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To Jana and Riccarda



Preface

The title of this book is short and one cannot resist thinking of Milan Kundera’s
observation that one quality we have lost is slowness. At times when books were
not so numerous and readers were patient, one might have preferred to speak about
quantum mechanics of particles confined to regions of tubular form, in particular,
relations between their spectral and scattering properties and the geometry of
confinement, et cetera. But habits are different nowadays, hence quantum wave-
guides, even if the guided objects are not exactly waves, and not a small part of
what we are going to discuss concerns states in which the particles do not move.
However, although the term we have coined may not be fully fitting, it has the
advantage of linking the subject of the book to related problems in areas of classical
physics such as acoustics and electromagnetism.

Guided quantum dynamics, as discussed in this book, attracted attention in the
second half of the 1980s. The motivation came from two sources. On the one hand,
new developments in solid-state physics called for a theoretical analysis of such
effects, and on the other hand, from the mathematical point of view these questions
opened new and unexplored areas in spectral geometry. The older one of the
authors had been lucky to participate in those studies from the beginning, the
younger one joined this effort a decade later. The subject proved to be rich and
looking back at those years we see many interesting results obtained by numerous
people; we feel that the time may be right to summarize the understanding achieved
as well as to identify new challenges.

The questions we address in the book are physical, or at least they come from
physics, and the instruments we use are mathematical. This means, in particular,
that the claims are made with full rigor, the proofs being either given completely or
sketched to a degree allowing the reader to fill in the details. Some of these
exercises are delegated to problems accompanying each chapter. The level of those
vary, some boil down to simple if tedious computations or extensions of the results
derived in the main text, while others represent more complicated questions which
may constitute the contents of a research paper.

Since mathematics is a tool we employ, not the goal, our theorems are formu-
lated with a reasonable degree of generality, however, we do not strive for the
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weakest possible assumptions and a mathematically minded reader will find a lot of
room for improvements. Technically speaking, our arguments come mostly from
applied functionals analysis, but we also need results from differential geometry,
probability, and other areas. We decided not to burden the book with appendices
summarizing this material; we assume the reader is acquainted with the basic
concepts and we provide references whenever we find it necessary.

Most problems discussed in the book involve various simple geometric con-
siderations, and consequently, it would be easy to accompany the text with
numerous drawings. We resist this temptation, believing the reader will profit from
working these things out while going through the text. Old textbooks used to come
with a parenthetical encouragement—(Draw a picture!)—but we are sure he or she
would know when such a visual support is needed. In addition, many original
papers we cite, including some of our own, are full of illustrations.

Dealing with problems of different kinds, we also have to think about the
notation. We try to be consistent but not pedantic. For instance, we use vector
notation at places where it is convenient due to a frequent use of components but
drop the arrows elsewhere. Similarly, tensor notation is employed only when
needed to work with objects like curved surfaces, layers, or networks, etc.

Since our goal is to provide a summary of the research activities of numerous
people over a quarter of a century, we had to augment the exposition with a
reasonable representative, if not exhaustive, bibliography which will allow the
reader to understand the history and pursue the further development of each topic
discussed here. We strived to keep it up to date during the writing, being aware, of
course, that the field is full of life and new interesting papers will surely keep
appearing after the book is published.

Working on quantum waveguide problems over the years we benefited from the
opinions of many colleagues whom we want to thank for the pleasure of fruitful
discussions and common work. They were numerous and we have to do it in part
anonymously, mentioning only some names. In the first place our thanks go to Petr
Seba and the late Pierre Duclos who understood importance of quantum wave-
guides and made weighty contributions to the field at its early stages. We are also
grateful to our other coauthors, especially to F. Bentosela, D. Borisov, T. Cheon,
T. Ekholm, M. Fraas, R. Frank, E. Harrell, T. Ichinose, A. Joye, S. Kondej,
D. Krejcitik, J. Lipovsky, M. Loss, K. Némcova (Ozanova), O. Post, G. Raikov,
P. Stovigek, M. Tater, O. Turek, S. Vugalter, T. Weidl, K. Yoshitomi, as well as to
J. Avron, C. Cacciapuoti, J.-M. Combes, E.B. Davies, G.F. Dell’Antonio,
P. Freitas, F. Gesztesy, A. Laptev, E. Lieb, H. Neidhardt, K. Pankrashkin,
A. Sadreev, E. Soccorsi, V. Zagrebnov, and many, many others. Last but not least,
we are deeply obliged to our wives and our families for their understanding and
support which made the writing of this book possible.

Prague Pavel Exner
Brescia Hynek Kovatik
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Introduction

The worst of all is to fear something that has no shape
Karel Schulz, Stone and Pain

Introductions are here to give the reader a feeling what to expect in the pages that
would follow, a rough map of the territory he or she is entering. They may be
skipped and often they are. The usefulness of such an opening guide depends, of
course, on the subject the book is going to treat. In the present case, the main
motivation comes from the fact that the text which follows uses methods of
mathematical physics and as such it could be perceived as highly technical, at least
in some places. Before plunging into it, we want therefore to describe in simple
words what this book contains. We will do it without a single formula; there will be
more than enough of them in the chapters to follow.

To start on a general note, let us first recall the well-known fact that the birth of
quantum mechanics three generations ago marked one of the big leaps in our
understanding of Nature. For the first time we had a theory capable of explaining
the structure of the matter at the atomic level, and it was only natural that most
attention had been paid in the opening period to such fundamental questions.
However, this quest led simultaneously to the discovery of various quantum effects
which proved to be of practical importance and influenced our daily lives sub-
stantially—Ilooking around, one has to admit that the mechanics of the numerous
appliances we depend upon is of a quantum nature.

This broad use required extensive experimental and manufacturing explorations,
and those in their turn had a reverse influence on the theory. While at the time of the
founding fathers one considered electrons either flying as a beam of particles or
moving in a crystal regarded, according to a good theoretical tradition, as an infinite
homogeneous environment, the newly acquired manufacturing skills posed ques-
tions concerning the solution of the known equations of motion in more compli-
cated settings, for instance, in regions of nontrivial shapes. A good example is
represented by quantum dots, tiny crystals of a semiconductor material, the size of
which is typically in tens of nanometers, studied intensely in the last three decades.
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They can be regarded as artificial atoms held together by the boundary confinement
at the material interface instead of the electrostatic attraction of a nucleus.

A motivation for this book can be derived from another type of object studied in
solid-state physics, often called a quantum wire. In contrast to quantum dots,
quantum wires represent a mixed-dimensionality sort of confinement, in which the
electron motion is restricted to a very small size in one direction but it is extended in
the other direction(s) so that a transport is possible. A comment is due on the used
adjective, because not every thin thread of a conductive material is a quantum wire.
The difference is in the type of the transport. Most materials are “dirty”” and charge
carriers move in them in a diffusive way. The situation changes if the concentration
of impurities, measured by the mean free path, is large enough. In high-quality
semiconductor materials, this quantity can be at least of the order of tens of
micrometers, being thus comparable with typical lengths of the “wires” studied in
such experiments. The main consequence is that the quantum nature of transport
becomes dominant; we can observe this, in particular, from the fact that the features
of the conductivity we know well from the macroscopic experience, such as Ohm’s
law, cease to be valid.

