ESSENTIALS OF

PROJECT avo SYSTEMS
ENGINEERING MANAGEMENT

THIRD EDITION

Howard Eisner

ESSENTIALS OF PROJECT AND SYSTEMS
ENGINEERING MANAGEMENT

Third Edition

ESSENTIALS OF
PROJECT AND SYSTEMS
ENGINEERING
MANAGEMENT

Third Edition

HOWARD EISNER

Distinguished Research Professor and Professor, Engineering Management
and Systems Engineering Department

The George Washington University

Washington, DC

WILEY
John Wiley & Sons, Inc.

This book is printed on acid-free paper. ®
Copyright © 2008 by John Wiley & Sons, Inc. All rights reserved.

Published by John Wiley & Sons, Inc., Hoboken, New Jersey.
Published simultaneously in Canada.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in
any form or by any means, electronic, mechanical, photocopying, recording, scanning, or
otherwise, except as permitted under Section 107 or 108 of the 1976 United States Copyright
Act, without either the prior written permission of the Publisher, or authorization through
payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood
Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600, or on the web at
www.copyright.com. Requests to the Publisher for permission should be addressed to the
Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030,
(201) 748-6011, fax (201) 748-6008, or online at www.wiley.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: While the publisher and the author have used their
best efforts in preparing this book, they make no representations or warranties with respect to
the accuracy or completeness of the contents of this book and specifically disclaim any
implied warranties of merchantability or fitness for a particular purpose. No warranty may be
created or extended by sales representatives or written sales materials. The advice and
strategies contained herein may not be suitable for your situation. You should consult with a
professional where appropriate. Neither the publisher nor the author shall be liable for any
loss of profit or any other commercial damages, including but not limited to special,
incidental, consequential, or other damages.

For general information about our other products and services, please contact our Customer
Care Department within the United States at (800) 762-2974, outside the United States at
(317) 572-3993 or fax (317) 572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in
print may not be available in electronic books. For more information about Wiley products,
visit our web site at www.wiley.com.

Library of Congress Cataloging-in-Publication Data:

Eisner, Howard, 1935—
Essentials of project and systems engineering management / Howard Eisner. — 3rd ed.
p. cm.
Includes bibliographical references and index.
ISBN 978-0-470-12933-3 (cloth)
1. Systems engineering—Management. 2. Project management. I. Title.
TA168.E38 2008
658.4'06—dc22 2007050287

Printed in the United States of America.

10987654321

http://www.copyright.com
http://www.wiley.com/go/permissions
http://www.wiley.com

ABOUT THE AUTHOR

Since 1989, Howard Eisner has served as Distinguished Research Professor
and Professor in the Engineering Management and Systems Engineering
Department at The George Washington University in Washington, DC. For
the prior thirty years, he held various technical and management positions
in industry, including president of two systems and software engineering
companies (Intercon Systems Corporation and the Atlantic Research Services
Company). He also served as a board member of three high-tech companies.
He is a Life Fellow of the Institute of Electrical and Electronics Engineers
(IEEE) and a Fellow of the International Council on Systems Engineering
(INCOSE) and a member of several engineering honor societies. Dr. Eisner
has written two books on systems engineering and related topics. He has also
written a book on personal and corporate reengineering and one on ways of
thinking about and managing large complex systems. He holds a BEE from
the City College of New York, an MS from Columbia University, and a Doctor
of Science from The George Washington University.

CONTENTS

Preface

PART |

1 Systems, Projects, and Management

1.1
1.2
1.3
1.4
1.5
1.6
1.7

OVERVIEW

Introduction,

Systems and Projects,
Problems in Managing Engineering Projects,
The Systems Approach,

3

3

The Project Organization,

Organizational Environments and Factors,
Large-Scale Organization and Management Issues,

Questions/Exercises,
References, 39

38

2 Overview of Essentials

2.1
2.2
2.3

Introduction,

Project Management Essentials,

41

17
21

41

25

12

Systems Engineering Process and Management

Essentials,

45

33

xiii

41

vii

viii CONTENTS

2.4
2.5

Historical Overview of Acquisition Notions, 49
Selected Standards, 53

Questions/Exercises, 66
References, 67

PART I PROJECT MANAGEMENT 69
3 The Project Plan 71
3.1 Introduction, 71
3.2 Needs, Goals, Objectives, and Requirements, 72
3.3 Task Statements, Statement of Work (SOW), and
Work Breakdown Structure (WBS), 78
3.4 Technical Approach, 80
3.5 Schedule, 83
3.6 Organization, Staffing, and Task Responsibility
Matrix (TRM), 86
3.7 Budget, 86
3.8 Risk Analysis, 90
3.9 The Proposal, 92

3.10 SEMP and SEP, 92
Questions/Exercises, 95
References, 96

4 Schedule, Cost, and Situation Analysis 99

4.1
4.2
4.3
4.4

Introduction, 99

Schedule Analysis and Monitoring, 100
Cost Analysis and Monitoring, 104
Situation Analysis (SA), 122

Questions/Exercises, 128
References, 130

5 The Project Manager and Leadership 131

5.1
5.2
5.3
5.4
5.5

Introduction, 131

Project Manager Attributes, 132
Self-Evaluation, 139

Interactions with Your Supervisor, 147
Customer Interaction, 151

CONTENTS ix

5.6 Leadership, 152
Questions/Exercises, 157
References, 158

6 Team Building and Team Interactions 159

6.1 Introduction, 159

6.2 Communications, 160

6.3 Building the Project Team, 162

6.4 Team Busters, 166

6.5 Conflict Management, 168

6.6 Meetings, 171

6.7 Presentations, 173

6.8 Proposals, 176

6.9 A Note on Motivation and Incentives, 182
6.10 Another Team-Related Perspective, 184
6.11 Group Processes, 187
Questions/Exercises, 189

References, 190

PART Il SYSTEMS ENGINEERING AND MANAGEMENT 191

7 The Thirty Elements of Systems Engineering 191

7.1 Overview of the Systems Approach and
Engineering Process, 193

7.2 Two Systems Engineering Perspectives, 194
7.3 The Thirty Elements of Systems Engineering, 199

7.4 The Importance of Domain Knowledge in
Systems Engineering, 230

Questions/Exercises, 231
References, 231

8 Requirements Analysis and Allocation 233

8.1 Introduction, 233
8.2 Department of Defense (DOD) Perspectives, 234

8.3 A National Aeronautics and Space Administration
(NASA) Perspective, 237

8.4 The Organization of Requirements Statements, 238
8.5 Specific Requirements Statements, 242

X

10

11

CONTENTS

8.6 Essential Steps of Requirements Analysis, 244
8.7 Derived and Allocated Requirements, 248

8.8 Other Requirements Issues, 251
Questions/Exercises, 255

References, 256

Systems Architecting: Principles

9.1 Introduction, 257
9.2 A View of Systems Architecting, 258

9.3 A National Aeronautics and Space Administration
(NASA) Perspective, 259

9.4 Architecture Descriptions, 261

9.5 Essential Steps of System Architecting, 269
9.6 The 95% Solution, 286

9.7 Trade-Offs and Sensitivity Analyses, 287
9.8 Modeling and Simulation, 293

9.9 Other Architectures and Tools, 297

9.10 Summary, 300

Questions/Exercises, 301

References, 302

Software Engineering

10.1 Introduction, 305

10.2 Standards, 306

10.3 Software Management Strategies, 313

10.4 Capability Maturity, 316

10.5 Metrics, 319

10.6 The Systems Engineer and Software Engineering,
10.7 Summary, 332

Questions/Exercises, 333

References, 334

Selected Quantitative Relationships

11.1 Introduction, 337

11.2 Basic Probability Relationships, 338
11.3 The Binomial Distribution, 345

11.4 The Poisson Distribution, 346

11.5 The Normal (Gaussian) Distribution, 347

329

257

305

337

11.6 The Uniform Distribution, 349
11.7 The Exponential Distribution,
11.8 The Rayleigh Distribution,
11.9 Error Analyses, 352
11.10 Radar Signal Detection,
11.11 System Reliability, 357
11.12 Software Reliability, 361
11.13 Availability, 361
11.14 A Least Squares Fit,
11.15 Summary, 363
Questions/Exercises,
References, 366

350
351

353

362

365

CONTENTS xi

PART IV TRENDS, PERSPECTIVES, AND INTEGRATIVE

MANAGEMENT

367

12 Systems/Software Engineering and Project

Management Trends

12.1 Introduction, 369

12.2 Systems Engineering Trends, 369
12.3 Software Engineering Trends, 386
12.4 Project Management Trends, 400

Questions/Exercises, 404

References, 404

13 Selected New Perspectives

13.1 Introduction, 409

13.2 Role of INCOSE, 409

13.3 Acquisition of Systems, 410
13.4 Problems in Systems and Software,
13.5 Integration of Systems, 419
Questions/Exercises, 430
References, 431

14 Integrative Management

14.1 Introduction, 433
14.2 Managers as Integrators, 434
14.3 Teams as Integrators, 435

369

409

418

433

xii

CONTENTS

14.4 Plans as Integrators, 437
14.5 The Systems Approach as Integrator, 439
14.6 Methods and Standards as Integrators, 440
14.7 Information Systems as Integrators, 441
14.8 Enterprises as Integrators, 442
14.9 Thinking Outside the Box, 443
14.10 Summary, 447

Questions/Exercises, 447

References, 448

Appendix: Systems Architecting—Cases 451

A.1 Introduction, 451

A.2 A Logistics Support System (Case 1), 452

A.3 A Software Defects Assessment System (Case 2), 457
A.4 A Systems Engineering Environment (Case 3), 462
A.5 An Anemometry System (Case 4), 470

A.6 Summary, 480

References, 480

Index 481

PREFACE

This book has two primary objectives: (1) to define and describe the essen-
tials of project and systems engineering management, and (2) to show the
relationship and interconnection between project management and systems
engineering.

The subject of project management is well-trodden territory and is explored
at considerable length in numerous books. Systems engineering, though,
is not as well known, as measured perhaps by the literature that describes
and supports it. However, this literature has clearly been on the upswing as
the need for systems engineering has been increasing and expanding. Like
project management, systems engineering deals with a variety of methods for
designing and building a system that are largely independent of the domain
itself. Slowly, but noticeably, systems engineering is finding its way into a
greater number of college curricula and taking its place alongside the more
traditional engineering disciplines, such as electrical engineering, mechanical
engineering, chemical engineering, and the like.

More often than not, systems engineering is carried out in the real world in
the context of a project. In a typical scenario, a company might set up a project
whose basic purpose is to design and build some type of system. Thus, there is
almost always a strong connection between project management and systems
engineering, whether it is formally recognized or not. Many students have
asked about this sometimes murky connection during my courses in systems
engineering. They want to know more about how systems engineering fits
into the structure of a project and its various management-oriented tasks
and activities. These questions, directly and indirectly, have led to this book.

xiii

Xiv PREFACE

Indeed, this may be the first book that attempts to bring these two important
subjects together.

This third edition provides new and expanded materials, including these
subject areas:

 Problems in systems and software

e Errors in systems

e Numerical trade-offs with detection and false alarm probabilities
e Likelihood ratio and detection threshold setting

¢ Support for systems engineering within government, especially the De-
partment of Defense (DoD) and NASA

e International Council on Systems Engineering (INCOSE)

¢ Investments in major large-scale systems

¢ Systems Engineering Management Plan (SEMP) and Systems Engineer-
ing Plan (SEP)

e Standards

¢ Group processes and decision making

e Test and evaluation

¢ Additional requirements problem areas

e Trading off of requirements

* DODAF, MoDAF, enterprise, and service-oriented architectures

e Multiple views of architectures

¢ System interoperability

¢ Modeling and simulation

¢ Unified Modeling Language (UML) and Systems Engineering Modeling
Language (SysML)

¢ Systems Engineer and software engineering

¢ Nonconstant failure rates in systems

¢ Quantitative least squares fit

* Acquisition of systems (a directive and an instruction)

¢ Defense acquisition performance assessment

¢ Capability-based acquisition

¢ System complexity

e Integration of systems

e “Top dozen” integration list

¢ Thinking outside the box

As compared with the second edition, this edition adds a chapter (a new
chapter 13) so that it has a total of 14 chapters and an appendix. This makes it
suitable for a 15-week course in project and systems engineering management.

PREFACE XV

At the same time, Systems Engineers and Project Managers in an industrial
environment, or with a government agency, will find the essentials of what
they need to know under one cover.

I am pleased to dedicate this book at both a professional and a personal
level. With respect to the former, I dedicate it to my graduate students and col-
leagues in the engineering management and systems engineering department
in the School of Engineering and Applied Science, The George Washington
University. At a personal level, I dedicate the book to my wife, June Linowitz,
whose patience, support, and love helped make it possible.

HowARD EISNER
Bethesda, Maryland

PART |
OVERVIEW

— 1

SYSTEMS, PROJECTS,
AND MANAGEMENT

1.1 INTRODUCTION

This is a book about management, with emphasis on managing the design,
development, and engineering of systems. It addresses two primary questions:

1. What does the Project Manager (PM) need to know?
2. What does the Chief Systems Engineer (CSE) need to know?

The focus is therefore on the essentials of what the PM and CSE must master
in order to be successful in building various types of systems and managing
project teams.

This chapter is largely introductory, dealing with the preliminary defini-
tions of systems and projects, problems encountered in building systems, the
systems approach, key managerial responsibilities, and organizational mat-
ters that significantly impact the way in which systems are planned, designed,
and constructed.

1.2 SYSTEMS AND PROJECTS

There are many definitions of systems, one of which is simply that “a system
is any process that converts inputs to outputs™ [1.1]. We look here at systems
by example and, for that purpose, start by examining a radar system. This is
certainly a system, performing the functions of search and tracking of objects

4 SYSTEMS, PROJECTS, AND MANAGEMENT

in space, as in an air route or surveillance radar at or near an airport. A
system normally has functions that it carries out (such as search and tracking),
and it does so by means of its subsystems. At the same time, such airport
radar systems, together with other systems (such as communications and
landing systems), are part of a larger system known as an air traffic control
(ATC) system. Examined from the perspective of an air traffic control system,
the radar systems actually serve as subsystems of the larger system. In the same
vein, the air traffic control system may be regarded as a subsystem of a larger
national aviation system (NAS) that consists also of airports, air vehicles, and
other relatively large systems (e.g., access/egress) in their own right.

Our view of systems, therefore, is rather broad. In the preceding context,
the radars, air traffic control, and national aviation system are all systems.
Such systems normally are composed of hardware, software, and human
elements, all of which must interoperate efficiently for the overall system
to be effective. We adopt this broad perspective in the definition of systems,
drawing on examples that affect our everyday life, such as automobile systems,
telephone systems, computer systems, heating and cooling systems, transit
systems, and information systems.

Projects are formal enterprises that address the matter of designing and
developing the various systems just cited. A project is an assemblage of
people and equipment, and it is normally managed by a Project Manager
(PM). Project personnel work toward satisfying a set of goals, objectives, and
requirements, as set forth by a customer. Projects may also have a limited
scope of work, dealing only with, for example, the design phase of a system,
rather than its construction or entire life cycle. The success of a system is
dependent on the skills of the people on a project and how well they are able to
work together. Ultimately, the success, or lack of it, is attributed to the many
skills that the PM is able to bring to bear in what is often an extremely complex
situation and endeavor. The PM, in short, must not only have considerable
technical skills, but must also have a deep understanding of the fine art of
management.

1.2.1 Definitions of Systems Engineering

The Chief Systems Engineer (CSE) normally reports to the Project Manager
and focuses upon building the system in question. The overall process that the
CSE employs is known as Systems Engineering, a central theme in this text.
We will define Systems Engineering in terms of increasing complexity and
detail in various parts of this book, starting here with five relatively simple
expressions, namely:

1. As developed by the International Council on Systems Engineering
(INCOSE)

2. As articulated by the Department of Defense (DoD)

1.2 SYSTEMS AND PROJECTS 5

3. Asrepresented in an earlier text by this author
4. As summarized by the Defense Systems Management College (DSMC)

5. As viewed by the National Aeronautics and Space Administration
(NASA)

The INCOSE definition is that Systems Engineering is [1.2]:

An interdisciplinary approach and means to enable the realization of successful
systems.

This definition is rather sparse and emphasizes three aspects: “interdisci-
plinary,” “realization,” and “successful.” Especially for large-scale systems,
it is clearly necessary to employ several disciplines (e.g., human engineer-
ing, physics, software engineering, and management). Realization simply
confirms the fact that systems engineering processes lead to the physical con-
struction of a real-life system (i.e., it goes beyond the formulation of an idea
or concept). Finally, our expectation is that by utilizing the various disciplines
of systems engineering, the outcome will be a successful system, although
this result is certainly not guaranteed.

A definition provided by the Department of Defense (DoD), a strong sup-
porter as well as user of systems engineering as a critical discipline, is that
Systems Engineering [1.3]:

Involves design and management of a total system which includes hardware and
software, as well as other system life-cycle elements. The systems engineering
process is a structured, disciplined, and documented technical effort through
which systems products and processes are simultaneously denned, developed
and integrated. Systems Engineering is most effectively implemented as part of
an overall integrated product and process development effort using multidisipli-
nary teamwork.

Key words from this definition include: “design and management,” “hardware
and software,” “structured, disciplined and documented,” and “overall inte-
grated” effort that involves “multidisciplinary teamwork.” These important
notions will be reiterated and expanded upon in later parts of this book.

A third definition, formulated by this author, is that Systems Engineering
isan [1.4]:

Iterative process of top-down synthesis, development, and operation of a real-
world system that satisfies, in a near-optimal manner, the full range of require-
ments for the system.

bR IN3 29 ¢ 29 ¢

Here, key ideas have to do with “iterative,” “synthesis,” “operation,” “near-
optimal,” and “satisfies the system requirements.” Designing and building a
system usually involves several loops of iteration, for example, from synthesis

6 SYSTEMS, PROJECTS, AND MANAGEMENT

to analysis, from concept to development, and from architecting to detailed
design. The notion of synthesis is emphasized, since the essence of systems
engineering is viewed from the perspective of design rather than analysis.
Design precedes analysis; if there is no coherent design, there is nothing to
analyze. The term “near-optimal” suggests that large-scale systems engineer-
ing does not lead to a provably optimal design, except under very special
circumstances. The normal cases all involve attempts to find an appropriate
balance between a variety of desirable features. Trade-off analyses are utilized
to move in the direction of a “best possible” design. Finally, in terms of the
basic definition, we find a need to satisfy the full range of requirements for
the system. The focus on constructing a system that is responsive to the needs
of the user-customer is central to what systems engineering is all about.

The Defense Systems Management College text summarizes Systems En-
gineering as [1.5]:

An interdisciplinary engineering management process to evolve and verify an
integrated, life cycle balanced set of system solutions that satisfy customer
needs.

2 ¢

Here, key words emphasize a “management process,” “verification,” a “bal-
anced set of solutions,” and “customer needs.” This definition, therefore,
tends to see systems engineering through a “management” prism, requires a
balanced set of solutions as well as verification of those solutions, and the
satisfaction of what the customer states as a set of needs.

The last definition cited in this chapter is that represented by NASA,
namely, that Systems Engineering is [1.6]:

A robust approach to the design, creation and operation of systems.
NASA expands this short explanation by emphasizing:

Identification and quantification of goals

Creation of alternative system design concepts
Performance of design trades

Selection and implementation of the best design
Verification that the design is properly built and integrated

Post-implementation assessment of how well the system meets the stated
goals

A e

The above five definitions of systems engineering, in the aggregate, give
us a point of departure for our further exploration of systems engineering and
the management thereof. We will also see other representations that tend to
add further detail and structure to these short-form definitions. For example,
Chapter 2 cites several standards that relate to systems engineering. Further,

1.2 SYSTEMS AND PROJECTS 7

Chapter 7 defines the thirty elements that this author considers to be the
essence of large-scale systems engineering.

1.2.2 System Cost-Effectiveness

The project team, led by the PM and the CSE, are also in search of a cost-
effective solution for the customer. In order that this concept have real sub-
stance, we must be in a position to ultimately quantify both the system cost
as well as its effectiveness.

System cost will be approached from a life-cycle perspective. This means
that a life-cycle cost model (LCCM) will eventually be constructed, with the
following three major categories of cost:

1. Research, development, test, and evaluation (RDT&E)
2. Acquisition or procurement, and
3. Operations and maintenance (O&M)

The latter category, by our definition, will also include the cost of system
disposal when it is necessary to do so. System cost will also be viewed
as an independent variable, expressed as “cost as an independent variable”
(CAIV). The Department of Defense (DoD) sees CAIV as a “strategy that en-
tails setting aggressive yet realistic cost objectives when defining operational
requirements and acquiring defense systems and managing achievement of
these objectives” [1.3].

System effectiveness will also need to be calculated. One perspective re-
garding system effectiveness is that it is a function of three factors [1.4]:

1. Availability
2. Dependability
3. Capability

Availability is sometimes called the readiness reliability, whereas dependabil-
ity is the more conventional reliability that degrades with time into the system
operation. Capability is also referred to as system performance. The approach
adopted here with respect to effectiveness is somewhat less restrictive, allow-
ing the CSE’s team the flexibility to select those effectiveness measures that
are fundamental to the system design as well as of special importance to the
customer and user.

System cost-effectiveness considerations may thus be visualized as a graph
of effectiveness (ordinate) plotted against total life-cycle cost (abscissa). As
such, we see that this type of graph implies that several systems can be built,
each representing a “point” on such a plot. Our overall task as architects and
designers of systems is to find the point design that is to be recommended to
the customer from among a host of possible solutions. This further implies

8 SYSTEMS, PROJECTS, AND MANAGEMENT

that the process will include the exploration of several alternatives until a
preferred alternative is selected.

1.2.3 Support for Systems Engineering

Systems engineering has had major supporters over the years, in both method-
ology as well as applications. In this section we take a brief look at systems
engineering perspectives from both the Department of Defense (DoD) as well
as the National Aeronautics and Space Administration (NASA).

A few years back, the Deputy Under Secretary of Defense (DUSD) for
Acquisition, Technology and Logistics (A, T&L) confirmed a policy of support
for systems engineering across the department [1.7]. A key sentence is quoted
next:

All programs responding to a capabilities or requirements document, regardless
of acquisition category, shall apply a robust SE (systems engineering) approach
that balances total system performance and total ownership costs within the
family-of-systems, systems-of-systems context.

Eight other notions emphasized in this policy document include:

A rigorous SE discipline is needed.

We are integrating increasingly complex systems.

Programs will formulate an SEP (Systems Engineering Plan).

We are attempting to institutionalize SE across all of the DoD.
Establish a senior-level SE forum, with participation by a flag officer.
Drive good SE practices back into the way we do business.

Make SE an important consideration during source selection.

Evaluate the adequacy of current policies and procedures and recom-
mend changes where necessary.

PN L=

The list is certainly a massive endorsement of SE as a key discipline
with the DoD. It underscores the belief that a more widespread and rigorous
application of SE will lead to better system performance, within schedule
and budget. Also, with the large number of people and programs within the
DoD, we can see a great need for very large-scale education and training with
respect to the numerous elements of systems engineering. The aim of all of
this, of course, is to provide “affordable, supportable and above all, capable
solutions for the warfighter.”

In 2006, NASA established a set of “Systems Engineering Processes and
Requirements” [1.8], promulgated through its Office of the Chief Engineer.
From a top-level perspective, and using NASA’s words:

NASA missions are becoming increasingly complex, and the challenge of en-
gineering systems to meet the cost, schedule and performance requirements
within acceptable levels of risk requires revitalizing systems engineering. . . .

1.2 SYSTEMS AND PROJECTS 9

The engineering of NASA systems requires the application of a system-
atic, disciplined, engineering approach that is quantifiable, recursive, itera-
tive, and repeatable for the development, operation, maintenance, and disposal
of systems integrated into a whole throughout the life cycle of a project or
program.

Next we cite eight key points in NASA’s approach to documenting a desired
set of systems engineering processes [1.8]:

1. Increasing system complexity will be accompanied by the reduction of
operations staff;

. Systems are moving toward increased autonomy;
. A robust approach is needed to meet NASA objectives;
. Systems-level thinking is also needed;

Common technical processes are critical to implementing NASA prod-
ucts and systems;

A revolutionary advancement of SE is essential;
NASA must also deal with the implications of past failures;
8. Consistency across the administration is required to meet stated goals.

bk W

Y

It is important to recognize that NASA expressed the need for revitalization
of all processes with respect to systems engineering. The language in this
NASA approach has the ring of urgency as well as determination. This NPR
(NASA Procedural Requirements—7123.1) document provides a thrust in
the direction of strengthening and applying well-defined processes. Indeed,
NASA’s overall framework for an improved SE capability includes:

a. Common technical processes
b. Tools and methods
c. Workforce considerations

The 17 items that NASA lists within the common technical processes are
of special interest in this text, and are listed here:

System Design Processes

» Requirements Definition Processes
1. Stakeholder Expectations Definition
2. Technical Requirements Definition

* Technical Solution Definition Processes
3. Logical Decomposition
4. Physical Solution

10 SYSTEMS, PROJECTS, AND MANAGEMENT
Product Realization Processes

* Design Realization Processes
5. Product Implementation
6. Product Integration

 Evaluation Processes
7. Product Verification
8. Product Validation

¢ Product Transition Processes
9. Product Transition

Technical Management Processes

* Technical Planning Process
10. Technical Planning
¢ Technical Control Processes
11. Requirements Management
12. Interface Management
13. Technical Risk Management
14. Configuration Management
15. Technical Data Management
 Technical Assessment Process
16. Technical Assessment
 Technical Decision Analysis Process
17. Decision Analysis

This articulation of key SE processes can be compared with process def-
initions and discussions provided in Chapters 2 and 7 (e.g., with respect to
standards and elements of SE).

Of course, in addition to the DoD, NASA, and other government agencies,
outstanding and continuous support has been provided by the International
Council on Systems Engineering (INCOSE) [1.9]. This organization of lead-
ers in the field has devoted time and energy to formulate, enhance, and apply
the principles of systems engineering to numerous problems that arise in
building and managing new and complex systems.

1.2.4 System Errors

In broad terms, all systems are said to exhibit fundamental errors known as
Type I and Type II errors. These errors are related to the field of hypothesis
testing whereby errors are made by (a) rejecting a hypothesis that is true
(Type I error) or (b) accepting a false hypothesis (Type Il error). From a

1.2 SYSTEMS AND PROJECTS 11

systems engineering perspective, a major task of the CSE’s team is to reduce
such errors so as to satisfy the system requirements. Three examples of these
errors are briefly discussed below.

Many of us have car alarm systems that are intended to go off when an
intruder is trying to get into our car. There is an error if and when the alarm
does not go off when forced entry is being attempted (Type I). At the same
time, we do not wish to be awakened at 3 o’clock in the morning when the
alarm goes off from the car in front of our house, without any type of intrusion
(Type 11 error).

On a somewhat larger scale, we have radar systems that are intended to
detect targets at specified ranges. When they fail to do so, an error (Type I)
has been committed. On the other hand, these systems also claim, from time
to time, that a target is present when no such target exists. This latter case (a
Type II error) is called a false alarm. These types of errors for a search radar
are explored in some detail in later chapters of this text. Specific detection and
false alarm probabilities are calculated, and the relationship between them is
examined.

On an even larger scale, we have situations presented by our national air
transportation system. When the system fails to get you to your destination at
the expected time of arrival (ETA), an error has been committed that all of us
have experienced. And, if you’re trying to get to New York from Washington,
and wind up in Philadelphia due to bad weather, the system is delivering an
unintended result.

Whether a system is large or relatively small, many times errors are the
reason for failure of all or a part of the system. Therefore, often it is critical
to define and control the most significant errors that might occur. To do so,
usually an error model is constructed that:

a. Identifies all primary error sources, as well as their likely magnitudes.
b. Establishes mathematical relationships between these error sources.

If the errors can be shown to be independent and additive, often we can
make good use of a well-known relationship from elementary probability
theory: the variance of a sum is equal to the sum of the variances (of random
variables). By definition, the square root of the variance is the standard de-
viation, which is designated as “sigma”. Then we continue to work with the
standard deviations to represent the errors in question. Given such an error
model, we then must figure out the maximum tolerable errors and how to
control (i.e., reduce) the errors to make sure the overall system error budget is
not exceeded. As an example, if we are dealing with a shipboard air defense
system or a spacecraft that is being placed in a precise orbit, if the error budget
is exceeded, it is likely that these types of systems will fail or become severely
degraded. The consequences may well be mission failure and loss of life.

One of the more important aspects of error analyses is to decide how to
relate the errors defined in the system requirements document to the errors

12 SYSTEMS, PROJECTS, AND MANAGEMENT

in the error model. Specifically, this question must be answered: Does the
maximum error requirement correspond to the one-, two-, or three-sigma
error (or greater) value? Under fairly general conditions for error modeling
and analysis, designing a system for one of these three “assumptions” will
result in:

1. An overall system error probability of about 32 percent (plus and minus
one-sigma designation)

2. An overall system error probability of about 5 percent (plus and minus
two-sigma designation)

3. An overall system error probability of about 0.27 percent (plus and
minus three-sigma designation)

A simple one-sigma choice means that it is “allowable” for the overall
system to fail about one third of the time. This is certainly not a recommended
approach, and systems engineers must understand this issue in order to design
the system properly. The issue is also directly related to the “six-sigma” notion
that has been applied by numerous enterprises pursuing a specific high-quality
approach to delivering products and services. More about error analyses will
be presented in chapters eight and eleven, along with numerical examples.

Understanding when systems are likely to fail to do what they’re supposed
to do, and also do what they’re not supposed to do, is often a central theme
of the systems engineering activities. These, of course, can be expressed as
problems that need to be solved by the management and technical personnel
working on the system. At the same time, there are many problems that
might be considered chronic issues when managing an engineering project.
A sample of such problems is presented and discussed in the next section.

1.3 PROBLEMS IN MANAGING ENGINEERING PROJECTS

An article in the Washington Post [1.10] described an industry contract with
the Federal Aviation Administration (FAA) in the terms “out-of-control con-
tract” and “how a good contract goes sour.” It went on to describe how a
“cure letter” was sent to the contractor saying that “delays in a $4 billion
contract to modernize the computers used in the nation’s air traffic control
system were unacceptable.” Although this admonition pointed to delays and
therefore could be connected to not getting the work done on time, it is likely
that time delays resulted from performance issues and were also related to
the cost of the program. In general terms, problems that surface on a typical
project usually show themselves ultimately in terms of three main features:

1. Schedule (time)
2. Cost (as compared with the original budget)
3. Performance

1.3 PROBLEMS IN MANAGING ENGINEERING PROJECTS 13

These are the “big three” of project management and systems engineering
management. Projects are originally planned to meet the performance re-
quirements within the prescribed time and budget constraints.

Although there are numerous reasons why projects do not satisfy these
three key aspects of a system development [1.11, 1.12, 1.13], several of the
most common such reasons are:

Inadequate articulation of requirements
Poor planning

Inadequate technical skills and continuity
Lack of teamwork

Poor communications and coordination
Insufficient monitoring of progress
Inferior corporate support

NSk L=

The following discussion expands on these reasons for problems and lack of
success.

1.3.1 Inadequate Articulation of Requirements

Requirements for a system are normally defined by the customer for the sys-
tem and are at times referred to as “user” requirements. Such systems can be
completely new or they can represent upgrades of current systems. Especially
if they are new, the customer often has difficulty in expressing these require-
ments in a complete and consistent fashion, and in terms that can be utilized
by a system developer. It is also the case that it may be simply too early to
understand all system requirements. Poor requirements invariably lead to poor
system design. This situation remains a problem if the requirements cannot
be negotiated and modified for various contractual reasons. Both users and
developers complain about requirements, but from their own perspectives.
They agree that something new has to be done regarding how requirements
are defined and satisfied and several proposals have been made (such as the
“spiral model” for software development) to improve the situation. Flexibility
is called for in contractual situations that can be quite formal and unyield-
ing. Project Managers must keep this high on their list of potential problem
areas.

1.3.2 Poor Planning

Projects normally follow a “project plan” written at the initiation of a project.
The ingredients of such a plan are described in detail in Chapter 3. Such plans
often are “locked in” as part of a proposal and cannot be easily modified from
the point of view of the customer. Because system developments are rather
dynamic, most project plans are obsolete 6 to 12 months after they have been

14 SYSTEMS, PROJECTS, AND MANAGEMENT

written. They therefore need to be continually updated to reflect the current
understanding and status of the system. Basing communications and future
actions on outmoded or nonexistent plans can lead to large amounts of trouble.

1.3.3 Inadequate Technical Skills and Continuity

Many PMs complain that they are not able to access the necessary personnel
resources in order to run their projects. In a company setting, there is obvious
competition for the best people and some projects suffer simply because they
cannot find or hire such people. When they are able to hire from outside
the company, even if the new personnel are technically competent, it takes
time for them to climb the learning curve in terms of the project itself as
well as the corporate culture. Another side of the coin is the loss of key
technical capabilities to other “more important” projects in a company or the
possibility that various people may just get up and go to another firm. It is
critically important for a PM to maintain an excellent technical staff or else
face the strong possibility of inadequate technical performance, which will
also show up as problems in schedule and cost.

1.3.4 Lack of Teamwork

Even with a cadre of strong technical people, if they do not operate as a team,
the project is in jeopardy. The skills of the Project Manager are paramount
here, as he or she must be able to forge a spirit of teamwork and cooperation.
Today’s systems are very complex and require day-to-day interactions of the
members of the project. If these interactions do not take place, or are negative,
the project suffers and loses ground. There are times, as well, that a PM must
“bite the bullet” with a project person who is not able to be part of a team,
preferring instead to be isolated, or act so as to represent a divisive force in
a team effort. This should not be tolerated and decisive action is required to
solve this type of problem. A variety of issues surrounding how to build a
productive team are addressed in considerable detail in Chapter 6.

1.3.5 Poor Communications and Coordination

One of the key skills of a Project Manager, and a leader, is communication.
Effective communication is critical both within the project itself and outside
the project to supporting company elements (e.g., company management,
accounting/finance, contracts, etc.) as well as the customer. Special efforts
are required to keep necessary people continually informed about what is
going on and why. Surprises as well as insufficient data and lead times can be
deadly in a project situation. Project staff are especially sensitive to a PM who
does not provide important information and feedback. Some staff require a
special amount of “TLC” so that they can perform. Such are the facts of life

1.3 PROBLEMS IN MANAGING ENGINEERING PROJECTS 15

in dealing with high-technology engineering projects. Many projects fail for
this reason alone. A responsible PM must always be aware of the need for
communication and be prepared to spend the time necessary to communicate
and coordinate.

1.3.6 Insufficient Monitoring of Progress

For reasons that are not particularly clear, many Project Managers kick off
their projects and then let them run “open loop” until a critical project re-
view is scheduled. Peters and Waterman’s “management by walking around
(MBWA)” [1.14] is something to keep in mind in this regard. A good PM
keeps in touch with people and progress every day, mostly by “walking
around” and informally exploring issues, problems, and needs. Even highly
competent personnel require monitoring, as long as it is done in an inobtru-
sive and helpful way. By careful and sensitive monitoring of progress between
key milestones, one is able to keep the project on track and avoid disasters
during the formal project reviews when both management and customer are
present. This is especially true during the early days of a project because one
“never gets a second chance to make a good first impression.” Consistent and
constructive monitoring and feedback from the beginning set the stage for
project success.

1.3.7 Inferior Corporate Support

All organizations are expected to provide assistance and support to the projects
that are often the lifeblood of these organizations. Support should be forth-
coming from the PM’s boss as well as the various designated support groups
such as accounting and finance, contracts, graphics, production, manufac-
turing, and an assortment of matrixed functional elements (such as me-
chanical design, electrical design, software engineering, etc.). For example,
accounting/finance may be expected to provide project cost reports to the PM
and the project team on a periodic basis, such as monthly. If these reports are
late or incorrect most of the time, the PM is operating at a distinct disadvan-
tage. The PM should not allow this situation to continue. Although finding
solutions to inadequate internal support can be a nontrivial adventure, it is
usually worth the time and effort necessary to solve such a problem. However,
even a good PM may have to enlist the good offices of line management to
do so.

The preceding sections present just seven ways a project can go off track.
There are clearly many others. If you are a Project Manager or Chief Systems
Engineer, it makes sense to understand these and other problem areas so that
you can find solutions before they lead to cost and schedule overruns and
inadequate system performance. These key problems can be restated in terms
of specific guidance to the Project Manager, as described in Exhibit 1.1:

16

SYSTEMS, PROJECTS, AND MANAGEMENT

Exhibit 1.1: Selected Ways for the PM to Avoid Problems

1.

Review and analyze requirements continuously and in detail and raise
problems with requirements with your management and, as necessary,
with your customer.

. Prepare the best project plan that you can and update that plan at least

once a quarter; make sure that your plan is concise and readable by your
project personnel.

. Do not accept poor technical performers on your project; insist on the

best technical talent who meet the highest standards of performance and
creativity.

Build a high-energy responsive team that is able to communicate freely
and solve project problems; discharge personnel that prove to be incor-
rigible nonteam players.

. Maintain high standards of open and honest communication and coor-

dination with your boss, other company people, project staff, and the
customer.

. Monitor project status and progress through informal MBWA, being

sensitive to the work habits and needs of your people; establish more
formal periodic status reviews.

. Set up efficient and productive support mechanisms within your com-

pany or organization so as to maximize the effectiveness of these inter-
actions; insist upon high standards of performance from support orga-
nizations.

Most government agencies develop systems and therefore have been strug-
gling with these types of problems for a long time. They often try, therefore, to
provide guidance internally and also to contractors as to issues and problems
that they have faced in the past. For example, the National Aeronautics and
Space Administration (NASA) has been building high-technology systems
since its inception and attempted to head off problems by publishing a doc-
ument called Issues in NASA Program and Project Management [1.15]. The
contents of this document are as follows:

N

SN AW

. An Overview of the Project Cycle

Systems Engineering and Integration (SE&I) Management for Manned
Space Flight Programs

Shared Experiences from NASA Programs and Project: 1975
Cost Control for Mariner Venus/Mercury ‘73

The Shuttle: A Balancing of Design and Politics

Resources for NASA Managers

Clearly, NASA is trying to learn from its history, experiences, and mistakes
and have its contractors benefit from the past. A relatively new “theory” of

1.4 THE SYSTEMS APPROACH 17

management emphasizes “the learning organization” and proposes methods
of assuring that such learning occurs [1.16]. Learning from one’s own as well
as another’s errors is a basic rationale for this as well as other books.

1.4 THE SYSTEMS APPROACH

The “systems approach,” at times difficult to define and execute, is basically a
recognition that all the elements of a system must interoperate harmoniously,
which, in turn, requires a systematic and repeatable process for designing,
developing, and operating the system. The architecture for a system must be
sound, and it must at least satisfy all the requirements for the system as set forth
by the user or customer. By following a systematic and repeatable “systems”
process, the developer maximizes the chances that this will be the case.

The key features and results of a systems approach may be stated as follows:

Follow a systematic and repeatable process.

Emphasize interoperability and harmonious system operations.
Provide a cost-effective solution to the customer’s problem.
Assure the consideration of alternatives.

Use iterations as a means of refinement and convergence.
Satisfy all user and customer requirements.

Create a robust system.

Nk L=

Figure 1.1 provides an overview of a systems approach, the elements of
which are briefly cited in what follows:

Box 1: Requirements. Requirements for the system are defined by the
customer and user and become the touchstone for all design and de-
velopment efforts. These are considered inviolate unless a negotiation
leads to changes that should be reflected in all contractual documents.
Requirements are normally provided in a formal “requirements” doc-
ument. At times, a derivative document called a specification is forth-
coming from the customer. The specification, however, is often written
by the developer.

Box 2: Project Plan. The PM is able to develop a project plan from the
statement of requirements. This is a roadmap (discussed in Chapter 3)
for the important aspects of the project. If the key members of the project
team have been selected, they will work with the PM in order to develop
the plan. If not, they must ultimately buy into the plan as defined by the
PM, or modify it appropriately.

Box 3: Functional Design of Alternatives. The architectural design of
the system operates at the functional level, that is, it concentrates on
the functions that the system is to perform in distinction to how these

: Customer/ I
|

| user
L
1] 2] Proiect 3 | Functional 4] Analysis 6 | preferred
Requirements | é n design of of system
p alternatives alternatives architecture
| T Iteration | T
5]
Evaluation
| criteria
requirements
?
5 |
Subsystem
Yes des);gn El Analysis 10] Trade-off 1] preferred
of studies subsystem
* Hardware alternatives designs
* Software
* Human
Iteration
requirements
?
13]
Subsystems/
Yes bu)illds 14] Subsystem/ 15] Subsystem/ 16] System
build build test and
* Hardware integration test evaluation
* Software
* Human]
17
) Cost-
lteration effective
physical system

Figure 1.1. Overview of the systems approach.

Architecture
design

Subsystem
design

System
construction

1.4 THE SYSTEMS APPROACH 19

functions are to be implemented in hardware, software, and human
components. Several such designs are configured, each representing a
feasible alternative. Often, these alternatives span concepts that range
from low cost to high performance.

Box 4: Analysis of Alternatives. Each of the alternatives is analyzed in terms
of cost, performance, and satisfaction of requirements. By interacting
back and forth between the postulation of alternatives and their analyses,
it is ultimately possible to determine the quantitative and qualitative
attributes of the various viable alternatives. At the system level, two to
four alternatives might be considered desirable.

Box 5: Evaluation Criteria. The analysis of alternatives could not be carried
out without the clear identification of criteria against which the alter-
natives are evaluated. These criteria are derived from the requirements
and may include such features as interoperability, growth potential, and
societal risk as well as the detailed performance items listed in the
requirements document. A formal evaluation framework is normally
necessary in order to carry out the evaluation.

Box 6: Preferred System Architecture. This step is a selection of the system-
level architecture that is most cost-effective. It represents a choice among
the competing alternatives. Many projects go astray because they leap
to a preferred architecture without the explicit consideration of alterna-
tives. As an example, this may constitute the selection of time-division
multiplexing as preferred over a frequency-division multiplexing ap-
proach for a communications system. System architecture is a very
important part of the systems approach and the system engineering and
design process and is discussed again in Chapter 9.

Box 7: Satisfies Requirements? We make this step explicit in order to
emphasize the significance of assuring that the preferred system archi-
tecture meets all the designated requirements. If even one mandatory
requirement is not completely met, then it is necessary to loop back and
consider additional alternatives. If all the key requirements are satis-
fied, then and only then can the project team move on to the matter of
subsystem design.

Box 8: Subsystem Design. By knowing the preferred architecture at the
system level, it is then possible to move into detailed subsystem design.
These subsystems involve the interplay among hardware, software, and
human elements. Subsystems are naturally divided into subordinate el-
ements, which can be called builds, configuration items (Cls), compo-
nents, or other names that can be mutually understood.

Box 9: Analysis of Alternatives. Following a process similar to that uti-
lized to develop a preferred architecture, alternatives are set forth and
analyzed at the subsystem level of design. This is critical because there
are numerous ways to implement a given function. Issues of timing and
sizing are usually important here.

20

SYSTEMS, PROJECTS, AND MANAGEMENT

Box 10: Trade-Off Studies. A variety of trade-offs are generally considered
in trying to optimize at the subsystem level. These may be power—
weight—space—performance trades, attempting to find the proper balance
of attributes. An iteration loop is shown explicitly to account for the
possible need to postulate additional alternative subsystem designs.

Box 11: Preferred Subsystem Designs. Preferred subsystem designs flow
from the previous steps, representing near-optimal choices with all rele-
vant factors explicitly considered in the trade-off studies. At this stage of
the process, one is still at the design level and the system has not, as yet,
been built. There are some exceptions to this, as with the notion of rapid
prototyping of subsystems in order to prove certain critical high-risk
parts of a system.

Box 12: Satisfies Requirements? We again wish to make explicit the check-
ing of the preferred subsystem designs to assure that all requirements
have been met. If not, an iteration loop is shown that means we are “back
to the drawing board.” If so, we move on to the physical building of the
system.

Box 13: Subsystems/Builds. The physical construction of the subsystems
is now in order, occurring for the hardware, software, and human com-
ponents, and in consonance with the subsystem designs. Builds is used
here as a generic name for configuration items, components, subsub-
systems, and so on. The physical construction proceeds through the
various levels of indenture defined in the design process.

Box 14: Subsystem/Build Integration. After a given build (or CI) has been
constructed, it must be integrated with all interoperating builds (or CIs).
This is performed at all subordinate levels of the system.

Box 15: Subsystem/Build Test. Physical testing takes place as builds (Cls)
are integrated to assure that they work together, are compatible, and
perform as required. If integrated builds fail these tests, the process
is iterated until the test leads to success. Clearly, all test plans and
procedures must be based on the original or derivative requirements.
Many people have suggested, especially with respect to software, that a
“build a little, test a little” orientation is most likely to lead to success.

Box 16: System Test and Evaluation. A final system-level test and eval-
uation (T&E) step confirms that the system meets both development
and operational requirements. This can be a long and protracted step,
especially for systems that are to operate in a hostile field environment
such as aboard a ship or aircraft. It represents an end-to-end check of
the full system and a final verification that all requirements have been
met.

Box 17: Cost-Effective Physical System. The result of all the previous steps,
and many implicit substeps, is a cost-effective physical system.

Although these steps represent most of the elements of the systems ap-

proach, there are several that are implicit and therefore are examined in later

1.5 THE PROJECT ORGANIZATION 21

chapters. However, this overview explains the key aspects of such an ap-
proach. It is intended to lead to a system that meets all requirements and is
cost-effective and robust. These terms are examined in the chapters dealing
with systems engineering management.

The Project Manager and Chief Systems Engineer are clearly key players
in assuring that the systems approach is carried out with discipline and good
sense. We now more formally explore their roles and responsibilities in a
corporate setting.

1.5 THE PROJECT ORGANIZATION

An illustrative organization chart for a project is shown in Figure 1.2. This
chart shows only the project and not the organization in which the project
may be embedded, which is addressed later in this chapter.

The Project Manager (PM) is shown at the top of the chart with two other
key players, the Chief Systems Engineer (CSE) and the Project Controller
(PC). In this book, we strongly suggest that the chief engineer of a project
be called the Chief Systems Engineer, stressing that the main task of the
chief engineer is the systems integrity of the overall system. Some orga-
nizational structures might list the lead engineer as the chief engineer and
have the systems engineer and systems engineering function in parallel with
the other engineering functions such as hardware and software engineering.
Some projects might be more limited in scope and therefore not require some
of the functions shown. Others might indeed be larger and include addi-
tional functions such as manufacturing, production engineering, installation,
operations and maintenance, and others. We will now consider the specific
responsibilities of the Project Manager, Chief Systems Engineer, and the
Project Controller.

1.5.1 Responsibilities of the Project Manager (PM)

Clearly, the Project Manager (PM) has responsibility for the overall project,
in all its dimensions. At the top level, this focuses on the schedule, cost, and
technical performance of the system. An estimate of the time that a PM might
spend on each of these features might be 20% schedule, 30% cost, and 50%
performance, assuming that one could divide all job-related activities into
these three categories. If one includes purely administrative activities as a
fourth category, the percentages might be 15% schedule, 25% cost, 35% per-
formance, and 25% administrative. The last item would include such matters
as interviewing personnel, preparing their evaluations, and similar duties.

The classical responsibilities of a PM are usually described in terms of four
activities: (1) planning, (2) organizing, (3) directing, and (4) monitoring. Some
people use the word “controlling” in place of this alternative of “monitoring,”
for which all control is subsumed within the “directing” activity.

Project

manager (PM)
Project Chief system
Controller (PC) engineer (CSE)
1.7
— Scheduling 1.1 1.2 1.3 1.4 1.5 1.6
Systems Hardware Software . - Quality
1.8 engineering engineering engineering Testing Logistics assurance
— Costing 1.1.1 1.2.1 1.3.1 1.41 1.5.1 1.6.1
. Electrical Software Test ;
19 Operations design design planning RMA Quality
Personnel 1.1.2 1.2.2 13.2 14.2 15.2 1.6.2
assignments Mocharal oot Con i
|| . | | Mechanica || . || es || | | Configuration
1.10 Requirements design Coding execution LS management
— Facilities 1.1.3 1.2.3 1.3.3 1.4.3 1.5.3 1.6.3
I MMI Software Testing . Interface
111 Specifications design — tools/ support Training control
Contract methods
ontrac 1.1.4 1.2.4 1.4.4
liaison
| | System | | Specialty | | Testand
evaluation engineering evaluation

Figure 1.2. lllustrative project organization. RMA = reliability-maintainability-availability; ILS = integrated logistics support; MMl = man-machine
interface.

1.5 THE PROJECT ORGANIZATION 23

The planning activity is dominant in the early stages of a project, espe-
cially with respect to the coherent preparation of a project plan. Steady-state
planning involves updating this plan and thinking about and planning how to
handle special problems and contingencies.

The organizing responsibility involves deciding how to organize the project
itself (e.g., the chart of Figure 1.2), and reorganizing when and where nec-
essary. It also means the allocation of resources to the various tasks of the
project. This shows up as the preparation of initial tasking, work breakdown
structures, responsibility matrices for the project, and the like.

The directing activity is the formal and informal day-to-day running of
the project and its various meetings as well as the delineation of assignments
when changes or fine-tuning is required to solve problems.

The monitoring duty involves the continuous reading of the status of all
aspects of the project in relation to the system requirements and the project
plan. If monitoring results in the discovery of problems, remedial action is
taken under the directing activity.

An often frustrating factor comes into play when the PM’s responsibilities
and authority are not congruent. Because the PM usually has full responsibility
for the success or failure of the project, it can be extremely difficult if this
person cannot, for example, hire or fire, negotiate with outside vendors and
subcontractors, and make final arrangements with a counterpart customer.
Incommensurate authority is one of the “red flags” of most PMs. A summary
list of the various responsibilities and duties of a Project Manager is provided
in Exhibit 1.2.

Exhibit 1.2: Selected Duties and Responsibilities of a PM

Cost/Budget
» Confirming that the project can be completed within budget

» Reviewing periodic (e.g., monthly) cost reports
* Obtaining valid cost-to-complete estimates
* Assessing and mitigating project cost risks

* Assuring the validity of system life-cycle costs
Schedule
* Establishing an up-to-date master schedule

* Assuring that all interim milestones are met
* Determining ways to make up time when slippage occurs
* Obtaining valid time-to-complete estimates

* Scheduling internal and customer status reviews
Technical Performance
* Assuring that the system satisfies all technical requirements

» Confirming the validity of the technical approach
* Continuous tracking of technical performance status

24 SYSTEMS, PROJECTS, AND MANAGEMENT

* Installing systems and software engineering methods/practices

* Obtaining computer tools for systems and software engineering
Administrative

* Personnel interviewing, hiring, and evaluation

¢ Interfacing with corporate management

* Interfacing with internal project support groups
* Coaching and team building

* Assuring the availability of required facilities

1.5.2 Responsibilities of the Chief Systems Engineer (CSE)

As suggested by the organization chart of Figure 1.2, the Chief Systems
Engineer (CSE) is the key manager of all the engineering work on the project.
Thus, the CSE is both a technical contributor as well as a manager. Indeed,
the CSE might well have twice as many direct reports as does the PM.

The CSE, under the PM, assumes primary responsibility for the technical
performance of the system. In terms of time allocations, the CSE might
experience 15% schedule, 15% cost, and 70% technical performance. The
CSE has some administrative responsibilities, largely having to do with the
management of the technical team. The CSE is definitely a systems engineer
and should spend a great deal of energy in finding the correct technical
solution for the customer.

The fact that both the PM and the CSE have, to some extent, overlapping
responsibilities, suggests that it is critically important that these two people
work together productively and efficiently. Friction between these key players
will seriously jeopardize project success. They must communicate and share
information extremely well, and understand each other’s weaknesses and
strengths. One-on-one meetings are standard so that potential problems are
solved before they might hurt the efforts of the entire team. A summary list
of the key responsibilities and duties of the Chief Systems Engineer is shown
in Exhibit 1.3.

Exhibit 1.3: Ten Responsibilities and Duties of the Chief Systems
Engineer (CSE)

Establish the overall technical approach

Evaluate alternative architectural system designs
Develop the preferred system architecture
Implement a repeatable systems engineering process
Implement a repeatable software engineering process
Oversee use of computer tools and aids

Serve as technical coach and team builder

Hold technical review sessions

PNANR W=

1.6 ORGANIZATIONAL ENVIRONMENTS AND FACTORS 25

9. Attempt to minimize overall project time period
10. Develop cost-effective system that satisfies requirements

1.5.3 Responsibilities of the Project Controller

The Project Controller (PC) is the third player in the project management
triumvirate. The PC has no technical performance responsibilities, focusing
instead on schedule, cost, personnel assignment, facilities, and contract liaison
issues. Time spent on these matters is estimated as 25% schedule, 45% cost,
10% personnel, 10% facilities, and 10% contract liaison. Cost issues have to
do with assuring that the PM and CSE get the cost reports that they need and
also that the overall project stays within budgeted costs.

The Project Controller is likely to be the “keeper” of the master schedule
for the project, although inputs are obviously required from engineering per-
sonnel. The PC need not be an engineer, although an understanding of what
engineering does is clearly a requirement. Good PCs can anticipate problems
by in-depth analyses of project cost and schedule data. By examining trends
and timetables, the PC may be able to spot trouble spots before they are ev-
ident to other project personnel. This person therefore can be worth his or
her weight in gold, primarily to the PM. A brief citation of some of the PC’s
responsibilities and duties is provided in Exhibit 1.4.

Exhibit 1.4: Ten Responsibilities and Duties of the Project
Controller (PC)

Maintain overall project schedule

Assess project schedule risks

Assure validity and timeliness of project cost reports
Track special cost items (e.g., travel, subcontractors)
Develop project cost trends

Assess project cost risks

Maintain life-cycle cost model for system

Verify and maintain personnel assignments

Assure that necessary facilities are available

Maintain appropriate liaison with contracts department

SOXNAN B WD =

—

1.6 ORGANIZATIONAL ENVIRONMENTS AND FACTORS

There are many who claim that the organizational environment in which a
project is performed is the critical factor in the ultimate success or failure of
a project [1.17]. This item was alluded to earlier under the topic of “inferior
corporate support.” We examine this issue here in somewhat greater detail
with respect to the particular corporate entities with which the Project Man-
ager (and the Chief Systems Engineer and Project Controller) must interact.

26 SYSTEMS, PROJECTS, AND MANAGEMENT

Interactions with project staff, in the main, are reserved for the discussions in
Chapters 5 and 6.

1.6.1 Corporate Organizational Structures

Although to a large extent a project has a great deal of internal structural
coherence, it exists within a given overall corporate organizational structure.
That corporate structure, depending on its configuration and processes, can
have major impacts on how well a project is able to function.

In general, it can be said that there are three generic types of corporate
structures, as illustrated in Figure 1.3: (@) the functional structure, (b) the
project structure, and (c) the matrix structure.

As shown in the figure, the functional structure is organized fundamentally
by functional areas such as engineering, marketing, sales, manufacturing,
production, and so forth. Projects, as such, either for internal or outside
customers, are formed within a functional group for the duration of the project
and then are dissolved. As projects come and go, the basic functional structure
remains. A PM is selected from the functional group that is likely to have
the most to do with the project from a functional discipline perspective.
Depending upon how high up the PM is in the functional organization, as well
as other factors such as the technical scope of work of the project, the PM may
have to reach across functional lines to access resources for the project. This
can work very well because all functional managers are in the same position of
requiring resources from other groups from time to time. Projects therefore
can do very well in functionally structured organizations, but only if the
functional line management is supportive of project needs and requirements.

Figure 1.3 next shows the “pure” project structure, in which the entire
organization consists of a set of projects. This structure is prevalent in service
organizations, and especially in professional services contractors that do work
for the federal government. In such cases, each contract tends to establish a
project, and projects come and go as the contracts under which they are
operating are completed without renewals or further work requirements. The
PM usually starts a project with key personnel from a project that is phasing
down or being completed. Such an overall corporate orientation is conducive
to project autonomy and support because it is its only focus. Projects can
flourish in that type of environment, but from time to time, they do not have
ready access to specialized expertise that might reside in a functional group.

The third type of overall corporate structure shown in Figure 1.3 is the
matrix structure. This might be viewed as a hybrid between the previous two
forms, with the coexistence of functional groups together with the formal
recognition of a project group. In principle, this structural corporate form
can provide an ideal mix of the advantages of both project autonomy and
functional expertise. However, real-world pressures and competition between
project and functional groups can also yield a nonsupportive environment.
Theories aside, much of the success of a matrix structure, in terms experienced
by the Project Manager, depends on the quality of corporate management.

1.6 ORGANIZATIONAL ENVIRONMENTS AND FACTORS

Corporate
management
Corporate
administration
and support
Engineering Marketing Sales Manufacturing Production
Electronic Mechanical Software Integration Specialty
design design engineering and test engineering
(@)
Corporate
management
Corporate
administration
and support
Program Program Program Program
manager manager manager manager
Project| |Project| |Project| |Project| |Project| |Project| |Project| |Project
A B C D E F G H
(b)
Corporate
management
Corporate
administration
and support
Director | | Engineering| | Marketing Sales | |Manufacturing | | Production
Projects

Project A

Figure 1.3. Corporate organizational structures.

(c)

27

28 SYSTEMS, PROJECTS, AND MANAGEMENT

1.6.2 Interactions with Management

The PM reports “upward” to management, as represented perhaps by a pro-
gram manager, or a division director, or a vice president. The specific title
may be less important than the nature of the relationship between the PM and
the boss. A project management position may carry with it the assumption
that the PM runs the project, that is, that the PM has full responsibility and
authority for the project. This can be true for the former, but in real life is
rarely true for the latter. That is, the PM’s authority is limited, and that is a
key matter that has to be negotiated between the PM and the boss. Failure
to resolve this issue can lead to significant stress for both parties, which will
carry over to the CSE, PC, and other members of the project team. Some
organizations attempt to recognize and solve this problem through the formal
use of an “authority matrix,” which defines the boundaries of authority at
the various levels in the organization. Such a matrix might deal with precise
definitions of limits with respect to such activities as:

Hiring personnel and setting salaries

Giving raises and bonuses

Negotiating and signing contracts
Expenditures of monies for different categories
Signing and verifying time cards and charges
Negotiating with customers

AR e

In the absence of a culture that requires such matrix definitions, it falls to the
two parties, the PM and the boss, to negotiate a working relationship. If you
are a PM, or aspire to be one, you should seriously consider how to begin a
dialogue with your boss with respect to your authority and lack of it. A good
working understanding is crucial to the success of the project.

1.6.3 Interactions with Matrixed Functional Managers

Depending on the organizational structure of the enterprise at large, it may
be necessary to interact with matrixed functional managers so as to obtain
resources, the principal one of which is people. Especially in large organiza-
tions, there are managers of software engineering, or electronic engineering,
or mechanical engineering groups. If a PM needs three software engineers for
the project, the corporate culture may call for requesting such persons from
the head of the software engineering group or department. This involves inter-
views with candidates, selections of the best persons for the job, conflicts with
current assignments, and ultimately commitments of people for various spe-
cific lengths of time. Depending as well on the circumstances (e.g., the project
load and level of business) as well as the people and personalities involved,
this interaction may be easy or it may be difficult. If a PM cannot get

1.6 ORGANIZATIONAL ENVIRONMENTS AND FACTORS 29

satisfaction in terms of obtaining the necessary commitments of the right
personnel, it may be necessary to work up the chain of command and across
to the functional manager chain of command at a higher level than the PMs
counterpart. Such are the necessary vagaries of working “across the company”
in order to secure the needed project personnel and support. Much of this can
be avoided if the PM has a go-ahead to hire, but the well-run organization
will almost always have an eye out for borrowing or transferring people from
one group to another to maximize productivity for the enterprise at large.

1.6.4 Interactions with Accounting/Finance

Another kind of interaction occurs when an accounting/finance group has
responsibility for project cost accounting, and this group does not report to
the PM. This is a very common situation, calling for an early understanding
of what types of reports will be provided to the project management team.

The centerpiece of such reports is likely to be project cost reports, which
define the costs expended to date, and during the last reporting period (e.g.,
month), by various categories of cost (e.g., direct labor, overhead, and general
and administrative costs). The PM may designate the Project Controller as the
point of contact in obtaining the required cost reports with the desired format
and frequency. A smooth interaction in this regard that works effectively
is considered critical to the success of the project. No project can be run
efficiently without timely and accurate cost information.

1.6.5 Interactions with Contracts

As with accounting and finance, most organizations have a contracts depart-
ment that does not report to the PM. Thus, a linkage has to be established with
certain contracts personnel in order to understand the precise requirements
of the contract, provide all the necessary contract deliverables, and, when ap-
propriate, negotiate modifications to the contract. Various types of contracts
(e.g., cost type vs. fixed price vs. time and materials) will be handled by a PM
in different ways. Contract provisions may allow certain costs to be traded
without contracting officer approval, or they may not. Certain contracts have
limits on expenditures by category (e.g., use of travel or consultant fees), and
so forth. The PM must thoroughly understand these types of contract provi-
sions in order to effectively manage the project. The PC may also be utilized
by the PM as the primary point of contact with contracts so as to conserve the
time demands on the PM but still have a solid and constructive interaction.
PMs who neglect this relationship are headed for trouble.

1.6.6 Interactions with Marketing/Sales

For purposes of this discussion, we can consider two circumstances. For the
first, the company is primarily focused upon developing products to sell to

30 SYSTEMS, PROJECTS, AND MANAGEMENT

other businesses or to the public at large (e.g., consumer products), and for the
second, the company does most of its system development under a contract
with a specific customer. We call the first case “commercial” and the second
“contract.”

In the commercial case, marketing/sales has the task of trying to figure
out what types of which products should be made, and for what classes of
customers. When they have made such a determination, they then establish
a requirement that engineering make the selected products, including the
features that are considered most desirable. Timetables are also established
and a project is up and running to meet these needs. Thus, there is a direct link
between the project and sales/marketing such that the requirements for the
system (product) in question are determined by the marketing/sales staff. The
vagaries of the marketplace often come into play such that the PM, CSE, and
PC are under enormous pressure with difficult schedules and performance
requirements. In smaller companies and projects, this can lead to twelve-
hour-a-day work assignments, due to the usual lack of resources. The project
team thus needs to be functioning well, and also needs to stay in constant
touch with the marketing/sales people.

In the contract case, as with doing work for federal, state, and local gov-
ernments, marketing/sales get involved early in talking to the customer and
conveying the system requirements to the project team, usually before a re-
quest for proposal (RFP) has been written or conveyed. Both the project team
and marketing/sales work together in order to shape the proposal response
so as to maximize the probability of a win. Once the contract is indeed won,
marketing/sales usually shift their focus to the potential follow-on contract,
talking to both project team and customer to make sure that the PM, CSE,
and PC are considering the future contract as well as the current one. Thus,
there is continual contact between the project team and the marketing/sales
organization in order to be in a position to make the most competitive bids,
and win as many of them as possible.

1.6.7 Interactions with Human Resources

Typically, the Human Resources Department (HRD) focuses upon at least the
following:

Recruiting in order to satisfy project needs

Administering benefit programs (health insurance, etc.)
Managing the overall personnel review/evaluation process
Recommending salary and total compensation increases
Advising on special personnel problems

ANl e

The need for new people for a project is usually established by the PM
and the HRD is tasked to find these people. This is a most critical link in the
relationship with the HRD, since without the right people at the right time,

1.6 ORGANIZATIONAL ENVIRONMENTS AND FACTORS 31

the project risks begin to escalate. Less interaction is required relative to the
benefit programs, since they tend to be standard for all employees. Personnel
performance reviews are held periodically and guidance is usually given to the
PM by the HRD for consistent execution. This leads to salary and compensa-
tion increases, which tend to result in at least some unhappy people. This, in
turn, might result in the HRD folks working with the PM in order to convey the
correct messages to the employees in question. Typically, the PM, CSE, and
PC are the most important folks in determining what the compensation will
be for each member of the project team. The best results are usually obtained
when there is good communication with the Human Resources people.

1.6.8 Interactions with Corporate Information Officer (CIO) Office

The Office of the CIO has, among others, the following responsibilities:

Identify information needs of the entire enterprise

Focus these needs at the project level

Build or acquire the systems in order to satisfy these needs

Operate these systems in order to provide support to the various projects
Reengineer the systems as the needs change

ANl e

As suggested earlier in the interactions with Accounting/Finance, there is a
critical need for the PM, CSE, and PC to be able to track cost, schedule, and
technical performance of the project. The cost information typically comes
from accounting/finance, but may have to be converted into a project man-
agement format by the CIO office. A well-run organization understands that
this highly critical interface issue needs to be worked and resolved success-
fully. This means that the reports sent to the project team must be timely and
accurate. Certain special needs may have to be satisfied, such as cost at the
task and subtask levels, and being able to establish “crosswalks” to the project
work breakdown structure (WBS), as an example. Schedule information may
be captured in a Project Management Software package (such as Microsoft
Project). In such a case, project cost information may have to be transferred
into such a package in order to analyze and display cost and schedule status
charts. In all cases, project people need to provide timely inputs, such as
monthly cost to complete and time to complete estimates, usually at the task
and activity level.

1.6.9 Interactions with Corporate Technology Officer (CTO) Office
Tasks that are typically carried out within the Office of the CTO are:

1. Identifying technologies that are needed now and into the future by the
entire enterprise

2. Relating these technologies to individual programs and projects

32 SYSTEMS, PROJECTS, AND MANAGEMENT

W

Investing in and acquiring the necessary technologies
Training project personnel with respect to these technologies

5. Assisting project personnel with technology transfer and insertion in
order to provide additional value to the customers as well as a highly
competitive position

b

Interaction with the CTO office can ultimately have a profound effect upon
the success of a project, especially the so-called high-tech projects. Such
projects are continuously exploring new technologies that will result in supe-
rior performance at an affordable cost. If this can be achieved, the project will
enhance its chances of success, both immediately and into the future. As we
see in the next chapter, a project will often have a requirement to formulate
a Systems Engineering Management Plan (SEMP), one of whose elements
has to do with technology transitioning. This means that the project must
consider and ultimately define how various technologies need to transition
from current to future systems.

Another type of technology that is usually needed by a project team can
be described by a set of computer-based tools. Computer-Aided Software
Engineering (CASE) tools are an example, and they provide the software
engineering team the tools that it needs to get its job done. A project team
that is provided with superior tools of this type will be able to operate at
higher levels of productivity, which will translate into higher efficiency and a
better overall result for the customer. Technology of all types can be viewed
as discriminators that lead to better solutions, which, in turn, lead to project
success.

1.6.10 Interactions with Customers

Finally, but certainly not last in importance, is the matter of interactions with
customers. Usually, there is a customer counterpart with whom the PM has
direct and day-to-day contact. This is true whether the customer is in the same
organization or is an outside client. Although more is discussed on this critical
subject in other parts of this book, there is little that is more important than
an honest, trusting, and effective relationship with the customer. At the same
time, the relationship cannot transcend or violate the terms and conditions of
the contract between the two entities. For example, the PM cannot agree to
do tasks that are not called for under the scope of work of the contract. All
increases or modifications in scope must be handled through formal changes
in the contract itself.

Another key factor in customer interaction involves the PM’s boss and his
or her boss, and so forth up the organization. No PM “owns” the customer;
the formal relationship is between corporate groups. A good organization
has multiple points of contact up and down the organization. This can be
particularly effective when problems occur that cannot be resolved between

1.7 LARGE-SCALE ORGANIZATION AND MANAGEMENT ISSUES 33

the PM and the client counterpart. Relationships up the chain of command
can be brought to bear in attempts to resolve difficulties that arise and find
solutions acceptable to both parties. The nature and success of a PM’s inter-
action with the customer are affected and supported by bosses up the chain
of command. This is yet one more reason for establishing a solid working
relationship between a PM and the boss. For better or worse, this relationship
can dominate the life of a PM, working smoothly and successfully, or with
stress and possible failure.

The effective PM truly sees the Project Manager, Chief Systems Engineer,
and Project Controller as a triumvirate that works together on a day-to-day
basis to anticipate and respond to the myriad demands of managing a project.
It is one of the most difficult jobs, with lots of stumbling blocks and hurdles.
The PM must be a highly skilled and competent individual in order to stay
focused on the key issues and create a team that moves forward effectively
and solves the many problems that invariably arise.

1.7 LARGE-SCALE ORGANIZATION AND MANAGEMENT ISSUES

The focus of this book is upon project and systems engineering management.
Some of the above discussion suggests that success or failure of a project
depends significantly upon the larger organizational structure within which
the project is being carried out. If it is embedded in a highly bureaucratic
situation, success becomes more difficult. Examples of such situations, of
course, can be found in both industry and government. Large bureaucratic
organizations often chip away at problems, but tend not to be able to truly
solve them. The reasons for this are varied, but they clearly can affect the
PM, CSE, and PC, who are laboring in the trenches, trying to make a difficult
problem more tractable.

The federal government, with its large size and tendency toward bureau-
cracy, is a good example of a set of large-scale organizations (i.e., the various
executive departments) that have a wide variety of internal problems that are
extremely difficult to solve. One can get some idea as to what these prob-
lems are by looking at reports produced on a continuing basis by the General
Accountability Office (GAO), whose job it is to investigate problem areas in
the executive agencies. Exhibit 1.5 provides a sample listing of some of the
reports of the GAO.

Exhibit 1.5: A Sampling of General Accountability Office (GAO)
Report Titles

» Defense Transportation: Process Reengineering Could Be Enhanced by
Performance Measures

» Managing for Results: Strengthening Regulatory Agencies’ Performance
Management Practices

34

SYSTEMS, PROJECTS, AND MANAGEMENT

Management Reform: Elements of Successful Improvement Initiatives
Department of Energy: Need to Address Longstanding Management
Weaknesses

Executive Guide: Creating Value Through World-Class Financial Man-
agement

Defense Acquisitions: Need to Revise Acquisition Strategy to Reduce
Risk for Joint Air to Surface Standoff Missile

Defense Acquisitions: Comprehensive Strategy Needed to Improve Ship
Cruise Missile Defense

Defense Acquisitions: Improvements Needed in Military Space Systems’
Planning and Education

Defense Acquisitions: Achieving B-2A Bomber Operational Require-
ments

Air Traffic Control: FAA’s Modernization Investment Management
Approach Can Be Strengthened

Combat Identification Systems: Changes Needed in Management Plans
and Structure

Defense Acquisitions: Advanced Concept Technology Demonstration
Program Can Be Improved

Defense Logistics: Actions Needed to Enhance Success of Reengineering
Initiatives

Internal Revenue Service: Custodial Financial Management Weaknesses
Information Security: Opportunities for Improved OMB Oversight of
Agency Practices

Defense Information Resource Management (IRM): Critical Risks Fac-
ing New Materiel Management Strategy

Department of Transportation: University Research Activities Need
Greater Oversight

Battlefield Automation: Army Needs to Determine Command and Con-
trol Priorities and Costs

Department of Energy: Management Problems Require a Long-Term
Commitment to Change

Military Satellite Communications: Opportunity to Save Billions of
Dollars

Acquisition Reform: Contractors Can Use Technologies and Manage-
ment Techniques to Reduce Costs

Defense Management: Impediments Jeopardize Logistics Corporate
Information Management

Tactical Intelligence: Joint STARS Needs Current Cost and Operational
Effectiveness Analysis

NASA Aeronautics: Impact of Technology Transfer Activities Is
Uncertain

Financial Management: Reliability of Weapon System Cost Reports is
Highly Questionable

Drug Control: Heavy Investment in Military Surveillance Is Not Paying
Off

1.7 LARGE-SCALE ORGANIZATION AND MANAGEMENT ISSUES 35

* Simulation Training: Management Framework Improved, But Challenges
Remain

* DoD Computer Contracting: Inadequate Management Wasted Millions
of Dollars

* Financial Management: IRS Lacks Accountability Over its ADP
Resources

 Patent and Trademark Office: Key Processes for Managing Automated
Patent System Development Are Weak

* DoD Information Services: Improved Pricing and Financial Management
Practices Needed for Business Area

* Information Security: Serious Weaknesses Place Critical Federal Opera-
tions and Assets at Risk

» Space Surveillance: DoD and NASA Need Consolidated Requirements
and a Coordinated Plan

* Defense IRM: Strategy Needed for Logistics Information Technology
Improvement Efforts

* Unmanned Aerial Vehicles: Maneuver System Schedule Includes
Unnecessary Risk

* Department of State IRM: Modernization Program at Risk Absent Full
Implementation of Key Best Practices

* Air Traffic Control: Complete and Enforced Architecture Needed for
FAA Systems

» Tax System Modernization: Imaging System’s Performance Moderniza-
tion Improving But Still Falls Short of Expectations

* Air Traffic Control: Improved Cost Information Needed to Make Billion
Dollar Modernization Investment Decisions

* Major Management Challenges and Program Risks: A Governmentwide
Perspective

Scanning Exhibit 1.5 we see a variety of problem areas, including:

. Overall management deficiencies

. Risks that need to be reduced

. Costs that are too high or not well enough known

. Schedules that are not workable

. Requirements difficulties

. Need for better performance and effectiveness measurement of systems
. Need for use of best practices

. Investment decision issues

. Overall financial management issues

. Need for systems reengineering and improvements

S O 09N N kW

—

These are all familiar themes in the worlds of project management and systems
engineering. However, in the context of large-scale organizational issues, they

36 SYSTEMS, PROJECTS, AND MANAGEMENT

may well be beyond the scope of what the PM, CSE, and PC are able to tackle
and provide effective solutions for. Indeed, the last-cited item in Exhibit 1.5
offered solution areas for twenty individual federal government agencies,
solutions that emphasized the following four areas:

1. Adopting a results orientation

2. Effectively using information technology to achieve program results

3. Establishing financial management capabilities that effectively support
decision making and accountability

4. Building, maintaining, and marshaling the human capital needed to
achieve results

Massive efforts will be required to address these areas for the twenty govern-
ment agencies.

The last point to be made in relation to the above is the fact that we are
seeing increasing amounts of software in our systems such that software itself,
its development and maintenance, is fast becoming our number one “systems”
problem. Exhibit 1.6 lists some of the GAO reports that highlight the various
aspects of software that need to be addressed.

Exhibit 1.6: Selected GAO Reports That Focus Upon Software
Issues

e Land Management Systems: Major Software Development Does Not
Meet BLM’s Business Needs

» Weather Forecasting: Improvements Needed in Laboratory Software
Development Processes

* Defense Financial Management: Immature Software Development Pro-
cesses at Indianapolis Increase Risk

¢ Embedded Computer Systems: Defense Does Not Know How Much It
Spends on Software

* Embedded Computer Systems: F-14D Aircraft Software Is Not Reliable

* Embedded Computer Systems: Significant Software Problems on C-17
Must Be Addressed

¢ Embedded Computer Systems: New F/A-18 Capabilities Impact Navy’s
Software Development Process

» Space Station: NASA’s Software Development Approach Increases
Safety and Cost Risks

» Mission-Critical Systems: Defense Attempting to Address Major Soft-
ware Challenges

» Software Tools: Defense Is Not Ready to Implement I-CASE Depart-
mentwide

The ubiquitous nature of software in our systems has led this author to include
a separate chapter (Chapter 10) in this book that highlights significant software
issues and attempts to define approaches that are and have been taken in order

1.7 LARGE-SCALE ORGANIZATION AND MANAGEMENT ISSUES 37

to find effective solutions. The PM, CSE, and PC are all likely, in the twenty-
first century, to have to deal with an increasing number of problems associated
with software as critical parts of our future systems.

In addition to providing the above reports, the GAO apparently carries out
an annual assessment of selected major weapon system programs. In a March
2005 report regarding these programs [1.18], the agency looked at 54 pro-
grams that represented an overall investment of some $800 billion. The GAO
tends to explore cost, schedule, and performance from a knowledge-based
perspective. That is, the GAO looked at critical junctures in these programs
and assessed the degree to which actual knowledge at those junctures was
better or worse than knowledge suggested by best practices. In other words,
at these points in the programs, did we know what we should have known?
If not, we were implicitly accepting higher levels of risk with respect to cost,
schedule, and performance. The three specific program elements examined
in some detail had to do with:

1. Technology maturity
2. Design
3. Production

This is certainly an interesting approach and perspective. The GAO con-
cluded that, of the fifty-four programs that were examined, the majority cost
more and took longer to develop than planned. The potential impacts of ac-
cepting lower levels of knowledge were cited in terms of adverse cost and
schedule consequences, leading to fewer quantity buys than were originally
planned.

In March 2006, the GAO examined fifty-two weapon system programs at
an investment level of over $850 billion. Looking at the five-year investment
numbers (from 2001 to 2006), we started at about $700 billion and ended at
nearly $1.4 trillion (!). As before, a picture of shortfalls was portrayed in cost,
schedule, and performance. Technology perspectives were highlighted, with
these results:

Programs that began with immature technologies have experienced average
research and development cost growth of 34.9 percent; programs that began
with mature technologies have only experienced cost growth of 4.8 percent.

Another quote of special interest is:

DoD often exceeds development cost estimates by approximately 30 to 40
percent and experiences cuts in planned quantities, missed deadlines, and per-
formance shortfalls.

A knowledge-based assessment with respect to technology, design, and
production continued to be the dominant mode of analysis; actual results
were compared with suggested best practices.

38 SYSTEMS, PROJECTS, AND MANAGEMENT

If we look at space system acquisitions within the DoD, another report in
April 2006 cited substantial cost and schedule overruns. The impacts of these
problems, over the following five years, were estimated to be a reduction of
some $12 billion available for new systems or to explore new technologies.
Several problem causes were articulated as well as methods for problem
reduction. The latter included:

 Using practices suggested by the GAO

* Allowing the Science and Technology (S&T) community to bring the
technologies to maturation

* Using an evolutionary development approach

» Improving collaboration on requirements

Shifts in thinking about how to develop space systems
* Changes in incentives

Accepting inputs from another agency is quite a problematic undertaking,
considering that all managers within the DoD operate within a definitive and
well-thought-out management structure. We might infer from some of these
results that being a weapon system manager within the DoD is a most stressful
and difficult vocation.

QUESTIONS/EXERCISES

1.1 From your own experience or your reading, identify
a. a project with major problems
b. three reasons the project got into trouble
c. what might have been done to
* fix the problems
* avoid the problems

1.2 For a project of your selection, discuss ways in which the systems
approach

a. was used effectively
b. was not used, and the consequences

1.3 Critique the systems approach diagram of Figure 1.1 Are there ways
that you would modify the diagram? Explain.

1.4 Discuss three advantages and disadvantages each for the following or-
ganizational structures:

a. functional
b. project
¢. matrix

1.5
1.6

1.7

1.8

1.9

1.10

REFERENCES 39

Draw a project organization chart for a project of your own selection.

Identify three responsibilities, other than those listed in this chapter, of
a. the Project Manager

b. the Chief Systems Engineer

c. the Project Controller

Locate another two definitions of systems engineering from the liter-
ature. Which of the various definitions do you find most satisfying?
Why?

Define three additional areas in which systems exhibit Type I and Type
II errors. How would you describe such errors? Are these errors related
to one another? Explain.

The section on errors shows specific error probabilities for plus and
minus one-, two-, and three-sigma situations. Verify these numbers.
What assumptions were needed in order to obtain these values? What is
the corresponding “four-sigma” error probability?

For a system with three additive independent errors (standard deviations)
of 2, 3, and 4, what is the variance associated with the overall maximum
error? What is the maximum standard deviation?

REFERENCES

1.1

1.2

1.3
1.4

1.5

1.6

1.7
1.8
1.9
1.10
1.11

1.12

Chapman, W. L., A. T. Bahill, and A. W. Wymore (1992). Engineering Modeling and
Design. Boca Raton, FL: CRC Press.

International Council on Systems Engineering (INCOSE), 2033 Sixth Avenue, #804,
Seattle, WA 98121.

Department of Defense (DoD) Website: web2.deskbook.osd.mil

Eisner, H. (1988). Computer-Aided Systems Engineering. Englewood Cliffs, NJ: Prentice-
Hall, p. 17.

Defense Systems Management College (DSMC) (1999). Systems Engineering Funda-
mentals. Ft. Belvoir, VA: DSMC Press, p. 3.

Shishko, R. (1995). NASA Systems Engineering Handbook, SP-6105. Linthicum Heights,
MD: National Aeronautics and Space Administration, Scientific and Technical Informa-
tion Program Office, p. 4.

Wynne, Michael W. (2004). “Policy for Systems Engineering in DoD,” 3010 Defense
Pentagon. Washington, DC 20301-3010, February 20.

Office of the Chief Engineer (2006). NASA Systems Engineering Processes and Require-
ments.” NPR 7123.1. Washington, DC: NASA, March 13.

See www.incose.org.

Burgess, J. (1993). “Out-of-Control Contract.” Washington Post, March 8.

Archibald, R. D. (1976). Managing High Technology Programs and Projects. New York:
John Wiley, p. 10.

Kezsbom, D. S., D. L. Schilling, and K. A. Edward (1989). Dynamic Project Management.
New York: John Wiley.

40

1.13

1.14

1.15

1.16

1.17
1.18

SYSTEMS, PROJECTS, AND MANAGEMENT

Kerzner, H. (2000). Project Management: A Systems Approach to Planning, Scheduling
and Controlling, Tth edition. New York: John Wiley.

Peters, T. J., and R. H. Waterman, Jr. (1982). In Search of Excellence. New York: Bantam
Books.

Hoban, F. T., ed. (1992). Issues in NASA Program and Project Management, NASA
SP-6101(05). Washington, DC: National Aeronautics and Space Administration, Office
of Management and Facilities.

Senge, P. M. (1990). The Fifth Discipline — The Art & Practice of The Learning Orga-
nization. New York: Doubleday.

Frame, J. D. (1987). Managing Projects in Organizations. San Francisco: Jossey-Bass.
GAO Highlights. “Assessment of Selected Major Weapon Programs,” March 2005 and
March 2006. www.gao.gov.

2

OVERVIEW OF
ESSENTIALS

2.1 INTRODUCTION

This chapter provides an overview of the essentials of project management
and the systems engineering process as well as its management. This is
followed by an examination of the essentials of the systems acquisition life
cycle, which itself is correlated with the systems engineering process. The
chapter concludes with a citation of some of the standards relevant to project
management and systems engineering.

2.2 PROJECT MANAGEMENT ESSENTIALS

The previous chapter explored some of the elements of project management,
including the roles of the project triumvirate—the Project Manager (PM),
the Chief Systems Engineer (CSE), and the Project Controller (PC)—and the
various organizational interfaces that affect how they approach and perform
their jobs. Here we continue this exploration, but focus on the essentials of
project management in a more step-by-step fashion. An overview of the es-
sentials of project management is depicted in Figure 2.1. This figure shows the
project management triumvirate as a team that oversees the essential project
management functions of planning, organizing, directing, and monitoring.
Starting from the left side of Figure 2.1, the customer is shown as the source
of a request for proposal (RFP) that might start off the project. For cases in
which the project is internal to an organization, there is no formal RFP, but the
requirements nevertheless should be spelled out in some type of document. In

41

CUSTOMER

Request
for
proposal
(RFP)

PROJECT MANAGER & PM TEAM (w/CSE and PC)

| PLANNING T ORGANIZING | DIRECTING MONITORING
I__J __________ I i_ __________ -
1 i | - |
Project Plan | lwork Activities H—{4] Project 1 5] Status
Goals/objectives | B e eam = eviews
requirements i Tasks, SOW, WBS | » Team : + MBWA
Task statements, Approach : building I - Formal
statement of : — Schedule | « Assignments : re\gews
work (SOW) & I « Project —Cost
work breakdown : = TRM | procedures : — Schedule
structure (WBS) | : « Periodic/ | — Performance
Technical : Relating | special : * Risk .
approach | to I meetings | assessmen
Schedul | | - Situation I'| | -Problem
chedule I ﬂ Staff || | analysis | detection
Organization, : a | . Problem- :
staffing and | Project | solving |
task re§pon3|b|llty | organization : . Corrective |
matrix (TRM) : Project | action :
Budget T staffing : I
Risk analysis : | T :
L —— \t_ ______ T (I o
Proposal
: Reports &
* Technical system
+ Cost

* Management

7N

7N

7N

7N

6]

CORPORATE ENVIRONMENT AND SUPPORT

* PM supervisor
* Support departments

+ Matrixed managers

« Facilities

+ Training

* PM/MIS automated tools

Figure 2.1. Overview of Project Management.

2.2 PROJECT MANAGEMENT ESSENTIALS 43

either situation, the planning phase begins with the development of a project
plan (Box 1). Such a plan contains seven essential elements, discussed in
greater detail in the next chapter. These elements are:

1. Needs, goals, objectives, and requirements

2. Task statements, a statement of work (SOW), and a work breakdown
structure (WBS)

The technical approach to the project

A project schedule

Organization, staffing, and a task responsibility matrix (TRM)
The project budget

Risk analysis

Nk W

If an RFP response is called for, the preceding elements of the project
plan form the basis for preparing the proposal, which normally contains three
volumes:

1. A technical proposal
2. A management proposal
3. A cost proposal

This three-volume proposal is delivered to the customer for evaluation. A
feedback loop from the monitoring function, when it is necessary to update
the project plan, is not shown in the figure but is implicit in the process.

The seven project plan elements provide the input to the organizing func-
tion, as shown in Figure 2.1. This function is divided into two essential
activities, namely, work activities (Box 2) and activities having to do with the
project organization and staffing (Box 3). The work activities have four parts,
all flowing from the project plan. These are:

1. The tasks, SOW, and WBS

2. The technical approach

3. The schedule

4. The task responsibility matrix (TRM)

The last three, in particular, interact strongly with the staffing for the project
because more or less staff stretches or compresses the schedule and the ability
to perform tasks in series or in parallel. The TRM is an explicit assignment
of people to the various tasks and elements of the work breakdown structure
(WBS). The two elements of the staff activities are

1. The project organization, and
2. The project staffing

44 OVERVIEW OF ESSENTIALS

Initially, the project organization is shown without specific people filling the
various organizational roles; as the project is staffed with specific individuals,
names are added to the organization chart to make it clear as to precisely
who fills what roles. Particular individuals may fill more than one project
role. A typical project organization chart was shown in Chapter 1 in Figure
1.2. The preceding work and staffing activities constitute the essentials of the
organizing function for the project.

The organizing function is normally followed by the directing function.
The essential element of this function is to establish a coherent and effective
project team (Box 4). Typical directing activities include:

Team building

Clarifying assignments for various team members
Articulating project and team procedures

Executing both periodic and special team meetings
Carrying out situation analyses, as a team

Problem solving when the inevitable problems occur
Implementing corrective actions

A

All of these directing activities are an ongoing part of the project and constitute
the main expenditure of energy and time in order to perform the various project
tasks. Project reports and systems (physical and procedural, as called for in
the statement of work) flow from the work of the project team, operating
individually and collectively.

This is followed by the steady-state monitoring function, which explic-
itly and continuously takes stock of the project status. This is executed by
(Box 5):

1. MBWA (management by walking around)

2. Formal and periodic schedule, cost, and performance reviews, some of
which are attended by upper management and the customer

3. Risk assessment
4. Problem detection

When a problem is discovered, there is feedback to the directing func-
tion in which corrective action is taken. Some texts consider the com-
bination of problem detection and corrective action as a separate project
function known as project control. Results of the directing and monitoring
functions are provided to the customer in the feedback loop shown in the
figure.

All of the previously cited project functions are carried out in the con-
text of and support by a corporate environment (Box 6). As mentioned in

2.3 SYSTEMS ENGINEERING PROCESS AND MANAGEMENT ESSENTIALS 45

Chapter 1, this support, or lack of it, can have a major influence on the
success or failure of the project. Some of the influencing factors include:

1. The supervisor (boss) of the project manager

2. The support departments (e.g., finance/accounting, contracts, and hu-
man resources)

3. The matrixed functional managers (if resources are to be obtained in a
matrix situation)

4. Facilities to be provided by the corporate entity, ranging from office
space to computers to special test equipment

5. Project management/management information system (MIS) tools and
systems

6. Training that might (or might not) be provided in both technical and
management disciplines

Figure 2.1 also shows the project management team leader triumvirate (PM,
CSE, and PC) at the top of the chart as managing the essential key functions
of planning, organizing, directing, and monitoring.

2.3 SYSTEMS ENGINEERING PROCESS AND
MANAGEMENT ESSENTIALS

An overview of the essentials of the systems engineering process and its man-
agement is provided in Figure 2.2. As with the project management chart of
Figure 2.1, the process is initiated by the customer/user with statements
of needs, goals, objectives, and requirements. These feed the development
of the project plan (as depicted as well in Figure 2.1) and, from a systems
engineering perspective, the elements of mission engineering and require-
ments analysis and allocation. These feed into the element of functional
analysis and allocation, which forms the basis for the design/synthesis of
the system architecture. Iterations between the synthesis and analysis ele-
ments, and the implicit high-level trade-offs that are required, lead to the
definition of a preferred system architecture. Confirming the validity of
this architecture also requires both a life-cycle costing and an analysis of
the risks associated with this architecture. At this point, the systems engi-
neering team, with the interaction of the project manager, has developed
what is believed to be a cost-effective architectural design for the system
(Box 1).

We note that many of these elements are shown as being supported by
other system considerations (Box 4). These considerations are at a top level
that is appropriate to architectural, in distinction to subsystem, design. They

| Customer/user

I
I needs/goals/objectives | I

Requirements

o I
: Project plan |

—_——— e ——

5 Project
control
» Schedule
» Cost
» Performance

Mission engineering L
Requirements

Functional

Architecture

| |Preferred system

AN

Applies to all elements >

analysis/allocation—={ analysis/allocation design/synthesis architecture
System Life cycle Risk
analysis costing analysis

1] Architecture
design

(For architecture design) T I \/t

4] Other system/subsystem considerations

« Technical performance -« Integration
measurement (TPM) -« Test and evaluation
« Evaluation criteria + Configuration management

2| Subsystem
design

v + ILS * Specialty engineering
) * RMA * Quality assurance
— (For subsystem design) . P3| - Training
Specifications J + Schedules + Interfaces
. : :
V \
Subsystem 1 l
design a
||~ Hardware _)Analysns and L] Subsystem L] Subsystem . Subsystem | | Testand
. Software trade-offs builds integration test evaluation
* Human *
T lteration Cost-effective

physical system

3] System
construction

Figure 2.2. Overview of systems engineering process and management.

2.3 SYSTEMS ENGINEERING PROCESS AND MANAGEMENT ESSENTIALS 47

represent a first-order examination of system factors that include such ele-
ments as:

Technical performance measurement (TPM)
Evaluation criteria

Integrated logistics support (ILS)
Reliability-maintainability-availability (RMA)
Preplanned product improvement (P31)
Schedules

Integration

Test and evaluation

Configuration management

10. Specialty engineering (e.g., safety or security)
11. Quality assurance

12. Training

13. Interface control and compatibility, and others

PN h W=

©

A more complete articulation of these other system/subsystem considerations
is provided in Chapter 8. They are extremely important because they complete
the (approximately) thirty elements that comprise systems engineering and
its management.

When a cost-effective system architecture has been defined, the next step
is to enter the process of subsystem design (Box 2). This set of activities goes
into the levels of detail necessary to both design and build the system. Thus,
we see a generic process of design defined at two distinct levels, namely, (1)
architectural design, and (2) subsystem design.

One might draw an analogy, in this regard, between this process and how
an A&E (architect and engineering) firm might design and construct a large
building or an airport. The architect part of the firm first develops an overall
architecture of the “system” in question. Only after a satisfactory architecture
has been designed is it possible to engineer all the details of the architecture
and then, in fact, build the system. This two-step approach is mirrored in the
systems engineering process shown in Figure 2.2. In addition, the architectural
design is usually performed at a “functional” level, whereas the subsystem
design is executed at the specific hardware/software/human engineering level.
This distinction is an important part of the systems engineering process. In
general, functional design describes “what” is to be done in some detail at
the top level of a system, with secondary consideration to “how” it is to be
done. Subsystem design accepts what is to be done as a given, and fleshes
out the “how” details by selecting specific hardware, software, and human
engineering components. More will be said about this subject in Chapter 8,
with examples that will help clarify these concepts.

48 OVERVIEW OF ESSENTIALS

The architecture design allows for a more complete definition of the system
in the form of a specification. Actually, specifications can be written at several
levels, but it is necessary for a specification to be written in order to begin the
process of subsystem design. At times, a top-level specification is provided
as a derivative of the system requirements and is an input to the mission
engineering and requirements analysis and allocation activities that begin the
overall systems engineering process.

As suggested before, subsystem design (Box 2) involves the detailed se-
lection of components embodied in hardware, software, and human parts of
the system. These design alternatives are analyzed, and traded off, in order
to select the best mix of components that will cost-effectively carry out the
prescribed system functions. Iteration between analysis and design (synthe-
sis) at the subsystem level parallels the iterative analysis and design/synthesis
activities that are an integral part of architectural design. As an example, if
“information storage” is a functional element in the top-level architectural
design, at the subsystem design one must choose between the various ways
in which information storage might be accomplished, to include tape storage
versus conventional disk storage versus CD-ROM storage. These different
implementations have different cost and performance attributes that have
to be balanced while satisfying the requirements and specifications for the
system.

When the subsystem design has been completed, the team is ready to
begin the formal building of the system. System “builds” is used here as
a generic name for such formal construction, although other names such
as “configuration items” are used extensively. Each build must be tested to
assure that it meets the requirements and specifications, and combinations
of builds are tested as an upward process of integration occurs. Progressive
integration of components, configuration items (Cls), and builds all require
testing in order to verify the performance of the system. As the top levels
of the system are constructed, we enter a top-level “test and evaluation”
activity that can have a rather formal structure in various implementations
of systems engineering. In principle, many cycles of “integration and test”
must be carried out as the system is constructed until a “final* set of “test
and evaluation” activities confirm that the system satisfies development and
operational requirements. Here again, these notions are revisited in Part III
of this book. Finally, a cost-effective physical system is constructed (Box 3)
that meets all the stated requirements of the system.

A project control function (Box 5) is executed throughout the process in
order to assure that overall schedule, cost, and performance profiles are ap-
propriate. This control function is embedded in the project directing and
monitoring functions shown in Figure 2.1. The Chief Systems Engineer
(CSE) is the key player in the overall systems engineering process de-
scribed in Figure 2.2. The Project Manager, in conjunction with the CSE and
the Project Controller, assures that the project control function is properly
executed.

2.4 HISTORICAL OVERVIEW OF ACQUISITION NOTIONS 49

This overview of the systems engineering process and its management
shows a sequence of three essential steps:

1. Architecture design
2. Subsystem design
3. System construction

These, in turn, are facilitated and augmented by (1) other system/subsystem
considerations, and (2) project control.

It therefore can be observed that the preceding five steps constitute an
overview of the systems engineering process and how it is managed. However,
certain elements of systems engineering and the life-cycle phases of a system
have not as yet been covered. These include system production, installation,
operations and maintenance, and system operation and modification in the
field. These additional elements are dealt with explicitly in Chapter 8, and are
considered to be part of the thirty key elements of engineering and fielding
a real-world system. The rationale for these additional elements is further
reinforced by the following section, which deals with the nature of the systems
acquisition process and some of the issues that are embedded in such a process.

2.4 HISTORICAL OVERVIEW OF ACQUISITION NOTIONS

The matter of project management and systems engineering can also be
approached from the perspective of the customer interested in acquiring a
system. Such a customer needs to do a considerable amount of planning in
order to do so, even if another party is to actually carry out most of the project
and the systems engineering that is part of the project. A typical example might
be a government agency, such as the Department of Transportation (DOT)
or the National Aeronautics and Space Administration (NASA), that wishes
to procure systems that will be responsive to its needs and requirements. In
the case of the DOT, through its subordinate Federal Aviation Administration
(FAA), it may need to acquire a new radar as part of its air traffic control
charter. NASA, as an example, may need to procure a new or upgraded
satellite that will carry out a portion of its “mission to planet earth” initiative.
In both cases, a typical plan calls for following a systems acquisition process
set forth by the government, with a major role to be executed by a large
systems contractor.

Most government agencies with needs such as those just described have
evolved an acquisition process that has been institutionalized. This provides
for clear communications and understandings both within the agency as well
as between the agency and other groups such as systems engineering contrac-
tors. A generic acquisition process usually consists of phases such as those
defined in Exhibit 2.1. These phases are normally sequential in time.

50 OVERVIEW OF ESSENTIALS

Exhibit 2.1: Typical System Acquisition Phases

Phase Name Phase Activities or Purposes
Prephase 0: Define mission need
Validate need
Assure that new system is required to fulfill need
Phase 0: Identify alternative concepts
Concept Evaluate feasibility of alternative concepts
Definition Determine most promising concepts
Phase 1: Design alternative feasible systems
Concept Demonstrate critical processes
Validation Demonstrate critical technologies
Build and test early prototypes
Phase 2: Finalize preferred system design
Engineering Build system
Development Test and evaluate system
Phase 3: Produce system
Production and Install system
Deployment Establish system logistics support
Phase 4: Operate and maintain system in field
Operations and Monitor performance of system
Support Modify and improve system as necessary

The Department of Defense (DoD) presented its acquisition phases as
the “DoD 5000 Acquisition Model” [2.1]. This model shows four sequential
phases, namely:

1. Concept and technology development

2. Systems development and demonstration
3. Production and deployment

4. Operations and support

Technology opportunities and user needs feed into these phases, as necessary
and appropriate. Mission needs are articulated concurrently with the concept
and technology development phase. An interim operational capability (I0C)
is achieved during part of the production and deployment phase. In a parallel
manner, a final operational capability (FOC) is present when entering the
operations and support phase.

The DoD Defense Acquisition System, as it is called, employs a set of
policies and principles that may be examined in the following five categories
[2.2]:

1. Achievement of interoperability
2. Rapid and effective transition from science and technology to products

2.4 HISTORICAL OVERVIEW OF ACQUISITION NOTIONS 51

3. Rapid and effective transition from acquisition to deployment and field-
ing

4. Integrated and effective operational support

5. Effective management

Interoperability, especially between the various services, but also including
with our allies, has been a key issue within the DoD for many years. With more
rapid deployments and joint forces, these matters are of special and continuing
importance. The two transition issues cited above indicate the determination of
the DoD to assure technology transfer as well as the compression of schedules
that have otherwise been unacceptable. The last above-cited item emphasizes
the need for providing support in an integrated fashion. Integration cannot
be properly achieved without interoperability. Finally, effective management
is critical to satisfying needs in the other four category areas. Managing
within an organization as large as the DoD is a major challenge that must be
addressed on a continuing basis.
Other topics that are highlighted as parts of the above five areas include:

Time-phased requirements and communications with users
Use of commercial products, services, and technologies
Performance-based acquisition

Evolutionary acquisition

Integrated test and evaluation

Competition

Departmental commitment to production

. Total systems approach

. Logistics transformation

. Tailoring

. Cost and affordability

. Program stability

13. Simulation-based acquisition

14. Innovation, continuous improvement, and lessons learned
15. Streamlined organizations and a professional workforce

I R

—_—
N — O O

A key paragraph under item (8) above, in terms of its relevance to this text, is
[2.2]:

Acquisition programs shall be managed to optimize total system perfor-
mance and minimize total ownership costs by addressing both the equip-
ment and the human part of the total system equation, through applica-
tion of systems engineering. Program managers shall give full consideration
to all aspects of system support, including logistics planning; manpower,

52 OVERVIEW OF ESSENTIALS

personnel and training; human, environmental, safety, occupational health,
accessibility, survivability, and security factors; and spectrum management
and the operational electromagnetic environment.

2.4.1 Specific Focus for Systems Acquisition Agent

Given the phases outlined in Exhibit 2.1, the acquisition agent for the customer
or user of a system must focus on certain activities in order to assure that the
acquisition process is as effective as possible. The following areas of focus are
suggested, with emphasis that depends on the particular phase that is being
approached:

1. Restatement of needs/goals/objectives (of that phase)
2. Reiteration of requirements

3. Preparation of tasks statements, statements of work (SOWs), and work
breakdown structures (WBSs)

4. Key schedule milestones
5. Budget limitations and constraints
6. Project reviews

At each and every phase depicted in Exhibit 2.1, it is necessary for the
acquisition agent to restate the needs, goals, and objectives of the customer
or user. These may change from phase to phase, but are required to provide
new guidance to a project and systems engineering team. The requirements
for each phase will almost certainly change throughout the acquisition pro-
cess, so it is necessary to state explicitly what the requirements are for the
forthcoming phase. Such requirements are work requirements as contrasted to
system requirements, which may remain relatively unchanged. As suggested
in Chapter 1, requirements become an important point of departure for a sys-
tems engineering contractor, for example, to design and develop the system.
Similarly, each new phase carries with it a new statement of work and asso-
ciated WBS that must be conveyed in writing to the system designer. With
respect to schedule, the customer usually defines when it is that the system
must ultimately be fielded and how that impacts the schedule of the phase
under consideration. It therefore falls on the acquisition agent to establish
key schedule milestones. Relative to budget matters, monies are allocated to
the execution of each phase and these allocations become constraints within
which a project team must perform.

The issue of project reviews is often considered as an integral part of the
acquisition process. At least four reviews have become more or less standard,
namely

1. The system requirements review(s) (SRR)
2. The system design review (SDR)

2.5 SELECTED STANDARDS 53

3. The preliminary design review (PDR)
4. The critical design review (CDR)

with the following general practice:

* Various SRRs are carried out during concept definition and validation.
» The SDR is executed during concept validation.

* Both the PDR and CDR are implemented during the engineering devel-
opment phase.

It is also standard procedure that a formal review and approval is required
to move from one phase to the next phase in the sequence. In addition, it is
expected that an interim operational capability (IOC) is achieved at some point
in the production phase and a final operational capability (FOC) is confirmed
before entering the formal operations phase. Changes to the system in the form
of engineering change proposals (ECPs) are considered during this operations
phase. Additional guidance relative to these matters is provided in the next
section in which certain standards for system acquisition are explored. Further
information on system acquisition is presented in Chapter 12.

2.5 SELECTED STANDARDS

Standards that may be applied in the project management or systems engi-
neering arenas provide guidance to the Project Manager or the Chief Systems
Engineer. Various domain-specific fields (e.g., computers, communications)
provide detailed standards that also suggest to manufacturers of hardware
and software how they may be able to assure compatibility with each others’
equipment. For example, producers of software must select the operating sys-
tem with which their software will be compatible. In this section, we deal only
with standards that are operative at the level of the overall project manage-
ment and systems engineering activities because domain-specific standards
would fill many volumes of text.

2.5.1 Military-Standard-499A

An engineering standard was produced in 1974 that, at that time, supported
and guided the systems engineering process and its management [2.3]. This
“engineering management” standard served as a touchstone for systems en-
gineering, especially for systems developed for the military. The standard
was “developed to assist government and contractor personnel in defining
the system engineering effort in support of defense acquisition programs”.
Exhibit 2.2 lists the (two-digit) table of contents of this standard.

54 OVERVIEW OF ESSENTIALS

Exhibit 2.2: Table of Contents of Mil-Std-499A (Two-Digit)

1. SCOPE

1.1 Purpose

1.2 Application

1.3 Implementation

1.4 Tailoring
2. REFERENCED DOCUMENTS
3. DEFINITIONS

3.1 Engineering Management
3.2 Technical Program Planning and Control
3.3 System Engineering Process
3.4 Engineering Specialty Integration
3.5 Technical Performance Measurement
4. GENERAL CRITERIA
5. DETAILED REQUIREMENTS

5.1 System Engineering Management Plan (SEMP)
5.2 Review of Contractor’s Engineering Management

6. NOTES

6.1 Relationship of Technical Program Planning to Cost and Sched-
ule Planning

6.2 Relationship of Technical Performance Measurement (TPM) to
Cost and Schedule Performance Measurement

6.3 Relationship of Integrated Logistics Support (ILS) to System
Engineering

6.4 Minimum Documentation

6.5 Data

10. APPENDIX A

10.1 Technical Program Planning and Control
10.2 System Engineering Process

We note from the preceding that this standard defined systems engineering
management in terms of three essential elements

1. Technical program planning and control
2. The system engineering process
3. Engineering specialties and their integration

Although there is much to discuss with respect to the details of this stan-
dard and its relationship to project and systems engineering management,
we bypass such discussion because Mil-Std-499A was superseded by Mil-
Std-499B, which is described in some detail in what follows. The latter has
influenced both project and systems engineering management for many years.
Further, although it was developed in the context of military systems, it is

2.5 SELECTED STANDARDS 55

applicable in terms of its basic structure to the design and development of both
civil and commercial systems. Specific emphasis is placed on tailoring the
provisions of this standard to the unique requirements of a particular program
or project.

