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Foreword

Over four decades have passed since Lotfi Zadeh introduced the notion of fuzzy
sets. During this period we have seen an impressive growth of conceptual, theo-
retical and methodological developments and a variety of applications in many
fields. Current machinery in areas such as information storage and search, image
processing and understanding, pattern recognition and control, computational
biology and bioinformatics, to mention a few, have benefited considerably from
the developments in fuzzy set theory. What is less visible is the paradigmatic
change in the contemporary medical sciences, especially the changes that con-
cern uncertainty, imprecision and vagueness. Despite the naturally imprecise
character of the biological variables, only recently uncertainty, imprecision and
vagueness have been viewed as essential, not only unavoidable, but in fact of
a great practical utility. This is because uncertainty, imprecision and vagueness
help to reduce complexity and to increase credibility and tractability, items that
tend to maximize the usefulness of biological models.

Fuzzy Logic in Action: Applications in Epidemiology and Beyond, co-authored
by Eduardo Massad, Neli Ortega, Laécio Barros, and Claudio Struchiner is a
remarkable achievement. The book brings a major paradigm shift to medical
sciences exploring the use of fuzzy sets in epidemiology and medical diagnosis
arena. The volume addresses the most significant topics in the broad areas of
epidemiology, mathematical modeling and uncertainty, embodying them within
the framework of fuzzy set and dynamic systems theory. Written by leading con-
tributors to the area of epidemiology, medical informatics and mathematics, the
book combines a very lucid and authoritative exposition of the fundamentals
of fuzzy sets with an insightful use of the fundamentals in the area of epidemi-
ology and diagnosis. The content is clearly illustrated by numerous illustrative
examples and several real world applications. Based on their profound knowledge
of epidemiology and mathematical modeling, and on their keen understanding
of the role played by uncertainty and fuzzy sets, the authors provide insights
into the connections between biological phenomena and dynamic systems as
a mean to predict, diagnose, and prescribe actions. An example is the use of



VIII Foreword

Bellman-Zadeh fuzzy decision making approach to develop a vaccination strat-
egy to manage measles epidemics in São Paulo.

The book offers a comprehensive, systematic, fully updated and self-contained
treatise of fuzzy sets in epidemiology and diagnosis. Its content covers material of
vital interest to students, researchers and practitioners and is suitable both as a
textbook and as a reference. The authors present new results of their own in most
of the chapters. In doing so, they reflect the trend to view fuzzy sets, probability
theory and statistics as an association of complementary and synergetic modeling
methodologies.

Summing up, the authors have produced a book that presents a remarkably
complete, well-organized, authoritative and reader-friendly exposition of the use
of fuzzy sets in the area of epidemiology and diagnosis. The volume is a major
contribution to a better understanding of how fuzzy set theory helps to manage
complexity in biological phenomena and how to translate understanding into
benefits for the human being.

Campinas, São Paulo, Brazil Fernando Gomide
April 2008 University of Campinas
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1 Introduction

Medicine is the science of intervention. Among human activities, medicine is
rivaled only by agriculture (and more recently by modern engineering) in its
capacity of changing the natural course of human fate. To intervene, however,
one must predict. To predict the natural course of a system in the absence of
intervention and to predict what is going to happen to such a system after the
proposed intervention. Prediction, in turn, is strongly dependent on the scien-
tific foundations of the subject in question. Although medicine men have been
intervening in human diseases since the dawn of humanity (actually with rather
questionable results) only very recently the scientific cornerstones of medicine
have been laid down. After several centuries as a set of empirical practices,
medicine gained some taints of natural history in the 19th century and only in
the first half of the 20th century it overpassed the epistemological threshold.
In the last 50 years, medicine started its approach to the formalism threshold,
which is characterized by the application of formal logic and mathematics to
the theoretical bases of diseases. Therefore, the marriage between mathemat-
ics and medicine is very recent and it started rather timidly with the works
by the fathers of epidemiology. Scattered applications of mathematics in some
biomedical areas was found in the literature until the early 1970s. Since then
however, mathematical biology has changed a great deal. The magnificent 100
volumes of the series Lectures Notes in Biomathematics edited by Simon Levin
is a respectable witness of those changes. In medicine specifically, mathematical
models have been developed for some diagnostic problems and, to a great extent,
to epidemiological questions.

1.1 Uncertainty versus Precision in Biomedicine and
Epidemiology

Since the first attempts to develop mathematical and computer models in
medicine, it was recognized that one of the significant obstacles was the inherent
uncertainties, imprecisions, ambiguity and vagueness associated with medical
concepts and with this type of applications. The study of physiological and
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physiopathological problems is generally programmed by elaborating models
which respond to the principles of formal logic (Guarini, 1994). This allows
the transformation of the formal model into a mathematical model of reference
which responds to the principles of set theory and its eventual implementation
in computer systems. Medical problems, however, are not always amenable to
straightforward algorithmic solutions by the lack of complete understanding of
mechanisms of disease, inability to obtain complete information regarding the
health (or ill) state of the organism, lack of precise ranges of normal (and ab-
normal) values of clinical parameters, and the inherent vagueness and ambiguity
associated with medical concepts and terms. Disease diagnosis involves several
levels of imprecision and uncertainty, a fact also true for epidemiological stud-
ies. A single disease may manifest itself quite differently in different patients
and at different disease status. Furthermore, a single symptom may be indica-
tive of different diseases, and the presence of several diseases in a single patient
may disrupt the expected symptom pattern of any of them. This may cause
a tremendous amount of imprecision and uncertainty in the interpretation of
effect measures in the analysis. Also, the best and most useful descriptions of
disease entities often use linguistic terms that are irreducibly vague. Indeed, as
mentioned by Steimann (1996), the complexity of biological systems may force
us to alter in radical ways our traditional approaches to the analysis of such
systems. We therefore, may have to accept as unavoidable a substantial degree
of fuzziness in the description of the behavior of biological systems as well as in
their characterization.

Although traditional expert systems based on binary logic have been used
successfully as diagnostic decision aids, their sequential processing of informa-
tion and their almost universal use of probability theory (often Bayes’ theorem)
to represent those uncertainties in the medical context may be inappropriate
and partly responsible for their limitations in certain applications. Therefore,
nowhere in the field of science is the need for tools to deal with uncertainty
more critical than in medicine and biology. In spite of its potential in dealing
with uncertainties, very few works applying fuzzy logic concepts in epidemiolog-
ical problems have been presented so far.

Over the past 30 years, the development of numerous mathematical metho-
ds and concepts have helped make the quantum leap in practical applications
of fuzzy logic, in particular in devising controllers for complex industrial pro-
cesses. However, biomedical applications of fuzzy logic concepts and methods
have received less attention from experts, in spite of their tremendous potential
as problem solving tools for those fields.

Notwithstanding, medicine is one field in which the applicability of fuzzy logic
was quickly recognized in the mid-1970s. Within this field, it is the uncertainty
found in the process of diagnosis of disease that has most frequently been the fo-
cus of applications, in particular in the design of expert systems. More recently,
some workers have been trying to apply fuzzy logic concepts to populational
biology with emphasis in epidemiological problems like causal studies, epidemic
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models and designing of vaccination strategies. Some of those works are intro-
duced along this book.

1.2 Epidemiological Modeling

The term epidemiology was apparently not used until the 1860s (Lilienfeld, 1979)
and the profession only emerged in the early part of the 20th Century (Winslow,
1952). Certainly the work of Thomas Proudfoot (1833) and Henry Gaulter (1833)
during the 1832 British cholera epidemic and of John Sutherland (1850), John
Snow(1855) and William Budd (1849) during the mid-century epidemic was of
a type that we would now recognize as epidemiological.

The last third of the twentieth century has seen rapid growth in the un-
derstanding and synthesis of epidemiological concepts (Rothman & Greenland,
1998). However, the fundamental concepts of epidemiology do not depend on
empirical results but rather on the capacity of epidemiologists to formulate a
theory of epidemiological concepts.

Physicians, the great majority of epidemiologists until the 1970s, have collabo-
rate fruitfully with statisticians. Much of the theoretical development of modern
epidemiology was contributed by statisticians (Rothman & Greenland, 1998), in
particular in the epidemiological concepts related to chronic-degenerative dis-
eases.

Epidemiology has been defined as the study of disease distribution and its
determinants in human populations (Rothman & Greenland, 1998). The histor-
ical paradigm of epidemiological investigation still is the work by John Snow on
cholera in the eighteenth century.

From the quantitative point of view, it is possible to identify two group of
diseases amenable to be treated by different methods: the epidemiology of in-
fectious diseases, and the epidemiology of non-infectious, also known as chronic-
degenerative diseases (Massad, 1996). They differ in many aspects, the most
important of which is the fact that infectious disease epidemiology is charac-
terized by the presence of at least one other active player in addition to the
human population, namely, the infectious agent or parasite (Halloran, 1998). As
a consequence of transmission, a characteristic aspect of infectious disease epide-
miology, is that, unlike non-infectious disease, the occurrence of infectious events
depends on the number (or proportion) of susceptible AND infected individuals.
This implies in non-linearities in the dynamical models of transmission.

Non-infectious disease epidemiology has dominated the stage of epidemiology.
This is amply testified by the uneven number of authors working in either in-
fectious or non-infectious disease epidemiology, characteristically biased in favor
of the latter. If we take, for instance, one of the most recent textbook on epi-
demiology, the magnificent second edition of Rothman and Greenland’s Modern
Epidemiology, of its 32 chapters (and a total of 735 pages), only one chapter
(25 pages) is specifically dedicated to infectious disease epidemiology. Table 1.1
summarizes the main differences between non-infectious and infectious diseases
epidemiological approaches.
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Table 1.1. Differences between non-infectious and infectious diseases epidemiologies

EPIDEMIOLOGY

Disease’s character Non-infectious Infectious

Objective Causality Control
Cognitive approach Induction Deduction
Tools Statistics Mathematics
Models Functional Structural
Underlying aims Risk Factors Mechanisms of the disease

This bias towards non-infectious epidemiology has historical roots and is ex-
plained by the secondary role of infections as morbidity and mortality causes
in industrialized countries (as a consequence of the development of hygienic
habits, the discovery of vaccines and antibiotics), the main centers of theoreti-
cal developments of epidemiology. It explains the consequent theoretical bias of
statistics, which permeates the epidemiological literature. As the main objective
of non-infectious disease epidemiology is the establishment of risk factors (in a
causal setting), heavy theoretical investment has been done in the development
of statistical tools for dealing with risk analysis. In spite of the leading role of in-
fectious diseases in the developing world, both in morbidity and mortality terms,
for which control and risk analysis should be the target, only a small amount
of the epidemiological editorial space has been dedicated to this sort of disease.
However, history vindicated itself and the breathtaking number of emerging and
re-emerging infections recorded in the last two decades, for which all the statis-
tical armamentarium currently available is of limited use, is charging a heavy
toll for both develop and developing countries. The hope lies in the development
of quantitative tools able to deal with the strong non-linearities characteristic of
infectious disease systems, in particular, mathematical models.

1.3 Mathematical Modeling

It is a now well established fact that mathematical modeling has demonstrated
its value, playing a crucial role in the humanity’s progress, both in describing
and understanding the world and in the technological development. We can even
say that physics and engineering were the main responsible for the progress of
mathematical modeling, given the success of the models elaborated in those areas
along the last four centuries, culminating with the technological revolution of the
20th century. In addition, the power of mathematical models is spreading across
all the theoretical and practical fields, from areas like health to social sciences,
economy, management, business and finance. Due to its predictive capacity and
its ability to provide a quantitative analysis of the phenomena, biomathematics is
an area in expansion. Also, the provision of technological resources like computer
power is allowing the development of more complex and bold models.

This tempting scenario is leading many researchers to propose models closed
of the reality, making us to believe that the natural world could be described
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through mathematical structures. However, the real world is much less precise
and predictable than classical mathematical equations usually are, demanding
appropriate tools to deal with uncertainties, imprecisions and vagueness. The de-
sire to approximate the mathematical ideal to the real world has been impelling
the development of Artificial Intelligence and Soft Computing techniques, ar-
eas of which fuzzy logic and fuzzy sets theory are part. Artificial Intelligence
(AI) may be defined as “the branch of computer science that is concerned with
the automation of intelligent behavior” (Luger & Stubblefield, 1998), and Soft
Computing refers to AI areas that deal if soft/vague information.

Mathematical modeling requires creative and technical processes in the elab-
oration of the model as well as in the evaluation of the results. Building math-
ematical models involves several steps, such as: identification of the problem;
definition of the assumptions focused in the particular aspects of the specific
phenomenon; identification of the most important and relevant state variables
and parameters, and the relationship between all of them; the choice of the
mathematical structure to model, aiming to reach the best and more appropri-
ated results; implementation of the computing with this mathematical structure,
generating the results data; and evaluation of the model’s performance. In all of
these steps uncertainties and vagueness can be present, so soft computing tech-
niques can be useful in different moments of the mathematical models building.

1.4 Fuzzy Logic in Biomedicine and Epidemiology

The first article considering the application of fuzzy sets theory in life sciences
was proposed by L. A. Zadeh in 1968 titled Biological applications of the theory
of fuzzy sets and systems, which was published in a book edited by L. D. Proctor
in the following year (Zadeh, 1969). However, in spite of the proximity between
fuzzy logic ideas and vagueness pertinent to the medical reasoning, few works
applying this theory in medicine and correlated areas were published up to the
1980s. In fact, if we consider MEDLINE, the most important search database in
biomedicine, we find that only 15 articles were published until 1991. Figure 1.1
presents the time evolution of fuzzy logic publications in MEDLINE database.
We can note that the impact of fuzzy logic in biomedicine grew just after the
1990s, culminating with 265 articles published only in 2006.

Similar behavior is found if we consider the number of scientific journals that
have published applications of fuzzy logic in biomedicine areas. Perhaps the
most important of these journals is Artificial Intelligence in Medicine (AIMED),
founded in 1989 by K. Sadegh-Zadeh. AIMED is a journal devoted to interdisci-
plinary publications, concerning the theory and practice of artificial intelligence
in medicine, human biology and heath care. The first fuzzy logic publication in
AIMED was in the volume 1, issue 2, in 1989. In this article the authors proposed
a fuzzy decision-making for ECG diagnosis (Degani & Bortolan, 1989). Since
then, AIMED had published more than 100 papers on fuzzy sets application
in medicine and correlated areas, covering diagnosis systems, image processing,
bio-engineering, decision making process and so on. A deeper analysis of the
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Fig. 1.1. Number of papers on fuzzy logic available in the MEDLINE database

development of fuzzy and neuro-fuzzy systems in medicine, from a historical
point of view, can be found in Teodorescu et al. (1999b).

Despite the vagueness, imprecision and uncertainties also present in epidemi-
ological problems, application of fuzzy logic in this area are recent and timid.
One of the first articles that proposed the use of fuzzy sets theory in epidemiol-
ogy was Application of fuzzy numbers to assess opinion in epidemiologic studies
by Merilan and Roe, published in 1993 in the American Journal of Epidemiol-
ogy. Two years later Bassanezi and Barros published the article titled A simple
model of life expectancy with subjective parameters, in which the authors present
an alternative structure to consider the fuzziness of parameters from a dynam-
ical systems point of view (Bassanezi & Barros, 1995). In March 1997, Massad
and collaborators presented two works that addressed the role that fuzzy logic
can play in epidemiological studies and its interdisciplinary features: Fuzzy logic
in the analysis of vulnerability to HIV/AIDS infection in sexual partners of in-
jecting drug users, in the 8th International Conference on the Reduction of Drug
Related Harm, in Paris; and Fuzzy Dynamic Systems in Epidemic Modeling, in
the 11th International Conference on Mathematical and Computer Modeling and
Scientific Computing, in Washington, USA (Massad et al., 1997a and 1997b). In
the same year Massad et al. presented two other works in the 2th International
Computer Science Conventions Symposium on Soft Computing (SOCO’97), in
Nimes, France. In one of them they proposed the use of fuzzy linguistic models
in AIDS clinical progression identification, and in the other they treated the un-
certainties in risk estimations in epidemiology (Massad et al., 1997c; Struchiner
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et al., 1997). Also in 1997 Estrada-Peña proposed a fuzzy rule-based model
to predicts the habitat availability for populations of a certain kind of tick,
for the epidemiological surveillance of this tick populations in Spain (Estrada-
Peña, 1997), which is probably the first fuzzy logic application in veterinary
epidemiology.

The first practical application of fuzzy sets theory in public health, to the best
of our knowledge, happened in São Paulo City, Brazil, when a system of fuzzy
decision making was developed, in the consensus form with several types of health
professionals, seeking to choose the best vaccination strategy against measles.
The strategy proposed by the model was indeed implemented in the whole São
Paulo State, denoting the capacity of adhesion of models based on fuzzy logic
from the part of the health authorities (Massad et al., 1999). Since then, few
fuzzy epidemiological systems have been developed. In fact in the MEDLINE
database we can found around 15 articles truly associated to epidemiological
tasks (Ohayon, 1999; Pereira et al., 2001; Campisi et al., 2006; Drumond et al.,
2007). One of the main reasons for this absence is the fact that mathematical
models in epidemiology are, in general, non-linear dynamical systems, which still
consists in a challenge from the fuzzy systems point of view.

Thus, the future development of applications of fuzzy logic in epidemiology
lies in the fields of modeling and system dynamics. A huge amount of edito-
rial space has been dedicated to the development of mathematical models as
applied to biomedical problems. However, uncertainty in the system structure
and parameter values are still to be tackled with a formalism robust enough
to circumvent some of the practical hurdles involved in the process of model-
ing real medical/biological problems. Also, the hybrid models combining fuzzy
logic, neural networks and distributed processing (called soft computing) have a
tremendous potential of practical applications. Indeed, the close association be-
tween artificial neural networks and fuzzy logic has lead to exciting developments
in both fields, including the possibility of the extraction of “fuzzy” if-then rules
from neural networks. Another important recent development has been the use
of genetic algorithms for this purpose, and it seems likely that they will have a
wider role to play. The mathematical problems involved in the process of fuzzy
modeling, however, are still very important barriers to be overcome.

In addition, the modeling of uncertainty has recently attracted the attention
of the wider mathematics community, and recent work suggests that alternative
approaches may be valuable. Classical topology and ideas of partial metrics
and filters have been found useful in developing alternative approaches. There
has been a creative tension between the modeling of uncertainty using “fuzzy”
methods, and those based on a probabilistic formalism. The emergence of a
theory of possibility seems to be going some way toward clarifying the essential
differences.

In summary, the epidemiological applications of fuzzy logic have been still
isolated and/or insufficiently developed. As mentioned above, the prospective
future of applications of fuzzy sets theory in biomedicine and epidemiology is
very encouraging. We think that the foundations of fuzzy logic applications in
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medicine and biology are already mature. However, some of the potential appli-
cations generally recognized as very important still involve mathematical diffi-
culties which appear to be insurmountable. Only an interdisciplinary approach,
a characteristic proposed by the very philosophy which motivated this book, can
orient and motivate professionals from different areas to team up in order to
circumvent the mathematical difficulties that still limit the applications of fuzzy
logic to epidemiology and beyond.

1.5 Chapter Descriptions

This book is organized in three parts: basic concepts in fuzzy sets theory and
epidemiology (chapters 2 to 7); fuzzy dynamical systems in epidemiology (chap-
ters 8 to 11); and advanced techniques and overview in epidemiology and beyond
(chapters 12 to 14).

In chapter 2 we present an introduction to fuzzy set theory ideas, showing the
basic concepts of fuzzy sets and its relations, in a simple mathematical language.
Aspects of uncertainties treatments of epidemiological variables is also discussed.

Chapter 3 is devoted to the modern epidemiology view, where aspects of mod-
ern epidemiology are briefly presented. Quantitative, statistic and other classical
mathematical models in epidemiology are discussed, taking into account trans-
mitted and non-transmitted diseases.

In chapter 4 we present the basic concepts of fuzzy probability and the prob-
ability of fuzzy events, discussing the differences between fuzzy and probability
measures. The fuzzy expected value is also defined and the probabilities of fuzzy
events are applied to answer epidemic questions.

In chapter 5 we discuss the role that fuzzy logic can play in the estimation of
epidemiological risk, in a causal context. This is discussed taking into account
the uncertainties and heterogeneity of individuals classification. The Odds Ratio
concept is generalized in a fuzzy structure and a simulation is presented.

In chapter 6 we consider the fuzzy decision making in public health strategies
design. The Bellman and Zadeh fuzzy decision making model is presented and it
is discussed in an epidemiological context. A fuzzy model to design a vaccination
strategy against measles performed inf São Paulo State is showed. Different
control approaches in public health are discussed, considering their power in
health authorities adhesion.

Fuzzy based-rule models are detailed in chapter 7. The main concepts and
structures of fuzzy linguistic models is showed, and Mamdani and Sugeno ap-
proaches are presented and compared, from the epidemiological point of view.
Three examples of fuzzy based-rule applied in the epidemiological context are
presented: a fuzzy linguistic model for HIV Natural History; a fuzzy model to
estimate the risk of neonatal death; and a fuzzy model to the quality of life
evaluation.

Different approaches of fuzzy dynamical systems in epidemic modeling are
presented in chapters 8, 9 and 10. Chapter 8 presents a dynamic structure based
on linguistic fuzzy models, in which the dynamical process in found through the
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iterative procedure on the fuzzy rules. This approach is applied in a SIS and in a
SIR epidemic models to treat, respectively, canine rabies and measles spreading
studies.

In chapter 9 two fuzzy dynamical approaches based on the differential equation
structure and on the fuzzy differential inclusion are presented. Both the concepts
of demographic and environmental fuzziness are analyzed with these approaches,
and epidemiological studies are also done. Important epidemic concepts as the
Basic Reproduction Number, R0, are computed through SI ans SIS fuzzy models,
comparing the results with those found by classical equations dynamic.

An alternative approach to elaborate fuzzy dynamical systems is presented
in chapter 10. In this approach the fuzziness of the parameters of the classical
differential equations is treated through a rule-based fuzzy model, resulting in a
mixing of the dynamical structures exposed in the two previous chapters. This
methodology is illustrated by two epidemiological examples: a HIV model for
dynamical behavior between non-symptomatic and symptomatic seropositives
individuals and a study of the influence of HIV epidemic in the expectancy of
life in a group of seropositive individuals.

In chapter 11 we present a fuzzy Reed-Frost model, taking into account the
heterogeneous infectivity in the individuals. The classical Reed-Frost model and
a stochastical generalization of it are also presented and differences between
probabilistic and possibilistic approaches are discussed. The dynamics of the
models are simulated and the results are compared with real data on infectious
disease.

Since epidemiological processes are non-linear and complex systems, some-
times it is necessary to aggregate complementary tools to treat the problem in
a more realistic way. So, hybrid models in epidemiology are discussed in chap-
ter 12, where different techniques, classical and fuzzy ones, are combined in a
epidemiological context. To illustrate the power of this mixing we present two
examples: the Bayesian statistic test with fuzzy hypothesis and a fuzzy linguistic
model, in a decision making support context, for the optimal age for vaccination
against measles; and a model that combines linguistic fuzzy models and numeri-
cal calculus to elaborate a predator-prey model to study the interaction between
aphids and ladybugs in citriculture.

Finally, chapter 13 presents an overview of fuzzy logic in medical diagnosis,
covering the diagnostic process, mathematical modeling of medical diagnostics,
expert systems, Bayesian reasoning, belief networks, causal networks, and so on.
Chapter 14 closes the book with the last remarks about the authors expectations
of fuzzy logic applications in epidemiology and beyond, concerning about future
perspectives of that theory.
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2 Basic Concepts of Fuzzy Sets Theory

The concept of fuzzy sets was proposed by L. A. Zadeh in his paper published
in 1965 (Zadeh, 1965). Since this seminal work, several researchers have impor-
tantly contributed for the development of fuzzy sets theory and its applications,
resulting in the great success from the theoretical and technological points of
view. Fuzzy sets theory proposes to deal with unclear boundaries, representing
vague concepts and working with linguistic variables. In this sense, fuzzy sets
emerged as an alternative way to deal with uncertainties.

The basic idea of a fuzzy set concerns the flexibility over the concept of be-
longingness. In classical sets theory one is able to classify (organize) objects in
collections through a binary processes: accepting or rejecting the object as be-
longing to that collection. In fact, in a great number of situations it is possible
to say if the element x belongs or not to the set A, that is, x ∈ A or x /∈ A.
One can affirm without doubt, as an example, that the number 5 belongs to the
natural numbers set and that -5 does not belong to this set. However, what to
say about the fact that number 4 belongs to the group of numbers defined as
“around 5”? Clearly, the answer in this case will depend on the context. The
main difference between classical and fuzzy sets is that in the former there is a
dichotomy notion that should necessarily be preserved.

There are many books available about fuzzy sets, many of them present-
ing this theory with high quality and detail (Negoita & Ralescu, 1975; Yager
& Filev, 1994; Klir & Yuan,1995; Reznik, 1997; Pedrycz & Gomide, 1998 and
2007; Nguyen & Walker, 2000). So, the main objective here is rather to provide
sufficient concepts for the reader to following the discussions presented, than to
address in depth fuzzy sets theory.

2.1 Fuzzy Sets

Even though many sets present sharp boundaries (e.g., sex, matrimonial state,
the set of students), there are several situations that a belongingness relation is
not well-defined (e.g., the set of slim people, good students, high temperature).
In these cases it is not easy to say if the element belongs or not to the given set.
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To solve this problem Zadeh proposed a membership degree, according to which
an element could belong partially to the set. In order to find a mathematical
formalization to fuzzy sets Zadeh’s approach based on the fact that any classical
set could be represented by its characteristic function.

Definition 2.1. Let U be a non-empty set and A a subset of U . The character-
istic function of A is given by:

A(x) =

⎧
⎨

⎩

1 if x ∈ A

0 if x /∈ A
.

Note that we are using the same symbol to designate the set, A, and its charac-
teristic function, A(x). So, A(x) is a function whose domain is U and the image is
contained in the set {0, 1}, with A(x) = 1 designating that the element x belongs
to subset A, and A(x) = 0 designating that the element x does not belong to A.
In this sense, the characteristic function A : U → {0, 1} describes completely the
subset A in a well-defined boundary context. The fuzzy set concept consists in
relaxing the belongingness constraint required by the function above, assuming
intermediate membership values into the unit interval [0, 1]. The membership
values can be understood as the degrees to which each object is compatible with
the properties or features that characterizes the group (Pedrycz & Gomide, 1998
and 2007).

Definition 2.2. Let U be a classical non-empty set. A fuzzy subset F of U is
described by a function

F : U → [0, 1], (2.1)

called membership function of fuzzy set F .

The value F (x) ∈ [0, 1] indicates the membership degree of the element x of
U in fuzzy set F , with F (x) = 1 and F (x) = 0 designating, respectively, the
belongingness and not-belongingness of x in F , recovering the classical context1.
In this sense, it is possible to say that a classical set is a particular case of a
fuzzy set, whose membership function is its characteristic function. Note that
the membership function of empty, ∅, and universe, U , sets are, respectively,
∅(x) = 0 and U(x) = 1 for all x ∈ U .

In the mathematical modeling context, the main contribution of fuzzy sets is
its ability to deal with linguistic expressions, whose frontiers are not well-defined.
As an example, consider the statement “around 5” in the natural numbers uni-
verse discussed above. In some contexts one could propose the following mem-
bership degrees for this set: F (0) = 0, F (1) = 0.10, F (2) = 0.25, F (3) = 0.50,
F (4) = 0.75, F (5) = 1, F (6) = 0.75, F (7) = 0.50, F (8) = 0.25, F (9) = 0.10

1 The membership degree of the element x of a fuzzy set F is also represented by
μF (x), which is particularly useful in the membership functions context. In this
book both notations are used, F (x) and μF (x), depending on the purpose.
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Fig. 2.1. (a) Fuzzy set to statement “around 5” in the Natural numbers; and (b)
Classical set for the same statement

and F (n) = 0 if n ≥ 10, which could be represented by a function as shown in
figure 2.1(a). The value F (4) = 0.75, for instance, means that the compatibility
degree of the number 4 with the statement “around 5” is 0.75, which reflects
the uncertainty to classify this number as close to 5. Only for comparison, a
classical set for the same statement, “around 5”, could be the set A = {4, 5, 6},
whose membership function is presented in figure 2.1(b). In contrast, considering
the classical set A the true value for number 4 is 1, highlighting the dichotomy
situation.

When the universe set U is discrete or is a finite set with n elements, a fuzzy
subset F of U is commonly represented by:

F = F (x1)/x1 + F (x2)/x2 + ... + F (xn)/xn

where the symbol “+” is only a mathematical notation, and it does not denote
the standard algebraic summation. Usually, for simplicity, only elements of U
with nonzero membership degree are listed. So, the fuzzy subset of the natural
numbers universe “F = around 5” may be represented by:

F = 0.10/1+0.25/2+0.50/3+0.75/4+1/5+0.75/6+0.50/7+0.25/8+0.10/9.
(2.2)

In many applications the fuzzy set cannot be a discrete set. In those cases, the
set could be represented by a continuous function. Consider, for instance, the case
in which one wishes to classify the individuals of some population as exposed or
not exposed to cigarette smoke. Basically, the level of “cigarette smoke exposition”
depends on two factors: 1) the level of cigarette smoke inhaled by his/her own
consume, if the person is a smoker; and 2) the level of cigarette smoke inhaled
from his/her environment; both factors considering a period of time.

According to the first factor, a person that usually smokes 40 cigarettes per
day is more exposed than another that consumes, say, 3 cigarettes per day.
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Fig. 2.2. Fuzzy set to describe the exposition to cigarettes smoke

Naturally, there are many intermediate cigarettes consumers between 3 and 40
cigarettes and, consequently, the exposition intensity varies continually. Analo-
gous reasoning is valid if we consider the quantity of cigarette smoke present in
the environment, for the second factor. In this sense, even people that do not
smoke, but nevertheless are exposed to cigarette smoke, either in work places or
because their partners are smokers, has a certain level of exposition. For sim-
plicity we can consider that there are a basal level of cigarette smoke exposition
for everybody.

Thus, this uncertainty to classify the individuals as exposed to cigarette smoke
can be represented by a fuzzy set of “exposition level to cigarette smoke” shown in
figure 2.2. Note that in this figure the membership degree for the non exposed,
F (0), is not zero, representing the situation described above. So, if even the
person does not smoke he/she is considered exposed to cigarette smoke with a
basal membership degree equal to 0.1, in this example. Also, it is worth noting
that the shape of the membership function is an arbitrary choice, depending on
the context.

There are infinite functions capable of describing a membership function as-
sociated with a linguistic predicate. The choice depends on the concept to be
represented and on the context in which this is used. However, independently
of the fuzzy sets shape it is possible to operate with them by means of the ap-
plications of mathematical operators over their membership functions, as it is
commonly done in classical sets theory. In next section we present the opera-
tors to aggregate fuzzy sets most used in the majority of practical applications,
highlighting their most important properties.

2.2 Operations with Fuzzy Sets

Before discussing the operations over fuzzy sets it is interesting to review the
classical sets operators from a new point of view, that is, from their characteristic
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functions. The fundamental operations over classical sets are union, intersection
and complement. Consider the A and B subsets of the universe set, U . Then, the
union of the sets A and B (denoted by A ∪ B) is the collection of those objects
that belong either to A or B. The intersection of A and B (denoted by A ∩ B)
is the collection of those objects that belong both to A and B. The complement
of a set A (denoted by Acor A) is the collection of those objects that belong to
U but do not belong to A. Although it is not common, all of these operations
could be described through the characteristic function defined in 2.1. In terms
of their characteristic functions, the union, intersection and complement of sets
A and B could be defined, respectively, by:

(A ∪ B) (x) = max[A(x), B(x)], (2.3)

(A ∩ B) (x) = min[A(x), B(x)], (2.4)

and
Ac(x) = 1 − A(x), (2.5)

for all x ∈ U , where A(x), B(x), (A ∪ B) (x), (A ∩ B) (x) and Ac(x) are the
results of the characteristic function of the element x to the sets A, B, A ∪ B,
A ∪ B and Ac, respectively. Note that the most important requirement to the
intersection operator is that it must return 1 when both arguments are 1, and 0
otherwise. Likewise, the union operator must return 1 if at least one argument
is equal to 1, and to 0 if both arguments are 0.

Example 2.3. Suppose that the universe set U is a collection of patients labeled 1,
2, 3, 4 and 5. Let A and B be the classical sets composed by patients that present
fever and cough, respectively. So, table 2.1 illustrates the union, intersection and
complement of the sets A and B by application of the expressions (2.3-2.5).

Therefore, the set of intersection is composed only by patients 2 and 5, who
have simultaneously fever and cough.

Table 2.1. Illustration of the union, intersection and complement of the sets A and
B, from the classical point of view

Patient Fever Cough (A ∪ B)(x) (A ∩ B)(x) Ac(x) Bc(x)
(x) A(x) B(x)
1 1 0 1 0 0 1
2 1 1 1 1 0 0
3 0 1 1 0 1 0
4 0 0 0 0 1 1
5 1 1 1 1 0 0
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As in the classical sets operations, their main properties may also be described
through their characteristic functions. So, for all x ∈ U we have:

1. Commutativity:

(A ∪ B)(x) = A(x) ∪ B(x) = B(x) ∪ A(x) = (B ∪ A)(x)
(A ∩ B)(x) = A(x) ∩ B(x) = B(x) ∩ A(x) = (B ∩ A)(x)

2. Associativity:

(A ∪ (B ∪ C))(x) = (A(x) ∪ B(x)) ∪ C(x) = ((A ∪ B) ∪ C)(x)
(A ∩ (B ∩ C)) = (A(x) ∩ B(x)) ∩ C(x) = ((A ∩ B) ∩ C)(x)

3. Idempotency:

(A ∪ A)(x) = A(x) ∪ A(x) = A(x)
(A ∩ A)(x) = A(x) ∩ A(x) = A(x)

4. Distributivity:

A(x) ∩ (B(x) ∪ C(x)) = (A(x) ∩ B(x)) ∪ (A(x) ∩ C(x))
A(x) ∪ (B(x) ∩ C(x)) = (A(x) ∪ B(x)) ∩ (A(x) ∪ C(x))

5. Involution:

(Ac)c(x) = 1 − Ac(x) = 1 − (1 − A(x)) = A(x).

The operations over fuzzy sets are generalized from the classical ones, by
changing the characteristic function into the membership function. In this sense,
the standard fuzzy operators for union, intersection and complement are de-
fined as in (2.3-2.5), where A and B are fuzzy subsets of U , and A(x), B(x),
(A ∪ B) (x), (A ∩ B) (x) and Ac(x) are the membership degrees of the element
x to the sets A, B, A ∪ B, A ∩ B and Ac, respectively. Figures 2.3, 2.4 and 2.5
show these operations on fuzzy sets.

Example 2.4. Consider the situation described in example 2.3, where fever and
cough are now fuzzy sets, that is, the patients may belong partially to these
sets. Thereby, a patient with body temperature equal to 39 Celsius degrees is
considered certainly with fever (A(39) = 1), and another with body temperature
equal to 37 Celsius degrees is considered as belonging to the fever set with 0.3
membership degree. Table 2.2 presents a possible fuzzification of the situation
described in this example.

Observe that in the fuzzy context it is possible to perform a better discrimi-
nation of the patients condition, since patients 1 and 2, for instance, are equally
members of the fever set in a classical context but this could be different in a
fuzzy approach.
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Fig. 2.3. Standard union of fuzzy sets

Fig. 2.4. Standard intersection of fuzzy sets

Fig. 2.5. Standard complement (negation) of fuzzy sets
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Table 2.2. Illustration of the union, intersection and complement of the sets A and
B, from the fuzzy sets point of view

Patient Fever Cough (A ∪ B)(x) (A ∩ B)(x) Ac(x) Bc(x)
(x) A(x) B(x)
1 0.7 0.4 0.7 0.4 0.3 0.6
2 1.0 1.0 1.0 1.0 0.0 0.0
3 0.2 0.7 0.7 0.2 0.8 0.3
4 0.5 0.5 0.5 0.5 0.5 0.5
5 1.0 0.8 1.0 0.8 0.0 0.2

One of the most interesting consequences of the fuzzy set definition, in contrast
with its classical counterpart, is the failing of the Law of Excluded Middle and
the Law of Contradiction. In the classical approach we have that A ∪ Ac = U ,
the Law of Excluded Middle, and A ∩ Ac = ∅, the Law of Contradiction. How-
ever, due to the membership function flexibility this does not occur in fuzzy
sets theory. In other words, it is possible for an element to belong partially
both to fuzzy sets A and its complement Ac. We may observe in figures 2.6
and 2.7 that A ∪ Ac �= U and A ∩ Ac �= ∅, as a result of the fuzziness
involved.

Another interesting relation, and useful in the modeling context, of fuzzy sets
is the inclusion. Let A and B be fuzzy sets. So it is possible to say that A is a

Fig. 2.6. Law of Excluded Middle in the classical and fuzzy approaches
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Fig. 2.7. Law of Contradiction in the classical and fuzzy approaches

subset of B, A ⊆ B, iff A(x) ≤ B(x) for all x ∈ U . Note that, since the empty
set ∅ has membership function ∅(x) = 0 and the universe set has membership
function U(x) = 1, for all x ∈ U , then it is possible to affirm that ∅ ⊆ A and
A ⊆ U for all A.

Example 2.5. To illustrate the inclusion concept among fuzzy sets, consider a
study whose main objective is to evaluate the impact of poverty on life ex-
pectancy of a group of individuals, as proposed by Bassanezi and Barros (1995).
Assuming that poverty may be characterized by the individuals’ income, a pos-
sibility for the “poor” fuzzy set (Pk) is the membership function:

Pk(r) =

⎧
⎨

⎩

[
1 − ( r

r0
)2
]k

if 0 ≤ r ≤ r0

0 if r > r0

, (2.6)

where r is the income, r0 is the income threshold above which life expectancy of
the group is not affected, and k is an environmental parameter that characterize
the group (for instance, rural, urban, Indians, etc). Figure 2.8 illustrates the
poverty fuzzy sets for two values of k.

It is easy to see in the figure that if k1 ≥ k2 then Pk1 ⊂ Pk2 , since given an
income r, the degree of poverty obeys Pk1(r) ≤ Pk2(r), for all r. So, it is possible
to say that Pk1 is the fuzzy set of poor individuals, while Pk2 is the fuzzy set of
very poor individuals.
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Fig. 2.8. Fuzzy set for “poor”, Pk=2, and for “very poor”, Pk=4. The set “very poor”
may be seen as a fuzzy subset of “poor”, since a person that is “very poor” is also
“poor” (Bassanezi & Barros, 1995).

The most important classical sets operations properties could be generalized and
verified for the standard fuzzy operations, particularly the properties of commu-
tativity, idempotency, associativity, distributivity, and involution. As in classic
logic, the operations of union and intersection correspond, in the fuzzy sets con-
text, to the disjunction (or) and conjunction (and) operators respectively. In
fuzzy sets theory these disjunction and conjunction operators are generalized
into the so-called triangular conorms and triangular norms, respectively.

2.2.1 Triangular Norms and Conorms

In fuzzy set theory the choice of the operations to disjunction and conjunction
between fuzzy sets is arbitrary. The operators max and min chosen previously
to designate the union and the intersection between fuzzy sets, called standard
fuzzy operators chosen to generate expressions (2.3-2.5). However, in the fuzzy
context, there are many ways to define these operators.

The conjunction operator could be generalized for any triangular norm, also
called t − norm and denoted by t(x, y), which is a mapping [0, 1] × [0, 1] into
[0, 1], that satisfies the following set of axioms, for all x, y, z, w ∈ [0, 1]:

i. t(x, y) = t(y, x) (commutativity)
ii. t(x, t(y, z)) = t(t(x, y), z) (associativity)
iii. t(x, y) ≤ t(z, w) if x ≤ z and y ≤ w (monotonicity)
iv. t(x, 1) = t(1, x) = x (boundary conditions).

In the same way, it is possible to define fuzzy disjunction operators as a tri-
angular conorms , also called t − conorm and denoted by s(x, y), as a mapping
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[0, 1]×[0, 1] into [0, 1], that satisfies the following set of axioms, for all x, y, z, w ∈
[0, 1]:

i. s(x, y) = s(y, x) (commutativity)
ii. s(x, s(y, z)) = s(s(x, y), z) (associativity)
iii. s(x, y) ≤ s(z, w) if x ≤ z and y ≤ w (monotonicity)
iv. s(x, 0) = s(0, x) = x (boundary conditions).

There is a duality between t-norms (conjunction) and t-conorms (disjunction)
operators mediated by the negation operator, x′ = 1 − x. The fuzzy conjunction
t(x, y) and disjunction s(x, y) operators form a dual pair if they satisfy the
following condition:

1 − t(x, y) = s(1 − x, 1 − y)

and
1 − s(x, y) = t(1 − x, 1 − y),

which in the classical sets theory corresponds to the DeMorgan’s laws:

(A ∪ B)c = Ac ∩ Bc

and
(A ∩ B)c = Ac ∪ Bc.

So, the choice of a fuzzy disjunction operator determines the choice of the
fuzzy conjunction operator, and vice versa, if it is wished that the operators are
dual.

There are many dual t − norm and t − conorm operators over the negation
x′ = 1 − x, some of them are illustrated below. Due to their simplicity and
properties, the most commonly used are the max and min operators. However,
it is common the use of other disjunction/conjunction pairs, like Algebraic prod-
uct/algebraic sum, Drastic product/drastic sum and Bounded difference/bounded
sum, defined as:

Algebraic product/algebraic sum:

t(x, y) = xy (2.7)

and
s(x, y) = x + y − xy. (2.8)

Drastic product/drastic sum:

t(x, y) =

⎧
⎨

⎩

min[x, y] if max[x, y] = 1

0 if max[x, y] < 1
(2.9)



22 Basic Concepts of Fuzzy Sets Theory

and

s(x, y) =

⎧
⎨

⎩

max[x, y] if min[x, y] = 0

1 if min[x, y] > 0
. (2.10)

Bounded difference/bounded sum:

t(x, y) = max[0, x + y − 1] (2.11)

and
s(x, y) = min[1, x + y]. (2.12)

An important property about disjunction operators is that all t − norms are
bounded above by the min and bellow by the drastic product. In the same way,
all t − conorm are bounded above by the drastic sum and below by the max
operator. In addition, the min and max operators are the only t − norm and
t − conorm that satisfy the idempotency condition, that is, t(x, x) = x and
s(x, x) = x, for all x ∈ U . To know more about t − norms and t − conorms we
recommend the book by Nguyen and Walker (2000).

2.2.2 Cartesian Product

From the inference and decision making points of view, another important con-
cept in fuzzy set theory is the Cartesian Product. Technically, such operation
is similar to the intersection operator. The difference is that in the former the
universes sets involved could be distinct, while in the intersection the fuzzy
subsets involved are necessarily from the same universe set. In fact, this dif-
ference becomes a great advantage of Cartesian product in the applications of
fuzzy sets, as we will see in the case of linguistic models and in fuzzy control
theory.

Definition 2.6. Suppose that A and B are fuzzy subsets of the universe sets U
and V , respectively. The Cartesian product of A by B is a fuzzy subset of the
classic Cartesian Product set U × V whose membership function is given by:

(A × B) (x, y) = min[A(x), B(y)], (2.13)

with x ∈ U and y ∈ V .

That is, if x belongs to A with A(x) degree and y belongs to B with B(y)
degree, the pair (x, y) belongs to fuzzy Cartesian product, A × B, with the
minimum degree between A(x) and B(y). The Cartesian product concept plays
a fundamental role in the Fuzzy Relations and, consequently, in linguistic fuzzy
modeling, as it will be discussed in the chapter 7.
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2.3 Fuzzy Sets and Membership Functions

In principle, any function as F : U → [0, 1] is a candidate to membership func-
tion, independently of its shape. Clearly, each family of functions presents spe-
cific properties and the choice will depend on the application. However, the most
commonly used in practice are triangular, trapezoidal, Gaussian and sigmoidal
functions. All of them are defined in the universe of the real numbers, that is,
the universe set is U ≡ IR.

A very special class of fuzzy sets is the so-called “fuzzy numbers”, which are
defined in section 2.4.2. This importance is due to the fundamental role that their
play in fuzzy modeling, particularly in fuzzy linguistic models. In this sense, the
majority of the fuzzy sets belongs to the fuzzy numbers class.

A fuzzy subset F of IR is called Triangular if its membership function is a
triangular function. This function is specified by three parameters, F (x : a, b, c),
such as:

F (x : a, b, c) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

0 if x < a
x − a

b − a
if a ≤ x < b

c − x

c − b
if b ≤ x < c

0 if x > c

.

A fuzzy subset F is called Trapezoidal if its membership function is a trape-
zoidal function, which is specified by four parameters as F (x : a, b, c, d):

F (x : a, b, c, d) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if x < a
x − a

b − a
if a ≤ x < b

1 if b ≤ x < c
d − x

d − c
if c ≤ x < d

0 if x > d

.

Triangular and trapezoidal functions are widely applied, particularly in fuzzy
control systems, due to their simple expressions and computational efficiency.
Figure 2.9 presents examples of these membership functions. It can be noted
that triangular membership function is a particular case of the trapezoidal mem-
bership function, when b = c.

A Gaussian fuzzy set is a set whose membership function is Gaussian. This
function is specified by two parameters F (x : m, σ), as follows:

F (x : m, σ) = exp
(

− (x − m)2

σ2

)

, (2.14)

where m and σ denote the center and width of the function. The function
shape could be controlled by the parameter σ. If σ is small a “thin” function is
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Fig. 2.9. Fuzzy sets represented by triangular and trapezoidal membership functions

Fig. 2.10. Fuzzy set represented by a Gaussian membership function

generated, while a large σ will generate a “flat” membership function. Figure 2.10
shows an example of Gaussian membership.

A fuzzy subset F is called Sigmoidal if its membership function is a sigmoidal
function. This function is specified by two parameters F (x : a, b) as follows:

F (x : a, b) =
1

1 + exp[−a(x − b)]
. (2.15)

As can be noted from figure 2.11, if parameter a increases, the transition
from 0 to 1 becomes sharper, and F (x = b) = 0.5 for all a, indicating the
point where transition from membership to non membership occurs. The fuzzy
set “exposition level to cigarette smoke” above is an epidemiological concept
that may be described through the sigmoidal membership function with a > 0.



Fuzzy Sets and Membership Functions 25

Fig. 2.11. Fuzzy set represented by a sigmoidal membership function

Independently of the shape, the membership function classifies and organizes
the elements in a different way than that of classical logic.

As well discussed in Pedrycz and Gomide (1998 and 2007), there are two views
associated with fuzzy sets theory, concerning fuzziness and uncertainty concepts.
In the fuzziness of the information the membership degree F (x) quantifies how
x is compatible with the statement “x is F”, or with the characteristics that
describe the set F . This concept is more strongly linked to the ability to use
linguistic variables, which is the great contribution of fuzzy set theory in several
areas of applications, for example in the modeling of medical questions. From the
uncertainty point of view, F (x) is concerning on how likely x is to occur given
that a group of constraints is present, F , represents the available knowledge
about the variable in study. From both points of view, fuzzy sets theory could
contribute to model epidemiological and public heath problems.

Fuzzy sets theory incentives us to revisit several classical medical and epidemi-
ological concepts, expanding our insights of the problems. In a classical standard
approach, for instance, the diagnostic process should be ideally a classificatory
process able to determine the crisp divide between healthy and non-healthy in-
dividual. Let us imagine that a reliable measure of health is available and that
a “normal” threshold, below which an individual is classified as non-healthy
exists. A good clinician should then be able to classify individuals below (dis-
eased) or above (healthy) such a threshold. Figure 2.12 illustrates this classical
approach. So, an individual with a certain score 3.8 would then be considered as
not healthy, according to this approach. Individuals in the borderline, however,
would present additional classification problems.

Since the most fundamental aspects of fuzzy set theory is the idea of graded
membership, it is possible to classify the individuals as healthy and non-healthy
by the use of this sets. In the fuzzy approach the healthy and non-healthy sets
could be represented by overlapping triangles with the y-axis indicating the grade
of membership in the fuzzy set, like in figure 2.13 (Bellamy, 1997). In this case,



26 Basic Concepts of Fuzzy Sets Theory

Fig. 2.12. Sets to illustrate the health classificatory process in the classical approach
(modified from Bellamy, 1997)

Fig. 2.13. Sets to illustrate the health classificatory process in the fuzzy approach
(modified from Bellamy, 1997)

the same individual who scored 3.8 in the health scale now has 0.2 degree of
membership to the set of healthy individuals and 0.8 degree of membership to
the set of non-healthy individuals.

For a long time the concepts of disease and health are seen as opposed by
the medical community, that is, disease is the absence of health and vice-versa.
However, in the fuzzy approach, the concepts of disease and health are rather
complementary than contradictory. Thereby, a new concept of health and dis-
ease can be established, which can provoke transformations in other conceptual
constructions of medicine as, for instance, nosology (Sadegh-Zadeh, 1994, 1998
and 1999). Along this book several medical and epidemiological situations that
could be modeled through fuzzy set theory will be presented.
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2.3.1 Properties and Characteristics of Fuzzy Sets

Fuzzy sets have several characteristics and properties whose explanation facil-
itates the understanding and the development of fuzzy models. We list bellow
those most important and common, recommending to the interested reader the
books by Klir and Yuan (1995) and, Pedrycz and Gomide (1998 and 2007).

Fuzzy Singleton

A particular case of a finite fuzzy set is a fuzzy singleton. A fuzzy singleton is a
set whose membership function is defined by:

A(x) =

⎧
⎨

⎩

1 if x = x∗

0 if x �= x∗ for all x ∈ U
.

This fuzzy singleton play an important role in fuzzy control systems devel-
opment due to its simplicity and fast computation, commonly used in linguistic
models as consequent of fuzzy rules.

Normality

Consider a fuzzy set A in the universe of discourse U . The set A is called normal
if its membership function attains 1, that is, if there is x such that A(x) = 1.
Otherwise, A is called subnormal. The maximum value of A(x) is also referred
to as the height of A, hgt(A). Figure 2.14 shows an example of normal and
subnormal fuzzy sets.

A subnormal fuzzy set is a set with no full members, containing only par-
tial members. This notion contrasts with classical situation where a set is either
nonempty or empty (black or white situation). A subnormal fuzzy set introduces
a gray area between these extremes. In general, the human reasoning corresponds

Fig. 2.14. Normal fuzzy set and subnormal fuzzy set
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to normal fuzzy sets. However, there are situations, particularly in biomedicine
and epidemiology where vagueness permeates many issues, whose reasoning is
better described by subnormal fuzzy sets. Subnormal fuzzy sets play an impor-
tant role in the modeling context, where they are usually generated during the
inference process, as it will be seen in chapter 7.

Cardinality

The cardinality of a classical set is the number of all elements belonging to it.
This concept is generalized to fuzzy sets through the definition:

Card(A) =
∑

x∈U

A(x), (2.16)

where the universe U is a finite set and the summation symbol referred to the
standard algebraic sum. As an example, consider the fuzzy set “F = around 5”,
discussed above and defined in the universe U = {1, 2, 3, 4, 5, 6, 7, 8, 9},

F = 0.10/1+0.25/2+0.50/3+0.75/4+1/5+0.75/6+0.50/7+0.25/8+0.10/9.
(2.17)

So, the cardinality of F is given by:

Card(F ) = 0.10+0.25+0.50+0.75+1+0.75+0.50+0.25+0.10 = 4.2. (2.18)

Note that in fuzzy approach the cardinality may assume noninteger number.
So, it generalizes the concept of the classic counting. In chapter 9 and 11 this
account processes will be discussed in the epidemiological context.

Normalization

In addition to the definitions presented above there are several transforma-
tions that may be performed on fuzzy sets. An important transformation of
one-argument mapping, due to its applications in control systems, is the nor-
malization of a fuzzy set. This operation consists in converting a subnormal
fuzzy set (nonempty) into its normal version, dividing the original membership
function by the height of A, that is,

Norm A(x) =
A(x)

hgt(A)
. (2.19)

Support and Core

The support of a fuzzy set A, denoted by Supp(A), is the set of all elements of
U that belong to A with nonzero degree, that is,

Supp(A) = {x ∈ U |A(x) > 0}. (2.20)
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Fig. 2.15. Illustration of core and support sets. Note that both are crisp sets.

The core of a fuzzy set A is the set of all elements of U that belongs to A
with membership degree equal to 1, that is,

Core(A) = {x ∈ U |A(x) = 1}. (2.21)

So, if A is a subnormal fuzzy set, then its core is the empty set, Core(A) = ∅.
Core and support definitions are related concepts, since they identify elements

belonging to the fuzzy set and Core(A) ⊆ Supp(A). Note that both core and
support are crisp sets in U . Figure 2.15 illustrates the support and core concepts
of a fuzzy set.

2.3.2 α − cut or α − level

The set of all elements that belong to a fuzzy set A with at least α degree is
called α − cut, or α − level, and denoted by [A]α, that is,

[A]α = {x ∈ U |A(x) ≥ α}. (2.22)

So, the set [A]α consists of those elements of U whose membership degree is
larger than α. The largest level is α = 1, and it determines a set of U belonging
completely to A. It is easy to see that [A]β ⊂ [A]α if β > α. An example of
α − cut is shown in figure 2.16.

The α − cut set definition is important since it provides a different way to
consider a fuzzy set. According to the representation theorem, every fuzzy set
may be represented by the aggregation of their α−cuts sets (Negoita & Ralescu,
1975). In this sense, all fuzzy sets could be decomposed into a family of their
α − cuts.

The α−cut concept assumes great importance in the fuzzy set theory analysis
and, in a certain sense, turn the core and support sets into particular cases of the
α − level sets (Negoita & Ralescu, 1975). On the other hand, the importance of
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Fig. 2.16. Illustration of α − level sets. Note that these α − level sets are crisp sets.

the representation theorem relates to the fact that problems formulated in the
fuzzy sets structure may be solved using non-fuzzy techniques, taking advantage
of classical formalism and results available. Several important concepts in fuzzy
analysis, as differentiability and integrability, are built from the α−cut concepts
(see Dubois & Prade, 1982a, 1982b and 1982c; Puri & Ralescu, 1983; Kaleva,
1987; Seikkala, 1987).

2.4 Extension Principle and Fuzzy Numbers

One of the most useful transformation, with important consequences from the
theoretical and applied points of view, is the so-called extension principle (Dubois
et al., 1995; Ortega et al., 2003; Barros & Bassanezi, 2006). Essentially, the
extension principle is a tool used to extend some classical mathematical concepts,
as a mathematical functional, for instance. There are many ways to apply this
extension, but the most famous and used is the extension principle proposed by
Zadeh (1975a, 1975b and 1975c) and later further characterized by Yager (1986).

Another outstanding concept in fuzzy sets theory is that defined as fuzzy
number. As discussed previously, fuzzy numbers apply a really important role in
fuzzy modeling because it allows the quantification of qualitative predicates and
to compute with them.

Extension principle and fuzzy numbers are intimately linked because it is
through the extension operations that the computations with fuzzy numbers
becomes possible.

2.4.1 Zadeh Extension Principle

Extending concepts of classical sets theory to fuzzy sets theory is a necessity,
particularly in the theoretical developments. The extension method proposed
by Zadeh, usually called Extension Principle only, is one of the basic ideas to
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Fig. 2.17. Illustration of the Extension Principle application (modified from Klir and
Yuan, 1995)

process the extension of the classical mathematical concepts into fuzzy ones
(Zadeh, 1975a, 1975b and 1975c).

Let us consider two crisp sets X and Y and f a mapping from X to Y ,
f : X → Y . Let A be a fuzzy subset of X , A ∈ X . So, the Extension Principle
allows to build the image of A under the crisp mapping f as a fuzzy set B = f(A)
in Y, whose membership function is given by:

B(y) =

⎧
⎨

⎩

supx∈f−1(y) A(x) if f−1(y) �= ∅
0 if f−1(y) = ∅

for all y ∈ Y, (2.23)

where f−1(y) denotes the set of all points x ∈ X such that f(x) = y. Figure 2.17
illustrates the Extension Principle action considering the mapping f : X → Y
and A a triangular fuzzy set.

Example 2.7. Let a mapping f : IR → IR and f given by f(x, y) = x2 − 5x + 8
with x ∈ X . Consider the finite fuzzy subset F in IR chosen in the beginning of
this chapter to describe a statement “around 5” and illustrated in figure 2.1:

F = 0.10/1+0.25/2+0.50/3+0.75/4+1/5+0.75/6+0.50/7+0.25/8+0.10/9.

Remember that the symbol + is not the standard algebraic summation, but
only a mathematical notation denoting the aggregation of the elements. So, ap-
plying the extension principle (2.23) we find the fuzzy set of B(y) = f(around 5):

B(y) = f(around 5) = 0.10/f(1) + 0.25/f(2) + 0.50/f(3) + 0.75/f(4)

+1/f(5) + 0.75/f(6) + 0.50/f(7) + 0.25/f(8) + 0.10/f(9),
(2.24)
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resulting in:

B(y) = 0.10/4 + 0.25/2 + 0.50/2 + 0.75/4 + 1/8 + 0.75/14 + 0.50/22

+0.25/32 + 0.10/44.
(2.25)

Note that f(1) = f(4) and f(2) = f(3). Thus, the possibility of the images
y = 4 and y = 2, with y ∈ Y , are found by means of sup operator, such as:

B(y) = sup[0.10, 0.75]/4 + sup[0.25, 0.50]/2 + 1/8

+ 0.75/14 + 0.50/22 + 0.25/32 + 0.10/44.
(2.26)

Therefore,

B(y) = 0.50/2 + 0.75/4 + 1/8 + 0.75/14 + 0.50/22 + 0.25/32 + 0.10/44.

This procedure and the final result are shown in figure 2.18.

Fig. 2.18. Example of the extension principle application

Although we have defined the Extension Principle just for a mapping of a single
variable, it is easily generalized to functions of many variables. For more details
about transformations on fuzzy sets and the Extension Principle see Klir and
Yuan (1995) and, Pedrycz and Gomide (1998, 2007). In chapter 8 we will present
an application of this concept in an epidemic issue where a multivariated function
is considered (Ortega et al., 2003).

2.4.2 Fuzzy Numbers

Fuzzy numbers are entities useful to quantify fuzzy concepts. They are defined
on the set of real numbers, IR, and their membership functions are mapping such
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as μ : IR → [0, 1]. Usually fuzzy numbers represent statements like “around of”,
“small”, “very large” and so on.

Definition 2.8. A fuzzy subset A in IR is called fuzzy number when:

• All α−levels of A are non-empty, with 0 ≤ α ≤ 1, that is, A must be normal;
• All α − levels of A are closed intervals of IR;
• The support of A, that is, SuppA = {x ∈ IR : A(x) > 0}.
Note that all real number r is a particular fuzzy number with the given mem-
bership function (Barros & Bassanezi, 2006):

μr(x) =

⎧
⎨

⎩

1 if x = r

0 if x �= r
. (2.27)

The membership functions most used to represent fuzzy numbers are triangu-
lar and Gaussian shapes, illustrated in figures 2.9 and 2.10, when it is considered
only a non-null Gaussian membership function in a limited interval. Note that a
fuzzy number must not have a symmetrical shape. The fuzzy set F in example 2.7
is a symmetrical fuzzy number.

If the fuzzy set satisfy all conditions above and besides its Core set is an
interval, so it is called fuzzy interval. The most used membership function to
represent fuzzy intervals is trapezoidal (see figure 2.9). Figure 2.19 illustrates:

Fig. 2.19. Illustration of classical and fuzzy numbers and intervals, respectively
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a) the classical number 3; b) the classical interval [2.6, 3.4]; c) a fuzzy number
that represent a statement “close to 3”; and d) a fuzzy interval that represents a
statement “around [2.6, 3.6]”. It is not the objective here to detail fuzzy intervals
and their properties, and for the interested reader we recommend the book of
Pedrycz and Gomide (2007).

The great advantage of fuzzy numbers is that it is possible to compute with
them. Thus, we can define arithmetic operations on fuzzy numbers.

2.4.3 Arithmetic Operations on Fuzzy Numbers

Fuzzy arithmetics is developed by means of two methods basically: a method
based on interval arithmetics, using the α − levels concepts; and a method that
applies the extension principle, by which operations on real numbers are ex-
tended to fuzzy numbers (Klir & Yuan, 1995). In this section we define the
fuzzy operations basing on the extension principle. In this case, these definitions
can be seen as a particular case of the extension principle, both for functions of
one, f(x), and two variables, f(x, y).

Definition 2.9. Let A and B be fuzzy numbers and δ a real number.

a) The sum and the difference of two fuzzy numbers A and B are also fuzzy
numbers, (A + B) and (A − B) respectively, whose membership functions are
given by:

μ(A+B)(z) = sup
{(x,y):x+y=z}

min [μA(x), μB(y)], (2.28)

and

μ(A−B)(z) = sup
{(x,y):x−y=z}

min [μA(x), μB(y)], (2.29)

where x ∈ X, y ∈ Y and (x, y) is an ordinated pair in the Cartesian product
space X × Y .

b) The multiplication of the fuzzy number A by a real number δ is a fuzzy
number (δA), whose membership function is given by:

μ(δA)(z) = sup
{x:δx=z}

[μA(x)] =

⎧
⎨

⎩

μA(δ−1z) if δ �= 0

0 if δ = 0
. (2.30)

c) The multiplication of a fuzzy number A by a fuzzy number B is a fuzzy
number (A · B), whose membership function is given by:

μ(A·B)(z) = sup
{(x,y):x·y=z}

min [μA(x), μB(y)]. (2.31)
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d) The division of a fuzzy number A by a fuzzy number B, if 0 /∈ Supp(B), is
a fuzzy number (A/B), whose membership function is given by:

μ(A/B)(z) = sup
{(x,y):x/y=z}

min [μA(x), μB(y)]. (2.32)

Clearly, the condition imposed over the support of fuzzy number B in the defini-
tion of the fuzzy division is necessary to avoid division by zero. The application
of definition 2.9 is illustrated in an example below, considering the summation
operator.

Example 2.10. Let A and B be discrete fuzzy numbers, describing the statements
“around 4” and “around 5”, respectively, such that:

A(x) = 0.4/1 + 0.6/2 + 0.8/3 + 1/4 + 0.7/5 + 0.1/6

and

B(y) = 0.5/3 + 0.8/4 + 1/5 + 0.2/6.

Then, the sum of A and B is a fuzzy number (A + B) where:

μ(A+B)(z) = 0.4/4 + 0.4/5 + 0.4/6 + 0.2/7 + 0.5/5 + 0.6/6 + 0.6/7 + 0.2/8
+ 0.5/6 + 0.8/7 + 0.8/8 + 0.2/9 + 0.5/7 + 0.8/8 + 1/9 + 0.2/10 + 0.5/8
+ 0.7/9 + 0.7/10 + 0.2/11 + 0.1/9 + 0.1/10 + 0.1/11 + 0.1/12,

(2.33)
where z = x + y with x ∈ A and y ∈ B.

As in example 2.7, since there are ordinated pairs (x, y) that map the same
image, we must apply the operator sup to find the final membership degrees. So,
by means of the definition above we find:

μ(A+B)(z) = 0.4/4 + 0.5/5 + 0.6/6 + 0.8/7 + 0.8/8 + 1/9 + 0.7/10
+0.2/11 + 0.1/12 + 1/9 + 0.7/10 + 0.2/11 + 0.1/12.

(2.34)

Note that the support of the fuzzy number (A+B) is greater than the support
of A and than the support of B. Occurs that from the definition to summation
operator on fuzzy numbers results a larger fuzzy number. In some sense, it means
that the fuzziness increases when the fuzzy arithmetic sum operation is applied.
It is also observed with difference and multiplication operations.

An interesting property of the fuzzy arithmetic sum and difference operastion is
that, if A and B are triangular fuzzy numbers, so the fuzzy number found through
the application of these operators is also a triangular fuzzy number, that is, the
membership functions of (A + B) and (A − B) have triangular shapes.

All arithmetic operations on fuzzy numbers in definition 2.9 are described
based on binary operations of their membership degrees. Nevertheless, these
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arithmetic operations can also be described by means of the α − levels of the
fuzzy numbers, which in some situations allow easier calculations. This fact
is a consequence of a theoretical result that provides the α − levels for the
Zadeh extension (Pedrycz & Gomide, 2007). This result restricted to arithmetic
operations between fuzzy numbers provides the properties bellow expressed in
(2.35) - (2.39).

Properties of α − levels for fuzzy numbers

Let A and B be fuzzy numbers, with α − levels given respectively by [A]α =
[aα

1 , aα
2 ] and [B]α = [bα

1 , bα
2 ]; and δ a real number.

a) The sum and the difference between A and B are fuzzy numbers, (A + B)
and (A − B) respectively, whose α − levels are given by:

[A + B]α = [A]α + [B]α = [aα
1 + bα

1 , aα
2 + bα

2 ], (2.35)

and
[A − B]α = [A]α − [B]α = [aα

1 − bα
2 , aα

2 − bα
1 ]. (2.36)

b) The multiplication of the fuzzy number A by a real number δ is a fuzzy
number (δA), whose α − levels are given by:

[δA]α = δ[A]α =

⎧
⎨

⎩

[δaα
1 , δaα

2 ] if δ ≥ 0

[δaα
2 , δaα

1 ] if δ < 0
. (2.37)

c) The multiplication of a fuzzy number A by a fuzzy number B is a fuzzy
number (A · B), whose α − levels are given by:

[A · B]α = [A]α[B]α = [minP, max P ], (2.38)

where P = {aα
1 bα

1 , aα
1 bα

2 , aα
2 bα

1 , aα
2 bα

2 }.

d) The division of a fuzzy number A by a fuzzy number B, if 0 /∈ Supp(B),
is a fuzzy number (A/B), whose α − levels are given by:

[
A

B

]α

=
[A]α

[B]α
= [aα

1 , aα
2 ]
[

1
bα
2

,
1
bα
1

]

. (2.39)

Arithmetic operations on fuzzy numbers based on their α − levels are widely
applied in the analytical calculus carried out in chapters 9, 10 and some appli-
cations presented in chapter 12.

To finish this brief review about fuzzy sets and their properties we wish to
remark that the definition presented in 2.1 refer to so called ordinary fuzzy set or
Type-1 fuzzy set . However, there are several generalizations of Type-1 fuzzy sets
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based on the generic concept of partial membership, which the most common is
Type-2 fuzzy set. These generalizations are not the subject of this book, but for
the interested reader we recommend the book by Mendel (2001), where these
issues are well detailed and a rich discussion about their practical applications
is presented.

2.5 Fuzzy Relations

Like fuzzy sets, fuzzy relations are generalizations of the classical relation. A clas-
sical relation describes the relationship between two or more objects. A relation-
ship between two objects is called a binary relationship, between three objects is
called a ternary relationship, and so on. For instance, the relationship between
father and son could be characterized by the binary relation: (father, son).

A classical relationship obeys the classical characteristic function. So, the re-
lationship of friendship among two persons, designated as “friends”, considers
that in human relationships a person either is or is not your friend, which cer-
tainly is a simplification of the reality. On the other hand, a fuzzy relationship
of friendship between two persons considers the friendship degree between them.
So, two or more individuals may be linked with different degrees of friendship,
from 1 (they are certainly friends) down to 0 (they are not friends).

A binary classical relation on variables x and y, whose domains are X and Y
respectively, may be defined as a set of ordered pairs in the Cartesian Product
space X ×Y (see definition 2.6). For instance, the relation “more than”, between
two real numbers, could be formally defined as:

R = {(x, y)|x > y; x, y ∈ IR}. (2.40)

In general, a relation between n objects x1, x2, ..., xn, that is a n-ary relation,
whose domains are X1, X2, ..., Xn, is a subset of the Cartesian space X1 × X2 ×
... × Xn. For instance, someone can use a n-ary relation to describe a patient’s
state p, that presents signs s1, s2 and s3, with family antecedents f1 and f2,
taking medicines m1, m2 and m3, resulting in a relation having nine arguments
{p, s1, s2, s3, f1, f2, m1, m2, m3}.

A binary relation in X × Y , for instance, could be described by its character-
istic function that maps an ordered pair (x, y) in X ×Y to 0 (if the relation does
not hold) or 1 (if the relation holds), that is, R : X × Y → {0, 1}. So, a fuzzy
binary relation is defined by its membership function that maps the ordered
pairs of X ×Y to the relationship degree, which is itself a number in the interval
[0, 1], that is, R : X × Y → [0, 1]. More generally, a fuzzy relation of n objects
(x1, x2, ..., xn), whose domains are X1, X2, ..., Xn is defined by its membership
function that maps R : X1 × X2 × ... × Xn → [0, 1]. If the possible values of the
relation are discrete, the fuzzy relation could be expressed in a matrix form.

Let us see a practical example of fuzzy relation. We know, from hundreds of
years of medical practice, that three clinical findings, Headache and Cough,
(two symptoms) and Fever (a sign) are associated, at different levels, with
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several possible diagnostics. Let us take, for instance, Endocarditis (End.),
Pneumonia (Pn.), Pertussis (Pt.), Tuberculosis (Tb.) and Common Cold (C.C.).
Consider, also, that one wishes to express the fuzzy relation of the diagnos-
tic system in terms of signs/symptoms, Headache, Fever, Cough, and diseases,
{End., Pn., P t., T b., C.C.}. So, a fuzzy relation R of medical knowledge that re-
lates those symptoms and signs to the set of possible diseases may be like the
matrix below:

End. Pn. P t. T b C.C.

R =
Headache
Fever
Cough

⎡

⎣
0.0 0.0 0.3 0.0 0.8
0.9 1.0 0.3 1.0 0.2
0.2 0.4 0.7 1.0 0.1

⎤

⎦ .

Then, the relationship degree between Headache and Pneumonia is zero, that
is, from the relationship matrix proposed there is no direct relation between
Headache and Pneumonia. On the other hand, the relationship between Fever
and Pneumonia is one characterizing the complete relationship. One could sug-
gest that the relationship between symptoms/signs and diseases depends on the
age, which is reasonable for several pathologies. To aggregate the age informa-
tion it will be necessary one dimension more in the relationship matrix, resulting
in a ternary fuzzy relation age,symptons/signs,diseases.

Summarizing the last example, consider a specific patient that presents a
persistent fever, intense and constant cough and no complain of headache (the
italicized words are meant to emphasize the vagueness of clinical findings and
complains). We may assign to this specific patient the following fuzzy set A:

Head. Fev. Cou.

A =
[
0.0 0.7 1.0

]
.

Suppose now that a doctor wants to know what is the possibility that this
patient is affected by any of the diseases considered above. The question consists
in how to join the characteristics of that patient with the information contained
at the symptom-sign/disease relationship matrix. To answer to the doctor we
can use one of the most precious resources of fuzzy relationships, that is, the
Composition of the Fuzzy Relations.

2.5.1 Composition of Fuzzy Relations

Let X and Y be the universe of discourse of the variables x and y, respectively,
and xi and yj the elements of X and Y . Consider R the fuzzy relation that maps
X × Y in [0, 1] and a possibility distribution in X , πx(xi). Then, the possibility
distribution in Y (see chapter 4) can be given by:

πY (yj) = ⊕xi [πX(xi) ⊗ πR(xi, yj)], (2.41)



Fuzzy Relations 39

where the symbol ⊕ denotes some fuzzy disjunction operator, the symbol ⊗ de-
notes some fuzzy conjunction operator, and πR(xi, yj) is a possibility distribution
of the relationship between x and y.

If X and Y are finite sets, the procedure to calculate the composition rule is
similar to that used in multiplication of matrix, where the fuzzy conjunction and
disjunction operators correspond, respectively, to the multiplication and addition
steps. The rule of composition is not unique, since different choices can be made
with regard to the conjunction and disjunction operators. In practice the two
most used are the composition max− min and the composition max − product.
Considering the two possibilities equation (2.41) gives:

πY (yj) = max
xi

[min(πX(xi), πR(xi, yj))], (2.42)

to the max − min composition, and

πY (yj) = max
xi

[πX(xi) · πR(xi, yj)], (2.43)

to max − product composition.
A fuzzy set A (e.g. the set of the symptoms related to a patient) could be

composed with the fuzzy relation R (e.g. representing the medical knowledge
that relates the symptoms in the set S to the diseases in the set D) by the
compositional rule of inference, inferring the set B (e.g. the set of the possible
diseases on the patient) as:

B = A ◦ R. (2.44)

So, we can evaluate the possibility distribution of the diseases for the patient
A through the max − min fuzzy composition between the status of the patient
and the relationship matrix of symptoms/diseases. Using equation (2.42) we find:

πB(d) = max[min(πA(s), πR(s, d)], (2.45)

where d is the disease set, End., Pn., Pt., Tb., C.C., πB(d) is the possibility
distribution of d, s is the symptoms/signs set, {Headache, Fever, Cough}, and
πR(s, d) is the possibility distribution of the relation R(s, d). The possible disease
of this patient can be calculated by operating the matrices

[
0.0 0.7 1.0

] ◦
⎡

⎣
0.0 0.0 0.3 0.0 0.8
0.9 1.0 0.3 1.0 0.2
0.2 0.4 0.7 1.0 0.1

⎤

⎦ , (2.46)

which results in the following possibilities of diagnosis for this patient:

End. Pn. P t. T b C.C.

[
0.7 0.7 0.7 1.0 0.2

]
.

that is, the highest diagnostic possibility for this hypothetical patient is tubercu-
losis, although a final decision for discriminating this diagnosis from endocarditis,
pneumonia and pertussis should require further investigations.
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Notice that the answer of the composition is also a fuzzy set. In other words,
it does not answer which disease the patient has, but supplies the distribution
of the patient’s possibilities in the diseases set. However, based on the answer
obtained the doctor can take decisions, choosing, for instance, more detailed
laboratory exams, investigating with more insistence the possibility of a Tuber-
culosis diagnostic and discarding the possibility of a Common Cold.

The fuzzy logic framework has been utilized in several different approaches
to modeling the diagnostic process. In one of the first attempt to apply fuzzy
sets theory to medical diagnosis, Sanchez (1979) proposes a model in which the
medical knowledge is represented as a fuzzy relation between symptoms and
diseases, as illustrated by example above.

More recently, Reis et al. applied the max−min composition of fuzzy relations
to predict the need of neonatal resuscitation. Although the simplicity of this
approach, one of the most advantage of its application is its capacity to deal
with several variables. In Reis’ work 61 clinical factors were considered and the
fuzzy expert system presented a sensitivity of 82.4% and a specificity of 93.0%
in the identification of newborn’s life-threatening situation in the delivery room.
In this work 303 deliveries were followed up and the area under ROC curve was
0.93 (Reis et al., 2004 and 2005).

This fuzzy relation approach was also applied by Lopes and collaborators to
develop a fuzzy expert system to diagnosis differentiation of urinary incontinence.
In this work 6 possible diagnostics and 35 clinical factors were considered, and
when compared with a panel of experts in the analysis of 195 clinical cases
the system presents excellent agreement (kappa’s value equal to 0.98 and p <
0, 001) for the most optimist conditions, and it presents substantial agreement
(kappa’s value equal to 0.69 and p < 0, 001) for the most pessimist conditions
(Lopes et al., 2006).

The importance that fuzzy relation plays in the systems modeling field will be
more evident along this book. In chapter 11 the max − min fuzzy composition
is also applied in a dynamical epidemiological system.
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In his masterpiece The Growth of Biological Thought Ernest Mayr (1982) pos-
tulated that the change of the typological to populational thinking is the most
important conceptual revolution in biology. This conjecture of Mayr was based
on his interest in the evolution and variation of birds, and his observations of
the variety within populations led him to conclude that it is individuality that is
the chief characteristic within populations rather than any criterion of sameness
(Childs, 1999). Variation, therefore, is the biological substrate upon which evo-
lution by natural selection and other stochastic mechanism constructs life and
humans beings are not exception. In typological thinking the type (the equiva-
lent to the statistical mean in populational thinking) is real and the deviation
from the type (the equivalent to the statistical variance in populational think-
ing) is an abstraction. In contrast, in population thinking the variance is real
and the meanis an abstraction.