Even if we neglect possible impurities, the description of an electron motion
would still be a formidable task. What makes it accessible is the crystalline structure
of the material, which allows us to pass to a one-body problem with the material
properties being encoded in the effective mass of the particle. Moreover, in most
parts of this treatise the actual value of the effective mass will be unimportant and
we can get rid of it by an appropriate choice of units.

While we have used semiconductor quantum wires as a motivation to study a
guided quantum motion, there are other systems that can serve this purpose.
Another class of objects which has recently attracted a lot of attention are carbon
nanotubes obtained by folding the hexagonal lattice of a graphene sheet into a
cylindrical form (in reality, of course, the nanotubes were found before the exis-
tence of graphene as a two dimensional carbon crystal was established experi-
mentally). In other settings, the particle guiding may involve true “ducts” as is the
case with atoms confined within a hollow glass fiber; if the cavity cross section is
small enough, quantum effects again become important.

So far, we have been vague concerning the way the particle is forced to stay in a
prescribed part of the configuration space. There are different physical situations to
which different models suit. In semiconductor quantum wires the boundary is in
reality usually an interface between two semiconductor materials, hence it could
naturally be described as a potential step. Often the latter is large on the scale of the
effects one investigates, so it is possible to simplify the description by regarding the
boundary as a hard wall at which the wave functions vanish. This is the assumption
we shall use for most of the book, however, there will be notable exceptions. At
places we shall consider systems in which the Dirichlet condition is replaced by a
Neumann or a mixed condition. For instance, the main results of Chap. 8 concern
systems of thin tubes the boundary of which is Neumann (or is absent).
Furthermore, the closing chapter is devoted to situations where the confinement is
even “softer”, being realized by appropriate singular potentials.
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Speaking of boundaries, we should mention some other classes of systems to
which the techniques discussed in this book can be applied. While we are mainly
concerned with quantum systems in which the dynamics is governed by the
appropriate Schrodinger equation, similar behavior can be encountered elsewhere,
at least as long as stationary situations are considered. In Chap. 3, for instance, we
shall briefly discuss some properties of acoustic waveguides. Equally important,
one is also able to say something about electromagnetic waveguides. True, the
dynamics there is governed by Maxwell’s equations, but in particular situations the
description of some field components can be reduced to the appropriate Helmholtz
equation—we shall mention this in the notes to Chap. 1—which, in particular,
introduces a simple way to experimentally verify some of the mathematical results
derived here. To amuse the reader, we add that this does not exhaust the list of
possible “classical” applications; you may think of soap bubbles on extended
frames of nontrivial shapes and other exotic objects.

The central theme of the book is the relationship between, on one hand, the
geometry of the confinement, and, on the other hand, the spectral and scattering
properties of the confined particle, expressed in terms of the relevant observables, in
the first place the Hamiltonian. The term we use to describe such systems refers to a
guided motion, hence it would seem natural to start the investigation with transport
in tubes. We choose a different departing point, however, and look first at states
which remain localized as the time runs. Apart from methodical reasons, this will
allow us to better appreciate the effects that a nontrivial geometry can induce.

The simplest of them is binding by bending. A straight hard-wall tube in the
form of an infinite cylinder has a purely continuous spectrum. If we bend it in a way
which keeps it straight at both ends, at least asymptotically, the corresponding
Hamiltonian appears to have isolated eigenvalues referring to bound states localized
around the bent part of the tube, their number and positions depending on the
geometry of the problem. In fact, this simple and surprising result gave the initial
impetus to the investigation of quantum waveguides.

To understand why this effect is so intriguing, one should notice first that it has no
classical analogue. There are, of course, closed trajectories in such a tube but their
family has measure zero in the phase space, and therefore it cannot give rise to a
discrete spectrum according to the conventional quantization rules. Nevertheless,
some classical physics considerations may help us to grasp what is happening in such
a system. Everybody has probably seen a bobsleigh race and will be able to tell, even
without solving the Newton equations, what occurs in a curved part of the track: the
sleigh “climbs” the wall there from the bottom of the channel, being slowed down due
to energy conservation. A quantum “sleigh” could not do it continuously, however,
for the simple reason that its motion perpendicular to the channel is quantized. A
“climb” then means jumping into a higher transverse state, and if the longitudinal part
of the energy is not sufficient, such an object would be reflected from the bend; if it
rests in the bend, being in the lowest transverse state, it has nowhere to go.

This is, of course, a hand-waving argument, and is far from truly explaining the
effect. First of all, it obviously fails if the channel has a rectangular form with flat
bottom, which is the case we shall be mostly interested in. Second, it does not allow
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us to understand why the binding effect is robust—we shall see that it is produced
by tube bends of any shape, not necessarily smooth ones, and also occurs in higher
dimensions, even for bent tubes in R¢ which are mostly of mathematical interest
and our original motivation no longer applies to them.

On the other hand, there are higher dimensional systems of strong physical interest,
in the first place geometrically nontrivial layers in R>. While from the experimental
point of view it may sometimes be easier to prepare such a curved layer than a bent
tube, for instance, fabrication of a quantum wire is more involved than preparation of a
thin semiconductor film on a nonflat substrate, mathematically the layer dynamics
represents a more difficult problem. We shall discuss this in Chap. 4, paying most
attention to curved layers of a constant width built over nonplanar surfaces. Although
in this case we do not have a general result which would ensure the existence of
localized states in any such layer unless it is flat, we shall be able to identify wide
classes of layers which exhibit such geometrically induced bound states.

Bending is not the only hard-wall tube deformation which can produce bound
states. The same is true, for instance, if a straight tube is locally protruded. In this
case, there can be a family of classically closed trajectories of nonzero measure. In
fact, the phase-space picture is more complicated having in general a mixed
structure with tori referring to integrable motion and a chaotic component.
Nevertheless, a binding occurs here even for arbitrarily small protrusions, which
again is not in accord with the usual quantization rules.

Bending is also not the only instance when a quantum waveguide exhibits bound
states despite the absence a non-negligible phase-space component referring to
restricted classical motion. Another example is provided by a lateral coupling.
Having two adjacent planar hard-wall strips, we can connect them by opening a
window in the common boundary; this again produces a discrete spectrum which is
present even if the window width is very small. In a sense, this localization is
caused by reflections from the window edges. For a classical particle such an event
can occur, of course, with zero probability, however, one can imagine that the
reflection becomes more likely once the point particle is replaced by a wave packet
spread over some nonzero distance.

