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Prefazione alla II edizione

La seconda edizione di questo testo mantiene tutte le caratteristiche della pri-
ma edizione, progettata in modo specifico per i corsi semestrali della Laurea
Magistrale in Fisica: un testo di riferimento completo, autosu�ciente, facil-
mente utilizzabile, e accessibile a studenti provenienti da indirizzi e piani di
studio diversi. Contiene le principali informazioni sulla teoria gravitazionale
che al giorno d’oggi ogni laureato in Fisica dovrebbe possedere: si parte dalle
nozioni di base della Relatività Generale, e si sviluppa la teoria gravitaziona-
le classica sino ad argomenti di frontiera come l’estensione supersimmetrica
delle equazioni di Einstein.

Dall’epoca della prima edizione, anno 2009, sono successe però varie co-
se. C’è stata la scoperta al CERN del bosone di Higgs (che, salvo sorprese,
dovrebbe essere confermato dall’ultima serie di esperimenti che verrà e↵ettua-
ta, dal 2015 in poi, alle più alte energie raggiungibili dall’acceleratore LHC).
Inoltre, per quel che riguarda più da vicino la gravità, c’è stato l’annun-
cio (successivamente smentito!) della misura di velocità di neutrini superiori
a quella della luce, e – recentissima novità – l’annuncio dell’esperimento BI-
CEP2 (Marzo 2014) che sembra aver osservato gli e↵etti di onde gravitazionali
fossili, prodotte ad altissima energia nell’Universo primordiale.

Tutte queste eccitanti novità, insieme all’esigenza di revisionare e per-
fezionare alcune parti del testo originale, hanno contribuito a motivare la
preparazione di questa seconda edizione, che si di↵erenzia dalla prima per
l’aggiunta di materiale di forte interesse attuale.

È stata aggiunta, in particolare, una seconda appendice (l’Appendice B)
che fornisce una dettagliata presentazione dei modelli gravitazionali multidi-
mensionali, motivati dalla teoria delle stringhe e delle membrane (la ricerca
di eventuali dimensioni extra rientra infatti tra i principali obiettivi dell’ac-
celeratore LHC). È stata anche aggiunta, nel Capitolo 10, la nuova Sezione
10.5 che riporta una originale discussione delle misure di velocità e degli ef-
fetti di dilatazione temporale in presenza di un campo gravitazionale esterno
(argomenti portati alla ribalta dai recenti esperimenti sui neutrini). Va segna-
lata infine, tra le novità più rilevanti, anche la Sezione 9.5 che introduce allo
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studio del fondo cosmico di onde gravitazionali, e in particolare agli e↵etti
“polarizzanti” che tale fondo potrebbe avere sulla radiazione cosmica di tipo
elettromagnetico (è proprio questa polarizzazione, infatti, che viene misurata
dal citato esperimento BICEP2).

In questo modo spero di aver reso il testo più completo e più risponden-
te alle attuali esigenze degli studenti della Laurea Magistrale in Fisica e in
Astronomia. Rinnovo i miei ringraziamenti a Marina Forlizzi, Editore Esecu-
tivo della Springer-Verlag Italia, per il suo continuo ed eccellente supporto
che ha permesso di realizzare questa seconda edizione.

Ringrazio anche in anticipo tutti i lettori (studenti e non) che vorran-
no segnalarmi errori, imprecisioni o importanti omissioni (o anche presen-
tare critiche e commenti personali). Possono farlo inviando un messaggio di
posta elettronica all’indirizzo gasperini@ba.infn.it, e saranno sempre i
benvenuti per la loro collaborazione.

Cesena, Marzo 2014 Maurizio Gasperini



Prefazione

Questo libro è basato su lezioni per gli studenti di Fisica tenute in passato
all’Università di Torino, e attualmente all’Università di Bari. Tali lezioni,
preparate in origine per il corso di Relatività del vecchio ordinamento di
laurea, sono state recentemente rielaborate e riorganizzate per adattarsi alle
esigenze del nuovo ordinamento che ha introdotto la Laurea Magistrale (o
Specialistica) in Fisica.

È nato cos̀ı un libro di testo che si rivolge in modo specifico agli studenti dei
corsi di Relatività Generale e/o Teoria della Gravitazione che oggi compaiono
nel piano di studi degli indirizzi Teorico/Generale, Astrofisico, Astroparticel-
lare della Laurea Magistrale in Fisica e in Astronomia. Scopo del testo è
quello di rappresentare un riferimento che sia completo e autosu�ciente per
un corso di tipo semestrale, ma anche facilmente utilizzabile, e accessibile a
studenti provenienti da indirizzi diversi.

Per realizzare questi obiettivi il libro include una parte tradizionale che
presenta la relatività generale come teoria geometrica classica del campo gra-
vitazionale macroscopico, e una parte più avanzata che collega la relatività
generale alle teorie di gauge delle interazioni fondamentali attive a livello mi-
croscopico, e che illustra i legami formali (e le di↵erenze fisiche) esistenti tra
la gravità e le altre interazioni. In questo modo si cerca di raccordare il corso
di gravità ai corsi sul modello standard, riempiendo un vuoto che non viene
colmato dai testi tradizionali di relatività generale e che può creare disagio
agli attuali studenti.

In questo contesto sono state ridotte al minimo le parti formali di geome-
tria di↵erenziale per lasciare più spazio alle moderne problematiche dell’inte-
razione gravitazionale, sia di tipo applicativo (ad esempio: la fenomenologia
delle onde gravitazionali), sia di tipo teorico fondamentale (ad esempio: le
interazioni gravitazionali dei campi spinoriali e la supergravità). È stata però
inclusa un’Appendice finale che presenta i rudimenti del cosiddetto “calcolo
di Cartan” per le forme esterne (o forme di↵erenziali). Tale tecnica risulta di
grande utilità non solo nel contesto della teoria gravitazionale, ma anche in
molti altri campi della fisica teorica.
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Un buon utilizzo di questo testo presuppone che il lettore abbia una cono-
scenza di base della relatività ristretta, dell’elettromagnetismo e della teoria
classica dei campi. Al di fuori di questo, però, il libro cerca di essere auto-
su�ciente: le nozioni necessarie e le tecniche da utilizzare vengono di volta
in volta richiamate o introdotte esplicitamente. Inoltre, per una migliore e�-
cacia didattica, tutti i calcoli necessari vengono svolti in maniera dettagliata
nel testo (senza lasciare al lettore “buchi” da riempire), oppure presentati
come esercizi proposti e risolti. Per questo motivo la soluzione degli esercizi
è stata inserita alla fine di ogni capitolo, e costituisce parte integrante del
capitolo stesso.

Mi sembra doveroso – anche se ovvio – sottolineare che questo libro è
lontano dal rappresentare un riferimento completo per uno studio rigoroso ed
esauriente della teoria della gravitazione. Lo stile è quello di note e appunti
per lezioni, e lo scopo è quello di fornire agli studenti le nozioni di base che
li rendano in grado di approfondire e ampliare autonomamente, in seguito,
gli argomenti trattati mediante l’uso di testi più avanzati e professionali (si
vedano ad esempio i riferimenti bibliografici finali).

Va notato infine che questo libro evita deliberatamente di a↵rontare temi
di cosmologia e astrofisica relativistica, per i quali il nuovo ordinamento di
laurea prevede corsi specifici, separati da quello di Relatività Generale, ed ai
quali è opportuno riservare un testo dedicato. Un apposito libro di cosmo-
logia teorica, che rappresenta la continuazione naturale del presente testo, è
attualmente in fase di preparazione da parte del sottoscritto.

Ringraziamenti

Desidero ringraziare in primo luogo i molti studenti e i colleghi di Torino
e di Bari che nel corso degli anni hanno contribuito, con i loro commenti,
suggerimenti e critiche, a correggere e migliorare queste note. Elencarli tutti
sarebbe impossibile, per cui mi limito a ringraziarli collettivamente. Faccio
un’eccezione per l’amico e collega Stefano Forte, che cura la collana di Fisica
e Astronomia della Springer, perché è anche grazie al suo incoraggiamento se
il progetto di questo libro si è finalmente concretizzato.

Un dovuto pensiero di riconoscimento va inoltre a Venzo De Sabbata, che
è stato un mio professore quando (molti anni fa!) ero studente di Fisica all’U-
niversità di Bologna, e che mi ha introdotto allo studio della gravitazione e
della cosmologia, stimolando il mio interesse verso questi argomenti di studio
e di ricerca.

Sono infine grato alla Springer-Verlag Italia, e in particolare all’Editore
Esecutivo Marina Forlizzi, per l’assistenza ricevuta, gli utili consigli e l’ottima
riuscita editoriale di questo libro.

Cesena, Ottobre 2009 Maurizio Gasperini



Notazioni e convenzioni

In questo libro useremo l’indice 0 per la coordinata temporale, e gli indi-
ci 1, 2, 3 per le coordinate spaziali. Per la metrica gµ⌫ dello spazio-tempo
adotteremo la segnatura con autovalore temporale positivo, ossia:

gµ⌫ = diag (+,�,�,�) .

Le convenzioni per gli oggetti geometrici sono le seguenti.
Tensore di Riemann:

Rµ⌫↵
� = @µ�⌫↵

� + �µ⇢
��⌫↵

⇢ � (µ $ ⌫);

tensore di Ricci:

R⌫↵ = Rµ⌫↵
µ;

derivata covariante:

rµV
↵ = @µV

↵ + �µ�
↵V � ; rµV↵ = @µV↵ � �µ↵

�V� ;

derivata covariante di Lorentz:

DµV
a = @µV

a + !µ
a
bV

b; DµVa = @µVa � !µ
b
aVb.

Inoltre, il simbolo 2 indica l’usuale operatore di D’Alembert nello spazio di
Minkowski, ossia

2 ⌘ ⌘µ⌫@µ@⌫ =
1

c2
@2

@t2
�r2,

dove ⌘ è la metrica di Minkowski e r2 = �ij@i@j il Laplaciano dello spazio
Euclideo tridimensionale.

A meno che non sia esplicitamente indicato il contrario, useremo le let-
tere Latine minuscole i, j, k, . . . per indicare gli indici spaziali 1, 2, 3; le let-
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tere Greche minuscole µ, ⌫,↵, . . . per gli indici spazio-temporali 0, 1, 2, 3. In
uno spazio-tempo multidimensionale, con d > 3 dimensioni spaziali, indi-
cheremo invece gli indici spazio-temporali con le lettere Latine maiuscole,
A,B,C, . . . = 0, 1, 2, 3, . . . , d.

Gli indici racchiusi in parentesi tonde oppure quadre soddisfano, rispetti-
vamente, le proprietà di simmetria o antisimmetria definite dalla regola:

T
(↵�) ⌘

1

2
(T↵� + T�↵) , T

[↵�] ⌘
1

2
(T↵� � T�↵) .

Se un oggetto ha più di due indici, e gli indici da simmetrizzare o antisim-
metrizzare non sono contigui, tali indici verrano separati dagli altri mediante
una barra verticale. Ad esempio:

T
(µ|↵|⌫) ⌘

1

2
(Tµ↵⌫ + T⌫↵µ) ,

T
[µ|↵|⌫]� ⌘ 1

2
(Tµ↵⌫� � T⌫↵µ�) ,

dove il primo oggetto è simmetrizzato in µ e ⌫ (con ↵ fisso), mentre il secondo
oggetto è antisimmetrizzato in µ e ⌫ (con ↵ e � fissi). E cos̀ı via.

La procedura di simmetrizzazione e antisimmetrizzazione può essere ov-
viamente estesa a un numero arbitrario di indici n � 2, prendendo tutte le
loro possibili permutazioni e dividendo per il numero di permutazioni n!. Nel
caso di una simmetrizzazione tutte le permutazioni vanno prese col segno po-
sitivo, nel caso di una antisimmetrizzazione le permutazioni pari vanno prese
col segno positivo, quelle dispari col segno negativo. Ad esempio:

T
(µ⌫↵) =

1

3!
(Tµ⌫↵ + T⌫↵µ + T↵µ⌫ + Tµ↵⌫ + T⌫µ↵+ T↵⌫µ) ,

T
[µ⌫↵] =

1

3!
(Tµ⌫↵ + T⌫↵µ + T↵µ⌫ � Tµ↵⌫ � T⌫µ↵� T↵⌫µ) .

E cos̀ı via. Infine, il simbolo completamente antisimmetrico (o simbolo di
Levi-Civita) nello spazio di Minkowski, ✏µ⌫↵� = ✏[µ⌫↵�], è definito con le
seguenti convenzioni:

✏0123 = +1, ✏µ⌫↵� = �✏µ⌫↵� ;

le sue componenti valgono +1 se gli indici µ⌫↵� corrispondono a una per-
mutazione pari di 0123, valgono �1 se gli indici µ⌫↵� corrispondono a una
permutazione dispari di 0123, e valgono 0 se ci sono due o più indici uguali.

Il sistema di unità che verrà usato per le stime numeriche è il sistema CGS,
dove le equazioni di Maxwell assumono la forma:

@µF
µ⌫ =

4⇡

c
j⌫ ,

Fµ⌫ = @µA⌫ � @⌫Aµ, Aµ = (�,A) .
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Nella trattazione dei campi scalari e spinoriali useremo invece il cosiddetto
sistema di unità “naturali”, nel quale la velocità della luce c e la costante di
Planck h̄ sono posti uguale ad uno. In questo sistema la costante di Newton G
acquista dimensioni di lunghezza al quadrato (o inverso di massa al quadrato),
ed è collegata alla massa di Planck M

P

e alla lunghezza di Planck �
P

dalla
relazione:

G�1 = M2

P

= ��2

P

.

In unità CGS:

M
P

=

✓

h̄c

G

◆

1/2

' 2⇥ 10�5 g,

�
P

=

✓

Gh̄

c3

◆

1/2

' 1.6⇥ 10�33 cm.

L’energia associata alla massa di Planck è data da E
P

= M
P

c2 ' 1019 GeV,
dove 1GeV = 109 eV è la scala di energia associata alla massa di riposo del
protone. La scala di energia di Planck controlla l’intensità dell’accoppiamento
gravitazionale relativamente alle altre interazioni presenti su scala microsco-
pica, e determina l’importanza delle correzioni quantistiche alle equazioni
gravitazionali classiche.
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A.1.3 Dualità e co-di↵erenziale . . . . . . . . . . . . . . . . . . . . . . . . . . 298

A.2 Forme di base e di connessione: derivata covariante esterna . . 301
A.3 Forme di torsione e di curvatura: equazioni di struttura . . . . . 304

A.3.1 Teoria di gauge per il gruppo di Poincarè . . . . . . . . . . . . 305
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1

Complementi di relatività ristretta

In questo primo capitolo richiameremo alcuni aspetti formali della teoria
classica dei campi, e in particolare del formalismo variazionale covariante ad
essa associato, introducendo nozioni che si riveleranno utili per il successivo
studio della teoria relativistica del campo gravitazionale.

Ci concentreremo sulle simmetrie dello spazio-tempo di Minkowski, e mo-
streremo come le definizioni del tensore canonico energia-impulso e del ten-
sore densità di momento angolare emergano, rispettivamente, dall’invarianza
dell’azione rispetto alle traslazioni e alle trasformazioni di Lorentz. Presen-
teremo quindi alcuni esempi espliciti di tensore energia-impulso per semplici
sistemi di interesse fisico: campi scalari, campi vettoriali, masse puntiformi e
fluidi perfetti.

È opportuno sottolineare che tutte le considerazioni svolte in questo ca-
pitolo saranno basate sull’ipotesi che l’interazione gravitazionale sia assente
(o comunque trascurabile), e che i sistemi fisici considerati possano essere
correttamente descritti nel contesto della relatività ristretta e del formalismo
tensoriale definito nello spazio-tempo di Minkowski. Un utile riferimento per
tale formalismo è rappresentato dai testi [1]- [6] della Bibliografia finale.

1.1 Simmetrie e leggi di conservazione

Consideriamo un generico sistema fisico rappresentato dal campo  (x), la cui
dinamica è controllata dall’azione

S =

Z

⌦

d4xL( , @ , x), (1.1)

dove L è la densità di Lagrangiana, funzione del campo e dei suoi gradienti, e
⌦ un opportuno dominio di integrazione spazio-temporale. Qui, e nel seguito,
indicheremo collettivamente col simbolo x una generica dipendenza da tutte
le coordinate dello spazio-tempo. Si noti che le dimensioni di L sono quelle
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2 1 Complementi di relatività ristretta

di una densità d’energia, per cui il funzionale d’azione considerato ha dimen-
sioni di [energia] ⇥ [lunghezza] a causa del fattore c contenuto in dx0 = cdt.
Le dimensioni canoniche di [energia] ⇥ [tempo] dell’azione possono essere fa-
cilmente ripristinate moltiplicando l’integrale (1.1) per il fattore 1/c, ma tale
fattore risulta irrilevante per la considerazioni svolte in questo capitolo.

Ricordiamo, per iniziare, che l’evoluzione del sistema fisico considerato è
descritta dalle equazioni del moto di Eulero-Lagrange. Esse si ottengono im-
ponendo che l’azione risulti stazionaria rispetto a variazioni locali del campo,
e↵ettuate con la condizione che tali variazioni siano nulle sul bordo @⌦ della
regione di integrazione.

Consideriamo infatti una trasformazione infinitesima del campo  , e↵et-
tuata a x fissato:

 (x) !  0(x) =  (x) + � (x), (1.2)

e calcoliamo la corrispondente variazione �S dell’azione:

�S =

Z

⌦

d4x



@L
@ 

� +
@L

@(@µ )
�(@µ )

�

. (1.3)

Abbiamo supposto, per semplicità, che L dipenda solo dalle derivate prime di
 e non dalle sue derivate superiori (il calcolo però si può facilmente estendere
a Lagrangiane contenenti derivate di ordine arbitrario, L = L( ,@ n )).

Poiché la variazione � è definita ad x fissato, essa commuta con le derivate
parziali del campo, ossia:

�(@µ ) = @µ 
0 � @µ = @µ(� ). (1.4)

Integrando per parti il secondo termine dell’Eq. (1.3) abbiamo quindi

�S =

Z

⌦

d4x



@L
@ 

� @µ
@L

@(@µ )

�

� +

Z

⌦

d4x @µ



@L
@(@µ )

� 

�

. (1.5)

Usando il teorema di Gauss possiamo trasformare l’ultimo integrale, che con-
tiene una quadri-divergenza, in un integrale che ci dà il flusso dell’argomen-
to della quadri-divergenza sull’ipersuperficie @⌦, che delimita il bordo del
quadri-volume ⌦ considerato. Si ottiene cos̀ı

�S =

Z

⌦

d4x



@L
@ 

� @µ
@L

@(@µ )

�

� +

Z

@⌦

dSµ



@L
@(@µ )

� 

�

, (1.6)

dove abbiamo indicato con dSµ l’elemento di ipersuperficie su @⌦, orientato
lungo la normale in direzione esterna . Se imponiamo che la variazione del
campo sia nulla sul bordo,

� 
�

�

@⌦
= 0, (1.7)

troviamo infine che l’ultimo termine dell’Eq. (1.6) è identicamente nullo. La
condizione di azione stazionaria (o principio di “minima azione”), �S = 0, è
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dunque automaticamente soddisfatta, per qualunque variazione � , purché
valgano le equazioni di Eulero-Lagrange:

@µ
@L

@(@µ )
=
@L
@ 

. (1.8)

Consideriamo ora una trasformazione infinitesima del campo e delle coordi-
nate spazio-temporali,

 (x) !  0(x) =  (x) + � (x), xµ ! x0µ = xµ + �xµ(x) (1.9)

(come nel caso precedente, la variazione del campo va e↵ettuata calcolando  0

e  nella stesso punto x dello spazio-tempo). Possiamo assumere che � e �xµ

dipendano da uno o più parametri ✏1, . . . , ✏n, che tratteremo come quantità
infinitesime del primo ordine, e che sono tipici del gruppo di trasformazioni
considerato. Tali parametri possono essere costanti, oppure possono essere
funzioni continue delle coordinate, ✏ = ✏(x). Nel primo caso le trasformazioni
(1.9) si dicono globali, nel secondo caso locali.

Consideriamo ora la forma infinitesima dell’azione (1.1), dS = d4xL, e
calcoliamone la variazione prodotta, al primo ordine, dalla trasformazione
(1.9). Non imponiamo per il momento alcuna condizione di bordo. Conside-
rando che stiamo variando anche le coordinate possiamo scrivere, in gene-
rale,

� (dS) = d4x �L+ L �
�

d4x
�

= d4x



@L
@ 

� +
@L

@(@µ )
�(@µ ) + (@µL) �xµ

�

+ L �
�

d4x
�

.
(1.10)

Valutiamo innanzitutto l’ultimo contributo, sfruttando il fatto che la trasfor-
mazione dell’elemento di quadri-volume è dettata dal determinante Jacobiano
|@x0/@x| della trasformazione di coordinate:

d4x ! d4x0 = d4x

�

�

�

�

@x0

@x

�

�

�

�

. (1.11)

Nel caso della trasformazione infinitesima (1.9), restando al primo ordine in
�xµ, abbiamo

�

�

�

�

@x0

@x

�

�

�

�

⌘ det

✓

@x0µ

@x⌫

◆

= det (�µ⌫ + @⌫�x
µ + · · ·)

= 1 + @µ�x
µ +O(�x2),

(1.12)

e quindi
L �(d4x) = L

�

d4x0 � d4x
�

= L d4x @µ(�x
µ). (1.13)
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Sostituendo nell’Eq. (1.10), sommando tutti i termini, usando l’Eq. (1.4), e
raccogliendo una divergenza totale, otteniamo infine l’espressione

� (dS) = d4x

✓

@L
@ 

� @µ
@L

@(@µ )

◆

� + @µ

✓

@L
@(@µ )

� + L �xµ

◆�

, (1.14)

che fornisce la variazione completa dell’azione infinitesima per la trasforma-
zione considerata in Eq. (1.9).

È opportuno ricordare, a questo punto, la definizione precisa di simmetria
nel contesto della teoria dei campi. Una trasformazione (dei campi e/o delle
coordinate) è detta una simmetria del sistema dato se (e solo se) essa lascia
invariate le equazioni del moto del sistema. Possiamo dire, in particolare,
che se  è una soluzione delle equazioni del moto allora la trasformazione
 !  0 rappresenta una simmetria se e solo se anche  0 è soluzione delle
stesse equazioni.

Utilizzando il formalismo variazionale, d’altra parte, si trova facilmente
che le equazioni del moto restano invariate sotto una trasformazione infini-
tesima purché la corrispondente variazione dell’azione si possa scrivere come
l’integrale di una quadri-divergenza,

�S ⌘
Z

⌦

d4x @µK
µ, (1.15)

dove Kµ è un quadrivettore determinato dalla variazione infinitesima del
campo e delle coordinate. È immediato verificare, come esempio particolare,
che due distinte Lagrangiane L e L, definite da L = L( , @ ) e da L = L+
@µfµ( ), portano alle stesse equazioni del moto per  , in quanto l’operatore
di Eulero-Lagrange (1.8) applicato a @µfµ( ) dà un risultato identicamente
nullo (si veda l’Esercizio 1.1).

Più in generale possiamo notare che, applicando il teorema di Gauss, il
contributo variazionale (1.15) si può scrivere nella forma

�S ⌘
Z

@⌦

dSµ K
µ. (1.16)

Se Kµ è proporzionale a � ne consegue immediatamente che questo termine
non contribuisce alle equazioni del moto perché – come già sottolineato – tali
equazioni sono ottenute imponendo la condizione � = 0 sull’ipersuperficie di
bordo @⌦. Tale conclusione non è in generale valida se Kµ dipende non solo
dalla variazione del campo, � , ma anche dalle sue derivate (si veda, a questo
proposito, il Capitolo 7, Sez. 7.1). Anche in questo caso, però, le equazioni
del moto restano invariate purché il campo e le sue derivate siano localizzate
in una porzione finita di spazio e vadano a zero in modo abbastanza rapido
fuori da questa regione, in modo tale che Kµ risulti identicamente nullo sul
bordo @⌦ del dominio spazio-temporale considerato.
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Usando la definizione di simmetria, e imponendo che la variazione (1.14)
sia compatibile con la condizione di invarianza delle equazioni del moto,
Eq. (1.15), possiamo quindi concludere che la trasformazione (1.9) rappre-
senta una simmetria per il nostro sistema fisico purché valga la condizione:



@L
@ 

� @µ
@L

@(@µ )

�

� + @µ



@L
@(@µ )

� + L �xµ

�

= @µK
µ. (1.17)

Nel caso particolare in cui Kµ = 0 risulta soddisfatta la condizione più forte



@L
@ 

� @µ
@L

@(@µ )

�

� + @µ



@L
@(@µ )

� + L �xµ

�

= 0, (1.18)

che garantisce anche l’invarianza dell’azione (si veda l’Eq. (1.14)) oltre che
l’invarianza delle equazioni del moto. Però, se Kµ si annulla sul bordo del
dominio di integrazione ⌦, allora il contributo integrale di @µKµ scompa-
re grazie all’applicazione del teorema di Gauss (si veda l’Eq. (1.16)), e an-
che la condizione di simmetria (1.17) è su�ciente a garantire l’invarianza
dell’azione, �S = 0.

Siamo ora in grado di presentare il risultato – universalmente noto come
teorema di Nöther – che esprime in maniera precisa lo stretto legame esisten-
te tra simmetrie e leggi di conservazione preannunciato dal titolo di questa
sezione. Dalla definizione di simmetria (1.17) segue infatti che ad ogni tra-
sformazione di simmetria {� ,�x}, e ad ogni configurazione di campo che
soddisfa le equazioni del moto (1.8), possiamo sempre associare una corrente
vettoriale Jµ, definita da

Jµ =
@L

@(@µ )
� + L �xµ �Kµ, (1.19)

che risulta conservata – ossia che soddisfa alla condizione di divergenza nulla
– in virtù della simmetria del sistema dato:

@µJ
µ = 0. (1.20)

Va subito notato che la definizione di questa corrente non è univoca, in ge-
nerale. Infatti, è sempre possibile aggiungere alla Lagrangiana una quadri-
divergenza che non cambia le equazioni del moto, e quindi non rompe le
simmetria del sistema. La Lagrangiana cos̀ı modificata porta a definire una
nuova corrente che è diversa dalla precedente, e che è anch’essa conserva-
ta grazie al teorema di Nöther (si veda la Sez. 1.2 per un esempio espli-
cito).

È utile osservare, infine, che se la trasformazione di simmetria considerata
dipende da n parametri indipendenti, ✏1, . . . , ✏n, allora esistono in generale n
correnti vettoriali, ciascuna delle quali è separatamente conservata.
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Supponiamo infatti che la trasformazione infinitesima (1.9) si possa fatto-
rizzare come segue, introducendo n parametri ✏A costanti:

� = ✏A�A , �xµ = ✏A�Ax
µ, A = 1, 2, . . . , n. (1.21)

Ripetiamo i passaggi precedenti, parametrizzando il vettore Kµ come Kµ =
✏AKµ

A e imponendo che le equazioni del moto siano soddisfatte. Fattorizzando
i parametri ✏A troviamo allora che la condizione di simmetria (1.17) associa
ad ogni parametro una specifica corrente conservata Jµ

A, con A = 1, 2, . . . , n,
tale che:

Jµ
A =

@L
@(@µ )

�A + L �Axµ �Kµ
A, @µJ

µ
A = 0. (1.22)

Esempi di questo tipo saranno discussi nelle sezioni successive.

1.2 Traslazioni globali e tensore canonico
energia-impulso

Un semplice e importante esempio di simmetria nello spazio-tempo di Min-
kowski è costituito dall’invarianza per traslazioni (di tipo globale) delle
coordinate spazio-temporali, ed è associato alla trasformazione

xµ ! x0µ(x) = xµ + ✏µ, (1.23)

dove ✏µ sono quattro parametri indipendenti, costanti ed infinitesimi. La
trasformazione inversa è data da

xµ(x0) = x0µ � ✏µ, (1.24)

e la matrice Jacobiana della trasformazione si riduce alla matrice identità,

�xµ = x0µ � xµ = ✏µ = cost. =) @x0µ

@x⌫
= �µ⌫ , (1.25)

in quanto abbiamo considerato una traslazione “rigida” (ossia indipendente
dal punto dello spazio-tempo in cui viene e↵ettuata).

Tutti i campi, indipendentemente dalla specifica rappresentazione tenso-
riale (o spinoriale) del gruppo di Lorentz che li caratterizza, si trasformano
dunque come scalari rispetto alla traslazione (1.23):

 0(x0) ⌘  0(x+ ✏) =  (x). (1.26)

La variazione infinitesima � , e↵ettuata in un punto di coordinate fissate, si
ottiene sviluppando la trasformazione precedente in serie di Taylor nel limite
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✏ ! 0. Considerando ad esempio la variazione nel punto x, ed espandendo
l’Eq. (1.26) nel punto traslato x� ✏ abbiamo, al primo ordine in ✏,

 0(x) =  (x� ✏) '  (x)� ✏µ@µ (x) + · · · , (1.27)

e quindi
� ⌘  0(x)�  (x) = �✏µ@µ . (1.28)

Chiediamoci ora qual è la corrente conservata nel caso in cui le traslazioni
globali (1.23) rappresentino una trasformazione di simmetria per il sistema fi-
sico dato. Per tali trasformazioni l’elemento di quadri-volume resta invariato,
d4x0 = d4x, in accordo all’Eq. (1.11). Inoltre, i sistemi invarianti per trasla-
zioni corrispondono ai cosiddetti sistemi “isolati”, per i quali la densità di la-
grangiana si trasforma anch’essa come uno scalare, L0( 0(x0)) = L( (x)), in-
dipendentemente dalla misura di integrazione spazio-temporale. Ne consegue
che, per tali sistemi,

Z

d4x0 L0( 0(x0)) =

Z

d4xL( (x)), (1.29)

ossia l’azione stessa risulta invariante.
In questo caso abbiamo Kµ = 0, e la definizione generale di simmetria

(1.17) si riduce al caso particolare (1.18). Imponendo che valgano le equa-
zioni del moto (1.8), sostituendo a �xµ e � le espressioni (1.25) e (1.28), e
tenendo conto che i parametri ✏ sono costanti, arriviamo dunque all’equazione
di conservazione

✏⌫@µ⇥⌫
µ = 0, (1.30)

dove abbiamo posto

⇥⌫
µ ⌘ @L

@(@µ )
@⌫ � L �µ⌫ (1.31)

(il segno di ⇥⌫ µ, in principio arbitrario, è stato fissato in questo modo per
ragioni di convenienza futura).

Poiché i parametri ✏⌫ sono arbitrari e indipendenti, l’Eq. (1.30) defini-
sce quattro correnti vettoriali separatamente conservate, ⇥⌫ µ, ⌫ = 1, . . . , 4,
una per ognuna delle quattro componenti di ✏⌫ . Ritroviamo cos̀ı un esempio
specifico del caso considerato alla fine della sezione precedente: le traslazioni
globali infinitesime appartengono infatti alla classe di trasformazioni (1.21), e
corrispondono al caso particolare in cui n = 4, l’indice A è un indice vettoriale
⌫ dello spazio-tempo, e le variazioni infinitesime dell’Eq. (1.21) corrispondono
esplicitamente a

�⌫x
µ = @⌫x

µ, �⌫ = �@⌫ . (1.32)

Poiché ⌫ è un indice di tipo vettoriale, l’oggetto conservato ⇥⌫ µ definito in
Eq. (1.31) è un tensore di rango due, chiamato tensore canonico densità di
energia-impulso.
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Figura 1.1 La porzione di spazio-tempo ⌦ è delimitata dai due iperpiani tridimensionali
⌃1 e ⌃2 che si estendono spazialmente all’infinito

Per comprendere (e giustificare fisicamente) il nome di questo tensore è neces-
sario ricordare che ad ogni corrente conservata Jµ, che soddisfa l’equazione di
continuità @µJµ = 0, si può sempre associare una “carica” conservata (ovve-
ro una costante del moto), definita da un opportuno integrale della corrente
sullo spazio-tempo.

Consideriamo infatti una porzione quadri-dimensionale ⌦ dello spazio-
tempo di Minkowski, supponendo che tale regione si estenda all’infinito lun-
go le coordinate spaziali, e sia invece limitata lungo l’asse temporale da due
iperpiani paralleli ⌃

1

e ⌃
2

, Euclidei e tridimensionali, di tipo spazio (ca-
ratterizzati cioè da un versore normale nµ di tipo tempo, nµnµ = 1, co-
me illustrato in Fig. 1.1). Integrando l’equazione di continuità @µJµ = 0
sulla regione ⌦, applicando il teorema di Gauss, e assumendo che i cam-
pi che definiscono Jµ siano localizzati a distanza finita dall’origine (os-
sia che Jµ ! 0, in modo su�cientemente rapido, per x ! ± 1), si
ottiene:

0 =

Z

⌦

d4x @µJ
µ =

Z

@⌦

JµdSµ =

Z

⌃2

JµdSµ �
Z

⌃1

JµdSµ. (1.33)

Il segno opposto dei due integrali a secondo membro è dovuto al fatto che,
per il teorema di Gauss, dobbiamo valutare su @⌦ il flusso di Jµ “uscente”
da ⌦, ossia il flusso orientato lungo la normale e diretto verso l’esterno del
bordo.
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L’Eq. (1.33) ci dice che il flusso di Jµ non dipende dall’ipersuperficie
considerata, ossia che

Z

⌃2

JµdSµ =

Z

⌃1

JµdSµ. (1.34)

Possiamo valutare, in particolare, il prodotto JµdSµ nel riferimento di un
osservatore inerziale la cui quadri-velocità è parallela a nµ, dove abbiamo
nµ = �µ

0

, dS
0

= d3x, dSi = 0, e dove gli iperpiani ⌃
1

,⌃
2

sono ipersuperfici
a t = costante, che intersecano rispettivamente l’asse temporale nei punti
t
1

e t
2

. L’Eq. (1.34) definisce allora una quantità Q indipendente dal tempo
(ovvero una quantità conservata), tale che:

Q(t
2

) =
1

c

Z

⌃2

JµdSµ ⌘ 1

c

Z

t2

J0d3x =

= Q(t
1

) =
1

c

Z

⌃1

JµdSµ ⌘ 1

c

Z

t1

J0d3x = cost

(1.35)

(il fattore di normalizzazione 1/c è stato inserito per ragioni di convenienza
dimensionale, come vedremo in seguito).

Il risultato precedente è valido per qualunque corrente Jµ a divergenza
nulla. Nel caso dell’invarianza per traslazioni abbiamo quattro correnti a di-
vergenza nulla ⇥⌫ µ. Integrando su di un’arbitraria ipersuperficie spaziale ⌃
possiamo dunque definire quattro costanti del moto (ovvero quattro “cariche”
conservate) P⌫ ,

P⌫ =
1

c

Z

⌃

⇥⌫
µdSµ =

1

c

Z

t=cost

⇥⌫
0d3x, (1.36)

associate ai quattro parametri ✏⌫ che specificano la trasformazione data. D’al-
tra parte, in accordo ai risultati della meccanica analitica elementare, è ben
noto che l’invarianza per traslazioni lungo un asse spaziale xi è associato alla
conservazione dell’impulso (o quantità di moto) pi lungo quell’asse, mentre
l’invarianza per traslazioni temporali è associata alla conservazione dell’e-
nergia. Possiamo dunque interpretare le quattro quantità conservate come le
quattro componenti del quadrivettore impulso canonico P⌫ = (pi, E/c), e le
componenti del tensore ⇥⌫ µ – che devono essere integrate sul volume spaziale
per riprodurre P⌫ – come densità di energia e di impulso.

È opportuno verificare, a questo punto, che il fattore di proporzonalità 1/c
è necessario per ottenere il quadrivettore impulso con la corretta normaliz-
zazione dimensionale. A questo proposito consideriamo la quarta componen-
te P

0

, che deve corrispondere a E/c, dove E è l’energia totale del sistema.
Dall’Eq. (1.31) abbiamo

⇥
0

0 =

✓

@L
@ ̇

◆

 ̇ � L, (1.37)
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dove  ̇ = @ /@t, e dove @L/@ ̇ è il momento canonico coniugato del campo  .
Quindi ⇥

0

0 coincide esattamente con la densità di Hamiltoniana H che, per
un sistema isolato, è anche la densità d’energia totale del sistema. L’integrale
di ⇥

0

0 su tutto lo spazio, diviso per c, fornisce quindi la corretta espressione
per P

0

, in accordo alla definizione (1.36).
Notiamo infine che il tensore canonico energia-impulso (1.31) non è, in

generale, un tensore simmetrico nello scambio degli indici, cioè ⇥⌫µ 6= ⇥µ⌫ .
D’altra parte la definizione di ⇥µ⌫ non è univoca, e questa proprietà può
essere sfruttata per modificare il tensore in modo da renderlo simmetrico,
come vedremo nella Sez. 1.3.

1.2.1 Non-univocità della definizione

Abbiamo già sottolineato, nella sezione precedente, che è sempre possibile
modificare una Lagrangiana data aggiungendo la divergenza di una funzione
arbitraria senza per questo influire sulle equazioni del moto, e quindi senza
rompere le simmetrie possedute dal sistema.

In particolare, dato un sistema fisico  descritto dalla densità di La-
grangiana L, invariante per traslazioni globali, possiamo aggiungere a L il
temine L = @↵f↵( ) conservando le proprietà di invarianza traslazionale.
Il nuovo termine @↵f↵ fornisce un contributo non-triviale ⇥⌫ µ al tensore
energia-impulso del sistema; tale contributo, però, soddisfa automaticamente
la condizione di divergenza nulla, @µ⇥⌫ µ = 0 (si veda l’Esercizio 1.2). Al-
la nuova Lagrangiana L + L è associato quindi un nuovo tensore canonico
energia-impulso ⇥ +⇥ che è ancora conservato,

@⌫
�

⇥µ
⌫ +⇥µ

⌫
�

= 0, (1.38)

perché sia ⇥ che ⇥ sono separatamente conservati.
Il nuovo tensore ⇥+⇥ è ovviamente diverso dal tensore canonico originale

⇥. Le costanti del moto associate a ⇥ + ⇥, però, sono esattamente le stesse
di quelle associate a ⇥. Infatti, applicando la definizione (1.31) per calcolare
il tensore energia-impulso ⇥ associato a L, abbiamo:

⇥µ
⌫ = @µf

⌫ � �⌫µ@↵f
↵ (1.39)

(si veda l’Esercizio 1.2, Eq. (1.109)). Usando la definizione (1.36), e integrando
su di una ipersuperficie spaziale ⌃ infinitamente estesa, otteniamo infine

P i =
1

c

Z

⌃

⇥i
0d3x =

1

c

Z

⌃

d3x @if
0, (1.40)

P
0

=
1

c

Z

⌃

⇥
0

0d3x = �1

c

Z

⌃

d3x @if
i. (1.41)
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Entrambi questi integrali sono nulli, perché si riducono a valutare le funzioni
fµ( ) sul bordo spaziale di ⌃ all’infinito, dove i campi (localizzati in porzioni
finite di spazio) vanno rapidamente a zero. Ne consegue che sia ⇥ che ⇥+⇥,
forniscono le stesse componenti del quadri-impulso totale Pµ associato a quel
sistema, e sono quindi fisicamente equivalenti.

1.3 Trasformazioni di Lorentz e tensore momento
angolare

Un’altra importante simmetria, tipica dello spazio di Minkowski, è costituita
dall’invarianza per trasformazioni globali del gruppo di Lorentz ristretto, ed
è associata alla trasformazione di coordinate

xµ ! x0µ = ⇤µ
⌫x

⌫ , (1.42)

dove ⇤ è una matrice costante che rappresenta un elemento del gruppo
SO(3, 1) ortocrono, e quindi soddisfa alle condizioni:

⌘µ⌫⇤
µ
↵⇤

⌫
� = ⌘↵� , det⇤ = 1, ⇤0

0

� 1 (1.43)

(⌘ è la metrica di Minkowski). Sviluppando l’Eq. (1.42) attorno alla trasfor-
mazione identica possiamo porre, al primo ordine,

⇤µ
⌫ = �µ⌫ + !µ

⌫ + · · · , x0µ(x) = xµ + !µ
⌫x

⌫ + · · · . (1.44)

Imponendo la condizione di gruppo (1.43) troviamo allora che la matrice ! de-
ve essere antisimmetrica, !µ⌫ = !

[µ⌫]. Possiamo perciò scrivere la variazione
delle coordinate come

�xµ = x0µ � xµ = !µ
⌫x

⌫ ⌘ 1

2
(!µ⌫ � !⌫µ)x⌫ , (1.45)

dove le sei componenti indipendenti (e costanti) di !µ⌫ rappresentano i sei
parametri infinitesimi della trasformazione di Lorentz considerata.

Per ottenere la corrispondente variazione infinitesima del campo ricordia-
mo che il gruppo di Lorentz ristretto è un gruppo di Lie, e che una generica
trasformazione si può quindi rappresentare in forma esponenziale come segue:

 0(x0) = U (x), U = e�
i
2!µ⌫S

µ⌫

. (1.46)

L’operatore antisimmetrico Sµ⌫ = �S⌫µ contiene i sei generatori delle tra-
sformazioni del gruppo – che nel nostro caso si possono scomporre in tre
rotazioni e tre “boosts” lungo i tre assi spaziali – e soddisfa alla cosiddet-
ta “algebra di Lie” di SO(3, 1), rappresentata dalle regole di commutazione



12 1 Complementi di relatività ristretta

seguenti:

⇥

Sµ⌫ , S↵�
⇤

= i
�

⌘⌫↵Sµ� � ⌘⌫�Sµ↵ � ⌘µ↵S⌫� + ⌘µ�S⌫↵
�

. (1.47)

L’espressione esplicita dei generatori S dipende, ovviamente, dalla rappre-
sentazione del gruppo di Lorentz a cui appartiene il campo considerato.

Sviluppando la trasformazione (1.46) attorno all’identità, e indicando ge-
nericamente con l’indice A l’insieme degli indici di Lorentz (tensoriali o spi-
noriali) posseduti dal campo, possiamo approssimare la trasformazione, al
primo ordine in !, come

 0A(x0) =



�AB � i

2
!µ⌫ (S

µ⌫)A B + · · ·
�

 B(x). (1.48)

Se abbiamo un campo scalare, in particolare, l’operatore U coincide con l’i-
dentità e i generatori corrispondenti sono nulli, Sµ⌫ = 0. Se abbiamo un cam-
po che appartiene alla rappresentazione vettoriale gli indici A,B, . . . coincido-
no con indici spazio-temporali ↵,� . . . che variano da 0 a 3, e i sei generatori
sono rappresentati da sei matrici 4 ⇥ 4, (Sµ⌫)↵ � : una matrice per ognuna
delle sei possibili combinazioni indipendenti degli indici antisimmetrici µ e ⌫.
La forma esplicita di questi generatori si può ottenere imponendo che l’Eq.
(1.48) riproduca lo sviluppo (1.44) della matrice ⇤, ossia che

� i

2
!µ⌫ (S

µ⌫)↵ �  
� = !↵� 

� . (1.49)

Si trova allora l’espressione

(Sµ⌫)↵ � = i
⇣

⌘µ↵�⌫� � ⌘⌫↵�µ�

⌘

, (1.50)

e si può verificare che, per queste matrici, anche l’algebra di commutazione
(1.47) risulta automaticamente soddisfatta. E cos̀ı via per altre rappresenta-
zioni tensoriali del gruppo di Lorentz di rango più elevato (per i generatori
della rappresentazione spinoriale si veda in particolare il Capitolo 13).

Vogliamo calcolare ora la variazione infinitesima del campo  valutata
localmente in un punto di coordinate fissato, ad esempio nel punto x: vogliamo
calcolare ciè � (x) =  0(x) �  (x). A questo scopo partiamo dalla generica
trasformazione (1.46) scritta non nel punto x ma nel punto traslato x � �x,
espandiamo la trasformazione di Lorentz del campo al primo ordine in ! come
prescritto dall’Eq. (1.48), ed espandiamo anche in serie di Taylor il campo
traslato  (x� �x) per �x ! 0. Otteniamo allora (omettendo, per semplicità,
di scrivere esplicitamente gli indici di Lorentz del campo)

 0(x)=U (x� �x)=

✓

1� i

2
!µ⌫S

µ⌫+· · ·
◆

[ (x)��xµ@µ (x)+ · · ·]

=  (x)� i

2
!µ⌫S

µ⌫ (x)� �xµ@µ (x) + · · · .
(1.51)
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Usando per �xµ la trasformazione di Lorentz infinitesima (1.45) arriviamo
infine a

� ⌘  0(x)�  (x) =
1

2
!µ⌫ (x

µ@⌫ � x⌫@µ � iSµ⌫) . (1.52)

Abbiamo ora tutti gli elementi necessari per applicare la condizione di
simmetria (1.17), e calcolare le correnti e le quantità conservate associate
all’invarianza per trasformazioni globali del gruppo di Lorentz ristretto.

Osserviamo innanzitutto che per questo gruppo – cos̀ı come per il gruppo
delle traslazioni globali considerato in precedenza – l’elemento di quadri-
volume d4x risulta invariante. Assumendo che anche la densità di Lagrangiana
sia separatamente Lorentz-invariante, e ponendo Kµ = 0, possiamo allora
applicare la condizione di simmetria (1.18). Imponendo le equazioni di Eulero-
Lagrange siano soddisfatte, e usando per �x e � le variazioni infinitesime
(1.45), (1.52), otteniamo:

1

2
!↵�@µ



@L
@(@µ )

�

�iS↵� + x↵@� � x�@↵
�

 + L
�

⌘↵µx� � ⌘�µx↵
�

�

=
1

2
!↵�@µ

"

� i
@L

@(@µ )
S↵� +

✓

@L
@(@µ )

@� � L⌘µ�
◆

x↵ (1.53)

�
✓

@L
@(@µ )

@↵ � L⌘µ↵
◆

x�
#

= 0.

Nelle due parentesi tonde presenti a secondo membro si può facilmente ricono-
scere l’espressione del tensore canonico energia-impulso (1.31). Usando l’ar-
bitrarietà e l’indipendenza dei parametri !↵� arriviamo quindi alla seguente
equazione di conservazione,

@µJ
µ↵� = 0, (1.54)

dove
Jµ↵� = Sµ↵� + x↵⇥�µ � x�⇥↵µ = Jµ[↵�], (1.55)

e dove

Sµ↵� = �i
@L

@(@µ )
S↵� = Sµ[↵�]. (1.56)

Poiché il tensore Jµ↵� è antisimmetrico negli ultimi due indici esso contiene 24
componenti indipendenti, che corrispondono in totale a sei correnti vettoriali
conservate, e quindi a sei costanti del moto,

J↵� =
1

c

Z

⌃

Jµ↵�dSµ = J [↵�], (1.57)

che possiamo associare all’invarianza per rotazioni e per boosts e↵ettuati lungo
le tre dimensioni spaziali.
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Ricordando che ⇥ rappresenta la densità di energia ed impulso, è facile
riconoscere nela seconda parte della corrente (1.55),

Lµ↵� = x↵⇥�µ � x�⇥↵µ, (1.58)

l’espressione relativistica del tensore densità di momento angolare orbitale.
La prima parte associata al tensore Sµ↵� , che dipende esplicitamente dalla
rappresentazione di Lorentz – e quindi dalle proprietà di trasformazione in-
trinseche del campo considerato – rappresenta invece la densità di momento
angolare intrinseco (o densità di spin) del campo dato. Per un campo scalare,
in particolare, abbiamo infatti S = 0. Il tensore Jµ↵� rappresenta quindi la
densità di momento angolare totale del sistema dato, e il suo integrale (1.57)
su tutto il volume spaziale rappresenta il corrispondente tensore di momento
angolare relativistico J↵� , ottenuto sommando le componenti orbitali e quelle
intrinseche.

1.3.1 Simmetrizzazione del tensore energia-impulso

L’equazione di conservazione di Jµ↵� chiarisce l’origine fisica della mancanza
di simmetria del tensore canonico energia-impulso, ossia del fatto che, in
generale, ⇥µ⌫ 6= ⇥⌫µ. Scrivendo esplicitamente l’Eq. (1.54), ed usando la
condizione @µ⇥�µ = 0, abbiamo infatti:

@µS
µ↵� +⇥�µ�↵µ �⇥↵µ��µ = 0, (1.59)

da cui

⇥[↵�] =
1

2
@µS

µ↵� . (1.60)

Questa relazione mostra chiaramente come la parte antisimmetrica di ⇥ sia
collegata al tensore densità di spin, e sia quindi inevitabilmente presente nel
caso di campi dotati di momento angolare intrinseco. La relazione ottenu-
ta suggerisce anche una possibile procedura formale per ridefinire il tensore
canonico energia-impulso, rendendolo simmetrico senza rinunciare alle sue
proprietà di conservazione.

Tale procedura, detta “metodo di Belinfante-Rosenfeld”, consiste nel sot-
trarre i contributi dello spin intrinseco, passando da ⇥ ad un nuovo tensore
T tale che:

T↵� = ⇥↵� � 1

2
@µ
�

Sµ↵� � S↵�µ + S�µ↵
�

. (1.61)

È facile verificare che

T [↵�] =
1

2
@µ
⇣

S[↵�]µ + S[�↵]µ
⌘

⌘ 0, (1.62)
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e che

@�T
↵� = �1

2
@�@µ

�

Sµ↵� + S�µ↵
�

= @�@µS
[µ�]↵ ⌘ 0. (1.63)

Il nuovo tensore T risulta quindi simmetrico e automaticamente conservato.
Inoltre, la di↵erenza tra T e ⇥ è un termine di divergenza totale, e quindi
non modifica le costanti del moto definite dal loro integrale su di una iper-
superficie spaziale infinitamente estesa, come discusso nella sezione prece-
dente.

L’importanza (e la necessità) di un’espressione simmetrica per il ten-
sore energia-impulso apparirà chiara nell’ambito di una teoria relativisti-
ca del campo gravitazionale, come vedremo nel Capitolo. 7. In tale ambito
verrà introdotta una conveniente definizione alternativa del tensore energia-
impulso che fornisce automaticamente il tensore canonico nella sua versione
simmetrizzata (si veda in particolare la Sez. 7.2).

1.4 Esempi di tensore energia-impulso

Nell’ultima sezione di questo capitolo presenteremo alcuni esempi espliciti
di tensore canonico energia-impulso, concentrandoci su semplici sistemi fisici
che verrano utilizzati anche nei capitoli successivi. Cominciamo col caso di
un campo scalare relativistico.

1.4.1 Campo scalare

Consideriamo un campo scalare �, che per semplicità assumiamo reale, sog-
getto ad un potenziale di auto-interazione V (�). La Lagrangiana si ottiene
sommando il temine cinetico, quadratico nelle derivate del campo, e il temine
potenziale. Usando unità naturali (h̄ = c = 1), e normalizzando in manie-
ra canonica il termine cinetico del campo, abbiamo allora la densità di di
Lagrangiana

L =
1

2
@µ�@

µ�� V (�). (1.64)

Il momento canonicamente coniugato al campo, in questo caso, è dato da

@L
@(@µ�)

= @µ�, (1.65)

e quindi l’equazione del moto (1.8) assume la forma:

@µ@
µ� ⌘ 2� = �@V

@�
. (1.66)
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Per un campo libero massivo, in particolare, V = m2�2/2 e l’equazione
precedente si riduce alla ben nota equazione di Klein-Gordon:

�

2+m2

�

� = 0. (1.67)

Applicando la definizione generale (1.31) alla Lagrangiana del campo scalare
otteniamo il corrispondente tensore canonico energia-impulso:

⇥⌫
µ = @⌫�@

µ�� 1

2
@↵�@

↵� �µ⌫ + V �µ⌫ . (1.68)

È immediato verificare che questo tensore è simmetrico, in accordo al fatto
che il momento angolare intrinseco di un campo scalare è nullo (si veda la
Sez. 1.3.1). Usando l’equazione del moto (1.66) possiamo anche facilmente
verificare che, in assenza di interazioni esterne, questo tensore è conservato.
Prendendo la sua divergenza abbiamo infatti:

@µ⇥⌫
µ = (@µ@⌫�) @

µ�+ @⌫�2�� (@⌫@↵�) @
↵�+ @⌫�

@V

@�
⌘ 0. (1.69)

Si noti che primo e il terzo termine della divergenza si elidono automatica-
mente, mentre il secondo e il quarto termine si cancellano grazie all’equazione
del moto (1.66).

1.4.2 Campo elettromagnetico

Il campo elettromagnetico è un campo di tipo vettoriale, rappresentato dal
potenziale vettore A⌫ . Il termine cinetico del campo libero è quadratico nelle
derivate di A⌫ , ed è rappresentato dalla cosiddetta densità di Lagrangiana di
Maxwell:

L = � 1

16⇡
(@µA⌫ � @⌫Aµ) (@

µA⌫ � @⌫Aµ) . (1.70)

Le relazioni generali fornite in precedenza per le equazioni del moto, il tensore
energia-impulso, etc . . . , scritte per un generico campo  , si applicano in
questo caso con la ovvia sostituzione  ! A⌫ . Il momento coniugato del
campo, in particolare, è dato da

@L
@(@µA⌫)

= � 1

4⇡
Fµ⌫ , Fµ⌫ = @µA⌫ � @⌫Aµ, (1.71)

dove Fµ⌫ è il tensore del campo elettromagnetico. In assenza di sorgenti le
equazioni del moto (1.8) riproducono quindi le ordinarie equazioni di Maxwell
nel vuoto, @µFµ⌫ = 0.
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Dalla definizione (1.31) otteniamo inoltre il corrispondente tensore cano-
nico energia-impulso,

⇥↵
µ = � 1

4⇡
Fµ⌫@↵A⌫ +

1

16⇡
F 2�µ↵, (1.72)

che non è simmetrico, in accordo al fatto che un campo vettoriale possiede
momento angolare intrinseco. Tale tensore può essere simmetrizzato, come
discusso nella Sez. 1.3.1, mediante l’aggiunta di un termine a divergenza
nulla che cancelli i contributi dello spin intrinseco del campo. In questo caso
il termine aggiuntivo ha la forma

⇥↵
µ =

1

4⇡
Fµ⌫@⌫A↵, (1.73)

e ci porta al nuovo tensore:

T↵
µ = ⇥↵

µ +⇥↵
µ = � 1

4⇡

✓

Fµ⌫F↵⌫ �
1

4
F 2�µ↵

◆

. (1.74)

È facile verificare che questo tensore è simmetrico, T↵µ = Tµ↵, e che la
sua traccia è nulla, Tµ

µ = 0. Possiamo inoltre calcolare esplicitamente le sue
componenti in funzione del campo elettrico e magnetico, usando la definizione
di Fµ⌫ :

F i0 = Ei = �Fi0, F ij = �✏ijkBk = Fij ,

F 2 ⌘ Fµ⌫F
µ⌫ = 2

�

B2 � E2

�

.
(1.75)

Troviamo allora che T 0

0

fornisce la corretta densità d’energia canonica del
campo elettromagnetico,

T
0

0 =
1

8⇡

�

E2 +B2

�

, (1.76)

e che le componenti di tipo misto, T i
0

, riproducono le componenti del ben
noto vettore di Poynting,

T
0

i =
1

4⇡
✏ijkEjBk =

1

4⇡
(E ⇥B)i , (1.77)

che controlla la densità di flusso d’energia.
Notiamo infine che il tensore energia-impulso (1.74) è stato ottenuto par-

tendo dalla Lagrangiana del campo elettromagnetico libero, e quindi è con-
servato solo in assenza di sorgenti cariche ed altre interazioni esterne. Per
chiarire bene questo punto prendiamone la divergenza, @µT↵µ, e utilizziamo
le equazioni di Maxwell complete,

@µF
µ⌫ =

4⇡

c
J⌫ , @

[µF⌫↵] = 0, (1.78)
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includendo la possibile presenza di correnti elettromagnetiche (la seconda
equazione è un’identità, che segue dalla definizione di Fµ⌫ in funzione del
potenziale vettore A⌫). Si ottiene allora:

@µT↵
µ = � 1

4⇡

✓

4⇡

c
J⌫F↵⌫ + Fµ⌫@µF↵⌫ �

1

2
Fµ⌫@↵Fµ⌫

◆

= �1

c
F↵⌫J

⌫ � 1

8⇡
Fµ⌫ (@µF↵⌫ � @⌫F↵µ � @↵Fµ⌫)

= �1

c
F↵⌫J

⌫ +
1

16⇡
Fµ⌫@

[µF⌫↵]

= �1

c
F↵⌫J

⌫ .

(1.79)

Il risultato di divergenza nulla, e l’associata conservazione dell’energia e del-
l’impulso del campo elettromagnetico libero, si ottiene dunque solo in assenza
di accoppiamento alla densità di corrente Jµ. In presenza di sorgenti cariche
sarà il tensore energia impulso totale – ossia quello del sistema “campi più sor-
genti” – ad avere divergenza nulla, e dunque a essere conservato. Un esempio
che illustra esplicitamente questo punto sarà discusso nella sezione seguente.

1.4.3 Particella puntiforme

Consideriamo una particella libera e puntiforme, di massa m e spin zero. Il
tensore canonico energia-impulso ad essa associato risulta automaticamente
simmetrico, e può essere ricavato dall’invarianza dell’azione per traslazioni
globali seguendo la procedura già adottata nei casi precedenti.

Questo metodo sarà illustrato nell’Esercizio 1.4, partendo dall’azione della
particella relativistica libera. In questa sezione, invece, arriveremo diretta-
mente al tensore energia-impulso osservando che, per una particella in moto
lungo la traiettoria x = x(t), dove t è la coordinata temporale di un generico
osservatore inerziale, la distribuzione spaziale della densità di massa ⇢m è
data da:

⇢m = m �3(x� x(t)). (1.80)

La delta di Dirac localizza, istante per istante, la posizione della massa nel
punto occupato dalla particella. Il quadrivettore impulso della particella, in
funzione del tempo, si può quindi scrivere come

Pµ = muµ =

Z

d3x ⇢m(x, t)
dxµ

d⌧
= m

Z

d3x �3(x� x(t))
dxµ

d⌧
, (1.81)

dove uµ = dxµ(t)/d⌧ è la quadri-velocità della particella localizzata lungo
la sua traiettoria, e ⌧ è il tempo proprio. Confrontando questa espressione
con l’Eq. (1.36), che stabilisce la relazione tra il quadrivettore P e il tensore
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canonico ⇥, si ottiene subito

⇥µ0 = mc� 3(x� x(t))
dxµ

d⌧
. (1.82)

D’altra parte, c = dx0/dt, per definizione di x0. Estendendo a tutte le coor-
dinate la relazione precedente arriviamo cos̀ı all’espressione finale del tensore
energia-impulso di una particella puntiforme:

⇥µ⌫ = m �3(x� x(t))
dxµ

d⌧

dx⌫

dt
. (1.83)

L’oggetto ottenuto, scritto in questa forma, non è esplicitamente simmetrico
e neanche esplicitamente covariante. Possiamo però facilmente verificarne la
simmetria ricordando che, per una particella libera,

dt

d⌧
= � =

E
mc2

, (1.84)

dove � è il fattore di Lorentz e E l’energia totale della particella. Moltiplicando
e dividendo per � si può quindi mettere ⇥ nella forma seguente,

⇥µ⌫ = m2c2 �3(x� x(t))
uµu⌫

E , (1.85)

che è equivalente alla (1.83), ma che risulta evidentemente simmetrica nei
due indici µ e ⌫.

Per riscrivere l’Eq. (1.83) in forma esplicitamente covariante, invece,
sfruttiamo le proprietà della delta di Dirac che ci fornisce l’identità

⇥µ⌫(x, t) = c

Z

dt0 �(ct� ct0)⇥µ⌫(x, t0)

= mc

Z

dt0 �4(x� x(t0))
dxµ

d⌧

dx⌫

dt0
,

(1.86)

dove �4(x) = �3(x)�(ct), e t0 è una generica variabile di integrazione. Usando
il tempo proprio come parametro della traiettoria, x = x(⌧), ed integrando
quindi sulla variabile t0 = ⌧ , otteniamo infine:

⇥µ⌫ = mc

Z

d⌧ �4(x� x(⌧))uµu⌫ . (1.87)

Questa espressione del tensore energia-impulso è non solo simmetrica ma
anche esplicitamente covariante, in quanto �4(x) è uno scalare per trasfor-
mazioni globali del gruppo SO(3, 1), e il prodotto di due quadrivettori velo-
cità è chiaramente un tensore. Questa forma di ⇥ può anche essere diretta-
mente ottenuta dall’azione della particella libera, come mostrato nell’Eserci-
zio 1.4.
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Consideriamo infine la divergenza covariante di ⇥, che possiamo spezzare
in parte spaziale e parte temporale come segue:

@⌫⇥
µ⌫ = @i⇥

µi + @
0

⇥µ0. (1.88)

È conveniente usare per ⇥ l’espressione (1.83). Per le derivate parziali fatte
lungo le direzioni spaziali contribuisce solo l’argomento della delta di Dirac,
e quindi:

@i⇥
µi = muµ dx

i(t)

dt

@

@xi
�3(x� x(t))

= �muµ dx
i(t)

dt

d

dxi(t)
�3(x� x(t)) (1.89)

= �muµ d

dt
�3(x� x(t)).

Si noti che, nel secondo passaggio, abbiamo sostituito il gradiente relativo
ad una generica direzione xi con il gradiente preso lungo la traiettoria della
particella, xi(t), sfruttando la regola @xf(x � y) = �@yf(x � y), valida per
qualunque funzione f che dipenda dalla di↵erenza di due variabili. Per la
parte temporale abbiamo invece:

@
0

⇥µ0 =
d

dt
(muµ) �3(x� x(t)) +muµ d

dt
�3(x� x(t)). (1.90)

Sommando i due contributi (1.89), (1.90) arriviamo infine a:

@⌫⇥
µ⌫ = m

duµ

dt
�3(x� x(t)). (1.91)

Possiamo concludere che il tensore energia-impulso della particella ha diver-
genza nulla – e quindi è separatamente conservato – solo per una particella
libera che ha equazione del moto duµ/dt = 0. In presenza di forze esterne si
genera invece un trasferimento di energia e impulso tra la particella e il siste-
ma esterno: ciò che si conserva, in questo caso, è il tensore energia-impulso
totale del sistema “particella più campi esterni”.

Un esempio istruttivo di questo e↵etto si può ottenere supponendo che la
particella considerata abbia una carica elettrica e, e sia soggetta all’azione di
un campo elettromagnetico esterno descritto dal tensore Fµ⌫ . La particella si
muoverà in accordo alla ben nota equazione della forza di Lorenz relativistica:

m
duµ

d⌧
=

e

c
Fµ

⌫
dx⌫

d⌧
. (1.92)

(si veda ad esempio il testo [3] della Bibliografia finale, oppure [6] per un
testo in italiano). Descriviamo il moto della particella riferendoci alla coor-
dinata temporale t di un generico sistema inerziale, e moltiplichiamo quindi
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per d⌧/dt la precedente equazione del moto. Sostituendo nell’equazione di
conservazione (1.91) otteniamo:

@⌫⇥
µ⌫ =

e

c
Fµ

⌫ �
3(x� x(t))

dx⌫

dt
. (1.93)

È facile riconoscere nel membro destro di questa equazione l’accoppiamento
tra il campo esterno Fµ⌫ e la densità di corrente elettromagnetica J⌫ della
carica puntiforme,

J⌫ = ⇢
em

dx⌫

dt
= e�3(x� x(t))

dx⌫

dt
. (1.94)

La divergenza del tensore energia-impulso della particella carica si può quindi
riscrivere come

@⌫⇥
µ⌫ =

1

c
Fµ

⌫J
⌫ . (1.95)

Il confronto con la divergenza del tensore energia-impulso del campo elet-
tromagnetico, Eq. (1.79), mostra immediatamente che la somma delle due
divergenze è automaticamente nulla, @⌫(Tµ⌫ + ⇥µ⌫) ⌘ 0. Abbiamo dun-
que ottenuto un esempio esplicito del principio di conservazione del tensore
energia-impulso totale, Tµ⌫ + ⇥µ⌫ , tensore che in questo caso contiene il
contributo congiunto dei campi e delle sorgenti.

1.4.4 Fluido perfetto

Come ultimo esempio consideriamo un fluido cosiddetto “perfetto”, ossia un
fluido i cui componenti elementari hanno tra loro interazioni nulle (o trascu-
rabili). Questo tipo ideale di fluido non presenta viscosità o attriti interni,
e la sua distribuzione appare isotropa a qualunque osservatore localmente
a riposo con un elemento di fluido dato. Supponiamo inoltre che le parti-
celle che compongono il fluido non siano dotate di spin, per cui il tensore
energia-impulso canonico del fluido risulterà automaticamente simmetrico.

Nel sistema a riposo (o “comovente”) col fluido le componenti del tensore
energia-impulso assumono dunque la forma seguente:

T
0

0 = ⇢, Ti
j = �p�ji , Ti

0 = 0. (1.96)

Abbiamo chiamato ⇢ la densità d’energia propria del fluido, mentre il coe�-
ciente p rappresenta la pressione (si veda ad esempio il testo [3] della Biblio-
grafia finale). In un generico sistema di riferimento, dove il fluido si muove
con velocità rappresentata dal quadrivettore uµ, le componenti di Tµ⌫ sono
date da:

Tµ
⌫ = (⇢+ p)

uµu⌫

c2
� p�⌫µ. (1.97)
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Si verifica facilmente che nel sistema a riposo, dove ui = 0 e u0 = c, le
componenti di Tµ⌫ si riducono a quelle dell’Eq. (1.96).

Il moto libero del fluido perfetto è caratterizzato dall’equazione di conser-
vazione del suo tensore energia-impulso, @⌫Tµ

⌫ = 0, unitamente all’equazione
di conservazione del numero di particelle di fluido per unità di volume. Questa
seconda proprietà è espressa dalla conservazione della corrente vettoriale Nµ,

Nµ = nuµ, @µN
µ = 0, (1.98)

dove n è uno scalare che rappresenta il numero di particelle per unità di
volume proprio, ossia la densità di particelle nel sistema a riposo con il flui-
do. È interessante osservare che, come conseguenza di queste due leggi di
conservazione, il fluido evolve in modo adiabatico.

Dalla conservazione dell’energia-impulso (ponendo per semplicità c = 1)
otteniamo infatti

0 = uµ@⌫Tµ
⌫ = uµ@⌫ [(⇢+ p)uµu

⌫ ]� uµ@µp

= @⌫ [(⇢+ p)u⌫ ]� u⌫@⌫p,
(1.99)

perché

uµ@⌫uµ =
1

2
@⌫ (u

µuµ) ⌘ 0. (1.100)

Moltiplichiamo e dividiamo per n il termine in parentesi quadra dell’espres-
sione precedente. Sfruttando l’equazione di conservazione (1.98) abbiamo
allora

nu⌫@⌫
(⇢+ p)

n
� u⌫@⌫p = 0, (1.101)

da cui

nu⌫@⌫
⇣ ⇢

n

⌘

+ nu⌫p @⌫

✓

1

n

◆

= 0, (1.102)

ossia, in forma di↵erenziale,

d
⇣ ⇢

n

⌘

+ p d

✓

1

n

◆

= 0. (1.103)

Ricordiamo adesso che ⇢ è la densità di energia propria, ⇢ = E/V , e n il
numero di particelle per unità di volume proprio, n = n

0

/V , dove n
0

=
costante in virtù della legge di conservazione (1.98). L’equazione precedente
si può riscrivere dunque nella forma esplicitamente termodinamica

dE + p dV = 0, (1.104)

che implica chiaramente la conservazione dell’entropia totale, TdS = 0, e
descrive quindi un’evoluzione di tipo adiabatico.

Concludiamo osservando che l’evoluzione libera di un fluido perfetto può
rimanere adiabatica anche in presenza di un campo gravitazionale esterno,
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come si può verificare, ad esempio, nell’ambito dei modelli cosmologici basati
sulla teoria gravitazionale di Einstein (si veda ad esempio il testo [7] della
Bibliografia finale, oppure [22] per un testo in italiano).

Esercizi Capitolo 1

1.1. Equazioni del moto e divergenza totale

Dimostrare che le due Lagrangiane L
1

= L e L
2

= L+ L, dove

L = L( , @ ), L = @↵f
↵, f↵ = f↵( ), (1.105)

portano alle stesse equazioni del moto per il campo  .

1.2. Tensore energia-impulso per una divergenza totale

Dimostrare che il tensore canonico energia-impulso ⇥µ
⌫ associato alla densità

di Lagrangiana L( , @ ) = @↵f↵( ) risulta automaticamente conservato,
qualunque sia f↵( ).

1.3. Il quadrivettore di spin

In un opportuno riferimento inerziale R0 un sistema fisico ha il centro di
massa a riposo, posizionato nell’origine delle coordinate. In questo riferimento
il momento angolare orbitale è nullo, e il momento angolare instrinseco è
orientato nel piano (x0, y0), con componenti J 0

x e J 0
y. Determinare il momento

angolare intrinseco del sistema nel riferimento R, rispetto al quale il sistema
si muove con velocità v lungo la direzione positiva dell’asse x.

1.4. Simmetria di traslazione per una particella libera puntiforme

Ricavare il tensore canonico energia-impulso di una particella libera, massiva
e puntiforme partendo dall’azione ad essa associata, e imponendo l’invarianza
per traslazioni globali infinitesime.

Soluzioni

1.1. Soluzione

Variando l’azione corrispondente a L
1

e L
2

si ottengono le equazioni del
moto di Eulero-Lagrange (1.8), sia per L

1

che per L
2

. La di↵erenza tra le
due equazioni è rappresentata dal termine

� =



@

@ 
� @µ

@

@(@µ )

�

@↵f
↵, (1.106)
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che però è identicamente nullo, qualunque sia f↵( ). Infatti:

�
1

=
@

@ 
(@↵f

↵) =
@

@ 

✓

@↵ 
@f↵

@ 

◆

= @↵ 
@2f↵

@ 2

,

�
2

=
@

@(@µ )
(@↵f

↵) = �µ↵
@f↵

@ 
=
@fµ

@ 
, (1.107)

�
3

= @µ
@

@(@µ )
(@↵f

↵) = @µ

✓

@fµ

@ 

◆

=
@2fµ

@ 2

@µ ,

e la di↵erenza tra �
1

e �
3

fornisce � = �
1

��
3

⌘ 0.

1.2. Soluzione

Per la Lagrangiana L abbiamo:

L = @↵f
↵ = @↵ 

@f↵

@ 
;

@

@(@⌫ )
L = �⌫↵

@f↵

@ 
=
@f⌫

@ 
.

(1.108)

Applicando la definizione (1.31) otteniamo il tensore energia-impulso:

⇥µ
⌫ =

@f⌫

@ 
@µ � �⌫µ@↵f

↵

= @µf
⌫ � �⌫µ@↵f

↵.

(1.109)

La sua quadri-divergenza è quindi automaticamente nulla:

@⌫⇥µ
⌫ = @⌫@µf

⌫ � @µ@↵f
↵ ⌘ 0, (1.110)

perché @µ@↵ = @↵@µ.

1.3. Soluzione

Scomponiamo il momento angolare totale (1.57) in parte intrinseca e parte
orbitale,

J↵� = ⌃↵� + L↵� , L↵� = x↵P � � x�P↵, (1.111)

dove ⌃ e L sono ottenuti integrando spazialmente le relative densità Sµ↵�

e Lµ↵� (si veda l’Eq. (1.55)). A causa della presenza della parte orbitale il
tensore J non è invariante per traslazioni del tipo xµ ! xµ + aµ. Infatti:

J↵� ! J↵� + a↵P � � a�P↵. (1.112)

Per isolare la parte intrinseca – che non deve risentire di queste trasformazioni
di coordinate – è conveniente considerare il quadrivettore di spin Sµ (detto
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anche vettore di Pauli-Lyubarskii), definito da

Sµ =
1

2c
✏µ↵�⌫J

↵�u⌫ , (1.113)

dove u⌫ è la quadri-velocità del sistema considerato. Se Pµ = muµ la parte
orbitale L↵� non contribuisce a Sµ, perché P [�u⌫] = 0 = P [↵u⌫]. Il quadri-
vettore Sµ contiene solo tre componenti indipendenti, in quanto soddisfa alla
condizione uµSµ ⌘ 0.

Nel riferimento R0, dove il sistema fisico è a riposo, si ha ui = 0, u0 = c,
e le componenti del momento angolare instrinseco (che per ipotesi giace sul
piano {x0, y0}) sono date da:

S0
1

= J 023 = J 0
x, S0

2

= J 031 = J 0
y,

S0
3

= J 012 = 0, S0
0

= 0.
(1.114)

Le componenti di Sµ in un diverso riferimento inerziale R sono collegati
alle componenti di S0

µ dalla trasformazione di Lorentz S0µ = ⇤µ
⌫S⌫ . Nel

nostro caso R0 è in moto rispetto a R lungo la direzione positiva dell’asse x.
Considerando la trasformazione di Lorentz inversa abbiamo dunque:

S1 = �
�

S01 + �S00� , S2 = S02,

S3 = S03, S0 = �
�

S00 + �S01� ,
(1.115)

dove � = v/c e � = (1� �2)�1/2. Perciò:

S
1

=Jx=�J
0
x, S

2

=Jy=J 0
y,

S
3

=Jz=0, S
0

= ��S01 = ���J 0
x.

(1.116)

Si noti che la trasformazione di Lorentz produce una deformazione del vettore
S nel piano (x, y), ma il modulo del quadrivettore di spin rimane invariato.
Infatti

S0
µS

0µ=�(J 02
x + J 02

y )

SµS
µ=S2

0

� S2

1

� S2

2

=�J 02
x �

2(1� �2)� J 02
y =�(J 02

x + J 02
y ). (1.117)

=S0
µS

0µ

1.4. Soluzione

L’evoluzione temporale di un corpo puntiforme descrive nello spazio-tempo
una traiettoria unidimensionale xµ = xµ(⌧), detta “linea d’universo” e
l’azione che descrive il moto libero del corpo puntiforme è proporzionale
all’integrale di linea lungo tale traiettoria,

S = �mc

Z

p

dxµdxµ = �mc

Z ⌧2

⌧1

p

ẋµẋµd⌧ ⌘
Z ⌧2

⌧1

L(x, ẋ)d⌧, (1.118)
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dove L è la lagrangiana e↵ettiva e ẋ = dx/d⌧ . Abbiamo parametrizzato la tra-
iettoria con una coordinata temporale ⌧ che supponiamo essere invariante per
trasformazioni di Lorentz, e abbiamo normalizzato S in modo da riprodurre
l’azione canonica non-relativistica nel limite |dxi/d⌧ | ⌧ c.

Variando rispetto a xµ con la condizione di estremi fissi, �xµ(⌧
1

) =
0 = �xµ(⌧

2

), e imponendo che l’azione sia stazionaria, �S = 0, otteniamo
facilmente l’equazione del moto nella forma:

d

d⌧

@L

@ẋµ
=

d

d⌧

✓

ẋµp
ẋ↵ẋ↵

◆

= 0. (1.119)

Se identifichiamo infine ⌧ con il tempo proprio della particella otteniamo il
vincolo ẋ↵ẋ↵ = c2 = costante, e l’equazione del moto libero si riconduce alla
ben nota condizione di accelerazione covariante nulla, ẍµ = 0.

Osserviamo ora che la posizione della particella puntiforme è localizzata
nello spazio-tempo lungo la traiettoria unidimensionale xµ(⌧), e che l’azio-
ne (1.118) può essere riscritta mediante un integrale sul quadri-volume d4x,
purché associamo alla particella una densità di Lagrangiana “deltiforme”,
ponendo:

S =

Z

d4xL(x, ẋ),

L(x, ẋ) = �mc

Z

d⌧
p

ẋµẋµ �4(x� x(⌧)).

(1.120)

Si noti che le dimensioni di questa Lagrangiana di↵eriscono dalle dimensio-
ni canoniche (densità d’energia) per un fattore c�1, che però è compensato
dal fattore c contenuto nella misura d4x dell’integrale d’azione. Il risultato
finale che si ottiene per il tensore energia-impulso è quindi dimensionalmente
corretto.

Se usiamo questa azione, ed e↵ettuiamo una variazione infinitesima delle
coordinate, xµ ! xµ + �xµ, dobbiamo tener presente che L dipende non solo
da ẋ, ma anche da x, Perciò abbiamo, in generale:

�L =
@L
@xµ

�xµ +
@L
@ẋµ

d

d⌧
(�xµ)

=



@L
@xµ

� d

d⌧

@L
@ẋµ

�

�xµ +
d

d⌧

✓

@L
@ẋµ

�xµ

◆

.

(1.121)

Imponendo che le equazioni del moto siano soddisfatte (ossia che l’argomen-
to delle parentesi quadre sia nullo), ne consegue che la Lagrangiana è inva-
riante sotto la trasformazione considerata purché si annulli l’ultimo termine
dell’equazione precedente. Per la nostra Lagrangiana, in particolare, abbiamo:

@L
@ẋµ

�xµ = �mc

Z

d⌧
ẋµp
ẋ↵ẋ↵

�4(x� x(⌧)) �xµ. (1.122)
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Derivando questo termine rispetto a ⌧ , lungo la traiettoria della particella, la
delta di Dirac dà il contributo:

d

d⌧
�4(x� x(⌧)) = ẋ⌫@⌫�

4(x� x(⌧)). (1.123)

La derivata di ẋµ/
p
ẋ↵ẋ↵ è nulla, invece, in virtù delle equazioni del moto

(1.119). Se consideriamo una traslazione globale, �xµ = ✏µ = costante, e
identifichiamo ⌧ col tempo proprio, la condizione di invarianza si riduce allora
a

�mc✏ µ
Z

d⌧ ẋµẋ
⌫@⌫�

4(x� x(⌧)) ⌘ �✏µ@⌫⇥µ
⌫ = 0, (1.124)

dove il tensore conservato

⇥µ
⌫ = mc

Z

d⌧ �4(x� x(⌧))uµu
⌫ (1.125)

coincide esattamene col tensore energia-impulso della particella puntiforme
già presentato in Eq. (1.87).

Verifichiamo infine che le equazioni di Eulero-Lagrange per la densità
di Lagrangiana (1.120) corrispondono a quelle della particella libera, Eq.
(1.119). Abbiamo infatti:

✓

d

d⌧

@L
@ẋµ

◆

�xµ = � mc

Z

d⌧

"

d

d⌧

✓

ẋµp
ẋ↵ẋ↵

◆

�4(x� x(⌧))

(1.126)

+
ẋµp
ẋ↵ẋ↵

ẋ⌫@⌫�
4(x� x(⌧))

#

�xµ,

ed inoltre

@L
@xµ

�xµ = �mc

Z

d⌧
p

ẋ↵ẋ↵ @⌫�
4(x� x(⌧)) �x⌫ . (1.127)

Lungo la traiettoria della particella �xµ = ẋµd⌧ . Facendo la di↵erenza del-
le due espressioni (1.126), (1.127) si trova perciò che i termini contenenti
la derivata della delta si elidono, e si riottiene quindi l’equazione del moto
(1.119).
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Verso una teoria relativistica della
gravitazione

La equazioni gravitazionali di Newton, che forniscono la base teorica per la
descrizione Kepleriana del moto dei corpi celesti, e che sembrano prestarsi
cos̀ı bene a rappresentare le forze gravitazionali anche su scala macroscopica
di laboratorio, non sono compatibili con i principi della relatività ristretta.

Le equazioni di Newton prevedono infatti che gli e↵etti dell’interazione
gravitazionale si propaghino con velocità infinita in tutti i mezzi; inoltre, non
ci dicono come tale interazione si trasformi passando da un sistema di rife-
rimento ad un altro. La teoria Newtoniana definisce la forza gravitazionale
generata da una sorgente statica, ma non ci dà la forza prodotta da sorgenti
in movimento. La teoria può dunque descrivere il campo gravitazionale di
una massa M , utilizzando il potenziale statico �(r) = �GM/r, solo nell’ap-
prossimazione non-relativistica in cui l’energia potenziale m� di una massa di
prova m è trascurabile (in valore assoluto) rispetto alla sua energia di riposo
mc2. Ossia nel regime in cui

GM

rc2
⌧ 1. (2.1)

Per descrivere correttamente la gravità nel regime relativistico è dunque ne-
cessario generalizzare la teoria di Newton. In che modo? Una via naturale
sembrerebbe suggerita dalla stretta analogia formale che esiste tra la forza
gravitazionale che si esercita tra due masse statiche e la forza di Coulomb tra
le cariche elettriche. Cos̀ı come il potenziale di Coulomb corrisponde alla quar-
ta componente del quadrivettore potenziale, anche il potenziale di Newton
potrebbe corrispondere alla componente di un quadrivettore, e anche l’intera-
zione gravitazionale potrebbe essere rappresentata da un campo relativistico
di tipo vettoriale, in modo analogo all’interazione elettromagnetica.

Questa suggestiva speculazione va però immediatamente scartata, perché
interazioni di tipo vettoriale prevedono forze che sono repulsive tra sorgen-
ti statiche dello stesso segno mentre, come ben noto, la forza di gravità è
attrattiva tra masse dello stesso segno.

Una seconda possibilità, anche questa perfettamente consistente dal punto
di vista formale, è che il potenziale della teoria di Newton si comporti come un

� Springer-Verlag Italia 2015
M. Gasperini, Relatività Generale e Teoria della Gravitazione,
UNITEXT for Physics, DOI 10.1007/978-88-470-5690-9_2
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oggetto scalare rispetto alle trasformazione di coordinate, e che l’interazione
gravitazionale relativistica sia correttamente descritta da un campo di tipo
scalare. Anche quest’ipotesi va scartata sulla base di risultati sperimentali,
ma le motivazioni, in questo caso, sono meno evidenti che nel caso prece-
dente. Vale la pena – anche in vista di applicazioni successive – di discutere
brevemente una di queste motivazioni che riguarda la precessione del perielio
delle orbite planetarie.

Consideriamo il moto di un corpo di prova relativistico, di massa m,
che interagisce con una forza centrale (cioè diretta radialmente) descritta
dal potenziale scalare U = U(r). Il moto è governato dalla Lagrangiana
relativistica

L = �mc2
r

1� v2

c2
�mU, (2.2)

dove v2 = vivi, e vi = dxi/dt. Il termine cinetico di questa Lagrangiana si
ottiene direttamente dall’azione libera (1.118) usando come parametro della
traiettoria il tempo t di un generico osservatore inerziale, xµ = xµ(t).

Si può facilmente dimostrare che per questo sistema dinamico il momento
angolare si conserva e il moto è confinato su di un piano, in quanto r⇥rU =
0. Introducendo su questo piano coordinate polari,

x = r cos', y = r sin', (2.3)

e prendendo per U il potenziale gravitazionale prodotto da un corpo centrale
di massa M , si arriva alla Lagrangiana:

L = �mc2


1� 1

c2
�

ṙ2 + r2'̇2

�

�

1/2

+
GMm

r
, (2.4)

dove il punto indica derivata rispetto a t.
Questa Lagrangiana è ciclica rispetto alle coordinate ' e t, ed è quindi

caratterizzata da due costanti del moto: il momento canonicamente coniugato
alla variabile angolare (cioè il momento angolare) e l’energia totale (associata
all’Hamiltoniana). Possiamo quindi porre

@L

@'̇
= m�r2'̇ = mh = cost, (2.5)

H = vi
@L

@vi
� L = m�c2 +mU = m↵ = cost, (2.6)

dove � è il fattore di Lorentz

� =



1� 1

c2
�

ṙ2 + r2'̇2

�

��1/2

, (2.7)

e dove h e ↵ sono costanti che dipendono dalle condizioni iniziali.
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Combiniamo ora le due relazioni (2.5), (2.6), deriviamo rispetto a ', e
poniamo u = 1/r. Escludendo il possibile caso di orbite circolari, r = cost,
si arriva cos̀ı alla seguente equazione del moto in coordinate polari (si veda
l’Esercizio 2.1):

u00 + k2u =
k2

p
, (2.8)

dove il primo indica la derivata rispetto a ', e dove le costanti k e p sono
definite da:

k2 = 1� c2r2
0

4h2

,
k2

p
=
↵r

0

2h2

, r
0

=
2GM

c2
. (2.9)

La soluzione generale di questa equazione si ottiene sommando alla soluzio-
ne generale dell’equazione omogena una soluzione particolare dell’equazione
non-omogenea (ad esempio, u = p�1), e dipende da due costanti di integrazio-
ne che chiameremo e e '

0

. Se siamo interessati, in particolare, a descrivere le
orbite planetarie possiamo prendere condizioni iniziali per le quali il moto ri-
mane confinato in una porzione finita di spazio, e possiamo convenientemente
scrivere la soluzione generale nella forma seguente,

u =
1

p
[1 + e cos k('� '

0

)] , (2.10)

con 0 < e < 1. Nel limite non-relativistico (c ! 1) si ottiene k ! 1, e l’Eq.
(2.10) si riduce esattamente all’equazione che descrive (in coordinate polari)
un’ellisse di eccentricità e e posizione del perielio ' = '

0

.
Se non trascuriamo le correzioni relativistiche, e prendiamo per k il valo-

re prescritto dall’Eq. (2.9), troviamo che il moto è ancora compreso tra una
posizione di minima e massima distanza dall’origine, ma l’orbita non è più
chiusa: non descrive un’ellisse, bens̀ı una curva detta “rosetta”. Il punto di
minima distanza dalla sorgente, o perielio, non viene più raggiunto periodi-
camente dopo che il moto del corpo ha sotteso un angolo '�'

0

= 2⇡, bens̀ı
dopo un angolo k(' � '

0

) = 2⇡ (si veda l’Eq. (2.10)). Perciò, ad ogni giro,
c’è uno spostamento angolare del perielio dato da

�' =
2⇡

k
� 2⇡ = 2⇡

✓

1

k
� 1

◆

' 2⇡

✓

c2r2
0

8h2

◆

=
⇡G2M2

c2h2

(2.11)

(abbiamo usato per k la definizione (2.9) nell’approssimazione c2r2
0

/h2 ⌧
1, che è ben soddisfatta nel caso delle orbite planetarie del nostro sistema
solare).

Una teoria che descrive l’interazione gravitazionale mediante un poten-
ziale scalare relativistico prevede dunque che le orbite planetarie, anziché
descrivere delle perfette ellissi Kepleriane come prescritto dalla meccanica di
Newton, siano soggette ad una (piccola) precessione del perielio descritta dal-
l’Eq. (2.11). Un moto di precessione di questo tipo in e↵etti esiste realmente,
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ed è stato messo in evidenza e misurato da una lunga serie (più che secolare)
di accurate osservazioni astronomiche.

Purtroppo, però, la predizione (2.11) basata sul modello di gravità scalare
è in netto disaccordo con le precessioni osservate: per il pianeta Mercurio, ad
esempio, l’Eq. (2.11) fornisce uno spostamento del perielio di circa 7 secondi
d’arco per secolo, mentre lo spostamento osservato è di circa 43 secondi d’arco
per secolo. Una discrepanza che va molto al di là dei possibili errori speri-
mentali e sistematici1. Il modello in cui l’interazione gravitazionale è rappre-
sentata da un campo scalare non può quindi rappresentare una soddisfacente
generalizzazione relativistica della teoria Newtoniana.

Un approccio alternativo ad una teoria relativistica della gravità, che non
fa uso di campi scalari o vettoriali, e che si confronta favorevolmente con
tutte le osservazioni finora disponibili, è il modello di interazione tensoriale
che viene adottato dalla teoria della relatività generale di Einstein e che
permette, a livello classico, di descrivere e interpretare le forze gravitazionali
anche in modo geometrico.

Il punto di partenza di questo e�ciente approccio è una radicale esten-
sione del principio che sta alla base della relatività ristretta e che sancisce
l’equivalenza fisica di tutti i sistemi di riferimento inerziali. Tale principio
viene generalizzato dalla seguente assunzione:

le leggi della fisica sono le stesse in tutti i sistemi di riferimento,

senza restringersi alla classe dei riferimenti inerziali. Questa assunzione porta,
come conseguenza, al cosiddetto “principio di general-covarianza”:

le leggi della fisica sono covarianti rispetto a trasformazioni generali di
coordinate,

e non solo rispetto alle trasformazioni di Lorentz. Queste due assunzioni, che
rappresentano una generalizzazione naturale (e piuttosto innocua, all’appa-
renza) dei postulati della relatività ristretta, e che stanno alla base della teoria
della relatività generale, hanno una portata rivoluzionaria. In questo contesto,
infatti, diventa inevitabile rinunciare alla struttura rigida e pseudo-Euclidea
dello spazio-tempo di Minkowski a favore di una struttura geometrica più
generale.

Per illustrare questo punto ricordiamo che per una generica trasformazione
xµ ! x0µ il di↵erenziale delle coordinate si trasforma come

dxµ =

✓

@xµ

@x0⌫

◆

dx0⌫ , (2.12)

dove il termine in parentesi tonde rappresenta la matrice Jacobiana inversa
della trasformazione. Supponiamo, per semplicità, che le coordinate di par-

1 Come vedremo nel Capitolo 10, la teoria della relatività generale prevede che lo spo-
stamento del perielio sia controllato da un’espressione che coincide approssimativamente
con la (2.11) moltiplicata per 6, e che produce quindi un accordo molto migliore con le
osservazioni.
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tenza xµ si riferiscano ad un sistema inerziale, caratterizzato da un intervallo
spazio-temporale infinitesimo di tipo Minkowskiano:

ds2 = ⌘µ⌫dx
µdx⌫ . (2.13)

Lo stesso intervallo, espresso in funzione delle nuove coordinate x0µ, assu-
merà una forma non più Minkowskiana. Dalle legge di trasformazione (2.12)
otteniamo infatti

ds2 = ⌘µ⌫
@xµ

@x0↵
@x⌫

@x0� dx
0↵dx0� ⌘ g↵�(x

0)dx0↵dx0� , (2.14)

dove abbiamo posto

g↵�(x
0) = ⌘µ⌫

@xµ

@x0↵
@x⌫

@x0� . (2.15)

Questo risultato mostra esplicitamente che una generica trasformazione di
coordinate – al contrario delle trasformazioni di Lorentz – non preserva la
metrica di Minkowski.

Se estendiamo la classe dei sistemi fisicamente equivalenti anche ai si-
stemi non-inerziali dobbiamo allora necessariamente introdurre nella varietà
spazio-temporale un intervallo (o “elemento di linea”) ds2 che non è più
rigidamente fissato come combinazione pseudo-Euclidea dei di↵erenziali qua-
dratici dx2, ma che combina tra loro i di↵erenziali delle coordinate in un
modo che dipende, in generale, dal punto in cui il ds2 viene calcolato.

2.1 I postulati della geometria Riemanniana

Il principio di relatività generale, o di general-covarianza, ci porta ad uno
spazio-tempo con una geometria diversa da quella di Minkowski, e più ric-
ca di possibili strutture. Per poter formulare dei modelli fisicamente pre-
dittivi diventa allora necessario fare alcune “ipotesi di lavoro” sulla geome-
tria dello spazio-tempo, cos̀ı da fissare meglio il modello che si assume va-
lido.

A questo scopo è opportuno considerare le due seguenti ipotesi di base:

• l’intervallo ds2 è una forma quadratica omogenea (in generale con coe�-
cienti non costanti) nei di↵erenziali delle coordinate:

ds2 = gµ⌫(x)dx
µdx⌫ ; (2.16)

• l’intervallo ds2 è invariante per trasformazioni generali di coordinate:

ds2 = gµ⌫(x)dx
µdx⌫ = gµ⌫(x)

@xµ

@x0↵
@x⌫

@x0� dx
0↵dx0� =

= ds02 ⌘ g0↵�(x
0)dx0↵dx0� .

(2.17)
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Questa seconda ipotesi, come vedremo in seguito, è esattamente equivalente
alla richiesta che i coe�cienti gµ⌫ della forma quadratica – la cosiddetta
“metrica” della varietà spazio-temporale – si trasformino come le componenti
di un tensore covariante di rango due, ossia che:

g0↵�(x
0) = gµ⌫(x)

@xµ

@x0↵
@x⌫

@x0� (2.18)

(si veda in particolare il Capitolo 3).
Se assumiamo che la geometria dello spazio-tempo soddisfi le due prece-

denti ipotesi otteniamo allora un modello di tipo Riemanniano: un modello
che estende alle varietà con quattro (o più) dimensioni il metodo suggeri-
to da Gauss per descrivere in modo intrinseco la geometria delle superfici
bidimensionali.

È opportuno ricordare, a questo proposito, che le proprietà geometriche
di una generica ipersurperficie n-dimensionale ⌃n possono essere descritte
in due modi. Un modo si basa su di un approccio estrinseco, che consi-
ste nell’immergere ⌃n in una varità (Euclidea o pseudo-Euclidea) esterna
MD, con D > n, parametrizzata dalle coordinate XA e con elemento di
linea

ds2 = ⌘ABdX
AdXB , A,B = 1, . . . , D. (2.19)

Consideriamo, per semplicità, il casoD = n+1. L’ipersuperficie⌃n può essere
rappresentata come un sottospazio di Mn+1

individuato da una relazione
che collega tra loro le n + 1 coordinate XA, ossia da una relazione del tipo
f(XA) = 0. Possiamo pensare, come esempio, alla superficie bidimensionale
S
2

di una sfera di raggio a = costante, che immaginiamo immersa nello spazio
Euclideo tridimensionale R

3

, parametrizzato dalle coordinate Cartesiane Xi,
i = 1, 2, 3. La superficie data è individuata dalla relazione tra le coordinate
Xi data da

f(Xi) ⌘ X2

1

+X2

2

+X2

3

� a2 = 0. (2.20)

Ma c’è anche un secondo, possibile approccio, di tipo intrinseco, che descrive
la geometria di ⌃n senza far riferimento alle coordinateXA dello spazio ester-
no, utilizzando invece un sistema di coordinate ⇠µ definite sull’ipersuperficie
stessa. A questo scopo si considerano le equazioni parametriche

XA = XA(⇠µ) µ = 1, . . . , n, (2.21)

che descrivono l’immersione di ⌃n in Mn+1

, e si scrive l’elemento di linea
(2.19) ristretto all’ipersuperficie ⌃n, imponendo cioè che le coordinate XA

soddisfino le equazioni parametriche (2.21):

ds2 =



⌘AB
@XA(⇠)

@⇠µ
@XB(⇠)

@⇠⌫

�

d⇠µd⇠⌫ = gµ⌫(⇠)d⇠
µd⇠⌫ . (2.22)
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La variabile gµ⌫(⇠), definita dai termini in parentesi quadra dell’equazione
precedente, è la cosiddetta “metrica indotta” sull’ipersuperficie.

Si può quindi descrivere la geometria di⌃n facendo unicamente riferimento
alle sue coordinate intrinseche ⇠µ, a patto di definire su ⌃n un elemento di
linea che – a di↵erenza di quanto avviene per Mn+1

– non è in generale
Euclideo (o pseudo-Euclideo). Prendiamo ancora, come semplice esempio, la
superficie sferica S

2

immersa in R
3

. Se scegliamo come coordinate intrinseche
su S

2

i due angoli delle coordinate sferico-polari, ⇠µ = {✓,'}, le equazioni
parametriche Xi(⇠µ) che collegano le coordinate Cartesiani di R

3

a quelle di
S
2

sono allora date da

X
1

= a sin ✓ cos', X
2

= a sin ✓ sin', X
3

= a cos ✓. (2.23)

Di↵erenziando queste relazioni, e sostituendo nell’elemento di linea Eucli-
deo di R

3

, si ottiene l’elemento di linea sulla superficie sferica nella forma
seguente:

ds2 = dX2

1

+ dX2

2

+ dX2

3

= a2
�

d✓2 + sin2 ✓d'2

�

. (2.24)

Rispetto alle coordinate intrinseche {✓,'} della sfera abbiamo quindi una
geometria non-Euclidea, descritta dalla metrica Riemanniana gµ⌫(✓,' ) con
componenti

g
11

= a2, g
22

= a2 sin2 ✓, g
12

= g
21

= 0. (2.25)

Le due ipotesi presentate all’inizio di questa sezione permettono dunque di
determinare in modo intrinseco le proprietà geometriche dello spazio-tempo,
introducendo su di esso una struttura metrica Riemanniana che generalizza
la descrizione usata da Gauss per le superfici, indipendentemente dal numero
di dimensioni attribuite alla varietà spazio-temporale.

È opportuno osservare, però, che le due precedenti ipotesi non sono le
uniche possibili: ci sono altre ipotesi, meno restrittive, che portano a strutture
geometriche più generali. Ad esempio, potremmo sostituire la prima ipotesi
con la richiesta che l’elemento di linea invariante ds sia una forma omogenea
di grado uno nei di↵erenziali delle coordinate. Questo ci permetterebbe di
esprimere ds, in generale, come ds = F (x, dx), dove la funzione F soddisfa
alla condizione

F (x,�dx ) = �F (x, dx), (2.26)

qualunque sia il parametro �. Come esempio di intervallo che soddisfa questa
condizione possiamo considerare, in particolare l’espressione:

ds =
�

dx4

1

+ dx4

2

+ . . .
�

1/4
. (2.27)

La condizione (2.26) caratterizza una struttura geometrica nota sotto il no-
me di geometria di Finsler, diversa da quella di Riemann e più generale di
quest’ultima. Il postulato (2.16), che caratterizza la geometria di Riemann,
soddisfa infatti la condizione (2.26) come caso particolare, per cui la geome-
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tria di Riemann è un caso particolare di quella di Finsler (analogamente, la
geometria di Minkowski è un caso particolare di quella di Riemann, e quindi
di quella di Finsler). Viceversa, esistono intervalli ds – come quello definito in
Eq. (2.27) – che soddisfano alle ipotesi di Finsler ma non a quelle di Riemann.

In vista di questi (ed altri) possibili tipi di struttura geometrica, che in-
cludono i modelli di Riemann e Minkowski all’interno di schemi con livello di
generalità crescente, diventa lecito chiedersi quale sia il modello geometrico
più appropriato da applicare alla varietà che rappresenta lo spazio-tempo fisi-
co in cui viviamo. Il principio di general-covarianza ci dice che la geometria di
Minkowski va generalizzata, ma non ci dice come. C’è qualche altro principio
che ci può fornire indicazioni utili al riguardo?

Una risposta a questa domanda verrà presentata nella sezione successiva.

2.2 Il principio di equivalenza

Se vogliamo formulare una teoria relativistica della gravitazione allargando
il principio di relatività, e generalizzando la geometria dello spazio-tempo di
Minkowski, dobbiamo scegliere una struttura geometrica che sia compatibile
con le proprietà dell’interazione gravitazionale.

Una delle proprietà più caratteristiche (e più importanti) di tale interazio-
ne è riassunta dal cosiddetto “principio di equivalenza”, che si pùformulare
come segue:

l’interazione gravitazionale è sempre localmente eliminabile,

dove localmente significa in un punto dato dello spazio-tempo e nel suo intor-
no infinitesimo. Tale proprietà è basata sul fatto che gli e↵etti dell’interazione
gravitazionale sono indistinguibili, localmente, da quelli di un sistema acce-
lerato, per cui gli e↵etti gravitazionali possono essere localmente eliminati
semplicemente applicando un’accelerazione di intensità e segno appropriato.

È importante sottolineare che questa completa eliminazione dell’interazio-
ne, per qualunque sistema fisico dato, è possibile solo in virtù dell’universalità
dell’accoppiamento gravitazionale. Come ben noto sin dai tempi di Galileo,
infatti, tutti i corpi rispondono ad un campo gravitazionale esterno con la
stessa accelerazione, il che significa che il rapporto tra la “carica” gravitazio-
nale (cioè la massa gravitazionale) e la massa inerziale ha lo stesso valore per
tutti i corpi.

La gravitazione è l’unica, tra le interazioni fondamentali, a godere di questo
tipo di universalità. Per l’interazione elettromagnetica, ad esempio, il princi-
pio di equivalenza non è valido, perché corpi con cariche diverse rispondono in
maniera diversa ai campi applicati: scegliendo un opportuno sistema accele-
rato possiamo eliminare localmente la forza che agisce su di una certa carica,
ma non su tutte le altre cariche del sistema, che in generale sono soggette ad
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accelerazioni diverse. Perciò l’interazione elettromagnetica non è localmente
eliminabile, al contrario di quella gravitazionale.

Se vogliamo rappresentare l’interazione gravitazionale introducendo nel-
lo spazio-tempo una struttura geometrica diversa da quella di Minkow-
ski dobbiamo dunque richiedere – in accordo al principio di equivalenza
– che gli e↵etti di questa nuova struttura siano localmente elminabili, os-
sia che la nuova geometria possa sempre ridursi, localmente, a quella di
Minkowski.

Questa proprietà non è soddisfatta, in generale, dalla geometria di Finsler,
mentre è sempre soddisfatta dalla geometria di Riemann. Infatti, se l’elemento
di linea soddisfa alle proprietà (2.16), (2.17), è sempre possibile scegliere
un opportuno sistema di coordinate, detto “sistema localmente inerziale”,
rispetto al quale la metrica di Riemann gµ⌫ si riduce localmente a ⌘µ⌫ in
corripondenza di un punto dato, e la geometria, nell’intorno di quel punto,
ritorna ad essere di tipo Minkowskiano.

Per visualizzare geometricamente questa proprietà possiamo ricordare l’e-
sempio della superficie sferica S

2

, introdotto nella sezione precedente. La geo-
metria intrinseca di S

2

non è Euclidea; in ogni punto di S
2

, però, possiamo
sempre introdurre un piano tangente, e approssimare la geometria della sfera,
nell’intorno di quel punto, con la geometria Euclidea del piano. Allo stesso
modo, se abbiamo uno spazio-tempo di Riemann a quattro dimensioni, pos-
siamo sempre introdurre in ogni punto uno spazio-tempo “piatto” tangente
dotato della metrica di Minkowski, e approssimare localmente la geometria
di Riemann con quella tangente di Minkowski.

Per illustrare in modo più esplicito la riduzione locale di una metrica di
Riemann alla forma Minkowskiana consideriamo una metrica g che soddisfa
alle condizioni (2.16), (2.17), e mostriamo che possiamo sempre trovare una
trasformazione di coordinate x ! x0(x) tale che la metrica trasformata coin-
cida con quella di Minkowski in un punto dato x

0

, ossia che: g0(x
0

) = ⌘. Per
mostrarlo possiamo prendere, per semplicità, un sistema di coordinate x0 che
coincida con x nel punto di riferimento x

0

.
Consideriamo la trasformazione di coordinate inversa, x = x(x0), e svilup-

piamola in serie di Taylor attorno a x0 = x
0

:

xµ(x0) ' xµ
0

+

✓

@xµ

@x0⌫

◆

x0
=x0

(x0⌫ � x⌫
0

)+

+
1

2

✓

@xµ

@x0↵@x0�

◆

x0
=x0

(x0↵ � x↵
0

)(x0� � x�
0

) + · · ·
(2.28)

Tale trasformazione risulta localmente determinata al primo ordine, nell’in-
torno di x

0

, qualora siano noti i 16 coe�cienti (costanti) della matrice

Iµ⌫ =

✓

@xµ

@x0⌫

◆

x0
=x0

. (2.29)
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La trasformazione della metrica per un generico cambio di coordinate, d’altra
parte, è fissata dall’Eq. (2.18). Se valutiamo tale trasformazione nel punto
x0 = x = x

0

, ed imponiamo la condizione g0(x
0

) = ⌘, otteniamo

g0↵�(x0

) = Iµ↵I
⌫
� gµ⌫(x0

) = ⌘↵� . (2.30)

Poiché la metrica di partenza gµ⌫ è nota dappertutto, questa condizione for-
nisce un sistema di 10 equazioni per le 16 incognite che sono le componenti
della matrice Iµ ⌫ . Tale sistema ammette sempre soluzioni (non tutte nulle)
per i coe�cienti Iµ ⌫ , per cui è sempre possibile determinare, nell’intorno del
punto scelto, una trasformazione di coordinate che riduca in quel punto la
metrica di partenza in forma Minkowskiana.

Si noti che il sistema di equazioni (2.30) non fissa completamente i coef-
ficienti Iµ ⌫ , ma piuttosto determina una classe di soluzioni che dipende da
16 � 10 = 6 parametri. La trasformazione di coordinate che ci porta al-
la metrica di Minkowski viene quindi definita a meno di 6 gradi di libertà
arbitrari. Questa arbitrarietà corrisponde, fisicamente, alla possibilità di cam-
biare localmente sistema di riferimento, anche dopo aver fissato g = ⌘, me-
diante una generica trasformazione di Lorentz. Tale trasformazione dipen-
de appunto da 6 parametri e, come ben noto, non modifica la metrica di
Minkowski.

Più in generale, se non avessimo imposto la coincidenza dei due sistemi
di coordinate in x

0

, avremmo determinato la trasformazione a meno di altri
4 parametri costanti, xµ(x

0

), che avrebbero sostituito il termine di ordine
zero dello sviluppo di Taylor (2.28), e che si sarebbero aggiunti ai 6 para-
metri precedenti. E infatti le trasformazioni più generali che preservano la
geometria di Minkowski sono quelle del gruppo di Poincarè, che include oltre
alle trasformazioni di Lorentz anche le traslazioni, e che dipende appunto da
6 + 4 = 10 parametri.

In conclusione possiamo dire che la geometria Riemanniana, grazie alle
sue proprietà locali, si presenta come uno strumento idoneo a descrivere una
struttura spazio-temporale che ingloba e generalizza quella della relatività
ristretta in modo compatibile con il principio di equivalenza, e risulta quindi
adatta, per lo meno in linea di principio, ad un’eventuale rappresentazione
geometrica dell’interazione gravitazionale. Alcuni utili aspetti del formalismo
e delle tecniche di calcolo da usare per lo studio delle varietà Riemanniane
verrano presentati nel prossimo capitolo.

Esercizi Capitolo 2

2.1. Moto relativistico in un campo gravitazionale centrale

Ricavare l’equazione del moto (2.8) combinando le equazioni (2.5) e (2.6) che
definiscono, rispettivamente, le costanti h e ↵.
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2.2. Pseudo-sfera a quattro dimensioni

Si consideri una ipersuperficie a 4 dimensioni (con segnatura pseudo-Euclidea,
gµ⌫ = (+,�,�,�)), parametrizzata dalle coordinate intriseche xµ = (ct, xi),
e immersa in uno spazio-tempo di Minkowski a 5 dimensioni con coordina-
te zA, A = 0, 1, 2, 3, 4. L’ipersuperficie è descritta dalle seguenti equazioni
parametriche

z0 =
c

H
sinh(Ht) +

H

2c
eHtxix

i,

zi = eHtxi, (2.31)

z4 =
c

H
cosh(Ht)� H

2c
eHtxix

i,

dove H è una costante. Si verifichi che tale ipersuperficie rappresenta una
pseudo-ipersfera (o iperboloide) a 4 dimensioni, e si determini la sua metrica
intrinseca, ovvero la metrica indotta su questa ipersuperficie dalle equazioni
di immersione (2.31).

Soluzioni

2.1. Soluzione

Ponendo

ṙ = r0'̇, r0 =
dr

d'
, (2.32)

possiamo riscrivere l’Eq. (2.5) nel modo seguente,

'̇2 =
h2

r4

✓

1� r02

c2
'̇2 � r2

c2
'̇2

◆

, (2.33)

e ricavare quindi '̇2 nella forma:

'̇2 =
h2

r4



1 +
h2

r4c2
�

r02 + r2
�

��1

. (2.34)

È conveniente inoltre ricavare l’inverso di �2 dall’Eq. (2.6):

1

�2
⌘ 1� 1

c2
�

r02 + r2
�

'̇2 =
c4

�

↵+ GM
r

�

2

. (2.35)

Sostituendo '̇2, ed invertendo la relazione precedente, otteniamo:

1

c4

✓

↵+
GM

r

◆

2

= 1 +
h2

r4c2
�

r02 + r2
�

. (2.36)
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Sostituiamo ora la variabile r con la variabile u = 1/r, tale che r0 = �u0/u2,
e deriviamo rispetto a ' entrambi i membri dell’equazione precedente.
Otteniamo cos̀ı una condizione che si può scrivere:

u0 (u00 + u) = u0
✓

r
0

↵

2h2

+
r2
0

c2

4h2

u

◆

, (2.37)

dove r
0

= 2GM/c2. Questa condizione ammette la soluzione banale u0 = 0,
ossia r = cost, che descrive una traiettoria circolare nel piano dell’orbita. Se
escludiamo il caso di orbite circolari, e supponiamo u0 6= 0, possiamo dividere
per u0 e arriviamo infine all’equazione

u00 + u =
r
0

↵

2h2

+
r2
0

c2

4h2

u, (2.38)

che con le definizioni (2.9) si riduce esattamente all’equazione del moto (2.8).