The human variability is reasonably well known nowadays and this variation
poses some important challenges as far as medicine is concerned. On the one
hand, it is the human variation that makes medicine such an interesting and
exciting subject. On the other hand, quoting Sir Willian Osler, ”if it were not
for the great variability among individuals medicine might as well be a science
and not an art”, that is, there is an urgent need of scientific tools to deal with the
observed variability. It is an irony that the above quotation of Osler emphasizes
variability but that the so-called Oslerian medical thinking, that is, the concept
of the body as a machine that when broken must be repaired, implies in a
typological thinking.

Epidemiology, in contrast, by dealing with populations of sick and healthy
individuals is strongly based on the emphasis on heterogeneity and the epidemi-
ological studies are designed to characterize those populations, to extract their
essence, and to use the information to propose risk factors and control measures.
So the development of tools to deal with variability within and between popula-
tions is central to modern epidemiology, from statistical tools, to mathematical
tools to non-binary logic tools, such as the theory of fuzzy sets.

This chapter is intended to be an introduction to the main theme of this book,
that is, modern epidemiology and mathematical tools usually applied in it. Many
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of these tools are revisited along the book, considering the fuzzy logic approach.
However, before we start to describe fuzzy logic applications in epidemiology, let
us first briefly describe the classical quantitative models as applied to epidemic
problems.

3.1 Statistical Models in Epidemiology

Statistical models in epidemiology assume that epidemiological studies generate
data in which the response measurement for each subject may take one of only
two possible values, the so-called binary response (Clayton & Hills, 1993). This
kind of data are usually generated by two different types of study, namely, cohort
studies, in which a group of people are followed through some period of time in
order to study the occurrence (or not) of a certain event of interest; and cross-
sectional study, in which the prevalence of an event is determined in a certain
instant (or limited period) of time.

The risk parameter of the binary model is the probability of failure, π, which
corresponds to the probability that the event under observation does occur. The
complement of risk, 1− π, is the Probability of survival , that is, the probability
that the event does not occur. An important alternative way of parametrizing
the probability model is in terms of the odds of failure versus survival, that is,

π

1 − π
. (3.1)

Another central concept of statistical epidemiology is the conditional proba-
bility, expressed as the Bayes theorem. This approach incorporates the potential
causes of the event under observation, which is called exposures . So, the aim
of such an approach is to determine the conditional probability of developing
the event (disease) given that one is exposed to the potential cause. More ap-
propriated still is to determined the risk ratio, defined as the ratio of the condi-
tional probability of developing a disease given one is exposed to a certain cause,
p(D|E), to the conditional probability of developing the disease given one is not
exposed to the cause, p(D| E), such as:

RR =
p(D|E)
p(D| E)

. (3.2)

Assuming that the purpose of models is to allow predictions, we need a way
of choosing the values of the parameters of the model. In modern statistics the
central concept to the process of parameter estimation is likelihood (Clayton &
Hills, 1993). In general if we observe f failures in n subjects, the likelihood for
π is

(π)f (1 − π)n−f
. (3.3)

As the likelihood, being the serial product of probabilities (numbers less than
one) is usually a very small number, it is, therefore, convenient to use logarithms
of likelihood, the log likelihood.
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Also important in epidemiological studies is the concept of rate, always defined
as the variation of some measure as related to other measure (usually time). So,
if we have as a general example in which the measure, M , varies of ΔM in an
interval of Δt, the rate, λ is equal to

λ = lim
Δt→0

ΔM

Δt
=

dM

dt
. (3.4)

When the measure is the occurrence of a given disease, the rate of interest is
called incidence, or the number of new cases per unit of time.

In risk analysis the rate at which an event may occur is called hazard and is
the variation in the number of events over the total number of individuals at
risk. The hazard is also called force of morbidity, or force of mortality.

In cohort studies it is common to estimate the cumulative probability of sur-
vival up to the end of the nth time interval. This procedure, called Kaplan-Meier
method, yields the most likely value of the survival curve.

If, on the one hand in cohort studies the relationship between exposure and
disease incidence is investigated by following the entire cohort and measuring
the rate of occurrence of new cases in the different exposure groups, on the
other hand, in case-control studies the subjects who develop the disease (cases)
are registered by some other mechanism than follow-up, and a group of healthy
subjects (controls) is used to represent the subjects who do not develop the
disease (Clayton & Hills, 1993). In this sort of study we calculate the ratio of
the case/control ratio among exposed (π1/(1 − π1)) to the case/control ratio of
unexposed group (π0/(1 − π0)), also called odds ratio:

OR =
π1/(1 − π1)
π0/(1 − π0)

. (3.5)

Other kind of causal studies in epidemiology include multivariate models in
which a set of potential causes is taken into account simultaneously, in order to
estimate their composed risk to exposed, as related to unexposed individuals.
The most popular multivariate model currently is the logistic model . In this
model the Odds of being a case is given by (Clayton & Hills, 1993):

OR = K
π

1 − π
, (3.6)

where K is the ratio between the probability that a failure is sampled as a case
and the probability that a survivor is sampled as a control. On a log scale we
have

log(Odds) = log(K) + log
(

π

1 − π

)

. (3.7)

When the disease is rare (which is often the case in real epidemiological stud-
ies) the probability of failure in the study base is small and the odds of failure
are related to the rate λ by ;

π

1 − π
≈ λT , (3.8)
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where T is the duration of the study. Therefore,

log(Odds) = log(T ) + log (λ) (3.9)

and it can be demonstrated that effects estimated from a logistic regression
model are also estimates of effects on the log rate in the study base.

Obviously it is far beyond the scope of this book an exhaustive review of
statistical models in epidemiology. We just sampled some central concepts from
the book by Clayton and Hills (1993), an authoritative work to which the reader
may refer to, in order to illustrate the basic differences between this sort of
approach to epidemic problems and the ones described in the next section.

3.2 Mathematical Models in Epidemiology

Several have been the classifications of models in infectious disease. So, for
instance, Anderson and May (1991) use to classify models in microparasites
(viruses, bacteria and protozoa) as prevalence-based models, and models in
macroparasites (helminths, flat-worms, etc.) as density-based models. Other
authors use a mathematical approach to classify models in deterministic and
stochastic models (Bailey, 1975).

Current models take several forms, although most fall into two broad cate-
gories, which will be detailed further on: analytical and computer simulations.
Compared to computer simulation models, analytical models tend to be rel-
atively simple, usually sets of differential equations that keep track of a few
important variables. In contrast, computer simulation models try to incorporate
many more of the variables influencing transmission.

3.2.1 The Reproduction of an Infection

The central parameter related to the intensity of transmission of infections is
the so called basic reproduction number (R0), defined by Macdonald (1952) as
the number of secondary infections produced by a single infective in an entirely
susceptible population (see next section). Originally applied in the context of
malaria, R0 is a function of the vector population density as related to the host
population, m, the average daily biting rate of the vector, a, the host suscepti-
bility, b, the vector mortality rate, μ, the parasite extrinsic incubation period in
days, n, and the parasitemia recovery rate, r, according with the (now) historical
equation:

R0 =
ma2b exp [−μn]

rμ
. (3.10)

From the definition of the basic reproduction number it can be demonstrated
that if R0 is not greater than one, that is, when an index case (the first infective
individual) is not able to generate at least one new infection, the disease dies out.
Hence, in the original Macdonald analysis, R0 coincides with the threshold for the
infection persistence. For an interesting historical account of R0 see Dietz (1993).
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In the context of directly transmitted infections, R0 is defined in terms of the
contact parameter, β, which comprises the probability of a potentially infectious
contact and the probability that this contact generates a new infection, the total
size of the involved population, N , and the time an infectious individuals remain
infective, T , such that

R0 = βNT. (3.11)

Table 3.1 illustrates some of the estimated values of R0 for some infections
and some distinct populations in different moments in time:

Table 3.1. Estimated values of R0 for some infections, distinct populations and in
different moments in time (modified from Anderson and May, 1991)

Infection Geographical Time R0

Location Period
Measles England 1947 - 1950 13 - 14

USA 1918 - 1921 5 - 6
Pertussis England 1944 - 1978 16 - 18
Chicken Pox USA 1912 - 1921 7 - 8
Diphtheria USA 1918 - 1919 4 - 5
Mumps England 1960 - 1980 7 - 8
Rubella England 1960 - 1970 6 - 7
Poliomyelitis USA 1955 5 - 6
Malaria Nigeria 1972 80 - 200
HIV England 1981 - 1985 2 - 5

Kenya 1981 - 1985 11 - 12
USA 1981 - 1984 5 - 6
Brazil 1991 90

Dengue Brazil 1996 1 - 2
Brazil 2001 5 - 12

In his 1952 seminal paper, Macdonald (1952) addressed the problem of a
system involving one vector (Anopheles mosquitoes) and one host (men). As
mentioned above, his definition of R0 is the number of secondary infections in
the first generation, that is, produced by a single infectee along its entire infec-
tiousness period. We shall deduce an explicit expression for R0 from an intuitive
perspective to show that it coincides with the threshold for the establishment of
the disease. We do this because, as shown in the next section, for more complex
systems this approach does not work in such a simple way.

Let us begin by assuming that the index case is a human host. The question to
be answered is how many human secondary infections this index case produces
in his/her entire infectiousness period.

Let Nm be the number of female mosquitoes. Let a be the average daily biting
rate female anophelines inflict in the human population. The number of bites in
the human population per units of time is, therefore, Nma. Let Nh be the number
of humans and r be the rate of recovery from parasitemia in the human cases.
Therefore, the index case produces Nma

Nhr ch→m infected mosquitoes, where ch→m is
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the probability that a mosquito gets the infection after biting an infective human.
Those Nma

Nhr ch→m infected mosquitoes, in turn, produce aNma
Nhr ch→m

1
μbm→he−μτ

new human cases in the first generation, where 1
μ is the average life expectancy of

mosquitoes, bm→h is the probability that a human gets the infection after being
bitten by an infective mosquito and e−μτ is the fraction of the infected mosquito
population that survives through the extrinsic incubation period τ of the parasite.
Note that, once infective a mosquito is assumed to remain so for life. Therefore,
the expression for R0 is (Macdonald, 1952):

R0 = a
Nma

Nhr
ch→m

1
μ

bm→he−μτ . (3.12)

Similarly, if we begin with an infective mosquito as an index case, and compute
the number of infected mosquitoes this index case produces in the first generation
we get the same expression. Let us now see how this deduction can be performed
by a dynamical system approach (Lopez et al., 2002).

Let Yh be the number of infected humans, and Yv the number of infected
vectors. We can write

dYh

dt
=

Yva

Nh
bv→hSh − rYh

dYv

dt
=

Sv(t − τ)a
Nh

ch→me−μτYh(t − τ) − μYv

, (3.13)

where Sh and Sv are the number of susceptible humans and vectors, respectively.
To deduce the threshold for the disease to establish in the human population

we analyze the stability of the trivial solution Sh = Nh, Sv = Nv, Yv = Yh = 0,
that is, the solution representing the absence of the infection. Linearizing the
system (3.13) around the trivial solution we get

dyh

dt
= yvabv→h − ryh

dyv

dt
=

Nva

Nh
ch→me−μτyh(t − τ) − μyv

, (3.14)

where yv and yh are small deviations from zero. From the system (3.14) we get
the following characteristic equation

∣
∣
∣
∣
∣
∣

−(λ + r) abv→h

Nva
Nh

ch→me−μτe−λτ −(λ + μ)

∣
∣
∣
∣
∣
∣
= 0 (3.15)

or
λ2 + (μ + r) λ + μr − Nva

Nh
ch→me−μτe−λτabv→h = 0. (3.16)

It follows that the roots of equation (3.15) or (3.16) have negative real parts if

μr − Nva

Nh
abv→hch→me−μτ > 0. (3.17)
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The above result is the same as that obtained by the intuitive McDonald’s
approach.

This still holds true for slightly more complex systems, like those with one
vector and two hosts populations or two vectors with one host populations. In
these cases, the expression for R0 is partitioned in a sum with the individual
terms of each component of the transmission chain (Burattini et al., 1998).

In a classical paper Diekmann et al.(1990) propose a new definition of the
basic reproduction number for infections which we now study how it compares
with the classical Macdonald definition described above.

Those authors define R0 as being the greatest eigenvalue of an operator which
they call “the next generation operator (NGO)”. The case of vector-transmitted
infections was analyzed in a recent book by Diekmann and Heesterbeek (2000).

In this section we give the next generation operator for the case of one-
vector/one-host, exemplified by malaria. In this case, the next generation op-
erator reduces to a two-by-two matrix

NGO =

⎛

⎝
Av→v Av→h

Ah→v Ah→h

⎞

⎠ . (3.18)

The elements have the following interpretation. The element Av→h, for in-
stance, means the number of infected humans generated by a single infected
vector during its infectious period. Therefore, we have

Av→v = 0

Av→h = a
1
μ

bm→he−μτ

Ah→h = 0

Ah→v =
Nma

Nhr
ch→m

.

In this case the greatest eigenvalue of the NGO matrix, that is, RNGO
0 , is

RNGO
0 =

√

a
Nma

Nhr
ch→m

1
μ

bm→he−μτ , (3.19)

which is the square root of the Macdonald R0. It follows from the general the-
ory of the Next Generation Operator (Diekmann et al., 1990) that if RNGO

0
< 1 (RNGO

0 > 1) the disease cannot (can) invade the host population.

3.2.2 Analytical Models

Analytical models are those which involve the association of a set of equations
to each step individuals from the community take with the development of the
natural history of the infection. Also called dynamical models, they capture the
structure of the disease as this take their natural course. They can be of either
deterministic or stochastic nature. Deterministic models are those which use
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difference, differential, integral or functional differential equations to describe
the changes in time of the sizes of the epidemiological classes. So, consider, for
instance, the picture described in figure 3.1, which describes the progress of a
viral infection, such as measles, through a host.

The curves in figure 3.1 illustrate the growth of the virus population, the
immune response to the virus, and the timing of acute disease, a∗. The block
diagram in figure 3.2 below represents the flow of the transmission between
infection categories. In this simple situation, the total population is considered
to be constant, and therefore the birth and death rates are equal (μ). People
are born susceptible X , are infected at a rate λ, passing by a latent state, H ,
before developing the acute disease with a rate σ. Those infected and infectious,
Y , recover from the infection at a rate γ, remaining immune, Z, for life.

The system illustrated by figure 3.1 is extremely simple but it captures the
essence of the transmission chain between the involved categories. In general,
systems like this, although still very simple in its biological assumptions are
too complex to have analytical solution, i.e., the solution of the associated sys-
tem of differential equations without the help of numerical simulations. This is
the first problem posed by modeling biological phenomena: the highest the bio-
logical realism the lower the probability of analytical solution. Figure 3.3 illus-
trates, through a flow chart, the algorithm to solve infectious diseases problem by
mathematical and computer modeling.

As can be noted from figure, everything starts, as in any scientific approach,
by defining the problem to be modeled. The next step is to design the model, in
this case, the set of differential equations associated to the disease categories. If
the system is simple enough then the analytical solution (by pencil and paper)
is feasible. If so, then is just to interpret the results and the problem is finished.
If, on the other hand, the problem is too complex, then it is necessary the

Fig. 3.1. Typical progress of a viral infection, such as measles, in a SIR (susceptible-
Infected-Recovered) dynamical model
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Fig. 3.2. Flow diagram for a epidemic system type Susceptible-Latent-Infected-
Recovered

Fig. 3.3. Algorithm to solve infectious diseases problems by mathematical and com-
puter modeling

Fig. 3.4. The simplest epidemic model, Susceptible-Infected type

application of numerical methods for the computational solution. If the system
to solve the model numerically is available, then is just to interpret the results
and the problem is finished. If the computational system is not available, then
the model needs to be reformulated, whenever possible, and the problem starts
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Fig. 3.5. Compartmental model for the interaction between AIDS and crack abusers
(Burattini et al., 1998)

again. In case the model cannot be reformulated, then it is not possible to solve it
and the system stop. Let us see some examples of the situation described above.

In figure 3.4, it is illustrated the simplest epidemic model as possible, involving
only two categories, namely, susceptibles, X , and infected, Y . Individuals acquire
the infection with a rate λ, normally denoted the force of infection. This latter
parameter is related to the incidence rate, i.r., by equation:

i.r. = λX. (3.20)

In this simple, and unrealistic model, it is associated the following system of
ordinary differential equation (ODE):

dX(t)
dt

= −λX(t)

dY (t)
dt

= λX(t)

. (3.21)

If we assume the total population as a constant, we can work with proportions,
in the sense that X(t) + Y (t) = 1. The analytical solution of equations 3.21 is
then straightforward:

X(t) = X(0) exp[−λt]
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and
Y (t) = 1 − {X(0) exp[−λt]} .

In the other end of the spectrum we have a model which, by incorporating
almost all the biological realities, is so complex that no analytical solution is pos-
sible. Figure 3.5 illustrates a compartmental model for the interaction between
AIDS and crack abusers (Burattini et al., 1998).

The associate system of ODE is then:

dS(t)
dt = δS0 − λS1S(t) (∗) − λS2S(t) (∗∗) + a5C(t) + a6D(t)+

a9U(t) − (a1 + a2 + μ)S(t)

dU(t)
dt = δU0 − λU1U(t) (∗) − λU2U(t) (∗∗) + b2SY (t)

− (b3 + b8 + b9 + μ + μU + ωU )CY (t)

dC(t)
dt = δC0 + λC1C(t) (∗) + b1SY (t) + b4DY (t)

− (b5 + b7 + μ + μc + ωc)CY (t)

dD(t)
dt = δD0 + λD1D(t) (∗) + λD2D(t) (∗∗) + b3UY (t) + b7CY (t)

− (b4 + b6 + μ + μD + ωD)DY (t)

dSY (t)
dt = δSY0 + λS1S(t) (∗) + b5CY (t) + b6DY (t) + b9UY (t)

− (b1 + b2 + μ + ωS)SY (t)

dUY (t)
dt = δY UY + λS2S(t) (∗∗) + λU1U(t) (∗) + λU2U(t) (∗∗) + b2SY (t)

− (b3 + b8 + b9 + μ + μU + ωU )CY (t)

dCY (t)
dt = δY CY + λC1C(t) (∗) + b1SY (t) + b4DY (t)

− (b5 + b7 + μ + μc + ωc)CY (t)

dDY (t)
dt = δY DY + λD1D(t) (∗) + λD2D(t) (∗∗) + b3UY (t) + b7CY (t)

− (b4 + b6 + μ + μD + ωD)DY (t)

dSA(t)
dt = c9UA(t) + c6DA(t) + c5CA(t) − (c1 + c2 + μ + α)SA(t)

dUA(t)
dt = ωUUY (t) + c2SA(t) − (c3 + c8 + c9 + μ + μU + αU )UA(t)

dCA(t)
dt = c1SA(t) + c8UA(t) + c4DA(t) + ωCCY (t)

− (c5 + c7 + μ + μC + αC) CA(t)

dDA(t)
dt = c3UA(t) + c7CA(t) + ωDDY (t) − (c4 + c6 + μ + μD + αD)DA(t),
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where (∗), (∗∗) and δ are given by:

(∗) = SY (t) + UY (t) + CY (t) + DY (t) + SA(t) + UA(t) + CA(t) + DA(t)

(∗∗) = UY (t) + DY (t) + UA(t) + DA(t)

δ = μS + μUU + μCC + μDD + μSY + μUUY + μCCY + μDDY

+(μ + α)SA + (μU + αU )UA + (μC + αC)CA + (μD + αD)DA.

As can be noted, this model has no analytical solution whatsoever.
This examples illustrate how to deal with deterministic models, and the dif-

ficulties involved in their solutions.
In stochastic models, there are probabilities at each time step of moving from

one epidemiological class to another. When these models are simulated with the
probabilities calculated using random number generators, the outcomes of differ-
ent runs are different so that this approach is often called Monte Carlo simulations;
conclusions are obtained by averaging the results of many computer simulations.

Stochastic epidemiological models incorporate chance, but it is usually harder
to get analytic results for these models. Moreover, computational results are also
harder since Monte Carlo simulations require many computer runs (25 to 100 or
more) in order to detect patterns and get quantitative results. Even for stochastic
epidemiological models where parameters are estimated by fitting the mean of
the simulation to data, it may not be possible to find confidence intervals on
these parameters estimates (Hethcote, 2000). As an example of this kind of
approach we may consider the model by Haas (personal communication) who
considered the individuals from a given population as occupying the sites of a
net. The model then generates, at each Monte Carlo step, a certain number of
sites to be checked. If the drawn site is occupied by a susceptible individual
then the model generates a random number. If the random number is lower
than the a priori probability that a susceptible gets the infection, then this
individual gets the infection. Otherwise the site remains susceptible. If, on the
other hand, the drawn site is occupied by an infected individual, then the model
generates another random number. If this random number is lower than the a
priori probability that an infected individual recovers from the infection, then
this individual recovers from the infection. Otherwise, the site remains occupied
by an infected individual, and so on. Each Monte Carlo step is considered to be
a time step so the temporal evolution of an epidemic can be followed up. This
model has shown a good retrieving capacity when tested against a real epidemic.

If it is harder to get analytic results of stochastic models, they are not im-
possible to be analyzed. Let us see, as an example of an analytical solution
of a stochastic approach, the model by Massad et al. (1994a), who considered
the transmission of HIV, the causative agent of AIDS, among injecting drug
users, by applying the Mcdonald’s (1952) model originally designed for vector-
borne infections, to the injecting apparatus. One of the problems faced by those
authors was the estimation of the probability, δ, that a needle which pricked an
infected individual would get infected.
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The authors considered that this chance, δ, depends on the statistical distri-
bution of HIV serum title in the host population. The mean titers of HIV in the
blood of contaminated individuals is quantified in the literature as tissue culture
infective doses (also called by some authors as ”infectious particles”) (Ho et al.,
1995, Levy, 1988). Let us then suppose that the infective inoculum for the needle
is of i Units Infective for Tissue Culture (UITC). So, the probability, P (i), of
finding i UITC in a needle with a residual volume of ν ml of blood, after ’biting’
an infected individual, is:

P (i) =
∞∑

n=0

e−nν(nν)i

i!
P (n | ϕ), (3.22)

where n corresponds to the plasmatic concentration of HIV (in UITCs) in a
randomly selected individual from an infective population with an average ϕ
UITCs per ml of blood.

Assuming that one UITC is sufficient to infect a needle, then the probability
of having at least one infective inoculum, δ, is:

δ = P (i ≥ 1) = [1 − P (0)] . (3.23)

In order to illustrate the above analysis let us consider two possible situations:
a) the infective inocula are homogeneously distributed among the infected

population. Then,

P (n | ϕ) =
{

1 if n = ϕ
0 if n �= ϕ

(3.24)

and so, P (i) reduces to the Poisson distribution:

P (i) =
e−ϕν(ϕν)i

i!
. (3.25)

Therefore,
δ = 1 − e−ϕν ; and (3.26)

b) the infective inocula are heterogeneously distributed among the infected
population. Then:

δ = P (i ≥ 1) = 1 −
∞∑

n=0

e−nνP (n | ϕ). (3.27)

Now, assuming that the distribution of infective inocula among the infected
population, P (n | ϕ), is a Negative Binomial Distribution with parameter κ
(Spiegel, 1992), as described previously for several epidemiological studies (An-
derson, 1982), with form:

P (n | ϕ) ≡ P (n | ϕ, κ) = (1 − ε)κ Γ (κ + n)
Γ (κ)

εn

n
, (3.28)

where
ε =

ϕ

ϕ + κ
. (3.29)
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Considering that the Probability Generating Function, G, for the Negative
Binomial Distribution is given by (Feller, 1968):

G(z) = (1 − ε)κ (1 − εz)−κ (3.30)

we finally obtain:

δ = P (i ≥ 1) = 1 − (1 − ε)κ (1 − εe−ν
)−κ

, (3.31)

where ν, as mentioned above, is the residual volume of blood in the needle and κ
can be obtained from the distribution of inocula in the population, being defined
as:

κ =
ϕ2

σ2

1 − ( ϕ
σ2

) , (3.32)

where ϕ is the mean and σ2 is the variance of the inoculum distribution among
the population.

The parameter δ,was estimated from the data described by Ho et al.(1995).
From these data we get the average concentration of infective inoculum per unit
of blood volume (ϕ = 30 UITC/ml) and its respective variance (σ2 = 1.0×103).
Therefore, by taking the residual volume of blood in the lumen of the needles
as equal to 6.6 μl (a typical ’30 × 7’ needle), we obtain the value of δ = 0.18
assuming a homogeneous, and δ = 0.24 assuming a heterogeneous distribution
of infective inocula, respectively.

3.2.3 Computer Simulation Models

Computer simulation models consist of interactions, in a computational envi-
ronment, of individuals from a given population. If a certain number of those
individuals are infected by a certain pathogen, the potentially infective contacts
between susceptible and infected individual may generate new infections with a
certain probability. The already well-known ONCHOSIM model (Plaisier et al.,
1990) for the study of onchocerciasis, described as a computer simulation is in
reality a stochastic model.

Computer simulation approach can be seen as an alternative for analytic mod-
els is which it is created an environment in the computer screen, where artificial
organisms “live” and can mimic the epidemic situations (Silveira et al., 1995).

Since the creation of the Game of Life by Conway in 1970, probably the first
computer model employing cellular automata (CA) principles, CA have been
used in a large range of applications, including evolutionary biology, predator-
prey interactions, airship design, robotics, epidemics, etc.

Another advantage of computer models is that they allow researchers to ob-
serve events in a much shorter time span than they can do in nature. Hypotheses
can be tested in this kind of model by recreating the reality using rules as simple
as possible. In this context, this kind of model is a ‘tool to think’, a machine de-
signed to execute ideal experiments, where the simple conditions of interactions
among organisms are re-created and the consequences can be analyzed. Let us
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Fig. 3.6. Graphical shape of the function for β(a, a′) for the epidemiology of rubella
in São Paulo, Brazil (Massad et al., 1995), from analytical model.

see an example that illustrates the concept of computer simulation models in
epidemiology, due to Silveira et al. (1996).

In mathematical epidemiology of infections a central problem is the hetero-
geneity in the potentially infective contact rates between susceptible and infected
individuals. These heterogeneities can arise in several cases, like the distribution
of susceptibilities, heterogeneities in infectiousness, in behavior or, simply the age
distribution of those contacts. So, the potentially infective contact rate β(a, a′),
describes those contacts between individuals susceptible of age a with infective
individuals of age a′. These rates have been treated in the specialized literature
as a matrix, described by the first time by Anderson and May (1991), as the
Who-Acquired-the-Infection-from-Whom (WAIFW) matrix. Although of wide
use, this matrix has the disadvantage of using a discrete rate β(a, a′). We have
been dealing with this problem for some time and have proposed a continuous
equivalent for the WAIFW matrix (Massad et al. 1994b), which has the form:

β(a, a′) =
κ1

κ2

1
Γ (κ1 + 1)

(
a
κ2

)κ1

exp
(
− a

κ2

)

[2 − exp (−κ3a)]
exp (−κ3 |a′ − a|) , (3.33)

where Γ is the Gamma function and κi are parameters that can be fitted by
Maximum Likelihood techniques to real epidemic situations. By doing this we
managed to find a suitable function for β(a, a′) for the epidemiology of rubella
in São Paulo, Brazil (Massad et al., 1995). Figure 3.6 illustrates the graphical
shape of such a function.
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Fig. 3.7. The age-dependent contact rates as a function of ages a and a′ (Massad et
al., 1995), from computer simulation

Fig. 3.8. The age-dependent force of infection calculated by both analytic and com-
puter simulation approaches

An alternative approach is to use computer simulation systems, applying cel-
lular automata and genetic algorithm principles (Silveira et al., 1995). So we
performed a set of simulation in a computer-based environment which mimics
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the interactions, or contacts, described by the maximum searching distance for
individuals, represented by pixels in a computer screen, to get in contact with
other individuals, presence or absence of disease, presence or absence of immune
response to the infection, duration of infectiousness, etc.

After reaching the equilibrium, we can plot the age-dependent contact rates
as a function of ages a and a′. Results can be seen in figure 3.7.

It noteworthy the striking similarities between the analytical (figure 3.6) and
the computer simulation (figure 3.7) models.

Another derived parameter related to transmission, is the force of infection,
defined above as the rate at which susceptible individuals acquire the infection,
and has the form:

λ(a) =
∫ ∞

0
β(a, a′)y(a′)da′, (3.34)

where y(a′) is the proportion of infectious individuals. Equation (3.34) can be
estimated by both analytic and computer simulation approaches. Figure 3.8
shows the age-dependent force of infection calculated by both methods.

Again, it is noteworthy the striking similarities between both approaches.
This model exemplifies the computer simulation method and also demon-

strates how it compares with analytic models.
Another interesting computer model is the Cybermouse, an on-line virtual lab-

oratory animal for exploring the immune system (Cybermouse, IPC, Freemont,
CA, U.S.A). This model is similar to the model described above in the sense that
it applies CA principles to study the interaction of immune cells with antigens.
One of its main applications have been to provide testable predictions about
how the AIDS virus spreads through the immune system and how the systems
“remembers” a pathogen years after the original infection and respond with a
quick counterattack.

3.3 What Lies in the Future?

How should epidemiology face up to the challenge of the post-genome sequenc-
ing world? The high profile of genetic research will surely increasingly influence
epidemiology, indeed it is already noticeable that relative risks only a little above
unity get treated with considerably more excitement than if similar relative risks
were associated with other exposures (Smith & Ebrahim 2001). This demon-
strates the central role of individuality in medical and epidemiological thinking
of the 21st century.

The steady shift from the typological Oslerian “body-as-a-machine” medical
approach to the populational Garrodian (from Archibald Garrod, Osler’s succes-
sor in the Regius Professor of Medicine chair in Oxford) “chemical individuality”
approach is gaining momentum with the huge amount of genetical information.
The need for quantitative tools able to deal with this trend is impossible to be
superestimated. All quantitative community is, therefore, invited to participate
in this effort.



4 Probability, Possibility and Fuzzy Events

It is very common to confuse fuzzy sets theory with the theory of probabilities.
Frequently membership degree is misinterpreted as probability value and the
membership function as a statistic distribution function. This confusion emerges
due to the fact that there is a narrow relationship among the two theories and,
under certain aspects, the fuzzy theory presents characteristics very similar to the
probability theory. In fact, its possible to see from the theory of measures that the
probability measure is a particular case of fuzzy measure (Klir & Yuan, 1995;
Pedrycz & Gomide, 1998 and 2007; Barros & Bassanezi, 2006). Nevertheless,
it is important to understand the differences between these theories for best
comprehend how they can be complementary, and how they can work together,
as interesting and powerful mathematical tools.

The theory of probabilities and the theory of fuzzy sets work, in general, with
different types of uncertainties, as discussed shortly in the introductory chapter
(see chapter 2). In the theory of probabilities the event is well defined and the
doubt hovers on the occurrence of the event. However, once the event happened
there will be no more doubt. It is possible to calculate how is the probability
of, in an urn containing nw white balls and nr red balls, one raffle a red ball.
Nevertheless, once the ball is raffled there is nothing else to do, the ball will be
white or red, and the uncertainty disappears. On the other hand, suppose that
there is inside the urn several balls of red tones, varying of the intense red to the
white one. In this case it is not possible to ask “How is the chance of raffling a
white ball”, simply because it is difficult to decide about the pink balls. Actually,
it is not possible to make a typical probabilistic question because in this situation
the event is not well defined. There are “almost red” balls, “almost white” balls
and balls with several tones of rose, configuring an imprecise situation. It is
important to know in these cases what is the appropriate question to be asked
and how to answer it.

Another aspect that differentiates the two theories is the fact of the theory
of probabilities do not consider, in general, subjectivities as the individuals’
psychological characteristics, for instance, a very common phenomenon with the
people that gamble in the Lottery, including professionals of the statistic areas.

E. Massad et al.: Fuzzy Log. in Act.: Appl. in Epidem. & Bey., STUDFUZZ 232, pp. 59–78, 2008.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2008
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It is known that people rarely bet a set of numbers in sequence as 1, 2, 3, 4, 5
and 6. They have, in general, the sensation that this set is much less probable
of happening than a set of assorted numbers. However, it is not surprise that
they feel like this, once this event hardly ever is verified. In fact, it hardly ever
happens that a set of numbers in sequence to be raffled. Nevertheless, it is known
that the probability of happening any combination of numbers is the same, but if
one statistician is asked about what kind of sequence he/she bets in the Lottery
rarely the answer is a sequence of numbers. In other words, even knowing that the
probability of this bet is the same as any other, he/she does not feel comfortable
in betting it, although if it bet he/she would have greater chance of winning
alone if raffled. This example illustrates the fact that people do not assume a
merely statistical approach in decision making. So, depending on the subject the
theory of probabilities may not be enough to analyze the problem and others
approaches may be needed to treat the uncertainties involved in the process.
It is worth to point out that Bayesian statistics could model situations as in
examples mentioned above. However, the main difference consists in the ability
of fuzzy theory to treat uncertainties with non stochastic behavior.

The objective of this chapter is to discuss subjects related with types of sub-
jectivities and the appropriate mathematics to describe them. We discuss and
try to clarify the basic differences and likeness between probability and possibil-
ity measures, the last being an exclusive concept of fuzzy theory. In this sense,
some concepts related to Fuzzy Analysis are presented, as fuzzy measure and
fuzzy integral, both used to define the Fuzzy Expected Value of an uncertain
variable. Such concepts will be applied in the epidemiological context presented
the following chapters, particularly in chapters 9 and 12.

4.1 Probability and Fuzzy Measures

The notion of measure generalizes the usual concepts of length, area, volume
and so on. Probability is a typical case of measure, with the restriction that its
codomain must be the interval [0,1]. In this chapter we will study the measure of
probability aiming to compare it with the so called fuzzy measure. The interested
reader in General Theory of the Measure may consult several available books,
among them we recommended the one by Bartle (1995).

4.1.1 Probability Measure

In the Probability Theory the main interest consists of knowing how to measure
the chance of the occurrence of an event, or in other words, its probability, which
is represented by a number between 0 and 1.

The typical way to define the probability of an event A ⊂ Ω is given by:

P (A) =
n(A)
n(Ω)

(4.1)

which is the ratio between the number of favorable cases to A and the total
number of the all possible cases. Ω is also called space of events.
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The central idea in the definition of probability is to identify each event as
a subset of the sample space and to associate to this set a number, indicating
the chance of occurrence of that event. In this sense, the probability is simply
a real function of sets. The axiomatic definition of probability was presented in
1933 by Kolmogorov and it can be summarized in three properties (Kolmogorov,
1933):

• P1. For all A ∈ A =⇒ 0 ≤ P (A) ≤ 1;
• P2. P (Ω) = 1;
• P3. If A1, A2,...,Ai are disjunct two by two, then

P (∪i∈NAi) =
∑

i∈N

P (Ai).

where A represents a class of events of Ω called σ − algebra.
In the theory of probability, or usually in Theory of Measure, P should be

σ−additive, that is, the property P3 must be satisfied. However, this property is
very strong, excluding concepts that may be measurable. The following example
illustrates a situation where the σ − additive condition seems not to hold.

Example 4.1. Suppose that we want to measure the productivity of a group of
workers in a given factory. Let μ(A) be the productivity of a subset A of these
workers. In that case, it is not reasonable that μ be necessarily additive, that is,
μ(A ∪ B) = μ(A) + μ(B), although A ∩ B = φ.

If the groups A and B work separated, it is reasonable that μ(A ∪ B) =
μ(A) + μ(B). However, if the groups A and B interact, then the equality may
not be verified. If there is cooperation among the groups, then it may happen
that μ(A ∪ B) > μ(A) + μ(B). On the other hand, it can happen μ(A ∪ B) <
μ(A) + μ(B) if there is incompatibility among the operations of A and B.

Summarizing, if additive functions are acceptable to measure uncertainties, it
is reasonable to suppose that non-additive functions can also play this role, if
the problem in question demands it. In fact, the number of professionals that
try to deal with uncertainties using mathematical tools to quantify them are
increasing, particularly among health professionals. Fuzzy measure is one of the
available tools for this task.

4.1.2 Fuzzy Measure

Aiming to relax the rigid property of σ − additive of classic measure, Sugeno
(1974) suggested the concept of the fuzzy measure. He proposed the substitution
of the axiom P3 from the probability measure by properties that indicate the
continuity of a measure, which will be defined below. Here the measures with
this characteristic will be called Measures of Sugeno.

Definition 4.2. A mapping of subsets of Ω, μS : P (Ω) → [0, 1], is called a
Sugeno Measure if:
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1. μS(φ) = 0 and μS(Ω) = 1;
2. μS(A) ≤ μS(B) if A ⊆ B;
3. If A1 ⊆ A2 ⊆ . . . ⊆ Ai ⊆ . . . then μS(∪i∈NAi) = limi→∞ μS(Ai);
4. If A1 ⊇ A2 ⊇ ... ⊇ Ai ⊇ ... then μS(∩i∈NAi) = limi→∞ μS(Ai).

Another class of measures that plays a prominent role in fuzzy sets theory are
the so-called fuzzy measure. The fundamental property that a measure must
have in order that an integration theory could be developed is the monotonicity.
With this tool it is possible to broaden the reaching of mathematical modeling
of problems close to reality.

The definition of fuzzy measure varies in the literature. For instance, it is
quite common to require just that this measure should be monotonous and pos-
itive. Nevertheless, all of these different definitions require that the measure of
the emptiness is zero and that the monotonicity hold, as the capacity measure
of Choquet satisfy (Nguyen & Walker, 2000), for instance. In this chapter the
definition that we will adopt for fuzzy measure is the following:

Definition 4.3. A mapping μ : P (Ω) → [0, 1], is called a fuzzy measure if

1. μ(φ) = 0 and μ(Ω) = 1;
2. μ(A) ≤ μ(B) always that A ⊆ B.

Under this definition the Sugeno measure is a particular case of the fuzzy measure.

4.1.3 Possibility Measure

In 1978 Zadeh published the first article addressing the measure of possibility
(Zadeh, 1978). This article brings important discussions. One of those discussions
is regarding the statement, apparently näıve but very frequent in the day by
day; “such fact is possible but unlikely”. This suggests that, independently of
the possibility notion adopted, (π), it is expected that π(A) ≥ P (A). Nowadays,
such inequality has been widely discussed and it is usually called the Principle
of Consistence (Dubois & Prade, 1980). Before the introduction of the concept
of possibility measure it is interesting to ponder on different ways to taking into
account the uncertainties treatment.

Suppose that in a certain problem we want to obtain the value of a parameter
ω0. However, the only information available is that such value belongs to a space
Ω. This partial knowledge with regard to ω0 indicates that some uncertainty
model should be designed to estimate ω0. If, in the attempt to estimate ω0 it is
found that there are more plausible elements than others in the Ω space, how
to treat this information? The Bayesian approach suggests the assumption of
a probability distribution and how to find this distribution is a subject to be
discussed. On the other hand, in fuzzy sets theory the expert’s gradual infor-
mation is translated into membership functions, which indicate how elements of
Ω space should have bigger or smaller “weight”, in agreement with the expert
knowledge. Therefore, the crucial difference between probability and possibility
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theories consists in choosing a mathematical treatment of uncertainties based on
a model conceived a priori or a model built hand to hand with experts.

In summary, in the stochastic theory the available information are treated
through probability density functions. In fuzzy sets theory such informations
are modeled by membership functions ϕ : Ω → [0, 1], which may be elaborated
according to an expert knowledge. In the situation exposed above, ϕ(ω) indicates
the possibility of ω to be ω0. As we will see, the function ϕ is seen as a distribution
of possibilities on Ω.

Definition 4.4. A possibility distribution on the set Ω �= φ is a function ϕ :
Ω → [0, 1] satisfying supω∈Ω ϕ(ω) = 1 for some ω ∈ Ω.

Note that any normal fuzzy subset of Ω define a possibility distribution on Ω
(see chapter 2, section 1.2).

Definition 4.5. A measure of possibility on Ω is a function of sets π : P(Ω) →
[0, 1], which satisfies:

• π1. π(φ) = 0 and π(Ω) = 1;
• π2. For all family Ai ∈ I of subsets of Ω it is verified

π (∪i∈IAi) = sup {π(Ai) : i ∈ I}, (4.2)

where P(Ω) is the power sets of Ω, that is, the set of all crisp (classical)
subsets of Ω.

In a narrow sense, a possibility measure is nothing more that a fuzzy subset of
the power sets of Ω, since its codomain is the interval [0, 1]. Note that, given the
measure of possibility π, this induces a possibilities distribution function, ϕπ, on
Ω through its restriction to the elements of Ω. In other words, ϕπ(ω) = π(ω).
On the other hand, given a function of possibility distribution ϕ : Ω → [0, 1],
this induces a possibility measure on Ω given by:

π(A) =

⎧
⎨

⎩

supω∈A ϕ(ω) if A �= φ

0 if A = φ
,

for all A ⊂ Ω.
A consequence of the possibility measure definition is the fact that, for any

crisp subset A and B of Ω, π(A ∪ B) = max[π(A), π(B)].
In the following example we emphasize the difference between probability and

possibility measures, highlighting however that not all membership functions can
be interpreted as a possibility distribution.

Example 4.6. In epidemiology it is very common the attempt to evaluating how
strong is the infectiousness of a given agent. This in general, is estimated through
the number of people that are infected by an infectious individual. Therefore,
such infectiousness is narrowly related with the rate β ∈ [0, 1], that susceptible
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individuals are infected. The parameter β, called Coefficient of Transmission, is
directly linked to the chance of happening the transmission of the disease when
there is a contact between a susceptible individual and an infected one. In the
classical deterministic models this parameter could be evaluated as an average
over the population, assuming that all infectious individuals present the same
‘power’ to infect the susceptible ones. However, this homogeneity hypothesis
consists in an oversimplification of reality, since it is expected that there are
individuals with larger power to transmit the disease then others (Sadegh-Zadeh,
1999). This heterogeneity depends on several factors, among them the viral or
parasite load of infected individual. So, a mathematical model that takes into
account this heterogeneity should describe the transmission coefficient β as β =
β(v), where v is a new parameter of the model, representing the viral or parasite
load of the infected individuals.

Considering the above, it is reasonable to suppose that the parameter β could
be modeled as a membership function of some fuzzy subset of the viral or parasite
load domain. Since v could be translated by a number, its domain could be the
real numbers set. So, the transmission coefficient could be the map β : IR → [0, 1].

In this case, the number β(v) reflects the degree with which the values β and
v are associated, that is, the effect of v on the parameter β. In this sense, if the
effective value (v0) of the viral or parasite load is known, the β value is inferred
as a consequence.

When building a membership function for the parameter β(v) we are, in some
way, taking into account the uncertainties in the description of the values as-
sumed by it. However, no information about the viral or parasite load was con-
sidered in order to find v0, and nothing indicates that the membership function
β corresponds to a possibility distribution. However, an expert could offer infor-
mations about v0 as, for instance, that v0 ∈ [vmin, vmax]. In that case, we may
design a mathematical model to evaluate v0, since a space for this parameter
was selected. In addition, if it is known that there are values of v ∈ [vmin, vmax]
more plausible than others, and with “weights” ρ(v) ∈ [0, 1], then, it is possible
to propose a possibility distribution for v to evaluate v0, given by:

ρ : [vmin, vmax] → [0, 1]. (4.3)

The function ρ may be directly built by an expert, in agreement with his/her
empiric knowledge. In addition, ρ does not need to be a probability density
distribution, that is, its integral does not need to be necessarily equal to 1,
which reinforce the difference between the fuzzy and the stochastic approaches
to obtain an estimate. This example illustrates that the probability density dis-
tribution is for the probabilities measure what the possibility distribution is for
the possibility measure.

Consider A ⊂ IR. If for some v ∈ [vmin, vmax], ρ(v) = 1, then the possibility
distribution ρ induces a measure of possibility on IR given by:

π(A) =

⎧
⎨

⎩

sup
v∈A

ρ(v) if A �= φ

0 if A = φ.
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It is not difficult to verify that π is also a fuzzy measure. It is interesting to
observe that this kind of measure could be adopted by an expert of the public
health area to estimate how much a group of individuals are infected. Clearly,
this choice consists in an upper-estimate, since the group is being ‘measured’ by
the individual with larger viral or parasite load.

Finally, if
∫

IR ρ(v)dv = 1, then the probability density distribution ρ induces
a probability measure in IR given by P (A) =

∫

A ρ(v)dv.

We finish this session revisiting the Principle of Consistence and indicating
some mathematical models to transform probability in possibility and vice-versa,
which may be important in many practical problems. Consider, for instance, that
we want to build the possibility distribution (membership function) of a fuzzy
set from a collection of statistical data. Also, assume that we want to elaborate
a probability density function from a possibility distribution. In these cases, op-
erations that allow to transform a measure in other would be certainly useful.
These transformations are also interesting to compare the information obtained
from the two approaches when applied both in the same phenomenon. Although
there are in the literature several ways to transform probability into possibility,
or vice-versa, all of them in accord to the Principle of Consistence (Dubois &
Prade, 1980), that is,

P (A) ≤ π(A) for all A ⊆ Ω.

We concentrate on the transformation method between probability and possi-
bility for the case in which Ω space is finite. Suppose that Ω = {ω1, ω2, ..., ωn}
and that

1 = π(ω1) ≥ π(ω2) ≥ . . . ≥ π(ωn)

and

P (ω1) ≥ P (ω2) ≥ . . . ≥ P (ωn).

Then, the simplest transformations is given by:

π(ωi) =
P (ωi)
P (ω1)

or

P (ωi) =
π(ωi)

∑n
i=1 π(ωi)

.

One practical example of the utility of the probability/possibility transforma-
tions it is found in (Castanho, 2005; Castanho et al., 2007), where a complete
study of diagnosis of prostate cancer is presented, and summarized below.
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4.1.4 Probability/Possibility Transformations Applied to the
Prostate Cancer Analysis

When diagnosing a prostate cancer, doctors evaluate its stage to indicate the
appropriate treatment. It is known that treatments as surgery or radiotherapy
have great chance of cure when the tumor is confined to the organ.

To make that evaluation doctors have information given by the clinical exam
(rectal touch and/or image modalities), blood test that measures the level of
prostatic specific antigen (PSA) - that is a substance that increases when the
tumor increase - and by biopsy. In the biopsy the tumor is classified by the
score of Gleason in agreement with the degree of differentiation of the cells (ag-
gressiveness of the tumor) and the proportion of the affected gland. Combining
those three variables and using statistical data, there are in the urological lit-
erature tables that indicate the patient’s probability to be in certain stage of
the disease development (Partin et al., 1990, 1997 and 2001): with involvement
of the prostatic capsule, involvement of seminal vesicles, or with involvement
of pelvic linfonodes. Those classifications are clearly imprecise and the borders
among those stages are not well defined. Therefore, the idea of treating those
classifications as linguistic variables are quite reasonable.

Thus, with the variables used to predict the stage of the prostate cancer,
Castanho and collaborators developed a system based on fuzzy rules, with the
purpose of obtaining the stage of the disease (Castanho et al., 2007). In this sys-
tem the output variable (stage of the disease) is modeled through fuzzy sets. For
each real value that represents the system output, it corresponds a membership
degree to the fuzzy set that describes the disease stage. The proposition “stage of
the disease is confined”, for instance, allows to see this degree as the possibility
that the disease is confined to the organ. In that way, that proposition defines
a possibility distribution in the set of individuals. The systems based on fuzzy
rules assume an important role in fuzzy theory and it will be presented in detail
in chapter 7.

In this way, information of the same phenomenon may be given either in proba-
bilistic terms (tables of probability) or possibilistic terms (system based on fuzzy
rules). To verify if those information are consistent, a probability/possibility trans-
formation should be used.

Consider, for instance, a patient with the following pre-surgical data: the
clinical status was classified as palpable; confined in the less of half of a lobe
(lobe is each one of the two parts in that the prostate is subdivided); PSA level
equal to 5.3ng/ml (ng means nanogram) and degree of Gleason in the biopsy
equal to 7.0. According to the system based on fuzzy rules proposed by Castanho
and collaborators, the possibility of that patient having cancer confined to the
organ is 0.60; the possibility that he has capsular involvement is 0.93 and the
possibility that he has involvement of vesicles and/or linfonodes is 0.11. Using
the transformation

P (ωi) =
π(ωi)

∑n
i=1 π(ωi)
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the following probabilities are obtained: 0.36 of the cancer to be confined to the
organ; 0.57 that he has capsular involvement and 0.07 of having involvement of
vesicles and/or linfonodes. In tables of probability available (Partin et al., 1990,
1997 and 2001) it is found 0.33; 0.52 and 0.14, respectively. Therefore, at least for
this case, it is possible to affirm that the results supplied in terms of probability
and possibility indicate the same stage of the disease development.

Other transformations could be found in several fuzzy logic articles and books
as Civanlar and Trussel (1986 and 1990), Dubois and collaborators (1993), Sud-
kamp (1992) and, Klir and Yuan (1995).

The idea now is to build a fuzzy integral from the fuzzy measure for, finally,
finding a fuzzy expected value, as it is usually made on the classical stochastic
theory (Barros & Bassanezi, 2006). In the next section we study two kinds of
fuzzy integrals.

4.2 Fuzzy Integrals

At the end of the previous section we presented a justification of the importance
of studying the concept of integral. However, such concept in mathematics, and
in exact sciences in general, dispenses any motivation. Its importance for the
related theoretical disciplines is not smaller than that due to the applications
in several types of problems, as calculus of volumes, areas, energy, work etc.
Here the integral calculation will be applied to the study of the expected value
of uncertain variables. Thereby, in this section will be presented some concepts
and properties of integrals with respect to the classic and fuzzy measures.

Nowadays there are many fuzzy integrals available in the literature of fuzzy
mathematics, all of them starting from a fuzzy measure and, therefore, it does
not demand the σ − additive condition. Here we will only present two kinds of
fuzzy integrals: the integral of Choquet and the integral of Sugeno.

4.2.1 The Integral of Choquet

The integral of Choquet of the function f : Ω → [0, ∞) with respect to the
measure μ, not necessarily additive, is given by:

(C)
∫

Ω

fdμ =
∫ ∞

0
μ{ω ∈ Ω : f(ω) > α}dα (4.4)

where the last is the Riemann integral. Intuitively, to find the Choquet integral of
the function f : Ω → [0, ∞), it is simply to use the concept of Riemann integral
in the levels of f , which is defined in the codomain of that function. Choquet
used this integral concept with regard to the measure of capacity, which is not
additive, in mechanics (Nguyen & Walker, 2000).

4.2.2 The Integral of Sugeno

The integral of Sugeno (1974) was proposed in the decade of 1970 and it was
one of the first fuzzy integrals definition. Such integral was defined in order to
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defuzzify a fuzzy number from a measure that is not necessarily σ − additive.
The definition of the Sugeno integral, given below, applies to functions whose
codomain is the interval [0, 1], that is, to membership functions of fuzzy sets.

Definition 4.7. Let be f : Ω → [0, 1] a function and μ a fuzzy measure on Ω.
The integral of Sugeno of f , on Ω with regard to measure μ, is the number:

(S)
∫

Ω

fdμ = sup
0≤α≤1

[α ∧ μ{ω ∈ Ω : f(ω) ≥ α}] = sup
0≤α≤1

[α ∧ μ{ω ∈ Ω : f(ω) > α}].

(4.5)

If A is a classical subset of Ω, then

(S)
∫

A

fdμ = sup
0≤α≤1

[α ∧ μ(A ∩ H(α)], (4.6)

where H(α) = μ{ω ∈ Ω : f(ω) ≥ α}.
It is interesting to notice that H : [0, 1] → [0, 1] is a decreasing and continuous

function in almost all points of the domain (Barros & Bassanezi, 2006). This will
be important in the understanding of the next results.

Some theorems will be enunciated. They have great usefulness in some exam-
ples and applications of this book, particularly in chapters 9 and 12.

Theorem 4.8. Let f : Ω → [0, 1] be a typical membership function and μ a
fuzzy measure on Ω. If the function H(α) = μ{ω ∈ Ω : f(ω) ≥ α} has a fixed
point α then

(S)
∫

Ω

fdμ = α = H(α). (4.7)

In other words, the value of the Sugeno integral of f coincides with the fixed
point of H, if it exists.

The proof of this theorem is not simple, involving some specific concepts of
mathematical analysis and it is beyond the goal of this text, however, it can be
found in Kandel (1986). Figure 4.1 presents the illustration of it.

The boldface part of the curve in figure 4.1 indicates the value of [α ∧ H(α)]
for α ∈ [0, 1], and has as sup the value α, which is the intersection of the bisector
with the graph of H(α). That is, it coincides with the fixed point of H(α).

Theorem 4.9. Let f : Ω → [0, 1] be a typical membership function and μ a
classical measure on Ω. Then,

|(S)
∫

Ω

fdμ −
∫ 1

0
H(α)dα| ≤ 1

4
. (4.8)

Note that
∫ 1
0 H(α)dα =

∫ 1
0 μ{ω ∈ Ω : f(ω) ≥ α}dα is the Choquet integral of

the function f .
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Fig. 4.1. Illustration of the Theorem that the value of the Sugeno integral of f is equal
to the fixed point of H (Barros & Bassanezi, 2006)

Proof: Let be α = H(α) the fixed point of H(α). So,
∣
∣
∣(S)
∫

Ω
fdμ − ∫ 1

0 H(α)dα
∣
∣
∣ =
∣
∣
∣α − ∫ 1

0 H(α)dα
∣
∣
∣ =

∣
∣
∣
∫ α

0 1dα −
[∫ α

0 H(α)dα +
∫ 1

α H(α)dα
]∣
∣
∣ =
∣
∣
∣
∫ α

0 (1 − H(α))dα − ∫ 1
α H(α)dα

∣
∣
∣

≤ ∫ α

0 (1 − H(α))dα ≤ ∫ α

0 (1 − H(α))dα =
∫ α

0 (1 − α)dα = (1 − α)α ≤ 1
4 since

α ∈ [0, 1].

The penultimate inequality above is valid because H is a decreasing function.
This theorem was originally proposed by Sugeno in 1974 for inexact variable,
that is, any measurable function X : Ω → [0, 1]. At the end of this section it will
be enunciated in such a context.

Properties of the Sugeno integral

Like the Choquet integral, the Sugeno integral is not linear. However, both of
them are monotonous, that is,

(S)
∫

Ω

fdμ ≤ (S)
∫

Ω

gdμ if f ≤ g.

Bellow are other properties of the Sugeno integral, whose proofs can be found
in (Barros, 1992; Barros & Bassanezi, 2006).

Let f : Ω → [0, 1] and g : Ω → [0, 1] be functions, μ a fuzzy measure on Ω
and A and B subsets of Ω. Then, the following properties hold:

1. If f(x) = k, then (S)
∫

A
fdμ = k ∧ μ(A);
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2. If f ≤ g, then (S)
∫

A fdμ ≤ (S)
∫

A gdμ;

3. (S)
∫

A
(f ∨ g)dμ ≥ (S)

∫

A
fdμ ∨ (S)

∫

A
gdμ;

4. (S)
∫

A
(f ∧ g)dμ ≤ (S)

∫

A
fdμ ∧ (S)

∫

A
gdμ;

5. If A ⊂ B, then (S)
∫

A fdμ ≤ (S)
∫

B fdμ;

6. (S)
∫

A∪B fdμ ≥ (S)
∫

A fdμ ∨ (S)
∫

B fdμ; and

7. (S)
∫

A∩B
fdμ ≤ (S)

∫

A
fdμ ∧ (S)

∫

B
fdμ;

where f ∨ g and f ∧ g are, respectively, the maximum and minimum functions
between f and g.

Like the integral of Lebesgue, that is used to obtain the expected value of an
random variable with regard to a measure of probability, the integral of Sugeno
has been used to obtain the fuzzy expected value of an uncertain variable with
regard to a fuzzy measure.

Definition 4.10. Let X : Ω → [0, 1] be an uncertain variable (typically a mem-
bership function) and μ a fuzzy measure on Ω. The Fuzzy Expected Value (FEV)
of X is the real number:

FEV (X) = (S)
∫

Ω

Xdμ = sup
0≤α≤1

[α ∧ μ{ω ∈ Ω : X(ω) ≥ α}]. (4.9)

The following result was enunciated by Sugeno in 1974 and it is a consequence
of theorem 4.9.

Corollary 4.11. Let X : Ω → [0, 1] be a normalized random variable, which is
typically a membership function, and P a probability measure on Ω. Then, it
follows that:

|FEV (X) − E(X)| ≤ 1
4
. (4.10)

where E(X) is the expectation of the random variable X.

To proof this corollary it is enough to remind that the fuzzy measure in this case
is a probability measure and to use theorem 4.9 (Sugeno, 1974).

This corollary legitimates the use of the fuzzy expectation in substitution to
the classic one, when the uncertainty involved on the phenomenon under study
is not originated from randomness but rather from the different possibilities for
the variable in question.

It is important to point out that it is not possible to reduce the maximum dif-
ference of 1

4 in theorem 4.9 above. In other words, there are functions f that this
difference is attained (Ralescu & Adams, 1980). However, by choosing certain
categories of functions, such differences are substantially reduced (Bassanezi &
Barros, 1995). Actually, we verified that, for random variables X with symmet-
rical distribution the following theorem holds:
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Theorem 4.12. Let X : Ω → [0, 1] be a random variable with a probability
density function f : [0, 1] → [0, 1], symmetrical in relation to x = 1

2 , that is,
f(x) = f(1 − x) for all x ∈ [0, 1]. Then,

FEV (X) = E(X).

Proof: Since f(x) = f(1 − x), then

∫ 1
2

0
f(x)dx =

∫ 1
2

0
f(1 − x)dx =

∫ 1
2

1
−f(x)dx =

∫ 1

1
2

f(x)dx.

On the other hand,

∫ 1

0
f(x)dx = 1 =

∫ 1
2

0
f(x)dx +

∫ 1

1
2

f(x)dx =⇒
∫ 1

2

0
f(x)dx =

∫ 1

1
2

f(x)dx =
1
2

and H(α) = P {ω ∈ Ω : X(ω) ≥ α} =
∫ 1

α f(x)dx.
Thus,

H(
1
2
) =
∫ 1

1
2

f(x)dx =
1
2

and, consequently, FEV (X) = 1
2 .

In addition, it is known that the stochastic expectation E(X) of any symmet-
rical random variable coincides with the median, and this is equal to 1

2 , what
proves the theorem.

To finish this section we will enunciate a method to obtain FEV (X) for the
case in which X is an uncertain variable that assumes a finite number of values.

Theorem 4.13. Suppose that the variable X : Ω −→ [0, 1] assumes only n + 1
values, {ai}1≤i≤n+1, and let be {μi}n

i=1 the distinct values of μ{ω ∈ Ω : ω ≥ ai},
excluding the values μ = 1 and μ = 0. Assuming, without loss of generality, that
0 ≤ ai ≤ aj ≤ 1 if i ≤ j, then:

FEV (X) =
∫

Ω
Xdμ = median of A,

where A = {a1, a2, . . . , an+1, μ1, . . . , μn} is an increasing ordered set.

It is interesting to remember that the median of an increasing ordered sequence
{an}n∈N is defined by;

med({an}) =

⎧
⎪⎨

⎪⎩

a(n+1)/2 if n is odd

an
2

+ a( n
2 +1)

2
if n is even

. (4.11)

The proof of the theorem 4.13 could be found in the book by Kandel (1986).
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4.2.3 Fuzzy Expected Value Applied to the Accidents of Traffic
Analysis, in the São Paulo City, Brazil

São Paulo is one of the most populous cities of the world, counting now about 17
million inhabitants in the called Great São Paulo (the town and main municipal
districts of the surroundings). As expected, the traffic is one of the principal
problems of the city, representing a great challenge for the local authorities.
Only in the city of São Paulo it is registered two vehicles per inhabitant. Among
the problems associated to the traffic we have the jam of the principal roads,
resulting in hundreds of kilometers of traffic jam a day in the rush hours, and in
the great number of accidents.

The accidents of traffic in the city corresponded in 1999 to 14% of the distribu-
tion of all deaths for external causes. In São Paulo is registered one traffic accident
every 3 minutes, resulting in about 180.000 per year. Of these accidents, one death
is registered every 6 hours, or 4 deaths a day, and about 1.500 per year.

The accidents of traffic vary from serious accidents, with death occurrence
in the place, to light accidents, small crashes without victims. Seeking a better
planning of resources and strategies definition that leads to reduction of the
number of the accidents and deaths, information about the distribution of the
types of accidents in time and in space are routinely collected and organized by
the Company of Engineering of Traffic (CET), resulting in an extensive database
on the accidents in the city.

Since the information about the gravity of the accident is as important as their
numbers, from the decision making point of view, the objective in this study was to
analyze the distribution of the accidents weighted by their gravity. The idea was
to compare the analysis of the absolute data with that weighted by the gravity
through the Fuzzy Expected Value. We analyzed the April data of 1997 and 1999.

In 1997 it was registered a total of 17,762 occurrences. From that, 12,304
(82.7%) without victims and 2,570 (17,3%) with victms. In 1999 it was registered
a total of 14,874 occurrences, from that 15,227 (85.8%) without victims and
2,535 (14,3%) with victims. Table 4.1 below presents the weekly distribution of
accidentes considering only the accidents with victims.

It is possible to observe in table that the day with the greater occurrence
number was Saturday, in 1997, and Friday, in 1999, as expected. The gravity of
an accident is classified into four categories: cases without victims, cases with
light victims, cases with serious victims and, cases with fatal victims. In order
to calculate the Fuzzy Expected Value for the number of accidents with victims
we elaborated the following fuzzy set to the gravity of accident :

gravity = 0.3/light + 0.7/serious + 1.0/fatal.

The fuzzy measure considered was μ(S) = #S/#Ω, given by:

μ{ω ∈ Ω : X ≥ α} =

⎧
⎨

⎩

1 if 0 ≤ α ≤ 0.3
(total − light)/total if 0.3 < α ≤ 0.7

fatal/total if 0.7 < α ≤ 1.0
. (4.12)
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Table 4.1. Weekly distribution of the absolute number of accidents with victims in
April 1997 and in April 1999, from CET of São Paulo City

Day 1997 1999
Sunday 405 348
Monday 260 334
Tuesday 358 339
Wednesday 362 324
Thursday 327 426
Friday 363 438
Saturday 460 361
Total 2,535 2,570

As an example consider the number of accidents on Saturday, which recorded 237
light cases, 197 serious cases and 26 fatal cases. For this day the fuzzy measure
above is:

μ{ω ∈ Ω : X ≥ α} =

⎧
⎨

⎩

1 if 0 ≤ α ≤ 0.3
0.485 if 0.3 < α ≤ 0.7
0.057 if 0.7 < α ≤ 1.0

. (4.13)

The calculus of [α ∧ μ{ω ∈ Ω : X(ω) ≥ α}] in (4.9) for Saturday provide:

{0.057, 0.300, 0.485, 0.700, 1.000}
and, therefore, the FEV is equal to 0.485, since this is the maximum value of the
sequence. Table 4.2 presents the results of the FEV for everyday of the week.

If we rank the days of the week in a crescent way for the absolute number of
accidents we will have that, in April of 1997, Saturday occupies the first place,
followed by Sunday and Friday, and in 1999 the first place in number of accidents
is Friday, followed by Thursday and Saturday. However, when we considered the
gravity of the accidents we obtain a different sequence. In April of 1997 Saturday
continues occupying the first place, however, Friday occupies the second place
now and Sunday is in third. As for 1999, a larger modification is observed. In

Table 4.2. FEV results for the number of accidents with victims weighted by the
gravity of the accident, for April 1997 and April 1999 (Data from CET of São Paulo
City)

Day 1997 1999

Sunday 0.469 0.454
Monday 0.381 0.347
Tuesday 0.366 0.345
Wednesday 0.384 0.435
Thursday 0.370 0.399
Friday 0.474 0.402
Saturday 0.485 0.421
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this case, Sunday is the most worrying day, followed by the Wednesday and
Saturday.

The main objective of this example is to illustrate that the results can be
different when analyzed under a fuzzy perspective. The advantage of the use
of FEV in this example was to allow a subjective evaluation for the absolute
number of accidents, taking into account the gravity of these.

4.3 Probability of Fuzzy Events

As discussed before, fuzzy logic and probability theory, although similar in cer-
tain perspectives, were designed to different tasks. The values of probability
measure has been classically defined as a number between 0 and 1 that pre-
serves the additive property. However, in the real world there are cases where
such a precise probability measure is difficult to obtain. This motivated the
development of interval probability theories, one of the best known being the
Dempster-Shafer theory of evidence (see Shafer,1987, for details), which is also
called the theory of belief functions. Fuzzy probability in turn is a generalization
of interval probability in which the probability value is bounded by a fuzzy set
(Klir & Yuan, 1995).

The notion of fuzzy events and their probability measures were first intro-
duced by Zadeh (1978). Since then, several other authors have contributed to
comprehension of the relationships between fuzzy logic and probability theory.
A remarkable account of the histories about fuzzy logic and probability is given
by Yen and Langari in their book (1999).

A way of uniting the theory of probabilities and fuzzy logic is to consider
the probability of a fuzzy event. An event is a subset of the sample space that
shares a common characteristic of interest. However, there are situations when
the event has not well-defined sharp boundaries. These events are called fuzzy
events. Formally, a fuzzy event is a fuzzy subset of the sampling space and the
probability of a fuzzy event may be seen as a generalization of the probability
theory (Yen & Langari, 1999; Pedrycz & Gomide, 2007).

As a classical event is a crisp subset of the sample space, a fuzzy event is
simply a fuzzy subset of the sample space.

Consider a probability space (Ω,A, P ), in which Ω is the space of events, A
is a σ − algebra, and P is a probability measure in Ω. A fuzzy event in Ω is a
fuzzy subset A of Ω whose membership function μA : Ω → [0, 1] is measurable.
That is, μA is a random variable, in a classical sense.

Thus, the probability of A is given by:

P (A) = E(μA),

where E(X) represents the mathematical expectancy of the random variable X .
That is,

E(X) =
∫

Ω

XdP. (4.14)
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in which the integral is the Lebesgue integral in relation to the measure of
probability P .

Note that if A is a classical event, then its membership function is χA : Ω →
{0, 1}, which is a discrete random variable. So the expression (4.14) has a form:

E(χA) = 0 · P (Ac) + 1 · P (A) = P (A). (4.15)

Thus, the equation (4.14) generalize the classical case.
In the fuzzy case μA can be not discrete, but from (4.14) and remembering

that χ∅ ≡ 0 and χΩ ≡ 1, we find:

P (∅) = 0 and P (Ω) = 1,

which result in 0 ≤ P (A) ≤ 1, since 0 ≡ χ∅ ≤ μA ≤ χΩ ≡ 1. This prove that, in
fact, equation (4.14) defines a probability measure.

It is interesting to point out that if the probability measure is originated from
a function f : IR → [0, ∞] with

∫∞
−∞ f(x)dx = 1, then

P (A) = E(μA) =
∫

Ω

μAdP =
∫ 1

0
μAf(μA)dμA, (4.16)

in which the last integral is in the Riemman sense.
It is interesting to note that expression (4.16) considers both fuzzy and

stochastic uncertainties involved in the problem. While the membership func-
tion μA takes account of the fuzzy uncertainty, the density function f(x) takes
account of the stochastic uncertainty. In addition, the expression (4.16) can be
interpreted as the average of μA weighted by f(μA).

In relation to the probability of fuzzy events, it is worthwhile to observe that
in the classical case, under the Borel σ − algebra B, the probability measure P
on A defines a probability PX on B in the following way:

PX(X ∈ B) =
∫

B

f(x)dx, for all B ∈ B. (4.17)

In the fuzzy case, that is, when B is a fuzzy subset of IR, with μB measurable,
Zadeh (1978) generalized the expression (4.17) to:

PX(X is B) =
∫

B

μBf(μB)dμB, for all B ∈ B. (4.18)

For discrete variable the expression (4.18) can be rewrite as:

PX(X is B) =
∑

i

μB(xi)P (xi). (4.19)

Recently, Massad and collaborators presented two examples of applications of
fuzzy probabilities to hypothetical epidemic situations, in order to answering
two epidemic questions, the second of which involving Bayesian aspects central
to causal studies (Massad et al., 2003). This work will be discussed in the next
section.
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4.3.1 Fuzzy Probabilities of Epidemic Events

Certainly the most important application of fuzzy logic in epidemiology and
health areas consists in its linguistic variables approach. This powerful tool is able
to deal with the huge number of uncertainties characteristic of epidemic problems
but also has enormous potential to solve problems that the complementary field
of probability theory fails to do in any reasonable way.

Questions like “What is the probability that an individual (a population) very
exposed to a certain cause will develop a severe disability?” are very difficult to
deal with classical probability tools. The hedges emphasized very and severe are
quantifiers of epidemic situations which are prone to be appropriately included
in epidemic models by the use of fuzzy sets theory.

Suppose that X is a random variable that counts the total number of HIV
(the causative agent of AIDS) positive individuals in a sample of 100 individ-
uals taken from a population of intravenous drug abusers with seroprevalence
of 50% (that is half of this population has the AIDS virus, or at least its spe-
cific antibodies). The interesting fuzzy event can be expressed by the question
“What is the probability of the fuzzy event that this sample of 100 individuals
has several more positive than negative individuals?”. This fuzzy event may be
characterized by the following membership function:

μA(x) =

⎧
⎨

⎩

0 if 0 ≤ x ≤ 50
(x − 50)/30 if 50 ≤ x ≤ 80.
1 if x ≥ 80

(4.20)

In a population with 50% seroprevalence to HIV, the probability distribution
function is described by a Binomial distribution with p = q = 0.5 and for a
sample of 100 individuals we have:

P (xi) =
100!

i! (100 − i)!
0.5i0.5100−i. (4.21)

Therefore, the fuzzy probability of getting several more positive than negative
individuals in a sample of 100 individuals is given by equation (4.19) and for
this example results in 0.067 or 6.7%.

Let us now suppose that we are interested in answering the question “What is
the fuzzy probability that an individual very active sexually will develop AIDS
very quickly?”. We are now dealing with the conditional probability that an
individual will develop AIDS with a certain speed given that he/she is subject
to a certain risk due to his/her sexual activity level. In this case we need to
define the conditional probability of the fuzzy event. For this, suppose that A
and B are any two events in a sample space Ω. The probability of both fuzzy
events occurring is defined as (Yen & Langari, 1999):

P (A ∩ B) =
∑

x∈S

μA(x)μB(x)P (x). (4.22)
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Therefore, the conditional probability of A given B is

P (A |B ) =
P (A ∩ B)

P (B)
, (4.23)

where P (B) �= 0 and is given by Eq. (4.19).
Suppose now that the time in years taken to develop full-blown AIDS disease

is a fuzzy variable and that the fuzzy event “to develop AIDS very quickly” is
described by the following membership function:

μA(x) =

⎧
⎨

⎩

1 if x ≤ 5 years
(10 − x) /5 if 5 ≤ x ≤ 10 years

0 if x ≥ 10 years
(4.24)

and that the incubation period is described by the prevalence profile shown in
figure 4.2:

Fig. 4.2. Prevalence profile of HIV, in time to AIDS (Massad et al., 2003)

Suppose also that the sexual activity, expressed by the annual rate is a fuzzy
variable and that the event “sexually very active” is described by the following
membership function:

μB(x) =

⎧
⎨

⎩

0 if x ≤ 4 years−1

(x − 3) /8 if 4 ≤ x ≤ 10 years−1

1 if x ≥ 10 years−1
(4.25)

and that the distribution of new sexual partners per year is given by figure 4.3.
So, the probability that an individual very active sexually will develop AIDS

very quickly is obtained by applying equations (4.19), (4.22) and (4.23) and
results in 0.734 or 73.4%. In these calculations it was considered the term P (x)
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Fig. 4.3. Distribution of new sexual partners per year (Massad et al., 2003)

of equation (4.22) as the fuzzy probability calculated by equation (4.19), that is,
the product of the prevalence by its membership degree (Massad et al., 2003).

4.4 Final Considerations

In this chapter we present some mathematical concepts of fuzzy theory, as fuzzy
measure, fuzzy integral, and probability of fuzzy event. The main goal was com-
pare the fuzzy and probabilistic approaches, highlighting the differences and
similarities among them. Despite of the possible mathematical difficulties for
a not familiarized reader, the presented examples can serve as possibilities of
applications in epidemiology problems. We hoped these can act as seeds for fu-
ture works. In the next chapter we will be devoted to the called fuzzy linguistic
models, addressing static and dynamical systems.
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Epidemiology is concerned with the identification of risk factors for diseases.
This process relies on the definition and estimation of measures of association
between a putative risk factor and its putative outcome. In order to achieve this
end, several measures of association (Kleinbaum et al., 1982) are commonly used,
namely the risk ratio (RR), the risk difference (RD), the attributable risk (RA),
the odds ratio (OR) and the hazard rate ratio (HR). Some of these measures
were introduced in chapter 3 and we revisit their definitions at the beginning of
this chapter. Often, the causal pathway between risk factors and disease outcome
is translated into statistical models and the measures of association of interest
can be estimated as functions of the model parameters.

In all steps above, sources of uncertainties can be present. Uncertainty in
epidemiology is not restricted to sampling variations or individual heterogeneity.
Uncertainties also arise from ignorance on how best assign individual subjects
to the exposure and disease categories as well as ignorance on the very definition
of the putative causal pathway. Several levels of imprecision and uncertainty,
particularly in epidemiological studies, permeates the process leading to the
establishment of a risk factor-disease association. As discussed in chapter 1,
this may cause a tremendous amount of imprecision and uncertainty in the
interpretation of effect measures of covariates of interest.

Nowhere in the field of biosciences is the need for tools to deal with uncertainty
more critical than in medicine and epidemiology. A rigorous treatment of the var-
ious dimensions involved is still lacking, and recent contributions to this topic can
be found in Almond (1995) and Pearl (2000). In what follows,we review the various
dimensions contributing to the definition of measures of association in epidemiol-
ogy. We further indicate the initial steps in using fuzzy logic to extend the defi-
nitions of epidemiologic measures of association in the presence of uncertainties
about the membership of study subjects to epidemiologic categories of interest.

5.1 Risk and Common Measures of Association Used in
Epidemiology

In chapter 3, section 3.1, risk was defined in the context of a binomial model
of disease occurrence as the probability of failure, i.e., the probability that the

E. Massad et al.: Fuzzy Log. in Act.: Appl. in Epidem. & Bey., STUDFUZZ 232, pp. 79–95, 2008.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2008
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event under observation does occur within a certain specified period of time and
conditional on not being lost to follow-up from any other causes during that
period. Along with the definition of risk, π, the reader was also introduced to
definition of odds ( π

1−π ).
The concept of risk plays a central role in modern Epidemiology (Morgenstern

et al., 1980; Rothman et al., 2008). In causal studies individuals at risk are
supposedly exposed or non-exposed to a certain cause and are then categorized
into diseased and non-diseased. The definition of the concept of risk is given at
the individual level while its estimator is defined at the population level. Most
epidemiological measures relating the association between disease (or other event
of interest for that matter) and its putative “cause” are derived from the concepts
of outcome risk or odds.

