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Preface

Heavy-Fermion compounds comprise a great variety of strongly correlated systems
such as two-dimensional (2D) quantum liquids (2D 3He and electrons in metal
oxide semiconductor field effect transistor (MOSFETs)), heavy fermion (HF)
metals, high-temperature superconductors, quantum spin liquids confined in insu-
lators, quasicrystals, and even the Universe itself. Numerous experimental facts
unveiling the thermodynamic, transport, relaxation, etc., properties are collected on
all these objects, and these facts represent all fields of the condensed matter physics.
One might say that the physics of HF compounds represents a new edition of the
condensed matter physics, for the observed behavior is quite unique while the
edition is still under construction. Therefore, the problem of presenting a theory of
HF compounds is both arduous and of great importance.

In this book, we construct the theory and illustrate it by numerous applications
dealing with various physical phenomena and processes and explaining the corre-
sponding experimental facts. To make the book understandable as much as pos-
sible, for the reader’s convenience we, when considering a problem of the HF
compounds, give the necessary elements of the theory within a particular place.
Because of huge diversity in the considered topics, we hope that such a presentation
allows the reader to learn the particular physical process without a laborious
recursion to special chapters of the book.

One of the most fruitful concepts of modern solid state physics is a paradigm of
quasiparticles. This concept permits to represent any solid as certain ground state
and its elementary excitations in the form of quasiparticles. In the quasiparticle
language, a complex system of strongly interacting electrons and ions is reduced to
a gas of low-energy excitations, whose behavior could be described by various
(primarily perturbative) well-established techniques. The quasiparticles paradigm
permits to achieve a significant standardization of the description of different types
of quantum solids and, by this virtue, similar formalism can be applied across a
wide range of Condensed Matter systems.

Rapid development of condensed matter physics at the end of the twentieth
century put many challenges to the conventional wisdom in this discipline, elab-
orated for previous 50 years. Such discoveries as high-Tc superconductivity, integer
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and fractional quantum Hall effects, as well as a multitude of quantum phase
transitions still do not find their satisfactory and complete theoretical explanation.
Moreover, many modern experimental findings in solids put such fundamental
concepts of “classical” condensed matter physics, as quasiparticle, under scrutiny.
As a result, there has been a growing body of theoretical and experimental studies
showing that the conventional picture of quasiparticles is not always correct for
systems with strongly interacting fermions. Examples of systems exhibiting sig-
nificant deviations from the above quasiparticle picture are chemical compounds
with heavy fermions (heavy-fermion compounds), whose experimental behavior is
strongly different from that predicted by ordinary Fermi liquid theory. The body of
these “strange” experimental facts is now commonly attributed to as non-Fermi
liquid (NFL) behavior. As quasiparticle paradigm is inherent in other branches of
condensed matter physics, the same NFL behavior is exhibited at low temperatures
by two-dimensional electron gas and even 3He, where its neutral atoms are fermions
with spin 1/2. We believe that to meet the above challenges adequately, the new
points of view on old ideas are necessary.

This monograph is written to explain how the standard quasiparticle paradigm
can be modified to describe the striking NFL anomalies in the above classes of
strongly correlated fermionic systems. The main emphasis is on physics of HF
compounds and other systems with essentially NFL behavior. We show how
revised quasiparticle concept can describe all the above systems in a unified
manner. Here we present a comprehensive analysis of existing theoretical and
experimental results for all listed systems with NFL behavior such as HF metals,
high-temperature superconductors, quantum spin liquids, quasicrystals, and two-
dimensional Fermi systems. The common feature of these systems is that their
physical properties can hardly be understood within the framework of the Landau
Fermi liquid theory and their behavior is so unusual that the traditional Landau
quasiparticles paradigm fails to describe it. The important speciality of our
monograph is that we compare a great deal of our theoretical observations with
numerous experimental facts. As a result, the monograph contains more than 150
figures that facilitate understanding both the presented theory and the experimental
facts collected on very different HF compounds.

In this book, we present a theoretical approach, which, based on modified and
extended quasiparticles paradigm, permits to naturally describe the basic properties
and the scaling behavior of the above substances. The essence of the approach is
that due to the altering of Fermi surface topology, the substance undergoes so-called
fermion condensation quantum phase transition, where Landau quasiparticles sur-
vive but completely change their properties. In contrast to the Landau statement that
the quasiparticle effective mass is a constant, the effective mass of the above new
quasiparticles strongly depends on temperature, magnetic field, pressure, and other
external parameters. As a signal of such a fermion condensation quantum phase
transition (FCQPT) serves unlimited increase in the effective mass of quasiparticles
that determines the excitation spectrum and creates both flat bands and a fermion
condensate; while FCQPT represents the unique quantum phase transition that
occurs only at zero temperature.
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Upon reading the book, it can be asserted, that strongly correlated Fermi systems
with quite different microscopic nature exhibit the same NFL behavior, while the
data collected on very different strongly correlated fermionic systems manifest a
universal scaling behavior so that these substances are unexpectedly identical
despite their diversity. For the reader’s convenience, the analysis is carried out in
the broad context of the explanation of salient and unusual experimental results.
The numerous calculations of the thermodynamic, relaxation and transport prop-
erties, being in good agreement with experimental facts, offer the reader solid
grounds to learn the FCQPT theory implications and applications. Finally, the
reader will learn that FCQPT develops unexpectedly simple, yet complete and
uniform description of the NFL behavior of many different classes of substances.
As a result, these different classes are unified to create a new state of matter.

The book is organized as follows. The first chapter is of introductory character
and gives the definition and classification of strongly correlated systems. The
theoretical approaches to strongly correlated systems like Landau theory of Fermi-
liquid (LFL) are introduced. It is shown that LFL theory is insufficient to describe
NFL properties of HF compounds. For such description, the notion of FCQPT is
introduced. To make the book self-contained, Chap. 2 gives a brief overview of
Landau Fermi liquid theory, introducing famous Landau quasiparticles. Chapter 3
gives the explanation of our theory of fermion condensation. The theory relies on
Landau approach to Fermi liquids description, outlined in Chap. 2. The essence of
this theory is that under certain conditions, the Landau interaction (and Fermi
surface topology, which is described in Chap. 4) alters so that at FCQPT point the
quasiparticle effective mass starts to depend on temperature, magnetic field, and
other external parameters. We show that this theory has deep implications on the
properties of HF compounds and other strongly correlated electron systems.
Chapters 5–8 show how the FCQPT concept works for specific HF compounds.
Here we analyze and describe the thermodynamic, transport and relaxation prop-
erties of HF compounds. Extensive comparison with experimental data is per-
formed. We show that many unexplained and puzzling experimental facts related to
NFL behavior can be well explained within the above concept. We emphasize here
that contrary to “ordinary” (like Kondo lattice) theoretical approaches ascribing the
NFL properties of the HF compounds to the “death” of Landau quasiparticles, our
FCQPT approach shows convincingly that quasiparticles survive, although their
properties are strongly modified, for instance, their effective mass becomes tem-
perature, magnetic field, and other external parameters dependent. We also dem-
onstrate that the extended quasiparticles paradigm permits to naturally explain the
scaling behavior of HF compounds.

In Chap. 9, it is demonstrated that the fermion condensation gives floor to the
quasi-classical physics in HF compounds. This observation permits us to gain more
insights into the puzzling NFL physics of HF compounds and explain challenging
experimental facts. In Chaps. 10 and 11, we consider the paradoxical behavior of the
residual resistivity of HF metals in magnetic fields and under pressure. Chapter 13 is
devoted to asymmetric conductivity of strongly correlated compounds revealed
by the methods of scanning tunneling microscopy and point-contact spectroscopy.
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In Chap. 14, a violation of the Wiedemann–Franz law in HF metals is considered. In
Chap. 15, we present the theoretical analysis of thermodynamics of HF compounds
at high magnetic fields. Chapters 12 and 16 show non-typical applications of FCQPT
approach. Namely, Chap. 12 shows that a new phenomenon called “merging,”
analogous to FCQPT, occurs in systems with finite number of fermions (so-called
finite Fermi systems) like atomic nuclei and in two-dimensional electron systems in
silicon. Chapter 16 deals with the baryon asymmetry in the early Universe, where
FCQPT may also be realized. This shows that the phenomenon of Fermion con-
densation is ubiquitous in Nature. In Chaps. 17 and 18 we consider the quantum
criticality of very different heavy-fermion compounds, such as quantum spin liquids,
quasicrystals, high-Tc superconductors, HF metals, and 2D 3He. Chapter 19 contains
concluding remarks.

This monograph is written on the basis of the results of the present authors’
theoretical investigations as well as on theoretical and experimental studies of other
researchers. The book is intended for undergraduate and graduate students and
researchers in condensed matter physics. Also, the material of the book has widely
been presented in the form of lectures in Clark Atlanta University (USA), Hebrew
University of Jerusalem (Israel), St. Petersburg University (Russia), Syktyvkar
University (Russia), Opole University (Poland).

We are indebted to many our colleagues for long-lasting collaboration of the
subject of our present monograph. To name a few, they are S.A. Artamonov,
A. Bulgac, J.W. Clark, V.T. Dolgopolov, J. Dukelsky, V.I. Isakov, G.S. Japaridze,
V.A. Khodel, A.Z. Msezane, Yu.G. Pogorelov, P. Schuck, A.A. Shashkin,
M.V. Zverev, G.E. Volovik.

Saint Petersburg Miron Ya. Amusia
Konstantin G. Popov
Vasily R. Shaginyan

Vladimir A. Stephanovich
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Chapter 1
Introduction

Abstract This chapter has introductory character and gives the definition and
classification of strongly correlated systems. We outline the difference between
strongly andweakly correlated systems and show that the former cannot be described
adequately in the framework of ubiquitous methods like e.g., band theory of solids.
We familiarize the reader with theoretical approaches to strongly correlated systems
and to Landau theory of Fermi-liquid in particular. We show that Landau theory is
insufficient to describe so-called non Fermi liquid properties of several strongly cor-
related substances like heavy fermion compounds. For such description, the notion
of fermion condensation quantum phase transitions has been introduced. The aims
and goals of the book are also discussed.

1.1 Introductory Remarks

1.1.1 General Consideration: Strong Versus Weak Correlations

When we are dealing with an ensemble of particles, which do not interact with each
other, the problem can be completely solved analytically. The situation is drastically
different, when even weak interparticle interaction is “turned on”: In this case the
problem ceases to be single-particle and many body effects enter the scene. As
modern physics is dealing primarily with the ensembles of interacting particles, it is
not an exaggeration to say, that its central problem is the many-body theory. Indeed,
all our surroundings, from cosmic bodies to tiny objects like molecules, are made of
many constituents. This statement is also valid for microscopic particles like atoms
and nuclei. Several decades ago it became clear that, perhaps, only quarks and leptons
can be considered as truly elementary particles, which cannot be splitted into smaller
entities.

To formabodyof any size, the constituent particles have to interactwith eachother.
Such an interaction is achieved by exchange of these particles by quanta of interaction
field—photons, gluons , and mesons. However, if the speed of interacting particles
is much less than the speed of light, the interaction can be limited to either some
phenomenological potentials, or, for charged objects and not too small distances, to
pure Coulomb interaction.

© Springer International Publishing Switzerland 2015
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2 1 Introduction

The materials, that are well understood, usually contain the ensemble of free or
almost free weakly interacting (or weakly correlated) particles. To understand the
latter materials, band theory, which represent electrons in the form of extended plane
waves, is a good starting point. That theory helps capture the delocalized nature
of electrons in metals. It is valid provided that the Coulomb interaction energy of
electrons is much smaller than their kinetic energy. However there are important
physical systems for which interactions between the electrons are not weak, and
these interactions play a major role in determining the properties of such systems.
They are usually called strongly correlated systems. The examples here can bemetals
with open d− and f − electron shells, where electrons occupy narrow bands. There,
electrons experience strong Coulomb repulsion because of their spatial confinement
in those bands. The effect of correlations on the physical properties of such objects
is often profound. The interplay of the d and f electrons internal degrees of freedom
like spin, charge, and orbital moment can exhibit a lot of exotic phenomena at low
temperatures. That interplay makes strongly correlated electron systems extremely
sensitive to small variations of external parameters, such as temperature, pressure,
or magnetic field.

In materials called heavy fermion systems, mobile electrons at low temperatures
behave as if their masses were a hundred times the mass of an electron in a silicon
or simple metal. Such systems exhibit a great variety of interesting phenomena like
anomalies in electric and thermal conductivity, quantum phase transitions between
magnetically ordered state and superconductivity, emergence and dissociation of
local magnetic moments etc. This rich variety of the phenomena makes their exper-
imental and theoretical studies all the more difficult. Quantum mechanical study of
strongly correlated fermionic systems is done by two approaches: ab-initio numeri-
cal electronic structure simulations and model theoretical treatment. In the first case
real materials can be described with all details of their chemical composition and
crystal structure fully taken into account. In model approaches, such subtleties are
usually neglected in favor of more rigorous mathematical treatment of the problem.
The result yields the dependencies (in graphical and sometimes in analytical form)
of system physical properties upon external parameters like temperature, pressure
and/or external fields. But nowadays even in latest theoretical treatment, the solutions
of derived equations could be obtained by means of numerical calculations only.

In this context we mention so-called optical lattices, consisting of boson atoms
ensemble in a periodic potential. At low temperatures such Bose particles can con-
dense: i.e.most of the particles can be found in a state of zeromomentum,which helps
to minimize their kinetic energy. Below we will see that related phenomenon can
occur in the systems with strongly correlated fermions, giving rise to completely new
physics, which is the same for many seemingly different systems. We will see also
that the notion of fermion condensation permits to elegantly explain the whole bunch
of puzzling experimental facts in systems with strongly correlated fermions. At this
moment, a good general approach accepted for understanding strongly correlated
systems does not exist. For example, certain aspects of systems exhibiting quan-
tum Hall effect or some magnetic materials are already understood. But the other
systems are understood very poorly. For instance, the nature of high temperature
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superconductivity remains mysterious despite decades of intensive work. Most
importantly we do not have a unified view on the fermionic systems for which
interparticle interactions not only cannot be neglected but play a decisive role in the
formation of their observable properties.

1.1.2 Theoretical Approaches to Strongly Correlated Systems

A natural question appear: How to solve a many-body problem? In other words,
how to describe a system of large number of interacting constituents knowing how
to deal with single free particle motion and its interaction with the other particle
and environment? This problem is not new and by far not specific to quantum sys-
tems. Indeed, this problem existed already at the time when Newton created his
mechanics and discovered the law of gravitation. However, in the case of relatively
weak gravitational interaction only two-body dynamics is essential so that the rest
of particle ensemble could be treated as small perturbation. For instance, the Moon
and all other planets of Solar system affect the Earth rotation around the Sun as a
small, although noticeable perturbation. Only recently it became clear that in some
cases even weak gravitational interaction can lead to prominent many-body effects,
so called resonance phenomena.

In quantum mechanics, the many-body problem became essential almost imme-
diately after discovery of the Schrödinger equation [1] in 1926. The motivation was
the fact that the potential, in which the given quantum particle (say, electron) moves,
is created by the rest of the particles, where this electron resides. At that time it had
already been recognized, that the electron-electron interaction in atoms plays less
important role than their interactionwith the atomic nucleus. This hierarchy is similar
to that in Solar system in regard of inter-planet and Sun-planet interactions. Already
in 1928 D. Hartree suggested the concept of self-consistent field [2, 3] that permitted
to consider many—electron atoms treating their electrons as moving in a field essen-
tially modified as compared to the pure Coulomb field of an atomic nucleus. Tho
years later V. A. Fock took into account the fact that all electrons are identical Fermi
particles so that their wave function has to be antisymmetric under permutation of
any two electrons [4, 5]. As a result, prominent Hartree-Fock equation had been for-
mulated. This equation is in use until now, being applied not only to single atoms, but
to multi-atomic objects like molecules, clusters, fullerenes and even bulk solids. The
application of the Hartree-Fock equation is not limited to the systems with Coulomb
interparticle interaction. The same equation can be successfully applied to nucleus
as a system consisting of protons and neutrons. Actually Hartree-Fock equation con-
siders only non-perturbative part of interparticle interaction; it can also be applied to
the systems of Bose particles where it is called Gross-Pitaevskiy equation.

The remaining part of interparticle interaction that is neglected in theHartree-Fock
framework is usually called residual interaction. This part of interaction leads to
so-called correlation effects, or interparticle correlations. Obviously, the Hartree-
Fock equation is able to describemany-body system satisfactorily only if correlations
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are negligible. However, as it is known now, there exist a number of many body
systems, where correlations lead to decisively important collective phenomena.

We note here, that Hartree-Fock approach along with little earlier Thomas-Fermi
approach [6, 7] were the first representative of so-called first principle (ab initio)
methods to incorporate the above collective phenomena in the physical properties
of solids and strongly correlated systems in particular. The aim of such methods is
to calculate the macroscopic, observable properties of a body having in disposal its
microscopic characteristics like its crystalline symmetry and interatomic interaction
potentials. If all microscopic details were known, the problem would be solved
exactly utilizing (many-particle) Schrödinger equation. Unfortunately, this is not
the case for majority of real systems. Only molecules consisting of small number
of atoms as well as single atoms can be more or less satisfactorily treated by this
straightforward method. In this approach, their wave functions are represented as
linear combinations of corresponding Slater determinants.

Further development of ab-initio methods was related to the breakthrough, made
by Hohenberg-Kohn theorem, which puts a foundation to the Density Functional
Theory (DFT) [8–11]. The Hohenberg-Kohn theorem states that a system’s wave
function is defined uniquely by its charge density. The idea of DFT is a direct
generalization of Hartree-Fock self-consistent field approach. Namely, in DFT, the
differential equations called Kohn-Sham equation for single-electron wave func-
tions are solved with certain effective potential, which, in turn, is determined self-
consistently by that equation’s solutions. This Kohn-Sham equation is derived by
variation of the energy functional E[ρ], depending on the local electronic charge
density ρ = ρ(r). This functional, expressing the total energy of many-body sys-
tem, has the form [10]

E[ρ] = T [ρ] +
∫

ρ(r)Vext(r)d3r +
∫

d3r d3r′ ρ(r)ρ(r′)
|r − r′| + Exc[ρ], (1.1)

where T [ρ] is kinetic energy, Vext(r) is the external potential acting on the elec-
trons, third term is the Hartree contribution to the Coulomb interaction between the
charges, and the last term is the so-called exchange and correlation energy contribu-
tions Exc[ρ]. The exchange contribution takes into account the partial suppression of
Coulomb repulsion between electrons in the same spin state due to Pauli principle.
The DFT method would be exact if the explicit form of the term Exc in (1.1) would
be known. However, this is not the case, as for that one needs to solve the system of
functional equations exactly [12].

To handle this problem, the DFT self-consistent approach along with approxima-
tions (like, for instance, local density approximation (LDA) and its spin counterpart
local spin density approximation (LSDA), see [13] for details) for exchange- corre-
lation energy Exc had been utilized in DFT. Also, as particular representation of wave
functions corresponding to ρ(r) cannot be defined uniquely in DFT, this quantity is
expressed usually via single-electron wave functions ψi(r)



1.1 Introductory Remarks 5

ρ(r) =
N∑

i=1

|ψi(r)|2, (1.2)

where N is the number of electrons in a system.
Minimizing the functional (1.1) over the functions ψi(r) (with respect to the

normalization conditions for ψi) generates Kohn–Sham equations:

[
−∇2

2m
+ VKS[ρ(r)]

]
ψi = εiψi, (1.3)

where εi are the single-electron eigenvalues, Kohn-Sham potential VKS represents a
static mean field (signifying the explicit neglecting of correlation effects when all
electrons feel the same potential) of the electrons and has to be determined in a
self-consistent way

VKS[ρ(r)] = Vext(r)+Vxc[ρ(r)]+2
∫

ρ(r′)d3r′

|r − r′| , Vxc[ρ(r)] = δExc[ρ(r)]
δρ(r)

, (1.4)

where δ/δρ means the variational derivative. The (1.4) allows one to calculate elec-
tronic charge density and total energy for the ground state of a system. The DFT
with LDA and/or LSDA approximations for Exc[ρ] had been successfully applied to
describe the electronic properties of atoms, molecules and solids, where correlation
effects are not too strong. In the systems with strong correlations like transition metal
oxides, the DFT gave incorrect metallic ground state in the absence of long-range
magnetic order.

As in 1960-ties the computational power was too feeble to calculate real things
by ab initio methods, the so-called model Hamiltonian approach comes into play.
Namely, the full many-body Hamiltonian is simplified to account for only a few
relevant degrees of freedom—typically, the valence electron orbitals near the Fermi
level. One of the simplest models of correlated electrons is the Hubbard Hamiltonian
[14], which takes into account the interplay between electron hopping and local
on-cite repulsion:

H =
∑
i,j,σ

tijc
†
iσ cjσ + U

∑
i

ni↑ni↓, (1.5)

where ciσ and c†iσ are creation and annihilation operators for electron on site i with

spin index σ = ↑, ↓, ni = c†iσ ciσ is the density of electrons at site i, U is a local
Coulomb interaction between two electrons occupying the same site i. The matrix
element tij describes hopping of electrons with between sites i and j. It is usually
supposed that hopping is not zero for nearest neighbors (with number zn) only. Such
simplified treatment of electron–electron Coulomb repulsion turns out to be very
convenient to study the itinerant electron systems, especially their magnetic states.
A wide variety of analytical and numerical methods have been utilized to study the
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strongly correlated electron systems in the framework of Hubbardmodel. But despite
that, the Hubbard model (1.5) could be solved only for limited number of cases.

It had been observed in 1989 [15] that the consideration of the electron correlations
on the lattices with large (actually infinite) number of nearest neighbors zn, simplifies
the problem essentially so that it can be solved exactly for any strength of Coulomb
repulsion. The simplification at zn → ∞ occurs due to the fact that in this case one
can neglect the spatial fluctuations leaving only time dependent on-site fluctuations.
This fact laid the foundation of Dynamical Mean-Field Theory (DMFT), which
mapped lattice models (like Hubbard one [16, 17]) to effective impurity problem
with correlated electrons feeling mean field which this time is dynamic, i.e. time or
energy dependent. Solution of the latter effective impurity problem can be further
used to construct the self-energy for lattice Green’s functionG that, in turn, gives new
approximation for above dynamic mean-field. The DMFT solutions become exact as
the number of neighbors increases. Similar to DFT, the DMFT also relies on energy
functional EDMFT [ρ(r), G], which in this case depends on the above local Green’s
function G:

EDMFT [ρ(r), G] = T [ρ(r), G] +
∫

ρ(r)Vext(r)d3r

+
∫

d3r d3r′ ρ(r)ρ(r′)
|r − r′| + Exc[ρ(r), G], (1.6)

where G = Giσ (t − t′) = − < ciσ (t)c†iσ (t′) > specifies the probability to create
an electron with spin index σ at a site i at time t′ and annihilate it at the same site
at a time t > t′. In practical calculations this function is found self-consistently
from the above effective single-impurity problem, where the rest of the electrons
are considered as the bath for given impurity one. The theory is called “dynamic”
as Green’s function depends explicitly on time or frequency argument. Also, the
approximations for Exc[ρ(r), G] are provided.

Althoughdynamicalmean-fieldmethods clearly represent a newadvance inmany-
body physics, they are still unable to capture many effects in strongly correlated
systems, e.g., the divergent behavior of the effective mass. That is why generaliza-
tions of DFMT to account for real materials is an active area of research. The above
consideration shows that only ab-initio methods in principle cannot give sufficient
insights in the physics of strongly-correlated systems because of their computational
complexity, still beyond reach of modern computer’s possibilities. The more insight
has been achieved on the way of model assumptions and simplification of initial
many-body Hamiltonian, leaving in them only the most essential terms, which, on
the other hand, could be assessed both analytically and numerically. Nonetheless,
these methods meet with enormous difficulties while being applied to consideration
of excitation spectra of a many-body system, while these spectra define the thermo-
dynamic, transport and relaxation properties.
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The complimentary approach essential break-through in the understanding of
many-body systems was the introduction of so-called quasiparticles. Namely, the
real interacting (with potential V ) particle ensemble is substituted by quasiparticles,
that interact via some effective interaction Veff and represent the excitation on top of
some vacuum ground state.

Then the question appears how to construct the quasiparticles and their effective
interaction. At a first glance, this is a simple problem, if the interaction is weak.
But what is the meaning of weakness if, roughly speaking, the effect of interac-
tion includes in some cases a large number generated by the corresponding phase
transition. So, the weakness can be overwhelmed by the large number, leading to
macroscopic correlated coherent phenomena like superfluidity and/or superconduc-
tivity.

The first attempt in this direction was undertaken by Landau in 1956 [18], when
he assumed the existence of quasiparticles, and afterwards, when he, together with
his colleagues gave a proof of the developed approach on the general grounds of
many-body theory [19]. He suggested that for systems where the interaction is
strong, quasiparticles can be introduced as well defined objects. The ground state
energy E in that case is assumed to be a functional of the quasiparticle distribution
function n(p), E[n(p)], with the single particle spectrum (or the dispersion law)
ε(p) = δE[n(p)]/δn(p). According to conventional usual practice a quasiparticle is
presumed to be well-defined until proven not to be. The textbook picture of quasi-
particles as long-living excitations weakly interacting with each other works very
well for many objects. This system of quasiparticles forms the Landau quasiparticle
paradigm. Nevertheless, in a number of recently studied strongly correlated systems
the above quasiparticles neither interact weakly nor remain well-defined even at
zero temperature. As we shall see in Chap.2, this paradigm is to be substituted by an
extended one. As an example, Landau treated the liquid 3He, which is a liquid, whose
constituents are Fermi particles—two-electron atoms with 3He nuclei. He demon-
strated that at low temperatures the excitations of such a system could be described
as those of a quasiparticle gas.

It is worth noting, that at temperature T = 0 in spite of strong interparticle
interaction the distribution of quasiparticles n(p) as a function of their momentum p
can be presented as a Fermi-step of noninteracting fermions:

n(p) =
{
1, p ≤ pF

0, p > pF ,
(1.7)

where pF is the so-called Fermi-momentum of the system. It is essential that the
densities (i.e. total numbers per unit volume) of particles and quasiparticles coincide.
E.g., in three dimensional (3D) case they both equal to

ρ = p3F
3π2 . (1.8)

http://dx.doi.org/10.1007/978-3-319-10825-4_2
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Fig. 1.1 Quasiparticle n(p)

and particle np(p) distribution
functions at T = 0 are shown
by the arrows. n(p) is given
by (1.7) and np(p) by (1.9)
with the jump at p = pF

Throughout, if otherwise do not stated, we adopt the atomic system of units, where
� = c = 1, where c is the speed of light. In this book, we consider a different
branches of the condensed matter physics. As a result, in some chapters we use those
systems of units which are commonly accepted in the considered area. For example,
as it is done in Chap.12.

As to themomentumdependence of the particle distribution function np(p), it has,
according to Migdal [20], a tail at p > pF , in contrast to the distribution function
of quasiparticles. This tail decreases as p increases. This decrease is fast, but not
exponential. In the same paper [20], it had been demonstrated that at p = pF the
function np(p) has a step:

0 < np(pF) = z < 1. (1.9)

It is seen from (1.7), (1.9) and Fig. 1.1, that both the quasiparticles and the particles
distribution functions have jumps at the Fermi momentum pF .

The single-particle spectrum ε(p) for Landau quasiparticle at (p − pF)/pF 	 1
is similar to that of an excitation of a gas of non-interacting Fermi-particles at low
temperatures T

ε(p) − μ = pF(p − pF)

M∗ , (1.10)

where μ is the chemical potential and M∗ is the effective mass that, from case to
case, differs from the mass M in a different degree. Here M is the bare mass of the
particles constituting the many-body system under consideration. In the many-body
theory, one usually investigates systems consisting of single-particle type, having
the same mass, spin and charge. Generalization to multi-component systems is very
often not a simple and straightforward task.

A quasiparticle excitation can decay by creating two and more quasiparticles. If
this decay proceeds sufficiently fast, the concept of quasiparticle as well defined

http://dx.doi.org/10.1007/978-3-319-10825-4_12
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system’s excitation faces difficulties. More precisely, before the decay process
quasiparticle lives for time (so-called quasiparticle lifetime), which is reciprocal
to its width γ . It had been also demonstrated by Migdal [20], that the quasiparticle
width can be estimated by the following relation

γ ∼ (p − pF)2

2M∗ . (1.11)

Note that γ 	 ε(p) − μ = pF(p − pF)/M∗ at (p − pF)/pF 	 1 and therefore
quasiparticle can be considered to be reasonably stable, if they are close enough to
the Fermi-surface at any inter-particle interaction strength. The simplest excitation of
a Fermi-system, which interacts strongly with an external field, can be viewed as an
absorbtion of its quanta with low excitation energy ω and small (as compared to pF)
momentum k by a combination of a quasi-particle of energy ε(p) (with p > pF) and
quasi-hole ε(p′) (with p′ ≤ pF). Note that the energy and momentum conservation
is valid:

ω(k) = ε(p) − ε(p′), k = p − p′. (1.12)

The presence of effective interaction, transforming one electron-hole pair into the
second, third and so on, leads to collective response of the Fermi-system on the
external field. Due to the presence of Veff , so-called coherent collective excitations
in the Fermi-system are formed. One of examples is a sound-like excitation with
ω = ctk termed zero sound with propagation velocity ct ≥ pF/M∗ [19]. General
expressions to determine the dependence of excitation energy ω upon momentum k
had been derived in [19, 21]. It is essential to have in mind that there exists a pro-
found analogy between quasi-hole in condensedmatter and antiparticle in elementary
particles theory.

The concept of relatively weakly interacting quasiparticles permits to express
the low-temperature thermodynamic and electrodynamic properties of the Fermi-
system under consideration via several numbers characterizing the quasiparticles
and their effective interaction. For instance, the specific heat C turned out to be
simply proportional to M∗, which in turn generates its proportionality to the system’s
temperature T

C ∝ M∗T . (1.13)

At some parameters of the effective interaction a Fermi-liquid can undergo phase
transitions to other states like ferromagnetic and antiferromagnetic. This corresponds
to solutions of Landau equation determining collective excitations that have zero
or pure imaginary energy for non-zero momentum. I. Ya. Pomeranchuk derived
the conditions [22] yielding the value and sign of Veff , which is necessary for the
susceptibility towards a fictitious external field to become infinite. This means that
the system is unstable with respect to transition to certain fundamentally different
(than the initial one) ground state, which is already stable for above Veff . The phase
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transitions are of particular interest, since they describe possible system evolution
under the action of above weak perturbations. The stability conditions itself can
only signal on possible instability of initially chosen system’s ground state. But they
are not enough for finding the state of a system formed after instability has been
developed.

It was common wisdom for many years, that if we augment the above Pomer-
anchuk conditions by the one, determining the transition to the superconducting
state, we are able to describe all possible phase transitions of a Fermi-system. How-
ever, for 3He the experimental situation is not that clear. The investigation of the heat
capacity C at temperature dropping from tenths of Kelvins down to millikelvin start
to contradict the linear law (1.13). The data, instead of temperature independence,
demonstrated a more complex law like M∗ = a + b ln T with very strange at that
time possibility of diverging in the limit T = 0 [23]. Starting from millikelvin, new
phases, including a superfluid one, were discovered in liquid 3He [24]. Arguments
appear that for any system a superfluidity is inevitable for sufficiently low T and
therefore strictly speaking the above presented quasiparticle concept in liquid 3He
is not valid at low temperatures.

The Fermi liquid approach along with quasiparticles paradigm have been suc-
cessfully applied to studies of electrons in solids and in metals in particular [19, 21].
It appeared that vast majority of properties of electron liquid in metals can be well
understood in the framework of the temperature independent Landau-type quasipar-
ticles so that this approach becomes almost universal in quantum liquids description
in condensed matter. However, further development of the condensed matter physics
shows convincingly that more andmore properties of solids either cannot be satisfac-
torily described by the ordinary Fermi-liquid picture and/or require complete revision
of the quasiparticle paradigm. It turned out that latter revision is highly nontrivial
task. It appeared, however, that additionally to above Fermi liquid instabilities (i.e.
those related to Pomeranchuk’s conditions and to transition to superfluid (supercon-
ducting) state, another instability was overlooked. Indeed, it has never been discussed
what happens to the system if some interparticle interaction generates the divergence
of the effective mass M∗ → ∞ rather than the susceptibility. In this case, as we will
see in Chap.2, all quasiparticle excitation energies equal to zero so that the system
resembles a condensate of Fermi particles or Fermi condensation/condensate (FC)
[12, 25–28].Numerous studies has confirmed the possibility of the FC state that exists
for certain interparticle interaction potentials and demonstrates its unusual proper-
ties. The possibility of the fermion condensation quantum phase transition (FCQPT),
preceding FC, does not abandon the concept of quasiparticles. On the contrary, it
demonstrates that during this phase transition the quasiparticle effective mass M∗
become dependent on external parameters like temperature, pressure and/or external
field. This situation opposes the Landau Fermi-liquid picture, where the effective
mass never depend on the above external parameters, being a constant, determined
by particle density and their interaction. The above consideration makes it clear that
FCQPT has a quantum nature, determining a non-Fermi liquid (NFL) behavior or
quantum criticality in strongly correlated systems.

http://dx.doi.org/10.1007/978-3-319-10825-4_2
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At the beginning, the idea of FC has not been considered by the community
too seriously. It was interpreted as a mathematical trick rather than an approach to
describe real phenomena. It turns out, however, that above idea is capable to deliver
the adequate description of a huge body of otherwise unexplained experimental data.
It has been demonstrated several times that classical Landau theory of Fermi liquid
is insufficient and too narrow to encompass many experimentally important cases. A
variety of these effects appeared in a number of newly discovered systems, including
those, explained in the framework of FC picture (see e.g., [26–28]). Abundance
of data stimulates to present these results in a form of a book, what makes data
better accessible to not only to experts, but also to graduate students who will,
hopefully, use this approach in their future research. This approach can be considered
as complimentary, but also in many case as an unique tool to treat and describe real
systems, exhibiting the quantum criticality.

The physics of quantum matter occupies a substantial part of modern physics. In
contrast to the general belief, a quantummatter can showupeven at room temperature,
as it takes place for electrons in metals, which behave in accordance with the above
the famous Landau Fermi liquid (LFL) theory based on the quasiparticle paradigm
[18, 19, 24]. We consider the quantum criticality in HF compounds begotten by
quantum phase transitions with their quantum critical points located at T = 0.
The quantum criticality describes a new quantum state of matter which exhibits a
universal behavior, and can hardly be understood within the framework of the LFL
theory. Thus, quantum criticality in materials of significant theoretical and practical
interest requires a new theoretical input. Furthermore, there are indications that the
relevant new physics demands a departure from the quasiparticle paradigm of LFL
theory. One could also expect that we have to confine our consideration to ultra low
temperatures. This is not the case sinceHFcompounds, for instance, reveal significant
deviation from LFL properties, termed as NFL behavior, for the temperatures as high
as tens ofKelvins. On the other hand, aswe shall see, HF compounds at their quantum
criticality can exhibit a quasi-classical behavior.

From now on, we call HF compounds “strongly correlated Fermi systems” as
well. Strongly correlated Fermi-systems, represented by HF compounds, high-Tc

superconductors, strongly correlated insulators with spin liquid, quasicrystals, and
two-dimensional (2D) Fermi liquids, are among the most intriguing and best experi-
mentally studied fundamental systems in physics, however until very recently these
lacked theoretical description [26–28]. The properties of these materials differ dra-
matically from those of ordinary Fermi-systems [26–39]. For instance, in the case
of HF metals, the strong electron-electron correlations lead to a renormalization of
M∗, which may exceed the ordinary, so called “bare” electron mass by several orders
of magnitude or even become infinitely large. The effective mass strongly depends
on temperature, pressure, or applied magnetic field. HF metals exhibit NFL behav-
ior and unusual power laws of the temperature dependence of the thermodynamic
properties at low temperatures. To describe this NFL behavior, the ideas based on the
concept of quantum, thermal fluctuations, and Kondo lattice in a quantum critical
point (QCP) have been utilized, see e.g., [29, 31, 40–43]. These ideas, however,
could not provide a universal description of NFL properties. This generated a real
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crisis in physics of HF systems and to overcome this crisis, a new quantum phase
transition, responsible for the observed behavior was suggested [26–28, 34–38, 40,
44]. Below we will show that FCQPT based concept of quantum criticality permits
to resolve many puzzles of physics of strongly correlated fermion systems, and HF
metals in particular.

1.1.3 Quantum Phase Transitions and NFL behavior of HF
compounds

The unusual properties and NFL behavior observed in high-Tc superconductors, HF
metals, 2D Fermi-systems and other HF compounds, such as novel insulators and
quasicrystals, are assumed to be determined by various magnetic quantum phase
transitions [26–36, 38–41]. Since a quantum phase transition occurs at T = 0, the
control parameters are all but temperature, i.e. composition, electron (hole) number
density x, pressure, magnetic field strength B, etc. A quantum phase transition occurs
at a quantum critical point, which separates the ordered phase (emerging as a result
of quantum phase transition) from disordered one. It is usually assumed that mag-
netic (e.g., ferromagnetic and antiferromagnetic) quantum phase transitions with the
corresponding critical fluctuations are responsible for the NFL behavior. The critical
point of such a phase transition can be shifted to T = 0 by varying the above control
parameters.

Universal behavior can be expected only if the system under consideration is
sufficiently close to a quantum critical point, e.g., when the correlation length is
much larger than the microscopic length scale, so that critical quantum and thermal
fluctuations determine the anomalous contribution to the thermodynamic functions
of a substance. Quantum phase transitions of this type are so widespread [30–32,
36–40] that we call them ordinary quantum phase transitions [45]. In this case,
the physics is determined by thermal and quantum fluctuations of the critical state,
while quasiparticle excitations are destroyed by these fluctuations. Conventional
arguments that quasiparticles in strongly correlated Fermiliquids “get heavy and
die” at a quantum critical point commonly employ the well-known formula based on
the assumptions that the z-factor (the quasiparticle weight in the single-particle state,
see above) vanishes at the points of second-order phase transitions [44]. However, it
has been shown that this scenario is problematic, see Chap.3, Sect. 3.2 [46, 47].

The order parameter fluctuations, developing an infinite correlation range, and
the vanishing of quasiparticle excitations are considered to be the main reason for
the NFL behavior of heavy-fermion metals, 2D fermion systems and high-Tc super-
conductors [31, 32, 36, 39, 40, 48]. However, this approach faces certain difficul-
ties. Critical behavior in HF metals is observed experimentally at high temperatures
comparable to the effective Fermi temperature Tk . For instance, the thermal expan-
sion coefficient α(T), which is a linear function of temperature for normal LFL,
α(T) ∝ T , demonstrates the experimental

√
T temperature dependence in CeNi2Ge2

as the temperature decreases from 6K to at least 50 mK (i.e. varies by two orders

http://dx.doi.org/10.1007/978-3-319-10825-4_3
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of magnitude) [41]. Such behavior can hardly be explained within the framework of
the above critical fluctuation theory. Obviously, such a situation is realizable only at
a low-temperature regime, T → 0, when the critical fluctuations make the leading
contribution to the entropy and when the correlation length is much longer than the
microscopic length scale. At a certain temperature Tk , this macroscopically large
correlation length must be destroyed by ordinary thermal fluctuations and the corre-
sponding universal behavior must disappear.

Another difficulty is in explaining the restoration of the LFL behavior under the
application of magnetic field B, as observed in HF metals and in high-Tc supercon-
ductors [29, 41, 49]. At T → 0 for the LFL state the following relations are valid
for the electric resistivity ρ(T) = ρ0 + AT2, the heat capacity C(T) = γ0T , and
the magnetic susceptibility χ = const. It turns out that the coefficients in the above
laws depend on the magnetic field strength B. Namely, A = A(B), the Sommerfeld
coefficient γ0(B) ∝ M∗, and the magnetic susceptibility χ = χ(B). These quantities
depend on B in such a way that A(B) ∝ γ 2

0 (B) and A(B) ∝ χ2(B), which implies
that the Kadowaki-Woods relation K = A(B)/γ 2

0 (B) [50] is B-independent and is
preserved [41]. Such universal behavior, quite natural when quasiparticles with the
effective mass M∗ play the main role, can barely be explained within the framework
that assumes the absence of quasiparticles or Kondo lattice. We emphasize here,
that quasiparticles are absent in ordinary quantum phase transitions in the vicinity
of QCP. Indeed, there is no reason to expect that γ0, χ and A are affected by the
fluctuations in a such a correlated fashion that preserves the Kadowaki-Woods ratio.

For instance, the Kadowaki-Woods relation does not agree with the spin density
wave scenario [41] and with the results of research in quantum criticality based
on the renormalization-group approach [51]. Moreover, measurements of charge
and heat transfer have shown that the Wiedemann-Franz law holds in some high-Tc

superconductors [49, 52] andHFmetals [53–56]. All this suggests that quasiparticles
do exist in such metals, and this conclusion is also corroborated by photoemission
spectroscopy results [57, 58]. The inability to explain peculiarities of behavior of HF
metals mentioned above in the framework of theories based on ordinary quantum
phase transitions implies that another important concept introduced by Landau, the
order parameter, also ceases to operate (see, e.g., [36, 38, 40, 44]). Thus, we are left
without the most fundamental principles of many-body quantum physics [18, 19,
24], and many interesting phenomena associated with the NFL behavior of strongly
correlated Fermi-systems remain unexplained.

NFL behavior manifests itself in the power-law behavior of the physical quantities
of strongly correlated Fermi-systems located close to their QCPs, with exponents
different from those of ordinary Fermi liquids [59, 60]. It is common belief that
the main output of theory is the explanation of these exponents which are at least
dependent on the magnetic character of QCP and dimensionality of the system. On
the other hand, the NFL behavior cannot be captured by these exponents as seen from
Fig. 1.2. Indeed, the specific heat C/T exhibits a behavior that is to be described as a
function of both temperature T andmagnetic B field rather than by a single exponent.
One can see that at low temperatures C/T demonstrates the LFL behavior which is
changed by the transition regime at which C/T reaches its maximum and finally
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Fig. 1.2 Electronic specific
heat of YbRh2Si2, C/T ,
versus temperature T as a
function of magnetic field B
[59] shown in the legend

C/T decays into NFL behavior as a function of T at fixed B. It is clearly seen from
Fig. 1.2 that, in particularly in the transition regime, these exponents may have little
physical significance.

To show that the behavior of C/T reported in Fig. 1.2 is of generic character, we
recollect that in the QCP vicinity it is helpful to use “internal” scales to measure the
effective mass M∗ ∝ C/T and temperature T [26–28, 61, 62]. As it is seen from
Fig. 1.2, a maximum structure in C/T ∝ M∗

M at temperature TM appears under the
application of magnetic field B and TM shifts to higher T as B is increased. The
value of the Sommerfeld coefficient C/T = γ0 is saturated towards lower tempera-
tures decreasing at elevated magnetic field. To obtain the normalized effective mass
M∗

N , we use M∗
M (maximal value of the effective mass) and TM as above “internal”

scales: The maximum value of C/T has been used to normalize C/T , and T was nor-
malized by TM . In Fig. 1.3 the obtained M∗

N = M∗/M∗
M as a function of normalized

Fig. 1.3 The normalized
effective mass M∗

N versus
normalized temperature TN .
M∗

N is extracted from the
measurements of the specific
heat C/T on YbRh2Si2 in
magnetic fields B [59] listed
in the legend. Constant
effective mass M∗

L inherent in
normal Landau Fermi liquids
is depicted by the solid line
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Fig. 1.4 The normalized
entropy SN versus normalized
temperature TN . SN is
extracted from the measure-
ments of the entropy S on 3He
at different number densities
x [63] shown in the legend.
The behavior of the entropy
S ∝ T inherent in normal
Landau Fermi liquids is
represented by the solid line

temperatureTN = T/TM is shown by symbols. Note that we have excluded the exper-
imental data for magnetic field B = 0.06 T. In that case, as will be shown, TM → 0
and the corresponding TM and M∗

M are unavailable. It is seen that the LFL and NFL
states are separated by the transition (or crossover) regime (or region) where M∗

N
reaches its maximal value. Figure1.3 reveals the scaling behavior of the normalized
experimental curves—the curves at different magnetic fields B merge into a single
one in terms of the normalized variable y = T/TM . As it is seen from Fig. 1.3, the
normalized effective mass M∗

N (y) extracted from the measurements is not a constant,
as would be for LFL, and shows the scaling behavior over three decades in normal-
ized temperature y. It is seen from Figs. 1.2 and 1.3 that the NFL behavior and the
associated scaling extend at least to temperatures up to few Kelvins. Scenario, where
order parameter fluctuations with infinite (or sufficiently large) correlation length
and time develop the NFL behavior, can hardly occur at such high temperatures. We
now briefly discuss how the scaling behavior of the normalized entropy, reported in
Fig. 1.4 and revealing the quantum criticality observed in 2D 3He [63]. This quantum
criticality is extremely significant as it allows us to detect the scaling behavior in the
2D system formed by 3He atoms which are essentially different from electrons. As
we shall see, the dependence of some observable like the entropy, obviously, do not
have “peculiar points” likemaxima. The normalization is to be performed in the other
points like the inflection point at T = Tinf shown in Fig. 1.4 by the arrow, for details
see Chap.18 and Sect. 18.4. It is seen from Fig. 1.4 that the normalized experimental
curves S(T) taken at different values of the number densities x merge into single
curve SN (TN ) = S(T/Tinf )/S(Tinf ). The observed behavior of SN strongly deviates

from that of the LFL one, and cannot be described by a function Sn(TN ) � Tβ
N .

Thus, we conclude that the proper explanation of scaling behavior of both M∗
N (y)

and SN (y) shown in Figs. 1.3 and 1.4 is a challenge for theories of critical behavior
of HF metals. While the existing theories are primarily dealing with calculations
of so-called critical exponents β that characterize M∗

N (y) and SN at y � 1, they
overlook the regime, signifying transition from LFL to NFL behavior, and are unable

http://dx.doi.org/10.1007/978-3-319-10825-4_18


16 1 Introduction

to explain both the LFL and scaling behavior, emerging under the application of
magnetic field. As we mentioned above, this transition regime is indeed related to
the quantum criticality of systems located near FCQPT. Another part of the problem
is the remarkably large temperature ranges over which the NFL behavior is observed.
Thus, we conclude that the influence of the critical point extends over a wide range
in T > 0. This is the regime of quantum criticality, which is crucial for interpreting a
wide variety of experiments.Aswewill see below, the above large temperature ranges
are precursors of the quantum critical point related with FCQPT and the emergence
of new quasiparticles. The latter fact, in turn, generates the scaling behavior of the
normalized effective mass that allows to explain the thermodynamic, transport and
relaxation properties of HF compounds at the LFL, transition and NFL regimes.

Taking into account the simple behavior shown in Figs. 1.3 and 1.4, we ask the
question: what theoretical concepts can replace the Fermi-liquid paradigm with the
notion of the effective mass in cases where the LFL theory breaks down? So far such
a concept within the framework of ordinary quantum phase transitions approach is
not available [26–28, 31]. Therefore, here in this book we focus on the FCQPT
concept that preserves the notion of quasiparticles and is intimately related to the
unlimited growth of the effective mass M∗. We shall show that this approach is
capable to reveal the scaling behavior of the effective mass and to deliver an adequate
theoretical explanation of a vastmajority of experimental results collected on strongly
correlated Fermi systems like HF metals, quasicrystals, quantum spin liquids, 2D
fermi-systems, etc. As we shall see, all these HF compounds exhibit a universal
scaling behavior at their quantum criticality, and constitute a new state of matter.
Thuswhichevermechanismdrives the system toFCQPT, the systemdemonstrates the
universal behavior, while there are lot of such mechanisms or tuning parameters like
the pressure, number density, magnetic field, chemical doping, frustration and etc.

In contrast to the Landau paradigm based on the assumption that M∗ is a constant
as shown by the solid line in Fig. 1.3, in FCQPT approach the effective mass M∗ of
new quasiparticles depends strongly on T , x, B etc. Therefore, to explain numerous
experimental data, the extended quasiparticles paradigm is to be introduced. The
main point here is that the new well-defined quasiparticles (with M∗ depending on
external parameters) determine, as before, the thermodynamic, relaxation and trans-
port properties of strongly correlated Fermi-systems in wide temperature range. The
FCQPT approach had been already successfully applied to describe the thermody-
namic properties of such different strongly correlated systems as 3He on the one
hand and complicated HF compounds and insulators with spin liquid on the other
[26–28, 46, 64–67].

1.1.4 Limits and Goals of the Book

This monograph presents a theory of strongly correlated compounds, i.e. HF metals,
high- Tc superconductors, substances with quantum spin liquids, quasicrystals, and
2D systems like 3He.Aswehave seen above, this extremelywide diversity of strongly
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correlated fermion systems represents, or introduces a new state of matter, demon-
strating in many cases the universal scaling behavior. Our aim is to show that diverse
strongly correlated Fermi-systems such as 3D HF metals, 2D Fermi liquids, com-
pounds with spin liquid and quasicrystals exhibit the quantum criticality, which can
be described within a unified approach based on FCQPT theory [12, 25–28]. We
discuss the construction of the theory and show that it is capable to explain the vast
majority of experimental facts in strongly correlated Fermi-systems. Our analysis is
in the context of salient experimental results. Our calculations of the non-Fermi liquid
behavior, the scales and thermodynamic, relaxation and transport properties are in
good agreementwith experimental facts.We shall focus on the scaling behavior of the
thermodynamic, transport and relaxation properties that can be revealed both from
experimental facts and theoretical analysis. We do not discuss, however, the specific
features of strongly correlated systems in full; instead, we focus on the universal
behavior of such systems. We also do not discuss the physics of Fermi-systems, that
are not related to condensed matter. Namely, these are neutron stars, atomic clus-
ters and nuclei, quark plasma, and ultra-cold gases in traps, where, according to our
views, the fermion condensate induced by FCQPT can also exist [68–73]. Ultra-cold
gases in traps are interesting because their easy tuning allows selecting the values of
the parameters required for observations of quantum critical point and FC. We also
do not discuss the specific microscopic mechanisms of quantum criticality related to
the emergence of FCQPT in a specific compound. Such mechanisms rely heavily on
crystalline structure of a specific substance and development of these mechanisms
seems not feasible in a near future. In contrast, we consider general mechanisms lead-
ing to the formation of flat bands, and analyze the common properties of strongly
correlated Fermi-systems in close connection with accessible experimental facts. For
example, the mechanism of quantum criticality, observed in f-electron materials, can
take place in the systemswhen the centers ofmerged single-particle levels “get stuck”
at the Fermi surface. One observes that this could provide a simple mechanism for
pinning narrow bands in solids to the Fermi surface [73]. Also, we consider high-Tc

superconductors within a coarse-grained model based on the FCQPT theory just to
illuminate their generic relationships with HF metals. When studying quasicrystals,
quantum spin liquids and 2D systems, we propose the corresponding mechanisms as
well. To stress the ubiquitous features of FCQPT, in Chap.16we consider its possible
role in the emergence of the Universe.

Experimental studies of the properties of quantum phase transitions and their
quantum critical points are very important for understanding the physical nature
of strongly correlated Fermi-systems. The experimental data, gathered on different
strongly correlated Fermi-systems, complement each other. In the case of high-Tc

superconductors, only few experiments dealing with their QCPs have been con-
ducted. This is because the corresponding QCPs are in the superconductivity range
at low temperatures and the physical properties of the respective quantum phase
transition are altered by the superconductivity. As a result, high magnetic fields are
needed to destroy the superconducting state. Such experiments can be conducted for
HF metals. Experimental research provides data for HF metals behavior, shedding
light on the nature of their critical points and phase transitions [41, 49, 52, 54].

http://dx.doi.org/10.1007/978-3-319-10825-4_16
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Hence, a complete understanding of unusual physical properties related to NFL
behavior, can be achieved on the base of simultaneous and comparative experimen-
tal studies of high-Tc superconductors,HFmetals and other correlated Fermi-systems
[55, 57, 58].

Since we are concentrated on the properties that are non-sensitive to the detailed
crystalline structure of the system,we avoid difficulties associatedwith the anisotropy
generated by the crystal lattice of solids, its special features, defects, etc., We study
the universal behavior of high-Tc superconductors, HF metals, quasicrystals, quan-
tum spin liquids, and 2D Fermi-systems at low temperatures using the model of
a homogeneous HF liquid [26–28, 61, 62]. The model is quite meaningful as we
consider the low-temperature scaling behavior of these compounds. This behavior
is closely related to the scaling of quantities like effective mass, heat capacity, ther-
mal expansion coefficient, etc. The aforementioned scaling is determined, primarily,
by long wave length properties of corresponding compound. In other words, they
are dealing with transfers of momenta with wave vectors, that are small compared
to those of the reciprocal lattice constant. The high momentum contributions can
therefore be ignored by substituting the lattice for the jelly model.

We analyze the universal properties of HF compounds systems using the FCQPT
theory [12, 25–28, 74], because the behavior of HFmetals already suggests that their
unusual properties can be associated with the QPT related to the infinite increase in
the effective mass at the critical point. Moreover, we shall see that both the scal-
ing behavior and the quantum criticality displayed in Figs. 1.3 and 1.4 can be quite
naturally captured within the framework of the above FCQPT related extended qua-
siparticle paradigm, which gives explanations of the NFL behavior observed in wide
range of HF compounds.
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Chapter 2
Landau Fermi Liquid Theory and Beyond

Abstract In this chapter we consider the Landau theory of the Fermi liquid that
has a long history and remarkable results in describing a numerous properties of the
electron liquid in ordinary metals and Fermi liquids of the 3He type. The theory is
based on the assumption that elementary excitations determine the physics at low
temperatures, resembling that of weakly interacting Fermi gas. These excitations
behave as quasiparticleswith a certain effectivemass. The effectivemass M∗ exhibits
a simple universal behavior, for it is independent of the temperature, pressure, and
magnetic field strength and is a parameter of the theory. Microscopically deriving
the equation determining the effective mass, we go beyond Landau approach and
analyze more complicated universal behavior of M∗ at the fermion condensation
quantum phase transition.

2.1 Quasiparticle Paradigm

One of the most complex problems of modern condensed matter physics is the prob-
lem of the structure and properties of Fermi systems with strong interparticle inter-
action. The first consistent theory of above systems had been proposed by Landau.
The main idea of Landau theory of Fermi liquids, later called “normal”, was to
describe the strongly interacting multi-fermion system in terms of some ground state
and its elementary excitations, which, being quantized, generate so-called Landau
quasiparticles. Contrary to ordinary particles in a Fermi liquid, which are strongly
interacting fermions, the quasiparticles are fictitious particles which are indeed the
quanta of above elementary excitations. In such a picture, the real physical interac-
tion between fermions (which in general case is unknown) is substituted by some
effective phenomenological interaction between quasiparticles, formulated in terms
of so-called Landau interaction (or amplitudes). This paradigm permits to reduce
the problem formally to the weakly-interacting Fermi gas, and introduces the effec-
tive interaction between quasiparticles [1–3]. The Landau approach can be regarded
as an effective low-energy theory with the high-energy degrees of freedom being
eliminated by introducing the above quasiparticle interaction, which substitute the
strong interaction between real particles. The invariability of the ground state of the
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Landau Fermi liquid (LFL) is determined by the Pomeranchuk stability conditions:
A system becomes unstable when at least one Landau interaction becomes negative
and reaches its critical value [2–4]. We note that the new phase, in which stability is
restored can also be described, in principle, by the LFL theory.

To make the presentation self-contained, here we briefly recapitulate the main
ideas of the LFL theory [1–3, 5]. The theory is based on the quasiparticle paradigm,
which states that quasiparticles are elementary weakly excited states of Fermi liquids
and are therefore specific excitations determining their low-temperature thermody-
namic and transport properties. In the case of the electron liquid, the quasiparticles
are characterized by the electron quantum numbers and the effective mass M∗. The
ground state energy of the system is a functional of the quasiparticle occupation
numbers (or the quasiparticle distribution function) n(p, T ), and the same is true
for the free energy F(n(p, T )), the entropy S(n(p, T )), and other thermodynamic
functions. We can find the distribution function from the minimum condition for the
free energy F = E − TS (hereafter we use atomic units, where kB = � = 1)

δ(F − μN )

δn(p, T )
= ε(p, T ) − μ(T ) − T ln

1 − n(p, T )

n(p, T )
= 0. (2.1)

Here μ is the chemical potential fixing the number density x :

x =
∫

n(p, T )
dp

(2π)3
(2.2)

and

ε(p, T ) = δE(n(p, T ))

δn(p, T )
(2.3)

is the quasiparticle energy. The quasiparticle energy, similar to the energy E , is a
functional of n(p, T ): ε = ε(p, T, n). The entropy S(n(p, T )) related to quasiparti-
cles is given by the well-known expression [1–3]

S(n(p, T )) = −2
∫ [

n(p, T ) ln(n(p, T )) + (1 − n(p, T ))

× ln(1 − n(p, T ))
] dp
(2π)3

, (2.4)

which follows from combinatorial reasoning. Equation (2.1) is usually written in the
standard form of the Fermi-Dirac distribution,

n(p, T ) =
{
1 + exp

[
(ε(p, T ) − μ)

T

]}−1

. (2.5)
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At T → 0, (2.1) and (2.5) reduce to n(p, T → 0) → θ(pF − p) if the deriva-
tive ∂ε(p � pF )/∂p is finite and positive. Here pF is the Fermi momentum and
θ(pF − p) is the unit step function. The single particle energy can be approximated
as ε(p � pF ) − μ � pF (p − pF )/M∗

L , where M∗
L is the effective mass of the

Landau quasiparticle,

1

M∗
L

= 1

p

dε(p, T = 0)

dp
|p=pF . (2.6)

In turn, the effectivemass M∗
L is related to the bare electronmassm by thewell-known

Landau equation [1–3, 5]

1

M∗
L

= 1

m
+

∑
σ1

∫
pF p1

p3F
Fσ,σ1(pF, p1)

× ∂nσ1(p1, T )

∂p1

dp1

(2π)3
. (2.7)

where Fσ,σ1(pF, p1) is theLandau interaction,which depends on themomentapF and
p and spin indices σ , σ1. For simplicity, we suppress the spin indices in the effective
mass as M∗

L is almost completely spin-independent in the case of a homogeneous
liquid and weak magnetic fields. The Landau interaction F is given by

Fσ,σ1(p, p1, n) = δ2E(n)

δnσ (p)δnσ1(p1)
. (2.8)

2.2 Pomeranchuk Stability Conditions

The stability of the ground state of LFL is determined by the Pomeranchuk stability
conditions: The considered system becomes unstable when at least one harmonic of
Landau interaction becomes negative and reaches its critical value [2–5]

Fa,s
L = −(2L + 1). (2.9)

Here Fa
L and Fs

L are the dimensionless spin-symmetric and spin-antisymmetric
Landau interactions, L is the angular momentum related to the corresponding Legen-
dre polynomials PL ,

Fσ,σ1(p, p1) = 1

N

∞∑
L=0

PL(Θ)
[
Fa

L σ,σ1
+ Fs

L

]
. (2.10)

Here Θ is the angle between momenta p, and the dimensionless Landau interaction
reads
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Fσ,σ1(p, p1) = NFσ,σ1(p, p1, n), (2.11)

where the density of states N = M∗
L pF/(2π2) and the Landau interaction Fσ,σ1

(p, p1, n) is given by (2.8). It follows from (2.7) that

M∗
L

m
= 1 + Fs

1

3
. (2.12)

In accordance with the Pomeranchuk stability conditions it is seen from (2.12) that
Fs
1 > −3, otherwise the effective mass becomes negative leading to unstable state

when it is energetically favorable to excite quasiparticles near the Fermi surface.
Below we again suppress the spin indices σ for simplicity.

2.3 Thermodynamic and Transport Properties

To deal with the transport properties of Fermi systems, one needs a transport equa-
tion describing slowly varying disturbances of the quasiparticle distribution function
np(r, t) which depends on position r and time t . As long as the transferred energy ω

and momentum q of the external field quanta are much smaller than the energy and
momentum of the quasiparticles, qpF/(T M∗

L) � 1, the quasiparticle distribution
function n(q, ω) satisfies the transport equation [1–3, 5]

∂np

∂t
+ ∇pεp∇rnp − ∇rεp∇pnp = I [np]. (2.13)

The left-hand side of (2.13) describes the dissipationless dynamic of quasiparticles
in phase space. The quasiparticle energy εp(r, t) now depends on its position and
time, and the collision integral I [np] measures the rate of the distribution function
variation due to collisions. The transport equation (2.13) allows one to calculate all
the transport properties of a Fermi-system. It should be emphasized here the role
of Umklapp processes discussed in Sect. 10.2. In particulary, these processes lead
to a nonzero contribution of FC to ρ0, and is associated with the presence of the
crystal lattice, more precisely, with the Umklapp processes, violating momentum
conservation [6]. We assume the presence of Umklapp processes in all cases when
the violation of momentum conservation is of importance.

It is common belief that the equations of this subsection are phenomenological
and inapplicable to describe Fermi systems where the effective mass M∗ depends
strongly on temperature T , external magnetic fields B, pressure P etc. At the same
time, many experimental data collected for HF metals reveal that the quasiparticle
effective mass strongly depends on T , B and doping (or the number density) x .
Moreover, in those cases the effective mass M∗ can reach very high values or even
diverge. As we have seen in Sect. 1.1, such a behavior is so unusual that the tradi-
tional Landau quasiparticles paradigm fails to describe it. Therefore, to reconcile the

http://dx.doi.org/10.1007/978-3-319-10825-4_10
http://dx.doi.org/10.1007/978-3-319-10825-4_1
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Landau quasiparticle picture with the experimental situation in the real substances,
the extended quasiparticles paradigm is to be introduced with still well-defined qua-
siparticles determining as before the thermodynamic and transport properties of
strongly correlated Fermi-systems. In this paradigm, the effective mass M∗ becomes
a function of T , x , B so that just this dependence gives rise to the experimentally
observed NFL behavior [7–13]. As we shall see in the following Sect. 2.3.1, the
extended quasiparticle paradigm permits to derive (2.7) microscopically.

2.3.1 Equation for the Effective Mass and the Scaling Behavior

To derive the equation determining the effective mass, we consider the model of a
homogeneous HF liquid and employ the density functional theory for superconduc-
tors (SCDFT) [14] which allows us to consider E as a functional of the occupations
numbers n(p) [10, 15–17]. As a result, the ground state energy E of the normal state
becomes the functional of the occupation numbers and the function of the number
density x , E = E(n(p), x), while (2.3) gives the single-particle spectrum. Upon
differentiating both sides of (2.3) with respect to p and after some algebra involving
integration by parts, we obtain [9, 10, 15, 16]

∂ε(p)

∂p
= p

m
+

∫
F(p, p1, n)

∂n(p1)

∂p1

dp1

(2π)3
. (2.14)

To calculate the derivative ∂ε(p)/∂p, we employ the functional representation

E(n) =
∫

p2

2m
n(p)

dp
(2π)3

+ 1

2

∫
F(p, p1, n)|n=0 n(p)n(p1)

dpdp1

(2π)6
+ · · · (2.15)

It is seen directly from (2.14) that the effective mass is given by the well-known
Landau equation

1

M∗ = 1

m
+

∫
pF p1

p3F
F(pF, p1, n)

∂n(p1)

∂p1

dp1

(2π)3
. (2.16)

Here we suppress the spin indices for simplicity. To calculate M∗ as a function of
T , we construct the free energy F = E − TS, where the entropy S is given by (2.4).
Minimizing F with respect to n(p), we arrive at the Fermi-Dirac distribution, (2.5).
The above derivation shows that (2.14) and (2.16) are exact and allow to calculate
the behavior of both ∂ε(p)/∂p and M∗ which now is a function of temperature T ,
external magnetic field B, number density x and pressure P rather than a constant.
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As we shall see, it is just this feature of M∗ that forms both the scaling and the NFL
behavior observed in measurements on HF metals.

It is assumed in LFL theory that M∗
L is positive, finite and independent of external

factors like field and/or temperature. As a result, the temperature-dependent correc-
tions to M∗

L , the quasiparticle energy ε(p) and other quantities begin with the term
proportional to T 2 in 3D systems. In this case, the effective mass is given by (2.16),
and the specific heat C is as follows [1]

C = 2π2NT

3
= γ0T = T

∂S

∂T
, (2.17)

and the spin susceptibility

χ = 3γ0μ2
B

π2(1 + Fa
0 )

, (2.18)

where μB is the Bohr magneton and γ0 ∝ M∗
L . In the LFL case, upon using the

transport (2.13) one finds for the electrical resistivity at low T [5]

ρ(T ) = ρ0 + AT αR , (2.19)

where ρ0 is the residual resistivity, the exponent αR = 2 and A ∝ (M∗)2 is the
coefficient determining the charge transport. This coefficient is proportional to the
quasiparticle-quasiparticle scattering cross-section. Equation (2.19) symbolizes and
defines the LFL behavior observed in normal metals.

Due to the normalization condition used in (2.11), (2.12) defines the implicit
dependence of the effective mass M∗ on the Landau interaction. Taking into account
(2.12) and introducing the density of states of a free Fermi gas, N0 = mpF/(2π2),
we obtain the effective mass M∗ as an explicit function of the Landau interaction
and the bare mass m [18–20]

M∗

m
= 1

1 − F1/3
, (2.20)

where F1 = N0 f 1, and f 1(pF , pF ) is the p-wave component of the Landau interac-
tion. Since x = p3F/3π2 in the LFL theory, the Landau interaction can be written as
F1(pF , pF ) = F1(x). Provided that at a certain critical point xFC, the denominator
(1−F1(x)/3) tends to zero, i.e. (1−F1(x)/3) ∝ (x−xFC) + a(x−xFC)2+· · · → 0,
we find that [21, 22]

M∗(x)

m
� a1 + a2

x − xFC
∝ 1

r
, (2.21)

where a1 and a2 are constants and r = (x − xFC)/xFC is the “distance” from QCP
xFC where M∗(x → xFC) → ∞. We note that the divergence of the effective mass
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given by (2.21) does preserve the Pomeranchuk stability conditions for F1 > −1,
see (2.9). As it was discussed above, (2.21) represents the explicit formula for the
effective mass, for F1 ∝ m, while Fs

1 ∝ M∗ and (2.12) represents an implicit
formula for the effective mass.

The behavior of M∗(x) described by formula (2.21) is in good agreement with
the results of experiments [23–27] and calculations [28, 29]. In the case of electron
systems, (2.21) holds for x > xFC, while for 2D 3He we have x < xFC so that always
r > 0. Such behavior of the effective mass is observed in HF metals, which have a
fairly flat and narrow conduction band corresponding to a large effective mass, with a
strong correlation and the effective Fermi temperature Tk ∼ p2F/M∗(x) of the order
of several dozen kelvins or even lower [30].

The effective mass as a function of the electron density x in a silicon MOSFET
(Metal Oxide Semiconductor Field Effect Transistor), approximated by (2.21), is
shown in Fig. 2.1. The constants a1, a2 and xFC are taken as fitting parameters. We
see that (2.21) provides a good description of the experimental results.

Thedivergenceof the effectivemass M∗(x)discovered inmeasurements involving
2D 3He [26, 27] is illustrated in Fig. 2.2. Figures2.1 and 2.2 shows that the description
provided by (2.21) does not depend on the nature of constituting fermions and is in
good agreement with the experimental data.

To illustrate the ability of the extended quasiparticle paradigm to capture the
observed scaling behavior of M∗, it is instructive to explore it briefly here, whilemore
detailed consideration is reserved for Chap. 6. For that, we write the quasiparticle
distribution function as n1(p) = n(p, T ) − n(p), with n(p) being the step function,
and (2.16) then becomes

1

M∗(T )
= 1

M∗ +
∫

pF p1

p3F
F(pF, p1)

∂n1(p1, T )

∂p1

dp1

(2π)3
. (2.22)

Fig. 2.1 The ratio M∗/M in
a silicon MOSFET as a
function of the electron
number density x . The
squares mark the
experimental data on the
Shubnikov-de Haas
oscillations. The data
obtained by applying a
parallel magnetic field are
marked by circles [23–25].
The solid line represents the
function (2.21)

http://dx.doi.org/10.1007/978-3-319-10825-4_6


28 2 Landau Fermi Liquid Theory and Beyond

Fig. 2.2 The ratio M∗/M in
2D 3He as a function of the
density x of the liquid,
obtained from heat capacity
and magnetization
measurements. The
experimental data are marked
by black squares [26, 27],
and the solid line represents
the function given by (2.21),
where a1 = 1.09,
a2 = 1.68 nm−2, and
xFC = 5.11 nm−2

At QCP x → xFC, the effective mass M∗(x) diverges and (2.22) becomes homo-
geneous determining M∗ as a function of temperature while the system exhibits the
NFL behavior. If the system is located before QCP, M∗ is finite so that at low tem-
peratures the integral on the right hand side of (2.22) represents a small correction
to 1/M∗ and the system demonstrates the LFL behavior seen in Figs. 1.2 and 1.3.
The LFL behavior assumes that the effective mass is independent of temperature,
M∗(T ) � const, as shown by the horizontal line in Fig. 1.3. Obviously, the LFL
behavior takes place only if the second term on the right hand side of (2.22) is small
in comparison with the first one. In the case of common metals the effective mass
M∗ ∼ m and the Fermi energy is EF ∼ 1 eV. Then, the integral I on the right hand
side of (2.22) satisfies the condition M∗ I � 1 even at room temperatures. As a
result, M∗(T ) � M∗(T = 0). As soon as the effective mass M∗(x) diverges, as it
is shown in Fig. 2.2 the condition M∗ I � 1 ceases to be valid at some temperature
T ∼ TM . Thus, at temperatures T ∼ TM the system enters the transition regime:
M∗ grows, reaching its maximum M∗

M at T = TM , with subsequent diminishing. As
seen from Fig. 1.3, near temperatures T ≥ TM the last “traces” of LFL regime disap-
pear, the second term in (2.22) starts to dominate, and again this equation becomes
homogeneous so that the NFL behavior is restored, manifesting itself in decreasing
M∗ as a function of T . As we shall see below, the above solution of (2.22) generates
the scaling behavior of the effective mass, resulting in the experimentally observed
universal (i.e. independent on microscopic structure of specific substance) properties
of HF compounds at their quantum criticality.

http://dx.doi.org/10.1007/978-3-319-10825-4_1
http://dx.doi.org/10.1007/978-3-319-10825-4_1
http://dx.doi.org/10.1007/978-3-319-10825-4_1
http://dx.doi.org/10.1007/978-3-319-10825-4_1
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Chapter 3
Fermi Liquid with Fermion Condensate

Abstract Herewediscuss the general properties of FCQPT leading to the emergence
of FC. We present a microscopic derivation of the main equations of FC, and show
that Fermi systems with FC form an entirely new class of Fermi liquids with its own
topological structure, protecting the FC state. We construct the phase diagram, and
explore the order parameter of these systems. We show that the fermion conden-
sate has a strong impact on the observable physical properties of systems, where it
is realized, up to relatively high temperatures of a few tens kelvin. Two different
scenarios of the quantum critical point (QCP), a zero-temperature instability of the
Landau state, related to the divergence of the effective mass, are also investigated.
Flaws of the standard scenario of the QCP, where this divergence is attributed to the
occurrence of some second–order phase transition, are demonstrated.

3.1 The Fermion-Condensation Quantum Phase Transition

As it is shown in Sect. 2.2, the Pomeranchuk stability conditions do not encompass
all possible types of instabilities and that at least one related to the divergence of
the effective mass given by (2.21) was overlooked [1]. This type of instability cor-
responds to a situation where the effective mass, the most important characteristic
of a quasiparticle, can become infinitely large. As a result, the quasiparticle kinetic
energy is infinitely small near the Fermi surface and the quasiparticle distribution
function n(p) minimizing E(n(p)) is determined by the potential energy. This leads
to the formation of a new class of strongly correlated Fermi liquids with fermion
condensate (FC) [1–4], separated from the normal Fermi liquid by FCQPT [5–7].

It follows from (2.21) that at T = 0 and r → 0 the effective mass diverges,
M∗(r) → ∞. Beyond the critical point xFC , the distance r becomes negative and,
correspondingly, so does the effective mass. To avoid an unstable and physically
meaningless state with a negative effectivemass, the systemmust undergo a quantum
phase transition at the critical point x = xFC , which, as wewill see shortly, is FCQPT
[5–7]. As the kinetic energy of quasiparticles near the Fermi surface is proportional to
the inverse effective mass, their potential energy determines the ground-state one as
x → xFC . Hence, a phase transition reduces the energy of the system and transforms
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32 3 Fermi Liquid with Fermion Condensate

Fig. 3.1 The single-particle spectrum ε(p) and the quasiparticle distribution functionn(p). Because
n(p) is a solution of (3.1), we have n(p < pi ) = 1, 0 < n(pi < p < p f ) < 1, and n(p > p f ) = 0,
while ε(pi < p < p f ) = μ. The Fermi momentum pF satisfies the condition pi < pF < p f

the quasiparticle distribution function. Beyond QCP x = xFC , the quasiparticle
distribution is determined by the ordinary equation for a minimum of the energy
functional [1]:

δE(n(p))

δn(p, T = 0)
= ε(p) = μ; pi ≤ p ≤ p f . (3.1)

Equation (3.1) yields the quasiparticle distribution function n0(p) that minimizes
the ground-state energy E . This function found from (3.1) differs from the step
function in the interval from pi to p f , where 0 < n0(p) < 1, and coincides with the
step function outside this interval. In fact, (3.1) coincides with (2.3) provided that
the Fermi surface at p = pF transforms into the Fermi volume at pi ≤ p ≤ p f

suggesting that the single-particle spectrum is absolutely “flat” within this interval. A
possible solution n(p) of (3.1) and the corresponding single-particle spectrum ε(p)

are depicted in Fig. 3.1. Quasiparticles with momenta within the interval (p f − pi )

have the same single-particle energies equal to the chemical potentialμ and form FC,
while the distribution function n0(p) describes the new state of the Fermi liquid with
FC [1, 2, 4]. In contrast to the Landau, marginal, or Luttinger Fermi liquids [8–10],
which exhibit the same topological structure of the Green’s function, in systems with
FC, where the Fermi surface spreads into a strip, the Green’s function belongs to a
different topological class. The Green’s function of systems with FC is considered
in Sects. 3.2 and 5.1.1. The topological class of the Fermi liquid is characterized by
the invariant [4, 11, 12]

Nt = tr
∮

C

dl

2π i
G(iω, p)∂l G

−1(iω, p), (3.2)

http://dx.doi.org/10.1007/978-3-319-10825-4_2
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where “tr” denotes the trace over the spin indices of the Green’s function and the
integral is taken along an arbitrary contourC encircling the singularity of the Green’s
function. The invariant Nt in (3.2) takes integer values even when the singularity is
not of the pole type, cannot vary continuously, and is conserved in a transition from
the Landau Fermi liquid to marginal liquids and under small perturbations of the
Green’s function. As it was shown by Volovik [4, 11, 12], the situation is quite
different for systems with FC, where the invariant Nt becomes a half-integer and the
system with FC transforms into an entirely new class of Fermi liquids with its own
topological structure, thus forming a new state of matter protected by the topological
invariant given by (3.2).

A few remarks are in order here. As it was shown above, the solutions of (3.1)
describe the topologically protected new state of matter. Equation (3.1) represents an
ordinary one to search the minimum of functional E . In the case of Bose system the
equation δE/δn(p) = μ describes a common instance. In the case of Fermi systems
such an equation, generally speaking, were not correct. Thus, it is the FC state, taking
place behind FCQPT, that makes (3.1) applicable for Fermi systems. Thus, Fermi
quasiparticles in the region pi < p < p f can behave as Bose one, occupying the
same energy level ε = μ, and (3.1) yields the quasiparticle distribution function
n0(p) that minimizes the ground-state energy E . This state can be viewed as the
state possessing the supersymmetry (SUSY) that interchanges bosons and fermions
eliminating the difference between them. In the strongly coupling limit when the
Pauli restriction n(p) < 1 is automatically met and all the quasiparticles form the
FC state, p f is determined by the condition

x =
p f∫

0

n0(p)
p2dp

π2 . (3.3)

In that case SUSY is restored over all the configuration space. We shall see that
SUSY emerges naturally in condensed matter systems known as HF compounds.
In Chap.13, we shall see that emerging the FC state accompanied by SUSY vio-
lates the time invariance symmetry, while in Chap.16 we demonstrate that emerging
SUSY violates the baryon symmetry of the Universe. Thus restoring one important
symmetry, the FC state violates another essential symmetry.

3.1.1 The FCQPT Order Parameter

We start with visualizing the main properties of FCQPT. To this end, again consider
the density functional theory for superconductors (SCDFT) [13]. SCDFT states that
the thermodynamic potential Φ is a universal functional of the number density n(r)
and the anomalous density (or the order parameter) κ(r, r1), providing a variational
principle to determine the densities. At the superconducting transition temperature

http://dx.doi.org/10.1007/978-3-319-10825-4_13
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Tc a system undergoes the second order phase transition into superconducting state.
Our goal now is to construct a quantum phase transition which evolves from the
superconducting one.

Let us recall that the vanishing of coupling constant λ0 of the BCS-like pairing
interaction [14] implies the disappearance of the superconducting gap at any finite
temperature, see Chap. 5. In that case, Tc → 0 and the superconducting state occurs
at T = 0 so that at finite temperatures there is a normal state only. This means that
at T = 0 the anomalous density

κ(r, r1) = 〈Ψ↑(r)Ψ↓(r1)〉 (3.4)

is finite, while the superconducting gap

Δ(r) = λ0

∫
κ(r, r1)dr1 (3.5)

is infinitely small [15–17]. In (3.4), the field operator Ψσ (r) annihilates an elec-
tron of spin σ, σ =↑,↓ at the position r. For the sake of simplicity, we consider
the model of homogeneous HF liquid [15, 16]. Then at T = 0, the thermody-
namic potential Φ reduces to the ground state energy E which turns out to be a
functional of the occupation number n(p) since in that case the order parameter
κ(p) = v(p)u(p) = √

n(p)(1 − n(p)). Latter expression relates the order parameter
κ to the coefficients u(p) and v(p) of Bogoluybov transformation, diagonalizing the
correspondingHamiltonian in electron (fermion) creation and annihilation operators,
see e.g., [18]. More precisely,

n(p) = v2(p), κ(p) = v(p)u(p), (3.6)

where for fermions the parametersu(p) and v(p) are normalized so as v2(p)+u2(p) =
1, see also [18].

Minimization of E over n(p) yields (3.1). If (3.1) has nontrivial solution n0(p)

then instead of the Fermi step we have 0 < n0(p) < 1 in certain range of momenta
pi ≤ p ≤ p f . In this case, as n0(p) is neither 0 nor 1, the order parameter κ(p) =√

n0(p)(1 − n0(p)) becomes finite in this range, while the single particle spectrum
ε(p) is flat. Thus, the step-like Fermi occupation restructures inevitably and forms
FC when (3.1) possesses the nontrivial solution at some x = xc. This solution is
indeed a QCP of FCQPT. In QCP point one has pi → p f → pF so that the effective
mass M∗ diverges [1, 15, 16, 19]

[
M∗(x → xc)

]−1 = 1

pF

∂ε(p)

∂p

∣∣∣∣ p→pF
x→xc

→ 0. (3.7)

At any small but finite temperature the order parameter (anomalous density) κ decays
and this state undergoes the first order phase transition converting into a normal state
with thermodynamic potential Φ0. Indeed, at T → 0, the entropy S = −∂Φ0/∂T

http://dx.doi.org/10.1007/978-3-319-10825-4_5
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of the normal state is given by (2.4). It is seen from (2.4) that the normal state is
characterized by the temperature-independent entropy S0 [15, 16, 19, 20]. Since the
entropy of the superconducting ground state is zero, we conclude that the entropy is
discontinuous at the phase transition point with the gap δS = S0. Thus, the system
undergoes thefirst order phase transition.Theheatq of this transition isq = Tc S0 = 0
since Tc = 0. Because of the stability condition at the point of the first order phase
transition, we have Φ0(n(p)) = Φ(κ(p)). Obviously the condition is satisfied since
q = 0. We postpone more detailed discussion of the superconductivity (and related
Green’s functions) of the systems with FC to Chap. 5.

3.1.2 Quantum Protectorate Related to FCQPT

Like any other phase transition, the FCQPT comprises strong interparticle interaction
so that there is no way to describe reliably all its details within approaches based on a
perturbation theory or some schemes using diagrams. On the other hand, as we have
seen above, SCDFT represents reliable theory. Then, the next way to confirm the
FC existence is to study the model systems, which admit the exact solutions. Such
theoretical studies should be augmented by careful examination of experimental
data that could be interpreted in favor (or to the detriment) of FC existence. Exactly
solvable models unambiguously suggest that Fermi systems with FC exist (see, e.g.,
[21–24]). Taking the results of topological investigations into account, we can affirm
that the newclass of Fermi liquidswithFC is nonempty, actually exists, and represents
an extended family of new states of Fermi systems [4, 11, 12].

We note that the solutions n0(p) of (3.1) are new solutions of the well-known
equations of the Landau Fermi-liquid theory. Indeed, at T = 0, the standard solution
given by a step function, n(p, T → 0) → θ(pF − p), is not the only possible one.
Anomalous solutions ε(p) = μ of (2.1) can exist if the logarithmic expression on its
right-hand side is finite. This is possible if 0 < n0(p) < 1 for pi ≤ p ≤ p f . Then,
this logarithmic expression remains finite within this interval as T → 0, the product
T ln[(1 − n0(p))/n0(p)]|T →0 → 0, and we again arrive at (3.1).

Thus, as T → 0, the quasiparticle distribution function n0(p), which is a solution
of (3.1), does not tend to the step function θ(pF − p) and, correspondingly, in
accordance with (2.4), the entropy S(T ) of this state tends to a finite value S0 as
T → 0:

S(T → 0) → S0. (3.8)

As the density x → xFC (or as the interaction force increases), the system reaches
QCP where FC is formed. This means that pi → p f → pF and that the deviation
δn(p) from the step function is small. Expanding the function E(n(p)) in Taylor
series in δn(p) and keeping only the leading terms, we can use (3.1) to obtain the

http://dx.doi.org/10.1007/978-3-319-10825-4_2
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following relation that is valid for pi ≤ p ≤ p f :

μ = ε(p) = ε0(p) +
∫

F(p, p1)δn(p1)
dp1

(2π)2
. (3.9)

Both quantities, the Landau interaction F(p, p1) and the single-particle energy ε0(p),
are calculated at n(p) = θ(pF − p).

Equation (3.9) has nontrivial solutions for densities x ≤ xFC if the corresponding
Landau interaction, which is density-dependent, is positive and sufficiently large
for the potential energy to be higher than the kinetic energy. For instance, such a
state is realized in a low-density electron liquid. The transformation of the Fermi
step function n(p) = θ(pF − p) into a smooth function determined by (3.9) then
becomes possible [1, 2, 25].

It follows from (3.9) that the quasiparticles of FC form a collective state, because
their state is determined by the macroscopic number of quasiparticles with momenta
pi < p < p f . The shape of the FC single-particle spectrum is independent of
the Landau interaction details, which in general is determined by the microscopic
properties of the system like chemical composition, collective states, structure irreg-
ularities and the presence of impurities. The only characteristic determined by the
Landau interaction is the length of interval (from pi to p f ) of FC existence. Of
course, the interaction must be strong enough for FCQPT to occur. Therefore, we
conclude that spectra related to FC have a universal shape. In Sects. 3.1.3 and 5.1 we
show that these spectra depend on temperature and the superconducting gap and that
this dependence is also universal. The existence of such spectra can be considered
a characteristic feature of a “quantum protectorate”, in which the properties of the
material, including the thermodynamic properties, are determined by a certain fun-
damental principle [26, 27]. In our case, the state of matter with FC is also a quantum
protectorate, since the new type of quasiparticles of this state determines the special
universal thermodynamic and transport properties of Fermi liquids with FC.

3.1.3 The Influence of FCQPT at Finite Temperatures

According to (2.1), the single-particle energy ε(p, T ) is linear in T for T � T f for
p f < p < pi [28]. Expanding ln((1− n(p))/n(p)) in series in n(p) at p � pF , we
arrive at the expression

ε(p, T ) − μ(T )

T
= ln

1 − n(p)

n(p)
� 1 − 2n(p)

n(p)

∣∣∣∣
p�pF

, (3.10)

where T f is the temperature above which the effect of FC is insignificant [29]:

T f

εF
∼ p2f − p2i

2mεF
∼ ΩFC

ΩF
. (3.11)

http://dx.doi.org/10.1007/978-3-319-10825-4_5
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Here ΩFC is the volume occupied by FC, εF is the Fermi energy and ΩFC is the
volume of the Fermi sphere. Taking ΩF/Ω ∼ 0.1 and εF ∼ 100K, we obtain
T f ∼ 10K, and conclude that the NFL behavior can take place up temperatures
of several 10K. We note that for T � T f , the occupation numbers n(p) obtained
from (3.1) are almost perfectly independent of T [28–30]. At finite temperatures,
according to (3.10), the dispersionless plateau ε(p) = μ shown in Fig. 3.1 is slightly
rotated counterclockwise relatively to μ, so that ε(p) − μ = T ln[(1− n p)/n p]. As
a result, the plateau is slightly tilted and rounded off at its end points. According to
(2.6) and (3.10), the effective mass M∗

FC of the FC quasiparticles is given by

M∗
FC � pF

p f − pi

4T
. (3.12)

To derive (3.12), we approximate dn(p)/dp � −1/(p f − pi ). Equation (3.12)
shows clearly that for 0 < T � T f , the electron liquid with FC behaves as if it were
placed at a QCP since the electron effective mass diverges as T → 0. Actually, as
we shall see in Sect. 5.3, the system is at a quantum critical line as critical behavior
is observed behind QCP with x = xFC of FCQPT as T → 0. In Chap.8, we show
that the behavior of such a system differs dramatically from that of a system at QCP.

The (3.11) and (3.12) permit to estimate the effective mass M∗
FC in the form

M∗
FC

M
∼ N (0)

N0(0)
∼ T f

T
, (3.13)

where N0(0) is the density of states of a noninteracting electron gas and N (0) is
the density of states at the Fermi surface. Equations (3.12) and (3.13) yield the
temperature dependence of M∗

FC .
Multiplying both sides of (3.12) by p f − pi , we obtain an expression for the

characteristic energy,

E0 � 4T, (3.14)

which determines the momentum interval p f − pi having the low-energy quasiparti-
cles with the energy |ε(p)−μ| ≤ E0/2 and the effective mass M∗

FC . The quasiparti-
cles that do not belong to this momentum interval have an energy |ε(p)−μ| > E0/2
and an effective mass M∗

L that is weakly temperature-dependent [6, 7, 31]. Equation
(3.14) shows that E0 is independent of the condensate volume. We conclude from
(3.12) and (3.14) that for T � T f , the single-electron spectrum of FC quasiparticles
has a universal shape and has the features of a quantum protectorate.

The above discussion shows that a system with FC is characterized by two effec-
tive masses, M∗

FC and M∗
L . This fact manifests itself in the abrupt variation of the

quasiparticle dispersion law, which for quasiparticles with energies ε(p) ≤ μ can
be approximated by two straight lines intersecting at E0/2 � 2T . Figure3.1 shows
that at T = 0, the straight lines intersect at p = pi . This also occurs when the
system is in its superconducting state at temperatures Tc ≤ T � T f , where Tc is

http://dx.doi.org/10.1007/978-3-319-10825-4_2
http://dx.doi.org/10.1007/978-3-319-10825-4_5
http://dx.doi.org/10.1007/978-3-319-10825-4_8
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the critical temperature of the superconducting phase transition, which agrees with
the experimental data of [32]. We will see in Sect. 5.1 that this behavior also agrees
with the experimental data at T ≤ Tc. At T > Tc, the quasiparticles are well-defined
as their width γ is small compared to their energy and is proportional to the tem-
perature, γ ∼ T [29, 33]. The quasiparticle excitation curve (see Sect. 5.2) can be
approximately described by a simple Lorentzian [31], which also agrees with the
experimental data [32, 34–36].

We now estimate the density xFC at which FCQPT occurs. We show in Sect. 5.4
that an unlimited increase of the effective mass precedes the appearance of a density
wave or a charge density wave formed in electron systems at rs = r0/aB = rcdw,
where r0 is the average distance between electrons, and aB is the Bohr radius. Hence,
FCQPTcertainly occurs at T = 0when rs reaches its critical value rFC corresponding
to xFC , with rFC < rcdw [25]. We note that the increase of the effective mass at the
electron number density decrease has been observed experimentally, see Figs. 2.1
and 2.2.

Thus, the formation of FC can be considered as a general property of different
strongly correlated systems rather than an exotic phenomenon corresponding to the
anomalous solution of (3.1). Beyond FCQPT, the condensate volume is proportional
to rs − rFC , with T f /εF ∼ (rs − rFC)/rFC , at least when (rs − rFC)/rFC � 1. This
implies that [15, 16]

rs − rFC

rFC
∼ p f − pi

pF
∼ xFC − x

xFC
. (3.15)

Since a state of a system with FC is highly degenerate, FCQPT serves as a stimulator
of phase transitions that could lift the degeneracy of the spectrum at the interval
p f − pi . For instance, FC can stimulate the formation of spin density waves, antifer-
romagnetic and/or ferromagnetic state etc., thus strongly stimulating the competition
betweenphase transitions eliminating the degeneracy. Thepresence of FC facilitates a
transition to the superconducting state as both phases have the same order parameter.

3.1.4 Phase Diagram of Fermi System with FCQPT

At T = 0, a quantumphase transition is driven by a nonthermal control parameter like
number density x . As we have seen, at QCP, x = xFC , the effective mass diverges. It
follows from (2.21) that beyond QCP, the effective mass becomes negative. As such
a physically meaningless state cannot be realized, the system undergoes FCQPT
leading to the FC formation.

The schematic phase diagrams of the systems which are driven to the FC state by
variation of x are reported in Fig. 3.2. The panel a displays the case when FCQPT
takes place at growing densities. As we have seen in Sect. 3.1, FCQPT occurs as
soon as the potential energy of the quasiparticles near the Fermi surface determines
the ground-state energy. Therefore, the panel a represents the phase diagram of a
system composed of particles interacting with each other by van-der-Waals forces

http://dx.doi.org/10.1007/978-3-319-10825-4_5
http://dx.doi.org/10.1007/978-3-319-10825-4_5
http://dx.doi.org/10.1007/978-3-319-10825-4_5
http://dx.doi.org/10.1007/978-3-319-10825-4_2
http://dx.doi.org/10.1007/978-3-319-10825-4_2
http://dx.doi.org/10.1007/978-3-319-10825-4_2
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(a)

(b)

Fig. 3.2 Schematic temperature—number density phase diagrams of the systems with FC. The
panel a displays the phase diagram for the case when the FCQPT takes place at growing densities,
while the panel b displays the opposite case. The number density x is taken as the control parameter
and depicted as x/xFC . The dashed line shows M∗(x/xFC) as the system approaches FCQPT,
marked by the arrow. The shadowed area in the panel a corresponds to the case x/xFC < 1 and
sufficiently low temperatures, where the system is in the LFL phase. This case in the panel b
corresponds to x/xFC > 1. At T = 0 and beyond the FCQPT critical point, the system is at the
quantum critical line as shown in the legend. This critical line is characterized by the FC state with
finite superconducting order parameter κ . At any finite temperature T > Tc = 0, κ is destroyed so
that the system undergoes the first order phase transition, possesses finite entropy S0 and exhibits
the NFL behavior at any finite temperatures T < T f

with strong hardcore repulsion. At elevated densities the potential energy overcomes
the kinetic one leading to FC emergence, which is the case for 2D 3He films, see
Sect. 18.4. The panel b displays the opposite case which occurs in electronic systems,
when the potential energy dominates at lowering densities, see Sect. 5.4 for details.
The similarity of the both diagrams reflects the universal behavior of systems located
near FCQPT, as it is discussed in Chap.18.

http://dx.doi.org/10.1007/978-3-319-10825-4_18
http://dx.doi.org/10.1007/978-3-319-10825-4_5
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Figure3.2 demonstrates that upon approaching the critical density xFC the
system remains in the LFL region at sufficiently low temperatures as it is shown
by the shadowed area. The temperature range of the shadowed area shrinks as the
system approaches FCQPT, and M∗(x/xFC) diverges as shown by the dashed line
and (2.21). At FCQPT xFC shown by the arrow in Fig. 3.2, the system demonstrates
the NFL behavior down to the lowest temperatures. Beyond the critical point at finite
temperatures the behavior remains the NFL and is determined by the temperature-
independent entropy S0 [15, 16, 20]. In that case at T → 0, the system is approaching
a quantum critical line (shown in the legend) rather than a quantum critical point.
Upon reaching the quantum critical line from the above at T → 0 the system under-
goes the first order quantum phase transition, which is FCQPT taking place at Tc = 0.
At the same time, at temeparture lowering for x before QCP (which is x < xFC in
panel a and x > xFC in panel b) the system does not undergo a phase transition and
transits smoothly from NFL to LFL phase.

It is seen from Fig. 3.2 that at finite temperatures there is no boundary (or phase
transition) between the states of systems located before or after FCQPT. There-
fore, at elevated temperatures the properties of systems with x/xFC < 1 or with
x/xFC > 1 become indistinguishable. On the other hand, at T > 0 the NFL state
above the critical line and in the QCP vicinity is strongly degenerate so that the
degeneracy stimulates different phase transitions, which finally lift it. The lifting of
the degeneracy means that the NFL state can be obscured by the other states like
superconducting (for example, in CeCoIn5 [17, 20]) or antiferromagnetic (for exam-
ple in YbRh2Si2 [37]) etc. The diversity of low-temperature phase transitions is one
of the most spectacular features of the physics of many of HF metals. The scenario
of ordinary quantum phase transitions makes it hard to understand why they are so
different and why their critical temperatures are so small. However, such diversity is
endemic to systems with a FC [19].

