

As we can see, the behaviour of a two-level atom interacting with a single elec-
tromagnetic mode (coherent) is surprisingly rich. We have Rabi’s oscillations that
collapse and remain quiescent, revive, then collapse again.The Jaynes–Cummings
model, in its linear and non-linear version, has been used extensively in connection
with trapped ions with quantized vibrational motion [10–14].
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Fig. 8.4 Population
inversion of a two-level atom
interacting with a
single-mode coherent field,
for hnith D 0; 1; 4; 9; 99: We
observe a collapse and then a
revival (After [4])

Problems

8.1 Starting from the Hamiltonian Hn, find the eigenvalues Ei;n for i D 1; 2, and the
dressed states j 1ni; j 2ni. That is, verify (8.31), (8.32), (8.33), (8.34) and (8.35).

8.2 Prove (8.47).

8.3 Show that the summation for the probability of the excited atom (8.55) reduces
to the (8.56), when gt <<j ˛ j.
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Chapter 9
System–Reservoir Interactions

In this chapter, we learn how to introduce losses in our optical systems.
Losses play an important role in physics, and, in general, they cannot be avoided.

For example, the decay of an atom can be described as a small or relevant system
(the atom) interacting with a large reservoir consisting in an infinite number of
harmonic oscillators or electromagnetic modes. It appears quite surprising that
starting from a time reversible dynamics, one ends up in an irreversible situation,
such as the natural decay of an excited atom. Of course, as we shall see, this is
closely related to the type of approximation (Markov) used.

Here we present a quantum theory of damping where the system consists in a
single harmonic oscillator coupled to a reservoir of a large number of oscillators.
Using the density matrix approach, we eliminate the reservoir variables, obtaining a
differential equation for the reduced density matrix in the Schrödinger picture. We
also study the problem in the Heisenberg picture, thus introducing the concepts of
Langevin equations and noise operators [1] (Narducci LM, WPI lecture notes, 1973,
unpublished).

9.1 Quantum Theory of Damping

The main purpose, in this section, is to study the fluctuations and relaxations
of quantum systems. We will find that the expectation values of some relevant
operators do relax as their classical counterparts. Also, and very importantly,
relaxation phenomena is always accompanied by statistical fluctuations. In other
words, a pure state does not relax and a system connected to a bath or reservoir,
even if starting from a pure state, will always become a mixed state.

The method that we are going to use is the following one. Starting from
Liouville’s equation, under a certain approximation scheme, and tracing over the

© Springer International Publishing Switzerland 2016
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reservoir variables, we end up with a differential equation for a reduced density
matrix, the so-called master equation, which is still an operator equation. Then, we
use the phase space techniques learned in the Chap. 7, to get a c number differential
equation, for example, for the Glauber P distribution. This is the Fokker–Planck
Equation. Consider a harmonic oscillator

H0;A D „!a�a ; (9.1)
�

a; a�
� D 1 ;

that we define as the system, and a set of harmonic oscillators:

H0;B D
X

j

„!jb
�
j bj ;

h

bj; b
�
k

i

D ıjk ;

which is the bath or reservoir.
We further assume a very general type of system–reservoir coupling of the type

XXj, which contains terms such as ab�j ; a
�bj; a�b

�
j ; abj, and using the rotating-wave

approximation arguments, already discussed previously, we only keep the counter-
rotating terms. Therefore, the complete Hamiltonian reads

H D H0 C H1 D „!a�a C
X

j

„!jb
�
j bj (9.2)

C
X

j

gj.a
�bj C ab�j / ;

where the gj are taken as reals.
Now, we define �AB as the density matrix of the complete system, whereas �A D

TrB.�AB/ D P

BhB j �AB j Biand �B D TrA.�AB/ D P

AhA j �AB j Ai are the
reduced density matrices for the A and B system, respectively, and obtained simply
by tracing over the other variable.

The Liouville equation for the complete system is

i„d�AB

dt
D ŒH; �AB� : (9.3)

It is convenient to work in the interaction picture. The density matrix is

e�AB D exp

�

i

„H0t

�

�AB exp

�

� i

„H0t

�

;
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and differentiating with respect to time,we get

de�AB

dt
D i

„
�

H0;e�AB
�C exp

�

i

„H0t

�

@�AB

@t
exp

�

� i

„H0t

�

(9.4)

D i

„
˚�

H0 � eH;e�AB
�� D � i

„
�

eH1;e�AB
�

;

where

eH1.t/ D exp

�

i

„H0t

�

H1 exp

�

� i

„H0t

�

D exp

�

i!ta�a C i
X

j

!jtb
�
j bj

�

	
X

j

„gj.a
�bj C ab�j / exp

�

� i!ta�a � i
X

j

!jtb
�
j bj

�

D
X

j

„gj

n

a�bj exp
�

i.! � !j/t
�C ab�j exp

��i.! � !j/t
�
o

D „.G.t/a� C G�.t/a/ ;

where

G.t/ �
X

j

gjbj exp
�

i.! � !j/t
�

: (9.5)

Next, we formally integrate the Liouville equation

e�AB.t/ De�AB.0/C 1

i„
Z t

0

�

eH1.t
0/;e�AB.t

0/
�

dt0 (9.6)

and substituting back in the (9.4), we get

de�AB

dt
D 1

i„
�

H1;e�AB.0/
�� 1

„2
Z t

0

�

eH1.t/;
�

eH1.t
0/;e�AB.t

0/
��

dt0 : (9.7)

We trace over the reservoir variables to get

de�A

dt
D � 1

„2
Z t

0

TrB
�

eH1.t/;
�

eH1.t
0/;e�AB.t

0/
��

dt0 : (9.8)
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In the last step, we assumed that

TrB
�

eH1.t/;e�AB.0/
� D 0 (9.9)

To justify (9.9), assume that at t D 0 there is no correlation between the system
and the bath, ore�AB.0/ D e�A.0/˝ e�B.0/, where

e�B.0/ D
Q

j exp

�

� „!jb
�
j bj

KBT

�

TrB
Q

j exp

�

� „!jb
�
j bj

KBT

� : (9.10)

Now, eH1.t/ contains linear terms in bj and b�j and TrBj bj

exp

�

� „!jb
�
j bj

KBT

�

D 0:

The final step to find the master equation for the damped harmonic oscillator is
to evaluate the double commutator appearing in (9.8). Also, a fundamental step is
to assume thate�AB.t/ D e�A.t/˝ e�B.0/, which is the Markovian assumption .

After a straightforward calculation, one finds

de�A

dt
D �i�!

�

a�a; e�A.t/
�C A

�

a; e�A.t/a
�
�C A

�

ae�A.t/; a
�
�

(9.11)

CB
�

a�; e�A.t/a
�C B

�

a�e�A.t/; a
�

:

where to derive (9.11), we used the following properties:

TrB.b
�
j bke�B.0// D ıjkhnji; (9.12)

TrB.bjbje�B.0// D 0;

�! D P
Z 1

0

g.!j/
2D.!j/

! � !j
d!j ;

and D.!/ is the density function that converts
P

j ! R

D.!j/d!j, and

Z t

0

dt0 exp ˙i.! � !j/t
0 � �ı.! � !j/˙ P

�

1

! � !j

�

; (9.13)

A � �g.!/2D.!/.1C hn.!/i/ ; (9.14)

B D �g.!/2D.!/hn.!/i :
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A more standard form of the master equation (9.11) is

de�A

dt
D �i�!

�

a�a; e�A.t/
�

(9.15)

�
2
.1C hn.!/i/.e�A.t/a

�a C a�ae�A.t/ � 2ae�A.t/a
�/

�
2

hn.!/i.e�A.t/aa� C aa�e�A.t/ � 2a�e�A.t/a/ :

For the particular case T D 0 or hn.!/i D 0 and �! � 0, we get the simpler
version of (9.15):

de�A

dt
D �

2
.e�A.t/a

�a C a�ae�A.t/ � 2ae�A.t/a
�/ (9.16)

 � 2.A � B/ D 2�g.!/2D.!/ :

9.2 General Properties

Equation (9.11) is called the master equation for the Damped Harmonic Oscil-
lator and has the following properties:

(1) Hermiticity. It is simple to verify that the Hermitian conjugate of the master
equation gives back the same equation.

(2) Normalization. It is not obvious that after tracing over the bath variables and
making the Markov approximation, �A is still normalized. However, it is quite
simple to prove that if TrA�A.0/ D 1; then TrA�A.t/ D 1; for all times.

9.3 Expectation Values of Relevant Physical Quantities

When calculating, for example ha�i.t/, this can be done in any picture, because they
all give the same answer. However, we must be careful to calculate both a�and �A in
the same picture

ha�i.t/ D TrA.e�A.t/
ea�.t// ; (9.17)

and

ea�.t/ D exp.i!a�at/a� exp.�i!a�at/ D a� exp.i!t/ :
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Now we differentiate (9.17) with respect to time. We readily get

d

dt
ha�i.t/ D d

dt

˚

TrA
�

e�A.t/a
�
�

exp.i!t/
�

(9.18)

D TrA

�

@e�A.t/

@t
a� exp.i!t/C i!.e�A.t/a

� exp.i!t//

�

;

and making use of the master equation (9.11), it is simple to obtain

d

dt
ha�i.t/ D i.! C�!/ha�i.t/� .A � B/ha�i.t/ : (9.19)

The solution of (9.19) is

ha�i.t/ D ha�i.0/ exp Œi.! C�!/t� exp
�

�
2

t
�

; (9.20)

 � 2.A � B/ D 2�g.!/2D.!/ :

Using the same procedure described above, one can also find ha�ai.t/. The
differential equation and solution are

d

dt
ha�ai.t/ D �.ha�ai.t/� hn.!/i/ ; (9.21)

ha�ai.t/ D ha�ai.0/ exp.� t/C hn.!/i Œ1 � exp.� t/� :

An interesting property is that ha�ai.t/ jt!1! hn.!/i, which has a simple
interpretation. After a long time, the oscillator in contact with a heat bath gets
thermalized, with the same average photon number as the thermal average, at the
oscillator’s frequency.

Once we know ha�i.t/ and hai.t/, we can calculate the average position and
momentum of the oscillator. The results are

hqi.t/ D
� „
2!

� 1
2 �hai.t/C ha�i.t/� ; (9.22)

hpi.t/ D i

�„!
2

� 1
2 ��hai.t/C ha�i.t/� ;

which can be written as

hqi.t/ D exp
�

�
2

t
�
�

hqi.0/ cos!t C hpi.0/
!

sin!t

�

; (9.23)

hpi.t/ D exp
�

�
2

t
�

Œ�!hqi.0/ sin!t C hpi.0/ cos!t� ; �! D 0 :
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Finally, if we assume an initial minimum uncertainty state (MUS), it is simple to
show that

�p�q D „
2

f1C 2hn.!/i Œ1 � exp.� t/�g : (9.24)

The result given by (9.24) shows again that for t ! 1, �p�q !
„
2
Œ1C 2hn.!/i�, which is the uncertainty product for a thermal photon at frequency

!.
We notice here that the particular example of the damped harmonic oscillator is a

simple one, in the sense that the expectation values we found are only coupled with
moments of the same order and not higher. This is not generally the case, where the
moment equations are coupled with higher orders, and one has to use some kind of
approximate truncation scheme.

9.4 Time Evolution of the Density Matrix Elements

We are interested in the time evolution of .e�A.t//nn � pn.t/.
If we assume �! D 0 and take the matrix elements of (9.11 ), we readily get

dpn

dt
D 2A.n C 1/pnC1 C 2Bnpn�1 � pnŒ2An C 2B.n C 1/� : (9.25)

Each term in the r.h.s. of (9.25) has an interpretation in terms of energy
transitions, as described in the Fig. 9.1, where the arrows arriving to one of the
energy levels increase dpn

dt and the ones leaving the level decrease the rate.
A common technique to solve this type of difference-differential equation is that

of the generating function. We define

Q.x; t/ D
1
X

n D 0

.1 � x/npn.t/ ; (9.26)

where pn can be easily calculated as

pn D .�1/n
nŠ

@n

@xn
Q.x; t/ jxD1 : (9.27)

Multiplying (9.25) by .1 � x/n and summing over n, we get

@Q

@t
D �2BxQ � 2.A � B/x

@Q

@x
� 2Bx2

@Q

@x
: (9.28)
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Fig. 9.1 Graphical
representation of the time
evolution equation for pn;

where each arrow pointing
towards the n-th level
increases pn and viceversa

In deriving (9.28), we made use of relations such as

X

pnC1.n C 1/.1� x/n D �@Q

@x
; (9.29)

X

pn.n/.1� x/n D �.1 � x/n
@Q

@x
; etc :

To solve (9.28), we make use of the method of characteristics [2] (See Appendix B).
Equation (9.28) can be conveniently written as

dt

1
D dx

2 Œ.A � B/C Bx� x
; (9.30)

dx

2 Œ.A � B/C Bx�
D � dQ

2BQ
:

The simultaneous solution of the system of differential equations is:

t C ln H

2.A � B/
D 1

2.A � B/
ln

�

x

2.A � B/C 2Bx

�

; (9.31)

� ln Q C ln K D ln Œ2.A � B/C 2Bx� ;
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or explicitly

K D Q Œ2.A � B/C 2Bx� ; (9.32)

H D x exp Œ�2.A � B/t�

2.A � B/C 2Bx
(9.33)

where K and H are integration constants to be determined from the initial conditions,
satisfying the general integral of the differential equation

K D g.H/ ; (9.34)

g being an arbitrary function.
Now we consider the initial state of the oscillator to be a coherent state, that is

pn.0/ D nn

nŠ
exp.�n/ , (9.35)

so that

Q.x; 0/ D
1
X

nD0
.1 � x/n

nn

nŠ
exp �n D exp �nx : (9.36)

Making use of (9.32), (9.33), and (9.34), one can write

Q.x; t/ D 1

2.A � B/C 2Bx
g

�

x exp Œ�2.A � B/t�

2.A � B/C 2Bx

�

; (9.37)

and making use of the initial condition (9.36), we obtain

Q.x; t/ D 1

1C B
A�B x f1 � exp Œ�2.A � B/t�g (9.38)

exp

"

�x
n exp Œ�2.A � B/t�

1C B
A�B x f1 � exp Œ�2.A � B/t�g

#

(9.39)

In the limit t ! 1;Q.x;1/ D 1

1C B
A�B x

D 1
1Cxhn.!/i D P1

nD0.1�x/npn.1/; and

with the use of (9.27), we get

pn.1/ D hn.!/in

Œ1C hn.!/i�nC1 : (9.40)
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As we can see, the oscillator, initially in a coherent state get’s thermalized when
t ! 1;or

j ˛i ) one more element of the reservoir

9.5 The Glauber–Sudarshan Representation,
and the Fokker–Planck Equation

It is convenient, for the purposes of this section, to define the Bargmann [3] states
as

k ˛i D exp

� j ˛ j2
2

�

j ˛i : (9.41)

It is simple to show from the definition of the coherent states that

a� k ˛i D @

@˛
k ˛i; (9.42)

h˛ k a D @

@˛� h˛ k :

We now write the density operator in the P -representation

� D
Z

d2˛ k ˛ih˛ k exp.� j ˛ j2/P.˛/ ; (9.43)

then

a�� D
Z

d2˛
@

@˛
.k ˛i/h˛ k exp.� j ˛ j2/P.˛/; (9.44)

D
Z

d2˛.k ˛ih˛ k/ exp.� j ˛ j2/.˛� � @

@˛
/P.˛/ :

Thus, we have the following correspondence

a�� !
�

˛� � @

@˛

�

P.˛/ ; (9.45)

�a !
�

˛ � @

@˛�

�

P.˛/ ;

�a� ! ˛�P.˛/;

a� ! ˛P.˛/ ;

a�a� !
�

˛� � @

@˛

�

˛P.˛/ ;
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aa�� ! ˛

�

˛� � @

@˛

�

P.˛/

�a�a !
�

˛ � @

@˛�

�

˛�P.˛/ ;

�aa� ! ˛�
�

˛ � @

@˛�

�

P.˛/ :

If we now apply the above rules to the master equation 9.15, for�! D 0, we get
the Fokker–Planck equation for the damped harmonic oscillator:

@P.˛; ˛�; t/
@t

D 

2

�

@

@˛
˛P C @

@˛� ˛
�P

�

C hni @2P

@˛@˛� : (9.46)

9.6 Time-Dependent Solution: The Method
of the Eigenfunctions

We try to solve the Fokker–Planck equation (9.46), using the following ansatz [4, 5]

P.˛; ˛�; t/ D exp.��t/Q.˛; ˛�/ : (9.47)

By replacing the above ansatz in the Fokker–Planck Equation, we get the following
result

LQ D ��Q; (9.48)

L � 

2

�

˛
@

@˛
C ˛� @

@˛� C 2

�

C hni @2

@˛@˛� :

Now we perform the following change of variables

˛ D
p

hni.x C iy/; (9.49)

Q.˛/ D exp �1
2

	

x2 C y2



N.x; y/ :

With the above transformation, the eigenvalue equation (9.48) becomes just the
well-known Schrödinger equation for the two-dimensional isotropic harmonic
oscillator. The eigenfunctions and eigenvalues are

Nnx ;ny D Knx ;ny exp

�

�1
2

	

x2 C y2



�

Hnx.x/Hny.y/ ; (9.50)

	 D 4�


C 2 D 2nx C 1C 2ny C 1 ;
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where nx and ny are integer numbers, so the solution now becomes

Pnx ;ny D Knx ;ny exp
˚�.x2 C y2/

�

Hnx.x/Hny.y/ exp
h

�
2

	

nx C ny



t
i

: (9.51)

We calculate the normalization constant Knx ;ny from the normalization of the P
distribution

Z

d2˛

�
P.˛; t/ D 1;

and the properties of the Hermite polynomials

Z 1

�1
dxHn.x/Hm.x/ exp.�x2/ D ınm2

nnŠ
p
�; (9.52)

H0.x/ D 1 ;

we write

1

�
Knx ;ny hni

Z

dx exp.�x2/Hnx.x/
Z

dyHny.y/ exp.�y2/ exp
h

�
2
.nx C ny/t

i

D 1

�
Knx ;ny hniınx;0ıny;0 exp

h

�
2
.nx C ny/t

ip
�

p
� D 1 ;

so that K00 D 1
hni and P00 D 1

hni exp
�� 1

2
.x2 C y2/

�

, which correspond to the time
independent steady-state solution with the � D 0 eigenvalue. Going back to the ˛
variables

lim
t!1 P.˛; ˛�; t/ D P00 D 1

hni exp

�

�j ˛ j2
hni

�

;

which corresponds, as it should, to the P-representation of the thermal density
matrix.

9.6.1 General Solution

We now concentrate on the general solution of the Fokker–Planck equation, using
conditional probability densities such as P.˛; t j ˛0; 0/ with the initial condition

P.˛; 0 j ˛0; 0/ D ı2.˛ � ˛0/ : (9.53)
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Of course we notice that because

P.˛; t/ D
Z

d2˛0

�
P.˛; t j ˛0; 0/P.˛0; 0/ ;

the solution will have the form

P.˛; t j ˛0; 0/ D
X

nxny

Pnxny.x; y; t/Pnxny.x
0; y0; 0/

hniP00.x0; y0/
(9.54)

Now we explain why P.˛; t j ˛0; 0/ given by (9.54) is a general solution of the
Fokker–Planck equation (9.46).

In the first place, it consists of linear superposition of Pnxny.x; y; t/ solutions. So
we have only to verify that it satisfies the initial conditions.

Making use of another property of the Hermite polynomials

1
X

mD0

1

2mmŠ
p
�

exp.�x2/Hm.x/Hm.x
0/ D ı.x � x0/ ;

thus

Knx ;ny D 1
q

2nxnxŠ
p
�2nynyŠ

p
�

;

and the initial condition (9.53) is satisfied.

9.7 Langevin’s Equations

We now study the damped harmonic oscillator problem, in the Heisenberg picture,
with the initial reservoir operators interpreted as the quantum version of a stochastic
or Langevin force.

From the Hamiltonian (9.2), the Heisenberg’s equations for a and bj are [6]

da.t/

dt
D �i!a.t/ � i

X

j

gjbj.t/ ; (9.55)

dbj.t/

dt
D �i!jbj.t/ � ig�

j a.t/ :

Integrating formally the second of (9.55), we get

bj.t/ D bj.t0/ exp
��i!j.t � t0/

� � ig�
j

Z t

t0

dt0a.t0/ exp
��i!j.t � t0/

�

: (9.56)
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We insert (9.56) back in (9.55), to get

da.t/

dt
D �i!a.t/ � i

X

j

gjbj.t0/ exp
��i!j.t � t0/

�

(9.57)

�
X

j

j gj j2
Z t

t0

dt0a.t0/ exp
��i!j.t � t0/

�

:

The second term of the r.h.s. of (9.57) represents the fluctuating term, independent
from the system oscillator variable and the third term is a back reaction to the
oscillator.

We now want to eliminate the fast time varying terms and introduce a rotating
frame by defining A.t/ D a.t/ exp.i!t/ with

�

A.t/;A.t/�
� D 1, so (9.57) can be

written now as

dA.t/

dt
D �

X

j

j gj j2
Z t

t0

dt0A.t0/ exp
��i.!j � !/.t � t0/

�C F.t/;

F.t/ D Noise Operator D �i
X

j

gjbj.t0/ exp
��i!j.t � t0/

�

exp i!t :

As, for a thermal bath hbji D 0, therefore hF.t/iB D 0.
We follow the same procedure as in the previous section, that is, make the

Markov approximation, convert the discrete sum into an integral and arrive to the
following result

dA.t/

dt
D �

2
A.t/C F.t/ : (9.58)

On the average (9.58) behaves classically

dhA.t/i
dt

D �
2

hA.t/i : (9.59)

Equation (9.58) is called generically the Langevin equation for the damped
harmonic oscillator. The original idea came from the study of Brownian motion,
where the particles in a liquid suffer from the rapid impact of the liquid molecules
on the Brownian particle, having as a net effect, a rapidly time varying force.

We have to point out that, although averaging (9.58) over the bath variables make
the fluctuating force disappear, F.t/ plays a very important role of preserving the
commutation relations, in other words if the equation dA.t/

dt D � 

2
A.t/ were true,

then we would have A.t/ D A.t0/ exp � 

2
t and therefore

�

A.t/;A.t/�
� ! 0, thus

violating quantum mechanics.
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9.7.1 Calculation of the Correlation Function
hF.t0/F.t00/�iB

According to the definition of F.t/, we can write

hF.t0/F.t00/�iB D
X

i

X

j

gig
�
j hbib

�
j i exp

�

i!.t0 � t00/
�

exp
�

i.!jt
00 � !it

0/
�

(9.60)

D
X

i

j gi j2 hbib
�
i i exp

�

i!.t0 � t00/
�

exp
��i!i.t

0 � t00/
�

D
Z

d!0D.!0/ j g.!0/ j2 �hn.!0/i C 1
�

exp
�

i.! � !0/.t0 � t00/
�

D  Œhn.!/i C 1� ı.t0 � t00/ :

In a similar calculation, one gets

hF.t0/�F.t00/iB D hn.!/iı.t0 � t00/ : (9.61)

9.7.2 Differential Equation for the Photon Number

The Heisenberg equation for the photon number can be written as

dA�A

dt
D �

X

j

j gj j2 A�.t/
Z t

t0

dt0A.t0/ exp
�

i.! � !j/.t � t0/
�

(9.62)

�i
X

j

gjA
�.t/bj.t0/ exp

�

i.! � !j/.t � t0/
�C adj :

Making the Markov approximation, transforming the sum into an integral, we get
the following Langevin equation

dA�A

dt
D �A�A C F0

A�A; (9.63)

F0
A�A D i

X

j

g�
j A.t/b�j .t0/ exp

��i.! � !j/.t � t0/
�C adj :

It is simple to show that hF0
A�A

i D hni, so that is more convenient to define a
noise operator with zero average FA�A D F0

A�A � hni, so that

dA�A

dt
D �A�A C hni C F0

A�A ; (9.64)
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9.8 Other Master Equations

9.8.1 Two-Level Atom in a Thermal Bath

We attack here a different problem, but formally similar to the damped harmonic
oscillator.

Consider a two-level atom interacting with a reservoir of harmonic oscillators.
Physically, this could, for example, represent an atom decaying irreversibly when
interacting with infinite vacuum modes of the electromagnetic field.

The Hamiltonian of this problem is

H D „!
2
�z C „

X

l

!lb
�
l bl C „

X

l

.glb
�
l � C g�

l bl�
�/ : (9.65)

The derivation of the master equation for the atom can be derived exactly as in
the case of the damped harmonic oscillator. The result gives back (9.15), with the
substitution

a ! �

a� ! �� :

It then reads

de�A

dt
D �

2
.1C hn.!/i/.e�A.t/�

�� C ��� e�A.t/ � 2� e�A.t/�
�/ (9.66)

�
2

hn.!/i.e�A.t/��
� C ���e�A.t/ � 2��e�A.t/�/ :

Making use of the Pauli matrix properties

��� D 1

2
.1� �z/ ;

��� D 1

2
.1C �z/ ;

one can write a different version of the master equation (9.66)

de�A

dt
D .1C hn.!/i/�e�A.t/�

� C hn.!/i�f��A.t/� (9.67)

�e�A

�

1

2
C hn.!/i

�

� 

4
.e�A�z C �ze�A/
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The master equation written in the form (9.67) is suitable to calculate h�zi:
dh�zi

dt
D d

dt
Tr .e�A�z/ D Tr

�

de�A

dt
�z

�

; (9.68)

where we used the fact that e�z D �z.
By introducing the master equation in (9.68), and after some simple algebra, one

arrives to

dh�zi
dt

D � � 2
�

1

2
C hn.!/i

�

h�zi : (9.69)

The solution of (9.68) is

h�zi.t/ D h�zi.0/ exp.�2 t/

�

1

2
C hn.!/i

�

(9.70)

� 1

2
�

1
2

C hn.!/i�


1 � exp.�2 t/

�

1

2
C hn.!/i

��

:

We now take the aa matrix element of (9.66) and get

d

dt
Pa.t/ D d

dt
�aa.t/ (9.71)

D �Pa.t/ ;

and the solution is Pa.t/ D Pa.0/ exp.� t/, which is the well-known result of E.
Wigner and V. Weisskopf [7] , predicting an exponential decay of an atom initially
in the excited state. We notice that here the single atom is interacting with an infinite
reservoir of electromagnetic modes in vacuum, and the predicted behavior here is
very different from the Rabi flopping of the atom interacting with a single mode
in a good cavity.

9.8.2 Damped Harmonic Oscillator in a Squeezed Bath

We start with (9.8), and write it out in detail, using the Hamiltonian of (9.5), thus
getting

d�A

dt
D �

Z t

0

dtKTrB
˚�

a�G.t/C G�.t/a
� �

a�G.tK/C G�.tK/a� �B ˝ �.tK/ (9.72)

� �a�G.t/C G�.t/a
�

�B ˝ �.tK/ �a�G.tK/C G�.tK/a�
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� �a�G.tK/C G�.tK/a� �B ˝ �.tK/ �a�G.t/C G�.t/a
�

C �B ˝ �.tK/ �a�G.tK/C G�.tK/a� �a�G.t/C G�.t/a
��

:

Using the property

hG.tK/G.t/i D hG.t/G.tK/i ; (9.73)

hG�.tK/G.t/i D hG�.t/G.tK/i� ;

hG.tK/G�.t/i D hG.t/G�.tK/i� ;

hG�.tK/G�.t/i D hG�.t/G�.tK/i ;

we can write

d�A.t/

dt
D I1

�

a�a��A C �Aa�a� � 2a��Aa�
�

(9.74)

CI2 Œaa�A C �Aaa � 2a�Aa�

CI3
�

a�a�A C �Aa�a � 2a�Aa�
�

CI4
�

aa��A C �Aaa� � 2a��Aa
�

where we defined

I1 D
Z

dtKhG.t/G.tK/i ; (9.75)

I2 D
Z

dtKhG�.t/G�.tK/i ;

I3 D
Z

dtKhG.t/G�.tK/i ;

I4 D
Z

dtKhG�.t/G.tK/i :

We will calculate in detail one of them, for example I1

I1 D
Z

dtKhG.t/G.tK/i ; (9.76)

D
Z

dtK
X

k;kK
gkgkKexp Œi.! � !k/t� exp Œi.! � !kK/tK� hbkbkKi ;

D
Z t

0

dtK
X

k;kK
gkgkKexp Œi!.t C tK/� exp Œ�i.!kt C !kKtK/� hbkbkKi :
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Now, we consider the two-mode squeezing correlation

hbkbkKi D hbkb�kiıkK;�k D M (9.77)

placed symmetrically around the system frequency !, so

!˙k D ! ˙�;

then, converting the sum into a frequency integral, with a density D, we can write

I1 D M
Z 1

0

d�D.! C�/g2.! C�/

Z t

0

dtKexp Œ�i�.t � tK/�

If we assume that the functions D and g are slowly varying with frequency, then
the time-dependent result after the frequency integration is sharply peaked and we
can set t ! 1, without much error, getting ı.�/ and a small frequency shift. The
result then reads

I1 D 

2
M C iı1 ; (9.78)

with

 D 2�D.!/g.!/2; (9.79)

ı1 D P
Z 1

�1
d�

�
D.�C !/g2.�C !/M

In a similar way, we obtain the other integrals

I2 D 

2
M� � iı1 ; (9.80)

I3 D 

2
.N C 1/C iı2 ; (9.81)

I4 D 

2
N � iı2 ; (9.82)

with

hb�kbkKi D Nık;kK : (9.83)

If we compare the above results with the average corresponding to the two-mode
squeezed vacuum, we readily get

N D sinh2 r; (9.84)

M D � exp.i
/ sinh r cosh r ;
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obeying the relation

p

N.N C 1/ D
p

sinh2 r cosh2 r Dj M j : (9.85)

Ignoring the small frequency shifts ı1 and ı2, we finally write the master equation
for the damped harmonic oscillator in a squeezed vacuum

d�

dt
D 

2
.N C 1/

	

2a�a� � a�a� � �a�a



(9.86)

C

2
.N/

	

2a��a � aa�� � �aa�



C

2
.M/

�

2a��a� � a�a�� � �a�a�
�

C

2
.M�/ .2a�a � aa� � �aa/ :

In the particular case of a thermal reservoir N ! hni;M ! 0, and we
recover (9.15).

This master equation is expected to give a correct description of a system
driven by noise that comes from the squeezed vacuum, provided the squeezing is
reasonably constant over the bandwidth of the system.

The above condition has to be satisfied, because if D, k, M are slowly varying
functions of �, then the frequency integral approaches a ı-function in time and we
are justified to set the upper limit to 1.

9.8.3 Application: Spontaneous Decay in a Squeezed Vaccum

Once more, in the master equation [8, 9], we replace

a ! �; a� ! �� ; (9.87)

to study atomic decay, getting

d�

dt
D 

2
cosh2 r

	

2���� � ���� � ����
 (9.88)

C

2
sinh2 r

	

2���� � ���� � ����


� exp.i
/ sinh r cosh r.�����/

� exp.�i
/ sinh r cosh r.���/:

In the above equation, we used the property �2 D ��2 D 0.
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If we take the expectation value of

�x D � C ��

2
; (9.89)

�x D � � ��

2i
;

�z D .2��� � 1/ ;
we get the following differential equations

�
h�xi D �

2
exp.2r/h�xi � �xh�xi ; (9.90)

�
h�yi D �

2
exp.�2r/h�yi � �yh�xi ; (9.91)

�
h�zi D �.2 sinh2 r C 1/h�zi �  � �zh�zi �  : (9.92)

As we can see, for large squeezing, both x and z become large, and y very
small.

On a time scale short compared to �1
y ; but larger than �1

x and �1
z , we get

h�xi ! 0; h�zi ! � 1

2 sinh2 r C 1
: (9.93)

Problems

9.1 The Dirac delta function can be defined as

ı.!0 � !/ D 2

�
Limt!1

sin2
h

.!0�!/t
2

i

.!0 � !/2t
:

Prove that

(a)
Z 1

�1
ı.!0 � !/d! D 1

(b)

Z !2

!1

ı.!0 � !/.!/d! D f .!0/;

with !1 < !0 < !2:
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9.2 Prove that the following are acceptable definitions or representations of the
Dirac delta function

(a)

ı.!0 � !/ D 1

2�
LimT1;T2!1

Z T2

�T1

expŒi.!0 � !/t�dt;

(b)

ı.!0 � !/ D LimT!1
�

sin.!0 � !/T

.!0 � !/�
�

;

(c)

ı.!0 � !/ D 1

�
Lim"!0

"

.!0 � !/2 C "2
:

9.3 Write down the Fokker–Planck equation of the damped harmonic oscillator in
a squeezed bath, starting from (9.86).

9.4 The master equation

�
� D A

2
.2a��a � aa�� � �aa�/ � C

2
.a�a�C �a�a � 2a�a�/

represents the laser theory in the lowest order approximation, where A is the gain
and C the cavity loss.

Prove that the corresponding Fokker–Planck equation is

@P

@t
D �A � C

2

�

@

@˛
˛ C @

@˛� ˛
�
�

P C A @2P

@˛@˛� :

9.5 Generalizing the results of the Problem 9.4, we take now the second- order
Laser theory. For the following master equation

d�f

dt
D �A

2
faa�

"

�f �
�

g



�2
	

aa��f C 3�f aa�



#

C
"

�f �
�

g



�2
	

�f aa� C 3aa��f



#

aa�

�2a�
"

�f � 2

�

g



�2
	

aa��f C �f aa�



a

#

g

�C

2

	

a�a�f C �f a
�a � 2a�f a

�



;
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show that the corresponding Fokker–Planck equation is

@P

@t
D �1

2

@

@˛

�

.A � C/ � 4A
g2

2
j ˛ j2

�

˛P � A @P

@˛�

�

�1
2

@

@˛�

�

.A � C/ � 4A
g2

2
j ˛ j2

�

˛�P � A@P

@˛

�

:

Notice that we regain the results of the Problem 9.4 when we neglect the g2 terms.

9.6 Show for the damped harmonic oscillator that if one assumes initially a
minimum uncertainty state, then at t D t

�q.t/�p.t/ D „
2
Œ1C 2hn.!/i.1� exp.� t//�
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Chapter 10
Resonance Fluorescence

In this chapter, we study the scattered light from a two-level atom illuminated with
a continuous field.

The theory of spontaneous emission was originally developed by
Weisskopf and Wigner [1]. However, the sidebands for coherent single-mode
fields were found by Mollow in the 1960s [2].

The physical origin of the sidebands in the resonance fluorescence spectrum can
be nicely seen using the dressed states [3].

10.1 Background

We assume a two-level atom driven by a continuous monochromatic field. The atom
scatters the light in all directions, as shown in the Fig. 10.1.

For a weak incident field, the spectrum, as we shall see in some detail, exhibits a
single peak much narrower that the natural linewidth of the atomic transition. As we
increase the field, this spectrum splits into three peaks consisting in a central peak
at the laser frequency and two sidebands symmetrically placed at ˙Rn with respect
to the center.

When the light intensity is very weak and the atom is initially in the ground state
j bi, it absorbs and scatters a single photon, whose frequency is identical to the laser
frequency !L , in other words

S.!/ D S0ı.! � !L/ ; (10.1)

which is just the Rayleigh scattering.
In practice, however, the laser is not perfectly monochromatic, so that the

scattered spectrum will have a narrow but finite (non-zero) linewidth.

© Springer International Publishing Switzerland 2016
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Fig. 10.1 Diagram showing
the interaction between an
atomic beam and a
Laser-generating resonance
fluorescence

Fig. 10.2 Energy diagram
showing the origin of the
three frequencies in
resonance fluorescence,
corresponding to the central
peak and the two sidebands

Now, if we increase the laser power, the sidebands that appear in the spectrum
can be understood intuitively, using the dressed picture description of the atom–field
interaction, as we did in the Chap. 8.

In the resonant case, we saw that

E1n D „.n C 1

2
/C „g

p
n C 1 ; (10.2)

E2n D „
�

n C 1

2

�

� „g
p

n C 1 ;

thus, the energy separation between the two levels is

Rn.ı D 0/ D 2g
p

n C 1 : (10.3)

This is described in the Fig. 10.2.
As we can see from the dressed level picture, besides the transition at the laser

frequency !L, it is also possible to have transitions at ! D !L ˙ Rn, which
correspond to the two sidebands.

The details of the heights and widths of the peaks requires a full quantum theory,
including atomic losses.
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10.2 Heisenberg’s Equations

We begin with the Hamiltonian: [4]

H D HA C Hr � er � E ; (10.4)

describing the interaction of the radiation field with a single electron atom.
If we consider many modes for the field, we can generalize the Jaynes–

Cummings model, described in the Chap. 8, as

H D Hr C „!ab

2
�z � i„

X

k;�

gk;�.�C C ��/.ak;� � a�k;�/ ; (10.5)

where Hr is the free multimode radiation energy, and the interaction terms are a bit
different now, since we are taking traveling waves rather than standing waves. Thus,
we use the quantized field E described in the Chap. 3. Also, k is the wave-vector
and � the polarization, and

gk;� �
r

!k

2„"0v erab � ek;� ; (10.6)

with

Œ�C; ��� D �z ; (10.7)

Œ�z; �˙� D ˙2�˙ : (10.8)

Also, one has

h

ak;�; a
�

kK;�K
i

D ı
.3/

k;kK ı�;�K : (10.9)

The Heisenberg Equations of motion for the operators are

�
ak;� D �i!kak;� C gk;�.�C C ��/ ; (10.10)

�
�� D �i!ab�� C

X

k;�

gk;��z.ak;� � a�k;�/ ; (10.11)

�
�z D 2

X

k;�

gk;�.�� � �C/.ak;� � a�k;�/ : (10.12)

Both ak;� and �� have basically a positive frequency temporal dependence and
�z varies slowly in time, thus making use of the rotating wave approximation, we
can neglect the �C and a�k;� terms from the first two equations, respectively, and the
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counter-rotating terms ��ak;� and �Ca�k;� from the third one, writing a simplified
version of (10.10), (10.11), and (10.12)

�
ak;� D �i!kak;� C gk;��� ; (10.13)

�
�� D �i!ab�� C

X

k;�

gk;��z.ak;�/ ; (10.14)

�
�z D �2

X

k;�

gk;�.��a�k;� C �Cak;�/ : (10.15)

We can rewrite the last two equations as

�
�� D �i!ab�� � i

„d � �zEC.t/ ; (10.16)

�
�z D �2i

„ d � ���E�.t/� �CEC.t/
�

; (10.17)

with

EC.t/ D i
X

k;�

s

„!k

2"0v
ak;�.t/ek;� ; (10.18)

d D erab:

Integrating (10.13), we get

ak;�.t/ D ak;�.0/ exp.�i!kt/

Cgk;�

Z t

0

dt1��.t1/ exp i!k.t1 � t/ : (10.19)

Thus, replacing the above result in (10.18), we get

EC.t/ D EC
0 .t/C EC

RR.t/ ; (10.20)

where

EC
0 .t/ D i

X

k;�

s

„!k

2"0v
ak;�.0/ exp.�i!kt/ek;� ; (10.21)

EC
RR.t/ D i

X

k;�

s

„!k

2"0v
gk;�

Z t

0

dt1��.t1/ exp Œi!k.t1 � t/� ek;� : (10.22)
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The first term EC
0 .t/ is the solution of the homogeneous Maxwell equation and

corresponds to the field at the position of the atom as if the atom was not there. On
the other hand, the second term EC

RR.t/ represents the influence of the atom or, said
in different words, the radiation reaction field of the electric dipole point.

Substituting (10.21) and (10.22) in (10.20), we get

EC.t/ D i
X

k;�

s

„!k

2"0v
ak;�.0/ exp.�i!kt/ek;� (10.23)

Ci
X

k;�

s

„!k

2"0v
gk;�

Z t

0

dt1��.t1/ exp Œi!k.t1 � t/� ek;� ;

but, using (3.36), that is changing the sum into an integral with the corresponding
density of modes

X

k;�

!
X

�D1;2

Z

dkk2
Z

sin 
d

Z

d'
v

.2�/3
; (10.24)

we can write

.EC
RR.t//z D i

X

k;�

!k

2"0v
.d � ek;�/ek;�

Z t

0

dt1��.t1/ exp Œi!k.t1 � t/� (10.25)

D 2i
Z

dkk2
Z

d'
!k

2"0v

v

.2�/3
j d j

Z

cos2 
 sin 
d


�
Z t

0

dt1��.t1/ exp Œi!k.t1 � t/� ;

where we choose the dipole moment along the z-axis, so that d � ek;� Dj d j cos 
 ,
as shown in Fig. 10.3.

If we take the lowest-order approximation for ��.t/ and performing the 

integral, we get

�

EC
RR.t/

�

z D 2i j d j ��.t/ exp.�i!abt/

3.2�/2"0c3

Z

d!!3
Z

dt1 exp i.! � !ab/.t1 � t/ :

(10.26)

We calculate now the above time integral, with the change of variable �� D t1�t:

Z

dt1 exp Œi.! � !ab/.t1 � t/� (10.27)

D
Z t

0

d� exp Œi.! � !ab/�� t ! 1!�ı.! � !ab/ :
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Fig. 10.3 The atomic dipole
and k vector of the electric
field in polar coordinates

The final result for the
�

EC
RR.t/

�

z
field is

�

EC
RR.t/

�

z D 1

4�"0

2i j d j !3ab

3c3
��.t/ ; (10.28)

(in CGS units 1
4�"0

D 1), and the differential equations for the Heisenberg operators
now become

�
�� D �i.!ab � iˇ/�� � i

„d � �zEC
0 .t/ ; (10.29)

�
�z D �2ˇ.1C �z/� 2i

„ d � ���E�
0 .t/� �CEC

0 .t/
�

; (10.30)

with

ˇ � 1

4�"0

2 j d j2 !3ab

3„c3
: (10.31)

10.3 Spectral Density, and the Wiener–Khinchine Theorem

If one has a random process y.t/, an interesting characteristic of this process is its
spectrum.

We may define a Fourier Transform

y.t/ D
Z 1

�1
�
y.!/ exp.�i!t/d! ; (10.32)
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which, in principle, can be inverted as

�
y.!/ D 1

2�

Z 1

�1
y.t/ exp.i!t/dt : (10.33)

We also define a spectral density or just plain spectrum, as the expectation value
of j �

y.!/ j2

S.!/ D hj �
y.!/ j2i ; (10.34)

whose physical meaning is the fluctuation strength associated with a definite
frequency component.

However, a word of caution. If one is dealing with a stationary process, invariant
under a translation of the time origin, then y.t/ does not go to zero for t ! ˙1,
and therefore, this function is not square integrable and the Fourier transform does
not exist in the usual sense. We will consider them as symbolic formulas, which can
be given rigorous mathematical meaning in an enlarged functional space.

However, Wiener observed that the functions

�.�/ D Lim
T!1

1

2T

Z T

�T
y�.t/y.t C �/dt (10.35)

and

�.!/ D 1

2�

Z 1

�1
� .�/

exp.i!�/ � 1

i�
d� (10.36)

do exist.
One can define an alternative spectrum as

S.!/ D d�.!/

d!
D 1

2�

Z 1

�1
exp.i!�/� .�/d� : (10.37)

One can also invert the above formula to get

�.�/ D
Z

exp.�i!�/S.!/d! : (10.38)

In order to understand the relation between the two definitions of spectra (10.34)

and (10.37), we calculate the ensemble average of
�
y

�
.!/

�
y.!K/

h�
y

�
.!/

�
y.!K/i D 1

.2�/2

Z Z 1

�1
hy�.t/y.tK/i exp i.!KtK� !t/dtdtK ; (10.39)
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and since y.t/ is stationary and ergodic (the time and ensemble averages are equal)

hy�.t/y.tK/i D �.tK� t/ ; (10.40)

where � is the two-time correlation function.
Substituting (10.40) in (10.39), and changing variable: tK� t D � , we get

h�
y

�
.!/

�
y.!K/i D 1

.2�/2

Z 1

�1
exp it.!K� !/dt

Z 1

�1
d��.�/ exp i!K� ; (10.41)

which implies

h�
y

�
.!/

�
y.!K/i D e� .!/ı.! � !K/ ; (10.42)

with

e� .!/ D 1

.2�/

Z 1

�1
d��.�/ exp.i!�/ : (10.43)

We notice that (10.42) is telling us that the generalized Fourier components are
uncorrelated.

On the other hand, (10.43) is giving us a measure of the strength of the
fluctuations at a given frequency; thus, we may identify it with the spectrum

e�.!/ D S.!/ : (10.44)

We also notice that the singularity in (10.42) can be easily removed by integrat-
ing, over a small range containing !, in !K

S.!/ D Lim
�!!0

Z !C�!
2

!��!
2

d!Kh�
y

�
.!/

�
y.!K/i ; (10.45)

which is equivalent to (10.34).
The pair of formulas (10.37) and (10.38) are known as the Wiener–Khintchine

theorem, which tells us that for a stationary random process, the autocorrelation
function and the power spectrum are a Fourier pair.

If we apply these ideas to the correlation of a quantum field, we get

S.!/ D 1

2�

Z 1

�1
exp.i!�/hE�.t/EC.t C �/issd� : (10.46)
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10.4 Emission Spectra from Strongly Driven Two-Level
Atoms

The power delivered to the field can be expressed as energy per unit time

P.t/ D dEnergy

dt
D d

dt

X

k;�

„!kha�k;�.t/ak;�.t/i (10.47)

D
X

k;�

gk;�„!k

h

ha�k;�.0/��.t/i exp.i!kt/C h�C.t/ak;�.0/i exp.�i!kt/
i

C2Re

8

<

:

X

k;�

g2k;�„!k

Z t

0

dt1h�C.t1/��.t/i exp Œ�i!k.t1 � t/� :

9

=

;

The first two terms in the above expression refer to the change in the energy of
the field because of stimulated energy and absorption. On the other hand, the last
term is the scattered radiation out of the incident beam as resonance fluorescence.

We shall concentrate in this last term:

D 2Re

8

<

:

X

k;�

!k cos2 
 j d j2
2v"0

Z t

0

dt1h�C.t1/��.t/i exp Œi!k.t � t1/�

9

=

;

:

(10.48)

D j d j2
3�2c3"0

Re
Z

!4d!
Z t

0

dt1h�C.t1/��.t/i exp Œi!.t � t1/� ;

where, in the last term, we took the limit v ! 1.
Defining

S.t/˙ � �˙.t/ exp i!Lt ; (10.49)

we can write

Ps.t/ D 1

4�"0

4 j d j2
3�c3

Re

Z
1

0

!4d!
Z t

0

dt1hSC

.t1/S�

.t/i exp Œi.! � !L/.t � t1/�

�

;

and assuming that the spectrum will be concentrated near ! Š !L, we approximate

Ps.1/ D 1

4�"0

4 j d j2 !4
3�c3

Re

Z
1

0

d!
Z

1

0

d�hS
C

.t0/S�

.t0 C �/i exp Œi.! � !L/� �

�

:

(10.50)



148 10 Resonance Fluorescence

In the last step, we also took the stationary limit t ! 1, and � � t � t1, so that
the correlation function hSC.t0/S�.t0 C �/i only depends on � , where t0 is a time
much longer than the radiative lifetime.

The power spectrum of the resonance fluorescence is defined as

S.!/ D 2Re

Z 1

0

d�hSC.t0/S�.t0 C �/i exp Œi.! � !L/��

�

: (10.51)

As we see, basically, we have to calculate the atomic correlation function [4]

g.�/ D hSC.t0/S�.t0 C �/i : (10.52)

On the other hand, we can write the Heisenberg’s equations for the atomic
operators, using the above definition of S.t/, and assuming, for simplicity, that the
incident field is linearly polarized parallel to the dipole d

�
S.t/ D �i.!ab � !L � iˇ/S.t/� id

„ �z.t/E
C
0 .t/ exp.i!Lt/ ; (10.53)

�
�z.t/ D �2ˇ Œ1C h�z.t/i� � 2i

„ d
�

S.t/E�
0 .t/ exp.�i!Lt/ � SC.t/EC

0 .t/ exp.i!Lt/
�

:

(10.54)

Making use of (10.54), we can find a differential equation for g.�/. It is simple to
verify that

dg.�/

d�
D �i..!ab � !L � iˇ//g.�/

CdE0
2„ hS.t0/�z.t0 C �/i ; (10.55)

where we took initially a coherent state for the driving field, so

EC
0 .t/ j  i D i

2
E0 exp.�i!Lt/ j  i : (10.56)

In order to have a closed set of equations, we further define

h.�/ D hSC.t0/�z.t0 C �/i (10.57)

and

f .�/ D hSC.t0/SC.t0 C �/i : (10.58)
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The equations satisfied by these three functions g; h; f are [4]

�

d

d�
C i.� � iˇ/

�

g.�/ D �

2
h.�/ ; (10.59)

�

d

d�
C 2ˇ

�

h.�/ D �2ˇhSC.t0/i ��g.�/��f .�/ ; (10.60)

�

d

d�
� i.�C iˇ/

�

f .�/ D �

2
h.�/ ; (10.61)

with

� D !ab � !L; (10.62)

� D dE0
„ : (10.63)

In the derivation of the above equations, we made use of the approximation [4]

�

SC.t0/;E�
0 .t C �/

� � 0 : (10.64)

We have to solve the above equations, with the following initial conditions

g.0/ D hSC.t0/S.t0/i D 1

2
Œ1C h�z.t0/i� ; (10.65)

h.0/ D hSC.t0/�z.t0/i D �hSC.t0/i ; (10.66)

f .0/ D hSC.t0/SC.t0/i D 0 ; (10.67)

where we used the properties of the Pauli-spin matrices.
The initial values h�z.t0/i and hSC.t0/i can be easily obtained from the steady-

state solutions of the equations

h�
S.t/i D �i.� � iˇ/hS.t/i C i�

2
h�z.t/i ; (10.68)

h �
� z.t/i D �2ˇ.1C h�z.t/i/��.hSC.t/i C hS.t/i/ ; (10.69)

obtained by taking the expectation values of the (10.53) and (10.54).
Equations (10.68) and (10.69) are usually referred to as the Optical Bloch

equations.
By setting the time derivatives to zero, we readily get

g.0/ D �2

.4�2 C 4ˇ2 C 2�2/
; (10.70)
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h.0/ D �.ˇ C i�/

.2�2 C 2ˇ2 C�2/
: (10.71)

In the particular case of high intensity (� � ˇ) and zero detuning, we get

g.�/ D 1

2

�

exp.�ˇ�/C exp.�3ˇ�
2
/ cos.��/

�

C .
ˇ

�
/2 ; (10.72)

and for the spectrum

S.!/ D 2�.
ˇ

�
/2ı.! � !L/C

ˇ

2

.! � !L/2 C ˇ2

C
3ˇ

8

.! � !L ��/2 C 9ˇ2

4

C
3ˇ

8

.! � !L C�/2 C 9ˇ2

4

: (10.73)

These results were obtained by Burshtein [6], Newstein [5] and Mollow [2].
The more general case, for any � and � can be also obtained either analytically

or numerically.
In Fig. 10.4, we show the resonance fluorescence spectrum, omitting the

ı-component for (a) � D 10ˇ, (b) � D 5ˇ, (c) � D 2ˇ. In all cases we
took � D 0: It is quite striking how the sidebands appear as we increase the laser
intensity at the positions !L ˙ �, with their heights in a ratio 3:1, with respect to
the central peak

Experimentally, the three peaked spectrum was observed by Schuda et al. [8],
Walther et al. [9], Ezekiel et al. [7], and a good agreement between theory and
experiment was found.

Fig. 10.4 Resonance
Fluorescence Spectrum for
the following parameters:
� D 10ˇ (a); � D 5ˇ (b);
� D 2ˇ (c); In all cases we
took � D 0 (After [4])
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10.5 Intensity Correlations

As we saw already, from (10.28), the field radiated by a two-level atom is, to a good
approximation, proportional to the atomic lowering operator at a retarded time

EC.r; t/ � �.t � r

c
/ ; (10.74)

and, if for the moment, we ignore the vector character of the field, the spectrum is
related to the first-order correlation function:

G.1/.r; tI r; t C �/ D hE�.r; t/EC.r; t C �/i : (10.75)

Now, we may consider the intensity measurements registered by photodetectors
at two different space–time points.

In the Chap. 6, we defined the joint probability density

p.r; t1I r; t2/ / G.2/.r1; t1I r2; t2/ (10.76)

D hE�.r1; t1/E � .r2; t2/EC.r2; t2/EC.r1; t1/i :

A Classical experiment dealing with this type of correlation is the Brown–Twiss
experiment [10]. We show the experimental setup in the Fig. 10.5.

A half-silvered mirror divides the incident beam in two identical beams, whose
intensities are recorded in the photodetectors P1 and P2. One takes the product of
I1.t/ and I2.t C �/ and averages over a time t, keeping the value of � fixed. Then,
one takes many different values for � .

If the two beams are independent, this average should be independent of � .
However, the observation of a small bump in the experimental curve, as shown in
Fig. 10.6, indicates that the photons have a distinct tendency to arrive in pairs, or
photon-bunching effect.

One could regard the effect as a result of the boson nature of the photons.

Fig. 10.5 Experimental
setup to measure intensity
correlations
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Fig. 10.6 Photon bunching
effect near � D 0

However, this is not quite true. In Chap. 6 we already discussed the negative
Brown–Twiss effect or photon-antibunching effect displaying an anticorrelation for
� D 0.

Carmichael and Walls [11] predicted for the first time that photon antibunching
should be an observable effect in resonance fluorescence.

In order to study this effect, we consider the joint probability density of
photodetection at a same point but two different times

p.r; tI r; t C �/ D p.r; t; t C �/ / G.2/.r; tI r; t C �/ : (10.77)

Once more, in the stationary regime, p.r; tI r; t C �/ is independent of t and is
proportional to the second-order atomic dipole correlation function

g.2/.�/ D h�C.t0/�C.t0 C �/��.t0 C �/��.t0/i ;
D hSC.t0/SC.t0 C �/S.t0 C �/S.t0/i : (10.78)

On the other hand, from the properties of Pauli’s spin matrices

SC.t0 C �/S.t0 C �/ D (10.79)

�C.t0 C �/��.t0 C �/ D 1

2
C �z.t0 C �/ ;

so, we can write

g.2/.�/ D 1

2
hSC.t0/S.t0/i C 1

2
hSC.t0/�z.t0 C �/S.t0/i :

D 1

2
g.0/C 1

2
G.�/ ; (10.80)

where

G.�/ � hSC.t0/�z.t0 C �/S.t0/i : (10.81)
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We now proceed in a similar way to the last section, namely, we calculate
differential equations for G.�/ and other correlation functions. Define

F.�/ � hSC.t0/SC.t0 C �/S.t0/i ; (10.82)

H.�/ � hSC.t0/S.t0 C �/S.t0/i : (10.83)

Using the Heisenberg equations for the atomic operator, we readily find three
differential equations for G;F;H

dG.�/

d�
D �2ˇg.0/� 2ˇG.�/ ��.F.�/C H.�// ; (10.84)

dF.�/

d�
D i.�C iˇ/F.�/C �

2
G.�/ ; (10.85)

dH.�/

d�
D �i.� � iˇ/F.�/C �

2
G.�/ ; (10.86)

with the initial conditions

G.0/ D hSC.t0/�z.t0/S.t0/i D �hSC.t0/S.t0/i D �g.0/ ; (10.87)

F.0/ � hSC.t0/SC.t0/S.t0/i D 0 ; (10.88)

H.0/ � hSC.t0/S.t0/S.t0/i D 0 : (10.89)

From (10.80), we immediately notice that

g.2/.� D 0/ D 0 ; (10.90)

thus, we see that there is an antibunching effect.
The exact solution for � D 0 is

g.2/.�/ D g.0/2
�

1 � exp.�3ˇ�
2
/.cos�K� C 2ˇ

2�Ksin�K�/
�

; (10.91)

with

�K�
r

�2 � ˇ2

4
: (10.92)

The behaviour of

g.2/.�/

g.0/2
D .g.2/.�//norm (10.93)
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Fig. 10.7 Second-order
intensity correlation
.g.2/.�//norm versus time, for
� D 5:0 (solid line),
� D 0:5 (dashed line). In
both cases, ˇ D 0:5

is shown in Fig. 10.7, where the solid line corresponds to � D 5 and the dotted line
to � D 0:5. In both cases we took ˇ D 0:5:

On the other hand,
�

g.2/.�/
�

norm can also be expressed as a photon number
correlation:

�

g.2/.�/
�

norm D hW n.t/n.t C �/ Wi
hn.t/i2 : (10.94)

For chaotic light,
�

g.2/.�/
�

norm D 2, that is the correlation is twice the random
background correlation, showing the tendency of photons to bunch together.

On the other hand, as we mentioned before, in resonance fluorescence and for
� D 0, antibunching occurs.

The physical interpretation of this effect is quite simple. Right after the detection
of the first photon, the atom is in the lower state and it requires a finite (non-zero)
amount of time to get back to the excited state and be able to emit the second photon.

Experiments verifying the antibunching effect in resonance fluorescence were
performed by Kimble et al. [12] and Leuchs et al. [13].

Lately, the influence of quantum interference on the resonance fluorescent
spectrum was studied when the system was in contact with coloured or white noise
[14–22]

Problems

10.1. Prove (10.72).
10.2. Prove (10.73).
10.3. Prove (10.91) for � D 0.
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Chapter 11
Quantum Laser Theory: Master Equation
Approach

In this chapter, we study the Laser Theory, with the master equation approach. We
include the influence of pump statistics.

For large fields interacting with atoms, the Semiclassical description, that is
considering the atoms quantum mechanically and the field classical, seems to be
adequate, to describe the most classical features, such as threshold, steady-state
intensity, etc. However, whenever quantum fluctuations are to be considered, like to
determine the laser linewidth, photon statistics, etc. we require the fully quantized
field.

The Hamiltonian of a two-level atom interacting with a single mode (cavity
mode) of the field is described by the Jaynes–Cummings Hamiltonian

H D „!ab

2
�z C „!a�a C „g.�Ca C ��a�/ ; (11.1)

within the dipole and rotating-wave approximations. It is convenient to split the
Hamiltonian into two terms

H D H1 C H2 ; (11.2)

where

H1 D „!
2
�z C „!a�a ; (11.3)

H2 D „ ı
2
�z C „g.�Ca C ��a�/;

with

ı � !ab � ! : (11.4)
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It is simple to see that ŒH1;H2� D 0, and when we go to the interaction picture,
the dynamics is governed by H2 � V: The time evolution operator can be exactly
computed as

U.�/ D exp.�i
V�

„ / D
1
X

nD0

.�i�
„ /

n

nŠ
Vn D

1
X

nD0

.�i�/n

nŠ

�

ı
2

ga
ga� � ı

2

�n

: (11.5)

It is simple to show that

�

ı
2

ga
ga� � ı

2

�2m

D
�

.' C g2/m 0

0 .'/m

�

; (11.6)

�
ı
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2

�2mC1
D
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ı
2
.' C g2/m g.' C g2/ma

ga�.' C g2/m � ı
2
.'/m

�

where ' � g2a�a C . ı
2
/2. It then follows that

U.�/ D

2

6

4

cos.�
p

' C g2/ � iı
2

sin.�
p
'Cg2/p

'Cg2
�ig

sin.�
p
'Cg2/p

'Cg2
a

�iga�
sin.�

p
'Cg2/p

'Cg2
cos.�

p
'/C iı

2

sin.�
p
'/p

'

3

7

5 : (11.7)

If the initial atom-field density operator is �.0/, after an interaction time � , will be

given by �.�/ D U.�/�.0/U�.�/ D U.�/�f .0/

�

1 0

0 0

�

U�.�/, assuming that initially

the atom is in the upper state factorizes with the field. By performing the matrix
product and tracing over the atom, that is adding up the diagonal elements, we find

�f .�/ D cos.��/�f .0/ cos.��/Cg2a�
�

sin.��/

�

�

�f .0/

�

sin.��/

�

�

a � M.�/�f .0/ ;

(11.8)

with � � g
p

a�a C 1, and we assumed zero detuning. M is the gain superoperator
acting on �:

11.1 Heuristic Discussion of Injection Statistics

We assume that a dense flux of atoms goes through an excitation region, and each
atom has a probability p of being excited from the ground state c to the upper level
a (See Fig. 11.1).

We further assume that the levels a and b are involved in the laser or maser
transition, and that the level b remains unpopulated. We also assume that the beam
has a regular distribution before arriving to the excitation region, so the number K
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Fig. 11.1 (a) An atom is excited from the level c to the upper level. The lasing transition occurs
between the a and b levels. (b) An atomic beam arrives to the excitation region where Rydberg
states (micromaser) or excited states (laser) are generated prior entering the cavity (micromaser)
or participating in the laser action (laser)

of the atoms which cross that region, during a time �t, is given by

K D R�t ; (11.9)

where R is the injection rate and �t is much larger than the time interval between
consecutive atoms.