Suppose that we intend to compare two groups subject to treatments A and
B. Let πA and πB denote the risk of experiencing the event of interest in each
group. Common measures of association between treatment and the outcome of
interest can be derived from the risk or the odds. They are:

RD - risk difference = πA − πB ;
RR - relative risk =

πA

πB
;

RA - attributable risk =
πA − πB

πB
; and

OR - odds ratio =
πA

1−πA

πB

1−πB

.

Section 3.1 also introduces the concept of hazard rate denoted by λ. Common
measures of association derived from this concept are:

HD - rate difference = λA − λB, and

HR - rate ratio =
λA

λB
.

5.1.1 Potential Outcomes

The framework of potential outcomes (Splawa-Neyman, 1923; Holland, 1986;
Rubin, 1974) adds a causal interpretation to slightly modified versions of the
measures described above. Under this approach, the effect of an intervention
(e.g., treatment or exposure) is defined by the comparison of what would happen
to some individual or group under different treatment or exposure conditions. In
order to introduce the main ideas, we require a notation for observed and latent
quantities (Joffe et al., 2004).

Let the subscript i denote the unit of observation or subject. We denote the ob-
served level of the treatment whose effect we wish to measure by Ai. By Y , we
denote the continuous or discrete outcome of interest. We denote by Y a

i potential
outcomes that we would see in subject i were that subject to receive a hypothet-
ical level of treatment a. Until the time a decision is made about treatment, the
outcome Y a

i observed under any given treatment a is potentially observable. Y a
i is
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observed if subject i receives treatment level Ai = a. If Ai �= a, Y a
i is not observed

and counterfactual reasoning is required to assign values to it. The vector Y ≡ Y a

denote the all potential outcomes Y a for a given subject i.
Under the potential outcome framework, causal effects are comparisons of dif-

ferent potential outcomes Y a
i for the same units i under different treatment levels

a and a′. However, the outcomes Y a
i and Y a′

i are not simultaneously observable
in subject i and, therefore, one cannot directly compare these potential outcomes
for any individual subject. Instead, one can estimate the distributions or expec-
tations of potential outcomes in a group defined by pretreatment covariates (V)
under common assumptions that are often made and detailed next.

We denote the joint density of the potential outcomes Y in a subset of the
data defined by covariates V by f(Y|V). Analogously, we denote the marginal
density of the potential outcome Y a in the subset V by f(Y a|V). The joint
density is not generally estimable and the models used to estimate f(Y a|V)
(densities) or E(Y a|V) (expectations) require additional assumptions.

The first common observed assumption implies no interference and the sta-
bility of treatment among units of observation. It requires that the potential
outcomes in the i-th individual are independent of the treatment assignment
and outcome in another unit of observation. Cox (1958) called this assump-
tion the assumption of no interference between units. Rubin (1980) dubbed this
SUTVA for the stable unit treatment value assumption, but more recently, he
has adopted the term stability assumption (Rubin, 1990). Under the stability
assumption, if there are two treatments, then there are only two possible out-
comes for each person, one for each treatment, and the two completely exhaust
the possibilities.

Just as it is not possible to observe both potential outcomes in one individ-
ual, the average causal effect in the population is also not observable. To make
inferences based on this information, we need additional assumptions regarding
the mechanism of assignment of treatments to the individuals. Once a treatment
is assigned, then, under this model, the potential outcome that will be observed
for that individual is determined, i.e., the potential outcomes Y do not predict
treatment assignment once one accounts for baseline covariates X. It is also as-
sumed that there is a nonzero probability that subjects with any covariate level
X receive treatment level a, that is,

p(A = a|X,Y) = p(A = a|X) > 0

for all a, X, and the assumption is known as strong ignorability of treatment
assignment (Rosenbaum & Rubin, 1983).

Randomization, such as by the flip of a fair coin, is an assignment mech-
anism that generally ensures that the treatment assigned to an individual is
independent of the potential outcomes in that individual. If the treatment is
allocated randomly, then under the stability assumption, the expected value if
everyone received one treatment would be equal to the expected value of those
who actually receive that treatment. More generally, it is assumed that within
strata defined by covariates X, groups assigned to various levels of treatment are
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comparable except for the effect of treatment (Greenland & Robins, 1986).
Marginal structural models (MSMs) provide a way to model these aggregate
causal effects (Joffe et al., 2004).

5.2 Infectious Diseases and Violation of the Stability
Assumption

The development up to now has relied on the stability assumption, that is, the
assumption that there is no interference between the units. However, SUTVA
is often violated in infectious diseases (Halloran & Struchiner, 1995). A funda-
mental aspect of infectious diseases is transmission from one host to another,
however, so that whether a person becomes infected depends upon who else
is infected. Sir Ronald Ross called this phenomenon “dependent happenings”
(Halloran & Struchiner, 1991) and it has consequences for the applicability of
the model for causal inference to infectious diseases. Let’s examine the model of
causal inference used by Rubin and others in light of questions posed in evalu-
ating interventions against infectious diseases, say a vaccine.

Assume that there are two people, and that person 2 would become infected
through a contact with person 1 under the situation that neither is vaccinated.
Assume further that if person 1 is vaccinated, he will not become infected. Then
person 2 will not become infected, even if he is not vaccinated. The infection out-
come in person 2 depends on the vaccination status of person 1. The assumption
that the outcome in any individual is independent of the treatment assignment
in other persons, the assumption of no interference between units, is violated.

The dependence in happenings in infectious diseases differs in its essence from
the interference discussed by Cox (1958). The interference in agricultural exper-
iments, for example, is a nuisance that we try to be rid of by leaving guard rows
between the different plots. The contacts and mixing patterns among members
of a population, however, take place even without the presence of the infec-
tious agent. The exposure to infection provided by the other members of the
population in infectious diseases, either directly or via vectors, is essential to
transmission as well as for evaluating the effects of the intervention. If no one
were exposed to infection, no one would become infected, all observed outcomes
would be zero, and the difference between all observed outcomes would be zero.
The nature of transmission itself makes it a sine qua non of infectious diseases.
This essential difference between dependent happenings and interference must
be kept in mind in further examination of the model of causal inference. The
attempt to prevent the exposure to infection, or the interference, can itself be
viewed as a type of cause, or manipulation, to be evaluated using a different
type of causal effect, the indirect effect (Halloran & Struchiner, 1991).

Consequences of the violation of the stability assumption include the need
for an expanded representation of outcomes, and the existence of different kinds
of effects, such as direct and indirect effects. Effects of interest include changes
in susceptibility as well as changes in infectiousness. As an alternative, we can
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define the transmission probability formally as an average causal parameter of
effect in a population by conditioning on exposure to infection. We address this
topic next.

5.2.1 Vaccine Efficacy

Given the structure of dependent happenings in infectious diseases which breaks
the commonly made SUTVA assumption, effects of a vaccine, either uncondi-
tional indirect or total effects are difficult to define formally using the model
for causal inference based on potential outcomes. The assignment mechanism
can influence the sampling mechanism when it determines who is exposed to
infection raising problems that require further inquiry. Here, we review the role
of differential exposure to infection in defining direct and indirect effects of a
vaccine as a particular application in infections diseases of the model of causal
inference based on potential outcomes (Halloran & Struchiner, 1995; Halloran
et al., 1999).

What does it mean exactly when we say that a vaccine is 80 percent effi-
cacious? Due to the structure of dependent happenings in infectious diseases,
vaccination can produce several different kinds of effects, at both the individ-
ual and the population levels, not all of them described by a single estimate.
Therefore, one should make explicit the mechanism of vaccine action under con-
sideration. For example, vaccination can induce a biologically protective response
in a vaccinated individual or reduce the degree or duration of infectiousness for
other individuals. Moreover, widespread vaccination in a population can reduce
transmission and produce indirect effects, even in individuals who were not vac-
cinated. In addition, vaccination may result in change in behavior such that
vaccinated people might change their rate of making contacts with potentially
infectious sources altering the exposure to infection and the overall benefits of
vaccination.

The biologic aspects of vaccination that are of interest or that need to be taken
into account when estimating vaccine efficacy determine the necessary compo-
nents of the epidemiologic study design. In planning a study to evaluate the
effects of vaccination, one has to contemplate the choice of unit of observation,
comparison groups, parameter of effect, and level of information required.

Vaccine efficacy and effectiveness (VE) are generally defined as one minus
some measure of relative risk (RR) in the vaccinated group compared with the
unvaccinated group:

VE = 1 − RR.

This basic expression can accommodate different dimensions involved in the
interpretation of this concept. For example, the groups being compared could be
composed of individuals or of populations or communities. In addition, particular
study designs allow for the interpretation of VE as the direct protective effect
of vaccination. Under alternative design options VE estimates how vaccination
alters the infectiousness of a person who becomes infected.
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The primary effect of interest of vaccination is how well it protects the vac-
cinated individual. Biologically, the protective immune response can reduce the
probability that a person becomes infected given a specified exposure to or in-
oculum of an infectious agent. That is, it can reduce the transmission probability.
If a vaccinated person becomes infected, the immune response might reduce the
degree or duration of disease or the probability of dying from the disease. It may
also alter the rate of disease progression. Studies with either infection or disease
as outcomes are sometimes used to measure vaccine efficacy for susceptibility
(VES), though the distinction between infection and disease should always be
kept in mind.

As another example of effect of interest, a vaccinated person who becomes
infected may also be less infectious to other susceptibles or be infectious for a
shorter period of time. The vaccine efficacy for infectiousness (VEI) is of interest
because a vaccine that reduces infectiousness could have important public health
consequences. Other effects are possible (Halloran et al., 1999).

Let’s consider first the problem of estimating VES based on information on
transmission probabilities (pij), the probability that, conditional upon a contact
between an infective source with covariate status i and a susceptible host with
covariate status j, successful transfer and establishment of the infectious agent
will occur. The transmission probability could also be defined conditional on
a specified level of inoculum. A related concept is the secondary attack rate,
(SARij) defined as the proportion of susceptibles with covariate status j mak-
ing contact with an infectious person of covariate status i who become infected.
Let 0 and 1 denote being unvaccinated and vaccinated, respectively. Then, for
example, p01 denotes the transmission probability per contact from an unvacci-
nated infective person to a vaccinated uninfected person. Let p.0 and p.1 denote
the transmission probability to unvaccinated and vaccinated susceptibles, re-
spectively, where the dot in the subscript can denote any vaccine status or an
average across the population. Then VEs,p based on the transmission probability
or secondary attack rate is estimated from

VES,p = 1 − p.1

p.0
= 1 − SAR.1

SAR.0
= 1 −

vaccinated infections
vaccinated exposures

unvaccinated infections
unvaccinated exposures

.

Estimating vaccine efficacy from the transmission probability ratios requires
information on who is infectious and when, and whom they contact and how.
The type of contact and the infectiousness of the infective source will determine
the inoculum level per contact. If it were possible to measure the different types
of contacts, then the transmission probability for each type of contact could be
estimated, and the VES,p estimates could be stratified by type of contact. If
it is not possible to measure the levels of infectiousness, the inoculum level, or
the different types of contacts, then the estimates will reflect the unmeasured
heterogeneities.

As a second example, let’s turn our attention now to the problem of estimating
vaccine effect on infectiousness, VEI . The efficacy of a vaccine in reducing infec-
tiousness, VEI , can be estimated epidemiologically by comparing the per-contact



Measures of Association for Non-observable Subsets of the Target Population 85

transmission probability from vaccinated people who become infected with the
transmission probability from unvaccinated people who become infected. The
relative risk comparison groups are defined according to the vaccination status
of the infectious person contacting the susceptible person. In contrast to VES ,
which can be estimated using either conditional or unconditional parameters,
VEI can generally be estimated using only conditional measures such as the
transmission probability or secondary attack rate,

VEI,p = 1 − p10

p00
= 1 − SAR10

SAR00
.

Information on exposure to infection is often difficult or impossible to collect.
More commonly, studies are designed to estimate VES from events per person-
time of potential rather than actual exposure or simply from the proportion of
people who become infected in the vaccinated compared with the unvaccinated
groups. Studies for estimating VEI can be incorporated into those for estimating
VES , p based on the transmission probability, if the vaccination status of the
infectious person in a contact is known. The analysis can then simply stratify
on the vaccination status of both the infectious and susceptible persons in the
contact to get estimates of VES and VEI . One can specify additional study
designs for estimating specific measures of indirect, direct, total and overall
effectiveness of widespread vaccination in populations based on the choice of
comparison groups, the unit of observation, the choice of parameter, and the
amount of information about the transmission system required for estimation.

5.3 Measures of Association for Non-observable Subsets
of the Target Population

Actual study populations are often heterogeneous in biological, social or en-
vironmental characteristics relevant to the validity of field trials conducted to
evaluate interventions against infectious diseases. These heterogeneities result
in differences in susceptibility, exposure to infection, outcome assessment and
propensity to loss to follow up. Sometimes a few of these factors can be identi-
fied and measured and are represented explicitly by the vector of covariates X
in analytical models. Therefore, such measured differences can be controlled for
in the analysis.

However, most sources of heterogeneity, or lack of comparability among study
subjects remain unknown. Individuals are heterogeneous regarding their suscep-
tibility to infection, development and duration of natural immunity, etc. They
also react differently once vaccinated, and immune responses, ranging from to-
tal lack of protection to protection that is partial or complete, are found for
the different vaccines. Other sources of heterogeneity include vector behavior or
competency, seasonal variations in climate, spatial clustering, and age-related
inoculation rates or immunity. As we saw above, in the context of estimating
vaccine efficacy, the definition of treatment effects when estimating the efficacy
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of control measures against infectious diseases requires the specification of co-
variates not observable at the time a treatment decision is made.

Under heterogeneity one has the choice to report stratum-specific or summary
measures of effect, the latter representing weighted means of stratum specific
measures. It is well known that both measures might differ depending on the
distribution pattern of vaccine coverage among the various strata (Halloran et
al., 1992). The idea of stratum specific measures of effect can be taken one step
further by defining treatment effects for strata of the target population char-
acterized by variables not observable at the time a treatment decision is made
(Joffe et al., 2007). Among several possible frameworks for doing this, Frangakis
and Rubin (2002) introduced the concept of principal stratification in causal in-
ference. The idea was later applied in the context of assessing vaccine efficacy by
Hudgens, Hoering, and Self (2003). These authors postulated a principal stra-
tum of volunteers doomed to become infected whether randomized to placebo or
vaccine and developed hypotheses tests of vaccine effect specific to this stratum.
We briefly review the rationale of this approach. In order to do that we need to
expand on the notation introduced to describe the model of potential outcomes
above.

Let, in addition to the notation already introduced for the model of potential
outcomes, S be the vector of potential auxiliary outcomes inducing a stratifica-
tion in the target population within which one is interested in characterizing the
causal effects of infectious diseases control measures. Therefore, Sa denotes the
level of the auxiliary variable were a subject given treatment a.

Based on the idea of Principle Stratification, Gilbert, Bosch, and Hudgens
(2003) noted that for a vaccine trial, each subject enrolled in the trial must
be one of four unknowable types. This stratification of the target population
is motivated by the type of immune response elicited by the vaccine. In the
simplest case, the immune system when in contact with an antigen increases the
concentration of circulating antibodies against this antigen in the blood. These
antibodies are expected to increase the protection of the individuals against the
pathogen in question. Therefore, the subgroup of the “protected” individuals
consists of those who would mount an immune response if given a vaccine and
thus have a lower chance of becoming infected in this case, but who would remain
susceptible to becoming infected if given the placebo.

A vaccine does not always confer protection and might “cause” infections by a
variety of mechanisms. Some vaccines are actually live but weakened pathogens.
If the weakened pathogen is used in a weakened host, disease producing infec-
tion might result, as is the example of the attenuated yellow fever (Massad et
al., 2005a; Struchiner et al., 2004) and polio vaccines (de Oliveira & Struchiner,
2000). As a second mechanism, vaccine induced antibodies produced by the im-
mune system can “enhance” rather than reduce the chance a disease producing
infection occurs. Additionally, vaccines might induce an auto-immune reaction
which could hamper the ability of the immune system to fight infection or dis-
ease. As a third mechanism, a vaccine might induce a perception of protection
and encourage risky behavior that results in more exposure to pathogens, thus
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Table 5.1. Principal Strata

Principal Strata Potential Outcome Population
treatment A (V=1; C=0) Distribution

Naturally Resistant Y 0 = 0 θ00

(S0 = 1; S1 = 1) Y 1 = 0
Harmed Y 0 = 0 θ10

(S0 = 0; S1 = 0) Y 1 = 1
Protected Y 0 = 1 θ01

(S0 = 0; S1 = 1) Y 1 = 0
Doomed Y 0 = 1 θ11

(S0 = 0; S1 = 0) Y 1 = 1

leading to an increased probability of infection. These mechanisms lead to the
possibility of a second principal stratum, the subgroup of the “harmed” consist-
ing of those who would have a higher chance of becoming infected if given the
vaccine than if given the placebo.

The final two strata comprise the subgroups of the “naturally resistant” indi-
viduals and those uncapable of responding to the antigen challenge and therefore
“doomed” to becoming infected since their susceptibility remains the same irre-
spective of their vaccination status. Let Sa denote the auxiliary variable, level of
protection (high = 1, low = 0) conferred by treatment a. In general, the principal
strata are not fully identified from the data, because one cannot simultaneously
observe both potential auxiliary outcomes S0 and S1. Table 5.1 describes the
potential outcomes in the four possible strata.

In this context, the strata comprised by the subgroups of “naturally resis-
tant”, “harmed”, and “doomed” can be be regarded as non-informative in what
concerns the estimation of vaccine efficacy, and we may be interested in the ef-
fect of this vaccine among subjects that could respond to the vaccination, i.e.,
the “protected” stratum. If accepting this rationale, we should concentrate our
attention on comparing the proportion in this subgroup that would have become
infected if not vaccinated, p(Y 1 = 1|protected), and the proportion in the same
group who would have become infected if not vaccinated, p(Y 0 = 1|protected).

5.3.1 Randomization and Baseline Transmission

We have argued that evaluation of intervention measures against infectious dis-
eases shares the same general principles of validity with epidemiologic causal
inference, i.e., the process of drawing inferences from epidemiologic data aiming
at the identification of causes of diseases. Judicious exercise of these princi-
ples indicates that, for meaningful interpretation, measures of efficacy of disease
control interventions require definitions based upon arguments conditional on
the amount of exposure to infection, and specification of the initial and final
states in which one believes the effect of interest takes place (Struchiner et al.,
1994; Struchiner & Halloran, 2007). The paradigm of the randomized, double-
blinded, placebo controlled field trials is usually regarded as the gold standard in
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order to achieve this end. This view is supported by the fact that most sources of
heterogeneity, or lack of comparability among study subjects remain unknown
and cannot be controlled for in the analysis. Randomization and double-blinding
are two strategies designed to distribute these unmeasured heterogeneities ap-
proximately equally between the comparison groups. We review some miscon-
ceptions about randomization and what is actually achieved by this treatment
assignment mechanism in the context of infectious diseases epidemiology. Our
primary concerns here are concepts of study design and interpretation of the
efficacy estimates.

In any epidemiologic study conceived to assess the effect of a certain treatment
on an outcome of interest, comparison groups must be, in all material respects,
alike except for their treatment status. The statement can be interpreted as if the
same results would be expected if treatment status had been exchanged between
the two groups. In other words, exchangeability assures comparability between
treatment groups and is an important requirement for valid epidemiologic infer-
ence on the effects or causal role of the treatment of interest. Conversely, inher-
ent differences in risk between treated and untreated individuals imply lack of
comparability between treatment groups which could potentially bias the esti-
mation of the effects of said treatment on disease risk, a condition known as
confounding in epidemiology.

When the outcomes under study are independent, exchangeability guarantees
that it would be possible to describe the occurrence of the outcome of interest
among the treated individuals, had they not been treated, from the observed
data on the untreated. The latter sentence describes only partially the concept of
exchangeability but is sufficient to assure identifiability of causative parameters
(Greenland & Robins, 1986) in chronic disease epidemiology, where happenings
are independent. Complete exchangeability must also guarantee that it would
be possible to describe the occurrence of the outcome of interest among the
untreated individuals, had they been under treatment, from the observed data
on the treatment group.

In the context of vaccine evaluation, the requirement that the vaccinated
and unvaccinated be exchangeable was noted as early as 1915 by Greenwood
and Yule in their criteria for valid efficacy or effectiveness studies (Greenwood
& Yule, 1915). Field trials that comply with this requirement are believed to
yield unconfounded estimates of vaccine efficacy. This belief stems from the
analogy one could make between a vaccine and the treatment factor in epidemi-
ologic studies. However, direct application to vaccine field trials of the concepts
briefly described in the previous two paragraphs is not possible without further
qualification.

Halloran and Struchiner (1995) separate evaluation of vaccines on the one
hand, conditional on exposure to infection, and on the other hand, not con-
ditioning on exposure to infection. Thus, we must be aware that the concept
of vaccine efficacy is not unique and be explicit about our intents. In addi-
tion, since exchangeability within both pairs of comparison groups does not
necessarily hold simultaneously, field trials that yield valid measures of vaccine



Measures of Association for Non-observable Subsets of the Target Population 89

efficacy of one kind can potentially lead to biased estimates of efficacy of a dif-
ferent kind.

By the same token, partial and complete exchangeability must also be further
qualified. Partial exchangeability is expressed as the counterfactual reasoning re-
quiring that the ideal unvaccinated control group describe the potential outcome
in the vaccinated group in the absence of vaccination. In actual field trials, how-
ever, due to the indirect protection of the unvaccinated group which is brought
about by the presence of the individuals who became immune by the vaccine,
a mechanism known as herd immunity (Fine, 1993), even partial exchangeabil-
ity might not be achieved giving rise to different concepts of vaccine efficacy
(Halloran & Struchiner, 1991; Halloran et al., 1991). Complete exchangeability
requires, in addition, that the outcome observed in the vaccinated subjects de-
scribe the potential outcome in the unvaccinated group had it been vaccinated,
or, phrasing it in a different way, if vaccination states were exchanged, the value
observed for the incidence among vaccinated and unvaccinated subjects would
have been the same. Again, due to the indirect effects of a vaccine, the latter
statement gives rise to different interpretations. This translates into different
concepts of measures of vaccine efficacy that are discussed below.

The principle of exchangeability in actual vaccine field trials thus involves at
least two dimensions: (i) where in the sequence of pathogenic processes com-
parisons between vaccinated and unvaccinated is being sought; and (ii) how we
interpret the counterfactual reasoning implicit in the principle of exchangeability.
Dimension (i) leads to the concept of biological efficacy and dimension (ii) to the
concepts of direct and indirect effects of a vaccine. It then becomes a challenge
to epidemiologists to design studies where comparability is ensured and to data
analysts to develop methods to control for departures from the exchangeability
principle.

Perhaps, the single most difficult study design requirement an epidemiologist
must fulfill is to assure that effective exposure to the infectious challenge must be
identical in the case of the treated and untreated study participants. While the
necessity of comparability of personal attributes in the two groups is common
to epidemiologic studies in chronic and infectious diseases, the requirement of
comparability of exposure to infection is specific to epidemiologic studies in
infectious diseases and more subtle to fulfill.

Notice that exposure to infection might be the same within any trial but the
study population participating in trials taking place at other locations and time
may be subject to different baseline inoculation rates rendering comparison of
measures of vaccine efficacy across geographic locations or time more difficult.
Equal amount of exposure to infection in the vaccinated and unvaccinated groups
is an important requirement for the assumption of exchangeability to hold. Valid
comparisons, however, must be further qualified by making explicit reference to
the underlying level of exposure to infection in order to be appropriately in-
terpreted. It is well known that the background level of transmission is a func-
tion of seasonal factors (density of mosquitoes, climate, etc.), other concomitant
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Table 5.2. Expanded potential outcome framework presented in table 1 to accommo-
date infectious challenge Sa

Principal Challenge A (V = 1 / C = 0) Population
Strata Distribution

S0 = 0 Y 0 = 0 θ000

Naturally S1 = 0 Y 1 = 0
Resistant S0 = 1 Y 0 = 0 θ100

S1 = 1 Y 1 = 0
S0 = 0 Y 0 = 0 θ010

Harmed S1 = 0 Y 1 = 1
S0 = 1 Y 0 = 0 θ110

S1 = 1 Y 1 = 0
S0 = 0 Y 0 = 0 θ001

Protected S1 = 0 Y 1 = 0
S0 = 1 Y 0 = 1 θ101

S1 = 1 Y 1 = 0
S0 = 0 Y 0 = 0 θ011

Doomed S1 = 0 Y 1 = 0
S0 = 1 Y 0 = 1 θ011

S1 = 1 Y 1 = 1

control measures besides the vaccine, and changes in transmission brought by
the vaccine itself.

In table 5.2, we expand the previous potential outcome framework presented
in table 5.1 to accommodate this new dimension, i.e., infectious challenge. Notice
that in table 5.2 we treat the infectious challenge as a binary discrete variable.
In this case, one could argue that the informative principal stratum of interest is
given by the “protected” subgroup that were also challenged by natural exposure
to infection. Struchiner et al. (1994) and Struchiner and Halloran (2007) discuss
the cases in which Sa can be continuous or integer valued random variable.

Data on actual exposure to infection are scarce, but could indirectly be ap-
proximated by surrogate variables that are easier to collect. Variables that could
help in controlling for differences in exposure to infection include time since
arrival in the endemic area, reported number of previous morbidity episodes,
clinical signs (splenomegaly), and, possibly, serology at the start of follow up pe-
riod. The same objective could be achieved by taking advantage of the observed
clustering of cases within households in the same village. It seems that individ-
uals living in the same household are more homogeneously exposed to infection,
therefore, trials that compare vaccinated to unvaccinated persons matched on
household are less prone to bias from differences in exposure to infection. Finally,
one could reconstitute exchangeability by the appropriate use of mathematical
models. Data collected prior to the intervention helps to project the baseline
transmission level into the post intervention period, allowing for the construc-
tion of a comparison standard estimating what exposure to infection would have
been in the absence of intervention.
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In summary, in order to assure validity of comparison one must guarantee,
through appropriate mechanisms of vaccine assignment, exchangeability accord-
ing to the various aspects of the transmission process, ie., the infectivity of the
infectious source, the susceptibility of the susceptible, and the type of contact
of the susceptible with the infectious source.

5.4 Fuzzy Logic and Risk Estimators

In the previous sections we introduced a causal inference approach to the study
of infections diseases epidemiology based on a model of potential outcomes. In
addition to a counterfactual reasoning, this model also makes use of the notions
of risk, based on conditional probability, and causal effects, based on the compar-
ison of epidemiologic risk among treatment groups. This approach made explicit
the main sources of uncertainties in epidemiologic reasoning. The presence of
sources of uncertainties in this formulation provides the opportunity to address
uncertainty, imprecision and vagueness in epidemiology from a fuzzy logic per-
spective. We identify two key steps in this direction: the formulation of fuzzy
conditional probabilities and the definition of fuzzy measures of association.

5.4.1 Fuzzy Conditional Probability

The following paragraphs, adapted from Example 1 in Coletti and Scozzafava
(2004), serves as motivation for our discussion. When faced with the statement
E={“Mary is sick”}, it is natural to think that the statement was made in the
presence of some information about Mary’s morbidity status. This information
allows one to refer to a suitable membership function of the fuzzy subset of “dis-
eased people”. The suitability of interpreting the statement about Mary’s health
condition as an event, and the values of the membership function corresponding
to the relevant fuzzy set as probabilities is usually challenged in the literature.
The description of one’s health condition, including Mary’s, can be regarded as
vague and “vagueness is looked on as referring to the intended meaning (i.e., a
sort of linguistic uncertainty) and not as an uncertainty about facts” (Coletti &
Scozzafava, 2004), the latter being the very subject of probabilities but not the
former.

Suppose now that Mary’s condition can be defined by a laboratory exam and
we describe the linguistic uncertainty via a membership function, say, equal to
0 (healthy) for values of this laboratory exam below a certain cutoff point z1,
equal to 1 (diseased) for values of the exam above the cutoff point z2 > z1, and
increasing from 0 to 1 in the interval from z1 to z2. The assignment of such a
membership function is pretty general, the only restriction being the range of
values from 0 to 1.

On the other hand, the assignment of a subjective probability p to the
statement E={“Mary is sick”} has to obey certain rules such as the axiom of ad-
ditivity. Implicitly, and even in the absence of any other justification, the comple-
mentary statement Ec=“Mary is not sick” has also been assigned the subjective
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probability 1 − p in order to fulfill the consistency argument represented by the
additivity rule. Notice, however, that the assignment of a subjective probability
to the conditional statement E|Ax = {“Mary is sick”|‘‘Mary’s lab exam is x”}
does not imply any secondary assignment to the conditional statement E|Ac

x

where Ac
x denotes the complementary statement {“Mary’s lab exam is not x”}.

Coletti and Scozzafava (2004) propose, then, to identify the values of the
membership function with suitable conditional probabilities, which, in this case
could be expressed as:

H0 = Mary’s lab exam is < z1

H1 = Mary’s lab exam is > z2

and, further assume that P (E|H0) = 0 and P (E|H1) = 1.

5.4.2 Fuzzy Measures of Association

Suppose now, as a second complementary approach to the fuzzification of the
ideas expressed in this chapter, that individuals are assumed to be exposed to
some risk factor according to a certain fuzzy set membership functions and their
response is also categorized according to other fuzzy set membership functions.
Risk analysis is then performed by applying maximum likelihood and fuzzy set
theory. These procedures allow us to calculate Fuzzy Relative Risks and Fuzzy
Odds Ratios under individual heterogeneity (Massad et al., 2003), which are
more realistic estimators of risk assessment than their classical crisp counter-
parts.

We begin by defining a fuzzy risk estimator. In classical epidemiology, one kind
of risk estimator is the so-called risk ratio, RR. Under crisp logic setting, the risk
ratio is defined as the ratio of the conditional probability of developing a disease
given one is exposed to a certain cause, p(D|E), to the conditional probability
of developing the disease given one is not exposed to the cause, p(D| E), such
as (see chapter 3):

RR =
p(D|E)
p(D| E)

. (5.1)

However, if under crisp logic setting the risk ratio is defined in terms of con-
ditional probabilities, under fuzzy logic setting it must be defined in terms of
conditional possibilities. A possibility distribution function, r, associated with
a fuzzy subset A is numerically equal to its grade of membership function μA

(Zadeh, 1978), such that:

r(x) = μA(x) for all x ∈ X

with measure π given by:

π(A) = maxx∈Ar(x). (5.2)

We can now define a Fuzzy Risk Ratio, FRR, as the ratio of the conditional
possibility of developing a given disease severity, d, given that one is exposed to
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Table 5.3. Heterogeneity in the risk classes

E
D| E D | E

E D|E doomed at risk
D |E protected resistant

a certain level of a causal factor, e, to the conditional possibility of developing
disease severity, d, given that one is not exposed to the causal factor, e.

One basic difference between crisp and fuzzy setting approaches is the fact
that in fuzzy logic the intersection of a given fuzzy set, A and its complement,
Ac is different from the empty set, such that

A ∩ Ac �= ∅. (5.3)

We, therefore, have to consider the uncertainty generated by the fuzziness due
to the possibility that the sets of exposed and non-exposed intersect and create
a subset with diseased and non-diseased individuals. The conditional possibility
of developing the disease, given that one belongs to the subset defined by the
intersection E ∩ Ec is given by:

Poss(D |E ∩ Ec ). (5.4)

The fuzzy risk ratio estimator, FRR, should then be defined in terms of condi-
tional possibilities, and it is expected that it should be proportional to the ratio
between the conditional possibility of developing disease given that one is exposed
to a suspected factor, Poss(D |E ), to the conditional possibility of developing dis-
ease given that one is not exposed to that factor, Poss(D

∣
∣
∣E ), such that:

FRR ∝ Poss(D |E )

Poss(D
∣
∣
∣E )

. (5.5)

Let us now examine a more general situation, due to Greenland (1987), who
considered the theoretical possibility of four types of individuals (see section
5.3); those doomed, who would develop a certain disease, independently of being
exposed or not to the suspected cause; those resistant, who would never develop
the disease, either exposed or not; those protected, for whom the exposure is a
protection factor, that is, they develop the disease if not exposed to the sus-
pected cause; and those at risk, who develop the disease only if exposed to the
suspected cause. This classification assumes a high degree of heterogeneity in
the population and involves several uncertainties in the definition of each class.
Table 5.3 shows the four types of individuals and their respective risk categories.

A fuzzy logic approach should then consider the degree of membership of
individuals to each of the above sets. The next step should be the definition
of the conditional possibilities associated to each of the fuzzy subsets. A Fuzzy
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Odds Ratio (FOR) estimator could then be defined as the ratio of the following
conditional possibilities:

FOR =
Poss(D | E) ∧ Poss(D|E)
Poss(D| E) ∧ Poss(D |E)

. (5.6)

where the symbol ∧ is the min operator.
The rationale behind this expression is the following: individuals who do not

develop the disease if not exposed and develop the disease if exposed, are classi-
fied as individuals at risk. Those who develop the disease if not-exposed and do
not develop the disease if exposed are classified as protected. Hence, the ratio
between individuals at risk and protected should provide a good measure of as-
sociation. Considering the uncertainties related to the classification criteria and
the consequent heterogeneity in the population, a fuzzy approach generating the
conditional possibilities above would define the association between cause and
effect depending on the ratio expressed by equation (5.6) being greater (positive
association), or lower (negative association) than one.

We simulated the theoretical scenarios above in order to assess the fuzzy
approach. The characteristic function for the exposed fuzzy subset, μE(x), was
generated as a uniform distribution. The characteristic function for the diseased
fuzzy subset, μD(x), was associated to the exposed by the following logistic
model:

μD(x) =
exp(βμE(x))

1 + exp(βμE(x))
, (5.7)

where β is a parameter whose signal and magnitude indicate the direction and
intensity of the association. The conditional possibilities were defined according

Fig. 5.1. Simulation of the fuzzy odds ratio (FOR) according to equation (5.6), for
each value of β (Massad et al., 2003)
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to the rule Poss(D | E) = max
x∈X

[min(μ
D

(x), μ
E

(x))], where the operator min was

applied at individual level and the operator max was applied at the populational
level. Figure 5.1 shows the results of the simulation.

It can be noted from figure that when β is lower than zero the fuzzy odds ratio,
FOR, is lower than one, indicating a protecting effect of the exposure. On the
other hand, when β is greater than zero the FOR is greater than one, indicating
a risk effect of the exposure. When β is equal to zero, the FOR is equal to one,
indicating the absence of association between exposure and disease. It can also
be noted from figure 5.1 that the FOR is non-linearly related to the association
parameter β (Massad et al., 2003).

The results of the simulations above have demonstrated a good plausibility
of the fuzzy logic approach since they confirm what should be expected to find
under the conditions imposed by the simulations assumptions. We could even
conjecture that the degree of nonlinearities and other relations between the first
derivative of the function presented in figure 5.1 are, to a certain level, related to
the uncertainties in the process of classifying individuals in the several subsets
of the model. However, future research is still needed to clarify this point.



6 Fuzzy Decision Making in Public Health
Strategies

Making decision is one of the most fundamental activities of human beings (Klir
& Yuan, 1995; Yager & Filev, 1994; Zadeh, 1973). This is particularly true in
Public Health where decisions usually have relevance for millions of people. In
the field of vaccination strategies design, decision making concerning the target
population for the immunization program, the proportion of susceptibles to be
vaccinated, the optimal age to immunize children and the nature of the strategy,
e.g. selective or indiscriminate, are examples of the variables to be optimized,
subject to a set of constraints. As an example, we present in this chapter a fuzzy
model to decision making applied to the design of the vaccination campaign
against measles in São Paulo, Brazil (Massad et al., 1999)

Decision making comprises the study of how decisions are actually made and
how they can be made better or more successfully (Klir & Yuan, 1995). Models
of human decision making generally include the aggregation criteria or criteria of
constraints (Zimmermann, 1996). For the case that criteria and/or constraints
cannot be modeled crisply but as fuzzy sets a decision has been defined by
Bellman and Zadeh (1970) as the intersection of fuzzy sets representing either
objectives or constraints. The grade of membership of an object in the intersec-
tion of two fuzzy sets, that is, the “fuzzy set decision” was determined by the
use of both the min operator or the product operator (Zimmermann, 1996).

While decision making under conditions of risk have been modeled by prob-
abilistic decision theories and game theories, fuzzy decision theories attempt
to deal with vagueness and monospecificity inherent in human formulation of
preferences, constraints, and goals (Klir & Yuan, 1995).

In the first paper on fuzzy decision making Bellman and Zadeh (1970) sug-
gest a fuzzy model of decision making in which relevant goals and constraints
are expressed in terms of fuzzy sets, and a decision is determined by an appro-
priate aggregation of these fuzzy sets. The decision models have the following
components (Klir & Yuan, 1995):

• a set A of possible actions;
• a set of goals, Gi(i ∈ N), each of which is expressed in terms of a fuzzy set

defined on A;

E. Massad et al.: Fuzzy Log. in Act.: Appl. in Epidem. & Bey., STUDFUZZ 232, pp. 97–110, 2008.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2008
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• a set of constraints, Cj(j ∈ M), each of which is also expressed in terms of a
fuzzy set defined on A.

The fuzzy set of decision, D, is that which simultaneously satisfies the given
goals Gi and constraints Cj , and is:

D(a) = min
[

inf
i∈N

Gi(a), inf
j∈M

Cj(a)
]

(6.1)

for all a ∈ A.

6.1 Designing a Vaccination Strategy

Let us assume that the objective of a vaccination campaign is the reduction
of the incidence of an infection like measles in children below 14 years of age,
the age interval where viral infections are most likely to be circulating. This
assumption is based on previous works which demonstrated that the force of
infection of the measles virus has a strong age-dependence, peaking around 2
years of age in the absence of vaccination (Anderson & May, 1991). Therefore,
in spite of the high proportion of cases in the age interval between 20 and 39
years of age, the highest incidence rate (normalized per 100,000 inhabitants)
observed during the epidemic occurred in children below 5 years old. In addition,
contact patterns suggest that adult cases are the product of infective contacts
of susceptible individuals in that age interval with children below 14 years old
(Massad et al., 1994b), the target age interval of the vaccination campaign. All
the subsequent analysis in this work are based on the assumptions above.

We begin by considering 8 possible vaccination strategies, composed by com-
binations of Selective vaccination,Si, meaning vaccinating only children without
vaccination record in the past, and Indiscriminate vaccination, Ij , that is, vacci-
nating children irrespective of previous immunization history (i and j stands for
the age intervals). Besides, we considered the use of Mobile Units, M.U., mean-
ing those vaccination sites that are not part of the Primary Care Network, as
opposed to Fixed Units, F.U., those belonging to the network. Table 6.1 shows
the various vaccination strategies considered.

The number of children, as well as the estimated proportion and number
of susceptible children (assuming the seroepidemiological profile of 1994 and the
drop in the routine measles vaccine coverage discussed above) in each age interval
of São Paulo State is shown in table 6.2.

The last column of table 6.2 is the maximum theoretical number of children to
be vaccinated in each age interval in order to stop the progression of the current
epidemics. The optimal strategy, therefore, would be that which would maximize
the number of susceptible children vaccinated in the target age interval, without
wasting resources by over-vaccinating children in any specific age interval.

The next step was to invite a number of experts from the Health Secretary
of São Paulo with great experience in vaccination campaigns in order to provide a
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Table 6.1. Possible vaccination strategies (modified from Massad et al., 1999)

Strategy Age intervals and Units
immunization history Type

1 S9m−6y and I6y−14y M.U.+F.U.
2 S9m−6y and I6y−14y F.U.
3 S9m−14y M.U.+F.U.
4 S6y−14y and I9m−6y M.U.+F.U.
5 I9m−14y M.U.+F.U.
6 S9m−6y F.U.
7 S9m−6y M.U.+F.U.
8 I9m−6y M.U.+F.U.

Table 6.2. Number, proportion of susceptible and number of susceptible children in
the target age-interval (modified from Massad el al., 1999)

Age Number of∗ Proportion of+ Number of
children susceptible susceptible

9m 49,500 0.65 32,175
10m 49,500 0.50 24,750
11m 49,500 0.50 24,750
12m 49,500 0.50 24,750
1-2y 640,609 0.10 64,061
3-5y 2,515,711 0.05 125,786
6-14y 5,920,000 0.05 296,000
Total 9,274,331 - 592,272

∗ Estimated from official data.
+ Estimated by dynamical modeling (Massad et al., 1994b).

scale of efficacy and/or constraints of each of the possible strategies considered.
The variables chosen by this experts team were:

• compliance by the population, that is, the proportion of the target population
expected to attend the campaign convocation of each possible strategy;

• human resources, a relative scale of the staff required (including the training)
for the implementation of each possible strategy;

• transportation, a relative scale of the difficulties in transport of people and
material of each possible strategy;

• communication, a relative scale of the difficulties in explain to the population
each possible campaign.

The minimum value of each of the variables will be that which determine
the success of the strategy. The result of such a consultation to the experts is
presented in table 6.3.

Values provided by the experts can be considered either as a proportion of
expected success of each strategy or as degrees of membership to the fuzzy sets of
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Table 6.3. Variables determinants of strategy success (Massad el al., 1999)

Strategy Compliance Human Transp. Communic. min
Resources

1 0.30 0.30 0.20 0.30 0.20
2 0.45 0.60 1.00 0.50 0.45
3 0.70 0.50 0.30 0.40 0.30
4 0.40 0.40 0.30 0.40 0.30
5 0.80 0.20 0.20 0.80 0.20
6 0.60 1.00 1.00 0.70 0.60
7 0.50 0.60 0.60 0.60 0.50
8 1.00 0.70 0.40 1.00 0.40

successful strategies. In both views the min operator is the one which determine
the expected results of each strategy. In addition, the max operator could be
applied in this stage of the analysis if we consider the variables presented in
table 6.3 as the only constraint of the strategies. According to this method, the
strategy which maximizes the success of the campaign would be the strategy
number 6.

The min values of the variables presented in table 6.3 allowed us to estimated
the expected number of children, in each age class, that would be vaccinated
in each of the possible strategies. So, for instance, strategy number one has as
limitation the transport of people and materials and would, therefore, cover only
20% of the target population. As that strategy proposed to vaccinate children
selectively from 9 months to 6 years of age and indiscriminately from 6 to 14
years of age, only 20% of the susceptibles below 6 years and 20% of all children
from 6 to 14 years old would receive the vaccine. The minimum square of the
difference between the number of children desired to receive the vaccine and
the number of children that the strategy would actually vaccinate in each age
class should determine the efficacy of each possible strategy, according to the
definition of optimal strategy, as presented above.

A normalized scale of the efficacy of each strategy is shown in table 6.4. This
was obtained by assuming that the most efficacious strategy is the one with
the minimum square difference, assigned value 1. The others are obtained as a
relative scale basing on multiples of the minimum square difference. Table 6.4
shows also the result of the economic costs of each strategy. This was calculated
assuming a unit cost of US$0.25 for the single measles vaccine, US$1.40 for
the measles-mumps-rubella (MMR) vaccine (applied only in children older than
one year of age) and a unit cost of US$0.75 for the application of the vaccines.
So, the economic cost of each strategy is obtained by the sum of the vaccine
and application unit costs times the total number of doses of each vaccine used
(measles and MMR).

The next step in the analysis is to compare the two constraints to the success
of each strategy, namely, those relative to the technical constraints (adhesion,
human resources, transportation and communication) and those relative to costs.
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Table 6.4. A comparative scale of relative efficacies and economic costs for each strat-
egy (Massad et al., 1999)

Strategy Number of Relative Economic Relative
vaccinated efficacy costs (US$) costs

1 1,243,254 0.049 3,178,223 0.533
2 2,797,322 0.098 5,959,168 1.000
3 177,682 1.000 414,359 0.070
4 1,095,099 0.127 2,743,384 0.460
5 1,854,866 0.045 4,730,907 0.794
6 177,763 0.770 308,758 0.052
7 148,136 0.761 370,509 0.062
8 1,341,732 0.147 3,352,374 0.563

Table 6.5. Degree of memberships of technical and costs constraints for each strategy
(Massad et al., 1999)

Strategy Technical Costs# min
constraints constraints

1 0.20 0.467 0.20
2 0.45 0.000 0.00
3 0.30 0.930 0.30
4 0.30 0.540 0.30
5 0.20 0.206 0.20
6 0.60 0.948 0.60
7 0.50 0.938 0.50
8 0.40 0.437 0.40

# Complement of column 5 (Relative costs) of table 6.4.

For this we took the minimum between the minimum of the variables presented
by the experts (last column of table 6.3) and the complement to the relative costs
scale (1-relative cost), so that both scales are in the same constraint direction,
such that their minimum values represent the maximum constraint, as shown in
table 6.5:

Now we have all the components of the decision model:

• a set A of possible actions : the eight possible strategies;
• a set of goals , Gi (i ∈ N) defined on A: the relative efficacy of each possible

strategy (third column of table 6.4) 1; and
• a set of constraints Cj (j ∈ M), defined on A: the minimum between the

technical and costs constraints (last column of table 6.5).

1 Remarking that by “goal” (this is the jargon in fuzzy optimal control theory) we
mean the achievable efficacy of each possible strategy and not the major goal of
controlling the epidemic.
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Table 6.6. Fuzzy decision setting (Massad et al., 1999)

Strategy Gi(a) Cj(a) D(a)
1 0.049 0.200 0.049
2 0.098 0.000 0.000
3 1.000 0.300 0.300
4 0.127 0.300 0.127
5 0.045 0.200 0.045
6 0.770 0.600 0.600
7 0.761 0.500 0.500
8 0.147 0.400 0.147

The fuzzy decision, D, that simultaneously satisfies the given goals Gi and
constraints Cj , is then:

D(a) = min [Gi(a), Cj(a)] (6.2)

for all a ∈ A, that is:
Therefore, the strategy that has the maximum degree of membership in the

set of decision is strategy number 6, which selectively vaccinate children aged
from 9 months to 6 years, using only Fixed Units of the health system. This
strategy was then recommended to São Paulo public health authorities.

6.2 The Measles Epidemic in São Paulo

In São Paulo State, routine measles vaccination started in 1973. In spite of this,
recurrent epidemics continue to occur until 1987, when the first mass vaccination
campaign against measles was carried out, lessening the average incidence rate
to something around 0.1 per 100,000 inhabitants.

By the end of September, 1996, the number of measles cases notified to São
Paulo health authorities started to raise, interrupting a stability verified since
the last major epidemic, in 1987. After March, 1997, the number of new cases
started an exponential trend, characterizing the beginning of a new epidemic,
which reached a total of 23,915 confirmed cases after one year, with 23 deaths.
Regarding the age profile of the epidemic, it is noteworthy that 47% of the cases
occurred in young adults, aged 20-29 years. The second age interval in number
of cases, 15%, was that of children bellow one year old. However, the highest
incidence rate, normalized per 100,000 inhabitants occurred among that latter
age class. In what follows we briefly describe this episode, presented in details
by Massad et al. (1999).

Table 6.7 describes the age profile of the epidemic, expressed as annual inci-
dence rates, normalized by 100,000 inhabitants:

As can be seen from table 6.7, the highest incidence rates occurred in infants
below one year of age, seconded by young adults in the age interval which cor-
responds to the expected age adults have greatest contact with young children.



The Impact of the Vaccination 103

Table 6.7. Age-related incidence rates per 100,000 inhabitants (Massad et al., 1999)

Age São Paulo State Total
(years) city countryside

< 1 871.50 94.17 482.84
1-4 115.99 15.32 65.65
5-9 61.21 13.13 37.17

10-14 36.17 5.93 21.05
15-19 67.27 11.34 39.31
20-29 314.30 29.85 172.08
30-44 56.52 7.54 32.03

Those adults belong to the reproductive age stratus and probably represent the
parents of the children under the highest attack rates.

Figure 6.1 shows the epidemic wave in São Paulo State (bold continuous line),
in the interior of the State (broken line) and in the City of São Paulo (dashed
line), during the year of 1997.

Fig. 6.1. Epidemic wave of measles in São Paulo, Brazil, in 1997. The two vertical
doted lines mark the moments of the two campaigns (Massad et al., 1999).

6.3 The Impact of the Vaccination

Health impact assessment (HIA) is a developing approach that assesses the
health impacts of a proposal on a population, and produces a practical set of
recommendations to inform the decision-making process of the proposal. The
purpose is to influence decision makers to increase positive health impacts of a
proposal and decrease any identified negative impacts (Quigley & Taylor, 2004;
Health Development Agency - UK, 2002). It is not an academic exercise. HIA
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aims to provide a practical public health approach that can be used to address
health concerns about a proposal and to reduce health inequalities (Department
of Health - UK, 1999).

6.3.1 Forecasting and Projection Models

As mentioned in chapter 3, three major aims of mathematical models in epidemi-
ology can be identified: the first centers on the need for scientific understanding
and precision in the expression of current theories and concepts; a second aim,
linked to the first, is the role of theory in identifying areas in which better epi-
demiological data is required to refine prediction and improve understanding;
and the third, and in many instances, the most difficult objective is that of pre-
diction (Anderson, 1988). In addition to these three aims of modeling we propose
a fourth objective: the generation of testable hypotheses by providing a theo-
retical framework on which plausible scenarios can be simulated in a computer
environment (in silicon experiments).

Prediction in general science can be divided into two components: forecasting
and projections (Keyfitz, 1972). A forecast is an attempt to predict what will
happen. A projection is an attempt to describe what would happen, given certain
hypotheses (Caswell, 2000). Among the tools available to the modern epidemiol-
ogists for both forecasting and projection are the mathematical (or dynamical)
models, which, when well structured, can provide predictive capacity to the pub-
lic health professional, helping in the design, and assessment of the impact of
control strategies (Amaku et al., 2003; Burattini et al., 1998; Massad et al., 1995;
Burattini et al., 1993). For instance, by projecting what would happen with a
given population if individuals were not vaccinated, it is possible to quantify the
relative impact of a specific vaccination program.

In what follows we illustrate the application of a projective model do the
Severe Acute Respiratory Syndrome (SARS), describe in details in Massad et al.
(2005b).

Severe Acute Respiratory Syndrome (SARS) is a recently discovered infectious
disease with high potential for transmission (WER, 2003), transmitted by droplet
and direct contact and caused by a new strain of corona virus (CDC, 2003). On
5 July 2003, World Health Organization (WHO, 2003) announced that the last
known chain of human-to-human transmission of the SARS corona virus had
been broken. A cumulative number of 8422 cases have been reported worldwide
to the WHO, with 908 deaths, as of August, 2003.

In the end of 2002, reports from China suggested that a new, highly conta-
gious, and very severe atypical pneumonia of unknown cause was occurring in
the Guangdong province. As it reached southeastern Asian countries, the condi-
tion appeared to be particularly prevalent among health care workers and their
household members. In response to that threat, on March 13, 2003, WHO issued
a global alert, for the first time on more than a decade, and instituted worldwide
surveillance. On March 27, scientists in the WHO laboratory network reported
major progress in the identification of the causative agent, a new member of the
corona virus family.
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Fig. 6.2. The number of SARS real cases in Hong Kong, the model prediction and the
natural course of the epidemics (Massad et al., 2005b)

By that time, SARS has already become a global health hazard, and its high
infectivity was alarming. Early recognition, prompt isolation, and appropriate
precaution measures were considered to be key factors in combating this infection
(Lee et al., 2003). In figure 6.2 we show the simulation for the Hong Kong
community.

The model mimics real data with good accuracy when considering adoption
of control measures. The model’s prediction demonstrated an epidemic that is,
by far, milder than expected without control measures. The model projects that,
in the absence of control, the final number of cases would be 320,000 in Hong
Kong. In contrast, with control measures, which reduce the contact rate to about
25% of its initial value, the expected final number of cases is reduced to 1,778.
In fact, the stability level predicted by the model was indeed attained in Hong
Kong by the end of the outbreaks.

6.3.2 The Case of the Measles Epidemic in São Paulo

In June 21, 1997, the proposed vaccination strategy was implemented in the
State of São Paulo. A total of 213,084 doses were applied to children between
9 months and 6 years of age. This figures represents a coverage of 6.5% of the
entire population of the State of São Paulo in the target age interval. In the
Metropolitan Region of São Paulo city, 7.5% of the entire population in the target
age interval was vaccinated. In the interior of the State 5.1% of the population in
the target age interval was vaccinated. There are no official data on the efficacy
of the selection process, that is, it is not known whether the small proportion of
children vaccinated were those previously unvaccinated or not.
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Fig. 6.3. Fitting of the continuous function to the initial phase of the actual epidemic
until the last week before the first intervention (Massad et al., 1999)

In order to estimate what would be the natural course of the epidemic we first
fitted a continuous function to the initial phase of the actual epidemic until the
last week before the first intervention. As expected, it resulted in an exponential
curve, with a positive growing rate of 0.25/week. Figure 6.3 shows the result of
this fitting.

Next, we calculated the effective contact rate, β, a composite rate describing
the probability of contact between susceptible and infected individuals and the
probability that such a contact will result in a new case. This was done by
assuming that the number of new infections, y(t), increase exponentially as seen
in figure 6.3, according to:

y(t) = y(0) exp{[β
−
x −(μ + γ)]t} (6.3)

where x is the expected proportion of susceptibles, assumed to be equal to
10%; μ is the natural mortality rate of the population, assumed to be equal
to 0.0003/week and γ is the inverse of the infectiousness period of measles, as-
sumed to be equal to 1 week. The term between square brackets resulted in a
value of β equal to 12.5/week.

Those parameters then fed a dynamical system of the classical SIR type, in
order to retrieve the natural course of the epidemic in the absence of vaccination.
The model had the form:

dx(t)
dt

= μ[y(t) + z(t)] − βx(t)y(t)

dy(t)
dt

= βx(t)y(t) − (μ + γ)y(t)

dz(t)
dt

= γy(t) − μz(t)

(6.4)
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Fig. 6.4. The results of the model simulation and the actual epidemic underlying
(Massad et al., 1999)

where z (t) represents the recovered (immune) individuals. The result of the
simulation, with initial conditions x(0) = 0.1; y(0) = 10−7 and z(0) ∼= 0.9, with
the actual epidemic underlying, can be seen in figure 6.4.

As can be noted from figure 6.4, the expected number of cases simulated by
the model above would peak at around 17,500 cases at the 38th week, totalizing
almost 300,000 cases. This would represent an attack rate of around 8% of the
susceptible population, a figure which is in the lower bound of others measles
epidemic reported in the literature (Markowitz & Katz, 1994; Hutchins et al.,
1990; Weeks et al., 1992). Also noteworthy in figure 6.4 is the striking concor-
dance between the simulated curve and the actual epidemic until week 25. In this
point, there is a significant deflection of the exponential trend of the epidemic
curve, which occurred just after the first intervention.

By comparing the expected (simulated) number of cases with that seen in the
actual epidemic we may conclude that the proposed vaccination strategy (carried
out at week 25) had a significant impact on the epidemic in the city of São Paulo.
However, as can be seen from figure 6.1, the number of cases in the interior of the
State continued to raise after the first campaign, peaking around ten weeks after.
Possible causes for this shall be discussed later on. Health authorities then decided
to carry out a second campaign which differed from the first one by the virtual ab-
sence of costs constraints considerations. Strategy number eight, therefore, was
the best choice available, because it has the highest adhesion, and it was imple-
mented in August 16 (which corresponds to week 33). The total number of cases
dropped significantly in all age strata and in the whole State soon after the second
vaccination and the epidemic was then considered controlled.

In spite of a 95% efficient vaccine available for more than 25 years, measles still
remains an important public health problem, killing every year more than one
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million children in the developing regions (Murray & Lopez, 1996) and with a
Disability-Adjusted Life Years (DALY) measure of 36.5x106, which is even higher
than malaria (31.7x106) for the same regions (Murray & Lopez, 1996). As a very
transmissible infection with a Basic Reproduction Number (Anderson & May,
1991) usually above 15, it demands very high levels of vaccine coverage (above
93%) in order to be eliminated. However, these levels of coverage are rarely
maintained in the routine schemes of immunization. Therefore, it is an usual
control strategy, at least in developing countries, to carry out mass vaccination
campaigns from time to time. In fact, this occurred in the State of São Paulo in
1987 and again in 1992, with a significant impact on measles incidence.

It is common to observe a severe dropping of cases shortly after a mass vac-
cination campaign. As time passes by, however, the residual fraction of non-
responders to the vaccine and the immigration of susceptible individuals from
other areas of the country, starts to accumulate in the population. This fact
allied to the marked dropping in the coverage levels in the immunization routine
observed in the last two years in the State of São Paulo, may explain the 1997
epidemic.

A subject of hot debate among public health authors, periodic mass vaccina-
tion has been considered an effective way to control measles epidemics (Nokes &
Swinton, 1997). The design of such a vaccination strategy is based on the rate of
replenishment of susceptibles into the population that follows the vaccination.
In the case when the mass vaccination is intended to supplement an existing
routine (the case of São Paulo State), the rationale is as follows (Nokes & Swin-
ton, 1997): the replenishment of susceptibles equal the birth rate, 1/L (as in
other works, L denotes the population life expectancy), reduced by a fraction
(1−p), where p is the proportion of newborn effectively vaccinated in the routine
schedule. If we denote the proportion of children vaccinated in the campaign as
p′, then the interval, Tv, between two successive campaigns is given by:

Tv =
p′A

(1 − p)
, (6.5)

where A is the average age of the first infection.
In very populous countries like Brazil and, in particular, in regions like the

State of São Paulo, where mass vaccination campaigns are aimed to cover millions
of individuals, any reasonable estimate of the minimum number to be vaccinated
could represent savings of millions of dollars to public money.

When the São Paulo epidemic was detected and the vaccination campaign
decided, very few data was available to allow the application of dynamical mod-
eling, a more structured approach, to the design of the optimal vaccination
schedule (Massad et al., 1994b). Moreover, the dynamics of a measles epidemic
shortly after an intervention such as a mass vaccination campaign has been
poorly documented in the literature. So, it would be very difficult to predict
the impact of the intervention on the course of the epidemic. In addition, an
important constraint was imposed - the total number of doses available was
dangerously limited to 300,000. This scenario encouraged us to attempt, for the
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first time (to the best of our knowledge), the use of fuzzy logic concepts to design
the vaccination campaign.

The capacity of the fuzzy decision model in predicting the number of chil-
dren that could be reached by the vaccination strategy can be evaluated by
contrasting this number (177,763, which corresponds to 60% of the susceptibles
in the targeted population) with the actual number of children who received the
vaccine (213,084, which corresponds to 72% of the susceptibles in the targeted
population). Therefore, the fuzzy model prediction of the number of children
that should be vaccinated has an accuracy of more than 80%. As a result the
efficacy of the strategy was significant, at least for the metropolitan region of São
Paulo city (figure 6.4), notwithstanding the minor impact seen in the rest of the
State. A possible explanation for this could be a lack of adequacy of the selec-
tiveness criteria adopted (to vaccinate only previously unvaccinated children).
As a matter of fact, another uncertainty, not forecasted by the initial model,
was the decision of public health authorities to extend the measles campaign to
a broader scope strategy that included other vaccines like diphtheria-pertussis-
tetanus (DPT). However, shortly after midday of June, 21, the DPT vaccine run
out of stock, which probably demobilized the population. The latter argument
is intended only as an example of how unexpected facts can influence the final
result of such a complex endeavor like a mass vaccination campaign. In conclu-
sion, we think that the fuzzy logic approach for designing the control strategy
against the measles epidemic in São Paulo was very useful in the sense that
it allowed the combination of intuitive informations from public health experts
and costs constraints into a coherent model. Moreover it proved to be very ef-
fective, in the sense that the strategy adopted resulted in a significant control
of the epidemic. Our results, notwithstanding several intervenient factors out of
our control during the implementation of the proposed strategy, are very en-
couraging in demonstrating the potential of new techniques for the designing of
interventions in public health.

Maybe the great advantage of the making decision approach proposed by Bell-
man and Zadeh applied here is its simplicity, both from the practical and theo-
retical points of view (Bellman & Zadeh, 1970). This simplicity allowed that the
fuzzy model for design a control strategy for vaccination against measles could
be developed quickly. In fact, this model was elaborated, in a consensus form, in
just two meetings. At the final of the second meeting the best strategy elected
by the model was accepted by all experts and in few days it was implemented
in whole São Paulo State. Clearly, from the sanitary surveillance point of view,
the agility and the adhesion capacity are important characteristics desired in the
mathematical models.

Stochastic Decision Trees is one of the most traditional approach to decision
making that deals with uncertainty in health care applications (Mason et al.,
1995; Col et al., 1997; Onho-Machado et al., 2000). In order to compare the fuzzy
decision making with other more traditional probabilistic methods,
Onho-Machado and collaborators (2000) studied the same situation with the
decision trees technique. The authors built a ranking of the strategies to control
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the measles epidemic in 1997, in Brazil, considering the same structure proposed
in the fuzzy decision making and compared them (Onho-Machado et al., 2000).
The models identify the same strategy as being the best one, but exhibit dif-
ferences in the ranking starting from the fourth strategy. So, in terms of the
health care decision making the fuzzy model and the stochastic decision trees
were completely equivalent. Thus, the differences between the two approaches
refer only to the mathematical structures and, in this case, the fuzzy decision
approach presents the advantage of its mathematical simplicity, which resulted
in a great adhesion power.



7 Fuzzy Rule-Based Models in Epidemiology

Mathematical models are, in essence, theoretical structures that describe the
behavior of real systems through the quantification and manipulation of vari-
ables. These models have been widely applied in several areas, aiming to the
elaboration of forecasts, analysis of information, treatment of data, control of
systems, and evaluation of hypotheses and strategies. In this sense, mathemati-
cal modeling have importantly contributed to decision making process. Chapter 3
presents an overview of mathematical modeling and its aspects in epidemiology,
introducing the basic concepts of some classic models, that is, models based on
the classical logic axioms, and discuss the problems to modeling uncertainties
when a more realistic scenario is considered.

Fuzzy rule-based models are systems whose variables are described by fuzzy
sets rather than crisp numbers. They are based on the concept of fuzzy partition-
ing of the information and may be categorized in two general groups, depending
on how the information is represented: 1) linguistic models (LM), whose most
famous example is the Mamdani type model, and 2) the Takagi-Sugeno-Kang
model (TSK). Both models are based on fuzzy rules and linguistic variables.
However, while the linguistic models are essentially a qualitative description of
the system behavior by using a natural language, the TSK models are a clever
combination of fuzzy and non-fuzzy structures. In this chapter we present the
basic structures of the fuzzy rule-based models and detail the LM and TSK
models.

Due to its great success in the modeling of controllers systems, the most ap-
plied structure is the so-called Fuzzy Linguistic Model (FLM). FLM are based
on Approximate Reasoning, which provides the framework for reasoning with
uncertain information through adequate inference mechanisms (Yager & Filev,
1994). FLM could be defined as a particular expert system, since it is composed
basically by a knowledge base and an inference engine, both of them allowing
the influence of human expert knowledge. In the biomedicine and epidemiol-
ogy, the majority of fuzzy applications is based on fuzzy linguistic systems.
They have been widely used in the development of fuzzy controllers of medical
machines, in risk evaluation and in medical diagnosis systems (Mahfouf et al.,
2001; Nascimento & Ortega, 2002; Castanho et al., 2007; Duarte et al., 2006). In

E. Massad et al.: Fuzzy Log. in Act.: Appl. in Epidem. & Bey., STUDFUZZ 232, pp. 111–150, 2008.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2008
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Fig. 7.1. A typical fuzzy linguistic model scheme

epidemiology there are few Fuzzy Linguistic Models published (Ortega et al.,
2000; Ortega et al., 2003; Jafelice et al., 2004a and 2004b; Ortega et al., 2008b).
In this chapter we shall present three proposals of fuzzy linguistic models applied
to epidemic problems.

Fuzzy rule-based models have a simple structure and are composed by four
main components: 1) a fuzzification module, which translates crisp inputs (clas-
sical measurements) into fuzzy values through linguistic variables; 2) a If-Then
fuzzy rule base, which consists in a set of conditioned fuzzy propositions; 3)
an inference method , which applies fuzzy reasoning mechanisms to obtain the
outputs or, in other words, a way to compute with fuzzy rules; and 4) a defuzzifi-
cation module, which translates fuzzy outputs back to crisp values, if necessary.
Figure 7.1 shows a typical Fuzzy rule-based model scheme and the intercon-
nection of its modules. Each rule-based system component will be detailed in
detail.

7.1 Linguistic Variables

Linguistic terms are used to express concepts and knowledge in human commu-
nication, and in a several areas they are the most important form, when not
the only way, to quantify/qualify the data and information. The use of linguistic
terms is frequent in our daily life. We usually say “hot day”, “crowded bus”, “the
person is high, thin, healthy”, etc. All of these linguistic terms have a meaning
and transmit an information that, in general, is context-dependent.

In the medical universe the use of linguistic terms permeates all the ar-
eas, including in laboratorial exams descriptions. The use of terms as normal,
slightly increased/decreased, weakened, good state, and so on is very frequent
(Sanchez,1998). Aiming to express the intensity of the observation, a numeric
value is commonly associated with a linguistic term. It is useful to quantify the
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Fig. 7.2. Poster in use by epidemiologists in the São Paulo Hospital of Clinics to
describe the breathing discomfort

clinical findings and to arrange the observations. A typical example of these
quantities is the crosses measure, widely used by doctors to quantify the ob-
servation in the propedeutic examamination. As an example of the linguistic
terms used in medicine, consider the illustration below (figure 7.2). This picture
is a poster used by epidemiologists for evaluation of breathing discomfort in the
Hospital of Clinics, of São Paulo University.

Notice that the Degree of Breathing Discomfort could be considered a
linguistic variable that may receive the following linguistic terms: absent, light,
moderate and strong. In addition, these linguistic terms are associated with the
numeric values 0, 1, 2 and 3, respectively, and a color scale denotes the gradual
and constant transition of one situation to another. This gradual transition of
breathing discomfort degree, expressed in the poster by the color scale, reveals
the inherent fuzziness of this classificatory process.

Thereby a fuzzy linguistic variable is, in an informal way, a variable whose
value is qualitatively expressed by linguistic terms (that supplies a concept to
the variable) and quantitatively expressed by membership functions, that is, by
fuzzy sets. In this sense, the linguistic variable is composed by a symbolic and
a numerical part. The symbolic part allows the description of the phenomenon
using natural language and the numerical part allows to compute with them.
We also point out that although numerical variables are widely applied in the
exact sciences as engineering, physics and mathematics, the symbolic variables
have been conquering larger importance due to the development of the areas of
artificial intelligence and decision processes. The capacity to combine symbolic
variables (linguistics) and numeric is one of the main reasons for the success of
the applications of the fuzzy logic in intelligent systems, either in engineering or
in other areas as biology, ecology, medicine and so on.

Formally, a linguistic variable is characterized by a quintuple denoted by
(v, T, X, g, m) in which v is the name of the variable (for example Temperature,
Pressure, Fever), T is the set of linguistic terms of v (as high, small, medium)
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Fig. 7.3. An example of a linguistic variable

that refer to a base variable x, whose values range over a universal set X , g
is a grammar for generating the linguistic terms, and m is a semantic rule for
association each linguistic term t ∈ T with its meaning m(t), which is a fuzzy
set on the universe X .

For example, consider a linguistic variable named fever, that is, v = fever,
and showed in figure 7.3. This variable is defined in the universal set X =
[36, 41] and the base variable x is a measure of body temperature, x ∈ X . The
set of terms associated with fever could be, in a given context, T (fever) =
absent, low, medium, high, where each term in T (fever) is a label of a linguistic
value of fever generated by a syntactic rule (not explicitly shown in figure 7.3).
Each linguistic term is assigned one of four fuzzy sets, whose membership func-
tions have, in this example, trapezoidal and triangular shapes defined in the
interval [36, 41].

The concept of linguistic variable plays an important role in many applications
of fuzzy sets and is essential in approximate reasoning. In fuzzy linguistic mod-
els they are used in the fuzzification module, where the relevant antecedents and
consequents of the rule system, with their respective ranges, are identified and
defined. In addition, the fuzzification module could be used to fuzzify each input
variable to express the associated measurement uncertainty through a fuzzifica-
tion function. However, in the majority of the applications the inputs are not
fuzzified.

Essentially, fuzzy sets are characterized by functions of the form X → [0, 1],
where X is a given universal set. Thus, the problem of constructing fuzzy sets
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is reduced to the problem of translating the meanings of the relevant linguistic
terms for the adequate membership functions, considering the context.

In biomedicine and epidemiology, fuzzy sets are commonly constructed
through experts’ judgment. This expert approach could involve one or more
experts in the specific field of interest. The experts opinion could be extracted
together, in consensus, or separately, but aggregated in an appropriate way.
Besides, the membership functions could be found through direct or indirect
methods, depending on the complexity of the meaning that should be described
by the linguistic term. Clearly, in this context the experts assume a fundamental
role in the fuzzy modeling development, particularly in the epidemiological and
diagnose processes.

If a sample data is available, then it is possible to build the membership
functions through the information contained in them. Again, there are many
ways to find it and most of them could be classified by the mathematical theory
of curve fitting methods (as least-square error and Lagrange interpolation) or
learning through artificial intelligence methods (as neural networks and genetic
algorithms). Other frequent situation is to combine the sample data information
and experts’judgment in order to find more specific membership functions. The
above methods and others can be found in the texts such as Klir and Yuan
(1995), Kosko (1997) and, Pedrycz and Gomide (1998 and 2007).

7.2 Fuzzy Rules

Fuzzy rules are structures widely used in several approaches of fuzzy sets theory,
since they provide a formal way to represent strategies and information from
experiences and empirical associations. Thus, a fuzzy rule can be understood as
a unit for capturing some specific knowledge that involves imprecision, vagueness
and/or uncertainty.

Knowledge can be represented through fuzzy propositions, which can be un-
conditional or conditional. An unconditional fuzzy proposition is a simple
statement as

Fever is high,

in which fever is a kind of an attribute of an object and high is its adjective (a
qualitative value) usually described with a linguistic variable.

In contrast, a conditional fuzzy proposition is composed by two parts: an if-
part, called antecedent part, which describes a condition (premises) that can
be partially satisfied, and a then-part, called consequent part, which describes
a conclusion or an action that can be found when the condition holds. Thus, a
conditional fuzzy proposition has the following form:

IF fever is high, THEN illness is great.

Fuzzy rules are conditioned fuzzy propositions. So, the main difference be-
tween classical and fuzzy rules is that in the latter the rule’s antecedent de-
scribes an elastic condition, while in the former it describes a rigid condition,
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i.e., a classical rule does not work if its antecedents are not completely satis-
fied. This flexibility of the fuzzy rules allows us to model the vagueness and
uncertainties of the statements, commonly used in the real world.

As in its classical counterpart, fuzzy rules may combine many simple condi-
tions in its antecedent part using logic connectives (conjunction, AND, disjunc-
tion, OR, and negation, NOT) as:

IF the newborn has extremely low weight AND the gestational age is preterm,
THEN the risk of neonatal death is high,

and can be chained or parallel. It is called chained when the consequent of one
rule is the antecedent of the other, and parallel otherwise. An example of chained
rules is showed below.

IF contact rate between infected and susceptible individuals is high,
THEN the force of infection is high;

IF the force of infection is high, THEN the number of infected is great.

Another frequent fuzzy rule in biomedicine and epidemiology are the so-called
gradual rules, which express the gradual relationships between concepts and
usually reflects the commonsense reasoning, as:

THE MORE inclusive the vaccination campaign is,
THE MORE expensive it is.

This rule expresses a continue and progressive variation of the campaign cost
as it becomes more inclusive. Gradual rules are frequent in experts representation
knowledge.

A rule-based system is a collection of fuzzy rules, which are parallel rules
systems in most of the applications, that is, they have the following form:

If X is A1, then Y is B1,
If X is A2, then Y is B2,

...
If X is AN , then Y is BN .

Clearly, it is desirable that this rule’s collection presents neither inconsisten-
cies nor conflicts. To avoid this, it is necessary that the rules contain neither
mutually exclusive knowledge nor contradictory information. A very common
situation that the rule’s system is potentially inconsistent is when two or more
rules have the same antecedents but different consequents or, when the progres-
sion of the changes is not preserved in the gradual rules systems. In these cases,
the rules computation could lead to unsatisfactory and unexpected results. An
example of potentially inconsistent rules is:

IF the newborn weight is low, THEN the neonatal risk of death is high;
IF the newborn weight is low, THEN the neonatal risk of death is medium.

From the modeling point of view, the antecedents of the fuzzy rule define a
fuzzy area in the input variable space of the system. On the other hand, the
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consequent part describes a fuzzy area in the output space. In this sense, the
processes involved in the elaboration of the rule’s antecedents consist rather in
a classificatory work, while the elaboration of the rule’s consequents demands
a priori knowledge, though empiric, about the behavior of the system. So, it is
expected that the elaboration of the consequents of the rules should be a more
complex task than the antecedents ones, particularly when the model is expert
knowledge based. However, since the rules of the model are defined it is possible
to compute with them through any appropriated inference procedure. Clearly,
the choice of the inference procedure depends, among other things, on the type of
the fuzzy rules. In this text we will concentrate in the parallel rules computation,
that is the most used in the applications. For more details about the inference
process on other kinds of rules we recommend the book by Pedrycz and Gomide
(1998 and 2007).

7.3 Inference Procedure in Fuzzy Rule-Based Models

Linguistic models could be understood as a mapping of a fuzzy input space
into fuzzy output space. In this sense a set of rules associated to an inference
procedure is analogous to a function able to describe both linear and non-linear
systems. For this purpose, each fuzzy rule in the systems could be interpreted
as a fuzzy relation (see chapter 2, section 2.5).

An If-Then rule is a conditioned proposition that can be written as:

p: If antecedents, Then consequents,

where antecedents and consequents are also fuzzy propositions, whose variables
values are linguistic terms that establish a fuzzy constraint in some appropriated
universe set. So, a fuzzy rule

If x is A, then y is B

describes a fuzzy relation between the variables x and y, whose membership
grade R(x, y) represents the degree to which the pair (x, y) ∈ X×Y is compatible
with the relation between those variables involved in the rule. Thus, the fuzzy
rule “If x is A, then y is B” with x ∈ X and y ∈ Y , may be understood as a
fuzzy relation on the Cartesian product space X ×Y , as illustrated in figure 7.4.

Therefore, as in the fuzzy relations case, it is possible to elaborate new fuzzy
propositions through conjunctions and/or disjunctions operators combining one
or more simple propositions, like:

p: If x1 is A1 AND x2 is A2 AND x3 is A3, Then y1 is B1 AND y2 is B2;
q: If x1 is A1 OR x2 is A2 OR x3 is A3, Then y1 is B1,

where A1, A2 and A3 are fuzzy sets of the variables x1 ∈ X1, x2 ∈ X2 and
x3 ∈ X3 and similarly, B1 and B2 are fuzzy sets of the variables y1 ∈ Y1 and
y2 ∈ Y2, respectively. In this case, the fuzzy rules p and q can be understood as
inducing a fuzzy relation P and Q on the space X1 × X2 × X3 × Y1 × Y2.
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Fig. 7.4. Fuzzy relation induced by rule “If x is A, then y is B” (modified from Yager
and Filev, 1994)

Clearly, there are many ways to proceed the inference in a collection of fuzzy
rules. The choice for a certain method depends on the semantics of the rules, on
the type of fuzzy model and on the characteristics of the phenomenon that it
is being modeled. In general, linguistic fuzzy models can be classified into two
groups, depending on the inference processes: constructive or destructive linguis-
tic model. The former is the linguistic model in which the output is constructed
by superimposing the individual outputs of each rule through a disjunctive ap-
proach, i.e., applying t-norms on the fuzzy sets. On the other hand, in destructive
models the solution is formulated through the conjunctive operators, i.e., apply-
ing t-conorms on the fuzzy sets.