Upon varying nonthermal tuning parameters like the number density, pressure or
magnetic field, the NFL behavior could be destroyed and the LFL one is restored as
we shall see inChaps. 6 and 8. For example, the application ofmagnetic field B > Bc0
drives a system to QCP and destroys the AF state restoring the LFL behavior. Here,
Bc0 is a critical magnetic field, such that at B > Bc0 the system is driven towards
its LFL state. In some cases as in the HF metal CeRu2Si2, Bc0 = 0, see e.g., [38],
while in YbRh2Si2, Bc0 � 0.06 T [39].

3.2 Two Scenarios of the Quantum Critical Point

The statement that the Landau quasiparticle picture breaks down at points of second–
order phase transitions has become a truism. The violation of this picture is attributed
to vanishing of the quasiparticle weight z in the single-particle state. In nonsuperfluid
Fermi systems, the z-factor is determined by the formula z = [1−(∂Σ(p, ε)/∂ε)0]−1

where the subscript 0 indicates that the respective derivative of the mass operator Σ

http://dx.doi.org/10.1007/978-3-319-10825-4_2
http://dx.doi.org/10.1007/978-3-319-10825-4_6
http://dx.doi.org/10.1007/978-3-319-10825-4_8
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is evaluated at the Fermi surface. This factor enters a textbook formula

M

M∗ = z

[
1 +

(
∂Σ(p, ε)

∂ε0p

)

0

]
(3.16)

for the ratio M∗/M of the effective mass M∗ to the mass M of a free particle. As
seen from this formula, where ε0p = p2/2M , the effective mass diverges at a critical

density ρc, where z vanishes provided the sum 1 +
(
∂Σ(p, ε = 0)/∂ε0p

)
0
has a

positive and finite value at this point. Nowadays, when studying critical fluctuations
of arbitrary wave-lengths k < 2pF has become popular, this restriction is often
assumed to be met without stipulations. E.g., a standard scenario of the quantum
critical point where M∗ diverges is formulated as follows: in the vicinity of an
impending second-order phase transition, “quasiparticles get heavy and die” [40].

However, as seen from (3.16), M∗ may diverge not only at the points of the
second-order phase transitions, but also at a critical density ρ∞, where the sum

1 +
(

∂Σ(p,ε)

∂ε0p

)
0
changes its sign. Furthermore, we will demonstrate that except for

the case of the ferromagnetic instability, M∗ cannot diverge at ρc without violation
of stability conditions [41].

In what follows we restrict ourselves to one-component three-dimensional (3D)
homogeneous Fermi liquids, where the particle momentum is conserved, and the
Landau equation, connecting the quasiparticles groupvelocity ∂ε/∂p to theirmomen-
tum distribution n(p) in terms of the interaction function f , has the form [18]

∂ε(p)

∂p
= p

M
+

∫
f (p, p1)

∂n(p1)

∂p1

d3 p1
(2π)3

. (3.17)

Setting here p = pF and introducing the notation vF = (dε(p)/dp)0 = pF/M∗,
one obtains

vF = pF

M

(
1 − pF M

3π2 f1

)
, (3.18)

implying that

M

M∗ = 1 − 1

3

pF M

π2 f1 . (3.19)

Hereafter we employ notations of Fermi liquid (FL) theory where f1 is the first
harmonic of the interaction function f (θ) = z2Γ ω(pF , pF ; θ), with Γ ω being the
ω-limit of the scattering amplitude Γ of two particles, whose energies and incom-
ing momenta p1, p2 lie on the Fermi surface, with cos θ = p1 · p2/p2F , while the
4-momentum transfer (q, ω) approaches zero, such that qpF/ω → 0. In what
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Fig. 3.3 This figure illustrates the singular contributions to the scattering amplitude in the vicinity
of the second–order phase transition

follows we shall use Γ k , that is the k-limit of the scattering amplitude Γ . In that
case the energy transfer (q, ω) approaches zero, such that ω/qpF → 0.

It is instructive to rewrite (3.19) in terms of the k-limit of the dimensionless
scattering amplitude νΓ k = A+ Bσ1σ2 where ν = z2 pF M∗/π2 is the quasiparticle
density of states. Simple algebra then yields

M

M∗ = 1 − 1

3
A1. (3.20)

This formula stems from (3.19) and relation [18] A1 = Φ1/(1 + Φ1
3 ), where Φ1

is the spin-independent part of the product νΓ ω. Thus at the density ρ∞ where the
effective mass diverges one has

A1(ρ∞) = 3 , Φ1(ρ∞) = ∞ . (3.21)

In the following we focus on critical density fluctuations with kc �= 0. First we
notice that there is a strong dependence of the amplitudeΓαβ,γ δ(p1, p2, k, ω = 0) on
the momentum transfer k close to the critical momentum kc, specifying the spectrum
of density fluctuations. That fact stems from the asymmetry of Γ with respect to the
interchange of momenta and spins of colliding particles. In this case, upon neglecting
regular components one finds (see as illustration Fig. 3.3),

A(p1, p2, k, ω = 0; ρ → ρc) = −D(k) + 1

2
D(p1 − p2 + k), (3.22)

with

D(k → kc, ω = 0) = g

ξ−2(ρ) + (k − kc)2
, (3.23)

the correlation length ξ(ρ) diverging at ρ = ρc.
Within the quasiboson approximation (for details see e.g., [42]), the derivative

(∂Σ(p, ε)/∂ε)0 diverges at ρ → ρc as ξ(ρ), while the derivative
(
∂Σ(p, ε)/∂ε0p

)
0
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remains finite at any kc. If these results were correct, then the densities ρ∞ and
ρc would coincide, in agreement with the standard scenario of the QCP. However,
calculations of harmonics Ak(ρ) of the amplitude A(pF , pF , cos θ) from (3.22) to
(3.23) yield

A0(ρ→ρc) = g
π

2

kcξ(ρ)

p2F
, A1(ρ→ρc) = g

3π

2

kcξ(ρ)

p2F
cos θ0. (3.24)

We see that the sign of A1(ρ → ρc), coinciding with that of cos θ0 = 1 − k2c /2p2F ,
turns out to be negative at kc > pF

√
2. According to (3.20) this implies that at the

point of the second–order phase transition, the ratio M∗(ρc)/M < 1. Thus we infer
that at kc > pF

√
2, the densities ρc and ρ∞ cannot coincide. In its turn, this implies

that vanishing of the z-factor at ρc is compensated by the divergence of the derivative
(∂Σ(p, ε)/∂ε0p)0 at this point, otherwise (3.16) fails.

To verify this assertion let us write down the fundamental LFL relation [43]
between the k- andω-limits of the vertexT that has the symbolic formT k = T ω +(
Γ k((G2)k − (G2)ω)T ω

)
where external brackets mean integration and summation

over all intermediate momentum and spin variables. We note that the k- and ω-limits
of the vertex T are defined in the same way as it was done when defining k- and
ω-limits of the scattering amplitude Γ . In dealing with the bare vertex T 0 = p the
extended form of this relation is

−∂G−1(p)

∂p
= ∂G−1(p)

∂ε

p
M

+ Spσ

∫
Γ k(p, q)

((
G2(q)

)k

−
(

G2(q)
)ω

)
∂G−1(q)

∂q0

q
M

d4q

(2π)4i
, (3.25)

In writing this equation the Pitaevskii identities [43]

T k(p) = −∂G−1(p, ε)

∂p
, T ω(p) = ∂G−1(p, ε)

∂ε
p (3.26)

are employed. Upon inserting the LFL formula

(
G2(q)

)k =
(

G2(q)
)ω − 2π3i

ν

p2F
δ(ε)δ(p − pF ) (3.27)

into (3.25) and the standard replacement of the spin-independent part of νΓ k by A,
after some algebra we are led to equation

1 +
(

∂Σ(p, ε)

∂ε0p

)

0

=
(
1 −

(
∂Σ(p, ε)

∂ε

)
0

) (
1 − 1

3
A1

)
. (3.28)
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Remembering that −∂G−1(p, ε)/∂p = z−1dε(p)/dp one arrives [43] at (3.20). On
the other hand, as seen from (3.25), at kc > pF

√
2 where A1 < 0, the derivative(

∂Σ(p, ε)/∂ε0p

)
0
does diverge at the samedensity, as the derivative (∂Σ(p, ε)/∂ε)0,

in contrast to the result [42]. To correct the defect of the quasiboson approximation,
the spin-independent part of the scattering amplitude Γ entering the formulas for the
derivatives of the mass operator Σ should be replaced by that of the amplitude Γ ω.

We will immediately see that at finite kc < pF
√
2, vanishing of the z-factor

is incompatible with the divergence of M∗ as well. Indeed, as seen from (3.24),
the harmonics A0(ρc) and A1(ρc) are related to each other by equation A0(ρc) =
A1(ρc)/(3 cos θ0). If M∗(ρc) were infinite, then according to (3.20), A1(ρc) would
equal 3, and A0(ρc) = 1/ cos θ0. However, the quantity A0 = Φ0/(1 + Φ0) cannot
be in excess of 1, otherwise the Pomeranchuck stability condition [43] Φ0 > −1 is
violated, and the compressibility turns out to be negative. Thus the QCP cannot be
reached without the violation of the stability condition. If so, approaching the QCP,
the system undergoes a first–order phase transition, as in the case of 3D liquid 3He.

The finiteness of M∗ at the points of vanishing of the z-factor requires an alterna-
tive explanation of the logarithmic enhancement of the specific heat C(T ), observed
in many heavy fermion metals and attributed to contributions of critical fluctuations.

Let us now turn to the analysis of another opportunity for the occurrence of the
QCP, addressed first inmicroscopic calculations of the single-particle spectrumof 3D

electron gas. It is associated with the change of the sign of the sum 1+
(

∂Σ(p,ε)

∂ε0p

)
0
at

ρ∞ �= ρc. In this case, the z-factor keeps its finite value, and hence, the quasiparticle
picture holds on both sides of the QCP. In standard Landau theory, equation

ε(p, T = 0) = μ (3.29)

with μ, being the chemical potential, has the single root, determining the Fermi
momentum pF . Suppose, at a critical coupling constant gT , a bifurcation in (3.29)
emerges, then beyond the critical point, at g > gT , this equation acquires, at least,
two new roots that triggers a topological phase transition. In many-body theory,
equation, determining critical points of the topological phase transitions, has the
form

ε0p + Σ(p, ε = 0) = μ. (3.30)

Significantly, terms, proportional to ε ln ε, existing in themass operatorΣ ofmarginal
Fermi liquids, do not enter this equation.

The bifurcation pb in (3.29) and (3.30) can emerge at any point of momentum
space. If pb coincides with the Fermi momentum pF , then at the critical density the

sum 1 +
(

∂Σ(p,ε)

∂ε0p

)
0
vanishes, and one arrives at the topological quantum critical

point. In connection with this scenario, it is instructive to trace the evolution of the
group velocity vF = (dε/dp)0 versus the first harmonic f1. As follows from (3.18),
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Δ

ε
ε

Fig. 3.4 Single-particle spectrum ε(p) of a homogeneous 2D electron gas in units of ε0F = p2F/2M ,
evaluated at T = 0 for different values of the dimensionless parameter rs = √

2Me2/pF [41]

vF keeps its positive sign as long as F0
1 = pF M f1/3π2 < 3, and the Landau state

with the quasiparticle momentum distribution nF (p) = θ(p − pF ) remains stable.
However, at F0

1 > 3, the sign of vF changes, and the Landau state is necessarily
rearranged. This conclusion is in agreement with results of microscopic calculations
of the single-particle spectrum ε(p, T = 0) of 2D electron gas, [41] shown in
Fig. 3.4. As seen, the sign of vF holds until the dimensionless parameter rs attains
a critical value rsc � 7.0. At greater rs , the derivative (dε(p)/dp)0, evaluated with
the momentum distribution nF (p), becomes negative, and the Landau state loses its
stability, since the curve ε(p) crosses the Fermi level more than one time.

At T = 0, two types of the topological transitions are known, see Chap.4. One of
them, giving rise to the multi-connected Fermi surface, was uncovered and studied
later in calculations of the single-particle spectrum ε(p) on the base of (3.17), with
the interaction function f (k), having no singularities at k → 0. In this case, beyond
the QCP, (3.29) has three roots p1 < p2 < p3, i.e. the curve ε(p) crosses the Fermi
level three times, and occupation numbers are: n(p) = 1 at p < p1, n(p) = 0
at p1 < p < p2, while at p2 < p < p3, once again n(p) = 1, and at p > p3,
n(p) = 0. As the coupling constant g increases, the number of the roots of (3.29)
rapidly grows, however, their number remains countable at any g > gT .

The situation changes in Fermi liquids with a singular attractive long-range
current-current term

Γ 0(p1, p2, k, ω = 0) = −g
p1p2 − (p1k)(p2k)/k2

k2
, (3.31)

since in these systems, e.g., in dense quark-gluon plasma, solutions with the multi-
connected Fermi surface are unstable. Indeed, the group velocity dε(p)/dp evalu-
ated with nF (p) = θ(p − pF ) from (3.17) has the form dε(p)/dp = pF/M −
g ln(2pF/|pF − p|), implying that (3.29) has three different roots p1, p2, p3,

http://dx.doi.org/10.1007/978-3-319-10825-4_4
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corresponding to the Fermi surface, having three sheets at any g > 0. However,
at the next iteration step, the new Fermi surface has already five sheets, the Fermi
surface has seven sheets and so on. With increasing the number of iterations, the dis-
tance between neighbor sheets rapidly shrinks. In this situation, a minute elevation
of temperature renders the momentum distribution n(p, T ) a smooth T -independent
function n∗(p), different from 0 and 1 in a domainC between the sheets. In this case,
the ground–state stability condition,

δE =
∫

(ε(p) − μ) δn(p)
d3 p

(2π)3
> 0, (3.32)

requiring the nonnegativity of the variation δE of the ground state energy E at any
admissible variation of n∗(p), is met, provided

ε(p) = μ , p ∈ C . (3.33)

As a result, we arrive at another type of the topological transitions, the so-called
fermion condensation, where the roots of (3.29) form an uncountable set, called
the fermion condensate (FC). Since the quasiparticle energy ε(p) is nothing but the
derivative of the ground state energy E with respect to the quasiparticle momentum
distribution n(p), (3.33) can be rewritten as variational condition

δE

δn(p)
= μ, p ∈ C . (3.34)

The FC Green function has the form

G(p, ε) = 1 − n∗(p)

ε + iδ
+ n∗(p)

ε − iδ
, p ∈ C , (3.35)

and coincides with that of (5.14), if we recall that n∗(p) = v2(p). As seen, only the
imaginary part of the FC Green function differs from that of the ordinary LFL Green
function. As we have seen in Sect. 3.1, this difference exhibits itself in a topological
charge, given by the integral (3.2). We recall, that for conventional Fermi liquids
and systems with the multi-connected Fermi surface, the topological charge Nt is
integer, while for the states with a FC, its value is half-integer.

For illustration of the phenomenon of fermion condensation, let us address the
dense quark-gluon plasma. Upon inserting into (3.17) only leading divergent terms
in the interaction function f , constructed from (3.31), one finds

0 = 1 − λ

∫
ln

1

|x − x1|
∂n∗(x1)

∂x1
dx1 , x, x1 ∈ C , (3.36)

where dimensionless variables x = (pF − p)/2pF and λ are introduced. (3.36) has
a numerical solution; to find its solutions we simplify (3.36), replacing the kernel

http://dx.doi.org/10.1007/978-3-319-10825-4_5
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ln(1/|x − x1|) by ln(1/x) provided x > x1, and by ln(1/x1), otherwise, to obtain

0 = 1 + λn∗(x) ln x + λ

xm∫

x

ln x1
∂n∗(x1)

∂x1
dx1 x, x1 ∈ C . (3.37)

An approximate solution of this equation is n∗(x) = x/xm where xm = e− 1
λ is

determined from condition n(xm) = 1. We see that the range of the interval [0, xm]
of fermion condensation, adjacent to the Fermi surface, is exponentially small.

Nontrivial smooth solutions n∗(p) of (3.34) exist even inweakly interacting Fermi
systems. However, in these systems, the Pauli restriction n∗(p) < 1 is violated, ren-
dering such solutions meaningless. Even at the QCP, where the nonsingular interac-
tion function f is already sufficiently strong, no consistent FC solutions n∗(p) exist,
satisfying the requirement n(p) < 1 wherever. These solutions emerge at a critical
constant gFC , and at g > gFC , they win the contest with any other solutions. Thus
on the phase diagram of systems with nonsingular repulsive interaction functions
f , the standard LFL phase occupies the interval g < gT , the phase with the multi-
connected Fermi surface, the interval gT < g < gFC , while the phase with the FC
exists at g > gFC .

In dealing with the (T −g) phase diagram of such systems, we notice that the tem-
perature evolution of the quasiparticle momentum distribution, associated at T = 0
with the multi-connected Fermi surface, depends on the departure of the difference
|ε(p) − μ| from 0 in the domain C . Its maximum value εm determines a new energy
scale εm � d2/M∗(0), where d is the average distance between the sheets of the
Fermi surface that rapidly falls with the increase of the sheets number. If tempera-
ture T attains values, comparable with εm , then, as seen from the Landau formula
n(p) = [1 + exp (ε(p) − μ)/T )]−1, the distribution n(p) becomes a smooth func-
tion of p. Employing the FC notation n∗(p) for this function, one finds that at T ≥ εm

the spectrum

ε(p, T ) − μ = T ln
1 − n∗(p)

n∗(p)
, p ∈ C (3.38)

does coincide with the FC spectrum, and in good agreement with the study of the
FC state carried out within the Hubbard model [44]. We infer that at T � εm , a
crossover from a state with the multi-connected Fermi surface to a state with the
FC occurs. As a result, FL thermodynamics of the systems with the multi-connected
Fermi surface completely alters at T � εm , since properties of systems with the FC
resemble those of a gas of localized spins. Such a transition was recently observed
in the heavy–fermion metal YbIr2Si2, transition temperature being merely 1K.

Let us now turn to systems of fermions, interacting with a “foreign” bosonic
mode, e.g., phonons or photons. In theFrölichmodel [14], aimed for the elucidation of
electron and phonon spectra in solids, electrons share momentumwith the lattice due
to the electron-phonon interaction. The non-conservation of the electron momentum
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results in the violation of the second of the relations (3.26), and (3.19) acquires the
form

M

M∗ = z
(nT ω(p))0

pF

(
1 − 1

3
A1

)
, (3.39)

where n = p/p. The deviation of the ratio M/M∗ from the Landau value (3.19), is
well pronounced in the limit of small sound velocities cs << vF . For illustration, let
us consider the weak coupling limit of the Frölich model, where the first harmonic
A1, evaluated from the phonon propagator D(|p1 − p2|, ω = 0) equals 0 due to its
isotropy. If (3.19) were correct, then M∗/M would equal 1. However, this is not the
case: M∗/M = 1+ g2 pF M/2π2 where g is the electron-phonon coupling constant
[45]. Evidently, if the ratio vF/cs drops, then the departure from (3.19) falls due to
weakening of the contribution of the pole of the boson propagator. Such a situation
occurs just in the vicinity of the QCP, since at this point vF = pF/M∗ = 0.

So far information on the QCP properties of Fermi liquids is extracted from mea-
surements, carried out in 2D electron gas, 2D liquid 3He and heavy–fermion metals.
Accurate measurements of the effective mass M∗ in dilute 2D electron gas are made
on (100)- and (111)-silicon MOSFET’s. In principle, the divergence of M∗, see
Fig. 2.1, observed in these experiments, can be associated with critical spin-density
fluctuations. However, experimental data rules out a significant enhancement of the
Stoner factor. The Stoner factor S = χ/χ0 indicates the enhancement or suppres-
sion of ferromagnetic fluctuations. Here χ is the magnetic susceptibility, and χ0 is
the magnetic susceptibility of noninteracting system. In many theories, the enhance-
ment of M∗ is related to disorder effects. However, the effective masses, specifying
the electron spectra of (100)- and (111)-silicon MOSFET’s, where disorder is dif-
ferent, almost coincide with each other provided dimensionless parameters rs of the
2D Coulomb problem, are the same. On the other hand, this coincidence that agrees
with results of microscopic calculations is straightforwardly elucidated within the
topological scenario of the QCP. There are reports on the divergence of the effective
mass in 2D liquid 3He, see Fig. 2.2. Furthermore it is reported that at the density
ρ > 9.00 nm−2, the low-temperature limit of the product T χ(T ) quickly increases
with increasing ρ. In addition, the ratio of the specific heat C(T ) to T does not obey
LFL theory in this density region, since it increases with lowering T . These facts
can be interpreted as evidence for the presence of the FC. Unfortunately, so far the
accuracy of extremely difficult measurements of the ratio C(T )/T at T ≤ 1K , is
insufficient to properly evaluate a low-temperature part of the entropy S and compare
it with the respective FC entropy, extracted from data on χ(T ). The divergence of
the ratio C(T )/T , associated with the QCP, is observed in several heavy–fermion
compounds. Authors of the experimental article claim that data on the Sommerfeld-
Wilson ratio RSW = χ(T )/C(T ) in a doped compound YbRh2(Si0.95Ge0.05)2 point
to an enhancement of the Stoner factor that has to be infinite at the point of the
ferromagnetic phase transition. However, evaluation of the Stoner factor from exper-
imental data in heavy–fermion metals encounters difficulties. Furthermore, with a
correct normalization experimental data are explained without any enhancement of

http://dx.doi.org/10.1007/978-3-319-10825-4_2
http://dx.doi.org/10.1007/978-3-319-10825-4_2
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the Stoner factor that rules out the relevance of the ferromagnetic phase transition to
the QCP in this metal.

Thus, two different scenarios of the quantum critical point, a low-temperature
instability of the Landau state, related to the divergence of the density of states
N (0) ∼ M∗, are analyzed. Shortcomings of the conventional scenario of the QCP,
where the divergence of the effective mass M∗ is attributed to vanishing of the quasi-
particle weight z in the single-particle state, are elucidated. In a different, topological
scenario, associated with the change of the topology of the Fermi surface at the QCP,
the quasiparticle picture holds on both the sides of the QCP. This scenario is in
agreement with microscopic calculations of the QCP in 2D electron gas and does not
contradict relevant experimental data on 2D liquid 3He and heavy–fermion metals.
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Chapter 4
The Topological Phase Transitions Related
to Fermion Condensate

Abstract In this chapter, we consider so-called topological phase transitions,
taking place in normal Fermi liquid. In other words, here we are dealing with dif-
ferent instabilities of normal Fermi liquids relative to several kinds of perturbations
of initial quasiparticle spectrum ε(p) and occupation numbers n(p) associated with
the emergence of a multi-connected Fermi surface. Depending on the parameters
and analytical properties of the Landau interaction, such instabilities lead to sev-
eral possible types of restructuring of initial Landau Fermi liquid ground state. This
restructuring generates topologically distinct phases. One of them is the FC discussed
above, another one belongs to a class of topological transitions (TT) and will be
called “iceberg” phase, where the sequence of rectangles (“icebergs”) n(p) = 0 and
n(p) = 1 is realized at T = 0. At elevated temperatures the “icebergs melt down”
and the behavior of the system becomes similar to that with the fermion condensate.

4.1 Topological Phase Transitions Related to FCQPT

In Chap.3, we have investigated the structure of the Fermi surface beyond FCQPT
within the extended quasiparticle paradigm. We have shown that at T = 0 there
is a scenario that entails the formation of FC, manifested by the emergence of a
completely flat portion of the single-particle spectrum. On the other hand, there are
different kinds of instabilities related to the emergence of a multi-connected Fermi
surface, see e.g., [1–7]. In such considerations, we analyze stability of a model
fermion system with repulsive Landau interaction allowing to carry out an analytical
studies of the emergence of a multi-connected Fermi surface [2, 3]. We show, in
particular, that the Landau interaction given by the screened Coulomb law does not
generate FC phase, but rather “iceberg” TT phase. For this model, we plot a phase
diagram in the variables “screening parameter—coupling constant” displaying two
kinds of TT: a 5/2-kind similar to the known Lifshitz transitions in metals, and a 2-
kind characteristic for a uniform strongly interacting system. The Lifshitz transitions
are topological transitions of the Fermi surface with no symmetry breaking [8].

The common ground state of isotropic LFL with density ρx is described at zero
temperature by the stepwise Fermi function nF (p) = θ(pF − p), dropping dis-
continuously from 1 to 0 at the Fermi momentum pF . The LFL theory states that
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the quasiparticle distribution function n(p) and its single particle spectrum ε(p)

are in all but name similar to those of an ideal Fermi gas with the substitution of
real fermion mass m by the effective one M∗. These nF (p) and ε(p) can become
unstable under several circumstances. The best known example is Cooper pairing at
arbitrarily weak attractive interaction with subsequent formation of the pair conden-
sate and gapped quasiparticle spectrum [9]. However, a sufficiently strong repulsive
Landau interaction can also generate non-trivial ground states. The first example of
such restructuring for a Fermi system with model repulsive interaction is FC [10]. It
reveals the existence of a critical value αcr of the interaction constant α such that at
α = αcr the stability criterion s(p) = (ε(p)− EF )/(p2 − p2F ) > 0 fails at the Fermi
surface s(pF ) = 0 (pF -instability). We recall that in the case of this instability the
single particle spectrum ε(p) possesses the inflection point at the Fermi surface, see
Sect. 6.3.1. Then at α > αcr an exact solution of a variational equation for n(p),
following from the Landau functional E(n(p)) (2.15) (see also (4.1) below), can
be found. This solution exhibits some finite interval p f − pi (indices “f” and “i”
stand for “final” and “initial” respectively) around pF where the distribution func-
tion n(p) varies continuously taking intermediate values between 1 and 0, while
the single-particle excitation spectrum ε(p) has a flat plateau. Equation (3.1) means
actually that the roots of the equation ε(p) = μ form an uncountable set in the range
pi ≤ p ≤ p f , see Fig. 4.1. It is seen from (3.1) that the occupation numbers n(p)

become variational parameters, deviating from the Fermi step function to minimize
the energy E .

The other type of phase transition, corresponding to the so-called iceberg phase
occurs when the equation ε(p) = μ has discrete countable number of roots, either

(a)

(b)

Fig. 4.1 Schematic plot of the single particle spectrum ε(p) (a) and occupation numbers n(p) (b),
corresponding to LFL (curves 1), FC (curves 2, dashed line) and iceberg (curves 3, dot-dashed line)
phases at T = 0. For LFL the equation, ε(p) = μ, has a single root equal to Fermi momentum
pF . For iceberg phase, the above equation has countable set of the roots p1...pN ..., for FC phase
the roots occupy the whole segment (p f − pi ). We note that pi < pF < p f and the states, where
ε(p) < μ are occupied (n=1), while those with ε(p) > μ are empty (n=0)

http://dx.doi.org/10.1007/978-3-319-10825-4_6
http://dx.doi.org/10.1007/978-3-319-10825-4_2
http://dx.doi.org/10.1007/978-3-319-10825-4_3
http://dx.doi.org/10.1007/978-3-319-10825-4_3
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finite or infinite. This is depicted in Fig. 4.1, and related to the situation when the
Fermi surface becomesmulti-connected. Note that the idea ofmulti-connected Fermi
surface, with the production of new, interior segments, had already been considered
[4–6].

Let us take the Landau functional E(n(p)) in the form

E(n(p)) =
∫

p2

2M
n(p)

dp
(2π)3

+ 1

2

∫ ∫
n(p)U (|p − p′|)n(p′)dpdp′

(2π)6
, (4.1)

which, by virtue of (2.3), leads to the following quasiparticles dispersion law:

ε(p) = p2

2M
+

∫
U (|p − p′|)n(p′) dp′

(2π)3
. (4.2)

The angular integration with subsequent passing to the dimensionless variables
x = p/pF , y = y(x) = 2Mε(p)/p2F , z = 2π2M E/p5F , leads to simplification
of the (4.1) and (4.2)

z[ν(x)] =
∫

[x4 + 1

2
x2V (x)]ν(x)dx, (4.3)

y(x) = x2 + V (x), (4.4)

where

V (x) = 1

x

∫
x ′ν(x ′)u(x, x ′)dx ′,

u(x, x ′) = M

π2 pF

x+x ′∫

|x−x ′|
u(t)tdt. (4.5)

In this chapter, we do not mention the renormalization constant z, and use z as
the dimensional variable. Here u(x) ≡ U (pF x) and the distribution function
ν(x) ≡ n(pF x) is positive, obeys the normalization condition

∫
x2ν(x)dx = 1/3, (4.6)

and the Pauli principle limitation ν(x) ≤ 1. The latter can be lifted using, e.g., the
ansatz: ν(x) = [1 + tanh η(x)]/2. In the latter case the system ground state gives a
minimum to the functional

http://dx.doi.org/10.1007/978-3-319-10825-4_2
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f [η(x)] =
∫

[1 + tanh η(x)]
{

x4 − μx2

+ x ′[1 + tanh η(x ′)]u(x, x ′)dx ′
}

dx, (4.7)

containing a Lagrange multiplier μ, with respect to an arbitrary variation of the
auxiliary function η(x). This allows to represent the necessary condition of extremum
δ f = 0 in the form

x2ν(x)[1 − ν(x)][y(x) − μ] = 0. (4.8)

This means that either ν(x) takes only the values 0 and 1 or the dispersion law is
flat: y(x) = μ [10], in accordance with (3.1). The former possibility corresponds to
iceberg phase, while the latter to FC. As it is seen from (3.1), the spectrum ε(p) in
this case cannot be an analytic function of complex p in any open domain, containing
the FC interval (p f − pi ). In fact, all the derivatives of ε(p) with respect to p along
the strip (p f − pi ) should be zero, while this is not the case outside (p f − pi ). For
instance, in the FC model with U (p) = U0/p [10] the kernel, (4.5), is nonanalytic

u(x, x ′) = MU0

π2 pF
(x + x ′ + |x − x ′|), (4.9)

which eventually causes nonanalyticity of the potential V (x). It follows from (4.4),
that the single particle spectrum is an analytic function on the whole real axis if V (x)

is such a function. In this case FC is forbidden and the only alternative to the Fermi
ground state (if the stability criterion gets broken) is iceberg phase corresponding to
TT between the topologically unequal states with ν(x) = 0, 1 [11].

On the other hand, applying the technique of Poincaré mapping, it is possible to
analyze the sequence of iterative maps generated by (2.14) for the single-particle
spectrum at zero temperature [1]. If the sequence of maps converges, the multi-
connected Fermi surface is formed. If it fails to converge, the Fermi surface swells
into a volume that provides a measure of entropy associated with the formation of an
exceptional state of the system characterized by partial occupation of single-particle
states and dispersion of their spectrum proportional to temperature as seen from
(3.12).

Generally, all such states related to the formation of iceberg phases are classifiedby
the indices of connectedness (known as Betti numbers in algebraic topology [12, 13])
for the support of ν(x). In fact, for an isotropic system, these numbers simply count
the separate (concentric) segments of the Fermi surface. Then the system ground
state corresponds to the following multi-connected distribution shown in Fig. 4.2

ν(x) =
n∑

i=1

θ(x − x2i−1)θ(x2i − x), (4.10)

http://dx.doi.org/10.1007/978-3-319-10825-4_3
http://dx.doi.org/10.1007/978-3-319-10825-4_3
http://dx.doi.org/10.1007/978-3-319-10825-4_2
http://dx.doi.org/10.1007/978-3-319-10825-4_3
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Fig. 4.2 Occupation function
for a multiconnected
distribution

where the parameters 0 ≤ x1 < x2 < · · · < x2n obey the normalization condition

n∑
i=1

(x32i − x32i−1) = 1. (4.11)

The function z, (4.3),

z = 1

2

n∑
i=1

x2i∫

x2i−1

x2[x2 + y(x)]dx, (4.12)

has the absolute minimum with respect to x1, . . . , x2n−1 and to n ≥ 1. To obtain the
necessary condition of extremum, we use the relations

∂x2n

∂xk
= (−1)k−1

(
xk

x2n

)2

, 1 ≤ k ≤ 2n − 1, (4.13)

following from (4.11) and the dependence of the potential V (x) in the dispersion
law y(x) on the parameters x1, . . . , x2n−1

V (x) = 1

x

n∑
i=1

x2i∫

x2i−1

x ′u(x, x ′)dx ′. (4.14)

The differentiation of (4.12) with respect to the parameters x1, . . . , x2n−1 with sub-
sequent use of (4.13) and (4.14) yield the necessary conditions of extremum in the
following form
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∂z

∂xk
= (−1)k x2k [y(xk) − y(x2n)] = 0, 1 ≤ k ≤ 2n − 1. (4.15)

This means that a multi-connected ground state is controlled by the evident rule of
unique Fermi level y(xk) = y(x2n) for all 1 ≤ k ≤ 2n − 1 (except for x1 = 0). In
principle, given the dispersion law y(x), all the 2n − 1 unknown parameters xk can
be found from (4.15). Then, the sufficient stability conditions ∂2z/∂xi∂x j = γiδi j ,
γi > 0 yield the generalized stability criterion. Namely, the dimensionless function

σ(x) = 2Ms(p) = y(x) − y (x2n)

x2 − x22n

, (4.16)

should be positive within filled and negative within empty intervals, turning to zero
at their boundaries in accordance with (4.15). It can be proved rigorously that, for
given analytic kernel u(x, x ′), (4.16) defines the system ground state uniquely.

Subsequently, we shall label each multi-connected state, (4.10), by an integer
number related to the binary sequence of empty and filled intervals read from x2n

to 0. Thus, the Fermi state with a single filled interval (x2 = 1, x1 = 0) reads as
unity, the state with a void at the origin (filled [x2, x1] and empty [x1, 0]) reads as
(10) = 2, the state with a single gap: (101) = 3, etc. Note that all even phases have
a void at the origin and odd phases have not.

For free fermions V (x) = 0, y(x) = x2, (4.15) only yields the trivial solution
corresponding to the Fermi state 1. To obtain non-trivial realizations of TT,we choose
U (p) to correspond to the common screened Coulomb potential:

U (p) = 4πe2

p2 + p20
. (4.17)

The related explicit form of the kernel,

u(x, x ′) = α ln
(x + x ′)2 + x20
(x − x ′)2 + x20

, (4.18)

with the dimensionless screening parameter x0 = p0/pF and the coupling constant
α = 2Me2/πpF , evidently displays the necessary analytical properties for existence
of iceberg phase. Equations (4.14) and (4.18) permit to express the potential V (x)

in elementary functions [2]. Then, the straightforward analysis of (4.15) shows that
its nontrivial solutions appear only when the coupling parameter α exceeds a certain
critical value α∗. This corresponds to the situation when the stability criterion [10]
σ(x) = (yF (1) − yF (x))/(1 − x2) > 0 calculated with the Fermi distribution,
yF (x) = x2 + V (x; 0, 1), fails in a certain point 0 ≤ xi < 1 within the Fermi
sphere: σ(xi ) → 0. There are two different types of such instabilities depending on
the screening parameter x0 (Fig. 4.3). For x0 below a certain threshold value xth ≈
0.32365 (weak screening regime,WSR) the instability point xi sets rather close to the
Fermi surface: 1−xi 	 1, while it drops abruptly to zero at x0 → xth and equals zero
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Fig. 4.3 Instability point xi and critical coupling α∗ as functions of screening. The regions of weak
screening (WSR) and strong screening (SSR) are separated by the threshold value xth . Note that a
xth , αth is the triple point between the phases 1, 2, 3 in Fig. 4.4

for all x0 > xth (strong screening regime, SSR). The critical coupling α∗(x0) results
in amonotonously growing function of x0 with the asymptotics α∗ ≈ (ln 2/x0−1)−1

at x0 → 0 and staying analytic at αth = α∗(xth) ≈ 0.91535, where it only exhibits
an inflection point.

These two types of instabilities give rise to different types of TT from the state 1
at α > α∗: at SSR a void appears around x = 0 (1 → 2 transition), and atWSR a gap
opens around xi (1 → 3 transition). Further analysis of (4.15) shows that the point
xth, αth represents a triple point in the phase diagram in the variables x0, α (Fig. 4.3)
where the phases 1, 2, and 3 meet one another. Similarly to the onset of instability
in the Fermi state 1, each evolution of TT to higher order phases with growing α is
manifested by a zero of σ(x), (4.16), at some point 0 ≤ xi < x2n different from the
existing interfaces. If this occurs at the very origin, xi = 0, the phase number rises at
TT by 1, corresponding to the opening of a void (passing fromodd to even phase) or to
emerging “island” (even→ odd). For xi > 0, either a thin spherical gap opens within
a filled region or a thin filled spherical sheet emerges within a gap, so that the phase
number rises by 2, living the parity unaltered. A part of the whole diagram shown
in Fig. 4.4 demonstrates that with decreasing of x0 (screening weakening) all even
phases terminate at certain triple points. This, in particular, agrees with numerical
studies of the considered model along the line x0 = 0.07 at growing α [6], where
only the sequence of odd phases 1 → 3 → 5 → . . . has been revealed (shown by
the arrow in Fig. 4.3). The energy gain Δ(τa) at TT as a function of small parameter
τa = α/α∗ − 1 is evidently proportional to τa times the volume of a new emerging
phase region (empty or filled). Introducing a void radius δ and expanding the energy
gain Δ(δ) = z[n(x, δ)] − z[nF (x)] in δ, one gets Δ = −β1τaδ3 + β2δ

5 + O(δ6),
β1, β2 > 0. As a result, the optimum void radius is δ ∼ √

τ a . Consequently we have

Δ(τa) ∼ τ
5/2
a indicating a resemblance to the known “5/2-kind” phase transitions in

the theory ofmetals [12]. The peculiar feature of our situation is that the new segment
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Fig. 4.4 Phase diagram in “screening-coupling” variables. Each phase with certain topology is
labeled by the total number of filled and empty regions (see Fig. 4.2). Even phases (shaded) are
separated from odd ones by “5/2-kind” topological transition (TT) lines, while odd phases are
separated from each other by TT lines of 2 (second) kind odd phases. Triple points, where two
5/2-TT and one 2-TT meet, are shown by circles

of the Fermi surface opens at very small momentum values, which can dramatically
change the system response to, e.g., electron-phonon interaction. On the other hand,
this segment may have a pronounced effect on the thermodynamical properties of
3He at low temperatures, especially in the case of P-pairing, producing excitations
with extremely small momenta.

For a TT with unchanged parity, the width of a gap (or a sheet) is found to
be ∼ τa so that the energy gain is Δ(τa) ∼ τ 2a and such TT can be related to
the second kind. It follows from the above consideration that each triple point in
the x0 − α phase diagram is a point of confluence of two 5/2-kind TT lines into
one 2-kind line. The latter type of TT has already been discussed in the literature
[4, 6]. Here we only mention that its occurrence on a whole continuous surface in
the momentum space is rather specific for the systems with strong fermion-fermion
interaction, while the known TT’s in metals, under the effects of crystalline field,
occur typically at separate points in the quasi-momentum space. It is interesting to
note that in the limit x0 → 0, α → 0, reached along the line α = kx0, we attain
the exactly solvable model: U (p) → (2π)3U0δ(p) with U0 = k/(2MpF ), which is
known to display FC for all U0 > 0 [10]. The analytic mechanism of this behavior is
the disappearance of the poles of U (p), (4.17), as p0 → 0, restoring the analytical
properties necessary for FC. Otherwise, the FC regime corresponds to the phase
order → ∞, when the density of infinitely thin filled (separated by empty) regions
approaches some continuous function 0 < ν(x) < 1 [6] and the dispersion law turns
flat according to (4.15). Several remarks should be made at this point.
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First, when the dispersion law starts to turn flat, the system of icebergs can trans-
form into the FC state due to some admixture of a non-analytical interaction. In
fact, even in the absence of such an admixture the difference in the energy between
the ground state with FC and one with the system of icebergs is negligibly small.
Therefore, at lowering temperature the system is “wandering” in the energy
landscape trying to find the absolute minimum of its energy. We speculate that in
such a case some of HF compounds can exhibit the dynamics of glasses when the
dynamics is strongly suppressed becoming very slow down.

Second, the consideredmodel formally treats x0 and α as independent parameters,
though in fact a certain relation between them can be imposed. Under such restric-
tion, the system ground state should depend on a single parameter, say the particle
density ρx , along a certain trajectory α(x0) in the above phase diagram. For instance,
with the simplest Thomas-Fermi relation for a free electron gas α(x0) = x20/2, this
trajectory stays fully within the Fermi state 1 over all the physically reasonable range
of densities. Hence a faster growth of α(x0) is necessary for realization of TT in any
fermionic system with the interaction (4.17).

Third, at increasing temperatures, the stepwise form of the quasiparticle distri-
bution is smearing. We call this the melting of icebergs. Therefore, as temperature
moves away from zero, the concentric Fermi spheres are taken up by FC. In fact,
these arguments do not work in the case of a few icebergs. Thus, it is quite possible to
observe the two separate Fermi sphere regimes related to the FC and iceberg states.

There is a good reason to mention that neither in the FC phase nor in the other TT
phases, the standardKohn-Sham scheme [14, 15] is no longer valid. This is because in
the systemswith FC or TT phase transitions the occupation numbers of quasiparticles
are indeed variational parameters. Thus, to get a reasonable description of the system,
one has to consider the ground state energy as a functional of the occupation numbers
E[(n(p)] rather than a functional of the density E[ρx ] [16–18].
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Chapter 5
Appearance of Fermion-Condensation
Quantum Phase Transition in Fermi Systems

Abstract As high-Tc superconductors are represented primarily by 2D layered
structures, in Sect. 5.1 we discuss the superconducting state of a 2D liquid of heavy
electrons, and within the framework of Gor’kov microscopic equations construct the
Green functions of the FC state. On the other hand, our study can easily be general-
ized to the 3D case. To show that there is no fundamental difference between the 2D
and 3D cases, we derive Green’s functions for the 3D case in Sect. 5.1.1. In Sect. 5.2,
we consider the dispersion law and lineshape of single-particle excitations. Section
5.3 is devoted to the behavior of heavy-electron liquid with FC in magnetic field. In
Sect. 5.4, we analyze conditions which lead to the emergence of FC in Fermi systems
composed of different fermions such as atoms of 3He and electrons.

5.1 The Superconducting State with FC at T = 0

As we have seen in Sect. 3.1.1, the ground-state energy Egs(κ(p), n(p)) of a 2D
electron liquid is a functional of the superconducting order parameter κ(p) and
of the quasiparticle occupation numbers n(p). This energy is determined by the
well-known Bardeen-Cooper-Schrieffer (BCS) equations and in the weak-coupling
superconductivity theory is given by [1–3]

Egs(κ(p), n(p)) = E(n(p)) + λ0

∫
V (p1, p2)

× κ(p1)κ
∗(p2)

dp1dp2

(2π)4
. (5.1)

Here

κ(p) = √
n(p)(1 − n(p)) (5.2)

with n(p) = v2(p), u(p) and v(p) are parameters of the Bogolubov transformation,
which obey for fermions the normalization rule v2(p) + u2(p) = 1. It is assumed
that the constant λ0, which determines the magnitude of the pairing interaction
λ0V (p1, p2), is small. The superconducting gap is then defined
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Δ(p) = −λ0

∫
V (p, p1)κ(p1)

dp1

4π2 . (5.3)

The (5.2) shows that the order parameter κ(p) can be expressed equally well through
coefficient v(p) of the corresponding Bogolyubov transformation. Latter fact shows
that the energy Egs in (5.1) is a functional of v(p). Minimizing this energy in v(p)

and using (5.3), we arrive at equations that relate the single-particle energy ε(p) to
Δ(p) and E(p)

ε(p) − μ = Δ(p)
1 − 2v2(p)

2κ(p)
,

Δ(p)

E(p)
= 2κ(p). (5.4)

Here the single-particle energy ε(p) is determined by (2.3), and

E(p) =
√

ξ2(p) + Δ2(p) (5.5)

with ξ(p) = ε(p) − μ. Substituting the expression for κ(p) from (5.4) in (5.3), we
obtain the well-known equation for Δ(p) of the BCS theory

Δ(p) = −λ0

2

∫
V (p, p1)

Δ(p1)

E(p1)

dp1

4π2 . (5.6)

As λ0 → 0, the maximum value Δ1 of the superconducting gap Δ(p) tends to zero
and each equation in (5.4) reduces to (3.1)

δE(n(p))

δn(p)
= ε(p) − μ = 0, (5.7)

if 0 < n(p) < 1, or κ(p) �= 0, in the interval pi ≤ p ≤ p f . Equation (5.7) shows
that the function n0(p) is determined from the solution of the standard problem of
functional E(n(p)) minimization [4–6]. Equation (5.7) specifies the quasiparticle
distribution function n0(p) that ensures the minimum of the ground-state energy
E(κ(p), n(p)). We can now study the relation between the state specified by (5.7)
or (3.1) and the superconducting state.

At T = 0, (5.7) determines the specific state of a Fermi liquid with FC, the state
for which the absolute value of the order parameter |κ(p)| is finite in the momentum
interval pi ≤ p ≤ p f as Δ1 → 0. Such a state can be considered superconducting
with an infinitely small value of Δ1. Hence, the entropy of this state at T = 0 is
zero. Solutions n0(p) of (5.7) constitute a new class of solutions of both the BCS
equations and theLandauFermi-liquid equations. In contrast to the ordinary solutions
of the BCS equations [2], the new solutions are characterized by an infinitely small
superconducting gap Δ1 → 0, with the order parameter κ(p) remaining finite. On
the other hand, in contrast to the standard solution of the Landau Fermi-liquid theory,
the new solutions n0(p) determine the state of a heavy-electron liquid with a finite
entropy S0 as T → 0 (see (3.8)). We arrive at an important conclusion that the
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solutions of (5.7) can be interpreted as the simultaneous general solutions of the
BCS equations and the Landau Fermi-liquid theory equations, while (5.7) by itself
can be derived either from the BCS theory or from the Landau Fermi-liquid theory.
Thus, as it is shown in Sect. 3.1.1, both states of the system coexist at T → 0. As
the system passes into a state with the order parameter κ(p), the entropy vanishes
abruptly and the system undergoes the first-order transition. In vicinity of this point,
the critical quantum and thermal fluctuations are suppressed so that the quasiparticles
remain well-defined excitations (see also Chap.8). It follows from (3.2) that FCQPT
is related to a change in the topological structure of the Green’s function and belongs
to Lifshitz’s topological phase transitions, which occur at absolute zero temperature
[7]. This fact sets a relation between FCQPT and quantum phase transitions, under
which the Fermi sphere splits into a sequence of Fermi layers [8, 9] (see Sects. 5.3
and 4.1). We note that in the state with the order parameter κ(p), the system entropy
S = 0 and the Nernst theorem holds in systems with FC.

If λ0 �= 0, the gap Δ1 becomes finite, leading to a finite value of the effective
mass M∗

FC , which may be obtained from (5.4) by differentiation its both sides over
the momentum p with subsequent using of (2.6) [10–13]:

M∗
FC � pF

p f − pi

2Δ1
. (5.8)

It follows from (5.8) that in the superconducting state the effective mass is always
finite. Its energy scale is determined by the parameter E0:

E0 = ε(p f ) − ε(pi ) � pF
(p f − pi )

M∗
FC

� 2Δ1. (5.9)

5.1.1 Green’s Function of the Superconducting
State with FC at T = 0

We begin with the Gor’kov equations [14], determining the Green’s functions
F+(p, ω) and G(p, ω) of a superconductor (see, e.g., [15]). For 3D case they read:

F+ = −λ0Ξ
∗

(ω − E(p) + i 0)(ω + E(p) − i 0)
;

G = u2(p)

ω − E(p) + i 0
+ v2(p)

ω + E(p) − i 0
, (5.10)

The gap Δ and the function Ξ are given by

Δ = λ0|Ξ |, iΞ =
∫ ∞∫

−∞
F+(p, ω)

dωdp
(2π)4

. (5.11)

http://dx.doi.org/10.1007/978-3-319-10825-4_3
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We recall that the function F+(p, ω) has the meaning of the wave function of Cooper
pairs and Ξ is the wave function of the motion of these pairs as a whole and is just
a constant in a homogeneous system [15]. It follows from (5.4) and (5.11) that

iΞ =
∞∫

−∞
F+
0 (p, ω)

dωdp
(2π)4

= i
∫

κ(p)
dp

(2π)3
. (5.12)

With respect to (5.11) and (5.4), the (5.10) assume the form

F+ = − κ(p)

ω − E(p) + i 0
+ κ(p)

ω + E(p) − i 0
;

G = u2(p)

ω − E(p) + i 0
+ v2(p)

ω + E(p) − i 0
. (5.13)

As λ0 → 0, the gap Δ → 0, but Ξ and κ(p) remain finite if the spectrum becomes
flat, E(p) = 0, and (5.13) lead

F+(p, ω) = −κ(p)

[
1

ω + i 0
− 1

ω − i 0

]
;

G(p, ω) = u2(p)

ω + i 0
+ v2(p)

ω − i 0
. (5.14)

in the interval pi ≤ p ≤ p f . The parameters v(p) and u(p) are determined by
the condition that the spectrum should be flat: ε(p) = μ. With respect to Landau
equation (2.3), this condition again reduces to (3.1) and (5.7) for minimum of the
functional E(n(p)).

We construct the functions F+(p, ω) and G(p, ω) in the case where the constant
λ0 is finite, but small, namely that v(p) and κ(p) can be found on the basis of the FC
solutions of (3.1). Then κ(p), Ξ , E(p) and Δ are given by (5.2), (5.12), (5.11) and
(5.4) respectively. Substituting the functions constructed in this manner into (5.13),
we obtain F+(p, ω) and G(p, ω) [16]. We note that (5.11) imply that the gap Δ is a
linear function of λ0 under the adopted conditions. As we shall see in Sect. 5.1.2, this
gives rise to high-Tc at common values of the superconducting coupling constant.

5.1.2 The Superconducting State at Finite Temperatures

Weassume that the region occupied byFC is small: (p f −pi )/pF � 1 andΔ1 � T f .
Then, the order parameter κ(p) is determined primarily by FC, i.e., the distribution
function n0(p) [10–12]. To be able to solve (5.6) analytically, we adopt the BCS
approximation for the interaction [2]: λ0V (p, p1) = −λ0 if |ε(p) − μ| ≤ ωD and
the interaction is zero outside this region, with ωD being a certain characteristic

http://dx.doi.org/10.1007/978-3-319-10825-4_2
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energy, proportional to the Debye temperature. As a result, the superconducting gap
depends only on the temperature, Δ(p) = Δ1(T ) and (5.6) becomes

1 = NFCλ0

E0/2∫

0

dξ√
ξ2 + Δ2

1(0)
+ NLλ0

ωD∫

E0/2

dξ√
ξ2 + Δ2

1(0)
. (5.15)

Here ξ = ε(p)−μ and NFC is the density of states in themomentum interval p f − pi

or in the energy interval E0. It follows from (5.8) that NFC = (p f − pF )pF/(2πΔ1).
Within the energy intervalωD − E0/2, the density of states NL has the standard form
NL = M∗

L/2π . As E0 → 0, (5.15) becomes the BCS equation. On the other hand,
assuming that E0 ≤ 2ωD and discarding the second integral on the right-hand side
of (5.15), we obtain

Δ1(0) = λ0 pF (p f − pF )

2π
ln

(
1 + √

2
)

= 2βεF
p f − pF

pF
ln

(
1 + √

2
)

, (5.16)

where εF = p2F/2M∗
L is the Fermi energy and β = λ0M∗

L/2π is the dimensionless
coupling constant. Using the standard value of β � 0.3 for ordinary superconductors
and assuming that (p f − pF )/pF � 0.2,we obtain from (5.16) a large valueΔ1(0) ∼
0.1εF ; for ordinary superconductors, this gap is much smaller:Δ1(0) ∼ 10−3εF . We
recollect that in BCS theory the temperature of superconducting phase transition Tc

equals to Tc ≈ Δ1(0)/3.52. This, along with above expressions forΔ1(0), permits to
estimate Tc in the substances with FC. Note that in FC theory this is underestimation
of Tc, see (5.21) below. This means that with accurate account of all factors in FC
approach Tc will be even larger.

As the Fermi energy order of magnitude is around 1eV ≈ 104 K, we obtain that
in the substances with FC Tc � 300K, which is around room temperature. At the
same time, for ordinary superconductors the expression Δ1(0) ∼ 10−3εF = 10K
gives correct estimate for Tc. Thismeans that the FCconcept explains successfully the
physics of high-Tc superconductors. The above calculations show that the explanation
is very simple and do not require any exotic departure from weak coupling BSC-
like theory. Moreover, we recollect that BCS theory of superconductivity uses the
Fermi liquid as the normal state of the system. Since the presented FC approach is
a generalization (in the sense of new quasiparticle concept) of Landau Fermi liquid
theory, we conclude that it is capable to describe naturally the BSC pairing of new
“fermi-condensed” quasiparticles thus lying a foundation for successful explanation
of high-Tc superconductivity phenomenon.

With the integral discarded earlier taken into account, we find that

Δ1(0) � 2βεF
p f − pF

pF
ln

(
1 + √

2
)

+ Δ1(0)β ln

(
2ωD

Δ1(0)

)
, (5.17)
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where Δ1(0) is given by (5.16). As E0 → 0 and p f → pF , the first term on the
right-hand side of (5.15) is zero. Therefore, we obtain the ordinary BCS result with
Δ1 ∝ exp (−1/λ0). The correction related to the second integral in (5.15) is small
because the second term on the right-hand side of (5.17) contains the additional
factor β. In what follows, we show that 2Tc � Δ1(0). The isotopic effect is small
in this case since Tc depends on ωD logarithmically, but the effect is restored as
E0 → 0.

At T � Tc, (5.8) and (5.9) are replaced by (3.12) and (3.14), which also hold for
Tc ≤ T � T f :

M∗
FC � pF

p f − pi

4Tc
, E0 � 4Tc, at T � Tc, (5.18)

M∗
FC � pF

p f − pi

4T
, E0 � 4T, at T < Tc. (5.19)

For finite temperatures the (5.15) is replaced by its standard generalization

1 = NFCλ0

E0/2∫

0

dξ√
ξ2 + Δ2

1

tanh

√
ξ2 + Δ2

1

2T

+ NLλ0

ωD∫

E0/2

dξ√
ξ2 + Δ2

1

tanh

√
ξ2 + Δ2

1

2T
. (5.20)

BecauseΔ1(T → Tc) → 0, (5.20) implies a relation that closely resembles the BCS
result [17],

2Tc � Δ1(0), (5.21)

where Δ1(T = 0) is found from (5.17). Comparing (5.8) and (5.9) with (5.18) and
(5.19), we see that both M∗

FC and E0 are temperature-independent for T ≤ Tc.

5.1.3 Bogolyubov Quasiparticles

Equation (5.6) shows that the superconducting gap depends on the single-particle
spectrum ε(p). On the other hand, it follows from (5.4) that ε(p) depends on Δ(p)

if (5.7) has a solution that determines the existence of FC at λ0 → 0. We assume
that λ0 is so small that the pairing interaction λ0V (p, p1) leads only to a small
perturbation of the order parameter κ(p). Equation (5.8) implies that the effective
mass and the density of states N (0) ∝ M∗

FC ∝ 1/Δ1 are finite. Thus, in contrast to
the spectrum in the standard superconductivity theory, the single-particle spectrum

http://dx.doi.org/10.1007/978-3-319-10825-4_3
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ε(p) depends strongly on the superconducting gap, and (2.3) and (5.6)must be solved
self-consistently.

We assume that (2.3) and (5.6) have been solved and the effective mass M∗
FC has

been found. This means that we can find the quasiparticle dispersion law ε(p) by
choosing the effective mass M∗ equal to the obtained value of M∗

FC and then solve
(5.6) without (2.3), as it is done in the standard BCS superconductivity theory [2].
Hence, the superconducting state with FC is characterized by Bogolyubov quasipar-
ticles [18] with dispersion (5.5) and the normalization condition v2(p) + u2(p) = 1
for the coefficients v(p) and u(p). Moreover, quasiparticle excitations of the super-
conducting state in the presence of FC coincide with the Bogolyubov quasiparticles
in the BCS theory. This means that the superconductivity in FC state resembles BCS
one, which points to the applicability of the modified BCS formalism to the descrip-
tion of the high-Tc superconducting state. At the same time, the maximum value of
the superconducting gap set by (5.17) and other exotic properties are determined
by the presence of FC. These results are in good agreement with the experimental
observations for the high-Tc superconductor Bi2Sr2Ca2Cu3O10+δ [19].

In constructing the superconducting state with FC, we returned to the foundations
of the LFL theory, where the high-energy degrees of freedom had been eliminated
by introduction of new quasiparticles. The main difference between the LFL, which
forms the basis for constructing the superconducting state, and the Fermi liquid with
FC is that in the latter case we should increase the number of low-energy degrees of
freedom by introducing the new type of quasiparticles with the effective mass M∗

FC
and the characteristic energy E0 given by (5.9). Hence, the dispersion law ε(p) in FC
state is characterized by two types of quasiparticles with the effective masses M∗

L and
M∗

FC and the scale E0. The extended paradigm and new quasiparticles determine the
properties of the superconductor, including the lineshape of quasiparticle excitations
[10–12, 20], while the formal dispersion of the Bogolyubov quasiparticles has the
standard form (5.5).

We note that for T < Tc, the effectivemass M∗
FC and the scale E0 are temperature-

independent [20]. For T > Tc, the effective mass M∗
FC and the scale E0 are given

by (3.12) and (3.14). Obviously, we cannot directly relate these new quasiparticles
(excitations) of the Fermi liquid with FC to excitations (quasiparticles) of an ideal
Fermi gas, as is done in the standard LFL theory, because the system is beyond
FCQPT. The properties and dynamics of quasiparticles are given by the extended
paradigm and closely related to the properties of the superconducting state and are of
a collective nature, formed by FCQPT and determined by the macroscopic number
of FC quasiparticles with momenta in the interval (p f − pi ). Such a system cannot
be perturbed by scattering on impurities and on lattice defects and, therefore, has
the features of a quantum protectorate and demonstrates universal scaling behavior,
forming a new state of matter [10–12, 21–24], see Chaps. 17 and 18.

Several remarks concerning the quantum protectorate and the universal behavior
of superconductors with FC are in order. Similarly to the Landau Fermi liquid theory,
the theory of high-Tc superconductivity based on FCQPT deals with quasiparticles
that are elementary low-energy excitations. The theory provides general qualitative
description of the superconducting and the normal states of high-Tc superconductors

http://dx.doi.org/10.1007/978-3-319-10825-4_2
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andHFmetals. Of course, the proper choice of the phenomenological parameters like
pairing coupling constant can yield a quantitative description of superconductivity
similar to the case of Landau theory for an ordinary Fermi liquid like 3He. Hence,
any formalism capable of FC description and compatible with the BCS theory yields
the same qualitative picture of normal and superconducting states in a substance with
FCQPT. Obviously, both approaches may be coordinated on the level of numerical
results by choosing the appropriate parameters. For instance, because the formation
of FC is possible in the Hubbard model [25], it allows reproducing the results of the
theory based on FCQPT.

5.1.4 The Dependence of Superconducting Phase Transition
Temperature Tc on Doping

We examine the maximum value of the superconducting gap Δ1 as a function of the
number density x of mobile charge carriers, which is proportional to the degree of
doping. Using (3.15), we can rewrite (5.16) as

Δ1

εF
∼ β

(xFC − x)x

xFC
. (5.22)

Here we take into account that the Fermi level εF ∝ p2F and the number density
x ∼ p2F/(2M∗) with the result εF ∝ x . It is realistic to assume that Tc ∝ Δ1,
because the curve Tc(x) obtained in experiments with high-Tc superconductors [26]
must be a smooth function of x . Hence, we can approximate Tc(x) by a smooth
bell-shape function [27]:

Tc(x) ∝ β(xFC − x)x . (5.23)

To illustrate the application of the above analysis, we examine themain features of
a superconductor that can hypothetically exist at room temperature. Such a supercon-
ductor should consist of two-dimensional layers similar to high-Tc superconducting
cuprates. Equation (5.16) implies that Δ1 ∼ βεF ∝ β/r2s . Bearing in mind that
FCQPT occurs at rs ∼ 20 in 3D systems and at rs ∼ 8 in 2D systems [28], we can
expect that in 3D systemsΔ1 amounts to 10% of the maximum size of the supercon-
ducting gap in 2D systems, which in our case amounts to 60mV for weakly doped
cuprates with Tc = 70K [29]. On the other hand, (5.16) implies thatΔ1 may be even
larger, Δ1 ∼ 75mV.We can expect that Tc ∼ 300K in the case of s-wave pairing, as
the simple relation 2Tc � Δ1 implies. Indeed, we can take εF ∼ 500mV, β ∼ 0.3,
and (p f − pi )/pF ∼ 0.5. Thus, the hypothetical room temperature superconductor
could have simple s-wave pairing. We note that the number density x of mobile
charge carriers have to satisfy the condition x ≤ xFC and should be varied to reach
the optimum degree of doping xopt � xFC/2.

http://dx.doi.org/10.1007/978-3-319-10825-4_3
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5.1.5 The Gap and Heat Capacity Near Tc

Wenow calculate the gap and the heat capacity at temperatures T → Tc. Our analysis
is valid at T ∗

p � Tc as otherwise the discontinuities in the heat capacity considered
below are smeared over the temperature interval between T ∗

p and Tc where T ∗
p is the

temperature at which the pseudogap is closed. Since the origin of the pseudogap is
controversial and still subject to debate in the condensed matter community, we do
not consider here this phenomenon. To simplify matters, we calculate the leading
contribution to the gap and heat capacity related to FC. We use (5.20) to find the
functionΔ1(T → Tc) simply by expanding the first integral on its right-hand side in
powers ofΔ1 and dropping the contribution from the second integral. This procedure
leads to the equation [20]

Δ1(T ) � 3.4Tc

√
1 − T

Tc
. (5.24)

Therefore, the gap in the single-particle excitations spectrum behaves in the ordinary
BCS manner.

To calculate the heat capacity, we can use the standard expression for the entropy
S [2]:

S(T ) = −2
∫ [

f (p) ln f (p) + (1 − f (p)) ln(1 − f (p))

]
dp

(2π)2
, (5.25)

where

f (p) =
(
1 + exp

E(p)

T

)−1

, E(p) =
√

(ε(p) − μ)2 + Δ2
1(T ). (5.26)

The heat capacity C is given by

C(T ) = T
d S

dT
� 4

NFC

T 2

E0∫

0

f (E)(1 − f (E))

[
E2 + T Δ1(T )

dΔ1(T )

dT

]
dξ

+ 4
NL

T 2

ωD∫

E0

f (E)(1 − f (E))

[
E2 + T Δ1(T )

dΔ1(T )

dT

]
dξ. (5.27)

In deriving (5.27), we again use the variables ξ and E =
√

ξ2 + Δ2
1(T ) and the

above notation for the densities of states NFC and NL . Equation (5.27) describes
a jump in heat capacity, δC(T ) = Cs(T ) − Cn(T ), where Cs(T ) and Cn(T ) are
respectively the heat capacities of the superconducting and normal states at Tc; the
jump is determined by the last two terms in the square brackets on the right-hand
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side of this equation. Using (5.24) to calculate the first term on the right-hand side
of (5.27), we find [20]

δC(Tc) � 3

2π2 (p f − pi )pn
F . (5.28)

where n = 1 in the 2D case and n = 2 in the 3D case. This result differs from the
ordinary BCS result, according to which the discontinuity in the heat capacity is a
linear function of Tc. The jump δC(Tc) is independent of Tc because, as (5.19) shows,
the density of state varies in inverse proportion to Tc. We note that in deriving (5.28)
we took the leading contribution coming from FC into account. This contribution
disappears as E0 → 0, and the second integral on the right-hand side of (5.27) yields
the standard result.

As we will show in Chap. 8 [see (8.6)], the heat capacity of a system with FC
behaves as Cn(T ) ∝ √

T/T f . The jump in the heat capacity given by (5.28) is
temperature-independent. As a result, we find that

δC(Tc)

Cn(Tc)
∼

√
T f

Tc

(p f − pi )

pF
. (5.29)

In contrast to the case of normal superconductors, where δC(Tc)/Cn(Tc) = 1.43
[15], in our case (5.29) implies that the ratio δC(Tc)/Cn(Tc) is not constant and may
be very large when T f /Tc 
 1 [20, 30]. It is instructive to apply this analysis to
CeCoIn5, where Tc =2.3 K [30]. In this material [31], δC/Cn � 4.5 is substantially
higher than the BCS value, in agreement with (5.29).

5.2 The Dispersion Law and Lineshape of Single-Particle
Excitations

Recently discovered gap in the quasiparticles dispersion at energies between 40 and
70meV, resulting in quasiparticles velocity altering in this energy range [32–35], can
hardly be explained by the marginal Fermi-liquid theory as it contains no additional
energy scales or parameters thatwould allow taking the gap into account [36, 37].One
could assume that the gap, defining new energy scale, occurs due to the interaction of
electrons and collective excitations. In this case, however, we would have to discard
the idea of a quantumprotectorate,which in its turnwould contradict the experimental
data [21, 22].

As shown in Sects. 3.1.3 and 5.1, a systemwith FChas two effectivemasses: M∗
FC ,

which determines the single-particle spectrum at low energies, and M∗
L , which deter-

mines the spectrum at high energies. The fact that there are two effective masses
manifests itself in the form of a kink in the quasiparticle dispersion law. The disper-
sion law can be approximated by two straight lines intersecting at the binding energy
E0/2 [see (3.14) and (5.9)]. The kink in the dispersion law occurs at temperatures

http://dx.doi.org/10.1007/978-3-319-10825-4_8
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much lower than T � T f , when the system is in the superconducting or normal state.
Such behavior is in good agreement with the experimental data [35]. It is pertinent
to note that at temperatures below T < Tc, the effective mass M∗

FC is independent
of the momenta pF , p f , and pi , as shown by (5.8) and (5.16):

M∗
FC ∼ 2π

λ0
. (5.30)

This formula implies that M∗
FC is only weakly dependent on x , if a dependence

of λ0 on x is allowed. This result is in good agreement with the experimental data
[38–40]. The same is true for the dependence of the Fermi velocity vF = pF/M∗

FC
on x because the Fermi momentum pF ∼ √

n is weakly dependent on the electron
number density n = n0(1 − x) [38, 39]. Here, n0 is the single-particle electron
number density at half-filling.

Since λ0 is the coupling constant that determines the magnitude of the pairing
interaction, e.g., the electron-phonon one, we can expect a kink in the quasiparticle
dispersion law to be caused by the electron-phonon interaction. The electron-phonon
scenario could explain the constancy of the kink at T > Tc as phonon contribution
is temperature independent. On the other hand, it was found that the quasiparticle
dispersion law distorted by the interaction with phonons has a tendency to restore
itself to the ordinary single particle dispersion law when the quasiparticle energy
becomes higher than the phonon energy [41]. However, there is no experimental
evidence that such restoration of the dispersion law actually takes place [35].

The quasiparticle excitation curve L(q, ω) is a function of two variables. Mea-
surements at a constant energy ω = ω0, where ω0 is the single particle excitation
energy, determine the curve L(q, ω = ω0) as a function of the momentum q. We
have shown above that M∗

FC is finite and constant at temperatures not exceeding
Tc. Hence, at excitation energies ω < E0, the system behaves as an ordinary super-
conducting Fermi liquid with the effective mass determined by (5.8) [10–13]. At
Tc ≤ T , the effective mass M∗

FC is also finite and is given by (3.12). In other words,
at ω < E0, the system behaves as a Fermi liquid whose single-particle spectrum
is well defined and the width of the single-particle excitations is of the order of T
[5, 10–12]. Such behavior has been observed in measurements of the quasiparticle
excitation curve at fixed energy [33, 42, 43].

The quasiparticle excitation curve can also be described as a function of ω, at a
constant momentum q = q0. For small values of ω, the behavior of this function is
similar to that described above, with L(q = q0, ω) having a characteristic maximum
and width. For ω ≥ E0, the contribution provided by quasiparticles of mass M∗

L
becomes significant and leads to an increase in the function L(q = q0, ω). Thus,
L(q = q0, ω) has a certain structure of maxima and minima directly determined
by the existence of two effective masses, M∗

FC and M∗
L [10–13]. We conclude that,

in contrast to Landau quasiparticles, these quasiparticles have a more complicated
spectral lineshape.

To calculate the imaginary part Im �(p, ε) of the self-energy �(p, ε), we use the
Kramers-Kronig relations. For that we first calculate its real part Re �(p, ε), which

http://dx.doi.org/10.1007/978-3-319-10825-4_3
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determines the effective mass M∗ [44],

1

M∗ =
(
1

m
+ 1

pF

∂Re�

∂p

) /(
1 − ∂Re�

∂ε

)
. (5.31)

The correspondingmomenta p and energies ε satisfy the inequalities |p− pF |/pF �
1, and ε/εF � 1. We take Re �(p, ε) in the simplest possible form that ensures the
correct variation of the effective mass at the energy E0/2,

Re�(p, ε) = − ε
M∗

FC

m
+

(
ε − E0

2

)
M∗

FC − M∗
L

m

×
[
θ

(
ε − E0

2

)
+ θ

(
−ε − E0

2

)]
, (5.32)

where θ(ε) is the step function. To ensure a smooth transition from the single-
particle spectrum characterized by M∗

FC to the spectrum characterized by M∗
L , we

must replace the step function by a smoothed one. Substituting (5.32) in (5.31), we
see that M∗ � M∗

FC within the interval (−E0/2, E0/2), while M∗ � M∗
L outside

this interval. Applying the Kramers-Kronig relation to Re�(p, ε), we express the
imaginary part of the self-energy as [20]

Im�(p, ε) ∼ ε2
M∗

FC

εF m
+ M∗

FC − M∗
L

m

[
ε ln

∣∣∣∣2ε + E0

2ε − E0

∣∣∣∣ + E0

2
ln

∣∣∣∣∣
4ε2 − E2

0

E2
0

∣∣∣∣∣
]
.

(5.33)

Clearly, with ε/E0 � 1, the imaginary part is proportional to ε2; at 2ε/E0 � 1, we
have Im� ∼ ε, and for E0/ε � 1, the main contribution to the imaginary part is
approximately constant.

It follows from (5.33) that as E0 → 0, the second term on its right-hand side
vanishes and the single-particle excitations become well-defined, which resembles
the situation with a normal Fermi liquid, while the pattern of minima and maxima
eventually disappears. Now the quasiparticle renormalization factor z(p) is given by
the equation [44]

1

z(p)
= 1 − ∂Re�(p, ε)

∂ε
. (5.34)

Consequently, the (5.33) and (5.34) show that for T ≤ Tc, the interaction of a
quasiparticle on the Fermi surface increases as the characteristic energy E0 decreases.
Equations (5.9) and (5.23) imply that E0 ∼ (xFC −x)/xFC .When T > Tc, it follows
from (5.32) and (5.34) that the quasiparticle interaction increases as the effectivemass
M∗

FC decreases. So, from (3.12) and (3.15) M∗
FC ∼ (p f −pi )/pF ∼ (xFC −x)/xFC .

As a result, we conclude that the interaction increases with the doping level x and the
single-particle excitations are better defined in heavily doped samples. As x → xFC ,
the characteristic energy E0 → 0 and the quasiparticles become normal excitations

http://dx.doi.org/10.1007/978-3-319-10825-4_3
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of LFL. We note that such behavior has been observed in experiments with heavily
doped Bi2212, which demonstrates high-Tc superconductivity with the gap of about
10mV [45]. The size of the gap suggests that the region occupied by FC is small
because E0/2 � Δ1. For x > xFC and low temperatures, the HF liquid behaves as
LFL (see Fig. 3.2 and Sect. 3.1.4). Experimental data show that, as expected, the LFL
state exists in super-heavily doped nonsuperconducting La1.7Sr0.3CuO4 [46, 47].

5.3 Electron Liquid with FC in Magnetic Fields

The behavior of heavy-electron liquid with FC in magnetic field is considered. At
low temperatures and under the application of weak magnetic field the distribution
function is to be reconstructed so that the order parameter vanishes, and a new
distribution function is to deliver the same ground state energy. We show that the
newdistribution emerges as a result of topological phase transition, and is represented
by multiply connected Fermi spheres. This topological phase transition and multiply
connected Fermi spheres (icebergs) are considered in Chap. 4.

5.3.1 Phase Diagram of Electron Liquid in Magnetic Field

Let us assume that the coupling constant is nonzero, λ0 �= 0, but is infinitely small.
We found in Sect. 5.1 that at T = 0 the superconducting order parameter κ(p) is finite
in the region occupied by FC and that the maximum value of the superconducting
gapΔ1 ∝ λ0 is infinitely small. Hence, any weakmagnetic field B �= 0 is critical and
destroys the order parameter and FC. Simple energy arguments suffice to determine
the type of rearrangement of the FC state.Onone hand, sinceFC state is destroyed, the
energy gain ΔEB ∝ B2 vanishes as B → 0. On the other hand, the function n0(p),
which occupies the finite interval (p f − pi ) in the momentum space and is specified
by (3.1) or (5.9), leads to a finite gain in the ground-state energy compared to that of
a normal Fermi liquid [4]. Thus, the distribution function is to be reconstructed so
that the order parameter is to vanish while a new distribution function is to deliver
the same ground state energy. Thus, in weak magnetic fields, the new ground state
without FC must have almost the same energy as the state with FC. As shown in
Chap.4, such a state is formed by multiply connected Fermi spheres resembling an
onion, in which a smooth distribution function of quasiparticles, n0(p), is replaced
in the interval (p f − pi ) with the distribution function [8, 48]

ν(p) =
n∑

k=1

θ(p − p2k−1)θ(p2k − p). (5.35)
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Fig. 5.1 The function ν(p)

for the multiply connected
distribution that replaces the
function n0(p) in the region
(p f − pi ) occupied by FC.
The momenta satisfy the
inequalities pi < pF < p f .
The outer Fermi surface at
p � p2n � p f has the shape
of a Fermi step, and therefore
the system behaves like LFL
at sufficiently low
temperatures

where the parameters pi ≤ p1 < p2 < · · · < p2n ≤ p f are chosen so as to satisfy
the conditions of normalization and conservation of the particles number:

p2k+3∫

p2k−1

ν(p)
dp

(2π)3
=

p2k+3∫

p2k−1

n0(p)
dp

(2π)3
.

Figure 5.1 shows the corresponding multiply connected distribution. For definite-
ness, we present the most interesting case of a three-dimensional system. The two-
dimensional case can be examined similarly. We note that the possibility of the
existence of multiply connected Fermi spheres have been studied in [49–52].

We assume that the thickness of each inner slice of the Fermi sphere, δp � p2k+1−
p2k , is determined by the magnetic field B. Using the well-known rule for estimating
errors of numerical calculation of definite integrals, we find that the minimum loss of
the ground-state energy due to slice formation is approximately (δp)4. This becomes
especially clear ifwe take into account the fact that the continuous FC functions n0(p)

ensure theminimumvalue of the energy functional E[n(p)], while the approximation
of ν(p) by steps of width δp leads to a minimal error of the order of (δp)4. Recalling
that the gain due to the magnetic field is proportional to B2 and equating the two
contributions, we obtain

δp ∝ √
B. (5.36)

Therefore, as T → 0, with B → 0, the slice thickness δp also tends to zero and
the behavior of a Fermi liquid with FC is replaced with that of LFL with the Fermi
momentum p f . Equation (5.7) implies that p f > pF and the electron number
density x remains constant, with the Fermi momentum of the multiply connected
Fermi sphere p2n � p f > pF (see Fig. 5.1). We will see subsequently in Chap. 8
that these observations play an important role in studying the behavior of both the
Hall coefficients RH (B) and the second order phase transitions in HF metals as a
function of B at low temperatures.

http://dx.doi.org/10.1007/978-3-319-10825-4_8
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To calculate the effective mass M∗(B) as a function of the applied magnetic
field B, we first note that at T = 0 the field B splits the FC state into Landau
levels, suppresses the superconducting order parameter κ(p), and destroys FC, which
leads to restoration of LFL [53, 54]. The Landau levels near the Fermi surface
can be approximated by separate slices whose thickness in momentum space is δp.
Approximating the quasiparticle dispersion law within a single slice, ε(p) − μ ∼
(p − p f + δp)(p − p f )/M∗, we find the effective mass M∗(B) ∼ M∗/(δp/p f ).
The energy increment ΔEFC caused by the transformation of the FC state can be
estimated based on using the Landau formula [15]

ΔEFC =
∫

(ε(p) − μ)δn(p)
dp3

(2π)3
. (5.37)

The region occupied by the variation δn(p) has the thickness δp, with (ε(p) −
μ) ∼ (p − p f )p f /M∗(B) ∼ δpp f /M∗(B). As a result, we find that ΔEFC ∼
p3f δp2/M∗(B). On the other hand, there is onemore term in the energy E expression,

ΔEB ∼ (BμB)2M∗(B)p f , caused by the applied magnetic field, which decreases
the energy and is related to the Zeeman splitting. Equating ΔEB and ΔEFC and
recalling that M∗(B) ∝ 1/δp in this case, we obtain the chain of relations

δp2

M∗(B)
∝ 1

(M∗(B))3
∝ B2M∗(B), (5.38)

which implies that the effective mass M∗(B) diverges as

M∗(B) ∝ 1√
B − Bc0

. (5.39)

where Bc0 is the critical magnetic field, which places HF metal at the magnetic-
field-tuned quantum critical point and nullifies the respective Nèel temperature,
TN L(Bc0) = 0 [54]. In our simplemodel of HF liquid, the quantity Bc0 is a parameter
determined by the properties of the specific metal with heavy fermions. We note that
in some cases Bc0 = 0, e.g., the HF metal CeRu2Si2 has no magnetic order, exhibits
no superconductivity, and does not behave like a Landau Fermi liquid even at the
lowest reached temperatures [55].

Formula (5.39) and Fig. 5.1 shows that the application of amagnetic field B > Bc0
brings the FC system back to the LFL state with the effective mass M∗(B) that
depends on the magnetic field. This means that the following characteristic of LFL
are restored: C/T = γ0(B) ∝ M∗(B) for the heat capacity and χ0(B) ∝ M∗(B)

for the magnetic susceptibility. The coefficient A(B) determines the temperature-
dependent part of the resistivity, ρ(T ) = ρ0+Δρ, where ρ0 is the residual resistivity
and Δρ = A(B)T 2. Since this coefficient is directly determined by the effective
mass, A(B) ∝ (M∗(B))2 [56], (5.39) yields
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A(B) ∝ 1

B − Bc0
. (5.40)

Thus, the empirical Kadowaki-Woods relation [57] K = A/γ 2
0 � const is valid in

our case [56]. Furthermore, K maydependon thequasiparticles degreeof degeneracy.
With this degeneracy, the Kadowaki-Woods relation provides a good description of
the experimental data for a broad class of HF metals [58, 59]. In the simplest case,
where HF liquid is formed by spin-1/2 quasiparticles with the degeneracy degree 2,
the value of K turns out to be close to the empirical value [56] knownas theKadowaki-
Woods ratio [57]. Hence, the system, subjected to a magnetic field, returns to the
LFL state with constant Kadowaki-Woods relation. We note that when the system is
located near FCQPT, the application of magnetic field brings it to the LFL state due
to the Zeeman splitting, as it is discussed in Chap. 6.

At finite temperatures, the system remains in the LFL state, but when T > T ∗(B),
the NFL behavior is restored. As regards to finding the function T ∗(B), we reminder
that the transition region characterized by the function T ∗(B) can be determined
in different measurements on HF compounds such as measurements of the maxi-
mums of the heat capacity C/T or maximums of the magnetic susceptibility χ , etc
(see, Sect. 6.4). In the considered case, T ∗(B) is determined in measurements of the
resistivity ρ(T ) in magnetic fields, see Sect. 6.3.1. We note that the effective mass
M∗, characterizing the single-particle spectrum, cannot change at T ∗(B) because
no phase transition occurs at this temperature. To calculate M∗(T ), we equate the
effective mass M∗(T ) in (3.12) to M∗(B) in (5.39), M∗(T ) ∼ M∗(B),

1

M∗(T )
∝ T ∗(B) ∝ 1

M∗(B)
∝ √

B − Bc0. (5.41)

Let us note that

T ∗(B) ∝ √
B − Bc0. (5.42)

At temperatures T ≥ T ∗(B), the system returns to the NFL behavior with the
effective mass M∗ specified by (3.12). Thus, expression (5.42) determines the line
in the T − B phase diagram that separates the region where the effective mass
depends on B and the heavy Fermi liquid behaves like a Landau Fermi liquid from the
regionwhere the effectivemass is temperature-dependent. At T ∗(B), the temperature
dependence of the resistivity ceases to be quadratic and becomes linear.

A schematic T − B phase diagram of HF liquid with FC in magnetic field is
shown in Fig. 5.2. At magnetic field B < Bc0 the FC state can be captured by FM,
AFM and/or SC states lifting the degeneracy of the FC state. It follows from (5.42)
that at a certain temperature T ∗(B) � T f , the heavy-electron liquid transits from its
NFL state to LFL one acquiring the properties of LFL at (B − Bc0) ∝ (T ∗(B))2. At
temperatures below T ∗(B), as shown by the horizontal arrow in Fig. 5.2, the heavy-
electron liquid demonstrates an increasingly metallic behavior as the magnetic field
B increases. This is because the effective mass decreases, see (5.39). Such behavior

http://dx.doi.org/10.1007/978-3-319-10825-4_6
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Fig. 5.2 Schematic T − B phase diagram of heavy electron liquid. Bc0 denotes the magnetic field
at which the effective mass diverges according to (5.39). The horizontal arrow illustrates the system
moving in the NFL-LFL direction along B at fixed temperature. As shown by the dashed curve, at
B < Bc0 the system can be in its ferromagnetic (FM), antiferromagnetic (AFM) or superconducting
(SC) states. The NFL state is characterized by the entropy S0 given by (3.8). The solid curve T ∗(B)

separates the NFL state and the weakly polarized LFL one and represents the transition regime

of the effective mass can be observed, for instance, in measurements of the heat
capacity, magnetic susceptibility, resistivity, and Shubnikov-de Haas oscillations.
The T − B phase diagram in Fig. 5.2 shows that a unique possibility emerges where
a magnetic field can be used to control the variations in the physical nature and type
of behavior of the electron liquid with FC.

We briefly discuss the case where the system is extremely close to FCQPT on
the ordered size of this transition, and hence δpFC = (p f − pi )/pF � 1. Because
δp ∝ M∗(B), it follows from (5.36) and (5.39) that

δp

pF
∼ ac

√
B − Bc0

Bc0
, (5.43)

where ac ∼ 1. As the magnetic field B increases, δp/pF becomes comparable to
δpFC , and the distribution function ν(p) disappears, being absorbed by the ordinary
Zeeman splitting. As a result, we are dealing with HF liquid located on the disordered
side of FCQPT. We show in Chap. 6 that the behavior of such a system differs
essentially from that of a system with FC. Equation (5.43) implies that the relatively
weak magnetic field Bcr ,

Bred ≡ B − Bc0

Bc0
= (δpFC )2 ∼ Bcr , (5.44)

where Bred is the reduced field, takes the system from the ordered side of the phase
transition to the disordered if δpFC � 1.

http://dx.doi.org/10.1007/978-3-319-10825-4_3
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5.3.2 Magnetic Field Dependence of the Effective Mass in HF
Metals and High-Tc Superconductors

Observations have shown that in the normal state both heavily Tl2Ba2CuO6+δ

[60] and optimally doped cuprates Bi2Sr2CuO6+δ [61] exhibit no significant vio-
lations of the Wiedemann-Franz law. The normal state has been obtained by apply-
ing a magnetic field whose strength is higher than the maximum critical field
Bc2 that destroys superconductivity. Studies of the electron—doped superconductor
Pr0.91LaCe0.09Cu04−y (Tc =24K), revealed that when a magnetic field destroyed
superconductivity in this material, the spin-lattice relaxation constant 1/T1 obeyed
the relation T1T = const , known as the Korringa law, down to temperatures about
T � 0.2 K [62, 63]. At higher temperatures and in magnetic fields up to 15.3 T
perpendicular to the CuO2 plane, the ratio 1/T1T remains constant as a function
of T for T ≤ 55 K. In the temperature range from 50 to 300 K, the ratio 1/T1T
decreases as the temperature increases [63]. Measurements involving the heavily
doped nonsuperconducting material La1.7Sr0.3CuO4 have shown that the resistivity
ρ varies with T as T 2 and that the Wiedemann-Franz law holds [46, 47].

As Korringa and Wiedemann-Franz laws strongly indicate the presence of the
LFL state, experiments show that the observed elementary excitations cannot be
distinguished from Landau quasiparticles in high-Tc superconductors. This places
severe restrictions on models describing hole- or electron-doped high-Tc supercon-
ductors. For instance, for a Luttinger liquid [64, 65], for spin-charge separation [66],
and in some t − J models [67], a violation of the Wiedemann-Franz law was pre-
dicted, which is in contradiction with experimental evidence and points to the limited
applicability of these models.

If the constant λ0 is finite, then aHF liquid with FC is in the superconducting state.
We examine the behavior of the system in magnetic fields B > Bc2. In this case, the
system becomes LFL induced by the magnetic field, and the elementary excitations
become quasiparticles that cannot be distinguished from Landau quasiparticles, with
the effective mass M∗(B) given by (5.39). As a result, the Wiedemann-Franz law
holds as T → 0, which agrees with the experimental data [60, 61]. Note, that
violations of the Wiedemann-Franz law in HF metals are considered in Chap. 14.

The low-temperature properties of the system depend on the effective mass; in
particular, the resistivity ρ(T ) obeys to (2.19) with A(B) ∝ (M∗(B))2. Assuming
that for high-Tc superconductors the critical field B = Bc0, we deduce from (5.39)
that

γ0
√

B − Bc0 = const. (5.45)

Taking (5.40) and (5.45) into account, we find that

γ0 ∼ A(B)
√

B − Bc0. (5.46)

At finite temperatures, the system remains LFL, but for T > T ∗(B) the effective
mass becomes temperature-dependent, M∗ ∝ 1/T , and the resistivity becomes a

http://dx.doi.org/10.1007/978-3-319-10825-4_14
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linear function of the temperature, ρ(T ) ∝ T [68]. Such behavior of the resistivity
has been observed in the high-Tc superconductor Tl2Ba2CuO6+δ (Tc < 15K) [69].
At B < 10 T, the resistivity is a linear function of the temperature in the range from
120mK to 1.2K, and at B = 10 T the temperature dependence of the resistivity can
be written in the form ρ(T ) ∝ AT 2 in the same temperature range [69, 70], clearly
demonstrating that the LFL state is restored under the application of magnetic fields.
The behavior of the resistivity of HF metals is studied in Chaps. 9, 10 and 11.

In LFL, the spin-lattice relaxation parameter 1/T1 is determined by the quasi-
particles near the Fermi level, whose population is proportional to M∗T , whence
1/T1T ∝ M∗, and is a constant quantity [62, 63]. When the superconducting state
disappears as a magnetic field is applied, the ground state can be regarded as a field-
induced LFL with field-dependent effective mass. As a result, T1T = const , which
implies that the Korringa law holds. According to (5.39), the ratio 1/T1T ∝ M∗(B)

decreases as the magnetic field increases at T < T ∗(B), whereas in the case of
a Landau Fermi liquid it remains constant, as noted above. On the other hand,
at T > T ∗(B), the ratio 1/T1T is a decreasing function of the temperature,
1/T1T ∝ M∗(T ). These results are in good agreement with the experimental data
[63]. Since T ∗(B) is an increasing function of the magnetic field [see (5.42)], the
Korringa law remains valid even at higher temperatures and in stronger magnetic
fields. Hence, at T0 ≤ T ∗(B0) and high magnetic fields B > B0, the system demon-
strates distinctmetallic behavior, because the effectivemass decreases as B increases,
see (5.39). For details, see Sect. 7.5.

The existence of FCQPT can also be verified experimentally, for at number den-
sities x > xFC or beyond the FCQPT point, the system must become LFL at suf-
ficiently low temperatures [53]. Experiments have shown that such a liquid indeed
exists in the heavily doped non-superconducting compoundLa1.7Sr0.3CuO4 [46, 47].
It is remarkable that for T < 55K, the resistivity exhibits a T 2-behavior without
an additional linear term and the Wiedemann-Franz law holds [46, 47]. At temper-
atures above 55K, experimentalists have detected significant deviations from the
LFL behavior. Observations [48, 71, 72] are in accord with these experimental find-
ings showing that the system can again be returned to the LFL state by applying
sufficiently strong magnetic fields (also see Chap.6).

5.3.2.1 Common QCP in the High-Tc Tl2Ba2CuO6+x and the HF Metal
YbRh2Si2

Under the application of magnetic fields B > Bc2 > Bc0 and at T < T ∗(B), a high-
Tc superconductor or HF metal can be driven to the LFL state with its resistivity
given by (2.19). In that case measurements of the coefficient A produce information
on its field dependence. We note that relationships between critical magnetic fields
Bc2 and Bc0 are clarified in Sect. 7.6.

Precise measurements of A(B) on the high-Tc compound Tl2Ba2CuO6+x [74]
allow us to establish relationships between the physics of both high-Tc superconduc-
tors and HF metals and clarify the role of the extended quasiparticle paradigm. The

http://dx.doi.org/10.1007/978-3-319-10825-4_9
http://dx.doi.org/10.1007/978-3-319-10825-4_10
http://dx.doi.org/10.1007/978-3-319-10825-4_11
http://dx.doi.org/10.1007/978-3-319-10825-4_7
http://dx.doi.org/10.1007/978-3-319-10825-4_6
http://dx.doi.org/10.1007/978-3-319-10825-4_2
http://dx.doi.org/10.1007/978-3-319-10825-4_7
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Fig. 5.3 The charge transport
coefficient A(B) as a function
of magnetic field B obtained
in measurements on
YbRh2Si2 [73] and
Tl2Ba2CuO6+x [74]. The
different field scales are
clearly seen. The solid curves
represent our fit by (5.47)

A(B) coefficient, being proportional to the quasiparticle—quasiparticle scattering
cross-section, is found to be A ∝ (M∗(B))2 [56, 73]. With respect to (5.39), this
implies that

A(B) � A0 + D

B − Bc0
, (5.47)

where A0 and D are fitting parameters.
Figure 5.3 reports the fit of our theoretical dependence (5.47) to the experimen-

tal data for the measurements of the coefficient A(B) for two different classes of
substances: HF metal YbRh2Si2 (with Bc0 = 0.06 T, left panel) [73] and high-Tc

Tl2Ba2CuO6+x (with Bc0 = 5.8 T, right panel) [74]. In Fig. 5.3, left panel, A(B) is
shown as a function of magnetic field B, applied both along and perpendicular to the
c axis. For the latter the B values have been multiplied by a factor of 11 [73]. The
different scales of field Bc0 are clearly seen and demonstrate that Bc0 has to be taken
as an input parameter. Indeed, the critical field of Tl2Ba2CuO6+x with Bc0 = 5.8 T
is 2 orders of magnitude larger than that of YbRh2Si2 with Bc0 = 0.06 T.

Figure 5.3 displays good coincidence of the theoretical dependence (5.40) with
the experimental facts [74, 75]. This means that the physics underlying the field-
induced reentrance into the LFL behavior, is the same for both classes of substances.
To further corroborate this point, we rewrite (5.47) in the reduced variables A/A0
and B/Bc0. Such rewriting immediately reveals the scaling nature of the behavior of
these two substances—both of them are driven to common QCP related to FCQPT
and induced by the application of magnetic field. As a result, (5.47) takes the form

A(B)

A0
� 1 + DN

B/Bc0 − 1
, (5.48)

where DN = D/(A0Bc0) is a constant. From (5.48) it is seen that upon applying the
scaling to both coefficients A(B) for Tl2Ba2CuO6+x and A(B) for YbRh2Si2 they
are reduced to a function depending on the single variable B/Bc0 thus demonstrat-
ing universal behavior. To support (5.48), we replot both dependencies in reduced
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Fig. 5.4 Normalized
coefficient A(B)/A0 �
1 + DN /(y − 1) given by
(5.48) as a function of
normalized magnetic field
y = B/Bc0 shown by squares
for YbRh2Si2 and by circles
for high-Tc Tl2Ba2CuO6+x .
DN is the only fitting
parameter

variables A/A0 and B/Bc0 in Fig. 5.4. Such replotting immediately reveals the
universal scaling nature of the behavior of these two substances. It is seen from
Fig. 5.4 that close to the magnetic induced QCP there are no “external” physical
scales revealing the scaling. Therefore the normalization by the scales A0 and Bc0
immediately uncovers the common physical nature of these substances, allowing us
to get rid of the specific properties of the system that define the values of A0 and Bc0.

Based on the above analysis of the A coefficients, we conclude that there is
at least one quantum phase transition inside the superconducting dome of high-Tc

superconductors, and this transition is FCQPT [76].

5.4 Appearance of FCQPT in Fermi systems

We call the Fermi systems approaching QCP from a disordered side as highly cor-
related systems. We do that in order to distinguish them from strongly correlated
systems (or liquids) that are already beyond FCQPT placed at the quantum critical
line as shown in Fig. 3.2. A detailed description of the properties of highly correlated
systems we give in Chap. 6, while the properties of strongly correlated systems are
discussed in Chap. 8. In the present section, we discuss the behavior of the effective
mass M∗ as a function of the density x of the system as x → xFC .