2.2. Soluzione

Elevando al quadrato le coordinate zA definite in Eq. (2.31), e contraendole
con la metrica di Minkowski della varietà a 5 dimensioni, si trova facilmente
che l’ipersuperficie considerata soddisfa l’equazione

⌘ABz
AzB =

�

z0
�

2 �
�

z1
�

2 �
�

z2
�

2 �
�

z3
�

2 �
�

z4
�

2

= � c2

H2

= cost. (2.39)

Questa equazione descrive una pseudo-sfera a 4 dimensioni di raggio R = c/H
(si confronti infatti questo risultato con l’Eq. (2.20) che descrive una superficie
sferica bidimensionale). A causa del carattere pseudo-Euclideo della metrica
esterna, le sezioni spazio-temporali di questa ipersuperficie – ad esempio, le
sezioni con z2 = z3 = z4 = 0 – rappresentano iperboli anziché cerchi. L’iper-
superficie considerata può quindi essere interpretata come un iperboloide di
rotazione a 4 dimensioni.

La sua metrica intrinseca gµ⌫ , indotta dalle equazioni parametriche zA =
zA(xµ), è definita, in accordo all’Eq. (2.22), come

gµ⌫ =
@zA

@xµ

@zB

@x⌫
⌘AB . (2.40)

Derivando rispetto a xµ le relazioni zA(xµ) fornite dalle equazioni (2.31)
otteniamo facilmente

g
00

=
1

c2

✓

@z0

@t

◆

2

� 1

c2

�

�

�

�

@zi

@t

�

�

�

�

2

� 1

c2

✓

@z4

@t

◆

2

= 1,

gij =
@z0

@xi

@z0

@xj
� @zk

@xi

@zl

@xj
�kl �

@z4

@xi

@z4

@xj
= ��ije2Ht, (2.41)

g
0i = 0.
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L’elemento di linea intrinseco dell’iperboloide a 4 dimensioni, nelle coordinate
prescelte, è dunque dato da

ds2 = gµ⌫dx
µdx⌫ = c2dt2 � e2Ht |dx|2 . (2.42)

Esso rappresenta una possibile parametrizzazione della cosiddetta geometria
di de Sitter (si veda ad esempio il testo [2] della Bibliografia finale), che ha
importanti applicazioni in un contesto cosmologico (si veda ad esempio il
testo [22]).
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Calcolo tensoriale in una varietà
di Riemann

Motivati dalla discussione del capitolo precedente supponiamo dunque che
lo spazio-tempo abbia la struttura geometrica di una varietà Riemanniana,
a quattro dimensioni, con segnatura pseudo-euclidea. Descriviamo cioè lo
spazio-tempo come una varietà di↵erenziabile1 dotata di una metrica g che
definisce i prodotti scalari in accordo ai postulati enunciati nella Sez. 2.1, e
che può essere rappresentata da una matrice 4 ⇥ 4 reale e simmetrica, con
autovalori spaziali e temporali di segno opposto. Con le nostre convenzioni
prenderemo positivo l’autovalore di tipo tempo:

gµ⌫ = diag (+,�,�,�) . (3.1)

Assumeremo inoltre che la varietà sia dotata di un oggetto geometrico chia-
mato “connessione a�ne”, che risulta simmetrica e compatibile con la metrica
(si veda più avanti la Sez. 3.5).

È importante osservare che gli autovalori della metrica – cos̀ı come quelli
di qualunque matrice – restano invariati per le cosiddette “trasformazioni di
similarità”, ossia per le trasformazioni del tipo g ! g0 = U�1gU , dove U è
un’arbitraria matrice 4 ⇥ 4. Gli autovalori di g possono cambiare, però, se
applichiamo una generica trasformazione di coordinate. In quel caso infatti
la trasformazione della metrica è fissata dall’Eq. (2.18), che si può riscrivere
in forma più compatta introducendo la matrice Jacobiana Jµ

⌫ , definita da:

Jµ
⌫ =

@x0µ

@x⌫
,

�

J�1

�µ
⌫ =

@xµ

@x0⌫ . (3.2)

L’Eq. (2.18) diventa allora

g0↵� =
�

J�1

�µ
↵ gµ⌫

�

J�1

�⌫
� ⌘

�

J�1

�T
↵
µ gµ⌫

�

J�1

�⌫
� , (3.3)

1 Ossia, uno spazio topologico di Hausdor↵ localmente omeomorfo a Rn.

� Springer-Verlag Italia 2015
M. Gasperini, Relatività Generale e Teoria della Gravitazione,
UNITEXT for Physics, DOI 10.1007/978-88-470-5690-9_3

43
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ovvero, utilizzando il prodotto matriciale righe per colonne:

g0 = (J�1)T g J�1. (3.4)

Una trasformazione di questo tipo è detta “congruenza” e, in generale, non
preserva gli autovalori della matrice g. Essa preserva sempre, però, il nu-
mero degli autovalori di un dato segno, e quindi la segnatura 3 + 1 della
metrica non cambia qualunque sia la trasformazioni di coordinate rappre-
sentata dalla matrice J�1. Questo risultato è anche noto come “teorema di
Sylvester”.

Nel contesto della geometria di Riemann la nozione di osservatore (o siste-
ma di riferimento) inerziale, tipica della relatività ristretta, viene sostituita
dalla nozione più generale di sistema di coordinate, detto anche “carta” nel
linguaggio della geometria di↵erenziale. La relazione funzionale tra le varie
carte non è necessariamente lineare come nel caso delle trasformazioni di Lo-
rentz. Inoltre, una singola carta può non essere su�ciente a ricoprire l’intera
varietà Riemanniana. In quel caso si ricorre ad un insieme di carte, detto
“atlante”.

Nella regione in cui due carte si intersecano ogni punto della varietà è indi-
viduato da due di↵erenti sistemi di coordinate, {x} e {x0}. In quella regione
diventa possibile definire la trasformazione di coordinate x ! x0. Per le ipo-
tesi fatte sulla geometria della varietà spazio-temporale tale trasformazione
deve corrispondere a un di↵eomorfismo, ossia deve essere rappresentata da
una funzione biunivoca, di↵erenziabile, invertibile, e con l’inverso di↵erenzia-
bile. La trasformazione deve essere quindi caratterizzata da un determinante
Jacobiano diverso da zero.

Possiamo considerare, come semplice esempio, la trasformazione di coor-
dinate dal sistema polare {r,' } a quello cartesiano {x, y}, definita in Eq.
(2.3). È facile verificare che il determinante Jacobiano di tale trasforma-
zione vale det J ⌘ |@x0/@x| = r, per cui la trasformazione è definita
dappertutto tranne che per r = 0, dove non è invertibile. Le coordinate
polari non sono quindi definite nell’origine, e la carta polare non è suf-
ficiente a ricoprire completamente il piano euclideo R

2

(a di↵erenza del-
le coordinate cartesiane, che forniscono invece un ricoprimento completo
di R

2

).
L’utilizzo di uno schema geometrico Riemanniano, e l’introduzione di

un principio di relatività generalizzato che pone sullo stesso piano fisico
tutte le carte, richiede, per consistenza, che gli oggetti geometrici defini-
ti sullo spazio-tempo siano classificati in base alle loro proprietà di tra-
sformazione rispetto al gruppo dei di↵eomorfismi (e non solo rispetto al-
le trasformazioni di Lorentz, come nel caso particolare della relatività ri-
stretta). Il resto di questo capitolo sarà dedicato a una concisa e fenome-
nologica presentazione dei principali aspetti di questo formalismo geome-
trico.
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3.1 Tensori covarianti e controvarianti

Un oggetto geometrico y definito su una varietà Riemanniana è rappresentato
da un insieme di funzione di↵erenziabili yA(x), dette “componenti”, che per
un cambio di carta x ! x0 si trasformano nel modo seguente:

yA(x) ! y0A(x
0) = YA [yA(x), x

0(x)] . (3.5)

In generale, le nuove componenti y0A (riferite alla nuova carta x0) dipendono
quindi dalle vecchie componenti e dalle nuove coordinate tramite una fun-
zione YA, la cui forma è rigidamente ed unicamente prescritta dal tipo di
oggetto considerato. Se la funzione YA(y) è omogenea, in particolare, le com-
ponenti formano una base per la rappresentazione dell’associato gruppo di
trasformazioni definito sulla varietà spazio-temporale.

Consideriamo, ad esempio, l’isomorfismo x ! x0(x) e la corrispondente
matrice Jacobiana J definita dall’Eq. (2.3). Un oggetto è detto scalare se si
trasforma semplicemente come

�0(x0) = �(x). (3.6)

Un oggetto Aµ è detto vettore controvariante (o anche tensore di tipo (1, 0))
se si trasforma come il di↵erenziale delle coordinate,

dx0µ =
@x0µ

@x⌫
dx⌫ , (3.7)

ovvero se:
A0µ(x0) = Jµ

⌫A
⌫(x), (3.8)

dove J è la matrice Jacobiana (3.2). Un oggetto Bµ è detto vettore covariante
(o anche tensore di tipo (0, 1)) se si trasforma come il gradiente,

@

@x0µ =
@x⌫

@x0µ
@

@x⌫
, (3.9)

ovvero se:
B0

µ(x
0) = (J�1)⌫µB⌫(x). (3.10)

Accanto alle trasformazioni dirette, che esprimono le componenti sulla nuova
carta in funzione delle vecchie componenti, possiamo ovviamente considera-
re le trasformazioni inverse, che esprimono le vecchie componenti in funzio-
ne delle nuove. Per un vettore controvariante e covariante abbiamo allora,
rispettivamente, le relazioni:

Aµ(x) = (J�1)µ ⌫ A
0⌫(x0), (3.11)

Bµ(x) = J⌫ µ B
0
⌫(x

0), (3.12)

ottenute invertendo le equazioni (3.8), (3.10).
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La definizione di vettore (ovvero, di oggetto tensoriale di rango uno) si
estende facilmente agli oggetti tensoriali di rango arbitrario osservando che un
tensore covariante (o controvariante) di rango r si trasforma come il prodot-
to diretto di r vettori covarianti (o controvarianti). In particolare, un tensore
“misto” T di tipo (n,m) ha rango n rispetto alla rappresentazione contro-
variante del gruppo di trasformazioni considerato, e rango m rispetto alla
corrispondente rappresentazione covariante. È quindi un oggetto geometrico
con 4n+m componenti che si trasforma nel modo seguente:

T 0µ1···µn
⌫1···⌫m(x0) =

= Jµ1
↵1 · · · Jµn

↵n(J
�1)�1

⌫1 · · · (J�1)�m
⌫m T↵1···↵n

�1···�m(x).
(3.13)

È utile notare che, nel caso di un tensore misto di rango r = 2, l’equazione
precedente assume la forma di una trasformazione di similarità (con U =
J�1). Per r = 2 abbiamo infatti

T 0µ
⌫ = Jµ

↵T
↵
�(J

�1)�⌫ , (3.14)

ossia, in forma matriciale:
T 0 = JTJ�1. (3.15)

In questo caso speciale gli autovalori della matrice Tµ
⌫ sono dunque pre-

servati, qualunque sia la trasformazione di coordinate che stiamo conside-
rando.

Il diverso significato geometrico delle componenti covarianti e contro-
varianti può essere facilmente illustrato introducendo sulla varietà spazio-
temporale quattro vettori di base {eµ}, µ = 1, . . . , 4, definiti in modo da
essere “ortonormali” rispetto alla metrica di Riemann data. Ossia, definiti in
modo tale che il loro prodotto scalare soddisfi alla condizione

eµ · e⌫ = gµ⌫ (3.16)

(strettamente parlando stiamo considerando una condizione di “pseudo orto-
normalità”, che si riduce ad una vera e propria relazione di ortonormalità solo
nel caso particolare di una varietà Euclidea con gµ⌫ = �µ⌫). Un generico vetto-
reA si può allora rappresentare come combinazione lineare di questi vettori di
base,

A = Aµeµ, (3.17)

e i coe�cienti Aµ di questa combinazione lineare rappresentano le compo-
nenti controvarianti del vettore (ossia le componenti che, in uno spazio Eu-
clideo, riproducono il vettore se sommate tra loro mediante la cosidetta “re-
gola del parallelogrammo”). Le componenti covarianti, invece, sono quelle
che si ottengono proiettando scalarmente il vettore A sui singoli vettori di
base:

Aµ = A · eµ. (3.18)
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Risulta chiaro che le quantità Aµ e Aµ coincidono solo se la base scelta
individua un sistema di riferimento di tipo Cartesiano, con “assi” ortogonali.
In un generico sistema “curvilineo”, combinando le equazioni (3.17), (3.18),
otteniamo invece

Aµ = A⌫e⌫ · eµ = gµ⌫A
⌫ , (3.19)

che generalizza al caso di Riemann la ben nota proprietà della metri-
ca di Minkowski di trasformare componenti controvarianti in componenti
covarianti.

D’altra parte, se gµ⌫ “abbassa gli indici” (come mostrato dall’equazione
precedente), le componenti controvarianti della metrica eseguono l’operazione
inversa. Possiamo arrivare a questa conclusione in due modi: i) definendo una
base “duale eeµ, tale che eeµ · e⌫ = �µ⌫ , e ripetendo gli argomenti precedenti;
oppure ii) osservando che le componenti controvarianti gµ⌫ rappresentano
le componenti della matrice inversa rispetto a gµ⌫ . In accordo all’approccio
operativo e allo spirito poco formale di questo capitolo adotteremo il secondo
metodo, anche perchè la discussione dettagliata dei vari passaggi ci darà il
modo di e↵ettuare un utile esercizio.

A questo scopo notiamo, innanzitutto, che le componenti miste della
metrica coincidono con le componenti del tensore identità,

gµ
⌫ = �µ

⌫ . (3.20)

Infatti, in accordo ai postulati di base della geometria Riemanniana, la me-
trica si trasforma come un tensore di rango 2 (si veda l’Eq. (2.18)); inoltre,
come discusso nella Sez. 2.2, è sempre possibile trovare una trasformazione
di coordinate che riduce localmente la metrica gµ⌫ alla forma Minkowskiana
⌘µ⌫ , e quindi le componenti miste gµ ⌫ alla forma ⌘⌫µ = �⌫µ. Ma le componenti
miste del tensore diagonale �⌫µ si trasformano secondo l’Eq. (3.14), e sono
quindi invarianti rispetto a qualunque trasformazione di coordinate: perciò,
se la relazione (3.20) è valida in una carta (localmente inerziale), è valida
allora in qualunque carta.

D’altra parte, in accordo all’Eq. (3.19), le componenti miste gµ ⌫ si possono
ottenere abbassando un indice delle componenti controvarianti della metrica.
Abbiamo dunque la relazione

gµ↵g
↵⌫ = gµ

⌫ = �µ
⌫ , (3.21)

che si può riscrivere, in forma matriciale, come gg�1 = I, e che conferma il
ruolo di matrice inversa per la rappresentazione controvariante del tensore
metrico. Applicando g⇢µ a entrambi i membri dell’Eq. (3.19), e sfruttando la
(3.21), otteniamo infine

g⇢µAµ = A⇢, (3.22)

che rappresenta la controparte “duale” della relazione (3.19).
Concludiamo la sezione osservando che – grazie ai risultati precedenti – il

prodotto scalare tra due vettori si può scrivere in vari modi, tutti equivalenti
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ad un’operazione di saturazione di indici covarianti con indici controvarianti:

A ·B = Aµeµ ·B⌫e⌫ = AµB⌫gµ⌫ = AµBµ = gµ⌫AµB⌫ = AµB
µ, (3.23)

(estendendo cos̀ı allo spazio-tempo di Riemann un’ovvia proprietà degli og-
getti tensoriali nello spazio-tempo di Minkowski). Ulteriori aspetti della geo-
metria di Riemann, di tipo anche concettualmente nuovo rispetto al caso di
Minkowski, verranno illustrati nelle sezioni successive.

3.2 Densità tensoriali

Gli oggetti tensoriali introdotti nella sezione precedente rappresentano un
caso particolare di una più generale classe di oggetti geometrici, detti densità
tensoriali e caratterizzati da due parametri: il rango r e il peso w.

Una densità tensoriale di rango r (di tipo, ad esempio, controvariante), e
di peso w, è un oggetto geometrico V con 4r componenti che, sotto l’azione
di un generico di↵eomorfismo x ! x0, si trasforma nel modo seguente:

V 0µ1···µr = Jµ1
⌫1 · · · Jµr

⌫rV
⌫1···⌫r (det J)w . (3.24)

Una densità V si trasforma dunque come un tensore rispetto ai suoi r indici;
a di↵erenza del caso tensoriale, però, le vecchie componenti di V (x) vengono
moltiplicate per il determinante Jacobiano elevato alla potenza w. Il peso w è
un numero intero positivo (o negativo) che conta il numero di volte che detJ
(o il suo inverso) entra nella legge di trasformazione.

Ne consegue che i tensori possono essere classificati come particolari den-
sità con peso w = 0; inoltre, se ci limitiamo a considerare trasformazioni con
det J = 1 (come avviene, ad esempio, nel caso della relatività ristretta per i
di↵eomorfismi del gruppo di Lorentz proprio), la di↵erenza tra tensori e den-
sità tensoriali scompare completamente. Possiamo anche notare che, accanto
alle densità di tipo controvariante, esistono ovviamente quelle covarianti e
quelle miste. Una generica densità T di tipo misto (n,m) e peso w trasforma
gli indici secondo la regola tensoriale (3.13), con l’unica di↵erenza che le vec-
chie componenti, nell’equazione di trasformazione, vengono moltiplicate per
(det J)w.

Come semplice esempio di densità possiamo considerare l’elemento di
quadri-volume infinitesimo d4x, che si trasforma come una densità scalare di
peso w = 1. Per una generica trasformazione di coordinate, infatti, abbiamo:

d4x ! d4x0 =

�

�

�

�

@x0

@x

�

�

�

�

d4x = det J d4x. (3.25)

Un altro esempio è fornito dal determinante di un tensore di rango due, e
in particolare dal determinante del tensore metrico, che si trasforma come
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una densità scalare di peso w = �2. Se prendiamo il determinante della
trasformazione (2.18) otteniamo infatti:

det g0 =

�

�

�

�

@x

@x0

�

�

�

�

2

det g ⌘ (det J)�2 det g. (3.26)

Ne consegue che la radice quadrata di det gµ⌫ è una densità scalare di peso
w = �1, e dunque la quantità

d4x
p
�g (3.27)

si trasforma come uno scalare, in quanto ha peso w = 0. Si noti che abbiamo
adottato la notazione standard g ⌘ det gµ⌫ (che useremo sempre d’ora in
avanti), e abbiamo posto �g sotto radice perchè g < 0 per una metrica con
la segnatura pseudo-Euclidea (3.1).

Consideriamo infine le proprietà di trasformazione di un oggetto frequen-
temente usato nei calcoli tensoriali: il cosiddetto simbolo di Levi-Civita
✏µ⌫⇢� = ✏[µ⌫⇢�], completamente antisimmetrico in tutti i suoi indici, norma-
lizzato con la condizione ✏0123 = 1 = �✏

0123

(si veda anche la sezione iniziale
sulle Notazioni e Convenzioni). In una varietà di Riemann questo oggetto si
comporta come una densità di rango r = 4 e peso w = �1.

Per dimostrare questa a↵ermazione osserviamo che il determinante Jaco-
biano – cos̀ı come il determinante di qualunque matrice 4⇥4 – può essere svi-
luppato come prodotto dei minori associati agli elementi di una riga o di una
colonna, e può essere quindi rappresentato nella forma compatta seguente,

det J = J0

µJ
1

⌫J
2

⇢J
3

�✏
µ⌫⇢� = ✏0123 det J, (3.28)

che implica la relazione tensoriale:

✏↵��� det J = J↵µJ
�
⌫J

�
⇢J

�
�✏

µ⌫⇢�. (3.29)

D’altra parte, se consideriamo il cambio di carta associato alla matrice Jaco-
biana J , e se vogliamo che le componenti ±1, 0 del simbolo completamente
antisimmetrico restino le stesse in tutte le carte, dobbiamo imporre che nel-
le nuove coordinate si abbia ✏0↵��� = ✏↵���. Sostituendo questa condizione
nell’equazione precedente otteniamo la legge di trasformazione

✏0↵��� = J↵µJ
�
⌫J

�
⇢J

�
�✏

µ⌫⇢�(det J)�1, (3.30)

che caratterizza appunto una densità tensoriale di rango 4 e peso w = �1.
Ricordando che anche la densità scalare

p�g ha peso w = �1, possiamo
allora ottenere un “vero” tensore completamente antisimmetrico definendo
l’oggetto

⌘µ⌫⇢� =
✏µ⌫⇢�p�g

, (3.31)

che risulta avere peso w = 0 per una generica trasformazione di coordinate
della varietà Riemanniana.
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La versione covariante di questo tensore si ottiene operando con la metrica
sui quattro indici, in accordo alla proprietà metrica (3.19):

⌘↵��� = g↵µg�⌫g�⇢g��
✏µ⌫⇢�p�g

. (3.32)

D’altra parte, applicando al determinante della matrice gµ⌫ il generico
sviluppo in minori (3.29), abbiamo anche

�g ✏↵��� = g↵µg�⌫g�⇢g��✏
µ⌫⇢� (3.33)

(il segno meno viene dalla convenzione ✏
0123

= �✏0123 = �1). Dividendo
questa equazione per

p�g, e confrontando con l’Eq. (3.32), otteniamo infine
la relazione:

⌘↵��� =
p
�g ✏↵���, (3.34)

che definisce il tensore completamente antisimmetrico in forma covariante.
Si noti che il simbolo ✏↵���, presente al membro destro di questa equa-

zione, si trasforma come una densità tensoriale covariante di peso w = 1 (e
quindi il suo peso è opposto a quello del simbolo di Levi-Civita in forma
controvariante). Si noti anche che nella contrazione dei tensori ⌘↵��� e ⌘µ⌫⇢�

il determinante della metrica si cancella, e il risultato viene ad essere com-
pletamente determinato dalla contrazione dei simboli di Levi-Civita come nel
corrispondente spazio-tempo di Minkowski.

Regole di prodotto tra tensori completamente antisimmetrici

Riportiamo qui di seguito, per comodità futura, le regole di prodotto tra ten-
sori completamente antisimmetrici. È conveniente definire il simbolo �µ1···µn

⌫1···⌫n ,
che indica il determinante della seguente matrice n⇥ n:

�µ1···µn
⌫1···⌫n = det

0

B

@

�µ1
⌫1 · · · �µ1

⌫n
�µ2
⌫1 · · · �µ2

⌫n
· · · · · · · · ·
�µn
⌫1 · · · �µn

⌫n

1

C

A

. (3.35)

Usando la definizione esplicita dei tensori completamente antisimmetrici
(3.31) e (3.34) si ottiene:

⌘µ⌫⇢�⌘
µ⌫⇢� = �4! , (3.36)

⌘µ⌫⇢↵⌘
µ⌫⇢� = �3! ��↵ , (3.37)

⌘µ⌫↵�⌘
µ⌫⇢� = �2! �⇢�↵� ⌘ �2!

⇣

�⇢↵�
�
� � ��↵�

⇢
�

⌘

, (3.38)

⌘µ↵��⌘
µ⌫⇢� = ��⌫⇢�↵�� , (3.39)

⌘↵���⌘
µ⌫⇢� = ��µ⌫⇢�↵��� . (3.40)



3.3 Trasformazioni infinitesime, isometrie e vettori di Killing 51

3.3 Trasformazioni infinitesime, isometrie e vettori di
Killing

Le regole di trasformazione introdotte nelle sezioni precedenti non descrivono
la trasformazione locale di un oggetto geometrico se le nuove e le vecchie
componenti dell’oggetto vengono riferite alle coordinate di un’unica carta.

Infatti, per una data trasformazione x ! x0 = f(x), le vecchie componenti
dell’oggetto tensoriale A, valutate nel punto P di coordinate x, vengono col-
legate alle nuove componenti A0 valutate nel punto di coordinate x0 = f(x).
Quest’ultimo punto coincide con P se le coordinate sono riferite alla nuova
carta, ma corrisponde a un diverso punto P 0 dello spazio-tempo, di coordi-
nate f(x) 6= x, se viene invece riferito alla vecchia carta. In sintesi, abbiamo
una trasformazione del tipo

A(x) ! A0 (f(x)) . (3.41)

La variazione locale dell’oggetto geometrico, ossia la di↵erenza delle compo-
nenti valutata nello stesso punto dello spazio-tempo, A0(x)�A(x), può però
essere facilmente definita per le trasformazioni di coordinate sviluppabili in
serie attorno alla trasformazione identica. Tali trasformazioni possono essere
parametrizzate, al primo ordine dello sviluppo, da un vettore infinitesimo ⇠µ

– detto generatore della trasformazione – come segue:

x0µ = fµ(x) ' xµ + ⇠µ(x) +O(⇠2). (3.42)

La trasformazione inversa, al primo ordine in ⇠, è data da:

xµ = (f�1)µ(x0) ' x0µ � ⇠µ(x0) +O(⇠2). (3.43)

Lo sviluppo in serie di Taylor delle componenti A0(x0) nell’intorno di x0 = x
(ossia nel limite ⇠ ! 0) fornisce allora A0(x), e permette di calcolare la
corrispondente variazione locale �A = A0(x) � A(x), detta anche variazione
“funzionale”, oppure trasformazione di gauge (dove col termine “gauge” si fa
riferimento alle proprietà di simmetria del modello geometrico considerato, e
in particolare all’invarianza per di↵eomorfismi della geometria Riemanniana).
La procedura, che applicheremo per lo più al primo ordine, si può ovviamente
estendere a ordini arbitrariamente elevati dello sviluppo in serie di potenze
di ⇠.

Per fare un semplice esempio prendiamo la trasformazione di un campo
scalare �, data dall’Eq. (3.6), per un generico cambio di carta x0 = f(x):

�0 (f(x)) = �(x). (3.44)

Per valutare la variazione locale di � nel punto x è conveniente esprime questa
legge di trasformazione non in x ma nel punto (traslato) di coordinate x !
f�1(x), dove la trasformazione assume la forma, esattamente equivalente
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all’Eq. (3.44),
�0(x) = �

�

f�1(x)
�

. (3.45)

Consideriamo ora una trasformazione infinitesima del tipo (3.42), (3.43), ed
espandiamo in serie di Taylor nell’intorno del punto x il membro destro
dell’equazione precedente:

�0(x) = �
�

f�1(x)
�

' �(x� ⇠) ' �(x)� ⇠µ(x)@µ�(x) + · · · , (3.46)

dove abbiamo omesso termini di ordine ⇠2 e superiore. La variazione locale
(o funzionale) del campo scalare per la trasformazione infinitesima generata
da ⇠, al primo ordine, è dunque:

�⇠� ⌘ �0(x)� �(x) = �⇠µ@µ�. (3.47)

Si noti che questo risultato è in principio diverso da quello dell’Eq. (1.28),
relativo a una traslazione di coordinate di tipo globale, per il fatto che il
generatore della trasformazione non è costante ma dipende anch’esso dalle
coordinate, ⇠µ = ⇠µ(x).

Gli e↵etti di tale dipendenza dalle coordinate, ossia gli e↵etti della località
della trasformazione infinitesima (3.42), diventano più evidenti se conside-
riamo la variazione di un oggetto tensoriale di rango superiore, ad esempio
di un campo vettoriale controvariante Aµ(x). Applicando la regola generale
(3.8) – valutata nel punto traslato di coordinate f�1(x) – alla trasformazio-
ne infinitesima (3.42), sviluppando in serie nell’intorno di x, e fermandoci al
primo ordine in ⇠, otteniamo

A0µ(x)=
@x0µ

@x⌫
A⌫(x� ⇠)=(�µ⌫ + @⌫⇠

µ + · · ·) (1� ⇠↵@↵ + · · ·)A⌫(x)
=Aµ(x)� ⇠↵@↵A

µ +A⌫@⌫⇠
µ + · · ·

(3.48)

Perciò:
�⇠A

µ ⌘ A0µ(x)�Aµ(x) = �⇠↵@↵Aµ +A⌫@⌫⇠
µ. (3.49)

Il secondo contributo a questa variazione, proporzionale alle derivata di ⇠,
è una conseguenza del carattere locale della trasformazione considerata. Ta-
le contributo scompare nel limite di traslazioni rigide, caratterizzate da un
parametro ⇠µ = const.

Con la stessa procedura possiamo valutare la variazione locale di un vettore
di tipo covariante, partendo dalla regola di trasformazione (3.10), e tenen-
do conto che la matrice Jacobiana inversa si ottiene derivando l’Eq. (3.43)
rispetto a x0. Abbiamo allora

B0
µ(x) =

@x⌫

@x0µB⌫(x� ⇠) =
�

�⌫µ � @µ⇠
⌫ + · · ·

�

(1� ⇠↵@↵ + · · ·)B⌫(x)
= Bµ(x)� ⇠↵@↵Bµ �B⌫@µ⇠

⌫ + · · ·
(3.50)

da cui:
�⇠Bµ ⌘ B0

µ(x)�Bµ(x) = �⇠↵@↵Bµ �B⌫@µ⇠
⌫ . (3.51)
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Si noti che, al primo ordine in ⇠, abbiamo identificato @⇠⌫(x0)/@x0µ con
@⇠⌫(x)/@xµ. Va anche notata la di↵erenza di segno dell’ultimo termine
dell’Eq. (3.51) rispetto al termine corrispondente dell’Eq. (3.49).

È utile, per le applicazioni successive, valutare anche la variazione loca-
le del tensore metrico. Applicando la regola generale (3.3) al caso di una
trasformazione infinitesima, e sviluppando in serie, otteniamo

g0µ⌫(x)=
�

�↵µ � @µ⇠
↵+ · · ·

� �

��⌫� @⌫⇠
�+ · · ·

�

(1� ⇠⇢@⇢ + · · ·) g↵�(x), (3.52)

da cui, al primo ordine in ⇠,

�⇠gµ⌫ ⌘ g0µ⌫(x)� gµ⌫(x) = �⇠↵@↵gµ⌫ � gµ↵@⌫⇠
↵ � g↵⌫@µ⇠

↵. (3.53)

Ripetendo la procedura per le componenti controvarianti della metrica arri-
viamo invece all’espressione:

�⇠g
µ⌫ = �⇠↵@↵gµ⌫ + gµ↵@↵⇠

⌫ + g↵⌫@↵⇠
µ. (3.54)

Le trasformazioni di coordinate che lasciano la metrica localmente invariante,
ossia che soddisfano alla condizione2 g0µ⌫(x) = gµ⌫(x), sono dette isometrie,
e il generatore vettoriale ⇠µ della corrispondente trasformazione infinitesima
è detto vettore di Killing. I vettori di Killing sono dunque determinati dalla
condizione �⇠gµ⌫ = 0 (o, equivalentemente, �⇠gµ⌫ = 0) che, una volta fissa-
ta la metrica, diventa un’equazione di↵erenziale alle derivate parziali per le
componenti del vettore ⇠µ:

⇠↵@↵gµ⌫ + gµ↵@⌫⇠
↵ + g↵⌫@µ⇠

↵ = 0. (3.55)

Come vedremo in seguito, tale condizione si può scrivere anche in forma
più compatta utilizzando la nozione di derivata covariante (che introdur-
remo nella Sez. 3.4). Ma anche applicando la condizione nella precedente
forma di↵erenziale ordinaria si può facilmente verificare, ad esempio, che le
trasformazioni del gruppo di Poincarè sono isometrie dello spazio-tempo di
Minkowski, ovvero che i sei generatori delle rotazioni di Lorentz e i quattro
generatori delle traslazioni globali sono vettori di Killing per la metrica di
Minkowski (si vedano gli Esercizi 3.1 e 3.2).

L’insieme delle isometrie associate a un dato tensore metrico costituisce un
importante gruppo di simmetria per la varietà descritta da quella metrica. La
conoscenza di tali simmetrie (ossia, la conoscenza dei corrispondenti vettori
di Killing) permette di scegliere il sistema di coordinate più conveniente per
semplificare la descrizione geometrica della varietà data3.

2 Quando la metrica soddisfa tale condizione si dice anche che la metrica è “invariante in
forma”.
3 Le coordinate di tale sistema sono anche dette coordinate “adattate” alla geometria di
quella varietà.
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Supponiamo, ad esempio, che la varietà ammetta un vettore di Killing ⇠µ

di tipo tempo. Scegliamo una carta con la coordinata temporale allineata
lungo la direzione di ⇠µ, nella quale ⇠µ = �µ

0

. In questa carta troveremo che
la condizione di Killing �gµ⌫ = 0 si riduce a @

0

gµ⌫ = 0 (si veda l’Eq. (3.55)), e
quindi avremo una metrica indipendente dal tempo. In questa carta, inoltre,
⇠µ = gµ0, e ⇠µ⇠µ = g

00

. Analoghe semplificazioni si ottengono per vettori di
Killing di tipo spazio o nulli.

Osserviamo infine che la variazione locale di un oggetto tensoriale T lungo
la direzione spazio-temporale individuata da un vettore ⇠µ è anche chiama-
ta derivata di Lie di T rispetto a ⇠, e indicata dal simbolo L⇠T . L’azione
di tale derivata sugli oggetti tensoriali coincide (ma col segno opposto) con
quella dell’operatore di↵erenziale �⇠T , definito in precedenza per scalari, vet-
tori e tensori di rango due. Questo significa che la variazione funzionale �⇠
generata da ⇠µ può essere interpretata, geometricamente, come l’e↵etto di
una traslazione locale infinitesima lungo la curva con equazione parametrica
xµ = xµ(�) e con tangente ⇠µ = dxµ/d�. Ne consegue anche che la condi-
zione di isometria, �⇠gµ⌫ = 0, per un arbitrario vettore di Killing ⇠µ, si può
esprimere come condizione di metrica costante rispetto alla derivata di Lie:

L⇠ gµ⌫ = 0 = L⇠ gµ⌫ . (3.56)

3.3.1 Trasformazioni infinitesime al secondo ordine

Concludiamo la sezione illustrando brevemente l’estensione al secondo ordine
del calcolo delle variazioni locali. Tale estensione risulta di importanza crucia-
le in alcune moderne applicazioni della teoria delle perturbazioni cosmologi-
che (per questa teoria si vedano ad esempio i testi [16,20,21] della Bibliografia
finale, oppure [22] per un testo in italiano). L’estensione al secondo ordine
è necessaria, in particolare, per una corretta interpretazione fisica dei dati
osservativi relativi all’Universo su grande scala, dati che stanno diventando
ogni giorno più precisi .

Al secondo ordine perturbativo lo sviluppo della trasformazione di coor-
dinate x0 = f(x) attorno alla trasformazione identica è caratterizzato in
generale da due generatori vettoriali, ⇠µ

1

e ⇠µ
2

, e può essere parametrizzato
come segue:

x0µ = fµ(x) ' xµ + ⇠µ
1

(x) +
1

2
⇠µ
2

(x) +
1

2
⇠⌫
1

@⌫⇠
µ
1

(x) + · · · . (3.57)

Il vettore ⇠µ
1

gioca il ruolo del generatore ⇠µ che compare nella trasformazione
(3.42) del primo ordine, mentre ⇠µ

2

contribuisce alle correzioni del secondo
ordine. Ovviamente, termini contenenti ⇠

2

e ⇠2
1

sono dello stesso ordine. La
trasformazione inversa, calcolata al secondo ordine, è data da:

xµ = (f�1)µ(x0) ' x0µ � ⇠µ
1

(x0)� 1

2
⇠µ
2

(x0) +
1

2
⇠⌫
1

@⌫⇠
µ
1

(x0) + · · · (3.58)
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(si veda l’Esercizio 3.3). Applicando a questa particolare trasformazione di
coordinate le regole generali di trasformazione degli oggetti tensoriali, e svi-
luppando in serie di Taylor, si possono facilmente estendere al secondo ordine
i risultati dei calcoli precedenti.

Consideriamo ad esempio il caso di un campo scalare, e sviluppiamo il
membro destro dell’Eq. (3.45) nell’intorno del punto x, tenendo tutti i termini
fino al secondo ordine compreso. Applicando l’Eq. (3.58) abbiamo

�
�

f�1(x)
�

' �(x) +

✓

�⇠µ
1

� 1

2
⇠µ
2

+
1

2
⇠⌫
1

@⌫⇠
µ
1

+ · · ·
◆

(x)@µ�+

+
1

2
(�⇠µ

1

+ · · ·) (�⇠⌫
1

+ · · ·) @µ@⌫�+ · · · (3.59)

= �(x)� ⇠µ
1

@µ�� 1

2
⇠µ
2

@µ�+
1

2
⇠⌫
1

@⌫ (⇠
µ
1

@µ�) + · · · .

Confrontando con �0(x) otteniamo infine la variazione locale, al secondo
ordine, nella forma:

�(2)⇠ � ⌘ �0(x)� �(x) = �
✓

⇠µ
1

+
1

2
⇠µ
2

◆

@µ�+
1

2
⇠⌫
1

@⌫ (⇠
µ
1

@µ�) . (3.60)

Procedendo allo stesso modo si possono generalizzare i risultati ottenuti in
questa sezione relativi agli altri oggetti tensoriali.

3.4 Derivata covariante e connessione a�ne

Per formulare modelli fisici nell’ambito di una varietà spazio-temporale do-
tata di una struttura geometrica Riemanniana non basta aver introdotto la
metrica (che consente di definire i prodotti scalari), ma è necessario introdur-
re un ulteriore oggetto geometrico, detto connessione a�ne (o a�nità), che
consente di definire il di↵erenziale e la derivata parziale in modo covariante
rispetto alle trasformazioni generali di coordinate.

Infatti, contrariamente al di↵erenziale delle coordinate dxµ che si trasfor-
ma come un vettore (si veda l’Eq. (3.7)), il di↵erenziale ordinario di un ge-
nerico vettore Aµ non si comporta, in generale, come un vettore rispetto ai
di↵eomorfismi. Per verificarlo basta di↵erenziare, ad esempio, la trasforma-
zione vettoriale inversa (3.11). Utilizzando la definizione esplicita (3.2) della
matrice Jacobiana otteniamo:

dAµ =
�

J�1

�µ
⌫dA

0⌫ +
@2xµ

@x0↵@x0⌫ A0⌫dx0↵. (3.61)

L’ultimo termine, che si annulla solo per matrici Jacobiane costanti – ossia
per il caso particolare di trasformazioni di coordinate lineari – modifica la
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corretta forma della trasformazione vettoriale, e rompe la general-covarianza
del modello geometrico considerato.

Per compensare tale correzione, e ripristinare le proprietà di simmetria
rispetto al gruppo dei di↵eomorfismi, generalizziamo la nozione di di↵eren-
ziale aggiungendo a dAµ un nuovo termine �Aµ, che supponiamo dipenda
linearmente dal vettore A e dallo spostamento infinitesimo considerato, e che
renda conto di un’eventuale variazione di A associata al suo trasporto dal
punto x al punto x + dx (variazione intrinsecamente dovuta alle proprietà
geometriche della varietà data). Più precisamente, definiamo un di↵erenziale
generalizzato, DAµ, tale che:

DAµ = dAµ + �Aµ ⌘ dAµ + �↵�
µdx↵A� . (3.62)

I coe�cienti �↵� µ del nuovo termine rappresentano le componenti di un
opportuno “campo compensativo” (o “campo di gauge”), che si trasforma
in modo da ripristinare la corretta legge di trasformazione vettoriale per
l’espressione (3.62). Poichè A e dx sono vettori, mentre dA non è un vettore,
è evidente che � non è un oggetto di tipo tensoriale, ma un nuovo tipo di
oggetto geometrico chiamato “connessione a�ne”.

Le proprietà geometriche di � sono fissate dalla sua legge di trasforma-
zione, che a sua volta risulta fissata dalla richiesta che DAµ si trasformi
come un vettore controvariante. Imponiamo dunque che valga la legge di
trasformazione

DAµ =
�

J�1

�µ
⌫ (DA⌫)0 , (3.63)

e scriviamo esplicitamente il membro sinistro e il membro destro di questa
equazione in funzione di � e � 0.

Usando la definizione (3.62) e le leggi di trasformazione di dAµ, dx↵, A� ,
il membro sinistro si può riscrivere come

�

J�1

�µ
⌫dA

0⌫+
@2xµ

@x0↵@x0� dx0↵A0�+���
µ
�

J�1

��
↵

�

J�1

��
� dx

0↵A0� . (3.64)

Il membro destro dell’Eq. (3.63), invece, si può riscrivere esplicitamente come

�

J�1

�µ
⌫

�

dA0⌫ + � 0
↵�

⌫dx0↵A0�� . (3.65)

Uguagliando i coe�cienti di dx0↵A0� che appaiono nei due membri, semplifi-
cando i termini simili, e moltiplicando per J⇢ µ, arriviamo cos̀ı alla legge di
trasformazione della connessione a�ne:

� 0
↵�

⇢ = J⇢µ
�

J�1

��
↵

�

J�1

��
����

µ +

✓

@x0⇢

@xµ

◆✓

@2xµ

@x0↵@x0�

◆

. (3.66)

Per trasformazioni di coordinate lineari il termine con le derivate seconde
si annulla, e � si trasforma come un tensore (misto) di rango 3. Per una
generica trasformazione di coordinate, invece, la relazione � ! � 0(� ) non è
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omogenea, a conferma del carattere non-tensoriale dell’oggetto. Si noti, però,
che la parte antisimmetrica della connessione,

Q↵�
⇢ = �

[↵�]
⇢, (3.67)

chiamata torsione, si trasforma sempre come un tensore: prendendo la parte
antisimmetrica in ↵ e � dell’Eq. (3.66) il termine non-omogeneo scompare
infatti automaticamente, essendo simmetrico in ↵ e �. La connessione a�ne
contiene dunque in generale 43 = 64 componenti, di cui solo 6 ⇥ 4 = 24 (le
componenti di Q) sono di tipo tensoriale.

La parte simmetrica �
(↵�)

µ della connessione contiene 10⇥4 = 40 compo-
nenti, tutte di tipo non-tensoriale, e gode di un’interessante proprietà (che ha
un’importante significato fisico, come vedremo in seguito): può essere posta
uguale a zero in una speciale carta, senza per questo essere zero in tutte le
carte. Possiamo sempre trovare, in particolare, una carta detta “localmente
inerziale” (si veda la Sez. 2.2) dove la metrica si riduce localmente a quella
di Minkowski, e la parte simmetrica di � è localmente nulla, in un punto di
coordinate x

0

arbitrariamente dato.
Per verificare questa importante proprietà della connessione a�ne conside-

riamo la trasformazione di coordinate (2.28) già introdotta nel Capitolo 2, e
imponiamo che nella carta x0 la parte simmetrica di � 0 si annulli nel punto x

0

.
Utilizzando la legge di trasformazione (3.66), ed imponendo � 0

↵�
⇢(x

0

) = 0,
otteniamo allora la condizione

✓

@2xµ

@x0↵@x0�

◆

x0

= �I�
(↵I

�
�)���

µ(x
0

), (3.68)

(abbiamo usato la definizione (2.29) della matrice Iµ ⌫ , che corrisponde alla
matrice Jacobiana inversa J�1 valutata nel punto x = x

0

).
A questo punto possiamo osservare che le componenti della connessione �

nella carta di partenza sono note dappertutto – e quindi, in particolare, anche
nel punto x

0

– e che le componenti della matrice I possono essere fissate
dalla condizione locale sulla metrica, g(x

0

) = ⌘ (si veda l’Eq. (2.30)). Ne
consegue che l’Eq. (3.68) determina completamente, in funzione di quantità
note, i 40 coe�cienti del termine del secondo ordine della trasformazione
di coordinate cercata, che ci porta alla carta localmente inerziale (si veda
l’Eq. (2.28)). È sempre possibile, quindi, introdurre localmente un sistema di
riferimento rispetto al quale la parte simmetrica della connessione si annulla
e la geometria dello spazio-tempo si riduce localmente a quella di Minkowski.

Una volta definito il di↵erenziale covariante di un vettore, è immediato
introdurre la corrispondente derivata parziale covariante (che indicheremo col
simbolo r↵Aµ), facendo il limite del rapporto incrementale tra la quantità
DAµ dell’Eq. (3.62) e lo spostamento infinitesimo dx↵. Si ottiene cos̀ı:

r↵A
µ = @↵A

µ + �↵�
µA� . (3.69)
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Il primo termine al membro destro, ottenuto dal di↵erenziale ordinario,
coincide con l’ordinaria derivata parziale. Si noti che i due contributi a
r↵Aµ non si comportano, separatamente, come oggetti tensoriali, ma la
loro somma è un tensore a tutti gli e↵etti, in quanto sia DAµ che dx↵

hanno le corrette proprietà di trasformazione. L’operatore di↵erenziale co-
variante r↵ (il cosiddetto gradiente covariante) appartiene dunque a pieno
titolo alla rappresentazione vettoriale covariante del gruppo dei di↵eomor-
fismi.

Nota l’azione dir↵ sul vettore controvariante Aµ, la corrispondente azione
su un oggetto di tipo covariante Bµ si ottiene considerando il prodotto scalare
BµAµ, e osservando che la trasformazione di uno scalare non coinvolge la
matrice Jacobiana, per cui il di↵erenziale covariante di uno scalare coincide
col suo di↵erenziale ordinario. Applicando la regola di Leibnitz alla derivata
di un prodotto abbiamo quindi

r↵(BµA
µ) = (r↵Bµ)A

µ +Bµr↵A
µ

⌘ @↵(BµA
µ) = (@↵Bµ)A

µ +Bµ@↵A
µ.

(3.70)

Sostituendo a r↵Aµ l’espressione (3.69), e semplificando, si ottiene

Aµr↵Bµ + �↵�
µA�Bµ = Aµ@↵Bµ. (3.71)

Fattorizzando ovunque Aµ, ed uguagliando i coe�cienti dei vari termini,
abbiamo infine

r↵Bµ = @↵Bµ � �↵µ
�B� . (3.72)

Si noti che la connessione contribuisce alla derivata di un oggetto covariante
con un termine di segno opposto a quello che appare nella derivata di un
oggetto controvariante (si veda l’Eq. (3.69)).

In modo analogo possiamo ottenere la regola per la derivata covariante di
un oggetto tensoriale di rango e tipo arbitrario, osservando che un tensore
di rango n rispetto agli indici controvarianti e rango m rispetto agli indici
covarianti si trasforma come il prodotto di n vettori controvarianti em vettori
covarianti. Definiamo dunque

Tµ1···µn
⌫1···⌫m ⌘ Aµ1 · · ·AµnA⌫1 · · ·A⌫m , (3.73)

e applichiamo la regola di Leibniz alla derivata del prodotto:

r↵T
µ1···µn

⌫1···⌫m = (r↵A
µ1)Aµ2 · · ·AµnA⌫1 · · ·A⌫m+

+Aµ1(r↵A
µ2) · · ·AµnA⌫1 · · ·A⌫m + · · ·

+Aµ1 · · ·Aµn(r↵A⌫1)A⌫2 · · ·A⌫m+

+ · · · .

(3.74)
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Usando le prescrizioni note, Eqs. (3.69) e (3.72), arriviamo infine alla regola
di derivazione:

r↵T
µ1···µn

⌫1···⌫m =

= @↵T
µ1···µn

⌫1···⌫m+

+�↵�
µ1T �µ2···µn

⌫1···⌫m + �↵�
µ2Tµ1�···µn

⌫1···⌫m + · · ·
��↵⌫1 �Tµ1···µn

�⌫2···⌫m � �↵⌫2
�Tµ1···µn

⌫1�···⌫m � · · · .

(3.75)

Possiamo riassumere dicendo che la derivata covariante di un generico og-
getto tensoriale si costruisce a partire dalla sua derivata parziale, aggiun-
gendo tanti termini contenenti il contributo della connessione quanti sono
gli indici del tensore dato. Tali termini aggiuntivi vanno presi col segno + e
con la prescrizione dell’Eq. (3.69) per indici di tipo controvariante, col segno
� e con le prescrizioni dell’Eq. (3.72) per indici di tipo covariante. Per un
tensore misto di rango 2, ad esempio, otteniamo la seguente derivata cova-
riante:

r↵T
µ
⌫ = @↵T

µ
⌫ + �↵�

µT �⌫ � �↵⌫
�Tµ

� . (3.76)

L’illustrazione di alcune semplici regole di calcolo di↵erenziale covariante
è rimandata alla Sez. 3.6, per farla precedere da un necessario approfon-
dimento delle proprietà della connesssione a�ne che verrà e↵ettuato nella
Sez. 3.5.

3.4.1 Curve autoparallele

La nozione di di↵erenziale covariante di un vettore, definita dall’Eq. (3.62),
può essere applicata in particolare al vettore tangente di una curva, e alla
sua variazione lungo la curva stessa.

Consideriamo una curva immersa in una varietà Riemanniana, con equa-
zione parametrica xµ = xµ(⌧), e tangente uµ = dxµ/d⌧ . Si noti che uµ si
trasforma correttamente come un vettore se la variabile temporale ⌧ , usata
per parametrizzare la curva, è di tipo scalare. Uno spostamento infinitesimo
lungo la curva si può esprimere come dxµ = uµd⌧ , e il di↵erenziale covariante
(3.62), per lo spostamento infinitesimo lungo la curva di un generico vettore
Aµ, diventa

DAµ = dAµ + �↵�
µu↵A�d⌧. (3.77)

Il limite del rapporto incrementale tra DAµ e d⌧ definisce allora la derivata
covariante di Aµ lungo la curva,

DAµ

d⌧
=

dAµ

d⌧
+ �↵�

µu↵A� . (3.78)
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Tale derivata può anche essere scritta, in modo equivalente, come la derivata
parziale covariante di Aµ proiettata sulla tangente uµ, ossia:

u↵r↵A
µ = u↵

�

@↵A
µ + �↵�

µA�
�

⌘ DAµ

d⌧
. (3.79)

Consideriamo ora il di↵erenziale covariante della tangente stessa, Duµ. Una
curva si dice autoparallela (o anche geodetica a�ne) se la derivata covariante
della tangente lungo la curva stessa è nulla, ossia se

Duµ

d⌧
=

duµ

d⌧
+ �↵�

µu↵u� = 0. (3.80)

Questa condizione esprime il fatto che la tangente è “covariantemente co-
stante” lungo la curva, e generalizza la condizione di tangente costante,
duµ/d⌧ = 0, che caratterizza le traiettorie rettilinee dello spazio Euclideo. La
curva autoparallela generalizza dunque la nozione di retta al caso di varietà
dotate di connessione a�ne diversa da zero.

È importante notare che l’Eq. (3.80) contiene solo la parte simmetrica
della connessione, in quanto il tensore u↵u� è simmetrico. Come visto in pre-
cedenza tale parte non è di tipo tensoriale, e può essere localmente eliminata.
Questo significa che l’equazione della geodetica a�ne si può sempre ridurre,
localmente, all’equazione di una retta (duµ/d⌧ = d2xµ/d⌧2 = 0).

3.5 Torsione, non-metricità e simboli di Christo↵el

Fino ad ora abbiamo trattato la connessione a�ne come un oggetto geo-
metrico definito sulla varietà spazio-temporale in modo indipendente dalla
metrica, e necessario, al pari della metrica, per descrivere la struttura geo-
metrica dello spazio-tempo. La metrica serve a definire i prodotti scalari e
rende conto della distorsione del modulo di un vettore, punto per punto,
rispetto ad una varietà Euclidea (o pseudo-Euclidea); la connessione serve
a definire il di↵erenziale covariante e rende conto della deformazione di un
vettore, in direzione e modulo, dovuta al suo trasporto da un punto ad un
altro. In generale, entrambi gli oggetti g e � vanno dunque specificati per
caratterizzare in modo completo la geometria dello spazio-tempo dato.

Possiamo allora distinguere, a questo punto, due possibili tipi di strutture
geometriche tra loro alternative. Se g e � sono indipendenti si dice che la
varietà possiede una struttura geometrica metrico-a�ne. Invece, se � può
essere espresso in funzione di g e delle sue derivate parziali, allora la metrica
– da sola – è su�ciente a descrivere la geometria della varietà, e si dice che
la varietà possiede una struttura di tipo metrico.

Questa seconda situazione è quella che si realizza nel contesto della geo-
metria Riemanniana, dove si impongono delle opportune condizioni sulle 64
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componenti indipendenti di � in modo tale che le componenti residue sia-
no completamente calcolabili in funzione della metrica. Tali condizioni, come
vedremo, sono motivate da considerazioni di carattere fenomenologico stret-
tamente legate all’interazione gravitazionale classica dei corpi macroscopici.
A livello microscopico, però, alcune di tali motivazioni potrebbero venir me-
no, suggerendo la necessità di una struttura geometrica più generale (si veda
in particolare il Cap. 14).

Per determinare la possibile forma di un’eventuale relazione tra metrica
e connesione a�ne consideriamo la derivata covariante del tensore metri-
co, r↵gµ⌫ , e scriviamola esplicitamente tre volte permutando ciclicamente i
tre indici ↵, µ,⌫ . Applicando le regole di derivazione covariante di Sez. 3.4
abbiamo:

r↵gµ⌫ = @↵gµ⌫ � �↵µ
�g�⌫ � �↵⌫

�gµ� ⌘ Nµ⌫↵, (3.81)

rµg⌫↵ = @µg⌫↵ � �µ⌫
�g�↵ � �µ↵

�g⌫� ⌘ N⌫↵µ, (3.82)

r⌫g↵µ = @⌫g↵µ � �⌫↵
�g�µ � �⌫µ

�g↵� ⌘ N↵µ⌫ . (3.83)

Abbiamo introdotto, per comodità, il tensore Nµ⌫↵ = r↵gµ⌫ , simmetrico nei
primi due indici.

Moltiplichiamo ora la prima equazione per 1/2, la seconda e la terza per
�1/2, e sommiamole tra loro. In questo modo alcuni termini si combinano
in modo da dare la parte simmetrica e antisimmetrica della connessione, e
otteniamo:

1

2
(@↵gµ⌫ � @µg⌫↵ � @⌫g↵µ) + �

(µ⌫)↵ � �
[↵µ]⌫ � �

[↵⌫]µ

=
1

2
(Nµ⌫↵ �N⌫↵µ �N↵µ⌫) .

(3.84)

Ricordando la definizione (3.67) di torsione aggiungiamo Qµ⌫↵ = �
[µ⌫]↵ ad

entrambi i membri, e portiamo al membro destro le derivate parziali della
metrica, cos̀ı da ricostruire e isolare, al membro sinistro, la connessione a�ne
completa:

�
(µ⌫)↵ +Qµ⌫↵ ⌘ �µ⌫↵ =

1

2
(@µg⌫↵ + @⌫g↵µ � @↵gµ⌫)

+Qµ⌫↵ +Q↵µ⌫ +Q↵⌫µ +
1

2
(Nµ⌫↵ �N⌫↵µ �N↵µ⌫) .

(3.85)

Moltiplicando per g⇢↵ per riportare la connessione alla sua forma canonica
(con il terzo indice in alto) otteniamo infine

�µ⌫
⇢ = {µ⌫⇢}�Kµ⌫

⇢ +Wµ⌫
⇢, (3.86)

dove

{µ⌫⇢} =
1

2
g⇢↵ (@µg⌫↵ + @⌫g↵µ � @↵gµ⌫) (3.87)
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definisce i cosiddetti simboli di Christo↵el,

�Kµ⌫
⇢ = Qµ⌫

⇢ �Q⌫
⇢
µ +Q⇢

µ⌫ (3.88)

definisce il tensore di contorsione, costruito con la torsione, e

Wµ⌫
⇢ =

1

2
(Nµ⌫

⇢ �N⌫
⇢
µ �N⇢

µ⌫) (3.89)

definisce il cosiddetto tensore di non-metricità.
Il risultato di questo semplice calcolo è molto importante e istruttivo

perchè illustra chiaramente la possibilità di ottenere, in generale, tre diversi ti-
pi di contributi indipendenti alla connessione a�ne: (i) dalle derivate parziali
della metrica, (ii) dalla torsione, e (iii) dalle derivate covarianti della metrica.
Il primo e il terzo termine, {} e W , sono simmetrici in µ,⌫ , e contribuisco-
no solo alla parte simmetrica �

(µ⌫)
⇢ della connessione. Il secondo termine,

�K, ha la torsione come parte antisimmetrica, �K
[µ⌫]

⇢ = Qµ⌫
⇢ = �

[µ⌫]
⇢, e

fornisce anche un contributo simmetrico del tipo �K
(µ⌫)

⇢ = Q⇢
µ⌫ +Q⇢

⌫µ.
Esistono quindi varie possibili classi di connessione, che di↵eriscono per le

condizioni che imponiamo sulle sue componenti. In particolare, una connessio-
ne è detta simmetrica se �

[µ⌫]
⇢ = Qµ⌫

⇢ = 0, ed è detta metrico-compatibile
se soddisfa alla condizione di metricità Nµ⌫⇢ = r⇢gµ⌫ = 0. Connessione
diverse corrispondono a varietà spazio-temporali con strutture geometriche
diverse. È opportuno presentare, in questo contesto, tre esempi di connessione
caratterizzate da livelli di generalità crescente.

• Nell’ambito della geometria di Riemann e della teoria della relatività ge-
nerale di Einstein si fa l’ipotesi che la torsione sia simmetrica (Q = 0) e
metrico-compatibile (rg = 0). In questo casoK = 0 = W , e la connessione
si riduce a quella di Christo↵el,

�µ⌫
⇢ =

1

2
g⇢↵ (@µg⌫↵ + @⌫gµ↵ � @↵gµ⌫) ⌘ {µ⌫⇢}. (3.90)

In questo contesto la metrica, da sola, è su�ciente a determinare completa-
mente la geometria dello spazio-tempo. Inoltre, la connessione è simmetri-
ca, non contiene parti tensoriali, e può essere sempre localmente eliminata
in un’opportuna carta inerziale, in accordo al principio di equivalenza.

• Se la connessione è metrico-compatibile (rg = 0), ma non simmetrica
(Q 6= 0), otteniamo la cosiddetta struttura geometrica di Riemann-Cartan,
che serve da base per una teoria gravitazionale generalizzata detta “teoria
di Einstein-Cartan”. In questo caso la connessione � = {}� K contie-
ne anche un contributo tensoriale, la cui parte antisimmetrica Q non può
essere eliminata neppure localmente, in quanto evade gli argomenti pre-
sentati in Sez. 3.4. Tale struttura geometrica sembra essere in contrasto
con le proprietà tipiche dell’interazione gravitazionale, e quindi inadatta
a una teoria geometrica che descriva il campo gravitazionale classico, per-
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lomeno a livello macroscopico. Come vedremo nel Capitolo 14, però, la
presenza di torsione sembra necessaria nel’ambito delle teorie supersim-
metriche che includono campi spinoriali e che unificano la gravità con le
altre interazioni.

• Infine, se la connessione non è nè simmetrica (Q 6= 0) nè metrico-
compatibile (rg 6= 0), abbiamo una struttura geometrica di tipo metrico-
a�ne, caratterizzata da una connessione che contiene tutti e tre i contributi
dell’Eq. (3.86). Un possibile esempio di questa geometria è fornita dal co-
siddetto “modello di Weyl (originariamente costruito, però, con torsione
nulla). Tale modello è stato suggerito, in passato, per cercare di rappre-
sentare gli e↵etti del campo elettromagnetico in modo puramente geome-
trico, ma è stato successivamente abbandonato. Al contrario della torsio-
ne, i contributi di W alla connessione non sembrano trovare attualmente
motivazioni fisiche convincenti.

Nel seguito di questo capitolo, e nei capitoli successivi, assumeremo sempre –
a meno che non sia esplicitamente a↵ermato il contrario – che la connessione
con cui lavoriamo è simmetrica e metrico-compatibile, e dunque esprimibile
nella forma di Christo↵el (3.90).

3.6 Utili regole di calcolo di↵erenziale covariante

In alcune importanti applicazioni fisiche del formalismo di↵erenziale cova-
riante è necessario calcolare la traccia della connessione di Christo↵el che,
usando la definizione (3.90), è data data:

�µ⌫
⌫ =

1

2
g⌫↵ (@µg⌫↵ + @⌫gµ↵ � @↵gµ⌫) ⌘

1

2
g⌫↵@µg⌫↵ (3.91)

(gli ultimi due termini si cancellano perchè sono antisimmetrici in ⌫,↵ , mentre
g⌫↵ è simmetrico). In questa sezione mostreremo che la traccia �µ⌫

⌫ si può
riscrivere in una forma che contiene il determinante del tensore metrico, e che
risulta particolarmente conveniente per calcolare la derivata covariante delle
densità tensoriali, la divergenza covariante, e il D’Alembertiano covariante.

3.6.1 Traccia della connessione di Christo↵el

Partiamo dalle equazioni (3.32)-(3.34), che collegano il determinante del ten-
sore metrico al tensore completamente antisimmetrico. Di↵erenziando l’Eq.
(3.33) otteniamo

�dg✏ ↵��� = d (g↵µg�⌫g�⇢g��) ✏
µ⌫⇢� = ✏µ⌫⇢�

⇥

(dg↵µ) g�⌫g�⇢g�� + · · ·
⇤

.
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(3.92)

Dentro la parentesi quadra abbiamo omesso, per semplicità, i restanti tre ter-
mini che sono simili al primo, e che contengono i di↵erenziali dg�⌫ , dg�⇢, dg��.
Dividendo per

p�g entrambi i membri, e ricordando le definizioni (3.31),
(3.34), possiamo riscrivere la precedente equazione nella forma:

p
�g✏↵���

✓

dg

g

◆

⌘ ⌘↵���

✓

dg

g

◆

= ⌘µ��� (dg↵µ) + · · · . (3.93)

Moltiplicando per ⌘↵���, e usando le relazioni (3.36), (3.37), abbiamo infine

4!

✓

dg

g

◆

= 3!
⇥

g↵µdg↵µ + g�⌫dg�⌫ + · · ·
⇤

= 3! 4 g↵µdg↵µ,
(3.94)

da cui
dg

g
⌘ 2p�g

d(
p
�g) = g↵�dg↵� = �g↵�dg

↵� (3.95)

(nell’ultimo passaggio abbiamo sfruttato la condizione d(g↵�g↵�) ⌘ 0). In
forma finita:

2p�g
@µ(

p
�g) = g↵�@µg↵� . (3.96)

Sostituendo nell’Eq. (3.91) per la traccia della connessione di Christo↵el
otteniamo quindi:

�µ⌫
⌫ =

1p�g
@µ(

p
�g) = @µ

�

ln
p
�g
�

. (3.97)

3.6.2 Derivata covariante di densità tensoriali

Per definire la derivata covariante di una densità tensoriale V µ⌫···, di rango
r e peso w, ricordiamo innanzitutto che il gradiente covariante si deve tra-
sformare come un vettore rispetto ai di↵eomorfismi: l’operazione di derivata
covariante deve quindi produrre un oggetto di rango r+1 e peso w invariato.

Ricordiamo, a questo proposito, che
p�g è una densità scalare di peso

w = �1, per cui, se V µ⌫··· ha peso w, allora (�g)w/2V µ⌫··· ha peso w = 0, ed
è un tensore. La derivata covariante di quest’ultimo oggetto può quindi essere
calcolata con le ordinarie regole tensoriali presentate in Sez. 3.4, e fornisce
un tensore di rango r + 1 e peso 0. Se il risultato viene poi moltiplicato
per (�g)�w/2 si otterrà infine una densità di rango r + 1 e peso w, come
desiderato.
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Adottando tale procedura, la derivata covariante di una densità di peso w
viene dunque definita come segue:

(w)r↵V
µ⌫··· ⌘ (�g)�w/2r↵

h

(�g)w/2V µ⌫···
i

, (3.98)

dove r↵ è l’ordinario gradiente covariante che opera su oggetti tensoriali,
mentre (w)r↵ è il gradiente covariante che opera su densità di peso w. E↵et-
tuando esplicitamente la derivata covariante del termine in parentesi quadra,
secondo le regole della Sez. 3.4, possiamo allora scrivere:

(w)r↵V
µ⌫··· = @↵V

µ⌫··· + �↵�
µV �⌫··· + �↵�

⌫V µ�··· + · · ·
+(�g)�w/2@↵(�g)w/2V µ⌫···.

(3.99)

L’equazione va completata aggiungendo, ovviamente, tutti gli eventuali con-
tributi della connessione associati agli eventuali ulteriori indici (covarian-
ti o controvarianti) posseduti dall’oggetto V (in questo esempio abbiamo
considerati esplicitamente, per semplicità, solo due indici contrarianti).

L’operazione cos̀ı definita di↵erisce dall’ordinaria derivata covariante per
la presenza dell’ultimo termine, che contiene il determinante della metrica,
e che sembra qualitativamente diverso dai termini che lo precedono. È facile
però verificare che anche quest’ultimo termine può essere espresso mediante
la connessione di Christo↵el. Sfruttando i risultati (3.96), (3.97) abbiamo
infatti:

(�g)�w/2@↵(�g)w/2 =
w

2g
@↵g = w @↵

�

ln
p
�g
�

= w�↵�
� , (3.100)

e la derivata covariante di una densità si può mettere nella forma:

(w)r↵V
µ⌫··· = r↵V

µ⌫··· + w�↵�
� V µ⌫···. (3.101)

Se w = 0, in particolare, l’oggetto considerato è di tipo tensoriale, e ritrovia-
mo la definizione dell’ordinaria derivata covariante (ossia, (w)r↵ ! r↵ per
w ! 0).

3.6.3 Divergenza e D’Alembertiano covariante

Conviene infine presentare un’espressione compatta per la divergenza cova-
riante di un vettore, rµAµ. Applicando le regole della Sez. 3.4 abbiamo:

rµA
µ = @µA

µ + �µ↵
µA↵. (3.102)

D’altra parte, usando l’Eq. (3.97) per la traccia di � ,

rµA
µ = @µA

µ +
1p�g

@↵
�p

�g
�

A↵ ⌘ 1p�g
@↵
�p

�gA↵
�

. (3.103)
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Questa espressione è utile, in particolare, per esprimere in forma covariante
il teorema di Gauss nel contesto di uno spazio-tempo Riemanniano.

Infatti, se integriamo la divergenza covariante data dall’Eq. (3.102) sul
volume quadri-dimensionale di una regione spazio-temporale ⌦, non sembra
possibile applicare direttamente l’ordinario teorema di Gauss a causa del se-
condo termine della divergenza, che contiene la connessione. L’elemento di
quadri-volume d4x, d’altra parte, non è uno scalare per trasformazioni gene-
rali di coordinate, mentre la quantità d4x

p�g costituisce invece una corretta
misura d’integrazione scalare sul quadri-volume di una varietà Riemanniana
(si veda l’Eq. (3.27)).

Introducendo questa nuova misura di integrazione, ed usando per la diver-
genza l’Eq. (3.103), possiamo allora esprimere l’integrale in una forma che –
pur essendo covariante – si riconduce esplicitamente ad una divergenza ordi-
naria. Questo ci permette di riformulare l’usuale teorema di Gauss (si veda
ad esempio l’Eq. (1.33)) come segue:

Z

⌦

d4x
p
�grµA

µ =

Z

⌦

d4x @µ
�p

�gAµ
�

=

Z

@⌦

p
�gAµdSµ, (3.104)

dove
p�gdSµ è la misura di integrazione covariante per il flusso di Aµ uscente

dal bordo @⌦ della regione spazio-temporale considerata.
Come seconda applicazione dell’Eq. (3.103) possiamo considerare l’espres-

sione del D’Alembertiano covariante, rµrµ, per una funzione scalare  .
Per definizione, il D’Alembertiano è la divergenza del gradiente: quindi,
applicando l’Eq. (3.103),

rµrµ =rµ@
µ =

1p�g
@µ
�p

�g@µ 
�

=
1p�g

@µ
�p

�ggµ⌫@⌫ 
�

. (3.105)

Scrivendolo in forma più esplicita otteniamo

gµ⌫@µ@⌫ + @⌫ 
1p�g

@µ
�p

�ggµ⌫
�

, (3.106)

ed è facile vedere tale che espressione risulta molto semplificata se la metrica
soddisfa alla condizione di “gauge armonico”, ossia soddisfa alla proprietà
di↵erenziale @µ (

p�ggµ⌫) = 0. Tale semplificazione risulta particolarmente
utile, come vedremo nel Capitolo 9, per discutere la propagazione di onde
gravitazionali nell’approssimazione lineare.

Esercizi Capitolo 3

3.1. Isometrie dello spazio-tempo di Minkowski

Determinare i vettori di Killing della metrica di Minkowski.
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3.2. Boost e vettore di Killing

Determinare il vettore di Killing associato ad un “boost” lungo l’asse z nello
spazio di Minkowski.

3.3. Trasformazione infinitesima inversa

Verificare che l’Eq. (3.58) rappresenta esattamente, al secondo ordine, l’in-
verso della trasformazione di coordinate (3.57).

3.4. Equazione di Killing

Dimostrare che l’equazione di Killing (3.55) si può scrivere in forma esplici-
tamente covariante come segue:

r
(µ⇠⌫) = 0. (3.107)

3.5. Traccia della connessione di Christo↵el

Ricavare l’Eq. (3.95) sfruttando la formula per il determinante di una generica
matrice M ,

detM = eTr lnM . (3.108)

3.6. Derivata covariante del determinante metrico

Verificare che la derivata covariante del determinante della metrica, fatta
rispetto alla connessione di Christo↵el, è identicamente nulla.

3.7. Derivata covariante del tensore completamente antisimmetrico

Dimostrare che per la connessione di Christo↵el vale la relazione

r↵⌘
µ⌫⇢� = 0, (3.109)

dove ⌘ è il tensore completamente antisimmetrico definito dall’Eq. (3.31).

Soluzioni

3.1. Soluzione

Ponendo gµ⌫ = ⌘µ⌫ nell’equazione di Killing (3.55) otteniamo la condizione

@
(µ⇠⌫) = 0. (3.110)

Derivando questa condizione abbiamo

@
(↵@µ⇠⌫) = 0, (3.111)

ed usando la proprietà @↵@µ = @µ@↵ abbiamo anche

@
[↵@µ⇠⌫] = 0. (3.112)
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Sommando le ultime due equazioni, e utilizzando la (3.110), otteniamo

@µ@⌫⇠↵ = 0, (3.113)

la cui integrazione fornisce

@⌫⇠↵ = !⌫↵ = cost. (3.114)

Integrando una seconda volta si arriva infine alla soluzione generale

⇠↵ = c↵ + !µ↵x
µ, (3.115)

dove c↵ = cost, e dove la matrice ! deve essere antisimmetrica a�nchè
l’equazione di Killing (3.110) sia soddisfatta.

Al variare delle componenti indipendenti di c↵ e di !µ⌫ = !
[µ⌫] si ottengo-

no, rispettivamente, i 4 generatori delle traslazioni globali (si veda l’Eq.(1.23))
e i 6 generatori delle rotazioni globali di Lorentz (si veda l’Eq.(1.44)). Si ri-
trova cos̀ı il gruppo di Poincarè come gruppo massimo di isometrie dello
spazio-tempo di Minkowski.

3.2. Soluzione

La matrice di Lorentz per un boost lungo l’asse z ha componenti non nulle
⇤0

0

= ⇤3

3

= �, ⇤0

3

= ⇤3

0

= ���, ⇤1

1

= ⇤2

3

= 1. Sviluppandola attorno
all’identità, per piccole velocità, e ponendo

⇤µ
⌫ ' �µ⌫ + !µ

⌫ , (3.116)

troviamo che le componenti di ! diverse da zero sono !0

3

= !3

0

= �� =
�v/c. Sfruttando il risultato dell’esercizio precedente, e in particolare la so-
luzione generale (3.115) per i vettori di Killing, troviamo subito che il vettore
di Killing corrispondente al boost considerato ha le seguenti componenti non
nulle:

⇠
0

= !3

0

x
3

= �z,⇠
3

= !0

3

x
0

= ��ct. (3.117)

È facile verificare che per il vettore ⇠µ = (�z, 0, 0,��ct) l’equazione di Killing
(3.110) è identicamente soddisfatta.

3.3. Soluzione

Sostituiamo nei vari termini della (3.58) l’espressione di x0µ fornita dalla
(3.57), omettendo contributi di ordine superiore al secondo. Si ottiene:

(f�1)µ(x0) ' xµ + ⇠µ
1

(x) +
1

2
⇠µ
2

(x) +
1

2
⇠⌫
1

@⌫⇠
µ
1

(x) =

�⇠µ
1

(x+ ⇠
1

)� 1

2
⇠µ
2

(x) +
1

2
⇠⌫
1

@⌫⇠
µ
1

(x).
(3.118)

Sviluppiamo in serie di Taylor, nell’intorno di x, il quinto termine di questa
espressione:

⇠µ
1

(x+ ⇠
1

) ' ⇠µ
1

(x) + ⇠⌫
1

@⌫⇠
µ
1

(x) + · · · . (3.119)
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Sostituendo nell’equazione precedente si semplificano tutti i termini tranne
il primo, e si ottiene:

(f�1)µ(x0) = xµ, (3.120)

ossia esattamente l’inverso dell’espressione (3.57).

3.4. Soluzione

Sfruttando le proprietà metrico-compatibili della connessione di Christo↵el
(rg = 0) possiamo scrivere:

rµ⇠⌫ = rµ (g⌫↵⇠
↵) = g⌫↵rµ⇠

↵ = g⌫↵
�

@µ⇠
↵ + �µ�

↵⇠�
�

. (3.121)

Perciò

2r
(µ⇠⌫) = g⌫↵@µ⇠

↵ + gµ↵@⌫⇠
↵ + (g⌫↵�µ�

↵ + gµ↵�⌫�
↵) ⇠� . (3.122)

D’altra parte, imponendo che valga la condizione r�gµ⌫ = 0, abbiamo anche

@�gµ⌫ = ��µ
↵g↵⌫ + ��⌫

↵gµ↵. (3.123)

Sostituendo nell’Eq. (3.122), ed usando la simmetria di g e dei primi due
indici di � , troviamo

2r
(µ⇠⌫) = g⌫↵@µ⇠

↵ + gµ↵@⌫⇠
↵ + ⇠↵@↵gµ⌫ , (3.124)

e quindi
r

(µ⇠⌫) = �1

2
�⇠gµ⌫ , (3.125)

dove �⇠gµ⌫ è definito dall’Eq. (3.53). In modo analogo si trova

r(µ⇠⌫) =
1

2
�⇠g

µ⌫ , (3.126)

dove �⇠gµ⌫ è definito dall’Eq. (3.54). La condizione r
(µ⇠⌫) = 0 (oppure

r(µ⇠⌫) = 0) è quindi equivalente all’equazione di Killing �⇠gµ⌫ = 0 (oppure
�⇠gµ⌫ = 0), che garantisce l’invarianza locale della metrica per trasformazioni
generate dal vettore ⇠µ.

3.5. Soluzione

Di↵erenziando l’Eq. (3.108) abbiamo

d (detM) = detM Tr
�

M�1dM
�

. (3.127)

Sostituiamo M con la matrice gµ⌫ , e ricordiamo che in questo caso la matrice
inversa è rappresentata dalle componenti controvarianti gµ⌫ (si veda l’Eq.
(3.21). Perciò:

dg

g
= Tr

�

g↵�dg�⌫
�

= g↵�dg↵� , (3.128)

in accordo all’Eq. (3.95).
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3.6. Soluzione

Il determinante g della metrica è una densità scalare di peso w = �2.
Applicando la regola (3.101) per la derivata covariante delle densità tensoriali,
e l’Eq. (3.97) per la traccia della connessione di Christo↵el, otteniamo quindi

(w)r↵g = @↵g � 2�↵�
�g

= @↵g � 2g
1p�g

@↵
p
�g (3.129)

= @↵g � 2g
1

2g
@↵g ⌘ 0.

Tale risultato è un’ovvia conseguenza del fatto che la connessione di Chri-
sto↵el è metrico-compatible, ossia del fatto che r↵gµ⌫ = 0.

3.7. Soluzione

Applicando la definizione (3.31) di ⌘µ⌫⇢�, e la definizione (3.75) di derivata
covariante, abbiamo

r↵⌘
µ⌫⇢� = ✏µ⌫⇢�@↵ (�g)�1/2 + �↵�

µ⌘�⌫⇢�

+�↵�
⌫⌘µ�⇢� + �↵�

⇢⌘µ⌫�� (3.130)

+�↵�
�⌘µ⌫⇢� .

Poichè ⌘ è un tensore completamente antisimmetrico, le sue componenti so-
no diverse da zero solo se i quattro indici sono tutti diversi tra loro. In uno
spazio tempo a 4 dimensioni, d’altra parte, ci sono solo 4 valori disponibili
per gli indici. Confrontando gli indici di ⌘ presenti al membro sinistro della
precedente equazione con gli indici di ⌘ presenti al membro destro, ne con-
segue allora che i termini contenenti la connessione, al membro destro, sono
diversi da zero solo se � = µ nel primo termine, � = ⌫ nel secondo termine,
� = ⇢ nel terzo termine e � = � nel quarto termine.

La somma dei quattro termini riproduce quindi la traccia della connessio-
ne. Usando l’Eq. (3.97) per la traccia otteniamo infine:

r↵⌘
µ⌫⇢� = ⌘µ⌫⇢� (�g)1/2 @↵ (�g)�1/2 + �↵�

�⌘µ⌫⇢�

= ⌘µ⌫⇢�
h

(�g)1/2 @↵ (�g)�1/2 + (�g)�1/2 @↵ (�g)1/2
i

(3.131)

⌘ 0.
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Equazioni di Maxwell
e geometria di Riemann

Se accettiamo un modello di spazio-tempo dotato di una struttura geome-
trica Riemanniana dobbiamo chiederci, innanzitutto, come trasferire in tale
contesto i risultati fisici ottenuti nell’ambito dello spazio-tempo di Minko-
wski. Il principio di equivalenza ci dice che le equazioni della relatività ri-
stretta rimangono localmente valide in un’opportuna carta inerziale e in una
regione dello spazio-tempo su�cientemente limitata (si veda la Sez. 2.2).
Però, per essere globalmente estese su di una varietà Riemanniana diversa da
quella di Minkowski, tali equazioni devono essere opportunamente generaliz-
zate.

La procedura che ci permette di farlo correttamente è il cosiddetto prin-
cipio di minimo accoppiamento, che introdurremo nella sezione seguente,
e che in questo capitolo applicheremo al caso della teoria elettromagneti-
ca. È opportuno sottolineare che la validità di tale procedura non è limi-
tata all’elettromagnetismo ma si estende, in generale, a tutti i sistemi fi-
sici e a tutte le interazioni. Tale procedura verrà utilizzata a più ripre-
se anche nei capitoli successivi, e in situazioni fisiche molto diverse tra
loro.

4.1 Il principio di minimo accoppiamento

In accordo al principio di relatività generalizzato introdotto nel Capitolo 2, le
leggi fisiche devono essere rappresentate da equazioni che risultino covarianti
rispetto a trasformazioni generali di coordinate (e, più precisamente, rispetto
al gruppo dei di↵eomorfismi).

Se consideriamo, in particolare, sistemi fisici descritti da equazioni che
sono già covarianti (rispetto al gruppo di Lorentz) nello spazio-tempo di
Minkowski, possiamo allora immergere tali sistemi in un contesto geometrico
Riemanniano – ossia rendere le loro equazioni general-covarianti – median-

� Springer-Verlag Italia 2015
M. Gasperini, Relatività Generale e Teoria della Gravitazione,
UNITEXT for Physics, DOI 10.1007/978-88-470-5690-9_4
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te una semplice procedura detta “principio di minimo accoppiamento”. In
pratica, questa procedura consiste nell’e↵ettuare le seguenti operazioni:

• sostituire nei prodotti scalari la metrica di Minkowski con la metrica di
Riemann, ⌘µ⌫ ! gµ⌫ ;

• sostituire ovunque le derivate parziali con le derivate covarianti, @µ ! rµ;
• usare opportune potenze di

p�g per saturare a zero i pesi delle den-
sità tensoriali. In particolare, nell’integrale di azione, usare la prescrizione
d4x ! d4x

p�g.

Mediante questa procedura, e↵ettuata direttamente nelle equazioni del mo-
to oppure – più correttamente – nell’azione che descrive il sistema fisico,
si “accoppia” il sistema alla geometria Riemanniana dello spazio-tempo.
L’accoppiamento è minimo nel senso che dipende solo dalla metrica e dal-
le sue derivate prime (la connessione), e quindi scompare nel limite in
cui, localmente, g ! ⌘ e � ! 0, in accordo al principio di equivalen-
za. Termini geometrici contenenti derivate della metrica di ordine superio-
re al primo coinvolgerebbero la curvatura della varietà spazio-temporale
(si veda il Capitolo 6), e non potrebbero essere eliminati neppure local-
mente.

Inoltre, tale accoppiamento è universale, nel senso che coinvolge necessa-
riamente e allo stesso modo tutti i sistemi fisici, senza eccezioni. Ovviamen-
te, oggetti geometrici di tipo diverso realizzano l’accoppiamento con regole
diverse (la derivata covariante, ad esempio, dipende dal tipo di oggetto con-
siderato). Non esistono, però, sistemi fisici “geometricamente neutri”, ossia
insensibili alle proprietà geometriche dello spazio-tempo dato.

Osserviamo infine che il principio di minimo accoppiamento non costitui-
sce un aspetto esclusivo dei modelli Riemanniani di spazio-tempo, ma è un
ingrediente tipico di tutte le cosiddette teorie di gauge, dove tale principio
viene usato per ripristinare l’invarianza della teoria rispetto ad un gruppo
di simmetria locale. Anche nel contesto della geometria di Riemann, d’altra
parte, l’accoppiamento viene introdotto per rendere il modello invariante ri-
spetto alle trasformazioni del gruppo dei di↵eomorfismi, innalzando cos̀ı a
livello locale la simmetria associata alle trasformazioni “rigide” (ossia globa-
li) di Lorentz, tipiche della geometria di Minkowski. In questo senso, come
già osservato nella Sez. 3.4, la connessione � rappresenta il “potenziale di
gauge” associato a una simmetria locale.

Chiariremo meglio questo punto nel Capitolo 12. Qui ci limitiamo a nota-
re che le teorie di gauge sembrano fornire il modello più adatto a descrivere
tutte le interazioni fondamentali attualmente note: questa analogia tra teo-
rie di gauge e modello geometrico Riemanniano suggerisce dunque che anche
la geometria della varietà spazio-temporale potrebbe essere usata per rap-
presentare un’interazione di tipo fondamentale come, in particolare, quella
gravitazionale.
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4.2 Accoppiamento tra campo elettromagnetico
e geometria

Applicando il principio di minimo accoppiamento alla definizione del tensore
elettromagnetico, Fµ⌫ = @µA⌫ � @⌫Aµ, possiamo innanzitutto osservare che
la relazione tra campi e potenziali resta invariata, ossia che:

Fµ⌫ ! rµA⌫ �r⌫Aµ

= @µA⌫ � @⌫Aµ � (�µ⌫
↵ � �⌫µ

↵)A↵ (4.1)

= @µA⌫ � @⌫Aµ ⌘ Fµ⌫ .

I termini di connessione si cancellano a causa della proprietà di simmetria
�
[µ⌫]

↵ = 0.

È opportuno sottolineare che l’universalità della relazione tra campi e po-
tenziali non è un risultato accidentale tipico dei modelli che utilizzano un
connessione simmetrica (come sembrerebbe dall’equazione precedente), ma
è – in realtà – un risultato molto più generale, valido anche in presenza di
torsione.

Questo perché la corretta descrizione geometrica del potenziale elettro-
magnetico (cos̀ı come quella di tutti i potenziali associati a campi di gauge,
Abeliani e non-Abeliani) va riferita non tanto alle rappresentazioni vettoriali
dei di↵eomorfismi quanto, piuttosto, alle cosiddette “forme esterne” (o forme
di↵erenziali) che verranno introdotte nell’Appendice A. Senza entrare per il
momento in ulteriori dettagli basterà osservare, per i nostri scopi, che il po-
tenziale corrisponde in particolare alla 1-forma esterna A = Aµdxµ, che si
comporta come uno scalare nello spazio-tempo di Minkowski localmente tan-
gente alla varietà di Riemann data (si veda anche il Capitolo 12). Le derivate
covarianti esterne di questo oggetto scalare si riducono quindi sempre a de-
rivate ordinarie, indipendentemente dalle proprietà della connessione. Se poi
la connessione è simmetrica, come nel caso della connessione di Christo↵el
che stiamo usando, la distinzione tra vettore covariante e 1-forma diventa
irrilevante.

In ogni caso, il fatto che la relazione tra Fµ⌫ e A⌫ resti invariata ha due
conseguenze importanti.

La prima conseguenza è che il principio di minimo accoppiamento lascia
invariate anche le equazioni di Maxwell che riguardano la divergenza del
campo magnetico e il rotore del campo elettrico, @

[↵Fµ⌫] = 0. Calcoliamo
infatti il gradiente covariante di Fµ⌫ :

r↵Fµ⌫ = @↵Fµ⌫ � �↵µ
�F�⌫ � �↵⌫

�Fµ� . (4.2)

Prendendo la parte completamente antisimmetrica di questa equazione otte-
niamo, identicamente,

r
[↵Fµ⌫] = @

[↵Fµ⌫] = 0, (4.3)
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dove i termini con la connessione sono scomparsi, anche stavolta, a causa
della simmetria �

[µ⌫]
↵ = 0. L’accoppiamento alla geometria non modifica

quindi questo settore delle equazioni di Maxwell.
La seconda, importante conseguenza riguarda l’invarianza di Fµ⌫ rispetto

alle trasformazioni di gauge,

Aµ ! Aµ + @µf, (4.4)

generate da un’arbitraria funzione scalare f(x). Tale invarianza continua a
valere e continua ad avere come conseguenza la conservazione della carica
elettrica, esattamente come in relatività ristretta, indipendentemente dalla
geometria nella quale i campi elettromagnetici e le sorgenti cariche si trovano
immersi.

Consideriamo infatti l’azione che descrive il campo elettromagnetico e la
densità di corrente delle sorgenti, scritta in una varietà spazio-temporale
Riemaniana. Usando il principio di minimo accoppiamento l’azione si può
scrivere

S = �
Z

⌦

d4x
p
�g

✓

1

16⇡
Fµ⌫F

µ⌫ +
1

c
eJµAµ

◆

, (4.5)

dove i prodotti scalari sono e↵ettuati mediante la metrica di Riemann g, e
dove eJ è la corrente ottenuta col principio di minimo accoppiamento dalla
corrispondente corrente J definita nello spazio-tempo di Minkowski.

E↵ettuando una trasformazione di gauge (4.4) – ossia variando il potenziale
e imponendo che �Aµ = @µf – otteniamo che la corrispondente variazione
dell’azione è data da

�S = �1

c

Z

⌦

d4x
p
�g eJµ@µf

= �1

c

Z

⌦

d4x @µ
⇣p

�g eJµf
⌘

+
1

c

Z

⌦

d4x f @µ
⇣p

�g eJµ
⌘

.

(4.6)

Applicando il teorema di Gauss al primo di questi due integrali si ottiene il
flusso uscente di eJf sul bordo @⌦ del quadri-volume di integrazione, e quindi
si trova che tale integrale non contribuisce a �S purché la corrente eJ vada
a zero abbastanza rapidamente sul bordo @⌦ (cosa che ci aspettiamo se le
sorgenti sono localizzate in una porzione finita di spazio). In questo caso,
poiché la funzione scalare f che genera la trasformazione di gauge è arbitra-
ria, possiamo concludere che l’azione risulta invariante per trasformazioni di
gauge purché:

@µ
⇣p

�g eJµ
⌘

= 0. (4.7)

Utilizzando la definizione (3.103) di divergenza covariante tale equazione si
può anche riscrivere come:

rµ
eJµ = 0. (4.8)
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L’invarianza di gauge implica dunque l’esistenza di una corrente conservata
(in accordo al teorema di Nöther), ma la legge di conservazione sembra ri-
ferita a una corrente, eJ , diversa da quella dello spazio-tempo di Minkowski.
Correnti diverse, d’altra parte, definiscono cariche conservate che in genera-
le sono di↵erenti (ricordiamo le equazioni (1.33)–(1.35), che mostrano come
ottenere la carica conservata dall’equazione di continuità per la corrente).
Sembrerebbe dunque che la quantità conservata dipenda non solo dalle pro-
prietà intrinseche della sorgente elettromagnetica, ma anche dalla metrica,
e quindi dalle proprietà geometriche dello spazio-tempo in cui la sorgente è
immersa.

Invece, questa apparente influenza della geometria sulla conservazione del-
la carica elettrica in realtà non esiste, come si può verificare considerando la
relazione esplicita che esiste tra J e eJ , e che è fornita dal principio di minimo
accoppiamento.

Ricordiamo inazitutto che nello spazio-tempo di Minkowski la densità di
corrente è definita dalla ben nota espressione Jµ = ⇢dxµ/dt, dove ⇢ è la den-
sità di carica elettrica. Moltiplicando la corrente Jµ per d4x (che è una misura
di integrazione scalare per trasformazioni del gruppo di Lorentz ristretto) si
ottiene allora il quadrivettore

Jµd4x = cdqdxµ, (4.9)

dove dq = ⇢d3x è la carica per elemento di volume infinitesimo, e dxµ è lo
spostamento infinitesimo lungo la “linea d’universo” che descrive l’evoluzio-
ne temporale della carica dq. In uno spazio-tempo di Riemann, applicando
all’equazione precedente il principio di minimo accoppiamento, si ottiene la
corrispondente equazione covariante

eJµd4x
p
�g = cdqdxµ. (4.10)

Il confronto con l’Eq. (4.9) fornisce allora eJµ = Jµ/
p�g. Ne consegue che

le equazioni (4.7), (4.8) non sono altro che una trascrizione in forma esplici-
tamente covariante dell’equazione di conservazione @µJµ = 0, valida per la
stessa identica corrente nello spazio-tempo di Minkowski.

La carica elettrica q (di una data sorgente) che si conserva in uno spazio-
tempo di Riemann coincide dunque esattamente con la carica (della stessa
sorgente) che si conserva nello spazio-tempo di Minkowski.

4.3 Le equazioni di Maxwell generalizzate

Nella sezione precedente abbiamo visto che in uno spazio-tempo dotato della
struttura geometrica Riemanniana non cambia la relazione tra campi e po-
tenziali elettromagnetici, e non cambia la legge di conservazione della carica
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elettrica. Possiamo chiederci, allora, se c’è qualcosa che cambia. La rispo-
sta è a↵ermativa: viene modificata l’equazione dinamica che descrive la pro-
pagazione dei campi elettromagnetici. Tale equazione diventa crucialmente
dipendente dalle proprietà geometriche dello spazio-tempo stesso.

Per illustrare questo e↵etto ricordiamo l’azione (4.5), che riscriviamo come

S =

Z

⌦

d4x
p
�gL(A, @A), (4.11)

dove L è il termine in parentesi tonde dell’Eq. (4.5). Variando rispetto ad A⌫ ,
ed imponendo che l’azione sia stazionaria, otteniamo le equazioni di Eulero-
Lagrange

@µ
@ (

p�gL)
@ (@µA⌫)

=
@ (

p�gL)
@A⌫

, (4.12)

scritte per la Lagrangiana “e↵ettiva”
p�gL (che non è più uno scalare, ma

una densità scalare di peso w = �1). E↵ettuando le derivate, e dividendo perp�g, si arriva facilmente all’equazione del moto

1p�g
@µ
�p

�gFµ⌫
�

=
4⇡

c
eJ⌫ . (4.13)

Notiamo ora che

rµF
µ⌫ = @µF

µ⌫ + �µ↵
µF↵⌫ + �µ↵

⌫Fµ↵

= @µF
µ⌫ +

1p�g
@↵
�p

�g
�

F↵⌫ (4.14)

=
1p�g

@µ
�p

�gFµ⌫
�

.

L’ultimo termine della prima riga si annulla perché gli indici (simmetrici in
µ e ↵) della connessione vengono contratti con gli indici del campo elettro-
magnetico, antisimmetrico in µ e ↵. Nel penultimo termine della prima riga,
inoltre, abbiamo usato l’Eq. (3.97) per la traccia della connessione. L’Eq.
(4.13) si può allora riscrivere come:

rµF
µ⌫ =

4⇡

c
eJ⌫ . (4.15)

In questa forma, l’equazione per Fµ⌫ coincide esattamente con quella che si
sarebbe ottenuta applicando il principio di minimo accoppiamento diretta-
mente alle equazioni di Maxwell scritte nello spazio-tempo di Minkowski (si
veda l’Eq. (1.78)).

Per riassumere i risultati ottenuti, e per meglio evidenziare gli e↵etti del-
l’accoppiamento minimo dei campi elettromagnetici alla geometria di Rie-
mann, è conveniente a questo punto scrivere l’insieme completo delle equa-
zioni di Maxwell generalizzate in funzione delle variabili che non cambiano
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rispetto allo spazio di Minkowski. Queste variabili sono il tensore Fµ⌫ (si veda

l’Eq. (4.1)) e la corrente Jµ =
p�g eJµ (si vedano le equazioni (4.9) e (4.10)).

Otteniamo allora il seguente sistema di equazioni:

@µ
�p

�ggµ↵g⌫�F↵�
�

=
4⇡

c
J⌫ , @

[µF↵�] = 0,

F↵� = @↵A� � @�A↵.
(4.16)

In queste equazioni tutti i contributi di origine geometrica appaiono scrit-
ti in forma esplicita. La forma di queste equazioni suggerisce l’esistenza di
una stretta analogia formale tra le equazioni elettromagnetiche scritte in una
varietà Riemanniana e le stesse equazioni scritte in un mezzo ottico conti-
nuo.

4.3.1 Analogia con le equazioni in un mezzo ottico

È ben noto che, in presenza di un mezzo dielettrico continuo, e nel conte-
sto dello spazio-tempo di Minkowski, le equazioni di Maxwell possono essere
scritte introducendo due diversi tensori per il campo elettromagnetico. L’u-
suale tensore Fµ⌫ , le cui componenti F

0i = Ei e Fij = �✏ijkBk descrivono
il campo elettromagnetico del vuoto, correlato alla densità di carica totale e
alla corrente totale; e un secondo tensore Gµ⌫ , le cui componenti Gi0 = Di e
Gij = �✏ijkHk descrivono il campo di induzione elettromagnetica del mezzo,
correlato alla densità di carica libera e alla corrente libera.

I due campi F e G soddisfano le equazioni seguenti,

@µG
µ⌫ =

4⇡

c
J⌫ , @

[µF↵�] = 0,=

F↵� = @↵A� � @�A↵.
(4.17)

e sono collegati tra loro dalla cosiddetta “relazione costitutiva”,

Gµ⌫ = �µ⌫↵�F↵� , (4.18)

che descrive le poprietà elettromagnetiche intrinseche del mezzo considerato.
Il tensore � gode in generale delle seguenti proprietà:

�µ⌫↵� = �[µ⌫][↵�] = �↵�µ⌫ , �[µ⌫↵�] = 0. (4.19)

Per fare un semplice esempio possiamo considerare un mezzo isotropo, non
conduttore, con una costante dielettrica ✏ e una permeabilità magnetica µ.
In questo caso, e nel sistema a riposo con il mezzo, abbiamo

�i0j0 = �✏�ij , �ijkl =
1

2µ

�

�ik�jl � �il�jk
�

, (4.20)
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e l’Eq. (4.18) fornisce la ben nota relazione costitutiva

D = ✏E, B = µH. (4.21)

Il confronto delle equazioni (4.16), (4.17) mostra chiaramente che una varietà
Riemanniana, da un punto di vista elettrodinamico, si comporta formalmente
come un mezzo ottico continuo le cui proprietà dielettriche sono determinate
dalla metrica mediante il seguente tensore costitutivo “e↵ettivo”:

�µ⌫↵� =
1

2

p
�g
�

gµ↵g⌫� � gµ�g⌫↵
�

. (4.22)

Questa analogia non è solamente formale. Infatti, come vedremo in seguito
nel Capitolo 8, una geometria spazio-temporale descritta da un’opportuna
metrica Riemanniana è in grado di deflettere e rallentare i raggi luminosi
– e, più in generale, i segnali elettromagnetici – esattamente come può fare
un dielettrico trasparente non-omogeneo. E ancora: una metrica di tipo non-
omogeneo e non statico, con componenti g0i 6= 0, si comporta esattamente
come un mezzo otticamente attivo, capace di far ruotare il piano di pola-
rizzazione di un’onda elettromagnetica. Ulteriori e↵etti della geometria sulla
propagazione dei segnali luminosi ed elettromagnetici saranno illustrati nel
capitolo seguente.

Concludiamo il capitolo osservando che sarebbe sbagliato, però, prendere
troppo sul serio questa analogia tra mezzi ottici e geometria. Ci sono infatti
di↵erenze sostanziali tra le equazioni (4.16) – valide per i campi nel vuoto,
immersi in uno spazio-tempo di Riemann – e le equazioni (4.17) – valide
per i campi immersi in un mezzo, nello spazio-tempo di Minkowski – che
impediscono un’analogia completa. Al contrario di un dielettrico reale, infatti,
il “mezzo geometrico” soddisfa al principio di equivalenza, e agisce in maniera
universale su tutti i sistemi fisici.

Possiamo fare, a questo proposito, un importante esempio fisico che ri-
guarda l’e↵etto Cherenkov. In un dielettrico reale la velocità dei fotoni viene
rallentata, e diventa quindi possibile che una particella carica si propaghi con
velocità superiore a quella della luce in quel mezzo. In quel caso, come ben
noto, viene emessa radiazione Cherenkov.

Nell’analogo geometrico del dielettrico, invece, l’e↵etto Cherenokov non
può verificarsi1. Infatti la geometria, oltre a rallentare la propagazione della
luce, rallenta anche – e nella stessa identica misura – la velocità di propaga-
zione di qualsiasi altro segnale e/o particella. Se una particella è più lenta dei
fotoni nello spazio vuoto di Minkowski rimarà dunque più lenta dei fotoni an-
che nello spazio vuoto di Riemann, qualunque sia il tipo di metrica introdotto.
Solo un mezzo dielettrico reale può agire in modo non-universale, rallentando
maggiormente la luce delle altre particelle, e rendendo cos̀ı possibile l’e↵etto
Cherenkov.

1 M. Gasperini, Phys. Rev. Lett. 62, 1945 (1989).
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Esercizi Capitolo 4

4.1. Campo elettrostatico in una geometria sfericamente simmetri-

ca

Determinare il campo elettrostatico di una carica puntiforme e, immersa
in una varietà Riemanniana parametrizzata dalle coordinate Cartesiane e
descritta dalla metrica

g
00

= f(r), gij = ��ij , gi0 = 0, (4.23)

dove r = (xixi)1/2.

4.2. Invarianza conforme delle equazioni di Maxwell

Scrivere l’equazione di propagazione del potenziale vettore A in assenza di
sorgenti, nel gauge di radiazione (r ·A = 0, A

0

= 0), e in uno spazio-tempo
la cui geometria è descritta dalla metrica

g
00

= 1, gij = �a2(t)�ij , gi0 = 0 (4.24)

(si usino, per semplicità le unità naturali in cui c = 1). Mostrare anche che tale
equazione si riduce all’ordinaria equazione d’onda di D’Alembert mediante
un’opportuno cambio della coordinata temporale. Determinare infine la forma
assunta dalla metrica nel nuovo sistema di coordiante.

Soluzioni

4.1. Soluzione

Consideriamo le equazioni (4.16), e poniamo

J i = 0, J0 = ec�(3)(x), Fij = 0, F
0i = Ei. (4.25)

Osservando che
p�g = f1/2 e che g00 = f�1 otteniamo:

@i
�p

�ggijg00Fj0

�

= @i
⇣

f�1/2Ei
⌘

= 4⇡e�(3)(x). (4.26)

Introduciamo una funzione scalare �(r) tale che

f�1/2Ei = �@i�, (4.27)

e sostituiamo nell’Eq. (4.26). Risolvendo l’equazione di Poisson ottenuta per
� si trova allora facilmente che � = e/r, e quindi che le componenti del campo
elettrico sono date da:

Ei = �f1/2@i� = f1/2 ex
i

r3
. (4.28)
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4.2. Soluzione

Sostituiamo le componenti della metrica (4.24) nelle equazioni (4.16),
notando che

g00 = 1, gij = �a�2�ij ,
p
�g = a3. (4.29)

Utilizzando il gauge di radiazione A
0

= 0, @iAi = 0, otteniamo

�@
0

�

a�ij@
0

Aj

�

+
1

a
�kj�il@k@jAl = 0, (4.30)

da cui, dividendo per a,

✓

@2

@t2
+

ȧ

a

@

@t
� r2

a2

◆

A = 0, (4.31)

dove ȧ = da/dt, e dove r2 = �ij@i@j è l’usuale operatore Laplaciano dello
spazio Euclideo tridimensionale (abbiamo posto c = 1).

Tale equazione si può ridurre all’ordinaria equazione di D’Alembert in-
troducendo una nuova coordinata temporale ⌧ , collegata a t dalla relazione
di↵erenziale dt = ad⌧ . Con questa nuova coordinata, infatti,

@A

@⌧
= a

@A

@t
,

@2A

@⌧2
= a

@

@t

✓

a
@A

@t

◆

= a2
@2A

@t2
+ aȧ

@A

@t
,

(4.32)

e l’Eq. (4.31) si riscrive come

✓

@2

@⌧2
�r2

◆

A = 0. (4.33)

Questo risultato è una conseguenza della cosiddetta invarianza conforme della
Lagrangiana di Maxwell,

p
�ggµ↵g⌫�Fµ⌫F↵� , (4.34)

che è invariante rispetto a trasformazioni del tipo

gµ⌫ ! egµ⌫ = f(x)gµ⌫ , gµ⌫ ! egµ⌫ = f�1(x)gµ⌫ (4.35)

(dette “trasformazioni locali di scala” o anche “trasformazioni di Weyl”).
Come conseguenza di questa invarianza le equazioni di Maxwell mantengono
la stessa forma nelle due varietà descritte dalle due metriche g e eg collegate
dalla trasformazione precedente.
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Cambiando coordinata da t a ⌧ , d’altra parte, l’elemento di linea dello
spazio-tempo (4.24) assume la forma

ds2 = dt2 � a2dxidx
i = a2

�

d⌧2 � dxidx
i
�

, (4.36)

e la geometria viene ad essere descritta da una metrica egµ⌫ che è detta
“conformemente piatta”,

egµ⌫ = a2(⌧)⌘µ⌫ , (4.37)

ossia da una metrica eg collegata alla metrica di Minkowski ⌘ da una
trasformazione del tipo (4.35), con f = a2.

Poiché le equazioni di Maxwell devono avere la stessa forma rispetto alle
due metriche eg e ⌘, si può immediatamente dedurre che l’equazione d’onda
del potenziale vettore, se espressa mediante la coordinata temporale ⌧ della
metrica eg, deve coincidere in forma con l’equazione per il potenziale vettore
che si otterrebbe nella metrica di Minkowski ⌘ (ossia con l’equazione d’onda
di D’Alembert), come infatti ottenuto nell’Eq. (4.33).
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Corpi di prova e segnali
nello spazio-tempo di Riemann

Nei capitoli precedenti abbiamo discusso una possibile generalizzazione della
struttura geometrica dello spazio-tempo, basandoci sul modello di varietà
Riemanniana. Abbiamo illustrato le principali proprietà e i nuovi aspetti
formali di questa struttura geometrica, mostrando anche come immergere in
un generico contesto Riemanniano i modelli fisici formulati nello spazio-tempo
di Minkowski. È giunto ora il momento di rendere più chiara ed esplicita la
stretta connessione esistente tra geometria dello spazio-tempo e interazione
gravitazionale.

In questo capitolo mostreremo che l’introduzione di un’opportuna metrica
sullo spazio-tempo permette di riprodurre fedelmente tutti gli e↵etti dinamici
della teoria gravitazionale di Newton. Ma vedremo anche che tale rappresen-
tazione geometrica dell’interazione gravitazionale non si limita a fornire la
semplice riformulazione di un modello già noto: l’approccio geometrico preve-
de infatti nuovi e↵etti gravitazionali che erano assenti nel contesto della teoria
Newtoniana, e che sono stati invece osservati e confermati con esperimenti di
precisione sempre crescente.

5.1 Moto geodetico di un corpo libero puntiforme

Per discutere la possibilità di rappresentare geometricamente gli e↵etti del-
l’interazione gravitazionale chiediamoci innanzitutto come si muove un cor-
po di prova immerso in una varietà Riemanniana, descritta da una metrica
arbitraria.

Consideriamo il semplice caso di una particella puntiforme di massa m,
e cerchiamo la sua equazione del moto partendo dall’azione libera scritta
nello spazio-tempo di Minkowski (tale azione è stata già introdotta nella
soluzione dell’Esercizio 1.4, Eq. (1.118)). Applicando il principio di minimo
accoppiamento (si veda la Sez. 4.1) otteniamo l’azione

� Springer-Verlag Italia 2015
M. Gasperini, Relatività Generale e Teoria della Gravitazione,
UNITEXT for Physics, DOI 10.1007/978-88-470-5690-9_5
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S = �mc

Z

ds = �mc

Z

p

dxµdxµ = �mc

Z

p

dxµdx⌫gµ⌫

= �mc

Z

d⌧
p

ẋµẋ⌫gµ⌫ ,
(5.1)

valida in una generica varietà Riemanniana. Nell’ultimo passaggio abbiamo
indicato con il punto la derivata rispetto al parametro temporale ⌧ , che è sca-
lare rispetto a trasformazioni generali di coordinate, e che parametrizza la co-
siddetta “linea d’universo” xµ = xµ(⌧), ossia la traiettoria spazio-temporale
della particella.

È utile notare che questa azione può esere riscritta in una forma che è più
semplice – senza la radice quadrata – ma equivalente ai fini dinamici. A tale
scopo basta introdurre un campo ausiliario V (⌧) (che agisce da moltiplicatore
di Lagrange), con dimensioni dell’inverso di una massa, e considerare l’azione:

S = �1

2

Z

d⌧
�

V �1ẋµẋ⌫gµ⌫ +m2c2V
�

⌘
Z

d⌧L (x, ẋ). (5.2)

La variazione rispetto a V fornisce il vincolo

ẋµẋ⌫gµ⌫ = m2c2V 2. (5.3)

Risolvendo per V , e sostituendo nell’Eq. (5.2), si ritrova esattamente l’azione
di partenza (5.1).

Per ottenere l’equazione del moto possiamo usare indi↵erentemente una
delle due azioni precedenti. La seconda – detta “azione di Poliakov” – è ben
definita anche nel caso limite di particelle con massa nulla, al contrario della
prima.