In a constructive linguistic model composed by a collection with N parallel
rules such as:

If x is Ai, then y is Bi,

each fuzzy rule can be seen as inducing a fuzzy relation Ri, and the set of rules
as a global relation R found through the aggregation of the individuals’ relation
using disjunction operators. Therefore, the global relation is given by:

R = ∪N
i=1Ri. (7.1)

On the other hand, since Ai and Bi are fuzzy sets of Xi and Yi, respectively,
the binary fuzzy relation Ri = Ai × Bi can be interpreted as fuzzy subsets of
X × Y , whose membership function is

Ri(x, y) = Ai(x) ⊗ Bi(y), (7.2)

where ⊗ is any t-norm, which the most used is the min operator (see chapter 2).
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Thereby, given the input fuzzy value D, the output set F inferred through
the N parallel rules is such that,

F (y) = ⊕x [D(x) ⊗ R(x, y)]
= ⊕x

[⊕N
i=1 (D(x) ⊗ Ri(x, y))

]

= ⊕N
i=1 [⊕x (D(x) ⊗ Ai(x) ⊗ Bi(y))]

= ⊕N
i=1 [(⊕x [D(x) ⊗ Ai(x)]) ⊗ Bi(y)]

= ⊕N
i=1 [τi ⊗ Bi(y)] , (7.3)

where ⊕ is any t-conorm, the most used of which is the max operator (see
chapter 2), and τi is the possibility of the set Bi given the input set D, Poss[Bi|D],
called degree of firing, or degree of match, of the ith such that (Yager & Filev, 1994):

τi = ⊕x [D(x) ⊗ Ai(x)] . (7.4)

A similar inference process can be obtained if each fuzzy rule in the col-
lection of N parallel rules has several fuzzy sets in its antecedent part. These
inference processes are detailed in the Mamdani linguistic model context (see
section 7.5.1).

The inference procedure in destructive linguistic fuzzy models is quite different
from its constructive counterpart. In this kind of models the output is obtained
by the remotion of the possibilities that are not acceptable to the individual
rule. So, in a destructive model composed by N parallel rules like “If x is Ai,
then y is Bi”, each rule is associated with a fuzzy relation Ri, defined in the
Cartesian Product space X ×Y , that is found through the disjunction operators,
and whose membership function is given by:

Ri(x, y) = Ai(x) ⊕ Bi(y), (7.5)

where Ai(x) = 1 − Ai(x) is a fuzzy standard complement of the fuzzy set Ai,
correspondent to the logical operation of negation.

Under this approach the individual rules are aggregated through the conjunc-
tion operator as:

R = ∩N
i=1Ri, (7.6)

whose membership function is given by:

R(x, y) = ⊗N
i=1Ri(x, y) = ⊗N

i=1
[

Ai(x) ⊕ Bi(y)
]
. (7.7)

Thus, for a given input set D, the output fuzzy set F inferred by the rules is
given by:

F (y) = ⊕x [D(x) ⊗ R(x, y)]
= ⊕x

[⊗N
i=1 (D(x) ⊗ Ri(x, y))

]

= ⊕x

[⊗N
i=1D(x) ⊗ (Ai(x) ⊕ Bi(y)

)]
. (7.8)
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Expression (7.8) can be rewritten using the distributivity properties of fuzzy
sets (see chapter 2) as:

F (y) = ⊕x

[⊗N
i=1
(
D(x) ⊗ Ai(x)

) ⊕ (D(x) ⊗ Bi(y))
]

= ⊕N
i=1
[⊗x(Ai(x) ⊗ D(x)) ⊕ (Bi(y) ⊗ D(x))

]
. (7.9)

Assuming now that D(x) is a normal fuzzy set, i.e., there are x′ ∈ X that
D(x′) = 1, it is possible to find F (y) as (Yager & Filev, 1994):

F (y) = ⊗N
i=1 [τ i ⊕ Bi(y)] , (7.10)

where τ i is the possibility of the set Bi given the input set D, Poss[Bi|D], that
represents the degree of firing of the ith, whose value is

τ i = ⊕x

[
Ai(x) ⊗ D(x)

]
. (7.11)

In the case that the input value is a crisp number x∗, in other words, the
input D is interpreted as a fuzzy singleton whose pertinence function is given
by:

D(x) =

⎧
⎨

⎩

0 if x �= x∗

1 if x = x∗
, (7.12)

and assuming the standard union and standard intersection for, respectively,
disjunction and conjunction operators, it is possible to rewrite the degree of
firing as:

τ i = 1 − Ai(x∗) = 1 − τi. (7.13)

The destructive inference procedure of linguistic models, also called logical
method, is illustrated in figure 7.5 and summarized in the following algorithm
(Yager & Filev, 1994):

1. For each rule of the model do:

• Calculate the degree of firing of the rule by:
τ i = ⊕x

[
Ai(x) ⊗ D(x)

]
if the input D(x) is a fuzzy set; or

τ i = 1 − Bi(x∗) if the input is a crisp number x∗.
• Find the fuzzy set Fi inferred by each rule by:

Fi(y) = τ i ⊕ Di(y)

2. Find the fuzzy output set F (y) through the aggregation of the individual Fi

by min operation:
F (y) = ⊗N

i=1Fi(y)

An important feature of linguistic fuzzy models, under both constructive and
destructive approaches, is that in spite of the input value, they provide a fuzzy
output set. However, in most of the applications the fuzzy system require a crisp
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Fig. 7.5. A example of the inference procedure in the destructive linguistic model
(modified from Yager and Filev, 1994)

number as the final output, since decisions and controls should be processed. In
order to accomplish this, the fuzzy output F (y) of the linguistic model must be
defuzzified. There are many techniques to defuzzify a fuzzy set and the choice
for one particular method is arbitrary. It is worth to point out that the defuzzi-
fication requirement of the linguistic models associated to its arbitrary choice
consists one of the main disadvantages of these models when compared to the
TSK models, which we will be present later on.

7.4 Defuzzification Methods

Defuzzification is a procedure that allows to interpret the possibility distribution
of the output fuzzy sets in a quantitative way. In other words, it is a method
that provides the most representative crisp number, in the variable domain, that
captures the essential meaning of that possibility distribution. There are many
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techniques to perform the defuzzification and the most common in practice is the
Center of Maximum, the Mean of Maximum and the Center of Area methods.

7.4.1 Center of Maximum Method

Consider a fuzzy subset F in IR, whose membership function is F (y). The Center
of Maximum method provides the defuzzified value, dCM (F ), defined as the
average of the smallest and largest values of y ∈ M given by:

dCM (F ) =
inf(M) + sup(M)

2
, (7.14)

where M is a crisp set such that,

M = {y ∈ Y |F (y) = hgt(F )} (7.15)

and hgt(F ) is the height of the fuzzy set F , defined in chapter 2 as the maximum
value of the fuzzy set. For the discrete case, we have:

dCM (F ) =
min [yk |yk ∈ M ] + max [yk |yk ∈ M ]

2
, (7.16)

where
M = {yk |F (yk) = hgt(F )} . (7.17)

7.4.2 Mean of Maximum Method

The Mean of Maximum defuzzification is a method usually defined only for the
discrete fuzzy sets, whose formulation is very similar to the Center of Maximum,
particularly when the fuzzy output set is convex (see chapter 2). In fact, there are
mathematical details involved in the difference among these two methodologies
whose discussion is not in the scope of this book.

The defuzzified value for a fuzzy set F through the Mean of Maximum method,
dMM (F ), is the average of all values in the set M given by (7.17), such that:

dMM (F ) =

∑
yk∈M yk

|M | , (7.18)

where |M | is the cardinality of the crisp set M .
If M is a continuous set as described in (7.15), it is possible to define the

dMM (F ) as the arithmetic average of mean values of all intervals contained in
M , including that intervals with zero length (Klir & Yuan, 1995). Figure 7.6
illustrates the Mean of Maximum (MM) defuzzification approach.

The principal limitation of the CM and MM defuzzification methods is that
they do not consider the total shape of the fuzzy set F . In this sense, two dif-
ferent distributions of possibility that present the same M set will provide, after
defuzzification procedure, the same crisp value, independently of the differences
in the shape. Figure 7.7 illustrate this situation. Clearly, in this case the defuzzi-
fication approach disrespect a part of the information present in the F set. It is
particularly important when the F set is the output of some linguistic model.
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Fig. 7.6. Example of the Mean of Maximum defuzzification method for continuous
and discrete cases

Fig. 7.7. Example of two different shape of F whose defuzzified value is the same
through the CM and MM method. In the situation a) we have that the fuzzy output
indicates that the fuzzy results is medium tending to high; in counterpart, in the situa-
tion b) the fuzzy results is medium tending to low. These defuzzification methodology
are not able to distinct those two different fuzzy outputs.

7.4.3 Center of Area Method

Differently of the methods above, the Center of Area consider the entire possibil-
ity distribution of F to calculate the defuzzified value. This technique is similar
to that applied to calculate a center of gravity in physical systems and, for this
reason, it is also called the Center of Gravity or Centroid method. It consists in
the division of the area under the F graph into two equal parts. Therefore, the
defuzzified value dCA(F ) of the fuzzy set F is found, in a discrete case, by:

dCA(F ) =
∑q

k=1 ykF (yk)
∑q

k=1 F (yk)
, (7.19)

where F is defined on a finite universal set Y whose cardinality is q.
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Fig. 7.8. Example of a fuzzy set and its defuzzified values trough the MM and CA
methods. In this case dCM and dMM values are equal.

If F is defined in a continuous interval [ya, yb] the expression for dCA(F ) is
given by:

dCA(F ) =

∫ yb

ya
yF (y)dy

∫ yb

ya
F (y)dy

. (7.20)

The Center of Area(CA) method can also be understood as a weighted average
where the value F (y) can be understood as the weight of the value y. Although
the CA defuzzification is the most applied method, it presents higher computa-
tional costs than the others two methods discussed, particularly for continuous
domains. Figure 7.8 illustrate an example of a fuzzy set and its defuzzified values
trough the methods above.

To end this section, we want to emphasize that, although defuzzification is
widely applied in the linguistic modeling context, it is not applied exclusively
for this approach. In fact, the defuzzification is, in a general view, all operations
applied on fuzzy sets in order to elect one crisp value, under one domain, in
which the decision is made. In this sense, the vaccination strategy chosen as
the best strategy to vaccinate children against measles, presented in chapter 6,
was found through the defuzzification procedure applied on the set of possible
decisions D by the max operator.

7.5 Some Types of Fuzzy Rule-Based Models

As previously mentioned, there are basically two kinds of rule-based fuzzy sys-
tems: models whose output of the rule is a fuzzy set, and models whose output
of the rule is a function of the input variables. When the output is fuzzy, the
model is called Linguistic Model (LM), which from the inference point of view
can be classified as constructive or destructive. This kind of model is commonly
based on experts knowledge and be useful in the development of expert systems
in areas where large databases are not available. The majority of the applications
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using linguistic models is based on the Mamdani’s inference or on the Standard
Additive Model (SAM) model, both of them are constructive approaches. On
the other hand, when the output is a function we have the so-called Takagi-
Sugeno-Kang model (TSK), that is normally referred as just Sugeno model. The
great advantage of the TSK model, when compared with the linguistic one, is
its independence of experts in the formulation of the consequents of the rules.
They are widely applied in engineering, where large data collections and func-
tional information about the input variables relationships, as physical laws, are
available.

7.5.1 The Mamdani Model

The Mamdani model was the first fuzzy rule-based system developed. It was pro-
posed, in 1974, by E. H. Mamdani and S. Assilian in the control systems context
(Mamdani & Assilian, 1975), but nowadays it is widely applied in several areas.
Most of the fuzzy controllers elaborated in the 1980’s are of the Mamdani type.
However, due to the development of the TSK models in the 1990’s, strengthened
by the development of powerful techniques in the extraction of information from
databases, the Mamdani control lost its prior importance for the controllers.
Nevertheless, the crescent interests for fuzzy systems in the biomedicine and
epidemiology have increased the Mamdani model relevance. Since in these fields
the expert experience and knowledge are fundamental, the Mamdani model plays
an important role in modeling of such systems.

The Mamdani model is composed by a collection of N parallel rules, such as:

If x is A1, then y is B1,
If x is A2, then y is B2,

...
If x is AN , then y is BN ,

whose inference is processed through the methodology described in section 7.3
for constructive linguistic models, using the min for the conjunction operator
and max for the disjunction operator. Because of this max− min inference, the
Mamdani systems are also called “max-min” models.

So, in the Mamdani case, the fuzzy relation Ri, described by the ith rule, has
a membership function given by:

Ri(x, y) = min (Ai(x), Bi(y)) (7.21)

and the global relation R found through the aggregation of the rules is:

R =
N

max
i=1

(Ri) , (7.22)

whose membership function is given by:

R(x, y) =
N

max
i=1

[min (Ai(x), Bi(y))] . (7.23)
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Thus, for a given input fuzzy set D, the output fuzzy set F inferred by max−
min inference on the rules has the following membership function:

F (y) =
N

max
i=1

[min (τi, Bi(y))] , (7.24)

where τi is the degree of firing of the ith rule such that,

τi = max
x

[min (Ai(x), D(x))] . (7.25)

In the case that the input value is a crisp number x∗, i.e., whose membership
function is

D(x) =

⎧
⎨

⎩

0 if x �= x∗

1 if x = x∗
, (7.26)

this degree of firing becomes

τi = max
x

[min (Ai(x), D(x))] = Ai(x∗). (7.27)

Summarizing, the algorithm used to compute the fuzzy rules in the Mamdani
system is as following (Yager & Filev, 1994):

1. For each rule of the model:

• Calculate the degree of firing of the rule by:
τi = maxx [min (Ai(x), D(x))] if the input D(x) is a fuzzy set; or

τi = Ai(x∗) if the input is a crisp number x∗.

• Find the fuzzy set Fi inferred by each rule by:
Fi(y) = min [τi, Bi(y)]

2. Find the fuzzy output set F (y) through the aggregation of the individual Fi

by min operation:
F (y) = maxN

i=1 Fi(y)

Figure 7.9 illustrates an example of Mamdani inference procedure considering
a fuzzy input set in the antecedent part of the If-Then rule, Ai, and a crisp input
number, x∗.

Fuzzy systems composed by a collection of N rules as in Mamdani model
above is normally called SISO models, since they have a Single Input and a
Single Output variables. However, in most of the applications the Mamdani
models are MISO, Multiple Input and Single Output, or MIMO, Multiple Input
and Multiple Output, models. The inference procedure described above can be
easily generalized for this MISO and MIMO models. Nevertheless, for simplicity,
we will present here only inference processes to MISO Mamdani systems (Yager
& Filev, 1994).



Some Types of Fuzzy Rule-Based Models 127

Fig. 7.9. A example of Mamdani inference procedure (modified from Yager and Filev,
1994)

Thus, consider the following rules:

If x1 is A11 AND x2 is A12 AND xM is A1M ,
Then y is B1,

If x1 is A21 AND x2 is A22 AND xM is A2M ,
Then y is B2,

...
If x1 is AN1 AND x2 is AN2 AND xM is ANM ,

Then y is BN ,

where x1, x2, ..., xM are the linguistic input variables and y is the linguistic out-
put variable, and Aij and Bi (i = 1, 2, ..., N and j = 1, 2, ..., M) are fuzzy subsets
of the universal sets X1, X2, ..., XM ; Y of the variables x1, x2, ..., xM and y, re-
spectively. So, as in SISO models, each rule is associated to the individual fuzzy
relation Ri defined in the Cartesian product space X1 × X2 × ... × XM × Y , as:

Ri = Ai1 × Ai2 × ... × AiM × Bi, (7.28)
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whose membership function is given by:

Ri(x1, x2, ..., xM , y) = min [Ai1(x1), Ai2(x2), ..., AiM (xM ), Bi(y)] . (7.29)

So, the membership function of the global fuzzy relation of that model is
found through the max operator in such a way that

R(x1, x2, ..., xM , y) =
N

max
i=1

[Ri(x1, x2, ..., xM , y)] (7.30)

=
N

max
i=1

[min (Ai1(x1), ..., AiM (xM ), Bi(y))] .

In this case, a fuzzy output F for the input set of fuzzy variable D =
D1, D2, ..., DN is also found through the max − min inference, such that

F (y) = ∨N
i=1[τi ∧ Di(y)], (7.31)

where ∨ is the max operator, ∧ is the min operator and τi, with (i = 1, ..., N),
denotes the degree of firing of the i − th rule, given by:

τi = (∨x1 [Ai1(x1) ∧ D1(x1)]) ∧ ... ∧ (∨xM [AiM (xM ) ∧ D1(xM )]). (7.32)

In the particular case in which the inputs D′
is are crisp numbers, τ becomes:

τi = Ai1(x1) ∧ Ai2(x2) ∧ ... ∧ AiM (xM ). (7.33)

Clearly, all Mamdani models discussed above provide a fuzzy set as output.
Therefore, all of them must be defuzzified if a crisp output is required. The
advantage of these models is that they may be data-independent, or in other
words, a phenomenon can be modeled only from experts knowledge, if a collection
of data is not available. On the other hand, they may become expert-dependent.
Furthermore, if the model has many input variables, resulting in a great number
of rules, and if, in addition these input variables are strongly and no-linearly
related, then the experts will show great difficulties to supply the output sets
and the refinement of the model becomes a tough work. In this situation an
alternative is to model the phenomenon through a Takagi-Sugeno-Kang system.

7.5.2 The Takagi-Sugeno-Kang Model

Nowadays the Takagi-Sugeno-Kang (TSK) model, normally referred simply
Sugeno, is the most widely used model in engineering. It was proposed firstly
by T. Takagi and M. Sugeno in 1983, and received later the attention of Kang,
who works particularly in the identification of this kind of systems (Sugeno &
Takagi, 1983; Sugeno & Kang, 1988). This model appeared as an alternative to
the Mamdani model to deal with complex and high-dimensional systems, in the
search of a reduction in the number of rules and in a more objective formulation
of the consequent sets in the fuzzy rule.

The idea in the development of TSK’s model is to apply explicitly the func-
tional information about the relationship between the input variables in the fuzzy
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rules, since this knowledge is available in many problems, as physical laws that
govern the systems, for example. Thus, in this model a fuzzy rule is composed
by fuzzy sets in its antecedent part, as in the Mamdani type, but by functions
in its consequent part. So, in TSK model the fuzzy rules with multiple inputs
can be as following:

If x1 is A11 AND x2 is A12 AND xM is A1M ,
Then y1 = a10 + a11x1 + ... + a1MxM

If x1 is A21 AND x2 is A22 AND xM is A2M ,
Then y2 = a20 + a21x1 + ... + a2MxM ,

...
If x1 is AN1 AND x2 is AN2 AND xM is ANM ,

Then yN = aN0 + aN1x1 + ... + aNMxM ,

where Aij (i = 1, 2, ..., N and j = 1, 2, ..., M) are fuzzy subsets of the univer-
sal set. Geometrically, the rules of the Sugeno model 7.5.2 can be seen as an
approximation of the mapping X1 × X2 × ... × XM → Y by a piecewise linear
function. In addition, there are no constraints on the functions y′

is. In fact, in
a more general setting, these linear functions in the rules’s consequents can be
replaced by non-linear ones. In this sense, each rule in the TSK model above
may be in the following format:

If x1 is Ai1 AND x2 is Ai2 AND xM is AiM ,
Then yi = fi (x1, x2, ..., xN ),

where the y′
is are non-linear functions. Clearly, the simplest TSK model is that

whose functions y′
is are constant values, which is a special case of the system

of fuzzy rules above, when the coefficients aij = 0 (i = 1, 2, ..., N and j =
1, 2, ..., M).

The inference procedure in the TSK approach is defined by the average of the
crisp outputs yi weighted by the degree of firing τi of each rule. Thus, the crisp
output y inferred by this method is given by:

y =
∑N

i=1 τiyi
∑N

j=1 τj

, (7.34)

where the degree of firing, τi, of the ith is, such that:

τi = Ai1(x1) ⊗ Ai2(x2) ⊗ ... ⊗ AiN (xM ), (7.35)

where the ⊗ is any t-norm operation (the most commonly used is the min
operator) and the inputs to the model, (x1, x2, ..., xM ), are necessarily crisp
numbers.

The great advantage of the TSK models is its power to describe highly non-
linear systems using a small number of rules. Moreover, due to the explicit
functional form, the outputs can be found from a database using some learning
algorithms, of which the most used is the neuro-fuzzy systems such as ANFIS
(Jang, 1993). In health sciences, specially in epidemiology, the TSK approach
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is not very applied due to, among other things, the absence of reliable data.
Nevertheless, when the problem is not very complex it may be described by
TSK models, whose outputs of rules are constant functions (Duarte et al., 2006;
Sousa et al., 2006).

7.5.3 The Standard Additive Model

The Standard Additive Model (SAM) was introduced by B. Kosko in 1996
(Kosko, 1997) and consists in a fuzzy model composed by N parallel rules,
whose antecedents and consequents are fuzzy sets. However, in spite of this fact,
the SAM approach shows many differences in relation to the Mamdani inference
procedure. The inference method of SAM is similar to that used in the TSK
model, since both of them apply the weighted sum in order to aggregate the
individual output of the set of rules into a final conclusion.

Both in the Mamdani and SAM models the inference methodology produces
their fuzzy conclusions through transformations on the output sets yi, consider-
ing the membership function of the ith consequent set and the degree of firing of
that rule. This transformation is called clipping approach in the Mamdani’s case
and scaling approach in the SAM’s model. In the clipping method the output
set has its membership function cut off in the top, whose α − cut value is equal
to the degree of firing for that rule. On the other hand, in the scaling method
the membership function is scaled down in the proportion of the degree of firing
(Yen & Langari, 1999). Figure 7.10 illustrates the scaling method for fuzzy in-
ference used in the SAM models, considering a If-Then rule with an antecedent
fuzzy set, Ai, and a crisp input value, x∗.

In the SAM model the inputs are necessarily crisp numbers and the inference
procedure produces an output fuzzy set that must be defuzzified by the centroid
(Center of Area) method. Thus, considering a MISO SAM model composed by
N rules, in which the i − th rule is

If x1 is Ai1 AND x2 is Ai2 Then y is Bi; (i = 1, 2, .., N)

and a given crisp input numbers, x1 = x0
1 and x2 = x0

2, the output of the model
is

y = centroid

(
N∑

i=1

[
Ai1(x0

1) Ai2(x0
2) Bi(y)

]
)

, (7.36)

where the centroid is the function that performs the Center of Area
defuzzification.

Equation (7.36) can be re-written in a more computable form:

y =
∑N

i=1

(
Ai1(x0

1) Ai2(x0
2)
)

Ai ci
∑N

i=1 (Ai1(x0
1) Ai2(x0

2)) Ai

, (7.37)
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Fig. 7.10. The scaling method for fuzzy inference used in SAM models (modified from
Yen and Langari, 1999)

where Ai is the area under the output Bi of the ith rule and ci is the centroid
of the Bi, i.e.,

Ai =
∫

Bi(y)dy (7.38)

and

ci =
∫

yBi(y)dy
∫

Bi(y)dy
. (7.39)

Due to the aggregation form expressed in (7.37) this inference procedure pro-
posed by Kosko is called additive model. It is based on the sup-product compo-
sition and the use of “addition” as a rule aggregation operator (Yen & Langari,
1999). In addition, note that the inference in the SAM model is easily com-
putable, since Ai and ci are constants once the rules are defined.

In this section we presented the three most important fuzzy rule-based
systems: Mamdani, Takagi-Sugeno-Kang and SAM models. To illustrate the
performance and the possibilities of the Mamdani inference in public health
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problems, we will present three models in the next section: a fuzzy linguistic
model for HIV Natural History (Massad et al., 2003); a fuzzy model to estimate
the risk of neonatal death (Nascimento & Ortega, 2002); and a fuzzy model to
quality of life evaluation (Costa et al., 2004). In chapter 8 we will present a
TSK and a Mamdani models applied to study the canine rabies distribution in
a dynamical context.

7.6 Modeling Health Decisions through Fuzzy Linguistic
Systems

7.6.1 A Fuzzy Model for HIV Natural History

It is currently accepted that the human immunodeficiency virus (HIV) con-
centration in the circulating blood (viraemia) determines the clinical course of
the infection. It has been demonstrated that the average time between infec-
tion and the development of the acquired immunodeficiency syndrome (AIDS)
in untreated individuals is around ten years (Mellors et al., 1996). However, a
significant proportion of individuals progresses rapidly to AIDS within five or
less years of infection (Mellors et al., 1996; Bravo et al., 1995). On the other
hand, about 12% of infected individuals remain free of AIDS for at least 20
years. These different outcomes are related, among other factors, to the viral
load attained soon after the infection (Mellors et al., 1996).

Of central importance in therapy and control of the infection is the establish-
ment of tools to predict the clinical course of individuals after the initial phase
of the infection. However, the relationship between potential indicators and clin-
ical course is still plagued by several uncertainties. In what follows we present a
model, whose objective is to establish a relationship between the viral load, the
CD4+ cells and the clinical progression to AIDS in HIV infected individuals.

HIV infected individuals can be classified roughly in 4 categories according
to the length of the asymptomatic phase: a relatively small group of individuals
progresses to AIDS within approximately 5 years; the majority of HIV-infected
individuals progresses to disease after 5 to 10 years; a smaller group progresses
after 10 to 15 years and the smallest group remains asymptomatic for longer
than 15 years. Each class of progressors can be associated with a general pattern
of the HIV viral load in peripheral blood during the course of infection. Rapid
progressors have persistently high levels of viral load during the entire asymp-
tomatic phase. In most individuals the RNA decreases after seroconversion, and
the magnitude of this reduction, as well as the duration of the lowered RNA,
are indicative of the rate of disease progression. Thus, the levels of viral RNA
in peripheral blood appear to reflect the strength of the antiviral host response.
The italicized words are intended to emphasize the uncertainties related to these
processes.

Another important variable in the HIV natural history is the quantity of the
CD4+ cells, a cell of the immunological system, in the infected individual blood.
In this sense, its expected that if this quantity is high in the blood, then the
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Fig. 7.11. Schematic view of the currently accepted natural history of HIV infection
(Coutinho et al., 2001; Perelson & Nelson, 1999)

progression to AIDS should not be fast. On the other hand, if this quantity
is small, then the situation of the infected individual is not good. Figure 7.11
presents the typical behavior of the viral load and the CD4+ cells in the HIV
infected individual.

It is possible to note in figure that in a first phase the concentration of viral
load in the blood circulation grows quickly (one to two months after the infection)
and it reaches a maximum, from which the viral load begins to decrease until it
reaches a stationary level, where the individual stays for some years. After the
incubation period, its concentration in the blood circulation starts to grow and
the infected individual begins to show the first symptoms of AIDS.

This process is called clinical progression. It is known that the individual will
progress more quickly to AIDS, the higher the level of the viral load reached in
the stationary (non symptomatic) phase. For the therapeutic strategy point of
view, it is important to estimate what is the HIV phase correspondent to a given
infected individual. According to this, besides the exams of the viral load, it is
also measured the concentration of CD4+, that is, the amount of lymphocyte T
(antigen of CD4+ surface) in the blood. Thus, a high level of CD4+ is related
with slow clinical progress, depending on the level of viral load.

In addition, the inference about what phase the patient remains requires a
longitudinal follow up of the indicators mentioned, which would consume many
months to analyze. In this section we present a linguistic fuzzy model that estab-
lishes relationships among the values of viral load and CD4+ with the clinical
progression to AIDS in HIV infected individuals. The objective, therefore, it is
to estimate the clinical progression of the individual, starting from a collection
of laboratory tests in time.
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Fig. 7.12. Scheme of the Mamdani model to study the progression to AIDS based on
two information: viral load and CD4+ counting

The model is composed by a collection of 20 parallel fuzzy rules, whose an-
tecedent part assumes two linguistic variables: the viral load, expressed as the
logarithm of the RNA-HIV counting in the plasma, and the CD4+ concentra-
tion, expressed as the counting of the lymphocyte CD4+; and the consequent
part is the clinical progression, expressed as the time (in years) that the indi-
vidual takes until presenting the first symptoms of AIDS (Massad et al., 2003).
Figure 7.12 illustrates the model scheme. One rule in this MISO Mamdani model
has a following form,

If viral load is very low AND the CD4+ is very high, Then the progression to
AIDS is very slow.

With an expert’s aid we divided the domain of the input variables in the
following way: the viral load into four categories, Very Low, Low, Medium and
High; the CD4+ into five fuzzy sets, Very High, High, Medium, Low and Very
Low ; and the clinical progression to full-blown AIDS was defined in terms of the
time taken from infection to the appearance of the first AIDS-defining clinical
condition, as Very Slow, Slow, Medium, Fast and Very Fast. The membership
functions of these variables were established as triangular and trapezoidal ones,
whose functional forms are defined below and showed in figures 7.13, 7.14 and
7.15. The fuzzy rules of this model is presented in table 7.1.

V L: The membership functions of viral load counting.

V L Very Low : μV LV L(x) =

⎧
⎨

⎩

1 if x ≤ 3
4 − x if 3 < x ≤ 4
0 if x > 4
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Fig. 7.13. Membership functions to Viral Load variable

Fig. 7.14. Membership functions to CD4+ variable

V L Low : μV LL(x) =

⎧
⎨

⎩

0.0 if x < 3.7; x > 4.5
2.0(x − 3.7) if 3.7 ≤ x < 4.2
3.3(4.5 − x) if 4.2 ≤ x ≤ 4.5

V L Medium : μV LM (x) =

⎧
⎨

⎩

0.0 if x < 4.0; x > 4.8
2.0(x − 4.0) if 4.0 ≤ x < 4.5
3.3(4.8 − x) if 4.5 ≤ x ≤ 4.8

V L High : μV LH (x) =

⎧
⎨

⎩

0.0 if x < 4.7
3.3(x − 4.7) if 4.7 ≤ x ≤ 5.0
1.0 if x > 5.0
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Fig. 7.15. Membership functions to Clinical Progression variable

CD4+: The membership functions of CD4+ cells.

CD4 + Very Low : μCD4+V L(x) =

⎧
⎨

⎩

1.0 if x < 80
0.0083(200 − x) if 80 ≤ x ≤ 200
0.0 if x > 200

CD4 + Low : μCD4+L(x) =

⎧
⎨

⎩

0.0 if x < 150; x > 350
0.02(x − 150) if 150 ≤ x ≤ 200
0.006(350 − x) if 200 ≤ x ≤ 350

CD4 + Medium : μCD4+M (x) =

⎧
⎨

⎩

0.0 if x < 300; x > 600
0.006(x − 300) if 300 ≤ x ≤ 450
0.006(600 − x) if 450 ≤ x ≤ 600

CD4 + High : μCD4+H (x) =

⎧
⎨

⎩

0.0 if x < 400; x > 800
0.005(x − 400) if 400 ≤ x ≤ 600
0.005(800 − x) if 600 ≤ x ≤ 800

CD4 + Very High : μCD4+V H (x) =

⎧
⎨

⎩

0.0 if x < 600
0.005(x − 600) if 600 ≤ x ≤ 800
1.0 if x > 800
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Table 7.1. Fuzzy rules of the clinical progression to AIDS model

Rule IF CV is AND CD4+ is THEN CP is
1 very low very high very slow
2 very low high very slow
3 very low medium slow
4 very low low slow
5 very low very low medium
6 low very high very slow
7 low high slow
8 low medium medium
9 low low medium
10 low very low fast
11 medium very high medium
12 medium high medium
13 medium medium medium
14 medium low fast
15 medium very low very fast
16 high very high fast
17 high high fast
18 high medium fast
19 high low very fast
20 high very low very fast

CP : The membership functions of clinical progression to AIDS.

CP Very Slow : μCPV S (x) =

⎧
⎨

⎩

0.0 if x < 10
0.20(x − 10) if 10 ≤ x ≤ 15
1.0 if x > 15

CP Slow : μCPS (x) =

⎧
⎨

⎩

0.0 if x < 8; x > 15
0.25(x − 8) if 8 ≤ x ≤ 12
0.3(15 − x) if 12 ≤ x ≤ 15

CP Medium : μCPM (x) =

⎧
⎨

⎩

0.0 if x < 6; x > 12
0.25(x − 6) if 6 ≤ x ≤ 10
0.5(12 − x) if 10 ≤ x ≤ 12

CP Fast : μCPF (x) =

⎧
⎨

⎩

0.0 if x < 3; x > 7
0.5(x − 3) if 3 ≤ x ≤ 5
0.5(7 − x) if 5 ≤ x ≤ 7

CP Very Fast : μCPV F (x) =

⎧
⎨

⎩

1.0 if x < 2
0.3(5 − x) if 2 ≤ x ≤ 5
0.0 if x > 5
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Fig. 7.16. Surface found by the HIV model mapping

The procedure of the fuzzy model consists in, given the Viral load, V Li, and
CD4+, CD4+i values of the individual i, the system compute the estimated
value of their clinical progression to AIDS in years, through the rules base and
the Centroid defuzzification method. Figure 7.16 presents the surface found by
the model mapping.

Thus, as an example, suppose an individual that present a crisp value for
the logarithm of HIV-RNA counts like 4.3 and the value of CD4+ equal to
650 counts for mm3 of blood, then by applying the model described above the
estimated output value to clinical progression is 12.3 years, considering the HIV
natural history. Table 7.2 shows the estimated values to clinical progression for
some pairs of viral load and CD4+.

Table 7.2. Some values estimated to clinical progression through the AIDS model

log(VL) CD4 + (count/mm3) CP(years)
4.3 650 12.3
4.0 100 5.0
6.0 200 1.8
2.0 350 11.6
4.5 400 9.28

Its important to point out that interventions in the natural course of the
disease were not consider in this model, as drug treatment. In this sense, the
estimated value to the clinical progression would be useful only to guide some
initials clinical interventions, helping the clinician to position their patient, at the
beginning, in the curve shown in figure 7.11. Nevertheless, once the treatment
has started the model no longer can provide information about the patient’s
clinical progression.
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Drugs for treatment of HIV seropositives have always been in improvement
and the reality of the AIDS disease today are quite different than that when
this model was developed, in April of 1997. In fact, from the individual point of
view, AIDS could be consider reasonably under control due to the development
of the drugs cocktails, that have been prolonging to the maximum (and with life
quality) the survival of the HIV seropositives. This is particularly true in Brazil
where the health program of attention to HIV seropositives is one of the best of
the world.

Although the model presented was not validated due to the lack of drugs-free
data, the method proposed has demonstrated a good predictive capacity of the
clinical course of HIV infection to AIDS basing on a qualitative description of the
current knowledge of AIDS epidemiology. Its major advantage is the possibility
of including the subjective opinion of HIV/AIDS experts on an analytical model
and its simplicity. This is one of the first attempts to apply fuzzy logic and
approximate reasoning to tackle a specific HIV/AIDS epidemiology problem, to
the best of our knowledge. In the next section we present another example of
Mamdani model applied to risk evaluation of neonatal death.

7.6.2 A Fuzzy Model to Estimate the Risk of Neonatal Death

Neonatal mortality is defined as the death that occurs up to 28 days of life and
is a very important indicator of a population’s heath, since it informs about
social welfare, ethical and political aspects of a determined population under
certain conditions. Among the main causes of neonatal mortality, low birthweight
(LBW) and preterm newborn (PT) are the most important. There is a crisp
classification which is used to classify children in preterm and low birthweight
that is commonly used in neonatology. In this scale, those who are born with
weight under 2500 g are considered to be of low birthweight and among these,
those that are born with a weight lower than 1500 g are considered to be of very
low birthweight. In the same way, children who are born before having completed
37 weeks of gestation are considered preterm, and extreme pre-term those who
are born before having completed 32 weeks of gestation (Abrams & Newman,
1991).

The incidence of LBW and the incidence of PT in Brazil are around 10%
each (Costa & Gotlieb, 1998; Bettiol et al., 2000). So, estimating the risk of
neonatal death can supply important information to pediatrics and especially to
the neonatal intensive care physician, with respect to the attention that should
be dedicated to the newborn. In São Paulo State, the most developed state of
Brazil, the neonatal mortality in 2000 was 11,45/1000 livebirths. Nevertheless,
a possible generator of confusion, in an automatic decision making perspective,
is the Boolean classification for PT and LBW described above, because a child
born with 2600 g, for instance, could not receive the necessary attention by not
being considered LBW. The same could happen with a child born with 38 weeks
of gestation. The main advantage of the fuzzy theory is to consider a smooth and
more realistic classification of the children with respect to that two variables. Low
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birthweight, extreme low birthweight, preterm and extreme pre-term newborns
are the main risk factors to neonatal mortality.

Clearly the care with the newborn child could vary depending on the hospital
and on its location (areas more or less developed, more populous, rural or urban
zone, etc.) Not rarely, in modest hospitals the pediatrician is not there at the
moment of birth, and other professionals carry out the evaluation of the newborn.
This may happen even in developed countries and is the reality in most countries
in development. Considering this scenario, the elaboration of a simple model that
is able to evaluate more appropriately the risk of neonatal death may become
an important tool, particularly if it requires low computational investment in its
implementation. This is the case of the fuzzy model presented in this section.

This fuzzy linguistic model to evaluate the risk of neonatal death was also
based in experts knowledge and has two antecedents: birthweight, fuzzily clas-
sified in Very low birthweight (VLBW), Low birthweight (LBW), Insufficient
birthweight (IBW) and Normal birthweight (NBW); and gestational age, fuzzily
classified in Very preterm (VPT), Preterm (PT) and Term (T). These fuzzy sets
were built with fuzzification of the classical pediatrics classification. The fuzzy
consequent of the model is the risk of death until 28 days, which was considered
as Very low (VLR), Low (LR), Slightly high (SHR) and high (HR). Again, by
simplicity, the membership functions have triangular and trapezoidal’s shapes,
as showed in figures 7.17, 7.18 and 7.19. In this case, the base rule was composed
by 10 rules, as showed in table 7.3.

Note that, combing all possible inputs we are able to build 12 rules, but we
considered as relevant only 10 rules, since there are situations that do not occur
in the reality. For instance, it is impossible to find a very pre-term newborn
with a normal birthweight or with insufficient birthweight. Normally a baby in
this situation presents low or very low birthweight. So, although this case is
mathematically possible it was not considered in the rule bases, reducing the

Fig. 7.17. Membership functions for the variable birthweight in the risk of neonatal
death model (Nascimento & Ortega, 2002)
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Fig. 7.18. Membership functions for the variable gestational age in the risk of neonatal
death model (Nascimento & Ortega, 2002)

Fig. 7.19. Membership functions for the variable risk of neonatal death (Nascimento
& Ortega, 2002)

Table 7.3. Illustration of the rules in the Mamdani model for estimation of the risk
of neonatal death

Gestational Birthweight
age Very Low Low Insufficient Normal

Very Preterm High High – –
Preterm High Slightly high Low Low

term Slightly high Low Very low Very low
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Fig. 7.20. Surface found by the mapping of the model to estimate the risk of neonatal
death (Nascimento & Ortega, 2002)

number of the rules. Table 7.3 illustrates also that the rules of the model can be
expressed in a matrix way, if the system has at the most two input variables.

The procedure of this fuzzy linguistic model consists in, given two of the above
input for any child, calculating the membership degree of these values in all fuzzy
sets of birthweight and gestational age. After that, the risk of neonatal death
is determined by inference of the fuzzy rule set, using Mamdani inference, and
with defuzzification of the fuzzy output. Figure 7.20 presents the results of the
mapping through this fuzzy model.

We can see in this figure that the risk of neonatal death decreases monoton-
ically when the birthweight or the gestational age increases, which is expected.
The inconsistent region in this figure corresponds to the excluded rules discussed
above. It means that it is impossible to occur, for instance, a newborn with a
birthweight of 3200g with a gestational age of 30 weeks or a newborn with a
birthweight of 4000g with a gestational age of 34 weeks.

In order to evaluate the performance of the model, 15 cases were analyzed
by four other experts, whose results were compared with the model’s ones. The
Spearman correlation coefficient between model results and the experts opinion
varies of 0.91 to 0.97 (p < 0.001). Considering the average of experts opin-
ion and model results we found the Spearman correlation coefficient equal to
0.96. In addition, it was calculated the agreement test between all experts and
the model as much as among experts each other. All Kappa tests were statis-
tically significant considering the significancy level of 5% (Kaplan et al., 1976).
The larger p value was 0.024 for the agreement between the model versus one
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expert, however, in all the remanining tests the p values were smaller that 0.01.
The Kappa values were slightly better in the agreement among the experts than
between the model and the experts. Nevertheless, all values were statistically
equivalent ones when we considered the 95% confidence intervals.

Therefore, this fuzzy model, based only in two input variable, was sufficiently
robust to estimate the risk of neonatal death when compared with the experts
opinion. It is important to point out that the variables are simple measures, both
of them easily available in the delivery room, even in very modest circumstances.

As expected, the agreement between the model and the experts is better in
extreme situations, since this cases present less uncertainties involved. For in-
stance, when the birthweight and the gestational age are ideal and when the
birthweight and the gestational age are very critical there are few doubts about
the expected outcome. On the other hand, when the birthweight and the ges-
tational age are in intermediate situations (doubtful ones), the experts provid-
ing several and different opinions which result from their feelings and personal
experiences.

Clearly, this model could be improved through the introduction of new vari-
ables, as the Apgar score. However, it is important to consider that the number
of fuzzy rules grows in exponential aspects and it can compromise the model
performance. Besides, the inclusion of new variables does not ensure the im-
provement and robustness of the model.

The application of fuzzy sets theory in pediatrics is a recent area of research
(Reis et al., 2004). Nevertheless, this approach has provided promising results in
several medical applications, proposing a paradigmatic shift in medicine (Sadegh-
Zadeh, 1999 and 2000). In this sense, the fuzzy model proposed here represents a
modest contribution to this changing scenario, since the results show that fuzzy
sets theory can be a powerful tool to estimate neonatal mortality and other
important health indicators (see chapter 5). In fact, the fuzzy rule-based models
can play a wide role in the development of systems to health decision support.

The measures of human development and of a nation’s health depend on the
evaluation of the life quality and of its citizens’ health. For a long time the indica-
tors of health were based on the measures of neonatal mortality, infant mortality
and life expectation. However, the scientific progress in the medical fields, the
control and prevention of diseases, the largest attention to childhood, the fast
attendance in the case of accidents, among other actions, have been altering the
profile of the societies with relationship to these traditional indicators of health.
In this new scenario it becomes more and more necessary the development of
indicators that take into account the citizens’ health in a wider viewpoint. So,
modeling emotions, feelings and the quality of life can contribute in an impor-
tant way to the understanding and the evaluation of the health status in the
individual and in the population as a whole. Clearly, this kind of modeling in-
volves several identification uncertainties and fuzzy logic consists in one of the
most appropriate tools to treat them.

Although the modeling of human emotions and feelings can provide interest-
ing analysis in the behavior and psychological studies, they have been basically
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applied in robotics (Shirahama et. al, 1999). This kind of research has as main
goal the development of robots that are able to manifest human reactions like
happiness, sadness, astonishment, and so on. Modeling the quality of life, how-
ever, can provide results about the individuals’ health, acting directly in public
health decisions (Costa et al., 2004). In the next section we present an exam-
ple of a model able to evaluate the disability degree, where the perception of
disability is treated in a public health perspective.

7.6.3 A Fuzzy Model to Quality of Life Evaluation

Measures of health have played an essential role in the analysis of health status
and quality of life, at individual and population levels. So far, they have been
used, mainly, in the setting of health policy priorities and goals, and in the
monitoring of medical and health care effectiveness.

As societies evolve, health problems change and new health measures are
needed to adequately reflect such changes. Usually, death rates are suitable indi-
cators of health where high levels of mortality predominate. But the increase of
life expectancy, as well as of general morbidity prevalence levels, have changed
the emphasis on death rates, alone, as suitable indicators of health (McDowell &
Newell, 1987). Another reason for this is that the aims of the health care system
have expanded in order to incorporate the achievement of physical, mental and
social well being (Fanshel & Bush, 1970).

The need for the development of new health indicators based on both fatal
and non-fatal health outcomes has been stressed since the late 1960’s (Bergner,
1985), when functional disability began to emerge as a major public health prob-
lem worldwide due to its hazardous consequences upon economic production,
social welfare and population well-being. Since then, efforts have been aimed
to develop composite measures of morbidity and mortality, expressed as units
of time lived, adjusted for different functional levels and ranging on a contin-
uum from perfect health to death. Such measures are intended to provide a
rationale for the allocation of health care and research resources - encompassing
the prevention, treatment and rehabilitation of functional disability due to both
fatal and non fatal diseases and injuries -, as well as social assistance expendi-
tures aimed at the disabled population. Considering the limited availability of
resources, policy makers need to reduce uncertainty to an utmost degree when
establishing priorities and goals based on the assessment of the health status of
populations (Murray,1996).

So far, a variety of methods has been developed in order to adjust the time
lived in different functional levels. In general, these methods are intended to pro-
vide quantitative estimates of subjective phenomena, such as value judgements
or preferences for different health states or functional levels. Opinions on which
method is best vary widely, although a consensus exists around the need of a
thorough understanding of the underlying mechanisms involved in functional
disability measurement within quality of life research (Murray,1996).

In addition, the classic, current view of disease is that health and disease
are opposites and that they are dual and contradictory attributes. It is said
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that health is the absence of disease and vice versa. The fuzzy logic approach,
otherwise, considers health and disease as, at least partially, complementary
states, and better fits the concepts of health states and health related quality
of life, as used in public health and quality of life research (Patrick & Erickson,
1993). Nevertheless, none of the methods for the assessment of quality of life
developed so far has been based on a fuzzy framework. In this section we present a
fuzzy linguistic model developed for measuring the degree of functional disability,
and illustrate its potential use in public health.

A fuzzy linguistic model based on experts opinions was developed for mea-
suring the degree of functional disability. Three fuzzy input variables were con-
sidered, according to social activity, mobility and physical activity.

Social activity (S) refers to the performance of activities usual for a person’s
age and social role, according to: play for pre-schoolers below 6 years old, study
for the 6 to 17 years old age group, work and/or house keeping for the 18 to 64
years old age group, and house keeping and leisure from 65 years on. Mobility
(M) is related to the range and to the freedom to travel from one place to
another. Physical activity (P) is concerned mainly with walking, but includes
other physical movements of the trunk and extremities, such as standing and
stooping. These three dimensions of health are as those defined in the Quality
of Well-being Scale, QWB (Patrick et al., 1973).

A set with 100 fuzzy rules was derived, and considered as consequent for each
rule the degree of functional disability (D), which describes the overall functional
level of an individual, based on the previous three dimensions. The set of 100
fuzzy rules was derived by relating the fuzzy sets representing the functional
levels of each input variable, namely, social activity (5 levels), mobility (5 levels)
and physical activity (4 levels). A knowledge base was then developed according
to the definitions presented in the original QWB scale approach (Patrick et al.,
1973).

The fuzzy sets related to each linguistic variables were also derived from the
original QWB scale framework - not as a direct translation of its definitions -,
taking into account an underlying ordinal measurement scale. Expert knowledge
was acquired through a standard questionnaire. Following the presentation of
essential concepts regarding fuzzy sets theory, the experts were asked to: (i) de-
fine the membership functions related to the fuzzy sets representing the function
levels of each input variable as well as the output variable (functional disability);
(ii) define the consequent part of each of the 100 fuzzy rules; (iii) assign a value
within the [0,10] interval - the fuzzy rating scale - to each of the three fuzzy input
variables; and (iv) assign a value within the [0,10] interval to each of the 100
combinations of the functional input variables, as in the QWB scale approach.

Each fuzzy rule has the form:

IF S is Si AND M is Mj AND P is Pk THEN D is Dl,

where S, M , P and D are the fuzzy representation of social activity, mobility,
physical activity and the degree of functional disability, and Si, Mj , Pk and Dl

are the fuzzy sets concerning the magnitude of S, M, P and D, respectively (see
table 7.4). The linguistic terms represent different levels of functional disability,
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Table 7.4. Linguistic variables and respective fuzzy sets related to functional levels
(Costa et al., 2004)

Linguistic variables Fuzzy sets of Symbol
functional levels

Social activity (S) Extremely limited S1

Very much limited S2

Limited S3

Somewhat limited S4

Plenty S5

Mobility (M) Extremely limited M1

Very much limited M2

Limited M3

Somewhat limited M4

Plenty M5

Physical activity (P ) Extremely limited P1

Very much limited P2

Somewhat limited P3

Plenty P4

Degree of Very high D1

functional High D2

disability (D) Moderate D3

Low D4

None D5

and reflect the uncertainty and imprecision that underlie the measurement of
such subjective concepts.

The rules were defined by a neurology expert and only the combinations of
fuzzy sets considered to be clinically meaningful and plausible were considered.

Each of the fuzzy linguistic variables are numerically represented by the set
of real numbers, included in the interval [0,10]. Disposed as a rating scale, such
numbers express the functional level for each dimension of health, along a con-
tinuum that ranges from optimal function to death, represented by the extreme
values 10 and 0, respectively. These membership functions of input and output
variables are shown in figure 7.21.

For each functional level presented in table 7.5, a crisp value was assigned on
the proper fuzzy rating scale. Multidimensional functional levels, derived from
the combination of single dimensional functional levels, as in the Quality of Well-
being Scale (Patrick et al., 1973), were evaluated through the fuzzy model, as
already explained.

As an example, it is presented the evaluation of one multidimensional func-
tional level, derived from the combination of the B categories of each single
dimensional levels (see table 7.5). The crisp values (x, y, z) assigned to the so-
cial activity, mobility and physical activity fuzzy rating scales were 8, 7 and
6, respectively. In words, social activity was judged to be between somewhat
limited and limited, and mobility and physical activity were evaluated as being
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Fig. 7.21. Membership functions of Social activity, Mobility, Physical activity and
Degree of functional disability (modified from Costa et al., 2004)

Table 7.5. Function level of fuzzy input variables (Costa et al., 2004)

Function Social Mobility Physical
level activity activity

A
Did work, school, or Drove car or used Walked without

housework, and public transport physical limitations
other activities without help

B
Did work, school, or Did not drive, or Walked with
housework, but other had help to use physical limitations
activities were limited public transport

C
Limited in amount In house Moved own
or kind of work, wheelchair

school or housework without help

D
Performed self-care, In hospital In bed or chair
but not work, school

or housework

E
Had help with In special care unit –

self-care

somewhat limited. From the membership functions presented in figure 7.21, the
fuzzy output set Dl was derived. A crisp value d, expressing the degree of disabil-
ity associated to the multidimensional functional level (B, B, B), was determined
through the center of area defuzzification method.
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In this example, d was equal to 5.75. When normalized with reference to a
scale bounded by the limits 0 and 1, it simply becomes equal to 0.575. From the
original Quality of Well-being Scale, d was estimated as 0.5402, a value which
can be considered fairly close to the one obtained with the use of the fuzzy
model.

With reference to a well known composite health indicator, the health status
index (Patrick et al., 1973), this estimate means that one year lived in such
functional state is worth 0.575 years in perfect health, for which d = 1. Inversely,
the value given by 1 − d expresses the amount of time lost in one year, due to a
determined functional level (0.325 years, in the present example). Consequently,
ten years lived in functional state (B, B, B), irrespective of its underlying cause,
implies a loss of 3.25 years, with reference to perfect health. In case of death, d
is estimated as 0.

The estimates of d varied according to the different functional levels evaluated.
For less severe functional disabilities, characterized by functional states (A, B, A)
and (A, A, B) (see table 7.5), d was estimated as 7.00; for more severe functional
disabilities, such as states (B, C, B) and (B, B, C), lower estimates of d were
obtained (4.90 and 2.80, respectively). Considering the whole range of conditions
evaluated, the estimates of d tended to decrease as the functional states moved
away from the absence of disabilities (perfect health) towards the death extremes,
establishing, thus - as expected from any consistent method -, a grading system
for quality of life evaluation.

In order to assess the model, we submitted all functional levels to the evalua-
tion of two other experts. An agreement analysis was carried out, concerning the
estimates of the degree of functional disability for different (three dimensional)
conditions obtained through the fuzzy model and through a direct assignment
on the fuzzy rating scale; this latter approach - named direct model - resembles
the method used in the original QWB scale.

Agreement was assessed by means of the intraclass correlation coefficient
(ICC), in two different ways, as follows: (i) considering the results obtained from
each of the two approaches - i.e. the fuzzy model and the direct approach - sepa-
rately, as defined by each of the three experts - namely, between observers agree-
ment; and (ii) considering the results obtained from each of the two approaches
for each neurology expert separately - namely, between methods agreement.

Between experts agreement was higher for the results obtained from the fuzzy
model (ICC=0.666; 95%CI: 0.568 - 0.751) when compared to the estimates orig-
inated from the direct model (0.496; 95% CI: 0.220 - 0.681), considering the
estimates provided by the three neurologists altogether. In this sense, the fuzzy
model constitutes a consistent alternative for disability measurement, since it
provides more stable results when compared with the original crisp approach.

Comparing the performance of the fuzzy model with the direct (QWB)
method at the level of the single expert neurologist, results varied widely. While
there was poor agreement between the two methods for expert 1 (ICC = 0.309;
95%CI: -0.065 - 0.666), the estimates provided by expert 3 were found to be
reasonably reliable (ICC = 0.791; 95%CI: 0.218 - 0.919) (Landis & Koch, 1977).
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Considering the average of experts opinions and model results we found the intr-
aclass correlation coefficient equal to 0.742 (95%CI: 0.112 - 0.899). The high ICC
estimates suggest that the fuzzy model is as good as the original QWB approach,
in what concerns functional disability measurement. Such findings support the
hypothesis about the validity of the results obtained from the fuzzy model, since
the QWB scale is widely recognized as a consistent and valid approach in qual-
ity of life research (Patrick & Erickson, 1993). The estimates of d for a selected
sample of conditions evaluated by the experts, as derived from the fuzzy and the
direct models, are shown in table 7.6.

Table 7.6. Estimates of the degree of functional disability (d) obtained from the fuzzy
and direct models (Costa et al., 2004)

Functional Fuzzy model Direct model
level d d

AAA 0.94 1.00
BAB 0.73 0.75
CBA 0.73 0.76
CCB 0.51 0.53
ECA 0.51 0.52
ECC 0.30 0.28
EDC 0.30 0.30
EDD 0.10 0.12

An additional advantage of the fuzzy model over the crisp approach is that
it allows a better understanding of how different scales - qualitative, linguistic,
ordinal scales and quantitative, numerical, continuous scales - are related. The
fuzzy rating scales, together with the whole set of fuzzy rules, showed how lin-
guistic expressions, inherently vague, may be represented by numbers. By closely
depicting the complex rationale underlying functional disability measurement,
the fuzzy model may serve as an important tool to achieve a thorough com-
prehension of the mechanisms related to functional disability measurement - a
central and much controversial question within quality of life research (Patrick
& Erickson, 1993).

The tests performed suggest that the results obtained from the fuzzy model
match those from the Quality of Well-being Scale, from which its conceptual
and structural framework was derived. Such findings are encouraging, since the
Quality of Well-being Scale is considered a consistent and valid approach for
disability assessment and quality of life evaluation (Kaplan et al., 1976). In
addition, the fuzzy model provided comparable estimates of disability degree
with the neurologists opinions.

The results obtained from the agreement assessment are encouraging, al-
though they must be carefully interpreted. The fuzzy model showed a better
performance in terms of between observers agreement when compared to the
direct model. Since the latter approach is much similar to the original QWB
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scale method, we interpreted this finding as an evidence which supports the
assumption about the appropriateness of the fuzzy model to deal with an essen-
tially subjective measurement process. However, functional disability estimates
derived from experts 2 and 3 fuzzy models showed a little variation in the whole
range of functional conditions evaluated; this might partially explain the higher
ICC estimates observed. In other words, the results derived from experts 2 and
3 fuzzy models showed limited ability to discriminate among rather different
functional levels, defined according to the three dimensions already mentioned.
One possible explanation for these findings is the close resemblance among the
fuzzy variables sets and the functional levels defined in the original QWB scale,
which, in fact, provided the basis for the fuzzy model’s structure. Such resem-
blance might have induced experts 2 and 3 to superpose the original QWB scale
functional levels with the fuzzy variables sets, thus restricting the expert’s ca-
pacity to differentiate among the varying functional states.

Another word of caution is needed as related to the intrinsic limitation of our
inference model. As any inference set of rules, ours is context dependent and
the variation found between experts could be partially dependent on this fact.
However, the fuzzy model is very robust and allows a great deal of generalization
about subjective information from patients.

Finishing this chapter we want to highlight that all fuzzy linguistic models
were presented here to illustrate the power and usefulness of the fuzzy rule-
based systems in epidemiology are static models, that is, they have no dynamics
involved in their structures. However, the majority of models in modern epidemi-
ology are based on dynamical systems. In fact, fuzzy dynamical systems consist
in a hard area and to develop this models require the knowledge of more sophis-
ticated mathematics, as will be seen in chapter 9. However, there is a simple
way to elaborate fuzzy dynamical systems that it is based on linguistic models,
as will be showed in chapter 8.



8 Fuzzy Rule-Based Dynamical Models

Epidemic dynamical systems theorists have been facing several hurdles in trying
to validate their models, in particular due to several uncertainties related to
variables, initial states and parameters values. These should ideally be taken
from experimental work which are, quite to the contrary, demonstrating the
extreme vagueness in the definition of such concepts like the force of infection,
contact patterns or infected status. Therefore, a possible alternative approach
could be the combination of fuzzy logic techniques with non-linear dynamical
systems in order to provide a comprehensive analysis and the development of
predictive tools in the epidemiology of infectious diseases.

Fuzzy dynamical systems comprise a relatively new area of research, the fun-
damental idea being to take a standard dynamical system modeled by a differ-
ence, or a differential equation, and then to extend this into a fuzzy set theoretical
framework. The methods allow one to take into account the uncertainties related
to the variables, parameters and initial states and to model their evolution whilst
respecting the underlying dynamics of the system.

In linear fuzzy models the system could be modeled by a differential equation
structure as proposed by Pearson (Pearson, 1997; Pearson et al., 1997), based
on α − levels and Seikkala’s work (1987). However it is difficult to apply it in
epidemiology because epidemic systems, in particular those dealing with infec-
tious diseases, have strong non-linearities and should be treated in a different
way. These non-linearities are due to the fact that the course of epidemic of an
infectious agent, in contrast with chronic diseases, depends, among other things,
on the fraction of susceptible individuals and the fraction of infectious individ-
uals. Both susceptibility and infectiousness are intrinsically fuzzy concepts and
are, therefore, ideal subjects for fuzzy logic analysis.

An approach to deal with non-linear fuzzy dynamical systems was proposed
by Barros and collaborators (Bassanezi & Barros, 1995; Barros et al., 2001 and
2003). They have treated ecological and epidemic systems applying fuzzy param-
eters in differential equations. In this case the solution of the set of equations is
found from the fuzzy expected value technique (FEV)(see chapter 4). However,
applying such an approach is not easy because several details should be treated
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carefully and the calculus is very complex. So, although the FEV methodology
consists in a possible way to model more realistically an epidemic system of an
infectious disease, we are convinced that another approach, capable to deal with
the non-linearities, should be developed.

The most common fuzzy structure applied to real problems is the rule-based
model. As discussed in chapter 7, linguistic models have played an important role
in fuzzy modeling, particularly in systems control. This is due to the simplicity
of their inference methods and their powerful interpretation by experts. Thus,
it is very convenient to develop dynamical systems using rule-based approaches.
In this chapter we present a structure of dynamic linguistic fuzzy models and
show some examples applied to epidemiology.

8.1 The Fuzzy Rule Dynamic Structure

Fuzzy linguistic dynamical systems are usually discrete and deterministic models.
In general, a discrete and deterministic dynamical system can be represented by
a set of state equations like:

ω(k + 1) = f (ω(k), u(k)) (8.1)

and
y(k) = g (ω(k), u(k)) , (8.2)

where u(k) and y(k) are the input and output variables of the system, and
ω(k) = [ω1(k), ω2(k), ..., ωn(k)] is the vector of state variables in the instant k
(Yager & Filev, 1994). In this sense, the state value ω(k+1) and the output value
y(k) are completely determined by the values of ω(k) and u(k), if the functions
f and g are known. Usually, in engineering applications, the state variables have
physical meaning as, for instance, speed, temperature, volume, etc. From the
epidemic point of view, these state variables can represent the parameters of the
epidemic spreading as the force of infection, vaccinating rate, recovering rate etc.

The mapping f and g in equations (8.1) and (8.2) describe the analytical rela-
tions between the input, the output and the states variables, based on the specific
knowledge as the physical laws, chemistry reactions, economy theories and so on.
However, there are many situations in which this kind of mapping is not available,
due to the lack of knowledge about the phenomenon or the uncertainty identifi-
cation inherent to the process. Besides, there are variables that are not mensu-
rable or difficult to estimate, particularly in biomedicine and epidemiology. In these
cases, an alternative is to incorporate variables as linguistic termswhich can denote
their values, using fuzzy sets. In this way, its is possible to transform the mathe-
matical mapping f and g into logical rules that manipulate these linguistic terms,
constructing, therefore, a discrete dynamical system where the non-linearities are
described through fuzzy values of the states variables, ω(k + 1), and the output,
y(k). Then, it is possible to use the structure of the linguistic models to formulate
linguistic alternative for equations (8.1) and (8.2).

The main idea behind this kind of approach is that the system dynamics can
be described by a set of rules applied iteratively, as described in Yager and Filev
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(1994) and, Klir and Yuan (1995). Each rule assumes an input and an output
as fuzzy sets. From the empirical experience of experts we can generate a fuzzy
membership function for each variable and/or parameter, as well as the linguistic
rules. Therefore, the fuzzy model consists of a set of rules and an appropriate
inference machine. This linguistic model has the form:

IF U is B1 AND W1 is A11 AND ... AND Wn is A1n

THEN W 1 is Â11 AND...AND Wn is Â1n AND V is D1

IF U is B2 AND W1 is A21 AND ... AND Wn is A2n

THEN W 1 is Â21 AND ... AND Wn is Â2n AND V is D2

...

IF U is Bm AND W1 is Am1 AND ... AND Wn is Amn

THEN W 1 is Âm1 AND ... AND Wn is Âmn AND V is Dm,

were U is the input and Wi are the state-variables of the system; V and W i are
the output and the state variables after each iteration, respectively; Bi and Aij

are the input fuzzy sets and Di and Âij are the output fuzzy sets. Therefore, by
choosing an appropriate inference and a defuzzification method, after running
the model each step, we get the value of each state variable that will be the input
variable of the system in the following step, and so on, iteratively. It follows that:

U(k + 1) = V (k) (8.3)

and

Wi(k + 1) = W i(k), (8.4)

where k + 1 is the next step after k. This model is a kind of a Markovian
process and is commonly applied in the Mamdani approach. However, the same
structure can be applied in TSK models, if there are enough information about
the dynamics of the system. In this case part of the system behavior is known
and the rules take the form:

IF U(k) is Bm AND W1(k) is Am1 AND ... AND Wn(k) is Amn

THEN y(k + 1) = f(U(k), W1(k), ..., Wn(k));

where y(k+1) is some a priori function known from the system dynamics (Yager
& Filev, 1994).
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In order to illustrate the epidemic situations that could be treated through
these dynamical structures we present two examples: a SIS (Susceptible-Infected-
Susceptible) model, applied to a study about canine rabies seroprevalence in
São Paulo City and, a SIR (Susceptible-Infected-Recovered) model, applied to
Measles (Ortega et al., 2000). We then return to the canine rabies model to
discuss the problems involved in the task of elaborating the fuzzy sets in the
consequent part of the rules, presenting two techniques based on the Principle
of Extension (Ortega et al., 2003).

8.2 A Model for Canine Rabies Seroprevalence

In this section we present an attempt to model the dynamics of rabies among
a population of dogs. This study demonstrates how a dynamical system can
be modeled by fuzzy linguistic rules as compared to the classical differential
equations approach.

A sample of 600 street dogs from São Paulo municipal service of zoonosis
control was analyzed for the presence of antibodies against the rabies virus as
compared to a control sample of 50 dogs from the kennel of the São Paulo police,
whose age and vaccine records are very reliable. Seroprevalence data from both
samples were stratified into 4 age intervals and the age from the street dogs
sample estimated by general aspects and dental observation according to the
technique described in (Sallum et al., 2000). The model assumes no subclinical
infection since rabies is a 100% lethal infection. Therefore, animals seropositives
were assumed as vaccinated and will be denoted S+(a) hereafter (a stands for
age). Seronegative animals were assumed as susceptible to the infection and
will be denoted S−(a) hereafter. The force of vaccination rate, ν(a), was also
considered to be age-dependent and an additional rate, τ , meaning the loss of
antibodies in the absence of new vaccinations, was also considered in this model.
The system was assumed as isolated, without demographic structure, and the
total population considered as a constant. Therefore, working with proportion
we have that

S+(a) + S−(a) = 1. (8.5)

The system is described, in the classical approach, by the following system of
ordinary differential equations:

dS−(a)
da

= −ν(a)S−(a) + τS+(a) (8.6)

and
dS+(a)

da
= ν(a)S−(a) − τS+(a), (8.7)

and assuming (8.5) we can solve equation (8.6) and (8.7) for ν(a):

ν(a) =
dS−(a)

da + τS+(a)
1 − S−(a)

. (8.8)
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Table 8.1. Rabies seroprevalence of street dogs (Ortega et al., 2000)

Age Proportion of
(years) seropositives

0.5 0.09
1.5 0.13
3.5 0.22
6.0 0.32

The results of the epidemiological data from the São Paulo street dogs sample
are presented in table 8.1 and can be fitted to the linear equation:

S+(a) = 0.04 + 0.0486a. (8.9)

Therefore, the force of vaccination ν(a) can be calculated, resulting in the ex-
pression bellow:

ν(a) =
(0.04 + 0.0486a) τ + 0.0486

1 − (0.04 + 0.0486a)
. (8.10)

On the other hand, the results of the epidemiological data from the São Paulo
police kennel sample are presented in table 8.2 and can be fitted by the following
non-linear equation:

S+(a) = 0.9 (1 − exp (−0.95a)) . (8.11)

Table 8.2. Rabies seroprevalence of police kennel dogs (Ortega et al., 2000)

Age Proportion of
(years) seropositives

0.5 0.57
1.5 0.80
3.5 0.80
6.0 0.90

The force of vaccination ν(a) can also be calculated, resulting in:

ν(a) =
0.9 (1 − exp (−0.95a)) τ + 0.86 exp (−0.95a)

1 − (0.9 (1 − exp (−0.95a)))
. (8.12)

These parameters were applied to the equations (8.6) and (8.7), in order to test
the retrieving capacity of the classical model. Figures 8.1 and 8.2 show the real
data, the fitting and the recovered data for the street dogs and the police kennel
dogs, respectively.

As discussed above, the fuzzy model is comprised by a set of rules that at-
tempts to reconstruct the system dynamics, taking into account the vagueness
involved in the system variables. The rules and the fuzzy sets associated with
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Fig. 8.1. Real data of seroprevalence of canine rabies antibodies, the fitting and the
recovered data, for the street dogs sample

Fig. 8.2. Real data of seroprevalence of canine rabies antibodies, the fitting and the
recovered data, for the police kennel dogs sample

the system were constructed according to the empirical experience of a rabies
expert. In this work we developed two fuzzy dynamic systems: one model based
on the Mamdani approach and, another one based on the TSK approach.

8.2.1 A TSK Model for Canine Rabies

In this model we assumed three membership functions for each of the rabies sys-
tem variables and parameters: S+(a), the age-dependent proportion of seroposi-
tive dogs, ν(a), the age-dependent force of vaccination, and τ , the age-independent
rate of loss of antibodies anti-rabies (as in the classical dynamical system τ−1 is
the average period of time animals remain in the protected state, S+(a) ). The
membership functions used for the fuzzy sets in the antecedent part of the rules,
in both TSK and Mamdani approaches, were the following triangular functions:
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S+(a): The age-dependent proportion of seropositive dogs

S Low : μSL(x) =

⎧
⎨

⎩

5x if 0 ≤ x ≤ 0.2
−5(x − 0.4) if 0.2 < x ≤ 0.4
0 if x > 0.4

S Medium : μSM (x) =

⎧
⎨

⎩

5(x − 0.3) if 0.3 ≤ x ≤ 0.5
−5(x − 0.7) if 0.5 < x ≤ 0.7
0 if x < 0.3; x > 0.7

S High : μSH (x) =

⎧
⎨

⎩

5(x − 0.6) if 0.6 ≤ x ≤ 0.8
5(x − 1.0) if 0.8 < x ≤ 1.0
0 if x < 0.6; x > 1.0

ν(a): The age-dependent force of vaccination

ν Weak : μνW (x) =

⎧
⎨

⎩

2.22(x − 0.05) if 0.05 ≤ x ≤ 0.5
−3.33(x − 0.8) if 0.5 < x ≤ 0.8
0 if x > 0.5

ν Medium : μνM (x) =

⎧
⎨

⎩

1.66(x − 0.6) if 0.6 ≤ x ≤ 1.2
−1.25(x − 2.0) if 1.2 < x ≤ 2.0
0 if x < 0.6; x > 2.0

ν Strong : μνS (x) =

⎧
⎨

⎩

x − 1.0 if 1.0 ≤ x ≤ 2.0
−1(x − 3.0) if 2.0 < x ≤ 3.0
0 if x < 1.0; x > 3.0

τ : The age-independent rate of loss of antibodies

τ Low : μτL(x) =

⎧
⎨

⎩

10(x − 0.3) if 0.3 ≤ x ≤ 0.4
−10(x − 0.5) if 0.4 < x ≤ 0.5
0 if x < 0.3x > 0.5

τ Medium : μτM (x) =

⎧
⎨

⎩

3.33(x − 0.4) if 0.4 ≤ x ≤ 0.7
−3.33(x − 1.0) if 0.7 < x ≤ 1.0
0 if x < 0.4; x > 1.0

τ High : μτH (x) =

⎧
⎨

⎩

1.43(x − 0.5) if 0.5 ≤ x ≤ 1.2
−1.25(x − 2.0) if 1.2 < x ≤ 2.0
0 if x < 0.5; x > 2.0
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Fig. 8.3. Membership functions of fuzzy sets to proportion of protected dogs, S(a)

Fig. 8.4. Membership functions of fuzzy sets to force of vaccination, ν

Fig. 8.5. Membership functions of fuzzy sets of rate of loss of antibodies, τ
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The fuzzy sets described by the membership functions for S+(a), ν and τ are
illustrated in figures 8.3, 8.4 and 8.5, respectively.

By combing all the above membership functions we elaborated 19 linguistic
rules whose antecedent parts are presented in table 8.3.

Table 8.3. Antecedent part of the rules to the TSK model for canine rabies system
(Ortega et al., 2000)

Rule Antecedent part

1 IF S+(a) high AND τ low AND ν(a) medium
2 IF S+(a) high AND τ medium AND ν(a) medium
3 IF S+(a) high AND τhigh AND ν(a) strong
4 IF S+(a) high AND τ low AND ν(a) strong
5 IF S+(a) medium AND τ low AND ν(a) medium
6 IF S+(a) medium AND τ low AND ν(a) weak
7 IF S+(a) medium AND τ medium AND ν(a) medium
8 IF S+(a) medium AND τ high AND ν(a) medium
9 IF S+(a) medium AND τ high AND ν(a) strong
10 IF S+(a) medium AND τ high AND ν(a) weak
11 IF S+(a) medium AND τ low AND ν(a) strong
12 IF S+(a) low AND τ high AND ν(a) weak
13 IF S+(a) low AND τ low AND ν(a) weak
14 IF S+(a) low AND τ low AND ν(a) strong
15 IF S+(a) low AND τ medium AND ν(a) weak
16 IF S+(a) low AND τ medium AND ν(a) medium
17 IF S+(a) low AND τ high AND ν(a) medium
18 IF S+(a) low AND τ high AND ν(a) strong
19 IF S+(a) low AND τ low AND ν(a) medium

Since TSK models require a functional mapping between antecedent variables
it is necessary to find a function that express these mathematical relations. This
function is usually found through linear regression techniques, or other tools
available in artificial intelligence fields, as neural networks or genetic algorithms.
However, these techniques require, in general, a large data collection. In this
example, where we are simply aiming at to compare the dynamics of fuzzy
and classical models, its is possible to guess the output functions in the rule
consequent part observing the behavior of the classical equations solutions.

In the classical approach, the iteration updating given by discrete version of
the differential equation (8.7) is:

ΔS+ = ν(a)(1 − S+(a)) + τS+(a) (8.13)

and the consequent output inspired in this classical solution can be:

ΔS+ = μνi(ν(a))
[
1 − μSi(S

+(a))S+(a)
]− τμτi(τ)μSi (S

+(a))S+(a). (8.14)

where μνi(ν(a)) is the pertinence degree of the ν value in the fuzzy set of force
of vaccination in the i − th rule, μSi(S) is the pertinence degree of the S+ value



160 Fuzzy Rule-Based Dynamical Models

Fig. 8.6. TSK model result for the street dogs sample

Fig. 8.7. TSK model result for the police kennel dogs sample

in the fuzzy set of the proportion of seropositive dogs, and μτ is the pertinence
degree of the τ value in the fuzzy set of the rate of loss of antibodies.

So, all rules presented above have the structure exemplified bellow:

IF S+(a) is low AND ν(a) is weak AND τ is low, THEN
ΔS+

i = μνW (ν(a)) [1 − μSL(S+(a))S+(a)] − τμτL(τ)μSL(S+(a))S+(a)

where ΔS+
i is the increment of S+(a) according to i − th rule.

After the system run over all the rules the increment is calculated by the
degree of firing (see chapter 7), dof i, which is then a measure of the relative
importance of the i− th rule, according to the t-norm operator minimum (Yager
& Filev, 1994):

ΔS+ =
∑19

i=1 dofiΔSi
∑19

i=1 dofi

(8.15)

and finally we have
S+(a + 1) = S+(a)ΔS+. (8.16)
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The updating procedures for the force of vaccination, ν(a), were, first, the com-
putation of ν(a) from equation (8.8) and, second, the estimation of ν(a) from
the numerical simulation of system (8.5). The results of the TSK model for the
street dogs sample and for the police kennel sample (with τ = 0.33 ) can be seen
in figures 8.6 and 8.7, respectively.

As can be noted from figures 8.6 and 8.7, the TSK model worked reasonably
well for the street dogs sample, but the results were not so good when the model
was applied to the police kennel sample. We may conclude that the equation
(8.14) was not capable to describe the dynamics appropriately in this case. In
fact, the difficult to develop TSK models in epidemiology, and other health
sciences, is related to building the consequent functions appropriately. For these
reasons, in general, the linguistic dynamical models applied in these fields are
based on the experts knowledge using Mamdani approach. To demonstrate the
differences among those two types of models, we present in the next session a
Mamdani model applied to the same study.

8.2.2 A Mamdani Model for Canine Rabies

In this model the updating increment of the proportion of seropositive animals
is treated in a different way. Instead of using a mathematical function, the con-
sequent of the rules are also fuzzy sets built by experts in this issue. So, the
antecedent part in both models are the same presented in table 8.3, and the
difference is only in the consequent part.

Let us take, as an example, the antecedent part of the rule number 1:

IF S+(a) is high AND τ is low AND ν(a) is medium.

In this case, we expect from what is known about the actual epidemiological sit-
uation, that the variation in the proportion of seropositive animals is very low.
This means that the epidemiological evidences from a scenario like the state by
the rule above, points to a quasi-steady-state of the proportion of seropositives.
So, basing on this kind of approach, we constructed a set of membership func-
tions that express the epidemiological evidences for the increment in S+(a). We
consider five fuzzy sets for the increment of S+(a), whose triangular membership
functions are defined bellow and are illustrated in figure 8.8.