The experimental data for high-density 2D 3He [77–80] show that the effective
mass becomes divergent when the density, at which the 2D liquid 3He begins to
solidify, is reached [78]. Also observed was a sharp increase in the effective mass in
the metallic 2D electron system as the density x decreases and tends to the critical
density of the metal-insulator transition [81]. We note that there is no ferromagnetic
instability in the Fermi systems under consideration and the corresponding Landau
interaction obeys the inequality Fa

0 > −1 [78, 81], which agrees with the model of
nearly localized fermions [82–84].

http://dx.doi.org/10.1007/978-3-319-10825-4_3
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We examine the divergence of the effective mass in 2D and 3D highly correlated
Fermi liquids at T = 0 as the density x → xFC while approaching FCQPT from
the disordered phase. We begin by calculating M∗ as a function of the difference
(x − xFC ) for a 2D Fermi liquid. To do this, we use the equation for M∗ derived
in [28], where the divergence of M∗ related to the generation of density wave in
various Fermi liquids was predicted [28]. As x → xFC , the effective mass M∗ can
be approximately written as

1

M∗ � 1

m
+ 1

4π2

1∫

−1

g0∫

0

ydydg√
1 − y2

v(q(y))

[1 − R(q(y), g)χ0(q(y))]2
. (5.49)

Here we use the notation pF
√
2(1 − y) = q(y), where q(y) is the momentum, v(y)

is the interaction, the integral over coupling constant g is taken from zero to the
actual value g0, χ0(q, ω) is the linear response function for the noninteracting Fermi
liquid, and R(q, ω) is the effective interaction, with both functions taken at ω = 0.
The quantities R and χ0 determine the response function for the system,

χ(q, ω, g) = χ0(q, ω)

1 − R(q, ω, g)χ0(q, ω)
. (5.50)

Near the instability related to the generation of density wave at the density xcdw, the
singular part of the response function χ has the well-known form, see e.g., [26]

χ−1(q, ω, g) � a(xcdw − x) + b(q − qc)
2 + c(g0 − g), (5.51)

where a, b, and c are constants and qc � 2pF is the momentum of the density-wave.
Substitution of (5.51) in (5.49) and integration permits to represent the equation for
the effective mass M∗ in the form

1

M∗(x)
= 1

m
− c√

x − xcdw

, (5.52)

where c is a positive constant. It follows from (5.52) that M∗(x) diverges as a function
of the difference (x − xFC ) and M∗(x) → ∞ as x → xFC [85, 86]

M∗(x)

m
� a1 + a2

x − xFC
, (5.53)

where a1 and a2 are constants. We note that (5.52) and (5.53) do not explicitly con-
tain the interaction v(q), although v(q) affects a1, a2 and xFC . This result agrees
with (2.21), which determines the same universal type of divergence (i.e. a diver-
gence that is independent explicitly of the interaction type). Hence, both (2.21) and
(5.53) can be applied to 2D 3He, the electron liquid, and other Fermi liquids. We also
see that FCQPT precedes the formation of density waves (or charge-density waves)

http://dx.doi.org/10.1007/978-3-319-10825-4_2
http://dx.doi.org/10.1007/978-3-319-10825-4_2
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Fig. 5.5 The dependence of
the effective mass M∗(z) on
dimensionless density
z = x/xFC . Experimental
data from [78] are shown by
circles and squares and those
from [80] are shown by
triangles. The effective mass
is fitted as M∗(z)/M ∝
b1 + b2/(1 − z) (also see
(2.21)), while the reciprocal
one as M/M∗(z) ∝ b3 z,
where b1, b2 and b3 are
constants

in Fermi systems. As we have seen in Sect. 5.1, the high-Tc superconductivity is
explained within the framework of the fermion condensation theory. Therefore, one
expect to observe charge-density waves in high-Tc compounds, and this expectation
is in accordance with experimental facts, see e.g., [87]. We note that the differ-
ence (x − xFC ) must be positive in both cases, since the density x approaches xFC

when the system is on the disordered side of FCQPT with the finite effective mass
M∗(x) > 0. In the case of 3He, FCQPT occurs as the density increases, when the
potential energy begins to dominate the ground-state energy due to the strong repul-
sive short ranged part of the interparticle interaction. Thus, for the 2D 3He liquid, the
difference (x − xFC ) on the right hand side of (5.53) must be replaced by (xFC − x).
Experiments have shown that the effective mass indeed diverges at high densities for
2D 3He and at low ones for 2D electron systems [78, 81].

In Fig. 5.5, we present the experimental values of the effective mass M∗(z)
obtained by themeasurements on 3Hemonolayer [78]. Thesemeasurements, in coin-
cidence with those from [80], show the divergence of the effective mass at x = xFC .
To show, that our FCQPT approach is able to describe the above data, we represent
the fit of M∗(z) by the rational expression M∗(z)/M ∝ b1 + b2/(1 − z) and the
reciprocal effective mass by the linear fit M/M∗(z) ∝ b3 z. We note here, that the
linear fit has been used to describe the experimental data for bilayer 3He [80, 88]
and we use this function here for the sake of illustration. It is seen from Fig. 5.5 that
the data of [80] (3He bilayer) can be equally well approximated by both linear and
rational functions, while the data in [78] cannot. For instance, both fitting functions
give for the critical density in bilayer xFC ≈ 9.8nm−2, while for monolayer [78]
these values are different −xFC = 5.56nm−2 for linear fit and xFC = 5.15nm−2. It
is seen from Fig. 5.5, that linear fit is unable to properly describe the experiment [78]
at small 1 − z (i.e. near x = xFC ), while the fit describes the experiment very well.

http://dx.doi.org/10.1007/978-3-319-10825-4_2
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This means that more detailed measurements are necessary in the vicinity x = xFC

[89].
The effective mass as a function of the electron density x in a silicon MOSFET is

shown in Fig. 2.1. We see that (5.52) provides a good description of the experimental
results. The divergence of the effective mass M∗(x) discovered in measurements
involving 2D 3He [77, 78, 80] is illustrated by Figs. 2.2 and 5.5. Figures 2.1, 2.2
and 5.5 show that the description provided by (2.21), (5.52) and (5.53) is in good
agreement with the experimental data.

In the case of 3D systems, as x → xFC , the effective mass is given by the
expression [28]

1

M∗ � 1

m
+ pF

4π2

1∫

−1

g0∫

0

v(q(y))ydydg

[1 − R(q(y), g)χ0(q(y))]2
. (5.54)

Comparison of (5.49) and (5.54) shows that there is no essential difference between
them, although they describe different cases, 2D and 3D. In the 3D case, we can
derive equations similar to (5.52) and (5.53) just as we did in the 2D case, but the
numerical coefficients are different, because they depend on the dimensionality. The
only difference between 2D and 3D electron systems is that FCQPT occurs in 3D
systems at densities much lower than in those corresponding to 2D systems. No such
transition occurs in massive 3D 3He because the FCQPT transition is presumably
absorbed by the first-order liquid-solid phase transition [77, 78].
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Chapter 6
Highly Correlated Fermi Liquid
in Heavy-Fermion Metals:
The Scaling Behavior

Abstract In this chapter we show how the FCQPT theory works. We do that on
the base of experimentally relevant examples. Namely, as noted in the Introduction
(Chap. 1), the challenge for the theories is to explain the scaling behavior of the nor-
malized effective mass M∗

N (y) displayed in Fig. 1.3. The theories analyzing only the
critical exponents characterizing M∗

N (y) at y � 1 consider only a part of the prob-
lem. In this section we analyze and derive the scaling behavior of the normalized
effective mass near QCP as reported in Fig. 1.3. We start with describing magnetic
field dependence of the quasiparticle effective mass in Sect. 6.1. Quasiparticle damp-
ing and the temperature dependence of the effective mass is considered in Sect. 6.2.
In Sect. 6.4 we study the energy scales and the general properties of the phase dia-
grams of strongly correlated Fermi systems, including HFmetals like YbRh2Si2, and
consider the evolution of these diagrams under the application of negative/positive
pressure. We have observed that at sufficiently high temperatures outside the AFM
phase the transition temperature follows almost linear B-dependence, coinciding
with the transition temperature, induced by the presence of FC.

6.1 Magnetic Field Dependence of the Quasiparticle
Effective Mass

When the system approaches FCQPT from the disordered side, at sufficiently low
temperatures (see Fig. 3.2) it remains LFL with the effective mass M∗ that strongly
depends on the distance r = (x − xFC)/xFC and magnetic field B. This state of the
system with M∗ being strongly dependent on r and B resembles the state of strongly
correlated liquid described in Chap.8. But in contrast to a strongly correlated liquid,
the system in question does not have temperature independent entropy S0 specified
by (3.8) and at low temperatures becomes LFL with effective mass M∗ ∝ 1/r [see
(2.21) and (5.53)]. Such a system can be called a highly correlated liquid. We will
see shortly, that its effective mass exhibits the scaling behavior. We will study this
behavior when the system transits from LFL to NFL states.

We use Landau equation to study the effective mass M∗(T , B) as a function of the
temperature and magnetic field. For the model of homogeneous HF liquid at finite
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temperatures and magnetic fields, this equation acquires the form [1]

1

M∗(T , B)
= 1

m
+

∑
σ1

∫
pFp

p3F
Fσ,σ1(pF, p)

∂nσ1(p, T , B)

∂p

dp
(2π)3

. (6.1)

where Fσ,σ1(pF, p) is the Landau interaction dependent, on momenta pF , p and
spin index σ. For the sake of definiteness, we assume that the HF sysmem is a 3D
liquid. As seen in Sect. 5.4, the scaling behavior obtained in the HF liquid models,
is independent of dimensionality and interparticle interaction, while the scales like
M∗

M and TM are dependent. To simplify matters, we suppress the spin dependence
of the effective mass, because M∗(T , B) is nearly independent of the spin in weak
fields. The quasiparticle distribution function can be expressed as

nσ(p, T) =
{
1 + exp

[
(ε(p, T) − μσ)

T

]}−1

, (6.2)

where ε(p, T) is determined by (2.3). The single-particle spectrum is a variational
derivative of the system energyE[nσ(p)]with respect to the quasiparticle distribution
function or occupation numbers n,

ε(p) = δE[n(p)]
δn(p)

. (6.3)

In our case theLandau interactionF is fixedby the condition that the system is situated
at FCQPT. The variational procedure, being applied to the functional E[nσ(p, T)],
gives

∂εσ(p, T)

∂p
= p

M
+

∑
σ1

∫
Fσ,σ1(p, p1)

∂nσ1(p1, T)

∂p
d3p1
(2π)3

, (6.4)

where ε(p, T) = εσ(p, T) ≡ ε[nσ(p, T)]. Equations (6.2) and (6.4) constitute the
closed set for self-consistent determination of εσ(p, T) and nσ(p, T). The sole role
of the Landau interaction is to bring the system to FCQPT point, where M∗ → ∞
at T = 0 and H = 0, and the Fermi surface alters its topology so that the effective
mass acquires temperature and field dependence.

In our case, the single-particle spectrum depends on the spin only weakly, but
the chemical potential may depend on the spin due to the Zeeman splitting. When
this is important, we specifically indicate the spin dependence of physical quantities.
We write the quasiparticle distribution function as nσ(p, T , B) ≡ nσ(p, T = 0,
B = 0) + δnσ(p, T , B). Then (6.1) becomes

m

M∗(T , B)
= m

M∗(x)
+ m

p2F

∑
σ1

∫
pFp1

pF
Fσ,σ1(pF, p1)

∂δnσ1(p1, T , B)

∂p1

dp1

(2π)3
.

(6.5)
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We assume that the highly correlatedHF liquid is close to FCQPT and the distance
r → 0, and therefore M/M∗(x) → 0, as follows from (2.21). For normal metals,
where the electron liquid behaves like LFL with the effective mass of several bare
electron masses M∗/m ∼ 1, at temperatures even near 1,000K, the second term on
the right hand side of (6.5) is of the order of T2/μ2 and is much smaller than the
first term. The same is true, as can be verified, when a magnetic field B ∼ 100 T is
applied. Thus, the system behaves like LFL with the effective mass that is actually
independent of the temperature ormagnetic field, while ρ(T) ∝ AT2. Thismeans that
the corrections to the effective mass determined by the second term of the right-hand
side of (6.5) are proportional to (T/μ)2 or (μBB/μ)2.

Near QCP xFC , with m/M∗(x → xFC) → 0, the behavior of the effective mass
alters dramatically as the first term on the right-hand side of (6.5) vanishes, the second
term becomes dominant, and the effective mass is determined by the homogeneous
version of (6.5) as a function of B and T . As a result, the LFL state vanishes and the
system demonstrates the NFL behavior down to lowest temperatures.

We now qualitatively analyze the solutions of (6.5) at x 	 xFC and T = 0. Appli-
cation of magnetic field leads to Zeeman splitting of the Fermi surface, and the dis-
tance δp between the Fermi surfaces with spin “up” and spin “down” becomes δp =
p↑

F−p↓
F ∼ μBBM∗(B)/pF .Wenote that the second termof the right-hand side of (6.5)

is proportional to (δp)2 ∝ (μBBM∗(B)/pF)2, and therefore (6.5) reduces to [2–4]

m

M∗(B)
= m

M∗(x)
+ c1

(μBBM∗(B))2

p4F
, (6.6)

where c1 is a constant.We also note thatM∗(B) depends on x and that this dependence
disappears at x = xFC . At this point, the term m/M∗(x) vanishes and (6.6) becomes
homogeneous and can be solved analytically [3–5]:

M∗(B) ∝ 1

(B − Bc0)2/3
. (6.7)

where Bc0 is the critical magnetic field, regarded as a parameter (see the discussion
of Fig. 5.3).

Equation (6.7) specifies the universal power-law behavior of the effective mass
regardless the interaction type and is valid in 3D and 2D cases. For densities x > xFC ,
the effective mass M∗(x) is finite and we deal with the LFL state if the magnetic field
is so weak that

M∗(x)
M∗(B)

∼ 1, (6.8)

and the effective mass M∗ is practically independent of B. The second term in
the right-hand side of (6.6), which is proportional to (BM∗(B))2, is only a small
correction. In the opposite case, at T/T∗(B) � 1, where

M∗(x)
M∗(B)

� 1, (6.9)

http://dx.doi.org/10.1007/978-3-319-10825-4_2
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the electron liquid behaves as if it were at the quantum critical point in its LFL region,
for M∗(B) is given by (6.7). In the LFL state, the main thermodynamic and transport
properties of the system are determined by the effective mass. It therefore follows
from (6.7) that we have the unique possibility of controlling the magnetoresistance,
resistivity, heat capacity,magnetization, thermal bulk expansion and other parameters
by varying the magnetic field B. It should be noted that a large effective mass leads to
a high density of states, which causes the emergence of a large number of competing
states and phase transitions. We believe that such states can be suppressed by the
external magnetic field, and we examine the thermodynamic properties of the system
without considering such competition.

6.2 Quasiparticles and the Temperature Dependence
of the Effective Mass

To examine qualitatively the dependence M∗(T , B, x) at increasing temperatures, we
simplify (6.5) by dropping the variable B and by mimicking the effect of an external
magnetic field by a finite effectivemass in the denominator of the first term of its right
hand side. Then the effective mass M∗(r) becomes a function of the distance r to
the critical density, determined by the magnetic field B and x. At zero magnetic field
r = (x−xFC)/xFC . To obtain the equation, determining the temperature dependence
of the effectivemass, we first integrate the second term on the right-hand side of (6.5)
over angular variables. Then we integrate the remaining equation by parts over p,
replacing it by the variable z = (ε(p) − μ)/T . In the case of a flat and narrow band,
we can use the approximation (ε(p) − μ) 	 pF(p − pF)/M∗(T). The result is

M

M∗(T)
= m

M∗(r)
− α

∞∫

0

F(pF , pF(1 + αz))dz

1 + ez

+ α

1/α∫

0

F(pF , pF(1 − αz))
dz

1 + ez
, (6.10)

where we denote

F ∼ m
d(F1p2)

dp
, α = TM∗(T)

p2F
= TM∗(T)

TkM∗(r)
, (6.11)

Tk = p2F/M∗(r), and the Fermimomentum pF is defined by the condition ε(pF) = μ.
We first consider the caseα � 1. Then, discarding terms of the order exp(−1/α),

we can set the upper limit in the second integral in (6.10) to infinity. This renders
the sum of the second and third terms to be an even function of α. The resulting
integrals involve the Fermi-Dirac function and are customary to LFL theory, which
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means that they can be evaluated by the standard procedure, see e.g., [6]. As we need
only an estimate of the integrals, we present (6.10) as

m

M∗(T)
	 m

M∗(r)
+ a1α

2 + a2α
4 + · · · , (6.12)

where a1 and a2 are constants of the order of unity and α is defined by (6.11).
Equation (6.12) is a typical equation of the LFL theory. The only exception is

the effective mass M∗(r), which depends strongly on the distance r and diverges as
r → 0. Nevertheless, (6.12) implies that as T → 0, the corrections to M∗(r) begin
with terms of the order T2 if

m

M∗(r)
�

(
TM∗(T)

TkM∗(r)

)2

	 T2

T2
k

, (6.13)

and the system behaves like LFL. Condition (6.13) implies that the behavior inherent
in LFL disappears as r → 0 and M∗(r) → ∞. Then the free term in the right-
hand side of (6.10) is negligible, m/M∗(r) → 0, and (6.10) becomes homogeneous
and determines the universal behavior of the effective mass M∗(T). At a certain
temperature T∗ � Tk , the value of the sum on the right-hand side of (6.12) is
determined by the second term and the relation (6.13) becomes invalid. Keeping
only the second term in (6.12), we arrive at an equation for determining M∗(T) in
the transition region [3, 7]:

M∗(T) ∝ 1

T2/3 . (6.14)

To estimate the transition temperature T∗(B) where the effective mass becomes
temperature dependent, we note that this quantity is a continuous function of the
temperature and magnetic field: M∗(B) ∼ M∗(T∗). Combining (6.7) and (6.14), we
obtain

T∗(B) 	 μB(B − Bc0). (6.15)

As the temperature increases, the system transfers its into another mode. The coef-
ficient α is then of the order of unity, α ∼ 1, the upper limit in the second integral
in (6.10) cannot be set to be infinity, and odd terms begin to play a significant
role. As a result, (6.12) breaks down and the sum of the first and second integrals
on the right-hand side of (6.10) becomes proportional to TM∗(T). Neglecting the
first term m/M∗(r) and approximating the sum of integrals by TM∗(T), we obtain
from (6.10) that

M∗(T) ∝ 1√
T

. (6.16)

We note that the dependence (6.16) for M∗(T) can be also generated if the Landau
interaction F(p) is a nonanalytic function. In other words, in such case it cannot be
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expanded in Taylor series at p → 0, see Sect. 4.1. The other possibilities leading to
the dependence (6.16) will be considered in Chap. 18 and Sect. 18.2.

We therefore conclude that as the temperature increases and the condition x 	 xFC

is satisfied, the system demonstrates three kinds of regimes: (i) the Landau Fermi
liquid regime at α � 1, when (6.13) is valid and the effective mass is described
by (6.7); (ii) the behavior defined by (6.14), when M∗(T) ∝ T−2/3 and S(T) ∝
M∗(T)T ∝ T1/3; and (iii) the regime atα ∼ 1,when (6.16) is valid,M∗(T) ∝ 1/

√
T ,

the entropy S(T) ∝ M∗(T)T ∝ √
T , and the heat capacity C(T) = T(∂S(T)/

∂T) ∝ √
T .

We illustrate the S(T) behavior related to (6.16) (regime (iii)) using the model
Landau functional [8, 9]

E[n(p)] =
∫

p2

2M

dp
(2π)3

+ 1

2

∫
V(p1 − p2)n(p1)n(p2)

dp1dp2

(2π)6
, (6.17)

with nonanalytic Landau interaction

V(p) = g0
exp(−β0|p|)

|p| . (6.18)

In the calculations below, we normalize the effective mass to m (M∗ = M∗/m),
the temperature T0 to the Fermi energy ε0F (T = T0/ε

0
F) and use the dimensionless

parameters: coupling constant g = (g0m)/(2π2) and β = β0pF . FCQPT occurs
when these parameters reach the critical values β = bc and g = gc. On the other
hand, a transition of this kind occurs as M∗ → ∞. This condition allows deriving a
relation between bc and gc [8, 9]:

gc

b3c
(1 + bc) exp(−bc)[bc cosh(bc) − sinh(bc)] = 1. (6.19)

This relation implies that the critical point of FCQPT can be reached by varying g0
if β0 and pF are fixed, by varying pF if β0 and g0 are fixed, etc. For definiteness, we
vary g to reach FCQPT or to study the properties of the system beyond the critical
point. Calculations of M∗(T), S(T), and C(T) based on the model functional (6.17)
with the parameters g = gc = 6.7167 and β = bc = 3 show that M∗(T) ∝ 1/

√
T ,

S(T) ∝ √
T , and C(T) ∝ √

T . The temperature dependence of the entropy in this
case is demonstrated in Fig. 6.1.

Let us now estimate the quasiparticle damping γ(T). In the LFL theory, γ(T) is
given by [1]

γ ∼ |Γ |2(M∗)3T2, (6.20)

where Γ is the particle-hole interaction. In the case of highly correlated HF system
with a high density of states caused by the enormous effective mass, Γ cannot be
approximated by the “bare” interaction between particles but can be estimated within

http://dx.doi.org/10.1007/978-3-319-10825-4_4
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Fig. 6.1 The entropy S(T) of
a highly correlated Fermi
liquid at the critical FCQPT
point. The solid line
represents the function
S(T) ∝ √

T and the squares
mark the results of
calculations

the “random phase approximation”, which yields |Γ | ∼ 1/(pFM∗(T)) [10–12].
As a result, we find that γ(T) ∝ T2 in the LFL regime since M∗ is temperature-
independent. Then, γ(T) ∝ T4/3 in the T−2/3 regime, and γ(T) ∝ T3/2 in the 1/

√
T

regime. We note that in all these cases, the width γ is small compared to the charac-
teristic quasiparticle energy, which is assumed to be of the order of T so that the qua-
siparticle concept is meaningful. A detailed consideration of both γ and the lifetime
in magnetic fields in the case of HF compounds with FC is reserved for Chaps. 8–10.

The conclusion that can be drawn here is that when the HF liquid is localized
near QCP of FCQPT and is on the disordered side, its low-energy excitations are
quasiparticles with the effective mass M∗(B, T). We note that at FCQPT, the quasi-
particle renormalization z-factor remains approximately constant and the divergence
of the effective mass that follows from (2.21) is not related to the fact that z → 0
[13–15]. Therefore, the quasiparticle concept remains valid and it is these quasipar-
ticles that constitute the extended paradigm and determine the transport, relaxation
and thermodynamic properties of HF liquid.

6.3 Scaling Behavior of the Effective Mass and Energy Scales

Multiple energy scales are detected in measurements of the thermodynamic and
transport properties heavy fermionmetals.Wedemonstrate that the experimental data
on the energy scales can be well described by the scaling behavior of the effective
mass at FCQPT, and show that the dependence of the effective mass on temperature
and applied magnetic fields gives rise to the non-Fermi liquid behavior. Our analysis
is placed in the context of experimental results, obtained in remarkablemeasurements
on the HF metal YbRh2Si2.

As it has been mentioned in the Introduction, to avoid difficulties associated with
the anisotropy generated by the crystal lattice of HF metals, we study the universal
behavior of HFmetals using themodel of the homogeneous HF (electron) liquid. The
model is quite meaningful, because we consider the scaling behavior exhibited by

http://dx.doi.org/10.1007/978-3-319-10825-4_8
http://dx.doi.org/10.1007/978-3-319-10825-4_10
http://dx.doi.org/10.1007/978-3-319-10825-4_2
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the effective mass at low temperatures. The scaling behavior of the effective mass is
determined by energy andmomentum transfers that are small compared to the Debye
characteristic temperature andmomenta of the order of the reciprocal lattice constant
a−1. Therefore quasiparticles are influenced by the crystal lattice averaged over large
distances compared to the length a so that we can safely use well-known jelly model.
We note that the scales M∗

M , TM , Bc0 and Bc2 etc. depend on the HF metal properties
like its lattice symmetry, composition etc. For example, the critical magnetic field
Bc0 depends even on its orientation with respect to the lattice symmetry axes.

To explore the scaling behavior of M∗, we begin with qualitative analysis of (6.1).
At FCQPT the effective mass M∗ diverges and (6.1) becomes homogeneous deter-
mining M∗ as a function of temperature as given by (6.14). If the system is located
before FCQPT, M∗ is finite, and at low temperatures the system demonstrates the
LFL behavior M∗(T) 	 M∗ + a1T2. As we have seen in Sect. 6.2, the LFL behavior
takes place when the second term on the right hand side of (6.1) is small in com-
parison with the first one. Then, at increasing temperatures the system enters the
transition regime, where M∗ grows, reaching its maximum M∗

M at T = TM , with
subsequent diminishing. Near temperatures T ≥ TM the last “traces” of LFL regime
disappear, the second term starts to dominate, and again (6.1) becomes homogeneous
so that the NFL behavior restores, manifesting itself in decreasing of M∗ as T−2/3.
When the system is near FCQPT, it turns out that the solution of (6.1) M∗(T) can
be well approximated by a simple universal interpolating function [16]. The inter-
polation occurs between the LFL (M∗ 	 M∗ + a1T2) and NFL (M∗ ∝ T−2/3)
regimes, thus describing the above crossover. Introducing the dimensionless vari-
able y = TN = T/TM , we obtain the desired expression

M∗
N (y) ≈ c0

1 + c1y2

1 + c2y8/3
. (6.21)

Here M∗
N = M∗/M∗

M is the normalized effective mass, c0 = (1 + c2)/(1 + c1), c1
and c2 are fitting parameters, parameterizing the Landau interaction.

It follows from (6.7), that the application of magnetic field restores the LFL
behavior, so that M∗

M depends on B as

M∗
M ∝ (B − Bc0)

−2/3, (6.22)

while

TM ∝ μB(B − Bc0). (6.23)

Employing (6.22) and (6.23) to calculate M∗
M and TM , we conclude that (6.21) is

valid to describe the normalized effective mass in external fixed magnetic fields with
y = T/(B − Bc0). On the other hand, (6.21) is valid when the applied magnetic field
becomes a variable, while temperature is fixed at T = Tf . In that case, it is convenient
to represent the variable as y = (B − Bc0)/Tf .
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6.3.1 Schematic Phase Diagram of a HF Metal

The schematic phase diagram of a HFmetal is reported in Fig. 6.2, panel a. Magnetic
fieldB is taken as the control parameter. In fact, the control parameter can be pressure
P or doping (the number density) x as well. At B = Bc0, FCQPT takes place leading
to a strongly degenerate state, where Bc0 is the critical magnetic field, such that at
B > Bc0 the system is driven towards the LFL state. We recall, that in our simple
model Bc0 is a parameter. The FC state is captured by the superconducting (SC), fer-
romagnetic (FM), antiferromagnetic (AFM) etc. states lifting the degeneracy. Below
in Sect. 6.3.2 we consider the HF metal YbRh2Si2. In that case, Bc0 	 0.06 T (B⊥c)
and at T = 0 and B < Bc0 the AFM state takes place with temperature dependent
resistivity ρ(T) ∝ T2 [17]. At higher temperatures and fixed magnetic fields the

(b)
(a)

Fig. 6.2 The panel a represents a schematic phase diagram of HF metals. The effective mass
diverges at magnetic field B = Bc0. The acronyms SC, FM and AFM denote the superconducting
(SC), ferromagnetic (FM) and antiferromagnetic (AFM) states. AtB < Bc0 the system can be in SC,
FM or AFM states. The vertical arrow shows the transition from the LFL to the NFL state at fixed B
along T withM∗ depending on T . The dash-dot horizontal arrow illustrates the systemmoving from
theNFL to LFL state alongB at fixedT . The exponentαR determines the temperature dependent part
of the resistivity, see (2.19). In the LFL state the exponentαR = 2 and in theNFLαR = 1. In the tran-
sition regime the exponent evolves from its LFL value to the NFL one. The inset shows a schematic
plot of the normalized effective mass versus the normalized temperature. Transition regime, where
M∗

N reaches its maximum value M∗
M at T = TM , is shown by the hatched area both in the panel a and

in the inset. The arrows mark the position of inflection point in M∗
N and the transition region. The

panel b shows the experimental T −B phase diagram of the exponent αR(T , B) as a function of tem-
perature T versusmagnetic fieldB [18]. The evolution ofαR(T , B) is shown by the color: the orange
color corresponds to αR(T , B) = 1 (the NFL state) and the blue color corresponds to αR(T , B) = 2
(the LFL state). TheNFL behavior occurs at the lowest temperatures right at QCP tuned bymagnetic
field. At rising magnetic fields B > Bc0 and T ∼ T∗(B), the broad transition regime from the NFL
state to the field-induced LFL state occurs. The meaning of arrows is similar to panel a

http://dx.doi.org/10.1007/978-3-319-10825-4_2
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NFL regime occurs, while rising B again drives the system from the NFL state to
the LFL one as is shown by the dash-dot horizontal arrow in Fig. 6.2. We consider
the transition region when the system moves from the NFL state to LFL one along
the horizontal arrow and also moves from LFL state to NFL one along the vertical
arrow as shown in Fig. 6.2. The inset to Fig. 6.2 demonstrates the scaling behavior
of the normalized effective mass M∗

N = M∗/M∗
M versus normalized temperature

TN = T/TM , where M∗
M is the maximum value that M∗ reaches at T = TM . The

T−2/3 regime is marked as NFL since the effective mass depends strongly on tem-
perature. The temperature region T 	 TM signifies the crossover (or the transition
region) between the LFL state with almost constant effective mass and NFL behav-
ior, given by T−2/3 dependence. Thus, temperatures T ∼ TM can be regarded as the
crossover region between the LFL and NFL states.

The transition (crossover) temperature T∗(B) is not really the temperature of a
phase transition. It is necessarily broad, very much depending on the criteria for
determination of the point of such a crossover, as it is seen from the inset to Fig. 6.2a,
see e.g., [17, 19]. As usual, the temperature T∗(B) is extracted from the field depen-
dence of charge transport, for example from the resistivity ρ(T) given by (2.19).
The LFL state is characterized by the power-law TαR dependence of the resistivity
with αR = 2, see Sect. 7.2.3. The crossover (i.e. the transition regime shown by the
hatched area both in the panel a of Fig. 6.2 and in its inset) takes place at temperatures
where the resistance starts to deviate from the LFL behavior with αR = 2 so that the
exponent becomes 1 < αR < 2, see Sect. 7.2.3. As it will be shown in Sect. 7.2.3, in
the NFL state αR = 1.

The panel b of Fig. 6.2 represents the experimental T − B phase diagram of the
exponent αR(T , B) as a function of temperature T versus magnetic field B [18].
The evolution of αR(T , B) is shown by the color: the orange color corresponds to
αR(T , B) = 1 and the blue color corresponds to αR(T , B) = 2. It is seen from the
panel that at the critical field Bc0 	 0.66 T (B‖c) the NFL behavior occurs down
to the lowest temperatures while YbRh2Si2 transits from the NFL to LFL regimes
under the application of magnetic field. It is worth noting that the phase diagram
displayed in Fig. 6.2a coincides with that in the panel b.

A few remarks are in order here. As we shall see, the magnetic field dependence
of the effective mass or other observables like the longitudinal magnetoresistance
(LMR), see Sect. 7.2.1, do not have peculiarities like maxima. The normalization is
to be performed in the other points like the inflection one at T = Tinf (or at B = Binf )
shown in the inset to Fig. 6.2 by the arrow. Such a normalization is possible since it
is established on the scales, Tinf ∝ TM ∝ (B − Bc0). As a result, we obtain

μB(Binf − Bc0) ∝ Tf . (6.24)

It follows from (6.21) that in contrast to the Landau paradigm of quasiparticles, their
effective mass strongly depends on T and B. This dependence leads to the extended
quasiparticle paradigm and forms theNFL behavior. Also, the equation (6.21) reveals
the scaling behavior of M∗ near QCP by the proper choice of physical scales to
measure the effective mass, magnetic field and temperature. At fixed magnetic fields,

http://dx.doi.org/10.1007/978-3-319-10825-4_2
http://dx.doi.org/10.1007/978-3-319-10825-4_7
http://dx.doi.org/10.1007/978-3-319-10825-4_7
http://dx.doi.org/10.1007/978-3-319-10825-4_7
http://dx.doi.org/10.1007/978-3-319-10825-4_7
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the characteristic scales of temperature and of the function M∗(T , B) are defined by
both TM and M∗

M respectively. At fixed temperatures, the characteristic scales are
BM − Bc0 and M∗

M . It is seen from (6.22) and (6.23), that at fixed magnetic fields,
TM → 0, and M∗

M → ∞ and the width of the transition region shrinks to zero
as B → Bc0 when they are measured in “external” (dimensional) scales like T in
Kelvins, magnetic field B in Teslas etc. It also follows from (6.14) and (6.24) that
at fixed temperature Tf , (Binf − Bc0) → 0, and M∗

M → ∞ so that the width of the
transition region shrinks to zero as Tf → 0. Thus, the application of the external
scales obscure the scaling behavior of the effective mass and the thermodynamic and
transport properties.

6.3.2 Non-Fermi Liquid Behavior of YbRh2Si2

Here we analyze the transition regime and the NFL behavior of the HF metal
YbRh2Si2. We demonstrate that experimental NFL thermodynamic and transport
properties YbRh2Si2 can be successfully described by the scaling behavior of the
normalized effective mass. This allows us to extract the thermodynamic and trans-
port properties from the experimental data and represent them as functions of certain
scaled variable. The validity of such scaling in the wide range (over three decades)
of latter variable permits to conclude that the extended quasiparticles paradigm is
perfectly valid. We show that peculiarities of the normalized effective mass give rise
to the characteristic energy observed in the thermodynamic and transport properties
of HF metals. The energy scales inherent in these functions are also explained.

Below we calculate the effective mass using (6.1) and employ (6.21) for estimations
of the considered values. To compute the effective mass M∗(T , B), we solve (6.1)
with a quite general form of Landau interaction [3]. Choice of the interaction is
dictated by the fact that the system has to be at QCP, which means that the first two
p-derivatives of the single-particle spectrum ε(p) should be equal to zero. Since the
first derivative is proportional to the reciprocal quasiparticle effective mass 1/M∗,
its zero just signifies QCP of FCQPT. The second derivative must vanish; otherwise
ε(p) − μ has the same sign below and above the Fermi surface, and the Landau state
becomes unstable before r → 0 [13]. Zeros of these two subsequent derivatives
mean that the spectrum ε(p) has an inflection point at pF so that the lowest term
of its Taylor expansion is proportional to (p − pF)3. After solution of (6.1), the
obtained spectrum has been used to calculate the entropy S(B, T), which, in turn, has
been used to recalculate the effective mass M∗(T , B) by virtue of the well-known
LFL relation M∗(T , B) = S(T , B)/T . Our calculations of the normalized entropy
as a function of the normalized magnetic field B/Binf = y and as a function of the
normalized temperature y = T/Tinf are depicted in Fig. 6.3. Here Tinf and Binf are
the corresponding inflection points in the function S. We normalize the entropy by
its value at the inflection point SN (y) = S(y)/S(1). As it is seen from Fig. 6.3, our
calculations corroborate the scaling behavior of the normalized entropy. Namely,
the curves at different temperatures and magnetic fields merge into a single one in
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Fig. 6.3 The normalized
entropy SN versus y = B/Binf
and y = T/Tinf , calculated at
fixed temperature and
magnetic field respectively.
The inflection point is shown
by the dash-dot arrow

terms of the variable y. The inflection point Tinf in S(T) makes M∗(T , B) to have its
maximum as a function of T , while M∗(T , B) versus B has no maximum. We note
that our entropy calculations confirm the validity of (6.21) and the scaling behavior
of the normalized effective mass shown in Fig. 6.2.

6.3.3 Heat Capacity and the Sommerfeld Coefficient

A large body of measurements of C/T ∝ M∗, performed on the new generation of
YbRh2Si2 samples at different magnetic fields B up to 1.5 T [20] allows to identify
the scaling behavior of the effective mass M∗ and observe different regimes of its
behavior. Namely, the LFL regime, transition from the LFL one to the NFL one and
the NFL regime itself can be traced. Under the application of magnetic field B, as it is
seen from both (6.21) and from Fig. 1.2, the maximum in C/T ∝ M∗

M appears at TM .
The value of TM shifts towards higher T at B increase. The Sommerfeld coefficient
C/T = γ0 is saturated at low temperatures. This saturation value decreases at higher
magnetic fields.

The transition region corresponds to the temperatures where the vertical arrow in
the main panel a of Fig. 6.2 crosses the hatched area. The width of the region, being
proportional to TM ∝ (B−Bc0) shrinks, TM moves to zero temperature and γ0 ∝ M∗
increases as B → Bc0. These observations are in good agreement with experimental
data [20].

To obtain the normalized effective mass M∗
N , the maximum structure in C/T was

used to normalize C/T , and T was normalized by TM . In Fig. 6.4, M∗
N (TN ) (TN =

T/TM is the normalized temperature) is shown by different symbols, our calculations
are shown by the solid line. Figure6.4 reveals the scaling behavior of the normalized
experimental curves—the scaled curves at different magnetic fields B merge into a

http://dx.doi.org/10.1007/978-3-319-10825-4_1
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Fig. 6.4 The normalized
effective mass M∗

N extracted
from the measurements of the
specific heat C/T on
YbRh2Si2 in magnetic fields
B [20] listed in the legend.
Our calculations are depicted
by the solid curve tracing the
scaling behavior of M∗

N

single one in terms of the normalized variable y = T/TM . As seen, the normalized
mass M∗

N extracted from the measurements is not a constant, as would be for LFL.
The two regimes (the LFL and NFL regimes) separated by the transition region, as
depicted by the hatched area in the inset to Fig. 6.2a, are clearly seen in Fig. 6.4
displaying good agreement between the theory and experiment. It is worth noting
that the normalization procedure allows us to construct the scaled function C/T
extracted from the experimental data in wide range of the normalized temperature.
Indeed, it merges the measurements of C/T at different magnetic fields into single
function of the normalized temperature. This function has a scaling behavior over
three orders in its argument as it is seen from Fig. 6.4. Figure1.2 shows that the NFL
behavior extends at least to temperatures up to a few Kelvins. Thus, we conclude
that the extended quasiparticle paradigm does take into account the remarkably large
temperature ranges over which the NFL behavior is observed. We note that at these
temperatures the contribution coming from phonons is still small.

6.4 General Properties of the Phase Diagrams
of Heavy-Fermion Metals

We study the T − B phase diagrams of HF metals, and show that at sufficiently high
temperatures outside the ordered phase the crossover temperature T∗(B) follows a
linear B-dependence, and crosses the origin of the T − B phase diagram. Upon ana-
lyzing the experimental T − B phase diagram of YbRh2Si2, we show that FCQPT
represents QCP hidden in the AF phase. Our analysis agrees well with the experi-
mental T −B phase diagrams of theHFmetals YbRh2Si2, Yb(Rh0.93Co0.07)2Si2, and
Yb(Rh0.94Ir0.06)2Si2.We calculate the isothermalmagnetizationM, and demonstrate
that dM/dT exhibits a universal temperature over magnetic field scaling. Our results

http://dx.doi.org/10.1007/978-3-319-10825-4_1
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are in good agreement with data collected on YbRh2Si2, and support our conclusion
on the nature of the hidden QCP.

We start with considering energy scales observed in experimental measurements
of the thermodynamics and transport properties on HF metals. Figure6.5 presents
Tinf (B) andTM(B), shown by the solid and dash-dotted lines respectively. The bound-
ary between the NFL and LFL regions is shown by the dashed line, and AFMmarks
the antiferromagnetic state. The corresponding data are taken from [21–23]. It is
seen that our calculations are in good agreement with the experimental results. In
Fig. 6.5, the solid and dash-dotted lines corresponding to the functions Tinf and TM ,
respectively, represent the energy scales observed in LMR and in the heat capacity
C/T . Thus, we can conclude that the energy scales are reproduced by (6.23) and
(6.24) and related to the peculiarities TM and Tinf of the normalized effective mass
M∗

N , which are shown by the arrows in the inset to Fig. 6.2. As it is seen from Figs. 6.4
and 7.3, the experimental facts reflect back these peculiarities, while the normaliza-
tion allows us to construct the unique scaled thermodynamic and transport functions
extracted from the experimental data in a wide range of the scaled variable y. As seen
from the aforementioned Figures, the constructed normalized thermodynamic and
transport functions show the scaling behavior over three orders in the normalized
variable. Note, that at B → Bc0 both Tinf → 0 and TM → 0, so that the LFL and the
transition regimes in C/T and LMR are shifted to very low temperatures. Therefore
due to experimental difficulties these regimes cannot be unambiguously identified in
HF metals.

Fig. 6.5 Temperature—magnetic field (T −B) phase diagram for YbRh2Si2. Solid circles represent
the boundary between AFM and NFL states. The solid squares denote the boundary of the NFL
and LFL regime [17, 21, 22] shown by the dashed line approximated by

√
B − Bc0 [24]. Diamonds

mark the maxima TM of C/T [22] shown in Fig. 1.2. The dash-dot line is approximated by TM ∝
a(B − Bc0), a is a fitting parameter, see (6.23). Triangles along the solid line denote Tinf in LMR
[21, 22] shown in Fig. 7.3, and the solid line represents the function Tinf ∝ b(B − Bc0), b is a fitting
parameter, see (6.24)

http://dx.doi.org/10.1007/978-3-319-10825-4_7
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Now we are in position to consider the general properties of the T − B phase
diagram of HF metals. As we have seen, at T = 0 a quantum phase transition is
driven by a nonthermal control parameter like number density x, magnetic field B
or pressure P. At the QCP, situated at x = xFC and related to FCQPT, the effective
mass M∗ diverges. We note that there are different kinds of instabilities of normal
Fermi liquids related to several perturbations of initial quasiparticle spectrum ε(p)

and occupation numbers n(p), associated with the emergence of a multi-connected
Fermi surface, see e.g., [13, 24–26]. Depending on the parameters and analytical
properties of the Landau interaction, such instabilities lead to several possible types
of restructuring of the initial Fermi liquid ground state. This restructuring generates
topologically distinct phases. One of them is the FC, another one belongs to a class
of topological phase transitions, where the sequence of rectangles n(p) = 0 and
n(p) = 1 is realized at T = 0. In fact, at elevated temperatures the systems located at
these transition points, exhibit the behavior typical to those located at FCQPT [24].
Therefore, we do not consider the specific properties of these topological transitions,
but rather focus on the behavior of the experimentally important systems located
near FCQPT.

Beyond FCQPT, the system forms FC that leads to the emergence of a topologi-
cally protected flat band [27, 28]. The schematic T − x phase diagram of the system
driven to the FC state by the number density x variation is reported in Fig. 6.6. Upon
approaching the critical density xFC the system remains in the LFL region at suffi-
ciently low temperatures, as it is shown by the shadowed area. The temperature range
of this area shrinks as the system approaches QCP, and M∗(x → xFC) diverges as it
follows from (2.21). At this QCP shown by the arrow in Fig. 6.6, the system demon-
strates the NFL behavior down to the lowest temperatures. Beyond the critical point
at finite temperatures the behavior remains to be NFL one. It is determined by the
temperature-independent entropy S0 [24, 29]. In that case at T → 0, the system
again demonstrates the NFL behavior, and approaches a quantum critical line (QCL)
(shown by the vertical arrow and the dashed line in Fig. 6.6) rather than a QCP. Upon
reaching the QCL from above at T → 0 the system undergoes the first order quan-
tum phase transition that leads to vanishing S0. As it is seen from Fig. 6.6, at rising
temperatures the system located before QCP does not undergo a phase transition, and
transits from the NFL to the LFL regime. At finite temperatures there is no boundary
(or phase transition) between the states of the system located before or behind QCP,
shown by the arrows. Therefore, at elevated temperatures the properties of systems
with x/xFC < 1 or with x/xFC > 1 become indistinguishable.

As seen from Fig. 6.6, the location of the system is controlled by the number
density x. At rising x, x/xFC > 1, the system is located before FCQPT, and demon-
strates the LFL behavior at low temperatures. We suggest that such a state can be
induced by the application of positive pressure, including positive chemical pres-
sure. On the other hand, at diminishing x, x/xFC < 1, the system is shifted beyond
FCQPT, and is at the quantum critical line depicted by the dashed line. In that case
the system demonstrates the NFL behavior at any finite temperatures. We assume
that such a state can be induced by the application of negative pressure, includ-
ing negative chemical pressure. At low temperatures and above the critical line, the

http://dx.doi.org/10.1007/978-3-319-10825-4_2
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Fig. 6.6 Schematic T − x phase diagram of system with FC. The number density x is taken as the
control parameter and is depicted as x/xFC . At x/xFC > 1 and sufficiently low temperatures, the
system is in the LFL state as shown by the shadowed area. This location of the system is depicted
by both the solid square and the arrow. The vertical arrow illustrates the system moving in the
LFL-NFL direction along T at fixed control parameter. At x/xFC < 1 the system is shifted beyond
the QCP, and is at the quantum critical line depicted by the dashed line and shown by the vertical
arrow. This location of the system is shown by the short dash arrow. At any finite low temperatures
T > 0 the system possesses finite entropy S0 and exhibits the NFL behavior

system has the finite entropy S0 and its NFL state is strongly degenerate. The degen-
eracy stimulates the emergence of different phase transitions, lifting it and removing
the entropy S0. The NFL state can be captured by other states such as supercon-
ducting (SC) (like SC state in CeCoIn5), or antiferromagnetic (AF) (like AFM in
YbRh2Si2) [24, 29, 30]. The diversity of phase transitions at low temperatures is
one of the most spectacular features of the physics of many HF metals and strongly
correlated compounds. Within the scenario of ordinary quantum phase transitions, it
is hard to understand why these transitions are so different from each other and their
critical temperatures are so extremely small. However, such diversity is endemic to
systems with a FC, since the FC state should be altered as T → 0 so that the excess
entropy S0 goes to zero before zero temperature is reached. At finite temperatures
this takes place by means of some phase transitions, shedding the excess entropy
[13, 24].

The schematic T −B phase diagram of a HF liquid is reported in Fig. 6.7, with the
magnetic field B serving as control parameter. At B = 0, the HF liquid acquires a flat
band corresponding to a strongly degenerate state. TheNFL regime reigns at elevated
temperatures and fixed magnetic field. With increasing B, the system is driven from
the NFL region to the LFL domain. As shown in Fig. 6.7, the system moves from the
NFL regime to the LFL one along a horizontal arrow, and from the LFL to NFL along
a vertical arrow. The magnetic-field-tuned QCP is indicated by the arrow and located
at the origin of the phase diagram, since application of any magnetic field destroys
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Fig. 6.7 Schematic T −B phase diagram of HF liquid with magnetic field as the control parameter.
The vertical and horizontal arrows show LFL-NFL and NFL-LFL transitions at fixed B and T ,
respectively. At B = 0 the system is in its NFL state, having a flat band, and demonstrates NFL
behavior down to T → 0. The hatched area separates the NFL phase and the weakly polarized
LFL phase and represents the transition region. The dashed line in the hatched area represents
the function TM (B) 	 T∗

FC given by Tm 	 a1μBB (see (6.23)). The functions W(B) ∝ T and
TW (B) ∝ T shown by two-headed arrows define the width of the NFL state and the transition area,
respectively. The QCP located at the origin and indicated by the arrow denotes the critical point at
which the effective mass M∗ diverges and both W(B) and TW (B) tend to zero

the flat band and shifts the system into the LFL state [17, 24, 31–33]. The hatched
area denoting the transition region separates the NFL state from the weakly polarized
LFL state and contains the dashed line tracing the transition region, TM(B) 	 T∗

FC .
Referring to (6.23), this line is defined by the function T∗

FC ∝ μBB, and the width
W(B) of the NFL state is seen to be proportional to T . It can similarly be shown that
the width TW (B) of the transition region is also proportional to T .

Nowwe construct theT−B schematic phase diagramof aHFmetal likeYbRh2Si2
shown in Fig. 6.8 [24, 34]. We start from observation that (6.21) reveals the scaling
behavior of the normalized effective mass M∗

N (TN ). Namely, the effective masses
M∗(T , B) at different magnetic fields B merge into a single value M∗

N in terms of the
normalized variable TN = T/TM . The inset in Fig. 6.8 demonstrates the scaling of
the normalized effective mass M∗

N versus the normalized temperature TN . The LFL
phase prevails at T � TM , followed by the T−β regime at T � TM , with β = 2/3
or β = 1/2 as it follows from (6.14) and (6.16). The latter regime is designated
as NFL due to the strong temperature dependence of the effective mass in it. The
temperature regionT 	 TM encompasses the transition between the LFL regimewith
almost constant effective mass and the NFL behavior. Thus, T∗ ∼ TM(B) identifies
the transition region featuring a crossover between LFL and NFL regimes. The
transition (crossover) temperature T∗(B) is not the actually temperature of a phase
transition. Its specification is necessarily ambiguous, depending on the particularities
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Fig. 6.8 Schematic T − B phase diagram of a HF metal with magnetic field as control parameter.
The antiferromagnetic (AFM) phase boundary line is shown by the arrow and plotted by the solid
curve, representing the Néel temperature TNL . The vertical and horizontal arrows show LFL-NFL
and NFL-LFL transitions at fixed B and T , respectively. The hatched area separates the NFL phase
and the weakly polarized LFL one and represents the transition region. The solid curve inside the
hatched area represents the transition temperature T∗. The solid short dash line T∗

FC(B) ∝ BμB
shows the transition temperature provided that the AFM state were absent. The function W(B) ∝ T
shown by two-headed arrow defines the total width of both theNFL state and the transition area. The
inset shows a schematic plot of the normalized effective mass versus the normalized temperature.
The transition region, where M∗

N reaches its maximum at TN = T/TM = 1, is shown as the hatched
area in both the main panel and the inset. Arrows indicate the transition region and the inflection
point Tinf in the M∗

N plot

of substance under consideration. As usual, the temperature T∗(B) is extracted from
the field dependence of charge transport phenomena like resistivity ρ(T), given by

ρ(T) = ρ0 + ATαR , (6.25)

where ρ0 is the residual resistivity and A is a T -independent coefficient. The term ρ0
is ordinarily attributed to impurity scattering. The LFL state is characterized by the
TαR dependence of the resistivity with the index αR = 2. The crossover (through the
transition regime shown as the hatched area in themain panel and inset of the Fig. 6.8)
takes place at temperatures, where the resistivity starts to deviate from LFL behavior,
with the exponent αR shifting from 2 into the range 1 < αR < 2. When constructing
the phase diagram in Fig. 6.8, we assume that AFM order wins the competition,
destroying the S0 term at low temperatures. At B = Bc0, the HF liquid acquires a flat
band corresponding to a strongly degenerate state. Here, Bc0 is a critical magnetic
field, such that at T → 0 the application of magnetic field B � Bc0 destroys the AFM
state restoring the paramagnetic one with LFL behavior. In some cases Bc0 = 0 as
in the HF metal CeRu2Si2 (see e.g., [33]), while in YbRh2Si2, Bc0 	 0.06 T [17].
Obviously, Bc0 is defined by the specific system properties, therefore we consider it
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as a parameter. The NFL regime reigns at elevated temperatures and fixed magnetic
field.With increasingB, the system is driven from theNFL region to the LFL domain.
As shown in Figs. 6.7 and 6.8, the system moves from the NFL regime to the LFL
one along the corresponding arrows. The magnetic-field-tuned QCP is indicated by
the arrow and located at B = Bc0. The hatched area denotes the transition region,
and separates the NFL state from the weakly polarized LFL one. It contains both
the dashed line tracing T∗

FC(B) and the solid curve T∗(B). Referring to (6.21), the
latter is defined by the function T∗ ∝ μBB and merges with T∗

FC(B) at relatively high
temperatures, and T∗ ∝ μB(B − Bc0) at lower T ∼ TNL , with TNL(B) being the Néel
temperature. As seen from (6.21), both thewidthW(B) of theNFL state and thewidth
of the transition region are proportional to T [34]. The AFM phase boundary line is
shown by the arrow and depicted by the solid curve. As it was mentioned above, the
dashed line T∗

FC(B) ∝ BμB represents the transition temperature provided that the
AFM state were absent. In that case the FC state is destroyed by any weak magnetic
fieldB → 0 atT → 0 and the dashed lineT∗

FC crosses the origin of coordinates, as it is
displayed in Figs. 6.7 and 6.8. At T � TNL(B = 0) the transition temperature T∗

FC(B)

coincides with T∗(B) shown by the solid curve, since the properties of the system
are given by its local free energy, describing the paramagnetic state of the system.
One might say that the system “does not” remember the AFM state that emerges
at lower temperatures. This observation is in good agreement with experimental
data collected on the HF metal YbRh2Si2. These findings are summarized in the
phase diagrams of Fig. 6.9: At relatively high temperatures T � TNF(B = 0) the
transition temperature T∗, obtained in measurements on YbRh2Si2 [17, 21], is well
approximated by the straight lines representing T∗

FC . In contrast to Fig. 6.5, it is also
seen from Fig. 6.9 that the emphasis is placed on the relatively high temperatures, so
the straight lines deviate from the experimental points at relatively low temperatures.
It is seen from Fig. 6.9, that the slope of the line (representing the maxima of the
specific heat C/T ) is different from that of the solid line (representing maxima of the
susceptibility χ(T)). Such a behavior is determined by the fact that the maxima of
C/T and χ(T) are given by the different relations, determining the inflection points
of the entropy:

∂2S

∂T2 = 0,
∂2S

∂B 2 = 0, (6.26)

respectively. As it is seen from Fig. 6.3, based on the theory of FC, that the inflection
points exist under the condition that the system is located near FCQPT [24].

Let us now corroborate the above consideration by experimental facts collected in
measurements on HFmetals. Panels a, b, c of Fig. 6.10 are focused on the behavior of
the transition temperature T∗(B) extracted from measurements of kinks in M̂(B) =
M+B(dM/dB) [35, 36], whereM is amagnetization. Positions of the kinks is shown
by pentagons in Fig. 6.10. It is seen from panel a of Fig. 6.10, that at T � TNL(B = 0),
the transition temperature T∗ of YbRh2Si2 is well approximated by the line T∗

FC .
As mentioned above, upon using nonthermal tuning parameters like the number
density x, the NFL behavior can be destroyed and the LFL one will be restored. In
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Fig. 6.9 T −B phase diagram forYbRh2Si2. Solid circles represent the boundary betweenAFMand
NFL states. The solid circles along the short dash curve denote the boundary of the NFL and LFL
regions [17, 21]. The curve (short dash) is represented by the function

√
B − Bc0 [24]. The solid

lines are approximated by T∗
FC ∝ BμB.Diamonds marking T∗ along the line signify the maxima TM

of C/T [20] shown in Fig. 1.2. The transition temperature T∗, determined from magnetostriction
(solid squares), longitudinal magnetoresistivity (triangles), and susceptibility (solid circles) [21] is
also reported. The solid lines show the linear fit to T∗

FC

our simple model, the application of positive pressure P makes x to grow shifting
the system from FCQPT to the LFL state. It is shown in Fig. 6.6 that above actions
moves the electronic system of YbRh2Si2 into the shadow area characterized by the
LFL behavior at low temperatures. The new location of the system, represented by
Yb(Rh0.93Co0.07)2Si2, is shownby the arrowpointing at the solid square.Wenote that
the positive chemical pressure in the considered case is induced by Co substitution
[35, 37–39]. As a result, the application of magnetic field B 	 Bc0 does not drive the
system to its FCQPT with the divergent effective mass because the QCP has already
been destroyed by the positive pressure, as it is shown in panel b of Fig. 6.10. Here
Bc0 is the critical magnetic field that eliminates the corresponding AFM order. At
relatively high temperatures both YbRh2Si2 and Yb(Rh0.93Co0.07)2Si2 are in their
paramagnetic states. As a result, in that case T∗ is well approximated by the straight
line T∗

FC . This observation coincides with experimental facts [35, 37] reported in
panels a, b of Fig. 6.10.

The system located above QCL exhibits the NFL behavior down to lowest tem-
peratures unless it is captured by a phase transition. The behavior exhibited by the
system located above QCL agrees with the experimental observations of the QCP
evolution in YbRh2Si2 under the application of negative chemical pressure induced
by Ir substitution [35, 37–39]. To explain the latter behavior, we propose a simple
model that the application of negative pressure reduces x so that the electronic sys-
tem of YbRh2Si2 moves from QCP to a new position over QCL shown by the dash
arrow in Fig. 6.6. Thus, the electronic system of Yb(Rh0.94Ir0.06)2Si2 is located at

http://dx.doi.org/10.1007/978-3-319-10825-4_1
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Fig. 6.10 T − B phase
diagrams for the three HF
metals: YbRh2Si2 (a);
Yb(Rh0.93Co0.07)2Si2 (b);
Yb(Rh0.94Ir0.06)2Si2 (c). In
panels a and b, the AFM
phase boundaries [35] are
shown by the solid lines. In
panel b, the diamonds report
the measurements [35]. In
panel c, the phase boundary
of possible phase transition is
shown by short dot curve.
Pentagons correspond to the
measurements of T∗(B) on
the HF metals extracted from
the analysis of M̂(B) function
[35]. The solid straight lines
depict the transition
temperature T∗

FC(B). Dash
line represents schematically
the boundary between NFL
and LFL regions

(a)

(b)

(c)
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QCL and possesses a flat band, while the entropy includes S0. We speculate that at
lowering temperatures, the electronic system of Yb(Rh0.94Ir0.06)2Si2 is captured by
a phase transition, since the NFL state above QCL is strongly degenerate and the
term S0 should be eliminated. At temperature decrease, this degeneracy is to be lifted
by some phase transition which can be possibly detected by the LFL state accom-
panying it. The tentative boundary line of that transition is shown by the short dot
line in Fig. 6.10, panel c. It is also seen from panel c of Fig. 6.10, that at elevated
temperatures T∗ is well approximated by the function T∗

FC . Thus, at relatively high
temperatures the curve T∗

FC(B), shown in panels a, b, c of Fig. 6.10 by the solid lines,
coincides with T∗(B) depicted by the pentagons. The preceding discussion demon-
strates that the local properties of the systems in question are given by their local
free energy, formed by the NFL region related to FC, as it is reported in Fig. 6.6.

To confirm the above consideration of the phase diagrams, we describe both
low temperature magnetization measurements carried out under pressure P and the
T − B phase diagram of YbRh2Si2 near its magnetic-tuned QCP [23, 37]. To carry
out a quantitative analysis of the scaling behavior of −ΔM∗(B, T)/ΔT , we cal-
culate the entropy S(B, T) and employ the well-known thermodynamic equality
dM/dT = dS/dB 	 ΔM/ΔT , see for details Chap.7 and particularly Sect. 7.3.
Figure6.11, panel a, reports the normalized (dS/dB)N as a function of the normal-
ized magnetic field. The function (dS/dB)N is obtained by normalizing (dS/dB) by
its maximum taking place at BM , and the field B is scaled by BM . It is seen from
Fig. 6.11, panel a, that our calculations are in good agreement with the experimental
data and the functions −(ΔM/ΔT)N show the scaling behavior over three decades
in the normalized magnetic field. Figure6.11, panel b, presents the temperature TM ,

(a) (b)

Fig. 6.11 Panel a normalized magnetization difference divided by temperature increment
−(ΔM/ΔT)N versus normalized magnetic field at fixed temperature and pressure (listed in the
legend in the upper left corner) is extracted from the data collected on YbRh2Si2 [23, 37]. Panel
b TM versus B is obtained under the application of hydrostatic pressure depicted in the legend
and extracted from the measurements [23, 37]. The solid line shows the linear fit to T∗(B), and
represents T∗

FC

http://dx.doi.org/10.1007/978-3-319-10825-4_7
http://dx.doi.org/10.1007/978-3-319-10825-4_7
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at which the maximum −(ΔM/ΔT) takes place, as a function of magnetic field B.
At TM ∼ TNL the line T∗

FC starts to deviate from the experimental data, where TNL

is shown in Fig. 6.10, panel a.
Thus, we conclude that carried out our theoretical study of the phase diagrams

of strongly correlated Fermi systems, including HF metals like YbRh2Si2, and con-
sidered the evolution of these diagrams under the application of negative/positive
pressure are in good agreement with the experimental facts. We have observed that
at sufficiently high temperatures outside the AFM phase the transition temperature
T∗(B) follows almost linear B-dependence, and coincides with T∗

FC(B), induced by
the presence of FCQPT. Thus, the influence of FCQPT extends over a wide range in
the T −B phase diagram. This is the regime of quantum criticality, which is of crucial
importance for interpreting a wide variety of experiments, finds good explanations
within the FC theory. As we shall show in Chaps. 17 and 18, the phase diagram of HF
liquid (Fig. 6.7) describes those of quantum spin liquids and quasicrystals as well,
while their scaling behavior is described in the same way. Thus, all above strongly
correlated compounds exhibit the similar behavior and allow us to consider it as
representing the main characteristic of the new state of matter [40, 41].

References

1. E.M. Lifshitz, L.P. Pitaevskii, Statistical Physics, part 2: Theory of Condensed State (Pergamon
Press, Oxford, New York, Toronto, Sydney, Paris, Frankfurt, 1980)

2. V.R. Shaginyan, JETP Lett. 79, 286 (2004)
3. J.W. Clark, V.A. Khodel, M.V. Zverev, Phys. Rev. B 71, 012401 (2005)
4. V.R. Shaginyan, A.Z. Msezane, M.Y. Amusia, Phys. Lett. A 338, 393 (2005)
5. V.R. Shaginyan, JETP Lett. 77, 104 (2003)
6. L.D. Landau, E.M. Lifshitz, Statistical Physics (Elsevier, Oxford, 1980)
7. V.R. Shaginyan, JETP Lett. 80, 263 (2004)
8. V.A. Khodel, V.R. Shaginyan, V.V. Khodel, Phys. Rep. 249, 1 (1994)
9. V.A. Khodel, V.R. Shaginyan, Nucl. Phys. A 555, 33 (1993)
10. V.A. Khodel, V.R. Shaginyan, P. Schuk, JETP Letters 63, 752 (1996)
11. J. Dukelsky, V. Khodel, P. Schuck, V. Shaginyan, Z. Phys. 102, 245 (1997)
12. V.A. Khodel, V.R. Shaginyan, in Condensed Matter Theories, vol. 12, ed. by J. Clark, V. Plant

(Nova Science Publishers Inc., New York, 1997), p. 221
13. V.A. Khodel, J.W. Clark, M.V. Zverev, Phys. Rev. B 78, 075120 (2008)
14. V.A. Khodel, JETP Lett. 86, 721 (2007)
15. J.W. Clark, V.A. Khodel, M.V. Zverev, V.M. Yakovenko, Phys. Rep. 391, 123 (2004)
16. V.R. Shaginyan, JETP Lett. 77, 178 (2003)
17. P. Gegenwart, J. Custers, C. Geibel, K. Neumaier, K.T.T. Tayama, O. Trovarelli, F. Steglich,

Phys. Rev. Lett. 89, 056402 (2002)
18. J. Custers, P. Gegenwart, H. Wilhelm, K. Neumaier, Y. Tokiwa, O. Trovarelli, C. Geibel,

F. Steglich, C. Pépin, P. Coleman, Nature 424, 524 (2003)
19. T. Shibauchi, L. Krusin-Elbaum, M. Hasegawa, Y. Kasahara, R. Okazaki, Y. Matsuda, Proc.

Natl. Acad. Sci. USA 105, 7120 (2008)
20. N. Oeschler, S. Hartmann, A. Pikul, C. Krellner, C. Geibel, F. Steglich, Physica B 403, 1254

(2008)
21. P. Gegenwart, T. Westerkamp, C. Krellner, Y. Tokiwa, S. Paschen, C. Geibel, F. Steglich,

E. Abrahams, Q. Si, Science 315, 969 (2007)

http://dx.doi.org/10.1007/978-3-319-10825-4_17
http://dx.doi.org/10.1007/978-3-319-10825-4_18


110 6 Highly Correlated Fermi Liquid in Heavy-Fermion Metals: The Scaling Behavior

22. P. Gegenwart, T. Westerkamp, C. Krellner, M. Brando, Y. Tokiwa, C. Geibel, F. Steglich,
Physica B 403, 1184 (2008)

23. Y. Tokiwa, T. Radu, C. Geibel, F. Steglich, P. Gegenwart, Phys. Rev. Lett. 102, 066401 (2009)
24. V.R. Shaginyan, M.Y. Amusia, A.Z. Msezane, K.G. Popov, Phys. Rep. 492, 31 (2010)
25. S.A. Artamonov, Y.G. Pogorelov, V.R. Shaginyan, JETP Lett. 68, 942 (1998)
26. M.V. Zverev, M. Baldo, J. Phys. Condens. Matter 11, 2059 (1999)
27. G.E. Volovik, JETP Lett. 53, 222 (1991)
28. G.E. Volovik, in Quantum Analogues: From Phase Transitions to Black Holes and Cosmology,

ed. by W.G. Unruh, R. Schutzhold. Springer Lecture Notes in Physics, vol. 718 (Springer,
Orlando, 2007), p. 31.

29. V.A. Khodel, M.V. Zverev, V.M. Yakovenko, Phys. Rev. Lett. 95, 236402 (2005)
30. V.R. Shaginyan, M.Y. Amusia, K.G. Popov, Phys. Lett. A 373, 2281 (2009)
31. V.R. Shaginyan, Physics of Atomic Nuclei 74, 1107 (2011)
32. V.A. Khodel, J.W. Clark, M.V. Zverev, Physics of Atomic Nuclei 74, 1237 (2011)
33. D. Takahashi, S. Abe, H. Mizuno, D. Tayurskii, K. Matsumoto, H. Suzuki, Y. Onuki, Phys.

Rev. B 67, 180407(R) (2003)
34. V.R. Shaginyan, A.Z. Msezane, K.G. Popov, J.W. Clark, M.V. Zverev, V.A. Khodel, JETP Lett.

96, 397 (2012)
35. M. Brando, L. Pedrero, T.Westerkamp, C. Krellner, P. Gegenwart, C. Geibel, F. Steglich, Phys.

Status Solidi B 459, 285 (2013)
36. V.R. Shaginyan, A.Z. Msezane, K.G. Popov, G.S. Japaridze, V.A. Khodel, Europhys. Lett. 106,

37001 (2014)
37. Y. Tokiwa, P. Gegenwart, C. Geibel, F. Steglich, J. Phys. Soc. Jpn. 78, 123708 (2009)
38. S. Friedemann, T. Westerkamp, M. Brando, N. Öeschler, S. Wirth, P. Gegenwart, C. Krellner,

C. Geibel, F. Steglich, Nat. Phys. 5, 465 (2009)
39. J. Custers, P. Gegenwart, S. Geibel, F. Steglich, P. Coleman, S. Paschen, Phys. Rev. Lett. 104,

186402 (2010)
40. M.Y. Amusia, V.R. Shaginyan, Contrib. Plasma Phys. 53, 721 (2013)
41. D. Yudin, D. Hirschmeier, H. Hafermann, O. Eriksson, A.I. Lichtenstein, M.I. Katsnelson,

Phys. Rev. Lett. 112, 070403 (2014)



Chapter 7
Highly Correlated Fermi Liquid
in Heavy-Fermion Metals: Magnetic Properties

Abstract In this chapter we show how the FCQPT theory works, when describing
the behavior of HF metals under the application of magnetic field. We show that a
large body of experimental data regarding the thermodynamic, transport and relax-
ation properties collected in measurements on HF metals can be well explained. It is
demonstrated that the experimental data exhibit the scaling behavior.

7.1 Magnetization

Consider now the magnetization M as a function of magnetic field B at fixed tem-
perature T = Tf

M(B, T) =
B∫

0

χ(b, T)db, (7.1)

where the magnetic susceptibility χ is given by [1]

χ(B, T) = βM∗(B, T)

1 + Fa
0

. (7.2)

Here, β is a constant and Fa
0 is the Landau interaction related to the exchange interac-

tion. In the case of strongly correlated systems the Landau interaction Fa
0 is saturated

at Fa
0 ≥ −0.9 [2–4]. As a result, it follows from (7.2) that χ ∝ M∗. Therefore, the

behavior of the function χ(B, T) is similar to that of M∗(B, T). Thus, we can nor-
malize χ ∝ M∗ in the same way as it was done when deriving (6.21), see Sect. 6.3.
As seen from (6.21) and (7.2), the coefficients β and (1 + Fa

0 ) drop out from the
normalized magnetic susceptibility χN , so that the normalized magnetic susceptibil-
ity χN = M∗

N , see Sect. 7.4 for details. One could assume that Fa
0 strongly depends

on B. This is not the case [7, 8], since the Kadowaki-Woods ratio is conserved
[9, 10], A(B)/γ 2

0 (B) ∝ A(B)/χ2(B) ∝ const, for we have γ0 ∝ M∗ ∝ χ . Note that
the Sommerfeld coefficient does not depend on Fa

0 .
Our calculations show that the magnetization exhibits a kink at some magnetic

field B = Bk . The experimentally observed magnetization demonstrates the same
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Fig. 7.1 The field
dependencies of the
normalized magnetization M
at different temperatures,
shown in the legend. The
curves are extracted from
measurements of YbRu2Si2
[5, 6]. The kink (shown by the
arrow) is clearly seen at the
normalized field
BN = B/Bk � 1. The solid
curve represents our
calculations

.

.

.

.

.

behavior [5, 6]. We use Bk and M(Bk) to normalize B and M respectively. The nor-
malizedmagnetizationM(B)/M(Bk), extracted from experimental (shownwith sym-
bols) and calculated magnetization shown by the solid line, are reported in Fig. 7.1.
It is seen that the scaled data at different Tf merge into a single curve in terms of the
normalized variable y = B/Tk . It is also seen, that these data exhibit energy scales
separated by a kink at normalized magnetic field BN = B/Bk = 1. The kink is a
crossover point from the fast to slow growth of M at rising magnetic field. Figure7.1
shows that our calculations are in good agreement with the experimental data. In
this case, all the data exhibit the kink (shown by the arrow) at BN � 1 taking place
as soon as the system enters the transition region corresponding to the magnetic
fields, where the horizontal dash-dot arrow in the main panel a of Fig. 6.2 crosses
the hatched area. Indeed, as seen from Fig. 7.1, at lower magnetic fields M is a linear
function of B since M∗ is approximately independent of B. Then, (6.21) and (6.22)
show that at elevated magnetic fields M∗ becomes a decreasing function of B and
generates the kink in M(B) separating the energy scales, discovered experimentally
in [5, 6]. It is seen from (6.24) that the magnetic field Bk at which the kink appears,
Bk � BM ∝ Tf , shifts to lower B as Tf is decreased. This observation coincides with
experimental facts [5, 6].

Consider now the “average” magnetization M ≡ Bχ + M as a function of the
magnetic field B at fixed temperature T = Tf [5]. We again use Bk and M(Bk)

to normalize B and M respectively. The normalized M versus the normalized field
BN = B/BK are shown in Fig. 7.2. Our calculations are represented by the solid line.
The stars trace our calculations of M with M∗(y) extracted from the data C/T shown
in Fig. 6.4. It is seen from Fig. 7.2 that our calculations are in good agreement with
the experiment. All experimental data have the kink (shown by arrow) at BN � 1
taking place as soon as the system enters the transition region corresponding to the
magnetic fields where the horizontal dash-dot arrow in the main panel a of Fig. 6.2
crosses the hatched area. Indeed, as seen from Fig. 7.2, at lower magnetic fields M is
a linear function of B since M∗ is approximately independent of B. It follows from

http://dx.doi.org/10.1007/978-3-319-10825-4_6
http://dx.doi.org/10.1007/978-3-319-10825-4_6
http://dx.doi.org/10.1007/978-3-319-10825-4_6
http://dx.doi.org/10.1007/978-3-319-10825-4_6
http://dx.doi.org/10.1007/978-3-319-10825-4_6
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Fig. 7.2 The field
dependence of the normalized
“average” magnetization
M ≡ M + Bχ is shown by
squares. It has been extracted
from measurements of
YbRu2Si2 [5]. The kink
(shown by the arrow) is
clearly seen at
BN = B/Bk � 1. The solid
curve and stars (see text)
represent our calculations

(6.22) that at elevated magnetic fields M∗ becomes a diminishing function of B and
generates a kink in M(B) separating the energy scales discovered in [5]. It is also
seen from (6.24) that the magnetic field Bk � BM , where the kink appears, shifts to
lower B as Tf is decreased.

7.2 Magnetoresistance

The magnetoresistance (MR) of a number of HFmetals is notably different from that
expected for orbital MR due to the Lorentz force and described by Kohler’s rule,
which holds in many conventional metals. We show that a pronounced crossover
from negative to positive MR is determined by the dependence of the effective mass
M∗(B, T) on both magnetic field B and temperature T . Thus, the crossover is regu-
lated by the universal behavior of M∗(B, T) observed in heavy-fermion metals. This
behavior is exhibited by M∗(B, T), when a strongly correlated electron system tran-
sits from the Landau Fermi liquid behavior, induced by the application of magnetic
field, to the non-Fermi liquid behavior taking place at rising temperatures.

7.2.1 Longitudinal Magnetoresistance

Consider the longitudinal magnetoresistance (LMR) ρ(B, T) = ρ0 + AT2 as a func-
tion of B at fixed Tf . In that case, the classical contribution to LMR due to orbital
motion of carriers induced by the Lorentz force is small, while the Kadowaki-Woods
relation [9–13],K = A/γ 2

0 ∝ A/χ2 = const, allows us to employM∗ in constructing
the coefficient A, since γ0 ∝ χ ∝ M∗. Omitting the classical contribution to LMR,
we obtain, as it follows from (2.19), that ρ(B, T) − ρ0 ∝ (M∗)2. Figure7.3 reports

http://dx.doi.org/10.1007/978-3-319-10825-4_6
http://dx.doi.org/10.1007/978-3-319-10825-4_6
http://dx.doi.org/10.1007/978-3-319-10825-4_2
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Fig. 7.3 Magnetic field
dependence of the normalized
magnetoresistance ρN ,
extracted from LMR of
YbRh2Si2 at different
temperatures [5, 6] listed in
the legend. The inflection
point is shown by the arrow,
and the solid line represents
our calculations

the normalized magnetoresistance

ρN (y) ≡ ρ(y) − ρ0

ρinf
= (M∗

N (y))2 (7.3)

versus normalized magnetic field y = B/Binf at different temperatures, shown in the
legend.Hereρinf andBinf areLMRandmagnetic field, respectively, taken at the inflec-
tion pointmarkedby the arrow inFig. 7.3.Both theoretical (solid line) and experimen-
tal (symbols) curves havebeennormalizedby their inflectionpoints,which also reveal
the scaling behavior: The scaled curves at different temperatures merge into a single
one as a function of the variable y and show the scaling behavior over three orders in
the normalized magnetic field. The transition region, where LMR starts to decrease
is shown in the inset to Fig. 6.2a by the hatched area. Obviously, as seen from (6.24),
the width of the transition region being proportional to BM � Binf ∝ Tf decreases as
the temperature Tf is lowered. Similar to that, the LMR inflection point, generated
by that of M∗ (arrow in the inset to Fig. 6.2) shifts towards lower B as Tf is decreased.
All these observations are in good agreement with experimental data [5, 6].

7.2.2 Transverse magnetoresistance in the HF Metal CeCoIn5

Our comprehensive theoretical study of both the longitudinal and transverse mag-
netoresistance (MR) shows that it is, similar to other thermodynamic characteristics
like magnetic susceptibility, specific heat, etc. governed by the scaling behavior of
the quasiparticle effective mass. The crossover from negative to positive MR occurs
at elevated temperatures and fixed magnetic fields, when the system transits from the
LFL behavior to NFL one and can be well captured by this scaling behavior.

http://dx.doi.org/10.1007/978-3-319-10825-4_6
http://dx.doi.org/10.1007/978-3-319-10825-4_6
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By definition, MR is given by

ρmr(B, T) = ρ(B, T) − ρ(0, T)

ρ(0, T)
, (7.4)

We apply (7.4) to studyMR of strongly correlated electron liquid versus temperature
T as a function of magnetic field B. The resistivity ρ(B, T) can be presented as

ρ(B, T) = ρ0 + Δρ(B, T) + ΔρL(B, T), (7.5)

where ρ0 is a residual resistance, Δρ = c1AT2, c1 is a constant. The classical
contribution ΔρL(B, T) to MR due to orbital motion of carriers induced by the
Lorentz force obeys the Kohler’s rule. We note that ΔρL(B) � ρ(0, T), as it is
assumed in the weak-field approximation. To calculate A, we again use the quantities
γ0 = C/T ∝ M∗ and/or χ ∝ M∗ as well as employ the fact that the Kadowaki-
Woods ratio K = A/γ 2

0 ∝ A/χ2 = const. As a result, we obtain A ∝ (M∗)2, so that
Δρ(B, T) = c(M∗(B, T))2T2 and c is a constant. Suppose that the temperature is
not very low, so that ρ0 ≤ Δρ(B = 0, T), and B ≥ Bc0. Substituting (7.5) into (7.4),
we find that [14]

ρmr � ρ0 + ΔρL(B, T)

ρ(0, T)
+ cT2 (M∗(B, T))2 − (M∗(0, T))2

ρ(0, T)
. (7.6)

Consider the qualitative behavior of MR described by (7.6) as a function of B at
a certain temperature T = T0. In weak magnetic fields, when the system exhibits
NFL behavior (see Fig. 6.2), the main contribution to MR comes from the term
ΔρL(B), because the effective mass is independent of the applied magnetic field.
Hence, |M∗(B, T) − M∗(0, T)|/M∗(0, T) � 1 and the leading contribution is made
by ΔρL(B). As a result, MR is an increasing function of B. When B becomes so high
that T∗(B) ∼ μB(B − Bc0) ∼ T0, the difference (M∗(B, T) − M∗(0, T)) becomes
negative because M∗(B, T) is now the diminishing function of B, given by (6.22),
while T∗(B) is the crossover (transition temperature) shown in Fig. 5.2. Thus, MR
as a function of B reaches its maximal value at T∗(B) ∼ TN (B) ∼ T0. At further
increase of magnetic field, when TM(B) > T0, the effective mass M∗(B, T) becomes
a decreasing function of B. As B growth, one has

(M∗(B, T) − M∗(0, T))

M∗(0, T)
→ −1, (7.7)

and the magnetoresistance, being a decreasing function of B, can reach its negative
values.

Now we study the behavior of MR as a function of T at fixed value B0 of mag-
netic field. At low temperatures T � T∗(B0), it follows from (6.21) and (6.7) that
M∗(B0, T)/M∗(0, T) � 1, and it is seen from (7.7) that ρmr(B0, T) ∼ −1, because
ΔρL(B0, T)/ρ(0, T) � 1. We note that B0 must be relatively high to guarantee that
M∗(B0, T)/M∗(0, T) � 1. As the temperature increases, MR increases, remain-
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ing negative. At T � T∗(B0), MR is approximately zero, because at this point
ρ(B0, T) � ρ(0, T). This allows us to conclude that the change of the temperature
dependence of resistivity ρ(B0, T) from quadratic to linear manifests itself in the
transition from negative to positive MR. One can also say that the transition takes
place when the system goes from the LFL behavior to the NFL one. At T ≥ T∗(B0),
the leading contribution toMR ismade byΔρL(B0, T) andMR reaches itsmaximum.
At TM(B0) � T , MR is a decreasing function of the temperature, because

|M∗(B, T) − M∗(0, T)|
M∗(0, T)

� 1, (7.8)

and ρmr(B0, T) � 1. Both transitions, from positive to negative MR with increasing
B at fixed temperature T and from negative to positive MR with increasing T at
fixed B value, have been detected in measurements of the resistivity of CeCoIn5 in
a magnetic field [15].

Let us turn to quantitative analysis ofMR [14]. As it wasmentioned above, we can
safely assume that the classical contribution ΔρL(B, T) to MR is small as compared
to Δρ(B, T). Omission of ΔρL(B, T) allows us to make our analysis and results
transparent and simple while the behavior of ΔρL(B0, T) is not known in the case of
HF metals. Consider the ratio Rρ = ρ(B, T)/ρ(0, T) and assume for a while that the
residual resistance ρ0 is small in comparison with the temperature dependent terms.
Taking into account (7.5) and ρ(0, T) ∝ T , we obtain from (7.6) that

Rρ = ρmr + 1 = ρ(B, T)

ρ(0, T)
∝ T(M∗(B, T))2, (7.9)

and consequently, from (6.21) and (7.9) that the ratio Rρ reaches its maximal value
Rρ

M at some temperature TRm ∼ TM . If the ratio is measured in units of its maximal
value Rρ

M and T is measured in units of TRm ∼ TM then it is seen from (6.21) and
(7.9) that the normalized MR

Rρ
N (y) = Rρ(B, T)

Rρ
M(B)

� y(M∗
N (y))2 (7.10)

becomes a function of the only variable y = T/TRm. The results of the normalization
procedure of MR are depicted in Fig. 7.4. It is clearly seen that the data collapse
into the same curve, indicating that the normalized magnetoresistance Rρ

N obeys the
scaling behavior well described by (7.10). This scaling behavior obtained directly
from the experimental facts is a vivid evidence that MR behavior is predominantly
governed by the effective mass M∗(B, T).

Now we are in the position to calculate Rρ
N (y) given by (7.10). Using (6.21) to

parameterize M∗
N (y), we extract parameters c1 and c2 from measurements of the

magnetic AC susceptibility χ on CeRu2Si2 [16] and apply (7.10) to calculate the
normalized ratio. It is seen that the calculations shown by the starred line in Fig. 7.4
start to deviate from experimental points at higher temperatures. To improve the

http://dx.doi.org/10.1007/978-3-319-10825-4_6
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http://dx.doi.org/10.1007/978-3-319-10825-4_6


7.2 Magnetoresistance 117

.

.

.

.

.

.

.

Fig. 7.4 The normalized magnetoresistance Rρ
N (y) determined by (7.10) versus normalized tem-

perature y = T/TRm. The data have been extracted from MR shown in Fig. 7.6 and collected on
CeCoIn5 at fixed magnetic fields B [15] listed in the right upper corner. The starred line represents
our calculations based on (6.21) and (7.10) with the parameters extracted from AC susceptibility
of CeRu2Si2 (see the caption to Fig. 7.9). The solid line displays our calculations based on (7.11)
and (7.10). Only one parameter was used to fit the data, while the other were extracted from the AC
susceptibility measured on CeRu2Si2

coincidence, we employ (6.16), which describes the behavior of the effective mass
at higher temperatures and ensures that at these temperatures the resistance behaves
as ρ(T) ∝ T . To correct the behavior of M∗

N (y) at rising temperatures M∗ ∼ T−1/2,
we add a term to (6.21) and obtain

M∗
N (y) ≈ M∗(x)

M∗
M

[
1 + c1y2

1 + c2y8/3
+ c3

exp(−1/y)√
y

]
, (7.11)

where c3 is an adjustable parameter. The last term on the right hand side of (7.11)
makes M∗

N satisfy (6.16) at temperatures T/TM > 2. In Fig. 7.4, the fit of Rρ
N (y) by

(7.11) is shown by the solid line. Constant c3 is taken as a fitting parameter, while the
other were extracted from AC susceptibility of CeRu2Si2 as described in the caption
to Fig. 7.9.

Before discussing themagnetoresistanceρmr(B, T)given by (7.4),we consider the
magnetic field dependence of both theMRpeak valueRmax(B) and the corresponding
peak temperature TRm(B). It is possible to use (7.9) which relates the position and
value of the peak with the function M∗(B, T). Since TRm ∝ μB(B − Bc0), B enters
(7.9) only as tuning parameter of QCP, as bothΔρL and ρ0 were omitted. AtB → Bc0
and T � TRm(B), this omission is not correct since ΔρL and ρ0 become comparable
with Δρ(B, T). Therefore, both Rmax(B) and TRm(B) are not characterized by any
critical field, being continuous functions at the quantum critical field Bc0, in contrast
to M∗(B, T), whose peak value diverges and the peak temperature tends to zero at

http://dx.doi.org/10.1007/978-3-319-10825-4_6
http://dx.doi.org/10.1007/978-3-319-10825-4_6
http://dx.doi.org/10.1007/978-3-319-10825-4_6
http://dx.doi.org/10.1007/978-3-319-10825-4_6


118 7 Highly Correlated Fermi Liquid in Heavy-Fermion Metals …

Bc0, as it is seen from (6.22) and (6.23). Thus, we have to take into accountΔρL(B, T)

and ρ0 which prevent TRm(B) from vanishing and make Rmax(B) finite at B → Bc0.
As a result, we have to replace Bc0 by some effective field Beff < Bc0 and take Beff as
a parameter which imitates the contributions coming from both ΔρL(B, T) and ρ0.
Upon modifying (7.9) by taking into account ΔρL(B, T) and ρ0, we obtain

TRm(B) � b1(B − Beff), (7.12)

Rmax(B) � b2(B − Beff)
−1/3 − 1

b3(B − Beff)−1 + 1
. (7.13)

Here b1, b2, b3 and Beff are the fitting parameters. It is pertinent to note that to derive
(7.13) we use (7.12) with substitution (B − Beff) for T . Then, (7.12) and (7.13) are
not valid at B � Bc0. In Fig. 7.5, we show the field dependence of both TRm and
Rmax, extracted from MR measurements [15]. Clearly, both TRm and Rmax are well
described by (7.12) and (7.13) with Beff = 3.8 T. We note that this value of Beff is
in good agreement with observations, obtained from the experimental T–B phase
diagram of CeCoIn5 [15].

To calculate ρmr(B, T), we apply (7.10) to describe its universal behavior, (6.21)
for the effective mass along with (7.12) and (7.13) for MR parameters. Figure7.6
shows the calculatedMRversus temperature as a function ofmagnetic fieldB together
with the experimental points from [15]. We recall that the contributions coming
from ΔρL(B, T) and ρ0 were omitted. As seen from Fig. 7.6, our description of the
experiment is good.

Fig. 7.5 The peak
temperatures TRm (squares)
and the peak values Rmax
(triangles) versus magnetic
field B extracted from
measurements of MR [15].
The solid lines represent our
calculations based on (7.12)
and (7.13)
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Fig. 7.6 MR versus
temperature T as a function
of magnetic field B. The
experimental data onMRwere
collected on CeCoIn5 at fixed
magnetic field B [15] shown
in the right bottom corner
of the figure. The solid lines
represent our calculations;
(6.21) is used to fit the
effective mass entering (7.10)
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7.2.3 Electric Resistivity of HF Metals

Here we give a brief outline of the physical properties of HF metals resistivity, while
its detailed analysis including the residual term ρ0 is postponed to the Chaps. 9–11.
We note that the role of Umklapp processes, violating momentum conservation and
forming ρ0, are briefly discussed in Sect. 10.2. The electric resistivity of strongly cor-
related Fermi systems, ρ(T) = ρ0 + Δρ1(B, T) is determined by the effective mass
due to Kadowaki-Woods relation Δρ1(B, T) = A(B, T)T2 ∝ (TM∗(B, T))2, see
Sect. 7.2.1 and [11–13]. Therefore the above temperature dependence of the effec-
tive mass can be observed in measurements of HF metals resistivity. At temperatures
T � T∗(B), the system is in the LFL state, the behavior of the effective mass as
x → xFC is described by (6.7), and the coefficient A(B) can be represented as

A(B) ∝ 1

(B − Bc0)4/3
. (7.14)

In this regime, the resistivity behaves asΔρ1 = c1T2/(B−Bc0)
4/3 ∝ T2. The second

regime, a highly correlated Fermi liquid determined by (6.14), is characterized by the
resistivity dependenceΔρ1 = c2T2/(T2/3)2 ∝ T2/3. The third regime at T > T∗(B)

is determined by (6.16). In that case we obtain Δρ1 = c3T2/(T1/2)2 ∝ T . If the
system is above the quantum critical line shown in Fig. 6.7, the temperature depen-
dence of the effective mass is given by (3.12) so that we obtain from (6.20) that the
quasiparticle damping behaves as γ (T) ∝ T [17]. As a result, we see that the temper-
ature dependence of resistivity is Δρ1 = c4T [18]. Here, c1 − c4 are constants. If the
system is at the transition regime (arrows in Fig. 6.2), the temperature dependence of
the effective mass cannot be characterized by a single exponent as it is clearly seen
from the inset to Fig. 6.2a. So, we have Δρ1 ∝ TαR with 1 < αR < 2. Note that
all temperature dependencies corresponding to these regimes have been observed
experimentally in the HF metals CeCoIn5, YbRh2Si2 and YbAgGe [15, 19–22].
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7.3 Magnetic Entropy

Theevolutionof the derivative ofmagnetic entropydS(B, T)/dB as a functionofmag-
netic field B at fixed temperature Tf is of great importance since it allows to study the
scaling behavior of the effective mass derivative TdM∗(B, T)/dB ∝ dS(B, T)/dB.
While the scaling properties of the effective mass M∗(B, T) can be analyzed via
LMR, see Fig. 7.3, those of the effective mass derivative cannot. As seen from (6.21)
and (6.24), at y ≤ 1 the derivative dMN (y)/dy is determined as follows

− dMN (y)

dy
∝ y, y = (B − Bc0)/(Binf − Bc0) ∝ (B − Bc0)/Tf . (7.15)

We note that the effective mass as a function of B does not have a maximum. At
elevated y the derivative −dMN (y)/dy possesses a maximum at the inflection point
and then becomes a decreasing function of y. Using the variable y = (B−Bc0)/Tf , we
conclude that at decreasing temperatures, the leading edge of the function−dS/dB ∝
−TdM∗/dB becomes steeper and its maximum at (Binf − Bc0) ∝ Tf is higher. These
observations are in quantitative agreement with the measurements of the quantity
−ΔM/ΔT as a function of magnetic field at fixed temperatures Tf collected on
YbRh2Si2 [23]. We note that according to the well-known thermodynamic equality
dM/dT = dS/dB we have ΔM/ΔT � dS/dB. To carry out a quantitative analysis
of the scaling behavior of −dM∗(B, T)/dB, we calculate the entropy S(B, T) shown
in Fig. 6.3 as a function of B at fixed dimensionless temperatures Tf /μ shown in the
right legend of Fig. 7.7. This figure demonstrates the normalized quantity (dS/dB)N

as a function of the normalized magnetic field. The function (dS/dB)N is obtained

.

.

.

.

.

Fig. 7.7 The ratio of normalized magnetization difference and temperature increment (ΔM/ΔT)N
versus normalized magnetic field at fixed temperatures, listed in the left legend. The curves are
extracted from the measurements on YbRh2Si2 [23]. Our calculations of the normalized derivative
(dS/dB)N � (ΔM/ΔT)N versus normalized magnetic field are reported at fixed dimensionless
temperatures T/μ and are listed in the right legend. All the data are shown by the symbols explained
in the legends
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by normalizing (−dS/dB) by its maximum at B = BM , and the field B is scaled
by BM . The measurements of −ΔM/ΔT are normalized similarly and reported in
Fig. 7.7 as a function of normalized field. It is seen from Fig. 7.7 that our calculations
are in good agreement with the experiment and both the experimental functions
(ΔM/ΔT)N and the calculated (dS/dB)N show the scaling over three orders in the
normalized magnetic field.

7.4 Magnetic Susceptibility

7.4.1 Magnetic Susceptibility and Magnetization Measured
on CeRu2Si2

Experimental investigations of the magnetic properties of CeRu2Si2 down to the
lowest achieved temperatures (170 mK) and ultrasmall magnetic fields (0.21 mT)
have neither shown evidence of the magnetic ordering and/or superconductivity nor
conventional LFL behavior [16]. These results imply that magnetic quantum critical
point is absent in CeRu2Si2 and the critical field Bc0 = 0. Even if the magnetic QCP
were there it should maintain the NFL behavior over four orders in temperature. We
believe that such a strong influence can hardly exist within the picture of conventional
quantum phase transitions.

Temperature dependence in the logarithmic scale of the normalized AC suscepti-
bility χN (B, T) = M∗

N as a function of the normalized temperature TN is shown at
different magnetic fields B as indicated in the panel a of Fig. 7.8. The panel b of this
Figure shows the normalized static magnetization MB(B, T) (DC susceptibility) in
the same normalized temperature range. The temperature is normalized to TM . It is
the temperature where the susceptibility reaches its peak value. The susceptibility
is normalized to its peak value χ(B, TM), and the magnetization is normalized to
MB(B, T → 0) for each value of the field [16]. If we use (7.1) and the definition
of susceptibility (7.2), we conclude that the susceptibility and magnetization also
demonstrate the scaling behavior and can be represented by the universal function
(6.21) of the single variable y.

We see from panel a of Fig. 7.8 that at finite B, the curve χ(B, T)/χ(B, TM) has
a peak at a certain temperature TM , while MB(B, T)/MB(B, TM) has no such peak
(panel b) [24–26]. This behavior agrees well with the experimental results [24–26]
obtained for CeRu2Si2 [16]. We note that such behavior of the susceptibility is
unusual for ordinary metals and cannot be explained by the theories accounting for
only ordinary quantum phase transitions [16].