This model may describe a system called a micromaser, in which case, one has a
beam of highly excited or Rydberg atoms crossing a high-quality microwave cavity,
with a couple of energy levels resonant with the microwave field inside the cavity. If
we assume that � is the interaction time of each atom with the cavity field, we may
use the same model to describe the excitation process of a laser, in which case � is
related to the atomic lifetime of the lasing levels. In the past, people neglected the
effects of pump statistics. However, some recent experiments in micromasers and
lasers showed that by controlling the pump noise, one could get a large reduction in
the photon number fluctuations. The probability for k atoms to be excited during a
time �t is given by

P.k;K/ D
�

K
k

�

pk.1 � p/K�k : (11.10)

The average number of excited atoms and the variance is given by

k D
kDK
X

kD0
kP.k;K/ D pK D r�t ; (11.11)

�k2 D .1 � p/k;:

with r � Rp:
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11.2 Master Equation for Generalized Pump Statistics

Let the interaction time between the atom and the field be � . Also, we assume that
the j-th atom is “injected” at the time tj. So the field, after interacting with the j-th
atom, can be written as (we skip the field subindex)

�.tj C �/ D M.�/�.tj/ : (11.12)

Now, if k atoms are excited, then

�.k/.t/ D Mk.�/�.0/ : (11.13)

Of course, if we do not know the number of atoms, but only probabilistically
by (11.10), we then have

�.t/ D
K
X

kD0

�

K
k

�

pk.1 � p/K�kMk.�/�.0/ (11.14)

D Œ1C p.M � 1/�K �.0/ ;

with K = Rt.
Differentiating (11.14), with respect to time, we get

d�.t/

dt
D r

p
ln Œ1C p.M � 1/� �.t/C L�.t/ : (11.15)

Equation (11.15) is our Generalized master equation. [1, 2]
In (11.15), we have added the cavity loss term denoted by L�.t/. This term, can

be borrowed from the quantum theory of damping, where the oscillator is our single
mode field interacting with a reservoir, at zero temperature. Thus,

L�.t/ D C

2
.2a�a� � a�a� � �a�a/ ; (11.16)

C D 1

tcav
D �

Q
;

Q being the cavity quality factor and tcav, the photon’s lifetime inside the cavity.
If the average photon number is sufficiently large and the distribution narrow,

one can expand (11.15) and get

d�

dt
D r.M � 1/�.t/� 1

2
rp.M � 1/2�.t/C L�.t/ : (11.17)
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If we now use the expression for M given by (11.8), we get

d�

dt
D r.1C p/



cos.��/� cos.��/C g2a�
�

sin.��/

�

�

�

�

sin.��/

�

�
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�
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2
/�

(11.18)

� rp

2
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a

�

sin.��/

�

�

ag C L� :

From the expression above, one can calculate �nn and �n;nC1 that will give us the
photon statistics and laser linewidth, respectively.

Finally, we notice that the two extreme cases are p D o, while pR D
constant, in which case the Bernoulli distribution becomes a Poissonian distribution,
corresponding to the random injection case and the usual Scully–Lamb laser theory,
whereas p D 1 corresponds to a regular injection of atoms.

The generalized master (11.15) was derived under a couple of approximations.
First, there is the course graining approximation ��

�t � d�
dt , such that during�t there

were many atoms injected into the interaction region, which is normally a good
approximation for lasers but could run into problems when dealing with a small
photon number, for example in a micromaser. The other approximation is that the
loss is independent of the gain, which may also lead to erroneous results when p ¤ 0

[3]. This latter assumption is exact in the Poissonian case.

11.3 The Quantum Theory of the Laser: Random Injection
. p D 0/

In the case of zero detuning, the time evolution operator 11.7 becomes

U.�/ D
2

4

cos g�
p

aa� �i
h

sin g�
p

aa�p
aa�

i

a

�ia �
h

sin g�
p

aa�p
aa�

i

cos g�
p

a�a

3

5 ; (11.19)

and one can write

�f .t C �/ D cos.
p

aa�g�/�f .t/ cos.
p

aa�g�/

C a�
"

sin.
p

aa�g�/p
aa�

#

�.t/

"

sin.
p

aa�g�/p
aa�

#

a : (11.20)
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To make a realistic model of a laser, we assume that the atoms have a distribution
of time they spend in the cavity. In the case of the two-level atom model, as in this
theory, the two levels decay at a rate  , and the time distribution is

P.�/ D  exp �� : (11.21)

Now, defining again a course time grain �t � h�i, we can write

.
d�f

dt
/gain � �f .t C�t/� �f .t/

�t
D r

�

�f .t C�t/� �f .t/
�

(11.22)

D �r�f .t/C r�
Z �t!1

0
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i

�.t/
h
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For a typical laser, the arguments of the sine and cosine are small, and one can
expand (up to 4-th order in g)

cos g�
p

aa� � 1 � g2�2

2
aa� C 1

24
g4�4aa�aa�::;

"

sin g�
p

aa�p
aa�

#

� g� � g3�3aa�

6
: : :

and replace into the master equation 11.22, getting

d�f
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D �A

2
faa�

�
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aa��f C 3�f aa�
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(11.23)
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a�a�f C �f a
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;

where

A � 2rg2

2
; (11.24)

B � 4g2

2
A;

C D �

Q:
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and to derive (11.23), we used the following integrals

Z

�2 exp.��/d� D 2

2
;

Z

�4 exp.��/d� D 24

4
:

The coefficient A is the gain, B the saturation and C the cavity loss.

11.3.1 Photon Statistics

We go back to the full non-linear theory.
We take the nm matrix elements of (11.22) and perform the time integrals, using



Z 1

0

d� exp.��/
�

cos g�
p

n C 1 cos g�
p

m C 1

sin g�
p

n C 1 sin g�
p

m C 1

�

(11.25)

D

 

1C . g

/2.n C m C 2/

2. g

/2
p

.n C 1/.m C 1/

!

1C 2. g

/2.n C m C 2/C . g


/4.n � m/2

;

getting

�

d�

dt

�

nm

D � N 0
nmA

1C Nnm
B
A
�nm C

p
nmA

1C Nn�1;m�1 B
A
�n�1;m�1 (11.26)

�C

2
.n C m/�nm C C

p

.n C 1/.m C 1/�nC1;mC1;

where A and B have already been defined and

N 0
nm D 1

2
.n C m C 2/C

1
8
.n � m/2B

A ; (11.27)

Nnm D 1

2
.n C m C 2/C

1
16
.n � m/2B

A ;

and we included, as usual, the cavity losses. This is the Scully–Lamb laser theory
[4].

For the photon statistics, we take the diagonal element of (11.27), getting

�

d�

dt

�

nn

D � A.n C 1/

1C .n C 1/BA
�nn C nA

1C n B
A
�n�1;n�1 (11.28)

�C.n/�nn C C.n C 1/�nC1;nC1:
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The term
h

A.nC1/
1C.nC1/ BA

i

�nn represents the gain for �nC1;nC1, due to stimulated

emission caused by the presence of the amplifying atoms, and the term C.n C
1/�nC1;nC1 is the loss on this level.

In steady state . d�
dt /nn D 0, and we get

�nC1;nC1 D
A
C

1C .n C 1/BA
�nn ; (11.29)

and the solution is

�nn D �00

�A
C

�n
Y

n
kD0

�

1C kB
A
��1

: (11.30)

When A
C < 1, the laser is below threshold, since �nn is decreasing monotonically

with n and the normalization condition gives us: ( kB
A � 1)

X

n

�nn D 1 D �00
X

n

�A
C

�n

D �00

1 � A
C

; (11.31)

and if we define A
C D exp.� „�

KBT /, then

�nn D
�

1 � A
C

��A
C

�n

; (11.32)

becomes the Bose–Einstein statistics for the black-body radiation. That is, the
laser below threshold behaves like an incandescent lamp, with a given temperature.

For the case A
C > 1, we use the exact formula (11.29) and get

�nn D �00

�A
C

�n
Y

n
kD1

�

1C kB
A
��1

: D �00

�A2

BC

�n
Y

n
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�A
B C k

��1

(11.33)

We calculate the average photon number

hni D
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X
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Fig. 11.2 Steady-state
photon statistics versus n, for
the cases below (a), at (b) and
above (c) threshold (After [4])

Well over the threshold hni ! A2

BC and the photon statistics

�nn � .exp �hni/ .hni/n
nŠ

(11.35)

that corresponds to a Poisson statistics.
The change in photon statistics below and above threshold is illustrated in the

Fig. 11.2.
We notice that for B

A � 1;

�nn D �00
Y

n
kD1

"
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;

�nn D �00
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kD1

"

A
C.1C kB

A /
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;

�nn � �00
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n
kD1

�A�kB
C

�

:

11.3.2 The Fokker–Planck Equation: Laser Linewidth

We start with the approximate master (11.23), and neglecting the non-linear terms,
we can use the rules described in (9.45), to write a Fokker–Planck Equation in terms
of the Glauber’s P distribution as

@P

@t
D �A � C

2

�

@

@˛
˛ C @

@˛� ˛
�
�

P C A @2P

@˛@˛� : (11.36)
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The non-linear term can be included in the Fokker–Planck equation, using a
clever trick [5] of observing that (11.36) is modified, according to (11.23) by

replacing P ! P
h

1 � 4g2

2
j ˛ j2

i

, getting

@P

@t
D �1

2

@

@˛

�

.A � C/ � 4A
g2

2
j ˛ j2

�

˛P � A @P

@˛�

�

(11.37)
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@˛�

�

.A � C/ � 4A
g2

2
j ˛ j2

�

˛�P � A@P

@˛

�

:

This equation has been extensively studied, particularly in connection with the
no lasing–lasing phase transition [6, 7].

For the linewidth purposes, the linear Fokker–Planck equation (11.36) is suffi-
cient. We go to polar coordinates

˛ D r exp i'

and get, neglecting the radial variations,

@P.
; t/

@t
D A
4hni

@2

@
2
P.
; t/ � D

2

@2

@
2
P.
; t/ : (11.38)

D is the phase diffusion constant and corresponds, as we shall see from the
Langevin theory, precisely to the Schawlow–Townes laser linewidth, when A � C,
that is not far from the threshold. The present fourth-order expansion loses its
validity well above threshold. It is interesting to observe that C is the empty cavity
linewidth, thus the formula

D D C

2hni (11.39)

shows that the linewidth is decreased by a factor hni�1.
These results were also calculated by Lax [8], Gordon [9] and Haken [10].

11.3.3 Alternative Derivation of the Laser Linewidth

We present, in this section, a different approach to the laser linewidth, which is
related to the off-diagonal elements of the field density matrix.

The expressions obtained here will be useful in calculating the quantum phase
fluctuations in a laser (Chap. 15).

We begin by rewriting the equation of motion of the off-diagonal elements �n;nCk,
in a form related to the diagonal elements. We introduce the following notation

�n;nK D �n;nCk � �n.k; t/ ; (11.40)
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where k is the distance from the main diagonal. From (11.26), and expanding to the
lowest order in B

A , we get

�
�n.k; t/ D �k2

8
B�n.k; t/ �

�

n C 1C k

2

��

A � B
�

n C 1C k

2

��

�n.k; t/ (11.41)
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A � B
�

n C k

2
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�n�1.k; t/

�C

�

n C k

2

�

�n.k; t/

CCŒ.n C 1/.n C k C 1/�
1
2 �nC1.k; t/ :

The first three terms represent the gain and the last two the loss in the cavity.
We assume a general solution of the form

�n.k; t/ D
X

s

's.n; k/ expŒ��.k/s t� ; (11.42)

where the �.k/s are the eigenvalues and 's.n; k/ the eigenvectors. As we will see,
the eigenvalues are either positive or zero.

In the case k D 0 (diagonal elements), the fact that the steady-state solution exists
implies that

�
.0/
0 D 0 : (11.43)

For the off-diagonal elements, one finds that �.k/s > 0, implying that the solution
(for k ¤ 0)

�n.k; t/ !
t!1 0 : (11.44)

Now, for the laser far above threshold, the lowest eigenvalue �.k/0 will be small,
and we look for a solution of the form

�n.k; t/ D Nk

�

Y

n
lD0

�A�lB
C

�

Y

nCk
mD0

�A�mB
C

�� 1
2

exp.��.k/0 t/ (11.45)

� p
�n;n�nCk;nCk exp.��.k/0 t/:

One finds [4] that to a very good approximation, the above differential equation
is satisfied for

�
.k/
0 D 1

2
k2D ; (11.46)
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for

D D C

2hni : (11.47)

Thus, the off-diagonal elements of the laser field are given by

�n;nCk.t/ D �n;nCk.0/ exp.��.k/0 t/ ; (11.48)

which back in the Schrödinger picture becomes

�n;nCk.t/ D �n;nCk.0/ exp.�i!t � �.k/0 t/ : (11.49)

As we did in Chap. 8, a one-mode stationary field is written as

E.t/ D ".a C a�/ sin kz ; (11.50)

so the statistical average will be

E.t/ D "
X

n
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n C 1C cc/ sin kz

D "
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t/ ; (11.51)

where

E0 D 2"A ; (11.52)

and

X

n

�n;nC1.0/
p

n C 1 D A exp.�i'/ : (11.53)

The decay of the electric field can be understood as a result of a random walk of
the ensemble average electric field because of the stochastic process that influences
the system. After a certain amount of time, the phase of the field will have diffused
to cover uniformly the whole 2� range. This will be seen in more detail in Chap. 15,
when dealing with the quantum phase.

Finally, the Fourier transform of the average electric field gives the laser spectrum
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D E20
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/2

#

; (11.54)

which is a Lorenzian with a full width at half maximum of D.
As a final note on this issue, the stochasticity of the phase of the laser field has

its origin on the spontaneous emission. Thus, if one could somehow control this
spontaneous emission, it would be possible to decrease the linewidth by a substantial
amount.

This subject will be treated in some detail in the Chap. 13, when dealing with
the correlated emission laser and the methods of quenching the phase diffusion in a
laser.

11.4 Quantum Theory of the Micromaser: Random injection
. p D 0/

11.4.1 Generalities

As we have seen in the previous chapter, one of the simplest and most fundamental
systems to study radiation–matter coupling is a single two-level atom interacting
with the one-mode electromagnetic field. For a long time, this model remained
only a theoretical scheme, as it was not possible to test experimentally the
effects predicted by the model. These effects, among others, are for example the
modification of the spontaneous emission rates of a single atom, in a resonant cavity,
the oscillatory exchange of energy between the atom and the field, the disappearance
and quantum revival of the Rabi notation.

However, the situation has changed over the last decade mainly because of two
important factors. The introduction of highly tunable Dye Lasers, which can excite
large populations of highly excited atomic states, with a high principal quantum
number n, called Rydberg states. Or these atoms are referred to as the Rydberg
atoms.

Such excited atoms are very suitable for the atom-radiation experiments because
they are very strongly coupled to the radiation field, as the transition rates between
neighbouring levels scale with n4. Also, these transitions are in the microwave
region, where photons can live longer, thus allowing longer interaction times.
Finally, Rydberg atoms have long lifetimes, with respect to spontaneous decay [11–
13]. The strong coupling of the Rydberg atom with the field can be physically
understood because the dipole moment scales with the atomic radius that scales
with n2, thus when dealing with n � 70, we are talking about very large dipole
moments.

To understand how the spontaneous emission rate is modified by a cavity, one
has to study the effects of the cavity walls on the mode density. The continuum is
replaced by a discrete set of modes, one of which may be resonant with the atom. In
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this case, the spontaneous decay rate is enhanced by a factor

c

f
D 2�Q

vc!
3
ab

; (11.55)

with c; f being the spontaneous decay rate with the cavity and in free space,
respectively. However, when the cavity is detuned, the decay rate will decrease. The
atom cannot emit, as it is not resonant with the cavity. Both effects of reduction and
enhancement of spontaneous emission have been observed.

The reduction was observed by Drexhage et al. (For a review, see Drexhage [14]),
where the fluorescence of an active medium is observed, near a mirror. Also, similar
effects were observed by De-Martini et al. [15] and Gabrielse and Dehmelt [16].

11.4.2 The Micromaser

A one-atom maser is described in the Fig. 11.3.
A collimated beam of Rubidium atoms is passed through a velocity selector.

Before entering a high Q superconducting microwave cavity, the atom is excited to
a high n-level and converted in a Rydberg atom.

Micromaser cavities are made of Niobium and cooled down to a small fraction
of a degree Kelvin.

The Rydberg atoms are detected in the upper or lower maser levels by two field
ionization detectors, and the fields are adjusted so that in the first detector, only the
atoms in the upper state are ionized.

Maser operation was demonstrated by tuning the cavity to the maser transition
and recording, simultaneously, the flux of atoms in the excited state [11].

As shown in the Fig. 11.4, on resonance, a reduction of the signal is observed, for
relatively small atomic fluxes (1750 atns). Higher fluxes produce power broadening
and a small frequency shift.

Also, the two-photon micromaser was experimentally demonstrated [17].

Fig. 11.3 The experimental
setup of a Micromaser (After
[10])
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Fig. 11.4 Maser action of
one-atom maser is manifested
as a decrease of the number
of atoms in the excited state.
As the atomi flux is
increased, there is a small
frequency shift and power
broadening (After [10])

In the quantum theory of the micromaser [18], the atomic spontaneous emission
rate into the free space modes is neglected. Also, because high-quality cavities have
been achieved, one assumes that the photon lifetime is much longer than the transit
time through the cavity, implying that we may neglect the cavity damping while the
atom is in the cavity. Also, as the flux is kept low, the time interval between the
atoms is much longer than the flight time and hence the cavity is empty most of the
time.

Mathematically, the time evolution of the field in the micromaser is given
by (11.18). For simplicity, we study the case p D 0. In this case, for the diagonal
matrix elements, the master equation becomes .�nn.t/ D p.n; t//

dp.n; t/

dt
D r

h

� sin2.g
p

n C 1�/p.n; t/C sin2.g
p

n�/p.n � 1; t/
i

(11.56)

CC.hnith C 1/ Œ.n C 1/p.n C 1; t/ � np.n; t/� (11.57)

CChnith Œnp.n � 1; t/� .n C 1/p.n; t/� ;

where hnith is the average thermal photon number.
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At steady state, and considering detailed balance

h

r sin2.g
p

n C 1�/C Chnith.n C 1/
i

po.n/ (11.58)

D C.hnith C 1/.n C 1/po.n C 1/;

where po.n/ is the steady-state solution of (11.56).
The solution of the recursion relation (11.58) is [17]

po.n/ D po.0/

� hnith
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kD1

2
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41C
nex sin2.
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k
nex
/
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7

5 ; (11.59)

where po.0/ is the normalization constant determined by the condition

1
X

nD0
po.n/ D 1;


 � p
nexg�;

nex � r

C
:

A typical photon number distribution is shown in the Fig. 11.5.
Also, with po.n/, we can get the variance, that is shown in the Fig. 11.6.
The sub-Poissonian regions are due to the multipeak structure of the photon

distribution.

Fig. 11.5 Steady-state
photon statistics, for
nex D 200; hnith D 0:1 and

 D 3�; 15� (After [17])
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Fig. 11.6 Normalized
standard deviation

� D
q

.�n/2

hni

as a function of

: A Poissonian distribution
corresponds to
� D 1; nex D 200 (After
[17])

11.4.3 Trapping States

Under the Jaynes–Cummings dynamics, the time evolution of the atom-field
coupling is given, in the interaction picture (on resonance) by [18]:
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n C 1/ j n C 1i
i

:

�j fai j aiC j fbi j bi:
If, for some n D N, we have g�

p
N D q�; q = integer, then the downward

coupling from j Ni !j N � 1i vanishes, and the regions above and below j Ni are
disconnected. This state is referred to as the downtrapping state.

Similarly, for an integer number p, the condition

p
M C 1g� D p� (11.61)

corresponds to the upwards trapping condition.



174 11 Quantum Laser Theory: Master Equation Approach

Trapping states separate the whole Fock space in disconnected blocks, and, if the
initial states of the field is within one of this blocks, the whole dynamics will take
place within the block.

However, this is a simple picture without losses, and having only no atoms or, at
most one atom inside the cavity.

Both cooperative and dissipative effects will result in leaks in the trapping blocks,
which, after some time, are not able to trap any longer.

Pure states can be generated, at steady state, within these blocks, by the field
mode

To see this, we assume for the field a pure state within the trapping block

j f i D
nDM
X

nDN

Sn j ni ; (11.62)

where the number states j Ni and j Mi states are the lower and upper bounds of
the trapping block.

Now, we look for possible steady states for the field. This means that after the
interaction with the next atom crossing the cavity, the state of the field will be the
same, up to some global phase factor

j f i.˛ j ai C ˇ j bi/ H) exp i� j f i.˛0 j ai C ˇ0 j bi/ ; (11.63)

and making use of (11.60) we get

˛0 exp i� j f i Dj fai ; (11.64)

ˇ0 exp i� j f i Dj fbi;

which yields the following recursion relations

Sn D iˇ sin.g�
p

n C 1/

˛0 exp i� � ˛ cos.g�
p

n C 1/
SnC1 ; (11.65)

Sn D �i
ˇ0 exp i� � ˇ cos.g�

p
n C 1/

˛ sin.g�
p

n C 1/
SnC1:

Equations (11.65) have to be satisfied simultaneously, for all n within the block.
These relations are satisfied under two possible sets of conditions:

(a)

exp i� D ˙1 ; (11.66)

˛0 D �˛;
ˇ0 D ˇ:
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(b)

exp i� D ˙1 ; (11.67)

˛0 D ˛;

ˇ0 D �ˇ:

The conditions a and b lead to different recursion relations. In the case a

Sn D i
˛

ˇ
cot

�

g�
p

n

2

�

Sn�1 ; (11.68)

and in the case b

Sn D �i
˛

ˇ
tan

�

g�
p

n

2

�

Sn�1 : (11.69)

The two states are referred to as cotangent and tangent states, respectively.
It is simple to verify that if one takes into account the boundaries of the block in

phase space, for the cotangent states

p
Ng� D q�; for q even, (11.70)

p
M C 1g� D p�; for p odd,

and the reverse is true for the tangent states.
From the recursion relation (11.68), a cotangent state can be written as

j coti D
nDM
X

nDN

Sn j ni (11.71)

D C.i/n.
˛

ˇ
/n un

jD1 cot

�

g�
p

j

2

�

:

One of the most interesting properties of the cotangent states is that they are
squeezed [19].

As, in practice, the initial conditions include the vacuum state, the cotangent
states are the more interesting ones. We take N D 0 .q D 0/ and some odd integer
number for p, representing a 2�p rotation of an initially excited atom.

Because the state is exactly known, it is straightforward to compute the quadra-
ture fluctuations.

In the Fig. 11.7, we show the variation of the two quadratures for a cotangent state
for N D 0; M D 20 and p D 1(a) and p D 3(b), as a function of the probability of
the upper state j ˛ j2. The maximum squeezing is obtained for a large ˛. Also, the
squeezing increases with the size of the trapping block.
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Fig. 11.7 Squeezing of a
cotangent state with p D 1(a)
and p D 3(b) bound between
N D 0 and M D 20, as a
function of j ˛ j2. The solid
line corresponds to (�a1)2,
the dashed line to (�a2)2 and
the dotted line to the product
(�a1) (�a2). � D �

2

Trapping states provide a way to build up Fock states or superposition of Fock
states in cavities. It is important, though, to remark that our discussion is somewhat
idealized, even in the case of the trapped vacuum state, that does not require the
assumption of zero dissipation.

Actually, the atoms coming out from the oven have a Poissonian arrival distribu-
tion, so that there is always a finite probability to have two atoms simultaneously in
the cavity. This cooperative effect produces a great disruption in the trapping states,
even for a very low-density beam, with a probability of having two atoms less that
1 %. [20, 21].

Finally, recent experiments show that one can also have microlasers, that is laser
oscillations with one atom in the optical region [22, 23].

In these experiments, a beam of Ba atoms is first excited by a laser pulse, before
entering the optical cavity. Laser oscillations were observed, with an average photon
number ranging from a fraction of a photon to 11. The rapid increase of the photon
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number with the pump, when the average number of atoms approaches 1, departing
from the linear regime, may be attributed to cooperative effects.

11.5 Quantum Theory of the Laser and the Micromaser
with Pump Statistics . p ¤ 0/

We take the diagonal matrix elements of (11.18) and get

d�nn

dt
D r

h

� sin2.g
p

n C 1�/�nn C sin2.g
p

n�/�n�1;n�1
i

(11.72)

Crp

2
Œfsin4.g

p
n�/C sin2.g

p
n�/ sin2.g

p
n C 1�/g�n�1;n�1

� sin2.g
p

n�/ sin2.g
p

n � 1�/�n�2;n�2
� sin4.g

p
n C 1�/�nn�C .L�/nn:

Now, we can calculate the equation of motion for hni( including the cavity loss
term)

dhni
dt

D
X

n

n
d�nn

dt
D r

X

n

˛n�nn � Chni D rh˛ni � Chni ; (11.73)

with

˛n D sin2.g
p

n C 1�/
n

1C p

2

h

sin2.g
p

n C 1�/� sin2.g
p

n C 2�/
io

:

(11.74)

We notice that for n � 1; g� , the gain ˛n is just its semiclassical expression

˛n D sin2.g
p

n C 1�/ ; (11.75)

and independent from the pump statistics. On the other hand, the variance v D
hn2i � hni2 is readily obtained as

dv

dt
D 2rh˛n�ni C rh.˛n � p sin2.g

p
n C 1�/ sin2.g

p
n C 2�//i � 2Cv C Chni ;

(11.76)

where

�n � n � hni:
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For n � 1, one has

dv

dt
D 2rh˛n�ni C rh.˛n � p˛2n/i � 2Cv C Chni : (11.77)

The steady-state value for the average photon number is

rh˛ni D Cnss ; (11.78)

which can be seen graphically as the intersection of the gain curve with the loss
(straight line). See Fig. 11.8.

It is not difficult to see that the steady-state value nss is only stable if the slope of
the gain curve is smaller than the slope of the loss, that is

r

�

d˛n

dn

�

nss

< C : (11.79)

To see this, we expand the gain around the intersection point

˛n � .˛n/nss C
�

d˛n

dn

�

nss

.n � nss/C : : : : (11.80)

Now, if n is slightly larger than nss

n 
 nss ; (11.81)

�n D n � nss > 0;

Fig. 11.8 The steady-state
photon number found as an
intersection of the gain curve
with the loss straight line
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then one can write

dhni
dt

D r

"

h˛n/nss C
�

d˛n

dn

�

nss

�n

#

� C Œnss C�n� (11.82)

D
"

r

�

d˛n

dn

�

nss

� C

#

�n ;

and if the equilibrium is stable, dhni
dt should be negative in order to go back to the

equilibrium point, so the condition given by (11.79) is satisfied.
Defining a normalized photon number �n � n

nex
, where nex � r

C is the number
of excited atoms entering the cavity, during the cavity damping time, we can see
from (11.78) that 0 � � � 1; and the stability condition can be written now as

�

d˛n

d�n

�

nDnss

< 1 : (11.83)

Now, we assume that the photon distribution is highly peaked around a single
maximum, and we can expand ˛n around nss; then we find (using (11.77) in steady
state)

v D .
d˛n

d�n
/nDnssv C nex

2
h˛ni � pr

2C
h˛2ni C hni

2
; (11.84)

or

v D 1

1 � . d˛n
d�n
/nDnss

hn � pnex

2
˛2ni : (11.85)

The above expression exhibits the role of the pump statistics on the photon number
noise. For the case of the micromaser, one gets a sub-Poissonian distribution, even
if p ! 0 , if . d˛n

d�n
/nDnss < 0: As p is increased, this behaviour is enhanced even

further.
A somewhat simpler expression can be obtained for the variance, in the case

nss � 1, in which case h˛2ni � h˛ni2, and we get

v Š nss
	

1 � p�s
2




1 � . d˛n
d�n
/nDnss

; (11.86)

where �s is its value at steady state. Choosing p D �s D 1, one has a 50 % of
photon noise reduction because of the regularity of the pump, when compared with
the same micromaser with a Poissonian pump.
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Now, we turn our attention to the laser case. Averaging over the atomic lifetimes,
we get

˛laser
n D

Z 1

0
d� exp.��/ sin2.g

p
n�/ D 2g2n

2 C 4g2n
; (11.87)

and according to (11.78)

�s D 2g2nss

2 C 4g2nss
; (11.88)

thus �s is always smaller than 1
2
, approaching this value for large nss. From (11.87),

we get

.
d˛n

d�n
/nDnss D 1 � 2�s 
 0 : (11.89)

Replacing (11.89) into (11.86), we get

v D .1 � p�s
2
/

2�s
nss : (11.90)

Now, we can discuss the influence of the pump fluctuations over the photon-
number variance in the laser. In the case of a Poissonian distribution of the incoming
atoms . p D 0/, the variance is always larger than the mean number of photons, only
approaching this value well above threshold, and indeed, when �s ! 1

2
; v ! nss as

it should. On the other hand, if we go to the regular pumping limit . p D 1/ , we
can get a considerable noise reduction well above threshold, when �s ! 1

2
, getting

v D 3
4
nss, thus getting up to 25 % noise reduction.

Finally, it is possible to show [2] that the phase diffusion constant is not affected
by the pump statistics.

Problems

11.1 Prove (11.7).

11.2 Prove (11.18).

11.3 Prove (11.23).

11.4 Prove (11.37) from (11.23).



References 181

References

1. Yu, M., Golubev, I.V., Sokolov, I.V.: Photon antibunching in a coherent light source and
suppression of the photorecording noise. Zh. Eksp. Teor. Fiz 87, 408 (1984); Sov. Phys.
JETP 60, 234; Yamamoto, Y., Machida, S., Nilsson, O.: Amplitude squeezing in a pump-noise
suppressed laser oscillator. Phys. Rev. A 34, 4025 (1986)

2. Bergou, J., Davidovich, L., Orszag, M., Benkert, C., Hillery, M., Scully, M.O.: Influence of the
pumping statistics in lasers and masers. Opt. Commun. 72, 82 (1989); Bergou, J., Davidovich,
L., Orszag, M., Benkert, C., Hillery, M., Scully, M.O.: Role of pumping statistics in maser
and laser dynamics: Density-matrix approach. Phys. Rev. A 40, 5073 (1989); See also: Marte,
M.A., Ritsch, H., Walls, D.F.: Quantum statistics of a squeezed-pump laser. Phys. Rev. Lett 61,
1093 (1988); Haake, F., Tan, S.M., Walls, D.: Photon noise reduction in lasers. Phys. Rev. A
40, 7121 (1989)

3. An excellent discussion on this point, as well and on noise supression in quantum optical
systems is found in: Davidovich, L.: Sub-Poissonian processes in quantum optics. Rev. Mod.
Phys. 68, 127 (1996)

4. Scully, M.O., Lamb, W.E.: Quantum theory of an optical maser. I. General theory. Phys. Rev.
159, 208(1967); See also: Sargent III, M., Scully, M.O., Lamb, W.E.: Laser Physics. Addison
Wesley, Mass (1974); Scully, M.O., Lamb, W.E.: Quantum theory of an optical maser. III.
Theory of photoelectron counting statistics. Phys. Rev. 179, 368 (1969)

5. Stenholm, S.: Quantum theory of electromagnetic fields interacting with atoms and molecules.
Phys. Rep. 6, 1 (1973)

6. Degiorgio, V., Scully, M.O.: Analogy between the laser threshold region and a second-order
phase transition. Phys. Rev. 2, 1170 (1970)

7. Graham, R., Haken, H.: Z. Laserlight - first example of a second order phase transition far from
thermal equilibrium. Phys. 237, 31 (1970)

8. Lax, M.: Quantum noise. X. Density-matrix treatment of field and population-difference
fluctuations. Phys. Rev. 157, 213 (1967)

9. Gordon, J.P.: Quantum theory of a simple maser oscillator. Phys. Rev. 161, 367 (1967)
10. Haken, H.: Z. Theory of intensity and phase fluctuations of a homogeneously broadened laser.

Phys. 190, 327 (1966)
11. Walther, H.: Experiments on cavity quantum electrodynamics. Phys. Rep. 219, 263 (1992)
12. Haroche, S., Raimond, J.M.: Radiative properties of Rydberg states in resonant cavities. In:

Bates, D., Benderson, B. (eds.) Advances in Atomic and Molecular Physics, vol. 20, p. 350.
Academic, New York (1985)

13. Gallas, J.A.C., Leuchs, G., Walther, H., Figger, H.: Rydberg atoms: high-resolution spec-
troscopy and radiation interaction Rydberg molecules. In: Bates, D., Benderson, B. (eds.)
Advances in Atomic and Molecular Physics, vol. 20, p. 413. Academic, New York (1985)

14. Drexhage, K.H.: Interaction of light with mononiolecular dye layer. In: Wolf, E. (ed.) Progress
in Optics, vol. 12. North Holland, Amsterdam (1974)

15. De-Martini, F., Innocenti, G., Jacovitz, G., Mantolini, D.: Anomalous spontaneous emission
time in a microscopic optical cavity. Phys. Rev. Lett. 29, 2955 (1987)

16. Gabrielse, G., Dehmelt, H.: Observation of inhibited spontaneous emission. Phys. Rev. Lett.
55, 67 (1985)

17. Brune, M.S., Raimond, J.M., Goy, P., Davidovich, L., Haroche, S.: Realization of a two-photon
maser oscillator. Phys. Rev. Lett. 59, 1899 (1987)

18. Filipowicz, P., Javanainen, J., Meystre, P.: Theory of a microscopic maser. Phys. Rev. A 34,
3077 (1986)

19. Slosser, J.J., Meystre, P.: Tangent and cotangent states of the electromagnetic field. Phys. Rev.
A 41, 3867 (1990)

20. Orszag, M., Ramirez, R., Retamal, J.C., Saavedra, C.: Quantum cooperative effects in a
micromaser. Phys. Rev. A 49, 2933 (1994)



182 11 Quantum Laser Theory: Master Equation Approach

21. Wehner, E., Seno, R., Sterpi, N., Englert, B.G., Walther, H.: Atom pairs in the micromaser.
Opt. Commun. 110, 655 (1994)

22. An, K., Childs, J.J., Dasari, R.R., Feld, M.: Microlaser: a laser with one atom in an optical
resonator. Phys. Rev. Lett. 73, 3375 (1994)

23. Weidinger, M., Varcoe, B.T.H., Heerlein, R., Walther, H.: Trapping states in the micromaser.
Phys. Rev. Lett. 82, 3795 (1999)

Further Reading

• Arecchi, F.T., Ricca, A.M.: Statistical properties of a many-mode laser. Phys. Rev. A 15, 308
(1977)

• Casagrande, F., Lugiato, L.A.: Quantum effects in the single-mode laser. Phys. Rev. A 14, 778
(1976)

• Graham, R., Smith, W.A.: Intensity fluctuations of lasers in intensity coupled two-mode
operation. Opt. Commun. 7, 289 (1973)

• Lugiato, L.A.: Theory of open systems. Physics 81A, 565 (1976)
• Risken, H.: Distribution- and correlation-functions for a laser amplitude. Z. Phys. 186, 85

(1965)
• Risken, H., Vollmer, H.D.: Z. The influence of higher order contributions to the correlation

function of the intensity fluctuation in a laser near threshold. Phys. 201, 323 (1967)
• Scully, M.O.: The quantum theory of a laser, a problem in nonequilibrium statistical mechanics.

In: Glauber, R. (ed.) Proceedings of the International School of Physics “Enrico Fermi” Course
XLII. Academic, New York (1969)

• Scully, M.O., Zubairy, M.S.: Quantum Optics. Cambridge University Press, Cambridge (1997)



Chapter 12
Quantum Laser Theory: Langevin Approach

In this chapter, we study the Laser Theory using the Langevin Approach. We include
the influence of pump statistics.

In the previous chapter, we studied the influence of the pump statistics on the
amplitude and phase fluctuations of the laser radiation, making use of the Master
Equation approach. We, thus, derived a generalized Master Equation in terms of a
parameter p that represented the probability for an atom to be excited to the upper
level, before entering into the cavity.

The two extreme cases were p ! 0 (Poisson statistics) and p ! 1 (regular
statistics). What we found was that the pump statistics had no influence on the
phase fluctuations or linewidth but had a strong influence on the photon number
fluctuations.

In this chapter, we discuss the influence of the pump statistics from a different
point of view. We use the Langevin formalism [1], including generalized noise
operators as to include the effects of the pump noise [2].

We show here that, again, the photon number fluctuations can be reduced by
simply reducing the pump fluctuations. Furthermore, we generalize the arguments
of the previous chapter, allowing for different atomic decay constants from the two
levels.

12.1 Quantum Langevin Equations

Our physical system is described, again in the Fig. 11.1, where the atoms are
prepared initially in the upper level j ai. The two levels j ai and j bi constitute
the lasing transition, which is coupled to one mode of the radiation field, inside the
cavity.

© Springer International Publishing Switzerland 2016
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The Hamiltonian of this system, in the rotating wave approximation, is given by

H D „!a�a C
N
X

jD1
.	a j aiha j C	b j bihb j C	c j cihc j/j (12.1)

C„g
X

j

‚.t � tj/.a
�� j C � j�a/;

where‚.t/ is the usual step function.
In the above Hamiltonian, � j D .j biha j/j represents the polarization operator

for the j-th atom. The cavity losses as well as the atomic decay are modelled in the
usual way, coupling the system to heat reservoirs. We find the following equations
of motion:

�
a D �i!a � C

2
a � ig

X

j

‚.t � tj/�
j C FC; (12.2)

�
�

j D �i!ab�
j � � j C ig‚.t � tj/.�

j
aa C �

j
bb/a C Fj

ba; (12.3)

�
�

j

aa D �� j
aa C ig‚.t � tj/.a

�� j � � j�a/C Fj
aa; (12.4)

�
�

j

bb D �� j
bb � ig‚.t � tj/.a

�� j C � j�a/C Fj
bb; (12.5)

where � j
aa D .j aiha j/j; � j

bb D .j bihb j/j and !ab D 	a�	b„ .
For now and in the sake of simplicity, we have assumed that the two atomic

decay constants are equal with value : However, this assumption will be relaxed at
the end.

Now, we look at the noise terms. From the damped harmonic oscillator, we saw
already that

hF�C.t/FC.t
0/i D Chnithı.t � t0/ (12.6)

D 0 at T D 0,

hFC.t/F
�
C.t

0/i D C.1C hnith/ı.t � t0/ (12.7)

D Cı.t � t0/ at T D 0,

hFC.t/i D 0: (12.8)

For the atomic noise correlation functions, we first derive the Einstein relations.
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12.1.1 The Generalized Einstein’s Relations

We write a quantum Langevin equation, in the absence of atom–field interaction:
For a general discussion on stochastic processes, see appendix D.

�
A� D D�.t/C F�.t/; (12.9)

where D�.t/ is the drift operator for A�.t/ and F�.t/ is the corresponding noise
operator with zero reservoir average hF�.t/i D 0:

We also write the two time average for the noise operator as

hF�.t/F�.t
0/i D 2hD��iı.t � t0/: (12.10)

Now, we start with the identity

A�.t/ D A�.t ��t/C
Z t

t��t
dt0 PA�.t

0/;

to obtain the system noise correlation function

hA�.t/F�.t/i D hA�.t ��t/F�.t/i C
Z t

t��t
dt0hŒD�.t

0/C F�.t
0/�F�.t/i; (12.11)

and as A�.t � �t/ cannot be affected by a noise term F�.t/ at a later time, the first
term in (12.11) is zero. The same argument applies to the first term in the integral
hD�.t0/F�.t/i, so we are left with only one term

hA�.t/F�.t/i D
Z t

t��t
dt0hF�.t

0/F�.t/i D 1

2

Z 1

�1
dt0hF�.t

0/F�.t/i; (12.12)

and substituting (12.10) into (12.12), we get

hA�.t/F�.t/i D hD��i: (12.13)

It is simple to prove that, also

hF�.t/A�.t/i D hD��i: (12.14)

Now we write

d

dt
hA�.t/A�.t/i D h�

A�.t/A�.t/i C hA�.t/
�
A�.t/i

D hD�.t/A�.t/i C hF�.t/A�.t/i
C hA�.t/D�.t/i C hA�.t/F�.t/i;
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and using (12.13) and (12.14), we get the Generalized Einstein’s relations

2hD��i D �hA�.t/D�.t/i � hD�.t/A�.t/i C d

dt
hA�.t/A�.t/i: (12.15)

12.1.2 The Atomic Noise Moments

From the Eistein’s relations, one can easily calculate the atomic noise moments.
Let us take as an example hF�ba.t/Fba.t0/i: so we take A� D �� and A� D � .
From (12.15), we get

2hD��� i D �h��.��/i � h����i C d

dt
h�aai (12.16)

D h�aai;

where we used the property ��� D �aa and (12.3). We leave as an exercise to the
reader to verify the rest of the atomic correlations

hF�j
ba.t/F

j
ba.t

0/i D h� j
aaiı.t � t0/; (12.17)

hFj
ll.t/F

j
ll.t

0/i D h� j
lliı.t � t0/; l D a; b (12.18)

hF�j
ba.t/F

j
aa.t

0/i D h� jiı.t � t0/; (12.19)

hF�j
ba.t/F

j
bb.t

0/i D h� j�iı.t � t0/: (12.20)

We now proceed to eliminate the fast varying terms in (12.2), (12.3), (12.4), and
(12.5). For simplicity, we assume resonance !ab D ! and define

ea.t/ D exp.i!t/a.t/; e� j.t/ D exp.i!t/� j.t/: (12.21)

It is quite evident that the equations of motion for Qa and Q� j are the same as for a
and � j with the only difference that the terms proportional to !ab and ! are omitted.

The following step in this theory is to define the collective operators summed
over all the atoms. This is very convenient with the adiabatic approximation we are
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going to make. Thus, we define

M.t/ D �i
X

j

‚.t � tj/�
j.t/; (12.22)

Na.t/ D
X

j

‚.t � tj/�
j
aa.t/; (12.23)

Nb.t/ D
X

j

‚.t � tj/�
j
bb.t/: (12.24)

The operators M;Na and Nb represent the macroscopic polarization and the
populations in the a and b levels, respectively.

With the above definitions, the equation of motion for the field now becomes

�
a D �C

2
a C Mg C F : (12.25)

On the other hand, for the atomic operator Na, we differentiate (12.23) and
substitute (12.4), getting

�
Na D

X

j

‚.t � tj/
P
�

j
aa C ı.t � tj/�aa (12.26)

D
X

j

ı.t � tj/�
j
aa.tj/� Na � g.a�M C M�a/

�i
X

j

‚.t � tj/F
j
ba.t/:

The first term in the r.h.s. of (12.26) corresponds to the pumping of the atoms to
the excited state. This can be seen as follows:

h
X

j

ı.t � tj/�
j
aa.tj/i D h

X

j

ı.t � tj/h� j
aa.tj/iiS (12.27)

D h
X

j

ı.t � tj/iS:

In the above result, we used the fact that the atoms are initially prepared in the
upper state, so that h� j

aa.tj/i D 1. Also, there is a second bracket with a subscript S,
showing that a statistical average has been performed over all the terms that depend
on the random injection times tj:
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Assuming an average injection rate of atoms R, then one can write

h
X

j

ı.t � tj/�
j
aa.tj/i D h

X

j

ı.t � tj/iS (12.28)

D R
Z 1

�1
dtjı.t � tj/ D R:

To separate the drift from the noise terms, we add and subtract R, getting

�
Na D R � Na � g.a�M C M�a/C Fa; (12.29)

with

Fa.t/ D
X

j

‚.t � tj/F
j
aa.t/C

X

j

ı.t � tj/�
j
aa.tj/ � R: (12.30)

In a similar way, one derives the other operator equations

�
Nb D �Nb C g.a�M C M�a/C Fb; (12.31)

�
M D �M C g.Na � Nb/a C FM; (12.32)

with

Fb.t/ D
X

j

‚.t � tj/F
j
bb.t/C

X

j

ı.t � tj/�
j
bb.tj/; (12.33)

FM.t/ D �i
X

j

‚.t � tj/F
j
ba.t/ � i

X

j

ı.t � tj/�
j.tj/: (12.34)

Now, we calculate the atomic noise correlation functions. As an example, we
calculate hFa.t/Fa.t0/i:

hFa.t/Fa.t
0/i D h

X

j;k

‚.t � tj/‚.t
0 � tk/hFj

aa.t/F
k
aa.t

0/iiS (12.35)

Ch
X

j;k

ı.t � tj/ı.t
0 � tk/h� j

aa.t/�
k
aa.t

0/iiS � R2�2aa:

We notice, once again, that in the above expression, two types of average have
been considered.

On one hand, one has the usual quantum mechanical average over both the
variables, and on the other hand, we have the statistical average, symbolized by the
subscript S. We also, replaced the symbol h� j

aa.t/i by �aa, just to differentiate the
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various terms appearing in the following analysis. At the end, we will set �aa D 1,
consistent with the initial preparation of the atoms.

In the first term of (12.35), only terms with j D k contribute, because the
atoms are independent of each other. Also, we separate the second term in two
contributions, one with j D k and the other one with j ¤ k: In this second term,
products of the type h� j

aa.tj/�
k
aa.tk/i D �2aa: We get the following result:

hFa.t/Fa.t
0/i D h

X

j;k

‚.t � tj/h� j
aa.t/iiSı.t � t0/

Ch
X

j

ı.t � tj/ı.t
0 � tj/�aaiS

C
2

4h
X

j¤k

ı.t � tj/ı.t
0 � tk/iS � R2

3

5 �2aa;

or in the final form

hFa.t/Fa.t
0/i D hNaiı.t � t0/C h

X

j

ı.t � tj/iS�aaı.t � t0/ (12.36)

C
2

4h
X

j¤k

ı.t � tj/ı.t
0 � tk/iS � R2

3

5 �2aa:

In the Appendix (C), we show that

2

4h
X

j¤k

ı.t � tj/ı.t
0 � tk/iS � R2

3

5 �2aa D �pRı.t � t0/; (12.37)

so that

hFa.t/Fa.t
0/i D ŒhNai C R.1� p/� ı.t � t0/: (12.38)

The rest of the correlation functions are calculated in a similar way. The result is,
for the non-vanishing terms,

hF�M.t/FM.t
0/i D ŒhNai C R� ı.t � t0/: (12.39)

hFb.t/Fb.t
0/i D hNbiı.t � t0/: (12.40)

hFb.t/FM.t
0/i D hMiı.t � t0/: (12.41)

The differential equations for the field and the atomic variables plus the noise
correlation values completely describe the laser under an arbitrary pump statistics.
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12.2 C-Number Langevin Equations

To solve the present problem , we have to convert the four-operator equations into
c-number equations. To do that in a unique way, we have to define a prescribed
ordering, the choice of which is completely arbitrary. We choose the following
ordering: a�;M�;Na;Nb;M; a: We now, derive the equations of motion for their
c-number versions ";M;Na;Nb: As the (12.25), (12.29), (12.31) and (12.33) are
already in the chosen normal order, we can write directly

�
" D �C

2
"C gM C FC; (12.42)

�
M D �M C g.Na � Nb/"C FM; (12.43)

�
N a D R � Na � g."�M C M�"/C Fa; (12.44)

�
N b D �Nb C g."�M C M�"/C Fb; (12.45)

The Langevin forces F have the following properties:

hFk.t/i D 0; (12.46)

hFk.t/Fl.t
0/i D 2Dklı.t � t0/: (12.47)

The diffusion coefficients Dkl are determined in such a way that the second
moments calculated from the c-number equations agree with those calculated from
the operator equations. We illustrate this procedure, we calculate DMM:

From (12.32), we get

d

dt
hM.t/M.t/i D �2hMMi C hMFMi (12.48)

C hFMMi C g Œh.Na � Nb/Mai C hM.Na � Nb/ai�

We notice that the second term in the square bracket is not in the normal form;
therefore, we use the commutation relation

ŒM;Na � Nb� D 2M;

also the second and third terms vanish, so

d

dt
hM.t/M.t/i D �2hMMi C 2gh.Na � Nb/Mai C 2ghMai: (12.49)
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We now obtain the corresponding c-number equation

d

dt
hMMi D �2hMMi C 2g Œh.Na � Nb/M"i�C 2DMM: (12.50)

By comparing the right-hand sides of (12.49) and (12.50), we readily get

2DMM D 2ghM"i: (12.51)

In a similar way, we can calculate the rest of the diffusion coefficients. The results
are given in the following table:

2DM�M D hNai C R;
2DMM D 2ghM"i;
2DNbM D hMi;
2DNaNa D hNai C R.1� p/� g.h"�MC"M�i/
2DNbNb D hNbi � g.h"�MC"M�i/
2DNaNb D g.h"�MC"M�i/

12.2.1 Adiabatic Approximation

We want, now to solve (12.42), (12.43), (12.44), and (12.45).Typically, in Laser
problems, the atomic decay constant  is much larger than the photon decay C, or
in other words, we have two very different time scales in the problem: A short time
corresponding to a typical variation of the atomic variables and a much longer time
over which there is a sizeable variation of the field. Under these conditions, we can
use the adiabatic approximation, where we neglect the time derivatives of the atomic
variables, thus calculating Na;Nb;M; in terms of the field. The result is

M D g


.Na � Nb/"C FM


; (12.52)

Na D

�

R
�

1C 2g2

2
I
�

C
�

1C 2g2

2
I
�

Ga C 2g2

2
IGb

�

h

.1C 4g2

2
I/
i ; (12.53)

Nb D

�

R 2g2

2
I C

�

1C 2g2

2
I
�

Gb C 2g2

2
IGa

�

h

.1C 4g2

2
I/
i ; (12.54)
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where I � ""� is the intensity of the field, and the noise functions Ga and Gb are
defined as

Ga D Fa � g


.F�

M"C "�FM/; (12.55)

Gb D Fb C g


.F�

M"C "�FM/: (12.56)

Now, if we replace the results of (12.52), (12.53), and (12.54) in the equation of
motion for " (12.44), we get

�
" D �C

2
"C A

2

2

4

1
�

1C ˇ

AI

�

3

5 "C F" (12.57)

where the parameters A and B are the gain and saturation coefficient, defined as

A D 2g2R

2
;B D 8g4R

4
; (12.58)

and

F" D FC C g


FM C g2

2

"

1
	

1C B
AI




#

.Ga � Gb/": (12.59)

The noise force F" is characterized by the correlation functions

hF".t/i D 0 (12.60)

hF�
" .t/F".t0/i D 2hD"�"iı.t � t0/; (12.61)

hF".t/F".t0/i D 2hD""iı.t � t0/: (12.62)

The diffusion coefficients D"�" and D"" determine the strength of the noise and
can be calculated directly from the definition of F".t/:

We leave it to the reader to verify that

2D"" D �A
"

1
	

1C B
AI




#2 B"2
4A

�

3C p

2
C
� B
AI

��

; (12.63)

2D"�" D A
"

1

1C 	 B
AI




#2 �

1C
� BI

4A
��

3� p

2
C B

AI

��

: (12.64)
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With the above results, we are now ready to calculate the phase and intensity
fluctuations in the laser, in terms of the various parameters, including the pump
statistics.

12.3 Phase and Intensity Fluctuations

In this section, we analyse the fluctuation properties of the phase and intensity of
the field.

For this purpose, we with the field amplitude in polar coordinates, that is

" D p
I exp i': (12.65)

From (12.50), we now derive two differential equations for I and '

�
' D F'; (12.66)

�
I D �CI C A

1C B
AI

I C FI: (12.67)

In (12.67), we neglected the small contribution to the drift because of noise.
The diffusion coefficients corresponding to the noise forces FI and F' are found

to be

D'' D A
4I

"

1
	

1C B
AI




#
�

1C B
2A I

�

; (12.68)

and

DII D A
.1C B

AI /
2

�

1 � p
B
4A I

�

I: (12.69)

12.4 Discussion

The quantum mechanical description of the amplitude and phase and their measure-
ment has turned out to be troublesome, and it is still a matter of discussion [3].

Early attempts to introduce the amplitude and phase operators in a quantum
formalism goes way back to Dirac in 1927.

However, if the photon number is large, we can bypass the above complications
and state that the phase in (12.65) is in excellent agreement to the measured phase
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of the electromagnetic field, and we can identify ' with the phase of the radiation
field.

As far as the intensity I is concerned, we have to be careful, because this classical
quantity was originally associated to normally ordered operators.

For the photon number average, there is no ordering problem, and one has

hni D ha�ai D hIi; (12.70)

however, for the photon number fluctuations

h.�n/2i D ha�aa�ai � ha�ai2 (12.71)

D ha�a�aai � ha�ai2 C ha�ai
D hI2i � hIi2 C hIi
D h.�I/2i C hIi:

The steady-state intensity is easily found by setting the drift term in (12.67) equal
to zero, thus getting

Io D A.A � C/

BC
: (12.72)

We now turn our attention to the phase diffusion. Using (12.66), we can write

d

dt
h'2i D d

dt

Z t

0

dt0
Z t

0

dt00h P'.t0/ P'.t00/i (12.73)

D d

dt

Z t

0

dt0
Z t

0

dt00hF'.t
0/F'.t00/

D h2D''i:

If we now substitute the expression for D'' into (12.73), we integrate, getting

h'2i D 1

4Io
C A C C

4Io
t: (12.74)

The integration constant 1
4Io

comes from the vacuum fluctuations and can be
considered an added noise to the one generated by the spontaneous emission,
which corresponds to the second term in (12.74). This last result is the well-known
Schawlow–Townes result [4], which states that the laser phase diffuses linearly in
time. An important observation is that the phase diffusion is independent of the
pump parameter p. Therefore, the phase of the electromagnetic field is completely
independent of the particular pump mechanism. On the other hand, the intensity
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diffusion depends on p, and hence, we expect the photon number fluctuations to
also depend on the pump parameter.

Now, we proceed to study the intensity fluctuations, around its steady-state value.
For that purpose, we define �I D I � Io, and linearizing (12.67), we get

d

dt
.�I/ D �C

A � C

A �I C FI: (12.75)

Equation 12.75 describes a simple Markoff Process. This type of stochastic dif-
ferential equation, with a linear drift term, is called Ornstein–Uhlenbeck differential
equation. (For an introduction on the subject, see appendix D [5, 6].)

The steady state variance of a Ornstein–Uhlenbeck process is given by

h.�I/2i D DII

CA�C
A
: (12.76)

Combining (12.69), (12.71) and (12.76), we readily get

h.�n/2i D
� A
A � C

� p

4

�

no; (12.77)

where no D Io is the average photon number inside the cavity. As pointed out also in
the last chapter, the photon number fluctuations crucially depend on the particular
pump mechanism. In the case of a Poisson statistics .p D 0/, the variance of the
photon number is always greater than the mean photon number, and in the high
intensity limit, both quantities tend to be equal, which, as seen in the last chapter,
corresponds to a Poisson distribution for the photons.

On the other hand, for a pump noise suppressed laser .p > 0/, the photon
number variance can be smaller than no, which corresponds to a sub-Poissonian
photon statistics. The optimum noise reduction corresponds to the high intensity
limit (A � C/ with a regular injection . p D 1/, in which case

h.�n/2i D 0:75no; (12.78)

that corresponds to a 25 % noise reduction in the photon number fluctuations, with
respect to the Poissonian case.

In this theory, we assumed for simplicity that the atomic decay times of both
levels were equal, a D b D :

This may not be true in some laser systems. For the more general case, the decay
constants for Na;Nb and M are a; b and � , respectively. A calculation completely
analogous to the present one gives:

h.�n/2i D
� A
A � C

� a

b C a

p

4

�

no: (12.79)
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As we can see from (12.79), in the high intensity limit and in the case b � a,
if the injection is regular, we may reduce the photon number variance by 50 % with
respect to the Poissonian case (some publications speak about 50 % photon number
squeezing; we prefer to use this word only in relation to the quadratures, to avoid
confusion.) [7].

Finally, lasers with small active medium volume were recently developed, like
vertical cavity surface emitting diode lasers [8, 9], heterostructure diode lasers [10],
microdroplets [11], high-Q Fabry-Perot microcavity lasers [12]. A quantum theory
of the thresholdless laser was developed by Protschenko et al. [13] based on the
Heisenberg–Langevin equations of motion for the atomic and field operators.

Problems

12.1 Verify the atomic noise correlations given by (12.17), (12.18), (12.19), and
(12.20).

12.2 Prove (12.39), (12.40), and (12.41).

12.3 Prove (12.63) and (12.64).

12.4 Prove (12.68) and (12.69).
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Chapter 13
Quantum Noise Reduction 1

In this chapter, we study the correlated emission laser (CEL).
In many areas of modern physics, ultrasmall displacements are detected optically.

The small displacement is converted into a change of optical path length in an
interferometer.

This detection scheme is done usually in two ways:

1. In a passive detection scheme, where laser light, generated outside, is sent
through a cavity, and the change in the path length results in a phase shift. The
shift is then detected by homodyning the output beam with a reference beam.
This phase shift is generally small, because the light spends only a finite time
in the cavity, limited by the cavity lifetime. In this type of measurements, the
limiting noise source is the photon-counting error or shot noise, reflecting the
photon number fluctuations at the detector.

2. In the so-called active detection scheme, the laser light is generated inside the
cavity and the operating frequency of the system changes due to the change in
the path length, which results in a phase shift proportional to the measurement
time, leading, in general to a bigger signal as compared to the first case. The shift
is then detected by heterodyning the output light with that from a reference beam.
The limiting quantum noise source, in this case, is the spontaneous fluctuations
of the relative phase between the two lasers, or in other words, the relative
phase diffusion noise.

The question posed in the first part of this chapter is the following one.
Can one possibly quench the spontaneous emission quantum noise from the

relative phase of two lasers?
The whole subject of CEL is directed to answer this particular question.
A geometrical representation of the CEL is shown in the Fig. 13.1, where ı"1 and

ı"2 are the contributions to the fields 1 and 2 by spontaneous emission of a photon
in the two respective modes. To get an intuitive picture of the effect, consider three-
level atoms in a double cavity, interacting with two quantum fields, E1 and E2, and
a classical microwave field E3, resonant with the upper two level and originating

© Springer International Publishing Switzerland 2016
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Fig. 13.1 Geometrical
representation of the
correlated emission laser. ı"1
and ı"2 are the contributions
of a spontaneously emitted
photon in the modes 1 and 2,
respectively

Fig. 13.2 In the three-level
atom, the two upper levels a
and b are coupled to a
classical microwave field of
frequency �3: The emissions
from the (b–c) and (a–c)
transitions are strongly
correlated

the necessary correlation between the spontaneous emission into the fields 1 and 2
(Fig. 13.2).

In the case described above, the spontaneously emitted fields 1 and 2 are strongly
correlated. To see this, consider a state vector given by [1]

j  i D ˛ exp.�i�a/ j a; 0i C ˇ exp.�i�b/ j b; 0i C 1 j c; 11i C 2 j c; 12i ;
(13.1)

where 1i; i D 1; 2 correspond to a photon emitted into the fields 1 and 2, respectively.
Now, the expectation value of the fields

Ei D 	iai exp i.ki�r � �it/ ; (13.2)

i D 1; 2 ;

vanishes, due to the orthogonality of the atomic states. However, the crossed term
does not vanish

h j E�1E2 j  i D 	1 � 	2�
1 2 exp Œ�i.k1�k2/ � r C i.�1 � �2/t� ; (13.3)

thus giving a clear indication that the spontaneously emitted photons at frequencies
�1 and �2 are correlated.
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Strongly motivated by the above arguments, we are led to investigate the
diffusion of the relative phase angle between the two modes, in a system where
the lasing three-level atoms are placed in a double cavity.

13.1 Correlated Emission Laser Systems

13.1.1 The Quantum Beat Laser

13.1.1.1 The Model

We consider the system described in the Fig. 13.2, in which three-level atoms are
being pumped into a state j ai at a rate ra: The external field at frequency �3 is
characterized by a Rabi frequency�: The Hamiltonian is

H D H0 C V ; (13.4)

where

H0 D
X

iDa;b;c

„!i j iihi j C„�1a�1a1 C „�2a�2a2 ; (13.5)

and

V D „g1.a1 j aihc j Ca�1 j ciha j/ (13.6)

C„g2.a2 j bihc j Ca�2 j cihb j/

�„�
2
.exp.�i�3t � i�/ j aihb j C exp.i�3t C i�/ j biha j/ :

It is convenient to go to the interaction picture

VI D exp

�

i

„H0t

�

.V/ exp.� i

„H0t/ : (13.7)

After a direct calculation, one finds that

VI D V1 C V2 ; (13.8)

with

V1 D �„�
2

0

@

0 exp.�i�/ 0

exp.i�/ 0 0

0 0 0

1

A ; (13.9)
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and

V2 D „
2

4

0 0 g1a1 exp.i�1t/
0 0 g2a2 exp.i�2t/
g1a

�
1 exp.�i�1t/ g2a

�
2 exp.�i�2t/ 0

3

5 : (13.10)

In (13.10), we introduced the definitions

�1 D !a � !c � �1I �2 D !b � !c � �2 : (13.11)

In the future, we will assume that �1 D �2 D � and that the driving field is
resonant with the a–b transition.

Our next goal is to approximate our Hamiltonian model as to end up with a time-
independent Hamiltonian after some sort of rotating wave approximation.