Variamo dunque l’azione (5.2) rispetto alle coordinate xµ del corpo di
prova, fissando il parametro ⌧ in modo che risulti proporzionale al tempo
proprio lungo la “linea d’universo” della particella. Con questa scelta del
“gauge” temporale il campo ausiliario V si riduce a una costante (si veda
l’Eq. (5.3)), e il suo contributo moltiplicativo non influisce sulle equazioni del
moto. Abbiamo infatti

@L

@xµ
= � 1

2V
ẋ↵ẋ�@µg↵� , (5.4)

@L

@ẋµ
= � 1

V
gµ⌫ ẋ

⌫ , (5.5)

e le equazioni di Eulero-Lagrange forniscono:

0 = � d

d⌧

@L

@ẋµ
+

@L

@xµ

= gµ⌫ ẍ
⌫ + ẋ↵ẋ⌫@↵gµ⌫ �

1

2
ẋ↵ẋ�@µg↵� (5.6)

= gµ⌫ ẍ
⌫ +

1

2
ẋ↵ẋ� (@↵gµ� + @�gµ↵ � @µg↵�) .
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Moltiplicando per g⇢µ si ottiene infine

ẍ⇢ + �↵�
⇢ẋ↵ẋ� = 0, (5.7)

dove � è la connessione di Christo↵el definita dall’Eq. (3.90).
L’equazione del moto (5.7) corrisponde esattamente all’equazione della

curva detta “geodetica. Corpi di prova puntiformi, liberi di muoversi in uno
spazio-tempo di Riemann descritto dalla metrica gµ⌫ , seguono dunque fedel-

mente le geodetiche della metrica data. È evidente, per come è stata ottenuta,
che una geodetica rappresenta la traiettoria che estremizza il cammino tra
due punti della varietà Riemanniana. È anche evidente, dal confronto con
l’Eq.(3.80), che la geodetica coincide con la curva autoparallela se la connes-
sione coincide con quella di Christo↵el, come appunto avviene nel contesto
geometrico che stiamo considerando.

In un contesto geometrico più generale, in cui la connessione contiene
anche termini di torsione e/o non-metricità (si veda l’Eq. (3.86)), i corpi di
prova puntiformi continuano a muoversi lungo le geodetiche definite dalla
connessione di Christo↵el associata alla metrica – in accordo al principio
variazionale di minima azione – ma tali traiettorie non sono più autoparallele.
In un contesto Riemanniano, invece, curve geodetiche ed autoparallele sono
sempre coincidenti.

Le traiettorie dei corpi di prova possono essere geodetiche di tipo tem-
po, ẋµẋµ > 0, oppure di tipo luce, ẋµẋµ = 0. Nel primo caso il corpo di
prova è massivo: moltiplicando per la massa, e ponendo mẋµ = muµ = pµ,
l’equazione del moto (5.7) si può riscrivere come

dpµ

d⌧
+ �↵�

µu↵p� = 0, (5.8)

oppure, in forma di↵erenziale:

Dpµ ⌘ dpµ + �↵�
µdx↵p� = 0. (5.9)

(si veda la definizione (3.77) di di↵erenziale covariante lungo una curva).
Questa equazione ci dice che il quadrivettore impulso del corpo di prova
è covariantemente costante – ossia, viene trasportato parallelamente a se
stesso – lungo la traiettoria del moto (ricordiamo, a questo proposito, anche
le osservazioni già fatte nella Sez. 3.4.1).

Per una traiettoria di tipo luce, associata ad una particella di massa nul-
la, l’Eq. (5.9) rimane valida ma con la condizione pµpµ = 0. Se al posto
di una particella consideriamo un segnale elettromagnetico, e consideriamo
l’approssimazione dell’ottica geometrica, possiamo descrivere la sua propa-
gazione mediante il quadrivettore d’onda kµ. La traiettoria corrispondente
viene allora fissata dal trasporto parallelo del vettore kµ che sostituisce il
quadri-impulso:

Dkµ = dkµ + �↵�
µdx↵k� = 0. (5.10)
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Concludiamo la sezione osservando che l’evoluzione geodetica dei corpi
di prova e dei segnali è un risultato che conferma e sostiene l’idea di poter
rappresentare geometricamente gli e↵etti dell’interazione gravitazionale, per
due importanti motivi.

Il primo motivo è che l’equazione geodetica (5.7) è in accordo col principio
di equivalenza. Il moto geodetico, infatti, è di tipo localmente inerziale (l’e-
quazione del moto si riduce a quella libera, ẍ = 0, quando � = 0). Inoltre,
la traiettoria geodetica è indipendente dalla massa del corpo di prova, per
tutti i corpi, e questa proprietà di universalità si ottiene in modo automatico
(senza assumere l’uguaglianza tra massa inerziale e massa gravitazionale, che
invece è necessario imporre nella teoria gravitazionale di Newton).

Il secondo motivo è che l’equazione geodetica permette di riprodurre l’e-
quazione del moto Newtoniana, nel limite di velocità non-relativistiche e cam-
pi gravitazionali su�cientemente deboli, mediante l’introduzione di una op-
portuna metrica spazio-temporale. Questo punto sarà illustrato nella sezione
seguente.

5.2 Limite Newtoniano

Consideriamo una particella di prova di massa m, che interagisce con un
campo gravitazionale descritto dal potenziale Newtoniano �(x) (si veda la
Lagrangiana (2.2), con � al posto di U). Supponiamo che il campo sia debole,

|�| ⌧ c2 (5.11)

(ossia che l’energia potenziale gravitazionale sia trascurabile rispetto all’e-
nergia di massa a riposo), che sia statico,

�̇ = 0 (5.12)

(più in generale, che i gradienti temporali siano trascurabili rispetto ai gra-
dienti spaziali, |@t�| ⌧ |@i�|), e supponiamo infine che le velocità dei corpi
di prova siano non-relativistiche:

|vi| =
�

�

�

�

dxi

dt

�

�

�

�

⌧ c. (5.13)

In questo regime, l’azione associata alla Lagrangiana (2.2) assume la forma

S = �mc2
Z

dt

 

r

1� v2

c2
+
�

c2

!

'
Z

dt

✓

�mc2 +
1

2
mv2 �m�

◆

.

(5.14)
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L’azione di una particella massiva immersa in una geometria spazio-temporale
descritta dalla metrica gµ⌫ , d’altra parte, è data dall’Eq. (5.1), e si può
scrivere come segue:

S = �mc

Z

dt

r

gµ⌫
dxµ

dt

dx⌫

dt

= �mc

Z

dt
�

g
00

c2 + gijv
ivj + 2g

0icv
i
�

1/2
.

(5.15)

Se prendiamo la seguente metrica

g
00

=

✓

1 + 2
�

c2

◆

, gij = ��ij , g
0i = 0, (5.16)

l’azione diventa

S = �mc2
Z

dt

✓

1 +
2�

c2
� v2

c2

◆

1/2

. (5.17)

Usando le approssimazioni (5.11), (5.13), ed espandendo la radice quadrata
all’ordine più basso in �/c2 e v2/c2, arriviamo infine all’espressione

S ' �mc2
Z

dt

✓

1� 1

2

v2

c2
+
�

c2

◆

, (5.18)

che coincide esattamente con l’azione (5.14).
La geometria descritta dalla metrica (5.16) riproduce quindi esattamente

gli e↵etti dinamici dell’interazione gravitazionale nel cosiddetto limite New-
toniano, in cui il campo gravitazionale è debole e statico, e le velocità sono
non-relativistiche, come specificato dalle equazioni (5.11)–(5.13). Possiamo
infatti verificare, come utile esercizio, che le geodetiche associate alla metrica
(5.16) forniscono in questo limite l’ordinaria equazione del moto della teoria
gravitazionale Newtoniana.

A questo scopo è conveniente separare l’equazione della geodetica (5.7)
nelle sue componenti spaziali e temporali:

ẍ0 + �↵�
0ẋ↵ẋ� = 0, (5.19)

ẍi + �↵�
iẋ↵ẋ� = 0. (5.20)

Usiamo per la connessione la definizione (3.90), osservando però che la me-
trica (5.16) devia da quella di Minkowski solo per la presenza di un termine
proporzionale a �, e che i gradienti della metrica diversi da zero contengono
dunque il potenziale, @g ⇠ @�. Trascurando potenze di � di ordine due (e
superiori) possiamo perciò approssimare la metrica con quella di Minkowski
nei termini che moltiplicano @g, e valutare la connessione (nel limite di campi
deboli) come segue:

�↵�
µ ' 1

2
⌘µ⇢ (@↵g�⇢ + @�g↵⇢ � @⇢g↵�) . (5.21)
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Inserendo in questa equazione la metrica (5.16) troviamo allora

�
00

0 = 0, �ij
0 = 0, �

0i
j = 0, �ij

k = 0, (5.22)

perché la metrica è statica, diagonale, e solo i gradienti spaziali di g
00

con-
tribuiscono alla connessione. Le uniche componenti di � diverse da zero, in
questo limite, sono date da

�
0i

0 =
1

c2
@i�,� 00

i =
1

c2
�ij@j�. (5.23)

La componente �
0i

0, d’altra parte, contribuisce al’Eq. (5.19) con un termine
misto del tipo vi@i�, che possiamo trascurare nell’approssimazione in cui
restiamo al primo ordine in �/c2 e v/c. Le equazioni del moto geodetico
(5.19), (5.20) si riducono quindi, nel limite Newtoniano, alle due condizioni

ẍ0 = 0, (5.24)

ẍi + �ij@j�

✓

ẋ0

c

◆

2

= 0. (5.25)

Ricordiamo ora che il punto indica la derivata rispetto al parametro cova-
riante ⌧ (si veda la Sez. 5.1). L’integrazione dell’Eq. (5.24) fornisce allora

ẋ0 = c
dt

d⌧
= ↵ = cost, (5.26)

dove ↵ è una costante di integrazione arbitraria. Sostituendo questo risultato
nel membro sinistro dell’Eq. (5.25) otteniamo:

ẋi =
dt

d⌧

dxi

dt
=
↵

c
vi, ẍi =

↵2

c2
dvi

dt
. (5.27)

Possiamo quindi riscrivere l’equazione del moto (5.25) nella forma (vettoriale)
finale

a =
dv

dt
= �r�, (5.28)

che riproduce esattamente il ben noto risultato Newtoniano.
La discussione precedente ci mostra che la dinamica della teoria non-

relativistica di Newton può essere riprodotta in modo puramente geometrico,
modificando la metrica di Minkowski e introducendo sullo spazio-tempo una
struttura geometrica Riemanniana descritta da un nuovo elemento di linea,
che in coordinate cartesiane assume la forma:

ds2 = gµ⌫dx
µdx⌫ =

✓

1 +
2�

c2

◆

c2dt2 � |dx|2 (5.29)

(si veda la metrica (5.16)). È importante sottolineare, però, che questa rap-
presentazione geometrica non si limita a fornire una diversa (e interessante)
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riformulazione della teoria di Newton, ma prevede anche nuovi e↵etti gra-
vitazionali, di origine geometrica, che non erano contemplati dalla teoria di
Newton, e che verranno illustrati nella sezione seguente.

5.3 Dilatazione temporale e spostamento delle frequenze

Se vogliamo descrivere un campo gravitazionale Newtoniano introducendo
nello spazio-tempo l’elemento di linea (5.29) al posto di quello di Minkowski
dobbiamo anche accettare, come immediata conseguenza, una generalizzazio-
ne della relazione che collega gli intervalli di tempo proprio d⌧ – caratteristici
di un dato processo fisico – agli intervalli dt della coordinata temporale di
una generica carta definita sullo spazio-tempo.

Nel caso della metrica di Minkowski è ben noto che tale relazione dipen-
de dallo stato di moto del sistema di riferimento solidale con l’osservatore,
rispetto al sistema di riferimento solidale col processo considerato: si trova
infatti dt/d⌧ = �, dove � = (1 � v2/c2)�1/2 è il fattore di Lorentz associato
al moto relativo dei due sistemi di coordinate.

Nel caso della metrica (5.29) si trova invece che la relazione tra gli inter-
valli temporali dipende non solo dallo stato di moto relativo, ma anche dalla
relativa posizione spaziale dell’osservatore rispetto al processo considerato. Si
trova, in particolare, una di↵erenza tra gli intervalli temporali anche all’inter-
no della stessa carta, in assenza di moto relativo, per processi che avvengono
in posizioni diverse. Un e↵etto del genere è comune a tutte le metriche carat-
terizzate da una componente g

00

che dipende dalle coordinate spaziali, come
nel caso dell’Eq. (5.29).

Ricordiamo infatti che l’intervallo di tempo proprio tra due eventi è dato,
per definizione, dall’intervallo spazio-temporale ds/c valutato nel sistema di
riferimento in cui la separazione spaziale tra i due eventi è nulla, dxi = 0.
Se la componente g

00

della metrica non è costante, tale quantità dipende
dalle coordinate anche all’interno della stessa carta. Per un processo fisico
che viene osservato nel punto x

1

, ad esempio, il corrispondente intervallo
di tempo proprio d⌧

1

è collegato all’intervallo di tempo coordinato dt dalla
relazione

d⌧
1

=
p

g
00

(x
1

) dt. (5.30)

Analogamente, per lo stesso processo che viene osservato nel punto x
2

abbiamo:
d⌧

2

=
p

g
00

(x
2

) dt (5.31)

(si noti che dt è l’intervallo che verrebbe misurato in assenza di gravitazione
nello spazio-tempo di Minkowski, e quindi è lo stesso in tutti i punti). Ne
consegue la relazione

d⌧
1

d⌧
2

=



g
00

(x
1

)

g
00

(x
2

)

�

1/2

, (5.32)
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che determina la variazione relativa degli intervalli temporali in funzione della
posizione in cui viene osservato il processo.

È interessante osservare che il potenziale Newtoniano della metrica (5.29)
è negativo, � < 0, per cui g

00

< 1. Se confrontiamo l’intervallo temporale
tra due eventi misurato nel punto x

1

, dove �(x
1

) 6= 0, con il corrispondente
intervallo temporale misurato all’infinito, dove �1 = 0, g

00

= 1 e dt = d⌧ ,
otteniamo allora, dall’Eq. (5.32):
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00
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1
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d⌧
1

h

1 + 2�(x1)

c2

i

1/2
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1

. (5.33)

La durata di un processo che avviene in presenza di un campo gravita-
zionale, confrontata con la durata dello stesso processo in assenza di cam-
po, appare dunque “allungata”: è il famoso e↵etto di dilatazione temporale
gravitazionale, certamente non previsto dalla teoria Newtoniana.

Per l’osservazione sperimentale di tale e↵etto può essere conveniente con-
siderare processi periodici, e confrontare tra loro i periodi (o le frequenze)
dello stesso processo misurati in punti di↵erenti dello spazio. Prendiamo ad
esempio un segnale monocromatico, che si propaga dal punto di emissione xe

al punto di ricezione xr. Il rapporto tra i periodi del segnall nelle due diverse
posizioni è fissato dall’Eq. (5.32), con x

1

= xe e x
2

= xr. Per le frequenze
abbiamo allora il rapporto inverso, ossia:

!r

!e
=



g
00

(xe)

g
00

(xr)

�

1/2

. (5.34)

È utile (e istruttivo) osservare che questa relazione può essere ricavata anche
con un di↵erente argomento basato sulla nozione di “osservatore statico”,
ossia di osservatore caratterizzato da un quadrivettore velocità uµ che ha
solo la componente temporale:

ui = 0, u0 =
c

p
g
00

(5.35)

(il vettore è opportunamente normalizzato in modo tale che gµ⌫uµu⌫ = c2).
A questo scopo supponiamo che la sorgente e il ricevitore siano a ripo-

so rispetto a due osservatori statici, localizzati rispettivamente nei punti xe

e xr, e supponiamo che la propagazione del segnale possa essere descritta
dal quadrivettore d’onda kµ = (k,!/c). La frequenza del segnale osservata
localmente nei punti xe e xr è allora data, rispettivamente, dalle proiezioni
(kµuµ)xe e (kµuµ)xr .

In un sistema localmente inerziale, dove g
00

= 1, queste due proiezioni
scalari forniscono lo stesso risultato perché i due osservatori sono statici, e
non c’è alcun e↵etto Doppler prodotto dal loro moto relativo. L’uguaglianza
tra le due proiezioni, d’altra parte, è una relazione scalare, valida in tutti i
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sistemi di riferimento. Il risultato delle due proiezioni considerate continua
dunque a coincidere in qualunque sistema:

(gµ⌫k
µu⌫)xe

= (gµ⌫k
µu⌫)xr

. (5.36)

Per una metrica diagonale si ottiene allora la relazione

!e

p

g
00

(xe) = !r

p

g
00

(xr) (5.37)

che riproduce esattamente l’Eq. (5.34), come anticipato.

5.3.1 Spostamento spettrale in un campo Newtoniano

Concentriamoci ora sulla metrica (5.29) che descrive gli e↵etti gravitazionali
nel limite Newtoniano, e applichiamo a questa metrica il precedente risultato
relativo allo spostamento spettrale. Sviluppando la radice quadrata (5.34) al
primo ordine in �/c2 otteniamo immediatamente

!r

!e
'
✓

1 +
�e
c2

◆✓

1� �r
c2

◆

' 1� 1

c2
(�r � �e) , (5.38)

da cui
�!

!
⌘ !r � !e

!e
= � 1

c2
(�r � �e) ⌘ ���

c2
. (5.39)

Tenendo conto che il potenziale è negativo possiamo allora osservare che se il
campo è più intenso nella regione di emissione che in quella di ricezione (ossia,
se �e < �r) si trova che la di↵erenza �! è negativa, e quindi che !r < !e.
Questo significa che la frequenza ricevuta è “spostata verso il rosso” rispetto
a quella emessa (in accordo al cosiddetto e↵etto di redshift gravitazionale).

La radiazione emessa da un atomo che si trova sulla superficie di una
stella molto compatta, ad esempio, risulta essere più rossa (agli occhi di un
osservatore terrestre) della stessa radiazione emessa da un atomo identico
posto sulla superficie del Sole o della Terra, dove il campo gravitazionale è
più debole. Ma esiste – ovviamente – anche l’e↵etto opposto: se �e > �r allora
l’Eq. (5.39) implica !r > !e: la frequenza di un segnale, ricevuto in regioni
con potenziale gravitazionale più intenso che all’emissione, risulta “spostata
verso il blu” (ossia più elevata di quella misurata dall’emettitore).

E↵etti di questo tipo sono molto piccoli nel limite Newtoniano. Ad esem-
pio, il redshift che caratterizza un segnale emesso dalla superficie del Sole –
che ha un raggio R ⇠ 7⇥ 1010 cm e una massa M ⇠ 1033 g – e ricevuto sulla
Terra, è dell’ordine di

�!

!
= �

✓

GM

Rc2

◆

Sole

⇠ �10�6. (5.40)
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Ciononostante, l’e↵etto di redshift gravitazionale è stato osservato e confer-
mato sperimentalmente persino nel campo gravitazionale terreste. Il primo
esperimento, e↵ettuato da Pound e Rebka1 nel 1959, ha preso in considera-
zione lo spostamento di frequenza della radiazione elettromagnetica associato
ad un dislivello di circa 23 metri sulla superficie terrestre, e ha confermato
la predizione (5.39) con una precisione del 10%. In esperimenti successivi
la precisione è migliorata, ed è stato anche osservato il redshift della ra-
diazione emessa dalla superficie di stelle compatte come la “nana bianca”
Sirius B.

Più recentemente è stato direttamente verificato anche l’e↵etto di dilata-
zione temporale (5.33), confrontando il tempo misurato da orologi atomici
posti su aerei in volo con il tempo segnato da orologi identici rimasti al suo-
lo2. Tale e↵etto risulta ovviamente amplificato nel caso di orologi posti su
satelliti artificiali, orbitanti a grandi altezze, tanto da essere tenuto in con-
siderazione (e automaticamente corretto) nei moderni sistemi di navigazione
satellitare come il sistema GPS (Global Positioning System). In quel caso par-
ticolare gli orologi in volo, essendo soggetti ad un campo gravitazionale più
debole, scandiscono il tempo più velocemente degli orologi terresti di circa 46
microsecondi al giorno. Questo e↵etto è dominante rispetto al rallentamen-
to degli orologi di tipo cinematico (dovuto cioè al loro movimento) previsto
dalla relatività ristretta, che ammonta invece a circa 7.2 microsecondi al
giorno.

Concludiamo la sezione osservando che la relazione (5.39) tra spostamento
spettrale e potenziale Newtoniano, per un segnale descritto dal quadrivettore
d’onda kµ, si può anche ricavare direttamente dalla condizione (5.10) che fissa
la propagazione lungo una traiettoria geodetica.

Consideriamo, in particolare, la metrica (5.16) che descrive gli e↵etti gra-
vitazionali nel limite Newtoniano, e usiamo la corrispondente connessione già
calcolata nelle equazioni (5.22), (5.23). Per la componente temporale di kµ

abbiamo allora:

d!

c
= ��↵� 0dx↵k�

= ��
0i

0

⇣

dx0ki +
!

c
dxi
⌘

(5.41)

= � 1

c2
@i�

⇣

cdt ki +
!

c
dxi
⌘

.

Ricordiamo ora che il vettore d’onda ki ha componenti ki = (!/w)ni, dove
ni è il versore di propagazione e w è il modulo della velocità di fase del se-
gnale, legato al modulo v della velocità di gruppo dalla relazione w = c2/v.
Quindi ki@i� è un termine misto di ordine vi@i�, che può essere trascura-
to nell’approssimazione Newtoniana. In questo limite l’Eq. (5.41) fornisce

1 R. V. Pound and G. A. Rebka, Phys. Rev. Lett. 4, 337 (1960).
2 J. Hafele and R. Keating, Science 177, 166 (1972).
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dunque
d!

!
= � 1

c2
dxi@i� = � 1

c2
d�, (5.42)

che riproduce (in forma di↵erenziale) il precedente risultato (5.39).

Esercizi Capitolo 5

5.1. Spostamento spettrale dipendente dal tempo

Un fotone si propaga lungo le geodetiche (di tipo luce) del seguente elemento
di linea,

ds2 = c2dt2 � a2(t) |dx|2 , (5.43)

che descrive una geometria dipendente dal tempo. Il fotone viene emesso al
tempo te e ricevuto al tempo tr. Determinare lo spostamento di frequenza
che si osserva tra l’istante di emissione e quello di ricezione.

5.2. Moto geodetico iperbolico

Determinare le traiettorie geodetiche di tipo tempo per un moto uni-dimensionale
lungo l’asse x, nello spazio-tempo parametrizzato dalle coordinate x0 = ct,
xi = (x, y, z) e descritto dall’elemento di linea

ds2 =

✓

t
0

t

◆

2

�

c2dt2 � dx2

�

� dy2 � dz2, (5.44)

dove t
0

è una costante.

Soluzioni

5.1. Soluzione

Per valutare la variazione di frequenza in funzione del tempo, lungo
la traiettoria geodetica, usiamo la condizione di trasporto parallelo del
quadrivettore impulso data dall’Eq. (5.9).

Osserviamo innanzitutto che nello spazio-tempo di Minkowski un foto-
ne di frequenza ! ha energia E = h̄! e impulso pi = (h̄!/c)ni, dove ni è
il versore che specifica la direzione di propagazione. Nello spazio-tempo de-
scritto dall’elemento di linea (5.43) il quadri-impulso pµ del fotone ha dunque
componenti

p0 =
h̄!

c
, pi =

ni

a(t)

h̄!

c
. (5.45)

Si noti, in particolare, che l’impulso spaziale deve contenere il fattore a�1 per
soddisfare alla condizione covariante di vettore nullo:

gµ⌫p
µp⌫ =

�

p0
�

2 � a2(t) |p|2 = 0. (5.46)
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Le componenti non-nulle della connessione per la metrica (5.43) sono date da:

�
0i

j =
1

ac

da

dt
�ji , �ij

0 =
a

c

da

dt
�ij (5.47)

(abbiamo usato la definizione (3.90)). Applicando la condizione geodetica
(5.9) otteniamo quindi:

dp0 = d

✓

h̄!

c

◆

= ��ij
0dxipj

= � h̄!

c2
da

dt
�ijdx

inj .
(5.48)

Ricordiamo ora che una geodetica di tipo luce è caratterizzata da un intervallo
spazio-temporale nullo, dxµdxµ = ds2 = 0. Un fotone che si propaga lungo la
direzione spaziale ni, nella geometria specificata dall’Eq. (5.43), deve quindi
seguire una traiettoria che soddisfa la condizione di↵erenziale

cdt ni = a dxi. (5.49)

Sostituiamo nell’Eq. (5.48), usiamo �ijninj = 1, e dividiamo per h̄/c.
Otteniamo allora d!

!
= �da

a
, (5.50)

la cui integrazione fornisce la dipendenza temporale di ! in funzione del
parametro geometrico a(t):

!(t) =
!
0

a(t)
, (5.51)

dove !
0

è una costante di integrazione che rappresenta la corrispondente
frequenza del fotone nello spazio-tempo di Minkowski (dove a = 1). Lo spo-
stamento spettrale tra frequenza emessa !e ⌘ !(te) e frequenza ricevuta
!r ⌘ !(tr) è quindi fissata dal rapporto

!r

!e
=

a(te)

a(tr)
. (5.52)

Si noti che per a(tr) > a(te) risulta !r < !e, ossia la frequenza ricevuta è spo-
stata verso il rosso rispetto a quella emessa. Questo e↵etto è tipico del campo
gravitazionale cosmologico che permea lo spazio-tempo del nostro Universo
su scale di distanza cosmiche, e che può essere rappresentato appunto da
una geometria del tipo (5.43) (si vedano ad esempio i testi [2, 7, 15, 22] della
Bibliografia finale).

5.2. Soluzione

La geometria della varietà (5.44) è descritta dalla metrica

g
00

=

✓

t
0

t

◆

2

= �g
11

, g
22

= g
33

= �1,

g00 =

✓

t

t
0

◆

2

= �g11, g22 = g33 = �1,

(5.53)
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e le componenti non-nulle della connessione (calcolate dalla definizione (3.90))
sono date da

�
00

0 = �
11

0 = �
01

1 = �
10

1 = � 1

ct
. (5.54)

Scriviamo esplicitamente l’equazione geodetica (5.7), ponendo x0 = ct e ri-
cordando che il punto indica la derivata rispetto al parametro ⌧ , che possiamo
identificare con il tempo proprio lungo la traiettoria del moto:

cẗ� 1

ct

�

c2ṫ2 + ẋ2

�

= 0, (5.55)

ẍ� 2

t
ẋṫ = 0, (5.56)

ÿ = 0, (5.57)

z̈ = 0. (5.58)

Consideriamo ora un moto uni-dimensionale lungo l’asse x. L’Eq. (5.56) può
essere facilmente integrata, e fornisce:

ẋ =
↵

t
0

t2, (5.59)

dove ↵ è una costante di integrazione con le dimensioni di un’accelerazione
(la costante t

0

è stata inserita per comodità futura). Anziché integrare anche
l’Eq. (5.55) osserviamo che una traiettoria di tipo tempo deve soddisfare la
condizione di normalizzazione della quadrivelocità,

gµ⌫ ẋ
µẋ⌫ =

✓

t
0

t

◆

2

�

c2ṫ2 � ẋ2

�

= c2, (5.60)

che combinata con la (5.59) fornisce:

c2ṫ2 =
c2

t2
0

t2 +
↵2

t2
0

t4. (5.61)

Eliminando il tempo proprio dalla (5.59) mediante la (5.61) si ottiene:

dx

dt
=

ẋ

ṫ
=

↵t
q

1 + ↵2t2

c2

. (5.62)

Una seconda integrazione fornisce subito l’equazione della traiettoria,

x(t) = x
0

+

Z

dt
↵t

q

1 + ↵2t2

c2

= x
0

+
c2

↵

r

1 +
↵2t2

c2
, (5.63)

dove x
0

è una costante di integrazione determinata dalle condizioni iniziali.
Anche l’Eq. (5.55) è automaticamente soddisfatta da questa soluzione, come
si può verificare derivando esplicitamente rispetto a ⌧ .
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È facile interpretare geometricamente questa traiettoria: elevando al qua-
drato, e portando ct al membro sinistro, si ottiene

(x� x
0

)2 � c2t2 =
c4

↵2

. (5.64)

Nel piano (x, ct) questa equazione rappresenta un’iperbole, che ha il centro
nel punto di coordinate x = x

0

e t = 0 e per asintoti le rette del cono luce
x = x

0

± ct. Le geodetiche della geometria considerata riproducono quindi
esattamente le traiettorie del moto uniformemente accelerato dello spazio di
Minkowski, con quadri-accelerazione di modulo ↵ = costante.



6

Deviazione geodetica e tensore
di curvatura

Poiché la geometria di Riemann si presta bene a descrivere gli e↵etti del cam-
po gravitazionale Newtoniano, è lecito supporre che si presti altrettanto bene
a descrivere un campo gravitazionale anche nel regime relativistico. Per arri-
vare a una descrizione completa e quantitativamente precisa dell’interazione
gravitazionale in termini geometrici ci manca ancora, però, un’importante
nozione: quella di tensore di curvatura (o tensore di Riemann). In questo
capitolo mostreremo che tale tensore caratterizza in modo covariante la cur-
vatura della varietà data e ne distingue la geometria, in modo non-ambiguo,
da quella dello spazio-tempo di Minkowski.

Nel precedente capitolo abbiamo visto che è possibile riprodurre gli e↵etti
dinamici della gravità introducendo sullo spazio-tempo un’opportuna metri-
ca. La forma della metrica, però, dipende non solo dalla geometria intrinse-
ca, ma anche dalla carta (o sistema di coordinate) usata per parametrizzare
la varietà spazio-temporale. Anche nella varietà di Minkowski è possibile,
con opportune coordinate, introdurre globalmente una metrica non costan-
te, gµ⌫(x) 6= ⌘µ⌫ , simulando cos̀ı gli e↵etti di un campo gravitazionale (si

veda l’esempio dell’Esercizio 6.1). È dunque inevitabile porsi la domanda:
come caratterizzare geometricamente la presenza (o l’assenza) di un campo
gravitazionale, senza possibili ambiguità dovute alle coordinate prescelte?

La risposta a questa domanda coinvolge necessariamente la curvatura dello
spazio-tempo, come vedremo nella sezione seguente.

6.1 L’equazione di deviazione geodetica

Per rappresentare la dinamica gravitazionale in maniera geometrica corretta
dobbiamo rispettare le proprietà fisiche fondamentali del campo gravitaziona-
le. A questo proposito va richiamato, innanzitutto, il principio di equivalenza
(si veda la Sez. 2.2), secondo il quale gli e↵etti del campo gravitazionale sono
localmente indistinguibili da quelli di un sistema accelerato.

� Springer-Verlag Italia 2015
M. Gasperini, Relatività Generale e Teoria della Gravitazione,
UNITEXT for Physics, DOI 10.1007/978-88-470-5690-9_6
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Questa equivalenza, valida in una regione su�cientemente limitata di spa-
zio e di tempo, permette di eliminare gli e↵etti gravitazionali introducendo
un’opportuna carta che descrive un sistema di riferimento localmente iner-
ziale. L’esempio classico di tale riferimento è quello dell’ascensore in caduta
libera nel campo di gravità terrestre: un corpo di prova dentro l’ascensore
galleggia liberamente rispetto alle pareti, come se l’ascensore si trovasse in
una regione di spazio priva di campi gravitazionali.

Però, se prendiamo in considerazione non uno ma due corpi di prova dentro
l’ascensore, c’è un’importante di↵erenza fisica tra le due situazioni appena
menzionate – ossia, caduta libera in un campo dato e assenza reale di campo
– che emerge subito chiaramente. Supponiamo, ad esempio, che i due corpi
di prova siano inizialmente a riposo all’istante iniziale t

0

: allora, per t > t
0

,
essi resteranno a riposo nel caso dell’ascensore situato in una regione priva di
gravità, mentre acquisteranno un moto relativo di avvicinamento accelerato
nel caso dell’ascensore in caduta libera.

Quest’ultimo e↵etto è dovuto al fatto che i due corpi cadono lungo traiet-
torie che non sono parallele, ma convergenti verso la sorgente del campo (il
centro di gravità terrestre). Perciò, anche se i due corpi hanno una velocità
relativa che è nulla all’istante iniziale, v(t

0

) = 0, la loro accelerazione iniziale
relativa, a(t

0

), è diversa da zero. E qui arriviamo al punto che è rilevante per
la nostra discussione.

In presenza di un generico campo gravitazionale è possibile eliminare, sem-
pre e completamente, l’accelerazione gravitazionale in un punto qualunque
dello spazio ad un dato istante t

0

, ma non è mai possibile eliminare l’ac-
celerazione tra due punti distinti – non importa quanto vicini – allo stesso
istante. Se prendiamo i due punti su due distinte traiettorie geodetiche, in
particolare, ci sarà sempre tra loro un’accelerazione relativa (prodotta dalla
gravità, che tende a distorcere e a focalizzare le traiettorie) non eliminabile
neppure localmente. In assenza di campo gravitazionale, al contrario, le geo-
detiche dei corpi liberi – indipendentemente dalla carta prescelta – sono rette
dello spazio-tempo di Minkowski, con accelerazione relativa nulla.

Questo ci porta alla seguente conclusione: data una metrica definita sulla
varietà spazio-temporale, e dato un fascio di traiettorie geodetiche associate
a quella metrica, l’accelerazione tra due punti localizzati su due geodetiche
di↵erenti dipende esclusivamente dalla distorsione delle traiettorie prodotta
dall’interazione gravitazionale, e caratterizza senza ambiguità la presenza (o
l’assenza) di un campo. Ai fini di una corretta rappresentazione geometrica
del campo di forze gravitazionali diventa quindi importante determinare in
modo preciso tale accelerazione, che è descritta dalla cosiddetta equazione di
“deviazione geodetica” che ora deriveremo esplicitamente.

Consideriamo due corpi di prova liberi, immersi in una varietà spazio-
temporale Riemanniana dotata della metrica gµ⌫ , e in moto lungo due traiet-
torie geodetiche parametrizzate dalla variabile scalare ⌧ , che identificheremo
con il tempo proprio. Supponiamo che questi due corpi siano infinitamen-
te vicini e che le due geodetiche, xµ(⌧) e yµ(⌧), abbiano una separazione
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infinitesima controllata dal quadrivettore (di tipo spazio) ⇠µ(⌧), tale che:

yµ(⌧) = xµ(⌧) + ⇠µ(⌧). (6.1)

Cerchiamo un’equazione che determini l’evoluzione temporale della loro
separazione, restando al primo ordine in ⇠µ.

A tal scopo scriviamo le due equazioni geodetiche,

ẍµ + �↵�
µẋ↵ẋ� = 0, (6.2)

ẍµ + ⇠̈µ + �↵�
µ(x+ ⇠)

⇣

ẋ↵ + ⇠̇↵
⌘⇣

ẋ� + ⇠̇�
⌘

= 0 (6.3)

(il punto indica la derivata rispetto a ⌧ , si veda l’Eq. (5.7)). Nella seconda
equazione espandiamo la connessione nel limite ⇠ ! 0, trascurando termini
di ordine ⇠2 e superiore:

ẍµ+ ⇠̈µ+
h

�↵�
µ(x)+ ⇠⌫@⌫�↵�

µ(x)+ · · ·
i ⇣

ẋ↵ẋ� + 2ẋ↵⇠̇� + · · ·
⌘

= 0. (6.4)

Sottraendo da quest’ultima equazione l’Eq. (6.2) abbiamo allora

⇠̈µ + 2�↵�
µẋ↵⇠̇� + ⇠⌫ (@⌫�↵�

µ) ẋ↵ẋ� = 0, (6.5)

che fornisce l’accelerazione tra le due geodetiche in funzione della connessione
e delle sue derivate prime.

Il risultato ottenuto non è facilmente interpretabile, perché non è scrit-
to in una forma esplicitamente covariante. Questa di�coltà si può superare
ricordando la definizione di (3.78) di derivata covariante lungo una curva: ap-
plicando tale definizione al quadrivettore ⇠µ, lungo la curva geodetica xµ(⌧),
si ottiene:

D⇠µ

d⌧
= ⇠̇µ + �↵�

µẋ↵⇠� . (6.6)

Applicando ulteriormente la definizione si può calcolare la derivata seconda,

D2⇠µ

d⌧2
=

d

d⌧

D⇠µ

d⌧
+ ���

µ ẋ�
D⇠�

d⌧

= ⇠̈µ + �↵�
µ
⇣

ẍ↵⇠� + ẋ↵⇠̇�
⌘

+ ẋ⌫ (@⌫�↵�
µ) ẋ↵⇠� (6.7)

+���
µẋ�

⇣

⇠̇� + �↵�
�ẋ↵⇠�

⌘

,

che fornisce una relazione esplicita tra l’accelerazione ⇠̈µ e la sua forma cova-
riante D2⇠µ/d⌧2. Eliminando in questa relazione ⇠̈µ con l’Eq. (6.5), e ẍµ con
l’Eq. (6.2), si trova che i termini contenenti ẋ⇠̇ si semplificano tra loro, e si
ottiene infine:

D2⇠µ

d⌧2
= �ẋ� ẋ↵⇠⌫ (@⌫��↵

µ � @↵��⌫
µ + ��↵

⇢�⇢⌫
µ � ��⌫

⇢�↵⇢
µ) . (6.8)
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Quest’ultima equazione si può anche riscrivere in forma compatta come

D2⇠µ

d⌧2
= �⇠⌫R⌫↵�µẋ� ẋ↵, (6.9)

dove

Rµ⌫↵
� = @µ�⌫↵

� � @⌫�µ↵
� + �µ⇢

��⌫↵
⇢ � �⌫⇢

��µ↵
⇢ (6.10)

è un oggetto geometrico che rappresenta un tensore di rango quattro noto
col nome di tensore di Riemann. La natura tensoriale di questo oggetto si
deduce dall’Eq. (6.9) e dal fatto che ⇠↵ e ẋ� sono vettori.

L’Eq. (6.9) (detta equazione di deviazione geodetica) determina in forma
covariante l’accelerazione relativa tra due geodetiche la cui separazione spa-
ziale, di ampiezza infinitesima, è parametrizzata dal vettore ⇠µ(⌧). Poiché
tale accelerazione è prodotta, fisicamente, dall’interazione gravitazionale, e
poiché essa è controllata, geometricamente, dal tensore di Riemann (6.10),
ne consegue che è proprio tale tensore a caratterizzare la presenza o l’assen-
za fisica di un campo gravitazionale sulla varietà spazio-temporale data, e a
descriverne (in caso di presenza) gli e↵etti.

In tensore di Riemann, d’altra parte, è anche l’oggetto geometrico che
descrive in modo covariante le proprietà di curvatura di una varietà Rie-
manniana (si veda ad esempio l’Esercizio 6.2 e la discussione di Sez. 6.3), e
che permette di distinguerla senza ambiguità dallo spazio-tempo “piatto” di
Minkowski. Si può infatti dimostrare in maniera rigorosa che l’annullarsi del
tensore di Riemann è condizione necessaria e su�ciente a�nché sia sempre
possibile trovare una trasformazione di coordinate che riduca la metrica al-
la forma di Minkowski dappertutto sulla varietà data (si veda ad esempio il
testo [9] della Bibliografia finale).

In altri termini, una generica metrica gµ⌫(x) descrive uno spazio-tempo
“curvo” se e solo se Rµ⌫↵�(g) 6= 0. In caso contrario la metrica data corri-
sponde a una particolare parametrizzazione “accelerata” dello spazio-tempo
di Minkowski, ma la deviazione tra le geodetiche è nulla, e non ci sono e↵etti
gravitazionali inclusi nella geometria.

Questo ci porta all’importante (e interessante) conclusione che gli e↵et-
ti fisici dell’interazione gravitazionale si possono identificare (e rappresenta-
re) geometricamente con la curvatura dello spazio-tempo. Se vogliamo co-
struire un modello geometrico relativistico del campo gravitazionale dob-
biamo dunque specificare in che modo le sorgenti gravitazionali “produca-
no” curvatura, e come questa curvatura si propaghi attraverso lo spazio-
tempo.

È opportuno, però, che la discussione di questi problemi – che verrà af-
frontata nel Capitolo 7 – sia preceduta da un approfondimento delle pro-
prietà del tensore di Riemann. A questo scopo è dedicata la sezione succes-
siva.
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6.2 Il tensore di curvatura di Riemann

Un tensore di rango quattro, in uno spazio-tempo a quattro dimensioni, ha
in generale 44 = 256 componenti. Il numero di componenti indipendenti del
tensore di Riemann è invece molto minore, grazie alle proprietà di simmetria
dei suoi indici e alle identità che esso soddisfa.

Una prima proprietà, che risulta evidente dalla definizione (6.10), è l’an-
tisimmetria nei primi due indici:

Rµ⌫↵
� = R

[µ⌫]↵
� . (6.11)

Una seconda proprietà del tensore di Riemann – scritto in forma covariante
come tensore di tipo (0, 4) – è l’invarianza rispetto allo scambio della prima
coppia di indici con la seconda:

Rµ⌫↵� ⌘ Rµ⌫↵
⇢g⇢� = R↵�µ⌫ (6.12)

(si veda l’Esercizio 6.3). Ne consegue che il tensore deve essere antisimmetrico
anche negli ultimi due indici, e quindi:

Rµ⌫↵� = R
[µ⌫][↵�]. (6.13)

Questa proprietà ci dice che Rµ⌫↵� si può scrivere come il prodotto tensoriale
di due tensori antisimmetrici di rango due, per cui il numero totale delle sue
componenti indipendenti si riduce da 256 a 6⇥ 6 = 36.

Non abbiamo ancora completamente esaurito, però, le proprietà di sim-
metria degli indici. Se prendiamo la parte completamente antisimmetrica nei
primi tre indici otteniamo la condizione

R
[µ⌫↵]

� = 0, (6.14)

nota col nome di “prima identità di Bianchi”. Come si può direttamente
verificare dalla definizione (6.10), questa proprietà è una semplice conse-
guenza della simmetria della connessione di Christo↵el, �

[↵�]
µ = 0, e quin-

di non è più valida in presenza di torsione. Nel nostro caso però è vali-
da, e impone 4 ⇥ 4 = 16 condizioni sulle componenti del tensore di Rie-
mann. Rimangono dunque, alla fine, solo 36� 16 = 20 componenti indipen-
denti.

C’è anche un’altra proprietà che riguarda la derivata del tensore di Rie-
mann (che non cambia, però, il numero di componenti indipendenti), che
prende il nome di “seconda identità di Bianchi”:

r
[�Rµ⌫]↵

� = 0. (6.15)

È facile dimostrare questa relazione utilizzando la carta localmente inerziale
nella quale la connessione � è nulla (ma le derivate di � non sono nulle). In
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questa carta la derivata covariante del tensore di Riemann si riduce a

r�Rµ⌫↵
�
�

�

�=0

= @�@µ�⌫↵
� � @�@⌫�µ↵

� . (6.16)

Se antisimmetrizziamo in �, µ e ⌫ troviamo infatti che entrambi i termini
a membro destro di questa equazione si annullano, per cui anche il membro
sinistro si annulla. Ma il membro sinistro è un tensore, e se è nullo in una
carta è nullo in tutte le carte, come espresso appunto dall’identità (6.15).

Ricordiamo ora che, come discusso nella sezione precedente, un tensore di
Riemann diverso da zero caratterizza una geometria “fisicamente” diversa da
quella di Minkowski, in quanto descrive una varietà Riemanniana “incurvata”
dagli e↵etti dell’interazione gravitazionale. Nello spazio-tempo di Minkowski,
d’altra parte, gli operatori di↵erenziali sono rappresentati dalle derivate par-
ziali, che commutano tra loro. In una varietà Riemanniana, invece, le derivate
parziali sono sostituite dalle derivate covarianti (si vedano i Capitoli 3 e 4).
Se lo spazio-tempo ha una geometria genuinamente diversa da quella di Min-
kowski dovrà essere caratterizzata da derivate covarianti che non si possono
globalmente ridurre a quelle parziali, e che quindi non commutano. Ci pos-
siamo aspettare dunque che il tensore di Riemann, che controlla le deviazioni
dalla geometria di Minkowski, controlli anche il commutatore di due derivate
covarianti.

Questo è infatti quello che avviene, come possiamo verificare esplicita-
mente calcolando la derivata seconda di un campo vettoriale A↵. Usando le
definizioni generali della Sez. 3.4 otteniamo:

rµr⌫A
↵ = rµ

�

@⌫A
↵ + �⌫�

↵A�
�

= @µ@⌫A
↵ + (@µ�⌫�

↵)A� + �⌫�
↵@µA

� (6.17)

+�µ�
↵
�

@⌫A
� + �⌫⇢

�A⇢
�

� �µ⌫
⇢
�

@⇢A
↵ + �⇢�

↵A�
�

.

Prendendo il commutatore di due derivate, e usando la simmetria della con-
nessione, �

[µ⌫]
⇢ = 0, troviamo allora che tutti i termini contenenti le derivate

parziali di A si cancellano, e rimane:

(rµr⌫ �r⌫rµ)A↵ =

= (@µ�⌫� ↵ � @⌫�µ�
↵)A� + (�µ⇢

↵�⌫� ⇢ � �⌫⇢ ↵�µ�
⇢)A� ,

(6.18)

ossia
⇥

rµ,r⌫

⇤

A↵ = Rµ⌫�
↵A� . (6.19)

Dunque le derivate covarianti applicate a un vettore commutano se e solo se
la geometria dello spazio-tempo ha curvatura nulla.

Concludiamo la sezione presentando le possibili contrazioni del tensore
di Riemann. Contraendo un indice della prima coppia con un’indice della
seconda otteniamo il cosiddetto tensore di Ricci,

R⌫↵ ⌘ Rµ⌫↵
µ = R

(⌫↵), (6.20)
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che è simmetrico nei suoi due indici, R⌫↵ = R↵⌫ . La simmetria si può
facilmente verificare dalla definizione esplicita,

R⌫↵ = @µ�⌫↵
µ � @⌫�µ↵

µ + �µ⇢
µ�⌫↵

⇢ � �⌫⇢
µ�µ↵

⇢, (6.21)

ricordando che �⌫↵ µ = �
(⌫↵)

µ, usando il risultato (3.97),

@⌫�↵µ
µ = @⌫@↵

�

ln
p
�g
�

, (6.22)

e osservando che

�⌫⇢
µ�µ↵

⇢ = �↵µ
⇢�⇢⌫

µ = �↵⇢
µ�µ⌫

⇢. (6.23)

La traccia del tensore di Ricci definisce la cosiddetta curvatura scalare,

R = R⌫
⌫ = g⌫↵R⌫↵. (6.24)

Combinando la curvatura scalare e il tensore di Ricci si ottiene il cosiddetto
tensore di Einstein,

Gµ⌫ = Rµ⌫ �
1

2
gµ⌫R, (6.25)

che, come vedremo nel prossimo capitolo, gioca un ruolo importante nelle
equazioni del campo gravitazionale. È importante notare che tale tensore è
simmetrico, Gµ⌫ = G⌫µ, e che ha divergenza covariante nulla,

r⌫Gµ
⌫ = 0. (6.26)

Quest’ultima relazione, detta identità di Bianchi contratta, si ottiene appun-
to dalla identità di Bianchi (6.15) che, scritta in forma esplicita, assume la
forma:

r�Rµ⌫↵
� +rµR⌫�↵

� +r⌫R�µ↵
� = 0. (6.27)

Se prendiamo la divergenza covariante del tensore di Ricci, e sfruttiamo
l’equazione precedente, otteniamo allora

r⌫Rµ
⌫ = r⌫R↵µ

⌫↵ = �r↵Rµ⌫
⌫↵ �rµR⌫↵

⌫↵, (6.28)

ossia

2r⌫Rµ
⌫ = rµR, (6.29)

da cui

r⌫

✓

Rµ
⌫ � 1

2
�⌫µR

◆

= 0, (6.30)

che coincide appunto con l’Eq. (6.26).
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6.3 Un esempio: varietà a curvatura costante

In questa sezione calcoleremo il tensore di Riemann per una varietà multi-
dimensionale (con segnatura pseudo-euclidea, gµ⌫ = (+,�,�,�, . . .)) a cur-
vatura costante. Mostreremo, in particolare, che la rappresentazione mista di
tipo (2, 2) (rispetto alla quale il tensore di Riemann assume la forma Rµ⌫

↵�)
è caratterizzata da componenti costanti, direttamente collegate al cosiddetto
“raggio di curvatura” della varietà data.

Consideriamo un’ipersuperficie D-dimensionale ⌃D (con una dimensione
di tipo tempo e D � 1 dimensioni di tipo spazio), immersa in uno spazio-
tempo di Minkowski (D + 1)-dimensionale parametrizzato dalle coordinate
XA e descritto dall’elemento di linea

ds2 = ⌘ABdX
AdXB , A,B = 0, 1, . . . , D. (6.31)

L’ipersuperficie è rappresentata dall’equazione

⌘ABX
AXB = �1

k
, (6.32)

dove k è una costante, con dimensioni dell’inverso di una lunghezza al
quadrato.

Per k > 0 tale equazione descrive una “pseudo-ipersfera” che ha raggio
a2 = 1/k e sezioni spazio-temporali di tipo iperbolico (si veda ad esempio
l’Eq. (2.39) nella soluzione dell’Esercizio 2.2). Per k < 0 l’equazione descrive
un iperboloide multi-dimensionale. In ogni caso si tratta di una varietà con
raggio di curvatura costante, pari a |k|�1/2.

Per calcolare il tensore di Riemann è conveniente parametrizzare la geome-
tria intrinseca dell’ipersuperficie usando le coordinate xµ, µ = 0, 1, . . . , D�1,
dette coordinate “stereografiche”, che coincidono con la coordinata tempo-
rale e con le prime D � 1 coordinate spaziali dello spazio-tempo esterno di
Minkowski. Chiamiamo y la D-esima coordinata spaziale (per distinguerla
chiaramente dalle altre), e poniamo quindi

XA = �Aµ x
µ, A = 0, 1, . . . , D � 1,

XA = y, A = D
(6.33)

(si vedano gli Esercizi 2.2, 6.5, 6.6 per parametrizzazioni alternative dello
stesso tipo di ipersuperficie).

Le coordinate intrinseche xµ sono vincolate a variare sull’ipersuperficie ⌃D

considerata, perciò devono soddisfare il vincolo (6.32) che assume la forma:

⌘µ⌫x
µx⌫ � y2 = �1

k
. (6.34)

Di↵erenziando otteniamo

⌘µ⌫x
µdx⌫ = ydy, (6.35)
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da cui

dy2 =
1

y2
(xµdx

µ)2 =
xµx⌫dxµdx⌫

1

k + x↵x↵
. (6.36)

Eliminando con questa equazione il termine dy2 presente nell’elemento di
linea (6.31) otteniamo la forma quadratica ds2 espressa in funzione di xµ

come:
ds2 = ⌘µ⌫dx

µdx⌫ � dy2

= ⌘µ⌫dx
µdx⌫ � k

xµx⌫
1 + kx↵x↵

dxµdx⌫ .
(6.37)

La metrica intrinseca sull’ipersuperficie, ossia il tensore gµ⌫ tale che ds2 =
gµ⌫(x)dxµdx⌫ , assume quindi la forma

gµ⌫(x) = ⌘µ⌫ � k
xµx⌫

1 + kx↵x↵
, (6.38)

dove xµ sono le coordinate della carta stereografica considerata. Tale metrica
descrive la geometria di una varietà a curvatura costante, con curvatura con-
trollata dal parametro k che può essere positivo, negativo o nullo. Per k = 0
ritroviamo ovviamente la metrica piatta gµ⌫ = ⌘µ⌫ che descrive l’iperpiano
di Minkowski, a curvatura costante ma nulla.

Calcoliamo ora il tensore di Riemann per questa metrica. Partiamo dal
fatto che, per la carta stereografica, la connessione assume la semplice forma

�⌫↵
� = �kg⌫↵x

� (6.39)

(si veda l’Esercizio 6.4). Usando la definizione (6.10) abbiamo quindi

Rµ⌫↵
� = �k

�

@µg⌫↵x
� + g⌫↵�

�
µ

�

+ �µ⇢
��⌫↵

⇢ � {µ $ ⌫} , (6.40)

dove il simbolo {µ $ ⌫} indica un’espressione identica a quella che precede,
ma con µ sostituito da ⌫ e viceversa. In virtù della proprietà di metricità
della connessione di Christo↵el (rµg⌫↵ = 0, si veda la Sez. 3.5) possiamo
inoltre porre

@µg⌫↵ = �µ⌫
⇢g⇢↵ + �µ↵

⇢g⌫⇢. (6.41)

Sostituendo questa relazione nell’Eq. (6.40), ed usando la forma esplicita
(6.39) della connessione, troviamo allora che tutti i termini quadratici nella
connessione si cancellano, e quindi che

Rµ⌫↵
�=�µ⌫

⇢�⇢↵
� + �µ↵

⇢�⌫⇢
� � kg⌫↵�

�
µ + �µ⇢

��⌫↵
⇢ � {µ $ ⌫}

⌘k
�

gµ↵�
�
⌫ � g⌫↵�

�
µ

�

.
(6.42)

Moltiplicando per g⇢↵, per passare alla rappresentazione tensoriale mista di
tipo (2, 2), otteniamo infine:

Rµ⌫
⇢� = k

�

�⇢µ�
�
⌫ � �⇢⌫�

�
µ

�

. (6.43)
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Tutte le componenti sono costanti, come anticipato all’inizio della sezione, e
fissate dall’inverso del raggio di curvatura al quadrato.

Per questo tipo di tensore è facile calcolare la contrazione di Ricci e la
curvatura scalare. Usando le definizioni (6.20) e (6.24), e ricordando che la
varietà è D-dimensionale, arriviamo a:

Rµ
� ⌘ Rµ⌫

⌫� = �k(D � 1)��µ , (6.44)

e
R ⌘ Rµ

µ = �kD(D � 1). (6.45)

Per D = 2 e k = 1/a2 si ritrova, in particolare, si ritrova il risultato dell’Eser-
cizio 6.2 relativo alla superficie sferica bidimensionale (modulo una di↵erenza
di segno, dovuta all’uso di una segnatura negativa per le dimensioni spaziali
nelle equazioni precedenti).

Concludiamo osservando che le varietà a curvatura costante che abbiamo
considerato in questa sezione vengono anche chiamate varietà “massimamen-
te simmetriche”. Esse infatti ammettono sempre D(D + 1)/2 isometrie, che
è il numero massimo di isometrie consentito in D dimensioni. Ciò si può ve-
rificare, ad esempio, risolvendo l’Eq. (3.55) e determinando esplicitamente i
corrispondenti vettori di Killing (si veda anche la Sez. 7.4). Un esempio tri-
viale è fornito dallo spazio-tempo di Minkowski in D = 4, che ha curvatura
costante nulla, e che ammette come gruppo massimo di isometrie il gruppo
di Poincarè a 10 parametri.

Un esempio meno triviale è il caso dello spazio-tempo di de Sitter, che
descrive una pseudosfera 4-dimensionale a curvatura costante positiva, e che
ammette anch’esso un gruppo di isometrie a 10 parametri, diverso da quello
di Poincarè, chiamato appunto gruppo di de Sitter. Questo tipo di varietà,
che può essere ottenuta come soluzione esatta delle equazioni gravitazionali di
Einstein (si veda il Capitolo 7), sembra ricoprire un ruolo di primo piano nella
descrizione della geometria dell’Universo primordiale (si vedano ad esempio
i testi [15, 16, 22] della Bibliografia finale). Possibili parametrizzazioni della
varietà di de Sitter, diverse da quella stereografica, verranno introdotte e
discusse negli Esercizi 2.2, 5.2 e 6.6.

Esercizi Capitolo 6

6.1. Metrica di Rindler

Si consideri la geometria dello spazio-tempo di Minkowski, e la trasformazione
dalle coordinate xµ = (ct, x, y, z) di un arbitrario sistema inerziale alle nuove
coordinate x0µ = (ct0, x0, y, z), definite da:

x = x0 cosh(ct0), ct = x0 sinh(ct0). (6.46)
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Calcolare la metrica g0µ⌫(x
0) riferita alla nuova carta {x0µ}, e verificare che

il tensore di curvatura associato a tale metrica è nullo. Determinare infine
la regione di spazio-tempo parametrizzata dalla carta {x0µ} rispetto a quella
parametrizzata dalla carta {xµ}.

6.2. Curvatura di Gauss di una superficie sferica

Calcolare le componenti del tensore di curvatura di una superficie sferica
bidimensionale di raggio a, descritta dall’elemento di linea (2.24), e verificare
che la curvatura scalare R corrisponde alla curvatura di Gauss 2/a2.

6.3. Una proprietà del tensore di Riemann

Dimostrare che se il tensore di Riemann è costruito con la connessione di
Christo↵el vale allora la proprietà

Rµ⌫↵� = R↵�µ⌫ . (6.47)

Usare la definizione esplicita di Rµ⌫↵� e le proprietà di simmetria del tensore
metrico.

6.4. La connessione per la carta stereografica

Verificare che la connessione di Christo↵el associata alla metrica (6.38)
assume la forma (6.39).

6.5. La geometria dell’ipersfera

Calcolare ipersuperficie e ipervolume di un’ipersfera n-dimensionale ⌃n, di
segnatura Euclidea e raggio a. L’ipersfera è immersa in uno spazio Euclideo
(n+ 1)-dimensionale con coordinate XA, ed è rappresentata dall’equazione

X2

1

+X2

2

+ · · ·+X2

n+1

= a2, A = 1, 2, . . . , n+ 1. (6.48)

Si usi la metrica intrinseca dell’ipersfera parametrizzata da n coordinate
angolari ⇠µ di tipo sferico-polare,

⇠µ = (a✓
1

, a ✓
2

, . . . , a ✓n�1

, a') , (6.49)

dove

0  ✓i  ⇡, i = 1, . . . , n� 1, 0  '  2⇡. (6.50)

6.6. Parametrizzazione statica della varietà di de Sitter

Dimostrare che l’elemento di linea

ds2 =

✓

1� r2

a2

◆

c2dt2 �
✓

1� r2

a2

◆�1

dr2 � r2
�

d✓2 + sin2 ✓d'2

�

, (6.51)

dove a è una costante, descrive in coordinate polari uno spazio-tempo 4-
dimensionale a curvatura costante positiva. Si verifichi che la metrica (6.51) e
la metrica (2.42) dell’Esercizio 2.2 corrispondono a diverse parametrizzazioni
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(entrambe incomplete) della stessa varietà spazio-temporale, caratterizzata
dalla cosiddetta geometria di de Sitter.

Soluzioni

6.1. Soluzione

Di↵erenziando l’Eq. (6.46) abbiamo:

dx = dx0 cosh(ct0) + x0cdt0 sinh(ct0),

cdt = dx0 sinh(ct0) + x0cdt0 cosh(ct0).
(6.52)

Sostituiamo dx e dt nell’elemento di linea di Minkowski in funzione di dx0 e
dt0:

ds2 = c2dt2 � dx2 � dy2 � dz2

= x02c2dt02 � dx02 � dy2 � dz2.
(6.53)

Introducendo una nuova metrica g0(x0) l’elemento di linea per la carta x0µ si
può dunque riscrivere come

ds2 = g0µ⌫(x
0)dx0µdx0⌫ , (6.54)

dove
g0
00

= x02, g0
11

= g0
22

= g0
33

= �1. (6.55)

Le componenti non nulle della connessione associata a questa metrica sono
date da:

� 0
01

0 = � 0
10

0 =
1

x0 , � 0
01

1 = x0. (6.56)

Usando la definizione (6.10) del tensore di Riemann troviamo allora che tutte
le sue componenti sono nulle. Infatti, in virtù del risultato (6.56), e in virtù
delle proprietà di antisimmetria degli indici di Riemann (si veda la Sez. 6.2),
gli unici termini eventualmente diversi da zero possono essere del tipo R0

101

0

e R0
100

1. Ma anche in questi casi si trova

R0
101

0 = @
1

� 0
01

0 + � 0
10

0� 0
01

0 = � 1

x02 +
1

x02 ⌘ 0,

R0
100

1 = @
1

� 0
00

1 � � 0
00

1� 0
10

0 = 1� 1 ⌘ 0.

(6.57)

Il risultato R0
µ⌫↵� = 0 è un’ovvia conseguenza del fatto che la metrica g0µ⌫(x

0)
è stata ottenuta tramite una trasformazione di coordinate dalla metrica ⌘µ⌫ .
Quindi, mediante la trasformazione inversa, si può ridurre g0µ⌫ (sempre e
dappertutto) alla metrica di Minkowski ⌘µ⌫ , per la quale ovviamente � (⌘) =
0, e quindi R(� ) = 0.
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La metrica (6.55), però, non si applica a tutta la varietà spazio-temporale
di Minkowski ma solo a una sua porzione, detta “spazio di Rindler”. Le
coordinate x0 e ct0, infatti, non ricoprono tutto il piano di Minkowski (x, ct),
ma solo la porzione di piano “esterna” al cono-luce delimitato dalle bisettrici
x = ±ct.

Ciò si può facilmente verificare notando che dalle trasformazioni (6.46) si
ottiene:

ct

x
= tanh(ct0), x2 � c2t2 = x02. (6.58)

La prima equazione, per t0 fissato, rappresenta una retta che passa per l’ori-
gine nel piano (x, ct), e che forma con l’asse x un angolo compreso tra �⇡/4
e ⇡/4. La seconda equazione, per x0 fissato, rappresenta un’iperbole centrata
nell’origine nel piano (x, ct), che ha come asintoti le rette x = ±ct, e che
interseca l’asse x nei punti x = ±x0. Facendo variare x0 e t0 tra �1 e +1,
e tenendo conto che il punto x0 = 0 va escluso (perché la trasformazione è
singolare, e le coordinate di Rindler non sono definite in quel punto), si trova
che le due curve spazzano la porzione di piano di Minkowski definita dalla
condizione

x > |ct|, x < �|ct| (6.59)

(il cosiddetto “spazio di Rindler”).

6.2. Soluzione

Conviene innanzitutto normalizzare le coordinate angolari moltiplicandole
per il raggio della sfera, in modo che acquistino le dimensioni di una lunghez-
za: x1 = a✓, x2 = a'. Con queste coordinate, l’elemento di linea (2.24)
definisce la metrica adimensionale

g
11

= 1 = g11, g
22

= sin2 ✓ =
�

g22
��1

, (6.60)

e le componenti non nulle della connessione sono date da:

�
22

1 = �1

a
sin ✓ cos ✓,�

12

2 = �
21

2 =
1

a

cos ✓

sin ✓
. (6.61)

Le componenti non nulle del tensore di Riemann sono del tipo R
121

2 e R
122

1.
Usando la definizione (6.10) si trova che

R
121

2 = � 1

a2
, R

122

1 =
1

a2
sin2 ✓, (6.62)

e quindi

R
12

12 = �R
12

21 = � 1

a2
. (6.63)

La corrispondente curvatura scalare,

R = Rµ⌫
⌫µ = R

12

21 +R
21

12 =
2

a2
, (6.64)
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coincide con la curvatura di Gauss per una superficie sferica di raggio a =
costante. Il risultato è in accordo con anche con l’Eq. (6.45) per D = 2
(modulo una di↵erenza di segno, dovuta all’uso di una segnatura opposta
per le dimensioni spaziali nelle equazioni precedenti).

6.3. Soluzione

Verifichiamo la relazione (6.47) nella carta localmente inerziale, dove g =
cost, � = 0, ma @� 6= 0, e @2g 6= 0. Poniamo

Rµ⌫↵� = Rµ⌫↵
⇢g⇢� , R↵�µ⌫ = R↵�µ

⇢g⇢⌫ , (6.65)

e usiamo la definizione (6.10). Per Rµ⌫↵� abbiamo

Rµ⌫↵�

�

�

�=0

= g�⇢ (@µ�⌫↵
⇢ � @⌫�µ↵

⇢)

=
1

2
g�⇢@µ [g

⇢� (@⌫g↵� + @↵g⌫� � @�g⌫↵)]� {µ $ ⌫} .
(6.66)

Poiché g�⇢g⇢� = ��� l’espressione precedente si riduce a

Rµ⌫↵�

�

�

�=0

=
1

2
(@µ@↵g⌫� � @µ@�g⌫↵)�

1

2
(@⌫@↵gµ� � @⌫@�gµ↵) . (6.67)

Allo stesso modo otteniamo

R↵�µ⌫
�

�

�=0

=
1

2
(@↵@µg�⌫ � @↵@⌫g�µ)�

1

2
(@�@µg↵⌫ � @�@⌫g↵µ) . (6.68)

È immediato verificare che i risultati (6.67) e (6.68) coincidono, per cui,
nella carta localmente inerziale considerata, la relazione (6.47) è soddisfatta.
Essendo una relazione di tipo tensoriale la sua validità si estende ovviamente
a qualunque altro sistema di coordinate.

6.4. Soluzione

La derivata parziale della metrica (6.38) è data da

@↵gµ⌫ = � k

1 + kx2

(⌘µ↵x⌫ + ⌘⌫↵xµ) +
2k2

(1 + kx2)2
xµx⌫x↵, (6.69)

dove x2 ⌘ ⌘↵�xax� , e dove gli indici delle coordinate stereografiche xµ sono
alzati ed abbassati sempre con la metrica di Minkowski. Dalla condizione di
metricità (6.41) abbiamo anche

@↵gµ⌫ = �↵µ⌫ + �↵⌫µ . (6.70)
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Permutando ciclicamente gli indici otteniamo allora (si veda anche l’Eq. (3.85)
per Q = 0, N = 0):

�↵µ⌫ =
1

2
(@↵gµ⌫ + @µg↵⌫ � @⌫g↵µ)

= � k

1 + kx2

⌘µ↵x⌫ +
k2

(1 + kx2)2
xµx⌫x↵ (6.71)

⌘ � k

1 + kx2

gµ↵x⌫ .

Nel secondo passaggio abbiamo usato il risultato (6.69), e nel terzo passaggio
la definizione della metrica stereografica (6.38).

Se invertiamo la matrice (6.38) troviamo che le componenti controvarianti
della metrica sono date da

gµ⌫ = ⌘µ⌫ + k xµx⌫ (6.72)

(possiamo facilmente verificare, infatti, che per queste componenti la relazione
gµ↵gµ� = �↵� è identicamente soddisfatta). Si ottiene quindi

�↵µ
� ⌘ g�⌫�↵µ⌫ = � k

1 + kx2

gµ↵x⌫
�

⌘�⌫ + kx�x⌫
�

= �kg↵µx
� ,

(6.73)

che coincide con il risultato (6.39) cercato.

6.5. Soluzione

Procediamo per induzione, partendo dalla sfera bidimensionale ⌃
2

.
Per n = 2 abbiamo ⇠µ = (a✓

1

, a'), e le equazioni parametriche (che colle-
gano le usuali coordinate angolari alle coordinate cartesiane) sono date da:

X
1

= a sin ✓
1

cos�,

X
2

= a sin ✓
1

sin�, (6.74)

X
3

= a cos ✓
1

.

Di↵erenziando, e sostituendo nell’elemento di linea Euclideo, abbiamo

ds2 = �ABdX
AdXB = a2

�

d✓2
1

+ sin2 ✓
1

d�2
�

(6.75)

(si veda anche l’Eq. (2.24)), che ci dà la metrica diagonale

gµ⌫ = diag
�

1, sin2 ✓
1

�

. (6.76)

La misura di integrazione covariante per una superficie sferica bidimensionale
è quindi:

p

det gµ⌫ d
2⇠ = a2 sin ✓

1

d✓
1

d�. (6.77)
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Integrando sulle variabili angolari otteniamo l’area della superficie sferica:

S
2

(a) = a2
Z ⇡

0

d✓
1

sin ✓
1

Z

2⇡

0

d' = 4⇡a2. (6.78)

Integrando in dr una generica superficie sferica S
2

(r) di raggio r, partendo
da r = 0 fino al raggio della sfera r = a, abbiamo infine il volume di spazio
Euclideo tridimensionale racchiuso dalla sfera ⌃

2

:

V
3

(a) =

Z a

0

dr S
2

(r) =

Z a

0

dr 4⇡r2 =
4

3
⇡a3. (6.79)

Ripetiamo la procedura per una varietà sferica ⌃
3

con n = 3 dimensioni e tre
coordinate angolari, ⇠µ = (a✓

2

, a ✓
1

, a'). La varietà è descritta dalle equazioni
parametriche:

X
1

= a sin ✓
2

sin ✓
1

cos�,

X
2

= a sin ✓
2

sin ✓
1

sin�,

X
3

= a sin ✓
2

cos ✓
1

,

X
4

= a cos ✓
2

.

(6.80)

Di↵erenziando abbiamo l’elemento di linea

ds2 = a2
�

d✓2
2

+ sin2 d✓
2

d✓2
1

+ sin2 d✓
2

sin2 ✓
1

d�2
�

. (6.81)

Perciò:
p

det gµ⌫ d
3⇠ = a3 sin2 ✓

2

sin ✓
1

d✓
2

d✓
1

d�. (6.82)

Integrando sulle variabili angolari abbiamo “l’area” tridimensionale dell’iper-
superficie sferica ⌃

3

,

S
3

(a) = a3
Z ⇡

0

d✓
2

sin2 ✓
2

Z ⇡

0

d✓
1

sin ✓
1

Z

2⇡

0

d' = 2⇡2a3, (6.83)

e infine, integrando in dr, abbiamo l’ipervolume a quattro dimensioni dello
spazio Euclideo da essa racchiuso:

V
4

(a) =

Z a

0

dr S
3

(r) =

Z a

0

dr 2⇡2r3 =
⇡2

2
a4. (6.84)

Generalizzando la procedura al caso di una varietà sferica n-dimensionale
⌃n, parametrizzata dalle n coordinate angolari ⇠µ = (a✓

1

, . . . , a ✓n�1

, a'), si
arriva facilmente alll’elemento di linea dell’ipersfera,

ds2 = a2
⇣

d✓2n�1

+ sin2 ✓n�1

d✓2n�2

+ sin2 ✓n�1

sin2 ✓n�2

d✓2n�3

+ · · ·

+sin2 ✓n�1

sin2 ✓n�2

sin2 ✓n�3

· · · sin2 ✓
1

d'2

⌘

,
(6.85)
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che fornisce l’elemento di ipersuperficie:

p

det gµ⌫ d
n⇠ = an sin ✓

1

sin2 ✓
2

· · · sinn�1 ✓n�1

d✓
1

d✓
2

· · · d✓n�1

d'. (6.86)

Perciò:

Sn(a) = 2⇡an
Z ⇡

0

d✓
1

sin ✓
1

Z ⇡

0

d✓
2

sin2 ✓
2

· · ·
Z ⇡

0

d✓n�1

sinn�1 ✓n�1

. (6.87)

Utilizzando il risultato dell’integrale

Z ⇡

0

sinp x dx =

p
⇡�
�

p+1

2

�

�
�

p
2

+ 1
� , (6.88)

dove � è la funzione di Eulero1, si ha:

Sn(a) = 2⇡an⇡
n�1
2

"

� (1)

�
�

3

2

�

�
�

3

2

�

� (2)

� (2)

�
�

5

2

� . . .
�
�

n
2

�

�
�

n+1

2

�

#

. (6.89)

Dentro la parentesi quadra, tutte le funzioni Gamma al numeratore si sem-
plificano con quelle del denominatore precedente, tranne il caso del primo nu-
meratore e dell’ultimo denominatore. “L’area” n-dimensionale dell’ipersfera
⌃n è dunque data da

Sn(a) =
2⇡

n+1
2

�
�

n+1

2

�an. (6.90)

L’integrale in dr fornisce infine l’ipervolume dello spazio Euclideo da essa
racchiuso:

Vn+1

(a) =

Z a

0

drSn(r) =
2⇡

n+1
2

(n+ 1)�
�

n+1

2

�an+1. (6.91)

6.6. Soluzione

Usiamo le coordinate xµ = (ct, r, ✓,� ) e consideriamo una generica metrica
di tipo (6.51), con componenti

g
00

= f(r) =
1

g00
, g

11

= � 1

f(r)
=

1

g11
,

g
22

= �r2 =
1

g22
, g

33

= �r2 sin2 ✓ =
1

g33
,

(6.92)

1 Si veda ad esempio H. B. Dwight, Tables of integrals and other mathematical data
(Macmillan Publishing Co, New York, 1961).
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dove f è funzione solo di r. Le componenti diverse da zero della connessione
solo le seguenti (indichiamo con un primo la derivata rispetto a r):

�
01

0 =
1

2

f 0

f
, �

00

1 =
1

2
ff 0, �

33

1 = �r f sin2 ✓,

�
11

1 = �1

2

f 0

f
, �

22

1 = �r f, �
12

2 =
1

r
, (6.93)

�
33

2 = � sin ✓ cos ✓,�
13

3 =
1

r
, �

23

3 =
cos ✓

sin ✓
.

Calcolando il tensore di Riemann per questa connessione si trova che Rµ⌫↵
�

è diverso da zero solo se µ = ↵ e ⌫ = �, oppure µ = � e ⌫ = ↵. I termini
non-nulli che si ottengono sono quindi i seguenti:

R
01

01 = �1

2
f 00, R

02

02 = R
03

03 = R
12

12 = R
13

13 = � 1

2r
f 0,

R
23

23 = � 1

r2
(f � 1).

(6.94)

Il corrispondente tensore di Ricci è diagonale, e ha componenti:

R
0

0 = R
1

1 =
1

2
f 00 +

1

r
f 0,

R
2

2 = R
3

3 =
1

r
f 0 +

1

r2
(f � 1).

(6.95)

La curvatura scalare, infine, è data da

R =
4

r
f 0 + f 00 +

2

r2
(f � 1). (6.96)

Consideriamo ora il caso particolare della metrica (6.51). Per questa metrica
abbiamo

f = 1� r2

a2
, f 0 = �2

r

a2
, f 00 = � 2

a2
, (6.97)

e dalle equazioni (6.94)–(6.96) otteniamo direttamente le componenti non-
nulle del tensore di Riemann,

R
01

01 = R
02

02 = R
03

03 = R
12

12 = R
13

13 = R
23

23 =
1

a2
, (6.98)

del tensore di Ricci,

R
0

0 = R
1

1 = R
2

2 = R
3

3 = � 3

a2
, (6.99)

e la curvatura scalare,

R = �12

a2
. (6.100)
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Il confronto con le equazioni (6.43)–(6.45), per D = 4, ci permette imme-
diatamente di concludere che la metrica (6.51) descrive una varietà con cur-
vatura costante positiva k = 1/a2. Tale metrica corrisponde dunque a una
parametrizzazione statica della geometria di de Sitter.

È istruttivo confrontare più in dettaglio questa parametrizzazione con
quella usata per la varietà di de Sitter nell’Esercizio 2.2. Le diverse carte
usate forniscono una metrica che in un caso è statica, mentre nell’altro caso
dipende dal tempo. I due elementi di linea (6.51) e (2.42) sono cos̀ı diversi
che potrebbero far pensare a due varietà fisicamente di↵ferenti.

Ci si può però facilmente convincere che la varietà è la stessa considerando
l’ipersuperficie a 4 dimensioni immersa in uno spazio-tempo di Minkowski 5-
dimensionale (con coordinate zA, A = 1, . . . , 4), e descritta dalle seguenti
equazioni parametriche:

z0 =
p

a2 � r2 sinh

✓

ct

a

◆

z1 = r sin ✓ cos',

z2 = r sin ✓ sin', (6.101)

z3 = r cos ✓,

z4 =
p

a2 � r2 cosh

✓

ct

a

◆

.

Tale ipersuperficie soddisfa l’equazione

⌘ABz
azB = �a2, (6.102)

e quindi riproduce esattamente la pseudo-ipersfera dell’Eq. (2.39), con raggio
a2 = c2/H2. D’altra parte, di↵erenziando le equazioni (6.101) rispetto a
ct, r, ✓, ', e sostituendo nell’elemento di linea dello spazio di Minkowski
5-dimensionale, si ottiene

ds2 = ⌘ABdz
AdzB

=

✓

1� r2

a2

◆

c2dt2 � dr2

1� r2

a2

� r2
�

d✓2 + sin2 ✓d'2

�

,
(6.103)

ossia proprio l’elemento di linea (6.51). Si tratta dunque della stessa varietà,
descritta con sistemi di coordinate di↵erenti.

Concludiamo osservando che nè le coordinate (6.101), nè le coordinate del-
l’Esercizio 2.2 (si veda l’Eq. (2.31)), forniscono una parametrizzazione com-
pleta di tutta la varietà di de Sitter (ossia, della pseudo-sfera a 4 dimensioni
descritta dall’Eq. (6.102)).

Se usiamo le coordinate (2.31), ad esempio, è facile vedere che al variare
di xi e t da �1 a +1 risulta sempre soddisfatta la condizione z0 � �z4

(la condizione di bordo z0 = �z4 viene raggiunta nel limite t ! �1). Se
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prendiamo le sezioni xi = 0 dello spazio di de Sitter troviamo allora che le
coordinate scelte parametrizzano solo il ramo z4 > 0 dell’iperbole z2

4

� z2
0

=
c2/H2, ma non l’altro ramo con z4 < 0. Lo stesso succede per le coordinate
definite dalla parametrizzazione (6.101), che implica z0 � �z4 e z0  z4.

Le due carte considerate sono dunque incomplete. Un ricoprimento com-
pleto della varietà di de Sitter (6.102) è invece fornito dalla carta xµ =
(ct,� , ✓,' ) definita dalle seguenti equazioni parametriche:

z0 = cH�1 sinh (Ht)

z1 = cH�1 cosh (Ht) sin� sin ✓ cos',

z2 = cH�1 cosh (Ht) sin� sin ✓ sin', (6.104)

z3 = cH�1 cosh (Ht) sin� cos ✓,

z4 = cH�1 cosh (Ht) cos�,

dove c/H = a, e dove t varia tra �1 a +1, � e ✓ variano tra 0 e ⇡, mentre
' varia tra 0 e 2⇡ (si veda ad esempio il testo [2] della Bibliografia finale).
Lasciamo al lettore la verifica del fatto che, per questa carta, l’elemento di
linea della varietà di de Sitter assume la forma

ds2 = c2dt2 � c2

H2

cosh2(Ht)
⇥

d�2 + sin2 �
�

d✓2 + sin2 d'2

�⇤

. (6.105)

Ponendo cH�1 sin� = r l’elemento di linea si può anche riscrivere nella forma
seguente,

ds2 = c2dt2 � cosh2(Ht)

"

dr2

1� H2

c2 r
2

+ r2
�

d✓2 + sin2 d'2

�

#

, (6.106)

di uso più frequente nelle applicazioni cosmologiche.
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Equazioni di Einstein
per il campo gravitazionale

Col tensore di Riemann, introdotto nel capitolo precedente, abbiamo com-
pletato la lista dei principali ingredienti geometrici necessari per la formula-
zione di una teoria gravitazionale relativistica: la metrica, la connessione e la
curvatura.

Lo studio dell’equazione geodetica ci ha mostrato che la connessione – pro-
porzionale alle derivate prime della metrica – descrive le forze gravitazionali,
assegnando cos̀ı alla metrica un ruolo e↵ettivo di “potenziale”. D’altra parte,
l’equazione di deviazione geodetica ci ha mostrato che gli e↵etti dinamici del
campo gravitazionale sono contenuti nel tensore di curvatura – che contiene
il quadrato della connessione, e quindi il quadrato delle derivate prime della
metrica. Tutto ciò suggerisce che una teoria gravitazionale relativistica simile
alle teorie di campo già note (basate su equazioni di↵erenziali del second’ordi-
ne) si possa ottenere usando la metrica come variabile di base, introducendo
la metrica nell’azione dei campi materiali mediante il principio di minimo
accoppiamento ed usando il tensore di curvatura come termine cinetico per
la metrica stessa.

In questo capitolo presenteremo un’azione di questo tipo che porta alle
famose equazioni di Einstein. Svolgeremo in dettaglio tutti i passaggi del
necessario calcolo variazionale, che presenta aspetti non convenzionali e non
adeguatamente illustrati in molti libri di testo. Illustreremo poi i principali
aspetti di queste equazioni, so↵ermandoci sulle proprietà del tensore energia-
impulso: in particolare, sul suo ruolo di sorgente di curvatura – e quindi di
gravità – che gli viene assegnato dalle equazioni di Einstein, e sulle importanti
conseguenze della sua equazione di conservazione.

7.1 Azione gravitazionale ed equazioni di campo

Partiamo da una generica azione materiale Sm, che controla l’evoluzione dina-
mica di un sistema fisico  descritto dalla Lagrangiana Lm( , @ ), e rendia-

� Springer-Verlag Italia 2015
M. Gasperini, Relatività Generale e Teoria della Gravitazione,
UNITEXT for Physics, DOI 10.1007/978-88-470-5690-9_7
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mola covariante rispetto al gruppo dei di↵eomorfismi applicando il principio
di minimo accoppiamento (si veda il Capitolo 4):

Sm =

Z

⌦

d4x
p
�gLm( ,r , g). (7.1)

Si noti che questa azione generalizzata contiene esplicitamente la conness-
sione � (presente all’interno delle derivate covarianti r ), oltre a contenere
la metrica g stessa. Quest’ultima è necessaria sia all’interno della Lagran-
giana (per la definizione dei prodotti scalari covarianti) sia nella misura di
integrazione spazio-temporale (si veda in partcolare la Sez. 3.2).

A questa azione va aggiunto un termine cinetico per la metrica, che pos-
siamo costruire mediante la curvatura, e che deve risultare invariante per tra-
sformazioni generali di coordinate. La scelta più semplice – corrispondente
alla cosiddetta “azione di Einstein-Hilbert” – è la seguente:

SEH = � 1

2�

Z

⌦

d4x
p
�g R. (7.2)

Qui R è la curvatura scalare definita dall’Eq. (6.24), e � una opportuna
costante – necessaria a�nché S abbia le corrette dimensioni fisiche – che
controlla l’intensità dell’accoppiamento tra materia e geometria (e che per il
momento tratteremo come parametro arbitrario). Il valore preciso di � verrà
determinato nel capitolo successivo; notiamo fin d’ora, però, che con le nostre
convenzioni le dimensioni dell’azione sono di energia per lunghezza, [S] = EL,
quelle di R sono [R] = L�2, e quindi � deve avere dimensioni [�] = E�1L.

È opportuno osservare, a questo punto, che un’azione scalare contenente
la curvatura può essere ottenuta anche contraendo le componenti del tensore
di Riemann e di Ricci con se stesse. Potremmo prendere, ad esempio,

S /
Z

⌦

d4x
p
�g
�

↵
1

Rµ⌫↵�R
µ⌫↵� + ↵

2

Rµ⌫R
µ⌫ + ↵

3

R2

�

, (7.3)

dove ↵
1

, ↵
2

, ↵
3

sono coe�cienti arbitrari. Più in generale, potremmo pensare
che R/� sia solo il termine di ordine più basso di una serie di termini con-
tenenti potenze arbitrariamente elevate del tensore di curvatura e delle sue
contrazioni. In questo caso potremmo sostituire R/� nell’azione (7.2) con
un’espressione del tipo

1

�

�

R+ �2R2 + �4R3 + �6R4 + · · ·
�

, (7.4)

dove Rn indica una generica potenza n-esima del tensore di curvatura, e
dove � è una costante con dimensioni di lunghezza necessaria per ragioni
dimensionali (tutti i termini in parentesi devono avere dimensione L�2).

In e↵etti, termini del tipo (7.4) possono essere indotti da correzioni quan-
tistiche (di loops) all’azione classica (7.2): in questo caso si trova che � è
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collegato alla costante d’accoppiamento � dalla relazione �2 ⇠ h̄c�, che mo-
stra chiaramente come tutte le correzioni spariscano nel limite classico h̄ ! 0.
Correzioni all’azione di Einstein-Hilbert nella forma di una serie infinita di
potenze della curvatura sono inoltre previste dalla teoria delle stringhe (si
vedano ad esempio i testi [26]- [29] della Bibliografia finale): in quel caso �
coincide con la lunghezza di stringa �s, che è il parametro fondamentale di
quella teoria.

Poiché la curvatura contiene il quadrato delle derivate della metrica,
R ⇠ (@g)2, potenze della curvatura superiori alla prima contengono potenze
di @g maggiori di due, e quindi danno luogo ad equazioni di↵erenziali di or-
dine superiore al secondo, molto complicate. Però, come appare chiaramente
dallo sviluppo (7.4), i termini contenenti potenze superiori della curvatura
diventano importanti rispetto al termine lineare solo per �2R >⇠ 1, vale a
dire per curvature dello spazio-tempo su�cientemente elevate rispetto alla
scala di distanze ��2 (ovvero, per raggi di curvatura trascurabili rispetto alla
lunghezza �).

Scale di curvatura di ordine ��2, d’altra parte, sono estremamente elevate
– sia nelle teorie quantistiche che nelle teorie di stringa – rispetto alle cur-
vature tipicamente associate ai campi gravitazionali (di livello macroscopico
e/o astronomico) che sono oggetto di questo testo. Possiamo dunque limitar-
ci, nel nostro contesto, all’azione di Einstein-Hilbert (7.2) (tenendo presente
però che il suo regime di validità è limitato dalla condizione �2R ⌧ 1).

Se guardiamo alla forma esplicita del tensore di curvatura, R ⇠ @� + � 2,
vediamo però che ci sono due tipi di termini: uno lineare e uno quadratico
nella connessione. L’azione di Einstein, oltre ai quadrati delle derivate pri-
me della metrica (contenuti in � 2), contiene dunque anche termini che sono
lineari nelle derivate seconde della metrica, @� ⇠ @2g. Questi ultimi, come
vedremo, appaiono nell’integrale d’azione sotto forma di una divergenza che,
integrata mediante il teorema di Gauss, fornisce l’integrale di flusso (sul bor-
do @⌦ della regione spazio-temporale considerata) di termini lineari nelle
derivate prime. Simbolicamente abbiamo:

Z

⌦

@2g ⇠
Z

@⌦

@g. (7.5)

Variando l’azione rispetto alla metrica troviamo dunque dei contributi di
bordo che sono proporzionali alla variazione delle derivate della metrica, @�g:
tali contributi, in generale, sono diversi da zero anche se imponiamo l’usuale
condizione che la variazione della metrica sia nulla (�g = 0) sul bordo @⌦ del
quadri-volume di integrazione. Con questa condizione, infatti, si annullano i
gradienti di �g presi lungo le direzioni che giacciono sull’ipersuperficie @⌦,
ma non si annullano i gradienti presi lungo la direzione normale a @⌦.

Per annullare completamente il contributo di �@g, ed ottenere cos̀ı le or-
dinarie equazioni di Eulero-Lagrange, è necessario che questi termini siano
cancellati mediante la variazione di un’opportuna azione di bordo, SY GH , che
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va dunque aggiunta alla precedente azione di Einstein-Hilbert. L’azione com-
pleta da considerare, per ottenere correttamente le equazioni di campo del
secondo ordine nella metrica mediante l’ordinario formalismo variazionale, è
dunque la seguente:

SEH + SY GH + Sm. (7.6)

Il termine SY GH , detto “azione di York-Gibbons-Hawking” (dai nomi di co-
loro che hanno chiarito questo importante punto di calcolo variazionale1),
verrà specificato in seguito.

Imponiamo dunque che l’azione completa (7.6) sia stazionaria rispetto alle
variazioni locali del tensore metrico, �gS = 0, assumendo che sia soddisfatta
la condizione di bordo (�g)@⌦ = 0.

Iniziamo dall’azione di Einstein SEH . Separando i vari contributi, ricor-
dando il risultato

�
p
�g = �1

2

p
�g gµ⌫�g

µ⌫ (7.7)

(si veda l’Eq. (3.95)), e ricordando la definizione (6.25) del tensore di Einstein
Gµ⌫ , otteniamo:

�gSEH =� 1
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Z

⌦
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Z

⌦
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�
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Z
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d4x
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�gRµ⌫�g
µ⌫ + gµ⌫Rµ⌫�

p
�g +
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�ggµ⌫�Rµ⌫

�

=� 1
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Z

⌦

d4x
p
�g

✓

Rµ⌫ �
1

2
gµ⌫R

◆

�gµ⌫ + gµ⌫�Rµ⌫

�

=� 1

2�

Z

⌦

d4x
p
�g [Gµ⌫�g

µ⌫ + gµ⌫�Rµ⌫ ] .

(7.8)

7.1.1 Contributo di bordo

Il secondo termine dell’ultima riga rappresenta il contributo di bordo che
abbiamo anticipato. Per verificarlo, calcoliamo la variazione del tensore di
Ricci partendo dalla sua definizione esplicita (6.21):

�R⌫↵ = @µ (��⌫↵
µ) + ��µ⇢

µ�⌫↵
⇢ + �µ⇢

µ��⌫↵
⇢ � {µ $ ⌫} . (7.9)

Usando la definizione di derivata covariante abbiamo

rµ (��⌫↵
µ) = @µ (��⌫↵

µ) + �µ⇢
µ��⌫↵

⇢ � �µ⌫
⇢��⇢↵

µ � �µ↵
⇢��⌫⇢

µ, (7.10)

1 J. W. York, Phys. Rev. Lett. 28, 1082 (1972); G. W. Gibbons and S. W. Hawking, Phys.
Rev. D15, 2752 (1977).
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e possiamo scrivere l’Eq. (7.9) nella forma

�R⌫↵ = rµ (��⌫↵
µ)�r⌫ (��µ↵

µ) (7.11)

(questa relazione è anche nota col nome di identità di Palatini contratta).
Il contributo di �Rµ⌫ alla variazione data dall’Eq (7.8) può essere dunque
rappresentato come una quadri-divergenza:

� 1

2�

Z

⌦

d4x
p
�g g⌫↵�R⌫↵

= � 1

2�

Z

⌦

d4x
p
�grµ (g

⌫↵��⌫↵
µ � gµ↵��↵⌫

⌫)

(7.12)

(abbiamo usato la proprietà metrica rg = 0). È importante notare che il
termine sotto divergenza (in parentesi tonda) si trasforma come un vero
tensore di tipo controvariante e rango uno, nonostante sia espresso median-
te la connessione (si veda l’Esercizio 7.1 per una versione equivalente, ma
esplicitamente covariante, dello stesso termine).

Usando il teorema di Gauss, il precedente contributo variazionale si può
riscrivere come un integrale di flusso sull’ipersuperficie @⌦ che costituisce il
bordo del quadri-volume di integrazione:

� 1

2�

Z

@⌦

dSµ

p
�g (g⌫↵��⌫↵

µ � gµ↵��↵⌫
⌫)

= � 1

2�

Z

@⌦

d3⇠
p

|h|nµ (g
⌫↵��⌫↵

µ � gµ↵��↵⌫
⌫) .

(7.13)

Nel secondo passaggio abbiamo introdotto esplicitamente l’elemento di volu-
me covariante d3⇠

p

|h| sull’ipersuperficie di bordo, orientato lungo la normale
nµ, dove nµ soddisfa

gµ⌫n
µn⌫ = ✏,✏ = ±1 (7.14)

(il segno è positivo o negativo a seconda che la normale sia di tipo tempo o
di tipo spazio, rispettivamente). Inoltre, h è il determinante della cosiddetta
“metrica indotta” hµ⌫ sull’ipersuperficie @⌦, definita in modo da risultare
tangente all’ipersuperficie stessa:

hµ⌫ = gµ⌫ � ✏nµn⌫ , hµ⌫n
⌫ = 0. (7.15)

Valutiamo ora esplicitamente il contributo (7.13), tenendo presente che la
variazione viene e↵ettuata imponendo che la metrica resti fissa sul bordo,
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(�g)@⌦ = 0. Usando la definizione (3.90) della connessione di Christo↵el, e
trascurando i termini a contributo nullo, abbiamo:

h

nµ (g
⌫↵��⌫↵

µ � gµ↵��↵⌫
⌫)
i

@⌦

= nµg⌫↵ 1

2

⇣

@⌫�g↵µ + @↵�g⌫µ � @µ�g⌫↵
⌘

�n↵g⌫µ
1

2

⇣

@↵�g⌫µ + @⌫�g↵µ � @µ�g↵⌫
⌘

= �g⌫↵nµ@µ�g⌫↵ + nµg⌫↵@⌫�g↵µ.

(7.16)

Per separare il contributo dei gradienti della metrica normali al bordo e
tangenziali al bordo è conveniente, a questo punto, utilizzare la definizione
(7.15) della metrica indotta. Usando hµ⌫ si può infatti riscrivere l’espressione
precedente come segue:

�

� g⌫↵nµ + n⌫gµ↵
�

@µ�g⌫↵ =

=
h

� nµ
�

h⌫↵ � ✏n⌫n↵
�

+ n⌫
�

hµ↵ � ✏nµn↵
�

i

@µ�g⌫↵ (7.17)

= �h⌫↵nµ@µ�g⌫↵ + n⌫hµ↵@µ�g⌫↵.

Nel secondo termine dell’ultima riga il gradiente di �g è proiettato – mediante
la metrica indotta – lungo la direzione tangente all’ipersuperficie @⌦. La
condizione di bordo usata implica che tale contributo tangenziale sia nullo,
(hµ↵@µ�g)@⌦ = 0, per cui rimane solo il primo contributo, dove il gradiente
è proiettato lungo la normale al bordo. La variazione del tensore di Ricci
fornisce quindi il seguente risultato finale:
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Z
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d3⇠
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|h|h⌫↵nµ@µ�g⌫↵. (7.18)

Questo contributo variazionale in generale è diverso da zero, e può essere can-
cellato solo dalla variazione di un opportuno termine da aggiungere all’azione
di partenza.

A questo proposito consideriamo l’azione SY GH , che in generale scriviamo
come un’integrale sull’ipersuperficie di bordo @⌦, e definiamo come:

SY GH = � 1

2�

Z

@⌦

dSµ

p
�g V µ = � 1

2�

Z

@⌦

d3⇠
p

|h|nµV
µ. (7.19)

Il termine geometrico V µ deve contenere le derivate prime della metrica, e
fornire un contributo variazionale che annulli esattamente quello del tensore
di Ricci (7.18). A parte questo, però, la sua definizione non è univoca, perché
la variazione viene e↵ettuata tenendo fissi sul bordo la metrica e le sue de-
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rivate tangenziali2. Azioni di bordo che di↵eriscono per arbitrarie funzioni
della metrica gµ⌫ , del vettore normale nµ, e delle loro derivate tangenziali
h↵�@�gµ⌫ , h↵�@�nµ forniscono lo stesso contributo variazionale (si noti che
la variazione di nµ viene ottenuta di↵erenziando l’Eq. (7.14), ed è quindi
proporzionale a quella di gµ⌫).

Un possibile esempio di azione di bordo, facile da scrivere in forma
covariante e da interpretare geometricamente, si ottiene considerando la
cosiddetta “curvatura estrinseca” Kµ⌫ della superficie di bordo,

Kµ⌫ = h↵µh
�
⌫r↵n� = K⌫µ, Kµ⌫n

⌫ = 0, (7.20)

e scegliendo come Lagrangiana di bordo

nµV
µ = 2K ⌘ 2hµ⌫Kµ⌫ = 2hµ⌫

�

@µn⌫ � �µ⌫
↵n↵

�

. (7.21)

La sua variazione, trascurando termini con contributo nullo, fornisce:
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(7.22)

Sostituendo questa Lagrangiana nell’azione (7.19) abbiamo dunque il contri-
buto variazionale

�gSY GH = � 1
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d3⇠
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|h|hµ⌫n↵@↵�gµ⌫ , (7.23)

che cancella esattamente il contributo (7.18). Sommando le equazioni (7.8),
(7.18) e (7.23) si ottiene dunque

�g (SEH + SY GH) = � 1

2�

Z

⌦

d4x
p
�g Gµ⌫�g

µ⌫ . (7.24)

7.1.2 Contributo dell’azione materiale

Per completare la variazione dell’azione (7.6) dobbiamo ancora variare ri-
spetto alla metrica l’azione materiale (7.1). Tenendo presente che Lm può

2 È interessante notare, in particolare, che sommando alla curvatura scalare un opportuno
termine di bordo è possibile ricondursi ad un’azione che contiene solo i termini quadratici
nella connessione (e che quindi è quadratica nelle derivate prime della metrica), e che
riproduce le stesse equazioni del moto dell’azione SEH + SY GH (si veda il testo [3] della
Bibliografia finale).



124 7 Equazioni di Einstein per il campo gravitazionale

dipendere da gµ⌫ e dalle sue derivate possiamo scrivere, in generale,
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(7.25)

(nel secondo passaggio abbiamo applicato il teorema di Gauss, e sfruttato la
condizione di bordo (�g)@⌦ = 0). Abbiamo omesso, per semplicità, termini
con derivate della metrica di ordine superiore al primo, dato che tali termini
sono assenti nelle azioni dei sistemi fisici di tipo più convenzionale. In ogni
caso, il risultato (7.25) può essere espresso in maniera compatta e generale
introducendo un tensore simmetrico Tµ⌫ tale che
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�g Tµ⌫�g

µ⌫ , (7.26)

ovvero, in forma di derivata funzionale,

Tµ⌫ =
2p�g

� (
p�gLm)

�gµ⌫
, (7.27)

dove il simbolo �/�gµ⌫ indica la successione di operazioni di↵erenziali e↵et-
tuate dentro la parentesi quadra nella seconda riga dell’Eq. (7.25).

7.1.3 Equazioni di Einstein

Sommando i contributi variazionali (7.24), (7.26), ed imponendo la condi-
zione di stazionarietà, �S = 0, per arbitrarie variazioni �gµ⌫ della metrica,
otteniamo infine le equazioni di Einstein,

Gµ⌫ ⌘ Rµ⌫ �
1

2
gµ⌫R = �Tµ⌫ . (7.28)

Prendendo la traccia abbiamo Gµ
µ = �R = �T , dove T = Tµ

µ. Perciò,
sostituendo R con T , le equazioni di Einstein si possono anche scrivere:

Rµ⌫ = �

✓

Tµ⌫ �
1

2
gµ⌫T

◆

. (7.29)

Nel resto del capitolo discuteremo alcuni importanti aspetti di queste equazio-
ni, a cominciare dall’interpretazione fisica del tensore Tµ⌫ che verrà illustrata
nella sezione seguente.
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7.2 Il tensore dinamico energia-impulso

Il tensore Tµ⌫ , definito dalle equazioni (7.26), (7.27), è il cosiddetto tensore
dinamico energia-impulso (anche detto tensore metrico energia-impulso).

L’aggettivo “dinamico” si può facilmente spiegare facendo riferimento al
fatto che questo tensore gioca il ruolo di sorgente della curvatura dello spazio-
tempo, descritta dal membro sinistro delle equazioni di Einstein. L’aggettivo
“metrico” si riferisce invece alla sua origine, ossia al fatto che Tµ⌫ si ottiene
variando l’azione materiale rispetto alla metrica gµ⌫ . Tale definizione, tra
l’altro, ne garantisce automaticamente la simmetria (Tµ⌫ = T⌫µ). Molto meno
ovvia, invece, è la la spiegazione del perché tale tensore si possa interpretare
come densità d’energia e di impulso del sistema materiale considerato.

Dobbiamo innanzitutto ricordare, a questo proposito, che nel primo capi-
tolo di questo libro abbiamo visto come il tensore canonico energia-impulso
rappresenti le “correnti” che si conservano in seguito all’invarianza per tra-
slazioni (si veda in particolare la Sez. 1.2). Nel contesto dello spazio-tempo
di Minkowski abbiamo considerato, in particolare, traslazioni di tipo globale,
ossia dipendenti da parametri costanti. Uno spazio-tempo di tipo Rieman-
niano, però, non è in generale compatibile con questo tipo di trasformazioni
“rigide” delle coordinate. Dobbiamo considerare al loro posto le traslazioni
locali, rappresentate da trasformazioni del tipo

xµ ! x0µ = xµ + ⇠µ(x), (7.30)

dove la traslazione descritta dal parametro ⇠µ (che supporremo infinitesimo)
può variare da punto a punto.

Lavorando in un contesto Riemanniano, chiediamoci dunque sotto qua-
li condizioni un sistema fisico, rappresentato dal campo  immerso in uno
spazio-tempo curvo, e descritto dalla generica azione materiale (7.1), risul-
ti invariante per traslazioni locali infinitesime. Per rispondere calcoliamo la
variazione dell’azione generata dalla trasformazione infinitesima (7.30), impo-
nendo, come vincolo, che siano soddisfatte le equazioni del moto (di Eulero-
Lagrange) del campo  . Seguiamo cioè la procedura dettata dal teorema di
Nöther, già utilizzata nella Sez. 1.2 a proposito delle traslazioni globali nello
spazio piatto. Partendo dall’azione (7.1) imponiamo dunque

�⇠Sm =

Z
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d4x
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p�gLm)
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�(
p�gLm)

�gµ⌫
�⇠g

µ⌫

�

, (7.31)

dove �⇠ e �⇠gµ⌫ denotano le variazioni locali (e indipendenti tra loro) del
campo e della metrica indotte dalla trasformazione infinitesima(7.30), cal-
colate al primo ordine in ⇠µ. Esse moltiplicano, rispettivamente, le derivate
funzionali della densità di azione

p�gLm, calcolate (a x fissato) rispetto a  
e a gµ⌫ . È opportuno sottolineare che non ci sono contributi a �⇠Sm diretta-
mente indotti dalla variazione delle coordinate, �xµ = ⇠µ, perché sia d4x

p�g
che Lm sono scalari, invarianti per di↵eomorfismi.
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Notiamo ora che il primo termine del precedente integrale fornisce esatta-
mente le equazioni di Eulero-Lagrange per  , e dunque si annulla se richie-
diamo – in accordo al teorema di Nöther – che le equazioni del moto siano
soddisfatte. Nel secondo termine, la variazione locale della metrica prodotta
da una trasformazione di coordinate infinitesima del tipo (7.30) è già sta-
ta considerata in Sez. 3.3 (si veda l’Eq. (3.42)), e si può scrivere, in forma
covariante compatta, come segue:

�⇠g
µ⌫ = rµ⇠⌫ +r⌫⇠µ (7.32)

(si veda in particolare la soluzione dell’Esercizio 3.4). Inoltre, la derivata
funzionale della Lagrangiana materiale fatte rispetto alla metrica definisce il
tensore Tµ⌫ , in accordo all’Eq. (7.27). Arriviamo quindi al risultato
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=
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�g Tµ⌫rµ⇠⌫ ,

(7.33)

dove abbiamo sfruttato la proprietà di simmetria simmetria di Tµ⌫ = T⌫µ.
A questo punto è conveniente mettere in evidenza una quadri-divergenza,

e riscrivere il risultato nella forma

�⇠Sm =

Z

⌦

d4x
p
�g [rµ (T⌫

µ⇠⌫)� ⇠⌫rµT⌫
µ] . (7.34)

Il primo termine rappresenta una divergenza totale e si può trasformare,
col teorema di Gauss, in un integrale di flusso di termini proporzionali a
Tµ

⌫ sul bordo @⌦ della regione di integrazione. Il suo contributo è nullo se il
sistema considerato è localizzato in una porzione finita di spazio, e Tµ⌫ tende a
zero in modo su�cientemente rapido sul bordo della regione spazio-temporale
considerata. In ogni caso, un termine con la forma di quadri-divergenza si può
anche riassorbire nella parte dell’azione che porta alle equazioni del moto del
sistema, e non dà contributi alla variazione �⇠Sm.

Possiamo quindi concludere che l’azione è invariante per traslazioni locali
infinitesime, generate da un arbitrario parametro ⇠µ(x), se vale la legge di
conservazione convariante

r⌫Tµ
⌫ = 0. (7.35)

Questo risultato ci permette di identificare Tµ⌫ come la corretta versione
generalizzata del tensore energia-impulso, valida nel caso di uno spazio-tempo
curvo dotato di una generica struttura geometrica Riemanniana.

È importante osservare che questo risultato è anche in accordo con la
consistenza formale delle equazioni di Einstein. L’identità di Bianchi contrat-
ta (6.26) implica infatti che il tensore di Einstein, ossia il membro sinistro
dell’Eq. (7.28), abbia divergenza covariante nulla. Perciò anche il membro
destro, ossia Tµ⌫ , deve avere divergenza covariante nulla. D’altra parte la di-
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vergenza di Tµ⌫ , in accordo all’Eq. (7.34), controlla la variazione dell’azione
materiale prodotta dalle traslazioni locali. Ne consegue che, per la consistenza
formale delle equazioni di Einstein, l’azione materiale deve essere invariante
per traslazioni locali infinitesime – ossia, per di↵eomorfismi del tipo (7.30)
– il che significa che la materia deve accoppiarsi alla geometria in modo
general-covariante.

La general-covarianze della teoria che stiamo considerando – ovvero la
simmetria intrinseca dell’azione (7.6) rispetto al gruppo dei di↵eomorfismi –
emerge anche dall’osservazione seguente.

Il vincolo di divergenza nulla,

r⌫Gµ
⌫ = �r⌫Tµ

⌫ = 0, (7.36)

impone 4 condizioni sulle 10 componenti delle equazioni di Einstein (7.28),
lasciando solo 6 componenti indipendenti. Risolvendo tali equazioni è dun-
que possibile determinare, al massimo, solo 6 delle 10 componenti del tensore
metrico gµ⌫ . Uno studio dettagliato del cosiddetto “problema di Cauchy” as-
sociato alle equazioni di Einstein – che costituiscono, in generale, un sistema
di equazioni di↵erenziali non lineari alle derivate parziali del secondo ordine
– mostra infatti che ci sono solo sei equazioni di tipo veramente “dinami-
co”, contenenti cioè le derivate temporali seconde della metrica. Le restanti
quattro equazioni contengono solo derivate temporali prime, e rappresenta-
no quindi “vincoli” sulla distribuzione dei dati iniziali, ma non servono a
determinare l’evoluzione temporale delle variabili incognite.

D’altra parte, il fatto che 4 componenti della metrica restino arbitrarie
è in perfetto accordo con la covarianza della teoria, in virtù della quale ci
deve sempre essere la libertà di cambiare il sistema di coordinate, xµ ! x0µ,
e di imporre sulla metrica 4 condizioni di “gauge”, fissando cos̀ı i gradi di
libertà residui. Tali condizioni possono anche essere usate per semplificare le
equazioni di campo, come vedremo in modo esplicito nel capitolo seguente.

7.2.1 Esempi: campo scalare, vettoriale, sorgente

puntiforme

Il tensore energia-impulso dinamico, definito dalle equazioni (7.26), (7.27), ge-
neralizza al caso Riemanniano e general-covariante il corrispondente tensore
energia-impulso canonico nella sua forma già automaticamente simmetriz-
zata. Lo verificheremo, in questa sezione, nel caso particolare di un campo
scalare, di un campo vettoriale a massa nulla (il campo elettromagnetico), e
di una particella massiva puntiforme.

Cominciamo col caso scalare, considerando un campo � che nello spazio-
tempo di Minkowski è descritto dalla densità di Lagrangiana (1.64) (in unità
h̄ = c = 1). La corrispondente azione covariante in una generica varietà
Riemanniana si ottiene applicando il principio di minimo accoppiamento
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(Capitolo 4), ed è data da:

S =

Z

⌦

d4x
p
�g



1

2
gµ⌫@µ�@⌫�� V (�)

�

. (7.37)

Il confronto con l’Eq. (7.1) fornisce allora la Lagrangiana e↵ettiva (o densità
di azione) seguente:

p
�gLm =

p
�g

✓

1

2
gµ⌫@µ�@⌫�� V

◆

. (7.38)

Abbiamo messo in evidenza esplicita la dipendenza dalla metrica anche nei
prodotti scalari, perché è rispetto alla metrica che dobbiamo variare questa
espressione per ottenere il tensore energia-impulso (7.27).

In questo caso particolare la Lagrangiana dipende da g ma non dalle sue de-
rivate, per cui la derivata funzionale dell’Eq. (7.27) si riduce ad una semplice
derivata parziale:

Tµ⌫ =
2p�g

� (
p�gLm)

�gµ⌫
=

2p�g

@ (
p�gLm)

@gµ⌫
. (7.39)

Utilizzando il risultato (7.7) otteniamo allora

Tµ⌫ =
2p�g
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(7.40)

che rappresenta la versione covariante del tensore canonico (1.68) (già simme-
trico anche nel caso canonico, per l’assenza di momento angolare intrinseco).
Si può verificare facilmente che la divergenza covariante di questo tensore è
nulla, purché siano soddisfatte le equazioni del moto del campo scalare (si
veda l’Esercizio 7.2).