To verify (6.16) and illustrate the transition from LFL behavior to NFL one, we
use the results of measurements of χAC(T) in CeRu2Si2 at magnetic field B = 0.02
mTwhere this HFmetal demonstrates the NFL behavior down to lowest investigated
temperatures [16]. Indeed, in this case we expect that LFL regime begins to appear at
temperatures lower than TM ∼ μBB ∼ 0.01 mK, as it follows from (6.23). It is seen
from Fig. 7.9 (panels a and b) that (6.16) gives good description of the experimental
data in the extremely wide temperature range: the susceptibility χAC(T) does not
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Fig. 7.8 Panel a the
normalized magnetic
susceptibility
χ(B, T)/χ(B, TM ), and
panel b normalized
magnetization
MB(B, T)/MB(B, TM ) (DC
susceptibility, right box) for
CeRu2Si2 in magnetic fields
0.20mT (squares), 0.39mT
(triangles), and 0.94mT
(circles) as functions of the
normalized temperature
T/TM [16]. The solid lines
report the calculated scaling
dependence [24] as described
in Sect. 6.3.1

(a)

(b)

remain a constant upon cooling, as would be for a Fermi liquid, but shows a 1/
√

T
divergence over almost four orders of temperature. The inset in Fig. 7.9 reports a fit
for M∗

N extracted from measurements of χAC(T) at different magnetic fields, clearly
indicating the transition from LFL behavior at TN < 1 to NFL one at TN > 1 when
the system moves along the vertical arrow in Fig. 6.2. It is seen from Figs. 7.8 and
7.9 that the function presented by (6.21) is a good approximation for M∗

N within
the extended quasiparticle paradigm. We have seen in Sect. 6.3.2 that the same is
true for YbRh2Si2 with its AF quantum critical point. We conclude that both alloys,
CeRu2Si2 and YbRh2Si2, demonstrate the universal NFL thermodynamic behavior,
independent of their microscopic details like lattice structure, chemical composition
andmagnetic ground state. This conclusion implies also that numerousQCPs, related

http://dx.doi.org/10.1007/978-3-319-10825-4_6
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Fig. 7.9 Temperature
dependence of the
AC susceptibility. Panel a
the AC susceptibility χAC for
CeRu2Si2. The solid curve
is a fit for the data (triangles)
at B = 0.02mT [16] and
represented by the function
χ(T) = a/

√
T given by

(6.16) with a being a fitting
parameter. The inset shows
the normalized effective
mass versus normalized
temperatureTN extracted from
χAC measured at different
fields, as indicated in the inset
legend [16]. The solid curve
traces the universal behavior
of M∗

N (TN ) determined by
(6.21). Parameters c1 and c2
are adjusted to fit the average
behavior of the normalized
effective mass M∗

N . Panel b
temperature dependence
of the AC susceptibility
χAC(T , B) in the magnetic
fields B shown near the curves

(a)

(b)

to conventional quantum phase transitions assumed to be responsible for the NFL
behavior of different HF metals, can be well reduced to a single QCP related to
FCQPT and accounted for within the extended quasiparticle paradigm [27].

7.5 Magnetic-Field-Induced Reentrance of the LFL Behavior
and Spin-Lattice Relaxation Rates

A strong departure from the Landau-Fermi liquid (LFL) behavior have been revealed
in observed anomalies in both the magnetic susceptibility χ and the muon and 63Cu
nuclear spin-lattice relaxation rates 1/T1 of YbCu5−xAux (x = 0.6). We show that
the above anomalies alongwithmagnetic-field-induced reentrance of LFL properties
are indeed determined by the dependence of the quasiparticle effective mass M∗ on

http://dx.doi.org/10.1007/978-3-319-10825-4_6
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magnetic field B and temperature T and demonstrate that violations of the Korringa
law also come from M∗(B, T) dependence upon B and T . We obtain this dependence
theoretically utilizing our approach based on fermion condensation quantum phase
transition notion. The theoretical analysis of experimental data on the base of FCQPT
approach permits not only to explain the above two experimental facts in a unified
manner, but to unveil their universal properties, relating the peculiar features of
longitudinalmagnetoresistance inYbRh2Si2 to the behavior of spin-lattice relaxation
rates.

One of the most interesting and puzzling issues in the research on HF metals is their
anomalous dynamic and relaxation properties. It is important to verify whether qua-
siparticles with effective mass M∗ still exist and determine the physical properties of
themuon and 63Cu nuclear spin-lattice relaxation rates 1/T1 in HFmetals throughout
their temperature—magnetic field phase diagram, see Fig. 6.2. This phase diagram
comprises both LFL andNFL regions as well as NFL–LFL transition or the crossover
region, where magnetic-field-induced LFL reentrance occurs. Measurements of the
muon and 63Cu nuclear spin-lattice relaxation rates 1/T1 in YbCu4.4Au0.6 have
shown that it differs substantially from ordinary Fermi liquids obeying the Korringa
law [28]. Namely, it was reported that for T → 0 reciprocal relaxation time diverges
as 1/T1T ∝ T−4/3 following the behavior predicted by the self-consistent renormal-
ization (SCR) theory [29]. The static uniform susceptibility χ diverges as χ ∝ T−2/3

so that 1/T1T scales with χ2. Latter result is at variance with SCR theory [28]. More-
over, the application of magnetic field B restores the LFL behavior from initial NFL
one, significantly reducing 1/T1. These experimental findings are hard to explain
within both the conventional LFL approach and in terms of other approaches like
SCR theory [28, 29].

In this Section we show that the above anomalies along with magnetic-field-
induced reentrance of LFL properties are indeed determined by the dependence of
the quasiparticle effective mass M∗ on magnetic field B and temperature T and
demonstrate that the violation of the Korringa law also comes from M∗(B, T) depen-
dence. Our theoretical analysis of experimental data on the base of FCQPT approach
permits not only to explain the above two experimental facts in a unified manner, but
to unveil their universal properties, relating the peculiar features of both longitudi-
nal magnetoresistance and specific heat in YbRh2Si2 to the behavior of spin-lattice
relaxation rates.

To discuss the deviations from the Korringa law in light of NFL properties of
YbCu4.4Au0.6, we notice that in LFL theory the spin-lattice relaxation rate 1/T1 is
determined by the quasiparticles near the Fermi level. The above relaxation rate is
related to the decay interaction of the quasiparticles, which in turn is proportional to
the density of states at the Fermi level N(EF). Formally, the spin-lattice relaxation
rate is determined by the imaginary partχ ′′ of the low-frequency dynamicalmagnetic
susceptibility χ(q, ω → 0), averaged over momentum q

1

T1
= 3T

4μ2
B

∑
q

AqA−q
χ ′′(q, ω)

ω
, (7.16)

http://dx.doi.org/10.1007/978-3-319-10825-4_6
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where Aq is the hyperfine coupling constant of the muon (or nuclei) with the spin
excitations at wave vector q [29]. Theory of dynamic magnetic (spin) susceptibility
of quantum spin liquid and heavy-fermion metals is discussed in Sect. 17.2.1. If
Aq ≡ A0 is independent of q, then standard LFL theory yields the relation

1

T1T
= πA2

0N2(EF). (7.17)

Equation (7.17) can be viewed as Korringa law. Since in our FCQPT approach the
physical properties of the system under consideration are determined by the effective
mass M∗(T , B, x), we express 1/T1T in (7.17) via it. This is accomplished with the
standard expression [1] N(EF) = M∗pF/π2, rendering (7.17) to the form

1

T1T
= A2

0p2F
π3 M∗2 ≡ η

[
M∗(T , B, x)

]2
, (7.18)

where η = (A2
0p2F)/π3 = const. The empirical expression

1

T1T
∝ χ2(T), (7.19)

extracted fromexperimental data inYbCu5−xAux [28], follows explicitly from (7.18)
and well-known LFL relations M∗ ∝ χ ∝ C/T .

In what follows, we compute the effective mass as it was explained in Sect. 6.3.1
and employ (6.21) for estimations of obtained values [30]. The decay law given by
(6.14) along with (7.18) permits to express the relaxation rate in this temperature
range as

1

T1T
= a1 + a2T−4/3 ∝ χ2(T), (7.20)

where a1 and a2 are fitting parameters. The dependence (7.20) is reported in Fig. 7.10
along with experimental points for the muon and nuclear spin-lattice relaxation rates
in YbCu4.4Au0.6 at zero magnetic field [28]. It is seen from Fig. 7.10 that (7.20)
gives good description of the experiment in the extremely wide temperature range.
This means that the extended paradigm is valid and quasiparticles survive in close
vicinity of FCQPT, while the observed violation of Korringa law comes from the
temperature dependence of the effective mass.

Figure7.11 displays magnetic field dependence of normalized muon spin-lattice
relaxation rate 1/Tμ

1N in YbCu5−xAux (x = 0.6) along with our theoretical B—
dependence. To obtain the latter theoretical curve for fixed temperature and in mag-
netic field B, we employ (7.18) and solve the Landau integral equation to calculate
M∗(T , B) in a way that has been described in Sect. 6.3.1.We note that the normalized
effective mass M∗

N (y) has been obtained by normalizing M∗(T , B) at its inflection
point shown in the inset to Fig. 6.2.

http://dx.doi.org/10.1007/978-3-319-10825-4_17
http://dx.doi.org/10.1007/978-3-319-10825-4_6
http://dx.doi.org/10.1007/978-3-319-10825-4_6
http://dx.doi.org/10.1007/978-3-319-10825-4_6
http://dx.doi.org/10.1007/978-3-319-10825-4_6
http://dx.doi.org/10.1007/978-3-319-10825-4_6
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Fig. 7.10 Temperature dependence of muon (squares) and nuclear (circles) spin-lattice relaxation
rates (divided by temperature) for YbCu4.4Au0.6 at zero magnetic field [28]. The solid curve repre-
sents our calculations based on (7.20)

. .

Fig. 7.11 Magnetic field dependence of normalized at the inflection point muon spin-lattice relax-
ation rate 1/Tμ

1N , extracted from measurements [28] on YbCu4.4Au0.6 along with our calculations
of B-dependence of the quasiparticle effective mass. Inset shows the normalized LMR Rρ

N (y) versus
normalized magnetic field. Rρ

N (y) was extracted from LMR of YbRh2Si2 at different temperatures
[5] listed in the legend. The solid curves represent our calculations

It is instructive to compare the LMR analyzed in Sect. 7.2.1 and 1/Tμ
1 . LMR

ρ(B, T) = ρ0 + ρB + A(B, T)T2 is a function of B at fixed T , where ρ0 is the
residual resistance, ρB is the contribution to LMR due to orbital motion of carriers
induced by the Lorentz force, and A(B, T) is a function to be calculated. As we see in
Sect. 7.2.1, ρB is small and we omit this contribution. The Kadowaki-Woods relation
allows us to employ M∗ in calculating A(B, T). As a result, ρ(B, T) − ρ0 ∝ (M∗)2,
and 1/Tμ

1N ∝ (M∗)2 as seen from (7.18). Consequently, we see that LMR and the
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magnetic field dependence of normalized muon spin-lattice relaxation rate 1/Tμ
1N

can be evaluated from the same equation

Rρ
N (y) = ρ(y) − ρ0

ρinf
= 1

Tμ
1N

= (M∗
N (y))2. (7.21)

Inset to Fig. 7.11 reports the normalized LMR versus normalized magnetic field
y = B/Binf at different temperatures, shown in the legend. Here ρinf and Binf are,
respectively, LMR and magnetic field taken at the inflection point. The inflection
points of both LMR and 1/T1N are generated by that of M∗ shown in the inset to
Fig. 6.2a by the arrow. The transition region where LMR starts to decrease is shown
in the inset by the hatched area and takes place when the system moves along the
horizontal dash-dot arrow.We note that the same normalized effective mass has been
used to calculate both 1/Tμ

1N inYbCu4.4Au0.6 and the normalizedLMR inYbRh2Si2.
Thus, (7.3) defines the intimate relationship between the quite different dynamic
properties, showing the validity of the extended quasiparticle paradigm. In Fig. 7.11,
both theoretical and experimental curves have been normalized by their inflection
points, which also reveals the scaling behavior—the curves at different temperatures
merge into a single one in terms of the scaled variable y. Figure7.11 shows clearly
that both, normalized magnetoresistance Rρ

N and reciprocal spin-lattice relaxation
time, obey the scaling law given by (7.21) well. This fact, obtained directly from the
experimental findings, is a vivid evidence that the behavior of both above mentioned
quantities is predominantly governed by the field and temperature dependence of the
effective mass.

We note that the same normalized effective mass determines the behavior of
the thermodynamic and transport properties in YbRh2Si2, see Sect. 6.3.2. It is seen
from the figures in Sect. 6.3.2 that our calculations of the effective mass offer
good unified description for different quantities like the relaxation rates (1/T1T),
the transport (LMR) and thermodynamic properties in such different HF metals as
YbCu5−xAux and YbRh2Si2. It is pertinent to note that the obtained good descrip-
tion makes an impressive case in favor of the reliability of the extended quasiparticle
paradigm.

7.6 The Relations Between Critical Magnetic Fields
Bc0 and Bc2 in HF Compounds

In high-Tc superconductors, exciting measurements have been performed revealing
their physics. One type of measurements demonstrate the existence of Bogoliubov
quasiparticles (BQ) in their superconducting state [31–33], see Sect. 5.1.3. While
in the pseudogap regime at T > Tc, when the superconductivity vanishes, a strong
indication of the pairing of electrons or the formation of preformed electron pairs has
been observed, while the gap continues to follow the simple d-wave form [32–34]. It
is widely assumed that the pseudogap is a state where the Fermi surface of a strongly

http://dx.doi.org/10.1007/978-3-319-10825-4_6
http://dx.doi.org/10.1007/978-3-319-10825-4_6
http://dx.doi.org/10.1007/978-3-319-10825-4_6
http://dx.doi.org/10.1007/978-3-319-10825-4_5
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correlated compound possesses a partial energy gap. This state is very similar to the
superconducting gap, which is an energy range that comprises no allowed states.

Another type of the measurement explored the normal state induced by the mag-
netic field application, when the transition from the NFL behavior to LFL one occurs
[35].Aswehavementioned inSect. 5.3.2.1, there are experimentally evident relations
between the critical fields Bc2 ≥ Bc0, where Bc2 is the field destroying the super-
conducting state, and Bc0 is the critical field at which the (magnetic field induced)
QCP takes place. Now we show that Bc2 ≥ Bc0. We note that to study the afore-
mentioned transition experimentally in high-Tc superconductors, strong magnetic
fields B ≥ Bc2 are required. This means that such investigation had earlier been tech-
nically inaccessible. An attempt to study the transition experimentally had already
been made in [36].

Let us now consider the T–B phase diagram of the high-Tc superconductor
Tl2Ba2CuO6+x shown in Fig. 7.12. The substance is a superconductor with Tc from
15 to 93 K, being controlled by oxygen content [35]. In Fig. 7.12 open squares and
solid circles show the experimental values of the crossover temperature from the
LFL to NFL regimes [35]. The solid line given by (6.15) shows our fit with Bc0 = 6
T that is in good agreement with Bc0 = 5.8 T obtained from the field dependence of
the charge transport [35].

As it is seen from Fig. 7.12, the linear behavior agrees well with the experimental
data [14, 35]. The peak temperatures Tmax shown in the inset to Fig. 7.12, depict the
maxima of C(T)/T and χAC(T), measured on YbRh2(Si0.95Ge0.05)2 [37, 38]. It is

Fig. 7.12 T–B phase diagram of the superconductor Tl2Ba2CuO6+x . The crossover from LFL
to NFL regime line T∗(B) is depicted by the solid straight line. Open squares and solid circles
are experimental values [35]. Thick line represents the boundary between the superconducting and
normal phases. The arrows near the bottom left corner indicate the critical magnetic field Bc2
that destroys the superconductivity, and the critical field Bc0. Inset displays the peak temperatures
Tmax(B), extracted from measurements of C/T and χAC on YbRh2(Si0.95Ge0.05)2 [37, 38] and
approximated by straight lines (6.23). The lines intersect at B � 0.03 T

http://dx.doi.org/10.1007/978-3-319-10825-4_5
http://dx.doi.org/10.1007/978-3-319-10825-4_6
http://dx.doi.org/10.1007/978-3-319-10825-4_6
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seen fromFig. 7.12 that Tmax shifts towards higher values with increase of the applied
magnetic field and both functions can be represented by straight lines intersecting at
B � 0.03 T. This observation is in good agreement with experiments [37, 38]. It is
clear from Fig. 7.12 that critical field Bc2 = 8 T destroying the superconductivity is
close to Bc0 = 6 T. We will now show that this is more than a simple coincidence,
and Bc2 � Bc0. Indeed, at B > Bc0 and low temperatures T < T∗(B), the system is
in its LFL state. The superconductivity is then destroyed since the superconducting
gap is exponentially small, as we have seen in Sect. 5.1.2. At the same time, there
is the FC state at B < Bc0 and this low-field phase has large prerequisites towards
superconductivity, as in this case the gap is a linear function of the superconduct-
ing coupling constant λ0 as that has been shown in Sect. 5.1.2. We note that this
is exactly the case in CeCoIn5 where Bc0 � Bc2 � 5 T [15], as it is seen from
Fig. 7.13, while the application of pressure makes Bc2 > Bc0 [40]. However, if the
superconducting coupling constant is rather weak, then antiferromagnetic order wins
the competition. As a result, Bc2 = 0, while Bc0 can be finite, as it is in YbRh2Si2
and YbRh2(Si0.95Ge0.05)2 [19, 38].

Comparing the phase diagram of Tl2Ba2CuO6+x with that of CeCoIn5, shown
in Figs. 7.12 and 7.13, respectively, it is possible to conclude that they are similar
in many respects. We note further that the superconducting boundary line Bc2(T)

acquires a step at decreasing temperatures, i.e. the corresponding phase transition
becomes the transition of the first order [39, 41]. This permits us to speculate that the

Fig. 7.13 T–B phase diagram of theHFmetal CeCoIn5. The interface between the superconducting
and normal phases is shown by the solid line to the square where the phase transition becomes a
first-order phase transition. At T < T0, the phase transition is a first-order one [39]. The phase
boundary between the superconducting and normal phases is shown by the dashed line. The solid
straight line, represented by (6.23) with the experimental points [20] shown by squares, is the
interface between the LFL and NFL states

http://dx.doi.org/10.1007/978-3-319-10825-4_5
http://dx.doi.org/10.1007/978-3-319-10825-4_5
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same may be true for Tl2Ba2CuO6+x . We expect that in the NFL state the tunneling
conductivity is an asymmetric function of the applied voltage, while it becomes
symmetric at the application of increased magnetic fields, when Tl2Ba2CuO6+x

transits to the LFL phase, as it predicted to be in CeCoIn5 [42].
It follows from (5.47) that it is impossible to observe the relatively high values of

A(B), since in our caseBc2 > Bc0.We note that (5.47) is valid when the superconduc-
tivity is destroyed by the application of magnetic field: Otherwise the effective mass
is also finite, since it is given by (5.8). Therefore, as was mentioned above, in high-Tc

QCP is poorly accessible to experimental observations being “hidden beneath the
superconductivity”. Nonetheless, thanks to the experimental data [35], we have seen
in Sect. 5.3.2.1, that it is possible to study QCP in high-Tc superconductors [43]. As it
is seen from Fig. 5.4, the experiment gives evidences that the physics underlying the
field-induced LFL behavior reentrance, is the same for both HF metals and high-Tc

superconductors.

7.7 Scaling Behavior of the HF CePd1−xRhx Ferromagnet

QCP can arise by suppressing the transition temperature TNL of a FM (or AFM)
phase to zero by tuning some control parameter ζ other than temperature, such as
pressure P, magnetic field B, or doping x as it takes place in the HF ferromagnet
CePd1−xRhx [44, 45] or the HF metal CeIn3−xSnx [46].

The HF metal CePd1−xRhx evolves from ferromagnetism at x = 0 to a non-
magnetic state at some critical concentration xFC . Utilizing the extended quasi-
particle paradigm and the FCQPT concept, we address the question about the
NFL behavior of the FM CePd1−xRhx and show that it coincides with that of the
AFMs YbRh2(Si0.95Ge0.05)2 and YbRh2Si2, and paramagnets CeRu2Si2, as well
as CeNi2Ge2. We again conclude that the NFL behavior, being independent of the
peculiarities of a specific alloy, is universal. Incidentally, numerous QCPs assumed
by other approaches to be responsible for the NFL behavior of different HF metals
can be well reduced to the only FCQPT related QCP [47, 48].

As we have seen above, the effective mass M∗(T , B) can be measured in
HF metals experimentally. For example, M∗(T , B) ∝ C(T)/T ∝ α(T)/T and
M∗(T , B) ∝ χAC(T) where χAC(T) is AC magnetic susceptibility. If the corre-
sponding measurements are carried out at fixed magnetic field B (or at fixed x and B)
then the effective mass reaches its maximum at some temperature TM . Upon normal-
izing both, the effective mass by its peak value at each field B and the temperature
by TM , we observe that all the curves merge into a single one, given by (6.21), thus
demonstrating a scaling behavior.

It is seen from Fig. 7.14, that the normalized AC susceptibility

χN
AC(y) = χAC(T/TM , B)

χAC(TM , B)
= M∗

N (TN )

http://dx.doi.org/10.1007/978-3-319-10825-4_5
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Fig. 7.14 Normalizedmagnetic susceptibilityχN (TN , B) = χAC(T/TM , B)/χAC(1, B) = M∗
N (TN )

for CeRu2Si2 in magnetic fields 0.20 mT (squares), 0.39mT (upright triangles) and 0.94mT (cir-
cles) versus normalized temperature TN = T/TM [16]. The susceptibility reaches its maximum
χAC(TM , B) at T = TM . The normalized specific heat (C(TN )/TN )/C(1) of the HF ferromagnet
CePd1−xRhx with x = 0.8 versus TN is shown by downright triangles [45]. Here TM is the tem-
perature at the peak of C(T)/T . The solid curve traces the universal behavior of the normalized
effective mass determined by (6.21). Parameters c1 and c2 are adjusted for χN (TN , B) at B = 0.94
mT

obtained in measurements on the HF paramagnet CeRu2Si2 [16] agrees with both,
the approximation given by (6.21) and the normalized specific heat

C(TN )/TN

C(TM)
= M∗

N (TN ),

obtained in measurements on CePd1−xRhx [45]. We can also see from Fig. 7.14,
that the curve given by (6.21) agrees perfectly with the measurements on CeRu2Si2
whose electronic system is placed at FCQPT [27].

Now let us consider the properties of M∗
N (T), extracted from specific heat mea-

surements on CePd1−xRhx under the magnetic field application [45] and shown in
panel a of Fig. 7.15. It is seen that for B ≥ 1 T M∗

N describes the normalized specific
heat almost perfectly, demonstrating close agreement with that of CeRu2Si2. This
coincides with the universal behavior of the normalized effective mass, given by
(6.21). Thus, we conclude that the thermodynamic properties of CePd1−xRhx with
x = 0.8 are determined by quasiparticles rather than by the critical magnetic fluc-
tuations. On the other hand, one could expect the growth of the critical fluctuations
contribution as x → xFC , so that the properties of the normalized effective mass
would deviate from those given by (6.21). This is not the case, as observed from
Fig. 7.15. It is also seen that at increasing magnetic fields B all the curves defining
the normalized effective masses extracted from CePd1−xRhx with x = 0.8 merge
into a single one, thus demonstrating a scaling behavior, in coincidencewith equation

http://dx.doi.org/10.1007/978-3-319-10825-4_6
http://dx.doi.org/10.1007/978-3-319-10825-4_6
http://dx.doi.org/10.1007/978-3-319-10825-4_6
http://dx.doi.org/10.1007/978-3-319-10825-4_6
http://dx.doi.org/10.1007/978-3-319-10825-4_6
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Fig. 7.15 Panel a the
normalized effective mass
M∗

N as a function of
y = TN = T/TM at elevated
magnetic fields. The mass is
extracted from the specific
heat C/T of the HF FM
CePd1−xRhx with x = 0.8
([45]). It is shown at different
magnetic fields B listed in the
legend. At B ≥ 1 T, M∗

N (TN )

coincides with that of
CeRu2Si2 (solid curve, see
the caption to Fig. 7.14).
Panel b the normalized
specific heat C(TN )/C(TM)

of CePd1−xRhx at different
magnetic fields B is shown in
the inset. The kink in the
specific heat is clearly seen at
y � 2. The solid curve
represents the function
TN M∗

N (TN )

(a)

(b)

(6.21). We note that existing theories based on the quantum and thermal fluctuations
predict that magnetic and thermal properties of FM CePd1−xRhx differ from those
of the paramagnet CeRu2Si2, [45, 49–52]. The panel b of Fig. 7.15 shows the kink
in the temperature dependence of the normalized specific heat C(TN )/C(TM) of
CePd1−xRhx appearing at TN � 2. In the panel, the solid line denotes the function
TN M∗

N (TN ) with parameters c1 and c2, which are adjusted for the magnetic suscep-
tibility at B = 0.94 mT. Since the function TN M∗

N (TN ) describes the normalized
specific heat very well and its bend (or kink) comes from the crossover between
LFL and NFL regimes, we reliably conclude that the kink emerges at temperatures,
at which the system transits from the LFL behavior to the NFL one. As shown in
Sect. 7.2.1, the magnetoresistance varies from positive to negative values at the same
temperatures. One may speculate that there is an energy scale, which could make
the kink coming from fluctuations of the order parameter [5]. In that case we should
concede that such diverse HF metals as CePd1−xRhx, CeRu2Si2 and CeCoIn5 with
different magnetic ground states have the same fluctuations, which exert coherent
influence on the heat capacity, susceptibility and transport properties. Indeed, as

http://dx.doi.org/10.1007/978-3-319-10825-4_6
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Fig. 7.16 The same as in
Fig. 7.15 but for x = 0.85
[45]. At B ≥ 1 T, M∗

N (TN )

demonstrates the universal
behavior (solid curve, see the
caption to Fig. 7.14)

we have seen above and will also see below in this Subsection, the (6.21) allows
to describe all above properties quantitatively. We safely conclude that the kink is
defined by the universal scaling properties of the normalized effective mass M∗

N and
represented by the function TN × M∗

N (TN ).
In Fig. 7.16, the effective mass M∗

N (TN ) is presented at fixed B. Since the curve
shown by circles and extracted from measurements at B = 0 does not exhibit any
maximum down to 0.08 K [45], we conclude that in this case x is very close to xFC

and the maximum is shifted to very low temperatures. As seen from Fig. 7.16, the
application of magnetic field restores the scaling given by (6.21). Again, this permits
us to conclude that the thermodynamic properties of CePd1−xRhx with x = 0.85 are
determined by quasiparticles rather than by the critical magnetic fluctuations.

The thermal expansion coefficientα(T) is given byα(T) � M∗T/(p2FK) [53]. The
compressibility K(ρ) is not expected to be singular at FCQPT and is approximately
constant [54]. Taking into account (6.16), we find that α(T) ∝ √

T and the specific
heat C(T) = TM∗ ∝ √

T . Measurements of the specific heat C(T) on CePd1−xRhx
with x = 0.9 show a power-law temperature dependence. It is described by the
expression C(T)/T = AT−q with q � 0.5 and A = const [44].

Figure7.17 shows that the value of doping x = 0.90 delivers the best agreement.
Thus, this value tunes CePd1−xRhx to the critical point. At this point x = 0.90,
the FM critical temperature vanishes and the thermal expansion coefficient is well
approximated by the dependence α(T) ∝ √

T , as the temperature varies by almost
two orders of magnitude. However, even a small deviation of the system from the
critical point destroys the correspondence between this approximation and the exper-
imental data.We note that it is possible to describe the critical behavior of two entirely
different HF metals (one is a paramagnet and the other is a ferromagnet) by the func-
tion α(T) = c1

√
T with only one fitting parameter c1. This fact vividly shows that

fluctuations are not responsible for the observable properties of α(T). Heat capac-
ity measurements for CePd1−xRhx with x = 0.90 have shown that C(T) ∝ √

T
[44]. Thus, the electron systems of both metals can be interpreted as being highly

http://dx.doi.org/10.1007/978-3-319-10825-4_6
http://dx.doi.org/10.1007/978-3-319-10825-4_6
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Fig. 7.17 Temperature dependence of the thermal expansion coefficient α(T) at 0.1 ≤ T ≤ 6
K. The experimental doping levels x = 0.90, 0.87 are taken from [44]. The solid lines represent
approximations of the experimental values of α(T) = c1

√
T , where c1 is a fitting parameter

Fig. 7.18 The normalized thermal expansion coefficient (α(TN )/TN )/α(1) = M∗
N (TN ) for

CeNi2Ge2 [9] and for CePd1−xRhx with x = 0.90 [45] versus TN = T/TM . Data obtained in
measurements on CePd1−xRhx at B = 0 are multiplied by some factor to adjust them at one point
to the data for CeNi2Ge2. The solid line is a fit to the data shown by the circles and pentagons at
B = 0; it is represented by the function α(T) = c3

√
T with c3 being a fitting parameter. The solid

curve traces the universal behavior of the normalized effective mass determined by (6.21), see the
caption to Fig. 7.14

correlated electron liquids. This permits us to conclude that the properties of the
effective mass given by (6.16) agrees well with experimental data.

Figure7.18 demonstrates the measurements of α(T)/T on both CePd1−xRhx with
x = 0.9 [44] and CeNi2Ge2 [9]. It is seen that the approximation α(T) = c3

√
T is

http://dx.doi.org/10.1007/978-3-319-10825-4_6
http://dx.doi.org/10.1007/978-3-319-10825-4_6
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in good agreement with the results of measurements of α(T) in CePd1−xRhx and
CeNi2Ge2 over two orders of magnitude in TN . It can be shown that measurements
on CeIn3−xSnx with x = 0.65 [46] demonstrate the same behavior α(T) ∝ √

T
(not shown in Fig. 7.18). As a result, we suggest that CeIn3−xSnx with x = 0.65,
CePd1−xRhx with x � 0.9, and CeNi2Ge2 are located at FCQPT. This becomes
especially instructive if we recollect that CePd1−xRhx is a three dimensional FM
[44, 45], CeNi2Ge2 has a paramagnetic ground state [9] and CeIn3−xSnx is AFM
cubic metal [46].

The normalized effective mass M∗
N (TN ) extracted from measurements on the HF

metals YbRh2(Si0.95Ge0.05)2, CeRu2Si2, CePd1−xRhx and CeNi2Ge2 is reported in
Fig. 7.19. It is seen that the scaling behavior of the effective mass given by (6.21)
agrees well with the experimental data. Also, the values of M∗

N (TN ) (inverted trian-
gles), are extracted from the data collected on the HF metal YbRh2(Si0.95Ge0.05)2
[38], coincides with that collected on (upright triangles) the HF metal YbRh2(Si0.95
Ge0.05)2 [38]. We note that in the case of LFL theory the corresponding normalized
effective mass M∗

NL � 1 is independent of both T and B as shown in Fig. 1.3.
The peak temperatures Tmax, where the maxima of C(T)/T , χAC(T) and α(T)/T

occur, shift to higher values with increase of the applied magnetic field. In Fig. 7.20,
Tmax(B) are shown for C/T and χAC , measured on YbRh2(Si0.95Ge0.05)2. It is seen
that both functions can be represented by straight lines intersecting at B � 0.03 T.
This observation [23, 38] as well as the measurements on CePd1−xRhx, CeNi2Ge2

Fig. 7.19 The universal behavior of M∗
N (TN ), extracted from χAC(T , B)/χAC(TM , B) for

YbRh2(Si0.95Ge0.05)2 and CeRu2Si2 [16, 38], (C(T)/T)/(C(TM)/TM ) for YbRh2(Si0.95Ge0.05)2
and CePd1−xRhx with x = 0.80 [38, 45], and (α(T)/T)/(α(TM )/TM ) for CeNi2Ge2 [9]. All
measurements have been performed under the magnetic field application; its values are listed in the
legend. The solid curve reports the universal behavior of M∗

N determined by (6.21), see the caption
to Fig. 7.14

http://dx.doi.org/10.1007/978-3-319-10825-4_6
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http://dx.doi.org/10.1007/978-3-319-10825-4_6


136 7 Highly Correlated Fermi Liquid in Heavy-Fermion Metals …

Fig. 7.20 The peak
temperatures Tmax(B),
extracted from measurements
of χAC and C/T on
YbRh2(Si0.95Ge0.05)2
[23, 38] and approximated by
straight lines that are given
by (6.23). The lines intersect
at B � 0.03 T

and CeRu2Si2 demonstrate similar behavior [9, 16, 45], which is well described
by (6.23).

We conclude, that the treatment of various experimentally measured quanti-
ties (like C(T)/T , χAC(T), α(T)/T etc.) collected on different HF metals (YbRh2
(Si0.95 Ge0.05) 2, CeRu2Si2, CePd1−xRhx, CeIn3−xSnx and CeNi2Ge2) by the
above employed normalization procedure immediately reveals their universal scaling
behavior [48]. This is because all the above experimental quantities are indeedpropor-
tional to the normalized effectivemass, thus exhibiting the scaling behavior. Since the
effectivemass determines the thermodynamic properties,we further conclude that the
above HF metals demonstrate similar scaling behavior, independent of their micro-
scopic details such as lattice structure, magnetic ground states, dimensionality etc.
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Chapter 8
Metals with a Strongly Correlated Electron
Liquid

Abstract In this chapter, we consider the main properties of strongly correlated
Fermi systems,which are formed by the fermion condensate leading to the emergence
of flat bands. Namely, we consider the residual entropy S0 related to the flat bands
that leads to the violation of the quasiparticle—hole symmetry. The presence of S0
has a profound impact on the universality of second order phase transitions. In that
case under the application of magnetic field the curve of the second order AF phase
transitions passes into a curve of the first order ones at the tricritical point, thus leading
to a violation of the critical universality of the fluctuation theory. We demonstrate
that a jump in the Hall coefficient is determined by the presence of S0. As we shall
see in Chaps. 9, 10, and 11, the flat bands give rise to the linear in T resistivity,
the magnetic field dependent residual resistivity, and quasi-classical behavior of HF
fermion metals. We shall see in Chap.13 that flat bands generate the particle-hole
asymmetry leading to the asymmetry and other peculiarities of tunnel conductivity.

8.1 Entropy, Linear Expansion, and Grüneisen’s Law

At Tf � T , where Tf is given by (3.11), the Fermi systems with FC have the
distribution function n0(p) determined by (3.1). That function determines the entropy
S given by (2.4) of the HF liquid, located above the quantum critical line shown in
Fig. 3.2. It follows from (2.4) and (3.8), that the entropy contains a temperature-
independent contribution S0,

S0 = −2
∫ [

n0 ln(n0) + (1 − n0) ln(1 − n0)
] dp
(2π)3

. (8.1)

As a result, we obtain the following estimate from (8.1)

S0 ∼ pf − pi

pF
∼ |r|, (8.2)

where r = (x − xFC)/xFC . Another specific contribution is related to the spectrum
ε(p), which ensures a link between the dispersionless region (pf − pi) occupied by
FC and the normal quasiparticles in the regions p < pi and p > pf . This spectrum
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has the form ε(p) ∝ (p − pf )
2 ∼ (pi − p)2. Such a shape of the spectrum, corrob-

orated by exactly solvable models for systems with FC, leads to a contribution to
the heat capacity C ∼ √

T/Tf [1]. Therefore, at 0 < T � Tf , the entropy can be
approximated by the function [1, 2]

SNFL(T) � S0 + a

√
T

Tf
+ b

T

Tf
, (8.3)

where a and b are constants. The third term on the right-hand side of (8.3), which
emerges due to the contribution of the temperature-independent part of the spectrum
ε(p), yields a relatively small addition to the entropy. In (8.3), we also omit terms
∝ T ln(T) thar are considered in Sect. 10.2. As we will see shortly, the temperature-
independent term S0 determines the universal transport and thermodynamic proper-
ties of the heavy-electron liquid with FC, which we call a strongly correlated Fermi
liquid. The properties of this liquid differ dramatically from those of highly corre-
lated Fermi liquid that at T → 0 becomes LFL. As a result, we can think of FCQPT
as the phase transition that separates highly correlated and strongly correlated Fermi
liquids. We note, that under the application of magnetic field the strongly correlated
Fermi liquid transforms into the highly one, as it is shown in Sect. 5.3. Since the
highly correlated liquid behaves like LFL as T → 0, QCP separates LFL from a
strongly correlated Fermi liquid. On the other hand, as was shown in Sect. 3.1.4, at
elevated temperatures the properties of both liquids become indistinguishable. Thus,
as we shall see below, both systems can be discriminated at low temperatures when
the impact of both FCQPT and the quantum critical line on their physical properties
become more pronounced.

Figure8.1 shows the temperature dependence of S(T) calculated on the basis of
the model functional (6.17). The calculations were performed with g = 7, 8, 12 and
β = bc = 3. Let us recollect that the critical value of g is gc = 6.7167. We see
in Fig. 8.1 that in accord with (8.2) S0 increases as the system moves away from
QCP along the quantum critical line, see Fig. 3.2. Obviously, the term S0 on the
right-hand side of (8.3), which is temperature-independent, contributes nothing to
the heat capacity; while second term in (8.3) gives the main contribution so that the
heat capacity behaves as C(T) ∝ √

T .

8.1.1 Entropy, Linear Expansion, and Grüneisen’s Law

The unusual temperature dependence of the entropy of a strongly correlated electron
liquid specified by (8.3) determines the unusual behavior of the liquid. The existence
of a temperature-independent term S0 can be illustrated by calculating the thermal
expansion coefficient α(T) [2, 3], which is given by [4, 5]
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Fig. 8.1 The temperature dependence of the entropy S(T). The lines represent the approximation
for S(T) (8.3); the symbols mark the results of calculations based on (6.17)

α(T) = 1

3

(
∂(logV)

∂T

)
P

= − 1

3V

(
∂(S/x)

∂P

)
T

, (8.4)

where P is the pressure and V is the volume. We note that the compressibility K =
dμ/d(Vx) does not develop a singularity at FCQPT and is approximately constant
in systems with FC [6]. Substituting (8.3) in (8.4), we find that [2, 3, 6]

αFC(T)

T
� a0

T
∼ M∗

FC

p2FK
, (8.5)

where a0 ∼ ∂S0/∂P is temperature-independent. To derive (8.5), we consider the
leading contribution to S0 only. Recollecting that

C(T) = T
∂S(T)

∂T
� a

2

√
T

Tf
, (8.6)

we obtain from (8.5) and (8.6) that the Grüneisen ratio Γ (T) diverges as

Γ (T) = α(T)

C(T)
� 2

a0
a

√
Tf

T
. (8.7)

This expression permits to conclude that Grüneisen’s law does not hold in strongly
correlated Fermi systems.

Measurements on YbRh2(Si0.95Ge0.05)2 show, however, that α/T ∝ 1/T and that
the Grüneisen ratio diverges as Γ (T) � T−q, q � 0.33, which allows classifying the
electron system of this compound as a strongly correlated liquid [7]. Our estimate
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q = 0.5,which follows from (8.7), is in satisfactory agreementwith this experimental
value. The behavior of α(T)/T given by (8.5) contradicts the LFL theory, according
to which the thermal expansion coefficient α(T)/T = M∗ = const as T → 0. The
1/T -dependence of the ration α/T predicted in [3] is in good agreement with the
data collected on YbRh2(Si0.95Ge0.05)2 [7].

Equation (3.12) implies that M∗(T → 0) → ∞ and that the strongly correlated
electron system behaves as if it were placed at the quantum critical point. Actually, as
we have seen in Sect. 3.1.4, the system is at the quantum critical line x/xFC ≤ 1, and
critical behavior is observed for all x ≤ xFC as T → 0. It was shown in Chap.3 that
as T → 0, the strongly correlated electron liquid undergoes the first-order quantum
phase transition as the entropy becomes a discontinuous function of the temperature:
at finite temperatures, the entropy is given by (8.3), while S(T = 0) = 0. Hence,
the entropy has a discontinuity δS = S0 as T → 0. This implies that, as a result of
the first-order phase transition, there are no critical fluctuations along the quantum
critical curve and the respective divergences like that of Γ (T), are determined by the
quasiparticles rather than by critical fluctuations, as could be expected for an ordinary
quantum phase transition. We recall that according to the well-known inequality
q ≤ TδS [5], in our case the heat q of the first order transition tends to zero as its
critical temperature TNL → 0, see for details Sect. 3.1.1.

8.2 The T − B Phase Diagram, the Hall Coefficient,
and the Magnetic Susceptibility

To study the T −B phase diagram of strongly correlated electron liquid, we examine
the situation where NFL behavior emerges when the AF phase is suppressed by an
external magnetic field B, which is the case for the HF metals YbRh2(Si0.95Ge0.05)2
and YbRh2Si2 [7, 8].

The antiferromagnetic phase is LFL with the entropy vanishing as T → 0. For
magnetic fields higher than the critical value Bc0, at which the Néel temperature
TNL(B → Bc0) → 0, the antiferromagnetic phase transforms into a weakly polarized
paramagnetic strongly correlated electron liquid [7, 8]. As shown in Sect. 5.3, a
magnetic field applied to the system with T = 0 splits the FC state, occupying
the interval (pf − pi) into Landau levels, and suppresses the superconducting order
parameter κ(p). The new state is specified by a multiply connected Fermi sphere, on
which a smooth quasiparticle distribution function n0(p) in the interval (pf − pi) is
replacedwith another distribution ν(p), as it is seen fromFig. 5.1.Hence, the behavior
of LFL is restored and characterized by quasiparticles with the effective mass M∗(B)

given by (5.39). When the temperature increases so high that T > T∗(B) the system
transits along the solid line from the LFL behavior to the NFL one, as it is shown
by the arrow. In the NFL region, the entropy of the electron liquid is determined by
(8.3). At sufficiently high T the system forgets about the AF transition, and T∗ is
represented by the straight line, see Sect. 6.4. The described behavior of the system
is shown in the T − B diagram in Fig. 8.2.
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Fig. 8.2 The T − B phase diagram of a strongly correlated electron liquid. The line TNL(B/Bc0)

represents the dependence of theNéel temperature on the field strengthB. The dot atT = Tcrit marks
the critical temperature where the second-order AF phase transition becomes a first-order one. For
T < Tcrit , the heavy solid line represents the function TNL(B/Bc0), when the AF phase transition
becomes a first-order one. The strongly correlated liquid in the NFL region is characterized by the
entropy SNFL given by (8.3). The solid line T∗(B/Bc0) separates the strongly correlated liquid (NFL)
from the weakly polarized electron liquid, behaving like the Landau Fermi liquid. The dashed line
shows the line T∗ provided that the AF phase transition were absent, see Fig. 6.8 and Sect. 6.4

In accordance with the experimental data, we assume that at relatively high
temperatures T/TN0 ∼ 1, where TN0 is the Néel temperature in a zero magnetic
field, the antiferromagnetic phase transition is of the second-order [8]. In this case,
the entropy and other thermodynamic functions at the temperature TNL(B/Bc0) are
continuous. Thismeans that the entropy SAF of the antiferromagnetic phase coincides
with the entropy SNFL of the strongly correlated liquid given by (8.3):

SAF(T → TNL(B)) = SNFL(T → TNL(B)). (8.8)

Since the antiferromagnetic phase behaves like LFL, with its entropy SAF(T →
0) → 0, (8.8) cannot be satisfied at sufficiently low temperatures T ≤ Tcrit because
of the temperature-independent term S0. Hence, the second order antiferromagnetic
phase transition becomes the first order one at T = Tcrit [9, 10] as is shown by the
arrow in Fig. 8.2. A detailed consideration of this problem is given in Sect. 8.3.

At T = 0, the critical magnetic field Bc0, in which the antiferromagnetic phase
becomes LFL is determined by the condition that the ground-state energy of the
antiferromagnetic phase is equal to the ground-state energyE[n0(p)] of the HF liquid
with FC, since, as it was shown in Chap.3, the heat of the transition q = 0. This
means that the ground state of the antiferromagnetic phase is degenerate at B = Bc0.
Hence, at B → Bc0 the Néel temperature TNL tends to zero and the behavior of
the effective mass M∗(B ≥ Bc0) is determined by (5.39), so that M∗(B) diverges

http://dx.doi.org/10.1007/978-3-319-10825-4_6
http://dx.doi.org/10.1007/978-3-319-10825-4_6
http://dx.doi.org/10.1007/978-3-319-10825-4_3
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as B → Bc0 from top. As a result, at T = 0, the phase transition separating the
antiferromagnetic phase that exist at B ≤ Bc0 from LFL taking place at B ≥ Bc0 is
the first order quantumphase transition. The driving parameter of this phase transition
is the magnetic field strength B. We note that the respective quantum and thermal
critical fluctuations disappear at T < Tcrit because the first-order antiferromagnetic
phase transition occurs at such temperatures.

Wenowexamine the jump in theHall coefficient detected inmeasurements involv-
ing YbRh2Si2 [11]. The Hall coefficient RH(B) as a function of B experiences a jump
as T → 0, when the applied magnetic field reaches its critical value B = Bc0, and
then becomes even higher than the critical value at B = Bc0 + δB, where δB is an
infinitesimal field variation [11]. As shown in Sect. 5.3, when T = 0, the application
of the critical magnetic field Bc0, which suppresses the antiferromagnetic phase with
the Fermi momentum pF restores LFL with the Fermi momentum pf > pF . When
B < Bc0, the ground-state energy of the antiferromagnetic phase is lower than that
of the LFL state induced by the application of magnetic field, but for B > Bc0 we
are confronted with the opposite case, where the LFL state has the lower energy. At
B = Bc0 and T = 0, both phases have the same ground state energy and TNL = 0
as the phases are degenerate, being separated by the first order phase transition as
shown in Fig. 8.2.

Thus, at T = 0 and B = Bc0, an infinitesimal increase δB in the magnetic
field leads to a finite discontinuity in the Fermi momentum. This is because the
distribution function becomes multiply connected (see Fig. 5.1) and the number of
mobile electrons does not change. Thus, the antiferromagnetic ground state can be
viewed as having a “small” Fermi surface with Fermi momentum pF , while the
paramagnetic ground state at B > Bc0 has a “large” Fermi surface with pf > pF . As
a result, the Hall coefficient experiences a sharp jump because RH(B) ∝ 1/p3F in the
antiferromagnetic phase and RH(B) ∝ 1/p3f in the paramagnetic phase. Assuming
that RH(B) is a measure of the Fermi momentum [11], as is in the case with a simply
connected Fermi volume, we obtain

RH(B = Bc0 − δ)

RH(B = Bc0 + δ)
� 1 + 3

pf − pF

pF
� 1 + d

S0
xFC

, (8.9)

where S0/xFC is the entropy per heavy electron and d ∼ 5 is a constant. It follows
from (8.9) that the discontinuity in theHall coefficient is determinedby the anomalous
behavior of the entropy, which can be attributed to S0. Hence, the discontinuity tends
to zero as r → 0 and disappears when the system is on the disordered side of FCQPT,
where the entropy has no temperature-independent term [9].

We now turn to the magnetization which is determined by (7.1). For T � T∗(B),
the effective mass is given by (5.39) and the static magnetization is

M(B) � aM

√
B − Bc0. (8.10)
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Fig. 8.3 The magnetization M(B) obtained in measurements on YbRh2(Si0.95Ge0.05)2 (black
squares) [12]. The curve represents the field-dependent function M(B) = aM

√
B given by (8.10),

where aM is a fitting parameter

Fig. 8.3 shows that the function M(B) determined by (8.10) is in good agreement
with the data obtained in measurements on YbRh2(Si0.95Ge0.05)2 [12]. We note that
in this case Bc0 � 0.

We examine the experimental T − B diagram of the heavy-fermion metal Yb
Rh2Si2 [8, 12] shown in Fig. 8.4. In the LFL state, the behavior of the metal is
characterized by the effective mass M∗(B), which diverges as 1/

√
B − Bc0 [8]. It

is quite evident that (5.39) provides a good description of this experimental fact:
M∗(B) diverges as B → Bc0 at TNL(B = Bc0) = 0 and, as Fig. 8.3 shows, the calcu-
lated behavior of the magnetization agrees with the experimental data. The magnetic
field dependence of the coefficient A(B), shown in the left panel of Fig. 5.3, is also
in good agreement with experiment on YbRh2Si2 [8]. Figure8.4 demonstrates that
in accordance with (5.42), the curve separating the LFL region from the NFL one
can be approximated by the function c1

√
B − Bc0 with a fitting parameter c1. Bear-

ing in mind that the behavior of YbRh2Si2 is similar to that of YbRh2(Si0.95Ge0.05)2
[7, 12–14], we also conclude that the thermal expansion coefficient α(T) is
temperature-independent and that the Grüneisen ratio diverges as a function of T
in the NFL state [7]. We conclude that the entropy in the NFL state is determined
by (8.3). Since the antiferromagnetic phase transition is of the second order at rel-
atively high temperatures [8], we can predict that as the temperature decreases, the
phase transition becomes the first order. The above description of the Hall coefficient
RH(B) also agrees with the experimental data [11].

Thus, we conclude that the T − B phase diagram of the strongly correlated
electron liquid shown in Fig. 8.2 agrees with the experimental T − B diagram
obtained from experiments involving the heavy-fermion metals YbRh2Si2 and
YbRh2(Si0.95Ge0.05)2 and shown in Fig. 8.4.

http://dx.doi.org/10.1007/978-3-319-10825-4_5
http://dx.doi.org/10.1007/978-3-319-10825-4_5
http://dx.doi.org/10.1007/978-3-319-10825-4_5
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Fig. 8.4 T − B phase diagram for YbRh2Si2 with magnetic fields applied parallel to the c axis.
The symbols denote the experimental data [8, 12]. The line TNL reports the field dependence of
the Néel temperature TNL(B). In the NFL region, the strongly correlated liquid is characterized by
the entropy SNFL (8.3). The line, separating the NFL region from the LFL one, is approximated
by the function T∗(B − Bc0) = c1

√
B − Bc0, given by (5.42), where c1 is a fitting parameter

8.3 The Impact of FCQPT on Ordinary Continuous Phase
Transitions in HF Metals

We show that in HF metals with flat bands at B → Bc1, where Bc1 is the critical
field, at which the tricritical point occurs, the second order phase transition becomes
the first order one. In case of CeCoIn5 the line of the second order superconducting
phase transitions transits to the line of the first order one, while in case of YbRh2Si2
the line of the second order AF phase transitions transits to the line of the first order
one.

The microscopic nature of quantum criticality, determining the NFL behavior in
strongly correlated fermion systems of different types, is still unclear. Many puzzling
and common experimental features of such seemingly different systems as two-
dimensional (2D) electron systems and liquid 3He as well as 3D heavy-fermion
metals and high-Tc superconductors suggest that there is a hidden fundamental law
of nature, which remains to be understood. To reveal this hidden law “the projection”
of microscopic properties of the above materials on their observable, macroscopic
characteristics is needed. One of such “projections” is the impact of the FCQPT
phenomenon on the ordinary phase transitions in HF metals. As we have seen in
Sect. 8.2, the main peculiarity here of the superconductive phase transition from the
second order to the first one is the process of continuous magnetic field evolution
[15–17]. The same changing of the order is valid for magnetic phase transitions.

The exciting measurements on YbRh2Si2 at the AF phase transition revealed a
sharp peak in low-temperature specific heat, which is characterized by the critical

http://dx.doi.org/10.1007/978-3-319-10825-4_5
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exponent α = 0.38 and therefore differs drastically from those of the conventional
fluctuation theory of second order phase transitions [18], where α � 0.1 [5]. The
obtained large value of α casts doubts on the applicability of the conventional theory
and sends a real challenge for theories in describing the second order phase transitions
in HF metals [18], stimulating impressive theoretical efforts to explain the violation
of the critical universality in terms of the tricritical point [19–21].

The striking feature of FCQPT is that it has profound influence on thermodynam-
ically driven second order phase transitions provided that they take place in the NFL
region formed by FCQPT. As a result, the curve of second order phase transitions
modifies into a curve of the first order ones at the tricritical point leading to a violation
of the critical universality of the fluctuation theory. For example, as we have seen in
Sect. 7.6 the second order superconducting phase transition in CeCoIn5 changes to
the first order in the NFL region. It is this feature that provides the key to resolve the
above described challenge.

8.3.1 The Comparison of T − B Phase Diagrams for YbRh2Si2
and CeCoIn5

In Fig. 8.4, the TNL line represents temperature TNL(B)/TN0 versus field B/Bc0 in
the schematic phase diagram for YbRh2Si2, with TN0 = TNL(B = 0). There TNL(B)

is the Néel temperature as a function of the magnetic field B. The solid and dashed
curves indicate the boundary of the AF phase at B/Bc0 ≤ 1 [8]. For B/Bc0 ≥ 1,
the dash-dot line marks the upper limit of the observed LFL behavior. This dash-dot
line coming from (5.42) separates the NFL state and the weakly polarized LFL one,
being represented by

T∗

TNL
= a1

√
B

Bc0
− 1, (8.11)

where a1 is a parameter. We note that (8.11) is in good agreement with experi-
mental facts [8]. Thus, YbRh2Si2 demonstrates two different LFL states, where the
temperature-dependent electrical resistivity Δρ follows the LFL behavior Δρ ∝ T2,
one being weakly antiferromagnetic ordered (B ≤ Bc0 and T < TNL(B)) and the
other being the weakly polarized (B ≥ Bc0 and T < T∗(B)) [8]. At increasing tem-
peratures and fixed magnetic field, under that the system moves along the vertical
arrow shown in Fig. 8.5, the NFL state occurs which is separated from the AF phase
by the curve TNL of the phase transitions. In consistence with the experimental data
we assume that at relatively high temperaturesT/TNL(B) � 1 theAF phase transition
is of the second order [8, 18]. In that case, the entropy and the other thermodynamic
functions are continuous at the line of the phase transitions TNL , shown in Fig. 8.5.
This means that the entropy of the AF phase SAF(T) coincides with the entropy
SNFL(T) of the NFL state. Since the AF phase demonstrates the LFL behavior, that

http://dx.doi.org/10.1007/978-3-319-10825-4_7
http://dx.doi.org/10.1007/978-3-319-10825-4_5


148 8 Metals with a Strongly Correlated Electron Liquid

Fig. 8.5 Schematic T −B phase diagram for YbRh2Si2. The solid and dashed TNL curves separate
the AF and NFL states representing the field dependence of the Néel temperature. The black dot
at T = Tcr and B = Bc1 shown by the arrow in the dashed curve is the tricritical point, where
the curve of second order AF phase transitions (solid line) transits into the curve of the first ones.
At T < Tcr , the dashed line represents the field dependence of the Néel temperature when the
AF phase transition is of the first order. The NFL state is characterized by the entropy S0 (8.2).
The dash-dot line separating the NFL state and the weakly polarized LFL one is represented by T∗
(8.11). The horizontal solid arrow represents the direction, along which the system transits from the
NFL regime to the LFL one with increase of the magnetic field and fixed temperature. The vertical
solid arrow represents the direction along which the system transits from the LFL regime to the
NFL one at elevated temperature and fixed magnetic field. The hatched circles depict the transition
temperature T∗ from the NFL to LFL domains

is SAF(T → 0) → 0, while SNFL(T) contains the temperature-independent term
given by (3.8). Thus, in the NFL region formed by FCQPT, (8.8) cannot be satis-
fied at diminishing temperatures and the second order AF phase transition inevitably
becomes the first order one at the tricritical point with T = Tcr , as shown in Fig. 8.5.
At T = 0, the heat of the phase transition is zero, q = 0, as it was shown in Chap.3.
Thus, the critical field Bc0 is determined by the condition that the ground state energy
of the AF phase coincides with the ground state energy of the weakly polarized LFL,
and the ground state of YbRh2Si2 becomes degenerate at B = Bc0. Therefore, the
Néel temperature TNL(B → Bc0) → 0. That means that at T = 0 the system moving
along the horizontal arrow shown in Fig. 8.5 goes to its paramagnetic state, when the
applied magnetic field reaches its critical value B = Bc0, and becomes even higher
B = Bc0 + δB, where δB is an infinitesimal magnetic field variation. As to the Hall
coefficient, it experiences the jump, as it is seen from (8.9) [22].

The comparison of the phase diagrams of YbRh2Si2 (Fig. 8.5) and CeCoIn5
(Figs. 7.13 and 10.1) permits to conclude that they are similar in many respects.
Indeed, the line of the second order superconducting phase transitions transforms to
the line of the first order ones at the tricritical point, shown by the square in Fig. 7.13.
This transition takes place under the application of magnetic fields B > Bc2 ≥ Bc0

http://dx.doi.org/10.1007/978-3-319-10825-4_3
http://dx.doi.org/10.1007/978-3-319-10825-4_3
http://dx.doi.org/10.1007/978-3-319-10825-4_7
http://dx.doi.org/10.1007/978-3-319-10825-4_10
http://dx.doi.org/10.1007/978-3-319-10825-4_7
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Fig. 8.6 The dependence of the charge and the heat transport on magnetic filed B. A(B) and Bh(B)

determine the T2-dependence of the resistance and the heat transfer in the LFL state induced by the
magnetic field. The symbols mark the experimental data from [24, 25]

(see Sect. 7.6), where Bc2 is the critical field destroying the superconducting state,
and Bc0 is the critical field, where QCP induced by the magnetic field takes place
[15, 23]. We note that the superconducting boundary line Bc2(T) at lower temper-
atures acquires the tricritical point, since (8.8) cannot be satisfied at diminishing
temperatures T ≤ Tcr , i.e. the corresponding phase transition becomes of first order
[15]. This permits us to conclude that at lower temperatures, in the NFL region
formed by FCQPT the curve of any second order phase transition transforms into
the first order one at the tricritical point.

On the other hand, there is an important feature in the phase diagram of CeCoIn5
that is not seen in that of YbRh2Si2, for the AF critical point is hidden in the super-
conducting dome. As a result, in contrast to the case of YbRh2Si2, the NFL behavior
is not seen down to T → 0 at B → Bc2, see Sect. 10.2. Therefore, FC is destroyed
by the application of magnetic field B → Bc2 and CeCoIn5 demonstrates the LFL
behavior at sufficiently low temperatures. As Fig. 8.6 shows, in that case the behav-
ior A(B) ∝ Bh(B) ∝ M∗(B) ∝ (B − Bc0)

−4/3 is specified by (6.7), and is in good
agreement with the experimental results [24, 25]. The coefficient Bh(B) determines
the T2-dependence of the thermal resistance, and the ratio A(B)/BH(B) is field-
independent, with A/BH � 0.70 [24, 25].

http://dx.doi.org/10.1007/978-3-319-10825-4_7
http://dx.doi.org/10.1007/978-3-319-10825-4_10
http://dx.doi.org/10.1007/978-3-319-10825-4_6
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8.3.2 The Tricritical Point in the B − T Phase Diagram
of YbRh2Si2

Low-temperature specific-heat measurements on YbRh2Si2 at the second order AF
phase transition reveal a sharp peak at TNL = 72 mK. The corresponding critical
exponent α turns out to be α = 0.38, which differs significantly from that obtained
within the framework of the fluctuation theory of second order phase transitions
based on the scale invariance, where α � 0.1. Under the application of magnetic
field the curve of the second order AF phase transitions passes into a curve of the
first order ones at the tricritical point leading to a violation of the critical universality
of the fluctuation theory. This change of the phase transition is generated by FCQPT.

The Landau theory of the second order phase transitions becomes applicable as the
tricritical point is approached, T � Tcr , since the fluctuation theory can lead only
to logarithmic corrections to the critical indices. Moreover, near the tricritical point,
the difference TNL(B) − Tcr is a second order infinitesimal quantity, when entering
the term defining the divergence of the specific heat [5]. As a result, upon using
the Landau theory we obtain that the Sommerfeld coefficient γ0 = C/T varies as
γ0 ∝ |t−1|−α where t = T/TNL(B)with the exponent beingα � 0.5 as the tricritical
point is approached at fixed magnetic field [5].

We will see that α = 0.5 gives a good description of the measurements of the
specific heat on YbRh2Si2. Taking into account that the specific heat increases in
going from the symmetrical to the asymmetrical AF phase [5], we obtain

γ0(t) = A1 + B1√|t − 1| . (8.12)

Here,B1 = B± are the proportionality factors, which are different for the two sides of
the phase transition. The parameters A1 = A±, related to the corresponding specific
heat (C/T)±, are also different for the two sides, and “+” stands for t > 1, while
“−” stands for t < 1.

The attempt to fit the available experimental data for γ0 = C(T)/T in YbRh2Si2
at the AF phase transition in zero magnetic fields [18] by the function (8.12) is
reported in Fig. 8.7. We show there the normalized Sommerfeld coefficient γ0/A+ as
a function of the normalized temperature t = T/TN0. It is seen that the normalized
Sommerfeld coefficient γ0/A+ extracted fromC/T measurements onYbRh2Si2 [18]
is well described in the entire temperature range around the AF phase transition by
the formula (8.12) with A+ = 1.

Now we transform (8.12) to the form

γ0(t) − A1

B1
= 1√|1 − t| . (8.13)

It follows from (8.13) that the ratios (γ0 − A1)/B1 for t < 1 and t > 1 versus |1− t|
collapse into a single line on double logarithmic plot. The ratios (8.13), extracted
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Fig. 8.7 ThenormalizedSommerfeld coefficientγ0/A+ as a function of the normalized temperature
t = T/TN0. The coefficient shown by the solid curve is given by the formula (8.12). It is extracted
from the data on YbRh2Si2 at the AF phase transition [18] and shown by the triangles

Fig. 8.8 The square root dependence at the tricritical point on the double logarithmic scale. Solid
line shows the temperature dependence of the ratios (γ0 −A1)/B1 for t < 1 and t > 1 versus |1− t|
given by (8.13). The ratios are extracted from measurements of γ0 on YbRh2Si2 at the AF phase
transition [18] and depicted by the triangles as shown in the legend

from experimental data [18] are reported in Fig. 8.8. The coefficients A1 and B1 are
taken from fitting of γ0 presented in Fig. 8.7. It is seen from Fig. 8.8 that the ratios
(γ0 − A1)/B1 marked by the upward and downwards triangles for t < 1 and t > 1,
respectively, do collapse into the single line shown by the solid straight line.

A few notes are here in order. The good fit (Figs. 8.7 and 8.8) of the experimental
data by the functions (8.12) and (8.13) with the critical exponent α = 1/2 allows
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to conclude that the specific heat measurements on YbRh2Si2 [18] are taken near
the tricritical point and they predict that the second order AF phase transition in
YbRh2Si2 changes to the first order one under the application of magnetic field, as it
is shown by the arrow in Fig. 8.5 [10]. It is seen from Fig. 8.7 that at t � 1 the peak is
sharp, while one would expect that anomalies in the specific heat associated with the
onset of magnetic order are broad [18, 26, 27]. Such a behavior reflects the fact that
the phase transition has to change to the first order at the tricritical point, Fig. 8.5.
As it is seen from Fig. 8.7, the Sommerfeld coefficient is larger below the phase
transition than above it. This fact is in accord with the Landau theory, according to
which the specific heat increases when passing from t > 1 to t < 1 [5].

8.3.3 Low Temperature Entropy of YbRh2Si2

It is instructive to analyze the low temperature evolution of the magnetic entropy
in YbRh2Si2. We begin with considering the derivative of the magnetic entropy
dS(B, T)/dB as a function of magnetic field B at fixed temperature Tf , when the
system goes from the NFL to LFL regime, as it is shown by the horizontal solid arrow
in Fig. 8.5. Such a behavior is of great importance since the current measurements of
the magnetic entropy in YbRh2Si2 [28] allow to analyze the reliability of the theory
employed and to study the scaling behavior of the entropy, when the system is in its
NFL, transition and LFL states, respectively.

The quantitative analysis of the scaling behavior of dS(B, T)/dB is given in
Sect. 7.3. Figure7.7 reports the normalized (dS/dB)N as a function of the normalized
magnetic field. It is seen from Fig. 7.7 that our calculations (solid line) are in good
agreement with the measurements and the scaled functions (ΔM/ΔT)N extracted
from the experimental data exhibit the scaling behavior in a wide range of the nor-
malized magnetic fields B/BM . The other thermodynamic and transport properties of
YbRh2Si2 analyzed in Sect. 6.3.2 are also in good agreement with the measurements.
These developments make our analysis of the AF phase transition quite substantial.

Now we are in a position to evaluate the entropy S at temperatures T � T∗ in
YbRh2Si2. At T < T∗ the system in its LFL state, the effective mass is independent
of T , is a function of the magnetic field B. As a result, (5.39) reads

m

M∗(B)
= a2

√
B

Bc0
− 1, (8.14)

where a2 is a parameter. In the LFL state at T < T∗ when the system moves along
the vertical arrow shown in Fig. 8.5, the entropy is given by the well-known relation,
S = M∗Tπ2/p2F = γ0T [5]. Taking into account (8.11) and (8.14) we obtain that
at T � T∗ the entropy is independent of both the magnetic field and temperature,
S(T∗) � γ0T∗ � S0 � a1mTNLπ2/(a2p2F). Upon using the data [8], we obtain that
for fields that are applied along the hard magnetic direction S0(Bc0 ‖ c) ∼ 0.03R ln 2

http://dx.doi.org/10.1007/978-3-319-10825-4_7
http://dx.doi.org/10.1007/978-3-319-10825-4_7
http://dx.doi.org/10.1007/978-3-319-10825-4_7
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(R is the universal gas constant), and for fields applied along the easy magnetic direc-
tion S0(Bc0 ⊥ c) ∼ 0.005R ln 2. Thus, as it follows from Fig. 8.4 and in accordance
with the data collected on YbRh2Si2 [8], we conclude that the entropy contains the
temperature-independent part S0 [29–31], which gives rise to the tricritical point. As
it is shown in Sect. 9.1, the presence of the term S0 points directly to the existence of
the heat capacity C independent of temperature. Such a behavior is observed in the
HF metal YbRh2Si2 [32].

To summarize this subsection, we note that a theory, as it is in general, is an
important tool in understanding what we observe. It is demonstrated here that the
obtained value of α is in good agreement with the specific heat measurements on
YbRh2Si2 and conclude that the critical universality of the fluctuation theory is
violated at the AF phase transition since the second order phase transition is about to
change to the first order one, making α → 1/2. We have also shown that in the NFL
region formed by FCQPT the curve of any second order phase transition transforms
into a curve of the first order ones at the tricritical point leading to the violation of
the critical universality of the fluctuation theory. This change is generated by the
temperature-independent entropy S0 formed behind FCQPT.
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Chapter 9
Quasi-classical Physics Within Quantum
Criticality in HF Compounds

Abstract In this chapter, we explore how the fermion condensation paves the road
for quasi-classical physics in HF compounds. This means simply that systems with
FC admit partly the quasi-classical description of their thermodynamic and transport
properties. This, in turn, simplifies a lot not only of their description but permits to
gain more insights both in the puzzling NFL physics of HF compounds and of the
physics of FC itself. The quasi-classical physics starts to be applicable near FCQPT,
at which FC generates flat bands and quantum criticality, and makes the density
of electron states in strongly correlated metals diverge. As we shall see, due to the
formation of flat bands the strongly correlated metals exhibit the classical properties
of elemental ones like copper, silver, aluminum, etc., for the strongly correlated
metals demonstrate the quasi-classical behavior at low temperatures.

9.1 Second Wind of the Dulong-Petit Law at a Quantum
Critical Point

We show that in the systems with quantum criticality like 2D 3He, the group velocity
of transverse zero sound depends strongly on temperature. It is this dependence that
grants the Dulong - Petit Law a “second wind”. In 2D liquid 3He, the specific heat
becomes temperature independent at some characteristic temperature of a fewmK. In
the same way, the heat capacity of the HF metal YbRh2Si2 contains the temperature
independent term.

Almost 200years ago, Pierre-Louis Dulong and Alexis-Thérèse Petit [1] discovered
experimentally that the specific heat C(T) of a crystal is close to constant, being
independent of the temperature T . This behavior, attributed to lattice vibrations—
i.e. phonons—is known as the Dulong-Petit Law. Later, Ludwig Boltzmann [2]
reproduced the results of Dulong and Petit quantitatively in terms of the equiparti-
tion principle.However, subsequentmeasurements at low temperatures demonstrated
that C(T) drops rapidly as T → 0, in sharp contrast to Boltzmann’s theory. In 1912,
Peter Debye [3] developed a quantum theory for evaluation of the phonon part of the
specific heat of solids, correctly explaining the empirical behavior C(T) ∼ T3 of the
lattice component as T → 0. In the Debye theory, the T -independence of C(T) is
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recovered at T ≥ TD, where TD is a critical temperature corresponding to the satu-
ration of the phonon spectrum. With the creation of the Landau theory of quantum
liquids [4], that predicted a linear-in-T dependence ofC(T) for the specific heat that is
contributed by itinerant fermions, our understanding of the low-temperature thermo-
dynamic properties of solids and liquids seemed to be firmly established. However,
recent measurements [5, 6] of the specific heat of two-dimensional (2D) 3He, real-
ized as 3He films absorbed on graphite preplated with a 4He bilayer, reveal behavior
strongly antithetical to established general view, that calls for a new understanding of
the low-temperature thermodynamics of strongly correlated many-fermion systems
[7].

Owing to its status as a fundamental specimen of the strongly interacting many-
fermion systems, liquid 3He remains a valuable touchstone for low-temperature
condensed-matter physics. In recent years, interest in 3He physics has been driven
by the observation of non-Fermi-liquid (NFL) behavior of dense 3He films at the
lowest temperatures T � 1 mK reached experimentally [5, 6, 8–12]. In particular,
measurements of the specific heat C(T) in the 2D 3He system show the presence of
a term β tending to a finite value as T → 0. Such behavior contrasts sharply with
that of its counterpart, three-dimensional (3D) liquid 3He. Note, that here we do not
consider superfluid phases of 3He.

In seeking the origin of the anomalous contribution β remaining in C(T) at the
lowest temperatures attained, it is instructive to examine the schematic low-T phase
diagram of 2D liquid 3He shown in Fig. 9.1. The essential features of this picture are
documented by the cited experiments on 3He films. The effective coupling parameter

Fig. 9.1 Phase diagram of the 2D liquid 3He system. The region defined by z = ρ/ρFC < 1 is
divided into LFL and NFL domains separated by a solid line. The dependence M∗(z) ∝ (1 − z)−1

is shown by the solid line approaching the dashed asymptote, thus depicting the divergence of the
effective mass at the quantum critical point (z = 1, T = 0) indicated by the arrow. In the region
z � 1, the fermion condensate (FC) sets in and Dulong-Petit behavior of the specific heat is realized
for the strongly correlated quantum many-fermion system (as represented by the dash horizontal
line at T = 0)



9.1 Second Wind of the Dulong-Petit Law at a Quantum Critical Point 157

is represented by z = ρ/ρ∞, where ρ is the number density of the system and ρ∞
is the critical density at which a quantum critical point (QCP) occurs. This QCP is
associated with a divergence of the effective mass M∗(z), portrayed in Fig. 9.1 by
the curve (in red on line) that approaches the dashed asymptote at z = 1. The T − z
phase plane is divided into regions of 2D LFL and NFL behavior. The part of the
diagramwhere z < 1 consists of a FL region at lower T and aNFL region at higher T ,
separated by a solid curve. The regime where z � 1 belongs to a NFL state with
specific heat taking a finite value β(ρ) at very low temperatures. The physical source
of this excess heat capacity has not been established with certainty, although it is
supposed that the β anomaly is related to peculiarities of the substrate on which the
3He film is placed.

As indicated above, themost challenging feature of theNFLbehavior of liquid 3He
films involves the specific heat C(T). According to the Landau theory, C(T) varies
linearly with T , and at low film densities the experimental behavior of the specific
heat of 2D liquid 3He is in agreement with LFL theory. However, for relatively dense
3He films, this agreement is found to hold only at sufficiently high temperatures. If
T is lowered down to millikelvin region, the function C(T) ceases to fall toward zero
and becomes flat [5, 6, 12].

The common explanation [5, 6, 13] of the observed C(T) flattening imputes
the phenomenon to disorder associated with the substrate that supports the 3He film.
More specifically, it is considered that there existsweak heterogeneity of the substrate
(namely, steps and edges on its surface), such that quasiparticles, being delocalized
from it, give rise to the low-temperature feature β of the heat capacity [6].

Even if we disregard certain unjustified assumptions [13], there remains the dis-
parate fact that the emergent constant term in C(T) is of comparable order for dif-
ferent substrates [5, 6, 12]. Furthermore, the explanation posed in [13] implies that
the departure of C(T) from LFL predictions shrinks as the film density increases,
since the effects of disorder are most prominent in weakly interacting systems. On
the contrary, the anomaly in C(T) makes its emerge in the density region where the
effective mass M∗ is greatly enhanced [6, 12] and the 2D liquid 3He system becomes
strongly correlated. This reasoning compels us to consider that the NFL behavior of
C(T) is an intrinsic feature of 2D liquid 3He, which is associated with the divergence
of the effective mass rather than with disorder. The flattening of the curve C(T) as
seen in 3He films is by no means a unique phenomenon. Indeed, as expressed in the
Dulong-Petit (DP) law, the specific heat C(T) of solids remains independent of T as
long as T exceeds the Debye temperature �D, which is determined by the saturation
of the phonon spectrum of the crystal lattice. Normally, the value of�D is sufficiently
high so that the DP law belongs to classical physics. However, we will argue that the
DP behavior of C(T) can also make its appearance at extremely low temperatures in
strongly correlated Fermi systems, with zero sound playing the role of phonons.

To clarify the details of this phenomenon and calculate the specific heat C(T),
we evaluate a part FB of the free energy F associated with the collective spectrum
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ω(k) = ck, based on the standard formula

FB =
∞∫

0

dω

π

1

eω/T − 1

∫
Im

[
lnD−1(k,ω)

]
dυ, (9.1)

where D(k,ω) is the boson propagator, and dυ is an element of momentum space.
Upon integration by parts this formula is recast to

FB = T

∞∫

0

dω

π
ln

(
1 − e−ω/T

) ∫
Im

(
∂D−1(k,ω)/∂ω

D−1(k,ω)

)
dυ. (9.2)

If the damping of the collective branch is negligible as in the case addressed here, then
D−1(k,ω) � (ω − ck) and ∂D−1(k,ω)/∂ω � 1, while ImD−1(k,ω) � δ(ω − ck),
and we arrive at the textbook formula

FB = T
∫

ln
(
1 − e−ck/T

)
θ(�0 − ck)dυ, (9.3)

where �0 is the characteristic frequency of zero sound. At T 	 �0, the factor
ln(1 − e−ω/T ) reduces to ln(ω/T), yielding the result

FB(T) ∝ T ln(�0/T), (9.4)

which, upon the double differentiation, leads to the DP law C(T) = const. At first
sight, this law has nothing to do with the situation in 2D liquid 3He. Its Fermi energy
ε0F is around 1K at densities where the Sommerfeld ratio C(T)/T soars upward as
T → 0, while �0 must be lower than T � 1 mK. Indeed, in any conventional Fermi
liquid, including 3D liquid 3He, there is no collective degree of freedom, whose
spectrum is saturated at such low ratios �0/ε

0
F .

This conclusion remains valid assuming 2D liquid 3He is an ordinary Fermi liquid.
However, as it is seen from Fig. 9.1, if the QCP is reached at T → 0 and at some
critical density ρ∞ where the effective mass M∗(ρ∞) diverges, as it does in the
present case [6, 8, 9, 12, 14], the situation changes dramatically. This is demonstrated
explicitly in the results of standard LFL calculations of the velocity ct of transverse
zero sound, which satisfies [15, 16]

ct

2vF
ln

ct + vF

ct − vF
− 1 = F1 − 6

3F1(c2t /v2F − 1)
, (9.5)

where vF = pF/M∗ is the Fermi velocity and F1 = pFM∗f1/π2 is a dimensionless
version of the first Landau harmonic f1 [15, 17]. The divergence of the effective mass
M∗ at the QCP implies that at the critical density determined by f1pFM/π2 = 3 [17],
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one has

c2t (ρ∞) � p2F
5M∗(ρ∞)M

→ 0, (9.6)

whereas the sound velocity cs remains finite in this limit [15, 16, 18].
We see then that in this case the effective mass M∗ diverges, the group velocity

ct vanishes as
√
1/M∗. Flattening of the single-particle spectrum ε(p) prevails as

long as |p − pF |/pF < M/M∗, implying that the transverse mode softens only for
rather small wave numbers k ∼ pFM/M∗. Unfortunately, the associated numerical
prefactor cannot be established, rendering the estimation of �0 ∼ (p2F/M)

√
M/M∗

to be uncertain. Nevertheless, one cannot exclude a significant enhancement of the
Sommerfeld ratioC(T)/T at T � 1mK due to softening of the transverse zero sound
in the precritical density region.

AtT → 0 and densities exceedingρ∞, the systemundergoes a cascade of topolog-
ical phase transitions in which the Fermi surface acquires additional sheets [19–22].
As indicated in Fig. 9.1, LFL theory continues to hold with quasiparticle momentum
distribution n(p) satisfying n2 = n, until a larger critical density ρFC is reachedwhere
a new phase transition, known as FCQPT, takes place [18, 22–26]. Beyond the point
of FCQPT, the single-particle spectrum ε(p) acquires a flat portion. The range L of
momentum space adjacent to the Fermi surface, where the FC resides, depends on
the difference between the effective coupling constant and its critical value. As will
be seen, L is a new dimensional parameter that serves to determine the key quantity
�0.

At finite T , the dispersion of the FC spectrum ε(p), located in the vicinity
of the chemical potential, acquires a nonzero value proportional to temperature
[18, 22, 27]:

ε(p, T) = T ln
1 − n∗(p)

n∗(p)
, pi < p < pf , (9.7)

where 0 < n∗(p) < 1 is the FC momentum distribution and pi and pf are the lower
and upper boundaries of the FC domain in momentum space. Consequently, in the
whole FC region, the FC group velocity, given by

v(p, T) = ∂ε(p)

∂p
= −T

∂n∗(p)/∂p

n∗(p)(1 − n∗(p))
, pi < p < pf , (9.8)

is proportional to T . Significantly, in the density interval ρ∞ < ρ < ρFC the formula
(9.7) describes correctly the single-particle spectrum ε(p, T) in case the tempera-
ture T exceeds a very low transition temperature [22]. The FC itself contributes a
T -independent term to the entropy S. Hence, its contribution to the specific heat
C(T) = TdS/dT is zero. Accordingly, we focus on the zero-sound contribution to
C(T) in systems having a FC.
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Due to the fundamental difference between the FC single-particle spectrum
and that of the remainder of the Fermi liquid, a system having FC is, in fact,
a two-component system. Remarkably, the FC subsystem possesses its own set
of zero-sound modes, whose wave numbers are relatively small, not exceeding
L = (pf − pi) > 0. The mode of prime interest for our analysis is that of trans-
verse zero sound. As may be seen by comparison of expressions (9.6) and (9.8), its
velocity ct depends on temperature so as to vanish like

√
T as T → 0.

To verify the latter property explicitly, we observe first that for systems with a
rather small proportion of FC, evaluation of the spectrum of collective excitations
may be performed by employing the familiar LFL kinetic equation [15, 28]

(ω − kv) δn(p) = −kn
∂n(p)

∂p

∫
F (p, p1)δn(p1)dυ1. (9.9)

Focusing on transverse zero sound in 2D liquid 3He, one need only retain the term in
the Landau interactionF proportional to the first harmonic f1. To proceed further we
make the usual identification (ct − cos θ)δn(p) = (∂n(p)/∂p) φ(n), where cos θ =
kv/kv. Equation (9.9) then becomes

φ(θ) = −f1pF cos θ

∫
cosχ

∂n(p1)/∂p1
ct − v(T) cos θ1

φ(θ1)
dp1dθ1

(2π)2
, (9.10)

where cosχ = cos θ cos θ1 + sin θ sin θ1, while v(T) is given by (9.8). The solution
describing transverse zero sound is φ(n) ∼ sin θ cos θ.

We see immediately that ct 	 v(T) ∼ T ; therefore the transverse sound in
question does not suffer Landau damping. In this situation, we are led to the simple
result

c2t = − pF

5M

∫
∂n(p)

∂p
v(p, T)dp (9.11)

upon keeping just the leading relevant term v(T) cos θ/c2t of the expansion of
(ct − v(T) cos θ)−1 and executing straightforward manipulations. Factoring out an
average value of the group velocity v(p, T) ∝ T/pF , we arrive at the stated behavior

ct(k) �
√

T

M
(9.12)

for wave numbers k not exceeding the FC range L. Transverse sound can of
course propagate in the other, non-condensed subsystem of 2D liquid 3He con-
sisting of quasiparticles with normal dispersion [15, 16, 28]. However, its group
velocity is T -independent, so the corresponding contribution to the free energy is
irrelevant.

As noted above, the characteristic wave number of the soft transverse zero-sound
mode is given by the FC range L(ρ) = pf − pi, treated here as an input parameter.
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The key quantity �0 is therefore estimated as �0 � kmaxct , where kmax is the
maximum value of the zero sound momentum at which the zero sound still exists.
In our case the zero sound is associated directly with the FC. Hence, kmax � √

LpF

and we have

�0 � kmaxct �
√

TLpF

M
. (9.13)

As long as the inequality LpF/M < T holds (or, equivalently, the relation T/ε0F >

L/pF is valid), the ratio�0/T is small, and we are led to the DP result C(T) = const.
Then, in spite of the low temperature, C behaves as if the system were situated in
the classical limit rather than at the QCP. Such a behavior is ensured by the fact
that the system contains a macroscopic subsystem with heavy quasiparticles. As
the temperature ultimately goes down to zero at the fixed density ρ, the inequality
LpF/M < T eventually fails, the quantum regime is restored and the dominant
contribution to C comes from the “normal” fermions. In other words, there exists an
extremely low temperature T0 below which the usual LFL behavior of zero sound is
recovered.

Interestingly, the value of the constant term in C(T) can be evaluated in closed
form in terms of theFC rangeL. Upon insertingωt(k) = ctk into (9.3) and integrating,
the T -independent term in the specific heat is found to be

C

N
� LpF

8πρ
, (9.14)

where N is the number of atoms in a film. The FC range parameter L also enters the
result obtained for the spin susceptibility χ, that is derived similarly to (9.14). The
FC component of χ is given by [22, 29]

χ∗(T) � χC(T)
L

pF
, (9.15)

where χC(T) = μ2
Bρ/T .

The results (9.14) and (9.15) jointly establish an unambiguous relation within our
model between the T -independent term in the specific heat C(T) and the Curie
component of the spin susceptibility χ(T) that has also been observed experi-
mentally [8, 9]. This relation can be tested using existing experimental data [6].
The T -independent specific heat C/N exists in the density region around ρ =
9.5nm−2. Being referred to one particle, it is readily evaluated from β � 0.25mJ/K.
One finds C/N � 0.01, yielding L/pF � 0.05. On the other hand, the data for
the spin susceptibility given in Fig. 2(B) of [6] supports a Curie-like component at
ρ = 9.25nm−2. The value of the corresponding numerical factor extracted from the
data, which according to (9.15) is to be identified with the ratio L/pF , is approx-
imately 0.07. Given the uncertainties involved, our model is consistent with the
experimental data reported in [6].
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Thus, in two-dimensional liquid 3He andHFmetals,which are located in the vicin-
ity of the quantum critical point associated with a divergent quasiparticle effective
mass, the group velocity depends strongly on temperature, and vanishes at diminish-
ing temperatures. The contribution to the specific heat coming from the boson part of
the free energy follows the Dulong-Petit law. Accordingly, the specific heat becomes
independent of temperature at some characteristic value of it. At sufficiently lower
temperature the usual LFL behavior of zero sound is recovered. The other proper-
ties of 3He at quantum criticality are considered in Sect. 18.4. We note that the heat
capacity C of the HF metal YbRh2Si2 contains the temperature independent term C0
as well [30].

9.2 Transport Properties Related to the Quasi-classical Behavior

We show that near FCQPT the quasi-classical approach remains applicable to the
description of the resistivity ρ of strongly correlated metals due to the presence
of a transverse zero-sound collective mode, reminiscent of the phonon mode in
solids. These phonon-like soft and weakly damped branches of the transverse zero-
sound mode are found to have extremely low effective Debye temperatures. Their
contributions to the collision integral are shown to drive electron transport in the
vicinity of the critical point toward a classical regime. A T -linear resistivity occurs
due to a mechanism analogous to that affecting the resistivity in conventional metals
at room temperature, giving rise to a quasi-classical regime of transport at extremely
low temperatures in HF metals.

After a decade of comprehensive studies [31, 32], the prevalence of non-Fermi-
liquid (NFL) behavior in strongly correlated Fermi systems is no longer a big sur-
prise. However, various features of NFL phenomena still await satisfactory explana-
tion, especially the puzzling observations pointing to characteristic quasi-classical
behavior in a quantum-critical regime. For example, at extremely low temperatures
around 1 mK, the results of experimental measurements of the specific heat of two-
dimensional (2D) 3He, as observed in dense 3He films are described by the classical
formula C(T) = β + γT , where β and γ are constants, see Sect. 10.2. Also in
contrast to LFL theory, it is perceived that the low-temperature resistivity ρ(T) of
many high-Tc compounds and certain HFmetals vary linearly with T [33–35]. Hence
these systems behave as if a major contribution to the collision term comes from the
electron-phonon interaction, in spite of the fact that the phonon Debye temperature
TD exceeds measurement temperatures by a factor 102 − 103.

In Sect. 9.1, we have attributed the presence of the classical term β in the specific
heat C(T) of 2D liquid 3He to softening of the transverse zero-sound mode (TZSM),
occurring near quantum critical point [6] (QCP) where the density of states N(0),
proportional to the effective mass M∗, diverges. Here we shall address the impact
of the TZSM on transport properties in the QCP regime. The TZSM exists only in
those correlated Fermi systems where the effective mass M∗ exceeds the bare mass

http://dx.doi.org/10.1007/978-3-319-10825-4_18
http://dx.doi.org/10.1007/978-3-319-10825-4_10
http://dx.doi.org/10.1007/978-3-319-10825-4_9
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M by a factor more than 3. This requirement is always met while approaching the
QCP. In conventional Fermi liquids, the Fermi surface consists of a single sheet,
so the TZSM has a single branch with velocity ct exceeding the Fermi velocity vF .
Consequently, emission and absorption of sound quanta by electrons is forbidden,
and the role of the TZSM in kinetics is of little interest. However, in heavy-fermion
metals, it is usual for several bands to cross the Fermi surface simultaneously, thereby
generating several zero-sound branches. For all branches but one the sound veloci-
ties are less than the largest Fermi velocity. Hence the aforementioned ban is lifted,
and these branches of the TZSM spectrum experience damping, in a situation sim-
ilar to that for zero-spin sound. In the latter instance, Landau damping is so strong
that the mode cannot propagate through the liquid [15, 36]. It will be seen, how-
ever, that this is not the case for TZSM damping due to this mode softening close
to the QCP. Due to the softening effect, the contribution of the damped TZSM to
the collision integral has the same form as the electron-phonon interaction at room
temperature. On the other hand, we will also find that in heavy-fermion metals,
similar to the case of liquid 3He films, softening of the TZSM acts to lower the
characteristic temperature �t that plays the role of the Debye temperature, setting
the stage for the existence of a quasi-classical transport regime at extremely low
temperatures.

In the canonical picture of quantum phase transitions, the QCP has been identi-
fied with an end point of the line TN of a second-order phase transition, associated
with violation of some Pomeranchuk stability condition. In its turn this violation is
associated with divergence of the energy derivative ∂�(p, ε)/∂ε of the self-energy
and consequent vanishing of the quasiparticle weight z = (1 − ∂�(p, ε)/∂ε)−1 in
single-particle states at the Fermi surface, thus triggering [31, 32, 37] divergence of

the effective mass M∗ defined by M/M∗ = z(1 +
(
∂�(p, ε)/∂ε0p

)
|p=pF .

A number of important experimental studies, that were performed recently, fail to
support the canonical view of the QCP. In 2D liquid 3He, experimental data [6, 12]
have not identified any phase transition that can be associated with the point of the
divergence of the effective mass. It has been acknowledged [34, 38] that a similar
situation also prevails for the QCPs of heavy-fermion metals. In essence, the point
where the density of states diverges is separated by an intervening NFL phase from
points, where lines of some second-order phase transition terminate. Furthermore,
these transitions possess unusual properties such as hidden order parameters. There-
fore within the standard collective scenario they can hardly qualify as triggers of the
observed rearrangements.

We are, therefore, compelled to interchange the reason and the consequence
in connection to the canonical scenario [39]. Following Sect. 9.1, we attribute the
QCP to vanishing of the Fermi velocity vF at a critical density ρ∞, which occurs if

1 +
(
∂�(p, ε)/∂ε0p

)
|p=pF = 0. Accordingly, in this scenario for the QCP, it is the

momentum-dependent part of the mass operator that plays the decisive role.
It is commonly accepted in the theory devoted to theQCPphysics that switching on

the interaction between particles never produces a significantmomentumdependence
in the effective interaction function f , and hence the option we propose and develop

http://dx.doi.org/10.1007/978-3-319-10825-4_9
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is irrelevant. However, this assertion cannot withstand scrutiny. The natural measure
of the strength of momentum-dependent forces in the medium is provided by the
dimensionless first harmonic F1 = f1pFM∗/π2 of the Landau interaction function
f (p1, p2). In a system, such as 3D liquid 3He, where the correlations are of moderate
strength, the result F1 ≥ 6.25 for this measure extracted from specific-heat data is
already rather large. The data on 2D liquid 3He are yet more damaging to the claim
of minimal momentum dependence, since the effective mass is found to diverge in
dense films [6, 8, 12]. In the case of QCP phenomena occurring in strongly correlated
systems of ionic crystals, it should be borne in mind that the electron effective mass
is greatly enhanced due to electron-phonon interactions that subserve polaron effects
[40, 41].

The change in sign of vF at the QCP results not only in a divergent density of
states, but also in a rearrangement of the Landau state beyond the QCP. As a rule,
however, such a rearrangement already occurs before the system reaches QCP. This
may be understood from simple arguments based on the Taylor expansion of the
group velocity v(p) = ∂ε(p)/∂p, which has the form

v(p) = vF(ρ) + v1(ρ)
p − pF

pF
+ 1

2
v2

(p − pF)2

p2F
(9.16)

in the vicinity of the QCP. We assert that the last coefficient v2 is positive, to ensure
that the spectrum

ε(p) = vF(ρ)(p − pF) + 1

2pF
v1(ρ)(p − pF)2 + 1

6p2F
v2(p − pF)3 (9.17)

derived from (9.16) exhibits proper behavior even far from the Fermi surface.
By its definition, the QCP is situated at a density ρ∞ where vF(ρ) vanishes. The

QCPmust in fact correspond to an extremumof the function v(p, ρ∞),which vanishes
for the first time at p = pF . Thus, the simultaneous vanishing of the coefficient
v1(ρ∞) = (dv(p, ρ∞)/dp)|p=pF of the second term in the Taylor series is crucial
to the QCP occurrence. Generally, v1 does not meet this additional requirement.
However, in relevant cases its finite value remains extremely small,making it possible
to tune the QCP by imposing an external magnetic field.

When v1 �= 0 in (9.7), this equation unavoidably acquires two additional real
roots at a critical density ρt where vF(ρt) = 3v21/(8v2), namely

p1,2 − pF = −pF
3v1
2v2

(
1 ±

√
1 − 8vF(ρ)v2

3v21

)
. (9.18)

Clearly, this transition, identified as a topological phase transition (TPT), see Chap. 4,
takes place already on the disordered side of the QCP regime, where vF(ρ) is still
positive. Accordingly, as it is discussed in Chap.4, a new hole pocket opens and the
Fermi surface gains two additional sheets, the new T = 0 quasiparticle momentum

http://dx.doi.org/10.1007/978-3-319-10825-4_4
http://dx.doi.org/10.1007/978-3-319-10825-4_4
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distribution being given by n(p) = 1 for p < p1 and p2 < p < pF , and zero
elsewhere. The emergence of new small pockets of the Fermi surface is an integral
feature of the QCP phenomenon, irrespectively to whether the strongly correlated
Fermi system is 2D liquid 3He, a high-Tc superconductor, or a heavy-fermion metal.

At the TPT point ρt , the density of states, given by

N(T) =
∫

∂n(p, T)

∂ε(p)
dυ (9.19)

with dυ denoting an element of momentum space, is also divergent. Inserting the
spectrum (9.17), straightforward calculation yields N(T → 0) ∝ T−1/2, in contrast
to the behavior N(T → 0, ρ∞) ∝ T−2/3 obtained in the case where v1(ρ∞) = 0.