2.5.2 Mil-Std-499B (Draft)

This draft standard, entitled “sytems engineering,” defined systems engineer-
ing as “an interdisciplinary approach to evolve and verify an integrated and
optimally balanced set of product and process designs that satisfy user needs
and provide information for management decision making” [2.4]. Systems
engineering management is cited as “the management, including the planning
and control for successful, timely completion of the design, development, and
test and evaluation tasks required in the execution of the systems engineering
process.” The (three-digit) table of contents of this significant standard is
provided in Exhibit 2.3 to display its broad and far-reaching scope.

Exhibit 2.3: Table of Contents of Mil-Std-499B (Three-Digit)

1. SCOPE

1.1 Scope
1.2 Application Guidance
1.3 Order of Preference

2. REFERENCED DOCUMENTS
3. DEFINITIONS

3.1 Acronyms
3.2 Fundamental Definitions
3.2.1 System
3.2.2 Life Cycle
3.2.3 User
3.2.4 Primary Functions
3.2.5 Systems Engineering
3.2.6 Systems Engineering Process
3.2.7 Item
3.2.8 Requirements
3.2.9 Design
3.2.10 Output Views
3.3 Supplementary Definitions
3.3.1 Baseline
3.3.2 Configuration Item (CI)
3.3.3 Environment
3.3.4 Evolutionary Acquisition
3.3.5 Exit Criteria
3.3.6 Function

56 OVERVIEW OF ESSENTIALS

3.3.7 Life-Cycle Resources
3.3.8 Measure of Effectiveness (MOE)
3.3.9 Operational Effectiveness
3.3.10 Operational Suitability
3.3.11 Performance Parameter
3.3.12 Preplanned Product Improvement
3.3.13 Risk
3.3.14 Specification
3.3.15 Specification Tree
3.3.16 Subsystem
3.3.17 System Effectiveness
3.3.18 System Element
3.3.19 Systems Engineering Management
3.3.20 Systems Engineering Master Schedule (SEMS)
3.3.21 Systems Engineering Detailed Schedule (SEDS)
3.3.22 Technical Effort
3.3.23 Technical Objectives
3.3.24 Technical Performance Measurement (TPM)
3.3.25 Technical Performance Parameters (TPPs)

4. GENERAL REQUIREMENTS

4.1 Systems Engineering Scope
4.1.1 Purpose
4.1.2 Key Tasks
4.2 Systems Engineering Output
4.2.1 Decision Database
4.2.1 Output Views
4.3 Systems Engineering Input
4.4 Systems Engineering Management
4.4.1 Engineering Planning
4.4.2 Engineering Control
4.4.3 Systems Engineering Integration
4.5 Systems Engineering Process Requirements
4.5.1 Requirements Analysis
4.5.2 Functional Analysis/Allocation
4.5.3 Synthesis
4.5.4 Systems Analysis and Control

5. DETAILED REQUIREMENTS

5.1 Technical Data
5.2 Systems Engineering Planning
5.3 Systems Engineering Management Plan (SEMP)
5.3.1 Systems Engineering Process
5.3.2 Systems Analysis and Control
5.3.3 Technology Transition
5.3.4 Technical Integration Teams

2.5 SELECTED STANDARDS 57

5.4 Effectiveness Analysis
5.4.1 Production Engineering Analysis
5.4.2 Test/Verification Analysis
5.4.3 Deployment/Installation Analysis
5.4.4 Operational Analyses
5.4.5 Supportability Analyses
5.4.6 Training Analysis
5.4.7 Disposal Analysis
5.4.8 Environmental Analysis
5.4.9 Life-Cycle Cost Analysis
5.4.10 Models
5.5 Systems Engineering Detailed Schedule
5.6 Technical Reviews
5.6.1 Subsystem Reviews
5.6.2 Functional Reviews
5.6.3 Interim System Reviews
5.6.4 Major Reviews
5.7 Work Breakdown Structure (WBS)
5.8 Technical Integration Requirements
5.8.1 Reliability and Maintainability
5.8.2 Survivability
5.8.3 Electromagnetic Compatibility and Radio Frequency
Management
5.8.4 Human Systems Integration
5.8.5 System Safety, Health Hazard, and Environmental Impact
5.8.6 System Security
5.8.7 Quality
5.8.8 Production
5.8.9 Integrated Logistics Support
5.8.10 Test and Evaluation
5.9 Other Development Requirements
5.9.1 Nondevelopmental Items
5.9.2 Use of Metric System
5.9.3 Parts Control
5.9.4 Command, Control, Communications, and Intelligence
5.9.5 Prototyping
5.10 Review of Contractor’s Engineering Management
6. NOTES

6.1 Intended Use
6.2 Tailoring Guidance
6.2.1 Technical Review Considerations
6.3 Data Requirements List and Cross Reference
6.4 Subject Term (Key Word) Listing
6.5 Changes from Previous Issue

58 OVERVIEW OF ESSENTIALS

The essence of the systems engineering process, as far as this standard is
concerned, is describable in four parts:

1. Requirements analysis

2. Functional analysis/allocation
3. Synthesis

4. Systems analysis and control

These four elements are also shown in Figure 2.2, but they are placed in
a context that includes a variety of other elements. The standard, in effect,
says that “needs statements” are formulated as inputs to the system engineer-
ing process (the preceding four elements) and a life-cycle-optimized set of
products and processes is the resultant output.

The life cycle of a system, as depicted before with respect to the system
acquisition process, is described in terms of “primary functions,” which are:

The development function

The production function

The test/verification function

The deployment/installation function
The operations function

The support function

The training function

The disposal function

S I AN

This standard also defines major reviews that should be carried out for a
system. In addition to the four reviews cited earlier (i.e., SRR, SDR, PDR,
and CDR), the following additional reviews are called for:

1. Software specification review
2. Functional system audit

3. Functional configuration audit
4. Physical configuration audit

Mil-Std-499B deals with planning, in the main, through the formulation
of a system engineering management plan (SEMP). The SEMP is a key
responsibility of the Chief Systems Engineer (CSE), whereas the overall
project plan lies primarily in the hands of the Project Manager (PM). The two
plans must of course be consistent. The elements of the SEMP (para. 5.3 of
Exhibit 2.3) include the items listed in Exhibit 2.4.

2.5 SELECTED STANDARDS 59

Exhibit 2.4: The Systems Engineering Management Plan (SEMP)
Elements

5.3.1 Systems Engineering Process
5.3.2 Systems Analysis and Control

5.3.2.1 Systems Analysis
5.3.2.2 Technical Performance Measurement (TPM)
* Parameters
¢ Technical Parameter Planning Data
5.3.2.3 Technical Reviews
¢ Review Success Criteria

5.3.3 Technology Transition
5.3.4 Technical Integration Teams

We note the technical orientation of the SEMP, but also must acknowledge
the interaction between the SEMP and the project plan in such items as the
need for a master schedule, which would be part of both plans.

There are many who view this and other standards, especially those drawn
up by the U.S. Department of Defense, as “overkill,” arguing that such stan-
dards add unnecessary tasks, reports, and formality, thereby increasing cost
without much, if any, benefit. This argument is countered, at least in part, in the
foreword of Mil-Std-499B, which states explicitly that “this standard must be
appropriately tailored to ensure that only cost-effective requirements are cited
in defense solicitations and contracts.” This is sufficient guidance to provide
flexibility in the real-world acceptance and implementation of the details of
this important standard. In short, the provisions of this standard, or derivatives
thereof, should not be blindly applied; they have to be modified appropriately
to suit the particular and peculiar characteristics of the system that is being
acquired and the circumstances surrounding the procurement of that system.
Such circumstances include schedule, cost, interfaces with other systems,
use of commercial-off-the-shelf (COTS) components and nondevelopmental
items (NDIs), and other relevant factors.

2.5.3 IEEE P1220

This is a “Standard for Systems Engineering,” as developed by the Institute of
Electrical and Electronics Engineers (IEEE) [2.5]. Examining this standard
in detail shows that it has its roots in Military-Standard-499B, as described in
the previous section. The four steps in the systems engineering process have
been expanded to five, which are:

1. Requirements analysis
2. Functional analysis
3. Synthesis

60 OVERVIEW OF ESSENTIALS

4. Systems analysis
5. Verification and validation

The latter two new terms are defined as:

Verification. A process of determining whether or not the products of a
given phase of development fulfill the requirements established during
the previous phase

Validation. A process of evaluating a configuration item, subsystem, or
system, to ensure compliance with system requirements

These two important activities will be revisited in Chapter 7 where the thirty
elements of systems engineering are presented.

This standard [2.5] also has a short-form definition of systems engineering
as “an interdisciplinary collaborative approach to derive, evolve, and verify a
lifecycle balanced system solution which meets customer and public accept-
ability.” This definition may be compared with those provided in the previous
chapter.

Another interesting feature of this standard is its definition of a system
architecture, namely, the “composite of the functional, physical, and foun-
dation architectures, which form the basis for establishing a system design.”
In this text, as we formulate concepts and procedures for architecting a sys-
tem, shown later in Chapter 9, the reader will likely wish to reexamine this
standard’s notion of a system architecture.

As suggested above, this standard does not represent a major departure in
principle from Mil-Std-499B. Further, it illustrates the fact that the IEEE has
moved into the systems engineering arena. Over the years, this will certainly
help in trying to assure that systems engineering takes its place among other
well-accepted engineering disciplines (electrical, mechanical, chemical, etc.).

2.5.4 EIA-632

This standard, with the title “Processes for Engineering a System,” has been
promulgated by the Electronic Industries Association (EIA) [2.6]. Although
an earlier version of this standard (1994) looked quite a lot like Mil-Std-499B,
the later version represented a considerable departure.

Several important points can be made about this standard. First, it was
basically developed through the combined efforts of the EIA and the Inter-
national Council on Systems Engineering (INCOSE). Second, it represents a
shift from systems engineering to the processes that are required in order to
engineer any type of system. This may be viewed as related to the notions of
business process reengineering, which holds that systems may be enhanced
by improving the processes that lead to the design and development of these
systems. Third, and most significant, is the overall structure of the standard.

2.5 SELECTED STANDARDS 61

This structure identifies thirteen processes that are critical to the engineer-
ing of systems, with these processes cited under the five categories listed
below:

A. Acquisition and Supply
1. Supply process
2. Acquisition process
B. Technical Management
3. Planning process
4. Assessment process
5. Control process
C. System Design
6. Requirements definition process
7. Solution definition process
D. Product Realization
8. Implementation process
9. Transition to use process
E. Technical Evaluation
10. Systems analysis process
11. Requirements validation process
12. System verification process
13. End products validation process

Some thirty-three requirements are also related to the above thirteen pro-
cesses. This extremely interesting approach shows, among other things, that
there are many ways to look at the issue of the engineering of systems.

2.5.5 EIA/IS-731

This is another standard provided by the Electronic Industries Association
(EIA), focusing upon the Systems Engineering Capability Model (SECM)
[2.7]. The standard itself was the result of the joint efforts of the EIA, IN-
COSE, and the Enterprise Process Improvement Collaboration (EPIC). Previ-
ously, the Systems Engineering Capability Maturity Model, developed at the
Software Engineering Institute of Carnegie-Mellon University, had produced
the first such model, based upon the structure of their software model. This
was called the SE-CMM. INCOSE then formulated their version of such a
model, namely, the Systems Engineering Capability Model (SECAM). The
SECM then became the consequence of harmonizing these two earlier mod-
els. The standard itself is divided into two parts. One is the model itself, and
the other is the SECM appraisal method.

62 OVERVIEW OF ESSENTIALS

Just as the original software capability maturity model addressed the matter
of how to assess and improve the capability of an organization to develop and
utilize all aspects of software, this standard had basically the same intent,
except as applied to the field of systems engineering. An important step in
developing all of these models is to decide upon a series of focus areas, or
process areas, which has been done in all cases.

Additional information regarding capability maturity models will be pro-
vided in later chapters, in particular 10 and 12. Further variations on these
themes, including integrated models, will also be described.

2.5.6 ISO/IEC 15288

This standard, titled “Systems Engineering—System Life Cycle Processes”
[2.8], is international and was issued in 2002 under the ISO (International
Organization for Standardization) and the IEC (International Electrotechni-
cal Commission). As the name suggests, a main focus is a set of life-cycle
processes for systems. There are some twenty-five of these processes under
four overview categories dealing with agreements, enterprises, projects, and
technical matters. In addition, the standard presents life-cycle stages for sys-
tems, all of which are in an overview format. Further, a technical report is
provided [2.9] that is a guide for the specific application of ISO/IEC 15288.
The twenty-five featured processes may be compared with the definition of
the thirty elements of systems engineering shown in Chapter Seven.

In looking at the various standards in systems engineering, INCOSE (In-
ternational Council on Systems Engineering) decided, in version 3 of its Sys-
tems Engineering Handbook [2.10], to create a “document consistent with
the international standard ISO/IEC 15288”. This was a significant decision,
establishing a quite explicit and stronger connection between this important
council and the international systems engineering community. These types of
efforts help to unify and integrate our overall knowledge base with respect to
systems engineering.

2.5.7 Selected Software Standards

Software development is a critical aspect of building and fielding a system
and, as such, is dealt with separately and in detail in Chapter 10. A very
well-known standard for software development was the Department of De-
fense standard 2167A (DoD-Std-2167A) [2.11], which had the title “Defense
System Software Standard.” The key phases of software development defined
in that standard were

1. System requirements analysis/design
2. Software requirements analysis

2.5 SELECTED STANDARDS 63

Preliminary design

Detailed design

Coding and computer software unit (CSU) testing

Computer software component (CSC) integration and testing
Computer software configuration item (CSCI) testing
System integration and testing

N kW

From this list, we note the emphasis on requirements, design, integration,
and testing. These are indeed extremely critical elements because we know
from experience that untested software is a formula for failure. The standard
appears to support the industry conventional wisdom for software of “build a
little, test a little.” Because most of our modern large- and small-scale systems
today contain large amounts of software, how it should be developed is a
mandatory part of the training of today’s Project Manager and Chief Systems
Engineer. Of special interest is the manner in which the software development
process “its into both project management and systems engineering. Again,
this subject is discussed at length in Chapter 10.

The long-standing 2167 A standard was replaced by Military Standard 498
in December 1994 [2.12]. The two-digit detailed requirements in this standard
were articulated in the following subject areas:

* Project planning and oversight

* Establishing a software development environment
» System requirements analysis

 System design

» Software requirements analysis

» Software design

» Software implementation and unit testing

* Unit integration and testing

» CSCI qualification testing

* CSCI/HWCI (hardware configuration item) integration and testing
» System qualification testing

* Preparing for software use

* Preparing for software transition

» Software configuration management

» Software product evaluation

» Software quality assurance

 Corrective action

* Joint technical and management reviews

* Other activities

64 OVERVIEW OF ESSENTIALS

Two additional standards that relate specifically to software are:

1. IEEE/EIA 12207—Software Life Cycle Processes
2. IEEE P1471—Recommended Practice for Architectural Description

The second of these is of particular interest as it relates to the architecting
of software and systems. The latter is a central theme of this book, with a
full Chapter 9 devoted to providing a prescriptive method for the process of
architecting a system. Additional information regarding these two standards
is provided in Chapter 10.

2.5.8 International Organization for Standardization (ISO)

The International Organization for Standardization (ISO) has been producing
standards that apply in the international arena. Companies that wish to do
business outside the United States are paying a great deal of attention to
such standards, recognizing that compliance is essential in order to compete
successfully.

An example is the ISO 9000 Series, which deals with various aspects of
product and service quality, as follows:

1. ISO 9000: Provides basic definitions and concepts; explains how to
select and use other standards in the series

2. ISO 9001: Deals with external quality assurance (QA) situations; en-
sures conformance with requirements during design, development, pro-
duction, installation, and service

3. ISO 9002: Deals with external QA situations; used when production
and installation conformance are of concern

4. ISO 9003: Deals with external QA situations; focuses on ensuring con-
formance in final test and inspection

5. ISO 9004: Deals with internal QA situations; provides guidelines on
technical, administrative, and human factors affecting the quality of
products and services

Firms interested in providing products and services in Europe and countries
outside the United States should pay special attention to what the ISO has es-
tablished and is working on with respect to international standards in systems
and software engineering and their related topics.

2.5.9 Other Standards

Other standards have been promulgated that can be used by the project man-
agement team in order to assist in the design and development of systems.
Military Standard 499B, discussed earlier, contains a list of such standards,
which is reproduced here as Table 2.1. From this, we see a variety of

2.5 SELECTED STANDARDS 65

TABLE 2.1 Standards Cited in Mid-Std-499B

Technical Discipline

Reference

Configuration management
Climatic Information

Computer-aided acquisition and

logistics support

Corrosion prevention and control

Environmental analysis

Electromagnetic compatibility

Electrostatic discharge
Human factors

Maintainability

Manufacturing
Nondestructive inspection

Parts control
Producibility
Quality
Reliability/durability

System safety engineering
Software

Software quality assurance
Supportability
Survivability

System security
Telecommunications
Testability

Thermal design /analysis
Transportability

Value engineering

Technical reviews and audits
Work breakdown structure

Statement of work preparation

Technical data package
Specification practices

Mil-Std-480/481/482/483

Mil-Std-210
Mil-Hdbk-59

Mil-Std-1250
Mil-Std-810
Mil-Std-1541
Mil-E-6051
Mil-Std-1686
Mil-Std-1472
Mil-Std-1800
Mil-H-46855
Mil-Std-470
Mil-Std-2184
Mil-Std-1528
Mil-Hdbk-728
Mil-I-600
Mil-Std-965
Mil-Hdbk-727
Mil-Q-9858
Mil-Std-785
Mil-Std-1543
Mil-Std-1796
Mil-Std-2164
Mil-Std-882
DoD-Std-2167
Mil-Std-1815
Mil-Hdbk-287
DoD-Std-2168
Mil-Std-1388
Mil-Std-1799
DoD-Std-2169
Mil-Std-1785

Mil-Std-188-xxx

Mil-Std-2165
Mil-Hdbk-251
Mil-Std-1367
Mil-Std-1771
Mil-Std-1521
Mil-Std-881
Mil-Hdbk-245
Mil-T-3100
Mil-Std-490

Mil-Std-1568

Mil-Std-461
Mil-Hdbk-237

Mil-Std-1794
Mil-Hdbk-763

Mil-Std-1843
Mil-Hdbk-791

Mil-Hdbk-731

Mil-I-45208

Mil-Std-1530
Mil-Std-1783
Mil-Std-1798

Mil-Std-1803

DoD-Hdbk-286

Mil-Std-2069
Mil-Hdbk-336

Mil-Hdbk-157

Mil-S-83490

66 OVERVIEW OF ESSENTIALS

military standards and handbooks on important subjects such as configu-
ration management, environmental analysis, human factors, manufacturing,
quality, reliability, safety, security, and value engineering. For those who may
be operating as acquisition agents for systems, standards are available that
can provide inputs to such activities as reviews and audits, work breakdown
structures (WBSs), statements of work (SOWs), technical data packages, and
specifications.

Increasingly, standards are being produced in various domain-specific ar-
eas (e.g., telecommunications, information security) under the sponsorship of
professional organizations such as the Institute of Electrical and Electronics
Engineers (IEEE) and the Electronic Industries Association (EIA). The IEEE
has been very active in systems and software engineering and has produced
a variety of standards in both subjects. Work in the latter area has been es-
pecially significant (see Chapter 10), but systems engineering has not been
neglected (see Chapter 12). Other government agencies outside the Depart-
ment of Defense have also been concerned with the formulation of various
kinds of standards. In this category, the National Institute for Standards and
Technology (NIST) has a specific charter to develop standards. The respon-
sible Project Manager and Chief Systems Engineer will assure themselves
that standards that might be applicable to their project are examined in detail
to make sure that, where necessary, the project is in conformance with such
standards. Finally, INCOSE has been a major force in assisting with standards
that address systems engineering and related disciplines.

QUESTIONS/EXERCISES

2.1 Identify three activities not shown explicitly in Figure 2.1. Where might
they fit into this chart?

2.2 Identify three activities not shown explicitly in Figure 2.2. Where might
they fit into this chart?

2.3 Investigate the history of a real system and its acquisition. From this
history, put the phases shown in Exhibit 2.1 on a time line.

2.4 Identify six items that are typically part of the agenda for a critical
design review (CDR).

2.5 Compare Military Standards 499A and 499B with respect to
a. three similarities
b. three differences

2.6 Discuss the similarities and differences between a project plan and a
systems engineering management plan (SEMP).

2.7 Compare the approaches to defining systems engineering as represented
in this chapter with those of the previous chapter. Which do you find
most/least satisfying? Explain.

REFERENCES 67

2.8 Based upon the material in this and the previous chapter, write your

2.9

2.10

own three to five sentence definition of:
a. project management
b. systems engineering

Write a two-page summary overview of INCOSE’s Systems Engineer-
ing Handbook, version 3 (see reference 2.10).

Write a two-page summary overview of IEEE P1471, the software
standard dealing with architecture descriptions.

REFERENCES

2.1

22

2.3

24

2.5

2.6

2.7

2.8

2.9

2.10

2.11

2.12

Department of Defense (DoD) Website: web2.deskbook.osd.mil

Department of Defense Directive Number 5000.1 (2000). Washington, DC: Under Sec-
retary of Defense (Acquisition, Technology and Logistics), U.S. Department of Defense,
Pentagon, October 23.

Engineering Management, Military Standard 499 A (1974). Washington, DC: U.S. De-
partment of Defense.

Systems Engineering, Military Standard 499B (1971). Washington, DC: U.S. Department
of Defense.

Standard for Systems Engineering, IEEE P1200 (1994). New York: Institute of Electrical
and Electronics Engineers.

Processes for Engineering a System, EIA Standard 632 (1998). Washington, DC: Elec-
tronic Industries Association, Engineering Department; available also through Global
Engineering—see http://global.ins.com.

Systems Engineering Capability Model (SECM), EIA/IS-731 (1998). Washington, DC:
Electronic Industries Association, Engineering Department.

“Systems Engineering—System Life Cycle Processes” (2002). ISO/IEC 15288, 2002-
11-01. Geneva, Switzerland: ISO Copyright Office.

“Systems Engineering—A Guide for the Application of ISO/IEC 15288 (System Life
Cycle Processes).” (2003). Technical Report 19760. 2003-11-15. Geneva, Switzerland:
ISO Copyright Office.

Systems Engineering Handbook, version 3 (2006). INCOSE—TP 2003-002-03, June.
Defense System Software Development, DoD-Std-2167A (1988). Washington, DC: U.S.
Department of Defense.

Software Development and Documentation, Mil-Std-498 (1994). Washington, DC: U.S.
Department of Defense.

PART lI
PROJECT MANAGEMENT

— 3

THE PROJECT PLAN

3.1 INTRODUCTION

The project plan (PP) is at the core of the planning function for the project
team, and is a blueprint for the work to be performed as well as the proposal
to the customer, if such a proposal is indeed required. The project plan has
seven essential elements:

Needs, goals, objectives, and requirements

Task statements, statement of work, and work breakdown structure
Technical approach

Schedule

Organization, staffing, and task responsibility matrix

Budget

Risk analysis

NSk L=

All project plans should contain these essential elements, although it is rec-
ommended that a project plan should be as short and concise as possible.
If the customer requires great elaboration of the preceding elements, then a
“short form,” or summary of the project plan, should be prepared that will
serve the project team on a day-to-day basis. The project plan should be used
in at least the following ways:

1. To allow all project team members, including newly assigned personnel,
to understand the essentials of the project

71

72 THE PROJECT PLAN

2. To provide corporate management, to whom the project reports, with an
understanding of the project

3. To convey to the customer the project essentials, as perceived and for-
mulated by the project team

4. To form the basis for a proposal to the customer, where such a proposalis
called for

Updates to the formal project plan should be considered on a quarterly basis.
Changes to various portions of the plan, such as the schedule, should be
carried out when necessary.

In this chapter, use is made of various items in the literature, and in requests
for proposal, to show examples of the type of material that has been used on
real projects and programs. In addition, an example of a project with eight
tasks is postulated so as to convey how the various elements of the project
plan are interrelated.

3.2 NEEDS, GOALS, OBJECTIVES, AND REQUIREMENTS

This first part of a project plan can be divided into two parts, the first consisting
of needs, goals, and objectives, and the second constituting the requirements.
Requirements are of two types, project and system, with the latter being quite
voluminous and usually a part of the formal contract between the customer
and the system developer. Statements of needs, goals, and objectives can be
rather variable.

The statements of needs, goals, objectives, and requirements come from
the customer and acquirer of the system to be developed. The outside system
developer, therefore, is a recipient (rather than an original source) of these
statements. For at least this reason, they are much condensed or simply reit-
erated or incorporated by reference when a Project Manager deals with them
in a project plan.

3.2.1 Needs

The Department of Defense (DoD) acquisition directive [3.1] states that three
key aspects of acquisition management are

1. Translating operational needs into stable affordable programs
2. Acquiring quality products
3. Organizing for efficiency and effectiveness

With respect to the first key, the statement is made [3.1] that “prudent man-
agement also dictates that new acquisition programs only be initiated af-
ter fully examining alternative ways of satisfying identified military needs.”

3.2 NEEDS, GOALS, OBJECTIVES, AND REQUIREMENTS 73

Mission needs are also “identified as a direct result of continuing assessments
of current and projected capabilities in the context of changing military threats
and national defense policy.” Examples of possible military needs that are
identified in the acquisition directive are

1. The need to impede the advance of large armored formations 200 kilo-
meters beyond the front lines, or

2. The need to neutralize advances in submarine quieting made by potential
adversaries

Whereas the DoD may have rather formal procedures and processes for iden-
tifying and documenting needs, other government agencies and potential
commercial clients are likely to be much less structured in their approach to
this issue.

The bottom line, with respect to needs, is simply that the system acquirer
must make sure that a true need exists for the system in question. If that
is not the case, the project may ultimately not be able to be sustained. The
reader who wishes to explore this matter in greater depth may obtain the DoD
directive cited or examine the commentary of J. Davidson Frame, who spends
an entire chapter in his book [3.2] on the matter of “making certain that a
project is based on a clear need.”

In terms of the program plan, the statement of need can be abstracted from
the needs as represented by the acquisition agent. It can be very short and
expressed in only a few lines. This is in distinction to the needs analysis and
confirmation carried out by the acquirer of the system. As indicated by the
earlier DoD directive, such a needs analysis and assessment can be rather
formal and substantial, following the guidelines of the DOD.

3.2.2 Goals and Objectives

Goals and objectives are usually short declarative statements, with goals being
rather broad and objectives under each goal being somewhat more specific,
although some treat goals and objectives in reverse order. They are often
established for programs in distinction to projects. For this reason, they may
not be a firm requirement as part of a project plan. An illustrative set of goals
and objectives is shown in Table 3.1, in relation to an overall defense science
and technology strategy.

Another example of a stated objective, as articulated by the U.S. Coast
Guard (USCQ) in a real-world project procurement [3.3], is

1. To support marine safety and law enforcement activities
2. To record activities and resource usage

3. To analyze mission performance

4. To monitor program effectiveness and resource usage

74 THE PROJECT PLAN

TABLE 3.1 lllustrative Defense Science and Technology Goals
and Objectives

Goal A: Deterrence

Objectives
A.I Deploy weapon systems that can locate, identify, track, and target strategically
relocatable targets.

A.2 Attain worldwide, all-weather force projection capability to conduct limited
warfare operations (including special operations forces and low intensity
conflict) without the requirement for main operating bases, including a rapid
deployment force that is logistically independent for 30 days.

A.3 Eliminate the threat posed by nuclear ballistic missiles of all ranges, through
non-nuclear methods and in compliance with all existing treaties.

Goal B: Superiority

Objectives
B.1 Attain affordable, on-demand launch and orbit transfer capabilities for space
deployed assets with robust, survivable command and control links.

B.2 Regain the substantial antisubmarine warfare advantages the United States
enjoyed until recent years.

B.3 Achieve worldwide, instantaneous, secure, survivable, and robust command,
control, communications, and intelligence (C31) capabilities within 20 years to
include: (a) on-demand surveillance of selected geographical areas; (b)
real-time information transfer to command and control authority; and (c)
responsive, secure communications from decision makers for operational
implementation.

B.4 Field weapon systems and platforms that deny enemy targeting and allow
penetration of enemy defenses by taking full advantage of signature
management and electronic warfare.

B.5 Deploy enhanced, affordable close combat and air defense systems to
overmatch threat systems.

B.6 Field affordable “brilliant weapons™ that can autonomously acquire, classify,
track, and destroy a broad spectrum of targets (hard fixed, hard mobile,
communications nodes, etc.).

Goal C: Affordability

Objectives

C.1 Reduce operations and support resource requirements by 50% without
impairing combat capability.

C.2 Reduce manpower requirements for a given military capability by 10% or more
by 2010.

C.3 Ensure the affordability, producibility, and availability of future weapons
systems.

3.2 NEEDS, GOALS, OBJECTIVES, AND REQUIREMENTS 75

5. To exchange information between USCG offices, other government
agencies at the federal and state level, natural resource trustees, and
certain private organizations

6. To fulfill specific statutory requirements

We note that these statements of objectives are concise and to the point and
refer specifically to the project work that is being procured by the customer,
in this case from the Coast Guard.

3.2.3 Requirements

Requirements, as alluded to in earlier chapters, is a dense and important
subject. At the outset, we make a distinction between two types:

1. Requirements to be fulfilled by the project (project requirements)

2. Requirements of the “system” that the project addresses (system re-
quirements)

Project requirements refer to all the work to be performed on the project.
System requirements are applicable to the “system” that is being addressed
by the project. To illustrate the difference, let us assume that the project is to
design, but not build, a new “subway” system for a city. That is, the project
is limited to design and does not include the construction of any hardware
or software for the system. The project requirements, therefore, are limited
to all the work to be accomplished as part of the design process only. This
may include estimating the cost of the subway system for each year during
its entire life cycle. However, the cost of the project itself, limited as it is
to the design phase, is clearly a subset of that total cost, and is likely to be
only a minor part of the life-cycle cost of the subway system. The system
requirements describe, at increasing levels of detail, the full characteristics of
the subway system, from initial design to operations and support.

Thus, the Project Manager (PM) must keep in mind this distinction when
constructing the project plan. The latter should be focused on the project
requirements, with the system requirements carried forth, as defined by the
customer, in an ancillary document to be used in engineering the system in
question. Further discussions of the ways in which the system requirements
are to be handled are found in Chapter 8.

Project requirements are often stated by a customer in the main body
of a request for proposal in both broad and specific terms, whereas system
requirements can be described in several volumes of reports. An example of
the former is shown in Exhibit 3.1, drawn from a requirements statement in
a U.S. Coast Guard procurement dealing with mission-oriented information
systems engineering (MOISE) support.

76

THE PROJECT PLAN

Exhibit 3.1: U.S. Coast Guard Statement of Requirements [3.3]

The contractor shall furnish the equipment, software, maintenance, ser-
vices, and support required under the terms and conditions of the contract.
The major requirements are

1.

2.

whw

Technical, functional, data, programmatic, and strategic integration of
information systems

System and software development services within the information sys-
tem (IS) life-cycle phases defined by the U.S. Coast Guard
Management, quality assurance, and requirements metrics
Cross-cutting requirements that span more than one life-cycle phase
Limited quantities of hardware, services, and software to support sys-
tem development and to transition the systems to an operating and
maintenance provider

. Establishment, staffing, operation, and management of the System De-

velopment Center (SDC) to support the development of ISs by a phased
approach using task orders

. Contractor management and personnel requirements, and security pro-

cedures

In a similar vein, the Federal Aviation Administration (FAA), in its procure-
ment of technical assistance contract (TAG) services related to its advanced
automation program (AAP) and automation program (ANA), has documented
the summary of requirements set forth in Exhibit 3.2.

Exhibit 3.2: FAA Summary of Requirements for TAC Support [3.4]

a. The contractor shall support FAA’s Advanced Automation Program

(AAP) and Automation Program (ANA) in an engineering and tech-
nical assistance capacity. The contractor’s efforts shall complement,
support, and extend those of the AAP/ANA engineering staff, which
are responsible for the overall technical and contractual direction of the
AAP and ANA programs.

. The contractor shall provide assistance to the FAA in critical technical

areas at key periods throughout the contract. A broad range of talents
are required to address complex technical problems, for varying periods
of time and under stringent response constraints. The contractor’s skills
must have particular depth, breadth, and quality as follows: [as listed].

. The contractor’s experience and performance must be at a level to pro-

vide the highest quality of analytic expertise and, if required, to support
the provision of expert testimony.

The two exhibits focus on project requirements. The Project Manager will
normally accept these customer statements of requirements for integration
into the project plan. Also note that they are relatively brief and differ from

3.2 NEEDS, GOALS, OBJECTIVES, AND REQUIREMENTS 77

system requirements when a large-scale system is being procured. If provided,
the system requirements can be cited by reference in the program plan rather
than being an integral part of the plan itself.

Other project requirements may also be stated in a procurement that may
be regarded as subordinate requirements. These may be described as mini-
mum position qualification requirements, or estimated staffing requirements,
or even special contract requirements. For example, Exhibit 3.3 shows the
estimated staffing requirements associated with a NASA procurement [3.5].

Exhibit 3.3: Illustrative Estimated Staffing Requirements

Labor Category Estimated Hours Required
1. Program Manager 100
2. Senior Instructor 300
3. Instructor 120
4. Senior Facilitator 100
5. Facilitator 80
6. Course Development Specialist 240
7. Administrative/Clerical 120
Total 1060

These subordinate requirements impact the staffing of the project and, of
course, the estimated cost of the project, as described in later parts of the
project plan. A list of other special contract requirements from this same
NASA procurement follows:

Printing and duplicating

Task ordering procedure

Key personnel and facilities

Observance of legal holidays

Protection of information

Level of effort (cost)

Property administration

Contractor’s program manager

Special provisions regarding travel costs
Minimum position qualifications

. Identification of contractor employees

. Advance understanding: nonfee-bearing costs
. General-purpose equipment

. Contractor-acquired property: submission of vouchers

WAL A WD =

— e

78 THE PROJECT PLAN

These subordinate requirements should only be cited by reference and not
be included in detail in the requirements portion of the project plan. An
alternative is to list them as an appendix to the plan.

3.3 TASK STATEMENTS, STATEMENT OF WORK (SOW),
AND WORK BREAKDOWN STRUCTURE (WBS)

Task statements are usually part of the statement of work (SOW) provided
by the customer. Thus, these are used interchangeably in this text. These
statements are normally accepted and reiterated by the system developer
in the program plan. Changing the customer’s SOW is not a recommended
action because it may turn into a point of contention later in the process.
Work breakdown structures (WBSs) may or may not be part of the customer’s
definition of the work to be performed. When it is provided by the customer,
it almost always should be accepted and used by the system developer.

An example of task statements (sometimes also called task areas) is shown
in Exhibit 3.4, drawn from a real-world request for proposal from the FAA
to industry. Under each of the task areas listed in the Exhibit, there is a short
description of the tasks to be performed. Thus, task statements are embedded
in the defined task areas.

Exhibit 3.4: Example of Task Statements and Task Areas from the
FAA [3.4]

Task Area 1
Requirements Analysis and Documentation
Computer-Human Interface (CHI)
Specification Development
Reliability, Maintainability, and Availability (RMA) and Fault Tolerance
(FT)
System Modeling and Performance Analysis
Local Communication Network (LCN)
Algorithm Evaluation
Interfaces
Standards
Technical Planning and Risk Analysis
Software Engineering
Task Area 2
Advanced Automation System (AAS) Contractor Requirements Trace-
ability and Compliance Tracking
Technical Support
Engineering Change Proposals (ECPs)
Testing and Evaluation
Implementation

3.3 TASK STATEMENTS, STATEMENT OF WORK 79

Division/Branch Segment
Integrated Logistics Management
Task Area 3
Terminal Automation Program Management
En Route/Traffic Management Systems Automation Program Manage-
ment
Maintenance Automation Program Management
Task Area 4
Planned Product Improvement Design Evaluation
Planned Product Improvement Operational Test and Evaluation
(OT&E)
Operational Test and Evaluation
Site Implementation
Manufacturing and Production
Factory Testing
Task Area 5
Configuration Management
Financial Management
Data Management
Office Automation
Program Control

A similar example for work to be performed under a solicitation from
the Defense Systems Management College (DSMC) is provided in Exhibit
3.5. Here, again, task areas are defined and elaborated to constitute task
statements.

Exhibit 3.5: Example of Task Areas from the Defense Systems
Management College [3.6]

Task Area 1: Curriculum Design and Development

Task Area 2: Program Management Course Curriculum Material Update

Task Area 3: Development of Automated DSMC Management and Teach-
ing Tools

Task Area 4: Statistical Analysis Support

Task Area 5: Executive Education Curriculum Development

Task Area 6: Quality of Instruction

Task Area 7: Define Teaching Quality

Task Area 8: Establishment of Baselines

Task Area 9: Reports

A third illustration of how a statement of work may be formulated is
found in Exhibit 3.6. This exhibit lists seven “detailed items of work” with a
breakdown of more specific work under the first item.

80 THE PROJECT PLAN

Exhibit 3.6: Example of Items of Work from the Department
of Transportation’s Volpe Center [3.7]

1. Project Planning and Scheduling Support
User and System Requirements Analysis
Technical Meeting Support

Technology Assessment

Project Management Support

Transition Planning

Environmental Impact Assessments
Cost Benefit Analyses

System Design and Development Support

Software Development Support

Systems Integration Support

Testing and Evaluation Support

Training Support

Documentation and Configuration Management Support

Nk WD —

Nownkw

The work breakdown structure (WBS) is also a formal exposition of work
to be performed and is illustrated in Figure 3.1 for a NASA program known
as Earth Observing System Data and Information System (EOSDIS) Phase
B [3.8]. The most convenient form of a WBS is one in which there is a
one-to-one correspondence between the tasks and the WBS. In such a case,
the WBS elements can be considered a further breakdown of the major tasks
into subtasks and each WBS element is identical to a subtask. If a WBS has
not been defined by the customer, it is a recommended procedure to have the
WBS correspond directly to the tasks and subtasks. However, if the customer
provides a WBS, it may be necessary to develop a “cross-walk” between
the task statements and the WBS. Such a cross-walk is shown symbolically
in Table 3.2. This usually creates a layer of complexity that is not really
desirable but may be necessary in order to satisfy the instructions of the
customer.

3.4 TECHNICAL APPROACH

The technical approach is a task-by-task description of how the project team
intends to execute the tasks and subtasks in the SOW, from a technical per-
spective. The technical approach is usually formulated, in detail, in response
to a request for proposal (REP) if such an REP is a precursor to the project.
In such a situation, this technical approach can be abstracted and used in this
section of the project plan.

The technical approach changes, of course, for each project and the domain
of the project. The approach to building a management information system

EosDIS
1000

Study
management

1100

1110 Technical management
activities

1120 Resource management

1130 Financial management

1140 Configuration control

1150 Document control

1160 Document preparation

Architecture
formulation

1300

1310 Review external architectures
1320 Refine EosDIS system architecture
1330 Develop EosDIS Unique Level lll

Operations

1500

1520 Develop staffing plan
1530 Develop training plan

1510 Develop operations scenarios

1210 Refine Level | and Level Il
requirements

1220 Develop Level Il requirements

1230 Develop strawman Level IV
requirements

1240 Develop initial operations concept

1250 Perform trade studies
1260 Document
1270 Review

architecture 1540 Develop test plan
1340 Develop strawman Level IV 1550 Develop maintenance plan
architecture 1560 Document
1350 Define interfaces at Level Il 1570 Review
and IV
1360 Perform trade studies
1370 Document
1380 Review
Requirements EosDIS
analysis and unique
definition design
1200 1400

1410 Refine operations concept

1420 Develop element level design spec.

1430 Develop component level design
specification

1440 Develop implementation plan

1450 Perform reliability/maintainability/
availability analysis

1460 Perform trade studies

1470 Document

1480 Review

Figure 3.1. EOSDIS Phase B work breakdown structure.

Life-cycle
estimate

1700

1710 Initial cost estimate
1720 Final cost estimate

Special
studies

1600

1610 Perform study tasks
1620 Document
1630 Review

82 THE PROJECT PLAN

TABLE 3.2 Cross-Walk Between SOW and WBS
Work Breakdown Structure
WBS1.0 WBS20 WBS3.0 WBS40 WBSS5.0

Task 1 X X X

Statement Task 2 X X X
of Work Task 3 X X
(SOW) Task 4 X X X

Task 5 X X X

Task 6 X X

(MIS) is different from the approach to constructing a subway or transit
system. However, some questions that might be common to all projects,
with respect to the technical approach, are cited in Exhibit 3.7. These
questions assist the project team in addressing a wide variety of technical
issues.

Exhibit 3.7: Two Dozen Selected Questions for Technical Approach

How do we plan to execute this task/subtask?

How will we employ a systems approach and systems engineering

process?

What is special or unique about our approach?

What technology do we plan to utilize or transition?

Is this technology at or pushing the state of the art?

How can we be most productive and efficient?

What computer tools will we be using?

How can we demonstrate that we will, as a minimum, satisfy all cus-

tomer requirements?

9. Do we plan to exceed requirements in certain areas?

10. Are certain requirements vague, incorrect, or inconsistent?

11. What special facilities will we need?

12. What aspects of our previous work can be brought to bear?

13. Do we plan to use any special models or simulations in order to assess
system performance?

14. How will we execute a coherent technical performance measurement
program?

15. What is our approach to system and subsystem testing?

16. Do we have a unique knowledge base to support our approach?

17. Can our independent research and development (IR&D) program re-
sults be utilized for this project?

18. What specialty engineering capabilities will we be using?

N —

e A

3.5 SCHEDULE 83

19. How does our technical approach correlate with our Systems Engi-
neering Management Plan (SEMP)?

20. Do we plan to use special processes such as concurrent engineer-
ing, business process reengineering, or Total Quality Management
(TQM)?

21. How can we approach software development with the most up-to-date
methods?

22. What types of technical support will be needed from the rest of the
company?

23. How will we find the most cost-effective solution?

24. How will we prove that we have the most cost-effective solution?

Question 19 of Exhibit 3.7 raises the issue of the relationship between
the Systems Engineering Management Plan and the technical approach.
These two documents are not the same, but certain elements of the SEMP,
as a minimum, should be addressed in the technical approach. These in-
clude the systems engineering process, technical performance measure-
ment, methods of systems analysis, technology transitioning, and technical
integration.

3.5 SCHEDULE

A schedule is an expression of the tasks and activities to be performed along
a time line. Two main methods of describing a schedule are in use today,
namely, (1) a Gantt Chart and (2) a program evaluation and review tech-
nique (PERT) Chart. Figures 3.2 and 3.3 show examples of these types of
schedules. Both figures are constructed for a hypothetical project of eight
principal tasks that involve selecting commercial-off-the-shelf (COTS) soft-
ware for use by a project team. Such software might be, for example, a project
management package or some other package (e.g., geographic information
system, executive information system) that would be needed by a project
team.

Both figures map the tasks against a time line for the eight weeks of the
total project. The Gantt chart is quite straightforward and easy to read. Each
bar represents a single task. The PERT chart is somewhat more complex but
is also simple to grasp. Each circle represents an event—a specific point in
time at which a measurable activity is either started or completed. The lines
between the events are activities during which resources are expended to
achieve the designated end event. Further details regarding how a PERT chart
is developed are provided in Chapter 4. However, one major point is that the
PERT chart places in evidence the longest path through the network, which
is known as the critical path. By definition, all other paths are at most as long

84 THE PROJECT PLAN

T T
1]
Analyze project
Task 1 requirements
|
ﬂ Examine project
Task 2 environment
I
ﬂ Define COTS
Task 3 alternatives
4]
Task 4 Select
alternative
5]
Task 5 Purchase
software
6]
Task 6 Install
software
7
J Document
Task 7 system operation
8]
Task 8 Train
personnel
0 1 2 3 4 5 6 7 8
Time, weeks

Figure 3.2. Example of project schedule.

as the critical path. Those parallel paths that are shorter have “slack” in them.
Slack represents an opportunity for moving some tasks or subtasks forward
or backward to utilize resources in more efficient ways.

The schedule for a complex project can literally take up the space of an
entire wall. The schedule in the program plan should be an overview schedule,
emphasizing major tasks and milestones. Too much detail is not warranted
in an overview project plan. A full computer-generated schedule might be
included only as an appendix to the plan.

The schedule must be ultimately consistent with the customer’s delivery
requirements. This applies to interim dates as well as the final project com-
pletion date. To the extent that the schedule drawn up by the project team does
not do this, it has to be continually reworked until all customer requirements
with respect to the schedule are met. If this is not possible, then the plan is
not viable and there is an impasse that must be negotiated and resolved before
work can begin.

(1) = Expected time in weeks |

1
Project
requirements
analyzed

3
COTS
alternatives
defined

Project
environment
examined

Alternative
selected

Software
purchased

Software
installed

7
System
operation
documented,

Personnel
trained

1 2

3 4
Time, weeks

Figure 3.3. Example of a project PERT chart.

86 THE PROJECT PLAN

TABLE 3.3 Task Responsibility Matrix (TRM)

Personnel (Staff) Categories

A B C D
Senior Software Software Documentation Training
Engineer Engineer Specialist Specialist
Number Number Number Number Total
of Person- of Person- of Person- of Person- Person-
People Weeks People Weeks People Weeks People Weeks Weeks
Task 1 1 3 3
Task 2 1 2 2
Task 3 1 2 1 2 4
Task 4 1 1 1 1 2
Task 5 1 1 1
Task 6 1 1 1 1 2
Task 7 1 2 1 2 1 3 1 1 8
Task8 1 1 1 1 I B T
Totals: 10 10 3 2 25

3.6 ORGANIZATION, STAFFING, AND TASK RESPONSIBILITY
MATRIX (TRM)

The project organization can be simply the organization chart (see Figure 1.2
in Chapter 1), supplemented by a short description of key roles and respon-
sibilities. Staffing refers to the next step of actually assigning categories of
personnel to the various project tasks. This results in a task responsibility
matrix (TRM), as illustrated in Table 3.3, based on the schedule in Figure 3.2.
We note that person-week totals by task and by category of personnel are eas-
ily derived from the assignment of personnel types to the tasks. As indicated
previously, if a WBS is part of the project, and the relationship between the
tasks and the WBS has been developed, then it is possible to also develop a
profile of which personnel are expected to execute the elements of the WBS.

It is considered optional for the project plan to contain the specific names
of the people that represent the various personnel categories. Clearly, this step
must ultimately be taken, but it does not necessarily have to be part of the
program plan document. In many ways, it is preferable to treat the assignments
by category rather than by the names of specific individuals.

3.7 BUDGET

From the previously developed information, and some additional cost data, it
is then possible to formulate a budget for the project. Such a project budget

3.7 BUDGET 87

TABLE 3.4 Project Budget

Direct Labor Rate/Week Person-Weeks Cost

Senior software engineer $1,000 10 $10,000

Software engineer 700 10 7,000

Documentation specialist 500 3 1,500

Training specialist 600 2 1,200

Fringe benefits @ 30% 25 $19,700

$5,910

Overhead @ 70% Subtotal 1 $25,610

$17,927

Other direct costs Subtotal 2 $43,537
1. Software

2. Training materials $8,000

1,000

General & administrative @ 15% Subtotal 3 $52,537

7,881

Total cost $60,418
Fee (profit) @ 10% 6,042
Cost and fee (Price) $66,460

is illustrated in Table 3.4, utilizing the same data from the task responsibil-
ity matrix in Table 3.3. Cost items may also be broken down by week, as
illustrated in Table 3.5. This facilitates cost tracking, as discussed in the next
chapter.

From Table 3.4, a project budget is prepared by first examining the direct
labor costs. These costs are incurred as a result of project personnel working on
the various tasks of the project. As shown in the figure, and using the person-
week data provided in Table 3.3, we list the four categories of personnel
together with their labor rates per week and the person-weeks that each has
been assigned. This yields the direct labor cost by category. The summation
of these costs ($19,700) is the total direct labor cost for this project. This is
augmented by adding the fringe benefits, in this case 30% of the direct labor
costs. The resultant sum, shown as subtotal 1, is $25,610. The next item of
cost to consider is the overhead cost. This example shows the overhead rate
to be 70%, or a total of $17,927. Some companies embed fringe benefits into
the overhead percentage and therefore there is no reason to consider fringe
and overhead separately. In this model, they are constructed as separate rates.

Subtotal 2 shows the direct costs with fringe and overhead costs added,
yielding an amount of $43,537. At this point in the process, other direct
costs (ODCs) are considered. These may be a variety of cost items, such
as materials, consultants, subcontractors, and services provided from outside
the company. In Table 3.4, two such costs are listed: the cost of purchasing
software, estimated at $8,000, and the cost of training materials, shown as
$1,000. Adding these costs to subtotal 2 leads to subtotal 3, which is $52,537.

TABLE 3.5 Cost Budget by Week

Labor Category

Week 1

Week 2

Week 3

Week 4

Week 5

Week 6

Week 7

Week 8

P-wk Cost P-wk Cost P-wk Cost P-wk Cost P-wk Cost

P-wk Cost P-wk Cost P-wk Cost

Senior software eng’r

Software eng’r

Document specialist
Training specialist

Fringe @ 30%
Subtotal 1
Overhead @ 70%
Subtotal 2
ODCs: Software
train, mat’ls
Subtotal 3
G&A @ 15%
Total cost

Cumulative cost

1,000 2,000 2,000 1 1 1,000 1 1,000 1 1,000 1 1,000
— 1,400 1,400 1 2 1,400 700 1 700 1 700
— — — — 1 500 1 500 — —
— — — — = = = —= 1 600 1 600
1,000 3,400 3,400 2 4 2,900 3 2200 4 2800 3 2,300
300 1,020 1,020 870 660 840 690
1,300 4,420 4,420 3,770 2,860 3,640 2,990
910 3,094 3,094 2,639 2,002 2,548 2,093
2,210 7,514 7,514 6,409 4,862 6,188 5,083
— — — — 8,000 — — — — —
— — — — — 1,000 = = — = =
2,210 7,514 7,514 15,409 4,862 6,188 5,083
331 1,127 1,127 2,311 730 928 763
2,541 8,641 8,641 17,720 5,592 7,116 5,846
Total cost $60,418
2,541 11,182 19,823 41,864 47.456 54,572 60,418

3.7 BUDGET 89

Next, general and administrative (G&A) costs are added. These are repre-
sented as a percentage, in this case 15%, or a total of $7,881. Summing this
cost with subtotal 3 yields the total estimated project cost of $60,418. This, of
course, is a critical number. If all went according to plan, the overall project,
for this example, would cost $60,418. Finally, a fee is added, in this case 10%.
This is the profit that the company wishes to make by engaging in this effort.
Adding the fee to the cost results in the overall estimated price of $66,460.

In order to calculate the bottom-line cost without ODCs, and do it quickly,
we introduce the notion of a “cost factor.” This cost factor (CF) is a multiplier
on the direct labor costs that results in the total project cost, without any
ODC:s. The cost factor is

CF = (1 + FR)(1 + OH)(1 + GA)

where FR = fringe rate (expressed as a decimal)
OH = overhead rate
GA = general and administrative rate

Thus, in the example shown in Table 3.4, the cost factor is
CF=0+0.3)(1+0.7)(1+0.15) = (1.3)(1.7)(1.15) = 2.54

This means that every dollar of cost at the direct labor line translates into
$2.54 in bottom-line cost, exclusive of ODCs.

In a similar vein, the “price factor” (PF) translates direct costs into bottom-
line prices and is

PF = (CF)(1 + PR)

where PR is the profit (fee), expressed as a decimal. By using numbers from
Table 3.4, the price factor is

PF = (2.54)(1 +0.1) = (2.54)(1.1) = 2.79

Again, both the cost and price factor are rapid ways to estimate bottom-line
costs and profits, but without other direct costs.

We note that some elements of cost are estimated by the Project Manager
(more likely in concert with the Project Controller and the Chief Systems
Engineer). These include the original person-week estimates, and the software
and training materials costs (ODCs). All other costs are derivable from the
fringe, overhead, and G&A costs. These three costs are characteristic of the
corporate structure and generally are not under the control of the Project
Manager. In a similar vein, company management will likely select the fee
(profit) that is to be bid, obtaining an input from the Project Manager.

The PM must control the project to the overall cost number and not the
total bid price. The fee is not to be spent by the PM unless some agreement

90 THE PROJECT PLAN

has been reached within the company’s decision-making apparatus to do so
for this project. There are even times when the PM is not aware of the fee
(profit) that has been proposed.

The customer may also wish to see the estimated project costs broken down
by time period (as in Table 3.5) or by project task. The task breakdown of cost
would be derived from using the task person-week data shown in Table 3.3.

An inviolate notion in project as well as corporate management is that cost
and price are not the same. If it turns out that the project is successful, then the
enterprise would receive the bid price from the customer, which then would
be booked as company sales or revenues. The difference between project
revenue and project cost is, of course, the profit that is made by the project.
If that number is positive and equal to or greater than the bid profit, then all
is well. If it is negative, then the PM may be in some difficulty, with a lot of
explaining to do.

3.8 RISK ANALYSIS

In order to avoid future difficulty, the project triumvirate, as a minimum,
should carry out a risk analysis, the results of which become part of the
project plan. This analysis attempts to focus on trouble spots before the fact,
developing risk-mitigation strategies prior to actual work on project tasks.

In general, it can be said that there are four kinds of risk that the Project
Manager would be concerned with. These are

1. Technical performance risk
2. Schedule risk

3. Costrisk

4. Administrative risk

Technical performance risk (TPR) flows from items of design, develop-
ment, and construction of the system that result in not meeting the technical
requirements set forth by the customer. These might include situations where
one is pushing the state of the art, not meeting system response times, expe-
riencing harsh environments that degrade system performance and numerous
others. TPR is by far the most complex area and must be examined by domain-
knowledge personnel to identify what tasks appear to be most difficult from
the perspective of system performance. Background information regarding
the details of how to carry out a technical performance risk analysis can be
found in the literature [3.9, 3.10, 3.11, 3.12]. It is also considered again in
Chapter 8. Technical performance risk is also a primary factor in creating
schedule and cost risks.

Schedule risk, of course, involves not meeting project milestones. If inter-
nal milestones are not met, then the PM may be able to get back on sched-
ule by the deployment of additional resources and other means. Customer

3.8 RISK ANALYSIS 91

delivery and review dates are viewed as much more serious, especially the
delivery of parts of the system and special reports to the customer. If penalty
clauses for late delivery are operative, schedule risks in this regard are con-
sidered critical. Analysis of the project PERT chart is usually a good place
to start in assessing schedule risk. Activities and events on the critical path
should be examined in considerable detail because this path is the controlling
factor in the overall project schedule. Long lead-time items that come from
other vendors should be subject to scrutiny and it may be necessary to have
backup plans for such items. Cases in which the customer has to provide an
input or pieces of hardware and software should also be examined in detail,
the question being: What happens if the customer fails to provide these inputs
when required? Schedule risks, although numerous, are subject to analysis
and can, in a great many cases, be accurately predicted.

Costrisk is often experienced when not enough effort has gone into the early
cost-estimation processes. “Guesses” are accepted as hard data and not discov-
ered as incorrect until the situation is investigated. For example, in the sample
costing shown in Table 3.4, software costs are estimated to be $8,000, repre-
senting about 13% of the total project cost. If these costs turn out to be $12,000
instead of the original $8,000 estimate, an increase in cost of $4,600 would be
experienced (the $4,000 increase plus the G&A of $600). There is very little
room in this illustrative project to make up a cost increase of this amount.

Risk to the project may be present when the overhead and G&A rates in the
enterprise are not stable. If these rates increase in the middle of the project,
they will impact total cost even though the PM may be doing everything
correctly. In such a case, the PM is somewhat “off the hook,” but may still
be asked to try to make up for these cost increases. This type of risk may be
called an administrative risk, but its effect results in a cost risk. Another type
of administrative cost risk involves the failure of the company to hire on time
for the project, or the unexpected loss of a key person to another firm halfway
through the project.

As suggested by this discussion, there are often many risks to the success
of the project and it behooves the project triumvirate to attempt to anticipate
these risks and establish risk-mitigation strategies. Therefore, the risk-analysis
portion of the project plan would consider the previous four types of risks in
terms of the following questions:

What specific risks are present for this project?

What are the likelihoods of experiencing these risks?

What are the likely consequences if indeed the risks occur?

Based on 2 and 3, how can we prioritize the risks that have been identi-
fied?

5. What can we do to minimize the likelihood of occurrence as well as the
consequences of high-priority risks?

Ll S

The answers to the last question represent the risk-mitigation strategies.

92 THE PROJECT PLAN

3.9 THE PROPOSAL

The Project Manager is often faced with the matter of writing a proposal
in order to have the opportunity to be awarded the project contract. In such
a case, it is recommended that the previous project plan be constructed, in
rough form, as a precursor to the actual proposal-writing process. Thus, the
project plan becomes a critical input to proposal preparation because it deals
with most of the crucial issues.

The format of the proposal is very often structured as follows:

1. A technical proposal
2. A cost proposal
3. A management proposal

It is very important that the proposal manager, often but not always the
proposed Project Manager, follow the request-for-proposal (RFP) instructions
to the letter in order to score as high as possible. The bases for evaluating
proposals are usually described in a portion of the RFP citing the “evaluation
criteria.”

Writing a high-quality and winning proposal is a complex matter that is
likely to be a part of the careers of the Project Manager, the Chief Systems
Engineer, and the Project Controller. Some of the rules and vagaries of de-
veloping high-quality proposals are examined in greater detail in Chapter 6.

3.10 SEMP AND SEP

The project plan, discussed in some detail at the beginning of this chapter, is a
generic document that describes the seven elements of an overview plan at the
project level. Some attention is paid to technical matters of the project, but the
systems engineering approach is not the main focus of the plan at the project
level. One might say, however, that the Chief Systems Engineer (CSE) must
take on the challenge of producing, with the approval of the Project Manager
(PM), a technical systems engineering plan. In the remainder of this chapter
we look at two related plans, one called the SEMP (systems engineering
management plan) and the other is the SEP (systems engineering plan).

3.10.1 SEMP

In Exhibit 2.4 of Chapter 2 we cited the key elements of the SEMP, from the
perspective of the Department of Defense (DoD). In Exhibit 3.8, we list a
DoD and a NASA view of the SEMP. In this format we are able to look briefly
at the similarities and differences between these two views.

3.10 SEMP AND SEP 93

Exhibit 3.8 DoD and NASA Views of a SEMP

a. DoD View (see Exhibit 2.4)

1. Systems Engineering Process

2. Systems Analysis and Control
2.1 Systems Analysis
2.2 Technical Performance Measurement (TPM)
2.3 Technical Reviews

3. Technology Transition

4. Technical Integration Teams

b. NASA View [3.13]

Purpose and Scope

Applicable Documents

Technical Summary

Technical Effort Integration

Common Technical Processes Implementation

Technology Insertion

Additional SE (systems engineering) Functions and Activities
Integration with the Project Plan Resource Allocation
Waivers

Appendices

COXAIIN R WD =

—

The DoD and the NASA views are by no means the same, nor are they
entirely different. Both emphasize process and, to that extent, are in line
with many project and systems engineering notions. For example, the DoD
leads off with an overview of the systems engineering process, and NASA
looks at the (seventeen-element) set of common technical processes and
their implementation. In Chapter 2 we cited the ISO/IEC 15288 standard
that also emphasized processes (twenty-five of them). Getting the process
correct is now an important ingredient in achieving success in our program
endeavors.

Both the DoD and NASA also deal with technology issues in an explicit
way in their SEMPs. The DoD calls it “Technology Transition” whereas
NASA refers to it as “Technology Insertion.” As we will see in Chapter
12, our approach to system acquisition emphasizes technology and its role
in building better systems. This is especially important as new technologies
seem to be appearing at faster rates and are crucial in order to be competitive
in both military and commercial worlds.

NASA also emphasizes technical effort integration, recognizing that this
is a critical part of how to approach systems engineering and project manage-
ment. It also leaves room for additional systems engineering functions and
activities. On the DoD side, special attention is paid to technical integration
teams. The full flavor of the DoD and the NASA approaches can be gained

94 THE PROJECT PLAN

only by reading, in some detail, the full documentation provided by these two
agencies with respect to a SEMP.

3.10.2

SEP

The DoD, in 2004, continued down the road of explaining its needs in terms
of a SEP. In the policy statement for systems engineering, the office of the
Under Secretary of Defense declared that programs will have an SEP such
that each plan [3.14]:

[SThall describe the program’s overall technical approach, including processes,
resources, metrics, and applicable performance incentives. It shall also detail
the timing, conduct and success criteria of technical reviews.

In a SEP preparation guide [3.15], eight points were articulated:

L.

The SEP is the blueprint for the conduct, management, and control
of the technical aspects of an acquisition program.

. The SEP defines the methods by which system requirements, tech-

nical staffing, and technical management are to be implemented.

A sound systems engineering strategy needs to be defined.

The SEP shall be updated continuously.

Linkages are to be established between other technical and program-
matic efforts (e.g., test and evaluation, risk management, etc.).

The SEP should be tailored to the specific needs of the individual
program or project.

Technical questions need to be set forth and answered, such as: What
are the key technical issues, and how are these issues to be solved
and managed?

. The SEP shall be submitted for approval at each major program

milestone.

There is a preferred format (which can be tailored) for the SEP. That format
is reproduced here [3.15] as Exhibit 3.9.

Exhibit 3.9 Preferred Format for DoD’s SEP

1. Title and Coordination Pages

2. Table of Contents

3. Introduction
3.1 Program Description and Applicable Documents
3.2 Program Status as of Date of this SEP
3.3 Approach for SEP Updates

QUESTIONS/EXERCISES 95

4. Systems Engineering Application to Life Cycle Phases

4.1 System Capabilities, Requirements, and Design Considerations
* Capabilities to Be Achieved
» Key Performance Parameters
* Certification Requirements
* Design Considerations

4.2 SE Organizational Integration
* Organization of IPTs (Integrated Product Teams)
 Organizational Responsibilities
* Integration of SE into Program IPTs
e Technical Staffing and Hiring Plans

4.3 Systems Engineering Process
* Process Selection
* Process Improvement
* Tools and Resources
* Approach for Trades

4.4 Technical Management and Control
» Technical Baseline Management and Control (Strategy and

Approach)

 Technical Review Plan (Strategy and Approach)

4.5 Integration with Other Program Management Control Efforts
» Acquisition Strategy
* Risk Management
* Integrated Master Plan
e Earned Value Management
e Contract Management

By comparing Exhibits 3.8 and 3.9, we can see how DoD thinking may
have changed in proceeding from the SEMP to the SEP. Such a comparison
is posed as question 3.10 below.

QUESTIONS/EXERCISES

3.1 Identify additional elements you might add to a project plan. Explain
why.

3.2 Compare the work breakdown structure (WBS) in Figure 3.1 with the
project structure in Figure 1.2. Should the latter be more or less the
same as the former? Why?

3.3 Cite three features of the PERT approach that are not present for Gantt
charting. When and why are these features significant?

96

34

3.5

3.6

3.7

3.8
3.9

3.10

THE PROJECT PLAN

Calculate the fully loaded hourly rate for each of the four labor cat-
egories in Table 3.4. What is the average hourly rate for the entire
project?

From Table 3.5, enter the person-week and cost expenditures for each
week into a spreadsheet and print out graphs showing:

a. expenditures each week
b. cumulative expenditures by week

Identify and discuss three areas of significant cost risk. What might be
done to mitigate these risks?

Identify and discuss three areas of significant for schedule risk. What
might be done to mitigate these risks?

Cite and discuss three suggestions for writing an outstanding proposal.

Define a numerical approach to evaluating a proposal. Show by example
how a given proposal might receive a set of evaluation scores. See if
you can compare your approach to that taken by a government agency
on a real procurement.

In this chapter we see how the Department of Defense approached both a
systems engineering management plan and a system engineering plan.
Write a two-page discussion of similarities and differences between
these two plans.

REFERENCES

3.1

32
33

34

3.5

3.6

3.7

3.8

3.9

Defense Acquisition, DoD Directive 5000.1 (1991). Washington, DC: U.S. Department
of Defense.

Frame, J. D. (1987). Managing Projects in Organizations. San Francisco: Jossey-Bass.
Mission Oriented Information System Engineering (MOISE) Solicitation (1992).
Washington, DC: U.S. Coast Guard, Department of Transportation.

Technical Assistance (TAG) Request for Information (RFI) (1993). Washington, DC:
Federal Aviation Administration, Department of Transportation.

Management Training and Organizational Development Support Services Solicitation
(1993). Washington, DC: National Aeronautics and Space Administration, Headquarters
Acquisition Division.

Curriculum Support for the Defense Systems Management College (Solicitation). Fort
Belvoir, VA: DSMC: Directorate of Contracting, Contracting Division.

Specialized Quick Response Support, Solicitation DTRS-57-93-R-00047 (1993).
Washington, DC: Department of Transportation.

Earth Observing System Data and Information System (EOSDIS), Phase B Study State-
ment of Work {SOW) (1988). Greenbelt, MD: NASA, Goddard Space Flight Center.
Eisner, H. (1988). Computer-Aided Systems Engineering. Englewood, NJ: Prentice Hall,
Chapter 13.

3.10

3.12

3.13
3.14

3.15

REFERENCES 97

Marciniak, J. J., and D. J. Reifer (1990). Sofiware Acquisition Management, New York:
John Wiley, Chapter 6.

Charette, R. N. (1989). Sofiware Engineering Risk Analysis and Management. New York:
McGraw-Hill.

Henley, E. J., and H. Kumamoto (1981). Reliability Engineering and Risk Assessment.
Englewood, NJ: Prentice Hall.

NASA Systems Engineering Handbook (1995). SP-610S. Washington, DC: NASA, June.
Policy for Systems Engineering in DoD (2004). Washington, DC: U.S. Department of
Defense, February 20.

Systems Engineering Plan (SEP) Preparation Guide, Version 0.95 (2004). Washington,
DC: U.S. Department of Defense, December.

4

SCHEDULE, COST, AND
SITUATION ANALYSIS

4.1 INTRODUCTION

This chapter deals mainly with the monitoring function of the Project Manager
(PM), the Chief Systems Engineer (CSE), and the Project Controller (PC), as
previously depicted in Figure 2.1 in Chapter 2. A key element of this function
is to continuously review and analyze the status of the project with respect to
schedule, cost, and performance. In this chapter, we focus on schedule and
cost, leaving technical performance to the systems engineering chapters. As
shown in Figure 2.1, once a problem area is discovered, feedback is provided
to the project team, which, together with the project triumvirate, will analyze
the issue in greater depth in order to define and implement corrective action.

Monitoring of a project is often used synonymously with the word “con-
trol.” Indeed, the PM does in fact attempt to control the project, steering it
through times of difficulty by continuous measurement and corrective action.
Thus, in several other texts on the subject of project management [4.1, 4.2,
4.3], the reader will find many of the topics of this chapter listed under the
heading of project control.

The last subject of this chapter deals with the topic of “situation analysis.”
This is a procedure, defined herein, to be used both in real-world situations as
well as in teaching the subject of project management. In effect, it is a minicase
study of a situation that might arise on any given project. An example of how
this procedure may be applied completes this chapter.

99

100 SCHEDULE, COST, AND SITUATION ANALYSIS

4.2 SCHEDULE ANALYSIS AND MONITORING

Matters relating to the project schedule were presented briefly in the last
chapter in discussing the project plan. Every project plan must have a schedule,
although such a schedule is generally an overview of the project, with a
detailed schedule included perhaps as an appendix. In this chapter, we examine
some of the “nuts and bolts” of project scheduling, exploring particularly
the characteristics of the PERT (program evaluation and review technique)
approach.

PERT is the preferred scheduling procedure for a large-scale system in
which there are large numbers of events and activities that must be identified
and tracked. This technique, in distinction to Gantt charting, deals explicitly
with dependencies between the various tasks and activities. A PERT network
is normally devised by starting with known “end” events and milestones and
asking the question: What activities need to be accomplished before this
event or milestone can be achieved? By working backward in this fashion,
eventually an entire network is developed.

The PERT procedure leads to a network of serial and parallel paths of
events and activities. A simple example of such a network was shown in
Figure 3.3 of the previous chapter. We use this example here to examine the
network itself as well as some of the data that are required to formulate the
network.

We first work backward from the end event (number 8) and redraw the
network so as to identify the critical path, which is the longest path through
the network. This path, by definition, has no slack in it, and slippage along
this path leads to slippage in the project end date unless corrections are made.
The redrawn network, based on Figure 3.3, is shown here as Figure 4.1. We
note that the critical path now consists of the following sequence of events:

Critical Path = 0-1-4-5-7-8

In this example, this path is 8 weeks long. We note that slack exists in various
subpaths:

Subpath 0-3—4 has slack of 1 week
Subpath 0-2—1 has slack of 1 week
Subpath 4-7 has slack of 1 week

Subpath 5-6—7 has slack of 1 week

Using the convention that, where slack exists, all activities start as late as
possible, we have the network in Figure 4.1. If we used the convention that,
where slack exists, all activities will start as early as possible, the network
would change by events 2, 3, and 6, all moved to 1 week earlier. If we compare
Figures 3.3 and 4.1, we see that in the latter, event 6 has been moved 1 week

Project
requirements
analyzed

R TE=
COTS Alternative

alternatives
defined selected

Project
environment
examined

System
operation
documented

Software
installed

Personnel
trained

N

3 4
Time, weeks

Figure 4.1. lllustrative project PERT chart.

102 SCHEDULE, COST, AND SITUATION ANALYSIS

to the right to reflect the convention adopted here of starting an activity as
late as possible.

The basis for determining the critical path is the set of time estimates
for the various activities in that path. These time estimates are designated
as “expected times” (Tj) for these activities. In the original PERT procedure
[4.4], expected times were derived from three time estimates for each activity:

* An optimistic time (7))
* A most likely time (77)
* A pessimistic time (7p)

Under an assumption of a “beta” distribution for the activity times, the ex-
pected time for each activity is calculated as

To+4T, + Tp
Ty = ——— "

Some projects still use this three-time estimate procedure in order to develop
expected value estimates, but many do not. In the latter case, the expected
times are estimated directly and associated with the various project activities,
as in Figure 4.1. It is also possible, given the three time estimates, to calculate
the activity time variance utilizing the following relationship:

o-=|—
6

The basic purpose of this calculation is to sum the variances along the critical
path and thereby calculate the variance associated with the project end date.
This estimate (or its square root, the standard deviation) yields some measure
of the “uncertainty” of this end date. For those who wish to explore uncertainty
in this fashion, the preceding relationships are available. For the remainder of
this discussion, we limit our scope to the use of expected values of activity
times.

Analysis of a schedule, given the basic network and the time estimates,
starts with the determination of the critical path. If we are able to shorten the
critical path, then it may be possible to reduce the overall project schedule.
Thus, each activity along the critical path should be reexamined to see if
reductions in time are feasible. This is especially important if, in a project
that has missed earlier milestones on the critical path, the Project Manager is
looking for ways to get back on schedule. If the reduction of activity times
along the critical path leads to another path becoming critical, then the same
procedure would apply to the new critical path.

The next aspect of analyzing a network schedule is the examination of
slack along noncritical subpaths so as to establish where the slack is to be
placed. The Project Manager has that prerogative, and the decisions in this

4.2 SCHEDULE ANALYSIS AND MONITORING 103

regard are deceptively complex. The PM can use the conventions discussed
before or can attempt to base a decision on personnel availability. If personnel
are available, the PM may elect to start as soon as possible; if they are not
available, the PM will likely start an activity when they become available as
long as the critical path is not increased. Thus, there is an interaction between
the schedule network and the availability of personnel. In general, the PM
tries to “level” the resources across a project as long as such leveling does not
force an increase in the overall critical path.

Another aspect of the interaction between personnel assignments and
schedule is the obvious fact that, within limits, it may be possible to re-
duce activity times by adding resources. Thus, we have the PERT “anomaly”
that allows one to estimate activity times without explicit consideration of
the resources that will be applied to these activities. Working back and forth
between activity times and personnel assignments can be a complex analysis
task. It may be facilitated by using project management software, as discussed
in Chapter 12. In general, considerable effort may be necessary to “optimize”
a complex project schedule, that is, to derive a schedule that meets internal
and customer requirements and also makes the best possible use of personnel
and other project resources (e.g., facilities). Best use includes minimizing
personnel down time (maximizing personnel utilization).

A final project schedule should be based upon the foregoing considerations
and the Project Controller is often the person who attempts to optimize this
schedule with respect to both time and utilization of resources. Unfortunately,
this process is normally repeated numerous times as the inevitable changes
and slippages occur. Most projects require juggling and rescheduling as the
differences between reality and plan begin to surface. For this reason, a good
PC who is able to reschedule quickly and efficiently can have a major influence
on the success, or lack of'it, of a complicated project.

We pause here to comment upon a subject that does not generally receive
enough attention in the world of schedule and cost analysis and tracking.
That subject is the manner in which input time and dollar estimates are
provided. The GIGO (garbage-in, garbage-out) principle clearly suggests that
we can be in serious difficulty if we are not careful about how we obtain
input data.

Input estimates, of course, are provided as the first order of business as
we prepare schedules and budgets. Once a project is up and running, an
information system provides automated reports on current status, but we
still require new inputs, at least every month, on time and cost to complete.
Treating these inputs in a cursory manner can be a disaster waiting to happen.

Following one simple rule can help us solve a host of problems with respect
to poor input estimates. That rule is that we require multiple independent
estimates in all areas in which we are likely to run into problems. A more
conservative approach is simply to apply that rule for all schedule and cost
estimates. Following the rule means that we obtain inputs from more than one
person and, further, that the folks who provide the inputs are required to not

104 SCHEDULE, COST, AND SITUATION ANALYSIS

discuss the matter with the other estimators before they make their estimates.
A simple “rule of 2 or 3” is that two people are asked for inputs for most
situations, and three folks provide independent inputs for very important or
critical situations.

For example, if we are approaching the last 3 months of a one-year project
being carried out on a firm fixed price (FFP) contract, we might consider
invoking the “rule of 3” for time and cost to complete estimating. If we get
similar results from the 3 estimators, we can have considerable confidence in
these inputs. If we get disparate inputs, it’s time to call a meeting to resolve
the disparity. The objective, of course, is to zero in on the best input data we
can produce as we move into the final stretch of an important project. Another
example is that of estimating the cost and schedule of a software development
project. Chapter 10 will define the COCOMO (Constructive Cost Model)
method for providing these cost and schedule estimates, both of which are
seriously dependent upon estimates of delivered source instructions (DSI).
Therefore, if the DSI estimates are incorrect at the beginning, much trouble
is in store for the project. Applying the “rule of 3” for the initial (as well
as updated) estimates is likely to pay great dividends during the life of the
project.

4.3 COST ANALYSIS AND MONITORING

As suggested in the previous chapter dealing with the project plan, direct labor
costs are developed from assigning people to the various activities (tasks) of
the schedule. This is often the key element of cost for a project and is achieved
by first constructing a task responsibility matrix (Table 3.3) and then a project
budget (Table 3.4). In order to track costs as a function of time, a cost budget
by week is also developed (Table 3.5). At times, and certainly if required by
the customer, the costs for each time period are also broken down by task and
subtask. Thus, it is possible for the periodic cost reports for a large project to
become quite complex and voluminous.

4.3.1 Cost Monitoring

Bottom-line monitoring of project costs can be carried out by the sample
cost report shown in Table 4.1. This cost report is produced at the end of
the fourth week in the project. The table shown is based on the bottom-line
budgeted costs derived in Table 3.5. Lines 1 and 2 show these budgeted costs
for each of the 8 weeks of the hypothetical project. Line 1 is the cost budgeted
by week and line 2 carries forth the weekly cumulative budget. The items
from the project plan, when accepted, become the budgeted cost numbers
against which actual costs are compared. Lines 3 and 4 in Table 4.1 show the
actual costs, by week and cumulative. In general, of course, these may be less

TABLE 4.1 Bottom-Line Cost Monitoring: Week 4 of 8

End of Week
1 2 3 4 5 6 7 8 Line
Budget, by Week* 2,541 8,041 8,041 4,321 17,720 5,592 7,116 5,846 1
Budget, Cumulative* 2,541 11,182 19,823 24,144 41,864 47,456 54,572 60,418 2
Actuals, by Week 2,600 8,800 9,000 5,000 — — — — 3
Actuals, Cumulative 2,600 11,400 20,400 25,400 — — — — 4
Budget Less Actuals, by Week (59) (159) (359) (679) — — — — 5
Budget Less Actuals, Cumulative (59) (218) (577) (1,256) — — — — 6
Percent Deviation, by Week (3.9 (1.8) 4.2) (15.7) — — — — 7
Percent Deviation, Cumulative (3.5) (1.9) (2.9) 5.2) — — — — 8

*See Table 3.5.

106 SCHEDULE, COST, AND SITUATION ANALYSIS

or greater than the budgeted costs. By subtracting the actual costs from the
budgeted costs, we are able to produce lines 5 and 6 of the cost report. These
data show that actuals have been greater than budget numbers for each and
every week of the four weeks of the project. By the end of the fourth week,
a total overexpenditure of $1,256 has occurred. The convention adopted here
is that overexpenditures are shown with parentheses around them. Finally,
lines 7 and 8 convert the deviations to percentages on the basis of budgeted
numbers. The sample cost report numbers show a jump during the fourth
week to 15.7% and a cumulative percent deviation of 5.2%. This degree of
overexpenditure is normally considered significant.
The sample bottom-line cost report signals a problem in that

1. There has been an overexpenditure every week.

2. In the last week (week 4), the percent overexpenditure has jumped to
15.7%.

3. The overall project is now 5.2% overspent.

These observations would normally lead to the following two questions:

1. Where have the overexpenditures occurred?
2. Why have the overexpenditures occurred?

The answer to the former question is usually found by looking at more detailed
cost reports, the first of which would be a report similar to Table 3.5, but with
the addition of actual costs. By examination of such a report, it is possible to
track the cost deviations back to the potential sources, namely:

Direct labor costs

Fringe costs

Overhead costs

Other direct costs (e.g., software, training materials, etc.)
General and administrative (G&A) costs

M.

Most likely, but not always, deviations occur in the application of direct labor.
It is then possible to investigate why more hours were required in relation to
the original plan and budget.

Another type of cost report may be provided that indicates costs by task or
by work breakdown structure (WBS) element. For such cases, these reports
allow tracking back to cost deviations at the task and WBS levels. Ultimately,
reasons for why these deviations occurred have to be explored with project
personnel closest to the task and work elements.

In at least some cases, the customer designates the form of cost status
information that is required. As an example, Table 4.2, drawn from a real-

4.3 COST ANALYSIS AND MONITORING 107

world procurement, shows a cost status report format that tabulates both
hours and cost information for the period in question, cumulative sums for
that period, cumulative sums since contract inception, authorized hour and
cost data, and remaining hours and cost listings. In such a situation, the or-
ganization under contract is obliged to provide this type of information to
the customer on a periodic basis. Thus, the issue of whether internal hour
and cost reports provide such information becomes important for the PM.
Ideally, the accounting/finance department can make appropriate adjustments
to make such information available in an automated fashion. If this is not
possible, then it becomes necessary for the Project Manager, usually in con-
junction with the Project Controller, to determine how to provide the needed
customer report, augmenting the “standard” internally generated cost reports.
Translation of internal reports to necessary external reports thus becomes a
problem for the PM. Such specialized customer reports usually have to be
signed off as well by other company personnel before they are sent to the
customer.

The essence of cost tracking lies in the periodic (weekly, monthly) exami-
nation of the foregoing types of cost reports. Budget and actual cost numbers
are arrayed as a function of time, element of cost, task and subtask, and
WBS element. Analysis and further questioning as to deviations reveal both
where the problems are occurring and also why there appear to be cost prob-
lems. Minor deviations are often noted but not investigated. Larger deviations
(reaching levels of 5% or more) are usually triggers for a detailed examination
of sources and reasons.

For many projects, it is standard operating procedure, at the end of each
reporting period, to reestimate time and cost to complete. With this new
input of data, overall project times and costs are projected and compared to
budgets. Where unacceptable end results are projected, a corrective action is
triggered. This includes revisions of the original plan for both schedule and
cost, resulting in new budgeted values. In short, where there is a schedule
or cost problem, future periods have to be examined to see where time or
dollars can be reduced to get back on schedule and perform within overall
project cost budgets. There is a procedure that assesses the current schedule
and cost situation and projects project end results as a function of performance
to date. This procedure, called earned value analysis (EVA), is described in
what follows.

4.3.2 Earned Value Analysis (EVA)

Basic Relationships. Earned value analysis (EVA) is a formal procedure
for estimating cost and schedule variances during a project and extrapolating
these variances to the end of the project. The word variance is interpreted as
a deviation or difference in distinction to a mean square error as in the field
of statistics.

TABLE 4.2 Cost Status Report

Actual Expended Cumulative for Cumulative Since

Base/Option Start of the
Task/Subtask From To Period Contract Authorized Authorized Remaining Remaining
Areas Hours Dollars Hours Dollars Hours Dollars Hours Cost Hours Cost
(Col. 1) (Col.2) (Col.3) (Col.4) (Col.5) (Col.6) (Col.7) (Col. 8) (Col. 9) (Col. 10) (Col. 11)

Total Contract

4.3 COST ANALYSIS AND MONITORING 109

Cost
BACF-—————————

\
\
\
\
\
\
\
\
\
\
Schedule }
\
\
\
\
\
\
\
\
\

\
e \
@ $Q/ /4" Cost variance
%) varance
//Q$Q !
7 [
7 \
4 |
//’ \
| I
. ! TAC Time
urrent
review

time
BCWS = Budgeted cost of work scheduled
ACWP = Actual cost of work performed
BCWP = Budgeted cost of work performed
CV = Cost variance = BCWP — ACWP
SV = Schedule variance = BCWP — BCWS

Figure 4.2. Earned value analysis (EVA) terminology.

An overview of the EVA concept can be gleaned from Figure 4.2. Three
cumulative cost curves are depicted, each flowing from the project initiation
time to the current reporting time. These cost curves are

1. Budgeted cost of work scheduled (BCWS)
2. Budgeted cost for work performed (BCWP)
3. Actual cost of work performed (ACWP)

The EVA concept specifically accounts for the degree to which work that has
been scheduled has also been accomplished. In that sense, it does more than
simply compare budgeted versus actual costs without regard for the extent to
which work has been executed. For example, a project can be at month nine
of a 10-month period and also have spent 90% of the budget. In that simple
sense, both time and cost are tracking until one realizes that perhaps only 50%
of the work may have been accomplished. Many a naive Project Manager has
been caught in this trap by not considering the work progress in relation to
schedule and budget.

By comparing the actual versus budgeted cost of work performed (ACWP
vs. BCWP), at each point in time, we have a true measure of the “cost
variance”:

Cost variance (CV) = BCWP — ACWP

110 SCHEDULE, COST, AND SITUATION ANALYSIS

In this context, both budgeted and actual costs are computed on the same
basis, namely, the work that has been performed. Therefore, the PM and PC
ask the question: How much work has been performed (i.e., which tasks or
WBS elements have we actually accomplished) at this point in time? The
budgeted cost for these tasks/WBS elements is then calculated (BCWP) and
compared against actual expenditures for these same tasks/WBS elements
(ACWP). If the BCWP is greater than the ACWP, we have underspent; if the
BCWP is less than the ACWP, we have a cost overrun. The definition of cost
variance, as shown before, will yield positive numbers if we are underspent
and negative values if we have overspent. Thus, a negative cost variance
indicates a problem. Figure 4.2 shows a negative value for the cost variance
and therefore reveals an issue that must be further investigated.

Perhaps a more difficult concept is the meaning of the discrepancy between
budgeted cost of work performed (BCWP) and the budgeted cost for work
scheduled (BCWS), both of which are shown in Figure 4.2. The difference
between these two is defined as the “schedule variance”:

Schedule variance (SV) = BCWP — BCWS

Here it is recognized that the work scheduled and the work performed, at each
point in time, may be different. As an example, halfway through the project
in time, we may have scheduled to finish fifty WBS elements but actually
have completed only forty WBS elements. We budgeted $100,000 for the
fifty elements and $80,000 for the forty elements. Therefore, the schedule
variance is

SV = $80,000 — $100,000 = —$20,000

We note that the schedule variance, for the EVA construct, is measured in
dollars, not time. Clearly, at this point, by completing only forty of the fifty
planned WBS elements, we are behind schedule. Our actual and planned rate
of completing work elements is the same, namely, $2,000 per work element.
For some reason, possibly because we did not staff the project as quickly as
our plan called for, we are some ten work elements behind. In principle, we
are not overrun in cost, but lag in the rate at which we have been able to get
the work done. This is basically a schedule issue. Further, this lag in time
shows up in the negative value for the schedule variance.

The estimates of BCWP, BCWS, and ACWP also allow us to carry out
a linear extrapolation as to the estimated cost at completion (ECAC) and
the estimated time at completion (ETAC). This can be found through the
following relationships:

ACWP

ECAC = W x BAC
BCWP
BCWS

ETAC = x TAC

BCWP

4.3 COST ANALYSIS AND MONITORING 111

where BAC is the original budget at completion, and TAG is the original time
to completion. The BAC is either increased or decreased as it is multiplied by
ACWP/BCWP. If ACWP is greater than BCWP, then the budget at completion
(BAC) is augmented, representing a linear extrapolation of the current cost
overrun to the end of the project. It must be recognized that this is only an
extrapolation and is not based on a detailed analysis of the reasons for the
current overrun condition.

Similarly, the estimated time at completion (ETAC) is determined by mul-
tiplying the original time at completion (TAG) by BCWS/BCWP. If BCWS >
BCWP, then ETAC will be greater than TAG. This, too, is a linear extrapo-
lation, but in this case in the time dimension. The PM and the PC are urged
to look more deeply into schedule and work performance issues and prob-
lems before accepting the new ETAC as a fully accurate representation of the
project schedule status.

lllustrative Example of an EVA. An example of the results of an EVA can
be posed by the following situation:

As a PM, you are at the 18-month point of a 24-month project, with a $400,000
budget. Your original project plan and a review of work performed reveal that
BCWS = $300,000, ACWP = $310,000, and BCWP = $280,000. What are
your current estimates of the cost variance (CV), schedule variance (SV), cost
at completion (ECAC), and time at completion (ETAC)?

This example is depicted in Figure 4.3. From the given data, we calculate the
cost and schedule variances as

CV = BCWP — ACWP = $280,000 — $310,000 = —$30,000
SV = BCWP — BCWS = §$280,000 — $300,000 = —$20,000

The estimated cost and time at completion are

ACWP 310,000
x BAC

ECAC = =
BCWP 280,000

x 400,000 = $442,857

BCWS 300,000
x TAC =

= x 24 = 25.7 months
BCWP 280,000

ETAC =

Thus, the original budget of $400,000 is now reestimated to be $442,857
and the new time at completion is estimated to be 25.7 months instead of the
original 24 months. The example indicates overruns in both cost and schedule
and suggests a more definitive analysis to determine status and what can be
done to meet the original budget and schedule.

We note here the earlier comment in this chapter regarding the procedure to
reestimate time and cost to complete. The EVA process leads automatically to

112 SCHEDULE, COST, AND SITUATION ANALYSIS

Cost
400,000 F———————————————————————
ACWP =
310,000
300,000 F—————————————————
200,000 F—————————————————
| |
6 12 Months

Time now

Figure 4.3. Example of earned value analysis (EVA).

such estimates, although they are linear extrapolations of the current situation.
In the preceding EVA example, these estimates are

Estimated cost to complete = $442,857 — $310,000 = $132,857
Estimated time to complete = 25.7 months — 18 months = 7.7 months

Ifthe EVA indicates the existence of a problem, as does the preceding example,
it is suggested that further detailed and project-specific estimates of cost
and time to complete be made, leading, we hope, to necessary corrective
actions.

4.3.3 Other Cost Considerations

Monitoring Other Direct Costs (ODCs). The overall project budget shown
in Table 3.4 shows other direct costs (ODCs) as a separate category of costs,
which may include such items as travel, computer services, equipment, con-
sultants, subcontractors, mailing, reproduction, telephone, materials, soft-
ware, and other types of costs. Many of these costs come in late and therefore
lag the normal reporting cycle times. The PM must be aware of these costs
and commitments and make sure that they are not lost in the reckoning of
the project cost picture. Many PMs have been surprised by late inputs of
these types of costs simply because they were forgotten or lost in company
processing. The PM should assign this tracking responsibility to the PC so
that these costs do not appear as a late and not very welcome surprise.

4.3 COST ANALYSIS AND MONITORING 113

A particular type of ODC requiring special attention is subcontracting. If
a PM is in a position where subcontracting is a major part of the project, or
critical path events depend on the delivery of a subcontract product or service,
then unique steps may need to be taken to assure there is no victimization by
the subcontractor. Some very large projects have dozens of subcontractors,
thus increasing manyfold the likelihood of a significant problem. Some actions
for a PM under these circumstances include:

1. Placing project personnel at the subcontractor’s facility to monitor status
and progress

2. Establishing interface control and documentation as a more prominent
aspect of the systems engineering effort

3. Holding more frequent status review sessions for subcontractors

4. Meeting with the management of the subcontractors to obtain commit-
ment to cost, schedule, and performance requirements

5. Providing parallel developments and backup sources as insurance, if
they can be afforded

6. Using incentive award contracts for on-time, high-quality deliveries

Monitoring for Different Contract Types. The way in which information
is aggregated and reported is also related to the type of contract under which
the project is being carried out. We discuss some of the vagaries of monitoring
for three generic contract types:

1. Cost contracts
2. Fixed-price contracts
3. Time and materials (T&M) contracts

Cost contracts include cost-plus-fixed-fee (CPFF), cost-plus-incentive-fee
(CPIF), cost-plus-award-fee (CPAF) contracts and variations on this basic
theme. All such contracts mean that the customer pays the basic costs of
the contract and the fee can be fixed or variable. Such contracts are preva-
lent in the world of government contracting and are almost never used in
the commercial arena. Under an arrangement where under most conditions
all costs are covered and guaranteed, there is sometimes not a strong in-
centive for a company to control costs to the budgeted numbers. However,
it is strongly recommended that the PM adopt a point of view that such
control is mandatory. It is generally not a good idea to lose the discipline
of cost control, even when there is not a strong penalty for overrunning a
contract. Cost reports for a cost contract are precisely those that have been
shown in this chapter. Each element of cost is monitored and tracked, and
corrective action is taken whenever actual costs begin to exceed budgeted
values.

114 SCHEDULE, COST, AND SITUATION ANALYSIS

Incentive- and award-fee cost contracts are recommended in order for the
system acquisition agent (customer) to make sure the contractor focuses on
meeting the cost, schedule, and performance requirements. Incentive- and
award-fee parameters can be defined so as to reward contractors for empha-
sizing the items most important to the customer. Experience has shown that
these types of contracts are quite effective in motivating contractors. Explicit
evaluations and scoring by the customer also provide periodic feedback to the
contractor so that the positions and issues of both parties are known as the
contract proceeds. A PM who is not getting good evaluation scores is likely
not to be achieving fee (profit) goals. This gets the immediate attention of
both the PM and management.

Fixed-price contracts basically mean that the contractor works on the con-
tract until all requirements and specifications are satisfied. Costs in excess of
the original budget are borne by the contractor. Thus, if budgeted costs are
exceeded, profit dollars are jeopardized. Such contract forms are utilized al-
most exclusively in the commercial world, and increasingly in the government
arena.

A PM working under a fixed-price contract should be aware that every
dollar “saved” is one that could be added to the profit made under that contract.
There is a tendency, therefore, for such contracts to be monitored extremely
carefully, always looking for a better solution that will satisfy requirements
within cost and schedule constraints. It should also be noted that, at times,
such contracts have penalty clauses. A typical clause of this type penalizes
the company for late delivery of the product. In this fashion, the customer
makes it clear that meeting schedule is a very important issue, and failure to
do so may force both the contractor and the customer to experience increased
costs.

Cost reports for fixed-price contracts can take the same form illustrated
in this chapter, as each element of cost is tracked on a periodic basis. A
PM may wish to shorten the periodicity of such reports, such as getting a
weekly reading of costs instead of the more usual monthly report. This can
place a strain on the company accounting system, which may not be geared
to such rapid reporting. In such cases, PMs have been known to generate
their own interim cost reports in order to satisfy their needs. This may be
done by capturing weekly time charges on Friday afternoon and feeding
them in to a spreadsheet developed by the Project Controller, so that by the
Monday following the week in question, a weekly cost report is available.
This type of special reporting is recommended for all contracts as they near
their completion times when it may be necessary to exercise more stringent
controls.

Both cost and fixed-price contracts may also include the requirement of
a minimum delivery of hours. At times, a “window” of £10% of the bid
number of hours is established and placed into the contract document itself.
Thus, if more experienced personnel than originally proposed are used on
the work, it may turn out that the “—10%” requirement is not satisfied. This

4.3 COST ANALYSIS AND MONITORING 115

normally results in some type of fee penalty. Where there is a requirement
for delivery of hours, the PM must also be monitoring hours expended, by
category, to make sure that the hours are actually delivered as per the contract.
In this regard, we note the “hours” columns in Table 4.2. “Hours expended”
reports for such a situation must become part of the normal process of tracking
projects.

A time and materials (T&M) contract is usually set up on the basis of a
customer requirement that a certain number of hours be purchased, at a fixed
rate by personnel category. The customer is thus buying expertise, by the
hour, for various categories of personnel. The essence of the contract lies in
the delivery of such expertise, and the customer paying a fixed amount for
each hour delivered. Of course, the expertise must be sufficient to satisfy the
customer’s requirements. If it is not, the customer will insist upon a change of
personnel. Materials called for under the contract (e.g., computers and COTS
software) are delivered separately, with an agreed-on markup or at cost. The
overall contract, of course, has a ceiling price that the customer has agreed to.

Monitoring a T&M contract normally requires cost reports different from
those shown previously in this chapter. Not only does overall cost need to
be tracked, but hours by category and associated costs must be monitored
in detail. The basic reason is that the actual people assigned to work may
be at the “high end” of their categories. Because bid costs by category are
often constructed as an average of the people in a given category, high-end
personnel cost more than the bid and contracted rate. This leads to losing
money (spending nominal profits) for such categories. The more hours that
are worked by such personnel, the more money is lost. A PM who is not
aware of this possibility will be in for a significant shock when management
declares that the contract may not have overrun total budget but has spent
corporate profits.

A costreport that might be used to monitor a T&M contract lists the specific
people, by name, together with their actual costs, and compares these costs,
by hour, with the rates in the contract. When the contract rates are higher, a
profit is achieved. When the contract rates are lower, the contract is losing
money.

For example, assume that three senior engineers are working full time at
hourly rates of $61.18, $67.35 and $64.82, with the contract rate for senior
engineers being $65.50. This means that the project makes money each hour
for two people (in the amounts of $4.32 and $0.68) and loses money each
hour for the third person ($1.85). On a weekly basis, the reader can confirm
that the total profit for the three engineers will be $126, but only for all three
engineers working 40 hours each week.

It can be seen that considerable up-front planning is required in order to
staff a T&M contract. It is not necessarily a terrible circumstance to be losing
money on an individual, as long as, in the aggregate, the contract is making its
nominal profit across all assigned persons. The mixture of people and rates,
and the often dynamic nature of assignments over time, however, make it

116 SCHEDULE, COST, AND SITUATION ANALYSIS

critical that all new assignments be considered on the basis of cost as well as
capability to do the job. If such a contract is long-term, perhaps several years,
it is standard practice for a company to escalate the rates from year to year in
its bid so as to cover salary increases and thereby avoid the problems cited.
Within certain boundaries, customers will accept year-to-year rate increases
as a normal way of doing business. In all cases, the PM must be aware of
the form of contract and the specific provisions of the contract that must
be satisfied. For this reason, as a project plan is about to be prepared, it is
recommended that the PM sit down with a “contracts” person and make sure
that all the key contract requirements are understood.

Corporate Rate Changes. Many a Project Manager has been surprised
when corporate rates have changed at midstream in a project, causing unex-
pected cost increases. Although these are usually not the responsibility of the
PM, increases in corporate fringe, overhead, and G&A rates can force the PM
to “make up” for the problem by finding ways to reduce future costs. For at
least this reason, the PM should track these rates in cost reports and also try
to keep abreast of overall company problems that might cause rate increases.
This type of unexpected change also reinforces the prudent action of keeping
reserves whenever possible. The cost elements that impact fringe, overhead,
and G&A rates are shown in Exhibit 4.1.

Exhibit 4.1: Fringe, Overhead, and G&A Cost Elements

A. Fringe

Sick Leave

Holiday

Vacation

Severance
Compensation Insurance
Unemployment Insurance
PICA Tax

Group Insurance

Travel Expenses
Recruiting

11. Training

12. Employee Pension

B. Overhead and G&A
1. Salaries and Wages
1.1 Indirect Labor
1.2 Other Compensation
1.3 Overtime Premium

WO R WD

._
e

4.3 COST ANALYSIS AND MONITORING 117

1.4 Sick Leave
1.5 Holiday
1.6 Vacation
1.7 Severance
2. Personnel Expenses (see “Fringe Items™)
3. Supplies and Services
3.1 General Operating
3.2 Office and Printing
3.3 Utilities
4. Fixed Charges
4.1 Depreciation
4.1 Equipment Rentals
5. Office Space Facility Rental/Mortgage

Reserves. 1t is strongly recommended that a PM keep a cost reserve, es-
pecially on fixed-price contracts. Suggested amounts are (1) 2 to 5% on cost
contracts and (2) 8 to 12% on firm fixed-price contracts. The basic idea, of
course, is to plan to perform the contract for an amount equal to the base con-
tract value less the reserved amount. Selecting a precise reserve percentage,
given the preceding ranges, should be based on the risk analysis and particu-
lar circumstances surrounding the project. However, on a cost-reimbursable
contract, reserves can be given up as the project approaches completion
unless there is a specific incentive fee for underspending the original cost
budget.

It is also prudent for a PM to ascertain whether upper management has also
taken reserves on the project. This will normally affect how much reserve the
PM should set aside.

Cost Item Limitations and Trades. Some contracts contain explicit limits
on certain cost items. For example, limits may be placed on travel, consultant
services, and various categories of other direct costs (ODCs). Here again, the
PM must be aware of these limitations and control these costs so as not to
exceed the limits. This also raises the question as to whether the PM may
“trade” one type of cost for another. To illustrate the point, suppose it turns
out that only $6,000 is needed for consultant services when the original plan
and budget estimated a requirement for $8,000. Unless the contract prohibits
such action, the PM is normally free to move the $2,000 difference to, for
example, the direct labor budget in order to obtain additional hourly work, if
necessary. A good rule for the PM to follow, where actual expenditures differ
from budgeted expenditures (and they usually do), is to check the contract
provisions to assure that all changes are made in consonance with the terms
and conditions (Ts and Cs) of the contract document.

118 SCHEDULE, COST, AND SITUATION ANALYSIS

Cost Graphs. 1t is also recommended that the PM convert project cost
report data to graphs of monthly and cumulative expenditures, compared to
budget, for various categories of cost. This may be achieved by taking data
received from accounting/finance and feeding them into a spreadsheet that
has a graphing capability, which most of them do. The purpose is to be able
more readily to ascertain cost slopes and trends. This is usually difficult to
see with a large set of numbers in a tabular format.

Cost Reporting to Customers. The customer usually requires some type
of cost reporting on a periodic (e.g., monthly) basis. Exceptions might include
fixed-price contracts. Such reports are usually prepared by accounting/finance,
go to the contracts department, and from there are sent to the customer.
Often, the PM and PC are out of the loop for this type of reporting. This
is not a recommended practice. The PM and PC, as a minimum, should be
given copies of all reports sent to the customer in satisfaction of contractual
obligations. A more desirable practice is to assure that the PM and PC concur
with the cost information that is being sent to the customer.

It is emphasized that all contractual cost reporting requirements should
be meticulously satisfied and the PM should attempt to assure that this is
achieved, even when company procedures do not keep him or her “in the
loop.” At the same time, the contracts department should list and check all
contractual deliverables and contact the PM and PC to determine and confirm
status. For example, some cost contracts require that an anticipated overrun
in cost be flagged for the customer when expenditures reach 75 or 85% of the
contract value. The PM and PC should be best qualified to determine whether
or not such an overrun is expected. If they miss the flagging notification, the
customer may not pay the overrun costs. A good contracts department tracks
the situation and alerts the PM and PC as to the flagging requirement. Good
communication between PM, contracts, accounting/finance, and the customer
is thus seen as critical in order to achieve project success.

4.3.4 Special Focus on Firm Fixed-Price Bids and Contracts

We add here to the previous discussion of fixed-price contracts our “top dozen”
list of actions to consider in order to reduce the risk associated with bidding
and accepting such contracts; the possible actions include walking away from
a particularly high risk project. This list is provided below as Exhibit 4.2.
Further explanation of the items follows the list.

Exhibit 4.2: “Top Dozen” List for Firm Fixed-Price Bids/Contracts

1. Assure high performance team (HPT) with proven track record.
2. Construct a contingency plan.
3. Set aside reserves.

4.3 COST ANALYSIS AND MONITORING 119

4. Perform no out-of-scope work.
5. Assure “chunking” of work with associated payments.
6. Establish clear, measurable acceptance criteria.
7. Limit software warranties.
8. Have limits on penalty clauses.
9. Incorporate the proposal by reference.
10. Establish special rewards for the project team.
11. Set up a cost information system.
12. Know when to walk away.

High Performance Team (HPT). Since you are dealing with a firm fixed-
price (FFP) effort, it is critical to use the very best team that you have. This
normally means that the core team has worked together for the past three
to five years and has proven that it consistently achieves high-level results.
Adding new senior people to a proven HPT should be done carefully to make
sure the new folks are team players. If not, act quickly to remove them before
they’re able to cause damage to the team’s spirit and productivity. Never
micromanage an HPT. Doing so invariably leads to negative consequences. If
the team has a proven track record, as you should insist be the case, give them
the job to do and manage largely by facilitating.

Contingency Plan. Even with an HPT starting the project, you still need
a contingency plan if the work is being done on a FFP basis. A contingency
plan flows from the project risk analysis (see elements of a project plan in
Chapter 3) in that it is focused upon the actions that might be taken if various
risks actually occur. Although risks to a project can be quite numerous, one
of the most serious is the loss of key personnel, for whatever reason. We used
to ask the generic question—“What if your lead engineer gets hit by a truck?”
That worst case scenario required the PM to think through how the project
would be completed without experiencing a serious setback.

A contingency plan does not have to be a long document. It can be a one-
pager listing the risks on one side and the plans to mitigate those risks on the
other.

Reserves. As referred to under Section 4.3.3, reserves are especially im-
portant in FFP contracts, with recommended amounts in the 8—12% range.
The lower end of reserve is used when the project is one of many similar
ones that have been carried out in the past. The 12% may be expanded to 15%
when there are a few new challenges presented on the project. Such challenges
should not be, for example, pushing the state-of-the-art. They should be well
within what the project team believes is workable. Project reserves for FFP
contracts should be under the control of the PM and signed off by the PM’s
boss. Other “pots of money” might be made available as reserves above the

120 SCHEDULE, COST, AND SITUATION ANALYSIS

project level, for example, by the cognizant vice president. Knowing how to
deal with reserves in a corporate enterprise context is an important element
of overall risk management.

Out-of-Scope Work. Out-of-Scope (OOS) work is all activity that is carried
out in support of project goals and/or objectives that are not in the terms of
reference of the contract. It is also any “gold-plating” that was not part
of the original bid that was signed off by the customer. The bottom line
with respect to OOS work is simply that it should not be permitted since it
normally increases risk and spends potential profit dollars. Whether suggested
by the internal team or by the customer, OOS work can be kept on a list for
consideration in a future contractual effort (not the current one). If there is a
question as to whether or not a piece of work is in- or out-of-scope, then a most
serious meeting needs to take place with the most senior people of the project
in attendance. If you and your customer disagree on this type of issue, an
extensive and immediate meeting is necessary to resolve this conflict. Failing
to do so usually leads to great difficulties down the road.