While the last claim may again only be of heuristic importance, it does help us to
understand some other purely quantum effects. In this connection, one may recall
the so-called Seba billiard, that is, a quantum particle confined to a rectangular
region with a point interaction in its interior. Such a system is reminiscent of the
classical Sinai example of chaotic motion in which a circular obstacle is placed in
the center of a rectangular cavity. If the obstacle size shrinks to zero in this
example, however, the motion becomes integrable again as the probability of hitting
the point is zero. In the quantum case, on the other hand, its presence is felt and
shows up in the spectral statistics in a way which is regarded as a chaoticity
manifestation. We shall encounter another example of this type in Chap. 7 where
we show how an array of point interactions can give rise to a magnetic transport
having no classical counterpart.
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From the mathematical point of view, the bound states in tubes with local
geometrical modifications come from the coupling between the transverse modes
that such a perturbation causes; in a straight tube they are decoupled. The trouble is
that the effect of such a coupling is not a priori clear. While bending or protruding a
tube leads to an effective attractive interaction, for other perturbations the effect
might be the opposite. A simple example is a local squeeze of a straight tube, a less
trivial one we encounter in three dimensions. If a straight tube of noncircular cross
section is locally twisted, it has no bound states, and adding an attractive interaction
of some sort we can produce such states only if the strength of the latter exceeds a
certain critical value.

The mentioned mode coupling depends, of course, on particular geometric
properties. In some situations it is weak, one notable example being thin smoothly
bent tubes. If one considers a family of such tubes built over the same nonstraight
curve and with their diameters shrinking, the transverse and longitudinal motion are
found to become adiabatically decoupled in the limit. Consequently, we get an
asymptotic expansion for the bound-state energies with the next-to-leading term
containing the geometric information expressed in terms of a one-dimensional
Schrodinger operator. We have to add a caveat, though. It is vital for the last claim
that all the tubes have the same axis. If a shrinking tube family tends to a non-
smooth curve, the limiting spectral properties can be completely different—we shall
see an example of this in Chap. 8.

There are many other situations in which the mode coupling is weak and one can
derive asymptotic estimates and expansions of various types. We devote Chap. 6 to
this problem presenting there several methods which one can use for that purpose.
We focus mainly on the examples previously discussed and analyzed, in particular,
the spectral behavior of slightly bent tubes, mildly curved layers, or waveguides
coupled through a narrow window.

In addition to weak coupling, a wide variety of questions can be asked con-
cerning the relationship between the confinement geometry and spectral properties
of the corresponding operators such as bounds on individual eigenvalues, their
number and moments of the discrete spectrum, as well as the influence of wave-
guide boundaries expressed through the appropriate boundary conditions. We are
going to provide at least some answers in Chap. 3, and we will also discuss there
what happens if a bent tube contains a finite number of particles interacting through
an electrostatic repulsion.

However, the emphasis made so far on the discrete spectrum must not over-
shadow the importance of the transport phenomena which we shall discuss
beginning in Chap. 2. Here again, the transverse-mode coupling is a source of
nontrivial effects. In a straight tube each of those modes propagate independently
behaving as a free particle in the longitudinal direction. Once we introduce a
perturbation, a nontrivial scattering may appear meaning that the particle can get
reflected, and also, that it can leave the deformed region in a transverse mode
different from the one in which it entered it, naturally provided the energy con-
servation does not prevent it.
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An effect that particularly deserves attention is that of resonances in waveguides.
From the mathematical point of view, one can treat them as in other similar situ-
ations, namely as perturbations of embedded eigenvalues, however, there are dif-
ferent ways in which this mechanism applies. One possibility is that the system has
indeed an eigenvalue embedded in the continuum due to a particular symmetry; a
resonance than appears once this symmetry is violated, for instance by a potential
perturbation or by a magnetic field. On the other hand, there are situations where the
embedded eigenvalues do not correspond to any actual system. Prominent examples
are thin bent tubes with the adiabatic decoupling of the transverse and longitudinal
motion mentioned above. If we neglect the mode-coupling terms in the
Hamiltonian, there will be curvature-induced eigenvalues below higher transverse
thresholds analogous to the bound states we have described. The coupling does not
vanish for any finite tube diameter, though, turning these eigenvalues into reso-
nances, exponentially narrow with respect to the tube width. This behavior can be
understood as a manifestation of the fact that the interaction includes tunneling
between transverse modes the energetic distances of which grow as the tube gets
thinner.

We have indicated above that quantum effects in transport can be manifested, for
instance, through an uncommon conductance behavior. This requires a comment; to
explain why something like that is possible, we have to make a link between one-
body transmission probabilities and macroscopic effects such as the electric current
flowing through the quantum wire when we attach it to a “battery”. Fortunately,
they are related in a simple way, found by R. Landauer and M. Biittiker, which we
will mention in the notes to Chap. 2. In particular, if the voltage bias between the
reservoirs is tiny and the temperature of the environment is very low, the con-
ductance becomes just a multiple of the transmission probability which makes the
resonances observable.

As we have said, purity of the material is crucial for the one-body quantum-
mechanical model to describe actual semiconductor wires. On the other hand,
impurities typically consisting of alien atoms will, of course, influence the electron
motion. A natural way to describe them is to add suitable local potential pertur-
bations to the Hamiltonian. The resulting problem, however, may be mathemati-
cally complicated requiring the solution of an appropriate partial differential
equation. If the characteristic size of the impurities is much smaller that the
waveguide diameter, we can simplify this task by using point perturbations as we
will do in Chap. 5. This approach can indeed produce a family of solvable models
reducing the spectral and scattering analysis in essence to an algebraic problem.
Using it we have to be aware, however, of the peculiar nature those pointlike
interactions have in dimension two and three—recall that Fermi used in this con-
nection the term pseudopotential—demonstrated by the fact that approximating
them by narrow regular potential wells one must suppose that the latter have a zero-
energy resonance and employ an involved coupling-constant renormalization when
passing to the zero-radius limit.

A natural way to control the behavior of a charged particle in the waveguide is to
apply an external electric or magnetic field. There is a variety of such situations and
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in Chap. 7 we are going to analyze some of them demonstrating, for instance, how
such fields can destroy bound states in a waveguide or turn them into resonances.
Effects of a particular importance concern the magnetic transport. It is well known
that a homogeneous magnetic field localizes a charged particle in the plane per-
pendicular to the field direction, both classically and quantum mechanically. The
localization can be removed by an “infinitely long” obstacle which forces such a
particle to move along it, thus creating a particular guide for the so-called edge
states. The obstacle in question may be of different types, a hard wall, a potential, or
a variation of the magnetic field itself. In the quantum case the magnetic transport is
of a more universal character, in the sense that the obstacle removes the localization
fully, and that it can also occur in situations which have no classical analogue.

In most parts of this book, we consider quantum motion in regions which are
topologically simple, typically a single tube with nontrivial geometric or potential
perturbations. From the engineering point of view, however, such “wires” are only
a construction material from which more complicated objects of network form can
be built. There is no doubt that a theoretical analysis of such systems may be rather
complicated, and looking for ways to simplify the task, one naturally focuses on
situations when the network constituents are thin and the motion in them can be
treated as essentially one-dimensional.