This is most easily achieved by introducing a second interaction picture [2]

VII D exp

�

i

„V1t

�

V2 exp

�

� i

„V1t

�

: (13.12)

One can easily check the following properties of V1

.V1/
2n D

�„�
2

�2n
2

4

1 0 0

0 1 0

0 0 0

3

5 ; (13.13)

.V1/
2nC1 D

�„�
2

�2n

.V1/ :

With the above expressions, one can calculate the transformation explicitly:

exp

�

˙ i

„ V1t

�

D

2

6

6

4

cos.�
2
/t �i sin.�

2
/t exp.�i�/ 0

�i sin.�
2
/t exp.i�/ cos.�

2
/t 0

0 0 1

3

7

7

5

:

(13.14)

With the above expression, one can calculate explicitly the interaction
Hamiltonian

VII D
0

@

0 0 Vac

0 0 Vbc

V�
ac V�

bc 0

1

A ; (13.15)
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where

Vac D 1

2



.exp

�

i

�

�C �

2

�

t

�

.g1a1 � g2a2 exp.�i�//

�

(13.16)

C exp

�

i

�

� � �

2

�

t

�

.g1a1 C g2a2 exp.�i�// ;

Vbc D 1

2
f� exp

�

i

�

�C �

2

�

t

�

.g1a1 exp.i�/� g2a2/

C exp

�

i

�

� � �

2

�

t

�

.g1a1 exp.i�/C g2a2/g :

The condition on CEL found in [3] was � D �
2
: We immediately see that this

condition is appealing, because one of the time dependences disappear and the other
term _ exp 2�t can be neglected in a rotating wave approximation. The conditions
of validity of this approximation will be discussed later.

We define, for convenience, a non-Hermitian operator A

A � g1a1 exp.i�/C g2a2 exp.�i�/
q

g21 C g22

; (13.17)

so that it is easy to verify that

�

A;A�
� D 1 ; (13.18)

and

VII D

0

B

B

@

0 0 A exp.�i�
2
/

0 0 A exp.i�
2
/

A� exp.i�
2
/ A� exp.�i�

2
/ 0

1

C

C

A

; (13.19)

with g � 1
2

q

g21 C g22:

13.1.1.2 The Solution

We are now going to develop the non-linear theory of the quantum beat laser, whose
Hamiltonian is given in (13.19).

The Schrödinger’s equation in the second interaction picture is

i„@ 
@t

D VII : (13.20)
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Here,  is a column vector with three components, a; b;  c.
We get the following coupled equations

i
@ a

@t
D gA c � i



2
 a ; (13.21)

i
@ b

@t
D gA c � i



2
 b ;

i
@ c

@t
D gA� a C gA� b � i



2
 c :

In (13.20), � was eliminated by a trivial transformation:  a exp i�
2

!
 a;  b exp � i�

2
!  b. Also, we have introduced the phenomenological decay

constant  , for simplicity, the same for all three levels.
The solution is

 a D  b D 1p
2

exp �
2
.t � t0/ cos

h

g
p
2AA�.t � t0/

i

 f .t0/ ; (13.22)

 c D �i exp �
2
.t � t0/A

�1.AA�/
1
2 sin

h

g
p
2AA�.t � t0/

i

 f .t0/ ;

where we have taken the initial condition with the atom injected in the excited state,
that is:  a.t0/ D  f .t0/; a function of the field variables only.

13.1.1.3 The Master Equation

For the second interaction picture, one can write

d�

dt
D � i

„ ŒVII; �� : (13.23)

The reduced density operator, for the field is �f D Tr�. Making use of (13.19),
one can write

d�f

dt
D �ig

˚

ŒA; .�ca C �cb/�C
�

A�; .�ac C �bc/
��C L ; (13.24)

where L is the loss term to be specified later. We need to calculate .�ac C �bc/.
We adopt the following procedure [4]: we first calculate the one-atom contribution
injected at time t0 into the upper level j ai and then add all the contributions
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from t � �1 to t

.�ac C �bc/ D ra

Z t

t��1

dt0 Œ a.t; t0/�  b.t; t0/�  
�
c .t; t0/ 

D p
2ira

Z t

t��1

dt0 exp �.t � t0/ cos
h

g
p
2.AA�/

1
2 .t � t0/

i

�f .t/ (13.25)

	 sin
h

g
p
2.AA�/

1
2 .t � t0/

i

.AA�/
1
2 .A�/�1: (13.26)

In the above expression, we replaced �f .t0/ ! �f .t/, assumption that is only true
if the cavity time is much longer than the atomic characteristic times, and during the
interaction time, �f does not change appreciably.

Then we extend the lower limit to �1, because, due to the exponential damping
factor in the integrand, the contribution from t0 < t � �1 is negligible.

Now, taking the nn0 matrix elements, and replacing .A�/�1 ! .AA�/�1A, when
acting on the right, one gets

.�ac C �bc/n;n0 D irag.RC
nC1;n0

� R�
nC1;n0

/�fn;nC1 ; (13.27)

where

R˙
n;n0

D .
p

n ˙ p
n0/2

2 C 2g2.
p

n ˙ p
n0/2

: (13.28)

Next, we specify the loss term in the usual way

L D � �1

2Q1

.a�1a1�f C �f a
�
1a1 � 2a1�f a

�
1/� �2

2Q2

.a�2a2�f C �f a
�
2a2 � 2a2�f a

�
2/ :

(13.29)

For convenience, we now introduce a B-mode

B � g2a1�g1a2

.g21 C g22/
1
2

; (13.30)

with the properties

�

B;B�
� D 1; ŒA;B� D �

A;B�
� D 0 ; (13.31)

that is, the A and B modes are independent. One can write a1 and a2 in terms of A
and B and use it in (13.29).

Finally, using (13.27) and it’s Hermitian conjugate, (13.29) and replacing them
in (13.24), we obtain the master equation for the field density operator (for
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simplicity, we skip the sub-index f )

d�nA;nBn0

A;n
0

B

dt
D
" p

nAn0
AA

1C NnA�1;n0

A�1 B
A

!

�nA�1;nBn0

A�1;n0

B

�
 N 0

nA;n
0

A
A

1C NnA;n
0

A

B
A

!

�nA ;nBn0

A;n
0

B

#

(13.32)

�c

2

�

.nACn0
ACnBCn0

B/�nA;nBn0

A;n
0

B
� 2

q

.nAC1/.n0
AC1/�nAC1;nBn0

AC1;n0

B

�2
q

.nB C 1/.n0
B C 1/�nA;1CnBn0

A;1Cn0

B

�

:

Here, for simplicity, we assumed that �1
Q1

D �2
Q2

� c, and the definitions of A,
B, N , N 0, are given in (11.27), and (11.24).

As the A and B modes are independent, the solution of the master equation must
be separable,

�nA ;nBn0

A;n
0

B
.t/ D �

.A/
nA;n

0

A
.t/�.B/

nB ;n
0

B
.t/ : (13.33)

13.1.1.4 Photon Statistics

We take the steady-state case, that is for d
dt D 0, and the diagonal terms only, to

determine the photon statistics. It is quite apparent that there is no gain term in the
B-mode, which just damps away. The solution is

�
.B/
nB;n

0

B
D ınB;0 : (13.34)

On the other hand, the A-mode satisfies the usual one mode, two-level laser
difference equation

 

nA
1C Nn�1;n�1 B

A

!

�
.A/
n�1;n�1 �

"

.n C 1/A
1C Nn;n

B
A

#

�.A/n;n (13.35)

�c

h

n�.A/n;n � .n C 1/�
.A/
nC1;nC1

i

D 0:

As we can see, in terms of the composite mode A, the quantum beat laser
exhibits the same type of behavior, as far as photon statistics, threshold or saturation
properties, as the one mode laser.
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13.1.1.5 Phase Diffusion

In this section, we will prove that there is, for the quantum beat laser, a complete
noise quenching of the relative phase of the two quantum modes.

We start by defining a beat signal as

BS D Re
n

exp Œi.�1 � �2/t� Tr
�

a�1a2�
�o

(13.36)

D Re
˚

exp i�3tTr
�

.A�A � B�B C AB� � A�B/�
��

;

where we assumed, for simplicity g1 D g2:
Now, performing the separation indicated in (13.33), we get two time-dependent

master equations

d�.A/n;n0

dt
D
" p

nn0A
1C Nn�1;n0�1

	 B
A



#

�
.A/
n�1;n0�1 �

" N 0
n;n0

A
1C Nn;n0

	 B
A



#

�
.A/
n;n0

(13.37)

�c

2

h

.n C n0/�.A/n;n0

� 2
p

.n C 1/.n0 C 1/�
.A/
nC1;n0C1

i

;

d�.B/n;n0

dt
D �c

2

h

.n C n0/�.B/n;n0

� 2
p

.n C 1/.n0 C 1/�
.B/
nC1;n0C1

i

: (13.38)

Looking at the time-dependent solutions of (13.37), one writes the general
solution in the form [4]

�n;nCp D
1
X

jD0
�j.n; p/ exp.��. p/

j t:/ (13.39)

As we have already seen from the laser theory, the lowest eigenvalue �.0/0 D 0,
thus allowing a non-vanishing stationary solution for the diagonal elements. Also,
�
. p/
j > 0 for p¤ 0, so that the off diagonal elements of the field density matrix goes

to zero for long times.
In the case of an ordinary two-mode laser, the density matrix corresponding to

the two modes factorize

�.1;2/ D �1�2 ; (13.40)

so that the beat signal

Reha�1a2iOL D 1

2

2

4

X

n;n0

�
.1/
n;nC1.t/�

.2/

n0 ;n0�1.t/
p

.n C 1/n0 C cc

3

5 ; (13.41)

and according to (13.39), the above expression vanishes at a rate �.1/0 .
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This defines the phase diffusion coefficient as

�
.1/
0 D D

2
; (13.42)

where D is the Schawlow–Townes linewidth.
In the case of the quantum beat laser, this does not happen, because (13.36)

contains diagonal elements in A�A, so

Reha�1a2iQBL �
X

n

n�.A/n;n C : : : ; (13.43)

and because �.0/0 D 0, there is always a non-zero part of the beat signal.
If we keep the definition of the diffusion coefficient as twice the lowest decay

rate, then we conclude that D D 0, for the relative phase of the two modes.
A more formal and longer derivation can be done using Glauber’s P representa-

tion to obtain a Fokker–Planck equation in ˛ and ˛�, which can be converted in a
polar form, in terms of the two amplitudes �1and �2 and the two phases 
1 and 
2 of
the two modes. Then one finds that the phase difference 
 � 
1 � 
2 locks to zero
and D.
/ D 0: (The details of this rather long calculation are found in the [2]).

13.1.2 Other CEL Systems

The active medium can also be prepared in a coherent superposition of the j ai and
j bi states which decay to the state j ci, via emission of different polarization states.
This is the Hanle effect, and it can be achieved with a polarization sensitive mirror
to couple the doubly resonant cavity.

Another CEL system is a ring laser whose counterpropagating modes are coupled
by a spatial modulation in the gain medium. This is the holographic laser [5], where
each beam is reflected in part by the thin atomic layers of the gain medium. When
the reflected light interferes constructively with the light of the counterpropagating
beam, noise quenching is achieved.

A last example is the two-photon CEL [6], which is the extension of the CEL
principle in a system where the active medium consists in three-level atoms in the
cascade configuration driving a cavity resonant with �1 D !a�!c

2
as shown in the

Fig. 13.3.
We are again interested in finding out the role of the atomic coherence between

the most distant levels a and c, in quenching the noise.
As it turns out, this system is not only capable of quenching the quantum noise

of an active system but also under certain conditions, reduces the phase noise below
the shot noise level, producing a squeezed output.

We shall not go into the theoretical details of these systems, because they operate
under the same basic principle.
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Fig. 13.3 The two-photon
correlated emission laser. The
active medium are three-level
atoms in a cascade
configuration.The cavity is
tuned at � and the
intermediate level is off
resonance with respect the
center of the transition

Problems

13.1 Prove (13.13), (13.15), and (13.16).

13.2 Show, for the quantum beat laser, that the relative phase diffusion coefficient
is given by

D.
/ D g2r

42hni .1 � cos 
/� g4r

4
.1 � cos 2
/;

where  is the atomic decay and g the same coupling constant for the two modes
with the respective transitions.

Notice that for 
 D 0;D.
/ D 0: [2]

13.3 Prove that the drift coefficient of the Fokker–Planck equation d.
/ vanishes
for 
 D 0; thus giving the required phase locking to achieve D.
/ D 0: [2]
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Chapter 14
Quantum Noise Reduction 2

In this chapter, we will cover the area of theory and relevant experiments in the
generation of squeezed states.

Before discussing the parametric oscillator, we will have a brief introduction to
Non-Linear optics and the input-output theory.

Finally, we will discuss other important experiments that generated squeezed
states.

14.1 Introduction to Non-linear Optics

Light of a given frequency falling on an atomic system can give rise to different
frequencies. Even stronger effects can be obtained if instead of an atomic system,
one had a large number of atoms or some particular crystal such as quartz, ADP,
KDP, etc.

One of the early experiments [1] was generating, with a Ruby laser falling into
a quartz crystal, a blue light of � D 3472Å, starting from the original red light of
� D 6943Å:

This experiment demonstrated for the first time the non-linear optical effect of
second harmonic generation.

Since then, the field of non-linear optics has been explosive [2–5].
We will be interested in some quantum non-linear effects related to the generation

of squeezed states.
In order to explore the origin of the above-mentioned phenomena, we go back to

the atom–radiation interaction model to study the multiple photon transitions.

© Springer International Publishing Switzerland 2016
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14.1.1 Multiple-Photon Transitions

The atom–radiation Interaction Hamiltonian can be written as [6]

H D H0 C H1 ; (14.1)

where H0 is the Hamiltonian of the uncoupled radiation Hr plus the bound electrons
He

H0 D Hr C He ; (14.2)

and, in the dipole approximation, H1 is the interaction term

H1 D �er � E.r; t/ : (14.3)

If the initial state of the system is j �.t0/i, at time t it will be

j �.t/i D exp �
�

iH.t � t0/

„
�

j �.t0/i : (14.4)

On the other hand, let j ii and j f i be eigenstates of the unperturbed energy

H0 j ii D „!i j ii ; (14.5)

H0 j f i D „!f j f i :

Then, if

j �.t0/i Dj ii ; (14.6)

that is, initially, the system is in an eigenstate of the unperturbed Hamiltonian H0,
then the probability for the system to be in j f i at t D t is

Pif Dj h f j exp

�

� iH.t � t0/

„
�

j ii j2 : (14.7)

Of course, the transition rate of the system from j ii !j f i is the time derivative
of the above expression.

In general, there is a range of final states in an experimental observation; thus,
one can define a transition rate as

1

�
D d

dt

X

f

j h f j exp

�

� iH.t � t0/

„
�

j ii j2 : (14.8)
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The above expression is not very practical, since the relevant term for transitions
in the Hamiltonian is

H1 ;

which does not commute with

H0 :

However, we make use of the following trick

exp

�

iH0t

„
�

H1 exp

�

� iHt

„
�

D i„ d

dt

�

exp

�

iH0t

„
�

exp

�

� iHt

„
��

: (14.9)

The above relation can be easily verified by performing the derivative on the r.h.s.
of (14.9). Next, we integrate both sides

Z t

t0

exp

�

iH0t1
„

�

H1 exp

�

� iHt1
„
�

dt1

D i„
�

exp

�

iH0t

„
�

exp

�

� iHt

„
�

� exp

�

iH0t0
„

�

exp

�

� iHt0
„
��

;

so

exp

�

� iHt

„
�

(14.10)

D exp

�

� iH0t

„
��

exp

�

iH0t0
„

�

exp

�

� iHt0
„
�

� i

„
Z t

t0

exp

�

iH0t1
„

�

H1 exp

�

� iHt1
„
�

dt1

�

If one is interested in the steady-state transitions, we can assume that t0 ! �1,
and H1.t0/ D 0.

Also, if one wants the interaction to be switched on in a smooth way, we
introduce an exp."t1/, which we can conveniently eliminate at the end of the
calculation by setting " ! 0: Then

exp

�

� iHt

„
�

(14.11)

D exp

�

� iH0t

„
��

1 � i

„
Z t

t0

exp

�

iH0t1
„

�

H1 exp."t1/ exp

�

� iHt1
„
�

dt1

�

:

The r.h.s. can be developed as power series in H1 by iteration.
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14.1.1.1 Zero-th Order

h f j exp

�

� iH0t

„
�

j ii D exp.�i!it/h f j ii D 0 ;

for i ¤ j.

14.1.1.2 First Order

� i

„h f j exp

�

� iH0t

„
�Z t

�1
exp

�

iH0t1
„

�

H1 exp."t1/ exp

�

� iH0t1
„

�

dt1 j ii

D � i

„h f j H1 j ii exp �.i!f t/
Z t

�1
exp t1.�i!i C "/dt1

D h f j H1 j ii
„

�

exp t.i!f � i!i C "/

�!f C !i C i"

�

;

so the transition to first order is

1

�
D d

dt

X

f

j h f j H1 j ii j2
„2

exp 2"t

.�!f C !i/2 C "2
; (14.12)

1

�
D 2

„2
X

f

j h f j H1 j ii j2 " exp 2"t

.�!f C !i/2 C "2
; (14.13)

and when " ! 0, we get

1

�
D 2�

„2
X

f

j h f j H1 j ii j2 ı.!i � !f / ; (14.14)

which is the Fermi golden rule.

14.1.1.3 Second Order

This is obtained by a first iteration of (20.62), thus getting

� 1

„2 h f j exp

�

� iH0t

„
�
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Z t

�1
dt1

Z t1

�1
dt2 exp

�

iH0t1
„

�

H1 exp."t1/ exp

�

� iH0t1
„

�

exp

�

iH0t2
„

�

H1 exp."t2/ exp

�

� iH0t2
„

�

j ii;

and introducing a complete set of eigestates of H0, 1 D P

l j lihl j, we get:

� 1

„2
X

l

exp.�i!f t/h f j H1 j lihl j H1 j ii
Z t

�1
dt1

Z t1

�1
dt2

exp
�

i!f t C "t1 C "t1 � i!l.t1 � t2/C "t2 � i!it2
�

D
X

l

h f j H1 j lihl j H1 j ii exp.2"t � i!tt/

„2.!i � !l C i"/.!i � !f C 2i"/
:

Adding the two contributions, we get ." ! "
2
/:

1

„
�

exp."t � i!tt/

!i � !f C i"

�

(14.15)

"

h f j H1 j ii C
X

l

h f j H1 j lihl j H1 j ii
„.!i � !l C "

2
/

#

and the transition rate, up to second order is

1

�
D 2�

„2
X

f

j h f j H1 j iiC 1

„
X

l

h f j H1 j lihl j H1 j ii
!i � !l

j2 ı.!i�!f / : (14.16)

14.1.1.4 n-th Order

1

�
D 2�

„2
X

f

j h f j H1 j ii C 1

„
X

l

h f j H1 j lihl j H1 j ii
!i � !l

ı.!i � !f /C : : :C

1

„n�1
X

l1

: : :
X

ln�1

h f j H1 j l1ihl1 j H1 j l2i::hln�1 j H1 j ii
.!i � !l1 /.!i � !l2 /::.!i � !ln�1 /

j2 ı.!i � !f / :

(14.17)

The states

j l1i; j l2i : : :

are virtual states.
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The first-order term represents a direct transition

j ii !j f i ;

while in the higher terms, the transitions are

j ii !j ln�1i !j ln�2i : : : !j f i ;

where there is no requirement to be met by the difference !i � !l, except that if the
difference is very large, it generates a large denominator, contributing very little to
the final result.

The various non-linear optical phenomena are contained in this generalized
Fermi golden rule.

For example, in light scattering, where one photon is absorbed and one is
emitted, the second-order term is required. In second harmonic generation, where
two photons are absorbed and one photon with double frequency emitted, a third-
order process is required, and so on.

14.2 Parametric Processes Without Losses

The fundamental process known as parametric amplification plays an important role
in many physical effects. These include, for example, Raman and Brillouin effects.

In the case of the Raman coherent effect, a monochromatic light wave on
a Raman active media gives rise to a parametric coupling between an optical
vibrational mode and the mode of the radiation field, the so-called Stokes mode.

In the case of Brillouin scattering, there is a similar coupling, where the
vibrations are at acoustical, rather than optical, frequencies.

In the case of parametric amplification, an intense light wave in a non-linear
dielectric medium couples pairs of field modes, the idler mode and the signal
mode, whose frequency add up to the frequency of the original strong light
wave, the pump mode.

This effect is shown in Fig. 14.1.

Fig. 14.1 A typical
parametric amplifier, where a
pump mode splits into a
signal and an idler mode,
these modes obeying the
conservation of energy and
momentum
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The Hamiltonian describing the non-degenerate (!1 ¤ !2) parametric amplifier
is described by the following effective Hamiltonian

H D „!0a�0a0 C „!1a�1a1 C „!2a�2a2C (14.18)

� i�K„
2
.a�0a1a2 � a0a

�
1a
�
2/ ;

where the first three terms correspond to the energies of the pump, signal and idler
modes, respectively, and the last term describes the non-linear interaction, where the
term a0a

�
1a
�
2 represents the destruction of a pump photon and the creation of an idler

and a signal photon.
A particularly simple case is that of the degenerate parametric amplifier r, where

a pump photon at frequency 2! splits into two photons, each of frequency !:
If we also assume that the pump is intense and classical [7], then we have

H D „!a�a � i„�
2
.a2 exp 2i!t � a�2 exp �2i!t/ ; (14.19)

where we have included in � the non-linear susceptibility and the classical
amplitude.

If we go to the interaction picture, we readily get

H D �i„�
2
.a2 � a�2/ : (14.20)

The Heisenberg equations of motion for this system are

da

dt
D 1

i„ Œa;H� D �a� ; (14.21)

da�

dt
D 1

i„
�

a�;H
� D �a ; (14.22)

and the solution can be easily calculated as

a.t/ D a.0/ cosh�t C a�.0/ sinh�t : (14.23)

Also, if we combine the two differential equations (14.21), and (14.22), we get

dX

dt
D �X ; (14.24)

dY

dt
D ��Y ; (14.25)

getting, as solutions

X.t/ D X.0/ exp.�/ ; (14.26)
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Y.t/ D Y.0/ exp.��t/ ; (14.27)

h.�X/2i.t/ D exp.2�t/h.�X/2i.0/ ; (14.28)

h.�Y/2i.t/ D exp.�2�t/h.�Y/2i.0/ : (14.29)

If the field is initially in the vacuum state, that is

h.�X/2i.0/ D h.�Y/2i.0/ D 1

4
; (14.30)

then h.�X/2i.t/ D 1
4

exp.2�t/; h.�Y/2i.t/ D 1
4

exp.�2�t/, and the deamplified
quadrature (Y) is squeezed at the expense of the other one, the product satisfying
the minimum uncertainty relation

h.�X/2i.t/h.�Y/2i.t/ D 1

16
: (14.31)

The amount of squeezing, from the above results, is proportional to the interac-
tion time, the non-linear parameter and the pump amplitude.

Actually, the theory presented here is a bit naive, since no loss mechanism is
present, and one has always fluctuations in the pump intensity, in the case of a
parametric amplifier, or if we place the non-linear crystal in a cavity, then in the
parametric oscillator we would have cavity losses.

Since, for the case of the parametric oscillator, only the outside field is available
for detection, we have to connect the field inside the cavity, with the field outside.
The input–output theory is quite suitable for this type of problem. This is the subject
of the next section.

14.3 The Input–Output Theory

In Quantum Mechanics, the S-matrix theory relates input and output fields, having
in mind situations such as scattering experiments.

The input–output theory is a particular model [8, 9], that assumes a heat bath
coupled to a system, with the following assumptions:

(a) We consider a particular class of system–bath interaction that is linear in the
bath operators. The vast majority of the models in Quantum Optics satisfy the
above requirement.

(b) We make the rotating wave approximation.
(c) The spectrum of the bath is flat, that is independent of frequency.

These assumptions are quite common, and we already made them when dealing
with the damped harmonic oscillator.
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Next, we will define the “input” and “output” operators in terms of the bath
operators, evaluated at the remote past and future. Then, we can derive quantum
Langevin equations for the system and bath operators.

We start by considering the system-bath Hamiltonian

H D Hsys C HB C HInt ; (14.32)

HB D „
Z 1

�1
d!!b�.!/b.!/ ; (14.33)

HInt D i„
Z 1

�1
d!K.!/

�

b�.!/c � b.!/c�
�

; (14.34)

where b.!/ are the boson annihilation operators for the bath, satisfying

�

b.!/; b�.!K/� D ı.! � !K/ ; (14.35)

and c is any system operator.
Of course, the real frequency range is .0;1/, but for convenience, we have

extended it to .��;1/, which is acceptable if one goes in a rotating frame with
angular frequency�, and then take � larger than a typical bandwidth.

We follow now the same procedure as in the quantum theory of damping.
We write the Heisenberg equation for an arbitrary system operator a and b.!/

Pb.!; t/ D �i!b.!; t/C K.!/c; (14.36)

Pa D � i

„
�

a;Hsys
�C

Z 1

�1
d!K.!/

˚

b�.!; t/ Œa; c�� �

a; c�
�

b.!; t/
�

; (14.37)

and integrating (14.36), we get:

b.!; t/ D exp
��i!.t � t0/

�

b.!; t0/C
Z t

t0

K.!/ exp Œ�i!.t � tK/� c.tK/dtK :
(14.38)

Now, we substitute b.!/ in (14.37), obtaining

Pa D � i

„
�

a;Hsys
�

C
Z

1

�1

d!K.!/
˚

exp
�

i!.t � t0/
�

b�.!; t0/ Œa; c� �
�

a; c�
�

exp
��i!.t � t0/

�

b.!; t0/
�

C
Z

1

�1

d!K.!/2
Z t

t0

dtK˚exp Œi!.t � tK/� c�.tK/ Œa; c�� �

a; c�
�

exp Œ�i!.t � tK/� c.tK/� :
(14.39)

So far, our Heisenberg equation of motion is exact. But not for too long.
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We introduce now the first Markov approximation:

K.!/ D
r



2�
; (14.40)

which is the broadband assumption mentioned at the beginning.
Also, we make use of the properties of the ı function

Z 1

�1
d! exp Œ�i!.t � tK/� D 2�ı.t � tK/ ; (14.41)

Z t

t0

c.tK/ı.t � tK/dtKD 1

2
c.t/ ;

to get

Pa D � i

„
�

a;Hsys
� � �

a; c�
�
h

2
c � p

aIN.t/
i

(14.42)

C
h

2
c� � p

a�IN.t/
i

Œa; c� ;

where we defined the input field as

aIN.t/ D �
r

1

2�

Z 1

�1
d! exp

��i!.t � t0/
�

b.!; t0/ : (14.43)

We notice that the 

2
c and � 

2
c� are the damping terms.

Also, the aIN.t/ and a�IN.t/ terms represent the noise, since they depend on the
bath operators at the initial time t0.

We may assume that at this initial time, the system and bath density operators
factorize and a typical bath state correspond to a thermal state.

In the case that the bath state corresponds to a coherent or squeezed state, we no
longer can interpret these terms as noise.

Foe the particular case c=a, we get

Pa D � i

„
�

a;Hsys
� � 

2
a C p

aIN.t/ : (14.44)

Now, if we take t1 > t, we can integrate (14.36) again, getting

b.!; t/ D exp
��i!.t � t0/

�

b.!; t1/�
Z t

t0

K.!/ exp Œ�i!.t � tK/� c.tK/dtK ;
(14.45)
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and we define an “output field”

aOUT.t/ D
r

1

2�

Z 1

�1
d! exp

��i!.t � t1/
�

b.!; t1/ : (14.46)

If we follow the same procedure as with the input field, we readily get

Pa D � i

„
�

a;Hsys
� � �

a; c�
�
h

�
2

c C p
aOUT.t/

i

C
h

�
2

c� C p
a�OUT.t/

i

Œa; c� ; (14.47)

and for the a=c case

Pa D � i

„
�

a;Hsys
�C 

2
a � p

aOUT.t/ : (14.48)

By comparing (14.48) with (14.44), we get

p
a.t/ D aIN C aOUT : (14.49)

Equation (14.48) can be interpreted as a boundary condition relating the input,
output and internal field, at the mirrors of the cavity.

Although this analysis refers to a system driven by a bath, this is not necessarily
a theory about noise, since no assumption was made about the bath, except for the
broad spectrum.

For a linear system, (14.44) and (14.48) can be cast in a convenient matrix form

da
dt

D
�

A�
2

1
�

a C p
aIN.t/ ; (14.50)

D
�h

AC

2
1
i�

� p
aOUT.t/ ;

with

a D
�

a
a�

�

; (14.51)

and A is a matrix.
It is convenient to define the Fourier transform:

Qa.!/ D 1

2�

Z 1

�1
exp.i!t/a.t/dt : (14.52)
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Now, (14.50) can be written as

�i! Qa.!/ D
�

A�
2

1
�

Qa.!/C p
 Qa.!/IN ;

D
�

AC

2
1
�

Qa.!/� p
 Qa.!/OUT ; (14.53)

where

Qa.!/ D
� Qa.!/

Qa�.�!/
�

: (14.54)

From the above equations, we can eliminate the internal field and relate the input
and output fields.

Since

�
h

A C .i! � 

2
/1
i

Qa.!/ D p
 Qa.!/IN (14.55)

�
h

A C .i! C 

2
/1
i

Qa.!/ D �p
 Qa.!/OUT ; (14.56)

we get

h

A C .i! � 

2
/1
i�1 Qa.!/IND �

h

A C .i! C 

2
/1
i�1 Qa.!/OUT ;

or, finally

Qa.!/OUT D �
h

A C .i! C 

2
/1
i h

A C .i! � 

2
/1
i�1 Qa.!/IN : (14.57)

14.4 The Degenerate Parametric Oscillator

The physical system is described in the Fig. 14.2.

Fig. 14.2 Physical setup of
the parametric oscillator
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A non-linear crystal acts as the amplifying medium inside an optical cavity, with
two mirrors chosen with the following properties

(a) Both mirrors are almost 100 % transmitting at the pump frequency !p D 2!0:

(b) One of the end mirrors is 100 % reflecting at !0 and the other one (right mirror)
is partially transmitting at !0:

The input–output theory developed in the last section is quite suitable to be used
in this example.

The Hamiltonian of the degenerate parametric oscillator can be written as [10]

Hsys D „!0a�a C i„ �" exp.�i!pt/a�2 � "� exp.i!pt/a2
�

2
; (14.58)

where " is the classical pump amplitude (including the non-linear coefficient) and
!p D 2!0 is the pump frequency.

The equation of motion for the internal field is

da

dt
D �i!0a C " exp.�i!pt/a� � 1

2
.1 C 2/a (14.59)

Cp
1a1IN.t/C p

2a2IN.t/ ;

where 1 and 2 are the two damping coefficients of the two mirrors and
a1IN.t/; a2IN.t/ are the two respective input fields.

Now, we go to a rotating frame

a ! a exp
�

i
!pt

2

�

;

a1IN.t/ ! exp
�

i
!pt

2

�

a1IN.t/;

a2IN.t/ ! exp
�

i
!pt

2

�

a2IN.t/ :

If we call the new fields with the same symbols as the old ones, we write

da
dt

D
�

A � 1

2
.1 C 2/1

�

aCp
1a1IN.t/C p

2a2IN.t/ ; (14.60)

with

A D
�

0 j " j exp.i
/
j " j exp.�i
/ 0

�

; (14.61)

a.t/ D
�

a
a�

�

;
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aiIN.t/ D
"

aiIN

a�iIN

#

; i D 1; 2:

Now, performing the Fourier transform and using the property a�.!/ D
Œa.�!/��, we get

Qa.!/ D �
�

A C .i! � 1

2
.1 C 2//1

��1
�p
1 Qa1IN.!/C p

2 Qa2IN.!/
�

:

(14.62)

From the above vector relation, the upper component of Qa.!/ is given by (after
matrix inversion)

Qa.!/ D .�i! C 1
2
.1 C 2//

�p
1 Qa1IN.!/C p

2 Qa2IN.!/
�

.i! � 1
2
.1 C 2//2� j " j2

C
"
hp
1 Qa�1IN.�!/C p

2 Qa�2IN.�!/
i

.i! � 1
2
.1 C 2//2� j " j2 : (14.63)

From (14.49), we get the output field

QaOUT.!/ D
�

.
1
2
/2 � .

2
2

� i!/2C j " j2� Qa1IN.!/C "1 Qa�1IN.�!/
.i! � 1

2
.1 C 2//2� j " j2 (14.64)

C
p
21

h

.
1C2
2
/� i!

i

Qa2IN.!/C "
p
21 Qa�2IN.�!/

.i! � 1
2
.1 C 2//2� j " j2 :

We are mostly interested in the quadrature fluctuations.
It takes a little algebra to show the following results

hW X1OUT.!/;X.!K/1OUT Wi (14.65)

D j " j 1
2

�

1
2
.1 C 2/� j " j�2 C !2

ı.! C !K/ ;

hW Y1OUT.!/;Y.!K/1OUT Wi (14.66)

D � j " j 1
2

�

1
2
.1 C 2/C j " j�2 C !2

ı.! C !K/ ;

where

ha; bi � habi � haihbi :



14.5 Experimental Results 225

The maximum squeezing is obtained for 1
2
.1 C 2/ Dj " j, getting

hW Y1OUT.!/;Y.!K/1OUT Wi (14.67)

D �1
4

.1 C 2/

.1 C 2/2 C !2
ı.! C !K/ :

The normally ordered spectrum of Y1OUT.!/ is the coefficient of the above
formula

W SY1OUT.!/ WD �1
4

.1 C 2/

.1 C 2/2 C !2
: (14.68)

Two important cases are

(a)  D 1 D 2, the double ended cavity, for which, at resonance

W SY1OUT.0/ WD �1
8
: (14.69)

(b) 2 D 0, single ended cavity

W SY1OUT.0/ WD �1
4
: (14.70)

We notice that the single ended cavity has a perfect squeezing in the output signal.

14.5 Experimental Results

Quadrature squeezing has been observed experimentally in parametric oscillators,
and also other non-linear effects such as second harmonic generation [11, 12],
optical bistability [13], four wave mixing [14].

Squeezing greater than 50 % relative to the vacuum noise level was obtained by
Wu et al. [15], using degenerate parametric down conversion in an optical cavity.

The diagram of the experimental setup is shown in the Fig. 14.3.
The downconversion occurs in the cavity M´M´´ that contains the non-linear

crystal MgO:LiNbO3, phase matched at 98 ıC. The pump for the parametric
oscillator is an Nd:YAG laser, whose frequency was doubled from 1.06 to 0.53�m,
using a Ba2NaNb5O15 crystal inside the laser cavity.

The pump field enters the OPO cavity through the M´ mirror with a transmission
coefficient of 3.5 % at 0.53 μm; and 0.06 % at 1.06 μm:

On the other hand, M´´ is coated for low transmission at 0.53 μm and either 4.3 %
or 7.3 % transmission at 1.06 μm:

A fraction of the downconverted light from the OPO exits through M´´ and
combines with the original Nd:YAG laser that acts as a strong local oscillator at
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Fig. 14.3 Diagram of the
experimental setup of the
parametric oscillator that
generates squeezed states

Fig. 14.4 Phase dependence
of the rms noise voltage V(
 )
from a balanced homodyne
detector as a function of the
local oscillator phase 
 at a
fixed analysis frequency
1.8 MHz. The dashed line
corresponds to the vacuum
noise voltage, with the OPO
blocked and no phase
dependence (After [15])

one of the ports of a balanced homodyne detector and the squeezed light enters
through the other port.

The squeezed signal is observed from the spectra of the intensity difference of
the photocurrents coming from the detectors A and B.

In the Fig. 14.4, we display the noise voltage V.
/ from the detector, as a function
of the phase 
 , of the local oscillator.
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With the OPO input blocked, the vacuum field entering the signal port of the
detector produces the noise drawn in dotted line, with no 
 dependence.

With the OPO unblocked, there are several dips below the vacuum level, some of
which correspond to a reduction of 50 %.

Problems

14.1 Show that after matrix inversion, Qa.!/ is given by (14.63).

14.2 Show that the optimum normally ordered squeezing spectrum for Y is given
by (14.68).

14.3 Using the input–output theory, show that

Œa.t/; aIN.tK/� D u.t � tK/p Œa.t/; c.tK/� ;
Œa.t/; aOUT.tK/� D u.tK� t/

p
 Œa.t/; c.tK/� ;

where u.t/ is the step function, defined as

u.t/ D 1; t > 0

D 1

2
; t D 0

D 0; t < 0 :

14.4 Light scattering by a two-level atom.
For a weak incident beam on a two-level atom, the usual interaction Hamiltonian

is

H1 D ed � E.0/:

The initial state of the system consists of photons at frequency ! and wavevec-
tor k:

The scattered photons (by the two-level atom) will have a frequency !s and a
wavevector ks; and the fields are characterized by the annihilation operators a and
as, respectively.

Also, we assume that the atom is initially in its lower state j bi, with zero energy
and left in some final atomic state j f i with an energy „!f . If the incident field has
n photons, then we make use of (20.67) with j f iat�f Dj n � 1; 1; f i and j iiat�f D
j n; 0; bi , where the first number refers to the number of photons in the beam, the
second number the number of photons in the scattered field and the third index is
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the atomic state, and write (up to second order)

1

�
D 2�

„2
X

f

j hn � 1; 1; f j H1 j n; 0; bi

C1

„
X

l

hn � 1; 1; f j H1 j lihl j H1 j n; 0; bi
!i � !l

j2 ı.! � !s � !f /:

(a) Prove that the linear term does not contribute and that the contributions of the
quadratic terms come from

aa�s term with the relevant j li Dj n; 1; ji; !l D .n/!C!s C!j and a�s a term
with the relevant j li Dj n � 1; 0; ji; !l D .n � 1/! C !j:

(b) Show that

1

�
D
X

f

X

ks

�e4!s!n

2„"20v2
j
X

j

. "s�dfj/."�djf /

!j � ! C ."�dfj /."s�djf /

!j C !s
j2

ı.! � !s � !f /:

(c) Converting the sum over ks into an integral, and using the notion of cross
section, usually defined as the ratio of energy removed from the beamnenergy
rate crossing a unit area perpendicular to the beam, or

� D
„!
�

c„n!
v

D v

�nc
;

show that

d�

d�
D

!f<!
X

f

e4

16�2„2"20c4
j
X

j

. "s�dfj/."�djf /

!j � !
C ."�dfj /."s�djf /

!j � !f C !
j2

This is the Kramer–Heisenberg formula. The cross-section includes the elastic
Rayleigh scattering, corresponding to the f D b term, !f D 0, and the inelastic
Raman scattering, corresponding to the rest [6].

14.5 Prove that for the elastic Raman scattering (refer to Problem 14.4) one has

d�

d�
D

!f<!
X

f

e4.! � !f /
3!

16�2„2"20c4
j
X

j

!jf."s�dbj /."�djb/C ."�dbj /."s�djb/g j2 ;

in the limit ! >> !j, when ! is much larger than the atomic excitation
frequencies [6].
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Chapter 15
Quantum Phase

We study, in this chapter, the various approaches to the problem of the Quantum
Phase.

Dirac was the first one to postulate the existence of a Hermitian phase variable in
the early days of Quantum Electrodynamics [1].

15.1 The Dirac Phase

Comparison with Classical Mechanics led Dirac to assume a commutation relation
of the number and phase operator

ŒˆD;n� D �i ; (15.1)

which immediately leads to the uncertainty relation

�n�ˆD 
 1

2
: (15.2)

There are some obvious difficulties with the above commutation rule.
If we take matrix elements between n and n´, we get

.n � nK/hnKj ˆD j ni D �iınnK ; (15.3)

which is inconsistent when n D n´, giving 0 D �i.
Also, when trying the polar decomposition of the annihilation operator:

a D exp iˆD
p

nDp
n C 1 exp.iˆD/ ; (15.4)

a� D p
n exp.�iˆD/ D exp.�iˆD

p
n C 1/ ;
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leads to difficulties, because if one assumes that ˆD is a Hermitian operator,
as any respectable observable should, then exp iˆD is not unitary, and therefore,
exp.�iˆD/ ¤ Œexp.iˆD/�

�.
These difficulties were pointed out by Dirac himself and also by Susskind and

Glogower [2].
Another difficulty is that the uncertainty relation (15.2), implies, for small �n

that �ˆD can have values larger than 2� , which makes no physical sense, and
basically does not take into account the periodic nature of the phase.

If one inverts the relations (15.4), we define

exp.iˆD/ D .n C 1/� 1
2 a ; (15.5)

exp.�iˆD/ D a�.n C 1/�
1
2 ;

and from (15.5), it follows that

Œexp.˙iˆD/;n� D ˙ exp.˙iˆD/ : (15.6)

15.2 The Louisell Phase

Louisell [3] tried to solve the problem of periodicity, by defining trigonometric
functions of the Dirac phase

cosˆD D 1

2
Œexp.iˆD/C exp.�iˆD/� ; (15.7)

sinˆD D 1

2i
Œexp.iˆD/ � exp.�iˆD/� ;

leading to the commutation relation

ŒcosˆD;n� D i sinˆD (15.8)

ŒsinˆD;n� D �i cosˆD

thus n and sinˆD or cosˆD obey uncertainty relations

�n� cosˆD 
 1

2
j hsinˆDi j ; (15.9)

�n� sinˆD 
 1

2
j hcosˆDi j :

Both approaches of Dirac and Louisell have a common difficulty that exp.iˆD/

is not unitary and that (15.4) do not define a Hermitian phase operator [4].



15.3 The Susskind–Glogower Phase 233

15.3 The Susskind–Glogower Phase

Susskind and Glogower [2] have a phase definition that is similar to DiracKs

a D A
p

n;A D exp.iˆS/ ; (15.10)

a� D p
nA�;A� D Œexp.iˆS/�

� ;

where A and A� do not commute.
As a matter of fact

A D a.n/� 1
2 D .n C 1/�

1
2 a; (15.11)

A� D .n/�
1
2 a� D a�.n C 1/�

1
2 :

We see that

AA� D .n C 1/�
1
2 aa� .n C 1/�

1
2 D 1 ; (15.12)

but on the other hand

A�A D a�.n C 1/�
1
2 .n C 1/�

1
2 a

D
1
X

mD0
a� j mihm j .n C 1/�1a

D
1
X

mD0

p
m C 1 j m C 1ihm C 1 j .m C 1/�1

p
m C 1

D
1
X

mD0
j m C 1ihm C 1 jD 1� j 0ih0 j :

Thus

�

A;A�
� Dj 0ih0 j : (15.13)

The two operators A and A� do not commute, and they are not unitary.
However, these two operators act like raising and lowering operators

a j ni D p
n j n � 1i D A

p
n j ni D A

p
n j ni ; (15.14)

and therefore

A j ni Dj n � 1i ; (15.15)
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and similarly

A� j ni Dj n C 1i : (15.16)

Equation (15.15) has one exception. In order not to create a Fock state with a
negative photon number, we must have

A j 0i D 0 ; (15.17)

which is the mathematical origin of the non-unitary character of A and A�.
Thus

hn � 1 j A j ni D 1 ; (15.18)

hn C 1 j A� j ni D 1 ;

and all the other matrix elements are zero.
One can also write

A Dj 0ih1 j C j 1ih2 j C j 2ih3 j C : : : : (15.19)

One can also show, similarly to the Dirac phase, that

ŒA;n� D A; (15.20)
�

A�;n
� D �A� :

We can define the trigonometric functions

cosˆS D 1

2
.A C A�/ ; (15.21)

sinˆS D 1

2i
.A � A�/ ;

where the non-vanishing elements are

hn � 1 j cosˆS j ni D hn j cosˆS j n � 1i D 1

2
; (15.22)

hn � 1 j sinˆS j ni D �hn j sinˆS j n � 1i D 1

2i
:

The reader can readily verify that the condition for a Hermitian operator hn j O j
nKi D hnK j O j ni� is satisfied by both cosˆS and sinˆS.

From the commutation relations (15.20), one can verify that

Œn; cosˆS� D �i sinˆS ; (15.23)

Œn; sinˆS� D i cosˆS ;
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which implies that both n and cosˆS or sinˆS cannot be precisely specified. The
results of measurements of amplitude and phase are governed by the uncertainty
relations

�n� cosˆS 
 1

2
j hsinˆSi j ; (15.24)

�n� sinˆS 
 1

2
j hcosˆSi j :

One can also prove that the operators cosˆS and sinˆS do not commute

ŒcosˆS; sinˆS� D 1

4i

�

A C A�;A � A�
�

(15.25)

D � 1

2i
j 0ih0 j :

The last property, that the cosˆS and sinˆS do not commute is rather strange.
Normally, in Classical Mechanics or Electromagnetism, the phase is a simple
quantity and it is not necessary to define separately both the cosine and the sine
of that phase.

Of course, the above property as well as the failure of A and A� to commute is
directly related to the vacuum state.

If one has to take the average of these commutation relations, with classical
strong fields, for which, the probability of being in the vacuum is very small, then
all the difficulties vanish, which shows that the real problems arise only when one
is dealing with highly quantum mechanical field states with low photon numbers.

We can calculate the expectation values of these trigonometric functions, taking
a coherent state [5] j ˛i with ˛ Dj ˛ j exp.i
/

h˛ j cosˆS j ˛i D 1

2

�h˛ j A j ˛i C h˛ j A� j ˛i� ; (15.26)

h˛ j cosK2 ˆS j ˛i D 1

4

�h˛ j A2 j ˛i C h˛ j AA� C A�A j ˛i C h˛ j A�2 j ˛i� ;

h˛ j sinˆS j ˛i D 1

2i

�h˛ j A j ˛i � h˛ j A� j ˛i� ;

h˛ j sinK2 ˆS j ˛i D �1
4

�h˛ j A2 j ˛i � h˛ j AA� C A�A j ˛i C h˛ j A�2 j ˛i� :

After some algebraic work, one can show the following properties:

h˛ j cosˆS j ˛i D cos 
.1 � 1

8 j ˛ j2 : : :/ ; (15.27)

h˛ j cos2 ˆS j ˛i D cos2 
 � cos2 
 � 1
2

2 j ˛ j2 C : : : ;

valid only for j ˛ j2>> 1.
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Also

h˛ j cos2 ˆS C sin2 ˆS j ˛i D 1 � exp.� j ˛ j2/
2

(15.28)

valid for all ˛.
It is interesting to notice that when j ˛ j! 0; h˛ j 	cos2 ˆS C sin2 ˆS


 j
˛i ! 1

2
, which again is a strange property.

As a conclusion of this section, the Susskind–Glogower is formalism of the
quantum phase, is a fairly consistent one, where the main difficulties are not
mathematical but with the physical interpretation of cosˆS and sinˆS and their
relationship with the actual experiments.

Finally, a long time ago, F. London defined a phase state:

j �i D 1p
2�

1
X

nD0
exp.in�/ j ni (15.29)

which are neither orthogonal nor be normalized. However, as we shall see, it can be
useful to define probability distributions that can be normalized [6, 7].

The shortcomings of the above phase operators have led a number of investiga-
tors to explore different possibilities [8–25].

We turn now to the Pegg and Barnett description.

15.4 The Pegg–Barnett Phase

A phase state j 
i is defined in a finite .sC1/ dimensional space, in the limit s ! 1,
as follows [13–16]

j 
i D Lims!1.s C 1/� 1
2

s
X

nD0
exp.in
/ j ni : (15.30)

The way to operate the limit is to perform the calculation in a finite space, and
after the physical averages are calculated, one is to take the limit s ! 1.

The parameter 
 can take any values between 0 and 2�; thus, there are an infinite
number of these states, which are overcomplete and non-orthogonal.

However, one can construct a set of orthogonal states if one picks only specified
values of 
 D 
m


m D 
0 C 2�m

s C 1
: (15.31)
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Thus, if one starts from a reference state j 
0i, one can find a complete set of
s C 1 orthonormal states

j 
mi D exp i

�

n
�

m2�

s C 1

��

j 
0i ; (15.32)

m D 0; 1; 2 : : : s :

The above equation is simple to verify, because

exp.in/ j ni Dj n C i :

The orthonormal condition can be seen as follows:

h
p j 
mi D h
0 j exp

�

�in
�

p2�

s C 1

��

exp

�

in
�

m2�

s C 1

��

j 
0i

D Lims!1
1

s C 1

s
X

q;rD0
hq j exp.�iq
0/ exp

�

�in
�

p2�

s C 1

��

exp i

�

n
�

m2�

s C 1

��

exp.ir
0/ j ri ;

where j qi and j ri are Fock states.
Thus

h
p j 
mi D Lims!1
1

s C 1

s
X

qD0
hq j qi exp

�

i
2�

s C 1
q.m � p/

�

D ımp : (15.33)

The Hermitian phase operator is defined as

ˆ
 D
s
X

mD0

m j 
mih
m j ; (15.34)

or

ˆ
 D 
0 C 2�

s C 1

s
X

mD0
m j 
mih
m j : (15.35)

We notice thatˆ
 depends on an arbitrary reference phase 
0, which also happens
in its classical counterpart.

Clearly, the phase operator defined by (15.34) is Hermitian and satisfies the
eigenvalue equation

ˆ
 j 
mi D 
m j 
mi : (15.36)
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One of the problems with Dirac’s phase was that the matrix element hnK j
ˆD j niwas undefined. In the Pegg–Barnett formalism, that problem is not present.

We start from

j 
mih
m jD .s C 1/�1
s
X

n;nKD0
exp Œi.nK� n/
m� j nKihn j ; (15.37)

thus the phase operator can be written as

ˆ
 D 
0 C 2�

s C 1

s
X

mD0
m.s C 1/�1

s
X

n;nKD0
exp Œi.nK� n/
m� j nKihn j (15.38)

D 
0 C �s

s C 1
C 2�

s C 1

s
X

n¤nK

exp Œi.nK� n/
0�

exp
h

i.nK�n/2�
sC1

i

� 1
j nKihn j :

Now, taking matrix elements of ˆ


hn j ˆ
 j ni D 
0 C �s

s C 1
; (15.39)

hnK j ˆ
 j ni D 2�

s C 1

exp Œi.nK� n/
0�

exp
h

i.nK�n/2�
sC1

i

� 1
;

n ¤ nK :

From the above formula, we observe that the matrix elements of ˆ
 are well
defined, implying that the commutator Œˆ;n� D �i must be incorrect.

From (15.39), we immediately see that

hn j Œn; ˆ
 � j ni D 0; (15.40)

hnK j Œn; ˆ
 � j ni D 2�.nK� n/

s C 1

exp Œi.nK� n/
0�

exp
h

i.nK�n/2�
sC1

i

� 1
;

n ¤ nK :

If we take ‘finite’ or ‘physical’ states with n; n0<<s, then we get approximately

hnK j ˆ
 j ni � i

n � nKexp Œi.nK� n/
0� ; (15.41)

hnK j Œn; ˆ
 � j ni � �i.1 � ınnK/ exp Œi.nK� n/
0� :
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If 
0 D 0, and for n ¤ nK, we get

Œn; ˆ
 �nKn D �i ; (15.42)

which resembles the Dirac commutator.
Now, we concentrate in the exponential operators exp.˙iˆ
/.
They are both eigenstates of j 
mi

exp.˙iˆ
/ j 
mi D exp.˙i
m/ j 
mi : (15.43)

The action of exp.˙iˆ
/ on the Fock states is

exp.iˆ
/ j ni D exp.i
s
X

mD0

m j 
mih
m j/ j ni ; (15.44)

but because

j ni D
s
X

pD0
j 
pih
p jj ni D .s C 1/�

1
2

s
X

pD0
exp.�in
p/ j 
pi; (15.45)

then replacing (15.45) in (15.44), we get

exp.iˆ
/ j ni D .s C 1/�1
s
X

mD0
exp Œ�i.n � 1/
m� j 
mi Dj n � 1i; (15.46)

for n>0.
For n D 0, we get the unphysical state j �1i, but we can call that state j si, thus

.s C 1/�1
s
X

mD0
exp.i
m/ j 
mi D .s C 1/�1 exp Œi
0.s C 1/� j si

s
X

mD0
exp.�is
m/ j 
mi D exp Œi
0.s C 1/� j si :

Thus the number state representation of exp.iˆ
/ is

exp.iˆ
/ Dj 0ih1 j C j 1ih2 j C : : :C j s � 1ihs j C exp Œi
0.s C 1/� j sih0 j :
(15.47)

The above expansion is similar to Susskind–GlogowerKs, except for the last term,
which makes the exponential operator unitary.

Finally, in the Pegg–Barnett phase, the trigonometric functions behave in a more
normal way.
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The reader may verify the following properties:

cos2 ˆ
 C sin2 ˆ
 D 1 ; (15.48)

Œcosˆ
; sinˆ
� D 0 ; (15.49)

hn j cos2 ˆ
 j ni C hn j sin2 ˆ
 j ni D 1 : (15.50)

A drawback in the Pegg–Barnett formalism is that the state space is finite, thus

�

a; a�
� ¤ 1 : (15.51)

This can be easily seen as follows:

a D exp.iˆ
/
p

n Dj 0ih1 j Cp
2 j 1ih2 j C : : :C p

s j s � 1ihs j ; (15.52)

a� D p
n exp.�iˆ
/ Dj 1ih0 j Cp

2 j 2ih1 j C : : :C p
s j sihs � 1 j ;

so

�

a; a�
� D 1 � .s C 1/ j sihs j : (15.53)

15.4.1 Applications

15.4.1.1 Fock States

The Fock states should be states with random phase. This is actually also true for
any mixed state of the field with only diagonal elements in the density matrix.

The expectation value of ˆ
 is

hn j ˆ
 j ni D
s
X

mD0

m j h
m j ni j2 (15.54)

D 1

s C 1

s
X

mD0

m D 
0 C �s

s C 1
:

We notice that when s ! 1

hn j ˆ
 j ni D 
0 C � : (15.55)
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On the other hand

hn j ˆ2
 j ni D
s
X

mD0

2m j h
m j ni j2

D 1

s C 1

s
X

mD0

2m D 
20 C 2�
0s

s C 1
C 4�2s.s C 1

2
/

3.s C 1/2
;

and when s ! 1

hn j ˆ2
 j ni D 
20 C 2�
0 C 4�2

3
; (15.56)

and

.�ˆ2
 /n D �2

3
: (15.57)

This corresponds exactly to the classical result. If one has a uniform phase
distribution, corresponding to a random phase, then

h�i D 1

2�

Z 
0C2�


0

�d� D 
0 C � ; (15.58)

h�2i D 1

2�

Z 
0C2�


0

�2d� D 
20 C 2�
0 C 4�2

3
;

.��2/class D �2

3
:

15.4.1.2 Coherent States

h˛ j ˆ
 j ˛i D
s
X

mD0

m j h
m j ˛i j2 ; (15.59)

h˛ j ˆ2
 j ˛i D
s
X

mD0

2m j h
m j ˛i j2 : (15.60)

We have to calculate h
m j ˛i.

h
m j ˛iDexp

�

� r2

2

�

.s C 1/�
1
2

1
X

nD0

�

rn

p
nŠ

�

exp Œin.� � 
m/� ; (15.61)

˛ D r exp.i�/ ;
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Fig. 15.1 Phase fluctuations
of a coherent state versus
number of photons

and

j h
m j ˛i j2D 1

s C 1
C
�

2 exp.�r2/

s C 1

�

X

n>nK

rnrnK
p

nŠnKŠ cos Œ.n � nK/.� � 
m/� ;

(15.62)

and choosing, for convenience .� � 
0/ D �s
sC1 , and defining � � m � s

2
, so � s

2
�

� � s
2
, then when s ! 1, the above summations can be converted into integrals,

getting [17]

hˆ
 i˛ D � ; (15.63)

h�ˆ2
 i˛ D �2

3
C 4 exp.�r2/

"

X

n>nK

.�1/nCnKrnrnK
p

nŠnKŠ.n � nK/2

#

;

which can be evaluated numerically, giving the result shown in the Fig. 15.1.

15.5 Phase Fluctuations in a Laser

From the quantum Theory of the laser, in the master equation approach, the off
diagonal matrix elements of the field density operator can be written as [26]

�n;nCk D p
�n;n�nCk;nCk exp ��kt ; (15.64)
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where, according to the Scully–Lamb theory

�k D 1

2
k2D ; (15.65)

D being the phase diffusion coefficient

D D C

2hni ; (15.66)

and we have assumed that �n;n and �nCk;nCk are the steady- state diagonal elements
of the field density operator.

Now, assuming that we start from a coherent state j ˛i, one can write [26]

�.t/ D exp.�r2/
s
X

n;lD0



rnrl

p
nŠlŠ

exp

�

i�0.n � l/� Dt.n � l/2

2

�

(15.67)

	 j nihl jg ; ˛ D r exp.i�0/ :

Now we calculate the variance of the Pegg–Barnett phase operator

h�ˆ2
 iLaser D
X

m


2mh
m j � j 
mi �
"

X

m


mh
m j � j 
mi
#2

: (15.68)

From (15.67), we calculate

h
m j � j 
mi (15.69)

D exp
	�r2




s
X

n;lD0

rnrl

p
nŠlŠ

exp

�

i�0.n � l/� Dt.n � l/2

2

�

h
m j nihl j 
mi

D exp.�r2/

s C 1

s
X

n;lD0

rnrl

p
nŠlŠ

exp

�

i.�0 � 
m/.n � l/� Dt.n � l/2

2

�

D 1

s C 1

"

1C 2 exp.�r2/
s
X

nD1

	
n�1
X

lD0

rnrl

p
nŠlŠ

cos Œ.�0 � 
m/.n � l/� exp

�

�Dt.n � l/2

2

�
#

:
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Now, we take the continuous limit s ! 1; 
m ! 
 , and get the probability
density distribution

P.
/.�0/ D s C 1

2�
h
 j � j 
i (15.70)

D 1

2�

(

1C 2 exp.�r2/
1
X

nD1

	
n�1
X

lD0

rnrl

p
nŠlŠ

cos Œ.�0 � 
/.n � l/� exp

�

�Dt.n � l/2

2

�
)

:

The above distribution is normalized in the range Œ0; 2��, which corresponds to
the entire range of 
m, when s ! 1.

Furthermore, this probability density is invariant under

�0 ! �0 C 2�k ; (15.71)

k D 0; 1; 2; :: :

For computational convenience, we use the following Gaussian approximation

P.k/ D exp.�r2/
r2k

kŠ
� 1

.2�r2/
1
2

exp

�

� .r
2 � k/2

2r2

�

; (15.72)

and substituting
p

P.k/ in (15.70), and replacing summations by integrals, we write

P.
/.�0/ D 1

2�

"

1

.2�r2/
1
2

Z 1

0

dn
Z 1

0

dl

#

exp

 �1
4r2

�

.r2 � n/2 C .r2 � l/2
�C i.�0 � 
/.n � l/ � Dt.n � l/2

2

�

or

P.
/.�0/ D 1
�

2�. 1
4r2

C Dt/
� 1
2

exp

"

� .�0 � 
/2

2. 1
4r2

C Dt/

#

: (15.73)

The above probability density is normalized in the 
 range Œ�1;1�, and it is a
Gaussian with a variance increasing in time.

We would like to have, instead, a probability distribution in the Œ
0; 
0 C 2��

range.
Adding an infinite number of Gaussians with the same width, with their center

displaced in 2�k; k integer, we obtain a probability density that is normalized in the
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desired range and is periodic

P.
; �0/ D
1
X

kD�1
P.
/.�0C2�k/ D 1

Œ�a2�
1
2

1
X

kD�1
exp

"

� .�0 C 2�k � 
/2

2
	

1
4r2

C Dt



#

;

(15.74)
with

a2 D 2

�

1

4r2
C Dt

�

: (15.75)

One can show [26, 27] that the phase variance can be written in terms of error
functions

h.�ˆ
/2i D
�

1

4r2
C Dt

�

C
1
X

kD1
k2


ˆ

��� C 2�.k C 1/

a2

�

� ˆ

��� C 2�k

a2

��

(15.76)

� 4.�a2/
1
2

1
X

kD1



exp

�

� .�� C 2�k/2

a2

�

� exp

�

� .�� C 2�.k C 1//2

a2

��

;

whereˆ is the error function.
The results are shown in the Fig. 15.2
We notice, from the Fig. 15.2 that in the lower end, for Dt<<1, the phase

fluctuations correspond to the shot noise 1=4r2, and in the upper end, Dt>>1, it
corresponds to a random phase �2=3.

Fig. 15.2 Phase fluctuations
of a laser versus time
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There is an extensive region of Dt where there is a linear dependence. In this
last region, the phase diffusion model is valid, and the slope of the curve is the
well-known Schawlow–Townes phase diffusion coefficient.

Problems

15.1 Show that

hn j cos�D j ni D hn j sin�D j ni D 0

and

hn j cos2 �D j ni D hn j sin2 �D j ni

D 1

2
; n ¤ 0

D 1

4
; n D 0:

15.2 Prove that

Œcos�D; sin �D� D Œa�.n C 1/�1a � 1�
2i

;

and hence, all the matrix elements are zero, except for

h0 j Œcos�D; sin �D� j 0i D � 1

2i
:

15.3 Prove (15.6).

15.4 Prove (15.27).

15.5 Verify the properties given by (15.48), (15.49), and (15.50).

15.6 Prove (15.63).
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Chapter 16
Quantum Trajectories

Einstein, in his classical paper on the A and B coefficients for spontaneous and
stimulated emission, assumed the existence of quantum jumps, which greatly
stimulated quantum mechanics. However, until very recently, quantum jumps played
practically no role in various theories coupling radiation and matter, and this type
of interactions are well described by the Schrödinger wavefunction describing the
properties of an ensemble, rather than individual systems.