“Chunking” of Work. Work on a project is normally defined in “chunks,”
whether they are elements of a work breakdown structure (WBS) or task
statements that are part of a statement of work (SOW). The added ingredient
here, however, is to connect the completion of these work elements to con-
tractual requirements to get partial payments on an “as-you-go” basis. So, for
example, if there are ten major and approximately equal effort tasks to be
accomplished, it is highly desirable that you get paid one-tenth of the con-
tract value as you complete each of these tasks. Under these circumstances,
if there is a controversy at the end of the contract, you will have received
90% of the payments due under the total contract. This, of course, reduces the
overall financial risk. It may be compared to the case in which there are no
payments made until all ten tasks are completed. In this case, a controversy
at the end has quite different dynamics as well as psychology. This overall
strategy might well have the subtitle “progress or partial payments.”

Acceptance Criteria. Many FFP contracts give to the customer the exclu-
sive right to determine whether or not a contractual deliverable is acceptable.
In this situation, the customer may look at a deliverable and say “This isn’t
acceptable; go back and work on it until it is.” Of course, this would nor-
mally lead to a request for specifics as to why it isn’t acceptable. All of this
hinges upon the existence of written acceptance criteria that form the basis
for judging acceptability. If such criteria do not exist, then a fuzzy set of
conditions is likely to prevail, and you may be asked to continue to work the
problem indefinitely. This argues for establishing firm acceptance criteria for
all deliverables, one at a time, or as a group. Limits on review times as well as

4.3 COST ANALYSIS AND MONITORING 121

number of deliverable iterations can often serve adequately when it is difficult
to be definitive about acceptance criteria.

Software Warranties. Some customers will request software warranties.
One form of such warranty is that the software be free from latent and
patent defects. This should be viewed as a red flag since it may lead to (a)
downstream rejection of the software product, even after it has initially been
accepted, and (b) the invocation of penalty clauses as a result of defective
software. A more useful construction is simply to agree to fix software (at
no additional cost) found to be defective during the six month period after it
has been accepted and paid for. This normally limits the liability in ways that
should be acceptable. The potential cost of this type of warranty should be
built into the price of the software in the initial bid, usually on an expected
value basis. If a “worst case” cost scenario is built into the bid, it may be that
the probability of winning such bids will sink to unacceptably low levels.

Penalty Clauses. Penalty clauses require the developer to step up to various
types of penalties if the delivered product is not satisfactory. These types of
clauses vary in their difficulty, and at times can be viewed as a double red
flag. Penalties can be sought when the product is simply not delivered on
time. Typically, there would be a charge for each day of delay in the delivery
schedule. This can be quite onerous and should be avoided in most situations.
A second type of penalty is associated with the discovery of product defects
(e.g., bugs in the software). Here again, great care should be exercised in
accepting this type of penalty clause. If the product is proven and mature, one
can be less nervous about these clauses. Another alternative is to request extra
(bonus) payments for early delivery, for example. This can provide offsets and
incentives that work for both developer and customer.

Incorporation of Proposal by Reference. Some customers like to incor-
porate the proposal into the contract between the two parties. This means that
the developer must live up to any and all promises made in the proposal. When
these are overstated so as to increase the chances of winning, major problems
can result when the proposal becomes part of the contract. The two most
obvious countermeasures are (a) to not accept incorporation of the proposal
into the contract, and (b) to try to go back and “scrub” the proposal so that all
questionable promises are deleted. Here’s where the company lawyers need
to earn their keep by focusing on these promises and working as part of the
team, together with the PM, CSE, and PC for the project.

Special Rewards. Since FFP contracts represent special potential risks for
the company, it should be worth real dollars to mitigate such risks. One
way to do this is to offer bonuses to key project personnel if the project is
executed within schedule, budget, and performance specifications. Further,

122 SCHEDULE, COST, AND SITUATION ANALYSIS

such bonuses should be commensurate with the effort required as well as the
benefit to the company. In other words, they should be real motivators for the
team to do an outstanding job. At times, possible promotions are connected
to high levels of achievement on a particularly important project. Business as
usual rewards typically result in business as usual performance. Companies
should not be worried about treating some people in a special way when the
circumstances call for special treatment.

Cost Information System. The project cost information system needs to be
finely tuned in at least three dimensions for FFP contracts. The first dimension
is the cycle time for cost reporting. Monthly cost reporting should be changed
to every two weeks for FFP efforts, for example. If the standard cost reporting
system cannot respond quickly enough, investing in a special system is likely
to be worth it. Second, cost to complete estimates need to be provided on
the same two-week cycle time, requesting such estimates from more than one
person if necessary. Third, the PM and CSE should ask the PC to take personal
responsibility for presenting a project status overview at a meeting every two
weeks. This includes looking very carefully at potential schedule slippages
that, in turn, might lead to cost increases. The PC should also be in a position
to look for biased cost and time to complete inputs that might present an
overly optimistic view of project status. In FFP contracts, one needs to search
for the truth, and as early as possible.

Walking Away. If you are unable to successfully negotiate an appropriate
number of the above items, especially on a FFP software product delivery
that needs to be developed from scratch, it may be time to simply walk away.
One form of doing so is to add large reserves to account for all risk areas
such that you drive your price into a noncompetitive range. This strategy may
backfire if your intent was to truly walk away in that your competitors may
have done the same thing, leaving you the winner. Walking away from what
many people in your company believe is a real opportunity may be quite
difficult. But signing up to a losing contract can be a disaster in that one not
only loses money, but also experiences significant opportunity costs. Having
your best people working ten to twelve hours a day leaves them unavailable
to tackle other ongoing contracts as well as new bid opportunities. Here’s a
case in which discretion may truly be the better part of valor.

4.4 SITUATION ANALYSIS (SA)
4.4.1 Overall Situation Analysis Process

Maintaining sharp and continuous monitoring of project schedule, cost, and
performance is, of course, an essential element of effective project man-
agement. Indeed, the “nuts and bolts” of project management involves the

4.4 SITUATION ANALYSIS (SA) 123

continuous positing of these questions:

1. Are we on schedule?
2. Are we within budget?
3. Are we satisfying all performance requirements?

However, if we get a “no” answer to any of these questions, or if other issues
surface that could adversely affect them, the question then becomes: What
else should the PM be doing? The answer lies in situation analysis (SA),
which is fundamentally a problem-solving process at the project level. It is
an adaptation of the “case study” approach utilized in some business schools.
It may also be viewed as follows: Case studies are to an overall enterprise
(or key portion of an enterprise, such as a division) as situation analysis is
to a project. Situation analysis is a sequence of steps to be undertaken by
the project triumvirate (PM, PC, and CSE) once one or more problems or
potential problems have surfaced.

The general situation analysis process is depicted in Figure 4.4. The first
step (Box 1) in such a process is, as might be expected, to gather up, or restate,
the facts that are known in the given situation. Such facts are usually in the
domains of schedule, cost, or performance, but might be other facts not as
immediate or obvious. Examples of the latter type of facts might be

1. A strike at the plant of a major supplier or subcontractor
2. Serious conflict between members of the project team
3. Resignation of a key member of the project

After such facts have been identified, two paths are suggested. One leads to a
set of evident problems (Box 2) and the other to potential or inferred problems
(Box 3). The former represent clear and irrefutable problems, normally of a
high priority, that must be dealt with. Examples include:

1. Schedule slippage on the critical path

2. Expenditures greater than budgeted amounts
3. Missed contractual delivery dates

4. System testing failures

All are evident problems, almost by definition. How significant these problems
are remains to be investigated in detail.

In the category of potential or inferred problems, we normally find occur-
rences that may or may not lead to significant problems. In this regard, one
finds secondary events that might eventually do serious damage to the project.

2] Evident 4 | problem 5] plan 16 | Risks/ Yes [
pr(\),llalems priorities for benefits/ satisfactory Implementation
1. solutions costs ?
2. l
3.
'3 | potential /_/ T LT
or inferred / \
Who / \
proviems What | Monitoring |
When \ /
Where AN /
Why S~ -7
How

Figure 4.4. General situation analysis process.

4.4 SITUATION ANALYSIS (SA) 125
Such events might be:

Project staff perturbations or conflicts
A change in the PM’s immediate supervisor
Company reorganizations

Loss of key people, not on the project team, but in support organizations
such as accounting/finance, contracts, and human resources

5. Changes in subcontractor/supplier organizations

el S

The point of separating evident (obvious) problems from potential or in-
ferred problems is to assist in the eventual step of sorting these problems in
order of priority (Box 4). A priority list is intended to force a discipline that
assures that key problems cannot be ignored or placed on the back burner.
Without this discipline, a PM might be otherwise inclined to tackle more
tractable issues that are of little or no real importance and avoid handling
critical problems that might be difficult to confront. Such behavior may be
difficult to understand, but it is part of human nature to not want to face
unpleasant and stressful tasks.

Given the problems in priority order (Box 4 of Figure 4.4), the next step
is to develop plans for solutions (Box 5). Plans at the top of the list must
be addressed; plans at the bottom of the list might be deferred until further
data are obtained. This is a judgment call that should be decided by the
project triumvirate. The usual journalistic questions of who?—what?—when?—
where?—why?—how? should be considered, noting that a plan for situation
analysis is not the same as a project plan. Plans must be evaluated in terms
of risks (assuming that the plan is implemented), benefits, and costs (Box
6). Alternatives are recommended so that all reasonable solutions are at least
placed in evidence. Leaping to premature or incorrect “solutions” can be more
damaging than the original problem.

An important footnote to the formulation of the plan for solutions (Box 5)
is the question of who it is that devises such solutions. Overall responsibility
rests with the PM, PC, and CSE, but it is suggested that a team approach to
problem solving be undertaken. In other words, information and proposals for
solutions should be consciously elicited from members of the project team.
Full or partial team meetings are a good way to kick off such a process. In
this manner, participative management can be demonstrated in addition to
being expounded. More importantly, it usually leads to clearer definitions of
problems and more effective solutions. More is discussed in this regard in
Chapter 6.

Another implicit question is: When does the PM give an alert to the boss
when there is a problem? The recommended answer is, for most situations,
after the PM has developed an appropriate plan for solving the problem. In
general, do not “hide” problems from bosses. At the same time, it is prudent
to come to the boss with a complete plan for solution. This shows the boss that

126 SCHEDULE, COST, AND SITUATION ANALYSIS

the PM is on top of the problem. It also gives the boss a last opportunity to
provide input into the plan, or to modify the plan if necessary. Implementing
a solution without consulting the boss carries some risks with it, especially if
the problem is severe.

Thus, the situation analysis process shown in Figure 4.4 involves two
additional and very important considerations:

1. When and how to involve the project team
2. When and how to involve the PM’s immediate supervisor

Interim plans that are not considered satisfactory (Box 7) have to go back
around the loop for improvement and consideration of alternatives. Once
the plan is approved, implementation starts (Box 8). After that, the normal
monitoring function is resumed.

4.4.2 Example of situation analysis

We pose a “situation” facing the PM as follows:

Itis Wednesday afternoon and Jack, the Project Manager, receives a call from the
Project Controller who claims that the latest cost report shows the project to be
overspent, compared with budget, by 11%. Jack, meanwhile, had been thinking
about his lead hardware and software engineers, who incessantly complain to
him about each other. Jack now also begins to think about the project review
session with his customer that is scheduled for 2 p.M. next Monday. What should
Jack do, and in what sequence?

A response to this situation, that is, a situation analysis, follows.

Step 1: This step calls for assembling the known facts, which, at this point,
appear to be
a. The project is 11% overspent.

b. The lead hardware and software engineers are complaining about
each other.

c. There is a project review session planned with the customer in ap-
proximately five days (three working days).

Jack next picks up the phone and asks the Project Controller (PC) and
Chief Systems Engineer (CSE) to come to his office immediately. The
PC is asked to bring all cost and schedule data that are relevant. The
project triumvirate then reviews the facts and overall situation from top
to bottom.

Step 2: The cost overexpenditures are identified as an evident problem.

Step 3: The hardware and software engineers issue and planned meeting
with the customer are placed in the “potential or inferred” problem
category.

4.4 SITUATION ANALYSIS (SA) 127

Step 4: The project triumvirate identifies the problem priorities as
1 Cost overrun
2 Scheduled customer meeting
3 Hardware/software engineer issue
They decide that the scope of the plan for solution will not include the
hardware/software engineer issue. They also analyze, to the extent that
they are able to, the data they have involving:
1 The cost elements that have been overspent
2 Why these cost elements are overspent
3 Potential effects on schedule
4 Potential effects on technical performance

This activity takes most of the rest of Wednesday afternoon. The project
triumvirate agrees that more data are needed. Jack calls for a project
team X meeting at 8:30 the next morning (Thursday). He does not reveal
the precise purpose of the meeting. Project team X is a subset of the
overall project staff and is handpicked for its ability to solve a problem
of'this type. Jack asks that the PC and CSE think about the situation but
not convey it to anyone else until the meeting the next morning.

Step 5: The project team X meets on Thursday morning to discuss the two
top-priority problems, in the following sequence:

1 Cost overrun
2 Meeting scheduled with the customer

Reasons for the cost condition are ascertained at this meeting. A basic plan
(Plan A) for how to fix the overrun situation is set forth.

Step 6: At the same meeting, which is proceeding through the entire
morning, Plan A is reconsidered with respect to risks, benefits, and
costs.

Step 7: Based upon the preceding scrutiny, team X does not believe the
plan is good enough. It is also 11:30 A.M. on Thursday morning. Jack
asks all members of team X to reconvene at 2 p.M., coming to the table
with new and hopefully better ideas. Team members are encouraged to
talk to other project personnel if it is considered helpful. All project
personnel are reminded that the situation is to be kept within the project
staff for the time being.

Reiteration of Steps 5, 6, and 7: Team X meets at 2 PM. and a new plan
is devised that is considered satisfactory and, indeed, the best the team
can formulate. This is a plan for correction of the cost overrun. Jack
now focuses the team on the matter of the project review session with
the customer, scheduled for next Monday. The team agrees that:

1 The customer is very likely to accept the plan.

2 There is no good reason to alert the customer to the problem before
Monday.

3 They should confirm the Monday meeting with the customer,

128 SCHEDULE, COST, AND SITUATION ANALYSIS

Jack suggests to the team that now is the time to alert his supervisor as to
the set of problems as well as the plan for solution. The team agrees that
this is an important step prior to the implementation of the plan.

Step 8: As a precursor to implementation, Jack, the PC, and the CSE meet
with Jack’s boss. The boss appreciates the steps taken and being kept
informed. He also agrees with the plan, but insists on being present at
the meeting with the customer on Monday. Jack and his boss agree on
how to make the presentation to the customer, who else should attend,
and what the roles of all participants should be.

This example illustrates the SA process as well as some of the vagaries of
that process. The basic issue for SA is not how well one can analyze schedule
charts and cost reports. The issue, rather, is how to mobilize a team effort
to prioritize and find solutions to problems that invariably arise during the
course of a project. The reader is invited to practice situation analysis for the
situations that are included in the questions and exercises that follow.

QUESTIONS/EXERCISES

4.1 For the activity data related to a small project, as shown, draw the PERT
chart and find

a. the critical path and its expected time
b. the slack in all other paths
c¢. the standard deviation associated with the project end date

Activity Three Time Estimates (weeks)
A-B 1-3-5
B-D 1-2-3
A-C 1-2-3
C-D 2-4-6
C-F 4-6-8
C-E 1-4-7
D-F 1-2-3
E-F 1-3-5

4.2 Design a cost monitoring report that expands the data provided in
Table 4.1.

4.3 You are at the 18-month point of a 24-month project with a $400,000
budget. The schedule variance has been estimated as $30,000 and the
cost variance as $20,000.

The BCWS is $300,000.
a. ACWP
b. BCWP

4.4

4.5

4.6

4.7

4.8

4.9

4.10

QUESTIONS/EXERCISES 129

c¢. ECAC
d. ETAC

Compare these results with those in the EVA example in the text. Why
are they different?

In general, for a project:

a. [f BCWP > BCWS, is the project early or late? Explain.

b. If ACWP > BCWP, is the project over or under cost? Explain.

c. IFACWP < BCWS, what conclusion, if any, can you draw? Explain.

Whatrole does the Project Manager play in controlling fringe, overhead,
and G&A costs and rates? How does the PM deal with increases in these
rates that might result in a cost overrun?

Enter the data from Table 4.1 into a spreadsheet. Print out graphs of the
results. Do the graphs provide insights into cost status that might not
be revealed in columns of numbers? Explain.

The chapter provides twelve suggestions for dealing with firm fixed
price bids or contracts. Identify three additional actions that might be
employed in this regard in order to reduce risk. Explain your rationale.

Carry out a situation analysis for the following situations:

a. As a PM, you discover, at month 8 in a ten-month project, that you
are 8% over cost. Your Chief Systems Engineer tells you that you
can meet budget if the entire project team works a 48-hour week.
Your Project Controller estimates only a 50% chance of success with
that strategy, but claims that 5% of the work done has been “out of
scope.” You have a project status review planned with the customer
in two days. What should you do, and in what sequence?

b. As aPM, it is Friday afternoon at 4 p.M. and you receive a call from
your customer complaining about the quality of your company’s last
report and a bad attitude on the part of your on-site lead engineer.
Your customer wants to see you in his office at 9 A.M. next Monday.
What should you do and in what sequence?

Locate a document produced by the Department of Defense that pro-
vides guidance to a Project Manager regarding how to perform “sched-
ule and cost” analysis of a project. Write a two-page discussion of the
key points in this document.

Locate a document produced by NASA that provides guidance to a
Project Manager regarding how to perform “schedule and cost” analysis
of a project. Write a two-page discussion of the key points in this
document.

130

SCHEDULE, COST, AND SITUATION ANALYSIS

REFERENCES

4.1
4.2

43

44

Frame, J. D. (1991). Managing Projects in Organizations. San Francisco: Jossey-Bass.
Kezsbom, D. S., D. L. Schilling, and K. A. Edward (1989). Dynamic Project Management.
New York: John Wiley.

Kerzner, H. (2000). Project Management: A Systems Approach to Planning, Scheduling
and Controlling, 7th edition. New York: John Wiley.

Malcolm, D. G., J. H. Roseboom, C. E. Clark, and W. Fazar (1959). “Application of a
Technique for Research and Development Program Evaluation,” Operations Research T:
646-669.

— 95

THE PROJECT MANAGER
AND LEADERSHIP

5.1 INTRODUCTION

This chapter focuses more sharply on the specific attributes of a Project
Manager (PM) that are needed in order to be both a manager and a leader.
Much has been written about the differences between a manager and a leader,
making the point that even a good manager is not necessarily a leader. Students
in my classes regale me with stories of their bosses who do not seem to have
even the barest minimum of skills and awareness to deal with the human aspect
of managing other people. At times, it appears as if this is the rule rather than
the exception, leading to a great deal of frustration in the work environment.
Bad managers may know the “nuts and bolts” of project management, but if
the execution is devoid of an understanding of how to relate to people, the
project will usually get into trouble. People just do not put forth their best
efforts for a bad boss.
This chapter, then, attempts to shed some light on three basic questions:

1. What are the personal skills that the project manager must have or
develop, especially with respect to human interactions?

2. How can the project manager deal more effectively with a poor or bad
boss?

3. What are some of the key issues in dealing with the customer?

Going beyond these questions, the chapter ends with a discussion of tran-
scending the basics of management into the domain of leadership.

131

132 THE PROJECT MANAGER AND LEADERSHIP
5.2 PROJECT MANAGER ATTRIBUTES

The first place to look in terms of exploring the desired attributes of a PM is
the set of tasks that a PM must be able to carry out. These tasks, reiterated
from Chapter 1, are:

1. Planning
2. Organizing
3. Directing
4. Monitoring

Planning and organizing are important tasks of the PM and tend to be done
well by a person who enjoys process. Although a good plan is more often
than not the results of a team effort, a PM who likes to plan may have a
tendency to take on the entire plan. The PM who enjoys planning will see
organizing as just another part of a good plan, which indeed it is. Such a person
may tend toward introversion and requires considerable order and discipline.
When we move on to the tasks of directing and monitoring, however, we see a
requirement for another type of perspective. These tasks involve interactions
with people. Directing requires that people be given assignments and that they
be guided through these assignments through monitoring and feedback. These
“people” interactions are often best accomplished by an extroverted type
of person who likes to discuss situations with people and may not enjoy
the paperwork associated with planning and reporting. Through this simple
discussion, we note that the PM is called upon to do many things that require a
balanced personality. The PM is a well-integrated person who can shift gears
as well as pay attention to and keep in balance the many issues that inevitably
come across the desk.

Although it is possible to further analyze the attributes of a good project
manager in terms of the required skills associated with planning, organizing,
directing, and monitoring, we prefer to list, in Exhibit 5.1, twenty critical
aspects of a PM. A brief discussion of each follows. These same twenty
attributes may also be interpreted as the characteristics of a good boss.

Exhibit 5.1: Twenty Attributes of a Project Manager

Communicates well and shares information
Delegates appropriately

Is well-organized

Supports and motivates people

Is a good listener

Is open-minded and flexible

Gives constructive criticism

Has a positive attitude

Is technically competent

AR SRR o e

5.2 PROJECT MANAGER ATTRIBUTES 133

10. Is disciplined

11. Is a team builder and player

12. Is able to evaluate and select people
13. Is dedicated to accomplishing goals
14. Has the courage and skill to resolve conflicts
15. Is balanced

16. Is a problem solver

17. Takes initiative

18. Is creative

19. Is an integrator

20. Makes decisions

5.2.1 Communication and Sharing Information

One of the major complaints of people working on a project is that they are
not kept informed. The Project Manager must pay special attention to letting
people know what is happening on the project, in all of its dimensions. The PM
must also try to assure that the cross-communication between members of the
project team is effective and that all personnel share important information.

5.2.2 Delegation

The effective PM must be careful not to take on all the key tasks. If this is
done, the project team members will quickly learn that they are not trusted to
do anything important, which will soon lead to nonteam playing and disaster.
Effective delegation is a critical task of the PM, and it is coupled with resisting
any temptation to “micromanage.” Once a task is delegated, the PM should
stay in touch and guide rather than hover over, criticize, and redo.

5.2.3 Organization

In this context, being well-organized is to know where everything is (project
status), know where it is going, assure that all members of the project have
what they need to do their jobs, and to be prepared to solve problems. Some
project managers take on too many internal project tasks and cannot pay atten-
tion to the project as a whole. From this position, they become disorganized
and struggle to keep up with the overall project needs. Being well-organized
will keep the overall project moving forward and will help assure that other
people’s efforts are efficiently performed.

5.2.4 Support and Motivation

Project managers sometimes underestimate the power that they have in the
eyes of the project team. Team members usually look to the PM for attention

134 THE PROJECT MANAGER AND LEADERSHIP

and support. Without this, some personnel begin to feel that nobody cares
what they do or don’t do. In some cases, the PM may have to use special
motivations to assure performance, recognizing that all people are different
and respond in different ways to the pressures of a project. The PM must also
behave impartially so that all members feel they are being fairly treated.

5.2.5 Listening

Effective listening is so important that it is singled out as a separate attribute.
Listening, or not listening, can be very subtly executed. A good listener sus-
tains eye contact and responds at the right times with a nod of the head or
appropriate words. Good listening conveys the message that what is being
said is important, and also that the person is important enough to be lis-
tened to. This helps to build trust and encourages further communication
and sharing of information. Not listening leads to frustration and gives the
message that you and what you are trying to say are not significant. This can
be devastating, especially to a young project member, and often leads to poor
performance.

5.2.6 Open-Mindedness and Flexibility

Open-mindedness relates to listening but is the next step in the process. It
implies that new information is received appropriately and used to make
adjustments. Studies by psychologists have shown that some managers work
on mental models based only on past experiences and are not able to absorb
new information. Complaints about such managers are that their “minds are
already made up.” In this context, the PM must be aware of prior prejudices
and be open to the input of new data. Such a person will then be able to
respond to each situation on its own merits and will be able to behave in a
much more flexible manner.

5.2.7 Constructive Criticism

Giving constructive criticism is a crucial job of the PM and it is surprisingly
difficult to do. If a project task is not being adequately performed, it is often up
to the PM to critique the work in such a way as to encourage change without
destroying the ego and motivation of the person working on the task. This is
usually best achieved one on one, but at times may be accomplished through
peer pressure in a group setting. All of this requires careful consideration of
the recipient of the criticism and the most effective way of reaching him or
her. Words must be chosen with considerable skill so as to get the message
across in a supportive and encouraging manner.

5.2 PROJECT MANAGER ATTRIBUTES 135

5.2.8 Positive Attitude

The PM must be a positive person who reflects a “can-do” attitude to the
project team, the boss, and the customer. This helps to propagate such a
perspective to all parties and generally leads to an overall sense of accom-
plishment and moving forward. There are many hurdles that the project team
has to deal with and a positive PM makes the job of getting over these hurdles
a learning experience. Conversely, a negative attitude on the part of the PM
likewise tends to spread like wildfire and the team members find themselves
either preferring to be victimized or intensely frustrated.

5.2.9 Technical Competence

This attribute refers to the nuts and bolts of the project demands, from the
domain knowledge of the project to the skills required to read and understand
schedules and cost reports. Without these capabilities, the PM soon drowns
and loses the confidence of the entire project team. A person without these
basic skills should not take on the difficult job of Project Manager.

5.2.10 Discipline

Many projects go astray simply because the PM has not assured a disciplined
approach on the part of all team members. Each and every task must be viewed
as critical in terms of adherence to schedule, cost, and technical performance
requirements as well as the impact that they have on other tasks. Company and
project standards, methods, and procedures should be followed unless there
is an excellent reason not to. Experience has shown that projects with a large
component of software development have to be particularly well-disciplined
in order to be successful. If there ever was a “silver bullet” for the process of
developing software, discipline is its name.

5.2.11 Team Builder and Team Player

We explore the matter of team building in the next chapter because it plays
such a central role in the success of a project. Given that perspective, a critical
skill of the PM is to build a team as an effective and organic element of a
project that succeeds. At the same time, the PM must assume the position of
being part of a larger team, the enterprise within which the project is being
executed. Project Managers who take the view that the project is “we” and the
rest of the enterprise are “they,” and that “we” do everything right and “they”
are incompetent are very likely to fail. The project exists and works within
the context of the corporate enterprise and, ideally, the two entities should be
mutually supportive.

136 THE PROJECT MANAGER AND LEADERSHIP

5.2.12 Evaluation and Selection of People

A key activity of the project is to staff it with people who function as a team
and who are competent in the various disciplines required by the project.
The PM should have a special eye for this activity, knowing whom to select
and where to have them assigned. A weak team member tends to pull the
entire project down as people spend their valuable time fixing problems that
have been created by such a person. Work elements or tasks that have to be
continually redone create resentment as well as schedule and cost problems.
In addition, when a weak person cannot be brought up to minimum standards
of performance, the PM also has to recognize that action has to be taken to
fix the problem.

5.2.13 Dedication to Accomplishing Goals

This attribute might also be called determination. Because it is the rule rather
than the exception that problems will arise on essentially every project, the
PM must be dedicated to getting through each and every problem in order to
accomplish the stated project goals. This means not allowing oneself to be
victimized by the “system,” management, or the customer. After a frustrating
day, the PM should have the energy and determination to come back the next
day with a renewed sense of how to relieve the frustration and find effective
work-arounds, if necessary.

5.2.14 Courage and Skill to Resolve Conflicts

Because projects are staffed by people, and people have conflicts, then it is
expected that projects will experience and be affected by conflicts. These can
be internal conflicts, as with two members of the project team not getting
along, or external conflicts, as between a member of the team and a support
organization such as accounting/finance, contracts, human resources, and
so forth. The management of conflict, which is examined in some detail
in the next chapter, requires both courage and skill. Courage is necessary
because it can be quite difficult to confront the conflict, especially if the PM
is part of the conflict situation. Skill is needed because conflict is delicate
and wrong moves can exacerbate the conflict rather than calm it down and
resolve it.

5.2.15 Balanced

The PM must be balanced, as a minimum, in terms of handling people with
a basic sense of fairness and equity, and also in terms of balancing the effort
that goes into satisfying cost, schedule, and performance requirements. In the
former area, for example, prima donna behavior should not be accepted while
other personnel are working with dedication for the common good of the

5.2 PROJECT MANAGER ATTRIBUTES 137

project. In the latter domain, balance involves understanding how to respond
with equilibrium to the forces that would tend to push the project off course.
The PM is “steering the ship,” and demands come from many directions. A
balanced approach to these often conflicting demands will be respected and
supported and will increase the likelihood of success.

5.2.16 Problem Solver

The PM must be a problem solver. This means going beyond the discussion
of a problem and its symptoms and causes. It also requires driving toward a
solution and then implementing that solution. Too many PMs behave as if the
mere examination of a problem is the same as taking the actions necessary
to solve the problem. Also, too many PMs develop a series of solutions but
then procrastinate in the implementation because the solution involves doing
some difficult things such as confronting a supervisor or approaching the
customer. A problem solver is action-oriented and is not fearful of making a
mistake.

5.2.17 Initiative

The PM is active rather than passive and is always aware of the need to take
action when it is appropriate to do so. This can apply to interactions with
the customer as well as with the project team. The PM is always asking the
question: What can be done to improve the project and the situation in which
the project is being carried out? Opportunities do not pass by the PM with
initiative. Such a PM is also on the lookout for ways and means to achieve
continuous improvement.

5.2.18 Creative

The best PMs are creative people who look for new ways of solving problems
or new approaches to the project tasks. This type of creativity is disciplined
and does not resort to new methods unless they show promise of bringing
higher efficiency and productivity to the project. This type of PM also does
not impose his or her creativity on the project team. Rather, there is an
understanding that creativity can and should be expressed by any member
of the project, and all good ideas are solicited and welcomed. By being a
creative person, creativity in others is recognized and valued. This attitude
pervades the project and the excitement of creative solutions is experienced
by the entire team.

5.2.19 An Integrator

The PM must be able to integrate in many dimensions. One such dimension
is the synthesis of technical inputs, finding ways to blend such inputs to

138 THE PROJECT MANAGER AND LEADERSHIP

construct an overall solution. Another dimension is to see where and how
people can be utilized so that they are challenged rather than bored. A third
dimension is to see the project as a whole, seeking balance in terms of cost,
schedule, and performance. Yet another dimension is to integrate the human
side of managing with the nuts and bolts of planning, organizing, directing,
and monitoring. This type of person is able to perceive relationships between
different parts of a project.

5.2.20 Decision Maker

Finally, but not by any means last in importance, is that the capable PM
makes decisions when it is necessary to do so. The PM knows when it is
time to stop analyzing the problem at hand and bring any given situation
to closure. This type of PM has a sense of when further examination of an
issue brings diminishing returns. The PM is also keenly aware of the level
of urgency associated with all situations and behaves accordingly. Project
personnel react particularly well to a PM who makes decisions and moves
forward. If a decision was made that later is shown to be incorrect, the effective
decision maker is not afraid to admit to a mistake and backtrack, as necessary,
to rectify a bad decision.

Whereas the preceding attributes have been associated with the Project
Manager, it should be recognized that the Chief Systems Engineer (CSE)
is also a manager, taking responsibility for the system design team and the
overall engineering effort. Therefore, most of the attributes discussed here
apply as well to the CSE. The difference lies mostly in the scope, orientation,
and focus of the work to be performed. Above all, the PM and the CSE must
be able to work harmoniously together and both be dedicated to the success
of the project.

5.2.21 Learning from the Negative

The above text described and briefly discussed twenty positive attributes of
a Project Manager. A study of the leadership characteristics of American
Project Managers [5.1] explored significant aspects of effective PMs, but also
looked at factors that contribute to making a PM ineffective. These factors
give us some insight into what the current or prospective PM needs to avoid
where and whenever possible. At times, we learn more from the negative than
we do from a long list of positives. Thus, the top five negative factors for the
PM are, with the top-listed item the worst:

 Sets a bad example for the team

* Is not self-assured

* Does not have sufficient technical expertise
* Is a poor communicator

* Is a less than acceptable motivator

5.3 SELF-EVALUATION 139

Thus, if these problems have been related to issues that you have had to
struggle with as a PM, you probably would do well to commit yourself to
making improvements in these areas. If you do not do so, you may well be on
the road to failure as a PM.

In addition to the above personal attributes that a PM might have, the cited
study [5.1] also explored organizational factors that had a negative effect upon
the effectiveness of the PM. These factors are, with the most negative listed
first:

* Lack of the commitment and support of top management
* Overall resistance to change

» A reward system that is inconsistent

Reactive behavior instead of planning in advance

* Insufficient resources

The implication of the above listing is that if you, as a PM, find yourself
in an organization that exhibits these types of behavior patterns, you have
an increased likelihood of getting into trouble. It also may be that efforts
you put forward toward solving these types of organizational problems may
serve you and others in good stead. However, for a PM to be the force
behind the solution of rather large organizational problems is a rather daunting
task.

Finally, and in relation to the same study cited above, we can look at reasons
why projects may tend to experience problems in terms of completion within
budget and schedule. The top five reasons identified, with the most cited at
the top of the list, are:

 Tools to manage the project in a systematic manner are not employed.
* The PM is a poor leader.

» The customer/client is slow to respond.

* Decisions and corrective actions are not taken in a timely manner.

* Interorganizational communication is poor.

Here again, the above items provide a “view of the negative” that might be
helpful to the project triumvirate in terms of trying to increase the chances of
success.

5.3 SELF-EVALUATION

The effective PM knows himself or herself. Such a person has a level of
awareness of tendencies toward certain types of behavior and is sensitive to
the behavior patterns of others. To some people, it is not difficult to achieve
this type of sensitivity and understanding. To others, “knowing oneself” is an
alien concept. However, it is possible to gain a better understanding through

140 THE PROJECT MANAGER AND LEADERSHIP

processes of self-evaluation and taking the time to examine one’s behavior in
a variety of situations. This yields a keener sense of self-awareness, which is
always helpful to a PM. By doing so, it becomes easier and easier to deal with
problem people and problem situations, both of which improve the likelihood
of success. In this section, we explore a few formal procedures that the PM or
the prospective PM (or CSE) can employ in order to carry out a rudimentary
self-evaluation.

5.3.1 Scoring Yourself

Given the attributes of a successful PM, as discussed earlier in this chapter, it
is a simple matter to do a first-order self-evaluation by scoring oneself against
this set of attributes. Table 5.1 places the twenty attributes in a scoring context,
and the reader is asked to take a moment to evaluate himself or herself directly
on the scoring sheet of the figure. A score of “5” should be given if the reader
almost always behaves according to the stated attribute, and so forth as listed
in the table. Take some time now to score yourself.

If your aggregate score is in the range 80-100, you are likely to be an
excellent project manager. Essentially, no fine-tuning is necessary and you

TABLE 5.1 Evaluation versus Attributes

Attributes Scores*
1. Communicates/shares information []
2. Delegates appropriately []
3. Well-organized []
4, Supports and motivates people []
5. Good Listener []
6. Open-minded and flexible []
7. Gives constructive criticism []
8. Positive attitude []
9. Technically competent []
10. Disciplined []
11. Team builder and player []
12. Able to evaluate and select people []
13. Dedicated to accomplishing goals []
14. Courage and skill to resolve conflicts []
15. Balanced []
16. Problem solver []
17. Takes initiative []
18. Creative []
19. Integrator []
20. Makes decisions []

Total:

*Scoring: 5: almost always; 4: most of the time; 3: often; 2: sometimes; 1: rarely; and 0: never.

5.3 SELF-EVALUATION 141

should be pleased that you have all the necessary skills to be successful in
just about any management role. If you scored between 60 and 79, you are
doing well but probably have a few areas that need improvement. Those are
likely to be represented by the attributes that you scored yourself as a “2”
or lower. If your score was in the range 40-59, you still may be a good
candidate for a PM or manager position but need to work in a disciplined way
to improve your skills. This may involve more substantial training to develop
these skills as well as a deeper sense of self-awareness of your own behavior
and the way that it might be affecting others. If your score was between 20 and
40, some type of continuous training program is recommended, depending
on whether the score was closer to 40 or in the 20 range. If your score
was less than 20, you have a long way to go to become an effective PM
or manager. This does not mean that you cannot get to a PM or manager
position, but it is likely to take a lot of hard work over an extended period
of time.

Developing PM and manager skills is rarely achieved by reading a few
books on the subject. Reading is only one component of the process. Broadly
speaking, there are two other critical elements. One has to do with the afore-
mentioned self-awareness of your own behavior as well as the behavior of
others. Without this consciousness, one is not absorbing and assessing data in
the real world. The other critical component is experiential learning. This may
be achieved through workshops in which you are asked to carry out exercises
that simulate situations in the real world. By actually experiencing the pro-
cesses that evolve from this type of training, learning occurs relatively quickly
and it is possible to improve skills and awareness rather rapidly. Low-scoring
readers who aspire to PM or management positions are urged to consider
some type of experiential training program over a long period of time. Many
such programs also utilize “personality tests,” such as those briefly described
in what follows.

5.3.2 The Myers-Briggs Type Indicator (MBTI)

The Myers-Briggs Type Indicator (MBTI) is a very well-known personality
construct [5.2, 5.3] that is based upon the following four polarities:

Extrovert (E) Versus Introvert (I)
Sensing (S) versus Intuitive (N)
Thinking (T) versus Feeling (F)
Judging (J) versus Perceptive (P)

By filling out a questionnaire, the user obtains a scored self-profile in
each of the eight dimensions. Scores can be very close to the center of a
given polarity or they can show a very distinct preference for one dimension
over another. Each of these aspects of the MBTI is briefly discussed in what

142 THE PROJECT MANAGER AND LEADERSHIP

follows. The reader is urged to see if he or she can identify with the various
types.

Extrovert (E). The extrovert is what you might expect from a simple dic-
tionary definition. This person is sociable and enjoys a multiplicity of rela-
tionships. He or she is usually gregarious, outgoing, energetic, and conveys
a breadth of interests. According to data collected over a long period of
time with respect to the MBTI, about 75% of the population falls into this
category [5.3].

Introvert (I). This type of person is more closed, turned inward, territorial
and conservative of expending energy. It may be difficult to find out what
such a person is thinking because there is a tendency toward not speaking,
especially in a group situation. Such a person may be concentrated, watchful,
and have limited interactions and relationships with only a few good friends or
colleagues. About 25% of the population at large exhibit this type of behavior.

Sensing (S). In this category, one finds people who focus on facts, figures
and real-world data and experience in order to grasp and relate to what
is going on around them. Such a person is very practical, down to earth,
sensible, realistic, and prone to adopt the perspective that if it cannot be seen
or measured, it is not likely to exist or be true. Past experience is very important
and has a strong influence on views of the current or future situations. Some
75% of the population exhibit this tendency.

Intuition (N). The intuitive person likes to speculate about the future and
is often imaginative, inspirational, and ingenious. This type of individual
may be prone to fantasizing and searching for new ways of doing things.
“Gut” reactions may be much more important than facts and figures, which
may be discounted in considering what to do in a project situation. A high
“N,” with respect to this point, may have a serious clash with a high “S”
because the latter will not understand how gut reactions play a role in eval-
uation and remediation of problems. About 25% of the population have an
“N” score.

Thinking (T). This type of person takes pride in using analytical skills
in puzzling through problems. Some might refer to such a person as “left-
brained,” relying on abilities to be objective and impersonal to analyze and
resolve situations. Such a person attempts to use standards, policies, and laws
to create order and a sense of equity and fairness. Subjective evaluations
might make such a person uncomfortable because objective measurements
are distinctly preferred. The literature suggests that 50% of the population
would tend to qualify as a “T” in the MBTL.

5.3 SELF-EVALUATION 143

Feeling (F). Representing the opposite polarity from “thinking,” the “feel-
ing” person relies on visceral reactions and human connections. Often, the
“F” person looks behind and beyond the words at such things as reactions,
facial expressions, and body language to try to understand what is actually
happening in a given situation. Such a person is comfortable with subjectivity
and emotions in others and himself or herself. As a manager, he or she tends
to empathize with the situation of subordinates and shows a great deal of
patience and understanding. This type of person likes harmony and spends
time to try to persuade other people on a preferred position. About 50% of
the population score in this category.

Judging (J). The judging person likes to make decisions and move on to
the next problem. This person insists on closure and has an internal sense of
urgency about almost all matters. He or she responds very well to deadlines
and works very hard to assure that all milestones on a project are met. Such
a person likes to plan and then proceed with measuring against the plan. The
“J” person is not very patient and likes to converge to core issues as quickly
as possible. About 50% of the population have a “J” profile.

Perceiving (P). As an opposite from the “J,” the perceiving individual is
happier with open-ended assignments and situations that allow more flexible
responses. Such a person might tend to want to collect more data about a
given problem, with little consciousness regarding the time that it takes to do
so. The “go with the flow” position of the high “P” often drives a high “J”
to anxiety and anger. Whereas the “P” person may adopt a “wait and see”
attitude, the “J” wants to “get the show on the road” [5.3]. About 50% of the
population have this type of characteristic.

One of the conclusions that might be drawn from the MBTI is that people
with extreme and opposite scores for a given polarity may have a tendency
to clash with one another. For example, if a PM is a high “S” and a project
staff member is a high “N,” these two people, with their different views of the
world and behavior tendencies, may frustrate each other. Although this is not
a hard-and-fast rule, it is a point that may explain certain personal antipathies.
This may be generalized to a main application of the MBTTI as well as other
such tests, namely, that it may be used to try to understand why people do not
get along on a project and what each may do to try to better understand why
and what might be done to bridge such a gap of understanding. Further, if any
two people have absolutely opposite MBTI profiles, as for example an ENTJ
versus an ISFP, the gap may be even broader and deeper. Having an awareness
of these natural differences helps to explain various types of conflict. It may
also provide a basis for an appreciation of differences, which could serve to
strengthen a project team and its overall performance.

Another obvious question regarding the MBTI: Is there a preferred MBTI
profile for a project manager? Some investigators of the field of management
believe that this is true. For example, J. Davidson Frame [5.4] appears to

144 THE PROJECT MANAGER AND LEADERSHIP

select the ESTJ profile as the preferred type for a PM. However, he also points
out that, for research projects, “ESTJ project managers who are unaware of
the differences in psychological type are likely to be exasperated by their
workers,” based on the differences in how they deal with and see the world.
The key word, from this author’s point of view, is “awareness” and that
people who have a strong awareness of both similarities and differences can
make both a strength in a project situation. Research-oriented people can
be doing the research tasks and extroverts can be doing the marketing and
project presentations. Facts-and-figures people can be happily devoted to the
project control activities and high Js can help to bring focus and closure to
interminable meetings. In short, we are all different and we perform best when
we are working in areas of strength rather than weakness. The aware Project
Manager knows this and spends the time necessary to understand differences
and assure that individual strengths and tendencies are fully utilized and that
the effects of weaknesses are minimized. Thus, even if a PM is an INFP, in
distinction to Frame’s ESTJ, excellent results can be achieved on the project
if such a PM has the awareness, skill, and discipline to use a team approach
that fully utilizes the complementary capabilities of that team.

5.3.3 Other Personality Considerations

The MBTTI is not the only “test” that might be employed to carry out some type
of self-evaluation. There are literally dozens of others that will be helpful in a
lifelong process of trying to better understand oneself. Another such approach
is cited as a Communication Self-Assessment Exercise [5.5] and it is based
on numerical scoring for the following “styles”:

* Action

* People

e Process
e Idea

The maximum score for any one style is 20 and the total score for all the
styles adds to 40. Thus, a completely balanced score would be 10-10—10-10.
A summary of what the various people with these styles like to talk about
as well as how they tend to behave is provided in Table 5.2 [5.5]. We see
from these descriptions that there is a great potential for conflict between
people who have widely differing scores. For example, the action-oriented
person may have little patience with the process-oriented person, who may
be perceived to be too slow and interested only in form rather than substance.
Similarly, the latter may regard the people-oriented person as too emotional
and subjective and not understand how such attitudes fit into the disciplined
world of project management. Potential trouble spots on a project may be
predicted from the examination of the interaction of these different styles,
which is explored in Section 5.4.

SELF-EVALUATION

TABLE 5.2 Communication Styles [5.4]
Styles/
Features Content Process
Action (A) They talk about: They are:
« Results « Feedback « Pragmatic (down to
« Objectives « Experience earth)
« Performance « Challenges « Direct (to the point)
« Productivity « Achievements « Impatient
« Efficiency « Change « Decisive
« Moving ahead « Decisions e Quick (jump from
« Responsibility one idea to another)
« Energetic
(challenge others)
Process They talk about: They are:
(PR) « Facts « Trying out « Systematic (step by
« Procedures « Analysis step)
« Planning « Observations « Logical (cause and
« Organizing « Proof effect)
« Controlling « Details « Factual
o Testing « Verbose
« Unemotional
« Cautious
« Patient
People (PE) They talk about: They are:
« People « Self-development « Spontaneous
« Needs « Sensitivity « Empathetic
« Motivations « Awareness o Warm
« Teamwork « Cooperation « Subjective
« Communications e Beliefs « Emotional
« Feelings « Values « Perceptive
« Team spirit « Expectations « Sensitive
« Understanding « Relations
Idea (I) They talk about: They are:
« Concepts « What’s new in the « Imaginative

« Innovation

« Creativity

« Opportunities
« Possibilities

« Grand designs
« Issues

field
« Interdependence
« New ways
« New methods
« Improving
« Problems
« Potential
« Alternatives

« Charismatic

« Difficult to
understand

« Ego-centered

« Unrealistic

« Creative

« Full of ideas

« Provocative

(Reprinted by permission-Reference 5.4)

146 THE PROJECT MANAGER AND LEADERSHIP

5.3.4 Psychological Decision Theory

The personality types represented by the above Myers—Briggs test, as well
as the action—people—process—idea notion, indicate that we have different
tendencies in the way that we look at the world and the problems with which
we are faced. These usually result in different approaches to our jobs, and in
the case of this text, different ways of dealing with the many issues that arise
in managing a project. However, various researchers have studied human
behavior patterns and have found that there are certain tendencies that are
more-or-less common to large numbers of us. These can be thought of as fitting
within the general category of psychological decision theory, championed by
D. Kahneman, P. Slovic, and A. Tversky [5.6], among others. These behavior
patterns are relevant to our subject because they may affect how we might
behave as project managers or as members of a project team. Three aspects
of the results provided by these researchers are:

* Regression to the mean
» Representativeness and availability
* Loss avoidance

Regression to the mean refers to a general tendency to let down after a stellar
performance and to improve after a poor performance. Its application to the
world of project management might suggest that after a high-performing
core team of software engineers has been working overtime for months in
order to complete a software system, it is likely that for the next assignment
they might well “regress to the mean.” So what might be done about this?
Depending upon the situation, one might consider (a) giving the team some
time to decompress, and/or (b) starting the next difficult assignment off with
a different core team, if possible.

Representativeness and availability both refer to setting up a mental model
that is based upon prior experience rather than current facts and likelihoods.
Its relevance to project management has to do with what people might do
when trying to solve a particularly knotty problem. A thought pattern, for
example, might be expressed as: “When we saw a problem like this before,
we cut back the staff and that solved the problem.” The person with this
particular thought and suggested solution might be viewed by other members
of the team as (a) not seeing how the current problem differs from the previous
problem, (b) stubborn in not being receptive to other solutions, and (c¢) headed
down the road of doing some serious damage to the project by removing some
people from the team. We all learn valuable lessons from prior experience,
but we must also be open to new solutions that are based upon the data and
information of the situation we are in today.

Loss avoidance is the possible tendency for people to avoid virtually sure
losses in favor of cases where expected value losses may be much greater.
This might well account for why people are reluctant to sell stock holdings at

5.4 INTERACTIONS WITH YOUR SUPERVISOR 147

a loss, hoping (against hope) that all will be better in the future. In terms of
project management, it may be relatable to not being willing to take a poor
performer off the job, or moving on to a different product or customer even
though you are not being successful with the ones at hand. Losses are hard
to accept in many situations, but the project triumvirate needs to be able,
at certain times, to take a loss and then move on. Perhaps you can think of
project management situations you have been involved with in which such an
approach would have been the correct one.

5.4 INTERACTIONS WITH YOUR SUPERVISOR

Poor interactions between boss and subordinate often appear to be the rule
rather than the exception in projects as well as all domains within the broad
field of management. Indeed, this is the most dominant and important problem
yet to be solved in the management arena. Almost everyone seems to have
a “bad” boss and the worlds of industry, government, and academia are rife
with ferocious complaints about the boss.

As a means of exploring this issue, the reader is asked to page back to
Table 5.1 and now score your boss with respect to the cited attributes and
scoring system. Compare your own score with the score that you gave your
supervisor. Are you one of the very large population that indeed has a bad
boss?

5.4.1 The Bad Boss

In the context of a project, the “bad” or difficult boss shows up in two
relationships: between the PM and his or her supervisor and between the PM
and the project personnel. The PM may have a bad boss who interferes with
and fails to support the activities of the PM. The project staff, similarly, may
have a bad boss (the PM or CSE) who has few of the attributes discussed
earlier in this chapter. Beyond the realm of these attributes, the boss may be
a “pathologic” type who sabotages his or her people at every turn.

Although there are numerous studies and descriptions of bad bosses, a
particularly interesting treatise is presented by Robert Bramson [5.7], who
identifies seven bad boss types, namely:

Hostile-aggressives
Complainers

Silent and unresponsives
Super-agreeables
Know-it-all experts
Negativists

Indecisives

Nk L=

148 THE PROJECT MANAGER AND LEADERSHIP

Bramson describes the hostile-aggressives as Sherman tanks, snipers, or ex-
ploders. Such bosses are not likely to be sympathetic to the many problems
that invariably arise on a project. Instead, they are prone to being actively abu-
sive and to run over all people who are perceived to have caused the problem
or who are not able to provide an instantaneous solution. Interactions with
such a boss are enervating and leave one either exhausted or extremely angry.
Hostile-aggressives are very toxic people.

The complainers tend to find everything incomplete and inadequate and
adopt the position that all would be well if only he or she had competent
people on the job. The complainer can also be less negative about immediate
subordinates, but focused instead on his or her boss and other people in the
enterprise that are not cooperating and doing their jobs. This type of person
prefers to be a victim and contaminates all who would listen with incessant
complaining. In its most virulent form, the targets of the complaints are the
subordinates.

The silent and unresponsive bosses appear to soak up inputs and requests
for help but provide no feedback or assistance. In distinction to the hostile-
aggressives, these people may be passive aggressives or they may be simply
unable to keep up with the numerous issues and problems of project man-
agement. Their own inadequacy may be reflected in their unresponsiveness
because they may be fearful of appearing to be stupid or uninformed.

Super-agreeables are pleasant to a fault and avoid ruffling feathers and
confronting difficult situations and people. They therefore refuse to deal with
controversial issues for fear of making someone else angry or, indeed, coping
with their own submerged anger. Because many project-oriented problems
require straight talk and confrontation of problems, such bosses are likely to
be of no help whatsoever. At best, they may be empathetic but will not engage
in even a minor battle to move a project forward. As PMs, super-agreeables
find it extremely difficult to carry out a complex negotiation with a customer
or with superiors.

The know-it-all expert tends to undermine the work of all subordinates.
Either as PM or CSE, this type of boss frustrates subordinates by always
having the “best” answer to a problem, whether it be administrative or tech-
nical in nature. This behavior pattern often leads to a “clamming up” by
subordinates because they perceive the boss as someone who is not able to
listen to and elicit a variety of opinions and solutions. “Because the boss
knows all the answers,” they reason, “let’s withhold our views and any con-
structive thinking about the problem.” This, of course, can lead to disaster
in terms of putting best efforts forward, which, in turn, leads to sabotaging a
project.

The negativists cannot find something good in anything that is done on a
project. They embody this negative attitude that causes subordinates to avoid
interactions with them. They reflect the opposite of a can-do viewpoint and
therefore can be deadly in dealing with customers as well as subordinates.
This type of behavior, of course, takes its toll on a project staff and inevitably

5.4 INTERACTIONS WITH YOUR SUPERVISOR 149

leads to loss of interest, productivity, and performance. Subordinates want to
transfer to a different project as soon as possible.

Indecisive bosses are invariably frustrating because they cannot bring them-
selves to a point of closure. By trying to keep all options open all the time,
they fail to commit themselves and therefore fail to make progress. Such
bosses are often fearful of making mistakes, which paralyzes them as well as
the overall project. Projects run by such bosses tend to bog down and overrun
schedule. They often also want to “study a problem to death,” leading to seri-
ous diminishing returns and missing key milestones. Subordinates soon learn
that they should make decisions themselves and ask for forgiveness rather
than permission, if they have the wherewithall to do so.

If you have a boss that scores very low with respect to the attribute eval-
uation of Table 5.1, or fits one of the seven types just discussed, you have
a serious problem. If you are a PM, the success of your project is in some
jeopardy. If you are a worker on a project, you are likely to be frustrated
and be engaged in a project that almost certainly will fail. The question that
presents itself then becomes: What can you do to more effectively “manage
your boss” so as to minimize your frustration and anger and maximize the
chances of your own personal success and the success of your project?

5.4.2 Managing Your Boss

Effective management of your boss requires an awareness of both how you
tend to behave and an understanding of the patterns of your boss’s behavior.
Further, rather than insisting that your boss change behavior, you should
change your behavior, which will have the effect of forcing your boss to deal
with something new. This is likely to change the dynamic of what might be
going on between both people. As an example, if you have been passive as a
response to the wilting onslaught of a hostile-aggressive boss, you might try
a more aggressive response. This change of behavior is likely to create a new
dynamic that may lead to some changes in how your boss deals with you.
Remember, the only way to deal with a bully is to fight back.

A well-considered and rational analysis of the situation is a good first step
in trying to manage your boss by changes in your own behavior. An ex-
ample of how one might do that is shown in Table 5.3 in relation to the
action—people—process—action paradigm previously discussed. This table
shows various combinations of boss and subordinate types and calls for in-
formation about how both types might complain about each other. Try filling
in the blanks. This will help in trying to understand how you might view the
situation both as a boss and as a subordinate.

Another perspective regarding the management of a boss can be found by
a careful reading of Bramson’s book [5.7], particularly in relation to what to
do about the seven bad bosses that he describes. His prescriptions for these
extreme cases provide some valuable insight into new ways of behaving. They

150 THE PROJECT MANAGER AND LEADERSHIP

TABLE 5.3 Predicting Boss-Subordinate Trouble Spots

List two complaints from:

Boss* Subordinates Boss Subordinate
A, PE PR, 1 1. 1.
2. 2.
PR, I A, PE 1. 1.
2. 2.
PR, PE Al 1. 1.
2. 2.
A, PR PE, 1 1. 1.
2. 2.
Al PR, PE 1. 1.
2. 2.
PE, I PR, A 1. 1.
2. 2.

*A: action; PE: people; PR: process; and I: idea.

also implicitly reinforce the point that changes in your own behavior are the
most effective ways of coping with a bad boss.

Finally, we list some more moderate actions that might be taken with a not
very good but less than pathologic boss:

1. Keep all interactions on a formal basis.
2. Provide short but regular status reports on your activities.

3. Develop lists of items you think are important to accomplish and present
these to your boss for agreement.

4. Demonstrate your capabilities with respect to
¢ Your judgment

¢ Your creativity and competence

* Your responsiveness and responsibility
Look for opportunities to build trust.

Do not confront in public situations.

Do not allow yourself to be victimized.

Speak to a trusted colleague who knows your boss to try to get another
point of view.

Take your boss to lunch to explore better ways of interacting.

10. If these do not work, speak to your boss’s supervisor or the human
resources people in your organization.

o N

e

In all cases, try not to resign yourself to living with a seriously bad boss. Life
is too short to not try to fix the problem.

55 CUSTOMER INTERACTION 151
5.5 CUSTOMER INTERACTION

In recent years, it has finally been recognized that the “customer is king.”
That is, the customer may not always be right, but he or she is paying the bills
and desires to have the results of a project provide appropriate value for the
money that is being spent.

In broad terms, from the perspective of a PM or CSE, there are several
types of customers, namely:

1. The outside direct customer
2. The outside surrogate customer
3. The internal customer

The outside direct customer is the entity outside the organization for which
the project is being executed, with such a customer directly using the results
of the project. As an example, if the project involves the building by a systems
contractor of an on-line transaction-processing (OLTP) system for a bank, the
bank would be the outside direct customer. The user needs and requirements
are defined directly by the bank, and the bank must be satisfied that the system
ultimately meets these needs and requirements.

In the case of the outside surrogate customer, an agency or group is serving
as a surrogate customer, representing the end user needs and requirements.
This situation is typified by many government agency customers whereby one
group is the acquisition agent and another group is the ultimate user. One may
see this situation, for example, in the U.S. Navy, where one agency or center
serves as the acquisition agent for the end user, which is the Navy’s fleet.
Thus, the needs and requirements of the fleet are represented and translated
by the surrogate customer who is, in some sense, a “middleman” in the overall
acquisition process.

The internal customer case may be described by a project being carried out
totally within the confines of an organization or company. For example, some
enterprises have a Management Information Systems (MIS) or Information
Resource Management (IRM) Department that produces information systems
for the rest of the organization. The project is thereby responsible to a user
inside the company. At the same time, the PM is likely to have a supervisor
who reports upward to a group that is parallel (e.g., the corporate information
officer, CIO) to the customer group organization.

The point is that whereas each of the preceding customer situations presents
somewhat different problems to the PM, all must be treated with due respect
to the customer, and due regard for the customer’s needs and requirements.
To do otherwise is to create problems rather than solve them.

A summary of a dozen points that the PM and the CSE should keep in
mind in dealing with a customer are listed in Exhibit 5.2.

152 THE PROJECT MANAGER AND LEADERSHIP

Exhibit 5.2: Guidelines for Dealing with Your Customer

1. Your customer has a MBTI profile; try to figure it out and behave

accordingly.

Focus on the needs and requirements as stated by your customer.

Imagine yourself in your customer’s position.

Listen intently to what your customer is saying.

“Sell” your approach and end product or service to your customer.

Speak to your customer at least once a week.

Be thoroughly professional in all interactions.

Live up to all commitments.

If your customer is headed in the wrong direction, gently suggest

alternative directions and actions.

10. Demonstrate your technical and management skills.

11. Maintain customer contact and interaction in parallel channels above
the level of the PM (e.g., vice president to vice president).

12. Treat your customer with honesty and respect.

A SRS ol

Following these “rules” helps to establish a long-term trusting relationship
with your customer. This does not guarantee success, but provides an overall
environment and relationship that helps to foster success. Perhaps the most
important rule is the last one dealing with honesty and respect. This is the
most critical aspect of dealing with a customer.

5.6 LEADERSHIP

The headline of an article in a newspaper on computers suggested that the
purchase by Loral of IBM’s federal operations raised “leadership questions.”
This headline echoed what has become a critical issue for many of our or-
ganizations and enterprises—that of leadership. Whereas not too many years
ago, corporate executives were under close scrutiny for their management
skills, or lack thereof, today the key word is leadership. There is little ques-
tion, therefore, that a great deal of attention has been focused on the top
management, in both government and industry, having the requisite leader-
ship attributes. Some of that focus, indeed, is seeping downward into the
domain of the Project Manager and the Chief Systems Engineer. Companies
are looking for people who are not only outstanding managers, but are leaders
as well. The conventional wisdom is that leaders are a small “subset” of good
managers; leaders have extra qualities that transcend the skills of even the
best manager.

From experience, leaders are not necessarily born to such a capability, but
can be taught and can grow into leaders. For the PM or CSE who has achieved
a high level of competence in this type of position, and who aspires to become

5.6 LEADERSHIP 153

a leader at the project and ultimately at higher levels in an organization, we
add this short perspective on leadership.

5.6.1 Situational Leadership

One of the well-accepted models of leadership is the so-called “situational”
leadership paradigm [5.8]. The premise of this model is fundamentally that
leaders choose or select a leadership “style” that depends upon the situation
in which they find themselves. The situations are characterized by two basic
behavior dimensions, namely, (1) task or directive behavior, and (2) relation-
ship or supportive behavior. In both cases, the leader correctly perceives the
situation and modifies behavior to suit the circumstances.

If we form a scale from low to high for both task and relationship behavior,
we can visualize the following four situations that describe the fundamentals
of the situational leadership model:

Situation 1 (SI): High task, low relationship
Situation 2 (S2): High task, high relationship
Situation 3 (S3): High relationship, low task
Situation 4 (S4): Low relationship, low task

For SI, there is a high need to direct the behavior of subordinates, who
generally are characterized by a low level of maturity. At the same time, the
situation does not call necessarily for a close or supportive relationship during
the execution of the work. In this type of situation, the leader is “telling” the
followers what has to be done and is closely supervising the work as it is being
performed. The argument is that the leader is selecting this mode of behavior
because that is what is called for in this type of situation.

In situation 2 (S2), the task behavior is also high (follower maturity is low),
but there is a high need for relationship and supportive behavior. In such a
case, also recognized by the leader, he or she is “selling” by making sure that
decisions are understood and that all questions are appropriately answered.
The followers need to be “sold,” so to speak, partly because they are not
mature and partly because they require close contact with the leader.

In the third situation (S3), relationship and supporting behavior remains
high, but the task behavior is low (maturity of follower is high). Here the leader
is “participating” with the subordinates by sharing ideas and encouraging
inputs and ideas to facilitate the decision-making process. The leader and
followers are more in a collaborative type of relationship, with each making
distinct progress through such an interaction.

Finally, in the last situation (S4), both the relationship (supporting) and
task (directive) behaviors are low and the follower level of maturity is
high. Here the leader is “delegating” a great deal of responsibility to the

154 THE PROJECT MANAGER AND LEADERSHIP

subordinates, feeling confident that they are capable of carrying out the var-
ious required tasks without much supervision. The leader is more of an
observer and monitor, and the followers have the skills and perspectives for
almost independent progress.

This situational model, then, is characterized by a conscious change of
behavior on the part of the leader, adapting a leadership style that is tuned to
the situation at hand. If the followers are not homogeneous in their capabilities
and needs, the leader treats certain of them in one way (e.g., telling) and
others in another way (e.g., delegating). In summary, the leader assumes the
following roles for the four situations:

* Telling (SI)

* Selling (S2)

* Participating (S3)
* Delegating (S4)

We note that there is little emphasis, in this model, on the specific attributes
of the leader. The qualities or traits of a leader are basically not addressed,
other than that he or she is able to perceive situations and modify behavior in
response to these situations. The following section explores the matter of the
characteristics of a leader.

5.6.2 The Attributes of a Leader

There have been numerous investigations of the attributes of a leader. Indeed,
this has been the main thrust of recent analyses of the leader and how he or
she behaves. In broad terms, these explorations have taken two interrelated
tacks. One has been to examine known leaders and to see how they tend to
behave and what their personal characteristics are or have been. The other has
looked at the demands placed on the leader, functioning in all domains (i.e.,
industry, government, academia).

In a survey of more than two dozen sources [5.9], some of the documented
leadership investigations that have defined requisite leadership attributes have
been summarized. The results are listed in Exhibit 5.3, with the order going
from most to least important.

The attributes listed in the top seven all had different scores with a natural
breakpoint between numbers 4 and 5. The most critical attribute, from the ex-
hibit, was outer-directed and dealt with empowering, supporting, motivating,
and trusting others. The issue of having a vision, so dominant in the news,
scored number 2. The third most critical attribute was cooperating, sharing,
team building, and team playing. This is distinctly opposite to some of the
competitive behavior that we see in enterprises today, much of which is de-
structive and leads to burnout. Also, we note that such a leader is not only
able to build a team, but can function easily as part of someone else’s team

5.6 LEADERSHIP 155

Exhibit 5.3: Results of Survey of Leadership Attributes

Critical Attributes
1. Empowering, supporting, motivating, trusting
2. Having a vision, long-term viewpoint
3. Cooperating, sharing, team playing, and team building
4. Renewing, learning, growing, educating

Extremely Important Attributes
5. Being communicative
6. Having culture and values, serving as a role model
7. Being productive, efficient, determined

Significant Attributes
8. Demonstrating time management, prioritization
9. Being action-oriented

10. Making a contribution, commitment, legacy

11. Being innovative, imaginative

12. Having integrity, morality, humanity

13. Demonstrating skill, knowledge, substance

(if that someone else is also a leader). Rounding out the critical attributes is
that of renewing, learning, growing, and educating. Such a leader is dedicated
to individual as well as corporate growth, believing that without a constant
renewal process, the organization will stagnate and ultimately fail.

In the second category of extremely important attributes, the list is led by
the communicative leader. We stressed the importance of this characteristic
and have more to say about it as well in the next chapter. Inculcating a
culture and value system is next on the list. Many organizations take on
the mantle of the culture supported by a strong leader (e.g., Tom Watson
at IBM, Henry Ford at Ford Motor Company, Bill Gates at Microsoft). The
culture is usually reflected in the personal behavior of the leader serving as
a role model. Finally, and completing this category, the leader is productive,
efficient, and determined. Many leaders, through their constant doggedness
and determination, are able to achieve their desired results for themselves as
well as their organizations. They do not allow themselves to be stopped by
obstacles and initial setbacks.

There are six attributes in the significant category. Having the ability to
prioritize and manage their time heads this list. Next, the leader is action-
oriented, preferring to move ahead even when it may be an errant direction.
Such a leader is able to make mistakes, learn from them, and retrace steps, if
necessary. Next, the leader has a sense of the contribution that all are making
to the overall well-being of the organization. Such a leader is committed to
the enterprise and wishes to leave a legacy and mark on the organization.
The leader is also innovative and imaginative and is able to try new modes
of behavior, even if he or she is not the originator of the new idea. Number

156 THE PROJECT MANAGER AND LEADERSHIP

12 on the list is having a definitive and positive sense of integrity, morality,
and humanity. Many despotic “leaders,” especially those who have led their
countries down destructive paths for themselves and others, would fail this
test of leadership. Finally, and curiously last on the list of thirteen, the leader
has the skills, knowledge, and substance in the domain of the enterprise,
whether it be business, engineering, politics, or some other arena.

Another more recent exploration by this author [5.10] of the attributes
of leaders examined the writings of twenty-four investigators of this topic.
The overall conclusion was the set of five attributes listed below as the most
significant.

Exhibit 5.4 Additional Selected Attributes of Leaders [5.10]

e Practical visionary

¢ Inclusive communicator
* Positive doer

* Renewing facilitator

* Principled integrator

The practical visionary is able to focus upon distant goals, but does not have
his or her head in the clouds. The inclusive communicator has the critical
skill of being able to communicate, and makes sure that everyone is and
feels part of the team. The positive doer maintains a positive attitude in the
face of all kinds of obstacles, and keeps moving forward, accomplishing real
things in the real world. The renewing facilitator helps other members of
the team reach their goals, crossing bridges as necessary from the old to the
new. Finally, the principled integrator is able to synthesize important pieces
to construct the whole, maintaining an ethical perspective from beginning
to end.

The reader with a further interest in the attributes of a leader can refer
especially to the two sources cited in this section [5.9, 5.10] as well as to other
significant sources [5.11, 5.12, 5.13, 5.14, 5.15].

5.6.3 The Project Manager as Leader

One might argue that requiring the PM and the CSE to be leaders, in the
previous context, is somewhat of a stretch. However, the PM and the CSE
are de facto leaders of their respective project teams. They may function
well or they may function poorly in these capacities. The objective is to
try to grow so that they can become leaders in the full sense of the word.
This requires an understanding of what leadership means and a clear and
determined receptivity to leadership ways of being and behaving. An
abstraction of leadership attributes in terms of the Project Manager and Chief

QUESTIONS/EXERCISES 157

Systems Engineer perspectives is cited Exhibit 5.5, using the notion and
mnemonic of remaining receptive to what it might take in terms of changes
in behavior and ways of interacting that require close examination.

Exhibit 5.5: A Leadership Mnemonic for the PM and CSE

R: Results and process-oriented
E: Encourages positive change
C: Communicates

E: Empathizes and trusts

P: People developer

T: Team builder

I: Integrates and synthesizes

V: Visionary

E: Exhibits a can-do attitude

Keeping the attributes of a true leader in focus at all times gives the PM and
the CSE opportunities to grow from simply being a manager into becoming a
leader. This goal is within the grasp of the receptive person who can embrace
and deal with internal and external change and growth processes.

QUESTIONS/EXERCISES

5.1

5.2

5.3

54

5.5
5.6

5.7

Develop a score for a Project Manager you have worked for using the
format of Table 5.1.

Develop a score for yourself as a Project Manager using the format of
Table 5.1.

Make an educated guess at the Myers—Briggs profile for your boss.
Do the same for yourself. What might this suggest in terms of your
relationship with your boss?

Repeat the preceding exercise for the action-people-process-idea as-
sessment.

Fill in the blanks in Table 5.3. Discuss the results.

Evaluate your boss in terms of the cited critical leadership attributes in
Exhibit 5.3. Do the same for yourself. Then evaluate your boss in terms
of the five leadership attributes listed in Exhibit 5.4. Do the same for
yourself.

Construct your own “top five” list of leadership attributes that you
believe are the most important for success as a Project Manager. Explain
your choices for this list.

158

THE PROJECT MANAGER AND LEADERSHIP

5.8 Examine the three aspects of psychological decision theory shown in
the text of this chapter and for each of them cite an example of how it
might apply to managing a project.

5.9 Develop a score for your best “subordinate” using the format of
Table 5.2.

5.10 Identify six of your own attributes that you believe might help you
continue to assume leadership positions in your company or enterprise.
Note “why” for each of the six.
REFERENCES
5.1 Zimmerer, T., and M. Yasin (1998). “ A Leadership Profile of American Project Man-

52

53

5.4

5.5

5.6

5.7
5.8

5.9

5.10

5.11
5.12
5.13
5.14

5.15

agers,” I[EEE Engineering Management Review (Winter).

Myers, 1. Briggs, with P. B. Myers (1980). Gifts Differing. Palo Alto, CA: Consulting
Psychologists Press.

Keirsey, D., and M. Bates (1978). Please Understand Me. Del Mar, CA: Prometheus
Nemesis Books.

Frame, J. D. (1987). Managing Projects in Organizations. San Francisco: Jossey-Bass.
Casse, P. (1981). Communication: A Self-Assessment Exercise. Washington, DC: Interna-
tional Bank for Reconstruction and Development, the Economic Development Institute,
and the World Bank.

Kahneman, D., P. Slovic, and A. Tversky, eds. (1982). Judgment Under Unceratinty:
Heuristics and Biases. Cambridge, MA: Cambridge University Press.

Bramson, R. M. (1981). Coping with Difficult People. New York: Ballantine Books.
Mersey, P, and K. Blanchard (1977). Management of Organizational Behavior Utilizing
Group Resources, 3rd edition. Englewood Cliffs, NJ: Prentice Hall.

Eisner, H. (1993). Leadership Imperatives: Do They Support Creativity and Innovation?
Paper read at the American Society for Engineering Management (ASEM) 1993 Annual
Conference, Dallas, October 22-25.

Eisner, H. (2000). Reengineering Yourself and Your Company: From Engineer to Man-
ager to Leader. Norwood, MA: Artech House.

Maccoby, M. (1981). The Leader. New York: Simon and Schuster.

Bennis, W., and B. Nanus (1985). Leaders. New York: Harper & Row.

Leavitt, H. J. (1986). Corporate Pathfinders. New York: Viking.

Zaleznik, A. (1989). The Managerial Mystique: Restoring Leadership in Business. New
York: Harper & Row.

Gardner, J. (1990). On Leadership. New York: The Free Press.

— 6

TEAM BUILDING AND
TEAM INTERACTIONS

6.1 INTRODUCTION

This chapter deals principally with issues surrounding team building and
interactions between team members. The most natural area of focus is the
project team as a whole and the Project Manager (PM) as the head of that team.
In point of fact, however, there are actually several teams within the context
of a project team. The Chief Systems Engineer (CSE) has the engineering
group as his or her team. That group is usually broken down into subgroups
(see Figure 1.2), so that there may also be a hardware engineering team and
a software engineering team, and so on. If the project is large enough, the
Project Controller (PC) is likely to have a team of people working on project
measurement and control matters.

A variety of other activities that are often carried out within a team context
are considered in this chapter, as depicted in Figure 6.1. Included are the
activities of holding meetings and making presentations. These are forums
for both internal and external communications and doing them correctly
enhances overall project operation. In addition, and possibly inevitably, team
members will come into conflict with either one another or the team leader.
Thus, we also deal with the matter of conflict resolution and management in
this chapter. In today’s world, writing proposals to potential customers is a
critical part of an enterprise and is almost always carried out by teams. Some
ground rules for this important activity are presented and explored. Finally,
the chapter is completed with a brief discussion of some practical ways to
motivate and create incentives for members of a project team.

159

160 TEAM BUILDING AND TEAM INTERACTIONS

Building the

Communications .
project team

Conflict Teamat:]lgldlng Motivation
management interactions and incentives
Meetings Proposals

Presentations

Figure 6.1. Team building and areas of interaction.

6.2 COMMUNICATIONS

We have stressed the importance of strong and effective communication both
within and external to a project. We have also seen that communication skills
are essential to the success of a manager and a leader. Poor communicators
are likely to fail at the challenging job of running a project or a systems
engineering team. It is an axiom of management that there can never be too
much effective communication. It is almost always true that there is too little
positive and honest communication.

Strong and well-considered communication is at the heart of building a
productive team. Thus, we pause at this point to highlight some of the critical
aspects of being an effective communicator. These are listed in Exhibit 6.1
and briefly discussed in what follows.

Exhibit 6.1: Essentials of an Effective Communicator

[u—

Listen.

Adopt a management by walking around (MBWA) way of being.
Assure participation by all team members.

Synthesize and integrate.

Meet with all key project personnel every week.

Insist on information “flow-down.”

Hold short “information” meetings.

Communicate with boss and other project support people.

Talk to customer at least once a week.

XNk v

6.2 COMMUNICATIONS 161

10. Maintain a positive and supportive attitude.
11. Offer training for poor communicators.
12. Assure that communications is part of personnel evaluation.

As indicated in the previous chapter, listening is a crucial part of com-
municating. It gives respect to the person who is talking to you and conveys
the message that he or she has something to say that is of value. Regarding
management by walking around (MBWA), this is an informal way for the
PM and CSE to obtain and convey information in an easy and nonintrusive
manner. Coming to the workplace of a subordinate also suggests that the
manager is comfortable with and wishes to be in contact with the “innards”
of the project. The PM should also make sure that the more reticent of the
project team are invited to participate. Otherwise, the dominant members of
the team may monopolize the discussion, both formally and informally, and
the more laid-back people will not put forth their ideas. Many people want
to be asked what they think. A smart and sensitive PM understands that and
does the asking. True communication also involves listening, absorbing what
was said, integrating it with other information, and providing the results to
those one is communicating with.

As another ground rule, the PM and CSE should be in touch with all key
project people, not necessarily all personnel, at least once a week. MBWA is
but one way to accomplish that. A short telephone call, or a short meeting,
also assures that contact is continuous and productive. The flow-down of
information is sometimes assumed, but often not carried out. Many PMs
are surprised to find that what they convey to lead engineers stops there.
Information flow-down must be assured to avoid isolation (“No one tells me
anything around here”’) and let people know what they need to know to be part
of the team. As suggested before, not all meetings are “decision” meetings. A
short “information” meeting lets team members know that you are specifically
interested in keeping them informed.

Open channels of communication are also crucial with your boss and
with support department personnel that have a role to play on the project.
As suggested in the last chapter, it is a good idea to contact your customer
every week, if only to assure that everything is on track. Communication that
is negative and nonsupportive is worse than no communication at all. The
PM must adopt a positive and supportive position, except under the most
radical of situations. Here again, we see that type of position, for example,
for sports coaches that are successful. For those with lead positions on the
team that have difficulty in communicating, the PM should establish some
type of training program to build skills in this most important area. Finally,
make sure, especially with these same lead people, that communications is
part of your (at least annual) evaluation of them. This brings the point home
in ways that most people understand and value.

162 TEAM BUILDING AND TEAM INTERACTIONS
6.3 BUILDING THE PROJECT TEAM

Team building and being part of a team are critical issues in project and
systems engineering management. Teams, however, do not spontaneously
appear; they must be built. As suggested before, a prerequisite to team building
is to follow the communication “rules” identified in Exhibit 6.1. These are
necessary but not sufficient conditions for building an effective team.

We see, in various parts of our lives, numerous real-world examples of
team building and lack thereof. Perhaps three examples stand out and are
visible, at least in part, to the population at large. One has to do with the
President of this country. We can track, through impressions obtained in the
newspapers, how the President has built a team and the extent to which bridges
have, or have not, been built to the Congress. This is a massive team-building
undertaking and context, and the more successful Presidents have been broad
and inclusive in their interpretation of the team that must be built. Another
example is that of a coach of a football team. Some coaches appear, year
after year, to get the best out of the talents present in the members of the
team. Indeed, one measure of the success of a team is precisely whether all
team members are doing the best they can do. When this is achieved, even
if the team does not win every game, there is a strong and positive sense of
team effort and achievement along with strong ties and camaraderie between
team members as well as the coach. Thus, team building and coaching are
very similar. The effective team builder must be a good coach. Finally, most
of us are part of some type of team in our work environments. We thus can
observe team interactions in that context, whether we are teachers, engineers,
administrators, middle managers, or members of the board of directors of a
corporation.

We now identify ten specific suggestions for building a project team, as
listed in Exhibit 6.2 and discussed in what follows. Following these sugges-
tions, together with those provided in the previous chapter, will likely lead to
a strong and effective team operation.

Exhibit 6.2: Suggestions for Building a Project Team

[a——

Develop and maintain a personal plan for team building and operation.
Hold both periodic and special team meetings.

Clarify missions, goals, and roles.

Run the team in a participative, possibly consensual, manner.

Involve the team in situation analysis and problem solving.

Give credit to active, positive team members and contributions.
Assure team efficiency and productivity.

Obtain feedback from team members.

Integrate, coordinate, facilitate, and assure information flow.
Maintain effective communication.

XX WD

[

6.3 BUILDING THE PROJECT TEAM 163

6.3.1 Personal Plan

The team leader (PM, CSE, PC, and others) must always maintain an explicit
level of consciousness about the team and how it is performing. This can
take the form of an informal plan that reflects a continuous assessment of
team behavior and operation as well as what might be done to bring about
improvements. After each meeting of the team, the leader should evaluate
what happened and determine whether some type of fine-tuning is necessary.
Running a team should not be taken for granted. It requires constant adjust-
ment to assure that the team, and the leader, have not fallen into bad habits
and ineffective operation. The team has to be continuously stimulated to do
its best.

6.3.2 Periodic and Special Team Meetings

The usual forum for team operation is a meeting of one type or another.
Ground rules for running a meeting are considered in more detail later in
this chapter. Here we simply note the requirement for both periodic as well
as special meetings. Periodic meetings are necessary to maintain continuity
and, depending on the project, can be held weekly, biweekly or monthly. They
should be on the calendars of all participants so that other work pressures do
not interfere. They should start on time and respect the fact that team members
cannot spend all their time at meetings. Special team meetings are called in
response to unique situations that may arise. Usually, they are necessary when
an unusual and time-critical problem has unexpectedly surfaced, calling for a
problem-solving response by the team.

6.3.3 Missions, Goals, and Roles

The team leader has the responsibility to clarify the overall mission of the
team, the specific goals that are to be achieved, and the roles of the various
team members. In a project context, these are often well known because,
as a minimum, they are articulated implicitly in the project plan. The team
may also be a “task force” within the project team, whose job it is to solve
a particular problem. For example, such a team may be given the charter
to maximize the effectiveness of interactions between the project team and
the external interfaces with other entities or departments in the corporate
enterprise (accounting, finance, contracts, human resources, graphics, etc.).
Failure to be clear about missions, goals, and roles usually leads to confusion,
thrashing, and less than a positive attitude from team members.

6.3.4 Participation and Consensual Operation

As a minimum, the team leader should adopt a style of participative man-
agement of a team. This implies full involvement of all team members in
the process as well as in the products of the team. Those members who are

164 TEAM BUILDING AND TEAM INTERACTIONS

laid-back should be encouraged to participate and bring their thoughts and
ideas to the forefront. Lack of participation can be a signal of some type
of dysfunction in the team; the leader should be particularly sensitive to the
non-participating team member, following up with one-on-one conversations
to see if there is some type of problem lurking in the background. The full-
participation team is very likely to be a high achiever with solid relationships
between team members and the leader.

In just about all participative team operations, it should be recognized that
although there is strong participation in all processes, the team leader usually
takes responsibility for all key decisions. This means that participation does
not imply majority rule. In a project situation, the PM does not normally take
a literal “note” and then automatically go with the majority. Indeed, the PM
may disagree with the majority and therefore may make a decision that is a
minority decision. Such are the vagaries of managing a project. In addition,
all team members must be aware of and accept the prerogative of management
in terms of the final decision, and once it is made, must use their best efforts
to implement that decision. There is no room for the team member who
undermines the team leader’s decision, whether or not he or she agrees with
it. If the team member cannot ultimately support a PM’s decision, the next
step is to leave the project team.

Participative operation, however, is not the same as consensual operation.
More precisely, the latter can be interpreted as team agreement on a course
of action, but without an explicit vote of the team members [6.1]. Consensual
operation of a team is very desirable but not always possible. Most decisions,
for a good team, turn out to be consensual. However, the leader should reserve
the right, for a particularly contentious situation, to both take a vote (show of
hands) and to make a decision that is contrary to the majority viewpoint.

6.3.5 Situation Analysis and Problem Solving

In Chapter 4, we introduced the notion and specific steps of situation analysis.
Its purpose is to examine difficult situations that inevitably arise during the
course of a project and, through a team dynamic, develop a solution. The
team, in many ways, is the centerpiece of both situation analysis and problem
solving. The PM or the CSE may have well-developed ideas as to the nature
of a problem as well as its solution, but it is critical to obtain the ideas and
inputs from other key team members who may be able to suggest answers that
may not have been considered. In short, many people working constructively
on a problem usually leads to better problem solving both immediately and
over the long run.

6.3.6 Give Credit

Give credit to team members that make a contribution; this is a very important
part of team building. This can be achieved in many ways—from a pat on
shoulder to a formal acknowledgment at a team meeting. This works wonders

6.3 BUILDING THE PROJECT TEAM 165

because everyone has a basic need to feel appreciated. If this can be done in
public, so much the better.

6.3.7 Assure Efficiency and Productivity

A PM with excellent team-building skills will nonetheless fail unless the
team is being productive. This means making progress in accordance with the
project plan as well as being efficient in the use of everyone’s time at all team
meetings. It also means that the PM must know when it is time to stop beating
a problem to death and move on to a solution or to the next issue or, indeed,
to call a meeting to a close. Experience suggests that many team members
become frustrated with long meetings that drone on and on and would prefer
crisp, effective interactions that support a sense of accomplishment for all
that are present.

6.3.8 Obtain Feedback

Feedback about the team and its operation should be sought from all team
members, preferably through one-on-one sessions. Team members with prob-
lems with the team may be wary about expressing their views to all. By means
of a supportive private discussion, team members can provide feedback and
will understand that their inputs are being valued and serve as a contribution
to the team. Some may have an issue with another team member that may be
addressed through such private feedback sessions. It is yet another way for
the PM to convey the message that this person is valued as an individual and
as part of the team.

6.3.9 Integrate, Coordinate, and Facilitate

The PM and CSE do not have all the answers, nor do they possess all of the
wisdom on a project. Adopting a position as integrator, coordinator, and fa-
cilitator normally pays great dividends in terms of overall team effectiveness.
This may appear to be a passive role, but actually it can be exercised in a
rather active manner. It also goes along with the notion of empowerment. The
job of the team leader is not to do all the work, but rather to assure that the
best efforts of all team members are brought out.

6.3.10 Communicate

The previous section and Exhibit 6.1 summarize a dozen key points with
respect to communication. Remember, even if the PM is well-skilled at all the
nuts and bolts of project management, the project is likely to fail, and a team
not likely to be built, without effective communications. This is perhaps the
most important single message in all of the fine art of management.

166 TEAM BUILDING AND TEAM INTERACTIONS

6.3.11 Additional Points on Team Building

Teams are formed in contexts other than that of a formal project as described
here. There are other types of teams, such as quality circle teams, integrated
product teams, concurrent engineering teams, task force teams, and others.
The key point is that the earlier discussion applies to all these various types
of teams, and that the required skills are more or less the same. Learning
the basics of team building, therefore, is worthwhile whether or not you now
serve as a PM or CSE. Sooner or later you will be part of a team and perhaps
sooner than you think you will be asked to build and run a team effort.

We also note that in the presentation of the subject of leadership in the pre-
vious chapter, the third most important attribute of a leader was cooperating,
sharing, team building, and team playing. To be a leader, then, is to know
how to build a team. Conversely, and categorically, to not know how to build
a team is to not be a leader.

There is an endless supply of literature on the critical subject of team
building, including entire books, courses, videotapes, and magazine articles.
For the reader interested in pursuing this matter beyond the suggested essential
steps cited in Exhibit 6.2, reference is made here to the Harvard Business
Review and several additional sources [6.2, 6.3, 6.4, 6.5]. Effort put into
building a strong, effective, and productive team will pay large dividends for
both the Project Manager and the Chief Systems Engineer.

6.4 TEAM BUSTERS

It is important to pause for a moment on the subject of team building and ac-
knowledge the existence of a potential counterforce to team building, namely,
the “team buster.” This is a person, nominally a member of the project team,
who works hard, either consciously or otherwise, in destroying the team that
the PM and CSE are trying to build. We address here some ways to deal with
such a person.

One can spot a team buster by the following types of behavior patterns,
which may be manifest singly or in various combinations:

* Questions the authority of the PM and CSE at every turn.

* Challenges the management and technical approach of the PM and CSE.
* Does not follow the agreed-on decisions.

* Consistently “goes over the head” of his or her boss.

* Tries to monopolize meeting agendas.

» Attempts to embarrass or challenge the boss in front of others.

 If a manager, and you are not part of his or her team, by definition you
are doing a poor and misguided job.

6.4 TEAM BUSTERS 167

* Forces his or her people to clear all actions, and even conversations,
strictly through the “chain of command.”

» Tries to create a “we” and “they” mentality, whereby everyone who
reports to the team buster is a “we” and everyone else is in the “they”

group.

In point of fact, when severe enough, the team buster can only really play
on one team, his or her own. The team buster undermines all attempts at
team building by his or her supervisor, and is a detriment to the team. Often,
this type of person can have significant talents. Otherwise, he or she would
not have survived to the current level of responsibility. The team buster can
also be viewed as a “bully,” a person who is predisposed to bullying other
people to get what he or she wants. In effect, aggressive nonteam playing is
a manifestation of bullying behavior.

There is only one real way to deal with a team buster. Loosely speaking,
it is the “three strikes and you’re out” solution. The first time the team buster
exhibits the type of behavior cited before, the PM or CSE must have a private
conversation with the team buster that makes it clear that the behavior has to
change. This point must be made forcefully and emphatically. All attempts
at cajoling and persuading are likely to fail, as they are ultimately viewed as
signs of weakness and indecision. At the second infraction, another private
discussion is called for, now making the point that if the behavior continues,
the person will be removed from the job. This, of course, has to be supported
in advance by the next in the chain of command, and might imply an exit
from the company. When the next infraction occurs, and it usually does, all
the pieces have to be in place in order to take the action of removal of the
team buster from the project, and possibly from the organization at large.
Again, it should be done in private, but with the appropriate member of the
human resources department present. This is also an option after the second
infraction.

In some cases, assistance in dealing with a team buster may be provided
by human resources. This can take the form of counseling and other methods
for creating awareness of the severity of the situation at hand. Again, if one is
truly dealing with a team buster, the chances are that this attempt at changing
behavior will not work.

The final point, with respect to a true team buster, is that the PM or CSE
must act decisively and clearly, and show no signs of wavering. The behavior
of the team buster poisons the team and creates all manner of havoc. There
are times when reconciliation is impossible, as it usually is with the true
team buster. The best solution is separation, as difficult as that may appear to
be. The PM and CSE should resist blaming themselves for being unable to
reform the team buster and move on to the more productive activities of team
building.

168 TEAM BUILDING AND TEAM INTERACTIONS

6.5 CONFLICT MANAGEMENT

Conflict can be considered an inevitable part of running a project, especially
a large one. It is not necessarily and always negative. It often can be turned
into a positive, growing, and learning experience. In this section, we explore
how conflict may be approached and managed, and also some of the styles
that people adopt in attempting to deal with conflict. As with the other inter-
personal relationship issues in this book, we acknowledge that there is great
deal that cannot be covered here and attempt to focus on the key elements
and essentials that must be known to both the Project Manager (PM) and the
Chief Systems Engineer (CSE).

6.5.1 Areas of Conflict

Studies have shown the areas in which conflict tends to arise most frequently.
Apparently, these areas have also changed with time. As an example, the
following list shows conflict areas and their rank in studies in 1986 and in
1976 [6.5]:

Conflict Area Rank in 1976 Rank in 1986
Schedules 1 1
Costs 6 2
Priorities 2 3
Staffing 3 4
Technical opinions 4 5
Personality 7 6
Procedures 5 7

It is interesting to note the persistence of schedules over the decade shown
as the number 1 area in which there is conflict. Costs jumped into the number
2 position, with overall priorities staying within the top three. Thus, we see
schedule and cost as critical items over which conflict occurs. Technical
opinions is about midrange in both lists, and personality conflicts are present
but toward the bottom of the list.

Conflicts regarding impersonal issues (schedules, costs, etc.) can be easier
to deal with than personal issues. In principle, the former deal with different
perceptions of objective facts. Personal issues are less than objective, and
people will be at odds with one another simply because they do not like
or approve of one another. From the point of view of the PM or the CSE,
conflicts and conflict management should be considered part of the job. The
question is how to deal with it when it does occur and what are one’s indi-
vidual propensities toward coping with conflict situations. These are referred
to in the literature as conflict resolution styles, and are examined in what
follows.

6.5 CONFLICT MANAGEMENT 169

6.5.2 Styles

People approach conflict in different ways and these can be identified and
measured. As an example, conflict styles may be articulated as [6.5]:

» Competing (forcing)

* Compromising (sharing)

* Avoiding (withdrawal)

* Accommodating (smoothing)
Collaborating (problem solving)

In addition, there exists a measurement instrument known as the Thomas-
Kilmann Conflict Mode Instrument [6.6] whereby one can measure an in-
dividual’s tendency toward adopting one or another mode of conflict man-
agement. The reader with a interest in knowing more about his or her own
tendency is urged to contact Thomas and Kilmann and take their conflict
mode measurement “test.”

Competing (forcing) is an approach whereby power is used to resolve a
conflict. This may be done in a variety of ways. The most obvious is to utilize
the dominant position as a supervisor in order to force resolution. In effect,
“We will do it this way because | am the boss.” This may temporarily resolve
the conflict, but it may not persuade or convince anyone to change positions.
The power may be applied directly or even subtly, but competing or forcing
is not a long-term and reliable way to resolve conflicts. In certain situations,
it may exacerbate the conflict and cause people to respond in kind when they
have greater power leverage.

The compromising or sharing style involves trying to find a position that
is acceptable to all parties. It is a classical “negotiation” stance and can often
lead to an effective resolution. Unfortunately, the results may be acceptable
in terms of human relations but may be wrong for the project. As an example,
if a conflict occurs with respect to estimation of the time it might take to
perform a given set of activities, a compromise solution might be to accept
the mean value between the estimated values. This argues for “beauty” instead
of “truth,” and may hurt the project by failing to get to underlying facts that
might be important. Some researchers in the area of conflict resolution have
also called this approach the “lose-lose” solution because the combatants
each lose a little in order to come to a resolution. This approach might
work well in international negotiations, but has its shortcomings in a project
context.

The avoiding or withdrawal approach simply refuses to come to terms
with the conflict and face it squarely. Under these conditions, of course, the
conflict remains and festers like a bad sore. No resolution occurs, and a poor
model of behavior is established. The conflict may go underground for a
while, but because its essence is not dealt with, it does not really go away.

170 TEAM BUILDING AND TEAM INTERACTIONS

Many novice managers adopt this mode of behavior because they are unsure
as to their position, power, and skill in contentious situations. Some do not
see alternative modes of behavior that lie between the extremes of “fight” or
“fly” and therefore prefer to fly. It is not a recommended way of resolving
conflicts because it really “pretends” that the conflict does not exist or, if it
does, is not in need of action.

The accommodating or smoothing solution acknowledges the conflict but
plays down its severity or possible impact. This approach is sometimes re-
ferred to as suppression because its ultimate purpose is to dampen the conflict
and reduce its potential effects. It can be a good approach when the conflict
cannot be dealt with at the moment it occurs. For example, if two members
of the team flare up in conflict at a meeting, it may be entirely reasonable to
suppress such a conflict, thus preventing progress on the meeting’s agenda.
In short, accommodating may be a good temporary solution but it does not
really resolve the conflict. It is recommended only when the situation at hand
does not provide sufficient time to tackle the conflict in a more fundamental
manner.

A collaborating or problem-solving style recognizes that the combatants
have a right to state their different views and that all views are accepted as
valid. In this mode, there is encouragement to bring all views and perspectives
to the forefront so that they can be explored in detail. Reasons “why” are
elicited so that there is a clarification as to the issues and positions. If handled
correctly, this will usually lead to a better understanding between combatants
and a willingness to go beyond the surface conflict to its deeper roots and
rationale. Listening is encouraged so that the participants can learn how
to accept other positions with grace and equanimity. The objective of this
approach is not only to collaborate, but also to truly solve the immediate
problem. It may indeed have the ultimate effect of teaching people how to
resolve conflicts in a productive manner. This, of course, is the recommended
conflict resolution mode and, when skillfully applied, can support the long-
term effectiveness of the project team.

We do not expect, in this short discussion, to delve deeply into a subject as
complex as the human behavior aspects of conflict and its resolution. The basic
point is that all of us have natural tendencies to handle conflict in different
ways. If you can identify your own tendencies in relation to the preceding
alternative modes, you may have a new way of looking at and approaching
the difficult problem of handling conflict. Many people are good in conflict
situations as long as they are not one of the combatants. In general, it is a good
idea to try to see alternatives when you are a part of the conflict and can take
a step back in an attempt to move into a less personal problem-solving mode.
Backing down from a previously held position is not the end of the world.
Indeed, it may actually represent the dawning of a new acceptance of the
wisdom you have gained. Giving up old styles of combatting and competing
may help you avoid ulcers and burnout.

6.6 MEETINGS 171

6.6 MEETINGS

In Exhibit 6.2, meetings were suggested as one of the primary mechanisms
for team building. Meetings, of course, create the opportunity for the team
to “do its thing” in terms of real information exchange and problem solving.
They are the operating crucibles in which the dynamics of team interaction
are played out. For a healthy team, they are a thing of beauty. For an unhealthy
team, they may bring out and encourage further dysfunctional behavior. The
next time you go to a meeting, observe the team dynamics with a critical eye
to see if your team is operating on all cylinders.

We cite here a number of ideas for establishing and carrying out meetings,
as shown in Exhibit 6.3.

Exhibit 6.3: Ideas for Managing Meetings

1. Make clear the purpose of the meeting.
Decide if the meeting is periodic or special.
Establish an agenda.

Determine who should attend.

Fix the length of time for the meeting.
Make notes on expectations:

* Problem discussion

* Problem solving

 Information exchange and sharing

e Other

Elicit ideas and alternatives.

Define action items.

Have someone take minutes.

10. Determine, if necessary, when the next meeting is to occur.

SNk L

o o

The PM or CSE should have a clear idea as to the purpose of the meeting
and be able to convey that purpose to the team, either in written form prior
to the meeting, and certainly as the first item of the meeting. This provides
focus for the meeting and avoids straying to a variety of possibly irrelevant
subjects. Suggestions for extending the meeting’s purpose are acceptable but
are at the discretion of the leader.

All parties should know if the meeting is part of the stream of periodic
meetings or is a special meeting to handle a more critical issue. In this context,
when unforeseen problems arise, the leader should feel free to call a special
meeting to use the team for situation analysis (see Chapter 4) and problem
solving.

172 TEAM BUILDING AND TEAM INTERACTIONS

Ifpossible, the team leader should establish and distribute a written agenda.
This may not always be possible, as with emergencies, but it is helpful to know
the scope of what the leader plans to deal with in advance. This allows team
members to think about the meeting beforehand and also to bring appropriate
materials to the meeting. It helps in the overall flow of the meeting and avoids
a scene in which everyone is waiting for one person to retrieve important data
for distribution to everyone.

The leader should give prior thought as to who should attend the meeting;
they might include people who do not normally attend project meetings,
such as folks from human resources, contracts, and so forth. The leader
should be careful not to inadvertently exclude people who should be at the
meeting or who are normally part of such deliberations. Excluding key players
from meetings by not thinking may well damage the relationship with such
people. No one likes to be excluded from important project considerations
and problem-solving sessions.

When the meeting is announced, both a start and end time should be
established. Team members are busy people who have other commitments
and need to know when they can fit all these obligations into their time-
pressured days. The team leader should be thoughtful about this item and not
set up a pattern whereby all meetings tend to overrun by significant amounts.
If you need four hours, take them, and let everyone know that the meeting
will be a long one. But it should be over at the end of four hours, or earlier.
Demonstrating time discipline and respect for the time of others is part of the
job of the team leader.

Prior to and as preparation for the meeting, the leader should make notes
on expectations for the meeting. This includes such items as discussion
of the main points of a problem (schedule, cost, performance, etc.), ap-
proaches to solving the problem (e.g., alternatives), what information has to
be brought to and out in the meeting (e.g., cost reports and master schedule),
and anything else that appears to be relevant. These notes are not part of
the agenda but are private scribblings that the leader can refer to during the
meeting.

The team leader should make sure to elicit ideas from all participants. This
helps not only to build the strength of the team, but also assures the broadest
range of inputs from the participants. Even the quietest member of the team
may have the right solution for the problem at hand. All inputs should be
respected and listened to very carefully. Special attention should be paid to
bringing new alternatives to the table in an attempt to define all the available
options for team consideration and eventual decision and action.

The meeting should not be concluded without a clear recapitulation of all
action items that flowed from the meeting. This includes actions decided on
early in the meeting that may have been forgotten or overlooked. Everyone
should take notes on the action items for which they are responsible. This can
also be recorded on a blackboard or a whiteboard that provides immediate
hard copy.

6.7 PRESENTATIONS 173

Minutes should be taken of the meeting, but these should be brief and also
recap, as a minimum, all action items. Action items should carry information
not only on what is to be done, but also by whom and when. This type of
permanent but short record of meetings adds discipline to the process and
also serves as a way of resolving potential conflicts about what was done and
what conclusions were reached. This should be viewed as a way of facilitating
information exchange rather than “papering the file.” The leader should also
consider sending selected minutes to his or her boss for particularly important
situations and subjects.

Finally, and before the meeting adjourns, the time for follow-up meetings,
if necessary, should be determined. This allows all members to check their
calendars immediately, and the best times for the next meetings can be chosen
in real time.

Running effective and efficient meetings is an integral and critical part of
managing a project. They should not be approached without a consciousness
of their importance and what one expects to accomplish. They serve many
purposes, not the least of which is to establish a productive team dynamic.
As one might expect, therefore, they have been the subject of considerable
attention in the literature over the years. As an example, a book on making
meetings work [6.7] suggests an approach called the New Interaction Method.
This method, simply put, focuses on roles and responsibilities of four key
players at any meeting, namely:

* The manager/chairperson
* The facilitator

» The recorder

* The group member

Basically, the book supports the notion that the preceding roles will create a
dynamic that keeps the meeting on course and that they are crucial functions in
any meeting. In addition, a variety of helpful hints are provided, including such
subjects as finding win/win solutions, establishing a good agenda, working
the issue of room size, and several others. The reader with a special interest
in meetings is urged to consider the referenced book as well as others on this
important topic.

6.7 PRESENTATIONS

The matter of preparing and giving presentations arises in at least two team
contexts:

* Presentations made by team members within the team

* Presentations made by team members to persons (e.g., customers) outside
the team

174 TEAM BUILDING AND TEAM INTERACTIONS

In the latter case, the team often meets to develop the presentation and also
to “dry run” its presentation to others.

A set of eight essentials in terms of preparing and giving presentations is
provided in Exhibit 6.4. The assumption here is that most presentations are
made by utilizing slides or viewgraphs of some type.

Exhibit 6.4: Eight Ground Rules for Presentations

1. Know your audience.
2. Tell them:

* What they’re going to see

* What they’re seeing

* What they saw (summary)
3. Maintain eye contact with key people in the audience.
Do not read each viewgraph/slide; paraphrase the main ideas.
5. Avoid slides that:

¢ Are too cluttered

 Talk down to the audience

¢ Are too ostentatious

 Cannot be read by everyone in the room

>

6. Leave enough time for each slide’s message to sink in.
Be careful about interruptions.
8. Generally, hand out hard copy at the end, not at the beginning.

~

A critical part of constructing any presentation is to know your audience
in advance. If you are able to do this, you will also be on track in terms
of targeting key areas of interest. Try not to make assumptions about the
audience when a phone call will give you some data to work with in this
regard. Many presentations go astray from the beginning when it is realized
that the primary focus is off center and the audience forces a change up front
or is clearly impatient with material they already know.

A well-known and accepted ground rule is that the audience needs constant
reminding of where you are, where you’re going, and where you’ve been. This
may sound like overkill, but keep in mind that the audience is often completely
cold on the material being presented. These reminders give a sense of unity
to the presentation and help the listener to integrate what is being said.
The summary is especially important in pulling together the main thoughts,
themes, and points that have been made.

Eye contact with particular people in the audience is extremely important.
As a minimum, one should target the key players in the audience and make
sure that eye contact is established. In general, the presenter should scan the
audience and talk to everyone in it. One should try to avoid talking in the
direction of the slides, looking at the ceiling, presenting to members of your

6.7 PRESENTATIONS 175

own team if they are intermixed with a customer group and talking to only
one person in the audience. The basic idea is to get your message across to
every single person that has not previously heard the presentation.

A definite “no-no” is to read every word on every slide. Leave time for
the audience to read the slides for themselves. Point to the key phrases (with
a pointer, if possible) to direct the eye of the observer. Then paraphrase an
important point or focus on only a few key words on which you can elaborate.
Do not go through the slides at lightning speed because you will frustrate
and lose your audience. Each slide has several messages and these need to be
conveyed in an easy and flowing manner.

In terms of the slides themselves, there are lots of options. You can have
a lot of information on each, but then need to go through the slides rather
slowly. Slides should be readable, in general, unless you are trying to create
a general impression without all the details in the slides. Avoid too much
clutter that cannot be understood. Each slide should be “designed” so that the
messages jump out rather than having to be dug out. Slides should not be too
showy because that is likely to turn off at least some members of the audience.
They also should be of a size that they can be read by everyone in the room.
This means that you need to anticipate the size of the room and the number of
people in the audience. Under no circumstances should you talk down to the
audience as if they are dummies if they do not instantly understand everything
you are conveying.

The presenter has to leave enough time for the audience to read the slide as
it is directed to do so. More time is better than not enough. Even short periods
of silence are acceptable because people often cannot process what they are
reading and what they are hearing at the same time. Depending on the slide
design and the method of presentation, a target might be two to three minutes
per slide, assuming no interruptions. At three minutes per slide, a ten-slide
presentation takes about half an hour. The idea is to have the messages sink
in, not to meet a deadline. Dry runs with members of your team will help
you to fine-tune a presentation. The PM should not have a novice presenter
give an important briefing to a customer, for example, without a serious dry
run.

Allowing interruptions is a matter that is somewhat controversial. In gen-
eral, it is best to establish better audience contact by allowing interruptions
in the form of questions from the audience. However, these should not be
allowed to turn the presentation into a free-for-all. Losing control over the
briefing is extremely undesirable and will likely damage the credibility of the
presenter. By extension, this will damage the project team. A good presenter
normally allows a modest number of questions but is able to draw people
back to the presentation without losing control. This comes with practice and
assistance from those who have this type of know-how. The PM and CSE
must have mastered these types of skills. It is definitely all right to terminate
further questioning and bring the audience back to the main thrust of the
presentation.

176 TEAM BUILDING AND TEAM INTERACTIONS

The matter of handing out hard copy also has advocates on both sides.
This author favors delivery of hard copy of your slides at the end of the
presentation. People might be given three-by-five index cards to make notes
on questions they might have during the presentation. The problem with the
audience having hard copy in advance is that some people will leave you and
go on the slide journey themselves. They can be ahead of you or backtrack to
earlier slides. In either case, they’re not likely to be listening to you. Under
group pressure from the audience, however, it is difficult not to hand out the
slide package when requested to do so.