This brings us naturally to the subject of quantum graphs, the models in which
the motion of a quantum particle is confined to a metric graph. They are a good
illustration of the role that physical motivation can play in the development of a
mathematical theory. The concept was proposed originally in the early days of
quantum chemistry, but it attracted little attention and had the status of a slightly
obscure example until the end of the 1980s when the progress of fabrication
techniques mentioned earlier suddenly brought a variety of tiny artificial objects for
which the graph description was a useful model. Properties of quantum graphs
represent a vast topic, and in this book we are going to deal only with a particular
question concerning approximations of quantum graphs by families of thin-tube
networks shrinking to the graph “skeleton”.

This problem is of importance for quantum-graph theory itself. This is connected
with the fact that to construct a graph Hamiltonian one has to fix a way in which
wave functions are coupled at the graph vertices. One naturally requires self-
adjointness—or in physical terms, conservation of the probability current at each
vertex—but this leaves a lot of freedom and tells us nothing about the physical
nature of such a vertex coupling. Approximation of a graph by an appropriate
family of “fat graphs™ appears to be an obvious way to resolve this problem, but as
is often the case with apparent ideas, its implementation proved to be mathemati-
cally rather hard. First of all, the answer depends on the type of tube boundary used
in the approximation. If the tubes are of Neumann type, the limit leads to the
simplest coupling usually called Kirchhoff. It appears, however, that adding suitably
scaled potentials and changing the graph topology locally, one is able to approxi-
mate any admissible vertex coupling; in Chap. 8 we are going to describe a
complete solution to this problem. We shall also show how a nontrivial limit can be
achieved in the case of a Dirichlet tube boundary, which is completely different.
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Apart from the crystalline character of the material which appeared in our
considerations only through the effective mass, there are other ways in which
waveguides can acquire a periodic character, such as periodically arranged shape
modulations or point perturbations. From the physical point of view, the possibility
of producing structures of this type is a tool to control the band spectrum, and via
that the transport properties. This is a key element in the production of various
metamaterials of which the most popular examples at present are photonic crystals
but many others will surely follow. Several periodic systems will be analyzed in
Chap. 9. We also discuss there random perturbations of waveguides and the
associated localization effects which are again of practical interest, in particular,
because real waveguides have never ideal shapes.

Finally, in Chap. 10 we describe one more way in which guided quantum
dynamics can be treated. While in the other parts of the book we have assumed that
the motion is confined to a tube, layer, graph, or another fixed subset of Euclidean
space, from the physical viewpoint it is often an idealization. We have mentioned
that a boundary of a semiconductor quantum wire is in fact a potential jump, hence
if two such wires are placed close to each other, the particle can tunnel between
them, which would be impossible if the guide had a hard-wall boundary. To take
the tunneling effect into account, we analyze a class of models in which particles are
confined by a potential “ditch” or a system of ditches; for simplicity we shall
assume that the potentials are singular, being supported by curves, graphs, surfaces,
etc. We are going to show that, despite the different configuration space, such
models have a lot in common with those discussed in the previous chapters, for
instance, they exhibit curvature-induced bound states, and in the strong-coupling
limit the dynamics is effectively one-dimensional, being reminiscent of the behavior
of particles in thin tubes.

With the hope that the previous pages have given the reader an idea of what to
expect in the following chapters, let us stop and turn now to a discussion of the
subject using the proper tools.
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Chapter 1
Geometrically Induced Bound States

Ad methodum philosophicam perdiscendam multum valet
mathematica, et imprimis arithmetica et geometria.
Jan Amos Komensky, Orbis Pictus

The object of our interest in the first three chapters is a spinless quantum particle
confined to a spatial region 2 C R of a tubular form, which results from various
local perturbations of a straight tube, 29 = R x M with some precompact cross
section M C R?~!. We shall be mostly concerned with the situation when the tube
boundary is a hard wall. In the absence of external fields the particle Hamiltonian is
then a multiple of the appropriate Dirichlet Laplacian,

2m* D

H= (1.1)

For the sake of simplicity in the following we mostly employ rationalized units,
putting 42/2m* = 1. The Dirichlet Laplacian is defined for any open region, in
general not connected, as the unique self-adjoint operator on L?(2) associated with
the sesquilinear form which is the closure of g : g(¢, ) = fQV_qb - Vipdx on
C(C)’O(Q)—cf. [RS, Sect. XIII.15]. However, we shall deal with regions €2 having a
“nice” boundary for which this operator can be alternatively defined in the classical
way,

d 82
_A%szz_w
J

2
- 8xj

with the domain consisting of all ¢/ from the local Sobolev space Hé (£2) such that
— A, understood in the sense of distributions, belongs to L?—cf. [Da, Theorem
1.2.7]. The subset consisting of 1) : & — C which are C* on Q with —A1) € L?
and satisfy the Dirichlet condition,
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Px) =0 for x € 09, (1.2)

at its boundary forms an operator core for —A%. The differentiability requirement
can be modified, of course, for instance to C¥ with some k > 2.

Spectral properties of the Hamiltonian (1.1) referring to a straight tube Q¢ =
R x M are easy to find, since in this case we can separate variables. The spectrum
of —A%" is thus absolutely continuous and equal to [v1, 00), where v is the lowest
eigenvalue of the cross-section Dirichlet Laplacian —A% . In addition, the purely
discrete spectrum of the last named operator determines the points where the multi-
plicity of a( - Ag") changes. The eigenfunctions x, and eigenvalues v, of —AAD’I
will be used often in the following; we shall usually refer to them as transverse
modes and thresholds, respectively.

The separation of variables means at the same time that different transverse modes
are not coupled, i.e. that —A%O is reduced by the projections onto the subspaces
spanned by L?(R) ®{x,}. A perturbation of €2 such as bending, a local deformation,
or a local change of boundary conditions, generally results in a coupling between the
transverse modes, which may be manifested in the spectral properties of —A%. We
are going to discuss different aspects of this problem in detail; in the present chapter
we will consider the discrete spectrum which such a perturbation can induce.

1.1 Smoothly Bent Strips

The simplest, and at the same time, practically important case is that of planar
waveguides, where d = 2 and the set M is a segment of the real axis. Our first aim
is to show that the bending of a planar strip pushes the spectral threshold down. In
particular, if such an €2 is in a suitable sense asymptotically straight, it will follow
that —A% has at least one isolated eigenvalue.

Suppose thus that @ C R? is a smoothly bent strip of a fixed width d = 2a. The
geometry of €2 is conveniently described by means of its axis, which is by assumption
acurve I of infinite length in R? without angles and self-intersections. At each point
of it we take the segment of the normal of length 2a centered at the curve; the strip
is then the union of these segments. If necessary we shall employ labels referring to
strip axis and halfwidth such as Qr ,. It is also possible to use an off-center curve, i.e.
to replace the interval (—a, a) with another one of length 2a. At times, for instance,
it will be useful to choose one of the boundaries of 2 as the generating curve.