Ripetiamo la stessa procedura per il campo elettromagnetico, che in un
generico spazio-tempo Riemanniano è descritto dall’azione covariante (4.5).
Consideriamo il campo nel vuoto, per semplicità, e poniamo Jµ = 0. La
densità di Lagrangiana associata all’azione (4.5) è la seguente:

p
�gLm = �

p�g

16⇡

�

gµ⌫g↵�Fµ↵F⌫�
�

, (7.41)

e anche in questo caso non compaiono derivate della metrica. Applicando
l’Eq. (7.39) troviamo

Tµ⌫ =
2p�g



�
p�g
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◆

,

(7.42)
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dove F 2 ⌘ F↵�F↵� . Abbiamo cos̀ı ottenuto la versione covariante del tensore
canonico nella sua forma simmetrizzata (si veda l’Eq. (1.74)).

Va notato, a questo punto, che la definizione del tensore dinamico energia-
impulso può essere usata anche come procedura di simmetrizzazione diret-
tamente nello spazio-tempo piatto di Minkowski: si accoppia formalmente il
sistema materiale ad una “fittizia” geometria curva descritta dalla metrica
gµ⌫ , si varia rispetto alla metrica applicando la definizione (7.27), e poi si
prende il limite gµ⌫ ! ⌘µ⌫ .

Consideriamo infine una particella puntiforme, che nello spazio-tempo di
Mikowski è descritta dall’azione (1.120) (si veda l’Esercizio 1.4). In un con-
testo geometrico descritto da un’arbitraria metrica gµ⌫ l’azione covariante
diventa

S = mc

Z

⌦

d4x

Z

d⌧
p

ẋµẋ⌫gµ⌫ �
4

�

x� x(⌧)
�

(7.43)

(dove abbiamo scelto il segno in modo da adeguarci alle convenzioni usa-
te per l’azione di Einstein nella sezione precedente). Si noti, in particolare,
l’assenza del fattore

p�g nella misura di integrazione sul quadri-volume ⌦:
la distribuzione �4(x) si comporta infatti come una densità scalare di peso
w = �1 (si veda la Sez. 3.2), e quindi d4x �4(x) rappresenta già uno scalare
per trasformazioni generali di coordinate.

La corrispondente densità di Lagrangiana (canonicamente normalizata
come densità d’energia),

p
�gLm = mc2

Z

d⌧
p

ẋµẋ⌫gµ⌫ �
4

�

x� x(⌧)
�

, (7.44)

è localizzata con una distribuzione deltiforme sulla posizione istantaneamen-
te occupata dalla particella, lungo la sua traiettoria spazio-temporale. An-
che questa Lagrangiana dipende dalla metrica ma non dalle sue derivate, ed
applicando l’Eq. (7.39) troviamo:

Tµ⌫ =
2p�g



mc2

2

Z

d⌧
ẋµẋ⌫p
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�4
�

x� x(⌧)
�

�

. (7.45)

Identificando il parametro ⌧ col tempo proprio abbiamo ẋ↵ẋ↵ = c2, e
arriviamo cos̀ı al tensore energia-impulso

Tµ⌫(x) =
mcp�g

Z

d⌧ �4
�

x� x(⌧)
�

uµu⌫ , (7.46)

dove uµ = ẋµ è la quadri-velocità della particella, e x(⌧) è la curva che
rappresenta la sua “linea d’universo” spazio-temporale. Questa espressione
generalizza il risultato (1.87) ottenuto nel contesto della relatività ristretta,
rendendolo covariante rispetto ai di↵eomorfismi (si noti, in particolare, che
�4(x)/

p�g si trasforma esattamente come uno scalare). Lo stesso risultato
può essere ottenuto anche partendo dalla forma alternativa dell’azione per
una particella libera, presentata nell’Eq. (5.2).
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Il tensore energia-impulso (7.46) si può anche riscrivere in una forma equi-
valente che non è esplicitamente covariante, ma che risulta conveniente per
alcune applicazioni successive. Separando la delta sulla coordinata tempora-
le, e parametrizzando la traiettoria con una generica variabile temporale t0,
possiamo porre infatti

Tµ⌫(x, t) =
mcp�g

Z

dt0 �4
�

x� x(t0)
�

uµ
dx⌫
dt0

⌘ c

Z

dt0�
�

x0 � ct0
�

Tµ⌫(x, t
0),

(7.47)

da cui otteniamo

Tµ⌫(x, t) =
mp�g

�3
�

x� x(t)
�

uµ
dx⌫
dt

, (7.48)

o anche
Tµ⌫(x, t) =

cp�g
�3
�

x� x(t)
�pµp⌫

p0
, (7.49)

dove pµ = muµ = mdxµ/d⌧ e p0 = mdx0/d⌧ . Queste due ultime espressioni
generalizzano, rispettivamente, le versioni (1.83) e (1.85) del tensore energia-
impulso canonico, ottenuto nello spazio-tempo di Minkowski, al caso di una
generica varietà Riemanniana.

7.3 Equazioni di Einstein con costante cosmologica

L’azione di Einstein della Sez. 7.1 si può generalizzare introducendo non so-
lo potenze della curvatura di ordine superiore, ma anche potenze di ordine
zero, ossia termini costanti. Il determinante della metrica, presente nella mi-
sura d’integrazione spazio-temporale, fa s̀ı che anche una costante fornisca
un contributo dinamico alle equazioni di campo.

Consideriamo infatti la seguente generalizzazione dell’azione di Einstein-
Hilbert (7.2),

S = �
Z
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d4x
p
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✓
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◆

, (7.50)

dove ⇤ è un parametro costante con le dimensioni di una densità d’energia.
La variazione rispetto alla metrica del nuovo termine fornisce il contributo

�g
�

�
p
�g⇤

�

=
1

2

p
�g gµ⌫⇤� g

µ⌫ (7.51)

(si veda l’Eq. (7.7)). Sommando gli altri contributi variazionali forniti dal-
le equazioni (7.24) e (7.26) si ottengono le seguenti equazioni di campo
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generalizzate:
Gµ⌫ = �

�

Tµ⌫ + gµ⌫⇤
�

. (7.52)

Queste equazioni restano compatibili con il vincolo di divergenza nulla (7.36),
in quanto r⌫gµ⌫ = 0.

La costante ⇤ è chiamata “costante cosmologica”, perché è stata origina-
riamente introdotta (da Einstein) per permettere soluzioni cosmologiche delle
equazioni di campo che descrivano una geometria indipendente dal tempo,
e quindi un Universo di tipo statico. Risolvendo le equazioni (7.52), e assu-
mendo che ⇤ abbia un segno positivo e un appropriato valore numerico, si
trova infatti che ⇤ genera delle forze gravitazionali di tipo repulsivo che sono
in grado di controbilanciare le forze attrattive generate dalle altre sorgenti
materiali descritte da Tµ⌫ , mantenendo cos̀ı l’Universo in una configurazione
d’equilibrio statico (che però è instabile).

La presenza (o comunque la rilevanza fisica) del termine cosmologico ⇤gµ⌫
è stata messa seriamente in dubbio dalle scoperte astronomiche che hanno
confermato – sin dalla prima metà del secolo scorso e dall’epoca delle legge
di Hubble-Humason – la “non-staticità” del nostro Universo, e lo stato di
espansione della geometria cosmica su grande scala.

Recentemente, però, l’importanza e la necessità di tale termine è stata
rivalutata, sia nel contesto dei moderni modelli “inflazionari” dell’Universo
primordiale, sia alla luce delle recenti osservazioni (basate soprattutto sui
dati delle Supernovae) che attribuiscono all’Universo attuale uno stato di
espansione accelerata. In questi casi, però, il ruolo delle forze repulsive ge-
nerate da ⇤ non è più quello di garantire la staticità della geometria, bens̀ı
quello di accelerarne l’evoluzione temporale, cancellando e sopravanzando le
forze frenanti prodotte dalle altre sorgenti. Si vedano, a questo proposito, i
testi [19, 20, 22] della Bibliografia finale.

Al di là delle possibili interpretazioni e applicazioni cosmologiche, l’Eq.
(7.52) mostra chiaramente che l’e↵etto dinamico di un termine costante
nell’azione è quello di aggiungere alle sorgenti gravitazionali un tensore
energia-impulso e↵ettivo proporzionale alla metrica,

⌧µ⌫ ⌘ gµ⌫⇤. (7.53)

Un tensore energia-impulso di questo tipo si può interpretare, formalmente,
come quello di un fluido perfetto con densità d’energia ⇢ = ⇤ ed equazione
di stato p = �⇢.

Infatti, se consideriamo il tensore energia-impulso fluido-dinamico che ab-
biamo introdotto nell’Eq. (1.97), e lo generalizziamo mediante il principio
di minimo accoppiamento per renderlo covariante in un contesto geometrico
Riemanniano, otteniamo l’espressione:

Tµ⌫ = (⇢+ p)
uµu⌫
c2

� pgµ⌫ . (7.54)
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È immediato verificare che l’Eq. (7.53) per ⌧µ⌫ può essere riprodotta ponendo
⇢+ p = 0, e �p = ⇢ = ⇤. Ma quale fluido, o quale tipo di campo materiale,
può essere descritto da un tensore energia-impulso di quel tipo?

Il fatto che tale tensore sia indipendente dalla Lagrangiana materiale, e
contribuisca alle equazioni di Einstein anche in assenza di altre sorgenti, sug-
gerisce la possibilità che ⌧µ⌫ sia da identificare con il tensore energia-impulso
e↵ettivo associato non ad un particolare sistema fisico, ma allo spazio-tempo
stesso, anche se vuoto. E in e↵etti, se includiamo le cosiddette “energie di
punto zero” delle fluttuazioni quantistiche del vuoto – sempre presenti anche
quando i campi classici sono nulli – troviamo che lo stato di vuoto delle teo-
rie di campo quantistiche ha un’energia media costante h⇢i 6= 0, e un tensore
energia-impulso il cui valore di aspettazione assume la generica forma3

hTµ⌫i = h⇢igµ⌫ . (7.55)

È lecito quindi interpretare fisicamente la costante ⇤ come densità d’energia
media del vuoto. Anch’essa, come qualunque altra forma d’energia, contri-
buisce ad incurvare la geometria dello spazio-tempo – agendo da sorgente
gravitazionale – attraverso il tensore energia-impulso e↵ettivo (7.53).

In accordo a questa interpretazione possiamo (e dobbiamo) includere in
⇤ tutti gli eventuali contributi all’energia del vuoto, di tipo classico o quan-
tistico, tenendo conto di tutte le interazioni note e delle loro sorgenti. Un
possibile contributo tipico del modello standard delle interazioni fondamen-
tali, ad esempio, è quello fornito da un campo scalare costante, localizzato al
minimo del suo potenziale V (�). In quel caso, infatti, l’equazione del moto
(7.94) (si veda l’Esercizio 7.2) è risolta ponendo � = �

0

, dove �
0

è la posizio-
ne dell’estremo, (@V/@�)�0 = 0. Sostituendo nella (7.40) si ottiene il tensore
energia-impulso di questa configurazione scalare,

Tµ⌫ = gµ⌫V (�
0

), (7.56)

che coincide appunto con l’Eq. (7.53) con ⇤ = V (�
0

).
Il valore complessivo di ⇤, per non essere in conflitto con le attuali osserva-

zioni relative alla geometria cosmica su grande scala, deve essere però estre-
mamente piccolo4: più precisamente, deve soddisfare il vincolo ⇤ <⇠ 6⇥ 10�9

erg/cm3, ovvero, in unità h̄ = c = 1, ⇤ <⇠ 3 ⇥ 10�47 GeV4. Va detto che la
spiegazione di tale valore numerico costituisce attualmente uno dei maggiori
problemi aperti della fisica teorica contemporanea.

Vista la piccolezza del valore permesso per ⇤, il suo contributo alle equa-
zioni di campo (7.52) può essere tranquillamente trascurato in presenza (e in
prossimità) delle ordinarie sorgenti macroscopiche e astronomiche che saran-
no prese in considerazioni in questo testo. D’ora in avanti useremo quindi, in
tutte le applicazioni, le equazioni di Einstein senza il termine cosmologico.

3 Si veda ad esempio S. Weinberg, Rev. Mod. Phys. 61, 1 (1989).
4 Si veda ad esempio Particle Data Group, all’indirizzo web http://pdg.lbl.gov .
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È però importante notare, prima di abbandonarlo completamente, che tale
termine permette di ottenere interessanti soluzioni delle equazioni di Einstein
anche in assenza di altre sorgenti.

Ponendo Tµ⌫ = 0, e prendendo la traccia dell’Eq. (7.52), otteniamo infatti
le equazioni:

Rµ⌫ = ��⇤gµ⌫ , R = �4�⇤. (7.57)

Il confronto con le equazioni (6.44), (6.45) mostra immediatamente che la
costante cosmologica induce sulla varietà spazio-temporale una geometria
massimamente simmetrica, con curvatura costante e parametro di curvatura
k che, in D = 4, è collegato a ⇤ dalla relazione

k =
1

3
�⇤. (7.58)

Con una costante cosmologica positiva – o, equivalentemente, con un fluido
perfetto che soddisfa a ⇢ = �p = cost, ⇢ > 0 – si ottiene dunque dalle
equazioni di Einstein la soluzione esatta di de Sitter (si veda la Sez. 6.3 e
l’Esercizio 6.6), che descrive una pseudo-ipersfera a quattro dimensioni con
raggio di curvatura a = cost, tale che:

a2 =
1

k
=

3

�⇤
. (7.59)

Per ⇤ < 0 si ottiene invece una varietà a curvatura costante negativa, detta
spazio di anti-de Sitter. Tale tipo di geometria non sembra attualmente avere
applicazioni di tipo cosmologico o fenomenologico; essa, però, gioca un ruolo
formale rilevante nell’ambito di alcuni modelli gravitazionali supersimmetrici
(si veda il Capitolo 14).

7.4 Conservazione dell’energia-impulso e moto dei corpi
di prova

In questa sezione mostreremo che l’equazione del moto di un corpo di prova
libero, immerso in un’arbitraria geometria spazio-temporale, si può diret-
tamente dedurre dall’equazione di conservazione covariante del suo tensore
energia-impulso. Vedremo, in particolare, che l’equazione del moto risulta di
tipo geodetico solo nell’approssimazione in cui il corpo può essere trattato co-
me una particella puntiforme, con estensione trascurabile e nessuna struttura
interna.

Se il corpo ha una struttura, invece, il campo di gravità esterno induce
delle forze “di marea” tra gli elementi che lo compongono: si genera cos̀ı
un accoppiamento tra i momenti interni (ad esempio, il momento angolare
intrinseco, il momento di quadripolo, etc.) e la curvatura dello spazio-tempo.
Di conseguenza, la traiettoria del moto devia da quella geodetica.
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Partiamo dall’Eq. (7.35), che riscriviamo in modo esplicito come segue:
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(abbiamo usato l’Eq. (3.97) per la traccia della connessione). Moltiplicando
per

p�g otteniamo l’equazione

@⌫
�p

�gTµ⌫
�

+
p
�g�⌫↵

µT↵⌫ = 0, (7.61)

equivalente alla (7.35).
Supponiamo ora che Tµ⌫ rappresenti il tensore energia-impulso di un corpo

di prova, ossia di un corpo che non influenza in modo significativo la geometria
nella quale è immerso, e che è localizzato in una porzione limitata di spazio.
Possiamo quindi assumere che Tµ⌫ sia diverso da zero solo all’interno di uno
stretto “tubo d’universo” (a quattro dimensioni), centrato attorno alla “linea
d’universo” unidimensionale, zµ(t), che descrive la traiettoria del baricentro
del corpo di prova.

Per illustrare in modo diretto la dipendenza del moto dai momenti interni
del corpo integriamo l’Eq. (7.61) su di una ipersuperficie spaziale ⌃ che si
estende all’infinito, e che interseca il “tubo d’universo” ad un dato istante
t = costante. Separando la divergenza in parte spaziale e parte temporale
abbiamo:
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Usando il teorema di Gauss troviamo che il primo termine non contribuisce
(perché Tµ⌫ , che descrive una sorgente localizzata, è nullo a distanza infinita),
e la precedente condizione si riduce a

1

c
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µT↵⌫ = 0. (7.63)

Consideriamo innanzitutto il caso di un corpo puntiforme, che evolve lungo la
traiettoria zµ = zµ(t), e che è descritto dalla distribuzione di energia-impulso
(7.48) (dove x(t) è ovviamente sostituito da z(t)). In questo caso l’integrazione
si e↵ettua immediatamente grazie alla presenza di �3(x� z(t)), e si ottiene

dpµ

dt
+ �⌫↵

µp↵
dz⌫

dt
= 0, (7.64)

dove abbiamo posto pµ = muµ = mdzµ/d⌧ . Moltiplicando per dt/d⌧ si ri-
trova cos̀ı l’equazione della geodetica che – come già visto nella Sez. 5.1 –
è l’equazione del moto per una particella puntiforme libera, in uno generico
spazio-tempo Riemanniano. Questa equazione del moto rimane valida an-
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che per un corpo di prova esteso, a patto che i momenti associati alla sua
struttura interna siano trascurabili.

Consideriamo infatti l’Eq. (7.63), e sviluppiamo in serie di Taylor la con-
nessione dentro al “tubo d’universo”, attorno alla posizione del baricentro
zµ(t):

�⌫↵
µ(x) = �⌫↵

µ(z) + (@⇢�⌫↵
µ)z (x

⇢ � z⇢) + · · · . (7.65)

Supponiamo che la sezione del tubo abbia un’estensione |�x| = |x� z| molto
minore del raggio di curvatura dello spazio-tempo, cos̀ı da poter trattare
in modo perturbativo tutti i termini dello sviluppo superiori al primo. Si
ottiene allora un’espansione di tipo “multipolare”, che approssima con una
serie infinita di termini l’equazione del moto esatta (7.63):

1

c

d

dt

Z

⌃

d3x
p
�g Tµ0 + �⌫↵

µ(z)

Z

⌃

d3x
p
�g T↵⌫

+(@⇢�⌫↵
µ)z

Z

⌃

d3x
p
�g T↵⌫ (x⇢ � z⇢) + · · · = 0.

(7.66)

Consideriamo inoltre la divergenza di x↵
p�gTµ⌫ che, usando l’Eq. (7.61), si

può esprimere come:

@⌫
�

x↵
p
�gTµ⌫

�

=
p
�gTµ↵ + x↵@⌫

�p
�gTµ⌫

�

=
p
�gTµ↵ � x↵

p
�g�⌫�

µT �⌫ .
(7.67)

Integrando questa relazione sull’ipersuperficie ⌃, ed usando il teorema di
Gauss, otteniamo la condizione

1

c

d

dt

Z

⌃

d3x
p
�g x↵Tµ0 �

Z

⌃

d3x
p
�g Tµ↵

+

Z

⌃

d3x
p
�g �⌫�

µT �⌫x↵ = 0.

(7.68)

Sviluppando in serie la connessione (si veda l’Eq. (7.65)) abbiamo infine

1

c

d

dt

Z

⌃

d3x
p
�g x↵Tµ0 �

Z

⌃

d3x
p
�g Tµ↵

+�⌫�
µ(z)

Z

⌃

d3x
p
�g T �⌫x↵ (7.69)

+ (@⇢�⌫�
µ)z

Z

⌃

d3x
p
�g T �⌫x↵ (x⇢ � z⇢) + · · · = 0.

Prendiamo ora un corpo di prova per il quale tutti gli integrali del tipo
Z

⌃

d3x
p
�g Tµ⌫�x↵ �x↵ = x↵ � z↵, (7.70)
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(che rappresentano momenti interni di tipo “dipolare”), siano nulli o tra-
scurabili, cos̀ı come tutti gli integrali che rappresentano momenti di ordine
superiore, del tipo

R

T �x�x,
R

T �x�x�x, etc. In questo caso possiamo de-
scrivere il moto nella cosiddetta approssimazione di “monopolo”. Ponendo
nell’Eq. (7.69) x↵ = z↵ + �x↵, ricavando il secondo integrale in funzione de-
gli altri, e sostituendo il risultato nell’Eq. (7.66) – trascurando ovviamente
tutti gli integrali multipolari e i termini di ordine superiore nello sviluppo –
otteniamo:

1

c

d

dt

Z

⌃

d3x
p
�g Tµ0 + �⌫↵

µ(z)
dz⌫

dt

1

c

Z

⌃

d3x
p
�g T↵0 = 0. (7.71)

Sostituendo la definizione

1

c

Z

⌃

d3x
p
�g Tµ0 = pµ (7.72)

(che generalizza quella canonica della Sez. 1.2) ritroviamo infine, in questa
approssimazione, l’equazione geodetica (7.64).

Se invece abbiamo un corpo di prova per il quale i momenti interni di
tipo (7.70) non sono trascurabili, troviamo che la sua equazione del moto
non è più una geodetica: compaiono infatti correzioni che – come appare
evidente dall’Eq. (7.66) – dipendono dai gradienti della connessione e che,
come vedremo, si possono esprimere mediante la curvatura e le sue derivate
superiori. È utile (ed interessante) calcolare esplicitamente queste correzioni
nel caso più comune di corpo con struttura interna di tipo dipolare, ossia di
un corpo di prova che possiede momento angolare intrinseco.

A questo scopo osserviamo, innanzitutto, che le equazioni del moto (7.66),
cos̀ı come l’equazione che definisce l’impulso (7.72), non sono equazioni scrit-
te in una forma esplicitamente covariante. Inoltre, l’oggetto definito dall’Eq.
(7.72) non è globalmente conservato (ossia, @⌫(

p�gTµ⌫) 6= 0, in accordo
all’Eq. (7.61)), e quindi il suo valore dipende dalla scelta dell’ipersuperficie
⌃ su cui si e↵ettua l’integrazione. Ciò si comprende, fisicamente, osservando
che Tµ⌫ descrive correttamente l’energia-impulso del corpo di prova, ma non
include completamente il corrispondente contributo del campo gravitazionale
esterno. D’altra parte, in presenza di interazioni tra corpi materiali e geome-
tria – cos̀ı come in tutti i sistemi fisici composti da varie parti distinte e tra
loro interagenti – quello che ci aspettiamo è che si conservi l’energia totale
del sistema.

Per esprimere le equazioni del moto in forma esplicitamente covariante
consideriamo il caso (fisicamente realistico) di una geometria che ammette
isometrie, e quindi vettori di Killing ⇠µ (si veda la Sez. 3.3). In questo caso si
può definire una quantità che è globalmente conservata (proprio come nello
spazio-tempo di Minkowski) proiettando il tensore energia-impulso lunga la
direzione spazio-temporale individuata dall’isometria data.
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Consideriamo infatti il vettore Jµ = Tµ⌫⇠⌫ che, per costruzione, ha
divergenza covariante nulla,

rµ (T
µ⌫⇠⌫) = ⇠⌫rµT

µ⌫ + Tµ⌫r
(µ⇠⌫) ⌘ 0 (7.73)

(abbiamo usato le equazioni (7.35) e (3.107)). Integrando questa equazione su
di un dominio spazio-temporale ⌦, e usando il teorema di Gauss, otteniamo
che il flusso di Jµ sul bordo @⌦ è nullo

Z

⌦

d4x
p
�grµ (T

µ⌫⇠⌫) =

Z

@⌦

dSµ

p
�g Tµ⌫⇠⌫ = 0, (7.74)

(se assumiamo, come al solito, che Tµ⌫ sia prodotto da una distribuzione
di sorgenti spazialmente localizzata). Prendiamo allora un quadri-volume ⌦
delimitato da due ipersuperfici spaziali ⌃

1

e ⌃
2

, che intersecano, in due tempi
diversi t

1

e t
2

, il “tubo d’universo” del corpo di prova (si veda la Fig. 1.1).
Ripetendo gli argomenti della Sez. 1.2 (si veda in particolare l’Eq. (1.33)) si
trova dunque che il seguente integrale

Z

⌃

dSµ

p
�g Tµ⌫⇠⌫ = cost (7.75)

definisce una la quantità conservata, ossia una quantità il cui valore è
indipendente dall’ipersuperficie ⌃ scelta per calcolarla.

Questa quantità conservata dipende da Tµ⌫ e dal campo gravitazionale
(polarizzato lungo ⇠⌫) presente dentro al “tubo d’universo”. Poiché l’integra-
zione si estende solo sulla piccola sezione di tubo determinata dall’intersezione
con ⌃ (fuori dal tubo, infatti, Tµ⌫ = 0), possiamo valutare la quantità conser-
vata sviluppando in serie ⇠⌫ intorno a un punto arbitrario di questa sezione.
In particolare, attorno alla posizione del centro di massa (che, in funzione del
tempo proprio ⌧ , descrive la traiettoria zµ(⌧)).

A questo proposito conviene ricordare un’importante proprietà dei vettori
di Killing: le loro derivate covarianti seconde si possono sempre esprimere in
funzione del tensore di curvatura nel modo seguente:

r↵r⌫⇠µ = �Rµ⌫↵
�⇠� (7.76)

(si veda l’Esercizio 7.3). Grazie a questa proprietà, dato il vettore ⇠ e la sua
derivata covariante r⇠ in un punto z dello spazio tempo, tutte le derivate
covarianti di ⇠ di ordine superiore al primo nel punto z sono determinate dal-
l’Eq. (7.76) e dalle sue derivate, e sono quindi esprimibili come combinazioni
lineari di ⇠(z) e r⇠(z).

D’altra parte, il valore del vettore di Killing in un generico punto x, situato
nell’intorno di z, può essere sempre costruito come serie di Taylor con para-
metro di espansione �x = x� z: grazie alla proprietà precedente ne consegue
dunque che ⇠µ(x) risulta completamente determinato dalla combinazione li-
neare di ⇠µ(z) e r

[µ⇠⌫](z) (dove abbiamo preso la parte antisimmetrica delle
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derivate covarianti perché, per un vettore di Killing, r
(µ⇠⌫) = 0). I coe�cien-

ti della combinazione lineare dipendono da x, da z e dalla geometria data,
e sono gli stessi per tutti i vettori di Killing di quella metrica. Questo mo-
stra, incidentalmente, che un vettore di Killing in uno spazio D-dimensionale
dipende linearmente da D+D(D� 1)/2 = D(D+1)/2 parametri, e che pos-
sono esserci al massimo D(D + 1)/2 vettori di Killing linearmente indipen-
denti.

Nel nostro caso, quello che ci interessa per ottenere l’equazione del moto
è lo sviluppo di ⇠⌫(x) in serie di potenze dentro al “tubo d’universo” del
corpo di prova, attorno alla traiettoria z(⌧) del suo centro di massa. Per
questo sviluppo possiamo quindi scrivere, al primo ordine, l’espressione se-
guente

⇠⌫(x) = ⇠⌫(z) +A⌫
�(x, z)�x↵r

[↵⇠�](z) + · · · , (7.77)

dove �x↵ = xa � za, e dove A⌫ � è una funzione che dipende da x, z e
dalla metrica considerata. Sostituiamo lo sviluppo nell’Eq. (7.75), dividendo
per c e assumendo che i momenti interni di ordine superiore al dipolo siano
trascurabili. Otteniamo allora:
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dSµ

p
�g Tµ⌫⇠⌫ = ⇠⌫(z)p

⌫ +
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[↵⇠�](z)S
↵� = cost, (7.78)

dove abbiamo definito

p⌫ =
1

c

Z

⌃

dSµ

p
�g Tµ⌫ ,

S↵� =
1

c

Z

⌃

dSµ

p
�g
�

Tµ⌫A⌫
��x↵ � Tµ⌫A⌫

↵�x�
�

.

(7.79)

Ricordando i risultati dello spazio-tempo di Minkowski possiamo ora iden-
tificare, in accordo al principio di minimo accoppiamento, il primo integrale
con il quadri-impulso conservato p⌫ , e il secondo integrale con il momento
angolare S↵� (di tipo intrinseco, perché associato a momenti interni). Nel
limite di spazio-tempo piatto, infatti, abbiamo

p�g ! 1, A⌫ ↵ ! �↵⌫ , e le
definizioni (7.79) si riducono alle quantità corrispondenti dello spazio-tempo
di Minkowski, ossia alle equazioni (1.36) e (1.57) già introdotte nel Capi-
tolo 1.

È importante notare che l’espressione definita in Eq. (7.78) è funzione della
posizione z del corpo di prova, ma è indipendente dal parametro temporale
⌧ , ossia è costante lungo la curva zµ(⌧). Prendendone la derivata covariante
lungo la curva z(⌧) otteniamo allora:

⇠⌫
Dp⌫

d⌧
+ p⌫

dzµ

d⌧
r

[µ⇠⌫] +
1

2
r

[↵⇠�]
DS↵�

d⌧
+
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2
S↵�

dzµ

d⌧
rµr↵⇠� = 0. (7.80)
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Se usiamo la proprietà (7.76), e fattorizziamo i coe�cienti dei termini in ⇠ e
r⇠, arriviamo alla condizione

⇠⌫

✓

Dp⌫

d⌧
+

1

2
R↵�µ

⌫S↵�vµ
◆

+
1

2
r

[↵⇠�]

✓

DS↵�

d⌧
+ v↵p� � v�p↵

◆

= 0,

(7.81)

dove abbiamo posto vµ = dzµ/d⌧ . Questa condizione deve valere per qua-
lunque vettore di Killing, e quindi implica, separatamente, due equazioni del
moto che fissano l’evoluzione di p e di S lungo la “linea d’universo” z(⌧), per
un corpo di prova con momento angolare intrinseco:

Dpµ

d⌧
+

1

2
R↵�⌫

µS↵�v⌫ = 0, (7.82)

DS↵�

d⌧
= p↵v� � p�v↵. (7.83)

In assenza di momento intrinseco, S↵� ! 0, ritroviamo dunque l’evoluzione
geodetica descritta dall’equazioneDpµ/d⌧ = 0. Risulta inoltre p[av�] = 0, per
cui p e v sono paralleli. In presenza di momento angolare intrinseco, invece,
c’è un accoppiamento alla curvatura che produce forze “di marea”, e la tra-
iettoria del corpo devia dalla geodetica come previsto dall’Eq. (7.82) (detta
anche equazione di Dixon-Mathisson-Papapetrou5). In aggiunta, la velocità
“cinematica” vµ = dzµ/d⌧ non è più parallela, in generale, alla direzione del
flusso d’energia-impulso individuata da pµ. Per determinare tutte le 14 inco-
gnite pµ, vµ, Sµ⌫ è dunque necessario completare il sistema delle 10 equazioni
(7.82), (7.83) aggiungendo 4 opportune condizioni supplementari. Ad esem-
pio, imponendo la condizione vettoriale p⌫Sµ⌫ = 0, come proprietà specifica
che caratterizza la “linea d’universo” del baricentro del corpo.

Esercizi Capitolo 7

7.1. Contributo variazionale del tensore di Ricci

Mostrare che il contributo variazionale del tensore di Ricci all’Eq. (7.8) si
può scrivere in forma esplicitamente covariante come segue:

gµ⌫�Rµ⌫ = rµ

�

g↵�rµ�g↵� �r⌫�g
µ⌫
�

. (7.84)

Verificare che da questa espressione si ottiene immediatamente il termine di
bordo (7.16).

5 M. Mathisson, Acta Phys. Pol. 6, 163 (1937); A. Papapetrou, Proc. Roy. Soc. A209,
248 (1951); W. G. Dixon, Proc. Roy. Soc. A314, 499 (1970).
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7.2. Conservazione dell’energia-impulso per un campo scalare

Dimostrare che il tensore dinamico energia-impulso (7.40) ha divergenza co-
variante nulla, purché siano soddisfatte le equazioni del moto del campo
scalare.

7.3. Derivata covariante seconda dei vettori di Killing

Ricavare l’Eq. (7.76) usando le proprietà dei vettori di Killing e quelle del
tensore di curvatura di Riemann.

Soluzioni

7.1. Soluzione

Per ottenere la relazione (7.84) è conveniente lavorare nel sistema local-
mente inerziale, dove g = cost, � = 0, @� 6= 0, e dove possiamo porre
�g = 0 tenendo però @�g 6= 0. Usando la definizione (6.21) del tensore di
Ricci abbiamo, in questo sistema,

�Rµ⌫

�

�

�=0

= @↵ (��µ⌫
↵)� @µ (��↵⌫

↵)

=
1

2
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@µ�g⌫� + @⌫�gµ� � @��gµ⌫
�

� 1

2
g↵�@µ@⌫�g↵� .

(7.85)

Prendendo la traccia otteniamo
⇣

gµ⌫�Rµ⌫

⌘

�=0

= @�@⌫�g⌫� � g↵�@µ@
µ�g↵� . (7.86)

In una generica carta (dove le derivate parziali diventano covarianti) abbiamo
perciò:

gµ⌫�Rµ⌫ = rµr⌫�gµ⌫ � g↵�rµrµ�g↵� . (7.87)

Ricordando che g↵��g↵� = �g↵��g↵� , e usando la condizione di compatibilità
metrica (rg = 0), si arriva infine al risultato (7.84):

gµ⌫�Rµ⌫ = g↵�rµrµ�g↵� �rµr⌫�g
µ⌫

⌘ rµ

�

g↵�rµ�g↵� �r⌫�g
µ⌫
�

.
(7.88)

Per arrivare alla forma (7.16) del contributo di bordo è conveniente parti-
re direttamente dall’espressione covariante (7.87). Integrando tale contribu-
to variazionale su di un quadri-volume ⌦, ed usando il teorema di Gauss,
otteniamo

� 1

2�

Z

@⌦

d3⇠
p

|h|nµ
�

g⌫↵r↵�gµ⌫ � g↵�rµ�g↵�
�

. (7.89)
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Sul bordo @⌦ si ha �g = 0 e dunque, nel termine in parentesi tonda, solo le
derivate parziali contribuiscono alla variazione. Si ottiene allora il contributo
di bordo

nµg⌫↵@↵�gµ⌫ � g↵�nµ@µ�g↵� , (7.90)

che coincide esattamente con quello dell’Eq. (7.16).

7.2. Soluzione

Ricaviamo innanzitutto l’equazione del moto covariante per il campo scala-
re �, accoppiato alla geometria dello spazio-tempo come prescritto dall’azione
(7.37).

La variazione rispetto a � di tale azione fornisce le equazioni di Eulero-
Lagrange per la Lagrangiana e↵ettiva (7.38):
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= 0, (7.91)

dove
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p
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(7.92)

Abbiamo perciò l’equazione del moto

1p�g
@µ
�p

�ggµ⌫@⌫
�

�+
@V

@�
= 0, (7.93)

che si può anche scrivere (ricordando la definizione (3.105) del D’Alember-
tiano covariante):

rµrµ�+
@V

@�
= 0. (7.94)

Prendiamo ora la divergenza covariante del tensore (7.40):
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(7.95)

dove r2 ⌘ r⌫r⌫ . Nella seconda riga, il secondo e quarto termine si cancel-
lano grazie all’equazione del moto (7.94), mentre il primo e terzo termine si
cancellano per la simmetria degli indici di derivata:

r⌫@µ� = @⌫@µ�� �⌫µ
↵@↵� = rµ@⌫�. (7.96)

Dunque
r⌫Tµ

⌫ = 0. (7.97)
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7.3. Soluzione

Applichiamo a ⇠ la relazione (6.19) che ci dà il commutatore delle derivate
covarianti per un vettore,

rµr⌫⇠↵ �r⌫rµ⇠↵ = �Rµ⌫↵
�⇠� , (7.98)

e prendiamone la parte completamente antisimmetrica negli indici µ, ⌫,↵ . Per
l’identità di Bianchi (6.14) si ha R

[µ⌫↵]
� = 0, e quindi

rµr⌫⇠↵+r⌫r↵⇠µ+r↵rµ⇠⌫ �r⌫rµ⇠↵�rµr↵⇠⌫ �r↵r⌫⇠µ = 0. (7.99)

Usando la proprietà (3.107) dei vettori di Killing,

r⌫⇠↵ = �r↵⇠⌫ , (7.100)

l’equazione precedente si può riscrivere

rµr⌫⇠↵ �r⌫rµ⇠↵ = r↵r⌫⇠µ. (7.101)

Sostituendo nell’Eq. (7.98) abbiamo infine

r↵r⌫⇠µ = �Rµ⌫↵
�⇠� , (7.102)

che coincide appunto con l’Eq. (7.76) cercata.



8

Approssimazione di campo debole

Le equazioni di Einstein che abbiamo introdotto nel capitolo precedente colle-
gano la curvatura dello spazio-tempo alla densità di energia e di impulso delle
sorgenti materiali. In questo capitolo forniremo una definitiva interpretazione
gravitazionale di queste equazioni, ricavando la loro versione linearizzata e
confrontandola con le equazioni della teoria gravitazionale di Newton. Po-
tremo cos̀ı fissare la costante � che controlla l’accoppiamento tra materia e
geometria, e che finora abbiamo trattato come parametro arbitrario.

Risolveremo le equazioni di Einstein linearizzate per determinare la geome-
tria associata ad un campo su�cientemente debole e statico, e troveremo cos̀ı
interessanti e↵etti dinamici e nuovi tipi di interazione tra sorgenti e geome-
tria, non previsti dal limite Newtoniano. Ci concentreremo soprattutto su due
e↵etti: la deflessione e il ritardo dei segnali elettromagnetici che si propagano
nel campo gravitazionale del nostro sistema solare. La verifica sperimentale
di entrambi questi e↵etti ha fornito importanti conferme della validità di una
descrizione geometrica dell’interazione gravitazionale, basata, in particolare,
sulle equazioni di campo di Einstein.

8.1 Equazioni di Einstein linearizzate

Supponiamo che la geometria della varietà spazio-temporale si discosti poco
da quella di Minkowski, e che la metrica gµ⌫ , in coordinate cartesiane, si
possa sviluppare attorno alla metrica di Minkowski ponendo, all’ordine zero,

g(0)µ⌫ = ⌘µ⌫ , e, al primo ordine, g(1)µ⌫ = hµ⌫ .
Trascurando in questo sviluppo i termini di ordine superiore abbiamo

dunque
gµ⌫ ' ⌘µ⌫ + hµ⌫ , |hµ⌫ | ⌧ 1, (8.1)

dove il tensore simmetrico hµ⌫ descrive piccole fluttuazioni della geometria
che si possono trattare perturbativamente. Sostituendo questa metrica nelle

� Springer-Verlag Italia 2015 143
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equazioni di Einstein, e trascurando tutti i termini di ordine h2 e superiori,
otterremo delle equazioni di↵erenziali lineari in hµ⌫ che ci permetteranno
di determinare, in questa approssimazione, le deviazioni dalla geometria di
Minkowski.

A questo proposito notiamo innanzitutto che, al primo ordine, le compo-
nenti covarianti e contrarianti di h sono collegate tra loro dalla metrica di
Minkowski:

hµ
⌫ = g⌫↵hµ↵ = ⌘⌫↵hµ↵ +O(h2),

h ⌘ hµ
µ = gµ⌫hµ⌫ = ⌘µ⌫hµ⌫ +O(h2).

(8.2)

Inoltre, sempre al primo ordine in h, le componenti controvarianti della
metrica (ossia le componenti della matrice inversa) sono date da

gµ⌫ ' ⌘µ⌫ � hµ⌫ , (8.3)

cos̀ı da soddisfare la condizione

gµ↵g⌫↵ = �µ⌫ + h⌫
µ � hµ

⌫ +O(h2) = �µ⌫ +O(h2). (8.4)

Calcoliamo ora la connessione. All’ordine zero la metrica è quella di Minko-

wski e la connessione è ovviamente nulla, � (0)

µ⌫
↵ = 0. Al primo ordine in h,

usando le equazioni (8.1) e (8.3), abbiamo:

� (1)

⌫↵
� =

1

2
⌘�⇢ (@⌫h↵⇢ + @↵h⌫⇢ � @⇢h⌫↵) . (8.5)

Poiché questa connessione è proporzionale ai gradienti di h, nel calcolo al
primo ordine del corrispondente tensore di curvatura possiamo trascurare i
termini di tipo � 2. Otteniamo quindi:

R(1)

µ⌫↵
� = @µ�

(1)

⌫↵
� � @⌫�

(1)

µ↵
�

=
1

2
⌘�⇢
�

@µ@↵h⌫⇢ � @µ@⇢h⌫↵ � @⌫@↵hµ⇢ + @⌫@⇢hµ↵

�

.
(8.6)

Per scrivere le equazioni di Einstein ci serve, in particolare, la contrazione di
Ricci, che in questa approssimazione diventa

R(1)

⌫↵ = R(1)

µ⌫↵
µ =

1

2

�

@µ@↵h⌫
µ �2h⌫↵ � @⌫@↵h+ @⌫@⇢h

⇢
↵

�

(8.7)

(abbiamo posto 2 = ⌘µ⌫@µ@⌫). Sostituendo questo risultato nelle equazioni
gravitazionali (7.29) abbiamo infine

1

2

�

@µ@↵h⌫
µ �2h⌫↵ � @⌫@↵h+ @⌫@⇢h

⇢
↵

�

= �

✓

T⌫↵ � 1

2
⌘⌫↵T

◆

. (8.8)
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Questo sistema di equazioni di↵erenziali del second’ordine è lineare nella va-
riabile geometrica hµ⌫ , ed approssima al primo ordine le equazioni di Einstein
per piccole deviazioni dalla metrica di Minkowski. In questa approssimazione,
per essere in accordo con l’identità di Bianchi contratta, il tensore energia-
impulso che appare al secondo membro va calcolato all’ordine zero in h (ov-
vero coincide col tensore energia-impulso imperturbato dello spazio-tempo di
Minkowski), e soddisfa l’ordinaria legge di conservazione @⌫Tµ⌫ = 0 (si veda
l’Esercizio 8.1).

8.1.1 Il gauge armonico

Il membro sinistro delle precedenti equazioni può essere ulteriormente sem-
plificato utilizzando la covarianza del modello geometrico Riemanniano, ed
imponendo – mediante un’opportuna scelta di coordinate – quattro condi-
zioni “di gauge” sulle componenti della metrica (si veda la discussione della
Sez. 7.2).

Nel nostro caso, in particolare, è conveniente imporre la seguente condi-
zione:

@⌫

✓

hµ
⌫ � 1

2
�⌫µh

◆

= 0, (8.9)

detta “gauge armonico”, o gauge di de Donder (si veda anche l’Esercizio 8.2).
Imponendo questa condizione si trova che il primo, terzo e quarto termine
del tensore di Ricci (8.7) si cancellano esattamente tra loro, e le equazioni di
Einstein linearizzate (8.8) si riducono a

2h⌫
↵ = �2�

✓

T⌫
↵ � 1

2
�↵⌫ T

◆

. (8.10)

È opportuno sottolineare che si può sempre adottare un sistema di coordinate
dove la condizione (8.9) è soddisfattta. Consideriamo infatti la trasformazio-
ne infinitesima che ci fa passare dalla carta di partenza xµ alla nuova carta
x0µ = xµ + ⇠µ(x), dove ⇠ soddisfa alla condizione |@↵⇠µ| ⌧ 1 (necessaria
a�nché lo sviluppo (8.1) resti valido, e si possa continuare ad usare l’appros-
simazione lineare). La variazione locale del tensore metrico indotta da una
trasformazione di gauge di questo tipo è stata calcolata nella Sez. 3.3, ed è
data in generale dall’Eq. (3.53). Sostituendo in quell’equazione lo sviluppo
(8.1), ossia ponendo g = ⌘ + h, g0 = ⌘ + h0, e trascurando termini di ordine
h2, ⇠2, e h⇠, troviamo:

h0
µ⌫ = hµ⌫ � @µ⇠⌫ � @⌫⇠µ. (8.11)

Calcoliamo allora, in questa nuova carta, il membro sinistro dell’Eq. (8.9):

@⌫

✓

h0
µ
⌫ � 1

2
�⌫µh

0
◆

= @⌫

✓

hµ
⌫ � 1

2
�⌫µh

◆

�2⇠µ. (8.12)
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Se prendiamo per la nostra trasformazione di coordinate un generatore ⇠µ
che soddisfa la condizione

2⇠µ = @⌫

✓

hµ
⌫ � 1

2
�⌫µh

◆

(8.13)

otterremo quindi una nuova carta in cui la condizione (8.9) è soddisfatta.
Inoltre, se tale condizione è già valida nella carta di partenza, possiamo an-
cora trasformare le coordinate e preservare la condizione di gauge armonico
purché il generatore della trasformazione soddisfi a 2⇠µ = 0. Questa situazio-
ne è molto simile, formalmente, a quella che riguarda il gauge di Lorenz nel
contesto della teoria elettromagnetica (ma con importanti di↵erenze fisiche,
dovute al carattere tensoriale del campo hµ⌫).

8.2 Metrica dello spazio-tempo per un campo debole e
statico

Cerchiamo dunque soluzioni per le equazioni linearizzate (8.10) assumendo
che la geometria, oltre a deviare poco da quella di Minkowski, non dipenda dal
tempo (ossia soddisfi alla condizione @

0

hµ⌫ = 0), e sia generata da sorgenti
statiche (o comunque dotate di velocità trascurabili). Il loro tensore energia-
impulso può essere approssimato ponendo T 0

0

' ⇢c2, dove ⇢ è la densità di
massa a riposo, e Tij ' 0 ' T

0j . In questo limite T ' T 0

0

, e l’Eq. (8.10) per
la componente h

00

si riduce a

r2h
00

= �⇢c2, (8.14)

dove r2 = �ij@i@j è l’usuale operatore Laplaciano dello spazio Euclideo 3-
dimensionale.

Possiamo ricordare, a questo punto, che nel limite Newtoniano di campi
gravitazionali deboli, statici, e velocità non relativistiche, la deviazione di g

00

dal valore Minkowskiano ⌘
00

= 1 è già stata discussa e determinata nella Sez.
5.2. Sfruttando il risultato dell’Eq. (5.16) abbiamo, in particolare,

h
00

= g
00

� ⌘
00

=
2�

c2
, (8.15)

dove � è il potenziale gravitazionale Newtoniano.
Questo valore di h

00

deve essere ritrovato – nello stesso limite – anche nel
contesto delle equazioni di Einstein, se vogliamo che tali equazioni descri-
vano correttamente l’interazione gravitazionale. In tal caso l’Eq. (8.14) deve
prendere la forma

r2� =
1

2
�⇢c4. (8.16)
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Ma il potenziale Newtoniano deve soddisfare, come ben noto, l’equazione di
Poisson

r2� = 4⇡G⇢, (8.17)

dove G è la costante di Newton. Ne consegue che le equazioni di Einstein
sono consistenti con la teoria gravitazionale di Newton – nel senso che la
riproducono fedelmente nel limite di campi deboli, statici e velocità non re-
lativistiche – purché la costante d’accoppiamento tra materia e geometria sia
fissata come segue:

� =
8⇡G

c4
. (8.18)

Si noti che le dimensioni di questa costante sono [�] = E�1L, come anticipato
nella Sez. 7.1.

Una volta e↵ettuata questa identificazione, le equazioni di Einstein li-
nearizzate non solo riproducono il valore di g

00

del limite Newtoniano, ma
forniscono anche ulteriori e nuovi risultati per la parte spaziale della metrica.

Consideriamo infatti l’Eq. (8.10) per le componenti spaziali hij . Nel caso
che stiamo considerando Tij = 0, e quindi otteniamo:

r2hij = ��ij⇢c
2. (8.19)

Confrontiamo questa equazione con l’Eq. (8.14) e la sua soluzione (8.15).
Prendendo la stessa costante d’accoppiamento e le stesse costanti di integra-
zione le equazioni forniscono hij = �ijh00

, ossia

hij = �ij
2�

c2
. (8.20)

Perciò:

gij = ⌘ij + hij = ��ij
✓

1� 2�

c2

◆

. (8.21)

L’elemento di linea completo che risolve le equazioni di Einstein linearizzate,
e rappresenta la geometria associata ad un campo debole e statico, è dunque
il seguente:

ds2 =

✓

1 +
2�

c2

◆

c2dt2 �
✓

1� 2�

c2

◆

|dx|2 , (8.22)

dove � è soluzione dell’equazione di Poisson (8.17).
È interessante confrontare questo risultato con l’elemento di linea (5.29),

ottenuto usando esclusivamente la teoria di Newton.
La soluzione approssimata delle equazioni di Einstein (8.22) riproduce gli

e↵etti gravitazionali associati alla componente g
00

della metrica e prodotti
da sorgenti deboli e statiche (gli stessi del limite Newtoniano, già discussi
nel Capitolo 5). In più, però, prevede che le stesse sorgenti deformino an-
che la geometria dello spazio Euclideo tridimensionale (che restava invece
invariata nel limite Newtoniano). Dunque prevede nuove forme di interazione
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gravitazionale, ed ulteriori e↵etti dinamici sul moto dei corpi di prova e sulla
propagazione dei segnali. Tali e↵etti saranno illustrati nelle sezioni seguenti.

8.3 Deflessione dei raggi luminosi

Consideriamo un’onda elettromagnetica che si propaga lungo una geodetica
nulla della metrica (8.22) e che può descrivere, nell’approssimazione dell’ot-
tica geometrica, mediante il quadrivettore d’onda kµ = (k,!/c), tale che
kµkµ = 0. La sua traiettoria, come discusso nella Sez. 5.1, è fissata dal
trasporto parallelo del vettore kµ, e quindi dalla condizione di↵erenziale

dkµ + �↵�
µdx↵k� = 0 (8.23)

(si veda l’Eq. (5.10)).
Supponiamo che l’elemento di linea (8.22) descriva un campo gravitazio-

nale di tipo centrale, generato da una sorgente di massa M localizzata nel-
l’origine: abbiamo quindi � = �GM/r. Supponiamo inoltre che l’onda (o il
raggio luminoso) incida sul campo centrale lungo una direzione che inizial-
mente è parallela all’asse x

1

, con parametro di impatto R (si veda la Fig. 8.1).
Consideriamo l’evoluzione geodetica dell’onda nel piano (x

1

, x
2

), e calcoliamo
l’angolo di deflessione �✓ rispetto alla direzione iniziale, al primo ordine in
�/c2.

Possiamo assumere, in particolare, che il campo gravitazionale considerato
sia quello del sole, M ' 2 ⇥ 1033 g, che il parametro di impatto sia di poco
superiore al raggio solare, R >⇠ 7 ⇥ 1010 cm, e che la frequenza dell’onda
elettromagnetica sia compresa nella banda di spettro visibile. In questo caso
abbiamo un raggio luminoso con lunghezza d’onda � = 2⇡c/! molto minore
sia del parametro d’impatto che del raggio di curvatura locale dello spazio-

!"

!"#$

%
&

'())*"+#,-*."/"

%
0

1

Figura 8.1 Illustrazione schematica del processo di deflessione nel piano (x1, x2)
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tempo, per cui l’approssimazione dell’ottica geometrica è valida. Il potenziale
gravitazionale soddisfa inoltre la condizione GM/Rc2 ⌧ 1, per cui le devia-
zioni dalla metrica di Minkowski lungo la traiettoria del raggio sono piccole,
e l’approssimazione di campo debole può essere correttamente applicata.

In questa situazione fisica è lecito assumere che l’angolo di deflessione sia
piccolo, |�✓| ⌧ 1, e possa essere approssimato con la sua tangente. Poniamo
dunque

�✓ ' �k2

k1
, (8.24)

dove �k2 è la componente del vettore d’onda lungo l’asse x
2

, acquistata in
totale dal raggio durante il suo cammino per e↵etto del campo gravitazionale.
Per ottenere �k2 partiamo dalla variazione infinitesima di k2 fornita dalla
condizione geodetica (8.23),

dk2 = ��↵�2dx↵k� , (8.25)

ed integriamo poi tale variazione su tutta la traiettoria del raggio.
Nell’approssimazione di campo debole la connessione è fornita dall’Eq.

(8.5), ed è un oggetto del primo ordine in h (cioè in �/c2). Se vogliamo cal-
colare la deflessione dk2 al primo ordine dobbiamo allora inserire, al membro
destro dell’Eq. (8.25), lo spostamento dx↵ e il vettore k� espressi all’ordine
zero (ossia i loro valori presi lungo la traiettoria imperturbata del raggio di
luce):

dx↵ =
�

cdt, dx1, 0, 0
�

, cdt = dx1,

k� =
⇣!

c
, k1, 0, 0

⌘

,
!

c
= k1.

(8.26)

L’Eq. (8.25) si riduce quindi a

dk2 = �
�

�
00

2 + 2�
01

2 + �
11

2

� !

c
dx1. (8.27)

Per la metrica (8.22), in particolare, abbiamo:

�
00

2 =
1

2
@
2

h
00

= @
2

�

c2
, �

01

2 = 0,

�
11

2 =
1

2
@
2

h
11

= @
2

�

c2
.

(8.28)

Perciò:

dk2 = �2
!

c3
@
2

� dx1 =
2!

c3
@
2

 

GM
p

x2

1

+ x2

2

!

dx1

= �2!

c3
GMx

2

(x2

1

+ x2

2

)
3/2

dx1.

(8.29)
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La componente totale �k2 si ottiene ora integrando questa variazione in-
finitesima su dx1, da �1 a +1, lungo tutta la traiettoria imperturbata
del raggio. Lungo tale traiettoria si ha x

2

= R. Sostituendo nell’Eq. (8.24)
abbiamo quindi

�✓ ' �k2

k1
=

c

!

Z

+1

�1

�

dk2
�

x2=R

= �2GMR

c2

Z

+1

�1

dx
1

(x2

1

+R2)
3/2

.

(8.30)

Ponendo x
1

= R sinh z l’integrale si risolve facilmente, e fornisce:

Z

+1

�1

dx
1

(x2

1

+R2)
3/2

=
1

R2

Z

+1

�1

dz

cosh2 z
=

1

R2

h

tanh z
i

+1

�1
=

2

R2

. (8.31)

Otteniamo cos̀ı, in prima approssimazione, il seguente angolo di deflessione
totale

�✓ ' �4GM

Rc2
(8.32)

(detto anche “angolo di Einstein”).
Nel caso del Sole, e di un raggio di luce proveniente da una stella lontana

che arriva ai nostri telescopi dopo aver “sfiorato” il bordo solare – e che
è caratterizzato quindi da un parametro di impatto circa uguale al raggio
solare – l’angolo di deflessione previsto corrisponde a 1.75 secondi d’arco.
Tale e↵etto è stato osservato (per la prima volta nel 1919) durante le eclissi
di sole, e la predizione teorica (8.32) è stata ripetutamente confermata, con
una precisione sperimentale che oggi è circa dell’uno per cento.

Una precisione migliore si può ottenere misurando la deflessione di onde
con frequenza compresa nella banda radio, anziché in quella visibile: conside-
rando, ad esempio, segnali provenienti da radiosorgenti (di tipo quasar) che
sfiorano il bordo del sole. In quel caso non è necessario aspettare un’eclis-
si, ed usando tecniche di radio-interferometria – in particolare VLBI, ossia
Very Long Baseline Interferometry – è possibile verificare le previsioni della
relatività generale con una precisione di una parte su 10�4.

È importante sottolineare che la deflessione della luce calcolata in Eq.
(8.32) è alla base del cosiddetto e↵etto di “lente gravitazionale”. Grazie a
tale e↵etto il campo gravitazionale dei corpi celesti (stelle, galassie) è in grado
di distorcere e focalizzare i raggi di luce, esattamente come un mezzo ottico
trasparente. Può quindi produrre immagini multiple dello stesso oggetto e,
in particolare, trasformare l’immagine di un corpo puntiforme in una serie
di archi o di anelli luminosi, detti “anelli di Einstein”. Anche questo tipo di
e↵etto è stato osservato1, e trovato in accordo con le predizioni della teoria.

1 Si veda ad esempio R. Lynds and V. Petrosian, Bull. Am. Astr. Soc. 18, 1014 (1986).
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Lo studio delle lenti gravitazionali costituisce, al giorno d’oggi, un potente
metodo di indagine in molti campi dell’astrofisica.

Osserviamo infine che l’angolo di deflessione (8.32) non dipende dalla fre-
quenza (ossia dall’energia) dell’onda incidente. Questo risultato è una conse-
guenza del fatto che il segnale (o l’oggetto di prova) considerato si propaga
lungo geodetiche nulle, con una relazione di dispersione che ha la forma imper-
turbata !(k) = ck (si veda l’Eq. (8.26)). Se consideriamo invece la deflessione
di un corpo massivo, che si propaga lungo geodetiche di tipo tempo con ener-
gia E(p) = h̄! = (c2p2 +m2c4)1/2, e ripetiamo i calcoli precedenti, troviamo
infatti che l’angolo di deflessione dipende dall’energia (si veda l’Esercizio 8.3,
Eq. (8.64)).

Se il fotone avesse massa, il campo gravitazionale si comporterebbe perciò
come un prisma, deviando frequenza diverse con angoli diversi e separando
i colori all’interno di un fascio di luminoso. L’assenza di “e↵etto prisma”
nei fenomeni di lente gravitazionale osservati permette dunque di ricavare
un limite superiore sulla massa del fotone m� . Tale limite, però, risulta me-
no stringente di altri limiti attualmente esistenti su m� , ottenuti mediante
osservazioni di tipo elettromagnetico.

8.4 Ritardo dei segnali radar

Un altro interessante e↵etto, previsto dalla soluzione (8.22) delle equazioni di
Einstein linearizzate, riguarda la possibile variazione del “tempo di viaggio”
dei segnali (e dei corpi di prova in genere) che si propagano in un campo
gravitazionale, rispetto al tempo di viaggio impiegato (per lo stesso tragitto)
nello spazio-tempo piatto di Minkowski.

Per illustrare questo e↵etto consideriamo un’onda elettromagnetica (in
particolare, un segnale radar) che si propaga nel campo di gravità solare. Il
segnale viene lanciato dalla Terra, rimbalza su di un pianeta, e ritorna sulla
terra passando a una distanza minima dal sole pari a R (si veda la Fig. 8.2).
Durante il tragitto del segnale lo spostamento dei pianeti è trascurabile, per
cui possiamo assumere che siano entrambi fermi, a distanze radiali dal Sole
date rispettivamente da rT e rP . Per un calcolo al primo ordine del tempo
di andata e ritorno assimeremo che il segnale si propaghi lungo la traiettoria
rettilinea (imperturbata) mostrata in Fig. 8.2, trascurando l’e↵etto di defles-
sione gravitazionale (che si aggiungerebbe all’e↵etto che stiamo considerando,
e porterebbe a correzioni totali di ordine superiore al primo).

In assenza di gravità la traiettoria imperturbata, parallela all’asse x
1

, è
percorsa con velocità c, e il tempo totale di andata e ritorno è ovviamente
2(xP + xT )/c (pari cioè alla distanza imperturbata diviso la velocità imper-
turbata). Chiediamoci come cambia questo tempo se teniamo conto del fatto
che la geometria dello spazio-tempo non è quella di Minkowski, ma quella
descritta dall’elemento di linea (8.22).
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Figura 8.2 Illustrazione schematica del percorso del segnale radar nel piano (x1, x2)

A tal scopo osserviamo che il segnale considerato si propaga lungo le geode-
tiche nulle di tale geometria, e quindi la sua traiettoria è caratterizzata dalla
condizione di↵erenziale

✓

1 +
2�

c2

◆

1/2

cdt =

✓

1� 2�

c2

◆

1/2

dx
1

, (8.33)

ossia (al primo ordine in �/c2)

dt =
dx

1

c

✓

1� 2�

c2

◆

=
dx

1

c

✓

1 +
2GM

rc2

◆

. (8.34)

Il secondo termine della parentesi tonda rappresenta le correzioni gravitazio-
nali, che distorcono la geometria influenzando la metrica nella sua parte sia
spaziale che temporale.

Per calcolare il tempo T di andata e ritorno, al primo ordine nel potenziale
gravitazionale, integriamo l’Eq. (8.34) lungo la traiettoria imperturbata x

2

=
R. Abbiamo quindi

T = 2

Z

dt =
2

c

Z xP

�xT

dx
1

 

1 +
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c2
p

x2

1

+R2

!

=
2

c
(xT + xP ) +�t,

(8.35)

dove �t rappresenta la correzione rispetto alla geometria di Minkowski:
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.

(8.36)
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Poiché l’argomento del logaritmo è sempre maggiore di uno si trova che l’in-
tervallo �t è positivo, e quindi l’e↵etto netto del campo gravitazionale, in
questo caso, è quello di allungare il tempo di andata e ritorno (per questo si
parla di “ritardo” del segnale rispetto allo spazio-tempo di Minkowski).

Come risulta evidente dall’Eq. (8.36), l’e↵etto è tanto più grande quanto
più piccolo è il parametro di impatto R: il ritardo raggiunge dunque il valore
massimo quando R è di poco superiore al raggio solare, ossia quando la Terra
e il pianeta che funge da bersaglio sono nella configurazione astronomica
chiamata “congiunzione”. In prossimità di quella configurazione risulta R ⌧
xT , xP , e l’argomento del logaritmo si può approssimare come segue:

rP + xP

rT � xT
'

xP

⇣

1 + R2

2x2
P
+ · · ·

⌘

+ xP

xT

⇣

1 + R2

2x2
T
+ · · ·

⌘

� xT

' 2xP 2xT

R2

. (8.37)

In quel caso il tempo di ritardo (8.36) si riduce alla forma

�t ' 4GM

c3
ln

✓

4xPxT

R2

◆

, (8.38)

che rappresenta l’espressione standard del cosiddetto “e↵etto Shapiro”2.
Tale e↵etto è stato misurato usando come pianeta “bersaglio” sia Marte

che Venere. Nel caso di Marte, in particolare, si è anche utilizzato come
riflettore dei segnali radar la sonda spaziale Viking, dopo il suo atterraggio
sul pianeta Marte avvenuto nel 1976. In quel caso la previsone teorica del
tempo di ritardo (8.38) è stata verificata con una precisione dell’uno per
mille, nel 1979, grazie a un esperimento condotto da Reasenberg e Shapiro3.

8.5 Misure di velocità in un campo gravitazionale

L’e↵etto discusso nella sezione precedente descrive il ritardo di un segnale
elettromagnetico, ossia l’aumento del suo tempo e↵ettivo di viaggio rispetto
al tempo corrispondente che si misurerebbe nello spazio vuoto di Minkowski,
privo di campi gravitazionali. La situazione è esattamente analoga a quella
che si avrebbe se il segnale si propagasse con una velocità e↵ettiva minore
di c, a causa della presenza del campo gravitazionale che agisce come un
“mezzo” ottico trasparente.

Non c’è dubbio che il campo gravitazionale, a di↵erenza di un mezzo otti-
co, può essere sempre localmente eliminato (si veda la discussione della Sez.
2.2), e non c’è dubbio che la velocità istantanea del segnale elettromagnetico
– cos̀ı come la velocità di qualunque particella di massa nulla – si riduce lo-

2 I. I. Shapiro, Phys. Rev. Lett. 13, 789 (1964).
3 R. Reasenberg et al., Astrophys. J. 234, L219 (1989).
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calmente alla velocità della luce, in accordo alle leggi della relatività ristretta.
Dobbiamo tener presente, però, che la velocità media associata allo sposta-
mento tra due punti distinti dello spazio si può determinare solo con misure
non locali, e in quel caso gli e↵etti dovuti alla presenza di un eventuale campo
gravitazionale non possono essere eliminati.

Se consideriamo la distorsione geometrica del tempo proprio e delle distan-
ze spaziali prodotta, in generale, da una metrica non-Minkowskiana, troviamo
allora che la gravità può causare non solo un “rallentamento” della velocità di
propagazione e↵ettiva, ma anche, in certi casi, un e↵ettivo aumento di tale ve-
locità, a seconda della posizione dell’osservatore e della situazione cinematica
considerata4.

Per illustrare questo punto è su�ciente un semplice esempio basato sul-
la geometria di campo debole e statico descritta dall’Eq. (8.22), con un
potenziale centrale � = �GM/r.

Consideriamo un segnale luminoso che si propaga lungo una geodetica
radiale nulla, tra due punti di coordinate r

1

e r
2

, con r
1

< r
2

. La distanza
propria �` che separa i due punti, per una geometria di tipo statico, descritta
dalla metrica

ds2 = g
00

c2dt2 + gijdx
idxj , (8.39)

è una quantità costante, pari a:

�` =

Z r2

r1

q

|gijdxidxj |. (8.40)

Applicando nel nostro caso l’Eq. (8.22) otteniamo, al primo ordine in �/c2,

�` =

Z r2

r1

✓

1� �

c2

◆

dr = r
2

� r
1

+
GM

c2
ln

r
2

r
1

, r
2

> r
1

. (8.41)

Una geodetica radiale nulla della metrica (8.22), d’altra parte, è caratterizzata
dalla condizione di↵erenziale

dt =
dr

c

✓

1� 2�

c2

◆

(8.42)

(si veda anche l’Eq. (8.34)). La “durata del viaggio” e↵ettuato dal segnale –
ossia il tempo necessario a�nché il segnale percorra la distanza �` – se viene
riferita al tempo proprio di un osservatore statico posizionato in un estremo
della traiettoria (per esempio, nel punto r

1

) è allora data da (si veda anche

4 Questa seconda possibilità è stata recentemente sottolineata e discussa con particolare
riferimento alla possibile esistenza (e alla eventuale rivelazione sperimentale) di particelle
“superluminali”. Si veda ad esempio B. Alles, Phys. Rev. D85 047501 (2012); D. Lust and
M. Petropoulos, Class.Q.Grav. 29, 085013 (2012).
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l’Eq. (5.30)):

�⌧(r
1

) =
p

g
00

(r
1

)�t =
1

c

✓

1 +
�
1

c2

◆

Z r2

r1

✓

1� 2�

c2

◆

dr

=
1

c
(r

2

� r
1

)



1� GM

c2r
1

+
2GM

c2(r
2

� r
1

)
ln

r
2

r
1

�

, r
2

> r
1

.

(8.43)

La velocità e↵ettiva v(r
1

), misurata dall’osservatore posto nel punto r
1

, è
quindi definita dalla seguente espressione:

v(r
1

)

c
=

�`

�⌧(r
1

)
= 1 +

GM

c2r
1

� GM

c2(r
2

� r
1

)
ln

r
2

r
1

, r
2

> r
1

. (8.44)

Si può facilmente verificare che, per r
2

> r
1

, l’equazione precedente fornisce
sempre il risultato v(r

1

) > c, definendo quindi una propagazione con velocità
e↵ettiva di tipo “superluminale”. Si ottiene il risultato opposto, invece, se la
velocità viene misurata da un osservatore posizionato all’altro estremo della
traiettoria (ossia nel punto r = r

2

). In quel caso la velocità media e↵ettiva è
localmente definita da

v(r
2

)

c
=

�`

�⌧(r
2

)
= 1 +

GM

c2r
2

� GM

c2(r
2

� r
1

)
ln

r
2

r
1

, r
2

> r
1

, (8.45)

e si ottiene sempre v(r
2

) < c, ossia una velocità “subluminale”.
È opportuno sottolineare, a questo punto, che gli aggettivi subluminale

e superluminale usati in questo contesto sono convenzionalmente da riferire
alla velocità della luce tipica dello spazio-tempo piatto, e non sottintendono
alcuna violazione dei principi di relatività e causalità ordinari. Le velocità
v(ri), i = 1, 2, che abbiamo calcolato rappresentano infatti le velocità me-
die e↵ettive associate a percorsi e↵ettuati lungo geodetiche nulle, ossia lungo
traiettorie che giacciono esattamente sul cono luce (distorto) della varietà
spazio-temporale considerata. Essendo riferite alla propagazione sul cono lu-
ce, sono proprio i valori v(r

1

), v(r
2

) – e non c – che rappresentano, a tutti gli
e↵etti, le massime velocità fisicamente permesse per lo scambio di segnali ed
informazioni tra i punti r

1

e r
2

, relativamente ad osservatori posti in r
1

e r
2

.
Notiamo infine che e↵ettuando il limite r

1

! r
2

nelle equazioni (8.44) e
(8.45) otteniamo, in entrambi i casi, v(ri) ! c. Si ritrova dunque sempre v = c
come velocità di propagazione istantanea sul cono luce per un processo fisico
locale (esattamente come nello spazio-tempo di Minkowski, e come dobbiamo
aspettarci sulla base del principio di equivalenza).

Esercizi Capitolo 8

8.1. Identità di Bianchi nell’approssimazione lineare

Mostrare che l’equazione linearizzata (8.8) è consistente con l’identità di
Bianchi contratta purché il tensore energia-impulso soddisfi la legge di
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conservazione imperturbata
@↵Tµ↵ = 0. (8.46)

8.2. Gauge armonico

Dimostrare che la condizione di gauge armonico g↵��↵� µ = 0 si può anche
scrivere nella forma @⌫(

p�ggµ⌫) = 0, utilizzata in Sez. 3.6. Verificare inoltre
che nell’approssimazione lineare tale condizione si riduce all’Eq. (8.9).

8.3. Deflessione gravitazionale di una particella massiva

Calcolare, nell’approssimazione di campo debole, l’angolo di deflessione su-
bito da una particella di massa m che incide con energia E e parametro di
impatto R su di un campo gravitazionale di tipo centrale, descritto dalla
metrica (8.22) e da un potenziale e↵ettivo � = �GM/r.

8.4. Forze centrali linearmente dipendenti dalla velocità

Si consideri la deflessione di una particella massiva da parte di un ipotetico
campo di forze centrali che dipende linearmente dalla velocità della particella,

Fµ =
dpµ

d⌧
= Gµ

⌫u
⌫ , (8.47)

e che nel limite di sorgenti statiche si riduce a

dpi

d⌧
= Gi

0

u0 = �m
u0

c
@i� = �p0

c
@i�, (8.48)

dove � = �GM/r. Mostrare che l’angolo di deflessione �✓, calcolato al primo
ordine in �, tende a zero quando la velocità della particella tende a quella
della luce.

Soluzioni

8.1. Soluzione

L’identità di Bianchi contratta (si veda l’Eq. (6.30)) richiede, nell’appros-
simazione lineare, che la divergenza ordinaria del membro sinistro dell’Eq.
(8.8) sia uguale alla divergenza del membro destro.

La divergenza del membro sinistro fornisce:

@↵R(1)

⌫↵ =
1

2
@⌫ (�2h+ @↵@⇢h

⇢
↵) . (8.49)

D’altra parte, prendendo la traccia dell’Eq. (8.8), abbiamo:

@µ@
⌫h⌫

µ �2h = ��T. (8.50)
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L’equazione precedente si può quindi riscrivere come:

@↵R(1)

⌫↵ = �1

2
�@⌫T. (8.51)

La divergenza del membro destro fornisce:

�@↵T⌫↵ � 1

2
�@⌫T. (8.52)

Le due equazioni (8.51), (8.52) sono dunque consistenti se e solo se il tensore
energia-impulso soddisfa l’ordinaria equazione di conservazione

@↵T⌫↵ = 0. (8.53)

8.2. Soluzione

Usando la definizione di connessione di Christo↵el abbiamo:

g↵��↵�
µ =

1

2
g↵�gµ⌫ (@↵g�⌫ + @�g↵⌫ � @⌫g↵�)

= g↵�gµ⌫@↵g�⌫ �
1

2
g↵�@µg↵� .

(8.54)

Sfruttiamo il fatto che @↵(gµ⌫g�⌫) = @↵�
µ
� = 0, ed usiamo l’Eq. (3.96). Si

ottiene:

g↵��↵�
µ = g↵�g�⌫@↵g

µ⌫ � 1p�g
@µ

p
�g

= �@⌫gµ⌫ �
1p�g

gµ⌫@⌫
p
�g (8.55)

= � 1p�g
@⌫
�p

�ggµ⌫
�

.

La condizione di gauge armonico si può perciò esprimere, equivalentemente,
nei due modi seguenti:

g↵��↵�
µ = 0, @⌫

�p
�ggµ⌫

�

= 0. (8.56)

Nell’approssimazione lineare possiamo usare lo sviluppo (8.1), (8.3), e la
forma della connessione data nell’Eq. (8.5). In questa approssimazione la
precedente condizione di gauge si riduce (modulo correzione di ordine h2 e
superiori) a

g↵��↵�
µ = ⌘↵�� (1)

↵�
µ

=
1

2
⌘↵�⌘µ⌫ (@↵h�⌫ + @�h↵⌫ � @⌫h↵�)

= @↵h
↵µ � 1

2
@µh

= @↵

✓

hµ↵ � 1

2
⌘µ↵h

◆

= 0,

(8.57)

che coincide appunto con l’Eq. (8.9) cercata.



158 8 Approssimazione di campo debole

8.3. Soluzione

Consideriamo la stessa configurazione descritta nella Sez.8.3 per la defles-
sione di un raggio luminoso, con la di↵erenza che il quadrivettore d’onda kµ

viene sostituito dal quadri-impulso pµ = (p, E/c) della particella massiva.
L’Eq. (8.25) viene sostituita da

dp2 = ��↵�2dx↵p� , (8.58)

dove

dx↵ =
�

cdt, dx1, 0, 0
�

, cdt =
c

v
dx1 =

E

pc
dx1,

k� =

✓

E

c
, p, 0, 0

◆

, E =
�

p2c2 +m2c4
�

1/2
.

(8.59)

Abbiamo chiamato p l’impulso iniziale lungo l’asse x1, e abbiamo usato la
relazione di cinematica relativistica p = Ev/c2 che caratterizza la traiettoria
imperturbata di una particella di impulso p, velocità v ed energia E. L’Eq.
(8.58) (tenendo conto che �

01

2 = 0) fornisce allora

dp2 = ��
00

2

✓

E2

pc2

◆

dx1 � �
11

2 pdx1, (8.60)

e prendendo per la connessione il risultato (8.28) otteniamo:

dp2 = �2p2c2 +m2c4

pc4
GMx

2

(x2

1

+ x2

2

)
3/2

dx1. (8.61)

Procediamo ora come nella Sez. 8.3, dividendo per l’impulso incidente ed
integrando l’incremento di impulso dp2 lungo tutta la traiettoria impertur-
bata:

�✓ ' �p2

p
=

1

p

Z

�

dp2
�

x2=R

= �2p2c2 +m2c4

pc2
GMR

c2

Z

+1

�1

dx
1

(x2

1

+R2)
3/2

.

(8.62)

Ricordiamo che questa relazione è valida per |�✓| ⌧ 1, e quindi l’impul-
so p del corpo di prova non può essere arbitrariamente piccolo (per restare
nell’ambito delle approssimazioni usate). Sfruttando il risultato dell’integrale
(8.31) otteniamo infine

�✓(p) = �2GM

Rc2

✓

2 +
m2c2

p2

◆

, (8.63)
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che si può anche scrivere in funzione dell’energia come

�✓(E) = �2GM

Rc2

✓

1 +
E2

E2 �m2c4

◆

. (8.64)

Per m ! 0 ritroviamo l’angolo di Einstein (8.32), indipendente dall’energia.

8.4. Soluzione

Procediamo come nell’esercizio precedente, supponendo che la particella
incida sul campo di forze con un impulso p inizialmente parallelo all’asse x

1

,
e con un parametro di impatto R. L’angolo di deflessione, al primo ordine in
�, è dato da

�✓ ' �p2

p
=

1

p

Z

�

dp2
�

x2=R
, (8.65)

dove

�

dp2
�

x2=R
=

✓

dp2

d⌧
d⌧

◆

x2=R

=

✓

dp2

d⌧

◆

x2=R

✓

m

p

◆

dx1. (8.66)

Sostituendo nella (8.65), ed usando l’Eq. (8.48), si ottiene l’angolo

�✓ = �2GM

Rc2
mcp0

(p)2
, (8.67)

che si può riscrivere in funzione della velocità v = p/(m�) come segue:

�✓ = �2GM

Rc2
c2

v2�
= �2GM

Rc2
c2

v2

✓

1� v2

c2

◆

1/2

. (8.68)

Per v ! c si ha �✓ ! 0, e quindi una particella a massa nulla (come un
fotone) non viene deflessa, al primo ordine, dall’ipotetico campo di forze
centrali che abbiamo considerato.

È istruttivo confrontare questo risultato con quello dell’esercizio preceden-
te. La forza geodetica prevista dalla relatività generale è quadratica, e non
lineare, nella quadri-velocità dei corpi di prova. Ne consegue, in particola-
re, una di↵erente dipendenza dalla velocità: l’angolo di deflessione (8.64),
riscritto in funzione della velocità v = pc2/E, assume la forma

�✓(v) = �2GM

Rc2
c2

v2

✓

1 +
v2

c2

◆

(8.69)

(da confrontare con l’Eq. (8.68)). Per v ! c la deflessione non si annulla, e
si ritrova ancora una volta l’angolo di Einstein (8.32).
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Le onde gravitazionali

Le equazioni di Einstein linearizzate (8.10) descrivono la dinamica del cam-
po gravitazionale nell’approssimazione in cui le deviazioni dalla geometria
di Minkowski, rappresetate da hµ⌫ , sono su�cientemente piccole da esse-
re trattate perturbativamente. Questa approssimazione può essere applicata
con successo al campo gravitazionale statico delle sorgenti astrofisiche, come
abbiamo visto nel capitolo precedente.

L’approssimazione rimane valida, però, anche se le perturbazioni hµ⌫ del-
la geometria di Minkowski dipendono dal tempo. In quel caso le equazioni
(8.10) descrivono la dinamica di fluttuazioni geometriche che si propagano
da un punto all’altro dello spazio-tempo con la velocità della luce, e che si
accoppiano alla materia con intensità controllata dalla costante di Newton:
le onde gravitazionali.

In questo capitolo illustreremo le loro principali proprietà, so↵ermandoci
su alcuni aspetti che stanno alla base delle odierne tecniche di rivelazione. A
causa della loro debolissima interazione coi campi materiali, una rivelazione
sperimentale diretta di queste onde non è ancora stata possibile. Grazie alle
potenti antenne gravitazionali consentite dalla tecnologia attuale – alcune già
operative, altre in fase di progettazione, di collaudo o di sviluppo – è lecito
però prevedere che tale rivelazione non si farà attendere ancora per molto (si
vedano ad esempio i testi [13, 14] della Bibliografia finale).

Non va dimenticato, comunque, che le onde gravitazionali sono già state
rivelate – se pur indirettamente – tramite l’osservazione dei periodi orbitali
di alcuni sistemi astrofisici binari. L’emissione di radiazione gravitazionale
produce infatti una diminuzione del periodo che è stata sperimentalmente
misurata, e che risulta in accordo con le predizioni della relatività generale
(si veda la Sez. 9.2.1). Inoltre, le recenti misure della polarizzazione della
radiazione cosmica elettromagnetica sembrano aver rivelato la presenza di un
fondo di radiazione gravitazionale fossile risalente all’Universo primordiale e
tutt’ora su�cientemente intenso da produrre e↵etti osservabili (si veda la
Sez. 9.5).

� Springer-Verlag Italia 2015 1
M. Gasperini, Relatività Generale e Teoria della Gravitazione,
UNITEXT for Physics, DOI 10.1007/978-88-470-5690-9_

61
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9.1 Propagazione delle fluttuazioni metriche nel vuoto

In assenza di sorgenti (ossia, per Tµ⌫ = 0) le equazioni linearizzate (8.10)
forniscono l’equazione d’onda per la propagazione nel vuoto (e nello spazio-
tempo di Minkowski) del campo tensoriale simmetrico hµ⌫ ,

2hµ⌫ = 0, hµ⌫ = h⌫µ, (9.1)

soggetto alla condizione di gauge armonico (8.9):

@⌫hµ⌫ =
1

2
@µh. (9.2)

Questo sistema di equazioni è molto simile, formalmente, alle equazioni delle
onde elettromagnetiche nel vuoto, 2Aµ = 0, dove Aµ è il potenziale vettore
che soddisfa la condizione del gauge di Lorenz, @µAµ = 0. Poiché l’operatore
di D’Alembert è lo stesso, in entrambi i casi le soluzioni per le componenti di
hµ⌫ e Aµ descrivono segnali che si propagano alla velocità della luce. Ci sono
però importanti di↵erenze dinamiche dovute al fatto che hµ⌫ si trasforma
come un tensore di rango due, mentre Aµ è un vettore.

Infatti, come già sottolineato nel Capitolo 2, le forze tra due sorgenti sta-
tiche di segno identico sono attrattive se vengono trasmesse da un campo
tensoriale, e repulsive se trasmesse da un vettore. La ragione fondamentale di
questa di↵erenza si può far risalire al fatto che il campo tensoriale quantiz-
zato descrive particelle di massa nulla e spin 2 (i gravitoni), mentre il campo
vettoriale quantizzato che descrive particelle di massa nulla e spin 1 (i fotoni).
Dal punto di vista classico ciò si riflette sulle proprietà degli stati di polariz-
zazione (e in particolare sull’elicità) dei due campi, che ora discuteremo in
dettaglio per il caso tensoriale.

9.1.1 Stati di polarizzazione ed elicità

Il campo tensoriale simmetrico hµ⌫ possiede, in generale, 10 componenti in-
dipendenti, che si riducono a 6 dopo aver applicato le 4 condizioni del gauge
armonico (9.2). Mostriamo ora che possiamo sempre applicare 4 ulteriori con-
dizioni alle soluzioni del sistema di equazioni (9.1), (9.2), cos̀ı da ottenere in
totale solo 2 componenti indipendenti. Mostriamo inoltre che queste compo-
nenti indipendenti possono essere sempre scelte in modo tale che hµ⌫ 6= 0
solo se gli indici µ,⌫ corrispondono a direzioni spaziali perpendicolari alla
direzione di propagazione dell’onda.

Partiamo da una soluzione generale (di tipo ritardato) dell’Eq. (9.1), che
descrive (ad esempio) la propagazione lungo l’asse x

1

. Prendiamo ciè una
soluzione del tipo:

hµ⌫ = hµ⌫(x
1 � ct). (9.3)
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La condizione di gauge (9.2) si riduce, in questo caso, a:

@0hµ0 + @1hµ1 =
1

2
@µh. (9.4)

D’altra parte, per una qualunque funzione f che dipende dall’argomento x1�
ct abbiamo, in generale,

@
0

f(x1 � ct) = �@
1

f(x1 � ct) = @1f(x1 � ct), (9.5)

e quindi la condizione di gauge si può anche scrivere:

@1 (hµ0 + hµ1) =
1

2
@µh. (9.6)

Consideriamo ora il di↵eomorfismo infinitesimo xµ ! x0µ = xµ+⇠µ, generato
da un vettore ⇠µ tale che, nella nuova carta {x0}, le fluttuazioni della metrica
soddisfino la condizione

h0
µ0 = 0. (9.7)

Per esprimere hµ⌫ nella nuova carta possiamo usare il risultato (8.11), otte-
nuto nella Sez. 8.1.1. Si trova allora che la trasformazione cercata è definita
da un generatore ⇠µ tale che

h0
µ0 = hµ0 � @µ⇠0 � @

0

⇠µ = 0,

2⇠µ = 0,
(9.8)

(la seconda condizione su ⇠µ va imposta per preservare la validità del gauge
armonico, si veda l’Eq. (8.13)). Il sistema di equazioni non-omogeneo (9.8)
ammette sempre soluzioni diverse dalla ovvia per la variabile ⇠µ, per cui è
sempre possibile e↵ettuare la trasformazione cercata.

Nel nuovo sistema di coordinate (omettendo l’apice sulle variabili, per
semplicità), si ha hµ0 = 0, e la condizione di gauge (9.6) diventa

@1hµ1 =
1

2
@µh. (9.9)

Prendiamo per l’indice µ il valore particolare µ = 0. Poiché h
01

= 0 si ottiene
@
0

h = 0, e quindi h = costante. Questo significa che la traccia del campo ten-
soriale non descrive gradi di libertà dinamici, e che possiamo sempre imporre
sulla soluzione dell’equazione d’onda la condizione

h = 0, (9.10)

mediante un’opportuna scelta delle costanti di integrazione. Ma se h = 0
allora, dall’Eq. (9.9), si ottiene che anche hµ1 è costante. Possiamo quindi
imporre

hµ1 = 0, (9.11)

modulo una parte non-dinamica da assorbire nelle costanti di integrazione.
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Combinando le condizioni (9.7), (9.10), (9.11) troviamo che rimangono di-
verse da zero solo le componenti h

22

, h
23

, h
32

, h
33

, con le condizioni h
23

= h
32

(simmetria) e h
22

= �h
33

(traccia nulla). Perciò, nel sistema di coordinate
considerato, il campo tensoriale dell’onda gravitazionale ha solo due compo-
nenti indipendenti, ed è diverso da zero solo lungo direzioni che giacciono
sul piano ortogonale all’asse di propagazione. Questa scelta di coordinate è
chiamata “gauge TT” – ossia gauge trasverso a traccia nulla – e corrisponde
al caso particolare in cui il gauge armonico (9.2) si spezza nelle due condizioni
separate

@⌫hµ⌫ = 0, h = 0. (9.12)

In questo gauge è diventato usuale chiamare h
+

e h⇥ le componenti del
campo tensoriale che si trovano, rispettivamente, sulla diagonale e fuori dalla
diagonale. Nel nostro caso, in particolare, abbiamo

h
+

= h
22

= �h
33

, h⇥ = h
23

= h
32

, (9.13)

e la soluzione dell’equazione d’onda, nel gauge TT, asssume la forma

hµ⌫ =

0

B

@

0 0 0 0
0 0 0 0
0 0 h

+

h⇥
0 0 h⇥ �h

+

1

C

A

. (9.14)

Più in generale, qualunque soluzione delle equazioni linearizzate nel vuoto –
ossia qualunque onda gravitazionale che si propaga liberamente nello spazio-
tempo di Minkowski – può essere rappresentata (nel gauge TT) come com-
binazione lineare delle sue componenti h

+

e h⇥ introducendo due opportuni

tensori di polarizzazione, ✏(1)µ⌫ , ✏
(2)

µ⌫ , tali che

hµ⌫ = ✏(1)µ⌫ h+

(x� ct) + ✏(2)µ⌫ h⇥(x� ct). (9.15)

I tensori ✏(1) e ✏(2) sono costanti, a traccia nulla, e diversi da zero solo nel
piano trasversale alla propagazione dell’onda. Le loro componenti non nulle
sono posizionate, rispettivamente, sulla diagonale e fuori dalla diagonale. Nel
caso di moto lungo l’asse x

1

, in particolare, abbiamo:

✏(1)µ⌫ =

0

B

@

0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 �1

1

C

A

, ✏(2)µ⌫ =

0

B

@

0 0 0 0
0 0 0 0
0 0 0 1
0 0 1 0

1

C

A

. (9.16)

In generale questi tensori soddisfano la seguente relazione di “ortonormalità”,

Tr
n

✏(i)✏(j)
o

⌘ ✏(i)µ⌫✏
(j)µ⌫ = 2�ij , i, j = 1, 2, (9.17)

e definiscono quindi due stati di polarizzazione linearmente indipendenti.
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Come nel caso elettromagnetico, anche per le onde gravitazionali possiamo
introdurre stati di polarizzazione circolare mediante un’opportuna combina-
zione (con coe�cienti complessi) degli stati di polarizzazione lineare. I tensori
di polarizzazione circolare, in particolare, sono definiti come

✏(±)

µ⌫ =
1

2

⇣

✏(1)µ⌫ ± i✏(2)µ⌫

⌘

, (9.18)

e soddisfano alle condizioni di ortonormalità

Tr
n

✏(+)✏⇤(�)

o

= ✏(+)

µ⌫ ✏
⇤(�)µ⌫ = 0

Tr
n

✏(+)✏⇤(+)

o

= Tr
n

✏(�)✏⇤(�)

o

= 1
(9.19)

(che seguono immediatamente dall’Eq. (9.17)). Le proprietà di trasforma-
zione di ✏(±) rispetto alle rotazioni lungo l’asse di propagazione sono di-
rettamente collegate alla cosiddetta elicità dell’onda, ossia al momento an-
golare intrinseco trasportato dall’onda e proiettato lungo la direzione di
propagazione.

Più precisamente, considerando un’onda che si propaga in direzione bn, si
dice che l’onda ha elicità h se, e↵ettuando rotazione di un angolo ✓ attorno
alla direzione del moto, il suo stato di polarizzazione circolare  si trasforma
come:

 !  0 = eih✓ . (9.20)

Nel nostro caso, se abbiamo un’onda piana che si propaga lungo l’asse x
1

,
dobbiamo e↵ettuare sui tensori ✏(±) una trasformazione del tipo

✏0(±)

µ⌫ = Uµ
↵U⌫

�✏(±)

↵� , (9.21)

dove

Uµ
↵ =

0

B

@

1 0 0 0
0 1 0 0
0 0 cos ✓ sin ✓
0 0 � sin ✓ cos ✓

1

C

A

(9.22)

è la matrice di rotazione attorno a x
1

. Utilizzando la rappresentazione
esplicita dei tensori di polarizzazione ✏(±) si trova facilmente che

✏0(±)

µ⌫ = e±2i✓✏(±)

µ⌫ (9.23)

(si veda l’Esercizio 9.2). Le onde gravitazionali sono dunque caratterizzate
da due stati di polarizzazione circolare con elicità ±2.

Riassumendo, possiamo dire che in questa sezione abbiamo ottenuto due
importanti risultati: (i) le soluzioni dell’equazione di D’Alembert per le per-
turbazioni tensoriali della geometria di Minkowski, in uno spazio-tempo a
quattro dimensioni, contengono solo due stati di polarizzazione indipendenti;
(ii) gli stati di polarizzazione circolare hanno elicità ±2. Questi risultati ci
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dicono che le onde gravitazionali, se quantizzate secondo le procedure stan-
dard della teoria quantistica dei campi, descrivono particelle che (i) hanno
massa nulla e momento angolare intrinseco (ossia spin) parallelo o antipa-
rallelo alla direzione del moto; inoltre, (ii) il loro spin è pari a 2 (in unità
h̄). Queste particelle sono i gravitoni, che rappresentano i quanti del cam-
po gravitazionale (cos̀ı come i fotoni sono i quanti del campo elettromagne-
tico).

9.2 Emissione di radiazione nell’approssimazione
quadrupolare

Per discutere il processo di emissione di radiazione gravitazionale dobbia-
mo partire dalle equazioni linearizzate (8.10), includendo anche le sorgenti
materiali al membro destro. Prendendo la traccia di tali equazioni abbiamo

2h =
16⇡G

c4
T, (9.24)

e sostituendo T in funzione di h possiamo riscrivere le equazioni (8.10) come

2 µ
⌫ = �16⇡G

c4
Tµ

⌫ , (9.25)

dove

 µ
⌫ = hµ

⌫ � 1

2
�⌫µh,@ ⌫ µ

⌫ = 0, @⌫Tµ
⌫ = 0. (9.26)

Si noti che la condizione di gauge armonico (ossia, la divergenza nulla di
 µ⌫) è perfettamente consistente con l’equazione di conservazione del tensore
energia-impulso imperturbato (in accordo all’identità di Bianchi contratta,
come mostrato nel’Esercizio 8.1).

La soluzione dell’Eq. (9.25) si può ora ottenere applicando il metodo stan-
dard delle funzioni di Green ritardate, e si può scrivere nella forma generale
seguente,

 µ⌫(x, t) = �4G

c4

Z

d3x0 Tµ⌫(x0, t0)

|x� x0| , (9.27)

dove t0 = t� |x�x0|/c è il cosiddetto tempo ritardato, mentre Tµ⌫ è il tensore
energia-impulso delle sorgenti valutato nello spazio -tempo di Minkowski,
all’ordine zero nelle fluttuazioni della geometria. Nel caso particolare di una
sorgente statica e puntiforme, di massa M , con T

00

(x0) = Mc2�3(x0), l’Eq.
(9.27) fornisce immediatamente:

 
00

= �4GM

c2|x| ⌘ 4�

c2
, (9.28)
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in perfetto accordo con la definizione (9.26) di  µ⌫ , e con le soluzioni (8.15),
(8.20) ottenute in precedenza.

Per una generica distribuzione di sorgenti la soluzione (9.27) ammette in
generale una approssimazione di tipo multipolare, che si ottiene sviluppando
in serie il denominatore |x�x0|�1, in stretta analogia con il caso ben noto dei
potenziali ritardati della teoria elettromagnetica. Se consideriamo il flusso di
radiazione emessa, a grande distanza dalla sorgente, troviamo però che c’è
un’importante di↵erenza dal caso elettromagnetico.

All’ordine più basso, infatti, la potenza elettromagnetica irraggiata risulta
controllata dalla derivata temporale seconda del momento di dipolo del si-
stema di cariche considerato (dE/dt / |d̈|2). L’irraggiamento gravitazionale,
invece, è controllato dalla derivata terza del momento di quadrupolo del si-

stema di masse (dE/dt / |
...

Q |2). Non c’è il contributo dipolare perché, per
un sistema isolato di sorgenti massive, l’impulso totale pT =

P

i miẋi deve
conservarsi, e quindi

d̈ ⇠ d2

dt2

X

i

mixi =
d

dt
pT = 0. (9.29)

Un simile argomento vale anche (ad esempio) per la radiazione dipolare di tipo
magnetico, che è proibita a causa della conservazione del momento angolare
totale.

Non ci può essere radiazione gravitazionale di dipolo e dunque, all’ordine
più basso, possiamo aspettarci un flusso uscente di onde gravitazionali solo
da distribuzioni di masse caratterizzate da un momento di quadrupolo non
nullo e non costante. Per illustrare questo punto mostriamo innanzitutto che,
su�cientemente lontano dalle sorgenti (nella cosiddetta “zona d’onda”), la
soluzione (9.27) per  è direttamente collegata al momento di quadrupolo
delle sorgenti.

9.2.1 Campo gravitazionale nella zona d’onda

Scriviamo separatamente l’equazione di conservazione @⌫Tµ⌫ = 0 per le
componenti spaziali µ = i,

@kTik + @0Ti0 = 0, (9.30)

e per la componente temporale µ = 0,

@kT
0k + @0T

00

= 0. (9.31)

Moltiplichiamo l’Eq. (9.30) per xj , e integriamo su tutto il volume di un’i-
persuperficie spaziale ⌃, infinitamente estesa, corrispondente a una generica
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sezione spazio-temporale t = costante:
Z

⌃

d3x @k (xjTik)�
Z

⌃

d3xTij +
1

c

d

dt

Z

⌃

d3xTi0xj = 0. (9.32)

Applicando il teorema di Gauss troviamo che il primo integrale non contri-
buisce (perché Tik = 0, che descrive una sorgente spazialmente localizzata, è
nullo a distanza infinita), e quindi:

Z

⌃

d3xTij =
1

2c

d

dt

Z

⌃

d3x (Ti0xj + Tj0xi) (9.33)

(abbiamo preso la parte simmetrica del membro destro perché Tij , al membro
sinistro, è un tensore simmetrico). Moltiplichiamo poi l’Eq. (9.31) per xixj ,
integriamo, e utilizziamo ancora il teorema di Gauss. Si ottiene:

�
Z

⌃

d3xT
0k@

k (xixj) +
1

c

d

dt

Z

⌃

d3xT
00

xixj = 0, (9.34)

e quindi, sostituendo nel membro destro dell’Eq. (9.33):

Z

⌃

d3xTij =
1

2c2
d2

dt2

Z

⌃

d3xT
00

xixj . (9.35)

Supponiamo ora che le sorgenti siano localizzate in una porzione di spazio
situata nell’intorno dell’origine delle coordinate, con un’estensione tipica ca-
ratterizzata dalla scala di distanze x (supponiamo cioè che Tµ⌫(x0) = 0 per
|x0| � x). Se siamo interessati all’emissione di radiazione con lunghezza d’on-
da � � x possiamo considerare la soluzione (9.27) a grande distanza dalle
sorgenti, in un punto P di coordinate x tali che |x| ⌘ R � � (e quindi anche
|x| � x).

In questo limite di grandi distanze (ossia nella cosiddetta “zona d’on-
da”) possiamo espandere il denominatore dell’integrale (9.27): se ci fermiamo
all’ordine zero, ponendo |x� x0| ' |x| = R, la soluzione (9.27) diventa:

 µ⌫(x, t) = � 4G

Rc4

Z

d3x0 Tµ⌫(x
0, t0). (9.36)

Per le componenti spaziali  ij utilizziamo ora l’Eq. (9.35), e poniamo T
00

=
⇢c2. Abbiamo allora:

 ij(x, t) = � 2G

Rc4
d2

dt2

Z

d3x0 ⇢(x0, t0)x0
ix

0
j . (9.37)

Ci servono solo le componenti spaziali del campo tensoriale perché, nel regime
considerato in cui R � � � x, la soluzione può essere approssimata da
un’onda piana, e tale onda piana – come visto nella Sez. 9.1.1 – ha componenti
non nulle solo sul piano perpendicolare alla direzione di propagazione (che
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è di tipo radiale, diretto verso l’esterno). In questo regime possiamo inoltre
adottare il gauge TT, ossia scegliere un sistema di coordinate in cui anche
la traccia della fluttuazione gravitazionale h = � è nulla. In questo gauge
 ij = hij , e la soluzione (9.37) assume la forma seguente:

hij = � 2G

3Rc4
Q̈ij . (9.38)

Abbiamo indicato con il punto indica la derivata rispetto a t, e abbiamo
introdotto il momento di quadrupolo (a traccia nulla) delle sorgenti, definito
da

Qij =

Z

d3x0 ⇢(x0, t0)
�

3x0
ix

0
j � |x0|2�ij

�

, (9.39)

e valutato ovviamente al tempo ritardato t0 �R/c.

9.2.2 Tensore energia-impulso dell’onda gravitazionale

Per calcolare il flusso d’energia irradiato dall’onda a grande distanza dalla
sorgente ci serve ora il tensore energia-impulso della radiazione gravitaziona-
le, espresso in funzione del campo hµ⌫ , e valutato nel gauge TT . Per ottenere
tale tensore direttamente normalizzato in forma canonica è conveniente par-
tire dall’azione e↵ettiva per le fluttuazioni metriche, ossia dall’azione che,
variata rispetto a hµ⌫ , fornisce l’equazione d’onda (9.1) (dopo aver imposto
le condizioni di gauge (9.12)).

L’azione cercata si ottiene considerando l’azione di Einstein (7.2), ed usan-
do per la metrica l’approssimazione di campo debole (8.1). Sviluppando
l’azione S fino a termini quadratici nelle fluttuazioni hµ⌫ , ossia ponendo
S = S(0) +S(1) +S(2), possiamo scrivere in generale il contributo quadratico
S(2) nella forma seguente:

S(2) = � 1

2�

Z

d4x

"

�p
�gg⌫↵

�

(2)

R(0)

⌫↵+

+
�p

�gg⌫↵
�

(0)

R(2)

⌫↵ +
�p

�gg⌫↵
�

(1)

R(1)

⌫↵

#

.

(9.40)

Il primo termine di questa azione è nullo perché la metrica all’ordine zero

è quella di Minkowski, e quindi R(0)

⌫↵ = 0. Vediamo in dettaglio il secondo
termine, osservando che

�p
�gg⌫↵

�

(0)

= ⌘⌫↵,

R(2)

⌫↵ = @µ�
(2)

⌫↵
µ + � (1)

µ⇢
µ� (1)

⌫↵
⇢ � {µ $ ⌫} ,

(9.41)
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e considerando separatamente i vari contributi dei termini lineari in � (2) e
quadratici in � (1).

I due termini lineari in � (2),

⌘⌫↵@µ�
(2)

⌫↵
µ, �⌘⌫↵@⌫� (2)

µ↵
µ, (9.42)

sono divergenze totali e non contribuiscono all’equazione del moto per hµ⌫ .
Il primo termine quadratico in � (1) si può scrivere esplicitamente come

⌘⌫↵� (1)

µ⇢
µ� (1)

⌫↵
⇢ = � (1)

µ⇢
µ 1

2
⌘�⇢ (@↵h↵� + @⌫h⌫� � @�h) , (9.43)

e si trova che è identicamente nullo per le condizioni di gauge (9.12). Il secondo
termine quadratico in � (1) si può scrivere:

�⌘⌫↵� (1)

⌫⇢
µ� (1)

µ↵
⇢

= �1

4
⌘µ� (@⌫h⇢� + @⇢h⌫� � @�h⇢⌫) (@µh

⌫⇢ + @⌫hµ
⇢ � @⇢hµ

⌫) ,
(9.44)

e, trascurando le divergenze totali, fornisce a S(2) il contributo:

�1

4
hµ

⌫2h⌫
µ. (9.45)

Resta da valutare, infine, il terzo termine dell’azione (9.40). Osserviamo
innanzitutto che

�p
�gg⌫↵

�

(1)

=
�p

�g
�

(0)

(g⌫↵)(1) = �h⌫↵, (9.46)

perché, al primo ordine, il determinante (
p�g)

(1)

è proporzionale alla traccia
h delle fluttuazioni, e quindi è nullo nel gauge TT. Usando il risultato (8.7)
e le condizioni di gauge (9.12) abbiamo dunque:

�p
�gg⌫↵

�

(1)

R(1)

⌫↵ =
1

2
h⌫↵2h⌫↵. (9.47)

Sommiamo ora i due contributi (9.45), (9.47) e integriamo per parti, trascu-
rando una divergenza totale. L’azione e↵ettiva (9.40) si riduce a:

S(2) =
c4

32⇡G

Z

d4x
1

2
@µh

↵�@µh↵� . (9.48)

Questa azione descrive la dinamica di un’onda gravitazionale che si propaga
liberamente nello spazio di Minkowski, e che è soggetta alle condizioni di
gauge (9.12).

Il corrispondente tensore dinamico energia-impulso, che chiameremo ⌧µ⌫ ,
si ottiene applicando la definizione della Sez. 7.2. A tal scopo riscriviamo
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la precedente azione in arbitrarie coordinate curvilinee corrispondenti a una
metrica e↵ettiva gµ⌫ , variamo rispetto alla metrica gµ⌫ , e imponiamo che le
equazioni del moto per hµ⌫ siano soddisfatte. Esplicitamente otteniamo:

�S(2) ⌘ 1

2

Z

d4x
p
�g ⌧µ⌫�g

µ⌫

=
c4

32⇡G

Z

d4x
p
�g

1

2

�

@µh
↵�@⌫h↵��g

µ⌫ + · · ·
�

,

(9.49)

modulo termini che si annullano per onde che soddisfano l’equazione 2hµ⌫ =
0 e le condizioni di gauge TT. Perciò:

⌧µ⌫ =
c4

32⇡G
@µh

↵�@⌫h↵� . (9.50)

È facile verificare che questo tensore, per un’onda che soddisfa le equazioni
(9.1), (9.12), ha traccia nulla ed è conservato,

@⌫⌧µ⌫ = 0. (9.51)

(si veda l’Esercizio 9.3).

9.2.3 Potenza media irradiata

L’equazione di conservazione (9.51) ci permette di calcolare la potenza (ossia
l’energia per unità di tempo) irradiata dalle sorgenti. Integrando l’Eq. (9.51)
su di un volume finito V centrato sulle sorgenti, ed usando l’ordinario teorema
di Gauss, abbiamo infatti

1

c

d

dt

Z

V

d3x ⌧µ
0 = �

Z

V

d3x @i⌧µ
i = �

Z

S

⌧µ
id�i, (9.52)

dove d�i è l’elemento di area calcolato sulla superficie bidimensionale S che
racchiude il volume considerato. Perciò, prendendo la componente µ = 0 della
precedente equazione,

dE

dt
= �c

Z

S

⌧
0

id�i = �
Z

S

dI. (9.53)

Il membro sinistro di questa equazione rappresenta la variazione temporale
dell’energia associata alla radiazione gravitazionale all’interno del volume V
(ossia la potenza delle onde gravitazionali emesse). Al membro destro, c⌧

0

i

rappresenta il flusso di energia gravitazionale lungo la direzione x̂i, mentre
dI = c⌧

0

id�i è l’intensità di energia irradiata per unità di tempo attraverso
un elemento di superficie infinitesima di area d�i.
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Per calcolare la potenza totale emessa prendiamo una sfera di raggio R
centrata sulle sorgenti, e calcoliamo l’intensità d’energia dI irraggiata nell’e-
lemento di angolo solido d⌦, lungo una generica direzione radiale individuata
dal versore ni (tale che ninj�ij = 1):

dI = c⌧
0

iniR
2d⌦. (9.54)

Possiamo considerare, ad esempio, un’onda che si propaga lungo la direzione
x
1

individuata da ni = (1, 0, 0). Usando il tensore energia-impulso (9.50), la
soluzione (9.13), e il fatto che @1hij = @

0

hij (si veda l’Eq. (9.5)), abbiamo

dI =
c3

16⇡G

⇣

ḣ2

22

+ ḣ2

23

⌘

R2d⌦, (9.55)

dove il punto indica la derivata rispetto a t = x0/c. Se prendiamo invece
un’onda che si propaga lungo una generica direzione parametrizzata dagli
angoli polari ✓ e ', e individuata dal versore ni con componenti

n
1

= sin ✓ cos', n
2

= sin ✓ sin', n
3

= cos ✓, (9.56)

l’intensità infinitesima dI assume, più in generale, la forma seguente:

dI =
c3

16⇡G



1

4

⇣

ḣijn
inj
⌘

2

+
1

2
ḣij ḣ

ij � ḣikḣ
k
jn

inj

�

R2d⌦ (9.57)

(si veda l’Esercizio 9.4). Assumendo che il raggio R sia su�cientemente gran-
de, e quindi che stiamo valutando dI nella cosiddetta zoan d’onda, possiamo
applicare l’Eq. (9.38) per esprimere il campo di radiazione hµ⌫ mediante il
momento di quadrupolo delle sorgenti. La relazione precedente assume allora
la forma

dI =
G

36⇡c5



1

4

⇣...

Qij n
inj
⌘

2

+
1

2

...

Qij

...

Q
ij
�

...

Qik

...

Q
k

jn
inj

�

d⌦, (9.58)

e mostra che, a grandi distanze, la potenza irradiata diventa indipendente da
R ed è completamente controllata dalla derivata temporale terza del momento
di quadrupolo.

Dobbiamo ora e↵ettuare l’integrazione angolare in d⌦ = sin ✓d✓d' su
tutto l’angolo solido, corrispondente al dominio di integrazione ✓ 2 [0,⇡]
e ' 2 [0, 2⇡]. Usando per ni la rappresentazione polare (9.56) si ottiene
facilmente

Z

⌦

d⌦ = 4⇡,

Z

⌦

d⌦n inj =
4⇡

3
�ij , (9.59)

Z

⌦

d⌦n injnknl =
4⇡

15
(�ij�kl + �ik�jl + �il�jk) (9.60)
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(si veda l’Esercizio 9.5). Integriamo, e sfruttiamo le proprietà di simmetria
(Qij = Qji) e traccia nulla (Qij�ij = 0) del momento di quadrupolo. Sosti-
tuendo nell’Eq. (9.53) troviamo allora la seguente espressione per l’energia
totale irraggiata:

dE

dt
=�

Z

⌦

dI= � G

36⇡c5
4⇡

...

Qij

...

Q
ij
✓

1

30
+

1

2
� 1

3

◆

= � G

45c5
...

Qij

...

Q
ij
. (9.61)

Per sorgenti sottoposte a moti di tipo periodico è conveniente infine e↵ettuare
la media temporale (su un periodo T ) della potenza emessa. Definendo

h· · ·i = 1

T

Z T

0

dt (· · ·) (9.62)

abbiamo
⌧

dE

dt

�

= � G

45c5
h
...

Qij

...

Q
ij
i. (9.63)

Una immediata applicazione di questo risultato al semplice caso di un oscil-
latore armonico viene presentata nell’Esercizio 9.6. Nella sezione seguente
discuteremo invece la sua applicazione al caso di un sistema stellare binario.
La perdita di energia sotto forma di radiazione gravitazionale produce in que-
sto sistema una diminuzione del periodo di rotazione che è stata osservata,
e che ha confermato sperimentalmente le predizioni della relatività generale
(nel regime in cui l’approssimazione di quadrupolo è valida).