Giving presentations represents a special skill that has to be mastered by
the PM, CSE, and other key members of the project team. It is worth the time
to take this activity very seriously, especially if the presentation is made to
a customer or a large audience. The PM and CSE have the responsibility to
maximize the positive impact of all presentations. Usually, this involves dry
runs and supportive coaching. Paying a lot of attention to these matters will
pay worthwhile dividends.

6.8 PROPOSALS

Proposals to prospective customers can take many forms, depending on the
type of enterprise making the proposal. At one extreme is the oral presentation
during which various points are made regarding the services and products to
be provided. For this mode of proposal delivery, essentially all the suggestions
made previously apply directly. At the other extreme is the full-blown written
proposal that documents all the features of the products and services as well
as the organization that is making the proposal. Such a proposal is often in
response to a formal request for proposal (REP) provided by the customer.
RFPs usually specify what the customer needs and also the evaluation criteria
to be used in order to make judgments about the proposal. Proposals are
considered by many to be a vital part of the lifeblood of an organization. They
are also viewed at times as a fine art that can be mastered by some but not by
others.

Many people believe that new business is won or lost by the amount of
effort that goes into preproposal activities. Put another way, the formal written
proposal is viewed as a necessary but insufficient condition for success with
respect to winning a new contract. These views are widely supported. For this
reason, we examine the matter of proposals in two parts. The first deals with
suggestions as to what to do during the preproposal stage, and the second
addresses the formal written proposal itself.

6.8.1 The Preproposal Phase

As indicated before, many proposals are won or lost as a function of the
preproposal activity or lack thereof. For large contracts, this activity is literally

6.8 PROPOSALS 177

a well-developed campaign with its own rather sophisticated plan. Because
there is so much at stake, the preproposal work is dealt with as if it were a
separate project that culminated in the customer’s formal release of an RFP.

A summary of key points relative to the preproposal phase is provided in
Exhibit 6.5. This is a minimal set of activities that should be undertaken in
order to be successful with a proposal.

Exhibit 6.5: Recommended Preproposal Activities

1. Visit with the prospective customer to understand his or her needs and
requirements.

Write think pieces and “white papers.”

Present your company’s capabilities.
Investigate alliances and teaming possibilities.
Identify and activate the proposal writing team.
Obtain internal corporate support.

A

There is no substitute for truly understanding what it is that the customer
really wants. The best way to do this is to visit with the customer and talk
through his or her various needs and desires. Find out what the customer is
looking for—what the key issues are from the perspective of the customer.
This notion applies as well when there are several customers, which is usually
the case. In other words, the customer often consists of several people, all of
whom are looking for one or more pieces of the puzzle known as customer
requirements. If you have not spent the time necessary to visit across the
table with your potential customer, you may have a “no-bid” staring you in
the face.

In response to what you find out in your face-to-face meetings with your
customer, seriously consider writing one or more think pieces or white papers.
These are short (five- to ten-page) descriptions of your approach to the prob-
lem, as expressed by the customer. They are very specific as to what the key
issues are, how you would develop a solution, and what the final product or
service might look like. You are also requesting feedback from the customer
as to whether or not you are on the right track. Therefore, after the customer
has read these inputs, follow-up meetings are suggested in order to fine-tune
your approach. You are also demonstrating your interest and responsiveness
and, to the extent possible, preselling your approach to the customer. This
spade work will not be lost on the customer when it comes time to evaluate
your formal proposal. You will also be in a better position than your com-
petitors because you will have had the benefit of this interaction with the
customer.

As part of your meetings with the customer, you should also present
the broad as well as specific capabilities of your company. This can take
the form of a stand-up slide presentation in front of several people in your

178 TEAM BUILDING AND TEAM INTERACTIONS

customer’s organization. Such presentations involve corporate strengths such
as personnel, facilities (e.g., special laboratories or test chambers), history
of work with other clients on similar requirements, software already written,
and so forth. In addition to “telling” your customer what you have to offer,
try to “demonstrate” special capabilities. These can be expressed by software
packages that you have developed that apply directly to the problem at hand.
Instead of talking about the software, bring in a computer and illustrate the
use of the software, in real time, on the screen. “Showing” is always better
than simply “telling.”

As you gain an understanding of the customer needs and requirements,
you may find that your company does not possess all the required skills, ca-
pabilities, and experience with the knowledge domain of the customer. Both
strategic and tactical alliances and teaming should be considered to make your
team a winner. Many large-scale contracts cannot be won without teaming,
thus requiring filling in all the gaps in capability and understanding by mem-
bers of the team. You may be the prime contractor in such an arrangement
or you may ultimately decide that a subcontractor position is the better part
of valor. In the latter case, you must then try to determine who has the best
chance of winning, and then do all of the preceding in attempting to sell your
company to the prime.

Early identification and activation of at least part of the proposal team is
mandatory. A proposal manager should be designated, along with at least a
few key players of the proposal team. They need to be part of the preproposal
campaign and play a role in preparing all written materials. In this manner,
the learning curve is minimized when it comes time to actually respond to an
RFP. All players are up-to-speed and understand what has transpired prior to
the formal proposal preparation. Failure to make this investment will often
lead to a disconnect between the preproposal and proposal phases, resulting
in a poor written proposal.

Last, but by no means least, support has to be obtained from various people
and departments in your organization. This includes marketing, contracts, hu-
man resources, matrixed managers, and your own line management. Although
you may not have made a firm “bid decision,” you have to give an early alert
to all these other players so that they understand the program you are seeking
and its unique requirements. For example, you may have to find certain key
personnel to handle special technical areas. The human resources department
and various matrixed managers may be able to help you in this regard. The
contracts department needs an early alert so that it can review the terms and
conditions of work done previously with this customer as well as get ready
for the preparation of extensive cost estimates. Finally, you need support from
your boss and other levels of line management in terms of concurrence with
the bid as well as putting forth the resources necessary to prepare a winning
proposal. This includes funding, but it also means making the right people
available at the right time to contribute to a winning proposal.

6.8 PROPOSALS 179

6.8.2 The Proposal Phase

The proposal phase is entered when the RFP is formally issued and your
company has made a decision to bid the contract in response to that RFP. How
to write a winning proposal is a subject that itself represents a niche market
for companies, so that what is recommended here is but an overview of key
points in this regard. However, ten such points that are distilled from many
years of experience are listed in Exhibit 6.6.

Exhibit 6.6: Ten Key Points in Writing a Winning Proposal

1. Develop a winning strategy.

Document winning themes.

Outline the proposal in detail, to the one-half page level.
Develop a detailed proposal schedule.

Discuss and confirm the preceding with your proposal team as well as
management.

Interact efficiently with all support departments.
Use the best writers.
Confirm that all risk areas have been minimized.

Review and make changes in the “Red Team” context. (“Red Teams”
are explained later in this section.)

10. Assure proposal readability and appearance.

wok v

A e

Developing a winning strategy is more easily said than done. The issue
here is complex, dealing with each and every key area in the RFP and how
your approach can be distinguished from the competition. This is known
as finding “discriminators” that place your proposal ahead of those of your
competitors. Discriminators have to be found with respect to your technical
proposal, management proposal, and cost proposal, with emphasis on the first
and last. If you are operating in the domain of “best-value” contracting, you
do not necessarily need to be the lowest bidder, but the overall value of your
proposal must be as high as possible. Discriminators should be determined
through a team approach, eliciting ideas from all members of the proposal
team. Clear discriminators often can be found in cases for which your company
has actually performed work sufficiently similar, so that the effort required
is substantially less than that of your competitors. This can be embodied
in software, for example, that is reusable and transferrable from a previous
project to the one at hand. The bottom line is that if you cannot be positively
distinguished from your competitors, you are not likely to win the contract in
question.

Given that the team is able to find the necessary discriminators, they
then should be converted into written themes that basically and convincingly

180 TEAM BUILDING AND TEAM INTERACTIONS

answer the question: Why we should win this contract? These need to be
mapped against the evaluation criteria of the RFP so that scoring is maximized.
In other words, for each and every element of the evaluation criteria, it is
desirable to document a theme that will score high. Scoring high involves
bringing forth your discriminators in these areas and convincing yourself
(and ultimately, your customer) that you have the best approach possible.

Next, the proposal has to be outlined, in detail, following precisely the
ground rules provided in the RFP. Often, the RFP defines the proposal pieces
(i.e., technical, management, and cost proposals) and their sections. These
must be meticulously followed. At times, a dilemma is presented whereby
the evaluation criteria are not easily mapped against the prescribed proposal
outlines. In general, both should be accommodated. It must be evident to the
evaluator as to where to find the material that is responsive to the evaluation
criteria. If the evaluator has to struggle to find such material, a low score is
inevitable. The mapping of the mandatory outline and the evaluation factors
takes imagination and can be the most important determinant of a winning or
losing proposal. After this is done, the outline should be divided into sections
and subsections, with a page count for the smallest subsection. Page counts
should be designated to the one-half page. Then the entire proposal should be
reviewed for balance of coverage in relation to the evaluation criteria.

The proposal schedule should define all milestones and should be viewed
as inviolate. Times have to be set aside for detailed reviews and rewrites.
Many firms have three designated periods for rewrites, operating under the
proposition that it is basically impossible to write a complex proposal without
extensive rewriting. Times, of course, have to be allocated to the physical
production of the proposal and delivery to the customer. In most government
contracting, being even one minute late in terms of customer delivery will
mean that your proposal will not be accepted. (This author has had this type
of unpleasant experience twice in a period of thirty years.)

Given all of this, the next step is to brief the proposal team as well as man-
agement on the basic strategy for winning. All key players have to understand
that strategy and concur with it. Alternative suggestions are acceptable and
indeed accepted if they represent improvements. This is a basic sign-off on the
approach and a commitment to implementing it in the best possible manner.
All questions should be answered so that there is no misunderstanding of the
approach.

Effective and efficient interactions with all supporting departments and
people are mandatory to have a winning proposal. Contracts must handle
the representations and certifications (reps and certs) smoothly and in conso-
nance with the technical and management proposals. They must also provide
cost spreadsheets that can be reviewed and concurred with by the proposal
manager. Costing is often iterated numerous times, so that automating this
process is essential. Matrixed managers must confirm the availability of key
personnel. Human resource people must stoke up the machinery for hiring
or establishing a hiring plan. The production department (including text and

6.8 PROPOSALS 181

graphics) should be aware of and be able to handle the peak load represented
by a major proposal. The proposal manager must assure that all these pieces
fall into place smoothly and with a lot of lead time.

The best writers should be assigned to the proposal. Many technically
talented people are not able to write coherent proposals. Many imaginative
people decide to apply their imagination by not following the rules established
for the proposal. At the same time, there are usually some people who are very
talented from a technical point of view and who are also wonderful writers.
These folks should be assigned to writing the proposal. The basic rule is to
use your best technical and writing talents to write all proposals, wherever
possible. In addition, use many charts, figures, exhibits, and diagrams to
explain your approach to your customer.

Most projects involve some type of risk (schedule, cost, performance) and
all potential risks have to be examined in detail as part of the proposal process.
Some companies, of course, decide to “no-bid” when unacceptable risk levels
are present. However, risk still needs to be double-checked and mitigated in the
proposal itself. How you propose to minimize risk should be addressed in the
proposal, so that you and the customer both know what the basic plan is. Two
examples are worth noting. One involves the case in which the customer can
review and reject documentation and reports indefinitely. Acceptance criteria
have to be as explicit as possible so that this risk is mitigated. Another risk
involves the warranty of software from “latent and patent” defects. Boundaries
and criteria need to be established so that software improvements do not go
on forever. In general, risk mitigation involves checking each and every
documented requirement and setting forth a “buy-off” plan that is acceptable
to your company as well as the customer.

Most large proposal writing efforts employ “Red Teams,” which are groups
of senior people who review and evaluate proposals. These teams engage in
a formal review, simulating the process of review that is expected by the
customer. Such reviews not only score the proposal, section by section, they
suggest specific ways and means of making necessary improvements. These
reviews are often brutal in their candor, and the proposal manager must know
how to assure that they are constructively expressed. Invariably, Red Team
inputs lead to extensive rewrites that must be built into the proposal schedule.
Dispensing with Red Team reviews should be done with caution and is likely
to be a serious mistake for large proposals.

Finally, the schedule should allow for a more than cursory review of the
final product. This review usually involves overall appearance and readability.
The objective is zero defects, meaning that there should be no typos or pieces
in the wrong place. The proposal should not only be good, it should /ook
good. However, it should not be ostentatious so that boundaries of good taste
are crossed. Some customers react very negatively to showy and expensive
proposals. Here again, know your customer.

With respect to the last point made and how the proposal looks, this author
experienced what might be called a four-sigma case in proposal preparation. A

182 TEAM BUILDING AND TEAM INTERACTIONS

proposal was sent out to a customer years ago but the xeroxing of the proposal
was defective and resulted in the lack of fixing of the toner on various pages.
A sweep of the hand on a page resulted in the immediate disappearance of
all text—a type of invisible ink if you will. Fortunately, this was discovered
very early, and the customer allowed us to substitute good copies in place of
the defective ones. This is a once-in-a-lifetime experience, but it underscores
the possible intrusion of Murphy’s Law. Take the time necessary for a final
review that assures your proposal looks the way you want it to look in terms
of overall presentation to your customer. A poor-looking proposal with lots
of typos, in spite of the excellence of its technical content, is not likely to be
a winner.

6.9 A NOTE ON MOTIVATION AND INCENTIVES

Many Project Managers are eventually faced with the problem of keeping the
members of their team motivated. They struggle with finding ways to throw
money at the team as an incentive to sustain motivation. Basically, money is
important but it is not the essence of motivation, at least from the experience
of this author. Equitable treatment in terms of monetary rewards is necessary,
but it is far from a sufficient condition for motivating members of your team.

There is a large amount of information in the literature regarding motivation
and how it may be achieved. As an example, one text on the subject of
management [6.8] examines, in a rather well-designed manner, such research
results and theories as:

* Theory X and Theory Y

e Theory Z

* Argyris’ maturity theory

* Self-fulfilling prophecy

* Various needs theories (including Maslow’s)
* Equity theory

» Reinforcement theory

* Expectancy theory

* Various reward systems

The reader with a special interest in these matters can review the referenced
text [6.8] and others on the overall subjects of motivation and incentives.

Experience in the worlds of project management and systems engineering
has led to the following key elements in motivating members of a team:

1. Having interesting and challenging work
2. Treating people fairly and equitably
3. Establishing team affiliation with a highly functional team

6.9 ANOTE ON MOTIVATION AND INCENTIVES 183

4. Showing appreciation and recognition
5. Celebrating team successes

Experience shows that interesting and challenging work is the most critical
factor in keeping team members excited and enthusiastic about what they
are doing, day after day. The PM and CSE, therefore, must understand all
members of the team and pay attention to how to maintain a flow of good
work to them. This requires a deep sense of what is challenging to each
person, which in turn means sufficient contact to obtain feedback about work
assignments. Indeed, if challenging work is not a strong motivator, you may
have to think about replacing such a person or moving him or her to an
environment that is not as vital as a systems engineering project.

Beyond interesting and challenging work assignments, people on the team
have to feel that they are being treated fairly. This means that the PM and
CSE must be sensitive to these needs and be careful not to show favoritism
that is unrelated to performance. All team members have equal standing in
terms of being treated with respect and listening to what they may have
to contribute, even though some will naturally contribute more than others.
Monetary rewards must be perceived to be equitable, even though they may
not be extremely high. Most people will respond well to a situation that is fair
and equitable, and will be upset when this is not the case.

Given that your company provides adequate incentives in the form of salary,
benefits, and bonuses, the addition of the previously cited actions normally
keeps members of the team highly motivated. If your company policy is to
keep the monetary incentives below average, you will very likely lose your
people, especially the good ones. The point is that monetary rewards are not as
important as some would think, assuming however that they are not substan-
dard. Throwing money at people as a substitute for the preceding actions is
basically the wrong approach. The right approach is to assure adequate but not
outrageous levels of salary, benefits, and bonuses, with special attention to the
five items listed before. Productive and exciting connections between people
are ultimately more satisfying than a few more dollars in the monthly check.

A third suggestion is to assure that everyone is an accepted member of the
team and that the team is highly functional. This type of team affiliation can
be like having a second family, but in a work situation. The PM and CSE must
keep a watchful eye to assure that some team members do not gang up on or
ostracize other team members, and intercede where necessary. Having “we’s
and they’s” within the team itself should be avoided whenever it damages the
team’s performance. A healthy team with full participation by all will go a
long way toward creating an exciting and productive work environment.

Team leaders must always show appreciation and recognition for a job
well done. As suggested earlier, this can take many forms, from a pat on the
back to a cash bonus. People who are doing some special work on behalf
of the team need to have positive feedback and the knowledge that the boss
appreciates what they are doing. The PM and CSE must respond to this need

184 TEAM BUILDING AND TEAM INTERACTIONS

on a continual basis, not just at raise time. Conversely, withholding positive
feedback is likely to be a demotivator for most people.

Finally, and somewhat related to the preceding, the team should always
celebrate its successes. When something good happens, it’s time to have
a celebration, which can take the modest form of a small party or after-
hours pizza and beer. When something extraordinary happens, like a technical
breakthrough or winning an important new contract, these celebrations should
be augmented by a bonus in addition to the monthly paycheck. The bonus
should be awarded as close in time to the exciting event as possible. Public
recognition is almost always a preferred way to celebrate success and show
appreciation for achievement beyond the call of duty. Very modest but public
rewards, such as a certificate for a dinner for two at a good restaurant, go a long
way to demonstrating that the boss recognizes both effort and achievement.

The bottom line is that a relatively small number of nonmonetary incentives
and actions can be extremely effective in supporting team motivation. On the
other hand, failure to pay attention to these nonmonetary actions will be a
demotivator that cannot be made up by cash awards and raises. People who
are not appreciated ultimately will seek an environment where they are able
to get the psychic rewards they feel they deserve. Finally, and inevitably, the
best performers will normally be the first ones to leave.

6.10 ANOTHER TEAM-RELATED PERSPECTIVE

Some further insights into teams and team building may be gained by exam-
ining related areas in the U. S. Department of Defense (DoD). When teams
are discussed, it is virtually always in the context of Integrated Product Teams
(IPTs), which are defined as [6.9]:

A multidisciplinary group of people who are collectively responsible for deliv-
ering a defined product or process. The IPT is composed of people who plan,
execute and implement life-cycle decisions for the system being acquired. It
includes empowered representatives (stakeholders) from all of the functional
areas involved with the product—all who have a stake in the success of the pro-
gram, such as design, manufacturing, test and evaluation (T&E), and logistics
personnel, and, especially, the customer.

Further, the Secretary of Defense “directed that the Department perform
as many acquisition functions as possible, including oversight and review,
using IPTs.” Broad principles under which the IPTs are supposed to operate
include:

1. Assurance of open discussions with no information withheld
2. Team members that are qualified and empowered

6.10 ANOTHER TEAM-RELATED PERSPECTIVE 185

3. Participation that is proactive, consistent, and success-oriented
4. Continuous “up-the-line” communications

5. Reasoned disagreement when there is a difference of views

6. Important issues raised and resolved as early as possible

These are basically self-explanatory and strongly suggest a key item in the
operation of these teams, namely, that much power is vested in the team
members so that they can accomplish their goals. They also must be strong
individuals who have learned very well how to be part of a team.

Aspects that are considered important are revealed by a brief glance at the
key topics that make up the Teaming Guidebook [6.10]. These topics are:

e Team charters

e Team member selection
* Kick-off meeting

* Facilitator

e Communication

» Team decision making
e Conflict resolution

» Team evaluations and ratings
e Team awards

* Team training

¢ Team management
 Leadership

» Team problems

Important questions to consider when establishing a team include [6.10]:

Does the team purpose set the stage for subsequent actions by the team?
Is there a cogent and viable reason for the existence of the team?

How long is the team expected to be in existence?

Who are the customers of the team?

What are the team’s products expected to be?

To whom does the team report?

Are all of the above items dealt with appropriately in the team’s charter?

A

Within the DoD, IPTs and Integrated Process and Product Development
(IPPD) are more-or-less inseparable. IPTs facilitate IPPD; IPPD cannot be
completely executed without the contributions of IPTs. Both are considered
to be long poles in the tent that houses the overall system acquisition process.

186 TEAM BUILDING AND TEAM INTERACTIONS

The relevant quotes are that IPPD “is a widely defined management technique
normally implemented by Integrated Product Teams (IPTs)” and also that
the “concepts of IPPD and IPTs shall be applied throughout the acquisition
process to the maximum extent practicable” [6.9].

Integrated Process and Product Development (IPPD) is defined as [6.9]:

A management technique that simultaneously integrates all essential acquisi-
tion activities through the use of multidisciplinary teams to optimize the design,
manufacturing and supportability processes. The IPPD facilitates meeting cost
and performance objectives from product concept through production, includ-
ing field support.

In explaining the functions of IPPD, business processes are also included
along with design, manufacturing, and support. Further, modeling and simu-
lation, as well as best commercial practices, are employed in order to arrive
at the best processes and products. Additional principles of IPPD may be
gleaned from the following list:

*» Customer focus

» Concurrent development of products and processes

* Early and continuous life-cycle planning

* Proactive identification and management of risk

* Maximum flexibility for optimization and use of contractor approaches.

Part of the way that customer focus is maintained is by including the cus-
tomer in the IPT, or a subset thereof, and listening carefully to the continuous
feedback that the customer is providing. The focus on products and pro-
cesses transcends the process reengineering concept by also assuring that the
product is acceptable. Careful attention to planning for the entire life cycle
means that fewer critical downstream milestones and activities will be missed.
Risk management is critical to any and all serious engineering projects, and
will be one of the important elements of systems engineering. Finally, flex-
ibility is maintained by allowing for alternative contractor approaches, ones
that fit the problem at hand and give the contractor some leeway to em-
ploy its experience and creativity to arrive at a cost-effective solution for the
customer.

So we see in the DoD considerable attention to teams, especially IPTs,
and we also note the use of these IPTs to accomplish Integrated Process
and Product Development (IPPD). The highest levels within the DoD have
committed themselves to this approach, and they believe that in doing so
they will achieve a fundamental positive change in the way they are acquiring
goods and services.

6.11 GROUP PROCESSES 187
6.11 GROUP PROCESSES

Systems engineering is often embedded in a project, and both are discussed
in considerable detail in this book. Indeed, project management and systems
engineering management are the two top-level subjects in this text. Within
the former, there has been, and continues to be, enormous emphasis on the
building of teams. Phrases such as integrated product teams (IPTs), high-
performance teams (HPTs), project engineering teams (PETs), and others are
used extensively to examine one or the other aspect of a team. The literature
has been almost overwhelming on the matter of teams, including those that
do not work very well. The label is ultimately not what counts; what counts
is the behavior in terms of facilitating highly functional analysis and decision
making.

Another relevant topic related to teams is that of groups and the behaviors
of groups for a variety of purposes that may go beyond the classical project and
systems engineering environments and situations. In this section we explore
some of the work done in regard to how groups can operate and how these
operations can be improved. Very brief overviews of group situations are
cited, drawn from an earlier book by this author [6.11].

6.11.1 Delphi Method

The Delphi method is often employed when one is attempting to reach a
consensus from several experts, with controlled interactions between the
participants. This method basically has survived over more than fifty years of
adaptive practices.

6.11.2 GroupThink

GroupThink is a group decision-making process that often can lead to poor
decisions. Reason? People do not speak up when they have a dissenting
view. Specific steps need to be taken to encourage, and ultimately assure, full
participation from all group members.

6.11.3 Thinking Hats

The Thinking Hats method, devised by Edward de Bono [6.12], has each
group member put on a hat with a color that represents a different direction of
thinking. This author has tried this process and found that it was well worth
the attempt.

6.11.4 Advocacy versus Inquiry

In the advocacy versus inquiry group process, a specific inquiry approach
is used rather than the more common advocacy situation, in the belief that

188 TEAM BUILDING AND TEAM INTERACTIONS

advocacy has not been as productive as many would like. In advocacy, strong
and highly verbal participants sometimes try to dominate the process as well
as the ultimate decision.

6.11.5 SAST

The Strategic Assumption Surfacing and Testing (SAST) process forces as-
sumptions to be made explicit so that they can be debated and analyzed. A
final critical “synthesis” step sums up and articulates agreed-upon courses of
action.

6.11.6 Team Syntegrity

The Team Syntegrity process was formulated by Stafford Beer, a well-known
and influential cybernetician. A number of participants (e.g., fifty) are divided
into subgroups that address a set of topics (e.g., 12), all of which are discussed
and analyzed in detail. Teams present their results at a closing session.

6.11.7 Facilitation

The facilitation process, as implied, focuses on all aspects of facilitation,
including a “zen” philosophy, toolkits, and training. Part of the central theme
and goal is achieving true synergy.

6.11.8 Self-Directed Work Teams

Under the self-directed work team approach, teams are given the charter to
devise a new product or service with very close to no supervision. Various
successes with implementing this notion, along with the benefits, have been
documented [6.11].

6.11.9 Synectics

Synectics embodies well-defined processes whereby groups are able to
achieve high levels of creativity. Methods include the advantageous use of
metaphors, analogies, expert leadership, and freewheeling imagination.

6.11.10 Collaboration

Collaboration is a group process in which two or more people establish
a highly productive and interactive arrangement with respect to problem
solving. Members of such groups support each other by sharing and examining
ideas in a back-and-forth manner. Most of the time, they are able to achieve
together what neither could do on his or her own.

% %k %

QUESTIONS/EXERCISES 189

In this chapter we have explored some ways in which teams and groups have
behaved and have suggested possibilities for improvements. In the end, project
management and systems engineering management are mostly about people,
sometimes doing it right or failing to do so. Management is an art and a
science, and is more easily talked about than actually achieved in an often
imperfect and changing environment. Highly functional teams and groups are
literally a joy to behold as well as learn from.

QUESTIONS/EXERCISES

6.1

6.2

6.3

6.4

6.5

6.6

6.7

6.8

6.9

6.10

Evaluate your boss against the list of essentials in Exhibit 6.1. Use a
college scoring system (i.e., A=4,B=3,C=2,D=1,F =0).
Calculate a composite numeric score. Repeat this same exercise with
respect to yourself.

Identify and discuss three additional suggestions for building a project
team, beyond those listed in Exhibit 6.2.

Recall a “team buster” you have encountered. How did this person
behave? What was done, or might have been done, to deal with such a
person?

What conflict resolution style might be attributed to your boss? What
do you think your style is? What does this suggest with respect to your
relationship with your boss?

Cite and discuss three ways in that you have been frustrated by the
manner in which your boss runs meetings.

Identify three motivation/incentive approaches used in your organiza-
tion. Have they been effective? Why?

Find a definition of an Integrated Product Team (IPT) in the literature
and compare it with the definition provided in the text, as set forth by
the U.S. Department of Defense.

Find a definition of Integrated Process and Product Development
(IPPD) in the literature and compare it with the definition provided
in the text, as set forth by the U.S. Department of Defense.

You have probably attended many meetings over the years. Identify and
briefly discuss five areas of focus for the meetings that you have led or
might lead in the future.

Which three of the group processes cited in this chapter are easiest for
you to relate to? Why? If you were designing a group problem-solving
process, what three areas would you emphasize? Why?

190

TEAM BUILDING AND TEAM INTERACTIONS

REFERENCES

6.1
6.2

6.3

6.4

6.5

6.6

6.7
6.8

6.9

6.10

6.11

6.12

Peck, M. Scott (1993). A World Waiting to Be Born. New York: Bantam Books.
Meredith, T. R., and S. J. Mantel (1985). Project Management—A Managerial Approach.
New York: John Wiley.

Archibald, R. D. (1976). Managing High Technology Programs and Projects. New York:
John Wiley.

Kerzner, H. (2000). Project Management: A Systems Approach to Planning, Scheduling
and Controlling, 7th edition. New York: John Wiley.

Kezsbom, D. S., D. L. Schilling, and K. A. Edward (1989). Dynamic Project Management.
New York: John Wiley.

Thomas, K. W., and R. H. Kilmann (1974). Thomas-Kilmann Conflict Mode Instrument.
Tuxedo, NY: XICOM, Inc.

Doyle, M., and D. Straus (1982). How To Make Meetings Work. New York: Jove Books.
Mondy, R. W., and S. R. Premeaux (1980). Management—Concepts, Practices and Skills,
6th edition. Needham Heights, MA: Allyn and Bacon.

DoD Integrated Product and Process Development Handbook (1998). Washington, DC:
Office of the Under Secretary of Defense (Acquisition and Technology), August. See
also http://web2.deskbook.osd.mil

The Art of Teaming Guidebook (1999). Published by the U.S. Army Materiel Com-
mand, Integrated Product and Process Management Working Group, June. See also
http://web2.deskbook.osd.mil

Eisner, H. (2005). Managing Complex Systems—Thinking Outside the Box. Hoboken,
NJ: John Wiley & Sons.

de Bono, E. (1985). Six Thinking Hats. Boston, MA: Little, Brown.

PART Il

SYSTEMS ENGINEERING
AND MANAGEMENT

— 7

THE THIRTY ELEMENTS
OF SYSTEMS
ENGINEERING

7.1 OVERVIEW OF THE SYSTEMS APPROACH AND
ENGINEERING PROCESS

The first two chapters of this book provided an overview of some of the
systems engineering notions that are dealt with in more depth in this chapter as
well as the following four chapters. In particular, Figure 1.1 and the supporting
text provided an overview of the systems approach. To reiterate the key
features of this important perspective, the systems approach:

Establishes a systematic and repeatable process

Emphasizes interoperability and harmonious system operation
Provides a cost-effective solution to the customer’s problem
Assures the full consideration of alternatives

Utilizes iterations as a means of refinement and convergence
Leads to satisfaction of all user and customer requirements
Creates a robust system

NSk L=

The three main aspects of this approach, in the context of developing a real-
world system, involve:

1. Architecture design

2. Subsystem design
3. System construction

193

194 THE THIRTY ELEMENTS OF SYSTEMS ENGINEERING

Architecture design deals with the top-level considerations and the funda-
mental design choices that have to be made in constructing a system. After this
is completed, one then addresses the more detailed design of each subsystem.
After these two steps are complete, it is then possible to actually construct the
subsystems, composed of hardware, software, and human components.

In Figure 2.2, an overview of the systems engineering process and its
management was illustrated. This expanded the preceding three aspects of
the systems approach by adding two additional elements:

1. Other system and subsystem considerations
2. Project control

This gave more substance to the systems approach, and also introduced many
more detailed elements of systems engineering and its management. In this
chapter, we describe the fundamental elements of systems engineering and
its management in the form of thirty specific tasks to be accomplished by
the systems engineering team. Before addressing the thirty key elements, we
briefly examine two other approaches in order to place these elements in other
contexts.

7.2 TWO SYSTEMS ENGINEERING PERSPECTIVES

Over the years, there have been many descriptions of systems engineering,
its internal processes, and its management [7.1]. These have ranged from
the first book on systems engineering [7.2], to the first systems engineering
standard [7.3], to systems engineering management guides [7.4], to a variety
of more current texts on systems engineering [7.5, 7.6, 7.7, 7.8, 7.9, 7.10,
7.11]. In most cases, the systems engineering process has been described in
some type of flow or activity chart that has embodied the elements of systems
engineering, similar to the chart shown in Figure 2.2. Here we provide a brief
overview of two such representations, one drawn from Military Standard 499B
and the other from a series of processes defined by a government agency, the
National Aeronautics and Space Administration (NASA).

7.2.1 Mil-Std-499B Revisited

This draft standard, discussed in Chapter 2, is rather specific about what it is
that constitutes the systems engineering process. Referring to Figure 7.1, we
see the four main features of this process, as represented in the standard:

1. Requirements analysis
2. Functional analysis/allocation

Process Input

» Customer needs/objectives/
requirements
* » Missions
+ « Measures of effectiveness
« « Environments
+« Constraints

» Technology base

+ Outputs from prior phase

* Program decision
requirements

» Requirements applied through
specifications and standards

Requirements Analysis
+ Analyze missions & environments
+ Identify functional requirements
« Define/refine performance &
design constraint requirements

Requirements loop

System analysis
& control

(balance)

Functional Analysis/Allocation
« Decompose to lower-level functions
« Allocate performance & other limiting
requirements to all functional levels

« Define/refine/integrate functional architecture

« Define/refine functional interfaces (internal/external)

Design loop

+ Trade-off studies

- Effectiveness analyses
+ Risk management

+ Configuration management
+ Interface management

- Data management

+ Performance based
progress measurement

-+ SEMS

++ TPM

+ » Technical reviews

Synthesis

o - Define alternative system concepts,
Verification

« Transform architectures (functional to physical)

configuration items & system elements
« Define/refine physical interfaces (internal/external)
« Select preferred product & process solutions

Process Output
« Phase dependent
« « Decision support data
-« System architecture
« » Specifications & baselines

Figure 7.1. Military Standard 499B view of systems engineering process.

196 THE THIRTY ELEMENTS OF SYSTEMS ENGINEERING

3. Synthesis
4. System analysis and control

This process requires a variety of inputs, delineated in the figure as “process
input.” The outputs are also shown under the heading of “process output.”
The view of systems engineering and its management in this text, however, is
considerably broader. As indicated before, it goes beyond architectural design
of the system and into detailed subsystem design as well as the physical
construction, operation, and maintenance of the system. This broader view
can be expressed as a set of some thirty interrelated elements and is the central
focus of this chapter. In addition, this view also includes the management of
the systems engineering process that is normally the purview of the Chief
Systems Engineer (CSE).

7.2.2 The NASA Mission Design Process

NASA’s Engineering Management Council has produced an engineering
guide to conceptual design, mission analysis, and definition phases of a sys-
tem [7.12]. NASA tends to build systems by going through a series of formal
phases, from Prephase A to Phases C and D. The previously cited engineering
guide defines the first three phases as:

1. The conceptual design process: Prephase A
2. The mission analysis process: Phase A
3. The definition process: Phase B

These are well-known by the industry that supports these phases that define
the “front-end” portion of the system’s life cycle. Table 7.1 provides a sum-
mary of the mission design activities, reviews, and products for each phase;
Table 7.2 shows examples of the required study resources for the
phases [7.12].

Two points are especially significant with respect to NASA’s approach.
The first is that NASA has defined the flow of activities associated with each
phase. As examples, Figures 7.2 and 7.3 show these processes for Phase A
and Phase B, respectively. These are the systems engineering processes for
these early life-cycle phases. The second point is that NASA has implicitly
given significant attention to the notion of mission analysis, which has often
been overlooked as an integral part of, and indeed key element of, systems
engineering. The latter is viewed as an important contribution to a more
effective way of ultimately dealing with the significant subject of missions as
well as requirements analysis and engineering.

TABLE 7.1 Summary of Mission Design Activities, Reviews, and Products

Prephase A

Phase A

Phase B

Input to Each Phase

Activities

Mission Needs and Objectives

Prephase A Study
Preliminary Mission
Requirements Definition
Top-Level Trade Studies
ROM Costs and Schedule

Feasibility Assessment

Preliminary Mission Requirements

Document

Prephase A Study Report
Evaluation Criteria

System and Subsystem Trade
Studies

Analysis of Performance
Requirements

Identification of Advanced
Technology/Long Lead Items
Risk Analysis

End-to-End System Life-Cycle
Cost as a Trade Parameter

Cost and Schedule Development
Top-Down Selection of Study

Concepts
Operational Concepts

Phase A Study Report

Mission Requirements Document
Operations Concept Document
Project Initiation Agreement
Evaluation Criteria

Mission Requirements Request
(Preliminary)

Revalidation of Mission
Requirements and System
Operations Concept

System Decomposition,
Requirements Flow-Down, and
Verification

Risk Analysis

System and Subsystem Studies
and Trades

Development of the Work
Breakdown Structure and
Dictionary

Updating Cost, Schedule, and
Life-Cycle Cost

System and Subsystem Concept
Selection and Validation

(Continued)

TABLE 7.1

(Continued)

Prephase A

Phase A

Phase B

Reviews

Products

Peer Reviews
Mission Concept Review

Prephase A Study Report

Preliminary Mission
Requirements Document

Evaluation Criteria

Science Definition Team Report

ROM Cost Estimate

Peer Reviews
Mission Design Review

Phase A Study Report

Mission Requirements Document
(preliminary)

Operations Concept Document

Project Initiation Agreement

Phase B Study Plan

Technology Development Plan

Top-Level System and Mission
Architecture

Preliminary Cost and Manpower
Estimates

Peer Reviews

System Requirements Review
System Design Review

Nonadvocate Review

Nonadvocate Review Package

Phase C/D Request for Proposal
Package(s)

Baseline Systems Description

Technology Development/Risk
Mitigation

Design and Technical Documents

Management and Control Plans

Externally Required Documents
and Agreements

Mission Cost and Manpower
Estimates

Operations Plan

7.3 THE THIRTY ELEMENTS OF SYSTEMS ENGINEERING 199

TABLE 7.2 Examples of Required Study Resources

Duration Funding Staffing

Prephase A 2to4 months $0to < $100,000 Study Manager/Systems
Engineer
Project Scientist
Part-time help from others
Phase A 6 months to 1 to 2% of total Study Manager
1 year system cost Systems Engineer
Project Scientist
Resource Specialists
Discipline Engineers and

Specialists
Phase B 1 to 2 years 4 to 8% of total Project Manager
system cost Systems Engineer

Project Scientist

Resource Specialists

Discipline Engineers and
Specialists

7.3 THE THIRTY ELEMENTS OF SYSTEMS ENGINEERING
We come now to a variety of tasks that form the central core of systems

engineering and its management. In this book, these tasks are called the thirty
elements of systems engineering, and are listed in Exhibit 7.1.

Exhibit 7.1: The Thirty Elements of Systems Engineering

—

Needs/goals/objectives

Mission engineering

Requirements analysis/allocation
Functional analysis/decomposition
Architecture design/synthesis
Alternatives analysis/evaluation
Technical performance measurement (TPM)
Life-cycle costing (LCC)

Risk analysis

Concurrent engineering

. Specification development

. Hardware/software/human engineering

. Interface control

. Computer tool evaluation and utilization

WX hA WD

Pk —

Form study Initial version of the shaded items are obtained form the pre-Phase A study and its final report |
team and
develolp study -~ ——- —I Other options 6' |- ———————————————————— >
plan
1 : S -| Other options 7' |- ———————— > :
| | [
TrarEnel Identify and prioritize Develop Perform : :
. m?ssi - key design and strawman end- preliminary 1
oret T —>] —> technology drivers; —> to-end mission —> system —f—>7————— =0
and objectives requirements . /
Hefinition develop concept functional requirements 111
2 evaluation criteria 5 concept g flow-down 7 [
[
1 1 1 Lo
Constraints Iterate requirements and concepts ‘i’ ‘i’ ‘i’
and
i System cost/ . ")
assumptions ’ Detailed Decomposition Refine the
3 performance/risk/ Recomposition subs p Alternative
: ystem to the strawman
margins vs. < to the =1 trades and subsystem system |~ | reference
requirements system level f Y concepts
ovaluations Y evaluation level concept
12 11 8 g
T I T
s
|
Cost/risk/ e] : I
performance Parallel . Vo
margins/etc. evaluatons |~ """ T Parallel studies and trades ~ r——————————
acceptable? 19 e ——————] 9.4 f——————————— j

NOTE: Pre-Phase A and Phase A processes are similar except

13

Yes

Peer
review

14

Down-select
options to a
baseline
15

Refine selected system

design; subsystem

definition; costs and
schedule

16

Mission design review;
prepare final report

17

during Phase A, the analysis and trade studies are more
detailed and are carried to a lower hierarchical level.

Figure 7.2. Representative top-level flow for a mission analysis study—Phase A [7.12].

Initiate

Phase B
@ Initial version of the shaded items are obtained from the Phase A study and its final report
Select project
manager and
systems
engineer 4
f- Tt T T T T T T T T T T g
v |
S e —— -
Update | A I I
Phase B | : ¥ ¥
plan 2 ! I Alternative
) concepts
@ Reflge System covaluat D(ka)comlpose SLiEasgztsem and/or rﬁore
an) eevaluate aseline) detail, trad
Fortrgaiudy —> update requirements alternate —>| tothe —> evaluations, —=| © and
3 mission review concepts subsystem and risk parallel
concept 4 5 6 level 7 assessment g evaluations
Not Not 6,78
_____________ OKy__| __OoK____§
] OK |
o OKIl
Finalize
Iro'(::t Finalize Conduct Technical Recompose |
proj detailed peer and refine v
controland <— system = |<— cost ! baseline e ————
management baseline . review
analysis concept
plans 43 12 10
System
design PﬁRaRre To
review package Phase C/D
14 15

Figure 7.3. Representative top-level flow for a definition study—Phase B [7.12].

202 THE THIRTY ELEMENTS OF SYSTEMS ENGINEERING

15. Technical data management and documentation
16. Integrated logistics support (ILS)

17. Reliability, maintainability, availability (RMA)
18. Integration

19. Verification and validation

20. Test and evaluation

21. Quality assurance and management

22. Configuration management

23. Specialty engineering

24. Preplanned product improvement (P31)

25. Training

26. Production and deployment

27. Operations and maintenance (O&M)

28. Operations evaluation/reengineering

29. System disposal

30. Systems engineering management (planning, organizing, directing,
and monitoring)

These thirty elements span the overall systems engineering process over the
full life cycle of a system. It is an inclusive rather than exclusive interpretation
of systems engineering and its management. It is the “union” of the set of
tasks and activities that have previously been defined as necessary over a
system’s life cycle. It is not confined only to the systems architecting or
synthesis phase and extends to the reengineering of a system, or portions
thereof, after it has been in its operations and maintenance phase, possibly
for many years. Reengineering has emerged as a critical activity because
we cannot, as a general philosophy, afford to scrap many old systems and
engage in completely new starts. As we have “legacy” software, we also have
legacy systems. As we add functionality to older systems, we are not able to
completely throw away these older core systems.

With respect to these thirty elements, not only must the CSE master each
and every one of them, he or she must also understand the interrelationship
between these elements. This is an enormously challenging assignment that
requires both a broad and deep commitment to this discipline as well as its
supporting knowledge base. Although there are numerous persons involved
in some element of the process of systems engineering, a considerably fewer
number achieve the level of Chief Systems Engineer (CSE). Such a position
is often, but by no means always, a prerequisite to the position of Project
Manager (PM), especially for a large program or project.

We now briefly examine each of the thirty elements of systems engineering
and its management. The following four chapters provide additional depth for
the more important elements. In effect, the following discussion provides a

7.3 THE THIRTY ELEMENTS OF SYSTEMS ENGINEERING 203

broad overview of all core elements of systems engineering and its manage-
ment.

7.3.1 Needs, Goals, and Objectives

This element is the same as that cited as the first element of a project plan, as
described in Chapter 3. Therefore, all that should be done under this element
is to confirm that the statements of needs, goals, and objectives are correct.
Because these are provided by the system user or acquisition agent, the system
developer should go back to these sources for the purpose of assuring that
the needs, goals, and objectives are still current and appropriately stated.
Examples of such statements are given in Chapter 3.

7.3.2 Mission Engineering

Mission engineering has often been overlooked as a central element of systems
engineering. In general terms, it involves the detailed articulation and analysis
of the intended mission of the system that is being engineered. The main
purposes of mission engineering are

* To verify that the system has legitimate missions to be executed that are
not being carried out by other systems

* To provide a technical basis for the full definition of requirements for the
system

With respect to the first point, mission analysis confirms that there is a real
need for the system. It forces the very early consideration of the possibility
that, for example, minor upgrades of existing systems will not suffice. Many
system developments have ultimately failed because this important step was
not fully explored. With the complexity and expense associated with our
large-scale systems, we must be sure that a real need exists for the new
system.

However, mission engineering also serves another critical function by pro-
viding a technical framework for defining the requirements for the system.
Requirements, in general, flow from the need for the system and the mission
that it is designed to accomplish. Thus, the definition of the system require-
ments is closely related to the mission engineering element. In the systems
engineering world, poor requirements almost always lead to major sched-
ule, cost, and performance problems downstream. Flexibility is needed in the
handling of and possible updating of requirements as we go through other ele-
ments of the systems engineering process. The reason is simple—the systems
engineering process is itself a learning process and we find that certain re-
quirements have to be changed as we achieve a more complete understanding
of the system.

204 THE THIRTY ELEMENTS OF SYSTEMS ENGINEERING

7.3.3 Requirements Analysis and Allocation

Requirements analysis and allocation is a set of activities that review an
existing set of requirements, derive new requirements, and then allocate these
requirements to the functional elements of the system. In the latter sense,
the allocation process cannot occur without the next element in the systems
engineering process, namely, the full definition of functions and subfunctions.

Although this element of systems engineering is covered in detail in the
next chapter, we cite here some of the important aspects of requirements
analysis and allocation, which are:

* Checking requirements for
— Completeness
— Accuracy
— Compatibility
— Consistency
— Traceability
— Appropriateness
— Level (e.g., mandatory vs. optional)
* Developing a set of derived requirements
* Placing the requirements in an automated context

 Allocating requirements to the functionally decomposed representation
of the system

¢ Recommending changes in requirements where and when the preceding
aspects suggest that such changes are desirable or essential

Because requirements analysis and allocation is such an important aspect of
systems engineering and the ultimate success or failure of a system develop-
ment, we deal with it in considerably more detail in the next chapter.

7.3.4 Functional Analysis and Decomposition

At the top level, systems are normally described by the functions they are to
perform in distinction to specific subsystems and components. For example,
the functions of a command, control, and communications system may be
described by the following selected functions:

e Command

e Communications
e Computation

e Control

e Detection

* Guidance

7.3 THE THIRTY ELEMENTS OF SYSTEMS ENGINEERING 205

« Identification
¢ Surveillance
* Tracking

By maintaining a focus on function, rather than the manner in which the
function is to be executed in hardware, software, and human components,
we allow the systems engineer to consider a host of alternative ways of
implementing a given function. We explicitly separate the “what” is to be done
from the “how” it should be done. We consciously want to avoid leaping to a
premature conclusion regarding a specific way to implement a given function.
Selecting such specific ways is represented by the tasks of detailed design.

The basic steps under this element of systems engineering involve the
following:

* Definition of the top-level functions of the system

» Decomposition of the preceding into lower-level functions and subfunc-
tions

* Allocation of generic information and data flows among and between
functions and subfunctions

* From the requirements analysis and allocation element, assuring that all
requirements are allocated to the functions and subfunctions

The preceding steps are specifically related to the system architecting process
and also set the stage for subsystem design once the architecture is developed.
As such, they are considered further in Chapter 9.

7.3.5 Architecture Design and Synthesis

Developing a basic architecture is the centerpiece of the total systems en-
gineering process. It is fundamentally a synthesis procedure that normally
requires

* The formulation of alternative system architectures

» The analysis of the postulated architectures to verify that they satisfy
system requirements

Architecting is performed at the top level, dealing with functional descrip-
tions rather than detailed subsystem design features. Various methods are
available to facilitate architecting, and these are discussed later in Chapter 9,
with case examples in the Appendix.

A good example related to the issue of architecting has emerged rather
clearly in the computer information system world. Years ago, computer
systems largely involved a dominant mainframe computer and thus the in-
formation system had a highly centralized architecture. As minicomputers,

206 THE THIRTY ELEMENTS OF SYSTEMS ENGINEERING

workstations, and microcomputers came into use, architectures evolved into
more decentralized configurations. In today’s world, we see networks of client-
server configurations as a preferred architecture for many types of computer
information systems. In broad terms, matters of the degree of centralization
or decentralization represent architectural alternatives.

Architectures can also involve fundamental technology considerations and
choices. An example is the basic selection of a time-division multiplexed
system versus a frequency-division multiplexed system. These are very basic
choices that “drive” the remainder of the system design. Once a selection is
made, further architecting must be compatible with this basic approach.

The world of architecture and engineering (A&E) firms demonstrates,
through analogy, another way of understanding notions of architecting. In
designing an airport, for example, the architect portion of the firm does the
basic top-level design and architecture for the airport. Once this is complete,
the engineers take over (civil, structural, mechanical, electrical, etc.) to convert
the basic architecture into a physical system. However, modern concepts of
concurrent engineering would suggest that the engineering team should be
represented in the “front-end” architecting processes. Concurrent engineering
is viewed as one of the key thirty elements of systems engineering.

Finally, we note that this element of systems engineering, as herein defined,
is devoted to the formulation of alternative architectures, all of which are
deemed to satisfy, in differing degrees, the system requirements. This element
does not include the selection of a preferred architecture. Such a selection is
subsumed in the following element, alternatives analysis and evaluation.

7.3.6 Alternatives Analysis and Evaluation

This element accepts the results of the previously cited element as an input,
namely, the definition of alternative architectures for the overall system. The
essence of this element is to carry out a comprehensive analysis and evaluation
of the alternatives, resulting in a preferred system architecture. However, this
cannot be performed without several other elements, as shown in Figure 7.4
Key inputs are required from the following other elements:

* Technical performance measurement (TPM)
* Life-cycle costing (LCC)

* Risk analysis

» Concurrent engineering

» Systems engineering management

Secondary inputs are necessary as well from

* Integrated logistics support (ILS)
* Reliability, maintainability, availability (RMA)

7.3 THE THIRTY ELEMENTS OF SYSTEMS ENGINEERING 207

Evaluation Evaluation
criteria framework
Input: Alternati Output:
Architecture ernatives utput:
design analysis Preferred
and and system
:] luation architecture
synthesis eva
« TPM < ILS
- Life cycle costing * RMA
+ Risk analysis * Test and evaluation
« Concurrent — |+ QA&M
engineering + Specialty engineering
* Systems . P3|
engineering
management

Figure 7.4. Inputs to and output from alternatives analysis and evaluation.

Test and evaluation (T&E)

* Quality assurance and management (QA&M)
» Specialty engineering

* Preplanned product improvement (P31)

Also shown in Figure 7.4 are two additional aspects of this element—the
definition of evaluation criteria and an evaluation framework within which to
carry out the assessment of alternatives.

At the completion of this element, the systems engineering team has pro-
duced a preferred system architecture together with the analysis that supports
the selection. In short, it is not enough to simply select a preferred architec-
ture; it is also necessary to explain why and how that architecture was selected,
both to oneself as well as to the customer. Many system development efforts
have gone astray as the preferred architecture was arrived at through some
type of leap of faith without a clear demonstration of its superiority in relation
to other alternatives. This has been particularly true when the contractor has
chosen a proprietary or “closed” system architecture.

7.3.7 Technical Performance Measurement

Technical performance measurement (TPM) is a crucial element in the overall
process of systems engineering. It is the underlying basis for evaluating the
performance of the architecture alternatives. It also serves as a key ingredient

208 THE THIRTY ELEMENTS OF SYSTEMS ENGINEERING

in selecting more detailed design parameters in the form of hardware, software
and human components (element 12 in Exhibit 7.1).

Examples of technical performance measures (TPMs) that might be used
for different types of systems include the following:

e For a radar system:
— Range to target
— Probability of detection
— False alarm probability

* For a transportation system:
— Trip time
— Capacity (for passenger and cargo transfer)
— Quality of service

e For a communications system:
— Bit error rate (BER)
— Message error rate
— Quality of service
— Speed of service

— Capacity (number of channels for various classes of communication
such as data, voice, video, etc.)

These TPMs represent only a small number of possible measures that must
be considered. Some additional measures are represented by the parameters
upon which these TPMs are dependent. Such parameters, called technical
performance parameters (TPPs), can be illustrated by the following:

» Power required

* Size of target

 Frequency of operation

* Size of antenna

* Bandwidth

* Signal-to-noise ratio

* Size of vehicle

* Load (external demand) on the system

The last is especially important because system performance generally de-
grades as the load on a system increases. Understanding this relationship, in
quantitative terms, is a critical aspect of technical performance measurement.

In today’s world, technical performance measurement is usually sup-
ported by one or more computer-based models and simulations. Thus, this

7.3 THE THIRTY ELEMENTS OF SYSTEMS ENGINEERING 209

capability is directly related to element 14 of Exhibit 7.1, namely, computer
tool evaluation and utilization. The successful systems engineering team has
a variety of such tools in place so that system performance can be evaluated
as quickly and completely as possible.

7.3.8 Life-Cycle Costing

Clearly, a critical part of selecting among alternative architectures is the cost
of each architecture and the systems that they imply. We adopt the perspective
that costs must be considered on a life-cycle basis. Thus, the three main
categories of cost are:

1. Research, development, test, and evaluation (RDT&E)
2. Acquisition or procurement
3. Operations and maintenance (O&M)

The above three cost categories may be further broken down into subordinate
cost elements, as shown in Exhibit 7.2.

Exhibit 7.2: Breakdown of Major Cost Categories into Cost
Elements

1. Research, Development, Test, and Evaluation
1.1 Research and development
Preliminary studies
Design engineering
Hardware
Software
Other personnel costs
1.2 Test and evaluation
Test planning
Test hardware
Test software
Test operations
Test evaluation
Other personnel costs

2. Procurement

2.1 Installations
New construction
Modification and renovation
2.2 Equipment (hardware and software)
Primary mission
Mission support
Other specialized

210 THE THIRTY ELEMENTS OF SYSTEMS ENGINEERING

2.3 Stocks
Initial stock—primary mission
Initial stock—support mission
Spares—primary and support
2.4 Initial training
Training and support personnel
Training materials and equipment
Training facilities
2.5 Other procurement (e.g., transportation) costs
3. Operations and Maintenance (O&M)

3.1 Equipment replacement (hardware and software)
Primary mission
Mission support
Other specialized
3.2 Maintenance
Primary mission
Mission support
Other specialized
3.3 Training
Training and support personnel
Training materials and equipment
Training facilities
3.4 Salaries (operators)
System operators
Other operational support
3.5 Material
Expendables
Other support material
3.6 Other operations and maintenance (e.g., transportation)
3.7 Disposal of system
Dismantling of system
Disposal of parts

Using the above information, we may then construct the three dimensions
of a Life-Cycle Cost Model (LCCM). The first dimension is the list of all
the cost elements, as delineated in Exhibit 7.2. These may be visualized
as the rows of a spreadsheet. Since the model applies to a system’s life cycle,
the next dimension is time, measured in years from the beginning of work on
the system. This dimension is constructed as the columns of the spreadsheet.
With these two dimensions, we can readily appreciate how data intensive
the LCCM will be. For example, with about three dozen cost elements and
perhaps a twenty-year life for the system, we have a total of (36)(20) = 720
cells that make up the spreadsheet. Each one needs to be estimated with as
much fidelity as possible. If we then sum across any row, we are able to

7.3 THE THIRTY ELEMENTS OF SYSTEMS ENGINEERING 211

see the overall life-cycle cost of one of the elements, for example, the total
RDT&E costs. If we sum down one of the columns, we can easily calculate
the cost in any particular year. This is a necessary step in most budgeting
processes. Finally, we recognize that systems are ultimately broken down into
major subsystems. Thus, we may expand the two dimensions of the LCCM
into a third dimension, namely, the subsystems of the overall system. Various
“sheets” of the LCCM spreadsheet represent the subsystem costs, and then
these are added into a summary “sheet” that represents the final LCCM for
the system. To summarize, the three dimensions of an LCCM, constructed in
the manner herein described, become:

1. The cost elements of the system
2. The years of useful life for the system
3. The subsystems of the overall system

During the early days of design, the subsystems may be thought of as the
functions that are to be implemented in the system.

During architecture assessment, we usually only have a first-order estimate
of these costs. However, they generally suffice to discriminate between the
defined alternatives. As we move on to subsystem design, we develop costs
more precisely, leading to more complete and, we hope, accurate cost esti-
mates. Often, we also utilize various cost-estimating relationships (CERs) to
develop the necessary cost estimates. An example is the COnstructive COst
MOdel (COCOMO) [7.13], which is used in its various forms as a way of
estimating costs and time to completion for software projects.

Cost estimating relationships (CERs) provide for the systems engineering
team a way of estimating and calculating system costs in a generally top-
down fashion. Instead of a process by which all the subordinate costs are
estimated for, as an example, a radar system (bottom-up approach), we are
able to estimate the costs as a function of only a few key variables for the
system in question. This concept is further illustrated in Exhibit 7.3.

Exhibit 7.3: Illustrative Cost Estimating Relationships (CERs) [7.1]

The Cost of a. . .. Can Be Considered a Function of. . ..

Radar system Output power
Frequency of operation
Bandwidth or pulse width

Weight
Missile booster Weight

T of propellant
Satellite terminal Output power

Antenna size
Frequency of operation
Receiver sensitivity

212 THE THIRTY ELEMENTS OF SYSTEMS ENGINEERING

Aircraft engine Thrust
Bypass ratio
Software effort Delivered source instructions

Type of development effort
Experience of team

Radio equipment Number of channels
Frequency
Power

Dish antenna Size of antenna

Frequency of operation

The essential reason for using the above types of CERs, therefore, is that it
is the best we are able to do at an early stage of design (e.g., the conceptual or
architecting stages). If the estimating is being done for a new, clean-sheet-of-
paper system, and by the users, it is especially important to have CER data so
that budgets can be prepared for the system. Later on, it is useful to have these
estimates to compare what the user believes the system should cost to what
the system developer might believe it will cost. These concepts are traceable
to the Department of Defense in the McNamara days, when he set up a group
of “Whiz Kids” whose job, in part, was to be able to independently (from the
contractor community) estimate the costs of new systems.

In general, we seek a cost-effective architecture and system, as illustrated in
Figure 7.5. This figure shows three alternatives: a low-cost, low-effectiveness
system; a high-cost, high-effectiveness system, and a system in between in

Effectiveness High-cost

high-effectiveness
system \

o —
e

P

’
,/ "Knee-of-the curve"

// system
/

/

1

L/ Low-cost low-effectiveness system

Minimum effectiveness requirement

Cost

Figure 7.5. Cost-effectiveness notions.

7.3 THE THIRTY ELEMENTS OF SYSTEMS ENGINEERING 213

terms of cost and effectiveness. The latter, hopefully defined at the “knee-of-
the-curve,” may turn out to be our preferred system. However, the low-cost,
low-effectiveness system might be our preferred choice as long as it satisfies
all the system requirements. This first-order representation, however, must be
examined in greater detail in order to select a preferred system. This important
topic is covered in Chapter 9 and again in the Appendix.

7.3.9 Risk Analysis

With the many problems that we have experienced in developing large-scale
systems, we have included the subject of risk analysis as a formal element
of systems engineering. In broad terms, risk may be explored in four key
areas from the perspective of the CSE: (1) schedule risk, (2) cost risk, (3)
performance risk, and (4) societal risk.

Schedule risk is prevalent, of course, under tight deadlines that must be met
and that may have penalties associated with not meeting critical milestones. In
such a situation, the critical path and all near-critical paths must be examined
in detail to assure that schedule risk is minimized. Cost risk may be dominant
when new development efforts are required along with the introduction of
new technologies. Pushing the state of the art often results in considerable
cost risk and the CSE and his or her team must examine all cost uncertainty
areas extremely closely. Another factor is the type of contract under which the
system is being procured. The discussion in Chapter 4 provides some further
insight into this latter issue.

The most difficult area is performance risk, and it generally leads to both
schedule and cost problems. Performance risk can be minimized by assigning
your best systems engineering team and incorporating as many commercial-
off-the-shelf (COTS) and nondevelopmental item (NDI) components as pos-
sible.

Finally, there is the matter of societal risk. This is the risk to the public
that could result from the deployment of the system in question. Examples
might include nuclear power plants, chemical processing plants, systems that
might release toxic materials into our air and water, and the like. It is a clear
responsibility of the systems engineering team to acknowledge such risks
and build a system that minimizes potential hazards to the public. Issues
of public safety are now squarely a feature of building large-scale systems
and therefore fall upon the systems engineering team to consider in detail.
Other administrative risks, as cited in Chapter 3, remain generally within the
purview of the Project Manager.

In essentially all aspects of risk assessment, there are two key factors that
play a central role. These are:

1. The likelihood that a high-risk event or set of events will occur
2. The consequences, given the occurrence of the foregoing event(s)

214 THE THIRTY ELEMENTS OF SYSTEMS ENGINEERING

TABLE 7.3 Risk Table or Matrix
Low Probability Medium Probability High Probability

High Consequence High-Low High—Medium High—High
Medium Consequence ~ Medium—Low Medium—Medium Medium—High
Low Consequence Low-Low Low—Medium Low-High

The most serious risks, of course, are represented when both factors are high.
Therefore, a careful analysis has to ferret out such possible situations and then
try to reduce both factors. If the consequence factor cannot be significantly
changed (e.g., the catastrophic failure of a manned space mission), then
system modifications should be made that reduce the probability factor.

The above notions of high-risk likelihood and consequence can be incor-
porated into a two-way table or matrix that has been the basis for a variety
of risk analyses. These analyses partition the likelihood into high, medium,
and low, and do the same for the consequences. These are then explored by
reference to Table 7.3.

If we construct such a risk table, we can readily conclude that the situations
represented by the High-High cell are the ones to which we should pay
most attention in terms of what can be done to mitigate the risk. The next
two troublesome cells are, of course, shown as the High—-Medium and the
Medium-High cases. Finally, if the previous cases have been satisfactorily
dealt with, it may be possible to move to the Medium—Medium case. There is
normally considerable discretion with respect to the assignment of numerical
values to probabilities as well as the consequences. As an example, for the
former, one might consider the ranges listed below:

* High Probability: From 0.7 to 1.0 (as close to unity as measurable)
* Medium Probability: From 0.4 to 0.7
* Low Probability: From 0.01 to 0.4

Consequences are often converted into dollar figures, unless other loss mea-
sures are more appropriate. This, however, is an area that can be quite con-
troversial, especially when human lives are at stake with respect to negative
consequences.

The manner in which the overall subject of risk analysis is approached can
be quite varied. This may be illustrated by briefly looking at two agencies,
the Department of Defense (DoD) and the National Aeronautics and Space
Administration (NASA). The former, for example, defines risk management
as [7.14]:

Risk management is a program management responsibility and is the act or
practice of controlling the risk drivers that adversely affect the program. It

7.3 THE THIRTY ELEMENTS OF SYSTEMS ENGINEERING 215

includes the process of identifying, analyzing, and tracking risk drivers, as-
sessing the likelihood of their occurrence and their consequences, defining
risk-handling plans, and performing continuous assessments to determine how
risks change during the life of the program.

A sample format for a Risk Management Plan includes the following
sections:

Introduction

Program summary

Definitions

Risk management strategy and approach
Organization

Risk management process and procedures

SNk L~

Special attention is paid to technical risk management, since it is often the
case that technical risk “is a significant driver of all other program risks”
[7.14]. The three primary approaches to technical risk management involve a
detailed analysis of:

1. Critical processes

2. Deliverable products (usually identifiable from the work breakdown
structure), and

3. Integrated processes and products

A brief look at some of NASA’s documentation with respect to risk man-
agement reveals a serious attempt to define the life-cycle risk management
elements [7.15], namely:

ISO 9001 compliance

Industry best practices: design and engineering
Key characteristic and critical process management
Industry best practices: manufacturing
Test/verification/validation

Supply chain integration and management
Implementation assurance

Independent assessment

PN R WD

We note the elements of best practices in industry and a topic known as
verification and validation. This latter area was listed as one of the thirty
elements of systems engineering and is discussed in a later section of this
chapter.

216 THE THIRTY ELEMENTS OF SYSTEMS ENGINEERING

7.3.10 Concurrent Engineering

Concurrent engineering is defined as “a systematic approach to the integrated,
concurrent design of products and their related processes, including manufac-
turing and support. This approach is intended to cause the developers, from
the outset, to consider all elements of the product life cycle from concept
through disposal, including quality, cost, schedule, and user requirements”
[7.8, 7.16]. From this definition, concurrent engineering seems to be similar
to systems engineering. However, we view concurrent engineering as a subset
(element of) systems engineering for two basic reasons:

1. It lacks the formal definition and historical discipline of systems
engineering.

2. Its main thrust and significance flow from the notion of engineer-
ing concurrency, and therefore it is a contribution to, rather than a
replacement for, systems engineering.

The essential perspective of concurrent engineering is that all parties that have
a role to play in a given system design should be involved with that system
throughout its life cycle. The sequential or serial process of moving from
development to test to production to operations, and so forth, is augmented
by adding all significant life-cycle disciplines and personnel to all life-cycle
phases. Therefore, for example, even though a system may be in its early
conceptual, mission analysis, or definition phases (see Section 7.2.2 for NASA
phase descriptions), personnel from manufacturing should be involved in the
process to assure that the system is designed for optimum manufacturability.
This basic idea holds for all personnel who have a clear stake in the product or
system. It also allows for parallel developments whenever possible that have
the general positive effect of compressing schedules.

The implications of these notions of concurrent engineering have been that
systems engineering teams must also contain integrated product teams (IPTs)
that focus on integrating all life-cycle considerations. The systems engineer-
ing process, with its element of concurrent engineering, must explicitly take
account of downstream integration, test, production, manufacturing, quality,
operations, maintenance, logistics, and all other relevant aspects of a system’s
life cycle. Concurrent engineering forces this discipline as a vital part of sys-
tems engineering. Thus, it is herein defined as an essential element of systems
engineering.

7.3.11 Specification Development

In principle, after the preferred system architecture has been selected, we
require a detailed specification to continue on with the process of subsystem
design. This is done by developing a set of detailed specifications for these
subsystems, usually considered in three categories: hardware, software, and

7.3 THE THIRTY ELEMENTS OF SYSTEMS ENGINEERING 217

human. In many system developments, there are actually levels of specifica-
tions so that a top-level spec has to be developed to define system architectures.
This element of systems engineering covers the rather important task of writ-
ing a series of specifications at whatever levels are needed. Indeed, a military
standard exists to help define the numerous specification requirements for
military systems [7.17].

7.3.12 Hardware, Software, and Human Engineering

As suggested earlier, this element of systems engineering deals with detailed
subsystem design in the three dimensions of hardware, software, and human.
In general, deciding what should be implemented in hardware versus software
is not an easy choice. Software often provides additional flexibility, but can
be more difficult to manage and implement. Human engineering functions
are normally relegated to those of operator and maintainer of the system, and
the system requirements often specify these functions.

In general, this element refers to the design and construction of subsystems
as well as the components that make up these subsystems. As with the archi-
tecting process, design choices involve the postulation of alternatives and the
selection of the best alternative to satisfy the stated or derived requirements.
As we move more toward the use of COTS and NDI for hardware, and reuse
for software, we are able to define and choose subsystems and components
more easily. This, however, is a nontrivial task and depends on the expe-
rience and design expertise of hardware, software, and human engineering
personnel. A short list of some typical subsystem design areas includes:

» Power supplies

* Multiplexers

* Modulators—demodulators

» Transmitters

» Receivers

» Servomechanisms

 Graphical user interfaces (GUIs)
 Large-scale displays

7.3.13 Interface Control

Experience indicates that many of the difficulties in building large systems
show themselves in the interfaces between the subsystems and between the
system and external systems with which it must interoperate. For this essential
reason, we include interface control as a key element of systems engineering.
In the hardware arena, we have come a long way in specifying such interfaces
and assuring interface compatibility. In the case of software, we are further

218 THE THIRTY ELEMENTS OF SYSTEMS ENGINEERING

behind and have to develop new methods of specification for software modules
that are candidates for reuse. The basic tasks that have to be accomplished
under this element include:

» Definition of all interfaces

* Identification of the nature of all interfaces (physical, data, electrical,
mechanical, etc.)

 Assurance of interface compatibility at all defined interfaces
« Strict control of the interface processes (design, construction, etc.)

This is a difficult bookkeeping and control problem that may involve tracking
thousands of critical interfaces with the possibility that many interfaces may
creep in that are not found until testing (such as cross-coupling of mechanical
or electrical forces and fields). Also, many systems engineers simply do not
give enough attention to this issue, and find that they pay an unexpected price
downstream.

7.3.14 Computer Tool Evaluation and Utilization

Commercially available computer tools that support systems engineering have
evolved so quickly, and can be obtained at such low prices, that it has become
essential that all systems engineering teams have a set of such tools immedi-
ately at hand to carry out the thirty elements of systems engineering. This in-
cludes the set of tools known as CASE (computer-aided software engineering)
tools that are used for software engineering, a subset of systems engineering.
Under this element of systems engineering, the team evaluates and then uses
the set of computer aids appropriate to the system being developed.

A listing of some thirty categories of systems engineering support tools is
provided in an early systems engineering text [7.1]. As a practical matter, be-
cause there are so many tools to choose from, a formal evaluation is necessary
in relation to the system requirements and the domain knowledge attendant
to that system.

The maturity of computer tools and their widespread use have also spawned
the notion of system and software engineering environments (SEEs). Such
environments incorporate integrated sets of tools that support both systems
and software engineering [7.18, 7.19]. The systems engineering team that
has itself reached a significant level of maturity will establish a systems
engineering environment that will allow it to execute the thirty elements of
systems engineering quickly [7.20] and efficiently. It will also put such a team
in an excellent position relative to its competitors.

7.3.15 Technical Data Management and Documentation

A complex systems engineering effort generates a large amount of technical
information. For large systems, these data can be overwhelming, and come

7.3 THE THIRTY ELEMENTS OF SYSTEMS ENGINEERING 219

in many forms such as text, graphics, large-scale drawings, correspondence,
requirements and specifications, and others. If these data are not organized
and managed, the systems engineering team will soon be lost in mounds of
paper that are not readily retrievable. Here again, with the power afforded
by microcomputers and workstations, it is easier to manage large amounts of
technical data on behalf of the entire project and the systems engineering team.
A commercially available database management system (DBMS) becomes the
most likely candidate as the centerpiece of technical data management, with
other specialized software playing a supporting role. The reader with a special
interest in this area may examine in detail the wide variety of other tools that
might be used to assist in the task of technical data management.

The second part of this element is effective and efficient production of all
required system documentation. Of course, this must be well-organized so that
all files are retrievable by the project team. Word processors as well as other
software (e.g., graphics) support this subelement, as do report generators
of other types of software. Of special significance are ways and means of
handling large-size drawings (e.g., blueprints) so that they can be stored and
retrieved in an automated environment. All documentation should be available
on magnetic disks to facilitate reproduction and usage.

7.3.16 Integrated Logistics Support (ILS)

Integrated logistics support (ILS) is defined as “a disciplined, unified and
iterative approach to the management and technical activities necessary to
(a) integrate support considerations into system and equipment design; (b)
develop support requirements that are related consistently to readiness objec-
tives, to design, and to each other; (c) acquire the required support; and (d)
provide the required support during the operational phase at minimum cost”
[7.21]. This definition was derived from a Department of Defense (DoD)
Directive for ILS that was published in 1983 and is relevant and appropri-
ate today. A more recent DoD Instruction [7.22], also cited in Chapter 2,
establishes ILS policies and procedures for ensuring that (1) support consid-
erations are effectively integrated into the system design, and (2) required
support structure elements are acquired concurrently with the system so that
the system will be both supportable and supported when fielded. This latter
instruction emphasizes ILS procedures in the following areas:

. Readiness objectives

. Integrated logistics support plan (ILSP)

. Computer resources support

. Planning factors

. Logistics support analysis

. Manpower, personnel, training, and safety
. Accelerated acquisition strategies

Q -0 &0 o

220 THE THIRTY ELEMENTS OF SYSTEMS ENGINEERING

h. Interim contractor support

. Depot maintenance support

. Spares acquisition integrated with production
Postproduction support

Logistics resources

Milestone decision reviews

—

B -~

The ten specific elements of ILS are further defined as:

Maintenance planning

Manpower and personnel

Supply support

Support equipment

Technical data

Training and training support

Computer resources support

Facilities

Packaging, handling, storage, and transportation
Design interface

A A A e e

,_
e

Clearly, given its defined scope, integrated logistics support is a critical ele-
ment of systems engineering.

7.3.17 Reliability, Maintainability, Availability (RMA)

The RMA element focuses specifically on matters of the operating life and
ease of maintenance of a system. In broad terms, reliability and availability
are defined as follows:

Reliability. The probability that a system successfully operates to time “t.”
Availability. The probability that a system is available to operate when
called on to do so for a particular mission or application.

Maintainability does not have a generally accepted quantitative definition, but
it is interpreted as the degree to which a system has been constructed so as to
facilitate maintenance at an affordable cost.

There is clearly an important relationship between RMA and ILS. A system
must be designed to meet specific reliability, availability, and maintainability
requirements, as they are stated in the requirements and specifications docu-
ments. However, all three are supported by ILS considerations. For example,
when a system or subsystem or component fails, a spare is usually required

7.3 THE THIRTY ELEMENTS OF SYSTEMS ENGINEERING 221

to put the system back on line. It is the ILS engineer who determines the level
of sparing required and assures that there is a system in place to provide these
spares in minimum time.

7.3.18 Integration

Integration refers to the set of activities that bring together smaller units of
a system into larger units. Such units, often called configuration items (ClIs)
and components, are generally manifest in hardware and software. As these
units are completed, they are tested to assure that they are operating correctly.
If so, they are then interconnected (integrated) with other tested units to
build larger and larger subsystems. As problems of incompatibility show
themselves, they are solved, one at a time. Often, this physical integration
is the first time that there is a real opportunity to see if units will “play
together.” If the interface control element (element number 13 in Exhibit 7.1)
is performed with diligence, many such potential problems can be anticipated
and averted.

This process of unit integration is a natural part of building any system.
It can go astray when not enough time is allocated in the master schedule
to account for the situations in which unexpected interoperability problems
occur, despite all efforts to avoid them. The process of rapid prototyping has
been introduced into some system development efforts, in part, to deal with
such issues as early as possible.

7.3.19 Verification and Validation

These two parts of systems engineering may be defined as follows [7.1].

Verification. The confirmation that products and processes of each devel-
opment phase fulfill the requirements for that phase, and interoperate
with the results of an earlier phase.

Validation. The confirmation that requirements are correct and that all
products and processes, when taken in combination, satisfy all system-
level mission needs.

It will be recalled, from the beginning of this chapter (i.e., Figure 7.1), that the
four key elements that make up the systems engineering process, according
to the Military Standard 499B as well as other approaches, are:

1. Requirements analysis

2. Functional analysis/allocation
3. Synthesis

4. System analysis and control

222 THE THIRTY ELEMENTS OF SYSTEMS ENGINEERING

From the perspective of the Institute of Electrical and Electronics Engineers’
(IEEE) systems engineering standard [7.23], a fifth element needs to be added
to the above four elements, namely, verification and validation (V&V). This is
an important step, coming as it does from this well-respected and influential
source. The IEEE definitions of verification and validation, which may be
compared with the above definitions, are these:

Verification. The “process of determining whether or not the products of a
given phase of development fulfill the requirements established during
the previous phase.”

Validation. The “process of evaluating a configuration item, subsystem,
or system to ensure compliance with system requirements.”

Although the concepts of verification and validation (V& V) may well have
been established during the early days of missiles and space technology,
they have become part and parcel of today’s world of systems engineering.
They can be carried out as an integral part of a given contractor’s systems
engineering activities, or they may be executed by a third party, in which case
they would likely be called independent verification and validation (IV&V).

V&V are to be a part of each and every phase of an overall development
effort, focusing on the special needs and requirements of each phase. For
example, within an agency such as NASA, V&V would be scheduled to deal
with each of the key phases [7.24], as below:

* Phases A/B. Preliminary analysis and definition
e Phase C. Design
e Phase D. Development

Further, some of the important methods that could be used to perform V&V
include [7.24]:

Testing

Analysis

Demonstration
Similarity

Inspection

Simulation and modeling
Validation of records

Nk W =

V&V has also been specialized to the development of software whenever
this aspect of a program has been considered to be of especially high risk,
since the main purpose of V&V is to try to reduce the risk in a program. In

7.3 THE THIRTY ELEMENTS OF SYSTEMS ENGINEERING 223

such a case, the life cycle of interest may be narrowed, typically dealing with
the software phases cited below:

» Requirements

* Design

* Development and coding
* Integration and test

A more complete set of software phases, including variations that depend
upon the software development model that is selected, is cited in Chapter 10,
which deals with various aspects of software engineering. Further, an excellent
discussion of V&V in the context of software development is provided in John
Wiley’s Encyclopedia of Software Engineering [7.25].

7.3.20 Test and Evaluation

Test and evaluation (T&E) normally refers to physical confirmation of the
performance of an overall system. It is carried out in at least two key contexts:
(1) completion of the full-scale development of a system, and (2) placing the
system in an operational environment. The former is called development
test and evaluation (DT&E), and the latter is operational test and evaluation
(OT&E). For many systems, OT&E can be exceedingly difficult because the
operational environment for the system cannot be adequately represented or
simulated. Examples include many military weapon systems for which it
would be prohibitively expensive to truly test the system in terms of stated
operational requirements. In such cases, attempts are made to combine real-
world test data with models in order to verify performance. An example is
the rather large-scale National Test Bed (NTB) established for the strategic
defense initiative (SDI).

The PM and the CSE must pay a great deal of attention to the systems
engineering element of T&E because these are the arenas in which there is
a “sell-off” of the system to the customer. It is the stage at which there is
overall confirmation that the system meets the given user requirements. If
failures occur during T&E, it may be extremely expensive to go back and
make the changes necessary to improve performance. It is also usually very
time-consuming. As described in the quality assurance element of systems
engineering, trying to test quality into a system is basically the wrong ap-
proach. In that sense, a system that moves into DT&E and OT&E with a large
number of defects still remaining in the system is very likely to become a
major disaster.

As the SEMP (systems engineering management plan) is the key docu-
ment that describes what is to be done to execute and manage the systems
engineering elements, the TEMP (test and evaluation master plan) documents
the T&E activities. For the reasons cited earlier, the best systems engineers

224 THE THIRTY ELEMENTS OF SYSTEMS ENGINEERING

should be involved in structuring all T&E concepts and plans as well as the
interpretation of results.

As with many of the other elements of systems engineering, test and
evaluation is undergoing continuous review, evaluation, and change. This
is to be expected since test and evaluation (T&E) is truly one of the most
important aspects of bringing a system from development into operation.
An example is a report by a Defense Science Board Task Force [7.26] that
presented these six findings:

T&E should focus on how to support the acquisition process.
T&E planning needs to start early in the acquisition cycle.
There is distrust between the development and test communities.

Contractor, development, and operational testing have overlapping
functions.

5. It is essential that we have independence of test data evaluation.
6. The response to perceived test “failures” is often counterproductive.

bl

Test and evaluation is also seen now as a key element of what is being
called the DoD transformation [7.27]. This transformation depends greatly
on being able to bring appropriate levels and types of information together
at the right time and place. This also involves getting T&E activities into the
planning and development processes much earlier in the system life cycle.

7.3.21 Quality Assurance and Management

Quality assurance and management (QA&M) is an element of systems en-
gineering that addresses all matters related to product and service quality.
As a discipline, quality assurance and management has undergone exten-
sive changes in the last 15 years or so, mainly through the introduction of
Total Quality Management (TQM). Some of the principles of TQM can be
articulated as:

« Strict conformance with specifications
 Continuous improvement

* A focus on process

* Attention to customer needs

* Empowerment of people to implement

e Management support of its introduction and use

As TQM has developed, various tools or methods have evolved that support
it, including statistical process control (SPC) and quality function deployment
(QFD). These and other procedures have served as practical ways to enhance
quality.

7.3 THE THIRTY ELEMENTS OF SYSTEMS ENGINEERING 225

Military Standard 499B does not address matters of QA&M in detail.
Specifically, the comment made in that standard is as follows:

The government and contractor shall insure the comprehensive application
of the systems engineering process to integrate quality factors throughout all
technical elements and activities of the program and to:
a. capture customer requirements and translate them into detailed design
requirements that can be implemented in a consistent manner
b. deliver products that meet operational requirements under specified op-
erational conditions

If the system is being developed in a corporate environment that has
embraced TQM or some variant thereof, the PM and CSE should bring
selected procedures and practices into the systems engineering process as
a part of the QA&M element. If there is no corporate quality initiative or
structure, the PM and CSE should develop a QA&M program for the project.
This is a workable approach, but is clearly inferior to having a corporatewide
quality program into which a given project fits.

7.3.22 Configuration Management

Configuration management (CM) is largely a bookkeeping and control activity
that involves the following subelements [7.1]:

* Identification
 Control

* Auditing

* Status accounting
* Traceability

Although most CM concepts are simple, they are often carried out poorly or
not at all. This is a serious mistake, especially for a large system. Failure to
keep track of and control the status of all system configurations leads to back-
tracking to try to understand just exactly what version of the system the team
is dealing with. This problem shows up especially in software development
in which there is the potential for making changes quickly and easily.

A key concept in system development that relates to the element of CM
is that of system “baselining.” When a satisfactory version of a part of the
system has been constructed and tested, it may be given a baseline name
and number. From a CM point of view, that version of the system cannot be
changed without going through a formal configuration control board (CCB)
review and action. The CSE is thereby able to maintain control over the system
and assure that it is built logically, incrementally, and under positive change
management.

226 THE THIRTY ELEMENTS OF SYSTEMS ENGINEERING

7.3.23 Specialty Engineering

Specialty engineering refers to a set of engineering topics that have to be
explored on some, but not all, systems engineering efforts. In other words,
some systems involve these special disciplines and some do not. Examples of
specialty engineering areas include:

 Electromagnetic compatibility and interference
» Safety

* Physical security

» Computer security

» Communications security

* Demand forecasting

* Object-oriented design

* Value engineering

A sampling of technical domains that might support engineering specialty
areas on a particular project are

* Network engineering
* Aerodynamics

e Thermal analysis

e Structural analysis

* Mechanical design

» Hypersonics

* Nuclear engineering

* Artificial intelligence

As one can see, the list of potential specialty engineering areas can be rather
long. Also, many of these areas are supported by specific computer tools that
facilitate the analysis and design processes.

7.3.24 Preplanned Product Improvement (P3I)

Preplanned product improvement considers the ways and means to enhance
the system beyond the scope of the current contractual arrangement. Such
improvements generally enhance performance, and more than satisfy the
requirements, as currently stated. Examples of such improvements include:

» Extending the range of a radar system

» Decreasing the response time of a transaction processing system

* Increasing the storage capability of a database management system
Adding built-in test equipment (BITE)

* Increasing the speed of a network

7.3 THE THIRTY ELEMENTS OF SYSTEMS ENGINEERING 227

Improvements under P31 consideration represent candidates for follow-on
efforts that the customer might consider in future versions of the system.
By dealing with them during the current effort, migration paths to improved
systems are identified early. With the rapid speed of technology advances,
it is necessary to provide a clear and low-cost path to downstream system
improvements.

P31 is normally a part of all commercial products, although it may not be
called by this name. Whether your firm is making razor blades or software,
plans for product improvement must be on the drawing board at all times in
order to be competitive in a changing world.

7.3.25 Training

Training in the context of the thirty systems engineering elements generally
refers to the training of system operators and maintainers. Training for these
personnel must be designed and delivered in formal well-developed programs.
Such programs also have to be scheduled during the operations and mainte-
nance (O&M) phase of the system, often extending fifteen to twenty years
downstream. Training, from the DoD perspective, has to be considered as part
of the ILS discipline (see Section 7.3.16). Training specialists should be part
of the systems engineering team.

7.3.26 Production and Deployment

Production refers to the phase of a project during which one or more installable
systems are being produced for the customer. In many procurements, the
user or acquisition agent, as a matter of policy, recompetes the production
phase for a given system. Many contractors specialize in this production
phase, with developed expertise in the “build-to-print” arena. Organizing and
implementing a production or manufacturing capability is itself an area in
which systems engineering procedures and practices can be brought to bear.
It also can be an exceedingly complex set of activities because it deals with
the fundamental capability of an enterprise to replicate a system that has
already been built and accepted by the customer. For additional information
regarding this subject, the reader should refer to the large available literature
on production and manufacturing. The final points to be made in this respect
are that (a) producibility issues have to be dealt with as part of systems
engineering (note that manufacturing analysis is a subject cited in Mil-Std-
499B), and (b) systems engineering processes need to be applied to the actual
production and manufacturing of the system.

As the system is being produced, some units of the system may be moving
into the installation/deployment phase. This is a rather straightforward sub-
element, requiring excellent documentation on how to install the system in
its operational environment. Such environments range from rather benign
situations, such as an office building, to more stressful ones such as aboard
a ship or a submarine. In some cases, special analysis has to be carried out

228 THE THIRTY ELEMENTS OF SYSTEMS ENGINEERING

so as to assure field operability. This applies, for example, to siting a radar
in a particular ground-based location. At times, unanticipated problems arise
during installation for a system that was operating without difficulties in a
more controlled environment. Most companies have specialized installation
teams that are familiar with the types of problems that surface during system
deployment.

7.3.27 Operations and Maintenance (O&M)

This part of the systems engineering process refers to the rather long period
of time during which the system is operational in the field. From a systems
engineering perspective, emphasis should be placed on the continuous mea-
surement of the system’s performance. Measurement procedures range from
simple manual data sheets to automated sensors that record operational sta-
tus more or less continuously. In the commercial world, companies try to
maintain contact with consumers through hot lines and reports of satisfaction
(or not) from customers. It is important for the systems engineering team
to explicitly consider how to install and sustain a performance measurement
program during the O&M phase.

7.3.28 Operations Evaluation and Reengineering

If the preceding element is carried out correctly, a database is built as to
how well the system is performing over a long period of time. This places
in evidence ways and means of evaluating system performance and points
toward specific improvement areas for reengineering of the system. Because
our installed base of systems is extremely large, operations evaluation and
reengineering is a rather serious issue. The latter has also been receiving
a great deal of attention under the topic of business process reengineering
(BPR).

7.3.29 System Disposal

It is clear that once a system has come to the end of its usefulness, as agreed
upon by the users and sponsors, it is necessary to dispose of it. For systems that
are 100% software, this is a relatively simple matter. Of course, the software
must reside upon host machines, so there is a question as to whether or not
the hardware remains or is to be retired. Whenever there is hardware that is
no longer useful as part of the system, specific plans and procedures must be
developed for disposal, followed by careful implementation.

Beyond the more-or-less standard methods of reusing, reselling, salvaging,
or junking various hardware that is no longer needed, is the fact that many
systems that need to be disposed of fall in the broad category of hazardous
waste materials. In such cases, they must be disposed of in accordance with
applicable standards so as not to present a human or environmental risk, either

7.3 THE THIRTY ELEMENTS OF SYSTEMS ENGINEERING 229

current or future. In the same vein, disposal should be consistent with the
principles and practices of sustainable development, a topic that is discussed
in somewhat greater detail in Chapter 12.

Matters of system disposal can be quite varied as well as unique. For
example, in March of 2001, the Russians had to decide what to do about
disposing of the 143-ton Mir, their fifteen-year-old (launched in February
1986) spacecraft, which had apparently become too decrepit and expensive
to operate. With the spacecraft traveling at about 132 miles above the earth,
Mirs engines had to be fired by mission controllers on the ground in order to
slow the vehicle and change its orbit from circular to elliptical. The plan called
for most of Mir to burn up as it entered the earth’s atmosphere. However, up
to 27.5 tons of “debris” was expected to hit the earth south of Tahiti, east of
New Zealand, and southeast of Chile’s Easter Island. According to reports, the
plunge through the atmosphere was fiery and spectacular, and also successful.
Despite the great care taken by the Russians, the government of Chile was
not happy about this space “dumping” so close to their country. Although it
did not cause an international incident, one can see that disposing of 143 tons
of what had become space junk turned out to be a nontrivial adventure.

7.3.30 Systems Engineering Management

This last element covers all the management activities that must be considered
by the CSE and lead systems engineering managers. As such, it includes the
four basic functions of the project manager, namely, planning, organizing,
directing, and monitoring. These are applied to the previous twenty-nine
elements of systems engineering. In this sense, it is explicitly recognized that
the CSE has management responsibilities that are to be executed in the context
of all the elements of systems engineering. Thus, in addition to being the chief
technical person on a project, the CSE must have excellent skills in the fine art
of management. Several specific areas of interest have been established and
presented in some detail in Part II (Chapters 3 through 6). A further listing of
problem areas with respect to systems engineering management is provided
below in Exhibit 7.4.

Exhibit 7.4: Selected Problem Areas Within the Element of Systems
Engineering Management

Requirements unclear, incorrect, and/or creeping
Unrealistic schedule/cost constraints

Risks and their mitigation not seriously considered
Newly formed design/development team

Little project status monitoring

No well-defined design/development process

Poor system decomposition and work assignments
Alternative architectures not considered

PN R LD =

230 THE THIRTY ELEMENTS OF SYSTEMS ENGINEERING

9. Ineffective performance measurement
10. Inadequate communications skills
11. Late staffing and insufficient skill levels
12. Inadequate reserves and incentives

The reader is encouraged to compare the above issues with experiences that
he or she may have had in developing systems.

7.4 THE IMPORTANCE OF DOMAIN KNOWLEDGE
IN SYSTEMS ENGINEERING

We complete this chapter with a brief note on the matter of domain knowledge
and its relationship to systems engineering. Domain knowledge involves an
understanding of the technical domain of the system that is being developed,
examples of which include:

e An on-line transaction processing (OLTP) information system
* A rapid-transit system

e An air defense radar system

* A missile system

* An aircraft

* A supercomputer

* An automobile

* A chemical processing plant

* A nuclear power plant

Effective design and construction of any system involves both an effective
systems engineering process and a deep understanding of the domain knowl-
edge implicit in the system. Transit system engineers are not likely to have the
domain knowledge associated with building a new aircraft, and vice versa.
Nuclear engineers may not understand the intricacies of developing informa-
tion systems and their software elements. The best systems engineers have
both the systems engineering and the domain-knowledge expertise. It is not
really possible to function with excellence as a systems engineer on a given
program without having the appropriate domain-knowledge understanding.
This does not mean that such a person cannot make an important contribution.
However, he or she may lack a depth of understanding of the domain and its
related science and technology. Accordingly, it is a good idea for a person
with a basic understanding of systems engineering, who is to move on to the
field of radar systems, for example, to be immersed in the rather complex
world of radars and their underlying technologies. This notion applies as well
to all technical disciplines and their related domain-knowledge bases.

REFERENCES 231

QUESTIONS/EXERCISES

7.1

7.2

7.3

7.4

7.5

7.6

7.7

7.8

7.9

7.10

Identify and discuss three systems engineering activities that you be-
lieve should be added to the list of the thirty elements of systems
engineering.

Contrast the NASA life-cycle phases in this chapter with the system
acquisition phases in Exhibit 2.1.

Functionally decompose a personal computer system. Write two re-
quirements statements for each of the decomposed elements.

Define three technical performance measures (TPMs) for
a. a personal computer system

b. an automobile

c. an air defense system

Find and describe two examples of cost-estimating relationships
(CERs) from the literature.

Identify and describe three specialty engineering areas other than those
cited in this chapter.

Find a risk analysis approach in the literature and discuss its major
features.

Define and discuss two systems engineering management issues, other
than those cited in this chapter, that are likely to have a significant
impact upon the success of a systems engineering program.

Are there any elements of systems engineering that you would add to
the thirty described here? Why? Are there any elements you would
delete? Why?

In describing the content of systems engineering, develop some type
of hierarchical structure.

REFERENCES

7.1 Eisner, H. (1988). Computer-Aided Systems Engineering. Englewood Cliffs, NJ: Prentice
Hall.

7.2 Goode, H. H., and R. E. Machol (1957). System Engineering. New York: McGraw-Hill.

7.3 Engineering Management, Military Standard 499A (1974). Washington, DC: U.S. De-
partment of Defense.

7.4 Systems Engineering Management Guide (1983, 1990). Fort Belvior, VA: Defense Sys-
tems Management College.

7.5 Beam, W. R. (1990). Systems Engineering—Architecture and Design. New York:
McGraw-Hill.

7.6 Sage, A. P. (1992). Systems Engineering. New York: John Wiley.

232

7.7

7.8

7.9
7.10

7.11

7.12

7.13

7.14

7.15

7.16

7.17

7.18

7.19

7.20

7.21

7.22

7.23

7.24

7.25

7.26

7.27

THE THIRTY ELEMENTS OF SYSTEMS ENGINEERING

Blanchard, B. S., and W. J. Fabrycky (1990). Systems Engineering and Analysis. Engle-
wood Cliffs, NJ: Prentice Hall.

Chapman, W. L., A. T. Bahill, and A. W. Wymore (1992). Engineering Modeling and
Design. Boca Raton, FL: CRC Press.

Wymore, A. W. (1993). Model-Based Systems Engineering. Boca Raton, FL: CRC Press.
Sage, A. P, and W. B. Rouse, eds. (1999). Handbook of Systems Engineering and
Management. New York: John Wiley.

Sage, A. P, and J. E. Armstrong, Jr. (2000). Introduction to Systems Engineering. New
York: John Wiley.

The NASA Mission Design Process (1992). Washington, DC: National Aeronautics and
Space Administration, Engineering Management Council.

Boehm, B. W. (1981). Sofiware Engineering Economics. Englewood Cliffs, NJ: Prentice
Hall; see also Boehm, B. W. (2000). Sofiware Cost Estimation with COCOMO II. Upper
Saddle River, NJ: Prentice Hall PTR.

Department of Defense (DoD) Website: web2.deskbook.osd.mil

Life Cycle Risk Management Elements for NASA Programs (1997). Washington DC:
National Aeronautics and Space Administration Headquarters, June.

Carter, D. E., and B. S. Baker (1992). Concurrent Engineering—The Product Develop-
ment Environment for the 1990s. Reading, MA: Addison-Wesley.

Specification Practices, Military Standard 490 (1972). Washington, DC: U.S. Department
of Defense.

Comer, E. R. (1972). Catalyst: Automating Systems Engineering in the 21st Century.
Paper from the Proceedings of the 2nd Annual International Symposium of the National
Council on Systems Engineering (NCOSE), Seattle, July 20-22.

Charette, R. N. (1986). Software Engineering Environments—Concepts and Technology.
New York: McGraw-Hill.

Eisner, H., J. Marciniak, R. McMillan, and W. Pragluski (1993). RCASSE: Rapid
Computer-Aided System of Systems (S2) Engineering. Paper from the Proceedings of
the 3rd Annual International Symposium of the National Council on Systems Engineer-
ing (NCOSE), Arlington, VA, July 26-28.

Blanchard, B. S. (1986). Logistics Engineering and Management. Englewood Cliffs, NJ:
Prentice Hall.

Defense Acquisition Management Policies and Procedures, DoD Instruction 5000.2.
Washington, DC: U.S. Department of Defense.

Standard for Systems Engineering, IEEE P1220 (1994). Piscataway, NJ: IEEE Standards
Department.

Shishko, R. (1995). NASA Systems Engineering Handbook, SP-6105. Washington, DC:
National Aeronautics and Space Administration (NASA) Headquarters, June.
Marciniak, J., editor-in-chief (1994). Encyclopedia of Software Engineering. New York:
John Wiley.

Report of the Defense Science Board Task Force on Test and Evaluation (1999). Wash-
ington, DC: Office of the Under Secretary of Defense for Acquisition and Technology.
September.

Stenbit, J. (2002). “Test and Evaluation: A Key Component of DoD Transformation,”
ITEA Journal of Test and Evaluation (June/July), 6-8.

8

REQUIREMENTS
ANALYSIS AND
ALLOCATION

8.1 INTRODUCTION

Requirements analysis and allocation (RAA) has become a critically im-
portant element of systems engineering. All of the later elements of systems
engineering are carried out with one dominant question in mind: Are we in fact
satisfying the system requirements in the best possible (most cost-effective)
manner? Thus, as we architect, build, and test the system, we continuously
return to the requirements to be sure that we are completely satisfying them.
All systems engineering activities thus can be said to revolve around the stated
requirements, as defined by the user or acquisition agent for the system.

Requirements are defined during the very early stages of the system life
cycle. However, they are often incomplete and inappropriately stated. This
leads to difficulties in architecting and designing a system as well as contro-
versies between the system developer and the user. This can be exacerbated
because requirements are not easily changed, even when found to be inad-
equate. This flows from the contract mechanisms and rules of competition
that often surround the system acquisition process. Attempts to improve or
reconcile requirements take time and cost money, thus putting additional
pressure on the systems engineering team in terms of meeting stringent time
and cost constraints. Poor requirements are perhaps the most mentioned
issue when examining reasons why systems engineering and development
efforts ultimately result in lack of performance as well as cost and schedule
overruns.

Requirements may represent problem areas even when dealing with up-
grades to an existing system. In such a case, the context is often that it has

233

234 REQUIREMENTS ANALYSIS AND ALLOCATION

not been adequately proven that there is a set of validated operational re-
quirements. As an example, a report from the General Accounting Office
(GAO) to the Acting Secretary of the Air Force claimed that certain planned
upgrades were not based on validated requirements [8.1], with the following
statement:

Upgrade of System 8 ground station software and hardware is premature be-
cause the Air Force has not yet validated operational requirements. Validated
requirements are needed to verify the need for planned DSP ground station
upgrades. DOD Instruction 5000.2 and Air Force Regulation 57-1 require that
an operational requirements document, identifying minimum acceptable per-
formance characteristics, be prepared for all major weapon systems such as
DSP. An operational requirements document identifies the minimum accept-
able performance required to satisfy mission needs and is used to establish test
criteria for operational test and evaluation.

From this, it follows that the prudent user, acquisition agent, Project Man-
ager (PM), and Chief Systems Engineer (CSE) will pay a great deal of atten-
tion to the matter of requirements. Therefore, RAA becomes a central focus
for the systems engineering effort.

8.2 DEPARTMENT OF DEFENSE (DOD) PERSPECTIVES

Looking at Military Standard 499B [8.2], we find requirements analysis to
be one of the four key elements of the systems engineering process (see
Figure 7.1), represented in a short form by the key words:

* Define/derive/refine performance requirements (what item must do and
how well)

* The (systems engineering) process shall define and analyze performance
and functional requirements, define and design system elements to satisfy
those requirements, and establish the final configuration.

The full description of the element of requirements analysis is reproduced in
Exhibit 8.1.

Exhibit 8.1: Requirements Analysis as Stated in Mil-Std-499B

User requirements/objectives shall be defined/refined and integrated in terms of
quantifiable characteristics and tasks that item solutions must satisfy. Technical
requirements shall be developed concurrently for all functions and subfunc-
tions based on the system life cycle, and iteratively to provide progressively
more detailed performance requirements definition. For each requirement, the

8.2 DEPARTMENT OF DEFENSE (DOD) PERSPECTIVES 235

absoluteness, relative priority and relationship to other derived requirements
shall be identified. Impacts of identified user requirements/objectives and de-
rived requirements in terms of mission (tasks), environments, constraints and
measures of effectiveness shall be analyzed as the basis for defining and deriv-
ing performance requirements. These impacts shall be continually examined for
validity, consistency, desirability, and attainability with respect to technology
availability, physical and human resources, human performance capabilities,
life cycle costs, schedule and other identified constraints. The output of this
analysis will define technical performance requirements and either verify ex-
isting requirements or develop new requirements that are more appropriate for
each item.

We note especially that the systems engineering team is to “either verify
existing requirements or develop new requirements that are more appropriate
for each item.” Although this clearly makes good sense, the insertion of new
requirements, as alluded to before, can be an extremely controversial issue.
Strictly new requirements developed by the systems engineering team cannot
be accepted until they are confirmed as acceptable by the user and system
acquisition agent. Again, this can be a difficult process that is impeded by the
general reluctance to change requirements, often necessitating an approved
change in a formal contractual document and relationship.

In our definition of RAA, we include the matter of requirements allo-
cation. This inclusive definition means that requirements, in addition to
being analyzed, are allocated to system functions and subfunctions. Thus,
the definition in this book leads to the explicit interaction between RAA
and functional analysis/allocation (see the list of thirty systems engineering
elements in Exhibit 7.1).

Another DoD perspective related to RA A can be found in the so-called DoD
5000 series. In DoD Directive 5000.1 [8.3], reference is made to evolutionary
requirements definition. A key statement in this regard is:

Once approved as a new start acquisition program, operational performance re-
quirements for the concept(s) selected shall be progressively evolved from broad
operational capability needs to system-specific performance requirements (e.g.,
for range, speed, weight, payload, reliability, maintainability, availability, inter-
operability).

In addition, the same directive identifies the three major decision-making
support systems that affect the acquisition processes, namely, the

* Requirements Generation System (RGS)
* Acquisition Management System (AMS)
* Planning, Programming, and Budgeting System (PPBS)

236 REQUIREMENTS ANALYSIS AND ALLOCATION

Thus, the DoD sees the matter of generating requirements as a major factor
in its overall acquisition approach. The front end of the RGS is developing
a mission needs statement that defines projected needs in broad operational
terms. Examples cited are

* The need to impede the advance of large armored formations 200 kilo
meters beyond the front lines

» The need to neutralize advances in submarine quieting made by potential
adversaries

The Mission Need Statement flow is depicted in Figure 8.1. As shown, when
the Mission Need Statement is approved, the system enters Milestone 0,
allowing for the initiation of concept studies. Again, all of this is defined as
part of the Requirements Generation System within the DoD.

In DoD Instruction 5000.2 [8.3], there is a section on Evolutionary Re-
quirements Definition. The stated purpose of that section is to “establish the
basis for the determination, evolution, documentation, and validation of mis-
sion needs and system performance requirements.” The focus is on establish-
ing system performance objectives and minimum acceptable requirements,
and the need for documentation in an Operational Requirements Document
(ORD). Another point of emphasis is the progressive refinement of the initial
broad objectives and the minimum acceptable requirements. Thus, there is a
carry-forward of the notion of defining and then evolving a set of minimum
acceptable requirements for the system.

Unified & -
specified MILESTONE 0 — concept studies approval
commands
o Joint Under _
. Mission . Acquisition
Military | | need |— Requirements| _| Secretary of | __| decision
departments statement Oversight Defense d
Council (acquisition) memoranaum
e Validate need o Decision e Alternatives
* Assign priority e Lead(s)
Others Defense * Funding
Acquisition e Exit criteria
Board

e Assessment
e Recommended
concept studies

Figure 8.1. Mission Need Statement flow (major defense acquisition programs).

8.3 A NATIONAL AERONAUTICS AND SPACE ADMINISTRATION (NASA) PERSPECTIVE 237
8.3 A NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
(NASA) PERSPECTIVE

A NASA perspective with respect to handling requirements is well represented
in its engineering guide to the mission design process [8.4]. NASA’s view is
that “the definition and tracking of requirements are among the most important
aspects of the mission definition and system design process,” which itself is
defined in terms of Prephase A, Phase A, and Phase B activities, as alluded
to in the previous chapter. Requirements are defined and tracked to produce
functional, performance, operational, and interface requirements that are to be
implemented and verified during the next system phase, which NASA defines
as Phase C/D. The flow-down of requirements is shown in Figure 8.2. NASA

Mission
objectives
Level | .
mission Programmatics:
requirements * Cost
Headquarters . Schedul_e
¢ Constraints
* Mission classification
l System

Implementing center functional

Environmental

requirements

and guidelines

and other design

requirements

Institutional
constraints

System

Assumptions

performance
requirements

!

!
U TR

!

Subsystem A | Subsystem| | Subsystem| Subsystem X
functional and | | B [C I | functional and
performance : : : : performance
requirements | | | requirements

Rl

r—-—

—

—_—

t

R

| —

|

Allocated

requirements

Reflected
requirements

Derived
requirements

Figure 8.2. The flow-down of requirements.

238 REQUIREMENTS ANALYSIS AND ALLOCATION

encourages a “proactive iteration with the customer” as the on/y way that all
parties can come to a true understanding of what should be done and what it
takes to do the job. This is an enlightened view that is wholly supported by
this author. Only by the developer and customer working together is it truly
possible to successfully engineer a complex system. However, this flexible and
joint relationship can be interfered with by an inflexible contracting officer
and acquisition agent.

NASA also cites the need, with respect to requirements, for iteration, trace-
ability, verification, and validation. This acknowledges that requirements must
be analyzed and worked with, usually over long periods of time. They are not
viewed as static, but rather as changeable in the best interest of all parties.

8.4 THE ORGANIZATION OF REQUIREMENTS STATEMENTS

We examine here some specific requirements documents and statements that
have been used by selected government agencies in their procurement of
systems.

8.4.1 Selected NASA Requirements Formats

A very large system that is being procured by the National Aeronautics and
Space Administration (NASA) is called EOSDIS, the Earth Observing Sys-
tem Data and Information System. This system is likely, when considering
all related costs, to be in the multibillion dollar range. The preliminary re-
quirements for this system were documented in a rather voluminous NASA
report [8.5]. EOSDIS was divided into three major segments, each of which
was further delineated in terms of functions, as shown in Exhibit 8.2. We note
the functional description as a key aspect of defining the system.