Having tracked the initial evolution of the Fermi surface topology in the QCP
region, our analysis turns next to the salient features of the TZSM spectrum in
systems with a multi-connected (i.e. multi-sheet) Fermi surface. We first examine
how the TZSM softens in 3D systems with a singly-connected Fermi surface, where
the relation has the well-known form [15]

1 = F1

6

[
1 − 3(s2 − 1)

(
s

2
ln

s + 1

s − 1
− 1

)]
(9.20)

with s = ct/vF andF1 = f1pFM∗/π2. The TZSM is seen to propagate only ifF1 > 6,
i.e. M∗ > 3M. Near the QCP where M∗(ρ) → ∞, one has vF/ct → 0, and (9.20)
simplifies to

1 = F1

15

v2F
c2t

, (9.21)

which implies

ct(ρ → ρ∞) →
√

pFvF(ρ)

M
∝ pF

M

√
M

M∗(ρ)
→ 0, (9.22)

an analogous formula being obtained for a 2D system.
To facilitate analysis of TZSM damping in the systems with multi-connected

Fermi surface, we restrict consideration to the case of two electron bands. The TPT
is assumed to occur at one of the bands, so that its Fermi velocity, denoted again by
vF , tends to zero, while the Fermi velocity vo of the other band remains unchanged
through the critical density region. The model dispersion relation for the complex
sound velocity c = cR + icI becomes
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1 = F1

6

[
1 − 3

(
c2t
v2F

− 1

) (
ct

2vF
ln

ct + vF

ct − vF
− 1

)]

+ F1

6

vF

vo

[
1 − 3

(
c2t
v2o

− 1

) (
ct

2vo
ln

ct + vo

ct − vo
− 1

)]
. (9.23)

It can easily be verified that the contribution of the second term to the real part of the
right-hand side of (9.23) is small compared to that of the first term, since vF/vo → 0
toward the QCP. On the other hand, noting that

ln [(cR + icI + vo)/(cR + icI − vo)] � −iπ,

the corresponding contribution iπF1vFcR/(4v2o) to the imaginary part of the right-
hand side cannot be ignored, else cI = 0. By this reasoning, (9.23) assumes the
simplified form

1 = F1

15

v2F
(cR + icI)2

− i
π

4v2o
F1vFcR (9.24)

analogous to (9.21). Its solution obeys

cR ∝
√

M

M∗(ρ)
, cI ∝ M

M∗(ρ)
. (9.25)

Importantly, we see then that the ratio cI/cR ∝ √
M/M∗(ρ) is suppressed in the QCP

regime, which allows us to analyze the contribution of the TZSM to the collision term
entering the resistivity along the same lines as in the familiar case of the electron-
phonon interaction. By contrast, the group velocities of the damped branches of
longitudinal zero sound are found to be insensitive to variation of the effective mass
in the QCP region [15, 36]. No quenching by a small parameter M/M∗ arises, so
these modes cannot propagate in the Fermi liquid.

It is now clear that toward the QCP, the effective Debye temperature �t =
ω(kmax) = cRkmax goes down to zero, independently of the kmax value, charac-
terizing the cutoff of the TZSM spectrum. Thus, the necessary condition �t < T
for quasi-classical behavior emergence is always met. However, another condition
must also be satisfied, if there a well-pronounced classical domain at extremely low
temperature exist. Take into account that the boson contribution

FB = T
∫

ln
(
1 − e−ck/T

)
θ(k − kmax)dυ (9.26)

to the free energy is proportional to some power of kmax, depending on the dimen-
sionality of the problem. The same is true for the corresponding contributions to
kinetic phenomena. Therefore, the extra condition needed is that kmax should not be
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too small. We identify kmax with the new characteristic momentum arising beyond
the point of the TPT, namely with the distance d = p2 − p1 between the new sheets
of the Fermi surface. Indeed, for momenta p situated at distances from the Fermi
surface significantly bigger than d, the single-particle spectrum ε(p) is no longer flat.
The collective spectrum ω(k) determined from the corresponding Landau kinetic
equation is no longer soft, and consequently the imaginary part cI of c becomes of
the same order as cR, preventing propagation of the TZSM.

This scenario is illustrated by the key property of resistivity in electron systems of
solids. The kernel of the electron-TZSM collision integral underlying the resistivity
ρ(T) contains terms no(p + k)(1− no(p))N(k) − no(p)(1− no(p + k))(1+ N(k))

and no(p + k)(1 − no(p))(1 + N(k)) − no(p)(1 − no(p + k))N(k), in which N(k)

denotes a nonequilibriumTZSMmomentumdistribution andno(p), a nonequilibrium
electron momentum distribution of the band that can absorb and emit the TZSM. The
explicit linearized electron-phonon-like form of the corresponding component of the
collision integral is [42, 43]

Ie,ph ∝
∫

w(p, k)ω(k)
∂N0(ω)

∂ω
(δni − δnf )δ(εi − εf )dυ. (9.27)

In this expression, w is the collision probability, N0(ω) = [exp(ω(k)/T) − 1]−1 is
the equilibrium TZSMmomentum distribution, and δni,f stands for the deviations of
the real momentum distributions in the electron band labeled o to distinguish it from
its nonequilibrium counterpart, with ni = n(p) and nf = n(p + k). In the classical
case of the electron-phonon interaction, at TD < T one has ∂N0(ω)/∂ω ∝ −T/ω2

while all the other factors are T -independent, resulting [42, 43] in linear variation of
the resistivity ρ(T) with T .

Based on the analogy we have established between the roles of phonons and the
TZSM, the resistivity of the strongly correlated electron system must obey the FL
law ρ(T) ∝ T2 only at T < �t . In the opposite case �t < T , the resistivity exhibits
a linear dependence on T . Imposition of a magnetic field cannot kill the soft mode
of transverse zero sound as long as the flattening of the single-particle spectrum
responsible for strong depression of the effective Debye temperature �t persists.

These results and conclusions are in qualitative agreement with experimental data
[34] on the low-temperature resistivity of the doped HFmetal YbRh2(Si0.95Ge0.05)2.
The data indicate that the linear-in-T dependence of the resistivity is robust, down
to temperatures as low as 20mK. Remarkably, the linearity of ρ(T) continues to
hold in external magnetic fields up to B � 2T , far in excess of the critical value
Bc � 0.3T , at which this compound undergoes some phase transition with a hid-
den order parameter [34]. A linear T dependence of ρ(T) is present as well in the
Hertz-Millis spin-density-wave (SDW) scenario for the QCP in 2D electron systems
[44, 45]. However, critical spin fluctuations die out at B > Bc, since the SDW
transition is suppressed. Thus, the observed behavior of ρ(T) contradicts the SDW
scenario. As to our scenario, it is in fact compatible with the observed behavior, since
the TZSM spectrum is less sensitive than the structure of critical spin fluctuations to
the magnitude of the magnetic field. A linear T dependence of ρ(T) can also emerge,
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if the light carriers are scattered by heavy bipolarons [40, 46]. However, there is no
evidence for the presence of these quasiparticles in heavy-fermion metals.

Let us now briefly turn to the analysis of the soft TZSM contribution to the
thermopower. One may recollect that in the classical situation, the phonon-drag ther-
mopower Sd(T) associated with nonequilibrium phonons is known [42, 43, 47] to
account for a substantial part of the Seebeck coefficient S(T). The same is true for
the class of quantum-critical systems considered here, except that the domain, where
the drag term Sd(T) contributes appreciably, extends down to extremely low tem-
peratures. Significantly, at T → 0 the drag contribution increases as T3, whereas
at T > �t it falls off as T−1, producing a bell-like shape [42, 43] of Sd(T) with
a sharp maximum at T � �t . Since the remaining contributions to S are rather
smooth, this remarkable feature of Sd appears to be responsible for the change of
sign of the full Seebeck coefficient S(T) at extremely low T observed experimen-
tally [48] in the heavy-fermion metal YbRh2Si2, as well as the irregular behavior
of S(T → 0) found in several heavy-fermion compounds [49]. The TZSM sce-
nario proposed here predicts that the Seebeck coefficient in YbRh2(Si0.95Ge0.05)2
exhibits the same anomalous behavior at magnetic fields substantially exceeding a
corresponding critical value Bc.

The conditions promoting the formation of soft damped collective modes play
the same role in kinetic phenomena as phonons. Thus, such a damped soft branch
belonging to the transverse zero-sound mode emerges when several bands cross
the Fermi surface simultaneously, with one of the bands subject to a divergence
of the effective mass of carriers. As a result, there are prerequisites for lowering
the corresponding Debye temperature �t , which makes the inequality �t < T to
be met near the quantum critical point, where the quasi-classical regime sets in at
extremely low temperatures. As we shall see in the next Sect. 9.3, such a behavior
illuminates unexpectedly close relationships existing between HF compounds and
ordinary metals [50].

9.3 Quasi-classical Physics and T-Linear Resistivity

As it was demonstrated above, the Debye temperature TD can be extremely low in the
case of HF compounds. As a result, at T > TD the resistivity ρ(T) varies linearly with
T , since the mechanism, forming the dependence ρ(T), is the same as the electron-
phononmechanism that prevails at high temperatures in ordinarymetals. Thus, in the
region of T -linear resistivity, the electron-phonon scattering yields almost material-
independence of the lifetime τq of quasiparticles that is expressed as the ratio of
Planck � and Boltzmann constants kB, Tτq ∼ �/kB. As an example, we analyze the
resistivity of the HF metal Sr3Ru2O7.

Discoveries of surprising universality in the properties of both strongly correlated and
ordinarymetals provide unique opportunities to check and expand our understanding
of quantum criticality in strongly correlated compounds.When exploring at different

http://dx.doi.org/10.1007/978-3-319-10825-4_9
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temperatures T the linear in temperature resistivity of these utterly different metals,
an universality of their fundamental physical properties has been revealed [51]. On
the one hand, at low T the linear T -resistivity

ρ(T) = ρ0 + AT , (9.28)

has been observed in many strongly correlated compounds like high-temperature
superconductors and HF metals located near their QCP, and therefore exhibiting
quantum criticality. Here ρ0 is the residual resistivity and A is a T -independent
coefficient. Explanations based on quantum criticality for the T -linear resistivity
have been given in the literature, see e.g., [52–55] and references therein. On the
other hand, at room temperatures the T -linear resistivity is exhibited by conventional
metals such as Al, Ag or Cu. In case of a simple metal with a single Fermi surface
pocket the resistivity is expressed as e2nρ � pF/(τqvF) [28], where e is the electronic
charge, τq is the quasiparticles lifetime, n is the carrier concentration, and pF and vF

are the Fermi momentum and the Fermi velocity, respectively. Writing the lifetime
(or inverse scattering rate) τq of quasiparticles in the form [56, 57]

�

τq
� a1 + kBT

a2
, (9.29)

we obtain

e2n�

pFkB

∂ρ

∂T
= 1

a2vF
, (9.30)

where � = h/2π is Planck’s constant, kB is Boltzmann’s constant, a1 and a2
are T -independent parameters. Figure9.2 reports experimental measurements of
e2n�/pFkB∂ρ/∂T , that it is the left hand side of (9.30), versus 1/vF [51]. One
can see that the scattering rate per Kelvin is approximately constant across a wide
range of materials [51], and (9.30) is in good agreement with the experimental facts.
It is worth noting that elemental metals like copper, silver, aluminum, etc. are not
strongly correlated. In contrast, as we have seen above, due to the formation of flat
bands the strongly correlated metals exhibit the classical properties of elemental
ones, for the strongly correlated metals demonstrate the quasi-classical behavior at
low temperatures.

A challenging point for a theory is that experimental data confirm (9.30) for both
strongly correlated and normal metals under the condition that latter demonstrate
linear T -dependence of their resistivity [51]. Moreover, as it is seen from Fig. 9.2,
the analysis of the data from the literature for the majority of compounds with the
linear dependence of ρ(T) shows that the coefficient a2 is always close to unity,
0.7 ≤ a2 ≤ 2.7, despite huge distinction in the absolute value of ρ, T and Fermi
velocities vF , that are varying by two orders of magnitude [51]. As a result, it follows
from (9.29) that the T -linear scattering rate is of universal form, 1/(τqT) ∼ kB/�,
valid for different systems displaying the T -linear dependence. Indeed, on the one
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Fig. 9.2 Experimental measurements of e2n�/pFkB∂ρ/∂T (the left hand side of (9.30)) versus
1/vF [51]. Ordinary metals are shown with blue symbols, strongly correlated metals are depicted
with red ones. The line shown by the arrow represents the case a2 = 1

hand this dependence is demonstrated by ordinary metals at T ≥ TD, where it is due
to electron–phonon mechanism. On the other hand, it occurs in strongly correlated
metals which are assumed to be fundamentally different from the ordinary ones.
There, the linear dependence at their quantum criticality and temperatures of a few
Kelvin is assumed to come from excitations of electronic origin rather than from
phonons [51].Wenote that in someof the cuprates the scattering rate has amomentum
and doping dependence omitted in (9.30) [58–60]. Nonetheless, the fundamental
picture outlined by (9.30) is strongly supported by measurements of the resistivity
on Sr3Ru2O7 for awide range of temperatures: AtT ≥ 100K, the resistivity becomes
again T -linear at all applied magnetic fields, as it does at low temperatures and at
the critical field Bc � 7.9T, but with the coefficient A lower than that seen at low
temperatures. [51] Thus, the same strongly correlated compound exhibits the same
behavior of the resistivity at both quantum critical regime and high temperature one,
allowing us to expect that the same physics governs the T -linear resistivity in spite
of possible peculiarities of some compounds.

To develop explanations of the constancy of the T -linear scattering rate 1/(τqT),
it is necessary to recollect the nature and consequences of flattening of single-particle
excitation spectra ε(p) (“flat bands”) in strongly correlated Fermi systems [18, 23,
29, 61] (see [27, 62, 63] for recent reviews). At T = 0, the ground state of a system
with a flat band is degenerate, and the occupation numbers n0(p) of single-particle
states belonging to the flat band are continuous functions of momentum p, in contrast
to discrete standard LFL values 0 and 1, as it is seen from Fig. 9.3. Such behavior of
n0(p) leads to a temperature-independent entropy term
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Fig. 9.3 Schematic plot of two-component electron liquid at T = 0 with FC. Due to the presence
of FC, the system is separated into two components. The first component is a normal liquid with
the quasiparticle distribution function n0(p < pi) = 1, and n0(p > pf ) = 0. The second one is FC
with 0 < n0(pi < p < pf ) < 1 and the single-particle spectrum ε(pi < p < pf ) = μ. The Fermi
momentum pF satisfies the condition pi < pF < pf

S0 = −
∑

p

[n0(p) ln n0(p) + (1 − n0(p)) ln(1 − n0(p))]. (9.31)

Unlike the corresponding LFL entropy, which vanishes linearly as T → 0, the
term S0 produces the NFL behavior that includes T -independent thermal expansion
coefficient [27, 57, 64, 65]. T -independent behavior is observed in measurements on
CeCoIn5 [66–68] andYbRh2(Si0.95Ge0.05)2 [69],while very recentmeasurements on
Sr3Ru2O7 indicate the same behavior [70, 71]. In the theory of fermion condensation,
the degeneracy of the NFL ground state is removed at any finite temperature, with
the flat band acquiring a small dispersion [18, 27]

ε(p) = μ + T ln
1 − n0(p)

n0(p)
(9.32)

proportional to T with μ being the chemical potential. The occupation numbers n0
of FC remain unchanged at relatively low temperatures and, accordingly, so does
the entropy S0. Due to the fundamental difference between the FC single-particle
spectrum and that of the remainder of the Fermi liquid, a system having FC is, in
fact, a two-component system. The range L of momentum space adjacent to the
Fermi surface where FC resides is given by L � (pf − pi), as seen from Fig. 9.3.

In strongly correlated metals at high temperatures, a light electronic band coex-
ists with f or d-electron narrow bands, placed below the Fermi surface. At lower
temperatures, when the quantum criticality is formed, a hybridization between this
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light band and f or d-electron bands results in its splitting into new flat bands, while
some of the bands remain light, thus representing LFL states [72].

A flat band can also be formed by a van Hove singularity (vHs) [73–80]. We
assume that at least one of these flat bands crosses the Fermi level and represents
the FC subsystem that is shown in Fig. 9.3. Remarkably, the FC subsystem possesses
its own set of zero-sound modes. The mode of interest for our analysis is that of
transverse zero sound with its T -dependent sound velocity ct � √

T/M and the
Debye temperature [81]

TD � ctkmax � β
√

TTF . (9.33)

Here, β is a numeric factor,M is the effectivemass of electron generated by vHs or by
the hybridization, TF is the Fermi temperature, whileM∗ is the effectivemass formed
finally by some interaction, e.g., by the Coulomb interaction, that leads to flat bands
[72]. The characteristic wave number kmax of the soft transverse zero-sound mode
is estimated as kmax ∼ pF , since we assume that the main contribution forming
the flat band comes from vHs or from the hybridization. Note that the numerical
factor β cannot be established and is considered as a fitting parameter, rendering TD

value (9.33) to be uncertain. Estimating TF ∼ 10K and taking β ∼ 0.3, and noting
that the quasi-classical regime takes place at T > TD � β

√
TTF , we obtain that

TD ∼ 1 K and expect that strongly correlated Fermi systems can exhibit a quasi-
classical behavior at their quantum criticality [39, 81] with the low-temperature
coefficient A entering (9.28) A = ALT . In case of HF metals with few bands crossing
Fermi level and populated by LFL and HF quasiparticles, the transverse zero sound
makes the resistivity possess the T -linear dependence at the quantum criticality, as
the normal sound (or phonons) does in the case of ordinary metals [39]. It is quite
natural to assume that the scattering of sound in these materials is almost material-
independent, so that electron-phonon processes both in the low temperature limit at
the quantum criticality and in the high temperature limit of ordinary metals have the
same T -linear scattering rate that can be expressed as

1

τqT
∼ kB

�
. (9.34)

Thus, in case of the same material the coefficient A = AHT , defining the classical
linear T -dependence generated by the common sound (or phonons) at high temper-
atures, coincides with that of low-temperature coefficient ALT , AHT � ALT . As we
shall see, this observation is in accordance with measurements on Sr3Ru2O7 [51]. It
is worth noting that the transverse zero sound contribution to the heat capacity C fol-
lows the Dulong-Petit law, makingC possess a T -independent termC0 at T � TD, as
it does in case of ordinary metals [81]. It is obvious that the zero sound contributes to
the heat transport as the normal sound does in case of ordinarymetals and its presence
can violate the Wiedemann-Franz law. A detailed consideration of the emergence of
transfers zero sound and its properties is presented in Sects. 9.1 and9.2.

http://dx.doi.org/10.1007/978-3-319-10825-4_9
http://dx.doi.org/10.1007/978-3-319-10825-4_9
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There is another mechanism contributing to the T -linear dependence at the quan-
tum criticality that we name the second mechanism, in contrast to the first one
described above and related to the transverse zero sound. We turn to consideration of
the next contribution to the resistivity ρ in the range of quantum criticality, at which
the dispersion of the flat band is governed by (9.32). It follows from (9.32) that the
temperature dependence of M∗(T) of the FC quasiparticles is given by

M∗(T) ∼ ηp2F
4T

, (9.35)

where η = L/pF [27, 62, 63]. Thus, the effective mass of FC quasiparticles diverges
at low temperatures, while their group velocity, and hence their current, vanishes
and the main contribution to the resistivity is provided by light quasiparticles bands.
Nonetheless, the FC quasiparticles still play a key role in determining the behav-
ior of both the T -dependent resistivity and ρ0. The resistivity has the conventional
dependence [28]

ρ(T) ∝ M∗
Lγ (9.36)

on the effective mass and the damping of the normal quasiparticles. Based on the
fact that all the quasiparticles have the same lifetime, one can show that in playing
its key role, the FC makes all quasiparticles belonging to light and flat bands to have
the same unique width γ and lifetime τq given by (9.29) [57, 82]. As a result, the
first term a0 on the right hand side of (9.29) forms an irregular residual resistivity
ρc
0, while the second one forms the T -dependent part of the resistivity. The term

“residual resistivity” ordinarily refers to impurity scattering. In the present case, the
irregular residual resistivity ρc

0 is, instead, determined by the onset of a flat band, and
has no relation to scattering of quasiparticles by impurities, for details see Sect. 11.5.
The two mechanisms described above contribute to the coefficient A on the right
hand side of (9.28) and it can be represented as A � ALT + AFC , where ALT and
AFC are formed by the zero sound and by FC, respectively. Coefficients ALT and AFC

can be identified and distinguished experimentally, for ALT is accompanied by the
temperature independent heat capacity C0, while AFC is escorted by the emergence
of ρc

0. We note that the influence of FC on the residual resistivity is discussed in
Chap.10, and while for the case of Sr3Ru2O7 in Chap.11.

A few comments are in order here. As we have seen above, the presence of
flat bands generates the characteristic behavior of the resistivity. Besides, it has a
strong influence on the systems properties by creating the term S0, making the spin
susceptibility of these systems exhibit the Curie-Weiss law, as it is observed in the
HF metal CeCoIn5 [29]. The term S0 serves as a stimulator of phase transitions that
could lift the degeneracy and make S0 vanish in accordance with the Nernst theorem.
As we shall see, in case of Sr3Ru2O7 the nematic transition emerges. If a flat band is
absent, the T -dependence of the resistivity is defined by the dependence of the term
γ, entering (9.36), on the effective mass M∗(T) of heavy electrons, while the spin
susceptibility is determined by M∗(T) [27].

http://dx.doi.org/10.1007/978-3-319-10825-4_11
http://dx.doi.org/10.1007/978-3-319-10825-4_10
http://dx.doi.org/10.1007/978-3-319-10825-4_11
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To illustrate the emergence of the both mechanisms contributing to the linear
T -dependence of the resistivity, we now consider the HF compound Sr3Ru2O7. To
achieve a consistent picture of the quantum critical regime underlying the quasi-
classical region in Sr3Ru2O7, we have to construct its T − B phase diagram. We
employ the model [73–80] based on vHs that induces a peak in the single-particle
density of states (DOS) and yields a field-induced flat band [83]. At fields in the
range Bc1 < B < Bc2, the vHs is moved through the Fermi energy and the DOS peak
turns out to be at or near the Fermi energy. A key point in this scenario is that within
the range Bc1 < B < Bc2, a repulsive interaction (e.g., Coulomb) is sufficient to
induce FC and the formation of a flat band with the corresponding DOS singularity
is locked to the Fermi energy [27, 62, 63, 83]. Now, it is seen from (9.32) that finite
temperatures, while removing the degeneracy of the FC spectrum, do not change the
excess entropy S0, threatening the violation of the Nernst theorem. To avoid such
an entropic singularity, the FC state must be altered at T → 0, so that S0 is to be
somehow removed before zero temperature is reached. This can take place by means
of a specific phase transition or crossover, whose explicit consideration is beyond
the scope of this book. In case of Sr3Ru2O7, this mechanism is naturally identified
with the electronic nematic transition [73–75].

The schematic T −B phase diagram of Sr3Ru2O7 based on the proposed scenario
is presented in Fig. 9.4. Itsmain feature is themagnetic field-induced quantum critical
domain created by quantum critical points that are situated at Bc1 and Bc2, generating
FC and associated flat band. It is seen that in contrast to the typical phase diagram of a
HFmetal [27], the domain occupied by the ordered phase in Fig. 9.4 is approximately
symmetric with respect to the magnetic field Bc � (Bc2 + Bc1)/2 � 7.9 T [77]. The
emergent FC and quantumcritical points are considered to be hidden or concealed in a

Fig. 9.4 Schematic phase diagram of the metal Sr3Ru2O7. The quantum critical points (QCPs)
situated at the critical magnetic fields Bc1 and Bc2 are indicated by arrows. The ordered phase
bounded by the thick curve and marked by horizontal lines emerges to remove the entropy excess
given by (9.31). Two arrows label the tricritical points T1

tr and T2
tr where the lines of the second-order

phase transitions change to the first order. Quasi-classical region is confined by two lines at the top
of the figure and by the top line of the ordered phase
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phase transition. The area occupied by this phase transition is indicated by horizontal
lines and restricted by the thick boundary lines. At the critical temperature Tc, where
new ordered phase sets in, the entropy is a continuous function. Therefore the top of
the domain, occupied by the new phase, is a line of second-order phase transitions.
As T is lowered, some temperatures T1

tr and T2
tr are reached, at which the entropy of

the ordered phase becomes larger than that of the adjacent disordered phase, due to
the remnant entropy S0 from the highly entropic flat-band state. Therefore, under the
influence of the magnetic field, the system undergoes a first-order phase transition
upon crossing a sidewall boundary at T = T1

tr or T = T2
tr, since entropy cannot be

equalized there. It follows then that the line of the second-order phase transitions
is changed to lines of the first-order transitions at tricritical points indicated by
arrows in Fig. 9.4. It is seen from Fig. 9.4 that the sidewall boundary lines are not
strictly vertical, due to the stated behavior of the entropy at the boundary and as a
consequence of the magnetic Clausius-Clapeyron relation (as discussed in [75, 76]).
Quasi-classical region is located above the top of the second order phase transition
and restricted by two lines shown in Fig. 9.4. Therefore, the T -linear dependence is
located in the same region, and is represented by AT dependence with A � ALT +
AFC . We predict that in this region the heat capacity C contains the temperature
independent term C0 as that of the HF metal YbRh2Si2 does, [30] while jumps of the
residual resistivity, represented by ρc

0 in Sr3Ru2O7, [73] are generated by the second
mechanism.

The coefficients AFC , ALT and AHF can be extracted from the results of measure-
ments of the resistivity ρ(T) shown in the left and right panels of Fig. 9.5 [51, 77].
For clarity, the left panel shows only a part of the data on ρ(T) measured from 0.1
to 18K at B = Bc. This part exhibits the T -linear dependence between 1.4 and 18K

Fig. 9.5 Resistivity versus temperature. The left panel the resistivity ρ(T) for Sr3Ru2O7 at the
critical field Bc = 7.9T [77]. Two straight lines display the T -linear dependence of the resistivity
exhibiting a kink at T = Tc. At T > Tc the T -linear resistivity is formed by zero sound and FC
contributions, while at T < Tc it comes from the FC contribution. The right panel the resistivity at
Bc over an extended temperature range up to 400K [51]. The dashed line shows the extrapolation of
the low-T -linear resistivity at T > Tc, and the solid line shows the extrapolation of the high-T -linear
resistivity formed at T > 100 K by the common sound (phonons)
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and between 0.1 and 1K [77]. The coefficient A � ALT + AFC � 1.1 µ�cm/K
between 18 and 1.4K. Since TD ∼ 1K, we expect that between 1 and 0.1K the
coefficient A is formed by the second mechanism and AFC � 0.25µ�cm/K. The
right panel reports the measurements of ρ(T) for T > Tc up to 400K [51]. The dash
line shows the extrapolation of the low-temperature linear resistivity at T < 20K
and Bc with A � 1.1µ�cm/K, and the solid line shows the extrapolation of the
high-temperature linear resistivity at T > 100 K with AHT � 0.8 µ�cm/K [51].
The obtained values of A allow us to estimate the coefficients ALT and AFC . Due to
our assumption that ALT � AHT , we have A − ALH � AFC � 0.3µ�cm/K. This
value is in good agreement with AFC � 0.25µ�cm/K. As a result, we conclude that
for Sr3Ru2O7, where the measurements are precise, the scattering rate is given by
(9.34), and does not depend on T , provided that T ≥ TD. The relatively small term
AFC is omitted. On the other hand, at T < TD AHT /AFC � 3, and the constancy of
the lifetime τq is violated, while the resistivity exhibits the T -linear dependence. It
is seen from the left panel of Fig. 9.5, that the transition from the resistivity, char-
acterized by the coefficient ALT , to that with AFC occurs as a kink at Tc = 1.2K
representing both the entry into the ordered phase and a transition region, where the
resistivity alters its slope. We expect that the constancy of the scattering rate can also
fail in such HF metals as YbRh2Si2 and the quasicrystal Au51Al34Yb15 that exhibits
the HF behavior [84, 85].
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Chapter 10
Magnetoresistance in the HF Metal at Zero
Temperature

Abstract In this chapter we consider the paradoxical behavior of the residual
resistivity ρ0 of HF metals in magnetic fields and under pressure. Our consideration
is based on the idea of flattening of the single-particle spectrum ε(p) that profoundly
effects on the specific heat C, thermal expansion coefficient α and magnetic suscep-
tibility χ in the normal state, the jump of C at the point of superconducting phase
transition etc. We show that FC associated with flat bands contributes to the residual
resistivity ρ0, while the application of the magnetic field or pressure to the system
with a flat band removes the flat band and leads to a strong suppression of ρ0. Our
analysis of the thermodynamic and transport properties gives direct evidences for
the presence of the flat band in CeCoIn5 (Sect. 10.2), YbRh2Si2 (Sect. 10.3), and
Sr3Ru2O7 (Chap.11). It is further demonstrated that the application of magnetic
field generates both the experimentally identifiable multiple energy scales and the
scaling behavior of the effective mass in HF compounds.

10.1 Introduction

Measurements of the resistivity ρ(T) in external magnetic fields H have displayed
the diversity in the low-temperature behavior of this fundamental property in HF
metals, when changing from LFL behavior to NFL one [1–4]. The resistivity ρ(T)

is frequently approximated by the formula,

ρ(T) = ρ0 + ATn, (10.1)

where ρ0 is the residual resistivity, A is a T -independent coefficient, the index n = 1
at NFL regime, 1 � n � 2 at the crossover and n = 2 at LFL one, inherent in
conventional metals.

The term ρ0 is ordinarily attributed to scattering off impurities, being propor-
tional to both the density of impurities and the transport cross section σtr . Assuming
impurities to be structureless, one can infer that the application of a weak external
magnetic field H that produces a small positive classical contribution to ρ, pro-
portional to H2 due to orbital motion of carriers induced by the Lorentz force,
does not change σtr drastically, rendering ρ0 almost H-independent. This conclu-
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sion is in agreement with the majority of available experimental data. However,
in the HF metals, this picture fails, especially while dealing with the very clean
compound CeCoIn5, where at any T > Tc adjacent to the critical temperature
Tc = 2.3 K of SC phase transition, the resistivity ρ(T , H = 0) turns out to be a
linear function of temperature. Furthermore, already at weak magnetic fields H ≥
Hc2 � 5T, where Hc2 is the critical magnetic field terminating superconductivity of
this metal at zero temperature, the term ρ0 decreases dramatically: ρ0(H = 0) �
1.5µ� cm, while ρ0(H = 6T) � 0.3µ� cm [1, 3]. To resolve this paradox, we
suggest that the electron system of CeCoIn5 contains a flat band. Flattening of the
single-particle spectrum is directly related to the problem addressed here since, due to
Umklapp processes, quasiparticles of the flat band produce a contribution to ρ0 indis-
tinguishable from that due to impurity scattering. We note, that necessary existence
of Umklapp processes does not lead to any small factors, for electron quasi-momenta
are large [5]. Furthermore, it is crucial that the flat band somehow becomes depleted
at T → 0 and H = 6 T. This depletion entails a dramatic suppression of the flat-band
contribution to ρ0.

Certainly, real impurities have a structure, and therefore σtr somehow depends on
H. However, this dependence characterizes properties of the impurity system rather
than those of the metal under consideration. On the contrary, as we will see, the
suppression of ρ0 in magnetic fields is an internal property of metals with flat bands.
The key feature, which renders flattening of ε(p) relevant to the suppression of ρ0(H)

is that quasiparticles, belonging to the flat bands, scatter other quasiparticles like
impurities [6, 7], producing an additional contribution to the part of ρ0, coming from
impurity scattering. However, the application of the magnetic field H > Hc2 results
in the dramatic depletion of the flat band [8], implying, in its turn, the suppression
of its contribution to ρ0.

10.2 The HF Metal CeCoIn5

Here we propose an explanation of paradoxical behavior of the residual resistivity
ρ0 of the HF metal CeCoIn5 in magnetic fields and under pressure. The source of
this behavior is identified as a flattening of the single-particle spectrum, which exerts
profound effects on the physical properties of strongly correlated electron systems
generally in solids and particularly in CeCoIn5. Namely, the above flattening affects
such normal state properties as specific heat, thermal expansion coefficient, and
magnetic susceptibility, as well as the specific heat jump at superconducting phase
transition point.

Before proceeding to the analysis of the situation in CeCoIn5, let us make some
remarks on the flattening of the spectra ε(p) in strongly correlated Fermi systems,
called swelling of the Fermi surface or FC.This phenomenon, discovered and initially
elaborated more than 20years ago [9–11] (see [8, 12] for recent reviews), has gained
new impetus after considering the topological matter, characterized by nontrivial
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topology of the quasiparticle Green’s function in momentum space, associated with
topologically protected flat bands [13–17].

At T = 0, the ground states of the systems with flat bands are degenerate. There-
fore, the occupation numbers n∗(p) of states, belonging to the flat bands, who in total
are sometimes called FC, are continuous functions of momentum that differ from
standard LFL values 0 and 1. This leads to an entropy excess,

S0 = −
∑

p

[n∗(p) ln n∗(p) + (1 − n∗(p)) ln(1 − n∗(p))], (10.2)

that does not contribute to the specific heat C(T). However, in contrast to the corre-
sponding LFL value, vanishing linearly with T → 0, S0 produces a T -independent
thermal expansion coefficient α ∝ −∂S0/∂P [18], where P is the pressure.

In the normal state of the HF metal CeCoIn5 its thermal expansion coefficient α

is, indeed, greatly enhanced and almost T -independent [19], signaling that this metal
presumably has possessed a flat band. The analysis of experimental data on magnetic
oscillations [20, 21] supports this assertion. CeCoIn5 turns out to have two main
Fermi surfaces. These two Fermi surfaces are represented by both the comparatively
weakly renormalized α-sheet, which single-particle spectrum is observable at all
fields down to Hc2 � 5 T, and by the β-sheet. Magnetic oscillations of the single
particle spectrum of the β-sheet are undetectable at magnetic fields H ≤ 10 T.
Thus, we conclude that the β-sheet does possess a flat portion. Such a suppression is
generated by the merging of the single particle levels [22], for details see Sect. 12.2.

Although in theFC theory, the abovedegeneracy is lifted at anyfinite temperatures,
and FC acquires a small dispersion, proportional to T , with the spectrum [11],

ε(p, n∗) = T ln
1 − n∗(p)

n∗(p)
+ μ, (10.3)

the FC occupation numbers n∗(p) remain unchanged at small T > 0. Thus, lifting the
degeneracy of the FC spectrum does not change the entropy excess S0 that contradicts
the Nernst theorem. To avoid the contradiction, FC must be completely eliminated at
T → 0. This can be done by means of crossover to a state with the multi-connected
Fermi surface [8, 23–25] or by virtue of some phase transition, e.g., the SC one,
where the cancelation of S0 is associated with the emergence of the gap Δ in the
single-particle spectrum [9, 26–29]. It is this transition that provides the elimination
of the flat portion in the spectrum ε(p) and the vanishing at H ≤ Hc2 of the entropy
excess S0 in CeCoIn5, whose schematic T − H phase diagram is drawn in Fig. 10.1.
Its key feature is a magnetic field-induced quantum critical point at Hc0 hidden in the
SC state [1]. As it is seen from Fig. 10.1, Hc2 > Hc0 [8, 30] and the LFL behavior
persists at T ≤ Tcross until the SC state emerges. If the SC state were absent, then
at H ≥ Hc0, the LFL behavior would persist in the domain T ≤ Tcross(H). The
line Tcross(H) describes crossover, shown by the hatched area, which separates the
domain of NFL behavior from that of LFL one.

In accordance with this phase diagram, behavior of the dimensionless thermal
expansion coefficient αN (T , H) = α(T , H)/α(TN , H), treated as a function of the

http://dx.doi.org/10.1007/978-3-319-10825-4_12
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Fig. 10.1 SchematicT−H phase diagramofCeCoIn5. The vertical and horizontal arrows, crossing
the transition region (thick lines), show the LFL-NFL and reverse transitions at fixed H and T ,
respectively. As shown by the solid curve, at H < Hc2 the system is in its superconducting (SC)
state. Hc0 denotes a QCP hidden beneath the SC dome where the flat band could exist at H ≤ Hc0.
The hatched area with the solid curve Tcross(H) represents the crossover, separating NFL and LFL
domains. A part of the crossover shown by the dots is hidden in the SC state. The NFL state is
characterized by the entropy excess S∗ (10.2)

dimensionless temperature TN = T/Tcross, turns out to be almost universal. Indeed,
as seen from Fig. 10.2, all the normalized data, extracted from measurements on
CeCoIn5 [31], collapse on the single scaled curve. At TN < 1,αN turns out to be a lin-
ear function ofTN as depicted by the dash–dot line, implying that atTN < 1, CeCoIn5
exhibits LFL behavior. At TN � 1 the system enters the narrow crossover region.
Then at growing temperatures T > 1, NFL behavior prevails, and both α and the S0
cease to depend onT , which is shownby the horizontal line.Wenote that the observed
limited types of behaviors: The LFL one, with α ∝ T , and the NFL α = const are in
accordance with recent experimental results [32]. Thus, we conlude that the exper-
imental T − H phase diagram of CeCoIn5 agrees well with that drawn in Fig. 10.1.

In calculations of low-temperature transport properties of the normal state of
CeCoIn5, we employ a model with two bands, one of which is supposed to be flat,
with the dispersion of ε(p), given by (10.3), while the second band is assumed to
possess the LFL single-particle spectrum having a finite T -independent dispersion.
Let us start with the analysis of the case H = 0, where the resistivity of CeCoIn5 is a
linear function ofT .Wewill see immediately that this kind of behavior is a peculiarity
of electron systems with flat bands. Indeed, the conductivity σ(T) is expressed in
terms of the imaginary part of the polarization operator Π(j) [33]

σ = limω−1ImΠ(j, ω → 0) ∝ 1

T

∫ ∫
|T (j, ω = 0)|2

× ImGR(p, ε)ImGR(p, ε)
dυdε

cosh2(ε/2T)
, (10.4)
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Fig. 10.2 Normalized low temperature thermal expansion coefficient αN versus normalized tem-
perature TN of the normal state of CeCoIn5. Different magnetic fields H are shown in the legend.
All the data represented by the symbols are extracted from measurements on CeCoIn5 [31]. The
dash–dot line depicts the LFL regime taking place at low temperatures under the application of
magnetic field. The high temperature NFL regime characterized by both α = const and S0 (10.2)
is noted by the horizontal line

where dυ is an element of momentum space, T (j, ω) is the vertex part, and j is the
electric current. The imaginary part ImGR(p, ε) of the retarded quasiparticle Green’s
function GR is given by

ImGR(p, ε) = − γ

(ε − ε(p))2 + γ 2 , (10.5)

with the spectrum ε(p) and damping γ , referring to the band with the finite value vF

of the Fermi velocity. Due to gauge invariance, T (j, ω) reads

T (j, ω = 0) = e
∂ε(p)

∂p
. (10.6)

Upon inserting (10.6) into (10.4) and performing some algebra we arrive at the
standard result

σ(T) = e2n
vF

γ (T)
, (10.7)

where n is the number density of electrons.
In conventional clean metals, obeying LFL theory, the damping γ (T) is propor-

tional to T2, giving rise to (9.28) with n = 2. NFL behavior of σ(T) is due to the NFL
temperature dependence of γ (T), associated with the presence of FC [6, 7]. In the
standard situation, where the volume occupied by FC is rather small, overwhelming
contributions to the transport, come from inelastic scattering, drawn in Fig. 10.3a.

http://dx.doi.org/10.1007/978-3-319-10825-4_9
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(a) (b)

Fig. 10.3 Illustration of the scattering of electrons belonging to the light band off electrons belong-
ing to the almost flat band. Scattering diagrams that contribute to the imaginary part of the mass
operator �(ε), referring to the band with finite value of the Fermi velocity. The single line cor-
responds to the quasiparticle of that band, and the double line corresponds to a FC quasiparticle.
a The decay of a normal quasiparticle with the formation of a pair of normal quasiparticles and one
quasiparticle belonging to the FC. b The decay of a normal quasiparticle with the formation of a
pair of FC quasiparticles

In that case a FC quasiparticle, depicted by the double line, disappears, becoming a
normal quasiparticle, or vice versa, the normal quasiparticle vanishes, turning into
a FC quasiparticle. The second process illustrated in Fig. 10.3b contains two dou-
ble lines, belonging to FC. The analytical expressions of the contributions of these
processes to the damping γ are estimated on the base of a simplified formula,

γ (p, ε) ∝
∫ ∫ ε∫

0

ω∫

0

|�(p, p1, q|2ImGR(p − q, ε − ω)

× ImGR(−p1,−ε)ImGR(q − p1, ω − ε)dp1dqdωdε, (10.8)

where now the element of volume in momentum space includes summation over
different bands. The calculations (see [6] for details) yield

γ (ε) = ν(γ0 + γ1ε), Re�(ε) = −νγ1ε ln
1

|ε| , (10.9)

where the factor ν stands for the volume in momentum space, occupied by the flat
band. With this result, one finds that ρ(T) = ρ0 + AT . Thus, in a system with FC,
the term ρ0 arises even if the metal has a perfect lattice with no impurities.

The presence of the flat band manifests itself not only in kinetics but also in
thermodynamics of CeCoIn5, e.g., in the occurrence of an additional term ΔC =
Cs − Cn in the specific heat C(T), given by the textbook formula

ΔC = − 1

2Tc

∫ (
dΔ2(p)

dT

)
Tc

n(p)(1 − n(p))dυ, (10.10)

where Cs and Cn are the specific heat of the superconducting and normal states,
correspondingly. The FC contribution to ΔC, being 0 in the normal state, is, in fact,
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concentrated in a narrow vicinity of the transition point at T ≤ Tc. It is this contri-
bution that endows CeCoIn5 by a record value of the jump ΔC/Cn = 4.5 [34] of
the specific heat at Tc, (cf. LFL value 1.43). The enhancement factor is evaluated by
setting T = Tc in (10.10). Importantly, in systems with the flat bands, the quantity

q = −
(

dΔ2

dT

)
c
/2Tc has the same order [11], as in LFL theory where q � 5. For

illustration, let us assume the momentum distribution n to be dependent only on the
absolute value of momentum p. In this case, one obtains

ΔC(Tc)

Cn(Tc)
� 1.43

vF

Tc

∫
n(p) (1 − n(p)) dp. (10.11)

Thus the ratio ΔC(Tc)/Cn(Tc), proportional to a volume in momentum space occu-
pied by the flat band, proves to be inversely proportional to Tc as well, implying that
ΔC(Tc)/Cn(Tc) diverges at Tc → 0, in agreement with data on CeCoIn5 where Tc

equals merely 2.3 K.
Curiously, the formula (10.10) can be recast to a different form [35],

ΔC(Tc)

Cn(Tc)
= qS −1(Tc)

Tcχ(Tc)

Cn(Tc)
, (10.12)

that allows one, with the aid of experimental data [36], to find the value of the
Stoner factor S (Tc) = χ(Tc)/χ0(Tc), indicating the enhancement or suppression
of ferromagnetic fluctuations. One obtains S (Tc) < 0.1. Thus, it is seen that in
CeCoIn5 the ferromagnetic fluctuations are greatly suppressed.

To confirm the statement that in systems with FC the quantity q has the same
order, as it follows in accordance with the LFL theory, we proceed from the relation

∫
Δ2(p)

(
tanh E(p,T)

2T

E(p, T)
− tanh ε(p,Tc)

2Tc

ε(p, Tc)

)
dυ = 0, (10.13)

with the Bogoliubov quasiparticle energy E(p) = √
ε2(p) + Δ2(p). At Tc −T � Tc

one has

tanh E(p,T)
2T

E(p, T)
− tanh ε(p,Tc)

Tc

ε(p, Tc)
= (Tc − T)

2T2
c cosh2 ε(p,Tc)

2Tc

+ Δ2(p)

2ε2(p, Tc)

(
1

2Tc cosh2
ε(p,Tc)
2Tc

− tanh ε(p,Tc)
2Tc

ε(p, Tc)

)
. (10.14)

Inserting this relation into (10.13) and integrating over momentum with the aid of
(10.3), we obtain

Δ2(T → Tc) = cT(T − Tc), (10.15)
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with a numerical factor c � 10, obtained in the analytically solvable model of FC
[11]. These results can be straightforwardly applied to the analysis of the slope of
the peak of the specific heat C(T → Tc) in the superconducting state of CeCoIn5,
described primarily by (10.10). More precisely, one has

dC(T → Tc)/dT

dCBCS(T → Tc)/dT
= ΔC

Cn(Tc)
. (10.16)

Note, that the right hand side of this relation has been obtained with the help of
(10.11). This narrowing of the shape of C(T) toward the λ-point curve, observed in
the case of superfluid 4He, is in agreement with experimental data on CeCoIn5.

The linear in the energy part of the damping γ , given by (10.9), is also responsible
for a NFL logarithmic correction to the LFL specific heat value, observed in the
normal state of CeCoIn5 [36]. Indeed, one has for the entropy [33]:

S(T) ∝ − 1

T

∫
dυ

∞∫

−∞
dε

∂f (ε)

∂ε
ε
1

i
ln

GR(p, ε)

GA(p, ε)
, (10.17)

where f (ε) = [1 + eε/T ]−1, while

1

i
ln(GR/GA) = arctan

νε

ε
(
1 + ν ln 1

|ε|
)

− ε(p)
. (10.18)

Here, GA(p, ε) is the advanced quasiparticle Green function, whose imaginary part
is given by

ImGA(p, ε) = γ

(ε − ε(p))2 + γ 2 . (10.19)

Upon introducing new variables w = ε(p)/ε ∝ (p−pF)/ε and ε = zT and retaining
only leading terms, this integral is recast to the sum S = S+ + S− where

S+ = T

∞∫

0

z2ezdz

(1 + ez)2

∞∫

−∞
arctan

ν

1 + ν ln 1
T − w

dw,

S− = T

∞∫

0

z2ezdz

(1 + ez)2

∞∫

−∞
arctan

ν

1 + ν ln 1
T + w

dw.

Both integrals are evaluated analytically to yield the next contribution δS, δS =
S(T) − SLFL(T) ∝ νT ln(T), in agreement with available experimental data on the
specific heat of CeCoIn5 [36].
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Nowweare in a position to show that the application of themagnetic fieldH > Hc2
on CeCoIn5 generates a jump in the residual resistivity ρ0. Indeed, as seen from
Fig. 10.1, at low temperatures T < Tcross, the application of fields H > Hc2 drives
the system from the SC state to the LFL one, where FC, or, equivalently, the flat
portion of the spectrum ε(p) are destroyed [8]. Thus, FC does not contribute any
more to the residual resistivity ρ0, thereby strongly reducing it. This conclusion is
in agreement with experiment: at H = 6 T, one has ρ0 = 0.3µ� cm, while at
H = 0, ρ0 � 1.5µ� cm [1]. Furthermore, we expect that the higher the quality
of the CeCoIn5 single crystal, the stronger is the suppression of ρ0. In connection
with this challenging behavior of the residual resistivity in magnetic fields, it makes
sense to discuss the behavior of ρ0 versus pressure P, studied in [37]. At P > P∗ =
1.6GPa, ρ0 drops reversibly by one order of magnitude to a very small value of
about 0.2µ� cm. Moreover, the experimental values of n in the coefficient ATn of
the resistivity, see (10.1), also increase stronglywith increasing pressure forP → P∗.
Thus, the pressure P triggers an upward jump of the exponent n upon approaching
P∗ from below, and at P ≥ P∗ n = 2 [37]. As result, at P � P∗ CeCoIn5 enters the
LFL region, while the flat band vanishes. We can safely assume that the application
of the pressure P ≥ P∗ eliminates FC [38, 39], as it is demonstrated in Sect. 6.4 and
depicted in Fig. 6.6. Indeed, as it is seen from Fig. 6.6, the system enters LFL region
located above the critical density, and that region can be induced by the application
of positive pressure. As a result, the application of the pressure removes the flat band,
and makes ρ0 jump to the very low value at P ≥ P∗.

It should be emphasized that a nonzero contribution of FC to ρ0 is associated with
the presence of the crystal lattice,more precisely,with theUmklapp processes, violat-
ing momentum conservation. At the same time, such a restriction is absent in dealing
with the thermal resistivity w0. If, as usual, one normalizes the thermal resistivity by
w = π2T/(3e2κ)where κ is the thermal conductivity, the famousWiedemann-Franz
relation then reads ρ0 = w0. The distinguished role of the Umklapp processes in the
occurrence of ρ0 in Fermi systems with FC implies that in the presence of FC, the
Wiedemann-Franz law in some cases can be violated, so that ρ0 < w0.

10.3 The HF Metal YbRh2Si2

The nature of QCP dictates the NFL low-temperature properties of strongly cor-
related Fermi systems, notably HF metals, high-temperature superconductors, and
quasi-two-dimensional 3He. The experimental investigations of the much-studied
compound YbRh2Si2 at very low temperatures probe the nature of its magnetic-
field-tuned QCP. The jumps revealed both in the residual resistivity ρ0 and in the
Hall resistivityRH , alongwith violation of theWiedemann-Franz law, provide vitally
important clues to the origin of such non-Fermi-liquid behavior. The experimental
facts point unambiguously to association of the observed QCP with FCQPT.

http://dx.doi.org/10.1007/978-3-319-10825-4_6
http://dx.doi.org/10.1007/978-3-319-10825-4_6
http://dx.doi.org/10.1007/978-3-319-10825-4_6
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Themost fruitful strategy for exploring and revealing the nature of theQCP is to focus
on those properties that exhibit the most spectacular deviations from the LFL behav-
ior at the zero-temperature limit. In particular, incisive experimental measurements
recently performed on the heavy-fermion metal YbRh2Si2 have probed the nature
of its magnetic-field-tuned QCP. It is found that at vanishingly low temperatures
the residual resistivity ρ0 experiences a jump across the magnetic QCP, with the
crossover region proportional to T [40–43]. Jumps of the magnetoresistivity, the
Hall coefficient, and the Lorenz number at zero temperature are in contradiction with
the common behavior of Kondo systems, for which the width of the change region
remains finite at zero temperature [42, 44]. Under the same experimental conditions
in YbRh2Si2, the Hall coefficient RH is also found to experience a jump [41], while
the data collected on heat and charge transport at the QCP can be interpreted as
indicating a violation of the Wiedemann-Franz law [42]. TheWiedemann-Franz law
defines the value of the Lorentz number L = κ/Tσ at T → 0, i.e. L = L0 with
L0 = (πkB)2/3e2, where κ , σ , kB, and e are respectively the thermal conductivity,
the electrical conductivity, Boltzmann’s constant, and the charge of the electron.

We begin with an analysis of the scaling behavior of the effective mass M∗ and
T − B phase diagram of a homogeneous HF liquid, thereby avoiding complications
associated with the crystalline anisotropy of solids [8]. Near the FCQPT, the tem-
perature and magnetic field dependence of the effective mass M∗(T , B) is governed
by the Landau equation [33]

1

M∗
σ (T , B)

= 1

m
+

∑
σ1

∫
pFp

p3F
Fσ,σ1(pF, p)

× ∂nσ1(p, T , B)

∂p

dp
(2π)3

. (10.20)

We remind that Fσ,σ1(pF, p) is the Landau interaction, pF is the Fermi momentum,
and σ is the spin label. To simplify matters, we ignore the spin dependence of the
effective mass, noting that M∗(T , B) is nearly independent of spin in weak fields.
The quasiparticle distribution function n can be expressed as

nσ (p, T) =
{
1 + exp

[
(ε(p, T) − μσ )

T

]}−1

, (10.21)

where ε(p, T) is the single-particle (sp) spectrum. In the case under consideration,
the sp spectrum depends on spin only weakly. However, the chemical potential μσ

depends non-trivially on spin due to the Zeeman splitting, μ± = μ ± BμB, where
± corresponds to states with the spin “up” or “down.” Numerical and analytical
solutions of this equation show that the dependence M∗(T , B) of the effective mass
gives rise to three different regimes with increasing temperature. In the theory of
FC, if the system is located near the FCQPT on its ordered side, then the fermion
condensate represents a group of quasiparticle states with dispersion given by [11]
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ε(p, n) − μ = T ln
1 − n(p)

n(p)
, (10.22)

where μ is the chemical potential and n(p) is the quasiparticle occupation number,
which loses its temperature dependence at sufficiently low T . On the ordered side
the sp spectrum of the HF liquid contains a flat portion embracing the Fermi surface.
On the other hand, while the disordered side, at fixed, finite B and low temperatures
we have a LFL regime with M∗(T) � M∗ + aT2, where a is a positive constant
[8]. Thus, the effective mass grows as a function of T , reaching its maximum M∗

M at
some temperature TM and subsequently diminishing according to [45]

M∗(T) ∝ T−2/3. (10.23)

Moreover, the closer the control parameterB is to its critical valueBc0 = 0, the higher
is the growth rate. In this case, the peak value of M∗

M also grows, but the temperature
TM , at which M∗ reaches its peak value decreases, so that M∗

M(TM , B → Bc0) → ∞.
At T > TM , the last traces of LFL disappear. When the system is in the vicinity of
the FCQPT, the approximate interpolative solution of (10.20) reads [8]

M∗

M∗
M

= M∗
N (TN ) ≈ c0

1 + c1T2
N

1 + c2T8/3
N

. (10.24)

Here, TN = T/TM is the normalized temperature, with c0 = (1 + c2)/(1 + c1) in
terms of fitting parameters c1 and c2. Since the magnetic field enters (10.21) in the
form of μBB/T , we conclude that

T/TM ∝ T

μBB
, (10.25)

where μB is the Bohr magneton. It follows from (10.25) that

TM � a1μBB. (10.26)

Equation (10.24) reveals the scaling behavior of the normalized effective mass
M∗

N (TN ). Indeed, the values of the effective mass M∗(T , B) at different magnetic
fieldsBmerge into a single value of themassM∗

N dependent upon the normalized vari-
able TN = T/TM [8]. The inset in Fig. 10.1 demonstrates the scaling behavior of the
normalized effectivemassM∗

N versus the normalized temperatureTN . The LFL phase
prevails atT � TM , followedby theT−2/3 regime atT � TM . The latter phase isNFL
due to the strong dependence of the effective mass on temperature. The temperature
region T � TM encompasses the transition between the LFL regimewith almost con-
stant effective mass and the NFL behavior described by (10.23). Thus, T ∼ TM iden-
tifies the transition region featuring a crossover between LFL and NFL regimes. The
inflection point Tinf of M∗

N versus TN is depicted by an arrow in the inset of Fig. 10.4.
The transition (or crossover) temperature TM(B) is not actually the temperature

of a phase transition. Its specification is necessarily ambiguous, depending as it does
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Fig. 10.4 Schematic T − B phase diagram of HF liquid with magnetic field as the control para-
meter. The vertical and horizontal arrows show LFL-NFL and reverse transitions at fixed B and
T , respectively. At B = 0 the system is in its NFL state having a flat band, and demonstrates NFL
behavior down to T → 0. The hatched area separates the NFL phase and the weakly polarized
LFL one and represents the transition area. The dashed line in the hatched area represents the
function TM (B) (10.26). The functions W(B) ∝ T and T∗(B) ∝ T shown by two-headed arrows
define the NFL state width and the transition area, respectively. The QCP located at the origin and
indicated by an arrow denotes the critical point, where the effective mass M∗ diverges and both
W(B) and T∗(B) tend to zero. The inset shows a schematic plot of the normalized effective mass
versus the normalized temperature. The transition regime, where M∗

N reaches its maximum value
at TN = T/TM = 1, is shown as the hatched area in both the main panel and the inset. Arrows
indicate the transition region and the inflection point Tinf in the M∗

N plot

upon the criteria invoked for determination of the crossover point. As usual, the
temperature T∗(B) is extracted from the field dependence of charge transport, for
example from the resistivity ρ(T), given by

ρ(T) = ρ0 + ATαR , (10.27)

where ρ0 is the residual resistivity and A is a T -independent coefficient. The term ρ0
is ordinarily attributed to impurity scattering. The LFL state is characterized by the
TαR dependence of the resistivity with the index αR = 2. The crossover through the
transition regime shown as the hatched area in both Fig. 10.1 and its inset takes place
at temperatures, where the resistance starts to deviate from LFL behavior, with the
exponent αR shifting from 2 into the region, where it is in the range 1 < αR < 2.

The schematic phase diagram of a HF metal is depicted in Fig. 10.4, with the
magnetic field B serving as the control parameter. At B = 0, the HF liquid acquires
a flat band corresponding to a strongly degenerate state. The NFL regime dominates
at elevated temperatures and a fixed magnetic field. With increasing B, the system is
driven from the NFL to LFL domain. As shown in Fig. 10.4, the system moves from
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(a) (b)

Fig. 10.5 The phase diagram of the HF metal YbRh2Si2. Panel a represents a schematic phase
diagram of YbRh2Si2, with TN (B) denoting the Nèel temperature as a function of magnetic field
B. The QCP, identified by an arrow, is now shifted to B = Bc0. At B < Bc0 the system is in its AF
state. As in Fig. 10.4, the vertical and horizontal arrows show the transitions between the LFL and
NFL states, the functions W(B) ∝ T and T∗(B) ∝ T indicated with bi-directional arrows define
the width of the NFL state and that of the transition region, respectively. The dashed line in the
hatched area represents the function TM (B) (10.26). The exponent αR determines the temperature-
dependent part of the resistivity (cf. (10.27)), with αR taking values 2 and 1, respectively, in LFL
and NFL states. In the transition regime the exponent evolves between LFL and NFL values. Panel
b shows the experimental T − B phase diagram [42, 49]. The evolution of αR is depicted by color
(coded in the vertical stripe on the right-hand side of the panel). The NFL behavior reaches to the
lowest temperatures right at the QCP, tuned by the magnetic field. The transition regime between
the NFL state and the field-induced LFL state broadens with rising magnetic fields B > Bc0 and
T ∼ T∗(B). As in panel a, transitions from LFL to NFL state and from NFL to LFL state are
indicated by the corresponding arrows, as are W(B) ∝ T and T∗(B) ∝ T

the NFL to the LFL regime along the horizontal arrow, and from the LFL to NFL
along the vertical arrow. The magnetic-field-tuned QCP is indicated by an arrow
and located at the origin of the phase diagram, since application of a magnetic field
destroys the flat band and shifts the system into the LFL state [8, 12, 38]. The hatched
area denoting the transition region separates the NFL state from the weakly polarized
LFL state and contains the dashed line tracing TM(B). Referring to (10.26), this line
is defined by the function T = a1μBB, and the width W(B) of the NFL state is seen
to be proportional T . In the same way, it can be shown that the width T∗(B) of the
transition region is also proportional to T .

We focus on the HFmetal YbRh2Si2, whose experimentally observed T −B phase
diagram is reproduced in panels a and b of Fig. 10.5. Panel a is similar to the main
one of Fig. 10.4, but with the distinction that this HF compound possesses a finite
critical magnetic field Bc0 �= 0 that shifts the QCP from the origin of the coordinates.
To avert realization of a strongly degenerate ground state induced by the flat band,
the FC must be completely eliminated at T → 0. In a natural scenario, this occurs
by means of an AF phase transition with an ordering temperature TN = 70 mK,
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while application of a magnetic field B = Bc0 destroys the AF state at T = 0 [46].
In other words, the field Bc0 places the HF metal at the magnetic-field-tuned QCP
and nullifies the Nèel temperature TN (Bc0) = 0 of the corresponding AF phase
transition [8, 47]. Imposition of a magnetic field B > Bc0 drives the system to the
LFL state. Thus, in the case of YbRh2Si2, the QCP is shifted from the origin to
B = Bc0. In FC theory, the quantity Bc0 is a parameter determined by the properties
of the specific heavy-fermion metal. In some cases, notably the HF metal CeRu2Si2,
Bc0 does vanish [48], whereas in YbRh2Si2, Bc0 � 0.06 T, B⊥c [46].

Panel b of Fig. 10.5 portrays the experimental T − B phase diagram showing the
evolution of the exponent αR(T , B) [42, 49]. At the critical field Bc0 � 0.66 T (B‖c),
the NFL behavior extends down to the lowest temperatures, while YbRh2Si2 transits
from the NFL to LFL domain with the increase of the applied magnetic field. Vertical
and horizontal arrows indicate the transition from the LFL to the NFL state and its
reversal, respectively. The functions W(B) ∝ T and T∗(B) ∝ T associated with bi-
directed arrows define the width of the NFL state and transition region, respectively.
It is noteworthy that the schematic phase diagram displayed in panel a of Fig. 10.5
is in close qualitative agreement with its experimental counterpart in panel b.

To calculate the low-temperature dependence of ρ on the imposed magnetic field
B in the normal state of YbRh2Si2, we employ a model of a HF liquid possessing
a flat band with dispersion given by (10.22). Since the resistivity at T → 0 is our
primary concern, we concentrate on a special contribution to the residual resistivity
ρ0 which we call the critical residual resistivity ρc

0. Analysis begins with the case
B = 0, for which the resistivity of the HF liquid at low temperatures is a linear
function of T [8, 50]. This observation coincides with experimental data obtained
frommeasurements on YbRh2Si2 indicating the presence of a flat band in YbRh2Si2
[8, 46, 50, 51]. In that case, the effective mass M∗(T) of the FC quasiparticles takes
the form

M∗(T) ∼ ηp2F
4T

, (10.28)

where η = δp/pF is determined by the characteristic size δp of the momentum inter-
val L occupied by the FC. With the result (10.28) the width γ of FC quasiparticles
is calculated in closed form, γ ∼ γ0 + ηT , where γ0 is a constant [52]. This result
leads to the lifetime τq of quasiparticles

�

τq
� a1 + a2T , (10.29)

where a1 and a2 are parameters. Equation (10.29) is in excellent agreement with
experimental observations [53]. In general, the electronic liquid in HF metals is rep-
resented by several bands, occupied by quasiparticles that simultaneously intersect
the Fermi surface. FC quasiparticles never cover the entire Fermi surface. Thus, there
exist LFL quasiparticles with the effective mass M∗

L independent of T and FC quasi-
particles with M∗ given by (10.28) at the Fermi surface, and all of them possess the
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same width γ . Upon appealing to the standard equation

σ ∼ Ne2

γ M∗ (10.30)

for the conductivity σ (see e.g., [33]) and taking into account the formulas specifying
M∗ and γ , we find that σ ∼ Ne2/(pFη)2, whereN is the number density of electrons.
With this result, we arrive at the critical residual resistivityρc

0 that is independent ofT :

ρc
0 ∼ η2

pFe2
. (10.31)

Derivation and examination of (10.30) and (10.31) is provided in Sect. 10.2. The
term “residual resistivity” is usually attributed to impurity scattering. In our case,
(10.31) shows that ρc

0 is determined by the presence of a flat band and has no relation
to the scattering of quasiparticles by impurities [52].

We next demonstrate that the application of a magnetic field to the HF liquid
generates the observed step-like drop in the residual resistivity ρ0. Indeed, Fig. 10.4
informs us that at a fixed temperature, application of the field B drives the system
from the NFL state to the LFL state, the flat portion of ε(p) being determined by
(10.3) is destroyed at T < TM [8]. Thereupon, the factor η vanishes, nullifying ρc

0 and
strongly reducing ρ0. Since both W(B) and T∗(B) widths are proportional to T , the
imposition of the magnetic field causes a step-like drop in the residual resistivity ρ0.
Consequently two values of the residual resistivity must be introduced, namely ρNFL

0
corresponding to the NFL state, and ρLFL

0 corresponding to the LFL state induced
under the application of magnetic field B. It follows from these considerations that
ρNFL
0 > ρLFL

0 . This conclusion agrees with the experimental findings [40–42].
Figure10.5 shows the T − B phase diagram of YbRh2Si2, which maps faithfully

onto the schematic phase diagram depicted in Fig. 10.4, except for the appearance of
an AF phase at low temperatures. As seen from Fig. 10.5, at T > TN and B = 0 the
system in its NFL state, while the LFL phase prevails at low temperature formagnetic
fields beyond the critical value Bc0. The respective residual resistivities are measured
at ρNFL

0 � 0.55µ� cm (NFL) and�0.5µ� cm (LFL) [40]. As T is lowered through
TN at B = 0 the system enters the AF state via a second-order phase transition.
Accordingly, we expect that the residual resistivity does not change, remaining the
same as that of the NFL state, ρNFL

0 . On the other hand, under imposition of an
increasing B-field, the system moves from the NFL state to the LFL state with the
above value of ρLFL

0 .
At this point it should be acknowledged that application of a weak magnetic

field is known to produce a positive classical contribution ∝ B2 to ρ0 arising from
orbital motion of carriers induced by the Lorentz force. When considering spin-orbit
coupling in disordered electron systems, where electron motion is diffusive, the
magnetoresistivity may have both positive (weak localization) and negative (weak
anti-localization) signs [54]. However, as studied experimentally, YbRh2Si2 is one
of the purest heavy-fermion metals. Hence the applicable regime of electron motion
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Fig. 10.6 Experimental results [40] for the longitudinal magnetoresistivity ρ(T , B) of YbRh2Si2
versus B at various temperatures T . The maxima of the curves for T = 0.03 and 0.07 K correspond
to boundary points of the AF ordered state shown in Fig. 10.5b. The solid line marked with 0 K
represent the schematic behavior of the residual resistivity ρ0 as a function ofB. The arrows pointing
to the horizontal solid lines identify the residual resistivities ρNFL

0 and ρLFL
0 in YbRh2Si2. The jump

of ρ0 occurs at the QCP identified by an arrow

is ballistic rather than diffusive. Both weak and anti-weak localization scenarios
are irrelevant, and one expects the B-dependent correction to ρ0 to be positive. We
therefore conclude that the positive difference ρc

0 = ρNFL
0 − ρLFL

0 comes from the
contribution related to the flat band. As seen from Fig. 10.6, when the system moves
from NFL to the LFL state at fixed T and under application of elevated magnetic
fields B, the step-like drop in its resistivity ρ(T , B) becomes more pronounced, as it
is seen from the experimental curves for T = 0.3, 0.2, 0.1 K.

This behavior is a simple consequence of the fact that the width of the crossover
regime is proportional to T . By zooming the vicinity of QCP shown in Fig. 10.6, what
corresponds, for example, to the experimental curves for T = 0.07 and 0.03 K, it
may be seen that the crossover width remains proportional to temperature, ultimately
shrinking to zero and leading to the abrupt jump in the residual resistivity at T = 0,
when the system crosses the QCP at B = Bc0. In the same way, application of a
magnetic field B to CeCoIn5 causes a step-like drop in its residual resistivity, as is
in fact found experimentally [1]. Based on this reasoning, we expect that the higher
the quality of both CeCoIn5 and YbRh2Si2 single crystals, the greater is the ratio
ρNFL
0 /ρLFL

0 , since the contribution coming from the impurities diminishes and ρNFL
0

approaches ρc
0. It is also expected from (10.31) that the observed difference ρc

0 in the
residual resistivities will not show a marked dependence on the imperfections of the
single crystal unless the impurities destroy the flat band. Finally, we point out that the
jump of the magnetoresistivity at zero temperature contradicts the usual behavior of
Kondo systems, with the width of the transition remaining finite at T → 0 [41, 44].
Moreover, the Kondo systems has nothing to do with the asymmetrical tunnelling



10.3 The HF Metal YbRh2Si2 195

conductance as a function of the applied voltage V that has been predicted to emerge
in such HF metals with the flat band as CeCoIn5 and YbRh2Si2 [8, 55, 56]. Indeed,
experimental observations have revealed that the conductance is the dissymmetrical
function of V in both CeCoIn5 [57] and YbRh2Si2 [51].

The emergence of a flat band entails a change of theHall coefficientRH = σxyz/σ
2
xx

[7, 58]. In homogeneous matter at B → 0 one has σxx = σ/3, while σxyz is recast to

σxyz = e3

3γ 2

∫ [
dz

dp

]2
∂n(z)

∂z
dz, (10.32)

where n(z) is the quasiparticle distribution function. Far from the QCP, these formu-
las lead to the standard result RH = 1/Ne, whereas in the vicinity of the QCP, one
finds RH = K/xe with K � 1.5, x is the charge carrier density, and K is a coefficient
[7]. We see then that the effective volume of the Fermi sphere shrinks considerably at
the QCP. Importantly, in the LFL state where the effective mass stays finite, the value
K = 1 holds even quite close to theQCP.Aswe have learned, thewidthW(B) tends to
zero at the QCP, implying that the critical behavior of K at T → 0 emerges abruptly,
producing a jump in the Hall coefficient, while the height of the jump remains finite.
It is instructive to consider the physics of this jump of RH in the case of YbRh2Si2. At
T = 0, the critical magnetic field Bc0 destroying the AF phase is determined by the
condition that the ground-state energy of the AF phase is equal to the ground-state
energy of the HF liquid in the LFL paramagnetic state. Hence, at B → Bc0 the Néel
temperature TN tends to zero. In the measurements of the Hall coefficient RH as a
function of B, performed in YbRh2Si2 [41, 43, 59], a jump is detected in RH as
T → 0 when the applied magnetic field reaches its critical value B = Bc0 and then
goes infinitesimally higher: B = Bc0 + δB. At T = 0, application of the critical
magnetic field Bc0, which suppresses the AF phase whose Fermi momentum is pF ,
restores the LFL phase with a Fermi momentum pf > pF . This occurs because the
quasiparticle distribution function becomes multiply connected and the number of
mobile electrons does not change [8]. The AF state can then be viewed as having a
“small” Fermi surface characterized by the Fermi momentum pF , whereas the LFL
paramagnetic ground state at B > Bc0 has a “large” Fermi surface with pf > pF . As
a result, the Hall coefficient experiences a sharp jump because RH(B) ∝ 1/p3F in the
AF phase and RH(B) ∝ 1/p3f in the paramagnetic phase. Assuming that RH(B) is a
measure of the Fermi momentum [58, 59] (as is the case with a simply connected
Fermi volume), we arrive at (8.9) of Chap.8.

Violation of theWiedemann-Franz law at theQCP inHFmetals has been predicted
and estimated a few years ago [8, 61] and experimentally observed recently [42].
As it will be shown in Chap.14, the predictions of LFL theory fail near QCP where
the effective mass M∗ diverges. The violation of the Wiedemann-Franz law takes
place in the narrow segment of the T −B phase diagram displayed in Fig. 14.2, panel
a, having the width W → 0 at T → 0. In other words, at T → 0 the ratio L/L0
becomes abruptly L/L0 ∼ 0.9 at B/Bc0 = 1, while L/L0 = 1 at B/Bc0 �= 1 when
the system is in its AF or LFL state shown in Fig. 14.2, panels a, b. The violation at

http://dx.doi.org/10.1007/978-3-319-10825-4_8
http://dx.doi.org/10.1007/978-3-319-10825-4_14
http://dx.doi.org/10.1007/978-3-319-10825-4_14
http://dx.doi.org/10.1007/978-3-319-10825-4_14
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Fig. 10.7 Temperature–magnetic field (T −B) phase diagram of YbRh2Si2. Solid circles represent
the boundary between AF and NFL states and the QCP is shown by the arrow. Solid squares refer
to the boundary between NFL and LFL regimes [40, 41] represented by the dashed line, which is
approximated by (B − Bc0)

1/2 [8]. Diamonds mark the maxima TM of the specific heat C/T [60],
which are approximated by TM ∝ b1(B−Bc0), with b1 being a fitting parameter [8]. Triangles close
to the solid line refer to the inflection points Tinf in the longitudinal magnetoresistivity [40, 41],
while the solid line tracks the function Tinf ∝ b2(B − Bc0), with b2 being a fitting parameter

B = Bc0 and at T → 0 seen in YbRh2Si2 thus suggests that a sharp Fermi surface
does exist at B/Bc0 �= 1, but does not exist only at B/Bc0 = 1 where the flat band
emerges.

The application of magnetic field profoundly effects on the single-particle spec-
trum, and leads to the scaling behavior of the normalized effective mass, as it is
demonstrated in Sect. 6.3. The peculiarities of the scaling behavior generates the
energy scales shown in Fig. 10.7. Among other features, Fig. 10.7 includes results
(solid lines) for the characteristic temperatures Tinf(B) and TM(B), which represent
the positions of the kinks that separate the energy scales identified experimentally
in [40, 41, 60]. The boundary between the NFL and LFL phases is indicated by a
dashed line, while AF labels the antiferromagnetic phase. The corresponding data
are taken from [40, 41, 60]. It is seen that our calculations coincide with the experi-
mental data. In particular, we conclude that the energy scales and the widths W and
T∗ are reproduced by (10.24) and (10.26), and related to the special points Tinf and
TM associated with the normalized effectivemassM∗

N , which aremarkedwith arrows
in the inset and the main panel of Fig. 10.4 [8, 62].

10.4 Main Results

In this Chapter, we have shown that imposition of a magnetic field on YbRh2Si2
and CeCoIn5 leads to the emergence of the quantum critical point. With the increase
of magnetic field, a strong suppression of the residual resistivity ρ0 takes place.

http://dx.doi.org/10.1007/978-3-319-10825-4_6
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In the case of CeCoIn5 it is also explained that the same jump takes place under
the application of both pressure and magnetic field. By considering the behavior of
the thermal expansion coefficient and the specific heat we have unveiled the role of
the flat band in forming thermodynamic properties of CeCoIn5. Our consideration
presents one of the direct evidences for the presence of the flat band in CeCoIn5. The
close similarity between the behaviors of the Hall coefficient RH , magnetoresistivity
ρ, and Lorenz number L at the QCP indicates that all transport measurements reflect
the same underlying physics, which unambiguously entails an interpretation of the
QCP as arising from the fermion condensation quantum phase transition leading
to the formation of a flat band. The imposition of magnetic field is also led to the
emergence of the energy scales, that is explained within the framework of FC theory.
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Chapter 11
Zero Temperature Magnetoresistance of the HF
Metal: Enigma of Sr3Ru2O7

Abstract To understand the nature of field-tuned metamagnetic quantum criticality
in the ruthenate Sr3Ru2O7 is one of the significant challenges in the condensed mat-
ter physics. It is established experimentally that the entropy has a peak in the ordered
phase. It is unexpectedly higher than that outside latter phase,while themagnetoresis-
tivity varies abruptly near the ordered phase boundary. We demonstrate unexpected
similarity between Sr3Ru2O7 and HF metals expressing universal physics that tran-
scends microscopic details. Our T − B phase diagram of Sr3Ru2O7 explains main
features of the experimental situation. It gives an unambiguous interpretation of its
extraordinary low-temperature thermodynamics in terms of FCQPT, leading to the
flat band formation at the restricted range of magnetic fields B.

11.1 Introduction: Flat Bands and Enigma of Metamagnetic
Quantum Critical Regime in Sr3Ru2O7

Discoveries of surprising and exotic phenomena in strongly correlatedmetals provide
unique opportunities for expanding our understanding of quantum critical physics. A
case in point is the quantum critical metal Sr3Ru2O7, a member of the Ruddlesden-
Popper series of layered perovskite ruthenates consisting of RuO2 ab planes forming
bilayers, which are piled along the crystalline c axis, perpendicular to the ab axis, and
weakly coupled to one another. In spite of numerous experimental and theoretical
investigations [1–13], explanation of the puzzling low-temperature behavior of this
material in external magnetic fields B remains an open problem in condensed matter
theory, for reviews see e.g., [14, 15]. The observations indicate that the physics that
determines the behavior of Sr3Ru2O7, which resembles that of some HF metals, is
not subsumed in the spin-Kondo picture [8–10]. In high quality crystals with residual
resistivity ρres ∼ 0.4μ� cm measured at zero B-field and mean free path as big as
approximately 3,000Å, one observes a metamagnetic transition featuring a sudden
and sharp rise in the magnetization M with a modest increase in the applied field
[14, 15], accompanied by a bifurcation of the metamagnetic phase boundary. At low
temperatures the bifurcation splits into two first-order metamagnetic transitions at
criticalmagnetic field valuesBc1 � 7.8T andBc2 � 8.1T [2–4, 14, 15]. Convention-
ally, a phase that emerges at fields Bc1 < B < Bc2 and temperatures T ≤ Tc � 1.2 K

© Springer International Publishing Switzerland 2015
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(a)

(b)

Fig. 11.1 The T − B phase diagram and the magnetoresistivity ρ(B). Panel a experimental phase
diagram of Sr3Ru2O7 in the T − B plane with magnetic field B as the control parameter. Sym-
bols, depicting data points derived from susceptibility, magnetostriction, thermal expansion and
transport measurements, surround the area with horizontal lines, and represent transitions between
equilibrium thermodynamic phases associated with a nematic ordered phase [3–5]. This phase is
entered by the first-order phase transitions at low temperatures (the corresponding tricritical points
is indicated by the arrows) and by the second-order phase transitions at high temperatures. The
solid lines T1

r (B) and T2
r (B) on the low- and high-field sides of the plot, respectively, sketch the

temperature-field dependence of the crossings of the resistivity ρ(B, T) drawn in panel b with two
straight lines, solid and dashed, respectively. Panel b the measured resistivity ρ(B) of Sr3Ru2O7
for temperatures between 0.1 and 1.3 K, in steps of 0.1 K [3, 4]

is identified as a nematic one [3–5, 7]. This phase breaks the discrete square lattice
rotational symmetry, as witnessed by a large magnetoresistive anisotropy in the ab
plane as the magnetic field B is rotated away from the c axis toward the ab plane
[3–5]. The anisotropy vanishes as soon as the B-field is directed along the c axis,
here we consider only this case denoted as B ‖ c. The two first-order transitions
persist, but convert into two second-order phase transitions with rising temperature
as is illustrated in Fig. 11.1a. The bifurcation is accompanied by the abrupt variation
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of the resistivity as it is shown in Fig. 11.1b. Moreover, the entropy S within the
ordered phase, shown in Fig. 11.1a with horizontal lines, forms a peak, and is unex-
pectedly higher than that outside this phase, for one would expect that the entropy of
the disorder phase should be higher than that of the ordered [7]. As result, we face
the enigmatic behavior, exhibited by the thermodynamic and transport properties, of
the quantum critical metal Sr3Ru2O7. As it was shown in Chaps. 3, 8 and 10, such
a behavior is associated with FC and the presence of flat bands, and we apply the
theory of FC to resolve the enigma. For the reader convenience here we recapitulate
some important points of preceding consideration.

11.2 Magnetoresistivity

Themagnetoresistivityρ(B, T) as a function of thefield and temperature is frequently
approximated by the formula

ρ(B, T) = ρres + Δρ(B) + ATn, (11.1)

where Δρ is the correction to the resistivity produced by the field B and A is a T -
independent coefficient. The index n takes the values 2 and 1, respectively, for Landau
Fermi liquid (LFL) and non-Fermi liquid (NFL) states and values 1 � n � 2 in the
crossover region between them. Although both the large magnetoresistive anisotropy
in the ab plane and the ordered phase are striking, the essential physics in Sr3Ru2O7
seems to be that of a normal-phase electron fluid at fields B < Bc1 and B > Bc2,
and at T > Tc and Bc2 > B > Bc1, i.e. outside of the ordered phase. Indeed, data
on the low-temperature magnetoresistivity ρ(B) with B ‖ c collected for Sr3Ru2O7
[3, 4] show that large changes of ρ(B) occur as the ordered phase is approached. The
straight lines indicated by arrows in Fig. 11.1a, crossing the pentagon data points
on the low-field side and diamonds on the high-field side, represent the functions
T1

r (B) and T2
r (B), respectively. In reference to panel b of Fig. 11.1, which shows

the resistivity versus field strength at a series of temperatures, the straight line of
panel a crossing pentagons [respectively, diamonds] delineates the intersection with
the solid [dashed] line appearing in panel b. It is seen from Fig.11.1 panel a, that
T1

r (B = Bc1) � 0 and T2
r (B = Bc2) � 0. Thus, these functions show that the

low-temperature sides of ρ(B) at T → 0 approach the steep sidewalls of the first-
order phase transitions depicted in Fig. 11.1a. Accordingly ρ(B) possesses two steep
sidewalls as the critical fields Bc1 and Bc2 are approached at T → 0, a behavior
evident in both panels of Fig. 11.1.

The behavior at B � 7.9 T and T > Tc is equally striking in that ρ is precisely
linear in T at least over the range 1.2 ≤ T � 18 K [10], see Sect. 9.3 and Fig. 9.5
therein, the left panel. This fact allows us to estimate the irregular residual resistivity
ρc
0(B). To evaluate ρc

0(B), we extrapolate the data on the resistivity ρ [3, 4] to zero
temperature, as if the ordered phase were absent in the range Bc2 > B > Bc1.

http://dx.doi.org/10.1007/978-3-319-10825-4_3
http://dx.doi.org/10.1007/978-3-319-10825-4_8
http://dx.doi.org/10.1007/978-3-319-10825-4_10
http://dx.doi.org/10.1007/978-3-319-10825-4_9
http://dx.doi.org/10.1007/978-3-319-10825-4_9
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In this way at B = 7.9 T one finds ρc
0 ∼ 1.7µ� cm, while the residual resistivity

in the presence of the nematic phase is ρnem
0 ∼ 2.0µ� cm in this range. On the other

hand, at B � 7.6 T the residual resistivity is ρc
0(B) � 1.1µ� cm. Thus, even in the

absence of the ordered phase, the field B triggers an upward jump of the resistivity
upon approaching Bc1 from below. The resistivity is approximately constant in the
range Bc1 < B < Bc2 and undergoes a second jump downward as B approaches Bc2.
Such behavior, seen at the lowest accessible temperatures of 15 mK [16] and 70 mK
[17], at which the term ATn in (11.1) can be safely omitted, is consistent with both
the jumps at QCPs and the constancy in the range Bc1 < B < Bc2 of the irregular
residual resistivity ρc

0. We conclude that it is ρc
0 that are responsible for the observed

behavior of ρ.
Let us evaluate possible causes for the jumps. When considering spin-orbit

coupling in disordered electron systems, where electron motion is diffusive, the
residual resistivity may have both positive (weak localization) and negative (weak
anti-localization) signs [18]. However, since Sr3Ru2O7 exhibits successive upward
and downward jumps separated by the narrow range of magnetic fields Bc2 − Bc1,
it is unclear how weak localization at B � Bc1 is changed to weak anti-localization
at B � Bc2. Moreover, Sr3Ru2O7 is one of the purest compounds and the applicable
regime of electron motion is ballistic rather than diffusive. Therefore, both weak
and anti-weak localization scenarios are irrelevant. Accordingly, one expects the B-
dependent correction Δρ to the residual resistivity to be positive and small. As we
have seen, this is far from the real case.

Proposals for the origin of the jumps at finite temperatures may invoke band
electrons close to the van Hove singularity (vHs), giving rise to the ordered phase
[2, 5, 8, 12, 14, 15]. However, such scenarios should be rejected as the electrons
involved must have very large effective mass M∗ and hence contribute only weakly
to transport properties at finite temperatures and not at all at T = 0, see e.g., [8].
Another possible source of the observed jumps might be resistivity associated with
nematic domains that are thought to exist at T ≤ Tc for the fields tuning the system
to a vHs [5, 8, 19, 20]. The jumps would be due to the extra scattering produced by
such domains. This scenario is also problematic, since the domains would have to be
present at least in the normal phase and at temperatures as high as T ∼ 18 K, while
the critical temperature for formation of both the nematic phase and the domains is
estimated as Tc � 1.2 K [5, 19, 20]. Due to the failing of such conventional expla-
nations, we are faced with a challenging task that may well have broad implications
for our understanding of unusual (notably, NFL) phenomena in condensed-matter
systems: how does one unveil the QCPs that create the quantum critical regime of
Sr3Ru2O7, giving rise to the emergence of the resistivity jumps ρc

0 and generating
the entropy peak?
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11.3 Fermion Condensation

To develop viable explanations of the resistivity jumps and entropy excess, it is
necessary to recall the origin, nature, and consequences of flattening of single-particle
excitation spectra ε(p) (“flat bands”) in strongly correlated Fermi systems, also called
swelling of the Fermi surface or FC [21–25] (see [26–28] for recent reviews). At
T = 0, the ground state of a systemwith a flat band is degenerate, and the occupation
numbers n0(p) of single-particle states belonging to the flat band are continuous
functions of momentum p, in contrast to discrete standard LFL values 0 and 1. Such
behavior of the occupation numbers leads to a T -independent entropy term

S0 = −
∑

p

[n0(p) ln n0(p) + (1 − n0(p)) ln(1 − n0(p))] (11.2)

that does not contribute to the specific heat C(T) = TdS/dT . Unlike the corre-
sponding LFL entropy, which vanishes linearly as T → 0, the term S0 produces a T -
independent thermal expansion coefficient [26, 29–31]. ThatT -independent behavior
is observed in measurements on CeCoIn5 [32–34] and YbRh2(Si0.95Ge0.05)2 [35],
while very recent measurements on Sr3Ru2O7 indicate the same behavior [36, 37]
and confirm the existence of flat bands [13]. In the theory of fermion condensa-
tion, the degeneracy of the NFL ground state is removed at any finite temperature,
since the flat band acquires a small dispersion proportional to T , see Sect. 3.1.3. The
occupation numbers n0 of FC remain unchanged at relatively low temperatures and,
accordingly, so does the entropy S0.

We now introduce these concepts to achieve a coherent picture of the quantum
critical regime underlying the jump phenomena in Sr3Ru2O7. In constructing a field-
inducedflat band,we employ themodel [5, 7, 8, 12, 38, 39] based onvHs that induces
a peak in the single-particle density of states (DOS) and sharp rise of the magnetiza-
tion M as the field sweeps across the metamagnetic transition. Upon increase of an
applied magnetic field B, the vHs is moved through the Fermi energy. At fields in the
range Bc1 < B < Bc2 the DOS peak turns out to be at or near the Fermi energy. A
key point in this scenario is that within the range Bc1 < B < Bc2, a relatively weak
repulsive interaction (e.g., Coulomb) is sufficient to induce FC and thus to form
of a flat band with the corresponding DOS singularity locked in the Fermi energy
[26–28]. Now, it is seen from (10.3) that finite temperatures, while removing the
degeneracy of the FC spectrum, do not change S0, threatening the violation of the
Nernst theorem. To avoid such an entropic singularity, the FC state must be altered as
T → 0, so that the excess entropy S0 is shed before zero temperature is reached. This
can occur due to some phase transition or crossover, whose explicit consideration is
beyond the scope of this book.

http://dx.doi.org/10.1007/978-3-319-10825-4_3
http://dx.doi.org/10.1007/978-3-319-10825-4_10
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11.4 Phase Diagram

The schematicT −B phase diagramof Sr3Ru2O7 inferred from the proposed scenario
is presented in Fig. 11.2. Its main feature is the magnetic field-induced quantum
critical domain created by QCPs that are situated at Bc1 and Bc2 and supporting a FC
and associated flat band induced by vHs (the double-headed arrow between the black
dots). The low-field [high-field] QCP on the left [right] augurs the emergence of the
flat band as B → Bc1 [B → Bc2] from below [above]. In contrast to the typical phase
diagram of a HFmetal [26], the domain occupied by the ordered phase in Fig. 11.2 is
approximately symmetric with respect to the magnetic fieldBc = (Bc2+Bc1)/2. The
emergent FC andQCPs are considered to be hidden or concealed in a phase transition,
which is driven by the need for the system to avoid the entropic singularity that would
be produced at T → 0 by the T -independent entropy term S0 of (11.2). The area
occupied by this phase transition is indicated by horizontal lines and restricted by
boundary lines (“sidewalls” and “roof”). At the critical temperature Tc where the
new (ordered) phase sets in, the entropy is a continuous function. Therefore the
“roof” of the domain occupied by the new phase is a line of second-order phase
transitions. As T is lowered, some temperature Ttr is reached, where the entropy of
the ordered phase becomes larger than that of the adjacent disordered one, due to the
remnant entropy S0 from the highly entropic flat-band state above Tc. Therefore, in
the magnetic field, the system undergoes a first-order phase transition upon crossing
a sidewall boundary at T = Ttr , since entropy cannot be equalized there. It follows,

Fig. 11.2 Schematic phase diagram of the metal Sr3Ru2O7. The QCPs situated at the critical
magnetic fields Bc1 and Bc2 are indicated by arrows. The fermion condensation (FC) or flat band is
present between these QCPs as depicted by the double-headed arrow. The ordered phase, bounded
by the curve and demarcated by horizontal lines, emerges eliminating the entropy excess given by
(11.2). Two arrows label the tricritical points Ttr , at which the lines of second-order phase transitions
change to the first order. The total width of the NFL state and the crossover leading to the LFL
state, W(B) ∝ T , is denoted by the arrow. The LFL state occurs at the lowest temperatures below
and above the critical values Bc1 and Bc2 of the tuned B-field. Rising temperature results in a broad
crossover (labeled “Cross”) from the LFL to the NFL state
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then, that the line of second-order phase transitions is changed to a line of first-order
ones at tricritical points indicated by arrows in Fig. 11.2. It is seen from Fig. 11.2 that
the sidewall boundary lines are not strictly vertical due to the stated behavior of the
entropy at the boundary and as a consequence of the magnetic Clausius-Clapeyron
relation [7, 8]. Indeed, in our case the Clausius-Clapeyron equation reads,

μ0
dBcn

dTc
= − ΔS

ΔM
. (11.3)

Here, μ0 is the permeability constant (in SI units) and Bcn stands for Bc1 and Bc2.
The advantage of (11.3) is that it defines the slope of the boundary lines shown in
Fig. 11.2 from the basic principles of thermodynamics. Since the entropy S within
the bounded region is higher than that outside it, the slopes of the phase boundaries
point outwards as shown in Fig. 11.2. We conclude that the phase diagram 11.2 is in
good agreement with the experimental one shown in panel a of Fig. 11.1.We note that
the obtained agreement is robust and does not depend on the nature of the ordered
phase, for our analysis is based on the thermodynamic consideration. For example,
such a consideration allows one to establish the T −B phase diagram of the HFmetal
CeCoIn5 that resembles that of Sr3Ru2O7 [31, 40].

On each flank of the region occupied by the ordered (nematic) phase, the system
crosses over from the LFL state prevailing at the lowest temperatures to a NFL
state under rising temperature. The total width W(B) of the NFL state and crossover
(“Cross”) region on either flank (denoted with the double arrow in Fig. 11.2), is
proportional to T [31, 41]. The behavior of W(B) inferred from this phase diagram
is also reflected in Fig. 11.1b, which depicts the dependence of the function ρ(B) on
field strength and temperature. Since the width W(B) vanishes when the magnetic
field tends to its critical values, ρ(B) is represented by the two steep sidewalls seen in
panel b of Fig. 11.1 as the critical field valuesBc1 andBc2 are respectively approached
from below and above.

11.5 Jumps

Now we turn to calculations of the resistivity ρ in the range Bc1 < B < Bc2, the dis-
persion of the flat band being governed by (10.3). The electronic liquid of Sr3Ru2O7
is described by several bands occupied by normal quasiparticles that simultaneously
intersect the Fermi surface, along with heavy quasiparticles whose dispersion never
covers the entire Fermi surface [5, 7, 8, 12, 38, 39, 42]. Based on (10.3), the temper-
ature dependence of the effective mass M∗(T) of the FC quasiparticles is given by

M∗(T) ∼ ηp2F
4T

, (11.4)

http://dx.doi.org/10.1007/978-3-319-10825-4_10
http://dx.doi.org/10.1007/978-3-319-10825-4_10
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where η = δp/pF is determined by the characteristic size δp of the momentum
domain occupied by the FC and pF is the Fermi momentum [26–28]. It follows from
this relation that the effectivemass of FC quasiparticles diverges at low temperatures,
while their group velocity, and hence their current, vanishes. Therefore the main con-
tribution to the resistivity is provided by normal quasiparticles outside the FC having
non-divergent effective mass M∗

L and finite group velocity at T → 0. Nonetheless, it
will be seen that FC quasiparticles still play a key role in determining the behavior of
the irregular residual resistivity in the range Bc1 < B < Bc2. Indeed, when analyzing
the conductivity of HF metals, one should have in mind that the electronic liquid in
them is anisotropic and, moreover, that several bands simultaneously intersect the
Fermi surface so that FC never covers the entire Fermi surface. Hence, it follows
that quasiparticles that do not belong to the FC make the main contribution to the
conductivity. We call them normal, because their group velocity vF = pF/M∗

L in
the limit T → 0 remains finite, while the group velocity of FC quasiparticles, as
it follows from (11.4), and, hence, their current vanishes, as is mentioned above.
These normal quasiparticles contribute to the conductivity in parallel with the FC
quasiparticles. Therefore, they short out the contribution of the of FC carriers that
are becoming heavy on the approach to FCQPT. We note that normal quasiparticles
would short out the contribution coming from any heavy quasiparticles. As a result,
one would conclude that the normal quasiparticles make a dominant contribution
to the resistivity, and form its T2 behavior. Now let us resolve the puzzle of the
resistivity jumps at the critical fields Bc1 and Bc2, as illustrated in panel b of Fig11.1.

The resistivity has the conventional dependence [43]

ρ(T) ∝ M∗
Lγ (11.5)

on the effective mass M∗
L and damping γ of the normal quasiparticles. As it is shown

in Sect. 10.2, based on the relation (11.4), the behavior of γ is obtained in the present
context in closed form as

γ (T) ∼ η2γ0 + ηT , (11.6)

where γ0 is a constant [31, 41]. Let us illustrate the general consideration given in
Sect. 10.2 by the following scenario [44]. Three processesmake themain contribution
to γ (T). The first is the decay of a normal quasiparticle with the formation of a
pair of normal quasiparticles and one quasiparticle belonging to FC. We label this
contribution to the damping as γ1. The second is the decay of a normal quasiparticle
with the formation of a pair of FC quasiparticles, and the third is the elastic scattering
of a normal quasiparticle by the FC quasiparticle. We label the contributions coming
from these processes as γ2 and γ3, respectively. The two latter are topologically
equivalent; therefore, their calculations can be combined. These three processes can
be illustrated by the schematic diagrams shown in Fig. 10.3. Thus,

γ = γ1 + γ2 + γ3, (11.7)

http://dx.doi.org/10.1007/978-3-319-10825-4_10
http://dx.doi.org/10.1007/978-3-319-10825-4_10
http://dx.doi.org/10.1007/978-3-319-10825-4_10


11.5 Jumps 207

where

γ1(T) ∝ W1T2(M∗
L)2M∗(T), (11.8)

and

γ2(T) ∝ γ3(T) ∝ W2T2(M∗(T))2M∗
L . (11.9)

Here, M∗(T) is given by (11.4), W1 and W2 are the transition probabilities [43],
given by integrals with atomic wave-functions integrated over two 4-momenta of the
outgoing quasiparticles. Therefore, the temperature dependence of these probabilities
is smeared due to the integration, and, neglecting this dependence, we obtain by using
(11.4)

γ1(T) ∝ η(M∗
L)2T . (11.10)

In the same way, we obtain

γ3(T) ∝ γ2(T) ∝ p2Fη2M∗
L, (11.11)

and arrive at (11.6).Wenote that it is the temperature-independent partη2γ0 ∼ γ2+γ3
of γ (T), that mimics the scattering of normal quasiparticles by impurities, leads to
the jumps in the magnetic field, giving rise to the irregular residual resistivity ρc

0(B).
It is seen from (11.6) that the coefficient A on the right hand side of (11.1) is partly
formed by FC. We call this contribution to A, coming from FC, AFC .