Now, in all the examples we have seen of systems coupled to reservoirs, we
have followed the procedure of starting from Liouville Equation for the system
coupled to the reservoir; next, we trace or average over the reservoir variables, after
a Markovian approximation, to end up in a master equation of the form

d�S

dt
D i

„ Œ�S;Hs�C Lrelax.�S/ ; (16.1)

where

Lrelax.�S/ D �1
2

X

m

.C�
mCm�S C �SC�

mCm � 2Cm�SC�
m/ : (16.2)

The above form, normally called Lindblad form, describes many systems coupled
to reservoirs .

For example, if we want to describe the spontaneous Emission in a two-level
atomic system, then C1 D p

��, and Lrelax.�S/ D � 1
2
.����S C �S�

�� �
2��S�

�/;  being the inverse lifetime of the atomic transition. Similarly, if we
are describing a damped harmonic oscillator, then the same applies after replacing
�� ! a�; � ! a.
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Now, we present a method based on the wavefunction to describe such a system.
In general, we are not allowed to use Schrödinger Equation to describe System–
Reservoir-type interactions, since even if we start initially with a pure state, the
coupling to the bath will produce statistical mixtures, and we traditionally are
forced to go to the Liouville Equation.

However, two alternatives have been recently proposed

1. The system evolves with a non-Hermitian Hamiltonian, interrupted, once in a
while by instantaneous quantum jumps. This process was baptized by Carmichael
as “Quantum Trajectories” or also called Montecarlo wavefunction method
[1–3].

2. Schrödinger’s Equation is reinterpreted as representing an individual system
following a stochastic dynamics of the diffusive type. We will write a Stochastic
Schrödinger Equation.

16.1 Montecarlo Wavefunction Method

We calculate the change of the wavefunction j �.t/i !j �.t C ıt/i in two steps:

(a) Calculate j �1.t C ıt/i obtained from the evolution of j �.t/i with a non-
Hermitian Hamiltonian given by

H D Hs � i„
2

X

m

C�
mCm : (16.3)

For ıt small, we get

j �1.t C ıt/i D .1 � iHıt

„ / j �.t/i : (16.4)

Since H is non-Hermitian j �1.t C ıt/i is not normalized. Thus,

h�1.t C ıt/ j �1.t C ıt/i D h�.t/ j .1C iH�ıt

„ /.1 � iHıt

„ / j �.t/i (16.5)

� 1 � ıp ;

ıp D ıt
i

„h�.t/ j H � H� j �.t/i �
X

m

ıpm ; (16.6)

ıpm � ıth�.t/ j C�
mCm j �.t/i 
 0 :

We can always adjust ıt such that ıp � 1.
(b) The second step corresponds to a gedanken experiment of a measurement

process. We consider the possibility of a quantum jump. In order to decide
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whether a quantum jump has occurred, we define a random number " uniformly
distributed between zero and one and compare it to ıp. Two cases may arise:

(I) " 
 ıp
This will be the large majority of the cases, since ıp � 1. In this case,

there is no quantum jump and j �.t C ıt/i D j�1.tCıt/ip
1�ıp .

(II) " < ıp
A quantum jump occurs to one of the states Cm j �.t/i according to

the relative probability among the various possible types of jumps, ˘m D
ıpm
ıp (notice that

P

m˘m D 1). So

j �.t C ıt/i D Cm j �.t/i
q

ıpm
ıt

: (16.7)

Milburn et al. [10] showed that a mode of the electromagnetic field in a cavity at
T D 0 is described by a quantum jump equation, if the outgoing light is detected
directly by a photodetector. We will generalize these arguments in the next sections.

16.1.1 The Montecarlo Method Is Equivalent, on the Average,
to the Master Equation

We define �.t/ D Av Œ�.t/ Dj �.t/ih�.t/ j�, where Av means the average of many
Montecarlo results at time t, all of them starting from j �.0/i.

We will now show that �.t/ coincides with �S.
We calculate �.t C ıt/

�.t C ıt/ D .1� ıp/
j �1.t C ıt/ih�1.t C ıt/ j

p

1 � ıp
p

1 � ıp
(16.8)

Cıp
X

m

�m
Cm j �.t/ih�.t/ j C�

m
q

ıpm
ıt

q

ıpm
ıt

or

�.t C ıt/ D .1 � iıt

„ .Hs � i„
2

X

m

C�
mCm// j �.t/ih�.t/ j

"

1C iıt

„ .Hs C i„
2

X

m

C�
mCm/

#

Cıt
X

m

Cm j �.t/ih�.t/ j Cm� ;
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which can be put as

�.t C ıt/ D �.t/C iıt

„

(

�.Hs C i„
2

X

m

C�
mCm/ � .Hs � i„

2

X

m

C�
mCm/�

)

Cıt
X

m

Cm�Cm� D � C iıt

„ Œ�;Hs�C ıtLrelax.�/ : (16.9)

Finally, if we average over a large number of trajectories, we recover the master
equation (16.1).

Similarly to the master equation methods, one is interested in computing averages
of interesting observables. Here, for each trajectory, we get h� i.t/ j A j � i.t/i for
many solutions j � i.t/i, thus hAin D 1

n

P

nh� i.t/ j A j � i.t/i and hAin ! hAi as
n ! 1.

The equivalency between the master equation and the Montecarlo Method is
valid as long as �iıt � 1, where �i„ is a typical energy eigenvalue of the system.

An example to illustrate the procedure is the one atom Raman Laser [4, 5]. It
consists in a three-level atom interacting with two quantum fields and a classical
coherent pump, as shown in Fig. 16.1.

The Hamiltonian of the system is

H D i„gab.a�ab � a��ba/C i„gbc.b�bc � b��cb/C i„�.�ac � �ca/ ; (16.10)

and the damping terms are

Lrelax.�S/ D ab

2
.2�ba�S�ab � �ab�ba�S � �S�ab�ba/ (16.11)

Cbc

2
.2�cb�S�bc � �bc�cb�S � �S�bc�cb/

Fig. 16.1 Three-level atom
inside a double cavity
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Fig. 16.2 Average photon number (upper curve) and Mandel’s Q parameter as a function of time.
The parameters taken are gab D gbc D 1� D 1; a D 0:5; b D 3, ab D 0; bc D 1. We also
added a detuning ıa D �ıb D 1:41

Ca

2
.2a�Sa� � a�a�sys � �sysa

�a/

Cb

2
.2b�sysb

� � b�b�sys � �sysb
�b/ :

In Fig. 16.2, we show hni and the Mandel parameter QMandel � .
h.�n/2i�hni

hni / as a
function of time. The results were obtained averaging over 50 trajectories. We notice
that for a certain set of parameters we get a Q value very close to �1, implying that
we are generating an almost pure Fock state.

16.2 The Stochastic Schrödinger Equation

If an open system with a density operator � starts initially as a pure state and evolves
into a mixed state, as a result of the interaction with the Reservoir, there can be no
deterministic equation for j �i, but one could define a stochastic equation, as one
would expect, given the probabilistic nature of the interaction with the environment.

Gisin and Percival [6–9] proposed thefollowing equation

j d�i Dj viıt C
X

j

j ujid�j ; (16.12)
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where the first term on the right hand side of (16.12), represents the drift and the
second one the diffusion. Also, d�j is a complex stochastic Wiener process, such
that

M.Re.d�j/Re.d�k// D M.Im.d�j/Im.d�k// D ıjkıt ; (16.13)

MRe.d�j/ D M.Im.d�j/Re.d�j// D 0 ;

which is equivalent to writing

M..d�j/
�.d�k// D 2ıjkıt : (16.14)

For normalization purposes, we set h� j uji D 0 and take the mean value of both
j d�i and j d�ihd� j

M j d�i Dj viıt ; (16.15)

M j d�ihd� jWD 2
X

j

j ujihuj j ıt :

We notice that (16.15) was obtained to order ıt and also using (16.14), that is d�k

is of order
p
ıt, and therefore, we have to keep second-order differentials. This is

the characteristic of the Ito algebra.
Now, we can write

d� D M.j �ihd� j C j d�ih� j C: j d�ihd� j/ ; (16.16)

d�

dt
Dj �ihv j C j vih� j C2

X

j

j ujihuj j : (16.17)

Now, we try to obtain the diffusion and drift term and relate them to the Master
equation.

Multiplying (16.17) from the left and right sides by the projector .1� j �ih� j/,
we get

.1� j �ih� j/d�

dt
.1� j �ih� j/ D 2

X

j

j ujihuj j : (16.18)

Now, for the drift part, we take (16.17) and multiply it by 1
2
h� j from the left and

j �i from the right. We readily get

1

2
h� j d�

dt
j �i D Reh� j vi ; (16.19)
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and multiplying (16.17) by j �i, we also get

d�

dt
j �i Dj �ihv j �iC j vi : (16.20)

By combining (16.19) and (16.20), we finally get

j vi D d�

dt
j �i � .

1

2
h� j d�

dt
j �i C ic/ j �i ; (16.21)

where c is a non-physical imaginary phase determined by the convention
that this equation has to agree with the conventional Schrödinger equa-
tion in the absence of coupling to the environment, and corresponds to
Imh� j vi.

As we can see, we have obtained both the diffusion (16.18) and the drift (16.21)
in terms of d�

dt , so all that is left is to replace the Master equation (16.1), (16.2) in
both terms, to arrive to the Stochastic Schrödinger equation

d j �i D � i

„H j �iıt (16.22)

C
X

m

�

hC�
mi�Cm � 1

2
C�

mCm � 1

2
hC�

mi�hCmi�
�

j �iıt

C 1p
2

X

m

.Cm � hCmi�/ j �id�m :

An equivalent Stochastic Schrödinger equation, interpreted as homodyne mea-
surement, for T D 0, can be derived [10], with a noise that is real rather than
complex

d j �i D � i

„H j �iıt (16.23)

C f.�
2

a�a C 2hX.t/i�/ıt
C p

�W.t/ag j �i ;

where the �W is a Wiener increment, satisfying

h�Wi D 0 ; (16.24)

h.�W/2i D �t : (16.25)

In the next few sections, we will generalize these arguments for T ¤ 0. We will
also show a physical realization, in the context of cavity QED, of both the Monte
Carlo and Stochastic Schrödinger methods.
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16.3 Stochastic Schrödinger Equations
and Dissipative Systems

As we mention at the beginning of this chapter, a wide class of master equations
describing the evolution of dissipative quantum systems can be written in the
Lindblad form [12]

P�S D L�S ; (16.26)

where

L D L0 C
X

n

Ln ; (16.27)

L0�S D i

„ Œ�S;Hs� ; (16.28)

Ln�S D �1
2
ŒC�

nCn�S C �SC�
nCn�C Cn�SC�

n ; (16.29)

�S is the reduced density operator for the “small” system S (obtained by tracing
out the degrees of freedom of the reservoir R from the density operator for the full
system S C R), and HS describes the Hamiltonian evolution of the small system S
in the interaction picture. The operators Cn act on the space of states of the small
system S and express the interaction of S with the reservoir R. The number of them
depends on the nature of the problem. We follow here the [13].

An example of such an equation is the master equation for a field in a lossy cavity,
at temperature T, given in the interaction picture by

d�f

dt
D hnith.a

��f a � 1

2
aa��f � 1

2
�f aa�/

C .1C hnith/.a�f a
� � 1

2
a�a�f � 1

2
�f a

�a/ ; (16.30)

where a and a� are the photon annihilation and creation operators, respectively,
hnith is the average number of thermal photons, given by Planck’s distribution, and
 D 1=tcav, where tcav is the damping time. In this case, one could set

C1 �
p

.1C hnith/a; C2 �
p

hnitha� : (16.31)

A formal solution of (16.26) is

�.t/ D exp .Lt/ �.0/ : (16.32)
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Let us define

Jn� D Cn�C�
n (16.33)

and write

�.t/ D exp

(

L0 C
X

n

ŒJn C .Ln � Jn/� t

)

�.0/ : (16.34)

Note that

.Ln � Jn/ �S D �1
2

	

C�
nCn�S C �SC�

nCn



: (16.35)

Applying Dyson’s expansion to (16.34), we get

�.t/ D
1
X

mD0

Z t

0

dtm

Z tm

0

dtm�1 : : :
Z t2

0

dt1

fS.t � tm/.
X

n

Jn/S.tm � tm�1/

	 : : : .
X

n

Jn/S.t1/g�.0/ ; (16.36)

where

S.t/ D exp

("

L0 C
X

n

.Ln � Jn/

#

t

)

: (16.37)

Equation (16.36) may be rewritten in the following way:

�.t/ D
1
X

mD0

X

fnig

Z t

0

dtm

Z tm

0

dtm�1 : : :
Z t2

0

dt1

fS.t � tm/JnmS.tm � tm�1/

	 : : : Jn1S.t1/g�.0/ : (16.38)

Each term in the above double sum can be considered as a quantum trajectory,
the reduced density operator at time t being given by the sum over all possible
quantum trajectories. For each of these trajectories, (16.38) shows that the evolution
of the system can be considered as a succession of quantum jumps, associated to the
operators Jn, interspersed by smooth time evolutions, associated with the operators
S.t/. The probability of each trajectory is given by the trace of the corresponding
term in (16.38).
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From (16.35) and (16.37), we can write

S.t/� D N.t/�N.t/� ; (16.39)

where

N.t/ D exp

"

� i

„HSt � t

2

X

n

	

C�
nCn




#

: (16.40)

Therefore, if � is a pure state, then S.t/� is also a pure state. The same is true for
Jn�, with Jn defined by (16.33). This implies that a pure state remains pure, when a
single quantum trajectory is considered. Note also that the evolution between jumps
is given by the non-unitary operator N.t/.

It is clear from (16.34) that different choices of the jump operators are possible.
These different choices correspond to different decompositions in terms of quantum
trajectories of the time evolution of the density operator �S and, eventually,
to different experimental schemes leading to the continuous monitoring of the
evolution of the system. It is precisely due to this continuous monitoring that an
initial pure state remains pure, since no information is lost in this situation: for a
field in a cavity, this continuous monitoring amounts to accounting for every photon
gained or lost by the field, due to its interaction with the reservoir [13].

We will discuss now two different realizations of the reservoir, for a field in
a cavity, which will lead to a Monte Carlo quantum jump approach, for the first
realization, and to a Schrödinger equation with stochastic terms, for the second one.

16.4 Simulation of a Monte Carlo SSE

We exhibit in this section a physical realization of the Monte Carlo method [13].
The corresponding experimental scheme is shown in Fig. 16.3.

A monokinetic atomic beam plays the role of a reservoir R and crosses a lossless
cavity, interacting with one mode of the electromagnetic field. The cavity mode

Fig. 16.3 Physical
realization of a quantum jump
trajectory. A beam of
two-level atoms crosses a
resonant cavity
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plays the role of a small system S. The atoms, regularly spaced along the atomic
beam, are prepared in one of two Rydberg states: an upper state jai or a lower state
jbi. The transition frequency ! between these two states is assumed to be resonant
with the cavity mode. A similar model of reservoir was adopted in Sect. 16.1 of [14].

The state of the atoms is measured by a detector just at the exit of the cavity. The
ratio between the flux of upper state atoms ra and the lower state atoms rb before
their entrance into the cavity is chosen so that

ra

rb
D e�„!=kBT � hnith

1C hnith
; (16.41)

where „! is the difference in energy between jai and jbi, and, as will be shown in
the next paragraphs, T is the reservoir temperature.

We analyze now the time evolution of the state vector j‰.t/i of S, under the
continuous measurement of the atoms after they leave the cavity. We also assume
that one knows the state of each atom before it interacts with the cavity. This may be
achieved by selectively exciting the atoms to jai or jbi, according to the proportion
given by (16.41). We will adopt the following simplifying assumptions: (a) the
atom-field interaction time � is the same for all atoms; (b) the spatial profile of
the electric field is constant; (c) the cavity is perfect, i.e., the field state is changed
only by the atoms; (d) the atom-field coupling constant g and the interaction time �
are both small, so that the atomic state rotation is very small; (e) the rotating-wave
and dipole approximations will be used; and (f), according to the statements (d)
and (e), quantum cooperative effects will be neglected. In this case the interaction
Hamiltonian in the interaction picture will be

H D „g
	jbihaja� C jaihbja
 : (16.42)

The operators a and a� are annihilation and creation operators, acting on the space
of states of the field mode. Just before the i-th atom enters the cavity, the state
describing the combined system (atom iC field) is given by

j‰a�f .ti/i D j‰.ti/i ˝ j‰a.ti/i : (16.43)

Here j‰a.ti/i D jai or j‰a.ti/i D jbi, depending on the state to which the atom was
excited before entering the cavity.

At time ti C � , the atom-field state vector, up to second order in � , is given by

j Q‰a�f .ti C �/i D
�

1 � ig� jbihaj a� � ig� jaihbj a

� g2�2

2
jbihbj a�a � g2�2

2
jaihaj aa�

�

j‰a�f .ti/i ; (16.44)
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where the tilde indicates that the state vector is not normalized. The expan-
sion (16.44) should be very good in view of condition (d). We assume that
.ra C rb/� < 1, so that there is at most one atom inside the cavity at each instant of
time. After this atom exits the cavity and is detected, one of the following four cases
will be realized:

(i) The atom enters the cavity in state jbi and is detected in the same state. In this
case, according to (16.44), the state of S at time t D ti C � will be given by

j Q‰.ti C �/i D
�

1 � g2�2

2
a�a

�

j‰.ti/i : (16.45)

(ii) The atom enters the cavity in state jai, and it is detected in the same state jai.
In this case,

j Q‰.ti C �/i D
�

1 � g2�2

2
aa�

�

j‰.ti/i : (16.46)

(iii) The atom enters the cavity in the state jbi, and it is detected in the state jai. In
this case,

j Q‰.ti C �/i D �ig�a j‰.ti/i : (16.47)

(iv) The atom enters the cavity in the state jai and it is detected in the state jbi.
Then,

j Q‰.ti C �/i D �ig�a� j‰.ti/i : (16.48)

Note that in the cases (i) and (ii) a small change in the state of “S” takes place,
whereas in the cases (iii) and (iv) a big change may happen (quantum jump).
However, these last two cases are very rare, due to the small change of the atomic
state during the interaction time.

We consider now the change of j‰i from t to t C ıt, where the time interval ıt
is large enough so that many atoms go through the cavity during this time interval
(na D raıt � 1, nb D rbıt � 1), and also much smaller than tcav=hnithhni, where
hni is the average number of photons in the state. This last condition, as it will be
seen later, implies that the probability of a quantum jump during ıt is very small. In
most of the time intervals ıt, the atoms will be detected at the same state they come
in, since the transition probability is very small. The evolution of j‰i during these
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intervals will be given by

j Q‰.t C ıt/i D
�

1 � g2�2

2
aa�

�na

	
�

1 � g2�2

2
a�a

�nb

j‰.t/i

D
�

1 � nag2�2

2
aa� � nbg2�2

2
a�a

�

j‰.t/i : (16.49)

This result does not depend on the ordering of the upper-state and lower-state atoms.
We also note that in the interaction picture, the state vector does not evolve when
there is no atom inside the cavity, since the only source of field dissipation is the
interaction with the atomic beam.

Equation (16.49) displays the interesting property that the wave-function of
the system (and, consequently, the mean energy) may change even when there
is no exchange of energy between the system and the measurement apparatus
(represented by the atoms in the present case). An easy way to understand this effect
physically is to imagine that all atoms are sent into the cavity in the lower state, and
are detected in the same state after exiting the cavity, for a given realization of the
system, which starts with a coherent state in the cavity. Then, even though there is
no exchange of energy between the atoms and the field in the cavity, as time evolves
the ground state component of the initial state should also increase, since the results
of the measurements lead to an increasing probability that there is a vacuum state in
the cavity. In other words, the fact that there is no quantum jump, for that specific
trajectory, provides us with information about the quantum state of the system, and
this information leads to an evolution of the state [13]. This is closely related to
the quantum theory of continuous measurement [15, 16] and also to quantum non-
demolition measurement schemes proposed recently [17]. This problem is also very
similar to that of a Heisenberg microscope in which even the unsuccessful events
of light scattering produce a change in the quantum-mechanical state of the particle
[18].

We introduce now the following definitions:

 � .rb � ra/g
2�2 D rb

1C hnith
g2�2 D ra

hnith
g2�2 ; (16.50)

C1 �
p

.1C hnith/ a; C2 �
p

hnith a� : (16.51)

Using these definitions and (16.41), (16.49) may be rewritten in the following way:

j Q‰.t C ıt/i D
"

1 � ıt

2

X

m

C�
mCm

#

j‰.t/i : (16.52)
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If an atom enters the cavity in state jai and is detected in the state jbi, the state
vector of S suffers a “quantum jump,” and one photon is added to that system.
On the other hand, a de-excitation in S occurs if an atom which entered in jbi is
detected in the state jai. The probability of these events to occur may be calculated
by using (16.51) and (16.47) or (16.48); thus, the probability of an excitation (action
of a�) to occur between t and t C ıt is given by

ıp1 D ıth‰.t/jC�
1C1j‰.t/i : (16.53)

The probability of a de-excitation (action of a) during this time interval is

ıp2 D ıth‰.t/jC�
2C2j‰.t/i : (16.54)

The probabilities ıp1 and ıp2 are very low, so that the joint probability of having
one excitation and one de-excitation during the same time interval ıt is negligible.
One may therefore write

j Q‰.t C ıt/i D CıN1
1 CıN2

2

"

1 � ıt

2

X

m

C�
mCm

#

j‰.t/i : (16.55)

where ıN1 and ıN2 are equal to one or zero, with probabilities ıp1 and ıp2 for
ıN1 and ıN2 to be equal to one, respectively. This may be represented by writing
the statistical mean M.ıNm/ D hC�

mCmiıt. Also, ıNmıNn D ıNmınm. One should
note that the instants of time in which the quantum jumps occur during the time
interval ıt are irrelevant, since the jump operators can be commuted through the
no-jump evolution, the commutation producing an overall phase that goes away
upon renormalization of the state. This can be easily seen by rewriting the no-jump
evolution, during a time interval ıtj < ıt, as an exponential

1 � ıtj
2

X

m

C�
mCm D exp

 

�ıtj
2

X

m

C�
mCm

!

COŒ.ıtj/
2� ; (16.56)

and using that

Cie
�

� ıtj
2

P

m C
�
mCm

�

D e
�

� ıtj
2

P

m C
�
mCm

�

Cie
�i ; (16.57)

where �1 D �.ıtj=2/.1C hnith/ and �2 D .ıtj=2/hnith.
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The results of the measurement may be simulated by picking up random
numbers. The state vector in (16.55) may be normalized as follows:

j  .t C ıt/i D f C1
q

C�
1C1

ıN1 C C2
q

C�
2C2

ıN2

C .1 � ıN1/.1 � ıN2/

 

1 � ıt

2

X

m

C�
mCm

!

	
 

1 � ıt
X

m

hC�
mCmi

!� 1
2

g j  .t/i : (16.58)

In the above equation, the first two terms represent the possible jumps, each
normalized, as in the Monte Carlo method, and the last term is the no-jump evolution
contribution, normalized with the corresponding prefactor that rules out the jumps.
From (16.58) one gets for j d .t/i �j  .t C ıt/i� j  .t/i

j d .t/i D

8

ˆ
<

ˆ
:

X

m

2

6

4

Cm
q

C�
mCm

� 1

3

7

5 ıNm

�ıt
2

X

m

.C�
mCm � hC�

mCmi/
)

j  .t/i : (16.59)

16.5 Simulation of the Homodyne SSDE

We show now that, by a suitable modification of the atomic configuration, it is
also possible to interpret physically diffusion-like Schrödinger equations in terms
of continuous measurements made on atoms [13], which cross the cavity containing
the field. The corresponding scheme is shown in the Fig. 16.4: a beam of three-level
atoms with a degenerate lower state (states b and c) crosses the cavity, the field in
the cavity being resonant with a transition between one of the two lower levels (say,
level b) and the upper atomic state a, whereas a strong classical field connects the
other lower state with the upper level (one may assume that both fields are circularly
polarized, so that the cavity field cannot connect a and c, whereas the strong field
does not induce transitions between a and b).

We also assume that the atom is prepared in either a coherent superposition of
the two lower levels:

j  atomi D 1p
2
.j biC j ci/ ; (16.60)
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Fig. 16.4 Physical
realization of the homodyne
stochastic Schrödinger
trajectory. A beam of
three-level atoms crosses a
resonant cavity, being
subjected to an external
classical field

or in the upper one, following a Boltzmann distribution corresponding to a
temperature T for the atoms, which act as a reservoir for the quantum field in the
cavity.

In the interaction picture, one can write

H D „gac." j aihc j C" j ciha j/
C „gab.a

� j biha j Ca j aihb j/ : (16.61)

We assume for simplicity that gac D gab D g, and that " is real. The time evolution
of the wave function to second order in the coupling constant is

j  .t C �/i D
�

1 � iH�

„ � H2�2

2„2
�

j  .t/i : (16.62)

As in the previous model, there are two possible quantum jump processes. The
first one corresponds to the atom entering the cavity in the coherent superposition of
lower states and being detected in the upper state. After the measurement, the state
of the field is given by

j  .t C �/i.b;c!a/
f D �ig�p

2
."C a/ j  .t/if : (16.63)

The corresponding probability of detecting an atom in j ai, after a time interval
ıt, staring from the initial superposition state, is given by

ıp1 D nb
g2�2

2
h f .t/ j ."C a�/."C a/ j  f .t/i ; (16.64)

where nb � rbıt, rb being the rate of atoms injected in the superposition of the lower
states.

The second jump process corresponds to the atom entering the cavity in the upper
state jai, and being detected in the superposition of lower states. Then, the state of
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the field after the measurement is

j  .t C �/i.a!b;c/
f D �ig�p

2
."C a�/ j  .t/if : (16.65)

The corresponding probability is given by

ıp2 D na
g2�2

2
h f .t/ j ."C a/."C a�/ j  f .t/i ; (16.66)

where na D raıt is the number of atoms that enter the cavity in state jai, during the
time interval ıt.

This analysis suggests that the quantum jump operators corresponding to these
two processes should be, respectively, are

C1 D
p

.1C hnith/."C a/ ;

C2 D
p

hnith."C a�/ ; (16.67)

where

 � .rb � ra/
g2�2

2
D rb

1C hnith

g2�2

2
D ra

hnith

g2�2

2
: (16.68)

Formally, these jump operators are retrieved by rewriting the master equa-
tion (16.30) in the following equivalent form

d�f

dt
D .J1 C J2/�f � .1C hnith/

2

�

.a�a C 2"a C "2/�f

C �f .a
�a C 2"a� C "2/

� � hnith

2

�

.aa� C 2"a� C "2/�f

C �f .aa� C 2"a C "2/
�

(16.69)

with

Ji D Ci�C�
i ;

i D 1; 2
(16.70)

being associated with the jumps, the operators Ci being now given by (16.67).
We derive now the Stochastic Schrödinger Equation that describes the present

measurement scheme.
With the above jump operators, and using the expansion given by (16.38), we

show in the Appendix E that the joint probability of getting m1 and m2 jumps
corresponding respectively to the first and second processes described above is given
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by the following expression

Pm1;m2 .�t/ D
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exp�1
.�1/

m1
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exp�2
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�

	Tr
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1C 1
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� C m2a/

�

expˇ�0
�

; (16.71)

where

�1 D �t"2.1C hnith/ ; (16.72)

�2 D �t"2.hnith/ ;

ˇ0 D ��t

2

�

a�a.2hnith C 1/C 2"a.hnith C 1/C 2"a�hnith C hnith
�

:

From (16.71) and (16.72), one can readily find hmii and hm2
i i for i D 1; 2.

Up to order "�3=2, one finds

hmii D �i

�

1C 2

3
hX1i

�

;

hm2
i i D �i ; (16.73)

with

X1 � a C a�

2
: (16.74)

Going back to the definition of S.t/, one may write

S.�t/ D N.�t/�N�.�t/ ; (16.75)

in terms of a smooth evolution operator N that preserves pure states. This operator
N is given by (16.40). with the jump operators Cm now given by (16.67). Now, if
we consider a sequence of jumps (of the two kinds, in the present analysis) and
evolutions, the state vector of the field will evolve according to

j Q if .�t/ D N.�t � tm/C2N.tm � tm�1/C1 : : : j  if .0/

D N.�t/Cm2
2 Cm1

1 j  if .0/ : (16.76)
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In the last step, in deriving (16.76), we used that the commutators between the
jump operators and the no-jump evolution produce overall phases, like in the Monte
Carlo evolution given by (16.55).

Now, we consider mi, i D 1; 2 as a couple of random variables with non-zero
average, and write them as

mi D hmii C�Wi
�ip
�t

; (16.77)

where the �Wi are two real and independent Wiener increments, with

h�W2
i i D �t; i D 1; 2 : (16.78)

From (16.76), (16.77) and up to order "�3=2, we get the following Homodyne
Stochastic Schrödinger Differential Equation (HSSDE)

�m1;m2 j Q if .�t/ D j Q if .�t/� j  if .0/

D
nh

�
2
.1C hnith/a

�a � 

2
.hnith/aa�

C 2hX1i.a.1C hnith/

C a�hnith/
�

�t C a�
p

hnith�W2

Ca
p

.1C hnith/�W1

�

j  if .0/: (16.79)

At zero temperature, a typical quantum trajectory in this homodyne scheme is as
follows:

(a) If one starts from a coherent state, the quantum jumps will only produce a
multiplicative factor in the wave function of the field, factor that can be absorbed
in the normalization.

On the other hand, during the “no-click” periods, the nature of the coherent
state is preserved, changing only the coherent amplitude, all the way to the
vacuum.

This situation will be studied in Chap. 18, [19], in the context of the
continuous measurement theory, applied to three-level atoms and two resonant
fields, with the difference that there the number of detections is a predetermined
quantity. However, the net result of the preservation of the coherent nature of
the state of the field, along the trajectory, is the same [13].

(b) If we start with a Fock state, the quantum jumps will invariably produce a
mixture of various Fock states, whereas the waiting or “no-click” periods will
only generate numerical factors in front of those Fock states.
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In the finite temperature case, the situation is more complex, since there will
be also creation of photons that will disturb an initial coherent state and produce
further mixtures in the Fock state case.

A more detailed analysis of these various cases is described in the next
section, devoted to the numerical simulation.

16.6 Numerical Results and Localization

We present now the numerical calculations corresponding to the two equations
associated with the two measurement schemes discussed above [13]. We consider in
these calculations the general case in which the temperature of the reservoir is taken
as different from zero.

16.6.1 Quantum Jumps Evolution

We consider first an example in which the initial state of the system is a Fock state
with three photons. We assume that the temperature of the reservoir corresponds to
an average number of photons also equal to three. The corresponding evolutions is
exhibited in the Fig. 16.5.

The state of the system remains a Fock state, with a number of photons that keep
jumping between several values, in such a way that the average number of photons

Fig. 16.5 Quantum jump for
an initial Fock state with
n D 3, the number of thermal
photons being also equal to
three (After [13])
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is equal to three. We have verified that the probability distribution for the number
of photons is a Bose–Einstein distribution, as long as the observation is done over a
sufficiently large time.

Figure 16.6 displays two different views of the evolution of the photon number
population janj2 of an initial coherent state.

These figures clearly exhibit the dual nature of the system dynamics, with
quantum jumps interspersed by non-unitary evolutions. In the displayed realization,
the vacuum component of the state increases until the first quantum jump occurs.
This jump corresponds to the addition of a thermal photon to the system, leading
to the disappearance of the vacuum component. The second jump corresponds to
the absorption of a photon from the cavity field, leading to the reappearance of
the vacuum state. The combination of the non-unitary evolution with the quantum
jumps finally leads to a Fock state, which under the action of the reservoir keeps
jumping, in such a way that the photon number distribution over a long time span
reproduces the Bose–Einstein distribution. This process is illustrated in Fig. 16.7,
which displays the time evolution of the Q distribution for the field, defined for each
realization as Q D jh˛j ij2=� , where j˛i is a coherent state with amplitude ˛.

The initial Q distribution is a Gaussian, corresponding to the initial coherent state
j˛0i, with ˛0 D p

15=2.1C i/. This distribution evolves into the one corresponding
to a Fock state, with a number of photons that keep jumping around the thermal
value hnith D 2, in the same way as shown in Fig. 16.5.

16.6.2 Diffusion-Like Evolution

We consider now the evolution corresponding to the situation displayed in Fig. 16.4.
We consider as initial state the same coherent state as in Fig. 16.8, the reservoir tem-
perature being also the same as before .hnith D 2/. In this case, the system evolves
according to the homodyne stochastic Schrödinger equation given by (16.79). After
some time, the Q function approaches a distorted Gaussian, with a mild amount of
squeezing along the direction of the axis corresponding to the real part of ˛. The
centre of this Gaussian keeps diffusing in phase space, so that after a long time span
the time-averaged distribution coincides with the Bose–Einstein distribution.

16.6.3 Analytical Proof of Localization

For the quantum jump situation, it is actually possible to demonstrate that the system
evolves towards a Fock state, for non-zero temperatures.

We first define two kind of variances, for an arbitrary operator O.
For the Hermitian case

h�O2i D hO2i � hOi2; (16.80)
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Fig. 16.6 Two views of the
evolution of an initial
coherent state (average
photon number equal to
three), in the quantum jump
approach. The temperature of
the reservoir corresponds to a
number of thermal photons
equal to 0.2. At around
 t D 1:52, a photon is
absorbed by the cavity mode,
whereas around  t D 3, a
photon is lost by the cavity.
Before the first jump, the
amplitude of the coherent
state decreases exponentially.
After some jumps, the state
becomes a jumping Fock
state (After [13])
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Fig. 16.7 Evolution of the Q function, for the quantum jump approach, and an initial coherent

state, with ˛0 D
q

15
2
.1 C i/. The reservoir temperature corresponds to two thermal photons

(average). The initial Gaussian, corresponding to a coherent state, evolves into a distribution
corresponding to a jumping Fock state (After [13])

and for the non-Hermitian case

j �O j2 D .O� � hO�i/.O � hOi/
D O�O � hO�iO � O�hOi � hO�ihOi; (16.81)

so that

hj �O j2i D hO�Oi � hO�ihOi: (16.82)
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Fig. 16.8 Evolution of the Q function, for the quantum jump approach, and an initial coherent

state, with ˛0 D
q

15
2
.1 C i/. The reservoir temperature corresponds to two thermal photons

(average). The initial Gaussian, corresponding to a coherent state, evolves into a distorted Gaussian,
whose centre diffuses in phase space (After [13])

In particular,we are interested in two quantities

Q1 D hj �a j2i; (16.83)

Q2 D hj �n j2i; (16.84)

that measure the distance of the state from being a coherent or a Fock state,
respectively.



16.6 Numerical Results and Localization 273

We start with the quantum jump equation

j d i D � i

„H j  iıt
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2
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m

.C�
mCm � hC�

mihCmi/ j  iıt

C
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.
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q

C�
mCm

� 1/ j  iıNm; (16.85)

with

M.ıNm/ D hC�
mCmiıt; (16.86)

ıNmıNm D ıNnın;m: (16.87)

We will calculate, using Ito’s rule of calculus, Q1and Q2 for T D 0.C D p
� a/

and T > 0.C1 D p

.hnith C 1/a; C2 D p

hnitha�/.
We first develop some general expressions, which will be applied to calculate the

above variances.

dhOi D hd j O j  i C h j O j d i C hd j O j d i

D � i

„hŒO;H�iıt � 1

2
hfO;C�Cgiıt C hOihC�Ciıt

C .hC�OCi � hC�CihOi/
hC�Ci ıN; (16.88)

and similarly for the case in which several jump operators are present.
For the variance of a non-Hermitian operator, we have

d.hj �O j2i/ D dhO�Oi � hOidhO�i � hO�idhOi
�dhO�idhOi: (16.89)

After a simple calculation, one gets

d.hj �O j2i/ D � i

„h�j �O j2;H�iıt

�1
2

hfj �O j2;C�Cgiıt

Chj �O j2ihC�Ciıt � hj �O j2iıN

ChC�O�OCihC�Ci � hC�O�CihC�OCi
hC�CihC�Ci ıN: (16.90)
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In the Hermitian case, on the other hand, we get

d.h�O2i/ D � i

„h��O2;H
�iıt � 1

2
hf�O2;C�Cgiıt

Ch�O2ihC�Ciıt � h�O2iıN

ChC�O2CihC�Ci � hC�OCihC�OCi
hC�CihC�Ci ıN: (16.91)

Now we specialize to several cases

(a) T D 0; O D aI C D p
aI H D „!a�a.

Using the above general expressions, we write

d.hj �a j2i/ D Œ�ha�aa�ai � 2ha�aiha�ihai
Cha�aiha�ai C 

2
ha�a�aihai C 

2
ha�aa�ihai

C

2
haa�aiha�i C 

2
ha�aaiha�i�ıt

�ha�aiıN C ha�ihaiıN

Cha�a�aaiha�ai � ha�a�aiha�aai
ha�aiha�ai ıN: (16.92)

The above results are strictly neither positive nor negative, so we cannot draw
any conclusion, however, for the statistical mean

M
d.hj �a j2i/

dt
D �hj �a jh2i

�h.�a�/a�aiha�a�ai
ha�ai � 0; (16.93)

so, in the mean, the system goes to a coherent state, which, in this case, is the
vacuum.

(b) T > 0I O D aI C1 D p

.hnith C 1/a; C2 D p

hnitha�; H D „!a�a
The reader can easily verify, with a little algebra, that, in this case, neither

d.hj �a j2i/ or Md.hj �a j2i/ are strictly negative.
(c) T > 0;O D a�aI C1 D p

.hnith C 1/a;C2 D p

hnitha�;H D „!a�a
In this case, as shown in Appendix F, dh.�a�a/2i is not negative, but

Mdh.�a�a/2i is

M
dh.�a�a/2i

dt
D �.hnith C 1/

h.�a�a/a�aiha�a.�a�a/i
ha�ai

�.hnith/
h.�aa�/aa�ihaa�.�aa�/i

haa�i � 0: (16.94)
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So Q2 is strictly diminishing in the mean, even at T > 0. Since Q1 is not,
the final state will not be the vacuum. It is easy to show from (16.94) that
MŒdh.�a�a/2i=dt� D 0 if and only if the state of the system is a Fock state. This
result shows therefore that any initial state approaches eventually a Fock state j ni,
with n fluctuating with a mean hnith.

16.7 Conclusions

The dynamics of dissipative quantum systems is often described through Master
Equations for the reduced density matrix, obtained by tracing the degrees of freedom
of the reservoir and making the usual Markov–Born approximation.

However, in recent years, monitoring single quantum systems has become a
reality in Paul traps, micromasers, etc., so new methods have been searched, through
the evolution of state vectors.

The two methods discussed in this chapter are the Monte Carlo wavefunction or
quantum jump method, involving random finite discontinuities, and the Stochastic
Schrödinger equation characterized by a diffusive term added to the equation for the
state vector, generally associated to a homodyne measurement.

We propose here a physical interpretation of the Quantum Jump approach and
the Homodyne Stochastic Schrödinger Differential Equation, using as an example
the damping of one field mode in a cavity at temperature T.

This field-damping mechanism can be modeled as an atomic beam, whose upper
and lower population ratio is given by the Boltzmann factor, crossing a lossless
cavity.

The quantum jump trajectory can be interpreted as a continuous monitoring of
the outgoing two-level atoms, which are resonant with the cavity mode. We show
both numerically and analytically that this continuous measurement on the reservoir
leads, for each trajectory, to a pure Fock state. At a later time and due to the non-zero
temperature, a thermal photon may produce a jump to a different Fock state, thus
leading, as time goes on, to a series of Fock states, whose statistics will reproduce
the thermal distribution.

In the case of the Homodyne Stochastic Schrödinger Differential Equation, the
proposed damping mechanism consists of a three-level atomic beam, with a split
ground state, whose population ratio of the upper and lower levels is given by the
Boltzmann factor. The atoms cross again a lossless cavity, being resonant with the
mode of the field under consideration. A second field is externally applied, with the
same frequency but different polarization, so that each of the two fields connects
the upper atomic state with a different lower sub-level. If this external field is a
strong classical field, we show analytically that the Stochastic Schrödinger Equation
describing the behaviour of the quantum field in the cavity corresponds precisely to
the Homodyne Stochastic Schrödinger equation.

The beam is then continuously monitored as it exits the cavity. Numerically, one
observes, for low temperatures, that the state of the field goes to a mildly squeezed
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state, centred around a value of ˛ which diffuses in phase space, in such a way that
the time-averaged distribution again reproduces the thermal state.

Recently, the Monte–Carlo simulation has been used to describe spontaneous
emission [20], two-photon processes [21]. Also, there has been several publications
related to quantum diffusion and localization [22–27]

Problems

16.1 The Lindblad form of the master equation is not unique.
Show that if we transform

Dm D T�CmT ;

where T is a unitary transformation, the Master equation is unchanged. However,
the nature of the jumps have changed, since now the system may jump to one of the
states

Dm j �.t/i ;

with a probability

ıpD
m D h� j D�

mDm j �iıt :

16.2 Derive a Linear Stochastic equation equivalent to the Master equation.
Hint: See [11].
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Chapter 17
Atom Optics

This chapter is an introduction to Atom Optics.
Atom optics [1], in analogy with electron or neutron optics, deals with manipu-

lation of matter waves. As such, they are characterized by a wavelength, which is
the de Broglie wavelength �dB � h

p and the momentum p D mv.
The momentum of a typical atom is larger than that of a typical photon, absorbed

or emitted by that atom.
There are several advantages of using atoms instead of photons for optical

experiments.

1. Atoms have a non-zero rest mass, which is interesting when, for example we
want to detect gravitational waves.

2. Atoms, as opposed to neutrons or electrons, are less susceptible to stray fields,
but cannot be manipulated as easily as the charged particles.

3. Atoms have variable velocities, and as a result, one can in principle, control its
de Broglie wavelength.

4. Atoms are easy and cheap to produce, as compared, for instance, with neutrons.
5. A very important aspect of the atom optics is that atoms have internal structure,

which can be probed and modified using light.

17.1 Optical Elements

In general, a typical atom optics experiment consists of a source, optical elements
and a detector.

Sources, in general, provide a well-collimated, monochromatic atomic beam.
Sources can be fast or slow. Among the sources of slow atoms are thermal

expansions, with a Maxwellian velocity distribution. This type of sources are in
general easy to operate and have a large flux. Within the fast type, when the reservoir
pressure is increased, supersonic sources can be created, with a narrow longitudinal
velocity distribution, typically a Gaussian distribution.

© Springer International Publishing Switzerland 2016
M. Orszag, Quantum Optics, DOI 10.1007/978-3-319-29037-9_17

281



282 17 Atom Optics

For some experiments, a better controlled atomic source is required. These
slow beams are produced loading atoms from thermal sources into an atomic trap
and then release them in a controlled fashion. As these atoms are extremely cold
(30 μK), we may have a small velocity spread and large de Broglie wavelength.

A large number of different schemes have been used for the detection of atomic
beams. Neutral atom can be collected using hot wire detectors, which absorb the
atom briefly and ionize it. The ions are then detected as a current proportional to the
incident atomic flux.

On the other hand, atoms in a metastable state can be detected by ionization
followed by Auger neutralization.

Another versatile detection method in atom optics is laser-induced fluorescence.
In recent years, a large amount of effort has been put into developing optical

elements, such as mirrors (for example, reflection of sodium atoms from evanescent
waves [2, 3]), lenses, beam splitters etc.

An interesting note is that although the atom optics experiments belong to the
decades of the 1980s and 1990s, the diffraction of atoms was actually performed as
early as 1929, by Stern et al. [4].

17.2 Atomic Diffraction from an Optical Standing Wave

The diffraction of an atomic beam by an optical standing wave can be easily
visualized as a follows: the standing wave acts as a phase grating for the atoms,
splitting the incoming plane wave in a series of plane waves, separated by an integer
number of photon momentum units „k (See Fig. 17.1).

Fig. 17.1 Atomic beam
crossing and being deflected
by a standing wave
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In the present theoretical treatment, we will be using the Raman–Nath approx-
imation that consists in neglecting the transverse Kinetic Energy of the atoms. We
will also assume near resonance between the field and a couple of atomic levels.
One of the first experimental observation of this effects was achieved by Moskowitz
et al. [5], in 1983. An improved version was done by Martin et al. in 1987 [6]. In
this experiment, low velocity sodium atoms .2m

s / are diffracted by a near resonant
standing wave of light. There have been several other experiments [7–10].

17.2.1 Theory

The deflection of atoms by standing waves has been, for some years, a subject of
considerable interest, in particular, in connection with atomic interferometers.

When the standing wave is intense, classical fields are adequate. However, with
the modern experimental tools, we may observe in the near future, diffraction from
a few photons, where quantum effects are important. Also, spontaneous emission
plays a role. In this particular treatment, we will assume the detuning to be
sufficiently large, as to neglect this effect altogether.

Now, consider a collimated atomic beam traveling in the y direction (see
Fig. 17.2).

The individual atoms are deflected by the photons. The field induces absorption
and emission. As a result of this interaction, the atomic transverse momentum
spreads. This behavior can be understood in terms of travelling waves. The atom
absorbs a photon, thus gaining „k transverse momentum from one of the travelling
waves and can emit a photon into the other travelling wave, thus changing its own
momentum in 2„k. This is shown in the Fig. 17.3.

Actually, the above argument is only approximate, because there is a difference
between a standing wave and two travelling waves. In principle, in two travelling
waves, the momentum exchange between the field and the atom can only be finite,

Fig. 17.2 Atomic diffraction
by a standing wave light field
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Fig. 17.3 Change of the
atom’s momentum after an
absorption and emission
event. As a result, the atom
gains two units of the
photon’s momentum

limited by the number of photons available. On the other hand, in the standing
wave, there is an inseparable quantum unit, with zero average momentum. Here
an important role is played by the fixed mirrors, which act as an infinite sink of
momentum, and the amount of momentum exchanged between the standing wave
and the atom is not limited anymore. An interesting discussion on this point is found
in Shore et al. [11].

The Hamiltonian of the system is

H D p2

2m
C „!a�a C „!o�z C „g.a��� C a�C/ cos kx ; (17.1)

where the first term in (17.1) represents the atomic center of mass motion; the
second and third terms are the free field and the internal energy of the two-level
atom respectively. The last term represents the atom-standing wave interaction, with
the �z; �C; �� are the usual Pauli spin matrices.

The total kinetic energy can be split in a transverse and a longitudinal part

p2

2m
D p2x
2m

C p2y
2m

; (17.2)

py�px;

and the transverse kinetic energy can be written as

p2x
2m

D „
�„k2

2m

�

S2z ; (17.3)

where we defined

Sz � px

„k
; (17.4)

where Sz is just the transverse momentum change, in units of a photon momentum.
Normally (although this is not really necessary) one assumes that initially the
transverse momentum is zero, and we define an j mi basis, with m integer, such
that

Sz j mi D m j mi : (17.5)
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We define also

S˙ � exp.˙ikx/ : (17.6)

It is simple to see that

�

SC; S�� D 0 ; (17.7)
�

Sz;S
˙� D ˙S˙ :

As we can see, the SC; S� operators are the step operators for the center of mass
momentum of the atom, such that:

SC j mi Dj m C 1i ; (17.8)

S� j mi Dj m � 1i :

The Hamiltonian can be written now as:

H D „	RS2z C p2y
2m

C „!a�a C „!o�z

2
C „g

2
.a��� C a�C/.SC C S�/ : (17.9)

Now, the quantity „!.a�aC�z/ is a constant of motion, because it commutes with
the total Hamiltonian. Also, the longitudinal kinetic energy is very large and can be
considered approximately as a constant, so these three terms can be eliminated from
the energy, getting

H D „	RS2z C „��z

2
C „g

2
.a��� C a�C/.SC C S�/ : (17.10)

Now, we use the j ni j mi basis, and because �z C a�a is a constant of motion,
we write the wave function as:

j ‰i D
mDC1
X

mD�1

�

CC
nm j ni j mi

�

1

0

�

C C�
nC1;m j n C 1i j mi

�

0

1

��

: (17.11)

We now write the Schrödinger equation

i„@ j ‰i
@t

D H j ‰i D (17.12)

i„
mDC1
X

mD�1

�

dCC
nm

dt
j ni j mi

�

1

0

�

C dC�
nC1;m
dt

j n C 1i j mi
�

0

1

��

D „�
2

mDC1
X

mD�1

�

CC
nm j ni j mi

�

1

0

�

� C�
nC1;m j n C 1i j mi

�

0

1

��
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C„	R

mDC1
X

mD�1
m2

�

CC
nm j ni j mi

�

1

0

�

C C�
nC1;m j n C 1i j mi

�

0

1

��

C„g

2

mDC1
X

mD�1

2

6

6

4

CC
nm

p
n C 1 j n C 1i.j m C 1iC j m � 1i/

�

0

1

�

CC�
nC1;m

p
n C 1 j ni.j m C 1iC j m � 1i/

�

1

0

�

3

7

7

5

:

Finally, by comparing

�

1

0

�

and

�

0

1

�

terms, we get

i
dCC

nm

dt
D .

�

2
C 	Rm2/CC

nm C g

2

p
n C 1

�

C�
nC1;m�1 C C�

nC1;mC1
�

; (17.13)

i
dC�

nC1;m
dt

D .��
2

C 	Rm2/C�
nC1;m C g

2

p
n C 1

�

CC
n;m�1 C CC

n;mC1
�

:

Equations (17.13) are quite general and exact.

17.2.2 Particular Cases

(a) � D 0; p2x Ñ 0.
This is the Raman–Nath regime with no detuning. If we also assume that

n � 1, so that g
p

n C 1 D constant, then (17.13) reduce to

i
dCm

dt
D g

2

p
n C 1 ŒCm�1 C CmC1� : (17.14)

The difference-differential equation for the Bessel functions is

2
d

dz
Jn.z/ D Jn�1.z/ � JnC1.z/ : (17.15)

Thus, by direct comparison between (17.14) and (17.15) , we get

Cm D .�i/mJm.�t/ ; (17.16)

with � � g
p

n C 1, or

Pn;m.t/ D J2m
�

g
p

n C 1t
�

: (17.17)
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If instead of having initially a Fock state, we have a general superposition of
Fock states, distributed with probability Wn, we get

Pm.t/ D
nD1
X

nD0
WnJ2m

�

g
p

n C 1t
�

: (17.18)

Equation (17.18) gives the probability distribution for the transverse momen-
tum of an atom after an interaction time t with a standing wave light field for
any given initial field distribution. The momentum distribution of the atom is a
signature of the field this atom interacted with.

Figures 17.4 and 17.5 show Pm.t/ for gt D 10 and gt D 100, for a Fock state
with n D 9. We notice that the maximum of the Bessel function Jm

	

g
p

n C 1t



happens when m � g
p

n C 1t and then it sharply drops to zero, as we see from
these figures [12].

We also show the momentum distribution for a squeezed state in Figs. 17.6
and 17.7.

We notice that the case � D 0 is not very realistic, because spontaneous
emission has not been considered [13, 14].

Fig. 17.4 Momentum
distribution of atoms
scattered off a Fock state
n D 9, and gt D 10 (After
[12])

Fig. 17.5 Momentum
distribution of atoms
scattered of a Fock state with
n D 9 for gt D 100 (After
[12])
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Fig. 17.6 Momentum
distribution for the atoms
interacting with a squeezed
state with ˛2 D 9 and r D 50

and gt D 15 (After [12])

Fig. 17.7 Momentum
distribution for the atoms
interacting with a squeezed
state with ˛2 D 9 and r D 50

and gt D 30 (After [12])

However, for large�, the model, again, is reasonable.
(b) � � g

p
n; 	Rm2.

If we consider the Raman–Nath approximation
�

p2x
2m � 0

�

, it is not difficult

to show that for a large detuning, one can write an approximate effective
Hamiltonian:

Veff D „g2

�
�za

�a

�

SC C S�

2

�

; (17.19)

where, this time S˙ � exp ˙2ikx, Sz � px
2„kx . Notice, that this definition is

similar to that of the previous case, except that the transitions are in steps of
two photon momentum units.

We also notice in this case, that both �z and a�a are constants of motion, and
therefore, there is only one index left m D px

2„k , and

j ‰i D
X

m

Cm j mi
�

1

0

�

; (17.20)

and Schrödinger’s equation can be written as

2i
dCm

d�
D j g j2 n

2�
.Cm�1 C CmC1/ ; (17.21)
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where � � jgj2 tn
2�

is a one-dimensional scaled time and the procedure to arrive to
the (17.21) is the same to the one used in the previous section.

The solution of (17.21) is

Cn;m D .�i/mJm

� j g j2 n

2�
�

�

; (17.22)

where the formula (17.22) is only valid for even m.
In the Fig. 17.8, we show a comparison of the theoretical predictions

presented here with the experimental observation.

Fig. 17.8 Diffraction
patterns for different
velocities vx, which can be
done experimentally by tilting
the standing wave with
respect to the atomic beam.
(a) vx D 0:06m

s ,
(b)vx D 1:22m

s , (c)
vx D 1:68m

s (Solid line
experimental, dashed line
theory, after [6])
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17.3 Atomic Focusing

Lenses are important elements in many optical systems. In atomic optics, a possible
application to lenses for atoms are found in the fields of microscopy and lithography.

The typical resolution of a diffraction limited microscope is determined by
the wavelength. The instant success, for instance, of electron microscopy is that
wavelengths much smaller than optical can be achieved. A particle with a kinetic
energy E, has a de Broglie wavelength �dB D hp

2mE
. Atomic resolution is possible,

but in the Kev range, which may damage the sample.
On the other hand, for atoms, with much larger mass, the same resolution is

possible but with much lower energies.
Another important application of lenses is in atomic lithography, where atoms

are deposited into a surface with a very high resolution. An example of such an
experiment is the one by McClelland et al. [15] (see Fig. 17.9).

17.3.1 The Model

We consider a collimated beam of atoms of mass m moving in the x-z plane along
x D � > 0. We will assume that the atoms are prepared in such a way that they
can be modelled by two-level atoms [16, 17]. The interaction region �L<z<0 (or
interaction time T D L

vz
), the atoms cross an orthogonal one-mode standing light

wave detuned by �. The longitudinal velocity vz of the atoms along the beam axis
(z-axis) is considered to be sufficiently large, so that the spatial dependence of the
field in z can be replaced by a time dependence t D z

vz
.

Fig. 17.9 A typical image of
chromium lines created by
atomic deposition. The image
shows a 2μm by 2μm region
(After [15])
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The Hamiltonian is [18]

H D p2

2m
C „!a�a C „!o

2
�z C „Œa���g.x/C a�Cg.x/� : (17.23)

In (17.23), g.x/ is the space-dependent dipole of the atomic transition. In the
limit of high detuning, and keeping the kinetic energy, we have

Heff D p2x
2m

C „ j g.x/ j2
�

�za
�a : (17.24)

In the above limit, again, �z; a�a are constants, and we neglect the effects of the
spontaneous emission.

We consider a relatively narrow atomic beam, so that the usual sinusoidal
coupling constant can be expanded

j g.x/ j2Dj G sin.
2�x

�
/ j2Š

�

2�G

�

�2

x2 : (17.25)

We now expand the quantum mechanical states in the following basis

X

jD�;C

1
X

nD0

Z C1

�1
dx0 j j; n; x0; tihj; n; x0; t jD 1 ; (17.26)

hj; n; x0; t j k;m; x00; ti D ıjkınmı.x
0 � x00/ :

We notice that if the atoms are in the lower state at t D 0, they remain there all
the time. Thus, for� < 0, we get a harmonic oscillator

i„ d

dt
h�; n; x0; t j ‰i D h�; n; x0; t j p2x

2m
C m!2n x2

2
j ‰i ; (17.27)

for each n, with a frequency

!2n D � 2„
�m

�

2�G

�

�2

n : (17.28)

17.3.2 Initial Conditions and Solution

In a real experiment, the lateral velocity of the atoms, before entering the interaction
region is, in general, not exactly zero. Also, the orthogonal alignment between the
beam and the standing wave has certain deviation from orthogonality, etc. All these
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effects can be included in the fluctuation of the lateral position � as well as the initial
lateral momentum p. Therefore, we will model all these effects by a Gaussian

h�; n; x0; t D �T j ‰i D wn
1

pp
�d

exp

"

�1
2

�

x0 � �
d

�2

� i

„p
	

x0 � �



#

;

(17.29)

where wn is the initial field amplitude, assumed to be a pure state
P

wn j ni.
During the time the atom is going through the interaction region (from t D �T

to t D 0), the dynamics is that of a Gaussian wave packet in a harmonic potential
[19]. After traversing the interaction region, the atoms become free again (from
t D 0 to t>0). By applying the free propagator to the previous result, one gets a
time-dependant Gaussian

j h�; n; x0; t j ‰i j2D j wn j2p
�Dn .t/

exp

(

�
�

x0 � x0
n.T/C v0

n.T/t

Dn.t/

�2
)

; (17.30)

whose width Dn.t/ is

Dn.t/ D d

( �

„
d2m!n

�2

Œ!nt cos.!nT/C sin.!nT/�2

CŒcos.!nT/ � !nt sin.!nT/�2

)
1
2

: (17.31)

The definitions of x0
n.T/; v

0
n.T/ are

x0.T/ D �
cos.!T C �/

cos.�/
; (17.32)

p0.T/ D p
sin.!T C �/

sin.�/
;

tan� D p

m!�
:

The physical picture emerging from these results is quite simple. A classical mass
subjected to the harmonic potential, after the interaction time T has as solutions
x0.T/; p0.T/ with initial conditions x0.0/ D �; p0.0/ D p.

17.3.3 Quantum and Classical Foci

From (17.30), we see that the classical trajectory of the n-th wave packet is

x0 D x0
n.T/ � v0

n.T/t ; (17.33)
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and in the paraxial approximation .� � 1/, the incoming atoms all intersect at

 

xcf
n

zcf
n

!

D
 � p

m!n
csc.!nT/

vz
!n

cot.!nT/

!

; (17.34)

which we call the classical focus.
On the other hand, from (17.31), one can write Dn as

Dn D d

��

cos2 'n

�2'2n
C sin2 'n

�

.!nt � !ntqf
n /

2 C 1

cos2 'n C �2'2n sin2 'n

� 1
2

;

(17.35)

with

!ntqf
n � sin 'n cos'n

�2'2n � 1

cos'2n C �2'2n sin2 'n

; (17.36)

� � md2

„T
; 'n D !nT :

From (17.35) and (17.36), it is clear that the beam converges at the position

zqf
n D vzt

qf
n ; (17.37)

and we define the quantum focus at this position. The value of Dn at the quantum
focus becomes

D.tqf
n / D d

q

cos'2n C �2'2n sin2 'n

: (17.38)

If one is restricted to photon numbers n > ��„
2d4m

	

�
2�G


2
, then �2'2n > 1, and we

have focusing, in the sense that D.tqf
n / < d.

17.3.4 Thin Versus Thick Lenses

In many experimental situations, the particle trajectories are only slightly deflected,
which in the present notation, means that 'n � 1, for all relevant n values. This is
the thin lens condition. According to (17.34), different rays coming with the same
p but different � all intersect at

�

xcf
n

zcf
n

�

� 1

'2n

�� p
m

vz

�

T ; (17.39)

which implies that the focal length zcf
n goes as 1

n .
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If we assume a ‘classical’ light, that is a coherent state

j wn j2D ha�ain

nŠ
exp �ha�ai ; (17.40)

with large ha�ai, the single classical focus corresponding to each n will be
distributed over a distance characterized by

pha�ai, there is the focal spot along
z will have a size of the order of:

��mvz�
2

8„T�2G2ha�ai 32

centered at

zcf
hni D ��mvz�

2

8„T�2Gha�ai :

The spot width in x will be

Dhni.tcf
hni/ D ���2

8�2G2dTha�ai ; (17.41)

which does not contain „ nor the atomic mass m.
The thin lens is convergent. However, if 'n >

�
2

, the classical focus becomes
negative, and we speak of a divergent lens.

17.3.5 The Quantum Focal Curve

If we introduce (17.36) in (17.33), we have the quantum focus

 

xqf
n

zqf
n

!

D
 

��n

�L�n

!

; (17.42)

where x and z have been parametrized

�n D �
cn

c2n C l2ns2n
; (17.43)

�n D vz
cnsn

!n

l2n � 1

c2n C l2ns2n
;

cn D cos!nT; sn D sin!nT; ln D d2m!n

„ :
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Fig. 17.10 Quantum focal distribution for � D 0:4.a/; � D 1.b/; � D 4.c/. For large �, all foci
concentrate close to the origin (After[18])

Equation (17.42) is the parametrized focal curve. For large �, it approaches, with
growing n to

�

j �n j �1
2

�2

C �2n D 1 : (17.44)

Equation (17.44) describes a double circular lobe (see Fig. 17.10).
Let us assume �'n & 1, then one can easily check that:

j tcf
n j
j tqf

n j;

and the classical and quantum foci become real, for the same value of n. As they
both lie in the trajectory line 17.33, it is evident from the geometry that they should
essentially coincide in position, when close to the z-axis.