Exhibit 8.2: Functional Description of EOSDIS [8.6]

1. Flight Operations Segment

Functions: 1.1 Mission Control
1.2 Mission Planning and Scheduling
1.3 Instrument Command Support
1.4 Mission Operations
2. Science Data Processing Segment

Functions: 2.1 Data Processing
2.2 Data Archive
2.3 Data Distribution
2.4 Data Information Management
2.5 User Support for Data Information
2.6 User Support for Data Requests
2.7 User Support for Data Acquisition and Processing
Requests

8.4 THE ORGANIZATION OF REQUIREMENTS STATEMENTS 239

3. Communications and System Management Segment
Functions: 3.1 Distribution of EOS Data and Information to EOSDIS

Nodes
3.2 Distribution of Data Among Active Archives
3.3 Interface with External Networks
3.4 Network/Communications Management and Services
3.5 System Configuration Management
3.6 System/Site/Elements Processing Assignment and
Scheduling
3.7 System Performance, Fault, and Security Management
3.8 Accounting and Billing

This functional description sets the stage for all further systems engineering
activities and is central to the systems engineering process. NASA, in turn,
establishes a set of requirements for the system for each and every function. At
the top (system) level, however, NASA elected to organize the requirements
as shown in Exhibit 8.3:

Exhibit 8.3: Organization of EOSDIS Systemwide
Requirements [8.5]

5.0 EOSDIS SYSTEMWIDE REQUIREMENTS

5.1

OPERATIONAL REQUIREMENTS

5.2 FUNCTIONAL REQUIREMENTS

53

PERFORMANCE REQUIREMENTS

5.4 EXTERNAL INTERFACES

5.5

5.4.1 EOS Project
5.4.2 Space Station Information System (SSIS)
5.4.3 Networks and NASA Institutional Elements
5.4.4 Cooperating Institutions
5.4.5 The EOSDIS User Community
5.4.6 International Partners
SECURITY
5.5.1 Technical Security
5.5.1.1 Computer Systems Selection Criteria
5.5.1.2 EOSDIS Security Procedures
5.5.2 Physical Security
5.5.3 Contingency
5.5.3.1 Restart/Recovery
5.5.3.2 Software/Data
5.5.3.3 People
5.5.3.4 Equipment

5.6 RELIABILITY, MAINTAINABILITY, AVAILABILITY (RMA)

5.6.1 Reliability
5.6.2 Maintainability

240 REQUIREMENTS ANALYSIS AND ALLOCATION

5.6.3 Operational Availability
5.6.4 EOSDIS System-Level RMA
5.6.5 Fault Detection Requirements

From Exhibit 8.3, two important points are

1. The system is described by function, and specific requirements are
defined for each such function.

2. A set of top-level requirements is also defined, which applies at the
system level.

An example of the system-level requirement for reliability is as follows:

The reliability for EOSDIS shall be measured by the Mean Time Between
Failures (MTBF) for a system or component over the entire life cycle of the
equipment. Failures are those equipment and software malfunctions which
result in interruptions in service. Interruptions in service resulting from external
factors beyond the control of EOSDIS. . . . shall not be considered failures unless
EOSDIS equipment or software contribute to the interruption.

Beyond this system wide reliability requirement, NASA invokes two military
standards and one handbook:

» Mil-Std-785B for Reliability
* Mil-Hdbk-472 for Maintainability Prediction
e Mil-Std- 470A for Maintainability Status Reporting

The reader interested in NASA approaches to requirements definition may
refer to the EOSDIS requirements specification [8.5] and similar requirements
documents for other NASA programs [8.6, 8.7].

8.4.2 A DoD Requirements Format (I-CASE)

The DoD has long been interested in building an Integrated Computer-Aided
Software Engineering (I-CASE) system. The statement of work for such a
system, produced by the Air Force, has a specification that contains a statement
of requirements for [-CASE [8.8]. The four-digit table of contents for these
requirements is shown in Exhibit 8.4.

Exhibit 8.4: Requirements Outline for I-CASE

10.3 REQUIREMENTS
10.3.1 Overview
10.3.2 I-CASE Software Engineering Environment
10.3.2.1 Standards

8.4 THE ORGANIZATION OF REQUIREMENTS STATEMENTS 241

10.3.2.2 Information Systems Security
10.3.2.3 Functional Requirements
10.3.2.4 Hardware
10.3.2.5 I-CASE SEE Integration
10.3.3 I-CASE Operational Test Environment
10.3.3.1 Overview
10.3.3.2 Standards
10.3.3.3 I-CASE Operational Test Environment Information
Security
10.3.3.4 Application Test Management
10.3.3.5 Application Release Control
10.3.4 Application Execution Environment
10.3.4.1 Overview
10.3.4.2 Standards
10.3.4.3 I-CASE Application Execution Environment Informa-
tion Security
10.3.4.4 Run-Time Components
10.3.4.5 End-User Capabilities
10.3.4.6 Application Release Installation

From Exhibit 8.4, we note two aspects of this statement:

* Section 10.3.2.3 identifies the requirements by functional area
» The emphasis on test and execution environments

With respect to the former, the requirements document deals extensively with
the requirements for each functional area, confirming the general practice
that requirements are keyed to the system as defined by its functions and
subfunctions. The lead-in to the functional requirements section states as
follows:

The I-CASE SEE [software engineering environment] will consist of an infor-
mation repository and COTS [commercial-off-the-shelf] software components
that support the software development and maintenance process. The I-CASE
SEE will provide an environment that supports software development and
maintenance activities including business case analysis, software engineering,
application migration, program/project management, configuration manage-
ment, quality assurance, life cycle documentation, presentation production,
requirements traceability, impact analysis, error reporting, security, and exter-
nal system interface support.

8.4.3 A Coast Guard Example of Requirements

As another example of a statement of requirements, the U.S. Coast Guard
(USCQG) in the Department of Transportation produced a specification

242 REQUIREMENTS ANALYSIS AND ALLOCATION

and statement of work (SOW) for mission-oriented information system
engineering (MOISE) [8.9]. A three-digit definition of their requirements
is shown in Exhibit 8.5. We note that this specification of requirements is
largely related to the procurement of services and thus is different, in general,
from the procurement of a system.

Exhibit 8.5: Example of Coast Guard Requirements Format

C.3 REQUIREMENTS

C.3.1 MULTIPLE INFORMATION SYSTEM INTEGRATION

C.3.2 INITIATION AND CONCEPT PHASES

C.3.3 DEFINITION PHASE

C.3.4 DESIGN PHASE

C.3.5 DEVELOPMENT PHASE

C.3.6 DEPLOYMENT PHASE

C.3.7 OPERATIONS PHASE

C.3.8 METRICS

C.3.9 MULTIPHASE, CROSS-CUTTING SKILLS AND
SERVICES

C.3.10 CONTRACTOR ACQUIRED FEDERAL INFORMATION

PROCESSING (FIP) RESOURCES

C.3.11 SYSTEM DEVELOPMENT CENTER

C.3.12 CONTRACTOR/USCG MANAGEMENT RELATIONSHIPS

C.3.13 CONTRACTOR PERSONNEL REQUIREMENTS

C.3.14 CONTRACTOR SECURITY REQUIREMENTS

8.5 SPECIFIC REQUIREMENTS STATEMENTS

This section identifies certain types of requirements statements and also
presents a few examples of specific statements, drawn from government pro-
grams.

8.5.1 Types of Requirements

Requirements are sometimes stated in terms of their levels of applicability
that, in effect, establish the importance of these requirements to the system
user or acquisition agent. An example follows with respect to the weighting
or significance of requirements statements [8.10]:

* The most important requirements are stated as “shall,” to indicate manda-
tory requirements.

» The next most important requirements are stated as “shall, where practi-
cable.”

8.5 SPECIFIC REQUIREMENTS STATEMENTS 243

The next most important requirements are stated as “preferred” or
“should.”

The next most important requirements are stated as “may.”

These may be simplified to three- [8.8] and two-level schemes, such as

Minimum features

Desirable features

Highly desirable features

Minimum or mandatory requirements
Optional requirements

The preceding requirements represent various ways to designate the impor-
tance or weight of these requirements. This gives further guidance to the
system developer as to the needs of the customer.

8.5.2 Specific Examples of Requirements Statements

A series of specific requirements statements drawn from various government
programs follows:

The contractor shall allocate the Earth Observing System Data and Op-
erations System (EDOS) Requirements identified in the functional and
performance specification and shall identify the methods and procedures
necessary for verifying compliance with these requirements.

EDOS shall provide the capability to support a processing rate of at least
50% above the average aggregate throughput rate for nonreal-time data.

The Payload Data Services System (PDSS) shall:

— Transmit up to eight real-time and eight nonreal-time data streams
concurrently

— Have an availability of greater than or equal to 0.95
— Support a real-time S-band input rate of 192 kbps
I-CASE shall have the capability to create or support
— 100 databases

— 2000 tables per database

— Tables with 250 columns and one billion rows

— Columns with 250 characters

— At least 100 indexes per table

Identify existing systems that have requirements similar to an Automated
Highway System (AHS) in terms of public interaction, safety, reliability,
and complexity; analyze these systems to derive “lessons learned” in
their implementation that could be appropriate to AHS development

244 REQUIREMENTS ANALYSIS AND ALLOCATION

* The system performance boundaries are as follows:
— Customer Data and Operations System (CDOS) shall protect all data
to achieve a BER (bit error rate) of 10 E-12
— The maximum interruption of data delivery services shall be ten
seconds or less
— Reinitialization of data delivery services shall require no more than
two minutes
— The processor utilization for CDOS shall not exceed 50%
— The memory and storage utilization for CDOS shall not exceed 75%
» The EOSDIS ground system shall have an operational availability of
0.992 with an MTBF (mean time between failures) of 500 hours and an
MDT (mean down time) of 4 hours

* Catalyst shall support the calculation of evaluation measures of merit for
the alternatives through ranking, weighting, hierarchical weighting, and
probabilistic weighting

 Catalyst shall automate generic systems engineering functions that are
adaptable to the way an organization does business

8.6 ESSENTIAL STEPS OF REQUIREMENTS ANALYSIS

The following eight areas represent a minimum set of essential steps with
respect to the analysis of requirements.

8.6.1 Automation of Requirements Analysis and Allocation (RAA)

There has been an increasing recognition of the need to automate the process
of RAA. Foralarge and complex system, manual handling of RA A is basically
obsolete. Early automated systems for RAA include such tools as:

e The Input-Output Requirements Language (IORL)
e The Software Requirements Engineering Methodology (SREM)

e The Problem Statement Language/Problem Statement Analyzer
(PSL/PSA)

These tools are attributed to Teledyne Brown, TRW, and Meta Corporation,
respectively.

More recent software packages have been reviewed and analyzed by the
Air Force’s Software Technology Support Center (STSC) [8.11], describing
over 100 so-called Upper CASE tools for this purpose. These include tools
for requirements specification and analysis, a dozen of which follow:

1. Teamwork/RT: Cadre Technologies
2. CARDTools: Cardtool Systems Corporation

8.6 ESSENTIAL STEPS OF REQUIREMENTS ANALYSIS 245

Cohesion: DEC

Power Tools: Iconix Software Engineering

Software Through Pictures: IDE

Excelerator: Intersolv

IEW: Knowledgeware

Battlemap: McCabe & Associates

System Architect: Popkin Software & Systems

10. RTrace: Protocol

11. SES Workbench: Scientific and Engineering Software
12. IEF: Texas Instruments

O 0N W

Two very popular and capable packages not listed above are Telelogic’s
DOORS and Vitech’s Core.

Many requirements documents are now calling for a requirements analysis
tool in hand and in operation from the start of a new contract and systems
engineering effort. The state of the art in systems engineering tools strongly
supports the use of software aids to carry out requirements analysis and
allocation.

8.6.2 Relationships and Traceability

A key step under the element of RAA is to explicitly identify relationships and
traceability. Relationships are clearly important because the systems engineer-
ing team must always be aware of and track requirements interdependencies.
For example, one section of a requirements document may refer to the point-
ing error of an instrument and another section may specify the allowable
error for the stabilization and control system for a satellite carrying that in-
strument. The latter error is very likely to influence the former. The systems
engineer must establish such relationships and, as a minimum, annotate the
dependency.

Traceability has at least two meanings. The first is the explicit connection
between all requirements, through all documentation in which such require-
ments are stated. The second is the traceability of a requirement through all
the life-cycle elements of the systems engineering process. Using the earlier
instrument pointing error as an example, the T&E (test and evaluation) ele-
ment must include traceability back to this requirement. Similarly, the TPM
(technical performance measurement) program should include this type of
traceability. Thus, traceability involves, as a minimum:

» The interdependence between requirements

» The longitudinal tracking of requirements through the various elements
of the systems engineering process as they are applied during the system’s
life cycle

246 REQUIREMENTS ANALYSIS AND ALLOCATION

8.6.3 Ambiguous Requirements

The systems engineering team also must look for requirements that are unclear
or ambiguous. Such ambiguities sometimes are revealed when comparing
different sections of a requirements document that may have been prepared by
different people and the overall review of the integrity of the requirements has
not brought forth these types of problems. As an example, in a requirements
specification for a radar system, one section may refer to the target size as
one square meter and another part of the spec may call out a target size of
up to two square meters. Similarly, the range to target may be sixty miles,
but if the level of detection at that range is not specified (as, for example, the
probability of detection at that range), the requirement remains ambiguous.
Essentially, any requirement that leaves doubt as to its precise meaning must
be classified as ambiguous until the ambiguity or lack of clarity is resolved.

8.6.4 Incorrect Requirements

Certain requirements, when analyzed, can be shown to be clearly incorrect.
As an example, suppose a requirement for the operational availability of a
system is stated as follows:

* The system shall have an operational availability of 0.995 with an MTBF
(mean time between failures) of 500 hours and an MDT (mean down
time) of 6 hours.

If we use the standard relationship for availability as

MTBF 500

= = 0.988
MTBF + MDT 500+ 6

Availability =

we obtain an availability calculated as 0.988, which is less than the spec-
ified value of 0.995. Thus, there is an error in the requirement as stated.
This requires further discussion and clarification with the customer in order
to resolve the problem. A failure to deal with what appear to be incorrect
requirements places the systems engineering effort at risk. This may result in
downstream schedule and cost overruns.

8.6.5 Incompatible Requirements

Incompatible requirements suggest that there is conflict or incompatibility
between two or more stated requirements. This can happen, for example, when
there is a designation of COTS software that may not run on a designated host
computer. Software may be specified that runs on a workstation computer, but
the basic architecture may call for a microcomputer solution. In such a case,
the software and the computer requirements are essentially incompatible.
This also may occur with external interface systems. The system in question

8.6 ESSENTIAL STEPS OF REQUIREMENTS ANALYSIS 247

may have to interoperate with an external system, but with the specified
requirements, it may not do so. Many systems that are part of a larger system
run into this type of potential incompatibility issue.

8.6.6 High-Risk Requirements

The systems engineer must go through the full list of requirements and iden-
tify, as early as possible, those requirements that represent high risk to the
development effort. Typically, high-risk requirements push or extend the state
of the art in one or more technology areas. Examples of such areas may
include

e Integration of commercial-off-the-shelf (COTS) software with develop-
ment software

» Advanced expert systems

* Voice-actuated computer systems

» Extremely high-power or high-frequency devices
* Multimedia systems

 Very high-capacity, dense storage systems

» Real-time command and control systems

* Forcing the team to adopt a development approach where a COTS ap-
proach would be sufficient

High-risk requirements also show up as risks in terms of meeting schedule and
cost constraints. As the team experiences difficulties in solving the technical
problems associated with high-risk developments, schedules tend to slip and
costs begin to rise. This “domino effect” in trying to deal with high-risk
requirements can easily result in failure of the project.

Where there is substantial risk associated with certain requirements, the
systems engineering team has to focus attention on how to meet these re-
quirements, or attempt to relax such requirements through negotiations with
the customer, especially where performance is not significantly affected.

8.6.7 Low-Performance Requirements

Requirements that lead to low performance should also be identified by the
systems engineering team. In today’s world of rapidly changing technology
and long development times, attention has to be paid to situations in which
following the requirements leads to low performance. This may be observed
in systems that contain large amounts of software and where the requirements
emphasize the use of specific commercial software packages. In this situation,
instead of specifying commercial software by name and version, the require-
ments should call for the best software available within the class of software

248 REQUIREMENTS ANALYSIS AND ALLOCATION

desired. In this way, the developer can select the most recent version at the
latest possible time, thereby obtaining the high-performance version instead
of an obsolete version.

8.6.8 Derived Requirements

A critical part of requirements analysis is the construction of derived require-
ments. These are a set of requirements derived from the original requirements
specification but are not actually a part of the specification itself. In other
words, such requirements flow from the systems engineering analysis and
must be formulated to proceed constructively with the design of the system.

An example can be seen by correcting the requirement for availability cited
Section 8.5.2. This requirement is restated as:

» The overall system shall have an operational availability of 0.988 with
an MTBF of 500 hours and an MDT of 6 hours.

The issue here is that requirements for the subsystems have to be derived
from this overall system requirement in order to design the subsystems. Such
derived requirements are not part of the requirements document; it is up to
the systems engineering team to derive them. Thus, the team has to annotate
all cases for which top-level system requirements must be analyzed in greater
detail to develop a set of derived requirements. Such derived requirements are
then “allocated” to the subsystems to give guidance to the subsystem design
teams. More specific examples of how this might be done are explored in the
next section.

8.7 DERIVED AND ALLOCATED REQUIREMENTS

Three situations that demonstrate the issue of deriving and allocating require-
ments are examined in this section.

8.7.1 The Weight of a Spacecraft and Its Subsystems

The weight of an overall spacecraft (communications, weather, surveillance
satellites) is constrained by the launch vehicle that places such a satellite
in orbit. The requirements specification therefore usually will identify the
total maximum weight for the satellite. The systems engineering team must
therefore derive from this top-level requirement a series of derived weight
requirements for each of the subsystems making up the total satellite. Such
subsystems, for example, might include:

e The satellite structure
* The stabilization and control subsystem
 The telemetry and data handling subsystem

8.7 DERIVED AND ALLOCATED REQUIREMENTS 249

* The thermal control subsystem
» The power supply subsystem
* The satellite payload subsystem

In turn, each of these subsystems might be examined to see if new derived
weight requirements have to be determined. As an example, suppose the
satellite payload subsystem consists of five remote measurement instruments,
as in a weather satellite. It would be typical then to derive a weight requirement
(maximum weight permissible) for each of the five instruments. In this general
manner, requirements are derived from the original requirement and then
allocated to the subsystems of a given system.

8.7.2 Deriving and Allocating Reliability Requirements

If we refer again to Section 8.6.8, we see a requirement for a mean time
between failures (MTBF) of 500 hours for the overall system. Let us assume
that the overall system has four major subsystems, as shown in Figure 8.3. The
requirements document specifies only the overall system MTBF requirement
of 500 hours and not the subordinate MTBF requirements for the subsystems.
It therefore becomes a task of the systems engineer to derive and allocate
MTBF requirements for the four subsystems. Based on analysis of the sub-
system technical information and requirements, as well as data from previous
programs and experience, the systems engineer might derive a set of MTBF
requirements as illustrated in Figure 8.3. The four subsystem MTBF-derived
requirements are

o Subsystem 1: MTBF = 2500 hours
o Subsystem 2: MTBF = 2000 hours
* Subsystem 3: MTBF = 1667 hours
* Subsystem 4: MTBF = 2000 hours

SYSTEM

MTBF = 500 hrs
Failure rate = A

1
= —=.002
A 500 00

SUBSYSTEM 1

SUBSYSTEM 2

SUBSYSTEM 3

SUBSYSTEM 4

MTBF = 2500 hrs
A =.0004

MTBF = 2000 hrs
A =.0005

MTBF = 1667 hrs
A =.0006

MTBF = 2000 hrs
A =.0005

Figure 8.3. Derived and allocated reliability requirements.

250 REQUIREMENTS ANALYSIS AND ALLOCATION

Note that all of these MTBFs are larger than the system requirement
of 500 hours. In order to develop this set of subsystem-derived require-
ments, however, the systems engineer must understand the basic relationship
between MTBF and failure rate for a given system, given the assumption of
an exponential failure law. The relationship is

Mean time between failures (MTBF) = ———
failure rate
Also, the failure rates are additive under these circumstances, so that the
overall system failure rate is the sum of the subsystem failure rates. The
resultant MTBFs and failure rates for the system and its subsystems are
shown in Figure 8.3. We leave it as an exercise at the end of the chapter to
verify the compatibility between the stated MTBFs and failure rates.
Through this example, we see how requirements may be derived and also
how they are allocated to lower levels of indenture for the system. We also
note that this process cannot be accomplished without an understanding of
the specific relationships between MTBFs and failure rates. This is true for
all situations of derived requirements and allocation of these requirements,
namely, that the algorithms that apply to the situation at hand must be known
to the systems engineer.

8.7.3 Deriving and Allocating Errors in a System

We take now as a third example of deriving and allocating requirements that
of sighting and pointing at a target in a shipboard environment. We assume
that the stated requirement for the system is that the sighting to the target have
a maximum permissible error of one-half of a degree, which is equivalent to
0.00873 radian. We further break down this error into three fundamental error
sources:

1. Error in pointing by a human (operator error)
2. Error in the pointing instrument (instrument error)
3. Error in mounting the instrument to a platform (platform error)

The issue is then to derive pointing requirements (maximum errors) for these
three error sources and the systems they represent.

This situation is depicted in Figure 8.4. Under a model that claims inde-
pendent additive errors associated with the random variables that represent
the error sources, the total root-mean-square (rms) error is related to the
subordinate errors by the relationship:

0% = 012 + 022 + 632
where o is the rms error (standard deviation) and its square is the variance
of any error distribution. The derived maximum errors, as determined by the

8.8 OTHER REQUIREMENTS ISSUES 251

SYSTEM
Max. error = 0.5 deg
o7=0.5deg
02 = 0.25 (deg) 2

OPERATOR ERROR INSTRUMENT ERROR PLATFORM ERROR
6o = 0.4 deg c;j = 0.2 deg op = 0.224 deg
65 = 0.16 (deg) 2 o? = 0.04 (deg) 2 o5 =0.05 (deg) ?

Figure 8.4. Derived and allocated pointing-error requirements.

systems engineer, are

Maximum human (operator) error = o, = 0.4 deg
Maximum instrument error = o; = 0.2 deg
Maximum platform error = o, = 0.224 deg

These then represent a consistent set of derived error requirements that may
be utilized in the design of the various subsystems. Because one of these
“subsystems” is the human operator, we have to verify that such a person
is able to point the instrument within the designated error limits. If this is
not possible, then there has to be a further rederivation of errors such that
the overall pointing error requirement is satisfied. This may turn out to be
a long and difficult process, but it is necessary to meet the overall system
requirement.

We further note that the algorithm used in this error calculation is different
from that used in both the weight example (Section 8.7.1) and the reliability
example (Section 8.7.2). The error calculation called for a summation of
the squares of the rms errors, equivalent to the sum of the variances of
the independent error-source variables. The error, in this example, is also
associated with a “one-sigma” value, another choice that might be made by
the systems engineer. Here again, the nature of error algorithms must be part
of the body of knowledge of the systems engineer in order to carry out this
derivation and allocation in a correct manner.

8.8 OTHER REQUIREMENTS ISSUES
8.8.1 Six Additional Requirements Problem Areas

In addition to the eight essential steps of requirements analysis cited and
discussed earlier in this chapter, we close this section with a brief examination

252 REQUIREMENTS ANALYSIS AND ALLOCATION

of what might be called special requirement problems. Here are six such
problem areas:

Requirements creep/volatility

Not verifiable/testable

Unable to prioritize

Pre-defined solution

Incomplete

Stakeholders not sufficiently involved

SN kAW =

Creep and Volatility. Requirements creep and volatility cause numerous
problems. However, if changing requirements actually point us in the direction
of a better system, then we should welcome such changes. There are clearly
ways to handle changing requirements, to the ultimate satisfaction of both
developer and customer. All such changes should be made explicit, and if
they are good for the customer, then the customer should be willing to pay
for them. The developer needs to be steadfast in keeping track of the original
requirements and agreed-upon requirements changes.

Cannot Verify or Test. In general, we have a problem area when it is not
possible to test and verify when a requirement has been met or not met.
Fuzzy and non-quantitative requirement statements lead us in that direction,
and can become arenas for massive debate, with a lot at stake. To the extent
possible, the developer should challenge these types of requirements as early
as possible so that a satisfactory agreement can be made before the area blows
up on all concerned parties.

Cannot Prioritize. We should recognize that not all requirements are
equally important. Section 8.5.1 suggested different levels of requirements,
and they may go a long way toward dealing with this issue. A more simple
procedure is to have a two-level description of requirements: mandatory (M)
and optional (O). This procedure also reinforces the architecting notions in
this book whereby we can offer alternative architectures from the low end
(satisfies only the mandatories), to the high-end (satisfies the mandatories
and most of the optionals), and the knee-of-the-curve solution (satisfies all
the mandatories and some cost-effective set of optionals). In addition, many
requirement documents are written so that the developer can make a very
good “guess” as to what the priorities tend to look like. For example, if there
is a separate section on information security, a message is being conveyed
simply by that structure.

Predefined Solution. Requirements can be written so that certain system
architectures are a foregone conclusion. This may be all right, but it also may
be counterproductive. For example, if the requirement for a communication

8.8 OTHER REQUIREMENTS ISSUES 253

system is stated as a frequency division multiplex approach, then other op-
tions that the developer might prefer are basically nonresponsive. It might be
better if the customer asks for a choice between frequency division and time
division multiplexing, supported by a complete trade-off analysis between the
two. Once a customer provides a “predefined solution,” it also has to accept
responsibility if that solution turns out to be a bad one. This situation occurred
several years ago, when the government mandated the use of “Ada” as the
preferred programming language.

Incomplete Requirements. Incomplete requirements are a frequent prob-
lem area. The system developer, as the expert in any given field, should
recognize when requirements as initially stated are incomplete. The well-
known discipline of functional decomposition can aid the system developer
here. Each and every function and subfunction should have at least one (and
usually more than one) requirement. If no requirements are allocated to a
subfunction, we have an incomplete requirement. The answer to this problem
was embedded in the earlier discussion of essential steps. The developer, in
each such case, should set forth a list of “derived” requirements and have
them formally accepted by the customer. If it is difficult to obtain customer
acceptance, this may be a good area for a mandated trade-off study.

Stakeholders Not Sufficiently Involved. The immediate customer may
turn out not to be the final customer. All stakeholders (on the customer side)
should have an opportunity to provide and critique the requirements defined
for the system. These stakeholders should also be asked to formally “sign
off” on the last version of the requirements documentation. If they are not
able to, then perhaps there is a problem that needs to be debated and resolved.
The goal is to have all stakeholders involved, at an appropriate level, and for
a solid consensus to be reached.

8.8.2 An lllustrative Trade-off Study of Requirements

Barry Boehm, one of the leaders in both systems and software engineering, has
been a strong advocate of closer interactions between systems and software
engineering. In an important article [8.13], he conveys some observations
about the unequal positions of systems and software engineers in the early
stages of system design. Hardware, software, and systems engineers all need
to have a position at the table when considering the design and architectural
features of large-scale systems.

Boehm also discusses certain aspects of a contract between TRW and the
government regarding a difficult information query system, dating back to
the 1980s. The customer required a response time of less than one second.
Driven primarily by that singular requirement, it was estimated that the system
cost would be nearly $100 million. This was an alarming figure for every-
one, so a detailed trade-off analysis was undertaken that revealed that if the

254 REQUIREMENTS ANALYSIS AND ALLOCATION

response time requirement were changed to four seconds, there would be two
important consequences: (1) this response time would satisfy the users about
90 percent of the time, and (2) system development costs would drop to about
$30 million. So we have this astonishing result: a one-second response time
leads to a $100 million system, and a four-second response time leads to a
$30 million system, a “savings” of some $70 million, largely on the basis of
one requirement.

Although this is only one “data point,” it demonstrates the potential value
of questioning one or more requirements on the basis of the impacts on
the system cost and schedule. Treating the requirements as absolutely inviolate
precludes these types of considerations, which can be a critical part of the
process of real-world systems engineering.

8.8.3 Conclusion

The preceding discussion has emphasized the importance of requirements
analysis and allocation and the problems associated with requirements. Al-
though customer or user requirements are the touchstone for the systems
engineering effort, it is also true that problems with requirements suggest that
certain requirements be negotiated and changed. Living with requirements
that are ambiguous or cannot be satisfied, in the long run, decreases the like-
lihood of success of the project and its systems engineering activities. For
those requirements in that category, the PM and the CSE must enter a process
of discussion and negotiation to resolve any and all problems. This means
that despite the perspective that requirements are often taken as inviolate,
problems with requirements must be solved.

To some extent, the matter of changing or updating requirements has been
acknowledged. One such manifestation is in the so-called “spiral model” for
software development. This model explicitly revisits the requirements several
times to deal with problems in this domain. This is a step forward in the
context of the overall subject of software development and engineering.

Another step that has been taken to deal with requirements issues is that
of having a representative of the user or customer be part of the systems
engineering group. In this way, a direct and immediate link is established
with the customer, who is then able to respond to the issues that might be
raised with respect to interpretations and changes of requirements. Closer
linkages between the project and engineering activities and the customer is
also a major step forward in trying to deal realistically with what has been a
problem area for many years.

Finally, requirements relative to software have constituted large parts of our
systems as they have leaned more heavily on software solutions. Therefore,
software requirements specification and analysis have received a great deal
of attention in recent years [8.12].

In summary, the systems engineering team must treat requirements analysis
and allocation as an extremely important part of the systems engineering

QUESTIONS/EXERCISES 255

process. It must also be prepared to resolve difficulties with requirements and
not necessarily accept poor requirements as fashioned in concrete. A full and
open dialogue with the customer with respect to such issues helps to increase
the chances of success of the project.

QUESTIONS/EXERCISES

8.1

8.2

8.3

8.4

8.5

8.6

8.7

8.8

8.9
8.10

Define two additional steps in the process of requirements analysis, in
addition to the essential steps cited in this chapter.

Functionally decompose an automobile system. Define two require-
ments for each of the decomposed elements.

Identify and briefly describe two automated requirements analysis tools
that are available from software vendors, other than those mentioned in
this chapter.

Contrast the NASA perspective on handling requirements with the
approach taken by the Department of Defense.

Verify the compatibility between the stated MTBFs and the failure
rates in Figure 8.3. Given a system composed of four independent
subsystems with MTBFs of 200, 250, 500, and 1000 hours, what is the
MTBEF of the overall system?

A system with three independent subsystems has a total failure rate of
0.0108. We also know that the MTBFs of the subsystems are in the
ratio 2:3:4. What are the subsystem MTBFs and failure rates?

a. The total admissible error variance for a system is 70 and two
of the three subsystem root-mean-square (rms) errors are 4 (value
of x) and 6 (value of y). What is the largest acceptable integer
value of the third error source (z) if all error random variables are
additive and independent?

b. Recalculate your answer if the error model is based on the relation-
ship: total error =2x +y + z

Systems can be designed such that errors correspond to multiples of
standard deviation (sigma) values. If the resultant distribution were
normal (Gaussian), interpret numerically the intended consequences of
designing to the one-sigma, two-sigma, and three-sigma values.

Construct three additional examples of derived requirements.

Problems with requirements are almost always on our list of what went
wrong in building a system. Select three problems, and discuss the
reasons why we do not appear to be able to eliminate or mitigate them.

256

REQUIREMENTS ANALYSIS AND ALLOCATION

REFERENCES

8.1

8.2

8.3

8.4

8.5

8.6

8.7

8.8

8.9

8.10

8.11

8.12

8.13

United States General Accounting Office (GAO) Report for the Acting Secretary of the
Air Force, Defense Support Program, GAO/NSIAD-93-148 (1993). Washington, DC:
USGAO.

Systems Engineering, Military Standard 499B (Draft) (1991). Washington, DC: U.S.
Department of Defense.

Department of Defense (DoD) Directive 5000.1 and Instruction 5000.2 (1991). Wash-
ington, DC, February 23.

The NASA Mission Design Process (1992). Washington, DC: National Aeronautics and
Space Administration, NASA Engineering Management Council.

Phase C/D Requirements Specification for the Earth Observing System Data and Infor-
mation System (EOSDIS) (1990). Greenbelt, MD: Goddard Space Flight Center.

EDOS Contract Data Requirements List and Statement of Work (1992). Greenbelt, MD:
Goddard Space Flight Center.

CDOS Requirements Specification, Level 3 (1990). Greenbelt, MD: Goddard Space Flight
Center.

Integrated Computer-Aided Software Engineering (I-CASE) Solicitation (1992). Gunter
AFB, AL: Department of the Air Force, Standard Systems Center.

Mission Oriented Information System Engineering (MOISE) Solicitation, Request for
Comment (1992). Washington, DC: U.S. Coast Guard, Department of Transportation.
Eisner, H. (1988). Computer-Aided Systems Engineering. Englewood Cliffs, NJ: Prentice
Hall.

Requirements Analysis & Design Tool Report (1992). Hill AFB, UT: U.S. Air Force,
Software Technology Support Center.

Davis, A. (1990). Software Requirements—Analysis and Specification. Englewood Cliffs,
NI: Prentice Hall.

Boehm, B. (2000). “Unifying Software and Systems Engineering,” Computer Magazine
(March), 114-116.

—9

SYSTEMS ARCHITECTING:
PRINCIPLES

9.1 INTRODUCTION

Architecting a large-scale complex system is the centerpiece of systems engi-
neering. Without the systems engineering process, such architecting is likely
to be disorganized and unsatisfactory. With the systems engineering pro-
cess and perspective, it is more likely that a sound system architecture will
ultimately evolve.

In Chapter 1 (Figure 1.1), an overview of the systems approach was pre-
sented. This approach showed the following as key elements of architectural
design:

* Requirements

* Functional design of alternatives

* Analysis of alternatives

* Evaluation criteria

* Formulation of a preferred system architecture

In Chapter 2 (Figure 2.2), the architectural design process was expanded,
showing the following elements:

» Requirements

* Mission engineering
* Requirements analysis/allocation

257

258 SYSTEMS ARCHITECTING: PRINCIPLES

* Functional analysis/allocation

* Architectural design/synthesis

» System analysis

* Life-cycle costing

 Risk analysis

¢ Other system/subsystem considerations

» Formulation of a preferred system architecture

In Chapter 7 (Figure 7.4), inputs to the important step of analyzing and eval-
uating alternatives were defined, with the output representing the preferred
system architecture. In this chapter, we bring all these representations to-
gether into a coherent set of essential steps for developing a preferred system
architecture. We also show some examples and approaches preferred by other
investigators of this important process and issue.

9.2 A VIEW OF SYSTEMS ARCHITECTING

Any discussion of architecting large and complex systems would not be
complete without reference to the extraordinary and landmark treatise by
E. Rechtin on systems architecting [9.1]. Rechtin’s view is that “the core
of architecting is system conceptualization” and that there are four basic
approaches to the process of architecting:

1. The normative (pronouncement) methodology
2. The rational (procedural) method

3. The argumentative approach

4. The heuristic approach

The approach delineated in this chapter is a combination of the rational and
the heuristic approaches. The rational method is exemplified by the evalu-
ation framework discussed later in this chapter; the heuristics lie mainly in
how alternative systems are defined and also how a rating scheme is estab-
lished in order to assess the strengths and weaknesses of these alternatives. In
seeking the appropriate mix between these approaches, Rechtin suggests that
“the scientist, engineer and architect follow the heuristic: simplify, simplify,
simplify.”
Another key observation made by Rechtin is:

The essence of systems is relationships, interfaces, form, fit and function. The
essence of architecting is structuring, simplification, compromise and balance.

9.3 A NATIONAL AERONAUTICS AND SPACE ADMINISTRATION (NASA) PERSPECTIVE 259

The balance is achieved by the appropriate compromise between the following
types of factors:

* System requirements

* Function

e Form

o Simplicity
 Affordability

» Complexity

» Environmental imperatives
* Human needs

These factors can be said to represent a high-level set of evaluation criteria
for all types of systems.

In addition, Rechtin provides an interesting citation of notably successful
systems as well as a rather long list of heuristics, chapter by chapter. The
latter list is must reading for any and all Project Managers (PMs) and Chief
Systems Engineers (CSEs).

9.3 A NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
(NASA) PERSPECTIVE

NASA defines an architecture as [9.2]:

How functions are grouped together and interact with each other. Applies to the
mission and to both inter- and intra-system, segment, element, and subsystem.

In their mission design activities, NASA emphasizes the following:

* Requirements

* Decision making and evaluation criteria
» Optimization and descope options

» Robustness and flexibility

» Cost and schedule as a trade parameter
» Developing the cost plan and schedule
* Risk assessment and mitigation

* Establishing design margins

* Analyses and trade studies

 Technical performance measurement

260 SYSTEMS ARCHITECTING: PRINCIPLES

We will find some of these themes reiterated as we look at the formal process
of system architecting.

As indicated in earlier chapters, NASA looks at mission design in terms of
three early phases:

1. The conceptual design process: Prephase A
2. The mission analysis process: Phase A
3. The definition process: Phase B

If we examine closely the specifics for these phases, we see the following
purpose for Phase A:

The purpose of the Phase A study is to refine the mission and systems(s)
requirements, determine a baseline mission configuration and system architec-
ture, identify risks and risk mitigation strategies, identify the “best” candidates,
and select one.

Thus, it is clear that systems architecting and selection of a preferred archi-
tecture are carried out during Phase A. With respect to the Phase A study final
report, NASA requires that the topics listed in Exhibit 9.1 be covered.

Exhibit 9.1: NASA Phase A Study Document Topics

» Technology needs and development plan

 Refined and validated mission requirements

* Final feasibility assessment

* Disposal requirements

* Functional/operational description

* Hard ware/software distribution

* Design requirements

* Definition of top-level interfaces and responsibilities

» System/subsystem description

e Mission description

* Data handling requirements

* Launch vehicle requirements

» Mission operations

* Preliminary work breakdown structure

* Refined cost estimates and schedules

 Establishment of accountability for delivery of an end item and its per-
formance

» Apportionment of technical resources, the distribution of margins, and
allocation error budgets

9.4 ARCHITECTURE DESCRIPTIONS 261

* System-level block diagram, flight, and ground
» Maintenance and logistics requirements
* Top-level system architecture

This documentation must provide answers to the following types of questions:

Does the conceptual design meet the overall mission objectives?
Is the design technically feasible?

Is the level of risk acceptable?

Are the schedule and costs within the specified limits?

Do the study results show this option to be better than all others?

M.

NASA is explicit regarding the use of “appropriate and predetermined
weighted and prioritized evaluation criteria to select the best of the candi-
date designs that were evaluated.” Weighted evaluation criteria for this pur-
pose come up again later in this chapter as part of the recommended system
architecting process.

9.4 ARCHITECTURE DESCRIPTIONS
9.4.1 NASA Descriptions

We indicated in Chapter 8, “Requirements Analysis and Allocation,” that the
requirements for a system are almost always delineated by system function.
Therefore, more often than not, the system functions, at least at the top level,
are an input to the systems engineering team.

In many cases, the architectural description of the system consists of the
reiteration of the given system functions, along with the way in which those
functions, and the subsystems representing those functions, are intercon-
nected. As examples, Figures 9.1 and 9.2 show system architectures defined
by NASA for the EOSDIS and the EDOS systems [9.3, 9.4]. Both figures
are from the requirements specifications for the two systems, as defined by
NASA. We note the implicit emphasis on interconnections between functions,
extending as well to the physical locations of the functional capabilities. In
some cases, the architecture description is supplemented by the identifica-
tion of functional interfaces between a given system and other systems with
which it must interoperate. This is illustrated by Figure 9.3 for a NASA sys-
tem known as the PDSS (Payload Data Services System [9.5]). Types of data
and information flow in terms of functional interfaces are emphasized in this
description.

Although the previously cited functional architectures provide valuable
information to the systems engineering team, the position taken here is that
this information is only an input to the true architecting of a system. System

Eos
Platform(s

7\

.
II\\

SN cpos

FDF POIC ESA NASDA
Space
Station NASCOM
Freedom
Active
ICCs EMOC SPSC . IMC
SMC
FOS SDPS
CSMS
EOSDIS science network
EOSDIS Comm | | I | [
& IST toolkits
Invegigator Other WANs & LANs SCFs Users |
—— Local connections facilities [L L

[Shaded areas are responsibility
of EOSDIS

Note: Investigator facilities, SCFs and
users may be located at a single site

Figure 9.1.

Remote
users

Non-Eos
data
center

lllustrative architecture description—EOSDIS.

EOSDIS comm.
IMC & data access
toolkits

9.4 ARCHITECTURE DESCRIPTIONS 263

LEGEND EDOS Data Production Facility,
Fairmont, West Virginia

= Real-time return link data Rate buffered data

Production data |:| EDOS functions

Real-time forward link data

EDOS DPF functions

|:| Other MO & DSD systems
= = = QOperations management data Communications I/F

e DIF-DPF Retum Ik data ransier || Extemal systems

. System support
White Sands Complex

Operations

Data interface facility management

Soom

EDOS DIF functions

Communications I/F X
o - Production data
System S 1 | R —— - (= handling
o = S
1 R -
: Operations 1 Data archive
1 | white Sands | EREETa : —
- ground £ 1
1 terminal Data capture 1 Goddard Space Flight Center
[} function ¢ [}
1 o 1
1 m S
! |Second TDR Return link [:
I_ ground processing 1 ! H
1 terminal 1 EOS
1 -1 M-I operations DAAC
I Forward link . e center
: processing | 1
H Test sytem 1 I ———— —————— 1
r1 &prelaunch : ! ! !
checkout = —
: 1 System | Ecom SN network
| 1 management | management control
T [} E center center
1
Ecom ¢ Sustaining engineering
1 1 1 1 ° facility
1 Test sytem =711 1 H 1 m
1 &prelaunch 1 1 EDOS SEF functions
I checkout = I Aster ICC I
: : : Communications I/F
:_ Deep space 1 1
1 network (1 } International System support
1 partners NOAA
1
1
L Ground .
1 network Operations
1 . i management
1
1
Wallops == L
1| orbital tracking Engineering support
station — E—

Figure 9.2. lllustrative architecture description—EDOS.

architecting takes several steps beyond this type of description, the key el-
ement of which is to define a technical approach for the implementation of
each of the defined functions as well as an overall selection of the best ap-
proach (most cost-effective system) for the combination of functions. Such
a selection defines the preferred system architecture. This position is made
more concrete in the sections that follow in this chapter as well as in the
Appendix.

WSC

+ GMT data

« Status & control

TDS

+ S-band CADUs
+ Ku-band CADUs

‘l/ ‘l/ ISMAC

+ Reconfiguration data
-+ VCID, APID tables

Simulated:
+ Core systems data
+ P/L health & status
+ Ancillary

PTC

CCC

@ JSC

+ Stored S-band requests

—

Core systems data
P/L health & status
Ancillary

+ Training data

—_—

+ CCC stored S-band data

ESC

« Stored
S-band data

-~
* Bitstream data
+ P/L VCDUs/packets
+ LZP data sets
+ Training data
+ Ancillary —_—
+ CCC stored S-band data
+PILH&B

Payload
data
services
system

+ Mission planning data
* Reconfiguration data

POIC

—

uSocC

+ Bitstream data
« Ancillary data
« VCDU/packets
+ LZP data sets
* Training data
+ CCC stored S-band data

—_—

« LZP data set requests
« Stored S-band requests

—

User
operations
facilities

-
+ Bitstream data
+ Ancillary data

« LZP data set requests
« Stored S-band requests

CCC
@ JSC

« Stored
S-band data

Cmd & telemetry
database

Pl e]

Figure 9.3. PDSS functional interfaces.

- VCDU/packets —_— International
+ LZP data sets partners
+ Training data

~<—— - LZP data set requests

9.4 ARCHITECTURE DESCRIPTIONS 265

9.4.2 Department of Defense Descriptions

The Department of Defense (DoD) has formulated a framework for Com-
mand, Control, Communications, Computer, Intelligence, Surveillance, and
Reconnaissance (C4ISR) architecture, development and integration [9.6].
This C4ISR Architecture Framework (now called DoDAF) is an attempt to:

» Ensure that architectures developed by different parts of the DoD are
interrelated

* Set forth uniform methods for describing various types of information
systems

» Provide guidance on describing architectures

The last point is of particular importance. In fact, the Framework is built
largely upon the idea that there are three major perspectives on how to describe
an architecture, namely:

» The operational view
* The systems view
* The technical view

These views can be thought of as giving us different types of information about
the same architecture, rather than being different architectures themselves.
The most useful architecture description is one that consists of multiple
views, providing an “integrated” notion of the architecture. The more precise
definitions of the above three views of an architecture are [9.6]:

The operational architecture view is a description of the tasks and activities,
operational elements, and information flows required to accomplish or support
a military operation

The systems architecture view is a description, including graphics, of systems
and interconnections providing for, or supporting, warfighting functions

The technical architecture view is the minimal set of rules governing the ar-
rangement, interaction, and interdependence of system parts or elements, whose
purpose is to ensure that a conformant system satisfies a specified set of re-
quirements

The Framework also provides a detailed explanation of the roles of each
of these architectural views. Of special importance is the notion that an
architecture description must provide explicit linkages between these various
views. This leads to an integrated view as well as supporting the notion of
interoperability, which has been a problem for DoD systems for many years.

266 SYSTEMS ARCHITECTING: PRINCIPLES

The Framework also shows a six-step process for building an architecture as
follows:

Step 1: Articulate the intended use of the architecture.

Step 2: Establish the scope, context, environment (and any other assump-
tions) of the architecture.

Step 3: Determine which characteristics the architecture needs to capture.

Step 4: Establish which architecture views and supporting products should
be built.

Step 5: Build the needed products.

Step 6: Use the architecture for its intended purpose.

Steps 4 and 5 above suggest that each architectural view is supported by sev-
eral products. That indeed is the case. In fact, there are a series of “Essential
Framework Products” and also a set of “Supporting Framework Products.”
These products are intended to convey critical information about the archi-
tecture. The reader is referred to the reference for the C4ISR Architecture
Framework [9.6] in order to gain a fuller understanding of the nature and
structure of this work.

9.4.3 IEEE Descriptions

The discussion of the C4ISR Architecture Framework cites an architecture
definition, attributed to the IEEE [9.6], as:

A structure of components, their relationships, and the principles and guidelines
governing their design and evolution over time

This definition is useful, but does not give the prospective architect a blueprint
for how to architect a system. Once an architecture has been formulated, it is
very likely to satisfy the broad definition cited above.

Yet another view of systems and their architectures is presented in the
IEEE standard for systems engineering [9.7]. In Chapter 7, we noted that the
IEEE expanded from four to five the key elements of the systems engineering
process, yielding the following:

Requirements analysis
Functional analysis/allocation
Synthesis

System analysis and control
Verification and validation

ANl e

9.4 ARCHITECTURE DESCRIPTIONS 267

The process ultimately produces a preferred system architecture, which the
IEEE defines as:

The composite of the functional, physical and foundation architectures, which
form the basis for establishing a system design [9.7].

In addition, the definition points the reader to requirements traceability and
allocation matrices that presumably connect the overall system design to
various aspects of the above-cited three architectures. Although definitions
of the above three subordinate architectures are provided in the standard,
it is difficult to see how to construct these architectures without seeing an
example or two. Nevertheless, one can accept the notion that “views” of the
architecture can be associated with the ideas behind “functional, physical and
foundation.” These views, by immediate observation, are not the same as
those developed by the DoD C3I (command, control, communications, and
intelligence) world, as discussed above.

As we move with the IEEE into the software domain, we find a standard that
focuses upon a recommended practice for architectural description [9.8]. This
standard explores “the activities of the creation, analysis, and sustainment of
architectures of software-intensive systems.” The standard makes the very
significant point that “concepts of architecture have not been consistently
defined and applied within the life cycle of software-intensive systems.”
Instead, it argues that it is indeed possible to describe architectures. These
descriptions can also be thought of as “views” of an architecture, even though
we may not be completely clear as to how to develop an architecture. Selected
views of an architecture may be illustrated, in the hardware case, by Figures
9.1 through 9.3 which have already been discussed. Thus, we are seeing
a difference between having a “single accepted framework for codifying
architectural thinking,” and “views” or “descriptions” of an architecture. We
attempt, in this chapter, to narrow this gap by setting forth a prescriptive
method for developing an architecture, whether it be related to hardware,
software, or a combination thereof.

9.4.4 Additional Selected Views

Here we provide more detailed information about views of architectures.
We have introduced the original C4ISR (now consistently called DoDAF)
approach to an architectural framework with the top-level orientation related
to the (a) operational view, (b) systems view, and (c) technical view. These
more detailed views have been called “products” and have been broken down
into essential and supporting products. These products are shown in Table 9.1.

The annotated version of the supporting products can be found in
Table 4.1 of the original referenced document.

A quite different set of views can be associated with the method of archi-
tecting suggested next in this chapter (section 9.5). Briefly, that method takes

268 SYSTEMS ARCHITECTING: PRINCIPLES

TABLE 9.1 Essential and Supporting Products for Views [9.6]

a. Essential Views (with annotations)
AV-1—Overview and Summary Information:
Scope, purpose, intended users, environment depicted, analytical findings, if
applicable
AV-2—Integrated Dictionary:
Definitions of all terms used in all products
OV-1—High-Level Operational Graphic Concept

High-level graphical description of operational concept (high-level

organizations, missions, geographic configuration, connectivity, etc.)
OV-2—Operational Node Connectivity Description:

Operational nodes, activities performed at each node, connectivities and

information flow between nodes
OV-3—Operational Information Exchange Matrix:

Information exchanged between nodes and the relevant attributes of that
exchange, such as media, quality, quantity, and the level of interoperability
required

SV—1—System Interface Description:

Identification of systems and system components and their interfaces, within

and between nodes
TV—1—Technical Architecture Profile:
Extraction of standards that apply to the given architecture

b. Supporting Views (without annotation)
OV-4—Command Relationships Chart
OV-5—Activity Model
OV6a—Operational Rules Model
OV6b—Operational State Transition Description
OV7—Logical Data Model
SV2—Systems Communication Description
SV3—Systems Matrix
SV4—System Functionality Description
SV5—COperational Activity to System Function Traceability Matrix
SV6—System Information Exchange Matrix
SV7—System Performance Parameters Matrix
SV8—System Evolution Description
SV9—System Technology Forecast
SV10a—Systems Rules Model
SV10b—Systems State Transition Description
SV10c—System Event/Trace Description
SV11—Physical Data Model
TV2—Standards Technology Forecast

Note: These products are expected to be updated over time.
Key:

AV = All Views

OV = Operational View

SV = Systems View

TV = Technical View

9.5 ESSENTIAL STEPS OF SYSTEM ARCHITECTING 269

TABLE 9.2 Additional Views Related to Cost-Effectiveness Architecting [9.9]

View 1. Requirements Satisfaction

View 2. Risk and Requirements

View 3. Interoperability

View 4. Cost by Function

View 5. Cost versus Requirements

View 6. Sensitivity to Changes in Criteria Weights

View 7. Effectiveness versus Risk

View 8. Effectiveness versus Human Factors

View 9. Effectiveness versus RMA

View 10. Effectiveness versus Residual Performance Factors

the approach that we are in search of a cost-effective architecture from among
a set of alternatives. The top-level views in that regard are the:

* Synthesis view
* Analysis view
* Cost-effectiveness view

An additional set of ten views is shown in Table 9.2.
We see that each of these views is oriented toward a quantitative description
of an architecture.

9.5 ESSENTIAL STEPS OF SYSTEM ARCHITECTING

Two earlier representations, Figures 1.1 and 2.2, have shown the development
of an architecture as the first top-down design or synthesis of the system in
question. It is an attempt to come to terms with the critical design choices
for the system as a whole. Thus, for this author, the essence of architecting
is defining these top-level design choices and placing them in a context
that establishes a set of reasonable alternatives that can then be evaluated.
Following this notion, consider the structure of Exhibit 9.2 [9.10].

Exhibit 9.2: System Functions and Design Choices for a
Communications System

Top-Level System Functions Design Choices (Alternatives)
1. Multiplexing/demultiplexing D11, D12

2. Modulation/demodulation D21, D22

3. Switching and routing D31, D32, D33

4. Encryption/decryption D41, D42

5. Formatting/signal conversion D51, D52, D53

6. Control and monitoring D61, D62

7. Recording and playback D71, D72

8. Satellite/terrestrial communications D81, D82

270 SYSTEMS ARCHITECTING: PRINCIPLES

This table shows a set of eight top-level functions of a communications
system. For each of these functions, the system architect considers one or more
design approaches that satisfy the requirements, as stated for the function.
Thus, for the first function, the two design approaches are represented as
D11 and D12, where D11 is the first design approach for function 1 and
D12 is the second design approach for function 1. To generalize, D1J is
the Jth design approach for function /. Since we are operating at the top-
level functional breakdown, these approaches are considered fundamental
to the overall system design and represent true alternatives from which we
will eventually construct a preferred architecture. As an example, for the
mux/demux function number 1, D11 might be frequency division multiplexing
whereas D12 could be time division multiplexing.

From the above discussion, we are able to immediately see the com-
binatorial nature of the architectural design problem. If all of the design
combinations were admissible, then in principle there could be as many as
2)2)(3)(2)(3)(2)(2)(2) = 576 combinations, each of which represents a sin-
gle architectural choice for the system. When we introduce the fact that not
all combinations are internally compatible or interoperable, the number of
combinations (admissible alternatives) narrows, and usually in a rather dra-
matic way. On this basis, two critical tasks of the architect are to (a) set forth
the various design approaches, and (b) look for ways to reduce the number of
alternatives (combinations) to be considered. Given that the architect is able
to do part (a) of the above, the approach delineated here reduces the number
of alternatives by placing them in a cost-effectiveness context, specifically
the one shown in Figure 7.6. From that perspective, a practical number of al-
ternatives is constructed and then evaluated by the systems engineering team,
led by the chief systems engineer (CSE).

If we return to the thirty elements of systems engineering, as defined in
Chapter 7 (Exhibit 7.1), we can describe the essential steps of system archi-
tecting by means of elements 3 through 10, namely:

* Requirements analysis/allocation (element 3)

* Functional analysis/decomposition (element 4)

* Architecture design/synthesis (element 5)

* Alternatives analysis/evaluation (element 6)

* Technical performance measurement (element 7)
* Life-cycle costing (element 8)

* Risk analysis (element 9)

» Concurrent engineering (element 10)

This “short list” does not mean that some of the other thirty elements of
systems engineering are completely neglected during the process of archi-
tecting; rather, it suggests that these above eight elements are critical and
must be part of the process. Each of these essential steps is briefly described
in the following sections.

9.5 ESSENTIAL STEPS OF SYSTEM ARCHITECTING 271

9.5.1 Requirements Analysis/Allocation (RAA)

As discussed in some detail in the previous chapter, requirements analysis and
allocation is an essential element in systems engineering. It is also critical in
terms of architecting a system. The high-priority aspects of RAA have been
delineated in Section 8.6. Here we emphasize, with respect to architecting,
that requirements are allocated to the functionally decomposed blocks of the
system. These allocated requirements come from two sources:

1. They are provided directly in the requirements document that comes
from the system user or acquisition agent.

2. They are derived from the preceding by the system developer, thus
“filling in the blanks” where necessary.

The result of RAA then establishes at least one functional requirement for
each decomposed functional block.

9.5.2 Functional Analysis/Decomposition

The preceding step cannot be taken until the system has been decomposed
into its functional blocks. This part of the process assures that functional
decomposition has been carried out as a precursor to RAA. Other aspects of
functional analysis and allocation have been described in Chapter 7, Section
7.3.4. We note also the primary position of functional analysis and allocation
in Military Standard 499B (see Section 7.2.1).

9.5.3 Architecture Design/Synthesis

This step involves the synthesis of architectural alternatives. These alterna-
tives flow from trying to define a set of choices that satisfy the requirements in
each functional area. The conceptual problem that is attendant to this step can
be described as follows. If there are a total of eight functional areas, and there
are three design choices for each such functional area, then in principle there
are a total of 3% or 6,561 (!) possible architectures. This, of course, makes no
sense, so we try to narrow the field of possibilities through the addition of
constraints.

One method for achieving this rather rapidly is depicted in Table 9.3. This
table shows only three alternative architectures, mapped against the functional
areas and the subordinate requirements in these areas. These three alternatives
are:

1. A low-cost, minimum-effectiveness alternative
2. A “baseline” alternative
3. A high-performance, (high-cost) alternative

272 SYSTEMS ARCHITECTING: PRINCIPLES

TABLE 9.3 Alternative Architectures versus Functions and Requirements

Alternative Architectures

Functions and Low-Cost Baseline High-Performance
Requirements System System System

Function 1
Req. 1.1
Req. 1.2
Req. 1.3

Function 2
Req. 2.1
Req. 2.2

Function 3 How is each
Req. 3.1 system designed
Req. 3.2 to satisfy
Req. 3.3 the requirements?
Req. 3.4

Function N

Req. N.1
Req. N.2
Req. N.3

Req. NNM

The entries in Table 9.3 describe how the alternative is designed to sat-
isfy the key functional requirements. This notion was first presented in
Figure 7.5. The idea is to bracket the reasonable alternatives by the low-
cost and high-performance architectures to set the stage for evolving a cost-
effective “baseline” alternative. All such alternatives satisfy the full set of
requirements as defined by the customer. In this synthesis and top-level de-
sign process, there is a minimum of formal analysis and evaluation, which
is the next step in the process. A greater number of alternatives may also be
considered and evaluated by formal Taguchi and response surface methods
that the reader may wish to explore but that are outside the scope of this
presentation.

9.5.4 Alternatives Analysis/Evaluation

Given the alternative architectures as defined in the previous step, these
alternatives are then analyzed and evaluated with the objective of deriving
a preferred system architecture. We refer again for this process to Figure
7.4. This figure shows a series of inputs to the analysis and evaluation of

9.5 ESSENTIAL STEPS OF SYSTEM ARCHITECTING 273

alternatives, namely:

* Architecture design and synthesis
* The key elements of:
— Technical performance measurement (TPM)
— Life-cycle costing
— Risk analysis
— Concurrent engineering
— Systems engineering management
* The ancillary elements of:
— Integrated logistics support (ILS)
— Reliability, Maintainability, Availability (RMA)
— Test and evaluation (T&E)
— Quality assurance and management (QA&M)
— Specialty engineering
— Preplanned product improvement (P31)
 Evaluation criteria
* An evaluation framework

The figure also shows the output as the preferred system architecture.

The basic evaluation framework brings together the final form of the al-
ternatives evaluation process, as shown in Table 9.4. This table shows three
alternatives as columns and the evaluation criteria as rows. With such a ma-
trix, we evaluate each alternative with respect to how well the evaluation
criteria are satisfied. The evaluation criteria are weighted to capture the likely
possibility that they are not all equally important. We chose to select these
weighting factors so that they add to unity to normalize the numbers and
simplify the evaluation. Weighting factors are developed by group decision-
making processes [9.10] involving the systems engineering team. Customer
inputs are highly desirable but usually difficult to obtain in quantitative terms.

The individual “cells” in the matrix contain two basic numbers. The first
is the rating of the given alternative with respect to the stated evaluation
criterion. The second is the product of the rating and the weight given to the
evaluation criterion. This latter product is then summed down the column to
place in evidence the final score for each alternative. This score is the basis
for comparing the alternatives against each other.

There are many options available for the rating system that one might
select. Three such options are:

1. A scale of 1to 10
2. A Likert scale with the numeric values of 0, 2, 4, 6, 8, and 10

3. S college scoring system of A, B, C, D, and F, equivalent to numeric
scores of 4,3,2,1,and 0

274 SYSTEMS ARCHITECTING: PRINCIPLES

TABLE 9.4 System Alternatives Evaluation Framework

Alternative Architectures

System A System B System C

Evaluation Criteria
Criteria Weights (W) Rating W x R Rating W xR Rating W xR
Criterion 1 0.08 7 0.56 8 0.64 9 0.72
Criterion 2 0.10 6 0.60 6 0.60 8 0.80
Criterion 3 0.13 6 0.78 7 0.91 7 0.91
Criterion 4 0.09 5 0.45 7 0.63 8 0.72
Criterion 5 0.12 8 0.96 9 1.08 10 1.20
Criterion 6 0.07 6 0.42 7 0.49 7 0.49
Criterion 7 0.11 7 0.77 6 0.66 5 0.55
Criterion 8 0.10 9 0.90 6 0.60 4 0.40

1.00 5.44 5.61 5.79

Table 9.4 shows the first of these options and the resultant scores for the
three alternatives. Each of the given scores can then be compared with
the understanding that the maximum score for any given alternative is 10.
The illustrative numbers in the table show preferences for Systems C, B, and
A, in that order.

With this evaluation framework, one may then ask the question: Where do
the evaluation criteria come from? These criteria can be derived from several
sources simultaneously:

* The requirements document for the system
* Possible evaluation criteria defined by the customer

» The measures of merit and effectiveness (MOMs and MOEs) that may
have been developed

 The technical performance measures (TPMs) for the system

In general, the TPMs (which are measurable) and other possibly subjective
factors, as well as cost measures, may make up the full set of evaluation
criteria. Examples of evaluation criteria for a communications system and
a transportation system are listed in Exhibit 9.3. The broad factors cited by
Rechtin (see Section 9.2) [9.1] may be said to apply to all systems, independent
of the domain in which they are operative.

Exhibit 9.3: Illustrative Evaluation Criteria

A Communications System
* Availability
* Bandwidth
 Capacity

9.5 ESSENTIAL STEPS OF SYSTEM ARCHITECTING 275

» Connectivity

» Expandability

* Grade of service
* Life-cycle costs

* Number of channels (by type of channel)
* Quality of service
* Reliability

* Response time

* Risk

* Security

* Speed of service
* Survivability

* Throughput

A Transportation System

 Capacity

* Capacity-to-demand ratio
» Comfort and convenience
* Economic impacts

» Environmental effects
 Frequency of service

* Growth capability

* Life-cycle costs

* Quality of service

* Reliability of service

* Risk

o Safety

» Security

e Speed

* Trip time

In a study of the future development of the U.S. airport network, the Trans-
portation Research Board of the National Research Council addressed directly
the matter of criteria for its evaluation and developed the following set of four-
teen criteria:

1. Capacity
2. Safety
3. Cost

276 SYSTEMS ARCHITECTING: PRINCIPLES

Competition

Flexibility

Time

Frequency

Reliability

Comfort and convenience
10. Congestion and pollution
11. Other environmental concerns
12. Compatibility

13. Funding

14. Management

e S AN

So whether we are dealing with a very large system, such as the national
airport network, or a smaller system, such as a radar, the issue of developing
and using a coherent list of evaluation criteria remains approximately the
same.

9.5.5 Technical Performance Measurement (TPM)

Technical performance measurement plays a prominent role in Military Stan-
dard 499B. Exhibit 9.4 lists some of the TPM references in that standard.

Exhibit 9.4: Selected TPM References in Mil-Std-499B

Section 4.6.8. Technical Performance Measurement (TPM). The contractor
shall establish and implement TPM to evaluate the adequacy of architec-
tures and designs as they evolve to satisfy the requirements and objectives
selected for tracking. TPM shall be used to identify deficiencies that jeop-
ardize the ability of the system to meet a performance requirement. Actions
taken due to deficiencies are dependent on whether the technical parameter
is a requirement or an objective. The level of detail and documentation
shall be commensurate with the impact on cost, schedule, and performance
of the technical program.

Section 4.6.8.1. Implementation of TPM. The contractor shall track the
achievement to date for each technical parameter as the analyses, design
and development activity progresses. In the event that the achievement to
date value falls outside the tolerance band, the variation shall be deter-
mined by comparing the achievement to date against the corresponding
value on the planned value profile. In the event progress in the technical
effort supports identification of a different current estimate than previously
predicted, a new profile and current estimate shall be developed. The cur-
rent estimate shall be determined from the achievement to date and the
remaining schedule and budget. Risk assessments and analysis shall be

9.5 ESSENTIAL STEPS OF SYSTEM ARCHITECTING 277

updated to reflect changes in the TPM profiles and current estimates, and
impacts on related parameters.

Section 4.6.8.2. TPM on Requirements. For identified deficiencies, analyses
shall be performed to determine the cause(s) and to assess the impact on
higher level parameters, interface requirements, and system cost effective-
ness. Alternative recovery plans shall be developed with cost, schedule,
performance, and risk impacts fully explored. For performance in excess
of requirements, the marginal cost benefit of the performance delta and op-
portunities for reallocation of requirements and resources shall be assessed
and an appropriate course of action implemented.

Section 4.6.8.3. TPM on Objectives or Decision Criteria. The contractor
shall perform TPM on objectives and decision criteria as contained in their
SEMP (systems engineering management plan)

In general, TPMs are the key measures of technical performance of the
system, as previously illustrated in Chapter 7 (Section 7.3.7). They allow
the systems engineering team to carry out the evaluation ratings shown in
Table 9.4. They deal with technical factors of the system and should be
measurable in a technical sense. Their measurement may be exceedingly
complex, requiring detailed modeling and simulation to compute the values
of TPMs. TPMs, in general, depend on a series of other parameters known
as technical performance parameters (TPPs). A method for relating TPPs
to TPMs, developed by this author, is Parameter Dependency Diagramming
(PDD) [9.10]. The PDD procedure is illustrated in Section 9.8.

9.5.6 Life-Cycle Costing

Life-cycle costs for the architectural alternatives may also be considered
evaluation criteria. These costs may be broken down into subcategories, if
considered desirable. Generally accepted subcategories include

» Research, development, test, and evaluation (RDT&E) costs
* Procurement or acquisition costs
» Operations and maintenance (O&M) costs

There are several different ways in which costs may be factored into the
evaluation framework discussed before. Three such ways include

1. Costs as formal evaluation criteria
2. Costs in the context of effectiveness-to-cost ratios
3. Costs as a separate, but related, consideration

278 SYSTEMS ARCHITECTING: PRINCIPLES

In the first approach, costs are listed among the various evaluation criteria and
are weighted along with these other criteria. The weights reflect how important
costs are in relation to the other criteria. In the second approach, formal
effectiveness-to-cost ratios are computed in order to select one architecture
over another. For the latter case, there is no integration of effectiveness with
the cost metrics, at least in a formal sense.

There are times when cost considerations are elevated as well to a more
global set of considerations, which themselves can be included as evaluation
criteria. Such cost-related considerations include the extent to which the
alternative:

 Supports overall economic growth

* [s amenable to financing

» Minimizes environmental costs

» Minimizes the dislocation of people, and so forth

As with the technical performance measures and their related evaluation
criteria, costs must be estimated for the various alternatives under evaluation.
This might imply the development of a first-order life-cycle cost model that
can be refined during later stages of system development. For purposes of
architecture comparison, a full life-cycle model is generally not necessary, or
even feasible.

9.5.7 Risk Analysis

In Chapter 7, we noted the four key areas of risk attendant to engineering
large-scale systems, namely:

1. Schedule risk

2. Cost risk

3. Performance risk
4. Societal risk

Risk must be considered one of the evaluation criteria for most complex
systems. Measurement of risk is a nontrivial matter, but it has been considered
in great detail in a variety of books and articles [9.10, 9.12, 9.13], ranging in
scope from broad systems considerations to software development.

9.5.8 Concurrent Engineering

Concurrent engineering is viewed here as a crucial part of architecting a
system because it brings together all the necessary technical and management
skills needed to design, test, produce, and operate the system. This broad

9.5 ESSENTIAL STEPS OF SYSTEM ARCHITECTING 279

range of system considerations must be present to assure that some important
features are not neglected. As an example, many design engineers assume
that matters of production and producibility are easily resolvable. By having
a production engineer as part of the concurrent engineering team and effort,
we attempt to assure that such an assumption is valid. If it is not, then perhaps
other alternatives will become more attractive. The basic idea is that the
CSE must have the broadest range of technical and management inputs as
part of the architecting process. Additional information regarding concurrent
engineering can be found in Chapters 7 and 14.

9.5.9 lllustrative Example of Architecting Process

This section illustrates the core architecting process by using a concrete but
simplified example to demonstrate the essential steps. A more detailed version
of this example is also provided in the Appendix, Section AS.

The illustrative system is called a Severe Climates Anemometry System
(SCAS) [9.11], and it contains the six major functions, and a set of subfunc-
tions, as listed below:

1. Atmospheric Sensing

1.1 Wind speed
1.2 Wind direction
1.3 Barometric pressure

2. Mechanical Service

2.1 Instrument housing
2.2 Instrument orientation

3. Environmental Service
3.1 Ice control
4. Power Service
4.1 Main supply
4.2 Regulation/conditioning
4.3 Backup power
5. Indoor/Outdoor Transmission
5.1 Power
5.2 Signal
5.3 Physical linkages
6. Data Handling
6.1 Collection
6.2 Processing/storage
6.3 Reporting, distribution, and display

280 SYSTEMS ARCHITECTING: PRINCIPLES

As anext step, we are specifically interested in the fact that there are alternative
design choices that we can make in order to implement each of the functions
and subfunctions. We array our design choices in a tabulation that follows
from Table 9.1, and in this case, becomes Table 9.5.

We note that we are building three architectures, one each for a low-cost
system, a high-effectiveness system, and a baseline system. The latter is our
attempt at trying to find the “knee-of-the-curve” system, as illustrated in
Figure 7.5. The three architectures are constructed, in this case, at the sub-
functional level. For the first subfunction of wind speed sensing (subfunction
1.1), the architect selected a commercial-off-the-shelf (COTS) pitot tube.
In moving to the other two architectures, the architect added a hard-wired
transducer, and then a radio transducer. This was the choice of the architect
(or the architecture team) in order to add capability (effectiveness) in moving
from left to right on the table.

For the case of wind speed direction (subfunction 1.2), the architect decided
that all three alternatives should be based upon a simple shaft drive design
choice. Further, the same three design choices for subfunction 1.1 were used
in subfunction 1.3. Moving to subfunction 2.1, the architect went from an
aluminum solution to a molded composite solution, to composites that are
more compact and weigh less. Three different choices were made as well
for the orientation/position subfunction 2.2. The process of selecting design
choices for each subfunction continued until all functions and subfunctions
were considered.

The important point is that this core architecting process goes beyond
the mere articulation of system functions and subfunctions. It focuses upon
the design (synthesis) process whereby alternative design choices are made
at the subfunction level. Further, this is structured so as to produce only
three alternatives, but ones that have a cost-effectiveness basis for ultimately
choosing which of the three will turn out to be the preferred architecture.

In most cases, the architect thought that each architecture should have a
different set of design choices. In two, the same design choice was selected
across the board (i.e., for subfunctions 1.2 and 4.1) The selected choices were
based upon the expertise of the architect and his or her subject knowledge
in this particular domain. If a team is utilized to carry out this process, it is
likely that better solutions will be forthcoming, since a team is able to draw
upon the expertise of many instead of just one or two. In its very compact
form, Table 9.5 can be thought of as the “synthesis™ step in the top-level
architecting of a system. Each subfunction is addressed, moving from left
to right across the three alternative systems. Once the entire chart has been
filled in with alternative design choices, the architecting team must scan each
alternative from top to bottom in order to confirm that the selections, within
a system, are compatible and interoperable. If they are not, then changes
have to be made to assure harmonious intrasystem operation, that is, that the
selected design choices within a system will “play together.” If the team has
formulated more than three design choices for one or more subfunctions, it

TABLE 9.5 Alternative System Architectures for Anemometry System

Functions Subfunctions Low Cost Baseline High Effectiveness
1. Atmospheric Sensing 1.1 Wind speed sensing COTS pitot tube COTS pitot with Add radio transducer
transducer
1.2 Wind direction sensing ~ Simple shaft drive Simple shaft drive Simple shaft drive
1.3 Pressure sensing COTS pitot tube COTS pitot with Add radio transducer
transducer
2. Mechanical Service 2.1 Instrument housing Machined aluminum Add molded Less weight/compact
composites
2.2 Orientation/position Wind-vaned COTS bear Less tail boom length ~ High-precision bear/
balancing
3. Environmental Service 3.1 Ice control Analog feedback Add digitized control ~ Add process & heat
temperature control pipes
4. Power Service 4.1 Main power supply Commercial 220/110 V. Commercial 220/110 V. Commercial 220/110 V
COTS
4.2 Power regulation/ Conditioners/rods Add ground fault Add lightning arrester
conditioning interrupter

5. Indoor/Outdoor
Transmission

6. Data Handling

4.3 Backup power
5.1 Power transmission
5.2 Signal transmission

5.3 Physical linkages

6.1 Data collection

6.2 Data processing/storage

6.3 Reporting, distribution,

and display

Battery-instruments
Stranded wire harness

Foil-shielded wire
harness

Shaft/conduit, pressure
tube

Potential and indoor
Pneumatic cell

Manual database entry

Physical meters manual

Gas generator with
sensor
Stranded wire harness

Coaxial with slip rings

Add shielded
transducer

Magnetic position
sensor

Automatic computer
control

GUI + modem access

High-reliability diesel
with switch
Custom slip rings

2-way radio, no wiring

Minimum
shaft-physical
support

Optical position sensor

Automatic computer
control

DBMS + packet
network

282 SYSTEMS ARCHITECTING: PRINCIPLES

may then be appropriate to expand the number of alternative architectures to
be considered.

The next step in the architecting process is to formally evaluate the three
alternatives in terms of their costs and effectiveness. This step is the “analysis”
part of the process, and it is clearly a critical one. Although the architect has
attempted to construct low-cost, high-effectiveness, and “knee-of-the-curve”
architectures, it is only by analyzing the three alternatives that we are able to
see what the cost-effectiveness profiles turn out to be.

A simplified analysis procedure is illustrated in Table 9.6, following the
construction suggested previously in Table 9.4. Five specific criteria are de-
veloped, namely:

» Criterion 1 Performance

e Criterion 2 Human factors
» Criterion 3 Maintainability
e Criterion 4 Risk

e Criterion 5 Other

Weights are developed for these criteria, and the three alternative architectures
are evaluated on a scoring system of from 1 to 10. Each score is multiplied by
the corresponding weight, and the resulting products are summed to obtain a
total score for each of the alternatives. At the same time, the costs for these
alternatives are determined. In this example, the results are:

Alternative Score Costs
Low-cost system 6.8 200K
Baseline system 8.1 250K
High-effectiveness system 8.4 400K

The question at this point becomes: which of the above three alternative
architectures does the architect wish to put forth as the preferred architecture?
If we treat cost as an independent variable (CAIV), we can plot the above
scores (as a measure of effectiveness) against the costs to obtain the points
shown in Figure 9.4. This graph illustrates the pattern shown in Figure 7.5.
The low-cost system is verified to have both the lowest cost ($200K) and
the lowest effectiveness. The high-effectiveness system has the highest cost
($400K), and also the highest effectiveness. The baseline system is in the
middle, showing a significant effectiveness improvement over the low-cost
system, but without a major increase in cost. Indeed, for this example, the
baseline system “looks like” the knee-of-the-curve solution. The graph of
Figure 9.4 is the third element in the architecting process, since it provides
an important “view” of the cost-effectiveness results of the first two steps
(i.e., synthesis and analysis). The alternative that the architect puts forth as

TABLE 9.6 Evaluation Framework for Architecting lllustrative System

Low Cost Baseline High Effectiveness

Evaluation Criteria Weights Score Weight x Score Score Weight x Score Score Weight x Score
Performance 0.3 6 1.8 8 24 9 2.7
Human factors 0.2 7 1.4 8 1.6 9 1.8
Maintenance 0.2 7 1.4 9 1.8 9 1.8
Risk 0.2 8 1.6 8 1.6 6 1.2
Other 0.1 6 0.6 7 0.7 9 0.9

Sums 1.0 6.8 8.1 8.4

Costs of alternatives 200K 250K 400K

284 SYSTEMS ARCHITECTING: PRINCIPLES

High
effectiveness
9 /.
Baseline /
* [)]
8 []
Effectiveness 7
score
([
\ Low
cost
6
5
100 200 300 400 500

Cost, thousands

Figure 9.4. Cost-effectiveness view of system.

the preferred architecture now depends upon what the customer is ultimately
looking for as well as the constraints under which he may be operating.
Indeed, if you, the reader, imagine that you are the customer, you will be able
to construct a case for any of the three as preferred, based upon the scenario
that you envision (see Question/Exercise number 9.8).

The example described here is a “boiled down” version of the one in
the Appendix, with some modifications in the interest of simplifying the
presentation. By referring to the Appendix, one will see that there are actually
a set of subcriteria for each of the five major criteria, as listed below in
Table 9.7. Other variations on these themes, as for example in the scoring
system, may be employed by the architecting team to explore sensitivities,
as suggested earlier. Also, as the team is able to spend the time required
for a true and objective set of measurements of effectiveness, confidence in
the architectural solution will grow, in most cases. If not, a change in the
alternatives may be called for.

9.5.10 Interoperability

The method of architecting developed and described here provides some
insights into how to deal explicitly with the matter of interoperability within a
system. Looking back at the “synthesis” chart of Table 9.5, we see alternative

9.5 ESSENTIAL STEPS OF SYSTEM ARCHITECTING 285

TABLE 9.7 Top-Level and Subordinate Evaluation Criteria for Anemometry
System [9.11]

e Evaluation Criterion 1—Performance
1.1 Vaning function/stability
1.2 Average power consumption
1.3 Impact resistance/robustness
1.4 Speed of data processing
1.5 Data availability
1.6 System availability
1.7 System reliability
1.8 Useful life
e Evaluation Criterion 2—Human Factors
2.1 Ease of use
2.2 Operator safety
2.3 Bystander safety
o Evaluation Criterion 3—Maintainability
3.1 Frequency of scheduled maintenance
3.2 Ease of maintenance
3.3 Complexity of assembly
e Evaluation Criterion 4—Risk
4.1 Cost risk
4.2 Schedule risk
4.3 Performance risk
4.4 Technological risk
e Evaluation Criterion 5—Other
5.1 Manufacturability
5.2 Market potential/demand
5.3 Appearance/aesthetic quality
5.4 Expandability/upgradability

design choices being made for each function and subfunction. Generally,
these selections are made by looking at a subfunction and moving left to
right across the page to see how that subfunction might be instantiated for
all three architectures (i.e., low cost, baseline, and high effectiveness). After
this has been completed, we move down to the next subfunction and use the
same process. By this procedure, eventually the entire chart is constructed,
as shown in Table 9.5. Then we are in a position to check for interoperability
between the design choices made for each of the suggested architectures. For
example, we start with the low-cost architecture and compare the selected
design choices with each other, top to bottom, and two at a time. For each
pair, we ask: Are these two design choices interoperable with each other? We
continue to do this for all pairs, which means that moving down one row, we
have n(n — 1)/2 such choices. For the chart in Table 9.5, n = 15, so that there
are 105 questions of this type for each column. If all the answers show that
the design choices are interoperable, then we move on to the next column. If
some of the design choices are not interoperable, then other choices need to

286 SYSTEMS ARCHITECTING: PRINCIPLES

be made that are, in fact, interoperable. This is a systematic way of assuring
interoperability throughout and explicitly as part of the synthesis process.

Having explored in this chapter a variety of ways to look at the matter of
architecting a system, we are now in a position to formulate the following rec-
ommended short-form definitions of an architecture, a preferred architecture,
as well as architecting:

Architecture. An organized top-down selection and description of design
choices for all the important system functions and subfunctions, placed
in a context to assure interoperability and the satisfaction of system
requirements

Preferred Architecture. A choice among several architectures that is bal-
anced, cost-effective, and most congruent with the stated requirements
and what the customer is seeking, as tempered by program and/or system
constraints

Architecting. A process with the following simplified steps: (1) functional
decomposition of the system, (2) construction of design choices for all
important functions and subfunctions (synthesis), (3) evaluation of the
resultant interoperable system alternatives (analysis), and (4) display of
the results so as to facilitate the selection of a preferred, cost-effective
architecture from among the constructed alternatives.

9.6 THE 95% SOLUTION

All alternative architectures referred to before are designed to satisfy all
stated system requirements. That is, the low-cost, high-performance, and
baseline architectures are developed such that all requirements are met. A
“95% solution” is a term, coined by this author, to refer to a system archi-
tecture that, instead of satisfying a// of the system requirements, is designed
to meet only 95% of the requirements. The number 95, in this context, is
more heuristic than it is precise. The notion flows from Rechtin’s observation
[9.1] that extreme requirements work against the balance necessary in archi-
tecting systems, “creating unexpected misfits and deficient performance.”
Indeed, Rechtin makes his point very strongly: “[E]xtreme requirements
should remain under challenge throughout system design, implementation and
operation.”

On this basis, as well as trade-off statements made in various standards, an-
other conceptual alternative architecture to the low-cost, high-performance,
and baseline alternatives has been added, namely, the 95% solution, which
satisfies 95% of the stated requirements. To achieve satisfaction of the ad-
ditional 5%, extreme prices may have to be paid in terms of schedule and
cost. Put another way, if the system developer can build a system that satisfies

9.7 TRADE-OFFS AND SENSITIVITY ANALYSES 287

95% of the requirements, and at the same time reduce both schedules and
costs by significant amounts, then it is an obligation of the developer to make
that alternative known to the customer. In such a situation, the 95% alter-
native would be added to the evaluation framework shown in Table 9.4 and
that alternative would be compared to the other three alternatives in terms of
the set of evaluation criteria. Special notations would have to be added to
make it clear as to the precise requirements that have not been met as well as
the level of performance that is achieved by the 95% solution in relation to
these requirements. With the 95% solution, the developer is basically saying
to the customer: If I had the freedom to back off from the stated requirements,
here is the system architecture that I would recommend that would represent
the best balance among requirements, performance, cost, and schedule. Al-
though this approach flies in the face of many current system procurement
practices, it also implicitly suggests that perhaps a reformation of some of
these practices is in order.

9.7 TRADE-OFFS AND SENSITIVITY ANALYSES
Trade-off and sensitivity analyses are carried out to:

* Select approaches at the functional level in the architecting process
* Select specific design choices at the subsystem level

» Determine how sensitive the overall system selection is to changes in the
weights and ratings given to the various architectural alternatives

9.7.1 Military Standard 499B Perspective

Military Standard 499B [9.4] cites the following rationale for what are called
trade studies:

Trade Studies (Para. 4.6.1). Desirable and practical trade-offs among stated user
requirements, design, program schedule, functional and performance require-
ments, and life cycle costs shall be identified and executed. Trade-off studies
shall be defined, conducted and documented at the various levels of func-
tional or physical detail to support requirements, functional decomposition/
allocation, and design alternative decisions or, as specifically designated, to
support the decision needs of the systems engineering process. The level of
detail of a study shall be commensurate with cost, schedule, performance, and
risk impacts.

We note that trade-offs involving user requirements and other system char-
acteristics are definitively called for. From this perspective, requirements are
not necessarily assumed to be fixed and inviolate.

288 SYSTEMS ARCHITECTING: PRINCIPLES

In the important area of synthesis, the standard identifies the following
areas as important in terms of trade studies:

« Establish system/configuration item (CI) configuration(s).
* Assist in selecting system concepts and designs.

» Support make or buy, process, rate, and location decisions.
» Examine proposed changes.

» Examine alternative technologies to satisfy functional/design require
ments, including alternatives for moderate- to high-risk technologies.

* Evaluate environmental and cost impacts of materials and processes.

» Support decisions for new products and process developments ver-
sus nondevelopmental items (NDI) or commercial-off-the-shelf (COTS)
products and processes.

» Evaluate alternative physical architectures to select preferred products
and processes.

e Support materials selection.

* Select standard components, techniques, services, and facilities that re-
duce system life-cycle cost and meet system effectiveness requirements
(force structure and infrastructure impacts that emphasize supportabil-
ity, producibility, training, deployment, and interoperability must be
considered).

9.7.2 A Radar Detection Trade-Off Example

To illustrate the matter of trade-off analysis from a technical point of view,
we briefly discuss here an example of detection of a radar pulse signal. We
assume a simple threshold detection scheme whereby a target is declared to
be present when, at the sampling time, the threshold (7') is exceeded. If the
threshold is not exceeded, the decision is that no target was present.

Under the general assumption of a pulsed system with additive independent
Gaussian noise:

a. When a target is present, the threshold detector “sees” a signal-plus-
noise Gaussian distribution with a mean value of voltage equal to V" and
a noise (power) variance equal to V.

b. When a target is not present, the threshold detector “sees” a noise
Gaussian distribution with a mean value of zero and a noise (power)
variance equal to V.

In situation (a), we are interested in the probability of detection, P(d), that
is, the probability that we will correctly detect a target when it is present.
In (b), we wish to compute the false alarm probability, P(fa), that is, the
probability that when no target is present, we may incorrectly conclude that

9.7 TRADE-OFFS AND SENSITIVITY ANALYSES 289

I/ Threshold, T

p(x)

| i i
_ | “Signal + Noise”
~<— Signal V +— Distribution

“Noise Alone”

oistrir@n i S\\ e, = Py (det
| \ \
.
X X

|
Area = P (fa)
|

Figure 9.5. Signal Plus Noise and Noise Alone Density Functions.

there is a target. This can occur when, at the time of sampling, the noise alone
is sufficiently large so as to exceed the set threshold.

9.7.2A Density Functions

The overall situation may be depicted by the diagram of Figure 9.5. Here
we see two Gaussian probability density functions. One is the “noise-alone”
distribution, which has a mean value of zero since there is no signal present.
It also has a standard deviation, sigma, whose square represents the noise
power, N. The other distribution relates to the “signal plus noise” situation
in which the noise adds to the signal pulse of magnitude V. Thus this latter
distribution has a mean value of V' and the same shape as the “noise-alone”
distribution. We also see the threshold set at some value, 7. We can visually
see the detection probability P(d) as the area under the “signal plus noise”
density function to the right of the threshold. Also, the false alarm probability
P(fa) is the area under the “noise-alone” density function to the right of the
threshold. In this case we erroneously decide that a signal is present when it
is not. That is the basic definition of a false alarm.

Trade-offs between detection and false-alarm probabilities can occur when
the threshold value (7), the pulse amplitude (7), and the noise power () are
varied. The following three cases further explain this idea.

Case One: Increase Threshold; Pulse Amplitude and Noise Power
Remain the Same

As we increase the detection threshold, less of the signal-plus-noise distri-

bution remains to the right of the threshold value. Therefore, the detection

probability decreases. This is an undesirable effect. However, less of the

noise-alone distribution is to the right of the threshold, so the false-alarm

probability also diminishes. This is a desirable consequence. Therefore,

290 SYSTEMS ARCHITECTING: PRINCIPLES

by the increase in threshold, we are “trading” to obtain better false-alarm
performance [a lower P(fd)], but at the expense of detection performance [a
lower P(d)]. A natural question is: Is there a threshold selection that allows
us to meet both the detection and false-alarm probability requirements? By
performing this trade-off analysis, that is, stepping the threshold through
increasing and decreasing values, we determine the answer to this question.

Case Two: Increase Pulse Amplitude; Threshold and Noise Power
Remain the Same

In general, the pulse amplitude is increased by increasing the power trans-
mitted by the radar. This normally increases the cost of the radar system.
The signal-to-noise ratio increases and the signal-plus-noise distribution
has a larger mean value, but the same noise variance N. In this case, the
detection probability increases for a target at the same range. Another way
to look at this case is to say that for the same P(d) as in Case One, we can
see a target at a longer range. Pumping more power out of the transmitter
results in an improved detection capability. But if the noise power remains
the same, so will the false-alarm probability.

Case Three: Decrease Noise; Pulse Amplitude and Detector Threshold
Remain the Same

Decreasing the noise may be achieved by designing a lower-noise front-end
receiver. This increases cost and may also increase development time if we
are pushing the state of the art. Less noise shows up as a decrease in the
variance (N) of both the signal-plus-noise and the noise-alone distributions.
This means that the detection probability increases and the false-alarm
probability decreases! These are both desirable consequences. However,
we must pay the price of the low-noise receiver and there are some natural
limits as to how far the noise can be reduced.

We may also explore trade-offs that involve changing two of the preceding
three key parameters at the same time. Such an exploration will reveal ad-
ditional variations in the detection and false-alarm probabilities. In addition,
other implementations and models may be considered (such as the integration
of pulses), but the same basic notions of trade-offs remain. One is trying to
find a balanced solution that satisfies user requirements. A more quantitative
treatment of this particular example can be found in a variety of texts [9.9],
as well as the discussion that follows.

9.7.2B Quantitative Trade-Offs

Various qualitative relationships between the key variables, P(d), P(fa), N,
T, and V were explored in the three cases cited above. We can expand these
notions into quantitative terms by referring to a table of the normal (Gaussian)

9.7 TRADE-OFFS AND SENSITIVITY ANALYSES 291

TABLE 9.8 Changes in Detection and False Alarm Probabilities as the
Threshold Changes

Threshold (volts) Detection Probability False Alarm Probability
3 .9938 .0668

4 9772 .0228

5 9332 .0062

6 .8413 .00135

7 6915 .00025

distribution. The reader is asked to retrieve such a table from an appropriate
source.

Specifically, and by way of illustration, we can see how the detection and
false alarm probabilities change as the threshold is changed. Changing values
in these probabilities represent a trade-off as a function of changes in the
selected threshold. We will assume a noise power of 4 watts and a pulse
voltage of § volts, and we will change the value of threshold from 3 to 7 volts,
in steps of one volt. We will then see how the two probabilities change as this
threshold is modified. Table 9.8 shows the results of these changes.

We thus can see the detection probability decreasing as the threshold in-
creases, in quantitative terms. A smaller probability of detection is an undesir-
able feature. The false alarm probability decreases, however, as the threshold
increases. This is a desirable consequence. Therefore, we are able to develop
a trade-off relationship that shows how these two key probabilities are traded
off against one another as a function of changes in the value of the threshold.
An additional trade-off relationship can be seen by varying the noise and
seeing what happens to the detection and false alarm probabilities. We will
assume the threshold (7) to be 5 volts and the pulse amplitude (V) to be 8
volts, and we will start with a sigma equal to 3.5 rms (root-mean-square)
units, and run it to sigma equal to 1, in increments of 0.5. The results are
shown in Table 9.9.

We observe from these numbers that as the noise decreases, there is an
increase in the detection probability and also a decrease in the false alarm
rate. Both represent improvements in system performance. So we are able to

TABLE 9.9 Changes in Detection and False Alarm Probabilities as Noise

Changes
RMS Noise (sigma) Detection Probability False Alarm Probability
3.5 .803 0765
3.0 .8413 .0475
2.5 .8849 0228
2.0 9332 .0062
1.5 9772 .0005

1.0 99865 .000003

292 SYSTEMS ARCHITECTING: PRINCIPLES

see, in numerical terms, how important decreases in noise can be. We get a
double positive effect by decreasing noise in this scenario and model.

We can continue to explore such trade-offs, in numerical terms, by changing
the pulse voltage, ¥, and calculating the effects on detection and false alarm
probabilities. It is left as an exercise to confirm the numbers shown in Table
9.8 and Table 9.9. The reader is also urged to examine other trade-offs between
the five key variables, N, V, T, P(d), and P(fa). Thus, this compact model can
serve as a powerful tool for generating and displaying trade-off relationships.

9.7.3 Sensitivity to Criteria Weights

The evaluation framework shown in Table 9.4 reveals that the results are
obviously sensitive to:

a. The selection of criteria
b. The weighting of these criteria
c. The ratings of each system

As an example of the criteria-weight sensitivity, let us assume that the criteria
weights are changed as follows:

Weight Change
Criteria From To
1 0.08 0.1
2 0.1 0.1 (no change)
3 0.13 0.1
4 0.09 0.1
5 0.12 0.1
6 0.07 0.1
7 0.11 0.2
8 0.1 0.2

With the same set of ratings, the total scores for each of the three alternatives
now become

¢ Alternative A: 7.0
¢ Alternative B: 6.8
¢ Alternative C: 6.7

Thus, the modified criteria weights completely reverse the order of preference.
This may have occurred, for example, if criteria 7 and 8 were related to cost
and together comprise 40% of the total weight. If cost were considered that

9.8 MODELING AND SIMULATION 293

important, the preferred alternative would shift from C to A. This example
leads to a simple but very important conclusion: No final system selection
should be made without extensive sensitivity analyses!

9.8 MODELING AND SIMULATION
9.8.1 Performance Measurement and Software

Most of the time, modeling and simulation techniques are employed in or-
der to calculate technical performance measures (TPMs) and to carry out
trade-off studies between key measures and system parameters. The radar sit-
uation involving the detection of pulses in the presence of noise, discussed in
Section 9.7.2, serves as a good example of how a model may be used to
determine system performance.

The model of the detection process may be expanded to include the normal
processing of pulses from the point at which they leave the transmitter to their
reception at the threshold detector. Such a model may be constructed as a
Parameter Dependency Diagram (PDD), a process developed by this author
to model and analyze complex systems [9.10]. We start a PDD by identifying
the key output parameters that we wish to compute. In the radar situation, these
are the probability of detection, P(d), and the false-alarm probability, P(fd),
as cited earlier. For each of these outputs, we then ask the question: What do
these parameters depend on? As shown in Figure 9.6, P(d) depends on three
parameters: noise power (N), signal voltage (V'), and detection threshold (7).
In a similar vein, P(fa) depends on N and 7', but not V. All of these dependent
parameters are also known as technical performance parameters (TPPs). If
we continue to work backwards from these TPPs (N, V, and T), we can
determine their dependent parameters until we come to the input signal,
5(in), and the parameters on which it depends. This latter dependency is also

Other
TPPs T
o—] S(in)

b4

o P(d)

T — P(a)

il

Figure 9.6. lllustrative parameter dependency diagram (PDD).

294 SYSTEMS ARCHITECTING: PRINCIPLES

known as the radar range equation, with the following TPPs:

e Power transmitted, P(¢)

 Gain of receiving antenna, G(7)

* Gain of transmitting antenna, G(¢)

» Wavelength, A.

* Target cross section strength, o

* Receiver processing power gain, G
* Receiver power processing losses, L
e Range to target, R

The blocks in the FDD implicitly represent relationships or equations that
relate the input parameters to the output parameters. If we are operating in
the frequency domain, the boxes can be thought of as the transfer functions
relating inputs to outputs. In all cases, the PDD is constructed initially without
knowing the precise relationship between inputs and outputs. The structure of
the PDD, however, makes it very clear as to what the key parameters are and
the known or unknown relationships among these parameters. If a relation-
ship is currently unknown, then a modeling effort is required to determine
the necessary equations. The PDD is therefore a “roadmap” that explicitly
shows the TPMs, the TPPs, and the known or unknown relationships between
them. It is a performance “model” that represents how the key measures and
parameters interrelate. Given the PDD and the necessary equations, the sys-
tems engineer is now in a position to carry out extensive trade-off studies and
sensitivity analyses.

The preceding Parameter Dependency Diagramming (PDD) procedure is
but one of many modeling techniques. If a model is particularly complex,
the system engineer may wish to move to simulation, either by building a
simulator to apply to the situation at hand or by using an existing, commer-
cially available, simulation package. If workable in terms of the problem, the
latter is highly recommended because there are numerous software packages
available, at reasonable cost, to the systems engineering team. A list of such
packages is provided in Exhibit 9.5 [9.15, 9.16, 9.17]. For the reader who is
interested in the perspectives of one of the industry leaders in modeling and
simulation, it is recommended that the words of A. Pritsker be taken very
seriously [9.18].

Modeling and simulation is a specialized and rather complex subject, but
it is essential that the systems engineering team master a variety of tools and
techniques to be in a position to evaluate system performance on a quantitative
basis. Until the system, or portions thereof, is actually built, there is really
no other choice but to depend on modeling and simulation for performance
assessments. The systems engineering team that faces this issue squarely will
be competitive in the world of building large-scale systems. Those who do
not are likely to be behind the power curve.

9.8 MODELING AND SIMULATION 295

Exhibit 9.5: Selected Modeling and Simulation Software [9.15, 9.16,

9.17]

Name of Software Package

Builder/Publisher of Software

Achilles

ADAS

ALSSII

AutoMod

BATCHES

Best-Network

CADmotion

Cinema Animation System
COMNET II.5

DISC++

ESL
Extend
FACTOR
FMS++

G2

GEMS-1I

General Simulation Sys.
GENETIK

GPSS/H

GPSS/PC

HOCUS

INMOD 1.8

INSTRATA

InterSIM
ISEE-SIMNON

ISI-PC

LANNET IL.5

MAST Simulation Environ
Micro Saint & Animation
micro-GPSS

MODSIM II

MOGUL

MOR/DS

NETWORK II.5
Packaging Lines Sim.Sys
Pascal Sim

PASION

In-Motion Technology

Cadre Technologies Inc.

Productivity System

AutoSimulations Inc.

Batch Process Technologies Inc.

Best Consultants

SimSoft Inc.

Systems Modeling Corp.

CACI Products Company

Texas Tech University; Industrial
Engineering Department

ISIM Simulation

Imagine That Inc.

Pritsker Corporation

Texas Tech University; Industrial
Engineering Department

Gensym Corp.

Lodestone II Inc.

Prediction Systems Inc.

Insight International Ltd.

Wolverine Software Corp.

Minuteman Software

P-E International PLC

Technical University—Sofia, Bulgaria

Insight International Ltd.

OLM Holding Company

Engineering Software Concepts Inc.

Extech Ltd.

CACI Product Company

CMS Research Inc.

Micro Analysis/Design Simulation S/W

Stockholm School of Economics

CACI Product Company

High Performance Software Inc.

Holden-Day Publishing Company

CACI Products Company

Pritsker Corporation

University of Southhampton, UK

S. Raczynski, Mexico

296 SYSTEMS ARCHITECTING: PRINCIPLES

Exhibit 9.5: Selected Modeling and Simulation Software [9.15, 9.16,
9.17] (Continued)

Name of Software Package Builder/Publisher of Software

PC Simula Simula a.s., Norway

PCModel SimSoft

PERCNET Mitchell & Gauthier Associates
ProModel/PC Production Modeling Corp. International
Proof Animation Wolverine Software Inc.

Q+ AT&T Bell Laboratories

QASE RT Advanced System Technologies Inc.
SES/workbench Scientific and Engineering Software Inc.
SIGMA The Scientific Press Inc.

SIMAN Systems Modeling Corp.
SIMFACTORY II.5 CACI Products Company

SIMNET II SimTec Inc.

SIMNON SSPA Systems, Sweden

SIMNON Engineering Software Concepts Inc.
SIMSCRIPT II.5 CACI Products Company
SIMSTARTER Network Dynamics Inc.

SLAM/TESS Pritsker Corporation

SLAMSYSTEM Pritsker Corporation

Teamwork/SIM Cadre Technologies Inc.

XCELL+ Pritsker Corporation

9.8.2 Modeling and Simulation in the Department of Defense

Some years ago, it might have been said that modeling and simulation (M&S)
was “rediscovered” within the Department of Defense (DoD), based in part
on the relative scarcity of money as well as the sheer value of these tools
in designing and building large-scale systems. Terms like “synthetic envi-
ronments” were used to support this rediscovery, which made a lot of sense
then and makes even more sense today. Some aspects of measuring the per-
formance of systems could be done only within the context of modeling and
simulation. An example would be what is now called National Missile De-
fense. There is no way we could demonstrate the capabilities of that type of
system, and its widespread advanced technologies, without a great deal of
M&S.

If we look at the situation today, we see a lot of emphasis on understanding
and refining our acquisition practices. One ingredient in that process is M&S,
and therefore we also see the emergence of an Acquisition Modeling and
Simulation Master Plan [9.19]. This plan is an attempt to “improve M&S

9.9 OTHER ARCHITECTURES AND TOOLS 297

support to DoD acquisition for defining, developing, testing, producing, and
sustaining capabilities” [9.20]. Some twenty-seven specific actions were set
forth in order to support this intent. The basic purposes of such actions were
cited as to:

» Support M&S activities beyond individual programs
» Support joint capabilities and systems-of-systems
* Remove M&S obstacles, and provide new approaches

» Support the positive interactions between DoD organizational compo-
nents

Beyond these purposes, the master plan addresses five objectives. These are
to:

Objective 1. Provide necessary policy and guidance.
Objective 2. Enhance the technical framework for M&S.
Objective 3. Improve model and simulation capabilities.
Objective 4. Improve model and simulation use.
Objective 5. Shape the workforce.

These activities are most welcome, especially as we have discovered that the
world in which we now have to defend ourselves continues to change, at times
rather drastically.

9.9 OTHER ARCHITECTURES AND TOOLS
9.9.1 Other Architectures

We have explored two architectural notions and constructs in some detail in
this chapter. The first is this author’s recommended approach, which is based
on three well-defined steps and views:

* Synthesis
* Analysis
e Cost-effectiveness

A detailed illustration of this approach is presented in section 9.5.9, which
describes the three key elements and the selection of a preferred architecture
from among a set of alternatives. Seeking, defining, and evaluating alterna-
tives represent an integral part of the author’s seven aspects of the Systems
Approach (see section 7.1).

298 SYSTEMS ARCHITECTING: PRINCIPLES

A second approach, known as DoDAF (Department of Defense Architec-
tural Framework) and discussed earlier, is built on three architectural views:

* An operational view
* A systems view
* A technical view

Each of these has subordinate views. Over time, we are going to continue to
build on these well-accepted concepts. For an overview, see DoDAF docu-
mentation in the form of [9.6]:

Volume 1: definitions and guidelines
Volume 2: descriptions of each architecture product
Deskbook: additional information

In this section, we briefly note that there are indeed other notions that deal with
architectures and architecting. One has been called the MoDAF approach,
built and advanced by the United Kingdom Ministry of Defence. MoDAF
attempts to extend DoDAF, principally by clarifying the precise nature of
inputs and outputs, paying special attention to interoperability, and adding
some new perspectives. The latter include:

* A strategic view
* An acquisition view
* A relationship to enterprise architecting

Since both DoDAF and MoDAF are dynamically changing, other new dimen-
sions of MoDAF can be expected on a continuing basis.

Yet another notion in the architecting domain is that of developing enter-
prise architectures. An enterprise architecture (EA) can be thought of as an
assemblage of software and hardware that supports the current and future
business areas of the overall enterprise. An example of an approach to formu-
lating an EA can be found at the highest levels of government, where, on behalf
of the White House, the Office of Management and Budget (OMB) has been
working on the Federal Enterprise Architecture (FEA). This business-driven
notion applies across a set of functional areas, such as [9.21]:

a. Budget formulation and allocation
b. Information processing and sharing
c. Performance measurement

d. Collaboration between agencies

e. E-government

f. Component-based architectures

9.9 OTHER ARCHITECTURES AND TOOLS 299

An EA perspective at the “state” level has been articulated as [9.22]:

An Enterprise Architecture (EA) provides a strategic planning framework that
relates and aligns information technology (IT) with the business functions that
it supports.

Thus we see the inclusive scope of EA, dealing with all of the functions/
business areas of the enterprise, and how they need to be supported both
currently and into the future. This broad scope often implies that the EA
becomes the province of the CIO (Chief Information Officer) of the enterprise.
Equivalent notions apply to an EA in the commercial sector, with appropriately
defined business areas.

Yet another architecture notion is the service-oriented architecture (SOA).
This approach requires the ability to exchange information to and from dis-
parate systems, creating services that can be deployed rapidly. In effect, SOA
allows us to reliably “tap into” a set of existing information systems from
remote locations using network connectivity. The Defense Information Sys-
tems Agency (DISA) has cited the SOA as an “architecture built primarily
upon network available services” [9.23]. An SOA-based service thus needs
a search capability, security, collaboration, interoperability, data accessibil-
ity, loose coupling, decentralization, and an appropriate implementation of
standards. As of this writing, DISA was playing a key role within the DoD
to make the SOA a widespread reality. If successful, it will make large con-
tributions to the C*I (command, control, communications, computers, and
intelligence) world and provide for the rapid provision of system capabilities
using smaller and more modular systems. It will also help to reduce duplica-
tions of applications and systems within and between enterprises and agencies.
Communities of practice are also expected to help move this concept and its
associated technologies and standards forward in a deliberate and productive
manner.