ΔS+ Very Small : μΔS+
V S

(x) =

⎧
⎨

⎩

20x if 0 ≤ x ≤ 0.05
−20(x − 0.1) if 0.05 < x ≤ 0.1
0 if x > 0.1

ΔS+ Small : μΔS+
S
(x) =

⎧
⎨

⎩

20(x − 0.05) if 0.05 ≤ x ≤ 0.1
−20(x − 0.15) if 0.1 < x ≤ 0.15
0 if x < 0.05; x > 0.15

ΔS+ Null : μΔS+
N

(x) =
{−20x + 1 if 0.0 ≤ x ≤ 0.05

0 if x > 0.05
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Fig. 8.8. Membership functions of fuzzy sets for the increment of S+(a)

Fig. 8.9. Results found by Mamdani model with the fixed value τ = 0.33 and updating
the ν(a) by several methods, for street dogs

ΔS+ Medium : μΔS+
M

(x) =

⎧
⎨

⎩

20(x − 0.12) if 0.12 ≤ x ≤ 0.17
−12.5(x − 0.25) if 0.17 < x ≤ 0.25
0 if x < 0.12; x > 0.25

ΔS+ Big : μΔS+
B
(x) =

⎧
⎨

⎩

14.29(x − 0.2) if 0.2 ≤ x ≤ 0.27
1 if 0.27 < x ≤ 0.32
0 if x < 0.2; x > 0.32

The inference method applied was the maximum-minimum operators and the
crisp output was obtained by the center of area defuzzification method (see
chapter 7). The set of rules applied in this approach is presented in table 8.4.
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Table 8.4. Set of rules of Mamdani approach (Ortega et al., 2000)

Rule IF AND AND THEN
S+(a) is τ is ν(a) is ΔS+

1 high low medium very small
2 high medium medium very small
3 high high strong null
4 high low strong null
5 medium low medium small
6 medium low weak small
7 medium medium medium small
8 medium high medium very small
9 medium high strong null
10 medium high weak very small
11 medium low strong medium
12 low high weak null
13 low low weak very small
14 low low strong big
15 low medium weak null
16 low medium medium small
17 low high medium very small
18 low high strong medium
19 low low medium small

As in the TSK model the force of vaccination was updating with several
techniques, keeping the rate of loss of antibodies constant, τ = 0, 33. Figure 8.9
shows the results for the street dogs for the following situations: a) ν(a) was
updated from the equation (8.13); b) ν(a) was kept constant; and c) ν(a) was
updated through a linear fit given by equation (8.10). It is possible to note that
this model was not sensitive to small alterations in the values of ν(a), which is
due to the structure of the model. Since the different methodologies applied to
treat the ν(a) values provide very similar behavior, it is reasonable to choose the
simplest method and consider the variable ν as age-independent.

In the Brazilian reality, although there are annual immunization campaign
against canine rabies, the street dogs are immunized just if somebody collect
the dog and guide it for the vaccination (the so-called temporary adoption of
street dogs). Thus, it is not expected that the force of vaccination is strong in
this case. In this sense, we fixed ν = 0.12, which correspond to the weak force
of vaccination in the fuzzy sets. With fixed ν value we can vary the value of the
rate of loss of antibodies, searching for the best parameter value for τ . Figure
8.10 illustrates the results, showing that the best value is τ = 0.49. This τ value
corresponds to 2.04 years of protection, what is considered a reasonable value,
according to the available knowledge about the vaccines used in the Brazilian
campaigns.

Assuming the value τ = 0.49 it is possible to choose the best value for the
variable ν. Figure 8.11 shows that, in fact, the best results are the combination
of τ = 0.49 and ν = 0.12.
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Fig. 8.10. Results found by Mamdani model with the fixed value ν = 0.12 and varying
the values for τ , for the street dogs

Fig. 8.11. Results found by Mamdani model with the fixed value τ = 0.49 and varying
the values for ν, for the street dogs

Figure 8.12 presents the correlation between the real data and the fuzzy model
for the street dogs sample (r = 0.9997). Clearly, the Mamdani model was able
to describe the dynamic of the system for the street dogs case.

The conditions of the police kennel dogs are completely different from that
experienced by the dogs that live in the streets. The police kennel dogs are regis-
tered, fed correctly, taken care by specialists and vaccinated yearly. Therefore, it
is expected that these dogs stay protected by a longer period and the vaccination
force should be strong. Repeating the process applied in the Mamdani study, we
found that for this case the best values for the vaccination force and the rate of
loss of antibodies were τ = 0.33 and ν = 1.2, respectively. This result is showed
in figure 8.13.
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Fig. 8.12. Correlation between the real data and the results found by Mamdani model
for the street dogs, τ = 0.49 and ν = 0.12 (Ortega et al., 2000)

Fig. 8.13. Results found by Mamdani model with the fixed value ν = 1.2 and varying
the values for τ , for the police kennel dogs (Ortega et al., 2000)

Therefore, the model provides results that point to a large period of protection
(3.23 years) and a strong force of vaccination, which is completely in accord to
the police kennel dogs reality. Figure 8.14 presents the correlation between the
real data and the fuzzy model for the police kennel dogs sample (r = 0.939).

As happened in the TSK approach, the Mamdani model provided best results,
comparing with real data, for street dogs analysis than for the police kennel dogs.
This is due, in part, to the linear behavior observed in the street dogs sample.
When we compared both approaches, TSK and Mamdani models, we notice that
the Mamdani model has a better performance. This is a direct consequence of
the fact that the chosen function to compose the consequent part of the rule
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Fig. 8.14. Correlation between the real data and the results found by Mamdani model
for the police kennel dogs, τ = 0.31 and ν = 1.2 (Ortega et al., 2000)

in the TSK model is not very adapted. Clearly, another function could provide
better results. So, it is important to point out that the fact that the Mamdani
model to have provide better results than the TSK model does not mean that it
is better than the other. On the other hand, from the Mamdani’s point of view,
we can conclude that the experts were able to describe the relations between the
variables. Figures 8.15 and 8.16 show the experimental data compared with the
results provided by the classical and Mamdani approaches for the street dogs
and police kennel dogs sample, respectively.

It is possible to note that, although the classical differential equations ap-
proach presents good results, the Mamdani system is much better for recovering

Fig. 8.15. Experimental data compared with the results provided by Mamdani and
Classical approaches, for the street dogs
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Fig. 8.16. Experimental data compared with the results provided by Mamdani and
Classical approaches, for the police kennel dogs

the real data. This result demonstrates that the fuzzy linguistic dynamic sys-
tems, based on the iterative process of the fuzzy rules, could be an appropriate
structure to describe the dynamical behaviors, even in non-linear systems. In
order to analyze this ability in a more complex context we present in the next
section an application of this structure to a SIR epidemic model.

8.3 A Fuzzy Dynamical Model for a SIR Epidemic

As discussed in chapter 3, a SIR (Susceptible-Infected-Recovered) model is, in
the binary logic context, a compartmental system commonly used to describe
the spreading of a microparasitic infection. This system is composed by a set of
differential equations whose variables represent three possible status of the in-
dividuals, like susceptible, infected, recovered, immunized and so on (Anderson
& May, 1991; Massad et al., 1995). A typical example of this kind of epidemic
system is for measles, whose structure allows to consider the role that the vac-
cination campaign plays. A measles epidemic course may be expressed by the
following set of non-linear differential equations:

ds

dt
= αn − αs − βsi − vs (8.17)

di

dt
= −αi + βsi − γi (8.18)

dr

dt
= γi − αr + vs , (8.19)

where s is the proportion of susceptible individuals, i is the proportion of in-
fected individuals and r is a proportion of protected individuals, that became
immunized either through vaccination or through natural infection.
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Fig. 8.17. Typical dynamic behavior of the proportions s, i and r provided by the
classical model, based on the set of differential equations for the measles epidemic
spreading (Ortega et al., 2000)

This model has four parameters: 1) α, the rate of natural mortality in the
population; 2) β, the rate of infective contact between infected and susceptible
individuals; 3) ν, the force of vaccination; and 4) γ, the rate with which sick
individuals recover. The number of total individuals is assumed to be fixed, that
is, n = s + i + r, which allows to reduce a set of equations above to only two
equations. Figure 8.17 shows a typical dynamical behavior of the proportions of
the susceptible, infected and protected individuals.

In order to study the dynamical behavior of this model we chose the values
for parameters based in a real situation of measles in São Paulo City and simu-
lated numerically the set of differential equations above for several values of the
parameters. The analysis of this simulations supplied the base to build the fuzzy
sets in the linguistic dynamical model proposed.

The great advantage of a fuzzy SIR model is that it allows to consider in the
dynamics the vagueness and the imprecision inherent to the individuals statuses.
In this case the Mamdani model has four input variables (in the antecedent part
of the rules) and two output variables (in the consequent part). The input vari-
ables are: the proportion of susceptible individuals, s; the proportion of infected
individuals, i; the rate of infective contact between infected and susceptible in-
dividuals, β; and the force of vaccination against measles, ν. The fuzzy rules
consequents are: the variation of s, Δs and the variation of i, Δi. We consider
the following triangular membership functions for these linguistic variables:

β: The rate of infective contact.

β small : μβsm(x) =

⎧
⎨

⎩

1.0 if 1.0 ≤ x ≤ 2.0
−1.0(x − 3.0) if 2.0 < x ≤ 3.0
0.0 if x > 1.0; x < 3.0
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β medium : μβm(x) =

⎧
⎨

⎩

0.2(x − 2.0) if 2.0 ≤ x ≤ 7.0
−0.3(x − 10.0) if 7.0 < x ≤ 10.0
0.0 if x < 2.0; x > 10.0

β big : μβb
(x) =

⎧
⎨

⎩

0.083(x − 8.0) if 8.0 ≤ x ≤ 20.0
−0.1(x − 30.0) if 20.0 < x ≤ 30.0
0.0 if x < 8.0; x > 30.0

β very big : μβvb
(x) =

⎧
⎨

⎩

0.04(x − 25.0) if 25.0 ≤ x ≤ 50.0
1.0 if 50.0 < x ≤ 100.0
0.0 if x < 25.0; x > 100.0

ν: The force of vaccination.

ν weak : μνw (x) =

⎧
⎨

⎩

1.0 if 0.0 ≤ x ≤ 0.01
−50.0(x − 0.03) if 0.01 < x ≤ 0.03
0.0 if x > 0.03

ν medium : μνm(x) =

⎧
⎨

⎩

20.0(x − 0.02) if 0.02 ≤ x ≤ 0.07
−33.3(x − 0.10) if 0.07 < x ≤ 0.10
0.0 if x < 0.02; x > 0.10

ν strong : μνst(x) =

⎧
⎨

⎩

4.0(x − 0.05) if 0.05 ≤ x ≤ 0.30
1.0 if 0.30 < x ≤ 1.0
0.0 if x < 0.05; x > 1.0

s: The proportion of susceptible individuals.

s very small : μsvs(x) =

⎧
⎨

⎩

1.0 if 0.0 ≤ x ≤ 0.10
−10.0(x − 0.20) if 0.10 < x ≤ 0.20
0.0 if x > 0.20

s small : μssm(x) =

⎧
⎨

⎩

7.7(x − 0.12) if 0.12 ≤ x ≤ 0.25
−6.6(x − 0.40) if 0.25 < x ≤ 0.40
0.0 if x < 0.12; x > 0.40

s medium : μsm(x) =

⎧
⎨

⎩

5.0(x − 0.30) if 0.30 ≤ x ≤ 0.50
−10.0(x − 0.60) if 0.50 < x ≤ 0.60
0.0 if x < 0.30; x > 0.60
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s big : μsb
(x) =

⎧
⎨

⎩

5.0(x − 0.50) if 0.50 ≤ x ≤ 0.70
−10(x − 0.80) if 0.70 < x ≤ 0.80
0.0 if x < 0.50; x > 0.80

s very big : μsvb
(x) =

⎧
⎨

⎩

5.0(x − 0.70) if 0.70 ≤ x ≤ 0.90
1.0 if 0.90 < x ≤ 1.0
0.0 if x < 0.70

i: The proportion of infected individuals.

i very small : μivs(x) =

⎧
⎨

⎩

1.0 if 0.0 ≤ x ≤ 0.03
−50.0(x − 0.05) if 0.03 < x ≤ 0.05
0.0 if x > 0.05

i small : μism(x) =

⎧
⎨

⎩

25.0(x − 0.03) if 0.03 ≤ x ≤ 0.07
−12.5(x − 0.15) if 0.07 < x ≤ 0.15
0.0 if x < 0.03; x > 0.15

i medium : μim(x) =

⎧
⎨

⎩

5.0(x − 0.10) if 0.10 ≤ x ≤ 0.30
−10.0(x − 0.40) if 0.30 < x ≤ 0.40
0.0 if x < 0.10; x > 0.40

i big : μib
(x) =

⎧
⎨

⎩

10.0(x − 0.30) if 0.30 ≤ x ≤ 0.40
−5.0(x − 0.60) if 0.40 < x ≤ 0.60
0.0 if x < 0.30; x > 0.60

i very big : μivb
(x) =

⎧
⎨

⎩

4.0(x − 0.50) if 0.50 ≤ x ≤ 0.75
1.0 if 0.75 < x ≤ 1.0
0.0 if x < 0.50

Δs: Variation of the proportion of susceptible individuals.

Δs very small : μΔsvs(x) =

⎧
⎨

⎩

1.0 if 0 ≤ x ≤ 0.03
−33.3(x − 0.06) if 0.03 < x ≤ 0.06
0.0 if x > 0.06

Δs small : μΔssm(x) =

⎧
⎨

⎩

20.0(x − 0.05) if 0.05 ≤ x ≤ 0.10
−10.0(x − 0.20) if 0.10 < x ≤ 0.20
0.0 if x < 0.05; x > 0.20
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Δs null : μΔsnull
(x) =

{
1.0 if x = 0.0
0.0 if x �= 0.0

Δs medium : μΔsm(x) =

⎧
⎨

⎩

20.0(x − 0.15) if 0.15 ≤ x ≤ 0.20
−10.0(x − 0.30) if 0.20 < x ≤ 0.30
0.0 if x < 0.15; x > 0.30

Δs big : μΔsb
(x) =

⎧
⎨

⎩

6.6(x − 0.25) if 0.25 ≤ x ≤ 0.40
1.0 if 0.40 < x ≤ 1.0
0.0 if x < 0.25

and, finally:

Δi: Variation of the proportion of infected individuals.

Δi very small < 0 : μΔivs<0(x) =

⎧
⎨

⎩

1.0 if −0.02 ≤ x ≤ 0.00
25.0(x + 0.06) if −0.06 < x ≤ −0.02
0.0 if x < −0.06; x > 0.00

Δi small < 0 : μΔism<0(x) =

⎧
⎨

⎩

−25.0(x + 0.04) if −0.08 ≤ x ≤ −0.04
25.0(x + 0.12) if −0.12 < x ≤ −0.08
0.0 if x < −0.12; x > −0.04

Δi medium < 0 : μΔim<0 (x) =

⎧
⎨

⎩

−25.0(x + 0.08) if −0.12 ≤ x ≤ −0.08
25.0(x + 0.16) if −0.16 < x ≤ −0.12
0.0 if x < −0.16; x > −0.08

Δi big < 0 : μΔib<0 (x) =

⎧
⎨

⎩

−6.6(x + 0.15) if −0.30 ≤ x ≤ −0.15
1.0 if −1.0 < x ≤ −0.30
0.0 if x < −1.0; x > −0.15

Δi null : μΔinull
(x) =

{
1.0 if x = 0.0
0.0 if x �= 0.0

Δi very small > 0 : μΔivs>0(x) =

⎧
⎨

⎩

1.0 if 0.00 ≤ x ≤ 0.02
−25.0(x − 0.06) if 0.02 < x ≤ 0.06
0.0 if x < 0.00; x > 0.06

Δi small > 0 : μΔism>0(x) =

⎧
⎨

⎩

25.0(x − 0.04) if 0.04 ≤ x ≤ 0.08
−25.0(x − 0.12) if 0.08 < x ≤ 0.12
0.0 if x < 0.04; x > 0.12
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Δi medium > 0 : μΔim>0(x) =

⎧
⎨

⎩

25.0(x − 0.08) if 0.08 ≤ x ≤ 0.12
−25.0(x − 0.16) if 0.12 < x ≤ 0.16
0.0 if x < 0.08; x > 0.16

Δi big > 0 : μΔib>0 (x) =

⎧
⎨

⎩

6.6(x − 0.15) if 0.15 ≤ x ≤ 0.30
1.0 if 0.30 < x ≤ 1.00
0.0 if x < 0.15; x > 1.00

The combination of all fuzzy sets results in 300 possible rules. Each situation,
described by each rule, was carefully analyzed and 157 rules were considered
relevant in the model. Each selected rule has a form like:

IF s is big AND β is medium AND ν is weak AND i is small,
THEN Δs is medium AND Δi is medium positive.

The model was run with maximum-minimum inference and the defuzzification
method applied was the center of area. Figure 8.18 presents a typical dynamical
behavior of the proportions s, i and r for the fuzzy model.

As can be noted from figures 8.17 and 8.18, the Mamdani model provides,
in a qualitative way, a dynamical behavior very similar to that found from the
classical differential equations. This model was simulated for several parameters
values and the results were compared with those from classical model. The fuzzy
model showed, in all simulations, a dynamical behavior compatible with those
presented by the classical SIR model.

Fig. 8.18. Typical dynamic behavior of the proportions s, i and r provided by fuzzy
model for the measles epidemic spreading (Ortega et al., 2000)
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The results provided by the fuzzy SIR model suggest that the linguistic fuzzy
dynamic models can be an interesting approach to treat non-linear systems, when
uncertainties and imprecisions are involved. Its structure allows to aggregate into
the model experts knowledge and to build mathematical mappings, even when
the functional informations are not available. However, this example showed also
that this kind of modeling can became a tough task due to the large number
of the possible rules. In fact, if the number of input variables considered in the
system is very large, the development of a fuzzy linguistic dynamical model could
be not viable, particularly because of the expert dependence that this kind of
models have. However, it is important to point out that this limitation is due not
only to the dynamical aspects. As discussed in chapter 7, the most important
limitation of the fuzzy rule-based models, particularly Mamdani ones, is the
explosion of the number of the possible rules caused by the combination of the
input variables.

Nevertheless, since linguistic models assume great importance in the biomedi-
cal fuzzy modeling, it is worthwhile to study alternatives and develop techniques
that allow to build the fuzzy rules in a way less dependent on the information
supplied by experts (Ortega et al., 2003). In the next section we present a deeper
discussion about the role of experts in the elaboration of fuzzy linguistic mod-
els and present an alternative to treat these problems using the concept of the
Extension Principle.

8.4 A Fuzzy Linguistic Dynamical Model Based on the
Extension Principle

As pointed out before, there are some situations where we may have functional
informations about the behavior of the system. In this case the model becomes
less dependent on the experts opinion and this may be an advantage. Sometimes
one has a large data collection about the system behavior besides the opinion of
experts. As discussed by Wang and Mendel (1992), in this situation an interest-
ing way to design a model is to mix the experience of the human controller and a
sample of input-output pairs of the system. This situation could be treated with
hybrid models like fuzzy genetic algorithms and fuzzy neural network (Wang
& Mendel, 1992; Jang, 1993; Bastian, 2000). This is the case of several engi-
neering applications but, unfortunately, this is not the case of the majority of
epidemiological problems.

Our own experience in dealing with biomedical problems and fuzzy mod-
eling have demonstrated that in the case of biological systems, and particu-
larly in epidemiology, it is often hard to find functional information about the
dynamics of the systems. In this context, the academic and heuristic knowl-
edge of experts, as well as their experience, assume a fundamental role in this
kind of modeling. So, the majority of linguistic epidemiological models are built
based on the empirical experience of a panel of experts. With this we are able
to generate a membership function, which defines the fuzzy sets for each vari-
able and/or parameters, as well as the linguistic rules that govern the system
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dynamics. These membership functions describe all possible values that the vari-
able could assume (a physically realistic domain). So, in this case, the experts
elaborate the fuzzy sets input and output, besides the linguistic rules, which
clearly cause an important dependence on the experts ability to describe the
phenomenon.

8.4.1 Dealing with the Opinions of Experts

Elaborating fuzzy models with physicians and epidemiologists requires, in gen-
eral, interdisciplinary relationships. In order to extract their knowledge it is very
important to leave them quite free to build the fuzzy sets. Commonly, the fuzzy
sets in epidemiological problems elaborated by experts are not “well-behaviored”
sets. They tend to be asymmetric and irregular, different from that found in
engineering applications. In addition, experts may have serious problems to in-
sighting both the antecedents and the consequents of the rules when the model
is too complex. Also, creating the consequents is a much more difficult task than
the antecedents because in the former the expert needs to consider the dynamics
of the system, weighting all influences that could concur, generating one specific
output and its corresponding membership function. In contrast, in order to cre-
ate the antecedents, the expert needs only to classify the variables in groups,
elaborating their membership functions. Therefore, in general, the expert has
more facility to elaborate the antecedents than the consequents. In this sense,
a method that allows the elaboration of the consequents of the linguistic rules
could represent an important progress in the modeling of systems, which have
a high level of uncertainties, impreciseness and/or vagueness in the variables,
parameters or both.

In the great majority of epidemic studies the most important result is the
prediction capacity of the model. In general, we are interested in predicting
the future space-time conditions based on analysis of the model results or of
experimental data, to decide which strategies to apply or which public heath
decisions to take. In this sense, it is important to consider that the mathematical
model should be the most comprehensible possible, because the adhesion to the
model’s results by the decision makers will depend on this understanding. This
goal is usually reach by models based on fuzzy sets theory in which linguistic
variables are applied.

Considering both the difficulties of experts to build the consequents of the
fuzzy rules and the specific conditions of real epidemic case, we studied the
application of the Extension Principle to elaborate the consequent fuzzy sets
in a rule-based model. This methodology was firstly proposed by Dubois and
collaborators (Dubois et al., 1995) and reformulated by Ortega and collaborators
(Ortega et al., 2003). To illustrate how this technique works we will return to
the canine rabies dynamic study, for its simplicity. In the next section we briefly
discuss the extension principle and the Dubois et al. proposal.
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8.4.2 The Extension Principle Methodology Applied in the Canine
Rabies Study

As discussed in chapter 2, the Extension Principle, which was first proposed by
Zadeh in 1975, is used to produce a functional that maps fuzzy sets to fuzzy sets
from a crisp function (Zadeh, 1975a, 1975b and 1975c). This tool emerges from
the necessity to apply crisp functions f to imprecise arguments. In this sense, if
we have a crisp function f and we need to apply this function to fuzzy arguments,
we can use the extension principle. This fuzzy argument could be described as a
possibility distribution of the argument of the function f . So, for each possible
value the function’s variable may assume, the functional produces its possible
image providing the distribution of the possibility of this image. Depending on
the function it could happen that different input values are mapped to the same
output value, for instance, to a non-injective function. In this case we need to
determine the possibility of such an output value, by combining the possibility
degree of all inputs that map to the same output value, which could be done by
using a disjunction operator.

Furthermore, we may end up with different possibility distributions for each
argument (x1, x2, ..., xn) of the function f . In this case, we only need to apply a
fuzzy conjunction operator to decide what would be the possibility degree of its
image.

Thus, the extension principle is a very useful tool in the investigation of the
action of a function over fuzzy sets, that is, to find the images of the fuzzy sets
from a crisp function. This concept was defined in chapter 2 for a univariate
function, but it could be generalized for a multivariate one.

Consider a crisp function

f : X1 × X2 × ... × Xn → Y

and A1, A2, ..., An, fuzzy subsets of X1, X2, ..., Xn, respectively. The extension
principle produces a function f̂ , that is the fuzzification of f , whose image
f̂(A1, A2, ..., An) is the fuzzy subset of Y , whose membership function is given
by:

μf̂(A1,...,An)(y) =

⎧
⎨

⎩

supx̄∈f−1(y)[min(μA1(x1), ..., μAn(xn))] if f−1(y) �= ∅

0 if f−1(y) = ∅
(8.20)

where x̄ = (x1, x2, ..., xn) and f−1(y) = (x1, x2, ..., xn) ∈ X1 × X2 × ... × Xn

such that f(x1, x2, ..., xn) = y.
The fuzzy function f̂ estimated by this method presents many properties

(Pedrycz & Gomide, 1998), one of the most important of which is that f̂ , in fact,
recovers the classical values in the sense that f̂(x̂1, x̂2, ..., x̂n) = f(x1, x2, ..., xn)
to all (x1, x2, ..., xn) ∈ X1 × X2 × ... × Xn where

x̂i(t) =
{

1 if t = xi

0 if t �= xi
.



176 Fuzzy Rule-Based Dynamical Models

Therefore, the extension principle allows us to find a possibility distribution of
the function’s image whose arguments are assumed to be fuzzy sets. To simplify
our notation we will represent the membership function μAi(xi), of fuzzy set Ai,
by Ai(xi).

The aim of this approach is to build fuzzy sets of the consequents of the rules
of a linguistic model by applying the extension principle. Dubois et al. (1995)
showed that computing f(A), in the sense of the extension principle, where A is a
fuzzy number, is equivalent to the statement if X ∈ A then Z ∈ f(A) in the sense
of a gradual rule. Gradual rules correspond to the case when the rule means the
more X belongs to A, the more Z belongs to C, which is a reasoning commonly
applied in epidemic rule-based fuzzy models. In their work they proposed that
their methodology could be interesting for applications in nonlinear systems.

The process consists of, to each rule, fixing a value r and varying the values of
x, y and z such that f(x, y, z) = r. Then, to each triplet (x, y, z) we evaluate the
membership degree of the x, y and z in their respective fuzzy sets and choose
the minimum value of membership degree. After finding this minimum value,
we choose the maximum value of membership degrees, over all triplets such
that f(x, y, z) = r, applying max[min(Xi(x), Yj(y), Zk(z))]. The result will be
the membership function of r in the consequent of the i − th rule. Varying the
value of r we are able to build the fuzzy set that is the consequent of this rule.
Finally, executing the method to each rule we elaborate all consequents, finding
the complete if-then rule set of the model.

To illustrate how this technique works, we will return to the fuzzy model to
describe the canine rabies seropositive prevalence (see section 8.2). Remember
that in this problem both TSK and Mamdani fuzzy modeling have three input
variables: the proportion of seropositive dogs in the age a, S(a), the force of
vaccination, ν, and the rate of loss of antibodies, τ . Experts built three triangular
membership functions for each input variable that are shown in figures 8.3, 8.4
and 8.5. Considering all combinations of these fuzzy sets we elaborated 27 rules,
each one describing the different situations that could occur. Differently from
experts-based models, in this case we did not suppress any rule, leaving under
the responsibility of the methodology the treatment and decision about the rules
through the construction of its consequent.

As discussed early, processing the Extension Principle requires a classical
mathematical function. So, to build the rule’s consequents we applied again
the solution of the classical differential equations:

Δs(a + 1) = ν(1 − s(a)) − τs(a), (8.21)

where (1−s(a)) is the proportion of seronegative dogs. Thus, using the procedure
described above were generated all consequents of the rules. In this case all the
consequent are different. In other words, each rule possesses a specific fuzzy set
as output variable. All fuzzy outputs have triangular shapes, as we can see in
figure 8.19. This result is not expected since the classical function considered in
the process is not linear.

After the consequents are built, the next step consisted in choosing the appro-
priated fuzzy inference method. First, we applied the inference method of
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Fig. 8.19. Typical fuzzy sets of rule’s consequents through Extension Principle
methodology (Ortega et al., 2003)

Mamdani and the output was defuzzified with the Center of Area technique. This
model was named MISO−ExtMamdani. It is important to emphasize that one of
the aims of this approach was to compare the capacity of the extension approach to
recover the experts opinion. In this sense, it is interesting to maintain the same an-
tecedents, inference and defuzzification methods applied previously in the Mam-
dani expert-based model, called here by MISO − Expert model, changing only
the construction of the rule’s consequents (see section 8.2.2).

Second, we applied the Dubois et al. inference (1995), which applies a concept
of gradual fuzzy rule set. In this case, called here by MISO − ExtDubois, the
output of each rule is a crisp set, Ui, and not a fuzzy set as in Mamdani’s case. In
fact, in Dubois case the rule output Ui is a numerical interval. After processing
all the rules, the final output is found by the intersection of the outputs of
each rule, U = ∩Ui. So, in this inference method there is no defuzzification
but, in counterpart, it is necessary to decide what crisp number, in the output
region, is the best representative output. In this work we choose the mid point
in the output interval. In all models the dynamical process was implemented
through an iterative procedure described previously. Figures 8.20 and 8.21 show
the MISO − Experts, MISO − ExtMamdani, MISO − ExtDubois and real
data results for the street and Police kennel dogs samples.

As can be noted from figures, the MISO − Expert and the MISO −
ExtMamdani models are more associated with real data than the MISO −
ExtDubois. In both MISO − ExtMamdani and MISO − ExtDubois models
the antecedents of fuzzy sets (showed in figures 8.3, 8.4 and 8.5) were found via
normalization of the sets created by the experts in the MISO−Experts model.
This was necessary because we worked with the same fuzzy input sets in all
MISO models. However, in the extension application we had to guarantee that
−1 < Δs < 1, such that the ΔS really meant a proportion of increment of pro-
tected dogs. The best fitting of the real data led to almost the same values for ν
and τ parameters in the case of MISO − Experts and MISO − ExtMamdani,
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Fig. 8.20. Comparison between real data and the results provided by MISO −
Experts, MISO − ExtMamdani and MISO − ExtDubois models for street dogs
sample (Ortega et al., 2003)

Fig. 8.21. Comparison between real data and the results provided by MISO −
Experts, MISO − ExtMamdani and MISO − ExtDubois models for police kennel
dogs sample (Ortega et al., 2003)

considering this normalization, in both street and police kennel dogs samples.
However, applying those same parameters values to MISO − ExtDubois we
have that the fitting is worse than the others methods. In fact, in the case of
this example, the inference methods have strikingly different trends. The results
obtained with Dubois et al. approach point to a saturation in the seroprevalence
curve of street dogs. This contrasts with the Mamdani’s method, which presents
a more realistic trend as seroprevalence always increase with age. According to
the experts opinion, this latter trend is more in accord with their expectations
since the older the dog, the higher its chance of being vaccinated.
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It is not the focus here to discuss the theoretical and philosophical aspects
involved in the inference techniques when the Extension Principle is applied.
The comparison between the Dubois et al. inference proposal and that based
on Mamdani presented here requires more technical and deeper discussion. For
interested readers we recommend the reading of Ortega and collaborators work
(Ortega et al., 2003).

We want to conclude this chapter by highlighting that linguistic models are
probably the most important contribution of fuzzy sets theory to epidemiology
and medical fields, and dynamical linguistic models can assume a prominent
role in those areas. They mimic with astonishing accuracy medical reasoning
and, therefore, are promptly accepted by public health professionals. In contrast
with other mathematical techniques, like differential equations models, fuzzy sets
are easily understood by decision makers in public health. Since those who make
decisions are not, in general, those who elaborate the models, it is fundamental
that experts and public health authorities understand the contents of the model,
even if in a superficial way, in order to accept them and implement them. As
the language of the linguistic model is quite similar to the natural language
of the experts, this type of model is getting generally accepted and applied
as a useful tool for treating medical and epidemic problems. An example of
this acceptance was the fuzzy decision model to determine the best strategy of
vaccination against measles presented in chapter 6. The strategy proposed by
that fuzzy model was applied to a real epidemic of measles in the state of São
Paulo, Brazil, providing good results.

Nevertheless, considering the limitations of dynamical linguistic models ex-
posed here, we present in chapters 9 and 10 others alternatives to treat dynami-
cal systems where uncertainties are considered in the epidemic process. However
these methodologies are based on more complex mathematical structures. In
chapter 11 we recover the fuzzy dynamical systems development applying the
composition of fuzzy relations concepts in the simulation approach, which con-
sists in a generalization of the simplest epidemic model proposed by Reed and
Frost (Abbey, 1952). In chapter 12 we return to fuzzy rule-based models in a dy-
namical viewpoint, presenting a hybrid methodology in which this kind of model
is important for the understanding of another epidemic spreading problem.



9 Fuzzy Dynamical Systems in Epidemic
Modeling

As mentioned in the previous chapters, mathematical models are always subject
to inaccuracies related to the nature of the state variables involved, parameters
and/or initial conditions. In these models, the estimation of the parameters is
usually based on statistical methods, starting from data obtained experimentally
to the choice of the method adopted to their identification.

In biomathematical stochasticity can arise as an imposition of the state vari-
able or due to some of the parameters, initially deterministic, but subjected to
random fluctuations. These two cases are called demographic and environmental
stochasticity, respectively (May, 1974; Turelli, 1986).

We propose in this chapter, to some extent, an adaptation of the concepts
of demographic and environmental stochasticity, using fuzzy sets theory, an ef-
ficient tool to deal with the subjectivity that comes from the “fuzziness” of
the biological phenomenon (Barros et al., 2000). Both concepts of demographic
and environmental fuzziness can be analyzed by fuzzy differential equations or
by fuzzy differential inclusion, since they are in essence dynamical systems. In
chapter 8 the fuzzy rule-based dynamical systems were widely discussed with
examples of SIS and SIR epidemic models. Here we present other ways to treat
these epidemic models using differential equations and differential inclusions
approaches.

9.1 Demographic Fuzziness

Individuals of a given species usually show variations in their characteristic be-
havior. These differences remain bounded in a relatively small set that represents
the characteristic behavior of the group as a whole. For example, a predator with
a certain predatory level can possibly become a prey, depending on environmen-
tal circumstances. In such cases we should take into account the predatory degree
of each individual of the species. In general, if we want to quantify the subjective
quality that is being studied, we should attribute values or degrees to represent
this quality satisfactorily. It is something that cannot be always obtained through
objective mensuration or statistics. Therefore, when the state variables of a given
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demographical system are uncertain we should include fuzziness in them, which
are then represented by what we call fuzzy variables.

The modeling tools presented here are the fuzzy differential equations and the
fuzzy differential inclusions. The fuzzy structures are introduced because of the
eventual subjectiveness of individual characteristics in the initial population.

First we introduce the concept of fuzzy differential equations.

Definition 9.1. Consider the space of fuzzy numbers denoted by �(IR). Let F :
I ⊂ IR → �(IR) be a fuzzy function with α − levels

[F (t)]α = [Fα
1 (t), Fα

2 (t)] , (9.1)

where Fα
1 , Fα

2 : I → IR are ordinaries functions and �(IR) represents the class
of fuzzy numbers.

The derivative of F , with respect to t, is given from its α − levels by:

[F ′(t)]α = [(Fα
1 )′(t), (Fα

2 )′(t)] , (9.2)

where (Fα
i )′(t) means the derivative of functions Fα

i (Puri & Ralescu, 1983).
The concept of fuzzy differential equation can be found in Kaleva (1987) and
Seikkala (1987).

In what follows we illustrate the concept of demographic fuzziness, where the
initial condition is a fuzzy set in �(IR).

Example 9.2. - Fuzzy Malthus Continuous Model
Let us suppose that a population grows according to the Malthusian model:

n
′
(t) = λn(t)

n(0) = n0 ∈ �(IR)
(9.3)

with λ ∈ IR.
Since n0 is a fuzzy set, the field F (n) = λn associates fuzzy sets to fuzzy sets.

In this sense, equation (9.3) results in a fuzzy differential equation.
According to the representation theorem (see chapter 2), to find the solution

of (9.3) we make [n(t)]α = [nα
1 (t), nα

2 (t)], where nα
1 (t) and nα

2 (t) are extremes
values of the classical set nα(t). Therefore, to solve (9.3) we must solve the
deterministic system below (Seikkala, 1987):

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(nα
1 )′(t) = λnα

1 (t), nα
1 (0) = nα

01

λ ≥ 0

(nα
2 )′(t) = λnα

2 (t), nα
2 (0) = nα

02

(9.4)
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or ⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(nα
1 )′(t) = λnα

2 (t), nα
1 (0) = nα

01

λ < 0

(nα
2 )′(t) = λnα

1 (t), nα
2 (0) = nα

01

(9.5)

for each α ∈ [0, 1].
The solutions of (9.4) and (9.5) are given, respectively, by:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

nα
1 (t) = nα

01e
λt

λ ≥ 0

nα
2 (t) = nα

02e
λt

(9.6)

and
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

nα
1 (t) =

(nα
01 − nα

02)
2

e−λt +
(nα

01 + nα
02)

2
eλt

λ < 0

nα
2 (t) =

(nα
02 − nα

01)
2

e−λt +
(nα

01 + nα
02)

2
eλt

. (9.7)

So, the solution n(t) has α − levels given by (9.6) if λ ≥ 0 or (9.7) if λ < 0.
The solution of a fuzzy differential equation is a fuzzy process in the sense

that for each instant of time t > 0, n(t) is a fuzzy set. In the deterministic case,
at each t, the solution is a real (or a crisp) number.

9.2 Environmental Fuzziness

To model environmental fuzziness, we initially use differential equations, which
are formally deterministic, but with some of their coefficients modeled by fuzzy
sets. In this case the equations can be treated as standard differential equations
with uncertainty in the parameters (Boxler, 1988) or through the calculus de-
veloped by Kaleva (1987), depending on the modeling approach adopted. So,
derivatives can be classical or that introduced by Puri and Ralescu (1983) to
deal with fuzzy functions, depending on the problem.

Like the case of demographic fuzziness, we illustrate the concept of environ-
mental fuzziness through examples. In the Example below we consider poverty
as a factor that supposedly influences life expectancy of a population (Bassanezi
& Barros, 1995). A similar study is due to Kandel (1986) who analyzed the case
of smoking.

Example 9.3. - Life Expectancy
Let A be a population with n(t) individuals at instant t. Supposing that there

is no birth in this group and that the dynamics of the number of individuals is
modeled by the following differential equation:
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⎧
⎨

⎩

n′(t) = λn(t)

n(0) = n0 ∈ IR
, (9.8)

where n0 is the initial number of individuals and λ is the mortality rate.
In which way does the environment or even the individuals way of living

influence the population’s life expectancy? A possible answer will be achieved
by supposing that the environment “acts” in the population as a whole. That is,
we will not take into account individual characteristics such as gender, skin color,
resistance to diseases, etc. This is the main characteristic of fuzziness only in the
parameters, originally deterministic, but subject to environmental stochasticity
(May, 1974; Turelli, 1986).

To incorporate fuzziness in parameter λ we suppose that λ = λ1 + Ak(r)λ2,
where λ1 is the natural mortality rate (taken from a population with satisfactory
conditions of life) and Ak(r)λ2 is the coefficient that represents the influence of
poverty in the mortality rate, λ, of the group. The mortality rate is maximal
and equal to λ1 +λ2 when Ak(r) = 1. For model (9.8) we have chosen as a “poor
set” the fuzzy set given by:

Ak(r) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

[

1 −
(

r

r0

)2
]k

if 0 ≤ r < r0

0 if r ≥ r0

. (9.9)

As introduced in chapter 2, in example 2.5, the parameter r is the income,
r0 is the income threshold above which the life expectancy of the group is not
affected, and k is an environmental parameter that characterize the group (for
instance, rural, urban, Indians, etc.).

Assume that r is proportional to the salaries of the individuals in the studied
population: r = csm, with c and m being two constants. So we have the following
fuzzy set:

Bk(s) = Ak(csm) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

[

1 −
(

s

s0

)2m
]k

if 0 < s < s0

0 if s ≥ s0

,

where s0 =
(r0

c

) 1
m

.
To obtain the values of λ1, λ2 and s0 we used the life expectancy table based

on distinct salary levels (table 9.1). The values found are:

λ1 =
1

54.4
, λ2 = 6.618 × 10−3 and s0 = 3.2.

According to the salary distribution of a group of workers from the same
region, for which we got λ1, λ2 and s0, assuming c = 1, we have k = 1.51 and
m = 0.4435.
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Table 9.1. Life expectancy in the central northeast (Brazil) according to income per
capita and family class (urban zone) in 1970 (Fava, 1983)

Class of Income Salary Life expectancy
income ($) (years)

1 1-150 Less than 0.94 40.0
2 151-300 0.95-1.88 45.9
3 301-500 1.89-3.26 50.8
4 Over 500 Over 3.26 54.4

Thus, problem (9.8) can be solved by using the classical ordinary differential
equations, whose solution is given by

n(t) = n0e
−[λ1+Bk(s)λ2]t

for each value of s. In this way, we obtain a family of solutions for problem
(9.8). The analysis of these solutions, as well as the average between a classical
and a fuzzy setting (accordingly chapter 4) represents the life expectancy of this
population (Bassanezi & Barros, 1995).

Let us now consider equation (9.8) as a fuzzy Cauchy problem:

⎧
⎨

⎩

n′(t) = −(λ1 + Bk(s)λ2)n(t)

n(0) = n0 ∈ IR+

, (9.10)

whose solution for each instant of time is a fuzzy set.
The α − levels of Bk and n(t) are (see chapter 2):

[Bk]α = [0, s0(1 − α
1
k )

1
2m ] and [n]α = [nα

1 , nα
2 ]

for each α ∈ [0, 1].
So, as a result of the addition and multiplication operations, we have

[−(λ1 + Bk(s) λ2) n]α = [−(λ1 + λ2s0(1 − α
1
k )

1
2m ) nα

2 , −λ1n
α
1 ]

and the solution of (9.10) is obtained from the bi-dimensional deterministic
system:

⎧
⎨

⎩

ṅα
1 = −(λ1 + λ2s0(1 − α

1
k )

1
2m nα

2 = −bnα
2 , n0

ṅα
2 = −λ1n

α
1 , n0

(9.11)

for all α ∈ [0, 1].



186 Fuzzy Dynamical Systems in Epidemic Modeling

From (9.11) we have:

n̈α
1 = −bṅα

1 or n̈α
1 = λ1bn

α
1

obtaining the solutions
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

nα
1 = n0

⎡

⎣

(
1 +
√

b
λ1

)

2
exp(−

√
λ1bt) −

(√
b

λ1
− 1
)

2
exp(
√

λ1bt)

⎤

⎦

nα
2 = n0

⎡

⎢
⎢
⎣

(√
λ1
b

)

+ 1

2
exp(−

√
λ1bt) +

(

1 −
√

λ1
b

)

2
exp(
√

λ1bt)

⎤

⎥
⎥
⎦

.

(9.12)

We can note that problem (9.10) has a unique solution with α − levels given
by (9.12), and that the diameter of each α − levels of this solution is given by:

d(α, t) = nα
2 − nα

1 = n0

(√
b

λ1
−
√

λ1

b

)

sinh(
√

λ1bt).

Therefore, the fuzziness of solution of (9.8) increases with the time t.

In the next section we present an epidemic model for a directly transmitted infec-
tion considering heterogeneities in some of the characteristics of the population.

9.3 Epidemiology with Heterogeneity

As mentioned in chapter 3, classical epidemiological models are “first approxi-
mations” since we assume the law of mass action, in addition to the hypothesis
that all infective individuals have the same capacity of transmission of the infec-
tion. That means that those models assume homogeneity in both susceptibility
and infectiousness.

In this section we consider that the contact between infected and suscep-
tible individuals occurs with the same chance. However, we consider different
degrees in the chance that such contact will result in new cases. In other words,
a new case will occur with more or less likelihood, depending on some char-
acteristics of those individuals who meet each other in a potentially infectious
contact.

These heterogeneities turn our case a typical case of demographic fuzziness.
However, in order to avoid the increasing diameter of fuzzy derivatives, we will
consider classical dynamical equations. This is justified because we are interested
only in the number of new cases of infection. We also assume that individuals with
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great “power” of infectiousness contribute more than those with low “power” of
infectiousness.

In order to describe the dynamics of the disease transmission in a more re-
alistic way, several models that incorporate heterogeneities have been proposed.
According to Sattenspiel and Simon (1988) there are five main sources of het-
erogeneity in the mathematical models: variable susceptibility, variable infectiv-
ity, age structure, variable number of contacts and different patterns of contact
distribution among the subgroups. Coutinho et al. (1999) analyzed a very in-
teresting model taking into account several heterogeneities in a frailty setting.
Greenhalgh (1990) studied models with age structure to model child diseases.
Hethcote and VanArk (1987) presented a model where the population is divided
into subpopulations according to the number of contacts between the individuals.
Diekmann et al. (1990) considered the heterogeneity of the contact distribution
to study disease invasion in a population. Boylan (1991) studied disease propa-
gation considering the variable susceptibility in the population arguing that this
difference can be due to biological, behavioral or environmental effects. Gener-
ally, each of these models consider a discrete population utilizing compartments
to characterize the diversities. However, the classification of individuals, and the
consequent inclusion in a determined stage and the transition from one stage
to another, is not a simple task and can result in a mathematically very com-
plex global model as the number of compartments increases (see Leite et al.,
2000).

Barros and collaborators studied an epidemic model considering the different
degrees of infectivity that each individual of a population can present with-
out subdividing the infected class into compartments (Barros et al., 2003). In
the next section we will present the way to incorporate fuzziness in epidemic dy-
namical models, analyzing the case of SI and SIS models of transmission (Barros
et al., 2001, 2002 and 2003).

9.3.1 The SI Model

The simplest classical model to describe the dynamics of directly transmitted
diseases with interaction among susceptible and infected individuals is the SI
model without neither vital dynamics (i.e, the rates of birth and mortality are
not considered), nor immunity, nor additional disease fatality rate. The model
can be represented by the diagram showed in figure 9.1.

Fig. 9.1. SI model diagram where the flow between the susceptible and infective
compartments are explicit
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The classical normalized differential equations which describe such dynamics
are given by:

⎧
⎪⎪⎨

⎪⎪⎩

dS

dt
= −βSI

dI

dt
= βSI

, (9.13)

where S+I = 1, S is the proportion of susceptible individuals, I is the proportion
of infected individuals at each instant and β is the transmission coefficient of the
disease.

A fundamental assumption in this formulation is that the population is homo-
geneous. That is, each infected individual transmits the disease with the same
chance, given by the real number β. So, from (9.13) the number of infected
individuals at any instant t is given by:

I =
I0e

βt

S0 + I0eβt
. (9.14)

where S0 and I0 are the initial conditions.
Both concepts of susceptible and infectious are uncertain in the sense that

there are different degrees in susceptibility and infectivity among the individu-
als of the population. Such differences can arise, for example, when we consider
the population’s distinct habits and customs, different degrees of resistance, etc.
In this way, we could consider more realistic models, which consider different
degrees of susceptibility and/or infectivity of the individuals. We consider the
parameter β (which represents the chance that in one contact between a sus-
ceptible and an infected individual the transmission of the disease occurs) as a
fuzzy number.

The SI fuzzy model

We assume that the population heterogeneity is given by the parasite load of
infected individuals (see the fuzzy notion of disease described in Sadegh-Zadeh,
1999). Thus, the higher the parasite load, the higher will be the chance of disease
transmission. In other words, we assume that β = β(ν) measures the chance of
a transmission to occur in a meeting between a susceptible and an infected
individual with an amount of pathogens ν. In this way, some values of β are
more possible than others and that turns β into a membership function of a
fuzzy number (see chapter 4).

To obtain the membership function β we assume that when the amount of
pathogens in an individual is relatively low, the chance of transmission is negli-
gible, and that there is a minimum amount of pathogens νmin needed to cause
disease transmission. Furthermore, for a certain amount of pathogens νM , the
chance of disease transmission is maximum and equal to 1. Finally, we suppose
that the individual’s amount of pathogens is always limited by νmax for each
disease.
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We have chosen for the fuzzy subset, the following membership function:

β(ν) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 if ν < νmin
ν − νmin

νM − νmin
if νmin ≤ ν ≤ νM

1 if νM < ν < νmax

, (9.15)

where νmin represents the minimum amount of pathogens needed for disease
transmission to occur. This value can be understood as the one which gives the
susceptibility of a particular population. In fact, the higher the νmin value, the
higher the amount of pathogens needed for transmission to occur and it means
that the populations has a low susceptibility to the disease. The graphic of β(ν)
is presented in figure 9.2.

Fig. 9.2. Fuzzy coefficient of transmission - β = β(ν) (Barros et al., 2003)

We also consider that the amount of pathogens can be different for different
individuals. In this sense, ν can be seen as a fuzzy number with a triangular
shape, according to the following membership function:

ρ(ν) =

⎧
⎪⎪⎨

⎪⎪⎩

1 − | ν− ν|
δ

if ν ∈ [ν −δ, ν +δ]

0 if ν /∈ [ν −δ, ν +δ]

. (9.16)

The parameter ν is a central value and δ gives the dispersion of each one of
the fuzzy sets assumed by ν. Figure 9.3 shows the graphic of ρ(ν). For a fixed ν,
ρ(ν) can has a linguistic meaning, given by a expert, such as low, medium and
so on.

In what follows we study the evolution of the disease with β = β(ν), as
discussed above.
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Fig. 9.3. Membership function of the variable ν, amount of pathogens - ρ (Barros
et al., 2003)

• Analysis and interpretation of the SI fuzzy model

In the deterministic model (9.13) if we consider β = β(ν), then the solution is
given by:

I(ν, t) =
I0e

β(ν)t

S0 + I0eβ(ν)t . (9.17)

So, I(ν, t) can be considered as a family of solutions of (9.13) for each fixed
ν. It represents the number of infected individuals at any instant t produced
by the contact between susceptible and infected individuals with an amount of
pathogens ν. On the other hand, for each fixed t, I(ν, t) is a membership function
of a fuzzy number, because 0 ≤ I(ν, t) ≤ 1. We will represent both the fuzzy sets
and its membership function by I(ν, t). In this way we can estimate a mean value
of the number of infected individuals at each instant using some defuzzification
procedure on the I(ν, t).

The mean number will be expressed through the fuzzy expected value of I(ν, t)
(see chapter 4).

• Fuzzy expectancy of the number of infected individuals

The fuzzy expected value (FEV) of the number of infected individuals, I(ν, t),
is given by:

FEV [I(ν, t)] = sup
0≤α≤1

inf[α, μ{I(ν, t) ≥ α}].

Let H(α) = μ{I(ν, t) ≥ α}, for each t > 0. Remember that FEV [I(ν, t)] is
the fixed point of H(α). So, it is easy to see that for α = 0 and α = 1, then
H(0) = 1 and H(1) = 0.
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For 0 < α < 1, and calling k = S0/I0,

H(α) = μ{I(ν, t) ≥ α} = μ

{

ν : β(ν) ≥ ln
(

αk

1 − α

)1/t
}

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 if ln
(

αk

1 − α

) 1
t

≤ 0

μ[a, νmax] if 0 < ln
(

αk

1 − α

) 1
t

≤ 1

0 if ln
(

αk

1 − α

) 1
t

> 1

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 if 0 ≤ α ≤ I0

μ[a, νmax] if I0 < α ≤ I0e
t

S0 + I0et

0 if
I0e

t

S0 + I0et
< α ≤ 1

, (9.18)

where a = νmin + (νM − νmin) ln
(

αk

1 − α

) 1
t

. Note that νmin < a ≤ νM .

Next, we assume that for any subset A of real numbers, its fuzzy measure
(chapter 4) is given by

μ(A) =
1
δ

∫

A

ρ(ν)dν =
∫

A

ρ(ν)
δ

dν.

Note that μ(A) is exactly the probability of A, since
ρ(ν)

δ
can be seem as a

density function of probability.
To study the FEV [I(ν, t)] we consider three different cases, according to three

different linguistic meanings of ν, whose were classified as low, medium and high.
Note that each of this classification is a fuzzy number based on the values νmin,
νM and νmax which appear in the definition of β (see figure 9.4). So, for each
fuzzy triangular set with parameters νmin, νM and νmax we can study the FEV
[I(ν, t)].

Case a) Low amount of pathogens: In this case, we take νmin> ν +δ.
As a > νmin, we have μ[a, νmax] = 0 and thus,

H(α) =

⎧
⎨

⎩

1 if 0 ≤ α ≤ I0

0 if I0 < α ≤ 1
.
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Fig. 9.4. Three linguistic meaning for the amount of pathogens, compared with the β
values: low, medium and high (Barros et al., 2003)

Therefore,
FEV [I(ν, t)] = I0.

Thus, as all infected individuals present an amount of pathogens less than
νmin, the disease propagation does not occur. We could interpret this situation
as a highly resistant group (νmin is high), which makes the susceptibility very
low. In this case the initial quantity I0 of infected individuals remains unchanged.

Case b) High amount of pathogens: In this case, we have νM ≤ ν −δ and
ν +δ ≤ νmax.

For this situation, as a ≤ νM , we obtained μ[a, νmáx] = 1, therefore

H(α) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1 if 0 ≤ α ≤ I0e
t

S0 + I0et

0 if
I0e

t

S0 + I0et
< α ≤ 1

and, so

FEV [I(ν, t)] =
I0e

t

S0 + I0et
.

Note that the expression above coincides with the classical solution (9.14)
when we consider the transmission coefficient β constant and equal to 1.

Case c) Medium amount of pathogens: In this case we have taken ν −δ > νmin
and ν +δ < νM
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From (9.18), a direct calculation gives

H(α) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 if 0 ≤ α ≤ I(ν −δ, t)

1 − 1
2

(
a− ν

δ
+ 1
)2

if I(ν −δ, t) < α ≤ I(ν, t)

1
2

(
ν −a

δ
+ 1
)2

if I(ν, t) < α ≤ I(ν +δ, t)

0 if I(ν +δ, t) < α ≤ 1

.

According to the expression above we conclude that H(α) is a continuous and
decreasing function with H(0) = 1 and H(1) = 0. Therefore, H has a unique
fixed point which coincides with FEV [I(ν, t)]. Figure 9.5 shows this fact:

Fig. 9.5. Graphic of Function H(α) (Barros et al., 2003)

Knowing the parameters δ, ν, νmin, νM and νmax, characteristic of each dis-
ease, the fixed point of H(α) can be obtained. This value provides an estimate
of the number of infected individuals at instant t, as shown in chapter 4.

We are now going to compare the FEV [I(ν, t)] with the trajectory I(ν, t).

From the expression of H we can conclude that H(I(ν, t)) =
1
2

for all t. Thus,

FEV [I(ν, t)] = I(ν, t) when I(ν, t) =
1
2
.

Since FEV [I(ν, t)] is the fixed point of H we have:
⎧
⎪⎪⎨

⎪⎪⎩

FEV [I(ν, t)] > I(ν, t) if I(ν, t) <
1
2

FEV [I(ν, t)] < I(ν, t) if I(ν, t) >
1
2

.

In this way, I(ν, t) does not provide the average number of infected individuals
(given by FEV [I(ν, t)]). Therefore, it is not correct to use the average parasite
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Fig. 9.6. Deterministic solution I(ν̄, t) and fuzzy expectancy FEV [I(V, t)] (Barros et
al., 2003)

load ν (value used to obtain the parameter β in the deterministic model) to ana-
lyze the evolution of disease in the whole population, since I(ν, t) = FEV [I(ν, t)],

only at the instant t = t =
νM − νmin

ν − νmin
ln
(

S0

I0

)

with S0 ≥ I0, for which the incre-

ment of the increase rate of the trajectory I(ν, t) is the largest and I(ν, t) =
1
2

(see

figure 9.6).
Note that, instead of FEV [I(ν, t)] we could have applied the classical ex-

pectancy E[I(ν, t)]. In this case, the results are exactly equal to those obtained
before (Barros et al., 2003).

Finally, we note that FEV [I(ν, t)] can be obtained for an arbitrary fuzzy
measure. For example, we could have adopted μ as a measure of the possibility
(see chapter 4).

μ(A) = sup
ν∈A

ρ(ν), A ⊂ R.

In this case, a straightforward calculation provides

H(α) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 if 0 ≤ α ≤ Io

sup
ν∈[a,νmax]

ρ(ν) if Io < α ≤ Ioe
t

So + Ioet

0 if
Ioe

t

So + Ioet
< α ≤ 1

(9.19)

and the FEV [I(ν, t)] is the fixed point of the function H(α).

The basic reproduction number (R0)

An essential parameter concerned with disease evolution is the basic reproduction
number, R0, which gives the number of secondary cases caused by an infected



Epidemiology with Heterogeneity 195

individual introduced into an entirely susceptible population, along his/her in-
fectiousness period. This parameter indicates under which conditions the disease
propagates in the population. In the deterministic framework, if an infected in-
dividual generates more than one secondary case (that is R0 > 1), then the
disease is propagated. On the other hand, when R0 < 1, the disease is not able
to establishes itself. For simple epidemiological models, the expression for this
parameter can be obtained from the condition dI/dt > 0, which is the condition
for an increase in the number of infected individuals. In this way, for the classical
SI model, we would have:

dI

dt
> 0 ⇐⇒ βSI = β(1 − I)I > 0, (9.20)

which is always satisfied because there are susceptible in the population, provided
that β > 0. In other words, we will have R0 > 1 whenever β > 0 and I < 1.

However, when we use a fuzzy set to describe the β parameter, other situations
can occur. In our case, according to the analysis done in the previous section, to
maintain the mean number of infected individuals constant and equal to I0, we
should have μ[a, νmax] = 0. Therefore, any of the expressions (9.18) or (9.19),
implies ρ(ν) = 0 for all ν ∈ [a, νmax], namely, ν +δ < a for all α ∈ [0, 1].
Thus, we conclude that the disease transmission will not occur if ν +δ < νmin,
which means that no infected individual has the minimum amount of pathogens
necessary to transmit the disease.

Based on the above conclusions we can define the fuzzy basic reproduction
number for our model as

Rf
0 =

ν +δ

νmin
.

The aim of control measures to prevent an epidemic is to obtain R0 < 1.
In the classical SI model there are no such possibility because the variation of
infected individuals is always positive provided that β > 0 and S(0) �= 0. This is
mainly due to the fact that the parameter β is considered as a real number, as
we have seen above (9.20). On the other hand, if β is considered as a fuzzy set,
even this simple model gives additional information on the disease dynamics.
For example, it is possible to interfere in the disease evolution by reducing the
parameter value Rf

0 . This can be done in two ways:

1) Increasing the value of νmin. This is a consequence of an increase in the
resistance of susceptible individuals (decreasing their susceptibility) which could
be done, for example, through vaccination, sanitation, etc. Since νmin parameter
is related to susceptible individuals, this way of reducing Rf

0 is related to control
policies to prevent the disease.

2) The other option to reduce Rf
0 is through the reduction of (ν̄+δ). Reducing

δ could be done through control policies with respect to the infected population,
for example, quarantine. Reducing ν is related to treatment as, for example, by
using drugs.

The above situations show two possible strategies of public health. While
(1) indicates an action in the whole population, (2) acts directly on infected
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individuals. It is obvious that a combination of both has a better efficiency in
the prevention and control of the disease.

It should be noted that the basic reproduction number can be obtained from
d(FEV [I(ν, t)])

dt
> 0, instead of

dI

dt
> 0. The reader is invited to do this calcu-

lation.
In the conclusion section we present other methods to obtain Rf

0 for the SI
fuzzy model.

We now present the SIS fuzzy model and analyze the main consequences of
considering fuzziness in the parameters β and γ (the recovery rate), as we did
in the SI fuzzy model. For a more complete study, see Barros et al. (2001, 2002
and 2003).

9.3.2 The SIS Model

The simplest model to describe a disease in which the individual recovers but
does not develop any kind of immunity, that is, he/she becomes susceptible
again, can be seen in the figure 9.7.

Fig. 9.7. SIS model diagram showing the flow between susceptible and infective com-
partments

In chapter 3 it was considered that the flow of an individuals from S class to
I class occurs at a rate β depending only on the contact of a susceptible with
an infected individual and that the individual recovers at a rate γ, returning to
the susceptible condition. The dynamical system is described by the following
system of differential equations:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

dS

dt
= −βSI + γI

dI

dt
= βSI − γI

, (9.21)

where S + I = 1, S is the proportion of susceptible individuals, I is the pro-
portion of infected individuals, β is the contact rate and γ the recovering rate.
Consequently, γ −1 is the average period of infectiousness.

In the following we propose an extension of the SIS model (9.21) incor-
porating heterogeneities, considering that individuals with different amount of
pathogens contribute differently to the disease propagation.
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The SIS fuzzy model

As in the SI fuzzy model, we will assume that β = β(ν), and that the individuals
recovery rate (γ) is also a function of the parasite load. The higher the parasite
load, the longer it will take to recover from infection. Consequently, γ should be
a decreasing function of ν:

γ(ν) =
(γ0 − 1)
νmáx

ν + 1, (9.22)

where γ0 > 0 is the lowest recovery rate.

Fig. 9.8. Recovering fuzzy rate γ = γ(ν) (Barros et al., 2002)

• Solution and Equilibrium Points

From system (9.21), we have:

dI

dt
= βI

[(

1 − β

γ

)

− I

]

. (9.23)

Thus we obtain the equilibrium solution, I∗,

I∗ =
β − γ

β +
[

β−γ
I0

− β
]
e−(β−γ)t

(9.24)

so that, to make biological sense, this occurs when β ≥ γ.
From the hypothesis of our model, β and γ depend on the parasite load ν. In

this way, the number of infected people, at each instant of time, is given by

I(ν, t) =
β(ν) − γ(ν)

β(ν) +
[

β(ν)−γ(ν)
I0

− β(ν)
]
e−[β(ν)−γ(ν)]t

. (9.25)
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So, as in the SI fuzzy model, we can get the average number of infected
individuals from FEV [I(ν, t)] or E[I(ν, t)]. However, our aim here is to analyze
the stability of the disease.

To study the temporal evolution of the number of infected people, that is, if
the number of infected increases indefinitely or not, we should study the stability
of the equilibrium points.

Making

dS

dt
= 0 and

dI

dt
= 0

we obtain the equilibrium points P1 = (1, 0) and P2 =
(

γ

β
, 1 − γ

β

)

for system

(9.21).
The analysis of stability of the classical model (9.21) shows that P1 is unstable

while P2 (with β ≥ γ) is asymptotically stable, indicating in this way that even
if the number of infected increases (supposing initially I0 small) this number
will stabilize in 1 − γ

β
. Moreover, the fraction

γ

β
of the population will not be

affected.
Now, taking into account the parasite load we have:

P2 =
(

γ(ν)
β(ν)

, 1 − γ(ν)
β(ν)

)

.

As mentioned above, while
γ(ν)
β(ν)

< 1, we have P2 asymptotically stable. There-

fore a value of bifurcation for ν is ν∗, the solution of the equation β(ν) = γ(ν).
A direct calculation shows that:

ν∗ =
νMνmax

νmax + (1 − γ0)(νM − νmin)
(9.26)

and that νmin ≤ ν∗ ≤ νM .
The structural stability for this model is shown by the bifurcation diagram in

figure 9.9, where P are the equilibrium points.
The parasite load ν∗ is the value of the bifurcation of the model since for the

values ν < ν∗, the model has only one unstable equilibrium point P1 and, if
ν > ν∗ the model also allows the asymptotically stable equilibrium point P2. In
this way we can think of ν∗ as a parameter related to the disease control in the
sense that, if a disease is installed in a population, it should be guaranteed that
the parasite load ν is not higher than ν∗.

The basic reproduction number (R0)

In general, the basic reproduction number is obtained through the local analysis
of the stability of the trivial equilibrium point.
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Fig. 9.9. Bifurcation diagram (Barros et al., 2002)

If we consider the SInS model with n different infectious stages and without
vital dynamics, it is not possible to obtain R0 explicitly through the analysis of
stability or through the condition dIn/dt > 0 (Leite et al., 2000).

For the classical SIS model we have R0 =
β

γ
. Therefore, the disease will not

establish itself if
β

γ
< 1 and it will invade the population if

β

γ
> 1.

Like the SI model above, we consider different degree of infectiousness.

As in this case we have β = β(ν) and γ = γ(ν), we could write R0(ν) =
β(ν)
γ(ν)

.

However, R0(ν) presupposes the knowledge of the parasite load to the whole
population. So, in order to control the disease we can impose maxR0(ν) < 1.
But this can be an extreme attitude. Perhaps it is better to adopt an “average”
value of R0(ν). For this, we consider the distribution of the parasite load as given
by a triangular fuzzy number ρ(ν), as in we did for the SI fuzzy model.

We define the fuzzy basic reproduction number by

Rf
0 =

1
γ0

FEV [γ0R0(ν)].

Note that R0(ν) can be greater than 1, but γ0R0(ν) ≤ 1, so that the value
Rf

0 is well defined. This parameter can be thought as the average number of
secondary cases caused by just one infected individual introduced into an entirely
susceptible population. As mentioned in chapter 4, to get the FEV [γ0R0(ν)] we
need to define a fuzzy measure μ.

Here we will use the possibility measure:

μ(A) = sup
ν∈A

ρ(ν), A ⊂ R.

This is a caution measure in the sense that the infectivity of a group is the one
presented by the individual belonging to the group with the maximal infectivity.
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In what follows we estimate Rf
0 , assuming again that the amount of pathogen

ν in the population has a linguistic meaning classified as low, median and high.
The fuzzy sets given by the membership function ρ(ν) for the different cases are:

a) low if ν̄ + δ < νmin;
b) median if ν̄ − δ > νmin and ν̄ + δ ≤ νM ; and
c) high if ν̄ − δ > νM .

Case (a): It is easy to see that Rf
0 < 1 if ν is low.

Now, to obtain Rf
0 for cases (b) and (c), we recall that R0(ν) =

β(ν)
γ(ν)

is an

increasing function of ν, then H(α) = μ[ν ′, νmax] = supν′≤ν≤νmax
ρ(ν), where

ν′ is the solution of the equation γ0
β(ν)
γ(ν)

= α. Remember that the fixed point of

H(α) is the same as that of FEV [γ0R0(ν)].

Case (b): Again, through a direct calculation we conclude that

H(α) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 if 0 ≤ α ≤ γ0
β(ν̄)
γ(ν̄)

ρ(ν′) if γ0
β(ν)
γ(ν)

< α ≤ γ0
β(ν̄ + δ)
γ(ν̄ + δ)

0 if γ0
β(ν̄ + δ)
γ(ν̄ + δ)

< α ≤ 1

.

It is easy to see that, if δ > 0, H is a continuous and decreasing function, and
in this case, we have that FEV [γ0R0(ν)] is equal to the fixed point of H .

Again, a direct calculation yields
β(ν̄)
γ(ν̄)

<
FEV [γ0R0(ν)]

γ0
<

β(ν̄ + δ)
γ(ν̄ + δ)

or

R0(ν̄) < Rf
0 < R0(ν̄ + δ).

Case (c): As in the previous case,we concluded that it is true that
1

γ(v̄)
< Rf

0 <

1
γ(v̄ + δ)

and this guarantees that the disease will invade since Rf
0 >

1
γ(v̄)

> 1.

Let us now compare R0 and Rf
0 (for a detailed analysis, see (Barros et al.,

2001 and 2002)).

• Comparison between R0 and Rf
0

Our analysis here deals with the three cases studied in the previous section
related to the three classifications for the amount of infection: low, medium and
high parasite load.
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In any of these cases, we have

β(ν̄)
γ(ν̄)

<
FEV [γ0R0(ν)]

γ0
<

β(ν̄ + δ)
γ(ν̄ + δ)

or
R0(ν̄) < Rf

0 < R0(ν̄ + δ).

As the function R0(ν) =
β(ν)
γ(ν)

is crescent and continuous, based on the Inter-

mediate Value Theorem (Stewart, 1999), there is only one ν̂, with ν < ν̂ < ν + δ,
so that:

Rf
0 = R0(ν̂) > R0(ν̄). (9.27)

This means that there is such an amount of infection v̂ where R0 (classical)
and the Rf

0 (fuzzy) coincide. Moreover, the medium value of the number of
secondary cases (Rf

0 ) is higher than the number of secondary cases due to the
medium amount of infection (R0(v̄)).

The values ν∗, ν̄ and ν̂ will be used to get a hint of possible epidemic control
strategies.

Epidemic control strategies

The system of equations (9.21) is the classical mathematical model to study
disease of SIS type in a homogeneous population. Although we can still use
such a system of equations to model the evolution of a disease in a heterogeneous
population, such as the one presented in our model where the individuals are
distinguished by the amount of infection and, consequently, they present different
rates of contact β(ν) and of recovery γ(ν). For that, we should understand (9.21)
as a family of systems depending on the parameter ν. However, if we intend to
simplify it in the sense of “replacing” that family of systems by a unique system of
equations, with the same outcomes (in our case, the same number of of secondary
cases) that the family as a whole, the above analysis indicates that, among the
different systems of families, there is one which performs this role, namely, that
which parameters are β = β(ν̂) and γ = γ(ν̂) and not that which represents the
individuals’ system with medium amount of infection ν, as it seems intuitively.
Moreover, according to (9.27), to elect R0(ν̄) as an indicator of disease control
forces us to evaluate the correct parameter for the population as a whole, that
is R0(ν̂).

To justify even more the legitimacy of system (9.21) with the parameter ν̂, to
describe the dynamics of the disease in the population as a whole, we will study
the control of the disease in the population through R0(ν̂) = Rf

0 :

• For the case where the amount of infection is low, we have ν̂ < ν + δ ≥ νmin.
Therefore R0(ν̂) = 0 and the disease will not establish itself.

• For the case the amount of infection is high, we have ν̂ > ν > ν + δ ≥ νM .

Therefore, R0(ν̂) =
1

γ(ν)
> 1, indicating that the disease will invade.
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• For the case of medium amount of infection we have:

- if ν∗ > ν̂ then R0(ν̂) =
β(ν̂)
γ(ν̂)

<
β(ν∗)
y(ν∗)

= 1, indicating that the disease

will not invade; and

- if ν∗ < ν̂ then R0(ν̂) =
β(ν̂)
γ(ν̂)

>
β(ν∗)
y(ν∗)

= 1, indicating that the disease

will invade.

Finally, in Barros et al. (2002) it is shown that Rf
0 is the positive solution of

an equation of second degree, with characteristics that allow us to deduce:

1. decrease (increasing νmin, consequently increasing ν∗) of the population sus-
ceptibility, what can be done through improvements in life quality of the
studied population; and

2. decrease of the medium amount of infection, by the use of drugs, for example,
and quarantine (decreasing δ) of the infected individuals.

These conditions are the same as that obtained to the SI fuzzy model.
Finishing this chapter, we now apply the notion of fuzzy differential inclusion

to study the effect of heterogeneities in epidemic models.

9.4 Fuzzy Differential Inclusion

In this section we propose again a model in which individual heterogeneities
in infectiousness is considered, assuming that the infectious capacity is a func-
tion of the parasite load. The model here analyzed is mathematically distinct
from those previously studied and are treated by differential inclusion (Krivan
& Colombo, 1998; Diamond, 1999). The fact of considering the contact rate as
a fuzzy set allows us to use different mathematical tools for representing the
model’s dynamics. In the previous sections we applied differential equations and
here we introduce the notion of differential inclusion, as proposed by Hüllermeier
(1997). An interesting study about solutions of fuzzy differential inclusion was
done by Diamond (1999).

The differential inclusion theory will be applied to obtain a solution for the
SI fuzzy model. This solution is compared with the solution from fuzzy differ-
ential equation and with the number of infected individuals obtained using the
deterministic model.

9.4.1 The SI Fuzzy Model by Fuzzy Differential Inclusion

The great difference between fuzzy differential inclusion and fuzzy differential
equation is in the form that its solutions are constructed. For the differential
equation, the solution of a problem is given by the collection of all trajectories
of equations of the type:

dI

dt
= β(ν)I(1 − I). (9.28)
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On the other hand, in the fuzzy differential inclusion, the solution is con-
structed level by level for each instant of time t.

Since β is a fuzzy set, we expect that, at each instant, the number of infected
individuals is a fuzzy set too. The uncertainty in the fuzzy model is considered
in the parameter ν, because we only know that ν ∈ [0, νmax]. In order to obtain
the number of infected individuals (at each instant) as a fuzzy set, we will use
the theory of differential inclusions. Krivan and Colombo (1998) suggest the
substitution of the equation (9.28) by the parametrized differential inclusion

dI

dt
∈ {β(ν)I(1 − I), ν ∈ [0, νmax]}, (9.29)

whose solution is a collection of all solutions of (9.28), where ν(t) ∈ [0, νmax] is a
measurable function (Aubin & Cellina, 1984; Krivan & Colombo, 1998). In this
way, the inclusion (9.29) is a common case of unknown but limited noise, which
has to be analyzed with the following control system:

dI

dt
= β(ν)I(1 − I), I(0) = I0, ν(t) ∈ [0, νmax]. (9.30)

The set of all solutions of the differential inclusion (9.29) coincides with the
set of all solutions of the control systems (9.30). However, the attainable set of
(9.29) at the instant t > 0, defined by R(t) = {I(t) : I is a solution of (9.29)}, is
an interval (Aubin & Cellina, 1984). In our case, this attainable set is given by:

R(t) = [I−(t), I+(t)],

where I−(t) and I+(t) are, respectively, the solutions of

⎧
⎪⎪⎨

⎪⎪⎩

dI

dt
= min{β(ν)I(1 − I), ν ∈ [0, νmax]}, I(0) = I0

dI

dt
= max{β(ν)I(1 − I), ν ∈ [0, νmax]}, I(0) = I0

or

dI

dt
= I(1 − I) and

dI

dt
= 0, I(0) = I0.

Then, I−(t) = I0 and I+(t) =
I0e

t

S0 + I0et
.

Thus,

R(t) =
[

I0,
I0e

t

S0 + I0et

]

.

This means that, for each t > 0, the number of infected individuals belongs

to the interval
[

I0,
I0e

t

S0 + I0et

]

.
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From the hypothesis of β as a fuzzy set, that is, a membership function of some
fuzzy subset whose domain is the set of the parasite load values, Hüllermeier
(1997) proposes that the inclusion (9.29) can be seen as a fuzzy differential
inclusion parametrized by ν, whose solution is, at each instant t, the fuzzy set
I(t), whose α − levels, [I(t)]α, are given by the attainable sets Rα(t) of the
differential inclusion

⎧
⎪⎪⎨

⎪⎪⎩

dI

dt
∈ {β(ν)I(1 − I), ν ∈ [β]α}

I(0) = I0

, (9.31)

that is equivalent to ⎧
⎪⎪⎨

⎪⎪⎩

dI

dt
∈ {β(ν)I(1 − I)}

I(0) = I0

, (9.32)

with ν ∈ [α(νM − νmin) + νmin, νmax].
In the same way that R(t) was obtained above, we can conclude that

Rα(t) =
[

I0e
β(α(νM−νmin)+νmin)t

S0 + I0eβ(α(νM−νmin)+νmin)t ,
I0e

t

S0 + I0et

]

(9.33)

=
[

I0e
αt

S0 + I0eαt
,

I0e
t

S0 + I0et

]

, 0 ≤ α ≤ 1.

Note that R0(t) = R(t).
Now, if we want to adopt a crispy curve to represent the number of infected

individuals we need to choose a defuzzification method. Here we choose the
classical expectancy (E[I(ν, t)]) and, just to illustrate we will again analyze the
cases of low, medium and high amount of pathogens.

So, we have (Barros et al., 2004):

If v + δ < νmin (low amount of pathogens) then E[I(ν, t)] = I0, ∀t > 0.

If v − δ > νM (high amount of pathogens) then E[I(ν, t)] = I0et

S0+I0et , ∀t > 0.

and consequently, we have

I(ν − δ, t) ≤ E[I(ν, t)] ≤ I(ν + δ, t).

Then, E[I(ν, t)] ∈ R(t), where R(t) is the attainable set of (9.29). Since R(t)
is an interval, again by the Intermediate Value Theorem (Stewart, 1999), there
exists only one ν = ν(t) ∈ [ν − δ, ν + δ], for which we have:

I(ν(t), t) = E[I(ν, t)].