9.2.4 Esempio: sistema stellare binario

La potenza emessa da un sistema di masse accelerate sotto forma di radiazione
gravitazionale di quadrupolo, espressa dall’Eq. (9.63), è estremamente picco-
la. Possiamo facilmente rendercene conto considerando, come tipico esempio
di sistema macroscopico da laboratorio, un oscillatore lineare di massa m,
frequenza ! e ampiezza L. In questa caso l’Eq. (9.63) fornisce

⌧

dE

dt

�

= � 48G

45c5
m2L4!6 (9.64)

(si veda l’Esercizio 9.6). Se poniamo m = 1 Kg, L = 1 m e ! = 10 Hz otte-
niamo una potenza irraggiata di circa 10�40 erg/sec, ossia 10�47 Watt, che
risulta ben al di sotto della capacità di rivelazione consentita dalla tecnologia
ordinaria.

Sorgenti di radiazione molto più intensa possono esistere, però, in ambito
astrofisico. Un esempio molto semplice e ben noto, a questo proposito, è for-
nito dai sistemi stellari binari, formati da due astri molto vicini, orbitanti a
grande velocità attorno al loro centro di massa. Il meccanismo di irraggiamen-
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to è in principio identico a quello dell’oscillatore di laboratorio, ma l’e↵etto
risultante è ingigantito grazie alle masse (molto più elevate) che entrano in
gioco.

Consideriamo infatti due corpi celesti (per esempio, due stelle) di massam
1

e m
2

, ruotanti nel piano (x
1

, x
2

) attorno al loro baricentro, con velocità non
relativistiche. Supponiamo che questo sistema si possa descrivere, in prima
approssimazione, cone un corpo puntiforme di massa ridotta

M =
m

1

m
2

m
1

+m
2

, (9.65)

ruotante con velocità angolare ! su di un’orbita circolare di raggio a, descritta
dalle equazioni:

x
1

= a cos!t, x
2

= a sin!t, x
3

= 0. (9.66)

In questo caso

⇢ = M�(x
1

� a cos!t)�(x
2

� a sin!t)�(x
3

), (9.67)

e il momento di quadrupolo (9.39) ha componenti:

Q
11

= Ma2
�

3 cos2 !t� 1
�

, Q
22

= Ma2
�

3 sin2 !t� 1
�

,

Q
33

= �Ma2, Q
12

= Q
21

= 3Ma2 cos!t sin!t.
(9.68)

Il calcolo delle derivate terze fornisce:
...

Q
11

= 24Ma2!3 sin!t cos!t = �
...

Q
22

,
...

Q
12

= �12Ma2!3

�

cos2 !t� sin2 !t
�

.
(9.69)

E↵ettuando la media temporale su un periodo T = 2⇡/!, secondo la
prescrizione (9.62), abbiamo inoltre:

hsin2 !t cos2 !ti = 1

8
,

h
�

cos2 !t� sin2 !t
�

2i = hcos2 2!ti = 1

2
.

(9.70)

Sostituendo nell’Eq. (9.63) troviamo allora che il sistema binario considerato
emette radiazione gravitazionale di quadrupolo con una potenza media:

⌧

dE

dt

�

= �32G

5c5
M2a4!6. (9.71)

Per stimare l’intensità di irraggiamento di un tipico sistema binario possiamo
prendere come massa stellare quella del sole, M ⇠ 1033 g, una distanza di
circa 10 raggi solari, a ⇠ 1011 cm, e un periodo di qualche ora, ! ⇠ 10�4.
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La potenza corrispondente è dell’ordine di 1027 erg/sec, ossia 1020 Watt. Se
questo sistema è interno alla nostra galassia, possiamo assumere che si trovi a
una distanza media dalla terra di circa R ⇠ 1020 cm. Il corrispondente flusso
d’energia da noi ricevuto è quindi dell’ordine di grandezza

� =
1

4⇡R2

�

�

�

�

⌧

dE

dt

�

�

�

�

�

⇠ 10�14

erg

cm2sec
= 10�21

Watt

cm2

. (9.72)

Questo flusso di radiazione è di gran lunga più elevato di quello che potrem-
mo ricevere stando ad un centimetro di distanza dall’oscillatore considerato
all’inizio di questa sezione, ma è comunque ancora troppo piccolo per una
rivelazione diretta. La radiazione emessa da un sistema binario, però, può es-
sere indirettamente osservata tramite gli e↵etti che essa produce sul periodo
orbitale.

Per illustrare questo punto dobbiamo collegare l’energia del sistema bi-
nario al suo periodo. Usiamo l’approssimazione Newtoniana per descrivere
il sistema imperturbato, e prendiamo (per semplicità) due stelle di massa
uguale, m

1

= m
2

= m, in rotazione con frequenza ! su un orbita circolare di
raggio r attorno al baricentro. Per la radiazione gravitazionale emessa vale
l’Eq. (9.71), con M = m/2 e a = 2r.

L’energia totale (cinetica più potenziale) di questo sistema, nell’approssi-
mazione Newtoniana, è data da:

E = m!2r2 � Gm2

2r
. (9.73)

La condizione di equilibrio tra forza gravitazionale e forza centrifuga (in
pratica, la terza legge di Keplero) fornisce inoltre la relazione

m!2r =
Gm2

4r2
. (9.74)

Ricavando r in funzione di !, e sostituendo nell’Eq. (9.73), otteniamo la
relazione cercata tra energia e frequenza:

E(!) = �
✓

G

4

◆

2/3

m5/3!2/3. (9.75)

Di↵erenziando, e introducendo il periodo T = 2⇡/!, abbiamo infine:

dE

E
=

2

3

d!

!
= �2

3

dT

T
. (9.76)

La variazione temporale del periodo e dell’energia sono dunque collegate dalla
relazione:

dT

dt
= �3

2

T

E

dE

dt
. (9.77)
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Per il nostro sistema, d’altra parte, l’energia totale definita dall’Eq. (9.73) è
negativa: eliminando m!2 con l’Eq. (9.74) abbiamo infatti:

E = �Gm2

4r
< 0. (9.78)

Ne consegue che la variazione del periodo e dell’energia hanno lo stesso segno.
La perdita di energia sotto forma di radiazione gravitazionale produce quindi
una diminuzione del periodo, che può essere calcolata sostituendo nell’Eq.
(9.77) la potenza irradiata (in approssimazione quadrupolare) fornita dall’Eq.
(9.71).

Questo e↵etto è stato sperimentalmente osservato nel sistema binario sco-
perto da Hulse e Taylor1 (premi Nobel per la Fisica nel 1993), in cui uno dei
due componenti è la pulsar PSR B1913+16 (una stella di neutroni, compatta
e altamente magnetizzata). Precise misure e↵ettuate nell’arco di diversi anni
hanno mostrato che il periodo orbitale i questi astri (pari a circa 7 ore e 45
minuti) decresce ad un ritmo dT/dt di circa 76.5 microsecondi all’anno. Il
risultato di queste misure si accorda con le previsioni della relatività generale
– in particolare, con l’emissione di radiazione gravitazionale di quadrupolo –
con una precisione dello 0.2 per cento.

Non c’è dubbio quindi che le onde gravitazionali esistano, e siano corret-
tamente descritte dalle equazioni di Einstein (perlomeno in prima approssi-
mazione). Rimane però ancora aperta la sfida di una loro rivelazione diretta.
Alcuni aspetti della fenomenologia delle onde gravitazionali, utili ad illustrare
la loro interazione coi rivelatori, verrano brevemente introdotti nelle sezioni
seguenti.

9.3 Interazione tra onde polarizzate e materia

Per discutere la rivelazione delle onde gravitazionali bisogna partire dal moto
di un sistema di masse di prova in risposta al passaggio di un’onda. Il fun-
zionamento dei rivelatori gravitazionali si basa infatti sul moto relativo delle
masse prodotto dall’onda incidente – allo stesso modo in cui i rivelatori di
onde elettromagnetiche si basano sul moto delle cariche. Dobbiamo quindi
partire dall’equazione di deviazione geodetica (si veda la Sez. 6.1),

D2⌘µ

d⌧2
+ ⌘⌫R⌫↵�

µu↵u� = 0, (9.79)

che fornisce l’accelerazione prodotta localmente dal campo gravitazionale tra
due masse di prova con separazione spaziale ⌘µ. È questa l’equazione che
sta alla base del meccanismo di rivelazione, per qualunque tipo di “antenna”
gravitazionale.

1 R. H. Hulse and J. H. Taylor, Astrophys. J. Lett. 195, L51 (1975).
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Consideriamo due masse di prova su�cientemente vicine e inizialmente a
riposo, con separazione spaziale ⌘µ = Lµ = (0, Li) = costante. Investite da
un’onda gravitazionale descritta dal tensore di Riemann Rµ⌫↵� esse tendono
a spostarsi dalla posizione d’equilibrio, muovendosi come previsto dall’Eq.
(9.79). Assumendo che gli spostamenti siano piccoli, i moti non relativistici
e i campi gravitazionali deboli, poniamo

⌘µ = Lµ + ⇠µ, |⇠| ⌧ |L|, (9.80)

approssimiamo la quadrivelocità come uµ = (c,0), e restiamo al primo ordine
nello spostamento ⇠ e nel campo hµ⌫ dell’onda. In questo limite l’equazione
di deviazione geodetica si riduce a

⇠̈i = �LjR(1)

j00
ic2, (9.81)

dove il punto indica la derivata rispetto a t, e R(1)

µ⌫↵
� è il tensore di Riemann

calcolato al primo ordine in h (si veda l’Eq. (8.6)).
Per il campo dell’onda gravitazionale è conveniente usare il gauge TT, nel

quale hµ0 = 0 (si veda la Sez. 9.1.1). In questo caso l’unico contributo al
primo odine si ottiene dal terzo termine dell’Eq. (8.6), che fornisce

R(1)

j00
i =

1

2c2
�ikḧjk =

1

2c2
ḧj

i, (9.82)

e quindi l’Eq. (9.81) diventa:

⇠̈i = �1

2
Lj ḧj

i. (9.83)

Possiamo prendere, in particolare, un’onda piana monocromatica che si pro-
paga lungo l’asse x

3

, con frequenza ! = ck e con componenti non nulle nel
piano trasversale (x

1

, x
2

):

hij =

✓

h
+

h⇥
h⇥ �h

+

◆

cos [k(z � ct) + �] . (9.84)

Abbiamo introdotto una generica fase arbitraria �, e una matrice 2 ⇥ 2 che
rappresenta le componenti h

11

= �h
22

e h
12

= h
21

. Per quest’onda

ḧij = �k2c2hij = �!2hij , (9.85)

e l’equazione del moto (9.83) diventa

⇠̈1 = �!
2

2

�

L1h
+

+ L2h⇥
�

cos (kz � !t+ �) ,

⇠̈2 = �!
2

2

�

L1h⇥ � L2h
+

�

cos (kz � !t+ �) .

(9.86)
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Per illustrare il moto relativo delle masse di prova supponiamo ora che nel
piano (x

1

, x
2

) ci sia un gruppo di particelle massive, disposte in modo da
formare un cerchio di raggio L/2. Consideriamo un’onda incidente con po-
larizzazione di tipo h

+

, con ampiezza h
+

= f (l’ampiezza h⇥ è ovviamente
nulla per la polarizzazione scelta). La forza esercitata sul cerchio di particelle
varia in modo periodico, passando dall’istante in cui cos (kz � !t+ �) = 1, e
quindi

⇠̈1 = �!
2

2
Lf, ⇠̈2 =

!2

2
Lf, (9.87)

(forza di attrazione massima lungo x
1

e repulsione massima lungo x
2

),
all’istante in cui cos (kz � !t+ �) = �1, e quindi

⇠̈1 =
!2

2
Lf, ⇠̈2 = �!

2

2
Lf, (9.88)

(repulsione massima lungo x
1

e attrazione massima lungo x
2

). Al variare
periodico di h

+

(t) il cerchio di particelle subisce dunque una serie successi-
va e alternata di compressioni e dilatazioni lungo gli assi ortogonali x

1

, x
2

,
deformandosi come illustrato in Fig. 9.1.

!
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!
"

!
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!
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!
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!
#

!
#

Figura 9.1 Risposta al modo di polarizzazione h+ per una distribuzione di particelle
massive libere, disposte in cerchio nel piano trasversale alla propagazione dell’onda

Supponiamo ora che l’onda incidente abbia una polarizzazione di tipo h⇥
(con componente h

+

= 0), e ampiezza identica a quella del caso precedente,
h⇥ = f . Le equazioni (9.86) per il modo h⇥,

⇠̈1 = �!
2

2
L2f cos (kz � !t+ �) ,

⇠̈2 = �!
2

2
L1f cos (kz � !t+ �) ,

(9.89)

si riducono esattamente a quelle del modo h
+

e↵ettuando una rotazione di
⇡/4 nel piano (x

1

, x
2

). Infatti, definendo

✓

e⇠1
e⇠2

◆

=
1p
2

✓

1 1
�1 1

◆✓

⇠1

⇠2

◆

,

✓

eL1

eL2

◆

=
1p
2

✓

1 1
�1 1

◆✓

L1

L2

◆

, (9.90)
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otteniamo le equazioni

ë⇠1 = �!
2

2
eL1f cos (kz � !t+ �) ,

ë⇠2 =
!2

2
eL2f cos (kz � !t+ �) ,

(9.91)

che riproducono il sistema (9.86) per h⇥ = 0 e h
+

= f . L’e↵etto del modo
h⇥ sul cerchio di particelle massive è dunque lo stesso del modo h

+

, ma è
riferito a due assi ortogonali ruotati di 45 gradi rispetto alla configurazione
precedente (si veda la Fig. 9.2).
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Figura 9.2 Risposta al modo di polarizzazione h⇥ per una distribuzione di particelle
massive libere, disposte in cerchio nel piano trasversale alla propagazione dell’onda

Questi due tipi di distorsione (o di “stress”) prodotti su una distribuzione di
masse di prova sono tipiche dei due stati di polarizzazione delle onde di tipo
tensoriale. I rivelatori di onde gravitazionali cercano di amplificare e rivelare
queste distorsioni prodotte dall’onda sul sistema di masse che agisce da “an-
tenna”, sotttraendo tutti gli e↵etti di “rumore”, ossia tutte le possibili vibra-
zioni non dovute all’onda (ossia, le vibrazioni di tipo termico, microsismico,
etc . . . ).

9.4 L’oscillatore smorzato come esempio di rivelatore

Un semplice esempio di rivelatore di onde gravitazionali è fornito da un nor-
male oscillatore meccanico smorzato, che possiamo interpretare come modello
(ideale) di un sistema macroscopico di masse vibranti.

Supponiamo di avere due masse M collegate da una molla di lunghezza
L a riposo, orientata secondo gli angoli polari ✓,' rispetto a un sistema
di coordinate cartesiane (si veda la Fig. 9.3). Studiamo la risposta di questo
oscillatore a un’onda piana che si propaga lungo la direzione positiva dell’asse
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!

"

!
"

!
#

!
$

Figura 9.3 Orientazione dell’oscillatore rispetto agli assi cartesiani. L’onda gravitazionale
incidente si propaga lungo l’asse x3

x
3

, con polarizzazione di tipo h
+

, che parametrizziamo come segue:

hij =

✓

h 0
0 �h

◆

ei(kz�!t) (9.92)

Osserviamo innanzitutto che nel piano (x
1

, x
2

) la separazione delle masse è
data da

L
1

= L sin ✓ cos', L
2

= L sin ✓ sin'. (9.93)

Supponiamo che la lunghezza d’onda della radiazione incidente sia molto
maggiore delle dimensioni dell’oscillatore (kL ⌧ 1), per cui l’Eq (9.83) per
le piccole oscillazioni nel piano (x

1

, x
2

) diventa:

⇠̈1 = �!
2

2
hL sin ✓ cos'e�i!t,

⇠̈2 =
!2

2
hL sin ✓ sin'e�i!t.

(9.94)

Proiettando questa accelerazione lungo l’asse dell’oscillatore otteniamo l’ac-
celerazione relativa tra le due masse, prodotta dall’onda:

⇠̈ ⌘ ⇠̈1 cos' sin ✓ + ⇠̈2 sin' sin ✓

= �!
2

2
hLe�i!t sin2 ✓ cos 2'.

(9.95)

Aggiungiamo infine a questa accelerazione quella elastica di richiamo prodot-
ta dalla molla, �!2

0

⇠, e un eventuale termine di smorzamento proporzionale
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a ⇠̇, e caratterizzato dal tempo tipico ⌧
0

. Arriviamo cos̀ı all’equazione

⇠̈ +
⇠̇

⌧
0

+ !2

0

⇠ = �!
2

2
hLe�i!t sin2 ✓ cos 2', (9.96)

che descrive la risposta dell’oscillatore a radiazione di frequenza ! ⌧ c/L,
proveniente dalla direzione individuata dagli angoli ✓ e ' rispetto al suo
asse. Il tempo di smorzamento ⌧

0

e la frequenza propria !
0

sono tipici del-
l’oscillatore considerato, e rappresentano parametri intrinseci del rivelatore
determinati dalla sua struttura geometrica e composizione interna.

L’Eq. (9.96) è fondamentale per descrivere il funzionamento delle cosid-
dette “antenne risonanti”. Consideriamo ad esempio il caso ideale in cui l’o-
scillatore è perpendicolare alla direzione dell’onda incidente, ossia poniamo
✓ = ⇡/2 e ' = 0 (oppure ' = ⇡/2). Risolvendo l’Eq. (9.96) troviamo, nel
regime stazionario, la seguente soluzione particolare:

⇠(t) =
!2

2

hLe�i!t

!2 � !2

0

+ i!
⌧0

. (9.97)

La risposta raggiunge il massimo quando la frequenza dell’onda incidente
coincide con la frequenza propria delle masse oscillanti, ! ' !

0

. In questo
regime, detto di risonanza, la soluzione diventa

⇠(t) = � i

2
!
0

⌧
0

hLe�i!t. (9.98)

Per definire l’e�cienza di un rivelatore in questo regime è opportuno calcolare
la cosiddetta “sezione d’urto” �, definita come la potenza dissipata al suo
interno rispetto al flusso di radiazione incidente. Per il nostro oscillatore la
potenza dissipata è data da Pd = Ev/⌧0, dove Ev = M |⇠̇|2 è l’energia cinetica
associata alla vibrazione delle due masse, eccitate dall’onda. Il flusso d’energia
dell’onda polarizzata (9.92), incidente lungo x

3

, si ottiene dal tensore energia-
impulso (9.50), che fornisce:

c⌧
0

3 =
c3

16⇡G

�

�

�

ḣ
11

�

�

�

2

=
!2c3

16⇡G
|h|2 . (9.99)

La sezione d’urto è dunque data da:

� =
Pd

c⌧
0

3

=
16⇡GM

�

�

�

⇠̇
�

�

�

2

⌧
0

!2c3 |h|2
. (9.100)

Alla risonanza, in particolare, possiamo usare per ⇠ l’Eq. (9.98), e otteniamo:

� =
4⇡GM

c3
!2

0

L2⌧
0

=
4⇡GM

c3
Q2L2

⌧
0

, (9.101)
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dove Q = !
0

⌧
0

è il cosiddetto “fattore di merito” del rivelatore. Si noti che, al-
la risonanza, |⇠| = QLh/2. L’e�cienza del rivelatore – che è tanto più grande
quanto più è grande la sua sezione d’urto � – aumenta dunque all’aumentare
del fattore di merito e all’aumentare delle dimensioni del sistema oscillante.

Le antenne risonanti attualmente in funzione sono tipicamente caratte-
rizzate da dimensioni dell’ordine del metro, L ⇠ 102 cm, fattori di merito
Q ⇠ 105, e – mediante sofisticati sistemi di amplificazione elettronica – pos-
sono registrare oscillazioni di ampiezza |⇠| ⇠ 10�15 cm. Sono quindi sensibili
a onde gravitazionali di ampiezza |h| ⇠ 10�22 cm (alla frequenza di risonan-
za). Ciononostante, l’intensità della radiazione gravitazionale è cos̀ı debole,
e le sorgenti astrofisiche cos̀ı lontane, da non aver ancora generato segnali
osservabili nelle antenne attualmente in funzione.

9.4.1 I rivelatori attualmente operanti

È opportuno concludere il capitolo con un sintetico elenco delle antenne
gravitazionali che sono attualmente in fase operativa (o di progettazione).

Ci sono due tipi di rivelatori che l’attuale tecnologia ci permette di costrui-
re e impiegare e�cacemente: le barre risonanti e gli interferometri. Le barre
risonanti sono grossi cilindri di metallo (ad esempio alluminio) che vengono
posti in vibrazione dal passaggio di un’onda gravitazionale, comportandosi
(in linea di principio) come l’oscillatore elementare discusso in precedenza.
La loro frequenza di risonanza tipica è !

0

⇠ 1 kHz. Per eliminare il rumo-
re termico queste barre vengono ra↵reddate fino a temperature inferiori a 1
grado Kelvin.

Tra le barre più potenti e sensibili ricordiamo NAUTILUS (al Laboratorio
INFN di Frascati), AURIGA (al Laboratorio INFN di Legnaro), EXPLORER
(al CERN, Ginevra), ALLEGRO (in Luisiana, USA), NIOBE (in Australia).

Va detto che le barre attuali, di tipo cilindrico, potrebbero evolversi in
futuro verso nuovi tipi di rivelatori risonanti di forma poliedrica, o addirit-
tura sferica, che internamente possono essere pieni oppure cavi. Tra questi
nuovi tipi di (possibili) rivelatori possiamo menzionare il progetto TIGA (in
Luisiana, USA), il progetto GRAIL (a Leiden, Germania), e tra i rivelato-
ri cavi ricordiamo il progetto DUAL (INFN, Italia). Questo nuovi rivelatori
dovrebbero migliorare, in vari modi, le prestazioni delle attuali barre perché
– al contrario della barre – possono individuare la direzione dell’onda inci-
dente, sono sensibili anche a radiazione di tipo scalare, e permettono buona
sensibilità anche a frequenze più alte del kiloHertz.

La seconda categoria di rivelatori gravitazionali è costituita da grossi in-
terferometri a fasci laser, con bracci che arrivano a lunghezze di qualche
kilometro. Gli specchi posti alle estremità dei bracci entrano in vibrazione al
passaggio dell’onda, e producono uno spostamento delle frange di interferen-
za, con una sensibilità massima intorno alla frequenza di 100 Hz. Il percorso
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del fasci laser avviene all’interno di tubi a vuoto, ma non è necessario il
ra↵reddamendo, che invece è richiesto dalle barre.

Tra gli interferometri più sensibili ricordiamo LIGO, che ha bracci lunghi 4
km e che è stato costruito in due versioni gemelle (nello stato di Washington
e in Luisiana, USA); VIRGO, con i bracci lunghi 3 km (a Cascina, presso
Pisa); GEO, con i bracci di 600 m (ad Hannover, Germania); TAMA, con i
bracci di 300 m (in Giappone).

Tutte le antenne gravitazionali elencate finora sono progettate per fun-
zionare all’interno di un laboratorio terrestre, e quindi sono inevitabilmente
soggette a rumori ambientali di tipo geofisico (sismico e microsismico). Que-
sto limita necessariamente la sensibilità delle antenne nella banda di bassa
frequenza: di fatto, esclude dalla banda sensibile le frequenze ! <⇠ 1 Hz, per le
quali le vibrazioni microsismiche superano di gran lunga quelle eventualmente
prodotte dalla radiazione gravitazionale.

Per superare questa limitazione di banda è in fase di studio e di progetto
una serie di interferometri “spaziali”: navicelle (senza equipaggio umano) che,
poste in orbita attorno al sole, lanciano e ricevono a turno tra di loro fasci di
raggi laser, funzionando cos̀ı come un interferometro dai bracci enormi. Es-
sendo nello spazio non sono sono soggetti al rumore sismico, e possono dunque
rivelare vibrazioni gravitazionali a frequenze più basse di quelle consentite ai
rivelatori terresti.

Ricordiamo, in particolare, il progetto LISA (in collaborazione tra le agen-
zie spaziali ESA e NASA), che prevede tre navicelle distanti tra loro 5 milioni
di km, e che raggiunge la sensibilità massima intorno a ! = 10�3 Hz; il pro-
getto BBO (della NASA), formato da 4 navicelle, con sensibilità massima
intorno a ! = 10�1 Hz; e il progetto DECIGO, simile a BBO, ma proposto
da una collaborazione Giapponese.

C’è infine un recente progetto, denominato EINSTEIN TELESCOPE, che
per attutire gli e↵etti del rumore sismico suggerisce di posizionare un’anten-
na di tipo interferometrico non nello spazio, bens̀ı sotto la superficie terre-
stre, alla massima profondità raggiungibile (per esempio, all’interno di una
miniera sottorranea). Inoltre, questo progetto prevede di usare tecniche crio-
geniche (come nei rivelatori a barra) per ra↵reddare al di sotto di 20 gradi
Kelvin i pesanti specchi (del diametro di circa mezzo metro) posti all’estre-
mità dei bracci dell’interferometro. Questo ridurrebbe il rumore termico e
aumenterebbe ulteriormente la sensibilità dello strumento.

Le sensibilità raggiungibili da tutti questi rivelatori, siano essi risonanti o
interferometrici, terrestri o spaziali, in superficie o nel sottosuolo, dovrebbero
permetterci in un futuro non molto lontano di rivelare le onde gravitazionali
emesse dalle più potenti sorgenti astrofisiche posizionate all’interno (e all’e-
sterno) della nostra galassia. E non solo: questi rivelatori potrebbero anche
riuscire a distinguere – se esiste – un fondo cosmico di radiazione gravitazio-
nale fossile, prodotto in modo isotropo durante le fasi primordiali del nostro
Universo, e distribuito su una larghissima banda di frequenze (che si estende,
in principio, da 10�18 Hz fino a oltre il GHz). Per una discussione dettagliata
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di questo punto il lettore interessato può far riferimento ai testi [13,22,29] del-
la Bibliografia finale. Per una possibile rivelazione indiretta del fondo cosmico
di onde gravitazionali si veda invece la sezione seguente.

9.5 E↵etto polarizzante della radiazione gravitazionale
fossile

Nel Capitolo 4 abbiamo sottolineato che un campo gravitazionale, compor-
tandosi come un dielettrico trasparente, può influire sullo stato di polarizza-
zione della radiazione elettromagnetica che lo attraversa. In questa sezione
accenneremo brevemente alla possibilità che un e↵etto del genere si verifichi
anche su scala cosmica, durante le passate ere cosmologiche (per una illustra-
zione completa di questo fenomeno si vedano ad esempio i testi [20,21] della
Bibliografia finale).

Ci concentreremo, in particolare, sulla possibilità che la presenza di onde
gravitazionali (di origine primordiale) possa lasciar tracce sulla polarizzazione
della radiazione elettromagnetica che costituisce il cosiddetto “fondo cosmico
di microonde” (comunemente indicato con la sigla CMB). L’e↵etto polariz-
zante della gravità, in questo caso, è di tipo indiretto, in quanto il campo
delle onde gravitazionali non influisce direttamente sulla polarizzazione della
radiazione CMB, ma piuttosto sulla disomogeneità e sull’anisotropia della
sua distribuzione spaziale.

La polarizzazione della radiazione CMB si produce infatti in seguito agli
urti (e alla conseguente di↵usione) dei fotoni che compongono la radiazione
con gli elettroni e i positroni che formano il plasma primordiale, presente nel-
l’Universo iniziale alla cosiddetta “epoca del disaccoppiamento”. Ad epoche
successive (ovvero, quando la temperatura cosmica scende al di sotto di circa
3000 gradi Kelvin) la radiazione si disaccoppia dalla materia, l’interazione
tra fotoni ed elettroni diventa trascurabile, e la polarizzazione si cristallizza
ai livelli raggiunti al momento del disaccoppiamento. L’attuale “mappa” di
polarizzazione della radiazione CMB ci può dare dunque informazioni dirette
sullo stato dell’Universo primordiale, non contaminate dalla dinamica delle
successive fasi evolutive.

È importante innanzitutto osservare che la radiazione, se è inizialmen-
te non polarizzata (come previsto dal modello cosmologico standard), può
acquistare polarizzazione in seguito a gli urti con gli elettroni purché la
sua distribuzione sia spazialmente anisotropa, e tale anisotropia sia di tipo
quadrupolare (si veda ad esempio il testo [19] della Bibliografia finale).

Ricordiamo, a questo proposito, che la radiazione CMB si trova in uno
stato di equilibrio termico caratterizzato da piccole fluttuazioni (di densità,
�⇢/⇢, e di temperatura, �T/T ) che possono essere scomposte in serie di Fou-
rier per modi di frequenza k. Utilizzando lo sviluppo delle onde piane eik·x in
armoniche sferiche Y`m(✓,� ), tali fluttuazioni possono essere espresse come
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una serie (infinita) di multipoli (` = 1, 2, . . . ,1), che descrivono l’anisotropia
della radiazione alle diverse scale angolari ✓ ' ⇡/`. Il momento di quadrupo-
lo, in particolare, contribuisce all’anisotropia con il termine ` = 2 di questo
sviluppo.

Ma anche i campi elettrici e magnetici della radiazione si possono svilup-
pare in onde piane e, di conseguenza, anche la polarizzazione si può esprimere
come uno sviluppo in serie di multipoli. Poiché la polarizzazione è una diret-
ta conseguenza dell’anisotropia si trova allora che la distribuzione angolare
della polarizzazione (prodotta in seguito agli urti, e descritta da una serie
di coe�cienti multipolari CP

` ) è strettamente correlata alla distribuzione an-
golare dell’anisotropia termica della radiazione (presente prima degli urti, e
descritta da diversi coe�cienti multipolari CT

` ).
Fino a questo punto non abbiamo fatto alcun riferimento esplicito all’even-

tuale ruolo svolto dalle onde gravitazionali in questo processo. La connessione
con le onde gravitazionali emerge dal fatto che le fluttuazioni termiche del-
la radiazione, e quindi le sue anisotropie, sono direttamente prodotte dalle
fluttuazioni della geometria cosmica, e quindi dalle perturbazioni �gµ⌫ della
metrica che descrive il campo di gravità cosmologico.

Tali perturbazioni contengono in generale 6 gradi di libertà fisici (si ricordi
la discussione della Sez. 7.2), che si possono scomporre – rispetto alle rotazioni
dello spazio Euclideo tridimensionale – nel modo seguente: 2 gradi di libertà
di tipo scalare, 2 di tipo vettoriale e 2 di tipo tensoriale. Questi ultimi sono
descritti da un tensore hµ⌫ che risulta trasverso, @⌫hµ⌫ = 0, a traccia nulla,
h = 0, e che descrive dunque (come discusso nella Sez. 9.1) la propagazione
di onde gravitazionali nel vuoto e nell’approssimazione lineare.

È proprio la presenza (eventuale) di queste onde gravitazionali – ossia,
di queste perturbazioni tensoriali – che può influenzare in maniera tipica
l’anisotropia della radiazione CMB e produrre (in seguito agli urti) uno stato
di polarizzazione caratteristico, chiaramente distinguibile dalla polarizzazione
dovuta alle componenti scalari di �gµ⌫ .

Per illustrare questo punto dobbiamo innanzitutto ricordare che un gene-
rico stato di polarizzazione della radiazione elettromagnetica è descritto da
una matrice densità 2⇥2 (chiamiamola P), che è Hermitiana e che in generale
può essere parametrizzata mediante quattro funzioni reali {I,Q, U, V }, con
I = TrP, detti “parametri di Stokes”. Se la polarizzazione è di tipo lineare
abbiamo in particolare V = 0, e la matrice P diventa reale e simmetrica.

Consideriamo dunque lo sviluppo in modi di Fourier delle perturbazioni
della metrica �gµ⌫ , e supponiamo che le componenti di tipo vettoriale siano
trascurabili (come previsto dal modello cosmologico standard). Prendiamo
per cominciare le perturbazioni scalari, e osserviamo che ciascun modo di
Fourier scalare individua una sola direzione privilegiata: quella del suo vettore
d’onda k. L’anisotropia indotta da tale perturbazione sulla distribuzione della
radiazione CMB è caratterizzata dunque da una simmetria di tipo azimutale
(ossia, da un’invarianza per rotazioni) attorno alla direzione del versore bk =
k/|k|.
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La polarizzazione finale della radiazione, ottenuta (mediante scattering su-
gli elettroni) proprio grazie alla presenza dell’anisotropia iniziale, deve ovvia-
mente rispecchiare le proprietà di simmetria dello stato iniziale. Se consideria-
mo lo sviluppo multipolare dei parametri di Stokes della radiazione finale (più
precisamente, lo sviluppo della loro combinazione lineare Q± iU , che risulta
particolarmente conveniente), troviamo allora che i coe�cienti dello svilup-
po diversi da zero (chiamiamoli aE`m) si trasformano, rispetto alle riflessioni
spaziali, acquistando un fattore moltiplicativo (�1)`, ossia: aE`m ! (�1)`aE`m.
Uno stato di polarizzazione di questo tipo viene chiamato “modo E”, ovvero
modo “elettrico” (o anche stato polarizzato di tipo “gradiente”).

L’anisotropia prodotta dal modo di Fourier di una perturbazione di tipo
tensoriale, invece, non è invariante per rotazioni attorno alla direzione del
suo vettore d’onda k. La polarizzazione risultante, nel caso tensoriale, ha
uno sviluppo multipolare più complicato di quello scalare, e i coe�cienti
dello sviluppo si possono scomporre in due componenti: una (parametrizzata
da aE`m) con parità (�1)`, e un’altra (parametrizzata da aB`m) con parità
(�1)`+1. La polarizzazione acquistata dalla radiazione, nel caso in cui la
sua anisotropia abbia origine dalle perturbazioni tensoriali, si può dunque
descrivere come una combinazione di due stati linearmente indipendenti: il
modo E (già visto in precedenza) e il cosiddetto “modo B”, ovvero modo
“magnetico” (detto anche stato polarizzato di tipo “rotore”).

Risultato: la presenza di fluttuazioni metriche di tipo tensoriale – ossia di
onde gravitazionali – all’epoca in cui la radiazione CMB interagiva con gli
elettroni della materia cosmica, e veniva polarizzata, potrebbe aver lasciato
delle tracce sotto forma di stati di polarizzazione2 di tipo B. Tali tracce
potrebbero essere tutt’ora osservabili, a patto che il fondo cosmico di onde
gravitazionali sia caratterizzato da un’intensità su�cientemente elevata.

Come tipico esempio di fondo gravitazionale cosmico capace (in principio)
di produrre questo e↵etto possiamo prendere la radiazione gravitazionale fos-
sile prodotta durante le epoche inflazionarie (ossia, quelle epoche primordiali
caratterizzate da un’evoluzione di tipo accelerato). L’espansione accelerata
della geometria cosmica, infatti, è in grado di amplificare le (inevitabili) flut-
tuazioni quantistiche della metrica, generando, di conseguenza, onde gravi-
tazionali (classiche) direttamente dal vuoto (si veda ad esempio il testo [22]
per una discussione di questo e↵etto).

Le onde gravitazionali prodotte in questo modo sono distribuite su di una
larghissima banda di frequenza, che in generale varia col tempo. Al giorno
d’oggi lo spettro si estende da un cuto↵ infrarosso !

0

pari a circa !
0

⇠
10�18 Hz (che rappresenta l’inverso della scala temporale associata all’attuale
orizzonte cosmologico, o orizzonte di Hubble), fino a un cuto↵ ultravioletto
!
1

pari a circa !
1

⇠ (H
1

/M
P

)1/21011 Hz (dove H
1

è la scala di curvatura
dell’Universo al termine dell’epoca infazionaria, e M

P

è la massa di Planck).

2 La possibilità di tale e↵etto è stata messa in evidenza e studiata, in particolare nei
seguenti lavori: M. Kamionkowski, A. Kosowsky and A. Stebbins, Phys. Rev. Lett. 78,
2058 (1997); U. Seljak and M. Zaldarriaga, Phys. Rev. Lett. 78, 2054 (1997).
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La frequenza !
1

corrisponde al modo di Fourier con la frequenza più elevata
tra tutti quelli che vengono amplificati dal meccanismo inflazionario.

Per caratterizzare l’intensità di queste onde gravitazionali fossili è con-
veniente usare come parametro la cosiddetta “densità spettrale di energia”
⇢h(!, t), ossia la densità di energia per intervallo logaritmico di frequenza,
⇢h(!, t) = d⇢(t)/(d ln!). Tale quantità viene usualmente misurata in unità
di densità critica, ⇢c(t), che oggi (t = t

0

) vale circa ⇢c(t0) ⇠ 10�5GeVcm�3.
Le principali proprietà del fondo cosmico di onde gravitazionali possono essere
dunque convenientemente parametrizzate dalla variabile

⌦h(!, t) =
1

⇢c

d⇢

d ln!
=

!

⇢c

d⇢

d!
. (9.102)

Per ogni modello inflazionario dato, il valore di ⌦h può essere calcola-
to in funzione della scala di curvatura H

1

, del cuto↵ ultravioletto !
1

, e
del parametro ⌦r(t) che rappresenta la densità d’energia (in unità criti-
che) di tutta la radiazione di tipo “non gravitazionale” presente su scala
cosmica.

I modelli inflazionari più semplici forniscono per ⌦h un andamento spet-
trale a potenza, che – valutato al tempo attuale t

0

– si può esprimere nel
modo seguente:

⌦h(!, t0) = ⌦r(t0)

✓

H
1

M
P

◆

2

✓

!
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1

◆nT

, !
eq
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,

= ⌦r(t0)

✓
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P

◆

2

✓

!

!
1

◆nT
✓

!

!
eq

◆�2

, !
0

 !  !
eq

.

(9.103)

In questa espressione nT è il cosiddetto “indice spettrale tensoriale”, che
dipende dal modello: lo spettro viene detto “piatto” se nT = 0, decrescente (o
“rosso”) se nT < 0, crescente (o “blu”) se nT > 0. Questo spettro ha un unico
“scalino” in corrispondenza della frequenza !

eq

, che rappresenta l’inverso
della scala temporale tipica dell’epoca di transizione tra la fase dominata
dalla radiazione e quella dominata dalla materia (tale frequenza, attualmente,
è pari a circa !

eq

⇠ 10�16 Hz). Infine, la frazione critica di densità d’energia
di tipo non gravitazionale attualmente presente (fotoni e neutrini di varie
specie) vale circa ⌦r(t0) ⇠ 10�4.

Ricordiamo ora che coe�cienti multipolari CP
` , che parametrizzano la di-

stribuzione angolare della polarizzazione della radiazione CMB, risultano di-
rettamente proporzionali allo spettro (integrato su tutte le frequenze) delle
perturbazioni metriche che hanno innescato tale polarizzazione.

La polarizzazione di tipo B, in particolare, è caratterizzata da multipoli CB
`

che sono proporzionali all’intensità delle onde gravitazionali che l’ha prodotta.
Misurando lo spettro del modo B, o, quanto meno, misurando l’intensità del
modo B per un dato valore del coe�ciente multipolare `, si può dunque avere
informazione sull’intensità della radiazione gravitazionale presente (a livello
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cosmico) alla corrispondente scala angolare ✓ ⇠ ⇡/` (o alla corrispondente
scala di frequenza).

I recenti risultati3 dell’esperimento BICP2 sembrano aver rivelato che la
polarizzazione di tipo B esiste, e che i valori misurati sembrano potersi ac-
cordare – per lo meno approssimativamente, e per lo meno nella banda di
frequenze esplorata da BICEP2 – con un fondo di radiazione gravitaziona-
le cosmica di tipo (9.103). Se lo spettro è piatto4, in particolare, i risultati
sembrano indicare una scala di curvatura inflazionaria H

1

⇠ 10�6M
P

, cor-
rispondente ad una scala di energia E ⇠ (M2

P

H2

1

)1/4 ⇠ 10�3M
P

⇠ 1016

GeV.
Questi risultati, però, necessitano attualmente di studi e di conferme spe-

rimentali alternative ed indipendenti (che dovrebbero essere fornite dagli
esperimenti in corso, e da quelli programmati per l’immediato futuro).

Esercizi Capitolo 9

9.1. Stati di polarizzazione gravitazionale in D dimensioni

Trovare il numero di stati di polarizzazione indipendenti per una fluttuazione
della metrica hAB in uno spazio-tempo D-dimensionale.

9.2. Elicità delle onde gravitazionali

Ricavare l’Eq. (9.23) per un’onda gravitazionale piana che si propaga lungo
l’asse x

1

.

9.3. Energia-impulso delle onde gravitazionali

Si consideri un’onda gravitazionale che si propaga lungo l’asse x
1

nel gauge
TT e nello spazio-tempo di Minkowski. Si verifichi che il tensore energia-
impulso (9.50) associato a quest’onda soddisfa alle proprietà di conservazione
e traccia nulla:

⌧⌫
⌫ = 0, @⌫⌧µ⌫ = 0. (9.104)

9.4. Potenza irradiata lungo una direzione arbitraria

Ricavare l’Eq. (9.57), che fornisce l’intensità della radiazione gravitazionale
emessa lungo la direzione individuata da un generico versore ni, partendo dal-
l’Eq. (9.55) che fornisce l’intensità della radiazione lungo la direzione dell’asse
x
1

.

3 Annunciati il 17 Marzo 2014: P.A. R. Ade et al. [BICEP2 Collaboration], “Detection of
B-mode polarization at degree angular scales”, arXiv 1403.3985.
4 Se lo spettro è leggermente crescente, invece, la scala di curvatura compatibile coi risultati
di BICEP2 può essere innalzata fino alla cosiddetta “scala di stringa”,H1 ⇠ Ms ⇠ 10�1MP

(si veda ad esempio M. Gasperini, “Relic gravitons from the pre-big bang: what we know
and what we do not know”, in “String theory in curved space times”, ed. N. Sanchez (World
Scientific, Singapore, 1998), p. 333.
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9.5. Medie angolari del flusso di radiazione

Calcolare gli integrali angolari (9.59), (9.60) per il versore ni definito in
coordinate polari dall’Eq. (9.56).

9.6. Radiazione di quadrupolo emessa da un oscillatore armonico

Si applichi l’Eq. (9.63) per determinare la potenza della radiazione gravita-
zionale, mediata su di un periodo, emessa da una particella puntiforme di
massa m che oscilla in modo armonico lungo l’asse x

3

, con frequenza ! ed
ampiezza costante L.

Soluzioni

9.1. Soluzione

Applichiamo gli stessi argomenti della Sez. 9.1.1, con la di↵erenza che gli
indici tensoriali A,B variano da 0 a D�1. In questo caso, il numero totale di
componenti indipendenti per un tensore simmetrico di rango due come hAB

è dato da:
D2 �D

2
+D =

1

2
D(D + 1) (9.105)

(abbiamo preso gli elementi fuori dalla diagonale, diviso per due, ed aggiunto
gli elementi diagonali). Su queste componenti possiamo imporre D condizio-
ni di gauge (usando, ad esempio, il gauge armonico), ed altre D condizio-
ni mediante una trasformazione di coordinate che preserva il gauge scelto.
Sottraendo tutte le condizioni imposte ci resta, in totale, un numero

N =
1

2
D(D + 1)� 2D =

1

2
D(D � 3) (9.106)

di gradi di libertà (e quindi stati di polarizzazione) indipendenti.
In D = 4 si ha N = 2, come trovato in Sez. 9.1.1. In uno spazio-tempo

a 5 dimensioni, invece, un’onda gravitazionale ha N = 5 stati di polarizza-
zione indipendenti (si veda l’Appendice B per una discussione delle teorie
gravitazionali formulate in una varietà con un numero di dimensioni spaziali
superiori a tre).

9.2. Soluzione

Usando la notazione a blocchi per le matrici 2⇥ 2, e le definizioni esplicite
(9.18), (9.22), possiamo porre

✏(±)

µ⌫ =

✓

0 0
0 ✏±

◆

, Uµ
⌫ =

✓

1 0
0 R

◆

, (9.107)

dove

✏± =
1

2

✓

1 ±i
±i �1

◆

=
1

2
(�

3

± i�
1

) , R =

✓

cos ✓ sin ✓
� sin ✓ cos ✓

◆

, (9.108)
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e dove �
1

, �
3

sono le matrici di Pauli nella rappresentazione in cui �
3

è
diagonale. Si trova dunque

✏0(±)

µ⌫ =

✓

0 0
0 ✏0±

◆

(9.109)

dove

✏0± = R✏±RT , (9.110)

e un semplice calcolo matriciale fornisce

✏0± = e±2i✓✏±. (9.111)

9.3. Soluzione

Usando la definizione (9.50) possiamo scrivere esplicitamente le due con-
dizioni (9.104) come segue:

⌧⌫
⌫ = @⌫h↵�@⌫h↵� = 0, (9.112)

@⌫⌧µ⌫ = @⌫
�

@µh
↵�@⌫h↵�

�

= 0. (9.113)

Poiché 2h↵� = 0, esse sono entrambe soddisfatte se vale la condizione di
traccia nulla (9.112).

Per un’onda che si propaga lungo l’asse x
1

si ha h↵� = h↵�(x1 � ct), e la
traccia del tensore energia-impulso si riduce a

⌧⌫
⌫ = @⌫h↵�@⌫h↵� = @0h↵�@

0

h↵� + @1h↵�@
1

h↵�

= 2@0h
22

@
0

h
22

+ 2@0h
23

@
0

h
23

(9.114)

+2@1h
22

@
1

h
22

+ 2@1h
23

@
1

h
23

(abbiamo usato l’Eq. (9.13) che collega tra loro le componenti non nulle di
hij). Per ognuna delle componenti hij , d’altra parte, vale la relazione (9.5),
che implica:

@0hij = @
0

hij = �@
1

hij = @1hij . (9.115)

Tutti i termini dell’Eq. (9.114) si cancellano dunque a vicenda, e la traccia
⌧⌫ ⌫ risulta identicamente nulla.

9.4. Soluzione

L’intensità d’energia irradiata lungo una direzione arbitraria, individua-
ta dal versore n, deve essere un’espressione scalare nello spazio euclideo 3-
dimensionale che dipende da ḣij e ni, che è quadratica in ḣij , e che si riduce
all’Eq. (9.55) per un’onda che si propaga lungo x

1

.
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Consideriamo dunque la più generica forma scalare quadratica in ḣ,

A(n) = ↵
1

⇣

ḣijn
inj
⌘

2

+ ↵
2

ḣij ḣ
ij + ↵

3

ḣikḣ
k
jn

inj , (9.116)

e determiniamo i coe�cienti arbitrari ↵
1

, ↵
2

, ↵
3

imponendo che per n =
n

1

= (1, 0, 0) essa si riduca a:

A(n
1

) = ḣ2

22

+ ḣ2

23

⌘ 1

4

⇣

ḣ
22

� ḣ
33

⌘

2

+ ḣ2

23

. (9.117)

Nel secondo passaggio abbiamo usato la condizione h
22

= �h
33

, valida per
un’onda che si propaga lungo x

1

, per esprimere A(n
1

) in funzione di tutte le
componenti di h non nulle.

Sostituendo n con n
1

nell’Eq. (9.116) troviamo, in generale, la seguente
forma quadratica:

A(n
1

) = ↵
1

ḣ2

11

+ ↵
2

⇣

ḣ2

11

+ ḣ2

22

+ ḣ2

33

+ 2ḣ2

12

+ 2ḣ2

13

+ 2ḣ2

23

⌘

+↵
3

⇣

ḣ2

11

+ ḣ2

12

+ ḣ2

13

⌘

.
(9.118)

Eliminando ḣ
11

con la condizione di traccia nulla,

ḣ
11

= �
⇣

ḣ
22

+ ḣ
33

⌘

, (9.119)

ed imponendo che il risultato coincida con quello dell’Eq. (9.117), arriviamo
al sistema di equazioni:

↵
1

+ 2↵
2

+ ↵
3

=
1

4
, 2↵

1

+ 2↵
2

+ 2↵
3

= �1

2
,

2↵
2

= 1, 2↵
2

+ ↵
3

= 0.
(9.120)

La prima condizione si ottiene dall’uguaglianza dei coe�cienti di ḣ2

22

e ḣ2

33

, la
seconda dall’uguaglianza dei coe�cienti di ḣ

22

ḣ
33

, la terza dall’uguaglianza
dei coe�cienti di ḣ2

23

, la quarta dall’uguaglianza dei coe�cienti di ḣ2

12

e ḣ2

13

.
La soluzione è:

↵
1

=
1

4
, ↵

2

=
1

2
, ↵

3

= �1. (9.121)

Sostituendo questi valori nell’Eq. (9.116) arriviamo dunque alla forma qua-
dratica (9.57) cercata.

9.5. Soluzione

Notiamo innanzitutto che
Z

⌦

d⌦ =

Z

2⇡

0

d'

Z ⇡

0

sin ✓d✓ = 4⇡. (9.122)



192 9 Le onde gravitazionali

Dalla definizione del versore (9.56) abbiamo:

Z

⌦

d⌦n 2

1

=

Z

2⇡

0

d' cos2 '

Z ⇡

0

sin ✓d✓ sin2 ✓

=

Z

2⇡

0

d'
1

2
(1 + cos 2')

Z

1

�1

d(cos ✓)
�

1� cos2 ✓
�

(9.123)

=
4⇡

3
.

Analogamente,
Z

⌦

d⌦n 2

2

=

Z

⌦

d⌦n 2

3

=
4⇡

3
, (9.124)

mentre il risultato è nullo se integriamo n
1

n
2

, n
1

n
3

, e n
2

n
3

. Perciò:
Z

⌦

d⌦n inj =
4⇡

3
�ij , (9.125)

in accordo all’Eq. (9.59).
Per quanto riguarda gli integrali del tipo

Z

⌦

d⌦n injnknl, (9.126)

usando per ni la definizione (9.56) si trova un risultato nullo se 3 o più indici
sono di↵erenti. In caso contrario abbiamo

Z

⌦

d⌦n 2

1

n2

2

=

Z

⌦

d⌦n 2

1

n2

3

=

Z

⌦

d⌦n 2

2

n2

3

=
4⇡

15
, (9.127)

e
Z

⌦

d⌦n 4

1

=

Z

⌦

d⌦n 4

2

=

Z

⌦

d⌦n 4

3

=
4⇡

5
. (9.128)

Possiamo dunque esprimere il risultato in forma compatta come segue,
Z

⌦

d⌦n injnknl =
4⇡

15
(�ij�kl + �ik�jl + �il�jk) , (9.129)

in accordo all’Eq. (9.60).

9.6. Soluzione

La traiettoria dell’oscillatore considerato è descritta dalle equazioni

x
1

= 0, x
2

= 0, x
3

(t) = L cos!t, (9.130)

e il momento di quadrupolo (9.39) è dato da

Qij =

Z

d3x ⇢
�

3xixj � r3�ij
�

, (9.131)
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dove (per una massa puntiforme):

⇢ = m�(x
1

)�(x
2

)�(x
3

� L cos!t), r2 = L2 cos2 !t. (9.132)

Integrando abbiamo quindi:

Q
11

= Q
22

= �mL2 cos2 !t, Q
33

= 2mL2 cos2 !t. (9.133)

Si noti che Q è diagonale, e che soddisfa la condizione di traccia nulla �ijQij =
0.

Calcolando le derivate temporali troviamo

...

Q
11

=
...

Q
22

= �8mL2!3 cos!t sin!t, (9.134)

...

Q
33

= 16mL2!3 cos!t sin!t, (9.135)

e quindi:

...

Qij

...

Q
ij
=

...

Q
2

11

+
...

Q
2

22

+
...

Q
2

33

= 384m2L4!6 cos2 !t sin2 !t. (9.136)

La media su un periodo T = 2⇡/! fornisce:

1

T

Z T

0

dt cos2 !t sin2 !t =
1

8
. (9.137)

Applicando l’Eq. (9.63) trovamo infine che la potenza media emessa dall’o-
scillatore sotto forma di radiazione gravitazionale, nell’approssimazione di
quadrupolo, è data da:

⌧

dE

dt

�

= � G

45c5
h
...

Qij

...

Q
ij
i = � 48G

45c5
m2L4!6. (9.138)
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La soluzione di Schwarzschild

Finora abbiamo usato solo le equazioni di Einstein linearizzate, e considerato
configurazioni geometriche che descrivono l’interazione gravitazionale nell’ap-
prossimazione di campo debole. In questo capitolo applicheremo per la prima
volta le equazioni di Einstein esatte, senza approssimazioni, e le risolveremo
nel caso particolare di un campo gravitazionale sfericamente simmetrico.

La soluzione trovata – la ben nota soluzione di Schwarzschild – verrà usata
per illustrare quella che è una delle conseguenze fenomenologiche più famose
della teoria della relatività generale: la precessione del perielio delle orbite
planetarie. Tale e↵etto, sperimentalmente noto fin dall’Ottocento per i pia-
neti del nostro sistema solare, ha permesso di e↵ettuare una delle verifiche
osservative più convincenti della teoria di Einstein.

Va subito detto, però, che soluzione di Schwarzschild è importante non solo
per le sue applicazioni fenomenologiche ma anche per i suoi aspetti formali.
Essa fornisce infatti un semplice e fondamentale esempio di come il campo
gravitazionale possa modificare la struttura causale dello spazio-tempo, intro-
ducendo un “orizzonte degli eventi” che limita, classicamente, la possibilità
di ottenere informazione da certe porzioni di spazio (l’interno del cosiddet-
to “buco nero”). Estrapolata fino al limite r ! 0 rappresenta inoltre un
semplice modello di singolarità geometrica, ossia di varietà spazio-temporale
“geodeticamente incompleta”.

10.1 Equazioni di Einstein a simmetria sferica nel vuoto

Cerchiamo una soluzione delle equazioni di Einstein (7.29) che descriva la geo-
metria associata ad un campo gravitazionale sfericamente simmetrico, pro-
dotto da una sorgente centrale. Siamo interessati, in particolare, al campo
nel vuoto (ossia, alla geometria dello spazio-tempo esternamente alla sor-
gente): in questo caso possiamo porre Tµ⌫ = 0, e le equazioni si riducono
semplicemente a Rµ⌫ = 0.

� Springer-Verlag Italia 2015 1
M. Gasperini, Relatività Generale e Teoria della Gravitazione,
UNITEXT for Physics, DOI 10.1007/978-88-470-5690-9_

95

10



196 10 La soluzione di Schwarzschild

Dobbiamo dunque calcolare il tensore di Ricci partendo da una metri-
ca gµ⌫ che descriva uno spazio tridimensionale a simmetria sferica. Que-
sto significa, più precisamente, che la parte spaziale gij della metrica deve
essere invariante per rotazioni, ossia deve ammettere il gruppo SO(3) co-
me gruppo di isometrie. Possiamo anche dire, utilizzando la terminologia
della Sez. 6.3, che lo spazio-tempo cercato deve ammettere una opportu-
na “foliazione” (ovvero, una scomposizione) in serie di sezioni spaziali tridi-
mensionali, ognuna delle quali contiene un sottospazio a n = 2 dimensioni
massimamente simmetrico, dotato cioè di n(n + 1)/2 = 3 vettori di Kil-
ling (che in questo caso corrispondono ai 3 generatori delle rotazioni spa-
ziali).

Utilizzando coordinate polari, xµ = (ct, r, ✓,' ), questa condizione si
può facilmente soddisfare imponendo che le sezioni dello spazio-tempo a
t e r fissati siano superfici sferiche bidimensionali di raggio costante. Il
più generale elemento di linea che soddisfa a questo requisito è il se-
guente,

ds2=A
1

(r,t)c2dt2�A
2

(r,t)dr2�A
3

(r,t)drdt�A
4

(r, t)
�

d✓2+ sin2 ✓d'2

�

, (10.1)

dove Ai, i = 1, . . . , 4, sono arbitrarie funzioni reali di r e t. Per r e t fissati
abbiamo infatti dr = dt = 0, e ritroviamo la metrica di una sfera a due

dimensioni di raggio a = A1/2
4

= costante (si veda l’Eq. (2.24)).
Prima di calcolare il tensore di Ricci è conveniente notare che questa ge-

nerica metrica può essere ulteriormente semplificata, imponendo opportu-
ne condizioni di gauge che non rompono la simmetria sferica. Possiamo in-
trodurre, in particolare, due nuove coordinate t̃ e r̃ mediante la trasforma-
zione

t = f
1

(t̃, r̃), r = f
2

(t̃, r̃) (10.2)

(che non coinvolge le variabili angolari), e scegliere le funzioni f
1

, f
2

in modo
tale che, nella nuova carta, risultino soddisfatte le condizioni Ã

3

= 0 e Ã
4

=
r̃2.

In questa nuova carta, omettendo (per semplicità) la tilde, e adottando la
notazione ormai divenuta standard,

g
00

= A
1

= e⌫(r,t), g
11

= �A
2

= �e�(r,t), (10.3)

abbiamo dunque l’elemento di linea seguente:

ds2 = e⌫c2dt2 � e�dr2 � r2
�

d✓2 + sin2 ✓d'2

�

. (10.4)

Le funzioni ⌫ e � dipendono solo da r e t, e verranno ora determinate
imponendo che questa metrica soddisfi le equazioni di Einstein nel vuoto.

A questo scopo osserviamo innanzitutto che la matrice gµ⌫ è diagonale,

gµ⌫ = diag
�

e⌫ ,�e�,�r2,�r2 sin2 ✓
�

, (10.5)
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e che le componenti (controvarianti) della metrica inversa si ottengono
semplicemente invertendo gli elementi diagonali,

gµ⌫ = diag
�

e�⌫ ,�e��,�r�2,�r�2 sin�2 ✓
�

. (10.6)

Ricordiamo che x0 = ct, x1 = r, x2 = ✓, x3 = ', e applichiamo la definizione
(3.90) per la connessione di Christo↵el. Indicando con il punto la derivata
rispetto a t e con il primo quella rispetto a r, troviamo che le componenti
non nulle sono le seguenti:

�
00

0 =
⌫̇

2c
, �

00

1 =
⌫0

2
e⌫��, �

01

0 =
⌫0

2
,

�
01

1 =
�̇

2c
, �

11

0 =
�̇

2c
e��⌫ , �

11

1 =
�0

2
,

�
12

2 =
1

r
, �

13

3 =
1

r
, �

22

1 = �re��,

�
23

3 =
cos ✓

sin ✓
, �

33

1 = �r sin2 ✓e��, �
33

2 = � sin ✓ cos ✓.

(10.7)

Siamo ora in grado di calcolare le componenti del tensore di Ricci, e imporre le
equazioni di Einstein Rµ⌫ = 0. È conveniente calcolare le componenti miste,
R⌫ µ = gµ↵R⌫↵. Usando la definizione (6.21), e eguagliando a zero tutte le
componenti non nulle, abbiamo:

R
1

1=e��
✓

⌫00

2
+
⌫02

4
� �0⌫0

4
� �0

r

◆

� e�⌫

c2

 

�̈

2
+
�̇2

4
� �̇⌫̇

4

!

=0, (10.8)

R
2

2=R
3

3 =
1

r2



e��
✓

1 +
r⌫0

2
� r�0

2

◆

� 1

�

= 0, (10.9)

R
0

0=e��
✓

⌫00

2
+
⌫02

4
� �0⌫0

4
+
⌫0

r

◆

� e�⌫

c2

 

�̈

2
+
�̇2

4
� �̇⌫̇

4

!

=0, (10.10)

R
1

0=
e�⌫

cr
�̇ = 0, R

0

1 = �e��

cr
�̇ = 0. (10.11)

Nella prossima sezione vedremo che questo sistema di equazioni ammette una
semplice soluzione esatta per ⌫ e �.

10.2 Teorema di Birkho↵ e soluzione di Schwarzschild

Cominciamo dalle due equazioni (10.11), che implicano �̇ = 0, ossia � =
�(r). Con questa condizione tutti i termini contenenti derivate temporali si
annullano anche nelle equazioni precedenti. Rimangono tre equazioni per le
due incognite � e ⌫, ma solo due di queste equazioni, come vedremo, sono
indipendenti.
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Sottraendo l’Eq. (10.8) dall’Eq. (10.10), ed eguagliando a zero, otteniamo
la condizione:

⌫0 + �0 = 0, (10.12)

che integrata fornisce

⌫ + � = f(t), (10.13)

dove f è un’arbitraria funzione che dipende solo dalla coordinata temporale.
Poiché � = �(r), ne consegue che la dipendenza da r e t nella parte temporale
dell’elemento di linea (10.4) si può fattorizzare come segue:

g
00

c2dt2 = e⌫c2dt2 = e��(r)ef(t)c2dt2. (10.14)

E↵ettuando la trasformazione di coordinate (che preserva la simmetria sferi-
ca) t ! t̃, definita dalla condizione di↵erenziale

ef(t)/2dt = dt̃, (10.15)

è dunque sempre possibile eliminare qualunque dipendenza dal tempo di g
00

(ossia di ⌫), assorbendola nel nuovo parametro temporale t̃. Perciò la solu-
zione cercata dipende solo dalla coordinata radiale, e soddisfa la condizione:

⌫(r) = ��(r). (10.16)

È opportuno, a questo punto, introdurre la definizione di metrica statica: una
metrica è detta statica se esiste un sistema di riferimento nel quale gi0 = 0,
e tutte le componenti non nulle della metrica sono indipendenti dal tempo,
@
0

gµ⌫ = 0. Siamo allora in grado di riassumere il risultato precedente dicendo
che una metrica a simmetria sferica, che soddisfa le equazioni di Einstein nel
vuoto, deve essere necessariamente statica. Questa a↵ermazione costituisce
l’enunciato del noto teorema di Birkho↵.

Va sottolineato, per chiarezza, che una metrica statica ammette ovvia-
mente un vettore di Killing di tipo tempo, ⇠µ⇠µ > 0 (che, come discusso
in Sez. 3.3, garantisce l’esistenza di una carta in cui @

0

gµ⌫ = 0). Questa
condizione caratterizza le metriche di tipo stazionario, ma non garantisce la
validità della seconda condizione gi0 = 0. Questa seconda condizione è sod-
disfatta, e la metrica è statica (oltre che stazionaria), se e solo se il vettore
di Killing soddisfa la condizione ⇠

[µr⌫⇠↵] = 0 (si veda l’Esercizio 10.1).
Usando il risultato (10.16), possiamo ora facilmente integrare l’Eq. (10.9)

che si riduce a

e⌫ (1 + r⌫0) ⌘ (e⌫r)0 = 1. (10.17)

Integrando e dividendo per r otteniamo

e⌫ = 1� 2m

r
= e��, (10.18)
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dove abbiamo chiamato �2m la costante di integrazione, che ha ovviamente
dimensioni di una lunghezza (vedremo tra poco perché abbiamo scelto il
segno meno). Arriviamo cos̀ı alla soluzione di Schwarzschild, rappresentata
dall’elemento di linea

ds2 =

✓

1� 2m

r

◆

c2dt2 � dr2

1� 2m
r

� r2
�

d✓2 + sin2 ✓d'2

�

, (10.19)

che descrive la geometria dello spazio-tempo vuoto, incurvato dal cam-
po gravitazionale a simmetria sferica presente all’esterno di una sorgente
centrale.

Notiamo subito che questa metrica ha una singolarità per r = 2m, dove
g
00

! 0 e g
11

! 1. Per r < 2m le componenti g
00

e g
11

cambiano di segno,
e le coordinate usate non sono più adatte a descrivere la soluzione trovata.
Questo punto sarà discusso in dettaglio nella Sez. 10.4.

Notiamo infine che la soluzione (10.19) soddisfa non solo l’Eq. (10.9) e una
combinazione lineare di (10.8) e (10.10), ma soddisfa anche separatamente le
equazioni (10.8) e (10.10) (che sono equivalenti per questa soluzione). Infatti

e⌫⌫0 =
2m

r2
, e⌫

�

⌫00 + ⌫02
�

= �4m

r3
, (10.20)

e quindi

e⌫
✓

⌫00

2
+
⌫02

2
+
⌫0

r

◆

= �2m

r3
+

2m

r3
= 0, (10.21)

da cui R
1

1 = R
0

0 = 0.

10.2.1 Limite di campo debole

Per interpretare fisicamente la costante di integrazione �2m, e capire l’origine
del segno negativo scelto, riscriviamo la soluzione di Schwarzschild nella carta
cosiddetta “isotropa”, caratterizzata da una coordinata radiale r̃ tale che:

r = r̃
⇣

1 +
m

2r̃

⌘

2

. (10.22)

In questa carta

dr = dr̃

✓

1� m2

4r̃2

◆

, (10.23)

e l’elemento di linea (10.19) diventa

ds2 =

✓

1� m
2r̃

1 + m
2r̃

◆

2

c2dt2 �
⇣

1 +
m

2r̃

⌘

4

⇥

dr̃2 + r̃2
�

d✓2 + sin2 ✓d'2

�⇤

. (10.24)
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Passando dalle coordinate polari a quelle cartesiane mediante la trasforma-
zione

x
1

= r̃ sin ✓ cos', x
1

= r̃ sin ✓ sin', x
3

= r̃ cos ✓,

r̃ =
�

x2

1

+ x2

2

+ x2

3

�

1/2
= |x|,

(10.25)

abbiamo infine:

ds2 =

 

1� m
2|x|

1 + m
2|x|

!

2

c2dt2 �
✓

1 +
m

2|x|

◆

4

|dx|2 . (10.26)

Queste nuove coordinate sono dette isotrope perché la parte spaziale della
metrica non dipende dalla particolare direzione considerata, come appare
chiaramente da quest’ultima equazione.

Consideriamo ora il limite di grandi distanze dalla sorgente, |x| ! 1.
In questo limite possiamo sviluppare l’elemento di linea per m/|x| ⌧ 1, e
otteniamo:

ds2 =

✓

1� 2m

|x|

◆

c2dt2 �
✓

1 +
2m

|x|

◆

|dx|2 . (10.27)

Ma a distanze arbitrariamente grandi dalla sorgente il campo gravitazio-
nale diventa arbitrariamente debole, e la nostra soluzione esatta deve ri-
produrre la metrica ottenuta risolvendo le equazioni di Einstein linearizzate
nell’approssimazione di campo debole (si veda l’Eq. (8.22)).

Confrontando il nostro limite (10.27) con la soluzione (8.22), e identifican-
do �2m/|x| con 2�/c2, troviamo che la soluzione di Schwarzschild descrive
un campo gravitazionale realistico purché la costante di integrazione delle
equazioni di Einstein sia collegata alla massa totale M del corpo centrale
dalla relazione

2m =
2GM

c2
. (10.28)

La quantità 2m è dimensionalmente una lunghezza, e viene chiamata raggio
di Schwarzschild. Il segno negativo è necessario per ottenere un campo di
forze centrali di tipo attrattivo e una massa della sorgente di segno positivo.

10.3 Precessione del perielio

La soluzione di Schwarzschild fornisce una buona descrizione del campo gravi-
tazionale prodotto dal sole nello spazio interplanetario. I pianeti si muovono,
in prima approssimazione, come corpi di prova puntiformi lungo le geodetiche
di questa metrica. Poiché le coordinate radiali dei pianeti sono molto mag-
giori del raggio di Schwarzschild del Sole (che è dell’ordine del kilometro), il
moto avviene nel regime di campo debole r � 2m, e quindi possiamo usare
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la metrica (10.19) senza incontrare problemi di interpretazione dovuti a un
eventuale scambio di ruoli tra coordinata radiale e temporale.

Per determinare le orbite previste dalla relatività generale partiamo dun-
que dall’equazione geodetica, che conviene scrivere in forma non esplicita-
mente covariante come nell’Eq. (5.6),

d

d⌧
(gµ⌫ ẋ

⌫) =
1

2
ẋ↵ẋ�@µg↵� (10.29)

(il punto indica la derivata rispetto al tempo proprio ⌧). Usiamo per gµ⌫ la
rappresentazione (10.5) (con � = �⌫), e integriamo separatamente le diverse
componenti di questa equazione.

La componente µ = 0,
d

d⌧

�

e⌫ ẋ0

�

= 0, (10.30)

si integra immediatamente e fornisce

ẋ0 = e�⌫k, (10.31)

dove k è una costante del moto associata all’invarianza per traslazioni
temporali (ossia alla conservazione dell’energia totale del sistema).

La componente µ = 2 fornisce:

d

d⌧

⇣

r2✓̇
⌘

=
1

2
'̇2

@

@✓

�

r2 sin2 ✓
�

, (10.32)

ossia
r2✓̈ + 2ṙ✓̇ � r2'̇2 sin ✓ cos ✓ = 0. (10.33)

Se prendiamo come condizioni iniziali ✓(0) = ⇡/2 e ✓̇(0) = 0 questa equa-
zione implica ✓̈ = 0, e risulta identicamente soddisfatta da ✓ = ⇡/2 = co-
stante. Questo significa che il moto avviene in un piano (come nel caso non-
relativistico), e che è sempre possibile scegliere il sistema di riferimento in
modo che tale piano coincida con quello equatoriale ✓ = ⇡/2. Nei calcoli
successivi useremo questa scelta, che permette di semplificare le equazioni in
modo significativo.

La componente µ = 3 (con ✓ = ⇡/2),

d

d⌧

�

r2'̇
�

= 0, (10.34)

si integra immediatamente e fornisce

'̇ =
h

r2
, (10.35)

dove h è una costante del moto associata all’invarianza per rotazioni (e quindi
alla conservazione del momento angolare) nel piano equatoriale ✓ = ⇡/2.
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Resta infine da considerare l’equazione per il moto radiale. A questo pro-
posito, anziché scrivere la componente µ = 1 della geodetica, è conveniente
utilizzare la condizione di normalizzazione della quadrivelocità, ẋµẋµ = c2.
Esprimendo ẋ0 e '̇ tramite le costanti del moto (10.31) e (10.35), e ponendo
✓̇ = 0, ✓ = ⇡/2, abbiamo la condizione

gµ⌫ ẋ
µẋ⌫ ⌘ e�⌫k2 � e�⌫ ṙ2 � h2

r2
= c2, (10.36)

che risolta per ṙ ci dà l’equazione ṙ(r) che descrive il moto radiale.
Per descrivere un moto di tipo orbitale, confinato in una porzione limitata

del piano equatoriale, è opportuno usare come equazione parametrica r =
r(') anziché r = r(t). A questo scopo indichiamo con un primo la derivata
rispetto a ', e esprimiamo ṙ come ṙ = r0'̇. Inoltre, è prassi comune (nel
contesto della meccanica celeste) esprimere le equazioni mediante la variabile
u = r�1, tale che r0 = �u0u�2. Utilizzando l’Eq. (10.35) abbiamo allora

ṙ = �u0u�2'̇ = �hu0, (10.37)

e la condizione (10.36) diventa:

e�⌫k2 � e�⌫h2u02 � h2u2 = c2. (10.38)

Moltiplicando per e⌫h�2, e di↵erenziando rispetto a ', otteniamo infine
l’equazione del moto geodetico nel piano equatoriale ✓ = ⇡/2:

2u0u00 + 2uu0 � 6mu2u0 � 2mc2

h2

u0 = 0. (10.39)

Questa equazione può essere soddisfatta in due modi.
La prima possibilità è u0 = 0, ossia r = costante. In questo caso il moto

corrisponde a un’orbita circolare di raggio r costante, ma non è il caso a cui
siamo interessati in questo contesto perché questo tipo di moto non presenta,
ovviamente, alcun e↵etto di precessione. Per u0 6= 0 possiamo dividere per u0,
e l’equazione si riduce a

u00 + u =
mc2

h2

+ 3mu2, (10.40)

che è l’equazione esatta per l’orbita (non circolare) di un pianeta nel campo
gravitazionale di Schwarzschild. Le di↵erenza dalla corrispondente equazione
Newtononiana sono tutte contenute nell’ultimo termine 3mu2, che rappre-
senta le correzioni relativistiche dovute alla curvatura dello spazio-tempo.

Poiché queste correzioni sono piccole rispetto agli altri termini (mu =
m/r ⌧ 1, e quindimu2 ⌧ u), possiamo risolvere l’equazione con uno sviluppo
perturbativo, ponendo

u = u
(0)

+ u
(1)

+ · · · . (10.41)
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Il primo termine (di ordine zero) dello sviluppo soddisfa l’equazione Newto-
niana imperturbata,

u00
(0)

+ u
(0)

=
mc2

h2

. (10.42)

La soluzione generale esatta è

u
(0)

=
mc2

h2

[1 + e cos ('� '
0

)] , (10.43)

dove '
0

ed e sono costanti di integrazione (si veda l’Eq. (2.10) nel limite non-
relativistico k ! 1). Per 0  e  1 questa soluzione descrive (in coordinate
polari) un’ellissi con eccentricità e e semiasse maggiore:

a =
h2

mc2(1� e2)
. (10.44)

Per calcolare le correzioni “post-Newtoniane” sostituiamo lo sviluppo (10.41)
nell’equazione esatta (10.40). Al primo ordine otteniamo per u

(1)

la seguente
equazione,

u00
(1)

+ u
(1)

= 3mu2

(0)

=
3m3c4

h4

⇥

1 + 2e cos('� '
0

) + e2 cos2('� '
0

)
⇤

,
(10.45)

dove il termine relativistico, valutato sulla soluzione non-perturbata, fa da
sorgente alla correzione del primo ordine (lavorando nell’approssimazione di
campo debole abbiamo trascurato il termine 6mu

(0)

u
(1)

⌧ u
(1)

).
Notiamo ora che, per orbite di piccola eccentricità (e ⌧ 1), possiamo

trascurare anche il termine e2 cos2 ' rispetto a e cos'. Inoltre, il termine
costante al membro destro della precedente equazione può essere assorbito
nella parte Newtoniana della soluzione, semplicemente riscalando la costante
h che determina i parametri dell’orbita. Per u

(1)

ci rimane quindi la seguente
equazione,

u00
(1)

+ u
(1)

=
6m3c4

h4

e cos('� '
0

), (10.46)

che ammette la soluzione particolare

u
(1)

=
3m3c4

h4

e' sin('� '
0

). (10.47)

Includendo al primo ordine le correzioni indotte dalla geometria di Schwarz-
schild arriviamo quindi alla seguente soluzione approssimata:

u ' u
(0)

+ u
(1)

=
mc2

h2



1 + e cos('� '
0

) +
3m2c2

h2

e' sin('� '
0

)

�

. (10.48)
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Poniamo ora

�' =
3m2c2

h2

', (10.49)

e osserviamo che |�'| ⇠ 3mu
(0)

⇠ 3m/r ⌧ 1. Applicando la formula di
sottrazione del coseno per piccoli angoli |�| ⌧ 1,

cos(↵� �) = cos↵ cos� + sin↵ sin� ' cos↵+ � sin↵, (10.50)

possiamo infine riscrivere la soluzione (10.48) come segue:

u =
mc2

h2

[1 + e cos ('� '
0

��')] . (10.51)

Questa è l’equazione (approssimata) per l’orbita nel campo di Schwarzschild,
da confrontare con quella Newtoniana dell’Eq. (10.43).

A questo proposito notiamo che l’Eq. (10.51) descrive ancora una traiet-
toria compresa tra una posizione di minima e massima distanza dall’origine,

h2

mc2(1 + e)
 r  h2

mc2(1� e)
; (10.52)

tale traiettoria, però – al contrario dell’ellissi Newtoniana (10.43) – non è
chiusa: è una curva “a rosetta” (si veda anche l’introduzione al Capitolo
2). Consideriamo, in particolare, il punto di minima distanza dalla sorgen-
te centrale (il cosiddetto perielio). Dopo che il moto ha sotteso un angolo
' � '

0

= 2⇡ il perielio non si trova più nella posizione di partenza, ma ri-
sulta spostato rispetto a quella posizione di un angolo �'. Ad ogni giro, in
particolare, c’è uno spostamento del perielio

�'(2⇡) =
6⇡m2c2

h2

=
6⇡G2M2

h2c2
(10.53)

(abbiamo usato la relazione (10.28) per il raggio di Schwarzschild). Si noti
che quest’e↵etto, principalmente dovuto alla curvatura dello spazio-tempo,
è circa 6 volte più grande di quello che si ottiene includendo le correzioni
cinematiche della relatività ristretta (si veda l’Eq. (2.11)).

Utilizzando la definizione di semiasse maggiore (10.44), l’Eq. (10.53) si può
anche riscrivere come:

�'(2⇡) =
6⇡GM

a(1� e2)c2
. (10.54)

In questa forma risulta evidente che l’e↵etto di spostamento, a parità di
eccentricità, è tanto più grande quanto più piccolo è a, ossia quanto più il
pianeta è vicino al Sole. Ed infatti, è proprio il pianeta Mercurio che presenta
la più accentuata anomalia di spostamento tra tutte quelle osservate: con una
lunga serie di accurate misure astronomiche, iniziate nella seconda metà del
settecento, si è trovato che per Mercurio, dopo avere sottratto tutti gli e↵etti
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di precessione prodotti dalla presenza degli altri pianeti, rimane ancora da
spiegare uno spostamento residuo del perielio di circa 43.11 secondi d’arco al
secolo.

Il risultato (10.54), applicato a Mercurio, predice uno spostamento �' =
0.1038 secondi d’arco ad ogni rivoluzione. Poiché in un secolo Mercurio e↵et-
tua 415 rivoluzioni attorno al Sole, si ottiene una predizione che riproduce
il risultato sperimentale con una precisione dell’uno per cento. L’accordo è
molto buono, tenendo conto che ci sono molte possibili sorgenti di errori siste-
matici (quali, ad esempio, la forma non esattamente sferica del Sole): questi
e↵etti possono produrre indipendentemente piccoli spostamenti del perielio,
che sono da considerare ed eventualmente da aggiungere allo spostamento
gravitazionale (10.54) prodotto dalla geometria di Schwarzschild.

10.4 Orizzonte degli eventi e coordinate di Kruskal

Supponiamo ora che la sorgente della metrica (10.19) sia molto compatta,
concentrata all’interno di una regione centrale di raggio r < 2m. In questo
caso ha senso considerare la soluzione di Schwarzschild anche nel regime di
campo forte, cioè a distanze r ⇠ 2m. Ricordiamo infatti che tale soluzione è
valida solo nel vuoto, e quindi, al massimo, solo fino alla superficie esterna
del corpo centrale che fa da sorgente. All’interno del corpo bisogna risolvere
le equazioni di Einstein con Tµ⌫ 6= 0.

Non è del tutto chiaro, al momento, se corpi cos̀ı compatti (detti black
holes, o “buchi neri”) esistano realmente in natura. A livello astrofisico ci
sono indicazioni indirette che sembrano confermare la loro esistenza; si può
dire, però, che una definitiva conferma sperimentale è ancora mancante. Cio-
nonostante, lo studio della soluzione di Schwarzschild nel regime r < 2m è
di grande interesse teorico come esempio di varietà spazio-temporale che ha
una struttura causale qualitativamente diversa da quella di Minkowski. Tale
varietà presenta, in particolare, un orizzonte a r = 2m e una singolarità a
r = 0.

Per illustrare la prima possibilità consideriamo un corpo centrale con esten-
sione r > 2m, che collassa su se stesso lungo la direzione radiale mante-
nendosi sfericamente simmetrico. La superficie del corpo, per un osservatore
esterno situato a distanza r

1

> r, rimane sempre al di fuori del raggio di
Schwarzschild come se questo raggio rappresentasse un limite invalicabile.

Più precisamente, l’intervallo di tempo proprio �⌧ necessario per raggiun-
gere la coordinata radiale 2m – intervallo che è finito per un osservatore a
riposo sulla superficie che collassa, come si vede facilmente integrando l’e-
quazione della geodetica radiale – diventa un intervallo di tempo infinito per
l’osservatore fermo in r

1

(qualunque sia r
1

> 2m), a causa dell’e↵etto di dila-
tazione temporale prodotto dal campo gravitazionale. Applicando i risultati
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della Sez. 5.3 alla metrica di Schwarzschild abbiamo infatti:
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
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00
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1

)
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00
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◆

1/2 �⌧
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1� 2m
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�

1/2 �!
r ! 2m

1 (10.55)

(si veda l’Eq. (5.32)).
Questo significa anche che la superficie r = 2m corrisponde a ciò che viene

chiamato “orizzonte degli eventi”, ovvero superficie di redshift infinito. Suppo-
niamo infatti che dalla superficie del corpo collassante vengano emessi segnali
(ad esempio, radiazione elettromagnetica) con frequenza propria !

0

verso l’e-
sterno. La frequenza ricevuta dall’osservatore fermo in r

1

è “arrossata” dal
campo gravitazionale (si veda l’Eq. (5.34)), ed è data da:
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00
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1/2 !
0
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1� 2m
r1

⌘

1/2 �!
r ! 2m

0. (10.56)

Man mano che la superficie si avvicina al raggio di Schwarzschild il segnale
emesso viene ricevuto sempre più debolmente, fino a scomparire del tutto
quando viene emesso dal punto r = 2m. Nessun segnale può raggiungere un
osservatore esterno provenendo dalla superficie sferica di raggio 2m, che ap-
pare quindi nera, buia, come se non potesse emettere (classicamente) alcuna
radiazione1. È proprio a causa di questo e↵etto che la porzione di spazio
racchiusa dentro tale superficie ha preso il nome di “buco nero”2.

Va sottolineato, a questo punto, che la presenza di un orizzonte per r =
2m – caratterizzato dalla singolarità della metrica (10.19), dalla divergenza
del tempo di collasso (10.55) e dal redshift infinito (10.56) – non implica
necessariamente che la superficie r = 2m sia da interpretare come una regione
“fisicamente” singolare dello spazio-tempo (ossia come un luogo inaccessibile,
escluso dallo spazio-tempo fisico). Che le cose non stiano cos̀ı ce lo suggerisce
innanzitutto lo studio del tensore di curvatura, poiché gli scalari formati con
questo tensore tendono a divergere nei punti singolari dello spazio-tempo.

Si può dimostrare, più precisamente, che la regolarità degli scalari di cur-
vatura è condizione necessaria (ma non su↵ciente) per l’assenza di singolarità
(si veda ad esempio il testo [8] della Bibliografia finale). Per le soluzioni di
Einstein nel vuoto, in particolare, ci sono quattro scalari non nulli che si pos-
sono formare con la metrica e le sue derivate prime e seconde, senza introdurre

1 In realtà l’emissione di radiazione è possibile mediante e↵etti quantistici, come mostrato
per la prima volta da S. W. Hawking, Commun. Math. Phys. 43, 199 (1975).
2 Cè una coincidenza curiosa che riguarda il nome dello scopritore di questa metrica.
Schwarzschild, in tedesco, significa “scudo nero”.
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derivate covarianti della curvatura3:

Rµ⌫↵�R
µ⌫↵� , Rµ⌫⇢�R↵�

⇢�⌘µ⌫↵� ,

Rµ⌫⇢�R↵�
⇢�Rµ⌫↵� , Rµ⌫⇢�R↵���R

µ⌫↵�⌘⇢���.
(10.57)

Nel caso della soluzione di Schwarschild questi scalari sono tutti regolari
a r = 2m. Se prendiamo, ad esempio, il quadrato del tensore di Riemann
abbiamo

Rµ⌫↵�R
µ⌫↵� =

48m2

r6
(10.58)

(si veda l’Esercizio 10.2). Tutti questi scalari, invece, segnalano in modo
inequivocabile, con la loro divergenza, l’esistenza di una singolarità a r = 0.

Il fatto che la curvatura sia regolare a r = 2m, e che la metrica invece
non lo sia, è una situazione – che si incontra spesso nel contesto della geome-
tria di↵erenziale – tipicamente dovuta a una “cattiva” scelta del sistema di
coordinate. La carta usata per esprimere la soluzione di Schwarzschild nella
forma (10.19), in particolare, è perfettamente adatta a descrivere la regione
spazio-temporale caratterizzata dalla condizione r > 2m, ma potrebbe non
essere adatta (per la presenza di un orizzonte singolare) a ricoprire tutta la
varietà spazio-temporale associata al campo gravitazionale di una sorgente
centrale nel vuoto. Se questo è il caso deve esistere allora una carta (chia-
miamola {xµ}) che la completa, ossia una carta che si estende anche al di
sotto del raggio di Schwarzshild senza presentare singolarità metriche, fino
alla reale (e inevitabile) singolarità geometrica localizzata a r = 0.

La carta {xµ} cercata rappresenta ciò che viene chiamato, nel linguaggio
della geometria di↵erenziale, la massima estensione analitica del sistema di
coordinate, ed è caratterizzata in generale dalle seguenti proprietà. Se la va-
rietà è regolare (ovvero, come si usa dire, geodeticamente completa), allora
tutte le geodetiche di questa carta {xµ} possono essere estese per valori arbi-
trari del proprio parametro temporale senza incontrare singolarità, qualunque
sia il punto di partenza sulla varietà data. Se la varietà invece non è rego-
lare (ossia, se è geodeticamente incompleta), allora alcune geodetiche della
carta {xµ} possono finire bruscamente nei punti di reale singolarità spazio-
temporale (come, ad esempio, il punto r = 0 della soluzione di Schwarzschild);
tutte quelle geodetiche che non incontrano singolarità (se esistono) devono
però essere arbitrariamente estese, come nel caso precedente.

Per una semplice illustrazione di questi concetti possiamo prendere, ad
esempio, una sezione bidimensionale (pseudo-Euclidea) M

2

dello spazio-
tempo di Minkowski M

4

. Questa varietà è ovviamente regolare: la carta
Cartesiana {xµ = (x, ct)} fornisce un esempio di massima estensione ana-
litica per le coordinate di M

2

in quanto le sue geodetiche – le rette del piano

3 Se la metrica non è Ricci-piatta, ossia se Rµ⌫ 6= 0 e R 6= 0, il numero di tali scalari, in 4
dimensioni, sale fino a 14.
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pseudo-Euclideo – possono essere arbitrariamente estese senza ostruzioni da
�1 a +1, qualunque sia il punto di partenza scelto.

Se prendiamo invece la carta di Rindler (⇠,⌘ ), definita da

x = ⇠ cosh ⌘, ct = ⇠ sinh ⌘ (10.59)

(supponiamo ⌘ adimensionale) abbiamo delle coordinate che – come mostrato
nell’Esercizio 6.1 – ricoprono solo una porzione di M

2

definita dalle condi-
zioni x > |ct| e x < �|ct| (il cosiddetto spazio di Rindler, ossia la parte di
M

2

“esterna” al cono luce x = ±ct). Le geodetiche della carta di Rindler
non finiscono in punti singolari dello spazio-tempo (perché su M

2

non ce ne
sono); però non possono essere arbitrariamente estese (al contrario delle rette
cartesiane) perché esistono geodetiche che arrivano al bordo dello spazio di
Rindler in un intervallo di tempo proprio finito (si veda l’Esercizio 10.3), e
l̀ı devono necessariamente terminare. Quindi le coordinate (⇠,⌘ ) non rappre-
sentano la massima estensione analitica per la varietà M

2

, bens̀ı una carta di
M

2

che può essere ulteriormente estesa (cosa che avviene appunto mediante
la trasformazione (10.59)).

Nel caso della geometria di Schwarzshild la situazione è molto simile a
quella appena descritta, con l’importante di↵erenza che la varietà di Sch-
warzshild non è regolare perché presenta una singolarità a r = 0. Qualunque
sia la carta usata ci saranno dunque geodetiche che finiranno in quel punto,
e ciò avverrà in un intervallo finito del proprio parametro temporale. La car-
ta usata nell’Eq. (10.19), però, è valida solo fino all’orizzonte r = 2m, dove
la metrica (ma non lo spazio-tempo) diventa singolare. Poiché le geodetiche
di quella carta arrivano all’orizzonte in un tempo proprio finito possiamo
aspettarci che anche quella carta possa essere estesa, proprio come la carta
di Rindler su M

2

.
La massima estesione analitica per la soluzione di Schwarzshild è fornita

dalla cosiddetta carta di Kruskal, le cui coordinate (u, v) sono collegate alle
coordinate (r, ct) da una trasformazione che non coinvolge le coordinate ango-
lari. Le coordinate (adimensionali) di Kruskal, fuori dall’orizzonte (r > 2m),
sono definite da:

u = ±
⇣ r

2m
� 1
⌘

1/2

er/4m cosh

✓

ct

4m

◆

,

v = ±
⇣ r

2m
� 1
⌘

1/2

er/4m sinh

✓

ct

4m

◆

.

(10.60)

Dentro all’orizzonte (r < 2m) sono definite da:

u = ±
⇣

1� r

2m

⌘

1/2

er/4m sinh

✓

ct

4m

◆

,

v = ±
⇣

1� r

2m

⌘

1/2

er/4m cosh

✓

ct

4m

◆

.

(10.61)
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In entrambe le equazioni precedenti è sottinteso che per u e v va preso lo
stesso segno (si veda ad esempio il testo [12] per una derivazione dettagliata
di tali trasformazioni).

È facile verificare che queste coordinate soddisfano sempre alla condizione

u2 � v2 =
⇣ r

2m
� 1
⌘

er/2m, (10.62)

sia fuori che dentro l’orizzonte. Il loro rapporto fornisce invece

v

u
= tanh

✓

ct

4m

◆

, r > 2m, (10.63)

fuori dall’orizzonte, e

u

v
= tanh

✓

ct

4m

◆

, r < 2m, (10.64)

dentro all’orizzonte. Queste ultime tre equazioni (10.62), (10.63) e (10.64)
sono utili per discutere la struttura geometrica e causale dello spazio-
tempo associato alla soluzione di Schwarzschild, come vedremo nella sezione
successiva.

È istruttivo riscrivere infine l’elemento di linea di Schwarzschild in funzione
delle coordinate di Kruskal. Consideriamo innanzitutto la regione r > 2m.
Di↵erenziando l’Eq. (10.62) abbiamo:

dr =
8m2

r
e�r/2m (udu� vdv) . (10.65)

Di↵erenziando l’Eq. (10.63), e usando la (10.60) per u2, otteniamo:

cdt =
8m2

r � 2m
e�r/2m (udv � vdu) . (10.66)

Sostituendo nell’Eq. (10.19) e semplificando arriviamo infine a:

ds2 =
32m3

r
e�r/2m

�

dv2 � du2

�

� r2
�

d✓2 + sin2 d'2

�

. (10.67)

Ripetendo la stessa procedura nel caso r < 2m si ottiene esattamente lo stes-
so risultato. Questo mostra esplicitamente che la forma quadratica dell’Eq.
(10.19), riscritta nella carta di Kruskal, è perfettamente regolare a r = 2m e
rimane singolare (come previsto) solo nel punto limite r = 0.

10.4.1 Struttura causale della geometria di “buco

nero”

L’elemento di linea (10.67) rappresenta, in coordinate di Kruskal, la soluzione
esatta di Schwarzschild (10.19). Descrive quindi la geometria associata ad
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un campo gravitazionale sfericamente simmetrico, prodotto da una sorgente
localizzata nell’origine. A di↵erenza dell”elemento di linea (10.19), però, la
parametrizzazione di Kruskal si può applicare anche per r < 2m, e si può
estendere in principio fino a r = 0 se la sorgente è puntiforme.

L’Eq. (10.67) può quindi fornire un modello geometrico ideale per il si-
stema comunemente chiamato buco nero “eterno” (eternal black hole), ossia
per un sistema gravitazionale che ha già terminato la fase di collasso rag-
giungendo una configurazione finale stabile, di tipo statico e infinitamente
concentrato. Tale configurazione è probabilmente poco realistica dal punto
di vista fenomenologico, ma il suo studio è particolarmente istruttivo per
illustrare le proprietà geometriche dello spazio-tempo nel regime di campi
gravitazionali molto intensi.

Per discutere le proprietà geometriche dello spazio-tempo descritto dalla
metrica (10.67) è conveniente concentrarsi sulle sue sezioni bidimensionali
parametrizzate dalle coordinate u e v (tali sezioni sono anche chiamate “pia-
no di Kruskal”). Usando l’Eq. (10.62) possiamo osservare, innanzitutto, che
l’orizzonte di Schwarzschild r = 2m corrisponde alle bisettrici del piano di
Kruskal, u = ±v. Usando le equazioni (10.63), (10.64) vediamo inoltre che
la retta u = v corrisponde a t = +1, la retta u = �v a t = �1 (si veda
la Fig. 10.1, pannello (a)). Questa coincidenza tra orizzonte e valore limite
del parametro temporale t è in accordo al fatto, già notato in precedenza,
che per un osservatore esterno al raggio di Schwarzschild l’orizzonte r = 2m
viene raggiunto in un tempo infinito.

Sempre dalle equazioni (10.63), (10.64) otteniamo che le sezioni spazio-
temporali t = costante sono rappresentate dall’equazione u/v = costante,
ossia da rette del piano di Kruskal che passano per l’origine. Dall’Eq. (10.62)
abbiamo invece che le sezioni r = costante sono rappresentate da iperboli, di
due possibili tipi:

u2 � v2 = cost > 0, r > 2m,

u2 � v2 = cost < 0, r < 2m.
(10.68)

A seconda del segno di u2�v2 abbiamo iperboli esterne all’orizzonte, localiz-
zate nei quadranti I e III del piano di Kruskal, e iperboli interne, localizzate
nei quadranti II e IV (si veda la Fig. 10.1, pannello (b)).

È facile notare l’analogia, già accennata in precedenza, tra il piano di Kru-
skal (u, v) e il piano di Minkowski (x, ct), e in particolare tra le curve r =
costante posizionate fuori dall’orizzonte e le traiettorie iperboliche di un osser-
vatore uniformemente accelerato nello spazio di Minkowski. Analogia non solo
formale, in questo caso, in quanto un corpo di prova fermo in una posizione a r
fissato, nella metrica di Schwarzschild, è soggetto appunto a un’accelerazione
costante determinata dall’attrazione del campo gravitazionale centrale.

Inoltre, gli osservatori uniformemente accelerati dello spazio-tempo di Min-
kowski hanno come orizzonte (ossia come asintoto della loro traiettoria iper-
bolica) il cono luce x = ±ct; nel piano di Kruskal gli asintoti dell’iperbole
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Figura 10.1 Pannello (a): l’orizzonte di Schwarzschild nel piano di Kruskal. Pannello
(b): le sezioni t = cost sono rette per l’origine; le sezioni r = cost sono iperboli, fuori
dall’orizzonte (nei quadranti I e III) e dentro all’orizzonte (nei quadranti II e IV)

corrispondono all’orizzonte di Schwarzschild. In questo contesto, il sistema di
coordinate (r, ct) è esattamente l’analogo del sistema di Rindler (si veda l’Eq.
(10.59)): cos̀ı come la carta di Rindler (⇠,⌘ ) ricopre solo la parte di piano di
Minkowski esterna al cono luce, allo stesso modo la carta (r, ct) ricopre solo
la parte di piano di Kruskal esterna all’orizzonte di Schwarzschild (r > 2m,
ossia u2 > v2, ossia i quadranti I e III).

Se ci concentriamo sui quadranti II e IV, interni all’orizzonte, notiamo però
un’importante di↵erenza tra il piano di Kruskal e quello di Minkowski. Mentre
nel piano di Minkwoski la porzione di spazio-tempo fisicamente accessibile
si estende all’infinito, nel piano di Kruskal la regione permessa è limitata
dall’iperbole u2 � v2 = �1, che corrisponde alla singolarità r = 0 (si veda
l’Eq. (10.62)).

In altri termini, la carta di Kruskal rappresenta la massima estensione
analitica per una varietà spazio-temporale (quella di Schwarzschild) che non
è geodeticamente completa (a causa della singolarità di curvatura presente in
r = 0). Possiamo rappresentare, nel piano di Kruskal, una geodetica radiale
di tipo tempo come una traiettoria del I quadrante che procede lungo la
direzione positiva dell’asse temporale v. Questa traiettoria attraversa senza
problemi l’orizzonte di Schwarzschild penetrando nella regione II, e arriva in
un tempo proprio finito a incrociare l’iperbole corrispondente alla singolarità
r = 0, sulla quale deve però bruscamente terminare (si veda la Fig. 10.2,
pannello (a)).

È importante osservare che l’orizzonte r = 2m può essere attraversato da
traiettorie fisiche (di tipo tempo o tipo luce) solo dall’esterno (r > 2m) verso
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Figura 10.2 Pannello (a): il bordo della regione accessibile del piano di Kruskal è limitato
dall’iperbole r = 0, che viene raggiunta in un tempo proprio finito da un osservatore in
caduta libera; Pannello (b): le linee tratteggiate indicano possibili traiettorie di di tipo luce
(avanzate e ritardate) nel piano di Kruskal. Le regioni II, III e IV non possono trasmettere
segnali alla regione I. Le regioni I e III sono causalmente disconnesse

l’interno (r < 2m), ma non viceversa: per “uscire” dalla regione II, infatti, la
traiettoria dovrebbe inclinarsi di un angolo maggiore di 45 gradi rispetto al-
l’asse temporale, e diventare quindi di tipo spazio (corrispondente a velocità
superiori a quelle della luce). Una volta penetrato nella regione II diven-
ta impossibile per un osservatore uscirne, o trasmettere segnali all’esterno.
L’orizzonte di Schwarzschild si comporta quindi (classicalmente) come una
membrana semi-permeabile, attraversabile in una sola direzione.

Notiamo infine che le regioni I e II del piano di Kruskal possiedono, ri-
spettivamente, una copia simmetrica (spazialmente riflessa e temporalmente
invertita) nelle regioni III e IV, che sono le regioni in cui si applicano le
trasformazioni (10.60), (10.61) con il segno meno per entrambe le coordi-
nate. Tali copie scompaiono se si impone che i punti (u, v) e (�u,�v) del
piano di Kruskal siano topologicamente identificabili, come forse è naturale
supporre (ricordiamo, a questo proposito, che le equazioni di Einstein fissa-
no la geometria della varietà spazio-temporale, ma lasciano la sua topologia
completamente arbitraria).

In assenza di identificazione topologica, e nell’ipotesi che le regione III e
IV siano reali e fisicamente distinte dalle loro “copie”, va notato comunque
che nessuna di esse può inviare segnali fisici verso la regione I (dove, presumi-
bilmente, sono localizzati gli osservatori con i quali possiamo correttamente
identificarci).

La regione IV è anche detta “white hole”, buco bianco, perché è un buco
nero con la coordinata temporale che scorre in senso inverso, essendo isome-
trica all’interno della soluzione di Schwarzschild con il segno di v opposto
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a quello della regione II. Questo implica che la porzione di orizzonte che la
delimita, specificato dalle equazioni r = 2m, v < 0, può essere attraversato
(in principio) solo da traiettorie di tipo tempo e luce che per un osservatore
della zona I sono dirette verso il passato. Quindi, ancora, dall’esterno verso
l’interno ma non viceversa (si veda ad esempio il testo [8] della Bibliografia
finale).

Infine, se consideriamo ipotetici segnali che partono dalla zona III e rag-
giungono la I, o viceversa, vediamo che dovrebbero avere traiettorie nel piano
di Kruskal con pendenze superiori ai 45 gradi rispetto alla direzione del loro
asse temporale, e quindi dovrebbero essere segnali di tipo superluminale (si
veda la Fig. 10.2, pannello (b)). Ne consegue che i quadranti I e III risultano
causalmente disconnessi.

La proprietà dell’orizzonte di Schwarzschild di essere una superficie attra-
versabile in un solo senso, e la sua capacità di schermare in modo classicamen-
te impenetrabile certe porzioni di spazio-tempo rispetto ad altre, ha suggerito
la possibilità di applicare ai buchi neri un formalismo di tipo “termodinami-
co”, e di associare all’orizzonte una ben definita entropia propozionale alla
sua area4. La discussione di questi aspetti va però al di fuori degli scopi di
questo libro, e il lettore interessato è invitato a consultare, ad esempio, il
testo [10] della Bibliografia finale.

10.5 Tempo proprio per osservatori in moto in un
campo statico

Abbiamo già visto che la distorsione della geometria spazio-temporale pro-
dotta da un campo gravitazionale può influenzare localmente il “flusso” del
tempo proprio di un osservatore statico (si veda la Sez. 5.3). Abbiamo visto
che ciò può dare luogo allo spostamento spettrale dei segnali ricevuti rispet-
to a quelli emessi (Sez. 5.3.1), e può anche influire sulla velocità e↵ettiva di
propagazione dei segnali, che risulta diversa se viene misurata da osservatori
situati in posizioni diverse (Sez. 8.5).

Oltre alla geometria, però, sappiamo che anche la valocità relativa può
influenzare gli intervalli temporali dei vari osservatori (come previsto dalla
teoria della relatività ristretta). È significativo ricordare, a questo proposito,
il cosiddetto “paradosso dei gemelli”, che confronta tra loro lo scorrere del
tempo proprio per due osservatori identici che prima si separano o poi si
ricongiungono nello stesso punto dello spazio, dopo che uno di loro ha e↵et-
tuato un viaggio di andata e ritorno mentre l’altro è rimasto fermo. È ben
noto che l’e↵etto di dilatazione temporale dovuto al moto, nello spazio-tempo
di Minkowski, ha l’e↵etto di “far invecchiare” di meno il gemello che viag-

4 J. D. Beckenstein, Phys. Rev. D7, 2333 (1973).
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gia rispetto a quello fermo. Ma cosa succede se il viaggio viene e↵ettuato in
presenza di un campo gravitazionale?

In questa ultima sezione del capitolo discuteremo questo problema sup-
ponendo che i due gemelli siano immersi nella geometria di Schwarzschild e
considerando, oltre alla distorsione temporale (di tipo cinematico) dovuta al
moto relativo anche la distorsione (di tipo dinamico) dovuta al campo gravi-
tazionale statico della sorgente centrale. Vedremo che in certe situazioni i due
tipi di dilatazione temporale si possono compensare a vicenda, e si può an-
che verificare la situazione opposta a quella prevista dalla relatività ristretta:
ossia, il gemello che ha viaggiato può risultare più vecchio di quello fermo!

Per illustrare questa possibilità cominciamo dal caso (più semplice) in cui
il gemello in moto si sposta con velocità costante non-relativistica v ⌧ c, e
il campo gravitazionale esterno risulta – oltre che statico – anche su�cien-
temente debole da poter essere descritto, al primo ordine nel potenziale �,
dalla seguente geometria:

ds2 =

✓

1 +
2�

c2

◆

c2dt2 �
✓

1� 2�

c2

◆

|dx|2 (10.69)

(si veda anche l’Eq. (10.27)). Abbiamo posto � = �GM/r, e supponiamo che
|�| ⌧ c2. Il gemello statico (che chiameremo A) è a riposo a distanza radiale
r
1

dal corpo centrale di massa M , mentre l’altro gemello (che chiameremo
B) si allontana radialmente dal punto r

1

al punto r
2

> r
1

e poi ritorna al
punto di partenza r

1

, spostandosi con velocità v costante e non-relativistica.
Assumeremo – come è usuale nella discussione del paradosso dei gemelli –
che la durata della fase decelarata/accelerata associata all’inversione della
velocità nel punto r

2

sia trascurabile, ossia che il cambio di segno della ve-
locità radiale nel punto r

2

si possa considerare praticamente istantaneo. Il
modulo della velocità v rappresenta perciò un parametro del moto costante
per l’intera durata del viaggio.

In assenza di gravità (� ! 0), il rapporto tra la durata del viaggio di
andata e ritorno riferita, rispettivamente, al tempo proprio di ciascuno dei
due gemelli A e B, è controllato dal fattore di Lorentz �, ed è dato da

�tA
�tB

= � =
1

q

1� v2

c2

' 1 +
v2

2c2
> 1. (10.70)

Si ottiene, come ben noto, �tA > � tB , ossia un intervallo temporale più
lungo per il gemello statico.

In presenza di gravità dobbiamo aggiungere al calcolo dei tempi propri la
distorsione prodotta da una geometria diversa da quella di Minkowski. Ta-
le distorsione influisce non solo sugli intervalli temporali ma anche su quelli
spaziali (infatti, anche la lunghezza propria �` del tragitto percorso risulta
modificata dal campo gravitazionale, come discusso nella Sez. 8.5). Le distor-
sioni spaziali del tragitto, però, sono le stesse per entrambi i gemelli, mentre
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le distorsioni temporali no, perché dipendono dalla posizione. Il risultato net-
to è un’influenza gravitazionale sulla durata propria del viaggio che risulta
diversa per i due gemelli.

Per valutare questo e↵etto mettiamoci nel riferimento del gemello statico
A, a riposo nel punto di coordinata radiale r

1

. La durata del viaggio e↵ettuato
dal fratello, riferito al tempo proprio di A (e calcolato nel contesto del modello
geometrico (10.69), sviluppato al primo ordine in |�|/c2), si può esprimere
come segue:

�⌧A = 2
p

g
00

(r
1

)�t
12

' 2

✓

1 +
�
1

c2

◆

�`
12

v
' 2

v

✓

1 +
�
1

c2

◆

Z r2

r1

dr

✓

1� �(r)

c2

◆

(10.71)

' 2
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� r
1

)

✓

1� GM

c2r
1

+
GM

c2(r
2

� r
1

)
ln

r
2

r
1

◆

, r
2

> r
1

(si veda anche l’Eq. 98.43)). Calcoliamo ora, nello stesso sistema di riferi-
mento, la durata del viaggio riferita al tempo proprio del gemello viaggiatore
B. Per il gemello B la dilatazione temporale prodotta dalla gravità non si
può fattorizzare come nel caso precedente, perché la componente geometri-
ca g

00

(r) varia lungo la traiettoria del moto. La durata del viaggio rispetto
al tempo proprio di B (includendo gli e↵etti cinematici dovuti al moto e
sviluppati al primo ordine in v2/c2) è allora data da

�⌧B ' 2

v�

Z r2

r1

dr
p

g
00

(r)

✓

1� �(r)

c2

◆

' 2
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� r
1

)

✓

1� v2

2c2

◆

.

(10.72)

Per cui:

�⌧A
�⌧B

= 1 +
v2

2c2
� GM

c2r
1

+
GM

c2(r
2

� r
1

)
ln

r
2

r
1

, r
2

> r
1

, (10.73)

al primo ordine in GM/c2r
1

⌧ 1 e in v2/c2 ⌧ 1, e per qualunque valore del
punto di inversione r

2

, purché r
2

> r
1

.
È facile verificare, a questo punto, che le correzioni gravitazionali che

si aggiungono al risultato della relatività ristretta (dato dall’Eq. (10.70)),
soddisfano alla condizione

� 1

r
1

+
1

r
2

� r
1

ln
r
2

r
1

< 0, r
2

> r
1

. (10.74)

Esse forniscono dunque un contributo alla di↵erenza dei tempi propri che è di
segno contrario rispetto al contributo cinematico +v2/2c2 > 0. Ne consegue
che anche il risultato �⌧A < �⌧B (ossia, un gemello statico più giovane di
quello viaggiatore) diventa possibile, in questo contesto, purché i parametri
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{v, r
1

, r
2

} del viaggio soddisfino alla condizione

GM

✓

1

r
1

� 1

r
2

� r
1

ln
r
2

r
1

◆

>
v2

2
. (10.75)

Un risultato del genere rimane impossibile, invece, se il tragitto scelto dal
gemello viaggiatore lo porta ad attraversare regioni di spazio dove il campo
gravitazionale è più intenso di quello presente nel punto in cui risiede il fratello
statico.

Supponiamo, ad esempio, che il gemello A sia a riposo nel punto di coor-
dinata r

2

, e che il gemello B si avvicini alla sorgente centrale muovendosi
radialmente dal punto r

2

al punto r
1

< r
2

, per poi ritornare al punto di par-
tenza r

2

, sempre a velocità v = costante come nel caso precedente. Ripetendo
gli stessi passaggi di prima otteniamo che il rapporto tra i tempi propri è ora
espresso dal risultato

�⌧A
�⌧B

= 1 +
v2

2c2
� GM

c2r
2

+
GM

c2(r
2

� r
1

)
ln

r
2

r
1

, r
2

> r
1

, (10.76)

che sostituisce la precedente equazione (10.73). Il contributo gravitazionale,
in questo caso, soddisfa la condizione

� 1

r
2

+
1

r
2

� r
1

ln
r
2

r
1

> 0, r
2

> r
1

. (10.77)

Questo contributo ha sempre lo stesso segno (positivo) del contributo cine-
matico, e dunque si somma a quello cinematico fornendo sempre �⌧A > �⌧B
(come in assenza di gravità).

Torniamo ora all’Eq. (10.75), che fissa la condizione necessaria a�nché il
gemello statico resti più giovane di quello che viaggia. Tale condizione è stata
ottenuta nell’approssimazione di campo debole e nel limite non-relativistico,
ed è dunque necessario chiedersi se può essere soddisfatta compatibilmente
con queste assunzioni.