Let us now consider the additional contribution ATS to the T -linear resistivity,
formed by the zero sound modes, generated by the presence of FC, see Chap. 9 for
details. The system with FC possesses its own set of zero sound modes. The mode
of interest for our analysis contributes to the T -linear dependence of the resistivity,
as the conventional sound mode does in the case of normal metals. The mode is that
of transverse zero sound with its T -dependent sound velocity ct � √

T/MvHs and
the Debye temperature given by [45, 46]

TD � ctkmax � β
√

TTF . (11.12)

Here, β is a factor, MvHs is the effective mass formed by vHs, TF is the Fermi tem-
perature, while M∗ on the left hand side of (11.4) is the effective mass formed finally
by some relatively weak interaction, e.g., the Coulomb interaction, generating flat
bands [47]. The characteristic wave number kmax of the soft transverse zero-sound
mode is estimated as kmax ∼ pF , since we assume that the main contribution form-
ing the flat band comes from vHs. We note that the numerical factor β cannot be
established (if not using a very restrictive model), and is considered as a fitting
parameter, making TD given by (11.12) uncertain. Estimating TF ∼ 10 K and
taking β ∼ 0.3, and observing that the quasi-classical regime takes place at

http://dx.doi.org/10.1007/978-3-319-10825-4_9
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T > TD � β
√

TTF , we obtain that TD ∼ 1 K and expect that strongly corre-
lated Fermi systems can exhibit a quasi-classical behavior with the low-temperature
coefficient A, entering (11.1), A = AFC + ATS [45, 46, 48].

Thus, in HF metals with few bands, crossing Fermi level and populated by LFL
and HF quasiparticles, due to the transverse zero sound the resistivity is the T -linear
dependent at the quantum criticality regime, as the normal sound (or phonons) do
in the case of ordinary metals, while FC adds the quantum contribution AFC to the
coefficient A [46, 48]. The described contributions lead to the lifetime τq, formed by
normal, FC quasiparticles, and the transverse zero sound in the form

�/τq � a1 + a2T , (11.13)

where a1 and a2 are T -independent parameters. Relations (11.6) and (11.13) are in
excellent agreement with recent experimental observations [49]. In playing its key
role, the FC leads all quasiparticles to have the same unique width γ and lifetime τq.
As we shall see, the T -independent width γ0 forms the irregular residual resistivity
ρc
0.
Using relations (11.1), (11.5) and (11.6) together with the standard treatment of

possible corrections [50], we are led to conclusion that the resistivity of Sr3Ru2O7
should behave as

ρ ∼ ρres + Δρ(B) + ρc
0 + AT (11.14)

in the thermodynamic regime in question. The term “residual resistivity” ordinarily
refers to impurity scattering. In the present case, as seen from (11.6) and (11.14), the
irregular residual resistivity ρc

0 is determined instead by the onset of a flat band, and
has no relation to scattering of quasiparticles by impurities. Since the FC and the flat
band manifest themselves in the region Bc1 < B < Bc2, it is natural also to conclude
that the QCPs indicated in Fig. 11.2 are responsible for the jumps in the irregular
residual resistivity ρc

0. According to the relations (11.6) and (11.14), the resistivity
ρ is a linear function of T [31, 41]. This feature of the flat-band scenario is in accor-
dance with the relevant measurements on Sr3Ru2O7 [10]. Moreover, experimental
observations and their theoretical explanation show that the same physics describes
the T -linear dependence of the resistivity of conventional metals and both HF metals
and Sr3Ru2O7, with the quasi-classical behavior formed by the zero-sound mode at
their quantum criticality [48, 51].

As it was discussed above, heavy quasiparticles shaped by the flat band do not con-
tribute directly to the transport properties. However, defining the lifetime τq instead,
these quasiparticles specify the transport of the system. As a result, the magnetore-
sistivity jumps and their variation through the peak are defined by the variation of
the irregular residual resistivity ρc

0. Indeed, increasing the temperature broadens and
increases the resistivity in accordance with (11.14), but the minimal values of the
jumps and the peak exhibit the spectacular independence of temperature, as it is seen
from Fig. 11.1b. A prominent experimental feature supporting this conclusion is the
occurrence of two jumps in the resistivity: The first is the upward jump at Bc1, where
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the FC is built up, followed by the second downward jump at Bc2, where the FC is
destroyed. Thus, the scenario developed here reveals the genesis of the two steep
sidewalls observed in the irregular residual resistivity ρc

0, arising from the formation
of a flat band at QCPs.

One could attribute ρc
0 to the influence of the magnetic field B, considering ρc

0 as
a magnetoresistivity. However, such a definition would obscure the physical mech-
anism responsible for forming ρc

0. Indeed, it is the flat band that forms the irregular
residual resistivity, while the magnetic field represents an auxiliary parameter that
tunes the system to the flat band.

11.6 Entropy

In the LFL state depicted in the Fig. 11.2, both the entropy S and the specific heat
C of the electron liquid in Sr3Ru2O7 behave in accordance with LFL theory S/T =
C/T ∝ M∗ [50]. The only but very essential specifics is that the effective mass M∗
depends onmagnetic fieldB according toM∗(B) ∝ |B−Bc|−2/3 [26, 52]. Here,Bc is
the field at which the QCP occurs. In the present case of two QCPs, Bc for simplicity
is taken equal to Bc = (Bc2 + Bc1)/2 � 7.9 T. The entropy is then given by

S(B)/T = C/T � As + Ds|B − Bc|−2/3, (11.15)

whereAs andDs are fitting parameters for the low-field and high-fieldQCPs. TheLFL
behavior ofC/T and S/T fitted by (11.15) are shown by the solid curve in Fig. 11.3, in

Fig. 11.3 The behavior of the specific heat C/T and the entropy S/T around the metamagnetic
transition. Magnetic field dependence of C/T (squares) and S/T (circles) as obtained in measure-
ments on Sr3Ru2O7 and their divergent behavior as fitted by the function Bc|B−Bc|α with α = −1
(triangles) [7]. The theoretical fit of the current work is shown as the solid curve (11.15)
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comparison with experimental results [7] for these quantities represented by squares
and circle symbols, respectively. The triangles display the fit with exponent α = −1
[7] rather than α − 2/3. The two fits, namely, (the solid curve and the triangles)
are seen to show similar behavior as functions of magnetic field. In contrast to the
exponentα = −1 obtained by the fitting of the experimental data over small variation
of the magnetic field [7], the validity of the exponent α = −2/3 is confirmed by
the good agreement with the experimental data and internal consistency between the
schematic phase diagram in Fig. 11.2 and the data in Figs. 11.1 and 11.3. Figure11.3
shows that the entropy increases strongly on both the low-field and high-field sides
of the ordered phase as the critical fields Bc1 and Bc2 are approached. Thus, the
theory of FC allows us to explain, for the first time, the experimental data collected
for Sr3Ru2O7 [7, 37] on the evolution of the entropy and the heat capacity as the
quantum critical point is approached. We note that the entropy jumps across the
first-order phase transitions visible in Fig. 11.3 are in accord with the phase diagram
sketched in Fig. 11.2.

11.7 Scaling Behavior

To reveal the signatures of the hidden QCPs, we conclude with an analysis of the
thermodynamic properties of the C/T electronic specific heat measurements on
Sr3Ru2O7 [10]. As mentioned above, at B = 7.9 T the resistivity ρ is precisely
linear in T over the range Tc ≤ T < 18 K, with C/T varying as ln T over the
same range [10]. These are typical fingerprints of a flat band generated by FC at
QCPs [31, 41]. The experimentally derived temperature dependence of C/T ∝ M∗
on magnetic field strength, shown in Fig. 11.4a, allows us to uncover the universal
scaling behavior of the effective mass M∗ that is the specific characteristic of HF
metals. As shown in this Figure, the maximum of C/T ∝ M∗ sharpens and shifts
to lower temperatures as the field B approaches 7.9 T, where the maximum disap-
pears. In contrast to HF metals, C/T exhibits a symmetry with respect to the area
implicated by the ordering (nematic) transition. Indeed, the maximum appears upon
approaching the QCPs and reappears on the high-field side of this transition region.
This behavior of the maximum coincides with the phase diagram in Fig. 11.2, since
the width W(B) increases linearly with T and the maximum located in the transi-
tion region shifts toward zero temperature, while the effective mass M∗(B) given by
(11.15) diverges as B approaches the critical field.

To expose the scaling behavior, we normalize the measured C/T values to
(C/T)N = (C/T)/(C/T)M and the corresponding temperatures T to TN , TN =
T/TM , by dividing by their values TM and (C/T)M at the maxima [26]. The elucida-
tive values of TM and (C/T)M at B = 4 T are depicted, as examples, by the arrows in
panel a of Fig. 11.4. The spin AC susceptibility data χ(T) ∝ M∗ are normalized in
the same way. At FQCPT, all the normalized χN and (C/T)N curves have to merge
into a single one, χN = (C/T)N = M∗

N (TN ), where M∗
N is the normalized effective

mass represented by a universal function, being a solution of the Landau equation
[26]. This solution M∗

N (TN ) can be well approximated by a simple universal inter-
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(a)

(b)

Fig. 11.4 The specific heat C/T versus magnetic field B and its scaling behavior. Panel a tempera-
ture dependence of the electronic specific heat for different magnetic field strengths (after Rost et al.
[10]). The maximum at zero field increases and shifts to lower temperatures as the magnetic field
approaches QCPs. At B = 7.9 T no maximum occurs. A maximum reappears on the high-field side
of the transition, demonstrating a symmetrical behavior with respect to the critical region located
between the two QCPs and occupied by the ordered phase. The illustrative values of (C/T)M and
TM at B = 4 T are shown by the arrows. Panel b universal scaling behavior of the normalized
specific heat χN = (C/T)N ∝ M∗, extracted from measurements on CeRu2Si2 [53], CePd1−xRhx
with x = 0.80 [54], and Sr3Ru2O7 [10]. All the measurements displayed in panels a and bwere per-
formed under the application of magnetic fields as shown in the legends. The solid curve represents
our calculation of the universal behavior

polating function. The interpolation occurs between the LFL and NFL regimes and
represents the universal scaling behavior of M∗

N [26]

M∗
N (TN ) ≈ c0

1 + c1T2
N

1 + c2T8/3
N

. (11.16)
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Here, c0 = (1+ c2)/(1+ c1), c1, and c2 are fitting parameters. Figure11.4b reports
the behavior of the normalized χN and (C/T)N , thus extracted from measurements
on CeRu2Si2 [53], CePd0.8Rh0.8 [54] and Sr3Ru2O7 [10]. The solid curve shows
the result of our calculation of the scaling behavior that can be well fit by (11.16).
As is seen, the HF metals and Sr3Ru2O7 exhibit the same scaling behavior, which
can be understood within the framework of fermion condensation or flat-band theory
[26–28].

11.8 Main Results

We have unveiled an interesting challenging relation in the behavior of Sr3Ru2O7
and HFmetals by establishing universal physics that straddles across the correspond-
ing microscopic details. Our construction of the T − B phase diagram of Sr3Ru2O7
permits to explain main features of the experimental phase diagram, and unambigu-
ously presents an interpretation of its unusual low-temperature thermodynamics in
terms of FCQPT leading to the formation of a flat band at the restricted range of
magnetic fields Bc1 ≤ B ≤ Bc2. We have demonstrated that the obtained agreement
with the experimental phase diagram is reliable and does not depend on the nature
of the ordered phase, since our analysis is based on the thermodynamic (i.e. model
independent) consideration. We have shown that it is the flat band that generates
both the entropy peak and the resistivity jumps, as the critical fields Bc1 and Bc2
are approached. We have also detected the scaling behavior of the thermodynamic
functions of Sr3Ru2O7 coinciding with that of HF metals. We expect that the FC
state breaks the discrete square lattice rotational symmetry and generates a large
magnetoresistive anisotropy, as the magnetic field B is rotated away from the c axis
towards the ab plane.
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Chapter 12
Fermion Condensation in Finite Systems

Abstract Here we consider another example of systems, in which fermion
condensation takes place. These are what is called finite Fermi systems, i.e. systems
with finite number of fermions, contrary to a solid, where the number of electrons
is practically infinite. An example of a finite Fermi system is an atomic nucleus,
having finite number of nucleons, protons and neutrons, which are fermions. Here
we show that the fermion condensation manifests itself in finite Fermi systems as
a forced merger of all, discreet for finite systems, single-particle levels, lying near
the Fermi surface. On the first sight, this merger contradicts the standard Landau
quasiparticle picture. Nevertheless, similar to infinite systems, this is just the gen-
eralization of well-known Landau paradigm as for finite systems it is suitable to
describe the restructuring (merging) of states at the Fermi surface. To demonstrate
how this merging works, we show that the merging of the spin- and valley-split Lan-
dau levels at the chemical potential is an intrinsic property of a strongly-interacting
two-dimensional electron system in silicon. Evidence for the level merging is given
by available experimental data.

12.1 Finite Systems

In this section, we consider the problem of finite Fermi systems having a degener-
ate single-particle spectrum. We show that the Landau approach, applied to such a
system, admits the possibility of single-particle levels merger. The salient feature of
the phenomenon is the occurrence of noninteger quasiparticle occupation numbers,
leading to a radical alteration of the standard quasiparticle picture. Implications of
this alteration are considered for nuclear, atomic, and solid-state systems.

As we have seen in the preceding chapters, the most fruitful application of the FC
notion was made to systems like HF compounds, where the concept of quasiparticles
as well-defined excitations at the Fermi surface remains valid. The behavior of the
electronic system in the above compounds is largely determined by the structure of
single-particle (SP) levels. It seems therefore appropriate to renew the fundamental
studies of single-particle aspects of finite Fermi systems as developed many years
ago for atomic nuclei [1] in the expectation that the findings on the simple model
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systems may shed some light on the puzzling non-fermi liquid behavior of solids
that are like heavy-fermion compounds.

In homogeneous matter, all the relevant measurable quantities, such as various
susceptibilities, are functions of a single momentum transfer variable q. Inhomoge-
neous systems with a uniform distribution of SP levels possess basically the same
properties. However, the situation changes, when the spectrum of their SP excita-
tions is degenerate. This degeneracy implies the existence of a new energy scale
Dmin, given by the difference between the energies of the closest SP levels lying on
opposite sides of the Fermi surface. The properties of such systems exhibit striking
departures from what is found in homogeneous matter. To offer a prominent exam-
ple, consider the ground-state energy E0(A) of atomic nuclei as a function of mass
number A. For most nuclei, this quantity is well described by the Bethe-Weiszäcker
liquid-drop formula. However, nuclei with a so-called magic number of protons or
neutrons have spherical form [2], and the relevant energy scale Dmin is several times
larger than the average distance between neighboring SP levels in non-magic nuclei.
This energy spacing provides a shell correction δEs, lowering the liquid-drop binding
energy, and guarantying the stability of the ground states of the known magic nuclei
stable with respect to any mode of decay [2]. Another example is associated with the
degeneracy of the SP spectrum of the two-dimensional electron gas in an external
magnetic field. In this case, the degeneracy gives rise to a step-like behavior of the
chemical potential μ(A), triggering oscillations of thermodynamic quantities [3].

Customary explanations of such extraordinary behavior do not take into account
the alteration of key quantities due to interactions between added particles under
variation of their number. In many cases such an approximation is justified, since
these interactions do not affect the deviations that are mentioned above, even if the
SP levels cross each other. However, we shall demonstrate that the dependence of SP
energies εs = Es(A +1)− E0(A) on quasiparticle occupation numbers n, inherent in
Landau Fermi-liquid (LFL) theory, allows for an alternative scenario. The familiar
energy level crossings of SP levels (Fig. 12.1) is shown in the panel a. This crossing
changes to the “repelling”, at which degenerate energy levels repel each other, as
it is shown in panel b. In fact, the third possibility can take place: The repelling is
replaced by an exact merging of these levels, a new phenomenon that leads to the
disappearance of the energy distance between SP excitations, as it is shown in the
panel c of Fig. 12.1. As we shall see below, the behavior of system exhibits drastic
departures from predictions of standard LFL theory [4–7].

More then two decades ago [4] a new class of solutions was found for the equation
of the Fermi-liquid theory [8, 9]

εp(np) − μ − T ln
1 − np

np
= 0 (12.1)

for the distribution function np of the quasiparticles with momenta p. In this equation
T is the temperature,μ is the chemical potential, and εp = δE/δnp is the quasiparticle
energy, which, like the total energy E, is a functional of np. The standard solution
of (12.1) is obtained under the assumption that near the Fermi surface εp increases
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(a) (b) (c)

Fig. 12.1 Schematics of the behavior of the energies of single particle levels in a system with finite
number of fermions (finite fermion system). The energy of levels ε1(λ0) and ε2(λ0) are functions
of the tuning parameter λ0. The panel a represents the levels crossing, the panel b represents the
levels repelling, when the levels move apart, and panel c represents the levels merging, see (12.6).
The case (c) is the analog of fermion condensation for finite fermion systems

monotonically with p growth. Then, at T = 0 the quasiparticles fill the Fermi sphere
up to the radius pF = (3π2x)1/3 with x being the system density, and pF is the
Fermi momentum similar to that of an ideal Fermi gas, and, therefore, at low T
the temperature dependence of the main characteristics of a Landau Fermi liquid is
the same as in an ideal Fermi gas.

The new solutions of (12.1) have entirely different properties. The main one is
that np is continuous near the Fermi surface. As a result, at T = 0 the term with the
logarithm in (12.1) can be dropped, and then a plateau εp = μ appears in the spectrum
εp. The quasiparticles with energies of chemical potential and lying on this plateau
form the fermion condensate, see Chap.3. From the mathematical standpoint the
difference in the properties of the solutions is due to the location, where a minimum
of the energy functional E(np, T = 0) is reached. The standard filling is realized
in the systems with weak or moderate correlations. Then the minimum of E lies at
the boundary of the functional space [np] determined by Pauli principle. A fermion
condensate appears if the correlations are so strong that the minimum of E shifts into
this space. This is easy to understand, if the equation εp = μ, which is valid in a
homogeneous system in the interval pi < p < pf , is rewritten as a condition for a
minimum

δE

δnp
= μ, pi < p < pf . (12.2)

It is worth noting that for T �= 0 the plateau ceases to exist, and the derivative
dεp/dp becomes positive [10]. For low T the derivative is proportional to T , and for
this reason inmany respects a systemwith a fermion condensate behaves like a Fermi
liquid in which the effective mass of the quasiparticles M∗ ∼ 1/T . This fact can be
used to analyze the collisional damping of quasiparticle excitations of the condensate
state. It has been found in [10] that the width γ (T) of these states diverges in the
perturbation theory as 1/T at small T . If this result were correct, the quasiparticle

http://dx.doi.org/10.1007/978-3-319-10825-4_3
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language would be unsuitable to describe the new solutions of (12.1). Actually,
however, as we have seen in the preceding chapters, the quasiparticle formalism
remains valid, and here, as often happens, a fiasco occurs in the perturbations beyond
the phase transition point. To prove once more the first part of the assertion, let us
analyze the problem of new solutions in a system of finite size, where the collisional
width of the states in the discrete spectrum is completely absent. As an example, we
study a spherical atomic nucleus with completely closed shells, which are separated
from unfilled shells by a quite large energy “gap”. Now we add to the nucleus a
quite large number of particles k � 1 but small compared to the mass number A.
Then the variation of the energy E of the system is given by a formula of the Landau
Fermi-liquid theory

δE =
∑
λ,λ1

[
εm
λ δnλδλλ1 + 1

2
Fλ1λ1

λλ δnλδnλ1

]
. (12.3)

The one-particle energies εm
λ appearing in (12.3) and the matrix elements of the

effective interaction F are calculated in the initial nucleus, and λ = n, l, j, m is the
standard set of one-particle quantum numbers. In a spherical nucleus the levels are
degenerate with respect to the magnetic quantum number m. If a level with total
angular momentum j is filled, then there are 2j + 1 quasiparticles in it:

∑
δnλ = k.

We recollect that the problem of the one-particle orbitals filling is ordinarily
solved as follows. The main filling is the Hartree-Fock one giving a minimal energy
E. However, if (12.2) possesses a solutionwhich is consistentwith the Pauli principle,
then this solution delivers a deeper minimum. This is because in this case, according
to (12.2), the occupation numbers np become variational parameters, and therefore
the solution of the problem is sought on a wider class of functions than the Hartree-
Fock ones. The case when there are only two one-particle levels in an unfilled shell is
especially clear. In this case E is a function of only two variables n1 = δn1(2j1 + 1)
andn2 = δn2(2j2+1), which are related by the conditionn1+n2 = k. Equation (12.2)
now becomes

δE

δn1
+ δE

δn2

δn2
δn1

= 0. (12.4)

We introduce the one-particle energies in the nucleus in a standard manner

ε1 = δE

δn1
= εm

1 + F11
11n1 + F11

22n2,

ε2 = δE

δn2
= εm

2 + F22
11n1 + F22

22n2. (12.5)

In this case, the equation for the minimum can be represented in the different form

ε1 = ε2. (12.6)
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The second variation of the energy functional E should be positive, which is
equivalent to the condition

F11
11 − 2F11

22 + F22
22 > 0.

For Fermi condensed state to exist, it should have the energy, which is lower then the
initial ground state E0. In other words, the difference ΔE between E0 and Hartree-
Fock energy is negative if both quantities

n1 = εm
2 − εm

1 + (F22
22 − F22

11 )k

F11
11 − 2F11

22 + F22
22

, n2 = εm
1 − εm

2 + (F11
11 − F22

11 )k

F11
11 − 2F11

22 + F22
22

(12.7)

are positive so that

ΔE = −
[
εm
1 − εm

2 + (F11
11 − F22

11 )k
]2

2
(
F11
11 − 2F11

22 + F22
22

) . (12.8)

The analysis can be easily extended to a larger number of levels εm
λ . The main

feature of the solution obtained is the forced “collapse” of all distances between
levels which lie on the Fermi surface. An example of this kind for a system with
infinite number of fermions is presented in [5]. It can be concluded from the above
that in the systems where the temperature T is low compared to the one-particle
levels splitting (so that there is no collisional damping of the states in the discrete
spectrum), the quasiparticle formalism along with (12.4) and (12.6) can be used to
describe the restructuring of the states at the Fermi surface. It is worth noting that it
has not been assumed anywhere in the analysis that the input parameters are small,
and if this is so, then the Landau Fermi-liquid approach is adequate to describe the
fermion condensate, while the Hartree-Fock method is not. Moreover, if the effective
interaction in the particle-particle channel is attractive, the above approach permits
to take into account correctly the contribution of pair correlations with BCS gap Δ.

To gainmore insight into FC scenario,we consider nowonemore schematicmodel
involving three neutron levels in an open shell of a spherical nucleus [7]. The levels
are denoted −, 0, and + in ascending order of energy, and the distance between
− and 0 and between 0 and + has the same value D. As usual, the SP energies
and wave functions ϕλ(r) = Rnl(r)Φjlm(n), are solutions of equation [p2/2M +
Σ(r, p)]ϕλ(r) = ελϕλ(r), whereΣ stands for the self-energy. In even-even spherical
nuclei, which have total angular momentum J = 0 due to pairing correlations, the
energies ελ are independent of the magnetic quantum number m associated with the
total SP angular momentum j. We suppose that the level − is filled, the level + is
empty, and N neutrons are added to the level 0, changing the density by δx(r) =
NR2

n0l0
(r)/4π . We assume that l− �= l0 �= l+ ∼ A1/3 � 1.

It is our goal here to explore the consequences of the dependence of the SP energies
ελ(n) on the distribution n. In what follows, we shall retain only a major, spin- and
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momentum-independent part of the self-energyΣ and a primary, δ(r)-like portion of
the Landau-Migdal interaction function f [1, 8, 9, 11]. Accordingly, we simplify the
LFL relation between Σ and the density x responsible for the variation of ελ(n) over
n to the form [1, 12] δΣ(r) = f [x(r)]δx(r). For the sake of simplicity, we define the
diagonal and nondiagonal matrix elements of f as follows

u =
∫

R2
nl(r)f [x(r)]R2

nl(r)r
2dr/4π , (12.9)

w =
∫

R2
nl(r)f [x(r)]R2

n1l1(r)r
2dr/4π , (12.10)

independently of the quantum numbers nl, n1l1.
A simple estimate of the ratio u/w is obtained using a semiclassical approximation

Rnl(r) ∼ r−1 cos
∫

p(r)dr, with the result u � 3w/2. We next observe that f (x) is
positive at densities close to equilibrium [1], but changes sign as x → 0; hence the
signs of u and w may depend on the quantum numbers of the SP levels in play.

Based on these results, the dimensionless shift ξk(N) = [εk(N) − εk(0)] /D for
k = 0,+,− is given by

ξ0(N) = n0U, ξ+(N) = n0W , (12.11)

where nk = Nk/(2jk +1) is the occupation number of level k,U = u(2j0+1)/D, and
W = w(2j0 + 1)/D. It is readily verified that if fpFM/π2 ∼ 1, where pF = √

2MεF

and εF is the Fermi energy, then the integral (12.10) has a value u � εF/A and
therefore |U| ∼ 1, since D ∼ εF/A2/3 in spherical nuclei.

According to (12.11), the distance ε+(N) − ε−(N) remains invariant when N
increases. On the other hand, the difference d+(N) = ε+(N)−ε0(N) decreases with
N when U > W > 0, as does the distance d−(N) = ε0(N) − ε−(N) in the opposite
case, U < W < 0.

Now let us determine what happens when the functions d±(N) change their signs
before SP level 0 is completely filled. We first examine the case U < W < 0.
According to (12.11), the sign of d−(N) changes at n0c = 1/(W − U), which
requires W −U to be greater than 1 to meet the restriction n < 1. The usual Hartree-
Fock scenario prescribes that for n0 > n0c, quasiparticles must leave the occupied
level− and resettle into the unfilled level 0. Further, when the dependence ελ = ελ(n)

from (12.11) is brought into the picture, this effect is seen to promote the Hartree-
Fock rearrangement.

In the opposite case, U > W > 0, the function d+(N) changes sign at n0c =
1/(U −W), implyingU −W > 1. In order to satisfy this inequality, the repulsive part
of the interaction f has to be sufficiently large, or else the scaleDmust be rather small.
Atn0 > n0c, theHartree-Fock scenario requires the quasiparticles to leave theunfilled
level 0 and move into the empty level +. Were this scenario the correct one, the
rearranged SP energies would obey the equations ε0(N) = ε0(Nc)+ δNc(w −u) and
ε+(N) = ε0(Nc) + δNc(u − w), where δNc is the number of quasiparticles shifted
from level 0 to level +. The δ term in each of these equations arises due to the
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feedback of the immigrating quasiparticles. Upon subtracting one equation from the
other, we find that ε+(N) − ε0(N) > 0 for any δNc > 0, which says that the level
+ lies above rather than below the level 0. We thus arrive at a contradiction that
excludes the Hartree-Fock scenario in the case U > W > 0.

Under these conditions, a new ground state must form, denoted henceforth by
Ms. As will now be shown, in the state Ms both of the levels 0 and + are partially
occupied. Solution of the problem for this case reduces to finding the minimum of
the relevant energy functional

E = ε0(0)N0 + ε+(0)N+ + 1

2

[
u(N2

0 + N2+) + 2wN0N+
]

(12.12)

with Nk = ∑
m nkm, through the variational conditions

δE

δn0m
= δE

δn+m1

= μ, for all m, m1, (12.13)

where μ is the chemical potential. Such a condition for characterization of a
rearranged ground state first appeared in [4, 13], where homogeneous Fermi sys-
tems were addressed, without attention to degeneracy of SP levels. Equation (12.13)
are conveniently rewritten as conditions for the coincidence of the SP energies ε0
and ε+,

ε0(N) = ε0(0) + N0u + N+w = μ ,

ε+(N) = ε+(0) + N0w + N+u = μ , (12.14)

which, at N > Nc = (2j0 + 1)/(U − W), yield

N0

N
= 1

2

(
1 + Nc

N

)
,

N+
N

= 1

2

(
1 − Nc

N

)
. (12.15)

Results of numerical calculations are plotted in Fig. 12.2, which consists of two
columns, each made up of three plots. The uppermost panels show the dimensionless
ratio d+(N) = (ε+(N)− ε0(N))/D. The middle and lower panels give, respectively,
the occupation numbers n0 and n+. Three different regimes can be seen. Two of them
showwell-defined SP excitations, and d+ �= 0. In the third regime, the energies of the
levels 0 and+ coincide at zero. Passage through the three regimes can be regarded as
a second-order phase transition, with the occupation number n+ treated as an order
parameter.

Inserting the above results into (12.12), we find

EM − EHF(N0 = 0, N+ = N) = −(u − w)(N − Nc)
2/4 < 0, (12.16)

thereby verifying that the Ms state, having occupation numbers 0 < n < 1 for both
of the levels 0 and +, has lower energy than any Hartree-Fock state. Significantly,
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Fig. 12.2 Top panels Dimensionless distance d+ = (ε+ − ε0)/D between levels + and 0 as a
function of the ratio x = N/(2j0 + 2j+ + 2). Middle and bottom panels Occupation numbers
nk for levels 0 and +. Input parameters: U = 4.0, W = 2.4. For the left column, the ratio r ≡
(2j0 + 1)/(2j+ + 1) = 2/3; for the right, r = 3.0 [7]

the difference (12.16) is of the same order as a typical shell correction δEs in heavy
magic nuclei. In such systems, the chemical potential μ lies in the large gap between
upper filled and lower unoccupied SP levels, while in the case of merging levels, μ
is located at the place where the density of states attains its maximum.

The SP levels remain merged until one of them is completely filled. If the level 0
fills first, as in the left column of Fig. 12.2, then under further increase of N , quasi-
particles fill the level +, signaling that the distance d+(N) again becomes positive.
This behavior resembles the repulsion of two levels of the same symmetry in quan-
tum mechanics, although here one deals with SP levels of different symmetry. In the
opposite case where level + becomes fully occupied before level 0, as in the right
column, the distance d+(N) becomes negative, and the two levels just cross each
other at this point.

In the nuclear many-body problem, both types of SP level degeneracy—either
initially present or arising in the scenario described above—are lifted when pairing
correlations are explicitly involved. The role of Dmin is played by the pairing gap



12.1 Finite Systems 223

Δ in the spectrum of SP excitations [14]. To illustrate this situation, we make BCS
calculations in the above two-level model, under the assurance that realistic pairing
forces are weak enough that the gap value remains smaller than the distance between
neighboring SP levels in magic nuclei.

This two-level BCS problem is set up and solved as follows. First we rewrite the
BCS gap equation as

Δ = gD
[√

n0(1 − n0) + √
n+(1 − n+)

]
. (12.17)

In doing sowehave followed a sometimes used approximation introducing a common
dimensionless pairing matrix element g = (2j +1)λεF/AD, λ being a dimensionless
pairing constant. A straightforward derivation, based on the BCS identity

4nk(1 − nk) = Δ2

ε2k + Δ2
, (12.18)

the definition ελ = δE/δnλ with E given by (12.12), and subtraction of one of Eqs.
(12.14) from the other, leads to the key relation

1 + (U − W)(N0 − N+) = Δ

D

[
R(n+) − R(n0)

]
,

R(nk) = sgn(1 − 2nk)

√
1

4nk(1 − nk)
− 1. (12.19)

The expression (12.19), along with obvious equalities Nk = nk(2jk + 1), form a
closed system determining the occupation numbers n0, n+ and the gap valueΔ. This
set of equations should be solved numerically; some results are reported in Fig. 12.3.
The inclusion of pairing correlations does indeed lift the degeneracy of the SP levels.
However, the lowest value Ek of the Bogoliubov quasiparticles energies remains
markedly less than D.

It is instructive to compare the structure of the pairing gap Δ in two cases: when
the above shrinkage of the distance between the SP levels + and 0 is taken into
account, and when it is not. In the latter case,Δ ∼ [nλ(1−nλ)]1/2 shows two humps
with a dip in between [14]. As it is seen in Fig. 12.3, the shrinkage effect fills in
the dip. This increases the part of the ground-state energy associated with pairing
correlations.

Let us now address the case 0 < w < u without pairing, existing for example
in atoms and quantum dots. In this case, a pair of particles added to any SP level
with l �= 0 always have total angular momentum J �= 0 (Hund’s rule), in principle
destroying spherical symmetry and lifting the m-degeneracy of the SP energies εkm.
This gives rise to spreading of the levels, the magnitudes of which are proportional
to u for the level 0, and w for the level +. If the interaction function f has long-range
character, we have u/w � 1, and hence the spread of level 0 is much larger than that
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Fig. 12.3 Top panels Pairing gap Δ (in units of D) plotted versus x = N/(2j0 + 2j+ + 2), both
accounting for the shrinkage of the inter-level distance (solid line) and neglecting it (dashed line).
Bottom panels Energies of Bogoliubov quasiparticles Ek = Δ/2 [nk(1 − nk)]1/2. Pairing constant:
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of level +. For the density δx associated with the added quasiparticles, we may write
δx(r) = R2

n0l0
(r)

∑
m |Φ2

j0l0m(n)|2n0m, which is applicable at least until the crossing
of relevant orbitals begins. Upon inserting this formula into the relation δΣ = f δx,
it is found that the spread does not affect the evolution of the centers of gravity
ε0k = ∑

m εkm/(2jk +1) of the levels, since the isotropic part of δx has the same form
δ0x = NR2

n0l0
(r)/4π as if the degeneracy of the SP level were still in effect. This

circumstance is especially important at the stage when the two families of SP levels
begin to cross each other. Since at 0 < w < u the center of the gravity of the level
+ gets stuck close to the Fermi surface, our results provide a simple mechanism for
pinning of the narrow bands in solids to the Fermi surface.

To exemplify this point, let us consider a model where the SP spectrum in local-
density approximation (LDA) is exhausted by (i) a wide band, which disperses
through the Fermi surface, and (ii) a narrow one, placed below the Fermi surface
at a distance Dn. We assume that only the diagonal matrix element fnn of the interac-
tion function f referring to the narrow band is significant, the others being negligible.
The shift δεn in the location of the narrow band due to switching on the intraband
interactions is given by a formula analogous to (12.11), namely δεn = fnnxn, where
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xn is the density of the band. If the correction δεn exceeds the distance Dn then
the Hartree-Fock scenario calls for the narrow band to be completely emptied; but
then the shift δεn must vanish. To eliminate this inconsistency, only a fraction of the
particles leave the narrow band, in just the right proportion to equalize the chemical
potentials of the two bands. The described feedback mechanism positions the narrow
band exactly at the Fermi surface, resolving a long-standing problem with the LDA
scheme.

In atoms, remnants of an accidental degeneracy of the Coulomb problem persist
in the formation of electronic shells for which the distance between SP levels with
different orbital momenta l is rather small. Recalling that matrix elements of the
electron-electron interaction are quite sensitive to the l value, mergence of some SP
levels cannot be excluded. To elucidate this situation, one needs to analyze the energy
functional E = ∑

εk(0)nkm + 1
2

∑
ukm,k1m1nkmnk1m1 , wherein the interaction matrix

ukm,k1m1 replaces the matrix element (12.10) and summation occurs over some states
of the last unfilled shell. In this case, the variational equations generalizing (12.13),
μ = εk(0) + ∑

ukm,k1m1nk1m1 , should be solved numerically.
The new many-body effect uncovered in the foregoing analysis resembles a pre-

viously studied fermion condensation, which involves wholesale mergence of SP
levels in homogeneous Fermi fluids [13, 15–17]. In any conventional homogeneous
Fermi liquid, e.g., liquid 3He [18], the momentum p of an added particle can be asso-
ciated with a certain quasiparticle. Similarly, in most spherical odd-A nuclei, the total
angular momentum J in the ground state is carried by an odd quasiparticle. In atomic
physics, the electronic configuration of ions of elements belonging to the principal
groups of the periodic table repeats that of preceding atoms. From the microscopic
perspective, in all such “open-shell” systems conforming to standard LFL theory,
the single quasiparticle term a+

λ Ψ0 assumes a special role in the ground-state wave
function, where Ψ0 represents the ground state of a parent system. By contrast, in
the case of merging of SP levels, the ground-state features a multitude of quasipar-
ticle terms and therefore exhibits a more complicated, yet more balanced character.
This implication of our analysis offers a qualitative explanation of the fact that the
chemical properties of rare-earth elements differ little, in spite of marked variation
in atomic numbers. In fact, a conventional explanation [19] based on resettling of
electrons into the collapsed 4f-orbital, framedwithin the Thomas-Fermi (TF)method
for the rare-earth elements having Z > 60, is flawed, because the TF self-consistent
field, being a universal function of Z, does not change in case quasiparticles reset-
tle from one SP level to another. However, proper accounting for the interaction
between resettling electrons within a more sophisticated Landau theory of Fermi
liquid demonstrates that the respective change of the self-consistent field exists, and
it is large enough to give rise to merging of the collapsed 4f -level with others in
the open shell and hence level the SP properties of different electron systems that
renders merging a complementary reason for the remarkable similarity of chemical
properties of rare-earth elements.

In spite of evident similarities, there is a crucial difference between the condi-
tions for the “level-mergence” phenomenon in homogeneous Fermi liquids and in
finite Fermi systems with the degenerate SP levels. In the former, the presence of
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a significant velocity-dependent component in the interaction function f is needed
to promote fermion condensation, while in the latter, SP levels can merge even if f
is momentum-independent. The reason for this difference is simple: in the homo-
geneous case, the matrix elements u and w are equal to each other, implying zero
energy gain due to the rearrangement when velocity-dependent forces are absent.
We emphasize that the study of level mergence in finite systems has the advantage of
transparency, in that (i) it is free of the complicated issue of SP excitations damping
[20, 21], and (ii) it gives access to the precursor stage of the effect.

12.2 Merging of Landau Levels in Two-Dimensional Electron
System in Silicon

Herewe exemplify themerging of discrete levels by two-dimensional electron system
in silicon. We show that the merging of the spin- and valley-split Landau levels at the
chemical potential is an intrinsic property of a strongly-interacting two-dimensional
electron system in silicon. Evidence for the level merging is given by available
experimental data.

In a non-interacting fermion system with continuous spectrum, the occupation prob-
ability for a quantum state at fixed chemical potential and temperature is a function
of the SP energy only [22]. If the temperature tends to zero, the energy interval sepa-
rating the filled and empty quantum states also tends to zero. For free particles there
appears a Fermi surface in momentum space with dimensionality d − 1, where d is
the dimensionality of the fermionic space.

In general, this reasoning is not true for interacting fermions [4, 10, 17, 23–26].
In this case the single-particle energy depends on electron distributions, and the
occupation numbers of quantum states at the chemical potential can be different,
falling within the range between zero and one. As it was demonstrated in Chaps. 3
and 4, in strongly correlated Fermi systems at T = 0, a topological phase transition,
related to the emergence of a flat portion of the single-particle spectrum ε(p) at the
chemical potential, has been predicted. This transition is associated with the band
flattening or swelling of the Fermi surface in momentum space, which is preceded
by an increasing quasiparticle effective mass m∗ that diverges at the quantum critical
point.

For an interacting fermion system with discrete spectrum, one expects a simi-
lar effect—the appearance of different fillings of quantum levels at the chemical
potential. Given the energies of two quantum levels intersect each other when vary-
ing an external parameter, these can be the same as the chemical potential over a
range of parameter values, i.e. the levels can merge at the chemical potential over
this range [6, 7]. The level merging implies that there is attraction between the two
partially-filled quantum levels. Themerging interval is determined by a possibility of
redistributing quasiparticles between the levels. It is clear that the effect of merging
is in contrast to the simple crossing of quantum levels at some value of the external
parameter, see Fig. 12.1.

http://dx.doi.org/10.1007/978-3-319-10825-4_3
http://dx.doi.org/10.1007/978-3-319-10825-4_4
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Here, we show that the merging of the spin- and valley-split Landau levels at
the chemical potential can be detected near the quantum critical point in a clean
strongly-interacting two-dimensional (2D) electron system in (100) silicon [27]. In
this electron system subjected to perpendicular magnetic fields, each Landau level
is split into four quantum levels due to the spin and valley splitting. It has been
experimentally observed that the Shubnikov-de Haas quantum oscillation minima
at filling factor ν = 4i + 4 (where i = 0, 1, 2, . . .) disappear below some electron
density n∗ depending on ν, while the minima at ν = 4i +2 persist down to apprecia-
bly lower densities [28]. Although this behavior is consistent with the sharp increase
of the effective mass with decreasing electron density ns [29], the dependence of the
density n∗ on filling factor (or magnetic field) turns out to be anomalously strong
and lacks explanation. We find that the anomalous behavior of the density where
ν = 4i + 4 oscillation minima vanish is described within the merging picture. This
gives evidence for the level merging in a 2D electron system in silicon.

Imposition of the perpendicular magnetic field B on a homogeneous 2D electron
system is known to create two subsystems of Landau levels numbered i and dis-
tinguished by ± projections of the electron spin on the field direction. The valley
degeneracy is neglected for the sake of simplicity. The energy levels ε±

i in each set
are spaced by the cyclotron splitting �ωc = �eB/m∗c, and the two sets of the Lan-
dau levels are shifted with respect to each other by the spin splitting ΔZ = gμBB,
where m∗ and g are the values of mass and Lande factor renormalized by electron
interactions and μB = e�/2mec is the Bohr magneton, and me is an electron mass.
Disregarding the anti-crossing effects, theLandau levelswith opposite spin directions
should intersect with changing electron density, as caused by the strong dependence
of the effective mass on ns, provided the g factor depends weakly on ns. In particular,
at high electron densities the cyclotron splitting usually exceeds the spin splitting,
whereas at low densities the opposite case �ωc < ΔZ should occur due to the sharply
increasing mass. Below, we obtain conditions when the level merging is possible.

Provided that the external magnetic field is fixed and weak, many quantum levels
are occupied and the variation of the electron density in a quantum level is small
compared to ns. The variation of the energy ελ is evaluated using the Landau relation

δελ =
∑
σ

Γλσ δnσ , (12.20)

where Γλσ is the electron-electron interaction amplitude that is a phenomenological
ingredient of the Fermi liquid theory. Selecting the magnetic field at which the
difference between the neighboring Landau levels ε+

i and ε−
i+1

D = ε+
i − ε−

i+1 = ΔZ(ns, B) − �ωc(ns, B) (12.21)

zeroes at the filling factor ν = nshc/eB = 2i + 2, we start from the higher density
where both levels (i+1)− and i+ are completely filled at ν = N = 2i+3, the differ-
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enceD(N) being negative. Removing the electrons from the level (i+1)− implies that
the electron density decreases and D increases. The above Landau relation reduces
to the set

ε+
i − ε+

i (N) = −(N − ν)n0Γ
+−

i,i+1,

ε−
i+1 − ε−

i+1(N) = −(N − ν)n0Γ
−−

i+1,i+1, (12.22)

where λ, σ = i+, (i + 1)− in the first equation, λ, σ = (i + 1)−, (i + 1)− in the
second one, and n0 = eB/hc is the level degeneracy. Upon subtracting the second
equation from the first, one has

ε+
i − ε−

i+1 = D(N) + (N − ν)n0(Γ
−−

i+1,i+1 − Γ +−
i,i+1). (12.23)

The distance between the two levels vanishes as the level (i + 1)− becomes empty,
which corresponds to the relation

|D(N)| = n0(Γ
−−

i+1,i+1 − Γ +−
i,i+1). (12.24)

Let us presume that at ν = 2i + 2 the level crossing occurs, i.e. the level i+
becomes empty and the level (i + 1)− is completely filled. Then, the set of (12.22)
should be replaced by

ε−
i+1 − ε−

i+1(N) = −(N − ν)n0Γ
−+

i+1,i

ε+
i − ε+

i (N) = −(N − ν)n0Γ
++

i,i (12.25)

to yield

ε+
i − ε−

i+1 = D(N) + (N − ν)n0(Γ
−+

i+1,i − Γ ++
i,i ). (12.26)

Equations (12.23) and (12.26) are compatible with each other, favoring the level
crossing, under the condition Γ (i) = (Γ −−

i+1,i+1 − Γ +−
i,i+1) − (Γ −+

i+1,i − Γ ++
i,i ) ≤ 0.

In the opposite case

Γ (i) > 0 (12.27)

the single-particle levels attract to each other and merge at the chemical potential μ,
as described by the merging equation ε−

i+1 = ε+
i = μ. Both levels exhibit partial

occupation with fractions of empty states 0 < f i < 1 and 0 < f i+1 < 1 that obey
the normalization condition f i + f i+1 = f = N − ν. These fractions are determined
from the set of equations

ε−
i+1 − ε−

i+1(N) = −n0(f i+1Γ
−−

i+1,i+1 + f iΓ
−+

i+1,i)

ε+
i − ε+

i (N) = −n0(f i+1Γ
+−

i,i+1 + f iΓ
++

i,i ) (12.28)
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which yields

ε+
i − ε−

i+1 = D(N) + f i+1n0(Γ
−−

i+1,i+1 − Γ +−
i,i+1)

+f in0(Γ
−+

i+1,i − Γ ++
i,i ). (12.29)

Using the merging equation and the normalization condition, we find

f i = (f − 1)(Γ −−
i+1,i+1 − Γ +−

i,i+1)

Γ (i)

f i+1 = f − (f − 1)(Γ −−
i+1,i+1 − Γ +−

i,i+1)

Γ (i)
. (12.30)

The merging starts when the empty states appear in the level ε+
i and ends when

this level is completely emptied. This corresponds to the increase of the fraction
of empty states f in the range between f = 1 (or ν = 2i + 2) and f = min(1 +
Γ (i)/(Γ −−

i+1,i+1 − Γ +−
i,i+1), 2). Outside the merging region, the conventional Landau

level diagram is realized. Note that the gap between the neighboring Landau levels
ε+

i and ε−
i+1 proves to be invisible in transport and thermodynamic experiments. The

upper boundary of the merging region nm(B) is written

�ωc − ΔZ = 0. (12.31)

Below, we compare the results of the calculations with the experimental data
obtained in a strongly-interacting 2D electron system in (100) silicon. This electron
system is characterized by the presence of two valleys in the spectrum so that each
energy level ε±

i is split into two levels, as shown schematically in Fig. 12.4. One can
easily see that the valley splitting Δv promotes the merging of quantum levels. The
bigger the valley splitting, the higher the electron density at which the levels (i+1)−
and i+ with different valley numbers should merge at the chemical potential at filling
factor ν = 4i + 4. The upper boundary of the merging region nm(B) is determined
by the relation

�ωc − ΔZ − Δv = 0, (12.32)

which is different from (12.31) by the presence of the valley splitting. Since the
electron density distributions corresponding to two valleys are spaced by distance α

in the direction perpendicular to the Si-SiO2 interface, the intervalley charge transfer
creates an incremental electric field. In accordance with (12.29), we get (Γ −−

i+1,i+1 −
Γ +−

i,i+1) = (Γ ++
i,i −Γ −+

i+1,i) and Γ (i) = 4πe2α/κd , where κd is the dielectric constant.

Although the distance α ∼ 0.4 Å is small compared to the thickness of the 2D
electron system which is about 50 Å at densities ns ≈ 1 × 1011 cm−2 [30], the
estimated interaction energy n0Γ (i) ∼ 0.02 meV at B ≈ 1 T is comparable with
the valley splitting Δv ≈ 0.06 meV. The value of Δv is calculated using the known
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Fig. 12.4 Schematic diagram of merging of the spin- and valley-split Landau levels at the chemical
potential. The occupied levels are indicated by spheres. The fillings of the two quantum levels at
the chemical potential vary with changing electron density

formula Δv ≈ 0.015(ns + 32ndepl/11) meV, where ndepl ≈ 1 × 1011 cm−2 is the
depletion layer density and the densities are in units of 1011 cm−2 [30]. The strength
of themerging effect being obviously determined byΓ (i), the appreciable interaction
energy should lead to a wide merging region.

In the high-density limit, where the effect of electron-electron interactions is neg-
ligible, the effective mass m∗ and g factor are equal to mb = 0.19me and g0 = 2 so
that the cyclotron splitting significantly exceeds the spin splitting. At low electron
densities, where the interaction effects are strong, the effective mass m∗(ns) is found
to diverge as mb/m∗ � (ns − nc)/nc at the quantum critical point close to the metal-
insulator transition which occurs at nc � 8 × 1010 cm−2, while the g factor stays
close to g0 [31–35]. The Landau level fan diagram for this electron system in perpen-
dicular magnetic fields is represented in Fig. 12.5. The quantum oscillation minima
at filling factor ν = 4i + 4 disappear below some electron density n∗ depending
on ν, while the minima at ν = 4i + 2 persist down to appreciably lower densities
[28]. Although this behavior is consistent with the sharp increase of the effective
mass with decreasing ns, the dependence of the density n∗ on filling factor (or B)
turns out to be anomalously strong and lacks explanation. Particularly, this cannot
be accounted by the impurity broadening of quantum levels in terms of ωcτ ∼ 1
(where τ is the elastic scattering time) in which case the drop of mobility eτ/m∗ at
low electron densities is controlled by the increasing mass [29].

Using the above expressions form∗ andΔv and g = g0,we determine from (12.32)
the expected upper boundary of the merging region nm(B), shown by the solid blue
line in Fig. 12.5. The calculated boundary is in agreement with the experimental
density n∗(B) where the oscillation minima at ν = 4i + 4 vanish. This fact gives
evidence for the level merging in a 2D electron system in silicon.
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Fig. 12.5 Positions of the Shubnikov-de Haas oscillation minima in the (B, ns) plane (squares) and
the expected positions of the cyclotron and spin minima calculated according to the formula ns =
νeB/hc (solid lines). The position of the metal-insulator transition, befalling at nc � 8×1010 cm−2,
in B = 0 is indicated by the horizontal dash line. The calculated merging boundary nm(B) is shown
by the solid blue line for β = 0 and the dotted violet line for β = 1 in (12.35). This makes sense at
filling factor ν = 4i + 4

We now discuss the possibility that the description of the high-field data n∗(B)

improves within the merging picture if one takes account of nonlinear (cubic) cor-
rections to the spectrum ε(p) near the Fermi surface that lead naturally to a decrease
of the effective mass with magnetic field. The cubic corrections should be important
near the quantum critical point since the linear term is strongly suppressed, and the
spectrum takes the form

ε(p) − μ = pF(p − pF)

m∗ + β
(p − pF)3

3mbpF
, (12.33)

where pF = �(πns)
1/2 is the Fermi momentum and β > 0 is a coefficient. The cubic

correction corresponds to an additional term in the single-particle Hamiltonian in
magnetic fields. According to textbook rules, this term is written
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Hadd = β

[
(p−eA/c)2−p2F

]3
24mbp4F

, (12.34)

where A is the vector potential. The resulting correction to the spectrum leads to a
modification of (12.32) that describes the upper boundary of the merging region. The
corrected equation reads

�ωc − ΔZ − Δv = −β
(eB)3

3mb�c3(πnm)2
. (12.35)

Apparently, the right hand side of (12.35) can be important at high magnetic fields.
Assuming that the coefficient β = 1, we estimate the influence of the correction
and determine the corrected dependence nm(B), shown by the dotted violet line in
Fig. 12.5. One concludes that the experimental data for the density n∗(B) at which
the oscillation minima at ν = 4i + 4 disappear can be even better described within
the concept of merging by taking into account cubic corrections to the spectrum at
the Fermi surface near the quantum critical point.
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Chapter 13
Asymmetric Conductivity of Strongly
Correlated Compounds

Abstract In this chapter, we show that the FC solutions for distribution function
n0(p) generate NFL behavior, and violate the particle-hole symmetry inherent in
LFL. This, in turn, yields dramatic changes in transport properties of HF metals,
particularly, the differential conductivity becomes asymmetric. As it is demonstrated
in Sect. 3.1, Fermi quasiparticles can behave as Bose one. Such a state is viewed
as possessing the supersymmetry (SUSY) that interchanges bosons and fermions
eliminating the difference between them. In the case of asymmetrical conductivity it
is the emerging SUSY that violates the time invariance symmetry. Thus, restoring one
important symmetry, the FC state violates another essential symmetry. As is shown
in Sect. 5.3, the LFL behavior is restored under the application of magnetic field.
Therefore,we expect that inmagnetic fields SUSY is violated and the asymmetric part
of the differential conductivity is suppressed. Scanning tunneling microscopy and
point-contact spectroscopy closely related to the Andreev reflection are sensitive to
both the density of states and the probability of the population of quasiparticle states
determined by the function n(p, T ) [1, 2]. Thus, the above experimental techniques
are ideal tools for studying specific features of the NFL behavior of HF metals and
high-Tc superconductors.

13.1 Normal State

The tunnelling current I flowing through a point contact of two ordinary metals
is proportional to the applied voltage V and to the square of the modulus of the
quantum mechanical transition interaction t . This is to be multiplied by the quan-
tity N1(0)N2(0)(n1(p, T ) − n2(p, T )) [3], where N1(0) and N2(0) are the densi-
ties of states of the metals 1 and 2 and n1(p, T )) and n2(p, T )) are, respectively,
the distribution functions of these metals. On the other hand, in the semiclassical
approximation, the wave function that determines the interaction t is proportional to
(N1(0)N2(0))−1/2. Therefore, the density of states cancels down in the final result
and the tunnel current becomes independent of N1(0)N2(0). Because the distribution
n(p, T → 0) → θ(pF − p) as T → 0, where θ(pF − p) is the step function, it can
be verified that the differential tunnel conductivity σd(V ) = d I/dV is a symmetric
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or even function of V in the LFL theory. Actually, the symmetry of σd(V ) is obeyed
if there is the (quasi)particle-hole symmetry, which is always present in the LFL
theory. Hence, the fact that σd(V ) is symmetric is obvious and natural in the case of
metal-metal contacts for ordinary metals that are in the normal or superconducting
state.

We study the tunnelling current at low temperatures, which for ordinary metals is
given by the expression [1, 3]

I (V ) = 2|t |2
∫

[n(ε − V ) − n(ε)] dε. (13.1)

Here we use again the atomic system of units e = m = � = 1 and normalize
the transition interaction to unity, |t |2 = 1. Since the temperatures are low, we can
approximate the distribution function n(ε) by the step function θ(μ−ε). Then, (13.1)
yields I (V ) = a1V so that the differential conductivity σd(V ) = d I/dV = a1 =
const is a symmetric function of the applied voltage V .

To examine quantitatively the behaviour of the asymmetric part of the conductivity
σd(V ), we differentiate both sides of (13.1) with respect to V . The result is the
following equation for σd(V ):

σd = 1

T

∫
n[ε(z) − V, T ][1 − n(ε(z) − V, T )]∂ε

∂z
dz, (13.2)

We use the dimensionless momentum z = p/pF instead of ε in the integrand of
(13.2), since for strongly correlated electron liquid n is no longer a function of ε.
This is because for the latter case the energy-momentum dependence is no more
linear (see panel a of Fig. 13.1), so that the proper dependence is upon momentum.
Namely, the variable ε in the interval (p f − pi ) is equal toμ so that the quasiparticle
distribution function varieswithin this interval. It is seen from (13.2) that the violation
of the particle-hole symmetry makes σd(V ) to be asymmetric as a function of the
applied voltage V [4–7].

The single particle energy ε(k, T ) shown in Fig. 13.1a and the corresponding
n(k, T ) shown in the panel b evolve from the FC state characterized by n0(k, T = 0)
determined by the equation

δE

δn(p)
= ε(p) = μ; pi ≤ p ≤ p f . (13.3)

The momenta pi = ki pF and p f = k f pF are shown in Fig. 13.1a. It is seen from
Fig. 13.1a, that at elevated temperatures the dispersion ε(k, T ) becomes steeper, since
the effective mass M∗(T ) diminishes, as it is seen from (3.12). At the Fermi level
ε(p, T ) = μ, then from (2.5) the distribution function n(p, T ) = 1/2. The vertical
line in Fig. 13.1, crossing the distribution function at the Fermi level, illustrates
the asymmetry of the distribution function with respect to the Fermi level at T =
0.0001EF . It is clearly seen that the FC state strongly violates the particle-hole
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(a)

(b)

Fig. 13.1 The single particle energy ε(k, T ) (a) and the distribution function n(k, T ) (b) at finite
temperatures as functions of the dimensionless variable k = p/pF . The arrows show temperature
measured in the units of EF . At T = 0.0001EF the vertical line shows the position of the Fermi level
EF , at which n(k, T ) = 0.5 as depicted by the horizontal line. At T → 0, the single particle energy
ε(k, T ) becomes more flat in the range (p f − pi ) so that the distribution function n(k, T ) becomes
more asymmetrical with respect to the Fermi level EF , generating the particle-hole asymmetry
related to the NFL behavior. To illuminate the asymmetry at T = 0.01EF , the area bounded by the
short dash lines and occupied by holes is marked by “h”, and the area bounded by the lines and
occupied by quasiparticles is marked by “p”

symmetry at decreasing temperatures.As a result, at low temperatures the asymmetric
part of the differential conductivity becomes larger. On the hand, this state is viewed
as the state possessing SUSY that interchanges bosons and fermions, and eliminates
the difference between them, see Sect. 3.1. Thus, the asymmetrical conductivity is
induced by the emerging SUSY, accompanying by the violation of the time invariance
symmetry. Under the application of magnetic fields the system transits to the LFL
state that strongly supports the particle hole symmetry, and violates SUSY.Therefore,
the application of magnetic fields restoring the symmetry suppresses the asymmetric
part of the differential conductivity.

Fairly simple transformations of (13.2) generate the following form for the asym-
metric part of the differential conductivity

Δσd(V ) = 1

2
[σd(V ) − σd(−V )]. (13.4)

http://dx.doi.org/10.1007/978-3-319-10825-4_3
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Its explicit form yields

Δσd(V ) = 1

2

∫
α(1 − α2)[

n(z, T ) + α[1 − n(z, T )]
]2

× ∂n(z, T )

∂z

1 − 2n(z, T )[
αn(z, T ) + [1 − n(z, T )]

]2 dz, α = exp(−V/T ).

(13.5)

Asymmetric tunnelling conductivity can be observed in themeasurements involv-
ingmetals, whose electron system is located near FCQPTor behind it. High-Tc super-
conductors and HF compounds like YbRh2 (Si0.95 Ge0.05)2, CeCoIn5, YbCu5−xAlx
or YbRh2Si2 are among such metals. The measurements should be done when the
HF metal is in the superconducting or normal state. If the metal is in its normal
state, the measurements of Δσd(V ) can be done in a magnetic field B > Bc0 at
temperatures T ∗(B) < T ≤ T f or in a zero magnetic field at temperatures higher
than the corresponding critical temperature, when the electron system is in the para-
magnetic state and its properties are determined by the entropy S0. We note here that
very often the experimentally measurable quantity is conductance (the characteris-
tic of a specific sample) rather than conductivity, which is conductance multiplied
by length and divided by cross-sectional area of a sample. Since in our theoretical
considerations, the above length and cross-sectional area are kept constants, here we
do not make a difference between conductance and conductivity. However, in the
plots, related to experiment, we mention conductance as the quantity which has been
actually measured.

We now derive an approximate expression to analyze the asymmetric part of the
differential conductivity. It follows from (13.5) that for small V , the asymmetric part
behaves as Δσd(V ) ∝ V . We note here that the asymmetric part of the tunnelling
conductivity is an odd function of V , Δσd(−V ) = −Δσd(V ). The natural unit for
measuring voltage is 2T as this quantity determines the characteristic energy for FC,
as shown by (3.14). Actually, the asymmetric part should be proportional to the size
(p f − pi )/pF of the region occupied by FC:

Δσd(V ) � c1
V

2T

p f − pi

pF
� c

V

2T

S0
xFC

. (13.6)

where S0/xFC ∼ (p f − pi )/pF is the temperature-independent part of the entropy
[see (8.2)] and c1 is a constant of the order of unity. For instance, calculations of
c1 with the distribution function displayed in Fig. 16.1 yield c ∼ 1. From (13.6)
we see that when V � 2T and FC occupies a sizable part of the Fermi volume,
(p f − pi )/pF � 1, the asymmetric part becomes comparable to the differential
tunneling conductivity Δσd(V ) ∼ Vd(V ).

http://dx.doi.org/10.1007/978-3-319-10825-4_3
http://dx.doi.org/10.1007/978-3-319-10825-4_8
http://dx.doi.org/10.1007/978-3-319-10825-4_16
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Fig. 13.2 Measured differential conductivity σd (V ) of point contacts Au/CeCoIn5. The curves
σd (V ) are displaced along the vertical axis by 0.05. The conductivity is normalized to its value at
V = −2mV. The asymmetry becomes noticeable at T < 45K and increases as the temperature
decreases [8]

Figure13.3a shows the results of calculations of the asymmetric part Δσd(V )

of the conductivity σd(V ) obtained from (13.5) [5]. In calculating the distribution
function n(z, T ), we used the functional (6.17) with parameters β = 3 and g = 8.
In this case, (p f − pi )/pF � 0.1. Figure13.3a also shows that the asymmetric part
Δσd(V ) of the conductivity (conductance) is a linear function ofV for small voltages.
Consistent with the Fig. 16.1 showing that the asymmetry of n(k, T ) diminishes at
elevated temperatures, the asymmetric part decreases with increasing temperature,
which agrees with the behavior of the experimental curves in the panel b of Fig. 13.3.
It is seen Fig. 13.3a, that (13.5) is in accordance with calculation based on (13.5): At
low voltage the asymmetric conductance exhibits a linear dependence as a function
of the voltage.

Recent measurements of the differential conductivity in CeCoIn5 carried out by
the point-contact spectroscopy technique [8] have clearly revealed its asymmetry in
the superconducting (Tc = 2.3K) and normal states. Figure13.2 shows the results
of these measurements. It is seen from Fig. 13.3b, that Δσd(V ) is nearly constant
when the HF metal is in the superconducting state, experiencing no substantial vari-
ation near Tc, see also Fig. 13.7. Then it monotonically decreases as the temperature
increases. Such a behavior of Δσd(V ) is related to the constancy of the effective
mass at T ≤ Tc, as it is discussed in Sect. 5.1.2. We pay attention to the fact that in
the superconducting phase of CeCoIn5 with T ≤ Tc = 2.3K the asymmetric con-
ductivity does not depend on temperature, see (13.9). Moreover, this independence

http://dx.doi.org/10.1007/978-3-319-10825-4_6
http://dx.doi.org/10.1007/978-3-319-10825-4_16
http://dx.doi.org/10.1007/978-3-319-10825-4_5
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Fig. 13.3 Asymmetric
conductance in CeCoIn5.
Panel a presents the
asymmetric conductance
Δσd (V ) as a function of V/μ

for three normalized
temperatures T/μ. Panel b
shows the asymmetric
conductance extracted from
the data in Fig. 13.2. At
T ≤ Tc (Tc = 2.3 K is the
superconducting phase
transition temperature) the
conductance (and
conductivity) becomes
temperature independent

(a)

(b)

continues at T ≥ Tc K. Such a behavior suggests that there is the pseudogap in
CeCoIn5, resembling that of high-Tc superconductors. If we assume that there is
the pseudogap, then we expect that Δσd(V ) remains approximately constant in the
pseudogap state. It is seen from Fig. 13.3b, that Δσd(V ) is constant at T ≤ 2.6K,
that is notably higher than Tc. This observation shows the existence of the pseudogap
state in the HF compound CeCoIn5. Thus, the study of the asymmetrical conductivity
can be helpful in revealing the pseudogap state.

13.1.1 Suppression of the Asymmetrical Differential Resistance
in YbCu5−xAlx in Magnetic Fields

Now we consider the asymmetric part of the differential conductivity Δσd(V ) under
the application of magnetic field B. Obviously, the differential conductivity being
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a scalar should not depend on the current I direction. Thus, the non-zero value of
Δσd(V ) manifests the violation of the particle-hole symmetry on a macroscopic
scale. As we have seen in Sects. 5.3 and 6.1, at sufficiently low temperatures T <

T ∗(B), the application of a magnetic field B > Bc0 leads to restoration of the LFL
behavior eliminating the particle-hole asymmetry, and therefore the asymmetric part
of the differential conductivity disappears [5, 6]. This prediction coincides with the
experimental data on the differential resistance dV/d I (V ) under the application of
magnetic fields in YbCu5−xAlx [9]. Representing the differential resistance as the
sum of its symmetric dV/d I s(V ) and asymmetric parts dV/d I as(V ),

dV

d I (V )
= dV

d I s(V )
+ dV

d I as(V )
,

we obtain the equation

Δσd(V ) � − dV/d I as(V )

[dV/d I s(V )]2 . (13.7)

To derive (13.7), we have assumed that dV/d I s(V ) 	 dV/d I as(V ). Figure13.4
[9] shows the temperature evolution of the symmetric dV/d I s(V ) (a) and the asym-
metric (b) dV/d I as(V ) parts at zero value of the applied magnetic field. Also, the
symmetric part does not showadecrease inρ(T ), while the asymmetric one decreases
at with growth of temperatures [9]. It is seen from Fig. 13.4 that the behavior of the
asymmetric part of the differential resistance given by (13.6) and (13.7) is in accord
with the experimental data. It is seen from Figs. 13.4 and 13.5 that the asymmetric
part shows a linear behavior as a function of the voltage below about 1 mV [9], just
as it was predicted in [5].

One can see fromFig. 13.5 [9] thatwith increase ofmagnetic fields the asymmetric
part is suppressed. Thus, the application ofmagnetic fields destroys theNFLbehavior
and recovers both the LFL state and the particle-hole symmetry. We conclude that
the particle-hole symmetry is macroscopically broken in the absence of applied
magnetic fields, while the application of magnetic fields restores both the particle-
hole symmetry and the LFL state. We note that the violation of the particle-hole
symmetry makes broken the T-symmetry, that is the symmetry of physical laws
under a time reversal transformation, as it is discussed in Chap. 16.

13.2 Superconducting State

Tunnel conductivity may remain asymmetric as a high-Tc superconductor or a HF
metal passes into the superconducting state from the normal one. The reason is that
the function n0(p) again determines the differential conductivity. As we have seen in
Sect. 5.1, n0(p) is inessential distorted by the pairing interaction. This is because the
latter interaction is weaker than the Landau one, which shapes the distribution func-
tion n0(p). Hence, the asymmetric part of the conductivity remains almost unchanged

http://dx.doi.org/10.1007/978-3-319-10825-4_5
http://dx.doi.org/10.1007/978-3-319-10825-4_6
http://dx.doi.org/10.1007/978-3-319-10825-4_16
http://dx.doi.org/10.1007/978-3-319-10825-4_5
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(a)

(b)

Fig. 13.4 Characteristic temperature behavior of a symmetric dV/d I s(V ) and b asymmetric
dV/d I as(V ) parts of dV/d I (V ) for heterocontact YbCu3.5Al1.5 − Cu at B = 0 and different
temperatures shown by the arrows. The inset shows the bulk resistivity ρ(T ) of YbCu3.5Al1.5 [9]

for T ≤ Tc, which agrees with the experimental results, see Fig. 13.2. In calculating
the conductivity using the results of tunnellingmicroscopymeasurements, we should
keep in mind that the density of states of a superconductor

NS(E) = N (ε − μ)
E√

E2 − Δ2
(13.8)
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Fig. 13.5 Characteristic magnetic-field behavior of the asymmetric part dV/d I as(V ) of the dif-
ferential conductivity versus magnetic fields. The values of the field are displayed in the legends
for heterocontacts with different x = 1.3, 1.5, and 1.75 at 1.5K [9]

determines the conductivity, which is zero for E ≤ |Δ|, see, e.g., [10–12]. Here, E
is the quasiparticle energy given by (5.5), and ε − μ = √

E2 − Δ2. Equation (13.8)
implies that the tunnel conductivity may be asymmetric, if the density of states in the
normal state N (ε) is asymmetric with respect to the Fermi level [13], which is the
case for strongly correlated Fermi systems with FC. Our calculations of the above
density of states based onmodel functional (6.17) (with the same parameters as those
used in calculating Δσd(V ) shown in Fig. 13.3) corroborate this conclusion.

Figure13.6 depicts the results of the calculated density of states N (ξ, T ). It is seen
that N (ξ, T ) is strongly asymmetric with respect to the Fermi level. If the system

http://dx.doi.org/10.1007/978-3-319-10825-4_5
http://dx.doi.org/10.1007/978-3-319-10825-4_6
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Fig. 13.6 Density of states N (ξ, T ) as a function of ξ = (ε − μ)/μ. N (ξ, T ) is calculated for
three values of the temperature T , normalized to μ

is in the superconducting state, the normalized temperature listed in the legend, can
be related to Δ1. With Δ1 � 2Tc, we find that 2T/μ � Δ1/μ. Since N (ξ, T ) is
asymmetric, the first derivative ∂ N (ξ, T )/∂ξ is finite at the Fermi level, and the
function N (ξ, T ) can be written as N (ξ, T ) � a0 + a1ξ for small values of ξ . The
coefficient a0 contributes nothing to the asymmetric part. Obviously, the value of
Δσd(V ) is determined by the coefficient a1 ∝ M∗(ξ = 0). In turn, M∗(ξ = 0) is
determined by (5.8). As a result, (13.6) assumes the form

Δσd(V ) ∼ c1
V

|Δ|
S0

xFC
, (13.9)

because (p f − pi )/pF � S0/xFC , the energy E is replaced by the voltage V , and
ξ = √

V 2 − Δ2. The entropy S0 here refers to the normal state of a heavy-fermion
metal.

Actually, (13.9) coincideswith (13.6) ifwe have inmind the fact that the character-
istic energy of the superconducting state is determined by (5.9) and is temperature-
independent. In studies of the universal behavior of the asymmetric conductivity,
(13.9) has proven to be more convenient than (13.8). It follows from (13.6) and
(13.9) that the measurements of the transport properties, for instance, the asymmet-
ric part of the conductivity, allow the determination of the thermodynamic properties
of the normal phase that are related to the entropy S0. Equation (13.9) clearly shows
that the asymmetric part of the differential tunnelling conductivity becomes com-
parable to the differential tunnelling conductivity at V ∼ 2|Δ| if FC occupies a
substantial part of the Fermi volume, (p f − pi )/pF � 1. In the case of the d-wave
symmetry of the gap, the right-hand side of (13.9) must be averaged over the gap
angular distribution Δ(φ). This simple procedure amounts to redefining the gap size

http://dx.doi.org/10.1007/978-3-319-10825-4_5
http://dx.doi.org/10.1007/978-3-319-10825-4_5
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Fig. 13.7 Temperature dependence of the asymmetric parts Δσd (V ) of the conductance spectra
extracted from measurements on CeCoIn5 [8]. The temperatures are in the box and shown by
the arrow for T ≤ 2.60K. Otherwise, the higher temperatures are given by numbers near the
corresponding curves

or the constant c1. As a result, (13.9) can also be applied when V < Δ1, where Δ1
is the maximum size of the d-wave gap [6]. For the Andreev reflection [1–3], where
the current is finite for any small V , (13.9) also holds for V < Δ1 in the case of the
s-wave gap.

It is seen from Fig. 13.7 that the asymmetric part Δσd(V ) of the conductivity
remains the same up to temperatures of about Tc, and persists up to temperatures
well above Tc. At small voltages the asymmetric part is a linear function of V and
starts to diminish at T ≥ Tc. It follows from Fig. 13.7 that the above description of
the asymmetric part based on (13.6) and (13.9) coincides with the the experimental
data for CeCoIn5.

Low-temperature tunneling microscopy and spectroscopy measurements have
been used in [14] to detect an inhomogeneity in the electron density distribution
in Bi2Sr2CaCu2O8+x. This inhomogeneity manifests itself as spatial variations in
the local density of states in the low-energy part of the spectrum and in the size of the
superconducting gap. The inhomogeneity observed in the integrated local density of
states is not caused by impurities but is inherent in the system. Observation facilitates
relating the integrated local density of states to the concentration x of local oxygen
impurities.

Spatial variations in the differential tunneling conductivity spectrum are reported
in Fig. 13.8. Clearly, the latter conductivity is highly asymmetric in the supercon-
ducting state of Bi2Sr2CaCu2O8+x. The differential tunneling conductivity shown in
Fig. 13.8 may be interpreted as measured at different values ofΔ1(x) but at the same
temperature, which allows studying the Δσd(V ) dependence on Δ1(x). Figure13.9
shows the asymmetric conductivity diagrams obtained from the data in Fig. 13.8.
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Fig. 13.8 Spatial variation of the differential tunnelling conductance spectra of the
Bi2Sr2CaCu2O8+x. Lines 1 and 2 belong to regions where the integrated local density of states
is very low. Low differential conductivity and the absence of a gap show that we are dealing with an
insulator. Line 3 corresponds to a large gap (65meV) with mildly pronounced peaks. The integrated
value of the local density of states for curve 3 is small, but is higher than that for lines 1 and 2. Line
4 corresponds to a gap of about 40meV, which is close to the average value. Line 5 corresponds to
the maximal integrated local density of states and the smallest gap of about 25meV. Also, it has
two sharp coherent peaks [14]

Fig. 13.9 The asymmetric part Δσd (V ) of the differential tunneling conductance in the high-
Tc superconductor Bi2Sr2CaCu2O8+x. The corresponding values are extracted from the data in
Fig. 13.8, and are presented as a function of the voltage V (mV). The lines numbering is consistent
with that in Fig. 13.8
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Fig. 13.10 Temperature dependence of the asymmetric part Δσd (V ) of the conductivity spectra.
The data are obtained in measurements on YBa2Cu3O7−x/La0.7Ca0.3MnO3 by the contact spec-
troscopy method; the critical temperature Tc � 30K [15]

Clearly, for small voltages, Δσd(V ) is a linear function of V consistent with (13.9)
and the slope of the respective straight lines Δσd(V ) is inversely proportional to the
gap size Δ1.

Figure13.10 reports the variation of the asymmetric part Δσd(V ) with the tem-
perature increase. The measurements have been performed on YBa2 Cu3O7−x /
La0.7Ca0.3MnO3 with Tc � 30K [15]. It is seen that at T < Tc � 30K, the asym-
metric part Δσd(V ) depends on temperature only weakly in the region of the linear
V -dependence. Such behavior agrees with (13.9). At T > Tc the slope of the straight
parts of Δσd(V ) dependence decreases with temperature increase. This behavior is
described by (13.6). We conclude that the description of the universal behavior of
Δσd(V ) based on the FCQPT is in good agreement with the results of the experi-
ments presented in Figs. 13.3, 13.4, 13.5, 13.7, 13.9, and 13.10 and is valid for both
high-Tc superconductors and HF metals.

13.3 Relation to the Baryon Asymmetry in the Early Universe

To finalize this chapter, we note that the demonstrated above particle-hole symmetry
violation in the NFL state of HF compounds has its large-scale counterpart in the
asymmetry between matter and antimatter in the early Universe [16]. In this case, the
FCQPT concept delivers underlying physical mechanism for both above processes,
which means that the FC phenomenon is rather general and not seldom in Nature.



248 13 Asymmetric Conductivity of Strongly Correlated Compounds

As the details of matter-antimatter (baryon) asymmetry will be discussed in details
in Chap. 16, here we present some general remarks regarding this question.

As it is well-known (see, e.g., [17–19]), the relation between particles and antipar-
ticles in theUniverse is governed by so-calledCP (ormore generallyCPT) symmetry,
which is the result of successive action of charge conjugation (C), transforming par-
ticle into antiparticle and parity (P), which reverses the directions of spatial coordi-
nates. Onemore (T) symmetry results in time reversal, which reverses the time arrow.
Simply speaking, the CPT symmetry is responsible for spin and charge conjugation,
transforming particles into antiparticles. It is widely believed that at the initial stages
of Universe, called Big Bang, creation the number of particles and antiparticles (or
baryons and antibaryons, i.e. the rest mass carrying elementary particles, consisting
of only either quarks or antiquarks, respectively [19]) was the same, while at the later
stages, when the Universe began to cool down, this symmetry disappeared, giving
rise to the current state where we have large clusters of visible matter (baryons) and
the dark matter in their vicinity. The analogy between baryon-antibaryon and (quasi)
particle-hole symmetry breaking can be obtained if we match baryon to a hole and
antibaryon to a quasiparticle in a Fermi liquid. The standard observation in many
ordinary metals is the symmetric character of their conductivity, which is a direct
consequence of LFL theory, admitting complete particle-hole symmetry. As we have
seen above, latter symmetry breaks down if we are going beyond LFL, which is the
case, e.g., for HF compounds.

Indeed, recent experimental observations of low temperature electric conductiv-
ity in high-Tc superconductors [1] and in HF metals like CeCoIn5 and YbCu5−xAlx
[8, 9] show that it is clearly asymmetric. Latter asymmetry vanishes as the temper-
ature or magnetic field increases. We have demonstrated above, that the asymmetry
cannot be explained in the framework of LFL theory since its particle-hole symmetry
unavoidably leads to the step function for the fermion distribution function at low
temperatures, which, in turn, results in a symmetric conductivity. To explain this
asymmetry, the FCQPT notion has been invoked [16]. We note, that although fun-
damental microscopic interaction in FCQPT theory is fully symmetric with respect
to quasiparticles and holes, at low temperatures it causes the spontaneous symme-
try breaking [5, 20]. Asymmetry is due to the simple fact that, contrary to LFL, in
strongly correlated fermion systems, the single-particle energy ε(p) is temperature
and magnetic field dependent. Thus, n(p, T ) given by (16.3) does not reproduce the
step function in the low temperature limit [21, 22]. The FCQPT approach of [16] is
based on the observation that some condensed-matter systems like HF compounds,
have topologically protected gapless and dispersionless fermions forming flat bands
[23–25], which promote the FCQPT. This quantum phase transition, in turn, breaks
the particle-hole symmetry, generating, among others, the observable asymmetric
conductivity.

As is shown in Chap. 16, the same notion can be used to explain the baryon-
antibaryon asymmetry in the Universe, which does not require any artificial exten-
sion of the standard models of cosmology. Namely, it is suggested that the ini-
tial state of the Universe was completely symmetric with the baryon number and
C P conserved at the end of the inflation when the particle production started [16].

http://dx.doi.org/10.1007/978-3-319-10825-4_16
http://dx.doi.org/10.1007/978-3-319-10825-4_16
http://dx.doi.org/10.1007/978-3-319-10825-4_16
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The observed asymmetry has been explained by suggesting that after the initial
inflation, as the Universe cooled down in approximately 10 orders of magnitude, it
came close to FCQPT similar to the situation in HF metals. At that time an excess of
matter over the antimatter in the Universe had been generated by FC phenomenon.
As theUniverse cools down further, it has all NFL properties, dictated by FCQPT.We
assume that this model describes the particle-antiparticle content of the Universe. At
finite temperatures baryon-antibaryon asymmetry emerges as an inherent property
of the system located in FC state. The asymmetry results from the distortion of the
Fermi surface, or, in other words, because of the deviation of the distribution func-
tion n(p) from the step function at low temperatures. At temperature lowering, the
system approaches the quantum critical line which increases the asymmetry. Details
of such increase depend on the model interparticle potential and other parameters.
This interesting and important analogy is worth further extensive studies, which, in
our opinion, can shed light not only on yet unsolved problems in condensed matter
physics, but also on those in cosmology and particle physics.
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Chapter 14
Violation of the Wiedemann-Franz
Law in HF Metals

Abstract Experimental observations of the much-studied compounds CeCoIn5 and
YbRh2Si2 at vanishing temperatures carefully probe the nature of their magnetic-
field-tuned QCPs. The violation of Wiedemann-Franz (WF) law, along with jumps
revealed both in the residual resistivity ρ0 and the Hall resistivity RH , provide vital
clues to the origin of their non-Fermi-liquid behavior. The empirical facts point
unambiguously to association of the observed QCP with FC forming flat bands.

As early as in 1853, German physicists Gustav Wiedemann and Rudolph Franz [1]
discovered the empirical law stating that for different metals at low temperatures the
ratio of its thermal conductivity κ(T ) to its electrical conductivity σ(T ) is the same,
κ(T )/σ (T ) = const. Later on, the Danish physicist Ludvig Valentin Lorenz showed
that the above ratio is proportional to the temperature T , κ(T )/σ (T ) = LT , the pro-
portionality constant L is known as the Lorenz number. What is called Wiedemann-
Franz (WF) law is indeed an independence of the Lorenz number L on temperature.
However, it was firmly established that the WF law is obeyed both at room tem-
peratures and at low ones (several Kelvins); while the intermediate temperatures
L = L(T ).

Strictly speaking, the Lorenz number is temperature-independent only at low
temperatures. Its theoretical value is

L0 = lim
T →0

= κ(T )

T σ(T )
= π2

3

kB

e2
. (14.1)

It had been calculated by Sommerfeld in 1927 [2] in the model of noninteracting
electrons, obeying Fermi-Dirac statistics. The same result is obtained much later in
LFL theory and reflects merely the fact that both thermal and electrical conductivities
of a metal at low temperatures are determined by Landau quasiparticles. Due to this
fact, possible deviations from the WF law can be regarded as a signature of NFL
behavior in a considered compound.

Actually, (14.1) is usually referred to as the Wiedemann-Franz (WF) law. It was
shown that at T = 0 (14.1) remains valid for arbitrarily strong scattering [3], disorder
[4] and interactions [5]. This law holds for ordinary metals [6–9] and does not hold
for HFmetals [10–12] CeNiSn and CeCoIn5 [12], YbRh2Si2 [13] (see also [14]), the
electron-doped material [15] Pr2−xCexCuO4−y , and the underdoped compound [16]
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YbBa2Cu3Oy . We note here, thatWF law is also violated in mesoscopic systems, see
[17] for review. In CeNiSn, the experimental value of the reduced Lorenz number
L(T )/L0 ∼ 1.5 varies little at T < 1K. This rules out the phonon contribution to
the violation of the WF law. In the electron-doped compound Pr2−xCexCuO4−y the
departure of L(T ) from L0 at T > 0.3K is also considerably more then unity and
even larger [15] than that in CeNiSn. Other experimental tests of the WF law have
been undertaken in the normal state of cuprate superconductors. The phase diagramof
these compounds shows evolution fromMott insulator for undopedmaterials towards
metallic Fermi liquid behavior for overdoped cases. Upward shift L/L0 � 2 − 3
was found in underdoped cuprates at the lowest studied temperatures [15, 16, 18].
In strongly overdoped cuprates, the WF law was found to be perfectly correct [19].

The physical mechanism for the WF law violation is usually attributed to the
NFL behavior, as it takes place in Luttinger and Laughlin liquids [20–23] or in the
case of a marginal Fermi liquid [24]. Yet another possibility for the LFL theory and
the WF law (14.1) violation occurs near QCPs where the effective mass M∗ of a
quasiparticle diverges. This is because at the QCP the Fermi liquid spectrum with
finite Fermi velocity vF = pF/M∗ becomes meaningless as in this case vF → 0.
Here we analyze themagnetotransport and violation of theWF law inHF compounds
like YbRh2Si2 and CeCoIn5 across a magnetic field tuned QCP. Close similarity
between the properties of the Hall coefficient RH and magnetoresistivity ρ at QCP
discussed in Chaps. 8 and 10 indicates that all manifestations of magnetotransport
stem from the same underlying physics. Thus,WF law violation alongwith the jumps
of the Hall coefficient and magnetoresistivity in the zero-temperature limit provide
unambiguous evidence for interpreting the QCP in terms of FCQPT forming a flat
band in HF compounds.

The schematic phase diagram, demonstrating possible regions of the WF law
violation, is depicted in Fig. 14.1, with the magnetic field B serving as the control
parameter. At B = 0, the HF liquid acquires a flat band corresponding to a strongly
degenerate state. The NFL regime reigns with increase temperatures and fixed mag-
netic field. With increasing B, the system is driven from the NFL region to the
LFL domain. As it is shown in Fig. 14.1, the system moves from the NFL to the LFL
regime along the horizontal arrow, and from the LFL to NFL along the vertical arrow.
The magnetic-field-tuned QCP is indicated by the arrow and located at the origin
of the phase diagram, since application of magnetic field destroys the flat band and
shifts the system into the LFL state. The hatched area denotes the transition region
that separates the NFL state from the weakly polarized LFL state and contains the
dashed line tracing TM (B). Referring to Sect. 6.3.1, this line is defined by the func-
tion T = a1μB B, and the width W (B) of the NFL state is seen to be proportional
to T . In the same way, it can be shown that the width T ∗(B) of the transition region
is also proportional to T . The regions, where WF law is violated and/or holds, are
also shown.

We now focus on the empirical phase diagrams of HF compounds YbRh2Si2
(Fig. 14.2a, b) and CeCoIn5 (Fig. 14.2c). Panel a of Fig. 14.2 is similar to the main
panel of Fig. 14.1, but with the distinction that this HF compound possesses the AF
state. To avert realization of a strongly degenerate ground state, induced by the flat

http://dx.doi.org/10.1007/978-3-319-10825-4_8
http://dx.doi.org/10.1007/978-3-319-10825-4_10
http://dx.doi.org/10.1007/978-3-319-10825-4_6
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Fig. 14.1 Violation of the Wiedemann-Franz law and T − B phase diagrams of HF metals.
Schematic T − B phase diagram of HF liquid with magnetic field as the control parameter. The
vertical and horizontal arrows show LFL–NFL and NFL–LFL transitions at fixed B and T , respec-
tively. At B = 0 the system is in its NFL state having a flat band down to T → 0. The hatched
area separates the NFL and the weakly polarized LFL phase and represents the transition state.
The dashed line in the hatched area represents the function TM (B). The functions W (B) ∝ T and
T ∗(B) ∝ T shown by two-headed arrows define the widths of the NFL and the transition states,
respectively. The QCP located at the origin denotes the critical point where the effective mass M∗
diverges and both W (B) and T ∗(B) tend to zero. The areas, where WF law holds (LFL state) and
is violated (NFL and transition state) are also displayed. The inset shows a schematic plot of the
normalized effective mass versus the normalized temperature. The transition regime, where M∗

N
reaches its maximum value at TN = T/TM = 1, is shown as the hatched area in both the main
panel and the inset. Arrows indicate the transition region and the inflection point Tinf in the M∗

N
plot

band, the FC must be completely eliminated at T → 0. In a general scenario, this
occurs by means of an antiferromagnetic (AF) phase transition with an ordering
temperature TN L = 70mK, while application of a magnetic field B = Bc0 destroys
the AF state at T = 0 [25]. In other words, the field Bc0 places the HF metal at
the magnetic-field-tuned QCP and nullifies the Nèel temperature TN (Bc0) = 0 of
the corresponding AF phase transition. Imposition of a magnetic field B > Bc0
drives the system to the LFL state. Thus, in the case of YbRh2Si2, the QCP is
shifted from the origin to B = Bc0. In FC theory, the quantity Bc0 is a parameter
determined by the properties of the specific HF compound. In some cases, notably
the HF metal CeRu2Si2, Bc0 does vanish [26], whereas in YbRh2Si2, Bc0 � 0.06 T,
B ⊥ c [25]. Panel b of Fig. 14.2 portrays the experimental T − B phase diagram in a
manner showing the evolution of the exponent αR(T, B) [13, 27]. At the critical field
Bc0 � 0.66 T (B ‖ c), the NFL behavior extends down to the lowest temperatures,
while YbRh2Si2 transits from the NFL to LFL behavior under increase of the applied
magnetic field. Panel c of Fig. 14.2 depicts the T − B phase diagram of compound
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Fig. 14.2 Schematic phase diagrams of the HF compounds YbRh2Si2 (panels a, b) and CeCoIn5
(panel c). In panel a, TN L (B) displays the Nèel temperature as a function of magnetic field B. The
QCP, identified by the arrow, is now shifted from B = 0 to B = Bc0. At B < Bc0 the system is in its
AF state. As in Fig. 14.1, the vertical and horizontal arrows show the transitions between the LFL
and NFL states, the functions W (B) ∝ T and T ∗(B) ∝ T indicated by the two-sided arrows define
the width of the NFL state and of the transition region, respectively. The dashed line in the hatched
area represents the function TM (B). The exponent αR determines the temperature-dependent part
of the resistivity, with αR taking values 2 and 1, in LFL and NFL states. In the transition regime
the exponent evolves between LFL and NFL values. Panel b shows the experimental T − B phase
diagram [13, 27]. The evolution of αR is depicted by color. The NFL behavior reaches to the lowest
temperatures right at the magnetic field tuned QCP. The transition regime between the NFL state
and the field-induced LFL state broadens with rising magnetic fields B > Bc0 and T ∼ T ∗(B).
As in panel a, transitions from LFL to NFL state and from NFL to LFL state are indicated by the
corresponding arrows, as are W (B) ∝ T and T ∗(B) ∝ T . In panel c, as shown by the solid curve,
at B < Bc2 the system is in its superconducting state, with Bc0 denoting a QCP hidden beneath the
SC dome, where the flat band could exist at B ≤ Bc0. The rest of the lines are similar to those from
panel a. A part of the crossover above Bc0 marked by thick red line is hidden in the SC state. The
areas, where WF law holds (LFL state) and is violated (NFL and crossover region) are displayed
in panels a and c
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CeCoIn5. This phase diagram resembles those from the above panels a and b but
with the difference that at low magnetic fields CeCoIn5 is in superconducting (SC)
state, while its QCP is hidden beneath the superconducting dome. This implies the
difference in the positions of critical fields Bc0 in CeCoIn5 and YbRh2Si2. In former
compound this QCP is hidden under superconducting dome, Bc0 < Bc2. It means
that it lies in the superconducting state, which closes at B = Bc2, in latter one
it corresponds to the QCP, comprising a boundary between NFL and magnetic—
field—induced LFL parts of its phase diagram. Above the critical temperature Tc of
the SC phase transition, the zero-field resistivity ρ(T, B = 0) varies linearly with
T . On the other hand, at T → 0 and magnetic fields B ≥ Bc2 � 5 T, the curve
ρ(T, Bc2) is parabolic [10, 28]. Below we will show that WF law holds in LFL
regime, while it is violated in NFL and transition regions of the phase diagram.

The violation of the WF law at the QCP in HF metals has been predicted and
estimated a few years ago [29, 30] and observed recently [13]. Predictions of LFL
theory fail in the vicinity of a QCP, where the effective mass M∗ diverges, since
the single-particle spectrum possesses a flat band at that point. In a once-standard
scenario for such a QCP [31, 32], the divergence of the effective mass is attributed to
vanishing of the quasiparticle weight z. However, as already indicated, this scenario
is failed [33]. We therefore employ a different scenario for the QCP, in which the
departure of the Lorenz number L from the Wiedemann-Franz value is associated
with a rearrangement of sp degrees of freedom leading to a flat band. Within the
quasiparticle paradigm, the relation between the Seebeck thermodynamic coefficient
S and the thermal κ and electric σ conductivities has the form [34, 35]

κ(T )

σ (T )T
+ S2(T ) = 1

e2
I2(T )

I0(T )
. (14.2)

Here

S(T ) = 1

e

I1(T )

I0(T )
, (14.3)

with

Ik(T ) = −
∫ (

ε(p)

T

)k (
dε(p)

dp

)2

τ(ε, T )
∂n(p)

∂ε(p)
dυ, (14.4)

where τ is the collision time, dυ is the volume element of momentum space. Over-
whelming contributions to the integrals Ik come from a narrow vicinity |ε| ∼ T of the
Fermi surface. In case of LFL, the Seebeck coefficient S(T ) vanishes linearly with
T at T → 0. The group velocity can be factored out from the integrals (14.4). The
same is true for the collision time τ , which at T → 0 depends merely on impurity
scattering, and one obtains I1(T = 0) = 0 and I2(T → 0)/I0(T → 0) = π2/3.
Inserting these results into (14.2), we find that the WF law holds, even if several
bands cross the Fermi surface simultaneously [34].
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It is worth illustrating the violation of the WF law by a numerical example [30].
As we have seen in Chap.8, if the interaction function F(k) has a singularity at
k = 0, then at g > gc the system contains normal quasiparticles and FC fraction
that grows linearly with the difference g − gc. This situation is convenient for the
demonstration of the impact of the particle-hole symmetry breaking in the systems
with FC on the WF law violation. Below we address the model with the interaction
function (see (6.18))

F(k) = g
exp(−βk)

k
. (14.5)

Since inside FC domain the single-particle spectrum ε(p, T = 0) = μ, while outside
it [36]

dε(p, T = 0)

dp
∝ √|ε(p) − μ|, (14.6)

such behavior results in a marked violation of the WF law. This conclusion is con-
firmed by results of numerical calculations, shown in Fig. 14.3.