In this case, and if: �2'2n sin2 'n j cos'n j

j �qf
n j� � : (17.45)

Classical and quantum foci will then be equally distributed, at

zqf
n � vzT

cos'n

'n sin 'n
� zcf

n ;

and we will introduce the subscript f to refer to both.
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In the case of thin lenses, and more generally, whenever j 'n � m� j� 1 hods,
for a given m D 0; 1; 2 : : :, and if (17.45) is satisfied, the focal position becomes

zf
n � L

'n.'n � m�/
; (17.46)

and

zf
n � zf

nC1 � L

2n
: (17.47)

17.3.6 Aberrations

(a) Chromatic
The chromatic aberration arises from the velocity spread in the incident

beam. In other words, instead of having a plane wave with velocity vz, we may
assume an incoherent superposition of plane waves with different velocities.
This implies different interaction times of the atoms. If we consider a velocity
shift vz ! vz C ıvz, it will produce a shift zn ! zn C ızn

ızn � ıvz
dzn

dvz
D ıvzT

�

2zn

L
C 1

sin2 'n

�

; (17.48)

for the n-th focus.
Unfortunately, the quantity in the parenthesis is positive and the lens cannot

be made achromatic.
(b) Isotopic

When the atomic species used in the beam consists of various isotopes,
the exact focal length will vary with the mass. For a mass difference between
isotopes ım, the focal shift is:

ızf
n � ım

dzf
n

dm
D Lım

2m

�

zf
n

L
C 1

sin2 'n

�

: (17.49)

The isotopic aberration could be used to create lines made of different
isotopes.

(c) Spherical
If we want to take into account the anharmonicity of the potential , we have to

consider quartic terms or the full sinusoidal potential. Both problems are rather
difficult. The sinusoidal potential leads to Mathieu functions.
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Problems

17.1 Show that

SC j mi Dj m C 1i;
S� j mi Dj m � 1i;

where

S˙ D exp.˙ikx/:

17.2 Show that for the Hamiltonian given by (17.9), the quantity

C D „!.a�a C �z/;

is a constant of motion.

17.3 Justify the fact that neglecting spontaneous emission in atomic diffraction is
only reasonable if � � g

p
n.

17.4 Prove (17.30), (17.31), and (17.32).
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Chapter 18
Measurements, Quantum Limits and All That

In this chapter, we study the various quantum limits. We also deal with quantum
non-demolition (QND) as well as continuous measurements.

18.1 Quantum Standard Limit

18.1.1 Quantum Standard Limit for a Free Particle

We, in this section, study the motion of a free particle, or even better, we monitor its
position during a time � , confining ourselves with only two measurements [1, 2].

We assume, at t D 0, that we measure a free particle’s position with an error
.�xmeasure/1, which, according to the uncertainty principle, produces a perturbation
in the momentum

.�p/pert 
 „
2.�xmeasure/1

: (18.1)

Now, a second measurement is performed at time t D � , and the momentum
perturbation will produce an additional uncertainty in the position

.�x/add D .�p/pert�

m

 „�
2m.�xmeasure/1

: (18.2)

Now, if these contributions superpose incoherently, and we assume an error in
the second measurement
.�xmeasure/2, then

.�x.�//2 D .�xmeasure/
2
1 C .�xmeasure/

2
2 C .�xadd/

2 ; (18.3)
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and replacing (18.2) in (18.3), we can minimize the above expression, making

d.�x.�//2

d.�xmeasure/
2
1

D 0 : (18.4)

The optimum happens for: .�xmeasure/1 D
q

„�
2m , thus giving an optimum for

.�x.�//.if .�xmeasure/
2
2 D 0/

.�x.�// D �xSQL D
r„�

m
: (18.5)

Also, we get for�p

�pSQL D
r

m„
2�

: (18.6)

On the other hand, if one could prepare the state of the system, then we repeat
the argument

x.�/ D x.0/C p.0/�

m
; (18.7)

whose variance is

.�x.�//2 D .�x.0//2C .�p.0//2�2

m2
Ch�x.0/�p.0/C�p.0/�x.0/i �

m
; (18.8)

and if we prepared the system in a “contractive state”, such that

h�x.0/�p.0/C�p.0/�x.0/i < 0 ; (18.9)

then one could beat the standard quantum limit [3].

18.1.2 Standard Quantum Limit for an Oscillator

Consider a harmonic oscillator with a mass m and angular frequency !, with

H0 D p2

2m
C 1

2
m!2x2 ; (18.10)
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and a number of quanta

N D H0

„! � 1

2
: (18.11)

As the harmonic oscillator is quantum mechanical, one has

Œx; p� D i„ ; (18.12)

�x�p 
 „
2
;

when such an oscillator is in the ground state, the variance of x and p has the
minimum allowed by the uncertainty principle

�x D �p

m!
D
r „
2m!

; (18.13)

which is the half width of the oscillators ground state. Even more generally, in a
coherent state, one has the same uncertainties.

18.1.3 Thermal Effects

Now, we may think that these quantum limits are not very relevant if one has large
classical thermal fluctuations.

When the measurement time � is larger than the oscillators’ relaxation time ��

� > �� ; (18.14)

then the criteria to neglect thermal fluctuations is

kBT � „!
2
: (18.15)

The above criteria could correspond to extremely low temperatures.
For short measurements .� < ��/, the condition is less stringent on the

temperature. As a matter of fact, the above condition is not valid because the energy
exchange with the oscillator, on the average, is only a fraction �

��

kBT.
One can show that the thermally induced fluctuations for � << �� are

�xthermal D
r

kBT�

m!2�� : (18.16)
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The direct comparison of the above limit with the quantum standard limit
for the oscillator gives us the criteria to decide whether a system is classical or
quantum mechanical. The system behaves quantum mechanically, in the case of
short measurements if

kBT
�

�� <<
„!
2
: (18.17)

To verify the above discussion, we borrow a result from the chapter on the
damped harmonic oscillator

�x�p D „
2

f1C 2hnith Œ1 � exp.��/�g ; (18.18)

and defining  D ���1, we have two regimes

(a) �
��

>> 1; then

�x�p D „
2
.1C 2hnith/ (18.19)

and, for the oscillator to be in a quantum regime, the 1 in the above equation
must be much larger than the hnith

1 >> 2hnith D 2
1

exp „!
kBT � 1 ; (18.20)

which implies

„!
2
>> kBT : (18.21)

(b) �
��

<< 1; then

�x�p D „
2

h

1C
�

2hnith
�

��
�i

: (18.22)

The quantity in the square parenthesis in (18.22) should be much less than
one, for the system behave quantum mechanically. That condition implies

kBT
�

�� <<
„!
2
; (18.23)

proving the above discussion.
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18.2 Quantum Non-demolition (QND) Measurements

18.2.1 The Free System

The problem of measuring classical signals [2] that are very weakly coupled to
detectors was originally for interest in the research of gravitational wave detection.
In the case of large bar detectors, with masses of the order of 10 tons, the
gravitational waves interact so weakly with these detectors that produce a typical
displacement of the order of 10�19 cm. With such a small signal, the actual position
measurement will introduce a momentum uncertainty that will feed back in extra
position uncertainty, as discussed in the last section, leading to a quantum standard
limit

�xSQL D
r„�

m
� 5 	 10�19 cm ; (18.24)

for a typical gravitational wave period of 10�3 s.
As we can see, the minimum uncertainty introduced in the first measurement has

made it impossible to detect with certainty whether the gravitational wave has acted
on the detector.

On the other hand, if one tries to detect p rather than x, something non-trivial
from the experimental point of view, the error in p produces an added uncertainty
in x, according to the uncertainty principle. However, this added noise will not feed
back to p, as for a free particle, p is a constant of motion. Therefore, a second
measurement of p can be made, with the same accuracy as the first one.

This is an example of a “Quantum Non-demolition measurement”(QND), to
avoid the “back action” of the measurement on the observed variable.

In the optical domain, QND experiments have been realized [4–7] based on the
Kerr coupling of a signal field to be measured with a probe field, whose phase is
changed linearly with the number of photons of the signal.

Here, we will discuss another proposal [8], where photons are stored in a
microwave resonant cavity, and they are detected by measuring the phase shift of
the electric dipoles of non-resonant Rydberg atoms crossing such cavity.

In this way, weak fields (with a small photon number) can be monitored
continuously, with no back action on the number of photons. In this example, the
detector is the atomic beam crossing the microwave cavity.

As we already mentioned, the original research on QND measurements was
triggered by the desire of monitoring a very weak force, acting on a harmonic
oscillator, with an accuracy better than the quantum standard limit.

Braginsky et al. [9] proposed what they baptized as the ‘Quantum Non-
demolition measurement’, where one monitors an observable of the oscillator,
which has to be measured many times, with each measurement being completely
determined by the result of an initial precise measurement. Such an observable we
call ‘Quantum Non-demolition observable’.



304 18 Measurements, Quantum Limits and All That

To fix some ideas, let us assume that we have a system described by a
Hamiltonian HS and we want to measure an observable (Hermitian operator) AS that
could be, for example, the number of quanta of the harmonic oscillator, to monitor
a classical force produced, in this particular example, by the gravitational wave.

In the optical case, AS could be the photon number of a field. The measurement
of AS, however, is not made directly, but through the detection of a probe observable
AP, conveniently coupled to the system, during the measurement.

The above definition of a QND observable can be used to derive its condition.
For the moment, we neglect the interaction to the probe, or measuring apparatus.
Now we assume a sequence of measurements of AS, assuming that we have no

control over the state of the system.
Also, we denote by j AS; ˛Sithe normalized eigenstate of AS.t0/, with

AS j AS; ˛Si D AS j AS; ˛Si ; (18.25)

where ˛S labels the degeneracy index.
As a result of a first measurement, one gets the eigenvalue A0 of AS.t0/, and the

eigenstate, after this measurement is

j  .t0/i D
X

˛

C˛ j A0; ˛i : (18.26)

In the interval between the first and the second measurement, in the Heisenberg
picture j  .t/i Dj  .t0/i, that is the state does not change.

If a second measurement at t D t1 is to produce a predictable result, it means that
all the states j A0; ˛i must be eigenstates of AS.t1/, but in general, with different
eigenvalue

AS.t1/ j A0; ˛i D f1.A0/ j A0; ˛i : (18.27)

As the above result is true for all the eigenvalues of AS.t0/, we must have

AS.t1/ D f1.AS.t0// : (18.28)

For a QND measurement at times t D t0; t1; : : : ; tn, one must have

AS.tk/ D fk.AS.t0//; k D 1; 2; ::n ; (18.29)

where fk is a real function.
For a continuous measurement, or at arbitrary times, one writes

AS.t/ D f .AS.t0/I t; t0/ : (18.30)
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The above condition is satisfied by a constant of motion, which in the absence of
interactions satisfies

dAS.t/

dt
D � i

„ ŒAS.t/;HS�C @AS.t/

@t
: (18.31)

In a harmonic oscillator, x and p are not QND observables; however, N is
conserved. In the case of a free particle, x is not a QND variable but p is.

Another way of expressing the QND condition (18.30) is

ŒAS.t/;AS.tK/� D 0 : (18.32)

18.2.2 Monitoring a Classical Force

Once we have defined a continuous QND observable , and a QND measurement,
satisfying the condition given in (18.32), we consider its application to monitoring
a classical force F(t). The procedure is the following: we make a sequence of QND
measurements and detect the changes the classical force produced in the precisely
predictable values of the QND variable, in the absence of the force.

We would like to go even further and actually monitor the time dependence of
the force with arbitrary accuracy, satisfying the following conditions [2]:

(a) The measuring apparatus and its coupling to the system can produce arbitrarily
precise measurements.

(b) The (k C 1)-th measurement at time tk must be uniquely determined as a result
of an initial measurement at time t0 and the history of F(t) between t0 and tk.

For the (b) condition to be satisfied, one must have

A.t/ D f .A.t0/I F.tK/I t; t0/ ; (18.33)

t0 < tK< t :

In the above condition, A.t/ is a Heisenberg operator evolving with a
Hamiltonian that includes a coupling term to the apparatus.

(c) From the history of the measured values of A.t/, one should in principle, derive
F(t). This implies that the above condition (18.33) should be invertible.

Now, we concentrate in the measuring apparatus and its interaction with the
system.
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18.2.3 Effect of the Measuring Apparatus or Probe

We assume that we want to measure a quantum observable AS of the system S by
detecting it indirectly, that is by measuring the change in an observable of a probe
AP, during a time interval T.

We notice that here we talk about measuring a quantum observable AS, thus
generalizing the argument of monitoring a classical force of the previous section.

The Hamiltonian of the system coupled to the probe is

H D HS C HP C HI ; (18.34)

where HS and HP are the free terms for the system and probe respectively, and HI is
their interaction.

To do this measurement, the interaction Hamiltonian must depend on AS, that is

@HI

@AS
¤ 0 : (18.35)

On the other hand, if we are doing this measurement indirectly through another
quantum observable AP, and if furthermore, we want to monitor it with several
measurements, then AP must respond to Heisenberg’s equation, as a dynamic
variable, or in other words, we require that

ŒAP;HI� ¤ 0 : (18.36)

Finally, and most importantly, we have the original QND restriction given
by (18.32), which, in this model implies

ŒAS;HI � D 0 ; (18.37)

in the particular case when there is no explicit time dependence of the variables
. @AS
@t D 0/.
Equations (18.35), (18.36), and (18.37) describe completely a QND measure-

ment, and they will be instrumental in describing a particular QND measurement
scheme in an optical system, presented in the next section.

18.3 QND Measurement of the Number of Photons
in a Cavity

18.3.1 The Model

An interesting example of a time-independent QND measurement is the one
involving cavity quantum electrodynamics [8].
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Fig. 18.1 Three-level atom
used in the QND
measurement of the photon
number in the cavity

We assume a beam of three-level atoms interacting non-linearly and non-
resonantly with a signal field.

What we want to measure as accurately as possible, is the photon number of the
signal field and the probe is the atomic beam.

In order to do this detection efficiently, the atoms are prepared in Rydberg states,
that is with large dipole moments, and the signal is a microwave field, in a high
Q cavity, nearly resonant with a couple of adjacent atomic energy levels, as shown
in the Fig. 18.1, where the three levels are denoted by a,b,c and the atoms cross a
microwave cavity with frequency !, with a relative detuning ı

ı D ! � !ab ; (18.38)

with !ab D Ea�Eb„ .

We also assume that g2n
ı2

<< 1, where g(r) is a position-dependent coupling
constant (position of the atom within the cavity).

If one has the combined atom-field state j b; ni, with an unperturbed energy
Eb C „!.n C 1

2
/, this level suffers an energy Stark shift

„�b D „g2.r/n

ı
; (18.39)
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for Eb < Ea, and

„�b D �„g2.r/.n C 1/

ı
; (18.40)

for Eb > Ea.
Here, we consider the level scheme of the Fig. 18.1, with Eb < Ea.

18.3.2 The System-Probe Interaction

We will assume that the off-resonant level j ci is not affected by this field and will
be used for the measurement only.

For the QND measurement purpose, we concentrate, now, in the subspace with
the atomic levels j biand j ci.

The atomic Hamiltonian, in this subspace, is

H.b;c/
at D „!bc j bihb j ; (18.41)

and, in the presence of the field, the effective Hamiltonian is (a detailed derivation
of such an effective Hamiltonian is found in the chapter of trapped ions)

HI D „
�

!bc C g2n

ı

�

j bihb j : (18.42)

As we mentioned before, we consider the atom as probe to measure the photon
number of the field.

The Hamiltonian for the S–P coupling, from (18.42) is (noticing that n is the
photon number corresponding to the a�SaS field)

H.b;c/eff
at D „g2

ı
a�SaS j bihb j (18.43)

D „g2

ı
a�SaS.D

�
bcDbc/ ;

where

Dbc Dj cihb j :
The probe observable is defined as the atomic dipole operator:

Aat
P D 1

2i
.D�

bc � Dbc/ ; (18.44)

quantity sensitive to the atomic phase, something that one could measure.
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If the field contains n photons, the change of atomic phase, after a time interval
t, is

�' D
�

!bc C g2n

ı

�

t : (18.45)

One can easily check that in this system and probe, all the QND measurement
criteria are satisfied.

18.3.3 Measuring the Atomic Phase with Ramsey Fields

Now a device is needed to measure the atomic phase shift �'. An interesting
possibility is the Ramsey method of two oscillating fields R1 and R2 as shown in
the Fig. 18.2.

Before entering the cavity, each atom is prepared by a laser in a Rydberg level
j bi. Then, the atom interacts with the first Ramsey field (R1/, which is a microwave
field at frequency !r , quasiresonant with the b–c transition.

The atom, after this interaction, leaves in a linear superposition of the j bi and j ci
states. Then it crosses the cavity, and outside the cavity, it interacts with a second
Ramsey microwave field .R2/, with frequency !r .

In the absence of photons, the atomic dipole phase shift introduced by the two
Ramsey fields is

'0 D .!r � !bc/
L

v0
; (18.46)

where v0 is the atomic velocity.

Fig. 18.2 Experimental setup for a QND measurement of photon number in the cavity. The atoms
are initially excited into a Rydberg state j ei by a laser. They cross the cavity between the two
Ramsey fields R1 and R2. After that, an ionization detector determines the velocity and state of the
atom
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With n photons in the cavity, this shift becomes

'n D '0 � n	 ; (18.47)

where 	 represents the spatial average of the phase shift per photon, that is

" D g.r/2

ı

Lc

v0
D g.0/2Lc

2ıv0
; (18.48)

where we assumed that g(r) has a sinusoidal dependence that when averaged (g2)
gives the extra 1

2
factor.

We analyze now the interaction in some detail.
Assume that the cavity contains n photons. The atom-field wavefunction, in the

unperturbed representation, can be written as

j  atom�fieldi D bb.n; t/ j b; ni C bc.n; t/ j c; ni ; (18.49)

where bb; bc are time-dependent functions because of the R1 and R2 fields, with
initial conditions

bb.n; 0/ D 1 ; (18.50)

bc.n; 0/ D 0 :

During the passage of the atom through R1, we have the typical couple of
differential equations corresponding to a two-level atom interacting with a single
mode resonant field. If ıL is the length of each zone, the interaction time � is � D ıL

v
,

and we have

�
bb.n; t/ D �r

2
bb.n; t/ ; (18.51)

�
bc.n; t/ D ��r

2
bc.n; t/ ;

�r being the corresponding Rabi frequency.
The solutions, satisfying the initial conditions are

bb.n; t/ D cos
�r

2
� ; (18.52)

bc.n; t/ D � sin
�r

2
� :

After the atom passed the cavity, bb suffers a phase shift whereas bc remains the
same.



18.3 QND Measurement of the Number of Photons in a Cavity 311

The initial conditions, before entering the second Ramsey zone are

bb.n/ D exp
�

�in"
v0

v

�

cos
�r

2
� ; (18.53)

bc.n/ D � sin
�r

2
�; (18.54)

with v0
v

expressing the dependence of the phase shift with time or the inverse
velocity.

In the second zone, the differential equations are the same as the first one, except
for the added phase ˙'0 v0v that accounts for the shifts between the two Ramsey
fields

�
bb.n; t/ D �r

2
exp

�

�i'0
v0

v

�

bb.n; t/ (18.55)

�
bc.n; t/ D ��r

2
exp

�

i'0
v0

v

�

bc.n; t/ :

After the second Ramsey zone, the solutions are

bb.n/ D exp
�

�in"
v0

v

�

cos2
�r

2
� � sin2

�r

2
� exp

�

�i'0
v0

v

�

(18.56)

bc.n/ D �1
2

sin�r�.1C exp i .'0 � n"/
v0

v
/ :

Finally, if we set �r� D �=2, we get

j  atom�fieldifinal (18.57)

D bb.n; vI'0; "/ j b; ni C bc.n; vI'0; "/ j c; ni ;

with

bb.n; vI'0; "/ D exp.�i'0
v0

v
/
h

cos2
�v0

4v
exp

�

i'n
v0

v

�

� sin2
�v0

4v

i

;

(18.58)

bc.n; vI'0; "/ D �1
2

sin
�v0

2v

h

1C exp
�

i'n
v0

v

�i

:

The atoms are detected when they leave the second Ramsey zone, by a field-
ionization detector that determines whether the atom is in state j bi or j ci and also,
synchronizing it with that laser excitation, one can determine the velocity v.
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Fig. 18.3 Pf .p.n/; '0; 	/
versus '0 for a Fock state (a),
a coherent state (b) and a
thermal state (c) (After [8])

The probability Pc of being at c is

Pc.n; vI'0; "/ D 1 � Pb Dj bc j2 (18.59)

D sin2
�v0

2v
cos2 'n

v0

2v
:

If instead of a pure j ni state in the cavity, we have a photon distribution P(n),
then

Pc.p.n/; '0; "/ D
X

n

p.n/Pc.n; vI'0; "/ : (18.60)

We may also average over a Maxwellian velocity distribution D(v) thus getting

Pc.n; '0; "/ D
Z

D.v/Pc.n; vI'0; "/dv : (18.61)

Pc.n; '0; "/ for " D 2� is shown in the Fig. 18.3, for a Fock state (a), a coherent
state (b) and a thermal state (c), with

_
n D 3.

The different fringe patterns allow in principle to distinguish between the various
photon statistics. Because these are probabilities, experimentally we should detect,
for each '0; a large number of atoms and the average.

This, of course, implies that the field should be prepared in an initial state with
photon statistics p(n), before each atom crosses the cavity, which can be rather
cumbersome.

It would be more attractive if we had a scheme involving only one realization of
the system, using basically the same experimental setup.

18.3.4 QND Measurement of the Photon Number

We assume a large Q-factor for the cavity and that a bunch of atoms cross it.
At the output, each atom’s velocity and internal state is detected by the counter.
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The state of the atom-field system at the entry of the (k C 1) atom is given by the
density operator

�fieldCatom
kC1 D

X

n;nK
j b; nihb; n j �k;n;nK ; (18.62)

and after going through the apparatus, will become

�fieldCatom
kC1 D

X

n;nK
.bb.n; vI'0; "/ j b; ni C bc.n; vI'0; "/ j c; ni/ (18.63)

	�k;n;nK.b�
b .nK; vI'0; "/hb; nKj Cb�

c .nK; vI'0; "/hc; nK j/ :

After the atomic measurement, the density operator collapses and it is projected
giving h˛n j �fieldCatom

kC1 j ˛nKi, so (˛ Db,c)

�
.˛;v/

kC1;n;nK D b˛.n; v; '0; "/b�̨.nK; v; '0; "/
P

n j b˛.n; v; '0; "/ j2 �k;n;nK ; (18.64)

where we introduced the normalizing denominator, as normalization was lost after
the state collapsed.

This denominator is nothing but P˛.p.n/; v; '0; "/, the probability for the atom
to be found in the j ˛i state, at a given velocity and for a given photon statistics.

In other words, for an j ˛i and v measurement

�
.˛;v/

kC1;n;nK D b˛.n; v; '0; "/b�̨.nK; v; '0; "/
P˛.p.n/; v; '0; "/

�k;n;nK : (18.65)

If only the atomic velocity is detected

�
.˛D‹;v/
kC1;n;nK D

X

˛Db;c

b˛.n; v; '0; "/b
�̨.nK; v; '0; "/�k;n;nK ; (18.66)

and if the atom is not detected at all

�
.˛D‹;vD‹/
kC1;n;nK D

Z

D.v/dv
X

˛Db;c

b˛.n; v; '0; "/b
�̨.nK; v; '0; "/�k;n;nK : (18.67)

If one is only interested in the photon number distribution, then only the diagonal
part of the field density operator is relevant. Calling �nn D pn, we have several
cases

(a) the atom is detected with velocity v and at the level ˛

p.˛;v/kC1 .n/ D P˛.n; v; '0; "/

P˛.pk.n/; v; '0; "/
pk.n/ : (18.68)
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(b) The atomic level is not detected

p.˛D‹;v/
kC1 .n/ D �

Pe.n; v; '0; "/C Pf .n; v; '0; "/
�

pk.n/ D pk.n/ ; (18.69)

and the original photon distribution is not changed at all.
(c) If the atom is undetected, then, again

p.˛D‹;vD‹/
kC1 .n/ D pk.n/ : (18.70)

It is interesting to notice that the unread atom does not alter the photon statistics
of the field. As we shall see in the next section, this in general is not true for any
type of measurement and it is a signature of the QND nature of this measurement.

Also, the fact that we are getting, through the probe atom, information about the
field, modifies the field, although no energy exchange took place.

If we start the field in a pure Fock state pk.n/ D ı.n � nk/, then

P˛.p.n/; v; '0; "/ D P˛.n; v; '0; "/ ; (18.71)

and no change occurs in the photon statistics

p.˛;v/kC1 .n/ D pk.n/ : (18.72)

Now, we proceed with the numerical simulation of a continuous QND measure-
ment of the field, initially with a distribution p0.n/.

First, we take randomly a velocity v1, and compute P˛.p.n/; v; '0; "/
from (18.60).

Then we decide the result of the measurement of ˛ (energy level) by comparing
this probability to a random number between 0 and 1. Next, we multiply p0.n/ by
P˛.n; v; '0; "/ and normalize, obtaining p1.n/; and so on. This iteration leads to

pk.n/ D uk
pD1P˛p.n; vp; '0; "/p0.n/

P

nKp0.nK/ uk
pD1 Pap.nK; vp; '0; "/

: (18.73)

This simulation can be carried out for different values of '0; ".
Starting from a coherent or thermal distribution, one finds a collapse to a Fock

state, as shown in the Fig. 18.4.
As we can see from the figure, a ‘decimation’ process takes place as we increase

the number of detected atoms, until a pure Fock state is reached. This final state
is not a priori predictable, as the whole process depends on random variables that
mimic the measurement process. So, if we repeat this experiment many times, and
considering that we are dealing with QND measurements, the statistics of the result
will coincide with the initial photon statistics p0.n/.
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Fig. 18.4 Photon number
distribution in a QND
sequence. The initial state is
coherent with

_
n D 5 (a). The

figures b, c, d, e, f,
correspond to the detection of
1, 3, 6, 10, 15 atoms
respectively. This run
collapses in the Fock state
n D 3 (After [8])

What we just described in this section is a particular continuous measurement
without back-action on the measured observable, in this case, the photon number in
a cavity.

In general, in a non-QND measurement, the back-action is present and typically
a Fock state after repeated measurements becomes a different state. This will be
described in detail in the next section.

18.4 Quantum Theory of Continuous Photodetection Process

18.4.1 Introduction

In a series of recent publications, Ueda and co-workers [10, 11], showed that the
quantum properties of the field are generally affected by ‘yes’ and ‘no’ results, that
is a photodetection event or the absence of it, modifying the statistics of the field.
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We start our study with a simple model of a two-level atom detector interacting
resonantly with a one-mode field, ruled by the Jaynes–Cummings Hamiltonian

H D „g.a�� C �a�/ : (18.74)

The time evolution of the state vector is

j  .�/i D
�

1 � iH�

„ � H2�2

2„2 : : : ::

�

j  .0/i : (18.75)

Let the initial state of the detector-field system be (j bi is the lower state and j f i
an unspecified field state)

j  .0/i Dj bi j f i : (18.76)

After we measure a photon absorption event, the statevector is projected onto the
j ai atomic state, that is (to the lowest approximation)

ha j  .�/i D � ig�

„ ha j a�� C �a� j bi j f i (18.77)

D � ig�

„ a j f i :

So, the field density operator, after a photodetection event, and up to a normal-
ization constant, changes as

�f ! a�f a
� : (18.78)

On the other hand, if there is no photodetection, during the time interval � , then
the final atomic state remains in j bi, and we have

hb j  .�/i (18.79)

D hb j
�

1 � iH�

„ � H2�2

2„2 : : : ::
�

 .0/i

D j f i � �2g2

2
hb j ����aa� C ���a�a

� j bi j f i

� exp.��
2g2

2
a�a/ j f i ;

where, in the last step, we assumed that the interaction time is short enough as to
have

�2g2

2
ha�ai << 1 : (18.80)
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Fig. 18.5 Photodetection
sequence in the times
0; t1; t2 : : :. In between this
times, no absorption is
detected. The interval
between 0 and t1 is
subdivided in smaller �
intervals

As we see, up to a normalization constant, the initial field density operator, after
a no-absorption event, changes to

�f ! exp.��
2g2

2
a�a/�f exp.��

2g2

2
a�a/ : (18.81)

Now, we assume that the ‘yes’ events are detected at times 0; t1; t2 : : : ; tn and no
events in between, with our photodetector being continuously monitored (Fig. 18.5).

Each period is subdivided in N small intervals �; so, for example at t1 D N�

�f .t1/ D exp.�N�2g2

2
a�a/�f exp.�N�2g2

2
a�a/ (18.82)

D exp.�2Rt1a
�a/�f exp.�2Rt1a

�a/ ;

with R D g2�
4

.
The sequence shown in Fig. 18.5 corresponds to the transformation of the field

density matrix operator, as shown

�f ! ::
�

exp.�2R.t2 � t1/a
�a/
�

a
�

exp.�2Rt1a
�a/
�

a�f .0/ (18.83)

a�
�

exp.�2Rt1a
�a/
�

a�
�

exp.�2R.t2 � t1/a
�a/
�

: :

We can group all the a’s in one side and the a�Ks on the other, giving us numerical
factors that can be included in the renormalization constant. The result is

�f !
�

exp.�2Rta�a/
�

am�f a�m
�

exp.�2Rta�a/
�

Tr
�

exp.�2Rta�a/
�

am�f a�m
�

exp.�2Rta�a/
� ; (18.84)

which corresponds to the modified density operator after m ‘yes’ counts and t
being the total measurement time.

We notice immediately that if the initial state of the field is either a coherent or a
Fock state, their nature does not change, but the state does, that is

j ˛i !j ˛ exp.�2Rt/i ; (18.85)

j Ni !j N � mi :
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18.4.2 Continuous Measurement in a Two-Mode System:
Phase Narrowing

We consider now the interaction of a three-level� system with two-mode radiation
field , in a high-Q cavity, as shown in Fig. 18.6.

We assume that the � system is initially prepared in a superposition of the split
lower states j biand j bKi

j  A.0/i D 1p
2
Œj bi C exp.�i'/ j bKi� : (18.86)

Also, we assume that the j bKi !j ai transition is resonant with the cavity field
(field b) and that the j bi !j ai transition is driven by a coherent field j ˛i.

The relevant Hamiltonian in this system is

HI D „g.a1 j aihb j Ca2 j aihbKj CHC/ ; (18.87)

Outside the high Q cavity, there is a ionization detector that will tell us if the
atom is in the excited state or in one of the lower states (j bior j bKi).

Following a similar argument to the previous section, it is simple to show that
after the atom is detected in the excited state j ai, the field changes as

�f .�/ D g2�2

„2 A�f .0/A
� ; (18.88)

Fig. 18.6 Diagram of the proposed continuous measurement scheme
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with

A D 1p
2
Œa1 C a2 exp.�i'/� : (18.89)

On the other hand, if the detected atom is not in the excited state, during a
measurement period � , then the field changes as

�f .t/ D exp.�2RtA�A/�f .0/ exp.�2RtA�A/ : (18.90)

Once more, if we have n detections in a total measurement time t, then

�
.n/
f .t/ D exp.�2RtA�A/An�f .0/A�n exp.�2RtA�A/

Tr.exp.�2RtA�A/An�f .0/A�n exp.�2RtA�A//
: (18.91)

We notice that in the ordering process we used the relation

exp
	

xA�A



.A/ exp
	�xA�A


 D A exp.�x/ ; (18.92)

which adds an extra factor that can be included in the normalization of �.n/f .t/.
As an example, we assume that initially both fields are coherent

�.0/ Dj ˛; ˇih˛; ˇ j ; (18.93)

so that

A j ˛; ˇi D 1p
2
Œ˛ C ˇ exp.�i'/� j ˛; ˇi ; (18.94)

and the density matrix, after n detections becomes

�
.n/
f .t/ D exp.�2RtA�A/ j ˛; ˇih˛; ˇ j exp.�2RtA�A/

Tr fexp.�2RtA�A/ j ˛; ˇih˛; ˇ j exp.�2RtA�A/g : (18.95)

We notice that

�
.n/
f .t/ D �

.0/
f .t/ ; (18.96)

because for a coherent state, the An factor becomes a numerical one that can be
absorbed in the normalization constant. In this case, we may say ‘only no counts
count’ [12].

Now, we want to simplify the expression given in (18.19).
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We define a B operator

B D 1p
2
.a1 � a2 exp �i'/ ; (18.97)

with

ŒA;B� D �

A;B�
� D 0 ; (18.98)

�

B;B�
� D 1 :

Now, we look at the effect of the a1 and a2 operators on exp.�2RtA�A/ j ˛; ˇi.

a2 exp.�2RtA�A/ j ˛; ˇi D
�

A � Bp
2

�

	 exp.i'/ exp.�2RtA�A/ j ˛; ˇi (18.99)

D exp.�2RtA�A/ exp.2RtA�A/

�

A � Bp
2

�

	 exp.i'/ exp.�2RtA�A/ j ˛; ˇi

D exp.�2RtA�A/

�

A exp.�2Rt/ � Bp
2

�

	 exp.i'/ j ˛; ˇi ;

where, in the last step, we used the identity given by (18.92).
Now, from (18.99), we observe that exp.�2RtA�A/ j ˛; ˇi is an eigenstate of a2

with eigenvalue
�
ˇ:

a2 exp.�2RtA�A/ j ˛; ˇi D
�
ˇ exp.�2RtA�A/ j ˛; ˇi ; (18.100)

�
ˇ D

��

˛ exp i' C ˇ

2

�

exp.�2Rt/ � 1

2
.˛ exp.i'/� ˇ/

�

:

Similarly, one can show that

a1 exp.�2RtA�A/ j ˛; ˇi D �̨
exp.�2RtA�A/ j ˛; ˇi ; (18.101)

�̨ D
�

˛ C ˇ exp.�i'/

2

�

exp.�2Rt/ � 1

2
Œ˛ � ˇ exp.�i'/�

�

:

So

�
.n/
f .t/ Dj �̨

;
�
ˇih�̨

;
�
ˇ j : (18.102)
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As we can see, as a result of the continuous measurement process, a coherent

state, say j ˇi, has become a new coherent state with a modified amplitude j
�
ˇi.

Thus, there is a phase noise reduction or phase narrowing if j
�
ˇ j2>j ˇ j2.

On the other hand, if one of the fields is classical (a1), that is j ˛ j>>j ˇ j, then
approximately

�
j ˇjD j ˛ j

2
Œ1 � exp.�2Rt/� : (18.103)

Writing a phase state

j 
i D
1
X

nD0
exp.in
/ j ni ; (18.104)

one can write an expression for the phase distribution

Pn.
/ D h
 j
�
ˇih

�
ˇ j 
i : (18.105)

The above distribution has been numerically evaluated for ˛ D 10; ˇ D 1; and
various times Rt D 0 (a), Rt D 0:5 (b), Rt D 1 (c), Rt D 1:5 (d).

In the Fig. 18.7, we observe a striking phase narrowing, that can have interesting
applications in small signal detection.

We can also look at the steady state, when one of the fields (say a2) is in the
vacuum, that is ˇ D 0; then, for t ! 1

j 0ia2 !j �˛
2

exp.i'/i : (18.106)

We may say that we transferred the coherence from the a1 to the a2 mode.

Fig. 18.7 Phase distribution
for various times (a) Rt D 0;
(b) Rt D 0:5; (c) Rt D 1; (d)
Rt D 1:5; The parameters are
˛ D 10; ˇ D 1 (After [12])
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Furthermore, this result is independent of the number of ‘clicks’ (independent
of n), that is the coherence transfer occurs even if we never find an atom in the
excited state [13].

18.5 Generalized Measurements: POVM’s

We study in this section the standard quantum measurement theory and how it can
be generalized, generalization suitable to describe external effects to our initially
closed system, such as measurements, dissipation or noise [14].

18.5.1 Standard Quantum Measurents

The standard quantum measurement theory has the following fundamental postu-
lates:

I. Any observable quantity is associated to a Hermitian operator X that has a
spectral decomposition X D P

j �j j jihj j :The eigenvalues of this operator
are real and assume non-degenerate. Any measurement of this observable will
give us one of the eigenvalues �j as a possible result of such a measurement.

II. The eigenvectors of X form a basis in Hilbert space. The projectors Pj Dj jihj j
span the entire Hilbert space,

P

j j jihj jD I:
III. From the orthogonality of the states, we have PiPj D Piıij. It follows that P2i D

Pi, thus the eigenvalues of any projector are 0 and 1.
IV. The probability that a particular outcome �j as a measurement result is found

to be:

pj D Tr
�

Pj�Pj
� D Tr

�

�P2j
� D Tr

�

�Pj

�

.BornRule/ (18.107)

V. The state after the measurement is

�j D Pj�Pj

Tr
�

Pj�Pj
� D Pj�Pj

Tr
�

�Pj
� ; (18.108)

if the outcome is �j.
VI. If we perform a measurement without recording the result, the post-

measurement state is a mixed state that can be described by the density
operator �

� D
X

j

pj�j D
X

j

Pj�Pj: (18.109)
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In the case of pure states, � Dj  ih j , the postulate IV becomes pj D h j
Pj j  i Dj hj j  i j2I in the case of postulate V, the state after measurement

with outcome �j becomes j �ji D Pjj i
q

h jP2j j i D Pjj iph jPjj i . Finally, when measuring

without looking at the result (postulate VI), the state of the system becomes a mixed
state � D P

j pj j �jih�j jD P

j Pj j  ih j Pj.
Of course, the process of measurement is random and we cannot predict the result

of a given measurement, we only know the probability of a given eigenvalue. Thus
quantum mechanics is interpreted, both in the pure or mixed states, as describing
not the given system but as an ensenble of many copies of our system and when we
perform the same measurement on each member of the ensemble, we can predict
the probability with which occur, but in general, we cannot predict the outcome of
an individual measurement. (except if the probability is 1 or 0).

18.5.2 Positive Operator Valued Measures: POVM

The set of postulates I–VI can be considered an algorithm to generate a set of
probabilities pj normalized to unity

P

j pj D 1;and the post-measurement states.
A limitation of the standard quantum measurement theory is that the number of

possible outcomes cannot be larger than the dimension of the space N. However,
sometimes it would be desirable to have a larger number of outcomes, keeping, of
course the normalization of the probabilities and positivity of our new “projector
operators” that should add up to one.

The Born rule is a prescription to generate probabilities. For that purpose, it is
sufficient if P2j is a positive operator, and we do not need to require that the set of
Pjbe projectors nor their positivity.

So we introduce a set of positive operators ˘j 
 0, as a generalized version of
P2j , such that pj D Tr

�

�˘j
�

. Of course, in order to ensure the normalization of the
probabilities, we have to satisfy:

P

j˘j D I ,that is a POVM, with the ˘j s being
elements of the POVM.

We denote the operators generating the post-measurement states by Mj,
called, detection operators, such that the state after measurement becomes

�j D Mj�M
�
j

Tr
h

Mj�M
�
j

i D Mj�M
�
j

Tr
h

Mj�M
�
j

i for mixed state or j �ji D Mjj i
q

h jM�
j Mj j i

for the case of

pure states. We can immediately see that M�
j Mj plays the role of P2j , thus˘j =M�

j Mj

which by construction is a positive operator.
We are now ready to write the modified postulates for generalized measure-

ments:

I0. A detection yields one of the alternatives corresponding to an element of the
POVM.
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II0. The elements of the POVM, ˘j, can be expressed in terms of the detection

operators Mj as˘j D M�
j Mj, where in general the detection operators are non-

Hermitian ones, restricted only by the requirement
P

j M�
j Mj jD I:

III0. We donot require the detector operators to be projectors.
IV0. The probability that a particular outcome �j as the measurement result is found

to be:

pj D Tr
h

Mj�M�
j

i

D Tr
h

�M�
j Mj

i

D Tr
�

�˘j
�

.BornRule/ (18.110)

V0. The state after the measurement is

�j D Mj�M�
j

Tr
h

Mj�M�
j

i D Mj�M�
j

Tr
h

�M�
j Mj

i ; (18.111)

which for pure states reduces to

j �ji D Mj j  i
ph j ˘j j  i ; (18.112)

if the outcome is �j.
VI0. If we perform a measurement without recording the result, the post-

measurement state is a mixed state that can be described by the density
operator �

� D
X

j

pj�j D
X

j

Mj�M�
j : (18.113)

Next, let us connect our system to an auxiliary system, we call ancilla.The
Hilbert space now becomes HA ˝ HB, where HA is our original system and HB

corresponds to the Hilbert space of the ancilla.
Now, we want to gain information about the state j  Ai, and assume that the

system and ancilla are initially independent and the joint state is j  Ai˝ j  Bi.
Let fj mBig be an orthogonal basis for HB and UAB a unitary operator acting on the
combined space. We calculate the probability pm of measuring j mBi

pm Dk .IA˝ j mBihmB j/UAB.j  Ai˝ j  Bi/ k2 : (18.114)

From the definition

Mm j  Ai � hmB j UAB j  Ai˝ j  Bi; (18.115)
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we observe that Mm is a linear operatoracting in HA that depends on the ancilla
and UAB.Now we write pm as

pm Dk Mm j  Ai˝ j mBi k2D h A j M�
mMm j  Ai: (18.116)

We let the reader to prove that

X

m

M�
mMm D IA: (18.117)

The unnormalized post-measurement state of the system- ancilla is Mm j  Ai˝ j
mBi; so the normalized state of the system is:

j �Ai D Mm j  Ai
ph A j ˘m j  Ai ; ˘m D M�

mMm: (18.118)

Clearly the set f˘m D M�
mMmg decomposes the identity in terms of positive

operators and qualifies as a POVM. This is called the Neumark theorem that
in words says that there is a one to one correspondence between a POVM
and the procedure describes above, known as generalized measurement. Hence a
generalized measurement can be considered as the physical implementation of a
POVM.

Any measurement can be described by a POVM and also, any POVM cor-
responds to a realizable measurement. In other words, we can consider the
mathematical problem of finding the optimal POVM of a given physical situation.
The reader will find applications of the POVM’s in the Appendix G.

Problems

18.1 Verify the solution for the atom-field state given by (18.57) and (18.58).

18.2 Prove that the reordering procedure of the creation and annihilation operators
give the result from the (18.84).

18.3 Show that

exp.xA/A exp.�xA/ D A exp.�x/ :

(Appendix A)

18.4 Show that the standard quantum limit for the energy of an oscillator is

�ESQL D
p

„!E ;

where E is the oscillator’s mean energy.
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18.5 Suppose that instead of wanting to monitor the position of an oscillator, as we
did in the Sect. 18.1.3, we wanted to monitor its energy and derive a condition for
the thermal effects.

Prove that for short time measurements

�E D
r

„!E
�

�� ;

and whether�E 6 „! implies

.n C 1

2
/
kBT�

�� � „! :

In other words, to monitor the resonator’s energy at the level „! requires a
temperature smaller by a factor 2.nC 1

2
/ than only set the condition that the oscillator

behave quantum mechanically [1].

18.6 Prove that the standard quantum limit for measurement of an impulsive force,
using an oscillator, is

F D 1

�F

r„!m

2
;

where �F is the duration of the pulse.
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Chapter 19
Trapped Ions

In this chapter, we study the Paul trap for ions. We also analyse the various
interactions between the ion’s internal and center-of-mass degrees of freedom with
light waves.

19.1 Paul Trap [5]

19.1.1 General Properties

This is a trap that confines charged particles in a quadrupole potential, modulated
by a radiofrequency field (Fig. 19.1).

One generates a potential difference U between the two Hyperboloid end caps
and a ring of radius r0, located at z0 from the upper end cap. (The origin is at the
center of the ring.)

We assume a configuration described by the following potential:

�.x; y; z/ D A.x2 C y2 � 2z2/ ; (19.1)

and from the Fig. 19.1

�.r0; 0; 0/� �.0; 0; z0/ D U : (19.2)

From the two equations above, we can calculate A

A D U

r02 C 2z20
; (19.3)

© Springer International Publishing Switzerland 2016
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Fig. 19.1 Paul trap to
confine charged particles

or

�.x; y; z/ D U

r02 C 2z20
.x2 C y2 � 2z2/ : (19.4)

Unfortunately, one cannot confine a charged particle in three dimensions, with a
constant electric field, because this electric field would converge from all directions
and a net flux would be present, violating the equation r � E D 0.

What we can do, instead, is to modulate the field with a harmonic term
proportional to cos�t, thus getting

�.x; y; z; t/ D V0
r02 C 2z20

.x2 C y2 � 2z2/ cos�t ; (19.5)

where we replaced U ! V0 cos�t.
If we neglect the B field and

E D �r� D AKcos�t .�2x;�2y; 4z/ ; (19.6)

with

AKD V0
r02 C 2z20

; (19.7)

then the classical equations of motion for a charged particle in this field are

��
x D �2AKq cos�t

m
x ; (19.8)



19.1 Paul Trap 331

��
y D �2AKq cos�t

m
y ; (19.9)

��
z D 4AKq cos�t

m
z ; (19.10)

where m and q are the mass and charge of the particle.
The above equations can be written in a compact form:

��
x i D Cixi cos�t ; (19.11)

with

C1 D C2 D �2AKq
m

(19.12)

C3 D 4AKq
m
;

and x1 D x; x2 D y; x3 D z.
Now we decompose the motion in a fast and a slow time-varying part

xi D Nxi C �i ; (19.13)

where
_
xi is the slow term, varying with a frequency !i, still to be determined, and �i

is the fast term changing with frequency� >> !i.
So, we can write now

��Nxi C
��
�i D Ci Nxi cos�t C Ci�i cos�t : (19.14)

Now, we want to satisfy

j xi j>>j �i j; (19.15)

j ��
xi j<<j

��
�i j ;

which is possible due to the difference in the frequencies. Then we have

��
�i D Ci Nxi cos�t : (19.16)

For a time scale of the order of 1
�

, Nxi is basically constant, and we have

�i D � Ci

�2
Nxi cos�t : (19.17)
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As we can see, the acceleration and position of �i have opposite signs, so that
there is a restoring force, similar to a harmonic oscillator, and independent of the
sign of Ci, so this is true for all three spatial directions.

If we replace (19.16) and (19.17) in (19.14), we get

��Nxi C C2
i

�2
cos2 �tNxi D 0 : (19.18)

Now, if again we average over a time scale 1
�

, the cos2 averages to 1
2
; and we get

a three-dimensional harmonic oscillator

��Nxi C C2
i

2�2
Nxi D 0 ; (19.19)

with the corresponding frequencies

!x D !y D j C1 jp
2�

D
p
2AKq

m�
; (19.20)

!z D j C3 jp
2�

D 2
p
2AKq

m�
:

Thus, one can write an effective potential energy

Veff D
X

i

mC2
i

4�2
Nx2i : (19.21)

As we can see, in the � >> !i limit, the motion of the charged particle is well
described by an effective potential corresponding to a three-dimensional harmonic
oscillator, superposed by a small amplitude and rapidly varying �. This is shown
pictorially in the Fig. 19.2.

Fig. 19.2 Motion of a charged particle in a Paul trap
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19.1.2 Stability Analysis

One can easily verify that if a static field is added to U , that is

U D U0 C V0 cos�t ; (19.22)

or

�.x; y; z; t/ D Uo C V0 cos�t

r02 C 2z20
.x2 C y2 � 2z2/ ; (19.23)

then the effective potential energy becomes

VKeff D q2V2
0

m�2.r02 C 2z20/
2
.

_
x2 C _

y2 C 4
_
z2/ (19.24)

C qUo

r02 C 2z20
.

_
x2 C _

y2 � 2_
z2/ ;

which becomes isotropic if

U0 D qV2
0

m�2.r02 C 2z20/
: (19.25)

One can also have essentially a one-dimensional harmonic oscillator, along the
z-axis, if one chooses U0 to be large and negative.

In general, for any value of U0 and V0, the equations of motion for x and z are

��
x D �2q

m.r20 C 2z20/
.U0 C V0 cos�t/ x ; (19.26)

��
z D 4q

m.r20 C 2z20/
.U0 C V0 cos�t/ z :

We perform, now, a change of variables

�t D 2�; (19.27)

x1 D x; x2 D y; x3 D z;

a3 � �16qU0

m�2.r20 C 2z20/
D �2a1 D �2a2;

q3 � 8qV0
m�2.r20 C 2z20/

D �2q1 D �2q2 :
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With the above definitions, the equations of motion now read

d2xi

d2�
C .ai � 2qi cos 2�/ xi D 0 : (19.28)

i D 1; 2; 3 :

Equation (19.28) is Mathieu’s equation, with a periodic coefficient, with
period � .

Thus, if x.�/ is a solution of Mathieu’s Equation, then x.�C�/ is also a solution.
Now, we explore the possibility of finding solutions of Mathieu’s Equation,

where

x.� C �/ D �x.�/ ; (19.29)

� being a complex number to be determined later (Floquet’s Theorem).
Now, let h.�/ and g.�/ be two independent solutions of Mathieu’s Equation. As

this equation is linear, then

x.t/ D Ag.�/C Bh.�/ ; (19.30)

is also a solution.
Furthermore,

g.� C �/ D ˛1g.�/C ˛2h.�/ ; (19.31)

h.� C �/ D ˇ1g.�/C ˇ2h.�/ :

Now, replacing (19.30) and (19.31) in (19.29), we get

x.� C �/ D Ag.t C �/C Bh.t C �/ (19.32)

D A Œ˛1g.�/C ˛2h.�/�

CB Œˇ1g.�/C ˇ2h.�/�

D .A˛1 C Bˇ1/g.�/C .A˛2 C Bˇ2/h.�/

D �Ag C �Bh ;

or

.˛1 � �/A C ˇ1B D 0 ; (19.33)

˛2A C .ˇ2 � �/B D 0 :
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For non-trivial solutions, the determinant of the coefficients must vanish, giving
us two possible values for � W

x1.� C �/ D �1x1.�/; (19.34)

x2.� C �/ D �2x2.�/ :

If we define two quantities

exp�i� � �i (19.35)

Fi.�/ � xi.�/ exp.��i�/ ;

then it is simple to show that Fi.�/ is �-periodic

Fi.� C �/ D xi.� C �/ exp.��i�/ exp.��i�/ (19.36)

D xi.�/ exp.�i�/ exp.��i�/ exp.��i�/

D xi.�/ exp.��i�/ D Fi.�/ :

From the last line of (19.36), we write

xi.�/ D .�i/
�
� Fi.�/ ; (19.37)

with Fi.�/ being a periodic function, with period � .

19.1.2.1 Some Properties of �1 and �2

If x1 and x2 are solutions of the Mathieu Equation, one can easily prove that

��
x1x2 � ��

x 2x1 D 0;

or

d.
�
x1x2 � �

x2x1/

d�
D 0 ; (19.38)

leading to

�
x1x2 � �

x2x1 D c : (19.39)
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But, since

x1.� C �/ D �1x1.�/I
x2.� C �/ D �2x2.�/ ;

then

�
x1.� C �/x2.� C �/ � �

x2.� C �/x1.� C �/ D c

D �1�2.
�
x1x2 � �

x2x1/

D .
�:
x1x2 � �

x2x1/ ;

thus

�1�2 D 1 : (19.40)

We can clearly differentiate two cases

(a) �1 and �2 are reals; then

�1 D .�2/
�1 D exp�1� ; (19.41)

and because � is real, we get a stable and an unstable solution

x1.�/ D exp.�1�/F1.�/;

x2.�/ D exp.��1�/F2.�/ :

So, in this case, one always has an unstable solution.
(b) �1 D ��

2 , j �1;2 j2D 1.
So, if �1 D exp iˇ�;�2 D exp �iˇ� , then

x1.�/ D exp.iˇ�/F1.�/; (19.42)

x2.�/ D exp.�iˇ�/F2.�/ ;

which are both stable solutions .

19.1.2.2 Boundary Between Stable and Unstable Region

� D exp iˇ� becomes real for
ˇ D 0 ! �1 D �2 D 1;

ˇ D 1 ! �1 D �2 D �1;
in which case, the solutions are periodic functions of � , with period �.ˇ D 0/ or
2�.ˇ D 1/.
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Fig. 19.3 Parameter space of
Mathieu’s Equation
separating the stable region
(with lines) from the unstable
one

One can plot [9] the values of a and q that admit periodic solutions, with period
2� . This curve separates the stable from the unstable regions in the parameter space
(Fig. 19.3).

19.2 Trapped Ions

19.2.1 Introduction

Recently, single quantum systems have been investigated, based on the advancement
on low temperature [11] and confinement techniques. For example, in the case of
single trapped ions, much work has been devoted to the coupling of a few internal
electronic levels with the center of mass motion of the ion.

These couplings, in the case of the ion traps, can be achieved by direct transition
[7, 20], or non-resonant Raman transition. In the latter case, this coupling is via two
optical fields [8, 12, 16].

Several proposals have been presented for experiments leading to observation of
non-classical states such as generation of Fock and squeezed vibrational states and
also vibrational Schrodinger cats [17].
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In most cases, these proposals use an effective interaction, between internal and
external degrees of freedom of the ion.

Single trapped ions have also led to the observation of quantum jumps [20],
antibunching in resonance fluorescence and Quantum Zeno effects [10].

19.2.2 The Model and Effective Hamiltonian

The basic level scheme is shown in the Fig. 19.4.
The electronic levels j ai and j bi are assumed to be metastable, separated by

„!0 and coupled by stimulated Raman transition via two classical optical fields

EiD E0i Œexp i.kix � !it C �i/C cc� ; (19.43)

where x is the position operator associated with the center of mass motion, and
!1 �!2 D .k1 � k2/c D !0 � ı; ı being of the order of !, the vibrational frequency
of the ion.

Both fields 1 and 2 are detuned from the b–c and a–c transition by� and�� ı,
respectively.

A fourth level j di is introduced for detecting electronic states and precooling, as
it will be shown later.

We assumed that the ion is trapped in a harmonic potential. The centre of mass
position operator can be written as

xi D
s

„
2m!i

.ai C a�i /; i D 1; 2; 3 ; (19.44)

where !i is the oscillatory frequency along the i direction.

Fig. 19.4 Energy level
diagram. A Raman-stimulated
transition is induced between
the levels j ai and j bi by
laser beams 1 and 2.
Detection of the electronic
state is provided by the
scattered photons resulting
from the cycling transition
j bi and j di, produced by a
resonant pulse 3
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The Hamiltonian that describes the system between detections (so the level j di
does not participate in the dynamics) can be written as

H D H0 C H1 ; (19.45)

with

H0 D
X

iDx;y;z

„!ia
�
i ai C „!a j aiha j C„!b j bihb j C„!c j cihc j ; (19.46)

and

H1 D „g1 exp Œ�i.k1�x � !1t C �1/� j bihc j
C„g2 exp Œ�i.k2�x � !2t C �2/� j aihc j Chc : (19.47)

For shorthand notational purposes, if we set

g1 exp Œi.k1�x C �1/� ! g1;

g2 exp Œi.k2�x C �2/� ! g2;

and

!cb � !1 D � ; (19.48)

!ca � !2 D � � ı ; (19.49)

then the Hamiltonian H0 can be written as

H0 D
X

iDx;y;z

„!ia
�
i ai C „.!b C�/ j bihb j C„ Œ!a C .� � ı/� j aiha j C„!c j cihc j

�„� j bihb j �„.� � ı/ j aiha j ; (19.50)

so that the time-dependent factor is eliminated in the interaction picture, because

!c � .!b C�/ D !1 ; (19.51)

!c � .!a C� � ı/ D !2 : (19.52)

The Hamiltonian in the interaction picture now reads

HKD �„� j bihb j �„.� � ı/ j aiha j
C„.g1 j cihb j Cg�

1 j bihc j/
C„.g2 j ciha j Cg�

2 j aihc j/ : (19.53)
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Now we proceed to calculate the effective Hamiltonian or the a and b levels only,
by adiabatic elimination of the c level (Retamal, Notes and private communication).

Starting from the Liouville equation

:
� D � i

„ ŒHK; �� ; (19.54)

we can write

:
� D i� Œj bihb j; ��C i.� � ı/ Œj aiha j; ��

�i
�

g1 j cihb j Cg�
1 j bihc j; ��

�i
�

g2 j ciha j Cg�
2 j aihc j; �� : (19.55)

Writing Liouville equation by its matrix elements, we get

:
�cc D �ig1�bc C ig�

1 �cb � ig2�ac C ig�
2 �ca ; (19.56)

:
�bb D ig1�bc � ig�

1 �cb ; (19.57)
:
�aa D ig2�ac � ig�

2 �ca ; (19.58)
:
�ca D �i.� � ı/�ca � ig2�aa C ig2�cc � ig1�ba ; (19.59)

:
�cb D �i��cb � ig1�bb C ig1�cc � ig2�ab ; (19.60)

:
�ab D �i��ab C i.� � ı/�ab C ig1�ac � ig�

2 �cb : (19.61)

Now, we take � >> ı and set �ca; �cb to steady state

�cb D 1

i�
Œig1.�cc � �bb/� ig2�ab� ; (19.62)

�ca D 1

i�
Œig2.�cc � �aa/� ig1�ba� ; (19.63)

and replacing (19.62) and (19.63) in (19.56) we get

:
�cc D 0;

so, if �cc.0/ D 0; then �cc.t/ D 0.
The rest of the equations become

:
�bb D ig�

1g2
�

�ab � ig�
2g1
�

�ba ; (19.64)

:
�aa D ig�

2g1
�

�ba � ig�
1g2
�

�ab; (19.65)

:
�ab D �i .ıK/ �ab � ig�

2g1
�

.�aa � �bb/ ; (19.66)
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with

ıKD
�

ı C j g1 j2
�

� j g2 j2
�

�

: (19.67)

We notice that ı´ differs from ı by the Stark shifts jg1j2
�

and jg2j2
�

.
Now, if we write the effective Hamiltonian in the following form

H D „˛ j aiha j � j bihb j
2

C „ˇ j aihb j C„ˇ� j biha j ; (19.68)

then the Liouville equation gives us

:
�bb D �iˇ��ab C iˇ�ba ; (19.69)
:
�aa D �iˇ�ba C iˇ��ab ; (19.70)

:
�ab D �i˛�ab C iˇ.�aa � �bb/ : (19.71)

By direct comparison of the above equations with (19.64), (19.65), and (19.66),
we get

˛ D ıK; (19.72)

ˇ D �g�
2g1
�

:

The final effective Hamiltonian, is

H D
X

iDx;y;z

„!ia
�
i ai C „ıK�3 � „�0

2
Œj aihb j exp Œi.k1 � k2/x C i��C hc� ;

(19.73)

with �0 �
�

2jg1g2j
�

�

; �3 �
� jaihaj�jbihbj

2

�

.

In terms of the phonon raising and lowering operators, we can also write it as

H D
X

iDx;y;z

„!ia
�
i ai C „ıK�3 � „�0

2

(

j aihb j exp

"

i
X

i

�i.ai C a�i /C i�

#

C hc

)

;

(19.74)

where �i is the Lamb–Dicke parameter, defined as

�i � ıki

s

„
2m!i

; (19.75)

ıki � .k1 � k2/i : (19.76)
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We notice that according to the definition of �i; �
2
i is the ratio between the recoil

energy and the quantum vibrational energy, both taken in the i-th direction.
In the rest of the chapter, we are going to assume, for the sake of simplicity,

that only vibrations in a given i direction are excited, which could be the case if
!i is much larger than the other frequencies or if ık is in the i direction. Then the
Hamiltonian is

H D „!a�a C „ıK�3 � „�0

2

˚j aihb j exp
�

i�.a C a�/C i�
�C hc

�

: (19.77)

Expanding the exponential and using the B.C.H. identity (see Appendix A), we
get

exp i�.a C a�/ D exp

�

��
2

2

�

X

l;lK

.i�/lClK

lŠlKŠ a�lalK ; (19.78)

and

H D „!a�a C„ıK�3� „�0

2

2

4j aihb j exp

�

��
2

2

�

X

l;lK

.i�/lClK

lŠlKŠ a�lalKexp.i�/C hc

3

5 :

(19.79)

In the interaction picture, the Hamiltonian becomes

HI D�„�0
2

0

@j aihb j exp

 

��
2

2
C i�

!

X

l;lK

.i�/lClK
lŠlKŠ a�lalKexp fit Œ.l � lK /! C ıK �g C hc

1

A :

(19.80)

Let k D lK� l; so that

�k � ıK� k! ; (19.81)

and we define

�k � �0

2
exp

�

��
2

2
C i�

�

.i�/k
X

l

.i�/2l

lŠ.l C k/Š
a�lal : (19.82)

Considering now a near resonant condition, where for a particular value of
k; �k << k!, and neglecting the fast rotating terms, one can write approximately

HI D �„
 

0 �k exp.i�kt/ak

a�k�
�
k exp.�i�kt/ 0

!