La regione permessa dalla condizione (10.75) nel piano {x, y} parametriz-
zato dalle coordinate (adimensionali) x = r

2

/r
1

e y = GM/c2r
1

, è illustra-
ta in Fig. 10.3 per diversi valori del parametro v/c (che varia tra 10�5 e
10�2). Per ogni valore fissato di v/c la regione permessa giace al di sopra
della curva corrispondente, ed è rappresentata dall’area ombreggiata. Come
evidente dalla figura, per compensare gli efetti di velocità sempre più ele-
vate sono necessari potenziali |�

1

| = GM/r
1

sempre più intensi. Però, per
ogni dato valore (anche non-relativistico) di v/c, possiamo sempre trovare un
campo gravitazionale su�cientemente debole da essere descritto nell’appros-
simazione lineare (ossia, |�

1

| ⌧ c2), e su�cientemente intenso da mantenere
il gemello statico più giovane del suo fratello viaggiatore (ossia, ⌧A < �⌧B),
purché il viaggio si estenda a distanze su�cientemente lontane dal punto di
partenza e dalla sorgente del campo (ossia, r

2

� r
1

).
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Figura 10.3 Rappresentazione grafica della condizione (10.75) per diversi valori del pa-
rametro di velocità v. Per ogni curva a v/c = costante la regione permessa (rappresenta-
ta dall’area ombreggiata) giace al di sopra della curva stessa. La figura illustra la com-
patibilità dell’Eq. (10.75) con l’approssimazione di campo debole(|�1| ⌧ c2) e il limite
non-relativistico (v ⌧ c).

I risultati precedenti possono essere facilmente estesi al caso di campi intensi e
velocità relativistiche assumendo, ad esempio, che i due gemelli siano immersi
nella geometria di Schwarzschild descritta dalla metrica (10.19). Confrontan-
do, esattamente come prima, il tempo proprio del gemello A (a riposo nel
punto r

1

) con quello del gemello B (che viaggia da r
1

a r
2

> r
1

e poi torna
al punto di partenza), otteniamo in questo caso il seguente risultato esatto:

�⌧A
�⌧B

=

✓

1� 2m

r
1

◆

1/2 �

r
2

� r
1

Z r2

r1

dr

✓

1� 2m

r

◆�1/2

, r
2

> r
1

. (10.78)

Il calcolo dell’integrale radiale ci permette allora di concludere che il gemello
statico A può invecchiare meno del gemello viaggiatore B (ossia�⌧A < �⌧B),
purché r

2

> r
1

, e purché valga la condizione
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(10.79)

Nel limite di velocità non-relativistiche e campi su�cientemente deboli pos-
siamo verificare che questa condizione si riduce esattamente a quella prece-
dente, riportata nell’Eq. (10.75).
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Figura 10.4 Rappresentazione grafica della condizione (10.79) per diversi valori del pa-
rametro di distanza r2/r1. Per ogni curva a r2/r1 = costante la regione permessa (rap-
presentata dall’area ombreggiata) giace al di sotto della curva stessa. Nel limite v ! c la
condizione (10.79) può essere soddisfatta solo se r1 ! 2m.

I viaggi di andata e ritorno che soddisfano la condizione (10.79) definiscono,
per ogni dato valore di r

2

/r
1

, una regione permessa nel piano bidimensionale
parametrizzato dalle coordinate x = 2m/r

1

e y = v/c (che variano entrambe
tra 0 e 1). Tale regione permessa è illustrata nella Fig. 10.4 e corrisponde, per
ogni curva a r

2

/r
1

fissato, alla porzione di piano che giace al di sotto della
curva data. Come mostra chiaramente la figura, se consideriamo il limite in
cui la velocità del gemello in moto B tende a c, per ogni curva, dobbiamo
allora considerare il limite in cui la posizione r

1

del gemello statico tende
all’orizzonte di Schwarzschild, r

1

= 2m, se vogliamo che tale gemello riman-
ga più giovane del fratello viaggiatore (ossia, se vogliamo che la condizione
(10.79) sia soddisfatta).

Possiamo notare , infine, che per r
2

� r
1

, la regione permessa approssima
rapidamente la porzione di piano {x, y} limitata superiormente dalla curva
y <

p
x (ossia v/c <

p

2m/r
1

), che si ottiene dall’Eq. (10.79) nel limite
r
2

/r
1

! 1. Tale curva limite è praticamente indistinguibile dalla curva con
r
2

/r
1

= 103 riportata in Fig. 10.4. Per qualunque viaggio, ossia per qualunque
dato valore dei parametri v/c e r

2

/r
1

, è sempre possibile però trovare una
posizione r

1

del gemello statico tale che risulti �⌧A < �⌧B . Questo estende
al regime di campi forti i risultati precedenti ottenuti nell’approssimazione di
campo debole, a conferma dell’eccezionale e↵etto di dilatazione temporale (o,
se vogliamo, di “anti-invecchiamento”!) esercitato dal campo gravitazionale
sul gemello statico.
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Esercizi Capitolo 10

10.1. Vettore di Killing per un campo gravitazionale statico

Una varietà spazio-temporale ammette un vettore di Killing ⇠µ di tipo tempo.
Dimostrare che la geometria è statica (ossia, che esiste un carta in cui la
metrica soddisfa a @

0

gµ⌫ = 0 e gi0 = 0) se e solo se

⇠
[↵rµ⇠⌫] = 0. (10.80)

10.2. Invariante di Riemann per la metrica di Schwarschild

Calcolare l’invariante di curvatura Rµ⌫↵�Rµ⌫↵� per la metrica di Schwarz-
schild (10.19).

10.3. Moto geodetico nello spazio di Rindler

Si consideri lo spazio-tempo bidimensionale di Rindler descritto dalla metrica

ds2 = ⇠2d⌘2 � d⇠2, (10.81)

e si mostri che una particella in moto geodetico dal punto ⇠
0

verso l’origine
arriva al punto ⇠ = 0 (posto sul bordo della varietà di Rindler) in un inter-
vallo di tempo proprio finito. La traiettoria geodetica non può essere estesa
oltre quel punto, e questo mostra che la carta di Rindler (associata all’ele-
mento di linea (10.81)) non rappresenta la massima estensione analitica per
le coordinate dello spazio-tempo di Minkowski.

Soluzioni

10.1. Soluzione

Scegliamo una carta in cui l’asse temporale è allineato lungo la direzione
del vettore ⇠µ, ossia in cui ⇠µ = �µ

0

. In questa carta ⇠µ = gµ0 e ⇠µ⇠µ = g
00

> 0.
La condizione di Killing �⇠gµ⌫ = 0, scritta esplicitamente in accordo all’Eq.
(3.53), si riduce a

@
0

gµ⌫ = 0, (10.82)

ed implica che la metrica è indipendente dalla coordinata temporale. In questa
carta, inoltre, abbiamo:

rµ⇠⌫=rµg⌫↵⇠
↵=g⌫↵rµ⇠

↵=g⌫↵�µ0
↵=

1

2
(@µg0⌫�@⌫gµ0)=@

[µg⌫]0. (10.83)

Se la metrica è statica deve soddisfare la condizione gi0 = 0, e dunque

⇠
[↵rµ⇠⌫] = g

0[↵@µg⌫]0 ⌘ 0 (10.84)
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(perché, nell’equazione precedente, la metrica è diversa da zero solo se ↵ = 0
e ⌫ = 0).

Viceversa, supponiamo che valga l’Eq. (10.80), e mostriamo che in questo
caso è sempre possibile imporre la condizione gi0 = 0. Restiamo per il momen-
to nella carta in cui ⇠µ = �µ

0

e la metrica è costante, scriviamo esplicitamente
l’Eq. (10.80), e contraiamo con ⇠↵. Si ottiene

⇠↵
�

⇠↵rµ⇠⌫ + ⇠µr⌫⇠↵ + ⇠⌫r↵⇠µ � ⇠↵r⌫⇠µ � ⇠µr↵⇠⌫ � ⇠⌫rµ⇠↵
�

=

= ⇠2rµ⇠⌫ +
1

2
⇠µr⌫⇠

2 + ⇠⌫⇠
↵r↵⇠µ � {µ $ ⌫} = 0,

(10.85)

dove ⇠2 = ⇠µ⇠µ. Dall’Eq. (10.83) abbiamo:

⇠↵r↵⇠µ = r
0

⇠µ = @
[0

gµ]0 = �1

2
@µg00 = �1

2
rµ⇠

2. (10.86)

Sostituendo nell’Eq. (10.85), e dividendo per ⇠4, otteniamo la condizione

⇠�2 (rµ⇠⌫ �r⌫⇠µ)� ⇠µr⌫⇠
�2 + ⇠⌫rµ⇠

�2

⌘ rµ

�

⇠�2⇠⌫
�

�r⌫

�

⇠�2⇠µ
�

= 0,
(10.87)

che è risolta da
⇠⌫ = ⇠2@⌫�, (10.88)

dove � è un’arbitraria funzione scalare. Nella carta in cui stiamo lavorando,
d’altra parte, ⇠

0

= g
00

= ⇠2, per cui deve essere @
0

� = 1, ossia

� = x0 + f(xi), (10.89)

dove f è una funzione arbitraria delle coordinate spaziali.
Consideriamo ora la trasformazione di coordinate

x0 ! x00 = � = x0 + f(xi), xi ! x0i = xi. (10.90)

Le componenti del vettore di Killing non cambiano,

⇠0µ =
@x0µ

@x⌫
⇠⌫ =

@x0µ

@x0

= �µ
0

, (10.91)

e neanche la componente g
00

della metrica:

g0
00

=
@x↵

@x00
@x�

@x00 g↵� = �↵
0

��
0

g↵� = g
00

. (10.92)

Per le componenti miste troviamo invece:

g0i0 =
@x↵

@x0i
@x�

@x00 g↵� = g↵��
�
0

⇣

�↵j �
j
i � �↵

0

@if
⌘

= gi0 � g
00

@if ⌘ 0.

(10.93)
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Il risultato è nullo perché, nella vecchia carta,

gi0 = ⇠i = ⇠2@i� = g
00

@if. (10.94)

Questo dimostra che se il vettore di Killing soddisfa la condizione (10.80)
è sempre possibile trovare una carta in cui le componente miste gi0 della
metrica sono tutte nulle, come si conviene a una geometria di tipo statico.

10.2. Soluzione

La metrica di Schwarzschild (10.19) ha la stessa struttura della metrica
(6.92) studiata nell’Esercizio 6.6, con

f(r) = g
00

= � 1

g
11

= 1� 2m

r
. (10.95)

Utilizzando il risultato (6.94) otteniamo immediatamente le componenti non
nulle del tensore di Riemann:

R
01

01 = �1

2
f 00 =

2m

r3
, R

23

23 = � 1

r2
(f � 1) =

2m

r3
,

R
02

02 = R
03

03 = R
12

12 = R
13

13 = � 1

2r
f 0 = �m

r3
.

(10.96)

Perciò:

Rµ⌫↵�R
µ⌫↵�=Rµ⌫

↵�R↵�
µ⌫

=4R2

01

01+4R2

02

02+4R2

03

03+4R2

12

12+4R2

13

13+4R2

23

23 (10.97)

=
48m2

r6
.

10.3. Soluzione

La connessione per la metrica (10.81) è già stata calcolata nell’Esercizio
6.1. L’equazione geodetica per la coordinata temporale ⌘ si scrive

⌘̈ +
2

⇠
⌘̇⇠̇ = 0, (10.98)

dove il punto indica la derivata rispetto al tempo proprio ⌧ . Il suo integrale
fornisce

⌘̇ = k⇠�2, (10.99)

dove k è una costante di integrazione. Imponendo la normalizzazione del
quadrivettore velocità, inoltre, abbiamo:

ẋµẋµ = ⇠2⌘̇2 � ⇠̇2 =
k2

⇠2
� ⇠̇2 = c2. (10.100)
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Separando le variabili, e integrando, troviamo il tempo proprio �⌧ necessario
a raggiungere l’origine ⇠ = 0 partendo dal punto ⇠ = ⇠

0

:

�⌧ = �
Z

0

⇠0

⇠d⇠
p

k2 � c2⇠2
=

1

c2

✓

k �
q

k2 � c2⇠2
0

◆

. (10.101)

L’integrale non diverge, e il tempo proprio impiegato è finito. Si noti che
a ⇠ = 0 la parametrizazione dello spazio-tempo di Minkowski mediante le
coordinate di Rindler non è più valida.

La costante di integrazione k può essere fissata in funzione della velocità
⇠̇
0

all’istante iniziale ⌧ = 0. Dalla (10.100) abbiamo infatti

k2 = ⇠2
0

⇣

c2 + ⇠̇2
0

⌘

, (10.102)

e quindi possiamo anche riscrivere il risultato (10.101) come:

�⌧ =
⇠
0

c2

✓

q

c2 + ⇠̇2
0

� ⇠̇
0

◆

> 0. (10.103)
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La soluzione di Kasner

La soluzione studiata nel capitolo precedente descrive uno spazio-tempo in cui
la geometria delle sezioni spaziali è invariante per rotazioni, e quindi isotropa,
senza direzioni privilegiate. In questo capitolo presenteremo una soluzione
esatta delle equazioni di Einstein in cui la geometria delle sezioni spaziali è
omogenea, ossia indipendente dalla posizione, ma anisotropa, e quindi con un
andamento diverso lungo direzioni spaziali diverse.

Modelli di spazio-tempo anisotropo sono d’uso frequente in un ambito co-
smologico dove vengono impiegati, ad esempio, per lo studio fenomenologico
delle proprietà di simmetria del nostro Universo, e per lo studio teorico di
epoche primordiali prossime a un regime di singolarità.

Inoltre, uno spazio-tempo anisotropo gioca un ruolo importante nel con-
testo dei modelli che forniscono una descrizione unificata delle interazioni
fondamentali basandosi su una geometria multidimensionale (come avviene,
ad esempio, per la teoria delle stringhe). Se lo spazio-tempo del nostro univer-
so ha più di quattro dimensioni, infatti, la sua geometria spaziale deve essere
certamente anisotropa per privilegiare l’espansione su grande scala di tre so-
le dimensioni, e simultaneamente far contrarre – o forse mantenere congelate
– le restanti dimensioni su scale distanze cos̀ı piccole da risultare (finora)
inaccessibili all’osservazione diretta.

La metrica che consideriamo in questo capitolo è invariante per trasla-
zioni lungo tutte le direzioni spaziali, e quindi la geometria ammette le tra-
slazioni spaziali come suo tipico gruppo di isometrie. In tre dimensioni il
gruppo delle traslazioni è un gruppo Abeliano a tre parametri, ed è un ca-
so particolare dei nove diversi tipi di gruppi a tre parametri, in generale
non-Abeliani, che rappresentano tutte le possibili isometrie di uno spazio
omogeneo tridimensionale.

Le geometrie corrispondenti ai diversi gruppi di isometrie vengono usual-
mente classificate con un numero romano da I a IX, e costituiscono la classe
dei cosiddetti “modelli di Bianchi” (si vedano ad esempio i testi [17,18] della
Bibliografia finale). Il modello qui considerato corrisponde al caso più sem-

� Springer-Verlag Italia 2015
M. Gasperini, Relatività Generale e Teoria della Gravitazione,
UNITEXT for Physics, DOI 10.1007/978-88-470-5690-9_11
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plice di spazio omogeneo (l’unico dei nove tipi con un gruppo di isometrie
Abeliano), ed è noto in letteratura come modello di tipo Bianchi I.

11.1 Equazioni di Einstein per una metrica omogenea
anisotropa

La più semplice generalizzazione della metrica di Minkowski che preserva la
sua omogeneità, rendendola però arbitrariamente anisotropa, si ottiene assu-
mendo che le componenti spaziali della metrica possano dipendere dal tempo
tramite delle funzioni adimensionali, ai(t), i = 1, 2, 3, . . ., che assumono in
generale forme diverse lungo le di↵erenti direzioni spaziali.

Consideriamo dunque uno spazio-tempo anisotropo il cui elemento di linea,
nella carta in cui la metrica è diagonale, si può scrivere nella forma seguente:

ds2 = c2dt2 �
d
X

i=1

a2i (t)dx
2

i . (11.1)

Abbiamo suppposto, per generalità, che la varietà abbia d dimensioni spaziali,
con d � 3. I generatori delle traslazioni lungo gli assi x̂i sono vettori di
Killing per questa geometria, che ammette le traslazioni spaziali come gruppo
Abeliano di isometrie a d parametri. La metrica corrispondente all’elemento
di linea (11.1) è una metrica di tipo Bianchi I, scritta nel cosiddetto gauge
“sincrono” in cui g

00

= 1 e g
0i = 0. In questa sezione scriveremo le equazioni

di Einstein per questa metrica, usando come sorgente gravitazionale un fluido
perfetto che gode dello stesso tipo di simmetrie (ossia omogeneità e invarianza
per traslazioni spaziali).

Partiamo dunque dalla metrica

g
00

= 1, gij = �a2i �ij , (11.2)

le cui componenti controvarianti sono date da

g00 = 1, gij = ��
ij

a2i
, (11.3)

dove ai = ai(t). Si noti bene: nelle due precedenti equazioni (e in quelle
successive) non va fatta la somma sugli indici ripetuti. In tutto questo capitolo
la somma, ove necessaria, sarà sempre indicata esplicitamente mediante il
simbolo di sommatoria (come nell’Eq. (11.1)).

Applicando la definizione (3.90) troviamo facilmente le componenti non
nulle della connessione. Indicando con il punto la derivata rispetto a x0 = ct,
e definendo H = ȧ/a, abbiamo:

�
0i

j =
ȧi
ai
�ji ⌘ Hi�

j
i , �ij

0 = aiȧi�ij . (11.4)
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Il tensore di Ricci corrispondente a questa connessione risulta diagonale, con
componenti

R
0

0 = �
X

i

äi
ai

= �
X

i

⇣

Ḣi +H2

i

⌘

,

Ri
j = ��ji

 

Ḣi +Hi

X

k

Hk

! (11.5)

(la somma sugli indici latini va e↵ettuata da 1 a d). La corrispondente
curvatura scalare, infine, è data da

R = R
0

0 +
X

i

Ri
i = �

X

i

⇣

2Ḣi +H2

i

⌘

�
 

X

i

Hi

!

2

. (11.6)

Supponiamo che la sorgente del campo gravitazionale associato a questa geo-
metria si possa descrivere, almeno in prima approssimazione, come un fluido
perfetto distribuito spazialmente in modo omogeneo ma anisotropo. Vale a
dire come un fluido che non presenta termini di attrito e di viscosità, che è
caratterizzato da una densità d’energia ⇢ e da una pressione che non dipen-
dono dalla posizione ma solo dal tempo, e che può avere pressioni pi diverse
lungo le diverse direzioni spaziali. Assumiamo, per semplicità, che il fluido
sia “comovente” con la geometria, cioè che sia a riposo nel sistema di rife-
rimento in cui la metrica assume la forma (11.1). Ricordando la definizione
(1.96), possiamo dunque scrivere il tensore energia-impulso del fluido in forma
diagonale come segue:

T
0

0 = ⇢(t), Ti
j = �pi(t)�

j
i . (11.7)

Abbiamo ora tutti gli elementi per scrivere esplicitamente le equazioni di
Einstein (7.28). La componente (0, 0) del tensore di Einstein fornisce

1

2

 

X

i

Hi

!

2

� 1

2

X

i

H2

i = �⇢, (11.8)

mentre le componenti spaziali forniscono

�ji

 

Ḣi +Hi

X

k

Hk
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�1

2
�ji
X

k
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2Ḣk +H2

k

⌘

�1

2
�ji

 

X

k

Hk

!

2

= �pi�
j
i . (11.9)

Arriviamo cos̀ı a un sistema di d+1 equazioni di↵erenziali del secondo ordine
per le 2d + 1 incognite {ai,⇢ , pi}. Il numero delle variabili è superiore al
numero delle equazioni: per risolvere il sistema è dunque necessario inserire
ulteriori informazioni.

Nel nostro caso le informazioni aggiuntive sono fornite dalle d equazioni
di stato, pi = pi(⇢), che collegano le componenti della pressione alla densità
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d’energia del fluido. Possiamo supporre, ad esempio, che il fluido sia di tipo
“barotropico”, ossia che soddisfi alla condizione

pi
⇢

= wi = cost, (11.10)

e che i coe�cienti costanti wi (determinati dalle proprietà intrinseche del
fluido considerato) siano noti. Eliminando dappertutto pi in funzione di ⇢
rimangono allora d+ 1 equazioni e d+ 1 incognite.

Nel caso del fluido barotropico è facile ottenere una relazione che collega la
densità d’energia ⇢(t) alle variabili geometriche ai(t). Consideriamo infatti la
conservazione covariante del tensore energia-impulso (11.7), che segue dalle
equazioni di Einstein e dall’identità di Bianchi contratta (Eq. (7.36)):

@⌫Tµ
⌫ + �⌫↵

⌫Tµ
↵ � �⌫µ

↵T↵
⌫ = 0. (11.11)

Usando le equazioni (11.4), (11.7) si trova che per µ = i la condizione di
conservazione è identicamente soddisfatta, mentre per µ = 0 fornisce:

⇢̇+
X

i

Hi (⇢+ pi) = 0. (11.12)

La stessa equazione può anche essere ottenuta direttamente dalle equazioni
di Einstein, di↵erenziando la (11.8) e usando la (11.9).

Supponiamo ora che il fluido sia barotropico, e obbedisca all’equazione di
stato (11.10). L’equazione di conservazione diventa:

⇢̇

⇢
= �

X

i

(1 + wi)
ȧi
ai
. (11.13)

Separando le variabili, integrando ed esponenziando otteniamo:

⇢ = ⇢
0

d
Y

i=1

a�(1+wi)

i , (11.14)

dove ⇢
0

è una costante di integrazione. Sostituendo questo risultato nelle
equazioni di Einstein possiamo eliminare ⇢, e risolvere infine le equazioni per
le incognite geometriche ai(t) (chiamate anche “fattori di scala”).

11.2 Soluzioni multidimensionali nel vuoto

Una geometria anisotropa, come quella introdotta nella sezione precedente,
ammette soluzioni non-triviali delle equazioni di Einstein anche in assenza di
sorgenti.
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Consideriamo infatti il caso ⇢ = 0, pi = 0, e cerchiamo soluzioni delle
equazioni (11.8), (11.9) parametrizzando il fattore di scala con un andamento
a potenza,

ai =

✓

t

t
0

◆�i

, Hi =
ȧi
ai

=
�i
ct
, Ḣi = � �i

c2t2
, (11.15)

dove t
0

e �i sono parametri costanti. In questo caso le equazioni possono essere
risolte esattamente, e nel regime t ! 0 la soluzione ottenuta rimane valida
anche in presenza di sorgenti, perché – come vedremo – in questo regime
la parte geometrica delle equazioni di Einstein tende a dominare rispetto al
contributo delle sorgenti materiali.

Sostituendo la forma (11.15) di H e Ḣ nelle equazioni (11.8), (11.9) (con
⇢ = pi = 0) la dipendenza dal tempo scompare, e restano due equazioni
algebriche per le potenze �i. L’Eq. (11.8) fornisce la condizione:

 

X

i

�i

!

2

=
X

i

�2

i . (11.16)

L’Eq. (11.9), sommando tutti gli elementi diagonali, fornisce la condizione:

�
X

i

�i +

 

X

i

�i

!

2

+ d
X

i

�i �
d

2

X

i

�2

i � d

2

 

X

i

�i

!

2

= 0. (11.17)

Eliminando
P

i �
2

i mediante l’Eq. (1.16) possiamo infine riscrivere l’equazione
precedente come segue:

(d� 1)
X

i

�i + (1� d)

 

X

i

�i

!

2

= 0. (11.18)

Il sistema di equazioni algebriche (11.16), (11.18) che abbiamo ottenuto può
essere soddisfatto in due modi.

Una prima possibilità è fornita dalla condizione

X

i

�i = 0 =
X

i

�2

i , (11.19)

che però permette solo la soluzione triviale �i = 0, ai = cost, che corrisponde
allo spazio-tempo di Minkowski.

Se invece
P

i �i 6= 0 possiamo dividere l’Eq. (11.18) per
P

i �i, e combi-
nandola con l’Eq. (11.16) otteniamo le condizioni

X

i

�i = 1 =
X

i

�2

i , (11.20)
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che caratterizzano la cosiddetta soluzione di Kasner. Qualunque metrica del
tipo (11.1), con ai ⇠ t�i , e con i coe�cienti �i che soddisfano l’Eq. (11.20),
risolve esattamente le equazioni di Einstein nel vuoto. Si noti che tale solu-
zione è necessariamente anisotropa, in quanto non esistono soluzioni reali alle
condizioni di Kasner (11.20) con i �i tutti uguali, qualunque sia il numero
d � 2 di dimensioni spaziali.

È opportuno, a questo punto, sottolineare alcune proprietà di questa im-
portante soluzione. Va osservato, innanzitutto, che la soluzione di Kasner è
singolare per t ! 0. Se calcoliamo l’invariante quadratico associato al tensore
di Riemann otteniamo infatti:

Rµ⌫↵�Rµ⌫↵� ⇠ 1

t4
. (11.21)

Vicino alla singolarità, inoltre, la soluzione è valida anche in presenza di
sorgenti gravitazionali (di tipo ordinario, ossia, come vedremo, caratterizzate
da un’equazione di stato che non sia troppo “esotica”).

Supponiamo infatti che le sorgenti si possano descrivere come un flui-
do barotropico, e sostituiamo la soluzione di Kasner nella densità d’energia
(11.14). Confrontando l’andamento temporale delle sorgenti con quello dei
termini geometrici nelle equazioni di Einstein otteniamo il rapporto:

⇢

H2

i

⇠ ⇢

Ḣi

⇠ t1�
P

i
�iwi (11.22)

(abbiamo usato la condizione
P

i �i = 1). Per equazioni di stato “convenzio-
nali” caratterizzate da |wi| < 1 (più precisamente, equazioni di stato tali che
P

i �iwi < 1), l’esponente di t rimane positivo. In questo caso il contributo
delle sorgenti diventa trascurabile rispetto a quello degli altri termini nel li-
mite t ! 0, e la soluzione di Kasner resta dunque valida anche in presenza
di materia, purché si consideri un regime temporale su�cientemente vicino
alla singolarità iniziale.

È infine interessante notare che i coe�cienti �i, per poter soddisfare la
condizione di Kasner (11.20), non possono avere tutti lo stesso segno. Questo
significa, se ricordiamo la definizione (11.15) dei fattori di scala ai, e consi-
deriamo per la variabile temporale t un range di valori positivi e crescenti,
che la geometria si espande lungo alcune direzioni (quelle con �i > 0), e si
contrae lungo altre (quelle con �i < 0): ovvero, devono esistere dimensioni
che si contraggono accanto ad altre che si espandono a�ché la soluzione di
Kasner sia possibile.

Come anticipato nell’introduzione a questo capitolo, la geometria di Ka-
sner si presta dunque in modo naturale a descrivere una fase di riduzione
dimensionale “spontanea”, mediante la quale la dinamica gravitazionale rie-
sce automaticamente a disaccoppiare tra loro le varie dimensioni spaziali,
rendendone alcune piccole e compatte e facendo espandere le altre. Pren-
diamo, ad esempio, uno spazio-tempo con 5 dimensioni, e consideriamo la
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soluzione di Kasner con coe�cienti �i = (1/2, 1/2, 1/2,�1/2). La condizione
(11.20) è soddisfatta, e il corrispondente elemento di linea è dato da:

ds2 = c2dt2 �
✓

t

t
0

◆

1/2
�

dx2

1

+ dx2

2

+ dx2

3

�

�
✓

t

t
0

◆�1/2

dy2 (11.23)

(abbiamo chiamato y la coordinata lungo la quinta dimensione). Man mano
che lo spazio tridimensionale si espande, per t positivo e crescente, la quinta
dimensione si contrae come 1/

p
t su scale di distanza propria sempre più

piccole.
L’unica eccezione alla regola di avere potenze �i di segno opposto è co-

stituita dalla soluzione di Kasner “quasi-triviale”, caratterizzata da un solo
coe�ciente non nullo,

�i = (1, 0, 0, 0, . . .) , (11.24)

e corrispondente all’elemento di linea

ds2 = c2dt2 �
✓

t

t
0

◆

2

dx2

1

� dx2

2

� dx2

3

� · · · . (11.25)

Questa soluzione descrive il cosiddetto “spazio-tempo di Milne”, che è una
varietà globalmente piatta. Si può verificare, infatti, che per questa metri-
ca il tensore di Riemann è identicamente nullo, e che l’elemento di linea
(11.25) si può sempre ridurre globalmente a quello di Minkowski mediante
un’opportuna trasformazione di coordinate (si veda l’Esercizio 11.1).

Esercizi Capitolo 11

11.1. Spazio-tempo di Milne

Verificare che l’elemento di linea di Milne (11.25) si può ottenere da quello
di Minkowski mediante la trasformazione

ct = ct0 cosh

✓

x0

�

◆

, x = ct0 sinh

✓

x0

�

◆

, (11.26)

dove � è un parametro costante, e dove (ct, x) sono le coordinate del piano
di Minkowski. Calcolare il tensore di Riemann per la metrica di Milne, e
verificare che tutte le sue componenti sono nulle. Dimostrare inoltre che le
coordinate di Milne (ct0, x0) non parametrizzano tutto il piano di Minkowski,
ma solo la porzione di piano interna al cono luce.

11.2. Equazioni di Einstein anisotrope da un principio variazionale

Ricavare le equazioni (11.8), (11.9), nel vuoto, partendo dall’azione di Einstein-
Hilbert (7.2) scritta per una metrica di tipo Bianchi I, ed applicando il
principio variazionale.
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Soluzioni

11.1. Soluzione

Di↵erenziando l’Eq. (11.26) abbiamo:

cdt = cdt0 cosh

✓

x0

�

◆

+ dx0 ct
0

�
sinh

✓

x0

�

◆

,

dx = cdt0 sinh

✓

x0

�

◆

+ dx0 ct
0

�
cosh

✓

x0

�

◆

.

(11.27)

Sostituendo nell’elemento di linea di Minkowski otteniamo l’elemento di linea
di Milne,

ds2 = c2dt2 � dx2 = c2dt02 �
✓

ct0

�

◆

2

dx02, (11.28)

con una metrica di Milne identica a quella dell’Eq. (11.25), ossia

g
00

= 1, g
11

= �
✓

t0

t
0

◆

2

, (11.29)

dove t
0

= �/c.
Il tensore di Riemann per questa metrica è identicamente nullo. Usando

per la connessione i risultati (11.4) abbiamo infatti

�
01

1 =
1

ct0
, �

11

0 =
t0

ct2
0

, (11.30)

per cui:

R
101

0 = � 1

c2t2
0

+
1

c2t2
0

⌘ 0,

R
100

1 =
1

c2t02
� 1

c2t02
⌘ 0.

(11.31)

Osserviamo infine che dalla trasformazione (11.26) si ottiene:

x

ct
= tanh

✓

x0

�

◆

, c2t2 � x2 = c2t02. (11.32)

La prima equazione, per x0 fissato, rappresenta una retta che passa per l’o-
rigine nel piano di Minkowski, e che forma con l’asse ct un angolo compreso
tra �⇡/4 e ⇡/4. La seconda equazione, per t0 fissato, rappresenta un’iperbole
centrata sull’origine, con asintoti sulle rette x = ±ct, che interseca l’asse ct
nei punti t = ±t0. Al variare di x0 e t0 le due curve spazzano la porzione di
piano di Minkowski interna al cono luce, definita dalla condizione

ct > |x|, ct < �|x|, (11.33)
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detta “spazio di Milne”, Si noti che questa regione del piano di Minkowski è
complementare al cosiddetto spazio di Rindler, che corrisponde alla regione
esterna al cono luce (si veda l’Esercizio 6.1).

11.2. Soluzione

Per ottenere tutte le equazioni richieste, e in particolare la componente
(0, 0) delle equazioni di Einstein, è necessario che l’azione sia costruita usando
anche la componente temporale della metrica. Partiamo quindi dalla metrica
(11.2) senza fissare il gauge sincrono g

00

= 1, e poniamo

g
00

= N2(t), gij = �a2i (t)�ij . (11.34)

Le componenti della connessione che risultano diverse da zero, in questo caso,
sono date da

�
0i

j = Hi�
j
i , �ij

0 =
aiȧi
N2

�ij , �
00

0 = F, (11.35)

dove F = Ṅ/N , e la curvatura scalare diventa:

R =
1

N2

2

42F
X

i

Hi �
X

i

⇣

2Ḣi +H2

i

⌘

�
 

X

i

Hi

!

2

3

5 . (11.36)

Si noti la generalizzazione rispetto all’Eq. (11.6), dovuta ai contributi di g
00

=
N2. Abbiamo inoltre p

�g = N
Y

i

ai, (11.37)

e l’azione di Einstein assume la forma

S=� 1

2�
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dd+1x
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�g R
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(11.38)

Notiamo ora che

d

dt

"

2
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i

ai
X

i

Hi

#
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i

ai

2

42
X

i
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i

Hi + 2
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i

Hi
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2

3

5 .

(11.39)

Eliminando mediante questa relazione i termini lineari in F e Ḣ dell’Eq.
(11.38) possiamo riscrivere l’azione e↵ettiva (modulo una derivata totale
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rispetto al tempo) nella seguente forma quadratica standard:

S = � 1

2�

Z

dt

N

Y

i

ai

2

4

 

X

i

Hi

!

2

�
X

i

H2

i

3

5 . (11.40)

Si noti che N non possiede termine cinetico, e compare quindi nell’azione
come campo ausiliario (ovvero, come moltiplicatore di Lagrange): tale campo
non è dinamico, e – dopo aver e↵ettuato la variazione – può essere sempre
posto uguale a una costante arbitraria mediante un’opportuna scelta di gauge
(in pratica, mediante un’opportuna scelta della coordinata temporale).

Possiamo ora ricavare le equazioni di campo variando l’azione rispetto alle
variabili N, ai, e imponendo che l’azione sia stazionaria, �S = 0. La variazione
rispetto a N fornisce il vincolo

 

X

i

Hi

!

2

�
X

i

H2

i = 0, (11.41)

che coincide con l’Eq. (11.8) per ⇢ = 0.
Per variare rispetto ad ai è conveniente porre ai = exp↵i, per cui Hi = ↵̇i,

e l’azione e↵ettiva diventa

S = � 1

2�

Z

dtL(↵i, ↵̇i), (11.42)

dove:

L =
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✓
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La variazione rispetto a ↵i fornisce le equazioni del moto di Lagrange per
questa nuova variabile. E↵ettuando le derivate, e imponendo il gauge sincrono
N = 1, otteniamo:
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= exp
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(11.44)
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L’equazione di Lagrange per ↵i fornisce dunque:
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k
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X

k

↵̇2

k = 0. (11.45)

Moltiplicando per �1/2, e sostituendo ↵̇i con Hi, possiamo riscrivere l’equa-
zione nella forma seguente,

Ḣi +Hi

X

k

Hk �
X

k

Ḣk � 1

2

X

k

H2

k � 1

2

 

X

k

Hk

!

2

= 0, (11.46)

che coincide esattamente con la componente i = j dell’Eq. (11.9), scritta in
assenza di sorgenti (pi = 0).



12

Tetradi e connessione di Lorentz

La rappresentazione geometrica dell’interazione gravitazionale sviluppata fi-
nora ha fatto principalmente uso del linguaggio della geometria di↵erenziale
classica, basato sulla nozione di metrica Riemanniana g e connessione di
Christo↵el � . La curvatura della varietà spazio-temporale, la sua evoluzione
dinamica, e l’interazione con le sorgenti materiali è stata descritta mediante
equazioni di↵erenziali formulate con le variabili g e � .

In questo capitolo introdurremo un modo alternativo, ma completamen-
te equivalente, di descrivere la geometria di una varietà Riemanniana basato
sulla nozione di tetrade V e connessione di Lorentz !. Questo diverso linguag-
gio è particolarmente appropriato per descrivere la dinamica dei campi spi-
noriali in uno spazio-tempo curvo – e quindi per rappresentare le interazioni
gravitazionali dei fermioni – come vedremo nel capitolo successivo.

Inoltre, e soprattutto, questo nuovo formalismo permette di formulare la
teoria della relatività generale come teoria di gauge per un gruppo di sim-
metria locale, mettendo cos̀ı la gravitazione sullo stesso piano delle altre in-
terazioni fondamentali (elettromagnetiche, deboli e forti). Vedremo, in parti-
colare, che la simmetria di gauge (non-Abeliana) per la gravitazione è l’inva-
rianza locale di Lorentz, e che la curvatura può essere interpretata, in questo
contesto, come il campo di Yang-Mills per la connessione di Lorentz, con
quest’ultima che gioca il ruolo di potenziale di gauge.

Questi importanti aspetti della teoria gravitazionale, cos̀ı come la pos-
sibilità di estendere la simmetria locale dal gruppo di Lorentz a quello di
Poincarè, verranno ulteriormente illustrati nell’Appendice A.

12.1 Proiezione sullo spazio piatto tangente

Abbiamo già sottolineato, nella Sez. 2.2, come sia sempre possibile approssi-
mare localmente la geometria di uno spazio-tempo Riemanniano con quella di

� Springer-Verlag Italia 2015
M. Gasperini, Relatività Generale e Teoria della Gravitazione,
UNITEXT for Physics, DOI 10.1007/978-88-470-5690-9_12

235
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Minkowski, ossia come si possa sempre introdurre, in ogni punto della varietà
data, una varietà piatta “tangente” dotata della metrica di Minkowski.

Per caratterizzare localmente la geometria di una varietà Riemanniana R
4

introduciamo dunque in ogni punto x una quaterna di vettori covarianti Vµ,

V a
µ (x), a = 0, 1, 2, 3, (12.1)

che formano una base ortonormale nello spazio-tempo di Minkowski M
4

tan-
gente alla varietàR

4

in quel punto. Essi sono ortonormali rispetto alla metrica
di Minkowski ⌘ab dello spazio tangente, ossia soddisfano alla condizione:

gµ⌫V a
µ V

b
⌫ = ⌘ab. (12.2)

Tali vettori sono detti “tetradi” , oppure, usando il nome tedesco, vierbein,
che significa “quattro gambe” (e che diventa vielbein, “molte gambe”, se la
varietà è multidimensionale).

È necessario fare una precisazione, a questo punto, riguardo alle notazioni
usate. In tutto questo capitolo, e contrariamente ai capitoli precedenti, gli
indici Latini minuscoli a, b, . . . variano da 0 a 3, e verranno usati per carat-
terizzare oggetti tensoriali definiti nello spazio piatto tangente (sono quindi
indici che si riferiscono alle rappresentazioni del locale gruppo di Lorentz, e
che vengono alzati e abbassati dalla metrica di Minkowski ⌘). Gli indici Gre-
ci µ, ⌫, . . . variano anch’essi da 0 a 3, ma si riferiscono ad oggetti tensoriali
definiti sulla varietà di Riemann (si trasformano quindi in modo covarian-
te rispetto al gruppo dei di↵eomorfismi, e vengono alzati e abbassati dalla
metrica di Riemann g).

Nel linguaggio tecnico della geometria di↵erenziale gli indici Greci, general-
covarianti, vengono anche detti indici olonomi, mentre quelli Latini, definiti
rispetto alle trasformazioni nello spazio tangente, vengono detti anolonomi.
Nel contesto di questo libro useremo una terminologia più semplice e diretta,
definendoli come

a, b, c, . . . =) indici piatti (o di Lorentz),

µ, ⌫,↵ . . . =) indici curvi (o di Riemann).

Queste convenzioni per gli indici verranno usate anche nei due capitoli
successivi, a meno che non sia esplicitamente indicato il contrario.

Notiamo ora che la relazione (12.2), scritta in forma tensoriale mista,

V a
µ V

µ
b = �ab , (12.3)

definisce la base inversa, o duale, di vettori controvarianti V µ
a , anch’essi

ortonormali rispetto alla metrica di Minkowski:

gµ⌫V
µ
a V ⌫

b = ⌘ab. (12.4)
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Invertendo le relazioni (12.2), (12.4) otteniamo:

gµ⌫ = V a
µ V

b
⌫ ⌘ab, gµ⌫ = V µ

a V ⌫
b ⌘

ab. (12.5)

Queste equazioni ci permettono di calcolare le componenti del tensore metrico
in funzione delle quattro tetradi V a

µ e dei loro inversi V µ
a .

Per eliminare un’ambiguità di segno, e anche in vista di applicazioni future,
è conveniente infine normalizzare i vettori V a

µ in modo tale che

p
�g =

q

|det gµ⌫ | =
�

�detV a
µ

�

� ⌘ V. (12.6)

In questo modo la conoscenza del campo vettoriale V a
µ (x) determina local-

mente e univocamente la metrica gµ⌫(x) in ogni punto della varietà data,
modulo una residua arbitrarietà nella scelta delle tetradi dovuta alle rotazio-
ni di Lorentz e↵ettuate sui vettori di base del locale spazio tangente. È facile
verificare, infatti, che il vettore V a

µ e il vettore ruotato V 0a
µ = ⇤a

bV b
µ , dove ⇤

rappresenta una trasformazione del gruppo di Lorentz, determinano la stessa
metrica:

g0µ⌫ = V 0a
µ V 0b

⌫ ⌘ab = ⇤a
i⇤

b
jV

i
µV

j
⌫ ⌘ab

= ⌘ijV
i
µV

j
⌫ ⌘ gµ⌫

(12.7)

(abbiamo usato la condizione di Lorentz ⇤T ⌘⇤ = ⌘).
Mediante le tetradi e i loro inversi qualunque oggetto geometrico definito

sulla varietà Riemanniana può essere localmente proiettato nello spazio piatto
tangente, semplicemente contraendo i suoi indici curvi con quelli di V a

µ o di
V µ
a . Se abbiamo un tensore B di rango due, ad esempio, possiamo e↵ettuare

le proiezioni

Bµ⌫ �! Bab = V a
µ V

b
⌫B

µ⌫ ,

Bµ⌫ �! Bab = V µ
a V ⌫

b Bµ⌫ .
(12.8)

E viceversa, si può passare dallo spazio tangente alla varietà di Riemann
mediante la proiezione inversa. La metrica di Minkowski, per fare un altro
esempio, è la proiezione della metrica di Riemann sullo spazio tangente (si
veda l’Eq. (1.24)).

È importante sottolineare, in questo contesto, che se partiamo da un og-
getto (ad esempio, Bµ⌫) che è un tensore per trasformazioni generali di coor-
dinate, dopo la proiezione otteniamo un nuovo oggetto (Bab) che è un tensore
per trasformazioni di Lorentz nel locale spazio tangente, ma che è uno scalare
per trasformazioni generali di coordinate (in quanto non ha indici curvi, ma
solo indici piatti). In questo senso le tetradi sono oggetti di tipo “misto”,
che si trasformano come vettori general-covarianti rispetto all’indice curvo,
e come vettori per trasformazioni di Lorentz nello spazio tangente rispetto
all’indice piatto:

V a
µ ! eV a

µ =
@x⌫

@x0µ⇤
a
bV

b
⌫ . (12.9)

E qui arriviamo al punto cruciale della nostra discussione.
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Per e↵etto della proiezione che trasforma indici curvi in indici piatti
si passa dunque dai di↵eomorfismi della varietà Riemanniana R

4

alle tra-
sformazioni di Lorentz dello spazio di Minkowski tangente M

4

. Lo spa-
zio tangente, però, varia in generale da punto a punto, e quindi la cor-
rispondente trasformazione di Lorentz è una trasformazione di tipo loca-
le, rappresentata da matrici ⇤ = ⇤(x). Il requisito di general covarianza
per un modello geometrico formulato in uno spazio-tempo curvo si tradu-
ce dunque, mediante le tetradi, in un requisito di invarianza per trasfor-
mazioni locali di Lorentz (ovviamente, se lo spazio-tempo è piatto allo-
ra esso coincide dappertutto con la varietà tangente di Minkowski, l’inva-
rianza di Lorentz diventa globale, e ricadiamo nel caso della relatività ri-
stretta).

La presenza di una simmetria locale nell’ambito di un modello dell’intera-
zione gravitazionale, d’altra parte, permette un interessante confronto con le
teorie di gauge delle altre interazioni fondamentali. Per rendere tale confronto
maggiormente esplicito dedicheremo la prossima sessione ad uno schematico
sommario della struttura formale di tali teorie.

12.1.1 Simmetrie locali e campi di “gauge”

Supponiamo di avere un campo  la cui azione è invariante per una simmetria
globale del tipo  !  0 = U , dove U rappresenta la trasformazione di
un gruppo di Lie a n parametri, e si può quindi parametrizzare come se-
gue:

U = e�i✏AXA , (12.10)

con A = 1, . . . , n. I parametri ✏A sono coe�cienti reali e costanti, e gli ope-
ratori XA – che sono Hermitiani se la rappresentazione è unitaria – sono i
generatori della trasformazione, che soddisfano alle relazioni di commutazione
fissate dalla cosiddetta algebra di Lie del gruppo:

[XA, XB ] = ifAB
CXC . (12.11)

Le costanti di struttura fAB
C = �fBA

C sono tutte nulle solo se il gruppo è
Abeliano.

Se la trasformazione è globale (cioè se tutti i parametri ✏A sono costanti),
allora i gradienti del campo si trasformano come il campo stesso,

@µ 
0 = @µ (U ) = U@µ , (12.12)

e l’azione, costruita con una densità di Lagrangiana che è quadratica nel
campo e nelle sue derivate, L ⇠  † + (@ )†@ , risulta automaticamente
invariante. Se invece la trasformazione è locale, ✏A = ✏A(x), allora i gradienti
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del campo si trasformano diversamente da  ,

@µ ! @µ 
0 = @µ (U ) = U@µ + (@µU) (12.13)

(perché @µU 6= 0), e il termine cinetico della precedente azione non è più
invariante.

L’invarianza per trasformazioni locali (anche detta invarianza di gauge)
può essere ripristinata sostituendo l’ordinario gradiente con un operatore
di↵erenziale generalizzato, chiamato derivata covariante di gauge, che indi-
cheremo con il simbolo Dµ (per distinguerlo dalla derivata rµ definita per
la geometria di Riemann). L’operatore Dµ è costruito in modo tale che la
derivata covariante del campo si trasformi come il campo stesso, ossia

Dµ ! (Dµ )
0 = UDµ , (12.14)

anche nel caso di trasformazioni locali. La sostituzione @µ ! Dµ nella La-
grangiana porta a un termine cinetico del tipo L ⇠ (D )†D , e rende l’azione
invariante per trasformazioni locali, in accordo alla procedura standard del
cosiddetto principio di minimo accoppiamento (già discusso per la geometria
di Riemann nella Sez. 4.1).

Per definire la derivata covariante di gauge bisogna innanzitutto introdurre
un insieme di n campi vettoriali (anche detti “potenziali di gauge”) Aµ, uno
per ogni generatore del gruppo di simmetria,

XA �! AA
µ . (12.15)

Si costruisce quindi l’operatore di↵erenziale

Dµ = @µ � igAA
µXA, (12.16)

dove g è una costante d’accoppiamento che dipende dal modello di interazio-
ne che stiamo considerando. Le proprietà di trasformazione dei vettori AA

µ

vengono allora fissate richiedendo che sia soddisfatta la condizione (12.14).
A questo proposito è conveniente adottare un formalismo compatto, defi-

nendo la variabile (anche detta connessione di gauge) Aµ ⌘ AA
µXA, costruita

saturando gli indici di gruppo con i relativi generatori. La derivata covariante
diventa Dµ = @µ � igAµ, e la condizione (12.14) implica

D0
µ 

0 =
�

@µ � igA0
µ

�

U = U@µ � igA0
µU + (@µU) 

= UDµ = U (@µ � igAµ) = U@µ � igUAµ .
(12.17)

Uguagliando l’ultimo termine della prima riga all’ultimo termine della secon-
da riga, e moltiplicando da destra per U�1, otteniamo infine che la condizione
(12.14) è soddisfatta purché il potenziale di gauge si trasformi come segue:

A0
µ = UAµU

�1 � i

g
(@µU)U�1. (12.18)
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In conclusione, se abbiamo un modello che risulta globalmente simmetrico
rispetto a un gruppo di Lie di trasformazioni rappresentate dall’operatore U ,
e se il modello viene accoppiato minimamente, tramite la derivata covarian-
te (12.16), a un potenziale di gauge che soddisfa la legge di trasformazione
(12.18), allora il modello diventa invariante anche rispetto al corrispondente
gruppo di trasformazioni locali rappresentate da U = U(x).

12.2 Invarianza locale di Lorentz e derivata covariante

Nella Sez. 12.1 abbiamo visto che un modello geometrico general-covariante,
formulato in una varietà spazio-temporale curva, deve essere localmente
Lorentz-invariante se riferito allo spazio piatto tangente mediante il formali-
smo delle tetradi.

Abbiamo anche visto, d’altra parte, che per rendere un modello fisico inva-
riante rispetto a una simmetria locale bisogna formularlo mediante opportuni
operatori di↵erenziali “covarianti” costruiti con i campi di gauge associati a
quella simmetria. Il formalismo adatto a questo scopo è quello delle teorie
di gauge, e la procedura da seguire per un generico gruppo di Lie è stata
richiamata nella Sez. 12.1.1. In questa sezione applicheremo tale procedura
direttamente alla simmetria locale di Lorentz presente nello spazio-tempo di
Minkowski tangente alla varietà di Riemann.

A questo proposito osserviamo che il gruppo di Lorentz ristretto (formato
dalle trasformazioni proprie e ortocrone) è un gruppo di Lie a 6 parame-
tri, e una sua generica trasformazione può essere rappresentata in forma
esponenziale come segue:

U = e�
i
2!abJ

ab

. (12.19)

La matrice !ab = �!ba è antisimmetrica e contiene sei parametri reali e
indipendenti, mentre i sei corrispondenti generatori Jab = �Jab soddisfano
l’algebra di Lie di SO(3, 1):

⇥

Jab, Jcd
⇤

= i
�

⌘adJbc � ⌘acJbd � ⌘bdJac + ⌘bcJad
�

. (12.20)

Se la trasformazioni sono locali, !ab = !ab(x), per mantenere la simmetria
associamo a ogni generatore sei campi vettoriali di gauge,

Jab �! !µ
ab = �!µ

ba (12.21)

(che rappresentano le componenti della cosiddetta “ connessione di Lorentz”,
o “connessione di spin”), e definiamo la derivata covariante di Lorentz come
segue:

Dµ = @µ � i

2
!µ

abJab. (12.22)
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Il fattore 1/2 è stato adottato per convenienza futura, e per adeguarsi al-
le convenzioni standard. Ripetendo gli argomenti della Sez. 12.1.1 troviamo
allora che la derivata covariante di un campo si trasforma come il campo stes-
so, anche rispetto alle trasformazioni locali, purché la connessione di Lorentz
obbedisca alla seguente legge di trasformazione,

!0
µ = U!µU

�1 � 2i (@µU)U�1, (12.23)

che riproduce esattamente l’Eq. (12.18) per g = 1/2.
Facciamo subito un esempio esplicito prendendo la derivata covariante di

un campo Aa a valori vettoriali nello spazio tangente. Tale campo si com-
porta come uno scalare per trasformazioni generali di coordinate (perché non
possiede indici curvi), e si trasforma localmente come

A0a = ⇤a
b(x)A

b, (12.24)

dove ⇤a
b(x) rappresenta una trasformazione locale di Lorentz per un vet-

tore controvariante. Notiamo subito che il gradiente ordinario di A non si
trasforma correttamente in maniera tensoriale, ossia che

(@µA
a)0 = ⇤a

b(x)@µA
b + (@µ⇤

a
b)A

b 6= ⇤a
b(x)@µA

b, (12.25)

perché la matrice ⇤ dipende dalla posizione.
Per restaurare la simmetria locale, ed applicare la definizione (12.22) di

derivata covariante, ci serve la forma esplicita dei generatori J per la rap-
presentazione vettoriale del gruppo di Lorentz. A questo proposito partiamo
dalla trasformazione (12.24), scritta in forma infinitesima (si veda ad esempio
l’Eq. (1.44)). Sviluppando ⇤a

b = �ab + !a
b + · · · otteniamo, al primo ordine

in !,
�Aa = !a

bA
b. (12.26)

D’altra parte, usando per ⇤ la rappresentazione esponenziale (12.19), e
sviluppandola al primo ordine,

⇤a
b = �ab � i

2
!ij (Jij)

a
b + · · · , (12.27)

abbiamo anche

�Aa = � i

2
!ij (Jij)

a
bA

b. (12.28)

Uguagliando le due espressioni infinitesime (12.26), (12.28), e risolvendo per
J , troviamo infine che i 6 generatori vettoriali Jij (ossia, J

12

, J
13

, J
23

, J
10

,
J
20

, J
30

), sono rappresentati da sei matrici 4⇥ 4 definite come segue:

(Jij)
a
b = i

�

⌘jb�
a
i � ⌘ib�

a
j

�

. (12.29)

Si noti che per queste matrici l’algebra di Lie (12.20) risulta automaticamente
soddisfatta.
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Usando questi generatori possiamo ora scrivere in forma esplicita la deriva-
ta covariante di Lorentz per un campo vettoriale controvariante nello spazio
localmente tangente:

DµA
a = @µA

a � i

2
!µ

ij (Jij)
a

bA
b

⌘ @µA
a + !µ

a
bA

b.
(12.30)

È immediato verificare che la derivata covariante si trasforma correttamente
come

(DµA
a)0 = ⇤a

bDµA
b, (12.31)

purché la connessione !µ obbedisca alla legge di trasformazione (12.23) (si
veda l’Esercizio 12.1).

Nel Capitolo 13 presenteremo in dettaglio la derivata di Lorentz per un
campo spinoriale. In questo capitolo ci concentriamo sulle rappresentazioni
tensoriali e osserviamo che – come per la derivata covariante rµ della geo-
metria di Riemann – l’operazione di derivata di Lorentz si può facilmente
estendere ad oggetti tensoriali con un numero arbitrario di indici covarian-
ti e controvarianti. È su�ciente usare la regola di Leibnitz per la derivata
di un prodotto e notare che, per un oggetto scalare nello spazio tangente,
l’operatore Dµ si riduce a @µ.

Per ottenere la derivata di un vettore covariante Ba, ad esempio, conside-
riamo il prodotto scalare AaBa, e imponiamo:

@µ (A
aBa) = Dµ (A

aBa) = AaDµBa +Ba

�

@µA
a + !µ

a
bA

b
�

. (12.32)

Risolvendo per DµBa otteniamo:

DµBa = @µBa � !µ
b
aBb. (12.33)

E cos̀ı via per oggetti tensoriali di rango arbitrario.
Le convenzioni adottate, che ci portano alle regole di derivazione (12.30),

(12.33), mostrano che la connessione di Lorentz ! deve operare su ogni indice
di Lorentz, usando il segno positivo se l’indice è di tipo controvariante (come
in Eq. (12.30)), e quello negativo se l’indice è covariante (come in Eq. (12.33)).
Per un tensore misto di rango due, ad esempio, abbiamo:

DµA
a
b = @µA

a
b + !µ

a
cA

c
b � !µ

c
bA

a
c. (12.34)

Si noti che la posizione degli indici è importante, perché !µ
ab 6= !µ

ba.

12.2.1 La condizione di metricità per le tetradi

Riassumendo gli argomenti svolti finora in questo capitolo ricordiamo che,
usando il formalismo delle tetradi, possiamo proiettare gli oggetti geometri-
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ci della varietà Riemanniana sullo spazio-tempo piatto localmente tangen-
te; inoltre, mediante la connessione di Lorentz, possiamo definire una de-
rivata covariante per gli oggetti proiettati che preserva l’invarianza locale
di Lorentz nello spazio tangente di Minkowski, e che è compatibile con la
general-covarianza della geometria Riemanniana.

È giunto ora il momento di chiederci se ci sia una relazione tra la derivata
covariante di Lorentz e quella di Riemann e, in particolare, se la connessione
di Christo↵el � e quella di Lorentz ! possano essere collegate. In caso di
risposta a↵ermativa, visto che � si esprime mediante la metrica g, e che g
si può esprimere in termini delle tetradi V , dovremmo aspettarci l’esistenza
di una precisa relazione ! = !(V ) che permette di calcolare la connessione
di Lorentz in funzione delle tetradi. In questo caso i due insiemi di variabili
geometriche, {g,� } e {V,!}, sarebbero perfettamente equivalenti, sotto tutti
i punti di vista, per la formulazione consistente di un modello geometrico
dell’interazione gravitazionale.

La risposta alla domanda precedente si ottiene considerando la derivata
covariante delle tetradi. Come già sottolineato, questi oggetti sono di tipo
“misto”, in quanto possiedono sia un indice vettoriale curvo nella varietà
Riemanniana, sia un indice vettoriale di Lorentz nello spazio piatto tangente.
La loro derivata covariante “totale” si ottiene dunque usando sia la connessio-
ne � per render covariante l’operatore di↵erenziale rispetto ai di↵eomorfismi
che agiscono sull’indice curvo, sia la connessione ! per renderlo covariante
rispetto alla simmetria locale di Lorentz che agisce sull’indice piatto. Più
precisamente, abbiamo:

rµV
a
⌫ = @µV

a
⌫ + !µ

a
bV

b
⌫ � �µ⌫

↵V a
↵

⌘ DµV
a
⌫ � �µ⌫

↵V a
↵

(12.35)

(nel secondo passaggio abbiamo esplicitamente usato la definizione (12.30) di
derivata covariante di Lorentz per un indice vettoriale).

A questo punto possiamo utilizzare le nostre ipotesi sulla struttura geome-
trica del modello di spazio-tempo che vogliamo usare. Ricordiamo, in parti-
colare, l’assunzione che la geometria sia di tipo “metrico-compatibile”, ossia
che soddisfi alla condizione di avere una metrica con derivata covariante nulla
(si veda la discussione della Sez. 3.5). Usando l’Eq. (12.5), tale condizione si
può esprimere come segue:

r↵gµ⌫ = r↵

�

V a
µ V

b
⌫ ⌘ab

�

= 2⌘abV
a
µ r↵V

b
⌫ + V a

µ V
b
⌫r↵⌘ab = 0. (12.36)

La derivata covariante della metrica di Minkowski, però, è identicamente
nulla. Infatti, utilizzando la prescrizione (12.33) per la derivata degli indici
di Lorentz covarianti, abbiamo

r↵⌘ab = �!↵c
a⌘cb � !↵

c
b⌘ac = � (!↵ba + !↵ab) ⌘ 0, (12.37)
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a causa della proprietà di antisimmetria della connessione di Lorentz (si ve-
da l’Eq. (12.21)). La condizione di metricità (12.36) implica quindi che la
derivata covariante delle tetradi sia nulla,

rµV
a
⌫ = 0 (12.38)

(tale condizione è conosciuta in letteratura anche sotto il nome di “postulato
delle tetradi”).

Usando l’Eq. (12.35) per la derivata covariante possiamo allora riscrivere
la condizione di metricità nella forma seguente:

@µV
a
⌫ + !µ

a
bV

b
⌫ = �µ⌫

↵V a
↵ . (12.39)

Questa equazione risponde alla domanda posta all’inizio della sezione: le due
connessioni ! e � non sono indipendenti. Esprimendo � in funzione di g, e g in
funzione di V , possiamo risolvere l’equazione precedente per ! e determinare
dappertutto la connessione di Lorentz in funzione delle tetradi e delle sue
derivate prime.

Per ottenere questo risultato, però, c’è una metodo più veloce e più diretto
che verrà introdotto nella sezione seguente.

12.3 La connessione di Levi-Civita e i coe�cienti di
Ricci

Per calcolare in forma compatta la connessione di Lorentz in funzione delle
tetradi partiamo dalla condizione di metricità (12.39). Sfruttando le proiezio-
ni operate dalle tetradi (da indici piatti a indici curvi e viceversa) possiamo
innanzitutto riscrivere tale condizione come segue:

@µV
c
⌫ + !µ

c
⌫ � �µ⌫

c = 0. (12.40)

Prendendone la parte antisimmetrica, e usando la definizione di torsione
Qµ⌫

c = �
[µ⌫]

c (si veda l’Eq. (3.67)), abbiamo:

@
[µV

c
⌫] + !

[µ
c
⌫] �Qµ⌫

c = 0. (12.41)

Ricordiamo ora che la presenza di una parte antisimmetrica nella connessione
� non è in contrasto con l’ipotesi di metricità (si veda la Sez. 3.5); possiamo
quindi calcolare ! con la torsione diversa da zero, in modo da ottenere per
la connessione di Lorentz il risultato più generale possibile.

Proiettando l’espressione precedente sullo spazio tangente (ossia contraen-
do con V µ

a V ⌫
b ) abbiamo allora la relazione

Cab
c +

1

2
(!a

c
b � !b

c
a)�Qab

c = 0, (12.42)
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dove
Cab

c = V µ
a V ⌫

b @[µV
c
⌫] = C

[ab]
c (12.43)

sono i cosiddetti coe�cienti di rotazione di Ricci. Scriviamo tre volte que-
sta relazione permutando circolarmente gli indici, e cambiando di segno la
seconda e la terza equazione rispetto alla prima:

Cabc +
1

2
(!acb � !bca)�Qabc = 0,

� Cbca �
1

2
(!cba � !cab) +Qbca = 0, (12.44)

� Ccab �
1

2
(!bac � !abc) +Qcab = 0.

Sommando le tre equazioni, ed usando la proprietà di simmetria !abc = !a[bc],
troviamo che i termini in ! della prima e terza equazione si cancellano a
vicenda, mentre quelli della seconda si sommano. Perciò:

!cab = Ccab � Cabc + Cbca � (Qcab �Qabc +Qbca) . (12.45)

Per esprimere il risultato in forma canonica alziamo gli indici a e b, e
proiettiamo l’indice c sulla varietà curva. Arriviamo cos̀ı all’espressione

!µ
ab = �µ

ab +Kµ
ab, (12.46)

dove
�µ

ab = V c
µ

�

Cc
ab � Cab

c + Cb
c
a
�

(12.47)

è la cosiddetta connessione di Levi-Civita, e

Kµ
ab = �V c

µ

�

Qc
ab �Qab

c +Qb
c
a
�

(12.48)

è la contorsione (che coincide ovviamente con quella già definita in Eq. (3.88),
a parte la proiezione sullo spazio tangente).

Se ci restringiamo a geometrie con torsione nulla (come nel caso della
relatività generale) il tensore di contorsione scompare e la connessione di
Lorentz coincide con quella di Levi-Civita, risultando cos̀ı completamente
determinata dai coe�cienti di rotazione di Ricci (ossia dalle tetradi e dalle
loro derivate prime), in accordo all’Eq. (12.47). Nel seguito di questo capitolo,
e nel resto del libro, assumeremo che Q = 0 e che !µ

ab = �µ ab, a meno che
non sia esplicitamente indicato il contrario.

È utile, in vista di future applicazioni, sottolineare infine le proprietà di
simmetria degli indici per i vari oggetti che appaiono nella definizione della
connessione. Dalle equazioni (12.43), (12.45), (12.47) e (12.48) abbiamo:

Cabc = C
[ab]c, Qabc = Q

[ab]c, !abc = !a[bc],

�µ
ab = �µ

[ab], Kµ
ab = Kµ

[ab].
(12.49)
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12.3.1 Tensore di curvatura e azione gravitazionale

Per completare il formalismo geometrico basato sulle tetradi e sulla connes-
sione di Lorentz resta da esprimere la curvatura – più precisamente, il tensore
di Riemann – in funzione di queste nuove variabili. Fatto questo saremo in
grado di presentare un nuovo (ma equivalente) approccio alle equazioni gra-
vitazionali di Einstein, che ha il vantaggio di rendere manifeste le simmetrie
locali nascoste e di permettere l’accoppiamento diretto dei campi fermionici
alla geometria (come vedremo nei prossimi capitoli).

Per esprimere la curvatura in funzione di V e di ! consideriamo la derivata
covariante seconda del campo Aa, con indice vettoriale nello spazio tangente.
La derivata covariante prima coincide ovviamente con la derivata di Lorentz
D⌫Aa (perché Aa non ha indici curvi), ed è data dall’Eq. (12.30). La derivata
seconda agisce invece sia sull’indice piatto a sia sull’indice curvo ⌫, per cui:

rµr⌫A
a = @µ

�

@⌫A
a + !⌫

a
bA

b
�

+!µ
a
c

�

@⌫A
c + !⌫

c
bA

b
�

� �µ⌫
↵D↵A

a.
(12.50)

Se prendiamo il commutatore delle due derivate covarianti i termini simme-
trici in µ e ⌫ si elidono, e rimane:

[rµr⌫ �r⌫rµ]A
a =

⇥

@µ!⌫
a
b + !µ

a
c !⌫

c
b

⇤

Ab � {µ $ ⌫} (12.51)

(come già sottolineato, stiamo considerando una geometria spazio-temporale
con torsione nulla, �

[µ⌫]
↵ = 0).

Abbiamo già visto, nella Sez. 6.2, che il commutare di due derivate cova-
rianti che agiscono sul vettore A↵ è controllato dal tensore di Riemann, ed è
dato dall’Eq. (6.19). Esprimendo A↵ mediante la sua proiezione nello spazio
tangente, e sfruttando le proprietà di metricità delle tetradi (rV = 0), l’Eq.
(6.19) si può riscrivere come segue,

[rµr⌫ �r⌫rµ]V
↵
a Aa = Rµ⌫�

↵(� )V �
b Ab, (12.52)

dove Rµ⌫�
↵(� ) è il tensore di Riemann (6.10), calcolato in modo standard in

funzione della connessione di Christo↵el. Confrontando questo commutatore
con l’Eq. (12.51), e invertendo le proiezioni, si arriva allora immediatamente
all’espressione cercata che collega il tensore di Riemann alla connessione di
Lorentz e alle sue derivate prime. In forma compatta:

Rµ⌫�
↵(� ) = V ↵

a V b
�Rµ⌫

a
b(!), (12.53)

dove abbiamo posto

Rµ⌫
ab(!) = @µ!⌫

ab � @⌫!µ
ab + !µ

a
c !⌫

cb � !⌫
a
c !µ

cb. (12.54)

È interessante notare che il membro destro della relazione (12.53) rappresenta
la proiezione (sugli indici curvi ↵ e �) del “campo di Yang-Mills” Rµ⌫

ab
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associato alla connessione di Lorentz. Questa connessione, d’altra parte, è il
potenziale di gauge corrispondente all’invarianza locale di Lorentz nello spazio
tangente. I termini quadratici nella connessione, che appaiono nel tensore
di curvatura, sono dunque dovuti al carattere non-Abeliano del gruppo di
simmetria. Un modello geometrico di interazione gravitazionale basato sulla
dinamica della curvatura – quale, ad esempio, la relatività generale – trova
quindi, in questo contesto, una naturale interpretazione come teoria di gauge
per il gruppo locale di Lorentz.

Nel caso della relatività generale c’è però una di↵erenza importante dalle
teorie di gauge convenzionali, dovuta al fatto che l’azione è lineare (anziché
quadratica) nel campo di Yang-Mills, ossia nella curvatura. Questo è possibile
perché la connessione, nel caso gravitazionale, è un campo “composto”, ossia
è funzione a sua volta di un’altra variabile (la metrica o la tetrade) che risulta
la variabile dinamica primaria. Questo non esclude, ovviamente, la possibilità
di costruire azioni gravitazionali con potenze quadratiche (o superiori) della
curvatura.

Restiamo nell’ambito convenzionale della relatività generale, e concludia-
mo il capitolo mostrando che l’azione e le equazioni di Einstein, espresse
mediante le variabili “di gauge” {V,!}, risultano perfettamente equivalenti
a quelle formulate con le variabili “geometriche” {g,� }. Ci concentreremo,
per brevità, sulla parte gravitazionale dell’azione assumendo che le sorgenti
materiali siano assenti.

Usiamo l’Eq. (12.6) per il determinante della metrica, e l’Eq. (12.53) per
la curvatura. La curvatura scalare (6.24) è dunque

R = Rµ⌫
⌫µ = V µ

a V ⌫
b Rµ⌫

ab(!), (12.55)

e l’azione di Einstein diventa:

S = � 1

2�

Z

d4x
p
�g R(� ) = � 1

2�

Z

d4xV V µ
a V ⌫

b Rµ⌫
ab(!), (12.56)

dove la “curvatura di Lorentz”, Rµ⌫
ab, è data dall’Eq. (12.54). Per ottenere

le equazioni di campo, a questo punto, possiamo procedere in due modi.
Una prima possibilità è quella di eliminare dappertutto la connessione

in funzione delle tetradi mediante l’Eq. (12.46), ottenendo cos̀ı un’azione
che contiene solo le tetradi e le loro derivate prime e seconde. La variazione
rispetto alle tetradi procede poi come nel caso della metrica.

Una seconda possibilità consiste nel trattare tetradi e connessione come va-
riabili indipendenti, e variare separatamente rispetto a V e !. Questo metodo,
detto formalismo variazionale del I ordine, o anche “formalismo di Palatini”,
è particolarmente conveniente quando l’azione è scritta nel linguaggio delle
forme di↵erenziali (si veda l’Appendice A). L’adotteremo anche in questa se-
zione, come istruttivo esercizio per illustrare alcuni aspetti tipici del calcolo
con le tetradi e con la connessione di Lorentz.
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Prima di procedere alla variazione notiamo che, sfruttando le regole di pro-
dotto dei tensori completamente antisimmetrici (si veda la Sez. 3.2), l’azione
di Einstein (12.56) si può riscrivere nella forma seguente, più conveniente per
la procedura variazionale:

S =
1

8�

Z

d4x ✏µ⌫↵�✏abcdV
c
↵V

d
� Rµ⌫

ab(!) (12.57)

(si veda l’Esercizio 12.2). Variamo quindi rispetto alla connessione di Lorentz
! (che è contenuta solo nel tensore di curvatura), tenendo V fissato. Dalla
definizione (12.54) abbiamo

�!Rµ⌫
ab = Dµ�!⌫

ab �D⌫�!µ
ab, (12.58)

dove
Dµ�!⌫

ab = @µ�!⌫
ab + !µ

a
c�!⌫

cb + !µ
b
c�!⌫

ac. (12.59)

Sostituendo nell’azione (12.57), ed integrando per parti, otteniamo (modulo
una derivata totale):

�!S = � 1

2�

Z

d4x ✏µ⌫↵�✏abcdV
c
↵

�

DµV
d
�

�

�!⌫
ab. (12.60)

Si noti che la derivata covariante di Lorentz di ✏µ⌫↵� è nulla perché non ci
sono indici piatti, e quella di ✏abcd è nulla perché la connessione di Lorentz è
antisimmetrica (si veda l’Esercizio 12.3).

Imponendo che l’azione sia stazionaria otteniamo dunque la condizione

D
[µV

d
�] = 0, (12.61)

che riproduce esattamente l’Eq. (12.41) (ottenuta dal postulato di metricità)
nel caso considerato di torsione nulla. Risolvendo per ! ritroviamo la con-
nessione di Levi-Civita, non più come assunzione del modello geometrico, ma
come conseguenza delle “equazioni di campo” per la connessione di gauge.

Variamo infine l’azione (12.57) rispetto alle tetradi V , tenendo ! fissato.
Nel contesto del formalismo variazionale di Palatini non ci sono contributi
da parte della curvatura, che dipende solo dalla variabile indipendente ! (si
veda l’Eq. (12.54)). Si ottiene dunque

�V S =
1

4�

Z

d4x ✏µ⌫↵�✏abcdV
d
� Rµ⌫

ab�V c
↵ , (12.62)

e l’azione è stazionaria per

✏µ⌫↵d✏abcdRµ⌫
ab = 0. (12.63)

Usando le regole di prodotto per i tensori completamente antisimmetrici, e
la relazione (12.53) tra curvatura di Riemann e curvatura di Lorentz – che
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possiamo applicare in virtù della condizione (12.61) fornita dalla precedente
variazione – si trova che questa equazione si può riscrivere come

R↵c �
1

2
V ↵
c R ⌘ V �

c

✓

R↵� � 1

2
�↵�R

◆

= 0 (12.64)

(si veda l’Esercizio 12.4). L’equazione ottenuta coincide dunque esattamente
con le equazioni di Einstein nel vuoto.

Esercizi Capitolo 12

12.1. Trasformazione locale della derivata covariante di Lorentz

Si verifichi che l’Eq. (12.31) è valida, purché la connessione di Lorentz soddisfi
la legge di trasformazione (12.23).

12.2. Azione di Einstein nel formalismo delle tetradi

Dimostrare che l’azione di Einstein (12.56) si può riscrivere nella forma
equivalente data dall’Eq. (12.57).

12.3. Derivata di Lorentz del tensore antisimmetrico

Dimostrare che Dµ✏abcd = 0.

12.4. Equazioni di Einstein nel formalismo delle tetradi

Verificare che l’Eq. (12.63) è equivalente alle equazioni di Einstein nel vuoto,
ossia alla condizione Gµ

⌫ = 0, dove Gµ
⌫ è il tensore di Einstein.

Soluzioni

12.1. Soluzione

Scriviamo esplicitamente il membro sinistro dell’Eq. (12.31):

(DµA
a)0 = ⇤a

b@µA
b + (@µ⇤

a
b)A

b + !0
µ
a
b⇤

b
cA

c. (12.65)

Notiamo inoltre che, per un campo vettoriale,

!µ ⌘ !µ
ij (Jij)

a
b = 2i!µ

a
b (12.66)

(si veda l’Eq. (12.29)). Perciò l’equazione di trasformazione (12.23), per la
rappresentazione vettoriale, si può riscrivere come segue:

!0
µ
a
b =

⇥

⇤!µ⇤
�1

⇤a
b �

⇥

(@µ⇤)⇤
�1

⇤a
b. (12.67)
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Sostituendo nell’Eq. (12.65) e semplificando otteniamo

(DµA
a)0 = ⇤a

b@µA
b + ⇤a

b !µ
b
cA

c

⌘ ⇤a
bDµA

b,
(12.68)

che coincide appunto con la trasformazione (12.31) cercata.

12.2. Soluzione

Consideriamo il prodotto tensoriale dell’Eq. (3.38), ed esprimiamo uno
dei due tensori antisimmetrici in funzione della sua proiezione nello spazio
tangente. L’Eq. (3.38) si può allora riscrivere:

⌘µ⌫↵�V a
⇢ V

b
�V

c
↵V

d
� ✏abcd = �2

�

�µ⇢ �
⌫
� � �⌫⇢�

µ
�

�

. (12.69)

Invertendo le proiezioni per gli indici ⇢ e � abbiamo:

⌘µ⌫↵�✏abcdV
c
↵V

d
� = �2 (V µ

a V ⌫
b � V ⌫

a V µ
b ) . (12.70)

Usando le definizioni (3.31) e (12.6) possiamo infine riscrivere l’equazione
precedente come segue:

✏µ⌫↵�✏abcdV
c
↵V

d
� = �4V V [µ

a V ⌫]
b . (12.71)

Osserviamo ora che Rµ⌫
ab è antisimmetrico nei primi due indici, e quindi

�V V µ
a V ⌫

b Rµ⌫
ab = �V V [µ

a V ⌫]
b Rµ⌫

ab

=
1

4
✏µ⌫↵�✏abcdV

c
↵V

d
� Rµ⌫

ab.
(12.72)

Dividendo per 2� e integrando in d4x arriviamo cos̀ı alla forma (12.57)
dell’azione di Einstein.

12.3. Soluzione

Applicando la definizione di derivata di Lorentz per un tensore controva-
riante definito sullo spazio tangente abbiamo:

Dµ✏
abcd = !µ

a
i✏

ibcd + !µ
b
i✏

aicd

+!µ
c
i✏abid + !µ

d
i✏abci.

(12.73)

Poiché ✏ è un oggetto completamente antisimmetrico, i quattro indici liberi
a, b, c, d della precedente equazione devono essere tutti diversi tra loro. Ne
consegue che, in uno spazio-tempo con 4 dimensioni, i quattro termini presenti
a membro destro possono essere diversi da zero solo se, in ciascuno di essi, i
due indici piatti della connessione sono uguali (ossia a = i, b = i, etc). Ma
la connessione di Lorentz è antisimmetrica, per cui !µ

i
i = 0, e la derivata

covariante (12.73) si annulla identicamente.
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12.4. Soluzione

Esprimiamo il prodotto dei tensori antisimmetrici che appare nell’Eq.
(12.63) usando la regola di prodotto (3.39) con tre indici curvi proiettati
nello spazio tangente, ossia:

✏µ⌫↵d✏abcd = �V µ⌫↵
abc ⌘ � det

0

@

V µ
a V ⌫

a V ↵
a

V µ
b V ⌫

b V ↵
b

V µ
c V ⌫

c V ↵
c

1

A . (12.74)

Sositutendo nell’Eq. (12.63), e ricordando la definizione dello scalareR fornita
dall’Eq. (12.55), arriviamo all’equazione

✏µ⌫↵d✏abcdRµ⌫
ab = �

�

Rµ⌫
µ⌫V ↵

c +Rµ⌫
⌫↵V µ

c +Rµ⌫
↵µV ⌫

c

�Rµ⌫
µ↵V ⌫

c �Rµ⌫
⌫µV ↵

c �Rµ⌫
↵⌫V µ

c

�

= �2RV ↵
c + 4Rc

↵ = 4V �
c

✓

R�
↵ � 1

2
�↵�R

◆

= 0,

(12.75)

che è esattamente equivalente alle equazioni di Einstein nel vuoto.
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Equazione di Dirac in un campo
gravitazionale

Questo capitolo è dedicato ad un argomento che viene spesso trascurato nei
libri di relatività generale di tipo tradizionale (con le dovute eccezioni: si veda
ad esempio il testo [7] della Bibliografia finale): l’interazione gravitazionale
dei campi spinoriali.

Tale omissione è giustificabile, da un punto di vista fenomenologico, se si
pensa alla debolezza della gravità rispetto alle interazioni a corto raggio agenti
sugli spinori a livello microscopico. Non c’è dubbio, infatti che le interazioni
elettromagnetiche, deboli e forti siano sicuramente dominanti rispetto alla
gravità nel regime di densità, temperatura ed energia tipici della materia
ordinaria.

Questa conclusione non è più valida, però, in regimi fisici più “esotici”,
come (ad esempio) quelli che caratterizzano lo stato cosmologico del no-
stro Universo primordiale. Infatti, come dimostrato dagli studi del cosiddetto
“gruppo di rinormalizzazione”, le costanti d’accoppiamento delle diverse inte-
razioni possono variare con le scale d’energia in gioco, tendendo a convergere
verso lo stesso valore ad altissime energie.

Inoltre, e soprattutto, l’interazione gravitazionale degli spinori non può
essere trascurata nei modelli teorici che forniscono una descrizione unificata
di tutti i campi materiali e delle loro interazioni (come, ad esempio, i modelli
basati sulla teoria delle superstringhe, si vedano i testi [26]- [30] della Biblio-
grafia finale). I campi spinoriali sono necessari per rappresentare i fermioni
che costituiscono i componenti fondamentali della materia (i cosiddetti quarks
e i leptoni), e il gravitone non può essere escluso – pena l’inconsistenza della
teoria – dal multipletto di campi bosonici con cui i fermioni interagiscono.

Vale infine la pena di ricordare che in alcuni recenti scenari unificati, ba-
sati sull’ipotesi che il nostro Universo sia una specie di “membrana multidi-
mensionale ”, è anche prevista la possibilità che l’interazione gravitazionale
diventi molto più intensa – e addirittura confrontabile con quella delle altre
interazioni – lungo le direzioni spaziali “esterne” allo spazio-tempo quadri-
dimensionale. In questo caso, se la scala di energia alla quale le dimensioni
esterne si manifestano è dell’ordine del TeV (come suggerito da varie consi-
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UNITEXT for Physics, DOI 10.1007/978-88-470-5690-9_13
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derazioni teoriche), le interazioni gravitazionali dei campi spinoriali potreb-
bero diventare direttamente “visibili” a scale di energia accessibili anche al-
le attuali macchine acceleratrici (o a quelle di generazione immediatamente
futura).

In questo capitolo ci concentreremo in particolare sul caso degli spinori di
Dirac, per far riferimento a un modello che si suppone ben noto agli studenti.
Introdurremo l’accoppiamento gravitazionale proiettando l’azione di Dirac
sullo spazio piatto tangente alla varietà di Riemann, e rendendola invariante
per trasformazioni locali di Lorentz mediante il principio di minimo accop-
piamento. La procedura applicata è altrettanto valida per spinori di Weyl o
di Majorana, ed è basata sul formalismo delle tetradi e della connessione di
Lorentz introdotto nel capitolo precedente. I risultati che presenteremo forni-
scono il punto di partenza classico per l’eventuale successiva quantizzazione,
da e↵ettuarsi con le procedure usuali della teoria quantistica dei campi.

13.1 Richiami di formalismo spinoriale

È opportuno iniziare richiamando le equazioni di base del modello spinoriale
di Dirac nello spazio-tempo di Minkowski, sia per fissare le notazioni e le
convenzioni, sia per introdurre gli oggetti che poi appariranno nel modello
proiettato sullo spazio tangente della varietà di Riemann.

Va sottolineato, innanzitutto, che gli indici tensoriali riferiti allo spazio-
tempo di Minkowski saranno indicati con le lettere Latine minuscole, in ac-
cordo alle convenzioni del capitolo precedente; gli indici spinoriali saranno
invece sottintesi, seguendo la convenzione usuale. Inoltre, in tutto il capitolo
useremo il sistema di unità naturali nel quale h̄ = c = 1.

In assenza di interazione gravitazionale (ossia, in uno spazio-tempo glo-
balmente piatto) l’equazione di Dirac per un campo spinoriale  di massa
m,

i�a@a �m = 0, (13.1)

può essere derivata dall’azione seguente:

S =

Z

d4x
�

i �a@a �m  
�

. (13.2)

In queste equazioni la variabile  è un campo complesso a quattro componen-
ti, che fornisce una rappresentazione spinoriale del gruppo di Lorentz ristretto
e delle trasformazioni di parità (ovvero, delle riflessioni spaziali). Abbiamo
inoltre introdotto la notazione standard  =  †�0, dove  † indica il vettore
di campo trasposto e complesso coniugato; abbiamo infine indicato con �a,
a = 0, 1, 2, 3 le quattro matrici di Dirac, ossia le matrici 4⇥ 4 che soddisfano
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alla cosiddetta algebra di Cli↵ord,

2�(a�b) ⌘ �a�b + �b�a = 2⌘ab. (13.3)

Con le nostre convenzioni per la segnatura del tensore metrico, le matrici �
di Dirac godono delle seguenti proprietà:

�

�0
�

2

= 1,
�

�0
�†

= �0,
�

�i
�

2

= �1,
�

�i
�†

= ��i, i = 1, 2, 3.
(13.4)

È conveniente introdurre infine la matrice �5, tale che

�5 = i�0�1�2�3,
�

�5
�

2

= 1,
�

�5
�†

= �5,

{�5, �a} ⌘ �5�a + �a�5 = 0
(13.5)

(in questo capitolo e nei successivi la parentesi gra↵a indicherà l’operazione
di anticommutazione).

La forma esplicita delle matrici di Dirac dipende ovviamente dalla rap-
presentazione scelta. Per gli scopi di questo capitolo sarà su�ciente riferirsi
alla cosiddetta rappresentazione “chirale”, o di Weyl, dove il campo di Dirac
assume la forma

 =

✓

 L

 R

◆

, (13.6)

e dove  L, R sono spinori di Weyl a due componenti che forniscono rappre-
sentazioni del gruppo di Lorentz con elicità �1/2 (per  L) e +1/2 (per  R).
In questa rappresentazione, adottando la conveniente notazione “a blocchi”
2⇥ 2 per le matrici 4⇥ 4, abbiamo:

�0 =

✓

0 1
1 0

◆

, �i =

✓

0 �i

��i 0

◆

, �5 =

✓

�1 0
0 1

◆

, (13.7)

dove �i sono le ordinarie matrici di Pauli, che soddisfano alla regola di
prodotto

�i�j = �ij + i✏ijk�k, i, j = 1, 2, 3. (13.8)

Indipendentemente dalla rappresentazione scelta, l’azione di Dirac (13.2) è
invariante per trasformazioni globali di Lorentz, del tipo

 !  0 = U , U = e�
i
4!

ab�ab . (13.9)

Abbiamo usato le componenti indipendenti del tensore antisimmetrico !ab =
�!ba per rappresentare i sei parametri reali e costanti della trasformazione,
e abbiamo indicato con

�ab =
i

2
(�a�b � �b�a) = i�

[a�b] (13.10)
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i sei corrispondenti generatori. Il fattore 1/4 presente all’esponente di U si
ottiene dalla definizione generale (12.19), ed è dovuto al fatto che il momento
angolare intrinseco di un campo di Dirac è associato all’operatore

Jab =
�ab
2

. (13.11)

È questo operatore, infatti, che soddisfa all’algebra di Lie di SO(3, 1),



1

2
�ab,

1

2
�cd

�

=
i

2
(⌘ad�bc � ⌘ac�bd � ⌘bd�ac + ⌘bc�ad) , (13.12)

come si può verificare esplicitamente usando le proprietà delle matrici di
Dirac.

Si noti che �ab non è Hermitiano, �†
ab 6= �ab, e quindi la rappresentazione

(13.9) non è unitaria. Un calcolo esplicito mostra infatti che

U�1 = �0U †�0. (13.13)

È proprio questa relazione che assicura l’invarianza di Lorentz del termine
bilineare   ,

 
0
 0 =  †0�0 0 =  †U†�0U =  †�0

�

�0U†�0
�

U =   , (13.14)

e porta, come conseguenza, all’invarianza globale di Lorentz dell’azione di
Dirac (13.2).

Concludiamo la sezione mostrando (anche in vista di applicazioni future)
che la forma esplicita dei generatori spinoriali (13.10) si può direttamen-
te ottenere dalla condizione di invarianza di Lorentz, procedendo nel modo
seguente.

Usiamo per U la parametrizzazione (13.9), con �ab incogniti. Imponiamo
che l’equazione di Dirac (13.1) sia invariante per trasformazioni globali di
Lorentz, ossia che

i�a@0a 
0 �m 0 = i�a

�

⇤�1

�b
aU@b �mU = 0. (13.15)

Moltiplicando da sinistra per U�1, ed imponendo che l’equazione si riduca
alla (13.1), abbiamo la condizione

U�1�aU
�

⇤�1

�b
a = �b. (13.16)

Moltiplicando per ⇤c
b otteniamo la trasformazione di Lorentz delle matrici

di Dirac,
U�1�cU = ⇤c

b�
b, (13.17)
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che sarà utile per le applicazioni delle sezioni seguenti. Espandiamo infine la
trasformazione al I ordine, ponendo

⇤a
b = �ab + !a

b + · · · , U = 1� i

4
!ab�ab + · · · . (13.18)

Sostituendo nell’Eq. (13.17) e risolvendo per �ab arriviamo infine all’espres-
sione (13.10) per i generatori spinoriali.

13.2 Equazione di Dirac covariante e localmente
Lorentz-invariante

Per introdurre l’interazione dello spinore di Dirac con un campo gravitaziona-
le esterno seguiamo la procedura già usata per tutti i sistemi fisici precedenti,
immergendo l’azione del sistema in uno spazio-tempo curvo (Riemanniano),
come prescritto dal principio di minimo accoppiamento.

Questa procedura di accoppiamento prevede, sostanzialmente, tre tipi di
operazione (si veda la Sez. 4.1). Come prima cosa la misura di integrazione
d4x va resa scalare per di↵eomorfismi mediante la sostituzione

d4x ! d4x
p
�g ⌘ d4xV (13.19)

(ricordiamo che V ⌘ | detV a
µ | è il determinante delle tetradi, si veda l’Eq.

(12.6)). Secondo, i prodotti scalari dello spazio-tempo di Minkowski, definiti
rispetto alla metrica ⌘, vanno riscritti nello spazio curvo mediante la metrica
g di Riemann. Nel caso specifico dell’azione di Dirac (13.2) questo implica,
seguendo la convenzione sugli indici del Capitolo 12,

�a@a ! �µ@µ, (13.20)

dove �µ sono le matrici di Dirac dello spazio piatto tangente proiettate lo-
calmente sulla varietà curva di Riemann mediante le tetradi, ossia (si veda
la Sez. 12.1):

�µ = V µ
a �

a. (13.21)

Queste matrici soddisfano una relazione algebrica che generalizza quella
dell’Eq. (13.3) sostituendo la metrica ⌘ con la metrica g:

�µ�⌫ + �⌫�µ = V µ
a V ⌫

b

�

�a�b + �b�a
�

= 2V µ
a V ⌫

b ⌘
ab = 2gµ⌫ (13.22)

(abbiamo usato la proprietà delle tetradi (12.5)).
Terzo, dobbiamo sostituire le derivate parziali con le derivate covarianti.

Nel nostro caso è conveniente riferirsi al campo  come spinore di Lorentz
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definito sullo spazio piatto tangente1. In questo caso il campo non ha indici
curvi, e la derivata covariante totale coincide con la derivata covariante di
Lorentz (si veda la Sez. 12.2). Utilizzando la definizione generale (12.22) e i
generatori spinoriali (13.11) abbiamo dunque, per uno spinore di Dirac,

@µ ! rµ ⌘ Dµ =

✓

@µ � i

2
!µ

ab�ab
2

◆

 

=

✓

@µ +
1

4
!µ

ab�
[a�b]

◆

 ,

(13.23)

dove !µ
ab è la connessione (o campo di gauge) del Capitolo 12 introdotta

per ripristinare la simmetria locale di Lorentz.
Applicando tali prescrizioni l’azione di Dirac (13.2), scritta in un generico

spazio-tempo curvo di Riemann, assume la forma seguente:

S =

Z

d4x
p
�g
�

i �µrµ �m  
�

. (13.24)

Questa espressione è chiaramente uno scalare rispetto alle trasformazioni ge-
nerali di coordinate, ma è anche invariante per trasformazioni locali di Loren-
tz,  0 = U(x) , definite nello spazio piatto tangente. È istruttivo verificarlo
esplicitamente.

A questo proposito poniamo

!µ ⌘ 1

2
!µ

ab�ab, (13.25)

ed utilizziamo la legge di trasfromazione della connessione di Lorentz, Eq.
(12.23). Troviamo allora che

(Dµ )
0 =

✓

@µ � i

2
!0
µ

◆

U 

= (@µU) + U@µ � i

2
U!µ � (@µU) (13.26)

= UDµ ,

e quindi la derivata covariante del campo di Dirac si trasforma come il campo
stesso. Ne consegue che anche il termine cinetico dell’azione (13.24) – oltre
al termine di massa – è localmente Lorentz-invariante. Proiettiamolo infatti
sullo spazio tangente, ed e↵ettuiamo la trasformazione locale usando la rela-

zione  
0
=  U�1 che segue dall’Eq. (13.13), ed applicando inoltre la legge di

1 Un metodo alternativo, ma poco usato, di immergere gli spinori in uno spazio-tempo curvo
è quello di rappresentarli come campi tensoriali antisimmetrici. Questa rappresentazione
è nota in letteratura sotto il nome di formalismo spinoriale di Dirac-Kähler (E. Kähler,
Rend. Mat. Ser. V 21, 425 (1962)), ma in realtà risale a lavori di Ivanenko e Landau del
1928 (D. Ivanenko and L. Landau, Z. Phys. 48, 341 (1928)).
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trasformazione (13.17) per le matrici di Dirac. Arriviamo cos̀ı al risultato

�

 �µrµ 
�0

=
�

 �aDa 
�0

=  U�1�a
�

⇤�1

�b
a (Db )

0

=  U�1�aU
�

⇤�1

�b
aDb =  �bDb (13.27)

=  �µrµ .

Per avere l’equazione di Dirac minimamente accoppiata alle geometria di uno
spazio-tempo Riemanniano possiamo ora partire dall’azione (13.24), trattan-
do  e  come variabili Lagrangiane indipendenti. Variando rispetto a  , in
particolare, abbiamo:

i�µDµ �m = 0. (13.28)

Più esplicitamente, usando le definizioni (13.21) e (13.23), possiamo riscrivere
l’equazione precedente nella forma

i�aV µ
a @µ �m +

i

4
!µabV

µ
c �

c�[a�b] = 0, (13.29)

dove (dall’Eq. (12.45))

V µ
c !µab = !cab = Ccab � Cabc + Cbca, (13.30)

è la connessione di Levi-Civita, e dove Cabc sono i coe�cienti di rotazioni di
Ricci, definiti dall’Eq. (12.43).

13.3 Accoppiamento geometrico alla corrente assiale e
vettoriale

È interessante discutere in modo più dettagliato l’interazione gravitazio-
nale del campo di Dirac descritta dal terzo termine dell’Eq. (13.29), che
chiameremo per semplicità M(!),

M(!) =
i

4
!cab�

c�[a�b] , (13.31)

e che ha origine dall’accoppiamento minimo alla geometria dello spazio-tempo
in cui lo spinore è immerso. Tale accoppiamento, come vedremo, coinvolge la
corrente spinoriale nella sua parte sia assiale che vettoriale.

Per separare esplicitamente i due contributi prendiamo la parte completa-
mente antisimmetrica del prodotto di tre matrici di Dirac,

6�[a�b�c] =
⇣

�a�b�c + �b�c�a + �c�a�b

��a�c�b � �b�a�c � �c�b�a
⌘

,
(13.32)
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e – usando la proprietà di anticommutazione (13.3) – la riscriviamo nel modo
seguente:

�[a�b�c] = �a�b�c � �a⌘bc + �b⌘ca � �c⌘ab. (13.33)

Ci serve, in particolare, la parte antisimmetrica in b e c della precedente
equazione, che è data da

�a�[b�c] = �[a�b�c] + 2⌘a[b�c]. (13.34)

È utile ora osservare che la matrice �5 definita nell’Eq. (13.5) si può anche
esprimere, con le nostre convenzioni, in modo covariante come segue:

�5 ⌘ i�0�1�2�3 = � i

4!
✏abcd�

a�b�c�d (13.35)

(il segno meno è dovuto al fatto che ✏
0123

= �✏0123 = �1). Invertendo que-
sta relazione, e sfruttando le regole di prodotto dei tensori completamente
antisimmetrici (riportate nella Sez. 3.2), otteniamo:

�[a�b�c] = �i✏abcd�5�d. (13.36)

Sostituendo nell’Eq. (13.34) e poi nella definizione (13.31) di M(!) arriviamo
infine alla seguente espressione:

M(!) =
1

4
!abc✏

abcd�5�d +
i

2
!a

a
c�

c. (13.37)

Essa ci dice che la traccia della connessione, !a
a
c, interagisce con la corrente

vettoriale del campo di Dirac, mentre la parte completamente antisimmetrica,
!
[abc], interagisce con la corrente assiale.
Ricordando la definizione esplicita (13.30) della connessione, d’altra parte,

abbiamo
!
[abc] = C

[abc], !a
a
c = 2Cca

a. (13.38)

Sostituendo nell’equazione di Dirac (13.29) troviamo allora che tale equazione
si può riscrivere nella seguente forma (equivalente, ma più conveniente),

i�aV µ
a @µ �m +

1

4
C

[abc]✏
abcd�5�d + iCca

a�c = 0, (13.39)

dove la geometria dello spazio-tempo risulta direttamente espressa in funzione
delle tetradi e dei coe�cienti di rotazioni di Ricci

Cab
c = V µ

a V ⌫
b @[µV

c
⌫] (13.40)

(definiti nella Sez. 12.3). L’Eq. (13.39) mostra esplicitamente come l’intera-
zione dello spinore con il campo gravitazionale sia interamente determinata
dal sistema di tetradi V a

µ (associato alla metrica data) e dalle sue derivate
prime (si veda anche l’Esercizio 13.1).
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13.4 Forma simmetrizzata dell’azione covariante di
Dirac

È infine istruttivo mostrare che l’Eq. (13.39) si può derivare partendo an-
che dall’azione di Dirac scritta in una forma che è simmetrizzata rispetto
alle variabili  e  (e che risulta più appropriata per le eventuali applicazio-
ni quantistiche della teoria). Tale forma simmetrizzata si ottiene dall’azione
covariante (13.24) aggiungendo, per ogni termine, il termine corrispondente
ottenuto con l’operazione di coniugazione Hermitiana (h. c.), ossia:

S =

Z

d4x
p
�g

1

2

�

i �aDa �m  + h.c.
�

. (13.41)

La densità di Lagrangiana e↵ettiva associata a questa azione può essere
dunque scritta esplicitamente come segue:

L =
i

2

p
�g
h

 �a@a �
�

 �a@a 
�†i

+
i

8

p
�g !abc



 �a�[b�c] �
⇣

 �a�[b�c] 
⌘†
�

�
p
�g m  .

(13.42)

Consideriamone separatamente i vari termini.
Usando la relazione

�0 (�a)† �0 = �a, (13.43)

troviamo innazitutto che il coniugato Hermitiano del termine cinetico (ossia,
il secondo termine nella prima parentesi quadra dell’Eq. (13.42) diventa

� i

2

p
�g @a 

† (�a)† �0 = � i

2

p
�g @a �

a . (13.44)

Consideriamo quindi l’Hermintiano coniugato del termine di interazione
(ossia il secondo termine nella seconda parentesi quadra), che è dato da

� i

8

p
�g !abc 

† 1

2

h

�

�b�c
�† �

�

�c�b
�†i

(�a)† �0 . (13.45)

Ricordando le proprietà (13.3) e (13.4) delle matrici di Dirac abbiamo

(�a)† �0 = �0�a,
�

�b�c
�†
�0 = ��0

�

�b�c
�

, b 6= c,
(13.46)

e quindi l’espressione (13.45) diventa:

i

8

p
�g !abc  �

[b�c]�a . (13.47)
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La somma di tutti i termini e dei loro coniugati Hermitiani ci porta dunque
alla Lagrangiana e↵ettiva seguente:

L =
p
�g
h i

2

�

[ �µ@µ � @µ �
µ 
�

�m  

+
i

8

p
�g !abc  

⇣

�a�[b�c] + �[b�c]�a
⌘

 
i

.

(13.48)

Conviene ricordare, a questo punto, l’Eq. (13.33). Se ne prendiamo la par-
te antisimmetrica in b e c otteniamo l’Eq. (13.34). Se prima permutiamo
circolarmente gli indici, {abc} ! {bca}, e poi prendiamo di nuovo la parte
antisimmetrica in b e c, otteniamo invece

�[b�c]�a = �[a�b�c] � 2⌘a[b�c]. (13.49)

Sommando le equazioni (13.34), (13.49), e sostituendo nel’Eq. (13.48), arri-
viamo infine alla densità di Lagrangiana:

L=
i

2

p
�g
�

 �µ@µ �@µ �µ 
�

�
p
�g m  +

i

4

p
�g !

[abc]  �
[a�b�c] . (13.50)

È immediato – e forse sorprendente – notare che in questa Lagrangiana la
connessione di Lorentz si accoppia direttamente solo alla corrente assiale
del campo di Dirac. Rispetto alla Lagrangiana non simmetrizzata sembra
dunque essere scomparso l’accoppiamento alla corrente vettoriale, che invece
contribuiva all’equazione di Dirac ottenuta nella sezione precedente.

In realtà tale accoppiamento è sempre presente, perché la Lagrangiana
simmetrizzata (13.50) contiene un nuovo termine – il secondo, quello con la
derivata del campo  – che accoppia  a

p�g e �µ:

� i

2

p
�g @µ �

µ . (13.51)

Questo termine dà un contributo addizionale all’equazione del moto che,
come vedremo, riproduce esattamente la traccia della connessione e il suo
accoppiamento vettoriale.

Consideriamo infatti le equazioni di Eulero-Lagrange che si ottengono va-
riando la densità di azione (13.50) rispetto a  . La derivata rispetto al campo
è:

@L
@ 

=
p
�g

✓

i

2
�µ@µ �m +

i

4
!
[abc]�

[a�b�c] 

◆

. (13.52)

Il momento coniugato è

@L
@
�

@µ 
� = � i

2

p
�g �µ , (13.53)
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e la sua derivata fornisce:

@µ
@L

@
�

@µ 
� = � i

2

p
�g



�µ@µ + (@µ�
µ) +

1p�g

�

@µ
p
�g
�

�µ 

�

= � i

2

p
�g



�µ@µ +
1p�g

�

@µ
p
�g�µ

�

 

�

(13.54)

= � i

2

p
�g



�µ@µ +
1p�g

�

@µ
p
�g V µ

a

�

�a 

�

.

L’ultimo termine dell’equazione precedente si può esprimere in funzione della
traccia della connessione di Lorentz,

!a
a
b =

1p�g

�

@µ
p
�g V µ

b

�

(13.55)

(si veda l’Esercizio 13.2). Perciò:

@µ
@L

@
�

@µ 
� = � i

2

p
�g
�

�µ@µ + !a
a
b�

b 
�

. (13.56)

Eguagliando le equazioni (13.52) e (13.56) si arriva infine all’equazione di
Dirac

i�aV µ
a @µ �m +

i

4
!
[abc]�

[a�b�c] +
i

2
!a

a
b�

b = 0. (13.57)

Se introduciamo la matrice �5 mediante l’Eq. (13.36), e usiamo per la connes-
sione l’espressione esplicita (13.38), ritroviamo allora esattamente l’equazione
di Dirac (13.39) già introdotta nella sezione precedente.

Esercizi Capitolo 13

13.1. Equazione di Dirac in una varietà conformemente piatta

Scrivere l’equazione di Dirac per una particella massiva immersa una geome-
tria conformemente piatta, descritta dalla metrica

gµ⌫(x) = f2(x)⌘µ⌫ . (13.58)

13.2. Traccia della connessione di Lorentz

Ricavare l’Eq. (13.55) per la traccia della connessione di Lorentz.

13.3. Tensore energia-impulso per un campo di Dirac

Calcolare il tensore dinamico energia-impulso (7.27) per un campo spinoriale
libero e massivo che soddisfa l’equazione di Dirac in uno spazio-tempo curvo.
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Soluzioni

13.1. Soluzione

Le tetradi associate alla metrica (13.58), definite in modo da soddisfare le
equazioni (12.5), sono date da

V a
µ = f�aµ, V µ

a = f�1�µa . (13.59)

Il calcolo dei coe�cienti di rotazione di Ricci, Eq. (12.43), fornisce

Cab
c =

1

2f2

(�cb�
µ
a � �ca�

µ
b ) @µf. (13.60)

La traccia della connessione di Lorentz, in accordo all’Eq. (13.38), è dunque:

!b
b
a = 2Cab

b =
3

f2

�µa@µf. (13.61)

Ci serve ora la parte antisimmetrica della connessione. Dall’Eq. (13.60)
abbiamo:

Cabc =
1

2f2

(⌘cb�
µ
a � ⌘ca�

µ
b ) @µf. (13.62)

Applicando l’Eq. (13.38), e prendendo la parte completamente antisimmetrica
dei coe�cienti di Ricci, troviamo un risultato identicamente nullo,

!
[abc] = C

[abc] = 0. (13.63)

L’equazione di Dirac (13.39) (o (13.57)) si riduce quindi a:

✓

if�1�a�µa@µ �m+
3i

2f2

�a�µa@µf

◆

 = 0. (13.64)

Moltiplicando per f abbiamo infine

✓

i�a�µa@µ �mf + i
3

2
�a�µa@µ ln f

◆

 = 0. (13.65)

L’accoppiamento alla geometria simula quindi una massa e↵ettiva em =
mf che dipende dalla posizione, e un “potenziale e↵ettivo” rappresentato
dall’ultimo termine dell’equazione precedente.

13.2. Soluzione

Partiamo dalla condizione di metricità per le tetradi, Eq. (12.39), che
riscriviamo come:

!µ
a
⌫ = �µ⌫

a � @µV
a
⌫ . (13.66)
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Prendiamone la traccia moltiplicando per V µ
a ,

!a
a
⌫ = �µ⌫

µ � V µ
a @µV

a
⌫

=
1p�g

@⌫
p
�g + V a

⌫ @µV
µ
a .

(13.67)

Nel secondo passaggio abbiamo sfruttato il risultato (3.97) per la traccia della
connessione di Christo↵el, e il fatto che

@µ (V
a
⌫ V

µ
a ) = @µ (�

µ
⌫ ) = 0. (13.68)

Moltiplicando l’Eq. (13.67) per V ⌫
b arriviamo infine a

!a
a
b =

1p�g
@b
p
�g + @µV

µ
b =

1p�g
@µ
�p

�gV µ
b

�

, (13.69)

che coincide con l’Eq. (13.55) cercata.

13.3. Soluzione

Consideriamo l’azione covariante (13.41), simmetrizzata in  e  . Sfrut-
tando il calcolo della Lagrangiana (13.48) possiamo scrivere l’azione, in forma
esplicita ma compatta, come segue:

S =

Z

d4x
p
�g



i

2
gµ⌫

�

 �µD⌫ �D⌫ �µ 
�

�m  

�

, (13.70)

dove abbiamo definito

D⌫ = @⌫ +
1

4
!⌫ab�

[a�b] ,

D⌫ = @⌫ � 1

4
!⌫ab �

[a�b].
(13.71)

Variamo l’azione rispetto alla metrica, imponendo che le equazioni del moto
del campo di Dirac siano soddisfatte (si veda la Sez. 7.2). Applicando la
definizione (7.27) abbiamo allora

�S =
1

2

Z

d4x
p
�g Tµ⌫�g

µ⌫ , (13.72)

dove
Tµ⌫ = i �

(µD⌫) � iD
(⌫ �µ) (13.73)

è il tensore energia-impulso cercato. Si noti che la variazione di
p�g non

contribuisce a Tµ⌫ per e↵etto delle equazioni del moto, che per un campo di
Dirac libero forniscono le condizioni:

i�µDµ = m , iDµ �
µ = �m . (13.74)
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Supersimmetria e supergravità

In questo capitolo studieremo alcuni semplici sistemi fisici contenenti gradi
di libertà sia bosonici, B(x), che fermionici, F (x), prendendo in considera-
zione la possibilità che queste diverse componenti siano collegate tra loro da
trasformazioni infinitesime.

Nel caso in cui tali trasformazioni lascino invariate le equazioni del moto
del sistema diremo che esse rappresentano una operazione di supersimmetria
(SUSY) per il sistema dato. Se le trasformazioni dipendono da parametri
costanti la supersimmetria sarà di tipo globale, mentre sarà di tipo locale se
i parametri sono funzioni delle coordinate.

La supersimmetria locale, come vedremo in seguito, può essere realizzata
solo se il modello considerato è anche general-covariante, ossia se il modello
viene formulato in uno spazio-tempo curvo, e dunque include anche l’intera-
zione gravitazionale. Modelli gravitazionali che contengono sorgenti bosoni-
che e fermioniche e che sono localmente supersimmetrici vengono chiamati
modelli di supergravità (SUGRA).

In questo capitolo discuteremo brevemente alcuni esempi di supersimme-
tria globale nello spazio-tempo di Minkowski, per presentare poi il modello
di supergravità più semplice possibile, contenente due soli campi fondamen-
tali (il gravitone e il gravitino). Cominciamo subito illustrando qui di seguito
le proprietà di base che devono essere soddisfatte dai parametri di una ge-
nerica trasformazione di supersimmetria (per una introduzione completa e
dettagliata alla supersimmetria e alla supergravità si può far riferimento, ad
esempio, al testo [23] della Bibliografia finale).

Supponiamo che la trasformazione (globale, infinitesima) che collega il
campo bosonico B(x) a quello fermionico F (x) sia del tipo

B ! B0 = B + �B,�B = ✏F, (14.1)

dove ✏ rappresenta simbolicamente un generico insieme di parametri costanti
e infinitesimi. Poiché la variabile B è associata a un campo di spin intero, ed
F a un campo di spin semintero, possiamo subito osservare che il parametro
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UNITEXT for Physics, DOI 10.1007/978-88-470-5690-9_14
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✏ deve corrispondere a un oggetto di tipo spinoriale per ripristinare le corret-
te proprietà statistiche della precedente equazione di trasformazione. Nella
versione quantistica del modello, le componenti di ✏ (e quelle di ✏ = ✏†�0)
devono quindi commutare con B e anticommutare con F (ed inoltre devono
anticommutare tra loro).