The points of €2 can be written parametrically using the natural curvilinear coor-
dinates in the strip. Let s be the arc length of " and u the normal distance of a strip
point from the curve, then its Cartesian coordinates are

xX(s,u) = &(s) —wi(s) . y(s,u) = n(s) +us(s), (1.3)

where the functions &, 7 represent a parametric expression of I'. For brevity, we shall
often drop their arguments writing ¢ instead of £(s), etc. By definition, £2 47> = 1;
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a dot will always denote the derivative with respect to the arc length. One may say
alternatively that  is the image of Qo = R x (—a, a) by the map x : Q9 — R? given
by (1.3). The strip axis is characterized by the signed curvature ~ of I" defined by

v = n€ — &ij.

Up to the sign,  coincides with the curvature understood as the inverse radius of the
osculation circle, |y| = (& + 7'7'2)1/2. It is clear that if " is a C¥—class curve, the
function ~ is C¥~2. It is also useful to introduce the bending,

5
Blsa, s1) = / +(s) ds (14)
51

which is interpreted as the angle between tangent vectors at the respective points
of . In particular, we write 3(s) = (s, 0) and introduce

Br = l_i)ngO [B(s) — B(=s)] = /Rv(s)ds

N

as the total bending of the curve I' provided the right-hand side makes sense.
The signed curvature is important particularly because it determines the curve,
uniquely up to Euclidean transformations, by the relations

N N

cos (3(s1, s0) ds1, n(s) = n(so) —/ sin 3(s1, so) ds; . (1.5)

50

£(s) = &(s0) +/

S0

Unless stated otherwise, we shall always set 5o = 0 and £(0) = 1(0) = 0 when
using these formula, which means that I" is tangent to the x axis at the origin of
coordinates in the chosen frame. Other useful identities are

sinf3 = =1, cosf = ¢

with 3 = (3(s) and

Through the generating curve the function  determines the geometry of the strip. If
itis zero identically, I is a line and €2 is a straight strip. Apart from this trivial case, a
strip is called simply bent if y is not sign-changing, and multiply bent otherwise. If
the strip is simply bent and the transverse coordinate # runs through the asymmetric
interval (0, d), then I" corresponding to u = 0 represents the “inner”’ boundary of Q2
if v(s) > 0 and vice versa.

The curvilinear coordinates s, u are locally orthogonal so the metric properties of
2 express through a diagonal metric tensor, dx?* + dy2 = gssds2 + g,mdu2 , where
the transverse component g,,, = 1 and the longitudinal one is
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gss = 9= (1+u7)2'

It is also easy to compute the Jacobi matrix of the coordinate transformation and its
determinant, which is equal to ,/g = 1 + u~.

Since our goal is to find relations between the strip geometry and spectral proper-
ties of —A% itis useful to list various assumptions one can impose on 2. As indicated
we consider here smoothly bent strips and employ the curvilinear coordinates. Con-
sequently, the latter must be well defined: this is true if

(i) the map (1.3) is injective.

This requirement means, in particular, a restriction to the strip halfwidth since
uvy(s) < 1 must hold everywhere as is seen from the Jacobian of the map (1.3)
given above. This local injectivity is ensured if a||7y||cc < 1, which we shall assume
throughout (see, however, Remark 1.1.4 below).

Remark 1.1.1 In addition, the injectivity requirement has global consequences. For
instance, a strip with a total bending exceeding 7 necessarily has a self-intersection.
Since it is sometimes useful to consider a strongly coiled €2, e.g., as a model of a flat
three-dimensional spiral, it is possible to bypass this restriction replacing the plane
by a multi-sheeted Riemannian surface.

Another regularity assumption concerns smoothness properties of the generating
curve. With the correspondence (1.5) in mind we can express them through those of
the function +; we shall usually suppose that

(il)r ~yis Ck-smooth fork = 1,2,

which is true if T is of the class C¥*2. Since the curve is infinite it can exhibit a
singular behavior even if it is smooth. To prevent this, we assume

(iii)x regularity at infinity: the function ~y together with its derivatives up to the k-th
order is bounded in R.

Taken together, the above assumptions ensure that the relations (1.3) define a (global)
C**1_diffeomorphism between the two strips, Q¢ and €. This map has a transparent
geometrical meaning; we shall refer to it as to the straightening transformation.

It provides us with a tool to study the operator —A%. The substitution (1.3) defines
a unitary operator U from L2(Q) to L2(S, g'/*ds du) by (ﬁz/z)(s, u) = P(x,y)),
which transforms the Hamiltonian into

H:=U(-A3) U = =g ' ?0,g7' 20, — g7 009 P00 (16)
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The left-hand side of this relation always makes sense; to ensure the existence of the
Laplace-Beltrami operator appearing on the right-hand side it is sufficient to put
k = 1 in the above assumptions. We employ here the usual shorthands, d; = 0/0,
etc.

Furthermore, it is often useful to work on a Hilbert space without the weight in
the inner product. To this end, we have to replace U by the unitary operator U from
L?(Q) to L*(Q0) acting as Uy := 91/401&. This requires a stronger smoothness
hypothesis, namely to take k = 2 in the above assumptions. The Dirichlet Laplacian
is now transformed to

H:=U(-AP) U = =0,(1 +uy) 205 — 07 + V(s,u) (1.7)
with the curvature-induced effective potential

2 o 2:2

% uy 5 wuy
Visu) = — _ 2 1.8
(s, u) W +u? T 207w AU tur) (1.8)

(Problem 1). Abusing the notation we use for the transformed operator (1.7) the same
symbol as for the original Hamiltonian.

Remarks 1.1.2 (a) If a||¥|lco < 1 the factors g*!/ 4 are bounded, so the domain
of the operators H, H given implicitly in (1.6) and (1.7), respectively, consists of
(IS HO1 (R20) with Ay € L? in the sense of distributions. As usual with unbounded
operators, we shall need various cores of these operators. One is analogous to that
described in the opening—cf. (1.2). To find a still smaller core, notice that (1.7) can
be regarded under the assumptions (ii), and (iii); as a result of a relatively bounded
perturbation of —(1 — a||q/||oo)_28s2 — 83, with the relative weight less than one.
Hence any core of the last named operator is by [Ka, Sect. V.4] also a core of H, for
instance, the family of all finite sums > j fi(s)x(u), where ; are the transverse
modes and f; € C(‘)’O (R)—see [BEH, Theorem 5.7.2]. In the same way one can
construct cores for H.

(b) One way to weaken the above smoothness requirements is to investigate the
operator (1.6) through its quadratic form. Then instead of (ii); and (iii); we just need
v € L®(R).

(c) By an easy modification of the above argument one gets the “straightened” oper-
ators for an annular strip €2 built over a closed loop, and for a finite or a semi-infinite
strip with given boundary conditions at the “cuts”.