: (19.83)
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19.2.3 The Lamb–Dicke Expansion and Raman Cooling

In the Lamb–Dicke limit �
p

n << 1, we mention several interesting cases (in this
section, we will neglect the Stark shifts thus ıK reduces to ı). We concentrate on the
time-independent case, that is for �k D 0, or ıKD k!.

19.2.3.1 ‘Carrier’ Transition

This case corresponds to ı D 0; k D 0, and the Hamiltonian lowest order term in
� is

HI D �„�0

2
Œexp.i�/�C C exp.�i�/��� ; (19.84)

Hamiltonian that produces Rabi oscillations between vibrational sublevels of the
same degree of excitation, as shown in the Fig. 19.5.

19.2.3.2 First ‘Red’ Sideband

This case corresponds to

ı D ! ; (19.85)

k D 1

and we get, to the lowest order in �,

HI D �i�„�0

2
.a�C exp i� � a�� exp �i�/ ; (19.86)

Fig. 19.5 Rabi oscillation
between two vibrational
sublevels of the same degree
of excitation. This case
corresponds to k D 0 D ı
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Fig. 19.6 First sideband
vibrational transition for the
case ı D !; k D 1; that
corresponds to the
Jaynes–Cummings dynamics.
The upwards transition
(b ! a) produces a
vibrational cooling from
n ! n � 1

which is the Jaynes–Cummings Hamiltonian. The vibrational transitions described
by this Hamiltonian is shown in the Fig. 19.6.

Similarly, there is a first blue sideband, corresponding to a ‘anti-Jaynes–
Cummings’ model and higher order sidebands corresponding to non-linear optical
models.

For example, if ı D 2! or k D 2 corresponds to the two-photon Jaynes–
Cummings model

HI D �0

2

�2„
2
.a2�C exp i� C a�2� exp �i�/ ; (19.87)

and so on.
Recent experimental results [16] reported that the first red sideband was used for

cooling purposes. However, if they just tuned the ı D ! transition, one can go from
n ! n � 1, but the reverse process is also possible and on the average, no cooling
occurred [15].

To achieve resolved sideband stimulated Raman cooling, they needed the
following sequence.

First, a � red sideband pulse, producing j bi j ni !j ai j n � 1i transition.
Second, an additional ‘repumper’ pulse populates the j ci level, followed by
spontaneous emission, to the same j n � 1i level, but now associated to the j bi
electronic state. This is showed in the Fig. 19.7.

To have a quantitative understanding of the above effects, we require the study
of the dynamics of our system (Retamal, Notes and private communication) [13].

19.2.4 The Dynamical Evolution

An exact solution for the time evolution operator can be derived, in some simple
cases, like the Hamiltonian given by (19.83).

We show here the detailed calculation to illustrate the method.
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Fig. 19.7 Resolved sideband stimulated Raman-stimulated Raman cooling. First, a red sideband
� pulse produces the j bi j ni !j ai j n � 1i transition. A second � repumping pulse followed
by spontaneous emission produces the j ai j n � 1i !j bi j n � 1i transition having a net cooling
effect

We have to solve the equation

i„dU

dt
D HU ; (19.88)

or

i

0

@

�
Uaa

�
Uab�

Uba

�
Ubb

1

A D
 

0 ��k exp.i�kt/ak

�a�k�
�
k exp.�i�kt/ 0

! 

Uaa Uab

Uba Ubb

!

;

(19.89)

giving us the set of equations

�
iUaa D ��k exp.i�kt/akUba ; (19.90)

�
iUba D �a�k�

�
k exp.�i�kt/Uaa ; (19.91)

�
iUab D ��k exp.i�kt/akUbb ; (19.92)

�
iUbb D �a�k�

�
k exp.�i�kt/Uab : (19.93)

We can easily eliminate the time-dependent factors with the transformation

Uba D exp i
�kt

2
Uba ; (19.94)

Uaa D exp �i
�kt

2
Uaa ; (19.95)
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Uab D exp �i
�kt

2
Uab ; (19.96)

Ubb D exp i
�kt

2
Ubb : (19.97)

It is simple to verify that the differential equation for the various matrix elements
are

::

Ubb C _
�
2Ubb D 0 ; (19.98)

::

Uba C _
�
2Uba D 0 ; (19.99)

::

Uaa C �
2Uaa D 0 ; (19.100)

::

Uab C �
2Uab D 0 ; (19.101)

where

�
2 D �2

k

4
C�kaka�k�

�
k ; (19.102)

_
�
2 D �2

k

4
C a�k�

�
k�kak : (19.103)

The reader may verify that the solutions of the above equations for the initial
conditions Ubb.0/ D Uaa.0/ D 1 and Uab.0/ D Uba.0/ D 0 are [21]:

Uaa.t/ D exp i
�kt

2

�

cos�t � i
�k

2�
sin�t

�

; (19.104)

Uab.t/ D exp

�

i
�kt

2

�

i
sin�t

�
�kak ; (19.105)

Uba.t/ D exp

�

�i
�kt

2

�

i
sin

_
�t

_
�

a�k�
�
k ; (19.106)

Ubb.t/ D exp �i
�kt

2

�

cos
_
�t C i

�k

2
_
�

sin
_
�t

�

: (19.107)

For the resonant case (�k D 0/, we can expand these results in � (Lamb–Dicke
regime), getting

�k � �0

2
exp i

�

� C k�

2

�

�k



1 � �2
�

a�a

.k C 1/Š
C 1

2
C : : :

��

; (19.108)
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�2 � �2
0

4
�2kakak�



1 � 2�2Œ
a�a

.k C 1/Š
C 1

2
� : : :

�

; (19.109)

_
�
2 � �2

0

4
�2kak�ak



1 � 2�2Œ a�a

.k C 1/Š
C 1

2
� : : :

�

; (19.110)

Uaa.t/ D cos�t;Ubb.t/ D cos
_
�t; (19.111)

Uab.t/ D i
sin�t

�
�kak;Uba.t/ D i

sin
_
�t

_
�

a�k�
�
k :

For the Jaynes–Cummings model, applied for cooling, k D 1, and initially with
the ion in the state j ni j bi, after some time t

j  .t/i D
 

cos�t i sin�t
�
�1a

i sin
_
�t

_
�

a���
1 cos�t

!
�

0

1

�

j ni ; (19.112)

j  .t/i D
��

i
sin�t

�
�1a

�

j ai C cos
_
�t j bi

�

j ni : (19.113)

In the lowest order,
_
� � � � .�0

2
/�

p
n. A � pulse corresponds to�0�

p
nt D � ,

and the net effect of such a pulse is to change the state

j ni j bi ! i
�1

p
n

�
j n � 1i j ai ; (19.114)

that corresponds to the experimental situation described in the previous section.

19.2.5 QND Measurements of Vibrational States

We assume [6, 24], in this case , that ı D k D 0, and if

j  .0/i D
X

n

Cn j ni j bi ; (19.115)

then at a later time t

j  .t/ib D
X

n

Cn

��

i exp i� sin
�n

2
t

�

j ai C cos
�n

2
t j bi

�

j ni ; (19.116)

where�n D 2�nn D 2
_
�nn D �0

�

1 � �2.n C 1
2
/ : : :

�

is the usual Rabi frequency.
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In the case the ion is initially in the j ai electronic state, at time t it will be at

j  .t/ia D
X

n

Cn

��

i exp �i� sin
�n

2
t

�

j bi C cos
�n

2
t j ai

�

j ni : (19.117)

The linear dependence of�n with n is the basis for the QND measurement of the
vibrational population for the trapped ion. We proceed as follows:

The ion is submitted to a Raman pulse of duration �; resonant with the electronic
transition, so that the vibrational occupation number is not changed. This time �
is assumed to be much smaller than the lifetimes of the electronic states or the
vibrational states.

Right after the pulse, the electronic state of the ion is detected, by resonant
excitation of the j bi !j di transition with circularly polarized light. This is the
way the experimental detection was reported in the reference [17].

We assume that the area of this pulse is sufficiently large, so that in this stage,
a large amount of photons are scattered by the ion, thus generating a detection
efficiency close to one. This determines the electronic state of the ion. A fluorescent
signal implies that the ion is in the j bi state, and therefore, as a consequence of the
measurement, the ion is projected into this state, while the absence of fluorescence
projects the ion into the j ai state.

We notice that in the Lamb–Dicke regime, each photon scattering leads to a
negligible recoil (� _ �k).

However, for many photons, appreciable heating is possible, spoiling our QND
procedure, based on the fact that approximately no energy exchange takes place
during the measurement.

This puts an upper limit on the photon number scattered by the ion.
A rough estimate of this limitation goes as follows. Let �E be the recoil energy

of a single scattering process, then we must assume, for a near QND measurement,
that

N�E << „! ; (19.118)

N being the number of scattered photons, and because �2 D �E
„! ; the condition

becomes

N << ��2 : (19.119)

For a typical experimental value, � � 0:1 so N << 100.
On the other hand, for a saturating cycling process, N � �T

2
, where � is the

width of the j di level and T the duration of the pulse, so one must have T << 200
�

and for �
2�

D 20MHz, we get

T < 2�s : (19.120)
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If the above conditions are satisfied, then very little heating takes place, which
can be neglected, and, if j  .1/" i is the state of the ion after the first measurement,
where " D 1 corresponds to the case in which the detected electronic state coincides
with the initial one, and " D 0 otherwise, then

j  .1/" i D
P

n exp
�

i
	

�
2

˙ �



.1� "/
�

Cn sin
	
�n�
2

C "�
2




q

P1
nD0 j Cn j2 sin2

	
�n�
2

C "�
2



j ni : (19.121)

Equation (19.121) shows that the original vibrational distribution P.n/ Dj Cn j2,
after the measurement is modified

P.1/" .n/ D P.n/ sin2
	
�n�
2

C "�
2




P1
nKD0 P.nK/ sin2

�

�nK�

2
C "�

2

� : (19.122)

This implies a decimation of the population, depending on the phase 
.�/ D
�2� �0

2
.

To enhance the n dependence of �n, we choose a pulse duration � such that

.�/ D � .

On the other hand, the term �0�
2

is a large number, but independent of both n and
� and produces an irrelevant phase shift.

After the first sequence of Raman pulse and detection, a new cycle is initiated
with a different pulse area �0� , thus multiplying the original P.n/ distribution by
sines and cosines. After the i-th cycle

P.i/" .n/ D P.i�1/.n/ sin2
	
�n�i
2

C "�
2




P1
nKD0 P.i�1/.nK/ sin2

�

�nKK�i
2

C "�
2

� ; (19.123)

where �i is the duration of the i-th Raman cycle, and we defined P.0/" D P.n/, and
P.i�1/.n/ is the probability distribution of vibronic excitations of the previous cycle.

The numerical simulation of this procedure shows that this may result in a
decimation of more and more population, until a Fock state is reached, and then,
the state does not change anymore.

If this procedure is done in all three directions, a three-dimensional Fock state is
formed.

As this process depends on the random nature of the detected state, which Fock
state is obtained is something that cannot be predicted a priori.

This experiment can be turned into a ‘numerical experiment’, by feeding the
computer with data about the successive state detection and pulse duration.

We notice here an interesting point. Doing the experiment many times gives
us every time a different Fock state, thus building up a distribution of vibrational
states. As the QND measurement did not change the vibrational states and adding all
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Fig. 19.8 Population
distribution as a function of
the vibronic excitation
number, for � D 0:1, and (a)
Initial state, which was
chosen to be a thermal
distribution with hni D 5. (b)
After the first cycle. (c) After
the fifth cycle. (d) After the
tenth cycle. (e) After the
thirteenth cycle. 
 was chosen
at random and which level
was detected was chosen
according to the probability
distribution

possible measurements implies no measurement at all, this vibrational distribution
should be identical to the original distribution P.n/.

Also, the probability of detecting an ion in the j ai or j bi state, at the end of the
i-th cycle is

P.i/" .n/ D
1
X

nKD0
P.i�1/.nK/ sin2

�

�nKK�i

2
C "�

2

�

; (19.124)

where, as above, " D 1 or 0 depending on whether this state coincides or not with
the electronic state in the beginning of the cycle.

In order to do the numerical experiment, we choose a random number with a flat
distribution, between 0 and 1, and according to the above probabilities of being in
the j ai or j bi state, we decide every time the outcome of the measurement.

The result is shown in the Fig. 19.8.

19.2.6 Generation of Non-classical Vibrational States

Generation and detection of vibrational Fock , coherent and squeezed states was
recently achieved, with a single 9BeC ion, confined in a rf Paul trap, with a frequency
!
2�

D 11:2MHz, along the x-axis and � D 0:2:
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Fig. 19.9 j nistate created by applying a sequence of Rabi �-pulses, first on the blue sideband
.k D �1/, next on the red sideband .k D 1/ and finally on the carrier frequency .k D 0/

Once the ion is prepared in the j bi j 0i state, a high n-Fock state can be
created by simply applying a sequence of �-pulses of laser radiation on the first
blue sideband .k D �1/, the first red sideband .k D 1/ and carrier .k D 0/.

For example we want to generate the j ai j 2i state. This can be achieved in the
following sequence

j bi j 0i �-pulse!
blue

sideband

j ai j 1i �-pulse!
red

sideband

j bi j 2i �-pulse!
carrier

j ai j 2i.

This can be also seen in the Fig. 19.9.
Coherent states can be produced by a classical driving field, oscillating at the trap

frequency.
We can also apply a two-photon Raman coupling within one atomic state, with

k D 1 .ı D !)
Starting from n D 0, the vibronic excitation number diffuses upwards. It can be

shown that applying these sequence of pulses is equivalent to apply the displacement
operator

j 0i !j ˛i;

with ˛ D ��0� .
Finally, Zoller et al. [3] proposed to prepare squeezed states of motion in an ion

trap with a combination of standing and traveling wave light fields.
Also, one can irradiate the ion in the j n D 0i state with two Raman beams

that differ by 2!, driving transitions between even-n levels and creating a squeezed
vacuum state. The interested reader can check the references for more details [14].

Furthermore, there has been recently interesting advances in creating arbitrary
superpositions of coherent states [19], entangled states with two trapped ions [22,
23] and laser cooling with two trapped ions [18].
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Problems

19.1 Consider a single two-level ion moving in a one-dimensional Paul trap and
interacting with a classical laser field [1].

The corresponding Hamiltonian is

H.t/ D Hcm C Ha C HIn;

where Hcm represents the center of mass motion, Ha is the ion’s internal energy
and HIn is the interaction term. The three parts of the Hamiltonian can be written as

Hcm D p2

2m
C 1

2
!.t/2x2;

Ha D „!a

2
�z;

HIn D „gŒ�C exp �i.!Lt � kx/C hc�;

where

!2.t/ D �2

4
Œa C 2q cos�t� :

That parameters a and q are proportional to the applied DC and AC fields of the
trap and� is the frequency of the AC field.

Show that in the Interaction picture

HINT D „gf�C exp.�i�t/D Œ˛.t/�C hcg;
where

� D !L � !a;

˛.t/ D i�".t/;

� D k

r

„
2m�

;

and ".t/ satisfies the Mathieu’s differential [4]

::
"C !.t/2" D 0:

19.2 In the problem 19.1, the interaction involves multiphoton transitions.
To make this more evident, prove that

HINT D
1
X

nD0

1
X

sD�n

„�.n;nCs/.t/�C j nihn C s j Chc;
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where the generalized Rabi frequency is defined as

�.n;nCs/.t/ D g

s

nŠ

.n C s/Š
exp.�i�t/

�

i�"�.t/
�s

exp

�

��
2

2
".t/2

�

Ls
n.� j ".t/ j2/

for s 
 0, and

�.n;nCs/.t/ D g

r

.n C s/Š

nŠ
exp.�i�t/ Œi�".t/��s

exp

�

��
2

2
".t/2

�

L�s
nCs.� j ".t/ j2/

for �n � s < 0.
Hint: use the relations [2]

hn j D.˛.t// j mi D
r

mŠ

nŠ
exp

�

�1
2

j ˛ j2
�

˛n�mLn�m
m .j ˛ j2/;m � n;

hn j D.˛.t// j mi D
r

nŠ

mŠ
exp

�

�1
2

j ˛ j2
�

.�˛�/m�nLm�n
n .j ˛ j2/;m 
 n:
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Chapter 20
Decoherence

In this chapter, we study the general concept of decoherence, the dynamics of the
correlations, an example where we calculate the decoherence time and how to avoid
these effects, via the Decoherence Free Subspaces (DFS). The conditions for DFS
are given as well as some examples at the end of the chapter.

Quantum Mechanics is a very successful theory that explains a huge number of
physical phenomena.

Quantum states evolve according to Schrödinger’s equation, which is linear. As
such, the superposition principle plays a major role.

An important factor is that macroscopic systems are coupled to the environment,
and therefore, we are dealing, in general, with open systems where the Schrödinger
equation is no longer applicable, or, to put it in a different way, the coherence leaks
out of the system into the environment, and, as a result, we have decoherence
[1–3].

Niels Bohr [4] proposed that, according to the Copenhagen interpretation
of Quantum Mechanics, a classical apparatus was necessary to carry out the
measurements, thus implying a sharp borderline between the Classical and the
Quantum world.

Traditionally, the Classical Systems are associated to the macroscopic and
Quantum to the microscopic [1], but this distinction is actually not very adequate
considering recently studied effects of macroscopic systems that behave quantum
mechanically. We also have the non-classical squeezed states with large number of
photons, etc.

As opposed to Bohr, Von Neumann [5] considered quantum measurements .
Let us assume that we have a system with states j ai and j bi and a metre that

can be in the states j dai and j dbi.
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If the detector is initially in the j dbi state, we assume that it switches when the
system is in the j ai state and does not change if the system is in the j bi state, that
is

j ai j dbi !j ai j dai ; (20.1)

j bi j dbi !j bi j dbi :

If, on the other hand, we assume that the system is in a superposition state

j  initiali D ˛ j ai C ˇ j bi ; (20.2)

with

j ˛ j2 C j ˇ j2D 1 ; (20.3)

then

j  initiali D .˛ j ai C ˇ j bi/ j dbi after
measH) (20.4)

˛ j ai j dai C ˇ j bi j dbi �j ‰ci ;

where the state j ‰ci is a correlated one, and this process can be achieved, as we
will see soon, just with Schrödinger’s equation, with an appropriate interaction.

Thus, if the detector is in the j dai state, one can be certain that the system is in
the j ai state.

However, we are ignorant about the quantum state of the system, and it is more
realistic to approach the system in a statistical way, with the density matrix.

According to Von Neumann, besides the unitary evolution that rules the dynamics
of the of the quantum phenomena, there is also a non-unitary reduction of the
wavefunction j ‰ci that takes the pure state density matrix j ‰cih‰c j and converts
it into a mixed state, by eliminating the off-diagonal elements

�c D j ‰cih‰c j (20.5)

D j ˛ j2j aiha jj daihda j C j ˇ j2j bihb jj dbihdb j
C˛�ˇ j biha jj dbihda j C˛ˇ� j aihb jj daihdb j
Non

unitaryH) �r Dj ˛ j2j aiha jj daihda j C j ˇ j2j bihb jj dbihdb j :

The difference between the original �c and the ‘after the measurement’ reduced
density matrix �r, is that because in the latter case, the off-diagonal elements
are missing, one could safely describe the system with alternative states ruled by
classical probabilities j ˛ j2 and j ˇ j2.
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On the other hand, in the quantum case (�c), things are more complicated,
because we may use a different basis, say

j ci D 1p
2
.j aiC j bi/ ; (20.6)

j di D 1p
2
.j ai� j bi/ ;

and choosing ˛ D �ˇ D 1p
2
, we write

j ‰ci D 1p
2
.j ai j dai� j bi j dbi/ (20.7)

D 1p
2

�

1p
2
.j ciC j di/ j dai � 1p

2
.j ci� j di/ j dbi

�

D 1p
2
Œj ci j dciC j di j ddi� ;

where

j dci D 1p
2
.j dai� j dbi/ ; (20.8)

j ddi D 1p
2
.j daiC j dbi/ :

We see that the diagonal elements of �c give us different alternatives. In the first
basis

.�c/diag D 1

2
j aiha jj daihda j C1

2
j bihb jj dbihdb j ; (20.9)

while in the second basis

.�c/diag D 1

2
j cihc jj dcihdc j C1

2
j dihd jj ddihdd j : (20.10)

The problem, once more, is that we do not know the quantum state of the system.
Now, as we mentioned before, the first step of the measurement is to obtain the

correlated wavefunction j ‰ci, which can be achieved via a unitary operator.
The second step, however, was the Von Neumann non-unitary reduction.
Can this step be achieved in a different way? Perhaps, by another unitary

operator?
The answer to this question is yes [1], and the way to do it is by coupling the

system–detector pair to the environment, to dispose of the extra information.
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We call the environment states j "i. Then

j ‰ci j "0i D .˛ j ai j dai C ˇ j bi j dbi/ j "0i (20.11)

! .˛ j ai j dai j "ai C ˇ j bi j dbi j "bi/ Dj  i ;

where the correlation has been extended from the system–detector to system–
detector–environment, getting a ‘chain of states’.

If the environment states j "ai and j "bi, corresponding to the detector states
j dai and j dbi respectively, are orthogonal, then we can trace (average) over the
environment variables

�SD D Tr" j  ih jD
X

i

h"i j  ih j "ii D �r ; (20.12)

getting precisely the Von Neumann reduced density matrix, but this time by only
unitary transformations, without ad hoc assumptions.

20.1 Dynamics of the Correlations

Here we discuss in more detail [6] the ‘chain of states’ mentioned in the previous
section.

We assume that the system is coupled to the environment by a Hamiltonian of
the following form:

Hint D „
X

n

j nihn j An ; (20.13)

where An are n-dependent operators acting on the Hilbert space of the environment
and j ni is an eigenstate of a system observable to be measured.

The environment acquires the information about the state j ni, in the sense that
changes according to

j ni j �0i t! exp

�

�i
Hint

„ t

�

j ni j �0i Dj ni exp.�iAnt/ j �0i (20.14)

D j ni j �n.t/i :

We notice that here, the ‘measurement’ is made not in the sense of Von Neumann
but rather as a dynamical evolution of the joint system, according to Schrödinger’s
equation, with the appropriate coupling.
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The resulting environment states j �n.t/i are called ‘pointer states’. In case the
environment is interpreted as the measuring apparatus, they would correspond to
particular apparatus states.

From the linearity of the Schrödinger’s equation, one can also write

X

n

Cn j ni j �0i !
X

n

Cn j ni j �n.t/i ; (20.15)

that is, we get a correlated state.
The density matrix of the system changes according to

�S D Trenvir

X

n;m

CnC�
m j nihm jj �n.t/ih�m.t/ j (20.16)

D
X

n;m

CnC�
m j nihm j h�n.t/ j �m.t/i ;

and for orthogonal states

h�n.t/ j �m.t/i D ınm ; (20.17)

the system density matrix becomes diagonal

�S !
X

n

j Cn j2j nihn j : (20.18)

During this evolution, the interference was destroyed and the system appears to
be classical with respect to the quantum number n.

If the above evolution is viewed as a model of system–apparatus coupling,
unfortunately, the apparatus, being macroscopic, will invariably interact with the
environment ".

By the same mechanism, the information about the measurement is rapidly
transferred to the environment

X

n

Cn j ni j �ni j "0i !
X

n

Cn j ni j �ni j "ni ; (20.19)

and if the environment states are orthogonal, then

�system�apparatus D
X

n

j Cn j2j nihn jj �nih�n j : (20.20)

Once more, we have defined the interaction of the apparatus with the environment
by a Hamiltonian of the form given by (20.13), defining in this way, the pointer states
j �ni.
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20.2 How Long Does It Take to Decohere?

As discussed in the two previous sections, both measurements and coupling the
system to an environment has, as a net effect, the loss of coherence, that is, the
off-diagonal elements of the density matrix of our system vanish.

In this section, we want to find out, in some particular example, the damped
harmonic oscillator, how long it takes for the coherence to vanish.

We start with an initial condition for the oscillator that consists in a superposition
of two coherent states, and we study its evolution to discover that actually two very
different time scales are present. One is the time it takes for the coherent amplitude
to decay, �1, while the off-diagonal elements of the density matrix, or the quantum
coherence, decays much faster, with a characteristic time (in the case the initial
superposition is / Œj ˛iC j �˛i�):

tc D �1

2 j ˛ j2 :

We first study the harmonic oscillator without losses, with an initial state [7]:

j  .0/i D N .j ˛1iC j ˛2i/ ; (20.21)

where N is just a normalization factor.
As the Hamiltonian is H D „!a�a, at time t it will evolve to

j  .t/i D U.t/ j  .0/i D exp.�i!a�at/N .j ˛1iC j ˛2i/ (20.22)

D N Œj ˛1 exp.�i!t/iC j ˛2 exp.�i!t/i� :

To derive the above relation (last line), we used the property

exp.�i!a�at/ j ˛i D exp

�

�j ˛ j2
2

�

X

n

˛n

p
nŠ

exp.�i!tn/ j ni (20.23)

D exp

�

�j ˛ j2
2

�

X

n

.˛ exp.�i!t//np
nŠ

j ni Dj ˛ exp.�i!t/i :

Thus,

�.t/ D N2

2
X

i;jD1
j ˛i.t/ih˛j.t/ j ; (20.24)

with

˛i.t/ D ˛i exp.�i!t/ : (20.25)
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On the other hand, we look at the position representation of the coherent states

hqK j ˛i D
� !

�„
� 1
4

exp

"

� !

2„qK2 C
r

2!

„ ˛qK� ˛2C j ˛ j2
2

#

; (20.26)

so that

hqK j �.t/ j qKi D N2

� j hqK j ˛1.t/i j2 C j hqK j ˛2.t/i j2
C2RehqK j ˛1.t/ih˛2.t/ j qKi

�

: (20.27)

As ˛i.t/ is a complex number, one can separate the real and imaginary parts of
hqK j ˛i

hqK j ˛i D
� !

�„
� 1
4

exp

"

�
�r

!

2„qK� ˛ cos!t

�2
#

(20.28)

exp i

"

�
r

2!

„ ˛qKsin!t C ˛2

2
sin 2!t

#

;

so, we can write, in the case ˛1 D ˛; ˛2 D �˛

j hqK j ˛1;2i j2D
� !

�„
� 1
2

exp

"

�
�r

!

„ qK˙ p
2˛ cos!t

�2
#

� I21;2 ; (20.29)

and

2RehqK j ˛1.t/ih˛2.t/ j qKi D 2I1I2 cos 
.t/ ; (20.30)

so finally

hqK j �.t/ j qKi D N2
�

I21 C I22 C 2I1I2 cos 
.t/
�

; (20.31)

with


.t/ D 2

r

2!

„ ˛qKsin!t : (20.32)

As we can see, the quantum interference term 2I1I2 cos 
.t/ is present.
Now, it is interesting to study the effects of damping. This will give us

information about the characteristic decoherence time due to the interaction with
the environment.
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The Master equation for the damped harmonic oscillator, at zero temperature, is
given by

d�

dt
D 

2
.2a�a� � a�a� � �a�a/ : (20.33)

The normally ordered characteristic function is defined as

XN.�; t/ D Tr.�.t/ exp.�a�/ exp.���a// : (20.34)

One can write [8]

@XN.�; t/

@t
D Tr

�

d�

dt
exp.�a�/ exp.���a/

�

D 

2
Tr
�

.2a�a� � a�a� � �a�a/ exp.�a�/ exp.���a/
�

D 

2
TrŒ2�a� exp.�a�/ exp.���a/a � � exp.�a�/ exp.���a/a�a�

�a�a exp.�a�/ exp.���a/�

D �
2

f�TrŒ�a� exp.�a�/ exp.���a/�

���TrŒ� exp.�a�/ exp.���a/a�g

@XN.�; t/

@t
D �

2

�

�
@XN.�; t/

@�
C �� @XN.�; t/

@��

�

: (20.35)

In the last steps, we used the following properties

�

a; f .a; a�/
� D @f .a; a�/

@a�
; (20.36)

�

a�; f .a; a�/
� D �@f .a; a�/

@a
; (20.37)

�

a�a; exp.�a�/ exp.���a/
� D �a� exp.�a�/ exp.���a/ (20.38)

C�� exp.�a�/ exp.���a/a :

One can show that the solution to (20.35) is

XN.�; t/ D XN

�

� exp
�

� t

2

�

; 0
�

D XN.�.t/; 0/ : (20.39)
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We can check the above result as follows (considering � as a complex number)

@XN.�; t/

@t
D @XN.�; t/

@�.t/

@�.t/

@t
C @XN.�; t/

@��.t/
@��.t/
@t

D �
2

�

�
@XN.�; t/

@�
C �� @XN.�; t/

@��

�

:

Now, the initial condition is

XN.�; 0/ D Tr.�.0/ exp.�a�/ exp.���a// ; (20.40)

D N2Tr
X

i;j

�j ˛iih˛j j exp.�a�/ exp.���a/
�

D N2
X

i;j

�h˛j j exp.�a�/ exp.���a/ j ˛ii
�

D N2
X

i;j

�h˛j j ˛ii exp.�˛�
j � ��˛i/

�

;

So

XN.�; t/ D N2
X

i;j

h

h˛j j ˛ii exp.�˛�
j � ��˛i/ exp

�

� t

2

�i

: (20.41)

It is not difficult to show that the corresponding density matrix � is given by

� D N2

2
X

i;jD1
h˛i j ˛ji.1�exp.� t// j ˛j exp

�

� t

2

�

ih˛i exp
�

� t

2

�

j : (20.42)

In the particular case ˛1 D ˛I˛2 D �˛, we have

h˛ j �˛i D exp.�2 j ˛ j2/ ; (20.43)

and

� D N2
h

j ˛ exp
�

� t

2

�

ih˛ exp
�

� t

2

�

j

C j �˛ exp
�

� t

2

�

ih�˛ exp
�

� t

2

�

j
i

(20.44)

CN2 exp
��2 j ˛ j2 .1 � exp.� t//

� fj ˛ exp
�

� t

2

�

ih�˛ exp
�

� t

2

�

j

C j �˛ exp
�

� t

2

�

ih˛ exp
�

� t

2

�

jg
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If  t << 1, then the relevant exponential factor multiplying the crossed terms
becomes

exp.�2 j ˛ j2  t/ � exp

�

� t

tc

�

; (20.45)

where

tc D �1

2 j ˛ j2 ; (20.46)

and

hqK j �.t/ j qKi D N2

�

I21 C I22 C 2I1I2 cos 
.t/ exp

�

� t

tc

��

; (20.47)

where all the definitions are the same as before, except that ˛ ! ˛ exp.�  t
2
/, so

I21;2 D
� !

�„
� 1
2

exp

(

�
�r

!

„ qK˙ p
2˛ exp

�

� t

2

�

cos!t

�2
)

; (20.48)

which is a Gaussian distribution, whose centre is oscillating, the amplitude of which
decreases in a time scale �1. On the other hand, the quantum interference term

2I1I2 cos 
.t/ exp
�

� t
tc

�

will vanish, for j ˛ j2>> 1, in a much shorter time tc. This

may explain the difficulties in observing the quantum coherence in a macroscopic
situation.

It has been recently shown [9] that the decay time of the quantum coherence, in
a phase sensitive reservoir, for an initial superposition of j ˛i and j �˛i is given by

t.sq/
c D �1

2
�

N C 2˛2.N � M C 1
2
/
� ; (20.49)

where the notation is the same as in Chap. 9.
In the vacuum reservoir, M D N D 0, the result coincides with (20.46).
On the other hand, it is interesting to notice that for an ideally squeezed reservoir

[j M j2D N.N C 1/], with M>0, the decay rate of the quantum coherence is
significantly suppressed, and for large N is independent of ˛, namely

t.sq/
c D �1

2 ŒN�
; (20.50)

which means that the decay rate of the quantum coherence (off-diagonal terms in
the density matrix) is of the same order of magnitude as the decay rate of the energy
(diagonal part of the density matrix).

Also, if M<0, the decay rate of the coherence increases.
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As we can see, one could in principle control the decay rate of the quantum
coherence, by monitoring the phase of the squeezing parameter of the reservoir [9–
12], which may have interesting applications in quantum computing.

Finally, there are some recent publications on decoherence in the non-classical
motion of trapped ions [13–15].

20.3 Decoherence Free Subspaces

As we have seen in the previous sections, decoherence is a consequence of the
inevitable coupling of any quantum system to its environment, causing information
loss from the system to the environment. In other words, we consider the decoher-
ence as a non-unitary dynamics that is a consequence of the system–environment
coupling.

This includes both dissipative and dephasing contributions.
Dissipation is a process by which the populations of the quantum states are

modified by the interactions with the environment, while dephasing is a process
of randomization of the relative phases of the quantum states.

Both effects are caused by the entanglement of the system with the environment
degrees of freedom, leading to the non-unitary dynamics of our system.

Lidar et al. [16] introduced the term ‘decoherence-free subspaces’, referring to
robust states against perturbations, in the context of Markovian Master equations.

One uses the symmetry of the system–environment coupling to find a ‘quiet
corner’ in the Hilbert Space not experiencing this interaction.

A more formal definition of the DFS is as follows:
A system with a Hilbert space H is said to have a decoherence free subspaceeH 	 H, if the
evolution insideeH is purely unitary.

20.3.1 Simple Example: Collective Dephasing [17]

Consider a system of F two-level systems coupled to a common bath, whose effect
is dephasing.

We define a qubit as a two-level system that in the basis j 0i and j 1i can be
written as

j  i D a j 0i C b j 1i : (20.51)

The effect of the dephasing bath over these basis states is the following:

j 0ij !j 0ij (20.52)

j 1ij ! exp.i�/ j 1ij

where � is a random phase.
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This transformation can be written as a matrix

Rz.�/ D
�

1 0

0 exp.i�/

�

; (20.53)

acting on the {j 0i, j 1i} basis.
We assume in this particular example that this transformation is collective,

implying that the phase � is the same for all two-level systems.
Now, we study the effect of the bath on an initial qubit j  ij D a j 0ij C b j 1ij.
We can write now the average density matrix over all possible phases, distributed

with a probability density p(�) as:

�j D
Z 1

�1
Rz.�/ j  ijh j Rz.�/

|p.�/d� ; (20.54)

and we assume all the qubits in the same state.
To be more specific, if we take a Gaussian distribution for the phase

p.�/ D 1p
4�

exp

�

��
2

4

�

; (20.55)

then it is simple to show that

�j D
� j a j2 ab� exp.�/

a�b exp.�/ j b j2
�

; (20.56)

basically showing the decoherence as the exponential decay of the non-diagonal
elements of the density matrix.

Now, let us go and hunt for decoherence free subspaces, considering, for
example, two and three particles.

Two particles
In this case we have four basis states, and the effect of the bath is the following

j 0i1˝ j 0i2 Dj 00i !j 00i ;
j 0i1˝ j 1i2 Dj 01i ! exp.i�/ j 0i1˝ j 1i2 D exp.i�/ j 01i ;
j 1i1˝ j 0i2 Dj 10i ! exp.i�/ j 1i1˝ j 0i2 D exp.i�/ j 10i ;

j 1i1˝ j 1i2 Dj 11i ! exp.2i�/ j 1i1˝ j 1i2 D exp.2i�/ j 11i : (20.57)
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We notice that the states j 10i and j 01i transform with the same phase factor
exp.i�/; so any combination of these states will have only a global phase

j �i D ˛ j 10iCˇ j 01i ! exp.i�/.˛ j 10iCˇ j 01i/ D exp.i�/ j �i; (20.58)

thus, we have in this example a DFS of dimension 2

DFS2 D fj 10i; j 01ig: (20.59)

We also have a couple of trivial DFS of dimension 1, such as {j 00i} and {j 11i}.
However, as the global phases of the various DFS are different, there is decoherence
between them.

Three particles
We have two three-dimensional DFS, namely

fj 001i; j 010i; j 100ig D DFS.1/3 ; fj 110i; j 101i; j 011ig D DFS.2/3 ; (20.60)

plus the trivial one-dimensional subspaces {j 000i}, {j 111i}.
There has been experimental verification of DFS2 using trapped ions [18].

20.3.2 General Treatment [19]

Consider the Hamiltonian of a system (living in a Hilbert space H) interacting with
a bath

H D HS ˝ IB C IS ˝ HB C HI ; (20.61)

where HS;HB and HI are, respectively, the system, bath and system–bath interaction
Hamiltonians, and I is the identity operator.

The time evolution of the whole system is given by

�SB.t/ D U�SB.0/U
� ; (20.62)

where �SB is the combined system–bath density operator, and U is the usual time
evolution operator U D exp

	� i
„ Ht




.
At this point, we assume that initially the system and the bath are decoupled, so

�SB.t/ D U�S.0/˝ �B.0/U�.
The interaction term can be written, quite generally as

HI D
X

˛

S˛ ˝ B ; (20.63)
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where S˛ and B are system and bath operators, respectively. Next, we trace over the
bath variables to get

� D TrB
�

U�.0/˝ �B.0/U
�
�

: (20.64)

This reduced density matrix represents the system alone. If we diagonalize the
density matrix of the bath, �B.0/ D P

� �� j �ih� j, by performing the trace over
the bath variables, we obtain

� D
X

h� j U.t/.�.0/˝
X

�

�� j �ih� j/U�.t/ j �i (20.65)

D
X

a

Aa�.0/A
�
a ;

with the ‘Kraus operators’ defined as

Aa D
p

��h� j U.t/ j �i; a D �; � : (20.66)

As the density matrix is normalized, one can write

X

a

A�aAa D IS : (20.67)

20.3.3 Condition for DFS: Hamiltonian Approach

As we said before, the decoherence is the direct consequence of the system–bath
entanglement, caused in the present model, by the Hamiltonian HI . Of course, if
HI D 0; then there is no decoherence and the dynamics follows a unitary evolution.
Unfortunately, in practice, one cannot switch off the interaction with the reservoir.
We have to look for alternatives, such as a particular subspace which is free of
decoherence.

Zanardi et al.[20, 21] has shown that there exists a set of states {j Qki} of
eigenvectors of S˛ such that

S˛ j Qki D c˛ j Qki;8˛; j Qki : (20.68)

These are degenerate eigenvectors of the system operators whose eigenvalues
depend only on the index ˛, but not on the state index k.

If HS leaves the Hilbert spaceeH D span
˚j Qki� invariant, and if we start within eH,

then the evolution of the system will be decoherence free. We let the reader check
this proof.
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20.3.4 Condition for DFS: Lindblad Approach

Lindblad has shown that the most general evolution of a system density matrix �s is
governed by the Master equation

d�

dt
D � i

„ ŒHs; ��C LD.�/ (20.69)

with

LD.�.t// D 1

2

M
X

˛;ˇD1
d˛;ˇ

�h

F˛; �F�ˇ

i

C
h

F˛�;F
�

ˇ

i�

(20.70)

where Hs is the system Hamiltonian, the F˛ is a family of the ‘Lindblad’ operators
in an M-dimensional space and d˛;ˇ are elements of a positive Hermitian matrix
(some cases are discussed in Chap. 16 in the context of quantum trajectories).

All the non-unitary, decohering dynamics is accounted for by LD: That is, in
the Lindblad form, there is a clear separation between the unitary and decohering
dynamics.

Let
˚j QkiN

kD1
�

be a basis for an N-dimensional subspace

eH.DFS/ � H.TOTAL SYSTEMHILBERT SPACE/ : (20.71)

In this basis, we may express the density matrix as

� D
N
X

k;jD1
�kj j Qkih Qj j : (20.72)

Now, we consider the action of the Lindblad operators F˛ on j Qki,

F˛ j Qki D
N
X

jD1
C˛

kj j Qji :

Substituting in (20.70), we find

LD.�/ D 1

2

M
X

˛;ˇD1
d˛;ˇ

N
X

k;j;m;nD1
�kj.2Cˇ�

jm C˛
kn j Qnih Qm j �Cˇ�

mn C˛
kn j Qmih Qj j (20.73)

�Cˇ�
jm C˛

nm j QkihQn j/ D 0 :
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Notice that we have used the condition LD.�/ D 0, which is precisely the
definition of the DFS.

The coefficients d˛;ˇ represent information about the bath, which we assume is
uncontrollable. So we require that each term in the ˛; ˇ sum vanishes separately.

Furthermore, we expect no dependence on the initial conditions, i.e., no depen-
dence on �kj, which implies that each term in the parenthesis vanishes separately.

This can be done if all the projectors are the same, requirement that is satisfied if

C˛
kn D C˛

n ık;n;

so the (20.73) becomes

N
X

k;jD1
�kj j Qkih Qj j .2Cˇ�

j C˛
k � Cˇ�

k C˛
k � Cˇ�

j C˛
j / D 0 : (20.74)

Assuming that the C˛
k ¤ 0, this yields

.2Cˇ�
j C˛

k � Cˇ�
k C˛

k � Cˇ�
j C˛

j / D 0 ; (20.75)

or

2 D Z� C Z�1 ; (20.76)

with Z� C˛j
C˛k

.
The (20.76) has the unique solution Z D 1. Thus, C˛

j D C˛
k � C˛

Thus, we proved the following Theorem.
The necessary and sufficient condition for a subspace eH.DFS/ D ˚j QkiN

kD1
�

to
be decoherence free is that the basis states j Qki are degenerate eigenstates of all
Lindblad operators F˛,

F˛ j Qki D C˛ j Qki for 8˛; k : (20.77)

The above condition can be also written as

�

F˛;Fˇ
� j Qki D 0 . (20.78)

If one can write

�

F˛;Fˇ
� D

M
X

D1
f ˛;ˇF ;
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with f ˛;ˇ ¤ 0 and linearly independent (the Fs forming a ‘semi-simple Lie algebra’).
In this case, the condition (20.78) can be written as

M
X

D1
f ˛;ˇC D 0 (20.79)

that can only be satisfied for C D 0.
Thus, the condition for a DFS , for the semisimple case, is that the set of states

should be degenerate eigenstates of all Lindblad operators with zero eigenvalue,

F˛ j Qki D 0; for 8˛; k : (20.80)

We consider, in the next section, some simple examples.

20.3.5 Example: N Spins in Boson Bath [19]

Consider the following Hamiltonian

HI D
N
X

iD1

X

k

h

gC
ik �

�
i bk C g�

ik�ib
�
k C gz

ik�
z
i .bk C b�k/

i

;

where ��i ; �i�
z
i are the Pauli matrices acting on the i-th spin and bk ,b�k are the boson

operators for the k-th mode, and g˛ik are the coupling constants.
This Hamiltonian describes a collection of spins (two-level systems) exchanging

energy via the terms gC
ik �

�
i bk; g�

ik�ib
�
k and exchanging phase via gz

ik�
z
i .bk C b�k/.

As the couplings are different for each spin, there are 3NS˛ operators that are N
triple operators {��i ; �i; �

z
i }. It is simple to see that there are no DFS in this case.

On the other hand, if we assume a collective interaction with the bath, that is if
the coupling are independent of the spin index i,

g˛ik � g˛k , ˛ D C;�; z;

then one defines three collective operators S˛ D PN
iD1 �˛i , ˛ D C;�; z and the

interaction Hamiltonian becomes

HI D
X

˛DC;�;z
S˛ ˝ B˛;
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where

BC D
X

k

gC
k bk;B� D

X

k

g�
k b�k;Bz D

X

k

gz
k.bk C b�k/:

As the angular momentum algebra is semi-simple, one can write the DFS
condition as

S˛ j Qki D 0;8˛:

For two spins, the singlet state will satisfy the above condition, so we get a one-
dimension DFS

j Qki12 D 1p
2
.j 01i� j 10i/ Dj J D 0;mj D 0i ;

where the indices 1,2 refer to the singlet state corresponding to qubits 1 and 2.
If we take four spins, by adding two angular momentum j1 D 1 and j2 D 1, a

possible result is j J D 0;mj D 0i, which is just a combination of the triplet states,
giving

j J D 0;mj D 0i1

D 1p
3

�

j 00i12 j 11i34C j 11i12 j 00i34� 1
2
.j 01i12C j 10i12/.j 01i34C j 10i34/

�

:

The second state in the DFS is the combination of singlet states, namely

j J D 0;mj D 0i2 Dj Qki12 j Qki34:

The dimension of the DFS is given by DIM.DFS/ D NŠ
. N
2 /Š.

N
2 C1/Š , which is equal

2 for N D 4. There is no DFS for N odd.

Problems

20.1 Prove (20.42).

20.2 Show that for a phase sensitive reservoir, one has

t.sq/
c D �1

2
�

N C 2˛2
	

N � M C 1
2


� :

Hint: See [9].
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Chapter 21
Quantum Bits, Entanglement and Applications

In this chapter, we deal with a general introduction to quantum computation and
describe the bipartite entanglement of pure and mixed states. We also present
quantum teleportation as an application.

21.1 Qubits and Quantum Gates

A quantum bit or qubit is a quantum system in which the classical Boolean states
0 and 1 are replaced by a pair of mutually orthogonal quantum states labeled by
{j 0i; j 1i}. These two states form a computational basis for a pure state, a qubit,
written as [1]

j  i D ˛ j 0i C ˇ j 1i; (21.1)

with j ˛ j2 C j ˇ j2D 1.
Physically speaking, a qubit corresponds typically to the two levels of some

microscopic system such as a polarized photon, a trapped ion, a nuclear spin etc.
A Quantum Logic Gate is a device that performs fixed a unitary operation during

a fixed period of time.
One of the most common single qubit gate is the Hadamard Gate, defined by the

matrix

H D 1p
2

�

1 1

1 �1
�

; (21.2)
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written on the {j 0i; j 1i} computational basis. If we represent j 0i D
�

1

0

�

and

j 1i D
�

0

1

�

, then, the effect of the Hadamard Gate on the basis vectors is the

following:

H j 0i D 1p
2

�

1 1

1 �1
��

1

0

�

D 1p
2

�

1

1

�

(21.3)

D 1p
2
.j 0iC j 1i/; (21.4)

H j 1i D 1p
2

�

1 1

1 �1
��

0

1

�

D 1p
2

�

1

�1
�

D 1p
2
.j 0i� j 1i/: (21.5)

A Quantum Network is a device that consists in a collection of Quantum Logic
Gates, synchronized in some way.

A network of size two, for example, is a Hadamard Transform on two qubits.
Assuming that we start with the state j 00i12 �j 0i1˝ j 0i2, then (for simplicity we
will skip the sub-indices)

j 0i ! ŒH� ! j 0iC j 1ip
2

;

j 0i ! ŒH� ! j 0iC j 1ip
2

; (21.6)

so that acting on j 00i gives

j 00i ! ŒH� ŒH� !
1

2
fj 00iC j 01iC j 10iC j 11ig : (21.7)

Notice that in the above parenthesis, we have the digital representation of 0, 1, 2,
3, so in a ‘decimal’ basis we can write it as

j 00i ! ŒH� ŒH� !
1

2
fj 0iC j 1iC j 2iC j 3ig : (21.8)

So, if the initial state is j 00i, then the output is the superposition of the states
j 0i to j 3i.
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Fig. 21.1 Phase gate

Fig. 21.2 General single
qubit transformation

On the other hand, if the initial state is j 01i then the output is

j 01i ! ŒH� ŒH� !
1

2
fj 0i� j 1iC j 2i� j 3ig : (21.9)

Another single qubit gate is the phase gate, defined in the computational basis as

ˆ D
�

1 0

0 exp i�

�

; (21.10)

whose net effect is

j 0i !j 0i;
j 1i ! exp i� j 1i: (21.11)

Symbolically, this is written as Fig. 21.1 for j D 0; 1.
We can combine the Hadammard and phase gates, to get the most general single

qubit unitary transformation, starting from j 0i (Fig. 21.2).
It is a simple to show that the above operation yields

exp

�

i



2

��

j 0i cos

�




2

�

C j 1i exp.i�/ sin

�




2

��

: (21.12)

As we can see from the above result, a combination of a Hadamard and Phase
gates is sufficient to construct any unitary operation on a single qubit.

Pictorially, a qubit can be represented as a unit vector in the Bloch sphere, as
shown in Fig. 21.3.

An example of a two-qubit gate is a CONTROLLED-NOT or C-NOT gate,
represented by the following 4 	 4 matrix

C D

2

6

6

4

1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

3

7

7

5

; (21.13)

and normally, the symbol for it is (Fig. 21.4).
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Fig. 21.3 Pictorial
representation of a qubit in
the Bloch sphere

Fig. 21.4
CONTROLLED-NOT GATE.
j ji is the CONTROL qubit
and j ki is the TARGET. j ji
has to be in the state j j D 1i
to change the target

This gate flips the second qubit (called ‘target’, k in Fig. 21.4) if the first qubit
is j 1i (called control, j in Fig. 21.4), and it does nothing if the control is j 0i, for
example

C j ji j 0i !j ji j ji, for j = 0,1. (21.14)

If the control is in a superposition state j  i D ˛ j 0i C ˇ j 1i, and the target
is in j 0i, then the C-NOT gate generates a state that is not separable, an entangled
state

C Œ.˛ j 0i C ˇ j 1i/ j 0i� ! ˛ j 00i C ˇ j 11i;
¤j  1i˝ j  2i: (21.15)
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Fig. 21.5 TOFFOLI GATE.
j ji and j ki are the
CONTROL qubits and j mi is
the TARGET. To change the
target, the controls have to be
in the state j j D 1i j k D 1i,
otherwise nothing happens

For gates with a higher number of qubits, we have for example the Toffoli Gate,
which acts on three qubits, two of them (j and k in Fig. 21.5) acting as controls and
the third one .m/ as the target, so that the target is only changed when both controls
are in the j 1i state.

This gate is shown in Fig. 21.5
For example

T j 000i !j 000i;
T j 110i !j 111i;

T j 111i !j 110i; etc. (21.16)

21.2 Entanglement

21.2.1 Pure States

Consider a quantum system composed of two subsystems A and B whose states are
in the Hilbert spaces HA and HB of a finite dimension dA;B � dim.HA;B/ respectively.
The complete space is H D HA˝ HB.

Let us consider now states of the whole system, in which the subsystem is in j iiA

and the other one in j �iB. For clarity, we use Latin letters for the states in A and
Greek for the states in B

The whole system is denoted by j iiA ˝ j �iB 2 H. For example, we could have
product states such as j 01i; j 10i; j 00i; j 11i.

However, as any superposition in Hilbert space is possible, we could also have

j  i D ˛ j 00i C ˇ j 11i 2 H: (21.17)

As we mentioned earlier, this state cannot be written in a factorized form, and we
refer to as an ‘entangled state’.
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These states play a very important role in quantum communications, teleporta-
tion, quantum cryptography, etc.

The more formal definition of two-partite entanglement is the following one:
Consider two systems A and B.
j  i 2 HA˝ HB is a product state if there exists j �1;2iA;B 2 HA;B such that

j  i Dj �1i˝ j �2i. Otherwise, we say that j  i is an entangled state.

Example 1 The Bell states

j �˙i D 1p
2
.j 00i˙ j 11i/;

j  ˙i D 1p
2
.j 01i˙ j 10i/; (21.18)

are entangled states
The most important property of the entangled states is that they carry correla-

tions, that is, a measurement of an observable in A and B are correlated.
For example, defining the Pauli matrices in the computational basis

�x D j 1ih0 j C j 0ih1 j;
�y D i.j 1ih0 j � j 0ih1 j/;
�z D � j 1ih1 j C j 0ih0 j; (21.19)

and if the system is in j  �i, then a measurement of the observable �z will always
give the opposite results in A and B.

Correlations can be rather subtle, as we show in Example 2.

Example 2 Suppose that we have a two-photon source providing pairs of photons
with opposite polarizations in the horizontal and vertical basis, without us knowing
which photon has which polarization.

Let us say that we have photons A and B with polarizations H (horizontal) and V
(vertical).

The above situation can be described in two ways, a classical and a quantum
mechanical one:

�class D 1

2
.j HAVBihHAVB j/

C1

2
.j VAHBihVAHB j/; (21.20)

�QM Dj  uih u j; (21.21)
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with

j  ui D 1p
2
.j HAVBiC j VAHBi/: (21.22)

If we observe, for example, an H polarization for photon A, expressed as

TrA .� j HAihHA j/
Tr .� j HAihHA j/ Dj VBihVB j; (21.23)

this gives certain V-polarization of the photon B in both cases.
As we shall see very soon, �class is not entangled while �QM is.
To appreciate the difference between the two cases, we write these two density

matrices as rows and columns ordered as HH, HV, VH, VV. The result is:

�class D 1

2

0

B

B

@

0 0 0 0

0 1 0 0

0 0 1 0

0 0 0 0

1

C

C

A

; (21.24)

�QM D 1

2

0

B

B

@

0 0 0 0

0 1 1 0

0 1 1 0

0 0 0 0

1

C

C

A

: (21.25)

We notice that the non-zero off-diagonal elements or ‘coherences’, are only
present in �QM , in the mixed positions HV-VH and VH-HV.

In both cases, the reduced density matrix, say �A yields

.�class/A D .�QM/A D 1

2
I; (21.26)

I being the identity matrix [2].
As we can see, the off-diagonal elements of �QM does not have an impact

in individual particles, and therefore, we get the same reduced density matrix.
The difference between the two cases shows up when doing violations of Bells
inequalities, which are purely quantum effects [3, 4].

21.2.1.1 The Schmidt Decomposition

For two-partite entanglement, one can always write the states in terms of the basis
states of the parts A and B [4]

j  ABi D
dA
X

iD1

dB
X

�D1
C.i; �/ j ii˝ j �i; (21.27)
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where C.i; �/ are the matrix elements of

C D
dA
X

iD1

dB
X

�D1
C.i; �/ j iih� j : (21.28)

One can easily check that the reduced density matrices �A and �B can be given
by

�A D CC�; �B D C�C: (21.29)

Now, we write the eigenvalue equation

�A j f ii D CC� j f ii D �i j f ii; (21.30)

thus getting a basis for the A space

hf i j f ji D ıi;j;
X

j

hi j f jihf j j ji D ıi;j: (21.31)

Now, multiplying (21.30) by C�, we get

C��A j f ii D C�C.C� j f ii/ D �i.C
� j f ii/: (21.32)

Equation (21.32) shows that C� j f ii is an eigenstate of �B D C�C with the same
eigenvalue �i,

�BC� j f ii D �iC
� j f ii:

The new orthonormal set of states, which are the eigenstates of �B, we denote by
j � ii, defined as

j � ii D 1p
�i

C� j f ii: (21.33)

To get an explicit expression for C.i; �/, we multiply (21.33) by C and then by
hj j, getting

p

�ihj j f ii D
X

�

C.j; �/h� j � ii: (21.34)
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Defining f i
j D hj j f ii and � i

� D h� j � ii, we get by multiplying by h� i j �i,
summing over i and using the orthonormality of the j � ii states

C.j; �/ D
X

i

p

�if
i
j .�

i
�/

�:

Now, we are ready to write j  ABi in the so-called Schmidt form

j  ABi D
dA
X

iD1

dB
X

�D1
C.i; �/ j ii˝ j �i

D
dA
X

iD1

dB
X

�D1

"

X

s

p

�sf
s
j .�

s
�/

� j ii˝ j �i
#

D
X

s

p

�s

2

4

dA
X

iD1
.f s

j / j ii
3

5˝
2

4

dB
X

�D1
.�s
�/

� j �i
3

5

�
X

s

p

�s j Fsi j ˆsi: (21.35)

We notice that the original j  ABi was written in terms of a double sum while the
present ‘diagonal form’ has been reduced to a single one.

In terms of the density operator, one can write

� D
X

i;k

p

�i�k j FiihFk j ˝ j ˆiihˆk j : (21.36)

It is simple to see that the reduced density matrices are now diagonal:

�F D
X

k

�k j FkihFk j;

�ˆ D
X

k

�k j ˆkihˆk j : (21.37)

As the �s are eigenvalues of density matrices, they obey the following conditions:

0 � �s � 1;
X

s

�s D 1: (21.38)

In the case of a product state, there is only one Schmidt term different from zero,
and the corresponding eigenvalue is 1.
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Conversely, if we have a state with only one Schmidt coefficient, it must be a
product state.

Thus, j  ABi is a product state if and only if the corresponding reduced density
matrices correspond to pure states.

This implies that if we have an entangled state, the corresponding reduced density
operators must correspond to a mixed state, with more than one Schmidt eigenvalue
different from zero.

We see that entanglement of a state is directly related to the mixedness of the
reduced density operator.

A simple way of measuring the degree of entanglement in a two-partite pure state
is via the ‘Schmidt number’, defined as the reciprocal of the purity of the reduced
density matrix [5].

K D 1

TrA�
2
A

D 1

TrB�
2
B

D 1
P

n �
2
n

: (21.39)

If only one eigenvalue is 1, and the rest are zero, then K D 1 and we have a
product state.

On the other hand, if all the �s are equal, implying that all the N terms are equally
important in the Schmidt decomposition, then �s D 1

N and K D N.
So, if D is the dimension of the space, then

1 � K � D: (21.40)

Example 3 In the case of the two-photon source (Example 2), we had �QM Dj
 uih u j and the reduced density matrices .�QM/A D .�QM/B D 1

2
I, so �1 D

�2 D 1
2

and K D 2, which is the maximum possible value since D D 2.

Example 4 (Two-mode squeezed states. [6]) In the previous example, we had the
Schmidt decomposition of two particles.

A more complex situation is the case of optical entanglement of two field modes,
in particular, a highly entangled state called two-mode squeezed state. In Chap. 5, we
described with details the squeezed states and mentioned that one of its quadratures
has quantum fluctuations below than that of a perfectly coherent field. Of course
this example has interest in low-noise quantum measurement and noise reduction in
optical systems, in general.

We are going to analyze the two-mode squeezed vacuum state. Its generation is
achieved in an Optical Parametric Amplifier. The experiment is as follows: Laser
light at frequency � acting as the pump is focussed onto a non-linear crystal (with
a large second-order non-linearity), which absorbs a pump photon and emits two
photons into the signal and idler modes of the amplifier, with frequencies !u and
!v , such that

� D !u C !v:
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The effective Hamiltonian for this interaction is

H D i„�.c�auav � ca�ua�v/: (21.41)

If the laser field is intense (with an amplitude E), then it can be considered as
classical, and we may write a simplified Hamiltonian

H D i„�.E�auav � Ea�ua�v/:

The time evolution operator corresponding to this Hamiltonian is

U.t � t0/ D exp
�

��auav � �a�ua�v
�

; (21.42)

where � D �E.t � t0/, which is the generator of two-mode squeezed states.
The above operator can be written as [7]

exp
	

��auav � �a�ua�v



D 1

cosh.r/
exp

��a�ua�v tanh.r/ exp.i
/
�

exp
��.a�uau C a�vav/ ln.cosh.r//

�

exp Œ�auav tanh.r/ exp.�i
/� : (21.43)

If the initial state is the two-mode vacuum, then

j  i D exp
����auav C �a�ua�v

� j 0iu˝ j 0iv

D 1

cosh.r/
exp

��a�ua�v tanh.r/ exp.i
/
� j 0iu˝ j 0iv: (21.44)

Expanding in power series the r.h.s. of (21.44), we get

j  i D 1

cosh.r/

X

n

.tanh r/n exp.in
/ j niu˝ j niv:

This state is already in the Schmidt form written in the two-mode bi-orthogonal
Fock basis.

Therefore, according to the above discussion, the reduced density matrices are
diagonal and have the form

�u D
X

n

1

Œcosh.r/�2
.tanh r/2n j niuuhn j; (21.45)

�v D
X

n

1

Œcosh.r/�2
.tanh r/2n j nivvhn j : (21.46)
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Notice that these reduced density matrices describe a thermal state, with hni D
sinh2 r. In both cases, one gets �u;v D P

n
1

1Chni
� hni
1Chni

�n j niu;vhn j, which is

precisely a thermal state.

21.2.2 Mixed States

For mixed states, the situation is more complicated. There are several criteria for
separability [8].

A mixed state is called separable, if it can be prepared by the two-parties
(popularly called ‘Alice’ and ‘Bob’) in a ‘classical way’, which means agreeing by
direct communication on the local preparation of states. The corresponding Density
Matrix of a separable state should have only classical correlations or mathematically
should be of the form [9]

� D
X

i

pi j aiihai j ˝ j biihbi j; (21.47)

otherwise, it is entangled.
Here the coefficients pi are probabilities with 0 � pi � 1 and

P

i pi D 1. This
decomposition is not unique.

Example 5 An example of a mixed state that has classical but not quantum
correlations is � D 1

2
.j 00ih00 j C j 11ih11 j/. Another example is the state

� D 1
2
.j �Cih�C j C j ��ih�� j/, which is separable because it can be written as

the previous example, as it can be seen from the definitions of the Bell states.

However, we should warn the reader that a criteria for separability like (21.47)
is not easy to use. Or, in other words, finding for � a form like that or proving that
it does not exist is not a simple task. Therefore, we must find a simpler criteria to
detect entanglement.

21.2.2.1 Peres–Horodecki Criteria (Positive Partial Transpose) [10, 11]

The partial transpose of a composite density matrix is given by transposing only one
of the two subsystems. For example, the partial transposition with respect to Alice
is

.�TA/m�;n� D .�/n�;m�; (21.48)

where again, we are using Latin subindices for the Alice subsystem and Greek for
Bobs.
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Thus, for any separable state, one can write the partial transpose as:

�TA
sep D

X

i

pi.j aiihai j/T˝ j biihbi j : (21.49)

As the .j aiihai j/T are again valid density matrices for Alice, one immediately
finds that �TA

sep 
 0 implying non-negative eigenvalues.
The same holds for the partial transposition with respect to Bob. In summary,

the partial transpose of a separable density matrix is positive. This means that it has
only positive non-vanishing eigenvalues (or equivalently, a positive operator has a
positive or zero expectation value with any state).