Inoltre, se il campo B = B⇤ è reale, è spesso conveniente formulare il
modello supersimmetrico prendendo per F un campo fermionico di Majorana
(perché in quel caso è sempre possibile scegliere una rappresentazione nella
quale le componenti di F sono tutte reali). In tal caso anche il parametro ✏
deve essere uno spinore di Majorana, ossia uno spinore le cui componenti ✏A

soddisfano la condizione

✏ = ✏c, ✏c = C ✏T , (14.2)

dove C è l’operatore coniugazione di carica, definito da:

CT = �C, C�1�µC = � (�µ)T (14.3)

(l’indice superiore T denota il simbolo di trasposizione). Per gli spinori di
Majorana possiamo assumere che le proprietà di anticommutazione valga-
no anche a livello classico, e quindi che le componenti ✏A del parametro
supersimmetrico soddisfino un’algebra (detta di Grassmann) del tipo

{✏A, ✏B} = 0 = {✏A, ✏B}. (14.4)

Infine, consideriamo le dimensioni fisiche del parametro ✏. In uno spazio-
tempo a quattro dimensioni, e in unità naturali in cui h̄ = c = 1, i campi bo-
sonici e fermionici hanno, rispettivamente, dimensioni [B] = M , [F ] = M3/2.
Otteniamo allora dall’Eq. (14.1) che ✏ deve avere dimensioni [✏] = M�1/2.
Ne consegue che la trasformazione supersimmetrica del campo fermionico,
complementare alla (14.1), deve essere del tipo

F ! F 0 = F + �F,�F = ✏@B. (14.5)

Questo significa che dobbiamo aspettarci, per ragioni dimensionali, la pre-
senza di un operatore gradiente nella legge di trasformazione del campo fer-
mionico. È proprio tale presenza, come vedremo, che innesca il collegamento
tra trasformazioni di supersimmetria e traslazioni spazio-temporali, e quindi
tra supersimmetria locale e supergravità.

Notazioni

In questo capitolo gli indici spinoriali espliciti verranno indicati con le lettere
Latine maiuscole. Nei modelli di supersimmetria globale useremo inoltre le
lettere Greche per gli indici vettoriali di Lorentz, essendo sempre riferiti allo
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spazio-tempo di Minkowski in assenza di gravità, senza possibilità di confu-
sione con lo spazio piatto tangente. Infine, in tutto il capitolo adotteremo le
unità naturali con h̄ = c = 1.

14.1 Supersimmetria globale nello spazio-tempo piatto

Per ottenere un semplice esempio di supersimmetria globale possiamo con-
siderare un sistema di due particelle, una di spin 0 e l’altra di spin 1/2,
rappresentate, rispettivamente, da un campo scalare � e da uno spinore di
Majorana  nello spazio-tempo di Minkowski.

Consideriamo la trasformazione

�! �+ ��, !  + � , (14.6)

dove
�� = ✏ , � = � i

2
�µ✏@µ�, (14.7)

e dove
✏ = ✏c = C ✏T = cost,  =  c = C  

T
. (14.8)

Verifichiamo che tale trasformazione lascia invariata la Lagrangiana del
sistema scalare-spinoriale

L =
1

2
@µ�@

µ�+ i �µ@µ , (14.9)

modulo una divergenza totale che non contribuisce alle equazioni del moto.
Calcoliamo innanzitutto la trasformazione del coniugato di Dirac  . Dal-

l’Eq. (14.7) per � otteniamo:

� =
i

2
(�µ✏@µ�)

† �0 =
i

2
✏†�µ†�0@µ� =

i

2
✏�µ@µ� (14.10)

(abbiamo usato l’Eq. (13.46)). La variazione totale della Lagrangiana (14.9)
rispetto alle trasformazioni (14.7) è dunque data da:

�L = @µ�✏@µ +
1

2
 �µ�⌫✏@µ@⌫�� 1

2
✏�µ�⌫@⌫ @µ�. (14.11)

Usiamo ora le proprietà delle matrici di Dirac nello spazio-tempo di Minko-
wski (Eq. (13.3)) per ottenere la relazione

�µ�⌫@µ@⌫ = �(µ�⌫)@µ@⌫ = ⌘µ⌫@µ@⌫ ⌘ 2, (14.12)

e mettiamo in evidenza una divergenza totale nel primo e nel terzo termine
di �L. L’Eq. (14.11) si può allora riscrivere come

�L = @µ (✏ @
µ�)� ✏ 2�+

1

2
 ✏2�� 1

2
@⌫ (✏�

µ�⌫ @µ�) +
1

2
✏ 2�. (14.13)
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Tutti i termini contenenti 2� si cancellano a vicenda, perché ✏ =  ✏ (si
veda l’Esercizio 14.1). La variazione della Lagrangiana si riduce dunque a un
termine di divergenza totale,

�L = @µK
µ, (14.14)

dove

Kµ = ✏ @µ�� 1

2
✏�⌫�µ @⌫�

= ✏ @µ�� 1

2
✏
�

� �µ�⌫ + 2⌘µ⌫
�

 @⌫� (14.15)

=
1

2
✏�µ�⌫ @⌫�.

Poiché �L = @µKµ, e poiché le equazioni del moto non cambiano sotto la
trasformazione L ! L + @µKµ (si veda la Sez. 1.1), si trova dunque che la
trasformazione (14.7) rappresenta una operazione di (super)simmetria per il
sistema considerato. Va sottolineato (in vista della discussione seguente) che
tale risultato è stato ottenuto senza usare le equazioni del moto dei campi �
e  .

Calcoliamo ora il commutatore di due trasformazioni infinitesime, con
parametri ✏

1

e ✏
2

, applicate al campo scalare. Abbiamo:

�
1

� = ✏
1

 ,

�
2

�
1

� = ✏
1

�
2

 = � i

2
✏
1

�µ✏
2

@µ�,
(14.16)

e quindi

(�
2

�
1

� �
1

�
2

)� = � i

2
(✏

1

�µ✏
2

� ✏
2

�µ✏
1

) @µ�

= �i (✏
1

�µ✏
2

) @µ�.
(14.17)

Nel secondo passaggio abbiamo usato la relazione ✏
2

= �✏T
2

C�1 (si veda
l’Esercizio 14.1), abbiamo anche applicato la definizione (14.3) dell’operatore
C, e abbiamo infine sfruttato le proprietà di anticommutazione degli spinori
di Majorana, che implicano

✏
2

�µ✏
1

= �✏T
2

C�1�µC✏T
1

= ✏T
2

�µT ✏T
1

= � (✏
1

�µ✏
2

)T = �✏
1

�µ✏
2

. (14.18)

Il risultato (14.17) mostra chiaramente che il commutatore di due trasforma-
zioni di supersimmetria è proporzionale a una traslazione infinitesima gene-
rata dall’operatore gradiente, con parametro di traslazione ⇠ proporzionale
a ✏

1

�µ✏
2

. Se ✏ = ✏(x), in particolare, si ottiene una traslazione locale con
parametro ⇠ = ⇠(x), che è equivalente ad una generica trasformazione di
coordinate infinitesima, xµ ! xµ + ⇠µ(x). Ne consegue che l’invarianza per
trasformazioni di supersimmetria locale può essere mantenuta solo se il mo-
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dello è anche general-covariante, e quindi se viene formulato nel contesto
di uno spazio-tempo curvo (cosa che include automaticamente l’interazione
gravitazionale). Si arriva in questo modo a modelli gravitazionali che sono
localmente supersimmetrici, e che vengono chiamati modelli di supergravità.

Il confronto tra le trasformazioni di supersimmetria e le traslazioni sugge-
risce inoltre di associare ad ogni parametro spinoriale ✏A, tipico della trasfor-
mazione infinitesima (14.7), un generatore QA, anch’esso di tipo spinoriale e
di Majorana, tale che

�� = ✏ ⌘
�

✏AQA

�

� (14.19)

(ricordiamo che gli indici Latini maiuscoli si riferiscono alle componenti
spinoriali). In questo caso il commutatore di due trasformazioni diventa

[�
2

, �
1

]� =
�

✏A
2

QA✏
B
1

QB � ✏B
1

QB✏
A
2

QA

�

�

=
�

✏A
2

QAQB✏
B
1

+QB✏
A
2

✏B
1

QA

�

� (14.20)

= ✏A
2

{QA, QB}✏B1 �.

Nel secondo passaggio abbiamo usato le relazioni ✏
1

Q = Q✏
1

e ✏B
1

✏A
2

= �✏A
2

✏B
1

,
e nel terzo passaggio le relazioni QB✏

A
2

= �✏A
2

QB e ✏B
1

QA = �QA✏B
1

, che
seguono dalle proprietà di anticommutazione degli spinori di Majorana. Il
confronto con l’Eq. (14.17), e l’uso dell’Eq. (14.18), fornisce immediatamente
la relazione di anticommutazione per i generatori Q della supersimmetria
infinitesima (14.19):

{QA, QB} = i�µAB@µ = (�µPµ)AB . (14.21)

Abbiamo scritto esplicitamente gli indici spinoriali A,B delle matrici di Dirac,
e abbiamo indicato con Pµ = i@µ il generatore delle traslazioni (l’operatore
impulso nella sua rappresentazione di↵erenziale).

Poiché le traslazioni sono elementi del gruppo di Poincarè (insieme alle tra-
sformazioni di Lorentz, generate da Jµ⌫), la relazione precedente suggerisce
una possibile estensione supersimmetrica di tale gruppo, ottenuta aggiungen-
do ai generatori Pµ, Jµ⌫ i generatori spinoriali QA e dotata su di un’algebra
di Lie generalizzata, che si chiude sui generatori includendo sia relazioni di
commutazione che di anticommutazione.

Tale generalizzazione e↵ettivamente esiste, è consistente, e corrisponde
al cosiddetto gruppo di “super-Poincarè”, basato sull’insieme di generatori
{Pµ, Jµ⌫ , QA} che soddisfano un’algebra di Lie detta “gradata” (o super-
algebra). Lo studio dei supergruppi e delle supervarietà ad essi associate
(parametrizzate da un egual numero di coordinate bosoniche e fermioniche)
costituisce un potente metodo di indagine nell’ambito dei modelli di super-
simmetria e supergravità (si veda ad esempio il testo [24] della Bibliografia
finale).
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14.1.1 Esempio: il modello di Wess-Zumino

L’esempio illustrato in precedenza non costituisce un modello supersimmetri-
co algebricamente consistente, perché l’algebra dei generatori non si chiude.
Si trova in particolare che la relazione fornita dall’Eq. (14.17), che collega il
commutatore di due trasformazioni SUSY alle traslazioni infinitesime, non
viene riprodotta se il commutatore viene applicato al campo fermionico  
(anziché a �, come nel caso nella sezione precedente).

Ciò è dovuto al fatto che le componenti bosoniche e fermioniche del mo-
dello (14.9) hanno un numero di gradi di libertà di↵erente. Infatti, un campo
scalare reale ha una sola componente, mentre uno spinore di Majorana ha
quattro componenti reali. Lavorando “on-shell”, ossia imponendo che siano
soddisfatte le equazioni del moto, 2� = 0 = i�µ@µ , le componenti indipen-
denti dello spinore si riducono a due, ma anche in questo caso il numero di
gradi di libertà non coincide.

Questa di�coltà può essere facilmente risolta aumentando il numero delle
componenti bosoniche, come avviene nel cosiddetto modello di Wess-Zumino1

che contiene tre campi reali: uno scalare A, uno pseudo-scalare B, e uno
spinore di Majorana  =  c, descritti dalla Lagrangiana:

L =
1

2
@µA@

µA+
1

2
@µB@

µB + i �µ@µ (14.22)

(abbiamo omesso, per semplicità, termini di interazioni tra i campi). Impo-
nendo le equazioni del moto

2A = 0, 2B = 0, i �µ@µ = 0, (14.23)

rimangono due gradi di libertà bosonici e due fermionici, perché l’equazione
di Dirac impone due condizioni (di Weyl) sulle 4 componenti dello spinore,
dimezzando cos̀ı il numero delle componenti indipendenti. La versione “on-
shell” del modello è quindi appropriata a sostenere una eventuale struttura
supersimmetrica che risulti algebricamente consistente.

Infatti, il modello di Wess-Zumino è globalmente supersimmetrico rispetto
alle seguenti trasformazioni,

�A = ✏ ,

�B = i✏�5 , (14.24)

� = � i

2
�µ@µ

�

A+ i�5B
�

✏,

dove ✏ = ✏c è un parametro spinoriale costante (di Majorana). Questa tra-
sformazione induce una variazione della Lagrangiana che si può mettere nella

1 J. Wess and B. Zumino, Nucl. Phys. B 70, 39 (1974).
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forma di quadri-divergenza, �L = @µKµ, anche senza usare le equazioni del
moto, esattamente come nel caso dell’esempio precedente.

A di↵erenza del caso precedente, però, il commutatore di due trasforma-
zioni di supersimmetria produce lo stesso risultato qualunque sia il campo
(A,B, ) a cui viene applicato, purché vengano usate le equazioni del moto
del campo spinoriale. Si può verificare, in particolare, che vale la relazione

[�
2

, �
1

]

0

@

A
B
 

1

A = �i✏
1

�µ✏
2

@µ

0

@

A
B
 

1

A , (14.25)

in accordo a quella espressa dall’Eq. (14.17) (si veda l’Esercizio 14.2). Se non
si usano le equazioni del moto l’algebra invece non si chiude, perché il modello
contiene solo due gradi di libertà bosonici, a confronto dei quattro gradi di
libertà fermionici.

È però possibile rendere il modello algebricamente consistente anche “o↵-
shell” – ossia, senza imporre le equazioni del moto – aggiungendo alla La-
grangiana (14.22) due ulteriori campi bosonici, di tipo “ausiliario” (ossia
senza termine cinetico): uno scalare F e uno pseudo-scalare G. La nuova
Lagrangiana,

L =
1

2

�

@µA@
µA+ @µB@

µB � ��2F 2 � ��2G2

�

+ i �µ@µ , (14.26)

(dove � è una costante con dimnsioni di lunghezza) è invariante, modulo
una divergenza totale, rispetto alle seguenti trasformazioni di supersimmetria
globale (in unità � = 1):

�A = ✏ ,

�B = i✏�5 ,

� = � i

2
�µ@µ

�

A+ i�5B
�

✏+
1

2

�

F � i�5G
�

✏, (14.27)

�F = �i✏�µ@µ ,

�G = ✏�µ�5@µ .

Questo modello ha lo stesso numero di gradi di libertà bosonici e fermionici
anche o↵-shell. In questo caso si trova che il commutatore di due trasformazio-
ni fornisce un risultato consistente, proporzionale a una traslazione e↵ettiva,
qualunque sia il campo a cui viene applicato e senza usare le equazioni del
moto.

14.2 Il campo di Rarita-Schwinger

Un altro semplice (ma importante) esempio di supersimmetria globale si può
ottenere considerando un sistema di particelle di spin 2 e spin 3/2 nello spazio-
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tempo piatto di Minkowski. Questo esempio è particolarmente rilevante per
una successiva estensione al caso di trasformazioni di supersimmetria locale,
e per la costruzione di un semplice modello di supergravità.

Per illustrare questa possibilità dobbiamo innanzitutto ricordare che una
particella di spin 3/2 (detta anche “gravitino”) è rappresentata dal campo
vettoriale-spinoriale di Rarita-Schwinger,  A

µ . Questo campo fornisce contem-
poraneamente una rappresentazione vettoriale del gruppo di Lorentz nell’in-
dice µ e una spinoriale nell’indice A: possiede quindi, in generale, 4⇥ 4 = 16
componenti complesse, che diventano 16 parametri reali se lo spinore è di
Majorana.

L’azione per il campo di Rarita-Schwinger nello spazio-tempo di Minkow-
ski si può scrivere nella forma

S =

Z

d4x
i

2
✏µ⌫↵� µ�5�⌫@↵ � , (14.28)

dove la somma sugli indici spinoriali è sottintesa. Tale azione è invariante per
la trasformazione “di gauge”

 µ !  µ + @µ�, (14.29)

dove � è un campo spinoriale. La variazione rispetto a  µ fornisce l’equazione
del moto

Rµ ⌘ i✏µ⌫↵��
5

�⌫@↵ � = 0. (14.30)

Usando le proprietà delle matrici di Dirac e l’invarianza rispetto alla trasfor-
mazione di gauge (14.29) tale equazione si può ridurre a un insieme di con-
dizioni più semplici, che risultano anche più convenienti per l’interpretazione
fisica e per le successive applicazioni supersimmetriche.

A questo scopo moltiplichiamo scalarmente Rµ per �µ, e sfruttiamo i
risultati delle equazioni (13.36), (13.34). Otteniamo:

1

2
�µR

µ = �1

2
�µ�

[µ�↵��]@↵ �

= �1

2
�µ
�

�µ�↵�� � 2⌘µ↵��
�

@
[↵ �]

= ��[↵��]@↵ � (14.31)

= �1

2
�↵��@↵ � +

1

2

�

2⌘�↵ � �↵��
�

@↵ �

= ��↵@↵
�

�� �
�

+ @↵ ↵.

Consideriamo inoltre l’espressione

A⌫ =
1

2
�⌫ (�µR

µ)�R⌫ , (14.32)
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e osserviamo che (usando ancora le proprietà delle metrici di Dirac):

R⌫ = ��⌫�[↵��]@↵ � + 2⌘⌫↵��@
[↵ �]

= ��⌫�a@↵
�

�� �
�

+ �⌫@↵ ↵ + @⌫
�

�� �
�

� ��@� 
⌫ .

(14.33)

Sostituendo questa forma di R⌫ nell’ultimo termine dell’Eq. (14.32) troviamo
che i primi due termini della precedente equazione si cancellano esattamente
con il risultato (14.31), per cui rimane:

A⌫ = �� (@� 
⌫ � @⌫ �) . (14.34)

L’equazione di Rarita-Schwinger Rµ = 0 implica l’annullamento delle due
espressioni (14.31) e (14.34), e fornisce quindi le due condizioni di↵erenziali

@↵ ↵ � �a@↵
�

�� �
�

= 0,

�µ (@µ ⌫ � @⌫ µ) = 0.
(14.35)

Sfruttando l’invarianza per la trasformazione (14.29) possiamo infine imporre
la condizione di gauge

�µ µ = 0. (14.36)

Sostituendo questa condizione nelle due equazioni (14.35) troviamo che l’e-
quazione del gravitino si riduce, in questo gauge, all’equazione di Dirac per
ciascuna delle componenti vettoriali del campo,

i�µ@µ ⌫ = 0, (14.37)

più la condizione di trasversalità nell’indice (di Lorentz) vettoriale,

@µ µ = 0. (14.38)

Un conteggio dei gradi di libertà residui ci dice ora che le componenti vetto-
riali (bosoniche) del gravitino si sono ridotte a 2, come è appropriato per un
campo di gauge vettoriale, trasverso e a massa nulla (si consideri, ad esem-
pio, il fotone). Inoltre, supponendo che si tratti di uno spinore di Majorana,
le componenti spinoriali indipendenti si sono ridotte a 2 parametri reali per
e↵etto dell’equazione di Dirac (14.37), e risultano ulteriormente dimezzate
per la condizione di gauge (14.36).

L’insieme delle equazioni (14.36)–(14.38) descrive un campo fermionico
di Majorana che ha in totale 2 ⇥ 1 = 2 gradi di libertà dinamici, e che su
presta quindi a formare un sistema supersimmetrico consistente (on-shell)
in combinazione con un campo bosonico che possieda anch’esso 2 gradi di
libertà fisici nello spazio-tempo di Minkowski. Un possibile partner bosonico
di questo tipo è rappresentato dal gravitone, come vedremo nella sezione
seguente.



276 14 Supersimmetria e supergravità

14.2.1 Supersimmetria globale nel sistema

gravitone-gravitino

Nel Capitolo 9 abbiamo visto che le fluttuazioni della metrica di Minkowski
possono essere descritte, nell’approssimazione lineare e nel cosiddetto gauge
TT, da un campo tensoriale simmetrico hµ⌫ che soddisfa alle condizioni di
trasversalità e traccia nulla,

@⌫hµ⌫ = 0, ⌘µ⌫hµ⌫ = 0. (14.39)

La sua azione libera è data dall’Eq. (9.48),

S =
1

4

Z

d4x @↵h
µ⌫@↵hµ⌫ , (14.40)

che abbiamo qui riscritto ponendo (per semplicità) 2� = 16⇡G/c4 = 1. Use-
remo le conveniente unità 2� = 1 in tutta questa sezione (e anche in seguito,
quando specificato).

Come abbiamo già visto nella Sez. 9.1.1, il campo tensoriale hµ⌫ descrive la
dinamica di una particella di spin 2 e massa nulla (il gravitone) mediante due
sole componenti indipendenti, che nel vuoto rappresentano i due stati fisici di
polarizzazione. Il sistema gravitone-gravitino, rappresentato dai campi hµ⌫ e
 µ =  c

µ disaccoppiati e immersi nello spazio-tempo di Minkowski, possiede
dunque (on-shell) lo stesso numero di gradi di libertà bosonici e fermionici, e
si candida, almeno in principio, a fornire un altro possibile esempio di sistema
globalmente supersimmetrico.

Che il sistema sia e↵ettivamente supersimmetrico si può verificare con-
siderando la trasformazione infinitesima che mescola i due campi nel modo
seguente (in unità 2� = 1):

�hµ⌫ = ✏ (�µ ⌫ + �⌫ µ) ,

� µ = �[↵��]✏ @↵hµ� ,
(14.41)

dove ✏ = ✏c è un parametro spinoriale costante, di Majorana. La densità di
Lagrangiana per il sistema gravitone-gravitino si ottiene dalle azioni (14.28),
(14.40),

L = L
2

+ L
3/2 =

1

4
@↵h

µ⌫@↵hµ⌫ +
i

2
✏µ⌫↵� µ�5�⌫@↵ � , (14.42)

e la sua variazione infinitesima �L indotta dalla trasformazione (14.41) si
può mettere nella forma di una quadri-divergenza, �L = @µKµ, senza usare
le equazioni del moto (il calcolo esplicito, che procede lungo le stesse linee
dell’esempio della Sez. 1.4.1, è riportato nell’Esercizio 14.3). Le equazioni del
moto per hµ⌫ e  µ sono dunque invarianti, e il sistema risulta globalmente
supersimmetrico.
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14.3 Supergravità N = 1 in D = 4 dimensioni

La supersimmetria globale presente in un sistema fisico può essere estesa al
caso locale purché, come già sottolineato nella Sez. 1.4.1, il modello venga
espresso in un contesto general-covariante, tenendo anche conto dell’intera-
zione gravitazionale. Ciò suggerisce che il precedente sistema (14.42), che già
include l’interazione gravitazionale a livello linearizzato, potrebbe rappresen-
tare un punto di partenza ideale per la formulazione di un modello localmente
supersimmetrico e per lo studio delle sue proprietà geometriche.

Riprendiamo dunque il sistema di campi tensoriale-spinoriale di Einstein-
Rarita-Schwinger (spin 2 e spin 3/2), e generalizziamolo sia accoppiando il
campo  µ alla geometria di una varietà spazio-temporale curva, sia usando
per la Lagrangiana del campo tensoriale la forma esatta (non-lineare) di
Einstein basata sulla curvatura scalare. Consideriamo perciò l’azione

S =

Z

d4x

✓

� 1

2�

p
�gR+

i

2
✏µ⌫↵� µ�5�⌫r↵ �

◆

, (14.43)

e chiediamoci se può essere adatta a rappresentare un semplice modello di
supersimmetria locale (ovvero di supergravità). La risposta non è necessa-
riamente a↵ermativa, a priori, poiché in caso contrario qualunque modello
contenente lo stesso numero di componenti bosoniche e fermioniche in un
contesto general-covariante sarebbe automaticamente supersimmetrico (cosa
che invece non avviene).

Cominciamo con l’osservare che l’azione del gravitino è stata ottenuta
dall’azione (14.28) mediante il principio di minimo accoppiamento, usando
le tetradi per proiettare sullo spazio-tempo curvo le matrici di Dirac dello
spazio tangente di Minkowski, come si conviene ad un campo spinoriale (si
veda la Sez. 13.2). Le prescrizioni usate, in particolare, sono le seguenti:

d4x ! d4x
p
�g,� a ! �µ = V a

µ �a, @µ ! rµ. (14.44)

Si noti l’assenza di
p�g nell’azione del gravitino è dovuta alla sostituzione –

necessaria in uno spazio-tempo curvo – della densità antisimmetrica ✏ con il
tensore antisimmetrico ⌘ (si veda la Sez. 3.2),

✏µ⌫↵� ! ⌘µ⌫↵� =
✏µ⌫↵�p�g

, (14.45)

che porta alla notazione abbreviata

d4x
p
�g ⌘µ⌫↵� ⌘ d4x ✏µ⌫↵� . (14.46)

L’azione (14.43) non risulta completamente definita, però, finché non viene
anche specificata la derivata covariante r↵ � , che in principio dipende dal
modello geometrico scelto per la geometria della varietà spazio-temporale.
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Il gravitino  A
µ , infatti, ha un indice µ che si trasforma in modo vettoriale

rispetto alle trasformazioni generali di coordinate nello spazio-tempo curvo,
e un indice A che si trasforma in modo spinoriale rispetto alle trasformazio-
ni locali di Lorentz nello spazio piatto tangente (si veda il Capitolo 12). La
sua derivata covariante totale deve essere dunque un operatore che risulta
sia general-covariante nell’indice vettoriale, sia localmente Lorentz invariante
nell’indice spinoriale. Ricordando i risultati dei Capitoli 12 e 13 (in particola-
re, l’Eq. (13.23)) possiamo perciò scrivere la derivata covariante del gravitino
come segue:

rµ ⌫ = @µ ⌫ +
1

4
!µ

ab�
[a�b] ⌫ � �µ⌫

↵ ↵

⌘ Dµ ⌫ � �µ⌫
↵ ↵.

(14.47)

Nel secondo passaggio abbiamo esplicitamente separato la derivata covariante
di Lorentz Dµ ⌫ , che agisce sugli indici spinoriali, dal termine di connessione
� che agisce sull’indice curvo vettoriale.

Si noti che siamo ritornati alle convenzioni usuali dei due capitoli pre-
cedenti: gli indici spinoriali sono sottintesi, le lettere Latine a, b, c, . . . sono
indici di Lorentz nel locale spazio piatto tangente M

4

, e le lettere Greche
µ, ⌫,↵, . . . sono indici tensoriali nello spazio-tempo curvo R

4

. Infine, ! è la
connessione di Lorentz (si veda la Sez. 12.3) e � è la connessione sullo spazio-
tempo R

4

(si veda la Sez. 3.5). Lasciamo per il momento indefinita la forma
particolare delle connessioni, perché ci sono diverse possibilità da prendere
in considerazione.

(I) Una prima possibilità, che sembrerebbe la più naturale nel contesto
della teoria gravitazionale discussa fino a questo punto, è quella di adottare
per la varietà spazio-temporale la geometria di Riemann. In questo caso la
torsione è nulla, Qµ⌫

↵ = �
[µ⌫]

↵ = 0: la connessione ! = !(V ) è dunque de-
terminata completamete dalle tetradi e coincide con quella di Levi-Civita (Eq.
(12.47)), mentre la connessione � coincide con quella di Christo↵el �g (Eq.
(3.90)) e scompare dall’azione del gravitino perché, in assenza di torsione,
r

[↵ �] = D
[↵ �].

Arriviamo cos̀ı al modello descritto dalla densità di Lagrangiana

L = � 1

2�

p
�gR(g,� g) +

i

2
✏µ⌫↵� µ�5�⌫D↵(V ) � , (14.48)

dove D↵(V ) ⌘ D↵(!(V )). Tale modello, però, non è localmente supersimme-
trico. Per renderlo tale bisogna aggiungere all’azione dei termini di interazio-
ne quadratici nella corrente spinoriale del gravitino, Jµ⌫ ↵ =  µ�

↵ ⌫ . Poiché
questa corrente è antisimmetrica in µ e ⌫ essa può far da sorgente (come
vedremo nella prossima sezione) alla parte antisimmetrica della connessione
Qµ⌫

↵, e questo ci porta a considerare un’altra possibilità.
(II) Una seconda possibilità è quella di adottare per la varietà spazio-

temporale la cosiddetta geometria di Riemann-Cartan, caratterizzata dal-
la presenza di torsione, Qµ⌫

↵ 6= 0. In questo caso entrambe le connessioni
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contengono i contributi torsionici,

! = !(V,Q) = !(V ) +K(Q),

� = � (g,Q) = �g �K(Q),
(14.49)

come prescritto, rispettivamente, dalle equazioni (12.45) e (3.86), e otteniamo
il modello descritto dalla Lagrangiana

L=� 1

2�

p
�gR(g,� g, Q)+

i

2
✏µ⌫↵� µ�5�⌫ [D↵(V,Q) � �Q↵�

⇢ ⇢] , (14.50)

dove D↵(V,Q) ⌘ D↵(!(V,Q)).
In questo modello la metrica (o le tetradi) e la connessione diventano

variabili indipendenti, e c’è quindi una equazione di campo “in più” rispetto
alla relatività generale: è l’equazione per la connessione (fornita ad esempio
dalla procedura variazionale di Palatini) che, risolta, determina la torsione in
funzione della corrente spinoriale del gravitino:

Qµ⌫
↵ ⇠ Jµ⌫

↵ =  µ�
↵ ⌫ (14.51)

(si veda la Sez. 14.3.1).
Sostituendo nell’azione, ed eliminando dappertutto la torsione in funzione

di Jµ⌫ ↵, si ottengono termini di interazione quadratici in J , del tipo di quelli
che si volevano introdurre. Anche in questo caso, però, si trova che il mo-
dello ottenuto non è localmente supersimmetrico (sono ancora richieste altre
correzioni con termini di tipo J2).

(III) Il corretto modello di supergravità2, che risulta general-covariante
e localmente supersimmetrico, e che include tutti (e soli) i termini di ti-
po ( � )2 richiesti dalla supersimmetria, si può formulare utilizzando la
struttura geometrica di Einstein-Cartan come nel precedente caso (II). Bi-
sogna omettere, però, l’ultimo termine che contribuisce alla Lagrangiana del
gravitino nell’Eq. (14.50).

Detto in modo più esplicito, per accoppiare il gravitone e il gravitino in
modo covariante e localmente supersimmetrico bisogna seguire la procedura
seguente.

• Usare per lo spazio-tempo il modello geometrico di Einstein-Cartan, con
una connessione non-simmetrica di tipo (14.49), e con la torsione Q deter-
minata dal gravitino secondo le equazioni di campo del modello (ottenute
con il metodo variazionale di Palatini).

• Includere la torsione nell’azione gravitazionale, esprimendo la curvatura
scalare in funzione della connessione (14.49).

2 D. Z. Freedman, P. van Neuwenhuizen and S. Ferrara, Phys. Rev. D13, 3214 (1976); S.
Deser and B. Zumino, Phys. Lett. B62, 335 (1976).
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• Accoppiare il gravitino solo alla connessione di Lorentz, mediante la
prescrizione covariante

@
[µ ⌫] ! D

[µ ⌫], (14.52)

Questo elimina, in particolare, l’ultimo termine della Lagrangiana (14.50).

Ci sono alcuni commenti che vanno fatti su quest’ultimo, importante pun-
to. Poiché D

[µ ⌫] è diverso da r
[µ ⌫] in presenza di torsione (si veda

l’Eq. (14.47)), la prescrizione (14.52) sembrerebbe indicare un accoppiamen-
to “non-minimo”. A questo proposito bisogna notare però che il gravitino,
pur essendo un campo fermionico, è anche, a tutti gli e↵etti, un campo di
gauge nell’indice vettoriale µ: in realtà, è il campo “compensativo” neces-
sario a restaurare l’invarianza nell’azione di Einstein quando si passa dalle
trasformazioni di supersimmetria globale a quelle locali.

Questa precisazione è cruciale perché, da un punto di vista geometrico,
i campi vettoriali di gauge Aµ sono rappresentati da oggetti chiamati “1-
forme” di↵erenziali (si veda l’Appendice A), e possono essere scritti come
A ⌘ Aµdxµ. Oggetti di questo tipo non possiedono indici espliciti nella varietà
spazio-temporale, e la loro derivata covariante esterna coincide sempre con
la derivata covariante di gauge, rA = DA, ossia con una derivata che opera
esclusivamente sugli indici del corrispondente gruppo di simmetria locale (nel
nostro caso, sugli indici spinoriali del gravitino nello spazio piatto tangente)

È vero che le componenti della derivata covariante esterna rappresentano
solo la parte antisimmetrica della derivata covariante, rA ⌘ r

[µA⌫]dx
µ^dx⌫

(si veda l’Appendice A), ma è anche vero che nell’azione di un campo di gauge
entra sempre la parte antisimmetrica della derivata. Facendo riferimento a
questa proprietà si può quindi dire che l’indice vettoriale di gauge si comporta,
rispetto alla derivata covariante, come se fosse gravitazionalmente neutro3.

Questo principio fondamentale è valido per tutti i campi di gauge, ed è
già stato sottolineato per il campo elettromagnetico nella Sez. 4.2 (anche se,
nel contesto di una geometria priva di torsione, il risultato diventa trivia-
le). Applicato al gravitino implica r = D e giustifica la prescrizione di
accoppiamento (14.52) classificandola come “minima”, contrariamente alle
apparenze.

Scomparsa la necessità di introdurre la connessione � nell’azione del gra-
vitino, diventa conveniente formulare tutta l’azione utilizzando solo le tetradi
V a
µ e la connessione di Lorentz !µ

ab (oltre che, ovviamente, il campo  µ).
Applicando le precedenti prescrizioni (e il linguaggio delle tetradi del Ca-
pitolo 12) arriviamo dunque a un modello di supergravità descritto dalla
Lagrangiana

L = � 1

2�
V R(V,! ) +

i

2
✏µ⌫↵� µ�5�⌫D↵(!) � , (14.53)

3 Un campo di gauge non è, ovviamente, immune all’interazione gravitazionale, perché
interagisce con la gravità attraverso le altre forme di accoppiamento minimo necessarie
a rendere l’azione invariante per di↵eomorfismi (si veda ad esempio la discussione del
Capitolo 4 per il caso del potenziale elettromagnetico).
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dove R(V,! ) è la curvatura scalare (12.55), dove

D↵(!) = @↵ +
1

4
!↵

ab�
[a�b], (14.54)

e dove la connessione ! = !(V, ) va determinata, in funzione delle tetradi
e del gravitino, mediante le equazioni che seguono imponendo all’azione di
essere stazionaria rispetto alla variazione di !.

Questa Lagrangiana descrive il cosiddetto modello di supergravità N =
1 (o “supergravità semplice”) in uno spazio-tempo con D = 4 dimensioni.
L’appellativo N = 1 indica la presenza di un solo gravitino, che è necessario
per rendere supersimmetrica l’azione di Einstein. Notiamo, per inciso, che
per includere nuovi campi senza rompere la supersimmetria bisogna allargare
il modello introducendo altri gravitini, che fungono da campi di gauge per
le nuove supersimmetrie locali. Si ottengono cos̀ı i modelli di “supergravità
estesa” con N = 2, 3, . . . , 8; per N > 8 sarebbe necessario introdurre campi
di spin 5/2 e superiori, che sembrano non potersi accoppiare alla gravità in
maniera consistente nel contesto della teoria di campo standard (uno schema
consistente più generale, per il caso di spin più elevati, viene fornito dalla
teoria delle stringhe). Il più semplice modello esteso, il caso N = 2, include un
nuovo campo di gauge di spin 1, e descrive l’accoppiamento supersimmetrico
tra il doppietto di spin {2, 3/2} discusso in questa sezione e il doppietto di
spin {3/2, 1}.

Tornando al caso “semplice” N = 1 notiamo che la Lagrangiana (14.53)
è lasciata invariante, modulo una divergenza totale, dalla seguente trasfor-
mazione di supersimmetria locale (che scriviamo, per semplicità, in unità
� = 8⇡G/c4 = 1),

�V a
µ = ✏(x)�a µ,

� µ = �2Dµ✏(x) ⌘ �2

✓

@µ +
1

4
!µ

ab�
[a�b]

◆

✏(x),
(14.55)

dove ✏ = ✏c è un parametro spinoriale di Majorana (che varia da punto a
punto). La corrispondente trasformazione infinitesima della connessione ! si
può dedurre dalle due precedenti dopo aver espresso ! in funzione di V e di
 (si veda la sezione seguente). Si ha infatti

�! =
�!(V, )

�V
�V +

�!(V, )

� 
� . (14.56)

Non è però necessario considerare esplicitamente questa trasformazione perché,
nel calcolo di �L, la variazione �! è moltiplicata dal termine �L/�!, che è
identicamente nullo se si tiene conto della relazione esplicita ! = !(V, ).
Per verificare la supersimmetria locale della Lagrangiana (14.53) sono dun-
que su�cienti le leggi di trasformazione di V e di  (il calcolo esplicito è
svolto nell’Esercizio 14.4).
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Il calcolo esplicito mostra che la variazione �L = @µKµ è nulla se applichia-
mo le equazioni del moto del gravitino. Le equazioni del moto (che saranno
derivate nella sezione seguente) sono necessarie anche per chiudere l’algebra
dei generatori di supersimmetria perché, in questo modello, il numero di gradi
di libertà bosonici e fermionici coincide solo on-shell.

Infatti, i campi fondamentali del modello sono le tetradi, V a
µ , e il gravitino,

 A
µ , che è un fermione di Majorana. Tutti gli indici variano da 1 a 4, perciò

ciascuno dei due campi è specificato, in generale, da 4 ⇥ 4 = 16 parametri
reali. Le simmetrie presenti nel modello sono l’invarianza per di↵eomorfismi,
l’invarianza di Lorentz locale e la supersimmetria locale. Sulle tetradi pos-
siamo imporre 6 condizioni mediante le trasformazioni locali di Lorentz, e 4
condizioni mediante una trasformazione generale di coordinate. Rimangono
6 componenti bosoniche indipendenti (che sono appunto i gradi di libertà di
un generico campo gravitazionale in 4 dimensioni, come già sottolineato nella
Sez. 7.2).

Mediante una trasformazione di supersimmetria locale possiamo imporre
sul gravitino 4 condizioni, che lasciano 12 componenti fermioniche indipen-
denti. Tali componenti si dimezzano (e quindi il loro numero diventa uguale a
quello bosonico) se imponiamo le equazioni del moto. Possiamo naturalmen-
te rendere l’algebra consistente anche o↵-shell, ma è necessario aggiungere
6 gradi di libertà bosonici. La scelta convenzionale è quella di aggiungere
3 campi ausiliari: uno scalare S, uno pseudo-scalare P , e un vettore assia-
le Aµ (ma esistono anche possibilità più complesse, che introducono 6 + n
componenti bosoniche e n componenti fermioniche).

14.3.1 Equazioni di campo per la metrica e il gravitino

Per ottenere le equazioni di campo del modello di supergravità considerato
adottiamo il cosiddetto formalismo di Palatini (si veda la Sez. 12.3.1), e varia-
mo la Lagrangiana (14.53) trattando V , ! e  come tre variabili indipendenti.
Cominciamo con la variazione rispetto a !, che permette di determinare in
modo esplicito la torsione presente nel modello, e di esprimere la connessione
di Lorentz in funzione delle tetradi e del gravitino.

Variazione rispetto alla connessione

Separiamo la Lagrangiana (14.53) ponendo L = L
2

+L
3/2. La variazione della

parte gravitazionale L
2

è già stata e↵ettuata nella Sez. 12.3.1, ed il risultato
è dato dall’Eq. (12.60). La variazione della parte relativa al gravitino, L

3/2,
fornisce

�!L
3/2 =

i

8
✏µ⌫↵� µ�5�⌫�[a�b] ��!↵

ab. (14.57)
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Usando le poprietà (13.34), (13.36) delle matrici di Dirac abbiamo

�
5

�⌫�
[a�b] = �

5

V c
⌫ �c�[a�b] = �

5

V c
⌫

�

�
[a�b�c] + 2⌘c[a�b]

�

= �i✏abcdV
c
⌫ �

d + �
5

V⌫a�b � �
5

V⌫b�a.
(14.58)

Perciò, sostituendo in �!L
3/2,

�!L
3/2 =

1

8
✏µ⌫↵�✏abcdV

c
⌫  µ�

d � �!↵
ab

+
i

4
✏µ⌫↵�V⌫a µ�5�b � �!↵

ab.
(14.59)

Il secondo termine di questa variazione è nullo perché la corrente  µ�5�b � =

 ��5�b µ è simmetrica in µ e � (si veda l’Eq. (14.90) dell’Esercizio 14.2).
Sommando il contributo del primo termine al contributo che viene dalla
variazione dell’azione gravitazionale, Eq. (12.60), otteniamo dunque

D
[µV

a
⌫] = ��

4
 µ�

a ⌫ , (14.60)

che rappresenta l’equazione di campo per la connessione.
Richiamando la proprietà di metricità delle tetradi possiamo ora osservare

che il membro sinistro di questa equazione definisce esattamente il tensore di
torsione Qµ⌫

↵ (si veda ad esempio l’Eq. (12.40) e l’Eq. (12.41)). Tale tensore
risulta dunque determinato dalla corrente vettoriale (di Dirac) del gravitino,
in accordo all’equazione

Qµ⌫
a = ��

4
 µ�

a ⌫ . (14.61)

Sfruttando il risultato generale (12.45) possiamo anche immediatamente
esprimere la connessione di Lorentz come segue:

!µab = V c
µ!cab = V c

µ (Ccab � Cabc + Cbca)

+
�

4
V c
µ

�

 c�b a �  a�c b +  b�a c

�

.
(14.62)

Ricordiamo che il simbolo Cabc indica i coe�cienti di rotazione di Ricci,
definiti nell’Eq. (12.43).

Variazione rispetto alle tetradi

Variamo ora rispetto alle tetradi. La variazione della parte gravitazionale
L
2

è già stata e↵ettuata nella Sez. 12.3.1, ed il risultato è espresso dall’Eq.
(12.62). Nella parte del gravitino le tetradi appaiono esplicitamente solo nella
proiezione della matrice �⌫ = V c

⌫ �c (ricordiamo che V , ! e  sono variabili
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indipendenti). La variazione fornisce dunque:

�V L
3/2 = � i

2
✏µ⌫↵� µ�5�cD⌫ ��V

c
↵ (14.63)

(abbiamo messo in evidenza la variazione con gli indici �V c
↵ , per confrontarla

direttamente con il contributo (12.62) della parte gravitazionale). Sommando
i due contributi otteniamo

G↵
c = � ✓↵c, (14.64)

dove G è il tensore di Einstein dell’Eq. (12.64), e

✓↵c =
i

2
✏µ⌫↵� µ�5�cD⌫ � (14.65)

è il tensore canonico energia-impulso del gravitino.
Si noti che tale tensore non è simmetrico, cos̀ı come non lo è il tensore

di Einstein che appare al membro sinistro, perché è costruito a partire da
una connessione che include la torsione. È sempre possibile però riscrivere
l’Eq. (14.64) in forma simmetrica “Einsteiniana”, esprimendo esplicitamente
i contributi torsionici nell’azione (14.53) mediante la relazione (14.61), e se-
parandoli dalla parte Riemanniana della curvatura e della derivata covariante
del gravitino. Ripetendo la variazione rispetto alle tetradi (o alla metrica) si
ottiene allora dalla parte gravitazionale l’ordinario tensore di Einstein (sim-
metrico), e dagli altri termini la versione metrica (simmetrizzata) del tensore
energia-impulso del gravitino.

Variazione rispetto al gravitino

Variando infine rispetto a  µ si ottiene l’equazione del moto del gravitino,

Rµ ⌘ ✏µ⌫↵��
5

�⌫D↵ � = 0. (14.66)

Tale equazione deve soddisfare la condizione di consistenzaDµRµ = 0 (in caso
contrario ci sarebbero ulteriori vincoli da applicare al modello, e l’accoppia-
mento al gravitone potrebbe non essere consistente). È istruttivo verificare
esplicitamente che tale relazione è soddisfatta, purché siano soddisfatte anche
le equazioni del moto (14.64) e (14.60) per le tetradi e la connessione.

Notiamo innanzitutto che, applicando la derivata covariante di Lorentz
a Rµ, si ottengono due contributi generati, rispettivamente, da  � e dalla
tetrade usata per proiettare la matrice di Dirac �⌫ = V a

⌫ �a:

DµR
µ = ✏µ⌫↵��

5

h

�⌫D
[µD↵] � + �aD↵ �D

[µV
a
⌫]

i

(14.67)

(le parentesi di antisimmetrizzazione sono dovute alla contrazione con ✏µ⌫↵�).
Il secondo contributo (che chiameremo A) è proporzionale alla torsione, ed
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usando l’equazione di campo (14.60) otteniamo immediatamente (in unità
� = 1):

A = �1

4

�

 µ�
a ⌫

�

�
5

�aD↵ �✏
µ⌫↵� . (14.68)

Calcoliamo ora il primo contributo, e mostriamo che si cancella esattamente
con questo.

Per questo calcolo ci serve il commutatore di due derivate covarianti di
Lorentz applicate a uno spinore. A questo scopo ricordiamo la definizione
generale di Dµ in funzione dei generatori Jab (si veda l’Eq. (12.22)), appli-
chiamo il commutatore a un generico campo  , e sfruttiamo l’algebra dei
generatori (12.20). Otteniamo cos̀ı il risultato generale

[Dµ, D⌫ ] = � i

2

�

@µ!⌫
ab � @⌫!µ

ab
�

Jab 

�1

4
!µ

ab!⌫
cd [Jab, Jcd] (14.69)

= � i

2
Rµ⌫

ab(!)Jab ,

dove Rµ⌫
ab è la curvatura di Lorentz (12.54). Per un campo vettoriale, usando

i generatori (12.29), ritroviamo il risultato dell’Eq. (12.51). Per un campo
spinoriale dobbiamo usare i generatori (13.11), ed abbiamo:

D
[µD⌫] ⌘ 1

2
[Dµ, D⌫ ] =

1

8
Rµ⌫

ab�
[a�b] . (14.70)

Il primo contributo all’Eq. (14.67) (che chiameremo B) diventa quindi

B =
1

8
�
5

�⌫�
[a�b] �Rµ↵

ab✏µ⌫↵� . (14.71)

La combinazione di matrici di Dirac che appare all’inizio di questa equazione
è già stata calcolata nell’Eq. (14.58). Sfruttando tale risultato abbiamo:

B = � i

8
✏µ⌫↵�✏abcdRµ↵

abV c
⌫ �

d �

+
1

4
✏µ⌫↵�Rµ↵⌫

b�
5

�b � .
(14.72)

Il primo termine di questa equazione (che chiameremo B
1

) è proporzionale
al tensore di Einstein. Infatti, sfruttando il risultato dell’Esercizio 12.4 (e, in
particolare, l’Eq. (12.75)) otteniamo:

B
1

= � i

8
Rµ↵

abV µ↵�
abd �d � =

i

2
G�

d�
d � . (14.73)
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Possiamo quindi usare l’equazione di campo (14.64), che fornisce

B
1

= �1

4
✏µ⌫↵�

�

 µ�5�aD⌫ �
�

�a ↵. (14.74)

Il secondo termine dell’Eq. (14.72) (che chiameremo B
2

) è proporziona-
le a R

[µ↵⌫]
b, che è determinato dalle identità di Bianchi per il tensore di

curvatura. Se usassimo la geometria di Riemann questo termine sarebbe
nullo (si veda la Sez. 6.2), e l’equazione del gravitino non sarebbe consi-
stente.

Nel contesto della geometria di Riemann-Cartan, invece, le identità di
Bianchi sono modificate per la presenza della torsione. Per calcolare R

[µ↵⌫]
b

in una varietà di Riemann-Cartan consideriamo il commutatore di due de-
rivate covarianti che agiscono sulle tetradi, ed applichiamo l’Eq. (12.51):

2D
[µD↵]V

b
⌫ = Rµ↵

b
cV

c
⌫ = �Rµ↵⌫

b. (14.75)

Prendendo la parte completamente antisimmetrica in µ ↵, ⌫, e usando ancora
l’equazione per la torsione (14.60), arriviamo a

R
[µ↵⌫]

b = �2D
[µD↵V

b
⌫] =

1

2
D

[µ

�

 ↵�
b ⌫]

�

=  
[↵�

bDµ ⌫], (14.76)

e quindi

B
2

=
1

4
✏µ⌫↵�

�

 ↵�
bDµ ⌫

�

�
5

�b � . (14.77)

Per mostrare che la somma dei tre contributi A+B
1

+B
2

è nulla usiamo ora
la cosiddetta identità di Fierz. Dati tre spinori a 4 componenti, ⇠, ,� , tale
identità si scrive

�

⇠ 
�

�A = �1

4

X

i

�

⇠� i�
�

(�i )A , (14.78)

dove il simbolo � i indica i 16 operatori matriciali che fanno da base per le
matrici 4⇥ 4, ossia:

� i =
�

1, �a,�ab, �a�5, �5
�

, a < b. (14.79)

Applicando l’identità di Fierz possiamo riscrivere B
1

come segue:

B
1

=
1

16
✏µ⌫↵�

�

 µ�
i ↵
�

�a�i�5�aD⌫ � . (14.80)

A questa espressione contribuiscono solo i termini che danno una corrente
 µ�

i ↵ antisimmetrica in µ e ↵, e quindi (per le proprietà di anticommuta-
zione degli spinori di Majorana), gli unici possibili contributi possono venire



Esercizi Capitolo 14 287

da �µ e �µ⌫ . Però �a�µ⌫�a ⌘ 0, per cui rimane

B
1

=
1

16
✏µ⌫↵�

�

 µ�
b ↵

�

�
5

�a�b�aD⌫ �

=
1

16
✏µ⌫↵�

�

 µ�
b ↵

�

�
5

�a (��a�b + 2⌘ab)D⌫ �

= �1

8
✏µ⌫↵�

�

 µ�
b ↵

�

�
5

�bD⌫ �

=
1

8
✏µ⌫↵�

�

 µ�
b ⌫
�

�
5

�bD↵ �

(14.81)

(nell’ultimo passaggio abbiamo usato l’antisimmetria negli indici di somma
↵ e ⌫). Ripetendo la stessa procedura per il termine B

2

abbiamo

B
2

=
1

8
✏µ⌫↵�

�

 ↵�
a �

�

�
5

�aDµ ⌫ . (14.82)

Quindi B
2

= B
1

= �A/2, e la somma dei contributi (14.68), (14.81), (14.82)
si annulla esattamente fornendo DµRµ = 0, e garantendo la consistenza del
modello di supergravità considerato.

Esercizi Capitolo 14

14.1. Proprietà di anticommutazione degli spinori di Majorana

Dimostrare che per due spinori ✏ e  , che soddisfano la condizione di
Majorana ✏ = ✏c,  =  c, vale anche la proprietà:

✏ =  ✏. (14.83)

14.2. Commutatore per trasformazioni di supersimmetria “on-shell”

Verificare la validità del risultato (14.25) per i campi B e  del modello di
Wess-Zumino, sfruttando le proprietà degli spinori di Majorana e imponendo
che le equazioni del moto siano soddisfatte.

14.3. Supersimmetria globale nel sistema gravitone-gravitino

Calcolare la variazione infinitesima �L della Lagrangiana (14.42) indotta dalle
trasformazioni di supersimmetria globale (14.41), e mostrare che il risultato
si può scrivere nella forma di una divergenza totale, �L = @µKµ.

14.4. Supersimmetria locale del modello di supergravità N = 1
Calcolare la variazione �L della Lagrangiana (14.53) prodotta dalla trasfor-
mazione di supersimmetria locale (14.55), e mostrare che tale variazione si
riduce a una divergenza totale, �L = @µKµ, che si annulla se le equazioni del
moto del gravitino sono soddisfatte.
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Soluzioni

14.1. Soluzione

Dalla condizione di Majorana (14.2) abbiamo

C�1✏ = ✏T , (14.84)

e quindi, usando le proprietà (14.3) dell’operatore coniugazione di carica,

✏ =
�

C�1✏
�T

= ✏T
�

C�1

�T
= �✏TC�1. (14.85)

Perciò:
✏ = �✏TC�1C 

T
= �✏T T

=
�

 ✏
�T

=  ✏. (14.86)

Il penultimo passaggio è dovuto al fatto che gli spinori ✏A e  A anticommu-
tano, per cui

�✏T T
= �(✏A)T �

0

 ⇤
A =

�

 ⇤T
A �

0

✏A
�T

=
�

 ✏
�T

. (14.87)

Infine, il risultato del prodotto spinoriale  ✏ è un numero, e coincide con il
suo trasposto.

14.2. Soluzione

Applicando le trasformazioni di supersimmetria (14.24) al campo B, e
calcolando il commutatore, otteniamo:

�
2

�
1

B = �
2

�

i✏
1

�5 
�

=
1

2
✏
1

�5�µ@µ
�

A+ i�5B
�

✏
2

,

[�
2

, �
1

]B =
1

2

�

✏
1

�5�µ✏
2

�

@µA+
i

2

�

✏
1

�5�µ�5✏
2

�

@µB � {1 $ 2}.
(14.88)

Il primo termine proporzionale a @µA è simmetrico nello scambio degli indici 1
e 2, e quindi non contribuisce al commutatore. Infatti, ricordando le equazioni
(14.3) e (14.85), ed usando le proprietà

{�5, �µ} = 0 = [�5, C], (14.89)

abbiamo:

✏
1

�5�µ✏
2

= �✏T
1

C�1�5�µC ✏T
2

= ✏T
1

�5�µT ✏T
2

= �
�

✏
2

�µ�5✏
1

�T
= ✏

2

�5�µ✏
1

.
(14.90)

Riguardo infine al secondo termine dell’Eq. (14.88), proporzionale a @µB,
notiamo che

�5�µ�5 = ��µ, (14.91)
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e quindi, sfruttando il risultato (14.18), otteniamo

[�
2

, �
1

]B = �i (✏
1

�µ✏
2

) @µB, (14.92)

in accordo con l’Eq. (14.25).
Consideriamo ora il commutatore di due trasformazioni applicato a  ,

partendo dall’Eq. (14.24) e scrivendo esplicitamente le componenti spino-
riali:

�
1

 A = � i

2
@µA (�µ✏

1

)A +
1

2
@µB

�

�µ�5✏
1

�

A
. (14.93)

Perciò:

[�
2

, �
1

] A = � i

2
(✏

2

@µ ) �
µ✏

1

+
i

2

�

✏
2

�5@µ 
�

�µ�5✏
1

� {1 $ 2}. (14.94)

È conveniente a questo punto usare l’identità di Fierz (14.78) per riarrangiare
il membro destro dell’Eq. (14.94), e trasferire il termine @µ all’ultimo posto
di tutti i prodotti spinoriali. Si ottiene cos̀ı:

[�
2

, �
1

] A =
i

8

X

i

�

✏
2

� i✏
1

�

�µ�i@µ 

� i

8

X

i

�

✏
2

� i✏
1

�

�µ�5�i�
5@µ � {1 $ 2}.

(14.95)

Osserviamo ora che a questa espressione contribuiscono solo gli operatori � i

tali che il prodotto ✏
2

� i✏
1

risulta antisimmetrico nello scambio degli indici 1
e 2 (i contributi simmetrici si elidono automaticamente calcolando il commu-
tatore). Per le proprietà di anticommutazione degli spinori di Majorana ciò
è possibile solo per �µ e �µ⌫ (definito dall’Eq. (13.10)).

Nel caso di �µ⌫ , però, si ha �5�µ⌫�5 = �µ⌫ , e i quattro termini dell’Eq.
(14.95) si cancellano identicamente. Rimane quindi solo il contributo di �µ,
che fornisce

[�
2

, �
1

] =
i

2
(✏

2

�⌫✏
1

) �µ�⌫@
µ 

=
i

2
(✏

2

�⌫✏
1

) (��⌫�µ + 2⌘µ⌫) @
µ .

(14.96)

Il primo termine nella seconda riga del membro destro è nullo per l’equazione
del moto, che impone �µ@µ = 0. Arriviamo quindi al risultato finale che,
sfruttando l’Eq. (14.18), si può scrivere come

[�
2

, �
1

] = �i (✏
1

�µ✏
2

) @µ , (14.97)

in accordo con l’Eq. (14.25).
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14.3. Soluzione

Calcoliamo innazitutto la trasformazione infinitesima del campo  µ. Par-
tendo dalla definizione (14.41) di � µ, e sfruttando il risultato dell’Eq.
(13.46), otteniamo:

� µ =
⇣

�[↵��]✏
⌘†
�0@↵hµ� = �✏�[↵��]@↵hµ� . (14.98)

Variando la Lagrangiana (14.42), e sfruttando la trasformazione di h,  e  ,
abbiamo quindi

�L = @↵hµ⌫ (✏�µ@↵ ⌫)

+
i

2
✏µ⌫↵�

h

�
⇣

✏�[⇢��]�5�⌫@↵ �
⌘

@⇢h
µ
� (14.99)

+
⇣

 
µ
�5�⌫�[⇢��]✏

⌘

@↵@⇢h
�
�

i

(abbiamo racchiuso in parentesi tonde tutti i termini contenenti prodotti
spinoriali).

Consideriamo l’ultimo termine della parentesi quadra. Mettendo in evi-
denza una divergenza totale,

@↵V↵ ⌘ @↵
✓

i

2
✏µ⌫↵� 

µ
�5�⌫�[⇢��]✏ @⇢h

�
�

◆

, (14.100)

sfruttando le proprietà di anticommutazione degli spinori di Majorana  
µ

ed ✏, e rinominando gli indici di somma µ e �, quest’ultimo termine si può
riscrivere come:

@↵V↵ � i

2
✏µ⌫↵�

⇣

✏�5�⌫�[⇢��]@↵ �
⌘

@⇢h
µ
�. (14.101)

La variazione totale (14.99) della nostra Lagrangiana si riduce quindi a:

�L = @↵hµ⌫ (✏�µ@↵ ⌫) + @↵V↵

� i

2
✏µ⌫↵� ✏�

5

h

�[⇢��]�⌫ + �⌫�[⇢��]
i

@↵ �@⇢h
µ
�.

(14.102)

Possiamo ora usare i risultati (13.34), (13.36), (13.49), relativi ai prodotti
delle matrici di Dirac, che forniscono:

�[⇢��]�⌫ + �⌫�[⇢��] = 2�[⌫�⇢��] = �2i✏⌫⇢���5��. (14.103)

Sostituendo nell’Eq. (14.102), ed applicando la regola di prodotto (3.39) per
i tensori completamente antisimmetrici, arriviamo a:

�L = @↵hµ⌫ (✏�µ@↵ ⌫) + @↵V↵ � �⇢��µ↵�

�

✏��@
↵ �

�

@⇢h
µ
�. (14.104)
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Consideriamo l’ultimo termine di questa espressione, e notiamo che è diverso
da zero solo per µ 6= ⇢ e µ 6= �, in virtù delle condizioni di gauge (14.39) che
stiamo usando. L’unico contributo del simbolo �⇢��µ↵� viene dunque dal termine

µ = �, per cui il simbolo �⇢��µ↵� si riduce a

��µ

⇣

�⇢↵�
�
� � ��↵�

⇢
�

⌘

, (14.105)

e la sua sostituzione nell’Eq. (14.104) ci porta a:

�L = @↵hµ⌫ (✏�µ@↵ ⌫) + @↵V↵

� (✏�µ@↵ �) @
↵hµ� + (✏�µ@↵ �) @

�hµ↵.
(14.106)

Il primo e terzo termine al membro destro di questa equazione si cancella-
no identicamente tra loro. L’ultimo termine si può mettere nella forma di
divergenza totale,

@aW
↵ ⌘ @↵

�

✏�µ �@
�hµ↵

�

, (14.107)

perché il contributo di @↵hµ↵ è nullo, grazie ancora alla condizione di gauge
(14.39). Otteniamo cos̀ı che la variazione totale della Lagrangiana si può
scrivere come una quadri-divergenza,

�L = @↵ (V
↵ +W↵) ⌘ @↵K

↵, (14.108)

dove, usando le definizioni di (14.100) e (14.107),

K↵ = (✏�µ �) @
�hµ↵ +

i

2
✏µ⌫↵�

�

 µ�5�⌫�[⇢��]✏
�

@⇢h�
�. (14.109)

Usando l’Eq. (14.58), e sfruttando le proprietà degli spinori di Majorana, la
corrente K↵ si può anche riscrivere nella forma seguente:

K↵ =
1

2
(✏�µ ⌫) (@

⌫hµ↵ + @↵hµ⌫) +
i

2
✏µ⌫↵�

�

 µ�5�
⇢✏
�

@⌫h�⇢. (14.110)

14.4. Soluzione

Come discusso nella Sez. 1.4.3, è su�ciente calcolare la variazione della La-
grangiana indotta dalle trasformazioni di supersimmetria delle due variabili
indipendenti V e  . Dobbiamo perciò calcolare

�L = �V L2

+ �V L
3/2 + � L

3/2, (14.111)

dove L
2

e L
3/2 indicano, rispettivamente, la parte gravitazionale e spino-

riale della Lagrangiana (14.53). Per semplicità, e per consistenza con la de-
finizione delle trasformazioni (14.55), nei calcoli seguenti porremo ovunque
� = 8⇡G/c4 = 1.
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Nella parte gravitazionale c’è solo il contributo di �V , e sfruttando i
risultati (12.62), (12.75) possiamo scrivere immediatamente

�V L2

= �V

✓

�V

2
R

◆

= Gµ
a�V

a
µ = (✏�a µ)G

µ
a, (14.112)

dove G è il tensore di Einstein (12.64).
Consideriamo ora la variazione della Lagrangiana di Rarita-Schwinger in-

dotta dal gravitino, usando le trasformazioni � µ = �2Dµ✏, � µ = �2Dµ✏.
Otteniamo:

� L
3/2 = �i✏µ⌫↵�

�

Dµ✏�5�⌫D↵ � +  µ�5�⌫D↵D�✏
�

= �i✏µ⌫↵�
h

 µ�5�⌫D[↵D�]✏� ✏�
5

�⌫D
[µD↵] � (14.113)

� (✏�
5

�aD↵ �)DµV
a
⌫

i

+ divergenza totale.

Consideriamo separatamente i primi due termini (che chiameremo C), con-
tenenti le derivare seconde dei campi spinoriali.

Sfruttiamo innanzitutto il calcolo del commutatore di due derivate cova-
rianti (si veda l’Eq. (14.70)), che fornisce:

C = � i

8
✏µ⌫↵�

�

 µ�5�⌫�[a�b]✏R↵�
ab � ✏�

5

�⌫�
[a�b] �Rµ↵

ab
�

. (14.114)

La combinazione delle matrici � che appare in questa equazione è già stata
calcolata nell’Eq. (14.58). Inserendo tale risultato otteniamo:

C = �1

8
✏µ⌫↵�✏abcdV

c
⌫

�

 µ�
d✏R↵�

ab � ✏�d �Rµ↵
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 µ�5�b✏R↵�
ab � ✏�

5

�b �Rµ↵
ab
�

.
(14.115)

Ricordando le proprietà di anticommutazione degli spinori di Majorana
possiamo inoltre scrivere

 µ�
d✏ = �✏�d µ,  µ�5�b✏ = ✏�

5

�b µ (14.116)

(si vedano gli Esercizi 14.1 e 14.2). Perciò gli ultimi due termini dell’Eq.
(14.115) si cancellano tra loro, mentre i primi due termini forniscono

C =
1

4
✏µ⌫↵�✏abcdV

c
⌫ Rµ↵

ab
�

✏�d �
�

= �G�
d

�

✏�d �
�

(14.117)

(abbiamo usato l’Eq. (12.75)).
Consideriamo ora l’ultimo termine dell’Eq. (14.113), ed eliminiamo D

[µV
a
⌫]

mediante l’equazione di campo (14.60) per la torsione. Sommando tutti i
contributi, la variazione di L

3/2 indotta dalla trasformazione del gravitino si
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riduce quindi a

� L
3/2 = �Gµ

a (✏�
a µ)�

i

4
(✏�

5

�aD↵ �)
�

 µ�
a ⌫

�

✏µ⌫↵� . (14.118)

Rimane ancora da calcolare la variazione di L
3/2 indotta dalla trasformazione

di supersimmetria delle tetradi, che fornisce:

�V L
3/2 =

i
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✏µ⌫↵� µ�5�aD↵ ��V

a
⌫

=
i
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(✏�a ⌫) .
(14.119)

Operiamo sugli spinori  µ,  � , ✏, un riarrangiamento di Fierz del tipo (14.78),
ponendo

�V L
3/2 = � i

8
✏µ⌫↵�

�

✏�a� i�
5

�aD↵ �
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 µ�i ⌫
�

. (14.120)

In questa forma, gli unici termini che danno un contributo non nullo alla
variazione sono quelli che corrispondono a una corrente spinoriale  µ�i ⌫
antisimmetrica in µ e ⌫: tali termini vengono dalla matrice � i = �a (ci
sarebbe infatti il contributo del termine  µ�↵� ⌫ , anch’esso antisimmetrico,
ma questo va escluso perché �a�↵��a ⌘ 0). Perciò:

�V L
3/2 = � i
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(14.121)

=
i
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✏µ⌫↵�
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✏�
5

�bD↵ �
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 µ�b ⌫
�

.

Sommando tutti i contributi (14.112), (14.118) e (14.121) otteniamo un ri-
sultato nullo, a meno della divergenza totale trascurata in Eq. (14.113), che
è data da:

@µK
µ = �iDµ

�

✏µ⌫↵�✏�
5

�⌫D↵ �
�

. (14.122)

È immediato verificare che tale divergenza si annulla se si impongono le equa-
zioni del moto (14.66) per il gravitino, Rµ = 0, e la condizione di consisten-
za DµRµ = 0 che risulta sempre soddifatta on-shell, come discusso nella
Sezione 14.3.1.



Appendice A

Il linguaggio delle forme di↵erenziali

Questa appendice non contiene novità di carattere fisico rispetto agli altri ca-
pitoli del libro (con l’unica eccezione della Sez. A.4.2), ma si prefigge lo scopo
di riscrivere e riderivare alcuni risultati ottenuti in precedenza usando un di-
verso linguaggio: quello delle cosiddette forme esterne, o forme di↵erenziali.
Tale formalismo permette di scrivere le equazioni in un modo più compatto
che “nasconde” gli eventuali indici tensoriali riferiti ai di↵eomorfismi dello
spazio-tempo curvo, e che risulta di grande utilità in varie applicazioni (ad
esempio, nei calcoli di tipo variazionale).

Il materiale presentato in questa appendice non ha pretese nè di comple-
tezza nè di rigore formale, ma va inteso come un primo approccio di tipo
operazionale e intuitivo a questo metodo di calcolo (chiamato anche calcolo
esterno o “calcolo di Cartan”). L’obiettivo è quello di mettere rapidamente il
lettore in grado di comprendere e di svolgere, anche autonomamente, i calco-
li necessari per le teorie gravitazionali. Ai lettori eventualmente interessati a
una trattazione più rigorosa delle forme di↵erenziali segnaliamo, ad esempio,
il testo [11] della Bibliografia finale.

Notiamo infine che in questa Appendice useremo sempre la convenzione
degli indici introdotta nel Capitolo 12, Sez. 12.1: le lettere Latine a, b, c, . . .
indicheranno indici di Lorentz dello spazio piatto tangente, le lettere Greche
µ, ⌫,↵, . . . indici tensoriali della varietà curva. Per le sorgenti materiali use-
remo sempre unità h̄ = c = 1. Inoltre, e a meno che non sia esplicitamente
indicato il contrario, nelle prime tre sezioni A.1, A.2, A.3 assumeremo che
la varietà spazio-temporale abbia un arbitrario numero D di dimensioni, con
segnatura (+,�,�,�, . . .).

A.1 Operazioni con le forme di↵erenziali

Partiamo dall’osservazione che l’elemento di superficie (orientato) infinite-
simo dx

1

dx
2

di una varietà di↵erenziabile risulta antisimmetrico rispetto
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alla trasformazione che scambia tra loro le coordinate, x
1

! x0
1

= x
2

e
x
2

! x0
2

= x
1

, perché il determinante Jacobiano della trasformazione vale
|@x0/@x| = �1. Per cui

Z

dx
1

dx
2

= �
Z

dx
2

dx
1

. (A.1)

Facendo riferimento al generico elemento di volume dx
1

dx
2

· · · dxD intro-
duciamo dunque una composizione di di↵erenziali detta prodotto esterno,
dxµ ^ dx⌫ , che è associativa e antisimmetrica, dxµ ^ dx⌫ = �dx⌫ ^ dxµ. In
questo contesto definiamo una forma di↵erenziale “esterna” di grado p – o,
più concisamente, una p-forma – come un elemento A dello spazio vettoriale
lineare ⇤p generato dalla composizione esterna di p di↵erenziali.

Qualunque p-forma A si può dunque rappresentare come un polinomio
omogeneo di grado p nel prodotto esterno dei di↵erenziali,

A 2 ⇤p =) A = A
[µ1···µp]

dxµ1 ^ · · · ^ dxµp , (A.2)

dove dxµi ^ dxµj = �dxµj ^ dxµi per ogni coppia di indici, e dove A
[µ1···µp]

(le cosiddette componenti della p-forma) corrispondono alle componenti di un
tensore di rango p completamente antisimmetrico. Uno scalare �, ad esempio
si può rappresentare come una zero-forma, un vettore covariante Aµ come
una 1-forma A, dove A = Aµdxµ, un tensore antisimmetrico Fµ⌫ come una
2-forma F , dove F = Fµ⌫dxµ ^ dx⌫ , e cos̀ı via.

In una varietà D-dimensionale la somma diretta degli spazi vettoriali ⇤p,
con p che varia da 0 a D, definisce la cosiddetta algebra di Cartan ⇤,

⇤ =
D
M

p=0

⇤p. (A.3)

Questo spazio vettoriale lineare è dotato di un’applicazione da ⇤ ⇥ ⇤ a ⇤,
il cosiddetto prodotto esterno, le cui proprietà possono essere rappresentate
nella base dei di↵erenziali delle coordinate (dxµ1 ^ dxµ2 ^ · · ·) da una legge
di composizione che è:

(1) bilineare:

(↵ dxµ1 ^ · · · dxµp + � dxµ1 ^ · · · dxµp) ^ dxµp+1 ^ · · · ^ dxµp+q

= (↵+ �)dxµ1 ^ · · · dxµp ^ dxµp+1 ^ · · · ^ dxµp+q

(A.4)

(↵ e � sono arbitrari coe�cienti numerici);
(2) associativa:

(dxµ1 ^ · · · dxµp) ^ (dxµp+1 ^ · · · dxµp+q ) = dxµ1 ^ · · · ^ dxµp+q ; (A.5)
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(3) antismmetrica:

dxµ1 ^ · · · dxµp = dx[µ1 ^ · · · ^ dxµp]. (A.6)

Quest’ultima proprietà implica che il prodotto esterno di un numero di dif-
ferenziali µp maggiore delle dimensioni D dello spazio-tempo risulti identica-
mente nullo.

Sulla base di queste definizioni possiamo introdurre alcune importanti
operazioni sulle forme esterne.

A.1.1 Prodotto esterno

Il prodotto esterno di una p-forma A 2 ⇤p e di una q-forma B 2 ⇤q è
un’applicazione (che indicheremo con il simbolo ^) da ⇤p ⇥ ⇤q a ⇤p+q che è
bilineare e associativa, e che definisce la (p+ q)-forma C tale che:

C = A ^B = Aµ1···µpBµp+1···µp+qdx
µ1 ^ · · · ^ dxµp+q . (A.7)

Si noti che le proprietà di commutatività di questo prodotto dipendono dal
grado delle forme coinvolte (ossia dal numero delle componenti di↵erenziali
che si scambiano). In generale vale la regola

A ^B = (�1)pqB ^A, (A.8)

dove p è il grado di A e q è il grado di B.

A.1.2 Derivata esterna

La derivata esterna di una p-forma A 2 ⇤p può essere interpretata, per quel
che riguarda le regole di prodotto, come il prodotto esterno della 1-forma
gradiente dxµ@µ e della p-forma A. Perciò è rappresentata da un’applicazione
(che indicheremo con il simbolo d) da ⇤p a ⇤p+1

, che definisce la (p+1)-forma
dA tale che

dA = @
[µ1

Aµ2···µp+1]
dxµ1 ^ · · · ^ dxµp+1 . (A.9)

Se abbiamo uno scalare �, ad esempio, la sua derivata esterna è data dalla
1-forma

d� = @µ�dx
µ. (A.10)

La derivata esterna della 1-forma A è data dalla 2-forma

dA = @
[µA⌫]dx

µ ^ dx⌫ , (A.11)

e cos̀ı via per forme di grado più elevato.
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Come immediata conseguenza della definizione (A.9) abbiamo che la
derivata esterna seconda è sempre nulla,

d2A = d ^ dA ⌘ 0, (A.12)

qualunque sia il grado della forma A. È utile ricordare, a questo punto, che
una p-forma A è detta chiusa se dA = 0, ed è detta esatta se soddisfa alla
proprietà A = d�, dove � è una forma di grado p� 1. Se una forma è esatta
allora – ovviamente – è anche chiusa. Ma se è chiusa non è necessariamente
esatta (il risultato dipende dalle proprietà topologiche della varietà su cui è
definita la forma).

Dalla definizione (A.9) segue anche che, se la varietà ha una connessione
simmetrica (�µ⌫

↵ = �⌫µ ↵), il gradiente @µ che appare nella derivata esterna
può essere sostituito dal gradiente covariante rµ. Infatti (ricordando le regole
di derivazione della Sez. 3.4)

rµ1Aµ2µ3... = @µ1Aµ2µ3... � �µ1µ2
↵A↵µ3... � �µ1µ3

↵Aµ2↵... � · · · , (A.13)

per cui, antisimmetrizzando, tutti i termini con la connessione si cancellano.
Quindi:

dA = rA ⌘ r
[µ1

Aµ2···µp+1]
dxµ1 ^ · · · ^ dxµp+1 . (A.14)

Dalla definizione (A.9), e dalla regola di commutazione (A.8), possiamo in-
fine ottenere le regole di Leibnitz generalizzate per la derivata esterna di un
prodotto. Consideriamo, ad esempio, il prodotto esterno di una p-forma A e
una q-forma B: ricordando che l’operatore d si comporta come una 1-forma
abbiamo:

d(A ^B) = dA ^B + (�1)pA ^ dB,

d(B ^A) = dB ^A+ (�1)qB ^ dA.
(A.15)

E cos̀ı via per prodotti multipli.

A.1.3 Dualità e co-di↵erenziale

Un’altra operazione che risulta indispensabile per le applicazioni fisiche di
questo formalismo è la cosiddetta dualità di Hodge, che associa a ogni p-
forma il suo “complemento” (D � p)-dimensionale. Il duale di una p-forma
A 2 ⇤p è un’applicazione (che indicheremo con il simbolo ?) da ⇤p a ⇤D�p,
che definisce la (D � p)-forma ?A tale che:

?A =
1

(D � p)!
Aµ1···µp⌘µ1···µpµp+1···µDdx

µp+1 ^ · · · ^ dxµD . (A.16)
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Ricordiamo che il tensore completamente antisimmetrico ⌘ è collegata alla
densità di Levi-Civita ✏ dalla relazione

⌘µ1···µD =
p

|g|✏µ1···µD (A.17)

(si veda la Sez. 3.2, Eq. (3.34)). Va notato inoltre l’uso di
p

|g| al posto dip�g perché, con la segnatura (+,�,�,�, . . .), il segno di g = det gµ⌫ in
una varietà D-dimensionale dipende dal numero (pari o dispari) delle D � 1
dimensioni spaziali.

È opportuno osservare che il quadrato dell’operatore duale non coincide
con l’identità, in generale. Applicando la definizione (A.16), infatti, troviamo
che

? (?A) =
1

p!(D � p)!
Aµ1···µp⌘

µ1···µD⌘µp+1···µD⌫1···⌫pdx
⌫1 ^ · · · ^ dx⌫p

= (�1)p(D�p)(�1)D�1

1

p!
�
µ1···µp
⌫1···⌫p Aµ1···µpdx

⌫1 ^ · · · ^ dx⌫p (A.18)

= (�1)p(D�p)+D�1A.

Il fattore (�1)D�1 viene dalla regola di prodotto dei tensori completamente
antisimmetrici poiché, in D�1 dimensioni spaziali, e con le nostre notazioni,
abbiamo

✏
012...D�1

= (�1)D�1 ✏012...D�1 = (�1)D�1. (A.19)

Le regole di prodotto quindi si scrivono, in generale, come segue,

⌘⌫1···⌫pµp+1···µD⌘
µ1···µD = (�1)D�1(D � p)! �

µ1···µp
⌫1···⌫p , (A.20)

dove �
µ1···µp
⌫1···⌫p è il determinante definito dalll’Eq. (3.35). Il fattore (�1)p(D�p)

dell’Eq. (A.18) viene invece dallo scambio dei p indici della forma A con i
D � p indici della forma duale, scambio necessario per posizionare gli indici
di ⌘ nella sequenza convenzionale, prevista dalla regola di prodotto (A.20).

È utile anche notare (per le applicazioni successive) che il duale dell’i-
dentità, calcolato secondo la definizione (A.16), è direttamente collegato alla
misura di integrazione scalare che rappresenta l’elemento di ipervolume della
varietà data. Infatti:

?1 =
1

D!
⌘µ1···µDdx

µ1 ^ · · · ^ dxµD

=
p

|g| ✏
012...D�1

dx0 ^ dx1 · · ·^ dxD�1 (A.21)

= (�1)D�1

p

|g| dDx.

Combinando questo risultato con la regola di prodotto

⌘µ1···µD⌘
µ1···µD = (�1)D�1D!, (A.22)



300 Appendice A Il linguaggio delle forme di↵erenziali

otteniamo l’utile relazione

dxµ1 ^ · · · ^ dxµD =
p

|g| dDx ⌘µ1···µD = dDx ✏µ1···µD , (A.23)

che verrà applicata spesso nei calcoli successivi.
L’operazione di dualità di Hodge è indispensabile per definire i prodotti

scalari che compaiono, per esempio, nell’integrale d’azione. Consideriamo in-
fatti il prodotto esterno tra una p-forma A e il duale di un’altra p-forma B.
Usando la definizione (A.16) e la relazione (A.23) otteniamo:

Z

A ^ ?B =
1

(D � p)!

Z

Aµ1···µpB
⌫1···⌫p⌘⌫1···⌫pµp+1···µD dxµ1 ^ · · · ^ dxµD

= (�1)D�1

Z

dDx
p

|g|Aµ1···µpB
⌫1···⌫p�

µ1···µp
⌫1···⌫p (A.24)

= (�1)D�1p!

Z

dDx
p

|g|Aµ1···µpB
µ1···µp

(nel secondo passaggio abbiamo usato la regola di prodotto (A.20)). Tale
risultato è valido per due forme A e B che hanno lo stesso grado p (ma il
valore di p è arbitrario), e usando l’Eq. (A.21) si può riscrivere come segue:

A ^ ?B = B ^ ?A = p! ?1Aµ1···µpB
µ1···µp . (A.25)

Osserviamo infine che l’operatore duale permette di rappresentare la di-
vergenza di una p-forma A prendendo la derivata esterna del suo duale, e
poi “dualizzando” una seconda volta il risultato ottenuto. Si ottiene cos̀ı
la (p � 1)-forma ?(d?A) che ha come componenti la divergenza del tensore
antisimmetrico A

[µ1···µP ]

.
Calcoliamo infatti la derivata esterna della forma duale (A.16):

d?A =
1

(D � p)!
@↵
⇣

p

|g|Aµ1···µp

⌘

✏µ1···µDdx
↵ ^ dxµp+1 ^ · · ·^ dxµD . (A.26)

Prendendone il duale abbiamo

? (d?A) =
1

(p� 1)!(D � p)!
@↵
⇣

p

|g|Aµ1···µp

⌘

✏µ1···µp
µp+1···µD

⇥ 1
p

|g|
✏↵

µp+1···µD
⌫1···⌫p�1dx

⌫1 ^ · · · ^ dx⌫p�1 (A.27)

= p(�1)D�1+(p�1)(D�p)r↵A↵⌫1···⌫p�1dx
⌫1 ^ · · · ^ dx⌫p�1 ,

dove

r↵A
[↵⌫1···⌫p�1] =

1
p

|g|
@↵
⇣

p

|g|A[↵⌫1···⌫p�1]

⌘

(A.28)

è la divergenza covariante di un tensore completamente antisimmetrico,
calcolata nell’ipotesi di connessione a�ne simmetrica.
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Sfruttando questo risultato è possibile definire un altro tipo di operatore
che agisce sulle forme esterne, chiamato “co-di↵erenziale”, o anche co-derivata
esterna. Il co-di↵erenziale di una p-forma è un’applicazione (che indicheremo
con il simbolo �) da ⇤p a ⇤p�1

, che definisce la (p� 1)-forma �A tale che:

�A = pr↵A↵µ1···µp�1dx
µ1 ^ · · · ^ dxµp�1 . (A.29)

Il confronto con l’Eq. (A.27) mostra allora che la derivata esterna d e la
co-derivata esterna � sono collegate dalla relazione

� = (�1)D�1+(p�1)(D�p) ?d?. (A.30)

Nelle sezioni seguenti ci limiteremo all’uso degli operatori di dualità, derivata
esterna e prodotto esterno, che saranno su�cienti per gli scopi pedagogici di
questa appendice e per la descrizione geometrica dei modelli gravitazionali
che introdurremo.

A.2 Forme di base e di connessione: derivata covariante
esterna

Il linguaggio delle forme esterne è particolarmente adatto, in un contesto
geometrico, a rappresentare le equazioni della teoria gravitazionale proiettate
sullo spazio piatto tangente. Usando le tetradi V a

µ (si veda il Capitolo 12)
possiamo infatti introdurre nello spazio-tempo tangente di Minkowski le 1-
forme di base

V a = V a
µ dx

µ, (A.31)

e rappresentare ogni p-forma A 2 ⇤p su questa base come

A = A
[a1···ap]

V a1 ^ · · · ^ V ap , (A.32)

dove Aa1···ap = Aµ1···µpV
µ1
a1

· · ·V µp
ap sono le componenti della forma proiettata

sul locale spazio tangente. In questa rappresentazione il formalismo risulta in-
dipendente dalla particolare carta scelta per parametrizzare la varietà curva,
perlomeno finché le equazioni non vengono esplicitamente riscritte in forma
tensoriale.

In assenza esplicita di indici curvi (ossia, di riferimenti espliciti alle rap-
presentazioni del gruppo dei di↵eomorfismi) la derivata covariante totale si
riduce alla derivata covariante di Lorentz (si veda la Sez. 12.2). Introducendo
la 1-forma di connessione,

!ab = !µ
abdxµ, (A.33)

dove !µ
ab è la connessione di Lorentz, possiamo allora definire la derivata

(di Lorentz) covariante esterna. Data una p-forma  2 ⇤p, che si trasforma
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come una rappresentazione del gruppo di Lorentz con generatori Jab nel locale
spazio tangente, la derivata covariante esterna di Lorentz è un’applicazione
D : ⇤p ! ⇤p+1

, che definisce la (p+ 1)-forma D tale che

D = d � i

2
!abJab (A.34)

(si veda l’Eq. (12.22)).
Consideriamo, ad esempio, una p-forma a valori vettoriali, Aa 2 ⇤p. I

generatori di Lorentz vettoriali portano alla derivata covariante (12.30). La
corrispondente derivata covariante esterna è data da

DAa = Dµ1A
a
µ2···µp+1

dxµ1 ^ · · · ^ dxµp+1 = dAa + !a
b ^Ab, (A.35)

dove dAa è l’ordinaria derivata esterna della Sez. A.1.2. Poiché l’operatore D
è una 1-forma e Aa una p-forma, la derivata DAa è una (p+1)-forma. Inoltre,
DAa si trasforma correttamente in modo vettoriale per trasformazioni locali
di Lorentz,

DAa ! ⇤a
b

�

DAb
�

, (A.36)

perché la 1-forma di connessione si trasforma come

!a
b ! ⇤a

c !
c
k

�

⇤�1

�k
b � (d⇤)a c

�

⇤�1

�c
b. (A.37)

Quest’ultima equazione, scritta come relazione tra 1-forme di↵erenziali, ripro-
duce esattamente la legge di trasformazione per la connessione già ricavata
nell’Esercizio 12.1 (si veda l’Eq. (12.67)).

La definizione di derivata covariante esterna si applica facilmente a qualun-
que rappresentazione del gruppo locale di Lorentz. Se abbiamo in particolare
una p-forma a valori tensoriali di tipo misto, ad esempio Aa

b 2 ⇤p, e ricor-
diamo la definizione (12.34) di derivata covariante per oggetti di questo tipo,
possiamo immediatamente scrivere la derivata covariante esterna come

DAa
b = dAa

b + !a
c ^Ac

b � !c
b ^Aa

c. (A.38)

E cos̀ı via per altri tipi di rappresentazione.
Va notato che l’operatore di↵erenziale D agisce sulla p-forma in modo

indipendente dal grado p considerato. Le regole precedenti si applicano quin-
di senza cambiamenti anche al caso di zero-forme a valori tensoriali. Come
importante esempio di zero-forma possiamo considerare la metrica ⌘ab dello
spazio di Minkowski tangente: troviamo allora che la sua derivata covariante
esterna è una 1-forma nulla,

D⌘ab = d⌘ab + !a
c⌘

cb + !b
c⌘

ac = !ab + !ba ⌘ 0, (A.39)

in virtù della antisimmetria della connessione di Lorentz, !ab = ![ab]. Un’al-
tra zero-forma a valori tensoriali nello spazio tengnte è il tensore completa-
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mente antisimmetrico ✏abcd. Applicando il risultato dell’Esercizio 12.3 è facile
verificare che anche in questo caso la derivata covariante esterna, D✏abcd, è
una 1-forma nulla.

Le proprietà della 1-forma D, intesa come operatore di↵erenziale da ⇤p a
⇤p+1

, sono le stesse della derivata esterna d. Se abbiamo, ad esempio, una
p-forma A e una q-forma B, la derivata covariante del loro prodotto esterno
obbedisce alle regole

D(A ^B) = DA ^B + (�1)pA ^DB,

D(B ^A) = DB ^A+ (�1)qB ^DA
(A.40)

(si veda l’Eq. (A.15)). La derivata covariante seconda però non è nulla, in
generale, perché dipende dalla curvatura.

Applicando due volte l’operatore D alla p-forma  dell’Eq. (A.34), e
ricordando il risultato (14.69), abbiamo infatti

D2 =D ^D =D↵D� µ1···µpdx
↵ ^ dx� ^ dxµ1 ^ · · · dxµp

=� i

4
R↵�

ab(!)Jab µ1···µpdx
↵^dx�^dxµ1^· · · dxµp (A.41)

=� i

2
RabJab ^  ,

dove R↵� ab è la curvatura di Lorentz (12.54), e dove abbiamo definito la
2-forma di curvatura

Rab =
1

2
Rµ⌫

abdxµ ^ dx⌫

=
�

@
[µ!⌫] + !

[µ|
a
c!|⌫]

cb
�

dxµ ^ dx⌫ (A.42)

= d!ab + !a
c ^ !cb.

Se  , in particolare, è un campo vettoriale,  ! Aa, e quindi Jab sono i
corrispondenti generatori vettoriali (12.29), l’Eq. (A.41) diventa

D2Aa = Ra
b ^Ab. (A.43)

Questa equazione trascrive e riproduce, nel linguaggio delle forme esterne, il
risultato (12.51) relativo al commutatore di due derivate covarianti di Lorentz
applicate a un vettore.

Si noti che l’Eq. (A.43) può anche essere ottenuta prendendo direttamente
la derivata covariante esterna dell’Eq. (A.35). Applicando due volte l’opera-
tore D alla forma vettoriale Aa, ed usando le proprietà delle forme, abbiamo
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infatti

D2Aa = D ^DAa = d(DAa) + !a
c ^DAc

= d2Aa + d!a
b ^Ab � !a

b ^ dAb + !a
c ^
�

dAc + !c
b ^Ab

�

= (d!a
b + !a

c ^ !c
b) ^Ab

⌘ Ra
b ^Ab,

(A.44)

dove Rab è data dall’Eq. (A.42).

A.3 Forme di torsione e di curvatura: equazioni di
struttura

Nel Capitolo 12 abbiamo visto che la connessione di Lorentz ! rappresenta
il “potenziale di gauge” non-Abeliano associato alla simmetria locale di Lo-
rentz, e che la curvatura R(!) rappresenta il “campo di gauge” (o campo di
Yang Mills) corrispondente. Nel linguaggio delle forme esterne il potenziale
è rappresentato dalla 1-forma di connessione, !ab, e il campo di gauge dalla
2-forma di curvatura, Rab, entrambe definite nella sezione precedente.

Nella sezione precedente abbiamo però introdotto, oltre alla connessione,
un’altra variabile fondamentale per la teoria gravitazionale: la 1-forma V a

che fa da base nello spazio di Minkowski tangente. Ricordando la condizione
di metricità delle tetradi, Eq. (12.40), e prendendone la parte antisimmetrica,

D
[µV

a
⌫] ⌘ @

[µV
a
⌫] + !

[µ
a
⌫] = �

[µ⌫]
a ⌘ Qµ⌫

a, (A.45)

possiamo allora associare alla 1-forma V a la 2-forma di torsione Ra tale che:

Ra = Qµ⌫
adxµ ^ dx⌫ = D

[µV
a
⌫]dx

µ ^ dx⌫ = DV a. (A.46)

Le equazioni che definiscono le 2-forme di torsione e di curvatura in funzione
delle 1-forme di base e di connessione,

Ra = DV a = dV a + !a
b ^ V b, (A.47)

Rab = d!ab + !a
c ^ !cb, (A.48)

si chiamano equazioni di struttura, perché determinano la struttura geome-
trica della varietà considerata. L’equazione per la curvatura, in particolare,
è una conseguenza diretta dell’algebra di Lie del gruppo di Lorentz, e ri-
specchia l’interpretazione di ! come potenziale di gauge per tale gruppo. Se
anche l’equazione per la torsione fosse determinata dalla struttura algebri-
ca di un gruppo di simmetria potremmo interpretare anche la 1-forma V a

come potenziale di gauge, e la 2-forma di torsione come campo di gauge
corrispondente.
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Nella sezione seguente mostreremo che la struttura geometrica descritta
dalle equazioni (A.47), (A.48) è una conseguenza diretta della struttura alge-
brica del gruppo di Poincarè. Più precisamente, mostreremo che la torsione
e la curvatura definite da quelle equazioni rappresentano esattamente i cam-
pi di Yang-Mills per una teoria di gauge non-Abeliana basata sul gruppo di
Poincarè.

A.3.1 Teoria di gauge per il gruppo di Poincarè

Consideriamo un gruppo di simmetria localeG, caratterizzato da n generatori
XA, A = 1, 2, . . . n, che soddisfano l’algebra di Lie

[XA, Xb] = ifAB
CXC , (A.49)

dove fAB
C = �fBA

C sono le costanti di struttura del gruppo.
Per formulare la teoria di gauge corrispondente (si veda la Sez. 12.1.1)

associamo ad ogni generatore XA la 1-forma potenziale hA = hA
µ dx

µ con
valori nell’algebra di Lie del gruppo, e poniamo

h ⌘ hA
µXAdx

µ. (A.50)

Introduciamo quindi la derivata covariante esterna, definita come:

D = d� i

2
h (A.51)

(in unità g = 1, dove g è la costante di accoppiamento adimensionale).
Il prodotto esterno di due derivate covarianti definisce la 2-forma R =

RAXA del campo di gauge, o curvatura:

D2 = D ^D =

✓

d� i

2
h

◆

^
✓

d� i

2
h

◆

 

= � i

2
dh +

i

2
h ^ d � i

2
h ^ d � 1

4
h ^ h (A.52)

= � i

2
R ,

dove

R = RAXA = dh� i

2
h ^ h. (A.53)

Sostituendo h = hAXA, ed usando l’algebra di Lie (A.49), otteniamo

RAXA =
�

dhA
�

XA � i

4
hB ^ hC [XB , Xc]

=

✓

dhA +
1

4
fBC

AhB ^ hC

◆

XA.
(A.54)
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Questo mostra chiaramente che le componenti del campo di gauge,

RA = dhA +
1

4
fBC

AhB ^ hC , (A.55)

sono direttamente determinate dalla struttura algebrica del gruppo di gauge
considerato.

Consideriamo ora il gruppo di Poincarè, ossia il gruppo massimo di iso-
metrie dello spazio piatto tangente. È caratterizzato dai dieci generatori

XA = {Pa, Jab}, (A.56)

dove Jab = �Jba (in questo caso l’indice A varia sulle 4 componenti del
generatore di traslazioni Pa e sulle 6 componenti del generatore di rotazioni
di Lorentz Jab). Associamo a questi dieci generatori altrettante 1-forme, o
potenziali di gauge,

hA = {V a,!ab}, (A.57)

dove !ab = �!ba. Il corrispondente campo di gauge (o di Yang-Mills) R =
RAXA si può allora scomporre nelle componenti relative alle traslazioni e alle
trasformazioni di Lorentz come segue,

R = RAXA = RaPa +RabJab, (A.58)

e la forma esplicita delle due curvature Ra e Rab in funzione dei potenziali
V a e !ab è fissata dall’algebra di Lie del gruppo, in accordo all’Eq. (A.55).

L’algebra di Lie del gruppo di Poincarè è realizzata, in modo esplicito,
dalle seguenti relazioni di commutazione tra i generatori Pa e Jab:

[Pa, Pb] = 0,

[Pa, Jbc] = i (⌘abPc � ⌘acPb) , (A.59)

[Jab, Jcd] = i (⌘adJbc � ⌘acJbd � ⌘bdJac + ⌘bcJad) .

Il confronto con la relazione generale (A.49) ci dice che le costanti di struttura
non-nulle sono

fa,bc
d = 2⌘a[b�

d
c] = �fbc,a

d

fab,cd
ij = 2⌘d[a�

i
b]�

j
c � 2⌘c[a�

i
b]�

j
d,

(A.60)

dove abbiamo separato con una virgola gli indici, o le coppie di indici, re-
lative rispettivamente ai generatori Pa e Jab. Sostituendo nella definizione
di curvatura (A.55) otteniamo allora che il campo di gauge associato alle
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traslazioni,

Ra = dV a +
1

4
fb,cd

aV b ^ !cd +
1

4
fcd,b

a!cd ^ V b

= dV a +
1

2
fcd,b

a!cd ^ V b

= dV a + ⌘bd�
a
c!

cd ^ V b

= dV a + !a
b ^ V b ⌘ DV a,

(A.61)

coincide esattamente con la 2-forma di torsione (A.47). Inoltre, il campo di
gauge associato alle rotazioni di Lorentz,

Rab = d!ab +
1

4
fij,cd

ab!ij ^ !cd

= d!ab +
1

2

�

⌘di�
a
j �

b
c � ⌘ci�

a
j �

b
d

�

!ij ^ !cd

= d!ab +
1

2

�

!d
a ^ !bd � !c

a ^ !cb
�

= d!ab + !a
c ^ !cb,

(A.62)

coincide esattamente con la curvatura di Lorentz (A.48).
Una teoria della gravità basata su di una struttura geometrica di Einstein-

Cartan, caratterizzata da curvatura e torsione, si può quindi interpretare
come una teoria di gauge per il gruppo di Poincarè. La teoria della relatività
generale di Einstein corrisponde al caso limite Ra = DV a = 0 in cui il campo
di gauge torsionico è nullo, ossia il potenziale associato alle traslazioni è “puro
gauge”.

È sempre possibile, in linea di principio, scegliere in modo arbitario la
struttura geometrica da applicare alla varietà spazio-temporale. In pratica,
però, sono le sorgenti gravitazionali a determinare il tipo di struttura che
risulta più adatto (e talvolta anche necessario per la consistenza fisica del
modello).

Abbiamo visto, ad esempio, che una connessione simmetrica (e compatibile
con la metrica) è su�ciente a fornire un’appropriata descrizione dell’intera-
zione gravitazionale tra i corpi macroscopici. Nel caso del gravitino, invece,
abbiamo visto che la presenza di torsione è necessaria per un accoppiamen-
to gravitazionale minimo e consistente (nonché localmente supersimmetrico).
Nelle Sezioni A.4.1 e A.4.2 vedremo come, nel contesto della cosiddetta teo-
ria gravitazionale di Einstein-Cartan, sono le sorgenti stesse a determinare
la torsione – cos̀ı come la curvatura – dello spazio-tempo, mediante le equa-
zioni di campo del modello. In quel caso non è più possibile fissare la parte
antisimmetrica della connessione in modo arbitrario.
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A.3.2 Identità di Bianchi

Concludiamo la Sez. A.3 mostrando che le identità di Bianchi, espresse nel
linguaggio delle forme di↵erenziali, si possono facilmente ricavare prendendo
la derivata covariante esterna delle due equazioni di struttura (A.47), (A.48).

La derivata esterna della torsione fornisce la prima identità di Bianchi, che
si scrive:

DRa = dRa + !a
b ^Rb

= d!a
b ^ V b � !a

b ^ dV b + !a
b ^ dV b + !a

c ^ !c
b ^ V b (A.63)

= Ra
b ^ V b.

La derivata esterna della curvatura di Lorentz fornisce la seconda identità di
Bianchi, che si scrive

DRab = dRab + !a
c ^Rcb + !b

c ^Rac

= d!a
c ^ !cb � !a

c ^ d!cb + !a
c ^
�

d!cb + !c
i ^ !ib

�

+!b
c ^
�

d!ac + !a
i ^ !ic

�

⌘ 0.

(A.64)

Il membro destro di questa equazione si annulla identicamente perché, usando
le proprietà delle forme di↵erenziali introdotte nelle Sezioni A.1.1 e A.1.2,
abbiamo

!b
c ^ d!ac = d!a

c ^ !bc = �d!a
c ^ !cb, (A.65)

e quindi il primo e il penultimo termine, al membro destro, si cancellano a
vicenda. Inoltre,

!b
c ^ !a

i ^ !ic = !a
i ^ !i

c ^ !bc = �!a
i ^ !i

c ^ !cb, (A.66)

e quindi anche l’ultimo e il terz’ultimo termine si cancellano a vicenda.
Le identità di Bianchi (A.63), (A.64) valgono in generale per una connes-

sione che soddisfa la condizione di metricità rg = 0 (si veda la Sez. 3.5),
anche nel caso di torsione non nulla. Nel caso di torsione nulla è facile verifi-
care che le due identità trovate si riducono a quelle già note, e già presentate
in forma tensoriale nella Sez. 6.2.

Per Ra = 0, infatti, l’Eq. (A.63) diventa

RA
b ^ V b = 0, (A.67)

e quindi implica, in componenti,

1

2
R

[µ⌫|
a
bV

b
|↵]dx

µ ^ dx⌫ ^ dx↵ = 0, (A.68)
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da cui si ottiene
R

[µ⌫
a
↵] = �R

[µ⌫↵]
a = 0, (A.69)

che coincide con la prima identità di Bianchi dell’Eq. (6.14).
Dall’Eq. (A.64) abbiamo invece

1

2
D

[µR↵�]
abdxµ ^ dx↵ ^ dx� = 0, (A.70)

da cui
D

[µR↵�]
ab = 0. (A.71)

D’altra parte (si veda il Capitolo 12),

rµR↵�
ab = DµR↵�

ab � �µ↵
⇢R⇢�

ab � �µ�
⇢R↵⇢

ab, (A.72)

per cui, prendendo la parte antisimmetrica negli indici µ,↵,� , il contributo
di � scompare nel caso di torsione nulla (�

[µ↵]
⇢ = 0). In questo caso l’Eq.

(A.71) si può riscrivere nella forma

r
[µR↵�]

ab = 0, (A.73)

e coincide con la seconda identità di Bianchi dell’Eq. (6.15).

A.4 Equazioni di campo con il metodo variazionale di
Palatini

Il metodo variazionale di Palatini, già introdotto ed usato nella Sez. 12.3.1,
consiste nel dedurre le equazioni gravitazionali mediante un principio di
“minima azione” in cui la connessione e le tetradi (o la metrica) vengo-
no trattate come variabili indipendenti. In questa sezione applicheremo ta-
le metodo a una generica azione scritta nel linguaggio delle forme ester-
ne, prendendo come variabili indipendenti le 1-forme di base, V a, e di
connessione, !ab. Di qui in avanti ci restringeremo, per semplicità, al ca-
so di una varietà spazio-temporale con D = 4 dimensioni (i calcoli svol-
ti possono però essere estesi senza di�coltà al generico caso D-dimensio-
nale).

Partiamo dalla forma (12.56) dell’azione gravitazionale di Einstein – che
rappresenta l’integrale della densità di curvatura scalare sul quadrivolume di
spazio-tempo considerato – e osserviamo che tale azione si può scrivere come
l’integrale di una 4-forma di↵erenziale nel modo seguente:

Sg =
1

2�

Z

Rab ^ ? (Va ^ Vb) . (A.74)
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Infatti, usando la definizione di curvatura di Lorentz (A.42), la definizione di
duale (A.16) e la relazione (A.23), abbiamo

Rab ^ ? (Va ^ Vb) =
1

2
Rµ⌫

ab 1

2
V ↵
a V �

b ⌘↵�⇢�dx
µ ^ dx⌫ ^ dx⇢ ^ dx�

=
1

4
Rµ⌫

abV ↵
a V �

b ⌘↵�⇢�⌘
µ⌫⇢�d4x

p
�g

= �1

2
Rµ⌫

abV ↵
a V �

b

⇣

�µ↵�
⌫
� � �⌫↵�

µ
�

⌘

d4x
p
�g

= �Rd4x
p
�g

(A.75)

(nella terza riga abbiamo usato la regola di prodotto (A.20) in D = 4). La
curvatura scalare che appare in questa equazione è definita a partire dalla
connessione di Lorentz come

R = Rµ⌫
ab(!)V µ

a V ⌫
b , (A.76)

in accordo all’Eq. (12.55).
L’azione totale (per il campo di gravità più le sorgenti) si può scrivere

dunque nella forma

S =
1

2�

Z

Rab ^ ? (Va ^ Vb) + Sm( , V,! ), (A.77)

dove  è il campo materiale che fa da sorgente, � = 8⇡G/c4, e dove un ulterio-
re (e appropriato) termine di superficie (si veda la Sez. 7.1) è da considerarsi
eventualmente sottinteso. Nella prossima sezione varieremo questa azione ri-
spetto a V a e !ab per ottenere le corrispondenti equazioni che governano la
dinamica dell’interazione gravitazionale.

A.4.1 Relatività generale ed equazioni di

Einstein-Cartan

Per variare l’azione (A.77) rispetto a V riscriviamo innanzitutto l’operatore
duale in modo esplicito, facendo riferimento alla base di 1-forme nello spazio
tangente (in accordo all’Eq. (A.32)). Otteniamo:

? (Va ^ Vb) =
1

2
✏abcdV

c ^ V d. (A.78)

La variazione rispetto a V dell’azione gravitazionale fornisce allora

�V Sg =
1

4�

Z

Rab ^
�

�V c ^ V d + V c ^ �V d
�

✏abcd

=
1

2�

Z

�

Rab ^ V c✏abcd
�

^ �V d,

(A.79)
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dove abbiamo usato l’anticommutatività del prodotto esterno di due 1-forme,
�V c ^ V d = �V d ^ �V c (si veda l’Eq. (A.8)), e l’antisimmetria del tensore ✏
negli indici c e d.

A questo contributo va aggiunta la variazione dell’azione materiale rispetto
a V , che si può scrivere in generale come

�V Sm =

Z

✓d ^ �V d, (A.80)

dove ✓d è una 3-forma che possiamo associare alla densità di energia e impulso
delle sorgenti. Essendo una 3-forma, ✓d può essere rappresentato sulla base
V a in generale come segue,

✓d =
1

3!
✓d

i✏iabcV
a ^ V b ^ V c, (A.81)

dove l’espressione esplicita di ✓d i dipende ovviamente dal particolare tipo di
sorgente considerato (come vedremo negli esempi successivi). Sommando i
due contributi (A.79), (A.80) otteniamo infine le equazioni di campo,

1

2
Rab ^ V c✏abcd = ��✓d, (A.82)

che riproducono le equazioni di Einstein come un’uguaglianza tra due 3-forme
a valori vettoriali nello spazio-tempo tangente di Minkowski.

Per riscrivere tali equazioni in forma tensoriale prendiamo le componenti
di queste 3-forme usando le definizioni (A.42), (A.81), e le antisimmetrizzia-
mo moltiplicandole per il tensore completamente antisimmetrico. Il membro
sinistro dell’Eq. (A.82) fornisce allora

1

4
Rµ⌫

abV c
↵✏abcd✏

µ⌫↵� = Rd
� � 1

2
V �
d R, (A.83)

dove abbiamo usato il risultato del”Esercizio 12.4 (Eq. (12.75)). Il membro
destro fornisce

� �

3!
✓d

i✏iabc✏
abc� = �✓d

� . (A.84)

L’equazione di campo (A.82) si riscrive dunque in forma tensoriale come

Gd
� = �✓d

� , (A.85)

dove Gd
� è il tensore di Einstein (A.83).

Queste equazioni, però, non risultano esplicitamente determinate finché
non specifichiamo quale connessione va usata per calcolare la curvatura, il
tensore di Einstein, e il tensore energia-impulso delle sorgenti. A questo pro-
posito è necessario considerare la seconda equazione di campo, che si ottiene
variando l’azione (A.77) rispetto alla connessione !.
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Calcoliamo innazitutto la variazione della curvatura Rab(!). Dalla defini-
zione (A.42), e dalla definizione di covariante esterna, abbiamo

�!R
ab = d�!ab + �!a

c ^ !cb + !a
c ^ �!cb

= d�!ab + !a
c ^ �!cb + !b

c ^ �!ac (A.86)

⌘ D�!ab.

Consideriamo poi l’azione gravitazionale. Usando il risultato precedente, ri-
cordando che D✏abcd = 0 (si veda la Sez. A.2), e ricordando la definizione di
torsione (A.47), otteniamo:

�!Sg =
1

4�

Z

D�!ab ^ V c ^ V d✏abcd

=
1

4�

Z

⇥

D
�

�!ab ^ V c ^ V d
�

+ 2�!ab ^Rc ^ V d
⇤

✏abcd

(A.87)

(per il segno dell’ultimo termine abbiamo usato la proprietà (A.40) delle
derivate esterne).

Osserviamo ora che il primo termine del precedente integrale corrisponde
a una divergenza totale che fornisce, applicando il teorema di Gauss, un
contributo di bordo. Infatti, è l’integrale della derivata covariante esterna di
una 3-forma scalare, ossia è un integrale del tipo
Z

⌦

DA =

Z

⌦

dA =

Z

⌦

@
[µA⌫↵�] dx

µ ^ dx⌫ ^ dx↵ ^ dx�

=

Z

⌦

@µ
�

A⌫↵�⌘
µ⌫↵�p�g

�

d4x =

Z

@⌦

dSµ

p
�g ⌘µ⌫↵�A⌫↵�

(A.88)

(abbiamo usato l’Eq. (A.23) e il teorema di Gauss). Nel nostro caso, in
particolare, la 3-forma A è data da

A = �!ab ^ V c ^ V d✏abcd. (A.89)

Poiché A è proporzionale a �! il contributo dell’integrale (A.88) è nullo,
perché il principio variazionale impone la condizione di variazione nulla, �! =
0, sul bordo @⌦. Rimane dunque solo il secondo termine dell’Eq. (A.87), che
fornisce

�!Sg =
1

2�

Z

�!ab ^Rc ^ V d✏abcd. (A.90)

Va poi considerato il contributo dell’azione materiale Sm, la cui variazione
rispetto a ! si può esprimere in generale nella forma seguente,

�!Sm =

Z

�!ab ^ Sab, (A.91)
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dove Sab = �Sba è una 3-forma a valori tensoriali antisimmetrici. Tale forma,
come vedremo, è collegata alla densità di momento angolare intrinseco, e
la sua espressione esplicita dipende dal modello di sorgente considerato (si
vedano gli esempi successivi).