In this way we have replaced the original operator —A% by unitarily equivalent
operator which acts on the straight strip 2. The price we pay for this is a more com-
plicated form of the new Hamiltonian. However, since the geometrical information
is now contained in coefficients of the operator, it is easier to treat it using standard
functional-analytic methods.

Let us first look at the problem from a heuristic point of view. A natural scale to
measure the strip thickness is given by the maximum curvature of I', in particular,
the strip is thin if a||y||so < 1. In such a case the factor ¢g!/? does not differ much
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from one. Furthermore, for small enough a the effective potential (1.8) is dominated
by its first term. In other words, the Hamiltonian (1.7) effectively decouples,

1
H= =0} = 17(6)* = 0 + 0. (1.9)

in the limit @ — 04-. The transverse part is specified by the Dirichlet condition at
u = Za. Its spectrum is discrete and simple, with the eigenvalues {/@,21}2‘; 1» Where
Ky := mn/d, corresponding to the eigenfunctions

2 2 .
X2j+1(u) = /; coskpjiu, X2j(u) = \/; sinkpju . (1.10)

The longitudinal part is a Schrédinger operator the spectrum of which is determined
by the potential —% ~v(s)?. Specifically, if the curvature vanishes at large distances,
the essential spectrum covers the positive halfline. Furthermore, since the operator
is one-dimensional and the potential is purely attractive, there is at least one isolated
eigenvalue unless v = 0. The mode-coupling terms appear as a perturbation here,
hence one may expect that the spectral picture will not change provided the strip
halfwidth is small enough.

This is indeed the case. Let us first notice that the essential spectrum of H is
not affected by the bending as long as the strip is in a suitable sense asymptotically
straight, irrespective of its halfwidth a. We formalize the last requirement in the
following assumption,

(v) 7.9,7 € LZ[R);

recall that L2°(RR) is the set of L* functions f on R with the property that to any
€ > 0 there is a compact K. such that || f [ (R\ K;)|lco < €.

Remark 1.1.3 This notion of asymptotic straightness is rather weak. Recall that the
existence of asymptotes to I' is ensured if v decays sufficiently fast at large dis-
tances (Problem 2). Assumption (iv) covers curves which behave asymptotically as a
parabola, |y(s)| ~ |s|~3/%, Archimedes spiral, |y(s)| ~ |s| ™', etc. In the last example
« is not integrable. Should assumption (i) be satisfied, however, a total bending not
exceeding 7 must still exist in the principal-value sense—as an illustration consider
a U-shaped strip coiled into a spiral.

Proposition 1.1.1 Let assumptions (i), (ii)a, (iv) be satisfied and a||v|lco < 1. Then
we have Tess(—A$) = [K2, 00).

Proof Since (ii) and (iv) imply (iii)>, we may check the claim for the operator (1.7).
To prove that

inf gegs (—AR) > k7
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we employ Neumann bracketing [RS, Sect. XIII.15]: we impose an additional Neu-
mann condition at the normal cuts of €2 placed at s = =sg. Then, by the varia-
tional principle, we get the operator inequality —A% > Hy := H & Hy & H,,
and consequently, inf aess(—A%) > inf 0ess(Hy). The middle operator has a
purely discrete spectrum by the minimax principle, since it is bounded below by
a(—@f) N + (—83) p — b with suitable constants. Let J be any of the intervals
(—00, —s0) and (sg, 00). By Remark 1.1.2c the corresponding operator on L2(J) is
bounded from below by

—(1 + allyslloo) 202 + (=02 + VY (s)

with the Neumann condition at the endpoint of J, where we set Vﬁj)(s) =
inf{V(s,-) : |u|] < a}and~; := [ J.By assumption both the norms ||V_(J)||Oo
and a||vslleo tend to zero as so — 00, so using the minimax principle again we
infer that inf O’ess(—A%) > /{% — ¢ holds for any € > 0. In this way we get
O’ess(—A%) C [n%, 00); the opposite inclusion is verified using appropriate Weyl
sequences (cf. [We, Theorem 7.24] and Problem 3). |

Using a simple variational estimate, we can then confirm the above heuristic
conclusion if we adopt another decay assumption,

V) 7,5, 1512 € LA(R, |s| ds).

While in general (v) does not imply (iv), both assumptions are satisfied, for instance,
if v(s), (), 5()|"/ = O(ls|7179) as |s| — oo.

Proposition 1.1.2 Assume (i)—(v) with k = 2. If Q is not straight, the operator
—A% has at least one eigenvalue below —n% for small enough a.

Proof By the minimax principle itis enough to estimate H from above by an operator
with the same essential-spectrum threshold which has a nonempty discrete spectrum.
Ifalvlleo < %, we may use

1 a ..
H < =05 =48] = 57 + L G,

and the claim is valid if the Schrodinger operator on L?(R) with the potential
—% v(s)? + 6“—4 |7(s)| has a negative eigenvalue. This is true, of course, fora = 0
when the potential is purely attractive, and by analytic perturbation theory the eigen-
value persists for all sufficiently small a. |

It appears, however, that a much stronger claim can be made, namely that curvature
leads to an effective attraction irrespective of the strip width. This again follows from
a variational estimate, as the next theorem shows.



8 1 Geometrically Induced Bound States

Theorem 1.1 Let (i) and (ii); be satisfied together with a|V|eo < 1. Then
inf a(—A%) < /{% holds unless v = 0 identically.

Proof 1t is clearly sufficient to find a trial function ¢ from Q(H), the form domain
of H, which makes the quadratic form

[l = I1H' 21 — k11917 = llg™ *ospl* + llg'* 0u 1> — wTllg" )12

negative; here || - || ; means the normin L%(Q0, g'/*ds du). We shall seek it in the form
Y = ¢ax1 + €f, where x is the lowest transverse mode (1.10) and the functions
¢ and f have to be properly chosen.

The first of them serves to control the tails of the trial function. Let K := [—sq, so]
for some sy > 0 and choose a function ¢ € C§°(R) such that ¢(s) = 1 on K.
A suitable family of ¢) is then obtained by a scaling exterior to K,

o(s) 08l < so

B(sosgns + A(s — sosgns)) ... |s| > so (1.11)

PA(s) == [

This allows us to make the positive contribution to the energy coming from the trial
function tails small. Indeed, we find easily

dloai] = / (672 (s) 1A P ds = ———— 19112,
v [ —al s

where (-) denotes the transverse average w.r.t. X% In the next step we deform the trial
function in the central part of ©2g. This can be done in various ways. For instance, we
can choose [ := ]Z(I:I—Ii%)(b,\xl, where j is a function from Cj°(K x (—a, a)),
or more explicitly

2
X/]) (S,M)ZJZ(S,M) ;%Sinﬁlu.

Y
14+ uy

fls,u) =— (ﬂ

In view of (ii); and the choice of j, this function belongs to Q(H), and a straight-
forward computation yields

qaloaxs +ef1=qloraxil + 2elj(H—rDéaxall; + e (f, (H—r7) f)y -

Importantly, the coefficient of the linear term on the right-hand side is independent
of A because the scaling acts only out of the support of j. If v is nonzero in K, we
can always choose j in such a way that the coefficient is nonzero, in which case the
sum of the last two terms is negative for all sufficiently small €. We fix such an €.
The above estimate then shows that for A small enough we have g[¢)x1 +€f] <0,
which is what we set out to prove. |
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Corollary 1.1.1 Let the assumptions of the preceding theorem be satisfied and let
inf aess(—A%) = Ii% hold, e.g. by Proposition 1.1.1. Then —A% has at least one
isolated eigenvalue of finite multiplicity.