The converse, that is, if �TA 
 0, then � is separable is true only for low
dimensional systems, namely for composite systems 2	 2 and 2	 3. In these cases,
the positivity of the partial transpose (PPT) is a necessary and sufficient condition
for separability. For higher dimensions, the PPT condition is only necessary.

The partial transposition criterion for detecting entanglement is simple: given a
bipartite state �AB, find the eigenvalues of any of its partial transpositions. A negative
eigenvalue immediately implies that the state is entangled. Examples of such states
include the singlet state.

The partial transposition criterion allows to detect in a simple way, all entangled
states that are NPT (negative partial transpose density matrices with at least a
negative eigenvalue), which is a large class of states. However, in higher dimensions,
there are PPT states that are not separable, called ‘bound entangled states’ [12, 13].

21.2.3 Bell Inequalities

(see Fig. 21.6)

Fig. 21.6 John Bell (1972)
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As we have seen in the previous section, entanglement is a purely quantum
mechanical effect. Schrödinger was the first one to deal with this problem, in
connection with the famous Schrödinger cat, or entanglement on a macroscopic
scale.

Later, Einstein, Podolsky and Rosen thought about a ‘Gedanken’ (thought)
Experiment as a criticism of Quantum Mechanics. They suggest that quantum
mechanics cannot be a complete theory but should be supplemented by additional
variables (hidden variables), to be able to restore reality and locality.

In particular, the requirement of locality, which creates the main difficulty, says
that the measurement on one system should be unaffected by operations on a distant
system with which the first system interacted in the past.

As far as reality is concerned, I quote Einstein [14] “In a complete theory there is an
element corresponding to each element of reality. A sufficient condition for the reality of
a physical quantity is the possibility of predicting it with certainty, without disturbing the
system. In quantum mechanics, in the case of two physical quantities described by non-
commuting operators, the knowledge of one precludes the knowledge of the other. Then
either (1) the description of the wavefunction in quantum mechanics is not complete or (2)
these two quantities cannot have simultaneous reality. . . . One is thus led to conclude that
the description of reality as given by a wavefunction is not complete”(See Fig. 21.7, 1940)

Fig. 21.7 Albert Einstein
1940
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Bell made the assumptions of local realism, to derive an inequality that must
be satisfied by any physical theory of nature, that is local and realistic, concepts
that will be more clear in an example. He then goes on to show that there are
states in Quantum Mechanics that violate this inequality, both theoretically and
experimentally (as proven later on).

We will derive here the inequality and give examples of the its violation [15, 16].
We consider two spin- 1

2
particles, far apart, called A and B. Let us perform Stern–

Gerlach measurements in the directions a and b on A and B. The outcomes of the
measurements performed on the particles A and B are Aa and Bb. The results of
these measurements Aa.Bb/ whose values can be ˙1 may depend on the directions
a.b/ and some uncontrollable parameter �. We assume that Aa.�/ and Bb.�/ have
a definite pre-measurement value and that the measurement merely discovers this
value. This is the reality. � is usually called the hidden variable. Furthermore, the
result of a measurement at A does not depend on measurements performed on B and
viceversa. This is Einstein’s locality assumption.

Now we assume that the parameter � has a probability distribution P.�/ such that

Z

P.�/d� D 1;P.�/ 
 0: (21.50)

The correlation function of two spin- 1
2

for a measurement in a direction a for
particle A and a direction b for particle B, and assuming the existence of hidden
variables, is given by:

E.a; b/ D
Z

Aa.�/Bb.�/P.�/d�: (21.51)

Let us now assume that observations are made at the particle A in the directions
a and aK and at the particle B in the directions b and b. If the outcome of those
measurements are Aa;AaK and Bb;BbK, respectively. Then

E.a; b/C E.a; bK/C E.aK; b/� E.aK; bK/

D
Z

fAa.�/ŒBb.�/C BbK.�/�C AaK.�/ŒBb.�/� BbK.�/�gP.�/d�: (21.52)

now, ŒBb.�/C BbK.�/� and ŒBb.�/� BbK.�/� can be ˙2; 0 and 0, ˙2, respectively, so

j E.a; b/C E.a; bK/C E.aK; b/� E.aK; bK/ j� 2: (21.53)

This is actually a generalization of Bell’s inequality called Clauser, Horne,
Shimony and Holt (BHSH) derived in 1969 [17].
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Example 6 An interesting example is the use of the singlet state to detect entangle-
ment via Bell inequality. For the singlet state, one can prove that

E.a; b/ D h � j �a � �b j  �i D � cos.
ab/; (21.54)

where �a D �!� � a and �b D �!� � b, with �!� D .�x; �y; �z/. Also 
ab is the angle
between the two measurement directions a and b.

So, for the singlet state, we can define

B D E.a; b/C E.a; bK/C E.aK; b/� E.aK; bK/
D � cos.
ab/� cos.
abK/ � cos.
aKb/C cos.
aKbK/:

The maximum value of this function is obtained when

a aKb bK

are contained in a plane. In that case B D 2
p
2 thus violating the BHSH inequality.

Thus, a singlet state, a state allowed by quantum mechanics (an entangled state)
violates the BHSH inequality, or in other words, it does not obey a theory, which is
local and realistic.

To put it in a different way, quantum mechanics is not local realistic. This is
precisely the message of Bell’s Theorem.

21.3 Quantum Teleportation

The dream of Teleportation is to travel by simply reappearing in some distant
location (see Fig. 21.8).

Classically, one can characterize the system by measurements and make a copy
at the distant location. One does not need parts and pieces of the original. We only
have to send the information that can be used to reconstruct the object.

However, what happens if these parts and pieces are electrons, photons, atoms,
etc.? What happens with their quantum properties, considering that we cannot
have measurements with absolute precision, according to Heisenberg’s uncertainty
principle?

Bennett et al. [18] suggested that is possible to transfer the quantum state of a
particle to another particle – process baptized as quantum teleportation – provided
one does not acquire any information about the state to be teleported.

This can be achieved via a fundamental quantum property, entanglement, that
describes, as we have seen in the previous sections, a correlation much stronger
than the classical one.
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Fig. 21.8 Movie fiction (Star Trek)

Bob and Alice could, separated at a certain distance, implement a Teleportation
procedure as follows:

They share a maximally entangled pair of quantum two-level systems Such a
state could be, for example the Bell state j  ABi D 1p

2
.j 0iA j 0iBC j 1iA j 1iB/

where A stands for Alice and B for Bob.
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On the other hand, Alice receives an unknown qubit j ˆi D .a j 0i C b j 1i/.
She wants to Teleport this state to Bob. This state is unknown to Alice, otherwise
she can inform Bob classically (phone call, fax, etc.). If Alice does not know the
state, she requires a very large number of measurements to determine a and b. But
she has another possibility. She can use the state shared with Bob j  ABi. The total
state of three qubits is now (the first two qubits belong to Alice and the third one to
Bob)

j ˆABi Dj ˆi j  ABi D .a j 0i C b j 1i/ 1p
2
.j 00iC j 11i/;

which can be written as

j ˆABi D 1p
2
.a j 000i C a j 011i C b j 100i C b j 111i/;

that can be conveniently written in terms of the Bell basis:

j ˆABi D 1

2

�j �Ci.a j 0i C b j 1i/C j ��i.a j 0i � b j 1i/�

C1

2

�j  Ci.a j 1i C b j 0i/C j  �i.a j 1i � b j 0i/� :

Now the Teleportation proceeds as follows:

1. Alice performs a joint measurement on the Bell basis. Thus, she will get one of
the four Bell states randomly with equal probability.

2. Suppose that she gets j ��i. Then, the three-qubit state collapses to

j ��i.a j 0i � b j 1i/:

Alice now communicates this result to Bob over a classical channel how this state
differs from the original one. In this particular example, the unitary transformation
to go from .a j 0i � b j 1i/ ! a j 0i C b j 1i. It is simple to see that the
transformation is �z. For all four possibilities, we have

Alice finds j �Ci ! .0/ Bob does nothing

Alice finds j ��i ! .1/ Bob performs �z

Alice finds j  Ci ! .2/ Bob performs �x

Alice finds j  �i ! .3/ Bob performs �z�x:

So the classical information that Alice sends to Bob about her joint measurement
can be encoded, for example ‘1’, meaning he has to perform �z. Once he has
applied this transformation on his particle, he can be certain that he has reproduced
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Fig. 21.9 Quantum teleportation protocol

the original state. Notice that this process is different from cloning, because the
original is destroyed by the measurement. Also, the operations performed are local,
in either location of Alice and Bob. But we never performed a global transformation
involving both. A pictorial description of the Quantum teleportation Protocol in
described in Fig. 21.9.

21.3.1 Entanglement Distillation

As mentioned before, in practice, one has at one´s disposal not pure, but mixed
states. For example, if we want to perform an experiment on teleportation of the
polarization state of a photon, over a rather long distance, even if we start from a
pure state, at the end of the process, there will be a considerable entanglement with
the environment, and therefore, the state will be invariably mixed. However, there is
a way one can make the state more pure and even more entangled.

The central idea is to use several copies of the state. Using local operations and
classical communication, it is possible to sacrifice some of the copies and get fewer
states which maybe nearly maximally entangled. This process we call entanglement
distillation.
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21.3.1.1 One Particle Purification

We consider a collection of qubits, in a mixture of the form

� D f j 0ih0 j C.1 � f / j 1ih1 j;

where we call f, the entanglement fidelity of the ensemble. We want to purify this
state, that is, increase f. We could for example, measure directly the spin, say
by having a Stern Gerlach apparatus with an inhomogeneous magnetic field, and
selecting one particular path, say the one with spin down. In this way, we could
think as having purified the particles to the desired pure state. If we measure, we do
get j 0ih0 j but, we have destroyed the qubit in the process.

A better idea is to have two copies of the state, the first one we call the source
and the second one, the target:

� D .f j 0ih0 j C.1 � f / j 1ih1 j/S ˝ .f j 0ih0 j C.1 � f / j 1ih1 j/T ;

and now we apply a C-NOT operation

C � NOT .j 0ih0 j/C .j 0ih0 j/T H) .j 0ih0 j/C .j 0ih0 j/T
C � NOT .j 1ih1 j/C .j 0ih0 j/T H) .j 1ih1 j/C .j 1ih1 j/T :

Notice that in the C-NOT operation, the target only changes when the control is
in the j 1ih1 j state, and nothing happens otherwise.

As a result of the above operation on the control-target system, we get

� D 	

f 2 j 0ih0 j C.1 � f /2 j 1ih1 j

S

˝ j 0ih0 jT C
f .1 � f /. j 0ih0 j C j 1ih1 j/S˝ j 1ih1 jT :

If we now measure on the target qubit, and find, for example the j 0i state, then,
we obtain the ensemble of entangled states, with a renormalized density matrix

�0 D f 2

f 2 C .1 � f /2
j 0ih0 j C .1 � f /2

f 2 C .1 � f /2
j 1ih1 j

D f 0 j 0ih0 j C.1 � f 0/ j 1ih1 j;

where f 0 D f 2

f 2C.1�f /2
.

It is evident, from Fig. 21.10, that for f > 1
2
, the remaining control qubits (those

for which the target qubit was measured in the state j 0i) form a purified ensemble
since f 0 > f , and therefore, there is an increased fraction of particles in the state j 0i.

If we iterate this process, the ensemble can be distilled arbitrarily close to a pure
state j 0i, however, we would require an infinite number of copies.
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Fig. 21.10 The fidelity after
an iteration of the purification
algorithm. Note that f 0 > f
for f > 1

2

After the n-th iteration, the fidelity will be

fnC1 D f 2n
f 2n C .1 � fn/2

:

21.3.1.2 Two Particle Purification

Let us consider the two qubit Werner states defined as

�G D G j  �ih � j C .1 � G/

3

�j  Cih C j C j ��ih�� j C j �Cih�C j� ;
(21.55)

and we assume that both Bob and Alice share two states like in (21.55), so that the
complete density matrix is �S

G ˝ �T
G. We will denote by A1 and A2 and B1 and B2 the

two particles (source and target) of Alice and Bob respectively.
In the distillation procedure, we proceed as follows: First, Alice applies a unitary

transformation �y to her qubits. The net effect is to transform  ˙ $ ��, so after
the rotation, we get

�0
G D G j �Cih�C j C .1 � G/

3

�j ��ih�� j Cj Cih C j C j  �ih � j� :

Next, we apply the C-NOT operation to their two particles, where A1 and B1 act
like source and A2 and B2 like target.
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Table 21.1 Effect of the
Bi-lateral control-Not Gate on
the input Source and Target,
getting, in the two last
columns, the final states

Source Target Source Target

�˙ �C �˙ �C

�˙ �� �� ��

 ˙  C  ˙ �C

 ˙  �  � ��

�˙  C �˙  C

�˙  � ��  �

 ˙ �C  ˙  C

 ˙ ��  �  �

The Controlled Not operation, in this case, acts as follows:

j 0iA1 j 0iA2 �! j 0iA1 j 0iA2 ;

j 0iA1 j 1iA2 �! j 0iA1 j 1iA2 ;

j 1iA1 j 0iA2 �! j 1iA1 j 1iA2 ;

j 1iA1 j 1iA2 �! j 1iA1 j 0iA2 ;

and the same for Bob.
After the bi-lateral C-NOT operation, the states of the particles are transformed

as shown in the Table 21.1.
The density matrix (source and target), after the B-C-NOT gate, reads:

�00
T D F1 j �CiTh�C j CF2 j ��iTh�� j CF3 j  CiTh C j CF4 j  �iTh � j

(21.56)

where

F1 D G2 j �CiCh�C j CG.1 � G/

3
j ��iCh�� j C .1 � G/2

9
j  CiCh C j

C .1 � G/2

9
j  �iCh � j;

F2 D .1 � G/2

9
j �CiCh�C j CG.1 � G/

3
j ��iCh�� j C .1 � G/2

9
j  CiCh C j

C .1 � G/2

9
j  �iCh � j;

F3 D .1 � G/2

9
j �CiCh�C j CG.1 � G/

3
j ��iCh�� j C .1 � G/2

9
j  CiCh C j

C .1 � G/2

9
j  �iCh � j;



21.3 Quantum Teleportation 397

F4 D .1 � G/2

9
j �CiCh�C j CG.1 � G/

3
j ��iCh�� j C .1 � G/2

9
j  CiCh C j

C .1 � G/2

9
j  �iCh � j :

Finally, the target pairs are measured in the j 0i; j 1i basis. If they measure
the same result, we keep the source particles, otherwise, the source particles
are discarded. So, after a successful measurement, we get F1 C F2, that after
renormalization, becomes

�C D G1 j �CiCh�C j CG2 j ��iCh�� j CG3 j  CiCh C j CG4 j  �iCh � j;

with

G1 D G2 C .1�G/2

9

G2 C 2G.1�G/
3

C 5.1�G/2

9

:

To finish the process, we again perform a unilateral �y rotation that finally leaves
the state as

�
final
C D G1 j  �iCh � j CG2 j  CiCh C j CG3 j ��iCh�� j CG4 j �CiCh�C j

The new fidelity is plotted against the old one in Fig. 21.11. We can see that if
we have an initial fidelity G > 1

2
then G1 > G, then repeated iteration can lead to a

high fidelity, sacrificing many qubits along the process [18, 19].

Fig. 21.11 The fidelity after
one iteration of Bennett’s
algorithm. Note that G1 > G
for G > 1

2
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Problems

21.1 Show that for a two-mode squeezed state, K D 1C2hni, where hni D sinh2 r.
Notice that for r D 0; K D 1 that correspond to a factorized state, while for r !
1, K ! 1, approaching the maximum value of K for an 1 dimensional system
(maximally entangled).

21.2 Show that the state � Dj �Cih�C j is entangled, using the NPT criterion.

21.3 Show that the state with the corresponding density matrix [20]

� D 1

20

2

6

6

4

7 1 2 2

1 3 2 2

2 2 3 1

2 2 1 7

3

7

7

5

;

is separable.

21.4 Prove that E.a; b/ D h � j �a � �b j  �i D � cos.
ab/.

21.5 Prove Eq. (21.56)
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Chapter 22
Quantum Correlations

In the present chapter, we describe the quantum correlations from two different
viewpoints. One is related to Entanglement and the way one prepares a separable
state via Local Operation and Classical Communication. The other way to look at
quantum correlations is completely different and related to the quantum version of
classical information theory, where the quantum mutual information is separated
into classical and quantum information and the conditional quantum entropy is
achieved via measuring one part of the system. The measure of this second
viewpoint is the quantum discord.

22.1 Introduction

Quantum Systems are correlated in a way inaccessible to classical objects.
Entangled states are non-classical in the sense that they cannot be prepared with

the help of local operations and classical communication.
However, more recently, a different notion of quantum correlations have been

proposed, called quantum discord.
We will show here that quantum entanglement and quantum discord are measures

of quantum correlations but from a different perspective.
As we mentioned in the previous chapter, a mixed state is separable if it can be

written as a convex combination of pure product states

�sep D
X

i

pi j aiihai j ˝ j biihbi j : (22.1)

The pure states j aii and j bii are elements of the local Hilbert spaces HA and
HBand pi are the probabilities summing up to 1.

If a state cannot be written in this form, it is called entangled.
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The idea behind this definition is the following one:
If the two parties are represented by Alice (A) and Bob (B), suppose that they are

able to produce any quantum state locally. In addition, they have access to a classical
communication channel (internet, phone). Then Alice and Bob can generate any
separable state given by Eq. (22.1), as follows:

Alice prepares a state j aii with probability pi and lets Bob know the state she
prepared. Depending on this information, Bob prepares the corresponding state j bii.

This process is usually called Local Operation and Classical Communication
(LOCC), formally defined as:

1. One of the parties, (Alice) performs s local measurement on her subsystem
2. The outcome of the measurement is communicated classically to the other party
3. Depending on the information received, Bob performs a local measurement on

his subsystem
4. The result of the measurement is classically communicated to Alice.

Some natural questions arise: Is the concept of quantum correlation the same as
Entanglement?

Are separable states same as classically correlated states?
A classical correlated system can be described by a joint probability Pab. On the

other hand, quantum systems are described by the density operator �AB, so we could
write a classically correlated density operator as

�classical
AB D

X

ab

pab j abihab j;

where fj abig forms an orthonormal basis, i.e., hab jj aKbKi D ıaaKıbbK. The classically
correlated state has to be diagonal in such a basis.

The idea behind this definition is that if one knows that the state is diagonal in
some basis fj abig, then one can determine the values of pab without disturbing the
system. A similar idea will be used when referring to Classical Correlations in the
Quantum Discord Section.

Obviously, from the above definitions, the set of classically correlated set is a
subset of the separable states.

In conclusion, a state is said classically correlated if and only if it can be fully
determined without disturbing it with the aid of local measurement and classical
communication.

As opposed to the above definition, one can say that a state is said to be
discordant if and only if it cannot be fully determined without disturbing it with
the aid of local measurements and classical communication.

Finally, we conclude that all entangled states are discordant. However some
separable states may be discordant as well. Which implies that quantum discord
can be generated by LOCC.
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22.2 Entanglement of Formation: Concurrence

One of the most popular measurements of mixedness of the density operator is the
von Neumann entropy S.�/ D �tr.� log2 �/. For a pure state, this entropy vanishes,
and for a maximally mixed state, gives log2d, d being the dimension of the Hilbert
space.

The entropy is a convex function, which implies that it always increases by
further mixing.

Given a pure state j i, we define the entropy of entanglement E. / as the Von-
Neumann entropy of the reduced density operator:

E. / D S.�A/ D S.�B/ D �
d
X

kD1
�k log2.�k/; (22.2)

thus, once more we see that the more mixed the reduced density operator is, the
more entangled the original state is.

This definition is only valid for pure states. For mixed states, the quantification
of entanglement becomes more complex.

The Entanglement of Formation was originally proposed by Bennett et al. in
1996 [1], and it is a direct generalization of entropy of entanglement applied to
mixed states.

On the other hand, a mixed states can be written as � D P

i pi j  iiABh i j.
However, this decomposition is not unique. So, given an ensemble of pure states
fpi; j  iiABg, one can calculate the minimum average entropy of entanglement over
all possible decompositions of �.

E.�/ D inf
fpi;j iiABg

X

i

piE.j  iiAB/ (22.3)

However, it is very difficult to know which ensemble fpi; j  iiABg is the one that
minimizes the entropy, so a closely related concept to the entanglement of formation
is the concurrence (for qubits) [2, 3].

For a general mixed state �AB of two qubits, we define Q� to be the spin-flipped
state

Q�AB D .�y ˝ �y/�
�
AB.�y ˝ �y/; (22.4)

where �� is the complex conjugate of �,and �y is the Pauli matrix.
The concurrence is defined as

C0.�/ D maxf0; �1 � �2 � �3 � �4g; (22.5)

where f�ig are the square roots, in decreasing order of the eigenvalues of the non-
hermitian matrix � Q�.
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We use C0 to differentiate concurrence of classical correlations named C.
For separable qubits C0 D 0 and for maximally entangled ones C0 D 1.
E and C0 both range from 0 to 1, and E is monotonically increasing function of

C0, so that C0 itself is a kind of measurement of entanglement.
Finally, the entanglement of formation is related to concurrence, via:

E.�AB/ D E.C.�AB//; (22.6)

with

E.C/ D HŒ
1

2
C 1

2

p
1 � C2�;

H.x/ D �x log2 x � .1 � x/ log2.1 � x/: (22.7)

22.3 Quantum Discord

In classical information theory, the mutual information between two random
variables X and Y can be expressed in two different ways, namely

I.X W Y/ D H.X/C H.Y/� H.X;Y/; (22.8)

J.X W Y/ D H.X/C H.X j Y/; (22.9)

where H is the Shannon entropy :

H.X/ D �
X

x

px log px

where px is the probability that the random variable X takes the value x. H.X;Y/ is
the join entropy of X and Y. The conditional probability H.X j Y/ is defined as

H.X j Y/ D
X

y

pyH.X j y/;

where H.X j y/ is the entropy of the variable X conditions to the variable Y to taking
the value y. H.X j y/ D �P pxjy log pxjy and pxjy is the probability of x given y (See
Fig. 22.1).

Classically, by the Bayes rule, I=J.
The problem arises with the desire of generalizing this mutual information to the

quantum world. We can no longer use the Bayes Rule, because in quantum physics
the conditional entropy is not easy to define, since the system is changed every
time we make a given measurement. The state of a system is not unperturbed like
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Fig. 22.1 Mutual
Information and Entropies

in classical physics. So the quantumness of a given system can be thought as how
much the system is changed by a measurement.

Olliver and Zurek [4], defined a generalized quantum mutual information as:

I.�/ D S.�A/C S.�B/� S.�/ (22.10)

where S D �tr.� log2 �/ is the von Neumann quantum equivalent for Shannon
classical entropy. It is clear that for a pure state S.�/ D 0, and for a product state
I.�/ D 0. It’s clear that for a product state, the mutual information is zero, because
they don’t share information.

The other generalization of Eq. (22.8) is:

J.�/ D S.�A/ � S.�jfBkg/ (22.11)

The conditional entropy is conditioned by the von Neumann measurement fBkg
that we chose to make in subsystem B changing the final state of the total system as:

�k D 1

pk
.I ˝ Bk/�.I ˝ Bk/ (22.12)

where pk D tr.I ˝ Bk/�.I ˝ Bk/ is the probability for the outcome k after the
measurement.

Now, the quantum conditional entropy is defined as:

S.�jfBkg/ D
X

k

pkS.�k/ (22.13)

where f�k; pkg is an ensemble of possible results for the outcomes. These quantities
I.�/ and J.�/ are different for quantum systems, because as opposed to the classical
case, the system is perturbed by the measurement. The minimum difference (with
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respect to all possible measurements) between this two quantities is what we call
Quantum Discord.

Q.�/ D min
fBkg

ŒI.�/ � J.�/� (22.14)

By replacing I.�/ and J.�/ we obtain the exact formula:

Q.�AB/ D S.�B/� S.�AB/C min
fBkg

S.�jfBkg/ (22.15)

Starting from another point of view of Henderson and Vedral [5], arrive to the same
formula for quantum discord, but from a different conceptual analysis. They show
that quantum correlations are more general than entanglement. For this purpose they
split all the quantum mutual information between classical correlations and quantum
discord.

The reason is the following one: The total correlations shared by two parts of a
system, can be separated in a classical and a quantum part.

I.�/ D C.�/C Q.�/ (22.16)

where I.�/ is defined in Eq. (22.10).
In search of a formula for classical correlations, Vedral proposes a list of

conditions that a classical correlation must satisfy, finally arriving to the expression:

C.�AB/ D max
fBkg

ŒS.�A/� S.�jfBkg/� (22.17)

The classical correlation is the maximization of J.�/, over all possible measure-
ments of B, i.e. the measurement that disturbs the least the overall quantum state.
For a classical state, the system is not perturbed by any measurement.

With this definition of classical correlations, we get the Quantum Discord as:

Q.�/ D I.�/� C.�/ (22.18)

and again we obtain Eq. (22.15).
We would like to point out the problem that arises with this classical correlation:

when we measure the system A instead of system B, we get two different values for
this correlation. However this problem disappears for systems with S.�A/ D S.�B/.

A final remark. It is important to note that QD coincides with Entanglement of
Formation for pure states.
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22.4 Some Simple Examples

For pure states, it is sufficient to calculate the quantum correlations of states of the
form j  i D ˛ j 00i C ˇ j 11i, as it follows from the Schmidt decomposition (case
of two qubits). The reader can easily verify that, in this case, the concurrence is

C0 D 2˛
p
1 � ˛2;

which corresponds to CK D 0 for ˛ D 0; 1 (product state) and CK D 1 for ˛ D ˇ D
1p
2

for a maximally entangled state (Bell state)
As a second example, we define the Werner state as (from Chap. 21)

�F D 4G � 1

3
j  �ih � j C1 � G

3
I;

where j  �i D 1p
2
.j 01i� j 10i/ is the singlet state and 1

4
� G � 1.

Again, a simple calculation shows that CK D 2G � 1 for G 
 1
2

that corresponds
to an entangled state, and otherwise the state is separable, with CKD 0 for F < 1

2
.

The entanglement of formation is found to be

E.�F/ D �� log2 � � .1 � �/ log2.1� �/;

with � D 1
2

Cp

G.1 � G/.

Problems

22.1 Show that for the example j  i D ˛ j 00i C ˇ j 11ij;CKD 2˛
p
1 � ˛2.

22.2 Show that for a Werner State CK D 2G � 1 for G 
 1 and C0 D 0 for G < 1.
Also that

E.�F/ D �� log2 �� .1 � �/ log2.1 � �/:
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Chapter 23
Quantum Cloning and Processing

23.1 The No-Cloning Theorem

The no-cloning theorem, derived in 1982 by Wootters and Zurek [1], showed that it
is not possible to construct a device that will produce an exact copy of an arbitrary
quantum state.

This theorem is an unexpected quantum effect, because of the linear superposi-
tion of quantum states, as opposed to the classical physics case, where the copying
process presents no difficulties, and represents the most significant difference
between classical and quantum mechanics.

Let us assume that the unitary operator Uab acts on the two-qubit space, such that
(C-NOT Gate):

Uab j 0ia j 0ib !j 0ia j 0ib (23.1)

Uab j 1ia j 0ib j!j 1ia j 1ib :

The question is, Is it possible, in general, to have a copying machine that will
perform the following operation?

Uab j  ia j 'ib !j  ia j  ib ; (23.2)

for an arbitrary j  i D ˛ j 0i C ˇ j 1i, with ˛ and ˇ being complex coefficients
satisfying j ˛ j2 C j ˇ j2D 1. Acting with the unitary operator on j  i, we should
get, according to (23.2)

Uab.˛ j 0i C ˇ j 1i/a j 0ib ! .˛ j 0i C ˇ j 1i/a ˝ .˛ j 0i C ˇ j 1i/b (23.3)

D j ˛ j2j 00iab C ˛ˇ j 01iab C ˇ˛ j 10iabC j ˇ j2j 11iab :

© Springer International Publishing Switzerland 2016
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On the other hand, the operator U is linear, so applying the rule of (23.3), we get

Uab.˛ j 0i C ˇ j 1i/a j 0ib D Uab˛ j 0ia j 0ib C Uabˇ j 1ia j 0ib (23.4)

! ˛ j 00iab C ˇ j 11iab

¤ j  ia j  ib :

As we can see, the operation ‘Cloning’ of (23.2) is not possible, because the
coefficients are different and the crossed terms are missing. (For a more general
proof, see Appendix H.)

23.2 The Universal Quantum Copying Machine (UQCM)

According to the no-cloning theorem, we cannot copy the quantum information
about an arbitrary state exactly. However, we can still have imperfect copies. This
problem was dealt with by V. Buzek and M. Hillery [2] in 1996. In term of notation,
the ideal copying would be achieved via the following transformation

j  ia j 'ib j Qix !j  ia j  ib j QQix; (23.5)

where j  ia is the original state to be copied, j 'ib is the ‘blank’ copy while j Qix

is the state of the copying machine, whose output is described by j QQix

We now detail the requirements for the UQCM:

1. In terms of the density matrix, we require that for the final outputs

�out
a D �out

b : (23.6)

2. To determine the ‘quality’ of the copy, we define a distance between two
operators as

D.�1; �2/ D Tr
�

.�1 � �2/
2
�

: (23.7)

Also, Schumacker [3] defined a fidelity between two density matrices as

F D Tr

�

�
1
2

1 �2�
1
2

1

� 1
2

: (23.8)

which ranges from 0 to 1. A fidelity of one means that the two density matrices
are equal.

In the particular case of the copying machine, we want to compare the output
density operators �.out/

aj for j D 1; 2 and a1 D a; a2 D b with the ideal output �.id/aj

that corresponds to the original input density operator.
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If we measure the distance between these two operators, it will depend in
general on the input parameters, so the copying procedure will be better for some
input states than others.

To avoid this, we want

D
�

�.out/
aj

� �.id/aj

�

D constant; j D 1; 2: (23.9)

3. The next condition is that the copies should be as close as possible to the ideal
case, that is

D
�

�.out/
aj

� �.id/aj

�

D min D
�

�.out/
aj

� �.id/aj

�

; j D 1; 2 (23.10)

4. The two copies of an ideal copying machine should be independent, condition
that can be written as

�
.id/
ab D �.id/a ˝ �

.id/
b : (23.11)

However, the copies will have a non-vanishing correlation.
The UQCM was thought so as to satisfy all three requirements, when applied

to an arbitrary qubit j  ia1 D ˛ j 0ia1 C ˇ j 1ia1 . The final result is (see
Appendix I for details)

�.out/
aj

D 5

6
j  iaj h j C1

6
j  ?iajh ? j; (23.12)

j D 1; 2

where j  ?iaj is the state orthogonal to j  iaj . From (23.12) we see that the copy
presents

	

5
6




of the desired state and
	

1
6




of the undesired orthogonal state.
For a general review, the reader is referred to [4].

23.3 Quantum Copying Machine Implemented by a Circuit

In this section, we are going to implement the UQCM via a quantum circuit [5, 6].
As we mention in the previous section, the original state to be copied is j  i.in/a1 D

˛ j 0ia1 C ˇ j 1ia1 where ˛ and ˇ are complex numbers that can be written as
˛ D sin 
 exp i' and ˇ D cos 
 satisfying j ˛ j2 C j ˇ j2D. The blank state over
which a copy is made was called j 0ia2 and the state of the machine j Qix. However,
as this last state (machine) is also a qubit of dimension two, it could be also used as
a second qubit to make copies.

In other words, we can have three input qubits in a circuit, with three output
qubits, two of which are going to be the two copies. The state of the third qubit,
instead of calling it x, we will refer to it as a3.
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Fig. 23.1 Circuit for a universal quantum copying machine

Fig. 23.2 Preparation stage of the universal quantum copying machine

The circuit of the Fig. 23.1 is divided into two parts.
The dynamics of the present circuit can be described as:

j  i.in/a1
j 0ia2 j 0ia3 !j  i.in/a1

j  i.prep/
a2;a3

!j  i.out/
a1;a2;a3

: (23.13)

23.3.1 Preparation Stage

The first section is the ‘preparation’ of the qubits a2 and a3, in an arbitrary state
j  i.prep/

a2;a3 . (see Fig. 23.2). This stage of the circuit consists in three rotations (denoted
by R) and two C-NOT gates.

A rotation has the following effect on a qubit:

Rj.
/ j 0ij D cos.
/ j 0ij C sin.
/ j 1ij; (23.14)

Rj.
/ j 1ij D � sin.
/ j 0ij C cos.
/ j 1ij:

The C-NOT gates, mentioned already in Chap. 21, can be written in terms of an
operator Pkl, such that

Pkl j 0ik j 0il Dj 0ik j 0il; (23.15)

Pkl j 0ik j 1il Dj 0ik j 1il;
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Pkl j 1ik j 0il Dj 1ik j 1il;

Pkl j 1ik j 1il Dj 1ik j 0il;

where k is the control and l the target.
If we assume that the two preparation qubits are initially in the state j  i.in/a2;a3 Dj

0ia2 j 0ia3 , the state after going through the preparation stage will be of the form

j  i.prep/
a2;a3 D c1 j 00ia2;a3 C c2 j 01ia2;a3 C c3 j 10ia2;a3 C c4 j 11ia2;a3 : (23.16)

According to the above figure, the preparation state is given by

j  i.prep/
a2;a3 D R2.
3/P32R3.
2/P23R2.
1/ j 00ia2;a3

: (23.17)

By combining (23.14), (23.15), (23.16), and (23.17), we get

cos.
1/ cos.
2/ cos.
3/C sin.
1/ sin.
2/ sin.
3/ D c1;

� cos.
1/ sin.
2/ sin.
3/C sin.
1/ cos.
2/ cos.
3/ D c2;

cos.
1/ cos.
2/ sin.
3/� sin.
1/ sin.
2/ cos.
3/ D c3;

cos.
1/ sin.
2/ cos.
3/C sin.
1/ cos.
2/ sin.
3/ D c4:

As we can see, the rotation angles completely specify the ci parameters, which
are chosen according to the design of the copying machine.

23.3.2 Copying Stage and Output

The second section corresponds to the “copying”, where the information of the
original qubit (a1) is redistributed among the three qubits (see Fig. 23.3).

For an arbitrary input and given the preparation state, the output is given by

j  i.out/
a1;a3;a3

D P31P21P13P12 j  i.in/a1
j  i.prep/

a2;a3
(23.18)

D ˛c1 j 000ia1;a2;a3 C ˛c2 j 101ia1;a2;a3

Fig. 23.3 Copying stage of
the universal quantum
copying machine
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C ˛c3 j 110ia1;a2;a3 C ˛c4 j 011ia1;a2;a3

C ˇc1 j 111ia1;a2;a3 C ˇc2 j 010ia1;a2;a3

C ˇc3 j 001ia1;a2;a3 C ˇc4 j 100ia1;a2;a3 :

Now, because we need the density operator for further analysis, we calculate the
total and reduced operators, written as:

�.out/
a1;a2;a3 D j  i.out/

a1;a2;a3h j; (23.19)

�.out/
a1 D Tra2;a3

�

�.out/
a1;a2;a3

�

;

�.out/
a2

D Tra1;a3

�

�.out/
a1;a2;a3

�

;

�.out/
a3 D Tra1;a2

�

�.out/
a1;a2;a3

�

:

In a simple calculation, one finds that

�.out/
a1

D �j ˛ j2 .j c1 j2 C j c4 j2/C j ˇ j2 .j c2 j2 C j c3 j2/� j 0ia1h0 j
C �

˛ˇ�.c1c�
4 C c4c

�
1 /C ˛�ˇ.c2c�

3 C c3c
�
2 /
� j 0ia1h1 j

C �

˛ˇ�.c2c�
3 C c3c

�
2 /C ˛�ˇ.c1c�

4 C c4c
�
1 /
� j 1ia1h0 j

C �j ˛ j2 .j c2 j2 C j c3 j2/C j ˇ j2 .j c1 j2 C j c4 j2/� j 1ia1h1 j ;
(23.20)

�.out/
a2 D �j ˛ j2 .j c1 j2 C j c2 j2/C j ˇ j2 .j c3 j2 C j c4 j2/� j 0ia2h0 j

C �

˛ˇ�.c1c�
2 C c2c

�
1 /C ˛�ˇ.c3c�

4 C c4c
�
3 /
� j 0ia2h1 j

C �

˛ˇ�.c3c�
4 C c4c

�
3 /C ˛�ˇ.c1c�

2 C c2c
�
1 /
� j 1ia2h0 j

C �j ˛ j2 .j c3 j2 C j c4 j2/C j ˇ j2 .j c1 j2 C j c2 j2/� j 1ia2h1 j ;
(23.21)

�.out/
a3 D �j ˛ j2 .j c1 j2 C j c3 j2/C j ˇ j2 .j c2 j2 C j c4 j2/� j 0ia3h0 j

C �

˛ˇ�.c1c�
3 C c3c

�
1 /C ˛�ˇ.c2c�

4 C c4c
�
2 /
� j 0ia3h1 j

C �

˛ˇ�.c2c�
4 C c4c

�
2 /C ˛�ˇ.c1c�

3 C c3c
�
1 /
� j 1ia3h0 j

C �j ˛ j2 .j c2 j2 C j c4 j2/C j ˇ j2 .j c1 j2 C j c3 j2/� j 1ia3h1 j :
(23.22)
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It is possible to express the operator �.out/
aj in the form:

�.out/
aj

D sj�
.id/
aj

C 1 � sj

2
I;

D
�

1C sj

2
j ˛ j2 C1 � sj

2
j ˇ j2

�

j 0iajh0 j Csj˛ˇ
� j 0iajh1 j

C
�

1 � sj

2
j ˛ j2 C1C sj

2
j ˇ j2

�

j 1iajh1 j Csj˛
�ˇ j 1iajh0 j; (23.23)

where sj is a scaling factor. One can show that this factor is related to the Fidelity
by the relation s D 2F � 1.

Now, we may have the following different situations:
Case A (duplicator): Assume that �.out/

a1 D �
.out/
a2 , that is two copies are equal and

the third one is different s1 D s2 D s ¤ s3.
Here we assume the ci coefficients are real and that ˛ and ˇ are complex. Using

(23.20), (23.21), and (23.23) we get:

c1 D p
s; c2 D c4 D

r

1 � s

2
; c3 D 0; s D 2

3
; (23.24)

and therefore the Fidelity is F D 5
6

as expected. There are many solutions for the
rotation angles. Some of them are:


1 D 0:5535743584; 
2 D �2:776728825; 
3 D �2:909768850

1 D �2:588018296; 
2 D 0:3648638288; 
3 D �2:909768850

1 D 0:5535743584; 
2 D 0:3648638288; 
3 D 0:2318238040

etc.
The preparation state in this case is given by

j  i.prep/
a2;a3

D 1p
6
.2 j 00ia2;a3C j 01ia2;a3C j 11ia2;a3 / (23.25)

Case B (triplicator): All three outputs are equal, �.out/
a1 D �

.out/
a2 D �

.out/
a3 in which

case the solution is

c1 D
r

1C 3s

4
; c2 D c3 D c4 D c D

r

1 � s

4
; s D 2

3
; (23.26)

thus one finds again F D 5
6
; however, the above conditions can only be satisfied for

the ci coefficients as well as ˛ and ˇ real, so in a sense these are not universal copies,
because in general the Fidelity will depend on the initial state. The preparation state
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is given by

j  i.prep/
a2;a3 D 1p

12
.3 j 00ia2;a3C j 01ia2;a3C j 10ia2;a3C j 11ia2;a3 /; (23.27)

and the solutions for the angles corresponding to this preparation are


1 D �2:748893572; 
2 D 0:1699184548; 
3 D �2:748893573;

1 D 0:3926990820; 
2 D �2:971674199; 
3 D �2:748893573;

1 D 0:3926990820; 
2 D 0:1699184548; 
3 D 0:3926990820;

etc.
Finally, the output state is given by (23.18), replacing the corresponding prepa-

ration states of the cases A and B.

23.3.3 Output States

Using (23.18) and the input state j  i.in/a1 D ˛ j 0ia1 C ˇ j 1ia1 , we get different
outputs for cases A and B, namely:

(Case A):

j  i.out/
a1;a2;a3 D P31P21P13P12 j  i.in/a1 j  i.prep/

a2;a3

D P31P21P13P12Œ

r

2

3
˛ j 000ia1;a2;a3C

r

1

6
˛ j 001ia1;a2;a3C

r

1

6
˛ j 011ia1;a2;a3

C
r

2

3
ˇ j 100ia1;a2;a3 C

r

1

6
ˇ j 101ia1;a2;a3 C

r

1

6
ˇ j 111ia1;a2;a3 �

D Œ

r

2

3
˛ j 000ia1;a2;a3 C

r

1

6
˛ j 101ia1;a2;a3 C

r

1

6
˛ j 011ia1;a2;a3

C
r

2

3
ˇ j 111ia1;a2;a3 C

r

1

6
ˇ j 010ia1;a2;a3 C

r

1

6
ˇ j 100ia1;a2;a3 �: (23.28)

(Case B):

j  i.out/
a2;a3;a3 D P31P21P13P12

1p
12
Œ3˛ j 000ia1;a2;a3 C ˛ j 001ia1;a2;a3

C˛ j 010ia1;a2;a3 C ˛ j 011ia1;a2;a3 C 3ˇ j 100ia1;a2;a3

Cˇ j 101ia1;a2;a3 C ˇ j 110ia1;a2;a3 C ˇ j 111ia1;a2;a3 �
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D 1p
12
Œ3˛ j 000ia1;a2;a3 C ˛ j 101ia1;a2;a3 C ˛ j 110ia1;a2;a3

C˛ j 011ia1;a2;a3 C 3ˇ j 111ia1;a2;a3 C ˇ j 010ia1;a2;a3

Cˇ j 001ia1;a2;a3 C ˇ j 100ia1;a2;a3 �: (23.29)

23.3.4 Summary and Discussion

The quality of a copy is measured by the following parameters:

(a) The fidelity F
(b) The distance between the density operator and the ideal one
(c) An ideal copying machine should produce copies with no correlation between

them. However, this is not true in our case. The two or three copies are
entangled.

The fidelity of both the duplicator and the triplicator is 5
6
. The distance

D
�

�
.out/
aj ; �

.id/
aj

�

D 1
18

in both cases.

Now, we take a look at the entanglement between copies.
For the duplicator if we form �

.out/
a1;a2 from j  i.out/

a1;a2;a3 and tracing over a3, we
readily get:

�.out/
a1;a2 D 1

6

0

B

B

@

4 j ˇ j2 2˛�ˇ 2˛�ˇ 0

2˛ˇ� 1 1 2˛�ˇ
2˛ˇ� 1 1 2˛�ˇ
0 2˛ˇ� 2˛ˇ� 4 j ˛ j2

1

C

C

A

; (23.30)

in the basis j 11ia1;a2 ; j 10ia1;a2; j 01ia1;a2 ; j 00ia1;a2 . The corresponding partial
transpose matrix is

�PT.out/
a1;a2 D 1

6

0

B

B

@

4 j ˇ j2 2˛ˇ� 2˛�ˇ 1

2˛�ˇ 1 0 2˛�ˇ
2˛ˇ� 0 1 2˛ˇ�
1 2˛ˇ� 2˛�ˇ 4 j ˛ j2

1

C

C

A

: (23.31)

Now we apply the Perez–Horodecki criteria and find the eigenvalues of �PT.out/
a1;a2 .

They are

"

1

6
;
1

6
;
2 � p

5

6
;
2C p

5

6

#

;
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thus one of the eigenvalues is negative, which implies that the state is not separable
(entangled state).

The reader can check that the same applies to the triplicator, that is, we also get
an entangled state.

23.4 Quantum Processors

23.4.1 Introduction

In this section, we will make further use of the quantum gates to create a stochastic
quantum processor. We start by some relevant definitions, followed by a theoretical
background necessary for the proposal of a quantum stochastic processor.

As we already discussed in the previous chapter, the quantum gates are unitary
transformations acting on one or more qubits in a given sequence. In general, these
transformations are implemented by static quantum gate arrays that depend on the
particular operation or experiment. The disadvantage of this is that we require a
different array for a given operation.

Instead, we may have an array of fixed gates, or processor, that takes as an input
not only the data qubits but also the program qubits. This idea was suggested by
Nielsen and Chuang [7].

We start defining the Hilbert spaces of the program HP and the data HD. The
system is initially in the state j diD˝ j PUiP, where j diD 2 HD and j PUiP 2 HP.
The dynamics of the programmable gate array is given by a fixed unitary operator
G (see Fig. 23.4), that implements a unitary operation U given by the state of the
program j PUiP resulting in the following

G Œ j diD˝ j PUiP� D .U j d1iD/˝ j RUiP: (23.32)

After the application of G, the state of the data j diD has been transformed by a
unitary operation U to U j diD.

Fig. 23.4 Programmable
array of quantum gates. The
fixed gate array G takes a data
qubit as an input and applies
to it a unitary transformation
U, previously specified by the
program qubit
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j RUiP is the residual program state that is independent of the data state. This last
statement can be shown quite easily. Let us assume that the operator G acts on two
different data states j d1iD y j d2iD, with the same program state j PUiP,

G Œ j d1iD˝ j PUiP� D .U j d1iD/˝ j R1UiP;

G Œ j d2iD˝ j PUiP� D .U j d2iD/˝ j R2UiP: (23.33)

Consider now the inner product

hd1 j d2iD D hd1 j d2iDhR1U j R2UiP: (23.34)

If hd1 j d2iD ¤ 0 then hR1U j R2UiP: D 1, and therefore, the residual program
states do not depend on the data. The case hd1 j d2iD D 0 can be shown in a similar
way.

One can also ask a valid question: how many qubits are required for a given
operation?

Let us assume that j AiP and j BiP are program states that belong to a
common Hilbert space HP and that they implement the Unitary operations UA

and UB, respectively. Let us also assume that these operations are different and
distinguishable. For an arbitrary data state j diD 2 HD and a gate array G we have

G Œ j diD˝ j AiP� D .UA j d1iD/˝ j RAiP;

G Œ j diD˝ j BiP� D .UB j d1iD/˝ j RBiP: (23.35)

Assuming that performing the inner product of the above equations, we get

hB j AiP D hd j U�
BUA j diDhRB j RAiP: (23.36)

Now, if hB j AiP ¤ 0, then

hB j AiP

hRB j RAiP
D hd j U�

BUA j diD: (23.37)

As the l.h.s. is independent of the state j diD, state that is completely arbitrary,
one has U�

BUA D .exp i˛/I, where I is the identity operator and ˛ an arbitrary phase.
This means that UA and UB are equal up to a global phase, which contradicts our

initial assumption. Therefore, the above reasoning is false and hB j AiP D 0, that is
the two programs are orthogonal.

We can generalize this result to N different operators. Therefore, we conclude
that given N different unitary operators U1;U2 : : :UN , these can be implemented by
N orthogonal program states j P1i; j P2i; j P3i : : : : j PNi, that is, the Hilbert space
HP that implements N unitary operations is of dimension N.
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A tragic consequence of all this is that it is not possible, with a finite gate array,
to implement an arbitrary unitary operation deterministically.

23.4.2 One Qubit Stochastic Processor

Despite of the bad result from the previous section, we still can do something if
we relax the deterministic character of the processor and accept the possibility of a
probabilistic processor.

Vidal, Massanes and Cirac [8–10] propose such a processor that implements the
rotation of a qubit, given by

U˛ D exp
�

i˛
�z

2

�

; (23.38)

for an arbitrary phase ˛ 2 Œ0; 2��. This transformation has a very simple
interpretation: the rotation of ˛ radians around the z axis, in the Bloch sphere of
one qubit.

To understand how to implement the operation (23.38) using fixed quantum
gates, we define first the program and data states as follows:

j ˛iP � 1p
2
.ei˛=2 j 0iP C e�i˛=2 j 1iP/; (23.39)

j did � .A j 0id C B j 1id/; (23.40)

where jAj2 C jBj2 D 1. We notice that j ˛iP is a known state and j did is completely
general and normally unknown. One can easily show that the operation described
in (23.32) can be realized with a C-NOT gate.

If we describe the C-NOT gate as a G operator

GC�NOT Dj 0ih0 jd IPC j 1ih1 jd ˝�x; (23.41)

with �x D .j 1ih0 j C j 0ih1 j/P, then we can identify the data qubit as the control
and the program as the target. It is simple to show that

GC�NOT j 0id j 0iP Dj 0id j 0iP;

GC�NOT j 0id j 1iP Dj 0id j 1iP;

GC�NOT j 1id j 0iP Dj 1id j 1iP;

GC�NOT j 1id j 1iP Dj 1id j 0iP: (23.42)
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For an initial state j did j ˛iP, we get

C � NOT Œj did j ˛iP� D GC�NOT Œj did j ˛iP�

D 1p
2
.Aei˛=2 j 0id C Be�i˛=2 j 1id/˝ j 0iP

C 1p
2
.Ae�i˛=2 j 0id C Bei˛=2 j 1id/˝ j 1iP

D 1p
2

�

.U˛ j did/˝ j 0iP C .U�
˛ j did/˝ j 1iP

�

;

where we used U˛ j did D 1p
2
.Aei˛=2 j 0id C Be�i˛=2 j 1id/.

We notice that if we perform a measurement in the program qubit, using the
fj 0iP1 ; j 1iP1g, the data qubit will collapse to two possible states, U˛ j did or
U3�
˛ j did, both with probabilities p D 1=2. We say then that we managed to apply

the Unitary transformation U with a success probability of 1
2
.

To improve the success probability, one can introduce an extra gate, a Toffoli, as
shown in Fig. 23.5.

Now the processor has two Hilbert spaces, HP1 and HP2 , to store the program.
Now we introduce an additional program state j 2˛iP2 , defined as j 2˛iP2 �
1p
2
.ei.2˛/=2 j 0iP2 C e�i.2˛/=2j j 1iP2 /.
We study now the effect of the Toffoli gate. When the output of the C-NOT gate

is j 0iP1 , which corresponds to the correct application of U˛ to the data, then the
output in the first program register (HP1) does not change.

On the other hand, if the output of the first program register HP1 j1iP1 indicating
that the wrong operator U�

˛ was applied (failure), the Toffoli gate acts effectively as
a C-NOT gate between the data register Hd and the second program register HP2
in such a way that we correct the failure. If in the second program register, we put
j 2˛iP2 , there is again a probability of 1=2 of applying the correct transformation
U2˛U�

˛ D U˛ to j did when measuring both program registers HP1 and HP2 .

Fig. 23.5 Quantum Stochastic Processor of a qubit. The inputs to the processor are the data
register j did and the programs j ˛iP1 and j 2˛iP2 . When operating, it will detect the wrong
result with probability 1

4
, if in the program register, we get j 1iP1 and j 1iP2 . The correct result U

˛ j did is obtained in all other cases, with a probability 3
4
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Fig. 23.6 Schematic operation of the quantum stochastic processor

Thus the success probability has increased to p D 1=2 C 1=4 D 3=4. The wrong
alternative corresponding to U�3

˛ occurs with a probability of 1=4, when one gets
j 1i in both programs. The process is explained pictorially in Fig. 23.6.

To summarize, we have proposed a fixed quantum gate array to perform unitary
transformations, in this case, the rotation of a qubit around the z-axis, in the Bloch
sphere, with a success rate of p D 3=4.

One can generalize this scheme with a generalized Toffoli gate with N program
registers, as suggested by Vidal et al. [8]. For this purpose, additional programs j
20˛iP1 ; j 21˛iP2 ; j 22˛iP3 : : : j 2N�1˛iPN are required, getting a success probability
of p D 1 � 2�N .

For recent discussions on probabilistic programmable quantum processors, see
[9–12].

Problems

23.1 Show that the Fidelity of both the duplicator and the triplicator is 5
6
.

23.2 Show that the output state for a triplicator is entangled.

23.3 Show that the output state of the processor, after the C-NOT gate and the
Toffoli is:

j �i D 1

2

2

6

6

4

.exp.3i˛/ j 0i1h0 j C exp.i˛/ j 1i1h1 j/ j did j 00i23
C.exp.�i˛/ j 0i1h0 j C exp.�3i˛/ j 1i1h1 j/ j did j 01i23
C.exp.i˛/ j 0i1h0 j C exp.�i˛/ j 1i1h1 j/ j did j 10i23
C.exp.�3i˛/ j 0i1h0 j C exp.3i˛/ j 1i1h1 j/ j did j 11i23

3

7

7

5

:

23.4 From the problem 23.3, find the probability of success of the processor.
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Appendix A
Operator Relations

A.1 Theorem 1

Let A and B be two non-commuting operators, then [1]

exp.˛A/B exp.�˛A/ D B C ˛ ŒA;B�C ˛2

2Š
ŒA; ŒA;B��C : : : : (A.1)

Proof Let

f1.˛/ D exp.˛A/B exp.�˛A/ ; (A.2)

then, one can expand f1 in Taylor series about the origin. We first evaluate the
derivatives

f 0
1.˛/ D exp.˛A/.AB � BA/ exp.�˛A/ ;

so

f 0
1.0/ D ŒA;B� : (A.3)

Similarly

f 00
1 .˛/ D exp.˛A/.A ŒA;B� � ŒA;B�A/ exp.�˛A/ ;

so that

f 00
1 .0/ D ŒA; ŒA;B�� : (A.4)

© Springer International Publishing Switzerland 2016
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Now, we write the Taylor’s expansion

f1.˛/ D f1.0/C ˛f 0
1.0/C ˛2

2Š
f 00
1 .0/C : : : (A.5)

or

exp.˛A/B exp.�˛A/ D B C ˛ ŒA;B�C ˛2

2Š
ŒA; ŒA;B��C : : : (A.6)

A particular case is when ŒA;B� D c, where c is a c-number, then

exp.˛A/B exp.�˛A/ D B C ˛c ; (A.7)

in which case exp.˛A/ acts as a displacement operator.

A.2 Theorem 2: The Baker–Campbell–Haussdorf Relation

Let A and B be two non-commuting operators such that

ŒA; ŒA;B�� D ŒB; ŒA;B�� D 0 ; (A.8)

then

exp Œ˛.A C B/� D exp˛A exp˛B exp

�

�˛
2

2
ŒA;B�

�

(A.9)

D exp˛B exp˛A exp

�

˛2

2
ŒA;B�

�

:

Proof Define

f2.˛/ � exp˛A exp˛B : (A.10)

Then

df2.˛/

d˛
D ŒA C exp.˛A/B exp �.˛A/�f2.˛/ (A.11)

D .A C B C ˛ ŒA;B�/f2.˛/ ;

where in the last step, we used (A.6).
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Also, from the definition of f2.˛/, we can write

df2.˛/

d˛
D exp.˛A/A exp˛B C exp.˛A/ exp.˛B/B (A.12)

D exp˛A exp˛B Œexp.�˛B/A exp˛B C B�

D f2.˛/.A C B C ˛ ŒA;B�/ :

By comparing (A.11) and (A.12), we can see that f2.˛/ commutes with .A C B C
˛ ŒA;B�/, thus one can integrate as a c-number differential equation, getting

f2.˛/ D exp

�

.A C B/˛ C ˛2

2
ŒA;B�

�

D exp˛.A C B/ exp
˛2

2
ŒA;B� ; (A.13)

thus obtaining the desired result.
Another application of the Theorem 1 is taking

A D aa�; (A.14)

B D a or a� :

As

Œn; a� D �a (A.15)

and the higher order commutators also give a with alternating signs, thus

exp.˛n/a exp.�˛n/ D a � ˛a C ˛2

2
a C : : : D exp.�˛/a : (A.16)

Similarly

exp.˛n/a� exp.�˛n/ D exp.˛/a� : (A.17)

A.3 Theorem 3: Similarity Transformation

exp.˛A/f .B/ exp �.˛A/ D f .exp.˛A/.B/ exp �.˛A// : (A.18)

Proof We start with the following identity

Œexp.˛A/.B/ exp �.˛A/�n D exp.˛A/B exp.�˛A/ exp.˛A/B exp.�˛A/ : : :

D exp.˛A/Bn exp.�˛A/ :



428 Appendix A

Then, for any function f .B/ that can be expanded in power series, the Theorem 3
follows.

As an interesting application, let us calculate

exp
	�˛a� C ˛�a




f .a; a�/ exp
	

˛a� � ˛�a



D f Œexp
	�˛a� C ˛�a




a exp
	

˛a� � ˛�a



;

exp
	�˛a� C ˛�a




a� exp
	

˛a� � ˛�a



�

D f .a C ˛; a� C ˛�/ :

Also

exp
	�˛a�




f .a; a�/ exp
	

˛a�

 D f .a C ˛; a�/ ; (A.19)

exp
	

˛�a



f .a; a�/ exp
	�˛�a


 D f .a; a� C ˛�/ ; (A.20)

exp .˛n/ f .a; a�/ exp .�˛n/ D f Œa exp.�˛/; a� exp.˛/� (A.21)

Other properties:
One can easily show that

�

a; a�l
� D la�l�1 D da�l

da�
; (A.22)

�

a�; al
� D �lal�1 D �dal

da
:

A more general version of the above relations is for a function f .a; a/ which may
be expanded in power series of a and a�

�

a; f .a; a�/
� D @f .a; a�/

@a�
; (A.23)

�

a�; f .a; a�/
� D �@f .a; a�/

@a
: (A.24)
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The Method of Characteristics

We have a first-order partial differential equation [1]:

Pp C Qq D R ; (B.1)

where P D P.x; y; z/;Q D Q.x; y; z/;R D R.x; y; z/; and

p � @z

@x
; q � @z

@y
; (B.2)

and we wish to find a solution of (B.1), of the form

z D f .x; y/ : (B.3)

The general solution of (B.1) is

F.u; v/ D 0 ; (B.4)

where F is an arbitrary function, and

u.x; y; z/ D c1 ; (B.5)

v.x; y; z/ D c2 ;

is a solution of the equations

dx

P
D dy

Q
D dz

R
: (B.6)
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Proof If (B.5) are solutions of (B.6), then the equations

@u

@x
dx C @u

@y
dy C @u

@z
dz D 0 ; (B.7)

and

dx

P
D dy

Q
D dz

R
;

must be compatible; thus, we must have

Pux C Quy C Ruz D 0 ; (B.8)

and similarly for v

Pvx C Qvy C Rvz D 0 : (B.9)

On the other hand, if x and y are independent variables and z D z(x,y), then
from (B.5), we get

ux C uz
@z

@x
D 0 ; (B.10)

uy C uz
@z

@y
D 0 ;

and substituting (B.10) into (B.8) we get

�

�P
@z

@x
� Q

@z

@y
C R

�

@u

@z
D 0 ;

and (B.1) is satisfied.
The second part of the proof is to show that the general solution of (B.1) is

F.u; v/ D 0 : (B.11)

From (B.11), one writes

@F

@x
D @F

@u

�

@u

@x
C @u

@z

@z

@x

�

C @F

@v

�

@v

@x
C @v

@z

@z

@x

�

D 0 ; (B.12)

@F

@y
D @F

@u

�

@u

@y
C @u

@z

@z

@y

�

C @F

@v

�

@v

@y
C @v

@z

@z

@y

�

D 0 : (B.13)

We finally notice that (B.13) is satisfied considering (B.10).
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Example Find the general solution of the equation

x2
@z

@x
C y2

@z

@y
D .x C y/z : (B.14)

In this case

P D x2 ; (B.15)

Q D y2 ;

R D .x C y/z ;

and we have to find the solution of

dx

x2
D dy

y2
D dz

.x C y/z
: (B.16)

Integrating, first

dx

x2
D dy

y2
;

we get

x�1 C y�1 D c0
1 : (B.17)

On the other hand,

dx � dy

x2 � y2
D
. x2

y2
� 1/dy

x2 � y2
D dy

y2
D dz

.x C y/z
;

from where we get

x � y

z
D c2 D v : (B.18)

Combining (B.17) and (B.18), we get

xy

z
D c1 D u ; (B.19)

so the general solution can be put as

F

�

xy

z
;

x � y

z

�

D 0 ; (B.20)
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or if we write (B.20) in the equivalent form

u D g.v/ ; (B.21)

then the solution is

xy

z
D g

�

x � y

z

�

: (B.22)

Reference

1. Sneddon, I.: Elements of Partial Differential Equations. Mc-Graw Hill, New York (1957)
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Proof

In this Appendix, we show the equation

2

4h
X

j¤k

ı.t � tj/ı.t
0 � tk/iS � R2

3

5 �2aa D �pRı.t � t0/ : (C.1)

For regular pumping, one can put tj D t0 C j�; where � is the constant time
interval between the atoms and t0 some arbitrary time origin [1].