Sommando i contributi (A.90) e (A.91) otteniamo la relazione

1

2
Rc ^ V d✏abcd = ��Sab, (A.92)

che rappresenta l’equazione di campo per la connessione. Risolvendo per !
possiamo specificare completamente la geometria del modello di gravità con-
siderato, e sostituendo ! nell’Eq. (A.82) possiamo infine determinare la corri-
spondente dinamica gravitazionale. Le due equazioni (A.82), (A.92) vengono
anche chiamate equazioni di Einstein-Cartan.

Nel caso particolare in cui la sorgente considerata non dà contributi all’e-
quazione per la connessione – oppure i contributi forniti da Sab sono trascu-
rabili – si riottengono le equazioni di Einstein della relatività generale. Per
Sab = 0 l’Eq. (A.92) implica infatti che la torsione deve essere nulla. Per veri-
ficarlo, scriviamo l’Eq. (A.92) in forma esplicita tensoriale. Ponendo Sab = 0,
antisimmetrizzando le componenti e ricordando la regola di prodotto (12.74),
otteniamo allora la condizione

1

2
Q

[µ⌫
cV d
↵]✏abcd✏

µ⌫↵� =
1

2
Qµ⌫

cV µ⌫�
abc = 0, (A.93)

ossia

1

2

⇣

Qab
cV �

c +Qbc
cV �

a +Qca
cV �

b �Qac
cV �

b �Qba
cV �

c �Qcb
cV �

a

⌘

= Qab
� +QbV

�
a �QaV

�
b = 0,

(A.94)

dove Qb ⌘ Qbc
c. Moltiplicando per V b

� troviamo che la traccia deve essere
nulla, Qa = 0, e l’Eq. (A.94) si riduce a

Qab
c ⌘ 0. (A.95)

La condizione di torsione nulla, d’altra parte, si scrive anche Ra = DV a = 0,
ossia

D
[µV

a
⌫] ⌘ @

[µV
a
⌫] + !

[µ
a
⌫] = 0, (A.96)

che risolta per ! fornisce la connessione di Levi-Civita della relatività generale
(si vedano le equazioni (12.41)-(12.48) con Q = 0). Con questa connessione
l’Eq. (A.85) coincide esattamente con le equazioni di campo di Einstein: al
membro sinistro si ritrova infatti il tensore di Einstein simmetrico, calcolato
dal tensore di curvatura di Riemann, e al membro destro si ritrova il tensore
dinamico (e simmetrico) energia-impulso.

Nel contesto di una geometria con torsione nulla, Ra = DV a = 0, e nel
linguaggio delle forme di↵erenziali, la legge di conservazione covariante del
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tensore energia-impulso si ottiene immediatamente prendendo la derivata co-
variante esterna dell’Eq. (A.82). Infatti, la derivata del membro sinistro è
identicamente nulla,

1

2
DRab ^ V c✏abcd = 0, (A.97)

grazie alla seconda identità di Bianchi (A.64). Questo implica che anche la
derivata del membro destro deve annullarsi, ossia che

D✓a = 0, (A.98)

e questa condizione, riscritta in forma tensoriale, riproduce esattamente
l’equazione di conservazione (7.35).

Per verificarlo, osserviamo innanzitutto che l’Eq. (A.97) corrisponde alla
cosiddetta “identità di Bianchi contratta”, scritta nel linguaggio delle for-
me di↵erenziali. Passando al formalismo tensoriale – e cioè considerando le
componenti delle forme e antisimmetrizzandole – abbiamo infatti:

1

4
rµR↵�

abV c
⌫ ✏abcd✏

µ⌫↵� = 0. (A.99)

Si noti che abbiamo sostituito Dµ con rµ perché la di↵erenza tra i due ope-
ratori è rappresentata dal contributo dei simboli di Christo↵el, che scompa-
iono antisimmetrizzando in µ,↵,� (si veda l’Eq. (A.72)). Usando il risultato
(12.75) per il prodotto dei tensori antisimmetrici, l’equazione precedente si
riduce a:

rµ

✓

Rc
µ � 1

2
V µ
c R

◆

= 0. (A.100)

Sfruttando la condizione di metricità delle tetradi,rµV c
⌫ = 0, possiamo infine

moltiplicare per V c
⌫ , e riscrivere il risultato come

rµG⌫
µ = 0, (A.101)

che coincide appunto con l’identità di Bianchi contratta (6.26).
Prendiamo ora le componenti dell’Eq. (A.98), usando la definizione (A.81)

per ✓, ed antisimmetrizzando. Ripetendo i passaggi precedenti, e ricordando
che rµ⌘⇢⌫↵� = 0 (si veda l’Esercizio 3.7), otteniamo

1

6
rµ✓a

⇢⌘⇢⌫↵�⌘
µ⌫↵� = �1

6
rµ✓a

µ = 0. (A.102)

Moltiplicando infine per V a
⌫ , ed usando ancora rµV a

⌫ = 0, arriviamo infine
alla condizione

rµ✓⌫
µ = 0, (A.103)

che coincide con l’equazione di conservazione covariante per il tensore energia-
impulso, in accordo al precedente risultato (7.35).
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Esempio: campo scalare libero

Concludiamo la discussione della relatività generale espressa nel linguaggio
delle forme esterne con un semplice esempio di sorgente materiale che non
genera torsione: un campo scalare � a massa nulla. La sua azione si scrive (in
unità h̄ = c = 1):

Sm = �1

2

Z

d� ^ ?d�. (A.104)

Infatti, applicando il risultato (A.24) alla 1-forma d�, otteniamo

d� ^ ?d� = �d4x
p
�g @µ�@

µ�, (A.105)

e quindi l’azione precedente coincide con l’azione canonica (7.37) di un campo
scalare libero (con V (�) = 0).

La variazione rispetto ad ! – che non compare in Sm – è banalmente
nulla: ritroviamo cos̀ı la condizione (A.95) di torsione nulla, e la connessione
si riduce a quella standard della geometria di Riemann usata dalla relatività
generale.

La variazione dell’azione (A.104) rispetto a V rappresenta un utile esercizio
di calcolo con le forme esterne. Osserviamo innanzitutto che �V d� = 0, e che
il contributo alla variazione viene dal termine duale, �V (?d�). Riscrivendo il
duale rispetto alla base V a dello spazio tangente abbiamo

?d� =
1

3!
V µ
i @µ� ✏

i
abcV

a ^ V b ^ V c. (A.106)

Perciò

�V (?d�) =
1

2
@i� ✏iabc�V

a ^ V b ^ V c

� 1

3!
�V j

µ@j�V
µ
i ✏

i
abcV

a ^ V b ^ V c,
(A.107)

dove abbiamo usato l’identità

(�V µ
i )V j

µ = �
�

�V j
µ

�

V µ
i , (A.108)

che segue dalla relazione V j
µV

µ
i = �ji . Usando nuovamente la definizione di

duale possiamo anche riscrivere l’Eq. (A.107), in forma compatta, nel modo
seguente:

�V (?d�) = @i��V a ^ ? (Vi ^ Va)� @j�
?�V j . (A.109)

La variazione dell’azione scalare (A.104) assume quindi la forma

�V Sm = �1

2

Z

⇥

@a� d�^ �V b ^ ? (Va ^ Vb)� @a� d�^ ?�V a
⇤

= �1

2

Z

⇥

@a� d�^ ? (Va ^ Vb) ^ �V b + @a�
?d� ^ �V a

⇤

(A.110)
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(nel secondo passaggio abbiamo usato, per il secondo termine, la proprietà
A ^ ?B = B ^ ?A, valida per due forme dello spesso grado). L’equazione di
campo (A.82) in questo caso diventa:

1

2
Rab ^ V c✏abcd =

�

2
[@a� d�^ ? (Va ^ Vd) + @d�

?d�] . (A.111)

Il membro sinistro, calcolato con torsione nulla, corrisponde all’usuale tensore
di Einstein simmetrico. Verifichiamo che anche il membro destro corrisponde
all’usuale tensore energia-impulso (simmetrico) di un campo scalare a massa
nulla.

Prendendo le componenti della 3-forma presente a membro destro, e
antisimmetrizzando, abbiamo

1

2



1

2
@a�@µ� ✏adijV

i
⌫V

j
↵ ✏

µ⌫↵� +
1

6
@d�@

⇢� ⌘⇢µ⌫↵⌘
µ⌫↵�

�

= �1

2
@a�@µ�

⇣

V µ
a V �

d � V �
a V µ

d

⌘

+
1

2
@d�@

�� (A.112)

= @d�@
��� 1

2
V �
d (@µ�@

µ�) = ✓d
� ,

che coincide appunto con il tensore canonico (7.40) del campo scalare (per il
caso libero con V (�) = 0).

A.4.2 Sorgenti con spin e geometria con torsione

Per illustrare un semplice modello geometrico che utilizza la torsione pren-
diamo come sorgente gravitazionale un campo spinoriale di Dirac a massa
nulla, che possiamo rappresentare come una zero-forma  a valori spinoriali
nello spazio tangente di Minkowski. L’azione materiale si può allora scrivere
(in unità h̄ = c = 1) come

Sm = �i

Z

 � ^ ?D , (A.113)

dove � = �aV a è una 1-forma, e ?D è la 3-forma ottenuta dualizzando la
1-forma che corrisponde alla derivata covariante esterna dello spinore, defi-
nita in accordo all’Eq. (13.23). Applicando a queste forme il risultato (A.24)
abbiamo, infatti,

�i � ^ ?D = i �µDµ d4x
p
�g, (A.114)

che ci riporta all’azione covariante (13.24) (con m = 0).
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Variando l’azione spinoriale rispetto a V , ed applicando la definizione
(A.80), otteniamo la 3-forma

✓a = i �a
?D , (A.115)

che fa da sorgente nell’equazione gravitazionale di Einstein-Cartan (A.82). Si
noti che questo oggetto non corrisponde al tensore energia-impulso dinami-
co del campo di Dirac calcolato nell’Esercizio 13.3 (che è simmetrico, e che
fa da sorgente nelle equazioni gravitazionali di Einstein). Infatti, inserendo
questa espressione di ✓a nell’Eq. (A.82), prendendo le componenti, antisim-
metrizzando, e proiettando dallo spazio tangente allo spazio-tempo curvo,
arriviamo all’equazione tensoriale

G↵� = i� �↵D� , (A.116)

il cui membro destro è esplicitamente non simmetrico in ↵ e �.
Tale asimmetria, che non sarebbe consistente nel contesto della geometria

di Riemann, è invece consistente in una geometria di Riemann-Cartan ca-
ratterizzata da torsione non nulla. In quel caso, infatti, il membro sinistro
dell’Eq. (A.116) va calcolato con una connessione a�ne non simmetrica (si
veda la Sez. 3.5) e risulta anch’esso non simmetrico, al contrario dell’usuale
tensore di Einstein (6.25).

Per verificare che il campo di Dirac considerato produce la torsione neces-
saria alla consistenza del modello dobbiamo variare l’azione (A.113) rispetto
alla connessione !, ricordando che

D = d +
1

4
!ab�

[a�b] (A.117)

(si veda l’Eq. (13.23)). Si ottiene

�!Sm = � i

4

Z

 � ^ ?
�

�!ab�
[a�b]

�

 

= � i

4

Z

�!ab ^  ?��
[a�b] ,

(A.118)

dove ?� = �c ?V c, e dove abbiamo usato la proprietà � ^ ?�! = �! ^ ?�,
valida per forme � e �! dello stesso grado. Applicando la definizione (A.91)
troviamo allora che l’equazione di Einstein-Cartan (A.92) per la connessione
assume la forma

1

2
Rc ^ V d✏abcd =

i

4
� ?��

[a�b] . (A.119)

In questo caso la corrente spinoriale agisce da sorgente, e la torsione non è
più nulla.

Per calcolare esplicitamente la torsione è conveniente riscrivere l’equazio-
ne precedente in forma tensoriale, prendendone le componenti ed antisimme-
trizzando. Per il membro sinistro questo lavoro è già stato fatto, e il risul-
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tato riportato in Eq. (A.94). Ripetendo la procedura per il membro destro
abbiamo

i

4
 �c�

[a�b] 
1

6
V ⇢
c ⌘⇢µ⌫↵✏

µ⌫↵� =
i

4
 ���

[a�b] , (A.120)

e l’Eq. (A.119) fornisce quindi

Qab
� +QbV

�
a �QaV

�
b =

i

4
� ���

[a�b] . (A.121)

Moltiplicando per V b
� otteniamo la traccia della torsione,

Qa = i
3

8
� �a , (A.122)

e quindi, portando i termini di traccia al membro destro, abbiamo:

Qabc =
i

4
� 
�

�c�
[a�b] � 3⌘c[a�b]

�

 . (A.123)

Ricordando le relazioni (13.34), (13.36) tra le matrici � possiamo infine scri-
vere la torsione separando esplicitamente il contributo assiale e vettoriale del
campo di Dirac:

Qabc =
�

4

�

✏abcd �
5�d + i �

[a⌘b]c 
�

. (A.124)

Una volta determinata la torsione, la corrispondente connessione di Lorentz
si ottiene risolvendo la condizione di metricità per le tetradi, e la soluzione è
data dalle equazioni (12.46)-(12.48):

!cab = �cab +Kcab ⌘ �cab � (Qcab �Qabc +Qbca) , (A.125)

dove � è la connessione di Levi-Civita. Quando Q 6= 0, in particolare, la
curvatura di Lorentz determinata da ! contiene i contributi della torsione e
definisce un tensore di Einstein non-simmetrico, modificando cos̀ı le equazioni
di campo rispetto a quelle della relatività generale.

È interessante notare che, in questo contesto geometrico generalizzato,
anche l’equazione covariante di Dirac risulta modificata. Infatti, l’equazione
del moto che segue dall’azione (A.113) è data da i�^?D = 0, e si può ancora
scrivere nella forma usuale i�µDµ = 0, ma la derivata covariante (A.117)
deve essere e↵ettuata con la connessione (A.125). La presenza di torsione
induce allora nell’equazione spinoriale dei termini non-lineari di contatto,
detti anche “termini di Heisenberg”.

Per determinarli esplicitamente sostituiamo nella parte torsionica della
connessione il risultato (A.124), e separiamo il contributo della connessione
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di Levi-Civita ponendo

D = d+
1

4
�ab�

[a�b] +
1

4
Kab�

[a�b]

= D +
1

4
Kab�

[a�b],

(A.126)

dove D rappresenta la derivata covariante della relatività generale (si veda il
Capitolo 13), ottenuta in assenza di torsione. Abbiamo allora:

i�µDµ = i�µDµ +
i

4
�µKµab�

[a�b] 
(A.127)

= i�µDµ +
�

16
�c�[a�b] 

⇥

 (�b⌘ca � �a⌘cb) � i✏abcd �
5�d 

⇤

.

Termini non lineari di contatto, di questo tipo, sono richiesti ad esempio nel-
l’equazione covariante del campo spinoriale di Rarita-Schwinger per renderla
localmente supersimmetrica, come abbiamo discusso nella Sez. 14.3.

A.4.3 Un semplice modello di supergravità

Come ultima applicazione di calcolo con le forme di↵erenziali presenteremo
l’azione, e deriveremo le corrispondenti equazioni di campo, per il modello di
supergravità N = 1 discusso nella Sez. 14.3.

Rappresentiamo il gravitino con la 1-forma  =  µdxµ a valori spinoriali
nello spazio tangente. L’azione corrispondente alla Lagrangiana (14.53) si può
allora scrivere nel modo seguente,

S =
1

4�

Z

Rab ^ V c ^ V d✏abcd +
i

2

Z

 ^ �
5

� ^D , (A.128)

dove � = �aV a, e dove l’operatore D indica la derivata covariante esterna di
Lorentz dell’Eq. (A.117).

La traduzione dell’azione gravitazionale nell’ordinario linguaggio tensoriale
è già stata esplicitamente e↵ettuata nell’Eq. (A.75). Per la parte spinoriale
usiamo l’Eq. (A.23) ed otteniamo, in forma esplicita,

i

2
 µ�5�⌫D↵ �dx

µ ^ dx⌫ ^ dx↵ ^ dx� =
i

2
 µ�5�⌫D↵ �✏

µ⌫↵�d4x, (A.129)

in perfetto accordo con la Lagrangiana (14.53).
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Per ottenere le equazioni di campo variamo l’azione (A.128) rispetto a V ,
! e  . Cominciando con V abbiamo

�V S
3/2 =

i

2

Z

 ^ �
5

�a�V
a ^D 

=
i

2

Z

 ^ �
5

�aD ^ �V a.

(A.130)

Aggiungendo la variazione (A.79) della parte gravitazionale dell’azione arri-
viamo immediatamente all’equazione di campo

1

2
Rab ^ V c✏abcd = � i

2
� ^ �

5

�dD . (A.131)

La versione tensoriale del membro sinistro è riportata nell’Eq. (A.83). Estraen-
do le componenti tensoriali anche per il membro destro ritroviamo l’equazione

Gd
� = � i

2
� µ�5�dD⌫ ↵✏

µ⌫↵�

=
i

2
� µ�5�dD⌫ ↵✏

µ⌫�↵ (A.132)

⌘ �✓d
� ,

dove ✓d � è il tensore canonico (14.65). Ritroviamo dunque esattamente il
risultato dell’equazione gravitazionale (14.64) ottenuta in precedenza.

Variamo ora rispetto a !. Ricordando la definizione (A.117) della derivata
covariante spinoriale, l’azione del gravitino fornisce

�!S
3/2 =

i

8

Z

�!ab ^  ^ �
5

��
[a�b] ^  . (A.133)

Sommando la variazione dell’azione gravitazionale, Eq. (A.90), arriviamo
all’equazione di campo per la connessione scritta nella forma

1

2
Rc ^ V d✏abcd = � i

8
� ^ �

5

��
[a�b] ^  . (A.134)

Osserviamo ora che � = �cV c
⌫ dx

⌫ = �⌫dx⌫ , per cui possiamo sfruttare la
relazione (14.58) per esprimere il prodotto �

5

�⌫�
[a�b]. Inseriamo tale relazione

nell’equazione precedente, e omettiamo i termini che non contribuiscono per
le proprietà di di anticommutazione degli spinori di Majorana (si veda la Sez.
14.3.1). L’equazione precedente diventa

1

2
Rc ^ V d✏abcd = �1

8
� ^ V c�d ^  ✏abcd

= �1

8
� �c ^  ^ V d✏abcd.

(A.135)
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Nel secondo passaggio abbiamo usato la proprietà V c^ = � ^V c, e abbia-
mo scambiato tra loro il nome degli indici c e d. Da quest’ultima equazione,
fattorizzando V d✏abcd, otteniamo immediatamente la 2-forma di torsione

Rc = �1

4
� �c ^  , (A.136)

che riproduce, nel linguaggio delle forme esterne, il risultato tensoriale
(14.60).

Variamo infine l’azione (A.128) rispetto a  . Si ottiene l’equazione del
gravitino,

i

2
�
5

� ^D = 0. (A.137)

Prendendone le componenti, ed antisimmetrizzando, si arriva al risultato

i

2
�
5

�⌫D↵ �✏
µ⌫↵� = 0, (A.138)

che riproduce l’equazione del gravitino (14.66), scritta in esplicita forma
tensoriale.



Appendice B

Gravità multidimensionale

Come già mostrato in varie parti di questo libro (Capitolo 11, Appendice A),
non è di�cile scrivere le equazioni gravitazionali in varietà spazio-temporali
caratterizzate da un numero di dimensioni arbitrario D > 4. Il problema
che può sorgere, però, è quello di capire l’eventuale rilevanza fisica (e la
pertinenza) di tali modelli per la descrizione geometrica della gravità a livello
macroscopico, ed eventualmente quello di trovare le possibili correzioni alle
leggi che governano l’interazione gravitazionale in quattro dimensioni, indotte
dalla presenza delle dimensioni spaziali aggiuntive (che chiameremo, usando
un termine d’uso corrente, “dimensioni extra”).

Possiamo chiederci, innanzitutto, per quale motivo dovremmo prendere in
considerazione modelli di gravità multidimensionali.

Il motivo è semplice: i modelli unificati di tutte le interazioni fondamen-
tali, come i modelli di supergravità e di superstringa (si vadano ad esempio
i testi [24, 27, 28] della Bibliografia finale) richiedono, per loro consistenza
interna, una formulazione ambientata in uno spazio-tempo multidimensio-
nale. Possiamo ricordare a questo proposito la teoria delle superstringhe in
D = 10 dimensioni, che rappresenta attualmente l’unica teoria unificata ca-
pace di includere, oltre alla gravità e alle altre interazioni fondamentali rap-
presentate dai campi (bosonici) di gauge, anche tutti i componenti elementari
(fermionici) della materia. Questa teoria fornisce inoltre un modello di gravità
quantistica valido (in principio) a tutte le scale di energia.

Se accettiamo l’idea che un modello fenomenologicamente completo e for-
malmente consistente vada formulato in uno spazio-tempo multidimensionale,
la domanda che si pone, allora, è la seguente: come dedurre da tale modello
le equazioni che governano le interazioni gravitazionali in D = 4?

La risposta è fornita dal cosiddetto meccanismo di “riduzione dimensiona-
le”, che ci dice, in sostanza, come “immergere” il nostro Universo a quattro di-
mensioni in una varietà multidimensionale. In questa appendice discuteremo
brevemente due possibili scenari di riduzione dimensionale: il “vecchio” scena-
rio di Kaluza-Klein, nel quale le dimensioni extra risultano compattificate su
scale di lunghezze estremamente piccole; e il nuovo scenario “a membrana”,

� Springer-Verlag Italia 2015
M. Gasperini, Relatività Generale e Teoria della Gravitazione,
UNITEXT for Physics, DOI 10.1007/978-88-470-5690-9
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nel quale tutte le interazioni fondamentali, tranne la gravità, sono confinate
su di una “fetta” a quattro dimensioni di una varietà spazio-temporale con
molte dimensioni spaziali.

Come nel caso della precedente Appendice A, va sottolineato che anche
in questa appendice lo scopo principale è quello di fornire una prima intro-
duzione, di tipo pedagogico, ai problemi menzionati in precedenza. I lettori
interessati all’argomento sono invitati a consultare altri testi per una discus-
sione più specialistica ed esauriente dei modelli di gravità multidimensionali,
e per un approfondimento dei vari problemi ad essi associati (si veda ad
esempio il testo [25] della Bibliografia finale per lo scenario di Kaluza-Klein).

Ricordiamo infine che, in tutta questa appendice, gli indici Latini maiuscoli
saranno riferiti alle rappresentazioni tensoriali di una varietàD-dimensionale,
e assumeranno quindi i valori A,B,C, . . . = 0, 1, 2, 3, . . . , D � 1.

B.1 Il modello di Kaluza-Klein

L’esempio più semplice di modello gravitazionale con più di quattro dimen-
sioni è stato fornito quasi un secolo fa da Kaluza e Klein1, ed è stato costruito
con lo scopo di fornire una descrizione geometrica, oltre che della gravità, an-
che dell’unica altra interazione fondamentale nota a quel tempo: l’interazione
elettromagnetica.

L’idea di base era quella di interpretare il potenziale elettromagnetico Aµ

come un componente della metrica in uno spazio-tempo a cinque dimensioni
M

5

, e la simmetria di gauge U(1) come un’isometria della geometria penta-
dimensionale. Questa idea, come vedremo in seguito, si può estendere (in
principio) anche a campi di gauge non-Abeliani, a patto di introdurre varietà
spazio-temporali con un numero opportuno di dimensioni e un’appropriata
struttura geometrica (e isometrica).

Ma partiamo dal semplice caso di un modello di pura gravità in D = 5
dimensioni, descritto dall’azione

S = �M3

5

2

Z

dx5

p

|�
5

|R
5

. (B.1)

In questa azione �
5

è il determinante della metrica pentadimensionale �AB ,
mentre R

5

è la corrispondente curvatura scalare di Riemann. Infine, M3

5

⌘
(8⇡G

5

)�1 rappresenta la scala di massa associata alla costante d’accoppia-
mento G

5

che controlla l’intensità e↵ettiva dell’interazione gravitazionale
nella varietà a cinque dimensioni M

5

.
Si noti che stiamo usando unità in cui h̄ = c = 1 e che, in queste unità, la

costante gravitazionale di uno spazio-tempo D-dimensionale ha dimensioni

1 T. Kaluza, Sitzungsber. Preuss. Akad. Wiss. Berlin 1921, 966 (1921); O. Klein, Z. Phys.
37, 895 (1926).
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[GD] = M2�D = LD�2. In D = 4 l’accoppiamento è controllato dalla usuale
costante di Newton G, collegata alla scala di massa (o di lunghezza) di Planck
dalla ben nota relazione 8⇡G = M�2

P

= �2
P

.
Notiamo ora che il tensore metrico �AB di una varietà D-dimensionale, es-

sendo simmetrico, possiede in generale un numero D(D+1)/2 di componenti
indipendenti. In D = 5, in particolare, il numero di componenti indipendenti
è pari a 15, ed è possibile scomporre la metrica �AB in una parte simmetrica
4 ⇥ 4 di tipo tensoriale gµ⌫ (con 10 componenti indipendenti), una parte di
tipo vettoriale Aµ (con 4 componenti indipendenti) e una parte di tipo scalare
� (con 1 componente indipendente). Mettendo in evidenza (per convenienza
futura) un possibile fattore scalare moltiplicativo possiamo perciò porre

�AB = w(�) �AB , (B.2)

dove w(�) è una funzione scalare positiva (ma arbitraria) di �, e dove:

�µ⌫ = gµ⌫ � �AµA⌫ , �µ4 = �
4µ = �Aµ, �

44

= ��. (B.3)

Ricordiamo le convenzioni: gli indici Greci variano da 0 a 3, gli indici Latini
maiuscoli variano da 0 a 4, e la quinta dimensione corrisponde all’indice 4.
Stiamo inoltre assumendo che la variabile � sia positiva. La metrica inversa
è data da �AB = w�1�AB , dove:

�µ⌫ = gµ⌫ , �µ4 = �4µ = Aµ = gµ↵A↵, �44 = ���1+g↵�A↵A� , (B.4)

e dove gµ↵g⌫↵ = �µ⌫ . Si può facilmente verificare che la proprietà �AC�CB =
�BA risulta automaticamente soddisfatta.

La parametrizzazione �AB in funzione del multipletto di campi {gµ⌫ , Aµ,�}
è per il momento completamente generale, ma risulta utile per discutere
le proprietà di trasformazione della metrica pentadimensionale rispetto a
particolari trasformazioni di coordinate.

Partiamo infatti da una generica carta di M
5

, zA = {xµ, y} (abbiamo
chiamato y la quinta coordinata z4), e consideriamo la trasformazione alla
nuova carta z0A = {x0µ, y0} dove, in particolare,

x0µ = xµ, y0 = y + f(x). (B.5)

Calcolando �0AB(z
0) secondo le regole standard di trasformazione tensoriale

(si veda ad esempio l’Eq. (2.18)) troviamo facilmente che le componenti della
metrica, nella nuova carta, sono date

g0µ⌫(x, y
0) = gµ⌫(x, y), A0

µ(x, y
0) = Aµ(x, y) + @µf(x),

�0(x, y0) = �(x, y).
(B.6)

Il risultato ottenuto per Aµ suggerisce che un modello geometrico che ri-
sulta “isometrico” rispetto alla trasformazione di coordinate (B.5) dovrebbe
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rispecchiare la presenza di una simmetria di gauge Abeliana, associata alla
componente vettoriale Aµ del tensore metrico.

Che le cose stiano e↵ettivamente cos̀ı è confermato dal processo di “riduzio-
ne dimensionale” del modello, che ci porta dalla varietàM

5

allo spazio-tempo
a quattro dimensioni M

4

.
L’approccio di Kaluza-Klein a questo processo si basa sull’assunzione

che la struttura geometrica di M
5

si possa fattorizzare come il prodotto
M

5

= M
4

N

S
1

, dove S
1

è uno spazio unidimensionale compatto, topologi-
camente equivalente a un cerchio di raggio Lc, e quindi parametrizzato da
una coordinata y che soddisfa alla condizione 0  y  2⇡Lc. In tal caso, tutti
gli oggetti definiti su M

5

(inclusi i campi gµ⌫ , Aµ e �) risultano periodici in
y e si possono sviluppare in serie di Fourier rispetto a questa variabile. Per
le componenti della metrica, in particolare, abbiamo

gµ⌫(z) =
1
X

n=�1
g(n)µ⌫ (x)e

iny/Lc ,

Aµ(z) =
1
X

n=�1
A(n)

µ (x)einy/Lc , (B.7)

�(z) =
1
X

n=�1
�(n)(x)einy/Lc .

Poiché questi campi sono reali, le componenti di Fourier soddisfano ov-

viamente la condizione di realtà (g(n)µ⌫ )⇤ = g(�n)
µ⌫ (e cos̀ı via per A(n)

µ e
�(n)).

Una volta fissata la dipendenza da y (grazie allo sviluppo di Fourier pre-
cedente), la riduzione dimensionale si ottiene inserendo le componenti della
metrica (B.2)-(B.4) nell’azione (B.1), e integrando rispetto alla quinta coor-
dinata y. Si arriva cos̀ı ad una (complicata) azione e↵ettiva a quattro di-
mensioni2 che descrive le mutue interazioni di un numero infinito di campi

quadri-dimensionali (i modi di Fourier g(n)µ⌫ , A
(n)
µ , �(n)), i quali – perlome-

no in una metrica piatta di Minkowski e in un regime perturbativo di basse
energie – sono caratterizzati da una massa mn che cresce proporzionalmente
all’indice di Fourier, mn = n/Lc.

Che la massa abbia un andamento di questo tipo si può determinare facil-
mente scrivendo l’azione (B.1) per una configurazione geometrica che appros-
sima quella di Minkowski, e ponendo �AB = ⌘AB + hAB + . . .. Si trova allora
che le fluttuazioni hAB soddisfano un’equazione linearizzata che si riduce, nel

2 Questa azione e↵ettiva è caratterizzata da un numero infinito di simmetrie, come possia-
mo scoprire sviluppando in serie di Fourier i parametri ⇠A della trasformazione di coordi-
nate infinitesima zA ! zA + ⇠A(xµ, y). Infatti, per rispettare la struttura topologica che
abbiamo assunto per M5, dobbiamo restringerci a trasformazioni di coordinate che siano
periodiche in y, e quindi caratterizzate da un parametro infinitesimo che si può sviluppare
come segue: ⇠A =

P

n
⇠A
(n)

(x)einy/Lc (come sottolineato da L. Dolan e M. J. Du↵in Phys.

Rev. Lett. 52, 14 (1984)).
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vuoto, all’equazione di D’Alembert in cinque dimensioni,

�

@2
0

�r2 � @2y
�

hAB = 0. (B.8)

Sviluppando in modi di Fourier, e tenendo conto della condizione di periodi-
cità (B.7), troviamo infine che le componenti di Fourier della soluzione hanno
la forma hn ⇠ exp(�ikµxµ + iny/Lc), e soddisfano quindi alla relazione di
dispersione

�!2 + k2 +
n2

L2

c

= 0, (B.9)

tipica di modi massivi con m2 = n2/L2

c .
Se assumiamo che Lc sia una lunghezza molto piccola – la quinta di-

mensione, come vedremo in seguito, deve essere su�cientemente compat-
ta per evitare di essere rivelabile sperimentalmente alle energie attualmen-
te accessibili – ne consegue che i modi massivi, con n 6= 0, devono esse-
re molto pesanti, e quindi di�cili da produrre. Nel limite di basse ener-
gie possiamo quindi limitarci (perlomeno in prima approssimazione) ad
una azione e↵ettiva che contiene solo i modi di Fourier a massa nulla
(n = 0), assumendo cioè che tutti i campi che appaiono nel modello di
Kaluza-Klein siano indipendenti dalla quinta coordinata y. In questo limi-
te possiamo facilmente verificare che il modello considerato descrive, in uno
spazio-tempo a quattro dimensioni, le interazioni di un campo gravitaziona-

le g(0)µ⌫ , un campo scalare a massa nulla �(0) e un vettore di gauge Abelia-

no A(0)

µ .
Calcoliamo infatti l’azione (B.1) usando la metrica (B.2)-(B.4), e assumia-

mo che le variabili g,A,� dipendano solo da x (omettiamo, per semplicità,
di scrivere esplicitamente anche l’indice (0) del modo di Fourier al quale ci
stiamo riferendo). Per il determinante della metrica troviamo immediata-
mente

p

|�
5

| =
p
�g �1/2w5/2(�), (B.10)

dove g = det gµ⌫ . Per il calcolo della curvatura scalare, e per una miglio-
re illustrazione del ruolo giocato dal fattore moltiplicativo conforme w(�), è
conveniente esprimere la quantità R

5

(�), che appare nell’azione, in funzio-
ne della curvatura scalare R

5

(�) riferita alla metrica riscalata �AB , definita
dall’Eq. (B.2).

Ricordando il risultato generale che fornisce la relazione tra le curvature
scalari di due metriche collegate da una trasformazione conforme (si veda ad
esempio il testo [29] della Bibliografia finale) otteniamo, per �AB = w �AB , e
in D = 5 dimensioni,

R
5

(�) = w�1

h

R
5

(�)� 4rAr
A
lnw � 3

�

rA lnw
�

⇣

rA
lnw

⌘i

(B.11)



328 Appendix B Gravità multidimensionale

(il simbolo rA indica la derivata covariante calcolata con la metrica �).
L’azione pentadimensionale (B.1) diventa quindi

S= �M3

5

2

Z

2⇡Lc

0

dy

Z

d4x
p

|�
5

|R
5

(�)

= �M3

5

2

Z

2⇡Lc

0

dy

Z

d4x
p
�g �1/2w3/2(�)

h

R
5

(�)� 4rA

�

@A lnw
�

�3 (@A lnw)
�

@A lnw
�

i

,

(B.12)

dove abbiamo sostituito rA lnw con @A lnw, dato che w è uno scalare.
Osservando che

p

|�
5

| = p�g �1/2 abbiamo, inoltre,

rA

�

@A lnw
�

=
1p�g
p
�
@A
⇣p

�g
p

�@A lnw
⌘

=
1p�g

@µ
�p

�g @µ lnw
�

+
1

2
(@µ lnw) (@µ ln�) ,

(B.13)

dove abbiamo sostituito ovunque l’indice A con l’indice µ poiché stiamo
considerando il limite in cui tutti i campi sono indipendenti dalla quinta
coordinata.

Se consideriamo l’azione (B.12) è ora evidente che la scelta w(�) = ��1/3,
ossia lnw = �(1/3) ln�, permette di eliminare l’accoppiamento non-minimo
alla variabile � presente nella parte quadri-dimensionale della misura di in-
tegrazione. Con questa scelta la misura si riduce alla forma scalare canonica
d4x

p�g (prescritta dal principio di minimo accoppiamento), e ciò ha due
immediate conseguenze: il primo termine della seconda riga dell’Eq. (B.13)
contribuisce all’azione come una divergenza totale (e si può trascurare), men-
tre il secondo termine diventa quadratico nei gradienti di ln�, e contribuisce
al termine cinetico del campo scalare (assieme all’ultimo termine dell’azione
(B.12). L’azione completa assume dunque la forma:

S = �M3

5

2

Z

2⇡Lc

0

dy

Z

d4x
p
�g



R
5

(�) +
1

3
(@µ ln�) (@

µ ln�)

�

. (B.14)

Resta da valutare il contributo della metrica pentadimensionale �AB ,
espresso dalla curvatura scalare R

5

. Il calcolo esplicito di R
5

fornisce (modulo
una divergenza totale)

p
�g R

5

(�) =
p
�g



R(g) +
1

4
�Fµ⌫F

µ⌫ � 1

2
(@µ ln�)(@

µ ln�)

�

, (B.15)

dove R(g) è la curvatura scalare associata alla metrica quadri-dimensionale
gµ⌫ , e dove Fµ⌫ = @µA⌫�@⌫Aµ. Sostituendo questo risultato nell’Eq. (B.14),
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integrando su y, e definendo � = �(1/
p
3) ln�, arriviamo infine all’azione

S = �M2

P

2

Z

d4x
p
�g

 

R+
e�

p
3�

4
Fµ⌫F

µ⌫ � 1

2
@µ�@

µ�

!

. (B.16)

Si noti che abbiamo identificato la costante d’accoppiamento e↵ettiva della
teoria gravitazionale in quattro dimensioni con l’usuale costante di Newton
G, ponendo:

M2

P

⌘ (8⇡G)�1 = 2⇡LcM
3

5

. (B.17)

In questo modo il rapporto tra le intensità della forza gravitazionale in quattro
dimensioni e in cinque dimensioni risulta controllato dal raggio di compatti-
ficazione Lc. Ne consegue, in particolare, che se la scala tipica della gravità
è quella di Planck anche in D = 5, ossia se M

5

⇠ M
P

, allora anche il raggio
della dimensione compatta deve essere dell’ordine della lunghezza di Planck,
Lc ⇠ M�1

P

⇠ �
P

.
L’azione e↵ettiva (B.16), che si ottiene dal processo di riduzione dimensio-

nale del modello originale di Kaluza-Klein, mostra che il contenuto a massa
nulla di una teoria puramente gravitazionale in cinque dimensioni, con una di-
mensione spaziale compattificata a forma di cerchio, può riprodurre il modello
canonico della teoria gravitazionale a quattro dimensioni con la presenza ag-
giuntiva di un vettore di gauge Abeliano Aµ e un campo scalare “dilatonico”

�. È interessante notare, in questo contesto, anche la comparsa di un accop-
piamento scalare-vettoriale “non minimo” che moltiplica la forma standard
della Lagrangiana di Maxwell. Il campo vettoriale dell’azione (B.16), però,
deve essere opportunamente riscalato (Aµ ! eAµ = M

P

Aµ/
p
2), a�nché il

suo termine cinetico risulti normalizzato in modo canonico.

B.1.1 Riduzione dimensionale in D = 4 + n
dimensioni

La descrizione geometrica dei campi di gauge suggerita dal modello di riduzio-
ne dimensionale di Kaluza-Klein si può estendere (in principio) anche al caso
di simmetrie non-Abeliane, a patto di considerare varietà spazio-temporali
con un numero su�ciente di dimensioni compatte. Il gruppo di gauge del
modello ridotto a quattro dimensioni e↵ettive corrisponde, in quel caso, al
gruppo di isometrie non-Abeliane delle dimensioni spaziali compatte.

Per discutere questa possibilità consideriamo uno spazio-tempo MD con
un numero totale D = 4+n di dimensioni, e con una struttura topologica del
tipo MD = M

4

N

KD�4

, dove KD�4

è uno spazio compatto n-dimensionale
che ammette un gruppo di isometria G generato da un insieme di N vettori
di Killing {Km

(i)}, con i, j = 1, 2, . . . , N . Convenzioni: in questa sezione (e

in quelle successive) separeremo le coordinate D-dimensionali zA ponendo



330 Appendix B Gravità multidimensionale

zA = (xµ, ym), dove xµ, con µ,⌫ = 0, 1, 2, 3 rappresenta le coordinate di M
4

,
mentre ym, con m,n = 4, 5, . . . , D � 1, rappresenta le coordinate di KD�4

.
Gli indici i, j si riferiscono invece all’insieme degli N generatori del gruppo
di isometria.

Supponiamo che il gruppo di isometrie sia non-Abeliano, ossia che i vettori
di Killing Km

(i) soddisfino un’algebra chiusa (e non triviale) di relazioni di

commutazione. Consideriamo gli operatori di↵erenziali Ki ⌘ Km
i @m (d’ora

in avanti omettiamo, per semplicità, di racchiudere in parentesi tonde gli
indici del gruppo), e calcoliamo il commutatore

[Ki,Kj ] =
�

Km
i @mKn

j �Km
j @mKn

i

�

@n. (B.18)

Possiamo facilmente verificare che, se Ki e Kj sono vettori di Killing, allora
anche il membro destro della precedente equazione rappresenta un vettore
di Killing (basta ricordare, a questo scopo, le proprietà dei vettori di Killing
illustrate nella Sect. 3.3 e nell’Esercizio 3.4). Possiamo perciò scrivere, in
generale, le regole di commutazione

[Ki,Kj ] = fij
kKk, i, j, k = 1, 2, . . . , N, (B.19)

dove fij k = �fji k sono le cosiddette “costanti di struttura” del gruppo di
isometrie dato.

In questo contesto D-dimensionale, generalizziamo la parametrizzazione
della metrica �AB introducendo, oltre al tensore 4 ⇥ 4 simmetrico gµ⌫ , un
altro tensore (D � 4) ⇥ (D � 4) simmetrico �mn, e D � 4 vettori quadri-
dimensionali Bm

µ (il numero totale delle componenti indipendenti è sem-
pre D(D + 1)/2, come appropriato alla metrica �AB). Più precisamente,
scomponiamo la metrica, in generale, ponendo

�AB = w

✓

gµ⌫ � �mnBm
µ Bn

⌫ �mpBp
µ

�npBp
⌫ ��mn

◆

, (B.20)

dove abbiamo anche inserito il cosiddetto “fattore di distorsione” w(�), che
è funzione di � ⌘ det�mn. Tale fattore può risultare utile per normalizzare
in modo canonico i termini cinetici dell’azione dimensionalmente ridotta. Il
calcolo del determinante � = det �AB fornisce allora

p

|�| = wD/2 |�|1/2
p

|g|, (B.21)

e la corrispondente metrica inversa è data da

�AB = w�1

✓

gµ⌫ Bm
↵ gµ↵

Bn
↵g

⌫↵ ��mn + g↵�Bm
↵ Bn

�

◆

, (B.22)

dove gµ↵g⌫↵ = �µ⌫ e �mp�pn = �mn .
A questo punto siamo in grado di sfruttare le isometrie della geometria

fattorizzata e mostrare che, dopo la riduzione dimensionale, a ognuna delle N
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isometrie del sottospazio compatto KD�4

possiamo associare un vettore che
si trasforma come un potenziale di gauge non-Abeliano della teoria e↵ettiva
a quattro dimensioni.

Seguendo (ed estendendo a un generico valore di D) il meccanismo di
Kaluza-Klein illustrato nella sezione precedente, cerchiamo innanzitutto di
e↵ettuare la riduzione dimensionale considerando un limite di bassa energia
(ovvero, una sorta di “stato fondamentale” della geometria multidimensio-
nale) in cui gµ⌫ dipende solo da x, il tensore �mn è costante nello spazio-
tempo a quattro dimensioni (ma può dipendere da y), e i quadrivettori Bµ,
oltre a dipendere da x, possono anche dipendere da y, ma solo attraverso
la dipendenza da y dei vettori di Killing. Consideriamo cioè la particolare
configurazione geometrica in cui

gµ⌫ = gµ⌫(x), �µ⌫ = �mn(y), Bm
µ (x, y) = Ai

µ(x)K
m
i (y). (B.23)

Si noti che la metrica gµ⌫(x) e gli N campi vettoriali Ai
µ(x) (associati agli

N generatori di Killing Ki) giocano il ruolo dei “modi zero” di Fourier gµ⌫ ,
Aµ del precedente modello in D = 5. Verifichiamo che in questo modello più
generale i vettori Ai

µ, sotto l’azione del gruppo di isometria G, si trasformano
come potenziali di gauge non-Abeliani.

Consideriamo a questo proposito una trasformazione infinitesima di coor-
dinate z0A = zA + ⇠A, generata da

⇠A = (⇠µ, ⇠m), ⇠µ = 0, ⇠m(x, y) = ✏i(x)Km
i (y), (B.24)

e ricordiamo che la corrispondente variazione locale infinitesima della metrica
(si veda l’Eq. (3.53)) si può scrivere (anche in D dimensioni) come

��AB = �⇠M@M�AB � �AM@B⇠
M � �BM@A⇠

M . (B.25)

Concentriamoci sulla variazione delle componenti “miste”, di tipo �µm:
applicando la trasformazione infinitesima (B.24), in particolare, abbiamo

��µm = ��mn@µ⇠
n � �µn@m⇠

n � ⇠n@n�µm. (B.26)

Le componenti miste, d’altra parte, sono definite dalle equazioni (B.20) e
(B.23), che forniscono:

�µm = Bn
µ�mn = Ai

µ(x)Kim(y). (B.27)

Sostituendo nell’Eq. (B.26), e tenendo conto della dipendenza da x e da y dei
vari termini (si vedano le equazioni (B.23), (B.24), (B.27)), otteniamo infine

�
�

Ai
µKim

�

= Kim@µ✏
i �Ai

µKin

�

@mKn
j

�

✏j � ✏jKn
j (@nKim)Ai

µ. (B.28)

Per riscrivere la trasformazione in una forma più facilmente interpretabile
possiamo ora usare l’algebra del gruppo di isometrie espressa dalle equazioni
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(B.18), (B.19), che implica:

Kn
j @nKim = Kn

i @nKjm + fji
kKkm. (B.29)

Inserendo questa espressione nell’ultimo termine dell’Eq. (B.28) (e rinomi-
nando opportunamente gli indici) troviamo allora il risultato

�
�

Ai
µKim

�

= Kim

�

@µ✏
i � fkl

i✏kAl
µ

�

�Ai
µ✏

j
�

Kn
i @nKjm +Kin@mKn

j

�

.
(B.30)

Poiché la trasformazione considerata è associata alle isometrie di KD�4

, dob-
biamo inoltre ricordare che i vettori di Killing che la generano soddisfano
la proprietà ernKm + ermKn = 0 (si veda l’Esercizio 3.4), dove er indica la
derivata covariante calcolata rispetto alla metrica �mn dello spazio compatto
KD�4

. Ne consegue che la seconda riga, al membro destro della precedente
equazione, si annulla identicamente. Infatti, per ogni data coppia (fissata) di
vettori di Killing, di indici i e j, abbiamo:

Kn
i @nKjm +Kin@mKn

j

= Kn
i

⇣

@nKjm + @mKjn � e�nm
pKjp � e�mn

pKjp

⌘

(B.31)

= Kn
i

⇣

ernKjm + ermKjn

⌘

⌘ 0,

dove e� = � (�), e dove abbiamo eliminato le derivate parziali della metrica
�mn usando la condizione di metricità erm�np = 0.

Consideriamo infine la variazione locale infinitesima del campo vettoriale
Ai

µ calcolata a Ki fissato (ossia calcolata proiettando sugli stessi vettori di
Killing sia il campo Aµ sia il campo trasformato Aµ + �Aµ). In questo caso
abbiamo �(Ai

µKim) = Kim�Ai
µ, e possiamo riscrivere il risultato (B.30) nella

forma

�Ai
µ(x) = @µ✏

i(x)� fkl
i✏k(x)Al

µ(x). (B.32)

Questa è chiaramente la trasformazione infinitesima per il potenziale di gau-
ge di un gruppo di simmetria non-Abeliano, con parametro locale ✏i e con
costanti di struttura fij k.

Possiamo verificarlo considerando la trasformazione di gauge per il poten-
ziale non-Abeliano Aµ, già presentata (in forma esatta) nell’Eq. (12.18), e
sviluppando la generica trasformazione di gauge (12.10) come

U = 1 + i✏iXi + · · · , (B.33)

dove i generatori Xi soddisfano l’algebra di Lie del gruppo considerato,

[Xi, Xj ] = ifij
kKk. (B.34)
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Per adeguarci alle notazioni di questa sezione stiamo indicando con i, j =
1, 2, . . . , N gli indici che variano sull’algebra del gruppo. Usiamo inoltre unità
in cui la costante d’accoppiamento di gauge del Capitolo 12 è fissata al valore
g = 1. Sviluppando l’equazione di trasformazione (12.18) al primo ordine in
✏ otteniamo

A0i
µXi = Ai

µXi + i✏iAj
µ (XiXj �XjXi) +Xi@µ✏

i. (B.35)

Usando infine l’Eq. (B.34) arriviamo a

�Ai
µ ⌘ A0i

µ �Ai
µ = @µ✏

i � fkl
i✏kAl

µ, (B.36)

che coincide esattamente con la variazione (B.32) indotta dall’isometria infi-
nitesima dello spazio KD�4

. Le isometrie non-Abeliane dello spazio compatto
corrispondono quindi a campi di gauge non-Abeliani del modello geometrico
e↵ettivo a quattro dimensioni.

Possiamo aggiungere che, inserendo la metrica (B.20), (B.23) nell’azione
di Einstein D-dimensionale, e scegliendo un appropriato fattore conforme
w(�), arriviamo esattamente all’azione canonica di Einstein-Yang-Mills in
quattro dimensioni per la metrica gµ⌫(x) e per il potenziale di gauge non-
Abeliano Ai

µ. In questo contesto possiamo anche ottenere un’interessante
generalizzazione dell’Eq. (B.17), ossia possiamo stabilire una relazione tra
l’(iper)volume spaziale occupato dalle dimensioni extra e la scala MD tipica
dell’accoppiamento gravitazionale GD in D dimensioni, definita da 8⇡GD =
M2�D

D .
Sviluppiamo infatti l’azione di Einstein D-dimensionale nel limite in cui la

geometria è descritta, in prima approssimazione, dalla configurazione (B.20),
(B.23). Otteniamo allora:

�MD�2

D

2

Z

dDz
p

|�|RD

= �MD�2

D

2

Z

KD�4

dD�4y wD/2 |det�mn|1/2
Z

M4

d4x
p

|g|
h

R(g) + · · ·
i

.

(B.37)

Consideriamo la parte puramente gravitazionale dell’azione, e chiamiamo
VD�4

l’ipervolume proprio (e finito) dello spazio compatto “occupato” dalle
dimensioni extra di Kaluza-Klein. Poniamo cioè (includendo nella misura di
integrazione l’eventuale contributo del fattore scalare conforme w):

VD�4

=

Z

KD�4

dD�4y wD/2(y) |det�mn(y)|1/2 . (B.38)

Confrontando l’Eq. (B.37) con l’azione di Einstein in quattro dimensioni,

�M2

P

2

Z

d4x
p

|g|R(g), (B.39)
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otteniamo immediatamente:

MD�2

D VD�4

= M2

P

. (B.40)

Dato che la massa di Planck è nota (M
P

= (8⇡G)�1 ' 2.4⇥1018 GeV), questa
equazione fornisce un vincolo che connette l’intensità dell’accoppiamento gra-
vitazionale nello spazio multidimensionale all’estensione (e al numero) delle
dimensioni extra compatte.

Consideriamo, ad esempio, il semplice caso in cui le dimensioni extra sono
isotrope, e la scala di compattificazione è controllata da un’unica lunghezza
Lc (la stessa per tutte le D � 4 dimensioni). Si ha allora VD�4

⇠ LD�4

c , e
l’Eq. (B.40) si riduce a:

MD�2

D LD�4

c ⇠ M2

P

. (B.41)

Troviamo dunque ancora (come in D = 5) che una gravità D-dimensionale
con intensità Newtoniana, MD ⇠ M

P

, deve essere necessariamente associata
ad una scala di compattificazione Planckiana, Lc ⇠ M�1

P

⇠ 10�33 cm. Però,
anche scale di compattificazione più estese sono in principio permesse, purché
la scala gravitazionale MD sia inferiore a quella Planckiana. Risolvendo l’Eq.
(B.41) per Lc troviamo, in generale, la condizione seguente:

Lc ⇠ 10�17cm

✓

1TeV

MD

◆

(D�2)/(D�4)

1030/(D�4). (B.42)

Si noti che abbiamo preso il TeV come scala di riferimento per MD, visto
che questa scala è (in un certo senso) preferita a causa di alcuni “pregiu-
dizi” teorici che riguardano la soluzione del problema detto “della gerar-
chia” (e anche alcune possibili soluzioni del problema della costante cosmolo-
gica).

Pe quel che riguarda gli attuali dati osservativi dovremmo ricordare, a que-
sto punto, i risultati degli esperimenti gravitazionali3 che escludono la pre-
senza di dimensioni extra mediante misure dirette, e che implicano Lc <⇠ 10�2

cm. Questo risultato, secondo l’Eq. (B.42), è compatibile con MD ⇠ 1 TeV a
patto che il numero delle dimensioni compatte sia n = D � 4 � 2.

Ci sono però anche gli esperimenti di alta energia, che verificano il modello
standard delle interazioni forti ed elettro-deboli, e che hanno escluso (finora)
la presenza di ulteriori dimensioni spaziali fino a scale di lunghezza Lc <⇠ 10�15

cm. Questo sembra suggerire, in accordo all’Eq. (B.42), che MD � 1 TeV,
oppure che MD ⇠ 1 TeV ma il numero di dimensioni extra e compatte è
inaspettatamente grande. Questa conclusione potrebbe essere evitata, – come
discuteremo nella Sez. B.2 – se esiste qualche meccanismo capace di confinare
le interazioni di gauge all’interno dello spazio tridimensionale, rendendole cosìı
insensibili all’eventuale presenza di dimensioni extra.

3 See for instance E. G. Adelberg, B. R. Heckel and A. E. Nelson, Ann. Rev. Nucl. Part.
Sci. 53, 77 (2003).
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Prima di discutere questa interessante possibilità torniamo a considerare lo
scenario multidimensionale di Kaluza-Klein, con lo spazio extra-dimensionale
compatto e con una struttura topologica del tipo Md = M

4

N

KD�4

.
C’è un problema, in questo contesto, che emerge nel caso di varietà con

D > 5: se imponiamo alla metrica D-dimensionale �AB di soddisfare le equa-
zioni di Einstein senza sorgenti materiali, e se cerchiamo soluzioni di bassa
energia in cui la varietà M

4

coincida con lo spazio-tempo piatto di Minko-
wski (gµ⌫ = ⌘µ⌫), troviamo allora che la varietà compatta KD�4

deve avere
una geometria del tipo “Ricci-piatta”. Questo significa, più esplicitamente,
che il tensore di Ricci della metrica �mn associata alle dimensioni extra deve
soddisfare la condizione eRmn(�) = 0.

Non è impossibile, ovviamente, a trovare geometrie compatibili con questi
requisiti: uno spazio compatto e Ricci-piatto può essere rappresentato, ad
esempio, da un toro, oppure dalle cosiddette varietà di Calabi-Yau che ven-
gono usate nella compattificazione dei modelli di superstringa. Purtroppo,
però, una geometria Ricci-piatta ammette isometrie di tipo esclusivamente
Abeliano (si veda ad esempio il testo [25] della Bibliografia finale): in quel
caso tutti i corrispondenti vettori di Killing commutano tra loro (fij k = 0),
e l’esempio discusso in precedenza si riduce a un modello con N campi di
gauge Abeliani (che rappresenta una generalizzazione pressoché triviale del
modello di Kaluza-Klein in D = 5).

Per superare questa di�coltà, e costruire modelli fisici multidimensionali
con simmetrie di gauge non-Abeliane, bisogna rinunciare all’idea di parten-
za di Kaluza-Klein che un modello fisico che descrive la gravità e i campi
materiali in D = 4 possa essere ottenuto da un modello di pura gravità in
D > 4. Dobbiamo invece includere campi non puramente gravitazionali an-
che in D > 4, ed usarli per rappresentare eventuali interazioni di gauge non
Abeliane e/o sorgenti della curvatura extra-dimensionale, che contribuiscono
a una geometria con eRmn 6= 0.

Questa procedura ha un vantaggio, che illustreremo nella sezione succes-
siva. I campi materiali presenti a livello multidimensionale possono infatti
innescare automaticamente la fattorizzazione della varietà MD nel prodot-
to di due sottovarietà massimamente simmetriche – una delle quali è com-
patta e corrisponde alle dimensioni extra, mentre l’altra corrisponde al no-
stro spazio-tempo quadridimensionale – realizzando cos̀ı l’e↵etto chiamato
“compattificazione spontanea”.

B.1.2 Compattificazione spontanea

Tra i vari meccanismi in grado di produrre la compattificazione spontanea di
una varietà multidimensionale (basati sulla presenza di campi tensoriali an-
tisimmetrici, campi di Yag-Mills, fluttuazioni quantistiche, monopoli, istan-
toni, azioni non lineari nella curvatura, . . . ) qui ci concentreremo sul caso
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dei campi tensoriali antisimmetrici. Questa possibilità è stata ispirata dalla
riduzione dimensionale dela teoria della supergravità formulata in D = 11
dimensioni, e trova anche importanti applicazioni nel contesto della teoria
delle superstringhe in D = 10.

Partiamo da una generica azioneD-dimensionale che contiene sia la gravità
sia le sorgenti materiali,

S = �1

2

Z

dDx
p

|�|R(�) + Sm (B.43)

(per semplicità abbiamo posto uguale a uno la costante d’accoppiamento gra-
vitazionale, scegliendo unità tali che 8⇡GD = M2�D

D = 1). Le corrispondenti
equazioni gravitazionali sono date da

RAB � 1

2
�ABR = TAB , (B.44)

dove TAB rappresenta il contributo di Sm.
Cerchiamo soluzioni in cui la geometria dello spazio-tempoD-dimensionale

si possa fattorizzare come il prodotto di due varietà massimamente simme-
triche, MD = M

4

N

MD�4

, descritte dalla metrica

�µ⌫ = gµ⌫(x), �mn = gmn(y), �µm = 0, (B.45)

e da un tensore di Ricci che soddisfa alle condizioni

Rµ⌫ = �gµ⌫⇤x, Rmn = �gmn⇤y, Rµm = 0. (B.46)

(abbiamo chiamato ⇤x e ⇤y le “costanti cosmologiche” e↵ettive dei due sot-
tospazi, si veda ad esempio l’Eq. (6.44)). La curvatura scalare della varietà
D-dimensionale è quindi data da

R(�) ⌘ �ABRAB = gµ⌫Rµ⌫ + gmnRmn = �4⇤x + (4�D)⇤y. (B.47)

Come nella sezione precedente separiamo le coordinate D-dimensionali zA

nelle quattro coordinate xµ, con indici Greci che variano da 0 to 3, e nelle
restanti D � 4 coordinate ym, con indici Latini che variano da 4 a D � 1.

La geometria spazio-temporale considerata è compatibile con le equazioni
di Einstein (B.44) purchè, ovviamente, anche il tensore energia-impulso TAB

sia fattorizzabile in modo analogo, ossia soddisfi le condizioni

Tµ⌫ = gµ⌫Tx, Tmn = gmnTy, Tµm = 0, (B.48)

dove Tx e Ty sono parametri costanti. Chiediamoci se tali condizioni possono
essere soddisfatte dall’energia-impulso di un campo tensoriale antisimmetrico
di rango appropriato.
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Consideriamo dunque la seguente azione materiale,

Sm = �k

Z

dDx
p

|�|FM1···MrF
M1···Mr , (B.49)

dove k è un coe�ciente numerico (irrilevante per la nostra discussione) che
dipende dal modello, mentre F è un campo totalmente antisimmetrico di
rango r, associato al potenziale A (di rango r � 1) tale che

FM1···Mr = @
[M1

AM2···Mr]
. (B.50)

Il tensore energia-impulso dinamico associato a Sm, e definito dall’ordina-
ria procedura variazionale (si veda l’Eq. (7.27)) e↵ettuata rispetto a �AB , è
quindi dato da:

TAB = �2kr

✓

FAM2···MrF
M2···Mr
B � 1

2r
�ABF

2

◆

. (B.51)

La variazione di Sm rispetto ad A fornisce inoltre l’equazione del moto del
campo tensoriale,

@N
⇣

p

|�|FNM2···Mr

⌘

= 0, (B.52)

che deve essere soddisfatta assieme alle equazioni di Einstein (B.44).
Osserviamo ora che il determinante della metrica, nella geometria fattoriz-

zata di tipo (B.45), è dato da
p

|�| = | det gµ⌫ |1/2| det gmn|1/2. Notiamo anche
che le condizioni (B.48) possono essere soddisfatte dal tensore energia-impulso
(B.51) ponendo

�2kr FµM2···MrF
M2···Mr
⌫ = Fxgµ⌫ ,

�2kr FmM2···MrF
M2···Mr
n = Fygmn,

(B.53)

dove Fx e Fy sono opportuni parametri costanti, collegati a Tx e Ty dalle
relazioni:

Tx =

✓

1� 2

r

◆

Fx � D � 4

2r
Fy,

Ty = �2

r
Fx +

✓

1� D � 4

2r

◆

Fy.

(B.54)

Come mostrato4 nel contesto della teoria della supergravità in D = 11 di-
mensioni, ci sono due possibilità di ottenere una soluzione particolare che
soddisfi simultaneamente le condizioni (B.53) e l’equazione del moto (B.52),
consistentemente con la fattorizzazione della geometria nei due sottospazi a
4 e D � 4 dimensioni.

4 P. G. O. Freund and M. A. Rubin, Phys. Lett. B97, 233 (1980).
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• La prima possibilità è di prendere r = 4 e porre

Fµ⌫↵�(x) = cx ⌘
µ⌫↵� =

cx
p

| det gµ⌫ |
✏µ⌫↵� (B.55)

(dove cx è una costante), assumendo, simultaneamente, F ⌘ 0 per tutte le
componenti del campo antisimmetrico caratterizzate da uno (o più) indici
Latini.

• La seconda possibilità è di prendere r = D � 4 e porre

Fm4···mD�1(y) = cy ⌘
m4···mD�1 =

cy
p

| det gmn|
✏m4···mD�1 (B.56)

(dove cy è una costante), assumendo, simultaneamente, F ⌘ 0 per tutte
le componenti del campo caratterizzate da uno (o più) indici Greci.

Abbiamo indicato con ⌘ il tensore totalmente antisimmetrico delle due varietà
massimamente simmetriche in 4 dimensioni e D � 4 dimensioni (si veda la
Sez. 3.2 per la definizione di tale tensore e la discussione delle sue principali
proprietà).

Grazie alla presenza di campi antisimmetrici di rango opportuno appaiono
quindi “spontaneamente” soluzioni che hanno una struttura geometrica del
tipo richiesto, MD = M

4

N

MD�4

. Chiediamoci allora se è possibile, in
questo contesto, trovare soluzioni con lo spazio extra-dimensionale MD�4

compatto e caratterizzato da un parametro di curvatura ⇤y > 0, cos̀ı da
avere volume finito e da ammettere isometrie di tipo anche non-Abeliano.

Possiamo considerare, a questo proposito, entrambe le possibilità illustrate
dalla soluzione di Freund-Rubin. Riferendoci in particolare all’Eq. (B.53)
troviamo che nel primo caso si ha r = 4 e Fy = 0, mentre nel secondo caso
si ha r = D � 4 e Fx = 0. In entrambi i casi otteniamo dall’Eq. (B.54) la
condizione Tx + Ty = 0, che ci dà subito un’importante relazione tra le scale
di curvatura ⇤x, ⇤y dei due sottospazi.

Infatti, inserendo nelle equazioni di Einstein (B.44) la forma esplicita della
metrica e delle sorgenti (si vedano le equazioni (B.46), (B.48)), e tenendo
conto dell’espressione (B.47) per la curvatura scalare, otteniamo le relazioni

⇤x +
D � 4

2
⇤y = Tx, 2⇤x +

D � 6

2
⇤y = Ty. (B.57)

Imponendo Tx + Ty = 0 arriviamo dunque alla condizione

⇤x = �D � 5

3
⇤y. (B.58)

Se vogliamo un modello con D > 5 e ⇤y > 0 (che ammette per le dimen-
sioni extra la possibilità di uno spazio compatto e di un gruppo di isometrie
non-Abeliano), dobbiamo allora necessariamente accettare uno spazio-tempo
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a quattro dimensioni caratterizzato da una costante cosmologica negativa,
⇤x < 0, e quindi descritto da una geometria detta di “anti-de Sitter” (AdS).

Una configurazione geometrica del tipo AdS
4

N

MD�4

non sembra molto
realistica, sia per la presenza di una grossa costante cosmologica in quat-
tro dimensioni (|⇤x| ⇠ ⇤y), sia per problemi fenomenologici di altro tipo
(ad esempio, l’assenza in quattro dimensioni dei fermioni cosiddetti “chira-
li”, ossia di stati fermionici di diversa elicità che si trasformano come diverse
rappresentazioni del gruppo di gauge). Tutti i problemi fenomenologici sono
collegati, in sostanza, al valore non nullo (e negativo) della costante cosmo-
logica sulla varietà M

4

, che previene la possibilità di uno spazio-tempo di
Minkowski a quattro dimensioni.

Per poter ritrovare la soluzione di Minkowski anche in modelli con D > 5,
la possibilità più semplice è probabilmente quella di accettare un sottospazio
Ricci-piatto anche per le dimensioni extra, ponendo ⇤y = 0 e rinunciando
a una geometria con isometrie non-Abeliane. In quel caso i campi di Yang-
Mills che descrivono le simmetrie di gauge non-Abeliane devono essere già
presenti nell’azioneD-dimensionale del modello, col vantaggio che potrebbero
essere loro stessi a innescare il meccanismo di compattificazione spontanea
(su una varietà di tipo Ricci-piatto). Questo è ciò che avviene, ad esempio, nel
cosiddetto modello di superstringa “eterotico” (si vedano i testi [27,28] della
Bibliografia finale), dove il problema dei fermioni chirali è risolto appunto in
questo modo.

Un’altra possibilità è quella di aggiungere un’opportuna costante cosmo-
logica ⇤D all’azione D-dimensionale (B.43) in modo da cancellare esatta-
mente il contributo di ⇤x (e quindi permettere la soluzione di Minkowski in
D = 4), lasciando invece una costante cosmologica positiva sullo spazio com-
patto MD�4

(per permettere la presenza di isometrie non-Abeliane). Questa
procedura, però, richiede un alto grado di “fine tuning”, ossia un aggiusta-
mento ad hoc estremamente preciso delle costanti per cancellare tra loro i vari
contributi. Inoltre, la presenza di ⇤D nell’azione romperebbe esplicitamente
la supersimmetria di un eventuale modello di supergravità D-dimensionale.

Un meccanismo alternativo, che riduce l’esigenza di fine tuning – pur for-
nendo una geometria Ricci-piatta in quattro dimensioni, Rµ⌫ = 0, insieme
a uno spazio extra-dimensionale compatto e non Ricci-piatto, Rmn 6= 0 – è
basata sulla presenza di un campo scalare �, accoppiato alla gravità in mo-
do non-minimo. Questa possibilità è tipica del settore bosonico dei modelli
di superstringa, e qui la illustreremo con un semplice esempio basato sulla
seguente azione D-dimensionale,

S=�
Z

dDx
p

|�|
⇢

e��

2

⇥

R(�)+@M�@
M�
⇤

+V (�)+kFM1···MrF
M1···Mr

�

,(B.59)

dove il nuovo ingrediente � è il cosiddetto campo scalare “dilatonico”. Va-
riando l’azione rispetto a � e a � otteniamo, rispettivamente, le equazioni per
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il campo gravitazionale,

RAB � 1

2
�ABR+rA (@B�) +

1

2
�AB@M�@

M�� �ABrM

�

@M�
�

= e� (TAB + �ABV ) ,
(B.60)

e quelle per il dilatone,

R(�) +rM

�

@M�
�

� @M�@
M� = 2e�V 0 (B.61)

(si veda ad esempio il testo [29] della Bibliografia finale). In queste equazioni
TAB è il tensore energia impulso dell’Eq. (B.51), e il primo indica la derivata
rispetto a �, V 0 = @V/@�. La variazione rispetto ad A porta infine alle equa-
zioni del moto (B.52) per il campo tensoriale antisimmetrico, esattamente
come prima.

Cerchiamo ancora soluzioni che descrivono geometrie fattorizzabili con la
struttura MD = M

4

N

MD�4

, dove la metrica soddisfa le condizioni (B.45),
(B.46), e il campo antisimmetrico soddisfa le condizioni (B.48). Supponiamo
inoltre (per semplicità) che il campo scalare sia costante, � = �

0

. Inseren-
do una configurazione di questo tipo nelle equazioni gravitazionali (B.60)
otteniamo allora le relazioni

�⇤x � R(�)

2
= e�0 (Tx + V

0

) ,

�⇤y �
R(�)

2
= e�0 (Ty + V

0

) ,

(B.62)

mentre l’equazione del dilatone (B.61) fornisce

R(�) = 2e�0V 0
0

, (B.63)

dove V
0

= V (�
0

) e V 0
0

= (@V/@�)�=�0 . Usiamo infine per il campo antisimme-
trico le soluzioni di Freund-Rubin (B.55), (B.56), che soddisfano entrambe la
condizione Tx+Ty = 0. Tale condizione, combinata con l’Eq. (B.62), implica

⇤x + ⇤y +R(�) = �2e�0V
0

. (B.64)

Ricordiamo ora che siamo interessati ad ottenere soluzioni in cui lo spazio-
tempo a quattro dimensioni M

4

ha una geometria di tipo Ricci-piatta. Ciò si-
gnifica – usando l’Eq. (B.47) che esprime la curvatura scalare R(�) in funzione
di ⇤x e ⇤y – che siamo interessati a soluzioni caratterizzate da:

⇤x = 0, ⇤y = � R(�)

D � 4
(B.65)

Configurazioni di questo tipo possono soddisfare simultaneamente tutte le
equazioni del nostro modello – in particolare, l’equazione del dilatone (B.63)
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e quella del campo antisimmetrico (B.64) – purché:

✓

V 0

V

◆

�0

= �D � 4

D � 5
. (B.66)

Nel contesto di questo modello possiamo dunque ottenere la struttura geome-
trica cercata senza dover ricorrere ad alcun “aggiustamento fine” di parametri
arbitrari, ma semplicemente assumendo che sia verificata una semplice con-
dizione di↵erenziale sulla forma funzionale del potenziale dilatonico. Per il
nostro esempio, in particolare, la condizione è soddisfatta da un potenziale
esponenziale del tipo V ⇠ exp[��(D � 4)/(D � 5)].

Questo modello di compattificazione spontanea può essere facilmente gene-
ralizzato al caso (più realistico) in cui l’accoppiamento del dilatone all’azione
di Einstein è descritto da un’arbitraria funzione di f(�) (che sostituisce il
termine exp(��) dell’Eq. (B.59)). In tal caso la precedente equazione (B.66)
va sosituita da una condizione più generale5 che collega (V 0/V )

0

e (f 0/f)
0

.

B.2 Le membrane-Universo

Un altro possibile approccio al problema della riduzione dimensionale – non
necessariamente alternativo allo scenario di Kaluza-Klein – si basa sull’as-
sunzione che le cariche elementari, sorgenti dei campi di gauge, siano con-
finate su particolari ipersuperfici a tre dimensioni chiamate “membrane di
Dirichlet” (o, più sinteticamente, D

3

-brane). Le corrispondenti interazioni di
gauge possono quindi propagarsi solo sull’ipervolume a quattro dimensioni
descritto dall’evoluzione temporale di queste membrane.

In questo caso, le interazioni trasmesse da campi di gauge sono completa-
mente “insensibili” alle dimensioni spaziali esterne alla membrana, anche nel
caso limite in cui tali dimensioni siano infinitamente estese. Secondo questo
scenario – chiamato lo scenario delle “membrane-Universo”, e suggerito dai
modelli di superstringa che unificano tutte le interazioni – noi viviamo in una
“fetta” a quattro dimensioni di uno spazio-tempo esterno multidimensionale.

Secondo la teoria delle stringhe, però, la gravità fa eccezione a questa re-
gola e si può propagare lungo tutte le dimensioni spaziali presenti. La teoria
gravitazionale va perciò formulata, in generale, inD dimensioni, e le sue equa-
zioni determinano la metrica e la curvatura di tutta la varietàD-dimensionale
(che viene anche chiamata “varietà di bulk”).

Dobbiamo quindi a↵rontare, anche in questo contesto, lo stesso proble-
ma già incontrato nel caso dello scenario di Kaluza-Klein: come ottenere
(perlomeno come stato fondamentale nel limite di basse energie) una geome-
tria piatta di Minkowski nello spazio-tempo quadri-dimensionale della nostra
membrana? Inoltre: come spiegare il fatto che (finora) non abbiamo trovato

5 M. Gasperini, Phys. Rev. D 31, 2708 (1985).
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alcuna evidenza sperimentale delle dimensioni extra? sono forse estremamente
piccole e compatte come nello scenario di Kaluza-Klein?

Nelle prossime sezioni vedremo che la compattificazione delle dimensio-
ni spaziali esterne alla membrana è una possibilità, ma non una necessità
come nel caso di Kaluza-Klein. In questa sezione incominceremo introdu-
cendo un semplice modello che mostra come si possano ottenere, in questo
contesto, soluzioni esatte che descrivono uno spazio-tempo piatto a quattro
dimensioni, associato a una membrana immersa in uno spazio esterno curvo
e multidimensionale.

Partiamo dall’azione gravitazionale scritta in una generica varietà D-
dimensionale MD,

S =

Z

dDx
p

|gD|
 

�MD�2

D

2
RD + Lbulk

D

!

+ Sp�brane

, (B.67)

dove abbiamo incluso la densità di Lagrangiana Lbulk

D che rappresenta il con-
tributo di tutte le sorgenti gravitazionali eventualmente presenti nello spa-
zio D-dimensionale. Abbiamo anche incluso l’azione di una membrana p-
dimensionale (che chiameremo, per brevità, p-brana) immersa in MD, con
p + 1 < D, perchè anch’essa contribuisce alla geometria della varietà D-
dimensionale, in due modi: con la sua propria densità d’energia, e con la
densità di energia-impulso di tutte le sorgenti gravitazionali in essa contenute
(ossia, i campi materiali e le loro fluttuazioni quantistiche eventualmente con-
finati sull’ipersuperficie (p + 1)-dimensionale ⌃p+1

descritta dall’evoluzione
temporale della p-brana).

L’azione della p-brana è proporzionale al “volume d’Universo” dell’i-
persuperficie ⌃p+1

(cos̀ı come l’azione di una particella puntiforme è pro-
porzionale alla lunghezza della “linea d’Universo” descritta dall’evoluzione
della particella). Chiamiamo ⇠µ = (⇠0, ⇠1, . . . , ⇠p) le coordinate su ⌃p+1

,
xA = (x0, x1, . . . , xD�1) le coordinate su MD, e indichiamo con

xA = XA(⇠µ), A = 0, 1, . . . , D � 1, µ = 0, 1, . . . , p, (B.68)

le equazioni parametriche che descrivono l’immersione di ⌃p+1

in MD. La
cosiddetta “metrica indotta” sull’ipersuperficie ⌃p+1

è allora data da

hµ⌫ =
@XA

@⇠µ
@XB

@⇠⌫
gAB , (B.69)

e l’azione per una p-brana “vuota” si può scrivere nella forma (detta di
Nambu-Goto) seguente:

Sp�brane

= Tp

Z

dp+1⇠
p

|h|. (B.70)
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Abbiamo posto h = dethµ⌫ , e abbiamo indicato con Tp la cosiddetta “tensio-
ne” della membrana, ossia la costante che rappresenta la sua densità d’energia
del vuoto (l’energia del vuoto per untià di volume proprio p-dimensionale).
Se la membrana contiene, in aggiunta, campi materiali, allora la costante
“cosmologica” Tp va sostituita con la densità di Lagrangiana Lp che descrive
anche tutte le altre sorgenti gravitazionali presenti sulla brana.

L’azione precedente può essere riscritta in una forma equivalente che evita
la presenza esplicita della radice quadrata – e che quindi è più conveniente
per i calcoli variazioni – al prezzo di includere un campo tensoriale ausiliario
�µ⌫ , che agisce da moltiplicatore di Lagrange (e che rappresenta, fisicamente,
la metrica “intrinseca” di tipo Riemanniano della varietà ⌃p+1

). In questo
modo si ottiene la cosiddetta azione (equivalente) di Polyakov,

Sp�brane

=
Tp

2

Z

dp+1⇠
p

|�|


�µ⌫
@XA

@⇠µ
@XB

@⇠⌫
gAB � (p� 1)

�

, (B.71)

dove � = det �µ⌫ . La sua variazione rispetto a �µ⌫ fornisce il vincolo

hµ⌫ �
1

2
�µ⌫�

↵�h↵� � 1

2
�µ⌫(p� 1) = 0, (B.72)

che risulta identicamente soddisfatto da �µ⌫ = hµ⌫ , dove hµ⌫ è definito dal-
l’Eq. (B.69). Usando questo risultato per eliminare �µ⌫ , e usando l’iden-
tità hµ⌫hµ⌫ = �µµ = p + 1, si trova allora che l’azione di Polyakov si riduce
esattamente alla forma di Nambu-Goto dell’Eq. (B.70).

Risulta infine conveniente tener conto del fatto che il contributo della
membrana all’azione (B.67) è localizzato esattamente in corrispondenza della
membrana stessa, cioè nella posizione specificata dalle equazioni di immer-
sione (B.68), e che tale contributo è nullo per xA 6= XA(⇠). Possiamo quindi
esprimere anche Sp�brane

in modo simile agli termini dell’azione, ossia co-
me un integrale D-dimensionale, a patto di e↵ettuare l’integrale su di una
opportuna distribuzione deltiforme. Possiamo porre cioè

Sp�brane

=

Z

dDx
p

|gD| Lbrane

D , (B.73)

dove

Lbrane

D (B.74)

=
Tp

2
p

|gD|

Z

⌃p+1

dp+1⇠
p

|�|


�µ⌫
@XA

@⇠µ
@XB

@⇠⌫
gAB � (p� 1)

�

�D(x�X(⇠)).

In questo caso l’azione totale (B.67) assume la forma

S =

Z

dDx
p

|gD|
 

�MD�2

D

2
RD + Lbulk

D + Lbrane

D

!

, (B.75)
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e può essere facilmente variata rispetto ai campi indipendenti del nostro
modello, che sono gAB , XA, e �µ⌫ .

La variazione rispetto a gAB fornisce le equazioni di EinsteinD-dimensionali,

RAB � 1

2
gABR = M2�D

D

�

T bulk

AB + T brane

AB

�

, (B.76)

dove il tensore dinamico energia-impulso delle sorgenti è calcolato seguendo
la definizione standard (7.26), (7.27) (applicata alla metrica gAB). Per la
membrana, in particolare, abbiamo

T brane

AB =
Tp

p

|gD|

Z

⌃p+1

dp+1⇠
p

|�|�µ⌫@µXA@⌫XB�
D(x�X(⇠)), (B.77)

dove @µXA = @XA/@⇠µ. La variazione rispetto a XA fornisce l’equazione del
moto della membrana:

@µ
h

p

|�|�µ⌫@⌫XBgAB(x)
i

x=X(⇠)

=
1

2

h

p

|�|�µ⌫@µXM@⌫X
N@AgMN (x)

i

x=X(⇠)
.

(B.78)

Infine, la variazione rispetto a �µ⌫ fornisce il vincolo (B.72), che porta a
identificare �µ⌫ con la metrica indotta hµ⌫ .

Consideriamo ora il caso particolare p = 3, ossia il caso in cui lo spazio-
tempo ⌃

4

della membrana ha le dimensioni giuste per essere eventualmente
identificato con un possibile modello del nostro Universo. Supponiamo inoltre
il caso che lo spazio esterno abbia una sola dimensione in più rispetto alla
membrana, per cui D = 5 (come nello scenario originalmente proposto da
Kaluza e Klein). Infine, concentriamoci su di un esempio molto semplice
in cui l’unico contributo gravitazionale dello spazio esterno alla membrana
viene dalla densità di energia del vuoto, ed ha quindi la forma di una costante
cosmologica ⇤. Poniamo, in particolare, Lbulk = �MD�2⇤, per cui:

M2�DT bulk

AB = ⇤gAB . (B.79)

Cerchiamo, in questo contesto, soluzioni particolari delle equazioni (B.76),
(B.78) che descrivano una ipersuperficie piatta (di Minkowski) ⌃

4

, immersa
in una generica varietà curva pentadimensionale M

5

.
Chiamiamo xA = (xµ, y) le coordinate di M

5

, e supponiamo che l’iper-
superficie ⌃

4

sia rigidamente posizionata a y = 0, e descritta dalle seguenti
(banali) equazioni di immersione:

xA = XA(⇠) = �Aµ ⇠
µ, A = 0, 1, 2, 3

x4 ⌘ y = 0.
(B.80)
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Supponiamo anche che ⌃
4

abbia una geometria globalmente piatta descritta
dalla metrica di Minkowski ⌘µ⌫ , mentre la metrica di M

5

sia conformemen-
te piatta, gAB = f2(y)⌘AB , con un fattore conforme f2 che dipende solo
dalla coordinata y (che parametrizza la direzione spaziale perpendicolare al-
la membrana). Abbiamo dunque una configurazione geometrica che risulta
simmetrica rispetto alle riflessioni y ! �y , per cui possiamo cercare co-
me soluzione una struttura geometrica pentadimensionale “conformemente
distorta”, del tipo:

ds2 = f2(|y|)
�

⌘µ⌫dx
µdx⌫ � dy2

�

. (B.81)

È facile verificare che, per questo tipo di geometria, la metrica indotta (B.69)
si riduce a hµ⌫ = f2⌘µ⌫ = �µ⌫ , e che l’equazione (B.78) per la membrana risul-
ta identicamente soddisfatta grazie alla simmetria di riflessione, che implica
(@f/@y)y=0

= 0 (si veda la discussione successiva). Ci resta da considerare
l’equazione di Einstein (B.76).

Per quel che riguarda le sorgenti otteniamo facilmente, dall’Eq. (B.79),

M�3

5

�

TA
B
�

bulk

= ⇤�BA , (B.82)

e, dall’Eq. (B.77),
�

T
4

4

�

brane

= 0

(Tµ
⌫)brane = f�1T

3

�⌫µ�(y).
(B.83)

Le componenti non nulle della connessione di Christo↵el associata alla
metrica (B.81), d’altra parte, sono date da

�
44

4 =
f 0

f
, �µ⌫

4 =
f 0

f
⌘µ⌫ , �

4µ
⌫ =

f 0

f
�⌫µ, (B.84)

dove il primo indica la derivata rispetto a y. Definendo F = f 0/f abbiamo
dunque, per le componenti del tensore di Einstein,

G
4

4 = R
4

4 � 1

2
R = �6f�2F 2,

Gµ
⌫ = Rµ

⌫ � 1

2
�⌫µR = �f�2

�

3F 0 + 3F 2

�

�⌫µ.

(B.85)

Le equazioni gravitazionali (B.76), scomposte lungo le direzioni ortogonali e
tangenti allo spazio-tempo ⌃

4

della membrana, si riducono, rispettivamen-
te, a:

6F 2 = �⇤f2 (B.86)

3F 0 + 3F 2 = �⇤f2 �M�3

5

T
3

f�(y). (B.87)
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Notiamo che f dipende dal modulo di y, e quindi la derivata seconda di f
(contenuta in F 0) fornisce la derivata della funzione segno, che produce un
contributo deltiforme al membro sinistro dell’Eq. (B.87). Dobbiamo dunque
imporre separatamente l’uguaglianza della parte finita e dei coe�cienti della
parte singolare dell’Eq. (B.87).

Per risolvere le equazioni precedenti è conveniente usare la rappresenta-
zione esplicita

|y| = y✏(y), ✏(y) = ✓(y)� ✓(�y), (B.88)

dove ✓(y) è la funzione gradino di Heaviside e ✏(y) la funzione segno, che
soddisfa alle proprietà:

✏2 = 1, ✏0 = 2�(y). (B.89)

Possiamo quindi porre

f 0 =
@f

@|y|✏(y), (B.90)

e l’Eq. (B.86) diventa:
✓

@f

@|y|

◆

2

= �⇤
6
f4 (B.91)

Quest’ultima equazione ammette soluzioni reali purché ⇤ < 0. Assumendo
dunque che la costante cosmologica sia negativa, ed integrando, otteniamo
per f la seguente soluzione particolare:

f(|y|) = (1 + k|y|)�1 , k =

✓

�⇤
6

◆

1/2

. (B.92)

Inserendo questa soluzione nella metrica (B.81) otteniamo per lo spazio-
tempo pentadimensionale una geometria di tipo esattamente anti-de Sitter
(AdS), scritta in una parametrizzazione conformemente piatta.

Ci resta da risolvere l’altra equazione di Einstein (B.87), che contiene
il contributo esplicito della membrana. Usando le equazioni (B.88)–(B.90)
l’equazione da risolvere diventa

3

f

@2f

@|y|2 +
6

f

@f

@|y|�(y) = �⇤f2 �M�3

5

T
3

f�(y). (B.93)

La parte finita di questa equazione risulta identicamente soddisfatta dalla
soluzione (B.92). Uguagliando i coe�cienti dei termini divergenti otteniamo
inoltre una condizione che collega la tensione della membrana e la curvatura
della geometria AdS:

T
3

= 6kM3

5

= M3

5

(�6⇤)1/2 . (B.94)
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Imponendo quest’ultima condizione arriviamo al cosiddetto modello di Randall-
Sundrum6, in cui la densità d’energia intrinseca della membrana viene esat-
tamente cancellata dal contributo (negativo) delle sorgenti gravitazionali pre-
senti nello spazio esterno, e la geometria della membrana-Universo ⌃

4

risulta
dunque di tipo Minkowskiano, come richiesto.

B.2.1 Confinamento della gravità

Se prendiamo sul serio la possibilità che l’Universo esplorato dalle intera-
zioni elettromagnetiche, deboli e forti corrisponda allo spazio-tempo quadri-
dimensionale ⌃

4

di una 3-brana, immerso in uno spazio esterno multidimen-
sionale, dobbiamo a↵rontare il problema del perché non abbiamo mai (finora)
rivelato le dimensioni extra mediante esperimenti di tipo gravitazionale. Ci
aspettiamo infatti che la gravità, a di↵erenza delle altre interazioni, possa
propagarsi lungo tutte le dimensioni spaziali.

Una possibile risposta a questo problema si ottiene assumendo che le
dimensioni esterne a ⌃

4

abbiano un’estensione spaziale estremamente pic-
cola e compatta, e quindi inaccessibile alle attuali sensibilità sperimentali
(esattamente come accade nello scenario di Kaluza-Klein).

Nello scenario delle membrane-Universo, però, c’è anche una seconda pos-
sibile risposta, basata sull’e↵etto di “confinamento della gravità”: un’appro-
priata curvatura della geometria esterna alla membrana può “forzare” la com-
ponente a lungo raggio delle interazioni tensoriali a restare strettamente lo-
calizzata su ⌃

4

, esattamente come le altre interazioni di gauge. In quel caso
solo una coda residua, a corto raggio, dell’interazione gravitazionale (mediata
da particelle tensoriali massive) può propagarsi in direzioni ortogonali a ⌃

4

, e
può rendere rivelabili (in principio) le dimensioni extra mediante esperimenti
su�cientemente sensibili.

Questa interessante possibilità può essere illustrata anche nel contesto del
semplice modello pentadimensionale di Randall-Sundrum introdotto nella
sezione precedente. A questo scopo basterà sviluppare le fluttuazioni della
metrica attorno alla soluzione gAB dell’Eq. (B.81) ponendo, al primo ordi-
ne, gAB ! gAB + �gAB , e tenendo fissa la membrana alla posizione data,
�XA = 0. Chiamiamo le fluttuazioni �gAB = hAB , e calcoliamo l’azione
pentadimensionale perturbata fino a termini quadratici in hAB .

Ci interessa, in particolare, la parte trasversa e a traccia nulla delle flut-
tuazioni �gµ⌫ = hµ⌫ della geometria di ⌃

4

, che descrive la propagazione del
campo gravitazionale (si veda il Capitolo 9) sullo spazio-tempo della mem-
brana. Nell’approssimazione lineare che stiamo considerando tali fluttuazio-
ni sono disaccoppiate dalle altre componenti (scalari ed extra-dimensionali)
di hAB . Possiamo quindi assumere che la nostra configurazione geometrica

6 L. Randall and R. Sundrum, Phys. Rev. Lett. 83, 4960 (1999).
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perturbata sia caratterizzata dalle seguenti fluttuazioni:

hµ4 = 0, hµ⌫ = hµ⌫(x
↵, y), gµ⌫hµ⌫ = 0 = @⌫hµ⌫ . (B.95)

Il calcolo dell’azione (quadratica in h) che descrive la dinamica delle fluttua-
zioni può essere eseguito con la procedura che abbiamo già introdotto nella
Sez. 9.2, e che porta al risultato (9.48). Dobbiamo tenere presente, però, che
in questo caso stiamo perturbando una metrica di partenza che non è piatta,
e che è data dall’Eq. (B.81). Usando i risultati precedenti per gAB otteniamo
dunque per le fluttuazioni la seguente azione,

�S = �M3

5

8

Z

d5x
p

|g
5

|hµ
⌫rArAh⌫

µ

= �M3

5

8

Z

d5x
p

|g
5

| f3 [hµ
⌫2h⌫

µ � hµ
⌫h⌫

00µ � 3Fhµ
⌫h⌫

0µ] ,

(B.96)

dove la derivata covariante rA si riferisce alla metrica non perturbata gAB ,
e dove 2 = @2t � @2i è l’usuale operatore di D’Alembert dello spazio-tempo di
Minkowski a quattro dimensioni.

Integriamo per parti per eliminare h00, decomponiamo hµ
⌫ nei due modi di

polarizzazione indipendenti (si veda l’Eq. (9.15)), e prendiamo la traccia dei
tensori di polarizzazione. Per ciascun modo di polarizzazione h = h(t, xi, y)
si ottiene allora l’azione

�S =
M3

5

4

Z

dy f3

Z

d4x
⇣

ḣ2 + hrh� h02
⌘

, (B.97)

dove il punto indica la derivata rispetto a t = x0, il primo rispetto a y, e dove
r2 = �ij@i@j è l’operatore Laplaciano dello spazio Euclideo tridimensionale.
La variazione rispetto ad h fornisce infine l’equazione che descrive la propa-
gazione nel vuoto delle fluttuazioni della geometria dello spazio-tempo ⌃

4

:

2h� h00 � 3Fh0 = 0. (B.98)

Questa equazione di↵erisce dalla usuale equazione d’onda di D’Alembert
perché le fluttuazioni sono accoppiate ai gradienti della geometria penta-
dimensionale, a causa della dipendenza intrinseca di h dalla quinta coordina-
ta y.

Per risolvere la precedente equazione è conveniente separare la dipendenza
dalle coordinate, ponendo

h(xµ, y) =
X

m

vm(x) m(y). (B.99)

Si trova allora che le nuove variabili v, soddisfano le seguenti equazioni agli
autovalori (disaccoppiate tra loro):

2vm = �m2vm,

 00
m + 3F 0

m ⌘ f�3

�

f3 0
n

�0
= �m2 m.

(B.100)
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Se lo spettro di autovalori è continuo, la somma che appare nell’Eq. (B.99)
va ovviamente sostituita da un integrale.

È conveniente, inoltre, riscrivere l’equazione per  nella forma canonica
(di Schrodinger), introducendo la variabile“ rinormalizzata” b m, tale che:

 m =
�

f3M
5

��1/2
b m (B.101)

(il fattore dimensionale M�1/2
5

è stato introdotto per convenienza futura).
L’equazione per  diventa allora

b 00
m +

⇥

m2 � V (y)
⇤

b m = 0, (B.102)

dove

V (y) =
3

2

f 00

f
+

3

4

✓

f 0

f

◆

2

, (B.103)

o anche, usando per f la soluzione esplicita (B.92),

V (y) =
15

4

k2

(1 + k|y|)2 � 3k�(y)

1 + k|y| . (B.104)

Questo potenziale e↵ettivo è anche detto “potenziale a vulcano”, in quanto
il primo termine di V (y) è simmetrico con un picco a y = 0, ma il picco si
trova in corrispondenza di una singolarità deltiforme negativa, che assomiglia
al cratere di un vulcano.

Come ben noto dai risultati della meccanica quantistica unidimensionale,
l’equazione di Schrodinger con un potenziale attrattivo deltiforme ammette
un unico stato legato, associato ad una funzione d’onda a quadrato integrabile
che è localizzata nell’intorno del punto in cui si trova il potenziale. Nel nostro
caso tale stato corrisponde all’autovalore m = 0, e alla soluzione (invariante
per riflessioni) dell’Eq. (B.102) data da

b 
0

= c
0

f3/2, (B.105)

dove c
0

è una costante da determinarsi con la condizione di normalizzazione.
È importante osservare, a questo proposito, che la variabile b 

0

definita dal-
l’Eq. (B.101) (dove  

0

è adimensionale) possiede la corretta normalizzazione
per appartenere allo spazio di Hilbert L

2

delle funzioni a quadrato integrabile
con la misura canonica dy (come nella meccanica quantistica convenzionale).

Inoltre, b 
0

è normalizzabile anche per un’estensione infinita della dimensio-
ne spaziale esterna alla membrana. In quest’ultimo caso, imponendo l’usuale
normalizzazione a 1, abbiamo la condizione:

1 =

Z

dy
�

�

�

b 
0

�

�

�

2

=

Z

+1

�1
dy

c2
0

(1 + k|y|)3 =
c2
0

k
, (B.106)
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che fissa c
0

in funzione di k (ossia di ⇤, si veda l’Eq. (B.92)). Possiamo anche
esprimere lo stesso risultato usando la variabile (non canonica)  , ma in quel
caso dobbiamo cambiare misura di integrazione, e definire i prodotti scalari
rispetto alla misura di integrazione adimensionale dey = M

5

f3dy.
L’esempio appena discusso del caso m = 0 mostra chiaramente in che mo-

do le componenti a massa nulla delle fluttuazioni metriche (che descrivono
interazioni gravitazionali a lungo raggio) possano essere rigidamente localiz-
zate sulla membrana a y = 0: questo avviene non perché la quinta dimensione
sia compattificata su scale di distanza molto piccole, ma piuttosto perché i
modi a massa nulla sono “intrappolati” in uno stato legato generato dalla
curvatura della varietà pentadimensionale. Nel nostro caso, in particolare, è
la geometria AdS che forza i modi a massa nulla ad avere una distribuzione
di ampiezza con il picco in corrispondenza della posizione della membrana.

Dobbiamo tener presente, però, che nello spettro delle fluttuazioni me-
triche c’è anche una parte massiva, descritta dall’equazione di Schrodinger
(B.102) con m 6= 0. Anche in quel caso l’equazione ammette soluzioni esatte,
con uno spettro continuo di valori positivi di m che si estende fino all’infinito.
Tali soluzioni, però, non rappresentano stati legati del potenziale (B.104), e
non sono dunque localizzate sullo spazio-tempo ⌃

4

della membrana.
Per ottenere tali soluzioni possiamo seguire la tecnica tradizionale che si

usa in meccanica quantistica per il trattamento del potenziale deltiforme.
Cercando soluzioni invarianti per riflessioni attorno all’origine (ossia soluzio-
ni che dipendono dal modulo di y), possiamo innanzitutto riscrivere l’Eq.
(B.102) come

d2 b m

d|y|2 + 2�(y)
d b m

d|y| +
�

(m2 � V
�

b m = 0, (B.107)

dove V è dato dall’Eq. (B.104). Fuori dall’origine (y 6= 0) abbiamo quin-
di un’equazione di Bessel, la cui soluzione generale si può scrivere come
combinazione delle funzioni di Bessel J⌫ e Y⌫ di indice ⌫ = 2 e argomento
↵ = m/(kf):

b m = f�1/2 [AmJ
2

(↵) +BmY
2

(↵)] . (B.108)

Imponendo a questa espressione di soddisfare l’Eq. (B.107) anche per y = 0,
ed uguagliando i coe�cienti del termini proporzionali alla funzione delta,
otteniamo una condizione che collega tra loro le due costanti di integrazione
Am e Bm:

Bm = �Am
J
1

(m/k)

Y
1

(m/k)
. (B.109)

La soluzione generale si può dunque riscrivere come

b m = cmf�1/2
h

Y
1

⇣m

k

⌘

J
2

(↵)� J
1

⇣m

k

⌘

Y
2

(↵)
i

, (B.110)
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dove cm è un fattore moltiplicativo costante, che può essere fissato imponendo
la condizione di normalizzazione

Z

dy b ⇤
m
b n ⌘

Z

dyM
5

f3 ⇤
m n = �(m,n). (B.111)

Abbiamo posto �(m,n) per indicare il simbolo di Kronecker per uno spettro
discreto, e la delta di Dirac per uno spettro continuo dei valori m ed n. Per
valori diversi da zero, in particolare, lo spettro è continuo, e la condizione di
normalizzazione fornisce il risultato

cm =
⇣m

2k

⌘

1/2 h

J2

1

⇣m

k

⌘

+ Y 2

1

⇣m

k

⌘i�1/2

, (B.112)

che fissa completamente l’ampiezza dei modi massivi delle fluttuazioni ten-
soriali.

Usando il limite asintotico delle funzioni di Bessel J
2

(↵), Y
2

(↵), dove
↵ = m/(kf) = m(1 + k|y|)/k, possiamo verificare che queste soluzioni non
vengono soppresse, ma si comportano in modo oscillante per y ! ± 1: quindi
non descrivono stati localizzati sulla membrana. Come conseguenza, possia-
mo aspettarci che questi modi massivi producano e↵etti nuovi (di genuina
origine multidimensionale): in particolare, correzioni a corto raggio alla forza
gravitazionale che dipendono dalla presenza e dal numero delle dimensioni ex-
tra, e che contengono l’impronta diretta della curvatura dello spazio esterno.
Gli e↵etti dei modi massivi saranno illustrati nella sezione successiva.

B.2.2 Correzioni a corto raggio

Per stimare quantitativamente le correzioni indotte dalle fluttuazioni massi-
ve della geometria della membrana dobbiamo calcolare, innanzitutto, le loro
costanti d’accoppiamento e↵ettive. Possiamo dedurre tali costanti di accop-
piamento dalla forma canonica dell’azione e↵ettiva (B.97) dopo averla ridotta
dimensionalmente, integrando la dipendenza da y contenuta nelle componenti
 m delle fluttuazioni.

A questo scopo inseriamo lo sviluppo (B.99) nell’azione (B.97), e notiamo
che il termine h02 è proporzionale (modulo derivate totali) al termine di massa
dei modi  m. Infatti:

Z

dy f3h02 =
X

m.n

vmvn

Z

dy f3 0
m 

0
n

=
X

m.n

vmvn

Z

dy



d

dy

�

f3 m 
0
n

�

�  m

�

f3 0
n

�0
�

(B.113)

=
X

m.n

vmvn

Z

dy f3m2 m n.
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Nell’ultimo passaggio abbiamo trascurato una derivata totale, ed usato l’Eq.
(B.100) per  m. Integrando su y, e sfruttando la relazione di ortonormalità
(B.111), otteniamo un’azione dimensionalmente ridotta che contiene solo le
componenti vm(x) delle fluttuazioni:

�S ⌘
X

m

�Sm =
X

m

M2

5

4

Z

d4x
�

v̇2m + vmr2vm �m2v2m
�

. (B.114)

Il simbolo di sommatoria che appare in questa equazione indica, sinteticamen-
te, che il contributo del modo a massa nulla m = 0 va sommato all’integrale
fatto su tutto lo spettro continuo dei modi massivi (ossia, fatto sui valori
positivi di m fino a +1).

Introduciamo ora la variabile hm, che rappresenta la fluttuazione e↵ettiva
della metrica di Minkowski a quattro dimensioni valutata sull’ipersuperficie
⌃

4

, ossia:
hm(x) ⌘ [hm(x, y)]y=0

= vm(x) m(0). (B.115)

Espressa mediante questa variabile, l’azione (B.114) diventa:

�S =
X

m

M2

5

4 m(0)

Z

d4x

✓

ḣ
2

m + hmr2hm �m2h
2

m

◆

. (B.116)

Il confronto con l’azione canonica per le fluttuazioni della geometria di Min-
kowski (si veda l’Eq. (9.48), e se ne prenda la traccia sulle polarizzazioni),
ci permette immediatamente di concludere che la costante d’accoppiamento
e↵ettiva per un generico modo hm è data da:

8⇡G(m) ⌘ M
P

(m) = M�2

5

 2

m(0). (B.117)

Si noti che tale tale accoppiamento dipende non solo dalla scala M
5

tipica
della gravità pentadimensionale, ma anche dalla posizione della membrana
nella varietà esterna (perché tale varietà è curva, e la sua geometria non è
invariante per traslazioni).

Consideriamo innanzitutto le fluttuazioni a massa nulla. Usando per  
0

le
equazioni (B.101), (B.105), (B.106) abbiamo  

0

= (k/M
5

)1/2; il corrispon-
dente parametro di accoppiamento, che possiamo identificare con l’ordinaria
costante di Newton G, è quindi dato da

8⇡G(0) ⌘ 8⇡G =
k

M3

5

. (B.118)

Per le fluttuazioni massive, invece, l’accoppiamento dipende dalla massa:

usando le definizioni  m(0) = M�1/2
5

b m(0) e le soluzioni (B.110), (B.112),
otteniamo:

8⇡G(m) =
↵
0

2M3

5

[Y
1

(↵
0

)J
2

(↵
0

)� J
1

(↵
0

)Y
2

(↵
0

)]2

J2

1

(↵
0

) + Y 2

1

(↵
0

)
, (B.119)
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dove ↵
0

= m/k. Si noti che G(m) si riferisce a uno spettro continuo di
valori di m, e quindi rappresenta il parametro di accoppiamento e↵ettivo
nell’intervallo di massa infinitesimo compreso tra m e m+ dm.

Siamo ora in grado di stimare le interazioni gravitazionali e↵ettive sullo
spazio-tempo della membrana ⌃

4

, includendo il contributo di tutti i modi
(massivi e non massivi).

Possiamo considerare, come semplice ma istruttivo esempio, il campo gra-
vitazionale statico prodotto da una sorgente puntiforme di massa M loca-
lizzata sulla membrana. L’equazione di propagazione linearizzata per le flut-
tuazioni gravitazionali nello spazio-tempo di Minkowski della membrana, in
presenza di sorgenti, è data dall’Eq. (8.10). Includendo l’eventuale massa
delle fluttuazioni, e usando la costante di accoppiamento e↵ettiva (B.119),
abbiamo, per un generico modo h

µ⌫

m :

�

2+m2

�

h
µ⌫

m = �16⇡G(m)

✓

⌧µ⌫ � 1

2
⌘µ⌫⌧

◆

. (B.120)

Consideriamo il limite statico in cui 2 ! �r2, ⌧ ij ! 0, ⌧ = ⌘µ⌫⌧µ⌫ ! ⌧0
0

=

⇢, e h
00

m ! 2�m, dove �m è il potenziale gravitazionale e↵ettivo prodotto da
una fluttuazione di massam. La componente (0, 0) della precedente equazione
fornisce una equazione di Poisson generalizzata,

�

�r2 +m2

�

�m(x) = �4⇡G(m)⇢(x), (B.121)

che controlla il contributo di un modo di generica massa m al potenziale
gravitazionale totale.

La soluzione generale per �m si può esprimere applicando il metodo delle
funzioni di Green, ossia ponendo

�m(x) = � 1

4⇡

Z

d3x0 Gm(x, x0)4⇡G(m)⇢(x0), (B.122)

dove Gm(x, x0) soddisfa a

�

�r2 +m2

�

Gm(x, x0) = 4⇡�(x� x0). (B.123)

Prendendo la trasformata di Fourier abbiamo dunque la seguente funzione di
Green,

Gm(x, x0) = 4⇡

Z

d3p

(2⇡)3
eip·(x�x

0
)

p2 +m2

, (B.124)

valida per modi di massa generica.
Per il modo a massa nulla, in particolare, la funzione di Green è data da

G
0

(x, x0) =
2

⇡

Z 1

0

dp
sin(p|x� x0|)

p|x� x0| =
1

|x� x0| . (B.125)



354 Appendix B Gravità multidimensionale

Sostituendo nell’Eq. (B.122), e considerando una sorgente puntiforme con
⇢(x0) = M�3(x0), arriviamo alla soluzione

�m(x) = �GM

r
, (B.126)

dove r = |x| (abbiamo usato il valore (B.118) della costante d’accoppiamen-
to).

Per un modo massivo, invece, la funzione di Green è data da

Gm(x, x0) =
2

⇡

Z 1

0

dp
p2

p2 +m2

sin(p|x� x0|)
p|x� x0| =

e�m|x�x

0|

|x� x0| , (B.127)

e si ottiene

�m(x) = �G(m)M

r
e�mr, (B.128)

dove G(m) è la costante d’accoppiamento definita dall’Eq. (B.119). Il po-
tenziale (statico) totale prodotto dalla sorgente puntiforme si ottiene infi-
ne sommando tutti i contributi massivi e non massivi, ed è quindi fornito
dall’espressione

� =
X

m

�m = �
0

+

Z 1

0

dm�m

= �GM

r



1 +
1

G

Z 1

0

dmG(m)e�mr

�

.

(B.129)

Nel limite di campi campi deboli, a distanze su�cientemente grandi dal-
la sorgente, il contributo delle fluttuazioni massive risulta esponenzialmente
soppresso, per cui il contributo dominante al precedente integrale viene dai
modi con massa più piccola. In questo regime possiamo allora ottenere una
stima approssimata delle correzioni gravitazionali a corto raggio usando il
limite di piccoli argomenti (m ! 0) delle funzioni di Bessel che appaiono
nella definizione di G(m). In questo caso otteniamo

8⇡G(m) �!
m ! 0

m

2kM3

5

=
m

2k2
8⇡G (B.130)

(abbiamo usato l’Eq. (B.118)). Il potenziale e↵ettivo diventa dunque, nel
limite di campo debole,

� = �GM

r

✓

1 +
1

2k2

Z 1

0

dmme�mr

◆

= �GM

r

✓

1 +
1

2k2r2

◆

.

(B.131)
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Possiamo concludere che le correzioni multidimensionali diventano impor-
tanti solo per distanze che sono su�cientemente piccole rispetto alla scala
di curvatura della varietà multidimensionale in cui è immersa la membrana.
Questo significa, nel particolare modello che stiamo considerando, che le cor-
rezioni sono importanti per distanze r tali che r <⇠ k�1, dove k�1 è il raggio
di curvatura della varietà pentadimensionale di anti-de Sitter (si veda l’Eq.
(B.92)).

A distanze più grandi di queste l’interazione gravitazionale che agisce sullo
spazio-tempo della membrana si riduce, a tutti gli e↵etti, alla forma standard
della gravità in quattro dimensioni, indipendentemente dal fatto che le dimen-
sioni extra siano (oppure no) compatte e di piccola estensione. Tale risultato
si può estendere al caso varietà spazio-temporali in cui la geometria della
membrana è descritta da metriche di tipo Ricci-piatto diverse da quella di
Minkowski, e al caso di varietà con un numero di dimensioni D > 5.
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6. M. Gasperini: Manuale di Relatività Ristretta (Springer-Verlag Italia, Milano, 2010).

Relatività Generale
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parametri di Stokes, 185
piano di Kruskal, 210
potenziale a vulcano, 349
potenziale di gauge, 239
precessione relativistica del perielio

in un campo centrale Newtoniano, 30, 31
in un campo di Schwarzschild, 204

principio

di equivalenza, 36
di general-covarianza, 32
di minima azione, 2
di minimo accoppiamento, 71, 257

prodotto esterno, 297
proiezione sullo spazio tangente, 237
pseudo-sfera a quattro dimensioni, 39, 115

quadrivettore di Pauli-Lyubarskii, 25

radiazione CMB, 184
radiazione gravitazionale

emessa da un oscillatore armonico, 189
emessa da un sistema stellare binario,

174
emessa in approssimazione quadrupolare,

171
emessa lungo una direzione arbitraria,

188
polarizzazione della radiazione cosmica,

184, 186
radiazione fossile, 183, 186
zona d’onda, 168

riduzione dimensionale, 326, 329, 352
ritardo dei segnali, 151

simbolo antisimmetrico di Levi-Civita, 49
simmetria, 4

e correnti conservate, 5
simmetrie locali, 238
simmetrizzazione di Belinfante-Rosenfeld,

14
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