Remark 1.1.4 In the above proof we have used the quadratic form of the operator
(1.6) only, hence by Remark 1.1.2b we may assume v € L% (R) instead of (ii);.
The claim of Theorem 1.1 then remains valid, e.g., if there exists a set M C R of
nonzero Lebesgue measure and ¢ > 0 such that v does not change sign in M and
|7(s)| > c holds for all s € M. In addition, the condition a||7vy|.c < 1 was only used
outside [—c, c], hence one can allow avy(s) = %1 for some s from a bounded set
M’ C R. This includes a possibility that M’ has an open subset in which case the
strip boundaries may have angles. The assumptions of the above corollary can also
be weakened; notice that hypotheses (ii); and (iv) in Proposition 1.1.1 are again used
outside a compact region only, and moreover, in assumption (iv) only the decay of
v itself matters. The proofs require just small modifications of the arguments used
here (Problems 4-6 and 3.11).

Notice that the existence of bound states in smoothly bent strips is a purely quan-
tum effect. Since there is no external field, any classical particle trajectory consists
of line segments with “geometric-optics” reflections at the walls. Of course, if such
a particle moves perpendicularly to the axis of €2, it follows a closed trajectory
bouncing between the walls, however, the corresponding set of initial conditions has
measure zero in the phase space.

Proposition 1.1.3 Let the map (1.3) be injective with y piecewise continuous and
such that a||7y||eco < 1. Then apart from the trivial set mentioned above there are no
closed trajectories.

Proof We employ parametrization (1.3) together with (1.5). Since a segment between
subsequent reflections is given by x cos ¢ 4 y sin ¢ 4 ¢ = 0 for some c, ¢, in the
curvilinear coordinates it is expressed as

c— [y cos (B(s)+¢) ds’

uls) = sin (B(s)+ )

where we may put so = 0 without loss of generality. This expression makes sense
if its denominator is nonzero; it is clear that the choice sin (5(5)4+¢) = 0 and
c= fos cos (ﬁ(s’ )+<p) ds’ corresponds to the mentioned trivial set. Suppose that a
nontrivial closed trajectory exists. Mapped in the described way to the straightened
strip, it should have turning points; since it is smooth, there must be a point where
u(s) diverges. We may again assume that this happens at s = 0. If sin 0 # 0 we have

w(0) = —— . 1(0) = —(1+u(0)7(0)) cot
sin
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hence a turning point requires sin ¢ = 0. In that case we can compute

+ [¥cos B(s")ds’ -1
lim u(s) = lim M =4 lim y(s) ,
s—0 s—0 sin 3(s) s—0
with the last limit one-sided if y has a jump at s = 0. However, this is a contradiction,
since [u(0)| < a, while |y(0+)|~! > @ holds by assumption. |

1.2 Polygonal Ducts

The smooth strips discussed above are not the only systems in which a local change
of geometry induces the existence of bound states. Another often considered class
of two-dimensional waveguides consists of polygonal ducts assembled from pieces
of a straight strip. Naturally, they do not have a fixed width in the bends and the
technique of the previous section using locally orthogonal coordinates cannot be
used directly. On the other hand, they sometimes yield solvable examples since they
decompose into a union of simple regions and the spectral problem can be handled
by solution-matching techniques.

Let P = Py, 3 be a polygonal path in R? consisting of a pair of halflines joined
by a piecewise linear curve characterized by the segment lengths ¢ = {¢1, ..., £}
and the angle family 3 = {31, ..., 8,41}, where 3; € [0, 7) is the (signed) angle
between the (j—1)-th and j-th segment; the two halflines are naturally labeled with
J = 0, n+1, respectively. Without loss of generality we may assume that 3; # 0
for j =1, ..., n, since a pair of adjacent segments with 3; = 0 can be replaced by
a single segment of the combined length £; ;| +¢;.

It is clear that P is determined by the families £ and /3 uniquely up to Euclidean
transformations; a mirror image is obtained by the change of sign convention for the
angles. In the language of the previous section P is a curve corresponding to the
signed curvature

n j—1
v(s) :::I:Z Bjo(s—sj), s ::ZE,».
i=1

j=1

We suppose that P does not intersect itself. We can write it as union of its segments,
P = U?iéf‘ j- With each segment I'; one can associate two sets S}’ and W;. The
former 1s the straight open strip of width d = 2a such that I'; is a subset of its axis,
the latter is the closed set delineated by the axes of the angles between I'; and the
neighboring segments; for 1 < j < nitis a wedge unless I';; and I"j_{ are parallel
in which case it may be a strip, for j = 0, n+1 itis a halfplane. Now we may define
Qjg:= Sj’ N W; and the corresponding finitely bent polygonal duct of width d as
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n+l

Qp 4= U Qja.
j=0

We restrict ourselves to the situation when each I'; contains at least one point such
that a perpendicular open segment of the width d centered at I'; is contained in 2; 4.
It is easy to see that this is true if the conditions

a(tanﬂzﬂ—l—tan@)fkh j=1...,n, (1.12)

are satisfied; the larger the angles, the stronger is the restriction.

Theorem 1.2 Let Q2 = Qp 4 be a finitely bent polygonal duct which satisfies con-
ditions (1.12) and does not intersect itself, in other words Qi q N Q2 g = @ for any
i,j=0,...,n+1with |[i—j| > 2. Then oess(—AL) = [k7, 00), where k1 := 7/d.
Furthermore, — A% has at least one isolated eigenvalue of finite multiplicity provided
Q is not a straight strip, i.e.n = 1 and 31 = 0.