The transport integrals Ik have been calculated numerically.We present the results
of these calculations on Fig. 14.3. The calculations have been performed for βpF = 3
and βpF = 30. As it is seen from this figure, at the QCP and beyond it the integrals
I0(T = 0) and I1(T = 0) has the same order, implying that in contrast to LFL
theory, the T = 0 value of the Seebeck coefficient S(0) = I1(0)/eI0(0) differs from
0. This is a fingerprint of particle-hole symmetry breaking, inherent in any system
with FC. On the other hand, the ratio L(0)/L0 turns out to be even larger than that at
the QCP. Furthermore, calculations demonstrate that with increasing β, the value of
this ratio increases as well, i.e. the longer the radius of the interaction function (14.5)
in the coordinate space, the larger is the departure from the WF law. Thus, taking
into account the fact that the reduction of the ratio L/L0 occurs in the NFL state at
the QCP [30], we conclude that the violation of theWF law takes place in the narrow
segment of the T − B phase diagram displayed in Figs. 14.1 and 14.2 with the width
W → 0 at T → 0. In the other words, at T → 0 the ratio L/L0 becomes abruptly
L/L0 ∼ 0.9 at B/Bc0 = 1, while L/L0 = 1 at B/Bc0 �= 1 when the system is
in its AF or LFL state, shown in Fig. 14.2. This observation is in a good agreement
with experimental data for YbRh2Si2 [13]. We conclude that at T → 0, the WF law
holds in the LFL state, at which the Fermi distribution function is reduced to the step
function. The violation of the WF law at B = Bc0 and at T → 0 seen in YbRh2Si2
thus suggests that a sharp Fermi surface does exist at B/Bc0 �= 1 but does not exist
only at B/Bc0 = 1, where the flat band emerges, the WF law is violated, and the
jump of ρ0 takes place, as it is shown in Fig. 14.4 by the arrow.

It was demonstrated in Chap.10 that the application of a magnetic field to
YbRh2Si2 makes the step-like drop in ρ0 [37]. As it is seen from Fig. 14.4, when the
system transits from the NFL state to the LFL at fixed T and under the application
of growing magnetic fields B, the step-like drop in its resistivity ρ(T, B) becomes
more pronounced (see the experimental curves for T = 0.3, 0.2 and 0.1K). It was

http://dx.doi.org/10.1007/978-3-319-10825-4_8
http://dx.doi.org/10.1007/978-3-319-10825-4_6
http://dx.doi.org/10.1007/978-3-319-10825-4_10
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Fig. 14.3 The transport integrals (14.2) and (14.3). The transport integrals I0 (solid lines), I1
(dashed lines) and I2 (short-dashed lines) in log-log scale as functions of reduced temperature T/ε0F ,
calculated with the interaction function (14.5) for βpF = 3 (left column) and βpF = 30 (right
column) and four values of the parameter g corresponding to FL (upper panels), the QCP (second
line of panels), and to the states with 10% (third line) and 50% (lower panels) of quasiparticles in
the FC

shown in Sect. 10.3 that this behavior comes from the fact that W ∝ T . As WF law
is violated in the transition and NFL regions of the phase diagram, we conclude, that
at T = 0 this law is violated in the narrow region of the ρ jump (see Fig. 14.4 with
the arrow, showing the region of theWF law violation), while at higher temperatures
this region widens and becomes diffuse. We also remark that at T → 0 the NFL
behavior can be captured by some states which destroy the flat band. For example,
a short-range magnetic order prevents the NFL behavior from persisting down to
T → 0 by destroying the flat band. In that case at low temperatures the validity

http://dx.doi.org/10.1007/978-3-319-10825-4_10
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Fig. 14.4 Experimental results [37] for the longitudinal magnetoresistivity ρ(T, B) of YbRh2Si2
versus B at various temperatures T . The temperatures are indicated in the figure. The maxima of
the curves for T = 0.03 and 0.07 K correspond to boundary points of the AF ordered state shown
in Fig. 14.2b. The solid lines marked with 0 K represent the schematic behavior of the residual
resistivity ρ0 as a function of B. The arrows pointing to the horizontal solid lines identify the
residual resistivities ρN F L

0 and ρL F L
0 in YbRh2Si2. The jump of ρ0 occurs at the QCP identified by

an arrow. This is the point where WF law is violated at T = 0

of the WF law is restored. This means, in turn, that the experimental observation
of deviation of L/L0 ratio from unity (i.e. WF law violation) is extremely difficult.
This observation is in agreement with experimental results, some of which directly
point to the WF law violation in the case of the HF metal YbRh2Si2 [13], while the
others gives evidence that the WF holds [14, 38].

Not so long ago, the anisotropy of the WF law violation near the QCP has been
experimentally observed in the HF metal CeCoIn5 [12]. In that paper, the above HF
compound has been studied experimentally in external magnetic fields, close to the
critical value Hc2 that suppresses the superconductivity. Under these conditions, the
WF law is violated. The violation is anisotropic and cannot be attributed to the above
standard scenario of quasiparticle distraction by the fluctuation taking place at QCP.
At the same time, close to the QCP, sufficiently large external magnetic fields reveal
the anisotropy of the electrical conductivities σik ∝< vi vk > (vi are the components
of the group velocity vector) and thermal conductivities κik ∝< ε(p)vi vk > of a
substance. This is because the magnetic field does not affect the z-components of
the group velocity v so that the QCP T -dependence of the transport coefficients
holds, triggering the violation of the WF relation Lzz = σzz/T κzz = π2kB/3e2. On
the other hand, the magnetic field B alters substantially the electron motion in the
perpendicular direction, yielding considerable increase of the x and y components
of the group velocity so that the corresponding components Lik do not depart from
their WF value.
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Therefore, the flattening of the single particle spectrum ε(p) of strongly correlated
electron systems alters considerably their transport properties, especially beyond the
FCQPT point due to particle-hole symmetry breaking. In topologically different
“iceberg” phases the WF law is also violated near its QCP. The results of theoreti-
cal [30] and experimental investigations demonstrate that the FCQPT scenario with
further occurrence of both “iceberg” and FC phases give natural and universal expla-
nation of the NFL changes of the transport properties of HF compounds in general
and of theWF law violation in particular. Therefore, as we have demonstrated above,
to describe theoretically the violation of the WF law within the FCQPT formalism,
it is sufficient to use the well-known LFL formulas for thermal and electrical con-
ductivities, with the substitution of the modified single-particle spectrum into them.
Such theory has been advanced in [30, 39]. The authors show that close to the QCP
the Lorenz number LQCP(T = 0) = 1.81 L0. This result agrees well with the exper-
imental values [11, 15]. Furthermore, the dependence L(T )/L0 has been calculated
for two topologically distinct phases (see Sect. 4.1)—“iceberg” phase and FC phase
[30, 39]. Theoretical calculations have shown that in both phases the largest depar-
ture from theWF law occurs near QCP [30, 39]. Deep in the “iceberg” phase we have
the reentrance of the “classical” WF law in a sense that L = L0 while in the deep
FC phase the Lorenz number is temperature independent at low temperatures, but its
value is slightly larger than L0. This is due to the particle-hole symmetry violation
in FC phase [40–42].
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Chapter 15
High Magnetic Fields Thermodynamics
of Heavy Fermion Metals

Abstract In this chapter, we present the comprehensive theoretical analysis of
thermodynamics of HF compounds at high magnetic fields. Such analysis permits
to gain a deeper insight into the interplay of high magnetic field and temperature in
suppressing and retrieving the Landau Fermi liquid state in these substances. Our
analysis shows that although high magnetic fields and temperatures alter the proper-
ties of ordinary Landau quasiparticles, they survive, generating the experimentally
observable anomalies in the thermodynamical quantities of HF compounds.We illus-
trate our theoretical findings by the example of the HF compound YbRh2Si2.

15.1 Introduction

As we have seen in the previous chapters, the heavy fermion (HF) compounds play
a distinctive role in modern condensed matter physics as many of their physical
properties deviate substantially from those predicted by famous the LFL theory. The
explanation of these puzzling NFL effects is of primary concern and challenge for
existing theoretical approaches. The latter effects are especially surprising since their
manifestations exist over a rather big region of temperature T and magnetic field B
variations. For example, recent measurements of the specific heat C of YbRh2Si2
under the application of magnetic field B show that the above temperature range
extends at least up to twenty Kelvins, as it is reported in the inset to Fig. 15.1. As it
is well-known from the LFL theory, the ratio C/T is proportional to quasiparticle
effective mass M∗. The inset to Fig. 15.1 reports the dependence of C(T )/T , which
has a maximum M∗

max(B) at some temperature Tmax(B). It is seen, that M∗
max(B)

decreases as magnetic field B grows, while Tmax(B) shifts to higher T reaching 15K
at B = 18T [1].

A deeper insight into the behavior of C/T in the inset in Fig. 15.1 can be achieved
using some “internal” scales. Namely, near QCP it is convenient to normalize the
effective mass M∗ and temperature T by their maximal values, M∗

max and Tmax,
respectively. This generates the normalized effective mass M∗

N = M∗/M∗
max and

temperature TN = T/Tmax [2]. The main panel of Fig. 15.1 reports the obtained
dependence M∗

N (TN ), which is shown by symbols, corresponding to different
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Fig. 15.1 The normalized effective mass M∗
N = M∗/M∗

max versus normalized temperature TN =
T/Tmax. M∗

N is extracted from the measurements (shown in the inset) of the specific heat C/T on
YbRh2Si2 in magnetic fields B [1] listed in the legend. Our calculations (made at B � B∗ when the
quasiparticle band is fully polarized) are depicted by the solid curve tracing the scaling behavior of
M∗

N . The inset reports the temperature dependence of the electronic specific heatC/T of YbRh2Si2
at different magnetic fields [1] shown in the main panel legend. The illustrative values of M∗

max and
Tmax at B = 8 T are also shown

magnetic fields. This immediately reveals the scaling in the normalized experimental
curves: The curves at different magnetic fields B merge into a single one in terms of
the normalized variable TN = T/Tmax. It is seen from Fig. 15.1, that the normalized
effective mass M∗

N (TN ) is not a constant as it would be for LFL case. Rather, it
shows the scaling behavior in terms of normalized temperature TN . It is also seen
from Fig. 15.1, both in the main panel and in the inset that the NFL behavior and the
associated scaling extend at least to temperatures around twenty Kelvins.

It has been established experimentally [1], that at lowmagnetic fields B, YbRh2Si2
has a QCP related to the suppression of antiferromagnetic ordering at a critical mag-
netic field B = Bc0 � 0.06T. Below, we will see that our calculations of the thermo-
dynamic properties of YbRh2Si2 in broad magnetic field range, from Bc0 � 0.06 to
B � 18T, allow us to straddle a possible metamagnetic transition region and probe
the properties of both low-field HF liquid and high-field fully polarized one. Namely,
highmagnetic fields B ∼ B∗ ∼ 10 T fully polarize corresponding quasiparticle band,
so that quasiparticles spins become fully aligned along magnetic field direction. As
a result, the LFL state is generated and the NFL one is, correspondingly, suppressed.
The latter state can be restored at elevating temperatures.

Thus, we conclude that a complicated problem for theories considering the high
magnetic field (B ∼ B∗) NFL behavior of theHFmetals is to explain both the scaling
and the shape of M∗

N (TN ). Another part of the same problem is the remarkably large
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temperature and magnetic field ranges, where the NFL behavior and scaling are
observed, see above.

As we have shown above, the difference between our approach, related to FCQPT
and the ordinary LFL approach, is a modification of the Landau paradigm, which
generates the different behavior of a quasiparticle effectivemass. Since in thisChapter
we will heavily rely on this formalism, and have to take into account explicitly the
spin dependence, and for the reader’s convenience, we recapitulate the derivation of
themain results. To be specific, in our FCQPT approach [2], in order to study theNFL
behavior of the effective mass M∗(T, B), we use the equation for the quasiparticle
effective mass in a Fermi liquid. The only modification is that in our formalism
the effective mass is no more constant but depends on temperature, magnetic field
and other external parameters. For the model of homogeneous HF liquid at finite
temperatures and magnetic fields, this equation acquires the form [2–4]

1

M∗
σ (T, B)

= 1

M
+

∑
σ1

∫
pF p

p3F
Fσ,σ1(pF, p)

∂nσ1(p, T, B)

∂p

dp
(2π)3

, (15.1)

where M is a bare electron mass, Fσ,σ1(pF , p) is the Landau interaction, which
depends on Fermi momentum pF , momentum p, and spin projection σ . For definite-
ness, we assume that theHF liquid is 3D liquid. The Landau interaction is determined
by the following relation [3, 4]

Fσ,σ ′(p, p′) = δ2E[n]
δnσ (p)δnσ ′(p′)

, (15.2)

where E[n] is the systemenergy,which is a functional of the quasiparticle distribution
function n [2–4]. It can be expressed as

nσ (p, T ) =
{
1 + exp

[
(εσ (p, T ) − μσ )

T

]}−1

, (15.3)

where εσ (p, T ) is the single-particle spectrum. In our case, the chemical potential
μ also depends on the spin due to Zeeman splitting μσ = μ ± μB B, μB is Bohr
magneton.

In LFL theory, the single-particle spectrum is a variational derivative of the sys-
tem energy E[nσ (p, T )] with respect to the occupation number nσ , εσ (p, T ) =
δE[n(p)]/δnσ . The choice of model of the interaction is determined by the fact that
we consider the system has to be at the QCP of FCQPT. Namely, in this region the
momentum-dependent part of Landau interaction can be taken in the form presented
by truncated power series F = a(p−p′)2+b(p−p′)3+c(p−p′)4+· · · , where a, b
and c are fitting parameters. We note that this interaction, being an analytical func-
tion of (p − p′)2, can generate topological phase transitions interfering with FCQPT
[2]. In our case F does not depend on the number density x of the system as it is
fixed by condition that the system is situated in QCP of FCQPT. Thus, the variational
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procedure, being applied to the functional E[nσ (p, T )], leads to the following form
for ε(p, T ) = εσ (p, T ) ≡ ε[nσ (p, T )]

εσ (p, T ) = p2

2M
+

∑
σ1

∫
Fσ,σ1(p, p1)nσ1(p1, T )

d3 p1
(2π)3

. (15.4)

Equations (15.3) and (15.4) constitute the closed set of equations for self-consistent
determination of εσ (p, T ) and nσ (p, T ). The solutions of (15.4) generate the spec-
trum, where the first two p-derivatives are equal to zero. Since the first derivative is
proportional to the reciprocal quasiparticle effective mass 1/M∗, its zero just signi-
fies QCP of FCQPT. The second derivative must vanish also. Otherwise ε(p) − μ

has the same sign below and above the Fermi surface, and the Landau state becomes
unstable [2, 5]. Zeros of these two subsequent derivatives mean that the spectrum
ε(p) has an inflection point at pF so that the lowest term of its Taylor expansion is
proportional to (p − pF )3. In the other words, close to FCQPT the single—particle
spectrum does not have the usual form vF (p− pF ), with vF being the Fermi velocity.

Having solved (15.3) and (15.4), we substitute their solution into (15.1) to obtain
field and temperature dependence of Landau quasiparticle effectivemass.We empha-
size here, that in our approach the entire temperature and magnetic field dependence
of the effective mass is brought to us by dependencies of εσ (p, T ) and nσ (p, T ). The
sole role of Landau interaction is to bring the system to FCQPT point, where Fermi
surface alters its topology so that the effective mass acquires temperature and field
dependence, see [2] and references therein for details.

Rewriting the quasiparticle distribution function as nσ (p, T, B) ≡ nσ (p, T = 0,
B = 0) + δnσ (p, T, B) yields more convenient form for the (15.1)

1

M∗
σ (T, B)

= 1

M∗ + 1

p2F

∑
σ1

∫
pF p1

pF
Fσ,σ1(pF, p1)

∂δnσ1(p1, T, B)

∂p1

dp1

(2π)3
.

(15.5)

Our analysis shows, that near FCQPT the normalized solution of (15.5) M∗
N (y =

TN ) can be well approximated by a simple universal interpolating function. The
interpolation occurs between the LFL (M∗ ∝ a + bT 2) and NFL (M∗ ∝ T −2/3)
regimes [2, 6]

M∗
N (y) ≈ c0

1 + c1y2

1 + c2y8/3
. (15.6)

Here a and b are constants, c0 = (1+ c2)/(1+ c1), c1 and c2 are fitting parameters,
approximating the Landau interaction. Note, that our interpolative solution (15.6) is
valid at lowmagnetic fields, where spin dependence of Landau interaction and single
particle spectrum is not essential. At high fields, when this dependence is strong and
we have full subband spin polarization, this interpolative solution is invalid and we
should explicitly solve (15.5) with respect to (15.3) and (15.4). It can be shown that
the magnetic field B enters Landau equation only in combination BμB/T making
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Tmax ∝ BμB [2, 6]. We conclude that under the application of magnetic field the
variable

y = T/Tmax ∝ T

μB(B − Bc0)
(15.7)

remains the same and the normalized effective mass is again determined by (15.6).
Here Bc0 is the critical magnetic field driving HF compound to its magnetic field
tuned QCP and corresponding Néel temperature to T = 0. In some cases Bc0 = 0.
For example, the HF compound CeRu2Si2 has Bc0 = 0 and shows neither magnetic
ordering nor superconductivity [7]. In our simple model Bc0 is taken as a parameter.
In what follows, we compute the effective mass using (15.5) and employ (15.6) for
qualitative analysis when considering the system at low magnetic fields.

15.2 Phase Diagram

Now we have everything to construct the schematic phase diagram of the HF metal
YbRh2Si2 at B 	 B∗. The phase diagram is presented in Fig. 15.2. The magnetic
field B plays the role of the control parameter, driving the system towards its QCP.
In our case this QCP is of FCQPT type. The FCQPT peculiarity occurs at B = Bc0,
yielding new strongly degenerate state at B < Bc0. To eliminate this degeneracy,

Fig. 15.2 Schematic phase diagram of YbRh2Si2 (15.6) with magnetic field as a control parameter.
The vertical and horizontal arrows show LFL-NFL and reverse transitions at fixed B and T respec-
tively. At B < Bc0 the system is in AFM state. The width of the transition region Tw ∝ T is shown
by the segment between two vertical arrows. Inset shows the schematic plot of the normalized effec-
tive mass versus the normalized temperature. Transition region, where M∗

N reaches its maximum
at T/Tmax = 1, is shown by the hatched area both in the main panel and in the inset
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the system forms either superconducting (SC) or magnetically ordered FM, AFM,
etc. states [2]. In the case of YbRh2Si2, such a state is AFM one [1]. As it follows
from (15.6) to (15.7) and seen from Fig. 15.2, at B ≥ Bc0 the system is in either
NFL or LFL states. At fixed temperatures the increase of B drives the system along
the horizontal arrow from NFL to LFL state. On the contrary, at fixed magnetic
field and raising temperatures the system transits along the vertical arrow from LFL
state to NFL one. The inset to Fig. 15.2 demonstrates the behavior of the normalized
effective mass M∗

N = M∗/M∗
max versus normalized temperature y = T/Tmax that

follows from (15.6). The T −2/3 regime is marked as NFL one since contrary to LFL
case, where the effective mass is constant, the effective mass depends strongly on
temperature. It is seen that the temperature region y ∼ 1 signifies a transition regime
between the LFL behavior with almost constant effective mass and NFL one, given
by T −2/3 dependence. Thus, temperatures T � Tmax, shown by arrows in the inset
and main panel, can be regarded as a transition regime between LFL and NFL states.
It is seen from (15.7) that the width of the transition regime Tw ∝ T is proportional
to (B − Bc0). This is shown by the segment between two vertical arrows in Fig. 15.2.
These theoretical results are in good agreement with the experimental data, as it is
seen in Fig. 15.2 [1, 8].

15.3 Results and Discussion

Our calculations of the normalized effective mass M∗
N (TN ) at fixed high magnetic

field B∗ are shown by the solid line in the main panel of Fig. 15.1. We recollect that
in this case the quasiparticles spins are completely polarized. This reveals the above
described scaling behavior of the normalized experimental curves in terms of the
normalized variable y = T/Tmax(B). It is seen from Fig. 15.1 that our calculations
deliver a good description of the experiment [1]. Namely, at elevated temperatures
(y � 1) the LFL state first converts into the transition one and then disrupts into the
NFL state.

To perceive further the behavior of the system at high magnetic fields, in Fig. 15.3
we collect the curves M∗

N (TN ) both at low (symbols in the upper box in Fig. 15.3)
and high (symbols in the lower box) magnetic fields B. All curves have been
extracted from the experimental data [1, 9]. It is seen that while at low fields the
low-temperature ends (TN ∼ 0.1) of the curves completely merge, at high fields this
is not the case. Moreover, the low-temperature asymptotic value of C/T = M∗

N at
low fields is around two times bigger than that at high fields. The physical reason
for low-field curves merging is that the effective mass does not depend on spin vari-
able, so that the polarizations of subbands with σ↑ and σ↓ are almost equal to each
other, where the arrows ↑,↓ near σ denote the spin projection. The equality of the
polarizations is reflected in our calculations, based on (15.6) for low magnetic fields
B 	 B∗, at which the σ -dependence of the effective mass can be omitted. The
result is shown by the dotted line in Fig. 15.3.
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Fig. 15.3 Joint behavior of the normalized effective mass M∗
N at low (upper box symbols) and

high (lower box symbols) magnetic fields. The data are extracted from the specific heat (C/T )
measurements of the YbRh2Si2 [9]. Our low-field calculations are depicted by the dotted line
tracing the scaling behavior of M∗

N . Our high-field calculations (solid line) are taken at B ∼ B∗,
when the quasiparticle band becomes fully polarized

It is also seen from Fig. 15.3 that all low-temperature differences between high-
and low field behavior of the normalized effective mass disappear at high temper-
atures. In other words, while at low temperatures the values of M∗

N for low fields
are two times bigger than those for high fields, at temperatures TN ≥ 1 this differ-
ence disappear. It is seen that these high temperatures lie about the transition region,
marked by hatched area in the inset to Fig. 15.2. This means that the two states, LFL
and NFL, separated by the transition region are clearly seen in Fig. 15.3 demonstrat-
ing good agreement between our calculations. The calculations are shown by the
dotted line for low fields and by the thick line for high fields, while the experimental
points are displayed by the symbols.

It is seen from Fig. 15.3, that at high fields B ∼ B∗, symbols in the lower box,
the curves M∗

N (TN ) do not merge in the low temperature LFL state. Moreover, their
values decrease as B grows, thus representing the full spin polarization of theHFband
at the highest reached magnetic fields. This behavior is opposite to that at low fields.
The corresponding theoretical curve has come from the explicit numerical solution of
(15.5) with respect to (15.3) and (15.4). As we have mentioned above, at temperature
raising, all effects of spin polarization smear down, yielding the restoration of NFL
behavior at T � μB B. Our high-field calculations (the solid line in Fig. 15.3) reflect
the latter fact and are also in good agreement with experimental facts. In order not
to overload Fig. 15.3 with unnecessary details, we show the results of calculations
only for the case of the complete spin polarization.
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Fig. 15.4 The maxima M∗
max(B) of the functions C/T versus magnetic field B for YbRh2Si2. The

points for low [9] (squares) and high fields [1] (circles) are shown in the legend. The solid curve is
approximated by M∗

max(B) ∝ d/
√

B − Bc0, where d is a fitting parameter

Figure15.4 reports the maxima M∗
max(B) of the functions in the inset to Fig. 15.1

versus B. The solid line represents our approximation for these maxima M∗
max(B) ∝

1/
√

B − Bc0 calculatedwithin the framework of FCQPT theory [2, 10]. It is seen that
our calculations are in good agreement with the experimental data in the entire mag-
netic field domain. Such good coincidence indicates that at T � μB B the transition
regime occurs and the NFL behavior restores at high temperatures T ∼ 20K.

In Fig. 15.5, the solid squares and circles denote temperatures Tmax at which the
maxima of C/T (from the inset to Fig. 15.1) occur. To fit the experimental data
[1, 9] the function Tmax(B) = b(B − Bc0) defined by (15.7) with b � 0.74K/T
is used. It is seen from Fig. 15.5 that our calculations (solid line) coincide with
experiment, and we conclude that the transition regime of YbRh2Si2 is restored at
temperatures T � μB B.

Consider now the magnetization M(B, T ) as a function of magnetic field B at
fixed temperature T

M(B, T ) =
B∫

0

χ(z, T )dz, (15.8)

where the magnetic susceptibility χ is given by

χ(B, T ) = βM∗(B, T )

1 + Fa
0

. (15.9)
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Fig. 15.5 The temperatures Tmax(B) at which the maxima of C/T in YbRh2Si2 (inset to Fig. 15.1)
are located. Squares correspond to low-field case [9] and circles to high fields one [1]. The solid
line represents the function Tmax ∝ b(B − Bc0), b being the fitting parameter, see (15.7)

Here, β is a constant and Fa
0 is the spin-antisymmetric Landau interaction taken at

orbital quantum number L = 0, see for details Sect. 7.1.
Our calculations show that the magnetization exhibits a kink at some magnetic

field B = Bk . The experimental magnetization demonstrates the same behavior
[11, 12]. Now we use the other internal scale, namely Bk and M(Bk), to normalize
B and M respectively. In the normalized variables, there are no coefficients β and
(1 + Fa

0 ) so that χ ∝ M∗ [2] and we can again use (15.5) to calculate the magnetic
susceptibility χ . The normalized magnetization M(B)/M(Bk), both extracted from
experiment (symbols) and calculated by us (solid line), are reported in the inset to
Fig. 15.6. It is seen that our calculations are in good agreement with the experiment.
All the data exhibit the kink (shown by the arrow) at BN � 1 taking place as soon
as the system enters the transition region. This region corresponds to the magnetic
fields, where the horizontal arrow in Fig. 15.2 crosses the hatched area. To reveal
the kink position, in Fig. 15.6 we present the M(B) dependence in logarithmic—
logarithmic scale. In that case the straight lines show clearly the change of the slope
(power in logarithmic scale) of M(B) at the kink point.

15.3.1 Kinks

At magnetic field B � B∗ the quasiparticle band becomes fully polarized and a new
kink appears [1, 13]. We name this kink the second one. Our calculations of the
normalized magnetization (line) and the experimental points (squares) are shown in

http://dx.doi.org/10.1007/978-3-319-10825-4_7
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Fig. 15.6 The kink at the crossover region. The calculated magnetization M(B) (symbols) and
straight lines which are guides for the eye. The intersection of the straight lines visualize the
kink at the crossover region in the Fig. 15.2. The inset The field dependencies of the normalized
magnetization M of YbRu2Si2 [11] at T = 0.05 K. The kink (shown by the arrow) is clearly seen
at the normalized field BN = B/Bk � 1. The solid curve represents our calculations

Fig. 15.7. In that case both the magnetization and the field are normalized by the
corresponding values at the second kink position.

In Fig. 15.7, we plot our theoretical normalized (in the second kink point) mag-
netization along with the experimental data. Good coincidence is seen everywhere
except the high-field part at BN ≥ 1. Here, the experimental normalized magnetiza-
tion Mnor exhibits a linear dependence on BN that is marked by two arrows, while the
calculated magnetization is approximately constant. Such a behavior is the intrinsic
shortcoming of the HF liquid model that accounts for only heavy electrons and omits
the conduction electrons of other kind [14, 15]. Thus, we can consider the high-field
(at BN > 1) part of the magnetization as the contribution, which is not included
in our theory. To separate this contribution from the experimental magnetization
curve, we numerically differentiate it, then subtracting constant part at BN > 1
and integrate back the resulting curve. The coincidence between our calculations
(solid line) and processed experimental data (stars) is demonstrated in the inset in
Fig. 15.7. As we can see now, the coincidence between the theory and experiment is
good in the entire considered magnetic field domain. Taking into account the results
displayed in Figs. 15.3, 15.4, 15.5, 15.6 and 15.7, we conclude that the HF system
of YbRu2Si2 evolves continuously without any dramatic (metamagnetic) increase of
magnetization under the application of external magnetic field. This fact agrees with
the experimental observations [16].
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Fig. 15.7 The second kink. The normalized magnetization Mnor is displayed as a function of the
normalized magnetic field BN . The line represents our calculations and squares represent experi-
mental points [1]. The linear dependence Mnor(BN ) ismarked by the arrows. The inset demonstrates
the experimental data (stars) with the subtracted high-field linear part. Our calculations are shown
by the solid line

15.4 Main Results

Themain physical content of this Chapter is that we have convincingly shown that the
puzzle of non-Fermi liquid behavior in HF metals subjected to high magnetic fields,
can be described successfully within our FCQPT approach. As the experimental data
were available for YbRh2Si2, we apply our formalism to this HF compound.We note
here, that although the physical interpretation of metamagnetism is ambiguous, see
[17, 18], the common point of view is that it is related to the splitting of the Fermi
surface in a paramagnetic system of itinerant electrons. This splitting, in turn, causes
an energetically favorable transition to bulk magnetization near the transition to
magnetically ordered state [17].

The above analysis of the thermodynamic properties of YbRh2Si2 at both low and
highmagnetic fields allows us to conclude that theHFmetalYbRh2Si2 in strongmag-
netic field evolves continuously without the above discussedmetamagnetic transition
sand possible localization of heavy 4 f electrons. Under the application of magnetic
field at low temperatures, the HF system demonstrates the LFL behavior, while at
increase temperatures the system enters the transition region followed by the NFL
behavior. At low temperatures and high magnetic fields B � B∗ the system is com-
pletely polarized and demonstrates the LFL behavior, while at high temperatures the
NFL behavior is restored. The obtained results are in good agreement with the exper-
imental data in the entire magnetic field (0.1–18T) and temperature (40mK–20K)
regions.
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Chapter 16
Baryon Asymmetry Resulting from FCQPT
in the Early Universe

Abstract This Chapter does not follow themain line of the book that is the theory of
HFcompounds but illustrates how the ideas ofFCmaybe applicable to describe a very
dissimilar system. Namely, here we consider a novel mechanism for explaining the
matter-antimatter asymmetry of the universe.We assume that the universe starts from
completely symmetric state and then, as it cools down, it undergoes a quantum phase
transition, which in turn causes an asymmetry betweenmatter and anti-matter. As we
shall see the quantumphase transition is represented byFCQPT.Themechanismdoes
not require the baryon number violating interactions orCP violation at a microscopic
level. The state FC emerging behind FCQPT can be viewed as the state possessing
the supersymmetry that interchanges bosons and fermions eliminating the difference
between them. Thus restoring one important symmetry, the FC state violates another
essential symmetry destroying matter—anti-matter symmetry. Our analysis of the
matter antimatter asymmetry is in the context of remarkable experimental results
obtained in the condensed matter physics.

16.1 Introduction

One of the important and long standing problems of modern cosmology and astro-
physics is the matter-antimatter asymmetry: The observable part of the universe con-
tains mostly baryons and antibaryons produced locally as the byproduct of nuclear
reactions [1–4]. For the globally symmetric universe one can put a strong constraint
on the size l of antimatter clusters [5], l > 1,000Mpc. This numbermay be compared
with the visible size of the universe, 3,000Mpc.

A convenient dimensionless number, characterizing the baryon asymmetry mag-
nitude is the ratio of the baryonic charge density nB − nB̄ to the cosmic microwave
background density nγ [6]

nB − nB̄

nγ

≤ 3 × 10−10. (16.1)
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Estimate (16.1), excluding antimatter on scales of order ∼20Mpc [6], may be
obtained assuming that at earlier times, at temperatures well above 100MeV, the
universe had one extra quark per about 1010 quark-antiquark pairs and this tiny
excess is responsible for the entire baryonic matter in the present universe.

Although there is no logical contradiction to assume that an excess of quarks over
antiquarks is built in as an initial condition, this ad hoc hypothesis can not be justified
within the inflationary scenario which does not provide such an initial condition
[1–4]. Thus, it becomes necessary to explain baryon asymmetry without introducing
the minute particle excess at the initial stage of the big bang.

Sakharov [7] was first to formulate the conditions necessary for generating the
observed baryon asymmetry from an initially symmetric state. These are the baryon
number non-conservation,C andCP violation, and a departure from the thermal equi-
librium. Numerous possible scenarios incorporating Sakharov’s conditions readily
followed. The detailed discussion of these mechanisms such as electroweak baryo-
genesis, baryonic charge condensate, baryogenesis via lepto genesis, baryogenesis
through evaporation of primordial black holes, out of equilibrium decays of mas-
sive particles, baryon number non-conservation caused by the triangle anomaly in
baryonic current and baryogenesis in the presence of spontaneously broken Lorentz
symmetry can be found in [1–4]. It is worth noting that all these scenarios require
extension of the standard model of particle physics.

16.2 Model

We propose a mechanism for explaining the matter-antimatter asymmetry of the uni-
verse, which does not require any extension of the standard model of particle physics
or the standard model of cosmology. Our approach is based on the observation that
the condensed matter physics of strongly correlated Fermi systems and topologically
protected dispersionless (i.e. flat bands forming) gapless fermions may offer opening
for designing such a mechanism [8–11]. We propose that the universe began from
a completely symmetric state with the baryon number and CP conserved at the end
of inflation when the particle production started. The observed asymmetry may be
explained by suggesting that in the post-inflation epoch, at baryogenesis, as the uni-
verse cooled down in approximately 10 orders of magnitude, it came near a quantum
phase transition. At that time an excess of matter over the antimatter in the universe
had been generated. This phase transition could wash out the antibaryons from the
universe ground state wave function. Such a quantum phase transition can be rep-
resented by the fermion condensation quantum phase transition (FCQPT) that does
not support quasiparticle-hole symmetry [12–16]. We note that flat bands related to
FCQPT were observed in 2+ 1 dimensional quantum field theory which is dual to a
gravitational theory in the anti-de Sitter background [17]. For the detailed discussion
of novel features exhibited by the strongly correlated Fermi systems see reviews
[14, 15].
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Our suggestion is based on the results of theoretical [14–16] and experimental
[18–20] studies of novel systems of condensed matter physics—the strongly corre-
lated Fermi systems and the quantum phase transitions within, forming their proper-
ties. These systems do not belong to the well known class of LFL [21], and exhibit
the NFL features strikingly different from those of Landau Fermi liquids [22].

We propose that the universe exhibits NFL behavior and therefore shares the fea-
tures of NFL, in particular the spontaneous breakdown of quasiparticle-hole symme-
try. The quasiparticle-hole asymmetry manifests itself on a macroscopic scale as an
asymmetric conductivity [18–20]. This phenomenon of quasiparticle-hole asymme-
try serves as the guiding principle in our suggestion of explaining matter-antimatter
asymmetry from the results of condensed matter physics of strongly correlated fermi
systems. Below we briefly discuss the quasiparticle and hole properties in LFL and
NFL which are necessary to illustrate our suggestion and provide the basis for inter-
preting the observed baryon asymmetry as resulting from a quantum phase transition.
Throughout holes will represent the matter (baryons) and quasiparticles will serve
as an analogy of antimatter (antibaryons).

As it is well known, the basic thermodynamic and transport properties of LFL
are described in terms of quasiparticles—the weakly excited states over the Fermi
sea (with “sea level” being equal to the Fermi level EF) [21]. LFL is symmetric with
regard to quasiparticles and holes. The latter are the “mirror images” of quasiparticles
with the samemass but opposite charge; in particle physics terminology the quasipar-
ticles above and the holes below the Fermi sea are fermions above and antifermions
below the Dirac sea. The microscopic Hamiltonian of LFL is fully symmetric with
respect to holes and quasiparticles, and this “matter-antimatter symmetry” holds on
a macroscopic scale as well [21].

The theory of LFL is based on a representation of the system as a gas of interacting
quasiparticles, the number of which is equal to the number N of particles [21]. The
ground state energy E of a uniform Fermi system is treated as a functional of the
quasiparticle distribution n(p). Under arbitrary variation of n(p), conserving the
particle number density x, the energy E is changed according to the formula [12, 13]

δE =
∫

(ε(p) − μ)δn(p)
dp

(2π)3
. (16.2)

Here ε(p) = δE/δn(p) is the energy of a quasiparticle andμ is the chemical potential.
Distribution n(p) at T = 0 is a Fermi step n(p) = θ(p − pF), pF is the Fermi
momentum, and x = p3F/3π2. At finite temperatures n(p) is given by the Fermi-
Dirac distribution

n(p, T) = {1 + exp[(ε(p, T) − μ)/T ]}−1. (16.3)

A necessary stability condition for LFL is that the group velocity of quasiparticles be
nonnegative at the Fermi surface: vg(p) = dε(p)/dp ≥ 0. In that case δE ≥ 0 and we
obtain that (16.2) admits the solution ε(p) = μ. This condition can be reformulated
as an equation for the minimum [12, 13]
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δE

δn(p)
= ε(p) = μ; pi ≤ p ≤ pf . (16.4)

The distribution function found from (16.4) differs from the step function in the
interval from pi to pf ; inside this interval 0 < n(p) < 1. Note that (16.4) describes
pari passu both fermions and bosons, for inside the interval the distribution function
is to automatically satisfy 0 < n(p) < 1. Outside this interval n(p) coincides with
the step function. When the density x → xFC where xFC is a quantum critical point
(QCP) of FCQPT, a nontrivial solution of (16.4) emerges, see for details Chap.3.
We note that the state emerging behind FCQPT can be viewed as one possessing
the supersymmetry (SUSY) that interchanges bosons and fermions eliminating the
difference between them, see Sect. 3.1.

At finite T , a solution n(p) of (16.4) and the corresponding single-particle spec-
trum ε(p) are depicted in Fig. 16.1. At the Fermi level ε(p, T) = μ, then from
(16.3) the distribution function n(p, T) = 1/2. The vertical dashed and solid lines in
Fig. 16.1 crossing the distribution function plot at the Fermi level illustrate the asym-
metry of the corresponding distribution functions with respect to the Fermi level at
T = 0.01 and T = 0.0001 respectively. As T → 0 as seen from Fig. 16.1, the num-
ber density of holes H = ∑

ε(p)<EF
(1 − n(p)) is finite, while the number density of

quasiparticles P = ∑
ε(p)>EF

n(p) vanishes. Clearly the solutions of (16.4) strongly
violate the particle-hole symmetry, and the asymmetry RA = (H − P)/(H + P)

increases becoming more pronounced at diminishing temperatures.

(a)

(b)

Fig. 16.1 The single particle energy ε(k, T) (a) and the distribution function n(k, T) (b) at finite
temperatures as functions of the dimensionless variable k = p/pF . Temperature is measured in
units of EF . At T = 0.01 and T = 0.0001 the vertical dashed and solid lines respectively show
the position of the Fermi level EF at which n(k, T) = 0.5 as depicted by the horizontal line. As
T → 0 and consistent with (16.2), the single particle energy ε(k, T) becomesmore flat in the region
(pf −pi) and the distribution function n(k, T) in this region becomes more asymmetric with respect
to the Fermi level EF producing the quasiparticle-hole asymmetry related to the NFL behavior

http://dx.doi.org/10.1007/978-3-319-10825-4_3
http://dx.doi.org/10.1007/978-3-319-10825-4_3
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Fig. 16.2 Schematic phase diagram of a system with FCQPT. The number density x (in dimen-
sionless form x/xFC) is taken as the control parameter. The quantum critical point at x/xFC = 1
of FCQPT is denoted by the arrow. At x/xFC > 1 and sufficiently low temperatures, the system
is in the LFL state as shown by the shadow area. At finite temperatures and beyond the critical
point, x/xFC < 1, the system is above the quantum critical line depicted by the dashed line and
shown by the vertical arrow. The location of the system in the NFL region is characterized by the
quasiparticle-hole asymmetry related to the NFL behavior

A schematic phase diagram of the system which is driven to FCQPT by variation
of x is reported in Fig. 16.2. Upon approaching QCP of FCQPT at x = xFC , the
system remains in the LFL region at sufficiently low temperatures as is shown by
the shadow area. The temperature range of the shadow area shrinks as the system
approaches QCP. At xFC shown by the arrow in Fig. 16.2, the system demonstrates
theNFL behavior down to the lowest temperatures. BelowQCP at finite temperatures
the behavior remains the NFL one with the particle-hole asymmetry. In that case as
T → 0, the system is approaching a quantum critical line (shown by the vertical
arrow and the dashed line in Fig. 16.2) rather than a quantum critical point. It is seen
from Fig. 16.2 that at finite temperatures there is no boundary (or phase transition)
between the states of systems located before or beyond QCP shown by the arrow.
Therefore, at elevated temperatures the properties of systems with x/xFC < 1 or with
x/xFC > 1 become indistinguishable, while the particle-hole symmetry is restored
[14, 15]. In Fig. 16.3wepresent the asymmetryRA versus dimensionless temperature.
At low temperatures T/EF ≤ 1 the asymmetryRA � a0+a1

√
T and the symmetry is

restored at T � EF since RA � 0. The function RA is of universal form and the values
of a0 and a1 are determined by the location of the system at the quantum critical line
shown in Fig. 16.2. We note that a0 is given by the temperature independent part S0
of the entropy, S(T → 0) → S0 [14–16].

One of the manifestations of the quasiparticle-hole symmetry on a macroscopic
scale is the symmetric electric conductivity. It is straightforward to demonstrate that
in LFL the differential conductivity σd
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Fig. 16.3 RA as a function of
the dimensionless
temperature measured in EF .
Our calculations are shown
by squares. The solid curve
represents a fit
RA � a0 + a1

√
T

dI = σd dV (16.5)

is a symmetric function of the voltage V , i.e. σd may depend on the absolute value
of V , but not on its sign. It follows from (16.5), that when the conductivity is a
symmetric function of voltage, reversing the sign of V results in I → − I: Electric
current maintains its magnitude and flows in the opposite direction. This reasonable
feature may be readily derived in the framework of the LFL theory. Let us recollect
that the electric current can be expressed in terms of the distribution function (16.3)
as [18]

I(V) = const
∫

dε [n(ε − V) − n(ε)]. (16.6)

Now, it immediately follows from (16.5) to (16.6), that σd is a symmetric function
of voltage V . This result is a direct consequence of the quasiparticle-hole symmetry
which is an inherent feature of the LFL theory. The symmetric conductivity has been
observed so many times that it lead to a perception that the conductivity can not be
asymmetric.

This perception has been invalidated by recent experimental findings where it was
shown that at low temperatures the electric conductivity in high-Tc superconductors
[18] as well as in some heavy fermion metals, such as CeCoIn5 and YbCu5−xAlx
[19, 20] is clearly asymmetric, this asymmetryvanishing as the temperature increases.
Evidently, the asymmetry can not be explained in the framework of the LFL theory
since the quasiparticle-hole symmetry unavoidably leads to the step function for the
fermion distribution function in the low temperature regime which, in turn, results
in a symmetric conductivity. Therefore, to explain the asymmetric conductivity, it is
necessary to consider fermion systems more general than LFL.

Strongly correlated fermion systems may serve as one of the examples of
such systems. These systems have many novel features which have been observed
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experimentally [14, 15, 22]. In our case the most attractive is the low temperature
asymmetric conductivity, for details see Chap.13. This macroscopic effect finds its
explanation in the quasiparticle-hole asymmetry in theory of strongly correlated
fermion systems. Fundamental microscopic interaction in this theory is fully sym-
metricwith regard to quasiparticles and holes, but FCQPT at low temperatures causes
the spontaneous symmetry breakdown [14–16]. Asymmetry is caused by the simple
fact that in strongly correlated fermion systems, in contrast to LFL, the single-particle
energy ε(p) possesses a flat part that is T dependent. Thus n(p, T) given by (16.3)
does not reproduce the step function in the low temperature limit [12, 13]. The
asymmetric part of the conductivity,

Δσd(V) ≡ 1

2

[
σd(V) − σd(−V)

]
, (16.7)

can be calculated [16] and comparison with experiments [19, 20] leads to good
agreement. The estimate is

Δσd(V) ∼ V

2T

pf − pi

pF
. (16.8)

It follows from (16.8), that a fairly large asymmetry is obtained when (pf −pi)/pF ≈
1. When a magnetic field B is applied, the LFL behavior is restored, particle-hole
asymmetry is eliminated, and therefore the asymmetric part of the differential con-
ductivity disappears [14–16]. In other words, the particle-hole symmetry is macro-
scopically broken, or CP is violated, in the absence of applied magnetic fields.
Conversely, the application of a magnetic field restores both the particle-hole sym-
metry and the LFL state. This agrees with the experimental facts collected in mea-
surements on YbCu5−xAlx [14, 15, 20].

16.3 The Asymmetry of the Universe

Now we are in a position to formulate our approach to the baryon asymmetry of the
universe. As it cools down, the universe behaves as a NFL. One of the manifestations
of such systems is a strongly correlated Fermi system exhibiting FCQPT at T = 0, as
it is shown in Fig. 16.2. We suggest that this model describes the particle-antiparticle
content of the universe. As it is seen from Fig. 16.3, at finite temperatures the baryon-
antibaryon asymmetry emerges as an inherent property of the system located above
the quantum critical line. The asymmetry results from the distortion of the Fermi sur-
face, in other words from the deviation of the distribution function n(p) from the step
function at low temperatures. At lowering temperature, the system approaches the
quantum critical line so that the asymmetry increases. Details of this increase depend
on the model chosen. The very existence and the universal qualitative behavior of
the asymmetry is of great importance.

http://dx.doi.org/10.1007/978-3-319-10825-4_13
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The picture for explaining baryon asymmetry emerging from the above is as
follows. The initial excited state corresponding to the big bang with extremely high
temperature possesses matter-antimatter symmetry. At the end of the inflation stage
the darkmatter emerges producing baryons (holes) and anti-baryons (quasiparticles).
At this stage the temperature is high and the chemical potentials of baryons and
antibaryons are zero, so that the asymmetry is also zero. As the temperature drops the
statewith the baryon (hole) asymmetry is formed.As a result, the universe approaches
the quantum critical line which corresponds to the state with the maximum baryon
(hole) asymmetry as it is seen from Fig. 16.3. This state is the eigenstate of the fully
symmetric microscopic Hamiltonian with the eigenvalue lower than that for the state
with matter-antimatter symmetry and contains the visible matter—baryons (holes),
and the dark matter in the vicinity of the visible matter. In our approach, the visible
matter is represented by the excitations (holes) of the dark matter. As there is almost
no interaction between holes and the Fermi sea, we conclude that there is no direct
interaction between dark and visible matter or, in the other words, the interaction (if
any) is very weak. Then, proceeding along the universe-non-Fermi liquid analogy,
since it takes about ten particles to create one quasiparticle [21], we estimate the ratio
of the mass of visible matter to the mass of dark matter to be of order of ten which is
close to the observed value 	DM/	b ≈ 5 [6, 23]. The ground state of the universe
which we identify with the dark energy is interpreted in our approach as the vacuum.

Another result which comes as a bonus of our universe-non-Fermi liquid analogy
is the high entropy of the universe. As it is seen from Fig. 16.1, n(k, T) of holes
(the visible matter) even at T → 0 is non-integer, 0 < n(k, T) < 1. The entropy
S(n(p, T)) is given by the well-known expression [21]

S(n(p, T)) = − 2
∫

[n(p, T) ln(n(p, T)) + (1 − n(p, T))

× ln(1 − n(p, T))] dp
(2π)3

. (16.9)

It follows from Fig. 16.1 and (16.9) that the entropy of the system is finite at T → 0:
S(T → 0) → S0.

Let us introduce SB, entropy per baryon, as S/x where S is given by (16.9) and x
is the number density of baryons. Then it follows from the (16.9) that SB ∼ 1. This
observation immediately explains the high entropy of the visible matter [24]. We
also conjecture that the observed violation of CP-symmetry, leading to the violation
of T -symmetry and making the finite term of the entropy, S(T → 0) = S0, may
resolve the well-known problem of the time arrow.

It might seem that the presence of the Fermi level contradicts the relativistic
invariance and the CPT theorem since the Fermi level and the Fermi sphere related to
it are not transformed according to the invariance.Aswe shall see, at high energies the
degrees of freedom related to the Fermi sphere become irrelevant and the relativistic
symmetry is preserved in our approach. Let us assume that there are substantial gaps
in the energy scales separating different states of the evolution of the Universe. One
of these gaps separates the state behind FCQPT which produces CP violation and
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the symmetrical state laying above FCQPT. Consider the linear response function
χ(q, ω) (see, e.g., [25])

χ(q, ω) =
∑

n

|ρ(q)n0|2
[

2ωn0

(ω + iγ )2 − ω2
n0

]
. (16.10)

Here ρ(q) describes the fluctuations of the quasiparticle density, ωn0 = En − E0 is
the difference between the ground state and the excited state energies. In our case
En are the energies of excited states behind FCQPT. If ω is sufficiently high so that
ω 
 (En − E0) then (16.10) defines the linear response function of noninteracting
particles [25]

χ(q, ω → ∞) = xq2

mω2 , (16.11)

wherem is the bare particle mass, for atω 
 ωn0 the effective massM∗ → m at such
high energies. In our case, it means that these high energies render the system to be in
the region of its phase diagram located well above the critical line shown in Fig. 16.2
where the CP symmetry is restored. Relativistic invariance is not yet restored since
the very existence of quasiparticles ensures that Fermi sphere still remains relevant
surface in phase space. Now we take into account that the linear response function of
this system is again given by (16.10) with new ω′

n0. Again at ω 
 ω′
n0 the response

function is given by (16.11) formed by particles that are not related to any Fermi
sphere. Going this way, we ascend a level where the inflation takes place and the
relevant degrees of freedom are now not quasiparticles but particles of the Standard
Model. As a result, we conclude that at elevated energies ω the irrelevant degrees of
freedom vanish and both the relativistic invariance and the CPT symmetry emerge.
The details of reappearing of relativistic invariance are defined by the specific model
chosen to describe baryogenesis.

The attractive feature of the above scenario is its “conservative” character—to
introduce the matter-antimatter asymmetry it may suffice to suggest a mechanism
based on analysis of quantum phase transitions in Fermi systems. There is no need
to introduce baryon number non-conservation or CP violating interactions, as well
as to invoke any extension of the standard cosmological model—ordinary quantum
mechanics and statistics applied to a multi fermion system guarantee that the system
starts from the symmetric state and at decreasing temperatures arrives at a maximally
asymmetric one.This universal feature is present in strongly correlatedFermi systems
with theFCQPT; thedetails dependon the specificmicroscopicHamiltonianwebegin
with.

We note that typical current-current interactions lead to the formation of flat bands
[26]. These bands located at the Fermi surface, being topologically protected from
interaction and other disturbances, lead to the robustness of the generic properties
of the quantum vacuum generated by their existence [8–10]. Due to the universal
features of our model we have not concentrated on a particular picture that follows
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from some concrete dynamics, nor pursued the best quantitative description as the
goal by itself. Rather, we demonstrate an opportunity to explain baryon asymmetry
from the very general physics principles. Let us emphasize that the quasiparticle-
hole asymmetry, which manifests itself at the macroscopic scale, is observed in
experiments on HF metals and analyzed theoretically, is one of the few analogies of
particle-antiparticle asymmetry observed in the universe, and thus deserves attention.
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Chapter 17
Quantum Criticality of Spin Liquids in Novel
Insulators and Magnets

Abstract Strongly correlated Fermi systems are among the most intriguing and
fundamental systems in physics, whose realization in some compounds is still under
consideration. Quantum spin liquids are a promising new phases, where exotic quan-
tum states of matter could be realized. Exotic quantum spin liquid (QSL) made of
such hypothetic particles as fermionic spinons which carry spin 1/2 and no charge
are considered in this chapter. Magnetic insulators with geometrical frustration pro-
duce important experimental facts shedding light on the nature of quantum spin
liquid composed of spinons. We present a theory of the thermodynamic properties
of quantum spin liquids, elucidating how their properties are affected by magnetic
fields and describe as an example the experimental data for the herbertsmithite and
HF metals. We show that the above insulators can be viewed as HF compounds,
whose low temperature thermodynamics in magnetic fields is determined by a Fermi
quantum spin liquid. These properties allow us to reveal their scaling behavior, which
strongly resembles that observed in HF metals and two-dimensional 3He. We also
describe the dynamic magnetic susceptibility which allows us to reveal that at low
temperatures quasiparticles excitations, or spinons, form a continuum, and populate
an approximately flat band crossing the Fermi level. The obtained results show that
the properties of compounds with quantum spin liquid are similar to those of HF
metals. Thus, the compounds can be viewed as a new type of strongly correlated
HF electrical insulator that possesses properties of HF metals with one exception: it
resists a flow of electric charge. Transport properties of the compounds shed light on
the nature of quantum spin liquid. Analysis of the heat conductivity detects its scaling
behavior resembling those of both the spin–lattice relaxation rate and the magnetore-
sistivity. It reveals a strong magnetic field dependence of the spinons effective mass.
As a result, the strongly correlated electrical insulator gains also a new magnetic
feature of the matter, for the spins represented by the deconfined QSL get mobility.
We show that the crystal keeps all properties of solids, but in the magnetic relation
shows fluidity.
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17.1 Thermodynamic Properties of Quantum Spin
Liquid in Insulators

An interesting and puzzling issue is the research of HF compounds and their
non-Fermi liquid (NFL) behavior detected in their thermodynamic and transport
properties. Under the application of magnetic field B, the system can be driven
to a Landau Fermi liquid behavior (LFL). This behavior is observed in quite dif-
ferent objects such as HF metals, high-Tc superconductors, and 2D 3He [1–4].
Recently, a natural object, the herbertsmithite ZnCu3(OH)6Cl2 has been exposed
as a S = 1/2 kagome antiferromagnet [5]. New experimental investigations have
revealed its unusual behavior [6–10] suggesting that herbertsmithite can be viewed
as HF compound [11–14]. High-quality single crystals of ZnCu3(OH)6Cl2 were
synthesized and characterized [9]. The bulk properties of that are consistent with
the previously published powder results [6–9]. Observations have found no evi-
dence of long range magnetic order or spin freezing, down to temperature of 50mK
[6–10, 15]. The specific heat C, arising from the Cu spin system, at T < 1K appears
to be governed by a power law with an exponent which is less than or equal to 1.
At the lowest explored temperature, namely over the temperature range 100 < T <

400mK, C follows a linear temperature dependence, C ∝ T , while for temperatures
of T ∼ 10K and higher, C(T) ∝ T3 and is dominated by the lattice contribution
[6–8]. At low temperatures the strong dependence of the specific heat C on magnetic
field suggests that C is predominately magnetic in origin [6–8]. It is believed that
the S = 1/2 model on the kagome lattice can be viewed as the gapless spin liquid
[6–10, 15–19], while recent accurate calculations point to a fully gapped one, see
[20] and references therein. Thus, it is of crucial importance to understand what kind
of quantum spin liquid is formed in the herbertsmithite and determines its low tem-
perature thermodynamic properties [11]. The sketch of the kagome lattice is shown
in Fig. 17.1. The S = 1/2 spins of the Cu+2 ions occupying a highly symmetric
kagome lattice are displayed by the arrows. As spins on the kagome lattice occupy
a highly symmetric structure of corner-sharing triangles, the ground state energy
does not depend on the spins configuration. As a result, spins located at the kagome
hexagon, composed of the two triangles, form a frustrated pattern that is even more
frustrated than the triangular lattice considered by Anderson [21].

17.1.1 Model

The magnetic susceptibility χ(T) of ZnCu3(OH)6Cl2 shown in Fig. 17.2 displays
an unusual behavior [8]. At B ≥ 3 T, χ(T) has a maximum χmax(T) at some temper-
ature Tmax(B). The maximum χmax(T) decreases as magnetic field B grows, while
Tmax(B) shifts to higher T reaching 15 K at B = 14 T. At B ≤ 1 T, as seen from
Fig. 17.2,whereχ(T) ∝ T−α withα = 2/3.As itwill be shownbelow, the calculated
exponent is in good agreement with the experimental value α = 2/3 � 0.66 [8].
The observed behavior of χ strongly resembles that in HF metals and is associated
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Fig. 17.1 The kagome
frustrated lattice of
ZnCu3(OH)6Cl2. The Cu
ions are shown by blue circles
with arrows symbolizing the
spins of the ions occupying
the kagome lattice. The
kagome hexagon is displayed
by both the two triangles and
the lines. The O−H group is
represented by the big (O)
and small (H) circles

with their proximity to QCP [4, 22, 23]. On this ground, we safely assume that a
deconfined Fermi quantum spin liquid with essentially gapless excitations formed
by neutral fermions is realized in ZnCu3(OH)6Cl2 and located very near QCP [6].
Thus, ZnCu3(OH)6Cl2 turns out to be located at its QCP without tuning this sub-
stance to QCP, using control parameter such as magnetic field, pressure, or chemical
composition. This observation is in sharp contrast to the common practice applied
to tune HF metals to their QCP’s.

A simple kagome lattice has a dispersionless topologically protected branch of
the spectrum with zero excitation energy that is the flat band [24, 25]. Therefore,
FCQPT can be considered as QCP of the ZnCu3(OH)6Cl2 quantum spin liquid.
To study the low temperature thermodynamic and scaling behavior, we use themodel
of the homogeneous heavy-fermion liquid, see Sect. 6.3. This model permits to avoid
complications associated with the crystalline anisotropy of solids. We propose that
the quantum spin liquid is composed of fermions. These fermions with zero charge

http://dx.doi.org/10.1007/978-3-319-10825-4_6
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Fig. 17.2 T -dependence of
the magnetic susceptibility χ

at different magnetic fields
for ZnCu3(OH)6Cl2 [8]. The
illustrative values of χmax and
Tmax at B = 7 T are also
shown. Our calculations made
at B = 0 are depicted by the
solid curve representing
χ(T) ∝ T−α with α = 2/3

and spin σ = 1/2 occupy the corresponding Fermi sphere with the Fermimomentum
pF , and form the excitation spectrum typical for HF liquid located near FCQPT. As a
result, spinons constitute the deconfined QSL, and gain mobility: The crystal keeps
all properties of a solid, but in contrast to the two known classical types ofmagnetism,
such as FM and AFM, in the magnetic relation shows fluidity—a new state that can
be defined as one more magnetic state of matter.

The ground state energy E(n) is given by the Landau functional depending on the
quasiparticle distribution function nσ (p), where p is the momentum. Near FCQPT
point, the effective mass M∗ is governed by the Landau equation, see Sect. 6.1,

1

M∗(T , B)
= 1

M∗ + 1

p2F

∑
σ1

∫
pFp1

pF

× Fσ,σ1(pF, p1)
∂δnσ1(p1, T , B)

∂p1

dp1

(2π)3
. (17.1)

Here we have rewritten the quasiparticle distribution function as nσ (p, T , B) ≡
nσ (p, T = 0, B = 0) + δnσ (p, T , B). The Landau interaction F is completely
defined by the fact that the system has to be at QCP of FCQPT, for we analyze
the universal scaling behavior of the effective mass shown in the inset to Fig. 17.3.
In that case, the sole role of the Landau interaction is to bring the system to FCQPT
point, where Fermi surface alters its topology, so that the effective mass acquires
temperature and field dependence. At this point, the term 1/M∗ vanishes and (17.1)
becomes homogeneous. It can then be solved analytically, as it is done in the case
of HF metals, see Chap.6. At B = 0, the effective mass strongly depends on T
demonstrating the NFL behavior

M∗(T) � aT T−2/3. (17.2)

http://dx.doi.org/10.1007/978-3-319-10825-4_6
http://dx.doi.org/10.1007/978-3-319-10825-4_6


17.1 Thermodynamic Properties of Quantum Spin Liquid in Insulators 289

Fig. 17.3 Phase diagram of
ZnCu3(OH)6Cl2. The vertical
and horizontal arrows show
LFL-NFL and reverse
transitions at fixed B and T
respectively. Inset shows a
plot of the normalized
effective mass versus the
normalized temperature.
Transition region, where M∗

N
reaches its maximum at
TN = T/Tmax = 1, is shown
by the arrows and hatched
area in both the main panel
and in the inset

AtfiniteT , the applicationofmagneticfieldBdrives the system the toLFL regionwith

M∗(B) � aBB−2/3. (17.3)

At finite B and T near FCQPT, the solutions of (17.1) M∗(B, T) can be well
approximated by a simple universal interpolating function. The interpolation occurs
between the LFL (M∗(T) ∝ const) and NFL (M∗(T) ∝ T−2/3) regions [4, 22].
It is convenient to introduce the normalized effective mass M∗

N and the normalized
temperature TN dividing the effective mass M∗ by its maximal values, M∗

M , and
temperature T by Tmax, at which the maximum occurs. Equation (17.1) allows us
to calculate the thermodynamic properties for the normalized susceptibility χN =
χ/χmax = M∗

N . Since C/T ∝ M∗, the normalized (C/T)N = χN = M∗
N . We

note that our calculations of M∗
N based on (17.1) do not contain any free fitting

parameters. The normalized effective mass M∗
N = M∗/M∗

M as a function of the
normalized temperature y = TN = T/Tmax is given by the interpolating function
(see Sect. 6.3)

M∗
N (y) ≈ c0

1 + c1y2

1 + c2y 8/3 . (17.4)

Here c0 = (1 + c2)/(1 + c1), c1 and c2 are fitting parameters. Magnetic field B
enters (17.1) only in the combination μBB/kBT , making kBTmax � μBB. Thus, in
the presence of magnetic fields the variable y becomes

y = T/Tmax � kBT/μBB. (17.5)

The variables T and B enter (17.5) symmetrically; therefore (17.4) is valid for
y = μBB/kBT . In what follows we use (17.4) to clarify our calculations based

http://dx.doi.org/10.1007/978-3-319-10825-4_6
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on (17.1). It follows directly from (18.10), (17.4) and (17.5) thatχ(kBT/μBB)T2/3 ∝
y2/3M∗

N (y). Since on has for the magnetization M(B, T) = ∫
χ(B, T)dB, we obtain

that M(B, T)T−1/3 depends on the only variable y. These observations confirm the
scaling behavior of both χT0.66 and MT−0.34 experimentally established in [8].

17.1.2 Phase Diagram

We now construct the schematic phase diagram of ZnCu3(OH)6Cl2. The phase
diagram is depicted in Fig. 17.3. At T = 0 and B = 0 the system is located at
QCP of FCQPT without tuning. Both magnetic field B and temperature T play the
role of the control parameters, shifting the system from its QCP and driving it from
the NFL to LFL regions as shown by the vertical and horizontal arrows. At fixed tem-
peratures the increase of B leads the system along the horizontal arrow from NFL
to LFL region. On the contrary, at fixed magnetic field and increasing temperatures
the system moves along the vertical arrow from the LFL to NFL region. The inset to
Fig. 17.3 demonstrates the behavior of the normalized effective mass M∗

N versus the
normalized temperature TN that follows from (17.4). It is seen that the temperature
region TN ∼ 1 represents the transition region between the LFL behavior with almost
constant effective mass and the NFL behavior, having the T−2/3 dependence. It is
seen from (17.4) and (17.5) and Fig. 17.3 that the width of the transition region is
given by Tw ∝ T ∝ B.

17.1.3 The Thermodynamic Properties

The experimental data on the measurements of χN [8], (C/T)N = M∗
N [26] and our

calculations of M∗
N at fixed magnetic field B that completely polarizes the quasi-

particle band are shown respectively by the geometrical figures and solid curve in
Fig. 17.4. It is clearly seen that the data collected on both ZnCu3(OH)6Cl2 and
YbRh2Si2 collapse into the same curve, obeying the scaling behavior. Consistent
with the phase diagram displayed in Fig. 17.3, at growing temperatures (y � 1) the
LFL behavior first converts into the transition one and then disrupts into the NFL
regime. This demonstrates that the spin liquid of ZnCu3(OH)6Cl2 is close toQCP and
behaves as the HF liquid of YbRh2Si2. On the other hand, that the low-temperature
ends (TN ≤ 0.5) of the curves do not merge and their values decrease as B grows
representing the total polarization of spins of the HF band at the highest reached
magnetic fields [28], as it takes place in the case of YbRh2Si2 in strong magnetic
fields, see Chap.15. Indeed, at low TN , χN at B = 14 T is close to (C/T)N at B = 18
T, while our calculations shown by the solid curve is close to each of the functions.
Both the normalizedmagnetizationMN (y) = M(B/Bk)/M(Bk), extracted frommea-
surements of the magnetization M(B) [8] depicted by the symbols, and calculated
MN (y) shown by the solid line are reported in Fig. 17.5. Here, Tk is the temperature

http://dx.doi.org/10.1007/978-3-319-10825-4_18
http://dx.doi.org/10.1007/978-3-319-10825-4_15
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Fig. 17.4 Scaling behavior of the the magnetic susceptibility. Normalized susceptibility χN =
χ/χmax = M∗

N is shown versus normalized temperature TN . χN is extracted from the measure-
ments of the magnetic susceptibility χ(B, T) [8] shown in Fig. 17.2. Normalized specific heat
(C/T)N = M∗

N is extracted from the measurements of C/T on YbRh2Si2 in magnetic fields B [26].
The corresponding fields B are listed in the legends. Our calculations made at field B completely
polarizing the quasiparticle band are depicted by the solid curve tracing the scaling behavior of
M∗

N . It is clearly seen that the data collected on both ZnCu3(OH)6Cl2 and YbRh2Si2 merge into the
same curve, obeying the scaling behavior at TN ≥ 1 when the polarization vanish. In accordance
with the phase diagram displayed in the panel a, at growing temperatures (y � 1) the LFL regime
first converts into the transition one and then disrupts into the NFL regime. This demonstrates that
the spin liquid of herbertsmithite is close to QCP and behaves like HF liquid of YbRh2Si2 in strong
magnetic fields

Fig. 17.5 Normalized
magnetization MN (y)
collected on measurements on
ZnCu3(OH)6Cl2 [8] and
YbRh2Si2 [27] at different
temperatures shown in the
corresponding legends. The
kink (arrow) is located at
y � 1. The normalized
entropy SN (y) is extracted
from measurements on 2D
3He [2] at different densities
x shown in the legend. The
solid curve represents our
calculations of the normalized
magnetization
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(a) (b)

Fig. 17.6 Tmax and χmax versus magnetic field B. Panel a The temperatures Tmax(B) where the
maxima of χ (see Fig. 17.2) are located. The solid line represents the function Tmax ∝ aB, a being
a parameter, see (17.5). Panel b The maxima χmax of χ(T) versus magnetic field B (see Fig. 17.2).
The solid curve is approximated by χmax(B) = dB−2/3, see (17.3), where d is a parameter

where themagnetization has the kink,while the system enters the transition region [4]
shown in Fig. 17.3. The normalized entropy SN (y) = S(T/Tinf )/S(Tinf ) is obtained
from measurements of the entropy S on 2D 3He [2]. Here Tinf is the temperature
where the system enters the transition region and S has its inflection point, clearly
seen in the data, see Fig. 1.4. It is seen from (17.4) and from the inset in Fig. 17.3,
that at y < 1, SN = MN ∝ y, and at y > 1, SN = MN ∝ y1/3. This behavior pro-
duces the kink and makes the scaled data merge into a single curve dependent on the
single variable y. Our calculations are in good agreement with the measurements.
In Fig. 17.6, panel a, the solid squares denote temperatures Tmax(B) at which the
maxima of χ(T) occur versus magnetic field B. In the panel b, the corresponding
values of the maxima χmax(B) are shown by the solid diamonds as a function of B.
It is seen that the agreement between the theory and experiment is good in the entire
magnetic field domain.

Our calculations of the specific heat C(B, T) are shown in Fig. 17.7. For T of a
few Kelvin, the lattice contribution to the specific heat is comparable with that of
QSL, and at higher temperatures it becomes the most significant one. However, this
contribution diminishes at low temperatures, and at T ≤ 1 K C is predominately
determined by the spin liquid contribution [6, 7]. It is seen from Fig. 17.7, that in
the LFL region at kBT � μBB, C(B, T) = a1B−2/3T ∝ M∗T with a1 being the
only fitting parameter. The field B completely defines the M∗(B) behavior given by
(17.3). Clearly, our calculations are in good agreement with the measurements when
the system demonstrates the LFL behavior. Indeed, at T = 1 K the system exhibits
the LFL behavior at B ≥ 2T, while at T = 0.5K the LFL behavior is observed even
at lower values of B, namely B ≥ 1T.

http://dx.doi.org/10.1007/978-3-319-10825-4_1
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Fig. 17.7 The specific heat
C(B, T) versus magnetic field
B measured on
ZnCu3(OH)6Cl2 [6]. The
measurements were
performed at two different
temperatures T listed in the
legends where they are shown
by triangles and squares. Our
calculations are depicted by
the solid curves tracing the
LFL behavior of
C(B, T) = a1B−2/3T , see
(18.10), with a1 being a
parameter

The behavior of M∗
N = M∗/M∗

M as a function of y = T/TM shown in the inset to
Fig. 17.3 is independent of the specific features of corresponding strongly correlated
Fermi system, while both M∗

M and TM are determined by these features, as we have
seen in Sect. 6.3. As a result, we obtain

χN = (Cmag/T)N = M∗
N , (17.6)

where χN and (C/T)N are the normalized values of χ and C/T , respectively. The
specific heatC, arising from the Cu spin system, at the lowest explored temperatures,
100 < T < 400mK, follows a linear temperature dependence, C ∝ T . As it is seen
from Fig. 17.8, panel b, for temperatures of a few Kelvin and higher, the specific
heat becomes C(T) ∝ T3 and is dominated by the lattice contribution. The strong
magnetic field dependence of the specific heat C suggests that it is predominately
formed by the specific heat Cmag of QSL,

Cmag = C − a1T3, (17.7)

since the lattice contribution is independent of B [6–8]. The above behavior of χ

(Fig. 17.8, panel a) is a visible parallel to that of the HF metal YbRh2Si2 observed
in measurements of C/T and displayed in the panel c. This coincidence becomes
evident if we recollect that for HF liquid χ ∝ C/T [4]. It is seen from the panel c
that the electronic specific heat of YbRh2Si2 [26] is also strongly dependent on the
applied magnetic field. It follows from Fig. 17.4 that in accordance with (17.6) the
behavior of χN coincides with that of (C/T)N in YbRh2Si2. We will see below that
both the specific heat Cmag and that of YbRh2Si2 exhibit the same behavior.

According to (17.6), in the case ofQSL thebehavior of the specificheat (Cmag/T)N

must coincide with that of χN . To separate Cmag contribution, we approximate the
general specific heat C(T) at T > 2 K by the function

http://dx.doi.org/10.1007/978-3-319-10825-4_18
http://dx.doi.org/10.1007/978-3-319-10825-4_6
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(a)

(b)

(c)

Fig. 17.8 Panel a T -dependence of the magnetic susceptibility χ at different magnetic fields B [8]
shown in the legend. The values of χmax and Tmax at B = 7 T are also shown. Panel b the heat
capacity measured on ZnCu3(OH)6Cl2 at zero magnetic field [7] is shown by squares. Solid curve
corresponds to our theoretical approximation based on the function C = a1T3 +a2T1/3 with fitting
parameters a1 and a2, see (17.8). Panel c reports the T -dependence of the electronic specific heat
C/T of YbRh2Si2 at different magnetic fields [26] as shown in the legend. The values of (C/T)max
and Tmax at B = 8 T are also shown

C(T) = a1T3 + a2T1/3. (17.8)

Here the first term proportional to a1 presents the lattice (phonon) contribution, while
the second one is determined by the QSL when it exhibits the NFL behavior, as it
follows from (17.2). It is seen from Fig. 17.8, panel b, that the approximation (17.8)
is valid in a wide temperature range. We note that the value a1 is almost independent
of a2, the presence of which allows us to achieve a better approximation for C.
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Fig. 17.9 The specific heat (Cmag/T) of QSL in ZnCu3(OH)6Cl2 measured on powder samples [8]
and on single crystal samples [29, 30]. (Cmag/T) is displayed versus temperature T as a function of
the magnetic fields B shown in the legends. (Cmag/T) is extracted from the data [8, 29, 30] by using
(17.9). The specific heat (Cmag/T) exhibits the same behavior as C/T of YbRh2Si2 demonstrated
in the panel c of Fig. 17.8

Fig. 17.10 Left panel The specific heat Cmag/T of QSL given by (17.8) is extracted from mea-
surements of C(B) on ZnCu3(OH)6Cl2 at different magnetic fields shown in the legend [7]. Right
panel The temperatures Tmax(B) at which the maxima of Cmag/T (see the left panel) are located.
The solid line represents the function Tmax ∝ B, see (17.5)

The obtained heat capacity Cmag/T ,

Cmag

T
= C − a1T3

T
, (17.9)

is displayed in Fig. 17.9 and in the left panel of Fig. 17.10, while the right panel
of Fig. 17.10 demonstrates the maximum temperature as a function of the magnetic
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Fig. 17.11 The normalized susceptibility χN = χ/χmax = M∗
N and the normalized specific heat

(Cmag/T)N = M∗
N of QSL effective mass versus normalized temperature TN as a function of the

magnetic fields shown in the legends. χN is extracted from the measurements of the magnetic
susceptibility χ in magnetic fields B [8] shown in the panel a of Fig. 16.2. The normalized specific
heat is extracted from the data displayed in Fig. 17.10, the left panel. Our calculations are depicted
by the solid curve tracing the scaling behavior of M∗

N

Fig. 17.12 The normalized susceptibility χN and the normalized specific heat (Cmag/T)N of QSL
effective mass versus normalized temperature TN as a function of the magnetic fields shown in the
legends. χN and (Cmag/T)N are extracted from the data of [6, 8], respectively

field B. It is seen from Fig. 17.9 that Cmag/T ∝ M∗ behaves like χ ∝ M∗ shown
in Fig. 17.2. The normalized (Cmag/T)N and χN are depicted in Figs. 17.11, 17.12
and 17.16. It is seen from these figures that the results obtained on the different
samples (powder samples and single crystal samples) and the measurements

http://dx.doi.org/10.1007/978-3-319-10825-4_16
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[6, 7, 29, 30] exhibit similar properties. As it is seen from Figs. 17.11 to 17.12
that in accordance with (17.6), (Cmag/T)N � χN displays the same scaling behav-
ior as (C/T)N measured on the HF metal YbRh2Si2. This observation rules out a
scenario suggesting that extra Cu spins outside the kagome planes considered as
weakly interacting impurities could be responsible for the divergent behavior of the
low-temperature susceptibility seen from Fig. 17.2, see e.g., [10]. In that case the
supposition is to lead to explanations of the observed scaling behavior of χ and C/T
in strong magnetic fields shown in Figs. 17.11, 17.12 and 17.16. Obviously, it is
impossible, for weakly interacting impurities would be polarized by relatively weak
magnetic field, and would not contribute at higher magnetic fields. As a result, the
scaling behavior were destroyed at the higher fields. Therefore, the scaling behavior
of the thermodynamic functions of herbertsmithite is the intrinsic feature of the com-
pound and has nothing to do with possible contribution coming from the magnetic
impurities. Moreover, as it is seen from Fig. 17.9, the measurements on powder sam-
ples and on single crystal samples, demonstrating similar results, rule out noticeable
contributions to the thermodynamic properties coming from defects of the lattice and
impurities.

Thus, the kagome lattice ofZnCu3(OH)6Cl2 canbeviewedas a strongly correlated
Fermi system whose thermodynamics is defined by the quantum spin liquid located
at FCQPT. We conclude that in herbertsmithite the entire bulk susceptibility and the
heat capacity obey the scaling behavior. The scaling behavior of the thermodynamic
properties coincides with that observed in HF metals and 2D 3He. Herbertsmithite
ZnCu3(OH)6Cl2 exhibits the LFL, NFL and the transition behavior as HF metals
and 2D 3He do, see Sects. 6.3.1 and 18.4.

17.2 Scaling in Dynamic Susceptibility of Herbertsmithite
and HF Metals

In this Section we present a theory of the dynamic magnetic susceptibility of quan-
tum spin liquid. The obtained results show that the dynamic magnetic susceptibility
behaves as that of HF metals. Therefore, two known classical types of magnetism
(ferro- and antiferromagnetism) can be augmented by one more, caused not by the
order of the magnetic moments of atoms, ions or electrons, but by the “liquid” behav-
ior of spins. A new magnetic state of matter emerges, which is characterized by a
spins flow. This flow is described by means of virtual chargeless particles—spinons,
behaving as HF liquid. The theory of the dynamic magnetic susceptibility allows
us to reveal that at low temperatures quasiparticles excitations, or spinons, form a
continuum, and populate an approximately flat band crossing the Fermi level. The
obtained results are in good agreement with experimental facts collected on herbert-
smithite ZnCu3(OH)6Cl2 and as well as on HF metals, and allow us to predict a new
scaling in magnetic fields in the dynamic susceptibility. Under the application of
strong magnetic fields quantum spin liquid becomes completely polarized. We show

http://dx.doi.org/10.1007/978-3-319-10825-4_6
http://dx.doi.org/10.1007/978-3-319-10825-4_18
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that this polarization can be viewed as a manifestation of gapped excitations when
investigating the spin–lattice relaxation rate.

The key point of the LFL theory is the existence of fermionic quasiparticles defining
the thermodynamic, relaxation and dynamic properties of the considered material.
However, strongly correlated Fermi systems encompassing a variety of systems that
display behavior not easily understood within the LFL frame and called NFL. An
important example of the NFL behavior is represented by HF metals. As we have
demonstrated in Sect. 17.1, exotic QSL is formed with such hypothetic particles
as fermionic spinons. The experimental studies of herbertsmithite ZnCu3(OH)6Cl2
and the organic insulator EtMe3Sb[Pd(dmit)2]2 have discovered gapless excita-
tions, analogous to excitations near the Fermi surface in HF metals, indicating that
ZnCu3(OH)6Cl2 and EtMe3Sb[Pd(dmit)2]2 are quite promising systems in investi-
gating their QPTs and QSLs [5–11, 15–18]. The observed behavior of the thermody-
namic properties of ZnCu3(OH)6Cl2 strongly resembles that in HF metals, since the
kagome lattice being strongly frustrated has a dispersionless topologically protected
branch of the spectrum with zero excitation energy [11, 12, 24, 25]. This indicates
that QSL formed by the ideal kagome lattice is located near the ordered side of
FCQPT that is characterized by the presence of the spectrum with zero excitation
energy [4]. This observation allows us to establish a close similarity between QSL
and HFmetals whose HF systems are located near FCQPT and, therefore, exhibiting
an universal scaling behavior [4, 11, 12].

Although, as we have seen in Sect. 17.1, experimental facts on the thermody-
namic properties give conclusive evidence that the QSL does exist, the theoretical
interpretation of other bunch of data, namely those on inelastic neutron scattering
spectrum and spin–lattice relaxation rates on herbertsmithite can deliver additional
information on close relationship between QSL and HFmetals. Here, we employ the
Landau transport equation to construct the dynamical spin susceptibility. We eluci-
date how the calculated susceptibility is affected by magnetic field and describe the
experimental data for herbertsmithite and HF metals.

17.2.1 Theory of Dynamic Spin Susceptibility of Quantum
Spin Liquid and Heavy-Fermion Metals

To construct the dynamic spin susceptibility χ(q, ω, T) = χ ′(q, ω, T) + iχ ′′
(q, ω, T) as a function of momentum q, frequency ω and and temperature T , we
use the model of homogeneous HF liquid located near FCQPT [4]. To deal with the
dynamic properties of Fermi systems, one can use the transport equation describ-
ing a slowly varying disturbance δnσ (q, ω) of the quasiparticle distribution function
n0(p), and n = δn + n0. We consider the case when the disturbance is induced by
the application of external magnetic field B = B0 +λB1(q, ω) with B0 being a static
field and λB1 a ω-dependent field with λ → 0. As long as the transferred energy ω

obeys the inequality, ω < qpF/M∗ << μ, where M∗ is the effective mass and μ
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is the chemical potential, the quasiparticle distribution function n(q, ω) satisfies the
transport equation [31]

(qvp − ω)δnσ − qvp
∂n0
∂εp

∑
σ1p1

Fσ,σ1(pp1)δnσ1(p1)

= qvp
∂n0
∂εp

σμB(B0 + λB1). (17.10)

We assume that B0 is finite but not strong enough to lead to the total polarization of
the corresponding quasiparticle band. In the field B0, the two, the spin-up and spin-
down, Fermi surfaces are displaced by opposite values of energy, ±B0μB, and the
magnetization is given by: M = μB(δn+ − δn−), where the two spin orientations
with respect to the magnetic field are denoted by ±, and δn± = ∑

p δn±(p). The
spin susceptibility χ is given by χ = ∂M /∂B|B=B0 . The transport equation (17.10)
is reduced to two equations, which can be solved for each direction ± independently
and allows to calculate δn± and the magnetization. The response to λB1(q, ω) can
be found by expanding the solution of (17.10) in a power series with respect to
M∗ω/qpF . As a result, we obtain the imaginary part of the spin susceptibility

χ ′′(q, ω) = μ2
B
ω(M∗)2

2πq

1

(1 + Fa
0 )

2 , (17.11)

where Fa
0 is the dimensionless spin antisymmetric quasiparticle interaction [31].

The interaction Fa
0 is found to saturate at Fa

0 � −0.8 [32, 33] so that 1 + Fa
0

is positive. It is seen from (17.11) that the second term is an odd function of ω.
Therefore, it does not contribute to the real part χ ′ and forms the imaginary part
χ ′′. Taking into account that at relatively high frequencies μ � ω ≥ qpF/M∗ in
the hydrodynamic approximation one has χ ′ ∝ 1/ω2 [34], we conclude that the
equation

χ(q, ω) = μ2
B

π2(1 + Fa
0 )

M∗pF

1 + iπ M∗ω
qpF (1+Fa

0 )

, (17.12)

produces the simplest approximation for the susceptibility χ and satisfies the
Kramers-Kronig relation connecting the real and imaginary parts of χ .

To understand how can χ ′′ and χ given by (17.11) and (17.12), respectively,
depend on temperature T and magnetic field B, we recollect that near FCQPT point
the effectivemassM∗ depends onT andB, and is given by theLandau equation (17.1).
Magnetic field B enters it only in the combination μBB/kBT , making kBTmax �
μBB [4, 22]. Thus, in the presence of magnetic fields the variable y becomes
y = T/Tmax � kBT/μBB. Since the variables T and B enter symmetrically (17.4) is
valid for y = μBB/kBT .

The schematicT−B phase diagramofQSL andHF liquid is presented in Fig. 17.3.
Magnetic field B and temperature T play the role of control parameters, the variation
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Fig. 17.13 The function
(T2/3χ ′′)N plotted against the
dimensionless ratio
EN = ω/((kBT)2/3Emax).
The solid curve is the fit by
the function (17.15). The data
extracted from measurements
on ZnCu3(OH)6Cl2 are
obtained for 0.077 < T < 42
K [8]

of which leads to the transition from the NFL to LFL regions, as it is shown by the
vertical and horizontal arrows. At fixed B and increasing T the system transits along
the vertical arrow from LFL to NFL crossing the transition region. On the contrary,
at fixed T the increase of B leads the system along the horizontal arrow from NFL
region to LFL region.

17.2.2 Scaling Behavior of the Dynamic Susceptibility

To elucidate the scaling behavior of χ , we employ (17.2) to describe the temperature
dependence of χ . It follows from (17.12) and (17.2) that

T2/3χ(T , ω) � a1
1 + ia2E

. (17.13)

Here a1 and a2 are constants determined by irrelevant quantities, and E =
ω/(kBT)2/3. As a result, the imaginary part χ ′′(T , ω) is given by the equation

T2/3χ ′′(T , ω) � a3E

1 + a4E2 , (17.14)

where a3 and a4 are constants. It is seen from (17.14) that T2/3χ ′′(T , ω) depends on
the only variable E, and has a maximum (T2/3χ ′′(T , ω))max at some Emax. Equation
(17.14) confirms the scaling behavior of χ ′′T0.66 experimentally established in [8].
As the dimensionless functionM∗(y)was used when constructing (17.4), in the same
way we introduce the dimensionless function (T2/3χ ′′)N = T2/3χ ′′/(T2/3χ ′′)max
and the dimensionless variable EN = E/Emax, and (17.14) transforms into
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(T2/3χ ′′)N � b1EN

1 + b2E2
N

, (17.15)

with b1 and b2 are fitting parameters which are to adjust the function on the right-
hand side of (17.15) to reach its maximum value 1 at En = 1. We predict that if
measurements of χ ′′ are taken at fixed T as a function of B, then by taking into
account (18.10), we again obtain that the function B2/3χ ′′(E) exhibits the scaling
behavior with E = ω/(μBB2/3). If the system is placed at FCQPT, the scaling
described above is valid down to lowest temperatures.

In Figs. 17.13, 17.14 and 17.15, we depict the scaled normalized dynamic sus-
ceptibility (T2/3χ ′′)N extracted from the inelastic neutron scattering spectrum of
herbertsmithite [8], Ce0.925La0.075Ru2Si2 with Q1 = 0.6910 and Q1 = 0.4410 [35].
It is seen that the scaled data are consistent with (17.15) and collapse fairly well
onto a single curve over almost three orders of EN . It is seen that our calculations

Fig. 17.14 Same as in
Fig. 17.13, but for the HF
metal Ce0.925La0.075Ru2Si2
obtained for 5 < T < 80 K at
Q1 = 0.6910 [35]

Fig. 17.15 Same as in
Fig. 17.14, but for HF metal
Ce0.925La0.075Ru2Si2 for
2.5 < T < 80K at
Q1 = 0.4410 [35]

http://dx.doi.org/10.1007/978-3-319-10825-4_18
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(solid curves) are in good overall agreement with the experiment. Let us make some
remarks on the role of both the disorder and the anisotropy. The anisotropy is sup-
posed to be related to the Dzyaloshinskii-Moriya interaction, exchange anisotropy,
or out-of-plane impurities. We note that the Hamiltonian of herbertsmithite includes
a Heisenberg exchange term, with possible perturbations such as a Dzyaloshinskii-
Moriya interaction. The measurements of the susceptibility on the single crystal of
herbertsmithite have shown that the results closely follow that measured on a pow-
der sample [9]. At low temperatures T � 70K, the single-crystal data do not show
magnetic anisotropy [9].

Figure 17.16 reports the normalized specific heat (Cmag/T)N of ZnCu3(OH)6Cl2
versus normalized temperature TN as a function of the magnetic fields. (Cmag/T)N

are extracted from the data of [8, 29, 30], our calculations are shown by solid curve.
Measurements of the heat capacity C at magnetic fields B = 0–14T and B =
0–18T were carried out on single crystal samples [29, 30]. Good agreement among
all the data is seen from Fig. 17.16. Thus, we conclude that the disorder does not
significantly contribute to the heat capacity. The above facts confirm that the stoi-
chiometry, disorder and anisotropy do not contribute significantly to the results at
relatively low temperatures. Moreover, as we have seen, the scaling behavior of both
the thermodynamic functions and the imaginary part of the magnetic susceptibility
of herbertsmithite is the intrinsic feature and has nothing to do with the impurities
[12]. These observations are in agreement with the general consideration of scaling
behavior of HF metals, see Chaps. 6 and 7.

A few remarks regarding the imaginary part χ ′′(T , ω) are in order here. Equation
(17.14) is valid provided that the system approaches FCQPT from the disordered side
as shown in the phase diagram Fig. 16.2. If the system is located on the orderedside

Fig. 17.16 The normalized
specific heat (Cmag/T)N of
QSL in ZnCu3(OH)6Cl2
versus normalized
temperature TN as a function
of the magnetic fields shown
in the legends. (Cmag/T)N are
extracted from the data of [8,
29, 30]. Measurements of the
heat capacity C were carried
out on single crystal samples
[29, 30]. Solid curve
represents our calculations,
and traces the scaling
behavior of the effective mass

http://dx.doi.org/10.1007/978-3-319-10825-4_6
http://dx.doi.org/10.1007/978-3-319-10825-4_7
http://dx.doi.org/10.1007/978-3-319-10825-4_16
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then at B = 0 the behavior of the effective mass as a function of T is given by [4]

M∗(T) � aτ T−1, (17.16)

where aτ is a constant. Upon taking into account (17.16) and acting in the same way
as it was done in deriving (17.14), we obtain that the imaginary part χ ′′(T , ω) is
given by the equation

Tχ ′′(T , ω) � a5E

1 + a6E2 , (17.17)

wherea5 anda6 are constants, andE = ω/kBT . It is seen from (17.17) thatTχ ′′(T , ω)

depends on the only variable E = ω/kBT . Thus, (17.14) and (17.17) establish two
types of scaling behavior of χ ′′(ω, T). Since the scaling behavior of χ ′′(ω, T) is
definedby thedependenceofM∗ onT , onemayexpect new types of scaling especially
at the transition region shown in Figs. 6.2 and 17.3.

Figure17.17 presents the dynamic susceptibility (Tχ ′′) extracted from measure-
ments of the inelastic neutron scattering spectrum on the HF metal YbRh2Si2 [36].
The data (Tχ ′′) exhibit the scaling over three decades of the variation of both the
function and the variable, thus confirming the validity of (17.17). The scaled data
obtained in measurements on such quite different strongly correlated systems as
ZnCu3(OH)6Cl2, Ce0.925La0.075Ru2Si2 and YbRh2Si2 collapse fairly well onto a
single curve over almost three decades of the scaled variables. It is seen that our cal-
culations shownby the solid curves are in good agreementwith the experimental data.
Thus, the spin excitations in ZnCu3(OH)6Cl2 exhibit the same behavior as electron
excitations of the HF metal Ce0.925La0.075Ru2Si2, and, therefore form a continuum.
This observation of the continuum is of great importance since it clearly reveals
the presence of SCQSL in herbertsmithite. Thus, in contrast to ferromagnet (with

Fig. 17.17 Tχ ′′ plotted
against E = ω/kBT . The data
are extracted from
measurements on YbRh2Si2
[36]. The solid curve is the fit
by the function (17.17)

http://dx.doi.org/10.1007/978-3-319-10825-4_6
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parallel direction of all atomic spins) and antiferromagnet (with opposite directions
of atomic spins in its two sublattices), quantum spin liquid has the third type of
magnetism—the direction of constituting spins is not fixed, but constantly rotated in
time and space, being never ordered finally.

17.3 Spin–Lattice Relaxation Rate of Quantum Spin Liquid

Astrongdeparture fromLFLbehavior havebeen revealed in themagnetic susceptibil-
ity χ and muon and 63Cu nuclear spin–lattice relaxation rates 1/T1 of YbCu5−xAux
(x = 0.6). The above anomalies along with magnetic-field-induced reentrance of
LFL properties are determined by the magnetic field B and temperature T depen-
dence of the quasiparticle effective mass M∗. They demonstrate also that violations
of the Korringa law (see Sect. 7.5) also come from M∗(B, T) dependence. Our the-
oretical analysis of experimental data on the base of FCQPT approach permits not
only to explain the above two experimental facts in a unified manner, but to unveil
their universal properties, relating the peculiar features of both longitudinal magne-
toresistance and specific heat in YbRh2Si2 to the behavior of spin–lattice relaxation
rates.

Consider the effect of B on the spin–lattice relaxation rate 1/T1T determined by χ ′′
given by (17.11)

1

T1T
= 3

4μ2
B

∑
q

AqA−q
χ ′′(q, ω)

ω
|ω→0 ∝ (M∗)2, (17.18)

where Aq is the hyperfine coupling constant of the muon (or nuclei) with the spin
excitations at wave vector q [4, 37, 38]. Figure17.18 displays the normalized value
(1/T1T)N and the normalized longitudinal magnetoresistance ρN at fixed temper-
atures versus the normalized magnetic field BN . It is seen from Fig. 17.18 that the
magnetic field progressively reduces 1/T1T and the longitudinal magnetoresistance
(LMR), and these as a function of B possess an inflection point at B = Binf shown
by the arrow. The normalized LMR obeys the equation [4]

ρN (BN ) = ρ(BN ) − ρ0

ρinf
=

(
1

T1T

)
N

= (M∗
N )2, (17.19)

where ρ0 is the residual resistance, ρinf is LMR taken at the inflection point, ρ is
LMR, and BN = B/Binf . We normalize (1/T1T) and LMR by their values at the
inflection point, and the magnetic field is normalized by Binf . In accordance with
the phase diagram Fig. 17.3, at B > Binf , as it is seen from Figs. 17.5 and 17.18,
QSL enters the LFL region with B-dependence of the effective mass defined by
(17.3). It follows from (17.18) to (17.19) that (1/T1T)N = ρN = (M∗

N )2 where
(M∗

N )2 is defined by (17.4), which shows that different strongly correlated Fermi

http://dx.doi.org/10.1007/978-3-319-10825-4_7
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Fig. 17.18 The universal scaling behavior of the normalized muon spin-lattice relaxation rate.
Main panel The dependence of normalized (see text for details) muon spin–lattice relaxation rate
(1/T1T)N extracted from measurements on YbCu4.4Au0.8 [39] and ZnCu3(OH)6Cl2 [40] and pre-
sented along with the normalized longitudinal magnetoresistance ρN . The arrows indicate the
inflection points. Our calculations are shown by the solid line. Inset ρN versus BN . ρN is extracted
frommeasurements on YbRh2Si2 at different temperatures [27] listed in the legend. The solid curve
represents our calculations

systems have to exhibit the same scaling as (M∗
N )2. It is seen from Fig. 17.18 and

from the inset, that YbCu5−xAux, herbertsmithite ZnCu3(OH)6Cl2 and YbRh2Si2
demonstrate the similar behavior of (M∗

N )2 resulting in the scaling of LMR and
1/T1T . Thus, (17.11), (17.18) and (17.19) determine the close relationship existing
between the quite different dynamic properties and different HF compounds such
as herbertsmithite and organic insulators (see Sect. 17.4) with QSL and HF metals,
revealing their scaling behavior at FCQPT.

We note that one may be confused when applying (17.18) to describe (1/T1T) in
strong magnetic fields. In that case both QSL and HF metals become fully polarized
due to Zeeman splitting [11, 28, 37, 38]. As a result, one subband becomes empty,
while the energy εF of spinons at the Fermi surface of the other subband lies below
the chemical potentialμ determined by themagnetic fieldB0. It follows from (17.10)
thatχ ′′ = 0 and (17.18) is not valid. The difference δ = μ−εF can be viewed as a gap
that makes 1/T1T ∝ exp−(δ/kBT). At temperatures kBT ∼ δ, the subbands are pop-
ulated by spinons and the validity of (17.18) is restored. Thus, the presence of δ can be
interpreted as the existence of gapped excitations. On the other hand, if there would
be the gapped excitations, then the heat capacity would demonstrate the exponential
decay rather than a linear T -dependence at low temperatures. Indeed, the analysis
based on experimental data shows the presence of linear T -dependence even under
the application of highmagnetic fields [11], whilemeasurements onZnCu3(OH)6Cl2
of 1/T1T suggest that the excitations have a gap [41]. To clarify whether the gapped
excitations could occur in ZnCu3(OH)6Cl2, an accurate experimental measurement
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of the low temperature heat capacity in magnetic fields is necessary. Measurements
under the application ofmagnetic field up to 18T [29, 30] show the absence of the gap
in the heat capacity C/T , while both the effective mass of spinons, M∗

mag ∝ Cmag/T ,
and the normalized effective mass of spinons, M∗

N = (Cmag/T)N , remain finite at
the lowest accessible temperatures, as it is seen from Figs. 17.9 and 17.16.