9.9.2 Some Additional Tools

This author has been a strong advocate of the use of modeling and simulation
tools to represent and analyze the behavior of complex systems. In Chap-
ter 7, we saw a related topic—computer tool evaluation and utilization—as
one of the thirty basic elements of systems engineering. In Chapter 8, we
noted that one of the eight essential steps of requirements engineering is
“automation of requirements analysis and allocation.” Earlier in this chap-
ter, we discussed Parameter Dependency Diagramming as a recommended
approach. This chapter has also paid special attention directly to the overall
topic of M&S. Another book by this author [9.24] contains a chapter on di-
agramming, namely, “Thinking through Pictures,” as a way to help examine
and manage complex systems. Continuing investments in M&S demonstrate

300 SYSTEMS ARCHITECTING: PRINCIPLES

TABLE 9.12 Companies that Provide Modeling Language—Related Products

Artisan
I-Logix
Popkin

Sparx Systems
Telelogic
Vitech
Zachman

the need for such tools and confirm that they are making a substantial contri-
bution.

Only two additional and specific approaches to modeling will be cited
here, the Unified Modeling Language (UML) and the Systems Engineering
Modeling Language (SysML). They are related to each another, and one
might say they occupy a new and special place in the analysis of systems
[9.25]. These languages, as expected, have some common elements, but they
also have their own unique features. Indeed, it is conventional wisdom that
SysML represents a subset of UML 2.0. Nonetheless, it appears that SysML
occupies a more forward-looking position with considerable momentum and
many supporters.

Diagrams are a central feature in SysML, with special emphasis on struc-
ture, behavior, requirements, and parametrics. Starting with these, we wish to
“model” all significant aspects of systems, including their doctrine, organiza-
tion, training, materiel, leadership, personnel, and facilities (DOTMLPF), as
cited in the system acquisition standard known as 5000.2 [9.26].

A nonprofit organization named Object Management Group (OMG) is a
key player in the field, especially as it, along with others, advances the state
of the art with respect to SysML. The reader is urged to make beneficial use
of the OMG Web site [9.27] and the information that it provides.

On the vendor side, many forward-looking software companies are offering
excellent products that deal with UML, SysML, and related tools. A brief list
is provided in Table 9.12. These companies can be reached via a conventional
search leading to their Web sites:

A conventional search will reveal other companies that provide software
that can be considered related to UML, SysML, and the various architectural
approaches mentioned in this chapter.

9.10 SUMMARY

This chapter focused on the key systems engineering element of systems
architecting. As suggested, this element is a cornerstone of the systems en-
gineering process. Strong emphasis has been placed on the generation and
evaluation of alternatives, and on avoiding the tendency to leap to judgment

QUESTIONS/EXERCISES 301

with respect to a preferred system architecture. The roles of evaluation crite-
ria, an evaluation framework, technical performance measurement, trade-off
and sensitivity analyses, and modeling and simulation were also discussed.
An attempt has been made to focus on principles as well as on an illustra-
tive demonstration of how these principles are converted into practice. The
Appendix shows several additional examples of how these principles may be
applied to a variety of systems architecting situations and problems.

QUESTIONS/EXERCISES

9.1

9.2

9.3
9.4

9.5

9.6

9.7

9.8

9.9

9.10

Contrast and discuss how an architect designs a house or building with
the systems architecting approach of this chapter.

Contrast and discuss the process of architecting with that of carrying
out all of the thirty elements of systems engineering.

Architect a personal computer system.

Use the architecting approach defined here to select a cost-effective
a. automobile

b. project management software system

¢. modeling and simulation software system

Write a three-page review of the essentials of E. Rechtin’s book (see
the References).

Cite a dozen evaluation criteria for
a. an automobile

b. a house

¢. a system of your choice

Architect and engineering (A&E) firms architect buildings of various
types and then engineer them. In what ways does that relate to the
building of systems, as described in this as well as earlier chapters?

The illustrative architecture in this chapter (Section 9.5.9) suggests that
any of the three alternatives might be preferred, depending upon the
scenario you envision. Define three scenarios that would likely lead to
each of the three alternatives as the preferred architecture.

Confirm the detection and false alarm probability numbers in Tables
9.8 and 9.9.

Write a three-page paper comparing the current DoDAF and MoDAF
approaches to architecting. Which approach do you find more satisfy-
ing? Why?

302

SYSTEMS ARCHITECTING: PRINCIPLES

REFERENCES

9.1
9.2

9.3

9.4

9.5

9.6

9.7

9.8

9.9

9.10

9.11

9.12

9.13

9.14

9.15

9.16
9.17

9.18

9.19

9.20

9.21

Rechtin, E. (1991). Systems Architecting. Englewood Cliffs, NJ: Prentice Hall.

The NASA Mission Design Process (1992). Washington, DC: National Aeronautics and
Space Administration, NASA Engineering Management Council.

Phase C/D Requirements Specification for the Earth Observing System Data and Infor-
mation System (EOSDIS) (1990). Greenbelt, MD: Goddard Space Flight Center.

Earth Observing System (EOS) Data and Operations System (EDOS) Statement of Work
(1992). Greenbelt, MD: Goddard Space Flight Center.

Payload Data Services System (PDSS) Operations Concept Document and Development
Specification (1992). National Aeronautics and Space Administration, Marshall Space
Flight Center.

C4ISR Architecture Framework, version 2.0 (1997). Washington, DC: Architectures
Working Group, U.S. Department of Defense (DoD), December 18.

Standard for Systems Engineering, IEEE P1220 (1994). Piscataway, NJ: Institute of
Electrical and Electronics Engineers (IEEE) Standards Department.

Draft Recommended Practice for Architectural Description, IEEE P1471/D5.2, (1999).
New York: Institute of Electrical and Electronics Engineers (IEEE), December.

Eisner, H. (2004). “New Systems Architecture Views.” Paper presented at the 25th
National Conference of the American Society of Engineering Management (ASEM),
Alexandria, VA, October 20-23.

Eisner, H. (1988). Computer-Aided Systems Engineering. Englewood Cliffs, NJ: Prentice-
Hall.

The architecting of this particular system was carried out by Richard C. Anderson,
a student at The George Washington University, using the procedure defined by this
author. The original description of and architecture for this system is provided in Section
A.5 of the Appendix.

Henley, E., and H. Kumamoto (1981). Reliability Engineering and Risk Assessment.
Englewood Cliffs, NJ: Prentice Hall.

Charette, R. (1989). Software Engineering Risk Analysis and Management. New York:
Multiscience Press.

Systems Engineering, Military Standard 499B (Draft) (1991). Washington, DC: U.S.
Department of Defense.

Swain, J. (1991). “World of Choices: Simulation Software Survey,” OR/MS Today (Oc-
tober): 81-102.

Swain, J. (1993). “Flexible Tools for Modeling,” OR/MS Today (December): 62—78.
Swain, J. (2001). “Power Tools for Visualization and Decision-Making,” OR/MS Today
(February): 52-63.

Pritsker, A. (1990). Papers, Experiences, Perspectives. West Lafayette, IN: Systems
Publishing.

Department of Defense, Office of the Under Secretary of Defense (Acquisition, Technol-
ogy and Logistics) (2006). “Acquisition Modeling and Simulation Master Plan.” Issued
under the authority of the Systems Engineering Forum, April 17.

Schaeffer, Mark D. (2006). Foreword to Department of Defense, Office of the Under
Secretary of Defense (Acquisition, Technology and Logistics), “Acquisition Modeling
and Simulation Master Plan.” Issued under the authority of the Systems Engineering
Forum, April 17.

See www.whitehouse.gov/omb.

9.22
9.23
9.24
9.25
9.26

9.27

REFERENCES 303

See www.vita.virginia.gov.

See www.disa.mil.

Eisner, H. (2005). Managing Complex Systems—Thinking Outside the Box. Hoboken,
NIJ: John Wiley & Sons.

Friedenthal, S. (2005). Systems Modeling Language (SysML) Overview, 21 slides, April
20; see sanford.friedenthal@lmco.com.

U.S. Department of Defense (2003). Operation of the Defense Acquisition System. In-
struction 5000.2. Washington, DC: DoD, May 12.

See http://syseng.omg.org.

— 10
SOFTWARE ENGINEERING

10.1 INTRODUCTION

A headline in the business section of the Washington Post [10.1] declared “Fi-
delity Says It Reported Wrong Prices.” The Fidelity was Fidelity Investments
and it apparently provided out-of-date information on the value of its mutual
funds. The reason? It was “because of a computer software glitch, Fidelity
reported.” The impact of this glitch was not divulged, but it very likely had
many investors rather unhappy.

This type of problem—some variety of computer software glitch—is expe-
rienced every day across the country. Our systems contain increasing amounts
of software and we have not yet been able to migrate software development
from mostly art to mostly engineering or science. There are many reasons
for this problem, ranging from the fast-moving pace of the state of the art
in software creation to lack of corporate infrastructures that adequately sup-
port the processes and products inherent in software development. For these
reasons, we treat software engineering, defined herein as a subset of systems
engineering, in a special and separate chapter. This chapter provides only an
overview of software engineering, which itself is an appropriate subject for
an entire book [10.2, 10.3, 10.4]. This overview attempts to capture selected
highlights of software engineering in terms of dominant issues that are faced
by industry practitioners.

It is also recognized that software development and engineering, in the
main, developed without an explicit connection to the methods and disciplines
of systems engineering. Thus, we are at least partially concerned with the

305

306 SOFTWARE ENGINEERING

relationship between systems and software engineering. This matter is also
recognized in a software standard (Mil-Std-498) discussed in the next section.

10.2 STANDARDS

Standards play an important part in both systems and software engineering.
We explored Military Standard 499B in relation to systems engineering in
previous chapters. With respect to software engineering, we briefly examine
the following four standards: (1) Mil-Std-498; (2) DOD-Std-2168; (3) ISO
Standards; and (4) IEEE Standards.

10.2.1 Mil-Std-498

This is a landmark standard established by the U.S. Department of Defense
(DoD) [10.5], building on an earlier DoD Standard known as Mil-Std-2167A
[10.6], which had a major influence on how companies developed software
for the DoD as well as for other parts of the government, that is, government
civil agencies.

The table of contents for the general requirements for software development
is shown in Exhibit 10.1. This exhibit provides an overview of the scope of
this standard. Under item 4.1, the detailed software development process is
delineated, as shown in Exhibit 10.2.

Exhibit 10.1: General Requirements of DoD Software Standard

4.1 Software development process
4.2 General requirements for software development

4.2.1 Software development methods
4.2.2 Standards for software products
4.2.3 Reusable software products
* 4.2.3.1 Incorporating reusable software products
* 4.2.3.2 Developing reusable software products
4.2.4 Handling of critical requirements
e 4.2.4.1 Safety assurance
* 4.2.4.2 Security assurance
* 4.2.4.3 Privacy assurance
* 4.2.4.4 Assurance of other critical requirements
4.2.5 Computer hardware resource utilization
4.2.6 Recording rationale
4.2.7 Access for acquirer review

Exhibit 10.2: The Software Development Process

a. Project planning and oversight
b. Establishing a software development environment

10.2 STANDARDS 307

. System requirements analysis

. System design

. Software requirements analysis

. Software design

. Software implementation and unit testing

. Unit integration and testing

. Computer Software Configuration Item (CSCI) qualification testing
. CSCl/Hardware Configuration Item (HWCI) integration and testing
. System qualification testing

. Preparing for software use

50 - 0 a0

—

. Preparing for software transition

. Integral processes:

Software configuration management
Software product evaluation

Software quality assurance

Corrective action

Joint technical and management reviews
Other activities

5 B — & .

S e o e

From these exhibits, we see the initial focus on the “system,” which then
moves to the specific software item considerations. The more limited view
of the software development process in DoD-Std-2167A is also expanded.
Finally, the last item listed (Exhibit 10.2, Other activities) includes:

» Risk management

* Software management indicators
* Security and privacy

* Subcontractor management

* Interface with software independent verification and validation (IV&V)
agents

» Coordination with associate developers
» Improvement of project processes

In this standard, software is decomposed into

» Computer software configuration items (CSCls)
» Computer software components (CSCs)
» Computer software units (CSUs)

which, to a large extent, parallels the decomposition notions previously de-
scribed in systems engineering. That is, the systems engineer decomposes the

308 SOFTWARE ENGINEERING

system into functions and subfunctions. The view presented in this standard
is that the systems (software) engineer breaks down the system into segments.
These segments are then broken down into hardware and software configura-
tion items. Once that breakdown is accomplished, the CSCIs are decomposed
into CSCs and the CSCs into CSUs. This provides a challenge for the systems
engineer, namely, to bring system functional decomposition in conformance
with the preceding software breakdown structure. A way to meet that chal-
lenge is to associate one or more layers of functional decomposition with the
“segment” element. Once the lowest level of functional decomposition is at-
tained, then the HWCI and CSCI breakout is entirely appropriate. This issue,
at times, represents a disconnect between how systems engineers, in distinc-
tion to software engineers, look at and analyze a system that is composed of
both hardware and software.

This standard was intended to supersede DoD-Std-2167A by making cer-
tain improvements. Particular emphasis was placed on resolving issues in
2167A with respect to the following:

1. Improving compatibility with incremental and evolutionary develop-
ment methods

2. Improving compatibility with nonhierarchical design methods, that is,
object-oriented methods

3. Improving compatibility with computer-aided software engineering
(CASE) tools

4. Providing alternatives to, and more flexibility in, the preparation of
documentation

Providing clearer requirements for incorporating reusable software
Including the use of software management indicators

Putting more emphasis on software supportability

Improving links to systems engineering

=N w

Each of these suggests one or more key issues with respect to the overall
subject of software development. As such, they are discussed further either
later in this chapter or in Chapter 12, which deals with trends in software
engineering. It should be noted, however, that this standard makes the explicit
statement that it “is not intended to specify or discourage the use of any
particular software development method.” In addition, and in conjunction
with other standards, it “provides the means for establishing, evaluating, and
maintaining quality in software development products.”

10.2.2 DoD-Std-2168

This standard [10.7], dealing with software quality evaluation, represented
a companion standard to 2167A. Its basic function was to establish

10.2 STANDARDS 309

requirements for evaluating the quality of software and associated doc-
umentation and activities for mission-critical computer systems. It also
may be applied to the independent verification and validation (IV&V) of
software.

The essence of this standard was to provide a framework for the preceding
evaluation. Evaluation matrices are defined for each of the products of the
eight steps identified as part of the software development process. The basic
evaluation criteria for this process are:

_.
e

11.
12.
13.
14.

15.

e A e

Adherence to required format and documentation standards
Compliance with contractual requirements

Internal consistency

Understandability

Technical adequacy

Appropriate degree of completeness

Traceability to indicated documents

Consistency with indicated documents

Feasibility

Appropriate requirements analysis, design, coding techniques used to
prepare item

Appropriate level of detail

Appropriate allocation of sizing and timing resources
Adequate test coverage of requirements

Adequacy of planned tools, facilities, procedures, methods, and re-
sources

Appropriate content for intended audience

The standard also defines software quality factors that may be included as
requirements in the software requirements specification, namely:

* Correctness

» Efficiency

* Flexibility

* Integrity

* Interoperability
* Maintainability
* Portability

* Reliability

* Reusability

* Testability
 Usability

310 SOFTWARE ENGINEERING

We also note that this standard called for an evaluation of risk management,
expressed in the following manner:

The contractor shall evaluate the procedures employed and the results achieved
by risk management throughout the software development cycle. This eval-
uation shall verify that risk factors are identified and assessed, resources are
assigned to reducing risk factors, alternatives for reducing risk are identified
and analyzed, and sound alternatives are selected, implemented and evaluated.

The subject of risk management arises explicitly in the context of a develop-
ment process known as the Spiral Model, cited again later in this chapter. The
matter of software quality is also closely related to reliability, which is also is
discussed later in this chapter.

10.2.3 ISO Standards

The International Organization for Standardization (ISO) has been promulgat-
ing standards [10.8] that are becoming more widely recognized and accepted.
ISO standards referred to in Mil-Std-498, discussed before, are

ISO/IEC 12207: Software Life Cycle Processes

ISO/IEC 9126: Quality Characteristics and Guidelines for Their Use

ISO 9001: Quality System—Model for Quality Assurance in
Design/Development, Production, Installation and
Servicing

ISO 9000-3: Guidelines for the Application of ISO 9001 to the

Development, Supply and Maintenance of Software

As implied by their titles, ISO 12207 and ISO 9000-3 apply directly to
software development.

ISO 12207 is focused on three types of life-cycle processes, namely, pri-
mary, supporting, and organizational. Primary processes deal with such areas
as acquisition, supply, development, operation, and maintenance. Support-
ing processes are concerned with documentation, configuration management,
quality assurance, verification and validation, reviews, audits, and problem
resolution. Organizational processes include management, infrastructure, im-
provement, and training.

ISO 9000-3 (Part 3 of ISO 9000) particularizes ISO 9001 to matters dealing
with software. Key areas within this document are concerned with

* Management responsibility
* Quality systems
e Internal quality system audits

10.2 STANDARDS 311

* Corrective action
* Quality system life-cycle activities
* Quality system supporting activities

In general, the ISO standards are broader than Mil-Std-498 with respect
to software. They also revolve around the centerpiece of quality. Practi-
tioners who wish to do business in the international community, however,
should devote time to understand the main thrusts of the ISO standards to be
successful.

10.2.4 |EEE Standards

Mil-Std-498 also refers to IEEE (Institute of Electrical and Electronics Engi-
neers) standards that are related to software development. The IEEE standards
referenced are cited in Exhibit 10.3. We note from the exhibit that there is a
standard for software project management plans. The list of IEEE standards
is ever-growing and represents a touchstone for both military and commercial
practices with respect to software development as well as other endeavors.

Exhibit 10.3: Selected IEEE Standards

IEEE Std 730:
IEEE Std 828:
IEEE Std 829:
IEEE Std 830:

Standard for Software Quality Assurance Plans

Standard for Configuration Management Plans

Standard for Software Test Documentation

Recommended Practice for Software
Requirements Specifications

IEEE Std 982.2:

IEEE Std 990:

IEEE STd 1008:
IEEE Std 1012:

IEEE Std 1016:

IEEE Std 1016.1:

IEEE Std 1028:
IEEE Std 1042:
IEEE Std 1044:
IEEE Std 1045:

IEEE Std 1058.1:

IEEE Std 1059:

Guide: Use of Standard Measures to Produce
Reliable Software

Recommended Practice for Ada as a Program
Design Language

Standard for Software Unit Testing

Standard for Software Verification and
Validation Plans

Recommended Practice for Software Design
Descriptions

Guide for Software Design Descriptions

Standard for Software Reviews and Audits

Guide to Software Configuration Management

Standard Classification for Software Anomalies

Standard for Software Productivity Metrics

Standard for Software Project Management
Plans

Guide for Verification and Validation Plans

312 SOFTWARE ENGINEERING

IEEE Std 1061: Standard for Software Quality Metrics Methodology

IEEE Std 1063: Standard for Software User Documentation

IEEE Std 1074: Standard for Developing Software Life Cycle
Processes

IEEE Std 1209: Recommended Practice for the Evaluation and
Selection of CASE Tools

IEEE Std 1219: Standard for Software Maintenance

IEEE Std 1228: Standard for Software Safety Plans

IEEE Std 1298: Software Quality Management System

The reader with a further interest in IEEE standards may access all software
(and other) standards through their standards catalog [10.9]. The Software En-
gineering Standards Collection, a compilation of software-related standards,
contained twenty-seven IEEE standards and is obtainable at a modest price.

10.2.5 IEEE/EIA 12207 [10.10]

The 12207 standard, which may be thought of as a next step beyond Mili-
tary Standard 498, focuses on life cycle processes that support software and
information systems engineering. Since it is process-oriented, it falls in line
with other endeavors (such as business process reengineering) that highlight
process in such a way as to declare that if one gets the process right, most
of the problem is solved. Although this point is debatable, one can make the
solid point that the wrong process is likely to lead to no end of difficulty. This
author’s view is that a correct process is a necessary, but still insufficient,
basis for success. The primary element that clears up the insufficiency is ap-
propriate subject and domain knowledge that can be applied to the problem
at hand.

This standard emphasizes three sets of life cycle processes that address the
following concerns:

1. Primary areas
2. Supporting areas, and
3. Organizational areas

Life cycle processes that are considered primary deal with:

Acquisition
Supply
Development
Operation, and
Maintenance

ANl e

10.3 SOFTWARE MANAGEMENT STRATEGIES 313

Those processes that provide support to the primary areas include:

1. Documentation 5. Validation

2. Configuration management 6. Joint review

3. Quality assurance 7. Audit

4. Verification 8. Problem resolution

Finally, there are life-cycle processes with respect to significant organizational
matters in the following areas:

1. Management
2. Infrastructure
3. Improvement
4. Training

The seventeen processes represented in the primary, support, and organi-
zational areas are described in considerable detail in this standard. At the
same time, Annexes in the standard suggest and provide guidance on how to
tailor the standard to suit a particular software project. This standard is also a
good example of the influence of process-thinking and the resultant emphasis
on both defining all relevant processes and implementing them correctly.

10.3 SOFTWARE MANAGEMENT STRATEGIES

Exhibit 10.2 defined a version of the software development process in the
form of some thirteen steps. However, there has been a considerable amount
of dialogue and experimentation regarding the best sequencing of these types
of steps. The earliest management approach was the so-called “waterfall
model,” which defined a linear sequence such that there was basically no
revisitation or iteration of earlier steps. The basic elements of the waterfall
model were:

System requirements analysis
System design

Software requirements analysis
Preliminary design

Detailed design

Coding and CSU test

CSC test and integration

CSCI testing

O NS R =

Indeed, DoD-Std-2167A [10.6] reinforced this linear perspective.

314 SOFTWARE ENGINEERING

Moving beyond the waterfall model, Boehm suggested the notion of a
“spiral model” [10.11]. This model showed several iterations of risk analy-
sis, building prototypes as well as reviews and validations of requirements.
Whereas the spiral model received a lot of attention as a new way of looking
at a software process strategy, it was not formally accepted as part of a stan-
dard approach. Instead, Mil-Std-498 came on the scene with other “candidate
program strategies,” namely:

* A Grand Design strategy
e An Incremental strategy
* An Evolutionary strategy

Standard 498 defined these strategies as follows:

Grand Design. A “once through, do each step once” approach that deter-
mines user needs, defines requirements, designs the system, implements
the system, tests, fixes, and then delivers

Incremental. Determines user needs and defines the system requirements
and then performs the rest of the development in a sequence of builds;
the first build incorporates part of the desired capabilities, the next build
adds more capabilities, and so on, until the system is complete (also
called a preplanned product improvement strategy)

Evolutionary. Develops a system in builds, but acknowledges that the user
needs are not fully understood and all requirements cannot be completely
defined up front; thus, user needs and requirements are refined in each
successive build

The features of these three strategies may be articulated, in part, as follows
[10.5]:

Program Strategy

Grand Design Incremental Evolutionary
Defines all requirements Yes Yes No
first?
Has multiple development No Yes Yes
cycles?
Fields interim software? No Maybe Yes

The preferred approaches are the incremental and the evolutionary, depend-
ing on the circumstances surrounding the software project itself. A risk-
opportunity analysis, however, is also suggested to arrive at a selection for
any one particular project. An example of such a risk-opportunity evaluation
is outlined in Table 10.1 [10.5].

TABLE 10.1

Sample Risk Analysis for Determining the Appropriate Program Strategy

Grand Design Incremental Evolutionary
Risk Item Risk Risk Item Risk Risk Item Risk
(Reasons against this strategy) Level (Reasons against this strategy) Level (Reasons against this strategy) Level
Requirements are not well H Requirements are not well understood H
understood
System too large to do all at once M User prefers all capabilities at first M User prefers all capabilities at first M
delivery delivery
Rapid changes in mission H Rapid changes in mission technology H
technology anticipated—may are expected—may change the
change the requirements requirements
Limited staff or budget available M
now
Opportunity Item (Reasons to use Opp. Opportunity Item (Reasons to use Opp. Opportunity Item (Reasons to use Opp.
this strategy) Level this strategy) Level this strategy) Level
User prefers all capabilities at first M Early capability is needed H Early capability is needed H
delivery
User prefers to phase out old L System breaks naturally into M System breaks naturally into M
system all at once increments increments
Funding /staffing will be incremental H Funding /staffing will be H
incremental
User feedback and monitoring of H

technology changes are needed to
understand full requirements

Decision: Use this strategy

316 SOFTWARE ENGINEERING

Finally, it is important at this juncture to mention another development
approach, known as “rapid prototyping.” This approach, as the title suggests,
involves the very quick building of at least one prototype in order to:

* Develop a better understanding of the key design elements
¢ Identify critical problems as early as possible

» Have a system mock-up to show to the customer

* Obtain explicit feedback from the customer

Rapid prototyping is highly recommended and can be utilized in conjunction
with either the incremental or the evolutionary strategies described before.
Project constraints may preclude its use but, whenever possible, it should be
suggested as a viable approach to the customer. Under certain types of soft-
ware system procurements within the general category of systems integration,
a live test demonstration (LTD) is often a requirement prior to the award of a
contract. An LTD is basically a form of rapid prototyping.

10.4 CAPABILITY MATURITY

One of the more interesting developments in software engineering has been
that of the Capability Maturity Model (CMM). The CMM was formulated by
the Software Engineering Institute (SEI) at Carnegie Mellon University, with
the assistance of subcontractors. Work on the CMM was sponsored by the
DoD and has had an enormous impact on the thinking, as well as the behavior,
of a large number of industrial companies. It has also found its way into the
programs of civil government agencies, for example, the Federal Aviation
Administration (FAA).

Notions of the software CMM are generally attributed to Watts Humphrey
[10.12] and his colleagues [10.13] at the SEI. The structure of the CMM is
based on a five-level characterization of software maturity, namely:

An initial level

A repeatable level
A defined level

A managed level
An optimizing level

ARl e

Initial Level. At this level, software development processes are mostly
ad hoc, and therefore can be chaotic at times. Individual as well as group
processes are generally not defined or well organized, and individual
efforts and capabilities have a strong influence on the success, or lack
of'it, on a software development project.

10.4 CAPABILITY MATURITY 317

Repeatable Level. Some processes are established at this level, mostly
dealing with the tracking of schedule, cost, and software functionality.
Processes established at the initial level can be repeated to the extent
that they led to success. A repeatable level can be achieved by adopting
similar earlier applications, but generally not with new applications.

Defined Level. At the defined level, the software processes for the team
effort are documented, standardized, and integrated for the organization.
That is, all projects within an organization follow standard software
processes that are designed to be effective in the various domains of
software engineering.

Managed Level. A key element of this level is measuring the software
process as well as the results (products) of that process. Through such
measurement, it is then possible to determine process and product effi-
cacy and exercise control through changes when both are not yielding
appropriate results.

Optimizing Level. Atthe optimizing level, continuous process improvement
is achieved through a well-developed system of measurement, feedback,
and change. New ideas and technologies for improvement are routinely
explored with the objective of optimizing all software development
processes and products.

Given these basic concepts, the next obvious question is: How is one
to determine, or measure, the capability maturity level of an organization?
Considerable attention has been focused on this matter, bringing the CMM
from a conceptual framework to a real-world change mechanism and agent.
Implementation is structured into two parts, namely:

1. A Software Process Assessment (SPA)
2. A Software Capability Evaluation (SCE)

For the SPA, the focus is an individual organization and how it can (a)
identify the status of its software process, and (b) establish priorities with
respect to improving that process. Thus, the SPA is an internal mechanism
to help an organization determine where it is in terms of capability maturity
and point the direction toward enhancing that level of maturity. The SCE,
on the other hand, is used by agencies that are acquiring software systems
to determine the CMM levels of various organizations. It is therefore an
external view of an organization’s capability for the main purpose of estab-
lishing which organizations are qualified to produce high-quality software and
systems.

For both SPA and the SCE, key process areas (KPAs) are defined and
profiled, and questionnaires are used as assessment and evaluation devices.
Examples of key process areas for CMM levels 2 through 5 are shown in
Exhibit 10.4.

318 SOFTWARE ENGINEERING

Exhibit 10.4: Examples of Key Process Areas (KPAs)

CMM Level 2

* Requirements management

* Software project planning

* Software project tracking and oversight
* Software subcontract management
 Software quality assurance

» Software configuration management
CMM Level 3

» Organizational process focus

* Organizational process definition
* Training program

* Integrated software management

* Software product engineering

* Intergroup coordination

* Peer reviews

CMM Level 4

* Process measurement and analysis
¢ Quality management

CMM Level 5

e Defect prevention

* Technology innovation

* Process change management

Each key process area is rated as not satisfied (NS), partially satisfied (PS),
or fully satisfied (FS).

With respect to the use of questionnaires as part of the CMM, there are
some lessons to be learned. Often, project systems and software engineers
tend to disregard processes that they consider to be less than fully rigor-
ous and measurable. However, as the CMM construct demonstrates, it is
indeed possible, through questionnaires, to obtain some type of measure-
ment that can be used to make both qualitative and quantitative statements
about organizations and the processes that they employ. This method of
“measuring the unmeasurable,” although perhaps not fully rigorous or even
repeatable, can be put into place and can also have enormous real-world
impacts. The project, systems, and software engineering managers must un-
derstand the role of such procedures and use them wherever and whenever
they appear to be applicable. An unyielding stance that fails to acknowledge
the utility of checklists and questionnaires normally leads to management

10.5 METRICS 319

difficulties and problems. Organizations are paying a great deal of attention
to the CMM notions because they are having major impacts on what they
do and how prepared they are to do business in the software development
world.

Although essentially everyone appears to acknowledge the impacts of the
CMM notions, not everyone is pleased by these impacts and their conse-
quences. For example, in some circles, it is claimed that the “opposition (to
the CMM) is loud and clear” [10.14]. However, the bottom line reported is
that “the CMM, on balance, can be considered a very successful model, par-
ticularly when combined with TQM [Total Quality Management] principles.”
Examples of CMM implementations by Hughes and Raytheon supported this
latter conclusion. For example, Hughes, in moving a division from level 2
to level 3, spent about $400,000 over a three-year period. The estimated re-
turn on that investment was $2 million annually. Raytheon invested almost
$1 million annually in process improvements, achieving a 7.7:1 return on that
investment and 2:1 productivity gains.

Based on extensive industry interest in adopting CMM and because some
government agencies are indicating that competition will be limited to enter-
prises that achieve certain levels of capability, it is likely that the CMM, and
extensions thereof, will continue to have a strong influence on the practice
of software engineering. Thus, for all software-intensive systems, the Project
Manager (PM), Chief Systems Engineer (CSE), and Chief Software Engineer
are likely to have to pay considerable attention to the CMM.

Beyond the CMM for software lies a CMM concept and implementation
for systems engineering (in distinction to software engineering). This issue is
explored in Chapter 12.

10.5 METRICS

Various initiatives with respect to making vital measurements of the software
development process and its products have been ongoing for many years.
Such measurements are called software metrics, several of which are briefly
described in this section.

10.5.1 Management Indicators

By way of introducing the subject of software metrics, perhaps the least con-
troversial is a set of management indicators [10.5] that is clearly measurable
in terms of factors in which management has a specific interest. Such a set is
provided in Exhibit 10.5 and is a candidate for use on a software development
project.

320

SOFTWARE ENGINEERING

Exhibit 10.5: Candidate Management Indicators

1.

10.

11.

Requirements Volatility. The total number of requirements and require-
ment changes over time.

. Software Size. Planned and actual number of units, lines of code, or

other size measurements over time.
Software Staffing. Planned and actual staffing levels over time.
Software Complexity. Complexity of each software unit.

. Software Progress. Planned and actual number of software units de-

signed, implemented, unit tested, and integrated over time.
Problem/Change Report Status. Total number, number closed, number
opened in the current reporting period, age, priority.

Build Release Content. Planned and actual number of software units
released in each build.

Computer Hardware Resource Utilization. Planned and actual use of
computer hardware resources (such as processor capacity, memory
capacity, etc.) over time.

Milestone Performance. Planned and actual dates of key project mile-
stones.

Scrap/Rework. Amount of resources expended to replace or revise
software products after they are placed under project-level or higher
configuration control.

Effect of Reuse. A breakout of each of the preceding indicators for
reused versus new software products.

Although this list is quantitative, more conventional metrics known in the
industry are considered in the next sections.

10.5.2 COCOMO

COCOMO is an acronym meaning “Constructive COst MOdel.” It was de-
veloped by Barry Boehm [10.15] and has been a cornerstone of the industry
with respect to estimating the levels of effort and times required to develop
software.

The basic equations for COCOMO, a formal cost-estimating relationship
(CER), follow:

PM = C(KDSI)* (10.1)

TDEV = D(PM)” (10.2)
DSI

PROD = — (10.3)
PM
PM

FTES = ——— (10.4)

TDEV

10.5 METRICS 321

where PM = person-months required to complete software
KDSI = thousands of delivered source instructions
TDEV =required development time
PROD = productivity
FTES = full-time equivalent staff needed
C, D, X, Y = empirically derived constants

The environment within which the software development is being carried out
is defined as the mode of the effort. For Boehm’s organic mode, character-
ized by a relatively small team, extensive experience, and a stable in-house
environment, Equations (10.1) and (10.2) become

PM = 2.4(KDSI)!% (10.5)

TDEV = 2.5(PM)°38 (10.6)

To illustrate the results obtained by these COCOMO equations, assume that
the number of delivered source instructions is estimated to be 40,000. The
preceding two equations then yield

PM = 2.4(40)!"% = (2.4)(48.1) = 115.4 person-months
TDEV = 2.5(115.4)%3% = (2.5)(6.076) = 15.2 months

The productivity is thus

40,000
PROD = 154 346.6 DSI/PM, or about 16.5 DSI per day
and the full-time equivalent staff required is
FTES = 115'4—76 1
T 5p T OPeoPE

The COCOMO equations are nonlinear so that, for example, if the DSI
doubles to 80,000, the person-months and development time become 239
and 20 months, respectively, and the productivity drops slightly to 15.9 DSI
per day. Thus, the calculations are rather straightforward and yield important
planning estimates for the software developer.

One of the more serious questions raised with respect to COCOMO (and
there are several issues that have been raised regarding COCOMO’s use) is that
of obtaining good estimates of the delivered source instructions. Indeed, if they
are not valid or accurate, then the usual “garbage-in, garbage-out” admonition
applies. This issue has never really been solved, but various enterprises have
made attempts at trying to assure good input estimates. Among the best of
these approaches is to obtain multiple and independent estimates from key
personnel on the development team to see what the spread might be and

322 SOFTWARE ENGINEERING

to ultimately converge on a workable consensus. This is a recommended
approach when attempting to utilize COCOMO or its variants for which the
fundamental input is the delivered source instructions or lines of code.

Other criticisms of COCOMO have focused on the fact that other variables,
such as the language used, use or not of CASE tools, and so forth, are not
explicitly accounted for. Some of this criticism is blunted by the extensions to
COCOMO (e.g., REVIC, discussed in what follows) that take such variables
into consideration in an explicit manner.

COCOMO II [10.16] is, of course, an update of COCOMO 1, as described
briefly above. The model is designed to accommodate three basic levels of
granularity, as well as three stages in the life of software development. These
levels refer to:

1. Prototyping. The input is sized in object points.

2. Early Design. The input is provided in source statements (lines of code)
or function points, and there are seven effort multipliers.

3. Post Architecture. The input is stated in source statements or function
points, and there are seventeen effort multipliers.

There are also five scale factors that replace the previous use of the organic,
semidetached, and embedded modes.

The source statements form of the COCOMO II model basically takes the
same form as that in COCOMO I. That is, person-months (PM) are calculated
with the following formula:

PM (effort) = A (size)?

where PM is the effort in person-months, 4 is characterized by a set of effort
multipliers (EMs), size is the number of source statements, and B represents
a set of scale factors that model economies (B < 1.0) or diseconomies (B >
1.0) of scale. The value of B is itself a function of five scale factors, namely:

Precedentedness
Development flexibility
Risk resolution

Team cohesion

Process maturity

AN e

The value of 4 is also a function of seven or seventeen cost drivers, known as
effort multipliers, depending upon whether one is using the early design or the
post architecture version of the model. The reader is referred to the COCOMO
II book [10.16] for complete lists of these effort multipliers, as well as how
they may be used to determine the value of 4 in the basic COCOMO equation.

10.5 METRICS 323

Thus, a central theme of COCOMO 11 is that it is a model that estimates
person-months as a function of 12 (5 scale drivers + 7 effort multipliers)
or of 22 (5 scale drivers + 17 effort multipliers) additional variables. These
variables are factors that influence the effectiveness and efficiency of the soft-
ware development effort. COCOMO 11 also spells out relationships for project
scheduling, as was the case for COCOMO 1. COCOMO II also expands its ar-
eas of consideration, including important topics such as reuse, reengineering,
rapid application development, the use of commercial-off-the-shelf (COTS)
software, software quality, productivity estimation and risk assessment.
COCOMO 11 is considered to be another major step forward in understanding
the quantitative relationships that surround the development of software.

10.5.3 REVIC

REVIC is an extension of COCOMO that has been developed in a soft-
ware package by Raymond Kile [10.17]. It is structured around the basic
COCOMO notions and extends them by considering variables that had not
been previously incorporated into the COCOMO model. Such variables in-
clude programmer capability, applications experience, programmer language
experience, requirements volatility, database size, use of software tools, man-
agement reserve for risk, and others. The software requests low, most probable,
and high line of code input estimates for each code module. It is claimed that
better answers are obtained with smaller modules. For each module, inputs
are also requested with respect to modifications of the design and the code.
Outputs are displayed regarding effort required (person-months), schedule
(months), numbers of people, productivity (lines of code per person-month),
and costs. By virtue of the three estimates for the input lines of code, a stan-
dard deviation is also computed and shown. REVIC is a very useful software
package with a great deal of utility for the software developer.

The Air Force has made REVIC available to the software community
and has encouraged additions and expanded applications. Software disks for
REVIC can be obtained through the Air Force’s Software Technology Support
Center (STSC) [10.18]. The STSC also provides a variety of documents that
describe the tools that can be used to support the software development
process (see also Chapter 12).

10.5.4 Function Points

The use of function points is considered to be an alternative to the COCOMO
model to estimate the effort required to develop software. Indeed, its leading
proponent, Capers Jones, argues strongly that function point analysis (FPA)
is much superior to COCOMO and its derivative methods [10.19].

A formulation of FPA claims that unadjusted function points (UFPs) are
related to the numbers of inputs, outputs, master files, interfaces, and inquiries
[10.20]. These components are defined in more detail in the literature [10.21].

324 SOFTWARE ENGINEERING

In particular, the UFP count is a linear combination of these components, with
weighting factors. The UFP thus derived is then multiplied by an adjustment
factor that changes the UFP by at most + 35% to develop the final function
point count (FP). The adjustment factor is itself a function of some four-
teen aspects of software complexity. One model for the estimation of effort,
measured in work-hours, is then derived from the final function point count:

E = 585.7 + 15.12(FP) (10.7)

Thus, we have a method whereby we can estimate effort in work-hours from
the function points, which, in turn, are derivable from the user-related esti-
mates of inputs, outputs, files, interfaces and inquiries.

The preceding FPA has some definite attractions, as pointed out in the
literature [10.20]. First, it does not explicitly depend on the source instructions
or lines of code estimates, which, as pointed out here, can be difficult to
estimate accurately. It also does not depend on the language used or other
variables such as the use of CASE tools, and so forth. Also, the FPA may
be usable at the stage of development when only requirements or design
specifications have been formulated. Finally, the FPA tends to be oriented to
the user’s view of the system, as reflected by the five input components.

FPA has been gaining support and is considered to be a more than viable
alternative to COCOMO-type estimation procedures. It is also embodied in
existing software tools (e.g., SPQR/20 and ESTIMACS™) that add credibility
and ease of use. Here again, only time will tell which of these two methods,
if either, becomes the preferred procedure in terms of developer usage and
customer acceptance.

10.5.5 Reliability

The issue of reliability in the software arena is still in its formative stages and
is likely to be in a state of flux as industry gains more experience with the
various ways in which software reliability has been viewed. The procedure
described here is based on the theoretical and empirical work done at Bell
Labs [10.22]. Their recommended approach is embedded in what is known
as the Basic Execution Time Model (BETM).

BETM can be explained by referring to Figure 10.1. The graph plots the
software failure intensity (/) against the total number of failures experienced
(N) and, in this model, it is described as a straight line. The implication
is that the software in question starts out at a given failure intensity /, and
has a total number of defects N, (the ¥ and X intercepts, respectively). BETM
is anonhomogeneous Poisson process, such that the failure intensity (/) varies
and decreases linearly to zero as failures occur and are “repaired.” Also, time
is measured in computer program execution time, that is, the time actually
spent by a processor in executing program instructions.

10.5 METRICS 325

Basic model

Failure intensity, 1

Number of failures/defects, N

Figure 10.1. Basic execution time model of reliability.

The key issues associated with the use of the BETM are:

a. The initial failure intensity must be estimated.

b. The total number of failures, or defects, in the software must also be
estimated.

For both issues, the software developer may not have much experience on
which to base these initial estimates. As experience is gained, and empirical
data derived on real programs, these estimates are likely to improve.

The equation describing the BETM, as represented in Figure 10.1, is simply

I=mN+L, (10.8)

where I = failure intensity
N = number of failures or defects
m = slope of failure intensity/failure line
1, =the initial estimate of failure intensity

To illustrate how this relationship leads to a probability estimate, assume that
I, = 60 failures per CPU-hour, and the total number of estimated failures
(N,) is 300. These estimates fully describe the BETM line in Figure 10.1.
Now let us further assume that we have experienced a total of 200 failures
to date. The calculated slope of the line is —60/300, or —0.2, and Equation
(10.8) becomes

I =—-02N+60
We then calculate the current failure intensity as

1 =(—0.2)(200) + 60 = —40 4 60 = 20 failures per CPU-hour

326 SOFTWARE ENGINEERING

This so-called “instantaneous” failure intensity describes the current situation
and can be used as the “failure rate” in a Poisson process, but only at the current
time and situation. We can then ask the question: What is the probability that
there will be £ failures found in the next 7 hours of execution time? We can
use the Poisson probability distribution to calculate this answer as

_ (UT)Y exp(—IT)

pk) o

(10.9)

If, for example, we take & = 0 and the number of hours 7 = 0. 1 CPU-hour,
the Poisson reduces to the exponential and becomes

P(0) = exp[—(20)(0.1)] = exp(—2) = 0.135

Thus, in this illustration, the probability that no defects will be found, that is,
no failures experienced, in the next 0.1 CPU-hour is 0.135.

The BETM is, of course, not the only formulation of software reliability.
Indeed, Bell Labs researchers argue that the logarithmic Poisson execution
time model has high predictive validity and is only somewhat more com-
plicated than is the BETM. Several other competitive models are presented
and explored in their book [10.22], many of which have also been incorpo-
rated into the software package known as SMERFS, as discussed in the next
section.

10.5.6 SMERFS

A particularly useful initiative on the part of the Navy led to the development
of SMERFS (Statistical Modeling and Estimation of Reliability Functions
for Software) [10.23]. SMERFS provides both the background mathematics
as well as computer program disks that support the calculation of software
reliability. As an example, one module in SMERFS deals with the execution
of five software reliability models that yield reliability estimates for execution
time data. These models are:

The Musa Basic Execution Time Model

The Musa Log Poisson Execution Time Model
The Littlewood and Verrall Bayesian Model
The Geometric Model

The NHPP Model for Time-Between-Errors

M

The first item on this list is the basis for the software reliability formulation
in the previous section.

10.5 METRICS 327

If the user is inclined to adopt an error-count approach to reliability esti-
mation and prediction, the SMERFS formulation is able to support such an
approach through the following five models:

The Generalized Poisson Model

The Nonhomogeneous Poisson Model
The Brooks and Motley Model

The Schneidewind Model

The S-Shaped Reliability Growth Model

ANl e

Thus, developments such as SMERFS provide a good foundation for the
rational consideration of how to deal with the difficult issue of software
reliability, which itself is likely to be under debate for some time to come
[10.24].

10.5.7 McCabe Metrics

One of the early developers of software metrics was T. McCabe, who wrote
a seminal paper that identified a software complexity measure [10.25]. Since
that time, the field has blossomed, but the metrics developed by McCabe’s
company have been plentiful and very well received by industry and govern-
ment.

The desired characteristics of a complexity measure, according to McCabe,
are as follows [10.26]:

* It should be closely related to the amount of work it takes to test or
validate a program.

* It should conform to our intuitive notion of complexity.

* It should be straightforward for programmers to calculate the complexity
measure.

* It would be useful if the measure could be automated.

* It should be objective; different people should get the same complexity
for the same program.

¢ It should be language-independent.

* It should apply to structured and unstructured code.

* It should map into an operational step and actually drive the test effort.

The centerpiece of McCabe’s original idea satisfying these characteristics
is the notion of software cyclomatic complexity. Cyclomatic complexity is a
measure of the logical complexity of a software module and of the minimum
effort required to qualify that module. It is the number of linearly independent
paths and, as such, represents the minimum number of paths that one should
test.

328 SOFTWARE ENGINEERING

CC=3-4+2=1

CC=7-7+2=2

|
’

CC=E-N+2 |

Figure 10.2. lllustration of cyclomatic complexity [10.26].

To illustrate the cyclomatic complexity metric, we refer to Figure 10.2,
which shows three representations of the logical code, or flowgraph, of a
module. Cyclomatic complexity can be calculated using the formula:

CC=E-N+2 (10.10)
where CC = cyclomatic complexity

E =number of edges or connections of the code
N =number of nodes in the code

10.6 THE SYSTEMS ENGINEER AND SOFTWARE ENGINEERING 329

Thus, cyclomatic complexity is easy to compute and, in fact, has been auto-
mated by McCabe & Associates and is available as a software metrics tool.
We note the significance of this metric in terms of identifying testing effort
and paths for testing.

McCabe has gone considerably beyond the original complexity measure
as described before, producing a variety of metrics as well as software pack-
ages that compute these metrics. As a further example, essential complexity
measures the extent to which a module contains unstructured constructs. The
procedure is that all structured constructs are removed, and then the cyclomatic
complexity of the reduced flowgraph represents the essential complexity. Es-
sential complexity has the advantages of

* Quantifying the degree of structuredness
» Revealing the quality of the code

* Predicting the maintenance effort

* Helping in the modularization process

In addition to the preceding, McCabe has produced a variety of software
metrics that measure various aspects of software, including the following
tools:

McCabe 1Q2™
 CodeBreaker™

* Design Complexity Tool™
The Battlemap Analysis Too
The McCabe Instrumentation Tool™
The McCabe Slice Tool™

lTM

The reader with a further interest in McCabe metrics should contact
McCabe & Associates directly (see [10.26] in the References). They are
a leading purveyor, both nationally and internationally, of automated tools
that compute software metrics.

10.6 THE SYSTEMS ENGINEER AND SOFTWARE ENGINEERING

This section might well be called “What the Systems Engineer Needs to
Know about Software Engineering.” A default answer to this question, one
that takes very little new thought, might be the areas already defined as
central to the CMMI (Integrated Capability Maturity Model). That is not
a terrible answer since it addresses process areas that have been explored
many times by many groups, especially the Software Engineering Institute
(SEI) and the Department of Defense (DoD). However, the perspective here

330 SOFTWARE ENGINEERING

is somewhat different. This volume focuses on software engineering and
its management, assuming that the reader already qualifies as a Systems
Engineer. This implicitly means that the reader understands and practices
key process areas within systems engineering. Such a Systems Engineer, or
Chief Systems Engineer, has a special need to learn more about software
engineering without becoming a software engineer.

In particular, here we define and briefly discuss what might be called a
“top ten” list of what the Systems Engineer needs to know about software
engineering:

Cost and schedule estimation

Other software metrics

Software architecting and modularity

Software development process

Satisfaction of requirements

Testing

Risk assessment and mitigation

Software RMA (reliability, maintainability-availability) and Warranties
Prototyping

Integration of COTS, GOTS, and reuse

Wbk W =

k.
e

Cost and Schedule Estimation. Cost and schedule estimates, which are
critical, usually are based on COCOMO (the COnstructive COst MOdel)
and/or function point analysis and are absolutely required to verify (or not) that
there is sufficient funding and time to get the job done. Discrepancies between
estimated and available values are grounds for great concern, especially since
we have been missing the mark in so many new system developments.

Other Software Metrics. In addition to cost and schedule measurements,
other software-related metrics have become virtually standard practice. These
include numbers of defects, extent of reuse, number of delivered source
instructions, complexity, and earned value. The reader also is referred to the
software management indicators in section 10.5.

Software Architecting and Modularity. Decomposing software into its
major functions and subfunctions remains a critical aspect of system and
software architecting. Incorrect decomposition has been cited directly as a
source of failure as well as of inappropriate work assignments. We remain
in search of modules that can be worked on in parallel and with a minimum
number of interactions and interfaces.

Software Development Process. Even though we have accepted evo-
lutionary development and acquisition as the best overall process, many

10.6 THE SYSTEMS ENGINEER AND SOFTWARE ENGINEERING 331

questions remain that have to do, for example, with preferred language, se-
quencing of builds, methods for verification and validation (V&V), and the
correct levels of reuse.

Satisfaction of Requirements. We continue to accept the notion of satis-
faction of requirements as a touchstone for systems and software engineering.
This is entirely appropriate. However, we also have said that requirements need
to be reviewed and questioned in a systematic way so that we are able to make
changes when some requirements are not correct.

Testing. As with hardware, software systems are on track until real-world
testing and the appearance of defects reveal that previously unknown failures
have put our system distinctly off track. The time and effort needed to carry out
unit and subsystem testing tend to be significantly underestimated. The reason:
We are optimistic about test results, and such optimism is not sufficiently
tempered by the degree of difficulty of the software task.

Risk Assessment and Mitigation. The reader may recall that risk analysis
was not one of the key process areas (KPAs) in the original software Capability
Maturity Model (CMM) (see section 10.4). This omission was recognized, and
the importance of risk measurement and mitigation has been acknowledged.
In fact, it is so important that this author places it as one of the “top ten”
on this list. Experienced systems and software engineers, starting off a new
program, can accurately predict where the key risks are and what might be
done to minimize their possible effects. Real-world risk mitigation is worth
its weight in gold.

Software RMA and Warranties. The RMA of software, each year, tends to
be recognized as a difficult problem to address. Indeed, there are still many
approaches to computing the reliability of software, each with its advantages
and disadvantages. Reliability becomes especially important when and if
a company is providing software warranties. RMA “models” give us the
basis for looking realistically at the possible consequences, including costs,
of offering alternative warranties and guarantees. Continuing to go back
and “repair” software while it is in the field can be very costly, changing a
successful program into an unsuccessful one over time.

Prototyping. In general, we can tailor the evolutionary acquisition approach
through a systematic and well-controlled prototyping program. Certain areas
of software can be designated as critical and high risk, giving us the idea
that we can develop early prototypes that will serve to reduce the risk. By
tackling a difficult problem very early, we increase the likelihood of success,
especially with respect to schedules and costs.

332 SOFTWARE ENGINEERING

Integration of COTS, GOTS, and Reuse. Many large-scale systems in-
volve the software integration of COTS (commercial-off-the-shelf), GOTS
(government-off-the-shelf), and reuse (software components from the con-
tractor world). Each type of software usually originates in a different place
and without due regard for the ultimate need for appropriate integration. Al-
though the concepts are relatively simple, accomplishing anything resembling
integration can have a degree of difficulty ranging from challenging to almost
impossible. Just because software subsystems exist in demonstrable, testable
packages, it does not follow that they are therefore easy to integrate.

10.7 SUMMARY

As suggested in this chapter, software development is in a state of flux, with
continuing initiatives to try to bring it from largely an art to a well-understood
and repeatable engineering process.

Researchers and observers have given us much to contemplate, and new
technologies as well as preferred solutions are in abundance. By adding new
perspectives, they also add a “confusion of plenty” as we struggle to find
the right answers that will improve the way we develop software. As final
examples, we now look at some suggestions made by selected observers of
the scene, followed by the ten commandments of software engineering.

First, we have the analogy provided by N. Augustine, a leader in govern-
ment, industry, and academia:

Software is like entropy, it is difficult to grasp, weighs nothing, and obeys the
second law of thermodynamics, i.e., it always increases [10.27].

Second, we have the observations of E. Rechtin, previously the President
of the Aerospace Corporation:

In architecting a new software program, all the serious mistakes are made on
the first day.

A team producing at the fastest rate humanly possible spends half of its time
coordinating and interfacing [10.28].

Third, we cite points “Wirth” noting, taken from an article by Niklaus Wirth,
the designer of the programming language Pascal:

The way to streamline software lies in disciplined methodologies and a return
to the essentials.

The most difficult design task ... is the decomposition of the whole into a
module hierarchy.

The belief that complex systems require armies of designers and programmers
is wrong [10.29].

QUESTIONS/EXERCISES 333

Fourth, we are indebted to Frederick Brooks [10.30] for his many insightful
contributions to software engineering, a few of which are cited here:

From this process [i.e., Wirth’s top-down methods] one identifies modules of
solutions or of data whose further refinement can proceed independently of
other work.

A good top-down design avoids bugs in several ways

Adding manpower to a late software project makes it later (Brooks’ Law)

Finally, we complete this chapter with this author’s ten commandments for
software projects:

Commandment 1. Formulate a software development plan and process that
seem to work and stick with them.

Commandment 2. Maintain continuity of personnel and high-performance
software development teams (see also Chapter 6).

Commandment 3. Adopt and adapt the notions of the Capability Maturity
Model, coupled with a commitment to continuous improvement.

Commandment 4. Always do a detailed risk-assessment and -mitigation
analysis at the beginning of a project, and at selected points during the
project.

Commandment 5. Begin and maintain a program of software measurement
and metrics, to include keeping statistics on all projects.

Commandment 6. Develop a modest but effective software engineering
environment (see Chapter 12), including a supportive infrastructure.

Commandment 7. Review the status of every serious software development
project at least twice a month and at times weekly.

Commandment 8. Manage the software requirements, including challeng-
ing requirements that do not make sense.

Commandment 9. Do not allow documentation to overwhelm and under-
mine the development of the software or the time of your key software
designers and developers.

Commandment 10. Integrate your software engineering efforts and team
with your systems engineering methods and team.

QUESTIONS/EXERCISES

10.1 Which software management strategy do you favor? Why?

10.2 Define and discuss three reasons why software development projects
run into problems. How would you avoid these problems?

10.3 What software standards appear to be most important today? Explain.

334

10.4

10.5

10.6

10.7

10.8

10.9

SOFTWARE ENGINEERING

What is the highest capability-maturity level for software development
in your organization? Cite and discuss three new initiatives that are
necessary to achieve the next level in capability maturity.

Calculate the person-months, development time, productivity and full-
time equivalent staff required for a software project involving 80,000
delivered source instructions. How does the productivity compare with
the example in the text?

For a software project, it is estimated that the initial failure intensity is

60 failures per CPU-hour and the slope of the Basic Execution Time

Model (BETM) line is —0.3. The total number of failures experienced

to date is 150.

a. What is a good estimate of the total number of failures or defects
in the software?

b. What is a good estimate of the current failure intensity?

¢. What is the probability that no defects will be found in the next 0.1
CPU-hour?

Show an example of how COCOMO 11 utilizes the five scaling drivers
to determine a numeric value of the exponent in the COCOMO II
equation.

For COCOMO 11, define the seven and seventeen effort multipliers
associated with the early design and post-architecture forms of the
model.

Identify and discuss in three pages two approaches to software reli-
ability that are different from the BETM model examined in some
detail in this text.

10.10 Write a three-page discussion of software architecting, as described
in the literature.
REFERENCES
10.1 Fromson, B. (1994). “Fidelity Says It Reported Wrong Prices,” Washington Post,

10.2
10.3

104
10.5

10.6

10.7

June 23.

Fox, J. (1982). Software and Its Development. Englewood Cliffs, NJ: Prentice Hall.
Marciniak, J., and J. Reifer (1990). Software Acquisition Management. New York: John
Wiley.

Arthur, L. J. (1992). Rapid Evolutionary Development. New York: John Wiley.
Military Standard—Software Development and Documentation, Military Standard 498
(1994). Washington, DC: U.S. Department of Defense.

Military Standard—Defense System Sofiware Development, DOD-STD-2167A (1988).
Washington, DC: U.S. Department of Defense.

Military Standard—Software Quality Evaluation, DOD-STD-2168 (1979). Washington,
DC: U.S. Department of Defense.

10.8

10.9

10.10

10.11

10.12

10.13

10.14

10.15

10.16

10.17

10.18

10.19

10.20

10.21

10.22

10.23

10.24

10.25

10.26
10.27

10.28
10.29

10.30

REFERENCES 335

150 9000, Contact American National Standards Institute (ANSI). New York: Interna-
tional Organization for Standardization.

IEEE Standards Products Catalog (1995). Piscataway, NJ: Institute of Electrical and
Electronics Engineers.

Standard for Information Technology—Software Life Cycle Processes, IEEE/EIA
12207.0-1996 (ISO/IEC 12207) (1998). New York: Institute of Electrical and Elec-
tronics Engineers, March.

Boehm, B., ed. (1989). Software Risk Management, New York: IEEE Computer Society
Press.

Humphrey, W. (1987). Characterizing the Software Process: A Maturity Framework,
CMU/SEI-87-TR-1l, DTIC Number ADA 182895. Pittsburgh: Software Engineering
Institute.

Paulk, M. B. Curtis, and M. B. Chrissis (1991). Capability Maturity Model for Sofiware,
CMU/SEI-91-TR-24. Pittsburgh: Software Engineering Institute.

Saiedian, H., and R. Kuzara (1995). “SEI Capability Maturity Model’s Impact on
Contractors,” I[EEE Computer Magazine (January): 16-25.

Boehm, B. (1981). Software Engineering Economics. Englewood Cliffs, NJ: Prentice
Hall.

Boehm, B., et al. (2000), Software Cost Estimation with COCOMO II. Upper Saddle
River, NJ: Prentice Hall PTR.

Kile, Raymond L. (1992). REVIC, Version 9.1.1. Contact STSC, Hill AFB, Ogden,
Utah.

Software Technology Support Center (STSC), Hill AFB, Ogden, UT: See also
CrossTalk: The Journal of Defense Software Engineering, Ogden ALC/TISE, 7278
Fourth Street, Hill AFB, UT 84056-5205.

Jones, C. (1994). “Software Metrics: Good, Bad and Missing,” /IEEE Computer Maga-
zine (September): 98—100.

Matson, J., B. Barrett, and J. Mellichamp (1994). “Software Development Cost Es-
timation Using Function Points,” IEEE Transactions on Software Engineering 20(4):
275-286.

Marciniak, J., ed. (1994). Encyclopedia of Software Engineering. New York: John Wiley.
Musa, J., A. lannino, and K. Okumoto (1987). Sofiware Reliability. New York: McGraw-
Hill.

Farr, W., and O. Smith (1991). Statistical Modeling and Estimation of Reliability Func-
tions for Software (SMERFS) Users Guide, NAVSWC TR 84-373, Revision 2. Dahlgren,
VA: Naval Surface Warfare Center.

Lyu, M., F. Buckley, R. Tausworthe, T. Keller, and J. Musa (1995). “Software Reliability:
To Use or Not To Use?,” CrossTalk 8(2): 20-26. Published by the Software Technology
Support Center, Hill AFB, Ogden, UT.

McCabe, T. (1976). “A Complexity Measure,” IEEE Transactions on Software Engi-
neering 2(4): 308-320.

McCabe & Associates Website: www.mccabe.com.

Augustine, N. (1982). Augustine’s Laws. New York: American Institute of Aeronautics
and Astronautics.

Rechtin, E. (1991). Systems Architecting. Englewood Cliffs, NJ: Prentice Hall.

Wirth, N. (1995). “A Plea for Lean Software,” IEEE Computer Magazine (February):
64-68.

Brooks, F. P,(1995). The Mythical Man-Month. Reading, MA: Addison Wesley
Longman.

— 11

SELECTED QUANTITATIVE
RELATIONSHIPS

11.1 INTRODUCTION

This chapter has been reserved for a variety of important quantitative rela-
tionships so that they can be found in one location in this book. Both systems
engineering and project management depend on the mastery of basic quanti-
tative relationships, with an emphasis on the former. That is, it is really not
possible to understand the details of systems engineering without mastering
these relationships.

Several earlier chapters introduced key quantitative relationships, for ex-
ample, the chapters containing discussions of requirements analysis, technical
performance measurement, simulation, and modeling. Some of these relation-
ships are reiterated here.

A central motivation for examining the relationships set forth in this chap-
ter is to predict the performance of systems. In the early stages of system
development and engineering, there is no real system that can be tested to
determine its performance. Thus, we resort to “pencil and paper” studies
that purport to tell us how the designed system will, we hope, perform in
the real world. Today, and for the foreseeable future, the pencils and papers
have turned into computers. In that sense, we must also master a variety of
computer applications that contain the quantitative relationships appropriate
to the task at hand.

This chapter is almost exclusively devoted to probability relationships,
in distinction to other classes of mathematics (e.g., differential equations,
transformation calculus, control systems theory, etc.). The basic reason for this

337

338 SELECTED QUANTITATIVE RELATIONSHIPS

is that many of the technical performance measures of systems are expressed
in terms of probabilities. A few examples are:

» The detection and false-alarm probabilities for a radar system

* The response time probability for an on-line transaction-processing sys-
tem (OLTP)

* The probability of a call going through in a telephone system

* The probability of having a system available to operate when called on
to do so

* The probability of successful operation of a system over its lifetime
* The kill probability for a weapons system

* The probability of experiencing some type of disastrous failure that
places peoples’ lives in jeopardy (e.g., a nuclear plant incident)

* The circular error probability for a guidance system
 The distribution of trip times for a transportation system

As difficult as it might be to calculate these probabilities, we often have little
choice because many of the analyses and trade-offs that we must carry out as
systems engineers are based on these measures. This chapter contains but a
small sampling of the theory available to us in this regard.

11.2 BASIC PROBABILITY RELATIONSHIPS

The centerpiece of probability theory is simply that we wish to express and
then calculate the probability of the occurrence of a particular event. Such an
event can be as simple as the toss of a die or as complex as the likelihood of a
false signal in a city’s subway system. Given this notion, we are then interested
in considering several events (say, 4 and/or B), in the context of both events
occurring, or possibly one or the other event occurring, as discussed in what
follows.
We summarize the elementary probability relationships here:

P(A4) > 0 for every event (11.1)
P(C) =1 for the certain event C (11.2)
P(Aor By=P(A+ B)= P(A)+ P(B), if Aand B
are mutually exclusive (11.3)
P(4 and B) = P(AB) = P(A|B)P(B) = P(B|A)P(A4) (11.4)
P(A and B) = P(AB) = P(A)P(B)
for independence between A4 and B (11.5)

P(A) = P(A|E)P(B) + P(A|B)P(B) where (B + B)
constitutes the certain event (11.6)

11.2 BASIC PROBABILITY RELATIONSHIPS 339

Example. The probability of throwing a 3 with a single die is simply 1/6.

Example. The probability of throwing a 3 or a 4 with a single die toss is
P(3 +4)=PQ3)+ P(4)=2/6 =1/3.

Example. The probability of throwing a 3 on one toss and a 4 on the next
toss is P(3 and 4) = P(3)P(4) = (1/6)(1/6) = 1/36.

Although these relationships and examples are simple and highly intuitive, in
systems engineering and project management we may be faced with simple
notions for which it is rather complex to develop an answer. For example, in
the context of project risk, we may ask the question: What is the likelihood
(probability) that instead of completing our project in three months (the
scheduled time), it is completed in four months (a one-month overrun)? If
the answer is close to “1,” the project schedule is in great jeopardy and the
penalties for missing the due date may be quite high. It would be therefore
rather important to find another schedule solution that does not lead to this
problem. Not only is an issue of this type very important, developing the
necessary probability estimates is anything but simple, especially for a large
project.

In terms of a system performance requirement, we may ask this question:
What is the probability that our design for an OLTP (on-line transaction-
processing) system will meet the response time requirement of less than or
equal to seven seconds? There are only two events in this question, either
meeting the requirement or not. Here again, the question can be posed in
simple terms, but it is a major task to develop an answer in which we have some
confidence. Indeed, the simulation of our overall computer system design may
be necessary to do so.

11.2.1 Discrete Distributions

The notion of probability distributions is that of describing the entire prob-
ability scheme for the question at hand. For the die toss, the overall scheme
is simple: For each toss, there are six possible events (outcomes) and the
probability of occurrence for each of these outcomes is the same, namely,
1/6. Because each event is discrete, the description is called a discrete prob-
ability distribution, and may be expressed as P(X) = 1/6 for all six possible
events. This is called a uniform distribution because all probabilities are equal.
Examples of other types of discrete distributions are:

* The triangular distribution
e The binomial distribution
¢ The Poisson distribution

Each distribution is briefly discussed later in this chapter.

340 SELECTED QUANTITATIVE RELATIONSHIPS

11.2.2 Continuous Distributions

For continuous distributions, the variable of interest is considered to be a
continuous variable. For example, if we spin a pointer that is fixed at the
center, we can assume that the resultant angle from some reference angle is
more or less continuous. If we are attempting to hit the center of a bull’s-eye,
the distance from the center is also a continuous variable. This might apply to
a situation in which we are trying to point an instrument aboard a spacecraft
toward a certain point in space, for example, a star. Continuous probability
distributions are normally expressed by formula in terms of probability density
functions [p(x)] and cumulative distribution functions [F(x)], the latter being
the integral of the former, and yielding direct estimates of probability values.
Later in this chapter, we briefly explore the following types of continuous
distributions:

* The normal (Gaussian) distribution
* The uniform distribution

 The exponential distribution

The Rayleigh distribution

In general, we will use the following notations:

¢ P(x) for a discrete variable and distribution
* p(x) for a continuous density function distribution, and
* F(x) for a continuous cumulative distribution function (CDF)

11.2.3 Means and Variances

The mean value of a distribution may be viewed as the average or expected
value of that distribution. It is found by weighting (multiplying) all values of
the variable with the values of the probabilities or probability densities, and
summing the results. The relationships for the discrete and continuous cases,
respectively, can be defined as:

Mean value of X = m(X) = XXP(X), forall X (11.7)
Mean value of x = m(x) = [xp(x)dx (11.8)

The mean value of x is often expressed as the expected value of x, or E(x).

Example. The mean value of the single die tossing situation is (1)(1/6) +
(2)(1/6) + (3)(1/6) + (4)(1/6) + (5)(1/6) + (6)(1/6) = 3.5. We note that
this result leads to a mean value that is different from all possible values
of the variable.

11.2 BASIC PROBABILITY RELATIONSHIPS 341

Example. The mean value for the distribution generated by tossing two dice
is 7, as all of us know intuitively. As an exercise, the reader may wish
to prove this by developing the overall (triangular) distribution, where
values range from 2 to 12.

The variance of a distribution can be found by weighting all values of the
probabilities or probability density with the expression (x — m)?. That is, the
mean value is subtracted from each value of the variable, the result squared
(vielding a positive number), weighted with the probability values, and then
summed. The variance is always a positive number, whereas the mean value
may be negative. The variance is a measure of the “spread” of the distribution
and is extremely important in, for example, carrying out error analyses of
systems. In formal terms, the variance, for the discrete and continuous cases,
respectively, may be found as:

Variance = 02 = (X — m)?P(X), for all values of X (11.9)
Variance = 02 = [(x —m)*p(x)dx (11.10)

Example. The variance for the single die toss is calculated formally as:
(1 = 3.5%(1/6) + (2 — 3.5)*(1/6) + (3 — 3.5)*(1/6) + (4 — 3.5)* (1/6)
+ (5 — 3.52(1/6) + (6 — 3.5)*(1/6) = 2.9

By definition, the square root of the variance is the standard deviation or
root-mean-square value (o) of the distribution.

On occasion, we are interested in the ratio of the standard deviation to the
mean value, or its reciprocal. This tells us something about the significance
of the standard deviation, or variance, in the problem at hand. If the deviation
is small compared to the mean value, we may be less concerned about its
influence or effect. For example, if we were to calculate the standard deviation
in our time schedule for a project as two weeks in a hundred-week project,
we are perhaps less concerned than if the overall project were scheduled for
eight weeks.

Another situation in which the preceding ratio shows itself is in a com-
munications system. A critical performance measure in such a system is the
signal-to-noise ratio (S/N), where S is the signal power and N is the noise
power. This is, more or less, equivalent to a ratio of the square of the signal
value to the variance of the noise distribution. Thus, we see an immediate ap-
plication of the notions of mean value and variance to the theory and practice
of communications systems.

11.2.4 Sums of Variables

The notion of a sum of random variables has already been introduced here in
dealing with the expression:

P(Aor B)y=P(4+ B)= P(A)+ P(B) if A and B are
mutually exclusive (11.11)

342 SELECTED QUANTITATIVE RELATIONSHIPS

In this same context, if X and Y are random variables, then the distribution of
their sum, Z, is often of immediate interest. This may be explored by means
of a further look at the matter of tossing a pair of dice, where one variable,
X, is the result of tossing one die and the other variable, Y, is the result of
tossing the second die. We are thus interested in the distribution of the sum,
that is, the results obtained when the faces shown on each die are added.

Clearly, and intuitively, there are eleven possibilities for the sum when two
dice are thrown, namely, the discrete numbers 2 through 12. However, as we
know, not all of these have the same or equal probabilities, as was the case
with a single die. The probability distribution of Z, the sum of X and Y, can
be determined to be the following:

P(Z=2)=1/36 P(Z=8) =5/36
P(Z=3)=1/18 P(Z=9) =1/9
P(Z=4)=1/12 P(Z=10)=1/12
P(Z=5=1/9 P(Z=11)=1/18
P(Z=6)=5/36 P(Z=12)=1/36
P(Z=7)=1/6

If this distribution is plotted, it will form a “triangular” distribution. In formal
terms, the distribution of a sum is the convolution of the individual distribu-
tions. Convolving two uniform distributions leads to the triangular distribu-
tion. In the continuous case, the convolution integral is expressed as

p(@) = px +y) = feg)h(z — x)dx (11.12)

The next areas of interest with respect to sums of random variables are the
values of the means and variances of the sum.
The mean value of the sum of two random variables is

Mean(Z) = E(Z) = mean(X + Y) = mean(X) + mean(Y) (11.13)
that is, the mean value of a sum is the sum of the mean values.

Example. The mean value of the sum of throwing two dice is 3.5 4+ 3.5 =
7. It also can be verified that the same result is obtained by finding the
mean value of the sum using the definition of a mean value and the
previously cited full distribution for the sum.

In the case of the variance of a sum, it is the sum of the variances only
when the individual distributions are independent, that is, when P(XY) =
G(X)H(Y). This can be expressed as

0X(Z)=0*(X+7Y)=0%*X)+ o*(Y) when X and Y are independent
(11.14)

11.2 BASIC PROBABILITY RELATIONSHIPS 343

The situation in which the individual variables are not independent is dealt
with later in this chapter.

Adding variances for independent random variables is critically important
in error analyses of systems, as alluded to in Chapter 8 as well as later in this
chapter. In these analyses, it is often assumed that one has a set of independent
and additive random variables and that the overall error is therefore the sum
of the individual errors, with all errors expressed as variances. If there are
coefficients that relate these additive variables together, then the appropriate
relationships are as follows: If z = c¢1x + ¢,y, where ¢; and ¢; are coefficients,
then for additive independent variables,

ol(z) = c%az(x) + c%aQ(y) (11.15)

and similarly for a set of coefficients ¢; through c,.

The systems engineer also must be aware of the association between errors
and variances as, for example, one or two sigma values. At times, errors are
taken at the one-sigma value, and at other times, the two-sigma value. This
choice depends on the degree to which it is important to keep errors within
certain bounds. This issue is reexamined in the sections dealing with the
normal (Gaussian) distribution and error analyses.

11.2.5 Functions of Random Variables

Functions of random variables arise when we make a functional transforma-
tion and then wish to examine the resultant distributions. As an example, if
we transform a random variable X into a random variable Y by means of the
transformation ¥ = g(X), where g() is some arbitrary function, and we know
the distribution of X, we may then inquire into the distribution of Y.

To make this notion more concrete, consider the transformation of random
variables expressed as

Y=mX+b (11.16)

where X and Y are random variables and m and b are constants. This simple
transformation converts the distribution of X into some other distribution of
Y. Because this particular function is linear, we would expect a preservation
in the form of the distribution. Another example is the so-called square-law
detector device that modifies the input variable X into an output variable Y
by means of the relationship

Y = Xx? (11.17)
Just as X is processed, so is the distribution of X through this particular

square-law transformation. In this case, we would expect the form of the
distribution to be modified because this is a nonlinear relationship.

344 SELECTED QUANTITATIVE RELATIONSHIPS

From a systems engineering perspective, one of the values of understanding
the transformation of random variables is to track how such a variable behaves
as it is processed through some type of system. It has special relevance, as well,
to transformations from one coordinate system to another, for example, going
from rectangular to polar coordinates. This issue is discussed in somewhat
greater detail in a later section.

11.2.6 Two Variables

Often, we are concerned with the joint behavior of two random variables. We
may describe such behavior in terms of a joint distribution (density function)
such as p(x, y). As suggested before, if such a distribution is partitionable, as

p(x,y) = gx)h(y) (11.18)
then the two variables x and y are independent.

Example. We may develop a simple joint distribution when tossing two dice,
where each die represents a random-variable generator. The probability
of obtaining any given pair of numbers, say, 3 and 5 [a 3 on the “X™ die
and a 5 onthe “Y” die is P(X, Y) = P(3, 5)]. For any given pair, of which
there are 36 possibilities, the probability is clearly 1/36. Therefore, this
is a uniform discrete joint distribution that has only one value, namely,
P(X, Y)=1/36.

There is also a mean or expected-value concept when dealing with a joint
distribution. This may be expressed as

E(xy) = J [xyp(x,y)dxdy (11.19)

As might be expected, if x and y are independent, the preceding yields the
product of the expected, or mean, values of the individual distributions.

11.2.7 Correlation

If two random variables bear some relationship to one another, they may be
correlated. This notion has a specific meaning in probability theory. First, we
define a term known as the covariance of two distributions, given as

Cov(xy) = E{[x — EX)Ily — EQ]} = E(xy) — E®)E(y) (11.20)

Clearly, if the two variables are independent, then E(xy) = E(x)E(y) and the
covariance reduces to zero.

11.3 THE BINOMIAL DISTRIBUTION 345

For correlated random variables, we may also inquire into the effect on the
variance of the sum of such variables, that is, var(x + y). In such a case, the
variance has a covariance term, as

var(x + y) = var(x) + var(y) + 2 Cov(xy) (11.21)
A formal correlation coefficient may also be calculated from the definition:

C
Correlation coefficient = M (11.22)

o(x)a(y)

By dividing by the product of the individual standard deviations, the correla-
tion coefficient is normalized to values between —1 and +1.

11.3 THE BINOMIAL DISTRIBUTION

The specific discrete distribution known as the binomial distribution arises
when there are repeated independent trials with only two resultant possibil-
ities. If we call the probability of success p and the probability of failure ¢,
where (p + ¢ = 1), then the distribution becomes

P(x) = (Z>qu"—x, forx =0.1,2,3,....n (11.23)

=0, otherwise

This distribution defines the probability of exactly x successes in n indepen-
dent trials.

Example. We often assume that the bits of data that are transmitted in a
digital communication system are independent from one another and
that there is a bit error rate (BER) of some value, for example, 1075.
For purposes of illustrating the binomial, we assume a character that
is 8 bits long and that the BER is 1073, If receiving an individual bit
without error is defined as success, then the probability of “success” is
0.999 and the probability of “failure” is 0.001. The probability that we
will have eight successes (no errors in the transmission of a character)
is then

P(8) = (2) (0.999)3(0.001)° = (0.999)% = 0.992

In a similar fashion, one can then calculate the probabilities of no error
in a set of bits (a byte), characters (a word), a series of words (a message),
and so forth.

346 SELECTED QUANTITATIVE RELATIONSHIPS

Example. If, when throwing a die, an odd number is success and an even
number failure, the probability of exactly four successes in ten trials
is

m@:(f)m@%mf:@mmm@@mnu@@:ums

The mean value of the binomial is equal to np, which is the expected number
of successes in n trials. This is in consonance with our intuition as we, for
example, would expect to have 40 successes in 100 trials if the probability of
success on each trial were 0.4.

11.4 THE POISSON DISTRIBUTION

The Poisson distribution was introduced briefly in Chapter 10, Section 10.5.5,
which dealt with the issue of software reliability. The Poisson is a discrete
distribution given by the following formula:

At)K exp(—At
mmzll%g—l fork=0,1,2,....n (11.24)

where P(k) is the probability of exactly k& events of interest, A is the rate
at which such events are occurring, and ¢ is the time (or space) over which
the events are occurring. This distribution may be used in situations for
which events happen at some rate and we wish to ascertain the probability
of some number of events occurring in a total period of time, or in a certain
space.

Example. Cars are passing a toll booth at an overall rate of about 120 cars
per hour. The probability that exactly three cars will pass through the
toll booth in a period of 1 minute would be

[2)(DT exp [=(2)(1)]

PQ3) = 3

=0.18

The Poisson distribution, when & = 0, reduces to P(0) = exp (—A?),
which is the exponential distribution. For example, if failures were
occurring in a system at a rate of A, and we were concerned with the
likelihood of having no failures in some period of time, #, we would
use the exponential to make this calculation. The subject of reliability
is examined again later in this chapter.

11.5 THE NORMAL (GAUSSIAN) DISTRIBUTION 347
11.5 THE NORMAL (GAUSSIAN) DISTRIBUTION

The normal distribution, sometimes also called the Gaussian distribution, is
a continuous distribution that is very commonly used. Its shape is as shown
in Figure 11.1(a), the familiar bell-shaped curve.

One common formula for the density function for the normal distribution,
shown in Figure 11.1, is

P) = — (_xz) 11.25)
(x)—amexp 792 (11.

The normal distribution (in this case) is symmetric about x = 0 and has the
standard deviation o as a parameter.

If we wish to calculate probabilities, however, it is necessary to integrate
a continuous density function. Formally, the cumulative distribution function
(CDF) is found, for the continuous case, as

F(x)= /x p(x)dx (11.26)

—0o0

F(x) calculates the probability that random variable x is equal to or less than
some particular value. For example, in Figure 11.1, we would calculate the
probability that the random variable is less than or equal to zero as 0.5 by
integrating from minus infinity to zero. The CDF for the normal distribution
with zero mean value is also plotted in Figure 11.1(b), and its ordinate values
correspond directly to probabilities.

The normal distribution is not readily integrable, so that we resort to table
lookups in order to calculate other than the simplest probability cases. Further,
these tables have been developed for the “standard normal,” which has a mean
value of zero and a standard deviation of unity.

77777777777 i, 1.0 —— e —— — — —
|
| |
[|
} ‘ 0.5
| |
| |
| |
| |
\ \
0 X 0 X
(a) The density function (b) The cumulative distribution

function (CDF)

Figure 11.1. The normal (Gaussian) distributing.

348 SELECTED QUANTITATIVE RELATIONSHIPS

Example. For the normal distribution shown in Figure 11.1, the probabilities
that the random variable is equal to or less than one and two sigma (o)
to the right of the mean are:

For one sigma, the value is 0.5 + 0.3413 = 0.8413
For two sigma, the value is 0.5 + 0.4772 = 0.9772

The values 0.3413 and 0.4772 were obtained by referring to a standard
normal table for the argument equal to one and two, respectively. The
probabilities that the variable lies within plus-and-minus one and two
sigma from the mean are simply 0.6827 and 0.9545, respectively. Thus,
about 95% of the distribution lies within plus-and-minus two sigma
from the mean.

Example. We assume that the critical path of a simple PERT network
consists of five independent sequential activities, with the following
estimates of optimistic, most likely, and pessimistic times in weeks:

Activity Optimistic Time Most Likely Time Pessimistic Time

moQw
T N
ANW NP~
oo W o0 ON W

The questions regarding this example are as follows:

1. What is the expected time for the project?
2. What is the standard deviation in the project’s end date?
3. What is the likelihood that the project will exceed 23 weeks?

Using the formulas in Section 4.2 of Chapter 4, we calculate the expected
times and variances for each of the preceding activities as follows:

Activity Expected Time Variance
A 2 1/9
B 4 4/9
C 6 4/9
D 3 4/9
E 6 4/9

The expected time for the project is the sum of the preceding expected times
because the path described is the critical path. Its value is 21 weeks. The
variance of the end date is the sum of the variances of each activity, as shown

11.6 THE UNIFORM DISTRIBUTION 349

before, and is equal to 17/9, or 1.89. The standard deviation is its square root,
or 1.37 weeks. If we now assume that the end-date distribution is normal,
we can calculate the probability of the project exceeding 23 weeks, using the
normal table and the fact that the mean (expected) value is 21 weeks. The
time period between 23 and 21 weeks is 2 weeks, representing 1.46 sigma
from the mean. From a table lookup at the 1.46 point, we obtain the area from
the mean as 0.4279. The area to the right of that is therefore 0.5 — 0.4279,
or 0.0721. This corresponds to the probability that the project end date will
exceed 23 weeks.

In the preceding example, it is demonstrated that the normal need not have
a mean value of zero. If the distribution is shifted to the right by the value
m, then it has a mean value equal to m and m is subtracted from the value of
x in Equation (11.25). The mean value m and the standard deviation o can
be independently selected because it is a two-parameter distribution. A small
standard deviation “narrows” the distribution and a large standard deviation
broadens it.

The normal distribution is often used in analyzing communications systems
to represent the noise distribution. As alluded to earlier, the noise power (V)
is equivalent to the variance of the normal distribution, that is, N = o'>. The
normal distribution will be examined again in this chapter in the discussion
of detecting a signal in noise.

11.6 THE UNIFORM DISTRIBUTION

As the name implies, the uniform distribution is “flat” over its entire range,
as shown in Figure 11.2. The discrete case of the uniform distribution was
discussed earlier in this chapter with respect to the toss of a die where all the
probabilities are equal.

The uniform distribution shows up in the phase relationship when we are
converting two independent normal distributions with the same variance from

F(x)
p) 1

a b X a b X

(a) The density function (b) The cumulative distribution
function (CDF)

Figure 11.2. The uniform distribution.

350 SELECTED QUANTITATIVE RELATIONSHIPS

rectangular to polar coordinates. Such a case, applied, for example, to shooting
at a bull’s-eye, means that the shot is equally likely to be at any angle over the
range zero to 27 radians.

The mean value for the uniform distribution that has a range from a to b is
(a + b)/2 and its variance is (b — a)?/12. We also have seen that adding two
uniform random variables leads to a triangular distribution.

11.7 THE EXPONENTIAL DISTRIBUTION

The exponential distribution is illustrated in Figure 11.3 and has the following
density function:

p(x) = A exp(—Ax), forx >0
=0, forx <O (11.27)
Also shown in the figure is the CDF, which starts at zero and approaches the
value of unity asymptotically.

We have seen the exponential distribution as derivable from the Poisson
when k£ = 0. This distribution is widely used in reliability theory wherein the
value of X is taken to be a constant failure rate for a part of a system (e.g., a
component). In such a case, variable x is converted into a time variable, ¢, and
the CDF is found by integrating the preceding relationship, yielding

F(t)=1—exp(—At), fort >0 (11.28)

Because this is a failure distribution (i.e., represents the failure behavior), it
can be converted into a reliability formula as

R(t)=1— F(t) =exp(—At), fort=>0 (11.29)

F(x)

p(x) T

(a) The density function (b) The cumulative distribution function

Figure 11.3. The exponential distribution.

11.8 THE RAYLEIGH DISTRIBUTION 351

where R(t) is the probability of successful (failure-free) operation to time ¢.
This is the very familiar expression of the reliability of a system, or compo-
nent, with a constant failure rate. As indicated in Section 8.7.2 of Chapter 8,
the failure rate and the mean time between failures (MTBF) are reciprocals of
one another. The MTBE, or 1/A, is the mean value of this distribution because
it represents the mean time to failure.

11.8 THE RAYLEIGH DISTRIBUTION

The Rayleigh distribution density function has the following form:

2

x —_—
p(x) = —2 &XP (p ,

=0, forx <0

forx >0 (11.30)

This distribution shows up in the aforementioned case when converting two
independent normal distributions with the same variance from rectangular
to polar coordinates. This a very common situation because it is the case of
looking for the radius distance from the origin in a polar coordinate system.
Just as the angle distribution in polar coordinates are uniformly distributed
(see Section 11.6), the radial distance from the origin is Rayleigh-distributed.
Thus, for the bull’s-eye example, the vector from the origin obeys the Rayleigh
law under the circumstances described before.

Unlike the normal distribution, the Rayleigh can be integrated in a straight-
forward manner. Thus, the CDF for the Rayleigh becomes

2

F(x)=1—exp (F)’ forx >0 (11.31)

and represents, as usual, the probability that the variable is less than or equal
to a particular value of x.

We can look at some of the numbers associated with the Rayleigh distribu-
tion. At the value of the radius equal to sigma, equation 11.31 can be reduced
to:

F(x)=1—exp(—02/20%) = 1 —exp(—.5) = 1 — .607 = .393

This means that the probability that the random variable corresponds to
one sigma or less is equal to .393. If we are interested in two or three sigma,
this value increases to .865 and .989, respectively. Recall that for the normal
distribution, the plus and minus one-, two-, and three-sigma values are .683,
954, and .997.

352 SELECTED QUANTITATIVE RELATIONSHIPS

The angle is uniform over the interval from zero to 360 degrees. For
example, the probability that the angle lies in the interval from 270 to 300
degrees can be found as:

(300 — 270)/360 = 30/360 = 1/12 = 0.833

Given these conditions, using the Rayleigh and the uniform distributions,
we are able to calculate the approximate vector and its angle corresponding
to a particular latitude and longitude position on a surface. This procedure is
obviously helpful for position determination and location, as in a search and
rescue operation.

11.9 ERROR ANALYSES

The purpose of error analyses is to identify all critical sources of error and be
in a position to control the magnitudes of such errors in all cases for which
they may significantly detract from system performance. An error analysis
example was set forth in Chapter 8 with respect to pointing at a target in a
shipboard environment.

The sequence of steps in an error analysis is as follows:

Identify all significant error sources.

Develop a computational “model” that relates the errors to one another.
Estimate the magnitudes of the significant errors.

Allocate error budgets, where necessary.

Continue to estimate, predict, and control errors throughout the project.

M.

The ultimate benefit of a formal error analysis is to assure that the system
meets all requirements. The greatest leverage is obtained when this is accom-
plished prior to the actual building of the system. In that way, backtracking
and reengineering are avoided, together with the penalties in cost and schedule
that are usually involved.

Errors are often associated with the standard deviation of some error distri-
bution. Unless otherwise specified, the systems engineer must decide how to
relate the error requirement (e.g., pointing error) to the error distribution. A
“5% solution” is often adopted, which means that the error corresponds to the
two-sigma value. In more concrete terms, if the pointing error requirement
was stated in terms of, for example, 1 degree, then this requirement would be
associated with the two-sigma value of the error distribution. The standard
deviation of that distribution would then be limited to at most 0.5 degree. If
the design were to be even more rigorous, three- and four-sigma values might
be used, but these choices impact the design and might be difficult to achieve.

11.10 RADAR SIGNAL DETECTION 353

A brief example illustrates some of the issues involved in the preceding.
Let us assume that an on-line transaction processor (OLTP) requirement is
stated as “99% of the time, the system must respond to a request for service
in less than or equal to seven seconds.” After some analysis, it is concluded
that:

» The error distribution in response time may be well described by the
normal distribution.

» Analysis shows that the average response time has been calculated to be
four seconds.

From a normal probability table, the value 0.4900 (yielding a 0.99 probability)
corresponds to 2.33 sigma from the mean. This constrains the “distance” from
seven to four seconds to be equal to 2.33 sigma, that is, 2.33 sigma is set equal
to 7 — 4 = 3 seconds. From this data, we conclude that the value of sigma
should be no greater than 3/2.33 = 1.29 seconds. This establishes an “error
budget” for the further design of the system.

The same problem can be viewed somewhat differently if we keep the
seven-second requirement but the 99% is not part of the stated requirement.
In such a situation, we may conclude that we wish the range from the mean
of four seconds to the constraint of seven seconds to correspond to the two-
sigma value of the distribution. That implies that 20 = 3 secondsand o = 1.5
seconds. Two sigma from the mean, from the normal table, yields the value
0.4772. When this is added to the left half of the distribution, we obtain the
probability of 0.5 + 0.4772 = 0.9772. Our conclusion is that having a sigma
of 1.5 leads to a probability of 0.9772, somewhat smaller than the previous
case described earlier. In other words, if the error budget were not exceeded,
we would satisfy the required system response time 97.7% of the time.

Example. If Z =2X + 3F, where X and Y are independent error variables,
and m(X) =6,0(X) =4, m(Y)=15,and o(Y) = 7, find the mean value
of the random variable Z and the allowable error variance of Z. The
mean value of Z is found simply as (2)(6) + (3)(5) = 27. The allowable
variance of Z is equal to (22)(16) + (3%)(49) = 505.

11.10 RADAR SIGNAL DETECTION
11.10.1 Detection and False Alarm Probabilities

In Chapter 9, Section 9.7.2, a radar-detection trade-off example was intro-
duced. In this example, we had a signal plus additive Gaussian noise. The
signal voltage was equal to " and the noise power (variance) equal to N, with
threshold detection at a voltage value of 7. Of interest were the calculations
of the detection probability, P(d), and the false-alarm probability, P(fa). With

354 SELECTED QUANTITATIVE RELATIONSHIPS

the information in this chapter, we are now in a position to carry out a simple
quantitative analysis.

Specifically, we calculate the detection and false-alarm probabilities when
the noise and threshold are kept constant and the signal level is increased.
Specific assumed values are:

Case 1: V =4 volts, N = 4 watts, T = 1 volt
Case 2: V = 8 volts, N = 4 watts, T =1 volt
Case 3: V' =10 volts, N = 4 watts, T = 1 volt

In all cases, the noise power remains the same, so that because 0> = N, the
noise standard deviation is equal to 2 volts.

For Case 1, the range from the mean value of 4 volts to the threshold of
1 volt is 3 volts. Therefore, the threshold is at 1.5 sigma from the mean. Ata
value equal to 1.5, from the normal probability table, the corresponding area
under the right-hand portion of the normal is 0.4332. When added to 0.5, a
detection probability of P(d) = 0.9332 is obtained. For noise alone (no signal
present), we may calculate the false-alarm probability by recognizing that the
mean value of zero is only 1 volt from the threshold. That is, the threshold is
only 1/2 = 0.5 sigma from the mean. The corresponding table lookup value
is 0.1915. However, in this situation, this must be subtracted from 0.5 to yield
the correct answer of 0.3085.

In Case 2, the signal is increased to 8 volts with the other parameters
remaining the same. This means that the distance from the threshold is 8 —
1 =7 volts, which represents 3.5 sigmas from the mean. At a value of 3.5, the
normal table lookup gives us a value of approximately 0.49975. When added
to 0.5, the detection probability for this case becomes 0.99975. Because
neither the threshold nor the noise variance was changed, the false-alarm
probability remains the same as in Case 1.

For Case 3, the signal is further increased to 10 volts. The distance from
the threshold is now 10 — 1 = 9 volts, which in this example is 4.5 sigmas.
The table lookup results in a value of 0.499997, which when added to 0.5
yields a detection probability of 0.999997. As with Case 2, the false-alarm
probability remains the same as in Case 1.

Although these values have been chosen so as to be amenable to lookup
in the normal probability integral table, and are not necessarily realistic for
a radar system, they illustrate the way in which one might make detection
and false-alarm probability calculations, using the material presented in this
chapter.

Example. In a pulse-signal-detection situation, (a) if the noise power is 9
watts, and the false-alarm probability is 0.0099, where is the threshold?
In this case, 0 = 3 and the area under the normal distribution is 0.5 —
0.0099 = 0.4901. This yields a value from the normal table of 2.33. The

11.10 RADAR SIGNAL DETECTION 355

threshold is therefore at 2.33 ¢ = (2.33)(3) = 6.99 volts. For part (b),
what is the root-mean-square (rms) signal-to-noise ratio to achieve a
detection probability of 0.9772? For 0.9772 — 0.5 = 0.4772, the normal
table yields a value of 2, in which case 20 = (2)(3) = 6. This value,
when added to 6.99, results in an rms signal of approximately 13 volts.
Thus, the rms signal-to-noise ratio is approximately 13/3 = 4.33.

These examples illustrate the way in which signals might be detected in the
presence of noise. The signal pulse is corrupted by additive Gaussian noise
during transmission, so that at the receiver, both signal and noise are present.
The threshold detection scheme simply compares the signal-plus-noise value
to the threshold and decides that a signal is present when the threshold is
exceeded.

In the section in this chapter dealing with the binomial distribution, we
calculated the probability of no errors in a sequence of eight pulses that
represented an alphanumeric character. We now can see how this section and
that previous section fit together in that we are now in a position to calculate
the error probability for a single pulse. Although there is much more to be
explored in this regard, such as errors of both types, we hope that the reader
can see more concretely the value in the preceding Gaussian error model and,
as well, the binomial computation from the previous section.

11.10.2 Another Threshold Concept

Radar detection trade-off examples in chapter nine show how a threshold can
be determined, under the given decision rule, if both the noise and the false
alarm probability, P(fa), are specified. A somewhat more theoretical approach
to establishing a threshold is set forth here, based on the notion of a likelihood
ratio. This ratio is used in hypothesis testing and also can be developed from
a general risk formulation, as below.

We start with the risks of making decision selections S| and S, which will
be defined as [11.4]:

Risk(S1) = Crip(x1/y;) + Caup(x2/y;) (11.32)
Risk(S2) = Crap(x1/y)) + Cap(x2/y)) (11.33)
where C;j =costs

p(x;/y;) = probability that x; was transmitted, given that y; was
received (in a generalized channel)

We then make Selection S; if the:

pWi/x1) p(x2) Cap — Cx

Likelihood Ratio L = >
P(y;j/x2) p(x1) C2 — Cpy

(11.34)

356 SELECTED QUANTITATIVE RELATIONSHIPS
We can interpret the two values of x; as:

x1 = signal plus noise
X, = noise alone

and also interpret the costs as:

Ci=Cnp=0
C1» = C, = cost of a failure to detect a signal when it is present
C,1 = Cy= cost of a false alarm

So, in distinction to the previous formulation, this risk analysis brings costs
into the consideration when decisions are made.
The likelihood ratio, L, becomes:

I - p(y;i/x1) - p2)Cr
pWi/x2) p(x1)C,

B, for selection S; (11.35)

We continue to assume that the signal plus noise distribution is additive
Gaussian noise of mean m and standard deviation o, whereas the noise only
distribution is the same, except for the mean value, which is zero. The likeli-
hood ratio then becomes:

L = exp[(2y — m)/207] (11.36)

And the decision boundary can be found as:

2y —m)
InlL=——— 11.37
n 757 (11.37)
We can then solve for values of y as
m 2
y=—+o0"InB (11.38)

2

which basically represents the threshold that will be selected.
This can be illustrated by numerical values, assuming the following:

p(x1)=06
C,=3
Cr=5

m = 14 volts
o=3

11.11 SYSTEM RELIABILITY 357

The value of B then becomes, from equation 11.35:

C, 045
B:M:__:zﬂ.s: 1.11
pG1)Cr 063

From this value of B we are able to find the threshold as:

14)
y:?+(3) In 1.11
y =T+ .948 = 7.948 volts

This equation may be interpreted as:

Decide that a signal was sent if the received signal is greater than approxi-
mately 7.95. If less than that value, decide that there was no signal, only
noise.

This formulation shows that at least one alternative approach is available
from the rich field of decision theory applied to detecting signals in the
presence of noise.

11.11 SYSTEM RELIABILITY

The discussion in Section 11.7 developed the exponential distribution as most
directly applicable to the matter of component and system reliability. In this
section, we further elaborate on a few reliability calculations.

We define the hazard function for a system or component as

t
h(t) = SO (11.39)
1—F(t)
If the distribution in question is exponential, then
A —\t
n(ey = 2 XPEM) (11.40)
exp(—At)

which is therefore a constant hazard or failure rate. Under these conditions, the
system or component has no “memory” and, technically, does not wear out.
For most types of purely electronic equipment, this is a good approximation.
For mechanical equipment, this is usually a poor model and should not be
used. Instead, the Weibull distribution is a better choice.

For the exponential, then, the probability of failure-free operation to time
tis

R(t) = exp(—At) (11.41)

where R(t) is the reliability and X is the constant failure rate, which, in turn,
is equal to 1/MTBFE.

358 SELECTED QUANTITATIVE RELATIONSHIPS

Component A

R(A)
o—
Component A Component B Component B
o— RA) — R®B R(B)

(@) (®)

Figure 11.4. Two reliability configurations.

11.11.1 Components in Series

If two components (that comprise a system) are placed in a “series” reliability
configuration, as in Figure 11.4(a), it means that both must be operative for
the system to be working properly. The reliability of the system is therefore

Ry = R(A)R(B) = exp(—Ayt) exp(—Apt)

(11.42)
= exp[—(Aa + Ap)1]

This is the basis for the simple addition of failure rates for components when
considering the reliability of a system.
Because the MTBFs and failure rates are reciprocals of one another,

Ae = Ay + Ap (11.43)
1 N 1
MTBF, MTBF, MTBF,

(11.44)

as described in Chapter 8, Section 8.7.2. Extension to many components in a
series reliability configuration is immediate.

Example. The probability that the system described in Figure 8.3 will
survive without failure for 500 hours can be computed by adding the
given failure rates of 0.0004, 0.0005, 0.0006, and 0.0005, yielding a
system failure rate of 0.002. The reliability of the system is therefore
exp (—.002¢), where, in this case, r = 500 hours. This then reduces
simply to R = exp (—1) = 0.368. We note that this is the result for
any simple exponential system in terms of failure-free operation to its
MTBE

11.11.2 Components in Parallel

A parallel reliability configuration, as in Figure 11.4(b), means that at least one
of the components must be operative in order for the system to be working. For

11.11 SYSTEM RELIABILITY 359

two components in parallel, the system reliability therefore can be expressed
as

Ry =1—-[1—=R(A][l — R(B)] (11.45)
=1—[1—exp(—As)][1 — exp(—Apt)] (11.46)

and the failure rates are not additive for such a system. The parallel configu-
ration introduces redundancy, and thus improves the reliability of the system,
with the penalty being the addition of the redundant component. This is nec-
essary when it is extremely important to keep a system on the air, such as
with a manned spacecraft or an air traffic control system.

Example. If we take the system in the previous example and place it in a
redundant configuration, the reliability then becomes

Ry =1—(1—0.368)(1 — 0.368) = 1 — (0.632)* = 0.6

Thus, the reliability has improved from 0.368 to 0.6 by adding simple
redundancy, for which one pays the price of duplicating this piece of
equipment.

Example. What is the probability of successful operation for 100 hours for
a system with two subsystems with MTBFs of 200 and 300 hours when
(a) the two subsystems are in “series,” and (b) the two subsystems are in
“parallel”? For part (a), R, = exp (—100/200) = 0.6065 and R, = exp
(—100/300) = 0.7168. The product of these represents the series case,
which yields the result 0.434. In part (b), we have an overall reliability
of 1 — (1 —0.6065)(1 —0.7168) =1 — (0.3935)(0.2852) = 0.8885.

11.11.3 Non-Constant Failure Rates

Earlier we saw that the hazard function for the exponential distribution turned

out to be a constant equal to lambda (A). This constant failure rate is the basis

for a considerable part of the theory of reliability, but not all of it. We must take

account of the fact that the hazard is not a constant in many situations. Indeed,

when wear-out is experienced, we need to look at a more complex hazard.
An example is one in which the hazard function is:

h(t) = art®! (11.47)
where both « and A are greater than zero.

For this situation, the density function turns out to be the Weibull distribu-
tion, which can be expressed as:

f(t) = art® exp(—rt*) (11.48)

360 SELECTED QUANTITATIVE RELATIONSHIPS

°
©
N
©
T)
- Approm_mate 5
o | Constant Failure Rate
©
o |
Q . |
2 | Region | . | Region
K A Region | c

| B |

| |

|

I >
time, t

Figure 11.5. Changing Failure Rates or Hazards

Lambda and alpha are the two parameters of this distribution that makes
it considerably more complex than the exponential. However, when alpha
becomes unity, it reduces to the exponential case. The mean value and variance
for the exponential are 1/A and 1/A%, respectively, but the corresponding values
for the Weibull are more complicated and relate to the Gamma function.
Nevertheless, the Weibull distribution function is used extensively when the
failure rate is not a constant.

The situation is shown, in part, by the sketch in Figure 11.5. This figure
shows a nonconstant hazard function, or failure rate, with three distinct re-
gions. One region (B) shows the failure rate as approximately constant. To
the left of that we see a region (A) in which the failure rate is decreasing from
some initial value. This may be considered the burn-in or bake-out period,
also at times called the infant mortality period. During this period, compo-
nents are considered to not be “stabilized,” and we try to screen them out
of populations of components. Success in doing so moves these components
from the nonconstant region (A) to the constant region (B). After some time,
we enter region C in which the failure rate (or hazard function) begins to
increase. The component is ultimately wearing out, although this may take
quite a long period of time. The overall shape of this curve suggests its name,
well known as the “bathtub” curve.

The systems engineer must be aware of the possibility that various parts
of the system may be subject to wear-out. Analyses of these parts from a
reliability point of view may recognize the wear-out phenomenon by using
the Weibull distribution. Although this distribution has its complications, we
need to make sure that we are not making invalid assumptions about failure

11.13 AVAILABILITY 361

characteristics of the systems we are analyzing and building. The tools are
available; we just need to use them. Many books on reliability expand on and
explain the way in which the Weibull distribution is used.

11.12 SOFTWARE RELIABILITY

Another application of the probability relationships discussed in this chapter
deals with software reliability. As indicated in Chapter 10, there are several
models for calculating the reliability of software. The one selected for ex-
planation in the last chapter was the so-called basic execution time model
(BETM). In that model, the failure intensity (/) was decreasing linearly with
the increasing number of failures/defects. Because failure intensity and fail-
ure rate are basically the same notion, we did not have the simple constant
failure-rate situation. A new failure intensity had to be found as the number
of failures/defects increased and were discovered. Knowing the new failure
intensity then allowed us to utilize the Poisson distribution to calculate the
reliability. For the case in which we were inquiring into the probability of
exactly zero failures in time ¢, the Poisson reduced to the exponential case, as
shown in the discussion in Section 10.5.5.

As suggested in the previous chapter, many other software reliability ap-
proaches depend heavily on probability relationships. For that essential rea-
son, it is important, especially for the software systems engineer, to master
the elements of probability theory.

11.13 AVAILABILITY

The availability of a system, as previously discussed in Sections 7.3.17 and
8.6.4, is the probability that a system will operate when called on at random
to do so. A mean-value approach to availability (see Chapter 8) defines it as

MTBF

MTBF + MDT
where A = availability
MTBF = mean time between failures
MDT = mean down time

(11.49)

Availability can be viewed as the percentage of time that the system is oper-
ative, on the average, in relation to the total time.

Example. If the failure rate for a system is 0.01 failure per hour and the
mean-time-to-repair distribution is uniform in the range 2 to 8 hours,
what is the system availability? The MTBE, from the failure rate, is
1/0.01, or 100 hours. The mean down time is taken to be the average
value of the repair-time uniform distribution, which is calculated as
(2 + 8)/2 = 5 hours. From the preceding formula, the availability is
100/(100 + 5) = 0.952.