Fuzzy Differential Inclusion 205

In this way, if we represent the phenomenon by some crispy curve, E[I(ν, t)]
would be the candidate, because it represents the average weighted by ρ(ν) to
each t > 0. However, this curve is not a solution of the initial model (9.28), since
E[I(ν, t)] = I(ν(t), t), where ν(t) is not constant.

To end this sectionwewould like to highlight that the deterministicmodel (with-
out uncertainty) indicates the adoption of ν for the parasite load and, in this case,

the number of infected individuals follows the trajectory I(ν, t) =
I0e

β(ν)t

S0 + I0eβ(ν)t ,

whose membership in the fuzzy solution (9.33) is

uI(t)(I(ν, t)) =
1
t

ln(
S0

I0

I(ν, t)
1 − I(ν, t)

) = β(ν), for all t > 0.

Then, we can say that the deterministic solution is the one that has the higher
possibility of occurring (it is preferred) since ν is the amount of pathogen with
the higher chance of occurring.

Epidemic control strategies by differential inclusion

In Barros et al. (2004), as in the SI fuzzy equations, it is shown that:

• if S0 > I0, and while t ≤ ln
S0

I0
, then E[I(ν, t)] > I(ν, t). From t = ln

S0

I0
,

there is an instant t for which E[I(ν, t)] = I(ν, t). For t > t, we have
E[I(ν, t)] < I(ν, t), indicating that the deterministic model underestimates
the number of infected individuals at the beginning and overestimates it
from t.

• if S0 ≤ I0 then E[I(ν, t)] ≤ I(v, t), ∀t > 0, the deterministic model overesti-
mates the number of infected individuals.

Then, at the beginning of the epidemic
(

t < ln
S0

I0

)

and S0 >> I0, we have

I(ν, t) ≤ E[I(ν, t)] ≤ I(ν + δ, t).

Therefore, ν(t) ∈ [ν, ν + δ]. Since E[I(ν, t)] = I(ν(t), t) increases when ν(t)
increases too, we have that the higher the ν, the higher the E[I(ν, t)]; the higher
the δ, the higher the E[I(ν, t)] and the higher the νmin, the higher the E[I(ν, t)].

Then, it is possible to interfere in the disease evolution in two ways:

1) Increasing the value of νmin. This is a consequence of increasing the re-
sistance of susceptible individuals (diminishing the susceptibility) and it can be
obtained, for example, through vaccination, sanitation, etc, indicating that the
parameter νmin is related with the susceptible individuals; and

2) Another option is to diminish E[I(ν, t)] by reducing δ. The reduction of δ
could be made with control policy related to the infected population, for example,
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by quarantine isolation. The reduction of ν is related to the treatment as, for
example, with drugs.

We, therefore, have two possibilities of control strategies: (a) an action with
all the population and (b) to act directly to the infected individuals. Obviously,
a combination of both strategies would have a better efficacy to prevent and
to control the disease. We would like to highlight that the control strategies
proposed for both fuzzy differential equation and fuzzy differential inclusion are
qualitatively the same.

In this chapter we presented some structures to treat dynamical epidemiolog-
ical systems. In spite of the calculations, which can be quite complex in some
situations, the examples described here have demonstrated how important it
is to discuss the role that fuzzification can play from the dynamical point of
view. The differences in R0 values, comparing the classic and fuzzy approaches,
illustrate this importance.

From the calculations point of view both approaches, fuzzy differential equa-
tion and fuzzy differential inclusion, presented an important limitation: the num-
ber of parameters that can be fuzzified. In fact, the calculations become almost
impossible if we wish to defuzzify more then one parameter in the equations.
To circumvent this situation an alternative approach is presented in the next
chapter.



10 Classical Dynamical Systems with Fuzzy
Rule-Based Parameters

Along chapters 8 and 9 we presented several approaches to treat the uncertainties
in dynamical systems applied to epidemic problems. We have also discussed the
limitations and advantages of those techniques comparing them to each other.
While chapter 8 is devoted to dynamical systems based only on fuzzy linguistic
rules structure, chapter 9 presents different mathematical ways to apply fuzzy
differential equations, considering the uncertainties of variables or parameters
of a classical differential equation system, based on the fuzzification of them
using fuzzy sets. In the first approach the most important limitation is the
explosion of number of rules and dependence of the expert knowledge, which
is particularly true in epidemic studies. In contrast, the largest difficulty found
in chapter 9 approaches is the complexity of the calculations, particularly if we
want to fuzzify more than one parameter. In fact, to analyze the FEV structure
considering two or more parameters as fuzzy sets is a really hard task, from the
mathematical point of view.

In this chapter we present an alternative to elaborate fuzzy dynamical sys-
tems by means of another methodology. The idea is to use the classic differential
equations, and consequently their mathematical theorems and solutions avail-
able, and to find the equations parameters through fuzzy rules modeling. So,
the differential equations and the fuzzy linguistic models are applied together.
Thus, in a certain way, this approach can be seen as a mixing of the approaches
exposed in the two previous chapters. The great advantage of this methodology
when compared with the approaches presented in chapter 9 is that it allows
to consider the uncertainties of more than one parameter, aggregating them by
means of a fuzzy rule-based model.

To illustrate the methodology we present two examples. In the first exam-
ple it is shown a HIV model for dynamical behavior between non-symptomatic
and symptomatic seropositive individuals (Jafelice et al., 2004a); in the sec-
ond example this structure is used to study the influence of HIV epidemic in
the expectancy of life in a group of seropositive individuals (Jafelice et al.,
2004b).

E. Massad et al.: Fuzzy Log. in Act.: Appl. in Epidem. & Bey., STUDFUZZ 232, pp. 207–223, 2008.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2008
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10.1 Fuzzy Modeling in Symptomatic a HIV Infected
Population

Jafelice et al. (2004a) proposed a model to study the the evolution of HIV posi-
tive individuals. In this work the focus is on the nature of the transference rate,
λ, of HIV to full blown AIDS. Expert knowledge indicates that this transference
rate is uncertain and depends strongly on the viral load and on the CD4+ level
of infected individuals (see section 7.6.1 in chapter 7). Jafelice et al. (2004a)
propose the transference rate as a linguistic variable of the viral load and CD4+
level values. In this case the dynamical model results in a fuzzy model that pre-
serves the biological meaning and nature of the transference rate λ. Its behavior
fits the natural history of HIV infection reported in the medical literature. A
comparison between the fuzzy model and a classical model using data available
in the literature was also done.

The model used here to predict the number of HIV positive individuals is the
same that proposed by Anderson (1988). However, the transference rate, λ, is
viewed as a linguistic variable, whose values are fuzzy sets that depend on the
viral load v and CD4+ level.

10.1.1 Classical HIV/AIDS Models

The classical Anderson’s model (1988) is a macroscopic model for HIV/AIDS.
It is described by:

⎧
⎪⎪⎨

⎪⎪⎩

dx

dt
= −λ(t)x x(0) = 1

dy

dt
= λ(t)x = λ(t)(1 − y) y(0) = 0

, (10.1)

where λ(t) is the transference rate between infected individuals and individuals
with AIDS; x is the proportion of infected individuals that does not develop
AIDS (asymptomatic); and y is the proportion of the individuals that develop
AIDS (symptomatic). Anderson (1988) assumes λ(t) = at, a > 0. Thus the
solution of (10.1) becomes:

⎧
⎪⎪⎨

⎪⎪⎩

x(t) = e−
at2
2

y(t) = 1 − e−
at2
2

. (10.2)

Peterman et al. (1985) present data related to 194 cases of blood transfusion-
associated AIDS. From Peterman et al. data Murray (1990) shows that Ander-
son’s model (10.1) can be fitted to find the value for the parameter a. The rate of
increase dy/dt of AIDS patients as a function of time, provided by model (10.1),
is shown by the continuous curve of figure 10.1.

Nowak and Bangham (1996) introduce three microscopic models for HIV in-
fection dynamics in the individuals organism, with no anti-retroviral therapy.
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Fig. 10.1. The rate of change in the proportion of the individuals who develop AIDS
after infected with HIV (through blood transfusion) at time t = 0. The data (from
Peterman et al., 1985) shows a best-fit a = 0.237yr−1 solution for model (10.1) (Murray,
1990)

Two of these models will be explained in this section. The first is a model for
the interaction between replicating virus and host cells. In this case, there are
three variables: uninfected cells n, infected cells i, and free virus particles v. In-
fected cells are produced from the interaction between uninfected cells and free
virus at rate βnv, and die at rate bi. Free viruses are produced from infected
cells at rate ki and decline at rate sv. Uninfected cells are produced at a con-
stant rate, r, from a pool of precursor cells, and die at rate an (see figure 10.2
of Nowak, 1999).

Fig. 10.2. Microscopic model of HIV virus dynamics (modified from Nowak, 1999)
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These assumptions are described by the following system of differential
equations:

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

dn

dt
= r − an − βnv

di

dt
= βnv − bi

dv

dt
= ki − sv

. (10.3)

Recently, Filter et al. (2005) presented a mathematical method for estimat-
ing all the parameters of the three-dimensional (3-D) model (10.3) of the HIV
infection. An application of vaccine readiness was deduced from the estimation
of the viral load set point and the setting time for patients from a South African
cohort. Another recent contribution is the study of Ouattara et al. (2008) where
the HIV dynamic is described by means of (3-D) model (10.3) adding to the first
equation a CD4+ T cells proliferation term. The authors studied also the influ-
ence of the Highly Active AntiRetroviral Therapy (HAART) in the parameters
of the model (10.3), analyzing the therapeutic failures based on mathematical
modeling of the HIV infection (Ouattara et al., 2008).

The second model includes immune responses against infected cells, and ex-
tends system (10.3) by adding an equation to describe the immune response
against infected cells:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dn

dt
= r − an − βnv

di

dt
= βnv − bi − piz

dv

dt
= ki − sv

dz

dt
= ciz − dz

. (10.4)

The variable z denotes the magnitude of the CTL (cytotoxic T lymphocyte)-
that is, the abundance of virus-specific CTLs. The rate of CTL proliferation in
response to antigen is given by ciz. In the absence of stimulation, CTLs decay
at rate dz. Infected cells are killed by CTLs at rate piz. Figure 10.3 shows the
solution of (10.4) using the following parameters: r = 0.3, a = 0.1, β = 1,
b = 0.01, p = 0.03, k = 0.5, s = 0.01, c = 0.01 and d = 0.01; and the following
initial conditions: n(0) = 0.99, i(0) = 0.01, v(0) = 0.1, z(0) = 0.01, tinitial = 0
time units and tfinal = 500 time units (Caetano & Yoneyama, 1999; Jafelice et
al., 2004a).

In logarithmic scale, the uninfected cells of CD4+ show a rapid decline in the
first weeks and a slow recovery when the number of lymphocytes is close to the
maximum. The increase in the number of lymphocytes is related to the presence
of infected cells and the virus replication mediated by them (see figure 10.3).
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Fig. 10.3. Solution of the microscopic HIV model (Jafelice et al., 2004a)

Comparing the solution of system (10.4) shown in figure 10.3 with the plots
shown in figure 7.11, in chapter 7, it is possible to note similarities between the
behavior of the uninfected cells of CD4+, the free virus, and the virus-specific
CTLs with the CD4+ level, the HIV virus, and the HIV antibodies, respectively.
In figure 7.11 it can also be observed that, during the asymptomatic phase, the
variation of uninfected cells of CD4+ is small. Therefore, it may be assumed
that dn/dt ∼= 0 which means, from (10.4), that n(v) ∼= r

a + βv
.

Fig. 10.4. Uninfected CD4+ cells versus viral load (v) (Jafelice et al., 2004a)
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Moreover, after straightforward calculations, we note that (see figure 10.4):

• If n(v) =
r

a + βv
then

dn

dt
= 0. Thus, n(t) is constant;

• If n(v) <
r

a + βv
then

dn

dt
> 0. Therefore, n(t) is increasing. This means that

the infected individual is recovering because the number of cells of CD4+ is
growing; and

• If n(v) >
r

a + βv
then

dn

dt
< 0. Therefore, n(t) is decreasing. This means

that the infected individual is worsening because the number of CD4+ cells
is diminishing.

10.1.2 A Fuzzy Rule-Based Model to Estimate λ

When HIV reaches the bloodstream, it attacks mainly the lymphocyte T of the
CD4+ type. The amount of CD4+ cells in the peripheral blood has prognostic
implications for the infection evolution by HIV. Currently, the concentration of
immune competent cells is the most clinically useful and acceptable assessment
of the treatment of infected individuals with HIV, although it is not the only
one.

The identification of the disease’s stages and its respective treatment is based
on the relationship between viral load and CD4+ level. The control of the viral
load and CD4+ cells level can interfere in the control of the transference rate
λ. Thus, the conversion from an asymptomatic individual to a symptomatic
individual depends on the individual characteristics, as measured by the viral
load, v, and level of CD4+, c. Therefore, it is suggested the following model:

⎧
⎪⎪⎨

⎪⎪⎩

dx

dt
= −λ(v, c)x x(0) = 1

dy

dt
= λ(v, c)x = λ(v, c)(1 − y) y(0) = 0

. (10.5)

The difference between the model suggested in (10.5) and the classical model
(10.1) is that in (10.5) the parameter λ = λ(v, c), that is, λ is not a constant
value. This assumption has a clear biological meaning and thus is a more reliable
characterization of λ. From the mathematical point of view, (10.5) can be seen
as a parametric family of systems. It seems reasonable that λ, and consequently
the population of infected individuals y, could be controlled via v and c. From
(10.5) we have, for t > 0:

⎧
⎪⎪⎨

⎪⎪⎩

x(t) = e−λ(v,c)t

y(t) = 1 − e−λ(v,c)t

. (10.6)

The estimation of the transference rate λ = λ(v, c) is based on linguis-
tic medical information in the form of fuzzy if-then rules. Therefore, it was
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adopted a fuzzy rule-based modeling approach assuming, as in the case of med-
ical knowledge, that the viral load, v, the level of CD4+, c, and the transfer-
ence rate, λ, are linguistic variables denoted by V , CD4+ and Λ, respectively.
Viral load V has its values in the set of terms {low, medium, high}, CD4+
in {very low, low, medium, high medium, high}, and transference rate Λ in the
terms set {weak, medium weak, medium, strong}. The CD4+ level between 0.2
and 0.5 cells/ml was divided into two ranges because it relates to an important
phase of the transference from asymptomatic to symptomatic individuals. The
membership functions that specify the meaning of the linguistic variables are
shown in figures 10.5, 10.6 and 10.7 for viral load, CD4+ level, and transference
rate, respectively. Table 10.1 presents the rule base that encodes the relationships
between c, v, and λ suggested by expert medical knowledge.

Note that, in chapter 7 we presented a fuzzy linguistic model, of Mamdani
type, to find the clinical progression considering as input variable CD4+ and vi-
ral load, both of them elaborated based on the absolute measures of variables (see

Fig. 10.5. Membership functions for viral load (V ) (Jafelice et al, 2004a)

Fig. 10.6. Membership functions for CD4+ level (Jafelice et al, 2004a)
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Fig. 10.7. Membership functions for transference rate (Jafelice et al, 2004a)

Table 10.1. Rules that encodes the relationships between c, v, and λ (Jafelice et al.,
2004a)

Rule IF AND THEN
V is CD4+ is Λ is

1 low very low strong
2 low low medium
3 low medium medium
4 low high medium weak medium
5 low high weak
6 medium very low strong
7 medium low strong
8 medium medium medium
9 medium high medium weak medium
10 medium high weak
11 high very low strong
12 high low strong
13 high medium medium
14 high high medium medium
15 high high medium

their membership functions in chapter 7). However, in the fuzzy rule-based model
considered here the output variable is the transference rate from asymptomatic
to symptomatic groups. Thus the membership functions of input variables were
defined based on more adequate measures. In addition, the fuzzy model used in
this case is the Takagi-Sugeno-Kang type.

Thus, the solution of (10.5) is given by (10.6) and λ(v, c) is obtained from the
rule-based fuzzy system. The next section shows how to obtain an analytical ex-
pression for λ as a function of v and c using fuzzy inference and a defuzzification
method.
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Transference rate λ

Given the fuzzy rule base above it is possible to compute the value of λ = λ(v, c)
for values of viral load v and the respective values of CD4+ levels. Note that in
this case the fuzzified parameter of the differential equation, λ, depends on two
variables.

We identified the uninfected cells n with the CD4+ level because the unin-
fected cells of figure 10.3 have similar behavior as the CD4+ T lymphocyte of
figure 7.11 and the blood test does not differentiate uninfected cells n from in-
fected cells i. The blood test identifies CD4+ level only. Therefore, once CD4+
is proportional to n, it was assumed that:

c(v) =
r

a + βv
. (10.7)

Moreover, when we project the defuzified transference rate curve in the trans-
ference rate versus viral load plane, and approximate the projection by straights
lines, the approximation of λ becomes (see Jafelice et al., 2004a):

λ(v) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 if 0 < v < vmin

v − vmin

vM − vmin
if vmin ≤ v < vM

1 if v ≥ vM

. (10.8)

Note that there is a need for a minimum amount of virus vmin for disease
evolution and that, above a certain amount of virus vM , the chance for evolution
becomes high. The amount of virus is always limited by vmax. Thus, the solution
of (10.5) is given by (10.6) where λ(v) is given by (10.8).

Note that, in this case, the rate λ is a function of v. So, the functions in (10.6)
are a solution family of (10.5). To obtain just one value for each t, the FEV (y)
value was calculated, as done in chapter 9 (see also chapter 4). For this, the
distribution of the value of the viral load, V , is needed.

Medical knowledge suggests that viral load can be reasonably represented by
a triangular fuzzy set, whose analytical form is (see figure 9.3, in chapter 9):

ρ(v) =

⎧
⎪⎨

⎪⎩

1 −
∣
∣
∣
∣
v − v̄

δ

∣
∣
∣
∣ if v ∈ [v̄ − δ, v̄ + δ]

0 if v /∈ [v̄ − δ, v̄ + δ]
. (10.9)

Parameters v̄ and δ are the modal value and spread of the fuzzy set, respec-
tively. This can be viewed as a way to express viral load values through a fuzzy
number, a particular kind of a linguistic variable whose values are normal. Fuzzy
number is a way to quantify imprecise valuations such as the viral load is around
v̄ . Precise viral load values for populations are rare, but fuzzy numbers capture
the inherent imprecision typical of biological variables, such as viral load and
CD4+ level. So, given a distribution of the viral load and the transference rate
function, it is possible to find the expected value of the symptomatic individuals
for a time horizon.
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Fuzzy expectancy of the symptomatic individuals

Fuzzy expectancy is the concept used here to determine the expected value of the
proportion of symptomatic individuals y(t) = 1−e−λ(v)t for each time t>0. Fuzzy
expectancy uses the idea of fuzzy measure and fuzzy integrals (see chapter 4).

Considering a procedure analogous to that adopted in section 9.3.1 (in
chapter 9), results in three cases of interest (Jafelice et al., 2004a):

Case a) Viral load is low: It is assumed vmin >v̄+δ, and it is find FEV [y] = 0.

Case b) Viral load is high: It is assumed vM ≥ v̄ − δ and v̄ + δ ≥ vmax, and
it is find FEV [y] = 1 − e−t.

Case c) Viral load is medium: In this case it is assumed v̄ − δ > vmin and
v̄ + δ < vM , and we obtain the following inequality:

1 − e

(
−v̄+δ+vmin
vM −vmin

)
t
< FEV [y] < 1 − e

(
−v̄−δ+vmin

vM −vmin

)
t (10.10)

for

v̄ − δ < v(t) < v̄ + δ,

where v(t) = vmin +
[−ln(1 − α)

t

]

(vM − vmin), with α = FEV [y].

We denote by FEVlow = 1 − e

(
−v̄+δ+vmin
vM −vmin

)
t the optimistic proportion of the

symptomatic individuals and by FEVupper = 1 − e

(
−v̄−δ+vmin
vM −vmin

)
t the pessimistic

proportion of the symptomatic individuals. Therefore,

FEVlow < FEV [y] < FEVupper . (10.11)

In addition, we have the following proposition.

Proposition 10.1. For each t > 0, there exists a unique v(t) ∈ (v̄ − δ, v̄ + δ) for
which

FEV [y] = 1 − e

(
−v(t)+vmin
vM −vmin

)
t
. (10.12)

(for proof see Jafelice et al., 2004a).

It is important to highlight that the fuzzy expected value is not a solution of
(10.5). What proposition 10.1 shows is that, for each time t, there is a solution
of (10.5), whose value at t is the same as FEV [y] at t. Actually, it is not difficult
to verify that FEV [y] is differentiable and satisfies the following differential
equation with the time dependent parameter v(t):

dy

dt
=
[
v(t) − vmin

vM − vmin
+

t

vM − vmin

dv(t)
dt

]

(1 − y) (10.13)
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Interestingly, the fuzzy expected value FEV [y] of an autonomous differential
equation is a solution of a corresponding non-autonomous differential equation.

In the next section it is verified how the fuzzy expected value of symptomatic
individuals compareswith the solution suggested in (Murray, 1990) using real data.

10.1.3 Fuzzy Expectancy of Symptomatic Individuals and Real
Data

As it was discussed above, Murray (1990) presents the model (10.1) fitted to find
a from the data of Peterman et al. (1985). In this section these data were used
to derive a fuzzy model and to compute the fuzzy expected value of the infected
individuals (see figure 10.1). It is assumed that, initially, the fraction of infected
asymptomatic individuals x is 1 (maximum), and that the fraction of AIDS symp-
tomatic individuals y is null. Note that FEV [y] (see proposition 10.1) depends on
the parameters v(t), vmin and vM . Since the values of y(t) can be obtained from
the data shown in figure 10.1 and, from proposition 10.1 and equation (10.6), it is
possible to find the values of v for each t. From these values of v a least-squares
fitting provides the following estimates for v(t), (see figure 10.8):

v(t) = 0.067t + 0.036. (10.14)

Jafelice et al. (2004a) adapted the values vmin = 0.046 and vM = 0.56 and
compute FEV [y].

Recall that the transference rate that fits the classic model (10.1) to the data
is λ(t) = 0.237t (Murray, 1990).

In this case, it is possible to find an explicit view of the time behavior of the
transference rate if the value of v(t), given by (10.14), is replaced in (10.8). The

Fig. 10.8. Least squares fit of v(t) (Jafelice et al., 2004a)
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result, given by (10.15) below, is an estimate of the transference rate λ of (10.5),
shown in figure 10.9 for 0 < t < 6,

λv,t =

⎧
⎨

⎩

0 if 0 < v < 0.046

0.12t − 0.019 if 0.046 < v < 0.56
. (10.15)

As it can be noted from figure 10.9, the estimates of the transference rate as
suggested by the fuzzy model fits real data much more accurately than the one
provided by the classical model.

Given the estimated values of λ (figure 10.9), from proposition 10.1 it is easy
to compute FEV [y] for each t > 0. Figure 10.10 shows the plots of the upper
and lower bounds for FEV [y], the estimated values of FEV [y] together with

Fig. 10.9. Time behavior of the transference rate (Jafelice et al., 2004a)

Fig. 10.10. Bounds for FEV [y], the fuzzy expected value of the symptomatic indi-
viduals, Anderson’s model, and real data (Jafelice et al., 2004a)
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the values given by Anderson’s model (1988) and the data reported in (Murray,
1990). Clearly, FEV [y] does provide a solution that is closer to actual data than
Anderson’s model. Moreover, the fuzzy model uses information from medical
experts and biological principles to determine estimates of transference rate.

The main difference between the classical model (10.1) and the fuzzy model
(10.5) is that the fuzzy model exploits parameter uncertainty whereas classical
model does not. In a sense, the classical model is a particular case of fuzzy mod-
els. In addition, we saw that Anderson’s model is derived from a best fit to data
while the fuzzy model is constructed from biological principles. In other words,
the fuzzy model provides a clear and meaningful characterization of parameter
λ, since it is compatible with the available medical knowledge and perception of
its values. The adherence of the transference rate of (10.5) to real data reported
in the literature, when v = v(t), is very significant. It gives the medical science
better estimates to control the AIDS evolution.

10.2 Fuzzy Model to Compute the Life Expectancy of
HIV Infected Individuals

This section is based on the Jafelice and collaborators (2004b) work where it was
studied the impact of AIDS on the life expectancy of a population, considering
a classical population model complete with expert knowledge information via a
fuzzy rule-based system. In this model, it was assumed that AIDS has a direct
influence on the mortality rate of a population and a fuzzy rule base system was
derived to capture this influence using as variables the viral load, the CD4+
level and a parameter that modify the transference rate. They determined the
average number of individuals and the life expectancy for specific groups without
anti-retroviral therapy. Thus, the aim was to study the life expectancy of an HIV
infected individuals using a conventional population model with a mortality rate
derived from expert knowledge.

We assume that in a group of people deaths occur due to other causes in
addition to HIV infection. The model assumes neither birth nor migration. The
number of individuals, n(t), living at time t satisfies the following differential
equation:

dn

dt
= −(λ1 + φ(v, c)λ2)n, (10.16)

where λ1 is the natural mortality rate, φ(v, c) indicates the influence of AIDS in
the mortality rate, and λ2 is a constant, characteristic value of the population
and depends on its social and environment behavior. The solution of (10.16),
n(t), is given by:

n(t) = n(0)e−(λ1+φ(v,c)λ2)t, t > 0. (10.17)

As we have seen, the population model above suggests a straightforward
mechanism to describe the population behavior. However, in practice, precise
values of the influence of AIDS on the mortality rate are rare, but experts
do know how to evaluate the influence of AIDS from their perception of the



220 Classical Dynamical Systems with Fuzzy Rule-Based Parameters

Fig. 10.11. Membership functions for influence of AIDS, Φ (Jafelice et al., 2004b)

Table 10.2. Fuzzy rules for the fuzzy rule-based model to estimate the influence of
AIDS (Jafelice et al., 2004b)

V
CD4+ Low Medium High

Very Low Strong Strong Strong
Low Medium Strong Strong

Medium Medium Medium Medium
High Medium Weak Medium Weak Medium Medium

High Weak Weak Weak

relationships between c, v, and φ. In this section, the value of the influence
of AIDS, φ = φ(v, c), is obtained from linguistic medical information trans-
lated into a set of fuzzy if-then rules. In other words, we adopt a fuzzy rule-
based modeling approach assuming, as it is the case with medical knowledge,
that the viral load, v, the level of CD4+, c, and the influence of AIDS on
the mortality, φ, are linguistic variables denoted by V , CD4+ and Φ, respec-
tively. Viral load V has its values in the set terms {low, medium, high}, CD4+
in {very low , low ,medium, high medium, high}, and influence of AIDS in
{weak, medium weak, medium, strong}. The membership functions that specify
the meaning of the linguistic variables are the same that is shown in figures 10.5,
10.6 and 10.11 for viral load, CD4+ level, and influence of AIDS, respectively.
The rule base that encodes the relationship between c, v, and φ, as suggested
by expert medical knowledge, is summarized in table 10.2.

10.2.1 The Influence of AIDS on the Mortality Rate

First, we note that the set of differential equations (10.4) gives a microscopic
dynamic model for HIV infection dynamics within the organism of an individual,
assuming no anti-retroviral therapy. When in equilibrium, this model suggests
an important relationship between the viral load, v, and the level of CD4+, c:
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c(v) =
r

a + βv
. (10.18)

Thus, (10.18) shows that viral load and CD4+ level are not independent vari-
ables. The parameters values used here are r = 0.3, a = 0.1 and β = 1.

Second, from the fuzzy rule base of table 10.2 we can compute φ(v, c) for given
values of viral load v and respective values of CD4+ level. We propose that φ(v)
is given by:

φ(v) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 if 0 < v < vmin

v − vmin

vM − vmin
if vmin ≤ v < vM

1 if v ≥ vM

. (10.19)

Note that there is a need for a minimum amount of virus vmin for the disease’s
evolution and that, above a certain amount of virus vM , the chance for evolution
becomes high. The amount of virus is always limited by vmax .

Replacing φ(v, c) by (10.19) in (10.17) we find (10.20); that is, the number of
individuals at time t becomes:

n(t) = n(0)e−(λ1+φ(v)λ2)t, t > 0. (10.20)

10.2.2 Average Number and the Life Expectancy of Individuals

Assuming that viral load can be reasonably represented by a triangular fuzzy
set given by equation (10.9). Thus, for each instant t, the average number of
individuals, n(t), and the life expectancy, E, are determined by:

〈n(t)〉 = n(0)
∫

R

e−(λ1+φ(v)λ2)t ρ(v)
δ

dv (10.21)

E =
∫

R

1
λ1 + φ(v)λ2

ρ(v)
δ

dv, (10.22)

where
ρ(v)
δ

is the distribution of the viral load.
Considering the HIV positive individuals with viral load, v, low, medium and

high, whose fuzzy sets have the same shape as presented in the previous sections,
we can study the life expectancy through the FEV calculation:

Case a) Viral load is low: We assume vmin > v̄ + δ, and get:

〈n(t)〉 = n(0)e−λ1t and (10.23)

E =
1
λ1

. (10.24)
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Case b) Viral load is high: We assume vM ≤ v̄ − δ and v̄ + δ ≤ vmax. Thus,

〈n(t)〉 = n(0)e−(λ1+λ2)t and (10.25)

E =
1

λ1 + λ2
. (10.26)

Case c) Viral load is medium: In this case, we assume v̄ − δ > vmin and
v̄ + δ < vM . Therefore,

〈n(t)〉 =
n(0)e−λ1t

δ2t2λ2
2

[

− 2(vM − vmin)2e−
(

v̄−vmin
vM −vmin

)
λ2t

+ (vM − vmin)2e−
(

v̄−δ−vmin
vM −vmin

)
λ2t + (vM − vmin)2e−

(
v̄+δ−vmin
vM −vmin

)
λ2t

]

(10.27)
and

E =
vM − vmin

δ2

{

−
[

vmin

λ2
− (vM − vmin)

λ1

λ2
2

]

ln

[

(v̄ − δ − vmin)λ2

+ (vM − vmin)λ1

]

+
v̄ − δ

λ2
ln

[

(v̄ − δ − vmin)λ2 + (vM − vmin)λ1

]

+ 2

[
vmin

λ2
− (vM − vmin)

λ1

λ2
2

]

ln

[

(v̄ − vmin)λ2

+ (vM − vmin)λ1

]

− 2v̄

λ2
ln

[

(v̄ − vmin)λ2 + (vM − vmin)λ1

]}

− vM − vmin

δ

{[
vmin

λ2
− (vM − vmin)

λ1

λ2
2

]

ln

[

(v̄ + δ − vmin)λ2

+ (vM − vmin)λ1

]

− v̄ + δ

λ2
ln

[

(v̄ + δ − vmin)λ2 + (vM − vmin)λ1

]}

.

(10.28)

Figure 10.5 shows the average number of individuals for each population stud-
ied, considering n(0) = 24, 500, 000, λ1 = 1/58 and λ2 = 1/38 − 1/58 (Jafelice
et al., 2004b). The United Nations (UN), estimate a number of 24, 500, 000 HIV
positive people in Africa; therefore, we assume this value as the one for n(0).
Other important information found in UN is that ‘The average life expectancy
has diminished by approximately 20 years; in Moçambique nowadays it is 38
years’. Hence, we assume natural mortality rate λ1 = 1/58, the inverse of natu-
ral life expectancy, and λ2 = 1/38− 1/58. The values vmin = 0.05 and vM = 0.6
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Fig. 10.12. Average number of individuals (Jafelice et al., 2004b)

were obtained from the rule base and from the values of φ(v, c). With this data,
the life expectancy for each group is found as follows:

Case a): Viral load is low - E = 58years;
Case b): Viral load is high - E = 38 years; and
Case c): is medium - E ∼= 47years.

These values are in accordance with the ones reported by UN. We used the
data from Africa because the model suggested in this section does not consider
treatment with anti-retroviral therapy, as it is the case of Africa.

Finally we want to address the importance that rule-based models can have
in the fuzzy dynamical systems development. Both here and in chapter 8 they
allow to dealing with more complex systems since the rule-based structure can
provide the aggregation, in a easier way, of several input variables. In addition,
they allow the expert knowledge be applied directly in the dynamical structure.
In the next chapter we present another way to consider this expert knowledge
in a dynamical context and with a simulation approach.



11 Fuzzy Reed-Frost Model

In the previous chapters we presented several ways to treat dynamical sys-
tems from the fuzzy sets theory point of view, considering particular epidemic
scenarios. We have discussed some approaches highlighting the advantages and
limitations of each technique. However, all structures presented were macro-
epidemic-models, that is, the epidemic spreading depends on the global variables
and does not consider what happens inside each individual in the population.
The only exception is the fuzzy modeling in symptomatic HIV infected popu-
lation, presented in chapter 10, in which the fuzzy transference rate developed
was based on the Nowak’s micro model (Nowak, 1999).

Models whose epidemic spreading consider individual aspects in their dynam-
ics are rare and are called micro-epidemic-models. This chapter is devoted to
this kind models and two micro-epidemic-models are presented, where the indi-
vidual’s symptomatology are considered into the epidemic spreading.

The simplest stochastic epidemic model is the so-called Reed-Frost model
(Abbey, 1952). In this model there is a chance that a susceptible individual
become infected when he/she contacts an infected individual. The dynamics of
spreading is determined by a Markovian process and it depends on a probabilistic
parameter. Since the Reed-Frost model is the simplest epidemic model available,
it is interesting to investigate the fuzzification possibilities of its structure, and
discuss those possibilities from a fuzzy dynamical point of view. This is the aim
of this chapter.

11.1 The Classical Reed-Frost Model

The Reed-Frost model was proposed by L. J. Reed and W. H. Frost in a series of
lectures held at Johns Hopkins University (Abbey, 1952). It is a particular case
of a chain-binomial model, in which it is assumed that each infected individual
infects susceptible individuals independently, and that individuals are under the
same contact rate with each other. If we represent by p the probability of a
contact between a susceptible and an infected individual resulting in a new case,
we have that, at time t, the probability that a susceptible individual does become

E. Massad et al.: Fuzzy Log. in Act.: Appl. in Epidem. & Bey., STUDFUZZ 232, pp. 225–251, 2008.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2008
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infected, Ct, is equal to the probability of at least one infectious contact, that
is,

Ct = 1 − (1 − p)It , t > 0, (11.1)

where It is equal to the number of infected individuals at time t. Time t is
assumed to be a discrete variable, and an individual’s classification, as either
susceptible, infected or resistant, can only change when time changes from t to
t+1. Other assumptions are that the probability of an infectious contact is fixed
along the epidemic course and is the same for all individuals.

The Reed-Frost model (11.1) can be used to describe the spread of any infec-
tious disease affecting closed, uniformly-mixed groups. The group has a constant
and small size N , is homogeneous, both from the susceptibility and infectivity
points of view (see Bailey, 1975), with individual members spending a significant
and constant part of the day in close contact. From the infection point of view,
the infectious period is assumed to be short compared to the incubation period
which, in turn, is taken as constant.

The Reed-Frost model assumes that individuals are classified according to
their disease status: susceptible and infected and, in some cases, also resistant
or immune. No error involved in the classification process, such as a truly in-
fected individual being classified as susceptible, is considered in the model. For
a great number of infectious diseases, however, such a diagnostic test is neither
readily nor easily available: examples are influenza and several other viral and
bacterial infections. The corresponding diagnostic process involves uncertainty,
and is based upon a set of clinical characteristics, often subjective, which we call
signals. It is then important to consider, in the epidemic model, the uncertainty
involved in the classification process.

The homogeneity assumption is unlikely to hold in real epidemics, especially
in large groups (see for example Becker, 1979). In certain cases, the assump-
tion of time-invariant susceptibility/infectivity levels does not hold either. Each
individual may have a varying susceptibility level to infections, depending on
physical and psychological factors, even within a short-lasting epidemic. Infec-
tivity levels may also vary according to similar factors. Indeed, the capacity of
an infected individual to produce an infectious contact may depend upon the set
of signals developed. Some signals, such as sneezing and coughing in influenza-
type infections, may increase the probability that a contact be infectious, while
others, such as fever, may decrease it by making the host less prone to contacts.

There have been several attempts to generalize the Reed-Frost model so as
to consider a non-homogeneous group, either from the susceptibility or from the
infectivity points of view (Maia, 1952; Scalia-Tomba, 1986; Lefèvre & Picard,
1990; Picard & Lefèvre, 1991). In all these, the homogeneity assumption is re-
laxed by dividing the main group into subgroups, and considering that there is
homogeneous mixing within each subgroup. Subgroups are closed and individ-
uals remain within the same subgroup for the entire duration of the epidemics,
which means that an individual’s susceptibility and infectivity levels are taken
as constant throughout the epidemic course. However, it would be interesting if
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the individual’s heterogeneities were treated without the separation of the pop-
ulation in subgroups, incorporating it directly into the dynamics of the system.

In the next section we present in detail a stochastic Reed-Frost generaliza-
tion, developed by Menezes and collaborators (2004), that considers the clin-
ical signals involved in the classification process in the study of the epidemic
course. Those clinical signals may include symptoms, results from laboratory
and physical examinations. They assumed that, after being infected, no resis-
tance is gained and the individual becomes susceptible again (SIS model). The
individual’s infectivity is modeled as a function of the signals, therefore allowing
for time-dependent, heterogeneous infectivity. In this work susceptibility levels
are kept constant. Since this model involves only random variables it is possi-
ble to obtain expressions for the epidemic basic reproduction number and its
probability function.

The structure of this stochastic Reed-Frost model can be completely gener-
alized for a fuzzy approach, where the signals’ information is evaluated in a
different way. In section 11.3 we present a fuzzy version for this model and for
comparing the models’ possibilities we present a real problem. Simulations are
performed and the models are compared with real data.

11.2 The Stochastic Reed-Frost Model

In the model proposed by Menezes et al. the clinical signals are recorded and are
taken into account in the epidemic course via a signal summary, both as part of the
classificationprocess and todefine theprobability of an infectious contact (Menezes
et al., 2004). It is assumed that, the higher the signal summary, the higher the prob-
ability that a contact be infectious. The probability that an individual has at least
one infectious contact, which is the core of the Reed-Frost model, is then computed
taking into account the heterogeneous infectivity in the group.

The model can include both signals linked to an increased infectiousness and
signals linked to a decreased infectiousness. Both types of signals enter the signal
summary, affecting it in opposite directions. Distinct signals can have different
weights in the summary, reflecting the impact they are believed to have on both
the classification process and on the infectious contact probability.

A probability distribution is assigned to the signal summary, conditioning
on the previous probability of at least one infectious contact. This distribution
is a mixture of the one given the individual is infected, with the one given
the individual is susceptible. In this approach the classification is seen as a
probabilistic step conditioned on the signal summary. The probability of an
infectious contact is taken as a deterministic, polynomial function of the signal
summary.

In this formulation a generalized Reed-Frost model is constructed taking a
susceptible individual as reference. It is first assumed that, at time t, each in-
dividual i has a true health status represented by ηi,t, which takes value 1 if
the individual is infected at t, and 0 if the individual is susceptible. Thus, the
number of infected individuals at time t is given by,
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It =
N∑

i=1

ηi,t. (11.2)

Each individual has one or more clinical signals, which can be summarized
by one variable Di,t, taking values between 0 and 1. At time t, the probability
Pil,t that a contact between a susceptible individual i and an infected individual
l results in a new case is a function of the signals of the infected individual
only, Dl,t, as a consequence of the homogeneous susceptibility assumption. It
is assumed in particular that this function can be written as a polynomial of
degree M . That is,

Pil,t ≡ Pl,t =
M∑

j=1

ϕjD
j
l,t, (11.3)

where 0 ≤ ϕj ≤ 1 and
∑

j ϕj = 1, that is, Pl,t is a convex combination of Dj
l,t,

guaranteeing that Pl,t ∈ [0, 1] for all l, t. Then the probability that a susceptible
individual has, at time t, at least one infectious contact defines the stochastic
Reed-Frost model as

Ct = 1 −
N∏

l=1

(1 − Pl,t)
ηl,t . (11.4)

Note that Ct here can be interpreted as the probability that an individual be
infected at time t + 1, as in the classic Reed-frost model, and it is possible to
write Ct = Pηi,t+1 = 1.

In some cases ηi,t is unknown, so individuals have to be diagnosed as either
infected or susceptible. This consists in a classification procedure which takes
into account the clinical signals or, for simplicity, the signals summary Di,t, and
is defined outside the model, probably by experts. Let Gi,t = 1 indicate that
the individual i is diagnosed as infected at t, and Gi,t = 0 indicate that the
individual is diagnosed as susceptible. So, the number of individuals diagnosed
as infected at time t is an estimation of the number of infected individuals at T ,
and is given by

Ît =
N∑

i=1

Gi,t. (11.5)

In this way, the probability that a contact between a susceptible individual
i and an infected individual l results in a new case is defined by (11.3) and, in
this case, (11.4) is estimated as

Ĉt = 1 −
N∏

l=1

(1 − Pl,t)
Gl,t . (11.6)

Thus, Ĉt here is the estimated probability that an individual be infected at time
t + 1.

It is important to highlight that this generalization of Reed-Frost model, tak-
ing into account the individual’s heterogeneities, has a particular probability
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structure, which allows some analytical calculus be performed. As it will be
mentioned later, these calculations supply interesting results from epidemiolog-
ical point of view. Nevertheless, in the fuzzy Reed-Frost model the analytical
calculus is not easy and represents a really difficult task.

Another interesting point is that this stochastic approach of the Reed-Frost
model can be used in two related contexts. One is that of a retrospective study,
in which patient’s health status are observable and modeled as random variables.
The objective of such a study is typically to estimate the parameters of the sig-
nals’distributions, and it involves relations (11.2-11.4). The other is that, once
these parameters estimates are available, the approach can be used in a prospec-
tive way, where the true ηi,t are not known, due either to time or cost constraints.
Such a study could include, as an objective evaluating, the function P (·), and
it involves expressions (11.3), (11.5) and (11.6). This consists in recording the
patients’clinical signals over a certain period of time, and then estimating their
true health status using the model and the classification processes.

11.2.1 The Probabilistic Structure

Each infectious disease produces clinical signals with varying degrees of severity,
which depend upon both the pathogen and the individual’s variability. Suscep-
tible individuals may also present some of these signals, for reasons other than
the infection considered, but it is expected that they do so with a lower severity
than if they were infected.

For the retrospective study, the true health status ηi,t is a binary variable. For
t > 1, and given all the epidemic information up to t−1, Pηi,t = 1 is equal to the
probability of having at least one infectious contact at t − 1, Ct−1, which is the
same for all individuals due to the homogeneous mixing assumption. For t = 1, it
is defined Pηi,t = 1 ≡ θ as the a priori probability that any individual is infected
at the epidemic onset, which must be evaluated via populational measurements,
for example, the estimated prevalence of the pathogen or the disease in this
population.

For a given pathogen, the clinical summary for any infected individual is
represented by XI , and any susceptible individual is represented as XS. Given
an individual’s health status η, XI and XS can be seen as random variables,
intrinsically linked to the pathogen, and their distributions remaining unaffected
by the epidemic progress. In this work it was assumed that they take values
within the interval [0, 1] with a distribution within the Beta family, as follows:

XI ∼ Beta (αI , βI) ,
XS ∼ Beta (αS , βS) .

(11.7)

Note that, with the choice of the distribution Beta all moments E(Xk
I ), E(Xk

S)
of XI and XS are finite (for all k = 1, 2, ...). In fact, for any random variable X
with Beta distribution with parameters (α, β), its probability density function
is
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f(x) =
Γ (α + β)
Γ (α)Γ (β)

xα−1(1 − x)β−1, 0 ≤ x ≤ 1, α > 0, β > 0,

where Γ (x) is the Gamma function, defined as

Γ (x) =
∫ ∞

0
ux−1e−udu, x > 0.

Note that Γ (x) = xΓ (x − 1), for all x > 1. The expected value of Xk, for any
k > 0, integer, is

E
(
Xk
)

=
Γ (α + β)

Γ (α + β + k)
× Γ (α + k)

Γ (α)
=
∏k−1

m=0(α + m)
∏k−1

m=0(α + β + m)
. (11.8)

In particular,

E (X) =
α

α + β
, (11.9)

E
(
X2) =

α(α + 1)
(α + β)(α + β + 1)

, (11.10)

and

var (X) =
αβ

(α + β)2(α + β + 1)
. (11.11)

So, it is possible to define μI = E(XI), μS = E(XS), Δ = XI − XS and
δ ≡ E(Δ) = μI − μS , which means the difference between the mean clinical
summary of an infected and a susceptible individual.

For this approach, the observed clinical summary for individual i at time t,
Di,t, is equal to XI if the individual is infected and it is equal to XS if the
individual is susceptible. So, it is possible to write:

Di,t = XIηi,t + XS (1 − ηi,t) = XS + Δηi,t, (11.12)

for all i = 1, . . . , N and all t ≥ 1. For t > 1, the conditional mean of Di,t, given
by Ct−1, is given by

E (Di,t|Ct−1) = μS + δCt−1. (11.13)

Similarly, for t = 1 we have,

E (Di,t|θ) = μS + δθ. (11.14)

In other words, the expected value of the signal summary at time t is a convex
combination of the mean signals for infected and susceptible individuals, based
upon the probability of being truly infected. Given Ct−1, the number of infected,
It, defined by (11.2), is a sum of conditionally independent binomial variables,
all with the same probability of success: Ct−1 for t > 1, and θ for t = 1. Thus,
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It is in this case a binomial random variable with probability Ct−1 and sample
size N .

Since the probability of an infectious contact Pl,t is a deterministic function
of Dl,t, it is a constant when Dl,t is given. Unconditionally, a probability distri-
bution is effectively assigned to each probability of an infectious contact, Pl,t,
for each individual l at each generation t, l = 1, . . . , N , t > 0. The probability of
at least one infectious contact, Ct, does not have a well-known probabilistic dis-
tribution, but its conditional expected value, given the clinical summaries Di,t,
can be computed.

In the above, the calculations are performed in terms of μS and δ instead of
μS and μI . This separates the contribution of the signal’s distribution, which
can be treated as unaffected by the disease spread, from the probability that
each individual is infected. Therefore, it incorporates treatment effects naturally
as a reduction of the difference between mean signals, δ = μI − μS .

In a prospective study context, most of the probability structure introduced
above applies, but the diagnostic uncertainty must be included. When the ηi,t

are unknown, patients must be classified as either infected or susceptible. The
classification is represented by Gi,t and defined as a simple process: given the
clinical summaries Di,t, each individual is independently classified as infected
with probability:

P {Gi,t = 1|Di,t} = Di,t. (11.15)

The probabilistic structure for Di,t and Gi,t can be interpreted as defining a
conditional Binomial distribution for Gi,t, given the probability of success Di,t

which itself has a conditional Beta distribution, given the health status ηi,t.As
a consequence, we have that E(Gi,t|Di,t) = Di,t.

The conditional probability that an individual is classified as infected in gen-
eration t, given the probability of at least one infectious contact in the previous
generation Ct−1, is given by:

P {Gi,t = 1|Ct−1} = E [P {Gi,t = 1|Di,t} |Ct−1]
= E [Di,t|Ct−1] = Ct−1, t > 1. (11.16)

where either (11.13) and (11.14) can be used to re-express this as a function of
the signals.

The number of patients diagnosed as infected, Ît, defined by (11.5), is again a
sum of conditionally independent binomial variables, given Di,t, but since each
one of these has a different probability of success, the distribution of It is not
the usual binomial.

The basic reproduction number

As defined in chapter 3 the basic reproduction number, R0, is the number of
secondary infections resulting from a single case in an entirely susceptible group,
during its infectious period. In the stochastic Reed-Frost presented, R0 = I2,
given that I1 = 1. Note that this definition is coherent with the Diekmann et al.
(1990) definition of the next generation operator.
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In a retrospective study, the expected value of R0 is given by:

E(R0) = E(I2|I1 = 1) =
N∑

j=1

E(ηj2|I1 = 1). (11.17)

By conditioning on C1, we get E (ηj2|I1 = 1) = E [E(ηj2|C1)|I1 = 1] = E(C1|
I1 = 1) for all j = 1, . . . , N . This means that,

E (R0) = NE (C1|I1 = 1) . (11.18)

The same result is obtained by considering that, give C1, I2 has Binomial
distribution mean NC1. Using the definition of I1, we can re-write E(C1|I1 = 1)
as

N∑

j=1

E {C1|ηj,1 = 1, I1 = 1}P {ηj1 = 1|I1 = 1} . (11.19)

All individuals are equally likely to be the first one infected, so

P {ηj1 = 1|I1 = 1} = 1/N.

Moreover, given that ηj,1 = 1 and all other ηk,1 are equal to zero, we have from
(11.4) that C1 = P (Dj,1) = P (XI), since this individual is infected. Therefore,
we can re-write (11.19) as

1
N

N∑

j=1

E {P (XI)} = E {P (XI)} , (11.20)

and thus

E(R0) = NE {P (XI)} = N
M∑

k=1

ϕkE(Xk
I ). (11.21)

In the simple case where P (D) ≡ D, we get

E(R0) = NμI = N(μS + δ). (11.22)

In a prospective study a diagnostic is estimated with a certain margin of er-
ror, and similar arguments to the retrospective study can be used to derive an
expression for the expected value of R0. Indeed, we have, in this case,

E(R0) = E
(
Î2|I1 = 1

)
=

N∑

j=1

E (Gj,2|I1 = 1) , (11.23)

where it is clear that we must be sure about the first recorded case being indeed
an infection. By conditioning on Dj,2, we get E (Gj,2|I1 = 1) = E (Dj,2|I1 = 1),
for all j = 1, . . . , N . Now, conditioning on C1, we get E (Dj,2|I1 = 1) = μS +
δE (C1|I1 = 1), for all j. This means that,
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E(R0) = N {μS + δE (C1|I1 = 1)} . (11.24)

In the retrospective study we saw that E (C1|I1 = 1) = E {P (XI)}, and the
same still holds in the prospective study, as conditioning on having one infected
individual at t = 1 there is no diagnostic uncertainty at t = 1. Thus, we find

E(R0) = N {μs + δEP (XI)} . (11.25)

In particular, when P (D) ≡ D, we get:

E(R0) = N {μs + δ(μs + δ)} . (11.26)

The main goal with the evaluation of R0 and related functions is to define
criteria yielding clues as to the long-term disease establishment. While the ex-
pected value gives some clues, it is also important to evaluate how likely the
value of R0 is to spread around it. The traditional statistical approach is to con-
struct a confidence interval for R0, and check if the value contains those leading
to long-term disease establishment, in this case any value greater than, or equal
to, 1. In the present problem, however, this is of limited use: R0 being a random
variable assuming only nonnegative integer values 0, 1, 2, · · ·, all of these values
have positive probability mass and, thus, any confidence intervals is likely to
include the value R0 = 1 at least. A more useful measurement seems to be the
probability that R0 ≥ 1. While taking uncertainty into account, this is perhaps
more useful: if, under certain conditions, it is known that the probability that
R0 ≥ 1 is about 20%, then only 1 in 5 independent initial cases are likely to
propagate the disease. Considering this discussion, it is interesting to evaluate
the R0 uncertainty in both retrospective and prospective studies.

In order to evaluate the uncertainty around the R0, in the retrospective study,
it is necessary to evaluate its probability distribution. We have that:

P {R0 = z} = P{I2 = z|I1 = 1}
= E (PI2 = z|C1|I1 = 1)
= E
(
nzC

z
1 (1 − C1)N−z |I1 = 1

)
, (11.27)

where it is used the fact that, given C1, I2 has a Binomial distribution, with
nz representing the binomial coefficient equal to N !/[z!(N − z)!]. If we then
condition on the true health status ηj,1, we can write:

E
(
Cz

1 (1 − C1)N−z|I1 = 1
)

=
N∑

j=1

E
{
Cz

1 (1 − C1)N−z|η − j, 1, I1 = 1
} 1

N

= E
{
P (XI)z(1 − P (XI)N−z)

}
. (11.28)

In particular for z = 0, we get:

P {R0 = 0} = E
{
(1 − P (XI))

N
}

. (11.29)
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In the prospective study, using the conditional probability properties, it is
possible to write:

P {R0 = z} = P
{

Î2 = z|I1 = 1
}

= P

⎧
⎨

⎩

N∑

j=1

Gj,2 = z|I1 = 1

⎫
⎬

⎭

= E

⎡

⎣P

⎧
⎨

⎩

N∑

j=1

Gj,2 = z| {Di,2}
⎫
⎬

⎭
I1 = 1

⎤

⎦ , (11.30)

where the fact that, given Di,2, the random variables Gi,2 are conditionally
independent of I1 = 1 is used. Since each Gi,2 is a binary random variable,
∑N

j=1 Gj,2 = z occurs whenever z of the Gi,2 are exactly equal to 1. Define Jz as
exactly a set of z indices, ranging from 1 to N . That is, Jz is exactly a subset of z
elements of the discrete set 1, 2, · · · , N . Note that there exist nz = N !/[z!(N−z)!]
such subsets. Let these be represented by Jz,1, Jz,2, · · · , Jz, nz. Given Di,2, the
conditional probability that only the variables within the subset Gi,2 ∈ Jz,l are
equal to 1, is equal to

⎡

⎣
∏

j∈Jz,i

P {Gj,2 = 1|Dj,2}
⎤

⎦

⎡

⎣
∏

j /∈Jz,i

P {Gj,2 = 0|Dj,2}
⎤

⎦

=

⎡

⎣
∏

j∈Jz,i

Dj,2

⎤

⎦

⎡

⎣
∏

j /∈Jz,i

{1 − Dj,2}
⎤

⎦ .

(11.31)

When taking the conditional expectation given C1, we use the fact that the
{Di,2} are conditionally independent and we get that (11.31) is

⎡

⎣
∏

j∈Jz,i

E (Dj,2|C1)

⎤

⎦

⎡

⎣
∏

j /∈Jz,i

E (1 − Dj,2|C1)

⎤

⎦ ,

which means that, from (11.27), it becomes,

P {R0 = z} = E
[
nz (μS + δC1)

z (1 − μS − δC1)
N−z |I1 = 1

]
. (11.32)

Note that we have shown that, given C1, R0 has a conditional Binomial dis-
tribution with mean N (μS + δC1). For z = 0 the right-hand side of (11.32)
becomes E

[
(1 − μS − δC1)

N |I1 = 1
]

and, given that only one individual is in-
fected, C1 = P (XI) as before. Thus, we can write

P {R0 = 0} = E
{

[1 − μS − δP (XI)]
N |I1 = 1

}

=
N∑

k=0

N !
k!(N − k)!

(−1)kE
{
[μS + δP (XI)]

k |I1 = 1
}

. (11.33)
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Now, we use that

(μS + δP (X1)) = (μS + δ)
{

1 − δ [1 − P (XI)]
μS + δ

}

, (11.34)

to re-express (11.33) as

N∑

k=0

k∑

l=0

N !
k!(N − k)!

k!
l!(k − l)!

(−1)k+lδl (μS + δ)k−l
E
{
[1 − P (XI)]

l |I1 = 1
}

.

(11.35)
Thus, we get

P {R0 = 0} =
N∑

k=0

k∑

l=0

l∑

m=0

N !(−1)k+l+mδl (μS + δ)k−l

(N − k)! (k − l)!m! (l − m)!
E {[P (XI)]

m} . (11.36)

In order to evaluate the uncertainty, it is interesting to calculate the proba-
bility P {R0 ≥ 1}, which is easily evaluated from the previous formulation since
P {R0 ≥ 1} = 1 − P {R0 = 0}. We assumed, for simplicity, that P (D) ≡ D, and
we evaluated this probability in both retrospective and prospective studies, along
with E(R0), for a range of values of μI and δ, assuming also N = 5. There is
no need to evaluate the functions for other values of N as, from the theoretical
point of view, N is just a scale factor. In practice, for larger values of N the
function defining the probability of an infective contact given the signal, P (D),
is likely to be other than the identity, reflecting lower contact rates between the
individuals.

For the retrospective study, E(R0) and P {R0 = 0} are computed using (11.21)
and (11.29), respectively, whilst for the prospective study we used (11.25) and
(11.33). In figure 11.1(a) we can see E(R0) as a function of δ in both kinds of
study, assuming that the variances for both XS and XI are fixed and equal to
0.06, μS = 0.1 and μI varies from 0.13 to 0.83 by 0.1 of step size. First, we note
that the expected value in the retrospective study is an upper bound for the
prospective study. This suggests that the uncertainty involved in the diagnostic
process implies an underestimation of E(R0).

We can also note from figure 11.1(a) that the two quantities are similar for
values of δ = μI −μS in the extremes of the range considered, differing more for
intermediate values. This was expected because, when μI → 1, μS + δμI tends
to μS + δ = μI and, thus E(R0) in the prospective study (11.25) tends to NμI ,
which is E(R0) in the retrospective study, (11.21). On the other hand, when
μI → μS , we also have δ → 0 and μs + δμI → μs, and thus in both studies we
have E(R0) → NμS .

However, note that in spite of the two expectancies converging to the same
value as δ decreases, there is a discordance region where one of them is above 1,
while the other is below 1. Clearly, it is an important result from the epidemio-
logical point of view.

In figure 11.1(b) we have the computed probabilities of R0 being greater than
zero, as a function of δ, for the same parameter values considered. Differently
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Fig. 11.1. Functions of retrospective study (solid line) and prospective study (dashed
line) for several values of δ. (a): Expected R0 and, (b): probability that R0 ≥ 1 (Menezes
et al., 2004).

from the expected values, the probabilities for one study are not consistently
greater than those for the other study. Perhaps the most important aspect high-
lighted by this figure is the fact that P {R0 ≥ 1} may solve apparent discordances
between the expected values from different studies.

Comparing the stochastic model with the classic Reed-Frost

The classic Reed-Frost model can be seen as a particular case of both Reed-Frost
models presented before. Let us consider the more general model for a prospective
study, and the result follows for the retrospective study model. Suppose that
μS = 0 and μI = δ = 1, so that the variances of XI , XS are both equal to zero
(see equations 11.9-11.11). This implies that Di,t = XI = μI for all i, t. Then,
from (11.15) P {Gi,t = 1|Di,t} = 1 for an infected individual, and 0 otherwise,
with no uncertainty, implying that

∑
l Gl,t = It in this case. Suppose also that

M = 1 in (11.3), meaning that Pl,t = ϕ ≡ P for all infected individuals, whilst
Pl,t = 0 for all susceptible individuals, for all t. Then equation (11.4) becomes:

Ct = 1 − (1 − P )
∑

l Gl,t = 1 − (1 − P )I
t , (11.37)

which is the equation for the classical Reed-Frost model.

Conditions determining long-term establishment of the disease

The probabilistic structure of the model proposed by Menezes et al. allows the
evaluation of the conditions that determine the long-term establishment of the
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disease. Conditions under which the disease establishes itself in the group can
be obtained in terms of quantities of interest, by determining when E(R0), as
a function of these quantities, is greater than, or equal to, 1. Assuming for
simplicity P (D) ≡ D, in a retrospective study it is possible to use the expression
(11.22) to say that the disease establishes itself in the population whenever

μS + δ ≥ 1
N

. (11.38)

In a prospective study, it is possible to use (11.26) to say that the disease
establishes itself in the population whenever

μS (δ + 1) + δ2 ≥ 1
N

. (11.39)

In this context, it is interesting to consider P {R0 ≥ 1} as a stochastic way
of evaluating how likely the disease is of establishing itself in the long term. For
that, we simply compare the value obtained for P {R0 ≥ 1} to a pre-specified
threshold; when the probability is below the threshold, the disease may be said
to be unlikely to establish itself. This threshold may vary according to disease
and context.

Since the classic Reed-Frost model can be seen as a particular case of the
stochastic model, it is also possible to evaluate the conditions that determine
the long-term establishment of the disease. As discussed above, we fall into the
classic Reed-Frost model when μS = 0 and μI = δ = 1. In this case, from (11.39)
the epidemic establishes itself whenever

E (C1|I1 = 1) ≥ 1
N

or P ≥ 1
N

, (11.40)

which implies that, for large N , any epidemic with non-negligible probability of
an infectious contact, P , establishes itself in the population. It is important to
point out, however, that this remark has a purely theoretical interest: in practice,
when N is large the homogeneous mixing assumption rarely holds.

Applications to intervention strategies design

An important practical application of epidemic models is that of intervention
strategies design. An intervention may involve simply a change in risk behavior,
thus changing P (D), or it may involve treatment, which might affect both P (D)
and infected individuals’ signals summary distribution. The signals summary
distribution for susceptible individuals, including the mean μS , is assumed not
to be affected, as it represents the population distribution of the signals summary
under study, due to causes other than disease. For simplicity it is assumed that
P (D) = ϕD.

First, let us consider the impact of a risk-behavior reducing intervention,
which can be represented by a change from P (D) to P ∗(D) = ϕ∗D, where
ϕ∗ < ϕ. In a retrospective study, the post-intervention expected R0 is given by
E(R∗

0) = NE [P ∗(XI)] = Nϕ∗μI , from (11.21). A desirable intervention yields
E(R∗

0) < 1, which is guaranteed to hold if ϕ∗ < (NμI)
−1.
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In a similar way, such intervention can be designed to guarantee that

1 − P {R∗
0 = 0} < p0, (11.41)

where p0 is a pre-specified threshold. Indeed, using (11.29) we get that (11.41)
is satisfied by designing the intervention so that

N∑

k=1

N !
k!(N − k)!

(−1)k(ϕ∗)kE
(
Xk

I

)
> 1 − p0 (11.42)

holds.
Similar conditions can be obtained to evaluate a priori the intervention impact

in a prospective study. Indeed, using (11.25) we can conclude that the intervention
will generate an expected basic reproduction number smaller than 1 whenever:

[
1 − ϕ∗E

(
X2

I

)]N−1∑

k=0

N !
k!(N − k)!

(−1)k(ϕ∗)kE
(
X2k

S

)
>

1
δ

(

μI − 1
N

)

. (11.43)

No analytical expressions are available for the roots of this polynomial on ϕ∗

for general N and, thus, in practice this condition can be used mainly to check
whether or not a specific value of ϕ∗ satisfies it.

The post-intervention probability of long-term disease establishment can be
evaluated by replacing P (XI) by P ∗(XI) = ϕ∗XI in (11.36), in the same way
as before.

Again, the impact of treatment affecting only the signals distribution can be
evaluated prior to introduction via replacing δ by δ∗ in expressions for E (R0) and
P {R0 ≥ 0}. For example, in a retrospective study such a treatment generates
on average less than 1 new infected cases for each first case whenever

δ∗ <
1

Nϕ
− μS . (11.44)

A treatment can also affect both δ and P (D). Expressing the treatment impact
in the same way as before, the condition guaranteeing that on average less than
1 new infected cases are generated for each first case is

ϕ∗ (μS + δ∗) ≤ 1
N

. (11.45)

The treatment impact on the probability of long-term disease establishment, as
well as in the prospective study case, can be evaluated in the same way.

The impact of a treatment affecting both signals summary distribution and
the probability of an infectious contact can be evaluated, by combining the ideas
above.

11.2.2 Theoretical Remarks

The stochastic Reed-Frost model presented handles varying infectivity levels by
assuming that infectivity is determined by observable and quantifiable clinical
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signals which, in turn, are assumed as having a specific probability distribution.
Therefore, this model takes into account heterogeneous infectivity by assigning a
probability distribution to each individual’s infectious contact probability, con-
sidering also time-varying individual infectiousness. In addition, the proposed
approach can be used in intervention design, which consists in one of the most
interesting features of this model.

Disease studies to which the proposed model can be applied include all fast-
propagating infectious diseases, in the sense that the disease propagates at a
faster rate than its diagnostic and control can be performed. Examples of such
diseases are influenza and meningitis. Applications also include several kinds
of confinement, starting from the reinforced confinement of hospital wards and
including classrooms at winter time, when weather imposes confinement.

In chapters 8, 9 and 10 we presented some fuzzy dynamic structures and dis-
cuss how it would be complex to develop them. In the next section we present a
fuzzy version for the Reed-Frost model that consists of a simple way of elaborat-
ing fuzzy dynamic systems (Ortega et al., 2008a). As in the stochastic approach,
this fuzzy model is an epidemic model based on the microscopic information, the
individual’s clinical signals, and consider a fuzzy relation to evaluate the individ-
ual’s infectiousness, performing a fuzzy decision process where the infectiousness
degree is applied directly in the epidemic dynamic.

11.3 Fuzzy Reed-Frost Model

As in the previous approach, modeling the fuzzy Reed-Frost dynamics based on
the signals scenario is based on the idea that there is an association between the
intensity of the signals present in an infected individual and the possibility of an
infectious contact with this individual. As it can be observed, the fuzzy approach
has not a probabilistic connotation as intense as in the stochastic Reed-Frost.
In this formulation it is assumed that each individual i has a health status,
susceptible or infected represented by Gi,t. The binary variable Gi,t takes value
1 if the individual i is infected at t, and 0 if the individual is susceptible. In this
way, the number of individuals infected at t, in a group with size N , is given by
the equation (Ortega et al., 2008a):

It =
N∑

i=1

Gi,t. (11.46)

In general, the diagnostic process is based upon the set of signals present
in the individual under analysis. This signals set can be summarized by one
variable IDi,t, taking normalized values into the interval [0, 1], since it must be
a fuzzy measure. In addition, these clinical signals usually vary their severity
depending on both the disease and on the individual variability. Furthermore,
for reasons other than the infection considered, these signals can also be present
in susceptible individuals. In this case, it is expected that its expression should
be less intense than in the presence of the infection.
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Since the clinical signals expression is different for infected and susceptible
individuals, we assumed two probability distributions, depending on the param-
eters of either the susceptible or the infected populations. We represent by XI

the signal for any infected individual, and by XS the signal for any susceptible
individual. So, given an individual’s health status, Gi,t, XI and XS are ran-
dom variables intrinsically linked to the pathogen; therefore, their distributions
remain unaffected by the epidemic course. Since they take values within the in-
terval [0, 1] we assume the same probability distributions used in the stochastic
approach (see equations 11.7).

Thereby, at time t, the possibility Pjl,t that a contact between a susceptible
individual j and an infected individual l results in a new case is a function of the
signals of the infected individual only, IDl,t, as a consequence of the susceptibility
homogeneity assumption. We assume in particular that this function is

Pil,t ≡ Pl,t = ϕIDω
l,t, (11.47)

where ϕ and ω are parameters of the model and should be chosen in a way to
guarantee that Pl,t ∈ [0, 1] for all l, t. Then the epidemic dynamics in this fuzzy
Reed-Frost model is also given by:

Ct = 1 −
N∏

l=1

(1 − Pl,t)
Gl,t (11.48)

and Ct here can be interpreted as the possibility that an individual be infected
at time t + 1, similarly to the classic Reed-Frost model, and will be used to
generate the health status of the individuals in time t + 1.

11.3.1 The Possibilistic Structure

The main difference between the proposal by Menezes et al. and the fuzzy approach
consists in the structure of the summary of signals, which are performed by a ran-
dom variable in the former and by a possibility measure in the latter. In the fuzzy
case, the individual’s infectiousness is calculated through a membership degree
based on the max − min composition (see section 2.5 in chapter 2).

Consider a set of signals S and the matrix representation of a fuzzy relation.
Thus, Sl = [s]1×k is the array of k signals of the individual l, Il = [i]k×q is the
matrix that associates each signal to the infective statement and DIl = [di]1×q is
the membership degree of the individual l in the fuzzy set Infected, interpreted
here as the degree of infectiousness, found by the fuzzy composition given by:

DI = S ◦ I, (11.49)

whose fuzzy composition ◦ is the max − min composition defined by:

DI(di) = max
s∈S

[min(S(s), I(s, i))] . (11.50)

As an example, consider the set of signals S = [fever, cough], i.e., s1 is fever
and s2 is cough, and an individual who presents fever degree s1 = 0.7 and
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cough degree s2 = 0.4. The matrix I that relates signals and infectiousness is
I = [ifever, icough], where ifever is the relationship degree between the symptom
fever and infectiousness status and icough is the relationship degree between the
symptom cough and infectiousness status. So, an individual that has degree of
fever, sfever , and degree of cough, scough, belongs to the infectiousness fuzzy set
with degree given by:

DI = max {min[sfever , ifever]; min[scough, icough]} . (11.51)

We assume that each individual i has k signals, whose levels represented by
membership degree in each fuzzy subset of clinical signal (like fever, cough) si1,
si2,...,sik. So, these levels are numbers between 0 and 1, with si1 = 0, indicating
that the clinical signal 1 is absent in patient i, and si1 = 1, indicating that
patient i presents the clinical signal 1 with maximum level (or severity). The
infectiousness degree is computed for all individuals and the heterogeneity is
considered in the epidemic dynamics through the signal influence on the pos-
sibility p (the possibility of an infective contact between a susceptible and an
infected individual) and, consequently, Ct (the risk of a susceptible individual
becoming infected). The new individual set of signals at time t+1 is found from
Ct, by equation (11.48), and the epidemic spreading is built through the follow
up of the number of infected individuals generated.

It is important to highlight that the use of the max − min composition of
fuzzy relations consists in an arbitrary choice and, as it is common in fuzzy
models, other possibilities could be explored since these compositions are gener-
ated through fuzzy operators for disjunction and conjunction manipulations (see
chapter 2). In addition, the relational matrix that joins the signals and infectious-
ness can be elaborated through experts opinion, which allows the introduction
in the model of informations that otherwise are not available.

Although the fuzzy approach does not have an explicit probability structure,
all calculations performed in section 11.2 for the stochastic proposal is possi-
ble to be developed here. This is the reason for which the calculations of this
stochastic model were presented. However, the calculations in the fuzzy approach
demand greater care because they are more complex. The calculus used in the
stochastic model are based on the mathematical manipulations over conditional
probabilities and, therefore, consider random variables. However, in the fuzzy
model the measure generated through the max−min composition does not pro-
duce a pure random variable, as in the probabilistic context, but a possibility
measure, where the σ − additive property does not always hold (see section 4.1
in chapter 4). Nevertheless, these calculations would allow an analysis of fuzzy
R0 and the possibility that R0 to be greater than 1. This analysis could provide
different results than that obtained through classic structures (stochastic), which
has already been shown in several works (see chapters 9 and 12).

11.3.2 Theoretical Remarks

Both fuzzy and stochastic proposals allow several variants. Consider, for in-
stance, the possibility/probability of an infectious contact, which is assumed to
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be a function of the signals. This function can have any polynomial form, and as
such can potentially include any desired function. For instance, by assigning Beta
distributions to the individual signals, not only a flexible distribution family, but
also one for which all moments are available, with no limitation on the polyno-
mial degree. Besides, it can be generalized to take the possibility/probability of
an infectious contact as probabilistic, rather than deterministic, as a function of
the signals. Other variants of these models can be obtained by considering more
sophisticated classification procedures, which effectively suggests separating the
clinical signals effect on different aspects of the epidemic.

The fuzzy model, as proposed here, is more in accordance with the prospective
approach of the stochastic Reed-Frost model. However, it is entirely possible to
apply this fuzzy structure for retrospective studies. Furthermore, if there are
data available they can be used to improve the fuzzy relational matrix provided
by the experts.

Some differences can be pointed between fuzzy and stochastic structures. In
the former all signals information related to the possibility function can be per-
formed through fuzzy relational matrix, while in the latter it should be done
through the probabilistic function. Clearly, from the interdisciplinary point of
view, it is easer to understand the fuzzy relational approach than the mathe-
matical formalism of polynomial functions. In the same way, the heterogeneity
of susceptible individuals can be more easily considered in the fuzzy structure.
This can be made by simply considering a fuzzy relational matrix that cross in-
formations about the immunological characteristics (as informations about the
child’s history, family and personal antecedents, breastfeeding, re-infections etc.)
and the degree of susceptibility for the infection. In this sense, the fuzzy rela-
tional matrix can supply a fuzzy measure of the individual’s protection for cer-
tain infection, taking into account the aspects of the identification uncertainties,
commonly present in a real epidemic process. In addition, both fuzzy measures
for the susceptibility and infectiousness individual’s degree, can be elaborated
based on the experts opinion.

In order to study the behavior of fuzzy and stochastic models from a theo-
retical and applied points of view, we present, in the next section, simulations
of both models and compare them considering a real epidemic data of viral
infections.

11.4 Simulations

The simulations carried out consider an infection scenario and its main objective
is to analyze, from the theoretical point of view, the behavior of both models.
Besides, the performance of each model was evaluated in a quantitatively and
qualitatively way by comparing them with real data (Ortega et al., 2008a).

During the entire 2003 year, all children of a daycare, corresponding to roughly
120 children, with age varying from 1 month to 6 years old, were followed up
in São José do Rio Preto, São Paulo, Brazil. The objective of this work, among
other things, was to study the circulation of viruses for respiratory infections. All
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daycare’s children with cold symptoms had nasopharyngeal aspirates collected
and analyzed with multiplex technique. Therefore, it was possible to determine
the true health status of each child. Also, the epidemiological data were col-
lected for all children in the study, independently of the symptomatic status.
All children stayed at the daycare during the whole day, what can be consid-
ered a quasi-closed group. Although the children are usually distributed in small
groups, there are periods along the day that they interact with each other, as in
the meals time and in the playful moments. In the same way, there is also interac-
tion among the teachers during the workday. These characteristics, added to the
fact that the respiratory infections can be configured as infections of long reach,
allow us to consider that the data and the study conditions are in agreement
with the model’s assumptions.

In order to find the fuzzy relations between signals and infectiousness, four
experts in childhood diseases supplied the relational matrices considering the
more important clinical signals for infections by viruses. The matrix with the
fuzzy relations between signals and infectiousness degree was found by the me-
dian of that four experts values. The signs considered for the infections and
their respective fuzzy relations values were: fever (0.85), cough (0.85), coryza
(0.85); sneezing (0.70) and wheezing (0.60). In this simulations we assumed ho-
mogeneous susceptibility and an infected individual was considered immunized
to new infections during 3 weeks, which was the minimum period for re-infection
observed. So, in the model re-infection is possible, once the protection period is
observed.

The model has basically three parameters, which are presented in the equa-
tions of the dynamics structure: ϕ, the polynomial’s coefficient; ω, the polyno-
mial’s power; and θ, the prior probability of infected status. In addition, the size
of the population N was maintained constant since small variations in its value
do not affect the result of the model. We assumed N = 120, which is around the
monthly average of the number of children in daycare.

In order to generate the signals of susceptible and infected individuals we
elaborated Beta distributions considering the prevalence of the symptoms of
viral infections in the population. The signals prevalence were classified in five
categories as follows: very low, when the most probable prevalence is roughly
10%; low, when this prevalence is roughly 30%; medium, when the prevalence
is about 50%; high, when it is around 75%; and very high, when the expected
prevalence is around 90%. Figure 11.2 presents all distributions used and their
respective α and β parameters.

As discussed previously, depending on the signal considered, it is possible
that an uninfected individual presents signals in some intensity. However, it is
not expected that this happens with great frequency in the population. In other
words, it is expected that the majority of the susceptible individuals should be
not symptomatic. So, it was assumed that all signals of the susceptible individ-
uals have very low prevalence. To determine the prevalences for the signals of
infected individuals in the viral infection scenario simulated, it was considered
the prevalences observed in the daycare children during the time of the study.
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Fig. 11.2. Beta distributions used for the categories prevalences: a) Very Low, with
α = 3 and β = 20 parameters; b) Low, with α = 5 and β = 10; c) Medium, with α = 5
and β = 5; d) High, with α = 13 and β = 5; and e) Very High, with α = 25 and β = 3.