17.4 Heat Transport in Magnetic Fields by Quantum Spin
Liquid in Insulators

Measurements of the low-temperature heat (or thermal) conductivity performed on
insulators with geometrical frustration produce important experimental facts shed-
ding light on the nature of strongly correlated quantum spin liquid composed of
spinons. We analyze here theoretically the results of measurements of the low-
temperature heat conductivity in magnetic fields collected on the organic insulators
EtMe3Sb[Pd(dmit)2]2 and κ − (BEDT − TTF)2Cu2(CN)3. To do this, we employ
a model of strongly correlated quantum spin liquid located near the FCQPT. The
properties of spin liquid strongly resemble those of the conventional electron liquid
in HF metals.

The organic insulators EtMe3Sb[Pd(dmit)2]2 and κ − (BEDT − TTF)2Cu2(CN)3
have two-dimensional triangular lattices with the geometric frustration that pro-
hibits spin ordering even at the lowest accessible temperatures T [42–46]. Therefore,
being different form ZnCu3(OH)6Cl2, these insulators offer unique insights into the
physics of quantum spin liquids (QSL). Indeed, measurements of the heat capacity
on both considered insulators reveal a T -linear term indicating that the low-energy
excitation spectrum from the ground state is gapless [42–44]. The excitation spec-
trum can be deduced from the measurements of the heat (thermal) conductivity
κ(T) in the low temperature regime. For example, at T → 0 the residual value in
κ/T signals that the excitation spectrum is gapless. The presence of the residual
value is clearly resolved in EtMe3Sb[Pd(dmit)2]2, while measurements of κ/T on
κ − (BEDT − TTF)2Cu2(CN)3 suggest that the low-energy excitation spectrum can
have a gap [45, 46]. Taking into account the observed T -linear term of the heat capac-
ity in κ − (BEDT − TTF)2Cu2(CN)3 with the static spin susceptibility remaining
finite down to the lowestmeasured temperatures [47], the presence of a gap in the spin
excitation becomes questionable. Thermal conductivity probe elementary itinerant
excitations and is totally insensitive to localized ones, such as those responsible for
Schottky contributions, which contaminates the heat capacity measurements at low
temperatures [42–46]. The heat conductivity is formed primarily by both acoustic
phonons and itinerant spinons, while the latter form QSL. Since the phonon contri-
bution is insensitive to the applied magnetic field B, the elementary excitations of
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QSL can be further explored by the magnetic field dependence of κ . Measurements
under the application of magnetic field B of the heat conductivity κ in these insu-
lators reveal strong dependence of κ(B, T) on B at fixed T [45, 46]. The obtained
dependence at low temperatures resembles that of the spin–lattice relaxation rate
(1/T1T) at fixed temperature as a function of magnetic field [12]: κ(B) at low fields
is insensitive to B, displaying a response to increasing magnetic field B. On the other
hand, it is suggested that the observed B-dependence implies that some spin-gap-
like excitations coupling to the magnetic field are also present at low temperatures
[45, 46]. As a result, we face a serious problem in interpretation of the experimental
data in a consistent way, including the B-dependence of the heat conductivity [14].

Representing a special case of QSL, SCQSL is a quantum state of matter
composed of spinons—chargeless fermionic particles with spin 1/2 [12, 13, 35].
In insulating compounds such as the organic insulators EtMe3Sb[Pd(dmit)2]2 and
κ − (BEDT − TTF)2Cu2(CN)3, SCQSL can emerge when interactions among the
magnetic components are incompatiblewith the underlying crystal geometry, leading
to a geometric frustration generated by the triangular and kagome lattices ofmagnetic
moments, as it is in the case of ZnCu3(OH)6Cl2, see e.g., [48, 49]. In case of ideal
2D lattice, its frustration leads to a dispersionless topologically protected branch
of the spectrum with zero excitation energy known as the flat band [24, 25, 50].
Thus, similar to the case of ZnCu3(OH)6Cl2, FCQPT can be considered as quantum
critical point of SCQSL, composed of chargeless heavy spinons with S = 1/2 and
the effective mass M∗

mag, occupying the corresponding Fermi sphere with the Fermi
momentum pF , see Sect. 17.1. Therefore, the properties of insulating compounds
coincide with those of HF metals with one exception: it resists the flow of electric
charges. Since we are dealing with compounds constituted of non-ideal triangular
and kagome lattices, we have to bear in mind that the real magnetic interactions
and possible distortion of the lattices can shift the SCQSL in the organic insulators
from the exact FCQPT, positioning it somewhere near FCQPT. Therefore, the actual
location in the phase diagram depicted in Fig. 17.19 of SCQSL can be established
by analyzing the experimental data only. Indeed, in the case of systems located near
FCQPT the energy landscape given by the Landau functional E[n(p)] becomes very
flat, see Chap.4. As a result, numerical simulations of the ground state demonstrate
their inefficiency.

In the vicinity FCQPT, pronounced deviations of physical properties from those in
LFL are observed. These NFL effects are related to the action of strong enhancement
of the effective mass M∗

mag associated with FCQPT. We note that there are different
kinds of instabilities of LFL related to several perturbations of initial quasiparticle
spectrum ε(p) and occupation numbers n(p), associated with strong enhancement of
the effective mass and leading to the emergence of a multi-connected Fermi surface,
see e.g., [4, 23, 51]. Depending on the parameters and analytical form of the Landau
interaction, such instabilities lead to several possible types of restructuring of the
initial LFL ground state. This restructuring generates topologically distinct phases,
as it was shown in Chap.4. One of them is the fermion condensation associated
with FCQPT, another belongs to a class of topological phase transitions, where the
sequence of rectangles n(p) = 0 and n(p) = 1 is realized at T = 0. In fact, at growing

http://dx.doi.org/10.1007/978-3-319-10825-4_4
http://dx.doi.org/10.1007/978-3-319-10825-4_4
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Fig. 17.19 Schematic T −B phase diagram of SCQSL of the organic insulators with magnetic field
as the control parameter. The vertical and horizontal arrows show LFL-NFL and reverse transitions
at fixed B and T , respectively. The hatched area represents the transition region at T∗(B). The solid
line in the hatched area represents the function T∗(B) � TM (B) given by (17.22). The functions
W(B) ∝ T ∝ T∗ and TW (B) ∝ T ∝ T∗ shown by two-headed arrows define the widths of the NFL
state and the transition area, respectively. At FCQPT indicated by the arrow the effective mass M∗
diverges, and leads both W(B) and TW (B) to zero

temperatures the systems located at these transitions exhibit behavior typical to that
determined by FCQPT. Therefore, we do not consider the specific properties of these
topological transitions, and focus on the behavior of systems located near FCQPT.

We start with a brief outline of the effective mass dependence on magnetic field
and temperature, M∗

mag(B, T), while the dependence of the effective mass on T at
fixed B is considered in Sect. 17.1. The key points of the employed formalism is
the extended quasiparticle paradigm when the effective mass is no more constant
but depends on temperature T , magnetic field B and other external parameters such
as pressure P, are described in Sect. 17.1.3. To study the low temperature transport
properties, scaling behavior, and the effective mass M∗

mag(B, T) of SCQSL, we use
the model of homogeneous HF liquid, that permits to avoid complications associated
with the crystalline anisotropy of solids, while the effective mass M∗ is given by
(17.1). The distribution function n can be expressed as

nσ (p, T) =
{
1 + exp

[
(ε(p, T) − μσ )

T

]}−1

, (17.20)

In our case, the chemical potential μ depends on the spin due to Zeeman splitting
μσ = μ ± μBB. The single-particle spectrum is a variational derivative of the system
energy E[nσ (p, T)] with respect to occupation number n, ε(p, T) = δE[n(p)]/δn.
The variational procedure, being applied to the functional E[nσ (p, T)], gives the
following form for εσ (p, T), see Sect. 2.3.1,

http://dx.doi.org/10.1007/978-3-319-10825-4_2
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∂εσ (p, T)

∂p
= p

M
−

∑
σ1

∫
∂Fσ,σ1(p, p1)

∂p
nσ1(p1, T)

d3p1
(2π)3

, (17.21)

As in the case of ZnCu3(OH)6Cl2, (17.20) and (17.21) constitute the closed set for
self-consistent determination of εσ (p, T), nσ (p, T), and the effective mass M∗

mag,
pF/M∗

mag = ∂ε(p)/∂(p)|p=pF . We emphasize here, that in our approach the entire
temperature andmagnetic field dependence of the effective mass is introduced by the
dependencies of εσ (p) and nσ (p) on T and B. At B = 0, the effective mass strongly
depends on T , thus demonstrating the NFL behavior given by (17.2). At finite T , the
application of magnetic field B leads the system to the LFL region with M∗(B) given
by (17.3).

The behavior of M∗(B, T) is defined again by (17.4). Magnetic field B enters
(17.1) only in the combination μBB/T , making TM ∼ μBB. It follows from (17.4)
that

TM � a1μBB, (17.22)

where a1 is a dimensionless factor. Thus, in the presence of fixed magnetic field the
variable y (see (17.4)) becomes y = T/TM ∼ T/μBB. Taking into account (17.22),
we conclude that (17.4) describes the scaling behavior of the effective mass as a
function of T versus B: The curves M∗

N at different magnetic fields B merge into
a single one in terms of the normalized variable y = T/TM . Since the variables T
and B enter symmetrically, (17.4) describes the scaling behavior of M∗

N (B, T) as a
function of B versus T .

The normalization procedure deserves here a comment. Namely, since the mag-
netic field dependence of M∗

N (B, T) at fixed T does not have a maximum, the nor-
malization is performed at its inflection point, occurring at B = Binf . As a result, we
have y = B/Binf and M∗

N = M∗(B, T)/M∗(Binf , T). In other words, the curves M∗
N

at different T merge into a single one in terms of the normalized variable y = B/Binf ,
while (17.22) transforms into the equation

μBBinf � a2T , (17.23)

with a2 is a dimensionless factor.
Let us create a more detailed schematic phase diagram of SCQSL of the organic

insulators EtMe3Sb[Pd(dmit)2]2 and κ − (BEDT − TTF)2Cu2(CN)3 than that of
ZnCu3(OH)6Cl2. This phase diagram is reported in Fig. 17.19. We assume that at
T = 0 and B = 0 the system is approximately located at FCQPT without tuning.
Both magnetic field B and temperature T play the role of the control parameters,
shifting the system from FCQPT and driving it from the NFL to LFL regions, as it
is shown by the vertical and horizontal arrows. At fixed temperatures the increase of
B drives the system along the horizontal arrow from the NFL to LFL region. On the
contrary, at fixedmagnetic field and increasing temperatures the system transits along
the vertical arrow from the LFL region to the NFL one. The hatched area denoting
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the transition region separates the NFL state from the weakly polarized LFL state
and contains the solid line tracing the transition region, T∗(B) � TM(B). Referring
to (17.22), this line is defined by the function T∗ ∝ μBB, and the width W(B) of the
NFL state is seen to be proportional to T . In the same way, it can be shown that the
width TW (B) of the transition region is also proportional to T .

As it was mentioned above, SCQSL plays an important role of HF liquid in
organic insulators. Thus, we expect that SCQSL in organic insulators behaves like the
electronic HF liquid in HF metals, provided that the charge of an electron were zero.
In that case, the thermal resistivityw ofSCQSL is related to the thermal conductivityκ

w = L0T

κ
= w0 + AwT2. (17.24)

In magnetic fields, the resistivity w behaves like the electrical magnetoresistivity
ρB = ρ0 + AρT2 of the electronic liquid, since Aw represents the contribution of
spinon-spinon scattering to the thermal transport, being analogous to the contribu-
tion Aρ to the charge transport, defined by electron-electron scattering. Here, L0
is the Lorenz number, ρ0 and w0 are residual resistivity of electronic liquid and
QSL, respectively, and the coefficients Aw ∝ (M∗

mag)
2 and Aρ ∝ (M∗)2 [4]. Thus,

in the LFL region the coefficient Aw of the thermal resistivity of SCQSL under the
application ofmagnetic fields at fixed temperature behaves like the spin–lattice relax-
ation rate shown in Fig. 17.20, Aw(B) ∝ Aρ ∝ 1/T1T(B) ∝ (M∗(B)mag)

2 [28]. In
accordance with (17.3), as it is seen from Fig. 17.20, panel a, the magnetic field B
progressively reduces 1/T1T [39, 40], and 1/T1T as a function of B possesses an
inflection point at some B = Binf shown by the arrow. The same behavior is seen
from Fig. 17.20, panel b: The magnetic field B diminishes the longitudinal magne-
toresistivity [27], and as a function of B it possesses an inflection point shown by the
arrow. This behavior is consistent with the phase diagram displayed in Fig. 17.19.
Namely, with the growing of magnetic fields the NFL behavior at first converts into
the transition one and then transforms into the LFL behavior.

The panels a and b of Fig. 17.20 display, respectively, the normalized spin–lattice
relaxation rates (1/T1T)N and the longitudinal magnetoresistivity ρB at fixed temper-
ature versus normalized magnetic field BN . To clarify the universal scaling behavior
of the herbertsmithite and theHFmetal YbCu5−xAux, we normalize functions 1/T1T
and (ρB − ρ0) as well as the magnetic field. Namely, we normalize the functions
by their values at the inflection point, and magnetic field is normalized by Binf,
BN = B/Binf. Since (1/T1T)N = ρB − ρ0 = (M∗

N (B))2 [4, 28], we expect that the
different strongly correlated Fermi systems located near FCQPT exhibit the same
behavior of the effective mass, as it is seen from panels a and b of Fig. 17.20. We
shall see below that the heat conductivity of the organic insulators behaves similarly.

Study of the thermal resistivity w given by (17.24) allows one to reveal spinons as
itinerant excitations. It is important that the data on w is not mixed with contributions
coming from localized excitations. The temperature dependence of thermal resistivity
w represented by the finite term w0 directly shows that the behavior of SCQSL is
similar to that ofmetals, and there is a finite residual term κ/T in the zero-temperature
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(a) (b)

Fig. 17.20 The relaxation properties of the herbertsmithite versus those of HF metals. Panel a the
normalized spin–lattice relaxation rate (1/T1T)N at fixed temperature as a function ofmagnetic field:
Squares correspond to the data on (1/T1T)N extracted frommeasurements onZnCu3(OH)6Cl2 [40],
while the triangles represent to those extracted frommeasurements onYbCu5−xAux with the doping
of x = 0.4 [39]. The inflection point, representing the transition region, where the normalization is
taken is marked by the arrow. Our calculations based on (18.5) and (17.4) are depicted by the solid
curve, tracing the scaling behavior of (M∗

N )2 and representing the B-dependence of the thermal
resistivity w, see main text and (17.24). Panel b the normalized longitudinal magnetoresistivity ρN
versus BN . ρN is extracted from measurements on YbRh2Si2 at different temperatures [27] that are
listed in the legend. The solid curve represents our calculations of (M∗

N )2

limit of κ . The presence of this term immediately proves that there are gapless
excitation associated with the property of normal and HF metals, in which gapless
electrons govern the heat and charge transport, revealing the connection between
classical physics and quantum criticality [52], see Chaps. 9 and 11. The finite value
of w0 means that in QSL both κ/T and Cmag/T ∝ M∗

mag remain nonzero at T → 0.
Therefore, gapless spinons, forming the Fermi surface, determine the specific heat
and the heat/thermal transport. Key information on the nature of spinons is further
provided by the B-dependence of the coefficient Aw. The specific B-dependence of
(1/T1T)N ∝ (M∗

mag)
2, shown in Fig. 17.20, panel a, and given by (17.3), establishes

the behavior of QSL as SCQSL. We note that the heat transport is polluted by the
phonon contribution. On the other hand, the phonon contribution is not affected by
the magnetic field B. Therefore, we expect the B-dependence of the heat conductivity
to be governed by Aw(B, T). Consider the approximate relation,

1 − Aw(B, T)

Aw(0, T)
= 1 −

(
M∗(B, T)mag

M∗(0, T)mag

)2

� a(T)
κ(B, T) − κ(0, T)

κ(0, T)
≡ a(T)I(B, T), (17.25)

http://dx.doi.org/10.1007/978-3-319-10825-4_18
http://dx.doi.org/10.1007/978-3-319-10825-4_9
http://dx.doi.org/10.1007/978-3-319-10825-4_11
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where the coefficient a(T) is B-independent. To derive (17.25), we employ (17.24),
and obtain

κ

L0T
= 1

w0 + AwT2 + bT2. (17.26)

Here the term bT2 describes the phonon contribution to the heat transport. Upon
carrying out simple algebra and assuming that [1 − Aw(B, T)/Aw(0, T)] < 1, we
arrive at (17.25). It is seen from both panels of Fig. 17.20, that the effective mass
M∗

N (B) ∝ M∗
mag(B) is a diminishing function of magnetic field B. Then, it follows

from (18.10), (17.4) and (17.25) that the reduced heat conductivity given by the
function I(B, T) = [κ(B, T) − κ(0, T)]/κ(0, T) increases at growing field B in the
LFL region, while I(B, T) � 0 in the NFL region, as this function is approximately
independent of B in that case.

Recent measurements of κ(B) in the organic insulators EtMe3Sb[Pd(dmit)2]2
and κ − (BEDT − TTF)2Cu2(CN)3 [45, 46] are displayed in Figs. 17.21 and 17.22,
panels a. The measurements show that the heat is carried by phonons and SCQSL,
since the heat conductivity is well fitted by κ/T = b1 + b2T2, where b1 and b2 are
constants. The finite value of b1 term implies that spinon excitations are gapless in
EtMe3Sb[Pd(dmit)2]2, while in (κ −BEDT − TTF)2Cu2(CN)3 such excitations are
questionable [46].

A simple estimation indicates that the ballistic propagation of spinons seems to be
realized in the case of EtMe3Sb[Pd(dmit)2]2 [45, 46]. It is seen from Figs. 17.21 and
17.22, panels a, that the function I(B, T) = [κ(B, T) − κ(B = 0, T)]/κ(B = 0, T)

demonstrates a strong B-dependence. Namely, the field dependence shows an
increase of the thermal conductivity with growth of field B. Such a behavior is
in agreement with (17.3) and Fig. 17.20, that demonstrates that (M∗

mag(B))2 is a
diminishing function of B. As a result, it follows from (17.25) that I(B, T) is an
increasing function of B. Our calculations based on (17.21) and (17.25) are depicted
by geometrical symbols in Figs. 17.21 and 17.22, panels a. Since we cannot calculate
a(T) entering (17.25) we use it as a fitting parameter. Temperature T was also used
to fit the data at temperatures, shown in the legend in Figs. 17.21 and 17.22. It is seen
from Figs. 17.21 and 17.22, panels a, that I(B, T) as a function of B has an inflection
point at some B = Binf . To reveal the scaling behavior of the heat conductivity of
the organic insulators, we normalize both the function I(B, T) and the magnetic field
by their values at the inflection points, as it was done in the case of (1/T1T), see
Fig. 17.20. The normalized reduced heat conductivity IN (BN , T) does not depend
on the factor a(T), entering (17.25). Therefore, calculations of IN (BN , T) do not
have any fitting parameters. It is seen from Figs. 17.21, panel b and 17.22, panel b,
that, in accordance with (17.4), IN (BN , T) exhibits scaling behavior and becomes
a function of a single variable BN . It is instructive to compare the normalized val-
ues of the function (1 − 1/T1T)N ≡ (1 − [M∗(B, T)/M∗(B = 0, T)]2)N extracted
from measurements of (1/T1T)N shown in Fig. 17.20, panel a, with IN (BN , T).
The extracted values are normalized by their values at the inflection points and
magnetic field is normalized by Binf , as it is done in the case of (1/T1T)N . It is

http://dx.doi.org/10.1007/978-3-319-10825-4_18
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(a)

(b)

Fig. 17.21 Magnetic field B dependence of both the reduced thermal conductivity I(B, T) and the
normalized reduced thermal conductivity IN (BN , T) of the organic insulator EtMe3Sb[Pd(dmit)2]2.
Panel a: I(B, T) is standardized by its zero field value of κ , I(B, T) = [κ(B, T) − κ(B =
0, T)]/κ(B = 0, T) at temperatures shown in the legend [45, 46]. Our calculations (17.25) are
shown by hexagons and stars. Panel b: The normalized reduced thermal conductivity IN (BN , T)

versus BN (symbols) is extracted from the data shown in the panel a of this figure. The inflection
point is noted by the arrow. Themagnetic field dependence of the function (1−1/T1T)N is extracted
from measurements of (1/T1T)N shown in panel a of Fig. 17.20. The solid curve is obtained from
the theoretical curve in Fig. 17.20

seen from panel b of Figs. 17.21 and 17.22, that (1 − 1/T1T)N and IN (BN , T) are
in good overall agreement with the solid curve depicting the theoretical function
(1 − [M∗(B, T)/M∗(B = 0, T)]2)N , obtained from our calculations represented by
the solid curves in Fig. 17.20. This function demonstrates a flat dependence at low
BN , for at BN < 1 the system in its NFL state and the B-dependence under discussion
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Fig. 17.22 Same as in
Fig. 17.21, but for
organic insulator κ −
(BEDT-TTF)2Cu2(CN)3

(a)

(b)

is weak. Thus, there is no need to introduce additional quasiparticles activated by
the application of magnetic field in order to explain the growth of I(B, T) at high B
[45, 46]. It is also seen from panels b of Figs. 17.21 and 17.22, that the organic
insulators demonstrate the same universal scaling behavior as ZnCu3(OH)6Cl2,
YbCu5−xAux, and YbRh2Si2.
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Chapter 18
Quantum Criticality of Heavy-Fermion
Compounds

Abstract Chapter17 is devoted to the quantum criticality of quantum spin liquids.
In this chapter we continue to consider the nature of quantum criticality in HF com-
pounds. The quantum criticality induced by the fermion condensation quantumphase
transition extends over a wide range in the T − B phase diagram. As we shall see,
the quantum criticality in all such different HF compounds, as high-Tc supercon-
ductors, HF metals, compounds with quantum spin liquids, quasicrystals, and 2D
quantum liquids, is of the same nature. This challenging similarity between different
HF compounds expresses universal physics that transcends the microscopic details
of the compounds. This uniform behavior, induced by the universal quantum critical
physics, allows us to view it as the main characteristic of new state of matter. We
construct the T − B phase diagrams, and explain main features of experimental facts
of low-temperature thermodynamic properties in terms of FCQPT that leads to the
formation of flat bands.

18.1 Quantum Criticality of High-Temperature
Superconductors and HF Metals

At low temperatures the normal state (which is Landau Fermi liquid) of high-Tc

superconductors and HF metals is recovered by the application of a magnetic field
larger than the critical field. In this state, the Wiedemann–Franz and Korringa laws
are held and the elementary excitations are Landau quasiparticles. Contrary to what
one might expect from the LFL, the effective mass of quasiparticles depends on
the magnetic field. We show that the magnetic-field-induced transition from NFL
to LFL in high-temperature superconductors is similar to the transition observed in
HF metals.

The extended quasiparticles paradigm supports quasiparticles that define the major
part of the low-temperature properties of high-Tc superconductors, including their
NFL behavior. At sufficiently low temperatures, as soon as the order parameter
κ(p) is suppressed by magnetic field B > Bc2, the field induced LFL emerges,
see the Chap.5. It was reported that in the normal state obtained by applying
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a magnetic field greater than the upper critical filed Bc2, in a hole-doped cuprates at
overdoped concentration (Tl2Ba2CuO6+δ) [1] and at optimal doping concentration
(Bi2Sr2CuO6+δ) [2], there are no sizable violations of the Wiedemann–Franz (WF)
law. Since the validity of the WF law is a robust signature of LFL, these experi-
mental facts demonstrate that the observed elementary excitations can be considered
as Landau quasiparticle. At a constant magnetic field, the low energy elementary
excitations are characterized by M∗(B) and cannot be distinguished from Landau
quasiparticles. On the other hand, in contrast to the LFL theory, the effective mass
M∗(B) depends on the magnetic field. As it was shown in Sect. 5.3.1, in this case
the magnetic field B plays the role of the control parameter determining the effective
mass

M∗(B) ∝ 1√
B − Bc0

. (18.1)

We recall that Bc0 is the critical magnetic field driving corresponding AF phase
transition towards T = 0. Since Bc0 > Bc2, as it is discussed in Sect. 7.6, (18.1) is
valid at B > Bc2. In that case, the effective mass M∗(B) is finite, and the system is
driven back to LFL and acquires the LFL behavior induced by the magnetic field.

Equation (18.1) shows that by applying a magnetic field B > Bc the system
can be driven back into LFL with the effective mass M∗(B), which is finite and
temperature independent. This means that the low temperature properties of the
considered compounds depend on the effective mass in accordance with the LFL
theory. In particular, the resistivity ρ(T ) as a function of the temperature behaves
as ρ(T ) = ρ0 + Δρ(T ) with Δρ(T ) = AT 2, where the factor A behaves as:
A ∝ (M∗)2 ∝ 1/(B − Bc0)

2. At finite temperatures, the system persists as LFL,
but there is the transition region (crossover) from the LFL behavior to the non-Fermi
liquid behavior at temperature T ∗(B) ∝ μB(B − Bc0). At T ∼ T ∗(B), the system is
located in the transition region, the effectivemass starts to depend on the temperature,
and the resistivity possesses the non-Fermi liquid behaviorwith a substantial T -linear
term,Δρ(T ) = aT +bT 2. Here, T ∗(B) is the transition temperature. Sincemagnetic
field enters the Landau equation as μB B/T , we have

T ∗(B) ∼ μB(B − Bc0). (18.2)

The transition temperature is not really a phase transition. It is necessarily broad,
very much depending on the criteria for determination of the point of such a tran-
sition. As it is seen from the T − B phase diagram reported in Fig. 18.1, at raising
magnetic field the system enters the LFL regime, and as a result, the T -linear term
vanishes. Such a behavior of the resistivity was observed in the cuprate supercon-
ductors Tl2Ba2CuO6+δ (Tc < 15 K) [4] and La2−xCexCuO4 [5]. For example, at
B = 10 T, Δρ(T ) is a linear function of the temperature between 120 mK and 1.2 K,
whereas at B = 18 T, the temperature dependence of the resistivity is consistent with
ρ(T ) = ρ0 + AT 2 over the same temperature range [4].

http://dx.doi.org/10.1007/978-3-319-10825-4_5
http://dx.doi.org/10.1007/978-3-319-10825-4_7
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Fig. 18.1 B − T phase diagram of superconductor Tl2Ba2CuO6+x . The transition region from
LFL to NFL regime marked by the line T ∗(B) is shown by the arrow. The corresponding transition
temperature T ∗(B) is given by (18.2), while the squares and the circles are the experimental points
[3]. Thick line is a boundary between the superconducting and normal phases. The arrows near the
bottom left corner indicate the critical magnetic fields Bc2 destroying the superconductivity and Bc0
destroying the AF order

It has been shown in Sect. 7.5, that in the LFL phase, the nuclear spin-lattice
relaxation rate 1/T1 is determined by the quasiparticles near the Fermi level, whose
population is proportional to M∗T , so that 1/T1T ∝ (M∗)2 is a constant [6, 7].
When the superconducting state is removed by the application of a magnetic field,
the underlying ground state can be seen as the field induced LFL with effective mass
dependingon themagneticfield.As a result, the rate 1/T1 follows theT1T = constant
relation, that so the Korringa law is held. Unlike the behavior of LFL, as it follows
from (18.1), 1/T1T ∝ (M∗(B))2 decreases with increasing the magnetic field at
T < T ∗(B). Note that at T > T ∗(B), we observe that 1/T1T is a decreasing
function of the temperature, 1/T1T ∝ M∗ ∝ 1/T . These observations are in good
agreement with the experimental facts [6]. Since T ∗(B) is an increasing function
of the magnetic field, the Korringa law retains its validity to higher temperatures at
higher magnetic fields.

Let us now turn to the B − T phase diagram of a high-Tc superconductor. The
corresponding T − B phase diagram of Tl2Ba2CuO6+x is shown as an example in
Fig. 18.1. The substance is a superconductor with Tc from 15 to 93 K depending on
oxygen content x . In Fig. 18.1, open squares and solid circles show the experimental
values of the crossover temperature from the LFL to NFL regimes. The transition
region between LFL and NFL regimes is shown by the arrow. The solid line shows
our fit using (18.2) with Bc0 = 6 T that is in good agreement with Bc0 = 5.8 T
obtained from the field dependence of the charge transport, see Sect. 5.3.2.1. As it

http://dx.doi.org/10.1007/978-3-319-10825-4_7
http://dx.doi.org/10.1007/978-3-319-10825-4_5
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is seen from Fig. 18.1, the linear behavior agrees well with experimental data [3].
Now we consider the field-induced reentrance of LFL behavior in Tl2Ba2CuO6+x

at B ≥ Bc2. In that case, the effective mass M∗ depends on magnetic field B that
becomes the control parameter, while the system is in the LFL regime as it is shown
by the dashed horizontal arrow in Fig. 6.2. The LFL regime is characterized by the
temperature dependence of the resistivity ρ(T ) = ρ0 + A(B)T 2, see also above.
The coefficient A, being proportional to the quasiparticle–quasiparticle scattering
cross-section, is found to be A ∝ (M∗(B))2. With respect to M∗ ∝ B−1/2 (see
(5.39)), this implies that

A(B) � A0 + D

B − Bc0
, (18.3)

where A0 and D are parameters. It seen from Fig. 18.1 and follows from (18.3),
that it is impossible to observe the relatively high values of A(B) since in our
case Bc2 > Bc0, see the Sect. 7.6. Therefore, as was mentioned above, in high-Tc

superconductors, their QCP is poorly accessible to experimental observations being
“hidden under superconducting dome”. Nonetheless, it is possible to study QCP by
exploring the quantum criticality.

Figure 18.2 reports the fit of our theoretical dependence (18.3) to the exper-
imental data for two different classes of substances: HF metal YbRh2Si2 and

Fig. 18.2 The universal behavior of the charge transport coefficient A(B) in the LFL state induced
by the application of magnetic field B. Main panel A(B) obtained in measurements on YbRh2Si2
(squares) [8] andTl2Ba2CuO6+x (circles) [3].Our calculations of A(B) based on (18.3) are depicted
by the solid lines. The inset Normalized coefficient A(B)/A0 � 1 + DN /(y − 1) as a function of
normalized magnetic field y = B/Bc0 is given by (18.4), and is shown by squares for YbRh2Si2
and by circles for Tl2Ba2CuO6+x

http://dx.doi.org/10.1007/978-3-319-10825-4_6
http://dx.doi.org/10.1007/978-3-319-10825-4_5
http://dx.doi.org/10.1007/978-3-319-10825-4_7
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HTSC Tl2Ba2CuO6+x . The different scale of fields is clearly seen as well as good
coincidence with the theoretical dependence determined by (18.3). This means that
the physics underlying the field-induced reentrance of LFL behavior, is the same for
both classes of substances. To corroborate this point further, let us rewrite (18.3) in
reduced variables A/A0 and B/Bc0. This rewriting immediately reveals the universal
nature of the behavior of these two substances: Both of them are driven to common
QCP, related to FC and induced by the application of magnetic field. In reduced
values (18.3) takes the form

A(B)

A0
� 1 + DN

B/Bc0 − 1
, (18.4)

where DN = D/(A0Bc0) is the only fitting parameter. It is seen from (18.4) that upon
applying the scaling in these variables, the quantities A(B) for Tl2Ba2CuO6+x and
YbRh2Si2 are described by a function of the single variable B/Bc0, thus demonstrat-
ing universal behavior. To support (18.4), we replot both dependencies in reduced
variables A/A0 and B/Bc0 as it is depicted in the inset to Fig. 18.11. Such replotting
immediately reveals the universal nature of the behavior of these two quite different
substances. Indeed, in the case of Tl2Ba2CuO6+x the critical field Bc0 � 6 T, while
the value of the critical field ofYbRh2Si2 is Bc0 � 0.06T.Nonetheless, it is seen from
the inset to Fig. 18.2 that close to magnetic QCP there is no external physical scales,
so that the normalization by internal scales A0 and Bc0 shows straightforwardly the
common quantum criticality of HF metals and high-Tc superconductors.

Thus, our theoretical study of high-Tc superconductors and HF metals clearly
demonstrates their generic family resemblance. We have shown that the physics
underlying the field-induced reentrance of LFL behavior is the same for both high-
Tc compounds and HF metals. It follows from our study that there is at least one
quantum phase transition inside the superconducting dome, and this transition is
FCQPT, for details see Chaps. 5 and 7.

18.2 Quantum Criticality of Quasicrystals

New exotic materials named quasicrystals and characterized by noncrystallographic
rotational symmetry and quasiperiodic translational properties have attracted scru-
tiny. Studies of quasicrystals may shed light on the most basic notions related to
the quantum critical state observed in HF metals. We show here that the electronic
system of some quasicrystals is already located at the FCQPT point without any tun-
ing. Therefore, the quasicrystals possess the quantum critical state with NFL phase,
which in magnetic fields transforms into the LFL one. Remarkably, the quantum
critical state is robust despite the strong disorder experienced by the electrons. Qua-
sicrystals exhibit the typical scaling of their thermodynamic properties like magnetic
susceptibility, belonging also to the family of HF metals.

http://dx.doi.org/10.1007/978-3-319-10825-4_5
http://dx.doi.org/10.1007/978-3-319-10825-4_7
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When we encounter the exciting behavior of strongly correlated metals, we antici-
pate to learn more about quantum critical physics. Such an opportunity is provided
by quasicrystals (QCs) [9, 10]. These substances, characterized by the absence of
translational symmetry in combination with good ordered atomic arrangement and
rotational symmetry, can be viewed as materials located between crystalline and
disordered solids. QCs, their crystalline approximants and related complex metallic
phases reveal very unusual mechanical, magnetic, electronic transport and thermo-
dynamic properties. The mentioned crystalline approximants are the arrangements
of atoms which within their unit cells closely approximate the local atomic structures
in QCs [10]. The aperiodicity of QCs plays an important role in the formation of the
properties since the band electronic structure governed by the Bloch theorem can-
not be well defined. As an example, QCs exhibit a high resistivity although DOS at
the Fermi energy is not small [11]. One expects the transport properties are defined
by a small diffusivity of electrons which occupy a new class of states denoted as
“critical states”, neither being extended nor localized, and making the velocity of
charge carriers very low [11]. Associated with these critical states, characterized
by an extremely degenerate confined wave function, are the so-called “spiky” DOS
[12, 13]. The presence of latter predicted DOS is confirmed by experiments reveal-
ing that the single particle spectra of the local DOS demonstrate a spiky DOS, [14,
15]. Clearly, these spiky states are associated with flat bands [16, 17]. On one hand,
we expect the properties related to the itinerant states governed by the spiky ones
of QCs to coincide with those of HF metals, while on the other hand, the pseudo
localized states may result in those of amorphous materials. Therefore, the question
of how quasicrystalline order influences the electronic properties of QCs, whether
they resemble those of HF metals or amorphous materials, is of crucial importance.

Experimental measurements on the gold-aluminium-ytterbium quasicrystal
Au51Al34Yb15 with a six-dimensional lattice parameter ad = 0.7448 nm have
revealed quantum critical behavior with the unusual exponent α � 0.51 defining
the divergency of the magnetic susceptibility χ ∝ T −α as temperature T → 0 [18].
Themeasurements have also exposed that the observedNFLbehavior transforms into
LFL under the application of a tiny magnetic field H , while it exhibits the robustness
against hydrostatic pressure; the quasicrystal shows also metallic behavior with the
T −dependent part Δρ of the resistivity, Δρ ∝ T , at low temperatures [18].

We start with constructing a model to explain the behavior of the gold-aluminum-
ytterbium QC [19]. Taking into account that the spiky states are associated to flat
bands [16, 20, 21], which are the generic signature of FCQPT, we safely assume that
the electronic system of the gold-aluminum-ytterbium QC Au51Al34Yb15 is located
very near FCQPT [20]. Thus,Au51Al34Yb15 turns out to be located at FCQPTwithout
tuning this substance by pressure, magnetic field etc. Then, the system exhibits
the robustness of its critical behavior against the hydrostatic pressure since the this
pressure does not change the topological structure of QC leading to the spiky DOS
and, correspondingly, flat bands. As we will see, the spiky DOS cannot prevent the
field-induced LFL state.

To study the low temperature thermodynamic and scaling behavior, we use again
the model of homogeneous HF liquid [20]. This model avoids the complications
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associated with the anisotropy of solids and considering both the thermodynamic
properties and NFL behavior by calculating the effective mass M∗(T, H) as a func-
tion of temperature T and magnetic field H . To study the behavior of the effective
mass M∗(T, H), we use the Landau equation for the quasiparticle effective mass.
The only modification is that in our formalism the effective mass is no longer con-
stant but depends on temperature and magnetic field. For the model of homogeneous
HF liquid at finite temperatures and magnetic fields, this equation takes the form
[20–23]

1

M∗
σ (T, H)

= 1

M
+

∑
σ1

∫
pF p

p3F
Fσ,σ1(pF, p)

∂nσ1(p, T, H)

∂p

dp
(2π)3

. (18.5)

The single-particle spectrum is a variational derivative of the systemenergy E[nσ (p)]
with respect to the quasiparticle distribution function or occupation numbers n,

εσ (p) = δE[n(p)]
δnσ (p)

. (18.6)

In our case F is fixed by the condition that the system is situated at FCQPT. The
sole role of the Landau interaction is to bring the system to FCQPT point, where
M∗ → ∞ at T = 0 and H = 0, and the Fermi surface alters its topology so that the
effective mass acquires temperature and field dependence [20–22, 24]. Provided that
the Landau interaction is an analytical function, at the Fermi surface the momentum-
dependent part of the Landau interaction can be taken in the form of truncated power
series F = aq2 + bq3 + cq4 + · · · , where q = p1 − p2, a, b and c are fitting
parameters which are defined by the condition that the system is at FCQPT.

A direct inspection of (18.5) shows that at T = 0 and H = 0, the sum of the
first term and the second one on the right side vanishes, since 1/M∗(T → 0) → 0
provided that the system is located at FCQPT [20, 24]. In case of analytic Landau
interaction with respect to the momenta variables, at finite T the right hand side is
proportional F ′(M∗)2T 2, where F ′ is the first derivative of F(q) with respect to q
at q → 0. Calculations of the corresponding integrals can be found in textbooks, see
e.g., in [25]. Thus, we have 1/M∗ ∝ (M∗)2T 2, and obtain [20, 24]

M∗(T ) � aT T −2/3. (18.7)

At finite temperatures, the application of magnetic field H drives system to the LFL
region with

M∗(H) � aH H−2/3. (18.8)

On the other hand, an analytic function F(q) can lead to the general topological form
of the spectrum ε(p) − μ ∝ (p − pb)

2(p − pF ) with (pb < pF ) and (pF − pb)/

pF � 1, that makes M∗ ∝ T −1/2, and creates a quantum critical point [26]. As
we shall see below, the same critical point is generated by the interaction F(q)
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representedbyan integrable over x nonanalytic functionwithq =
√

p21 + p22 − 2xp1 p2

and F(q → 0) → ∞ [20, 27]. The both cases lead to M∗ ∝ T −1/2, and (18.7)
becomes

M∗(T ) � aT T −1/2. (18.9)

In the same way, we obtain

M∗(H) � aH H−1/2, (18.10)

with aT and aH are parameters. Taking into account that (18.9) leads to the spiky
DOSwith the vanishing of spiky structure with increasing temperature T [28], as it is
observed in quasicrystals [15, 18], we assume that the general form of ε(p) produces
the behavior of M∗, given by (18.9) and (18.10). This is realized in quasicrystals,
which can be viewed as a generalized form of common crystals [29]. We note that
the behavior 1/M∗ ∝ χ−1 ∝ T 1/2 is in good agreement with χ−1 ∝ T 0.51 observed
experimentally [18].Our explanation is consistentwith the robustness of the exponent
0.51 against the hydrostatic pressure [18] since the robustness is guaranteed by
the unique singular DOS of QCs that survives under the application of pressure
[12, 13, 15, 16, 18]. Then, the nonanalytic Landau interaction F(q) can also serve
as the good approximation, generating the observed behavior of the effective mass.
We speculate that the nonanalytic interaction is generated by the nonconservation of
the quasimomentum inQCs,making the Landau interaction F(q) a nonlocal function
of momentum q. Such a function can be approximated by a nonanalytic one.

A few remarks on the transport properties ofQCare in order here. In calculations of
low-temperature resistivity, we employ a two-band model, one of which is occupied
by heavy quasiparticles, with the effective mass given by (18.9), while the second
band possesses a LFL quasiparticles with a T −independent effective mass [30]. As
a result, we find that the quasiparticles width γ ∝ T and that the T −dependent
part of the resistivity Δρ ∝ T . This observation is in accordance with experimental
facts [18].

At finite H and T near FCQPT, the solutions of (18.5) M∗(T, H) can be well
approximated by a simple universal interpolating function. A deeper insight into
the behavior of M∗(T, H) can be achieved using some “internal” scales. Namely,
near FCQPT the solutions of (18.5) exhibit a universal scaling behavior so that
M∗(T, H) reaches it maximum value M∗

M at some temperature Tmax ∝ H [20, 24].
It is convenient to introduce the internal scales M∗

M and Tmax to measure the effective
mass and temperature, respectively. Thus, we divide the effective mass M∗ and the
temperature T by their maximal values, M∗

M and Tmax respectively. This generates
the normalized effective mass M∗

N = M∗/M∗
M and temperature TN = T/Tmax [20].

Near FCQPT the normalized solution of (18.5) M∗
N (TN ) with a nonanalytic Landau

interaction can be well approximated by a simple universal interpolating function.
The interpolation occurs between the LFL (M∗ ∝ a +bT 2) and NFL (M∗ ∝ T −1/2)
regimes and represents the universal scaling behavior of M∗

N (TN )
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Fig. 18.3 The T − H phase diagram of Au51Al34Yb15 with the effective mass M∗(T ) ∝ T −1/2.
Left panel The T − H phase diagram of Au51Al34Yb15. Magnetic field H is the control parameter.
The vertical and horizontal arrows show LFL-NFL and reverse transitions at fixed H and T ,
respectively. At H = 0 and T = 0 the system is at FCQPT shown by the solid circle. The total
width of the LFL and the transition regions W ∝ T are shown by the double arrows. Inset shows
a schematic plot of the normalized effective mass versus the normalized temperature. Transition
region, where M∗

N reaches its maximum at T/Tmax = 1, is marked by the hatched area. The right
panel reports the dimensionless inverse effective mass M/M∗ versus dimensionless temperature
(T/TF )1/2. The line is a linear fit

M∗
N (TN ) ≈ c0

1 + c1T 2
N

1 + c2T 5/2
N

. (18.11)

Here a and b are constants, c0 = (1+ c2)/(1+ c1), c1 and c2 are fitting parameters.
The inset to the left panel of Fig. 18.3 shows the scaling behavior of the normalized
effective mass. It is seen from the inset, that the total width W of the LFL and the
transition region W ∝ T vanish as H → 0 since Tmax ∝ H . In the same way, the
common width of the NFL and the transition region tends to zero as soon as T → 0.

Now we construct the schematic phase diagram of the gold-aluminum-ytterbium
QC Au51Al34Yb15. The phase diagram is reported in Fig. 18.3, left panel. The mag-
netic field H plays the role of the control parameter, driving the system outwards
FCQPT that occurs at H = 0 and T = 0 without tuning since the QC critical state
is formed by singular density of states [12, 13, 15, 16, 18]. It follows from (17.4)
and seen from the left panel of Fig. 18.3, that at fixed temperatures the increase of H
drives the system along the horizontal arrow fromNFL state to LFL one. On the con-
trary, at fixed magnetic field and increasing temperatures the system transits along
the vertical arrow fromLFL state to NFL one. The inset to the left panel demonstrates
the behavior of the normalized effective mass M∗

N versus normalized temperature
TN following from (17.4). The T −1/2 regime is marked as NFL since contrary to the
LFL case, where the effective mass is constant, the effective mass depends strongly
on temperature. It is seen that the temperature region TN ∼ 1 signifies a transition
regime between the LFL behavior with almost constant effective mass and the NFL

http://dx.doi.org/10.1007/978-3-319-10825-4_17
http://dx.doi.org/10.1007/978-3-319-10825-4_17
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one, given by T −1/2 dependence. Thus, temperatures T � Tmax, shown by arrows
in the inset and the main panel, can be regarded as the transition regime between
LFL and NFL states. The common width W of the LFL transition regions W ∝ T is
shown by the heavy arrow. These theoretical results are in good agreement with the
experimental facts [18]. The right panel of Fig. 18.3 illustrates the behavior of the
dimensionless inverse effective mass M/M∗ versus the dimensionless temperature
(T/TF )1/2, where TF is the Fermi temperature of electron gas. To calculate M/M∗,
we use a model Landau functional [20, 27]

E[n(p)] =
∫

p2

2M

dp
(2π)3

+ 1

2

∫
V (p1 − p2)n(p1)n(p2)

dp1dp2

(2π)6
,

with the Landau interaction

V (q) = g0
exp(−β0

√
q2 + γ 2)√

q2 + γ 2
, (18.12)

where the parameters g0 and β0 are fixed by the requirement that the system is located
at FCQPT, see for details Sect. 6.2. At γ = 0, the interaction becomes nonanalytic
function of q. Note that the other investigated nonanalytic interactions lead to the
same behavior of M/M∗, see e.g., [27].

Todemonstrate this,we apply (18.6) to construct ε(p)using the functional (18.12).
Taking into account that ε(p � pF ) − μ � pF (p − pF ) and integrating over the
angular variables, we obtain

1

M∗ = 1

M
+ ∂

∂p

∫
[Φ(p + p1) − Φ(|p − p1|)] n(p1, T )p1dp1

2p2Fπ2
. (18.13)

Here the derivative on the right hand side of (18.13) is taken at p = pF and

p+p1∫

|p−p1|
V (z, γ = 0)zdz = Φ(p + p1) − Φ(|p − p1|). (18.14)

The derivative ∂Φ(|p− p1|)/∂p|p→pF = (pF − p1)/(|pF − p1|)∂Φ(z)/∂z becomes
a discontinuous function at p1 → pF , provided that ∂Φ(z)/∂z is finite (or integrable
if the function tends to infinity) at z → 0. As a result, the right hand side of (18.13)
becomes proportional M∗T and (18.13) reads 1/M∗ ∝ M∗T , making M∗ ∝ T −1/2.

The analytic Landau interaction (18.12) with γ > 0 makes M/M∗ ∝ T 0.5 at
raising temperatures, while at T → 0 the system demonstrates the LFL behavior
[20, 26]. This interaction can serve as model one to describe the behavior of
the quasicrystal’s crystalline approximant Au51Al35Yb14 [18]. The approximant
Au51Al35Yb14 shows the LFL behavior at low temperatures, χ−1 ∝ a +bT 0.51 with
the conventional LFL behavior of the resistivity [18]. We interpret this behavior of

http://dx.doi.org/10.1007/978-3-319-10825-4_6
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Fig. 18.4 The normalized specific heat (C/T )N and magnetic susceptibility χN extracted from
measurements in magnetic fields H (shown in the legends) on YbRh2Si2 [31] and Au51Al34Yb15
[18], respectively.Our calculations are depicted by the solid curve (17.4) tracing the scaling behavior
of (C/T )N = χN = M∗

N

χ−1 through the absence of the unique electronic state of QCs, which results in the
shift of the electronic system of the approximant from FCQPT into the LFL region.
Such a behavior is achieved by making the interaction (18.12) an analytic function
with γ > 0 as soon as the quasicrystal is transformed into its crystalline approximant.
The finite γ , creating the LFL behavior at T = 0, makes Tmax finite even at H = 0.
Then, it follows from (17.4) that 1/M∗ ∝ χ−1 ∝ a+bT 1/2 and the approximant is to
demonstrate the conventional LFL behavior: Δρ ∝ T 2. The same result is acquired
by transforming the spectrum as ε(p) − μ ∝ ([p − pb]2 + γ 2)(p − pF ) [26].

We now investigate the behavior of χ as a function of temperature at fixed mag-
netic fields. The effective mass M∗(T, H) can be measured in experiments for
M∗(T, H) ∝ χ where χ is the AC or DC magnetic susceptibility. If the corre-
sponding measurements are carried out at fixed magnetic field H then, as it follows
from (17.4), χ reaches the maximum χmax at some temperature Tmax. Upon nor-
malizing both χ and the specific heat C/T by their peak values at each field H and
the corresponding temperatures by Tmax, we observe from (17.4) that all the curves
merge into a single one, thus demonstrating a scaling behavior typical for HF metals
[20]. As seen from Fig. 18.4, χN extracted from measurements on Au51Al34Yb15
[18] shows the scaling behavior given by (17.4) and agrees well with the normal-
ized specific heat (C/T )N extracted from measurements in magnetic fields H on
YbRh2Si2 [31]. Our calculations shown by the solid curve are in good agreement
with χN over four orders of magnitude in the normalized temperature.

http://dx.doi.org/10.1007/978-3-319-10825-4_17
http://dx.doi.org/10.1007/978-3-319-10825-4_17
http://dx.doi.org/10.1007/978-3-319-10825-4_17
http://dx.doi.org/10.1007/978-3-319-10825-4_17
http://dx.doi.org/10.1007/978-3-319-10825-4_17
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(a)

(b) (c)

Fig. 18.5 The thermodynamic properties of themagnetic susceptibility. Panela, temperature depen-
dence in log-log scale of the magnetic susceptibility χN at different magnetic fields [18] given in
the legend. The LFL and NFL regions are marked by the solid and dashed arrows, respectively.
The solid line depicts χN ∝ T −0.5

N behavior. Panel b, the temperatures Tmax where the maxima
of χ (see Fig. 18.3) are located. The solid line represents the function Tmax = aH , a is a fitting
parameter. Panel c, the maxima χmax versus magnetic field H . The solid curve is approximated by
χmax = t H−1/2, see (18.10), t is a fitting parameter

To validate the phase diagram in Fig. 18.3, we focus on the LFL, NFL and the
transition LFL-NFL regions exhibited by the QC. To this end, in Fig. 18.5a, we
report the normalized χN in the log-log scale. As seen from Fig. 18.5a, χN extracted
from the measurements is not a constant, as would be for LFL. Two (NFL and LFL)
regions, separated by the transition one, as depicted by the hatched area in the inset
in Fig. 18.3, are clearly seen in Fig. 18.5a, illuminating good agreement between
the theory and measurements. The straight lines in Fig. 18.5a outline both the LFL
and NFL behaviors of χN ∝ const and χN ∝ T −1/2

N , and are in good agreement
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with the behavior of M∗
N displayed in the inset of Fig. 18.3. In Fig. 18.5b, the solid

squares denote temperatures Tmax(H) at which the maxima χmax of χ(T ) and, (c),
the corresponding values of the maxima χmax(H) occur. It is seen that the agreement
between the theory and experiment is good in the entire magnetic field domain. It is
also seen from Fig. 18.5b that Tmax ∝ H ; thus a tiny magnetic field H destroys
the NFL behavior hereby driving the system to the LFL region. This behavior is
consistent with the phase diagram displaced in Fig. 18.3: at increasing temperatures
(TN � 1) the LFL state first converts into the transition one and then disrupts into
the NFL state, while at given magnetic field H the width W ∝ T .

Thus, the quasicrystal Au51Al34Yb15 exhibits typical scaling behavior of its ther-
modynamic properties, thus belonging in fact to the HF metals family, while the
quantum critical physics of the quasicrystal is universal and emerges regardless its
underlying microscopic details.

18.3 Quantum Criticality at Metamagnetic Phase Transitions

The nature of field-tuned metamagnetic quantum criticality in HF metals is a signif-
icant challenge for condensed matter physics. Here we center our attention on the
role of the applied magnetic field B in the formation of quantum criticality within a
restricted range of B at low temperatures T . Theoretical study of the HF compound
Sr3Ru2O7 fulfilled in Chap. 11 gives quantative insights into the quantum critical-
ity, and reveal a close relation of the metamagnetic phase transition in Sr3Ru2O7
and that of HF metals. Here we use this study to analyze quantum criticality and
metamagnetic phase transitions in HF metals.

18.3.1 Typical Properties of the Metamagnetic Phase
Transition in Sr3Ru2O7

The coherent picture of both the quantum critical regime and the metamagnetic
phase transition in Sr3Ru2O7 was introduced in Chap.11. Now we take Sr3Ru2O7
as an example of quantum criticality formed at metamagnetic phase transition to
outline its main features. In constructing both the field-induced quantum criticality
and the corresponding metamagnetic phase transition, we employ the model based
on a vHs that induces a peak in the single-particle DOS. At fields in some range
Bc1 < B < Bc2 the DOS peak turns out to be at or near the Fermi energy. As a
result, a relatively weak repulsive interaction (e.g., Coulomb) is sufficient to move
the system to FCQPT, or even to induce FC and formation of a flat band, as it takes
place in the case of Sr3Ru2O7.

To reveal signatures of the quantum criticality, we resume with an analysis of
the properties of the C/T electronic specific heat observed in Sr3Ru2O7 [33, 34].

http://dx.doi.org/10.1007/978-3-319-10825-4_11
http://dx.doi.org/10.1007/978-3-319-10825-4_11
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Fig. 18.6 The universal scaling behavior of the normalized effective mass M∗
N versus TN . M∗

N is
extracted from the measurements of χ and C/T (in magnetic fields B shown in the legends) on
CeRu2Si2 [32], CePd1−xRhx with x = 0.80 [31], and Sr3Ru2O7 [33]. The LFL and NFL regimes
(latter having M∗

N ∝ T −2/3
N ) are shown by the arrows and straight lines. The transition regime is

depicted by the shaded area. The solid curve represents our calculation of the universal behavior
of M∗

N (TN )

The measurements of C/T ∝ M∗ in magnetic fields on Sr3Ru2O7 allow us to
uncover the universal scaling behavior of the effective mass M∗ that is characteristic
of HF metals. As it is seen from Fig. 11.4, the maximum of C/T ∝ M∗ sharpens
and shifts to lower temperatures as the field B approaches the critical value B =
Bm � (Bc1 + Bc2)/2, where the maximum disappears. In contrast to HF metals, the
maximumof the functionC/T exhibits a symmetrywith respect to Bm : themaximum
appears at B → Bm and reappears on the high-field side at B > Bm . To reveal the
scaling behavior of C/T , we normalize the measured C/T and T values (obtaining
(C/T )N and TN , respectively) by their maxima TM and (C/T )M respectively [20].
The spin susceptibility data χ(T ) are normalized in the same way. The behavior
of the normalized effective mass extracted from measurements of χ and (C/T ) on
CeRu2Si2 [32], CePd0.8Rh0.8 [31] and Sr3Ru2O7 [33], are presented in Fig. 18.6.
The figure displays the main features of scaling behavior of the normalized effective
mass M∗

N shown in Fig. 6.2. Namely, at low temperatures TN < 1 the normalized
effective mass is in the LFL region, then it enters the transition region, and finally
disrupts into the NFL regime. The solid curve shows the result of our calculation
of the scaling behavior. It is seen from Fig. 18.6, that Sr3Ru2O7 located at the
metamagnetic transition and HF metals exhibit the same scaling behavior, which

http://dx.doi.org/10.1007/978-3-319-10825-4_11
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18.3 Quantum Criticality at Metamagnetic Phase Transitions 331

exhibit the other HF compounds and which can be understood within the framework
of fermion condensation or flat-band theory.

18.3.2 Metamagnetic Phase Transition in HF Metals

As we have seen above, a HF metal can be driven to FCQPT when narrow (flat)
bands situated close to the Fermi surface are formed by the application of a critical
magnetic field Bm . The emergence of such state is known as metamagnetism that
occurs when this transformation comes abruptly at Bm [34], as it was discussed in
Chap.11 and Sect. 18.3.1.

Thus, the magnetic field Bm is similar to that of Bc0 that moves a HF metal to
its magnetic field tuned QCP. In our simple model both Bc0 and Bm are taken as
parameters. To apply (17.4) when the critical magnetic field is not zero, we have to
replace B by (B − Bm). Acting as above, we can extract the normalized effective
mass M∗

N (TN ) from data collected on HF metals at their metamagnetic quantum
phase transition. In Fig. 18.7 the extracted normalized mass is displayed. M∗

N (TN ) is
extracted frommeasurements ofC/T collected on URu1.92Rh0.08Si2, CeRu2Si2 and
CeRu2Si1.8Ge0.2 at their metamagnetic QCP with Bm � 35 T, Bm � 7 T and Bm �
1.2 T respectively [35, 36]. As it is seen fromFig. 18.7, the effectivemass M∗

N (TN ) in
different HF metals reveals the same form, both in the high magnetic field and in low

Fig. 18.7 The normalized effective mass versus the normalized temperature at different magnetic
fields B, shown in the legend. M∗

N (TN ) is extracted from measurements of C/T collected on
URu1.92Rh0.08Si2, CeRu2Si2 and CeRu2Si1.8Ge0.2 [35, 36]. The solid curve gives the universal
behavior of M∗

N , (17.4). See also the caption to Figs. 15.3 and 17.4

http://dx.doi.org/10.1007/978-3-319-10825-4_11
http://dx.doi.org/10.1007/978-3-319-10825-4_17
http://dx.doi.org/10.1007/978-3-319-10825-4_17
http://dx.doi.org/10.1007/978-3-319-10825-4_15
http://dx.doi.org/10.1007/978-3-319-10825-4_17
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ones as soon as the corresponding bands become flat, that is the electronic system of
HF metals is driven to FCQPT. This observation is extremely significant as it allows
us to check the universal behavior in HFmetals, when these are under the application
of essentially different magnetic fields. Namely, the magnitude of the applied field
(B ∼ 10 T) at the metamagnetic point is four orders of magnitude larger than that
of the field applied to tune CeRu2Si2 to the LFL behavior (B ∼ 1 mT). Relatively
small values of M∗

N (TN ) observed in URu1.92Rh0.08Si2 and CeRu2Si2 at the high
fields and small temperatures can be explained by taking into account that the narrow
band is completely polarized [35]. As a result, at low temperatures the summation
over spin projections “up” and “down” reduces to a single direction producing the
coefficient 1/2 in front of the normalized effective mass. At high temperatures the
polarization vanishes and the summation is restored. As it is seen from Fig. 18.7,
these observations are in accord with the experimental facts.

18.4 Universal Behavior of Two-Dimensional 3He at Low
Temperatures

On the example of 2D 3He we demonstrate that the main universal features of its
experimental temperature T—density x phase diagram and its quantum criticality
look like those in HF metals. Our detailed theoretical analysis of experimental situa-
tion in 2D 3He allows us to propose a simple expression for effective mass M∗(T, x),
describing all diverse experimental facts in 2D 3He in unified manner and demon-
strating that the universal behavior of M∗(T, x) coincides with that observed in HF
metals.

It was discussed above that the electronic system of HF metals demonstrates the uni-
versal low-temperature behavior irrespectively of their magnetic ground state [37].
Therefore it is of crucial importance to check whether this behavior can be observed
in 2D Fermi systems. Fortunately, the measurements on 2D 3He are available
[38, 39]. Their results are extremely significant as they allow to check the presence
of the universal behavior in the system formed by 3He atoms, which are essentially
different from electrons [39]. Namely, atoms of 2D 3He are neutral fermions with
spin S = 1/2. They interact with each other by van-der-Waals forces with strong
hardcore repulsion and a weakly attractive tail. The different character of interparti-
cle interaction along with the fact, that a mass of He atom is 3 orders of magnitude
larger than that of an electron, makes 3He to have drastically different microscopic
properties than that of 3DHFmetals that constitute the most essential for our consid-
eration. Because of this difference nobody can be sure that the macroscopic physical
properties of both above fermionic systems will be more or less similar to each other.
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Fig. 18.8 Temperature dependence of the entropy S of 2D 3He at different densities x (shown in
the legends) [38]. The inflection point of S at x = 9.00 nm−2 is shown by the arrow

The bulk liquid 3He is historically the first object, to which a Landau Fermi-liquid
(LFL) theory had been applied [23]. This substance, being intrinsically isotropic
Fermi-liquid with negligible spin-orbit interaction is an ideal object to test the LFL
theory. 2D films of 3He have been fabricated and its thermodynamic properties have
been thoroughly investigated [38, 38]. Among these properties are measurements
of the entropy S as a function of the number density x versus T. As it is seen from
Fig. 18.8, at x ≥ 8.00 nm−2 the entropy is nomore a linear function of temperature T ,
exhibiting the NFL behavior.

TheNFLpropertiesmanifest themselves in the power-lawbehavior of the physical
quantities of strongly correlated Fermi systems located close to their QCPs, with
exponents, characterizing the power-law behavior, different from those of a Fermi
liquid. It is common belief that the main output of theory should be the explanation
of these exponents, which are at least depended on the magnetic character of QCP
and dimensionality of the system. On the other hand, the observed behavior of the
thermodynamic properties cannot be described entirely by these exponents, as it is
seen from Figs. 18.8 and 18.9. The behavior of the entropy S(T ) of two-dimensional
(2D) 3He [38] shown in Fig. 18.8 is positively different from that described by a
simple function a1T a2 where a1 is a constant and a2 is the exponent. One sees from
Fig. 18.8 that at lowdensities x � 7 nm−2 the entropy demonstrates theLFLbehavior
characterized by a linear function of T with a2 = 1. The behavior becomes quite
different at higher densities, where S(T ) has an inflection point. Obviously, at the
inflection point S(T ) cannot be fit by the simple function a1T a2 , as in the case of HF
metals, see Sect. 6.3.1.

http://dx.doi.org/10.1007/978-3-319-10825-4_6
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Fig. 18.9 The normalized entropy SN (TN ), extracted from the experimental data of Fig. 18.8.
Densities x are shown in the legend. The arrow shows the inflection point

In order to show that the behavior of S displayed in Figs. 18.8 and 18.9 is of
generic character, let us recollect that in the vicinity of QCP it is helpful to use
“internal” scales to measure the effective mass M∗ ∝ S/T and temperature T
[20]. The internal scales of the thermodynamic functions, such as S or C/T , are
related to “peculiar points” Peculiar points like the inflection or maximum. Since the
entropy has no maxima, its normalization is to be performed at the inflection point
that takes place at T = Tinf, see (6.26). Note that Tinf is a function of x , and it is
seen from Fig. 18.8 that the inflection point moves towards lower temperatures with
increase of x . The normalized entropy SN as a function of the normalized temperature
TN = T/Tinf = y is reported in Fig. 18.9.We normalize the entropy by its value at the
inflection point SN (y) = S(y)/S(1). As it is seen from Fig. 18.9, the normalization
reveals the scaling behavior of SN . As we have seen previously, this means that the
curves at different temperatures and densities x merge into a single one in terms of
the variable y. We have excluded the experimental data taken at x ≤ 8 nm−2 since
the corresponding curves do not contain the inflection points. It is seen from Fig. 18.9
that SN (y) extracted from the measurements is not a linear function of y, as would
be for a LFL, and shows the scaling behavior in the normalized temperature TN .

Thus, our above preliminary analysis of the experimental measurements has
shown that the behavior of 2D 3He is very close to that of 3D HF compounds
with various ground state magnetic properties. Because of van-der-Waals interpar-
ticle interaction, 3He has an important and specific feature that, generally speaking,
cannot be realized in full in HF metals. This feature is that it is possible to change
the total density of 3He film. This change allows one to drive 2D film towards its
QCP at which the quasiparticle effective mass M∗ diverges [38, 40]. This peculiarity

http://dx.doi.org/10.1007/978-3-319-10825-4_6
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permits to plot the experimental temperature-density phase diagram, which in turn
can be directly compared with theoretical predictions.

Let us consider HF liquid at T = 0 characterized by the effective mass M∗
[20, 27, 41–44]. Upon applying the well-known equation, we can relate M∗ to the
bare gas mass M [23, 45] M∗/M = 1/(1− N0F1(pF , pF )/3), see Sect. 2.3.1. Here
N0 is the density of states of a free gas, pF is Fermi momentum, and F1(pF , pF )

is the p-wave component of Landau interaction F . Since LFL theory implies that
the number density has the form x = p3F/3π2, we can rewrite the interaction as
F1(pF , pF ) = F1(x). When at some critical point x = xc, F1(x) achieves certain
threshold value, the denominator tends to zero so that the effective mass diverges
at T = 0 and the system undergoes FCQPT. The leading term of this divergence
looks as

M∗(x)

M
= A + B

1 − z
, z = x

xc
. (18.15)

Equation (18.15) is valid in both 3D and 2D cases, while the values of factors A
and B depend on dimensionality and inter-particle interaction [44]. At x > xc the
fermion condensation takes place. However, we consider at first the case x < xc.

When the system approaches FCQPT, the dependence M∗(T, x) is governed by
the Landau equation

1

M∗(T, x)
= 1

M
+

∫
pF p

p3F
F(pF, p)

∂n(p, T, x)

∂p

dp
(2π)3

, (18.16)

where n(p, T, x) is the distribution function of quasiparticles. The approximate solu-
tion of this equation is of the form [37, 39]

M

M∗(T )
= M

M∗(x)
+ β f (0) ln {1 + exp(−1/β)} + λ1β

2 + λ2β
4 + · · · , (18.17)

where λ1 > 0 and λ2 < 0 are constants of order unity, β = T M∗(T )/p2F and
f (0) ∼ F1(xc). It follows from (18.17) that the effectivemass M∗(T ) as a function of
T and x reveals three different regimes at growing temperature. At the lowest temper-
atures we have LFL regime with M∗(T ) � M∗(x) + aT 2 with a < 0 since λ1 > 0.
This observation coincides with experimental situation [38, 40]. The effective mass
as a function of T decreases up to aminimum and afterward grows, reaching itsmaxi-
mum M∗

M (T, x) at some temperature Tmax(x)with subsequent diminishing as T −2/3

[24, 44]. Moreover, the closer is the number density x to its threshold value xc, the
higher is the growth rate. The peak value M∗

M grows also, but the maximum tem-
perature Tmax lowers. Near this temperature the last “traces” of LFL regime disap-
pear, manifesting themselves in the divergence of above low-temperature series and
substantial growth of M∗(x). The temperature region that starts near above mini-
mum and continuing up to Tmax(x) signifies the crossover between LFL regime with
almost constant effective mass and NFL behavior, given by T −2/3 dependence, given

http://dx.doi.org/10.1007/978-3-319-10825-4_2
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by (6.14). Thus, the Tmax point can be regarded as the crossover between LFL and
NFL regimes. The latter regime sets up at T ≤ Tmax, when M∗(x) → ∞, giving
rise to the effective mass decrease

M∗(T ) ∝ T −2/3. (18.18)

It turns out that M∗(T, x) in the entire T and x range can be well approximated
by a simple universal interpolating function similar to the case of the application of
magnetic field. The interpolation occurs between LFL (M∗ ∝ T 2) and NFL (M∗ ∝
T −2/3) regimes thus describing the above crossover. Introducing the dimensionless
variable y = T/Tmax, we present the desired expression

M∗(T, x)

M∗
M

= M∗(y)

M∗
M

= M∗
N (y) ≈ M∗(x)

M∗
M

1 + c1y2

1 + c2y8/3
. (18.19)

Here M∗
N (y) is the normalized effectivemass, c1 and c2 are parameters, obtained from

the condition of best fit to experiment. Equation (18.15) shows that the maximum
value M∗

M of the effective mass M∗
M ∝ 1/(1− z). On the other hand, it follows from

(18.18) that M∗
M ∝ T −2/3 ∼ T −2/3

max . As a result, we obtain

Tmax ∝ (1 − z)3/2. (18.20)

We note that obtained results are in agreement with numerical calculations
[24, 39, 44].

M∗(T ) can be measured in experiments on strongly correlated Fermi-systems.
For example, M∗(T ) ∝ C(T )/T ∝ S(T )/T ∝ M0(T ) ∝ χ(T ) where C(T ) is
the specific heat, S(T )—entropy, M0(T )—magnetization and χ(T )—AC magnetic
susceptibility. If the measurements are performed at fixed x , then, as it follows from
(18.19), the effective mass reaches the maximum at T = Tmax. Upon normalizing
both, M∗(T ) by its peak value at each x and the temperature by Tmax, we see from
(18.19) that all the curves merge into single one demonstrating a scaling behavior.

In Fig. 18.10, we show the phase diagram of 2D 3He in the variables T − z (see
(18.15)). For the sake of comparison the plot of the effective mass versus z is shown
by dashed line. The part of the diagram where z < 1 corresponds to HF behavior and
consists of LFL and NFL parts, divided by the line Tmax(z) ∝ (1 − z)3/2. We pay
attention here, that our exponent 3/2 = 1.5 is exact as compared to that from [38]
1.7± 0.1. The agreement between theoretical and experimental exponents suggests
that our FCQPT scenario takes place both in 2D 3He and in HF metals. The regime
for z > 1 consists of low-temperature LFL piece, (shadowed region, beginning in
the intervening phase z ≤ 1 [38]) and NFL regime at higher temperatures. The
former LFL piece is assigned to the peculiarities of substrate on which 2D 3He film
is placed. Namely, it is related to weak substrate heterogeneity (steps and edges
on its surface) so that Landau quasiparticles, being localized (pinned) on it, give
rise to LFL behavior [38, 38]. On the other hand, the intervening phase, shown in

http://dx.doi.org/10.1007/978-3-319-10825-4_6
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Fig. 18.10 The phase diagram of 2D 3He. The part for z < 1 corresponds to HF behavior divided
to the LFL and NFL parts by the line Tmax(z) ∝ (1 − z)3/2, where Tmax is the effective mass
maximum temperature. The exponent 3/2 = 1.5 coming from (18.20) is in good agreement with
the experimental value 1.7± 0.1 [38]. The dependence M∗(z) ∝ (1− z)−1 is shown by the dashed
line. The regime for z ≥ 1 consists of LFL piece (the shadowed region, beginning in the intervening
phase z ≤ 1 [38], which is probably due to the quasi-classical behavior of the heat capacity C , see
text) and NFL regime at higher temperatures

Fig. 18.10, can be related to the quasi-classical behavior of the heat capacity C that
leads to a temperature independent contribution to C , as it is discussed in Sect. 9.1.
This important observation deserves a further investigation that would prompt new
theoretical work, supporting the idea that the physics of quantum criticality seen in
HF compounds is universal.

In Fig. 5.5, the experimental values of effective mass M∗(z) obtained by the mea-
surements on 3He monolayer are reported [40]. These measurements, in agreement
with those from [38], demonstrate the divergence of the effective mass at x = xc.
To show, that our FCQPT approach is able to describe the above data, we present
the fit of M∗(z) by the rational expression M∗(z)/M ∝ A + B/(1 − z) and the
reciprocal effective mass by the linear fit M/M∗(z) ∝ A1z. We note here, that the
linear fit has been used to describe the experimental data for bilayer 3He [38] and we
use this function here for the sake of illustration. It is seen from Fig. 5.5 that the data
in [38] (3He bilayer) can be equally well approximated by both linear and rational
functions, while the data in [40] cannot. For instance, both fitting functions give for
the critical density in bilayer xc ≈ 9.8 nm−2, while for monolayer [40] these values
are different −xc = 5.56 for linear fit and xc = 5.15 for fractional fit. It is seen
from Fig. 5.5, that linear fit is unable to properly describe the experiment [40] at
small 1− z (i.e. near x = xc), while the fractional fit describes the experiment pretty
good. This means that the more detailed measurements are necessary in the vicinity
x = xc.

http://dx.doi.org/10.1007/978-3-319-10825-4_9
http://dx.doi.org/10.1007/978-3-319-10825-4_5
http://dx.doi.org/10.1007/978-3-319-10825-4_5
http://dx.doi.org/10.1007/978-3-319-10825-4_5
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Fig. 18.11 The normalized effective mass M∗
N as a function of the normalized temperature T/Tmax

at densities shown in the left down corner. The behavior M∗
N is extracted from experimental data

for S(T )/T in 2D 3He [38] and 3D HF compounds with different magnetic ground states, such as
CeRu2Si2 and CePd1−xRhx [31, 32], fitted by the universal function (18.19)

Now we apply the universal dependence, given by (17.4) and (18.19), to fit the
experiment not only in 2D 3He but in 3D HF metals as well. M∗

N (y) extracted from
the entropy measurements on the 3He film [38] at different densities x < xc smaller
than the critical point xc = 9.9 ± 0.1 nm−2 is reported in Fig. 18.11. In the same
figure, the data extracted from heat capacity of ferromagnet CePd0.2Rh0.8 [31] and
AC magnetic susceptibility of paramagnet CeRu2Si2 [32] are plotted for different
magnetic fields. It is seen that the universal behavior of the effective mass given by
(18.19) (solid curve in Fig. 18.11) is in accord with experimental data. All substances
are located at x < xc, where the system progressively disrupts its LFL behavior at
elevated temperatures. In that case the control parameter, driving the system towards
its critical point xc is merely a number density x . It is seen that the behavior of
the effective mass M∗

N (y), extracted from S(T )/T in 2D 3He (the entropy S(T ) is
reported in Fig. 18.8) looks very much like that in 3D HF compounds. As we shall
see from Fig. 18.13, the interaction and positions of the maxima of magnetization
M0(T ) and S(T )/T in 2D 3He follow nicely the interpolation formula (18.19). We
conclude that (18.19) allows us to reduce a four variable function describing the
effective mass to a function of a single variable. Indeed, the effective mass depends
on magnetic field, temperature, number density and the composition so that all these
parameters can be merged in the single variable by means of interpolating function
like (18.19), see also [37].

The attempt to fit the available experimental data for C(T )/T in 3He [40]
by the universal function M∗

N (y) is reported below in Fig. 18.12. Here, the data
extracted from heat capacity C(T )/T for 3He monolayer [40] and magnetization
M0 for bilayer [38], are reported. It is seen that the effective mass extracted from

http://dx.doi.org/10.1007/978-3-319-10825-4_17
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Fig. 18.12 The dependence of M∗
N (T/Tmax) versus T at densities shown in the left down corner.

The behavior M∗
N is extracted from experimental data for C(T )/T in 2D 3He [40] and for the

magnetization M0 in 2D 3He [38]. The solid curve shows the universal function, see the caption to
Fig. 18.11

Fig. 18.13 Left panel, the peak temperatures Tmax and values Mmax extracted from measurements
of the magnetization M0 in 3He [38]. Right panel shows Tmax and the peak values (S/T )max
extracted from measurements of S(T )/T in 3He [38]. We approximate Tmax ∝ (1 − z)3/2 and
(S/T )max ∝ Mmax ∝ A/(1 − z)
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these thermodynamic quantities can be well described by the universal interpolation
formula (17.4). We note the qualitative similarity between the double layer [38] and
monolayer [40] of 3He seen from Fig. 18.12.

On the left panel of Fig. 18.13, we show the density dependence of Tmax, extracted
from measurements of the magnetization M0(T ) on 3He bilayer [38]. The peak
temperature is fitted by (18.20). At the same figure, we have also presented the
maximalmagnetization Mmax. It is seen that Mmax iswell described by the expression
Mmax ∝ (S/T )max ∝ (1 − z)−1, see (18.15). The right panel of Fig. 18.13 reports
the peak temperature Tmax and the maximal entropy (S/T )max versus the number
density x . They are extracted from themeasurements of S(T )/T on 3He bilayer [38].
The fact that both the left and right panels have the same behavior shows once more
that there are indeed the quasiparticles, determining the thermodynamic behavior of
2D 3He (and also 3D HF compounds [37]) near their QCP.

We conclude that despite absolutely different microscopic nature of 2D 3He and
3D HFmetals, their main universal macroscopic features and quantum criticality are
the same [39]. As a result, themain features of 3He experimental T −x phase diagram
look like those in HFmetals and can be well captured utilizing our notion of FCQPT,
based on the extended quasiparticles paradigm, and described in details in Chap. 2.
The modification is that in contrast to the Landau quasiparticle effective mass, the
3He effective mass M∗(T, x), as well as that of HF metals, become temperature and
density dependent. We have demonstrated that the universal behavior of M∗(T, x)

coincides with that observed in HF metals.

18.5 Scaling Behavior of HF Compounds and Kinks
in the Thermodynamic Functions

In this section we visualize kinks or energy scales in the thermodynamic functions
measured on HF compounds such as HFmetals, 2D 3He, quasicrystals, etc. The kink
is a crossover point from the fast to slow growth of the thermodynamic function of
HF compound at raising magnetic field and at fixed temperature and vise versa.

To better visualize kinks or energy scales in the thermodynamic functions mea-
sured in HF metals [47] and 2D 3He, we present the normalized effective mass M∗

N
extracted from the thermodynamic functions versus normalized temperature and
the normalized thermodynamic functions proportional to TN M∗

N in Figs. 18.14 and
18.15, respectively.

M∗
N (y) extracted from the entropy S(T )/T and magnetization M measurements

on the 3He film [38] at different densities x are presented in Fig. 18.14. The data are
extracted from the heat capacity C of the ferromagnet CePd0.2Rh0.8 [31], CeCoIn5
[46] and the AC magnetic susceptibility of the paramagnet CeRu2Si2 [32], and are
plotted for different magnetic fields. It is seen that the universal behavior of the

http://dx.doi.org/10.1007/978-3-319-10825-4_17
http://dx.doi.org/10.1007/978-3-319-10825-4_2
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Fig. 18.14 Energy scales in HF metals and 2D 3He. Normalized effective mass M∗
N versus nor-

malized temperature TN = T/TM . The dependence M∗
N (TN ) is extracted from measurements of

S(T )/T and magnetization M of 2D 3He [38]), from AC susceptibility χ(T ) of CeRu2Si2 [32]
and from C(T )/T of both CePd1−xRhx [31] and CeCoIn5 [46]. The data are collected for different
densities and magnetic fields shown in the legends. The solid curve traces the universal behavior of
the normalized effectivemass (18.19). Parameters c1 and c2 are adjusted forχN (TN , B) at B = 0.94
mT. The LFL and NFL regions are shown by the straight lines, and are marked by the arrows

normalized effective mass given by (18.19) and shown by the solid curve is in accord
with the experimental data. Note that the behavior of M∗

N (y), extracted from S(T )/T
and magnetization M of 2D 3He looks very much like that of 3D HF compounds.
The LFL and NFL regimes are shown by the arrows. As it is seen from Fig. 18.14,
the transition area is located between the LFL and NFL, and is relatively broad. In
Fig. 18.15 we present the normalized data on C(y), S(y), yχ(y) and M = M(y) +
yχ(y) extracted from data collected on CePd1−xRhx [31],

3He [38], CeRu2Si2 [32],
CeCoIn5 [46] andYbRu2Si2 [47], respectively. Note that in the case ofYbRu2Si2, the
variable y = (B − Bc0)μB/TM can be viewed as effective normalized temperature.
We remind that M as a function of magnetic field has been calculated in Sect. 7.1. It
is worth noting that upon comparing Figs. 17.15, 17.16,17.18 and 18.3 we observe
that these quite various HF compounds exhibit the same behavior as that shown in
Fig. 18.14. Again, we see that despite absolutely differentmicroscopic nature of these
HF compounds, their main universal macroscopic features and quantum criticality
are of the same nature, generated by FCQPT.

It is seen from Fig. 18.15 that all the data exhibit the kink shown by arrow and
taking place as soon as the system enters the transition region from the LFL state to
the NFL one. This region corresponds to the temperatures where the vertical arrow
in Fig. 6.2 crosses the hatched area separating the LFL from NFL. It is also seen in
Fig. 18.15 that the low temperature LFL scale of the thermodynamic functions, as a

http://dx.doi.org/10.1007/978-3-319-10825-4_7
http://dx.doi.org/10.1007/978-3-319-10825-4_17
http://dx.doi.org/10.1007/978-3-319-10825-4_17
http://dx.doi.org/10.1007/978-3-319-10825-4_17
http://dx.doi.org/10.1007/978-3-319-10825-4_6
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Fig. 18.15 Energy scales in HF metals and 2D 3He. We plot the normalized specific heat C(y)

of CePd1−xRhx and CeCoIn5 at different magnetic fields B, and the normalized entropy S(y) of
3He at different number densities x , and the normalized yχ(y) at B = 0.94 mT versus normalized
temperature y = TN or magnetic field y = BN . The normalized “average” magnetization M =
M + Bχ is collected on YbRu2Si2 [47]. The kink (shown by the arrow) in all the data is clearly
seen at the transition region. The solid curve represents yM∗

N (y)with parameters c1 and c2 adjusted
for the magnetic susceptibility of CeRu2Si2 at B = 0.94 mT

function of y, is characterized by fast growth, and the high temperature scale related to
theNFL region is characterizedby slowgrowth.As a result,we can identify the energy
scales near QCP, discovered in [47, 48]: The thermodynamic characteristics exhibit
kinks, i.e. crossover points from the fast to slow growth at elevated temperatures,
which separate the low temperature LFL scale and high temperature one related to
the NFL state.

18.6 New State of Matter

In Chaps. 17 and 18, we have described the diverse experimental facts related to
temperature, magnetic field, and number density dependencies of thermodynamic
characteristics of HF compounds. This universal behavior is also inherent to HF
metals with different magnetic ground states. We also analyzed the interaction and
positions of themaxima ofmagnetization M and the entropy S in 2D 3He as the func-
tions of the number density. These data could be obtained for 3He only, while they
were inaccessible for analysis in HF metals and other compounds. As a result, we
were able to show the universality of the quantum criticality and the observed scaling
behavior. Thus, by bringing the experimental data collected on different strongly cor-
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related Fermi-systems to the above form related to the internal scales immediately,we
reveal their universal scaling behavior. As we have seen above, FCQPT takes place
in many compounds, generating the quantum critical state with the NFL behavior
by forming flat bands. We have carried out a systematic theoretic study of the phase
diagrams of strongly correlated Fermi systems, including HFmetals, the new type of
insulators with strongly correlated quantum spin liquid, and quasicrystals. We have
demonstrated that these diagrams have universal features. The obtained results are
in good agreement with experimental data. We have shown both theoretically and
using arguments based entirely on the experimental grounds that the data collected
on very different HF compounds, such as HF metals, compounds with quantum spin
liquid, quasicrystals, and 2D 3He have a universal scaling behavior at the quantum
criticality domain in spite of their microscopic diversity. Thus, the quantum critical
physics of different HF compounds is universal, and emerges regardless of the under-
lying microscopic details of the compounds. This uniform behavior, induced by the
universal quantum critical physics, allows us to view it as the main characteristic of
the new state of matter [49, 50]. Our analysis of HF compounds relies on numerous
experimental results and on the calculations of the physical properties, related toNFL
behavior. It is seen, that the FC theory, based on fermion condensation paradigm,
delivers pretty good description of the NFL behavior of different strongly correlated
Fermi systems. Moreover, FCQPT can be considered as the universal reason for the
NFL behavior observed in various HF metals, liquids, insulators with quantum spin
liquids, and quasicrystals.
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Chapter 19
Conclusions

Abstract This chapter concludes our book, serves as a road map for material
presented and discusses what else can and should be done. Main emphasis is put
on the fact that HF compounds feature universal scaling behavior in the wide range
of the variation of magnetic fields, temperatures, number density, etc., which permits
us to suggest that they form a new state of matter. Another emphasis in the book has
been put on the ubiquity of the fermion condensation phenomenon. This phenom-
enon is ubiquitous as it is capable to describe equally well both the non-Fermi liquid
behavior in HF compounds, the level merging in finite Fermi systems and baryon
asymmetry in the early Universe. We conclude the monograph discussing possible
avenues of future research in this extremely interesting field.

More than 2decades have passed since first ideas appeared that led to the devel-
opment of fermion condensation (extended Landau quasiparticle) paradigm [1–4].
During this time many theoretical papers appeared using this paradigm to study
numerous strongly correlated electron systems, ranging from heavy-fermion (HF)
compounds and high-Tc superconductors to the systems like 2D liquid 3He, quan-
tum spin liquids, quasicrystals, and even baryons in the early Universe [5]. The basic
idea of fermion condensation (FC) paradigm is the new type of instability of ordinary
Landau Fermi liquid (LFL) relatively toward the infinite growth of quasiparticle’s
effective mass. To avoid such unphysical situation, the system rearranges its energy
spectrum in away that Landau quasiparticle’s kinetic energy becomes infinitely small
near the Fermi surface and the distribution function n(p)minimizing the ground state
energy E(n(p)) is mainly determined by the potential energy. In other words, the
Fermi surface at p = pF transforms into the Fermi volume at pi ≤ p ≤ p f

suggesting that the single-particle spectrum is absolutely “flat” within this interval,
i.e. the single-particle energies equal to the chemical potential μ. This state, where
all quasiparticles with momenta pi ≤ p ≤ p f , have the same energy, closely resem-
bles the Bose-condensed state. That is why the above state had been called Fermi
condensate [1]. It had been shown by Volovik [3], that the FC state possesses dif-
ferent (than that of ordinary Fermi liquid) topology of the Fermi surface and thus
cannot be reached from LFL without the phase transition. This phase transition had
been called the Fermion condensation quantum phase transition (FCQPT), see [5]
and references therein. The main physical effect of the FC theory is aforementioned
extended quasiparticle paradigm. Namely, the notion of FCQPT is compatible with
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the idea of quasiparticles, for quasiprticles survive but they become different from
those in ordinary Fermi liquid. More precisely, if in ordinary LFL the quasiparticle
effective mass M∗ is a constant, in FC state this quantity starts to depend on the exter-
nal parameters like temperature T and external magnetic field B. This dependence
is a key feature for explaining enigmatic NFL behavior of many strongly correlated
electron systems and HF compounds in particular that are analyzed in this book.

Note that numerous theoretical models describing NFL behavior assume that
quasiparticles are absent at the quantum critical points (QCP) of HF compounds, see
Chap. 1, Introduction. Arguments that quasiparticles in strongly correlated electron
systems “get heavy and die” at the QCP commonly employ the assumption that
the quasiparticle weight factor z vanishes at the point of an associated second-order
phase transition [6, 7]. Numerous experimental results have been discussed in terms
of such an approach, but it cannot explain neither qualitatively nor quantitativelymain
features of the physics of HF metals, see Chap. 1. Extensive studies have shown that
above discussed FC approach, which preserves quasiparticles while being intimately
related to the unlimited growth of M∗, delivers an adequate theoretical explanation
of vast majority of experimental results in different HF metals. The essential point
is that—as before—well-defined quasiparticles determine the thermodynamic and
transport properties of strongly correlated Fermi systems, while the dependence of
the effective mass M∗ on T and B gives rise to the observed NFL behavior [5]. The
most fruitful strategy for exploring and revealing the nature of the QCP is to focus
on those properties that exhibit the most spectacular deviations from LFL behavior
in the zero-temperature limit.

It turns out that the FC occurs in many compounds, generating the NFL behavior
by forming flat bands. In thismonographwe have shown both analytically (within FC
approach) and using arguments based entirely on the experimental grounds that the
data collected on extremely diverse HF compounds, such as HF metals, compounds
with quantum spin liquid and quasicrystals, have a universal scaling behavior. This
means that different materials with strongly correlated fermions can unexpectedly
have a similar behavior despite theirmicroscopic (like lattice symmetry and structure,
magnetic ground state, dimensionality etc) diversity. Thus, the physics of quantum
criticality of different HF compounds is universal and emerges regardless of the
underlying microscopic details of the compounds. This identical behavior, taking
place at relatively low temperatures and induced by the universal quantum critical
physics, allows us to interpret it as a main characteristic of the new state of matter
[3, 4, 8, 9]. Our analysis of strongly correlated systems is in the context of salient
experimental results, and our calculations of the NFL physical properties are in
good agreement with a broad variety of experimental data. Moreover, the fermion
condensate can be considered as a defining cause for the NFL behavior observed in
various HF metals, liquids, insulators with quantum spin liquids, and quasicrystals.
As we have seen, a large diversity of the HF compounds exhibit the universal scaling
behavior at their quantum criticality. Thus, whichever mechanism drives the system
to FCQPT, the system demonstrates the universal behavior. There are lots of such
mechanisms or tuning parameters like pressure, number density, magnetic field,
chemical doping, frustration and etc.
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We have described the effect of FCQPT on the properties of various Fermi
systems and presented substantial evidence in favor of the existence of such a tran-
sition. We have demonstrated that FCQPT supporting the extended quasiparticle
paradigm forms strongly correlated Fermi systems with their unique NFL behavior.
Vast body of experimental facts gathered in studies of various materials, such as
high-Tc superconductors, HF metals, and correlated 2D Fermi liquids like thin films
of 3He, can be explained by a theory based on the FCQPT concept. Description in
terms of quasiparticles guarantees that Kadowski-Woods relation is conserved and
that after magnetic field is applied, LFL behavior is restored.

We have also shown that in finite magnetic fields, in the NFL region formed
by FCQPT, any second-order phase transition transforms into a first order one at
the tricritical point leading to violation of universality in the framework of theory
of critical fluctuations. This change is driven by the temperature independent part
of entropy formed behind FCQPT. The quantum and thermal critical fluctuations
corresponding to second-order phase transitions disappear and have a little effect on
the low-temperature behavior of the system, so that the thermodynamics of HFmetals
in this temperature range is mainly determined by quasiparticles.

We have found that the differential conductivity between ametal point contact and
aHF compound or a high-Tc superconductor can be highly asymmetric as a function
of the applied voltage. This asymmetry is observed when a strongly correlated metal
is in its normal or superconducting state. We have shown that the application of
magnetic field restoring the LFL behavior suppresses the asymmetry. We conclude
therefore that the particle-hole symmetry is macroscopically broken in the absence
of applied magnetic fields, while the application of magnetic fields restores both the
LFL state and the particle-hole symmetry. The above features determine the universal
behavior of strongly correlated Fermi systems and are related to the anomalous low-
temperature behavior of the entropy, which contains the temperature independent
term.

We have shown how the fermion condensation paves the road for quasi-classical
physics in HF compounds. This means simply that systems with FC admit partly the
quasi-classical description of their thermodynamic and transport properties. This
description permits to gain more insights in the puzzling low-temperature NFL
physics. The quasi-classical physics starts to be applicable near FCQPT, at which
FC generates flat bands and quantum criticality, and makes the density of electron
states in strongly correlated metals diverge. Due to the formation of flat bandsHF
compounds exhibit the classical properties of elemental ones like copper, silver, alu-
minum, etc. In that case HF compounds demonstrate the quasi-classical behavior at
low temperatures rather than elemental metals exhibit a quantum criticality.

The FC state represents the topologically protected new state of matter. In the case
of Bose system the equation δE/δn(p) = μ describes the ground state. In the case
of Fermi systems such an equation, generally speaking, would not be correct. Thus,
it is the FC state, taking place behind FCQPT, that makes this equation applicable for
Fermi systems. As a result, Fermi quasiparticles can behave as Bose one, occupying
the same energy level ε = μ. This state is viewed as the state possessing the super-
symmetry (SUSY) that interchanges bosons and fermions eliminating the difference
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between them. We have seen that SUSY emerges naturally in condensed matter
systems known as HF compounds. The FC state accompanied by SUSY violates the
time invariance symmetry, while emerging SUSY violates the baryon symmetry of
the Universe. Thus, restoring one important symmetry, the FC state violates another
essential symmetry. In the future, the domain of problems should be broadened and
certain efforts should be made to describe the other macroscopic features of FCQPT
that could strongly modify the thermoelectric effects like Seebeck, Peltier etc. due
to their relation to the entropy.

In addition to the already known materials whose properties not only provide
information on the existence of FC but also almost shout aloud for such a condensate,
there are other materials of enormous interest which could serve as possible objects
for studying the phase transition in question. Among such objects are neutron stars,
atomic clusters and fullerenes, ultra cold gases in traps, nuclei, and quark plasma.
Another possible area of research is related to the structure of the nucleon, in which
the entire “sea” of non-valence quarks may be in FC state. The combination of
quarks and gluons that hold them together is especially interesting because gluons,
quite possibly, can be in the gluon-condensate phase, which could be qualitatively
similar to the pion condensate proposed by Migdal long ago [10]. We believe that
FC can be observed in traps, where there is a possibility to control the emergence of
a quantum phase transition accompanied by the formation of FCQPT by altering the
particle number density.

In general, the ideas associated with this new phase transition in one area of
research stimulates intensive studies of the possiblemanifestation of such a transition
in other areas. This has happened in the case of metal superconductivity, whose ideas
were fruitful in description of atomic nuclei and in a possible explanation of the
origin of the mass of elementary particles. This, quite possibly, could be the case
with FCQPT.

Finally, our general discussion shows that the FC theory, based on extended qua-
siparticle paradigm, develops unexpectedly simple, yet good qualitative as well as
quantitative description of the NFL behavior of various strongly correlated Fermi
systems. Moreover, the FC phenomenon can be considered as the universal reason
for both the NFL behavior and the quantum criticality, observed in various heavy-
fermion compounds, such as HFmetals, liquids like 2D 3He, quantum spin liquids,
strongly correlated insulators, quasicrystals and other Fermi systems. This observa-
tion permits us to suggest that FCQPT forms the new state ofmatter in heavy-fermion
compounds and presents an almost unlimited area of research.
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