362 SELECTED QUANTITATIVE RELATIONSHIPS
11.14 A LEAST SQUARES FIT

We often run into systems engineering problems in which we are trying to
fit a line or a curve to a set of data points. Thus, we are converting from
these data points into a formula that can be used to represent the empirically
derived data set. This notion was discussed under the topic of cost estimating
relationships (CERs), which allowed us to estimate an element of system
costs as a function of a limited set of variables. The COCOMO discussion in
Chapter 10 examined a good example. In this section, we look more closely
at the mathematics of perhaps the simplest of such formulations: the case in
which we have a set of data points and wish to obtain the best fit of a line to
these points. Refer to Figure 11.6, which shows the resultant line for a set of
four data points.

y
10 Y
2 | 3
o 4| 6 ¥
5 | 8
8 619 s
7

/ ~— y=1.54 x —0.0571
2

Figure 11.6. lllustrative Least Squares Fit

11.15 SUMMARY 363

In general, when we are curve-fitting, we use the criterion of minimizing
the resultant mean-square value between data points and the curve in question.
This is an old idea that is directly related to mean-square errors and the notion
of variance. As such, it has become a convention that we have agreed on as
a preferred procedure. If we have limited ourselves to a line, then the least
squares fit of that line may be found by using these relationships for the slope
(m) and the y-intercept (b) of that line:

nXxy — Xxxy
m—

= 11.50
nXx? — (Xx)? ()

b— TyEx? — (TxZxy)
T nXx? — (Tx)? (11.51)

We will work out an example in which the four data points are as shown
next, along with calculations that are needed for the preceding equations.

x v X Vv
2 3 4 9 6
4 6 16 36 24
5 8 25 64 40
6 9 36 81 54

number of data points = n = 4
mean value of x = m(x) = (Xx)/n = (17)/4 = 4.25
mean value of y = m(y) = (Xy)/n = (26)/4 = 6.5

Proceeding with the equations for the line’s slope (m) and y-intercept (b),
we have:
_ ®124) - (17)(26) 54

@en—are 3

p_ QOB —(N124) _ =2
35 35

Therefore, the line may be described as:
y = 1.54x — 0.0571

This is the least squares fit to the four given data points. Note that the
y-intercept is close to zero and almost passes through the origin. The reader is
urged to double-check the calculation and continue with the related example
at the end of this chapter.

11.15 SUMMARY

In this chapter, we presented selected quantitative relationships that support
systems engineering and project management. Most of these relationships

364 SELECTED QUANTITATIVE RELATIONSHIPS

were drawn from the field of probability theory. Other domain-specific re-
lationships are too numerous to be considered here, but may have to be
addressed, depending on the domain knowledge necessary with respect to a
given project (e.g., guidance, control, or aerodynamics).

The essential purpose of mastering these and other relationships is to
measure the performance of the system that is being designed and built. Other
purposes include the effective management of the overall systems engineering
effort and the support of the quantitative aspects of all of the thirty elements
of systems engineering.

A brief summary of the most significant relationships covered in this
chapter is provided in Exhibit 11.1.

Exhibit 11.1: Summary of Quantitative Relationships

General
P(A+B)=PA)+ PB), ifAB=0

P(AB) = P(A|B)P(B) = P(B|A)P(A)

= P(A)P(B), if A and B are independent

Mean value of x = m(x) = E(x) = fxp(x) dx
Variance = o2 = [(x — m)? p(x) dx
Mean(X + Y) = mean(X) + mean(Y)
0?(X +Y)=0%(X) + 0%(Y), when X and Y are independent
E(xy) = [Jxyp(x, y) dx dy
Cov (xy) = E(xy) — E0E()
Cov(xy)

o(x)o(y)
Cumulative distribution function (CDF) = [p(x) dx

Specific Distributions and Applications
Binomial: P(x) = (Z) prg"*
(A1)* exp(—At)
k!

Correlation coefficient

Poisson: P(k) =

(v —)2
Normal: p(x) = o m)]

1
o2z P [207
Exponential: p(x) = A exp(—Ax)

) X —x?

Rayleigh: p(x) = o) exp (T‘z)
Reliability: R(t) = e = exp(—t/MTBF)
Series reliability = R(A)R(B) = exp[—(As + Ap)t]
Parallel reliability = 1 — [1 — exp(—A48)][1 — exp(—Xpt)]

MTBF

Availability = MTBF + MDT

QUESTIONS/EXERCISES 365

QUESTIONS/EXERCISES

11.1 For the binomial example in Section 11.3, calculate the probability of
either one or zero errors.

11.2 For a roulette wheel with 18 red, 18 black, a zero, and a double zero,
what is the probability of:

a. winning when you bet on black?

b. losing when you bet on red?

11.3 For a normal distribution with a mean value of 6 and a variance of 9,
what is the probability that the random variable will exceed:

a. 10

b. 12

c. 14

11.4 What is the probability of successful operation for 200 hours for a
system with three subsystems with MTBFs of 100, 200, and 300
hours when the subsystems are:

a. in a “series” reliability configuration?

b. placed in a redundant configuration?

11.5 If the failure rate is 0.02 failure/hour and the mean-time-to-repair
distribution is uniform in the range 2 to 10 hours, what is the system
availability?

11.6 For threshold detection of a radar pulse in Gaussian additive noise,
the pulse voltage is 14 volts, the threshold is set at 5 volts, and the
noise power is 9 watts.

a. Find the detection and false-alarm probabilities.

b. Where would you put the threshold to obtain a false-alarm proba-
bility of approximately 0.02? What is the resultant detection prob-
ability?

11.7 The three one-sigma errors of a system, where the errors are additive
and independent, are in the ratio 3:4:5, and the total allowable error
variance is 0.5. What are the maximum values of the three independent
errors?

11.8 What is the probability that a system will operate without failure:

a. to its mean-time-between-failure (MTBF), and

b. twice its mean-time-between failure?

11.9 For the illustrative least squares fit in the text, estimate the covariance
of x and y and also the correlation coefficient.

11.10 For the Rayleigh distribution, how many “sigma” will correspond to

a probability value of 0.5? Try also with 0.95.

366 SELECTED QUANTITATIVE RELATIONSHIPS

REFERENCES

11.1 Feller, W. (1950). An Introduction to Probability Theory and Its Applications, Vol. 1.
New York: John Wiley.

11.2 Parzen, E. (1960). Modern Probability Theory and Its Applications. New York: John
Wiley.

11.3 Lloyd, D., and M. Lipow (1962). Reliability: Management, Methods and Mathematics.
Englewood Cliffs, NJ: Prentice Hall.

11.4 Eisner, H. (1988). Computer-Aided Systems Engineering. Englewood Cliffs, NJ: Prentice
Hall.

PART IV

TRENDS, PERSPECTIVES,
AND INTEGRATIVE
MANAGEMENT

— 12

SYSTEMS/SOFTWARE
ENGINEERING AND
PROJECT MANAGEMENT
TRENDS

12.1 INTRODUCTION

Trends in systems engineering and project management, to a great extent, are
based on two primary factors:

1. The demands placed on the project manager and the engineering team,
particularly as systems become larger and more complex

2. The advances in methods and technology that can be utilized to respond
to the preceding

The problems that we face as project managers and systems engineers are
plentiful and we have little choice but to be aware of the new options that are
continually becoming available. This can be done, at least in part, by tracking
the trends and adopting new solutions where they have proven to be useful.
This chapter provides an overview of trends in systems engineering, software
engineering, and project management. Over the years, as new issues arise,
new trends will develop. Many of the trends examined here may be expected,
however, to be with us for quite some time.

12.2 SYSTEMS ENGINEERING TRENDS

In broad terms, most system developers are attempting to make continuous
improvements in their systems engineering capabilities and processes. When

369

370 SYSTEMS/SOFTWARE ENGINEERING AND PROJECT MANAGEMENT TRENDS

successful, they lead to building systems within the specified and required
constraints of time (schedule), cost (budget), and technical performance.

12.2.1 International Council on Systems Engineering (INCOSE)

In the early 1990s, a new organization, the National Council on Systems En-
gineering (NCOSE), was formed to recognize the disciplines of systems
engineering and improve its practice. Changing its name and scope, the
current INCOSE has made important contributions to the field of systems
engineering.

As an example, the inaugural issue [12.1] of the Journal of INCOSE dealt
with the following selected issues:

* The basics of systems engineering

» Systems architecting

 Relationships between systems and software engineering
* Model-based systems engineering

* Systems thinking

* Case studies

Moving forward in time to the 5th Annual International Symposium of
INCOSE [12.2], we see the following selected topics listed in the techni-
cal program:

» Systems engineering management

» Systems engineering tools

» Systems engineering processes and methods
* Requirements management

* Measurement

* Emerging applications

* Education and training

The comprehensive scope of INCOSE considerations is likely to make it an
important force in the development and application of the discipline of sys-
tems engineering for many years to come. The professional systems engineer
is thus encouraged to join INCOSE and participate in its activities.

12.2.2 System of Systems (S2) Engineering

Many practitioners of systems engineering have, in effect, been working on a
“system of systems.” Very large systems tend to be systems of systems, such
as our national communications system and our national air transportation
system. But even in a much narrower context, we also find systems of systems.

12.2 SYSTEMS ENGINEERING TRENDS 371

An example is the national air defense system with its many elements that
deal with threat warning, attack assessment, and system response.

As we move more into the “information age,” we are finding large num-
bers of information “systems of systems.” Examples include the National
Information Infrastructure or Highway, the Internet, and other customized
networks, and the merging of computers and communications technologies
and systems.

With the emergence and prevalence of systems of systems, the matter of
how the systems engineer and project manager should deal with this situa-
tion has arisen. A partial response is the notion of system of systems (S2)
engineering.

A system of systems perspective is applicable when one or more of the
following circumstances is operative [12.3]:

» A variety of related systems are being acquired independently, with each
such system subject to the usual systems engineering disciplines

» The schedule relationship between the related systems is arbitrary and
asynchronous

* There is an overriding system of systems mission, that is, each system
must interoperate with the others so as to provide and integrate capability
and response

For the previous situations, the recommended structure [12.3] for system
of systems engineering contains the elements shown in Exhibit 12.1. These
elements are to be performed by a systems engineering team that has the
charter to attempt to optimize the performance, schedule, and cost of the
system of systems. In addition, it is suggested that these elements be supported
by a set of systems engineering tools (see Section 12.2.7).

Exhibit 12.1: Elements of Systems of Systems (S2) Engineering

1. Integration engineering

1.1 Requirements

1.2 Interfaces

1.3 Interoperability

1.4 Impacts

1.5 Testing

1.6 Software verification and validation

1.7 Architecture development
2. Integration management

2.1 Scheduling

2.2 Budgeting/costing

2.3 Configuration management

2.4 Documentation

372 SYSTEMS/SOFTWARE ENGINEERING AND PROJECT MANAGEMENT TRENDS

3. Transition management

3.1 Transition planning

3.2 Operations assurance

3.3 Logistics planning

3.4 Preplanned product improvement (P31I)

Building upon these notions of S2 engineering is that of Rapid Computer-
Aided System of Systems Engineering (RCASSE). This construction recog-
nizes that system development schedules for large-scale systems are rarely
satisfied. This leads to situations in which by the time a system is fielded, it
is almost obsolete, especially in the domain of information technologies.

RCASSE emphasizes a rapid, disciplined, and computer-supported design
process, with the following ten steps executed over a nominally specified
six-month period [12.4]:

. Mission engineering

. Baseline architecting

. Performance assessment

Specialty engineering
Interfaces/compatibility evaluation
Software issues/sizing

Risk definition/mitigation

Scheduling

Preplanned product improvement (P31)
Life-cycle cost-issue assessment

SOV NO LR W~

—_—

This reengineering of the more conventional systems engineering process is
designed to be used when there exist:

* A system of systems situation
« Extreme schedule pressure

* A sophisticated development team with access to and experience with a
variety of systems engineering tools

It focuses on only the essential elements in an attempt to converge quickly on
a baseline system that satisfies the requirements.

It may be expected that further efforts to adapt the elements of systems
engineering to a system of systems environment will be forthcoming as we
continue to be faced with situations of this nature and the problems that they
entail.

12.2 SYSTEMS ENGINEERING TRENDS 373

12.2.3 Capability Maturity Model (CMM) for Systems Engineering

Chapter 11 briefly described the capability maturity model (CMM) for soft-
ware. A current trend is to develop a CMM for systems engineering. It is
likely that this effort will be successful and have a significant impact on the
systems engineering community.

The Software Engineering Institute (SEI), primary developers of the soft-
ware CMM, has taken a key position in formulating a CMM for systems
engineering (SE-CMM). An important ingredient in its structure is the iden-
tification of process areas (PAs), which it considers to be key elements of
systems engineering [12.5, 12.6]. PAs have been broken down into three main
categories, namely, (1) project, (2) organizational, and (3) engineering. Ap-
proximately seventeen preliminary PAs have been established under these
three categories. The structure also breaks each PA into base practices (BPs).

The approach to the SE-CMM appears to have strong similarities to that
of the CMM for software. It is a maturity model for systems engineering and
a related method for assessment. As the software CMM had five levels of
maturity (see Chapter 11), this SE-CMM has six levels:

Level 0: Initial
Level 1: Performed
Level 2: Managed
Level 3: Defined
Level 4: Measured
Level 5: Optimizing

These levels are intended to differentiate the process capability of the orga-
nization.

INCOSE has also been investigating a CMM for systems engineering. In
this conception, some fifteen key focus areas have been defined under three
categories [12.7]:

* Engineering Process
— System requirements
— System design
— System integration and verification
— Integrated engineering analysis
* System Management
— Planning
— Tracking and oversight
— Subcontract management
— Intergroup coordination

374 SYSTEMS/SOFTWARE ENGINEERING AND PROJECT MANAGEMENT TRENDS

— Configuration management
— Quality assurance
— Risk management
* Organizational
— Process management
— Training
— Technology management
— Environment and tool support

These key focus areas, at this time, are not precisely the same as the process
areas (PAs) of the SE-CMM, but they have the same basic thrust. There are
also other differences, and similarities, between the INCOSE approach and
the SEI approach to a systems engineering CMM.

With the above SEI and INCOSE approaches as background, three or-
ganizations moved forward in order to synthesize these approaches. These
organizations were the Electronics Industry Association (EIA), INCOSE,
and the Enterprise Process Improvement Collaboration (EPIC). The net re-
sult was SECM, the Systems Engineering Capability Model, as embodied
in EIA/IS-731 [12.8] (see also Chapter 2). This standard has two parts—the
SECM model and the SECM appraisal method. It also has a total of nineteen
focus areas, distributed under technical, management, and environment cate-
gories.

Another notable piece of work was the formulation of the iCMM (the
Integrated Capability Maturity Model) by the Federal Aviation Administra-
tion (FAA) [12.9]. This model was focused upon the acquisition of software
intensive systems and contains the process areas (PAs) listed below:

* Life Cycle or Engineering Processes
PA 01—Needs
PA 02—Requirements
PA 03—Architecture
PA 04—Alternatives
PA 05—COutsourcing
PA 06—Software development and maintenance
PA 07—Integration
PA 08—System test and evaluation
PA 09—Transition
PA 10—Product evaluation
* Management or Project Processes
PA 11—Project management
PA 12—Contract management

12.2 SYSTEMS ENGINEERING TRENDS 375

PA 13—Risk management
PA 14—Coordination
» Supporting Processes
PA 15—Quality assurance and management
PA 16—Configuration management
PA 17—Peer review
PA 18—Measurement
PA 19—Prevention
* Organizational Processes
PA 20—Organization process definition
PA 21—Organization process improvement
PA 22—Training
PA 23—Innovation

Finally, with respect to this overall topic, the SEI set forth the CMMI, also
an integrated version of the Capability Maturity Model [12.10]. This form
of the CMM concept was intended to provide “guidance for improving your
organization’s processes and ability to manage the development, acquisition,
and maintenance of products and services.”

The significance of the preceding, however, is not that there are different
approaches to formulating a systems engineering or integrated CMM. Rather,
this body of work represents a trend toward better understanding of the ele-
ments of systems engineering and the improvement of the internal processes
of systems engineering and its management. This can only have a beneficial
effect on both the theory and practice of systems engineering.

12.2.4 Systems Architecting

All of Chapter 9 is devoted to a key element of systems engineering, namely,
the architecting of the system. As important as this element is, one can expect
that efforts will continue to attempt to define and develop how architecting
is to be accomplished. Because it is fundamentally a design or synthesis
process, it differs from analysis in that one is attempting to “invent” a new
configuration that may not have existed before. Fascination with the creative
process of architecting a new system is not misplaced.

As stated in Chapter 9, E. Rechtin has played a key role in studying the
sometimes mysterious process of system architecting. Beyond his seminal
books in this area [12.11, 12.12], Dr. Rechtin has continued to explore the
subject of systems architecting. For example, in examining the foundations
of systems architecting [12.13], he indicates that systems architecting “is
focused and scoped by six core concepts or ideas: the systems approach,
purpose orientation, ultraquality, modeling, experience-based heuristics, and

376 SYSTEMS/SOFTWARE ENGINEERING AND PROJECT MANAGEMENT TRENDS

certification.” At about the same time, he also commented on the role and
responsibility of the systems architect [12.14]. Questions (and answers) that
he poses in this regard are as follows:

e Do I need an architect? (Asked by the client.)

* How do I make sure I get what I want?

* How do we keep on track?

* How do I know that the system has been satisfactorily completed?

Rechtin continues to emphasize heuristics as a major factor in systems ar-
chitecting, citing heuristics with respect to architecting qualitative change,
maintaining system integrity, and systems acceptance. These heuristics and
their value apparently came as a “great surprise.” Many systems engineers
recognize this in terms of “rules of thumb” that they use in order to archi-
tect new systems. Such rules are experience-based and are a testament to the
extensive domain knowledge of the best systems engineers.

The issue of systems architecting was also examined in some detail at
a workshop sponsored by the Navy Department [12.15], with the central
question being how to improve architecting for increasingly complex systems
and environments. In response, some of the architecting tenets were defined:

» Adherence to fundamental architecting principles
* Recognition of a systems architect

* Client involvement

» Keeping the process creative

* Controlled teamwork

It was also suggested that the systems acquisition process should contain
a “systems architecture milestone” that would contain the following:

* A definition of the systems architecture
e System acceptance requirements
A life-cycle plan
* A rationale that convinces the stakeholders that the system will:
— satisfy their overall needs
— satisfy functional, performance, and quality requirements
— have an acceptable level of risk
— do the foregoing at least as well as any alternative architecture

Other notions discussed at the workshop were

* The use of an architecture design language (ADL)
» The unique needs of complicated systems
* Methods that enable the architecting of complex systems

12.2 SYSTEMS ENGINEERING TRENDS 377

* Tools for systems architecting

» Workgroup collaborations

» Taxonomies of system styles

* Training and career paths for systems architects

Another important thrust with respect to systems architecting is represented
by the C4ISR (Command, Control, Communications, Computer, Intelligence,
Surveillance, and Reconnaissance) Architecture Framework [12.16], as dis-
cussed previously in Chapter 9. It will be recalled that this framework was
structured around three basic views, namely:

e The operational view
* The systems view, and
* The technical view

This Architecture Framework was confirmed, in part, by the C4ISR Archi-
tectures Working Group (AWG) within the Department of Defense (DoD)
[12.17]. In its deliberations, the AWG was broken down into four panels to
consider:

* The framework

* Interoperability matters

» Data modeling and analysis tools
* Roles and responsibilities

Based upon their report [12.17], the following recommendation areas were
considered:

* Establish common architecture terms and definitions

» Implement a common approach for architectures

* Strengthen architecture policy and guidance

* Define and use levels of interoperability

* Build architecture relationships with other DoD processes
* Manage DoD architectures

The reader is urged to examine both the Architecture Framework [12.16] as
well as the AWG Final Report [12.17] in order to obtain a full understanding
of the significance of these efforts.

Based upon these and other stated interests in this subject, it may be
expected that continuing research into and application of various processes of
systems architecting will yield results that can be brought into the mainstream
of systems engineering practice.

378 SYSTEMS/SOFTWARE ENGINEERING AND PROJECT MANAGEMENT TRENDS

12.2.5 Sustainable Development

In its statement of public policies and priorities, the American Association of
Engineering Societies (AAES) officially endorsed the notion of sustainable
development, which has been defined as “meeting the needs of the present
without compromising the ability of future generations to meet their own
needs” [12.18]. It is further stated that “engineers will play a critical role in
sustainable development and must acquire the skills, knowledge, and infor-
mation that are the stepping stones to a sustainable future.”

Preserving our resources and our environment are key aspects of sus-
tainable development. Because, as suggested earlier, engineers are and will
continue to be deeply involved in such development projects, it is critical
that systems engineering be expanded, wherever necessary, to specifically
accommodate the principles and practices of sustainable development. As
articulated in a position paper from the AAES, “engineers must work with
others to adapt existing technologies and create and disseminate new tech-
nologies that will facilitate the practice of sustainable engineering and meet
societal needs” [12.19]. This unmistakable trend should influence the way
projects and systems engineering teams are deployed and managed. More-
over, it is likely that ultimately, the elements of systems engineering will be
modified so as to place more emphasis on assuring sustainable development,
explicitly including sustainable technologies and processes.

12.2.6 The Structure of Systems Engineering

Fortunately, the overall structure of systems engineering appears to be under
constant examination. The Navy workshop [12.15] previously cited did so by
exploring the state of the art as well as recommendations for the future in the
following key focus group areas:

* Design capture

 Evolutionary systems

* Infrastructure and tools

* Organizational/institutional learning
» Systems architecting

* Reengineering

Results in these areas cannot be reiterated here, but it is clear that the very
structure of systems engineering is being analyzed in considerable detail, with
participation of many of the best systems engineers in the country.

While mentioning the best systems engineers, it is also necessary to ac-
knowledge the varied, prolific, and significant work, over many years, of
Andrew Sage [12.20, 12.21, 12.22, 12.23]. As an example, in 1994, Dr. Sage

12.2 SYSTEMS ENGINEERING TRENDS 379

discussed the “many faces of systems engineering” in the INCOSE inaugural
issue of its journal [12.24]. Among the topics examined were

» Systems management

» Systems methodology

» Knowledge types

» Formulation, analysis, and interpretation
* Life-cycle models

* Interactions across life cycles

* Architecture levels

Another examination of the structure of systems engineering was carried
out by the Software Productivity Consortium (SPC), expanding its origi-
nal charter from software considerations to the broader context of systems
[12.25]. The result was a tailorable process for systems engineering that was
given the name of Generic Systems Engineering Process (GSEP). The basic
notion was to view all elements of systems engineering in terms of the detailed
processes that were required in order to carry them out. In effect, it was equiv-
alent to taking the thirty elements of systems engineering defined here and
answering the question: What process is necessary for the proper execution of
each element? In order to give the process descriptions some rigor, ICAM (In-
tegrated Computer-aided Manufacturing) Definition (IDEF) diagrams were
used as descriptors. This method is also embodied in several systems/software
engineering tools so that the process flows are easily automated.

These are but a few of the many examinations of the basic structure of
systems engineering that are under constant scrutiny and reevaluation. It
is believed that trends in this direction are helpful and likely to continue
indefinitely.

12.2.7 Systems Engineering Environments and Tools

Given the thirty elements of systems engineering and descriptions of the
processes required to carry out these elements, two natural questions that
follow are:

1. Is there a set of automated tools that the systems engineering team can
use?

2. Can these tools be integrated in some fashion to create a “systems
engineering environment” (SEE) with which the team can operate in a
highly effective and efficient manner?

A book by this author concentrated on answering the first of these [12.26],
and also made it clear that a large number of such tools have been developed
for other purposes, and that many were focused on software engineering.

380 SYSTEMS/SOFTWARE ENGINEERING AND PROJECT MANAGEMENT TRENDS

Further developments with respect to system of systems (S2) engineering, as
discussed earlier in this chapter [12.3, 12.4], depended highly on the availabil-
ity of systems engineering supporting tools. This situation is true today with
tool developers giving emphasis to applications in software engineering and
even business process reengineering (BPR) [12.27], in distinction to systems
engineering. The need for tools that support systems engineering has now
been widely recognized, and groups such as INCOSE and others [12.28] are
working on this issue as a continuing activity.

With respect to a systems engineering environment, a leading position was
taken by the Air Force’s Rome Laboratory in developing the System Engi-
neering Concept Demonstration (SECD). The primary goal of this program
was to “increase the productivity and effectiveness of system and specialty
engineers involved in the development, maintenance, and enhancement of
military computer systems” [12.29]. Within the scope of this effort, the Air
Force specifically addressed the automation of the systems engineering role
and the various activities that support systems engineering. These activities
fell into the categories of engineering, communications, and management.

Ultimately, the program focused on the development of Catalyst, an auto-
mated systems engineering environment that targeted the systems engineering
team as the user and addressed these three categories. The building blocks
of Catalyst were tools that dealt with interface mechanisms and environment
frameworks that took the form of:

* Process automation

* Generic engineering and management tools
» Concurrent engineering groupware

* Integration mechanisms

¢ Environment administration tools

Documentation of SECD was produced in six volumes addressing:

Systems engineering needs
A process model

Interface standards studies
Technology assessments
Trade studies

A security study

SRR o e

From this point, the SECD program transitioned from exploratory to advanced
development that involved the building of critical Catalyst components.
Because systems engineering continues to be a process that calls for con-
siderable ingenuity in working with massive amounts of information, it is
likely that efforts to build automated systems engineering environments will
continue for the indefinite future. One key issue is the extent to which these
environments are designed to incorporate tools that are fully integrated, that

12.2 SYSTEMS ENGINEERING TRENDS 381

is, tools that work together so as to minimize rekeying and manual transport
of data. Another, of course, is the scope of these tools. In the context of this
book, that question may be stated as: To what extent does such an environment
cover the full thirty elements of systems engineering? These issues carry for-
ward into constructing a software engineering environment, otherwise known
as CASE (computer-aided software engineering). Further discussion of these
points appear later in this chapter under the subject of software engineering
trends.

12.2.8 Education

Systems engineering, in many colleges with engineering programs, has not
yet been fully accepted as a discipline of study. It certainly does not have
the emphasis given to the old and more widely established fields of electri-
cal, mechanical, chemical, and nuclear engineering. Notable exceptions to
this are programs at the University of Virginia, Virginia Tech, the University
of Arizona, George Mason University, the University of Maryland, and The
George Washington University, among others. In some cases, systems engi-
neering is tied into industrial engineering, operations research, or engineering
management. As the demand for more formal training in systems engineering
continues, it may be expected that more schools will focus on this need and
build more substantial education programs responsive to activities called for
in much of our industrial base. This is a relatively slow process, so many firms
obtain nonacademic training in systems engineering by contracting with spe-
cialty companies that offer short courses that may be adapted to individual
needs. Whatever the form of delivery, it can be safely predicted that the devel-
opment of systems engineering education programs and options will continue
for a long time.

12.2.9 Acquisition Practices

Incredible amounts of time and energy have been expended with respect to
defining and reforming the processes involved in the acquisition of systems,
especially in the government. These efforts, of course, have major impacts on
industry and so various companies and industry groups have had significant
inputs to the thinking that has gone into acquisition change and reform.

The motivation for acquisition reform has been centered around three key
issues—speeding up the process, competition, and fairness. The first of these
has been felt rather strongly because the time for the acquisition of largescale
systems has become longer and longer. Indeed, many systems are almost
obsolete by the time all the preliminary phases are executed and the system
is finally fielded. For both government and industry, this is an intolerable
condition. With respect to competition and fairness, the number of award
protests has increased dramatically in government systems procurements for
a variety of reasons. The resolution of these protests has also had a major
impact on the time required to acquire a system.

382 SYSTEMS/SOFTWARE ENGINEERING AND PROJECT MANAGEMENT TRENDS

Chapters 2 and 7 discussed the rather large documents known as the 5000
series in the Department of Defense (DoD). This series incorporated a direc-
tive, instruction, and documentation requirement and process for the acqui-
sition of military systems. Collectively, they are extensive in their scope and
penetrating in their detail.

A number of so-called acquisition reform initiatives have been important
to the government. Two such efforts were the Federal Acquisition Reform Act
(FARA) and the Federal Acquisition Streamlining Act (FASA) [12.30]. Judg-
ing from the extensive dialogue on these matters, reengineering acquisition
practices has been and remains a distinctly nontrivial exercise. By looking at
the practices over the past thirty years, continuing attention to these matters
can be expected to be with us for the indefinite future. These practices impact
the way both project managers and systems engineers do their jobs, especially
during the proposal development phase.

Another major thrust in the direction of acquisition reform developed
internally within the DoD in order to solve some of the problems alluded
to earlier. This was basically initiated by the Secretary of Defense in his
memorandum of June 29, 1994 [12.31], which called for a move from military
specifications and standards to increased use of best commercial practices.
The stage was set for this definitive action during the previous year when the
Deputy Under Secretary for Acquisition Reform established a Process Action
Team (PAT). The charter for this PAT [12.32] was to develop

(a) a comprehensive plan to ensure that DOD describes its needs in ways that
permit maximum reliance on existing commercial items, practices, processes
and capabilities, and (b) an assessment of the impact of the recommended
actions on the acquisition process.

The PAT produced a “Blueprint for Change™ [12.33], which highlighted some
thirteen principal recommendations, reproduced in Exhibit 12.2. These activ-
ities, along with an implementation plan, defined a significant trend toward
acquisition reform that is undeniable. Although some parties suggested more
far-reaching approaches [12.32], there is no doubt that reform of the way in
which the government acquires large systems is necessary. All of this rep-
resents an environment in which both the Project Manager and the systems
engineering team must do their jobs.

Exhibit 12.2: Thirteen Principal Recommendations of the Process
Action Team (PAT) on Military Specifications and Standards [12.32]

1. All ACAT [Acquisition Category] Programs for new systems, ma-
jor modifications, technology generation changes, nondevelopmental
items, and commercial items shall state needs in terms of performance
specifications.

10.
11.

12.

13.

12.2 SYSTEMS ENGINEERING TRENDS 383

Direct that manufacturing and management standards be canceled or
converted to performance or nongovernment standards.

. Direct that all new high value solicitations and ongoing contracts will

have a statement encouraging contractors to submit alternative solu-
tions to military specifications and standards.

Prohibit the use of military specifications and standards for all ACAT
programs except when authorized by the Service Acquisition Execu-
tives or designees.

. Form partnerships with industry associations to develop nongovern-

ment standards for the replacement of military standards where
practical.

. Direct government oversight be reduced by substituting process con-

trol and nongovernment standards in place of development/production
testing and inspection and military unique quality assurance
systems.

Direct a goal of reducing the cost of contractor-conducted development
and production test and inspection by using simulation, environmental
testing, dual-use test facilities, process controls, metrics, and continu-
ous process improvement.

Assign Corporate Information Management offices for specifications
and standards preparation and use.

. Direct use of automation to improve the processes associated with the

development and application of specifications and standards and Data
Item Descriptions (DIDs).

Direct the application of automated aids in acquisition.

Direct revision of the training and education programs to incorporate
specifications and standards reform. Contractor participation in this
training effort shall be invited and encouraged.

Senior DoD management take a major role in establishing the environ-
ment essential for acquisition reform cultural change.

Formalize the responsibility and authority of the Standards Improve-
ment Executives, provide the authority and resources necessary to
implement the standards improvement program within their ser-
vice/agency, and assign a senior official with specifications and stan-
dards oversight and policy authority.

A particular response to the preceding was the formulation, by the De-
partment of Defense, of an Evolutionary Acquisition Strategy to acquire
weapon systems [12.34]. In this approach, the Joint Logistics Commanders
gave their formal guidance to Program Managers. They expressed their belief
that such an approach provided “a good alternative means to develop and ac-
quire weapon systems while providing for incremental growth over time,” and
recommended that the Guide be used as a “foundation for effective weapon

384 SYSTEMS/SOFTWARE ENGINEERING AND PROJECT MANAGEMENT TRENDS

system acquisition planning.” Further, the Evolutionary Acquisition (EA)
Process was defined as

A strategy for use when it is anticipated that achieving the desired overall
capability will require the system to evolve during development, manufacture
or deployment.

The Guide goes on to indicate that the EA approach was basically the same as
Preplanned Product Improvement (P3I), one of the elements of systems engi-
neering, as defined herein. This suggests that new trends may be established
by reordering priorities and changing emphasis with respect to elements and
processes that already have been well understood. This is an observation that
should be kept in mind by Project Managers and systems engineers.

Much of the detail regarding DoD processes and products attendant to the
acquisition of systems is contained within the latest version of the DoD 5000
series [12.35]. These documents tend to be updated every several years or so
as we gain deeper insights into acquisition matters or wish to change emphasis
within overarching goals and objectives. One significant statement of such
goals is cited below, as contained within a description of the “Road Ahead” by
the then Under Secretary of Defense for Acquisition and Technology, Jacques
Gansler [12.36]:

Goal One: Field high-quality defense products quickly; support them respon-
sively

Goal Two: Lower the total ownership cost of defense products

Goal Three: Reduce the overhead cost of the acquisition and logistics infras-
tructure

Looking down the road, a variety of study teams explored issues and problems
in acquisition and logistics, dealing with the following topics:

e Research, development, test, and evaluation (RDT&E) infrastructure
* Product support

» Requirements and acquisition interfaces

* Training and tools for acquisition of services

» Commercial business environment

Integrating the results of these primary studies, as well as other inputs, led to
the articulation of some near-term actions that are critically important to the
DoD. These are [12.36]:

1. Increased reliance on an integrated civil-military industrial base

2. A new approach to acquisition whereby “price and schedule play a
key role in driving design development and systems are reviewed by
portfolio”

12.2 SYSTEMS ENGINEERING TRENDS 385

3. A transformation of the mass logistics system into one that is agile,
reliable, and delivers logistics on demand

4. Reduction of acquisition infrastructure and overhead functions and costs

5. A workforce that is adequately trained to “operate efficiently in this new
environment and will perpetuate continuous improvement”

6. The institutionalization of continuous improvement as well as change
management so as to achieve a virtual learning environment.

12.2.10 Systems Integration

Systems integration is a most interesting term, since many of the largest
companies call themselves “systems integrators.” If they are asked to describe
the business they’re in using just a couple of words, they are similarly likely to
respond with “the systems integration business.” All this, of course, suggests
that these special words should be very well defined and that there perhaps
should be more books on systems integration than there are on systems
engineering. It appears that the opposite is true. With some exceptions [e.g.,
12.37], discussions of systems integration tend to be few and far between.
However, most companies seem to agree that systems engineering is, in fact,
a core competency that they need in order to carry out their primary mission
as systems integrators. In addition, these companies appear to document
what they mean by systems integration, but for competitive reasons are not
anxious to share this information with the rest of the world. They prefer to
use their unique approach to systems integration as a means of differentiating
themselves in the marketplace. Given this situation, this author would like to
suggest his own short-form definition of systems integration:

Systems Integration. The process of bringing together a variety of (pos-
sibly disparate) functional elements, subsystems, and components into
a larger (meta)system, or system of systems, to provide a highly inter-
operable and cost-effective solution that satisfies the customer’s needs
and requirements, while at the same time managing the overall process
and delivery of products in a highly effective and efficient manner.

We can make several observations about this definition and what it might
imply. First, systems integration looks a lot like the optimal synthesis of
systems engineering and program/project management. In that sense, this
book, by addressing both project management and systems engineering, might
also be called a text about at least a major part of systems integration. Second,
in dealing with “systems of systems,” systems integration deals also with
the topics discussed earlier in this chapter regarding systems of systems.
Third, from a technical perspective, systems integration is about searching
for ways to find an integrated solution, that is, one that deals as necessary
with (1) legacy stovepipe systems, (2) upgrades to legacy stovepipe systems,

386 SYSTEMS/SOFTWARE ENGINEERING AND PROJECT MANAGEMENT TRENDS

(3) commercial-off-the-shelf (COTS) and nondevelopment items (NDI) that
need to be part of the solution, (4) reused components, as appropriate, (5)
new systems and subsystems that need to be built for the first time. Systems
integration also emphasizes the architecting of a system with the appropriate
balance of the above five elements.

In addition, interoperability and compatibility become critical elements in
the systems integration process. They also constitute a most difficult part of
the problem since (1) it is a nontrivial matter to integrate disparate subsystems
so that they interoperate in a harmonious manner, and (2) systems tend to be
more failure prone at the interfaces, which is a critical aspect of achieving
interoperability and compatibility. Further, the sequence in which parts of
systems are integrated is not necessarily obvious, and becomes an important
consideration in the systems integration process. Finally, the systems integra-
tor needs to be able to question requirements in order to do his or her job,
possibly contrary to some views regarding the subject.

As the last element of commentary here regarding the topic of systems
integration, it is necessary to point out two misconceptions about systems
integration. The first misconception is that the best solution is one that maxi-
mizes the degree of integration of all stovepipe systems, with the goal being
100%. The second misconception is that, if we integrate a set of “best of
breed” subsystems, we will necessarily achieve an overall “best” solution.
The reader is urged to consider these two propositions, think them through,
and use them as necessary in addressing the next systems integration problem
that crosses your desk.

12.3 SOFTWARE ENGINEERING TRENDS

Trends in software engineering are at least as extensive as they are in sys-
tems engineering. The reason is that software development remains our most
significant problem within the context of systems engineering. Put another
way, many of the failures in performance, schedule, or cost are traceable to
deficiencies in software engineering processes. In this section, we explore
trends in a variety of areas. Other more detailed technical trends (e.g., the
move toward object-oriented design and programming) are not considered
here, but can be found in many texts and documents devoted only to software
engineering.

12.3.1 National Software Council

The significance of software as part of our systems is underscored by es-
tablishment of the National Software Council (NSC) in 1995. This nonprofit
organization was founded to “propel software to the forefront of the national

12.3 SOFTWARE ENGINEERING TRENDS 387

agenda and define the National Software Strategy to preserve U.S. competi-

tiveness and security into the 21st century” [12.38]. Its statement of mission

is to “ensure that the U.S. software sector continues to make a strong and

growing contribution to national economic prosperity.” Thus, the NSC has

embraced a rather large vision with potential impacts on a national scale.
The NSC tends to focus on the following three activities:

1. Identify and articulate national software issues
2. Provide a forum for analysis and discussion of software issues
3. Propose policy recommendations to achieve software goals

Clearly, the NSC has to work with people from industry and government
to achieve its goals. Its initial prospectus appears to be very thoughtful and
well-conceived. Under the able leadership of John Marciniak as the first
President, it is likely that the NSC will have a very positive influence on the
national agenda with respect to software. Readers are encouraged to track and
participate in the future activities of the Council.

12.3.2 Commercial Practices

The previous section on systems engineering discussed the thrust in the
DoD toward commercial practices and away from military specifications and
standards. This clear trend is reflected as well in the software arena. As an
example, in 1994, the Defense Science Board (DSB) examined the issue
of the commercial acquisition of defense software [12.39]. This extremely
interesting report summarized principal findings and recommendations in the
following categories:

* Process credibility

* DoD program management

* DoD personnel

» Use and integration of commercial off-the-shelf (COTS) software
* Software architecture

» Software technology base

* Management control and oversight

The report is strong on the point that the way the DoD currently does business
is not compatible with the extensive use of commercial practices. It therefore
calls for major changes in current software acquisition and development
processes and practices. Exhibit 12.3 [12.39] provides a selected list of some
of the findings and recommendations in the DSB report.

388 SYSTEMS/SOFTWARE ENGINEERING AND PROJECT MANAGEMENT TRENDS

Exhibit 12.3: Selected Defense Science Board Findings
and Recommendations

Findings
* High life-cycle cost in time and dollars
* Incredibly long (13—15 years) development cycle
» Excessive acquisition agent involvement in design detail and process
» Contractor—government relationship based on mistrust versus mutual
trust
* Approach tends to be design it all and then build it
* Little focus on design for reusability
* Requirements and source selection inflexibility
* Complicated regulations
* Program management does not encourage “80% solution for 20% cost”
 Shortage of qualified software personnel in DoD
* Normally no COTS market analysis
* Insufficient advantage taken of commercial research and development
(R&D)
» Reasons for trouble on development programs:
— Poor requirements definition
— Inadequate process management and control by contractor
— Lack of integrated product teams (IPTs)
— Lack of consistent attention to software process
— Too little attention devoted to software architecture
— Focus on innovation rather than cost and risk
Recommendations

» Make necessary changes in acquisition regulations

* Establish overarching software life-cycle guidelines

* Renew software program management education and training initiative
* Require trade studies of the use of COTS

« Emphasize use of software architecture

 Strengthen software technology transfer

The DBS report is but one milestone of many that define a significant trend in
software engineering and development—a fundamental belief that commer-
cial practices will streamline the process and result in shortened time frames
and decreased costs, without any performance penalties.

In November of 2000, another report was produced by the DSB Task
Force on Defense Software [12.40]. The Board was asked to explore defense
software in relation to the use of commercial practices, and also to develop a
strategy that makes appropriate use of these practices. The DSB examined six
previous major DoD-wide studies and the 134 recommendations contained in
them. They also concluded that only a few of these recommendations had been
implemented, an indicator of how difficult it is to get a very large enterprise,
such as the DoD, to shift gears and make changes.

12.3 SOFTWARE ENGINEERING TRENDS 389

As part of their work, the DSB reiterated what they called disturbing statis-
tics that apparently apply to both commercial and government information
technology (IT) projects. These numbers, attributed to the Standish Group
[12.41], are cited below:

About 16% of all of the IT projects were completed on time and within
budget.

Some 31% of these projects were canceled before they were completed.
Adding the above (which is 47%), we are left with about 53% of the
projects that are both late and over budget, with the actual expenditure
being greater than the budgeted expenditure by more than 8§9%.

For those projects that were completed, computed above as 69% of the

total, only about 61% had the original set of features that had been
specified (39% did not).

The overall recommendations of this DSB Task Force can be summarized
by the following, in terms of new actions to be taken by the DoD:

1.

2.

More stress should be placed upon past performance and the degree of
process maturity.

Additional independent expert reviews (IFRs) of programs should be
initiated.

. The software skills of acquisition and program management personnel

need to be improved.

. Best practices in relation to software should be collected, disseminated,

and employed.

. Contract incentives need to be restructured.
. The technology base that supports software development is in need of

strengthening and stabilizing.

We shall see, down the road, if, when, and how these recommendations are
implemented.

12.3.3 Reuse

Among the issues cited in the Defense Science Board report is insufficient
focus on design for reusability. The matter of software reuse, however, con-
stitutes a significant trend in software development. The basic notion is that
many software modules (builds, configuration items, etc.) whose performance
has been verified can be reused in at least two contexts:

1.
2.

Within a company, utilizing the best software it has developed

In a government repository of “certified” software that can be accessed
by persons and organizations that have approved reasons to have such
access

390 SYSTEMS/SOFTWARE ENGINEERING AND PROJECT MANAGEMENT TRENDS

There are, however, a large number of issues that surround the matter of
reuse of software. A Deputy Assistant Secretary of the Air Force, in 1993,
distributed a memorandum [12.42] that set forth a software reuse incentive
policy. Some of the provisions of that memorandum are listed as follows:

* We should consider designing all new software for reuse.

» Every acquisition strategy panel should explore the full or partial reuse
of existing software, including COTS.

* When software reuse may not be feasible, consideration should be given

to the design of new software to facilitate reuse in future applications.

We should identify several specific “test” programs that will require reuse

and design for reuse.

A reuse education and training workshop in 1994 [12.43] had the goal
of “identifying key reuse concepts and how they can be integrated into an
existing curriculum” regarding software engineering. The following subgoals
for that workshop reinforce the importance of reuse:

Identify key software engineering assumptions and concepts relevant to
reuse during the software life cycle.

» Explore how to introduce the preceding into various curricula.
Identify the audience and roadblocks for reuse concepts.
e Compile lists of education resources and references.

There is also some activity regarding the development of a reuse capa-
bility model (RCM) [12.44]. This is a “self-assessment and planning aid for
improving an organization’s reuse capability” and is being addressed by the
Software Productivity Consortium (SPC). Studies have also focused on reuse
inhibitors, as well as the best of reuse practices [12.45]. Statistics regarding
reuse initiatives have been cited as follows [12.46]:

* 14-68% productivity increase

* 20% reduction in customer complaints

* 25% less required time to repair and overall schedule
* 50% reduction in integration time

* 20-35% increases in quality

20% less training costs

400% return on investment[!]

Clearly, judging from these potential benefits, if organizations can make
reuse work, they will increase software development productivity and make
them more competitive in the marketplace.

12.3 SOFTWARE ENGINEERING TRENDS 391

In addition to the initiatives in the Department of Defense and its re-
lated contractors, the National Institute of Standards and Technology (NIST)
has undertaken an Advanced Technology Program (ATP) in the area of
“component-based software.” A news release from the U.S. Department of
Commerce [12.47] announced the component-based software program as “a
five-year, $150 million program to develop the technologies necessary to en-
able systematically reusable software components.” Selected NIST contracts
under this ATP program involved:

» Automation of dependable software generation with reusable compo-
nents

» Component integration: an architecture-driven approach
* Scalable business application development components and tools
» Component-based reengineering technology

From the preceding, it can be seen that there is a great deal of force behind
software component reuse and considerable effort is likely to be expended to
improve and refine software reuse. This author has also looked in some detail at
software reuse and has suggested a reengineered software acquisition process
that involves the reuse of entire developer off-the-shelf systems [12.48].

12.3.4 Development Methods

The Defense Science Board report strongly recommends that software be
developed more in accordance with commercial practices. This also implies
the use of commercial development methods, at least with respect to the use
of commercial standards and specifications.

Returning also to Chapter 10, we see the suggestion in Military Standard
498 that there are three well-defined development strategies: (1) grand design,
(2) incremental, and (3) evolutionary. The bottom line is that the latter two are
preferred approaches, depending on the circumstances. We also note the trend
in the direction of evolutionary acquisition of systems (see Section 12.2.9).

A more complete array of software development methods was examined by
the Air Force’s Software Technology Support Center in Ogden, Utah [12.49],
namely:

* Software Development Models:
— Waterfall
— Incremental
— Spiral
» Software Development Techniques:
— Prototype
— Cleanroom
— Object-oriented

392 SYSTEMS/SOFTWARE ENGINEERING AND PROJECT MANAGEMENT TRENDS

Strengths and weaknesses of these various approaches were explicitly cited.
It was also indicated that the evolutionary approach was not considered, due
to the variation in its meaning in the literature.

By noting the preceding, as well as other investigations of alternative
development approaches, it is seen that the situation is in a state of flux,
with new ideas and variations on a theme being proposed and analyzed. This
investigatory trend will continue as we try to find a process that has the
demonstrable productivity increases that we seek. The reader with a special
interest in these alternatives that have not been discussed here (e.g., clean-
room, object-oriented) is encouraged to examine the extensive literature on
these subjects.

12.3.5 Acquisition Practices

Acquisition practices of software systems are related to the following topics
already discussed:

 Military Standard 498

* Acquisition trends for systems, including acquisition reform
* The move toward commercial practices

 Various software development approaches

» Reuse of software

The bottom line is that software system acquisition practices are changing,
and the expectation is that continuous modifications in current practices are
likely to be on our agenda, judging from our history, well into the twenty-first
century.

Two of the most recent trends with respect to software acquisition can be
identified as

* The emergence of a software acquisition capability maturity model con-
struction

» Simulation and modeling for software acquisition (SAMSA)

For the former, a structure parallel to the Software Engineering Institute
(SEI) capability maturity model is being developed, along with key process
areas (KPAs) that relate to the software acquisition process. In the latter area,
a notable effort is that of Boehm and Scacchi at the University of Southern
California [12.50] who indicate that “there are substantial opportunities to
rethink how the acquisition of software-intensive systems should occur in
ways that address the recurring problems.” SAMSA activity is predicated on
the notion that it is important to make the acquisition of future software-
intensive systems more agile. This can be achieved by reengineering the
various software processes across their overall life cycle. SEI’s vision for this

12.3 SOFTWARE ENGINEERING TRENDS 393

type of effort is embodied in an approach called VISTA (Virtual Information
SysTem Acquisition). VISTA refers to a process whereby “an evolving series
of ever more complete and operational systems versions are acquired through
a series of short acquisition life cycles.” The VISTA approach is based largely
on the construction of models and simulations of software development life
cycles. Readers with a further interest in this trend should contact the authors
cited before.

A significant approach to trying to improve our overall ability to build
and field software systems is embodied in GSAM—Guidelines for Successful
Acquisition and Management of Software Intensive Systems [12.51]. GSAM
attempts to articulate success paths, and thereby mitigate against “repeated
inappropriate or unsuccessful practices.” These paths might also be called
“lessons learned” as well as “best practices.” We note from a previous dis-
cussion of the work of the Defense Science Board in 2000 [12.40] that best
practices also represented an area of special focus in that context. GSAM also
suggests some key principles, as summarized below:

Focus on the real customer.
Talk about the program content and not its politics.
Understand the full life cycle of the program and its needs.

Determine baseline requirements and the scope of the project as soon
as possible.

5. Tackle the program as a series of small steps in order to achieve incre-
mental successes.

6. Assume meaningful measurements for cost, schedule, and quality man-
agement.

7. ldentify and manage key program risks.
Capture and utilize data and best practices from earlier programs.

9. Emphasize and sponsor improvement efforts, and assure that managers
“walk the talk.”

el o

o

12.3.6 I-CASE (Integrated Computer-Aided Software Engineering)

For anumber of years, software vendors have provided tools for software engi-
neers under the general title of computer-aided software engineering (CASE).
The purpose of such tools, of course, has been to increase the productivity of
software engineering projects. The Air Force’s Software Technology Support
Center (STSC) has been cataloging and analyzing these tools, for which a
representative list is provided in Exhibit 12.4. Formal reports from the STSC
on these tools have included the categories of

» Requirements analysis and design
* Software estimation

394 SYSTEMS/SOFTWARE ENGINEERING AND PROJECT MANAGEMENT TRENDS

Exhibit 12.4: Selected Computer-Aided Software Engineering (CASE)

Tools
Name of Tool Vendor
BACHMAN7Analyst Bachman Information Systems
CARD tools CARDTools Systems Corp.
Corvision Cortex Corp.
Design Aid II Yourdon/CGI Systems Inc.
EasyCASE Professional Evergreen CASE Tools, Inc.
Excelerator Series Intersolv
IEW/Workstations Knowledgeware Federal Systems

Integrated Systems Engineering Toolset
Information Engineering Facility

ISE Eiffel

Maestro 11

MAGEC RAD System
Micro Focus Cobol Workbench
MicroSTEP

Natural Engineering Series
Objectmaker

Objectory

Oracle CASE

Paradigm Plus

POSE

ProKappa

Prokit Workbench

Promod CASE Tools
RDD-100

RTM

RTrace

Silverrun

Softbench

Software Engineering Toolkit
Software Through Pictures
Statemate

Sterling Developer

System Architect

System Developer |
superCASE

Synon/2E

TAGS

Teamwork

TreeSoft

Visible Analyst Workbench

LBMS, Inc.

Texas Instruments

Interactive Software Engineering Inc.
Softlab Inc.

Magec Software

Micro Focus

Syscorp International

Software AG of North America
Mark V Systems

Objective Systems

Oracle Corp.

Protosoft, Inc.

Computer Systems Advisors
Intellicorp, Inc.

McDonnell Douglas Information Systems
Meridian Software Systems

Ascent Logic Corp.

Marconi Systems Technology
Protocol/Zycad Corp.

Computer Systems Advisors
Hewlett-Packard

Caset Corp.

Interactive Development Environments
i-Logix, Inc.

Sterling Software

Popkin Software & Systems, Inc.
Cadware Inc.

Advanced Technology International
Synon, Inc.

Teledyne Brown Engineering
Cadre Technologies, Inc.
+Software

Visible Systems Corp.

12.3 SOFTWARE ENGINEERING TRENDS 395

» Source code static analysis

» Reengineering

* Documentation

* Project management

 Test preparation, execution, and analysis
» Software engineering environments

Starting around 1990, the DoD formally entered the CASE arena by spon-
soring a program known as Integrated Computer-Aided Software Engineering
(I-CASE). They issued a request for proposal (RFP) to industry for the pur-
pose of developing a suite of I-CASE tools. The Air Force’s Gunter Air Force
Base in Alabama became the agent for the [-CASE procurement. As of 1991,
the I-CASE development environment was described [12.52] as a central
database repository encyclopedia with connectivity to a variety of tools for:

» Requirements analysis and specifications
* Project management

* Quality assurance

* Design

* Testing

* Prototyping

» Code generation

* Configuration management

* Cross development

Other key features of [-CASE included open systems, Ada as a development
language, and evolutionary development.

The contract for I-CASE was ultimately won by Logicon in 1994 from
the Air Force’s Standard Systems Center. The contract had a face value of
over $670 million over a ten-year period. The overall notion was to build a
standard set of [-CASE tools that could be used throughout the DoD and its
contractors. [-CASE has three essential parts:

1. A software engineering environment

2. An operational test environment

3. A run-time environment
Logicon brought its I-CASE product to the marketplace using the name
LOGICORE.

I-CASE represents a major investment by the DoD to help solve the soft-
ware development problem. As of 1995, the DoD issued a statement by the

396 SYSTEMS/SOFTWARE ENGINEERING AND PROJECT MANAGEMENT TRENDS

Assistant Secretary of Defense (Command, Control, Communications, and
Intelligence—C31) reflecting its commitment to I-CASE [12.53]:

This statement confirms the Department’s commitment to the I-CASE initiative
and the need to aggressively exploit the advantages available now through the
Air Force I-CASE contract. The contract is available to DOD components
and any Federal Agency wishing to procure the I-CASE software engineering
environment (SEE) or tools. . ..

It appears that [-CASE or some derivative thereof will be an increasingly
strong force with respect to how we execute the complex tasks of software
engineering.

12.3.7 Architecting

In the Defense Science Board report [12.39] on acquiring defense software
commercially, considerable attention was focused on software system archi-
tectures. As the report points out, a software architecture consists of:

 Software system components
o The relationship between the components
 Rules for their composition (constraints)

In the same vein, documentation of a software architecture would contain, as
a minimum:

« System functionality
» Software system components
* Interfaces, standards, and protocols
* An execution model consisting of:
— data flows
— control flow
— critical timing and throughput considerations
— error handling

A good software architecture was considered a “prime enabler of flexibility
and reuse” and might reduce the costs of changes and upgrades by as much
as 30-50% per year. Solid architectures were also seen as a key tool for:

* Evolutionary development (see Section 12.3.4)

* Early involvement of users with functional capability
* Ability to include changing commercial technology

* Reuse

 Assisting in the areas of requirements changes and product line manage-
ment

12.3 SOFTWARE ENGINEERING TRENDS 397

Of course, a software architecture must be viewed within the context of an
overall systems architecture (see Chapter 9), a point that was not strongly
emphasized in the DSB report.

An overview article on software architectures claimed that there is appro-
priate and renewed interest in this subject [12.54]. This revival of interest has
led many researchers to reconsider basic questions, such as the following:

* What is a software architecture?

 Are there generic forms of architectures?

 Are there sets of preferred architectures?

» What is the process whereby an architecture is developed?

* How can we promote the use of good architecting principles in both
government and industry?

A variety of cases were cited in which the preceding and other software ar-
chitecture issues were considered by, for example, the Air Force, (e.g., the
CARDS and PRISM programs), industry, and the Software Engineering In-
stitute (SEI) at Carnegie-Mellon University, with the latter apparently taking
a lead role in these matters. However, other parts of the government are
stepping up to this challenge. An example is the Defense Information Sys-
tems Agency (DISA) that set forth a technical architecture framework for
information management [12.55]. This framework provided “guidance for
the evolution of the DOD technical infrastructure” with respect to informa-
tion management rather than providing a specific system architecture. The
framework, known as TAFIM, was presented in a series of volumes, namely:

Volume 1: Overview

Volume 2: Technical Reference Model

Volume 3: Architecture Concepts and Design Guidance
Volume 4: DoD Standards-Based Architecture Planning Guide
Volume 5: Support Plan

Volume 6: DoD Goal Security Architecture

Volume 7: Information Technology Standards Guidance
Volume 8: DoD Human Computer Interface

Efforts of this type move us all in a positive direction in terms of develop-
ing a better understanding of the issue of software and information system
architecting.

Finally, with respect to software architecting, we have two topics that have
already been discussed in previous sections of this book. The first has to do
with the architecting of systems, and the point is made that the same proce-
dures for architecting systems are applicable to software architecting. Chapter
9 addresses these points, as does Section 12.2.4 of this chapter, dealing in part
with the C4ISR Architecture Framework [12.16]. In addition, the Appendix

398 SYSTEMS/SOFTWARE ENGINEERING AND PROJECT MANAGEMENT TRENDS

illustrates how a software system may be architected. The second point is
related to the IEEE standard that is concerned with architectural descriptions
[12.56]. Although that standard does not demonstrate how to architect a soft-
ware system, it does introduce the important notion of architectural views
of software systems. These views, as per the three important system views
as articulated by the C4ISR Framework, provide insight into the ultimate
architecture and, by means of reverse engineering, it may be possible to infer
a legitimate software architecting process. Until this is demonstrated, how-
ever, it is suggested that the reader follow the architecting process defined in
Chapter 9.

12.3.8 Reengineering

The motivation for reengineering of software systems lies in the fact that
there is a large amount of legacy system software that has to be updated, up-
graded, and “reengineered.” Reengineering is also associated with the need to
maintain these legacy systems. The Air Force’s Software Technology Support
Center (STSC), discussed before, has had a reengineering initiative [12.57]
whose “goal is to encourage reengineering technology transfer and adoption.”
Part of the STSC’s approach is represented by its Software Reengineering As-
sessment Handbook, which deals with three processes:

1. Reengineering strategy selection
2. Cost analysis
3. Management and priority setting

The STSC has also formulated a nine-step reengineering preparation process
consisting of the following activities:

Evaluation of needs

Formation of the reengineering team

Definition of the development/maintenance environment
Creation of a set of metrics

Analysis of the legacy systems

Creation of an implementation plan

Ensuring that the test-bed is current and complete
Analysis of available reengineering tools

Training

NN R L=

o

Note that this process is preparatory to the main reengineering activities.
Readers with a further interest in this, as well as in other software engineering
subjects, should get on the mailing list for CrossTalk, the STSC’s Journal
[12.57].

12.3 SOFTWARE ENGINEERING TRENDS 399

Another important report [12.58] shows the relationship between reengi-
neering and reverse engineering, containing 200 references in these fields.
Definitions of important terms are cited by reference [12.59] as:

Legacy Systems. Software systems that are 10-25 years old and often in poor
condition

Reverse Engineering. A process that identifies components and their interre-
lationships as well as creating new representations in another form

In effect, the process of reverse engineering takes existing software code and
converts it into specifications, design descriptions, and software components.
Given this set of results, it is then possible to “forward engineer” the system
into a new implementation, to include specific code in another language.
The goal is to perform both reverse and forward processes in an automated
manner. Conceptually, then, old COBOL code could by such a process be
converted into C or Ada code. This type of transformation clearly has many
benefits if performed accurately and without too much code redundancy. Six
objectives of reverse engineering are cited [12.60] as supporting:

Software reuse

Documentation

Information recovery

Maintenance reduction

Platform migration

Migration to a CASE environment (see Section 12.3.6)

SRR o i e

Thus, reengineering and reverse engineering of software are not the same,
but reverse engineering is one way to implement reengineering. Research
activities in both areas are very active and represent an important trend within
the overall topic of software engineering.

12.3.9 Other Trend Areas

In addition to the preceding rather long list of trends in software engineering,
we can expect strong and continuing activities with respect to the following:

* The development of new software metrics

* More widespread use and extensions of SEI’s basic capability maturity
model

* Standards for software development and engineering

* Further illumination of the relationship between systems engineering and
software engineering

» Academic programs that blend theory and practice in a more effective
manner

400 SYSTEMS/SOFTWARE ENGINEERING AND PROJECT MANAGEMENT TRENDS

The last item suggests that there may not be sufficient integration of the ways
in which academia and industry approach or look at the field of software
engineering. To be sure, the two have different purposes and goals. But one
may argue that their roles may not be well enough related so that each will
support the other. In this regard, an article in Computer magazine [12.61]
asked (and tried to answer) the question: Where is software headed? One
conclusion was that there was an apparent chasm between academia and
industry and that “the two groups share radically different views on where
software is headed.” Whatever these differences, some of the topics of interest
for the future are:

* Object-oriented programming and design
» Software productivity tools

» Rapid application development

* Algorithms

» Worldwide-Web tools

* Graphical user interfaces (GUIs)

* Multimedia software engineering

» Formal methods

e Group communications

The preceding sections and list are ample testament to the breadth and rich-
ness of the field of software engineering. The reader is also referred to an
Encyclopedia of Software Engineering [12.62] to further explore the subjects
discussed here, as well as other related topics.

12.4 PROJECT MANAGEMENT TRENDS
12.4.1 General Management Trends

Every project is executed in some context, whether it be in industry, govern-
ment, or academia. This organizational setting thus has some influence on
the project, establishing an environment of constraint, facilitation, or some
combination thereof. In this respect, general management trends can impact
what the project personnel are able to do and what they cannot do.

A dozen general management trends that are of note include:

Movement toward decentralization

Increased span of control

Deeper empowerment

More training, at all levels

Increased use of integrated product teams (IPTs)

ARl e

12.4 PROJECT MANAGEMENT TRENDS 401

A focus on business process reengineering (BPR)
Continuous improvement (from Total Quality Management)
Less loyalty between employer and employee

A move toward the “systems approach” [12.63]

10. Recognition of “core competencies”

11. Building of a shared vision for the enterprise

12. Sharper customer focus

AR S

Space limitations do not permit the exploration of all these general man-
agement trends, although some are revisited in the next chapter. Suffice it to
say that the Project Manager and Chief Systems Engineer should be aware
of these areas and what is happening with respect to each within their orga-
nization. As an example, if training is alive and well in their organization,
they have to consider the training needs for their project and schedule their
people so as to take advantage of this type of opportunity. In a similar vein, if
the enterprise is active in business process reengineering, it might be useful
to provide inputs as to the internal processes that have to be streamlined to
support the project. This might include processes in accounting, contracts,
human resources, and the like. Finally, if the organization subscribes to the
notion of deeper empowerment, then one issue might be how to more strongly
empower the personnel on the particular project in question. The reader in-
terested in this area should consult the vast literature on the general subject
of management.

12.4.2 Project Management Tools

There are numerous software tools available to support the Project Manager
and the team. These tools tend to focus on scheduling, and most of them also
provide cost aggregation and budgeting capabilities. The Air Force’s STSC
has compiled a very complete list of such tools [12.64] with considerable
information about each tool. The Center has cataloged them in three cost
categories: (A) cost less than $300, (B) cost between $300 and $2,500, and
(C) cost greater than $2,500. As one would expect, the capabilities of the
tools increase as does the price, but a lower-cost tool can be adequate for
most smaller projects. A selected list of such tools is provided in Exhibit
12.5, utilizing the cost data in the referenced STSC report. This author has
used several tools in category (B); they are extremely cost-effective. The
types of features that one might look for in selecting a tool, aside from price,
include:

* Gantt charting
* Program evaluation and review technique (PERT) charting
 Operating system/platform

402 SYSTEMS/SOFTWARE ENGINEERING AND PROJECT MANAGEMENT TRENDS

Exhibit 12.5: Selected List of Project Management Tools

Cost
Project Management Tool Vendor Category
Advanced ProPath SoftCorp, Inc. A
Critical Path Project Manager Dynacomp, Inc. A
Fast Track Resource AEC Management Systems Inc. A
InstaPlan MicroPlanning International A
M2M MC2 Engineering Software A
Milestone Digital Marketing Corp. A
Harvard Project Manager Software Publishing Co. B
Microsoft Project Microsoft B
Micro Planner Micro Planning International B
Project Scheduler Scitor Corp. B
Syzygy Syzygy Development, Inc. B
Time Line Symantec Corp. B
Artemis Prestige Lucas Management Systems C
Open Plan Welcom Software C
Promis Cambridge Management Systems Inc. C
Qwiknet Professional Project SW & Development Inc C
SLIM-Control Quantitative Software Management C
Viewpoint Computer Aided Management Inc. C

¢ Work breakdown structure

* Task responsibility matrix

* Resource allocation
* Resource leveling
» Resource limiting

* Resource conflict analysis

» Cost aggregation
* Standard reporting

 Customized reporting

» Ease of use
* Vendor support

In addition to the classical set of project management tools, software has
come on the scene under the category of Groupware, which, as the name
implies, is intended to support an entire project team. As an example, Lotus
Notes was one of the best-known and best-selling packages of this type. It
is safe to assume that both project management and Groupware tools will
be available indefinitely to support project and systems engineering teams.
Both the Project Manager and the Chief Systems Engineer should decide on
the support tools that the team requires as soon as possible after the project

12.4 PROJECT MANAGEMENT TRENDS 403

start date. Considerable efficiencies can be gained by the active use of project
management and Groupware tools. As a consequence, they are most highly
recommended for a project team.

12.4.3 Two Department of Defense (DoD) Initiatives

The sheer size and complexity of DoD programs and projects make them an
excellent showcase for project management issues and trends. Improvements
in project management, especially in the software arena, have the potential for
improving products and processes and, at the same time, saving literally bil-
lions of dollars. In very large organizations, in both government and industry,
this is more easily said than done.

One noteworthy initiative within the DoD is its Practical Software Measure-
ment (PSM) program, which is meant to establish a “foundation for objective
project management” [12.65]. It also purports to achieve objectivity by fo-
cusing in particular upon measurement—what to measure and how. The U.S.
Army has played a major role in formulating PSM, which “was developed to
help meet today’s software management challenges.” Here again, we see an
emphasis upon software as it plays an increasingly important role in building
and fielding our large systems. PSM is applied for the most part at the project
level, but it is claimed that the same basic principles can be used to extend
PSM to the organizational and enterprise levels.

Since PSM is focused on measurement, it prescribes a set of measurement
principles that need to be taken into account in software programs. Some of
these principles are:

» Measurement requirements are dependent upon project issues and ob-
jectives.

*» Software measurement is defined by the software process of the devel-
oper.

* It is important to have an independent analysis capability.

» Software measurement needs to occur over the entire life cycle.

The PSM Guide addresses three main topics: (1) tailoring the software mea-
sures as appropriate to the project in question, (2) applying the software
measures so that the data can be interpreted in terms of useful project infor-
mation and decisions, and (3) implementing a measurement process that is
effective within the specific organization.

A second project management type of initiative within the DoD is related
to the “earned value analysis” (EVA) described in Chapter 4. In 1996, the
DoD recognized guidelines produced in an industry standard that dealt with
Earned Value Management Systems [12.66]. This replaced earlier views of
EVA and set forth some thirty-two criteria to be used in EVA. Since EVA

404

SYSTEMS/SOFTWARE ENGINEERING AND PROJECT MANAGEMENT TRENDS

has been accepted on many large programs in industry as well as government
as a useful way of tracking cost, schedule, and performance (work actually
accomplished), the reader with a further interest in this trend should exam-
ine the cited reference and standard and the appropriate offices within the

DoD.

QUESTIONS EXERCISES

12.1

12.2

12.3

12.4

12.5

12.6

12.7

12.8

12.9
12.10

Define and describe ten categories of software tools that can be used
to support

a. systems engineering
b. software engineering

Obtain a copy of the latest IEEE standard on systems engineering and
contrast it with Military Standard 499B.

Obtain a copy of the latest ISO standard on software engineering and
contrast it with Military Standard 498.

Write a five-page report on the current state of practice in software
reuse.

Write a five-page report on the current state of practice in Integrated
Computer-Aided Software Engineering (I-CASE).

Evaluate the relative capabilities of three project management software
tools.

Write a five-page report that explains and evaluates the most recent
position of the Department of Defense (DoD) relative to the architect-
ing of systems.

Write a five-page report that explains and evaluates the most recent
status of the Capability Maturity Model(s) for systems and software,
including the integrated models.

Write a three-page report on two new trends in systems engineering.

Write a three-page report on two new trends in software engineering.

REFERENCES

12.1 Systems Engineering (1994). The Journal of the National Council on Systems Engineer-

ing (NCOSE) 1(1), Sunnyvale, CA. (Note: NCOSE has changed its name to INCOSE,
2033 Sixth Ave. #804, Seattle, WA 98121-2546.)

12.2 “Systems Engineering in the Global Market Place” (1995). NCOSE 5th Annual Inter-

national Symposium, St. Louis, July 22-26.

12.3

12.4

12.5

12.6

12.7

12.8

12.9

12.10

12.11
12.12

12.13

12.14

12.15

12.16

12.17

12.18

12.19

12.20

12.21

12.22

12.23

REFERENCES 405

Eisner, H., J. Marciniak, and R. McMillan (1991). “Computer-Aided System of Systems
(S2) Engineering.” IEEE International Conference on Systems, Man, and Cybernetics,
Charlottesville, VA., October 13-16.

Eisner, H., R. McMillan, J. Marciniak, and W. Pragluski (1993). “RCASSE: Rapid
Computer-Aided System of Systems (S2) Engineering.” NCOSE 3rd Annual Interna-
tional Symposium, Arlington, VA, July 26-28.

Kuhn, D., and S. Garcia (1994). “Developing a Capability Maturity Model for Systems
Engineering.” Best Presentations of the NCOSE 4th Annual International Symposium,
San Jose, CA, August 10-12.

Garcia, S. (1994). SE-CMM Model Description, Release 2.04, SEI-94-HB-4. Pittsburgh,
PA: Software Engineering Institute, Carnegie-Mellon University.

Pierson, H. (1995). “Comparison of NCOSE Interim Model & SE-CMM,” Virginia
Center of Excellence for Software Reuse and Technology Transfer, April 11. Presented
as part of NCOSE Notes from the Network 3(4).

Systems Engineering Capability Model (SECM), EIA/IS 731, (1998). Washington, DC:
Electronic Industries Association, Engineering Department.

L. Ibrahim, et al.,(1997). The Federal Aviation Administration (FAA) Integrated Capa-
bility Maturity Mode (iCMM)I, Version 1.0, Washington, DC: Federal Aviation Admin-
istration, November.

Software Engineering Institute, Carnegie-Mellon University, Website: www.sei.
cmu.edu

Rechtin, E. (1991). Systems Architecting. Englewood Cliffs, NJ: Prentice Hall.
Rechtin, E., and M. Maier (1997). The Art of Systems Architecting. Boca Raton, FL:
CRC Press.

Rechtin, E. (1994). “Foundations of Systems Architecting,” Systems Engineering 1(1):
35-42.

Rechtin, E. (1994). “The Systems Architect: Specialty, Role and Responsibility.” Best
Presentations of the NCOSE 4th Annual International Symposium, San Jose, CA.,
August 10-12.

First Annual Workshop on Engineering of Systems in the 21st Century: Facing the
Challenge, Focus Group Reports (1994). Sponsored by the Office of Naval Research
and Naval Surface Warfare Center, Department of the Navy, Fredericksburg, VA, June
28-30.

C4ISR Architecture Framework, Version 2.0 (1997). Washington, DC: U.S. Department
of Defense, Pentagon, December 18; see also Website: www.c3i.0sd.mil

C4ISR Architecure Working Group (AWG) (1998). Final Report. Washington, DC:
U.S. Department of Defense, Pentagon, April 14; see also Website: www.c3i.0sd.mil
Public Policies & Priorities: 19951996 (1995). Washington, DC: American Associa-
tion of Engineering Societies.

Statement of the AAES on The Role of the Engineer in Sustainable Development:
Sustainable Technologies and Processes (1995). Washington, DC: American Society of
Engineering Societies.

Sage, A. (1992). Systems Engineering. New York: John Wiley.

Sage, A. (1992). Systems Management for Information Technology and Sofiware Engi-
neering. New York: John Wiley.

Armstrong, J., and A. Sage (1995). An Introduction to Systems Engineering. New York:
John Wiley.

Sage, A., and W Rouse (1999). Handbook of Systems Engineering and Management,
New York; John Wiley.

406

12.24

12.25

12.26

12.27

12.28

12.29

12.30
12.31

12.32

12.33

12.34

12.35

12.36

12.37

12.38

12.39

12.40

12.41

12.42

12.43

SYSTEMS/SOFTWARE ENGINEERING AND PROJECT MANAGEMENT TRENDS

Sage, A. (1994). “The Many Faces of Systems Engineering,” Systems Engineering 1(1):
43-60.

Cochran, M., et al. (1995). 4 Tailorable Process for Systems Engineering, Software Pro-
ductivity Consortium Report SPC-94095-CMC. Herndon, VA: Software Productivity
Consortium.

Eisner, H. (1988). Computer-Aided Systems Engineering. Englewood Cliffs, NJ: Pren-
tice Hall.

Conference on Tools & Methods for Business Engineering, (1995). Sponsored by En-
terprise Reengineering (7777 Lesburg Pike, Falls Church, VA), Arlington, VA, May
16-17.

Center of Excellence in Computer-Aided Systems Engineering (CECASE), J. Holtzman,
Director, Lawrence, KS.

Lamonica, F. (1994). “Rome Laboratory System Engineering Research and Develop-
ment Program,” CrossTalk (April): 4-7.

Federal Computer Week (1995). July 3; and Washington Technology.

Secretary of Defense Memorandum on Military Specifications and Standards (1994).
Washington, DC: U.S. Department of Defense.

Acquisition Reform: DOD Begins Program to Reform Specifications and Standards
(1994). Report to Congressional Committees, GAO/NSIAD-95-14. Washington, DC:
U.S. General Accounting Office.

Blueprint for Change: Report of the DoD Process Action Team on Specifications and
Standards (1994). Washington, DC: Office of the Under Secretary of Defense. Reprinted
by the U.S. Department of Commerce, National Technical Information Service, AD-
A278-102.

Joint Logistics Commanders Guidance for Use of Evolutionary Strategy to Acquire
Weapon Systems (1995). Fort Belvoir, VA: Defense Systems Management College
Press.

The Defense Acquisition System, DoD Directive 5000.1 (2000); Operation of the Defense
Acquisition System, DoD Directive 5000.2 (2000); Mandatory Procedures for Major
Defense Acquisition Programs (MDAPS) and Major Automated Information Systems
(MAIS) Acquisition Program, DoD Directive 5000.2-R (2000). Washington, DC: U.S.
Department of Defense.

Gansler, J. (2000). The Road Ahead. Washington, DC: Department of Defense, Office
of the Under Secretary of Defense for Acquisition and Technology, June.

Sage, A., and C. Lynch (1998). “Systems Integration and Architecting,” Systems Engi-
neering 1(3).

The National Software Council, John J. Marciniak, President. Kaman Sciences Corpo-
ration, Alexandria, VA [(703) 329-7368].

Report of the Defense Science Board Task Force on Acquiring Defense Software Com-
mercially (1994). Washington, DC: Office of the Under Secretary of Defense for Ac-
quisition and Technology.

Report of the Defense Science Board (DSB) Task Force on Defense Software (2000).
Washington, DC: Office of the Under Secretary of Defense for Acquisition and Tech-
nology, November.

The Standish Group. CHAOS Report; see also Website: standishgroup.com, 1999.
Druyun, D. (1994). “Software Reuse Incentive Policy,” CrossTalk (January): 5. (Druyun
was the Deputy Assistant Secretary of the Air Force (Acquisition) at the time.)
Levine, T. (1994). “Report of the Working Group on Reuse Education,” CrossTalk
(December): 21-25.

12.44
12.45

12.46

12.47

12.48

12.49

12.50

12.51

12.52

12.53
12.54

12.55

12.56
12.57
12.58
12.59
12.60
12.61
12.62
12.63
12.64

12.65
12.66

REFERENCES 407

Davis, T. (1994). “The Reuse Capability Model,” CrossTalk (March): 5-9.

Hills, F. (1994). “Study Points Way to More Effective Software Reuse,” CrossTalk
(May): 23-24.

Sodhi, J., and M. Smith (1994). “Marching Toward a Software Reuse Future,” CrossTalk
(September): 20-24.

“Commerce Department Announces 41 Awards for Advanced R&D in Four Key Tech-
nologies,” (1994) U.S. Department of Commerce News (October): 1-2.

Eisner, H. (1995). “Reengineering the Software Acquisition Process Using Developer
Off-the-Shelf Systems (DOTSS),” 7995 IEEE International Conference on Systems,
Man and Cybernetics, Vancouver, BC, October 22-25.

Sorensen, R. (1995). “A Comparison of Software Development Methodologies,”
CrossTalk (January): 12—17.

Boehm, B., and W. Scacchi (1995). Simulation and Modeling for Software Acquisition
(SAMSA). Los Angeles: University of Southern California, ATRIUM Laboratory, Infor-
mation and Operations Management Department, School of Business Administration.
Guidelines for Successful Acquisition and Management of Software-Intensive Systems
(GSAM), Vol. 1—Version 3.0 (2000), Department of the Air Force, Software Technology
Support Center, May; see also Website: web2.deskbook.osd.mil

Tomlin, B. (1991). “Integrated Computer-Aided Software Engineering.” Sofiware Tech-
nology Support Center Conference, April 16, Hill AFB, Ogden, UT.

Paige, E. (1995). “DOD Commitment to I-CASE,” CrossTalk (May): 6.

Kogut, P, and P. Clements (1994). “The Software Architecture Renaissance,” CrossTalk
(November): 20-23.

Defense Information Systems Agency (DISA) (1994). Department of Defense Technical
Architecture Framework for Information Management, volume 1, Overview, Version 2.0.
Washington, DC: Department of Defense (June 30).

Draft Recommended Practice for Architectural Description, IEEE 1471 (1999). New
York: Institute for Electrical and Electronics Engineers (IEEE), December.
Sittenhauer, C., M. Olsem, and J. Balaban (1995). “Software Reengineering at the
STSC,” CrossTalk (January): 6-8.

Urban, J., H. Joo, and Y. Wu (1995). “Software Reverse Engineering and Reengineer-
ing.” Report prepared for Rome Laboratory, RL/COEE, Griffis AFB, New York.
Chikofsky, E., and J. Cross (1990). “Reverse Engineering and Design Recovery: A
Taxonomy,” IEEE Software 7(1).

Frazer, A. (1992). “Reverse Engineering: Hype, Hope or Here?,” in P. A. V Hall, ed.,
Software Reuse and Reverse Engineering in Practice. London: Chapman & Hall.
Lewis, T, et al. (1995). “Where Is Software Headed?”” Computer 28 (August): 20-32.
Marciniak, J., ed. (1994). Encyclopedia of Software Engineering. New York: John Wiley.
Senge, P. (1990). The Fifth Discipline. New York: Doubleday.

Berk, K., D. Barrow and T. Steadman (1992). “Project Management Tools Report.”
Ogden, UT: Software Technology Support Center, Hill AFB.

Practical Software Measurement (PSM),; see Website: www.psmsc.com, 1998.
Significant Changes Underway in DoD's Earned Value Management Process (1997),
Washington, DC: GAO/NSIAD - 97 - 108, U.S. Government Accounting Office (GAO),
May.

— 13

SELECTED NEW
PERSPECTIVES

13.1 INTRODUCTION

The principal time focus of the new perspectives presented in this chapter is the
first decade of the twenty-first century. Rather than trying to systematically
cover the full scope of the management of project, program, and systems
engineering, subjects have been selected for this chapter that are considered
to be of special importance.

13.2 ROLE OF INCOSE

The organization known as INCOSE (International Council on Systems En-
gineering) has continued to explore and advance the state of the art and
practice of systems engineering and its management (see also the citation in
Chapter 12 section 12.2.1). INCOSE has continued to move forward during
the first decade of this century. Although INCOSE advanced in many areas
during this period, only a few will be discussed here. The reader is urged to
follow INCOSE closely as it continues to contribute to defining and solving
many key issues related to systems engineering.

As the most serious independent organization working on systems engi-
neering matters, INCOSE has been exploring where this discipline might
evolve by the year 2020 [13.1]. Indeed, the organization has been devel-
oping an “integrating framework” for defining its vision for the future.

409

410 SELECTED NEW PERSPECTIVES
Five key areas within that vision include:

Global environment
Systems

Processes

Modeling and tools
Education and research

ANl e

In order to proceed with these key areas, INCOSE has been looking at current
trends, drivers and inhibitors, changes, and both near-term (2010) and far-term
visions (2020). Given the strength and charter of INCOSE, it is likely that
the organization will play a major role in how systems engineering evolves
between now and the year 2020.

In addition to the above, INCOSE has been a leader in the matter of
certification for the systems engineering professional, and has established a
set of certification requirements [13.2].

INCOSE’s Systems Engineering Handbook [13.3] is now in its third ver-
sion. The organization of this handbook is consistent with a standard known
as ISO/IEC 15288, (see section 2.5.6) which deals with systems engineering
and its life-cycle processes [13.4]. The four process groups in this standard
and in the handbook are:

1. Technical processes

2. Project processes

3. Enterprise processes
4. Agreement processes

Several formal activities support these processes, as discussed briefly in
Chapter 2.

Finally, INCOSE produces a quarterly journal called Systems Engineering
under the pioneering leadership of Andrew P. Sage, its editor-in-chief. This
journal carries especially good articles, for both the theorist and practitioner
of systems engineering. All members of INCOSE receive the journal.

13.3 ACQUISITION OF SYSTEMS

Matters regarding the acquisition of systems have been discussed at several
points in this book. Here we examine new acquisition perspectives that have
been documented during the twenty-first century. This documentation in-
cludes a directive and an instruction sometimes referred to as the 5000 Series,
and it sets the stage for acquisition personnel to consider how to approach the
acquisition issue.

13.3 ACQUISITION OF SYSTEMS 411

13.3.1 5000.1 Directive

The 5000.1 Directive deals with acquisition in the Department of Defense
(DoD) and represents its position as of the year 2003. Its primary objective
is [13.5]:

to acquire quality products that satisfy user needs with measurable improve-
ments to mission capability and operational support, in a timely manner, and
at a fair and reasonable price.

Key points in this directive are cited and briefly discussed below.

Tailor Program Strategies. The acquisition agent and program office are
authorized to adopt strategies that are considered the best ones for the program
particulars.

Streamline and Improve the Process. This directive gives the acquisition
agent the go-ahead to make improvements, where possible, and fits with the
tailoring notion.

Adopt Innovative Practices. This set of practices is focused on the reduc-
tion of cycle times and costs, along with encouraging teamwork.

Advanced Technology. The acquisition authorities are confirming the im-
portance of new and advanced technologies in our systems. They provide
superior performance and allow us to deploy these systems in the shortest
possible time, given time and cost constraints.

Identify Technology Alternatives. This suggestion, along with the preced-
ing ones, attempts to make sure that technologies that might be critical to the
systems in question have not been overlooked. It is also in consonance with
the seven aspects of the systems approach, as defined in this book. The archi-
tecting process described in Chapter 9 is also based on the specific definition
and evaluation of alternatives.

Consider Multiple Concepts. Emphasis is placed on the analysis and eval-
uation of alternative ways to satisfy user needs.

Evolutionary Acquisition. This approach allows us to build systems in
increments and is the preferred procedure to satisfy operational needs. This
concept was discussed in Chapter 10 with respect to software systems.

Goals for Cost, Schedule, and Performance. This area focuses on the top
three aspects of all system developments: cost, schedule, and performance
(or effectiveness). It is suggested specifically to consider the “minimum”

412 SELECTED NEW PERSPECTIVES

number of parameters that will describe or characterize the program. We
need to measure the key parameters rather than all the parameters we can
think of. The latter approach increases the cost and schedule and in the past
has demonstrated diminishing returns.

Decentralize Acquisition. Decentralization of acquisition will be more
efficient and will tend to minimize the introduction of programmatic bottle-
necks.

Promote a Competitive Environment. A competitive environment has al-
lowed us to purchase our systems in accord with the primary objective cited
above, namely, “at a fair and reasonable price,” as well as within required
schedules.

Cost-Effective Solution. This key measure defines the overall basis for
choosing among the alternatives that have been defined: how they rank on
an overall cost-effectiveness basis. This approach is the one defined and
recommended in this book (Chapter 9).

Total Systems Approach. In this acquisition directive, the DoD endorses
the systems approach in a very specific way, believing that it will yield the
best results. Although program offices tend to support this notion, at times,
and for various reasons, they are not able to implement this approach.

It is satisfying to see that favored acquisition approaches explicitly consider
alternatives and finding the most cost-effective solution. At the top level of
systems engineering, doing this involves architecting several systems and
selecting a preferred architecture on the basis of cost and effectiveness.

13.3.2 5000.2 Instruction

The 5000.2 Instruction [13.6] is a companion to 5000.1 and addresses the
operation of the defense acquisition system. Key points cited in the instruction
are described briefly next.

Integrated Architectures, Each with Three Views. As architecting might
be within the province of joint programs, architectures are to be integrated
as much as possible. Also, explicit support is provided for the operational,
systems, and technical views that form the basis for the DoD approach to
architecting (see also Chapter 9).

Type of Program. A program should be structured so that it is tailored,
responsive, and innovative.

New Acquisition Management Framework. Figure 13.1 shows the new
framework that describes the acquisition process. It is especially notable

13.3 ACQUISITION OF SYSTEMS 413

User Needs & « Process entry at Milestones A, B, or C
Technology,Opportunities o 3
* Entrance criteria met before entering phase
Evolutionary Acquisition or Single Step to Full
Capability
(Program
A B \Initiation) Cc l10C FOC
Concept Technology System Development Production & Operations &
Refinement | Development & Demonstration Deployment Support
Concept EESI n FRP
< feginess | LRIPIOTaE) becon
Pre-Systems Acquisition Systems Acquisition Sustainment

Figure 13.1. Defense Acquisition Management Framework

that technology development and opportunities are stressed. After concept
refinement, there is a (new) technology development phase before systems
development can be undertaken. Technology readiness and insertion is thus
emphasized to assure that our military systems are superior in performance
to those of our adversaries. This capability revolves around proper types and
levels of technology, which is entirely appropriate.

Integrated Plans and Capability Roadmaps. Although integrated plans
have always been stressed, the notions of capabilities and roadmaps might
be considered new. For the former, we now have a perspective known as
capability-based acquisition. For the latter, roadmaps are a way of showing
an explicit pathway from where we are today to where we need to be.

Initial Capabilities Document. As indicated in this instruction, the Initial
Capabilities Document (ICD) provides broad, time-phased operational goals,
as well as requisite capabilities.

Doctrine, Organization, Training, Material, Leadership, Personnel, and
Facilities. The areas of doctrine, organization, training, material, leader-
ship, personnel, and facilities (DOTMLPF) are to be explicitly defined as part
of an integrated collaborative process.

Analyses of Alternatives. Guidance for the concept refinement phase (see
Figure 13.1) is provided by a strong initial capabilities document (ICD) as well
as analyses of alternatives (AoA). One way to interpret the AoA is to say that
it is equivalent to the definition and exploration of alternative architectures
for a system, a central theme of this book. This AoA is also the basis for a
technology development strategy (TDS), which is fully addressed in the next
phase.

414 SELECTED NEW PERSPECTIVES

Technology Development Phase. ‘“The purpose of this phase is to reduce
technology risk and to determine the appropriate set of technologies to be
integrated into a full system.” This is achieved through a process of iteration
and analysis, updating the alternative architectures on the way to being able
to choose a preferred architecture. Technology makes a critical difference as
we move toward actual system development and demonstration.

System Development Phase. The system development phase encom-
passes the more conventional system development, which leads to a system or
an “increment of capability” that can be used by the warfighter. Key activities
in this phase are systems integration and demonstration. Along the way, test
and evaluation processes help to confirm that the system satisfies the overall
stated needs and requirements.

Minimum Set of Key Performance Parameters. There is an appropriate
focus on having a minimum set of key performance parameters (KPPs) that
help to guide the system development process. These parameters must be
well defined and measurable. We should be able to determine whether the
system actually achieves the required levels for these parameters. Examples
of such parameters include the range (of a radar), the detection probability (of
a surveillance system), the response time (of an online transaction processor),
and the kill probability (of a weapon system). We might also think of these
parameters as related to the technical performance measures discussed in
some detail in Chapter 7 of this book.

Cost-Effective Operations and Support. Operations and support (O&S)
sustain the system in the field and need to be executed in a cost-effective
manner. Here again, cost-effectiveness is a key measure in guiding system
selection and behavior. This same perspective was used in formulating alter-
native architectures and selecting a preferred architecture in the very early
days of system development.

Evolutionary Acquisition. This document clearly confirms that evolution-
ary acquisition is the preferred approach in which incremental capabilities
are delivered. Future capability improvements are recognized, but emphasis
is placed on getting a concrete capability into the hands of the warfighter
quickly. This incremental approach is distinctly different from the “grand
design” approach that did not appropriately meet schedule, cost, and perfor-
mance goals.

13.3.3 Kadish Report

About two years after the two documents from the 5000 series were published,
the acting deputy secretary of defense, Gordon England, requested an inte-
grated acquisition assessment. This was carried out under the leadership of

13.3 ACQUISITION OF SYSTEMS 415

retired General Ronald Kadish, and the report, called the Defense Acquisition
Performance Assessment (DAPA) Report, was issued in January 2006 [13.7].
The report gives us further insight into acquisition processes and what might
be right, and wrong, with them.

A key player in defense matters over the years, Norman R. Augustine wrote
a foreword to the DAPA Report. In it he claimed that there is a lot of agreement
regarding the problems that require investigation. But he concluded that “the
difficulty resides in having the will to do anything about those problems.” He
then cited a series of areas in which some progress may be achieved. These
areas included:

Seeking experienced capable managers,
Supporting basic research

Starting fewer and finishing more projects
Reducing turbulence

Assigning clear responsibilities

Providing financial reserves
Incrementally budgeting to milestones
Accepting prudent risks

Controlling costs

Disciplining requirements

Using appropriate contractual and competitive instruments
Emphasizing reliability

Creating fast tracks, and

Insisting upon ethical comportment

Augustine was previously the very successful chief executive officer of Lock-
heed Martin as well as a DoD executive. Thus, it makes considerable sense
to pay a great deal of attention to his short list of things to do. Note that most
of the items he mentioned can be considered management issues rather than
technical matters.

The Kadish report examined 42 key issues in great detail. Integrated as-
sessments of these issues were sorted into six broad areas:

Organization
Workforce
Budget
Requirements
Acquisition
Industry

AN o e

Some key recommendations made in the Kadish report, in terms of specific
suggested changes, are listed in Table 13.1.

In General Kadish’s testimony before Congress [13.8], he provided a short
summary of the recommendations in each of the preceding categories.

416 SELECTED NEW PERSPECTIVES

TABLE 13.1 Key Recommendations in the Kadish Acquisition Report [13.7]

Organization
e Realign authority, accountability, and responsibility at the proper levels.
e Streamline the acquisition process.
e Establish four-star acquisition systems commands, at the service level.
Workforce
e Rebuild and value the acquisition workforce.
e Provide leadership with appropriate incentives.
Budget
e Transform the planning, programming and budgeting (PPB) process.
e Establish a distinct and stable program finding account.
Requirements
e Replace the Joint Capability Integration and Development System with the
Joint Capabilities Acquisition and Divestment Plan.
e Establish a two-year process to produce the above plan and a continuous
Materiel Solutions Plan development process.
e Add an “operationally acceptable” test evaluation category.
e Give program managers authority to defer nonkey performance parameter
requirements to later upgrades.
Acquisition
e Adopt a risk-based source selection process.
Shift to time-certain development procedures.
Make schedule a key performance parameter.
Mandate time start and end dates that are clearly defined, and change the
acquisition processes to support them.
Industry
e Overcome the consequences of reduced demand by sharing long-range plans
and restructuring competitions for new programs.
e Require government insight and favor formal competition for major
subsystems when a lead system integrator strategy is pursued.

13.3.4 Capability-Based Acquisition

Some of the acquisition principles may be stated under the overall category
of capability-based acquisition (CBA). Under this notion, an initial capability
is built as soon as technologically practical. Then this baseline capability is
improved through incremental enhancements. This approach to building new
systems is considered to be a primary response to grand designs of quite
large systems that have not really succeeded. Too many overruns in cost or
schedule, or inadequate performance, have resulted in CBA, as well as other
changes.

This focus on delivering a capability (versus an overall system) helps
to ensure that real and immediate needs of the warfighter are more likely
to be met. Incremental enhancements will provide upgrades, and the end
user can have a greater input in a more timely and concrete manner. This
method also allows us to be more able to respond to changing requirements

13.3 ACQUISITION OF SYSTEMS 417

and uncertainties (e.g., a changing or uncertain threat). Each increment of
capability should help in filling gaps and eliminating shortfalls.

New required capabilities can be satisfied by the grouping of legacy sys-
tems, new systems, and judicious technology insertion. To make all this work,
improved solutions are needed to cross organizational and funding stovepipes.

Although the list of areas for improvement in systems acquisition is rather
long, we must continue to remember the advice of Norman Augustine. Even
though good solutions are offered, we still need the will and determination to
implement these solutions.

13.3.5 Defense Acquisition Guidebook

As a way to assist the acquisition community in the implementation of the new
acquisition perspectives, the DoD produced a Defense Acquisition Guidebook
[13.9]. As documented, the DoD wanted this handbook to be an electronic
resource rather than a conventional book. It contains eleven extremely useful
chapters:

Chapter 1. DOD Decision Support Systems

Chapter 2. Defense Acquisition Program Goals and Strategy

Chapter 3. Affordability and Lifecycle Resource Estimates

Chapter 4. Systems Engineering

Chapter 5. Lifecycle Logistics

Chapter 6. Human Systems Integration

Chapter 7. Acquiring Information Technology and National Security
Systems

Chapter 8. Intelligence, Counterintelligence, and Security Support

Chapter 9. Integrated Test and Evaluation

Chapter 10. Decisions, Assessments, and Periodic Reporting

Chapter 11. Program Management Activities

Note the interesting topics in this guidebook, especially those dealing with
systems engineering and project management, two central themes of this
book. The former is concerned with such topics as:

» Systems Engineering in DoD Acquisition

» Systems Engineering Processes: How Systems Engineering Is Imple-
mented

* Systems Engineering in the System Lifecycle

» Systems Engineering Decisions: Important Design Considerations

» Systems Engineering Execution: Key Systems Engineering Tools and
Techniques

» Systems Engineering Resources

418 SELECTED NEW PERSPECTIVES

Systems engineering clearly plays a central role in the acquisition of DoD
systems.

13.4 PROBLEMS IN SYSTEMS AND SOFTWARE

In this section we look briefly at a limited number of systems and software
engineering problems that have already been discussed but are of special
importance.

13.4.1 Systems Engineering

In January 2003, on behalf of the under secretary of defense (Acquisition,
Technology & Logistics [A,T&L]), the National Defense Industrial Associ-
ation (NDIA) examined 100 separate systems engineering issues and sorted
them into the “top five” issues [13.10]:

Lack of awareness of the importance of systems engineering in programs
Inadequate qualified resources

Insufficient tools and environments for systems engineering execution
Inadequate requirements engineering

Poor initial program formulation

MY

Item 1 basically means that systems engineering is not being applied to pro-
grams in an appropriate manner. Regarding item 2, apparently more people
trained in the technical and management aspects of systems engineering are
needed. Both industry and government, it is believed, can improve back-
grounds through formal education (e.g., master’s degree) programs at univer-
sities. [tem 3 looks at tools and environments for systems engineering. This is
not a new subject (see earlier chapters and section 13.11), and may simply be
a matter of not keeping up with investments needed in industry and govern-
ment. Item 4 points to requirements matters, which have been a problem area
for a long time. Perhaps a more rigorous requirements engineering process
would be helpful, but this issue is almost always on the list of why programs
fail. For item 5, problems with initial cost and schedule baselines put many
programs at risk. We tend to be too optimistic and have to pay the price down
the road. At times, that price can be program cutbacks or cancellations.

The reader is advised to look at problem areas discussed elsewhere in this
book (e.g., see Chapter 1).

13.4.2 Software Engineering
A defense-oriented workshop [13.12] defined seven key software issues:

1. Requirements engineering
2. Insufficient participation by software engineers in systems engineering

13.5 INTEGRATION OF SYSTEMS 419

Ineffective planning and management by acquirers and suppliers
Insufficient quality and quantity of software engineering expertise
Verification methods inadequate for large and complex modern systems
Cannot assure proper executive of software in distributed environments

Inadequate attention to life-cycle issues for COTS/NDI (Commercial-
Oft-the-Shelf/Non-Development Items) impacts on cost and risk

NSk W

As with systems engineering, these seven issues are not particularly new.
None of them requires technical breakthroughs to address, but all need an
infusion of new money, resources, and commitments. A further articulation of
problem areas of note can be found in the author’s book on managing complex
systems [13.13]. Suggestions for improvements relative to the integration of
systems can be found at the end of this chapter.

If we broaden our perspective on software issues to the national level, we
find an important investigation and contribution by the Center for National
Software Studies. Under the most able leadership of Alan Salisbury, they
produced a second National Software Summit report [13.14]. Their stated
2015 vision was:

Achieving the ability to routinely develop trustworthy software products and
systems, while ensuring the continued competitiveness of the U.S. software
industry.

The overall National Software Strategy can be summarized by four imper-
atives:

1. Improve software trustworthiness.

2. Educate and field the software workforce.

3. Reenergize software research and development.

4. Encourage innovation within the U.S. software industry.

The report provides supporting rationales and details [13.14]. Note that
these results were obtained by looking at our software issues and problems
from a national, and at times international, perspective.

These and other studies of software indicate that many of our system
vulnerabilities lie, significantly, in how we produce and maintain software.

13.5 INTEGRATION OF SYSTEMS
In this section, we briefly explore several issues that pertain to the art and

science of systems integration. Some of these issues relate to the systems
and software problems discussed in the previous section of this chapter and

420 SELECTED NEW PERSPECTIVES

also in Chapter 12. It is hoped that the reader will gain some new and useful
perspectives with respect to this expansive and important subject.

13.5.1 Systems of Systems Revisited

In section 12.2.2 of Chapter 12, we explored the matter of system of systems
engineering (SoSE). This was an attempt to examine the meaning of systems
engineering when we are dealing with systems of systems. Emphasis was
placed on disciplines of particular importance in such a case, with a resultant
top-level structure of:

1. Integration engineering
2. Integration management
3. Transition management

Section 12.2.2 provided a substructure for the top-level structure.

Chapter 12 paid special attention to matters of integration and management.
In engineering systems of systems, we must pay even more attention to these
two areas, given that the individual systems are or have been subject to a basic
systems approach.

Other investigators have made important contributions in the domain of
systems of systems and the engineering thereof. For example, Sage and Cup-
pan examined systems of systems and federations of systems, concluding
that both exhibited the “behaviors of complex adaptive systems” [13.15].
Related concepts, such as a “new federalism” and evolutionary acquisition,
are discussed in some detail. Charles Keating and several colleagues at Old
Dominion University examined the “emerging discipline” of SoSE to point
the direction toward future investigation [13.16]. Mark Maier has set forth
a set of “architecting principles for systems of systems” and also empha-
sized the role of communications relative to the overall architecture [13.17].
The Defense Acquisition University (DAU), in the Defense Acquisition
Guidebook, advises that the factors of greatest interest include:

» Greater scope and complexity (of integration)

e Dynamic as well as collaborative engineering activities

» Consideration of design optimization

» Reconfiguration of the overall architecture

 Extensive modeling and simulation (M&S) to ascertain overall behavior
* Design and engineering under greater uncertainty

* Rigorous interface definition and control

It is clear that the systems engineering of systems of systems is here to
stay, and will need and experience continuing exploration during the coming

13.5 INTEGRATION OF SYSTEMS 421

years. Groups like INCOSE and the System of Systems Engineering Center
of Excellence [13.18] are sure to be involved.

13.5.2 Integration of Stovepipes

The topic of the integration of stovepipes can be directly related to building
systems of systems, or it can turn out to be basically unrelated, depending on
one’s basic definition of what constitutes a system of systems.

In many federal government programs, there is a tendency to want to
“fully” integrate stovepipes. This is usually based on the premise (actually,
an assumption) that the integration of stovepipes will lead to a superior
system. This may, or may not, be the case, depending on the functionality
and internal nature of the stovepipes as well as any related constraints (e.g.,
budget, schedule). A simple example may serve to illustrate the point.

Suppose the acquisition agent for a system defines the top-level require-
ments as:

1. The overall system shall carry out these functions:
 Spreadsheet
» Database management
e Presentation management
* Word processing

2. The overall system shall be the synthesis of the “best of breed” systems
that execute the above functions.

Assume further that the “best of breed” analysis yields these results [13.13]:

Stovepipes Best of Breed Selection Manufacturer
Spreadsheet Lotus 1-2-3 Lotus
DBMS Oracle Oracle
Presentation Manager Powerpoint Microsoft
Word Processor Word Perfect Corel

Under these conditions, the integration of stovepipes would lead us to try
somehow to make systems from four different manufacturers play together.
This is a horrendous prospect, and clearly much inferior to simply going with
either Microsoft Office or Lotus Smartsuite. This example demonstrates how
much trouble one can get into under the overall task of integrating stovepipes.
This author, as part of an advisory group for a system several years ago, saw a
stovepipe integration program fail. The stovepipes were not easily integrable,
and the project manager just ran out of dollars and time.

422 SELECTED NEW PERSPECTIVES

Is there a plausible answer to this knotty problem? The answer is yes, and
lies in approaching the integration of stovepipes problem in two steps:

1. Architecting alternatives as per the approach in Chapter 9

2. Selecting the preferred architecture, and its attendant level of integra-
tion, on the basis of cost-effectiveness calculations and considerations,
within all program constraints, including schedule and budget

13.5.3 System Complexity

Broadly speaking, we can assume that systems integration (SI) becomes
more difficult as the subordinate systems, subsystems, and/or stovepipes be-
come more complex, under more or less most definitions of complexity. At
some point down the road, as with our measurement of software complexity
(see Chapter 10 and cyclomatic complexity), we will be in a position to mea-
sure system complexity in an agreed-upon manner. That will give us some
guidance on to how to evaluate the ease or difficulty of system integration
efforts and will be an enormous step forward.

From an engineering perspective, it is not difficult to enumerate factors that
are highly correlated with systems complexity. These factors include [13.13]:

e System size

* Number of functions to be instantiated
* Parallel versus serial operation

* Number of modes of operation

* Duty cycle (static versus dynamic)
» Real-time operations

 Very high performance

* Number of interfaces

* Different types of interfaces

e Degree of integration

* Nonlinear behavior

e Human—machine interactions

Researchers in systems engineering are making progress in this area, trying
to develop algorithms that will yield specific and quantitative measures of
complexity, at the systems level. Many of listed factors likely will be key
variables in such measures.

13.5.4 Horizontal Fusion and Netcentric Notions

Are the trends suggesting more or less systems integration as we move far-
ther into the twenty-first century? Looking at what is happening in various

13.5 INTEGRATION OF SYSTEMS 423

executive agencies of the government (e.g., Department of Homeland Secu-
rity, Department of Defense), we see moves that are clearly in the direction of
more, rather than less, systems integration. This will result in more integration
of stovepipes and also more systems of systems.

As an example, we look here a bit more closely at the DoD’s approach
to information generation, handling, and use. In effect, the DoD is attempt-
ing to assure that all warfighters obtain the right information, in the right
place, and at the right time. A major focus is the Horizontal Fusion Initia-
tive that will enable netcentric operations (NCO) [13.19]. This portfolio of
programs is designed to effect a transformation in how information is gen-
erated and used, both strategically and tactically [13.20]. These programs
emphasize:

* High connectivity with security

* Trusted massive-bandwidth network systems

» A web-enabled environment

» Real-time situation awareness across the battle space
 Information that is tailored for posting to shared spaces
 Information that is fused and exchanged

e In-depth information assurance (IA)

» Collaborative efforts between communities of interest

* Quick and agile adaptation to deal with uncertainty

* Joint integrated capabilities

* Better and more timely decision making, at all appropriate levels
» Building many facilitating systems, such as the Global Information

Grid (GIG) and the Transformational Satellite Communications System
(TSAT)

It is believed that stovepipe systems will not lead to agile information sharing.
We will need to have people, processes, and technologies working together
in new and more integrated ways that are not achievable with old platform-
oriented programs. We will be able to leverage information so that it will
streamline business and battlefield processes and serve as a true force mul-
tiplier. All of these net-centric notions are designed to deal with the threat
profiles of the new century. The supporting plans and systems represent
leading-edge transformations of current capabilities.

13.5.5 Joint Capabilities Integration and Development System

In moving from fully integrated multifunctional systems to increments of
capability, it becomes important to be able to identify, with some precision,
what gaps in capability exist so that a gap-filler increment can be designed

424 SELECTED NEW PERSPECTIVES

and built. This determination can be quite complex, involving the answers to
at least five questions in the defense arena:

What are our current threats?

Which of these threats are fully addressed and which are not?

How can we prioritize the threats?

For threats not being addressed, and of medium to high priority, do we
have any concrete plans to develop gap fillers?

5. Ifnot, what are the precise functions and features that we need to address
the gaps?

bl S

All of these questions involve both a broad and deep analysis of current and
planned capabilities and systems. The questions are simple, but getting to the
answers with the required specificity is a major activity.

The Joint Capabilities Integration and Development System (JCIDS) is
designed to deal with this matter. A brief look at this system will make more
concrete some of the acquisition issues discussed in this chapter.