So, based on this observation it was assumed the following signals prevalences:
fever, sneezing and wheezing are Very Low, cough is High and corysa is Very
High. Note that the Beta distributions defined in figure 11.2 can be used to
describe the prevalences of several signals, in different contexts.

Since the simulation of both models involve random process, each simulated
condition was repeated 150 times, aiming to find the results through statistical
analysis. As expected, the simulations of the models showed that there is a great
diversity of dynamical behavior, depending on the parameters values. In some ar-
eas of the parameters space the fuzzy and stochastic models are equivalent (for
example to small values of ϕ and ω, with fixed θ). However, there are areas in the
phase space where the models present quite different behaviors (see figure 11.3).

In order to analyze the differences and similarities between the fuzzy and the
stochastic models in a more detailed way, a diagram was elaborated varying all
parameters of the model and considering the dynamical equilibrium provided by
both models. As can be noted in figures below, the diagram presents areas in
which the epidemic responses of the models completely agree and areas where
they have not similar behavior. In fact, there are no abrupt transition between
the regions and frontiers between the regions in this diagram could be considered
as fuzzy limitations. However, it is possible to define two crisp states: a so-
called concordant area, where the systems present very similar behavior in the
majority of the points; and a so-called discordant area, where the systems present
quite different behavior for the majority of the points. The concordant area is
characterized by the presence of the few types of epidemic response, that is,
where the epidemic does not hold or it is endemic for both models. On the other
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Fig. 11.3. Behavior of the Infected Number in time for the fuzzy model (solid line)
and stochastic model (dashed line) for the parameters: a) ϕ = 0.05 and ω = 0.1, cor-
responding to the parameter values in which there is equivalence between the models;
and b) ϕ = 0.05 and ω = 1.5, corresponding to the parameter values in which there is
no equivalence between the models.

hand, in the discordant area there are several concomitant epidemic behaviors
(endemic, strong epidemic, etc).

Figure 11.4 shows that for small values of initial proportion of infected in-
dividual (parameter θ ≤ 0.04) there are only three regions in the diagram: 1)
a concordant area, for small values of ϕ parameter (ϕ < 0.01), where the epi-
demic does not hold for both models; 2) a discordance area, where the fuzzy
model always present endemic response and the stochastic model presents both
no epidemic and endemic responses; and 3) a concordant area, where both mod-
els present an endemic behavior (this concordance area is maintained for values
of ϕ ≥ 0.07). In none of these regions of the parameters space, it was observed
strong epidemics. This is due to the small values of theta parameter, which is
responsible for the starting of the infection process in the population.

Varying the values of θ, we can note that the regions in the diagram is mod-
ified: a fourth region appears in the map, corresponding to a discordant area.
Figure 11.5 shows that, for θ = 0.05 this new discordant region start for ϕ ≥ 0.8
and small ω values. Moreover, this region increases according to the θ value.
This should expected since high levels of θ implies in high virus circulation and,
by the models assumptions, the signals are more intense. In addition, due to the
properties of the max−min composition of fuzzy relations and the summary of
the signals, the epidemic course tends to be stronger in the fuzzy model than in
the stochastic approach. This occurs because the differences between the values
of possibility and probability of infectious contact is more expressive in this situ-
ation. Therefore, in this region both models can results in no epidemic response
(particularly for high θ values, because the number of susceptible individuals are
very low), weakly, moderate or strong epidemic behaviors, but they do not agree
for the majority of the parameters set.

In order to evaluate the models performance when faced with real data, we
explored the parameters space seeking to find epidemic behaviors that were
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Fig. 11.4. Diagram comparing the epidemic responses of both fuzzy and stochastic
models, for θ = 0.02, where two regions are characterized: a concordant region (white
area in the graph) and a discordant region (gray area in the graph). For values of ϕ
less than 0.01 the epidemic does not hold for both models. For values of ϕ greater than
0.06 both models present endemic behavior (Ortega et al., 2008a).

Fig. 11.5. Diagram comparing the epidemic responses of both fuzzy and stochastic
models, for θ = 0.05, where four regions are characterized: 1) a concordant region
(white area in the inferior part of the graph) in which the epidemic does not hold
for both models (for values of ϕ less than 0.01); 2) a discordant region (gray area in
the inferior part of the graph) in which the fuzzy approach provides endemic behavior
and in the stochastic model the epidemic does not hold (for small values of ϕ); 3) a
concordant region (white area) in which both models present endemic behavior (for ϕ
values between 0.01 and 0.8); and 4) a discordant region (gray region in the superior
part of the graph) in which both models provide no endemic, weakly, moderate or
strong epidemic behaviors, but they do not agree for a fixed parameters set (ϕ values
greater than 0.8) (Ortega et al., 2008a).
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Fig. 11.6. Qualitative comparison between fuzzy (solid line) and stochastic (dashed
line) models with real data (dashed dot line), considering the daycare infections in the
first semester: a) for RSV infection, in which the results provided by the stochastic
model was worse than the one of the fuzzy approach; b) for picornavirus, in which the
behavior of the fuzzy and stochastic models are identical; and c) for meta-influenza B
infection.

comparable to the daycare infections curves. As the number of children varies
in time, particularly between the first and the second semesters due to the hol-
idays, the dynamical simulations were performed to a period of half year (each
simulation step corresponding to a month). Figure 11.6 illustrate some examples
of these results. We can see in this figure that, for some areas in the parameters
space, the models were able to supply a behavior qualitatively similar to the real
data. However, the quantitative agreement were not so good when we consider
the total number of infected individuals in time.

It is possible to note in figure 11.6a that the models, as well as the real data
of the RSV infection in the daycare, present a double peak. In addition, the
moment that these peaks occurs were the same in the models and in the real
data. However, the maximum number of infected is very large in the models
when compared with the data. In this case the fuzzy model presents a slightly
better results than the stochastic one, since it provided an attenuation of the
infection with time (second small peak). In figure 11.6b we show a comparison
between the fuzzy model and the real values of the infection by picornavirus. In
this case, the fuzzy and the stochastic results were almost identical. The models
supplied a peak of infection in the second month and a second attenuated peak
in the fifth month, finishing the epidemic in the 6th month. But in the real data a
second peak occurs in the fourth month and it was not so expressive. Figure 11.6c
shows another example considering the influenza B infection, where a qualitative
similarity between the models and the real data can be analyzed.

Although it is interesting to compare the models performance with the real
number of infected distribution, it is most informative to consider all dynamics
behavior provided by the models. In other words, it is important to study the
dynamic equilibrium of the system, after discarding the transient phase. Thereby,
looking for a more accurate quantitatively analysis we study the steady-state of
the models and compare it with the average of the number of infected children
in daycare.
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Fig. 11.7. Steady-state analysis comparing the fuzzy (solid line) and stochastic (dashed
line) dynamical equilibria with the average of the real data (horizontal line): a) total
viral infection, in which the annual average of data was equal to 15.50, and the pa-
rameters θ = 0.01, ϕ = 0.03 and ω = 1 in both models; b) picornavirus infection, in
which the annual average of the data was equal to 13.15, and the parameters θ = 0.01,
ϕ = 0.02 and ω = 1.5 in both models; c) the same viral infection presented in figure
(a) but with the models run with different parameters (for the fuzzy approach it were
used parameters θ = 0.01, ϕ = 0.03 and ω = 1, and for the stochastic model it were
used parameters θ = 0.02, ϕ = 0.04 and ω = 1.2); and d) picornavirus infection during
the second semester in which the average was equal to 13.15, and parameters θ = 0.02,
ϕ = 0.02 and ω = 1.9 in both models (case in which the epidemic does not hold in the
stochastic approach) (Ortega et al., 2008a).

Figure 11.7 shows four examples that illustrate the results found for the
steady-state of the models, comparing them with the average of the real data.
In figure 11.7a it is shown the total viral infection in both first and second
semester, in which the annual average of infected number was equal to 15.50
cases, and the models’ performance, fixing the parameters θ = 0.01, ϕ = 0.03
and ω = 1. For this parameters set the fuzzy model showed a better performance
than the stochastic approach. The average number of infected in the dynamical
equilibrium of the fuzzy and stochastic models are equal to 15.52 and 10.66,
respectively.

In figure 11.7b it is shown the real data for picornavirus infection in which
the annual average was equal to 13.15 cases, and the models’ performance, fixing
the parameters set θ = 0.01, ϕ = 0.02 and ω = 1.5. Although the stochastic and
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fuzzy behaviors, in this case, were more similar than in the prior case, the fuzzy
performance was again the best. The fuzzy model provided an average number
of infected equal to 12.84, contrasting with the average of 14.94 supplied by the
stochastic one.

Considering the same situation as in figure 11.7a and exploring the parameters
space searching for a parameters set that provide the best result of the stochastic
model we find figure 11.7c. It can be noted in this figure that the fuzzy result,
shown in the scenario (a) above, presents a performance as good as the stochastic
approach (parameters values of stochastic model were θ = 0.02, ϕ = 0.04 and
ω = 1.2). The annual average of the stochastic model for number of infected was
15.38 in this case.

Figure 11.7d illustrates how different the model’s dynamical behavior can
be. In this figure it is compared the average of the number of infected with
picornavirus (equal to 13.15) with the fuzzy and stochastic dynamics. Note that,
while the fuzzy system reaches a non-trivial steady-state, resulting in an average
number of infected equal to 14.93, in the stochastic approach the epidemic does
not hold (parameters θ = 0.02, ϕ = 0.02 and ω = 1.9 in both models).

11.5 Discussion

From the theoretical point of view, several notes were made in sections 11.2.2
and 11.3.2. However, from the point of view of simulation it is interesting to
remark that both fuzzy and stochastic Reed-Frost models can provide a diversity
of epidemic behaviors, depending on the parameters set. As observed in the
parameters space diagrams, there are regions in which they completely agree
with each other and regions where they provide quite different results. This
illustrates the fact that different mathematical structures can result in different
results.

During the year in that the daycare’s children were followed up it were realized
a total of 255 exams, in which 186 were diagnosed as respiratory infections.
However, in spite of the intense epidemiological work, the number of infected
children per month is reasonably small to allow the the performance of the
dynamical model more deeply. Besides, the data are insufficient for simulating a
retrospective version of the model. In other words, it is not possible to introduce
in the model, via likelihood analysis for instance, the information contained in
the real data and later to evaluate your predictive ability. This partly explains the
poor quantitative results of both models when confronted with the distribution
of the number of infected individuals in time, observed in figure 11.6. Moreover,
the great number of infected individuals provided by the models, and showed
in figure 11.6, can be due to the homogeneous mixing assumption, one of the
basis of the classical Reed-Frost model, which in this case perhaps does not
apply.

Another aspect to be considered is the seasonal characteristics of the cir-
culation of those viruses in the population and also their relationship with
the climatic variation. Although the proposed models do not contain in their
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structure any aspect of seasonal or climate conditions, they were able to recover
the specific virus type. Although the fuzzy approach allows it through relational
matrix, it was considered the only global aspects about respiratory infections
virus. This highlight the good results supplied by the models, once they worked
well independently of the type of virus. The worst results were obtained for
the analysis of the distribution of the number of infected individuals with in-
fluenza A and B. However, the number of observations in this case was quite
reduced.

Therefore, although the quantitative results of the models are still distant
from the real data, the qualitative results are encouraging. Nevertheless, they
can be improved by small adaptations in the model aiming to a better fitting
of real data. Certainly a variable to be investigated is the function of possibil-
ity/probability. Other non-linear functions of the clinical signals could perhaps
supply quantitative results more accurately.

By analyzing the dynamical behavior of the steady-state, we can see that the
models were able to describe the average of the number of infected individuals
for all virus type, considering both annual and half-yearly data. In some cases
the fuzzy approach provides a slightly better results. In addition, the situations
presented in figure 11.7 are in accordance with that showed by the parameters
space analysis, in the sense that in the case in which the set of parameters corre-
sponding to a concordant area (figures 11.7a and 11.7c) the fuzzy and stochastic
dynamic equilibrium were similar. On the other hand, for the parameters set cor-
responding to the discordant area (figures 11.7b and 11.7d) they do not present
equivalent results. In figure 11.7b both of them present endemic situation, but
with different average values. However, in figure 11.7d, while in the fuzzy model
we have an endemic state, in the stochastic approach the epidemic does not hold.
This also illustrates the fact that the transitions in the space of the parameters
occur in a fuzzy rather than in a crisp way.

In addition, it is important to point out that both models presented here
do not consist simply of generalizing the classical Reed-Frost model formula-
tion. Actually, by including several heterogeneities in the model, the existing
differences among individuals is naturally incorporated, making it applicable to
real epidemic scenaria. For, on the one hand, there are several infections, like
influenza, which, besides being transmitted among small groups of individu-
als, produce highly heterogeneous clinical pictures, on the other hand, the huge
amount of genetic information provided by the emerging field of genomics (and
proteonomics) generates clinical information that may sharply distinguish in-
dividuals. These tailor-made diagnostic techniques make obvious the necessity
of new tools to deal with heterogeneities. Clearly, both approaches can be re-
laxed in their hypotheses, as the homogeneous mixing assumption for instance,
becoming more powerful models. Obviously, in this case, they would lose their
identification with the classical Reed-Frost model.

Finally, we would like to point out the importance of this work for the area
of epidemic modeling, where the scarceness of information usually makes the
elaboration of models that involve the individual aspects (micro) in the epidemic
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process (macro) unfeasible. Models of this type are rare in epidemiology and their
analysis allows a better understanding of the factors that may contribute to the
force of the infection during an epidemic. Maybe this is the most important
contribution of these epidemic approach, since they consider the individual’s
heterogeneities in a simple dynamical structure. In chapter 12 we continue the
presentation of the dynamical systems in epidemiology, but considering now the
mixing of approaches, in a hybrid model context.
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This book is devoted to the applications of fuzzy sets theory in epidemiology and
correlated areas. However, as it is observed in other fields, it is becoming more
and more common the use of the multiple and combined mathematical tools,
aiming the treatment of complex problems in biomedical sciences. Usually the
mixing of these different approaches involves classical mathematics and artificial
intelligent theories, such as fuzzy systems, neural networks, evolutionary com-
putation, expert systems, cellular automata, and so on. This kind of modeling,
where several approaches are put working together, is called hybrid models.

The most applied artificial intelligence approach is the area of neural networks,
followed by evolutionary computation and fuzzy sets theory. The main features of
the neural network systems are its learning capacity and recognition of patterns,
what turns it into a quite powerful tool in knowledge extraction and its great
technological applicability. However, it usually requires a large data set and high
performance computations. Besides, its structure does not allow the insertion of
expert knowledge and the neural network architecture and synaptic matrix are
not interpretable. In the MEDLINE database we found around 27,000 articles
with Artificial Intelligence in biomedical fields, of which 14,000 refer to the Neural
Network approach, the first one is reported to the 1960s (Greene, 1962). In
medicine the first work reported in MEDLINE is the Control theory applied
to neural networks illuminates synaptic basis of interictal epileptiform activity
published in 1986, in Advances in Neurology (Johnston & Brown, 1986).

Evolutionary computation is one of the largest promises of the technological
areas, particularly in software developments. Its most important characteris-
tic is its adaptation capacity, which also results in a learning ability in some
way. Due to its features, evolutionary computation have been widely applied
in virtual lives, immunological computers systems and robotics. However, as in
neural network systems, it demands a heavy data analysis and hard computation
understanding. In the MEDLINE database we found around 200 scientific arti-
cles about evolutionary computation and more than 8,000 works about genetic
algorithms.

Fuzzy logic, in contrast, has as its main feature the capacity to imitate human
reasoning, particularly concerning decision making process, and to deal with
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identification uncertainty. Frequently, fuzzy systems involve simple mathematical
and computational structures and are easily interpretable. In contrast, it does
not have adaptation or learning capacity. Perhaps for the fact fuzzy logic is
the most recent theory of that three cited above, it is less mentioned in the
MEDLINE database. In fact, less than 2,000 works reporting to fuzzy logic
appear in MEDLINE. The first of them was published in the 1970s by Hiramatsu
and collaborators (1974), in Japanese, with English title Applications of the fuzzy
logic to medical diagnosis.

Due to the fact that neural networks, evolutionary computation and fuzzy
logic have well defined features that are complementary to each other, it is nat-
ural the combination of those tools (see also chapter 13). These combinations
usually result in powerful and advantageous hybrid models. Indeed, most of the
hybrid models in engineering and bioengineering areas are resulting of these com-
binations, compounding the so-called neuro-fuzzy systems, the adaptive neural
networks or fuzzy-genetic systems, as some examples (Teodorescu et al., 1999a;
Teodorescu et al., 1999b; Szczepaniaket al., 2000).

In the fuzzy systems context, it is common the use of both neural networks
and evolutionary computation to build linguistic models, since both of them are
suitable to extract information available in a data set. As discussed in chapter 8
these artificial intelligence tools can provide membership functions, define input
and/or output variables and even the fuzzy rules, playing the expert’s role (Wang
& Mendel, 1992; Jang, 1993; Peña-Reyes & Sipper, 1999). A good and didactic
example of genetic algorithm applied to build fuzzy linguistic model is the work
of Peña-Reyes and Sipper (1999), where a breast cancer diagnosis is developed.
In this paper the authors compare the models elaborated by an experts panel
with that provided by the computational intelligent system, facing both of them
with real data. In the MEDLINE database we can found more than 200 articles
considering the hybrid models such as neuro-fuzzy systems and fuzzy genetic
algorithms. The applications of hybrid models on biomedicine are recent and
the first works are reported to the 1990s (Barillot et al., 1993; Kuncheva &
Andreeva, 1993, Kwok et al., 2003 and 2004).

In epidemiology, applications based on neural networks and evolutionary algo-
rithms are not common. As discussed along this book, modern modeling epidemi-
ology is still concentrated, for the most part, in the use of classical mathematical
modeling, based on differential equations, and stochastic approaches. However,
to exemplify what happens in the medical area, the publications of neural net-
works and genetic algorithms techniques in epidemiology are more intense than
the fuzzy logic. In fact, if we consider the MEDLINE database we found around
300 articles considering the applications of neural networks or genetic algorithms
in epidemiology. However, only around 15 articles of MEDLINE truly consider
the applications of fuzzy logic in epidemiology (Merilan & Roe, 1993; Hammad
et al., 1996; Bolotin, 2004).

Considering the discussion above, it is expected that hybrid models with
fuzzy logic techniques in epidemiology are rare and consider basically the mix-
ing of classical and soft computing techniques. In this chapter we present two
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examples of hybrid systems applied in epidemiology. The first of them consists
in an aggregation of Bayesian statistic test with fuzzy hypothesis and fuzzy lin-
guistic model, in a decision making support context, for the optimal age for
vaccination against measles (Ortega et al., 2008b). In the second work, linguistic
fuzzy models are combined with numerical calculus to elaborate a predator-prey
model to study the interaction between aphids and ladybugs in citriculture. This
study is particularly important due to its economical appeal, since it allows the
understanding of the dynamic process of the Citrus Sudden Death and elabo-
rating control strategies (Peixoto et al., 2008a).

As it will be noted along the next sections, both models have interesting
features from the theoretical and epidemiological points of view, which confers
originality and creativity to them. In the model for the estimation of optimal
age for vaccination against measles the dynamic information is built from the
non-dynamic age structure, so avoiding the complex calculus commonly involved
in fuzzy dynamic approaches (as presented in chapters 9 and 10). In this model,
the distribution of maternally derived antibodies seroprevalence and children
seroconversion rate to the vaccine are evaluated through classical and fuzzy
Bayesian test. This statistical test decision is aggregated, in a fuzzy rule-base
structure, with the risk of adverse effects associated to the vaccine and with the
undesirability of acquiring the disease, estimating the vaccine recommendation
for a determined age (Ortega et al., 2008b).

In the predator-prey model it is built a dynamical system based only on
the experts’ information through the fuzzy rule-base structure, since there was
no sufficient information about the phenomenon to build classical differential
equations (Peixoto et al., 2008a). So, in contrast with the approaches presented
in chapters 9 and 10, in this case the identification uncertainties of the states
variables and parameters are not based upon the fuzzification of the classical
differential equations. This theoretical detail may seems simple. However it il-
lustrates a fundamental difference among those two approaches, particularly in
respect to the applicability of that models to real problems. While in the for-
mer it is necessary the estimation of epidemic parameters to process the system,
in the latter the dynamical expert-rule-based structure can be used to provide
these parameters, which are usually not available. Additionally, this dynamical
expert-rule-based model can be used to provide the classical equations that best
describe the studied phenomenon, transforming, thereby, the experts’ knowledge
into mathematical equations. This approach was applied by Peixoto and collab-
orators associated with a cellular automata environment to study the spatial
and temporal dynamics of citrus sudden death, which consists also in a hybrid
model (Peixoto et al., 2008b).

12.1 A Fuzzy Model for the Estimation of Optimal Age
for Vaccination Against Measles

As briefly discussed in chapter 6, measles is one of the most infectious and
lethal diseases, being responsible for 10% of global mortality from all causes
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among children aged less than 5 years, which represents approximately 1 million
deaths annually (CDC, 1998). In spite of a very effective vaccine, which averted
approximately 1.67 million measles associated deaths in 1996, measles still is the
first cause of deaths preventable by vaccines in children.

Previous studies have already demonstrated the necessity of vaccinating be-
tween 94% and 98% of the susceptible children to avoid measles outbreaks (Reed,
1999). However, the optimal age to vaccinate children in a routine immuniza-
tion calendar is still dependable on a set of variables, characteristic of the target
population, like the seroconversion rate of children below 1 year of age, the pres-
ence of maternally derived antibodies, the serostatus of mothers, among others
(Zanetta et al., 2002).

Mathematical models have been proposed and applied for the estimation of
optimal age to vaccinate children, not only against measles (Hethcote, 1988;
Zanetta et al., 2002), but also against rubella (Massad et al., 1994b). Those
models are of deterministic structure and, despite some attempts to include age-
dependence of the force of infection parameter (Amaku et al., 2003), all the
available calculations of the optimal age to vaccinate, to the best of our knowl-
edge, have assumed a constant, age-independent force of infection. In addition,
the variables which determine the optimal age to vaccinate are usually diffi-
cult to determine and usually only fragmentary information on them are avail-
able. Therefore, we will present in this example, an alternative approach, which
combines two powerful techniques to dealing with subjective and/or imprecise
information: the Bayesian approach and the fuzzy sets theory.

Several articles can be found in the literature combining the Bayesian ap-
proach with ideas from fuzzy sets theory (Okuda et al., 1978; Tanaka et al.,
1979; Uemura, 1991; Viertl, 1996; Gil et al., 1985; Casals, 1993; Delgado et al.,
1979; Taheri & Behboodian, 2001). In this work we applied the method proposed
by Taheri and Behboodian (2001), who consider the problem of hypotheses test-
ing when the data (observations) are crisp and the hypotheses are fuzzy, such
as: θ is approximately one, θ is very high, etc (Taheri & Behboodian, 2001). It
was assumed that the estimation of optimal age to vaccinate is a decision analy-
sis procedure, which involves aims and constraints (see Zimmermann, 1996; and
Massad et al, 1999) for a discussion on fuzzy decision taking). In this case the
aim is to minimize the lifetime expected risk of acquiring measles infection and
the constraints include the immunological aspects involving the “taking” of the
vaccine, like the seroconversion rates, maternally derived antibodies, the mother
serostatus, among others. Logistic aspects of vaccination will not be considered
in this work. The results of the fuzzy approach was compared with the classical
counterpart.

12.1.1 A Bayesian Approach to Fuzzy Hypotheses Testing

As mentioned above we applied the methods proposed by Taheri and Behboodian
(2001), who consider the problem of hypotheses testing when the data are crisp
measures and the hypotheses are fuzzy.
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As defined by those authors, any hypothesis of the form H : θ is H(θ) is said
to be a fuzzy hypothesis, where H(θ) is a membership function from the space Θ
to [0, 1]. Examples of fuzzy hypothesis include, θ is approximately 1/2, θ is very
low, among others.

Let X =(X1, ..., Xn) be a random sample, with observed value x = (x1, ..., xn),
where Xi has the probability density function, p.d.f., f(xi|θ) with unknown
θ ∈ Θ, whose prior density is π(θ). Suppose, as in Taheri and Behboodian
(2001), that two membership functions H0(θ) and H1(θ) are given. So, the main
problem consists in testing

H0 : θ is H0(θ),
H1 : θ is H1(θ)

(12.1)

on the basis of a Bayesian method.
As it was assumed the problem of finding the best age to vaccinate children

against measles as a decision analysis problem, it must be defined the space of
possible actions (ages of vaccination) A, and the loss function L(θ, a) : Θ×A → R
where R is the risk space. The loss function specifies the loss when taking action
a when the true parameter is θ.

Now, assuming that θ has a prior distribution π(θ) and that f(x|θ) is the p.d.f
of X with fixed θ ∈ Θ, then, the posterior density of θ, π(θ|x), is proportional
to its priori and to the p.d.f. of X ,

π(θ|x) ∝ π(θ)f(x|θ). (12.2)

The Bayes risk of a decision d, associated with the prior π(θ), is then

R(π, d) = E [R(θ, d)] . (12.3)

The aim is, therefore, to minimize the risk by taking the optimal decision d∗,
that is,

R(π, d∗) = inf
d∈D

R(π, d) (12.4)

where D is the space of possible decisions.

Bayes test without a loss function

We will now test the fuzzy hypothesis H0, accepted in point a0 and rejected in
a1, based on a random sample from f(x|θ) with prior density π(θ) for θ.

A Bayes test without loss function rejects H0 if and only if the posterior
density under H0 is less than the posterior density under H1, that is,

∫

π(θ|x)H0(θ)dθ <

∫

π(θ|x)H1(θ)dθ. (12.5)

As we are operating in a fuzzy setting, it is important to define a criterion
related to the degree of acceptance of H0 versus H1 (Taheri & Behboodian,
2001):

α0

α0 + α1
, (12.6)
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where

α0 =
∫

π(θ|x)H0(θ)dθ (12.7)

and

α1 =
∫

π(θ|x)H1(θ)dθ. (12.8)

The ratio α0/α1 is called the posterior odds ratio of H0 to H1, and the ra-
tio
∫

π(θ|x)H0(θ)dθ/
∫

π(θ|x)H1(θ)dθ is called the prior odds ratio (Taheri &
Behboodian, 2001).

Bayes test with loss function

First, as in (Taheri & Behboodian, 2001) we define the following loss functions:

L(θ, a0) = a(θ) [1 − H0(θ)] (12.9)

and
L(θ, a1) = b(θ) [1 − H1(θ)] (12.10)

where a(θ) and b(θ) are nonnegative functions, depending on our sensitivity to
false rejection or false acceptance.

Now, according to theorem 3.1 of Taheri and Behboodian (2001), if (12.9) and
(12.10), then the Bayes test accepts H0 iff

∫

a(θ)[1 − H0(θ)]π(θ|x)dθ ≤
∫

b(θ)[1 − H1(θ)]π(θ|x)dθ. (12.11)

Alternatively, if we call a(θ) = CII and b(θ) = CI , where CI is related to
error type I and CII to error type II, then the Bayes test accepts H0 iff

1 − ∫ π(θ|x)H1(θ)dθ

1 − ∫ π(θ|x)H0(θ)dθ
≥ CII

CI
. (12.12)

12.1.2 Estimating the Optimal Age to Vaccinate Against Measles

As mentioned above, several variables determine the optimal age to vaccinate
children against measles. In this analysis we choose: the presence of maternally
derived antibodies ; the children seroconversion rate to the vaccine; the risk (side
effects) associated to the vaccine; and an usually ad hoc function that express
the undesirability of acquiring the disease (Zanetta et al, 2002).

For each of the first two variables we carried out a fuzzy Bayes test, which
provided the degree of decision related to the null of alternative hypotheses. The
last two variables were both considered as fuzzy sets. These four variables were
applied in the rule-based fuzzy model which will determine the decision process.
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A Bayes test for maternally derived antibodies

For this variable we adopted the following fuzzy hypotheses:

H0 : θ is low,
H1 : θ is not low.

(12.13)

The membership functions for those fuzzy hypotheses are:

H0(θ) =

⎧
⎨

⎩

1 if 0 ≤ θ < 0.15
(0.85 − θ)/0.7 if 0.15 ≤ θ < 0.85
0 if 0.85 ≤ θ ≤ 1

and

H1(θ) =

⎧
⎨

⎩

0 if 0 ≤ θ < 0.15
(θ − 0.15)/0.7 if 0.15 ≤ θ < 0.85
1 if 0.85 ≤ θ ≤ 1

.

The shape of the membership functions of the H0 and H1 are presented in
figure 12.1.

The a priori density function for θ is assumed as uniform. Therefore, its a
posteriori density function is Beta(y + 1, n − y + 1), that is:

π (θ|X = x) =
(n + 1)!

y! (n − y)!
θy (1 − θ)n−y

, (12.14)

where n is the number of tested children and y the number of positive to the
test, and

y =
n∑

i=1

xi. (12.15)

As mentioned above, the Bayes test accepts H0 iff:
(
1 − ∫ π(θ|x)H1(θ)dθ

)

(
1 − ∫ π(θ|x)H0(θ)dθ

) ≥ CII

CI
. (12.16)

It was assumed, for the sake of simplicity, a(θ) = CII = b(θ) = CI = 1, and
the condition for accepting H0 is simplified to

∫

π(θ|x)H0(θ)dθ ≥
∫

π(θ|x)H1(θ)dθ. (12.17)

Now, for fixed values of n and y in each age class, the condition (12.17) can,
for a positive constant κ(n, y) = (n+1)!

y!(n−y)! , be rewritten as:

∫

θy(1 − θ)n−yH0(θ)dθ ≥
∫

θy(1 − θ)n−yH1(θ)dθ (12.18)
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Fig. 12.1. Membership functions for the hypotheses H0: θ is low and H1: θ is not low
for the Bayes test of maternally derived antibodies (Ortega et al., 2008b)

which, in terms of the membership functions, takes the form:
∫ 0.15
0 θy(1 − θ)n−ydθ +

∫ 0.85
0.15 θy(1 − θ)n−y(0.85 − θ)/0.7dθ ≥

∫ 0.85
0.15 θy(1 − θ)n−y(θ − 0.15)/0.7dθ +

∫ 1
0.85 θy(1 − θ)n−ydθ.

(12.19)

In addition to the condition for accepting H0 we define a criterion related to
the degree of acceptance of H0 versus H1, α0

α0+α1
, as in equation (12.6).

A Bayes test for vaccine seroconversion

For this variable it was adopted the same fuzzy hypotheses as the previous
section (see 12.13), however, the membership functions for this case are:

H0(θ) =

⎧
⎨

⎩

1 if 0 ≤ θ < 0.15
(0.65 − θ)/0.5 if 0.15 ≤ θ < 0.65
0 if 0.65 ≤ θ ≤ 1

and

H1(θ) =

⎧
⎨

⎩

0 if 0 ≤ θ < 0.15
(θ − 0.15)/0.5 if 0.15 ≤ θ < 0.65
1 if 0.65 ≤ θ ≤ 1

whose shape can be seen in figure 12.2.
The a priori and its a posteriori density functions are the same as for the

previous section. The Bayes condition for accepting H0 is now:
∫ 0.15
0 θy(1 − θ)n−ydθ +

∫ 0.65
0.15 θy(1 − θ)n−y(0.65 − θ)/0.5dθ ≥

∫ 0.65
0.15 θy(1 − θ)n−y(θ − 0.15)/0.5dθ +

∫ 1
0.65 θy(1 − θ)n−ydθ.

(12.20)
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Fig. 12.2. Membership functions for the hypotheses H0: θ is low and H1: θ is not low
for the Bayes test of vaccine seroconversion (Ortega et al., 2008b)

And, again, in addition to the condition for accepting H0 it was defined a
criterion related to the degree of acceptance of H0 versus H1 , α0

α0+α1
, as in

equation (12.6).
In order to compare with the fuzzy Bayes test approach, a classical Bayes test

was also performed. In this case, it was considered the following hypotheses:

H0 : θ ≥ 0.5
H1 : θ < 0.5.

(12.21)

Membership degree functions for the Risk of Vaccination and
Undesirability Function

The variables risk of vaccination and undesirability function, related to the vac-
cine side effects and mortality due to measles, respectively, were not subjected
to the hypotheses test but were rather considered as fuzzy sets and included
in the fuzzy rule-based model described below. These membership functions
were obtained by interviewing experts and by available knowledge in the field of
vaccination

Adverse effects following the measles vaccination are generally mild and lim-
ited to individuals who are susceptible (Markowitz & Katz, 1994). Of special
interest is the occurrence of dysfunction of the central nervous system, such
as encephalitis and encephalopathy after vaccination, which have an estimated
risk of approximately 1 case per million doses for either of these two events
(Landigran & Witte, 1973). These low estimated risks associated with the vac-
cine are approximately one tenth of the risk of the same effects associated with
measles natural infection, which makes the vaccine very safe in relation to the
infection. However, it is interesting, for the sake of generality, to include those
risks associated with the vaccine in the analysis. It was assumed that the risk
of side effects are inversely proportional to the age of vaccination since both the
possible effects are graver in lower age children. Therefore, it was assigned the
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Fig. 12.3. Membership functions for the Adverse Effects of Vaccination, that is Risk
(Ortega et al., 2008b)

following categories of risk, R: high risk, intermediate risk and low risk, with
the corresponding membership degree functions:

R High : μRH (age) =

⎧
⎨

⎩

1 if age < 4 months
−0.5age + 3 if 4 months ≤ age < 6 months
0 if age > 6 months

,

R Interm. : μRI (age) =

⎧
⎪⎪⎨

⎪⎪⎩

0.5age − 2 if 4 months ≤ age < 6 months
1 if age = 6 months
−1/3age + 3 if 6 months < age ≤ 9 months
0 age > 9 months

and

R Low : μRL(age) =

⎧
⎨

⎩

0 if age < 6 months
1/3age − 2 if 6 months ≤ age < 9 months
1 if age ≥ 9 months

whose shape can be seen in figure 12.3.
The complications associated with measles infection have been subject of

much description and review (Markowitz & Katz, 1994), ranging from otitis me-
dia, through pneumonia, encephalitis, culminating in rare cases (0.1 - 1.0/1000
cases) in death. The risk of serious complications and death is increased in young
children (Babbott & Gordon, 1954). In order to model the age-dependent un-
desirability function it was applied the same ad hoc approach used in previous
publications aimed at the estimation of optimal age to vaccinate for measles
(Hethcote, 1988; Zanetta et al, 2002) and for rubella (Massad et al, 1994b).
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Fig. 12.4. Membership functions for the Undesirability Function (Ortega et al., 2008b)

For the undesirability of the vaccine, U , it was assigned the following age-
dependent membership functions:

U High : μUH (age) =

⎧
⎨

⎩

1 if age ≤ 6 months
−1/3age + 3 if 6 months < age < 9 months
0 if age ≥ 9 months

,

U Interm. : μUI (age) =

⎧
⎪⎪⎨

⎪⎪⎩

1/3age − 2 if 6 months ≤ age < 9 months
1 if age = 9 months
−1/3age + 4 if 9 months < age ≤ 12 months
0 age > 12 months

and

U Low : μUL(age) =

⎧
⎨

⎩

0 if age < 9 months
1/3age − 3 if 9 months ≤ age < 12 months
1 if age ≥ 12 months

whose shape can be seen in figure 12.4.

12.1.3 A Fuzzy Rule-Based Model

The decision making problem of finding the best age to vaccinate children against
measles was modeled by a TSK rule-based model (see chapter 7). Each fuzzy
rule in the model has four antecedents variables: the outcome of the Bayes test
for the presence of maternally derived antibodies and for children seroconversion
rate to the vaccine (H0 and H1, respectively, and they acceptance degree), and
two fuzzy sets related to the risk (side effects) associated to the vaccine and the
undesirability of acquiring the disease, described above. Note that the variables
risk of side effects and undesirability functions were nor tested. The consequent
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of fuzzy rule is the vaccination status described as a constant function defined
in the interval [0,10], to rank the level of recommendation to vaccinate, classi-
fied as strongly recommended (10), recommended (7) and not-recommended (0).
These three possibilities were the consequence of the combination of the vari-
ous antecedent variables, according to their degree of membership functions. An
example of a fuzzy rule is:

IF vaccine seroconversion is H0 AND maternally antibodies is H1 AND
undesirability function is intermediate AND adverse effects is low, THEN

recommendation level to vaccine is recommended.

The combination of all input variables resulted in 36 fuzzy rules, shown in
table 12.1.

It is important to note that the presence of maternally derived antibodies and
the children seroconversion rate to the vaccine are singleton sets (see chapter 2).
The membership degree of this sets are the acceptance degree for H0 or H1, found
by Bayesian test described previously. In the sense to clarify the algorithm of
the model, figure 12.5 presents a scheme of the methodology applied.

It was assumed that the optimal age to vaccinate against measles is the age
that the recommendation level to vaccinate is maximum. The basic difference
between the fuzzy and classical approaches presented in this model refers to
the acceptance degree of vaccine seroconversion and maternal antibodies. Both
degrees are fuzzy under the former approach and crisp under the latter.

In order to demonstrate a practical application of the above theory the model
was applied to the data described in (Zanetta et al., 2002). In this work the
authors estimated the optimal age for vaccination against measles in the state
of São Paulo, Brazil, taking into account mothers’ serostata and based on the
classical dynamical model. The authors measured the seroprevalence of measles
virus antibody of children in the first year of life and their mothers. In addition,
they compared maternal antibody decay of two groups of children: those whose
mothers were 25 years old or more (mothers born in the pre-vaccination era),
and less than 25 years old (mothers born in the vaccination era). Therefore,
the 25-year-age cut-off was chosen to distinguish between vaccinated and non-
vaccinated mothers. The author’s hypothesis was that children born of mothers
who are positive to antibodies against measles by natural infection had a higher
probability of being seropositive to older ages than those born to mothers who
were positive by vaccination. The expected difference would determine a younger
age to vaccinated the latter in comparison to the former. Seroconversion rates to
the vaccine was also measured for both groups. The optimal age to vaccinated
children of each group was estimated by a dynamical model of the type proposed
by Hethcote (1988). The data collection comprised 1,216 mothers along with
their serostata, and 552 children whose seroconversion was verified.

Table 12.2 present the results of the Bayes test applied for the same popula-
tion described and studied by Zanetta and collaborators (2002) for maternally
derived antibodies. It can be noted that, as expected, children born from the
older mothers group remain with high levels of maternally derived antibodies
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Table 12.1. Fuzzy rules of the TSK model, where NR is Not Recommended, R is
Recommended and SR is Strongly Recommended (Ortega et al., 2008b)

Rule Vaccine Maternally Undesirability Adverse Vaccination
Seroconversion Antibodies Function Effects Decision

1 H0 H0 Low Low NR
2 H0 H0 Low Interm. NR
3 H0 H0 Low High NR
4 H0 H0 Interm. Low R
5 H0 H0 Interm. Interm. NR
6 H0 H0 Interm. High NR
7 H0 H0 High Low R
8 H0 H0 High Interm. R
9 H0 H0 High High NR
10 H0 H1 Low Low NR
11 H0 H1 Low Interm. NR
12 H0 H1 Low High NR
13 H0 H1 Interm. Low R
14 H0 H1 Interm. Interm. R
15 H0 H1 Interm. High NR
16 H0 H1 High Low R
17 H0 H1 High Interm. R
18 H0 H1 High High NR
19 H1 H0 Low Low R
20 H1 H0 Low Interm. R
21 H1 H0 Low High NR
22 H1 H0 Interm. Low R
23 H1 H0 Interm. Interm. R
24 H1 H0 Interm. High NR
25 H1 H0 High Low SR
26 H1 H0 High Interm. R
27 H1 H0 High High R
28 H1 H1 Low Low R
29 H1 H1 Low Interm. NR
30 H1 H1 Low High NR
31 H1 H1 Interm. Low R
32 H1 H1 Interm. Interm. R
33 H1 H1 Interm. High NR
34 H1 H1 High Low SR
35 H1 H1 High Interm. R
36 H1 H1 High High NR

(H1 for ages 0 and 1.5 months) for longer period then that born from the younger
mothers (H1 for age 0 and H0 for 1.5 months).

Table 12.3 shows the Bayes test results for vaccines seroconversion in the
three groups. For both variables, maternally derived antibodies and vaccines
seroconversion, the Bayes decision was equal in the classical and fuzzy hypotheses
(H0 or H1). The main difference consists in the degree of acceptance value, that
can be 0 or 1, in the former, and a number in the interval [0,1] for the last.
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Fig. 12.5. Scheme of the methodology applied (Ortega et al., 2008b)

Table 12.2. Bayes test result for maternally derived antibodies for three groups: 1)
mothers older than or equal to 25 years of age; 2) mothers younger than 25 years of
age; and 3) all mothers (Ortega et al., 2008b)

Age Mothers age ≥ 25 years Mothers age < 25 years General
n y Bayes Degree of n y Bayes Degree of n y Bayes Degree of

Test acceptance Test acceptance Test acceptance
0 31 31 H1 1.0000 60 50 H1 1.0000 91 81 H1 1.000

1.5 60 27 H1 0.6000 63 15 H0 0.8100 123 42 H0 0.612
2.5 57 14 H0 0.7900 53 9 H0 0.9210 110 23 H0 0.871
3.5 55 13 H0 0.8100 55 7 H0 0.9720 110 20 H0 0.920
4.5 55 5 H0 0.9930 55 4 H0 0.9970 110 9 H0 0.999
5.5 50 7 H0 0.9570 53 5 H0 0.9910 103 12 H0 0.992
6.5 76 4 H0 0.9998 78 5 H0 0.9995 154 9 H0 1.000
7.5 46 9 H0 0.8800 42 3 H0 0.9940 88 12 H0 0.976
8.5 29 5 H0 0.8900 38 5 H0 0.9560 67 10 H0 0.955
9.5 34 8 H0 0.7970 32 10 H0 0.6530 66 18 H0 0.740
10.5 39 22 H1 0.8100 38 23 H1 0.8770 77 45 H1 0.859
11.5 29 11 H0 0.5300 30 14 H1 0.6360 59 25 H1 0.552
12.5 28 10 H0 0.5700 30 12 H1 0.5120 58 22 H0 0.533

Applying the classical and fuzzy Bayes tests results in the fuzzy rule-based
model, to both mothers groups, the recommended level to vaccinate against
measles was calculated. The behavior of this recommended degree is presented
in figure 12.6.
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Table 12.3. Bayes test results for vaccine seroconversion for three groups: 1) mothers
older than or equal to 25 years of age; 2) mothers younger than 25 years of age; and
3) all mothers. In this case the y∗ values were estimated from seroconversion function
presented in Zanetta et al., 2002 (Ortega et al., 2008b)

Age Mothers age ≥ 25 years Mothers age < 25 years General
n y∗ Bayes Degree of n y∗ Bayes Degree of n y∗ Bayes Degree of

Test acceptance Test acceptance Test acceptance
0 – 0 H0 1.000 – 0 H0 1.000 – 0 H0 1.000

1.5 – 1 H0 1.000 – 3 H0 1.000 – 2 H0 1.000
2.5 – 3 H0 1.000 – 6 H0 1.000 – 4.5 H0 1.000
3.5 – 6 H0 0.9999 – 11 H0 0.996 – 9 H0 0.999
4.5 – 10 H0 0.9976 – 19 H0 0.932 – 15 H0 0.974
5.5 – 16 H0 0.9656 – 28 H0 0.808 – 22 H0 0.890
6.5 67 25 H0 0.6760 59 22 H0 0.6760 126 39 H0 0.768
7.5 47 21 H0 0.5730 55 24 H0 0.5880 102 38 H0 0.679
8.5 32 18 H1 0.5840 33 19 H1 0.6020 65 36 H1 0.575
9.5 32 20 H1 0.5550 35 21 H1 0.6350 67 42 H1 0.676
10.5 37 32 H1 0.9650 36 29 H1 0.9060 73 61 H1 0.956
11.5 27 22 H1 0.9080 30 26 H1 0.9598 57 48 H1 0.957
12.5 31 23 H1 0.8230 31 23 H1 0.8230 62 46 H1 0.835

Fig. 12.6. Behavior of Recommendation level to vaccinate with age, and the optimal
age to vaccination against measles, by fuzzy and classical approach, considering tree
groups: 1) mothers 25 years old or more; 2) mothers less then 25 years old; and 3) full
group which there are no distinction between mothers age (Ortega et al., 2008b)

It is possible to note in figure 12.6 that although the optimal age to vaccinate
(8.5 months, the maximum value) is the same under both approaches, fuzzy and
classical, the behavior of the level recommendation is different from 6.5 months.
In the classical approach the recommendation level to vaccinate is level 7 for
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all ages in the interval [9.5,12.5]. On the other hand, in the fuzzy approach the
function presents a peak at 8.5 months. In addition, it is important to note
that the differences between mothers groups were emerged only under the fuzzy
hypothesis approach.

12.1.4 Discussion

Due to the structure of the linguistic model, if the Bayes test results are the same
for the all mothers groups, no differences will be detected by the classical model,
as happened in the present data. Therefore, in this case only the fuzzy approach
was able to discriminate between the recommendation levels to vaccinate in
the mothers groups. This happens because the fuzzy hypothesis is based on an
acceptance degree in addition to the condition for accepting H0.

The fuzzy hypothesis presented some advantages when compared with its clas-
sical counterpart. Firstly, under the fuzzy approach it is not necessary to specify
the cut off for θ in the null alternative. Furthermore, it is possible to add available
expert knowledge to this procedure, taking into account if necessary a member-
ship function to an alternative hypothesis other than the complementary of the
null hypothesis. It is worth noting that the expert knowledge considered under
the fuzzy hypotheses testing is completely different than those possible under
a pure Bayesian approach. This possibility is introduced in the system through
the definition of a priori probabilities (0.5 in this case). Finally, under the clas-
sical hypotheses testing there is no information about the magnitude of the test
result (H0 or H1), as under the fuzzy approach. The results presented in this
work show that this information was important in order to identify differences
between the mothers groups.

Considering the maximum value for the recommended level to vaccinate as
the optimal age to vaccinate it is found that, in all groups, under both models,
fuzzy and classical, the optimal age is 8.5 months (see figure 12.6). Using the
classical dynamical system proposed by Zanetta et al. this optimal age was 17
months to mothers 25 years old or more, and 14 months to mothers less than 25
years old. Therefore, the results presented in this work were completely different
than those found using the classical dynamical model proposed in (Zanetta et
al, 2002). This fact reveals the importance to discuss how the mathematical
model structure could affect the results in modern epidemiological studies. The
theoretical process of developing new analytical tools for dealing with real-world
problems is still in its infancy. In this sense, this model could contribute to better
understanding how these processes could perform under different scenarios when
uncertainty and vagueness are present.

It is also important to consider the differences in the recommended vaccina-
tion age obtained by the fuzzy model and the classical dynamic system. Both
the classical and the fuzzy model point to the fact that as timing passes, the
susceptibility window bellow 1 year age is widening due to a lower antibody
concentration of younger mothers. Therefore, as the fuzzy model recommends
earlier age of vaccination, it is reasonable to suppose that its result is more
reliable then classical ones (Ortega et al., 2008b).
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Finally, by merging Bayesian analysis and the theory of fuzzy sets, we illus-
trated the potential usefulness of this hybrid technique to address important
public health and epidemiological problems. In the next section we will present
another hybrid model applied in the epidemic context, but with a mathematical
structure completely different.

12.2 A Fuzzy Model to Study a Predator-Prey Dynamics

In this section we will present the fuzzy rule-based system elaborated by Peixoto
and collaborators (2008a), to study the interaction between aphids (preys) and
ladybugs (predators) in citriculture, where the aphids are considered as the trans-
mitter agents of the Citrus Sudden Death (CSD). As discussed previously, the
great innovation of this work is the combination of the linguistic fuzzy model
and the numerical calculus, aiming at the development of a dynamical system in
an indirect way. The dynamics of the predator-prey interaction was built from a
linguistic model based on the expert knowledge and simulations were performed
in order to found the prey population, the potentiality of the predators, and
the phase-plane (that is, the graph of potentiality of the predators versus preys
number, for a fixed time). From the information presented in this phase-plane,
a classic model was fitted and its parameters were found. In this sense, the clas-
sical dynamical system able to describe the phenomenon was found through the
hybrid technique that will be shown here.

Citrus Sudden Death (CSD) is a disease that affects sweet orange trees grafted
on Rangpur lime in the south of the state of Minas Gerais and in the north of the
state of São Paulo, Brazil (Bassanezi et al., 2003). It is believed that this disease
is caused by a virus transmitted by insects known as aphids (vector). Among
the most known predators of aphids in citrus in Brazil, the ladybugs are one of
the most outstanding (Morales & Buranr Jr., 1985). In this sense, ladybugs have
played an important role in the biological control of the aphids, and consequently
of the CSC, in the Brazilian citriculture, what clearly has economical interest
(Peixoto et al., 2008a and 2008b).

Thereby, the proposal is to study the interaction between a prey (aphid) and
its predator (ladybug) through fuzzy set theory, instead of using the usual dif-
ferential equations, which characterize the classical deterministic models. Since
there are no sufficient information about that phenomena, it is difficult to express
the variations as functions of the states. In contrast, qualitative information from
experts allows the elaboration of linguistic rules that relate, at least partially,
the state variables with their own variations. The study of the variation of these
states values in time allows to find, from fitting techniques, what is the clas-
sical deterministic model, given by a system of ordinary differential equations,
whose solutions coincide with those provided by the fuzzy model. Thus, this
approach allows the estimation of the parameters of the differential equations
from fuzzy model, which consists in a great advantage because such parameters
have biological meaning, like mortality rates, growth rates, and so on.
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12.2.1 The Predator-Prey Model

Mathematical models that describe prey and predator relationship are used to
study interactions between two populations, when one of them depends on the
other for food and for survival. Such dynamic relationship between preys and
predators are prominent subjects in Ecology (Edelstein-Keshet, 1987; Murray,
1990).

In short, it is presented below the hypotheses that characterize a predator-
prey model, whose trajectories show the following features:

1. The number of prey population and the number of predator population have
an oscillatory character;

2. An increase in the prey population is followed (with a delay) by an increase
in the predator population;

3. A decrease in the prey population is followed (with a delay) by a decrease
in the predator population;

4. If the number of predators is small, the number of preys increases;
5. If the number of predators is large, the number of preys decreases;
6. If the number of preys is large, the number of predators increases; and
7. If the number of preys is small, the number of predators decreases.

So this dynamics is characterized by chained oscillations in both populations:
predators and preys. What is most interesting is that these oscillations have the
following property: the peak of the prey population will always occur some time
before the predator population peak.

According to the information above, it is possible to elaborate a fuzzy rule
base that replaces differential equations, which characterize the classic determin-
istic models that are used to model the dynamics between preys and predators.
In fact, the main interest here is to elaborate a predator-prey model that repre-
sents the interaction between aphids (preys) and ladybugs (predators) in citri-
culture. Then, it is presented a short review of the Citrus Sudden Death and the
interaction between aphids and ladybugs.

12.2.2 Aphids versus Ladybugs

Citrus Sudden Death (CSD) is a disease that has caused serious harm to cit-
riculturists, up to the point of destroying big plantations in the north of the
state of São Paulo and in the south of Minas Gerais, in Brazil. CSD is a disease
combining canopy/rootstock and it can lead plants on intolerant rootstock to
death. Researches have shown that the ducts, which lead nutrients generated by
the photosynthesis to the roots, become obstructed and degenerated. Without
food, the roots putrefy, the tree decays and dies (Bassanezi et al., 2003).

As discussed before, it is believed that this disease has been caused by a
virus transmitted by insects known as aphids and the most important predator
of aphids in citrus in Brazil is the ladybug Cycloneda sanguinea, that belongs
to the Coleoptera Order and the Coccinelidae Family. Therefore, the constant
occurrence of larvae and adults of ladybugs is important to control the aphids
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(Hodek, 1973). Thus, the main interest here is to take into account the particu-
larities of the data and reports of experts, since the quality of the predators is
of most importance.

12.2.3 Formulation of the Predator-Prey Fuzzy Model

In predator-prey systems, the structure of the predator population changes in
time and there are phases where there is no predation at all. As it have been
observed, the ladybugs only prey upon aphids in the larva and adult stages. The
aphids are captured by their enemies independently of their life phase. Therefore,
incorporating this new characteristic into the model will help to understand
predator-prey interactions. Moreover, it can be applied to the predation theory
for biological control. Facts like these are not considered in the simple models
of predation, for example, the classical Lotka-Volterra model. According to Hsin
and Yang (2003), simple models are not adequate to study the predator-prey
relationship, when the populations involved present different dynamics according
to their ages. Each of these predators’ larva can consume up to 200 aphids a day,
and the adult predators prey, on average, upon 20 aphids a day (Gravena, 2003).
Hence the population of predators will consist of larvae and adults. So we should
distinguish these subpopulations and their particularities in the predator-prey
model.

From the information above, it was consider that predators are differentiated
in accordance with their potential of predation, through a membership function
of predator class as follows:

Pyi =
{

1, if larvae
0.1, if adults

(12.22)

and the potential of predation of a predators population as being Py = p1+0.1p2,
where p1 is the number of larvae population and p2 is the population of adults.

As the aphids are captured by their enemies independently of their life phase,
the population of preys is not subdivided, since the quality of being a prey does
not depend on its time of life to be classified according to its readiness to escape
from their predators.

The input variables of the system are the number of preys and the potentiality
of the predators, and the output variable is their variations. However, accurate
knowledge about the input variables and their variations is not available. On the
other hand, qualitative information from experts, in particular by entomologists,
allows the elaboration of rules that relate the variables of state with their own
variations. In this case, the fuzzy rule base was given by 30 rules of the type:

IF the number of preys is large AND the potential of predation is very small,
THEN the variation of preys increases a little AND the variation of the

potential of predation increases a lot.

From the Mamdani inference method and defuzzification by the center of
area method, it was obtained the variation rates of the preys and the potential of
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predation. In each moment t, the number of preys and the potential of predation
are given by the expressions:

⎧
⎪⎪⎨

⎪⎪⎩

x(t) = x(t0) +
∫ t

t0

x′(s)ds

Py(t) = Py(t0) +
∫ t

t0

P ′
y(s)ds

. (12.23)

In order to observe the variation in the number of preys and the potential
of predation the numerical simulations were performed from Numerical Integral
Methodology (Conte & Boor, 1981). To achieve this, it was considered an initial
number of aphids, x0, and an initial number of potential of predation, Py0, in a
branch of a tree, chosen randomly. From the initial conditions, the fuzzy system
produces x′ and P ′

y as outputs. From these two last values, x and Py is found in
each iteration by means of:

⎧
⎪⎪⎨

⎪⎪⎩

x(ti+1) = x(ti) +
∫ ti+1

ti

x′(s)ds

Py(ti+1) = Py(ti) +
∫ ti+1

ti

P ′
y(s)ds

, (12.24)

which is the discrete form of the continuous system (12.23).
Finally, to solve the integral above it was adopted the Trapezoidal Numerical

Integration, since the fuzzy system provides x′ and P ′
y in each iteration ti. Thus

the system (12.24) turns to:
⎧
⎪⎨

⎪⎩

x(ti+1) = x(ti) +
1
2

[
x′(ti+1) + x′(ti)

]

Py(ti+1) = Py(ti) +
1
2

[
P ′

y(ti+1) + P ′
y(ti)
] . (12.25)

Using (12.25) and considering ti = t0 + i and t0 = 0, it is possible to get the
values of x and Py, and so on, successively.

Summarizing, the simulations of the trajectories produced by the fuzzy model
follow the steps below:

• Given the initial population of the preys (x0) and the initial potential of
predation (Py0) as inputs data of the fuzzy rule-based system;

• The fuzzy rule-based system gives the values of the output data: x′
1 e P ′

y1;
• From (12.25), it is found x1 e Py1;
• x1 and Py1 are the new inputs variables of the fuzzy rule-based system in the

next step simulation, and so forth.

The evolution of the population of preys and potential of predation given by
(12.25) through the fuzzy model over time, as well as, its respective phase-plane,
are illustrated in figure 12.7.

It is important to highlight that even without any equations, this approach
allows to obtain a phase-plane where the trajectories appear to converge to a
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Fig. 12.7. (a) The evolution of the populations in time; and (b) Phase-plane of the
fuzzy model, with x0 = 110 and Py0 = 3.2 (Peixoto et al., 2008a)

cycle with certain regularity. The question now is “is there a system of classi-
cal differential equations able to provide a similar phase-plane solution to that
obtained by the fuzzy approach?”

12.2.4 Fitting the Holling-Tanner Model

Next it is proposed a classic deterministic model, given by a system of ordinary
differential equations, assuming a predator-prey system, whose solutions coincide
with those of the fuzzy model described above (Peixoto et al, 2008a). In this
way, it is assumed that, in the classic model, there is no heterogeneity in the
class of predators. Therefore, it is possible to find parameters of the new model,
using the phase-plane of the fuzzy model illustrated in figure 12.7. The goal is
to compare the predator-prey fuzzy model with the Holling-Tanner Model. In
order to achieve this purpose, the parameters of the system given by differential
equations were fitted from the fuzzy model. The following predator-prey system
of the Holling-Tanner type was considered (Holling, 1959; Tanner, 1975):

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

dx

dt
= rx

(
1 − x

K

)
− mxy

D + x

dy

dt
= sy

(
1 − h

y

x

)

x(0) > 0, y(0) > 0,

(12.26)

where x(t) and y(t) denote prey and predator densities, respectively, as functions
of time, and r, m, s, h, D, K > 0.

In system (12.26) it was assumed that:

• The prey population grows logistically with carrying capacity K and intrinsic
growth rate r in the absence of predation;
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• The predator consumes the prey, according to the functional response
p(x) =

mx

D + x
and grows logistically with intrinsic growth rate s and carrying

capacity proportional to the population size of prey. In (12.26), the functional
response p(x) is classified into type II (Svirezhev & Logofet, 1983);

• The parameter h is the number of prey required to support one predator at
equilibrium when y equals x/h;

• m is the per capita maximum predator consumption rate, that is, the maxi-
mum number of preys that can be captured by a predator in each time unit;
and

• h is a measure of the food quality that the prey provides for conversion into
predator births.

This choice is justifiable, because:

• The prey population grows logistically and, in a branch of an orange tree it
attains its carrying capacity in the absence of predation;

• The population of ladybugs, in the branch of an orange tree attains its car-
rying capacity proportional to the population of preys; and

• According to Morales and Buranr Jr. (1985), the number of aphids captured
per day by Cycloneda sangunea (adults, male and female), corresponds to
the functional response of Holling’s Type II.

Some parameters may be obtained:

• Since the adult ladybug consumes, on average, 20 aphids a day, then D = 10;
• A population of 200 aphids per branch is considered large, that is why it was

considered K = 200 as the carrying capacity of the prey population;
• Considering that an adult aphid generates up to 5 new nymphs a day, it shall

be taken r = 2; and
• If the ladybug population duplicates in 1.03 weeks and only the females

reproduce, it was assumed that s = 0.3.

The other parameters, m and h, were fitted according to the data, (x, y),
generated by the fuzzy model, and substituting into equations (12.26) it was
found the following system of equations:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

dx

dt
= 2x

(

1 − x

200

)

− 30.625xy

10 + x

dy

dt
= 0.3y

(

1 − 22.142857
y

x

)

x(0) > 0, y(0) > 0,

(12.27)

where x is the number of preys and y is the number of predators.
Figure 12.8 presents an example of fitting for the two models. We can note

in figure 12.8b the limit cycle commonly expected in the classical predator-prey
dynamical system. We can also observe that both two initial conditions tend to
this limit cycle: x0 = 110 for prey, and y0 = 3.2 for predator, which is a start
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Fig. 12.8. (a) Phase-plane of the fuzzy model and (b) phase-plane of the deterministic
model; considering two initial conditions: x0 = 110 for prey, y0 = 3.2 for predator and
x0 = 100 for prey, y0 = 2.3 for predator (Peixoto et al., 2008a)

point inside the limit cycle; and x0 = 100 for prey, and y0 = 2.3 for predator,
which is a start point outside the limit cycle. The same behavior was found from
fuzzy model (see figure 12.8a).

Note that it is possible to fit the curves in order to find suitable parameters
for deterministic models. This is achieved by using the phase-plane curve from
the fuzzy model. The great advantage of obtaining parameters for differential
equations given by (12.26) is the fact that it allows a stability analysis of the
system.

System (12.27) was analyzed in order to find its critical points, that is, the
pair of values x and y that turns the derivatives null and kept the system in
equilibrium, without changing the values of x and y. One can note that the
system above has a possible pair: (77.5, 3.5).

It is important to study what happens when the initial populations x0 and y0
are very near the critical populations, that is, (x, y) is near (77.5, 3.5).

The system (12.26) is the same one to which Tanner (1975) wrote the stability
analysis. Following Tanner’s procedure, we may consider isoclines equations of
the prey and predator populations. The peak of the prey critical line of (12.26)
is at (K − D)/2. It results in:

1. If K is small, then the critical point to the right of the peak of the prey
critical line is a stable focus for all values of s/r;

2. If K is large, the critical point is left to the peak of the prey critical line, and
s/r is larger than a boundary value determined by rh/m, then the critical
point is an stable focus;

3. If K is large, the critical point is left to the peak of the prey critical line,
and s/r is less than a boundary value determined by rh/m, then the critical
point is focus of a limit cycle; and

4. If K is infinite and s/r is smaller than rh/m, then the critical point is an
unstable focus.
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To analyze the stability of the critical point (77.5, 3.5), it was used the result
above. The isocline equations are given by:

⎧
⎪⎨

⎪⎩

y =
2

30.625
(10 + x)

(

1 − x

200

)

y =
x

22.142857

(12.28)

isoclines of the prey and predation population, respectively, referring to the
system of equations (12.27).

The maximum of prey isocline is:

K − D

2
= 95 > x∗ = 77.5, (12.29)

and thus, the critical point is on the right side of the maximum. Yet,

rh

m
= 1.446 >

s

r
= 0.15. (12.30)

From (12.29) e (12.30), the critical point (77.5, 3.5) is the focus of a cycle.

12.2.5 Discussion

In this section a hybrid fuzzy logic approach, proposed by Peixoto et al (2008a),
was applied to Ecology/Epidemiology. Primarily, they have been able to model
the ladybug-aphids dynamics without using explicit differential equations. They
used only intuitive hypotheses of the predator-prey interaction and data from
experts. This work illustrates that the fuzzy sets theory can contribute in an
important way to the construction of mathematical models, mainly when some
parameters of the differential equations are not available.

Without doubt, the great advantage of obtaining the parameters of differential
equations lies in the fact that it allows the stability analysis of the system can
be carry out.

Finally, we would like to highlight some advantages of using fuzzy rule-based
models as opposed to deterministic models, in the particular scenario of dynam-
ical systems presented:

• Several differential equations parameters of the predator-prey type systems
are not available;

• In the fuzzy model, a rule base was used instead of systems given by equa-
tions, eliminating the difficulty of obtaining the parameters. In addition, these
parameters can be obtained, if needed, through curve fitting procedure from
the solutions obtained by the fuzzy rule-based models; and

• The input and output sets of the fuzzy rule-based systems can be easily
constructed with the help of experts in the field, that is, a expert will know
when the population of a particular species is small, large, and so forth.

The fuzzy dynamical methodology described in this section has been widely
applied by Barros and collaborators to describe the dynamic of diseases with
direct transmission (Barros et al., 2007).



13 ...and Beyond: Fuzzy Logic in Medical
Diagnosis

The purpose of this chapters is to provide a review and commentary on the cur-
rent state of fuzzy logic applications in medical diagnosis. A symposium on fuzzy
diagnostic and therapeutic decision support, organized by Adlassnig (2000) may
be considered a watershed in the application of fuzzy logic in medical problems.
For a deeper discussion on fuzzy logic in medicine see Szczepaniak et al. (2000).

Doctors have always been fascinated by diagnosis and the means by which
it can be reached (see figure13.1), but the purpose of studying diagnostic logic
has simply been to improve thought processes (Macartney, 1987). More recently,
however, a second purpose is becoming more important: the design of expert
systems and computer modeling able to perform medical diagnosis. In addition,
the paradigm shift represented by the emergence of Evidence Based Medicine,
the conscientious, explicit and judicious use of current best evidence in making
decision about the care of individual patients (Sackett et al., 1997) is unearthing
new problems related to the logic behind diagnosis.

Medical diagnosis has been defined as “the crucial process that labels patients
and classifies their illnesses, that identifies their likely prognosis, and that defines
the best treatment available” (Sackett et al., 1991). It is, actually, a complex
process characterized by uncertainty in many stages (Bellamy, 1997).

The act of clinical diagnosis is, therefore, a process of classification, that is,
an effort to recognize the class to which a patient’s illness belongs (Sackett et
al., 1991). In a broader context, the clinical practice should be focused on the
five clinical objectives, described by Sackett et al. (1997):

1. achieving a diagnosis;
2. estimating a prognosis;
3. deciding on the best therapy;
4. determining harm (related to item 3); and
5. providing care of the best quality.

Therefore, we may think of diagnosis proceedings from symptoms and signs
(and laboratory tests) to focus on the documentation of maladaptive alter-
ations in structure, function, and/or response to stimuli (Sackett et al, 1991).

E. Massad et al.: Fuzzy Log. in Act.: Appl. in Epidem. & Bey., STUDFUZZ 232, pp. 277–310, 2008.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2008
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Fig. 13.1. Doctor Rene Laennec ausculting a patient (from Porter, 1996)

Alternatively, diagnosis can proceed from symptoms and signs (and laboratory
tests) to focus on prognosis. Finally, diagnosis may focus on a therapeutic trial
of identifying the target disorder on the basis of its response to specific therapy
(Sackett et al., 1991).

13.1 The Diagnostic Process

Several attempts have been made to identify the possible cognitive pathways that
lead to diagnosis. In this chapter we focus on Sackett el al. (1991) description of
the four strategies of clinical diagnosis.

The first strategy is called pattern recognition, and is based on gestalt meth-
ods. It is defined as the “instantaneous realization that the patient’s presentation
conforms to a previously learned pattern of disease” (Sackett et al., 1991). It is
usually sensorial and reflexive. Doctors do it but cannot explain to others why
or how they do it. This strategy is applied by experienced clinicians and is often
described as intuitive. Normally, the diagnosis is performed at first sight (or any
other sensorial input from the patient) of the patient. An example of such an
approach is the diagnosis of parkinsonism in which the doctor labels the patient
rather quickly just by watching her gait or by hearing his/her speech.

The second strategy is called multiple-branching or arborization strategy of
diagnosis. It is defined as “the progression of the diagnostic process down but
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one of a large number of potential, presents paths by a method in which the
response to each diagnostic inquiry automatically determines the next inquiry
to be carried out and, ultimately, the correct diagnosis” (Sackett et al., 1991). It
is very logical and it is based on algorithms and flow charts and it is particularly
useful when trials, not treatment, is the objective. This method is also very useful
when diagnosis is delegated from physicians to nurses or paramedical staff.

The third strategy is called strategy of exhaustion. It is defined as the
“painstaking, invariant search for all medical facts about the patient, followed
by sifting through the data for the diagnosis” (Sackett et al., 1991). This method
is very time consuming and it is performed in two stages: first, the collection
of all the potentially pertinent data, and second, the searching through it for
the diagnosis. The strategy of exhaustion is the method of the novice and it is
abandoned with experience.

The fourth strategy is called the hypothetic-deductive strategy and it is the
one used by virtually all doctors, virtually all the time. It is the “formulation,
from the earliest clues about the patient, of a short list of potential diagnosis
or actions, followed by the performance of those clinical and complementary
maneuvers that will best reduce the length of the list” (Sackett et al., 1991).
The hypothetic-deductive approach has been considered the most appropriate
diagnostic process in the sense that it is time saving and it has the greatest
accuracy.

In summary, diagnostic approaches can usefully be described as one or a com-
bination of four types: the pattern recognition approach of the seasoned clinical,
the multiple-branching method of the delegate, the exhaustion method of the
novice, and the most widely used strategy, the hypothetic-deductive approach
(Sackett et al., 1991).

13.2 Computer Models and Expert Systems for Medical
Diagnosis

As mentioned above, the logical analysis of the diagnostic process makes the
medical diagnosis amenable to be mimicked (and if possible, surpassed) by com-
puter systems. This sort of approach is based on the assumption that diagnosis
is a highly desirable end and that doctors want a system that will do better than
the best clinician.

The development of computer models of medical diagnosis as applied to the
construction of expert systems is part of Artificial Intelligence. Before we de-
scribe the expert systems already developed for medical diagnosis, however, let
us first discuss the mathematical foundations of the available computer models.

13.2.1 Mathematical Models in Medical Diagnosis

The vast capacity of modern computers to process and store data and to carry
out, almost instantaneously, complex logical manipulations has encouraged the
description of the diagnostic process in mathematical terms. This formalization
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of the diagnostic logic, in turn, has allowed the development of computer pro-
grams that can aid physicians in their attempts to solve their patients’ problems
accurately and safely through the application of ever-expanding medical knowl-
edge (Miller et al., 1981).

The mathematical and statistical techniques already applied in classical
expert systems include decision trees and other logical schematics, likelihood
ratio, Bayes’theorem, discriminant analysis, and cluster analysis. In addition,
subsidiary mathematical techniques has been developed for helping machine-
learning systems, like the backpropagation algorithm of connectionist networks.
Some of the above techniques are aimed at the classificatory aspect of diagnosis,
like discriminant analysis and cluster analysis. In this chapter we deal only with
those mathematical and statistical aspects of uncertainty.

In what follows we, therefore, briefly describe the five main “classical” tech-
niques for dealing with uncertainty, namely, Bayesian reasoning, Bayesian belief
networks, the Dempster-Schaffer theory of evidence, the Stanford certainty factor
algebra, and Causal networks.

Bayesian reasoning

Using probability, we can determine, often from a priori argument, the chances
of events occurring. In knowledge-based problem solving, like in medical diag-
nosis, we often find ourselves reasoning with limited knowledge and incomplete
information. Several techniques have been designed to deal with such a limited
knowledge and information and, before we start the discussion of fuzzy reasoning
we describe some of the techniques of probabilistic reasoning.

Bayesian reasoning is based in formal probability theory and is used exten-
sively in several current areas of research, including pattern recognition and
classification, both of paramount importance in diagnostic applications.

The Bayesian approach is based on prior probabilities, the unconditioned prob-
ability assigned to an event in the absence of knowledge supporting its occurrence
or absence, and posterior probability, the condition probability of an event given
some evidence. The usual notation for prior probability is p(event) and for pos-
terior probability is p (event|evidence). So, for instance, the prior probability of
a person having a disease is the number of people with the disease divided by
the number of people in the domain of concern. The posterior probability of a
person having a disease d with symptom s is given by:

p (d|s) =
|d ∩ s|

|s| , (13.1)

where the bars brackets meaning the number of elements in that set. Therefore,
the posterior probability given by equation (13.1) is the number of people having
both (intersection) the disease d and symptom s divided by the total number of
people having the symptom s. Equation (13.1) can also be written:

p (d|s) =
p(d) × p(s|d)

p(s)
(13.2)

also known as Bayes equation or Bayes theorem.
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In clinical terms, the prior probability p(d) is called the prevalence of the
disease, and the posterior p(s|d) the sensitivity of the diagnostic test that re-
vealed s (by the way, s may be a symptom, a sign, a laboratory test or any other
diagnostic information). In real situations, however, rarely a final diagnostic is
reached by a single symptom (sign, and/or laboratory test). We, therefore, need
a generalized version of equation (13.2), a form of Bayes with multiple symptoms
(signs and/or laboratory tests):

p (d|s1&s2&...&sn) =
p(d) × p (s1&s2&...&sn|d)

p(s1&s2&...&sn)
. (13.3)

Now, for m diseases and n symptoms (signs and/or laboratory tests) there will
be about (m×n2 conditional probabilities) plus (n2 symptom probabilities) plus
(m disease probabilities), or about m×n2+n2+m pieces of information to collect.
In a realistic medical system with 100 diseases and 1000 symptoms (signs and/or
laboratory tests), this value is (100 × 10002 + 10002 + 100) = 1.01 × 108, that
is, over 100 millions! This simple calculation illustrates the difficulties involving
such an approach.

Bayesian belief networks

Bayesian belief networks relax several constraints of the full Bayesian approach,
basing on three assumptions. The first is that the modularity of the problem
domain may allow us to relax many of the dependence/independence constraints
required for Bayes approach. The second assumption is that the links between the
nodes of the belief network are represented by conditional probabilities. Thus for
nodes A and B of the network, the link between A and B, denoted by A → B(c),
reflects the evidences A′s support for the belief in B with some confidence c,
sometimes called causal influence measure (Luger & Stubblefield, 1998). The
third assumption is that coherent pattern of reasoning may be reflected as paths
through cause/symptoms relationships. Causes can influence the likelihood of
their symptoms and the presence of a symptom can affect the likelihood of all
its possible causes. To create a belief network we must make a clear distinction
between these two kinds of potential influence, and then select the path our
reasoning will take through the network.

In a very simple case, let us consider a possible serial relationship of A on B
and B on C (Luger & Stubblefield, 1998):

A ←→ B −→ C (13.4)

with A → B(c1) and B → C(c2), where c1 and c2 are the causal influence
measures. If there is no evidence supporting B then A and C are called d-
separated and independent. If there is evidence of B then C cannot support A,
although evidence for B can support A.

As mentioned by Luger and Stubblefield (1998), Bayesian belief networks seem
to reflect how humans reason in complex domain where some factors are known
and related a priori.
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A clinical example of such a complex relationship would be the infections of
the urinary tract in diabetic patients. It is known that diabetes increases the
susceptibility to urinary infections and these may by themself cause a worsen-
ing in the diabetic condition by causing a disequilibrium of the clinical state.
So diabetes, A, is correlated with urinary infections, B, which causes a set of
symptoms, C, unrelated to the diabetic condition.

The Dempster-Schafer theory of evidence

Uncertainty often results from a combination of missing evidence, the inher-
ent limitations of heuristic rules and the limitation of our own knowledge. The
Dempster-Schafer theory of evidence considers sets of propositions and assigns
to each of them an interval [belief, plausibility] within which the degree of be-
lief for each proposition must lie. This belief measure, denoted bl, ranges from
zero (no evidence) to one (certainty). Its complement is called plausibility, and
is denoted pl. So, for a proposition a we have:

pl(a) = 1 − bl(¬a), (13.5)

where ¬a means not a. Plausibility also ranges between zero and one and reflects
how evidence of not a, ¬a, relates the possibility for belief in a. Dempster-
Schafer address the problem of measuring certainty by asking for a fundamental
distinction between lack of certainty and ignorance. Belief functions allow us
to use our knowledge to bound the assignment of probabilities to events in the
absence of exact probabilities. The Dempster-Schafer theory is based on the idea
of obtaining degrees of belief for one question from subjective probabilities for
related questions and the use of a rule for combining the degrees of belief when
they are based on independent items of evidence.

Let us suppose that we have a diagnosis domain H containing some diagnostic
hypothesis that a patient has tuberculosis (T ), pneumonia (P ), or common cold
(C), that is, H = {T, P, C}. We have to associate measures of beliefs with the
hypotheses set within the domain H . Evidence need not support individuals
hypothesis exclusively. So, for instance, the presence of fever would support our
three hypotheses simultaneously. On the other hand, evidence in favor of some
hypothesis may affect belief in others.