In this case, there are no pumping fluctuations, and therefore, there are no
correlations between the products of delta functions, that is

X

j;k

hı.t � tj/ı.t
0 � tk/iS D

X

j

hı.t � tj/iS

X

k

hı.t0 � tk/iS (C.2)

D R2 :

Now, we split the l.h.s. of the above equation in two parts

X

j¤k

hı.t � tj/ı.t
0 � tk/iS C

X

jDk

hı.t � tj/ı.t
0 � tk/iS D R2 ; (C.3)

X

j¤k

hı.t � tj/ı.t
0 � tk/iS C Rı.t � t0/ D R2 ;

thus proving the relation

2

4h
X

j¤k

ı.t � tj/ı.t
0 � tk/iS � R2

3

5 �2aa D �pRı.t � t0/

for p D 1.
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In the Poissonian case, tj is totally uncorrelated from tk.j ¤ k/ , so

X

j¤k

hı.t � tj/ı.t
0 � tk/iS D

X

j

hı.t � tj/iS

X

k

hı.t0 � tk/iS D R2 ; (C.4)

which proves (C.1) for p D 0.
Notice that in the above result, we are missing an atom in the second summation,

so the above result is approximate, the approximation being very good when R � 1:

(The error is of the order of R compared to R2.)
A more general proof is found in Ref. [2].
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Appendix D
Stochastic Processes in a Nutshell

D.1 Introduction

Classical Mechanics gives a deterministic view of the dynamical variables of a
system. This of course is true, when one is not in a chaotic regime.

On the other hand, in many cases, the system under study is only described by
the time evolution of probability distributions.

To show these ideas with an example, we take a look at the random walk in one
dimension, by now, a classical problem [3].

A person moves in a line, taking random steps forward or backward, with equal
probability, at fixed time intervals �:

Calling the position xn D na, then the probability that it occupies the site xn at
time t is P.xn j t/ and obeys the equation

P.xn j t C �/ D 1

2
P.xn�1 j t/C 1

2
P.xnC1 j t/ : (D.1)

Now, we go to the continuum limit, letting � and a become small, but with finite
a2

�
: Then

P.x j t C �/ D P.x j t/C �
@

@t
P.x j t/C : : : (D.2)

P.xn˙1 j t/ D P.x ˙ a j t/ D P.x j t/˙ a
@

@x
P.x j t/

Ca2

2

@2

@x2
P.x j t/C : : : ;
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and inserting the above expansions in (D.1), we get

�
@

@t
P.x j t/C O.�2/ D a2

2

@2

@x2
P.x j t/C O.a4/C : : : (D.3)

Now, letting �; a ! 0 with

D � a2

�
; (D.4)

D being the diffusion coefficient, we get a diffusion or Fokker–Planck Equation:

@

@t
P.x j t/ D D

2

@2

@x2
P.x j t/ : (D.5)

D.2 Probability Concepts

Let us call ! an event and let A describe a set of events, thus

! 2 A ; (D.6)

meaning that the event ! belongs to the set of events A [2].
Also, we call � the set of all the events and ˆ the set of no events.
We now introduce the probability of A; P.A/, satisfying the following axioms

(i) P.A/ 
 0 for all A.
(ii) P(�/ D 1:

(iii) If Ai.i D 1; 2; 3 : : :/ is a countable collection of non-overlapping sets, such that

Ai \ Aj D ˆ; i ¤ j ; (D.7)

then

P.[iAi/ D
X

i

P.Ai/ : (D.8)

Now, we are ready to define the joint and conditional probabilities.
Joint probability

P.A \ B/ D P f! 2 A and ! 2 Bg : (D.9)
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Conditional probability

P.A j B/ D P.A \ B/

P.B/
; (D.10)

which satisfies the intuitive idea of a conditional probability that ! 2 A (given that
we know that ! 2 B) is given by the joint probability of A and B divided by the
probability of B.

Now, suppose we have a collection of sets Bi, such that

Bi \ Bj D ˆ ; (D.11)

[i .A \ Bi/ D A \ .[iBi/ D A : (D.12)

Now, by the axiom iii

X

i

P.A \ Bi/ D P.[i.A \ Bi// D P.A/ ; (D.13)

thus

X

i

P.A;Bi/ D
X

i

P.A j Bi/P.Bi/ D P.A/ ; (D.14)

or, put it in words, if we sum the joint probability over the mutually exclusive
events Bi, it eliminates that variable. These ideas will be useful later to derive the
Chapman–Kolmogorov Equation.

D.3 Stochastic Processes

We have a time-dependent random variable X.t/ and measure the values x1; x2; x3 : : :
at times t1; t2; t3 : : :, then the joint probability densities

P.x1; t1I x2; t2I : : :/

describe completely the system, which is referred to as a stochastic process.
One can also define the conditional probability densities as

P.x1; t1I x2; t2I : : : j y1; �1I y2; �2I : : :/ D (D.15)

P.x1; t1I x2; t2I : : : y1; �1I y2; �2I : : :/=P.y1; �1I y2; �2I : : :/ ;
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where the time sequence increases as

t1 
 t2 
 : : : 
 �1 
 �2 : : :

Some simple examples:

(a) Complete independence.
In this case X.t/ is completely independent of past and future, or

P.x1; t1I x2; t2I : : :/ D uiP.xi; ti/ : (D.16)

(b) The next simplest case is the Markov Process, where the conditional probability
is entirely determined by the knowledge of the most recent condition, that is

P.x1; t1I x2; t2I : : : j y1; �1I y2; �2I : : :/ D P.x1; t1I x2; t2I : : : j y1; �1/ : (D.17)

It is simple to show, that for the Markovian case, an arbitrary joint probability
can be written as

P.x1; t1I x2; t2I : : : xn; tn/ D un�1
iD1P.xi; ti j xi�1; ti�1/P.xn; tn/ : (D.18)

D.3.1 The Chapman–Kolmogorov Equation

As we saw in the previous section, summing over all mutually exclusive variables,
eliminates that variable, in other words

X

B

P.A \ B \ C : : :/ D P.A \ C : : :/ : (D.19)

Now, we apply this idea to a stochastic process

P.x; t j x0; t0/ D
Z

dyP.x; tI y; s j x0; t0/ (D.20)

D
Z

dyP.x; t j y; sI x0; t0/P.y; s j x0; t0/ :

Next, we apply the Markov condition, getting the Chapman–Kolmogorov Equa-
tion

P.x; t j x0; t0/ D
Z

dyP.x; t j y; s/P.y; s j x0; t0/ : (D.21)
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In the above analysis, t0 is any initial time for which x.t0/ D x0, and s is an
intermediate time t0 � s � t, and x.s/ D y:

At this point, we observe that P.x; t jx0; t0/ is a probability density, satisfying the
initial condition

P.x; t j x0; t0/ jtDt0D ı.t � t0/ ; (D.22)

and the normalization condition
Z

dxP.x; t j x0; t0/ D 1 : (D.23)

Now, going back to (D.21), we write t D s C�t, and expand in �t

P.x; s C�t j x0; t0/D
Z

dy

�

P.x; s j y; s/C�t
@P.xt j y; s/

@t
jtDs

�

P.y; s j x0; t0/ ;

or

P.x; s C�t j x0; t0/ D P.x; s j x0; t0/C�t
Z

dyW.x j y/P.y; s j x0; t0/ ; (D.24)

where W.x j y/ is the transition rate, defined as

W.x j y/ D @P.x; s j y; s/

@t
jtDs : (D.25)

Letting �t ! 0, (D.24) becomes

@P.x; t j x0; t0/

@t
D
Z

dyW.x j y/P.y; t j x0; t0/ : (D.26)

This is the forward Chapman–Kolmogorov equation.
By integrating (D.26), one can easily verify that

Z

dxW.x j y/ D 0 : (D.27)

The transition probability can be split into two parts, one that does not change
plus the change, that is

W.x j y/ D W0.x/ı.x � y/C W1.x j y/ ; (D.28)
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and integrating the above equation in x and using (D.27), we get

W0.y/ D �
Z

W1.x j y/dx ;

so the forward Chapman–Kolmogorov equation now reads as

@P.x; t j x0; t0/

@t
D
Z

dyW1.x j y/P.y; t j x0; t0/ (D.29)

�
Z

dyW1.y j x/P.x; t jx0; t0/ ;

which has the form of a rate equation.
If the random variable X can take discrete values, the forward Chapman–

Kolmogorov equation can be written as

@P.xi; t/

@t
D
X

j

�

WijP.xj; t/ � WjiP.xi; t/
�

: (D.30)

This equation is known as the Master Equation.
Many stochastic processes are of a special type called ‘birth and death process’

or one-step process [4].They correspond to

Wij D rjıi;j�1 C gjıi;jC1; .i ¤ j/ (D.31)

which permits jumps to adjacent sites.
Also, for the diagonal part

Wn D �.rn C gn/ ; (D.32)

so the master equation reads

:

PnD rnC1PnC1 C gn�1Pn�1 � .rn C gn/Pn ; (D.33)

where rn represents the probability per unit time to jump from n ! n � 1, and gn

the probability per unit time to go from n ! n C 1:

Typically, one-step processes occur in atomic transition via one photon (emission
and absorption), nuclear excitation and de-excitation, fission, etc.
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An interesting example is the Poisson process, defined as

rn D 0 ; (D.34)

gn D q :

Pn.0/ D ın;0;

and the Master Equation is

:

PnD q.Pn�1 � Pn/ : (D.35)

This is a one-sided random walk.
To solve it, we use the characteristic function:

G.s; t/ D hexp insi D
X

n

Pn.t/ exp ins ; (D.36)

with boundary condition G.s; 0/ D 1:

Multiplying the Master Equation by exp ins and summing over n, we get

X

n

exp.ins/
:

PnD q
X

n

ŒPn�1 exp.ins/� Pn exp.ins/�

or

@G.s; t/

@t
D q.exp.is/ � 1/G.s; t/ : (D.37)

It is simple to verify that the solution of (D.37) is

G.s; t/ D exp ftq Œexp.is/ � 1�g (D.38)

D exp.�tq/
X

n

.exp is/n.tq/n

nŠ
;

thus comparing with (D.36), we finally get

Pn.t/ D exp.�tq/
.tq/n

nŠ
; (D.39)

which is a Poisson distribution with hni D tq:
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D.4 The Fokker–Planck Equation

Sometimes, instead of discrete jumps, one chooses to describe the random process
as a continuous one.

If we take, for example, in the Chapman–Kolmogorov equation [3]:

ˆ.w j x/ � W.x C w j x/ ; (D.40)

then

@P.x; t j x0;t0/
@t

D
Z

dwˆ.w j x � w/P.x � w; t j x0;t0/ (D.41)

D
Z

exp

�

�w
@

@x

�

�

ˆ.w j x/P.x; t j x0;t0/
�

dw

D
Z �

1 � w
@

@x
C 1

2
w2

@2

@x2
C : : :

�

�

ˆ.w j x/P.x; t j x0;t0/
�

dw ;

and because
R

dwˆ.w j x/ D 0, we get

@P.x; t j x0;t0/
@t

D
1
X

nD1

.�1/n
nŠ

@n

@xn

�

Qn.x/P.x; t j x0;t0/
�

; (D.42)

with

Qn.x/ D
Z

wnˆ.w j x/dw : (D.43)

Many times, the above equation is truncated, keeping only the first two terms,
getting the Fokker–Planck Equation.

In one dimension, with Q1 D A;Q2 D B, we get

@P.x; t j x0;t0/

@t
D � @

@x
ŒA.x; t/P.x; t j x0;t0/� (D.44)

C1

2

@2

@x2
ŒB.x; t/P.x; t j x0;t0/� :

A simple generalization to more variables leads to the Fokker Planck equation

@P.x; t j x0;t0/
@t

D �
X

i

@

@xi
ŒAi.x; t/P.x; t j x0;t0/� (D.45)

C1

2

X

i;j

@2

@xi@xj

�

Bij.x; t/P.x; t j x0;t0/
�

;
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where A is the drift vector and B the diffusion matrix. This equation can also be
written as

@P.x; t j x0;t0/
@t

C
X

i

@

@xi
Ji.x; t/ D 0 ; (D.46)

Ji.x; t/ D ŒAi.x; t/P.x; t j x0;t0/� (D.47)

�1
2

X

j

@

@xj

�

Bij.x; t/P.x; t j x0;t0/
�

:

Ji.x; t/ is interpreted as a probability current.
Let us take a one-dimensional example.

D.4.1 The Wiener Process

We take the articular case A D 0; B D 1, so the Fokker–Planck now reads [2]

@P.w; t j w0;t0/

@t
D 1

2

@2

@w2
ŒP.w; t j w0;t0/� : (D.48)

Once more, we use the characteristic function

�.s; t/ D
Z

dw exp.isw/P.w; t j w0;t0/ : (D.49)

The differential equation for � is

@�

@t
D �s2� : (D.50)

We also notice that as P.w; t j w0;t0/ jtDt0D ı.w � w0/, so �.s; t0/ D exp isw0,
and the solution is

�.s; t/ D exp

�

isw0 � 1

2
s2.t � t0/

�

; (D.51)

which is a Gaussian, whose inverse transform is also a Gaussian

P.w; t j w0;t0/ D 1
p

2�.t � t0/
exp � .w � w0/2

2.t � t0/
: (D.52)
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The first two moments are

hWi D w0 ; (D.53)

h.�W/2i D t � t0 :

This distribution spreads in time and corresponds precisely to Einstein’s model
for Brownian motion.

An important characteristic of Wiener’s process is the independence of the
increments, which is interesting for stochastic integration purposes.

We saw that, in general, for Markov Processes, one has

P.wn; tnI wn�1; tn�1I : : :w0; t0/ D un�1
iD0P.wiC1; tiC1 j wi; ti/P.w0; t0/

D un�1
iD0



Œ2�.tiC1 � ti/�
� 1
2 exp

�

� .wiC1 � wi/
2

2.tiC1 � ti/

��

P.w0; t0/ : (D.54)

Now we define the Wiener increments as

�Wi D W.ti/ � W.ti�1/ ; (D.55)

�ti � ti � ti�1 ;

so the joint probability density for the increments is

P.�wnI�wn�1I : : : �w1I w0/

D un
iD1



Œ2��ti�
� 1
2 exp

�

� .�wi/
2

2.�ti/

��

P.w0; t0/ ; (D.56)

thus they are statistically independent.
If we define the mean and autocorrelation functions as

hW.t/ j W0; t0i D
Z

dwP.w; t j w0; t0/w ; (D.57)

hW.t/W.t0/
T j W0; t0i D

Z

dwdw0P.w; tI w0; t0/wwT
0

D
Z

dw0hW.t/ j W0; t0iwT
0P.w0; t0/ :

For the Wiener process

hW.t/W.s/ j W0; t0i D hŒW.t/ � W.s/�W.s/ j W0; t0i C hW.s/2i ; (D.58)
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and due to the independence of the increments, the first term is zero and

hW.t/W.s/ j W0; t0i D w20 C min.t � t0; s � t0/ : (D.59)

D.4.2 General Properties of the Fokker–Planck Equation

The general Fokker–Plank equation reads

@P.x; t j x0;t0/
@t

D �
X

i

@

@xi
ŒAi.x; t/P.x; t j x0;t0/�

C 1

2

X

i;j

@2

@xi@xj

�

Bij.x; t/P.x; t j x0;t0/
�

: (D.60)

As we mentioned before, the first term in the r.h.s is the drift term, which will
rule the deterministic motion, and the second one is the diffusion term, which will
cause the probability to broaden. This different role of the two terms can be easily
seen if we calculate hxii and hxixji. One can easily show that

dhxii
dt

D hAii ; (D.61)

dhxixji
dt

D hxiAji C hxjAii C 1

2
hBij C Bjii :

D.4.3 Steady-State Solution

Very often in optics and other areas of physics, one is not really interested in the
time-dependent solution of the Fokker–Planck equation, but rather in the steady
state. Thus, we set the time derivative to zero and get

X

i

@

@xi

2

4�Ai.x; t/P.x; t j x0;t0/C 1

2

X

j

@

@xj

�

Bij.x; t/P.x; t j x0;t0/
�

3

5 D 0 ;

(D.62)

and if the constant current is set to zero (detailed balance), one gets

Ai.x; t/P.x; t j x0;t0/ D 1

2

X

j

@

@xj

�

Bij.x; t/P.x; t j x0; t0/
�

(D.63)



446 Appendix D

or

2Ai �
X

j

@Bij

dxj
D
X

j

Bij
1

P.x; t j x0;t0/
@P.x; t j x0;t0/

@xj

D
X

j

Bij
@In ŒP.x; t j x0;t0/�

@xj
;

and defining a Potential function V(x) by P.x; t j x0;t/ D N exp.�V.x//, we get for
V

� @V.x/
@xi

D 2
X

j

B�1
ij Aj �

X

j;k

B�1
ij

@Bjk

@xk
: (D.64)

Integrating (D.64), we get for the probability distribution

PSS.x/ D N exp

2

4

Z

X

i;j

2B�1
ij Aj.x/dxi �

Z

X

i;j;k

B�1
ij

@Bjk

@xk
dxi

3

5 : (D.65)

In particular, for Bij D Dıij, we get

PSS.x/ D N exp
Z

2

D
A.x/dx (D.66)

D.5 Stochastic Differential Equations

D.5.1 Introduction

One way of treating the motion of a Brownian particle, or any other problem with a
random force, is via a Langevin or Stochastic differential equation

:

VD �V C L.t/ ; (D.67)

where, in the case of a Brownian particle, the r.h.s. is the force of the fluid over the
particle and is made up of two components:

(a) The damping force �V
(b) A rapidly varying force L.t/, independent of the particle’s velocity that accounts

for the collisions of the water molecules with the Brownian particle, whose
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average is zero. Thus

hL.t/i D 0 (D.68)

hL.t/L.t0/i D Dı.t � t0/ :

hL.t/L.t0/i is referred to as the two time correlation function.
If one defines the spectrum as the Fourier transform of the two time correlation

function

S.!/ D
Z C1

�1
d� exp.i!�/hL.t C �/L.t/i ; (D.69)

we immediately notice that, because the Fourier transform of a delta function is a
constant, L.t/ has a flat spectrum or it correspond to white noise.

Let us assume that the initial velocity of the Brownian particle is deterministic
and given by V.0/ D V0, then for t > 0, for each sample path

V.t/ D V0 exp.� t/C exp.� t/
Z t

0

exp. t0/L.t0/dt0 : (D.70)

Using the properties of L, we can calculate hVi and hV2i

hV.t/ j V0; t0i D V0 exp.� t/ ; (D.71)

hV2.t/ j V0; t0i D V2
0 exp.�2 t/C

exp.�2 t/
Z t

0

dt0
Z tK

0

dt00 exp .t0 C t00/hL.t0/L.t00/i

hV2.t/ j V0; t0i D V2
0 exp.�2 t/C D

2
Œ1 � exp.�2 t/� : (D.72)

When t ! 1

hV2.t/ j V0; t0i D D

2
; (D.73)

On the other hand, for short times

h.�V/2.t0 C�t/ j V0; t0i D D�t C O.�t/2 : : : (D.74)
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We also notice, that in this case, the drift and diffusion coefficients are

A D h�Vi
�t

D .hV � V0i/ jtDt0C�t

�t
D �V ; (D.75)

B D h.�V/2i
�t

D D ; (D.76)

so that the corresponding Fokker–Planck equation is

@P.V; t/

@t
D 

@

@V
.VP/C D

2

@2P

@V2
: (D.77)

The above equation describes the so-called Ornstein–Uhlenbeck process,
corresponding to a linear drift and a constant diffusion term.

We now calculate the power spectrum of V . So we first need the two time
correlation function

hV.t/V.t0/i D V2
0 exp

��.t C t0/
�

C exp
��.t C t0/

�

Z t

0

dt00
Z t0

0

dt000 exp
�

.t00 C t000/
� hL.t00/L.t000/i

D V2
0 exp

��.t C t0/
�C exp

��.t C t0/
�

D
Z t0

0

dt000 exp 2 t000

hV.t/V.t0/i D V2
0 exp

��.t C t0/
�C exp

��.t C t0/
� �

2

�

exp.2 t0/ � 1� :
(D.78)

In steady state, for t; t0 ! 1 but with t � t0 D � , we get

hV.t C �/V.t/i D D

2
exp.� j � j/ : (D.79)

Finally, taking the Fourier transform, we get the power spectrum of V

�V.!/ D 1

2�

Z

exp.i!�/hV.t C �/V.t/id� (D.80)

D 1

2�

D

!2 C 2
:
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D.5.2 Ito Versus Stratonovich

A more general type of Langevin equation can be written as

dx

dt
D a.x; t/C b.x; t/L.t/ ; (D.81)

where the previous D factor can be absorbed in b, so that

hL.t/L.t0/i D ı.t � t0/ ; (D.82)

hLi D 0 :

Now we define

W.t/ D
Z t

0

L.t0/dt0 ; (D.83)

assumed to be continuous, so that

hW.t C�t/ � W0.t/ j W0; ti D h
Z tC�t

t
dsL.s/i D 0 ; (D.84)

hŒW.t C�t/ � W0.t/�
2 j W0; ti D (D.85)

h
Z tC�t

t
ds1

Z tC�t

t
ds2L.s1/L.s2/i D

Z tC�t

t
ds1

Z tC�t

t
ds2ı.s1 � s2/ D �t ;

therefore, one could write a Fokker–Planck equation for W with

A D 0;B D 1 ;

which correspond to a Wiener process, and Ldt D dW becomes a Wiener increment.
The stochastic differential equation (D.81) is not fully defined unless one

specifies how to integrate it. Normally, this would not be a problem, and the rules of
ordinary calculus apply. However, here we must be careful because we are dealing
with a rapidly varying function of time L.t/.

Thus, we define the integral the mean square limit of a Riemann–Stieltjes sum

Z t

t0

f .t0/dW.t0/ D ms lim
n!1

n
X

iD1
f .�i/ ŒW.ti/ � W.ti�1/� ; (D.86)

where ti�1
�i � ti, and we have divided the time interval from t0 ! t in n
intermediate times t1t2 : : : tn:
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One can verify that it does matter which f .�i/ we choose.
Two popular choices are:

(a) Ito with �i D ti�1:
(b) Stratonovich: f .�i/ D f .ti/Cf .ti�1/

2
:

From the above assumptions, one learns how to calculate things with Ito and
Stratonovich.

For Stratonovich, we have for example

S
Z t

t0

W.t0/dW.t0/

D ms lim
n!1

n
X

iD1

�

W.ti/C W.ti�1/
2

�

ŒW.ti/� W.ti�1/�

D 1

2
ms lim

n!1

n
X

iD1

�

W2.ti/ � W2.ti�1/
� D 1

2

�

W2.t/ � W2.t0/
�

;

which obeys the rules of ordinary calculus.
On the other hand, for Ito

I
Z t

t0

W.t0/dW.t0/

D ms lim
n!1

n
X

iD1
ŒW.ti�1/� ŒW.ti/ � W.ti�1/�

D ms lim
n!1

n
X

iD1
ŒW.ti�1/�W.ti/�

D ms lim
n!1

1

2

n
X

iD1

n

ŒW.ti�1/C�W.ti/�
2 � W.ti�1/2 ��W.ti/

2
o

D 1

2

�

W.t/2 � W.t0/
2
� � ms lim

n!1
1

2

n
X

iD1
�W.ti/

2 ;

and because

ms lim
n!1

1

2

n
X

iD1
�W.ti/

2 D t � t0 ;

we finally get

I
Z t

t0

W.t0/dW.t0/ D 1

2

�

W.t/2 � W.t0/
2 � .t � t0/

�

: (D.87)



Appendix D 451

Finally, for the Ito integration, one can prove that

dW.t/2 D dt; (D.88)

dW.t/2CN D 0;N D 1; 2; 3 : : :

The details and proof of the above properties are found in Gardiner’s book [2].
From these properties, we can see that dW � p

dt, and we have to keep terms up
to .dW/2, which differs from the ordinary calculus.

D.5.3 Ito’s Formula

Consider a function f Œx.t/�. We will derive the basic formula for Ito’s calculus:

df Œx.t/� D f Œx.t/C dx� � f Œx.t/�

D f 0 Œx.t/� dx C 1
2
f 00 Œx.t/� dx2 C : : :

D f 0 Œx.t/� Œa.x; t/dt C b.x; t/dW�

C 1
2
f 00 Œx.t/�

�

b.x; t/dW2 C : : :
�

and using (D.88), we get

df Œx.t/� D


a.x; t/f 0 Œx.t/�C 1

2
b.x; t/f 00 Œx.t/�

�

dt

Cb.x; t/f 0 Œx.t/� dW : (D.89)

The above formula can be easily generalized for many dimensions.
Now, we take the average of Ito’s formula

dhf .x/i
dt

D
Z

dx@tP.x; t/f .x/

D
Z

dx

�

a@xf C b

2
@2x f

�

P.x; t/ ;

and integrating by parts and discarding the surface terms, we get

Z

dxf .x/@tP.x; t/ D
Z

dxf .x/

�

�@xaP C 1

2
@2xbP

�

;
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thus getting the Ito–Fokker–Planck equation

@tP.x; t j x0; t0/ D �@x Œa.x; t/P.x; t j x0; t0/� (D.90)

C1

2
@2x Œb.x; t/P.x; t j x0; t0/� (D.91)

Similarly, for many variables, if one has an Ito stochastic differential equation

.I/dx D a.x; t/dt C b.x; t/dW ; (D.92)

where dW is an n-component Wiener process, then the corresponding Ito’s Fokker–
Planck equation is:

@tP.x; t j x0; t0/ D �
X

i

@i Œai.x; t/P.x; t j x0; t0/� (D.93)

C1

2

X

i;j

@i@j
�

bbT.x; t/
�

ij
P.x; t j x0; t0/ : (D.94)

Thus, from our previous notation

B D bbT (D.95)

Similarly, for Stratonovich

.S/dx D aS.x; t/dt C bS.x; t/dW; (D.96)

we get a Stratonovich–Fokker–Planck equation

@tP.x; t j x0; t0/ D �
X

i

@i
�

aS
i .x; t/P.x; t j x0; t0/

�

C1

2

X

i;j;k

@i
�

bS
ik@jbST

jk .x; t/
�

P.x; t j x0; t0/ : (D.97)

By simple comparison between the two Fokker–Planck equations, we get

aS
i D ai � 1

2

X

j;k

bkj@kbT
ij ; (D.98)

bS
ik D bik :

This last relation tells us that if we have a given Fokker–Planck equation, it
corresponds to a Langevin equation to be integrated a la Ito, with a and b drift and
diffusion coefficients, and to a Langevin equation to be integrated a la Stratonovich
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with aS and bS drift and diffusion coefficients, and the relation between the Ito and
the Stratonovich coefficients is given by (D.98).

D.6 Approximate Methods

Non-linear Langevin equations are difficult to solve exactly.
We present here the �-expansion of Van Kampen [5], where � is the size or

number of particles of our system.
We consider a variable X that is proportional to the particle number, and define

x D X

�
: (D.99)

The key point in Van Kampen’s expansion is that we can separate [1]:

x.t/ D x0.t/C p
	y.t/ ; (D.100)

where x0.t/ is the deterministic part, y.t/ represents the fluctuations and 	 D 1
�
:

This decomposition is based on the Central Limit Theorem that says that for large
�, the fluctuations of X around its mean value go as �:

Of course, this expansion fails, as we shall see, near an instability point.
We also assume that in the stochastic equation, the small parameter

p
	 is the

noise strength, so we write

dx D a.x/dt C p
	dW.t/ ; (D.101)

and

x.t/ D x0.t/C p
	x1.t/C 	x2.t/C : : : (D.102)

Differentiating x and expanding a.x/ around x0, we get

dx0.t/C p
	dx1.t/C 	dx2.t/C : : :

D a.x0/dt C a0.x0/.x � x0/dt C 1

2
a00.x0/.x � x0/

2dt C : : :C p
	dW.t/

D a.x0/dt C a0.x0/
�p
	x1.t/C 	x2.t/C : : :

�

dtC
1

2
a00.x0/

�

	x21 C : : :
�

dt C Cp
	dW.t/ ;



454 Appendix D

and by comparing different orders of 	 we get

dx0.t/ D a.x0/dt; (D.103)

dx1.t/ D a0.x0/x1.t/dt C dW.t/ ; (D.104)

dx2.t/ D a0.x0/x2.t/dt C 1

2
a00.x0/x21dt ; (D.105)

and so on.
The initial conditions for x1; x2; x3 : : : are

x1.0/ D 0; x2.0/ D 0; etc W (D.106)

Now, we take a non-trivial example.
A particle, in one dimension, under the action of a double-well potential

a.x/ D �dV

dx
; (D.107)

with

V D �
2

x2 C g

4
x4 : (D.108)

The stochastic differential equation, in this case is

dx.t/ D .x � gx3/dt C p
	dW.t/ : (D.109)

The shape of the potential is described in Fig. D.1
We will consider the case  > 0: Near the equilibrium positions, the drift is

practically zero, and the noise term in the stochastic equation is quite important.
On the other hand, very far from the equilibrium positions, the motion is

dominated by a large drift and is practically a deterministic one.

For  > 0; x D 0 is an unstable equilibrium position and x D ˙
q



g are stable
ones.

Applying our method in this example, we get

dx0 D .x0 � gx30/dt; x0.0/ D h ; (D.110)

dx1 D . � 3gx20/x1dt C dW; x1.0/ D 0 ; (D.111)

dx2 D �

. � 3gx20/x2 � 3gx0x
2
1

�

dt; x2.0/ D 0 ; (D.112)
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Fig. D.1 Double-well
potential for the cases  < 0
(upper curve) and  > 0
(lower curve)

The solution for the deterministic motion is

x0.t/ D h exp. t/
q

1C g


h2 Œexp.2 t/ � 1�
; (D.113)

so that if we choose the unstable equilibrium point, that is the initial condition h D 0,

the we get x0.t/ D 0, and for the stable equilibrium points, h D ˙
q



g , we get

x0.t/ D ˙
q



g , as it should.

For the first case: h D x0.t/ D 0; we get

dx1 D x1dt C dW.t/ ; (D.114)

dx2 D x2dt ; (D.115)

and the solution to the above equations are

x1.t/ D
Z 1

o
exp

�

.t � t0/
�

dW.t0/ ; (D.116)

x2.t/ D 0:

In the stable case x0 D h D ˙
q



g , we get

dx1.t/ D �2x1dt C dW.t/; (D.117)

dx2.t/ D
�

�2x2 � 3g
r



g
x21

�

dt ;
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and the solutions are

x1.t/ D
Z t

0

dW.t0/ exp
��2.t � t0/

�

(D.118)

x2.t/ D �3g
r



g

Z t

0

dt0x21.t0/ exp
��2.t � t0/

�

:

Now, we notice that in all cases hx1i D 0, so

hx2.t/i D x20 C 	
	hx21i C 2x0hx2i


C : : : (D.119)

and in the two cases, we can write

hx2.t/iuns D 	

2
Œexp.2 t/ � 1� ; (D.120)

hx2.t/istable D 

g
C 	

4
Œ1 � exp.�4 t/� � 3	

4
Œ1 � exp.�2 t/�2 C : : :

In the limit t ! 1; hx2.1/iuns diverges, while hx2.t/istable ! 

g � 	
2
:

As we can see, the perturbative expansion gives the correct answer when starting
from stable equilibrium points but it diverges when starting from an unstable
equilibrium. In this last case, the perturbative expansion is no longer valid.
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Appendix E
Derivation of the Homodyne Stochastic
Schrödinger Differential Equation

Here we present the detailed derivation of the Homodyne Schrödinger differential
equation. We start from the expansion given by (16.36), which in the two-jump
situation, and neglecting the commutators between the jump operators and the no-
jump evolution, can be expressed as

�.�t/ D
1
X

m1;m2D0

.�t/m1Cm2

m1Šm2Š
S.�t/Jm2

2 Jm1
1 �.0/ : (E.1)

The probability of m1and m2 quantum jumps of the respective types is given by

Pm1;m2 .�t/ D .�t/m1Cm2

m1Šm2Š
Tr
�

S.�t/Jm2
2 Jm1

1 �.0/
�

: (E.2)

The master equation of the field, corresponding to a lossy cavity at temperature T,
may be written as

d�

dt
D .J1 C J2/� � 

2
�Œa�a.1C 2hnith/C 2".1C hnith/a

�

C2"hnitha C hnith C "2.1C 2hnith/�

�
2
Œa�a.1C 2hnith/C 2".1C hnith/a C 2"hnitha�

Chnith C "2.1C 2hnith/�� (E.3)

Therefore, according to the discussion given in Chap. 16, one possible way of
writing S.�t/ is

S.�t/� D N.�t/�N�.�t/ ; (E.4)
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with

N.�t/ D exp



�.�t/

2
Œa�a.1C 2hnith/C 2".1C hnith/a

�

C2"hnitha C hnith C "2.1C 2hnith/�

�

: (E.5)

Using (E.2) and (E.5), we can write

Pm1;m2 .�t/ D
�

exp.�1/.�1/m1

m1Š

� �

exp.�2/.�2/m2

m2Š

�

TrŒexp. Ǩ/
�

1C a�

"

�m2 �

1C a

"

�m1
�

�

1C a�

"

�m1

�

1C a

"

�m2
exp.ˇ�K/� (E.6)

´with

�1 D .�t/"2.1C hnith/ ; (E.7)

�2 D .�t/"2hnith ;

ǨD �.�t/

2
fa�a.1C 2hnith/

C2Œ".1C hnith/a C "hnitha��C hnithg :

From (E.6), we can calculate hmii and �2i D hm2
i i � hmii2 up to order

	

1
"


 3
2 . The

result is

hmii D �i.1C 2

"
hXi/ ;

�2i D h�ii : (E.8)

Now, we turn to the final step of this calculation, which yields the time evolution
of the state vector. After repeated jump and no-jump events, the unnormalized
wavefunction for the field can be written as

j Q if .�t/ D N.�t � tm/C2N.tm � tm�1/C1N : : : j  if .0/
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or, except for an overall phase factor,

j Q if .�t/ D N.�t/Cm2
2 Cm1

1  if .0/ ; (E.9)

where the symbol � indicates that the vector is not normalized.
Using (E.5) and (16.51), one can write, up to a normalization constant

j Q if .�t/ D exp

�

�.�t/

2

˚

a�a.1C hnith/

C2Œ".1C hnith/a
� C 2"hnitha�

�

�

�

1C a�

"

�m2 �

1C a

"

�m1 j  if .0/ (E.10)

or expanding up to "� 3
2

j Q if .�t/ D


1 � .�t/

2
Œa�a.1C hnith/C aa�hnith �

�.�t/"Œa.1C hnith/C a�hnith/�

�

	
�

1C 1

"
.m1a C m2a

�/

�

j  if .0/ (E.11)

We are interested in the limit " ! 1. In deriving (E.11), we considered " large,
.�t/ � "� 3

2 and m1;m2; �1; �2 � "
1
2 . Now we consider two random numbers

with non-zero average m1;m2

m1 D hm1i C �1p
�t
�W1 ;

m2 D hm2i C �2p
�t
�W2 ; (E.12)

which satisfy

h.�W1/
2i D h.�W2/

2i D �t : (E.13)

We notice that �Wi are two independent Wiener Processes.
Finally, (E.11) can be written as

�m1;m2 j Q if .�t/ Dj Q if .�t/� j Q if .0/

D
nh

�
2
.a�a.1C hnith/� 

2
aa�hnith
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C2hXia.1C hnith/

Ca�hnith

�

�t C a�
p

hnith�W2

Ca
p

.1C hnith/�W1

o

j Q if .0/ ;

which is the desired result.
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Fluctuations

We want to calculate dh.�a�a/2i and Mdh.�a�a/2i.
We do it first in a simple case T=0, O D a�aI C D p

aI H D „!a�a:

d h.�a�a/2i D ıtf�ha�aa�aa�ai C 2ha�aa�aiha�ai
� 2ha�aiha�aiha�ai C ha�aa�aiha�aig
� ha�aa�aiıN C ha�aiha�aiıN

C ha�a�aa�aaiha�ai � ha�a�aaiha�a�aai
ha�aiha�ai ıN ; (F.1)

or

d h.�a�a/2i D �ıth.�a�a/.�a�a/.�a�a/i
� h.�a�a/2iıN

C ha�a�aa�aaiha�ai � ha�a�aaiha�a�aai
ha�aiha�ai ıN (F.2)

Now, we apply the above results to the more interesting case T > 0, O D
a�aI C1 D p

.hnith C 1/a;C2 D p

hnitha�I H D „!a�a:

d h.�a�a/2i D �.hnith C 1/h.�a�a/.�a�a/.�a�a/idt

� h.�a�a/2iıN1

C .ha�aa�aa�aiha�ai � ha�aa�aiha�aa�ai/ıN1
ha � aiha�ai

C hnithdtŒ�haa�aa�aa�i C 2haa�aa�i � haa�i
C 2haa�aa�iha�ai � 2haa�iha�ai � haa�iha�aiha�ai
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C ha�aa�aihaa�i � ha�aiha�aihaa�i�
� h.�a�a/2iıN2

C .haa�aa�aa�ihaa�i � haa�aa�ihaa�aa�i/ıN2
haa�ihaa�i : (F.3)

In the above expression, neither the deterministic nor the stochastic term is
definitely non-increasing. But in the mean, it does decrease

M
dh.�a�a/2i

dt
D �.hnith C 1/

h.�a�a/a�aiha�a.�a�a/i
ha � ai

� hnith
h.�aa�/aa�ihaa�.�aa�/i

haa�i � 0 : (F.4)



Appendix G
Discrimination of Quantum States: Applications
of the POVM Formalism

In this appendix we consider two schemes of optimal quantum state discrimination
[1]. Unambiguous and minimum error discrimination. We will see that the optimum
strategy for the unambiguous state discrimination is a POVM, while the optimum
minimum error discrimination is a standard Von-Neumann measurement.

G.1 Unambiguous Discrimination of Two Pure States

The problem of quantum state discrimination consists in the following basic
scenario:

One party, which we call conventionally Alice, prepares a set of quantum states.
She then passes the system to Bob, whose main task is to get as much information
as he can about this quantum state. We now assume that each individual state is
prepared in two known pure states, we call j  1i and j  2i, with probabilities �1
and �2 respectively such that �1 C�2 D 1: Notice that this two states are in general
non-orthogonal h 1 j  2i D cos 
 ¤ 0:

Alice draws a system at random and hands it over to Bob who knows how
the ensemble of states was prepared with the corresponding probabilities, but he
doesn’t know which one of the two states he was given. What he can do is perform
a measurement or a POVM on the system he was given.

In the ambiguous discrimination strategy, he is not allowed to make an error. This
cannot be done with 100 % success, as we show next.

Assume the we have two detection operators, ˘1 and ˘2 that satisfies the
requirement

˘1 C˘2 D I: (G.1)
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Since no errors are allowed, this means that

˘1 j  2i D ˘2 j  1i D 0: (G.2)

The probability of success identifying the first state is p1 D h 1 j ˘1 j  1i
and similarly to the state 2. Multiplying Eq. G.1 from the left and right by  1we
get p1 D 1and similarly, for the state 2, we obtain p2 D 1: Apparently we can
identify both states without any difficulty, but if we multiply Eq. G.1 by h 1 jfrom
the left and j  2i from the right we get 0 D h 1 j  2i, thus contradicting the initial
hypothesis of non-orthogonal states. Therefore, we are forced to introduce a third
operator˘0, such that now

˘0 C˘1 C˘2 D I: (G.3)

The interpretation of ˘1 and ˘2 are the POVM elements that unambiguously
identify j  1i and j  2i respectively.

But, what is the interpretation of ˘0?
Since no errors are allowed, the only possible meaning of ˘0 is that no

information is gained through the measurement, that is an inconclusive result.
We can now introduce success and failure probabilities in such a way that p1

is the probability of successfully identifying ˘1, and h 1 j ˘0 j  1i D q1 is the
probability of failing to identify˘1, (and similarly for ˘2).

For unambiguous discrimination we have h 1 j ˘2 j  1i D h 2 j ˘1 j  2i D 0.
It is simple to verify that p1 C q1 D 1 (the same for state 2).

In order to determine the actual POVM members, we introduce j  ?
i i.i D 1; 2/

as the vectors orthogonal to j  ii:
It is simple to see that

˘i D ci j  ?
i ih ?

i j; (G.4)

with ci some positive numbers. With the definitions of p1 and p2, one finds

˘i D pi

sin2 

j  ?

i ih ?
i j; i D 1; 2: (G.5)

Now the POVM elements are by definition positive operators. In particular, the
positivity of ˘0 D I � ˘1 � ˘2 (expressed, for example as imposing positive
eigenvalues) leads to the condition (see exercises at the end of this appendix):

q1q2 =j h 1 j  2i j2 : (G.6)

Now, we define

Q D �1q1 C �2q2; (G.7)



Appendix G 465

as the average failure probability. We want to minimize this probability, and satisfy,
at the same time, the condition given by Eq. G.6. The minimum for the product of
the failure probabilities is given by Eq. G.6 with the equal sign and inserting this in
Eq. G.7, we get

Q D �1q1 C �2
cos2 


q1
;

whose minimum gives, finally, the optimum failure probability for unambiguous
quantum state discrimination

qPOVM
1 D

r

�2

�1
cos 
; (G.8)

qPOVM
2 D

r

�1

�2
cos 
;

Q D 2
p
�1�2 cos 


Finally, this whole analysis is valid, provided the failure probabilities qi are
positive, which limits the validity of the optimal solution to a range of initial
probabilities

cos2 


1C cos2 

� �1 � 1

1C cos2 

: (G.9)

Outside the above range, the optimum are standard Von-Neumann measure-
ments. (For full details, see Ref. [1])

G.2 Minimum-Error Discrimination of Two Quantum States

In the previous section we imposed the condition of unambiguous results, at the
expense of having a POVM member representing an inconclusive result.

Now, lets assume that we only want conclusive results. This time, the price to
pay is the presence of errors.

The problem now is to optimize the measurement by a procedure that minimizes
the probability of error, usually called minimum error discrimination.

In a more general scheme, we want to distinguish among N given states �j .j D
1 : : :N/ with a priori probabilities �j: .

P

�j D 1/
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Our POVM elements are now ˘j with an associate probability Tr.�j˘j/ that our
system is in the state �j: As usual, these positive operators satisfy the requirement:

N
X

jD1
˘j D ID; (G.10)

D being the dimension of the space.
As in the previous section, we want to minimize the probability of error given by

Perror D 1 � Pcorr D 1 �
N
X

jD1
�jTr.�j˘j/; (G.11)

where Pcorr is the correct probability guess.
We will treat here only the case N = 2. In this case

Perror D 1 � Pcorr D 1 �
2
X

jD1
�jTr.�j˘j/ (G.12)

D �1Tr.�1˘2/C �2Tr.�2˘1/:

In the last equation, we made use of Eq. E.10 for N = 2.
The previous expression can be also written as

Perror D �1 C Tr.�˘1/ D �2 � Tr.�˘2/; (G.13)

with the Hermitian operator� defined as

� D �2�2 � �1�1 D
D
X

iD1
ıi j �iih�i j : (G.14)

In Eq. G.14, j �ii and ıi are the eigenstates and eigenvalues of �:
Next, we order the eigenvalues from negative to positive as follows:

ıi < 0 for 1 � i < i0

ıi > 0 for i0 � i � d

ıi D 0 for d < i � D: (G.15)

With the above spectral decomposition, we write

Perror D �1 C
D
X

iD1
ıih�i j ˘1 j �ii D �2 �

D
X

iD1
ıih�i j ˘2 j �ii: (G.16)
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Since the probabilities h�i j ˘2 j �ii are all positive, we get the minimum error
Perror D PE if the operators˘1and ˘2 are chosen so that for negative eigenvalues
h�i j ˘1 j �ii D 1 and h�i j ˘2 j �ii D 0, while for the positive part of the
spectrum we have h�i j ˘1 j �ii D 0 and h�i j ˘2 j �ii D 1. Thus we can write the
optimum POVM operators as for minimum -error measurement for discrimination
of two quantum states is actually a Von-Neumann measurement that projects onto
two orthogonal subspaces fj �iigiD1::: i0�1 and fj �iigiDi0:::D:

˘1 D
i0�1
X

iD1
j �iih�i j; (G.17)

˘2 D
D
X

iD i0

j �iih�i j;

where in˘2 we added the zero eigenvalue projectors that don’t affect the procedure
and fulfill the requirement˘1 C˘2 D I:

Using the above detection operators and Eqs. (G.13), (G.14), one readily finds

PE D �1 �
i0�1
X

iD1
j ıi jD �2 �

d
X

iD i0

j ıi j; (G.18)

or alternatively, averaging the two results given above, we get:

PE D 1

2
.1�

X

j ıi j/: (G.19)

This is the Helstrom result, found in many texts.
For the particular case of two pure states j  1i and j  2i, we get

PE D 1

2
.1 �

p

1 � 4�1�2 j h 1 j  2i j2/

Reference

1. Bergou, J.A., Hillery, M.: Introduction to Quantum Information Theory. Springer, New York
(2013)
See also: Paris, M.G.A.: The modern tools of quantum mechanics. Eur. Phys. J. Spec. Top. 203,
61 (2012); Bergou, J.A.: Discrimination of quantum states. J. Mod. Opt. 57, 160 (2010)
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The No-Cloning Theorem

We assume that we have a device able to duplicate an arbitrary quantum state [1].
That is, if the system is initially in the state j  i

j  i˝ j ˛i ! U.j  i˝ j ˛i/ Dj �i˝ j ˛i˝ j ˛i ;

where j �i is the state of the system after performing its copying. Similarly, for a
different input state, we would have

j  i˝ j ˇi ! U.j  i˝ j ˇi/ Dj �Ki˝ j ˇi˝ j ˇi :

Taking the inner product of these two states, we get

h j  ih˛ j ˇi D h� j �Kih˛ j ˇih˛ j ˇi :

In the above equation, h j  i D 1 and 0<j< ˛ j ˇ >j< 1, so we conclude that
h� j �Kih˛ j ˇi D 1, which is impossible, because j h� j �Ki j� 1:

Thus, the system represented by j  i cannot exist.

Reference

1. Peres, A.: Quantum Theory; Concepts and Methods. Kluwer, Dordrecht/Boston (1995)
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The Universal Quantum Cloning Machine

We will develop the Universal copying machine, as proposed by Buzek et al. [1].
The following transformation is proposed

j 0ia j Qix !j 0ia j 0ib j Q0ix C .j 0ia j 1ibC j 1ia j 0ib/ j Y0ix ; (I.1)

j 1ia j Qix !j 1ia j 1ib j Q1ix C .j 0ia j 1ibC j 1ia j 0ib/ j Y1ix : (I.2)

As there are several free parameters, we can impose some conditions, namely

xhQi j Qiix C 2xhYi j Yiix D 1; i D 0; 1 ;

xhY0 j Y1ix Dx hY1 j Y0ix D 0 ;

xhQi j Yiix D 0; i D 0; 1 ;

xhQ0 j Q1ix D 0 ; (I.3)

where the Qs and Ys are states of the copying machine.
With the above assumptions, one can write �.out/

ab , describing the modes a and b
after the copying of a pure state j  i D ˛ j 0i C ˇ j 1i as

�
.out/
ab D ˛2 j 00ih00 jx hQ0 j Q0ix C p

2˛ˇ j 00ihC jx hY1 j Q0ix

Cp
2˛ˇ j Cih00 jx hQ0 j Y1ix

C �

2˛2x hY0 j Y0ix C 2ˇ2x hY1 j Y1ix
� j CihC j

Cp
2˛ˇ j Cih11 jx hQ1 j Y0ix C p

2˛ˇ j 11ihC jx hY0 j Q1ix

Cˇ2 j 11ih11 jx hQ1 j Q1ix : (I.4)
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Now, if we trace over the b mode, we get the density matrix for the a-mode

�.out/
a D j 0iah0 j 	˛2 C ˇ2x hY1 j Y1ix � ˛2x hY0 j Y0ix




C j 0iah1 j ˛ˇ .xhQ1 j Y0ix Cx hY1 j Q0ix/

C˛ˇ j 1iah0 j .xhQ0 j Y1ix Cx hY0 j Q1ix/

C j 1iah1 j 	ˇ2 C ˛2x hY0 j Y0ix � ˇ2x hY1 j Y1ix



: (I.5)

The density operator �.out/
b D �

.out/
a , in other words the two output modes

are equal, but different to the input state. To quantify the difference, we use the
‘distance’ (23.7), giving as a result

D˛ D 2x2.4˛4 � 4˛2 C 1/C 2˛2.1 � ˛2/.e � 1/2 ; (I.6)

with

xhY0 j Y0ix Dx hY1 j Y1ix � x ; (I.7)

xhY0 j Q1ix Dx hQ0 j Y1ix Dx hQ1 j Y0ix Dx hY1 j Q0ix � e

2
; (I.8)

which are the two free parameters, with 0� x � 1
2
; 0 � e � 1p

2
.

The first requirement is that the distance D˛ be independent of the input, that is
of ˛: So we impose

@D˛

@.˛2/
D 0 ; (I.9)

which gives us a relation between the parameters

e D 1 � 2x ;

so that D˛ becomes input independent D˛ D 2x2:
We also require a condition on the two-mode density. The distance between the

density operator and its ideal version should be input independent, that is D˛b D
Tr.�.out/

ab � �.id/ab /
2 satisfies

@D˛b

@.˛2/
D 0 : (I.10)
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After some algebra, one gets

D˛b D .f11/
2 C 2.f12/

2 C 2.f13/
2

.f22/
2 C 2.f23/

2 C .f33/
2 ;

with f11 D ˛4 � ˛2.1 � 2x/; f12 D p
2˛ˇ.˛2 � 1

2
.1 � 2x//; f13 D .˛ˇ/2; f22 D

2..˛ˇ/2 � x/; f23 D p
2˛ˇ.ˇ2 � 1

2
.1� 2x//; f33 D ˇ4 � ˇ2.1 � 2x/:

Now, the (I.9) can be solved, giving x D 2
9
:

If we write �.out/
a in the basis j  i D ˛ j 0i Cˇ j 1i and j  ?i D ˛ j 0i �ˇ j 1i,

we readily get

�.out/
a1

D 5

6
j  ia1h j C1

6
j  ?ia1h ? j :

Reference

1. Buzek, V., Hillery, M.: Quantum copying: beyond the no-cloning theorem. Phys. Rev. A 54,
1844 (1996)
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Hints to Solve the Problems

Chapter 1

1.1 Use (1.11) and (1.12).
1.2 Calculate hn2i
1.3 Verify the solution using (1.3)

Chapter 2

2.1 Use (2.36)

Chapter 3

3.1 Iterate (3.27) many times.
3.2 See Appendix A
3.3 See Appendix A
3.4 Follow the text from (3.39) to (3.45)
3.5 Use (3.44) and:

@

@zKı
T
11.�/ D @

@zKı.�/C i

.2�/3

Z 1

�1
k3k21
k2

exp.ik � �/dk

@

@xKı
T
13.�/ D i

.2�/3

Z 1

�1
k3k21
k2

exp.ik � �/dk:
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Chapter 4

4.1 Define

a� j ˇi D ˇ j ˇi;

and follow the same procedure as in (4.2), (4.3), (4.4), (4.5) and (4.6).
4.2 Use

j ˛i D exp.�˛˛
�

2
/ exp.˛a�/ j 0i;

and write

j ˛ih˛ jD exp.�˛˛�/ exp.˛a�/ j 0ih0 j exp.˛�a/:

4.3 Use (4.6)
4.4 Convert the sums into integrals
4.5 Use (4.31) and (4.32)
4.6 Start from (4.2)
4.7 To prove the last property, use the second one for continuous spectrum.
4.8 Use the results of Problem (4.7)

Chapter 5

5.1 Use a procedure similar to the one leading to (5.27)
5.2 Use the results of Problem (5.1)
5.3 See Ref. [1]
5.4 See Ref. [1]
5.5 Use the results of Problem (5.1)

Chapter 6

6.1 Calculate hn2i as we did for hni in (6.95)

Chapter 7

7.1 Use (4.16)
7.2 Use (3.19)
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7.3 Use the commutation relation

Œa; a�n� D na�.n�1/:

7.4 Use (A.23) and (A.24)
7.5 First show that

alF.n/.a�; a/ D N .a C @

@a�
/lF.n/.a�; a/;

F.n/.a�; a/a�l D N .a� C @

@a
/lF.n/.a�; a/:

Chapter 8

8.1 Find the eigenvalues and eigenvectors of Hn:

8.2 Use (8.46) and (8.38)
8.3 Approximate (8.56)

Chapter 9

9.2 Verify the definitions, using the results of Problem (9.1)
9.3 Use the rules given by (9.49)
9.4 Use the rules given by (9.49)
9.5 Use the rules given by (9.49)
9.6 Find ha2i and ha�2i from an equation similar to (9.21)

Chapter 10

10.1 Use (10.59), (10.60), (10.61)
10.2 Calculate the Fourier Transform of the result of Problem (10.1)
10.3 Use (10.84), (10.85), (10.86).

Chapter 11

11.1 Use (11.5) and (11.6)
11.2 Use (11.8)
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11.3 Start from (11.22) and approximate the trigonometric functions.
11.4 Start from (11.23)

Chapter 12

12.1 Use the Generalized Einstein relations.
12.2 Use a procedure similar to (12.35), (12.36), (12.37), and (12.38)
12.3 See Ref. [1]
12.4 Take "2 and differentiate with respect to time and use (12.65)

Chapter 13

13.1 Star from (13.12)
13.2 Use (13.24) and follow the rules given by (9.49). Then one gets a Fokker-

Planck equation in terms of ˛1 and ˛2: To go to polar coordinates, define

˛1 D �1 exp.i
1/I˛2 D �2 exp.i
2/;

then, one has

@

@˛1
D 1

2
exp.�i
1/

@

@�1
C 1

2i

exp.�i
1/

�1

@

@
1
;

@

@˛2
D 1

2
exp.�i
2/

@

@�2
C 1

2i

exp.�i
2/

�2

@

@
2
;

@

@
1
D 1

2

@

@�
C;

@

@
2
D 1

2

@

@�
� @

@

;

where

� D 
1 C 
2

2
;


 D 
1 � 
2
2

:

13.3 Use the results of the Problem (13.2)
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Chapter 14

14.1 Start from (14.62)
14.2 Start from (14.66)
14.3 Integrate (14.38) over !:
14.4 Part (b). Use the quadratic part of the formula for 1

�
:

14.5 Use the results of the problem (14.4) for the case ! � !j

Chapter 15

15.1 Use (15.5), (15.6) and (15.7)
15.2 Use (15.7)
15.3 Use (15.5)
15.4 See Ref. [5]
15.5 Use (15.49)
15.6 See Ref. [17]

Chapter 16

16.1 See Ref. [27]
16.2 See Ref. [11]

Chapter 17

17.1 Use (17.7)
17.2 Verify that ŒH; c� D 0:

17.4 See Ref. [18]

Chapter 18

18.1 Use (18.49) and (18.50)
18.2 Use (A.16) and (A.17)
18.3 See Appendix A
18.4 See Ref. [1]
18.5 See Ref. [1]
18.6 See Ref. [1]
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Chapter 19

19.1 See Ref. [1]
19.2 See Ref. [1]

Chapter 20

20.1 Use (20.34), (20.41) to verify (20.42)
20.2 See Refs. [9–12].

Chapter 21

21.1 Apply the definition of K.
21.2 Check the signs of the eigenvalues of the partially transposed density matrix.
21.3 Apply the NPT criterion.

Chapter 23

22.2 Follow a procedure similar to the duplicator
22.3 Apply the two gates to the input data and programs.
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Absorption, 1, 2
Annihilation operator, 29
Atom–field interaction

semiclassical theory, 13
Atom optics, 281

diffraction, 282
experiments in diffraction, 283
optical elements, 281
sources, 281
theory of diffraction, 284

Atomic decay, 21
Atomic diffraction

large detuning, 288
no detuning, 287

Atomic focusing, 290
aberrations, chromatic, 296
aberrations, isotopic, 296
aberrations, spherical, 296
classical focus, 294
experiment, 290
quantum focal curve, 294
quantum focus, 293
theory, 290

initial conditions and solution, 291
thin versus thick lenses, 293

Baker–Campbell–Hausdorff relation,
426

Bell inequalities, 387
Bell states, 386, 391

entangled states, 380
BHSH inequality, 389, 390
Birth and death process, 440
Blackbody energy, 4
Bloch equations, 19, 20

Bloch Sphere
qubit, 377

Boltzmann distribution, 3
Bose–Einstein distribution, 4
Boundary condition

input-output theory, 221
Bound entangled state, 387
Broad-band spectrum, 17

CEL, 203
holographic laser, 208
two photon laser, 208

Chapman–Kolmogorov equation, 438
Chapman-Kolmogorov equation

forward, 439
Characteristic function, 88

normally ordered, 92
Circuit, 412
C-NOT gate, 412, 420, 421

2 qubit gate, 377
Coherence

first order, 71
n-th order, 71
second order effects, 72
second order, classical, 72
second order, quantum mechanical, 75

Coherence function
first order, 62
n-th order, 62

Coherent squeezed state, 50
Coherent state, 35

coordinate representation, 40
displacement operator, 38
minimum uncertainty states, 36
non-orthogonality, 37
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normalization, 36
overcompleteness, 37
photon statistics, 39

Coincidence rate
n-th fold, 67

Collapse, 108
time, 110

Collective dephasing, 365
Commutation relations, 28, 29, 31, 32

Dirac’s commutator, 239
between the electric field and the vector

potential, 32
Louisell’s trigonometric functions, 232
number-phase, 231
Susskind–Glogower phase, 234

Conditional probability, 437
Condition for DFS, 369
Continuous measurements, 315

phase narrowing, 318, 321
Control, 413
Correlation function

first order, 69, 71
n-th order, 67
second order, 72, 75
second order, examples, 75

Correlations
dynamics of, 358

Creation operator, 29

Data Hilbert space, 418
Decimation, 314

in vibrational states, 349
Decoherence

how long it takes?, 360
in phase sensitive reservoirs, 364

Decoherence Free Subspaces, 365, 367,
371

Decoherence time, 364
Degenerate parametric oscillator

input-output theory, 222
quadrature fluctuations-input output theory,

224
Density matrix

multimode thermal state, 42
time evolution of elements, 121

Density of modes, 31
Density operator

modified with continuous measurements,
317

in P-representation, 124
thermal state, 41

Dephasing, 365

Detailed balance, 445
Detector

ideal, 61
n atom, 66
one atom, 63

DFS, 368, 370, 372
Dipole approximation, 102
Distance between operators, 410
Distance between two operators, 411
Dressed states, 104, 106
Drift and diffusion coefficients, 448
Duplicator, 415

Electric field
per photon, 102
positive frequency component, 69

Emission
spontaneous, 1, 2
stimulated, 1, 2

Energy
density, 2
multimode radiation field, 28

Entangled, 386
Entangled state, 379–381, 418
Entanglement, 384, 386, 390
Entanglement between copies, 417
Entanglement measurement, 384
Ergodic hypothesis, 80
Events, 436

Fermi golden rule, 214
generalized, 216

Fidelity, 410, 415, 417
Fock states, 29, 30
Fokker–Planck equation, 436, 442

of the damped harmonic oscillator, 125
general properties, 445
several dimensions, 442
steady state solution, 445
time dependence-damped harmonic

oscillator, 125
Free radiation field, 99

Gage
Coulomb, 100

Generalized Einstein’s relations, 185
Generalized Toffoli gate, 422
General single qubit transformation, 377
Generating function, 79
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Hadamard gate, 375, 376
Hadamard Transform, 376
Hidden variables, 388

Input field
definition, 220

Input-output theory, 218
Ito’s Fokker Planck equation, 452
Ito’s formula, 451
Ito versus Stratonovich, 449

Jaynes–Cummings Hamiltonian, 104, 108,
157, 316

Jaynes–Cummings model, 173
Joint probability, 436

Kraus operators, 368

Lamb–Dicke expansion, 343
Lamb–Dicke parameter, 341
Langevin equation, 127

of the damped harmonic oscillator, 128
Laser theory, 5, 6

rate equations, 7
stability analysis, 8
steady-state, 8
threshold condition, 7

Laser theory-quantum mechanical
adiabatic approximation, 191
atomic noise correlation, 188
c-number Langevin equations, 190
Fokker Planck equation, 165
general Master equation, 161
injection statistics-heuristic discussion, 158
Langevin equations, 188
noise reduction, 180
noise supression via pump statistics, 195
phase and intensity fluctuations, 193
phase diffusion, 166
photon statistics, 163

Lindblad form, 369
Lindblad operators, 369–371
Liouville’s equation, 116
Local realism, 389
Locality, 388
Locality and reality, 388

Markoffian assumption, 118
Markov approximation, 129
Master equation, 118, 249, 440

damped harmonic oscillator, 119
damped oscillator in squeezed bath, 131
generalized with pump statistics, 160
Lindblad form, 249
two-level atom in thermal bath, 130

Maxwellian velocity distribution, 312
Maxwell’s equations, 25
Measurements, 299

in a dynamical sense, 358
Von Neumann, 355

Measuring the atomic phase, 309
Method of characteristics, 429
Micromaser, 159

cooperative effects, 176
Master equation, 171
noise reduction, 179
operation, 170
photon statistics, 172
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