JCIDS is intended to “allow joint forces to meet the full range of military
challenges of the future” [13.21]. It emphasizes:

* Highly networked operations

e Interoperability

* Coordination among components

* Collaborative environments

» Assessment of existing and proposed capabilities

 Discovering potential redundancies

* Identification of capability gaps

» Technologically sound, sustainable, and affordable increments of capa-
bility

 Supportable, innovative solutions (including business areas)

» Knowledge management/decision support tools

Systems like JCIDS demonstrate some of the complexities that are attendant
to the problem of assuring and implementing the incremental approach. The
systems reject the earlier “grand design” notions since they have not satisfied
the rapid response needs of our warfighters, with the required superior use of
the most up-to-date technologies.

13.5.6 “Top Dozen” Integration List

Systems integration is without doubt one of the most important aspects of
building and fielding large-scale systems. As discussed in Chapter 12, many
of the most capable and largest companies in the country call themselves Sls

13.5 INTEGRATION OF SYSTEMS 425

and are properly proud of their capabilities in bringing our most important
systems into being. But, at the same time, we have major problems in this
arena that do not seem to go away.

In that context, the author offers a top dozen integration list, a set of
suggestions for how to improve the manner in which we carry out integration
activities.

Suggestion One. When attempting to integrate stovepipes, do not accept
100 percent integration as an a priori goal.

The degree to which two or more stovepipes are integrable depends on
many factors, including at least their functionality, the specific ways in which
the functions (and subfunctions) have been instantiated, and the use and
nature of the software. Some stovepipes can be integrated relatively easily;
others basically not at all, without an enormous effort in time and dollars.
Integrating stovepipes, as a discipline, should follow precisely the methods of
architecting that are delineated in this book. Formulate at least three alternative
architectures, evaluate all three on a cost-effectiveness basis, and then choose
the preferred alternative. The level or degree of integration is not the criterion
by which this is accomplished. Focus on the cost-effectiveness of the systems
being built. Cost-effectiveness of alternatives should be the primary basis for
integrating stovepipes.

Suggestion Two. Always architect a set of alternatives from which to select
the preferred architecture.

This suggestion confirms the approaches cited earlier and in Chapter 9.
The acquisition principles discussed earlier in this chapter support this key
notion in at least two very specific ways:

1. The explicit use of an analysis of alternatives (AoA)
2. The top-level criterion of system cost-effectiveness

By following this suggestion, the likelihood of basing our detailed design on
the best architecture is increased.

Suggestion Three. Insist that all team members have specific skills in
at least one of the two major elements of systems integration, namely,
systems engineering and project management.

Systems engineering and project management have been accepted as the
most important aspects of systems integration, assuming that subject matter
technical expertise is sufficiently represented. Therefore, at this point people
with the requisite skills are brought on to the project. If personnel do not

426 SELECTED NEW PERSPECTIVES

have the necessary skills, the likelihood of project success tends to diminish.
In addition, it is a good idea to choose project personnel who have already
demonstrated that they know how to operate as a team.

Suggestion Four. Think of requirements as tentative needs that, at times,
can be treated as variables subject to tradeoffs.

Requirements that are questionable or potentially incorrect (see Chap-
ter 8) should be scrutinized and challenged since they often are major
drivers of the system architecting and design processes. A key phrase, cited
in Chapter 9, was taken from a DoD document in the context of trade
studies:

Desirable and practical trade-offs among stated user requirements, design,
program schedule, functional and performance requirements, and life cycle
costs shall be identified and executed.

Chapter 8 discussed how a program was able to save many millions of
dollars by changing a single requirement from a one-second response time to
a four-second response time [13.22].

Some of the design principles cited by Eb Rechtin, one of our premier
systems engineers [13.23], reinforce these points. One example is:

[E]xtreme requirements should remain under challenge throughout system de-
sign, implementation and operation.

Setting poor or extreme requirements in concrete has given us no end of
trouble over the years.

Suggestion Five. Accept technology insertion as a key driver for architec-
ture and design.

The acquisition management framework, shown in Figure 13.1, makes it
clear that technology insertion is a critical aspect of building today’s systems.
Note the dominant position of “User Needs and Technology Opportunities”
as well as the specific “Technology Development” phase. We cannot initi-
ate system development until we have confirmed the role that we wish to
have technology play in the system we are building. This position is also
reinforced by the requirements of both the Systems Engineering Manage-
ment Plan (SEMP) and the Systems Engineering Plan (SEP). Being on the
forward edge of technology leads to superior systems that are crucial in the
defense world. Without this type of explicit attention to technology, we may
wind up at the trailing edge, and fall behind in both military and commercial
domains.

13.5 INTEGRATION OF SYSTEMS 427

Suggestion Six. Assure that all systems are subjected to a risk analysis
and mitigation discipline.

It is this author’s firm belief that it is both possible and highly desirable for
key senior members of the architecting and design team to sit down together, at
the beginning of a program, and define the top dozen risks that the team faces
in trying to build a new system. This process can be reenacted every three
months to ensure that changes are taken into account on a continuing basis.
Besides stating the risk areas, the team can begin risk mitigation activities
early enough so that mitigation can be an integral part of the architecting
and design processes. In other words, our best systems engineers know very
early where the high-risk areas are. We need the discipline and the will
to incorporate fixes before the risks seriously compromise or degrade the
program.

Suggestion Seven. Accept evolutionary/incremental “chunking” of capa-
bilities to shorten timelines, live within budgets, and improve perfor-
mance.

According to current acquisition and systems engineering principles, the
evolutionary approach is the one most likely to lead to success. This belief
is confirmed by a capability-based acquisition concept, which means that we
build increments of the system in a particular and well-defined sequence.
For example, if ten specific top-level functions are part of the system, the
(overlapping) sequence in which we build the system is:

First build and integrate to functions 3 and 7 (where function 7 contains
an embedded database management system) (increment A)

Then build to functions 8 and 10, and integrate them (increment B)
Then build to functions 1, 2, and 6, and integrate them (increment C)
Then build to functions 4, 5, and 9, and integrate them (increment D)
 Then integrate, as per the overall SEP, increments A, B, C, and D

Under this notion, distinct increments are built in an overlapping sequence,
with each increment representing a workable capability that can be delivered
to the end user (for the DoD, the warfighter) and used in the real world as
soon as possible.

We believe that this evolutionary approach will avoid many of the pitfalls
and problems of years past. Variations on this theme are within the purview
of the acquisition team, based on the “tailoring” aspects of the acquisition
plan.

Suggestion Eight. Confirm that schedules and budgets are sufficient to
build, test, and deliver a system that satisfies the ultimate requirements.

428 SELECTED NEW PERSPECTIVES

Too often, schedules and budgets are accepted that all know cannot realis-
tically be achieved. In other words, we start out under enormous pressures to
build systems with low success probabilities and then somehow are surprised
that we are failing. This is clearly not a satisfactory approach.

The systems integrator (SI) enterprise must have the expertise to obtain
solid estimates of what it should take to build a system with the stated
requirements, within so-called time and dollar constraints. These estimates,
as a minimum, should be provided by no less than three independent internal
teams that have been assigned to look at this issue in detail. If the bottom
line is that there is a less than 50 percent chance of meeting time, cost,
and performance requirements, the development plan needs to be changed,
perhaps radically. It may be that an incremental approach can be found that has
a high probability of success by delivering smaller interoperable capabilities.
We need to get away from a pattern of behavior that leads us to “overpromising
and underdelivering” on a continuous basis. Facing the facts is a good place
to start.

Suggestion Nine. Gain efficiency and leverage through reuse methods,
while avoiding the pitfalls of reinventing the wheel.

After many years of developing large-scale systems, we still tend to ap-
proach each new system as one of a kind, especially in the federal government
arena. This clean sheet of paper approach is often selected for two reasons:

1. It is the way we have done business in the past.

2. We tend to believe that each new system has a unique and inviolate set
of requirements.

If we wish to gain major efficiencies in the future, we need to change that
mind-set. Real-time high-performance weapon systems will likely stay with
the current approach. Non-real-time systems can be developed under more of
a cookie-cutter approach, which is likely to lead to major reductions in cost and
time to develop without serious performance compromises. These types of
systems include personnel tracking systems, inventory management systems,
configuration control systems, and various types of financial management
systems.

Some enterprises have figured out the way to achieve an important level
of standardization in the latter types of systems and have flourished as
a consequence. Related concepts whereby we reuse entire systems have
been suggested but not necessarily adopted [13.13]. Under these notions,
requirements are more flexible, leading to major time and cost improvements.

The area of software reuse remains promising but it has not yet achieved
its full potential. Many software engineers would prefer, and believe it

13.5 INTEGRATION OF SYSTEMS 429

is more efficient, to write new code rather than search for and integrate
already existing code. If we are to truly transcend the one-of-a-kind barrier
in systems integration, we need to pay a lot more attention to reuse notions
across the board. Reuse has the potential for order-of-magnitude improve-
ments in several important domains, as demonstrated when and where COTS
(Commercial-Off-The-Shelf) solutions have been selected.

Suggestion Ten. Reduce complexity and implement the K.1.S.S. principle
whenever possible.

Related to suggestion 9, but not identical, is the notion of systematically
eschewing complexity and moving more toward simplification. Although we
seem to claim that we understand perfectly well the K.I.S.S. principle, we
very likely do not use it in a systematic way. This leads to interactions and
failure modes that threaten our missions.

An example might be drawn from the manned satellite systems that we
have already flown. We had a requirement for a very high availability of,
in effect, a laptop computer. Two obvious but clearly different approaches
were at hand. One was to build a new and ultra-reliable laptop (perhaps one
with an individual 0.99999 reliability). Another approach was to introduce
n-fold redundancy, using a set of identical COTS laptops. If each laptop had
areliability of, say, 0.8, then we would need, with no new developments, a set
of some eight laptops from one of many COTS suppliers. NASA made the
correct choice of employing simple redundancy to achieve its mission goal.
This is a clear case of trying to simplify the design and avoid single-point
catastrophic failures.

Finally, with respect to this tenth suggestion, we come to some ideas em-
phasized by Eb Rechtin in his groundbreaking book on systems architecting
[13.23]. On the same page, he discussed the K.I.S.S. principle and cited the
Occam’s Razor notion: “The simplest solution is usually the correct one.”

Suggestion Eleven. Understand and accept the acquisition concepts and
constraints under which your system is being acquired.

We have spent considerable space in this chapter on the topic of the acqui-
sition of systems. The 5000 series and supporting materials provide ground
rules and guidance for use by the people whose job it is to acquire the sys-
tems that we need. The systems integration firms and personnel can develop
immediate insights, from these materials, as to what is driving the acquisition
personnel. In some cases, the acquisition framework is shown with consider-
able clarity (e.g., see Figure 13.1). In others, various approaches are spelled
out that ultimately need to be appreciated and followed by the systems inte-
grator. Indeed, the existence of several possibilities is the primary reason why
so much attention is paid in this chapter to recent acquisition perspectives. For

430 SELECTED NEW PERSPECTIVES

example, the evolutionary approach is defined and insisted on with respect
to building our systems. Choosing a different approach basically violates this
guidance, and is not recommended, especially for the systems integrator.

Suggestion Twelve. Have the will, determination, discipline, and account-
ability to utilize all preferred practices and processes.

We need to make substantive improvements in building and fielding new
systems, whether they are constructed on a clean sheet of paper or represent
the results of integrating existing stovepipes, or are a combination of the two.
In most cases, the nature of these improvements is well known, having been
studied and accepted by various review panels and boards over the years. The
DAPA Report discussed earlier in this chapter is one such example.

With all this advice, are we in possession of coherent and recommended
ways to proceed from where we are today, in order to solve our problems?
The answer seems clear, and might be expressed as Augustine’s admonition,
from earlier in this chapter:

The difficulty resides in having the will to do anything about these problems.

If there is a silver bullet to our systems and software problems, Norman
Augustine has pointed us in the right direction.

QUESTIONS/EXERCISES

13.1 Write a three-page overview of the key points in the Systems Engi-
neering Handbook, version 3, published by INCOSE.

13.2 Obtain a copy of 5000.1 and develop your list of the twenty most
important aspects of this document.

13.3 Obtain a copy of 5000.2 and develop your list of the twenty most
important aspects of this document.

13.4 What ten points are emphasized in hoth 5000.1 and 5000.2?
13.5 What is a “capability roadmap”? Construct an illustrative example.

13.6 Consider a system with eight major functional areas. Develop a
graphic showing how to formulate an evolutionary acquisition se-
quencing diagram.

13.7 Contrast the Joint Capabilities Integration and Development Sys-
tem (JCIDS) with the Joint Capabilities Acquisition and Divestment
Plan.

REFERENCES 431

13.8 Write a three-page overview of how you might “solve” each of the

systems engineering problems described in this chapter.

13.9 Write a three-page overview of how you might “solve” each of the

software engineering problems described in this chapter.

13.10 Define the ten most important aspects of systems integration, with a

brief explanation as to why you selected each item.

REFERENCES

13.1

13.2

13.3

13.4

13.5

13.6

13.7

13.8

13.9

13.10

13.11

13.12

13.13

13.14

13.15

13.16

13.17

13.18

“Systems Engineering Vision 2020,” Version 2.0, INCOSE, October 6, 2006

See the INCOSE Web site: www.incose.org.

Systems Engineering Handbook—A Guide for System Life Cycle Processes and Activi-
ties, Version 3, INCOSE-TP-2003-002-03, June 2006.

International Standard ISO/IEC 15288, “Systems Engineering—System Life Cycle
Processes,” 2002-11-01

U.S. Department of Defense (2003). The Defense Acquisition System, Directive 5000.1.
Washington, DC: DoD, May 12.

U.S. Department of Defense (2003). Operation of the Defense Acquisition System,
Instruction 5000.2. Washington, DC: DoD, May 12.

U.S. Department of Defense (2006). “Defense Acquisition Performance Assessment,”
Kadish Report. Washington, DC: DoD, January.

“Testimony of Lt. General R. T. Kadish” (2006). The Defense Acquisition Performance
Review Project, testimony before the 109th Congress, House Armed Services Commit-
tee, March 29.

Defense Acquisition Guidebook; see http://akss.dau.mil/dag.

“Top Five Systems Engineering Issues in Defense Industry” (2003). National Defense
Industrial Association, Systems Engineering Division, Task Group Report, January.
Eisner, H. (1988). Computer-Aided Systems Engineering. Upper Saddle River, NJ:
Prentice-Hall.

Schaeffer, M. D. (2006). “DoD Systems and Software Engineering—Taking It to the
Next Level.” Systems and Software Engineering, Office of the Deputy Under Secretary
of Defense (A&T), October 25.

Eisner, H. (1995). Managing Complex Systems—Thinking Outside the Box. New York:
John Wiley & Sons.

“Software 2015: A National Software Strategy to Ensure U.S. Security and Compet-
itiveness” (2005). Report of the 2nd National Software Summit, Center for National
Software Studies, April 29.

Sage, A., and C. Cuppan (2001). “On the Systems Engineering and Management of
Systems of Systems and Federations of Systems.” Information, Knowledge, and Systems
Management 2(4): 325-345.

Keating, C., et al. (2003). “System of Systems Engineering.” Engineering Management
Journal 15(3).

Maier, M. “Architecting Principles for Systems of Systems,” www.infoed.com/Open/
PAPERS/systems.htm.

See www.sosece.org.

432

13.19

13.20

13.21

13.22

13.23

SELECTED NEW PERSPECTIVES

Stenbit, J. (2004). “Horizontal Fusion: Enabling Net-Centric Operations and Warfare.”
Crosstalk, The Journal of Defense Software Engineering (January), pp. 4-6.

Grimes, J. (2006). “From the DoD CIO: The Net-Centric Information Enterprise.”
Crosstalk, The Journal of Defense Software Engineering 19(7), pp. 4-6.

Chairman of the Joint Chiefs of Staff, Instruction CJCSI 3170.01D (2004). “Joint
Capabilities Integration and Development System,” U.S. Department of Defense,
March 12.

Boehm, B. (2002). “Unifying Software Engineering and Systems Engineering.”
COMPUTER Magazine (March), pp. 114-116

Rechtin, E. (1991). Systems Architecting. Upper Saddle River, NJ: Prentice-Hall.

— 14

INTEGRATIVE
MANAGEMENT

14.1 INTRODUCTION

The previous chapters have been organized so as to explore the two primary
areas of project management, and systems engineering and its management.
Interrelationships between these two primary areas have been mentioned in
a variety of places in this book but perhaps have not been sufficiently em-
phasized. In fact, essentially all systems engineering activities occur within
some type of program or project context. So the real world connects them
whether or not any commentary about them does so. And many commen-
taries, particularly the collection of extant books, tend to deal with project
management or systems engineering, but not both. Indeed, one of the key pur-
poses of this book is to bring together these two interrelated subjects under
one cover. This chapter moves even further in terms of the interconnectedness
between project management and systems engineering management. This is
done by explicitly considering the matter of integrative management in this
final chapter.

Integrative management is defined as a set of practices whereby people,
processes, tools, and systems are brought together into harmonious inter-
operation so as to maximize their efficiency and effectiveness. The latter, in
turn, are further defined as follows [14.1]:

Efficiency: The capability of producing desired results with a minimum of
energy, time, money, materials, or other costly inputs

433

434 INTEGRATIVE MANAGEMENT

Effectiveness: The capability of bringing about an effect or accomplishing a
purpose, sometimes without regard to the quantity of resources consumed in
the process

It is a fundamental responsibility of management to seek these conditions
and to act as a prime facilitator. The key word is “integrated,” so we are
looking for interoperability, wholeness, and organic strength. This means
paying attention to an overall strategy for integrative management, as well as
developing detailed tactics to implement such a strategy. As a management
activity, above all, it means paying attention to the interactions between people,
the systems that they are in, and the systems that they are trying to build.

We see integrative management at work in an organization when we are
able to observe the following:

 Strong and effective teams

* Commitment to “getting the job done”

* Deep interest in the technical issues

* Constructive problem solving

 Corporate support for the needs of the project
* Little or no complaining

¢ Short and productive meetings

* Rapid flow of information

 Effective computer support

* Involved and happy people

Although these do not guarantee integrative management, they are strong in-
dicators. The following sections explore in greater detail the various domains
and contexts of integrative management, including:

* Managers as integrators

» Teams as integrators

* Plans as integrators

» The systems approach as integrator

* Methods and standards as integrators
* Information systems as integrators

* Enterprises as integrators

14.2 MANAGERS AS INTEGRATORS
In Chapter 1, we introduced the project organization and the project

triumvirate—the Project Manager (PM), the Chief Systems Engineer (CSE),
and the Project Controller (PC). The project organization chart, shown in

14.3 TEAMS AS INTEGRATORS 435

Figure 1.2, indicated that all three members of the triumvirate have signif-
icant responsibilities and, in fact, are usually managers. This management
team serves as the primary integrative factor for the project. If the three per-
sons are working together in an integrative fashion, then the project members
will usually follow their example. If there is less than complete trust and in-
formation exchange, this, too, will be conveyed to project staff, and a different
model of behavior may be established.

A key attribute of the triumvirate is that of being able to communicate. A
dozen essentials of an effective communicator have been described in Exhibit
6.1 in Chapter 6. Among the items listed is to be able to “synthesize and
integrate.” In this context, integration refers mainly to thinking in terms of how
pieces of information, as well as human behavior interact and might be brought
together in a harmonious way. Appropriate communications itself serves as
an integrator. It conveys information in a “holistic” manner so that people on
the project can see and experience the interrelationships between information
and people. Because one of the principal forums for communications is in the
context of a team, the matter of teams as integrators is considered in the next
section.

14.3 TEAMS AS INTEGRATORS

The management team, represented by the Project Manager, Chief Systems
Engineer, and Project Controller, although critical to the notion of integrative
management, is not the only team on a project. Examining the project organi-
zation (Figure 1.2) more closely reveals that at least eight(!) additional teams
are suggested by the chart. These include the following:

* The team of Chief Systems Engineer and the lead engineers in each of
the six supporting disciplines

» The six teams represented by the lead engineers in the six disciplines
together with the personnel working in those areas

* The team consisting of the Project Controller as team leader and the
personnel heading up the work teams in the areas of scheduling, costing,
personnel assignments, facilities, and contract liaison

These teams represent opportunities for adopting an integrative style such
that all members of the project know, understand, and sign up to the goals and
objectives of the project. In short, all of these subteams have to behave in the
manner described in some detail in Chapter 6. If conscientious team behavior
patterns are the norm, then a major step toward integrative management has
been taken.

436 INTEGRATIVE MANAGEMENT

Suggestions for building a team that will support and facilitate integrative
management were set forth in Exhibit 6.2. Especially key items in terms of
integrative management include:

* Encouraging participative, possibly consensual, behavior
e Integrating

* Coordinating

* Facilitating

* Communicating

Adherence to these notions will go a long way toward building an overall
integrative management team.

Another important idea with respect to team behavior and integrative man-
agement is that of “integrated product teams” (IPTs). IPTs bring together (in
a team) all the people who have an influence on how a product is to be devel-
oped and sold. Often, the context for an IPT is a new product for a company
so that it is clear that, as a minimum, the following functional areas have to
be represented in the IPT:

* Management

* Marketing and sales

* Research and development
* Engineering

* Production

* Finance and accounting

* Contracts

Because all relevant functions are part of the process, IPTs are also at times
referred to as multidisciplinary teams, multifunctional teams, cross-functional
teams, or work groups. The latter have been examined in detail, including their
characteristics and beneficial consequences [14.2].

Another aspect of the IPT is that the preceding representation occurs at
the very outset of a project. This is in distinction to earlier practices that
tended to operate serially. The latter often led to reengineering a product
when, for example, the production folks threw the design back over the wall
to engineering with the claim that the design was not producible! The IPT,
operating over the full life cycle of a product, was able to identify and reconcile
possible problems very early and obviate the need for excessive rework and
iterations. The IPT notion is also considered a part of concurrent engineering,
which is addressed later in this chapter and is included as one of the thirty
elements of systems engineering (see Exhibit 7.3). It also has been reported on
quite extensively in the literature, particularly with respect to manufacturing
processes.

14.4 PLANS AS INTEGRATORS 437
14.4 PLANS AS INTEGRATORS

Plans are descriptions of perspectives and agreed-on future activities. As
such, they are integrative because they convey the project agenda to all project
personnel as well as other corporate staff people. A documented plan indicates
the project intent and gets everyone tuned to the same set of goals, objectives,
and approach. A plan gets everyone focused in the same direction.

It is of interest to cite three types of plans here, namely:

1. The project plan
2. The systems engineering management plan (SEMP)
3. The software development plan (SDP)

The project plan, from Chapters 2 and 3, contains seven elements:

Needs, goals, objectives, and requirements

Task statements, a statement of work, and a work breakdown structure
The technical approach to the project

A project schedule

Organization, staffing, and a task responsibility matrix

The project budget

A risk analysis

NSk L=

This plan should be conveyed to all project personnel, although there is
often resistance to such an action. By doing so, however, everyone has an
opportunity to see the “game plan” and to understand how he or she fits into
it. By being explicit about what is understood about the project, including
budgets and perceived risks, there is an opportunity for people to try to find
solutions to problems and to possibly bring new ideas to the attention of
project management. The project plan also has to be updated from time to
time so that it represents the best and most recent view of the project.

Unlike the project plan, the SEMP focuses exclusively on systems engi-
neering activities. An outline of the contents of a SEMP, within the framework
of Military Standard 499B, was provided in Exhibit 2.4. Although the project
plan and the SEMP have some elements in common, that is, cost and schedule
information, the SEMP also addresses the key issues of:

» The overall systems engineering process

» How technical performance measurement is to be achieved
» Reviews that are scheduled to occur

* The role of technology, with emphasis on transition

¢ Technical integration teams

438 INTEGRATIVE MANAGEMENT

The last item, in particular, fosters integrative thinking and action and is
described in detail in what follows [14.3]:

Technical Integration Teams. The contractor shall describe how the various
inputs into the systems engineering effort will be integrated and how multi-
disciplinary teaming will be implemented to integrate appropriate disciplines
into a coordinated systems engineering effort that meets cost, schedule and
performance objectives. The contractor shall include: (a) how the contractor’s
organizational structure will support team formation; (b) the composition of
functional and subsystem teams; and (c) the products each subsystem and
higher level teams will support (e.g., teams organized to support a specific
product in the work breakdown structure (WBS), “team of teams” utilized for
upper level WBS elements).

We note the emphasis on the key concepts of integration, multidisciplinary
teaming, and coordinated effort. The notion of teams here reinforces the
discussion of teams as an integrative element in the preceding section of this
chapter.

With respect to the Software Development Plan (SDP), Military Standard
498 [14.4] contains a Data Item Description (DID) that describes the purpose
of an SDP as follows:

The Software Development Plan (SDP) describes a developer’s plans for con-
ducting a software development effort. The term “software developer” in this
DID is meant to include new development, modification, reuse, reengineering,
maintenance, and all other activities resulting in software products.

The SDP provides the acquirer insight into, and a tool for monitoring, the
processes to be followed for software development, the methods to be used, the
approach to be followed for each activity, and project schedules, organization,
and resources.

Clearly, the SDP is a key document with respect to the software development
effort, itself one of the thirty elements of systems engineering. As noted
before, this plan conveys to the team, management, and the customer how
the software development is to be accomplished. As such, it is an integrative
point of reference for all software development activities and how they fit into
the overall systems engineering effort.

The three plans, although extremely important, are not the only plans that
are called for on many projects. Examples of other plans, called for in Military
Standard 498, include

* A software installation plan
* A software test plan
* A software transition plan

14.5 THE SYSTEMS APPROACH AS INTEGRATOR 439

as well as various manuals, descriptions, and reports. Here again, project
management is encouraged to distribute these documents as widely as possible
to gain the integrative effect that is produced when the entire project team
knows what is happening and what progress is being made.

14.5 THE SYSTEMS APPROACH AS INTEGRATOR

The systems approach as well as the thirty elements of systems engineering
(see Chapter 7), also have an integrative influence, both explicitly and im-
plicitly. By identifying the thirty elements, all activities can be viewed in the
context of how they affect, and are affected by, the other elements. For exam-
ple, when carrying out the reliability-maintainability-availability (RMA) and
integrated logistics support (ILS) elements, the engineers must be cognizant
of the architecture design and synthesis element as well as several others.

Three of the thirty elements of systems engineering, however, are more
sharply related to integrative management, namely:

* Integration
* Interface control
» Concurrent engineering

Integration, in a systems engineering context, refers to the connecting of
pieces of hardware and software to make larger builds. In this framework,
we are integrating structures, whether they be chunks of hardware or pro-
gram code. Successful integration requires that all the interfaces be correct
so that the pieces, in fact, are able to interoperate in the intended manner.
Many projects and systems engineering efforts have failed because of major
integration problems.

A related element is that of interface control. In this case, we make ex-
plicit the need to examine and control all interfaces as a singular element of
systems engineering. By doing so, we are also assisting in the process of inte-
grative management because we are systematically examining all interfaces
and attempting to assure that successful integration is achieved. It is also a
means whereby potential problems are uncovered before they create havoc
with the integrated system, including the backtracking and reengineering of
major parts of the system.

Concurrent engineering, another of the thirty elements of systems engi-
neering and discussed in Chapters 7 and 9, has been formally defined as
[14.5]:

A systematic approach to the integrated, concurrent design of products and
their related processes, including manufacture and support. . . intended to cause
the developers, from the outset, to consider all elements of the product life
cycle from concept through disposal, including quality, cost, schedule, and
user requirements.

440 INTEGRATIVE MANAGEMENT

The emphasis for concurrent engineering is on the word “concurrent,”
strongly supporting parallel activities that bring all the required disciplines
together at all stages of the life cycle of a system. It is also clearly related
to the notions of IPTs, cross-, multifunctional, and multidisciplinary teams.
The reader with a further interest in concurrent engineering is referred to the
many books as well as a bibliography [14.6] on this subject.

An overview of the systems approach was presented in Section 1.4 of
Chapter 1. This approach, embedded in the processes of systems engineering,
is a major factor in integrative management.

14.6 METHODS AND STANDARDS AS INTEGRATORS

Both methods and standards tend to support the achievement of integrative
management. Because they normally set forth well-considered ways of doing
business and are widely distributed, they are read by many researchers and
practitioners. This leads to their incorporation into the processes and proce-
dures of a large number of enterprises. This, in turn, promotes a common
understanding and vocabulary regarding best practices. This, of course, is an
ever-evolving set of activities as we discover new and better ways of building
systems.
A few of the methods that have had such effects include

* Structured analysis for systems

* Capability maturity modeling (CMM)
Total Quality Management (TQM)
 Business process reengineering (BPR)

Of course, by formalizing the processes and elements of project as well as sys-
tems engineering management, as represented here, the notion of integrative
management is also supported.

The standards that we have discussed in this book also tend to enhance in-
tegrative management. These have included military standards (e.g., Military
Standards 499B, 498, and others) as well as commercial standards (e.g., those
produced and promulgated by the international standards organization [ISOJ;
the Electronic Industries Association [EIA]; and the Institute of Electrical and
Electronics Engineers [IEEE]). Often, the requirements and specifications for
new systems cite these standards; it therefore becomes important for industry
to be aware of their provisions and meaning. Again, this builds common ways
of looking at the systems development process across the industry. In turn,
this supports and facilitates integrative management.

14.7 INFORMATION SYSTEMS AS INTEGRATORS 441
14.7 INFORMATION SYSTEMS AS INTEGRATORS

Information systems, aside from serving as critical elements in any enter-
prise in such domains as accounting, inventory control, proposal preparation,
marketing and sales, have had the salutary effects of bringing people closer
together and reducing the time it takes for a broad range of communications.
Communication networks, in particular, interconnect computers that previ-
ously were in stand-alone configurations. This interconnection capability is
itself integrative by its very nature.

Networks used by organizations include local-area networks (LANSs), wide-
area networks (WANS), and metropolitan-area networks (MANs). With the
introduction of the Internet, exchanges of information with the world at large
has been greatly enhanced. Being able to sit at home or in the office and have
access to vast amounts of information has, indeed, constituted a revolution in
human and organizational behavior.

A related example is the relatively simple technology associated with e-
mail. Previous early morning behavior within an organization included getting
the mandatory cup of coffee and sitting down to plan the activities of the day.
In today’s interconnected world, the early hours are often taken up with going
through one’s e-mail messages and responding to them. To that extent, we are
now all “on call” most of the time between the capabilities of our voice mail
and our electronic mail systems.

Integrative management has also been supported by a class of software
known as Groupware, as referred to earlier in Chapter 12. This type of software
is used in meetings between groups of people so as to assist in a variety of
group processes ranging from tactical problem solving to strategic planning.
Systems of this type have been available from Ventana Systems, IBM, and
others. Groupware is sometimes also referred to under the general category
of group decision support systems (GDSSs).

Integrative behavior and exchange of information have also been facil-
itated by previously discussed domain-specific information systems such
as systems and software engineering environments. An example is the I-
CASE (integrated computed-aided software engineering) initiative presented
in Chapter 12. In this situation, the integration is specifically focused on
the interoperability of several software tools that support software engi-
neering. Through this type of technical information integration, it is pre-
sumed that the inter-connectedness and productivity of software teams will be
increased.

Clearly, entry into the new “information age” has great potential for en-
hancing integrative behavior and management. It appears likely that we will
continue to receive great benefits from our information systems in terms of
the rapid conveyance of large amounts of information in extremely short pe-
riods of time. It is important, however, to assure that the human side of our
organizations is not trampled in the process.

442 INTEGRATIVE MANAGEMENT

14.8 ENTERPRISES AS INTEGRATORS

The project and its systems engineering activities are both embedded in some
type of enterprise, whether it be in industry, government, or academia. If that
enterprise behaves in an integrative fashion, then a conducive environment
is established within which the project is executed. If not, there is usually
a negative flow-down to the project and its internal operations. A negative
environment puts additional pressures on the managers within the project.
Some of the issues with respect to the overall project environment have been
discussed in Section 1.6 of Chapter 1.

Experience has shown that a critical factor in terms of integrative man-
agement is top management. In particular, it must encourage, support, and
exhibit team behavior. As suggested by a President and Chief Executive in
industry [14.7], “teamwork starts at the top.” Some of the points made in this
regard include:

* The single most important quality is to build effective teams.
e Teamwork is a critical success factor.

 Important contributions are made by individuals in a variety of functional
areas.

» The example for integrative teamwork must come from the top.

Although the top of an organization appears to be somewhat removed from a
particular project, it has its definite effects, either for the good or otherwise.

Another example that exemplifies integrative management may be drawn
from management literature, as previously alluded to in Chapter 1. This is
Senge’s “learning organization” [14.8], wherein five disciplines are empha-
sized:

Building of a shared vision

Personal mastery

Mental models

Team learning

Systems thinking (the fifth discipline)

AN o e

The last two are of special importance in terms of integrative management.
Team learning carries with it at least two important ideas. The first is the
significance of teams as a critical element of successful project execution.
This point has been reiterated many times in this book. The second idea is
that of learning. The organization itself must adopt a position of continuous
learning to keep up with its business and remain current (or ahead of the
pack) in its critical technology areas. A company that is not learning soon
falls behind its competition and begins to lose its key people. The trouble often
is that organizations “don’t know what they don’t know.” This is a situation

14.9 THINKING OUTSIDE THE BOX 443

to be guarded against through the use of seminars, workshops, colloquia, and
bringing “new blood” into the company. A particularly cogent exploration of
the roles of dialogue and culture in organizations [14.9] is suggested reading
in addition to Senge’s book.

Systems thinking is basically the same as the systems approach referred
to in this chapter as well as other parts of this book. According to Senge,
this fifth discipline serves as an integrator of the other disciplines. As Senge
indicates, “by enhancing each of the other disciplines, it continually reminds
us that the whole can exceed the sum of its parts.” Integrative management
seeks that same goal.

As we look at the environment external to the project itself, we must also not
lose sight of the customer. Integrative management means that the customer is
a crucial part of the equation and that all project and systems engineering tasks
are ultimately traceable to the needs and requirements of the customer. More
than that, the customer is not a static concept; rather, customer focus brings
a vital and dynamic force to bear on the project. Interactions on a day-to-day
basis with the customer usually yield a better process and a better product.
The “customer is king” slogan brings accountability to each and every project
member, often in ways that transcend internal management oversight.

Finally, integrative management implies a connectedness to the community
within which the enterprise operates. As “no man is an island,” no company
should keep itself removed and isolated from its community. Involvements
with the community foster a condition of well-being and also serve as a
positive example to everyone in the company. Such involvements may include
any or all of the following:

* Contributions to charitable causes and organizations
» Support for educational institutions

 Science project sponsorships

* Co-op programs

* Memberships in local professional organizations

» Chamber of commerce support

* Sponsorship of special events and sports teams

Community connectedness supports a “world waiting to be born,” as sug-
gested by M. Scott Peck [14.10]. It is a basic truth for the individual and also
a fundamental value for the organization.

14.9 THINKING OUTSIDE THE BOX

As in many fields, at least some of the conventional wisdom of management
and systems engineering needs to be challenged. In the context of this book,
such challenges might well originate through the project manager (PM) and/or

444 INTEGRATIVE MANAGEMENT

the chief systems engineer (CSE). If they do, there is some chance that next
steps will be taken, such as coming up with a different approach and following
that with new actions. Such approaches can “move the ball down the field,”
a good way to make some progress. One of the best systems engineers,
Eberhardt Rechtin, did exactly that by documenting a set of heuristics that he
found were of particular interest in building systems [14.11]. Here are several
of them that are especially noteworthy:

No complex system can be optimized for all parties;
Don’t slice through regions of high information flow;
A model is not reality;

System structure should resemble functional structure.

Many others can be found in Rechtin’s book, which is most highly recom-
mended.

This author suggested a generic set of potentially new approaches that were
called “thinking outside the box” [14.12]. Nine such notions were documented
as:

Broaden and generalize
Crossover

Question conventional wisdom
Back of the envelope

Expand the dimensions
Obversity

Remove constraints

Thinking with pictures
Systems approach

XN WD =

Although there is not space here to examine each of these ideas in detail,
we briefly cite below some areas in which thinking outside the box (TOTB)
may differ from conventional wisdom.

System Requirements. Perhaps the conventional wisdom (CW) here is
that system requirements are not and should not be subject to change.
On the other hand, TOTB challenges that idea by recognizing that (a)
poor requirements need to be challenged, (b) we often “lock into” a set
of requirements when we know the least about a system, (c) some gov-
ernment approaches tell us that requirements tradeoffs can be important
in a program, and (d) some practitioners have demonstrated that changes
can be quite constructive [14.13].

Processes and Products. The CW here tends to be that if the process is
right, the product will necessarily also be right. We agree that process is
indeed critically important, but unfortunately it may not guarantee the

14.9 THINKING OUTSIDE THE BOX 445

correct product. The missing ingredient could well be the appropriate
subject matter expertise. For example, an excellent hardware engineer
whose expertise is in building heavy machinery is likely not to be
very productive when asked to build operating system software for a
computer, even if he or she follows precisely the accepted software
engineering processes.

Integrating Stovepipes. CW in this domain tends to be the more integra-
tion, the better. The challenge to that is simply that this could easily lead
to systems that violate schedule, cost and performance requirements or
constraints. Depending upon the nature and details of the stovepipes,
the “best” integration approach could range from almost none, to a fair
amount. Assuming high levels of integration as a goal can well lead
to disastrous results. A better solution? Use the architecting procedure
illustrated in chapter nine.

Measurements. The CW here might be “measure everything that you
can.” The TOTB approach tends to be to measure those “key perfor-
mance parameters” (KPPs) that give us enough information to man-
age a program properly. Measure what you need to vs. what you can
is a way to focus on the most important aspects of a system and its
development.

Do It Right the First Time. This suggestion can be attributed to Philip
Crosby as he approaches the issue of quality management [14.14]. If
first-time correctness were possible to achieve for all systems, it might
be easy to embrace. However, we have discovered that this imperative
can often fail, leading us to early decisions that are incorrect. We have
also learned that a systematic iterative process helps us through this
issue and can avoid errors. We should also keep in mind yet another of
Rechtin’s heuristics, namely, “build in and maintain options as long as
possible for complex systems” [14.11]. This includes using “TBD” (to
be determined), to be filled in when we have the information needed to
finalize a requirement or specification.

Dollar and Time Reserves. At least some of the CW in many enterprises
calls for “management” reserves at several levels of management. If
three such layers each take ten percent dollar reserves, then the PM has
less than three-quarters of the money originally budgeted. This may well
be enough only to assure failure at the PM position. Is there a better
way? How about giving the PM enough money and time to get the job
done, with a probability of at least eighty percent?

“Interchangeable” People. The CW here might well be that people with
the same nominal title and pay grade will have about the same level of
productivity and performance. A closer look, however, reveals that there
are many more variables to consider. It’s the job of management and the
chief engineer to find precisely the right person for the job, and be able
to explain why. Good management is able to do this on a consistent and
continuing basis.

Managers Teams

— Project — Project
manager teams

— Chief ~ IPTs
systems — Crossfunctional/
engineer multifunctional

— Project — Multidisciplinary
controller

Plans Systems Methods &
approach standards
— Project — Systems — Methods
plan engineering — Structured
- Systems elements anaIySis
engineering — Integration - Capability
management L Interface maturity
glaf” control — TQM
— Software
— Concurrent -
development engineering BPR
plan - Standard
- Other aM'Ia stz
lans B
p 499B
— Mil. std.
498
—I1SO
— IEEE

Figure 14.1. Contributors to integrative management.

Information .

system Enterprises

LANS, — Top

WANS, management

MANSs - The

Internet learning

E-Mail organization
— Customers
— Community

14.10 SUMMARY 447

The Customer is Always Right. This is an “inside the box” platitude that

can lead an organization a long way in the wrong direction. Real-world
experiences have shown that customers can be wrong, and when they
are, their instructions should be questioned (in an appropriate manner).
Deliberately doing the wrong thing cannot be excused or tolerated, even
if that action is traceable to a direct customer request.

14.10 SUMMARY

This

final chapter has provided some insight into integrative management

whereby project management and systems engineering management are
brought together into a harmonious and mutually supportive framework. The
major contributors to integrative management are summarized in Figure 14.1.
Our final summary is a set of some dozen suggestions as to how to achieve
integrative management. In particular, one should attempt to ensure that:

e A A R i

10.
11.
12.

Managers have and exhibit appropriate integration and synthesis skills.
There is effective communications at all levels.

Divisive behavior is not tolerated.

Integrated teams are established and listened to.

Plans are coherent, informative, updated, and widely disseminated.
The systems approach is encouraged and used.

Appropriate methods and standards are employed.

Internal and external information systems are up to date and in good
operating condition.

The enterprise adopts the principles and practices of a “learning orga-
nization.”

Strong customer contact, dialogue, and commitment is maintained.
The enterprise is connected to the community at large.
Top management actively supports all of the preceding.

QUESTIONS/EXERCISES

14.1 Identify and discuss six indicators of integrative management, other

than those listed at the beginning of this chapter.

14.2 Identify and discuss six actions that an organization can take to achieve

integrative management, other than those listed at the end of this
chapter.

448

14.3

INTEGRATIVE MANAGEMENT

Cite three consistent patterns of behavior of your boss that
a. support integrative management
b. do not support integrative management

14.4 Investigate and write a three-page paper regarding the documented op-

eration and benefits of integration product, cross-functional or multi-
disciplinary teams.

14.5 Discuss, in four pages, how each of the following might support in

tegrative management:

a. structured analysis for systems

b. capability maturity modeling (CMM)
c. Total Quality Management (TQM)

d. business process reengineering (BPR)

14.6 Describe five actions that top management should take to encourage

integrative management in a company.

14.7 Ifyou served as president of a large company, identify and explain ten

specific steps you would consider taking in order to achieve integrative
management.

14.8 Write a five-page report elaborating upon the topic of systems in-

tegration (see Chapter 12), as well as its relationship to integrative
management.

14.9 Does your organization tend to “think outside the box”? If yes, how

14.10

is that achieved? If no, what five new actions would you suggest to
encourage this type of thinking?

Identify and discuss three ways in which your organization might
avoid negative aspects of GroupThink.

REFERENCES

14.1

14.2

14.3

14.4

14.5

14.6

Mondy, R. W., and S. R. Premeaux (1993). Management: Concepts, Practices, and
Skills. Boston: Allyn and Bacon.

Bowen, D. (1995). “ Work Group Research: Past Strategies and Future Opportunities,”
IEEE Transactions on Engineering Management 42(1).

Systems Engineering, Military Standard 499B (1991). Washington, DC: U.S. Depart-
ment of Defense.

Software Development and Documentation, Military Standard 498 (1994). Washington,
DC: U.S. Department of Defense.

The Role of Concurrent Engineering in Weapons System Acquisition, Report R-338.
Alexandria, VA: Institute for Defense Analyses.

Pennell, J., and M. Slusarczuk (1989). An Annotated Reading List for Concurrent
Engineering, Document D-571. Alexandria, VA: Institute for Defense Analyses.

14.7
14.8
14.9

14.10
14.11
14.12
14.13

14.14

REFERENCES 449

Serpa, R. (1991). “ Teamwork Starts at the Top,” Chief Executive 66: 30-33.

Senge, P. (1990). The Fifth Discipline. New York: Doubleday.

Schein, E., “ On Dialogue, Culture and Organizational Learning,” Engineering Man-
agement Review 23(1):23-29.

Peck, M. Scott. (1993). A World Waiting to Be Bom. New York: Bantam Books.
Rechtin, E., (1991). Systems Architecting. Englewood Cliffs, NJ: Prentice-Hall.
Eisner, H., (2005). Managing Complex Systems—Thinking Outside the Box. Hoboken,
NIJ: John Wiley.

Boehm, B., “Unifying Software Engineering and Systems Engineering,” Computer
Magazine, March 2000 pp. 114-116.

Crosby, P., (1984). Quality without Tears. New York: New American Library, Penguin
Books.

APPENDIX: SYSTEMS
ARCHITECTING—CASES

A.1 INTRODUCTION

Chapter 9 presented the basic principles of systems architecting with the
following key elements, a subset of the thirty elements of systems engineering:

» Requirements analysis/allocation

» Functional analysis/allocation

* Architecture design/synthesis
 Alternatives analysis/evaluation
 Technical performance measurement
* Life-cycle costing

* Risk analysis

» Concurrent engineering

In this appendix, we show some short case studies of systems architecting
to more clearly demonstrate the process and some of the requisite outputs.
These cases are drawn from assignments given in graduate courses in systems
engineering at The George Washington University. This author gratefully
acknowledges the efforts and insights of a variety of students in the graduate
program in systems engineering [A.1].

The cases presented simulate the architecting process rather than going
through all elements in detail. In particular, the technical performance mea-
surement element is limited because it is usually a long and difficult procedure

451

452 APPENDIX: SYSTEMS ARCHITECTING—CASES

to truly assess all important elements of performance, including trade-off stud-
ies and sensitivity analyses. In one of the cases, sensitivities were analyzed,
utilizing a decision support system that is particularly well-suited to an exam-
ination of how parameters vary and cause changes in the overall architecture
evaluations.

The instructions given for the development and assessment of architec-
tures were rather broad. The first assignments started with the definition of
requirements, which was left for the students to formulate. After considerable
discussion, these requirements were responded to with the synthesis of alter-
native architectures. The procedure (presented in Section 9.5.3) recommended
was to develop three architectures:

1. A low-cost, minimum-effectiveness alternative
2. A “baseline” alternative
3. A high-performance (high-cost) alternative

Not all alternatives mapped precisely into these three situations, but in all
cases, at least three alternatives were defined. From this point, the alternatives
were evaluated based on a well-defined set of evaluation criteria. Weighting
and ranking “systems” were most often set forth as a means of carrying out the
evaluations. In some cases, systems engineering elements beyond the scope
of architecting were also considered.

Some systems turned out to be software-based, with varying functionalities
and host computers. The four cases described in the remainder of this appendix
deal with:

A logistics support system

A decision support system for software defects
A systems engineering environment (SEE)

An anemometry system

bl .

A.2 ALOGISTICS SUPPORT SYSTEM (CASE 1)

The system being architected is LEAPS, a Logistics Evaluation, Analysis,
and Planning System. The Level 1 functional decomposition of the system
is shown in Figure A.1 This decomposition places in evidence the eight
major functional areas for LEAPS. The general requirements for the system,
sometimes also called system requirements, are:

* DOS PC-Based (target machine: 386, 25-MHz processor, 80-Meg hard
drive, mouse)

» Event-driven (activities initiated based on completion of prior activities)
* Windows-compatible

A.2 ALOGISTICS SUPPORT SYSTEM (CASE 1) 453

LEAPS
User Trade-off RAM .
. -) Graphics
interface analysis analysis
Scheduling 'Cos't Documentation Data
estimation management

Figure A.1. Level 1 functional decomposition.

» “Transparent” access to commercially available packages
* Flexibility required for growth to meet expanding user demands

The requirements specific to the individual functional areas are listed in
Exhibit A L
The alternative architectures to meet the stated requirements are shown in
Table A.1. We note that as we move from Alternative 1 to 3, we increasingly
rely on commercial software to implement the stated functional capabilities.
The evaluation of the three alternatives is depicted in Table A.2. This figure
shows the following weighted scores:

Alternative 1: Score = 4.71
Alternative 2: Score = 6.20
Alternative 3: Score = 6.10

Thus, there is a preference for Alternative 2, but the composite score is not a
great deal higher than that for Alternative 3.

This evaluation process was accomplished through pairwise comparisons,
followed by a manual consistency check. Schedule considerations were de-
veloped in relative terms under the following ground rules:

 Using existing commercial packages = 1 time unit
* Modifying commercial packages = 3 time units
» Developing new software components = 8§ time units

A preliminary costing was carried out to develop the numbers in Table A.2
under the two categories of acquisition and maintenance cost. The four key
performance evaluation criteria were:

1. Ease of use
2. Speed

454 APPENDIX: SYSTEMS ARCHITECTING—CASES

3. Data sharing
4. Consistency

Exhibit A.I: Functional Requirements—LEAPS

 User interface:
— Provide a uniform look and feel for all functional operations
— Provide ready access to all functional capabilities

* Scheduling:
— Handle all life-cycle phases (20-30 years)

— Generate project start and completion dates based on the completion
of program milestones

 Trade-off analyses:
— Handle unique aspects of integrated logistics support elements

— Address other supportability-related factors (i.e., environmental im-
pacts/limitations)
— Support development of alternative courses of action
* Cost estimation:
— Address all life-cycle phases for all system components (ground,
space, air)
— Accommodate proven cost-estimating experience, cost-estimating re-
lationships, and new cost-estimating requirements
— Support formalized cost formats (i.e., Big 6)
e RAM analysis:

— Include “canned” desk-top RAM models and access to external mod-
els and simulations

— Accept user-developed RAM models
* Documentation:
— Include templates for standard logistics reports

— Provide user capability to develop templates for special report and
study formats

e Graphics:
— Provide graphical representation of analysis results (RAM, trade-off,
cost estimating)
— Provide user capability to develop specialized graphics as desired
e Data management:
— Maintain milestones data with the linkages to program activities
— Provide access to logistics support analysis records

— Link cost data to system components (through work breakdown struc-
tures and logistics control numbers)

TABLE A.1 Alternative to Function Mapping—LEAPS

User Trade-Off Cost RAM Data
Interface Scheduling Analysis Estimation Analysis Documentation Graphics Management
Alternative 1~ Build Build Build Build Build MS Word MS Power Build
Point
Alternative 2 Build Modify MS ~ MS Excel Build MS Excel Power Word MS Power Paradox for
Project Point Windows
Alternative 3 Build MS Project ~ MS Excel Modify MS Excel MS Word MS Power MS Access
ground Point
and space

Note: Ms = Microsoft.

TABLE A.2 Alternative Evaluation—LEAPS

Alternative 1

Alternative 2

Alternative 3

Cost 0.55
Acquisition 0.44 9 1 3 1 3 7 17
Maintenance 0.11 9 31 3 7 7
Schedule 1.12
Acquisition 0.09 7 1 3 1 3 9 9
Maintenance 0.03 7 3 3 1 3 9 9
Performance 0.33
Ease of Use 0.16 7 9 9 9 9 9 7
Speed 0.02 59 9 9 9 9 5
Data sharing0.05 5 9 9 9 9 7 7
Consistency 0.100 7 9 9 9 9 9 9
Alternative score 4.71

W —

O O O O

N

~N L

wn D

(I, BN BN |

O O 3

O 3 O O

17
17
I 9
I 9
9 9
9 9
9 7
9 9
6.20

o \© 3

O 2O O

~N

O O

O 3

N 3

[SSILV, EEN V)]

~N L

N}

~ O

W W L W

O O 3

O 3O O

5 7
5 7
39
39
59
39
17
1 9
6.10

O O 3

O 3 O O

O O 3

O 3

~ ~N

~N N a3

Raw scores are measures of goodness: least good = 1; most good = 9.
Total score reflects weightings indicated.

A3 A SOFTWARE DEFECTS ASSESSMENT SYSTEM (CASE2) 457

In this case, a separate risk analysis and definition of possible future im-
provements (preplanned product improvements—P31) were also part of the
case. These were supplemented by an analysis that included a market as-
sessment, a calculation of internal rate of return (IROR) for the product, the
formulation of schedules, and a first-order look at sales (revenues), costs, and
the estimated break-even point.

A.3 A SOFTWARE DEFECTS ASSESSMENT SYSTEM (CASE 2)

The software defects assessment system provides the software manager with
an automated decision-support tool to assist in the software maintenance
process by prioritizing software defects both accurately and efficiently. The
system is called SD-DSS (Software Defects—Decision Support System).

The top-level functional identification for this system is shown in Figure
A.2, which shows the various requirement areas under the following four
major functional categories:

1. Data management

2. Model management
3. Dialog management
4. System requirements

Exhibit A.2 provides an overview of requirements for each of these functional
areas.

SD-DDS
Data Model Dialog System
management management management requirements
— Variety of data — Model building — GUI I/F Performance
— Extraction capability |~ Modeling — User I/F with data Capacity
| DBMS access manipulation and models base Reliability

— Model maintenance

function

— Data dictionary

— Control

— Modeling access
functions

— Model usage

— Support many user
outputs

— Robust Help facility
— Track dialogs

— Flexibility and
adaptiveness

Figure A.2. Top-level functional identification.

Maintainability

458 APPENDIX: SYSTEMS ARCHITECTING—CASES

Given these functional areas and requirements in each area, the next step
is to structure alternative architectures for such a system. Three alternatives
are depicted in Exhibit A.3. In broad terms, the alternatives reflect different
choices in terms of host hardware and the associated software that would
normally be attendant to different computer configurations.

The evaluation of the three alternatives is represented in Table A.3. This
“comparison matrix” lists the evaluation in three categories: (1) cost, (2)
functionality, and (3) system. Each of these categories is broken down so that
itis then possible to assess each alternative at a lower level of detail. Expansion
of the subcriteria in terms of ideas as to how to make the calculations is shown
in Table A.4.

With respect to the category of cost, the following points are relevant:

 Total life-cycle cost was based on the following components over a ten-
year period:
— Research, Development, Test, and Evaluation (RDT&E): engineering
design, software development, and documentation
— Production and Construction: Commercial off-the-shelf (COTS)
hardware and software and facility modifications
— Operations & Maintenance (O&M): system operations, maintenance
personnel, activation, and materiel support
— Retirement and Disposal: retirement personnel, transportation, and
handling
 Parametric cost estimation:
— Constructive Cost Model (COCOMO) used for RDT&E and O&M
costs
» Bottom-up unit cost estimation used for production, construction, retire-
ment, and disposal costs

A summary of life-cycle costs (LCC) over a ten-year period is provided in
Table A.5. The percent of costs by cost category is also listed in the far-right
column.

The system architect assessed all evaluation categories with the assistance
of a commercial software package known as Expert Choice [A.2], as illus-
trated in Figure A.3 Functionality measures were analyzed by performing

Exhibit A.2: Functional Requirements—SD-DSS

Data Management Requirements

e The system shall collect/extract software-defect-related data from the
following sources for inclusion into the DSS database management sys-
tem (DBMS):

A.3 A SOFTWARE DEFECTS ASSESSMENT SYSTEM (CASE 2) 459

— Automated configuration management system
— Financial/accounting system

— Personnel system

— Software reliability information (i.e., metrics)

The system shall provide the basic data manipulation functions such as
select, update, delete, and insert. The query capability shall support ad
hoc query and report generation capability.

The system shall provide a catalog of all data with definitions and the
ability to provide usage information on those data.

The system shall provide comprehensive data security, providing protec-
tion from unauthorized access, recovery capabilities, archival capabili-
ties, etc.

Model Management Requirements

The system shall allow users to create models that will structure and
evaluate the qualitative and quantitative factors involved in prioritizing
software defects.

The system shall create models easily and quickly, either from scratch or
from existing models contained in the model base.

The system shall allow users to manipulate models to include sensitivity
analysis, “what if”” analysis, goal seeking, and cost-benefit analysis.

The system shall generate a directory of models for use by different
individuals of the organization.

The system shall manage and maintain the model base with management
functions analogous to database management: store, access, run, update,
link, catalog, and query.

The system shall track models, data, and application usage.

Dialog Management Requirements

The system shall have a user-friendly graphical user interface.

The system shall be able to interact with several different dialog styles.
The system shall be able to accommodate a variety of input devices.

The system shall be able to present data with a variety of formats and
output devices (i.e., color graphics, three-dimensional presentations, and
data plotting).

The system shall provide “help” capabilities, diagnostics, training, and
suggestion routines to assist to user.

The system shall be able to capture, store, and analyze dialog usage to
facilitate improving the dialog system.

The system must provide flexibility and adaptiveness to accommodate
different problems and technologies.

460 APPENDIX: SYSTEMS ARCHITECTING—CASES

Exhibit A.2: (Continued)
System Requirements

e Performance:

— The system must have an overall end-user response time of five
seconds.
 Capacity:
— The system must be able to accommodate up to fifteen concurrent
users at three geographic locations.

— The database must be able to store summary defect information for
up to 1M defects.

— The model base must be able to support up to 1500 models.
* Reliability:
— The system availability must be greater than 90%.
* Maintainability:
— Preventive maintenance must be scheduled during weekday off-hours
and weekends.

pairwise comparisons. The results in terms of overall scores for the three
alternatives were as follows:

Alternative 1: Score = 0.361
Alternative 2: Score = 0.334
Alternative 3: Score = 0.305

An illustrative risk analysis was carried out for SD-DSS with the results
as shown in Exhibit A.4. Note that risks were considered in the categories of
overall funding, cost, schedule, administrative, and technical.

System enhancements were analyzed under the systems engineering
element of preplanned product improvement (P3I), with the following
results:

» Enhance SD-DSS with a knowledge acquisition system (i.e., an expert
system) consisting of:
— A knowledge base
— An inference engine
— A blackboard (workboard)
— A user interface
e Enhance SD-DSS with an expert critiquing subsystem consisting of:
— An executive
— An evaluator
— A transformer
— An elicitor

A.3 A SOFTWARE DEFECTS ASSESSMENT SYSTEM (CASE 2) 461

Exhibit A.3: SD-DSS Alternatives

Alternative 1
Classical Time-Sharing Monolithic Architecture

* Software:
— Centralization of all three functional areas onto monolithic platform
— Functional management areas designed various COTS application
packages and customization
— Data management: DB2 with Query Management Facility
— Model management: Application System, Lotus/M
— Dialog management: Data Interpretation System
* Hardware:
— Partitioned IBM mainframe or dedicated AS400 series machine
— Graphics terminals
Alternative 2
Local Area Network (LAN)-Based Workstation System Architecture
 Personal workstations connected to a minicomputer in client-server ar-
rangement:
— Workstations handle the interface, high-speed graphics display de-
vices, and some of the data-reduction function
— File server handles the data management and the bulk of the analysis
* Software:

— Functional management areas designed with various COTS applica-
tion packages and customization
— Data management: Oracle
— Model management: Criterium, Oracle, Lotus/M
— Dialog management: Sun Solaris 2.0

— UNIX OS and Novelle UNIXware NOS
* Hardware:
— Sun SPARCserver 10 File/Application Server
— Sun SPARCstation Workstation
Alternative 3
LAN-Based PC Network with File Server Architecture
» Total PC solution where information from the corporate database is
downloaded to the PC LAN environment and then delivered to the PCs
* Software:
— Functional management areas designed with various COTS applica-
tion packages and customization:
— Data management: Borland’s Paradox 4.5
— Model management: Expert Choice, MS Office for Windows
— Dialog management: MS Visual Basic 3.0

— DOS 5.0 OS with Windows 3.1 and Novelle Netware 3.11 NOS

462 APPENDIX: SYSTEMS ARCHITECTING—CASES

Exhibit A.3: (Continued)

e Hardware
— Pentium, 66-MHz PC File Server
— 486DX2, 33-MHz PC Workstation

* Enhance SD-DSS to handle the overall defect resolution process by
adding configuration management functionality.

* Add technology upgrades with new COTS hardware and software as they
become available.

This case study of a software defects tracking and assessment system thus
focused on the elements of requirements definition, alternatives evaluation,
life-cycle costing, risk, and P31. Special attention was paid to the sensitivity of
the alternatives selection by utilizing the Expert Choice commercial software
package and displaying these sensitivities in real time. This simulated system
architecting process provided fertile ground for exploring both variations and
extensions of the basic process. Exercises of this type are necessarily limited,
but provide an excellent overview of key steps that are critical to systems
architecting.

A.4 A SYSTEMS ENGINEERING ENVIRONMENT (CASE 3)

A systems engineering environment (SEE) basically provides an automated
information center in which a team can carry out the thirty elements of
systems engineering. Developing such an environment is considerably more
than an academic exercise. As an example, the Rome Laboratory of the Air
Force has a program to structure an SEE known as Catalyst [A.3, A.4]. This is
being formulated as a comprehensive environment for a systems engineering
team. The Navy also has been interested in systems engineering, having
requested information and proposals from industry on the broad subject of
the engineering of complex systems [A.5]. Subordinate areas of interest to
the Navy under this program have included:

» System information capture

e System understanding, guidance, and synthesis
e System reengineering

* Process

e Integration

Thus, there is strong and continuing interest in developing systems engi-
neering as well as an automated environment that facilitates the practice of
systems engineering. One approach to the formulation of an SEE follows.

TABLE A.3 Comparison Matrix—SD-DSS

System
Criteria Subcriteria: Measures Alternative 1 Alternative 2 Alternative 3
Cost RDT&E ($K) 200 380 287
Cost Prod/Con ($K) 1563 330 103
Cost O&M ($K) 780 1500 1080
Cost Retire ($K) 50 50 50
Functionality Data: collection/extraction Subjective Subjective Subjective
Functionality Data: data manipulation Subjective Subjective Subjective
Functionality Data: data dictionary Subjective Subjective Subjective
Functionality Data: security Subjective Subjective Subjective
Functionality Model: model creation Subjective Subjective Subjective
Functionality Model: sensitivity Subjective Subjective Subjective
Functionality Model: management Subjective Subjective Subjective
Functionality Dialog: consistency Subjective Subjective Subjective
Functionality Dialog: styles Subjective Subjective Subjective
Functionality Dialog: flexibility/adaptability Subjective Subjective Subjective
Functionality Dialog: help Subjective Subjective Subjective
Functionality Dialog: I/O devices supported Subjective Subjective Subjective
System RMA: availability (MTBF/MTBF + MTTR) 0.92 0.98 0.9
System RMA: schedule maintenance (mean time in hours) 2 6 10
System Performance (seconds) 1.2 0.76 1.9
System Capacity: Saturation (no. of users) 46 38 22
System Capacity: DBMS (defect records in millions) 10 6 5
System Capacity: Models (models in thousands) 2500 2000 1500

TABLE A.4 Ideas on Calculating Evaluation Criteria— SD-DSS

Criteria Subcriteria: Measures Ideas on Calculating Evaluation Criteria Alternative 1 Alternative 2 Alternative 3
Cost RDT&E ($K) Prefer lower RDT&E costs over life cycle 200 380 287
Cost Prod /Con ($K) Prefer lower prod /con costs over life cycle 1563 330 103
Cost O&M ($K) Prefer lower O&M costs over life cycle 780 1500 1080
Cost Retire ($K) Prefer lower retirement costs over life cycle 50 50 50
Functionality* Data: collection/ Prefer ability to handle more information sources 0.114 0.481 0.405
extraction
Functionality* Data: data manipulation Prefer robust ad hoc query & report gen. facility 0.126 0.458 0.416
Functionality* Data: data dictionary Prefer robust DD facility 0.33 0.33 0.334
Functionality* Data: security Prefer design with comprehensive security 0.652 0.235 0.113
Functionality* Model: model creation Prefer robust model creation facility 0.126 0.458 0.416
Functionality* Model: sensitivity Prefer sophisticated sensitivity analysis 0.169 0.387 0.444
Functionality* Model: management Prefer robust model management 0.169 0.387 0.444
Functionality* Dialog: consistency Prefer less variation in menu design 0.5 0.25 0.25
Functionality* Dialog: styles Prefer support higher number of dialog styles 0.126 0.458 0.416
Functionality* Dialog: flexability/ Prefer open systems architecture design 0.126 0.458 0.416
adaptability
Functionality* Dialog: help Prefer accurate and informative help 0.169 0.387 0.444
Functionality* Dialog: I/O devices Prefer higher number of different I/O devices 0.139 0.435 0.426
supported supported
System RMA: availability Prefer higher system availability 0.92 0.98 0.9
(MTBE/MTBF+MTTR)
System RMA: schedule Prefer shorter maintenance time 2 6 10

maintenance (mean
time in hours)

System Performance (seconds) Prefer shorter end-user response time 1.2 0.76 1.9

System Capacity: saturation (no. Prefer larger number of users 46 38 22
of users)

System Capacity: DBMS (defect Prefer higher number of records 10 6 5
records in millions)

System Capacity: models Prefer higher number of models 2500 2000 1500

ndicates pairwise comparisons performed.

TABLE A.5 LCC Matrix—SD-DSS

Design Cost Category FY93 FY9%4 FY95 FY9% FY97 FY98 FY99 FY00 FYO0l FY02 Costs(K) %LCC

Alt1 1.Research & development ~ $100 $100 $200 7.71
2. Production & construction $185 $178 $150 $150 $150 $150 $150 $150 $150 $150 $1,563 60.28
3. Operations & maintenance $180 $120 $80 $80 $80 $80 $80 $80 $780 30.08
4. Retirement and disposal $50 $50 1.93
Total (actual K$) $285 $278 $330 $270 $230 $230 $230 $230 $230 $280 $2,593 100.00
Total (present K$) $259 $230 $248 $184 $143 $130 $118 $107 $98 $108 $1,625

Alt2 1.Research & development ~ $180 $200 $380 16.81
2. Production & construction $255 $75 $330 14.60
3. Operations & maintenance $240 $180 $180 $180 $180 $180 $180 $180 $1,500 66.37
4. Retirement and disposal $50 $50 221
Total (actual K$) $435 $275 $240 $180 $180 $180 $180 $180 $180 $230 $2,260 100.00
Total (present K$) $395 $227 $180 $123 $112 $102 $92 $84 $76 $89 $1,481

Alt3 1. Research & development $127 $160 $287 18.88
2. Production & construction $50 $53 $103 6.78
3. Operations & maintenance $240 $120 $120 $120 $120 $120 $120 $120 $1,080 71.05
4. Retirement and disposal $50 $50 3.29
Total (actual K$) $177 $213 $240 $120 $120 $120 $120 $120 $120 $170 $1,520 100.00
Total (present K$) $161 $176 $180 $82 $75 $68 $62 $56 $51 $66 $975

GOAL—

— TOT LCC—

— FUNCTION -+

— SYSTEM

— RDT&E——
— PROD/CON-
~ O&M
- RETIRE —
— COL/ETR—
— DATA —— DATA MAN-
~ DD
_ SECURITY -
— CREATION-
— MODEL— SENSITIVE-
- MANAGE —
— CONSIST—
— STYLES—
_ DIALOG — FLEX/ADP—
— HELP
_ /0 DEV—
AVAIL——
RMA—I: SCHED —
PERFORM—
SATUR—
CAPACITY{ DBMS ——
MODELS—

i

ALTH
ALT2
ALT3

AVAIL --- System availability

CAPACITY --- Capacity

COL/ETR --- Collect/extract functionality

CONSIST --- Consistency of interface

CREATION --- Model creation functionality

DATA --- Data management functions

DATA MAN --- Data manipulation functionality

DMBS --- Number of records for software defects

DD --- Data dictionary functionality

DIALOG ---Dialog management functions

FLEX/ADP --- Flexibility and adaptiveness to accommodate
new technology

FUNCTION --- Functionality

HELP --- Help capabilities, diagnostics, training, etc.

/O DEV --- Input/output devices supported

MANAGE --- Model management functionality

MODEL --- Model management functions

MODELS --- Number of decision support models

O&M --- Operations and maintenance costs

PERFORM --- Performance measured by response time in
seconds

PROD/CON --- Production and construction costs

RDT&E --- Research development test & evaluation

RETIRE --- Retirement and disposal costs

RMA --- Reliability, maintainability, availability

SATUR --- Saturation point in number of users

SCHED --- Scheduled maintenance

SECURITY --- Comprehensive data security protection

SENSITIVE --- Sensitivity functionality

STYLES --- Dialog styles supported

SYSTEM --- System characteristics

TOT LCC --- Total life cycle costs of the system

Figure A.3. Evaluating criteria using expert choice—SD-DSS.

A.4 A SYSTEMS ENGINEERING ENVIRONMENT (CASE 3) 467

Exhibit A.4: SD-DSS Risk Assessment

Program Risks
* Funding: Medium
— Reduction of corporate fiscal resources
— Risk mitigation: business process improvement effort to reduce costs
Cost/Schedule Risk: Medium
— Similar corporate programs realized 10% cost and schedule growth
— Risk mitigation: prototyping, user engineering during design, and
utilization of corporate metrics program
* Administrative: Low
— Experienced and stable development team in place
Technical Risks
Code & Unit Testing: Medium
— Development of three software modules (builds)

— Risk mitigation: maximal use of COTS SW, structured programming
techniques, and early implementation of CASE Tools

* Integration Testing: Medium

— Integration of three software modules (builds)

— Risk mitigation: CASE tools and early introduction of test plans
* Transition/Activation: Medium

— Uploading of software defected data from external sources

— Risk mitigation: early introduction of real defect data into the code
& unit test and integration test phases

The objectives set forth for the SEE were:

» To enable a more effective and efficient design of large-scale systems
* To provide a facility/center with CASE expertise
* To provide tools for managing complex representations and data

* To allow different teams to simultaneously work on the various elements
of system design

The high-level functional requirements of the SEE are shown in Figure A.4,
with the key requirements under each in Exhibit A.5. Three architectures were
set forth, as represented in Exhibit A.6. The mapping of the three architectures
against the functional areas is shown in Table A.6.

Two different evaluation methods were employed to assess the merits of
the three architectures. The evaluation matrices for these methods are shown
in Table A.7. The methods differ in the weights assigned to the evaluation
criteria; the second method led to the calculation of a “cost-benefit ratio.” A

468 APPENDIX: SYSTEMS ARCHITECTING—CASES

SEE
. Performance Logistics and Test and Operational
Requirements analysis integration evaluation evaluation

and
reengineering

Figure A.4. High-level functional requirements of a SEE.

1-3-5-7-9 scale was utilized for the technical criteria. Results for the three
alternatives are as follows:

Alternative 1: All Macintosh computers
* Technical score = 6.2 (Method 1); 5.7 (Method 2)
e Cost = 190 units
* Benefit-to-cost ratio = 0.03

Alternative 2: All PC (DOS) computers
 Technical score = 7.0 (Method 1); 6.0 (Method 2)
e Cost = 170 units
 Benefit-to-cost ratio = 0.0353

Alternative 3: Macintosh + DOS computers
 Technical score = 5.9 (Method 1); 7.5 (Method 2)
e Cost = 340 units
* Benefit-to-cost ratio = 0.0221

By examining the two methods of evaluation, it was possible to see how
the final evaluations change as different procedures are followed. This ex-
amination of sensitivities provided a broader perspective regarding how final
architectural alternatives might be evaluated to derive a preferred architecture.

Exhibit A.5: SEE Requirements

Requirements
Needs/goals/objectives
e Mission engineering

* Requirements analysis

* Functional analysis
* Functional allocation
* Specification development

A.4 A SYSTEMS ENGINEERING ENVIRONMENT (CASE 3)

Performance Analysis
* Alternative evaluation
» System design/analysis
* Scheduling
* Life-cycle costing
 Technical performance measurement
* Program/decision analysis
 Risk analysis
* RMA
Logistics and Integration
* Interface definition and control
e Integration logistics support
e Integration
» Configuration management

Test and Evaluation
* Quality assurance
» Requirements traceability
Operational Evaluation and Reengineering
* Operations
* Operational evaluation
* Modeling:
— Prototyping
— Mathematical models
— Simulation models

Exhibit A.6: Alternative Architectures—SEE

Architecture 1
e All Macs
» Microsoft Office (Word, Excel, Powerpoint)
 SE tools:
e IDEE
— System Architect
— Oracle
— Expert Choice
— Microsoft Project
— SLIC
— RTM
— Extend

469

470 APPENDIX: SYSTEMS ARCHITECTING—CASES

Exhibit A.6: (Continued)
Architecture 2

e All PCs
» Microsoft Office (Word, Excel, Powerpoint)
* SE tools:
— CORE
— Design IDEE
— System Architect
— DBMS: Oracle
— Expert Choice
— @Risk
— Foresight
— RTM
— GPSS/H
— MATLAB
Architect 3
* Hybrid (MACs, PCs, and workstations)
* Microsoft Office
 SE tools:
— CORE
— ROD-100
— Design IDEE
— System Architect
— DBMS: Oracle
— Expert Choice
— (@Risk
— NETSIM
— Foresight
— Microsoft Project
— SLIC
— Extend
— RTM
— GPSS/H
— MATLAB
— Demo

A.5 AN ANEMOMETRY SYSTEM (CASE 4)

This system architecting dealt with a severe climate anemometry system
(SCAS) and was the only case of the four that was hardware-based. A top-level

TABLE A.6 Requirements Traceability Matrix—SEE

Architecture 1

Architecture 2

Architecture 3

Requirements
Needs/goals/objectives
Mission engineering
Requirements analysis
Functional analysis
Functional allocation
Specification development

Performance analysis
Alternative evaluation
System design analysis
Scheduling
Life-cycle costing
Technical performance

Measurement
Program/decision analysis
Risk analysis
RMA

Logistics and integration
Interface definition and control
Integrated logistics support
Integration
Configuration management

Test and evaluation
Quality assurance
Requirements traceability

Operational evaluation & reengineering
Operation
Operational evaluation

Modeling
Prototyping
Mathematical models
Simulation models

IDEF
IDEF
IDEF
IDEF
IDEF
IDEF

LOW
Object-Time
Fast Track
COCOMO
Lisa-2B

Decide
@Risk
RELAX

OMEGA
OMEGA
OMEGA
OMEGA

TRACE
TRACE

MODSIM II
MODSIM II

Demo
IThink
Extend+BPR

CORE, IDEF
CORE, IDEF
CORE, IDEF
CORE, IDEF
CORE, IDEF
CORE, IDEF

Expert Choice

System-Developer
Microsoft Project

COCOMO
Lisa-2B

Expert Choice
@Risk
RPP

SLIC
SLIC
SLIC
SLIC

MATRIX
MATRIX

Demo
Demo

Demo
MATLAB
GPSS

RDD-100, CORE, IDEF
RDD-100, CORE, IDEF
RDD-100, CORE, IDEF
RDD-100, CORE, IDEF
RDD-100, CORE, IDEF
RDD-100, CORE, IDEF

Expert Choice
TeamWork
Microsoft Project
COCOMO, PRICE
Lisa-28

Expert Choice
@Risk
SLIC

SLIC
SLIC
SLIC
SLIC

RTM
RTM

Demo
Demo

Demo
MATLAB
NETSIM

TABLE A.7 Architecture Selection—SEE

Architecture 1

Architecture 2

Architecture 3

(All Macintosh) (Al PC) (MAC & PC)
Evaluation Perf. Log. & OE & Perf. Log. & OE & Perf. Log. & OE &
Criteria Weight Require. Anal. Int. T&E Reeng. Require. Anal. Int. T&E Reeng. Require. Anal. Int. T&E Reeng.
Method 1
Cost 35% 7 7 7 7 7 9 9 9 9 9 3 3 3 3 3
Speed 5% 3 5 5 5 5 5 7 5 5 7 7 7 5 7 9
Ability to 10% 5 5 5 7 7 5 7 5 7 7 7 7 7 7 9
handle large
problems
Ability to 10% 5 5 5 5 5 5 5 5 5 5 7 9 7 7 7
handle
growth in
users
Ability to meet 10% 5 5 5 5 5 5 5 5 5 5 7 9 7 9 7
new
requirements
Capability to 5% 5 6 5 5 5 7 7 7 7 7 9 9 9 9 9
meet new
applications
Operability 15% 7 7 7 7 7 5 5 7 7 5 5 7 5 7 5
Currency of 10% 5 7 5 5 7 7 7 5 7 7 5 5 5 7 5
software
Total 100%
Total score 6.2 7 59
(benefit)
Total cost 190 170 340

TABLE A.7 Architecture Selection—SEE (continued)

Architecture 1 Architecture 2 Architecture 3
(All Macintosh) (A1l PC) (MAC & PC)
Evaluation Perf. Log. & OE & Perf. Log. & OE & Perf. Log & OE &
Criteria Weight Require. Anal. Int. T&E Reeng. Require. Anal. Int. T&E Reeng. Require. Anal. Int. T&E Reeng.
Method 2
Speed 10% 3 5 5 5 5 5 7 5 5 7 7 7 5 7 9
Ability to 15% 5 5 5 7 7 5 7 5 7 7 7 7 7 7 9
handle large
problems
Ability to 15% 5 5 5 5 5 5 5 5 5 5 7 9 7 7 7
handle
growth in
users
Ability to meet 15% 5 5 5 5 5 5 5 5 5 5 7 9 7 7 7
new
requirements
Capability to 10% 5 5 5 5 5 7 7 7 7 7 9 9 9 9 9
meet new
applications
Operability 20% 7 7 7 7 7 5 5 7 7 5 5 7 5 7 5
Currency of 15% 5 7 5 5 7 7 7 5 7 7 5 5 5 7 5
software
Total 100%
Total score 5.7 6 7.5
(benefit)
Total cost 190 170 340
Benefit-to-Cost 0.03 0.035294 0.022059

Ratio

474 APPENDIX: SYSTEMS ARCHITECTING—CASES

Severe climates
anemometry system

Atmospheric Mechanical Environmental Power Indoor/outdoor| | paiy handling
sensing service service service transmission
Wind Instrument Ice Main]
speed housing control supply Power Collection
Wind Instrument Regulation/ Signal Processing/
direction orientation conditioning 9 storage
Barometric Backup Physical Reporting,
pressure power linkages distribution
and display

Figure A.5. Top-level SCAS functional decomposition.

functional decomposition for this system is shown in Figure A.5 The require-
ments for each of the decomposed elements were defined in considerable
detail, and are not presented here because the definition and evaluation of al-
ternatives were particularly well-executed. Table A.8 shows three alternative
designs, represented as (1) an as-is design, (2) a moderate upgrade, and (3) a
major upgrade. We note that each element of these alternatives is set forth at
the second level of functional decomposition, all shown in one figure.

The evaluation framework for this system is presented in Table A.9. Here
we see the three system alternatives mapped against a set of evaluation criteria
listed in the following six categories:

Performance
Human factors
Maintainability
Cost
Risk
6. Other
The evaluation was carried out at the subcriterion level, with both a weighting

and rating set of numerics. Values were normalized to the “as-is” case. As
shown in the table, the total scores for the three alternatives are:

ANl e

1. As-is: score =100
2. Moderate upgrade: score = 128.44
3. Major upgrade: score = 125.67

We thus see that both upgrades represent significant improvements over the
as-is alternative, according to the evaluator.

The architect then displayed some of the results in graphical form. Figure
A.6 shows a cost-effectiveness plot using an effectiveness metric based on

TABLE A.8 Alternative System Architectures—SCAS

System Alternatives Described

by Functional Area

Functional Areas AS-IS Moderate Upgrade Major Upgrade
1. Atmospheric 1.1 Wind speed sensing COTS pitot tube COTS pitot tube, COTS pitot, radio
sensing transducer transducer
1.2 Wind direction sensing ~ Shaft drive Shaft drive Shaft drive
1.3 Pressure sensing COTS pitot tube COTS pitot tube, COTS pitot, radio
transducer transducer
2. Mechanical service 2.1 Instrument housing Machined aluminum Add molded composite Lightweight, more
assembly outer coating compact,

3. Environmental
service

2.2 Orientation positioning

3.1 Ice control

Wind-vaned / COTS
bearings

Calrod
htrs./thermocouples/

analog feedback temp.

control

Reduction in tail boom
length

Add digitized computer
temp. control

formed-machined
composite body

High precision bearing
& balancing

Onboard microprocessor
control heat temp.
sens. units/heat pipes

TABLE A.8 (continued)

4. Power service 4.1 Main power supply

4.2 Power regulation/cond.

4.3 Backup power

5. I/0O transmission
5.1 Power transmission
5.2 Signal transmission

5.3 Physical linkages

6. Data handling 6.1 Data collection

6.2 Data processing/storage

6.3 Reporting, dist., display

Commercial
feed—220/110 V

COTS
conditioners/lightning
rods/fuses

Battery—for
instruments only

Stranded wire harnesses

Foil-shielded wire
harnesses

Shaft/conduit, press.
tubes

Potentiometer/indoor
pneum. diff’l. press.
cell & barograph

Manual data-base entry
Physical meters/

devices/manual
reporting

Commercial
feed—220/110 V

Add ground-fault
interrupters

Gas generator
w/interruption
sensor/switcher
(COTS)

Stranded wire harness
Coaxial wire w/slip rings

Shaft/smaller
conduit/shielded
transducer wire

Magnetic position
sensors/in-head electr.
press. cell & X-ducer

Automatic computer-
controlled

GUI/modem access to
data views COTS
DBMS

Commercial
feed—220/110 V

Add interrupters and
custom lightning
arrest system

High-power,
high-reliability diesel
generator with
autoswitching

Custom slip rings

2-way radio only—no
wiring

Minimal shaft for
physical support &
power only

Optical position sensors/
In-head electrical
press. Cell &
transducer

Automatic computer
control

Advanced customized
DBMS/packet radio
network

TABLE A.9 Evaluation Framework—SCAS

System Alternative Scores

As-Is Moderate Upgrade Major Upgrade

Evaluation Criteria Weight (%) Raw Norm W xN Raw Norm W xN Raw Norm W x N
Performance

33 — — — — — — — — —
Vaning function/stability 6 1.00 6.00 1.50 9.00 2.25 13.50
Avg. power consumption (kW) 5 3 1.00 5.00 2.5 1.20 6.00 2 1.50 7.50
Impact resistance/robustness 3 1.00 3.00 0.95 2.85 0.85 2.55
Speed of data processing 3 1.00 3.00 4.00 12.00 4.00 12.00
Data availability 3 1.00 3.00 3.00 9.00 4.00 12.00
System availability 5 995 1.00 5.00 997 1.00 5.01 997 1.00 5.01
System reliability 5 .986 1.00 5.00 .998 1.01 5.06 .990 1.00 5.02
Useful service life (yr) 3 5 1.00 3.00 7 1.40 4.20 6 1.20 3.60

Subtotals 33.00 53.12 61.18

Human Factors

14 — — — — — — — — —
Ease of use 4 1.00 4.00 2.00 8.00 2.50 10.00
Operator safety 5 1.00 5.00 1.50 7.50 1.50 7.50
Bystander safety 5 1.00 5.00 2.00 10.00 2.00 10.00

Subtotals 14.00 25.50 27.50

Maintainability

10 — — — — — — — — —
Freq. of sch. Maintenance (/ yr) 3 2 1.00 3.00 1 2.00 6.00 1 2.00 6.00
Ease of maintenance 4 1.00 4.00 1.20 4.80 2.00 8.00
Complexity of assembly 3 1.00 3.00 1.00 3.00 1.50 4.50

Subtotals 10.00 13.80 18.50

TABLE A.9 (continued)

System Alternative Scores

As-Is Moderate Upgrade Major Upgrade
Evaluation Criteria Weight (%) Raw Norm W x N Raw Norm W x N Raw Norm W x N
Cost
17 — — — — — — — — —
Development cost ($k) 8 60 1.00 8.00 100 0.60 4.80 250 0.24 1.92
Production cost ($k, 50 units) 7 250 1.00 7.00 300 0.83 5.83 500 0.50 3.50
Disposal/decomm. cost ($k) 2 10 1.00 2.00 15 0.67 1.33 20 0.50 1.00
Subtotals 17.00 11.97 6.42
Risk
16 — — — — — — — — —
Cost risk 5 1.00 5.00 0.50 2.50 0.33 1.65
Schedule risk (Development) 2 1.00 2.00 0.50 1.00 0.25 0.50
Performance risk 3 1.00 3.00 0.85 2.55 0.33 0.99
Technological risk 6 1.00 6.00 0.90 5.40 0.10 0.60
Subtotals 16.00 11.45 3.74
Other
10 — — — — — — — — —
Manufacturability 4 1.00 4.00 0.90 3.60 0.50 2.00
Market potential/demand 4 1.00 4.00 1.50 6.00 0.75 3.00
Appearance/aesthetic quality 1 1.00 1.00 2.00 2.00 3.00 3.00
Expandability/upgradability 1 1.00 1.00 1.00 1.00 0.33 0.33
Subtotals 10.00 12.60 8.33
Total Score 100.00 128.44 125.67
Rank 3 1 2

A.5 AN ANEMOMETRY SYSTEM (CASE 4) 479

120.00

100.00 [~

80.00 —

60.00 —

40.00 —

20.00 —

Effectiveness rating (performance,
human factors, maintainability)

0 200 400 600 800
Cost (in thousands of dollars)

0.00

Figure A.6. Cost-effectiveness analysis—SCAS.

the criteria of performance, human factors, and maintainability. This graph
distinctly indicates a “knee-of-the-curve” phenomenon. There is a large gain
in effectiveness for relatively little cost increase in moving from the as-
is alternative to the moderate upgrade. The major upgrade carries with it
a large cost increase for only a modest increase in effectiveness. A rather
imaginative next step for the architect was to examine the relationship between
effectiveness and risk, as illustrated in Figure A.7. Although risk increases
monotonically in moving from the as-is to the major upgrade, there is almost
no “knee-in-the-curve” as compared with the previous figure.

120.00

100.00 [~

80.00

60.00

40.00 —

20.00 —

Effectiveness rating (performance,
human factors, maintainability)

0.00 | | | | |
0.00 0.50 1.00 1.50 2.00 2.50 3.00

Normalized risk rating (relative to "AS-IS" case)

Figure A.7. Risk versus effectiveness analysis—SCAS.

480 APPENDIX: SYSTEMS ARCHITECTING—CASES

A.6 SUMMARY

This appendix illustrated the systems architecting process by briefly present-
ing four basic case studies of

1. An automated logistics evaluation, analysis, and planning system
2. A software defects decision support system

3. A systems engineering environment (SEE)

4. An anemometry system

In all cases, students elected to develop the system requirements, define three
alternative architectures that would satisfy those requirements, evaluate the
alternatives by a weighting and rating system, and examine other system
aspects such as risk and preplanned product improvement. The architecting
was carried out both by individuals and in teams. The process of defining
and evaluating alternatives allowed the system architects to range far beyond
a point solution to explore many alternatives. Ultimately, this led to the
selection of a preferred system. In a classroom environment, the process
was executed over a fourteen-week period. In the real world, the process often
extends over several years, including the time required to fully develop system
requirements.

REFERENCES

A.1 Students who developed the case studies presented in this chapter are Richard C. Ander-
son (Case 4), S. Gulu Gambhir (Case 3), David A. Grover (Case 1), Robert H. Laurine, Jr.
(Case 2), and Hassan Shahidi (Case 3). This author thanks them again for their diligence,
inventiveness, and participation, as well as their permission to include this material here.

A.2 Expert Choice. Contact Professor Ernest Forman, The George Washington University,
Washington, DC.

A.3 Catalyst Requirements, Annex II, System Specification for the Catalyst System (1992).
Rome, NY: U.S. Air Force, Rome Laboratory.

A4 Comer, E. (1992). “ Catalyst: Automating Systems Engineering in the 21st Century.”
Proceedings of the Second Annual International Symposium of the National Council on
Systems Engineering, Seattle, July 20-22.

A.5 Broad Agency Announcement (BAA) (1993). Engineering of Complex Systems. Silver
Spring, MD: Naval Surface Warfare Center, Dahlgren Division Detachment, White Oak.

INDEX

AAES, 378
Acceptance Criteria, 120-121
Accounting/Finance, 29
Acquisition
Guidebook, 417
Historical overview, 49-53
Of systems, 411418
practices, 381-385, 392-393
road ahead, 384
Alternatives, analysis/evaluation,
206207, 292
Anemometry system, 274-279, 470,
475479
Architecting
A view of, 258-259
Cases, 451-480
Essential steps, 286, 297
Process, 279-284
Systems, 375-377
Architecture
Alternatives, 271-274
Analysis/evaluation, 272-276,
282-286
Definition, 259-260, 286
Descriptions, 261-271
Design, 205-206, 271-272

Enterprise, 298-299

Framework, 274

Preferred, 286

Service-oriented, 299
Attributes: 132-141

Leader, 154-157

Project manager, 132—-141
Augustine, N., 332, 415, 430
Authority matrix, 28
Availability, 220-221, 361

Basic execution time model, 324-326

Binomial distribution, 339, 345-346

Bit error rate (BER), 208, 345

Boehm, B., 253, 392

Boss, 147-150

Brooks, Jr. F,, 333

Budget, 71, 86-90, 109-112

Building the project team, 160,
162-166

Business process reengineering, 228,
380

CALV, 7,282

Capability maturity, 316-319
CASE tools, 218, 381, 393-396

481

482 INDEX

C41ISR architecture framework,
265-268, 377
Chunking of work, 120
COCOMO, 320-323
Commercial practices, 387-389
Communications: 160-162
Self assessment exercise, 144—145
Computer tools, 218
Concurrent engineering, 216,
278-279
Configuration management, 225
Conflict management, 168—170
Contingency plan, 119
Continuous distributions, 340
Contracts, 113116, 118-119
Convolution, 342
Corporate organization structures,
26-27
Corporate rates, 116117
Correlation, 344-345
Cost
Analysis/monitoring, 104—112
Considerations, 112—122
Effectiveness, 212-213
Estimating relationship, 211-213
Factor, 89
Graphs, 118
Information system, 122
Limitations and trades, 117
Reporting, 118
Covariance, 344-345
Cumulative distribution function,
340
Customers, 151-152, 447
Cyclomatic complexity, 327-329

Defense science board, 387-389

Delegation, 133

Density function, 340

Deployment, 227-228

Detection probability, 288-292,
353-355

Directing, 42, 44—45

Discrete distributions, 339

Disposal of system, 228—229

Documentation, 218-219

DoDAF, 267, 298
Domain knowledge, 230

Earned value analysis (EVA),
107-112, 403
Earned value analysis management,
403
Education, 381
Effectiveness, 434
Efficiency, 433
EIA, 60-62,312-313
Eisner, H., 371-372
Enterprises, as integrators, 442443
Environment, organizational, 25-33
Errors, 10-12, 250-251, 352-353
Evaluation
Criteria, 274-276
Framework, 274-275
Exponential distribution, 340,
350-351

Failure rate, 249-250, 359-361

False alarm probability, 288—292,
353-355

Firm fixed-price, 118-122

Five thousand series, 411-414

Frame, J. D., 143

Functional analysis/decomposition,
204-205, 271

Functional organization structure,
26-27

Function points, 323-324

Functions of random variables,
343-344

Gansler, J., 384

Gaussian distribution, 340, 347-349

General accountability office (GAO),
33-38

GIGO, 321

Goals, 203

Group processes, 187—-188

Hardware engineering, 217
High performance teams (HPTs), 119
Horizontal fusion, 422-423

Human engineering, 217
Humphrey, W., 316

[-CASE, 240-241, 393-396
IEEE, 59-60, 266-267, 311-313
IEEE standards, 59-60, 311-313
Incentives, 182—-184
INCOSE, 60-62, 370, 409-410
Information systems
Cost, 122
As integrators, 441
Installation, 227
Integrated
Logistics support, 219-220,
452-457
Process and product development,
185-186
Product teams (IPTs), 184—186,
437
Integration, 221, 419422, 424-430
Integrative management, 433—443,
447
Interactions
With accounting/finance, 29
With contracts, 29
With corporate information office,
31
With corporate technology office,
31-32
With customers, 32-33
With functional managers, 28-29
With human resources, 30-31
With management, 28
With marketing/sales, 29-30
Supervisor, 147-151
Team, 159-189
Interface control, 217-218
Interoperability, 284-285
ISO, 62, 310-311

Joint capabilities, 423-424
Joint distributions, 344
Jones, Capers, 323

Kadish report, 414417
Kile, R., 323

INDEX 483

Large-scale organization and
management issues, 33-38

Leadership, 152-157

Learning, from negative, 138—139

Least squares fit, 362-363

Life cycle costing, 7, 209-211,
277-278

Likelihood ratio, 355-357

Logistics support systems (LEAPS),
452457

Maintainability, 220-221
Management
Conflict, 168
Indicators, 319-320
Integrative, 433—443
Problems, 12—-17
Managers
As integrators, 434—435
Project, 131-145
Marciniak, J., 387
Matrix organizational structure,
26-27
McCabe, T., 327-329
Means, 340-341
Mean time between failure, 248-250,
357-359, 361
Meetings, 171-173
Methods, as integrators, 440
Metrics, 319-329
Mil-Std-2168, 308-310
Mil-Std-498, 306308
Mil-Std-499A, 53-55
Mil-Std-499B, 55-59, 194-196,
234-235,287-288
Mission design process,
196-199
Mission engineering, 203
MoDAF, 298
Modeling, 293-297
Monitoring, 42, 44-45, 100-107
Motivation, 182—-184
Multiple independent estimates,
321-322
Myers-Briggs type indicator,
141-144

484 INDEX

NASA, 8-10, 196-199, 237-240,
259-261

National software council, 386387

Needs, 72-73, 203

Ninety-five percent solution, 286287

Normal distribution, 340, 347-349

Objectives, 73-75, 203

Operations and maintenance, 228
Operations evaluation, 228
Organizational environment, 25-33
Organizing, 41-45

Other direct costs (ODCs), 112-113
Out-of-scope work, 120

Parallel reliability, 358-359
Parameter dependency diagram,
293-294
Peck, M. S., 443
Penalty clauses, 121
Personality considerations, 144—145
PERT, 100-103
Plan
As integrator, 437438
Project, 71-95
Systems engineering (SEP), 92-95
Systems engineering management
(SEMP), 59, 92-94
Planning, 41-45
Poisson distribution, 339, 346
Practical software management
(PSM),
403
Preplanned product improvement,
226227
Presentations, 173—-176
Price factor, 89
Pritsker, A., 294
Probability relationships, 338-361,
364
Problem areas, 12-17, 229-230,
418-419
Process areas, 374-375
Production, 227-228
Project: 34
Budget, 8690

Directing, 42

Goals and objectives, 73-75

Management essentials, 41-45

Management tools, 401403

Management trends, 400—403

Manager, 131-145

Monitoring, 42

Needs, 72-73

Organization, 21-23

Organizing, 42

Overview, 42

Plan, 71-95

Planning, 42

Problems, 12-17

Requirements, 7578

Reviews, 52-53

Schedule, 83—-86

Statement of work, 78—80

Task statements, 78—80

Team, 162-166

Technical approach, 80—83

Triumvirate, 25

Tools, 401-403

Work breakdown structure, 78—81
Proposal, 92, 176182
Psychological decision theory,

146-147

Quality assurance/management,
224-225
Quantitative relationships, 337-364
Summary, 364

Radar detection, 288-292, 353355
Rate changes, 116-117
Rayleigh distribution, 351-352
RCASSE, 372
Rechtin, E., 258-259, 332, 375-376,
426, 429, 444

Reengineering, 228
Reliability, 220-221, 357-359
Requirements

Allocated, 248-251

Ambiguous, 246

Analysis, 233-254, 271

Analysis and allocation, 204, 271

Automation of, 244
Derived, 248-251
High-risk, 247
Inadequate articulation, 13
Incompatible, 246247
Incorrect, 246
Low performance, 247-248
Problem areas, 251-254
Relationships and traceability,
245
Statements, 242244
Traceability, 245
Trade-off, 253
Types, 242243
Reserves, 117, 119-120
Responsibilities: 21-25
Chief systems engineer, 24-25
Project controller, 25
Project manager, 21-24
Reuse, of software, 389-391
REVIC, 323
Rewards, 121
Risk analysis, 90-91, 213-215, 278
RMA, 220-221

Sage, A., 378-379

Scacchi, W., 392

Scale Factors, COCOMO, 322-323

Schedule, 100-104

SECM, 374

Self-assessment exercise, 139-141

Self-evaluation, 139141

Senge, P, 442

Sensitivity analysis, 287-293

Series reliability, 358

Simulation, 293-297

Situation analysis, 122—-127

Situational leadership, 153154

SMEREFS, 326-327

Software
Acquisition practices, 392—-393
Architecting, 396-398
Capability evaluation, 316-319
Capability maturity, 316-319
CASE tools, 393-396
Commandments, 333

INDEX 485

Constructive cost model
(COCOMO), 320-322
Defects assessment system,
457-462
Development methods, 306308,
391-392
Development plan, 306-308
Engineering, 217, 305-333
Engineering trends, 386400
Function points, 323-324
Key process areas, 317-318
Management indicators, 319-320
Management strategies, 313—316
Metrics, 319-329
Modeling and simulation, 295-296
Process assessment, 317
Reengineering, 398-399
Reliability, 324-326, 361
Reuse, 389-391
Reverse engineering, 399
Quality factors, 309-310
Standards, 62-65, 306-313
Ten commandments, 333
Trends, 386—400, 399-400
Warranties, 121
Software productivity consortium,
379, 390
Specialty engineering, 226
Specification development, 216217
Staffing, 86
Standards, 53—-65
As integrators, 440
Standish group, 389
Statement of work, 71, 78-80
Styles, 169—170
Sums of variables, 341-343
Sustainable development, 378
System, 3—4
Acquisition, 381-385,411-418
Architecting, 279-284, 286, 297
Complexity, 422
Cost-effectiveness, 7-8
Disposal, 228-229
Engineering environment, 462—470
Errors, 10-12, 250-251, 352-353
Functions, 204-205, 271

486 INDEX

System (Continued)
Reliability, 220-221, 357-359
Of systems engineering, 370-372,
420421
Systems approach, 17-21, 193-194
As integrator, 439440
Systems engineer and software
engineering, 329-331
Systems engineering
Capability maturity model,
373-375
Definitions, 4-7
Environments, 379-381
Management, 229-230
Management essentials,
45-49
Management plan (SEMP), 59,
92-94
Perspectives, 194-199
Plan (SEP), 92-95
Problem areas, 229-230
Process and management, 4549
Structure, 378-379
Support for, 89
Thirty elements, 199-202
Tools, 218, 299-300, 379-381
Trends, 369-386
Systems integration, 385-386

Task responsibility matrix, 86
Task statements, 71, 78—-80
Team
As integrator, 435-436
Building, 159-166
Busters, 166—167
Interactions, 159—-186

Integrated product, 184—186
Player, 135, 185
Technical approach, 80—83
Technical data management, 218219
Technical integration teams, 438
Technical performance measurement
(TPM), 207209, 276277
Technical performance parameters,
208, 293-294
Test and evaluation, 223224
Thinking outside the box, 443—447
Threshold concept, 355-357
Total quality management (TQM),
224-225
Trade-offs, 287-293
Training, 227
Trends, 369404
Triangular distribution, 339, 342

Uniform distribution, 340, 349-350,
352

Validation, 221-223
Variances, 340-341, 349-350
Verification and validation, 221-223

Walking away, 122
Warranties, 121
Weibull distribution, 359-360
Weight, 274, 283, 292
Criteria, 274, 282-283, 285, 292
Wirth, N., 332
Work
Breakdown structure, 78-81
Chunking, 120
Out-of-scope, 120

	Essentials Of Project And Systems Engineering Management
	Contents
	Preface
	Part I: Overview
	1: Systems, Projects, And Management
	1.1 Introduction
	1.2 Systems And Projects
	1.3 Problems In Managing Engineering Projects
	1.4 The Systems Approach
	1.5 The Project Organization
	1.6 Organizational Environments And Factors
	1.7 Large-Scale Organization And Management Issues
	Questions/Exercises
	References

	2: Overview Of Essentials
	2.1 Introduction
	2.2 Project Management Essentials
	2.3 Systems Engineering Process And Management Essentials
	2.4 Historical Overview Of Acquisition Notions
	2.5 Selected Standards
	Questions/Exercises
	References

	Part Il: Project Management
	3: The Project Plan
	3.1 Introduction
	3.2 Needs, Goals, Objectives, And Requirements
	3.3 Task Statements, Statement Of Work (Sow), And Work Breakdown Structure (Wbs)
	3.4 Technical Approach
	3.5 Schedule
	3.6 Organization, Staffing, And Task Responsibility Matrix (Trm)
	3.7 Budget
	3.8 Risk Analysis
	3.9 The Proposal
	3.10 Semp And Sep
	Questions/Exercises
	References

	4: Schedule, Cost, And Situation Analysis
	4.1 Introduction
	4.2 Schedule Analysis And Monitoring
	4.3 Cost Analysis And Monitoring
	4.4 Situation Analysis (Sa)
	Questions/Exercises
	References

	5: The Project Manager And Leadership
	5.1 Introduction
	5.2 Project Manager Attributes
	5.3 Self-Evaluation
	5.4 Interactions With Your Supervisor
	5.5 Customer Interaction
	5.6 Leadership
	Questions/Exercises
	References

	6: Team Building And Team Interactions
	6.1 Introduction
	6.2 Communications
	6.3 Building The Project Team
	6.4 Team Busters
	6.5 Conflict Management
	6.6 Meetings
	6.7 Presentations
	6.8 Proposals
	6.9 A Note On Motivation And Incentives
	6.10 Another Team-Related Perspective
	6.11 Group Processes
	Questions/Exercises
	References

	Part III: Systems Engineering And Management
	7: The Thirty Elements Of Systems Engineering
	7.1 Overview Of The Systems Approach And Engineering Process
	7.2 Two Systems Engineering Perspectives
	7.3 The Thirty Elements Of Systems Engineering
	7.4 The Importance Of Domain Knowledge In Systems Engineering
	Questions/Exercises
	References

	8: Requirements Analysis And Allocation
	8.1 Introduction
	8.2 Department Of Defense (Dod) Perspectivs
	8.3 A National Aeronautics And Space Administration (Nasa) Perspective
	8.4 The Organization Of Requirements Statements
	8.5 Specific Requirements Statements
	8.6 Essential Steps Of Requirements Analysis
	8.7 Derived And Allocated Requirements
	8.8 Other Requirements Issues
	Questions/Exercises
	References

	9: Systems Architecting: Principles
	9.1 Introduction
	9.2 A View Of Systems Architecting
	9.3 A National Aeronautics And Space Administration (Nasa) Perspective
	9.4 Architecture Descriptions
	9.5 Essential Steps Of System Architecting
	9.6 The 95% Solution
	9.7 Trade-Offs And Sensitivity Analyses
	9.8 Modeling And Simulation
	9.9 Other Architectures And Tools
	9.10 Summary
	Questions/Exercises
	References

	10: Software Engineering
	10.1 Introduction
	10.2 Standards
	10.3 Software Management Strategies
	10.4 Capability Maturity
	10.5 Metrics
	10.6 The Systems Engineer And Software Engineering
	10.7 Summary
	Questions/Exercises
	References

	11: Selected Quantitative Relationships
	11.1 Introduction
	11.2 Basic Probability Relationships
	11.3 The Binomial Distribution
	11.4 The Poisson Distribution
	11.5 The Normal (Gaussian) Distribution
	11.6 The Uniform Distribution
	11.7 The Exponential Distribution
	11.8 The Rayleigh Distribution
	11.9 Error Analyses
	11.10 Radar Signal Detection
	11.11 System Reliability
	11.12 Software Reliability
	11.13 Availability
	11.14 A Least Squares Fit
	11.15 Summary
	Questions/Exercises
	References

	Part IV: Trends, Perspectives, And Integrative Management
	12: Systems/Software Engineering And Project Management Trends
	12.1 Introduction
	12.2 Systems Engineering Trends
	12.3 Software Engineering Trends
	12.4 Project Management Trends
	Questions Exercises
	References

	13: Selected New Perspectives
	13.1 Introduction
	13.2 Role Of Incose
	13.3 Acquisition Of Systems
	13.4 Problems In Systems And Software
	13.5 Integration Of Systems
	Questions/Exercises
	References

	14: Integrative Management
	14.1 Introduction
	14.2 Managers As Integrators
	14.3 Teams As Integrators
	14.4 Plans As Integrators
	14.5 The Systems Approach As Integrator
	14.6 Methods And Standards As Integrators
	14.7 Information Systems As Integrators
	14.8 Enterprises As Integrators
	14.9 Thinking Outside The Box
	14.10 Summary
	Questions/Exercises
	References

	Appendix: Systems Architecting—Cases
	A.1 Introduction
	A.2 A Logistics Support System (Case 1)
	A.3 A Software Defects Assessment System (Case 2)
	A.4 A Systems Engineering Environment (Case 3)
	A.5 An Anemometry System (Case 4)
	A.6 Summary
	References

	Index

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: fix size 6.300 x 9.150 inches / 160.0 x 232.4 mm
 Shift: none
 Normalise (advanced option): 'original'

 32

 D:20120123164510
 658.8000
 Blank
 453.6000

 Tall
 1
 0
 No
 323
 179
 None
 Up
 0.0000
 0.0000

 Both
 22
 AllDoc
 22

 CurrentAVDoc

 Uniform
 0.0000
 Top

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0c
 Quite Imposing Plus 3
 1

 34
 504
 503
 504

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: fix size 6.250 x 9.250 inches / 158.7 x 234.9 mm
 Shift: none
 Normalise (advanced option): 'original'

 32

 D:20120127192006
 666.0000
 Blank
 450.0000

 Tall
 1
 0
 No
 73
 111

 None
 Up
 0.0000
 0.0000

 Both
 1
 AllDoc
 257

 CurrentAVDoc

 Uniform
 0.0000
 Top

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0c
 Quite Imposing Plus 3
 1

 0
 504
 503
 504

 1

 HistoryList_V1
 QI2base