The next step is to define a probability density function, d, for all subsets of
the set H , where d(hi) represents the belief that is currently assigned to each hi

of H (where in this case
∑

d(hi) = 1). If H has n elements then there are 2n

subsets of H . Since many of the subsets will never occur, it is possible to deal
with the remaining subsets. The plausibility of H is:

pl(H) = 1 −
∑

d(hi), (13.6)

where the hi are the sets of hypotheses that have some supporting belief. When-
ever we start a diagnosis, it is often the case that we have no information about
any hypothesis, then pl(H) = 1.
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In the our diagnostic example the set H is composed by 3 elements, result-
ing in 8 subsets found by the combinations of those elements. Suppose our first
evidence is that the patient has cough, and that this supports {T, P} at 0.8.
If this is our only hypothesis, then d1 {T, P} = 0.8 and d1(Q1) = 0.2 to ac-
count for the remaining distribution of belief, that is, all other possible beliefs
across H (and not our belief in the complement of {T, P}). Therefore, Q1 is the
subset composed by all possible subsets of H except the set {T, P}. We next
proceed by amplifying our investigation space and have now that the patient
also has headache, which has the support level of {P, C} to 0.6, and so we have
d2 {P, C} = 0.6 and d2(Q2) = 0.4, where Q2 is the subset found by all possible
subsets of H expect the set {P, C}. These two beliefs may now be combined by
the Dempster’s rule (Luger & Stubblefield, 1998) in order to find another belief
measure, d3:

d3(Z) =
∑

X∩Y =Z d1(X)d2(Y )
1 −∑X∩Y =∅ d1(X)d2(Y )

. (13.7)

where the belief in the hypothesis Z, or d3(Z), is the sum of the products of the
hypothetical situations d1(X) and d2(Y ), whose co-occurrence supports Z, that
is, X ∩ Y = Z. Since there are situations in that X ∩ Y = ∅, so the sum of the
confidences must be normalized by one minus the sum of these values (Luger &
Stubblefield, 1998).

So that, considering the two evidences of our example, d1 and d2, and comput-
ing all possible ways of intersecting X and Y hypotheses, we can find table 13.1.

Table 13.1. Possible hypotheses and their belief values through the Dempster’s rule
(13.7) for the diagnostic example

Belief measure on Belief measure on Belief measure on
evidence d1 evidence d2 evidence d3

d1 {T, P} = 0.8 d2 {P, C} = 0.6 d3 {P} = 0.48
d1 {Q1} = 0.2 d2 {P, C} = 0.6 d3 {P, C} = 0.12

d1 {T, P} = 0.8 d2 {Q2} = 0.4 d3 {T, P} = 0.32
d1 {Q1} = 0.2 d2 {Q2} = 0.4 d3 {Q3} = 0.08

As there are no sets X ∩ Y that are empty, the denominator of equation
(13.7) is 1. So, in this case, the sum of all d3 belief values in the third column of
table 13.1 is equal 1. We may, therefore, assign a belief of 0.48 that the patient
in our example has pneumonia.

The great advantage of this Dempster-Shafer approach is that if another
evidence is acquired, d4, the set of new possible hypothesis and their belief
values can be computed through the combination of the probability density
functions d3 and d4, by the application of the Dempter’s rule over them. The
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Dempster-Shafer approach is a very useful tool when the stronger Bayesian con-
clusions may not be justified (Luger & Stubblefield, 1998).

13.2.2 The Stanford Certainty Factor Algebra

Unlike Bayesian approaches, which attempt to measure the probability with
which evidence supports a conclusion, certainty theory (Buchanan & Shortliffe,
1984) attempts to measure the confidence merited by a given heuristic. This
heuristic approach is based on estimates of the confidence we are justified in
having experts conclusions. Those estimates are weighted with other heuristics
derived from the experts experiences and comprise terms like “very probable”,
“almost certainly” or “possible”. Certainty theory is an effort to formalize this
heuristic approach to reasoning with uncertainty.

The Stanford certainty theory creates confidence measures and some simple
rules for combing these confidences. It splits “confidence for” from “confidence
against”. These two measures constrain each other in the sense that a given piece
of evidence is either for or against a particular hypothesis.

The confidence measures of the Stanford certainty factor tradition are a hu-
man subjective estimate of symptom/cause probability measure. Although it is
defined in a formal algebra, the meaning of the certainty measures is not as
rigorously founded as is formal probability theory. Its measures are ad hoc in
the same sense that a human expert’s confidence in his/her results is approxi-
mate, heuristic, and informal. The most important application of this theory on
medical diagnosis is the famous MYCIN program described below.

Causal Networks

In causal models relationships are depicted as links between nodes in a graph or
a network. This approach consists in mapping of observations onto a network of
nodes and the linking the nodes in a causally coherent pattern.

A complete causal pathway from a start node to a terminal node represents
a complete disease process. Confirmation of a state is derived either from as-
sociated observations, or indirectly through the causal link to another state for
which there is some evidence.

The construction of the causal network consists in five operators (Luger &
Stubblefield, 1998): aggregation, elaboration, decomposition, summation and pro-
jection. This approach has been applied in several diagnostic problems like glau-
coma (Weiss et al., 1978a and 1978b) and acid base and electrolyte imbalances
(Patil et al., 1981).

13.2.3 Expert Systems for Medical Diagnosis

Expert systems applied to medical diagnosis are part of the so called clinical
decision-support systems (Shortliffe, 2001), which can be defined as any com-
puter program designed to health professionals make decisions. They can be
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divided basically into three categories: tools for information management, tools
for focusing attention and tools for patient-specific consultation. We will stick
with the latter.

The first computer softwares aiming medical diagnosis were the de Dombal’s
system for diagnosis of abdominal pain (de Dombal et al., 1972) and Shortliffe’s
system for selection of antibiotic therapy (Shortliffe, 1976).

De Dombal’s system is based on Bayesian reasoning and it is so successful
that it is still in use in the United Kingdom. Using surgical or pathologic di-
agnosis as the gold standard, the group leaded by de Dombal have emphasized
the importance of deriving conditional probabilities used in Bayesian reason-
ing from high-quality data that they have gathered by collecting information
on thousands of patients (Shortliffe, 2001). The system applied the sensitivity,
specificity, and prevalence data for various signs, symptoms, and lab tests to
calculate the conditional probabilities of seven possible diagnostics of abdomi-
nal pain, namely, appendicitis, diverticulitis, perforated ulcer, cholecystitis, small
bowel obstruction, pancreatitis, and nonspecific abdominal pain. In one famous
test the software performed diagnosis of abdominal pain in a sample of 304 pa-
tients, scoring 91.8% of accuracy, against 65% to 80% of the clinicians’ diagnosis
(de Dombal et al., 1972). In addition, in six of the seven disease categories, the
software was more likely to assign patients to the correct disease category than
the senior clinician in charge of the case.

Some years after the development of de Dombal’s system, the Stanford group,
leaded by Shortliffe presented MYCIN (Shortliffe, 1976), a consultation system
that applies the above mentioned heuristic certainty factor algebra. The system
was designed to explain the advice it offered, to justify its performance using
simple English sentences, to learn new information through interactions with
experts, to encode knowledge in a modular format, and to have prompts, an-
swers, and volunteered information that matched its users’ needs. The developers
evaluated MYCIN’s performance on therapy selection for patients with blood-
borne bacterial infections, and for those with meningitis. MYCIN is a landmark
on developing medical aid systems, and is best viewed as an early exploration
of methods for capturing and applying ill-structured expert knowledge to solve
important medical problems.

Most decision-support systems have assumed a passive role in giving advice to
clinicians. In contrast, some systems have been developed that play a more active
role and do not wait for physicians specifically to ask for assistance (Shortliffe,
2001). This kind of active systems are, however, more turned to other medical
applications than diagnosis. The latter are normally classified into two basic
styles of interaction (Shortliffe, 2001): the consulting model or the critiquing
model. In the first model, the system serves as an advisor, accepting patient-
specific data, asking questions, and generating advise for the user about diag-
nosis or management. Examples are the MYCIN, the general medical diagnostic
program DXplain (Barnett et al., 1987), and Internist-1/QMR (Miller et al.,
1986). Critiquing model systems assume a preconceived notion of a diagnosis.
The program then acts as an advisor for the physician, expressing agreement or
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suggesting reasoned alternatives. Examples of this kind of model is ATTEND-
ING, a program designed for anesthesia (Miller, 1983), and ONCOCIN, a system
for clinical oncology (Shortliffe, 1986).

The softwares CASNET and ABEL apply causal networks, described above,
and are examples of systems that deal very well with uncertainty in medical rea-
soning. ABEL, for instance, represented the state-of-the-art in clinical reasoning
for its time and still remains unsurpassed in its hierarchical integration of causal
reasoning across multiple level of details (Luger & Stubblefield, 1998).

Another interesting class of computer models applied to medical diagnosis is
the so called connectionist systems, also known as parallel distributed processing
systems. They hold that intelligence arises in systems of simple, interacting com-
ponents through a process of learning or adaptation by which the connections
between the components are adjusted. The process is distributed across layers
of artificial neurons (these systems are also called neural networks). Neural net-
works mimic the human brain’s methods of problem solving by constructing
artificial “neurons” in the process of analyzing the data. Data can be entered in
the form of numbers, patterns, or even sounds and images. Neurons are created
by the program and connected in a straightforward, one-to-one manner as well
as in complex arrays. The user is rarely aware of the number and relative impor-
tance (weighting) of these units. During analysis of a problem, a neural network
can spontaneously grow (add new neurons) and re-weight itself.

In normal operation a user provides a data set (called inputs), and usually a
single output, to “train” the network. The neural network “digest” the data, re-
weights the inputs, and add layers of neurons as necessary to accurately predict
the output. This prediction is then compared with the known output of an
actual experiment. In older programs of this type, a user could then readjust
weightings and algorithms to make predicted results move closer to observed
results. Newer systems, however, do that on automatic mode, although a software
can be supplied to allow more user control.

Problem solving is parallel in the sense that all the neurons within the layers
process their inputs simultaneously and independently. These systems have the
enormous advantage of being able to learn when properly trained by one of a
set of algorithms. On the other hand, they work like black boxes in the sense
that when they err it is almost impossible to discover why they erred. In medical
diagnosis, connectionist systems are very suitable for classification (deciding the
category to which an input value belongs) and pattern recognition (identifying
structure in sometimes noisy data).

Connectionist models for medical diagnosis have been rather popular, both as
a subject of research and as application tools. The medical publication database
MEDLINE presents 820 papers on neural networks and diagnosis published
within the last two years (2006-2007). Illustrative samples are the articles by
Falk et al. (1998) who use neural networks as an aid in the determination of
disease status; by Rudzki et al. (1997), who published a paper on focal liver
disease, using a neural network-aided diagnosis based on clinical and labora-
tory data; the paper by Tourassi et al. (1998), who present a cost-effectiveness
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analysis of the effect of artificial neural networks on patient care of acute pul-
monary embolism; the application of artificial neural networks by Shiomi et al.
(1997) on the diagnosis of chronic liver disease; by Levin et al. (1996), who pub-
lished a paper on neural network differentiation of optic neuritis and anterior
ischemic optic neuropathy; by Venta et al. (1998), who demonstrates how diag-
nosis of breast implant rupture can be improved with sonographic findings and
artificial neural networks; by Pesonen et al. (1998), who evaluate the diagno-
sis of acute appendicitis with neural networks; by Reategui et al. (1997), who
combined neural network with case-based reasoning in a diagnostic system; by
Holst et al. (1998), who applied an intelligent computer system reporting lack of
confidence, a proposal of a confidence measure for decision support systems; by
Downs et al. (1996), who present an application of a neural network model to
medical pattern classification tasks; and more recently, by Mueller et al. (2004),
who developed an expert system to predict the extubation outcome in preterm
newborns and compared the neural networks approach with clinical expertise
and statistical modeling; by Kahya and collaborators (2006), who classified res-
piratory sounds with different feature sets using neural network structures; by
Marcos et al. (2007), who applied neural network classifiers in the diagnosis of
the obstructive sleep apnea syndrome; in the same way, Emoto et al. (2007),
developed a neural network system to extract the features of snore soundjust,
which is the earliest and the most common symptom of obstructive sleep apnea;
just to mention a few. A good review on neural networks can be found in Rocha
(1992).

13.3 Fuzzy Diagnostic Systems

In the previous sections we showed how mathematical and computer models can
aid to deal with uncertainty and lack of complete information. In this section we
present fuzzy logic tools which, in addition of their great capacity to dealing with
uncertainty and incomplete information, are also able to deal with the vagueness
related with medical diagnosis.

The process of classifying different sets of symptoms, signs and laboratory
tests under a single name is getting increasingly difficult. Several factors are con-
tributing to this fact like the enormous amount of medical information available
for clinicians and, most important, the great variety of uncertainties, vagueness
and ambiguities involved in the diagnostic process. Therefore, alternative meth-
ods are desperately needed for the design of diagnostic systems. Fuzzy logic is
one of the best current candidate for this role.

We have already mentioned in previous sections that the medical diagnosis
process can be viewed as a process by which a clinician assigns a label to a
patient. Therefore, at the heart of the diagnostic process is the idea of catego-
rization. However, the terms diagnosis, symptoms and signs, are applied in a very
loose way to refer to the labels and information available. Except in a few cases,
the line dividing health and disease is irreducibly fuzzy. Furthermore, symptoms
are often subjectively described by the patient and the signs collected by the
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physicians, except when she/he has a measurement instrument like a thermome-
ter or a sphygmomanometer, which measure crisp variables, are very frequently
surrounded by uncertainties and ambiguities. In addition, the descriptions of
symptoms from the patients and of disease entities by the physicians often use
linguistic terms that are irreducibly vague (see discussions on chapters 1 and 5).
Even complementary tests, frequently considered as crisp parametrization of
medical practice, are, in some cases, extremely subjective, either in their inter-
pretation (what is the meaning of a glycemia of 110 mg/dl, a normal test or an
indication of diabetes ?) or in its very presentation (can you imagine anything
more fuzzy than an ultrasonography image?).

Let us begin by the assumption that the aim of the diagnostic process is to
assign a label to patients who, in addition to their complaints (often presented
in a fuzzy way), present a cluster of clinical signs and laboratory (complemen-
tary) tests alterations. The clinical purpose then, is to differentiate a “normal”
from a “sick” individual. As briefly discussed in chapter 2, a classical view is to
consider a crisp divide between a healthy and a non-healthy individuals. So, we
need to start by defining what we understand by “health”. The World Health
Organization defines health as the complete absence of physical, mental or social
wellbeing. Have you ever heard a fuzziest definition?

Even when an objective, crisp laboratory test or any other auxiliary/com-
plementary diagnostic test is available, its results’ interpretation is often open
to discussion, that is, vague. One way or another, the test report will wind
up calling some results “normal” and others “abnormal”. Sacket et al. (1997)
recognize six definitions of “normal” in common use, listed in table 13.2.

In the Gaussian definition it is assumed a normal distribution and that all
“abornomalities” have same frequency; the Percentile definition has the same
basic defect as the Gaussian definition; the Culturally desirable definition con-
fuses the role of medicine; the Risk factor definition labels the outliers, which
may not be helped; the Diagnostic definition is the focus of this discussion; and
the Therapeutic definition means that you have to keep up with advances in
therapy.

The authors propose the use of definition 5 and comment that the others are
practically useless. Even definition 5, however, is irreducibly vague and leave
it clear that no sharp boundary between “normal” and “abnormal” results is
possible.

In a classical, standard approach, the diagnostic process should be, ideally a
classificatory process able to determine the crisp divide between healthy and non-
healthy individual. Let us imagine, like Bellamy (1997), that a reliable measure
of health is available and that a normal threshold, below which an individual
is classified as non-healthy exists. A good clinician should then be the one able
to classify individuals below (diseased) or above (healthy) such a threshold.
Figure 2.12 in chapter 2 illustrates this situation in terms of the classical sets
theory.

As mentioned in chapter 2, the most fundamental aspect of fuzzy set theory
is the idea of graded membership. Classifying individuals as healthy and not
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Table 13.2. Six definitions of “normal” (from Sacket et al., 1997)

Number Name Definition
1 Gaussian the mean +/− 2 standard deviations
2 Percentile within the range, say, 5 - 95%
3 Culturally desirable preferred by society
4 Risk factor carrying no additional risk of disease
5 Diagnostic range of results beyond which disease

is probable
6 Therapeutic range of results beyond which treatment

does more good than harm

healthy by using fuzzy sets offers several advantages over the use of crisp sets.
The two sets “healthy” and “not healthy” can be represented by triangular fuzzy
sets, as illustrated by figure 2.13 in chapter 2. So, if we consider a measure of
health, x, in the fuzzy sets approach an individual can presents some degree of
membership to the set of healthy individuals, healthy(x), and another degree of
membership to the set of non-healthy individuals, non − healthy(x). Further-
more, the membership degrees healthy(x) and non − healthy(x) do not need to
sum up 1, as usually is required in the probability theory. Indeed, considering
the diagnostic scenario described above, it is much more functional!

The fuzzy logic approach of modeling the diagnostic process is useful in
all the diagnostic approaches described in section 13.1: the pattern recogni-
tion approach; the multiple-branching method; the exhaustion method; and the
hypothetic-deductive approach. The pattern recognition approach, due to its in-
trinsic subjectiveness is probably the most prone to be aided by fuzzy logic mod-
eling. However, all the other approaches have several uncertainties and vagueness
associated with the classificatory process of diagnosis.

13.3.1 Fuzzy Relations Diagnostic Models

The fuzzy logic framework has been utilized in several different approaches to
modeling the diagnostic process (Klir & Yuan, 1995). The most simple fuzzy
structure applied in a diagnostic system is the fuzzy relations, defined in full
detail in section 2.5, in chapter 2. Some examples of fuzzy relations applied in
diagnostic process can be found in Sanchez (1979), and more recently in the
works of Reis et al. (2004 and 2005) and Lopes et al. (2006).

Let us now see an example of the application of the type of linguistic model
as a fuzzy relation between exposure levels, e, and disease severity, d. The ex-
ample provided in this section is a simplified version of the system CADIAG-2,
originally described in a set of seminal (and now historical) articles by Adlassnig
and Kolars (1982), Adlassnig et al. (1984), Adlassnig et al. (1985), Kolarz and
Adlassnig (1986), and Adlassnig (1986) system CADIAG-2. The improvement
of this system, the CADIAG-II/RHEUMA, is presented by Leitich et al. (2000),
and consists in a semiautomatic knowledge acquisition system for rheumatic
diseases and relates symptoms with specific diagnosis.
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This simplified version of CADIAG system here presented is due to Klir and
Yuan (1995). As mentioned above, we need to assign grades of membership
values to the linguistic quantifiers, which describe the fuzzy relationship between
exposure and disease, like proposed in table 13.3:

Table 13.3. Membership grades values to the linguistic quantifiers (Klir & Yuan, 1995)

Fuzzy quantifier Grade of membership
(μ)

always 1.00
often 0.75

unspecified 0.50
seldom 0.25
never 0.00
very μ2

The knowledge about the occurrence of exposure to a certain environmental
factor and a given disease may be described in such a relational model as a string
of statements of the kind:

• Exposure level e1 very seldom causes disease severity d1;
• Exposure level e1 often causes disease severity d2;
• Exposure level e2 always causes disease severity d1;
• Exposure level e3 very often causes disease severity d2; and
• Exposure level e3 seldom causes disease severity d1.

The causality relation, Rc is then given by the matrix:

d1 d2

Rc =
e1
e2
e3

⎡

⎣
0.06 0.75
1.00 0.00
0.25 0.56

⎤

⎦ .

Now, suppose three distinct populations, p1, p2 and p3, subject to the above
three exposure levels, e1, e2 and e3. A fuzzy relation, Re, specifying the degree
of exposure for those three populations is given by the matrix:

e1 e2 e2

Re =
p1
p2
p3

⎡

⎣
0.4 0.8 0.7
0.6 0.9 0.0
0.9 0.0 1.0

⎤

⎦ .

The fuzzy compositional rule of inference for this situation is given by:

R = Re ◦ Rc, (13.8)
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whose grade of membership function is given by the max − min composition of
fuzzy relations (see chapter 2):

μB(d) = max
e∈E

[min(μA(e), μR(d)], (13.9)

which provides:

d1 d2

R =
p1
p2
p3

⎡

⎣
0.80 0.56
0.90 0.60
0.25 0.75

⎤

⎦ .

Therefore, population p1 has possibility of 0.8 of developing disease severity
d1, and so for.

CADIAG-2 system incorporates relations between symptoms and diseases and
also between diseases themselves, between symptoms themselves, and between
combinations of symptoms and diseases. It demonstrated an accuracy of 94.5%
in achieving correct diagnosis in rheumatological diseases (Adlassnig, 1986).

13.3.2 Fuzzy Cluster Analysis Models

Another example provided by Klir and Yuan (1995) is a set of models which
utilize a technique proposed by Fordon and Bezdek (1979) and Esogbue and
Elder (1979, 1980 and 1983). Models of diagnosis using fuzzy cluster analysis
examine the similarity of the presence and severity of symptoms patterns, which
can be designated with degrees of memberships in fuzzy sets representing each
symptom category.

The patient is clustered to varying degrees with the prototypical patients
whose symptoms are most similar. The most likely diagnostic candidates are
those disease clusters in which the patient’s degree of membership is greatest.
The specific patient x presents itself displaying a set of symptoms si (again by
symptoms we mean in addition to symptoms, signs and laboratory tests) at
levels of severity given by a fuzzy set Ax, with Ax(si) denoting the grade of
membership of fuzzy set characterizing the patient and defined on the set of
symptoms S, which indicates the severity level of each symptom presented by
the patient.

Each of the likely diseases is described by a matrix Bl giving the upper and
lower bounds of the normal range of severity of each of the symptoms that should
be expected in a patient with the disease. We further define a fuzzy relation R
on the set of symptoms and diseases that specifies the pertinence or importance
of each symptom si in the diagnosis of the matrix of each likely disease dj .

The clustering is performed by computing a similarity measure between the
patient’s symptoms and those typical of each disease dj . The example provided
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by Klir and Yuan (1995) uses a distance measure based on the Minkowski dis-
tance given by:

Dp(dj , x) =
[∑

i∈Il
|R(si, dj)(Bjl(si) − Ax(si))|p

+
∑

i∈Iu
|R(si, dj)(Bju(si) − Ax(si))|p

]1/p
,

(13.10)

where R(si, dj) is the fuzzy relation between the symptom si and the disease dj ;
Bjl(si) is the matrix that describe the upper and lower bounds of the normal
range of severity of the symptom si related to the disease j; Ax(si) is the mem-
bership degree of the symptom si in the fuzzy set severity level related to the
patient x, Ax; and the sets Il and Iu is given by:

Il = {i ∈ Nm|Ax(si) < Bjl(si)}
Iu = {i ∈ Nm|Ax(si) < Bju(si)},

(13.11)

in which m denotes the total number of symptoms. The most likely disease
candidate is the one for which the similarity measure attains the minimum value.

13.3.3 Smets’ Model for Fuzzy Diagnosis

An interesting model was that proposed by Smets (1981) and analyzed with
detail in Bandemer and Gottwald (1995). Smets proposed modeling the rela-
tionships between diseases and clinical findings (symptoms, signs and/or lab
tests) by specifying credibility degrees. This author applied Shafer’s (1976) con-
cept, according to which it is possible to construct fuzzy measures starting from
incomplete specifications. So, for a finite universe X , a random variable x ∈ X ,
and a set P (X) it is possible to specify a mapping p : P (X) → [0, 1], which is
called basic probability assignment (Bandemer & Gottwald, 1995).

In addition, due to the normalization to 1, we have for a subset B of P (X):
∑

B∈P (X)

p(B) = 1. (13.12)

So, according to Shafer’s degree of credibility (or belief) we have for B:

Cr(B) =
∑

A⊆p(B)

p(A), (13.13)

in which Cr(B) represents the degree of confidence concentrated in B from the
events A′s that support B.

The Smets’ model assumes that a clinical finding, x is a random variables in
the clinical findings universe, x ∈ X , and d is a disease in the diseases universe,
d ∈ D. The model assumes focal sets and two basic probability assignment:
pX(·, d), which is the probability of the disease d in relation to the clinical findings
universe; and pD(·, x), which is the probability of the clinical finding x in relation
to the diseases universe. So from the equation (13.13) we can write:

CrX(A, d) =
∑

Ah⊆A

pX(Ah, d), (13.14)
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where CrX(A, d) is the credibility degree for A ∈ P (X), if the disease d ∈ D is
present, where P (X) is a power set of X . The sets A′

hs are the focal sets, in the
Shafer sense, in which Ah ∈ sup [pX(·, d)], i.e., the evidences that support A.

Assuming that the prior credibility degree over the situations expresses total
ignorance, that is pD(D) = 1 and pD(B) = 0 for all B ∈ P (D) with D �= B,
then the posterior credibility degree for B ∈ P (D), if a clinical finding x from
A ∈ P (X) was observed, is (Smets, 1993; Bandemer & Gottwald, 1995):

CrD|X:0(B, A) =
∑

d∈Bc CrX (Ac; d) − a

1 − a
, (13.15)

where
a =
∏

d∈D

CrX (Ac; d), (13.16)

where the index {D|X : 0} indicates that total ignorance with respect to D was
assumed.

When an informative prior credibility degree CrD, different from total igno-
rance is assumed, this degree can be connected with CrD|X:0 by the Dempster’s
rule of combination. This connection, represented by p1∩p2, brings together two
basic probability assignments over the same power set, where different direct or
indirect assignment, called conflicts, for certain subsets are reconciled (Bande-
mer & Gottwald, 1995). When this conflicts are very hard, the application of
Dempster’s rule is problematic.

The operation product p1 ·p2 over a set A is commutative and associative and
its basic probability assignments assume values in [0,1]. However, the sum over all
sets A in the power set can be less than 1, since the probability of the empty set
can be positive, i.e., (p1 · p2) (∅) > 0. In this case we say that there are conflicts
between the assignments p1 and p2. If the case of total conflict (p1 · p2) (∅) = 1 is
excluded, then we can renormalize p1 ·p2 and generate a conflict reconciling basic
probability assignment for all A �= ∅, similarly as been done in the Dempster’s
rule combination (Dempster, 1967; Bandemer & Gottwald, 1995), by:

(p1 ∩ p2) (A) =
(p1 · p2) (A)

1 − (p1 · p2) (∅)
. (13.17)

From this rule, it is possible to obtain the posterior probability assignment
for the informative case by:

pD|X(B, A) =
∑ pD|X:0(G; A)pD(C)

1 −∑G∩C=∅ pD|X:0(G; A)pD(C)
, (13.18)

where pD is the basic probability assignment for CrD and pD|X:0 is the assign-
ment for CrD|X:0 given by (13.15). In addition, the summation in (13.18) is
conditioned to the following bonds: G ∈ sup[pD|X:0], C ∈ sup[pD] and C ∩ B.
The summation term in the denominator of the equation (13.18) can be inter-
preted as an expression of the inconsistency between the prior and the “ignorant”
posterior credibility degree. Although the credibility degree was deduced for the



294 ...and Beyond: Fuzzy Logic in Medical Diagnosis

finite universe, it is also possible to deduce it for infinite universe sets (Smets,
1981).

Finally, the credibility of a fuzzy diagnosis B with the membership function
μB over D, if x ∈ A is observed, can be obtained through:

CrD|X(B|A) = E∗(μB |A), (13.19)

where E∗ is the expected value of the conditional (μB |A) (for more detail see
Smets, 1981 and 1993).

13.3.4 Bellamy’s State-Space Approach

One of the most interesting article on fuzzy medical diagnostic systems is by
Bellamy (1997), who proposes modeling diagnosis as a mapping between subsets
of property measurements and subsets of diagnostic categories, described within
multidimensional diagnostic spaces. This multidimensional space, combined with
a fuzzy sets representation of the variables and states of the patient, leads to a
fuzzy model of the diagnostic process.

As a matter of fact, the state-space approach for modeling the diagnostic
process has already been proposed in a probabilistic setting by Miller and col-
laborators (1981). This model utilizes an m-dimensional symptom space in which
each of the m axes represents a different clinical or laboratory finding. Within
this m-dimensional space, the findings of patients with established diagnosis
fall into definable, but frequently overlapping cluster. In figure 13.2 we show a
two-dimensional space, illustrating this concept.

Fig. 13.2. Two-dimensional state-space illustration

When plotter against each other, the hemoglobin concentration and spleen
size of patients with diagnosed acute lymphblastic leukemia (ALL) fall into the
ALL area. The findings of patients with iron deficiency anemia (FeDef) fall in
the Anemia area. If an undiagnosed patient (x) has hemoglobin of 6 gm/dl and a
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Fig. 13.3. Presence or absence of lymphoblasts in the bone marrow

enlarged spleen of 1+, findings that fall in the region of overlap, the differential
diagnosis consists of those diseases having symptom spaces overlapping at point
x, in this case ALL and FeDef. A probability distribution function over these
possible disease alternatives can be estimated by:

p(ALL) =
number of ALL with findings atx

total number of patients with findings at x
(13.20)

and

p(FeDef) =
number of FeDef with findings at x

total number of patients with findings at x
. (13.21)

If the p value of the most probable diagnosis is too low, new tests are needed.
Each new test adds an additional dimension to the diagnostic hyperspace. If
the new test has high specificity, its results clarify the diagnostic problem. In
figure 13.3, the presence or absence of lymphoblasts in the bone marrow has
been added as an additional axis in the diagnostic space. Since the presence
of lymphoblasts is highly specific for ALL, mutually exclusive diagnostic planes
free of overlap are formed. Patient’s x marrow is full of lymphoblasts. Therefore,
this patient falls on the ALL diagnostic phase and the diagnosis becomes certain
(Miller et al., 1981).

Bellamy’s model also assumes a multidimensional symptom space and plots
the specific patient as a point in such a space. In addition, he adds a dynamic,
representing how the system changes in time. As time passes, the point in the
multidimensional space moves around and the trajectory of the point describes
the behavior of the system. In figure 13.4 we show a five dimension diagnostic
space with patient x plotted as a point in this space:

The behavior of a patient over time is similarly modeled as a trajectory in a
multidimensional space, and the prognosis for a patient can be estimated from
the direction and rate of change of the trajectory (see figure 13.5). For example, if
the trajectory of many individuals patients with tuberculosis are followed during
the course of their recovery to the “healthy region”, a prognostic corridor can
be defined that covers the range of trajectories that indicate a good prognosis.
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Fig. 13.4. Illustrations of Bellamy’s model with five dimension diagnostic space

In his fuzzy diagnostic system Bellamy represents each dimension (input vari-
able) of the diagnostic space as a series of overlapping fuzzy subsets, like normal,
high, low, etc. (see figure 13.5):

Fig. 13.5. Illustration of Bellamy’ space with behavior of patients over time trajectories

Certain combinations of fuzzy subsets correspond to particular diagnostic
categories. For example, if the blood neutrophils counting is high, fever is mod-
erate, and low-back pain is intense, then the regions overlap in the pyelonephritis
region, and so on. In addition, each bounded region representing a specific di-
agnostic category is equivalent to one of the fuzzy linguistic rules used to relate
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Fig. 13.6. Illustration of Bellamy’ space for the diagnostic region for pyelonephritis

inputs to outputs, that is, the diagnostic region for pyelonephritis is equivalent
to the fuzzy rule described in that region of figure 13.6.

13.3.5 Other Fuzzy Diagnostic Systems

As mentioned above, a substantial number of articles dealing with fuzzy diagnos-
tic systems is available in the specialized literature. In the previous sections we
presented some of the most interesting diagnosis models considering their math-
ematical structures to deal with uncertainties. In this section we complement
this review on fuzzy medical diagnosis by briefly refer to some specific aspects
of the fuzzy approach to diagnosis systems.

In Bartolin et al. (1982), the theory of fuzzy logic is approached as a diagnostic
aid. A few theoretical considerations are followed by practical applications on
the diagnosis of hyperlipoproteinemias and on the classification of the four most
prevalent anemias encountered in internal medicine. The main conclusion of the
authors is that the various parameters involved in the analysis should be grouped
on a hierarchical basis.

Esogbue and Elder (1983) describe a study in which fuzzy diagnostic mod-
els were computerized, validated and compared with a physician hypothesis as
well as existing mathematical models. The authors present a critic of classical
mathematical models for medical diagnosis, which are known to perform very
poorly when compared to diagnosis made by real doctors. Among the factors
which contribute to this poor performance they include the omission by these
models of important information on the patient such as symptoms of past undi-
agnosed diseases which can only be vaguely recalled by the patient. In addition,
classical models fail to model the stage of development of the disease, and other
intrinsically fuzzy aspects of the information necessary for a medical hypothesis.
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The fuzzy models presented by these authors are exemplified by applications
concerning valvular heart disease. They conclude that the fuzzy logic approach
is not only practical but results in models of greater validity than those based
on classical set theoretic approaches.

Fuzzy numbers were applied in a computerized electrocardiography system
by Degani and Bortolan (1987). Those fuzzy numbers arise in the automatic
processing of electrocardiographic signals. The authors present a computerized
system for the diagnostic classification of the standard 12-lead electrocardiogram
and the results from this work exemplifies the usefulness of the fuzzy set ap-
proach to electrocardiographic diagnosis. Recently, the fuzzy numbers and their
arithmetic were deeply discussed and widely applied, to the understanding how
the brain computes and how the cognitive process is supported, by Rocha et al.
(2004).

A diagnostic method using fuzzy discrimination and connectivity analysis
is presented by Norris et al. (1987). This method described by these authors
constructs a numerical tabular knowledge base from historical cases, and derives
inferences from particular case histories using discrimination and connectivity
analysis which are based on a theory of fuzzy relations. The authors claim that
the method can handle incomplete information, partial inconsistency and fuzzy
descriptions of data in a natural way. The discriminating analysis ranks medical
symptoms for their relative ability to distinguish between a well defined set of
diseases. The connectivity analysis, in turn, establishes which sets of symptoms
are representative of each of the diseases. The systems was tested against senior
clinicians and performed favorably in diagnosing acute abdomen.

A route-choosing medical diagnostic technique is presented by Anderson
et al., (1987), in an article describing the central component of an expert system
for medical diagnosis. The method consists of an inference technique with special
reference to the use of fuzzy logic, a route-choosing heuristic method to reduce
the cost of reaching a diagnosis, and the tree-constructing of the domain which
follows clinicians’ division into syndromes.

Kuncheva (1990) proposed a fuzzy patterns recognition model to handle prob-
lems with non-crisp and multi-class membership of the objects. The model was
oriented to medical diagnostics, where patients suffer from more than one disease
in different degrees. The author designed a multi-level fuzzy decision scheme in
order to derive high performance, taking into account expert logic and human ex-
perience. The paper discuss two main topics, namely the criterion for evaluation
of classification accuracy and the training rule. In addition, the implementation
of the fuzzy multi-level classifier is illustrated with real clinical data, showing a
good diagnostic accuracy.

Another quite interesting approach to fuzzy modeling is due to Torasso (1991),
who designed a diagnostic expert system with heuristic learning capability. The
role of the supervisor is analyzed and a set of strategies is defined which allows
the system to implement different policies. The organization of the system has
been strongly influenced by the results obtained so far in investigating the prop-
erties of neural nets and human learning. The learning system is able to revise
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the knowledge bases used by the consultation system by taking into account the
experience gained in solving cases as well as the confirmation (disconfirmation)
of diagnosis provided by the external world. In particular the learning system
revises the membership functions between findings and diagnostic hypotheses
and the membership relations defined among diagnostic hypotheses. In this arti-
cle the author describes the behavior of the learning system in the conservative
approach and discusses some alternative solutions for memory organization.

The article by Maŕın and Mira (1991) discusses the role of knowledge in the
problem of classification and presents a knowledge-oriented fuzzy classification
system suitable for use in fields in which classification criteria, though numer-
ically imprecise, can be formulated in natural language, and in which it is im-
portant to retain the expert’s conceptual descriptions. This knowledge-oriented
fuzzy classifier extends previous fuzzy nearest neighbor techniques in that it
generalizes the concept of a design set, in order to allow both reference sets and
their labeling to be defined in fuzzy terms by an expert, expressing items of his
knowledge in production role format. The article exemplify the application of
the knowledge-oriented fuzzy classifier with a study in fetal medicine.

A very interesting, albeit somewhat odd paper was presented by Demling
(1992) dealing with chaos theory, fractals and fuzzy logic. The author argues
that chaos researchers are attempting, in a non-linear world, to understand
mathematically a dynamic, apparently unordered system. In this connection,
the fractal dimension also appears, which can be employed in the area of diag-
nosis to define tumor contours.

Diagnostic imaging is the subject of a paper by Stroke (1993), who demon-
strated that the single most important elements in the current development of
imagenology is the feasibility of diagnostic imaging that results from the use of
mathematical methods, implemented with digital computers. The author men-
tions computerized tomography, magnetic resonance imaging and other mod-
erns techniques that use three-dimensional image recording and reconstruction,
as promising fields of investigation for the use of fuzzy logic. He also considers
the role of fuzzy logic as an important component of the dramatic change from
empirical to scientific technology in radiology and general medicine.

A fuzzy expert computer-assisted diagnosis system for osteoporosis is pre-
sented by Binaghi et al. (1993). The article shows how the diagnosis system can
be employed to build a fuzzy medical expert system in the domain of post-
menopausal osteoporosis. The aims of the expert system are to standardize
knowledge and support physicians in the early detection of postmenopausal os-
teoporosis. A wide range of diagnostic situations has been considered for both
categories of the disease, with judgments that range from disease is excluded
to disease is definite. The salient aspects of the approach are the use of fuzzy
logic as an analytic language for the representation and manipulation of knowl-
edge and strategies and the integration of structured interview techniques and
learning-by-example to address the knowledge acquisition task.

The diagnosis of iron deficiency by a fuzzy computerized system is the subject
of a paper by Causer et al. (1994). The aim of this study was to develop an expert
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system that could reproduce a pathologist’s diagnosis of iron deficiency from the
data obtained from blood test. The diagnostic system used a combination of
fuzzy set and cut-off points from 14 parameters to arrive at one of 5 diagnostic
categories graded from iron deficient to no evidence of iron deficiency. The
authors found an overall agreement between pathologist and expert system of
71%.

The diagnosis of acute abdominal pain is modeled by a fuzzy expert system
proposed by Fathi-Torbagham and Meyer (1994). The authors considered that
knowledge in acute abdominal pain is characterized by uncertainty, imprecision
and vagueness, and therefore, it is rather amenable to the application of fuzzy
logic techniques. The representation and application of uncertain and imprecise
knowledge is carried out by fuzzy sets and fuzzy relations. The hybrid concept
of the system enables the integration of rule-based, heuristic and case-based rea-
soning on the basis of imprecise information. The central idea of the integration
is to use case-based reasoning for normal cases. The heuristic principle is ideally
suited for making uncertain, hypothetical inferences on the basis of fuzzy data
and fuzzy relations.

Neonatal assessment by the Apgar scoring system using fuzzy expert system
is proposed by Shimomura et al. (1994). Three Apgar fuzzy expert systems were
determined separately by each one of three physicians groups (four inexperienced
obstetricians, four experienced obstetricians and four expert neonatologists) in
order to demonstrate that the fuzzy system reflected the examiner’s expertise
situation. Two-hundred and sixty-seven neonates were assessed 1 minute after
birth by an experienced obstetrician using the classical Apgar scoring system
and the three Apgar fuzzy expert systems. Statistical analysis showed that the
fuzzy Apgar system determined by four expert neonatologists had the highest
sensitivity and were significantly different (p < 0.05) from the classical Apgar
scoring system. Recently, as discussed in chapter 2, Reis et al. (2004 and 2005)
proposed an expert system to predict the risk of perinatal asphyxia and the
needing of the resuscitation maneuvers, and in chapter 7 we presented an ex-
pert system proposed by Nascimento and Ortega (2002) to estimate the risk of
neonatal death.

Fuzzy reasoning was applied by Shiomi et al. (1995) for diagnosing chronic
liver disease. The method was applied to standardize diagnosis of liver dis-
ease based on scintigraphic results and compared the result of the fuzzy sys-
tem with those obtained when scintiscan were scored conventionally. Fuzzy logic
was used to evaluate five items: the ratio of the sizes of the left and right lobes,
splenomegaly, radioactivity in the bone marrow, deformity of the liver and distri-
bution of radioactivity in the liver. The degree of conformity to each of the three
liver diseases being investigated was substituted into the membership function
for the conclusion. Distinctions between chronic persistent hepatitis and chronic
aggressive hepatitis were difficult to assess with fuzzy reasoning and conven-
tional scoring. The diagnostic accuracy was 95% for patients with cirrhosis and
88% for patients with chronic hepatitis with fuzzy reasoning. With conventional
scoring the accuracy was 86% for patients with cirrhosis and 75% for patients
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with chronic hepatitis. The method was considered simple and could be used
routinely in clinical settings.

An interesting study by Phelps and Hutson (1995) estimated diagnostic test
accuracy using fuzzy gold standards. The study used Monte Carlo simulations
methods to analyze the consequences of having a criterion standard (the so-
called gold standard) that contains some error when analyzing the accuracy
of a diagnostic test using receiver operating curves. The authors mention that
when diagnostic test errors are statistically independent from inaccurate fuzzy
gold standard errors, estimated test accuracy declines. Also, when the test and
the fuzzy gold standard have statistically dependent errors, test accuracy can
become overstated. The article proposes two methods to eliminate the first of
those errors, exploring the risk of exacerbating the second, one of them, called
two-truth method, selectively eliminates those cases where the gold standard
is most ambiguous. Fuzzy receiver operating characteristic curves (ROC) are
developed (Campbell et al., 1991) and its application in medical studies were
recently verified by Castanho et al (2007), who applied the fuzzy ROC curves to
evaluate diagnosis tests for prostate cancer.

An automatically-generated differential diagnosis system based upon a pa-
tient’s recent history was proposed by Cordova and Goldman (1995). In order
to make this diagnosis clinically reliable, however, the system must be sensi-
tive enough to discriminate between physiologic events that could share nearly
identical trends. In order to refine their discriminatory technique, the authors
created a software monitor that used fuzzy logic to analyze physiologic signals
to make a clear distinction between an arrhythmic cardiac arrest and the onset
of cardiopulmonary bypass. At the time of the study the authors expected that
the differentiation capabilities of that monitor could form the foundation for a
comprehensive automated diagnostic system.

Computer-assisted radiologic diagnosis system of rheumatologic diseases ap-
plying fuzzy logic is presented by Boegl et al. (1995). The authors’ approach
make use of pre-existed sources of information to build an expert system that
minimizes the interaction between radiologists and the computer. Given data of a
specific case, a deductive inference procedure combines the observed radiological
signs, establishes confirmed and excluded diagnosis as well as diagnostic hy-
potheses, and provides explanations for these conclusions. In addition, proposal
for confirmation or exclusion of diagnostic hypotheses are offered. The system
was tested on radiological disorders of the hip joint related to rheumatological
diseases, reaching a diagnostic accuracy of bout 80%.

Another radiologic system applying fuzzy logic was proposed by Phillips et
al. (1995), who enhanced the information available from magnetic resonance
imaging with a computer-assisted diagnostic system. Image pixels were classified
into tissue classes based on feature vectors using unsupervised fuzzy clustering
techniques as the patterns recognition method. Correlation of fuzzy segmenta-
tions and gross and histopathology were successfully performed. Based on the
results of neuropathological correlation, the application of fuzzy magnetic reso-
nance image segmentation to a patient with a brain tumor and extensive edema
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represents a viable technique for automatically displaying clinically important
tissue differentiation. With this pattern recognition technique, it was possible to
generate automatic segmentation images that displayed diagnostically relevant
neuroanatomical and neuropathological tissue contrast information from raw
magnetic resonance data for use in three-dimensional volume reconstructions.

An expert system for diagnostic decision support system in psychiatry is pro-
posed by Kovács and Juranovics (1995). The system uses the methods of fuzzy
logic and backward chaining. The diagnostic course is biphased as we can differ
symptoms and criteria (duration of the illness, ethological factors). The authors
managed to extend the traditional applications using yes-no logic with three
factors that make the system more sensitive and flexible: “scaling”, “sorting by
importance” and “reliability-validity” results. The diagnostic expert system is
a shell that can be filled up optionally with psychiatric traditional diagnostic
systems, like DSM-IV, ICD-X, or other diagnostic system.

Applications of fuzzy classification systems to electrodiagnosis of peripheral
polyneuropathy is the object of an article by Duckstein et al. (1995). The method
accounts for uncertainty or imprecision in experimental observations and both
normal and pathology definitions are developed on the basis of a distance mea-
sure between fuzzy numbers. The distance measure, called normalized fuzzy
pathology index evaluates the difference of distance between observed experi-
mental values for a given patient and normal on the one hand and pathology
on the other hand. This normalized fuzzy pathology index characterizes patient
status as a continuous index and categories if values are defined, to conform
to medical usage. Each of these categories corresponds to a linguistic variable.
The application presented is the electrodiagnosis of peripheral polyneuropathy
in diabetic patients. Four linguistic categories are defined by a doctor: normal
state, borderline state, clear-cut, and severe pathology. The index is calculated
in three cases that provide a sensitivity analysis on measurement of fuzziness
and distance function weighting. The model was calibrated with 203 cases and
validated with 291 different cases. The authors state that the results corresponds
very closely to the physician’s diagnosis.

A fuzzy logic diagnosis system for classification of pharyngeal dysphagia is
proposed by Surynarayanan et al. (1995). The system’s purpose was to develop
a fuzzy logic classification of the patient into four categories of risk for aspiration.
Acceleration and swallow pressure measurements were obtained and five param-
eters were extracted from these measurements. A set of membership functions
were defined for each parameter. The measured parameter values were fuzzified
and fed to a rule base which provided a set of output membership values corre-
sponding to each of the categories. The set of output values were then defuzzified,
in order to obtain a continuous measure of classification. The fuzzy system was
evaluated using data obtained from 22 subjects. There was a complete agree-
ment between the fuzzy system classification and the clinician’s classification in
18 of the 22 patients (82% sensitivity).

The Glucose Tolerance Test is generally used for diagnosis of diabetes mel-
litus and is one of the most interesting example of the arbitrariness of crisp
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thresholds between normal and diseased patients. Patients are offered a 75g glu-
cose loading dose by oral intake and the value of blood glucose is measured some
time afterward. Individuals with blood glucose of 201 mg/dk is diagnosed as
diabetes mellitus and other whose value is 199 mg/dl are considered as impaired
glucose tolerance. Arita et al. (1996) proposed an alternative approach in which
they analyzed the dynamical response of glucose tolerance tests and proposed a
new diagnostic system for diabetes using a fuzzy inference.

Truth-qualification and fuzzy relations in natural languages as applied to med-
ical diagnosis is the subject of a paper by Sanchez (1996), one the pioneer in
fuzzy logic and medical problems. In this articles Sanchez addresses the problem
of given two fuzzy propositions, how to truth-qualify one of them to induce the
other in a semantical equivalence. Two fuzzy subsets of the unit interval (τ0 and
τ1, representing linguistic truth values) are introduced that provide best lower
and upper approximations when no exact solution can be found: best semantic
entailments of propositions are thus derived. The problem is reformulated in a
new way, in terms of fuzzy relation equations, from which results are retrieved
and extended. Also, a truth-possibility index, defined from τ0 to τ1, is introduced,
that serves pattern-matching purposes, in addition to the usual possibility and
necessity measures. The example provided, in which medical knowledge is ex-
pressed in a rule form, with fuzzy propositions in the antecedent, illustrates the
aggregation of these measures, for medical diagnosis assistance.

Klein et al. (1996) proposed a patterns recognition system for focal liver le-
sions using crisp and fuzzy classifiers. Their aim was to determine the diagnostic
performance of an artificial intelligence system for classification of focal liver le-
sions, in comparison to human observers. The pattern recognition was performed
in two steps with initial extraction of textural features: training of a classifier
and classification of the lesions. The system accuracy when compared with the
classification achieved by human observers was 90.2%.

Fuzzy logic concepts were applied by Mir et al. (1996) to enhance diagnostic
features of computed tomography images. The authors considered the vague
nature (fuzziness) of functional characteristics in organ pathologies and argued
that classical image enhancements techniques cannot adapt to the characteristics
of that nature. The fuzzy method transforms the image of interest into a fuzzy
plane using fuzzifiers which can changed to select a crossover point. At the early
stages of a disease, when the contrast of the pathological tissues is very low, the
visibility of the disease could be considerably improved using those techniques.

A framework for the design of diagnostic monitors called DIAMON-1 was pre-
sented by Steimann (1996). The system considers that the methods of artificial
intelligence to clinical monitoring requires some kind of signal-to-symbol conver-
sion as a prior set. Subsequent processing of the derived symbolic information
must also be sensitive to history and development, as the failure to address tem-
poral relationships between findings leads to poor results. The method proposed
provided two methods for the interpretation of time-varying data, one for the
detection of trends based on classes of courses, and one for the tracking of disease
histories modeled through deterministic automata. Both methods use fuzzy set
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theory taking into account of the elasticity of medical categories and allowing
discrete disease models to mirror the patient’s continuous progression through
the stages of illness.

Fuzzy reasoning in an expert system for ultrasonography is the subject of the
paper by Tanaka et al. (1997), who also evaluated the clinical utility of the pro-
posed fuzzy system as a diagnostic aid for the unskilled clinician. The diagnostic
system was designed to differentiate metastatic from inflammatory lymph nodes.
Three fuzzy production rules were set up according to the diagnostic criteria for
lymphadenopathy. The system was tested with clinicians who were one to three
years after graduation and inexperienced in ultrasonography. The average in-
crease in accuracy was 8.5% and the sensitivity and specificity 10.7% and 6.4%
respectively, which were statistically significant. The authors concluded that the
application of fuzzy reasoning in an expert system for ultrasonography improves
the diagnostic performance of inexperienced clinicians.

Another group presented a computer-aided diagnosis system using fuzzy in-
ference for breast ultrasonography in the same year (Koyama et al., 1997). The
ultrasonographic features of a breast mass were used as input data and included
shape, border, halo, internal echoes, posterior echoes, and edge shadows. The
probability of malignancy was described by an actual number ranging from 0 to
1. The fuzzy inference method demonstrated a sensitivity of 94.5% and specificity
of 76% for cancer diagnosis.

An expert laboratory system using fuzzy sets and pattern recognition as its
inference mechanism was proposed by Innis (1997). The program coupled the
fuzzy inference mechanism with a data base comprised of hematological and
biochemical responses to diseases collected over a period of 10 years in a teaching
hospital. The author found that the system often presented diagnosis not thought
of by the clinician and concluded that the computer, programmed to recognize a
disease by the patterns of its response to routine hematological and biochemical
investigations, could contribute significantly to diagnosis.

Electromyograms in erectile dysfunctions were interpreted by a system de-
signed by Gorek and collaborators (1997). The system extracted signal patterns
of higher activity, form stored data and described those patterns in mathematical
terms of the features obtained from the electromyogram of the corpora caver-
nosa. Using fuzzy logic, the features were used to effect pattern evaluation. A
correspondence of some diagnostic classes of 70% was found. In addition, the
accuracy achieved in each of the individual classes was better than 50%. Finally,
discrimination between normal and abnormal evaluation, which was of particular
interest in the diagnostic test, reached 80%.

In a paper of 1998, Sanchez discusses the application of fuzzy logic to inflam-
matory protein variations. The model is of special interest in the processing of
borderline cases, allowing a graded assignment of diagnosis to patients. Relation-
ships between signs and diagnosis are interpreted as labels of fuzzy sets and it is
shown how diagnosis can be derived from soft machine processing. When pattern
matching is achieved, the final ranking of inflammatory syndromes assigned to
a given patient might change to better fit the actual classification.
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In 2000 Adlassnig published in a book a compilation of diagnostic systems
based on fuzzy logic, from which we selected the ones presented below.

Shtovba and Chernovolik (2000) presented a system which provides support
for a pathology anatomist in decision making about instant nontrauma death
occurrence time determination. Their system is based on some linguistic expert
rules formalized in the form of fuzzy knowledge bases.

Georgopoulos et al. (2003) discuss the use of fuzzy cognitive maps as a di-
agnostic model for specific language impairment, a disorder of spoken language
ability where a variety of problems in many aspects of language exists. Since
then, the application of the fuzzy cognitive maps in medicine is an approach
in developing and several works are available (Papageorgiou et al., 2003, 2006a,
2006b and 2008; Glies et al., 2007; Georgopoulos & Stylios, 2008).

Some interesting examples of fuzzy image processing are presented in the
paper by Axer et al. (2000). Fuzzy methods are used to analyze image from
confocal laser scanning microscopy, polarized light microscopy, and magnetic
resonance. Those fuzzy methods were applied from low level image to high level
image processing, and included the use of linguistic variables. The authors argued
that the use of linguistic variables may lead to a higher acceptance in medicine.

Multicriteria decision problems is the focus of the paper by Dujet (2000) in
which two types of fuzzy methodologies are applied in medical decision aid:
data fusion and theory of possibilities combined with mathematical morphol-
ogy. Those methods are illustrated via a problem of classification of patients.
The methods demonstrated to be accurate and are very generic and easily
transferable in many other fields.

The difficulties in defining fuzzy membership functions for medical implemen-
tation is addressed by Straszecka (2000), who gives interesting suggestions for
solving the problems with the use of the classical definition of a fuzzy set as
well as by introducing the Dempster-Shaffer theory of evidence. In this paper,
fuzzy sets are proposed for a similarity interpretation while a basic probability
assignment is suggested for an estimation of a diagnosis quality.

As illustrated in figure 1.1 and exemplified in the review above, hundred of
papers have been published applying fuzzy logic and fuzzy sets theory in several
areas of medicine and, particularly, in the diagnosis systems. In fact, only in the
last two years (2006-2007) the MEDLINE database presented 196 articles con-
cerning to fuzzy logic and diagnosis systems. Of these we highlight the following
systems: by Shieh et al. (2002 and 2007), who developed a pain model based on
fuzzy logic to control analgesia in patients; by Ju and collaborators (2005), who
to designed a robot system for assisting in the rehabilitation of patients with
neuromuscular disorders by performing various facilitation movements, using a
fuzzy controller; by Duarte and collaborators (2006), who proposed the selec-
tion of patients for myocardial perfusion scintigraphy based on fuzzy sets the-
ory applied to clinical-epidemiological data and treadmill test results; by Sousa
et al. (2006) who applied fuzzy logic and logistic regression in the decision
making for parathyroid scintingraphy study; by Campos-Delgado et al. (2006),
who elaborated a fuzzy-based controller for glucose subcutaneous regulation in
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type-1 diabetic patients; Saraoglu and Sanli (2007), who elaborated a fuzzy de-
cision support system on anesthetic depth control for helping anesthetists in
surgeries; and by Boissy et al. (2007), who applied the fuzzy logic approach in
telemedicine. In the medical images segmentation we point out the recent work
by Tanaka et al. (2008), who developed a fuzzy rule-based system to treat elec-
trical impedance tomography images for lung and heart segmentation, through
ventilation and perfusion pulmonary functions.

13.3.6 Hybrid Diagnostic Systems

As mentioned above the association of fuzzy logic with neural networks and
distributed processing, also called soft computing, is one of the most advanced
areas of research in artificial intelligence as applied to medicine.

Research in fuzzy neural networks, which started from application oriented
fuzzy system tuning, then moving to the automatic generation of fuzzy systems
from data, is reaching a more mature stage, especially after the proof of func-
tional equivalence of certain fuzzy models and neural networks (Halgamuge &
Glesner, 1994). Non-linear models, such as given by neural networks and fuzzy
logic, have established a good reputation for medical data analysis as computa-
tional and logical counterparts to statistical methods. Whereas multilayer per-
ceptrons perform well with large datasets, a combination of neural learning with
fuzzy logical network interpretation provides a network reduction well suited for
smaller datasets (Eklund & Forsström, 1995). In this section we briefly review
some articles dealing with hybrid models, particularly fuzzy logic and neural
network, as applied to medical diagnosis.

A really hybrid model was presented by Molnar et al. (1993), combining mul-
tivariate mathematics, fuzzy logic and neural networks for the diagnosis of cyto-
logical smears. The method was applied in the area of quantitative cytology and
was compared with the traditional classifiers. The discriminant analysis classi-
fied correctly the 95.6% of malignant cases, 86.7% of the dysplasias, and 80.7%
of normal cases in a sample of gastric imprint smears. The fuzzy logic module
of the system made the diagnostic borders fine tunable and reliable, and the
back propagation neural network classified all the diagnostic groups above 95%
correctly. The authors stated that the application of nonlinear computational
methods made the diagnostic system more reliable.

Heuristic combinations of pattern recognition and artificial intelligence tools
is the subject of the hybrid diagnostic model by Kuncheva (1993). This model is
comprised by a trainable fuzzy neuron which, according to the author, resembles
some elements from the physician’s decision process. The model was applied to
a real case from aviation medicine and demonstrated the enhanced performance
of the system.

Fuzzy neural networks were applied on a model for reduction of false-positive
detections in digital chest radiographs by Lin et al. (1993). The mode’s archi-
tecture was based on fuzzy set theory and convulsional neural network and was
tested in an automatic lung nodule detection system. The neural network was
trained by a supervised back-propagation algorithm based on fuzzy membership
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functions for lung nodule areas. A linguistic label was assigned to each nodule
candidate of the training set and the label was then converted to a member-
ship value. The trained network’s output was defuzzified and the system was
evaluated throughout a receiver operating characteristic analysis and showed an
average Az (the performance index) of 0.84 which is equivalent to 0.80 true-
positive detection (sensitivity) with an average 2-3 false positive detection per
chest image.

A tool for building hybrid connectionist expert systems for medical diagnosis
was presented by Leão and collaborators (1994). The system, called HYCONES
II offers, according to the authors, to the knowledge engineer a hybrid knowl-
edge base that integrates frames with three different neural networks, namely,
the combinatorial neural models, the fuzzy ARTMAP and the semantic ART-
SMART models. These models have their performance to solve diagnostic prob-
lems compared. In addition, the system’s knowledge representation features,
built in the symbolic component of its hybrid knowledge-base to deal and
represent fuzzy medical variables is presented.

Real-time hemodynamic diagnostics was the subject of the work by Goldman
and Cordova (1994). These authors developed a real-time system to diagnose
cardiopulmonary emergencies. The system was designed to utilize routinely-
monitoring physiological data in order to automatically diagnose potentially fatal
events. The diagnostic engine was based on a hybrid fuzzy logic/neural network
and was applied to analyze physiological data during a simulated arrhythmic
cardiac arrest in order to assess the validity of the diagnostic methodology. The
system used data from capnogram, electrocardiogram and arterial blood pres-
sure. The system had a good performance and the diagnostic engine effectively
diagnosed the likelihood of arrhythmic cardiac arrest from the subtle hemody-
namic trends which precede the complete arrest. As the clinical picture worsened
the system accurately indicated the change in patient condition. The end of the
simulation was rapidly detected by the diagnostic engine.

Ichimura et al. (1995) extracted fuzzy rules using neural networks with struc-
ture level adaptation and applied them to diagnosis of hepatobiliary disorders.
Their method proposed a procedure to derive a neuron generation/annihilation
automatically and the authors applied the procedure to the learning system.
They next applied those procedures to the learning system in which the experi-
mental data related to hepatobiliary data, containing ten biochemical terms test
for four pathologies. After the learning phase the proposed system converged to
a diagnostic with an accuracy of 70%. The fuzzy rules applied were related in
meaning to the input of the weight vector. In addition, the authors used the ex-
tracted fuzzy rules for all databases to implement the feed-forward calculations.

A new classification strategy for magnetic resonance data, called computer-
ized consensus diagnosis, was proposed by Somorjai et al. (1995). The strategy
involved the cross-validated training of several classifiers of diverse conceptual
and methodological origin on the same data, and combined their outcomes. The
method was tested on proton magnetic resonance spectra of human thyroid biop-
sies. The authors used linear discriminant analysis, a neural network method
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and genetic programming as independent classifiers on two spectral regions, and
chose the median of the six classification (normal/malignant) outcomes as the
consensus. The procedure showed a 100% specificity and 98% sensitivity on sam-
ples of known malignancy in the test sets. The authors discussed the importance
of fuzziness and undecidability in robust classification methods.

Feature vectors were applied by Sànchez et al. (1995) for automatic detection
of auditory brainstem. Features are quantitative descriptors of different aspects
of the response commonly taken into consideration by expert to assess auditory
brainstem responses. The authors applied discriminant analysis and neural net-
works, which were a modified version of the fuzzy ARTMap model. The accuracy
of the classification into normal and abnormal was assessed with methods from
signal detection theory. The methods proposed showed that the approaches based
on feature vectors had a performance more efficient than the artificial networks
with raw data, or the individual features.

A fuzzy-net with single layer perceptron to analyze laboratory data was pre-
sented by Forsström et al. (1995). The authors worked with databases from com-
puterized patient records, which included much clinical knowledge that could be
useful for clinicians if properly retrieved. The system proposed built a smart
link between patient databases and clinicians. It utilized neural network-based
machine learning techniques and could produce decision support which met the
special needs of clinicians. In this paper the authors used two small datasets
to show how this scheme worked in the diagnosis of acute appendicitis and in
the diagnosis of myocardial infarction. The performance of the neuro-fuzzy tool,
as compared with logistic regression or backpropagation neural networks was
slightly better, although not statistically significant.

Alzheimer’s disease diagnosis was the subject of the paper by Pizzi et al.
(1995), who applied a neural network classification of infrared spectra of
histopathological material. The authors applied principal component analysis
as a preprocessing technique for some of those neural networks while others
were trained using the original spectra, one of which applied a variation of the
back-propagation algorithm using fuzzy encoding. The neural nets using the
principal components consistently outperformed their linear discriminant coun-
terparts whereas only one of the original spectra produced results comparable
to the best corresponding principal component cases.

The work by Holzmann et al. (1995) presents an expert system based on fuzzy
analog ganglionar lattices. The system’s reasoning scheme is designed analo-
gously to the expert’s mental organization and it is realized on an analog op-
erator called the ganglionar lattice. This connectionist system used the medical
knowledge to define its architecture. In addition, it used non-approximate rea-
soning with multiple antecedents of different relative importance and limited
uncertainty. The system produced numerical results which could be translated
into restricted natural language. The paper presents a simple example of that
technology and the method’s potentials are discussed for future applications.

Guez and Nevo (1996) present an analysis of the computational features of
neural networks and fuzzy logic architectures which attempts to explain their
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recent popularity as well as their drawbacks. The authors describe a customized
neural network architecture as a non-linear adaptive signal processor for inte-
grating monitoring, employed in the adaptive real-time anesthesiologist associate
system. In this application the neural network realizes a non-linear scalar map
from the set of physiological signals to a vital function status indicator.

The paper by Downs et al. (1996) presents an interesting application of the
fuzzy ARTMAP neural network model to medical pattern classification tasks.
The authors considered a number of diagnostic and prognostic domains, each one
demonstrating a particular aspect of the model’s usefulness. The model’s strat-
egy involved pooled decision-making in coronary care prognosis, using a number
of networks. In addition, the application to breast cancer diagnosis demonstrated
the model’s symbolic rule extraction capabilities which support the validation
and explanation of he network’s prediction. Finally, the diagnosis of acute my-
ocardial infarction demonstrated a novel category pruning technique allowing
performance of a trained network to be altered so as to favor predictions of one
class over another.

A neuro-fuzzy algorithm for diagnosis of coronary artery stenosis was proposed
by Sztandera et al. (1996). The method used a neural network approach for the
diagnosis of stenosis in the three main coronary arteries. The fuzzy network
is trained with data from scintigram and the images are preprocessed and the
uncertainties treated by fuzzy logic techniques. The model performed very well
when compared with traditional diagnostic alternatives.

Cluster analysis, an often used technique to determine the number and char-
acteristics of patterns present in vectors of biomedical response parameters, was
treated with a hybrid system by Thayer (1996). This combined supervised and
unsupervised learning algorithm. The author illustrated those procedure using
growth curves of indices of family functioning in adaptation to pediatric chronic
illness. Those clustering procedures was based upon neural network approaches
to supervised (discriminant analysis) and unsupervised (cluster analysis) learn-
ing and was similar to fuzzy set algorithm developed to assess the degree of
relatedness among a number of discrete units.

Another interesting application of fuzzy logic in medical diagnosis is the sys-
tem for classification of cardiac arrhythmias proposed by Ham and Han (1996).
In this article, the authors investigate the QRS complex, extracted from elec-
trocardiogram (ECG) data, using fuzzy adaptive resonance theory mapping
(ARTMAP) to classify cardiac arrhythmias. Two different conditions have been
analyzed: normal and abnormal premature ventricular contraction. Based on
standardized database annotations, cardiac beats for normal and abnormal QRS
complexes were extracted from this database, scaled, and Hamming windowed,
after bandpass filtering, to yield a sequence of 100 samples for each QRS seg-
ment. From each of these sequences, two linear predictive coding coefficient were
generated using Burg’s maximum entropy method. The two coefficient, along
with the mean-square value of the QRS complex segment, were utilized as fea-
tures for each condition to train and test a fuzzy ARTMAP neural network
for classification of normal and abnormal premature ventricular conditions. The
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test results show that the fuzzy ARTMAP neural network can classify cardiac
arrhythmias with greater than 99% specificity and 97% sensitivity.

Innocent and collaborators (1997) applied the fuzzy ARTMAP and MIN-
MAXMAP neural network to radiographic image classification analysis. The
work was concerned with the classification analysis of exercise-induced lower leg
pain by applying competitive neural network clustering and mapping techniques
to fuzzy descriptions of bone scan images of the tibia. The clusters were described
and compared with each other and with the expert known classes that would
be expected from medical findings. The discovery clusters provided training sets
for supervised and unsupervised learning by the ARTMAP and similar neural
network. The authors concluded that the use of the neural clustering method
improves the classification process of the shin images despite the paucity of the
data and its inherent uncertainty.

Undoubtedly, the hybrid systems is one of the areas with the highest growing
rate in the expert systems field. Concerning diagnostic systems we can find more
than 2.200 articles in MEDLINE database, of which almost 400 only in 2006-
2007 interval (Peña-Reyes & Sipper, 2000; Kannathal et al., 2005; Zarkogianni
et al., 2007; Bosl, 2007; Maraziotis et al., 2007; Tu & Toga, 2007; Xu et al., 2007;
Grossi et al., 2007; Chen et al., 2007; Bommanna et al., 2008; Ertas et al., 2008;
Maglogiannis et al., 2008; Jekova et al., 2008).

Finally, we want to finish this brief (and acknowledgedly incomplete) review
highlighting that the main objective here was to illustrate how different and
creative have been the applications of fuzzy logic in biomedicine, both from the
theoretical point of view and in the diversity of medical areas involved. In fact,
the word “fuzzy”, and its sets theory meaning, has becoming common among the
medical communities. The progress of the fuzzy logic and all AI tools, and their
valiant contribution, in the health sciences makes us to believe that the insertion
of these techniques in medicine is a road without turn. In fact, the development
of expert systems, as to support decision in the diagnosis as for the elaboration
of modern laboratory and hospital equipments, together with the progress of
the automation, telemedicine and electronic patient record, have, little by little,
transformed the way to do medicine in the world.
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In this book we pursued the challenge posed by the need to tame uncertainty in
the context of medical and epidemiological problems. The fact that epidemiology
deals with population of individuals leads to uncertainties of different natures.
In fact, much ink has been spent on the speculations about the competitive or
complementary role of probability and fuzzy logic in dealing with uncertainty.
We are fully convinced that both disciplines address complementary dimensions
of uncertainty. The success of applied probability theory in describing sampling
variations and model specification in epidemiological problems is undeniable.
Yet, fuzzy logic can be an undispensible tool to address vagueness related to
intended meaning or linguistic uncertainty. As thoroughly discussed along this
book, we believe that they can be seen as subsets of a more general logic. Para-
consistent logic, which in some way generalizes the non-binary properties of
fuzzy logic, has been proposed as an appropriate candidate (Sylvan & Abe,
1996; Batens et al., 2000; Abe, 2004; Abe et al., 2005), particularly when com-
bined with neural network structures. More recently, the Neutrosophic logic is
appearing as a promise of a new powerful approach with great applicability, due
to its flexibility and its connection with fuzzy sets theory (Wang et al., 2005;
Kandasamy & Smarandache, 2005).

The challenges in recasting fuzzy logic and probability theory under a common
framework seems the natural subsequent step to be pursued. The seminal work
by the school founded by Zadeh point to possible promising directions. The
specific applications of hybrid models combining both probability theory and
fuzzy reasoning proposed in this book testify the richness and usefulness of this
complementary approach.

The historical development of probability theory, since the work by the found-
ing fathers, Pascal and Fermat among others, until its axiomatic foundation pro-
vided by Kolmogorov, spanned for at least three centuries. Fuzzy logic was first
proposed in 1965 being therefore a much younger field. A long road still lies
ahead before one could expect to see an axiomatic formulation that could ac-
commodate the complementary principles that inspired their original founders.
The epidemiological examples illustrated here make a strong case for the need
of a unifying theory that overcomes the current hurdles. Under this unifying
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axiomatic theory, a formal definition of uncertainty, imprecision, and vagueness
would emerge naturally from first principles.

Biosciences have decisively inspired the theoretical development of probability
theory, since the work by Fisher to the current post-genomic era. The predom-
inant role of statistics in modern epidemiology is no exception and has also
triggered key theoretical developments in applied probability. It is, therefore,
natural to expect that medicine and epidemiology will continue to play a key
role in the theoretical development of fuzzy logic. This common ground is one
additional factor leading to a common theoretical formalism to the underlying
treatment of uncertainty provided by both schools of thought. The current pop-
ularity of fuzzy logic applications in the field of engineering and control may
add a refreshing perspective to the traditional influence offered by medicine and
epidemiology so far. The time seems ripe for the extended influence on fuzzy sets
theory originating from disciplines that have to deal equally with uncertainty,
such as social sciences, economics and demography.

Modern developments in numerical procedures, such as the bootstrap and
Markov Chain Monte Carlo (MCMC) simulations, have sharply broadened the
statistical horizons. These procedures have successfully overcome the constraints
imposed by the analytical limitations unavoidable to the application of formal
approaches to complex real problems. Similarly, the inherent flexibility of fuzzy
logic tools could greatly benefit from modern numerical techniques. Linguistic
models confer enormous flexibility to the fuzzy logic approach, however, as men-
tioned elsewhere in the book, they are plagued by the multiplicity of rules that
may explode to several orders of magnitude. This is indeed an area in which
numerical procedures could show their immense power and usefulness.

The strength of fuzzy logic as well as statistics emanates from their proved
abilities of solving real problems. In medicine and epidemiology, this equates
to reducing human suffering. We hope that the medical and epidemiological
applications of fuzzy logic described in this work might work catalytically to
encourage theoreticians as well as applied researchers to further develop the
foundations laid down here. In spite of all the uncertainty one might think of,
this will certainly contribute to a better world.
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189. Kovács, M., Juranovics, J.: “Auctoritas” Psychiatric Expert System Shell. Med-

info. 8 pt 2, 997 (1995)
190. Koyama, S., Obata, Y., Shimamoto, K., Ishigaki, T., Ishii, N., Isomoto, Y.,

Yoshine, K.: Breast ultrasonography computer-aided diagnosis using fuzzy in-
ference. J. Ultrasound Med. 16(10), 665–672 (1997)



References 323

191. Krivan, V., Colombo, G.: A non-stochastic approach for modeling uncertainty in
population dynamics. Bull. Math. Biol. 60(4), 721–751 (1998)

192. Kuncheva, L.: Fuzzy multi-level classifier for medical applications. Comput. Biol.
Med. 20(6), 421–431 (1990)

193. Kuncheva, L.: An aggregation of pro and con evidence for medical decision support
systems. Comput. Biol. Med. 23(6), 417–424 (1993)

194. Kuncheva, L., Andreeva, K.: DREAM: a shell-like software system for medical
data analysis and decision support. Comput. methods Programs Biomed. 40(2),
73–81 (1993)

195. Kwok, H.F., Linkens, D.A., Mahfouf, M., Mills, G.H.: Rule-base derivation for
intensive care ventilator control using ANFIS. Artif. Intell. Med. 29(3), 185–201
(2003)

196. Kwok, H., Linkens, D., Mahfouf, M., Mills, G.: Adaptive ventilator FiO2 advisor:
use of non-invasive estimations of shunt. Artif. Intell. Med. 32(3), 157–169 (2004)

197. Landigran, P.J., Witte, J.J.: Neurologic disorders following live measles-virus vac-
cination. JAMA 223, 1459–1462 (1973)

198. Landis, J.R., Koch, G.G.: The measurement of observer agreement for categorical
data. Biometrics 33, 159–174 (1977)

199. Leão, B.F., Guazzelli, A., Mendonça, E.A.: HYCONES II: A tool to build hybrid
connectionist expert systems. In: Proc. Annu. Symp. Comput. Appl. Med. Care,
pp. 747–751 (1994)

200. Lee, N., Hui, D., Wu, A., Chan, P., Cameron, P., Joynt, G.M., Ahuja, A., Yung,
M.Y., Leung, C.B., To, K.F., Lui, S.F., Szeto, C.C., Chung, S., Sung, J.Y.: A
major outbreak of severe acute respiratory syndrome in Hong Kong. N. Engl. J.
Med. 348(20), 1986–1994 (2003)
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Fuzzy Reed-Frost model 239
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Fuzzy risk ratio 92, 93
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quality of life 145
risk estimation 141
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degree of firing 120
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risk estimation 142
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Fuzzy uncertainty 75

Game of Life 54
Gamma function 55, 230
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Global mortality 255
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Gold standard 301
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WHO definition 288

Health impact assessment 103
Health state 2
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Hematological responses 304
Hemodynamic 307
Hepatobiliary disorders 307
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Heuristic certainty factor algebra 285
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Histopathological 308
Histopathology 302
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Modern epidemiology 3, 41
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of the infection 47
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Negative Binomial distribution 53
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resuscitation 40
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differential diagnostic 287
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Non-linear systems 173, 306
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Numerical
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simulation 161
simulations 48
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Observed variability 41
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Paraconsistent logic 311
Parallel distributed processing 286
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Parameters 269, 276
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Physiological 1
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Poisson distribution 53
Polarized light microscopy 305
Poliomyelitis 45
Polynomial function 227
Population well-being 145
Populational

biology 2
Populational thinking 41
Possibilistic structure 240
Possibility

conditional 93
Possibility distribution 38, 39, 59, 175,

176
disease 39
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Probability measure see Measure
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analysis 4
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Radiologic diagnosis system 301
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Relational model 290
Relationship 37
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Representation theorem 29
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Retrospective study 229
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neonatal death 8
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Scientific
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SI fuzzy models 188, 202
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Simulations 242, 243, 247
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Software 285
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Stability analysis 46, 198, 276
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Standard Additive models 131
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Statistical
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data 65
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Statistical models
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Statistics 4, 42
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decision trees 109
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Synaptic matrix 253

t-conorms 22, 120
t-norms 22, 119, 130, 160
Telemedicine 306, 310
Theory of fuzzy sets 59, 174, 256, 304
Theory of probability 59, 74, 284
Therapeutic decision support 277
Three-dimensional volume

reconstructions 302
Threshold 237, 238, 288
Tibia 310
Transference rate 212, 215, 217, 218,

225
Transmission 3, 44, 48, 90, 104, 187

direct 276
Transmission chain 47
Transmission coefficient 188, 192
Trapezoidal Numerical Integration 272
Trapezoidal shapes 114
Treatment decision 86
Treatment impact 238
Triangular conorms 20

axioms 21



Index 347

disjunction 21
duality 21

Triangular norms 20
axioms 20
conjunction 21
duality 21

Triangular shapes 35, 114, 168
Truth-qualification 303
TSK models 111, 129, 156, 163, 165,

214
Tuberculosis 38, 282
Tumor contours 299
Type-1 fuzzy set 36
Type-2 fuzzy set 37
Typological thinking 41, 57

Ultrasonography 304
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