Proof The essential spectrum is localized as in Proposition 1.1.1 by combination of
a Neumann bracketing with Weyl’s criterion. The fact that the discrete spectrum is
non-empty unless €2 is straight is obtained by Dirichlet bracketing. We employ the
estimate — A% < Hp where Hp is the Laplacian with additional Dirichlet conditions
imposed at the circular segments S;, j = 1,...,n, defined as follows: S; has its
center at the “inner” vertex of 92 between ;1 4 and Q; 4 and radius d, it connects
the two tangential points at which the circle touches the opposite boundary. In view
of conditions (1.12) such segments exist and determine a decomposition of the strip,

n+1
e=qu ¢,
j=1

where €2, is the strip with the rounded outer corners and C; are the appropriate
“caps”. It is clear that €2, is a strip of the class considered in the previous section,
apart from the fact that the curvature of its axis equals ¢ ~! in the bends. Since this
concerns a finite part of €2,., we have adisc(—A%) # () by Remark 1.1.4, and by the
minimax principle the same is true for —A%. |

Remark 1.2.1 The Dirichlet bracketing can be used even if the conditions (1.12) are
not valid—cf. Problem 7 for an example. If the strip built over a polygonal path is too
thick, individual segments may lose meaning. For instance, consider P withn = 2
corresponding to {¢, £} and {3, =23, 5} with some £ > 0 and 0 < B < 7/2. If
atan 3 > £, the respective Qp 4 is a strip with a triangular protrusion which fits into
the class discussed in Sect. 1.4 below.

In the above proof we have ignored the contribution from the caps split off by the
Dirichlet bracketing. The corner regions become important if some of the bends of
the generating path P are sharp.



12 1 Geometrically Induced Bound States

Proposition 1.2.1 Let Q2 be as in the above theorem, then the number of eigenvalues
counted with multiplicity satisfies the bound

. 2c
isc _AQ = ’
2 e D>}>§1 [w—b’,}

where [-] means the integer part and ¢ := (1 —2_2/3)3/2.

Proof Let us define o := (71— [3;)/2. We again employ Dirichlet bracketing, this
time inserting into the j-th triangular corner a rectangle parallel to the corner axis of
halfwidth b; € (%, d(cos aj)_l) and length (d—bj cos aj)/ sin «j. Eigenvalues of
the corresponding Dirichlet Laplacian are easily found. The number of them below

nf equals [v], where
2
VA= 1 cos

v i=

24 sin o
with p; := b;/d. The right-hand side reaches its maximum at ;1; = (4 cos a)~173,
so the claim follows by an easy estimate. |

The simplest nontrivial example of a polygonal duct is a broken strip,n = 1, built
over the path P which consists of two halflines joined at the vertex with an angle
m— (3. Since a change of the strip width, d — d’, amounts in this case to a scaling
transformation which modifies the spectrum by the multiplicative factor (d/d’)?, we
can put without loss of generality d = 7. Let us denote such a broken strip by 2.

Proposition 1.2.2 ogis (—A%) for the broken strip Q@ = Qg with 3 > 0 is non-
empty and consists of N = N () eigenvalues {¢, (ﬁ)}flv:1 C (}1 1) arranged con-
ventionally in the ascending order. To any integer m there is a (3 such that N (3) > m.
Each eigenfunction is symmetric with respect to the symmetry axis of Q2. The func-
tions €,(-) are continuously decreasing in [3™, 1), where 3V = 0 and ™ for
n > 2 is the critical angle at which the n-th eigenvalue emerges.

Proof Again let o := (7w — 3)/2. The discrete spectrum is a non-void subset of the
interval (0, 1) by Theorem 1.2, and the previous proposition implies that N () can
exceed any integer provided 3 is chosen close enough to 7. Since Q4 has mirror
symmetry, —A% decomposes into a direct sum of the symmetric and antisymmetric
part w.r.t. the axis of symmetry.

This enables us to reduce the task to the spectral problem for the Laplacian on
the skewed halfstrip T, 1= {X € RZ: x>0, 0< y < min{7, x tan o} } with
the Dirichlet condition at y = 0, m. The antisymmetric part of the original opera-
tor corresponds to the Dirichlet condition at the remaining piece of the boundary,
Co = {X € 0%, : y = xtana}. It obviously does not contribute to the discrete
spectrum, and therefore we can restrict our attention to the symmetric part leading
to the Neumann condition at C,,.
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The halfstrips X, can be compared by means of the unitary operators U :
L%*(Z,) — L*(X!) defined by (U¢)(x, y) := o'/?¢(ox, y), where ¢ := tana’/
tan «v. In particular, the Laplacian on L2(% /) is mapped to the operator U ~! (=AU =
e~ 8)2, on L*(X,) so the eigenvalue monotonicity follows by the minimax prin-
ciple. Moreover, the difference (1—02)8)% is relatively bounded w.r.t. — A, hence each
€, (+) is continuous by [Ka, Sect. VIL.6.5]. |

Remark 1.2.2 Tt should be noted that since the half-lines defining the boundary of

2 are connected in a non-smooth way, the operator domain of —A Dd does not
coincide with H 2(95) N HO1 (23), being instead given by

Q4
Dom (—ADJ) = HZ(Q[;) N H(} (R25) @ Clusing], (1.13)
where Clusing ] denotes the span of a function ugj,g singular at the inner bend where

the boundary angle of the broken strip exceeds m making the region non-convex. In
the polar coordinates (r, §) centered at such a vertex this function takes the form

U w0
Using (', 0) = x(r) r =7 sin (

7r+ﬂ)

with x(-) being a smooth cut-off function equal to one in a neighborhood of the
vertex. A simple calculation then shows that A ugjng = 0 in the vicinity of the vertex
while ugne ¢ H 2(Q 3). The same remark applies, of course, to more complicated
ducts with the boundary having angles.

Apart from the case of small « the above results give no quantitative information
about the discrete spectrum. A straightforward approach to this problem is to solve
the corresponding Helmholtz equation. One way to do that, well suited for polygonal
ducts, is known as the mode-matching method. 1t is based on decomposing the duct
into a union of regions such that in each of them we can write an Ansatz for the
solution using the transverse-mode basis. To belong to the Hamiltonian domain, of
course, the Ansitze must match smoothly at the common boundary of the regions; this
yields conditions on coefficients of the expansions which determine the spectrum. Let
us illustrate how this technique works using a particular case of the above example
known as the L-shaped strip, see Fig. 1.1.

Proposition 1.2.3 We have N(w/2) = 1 and €;(7w/2) = 0.9291.... The corre-
sponding eigenfunction is exponentially decaying, |11(X)| < ¢ exp[—q1s(X)] for
some ¢ > 0, where g1 = 0.2663... and s(X) := max{x, y}.

Proof Asin the previous proposition it is sufficient to look for a half of the symmetric
solution in the cut strip X4 which we write as X1 U Xy, where Xy := X: x>
mO0<y<mland Zp:={x: 0 <x <7, 0 <y < m}. We shall seek a solution
of the equation —A%w = e1) in the form
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Fig. 1.1 Eigenfunction of an L-shaped waveguide

(=1 a; et Ty i (y) L. X e
P(X) = . (1.14)
(=D [s; 00X () +5;(x; ()] ... ¥ € T

where g = q;j(¢) := /j>—¢, the functions x; : x;(y) = (2/m)/?sin(jy) consti-
tute a transverse basis, and s (x) := sinh(g;x)/ sinh(g ;7). This choice ensures that
the boundary conditions are satisfied and ¢y(m, y) = ¢n(m, y) holds for y € (0, m)
provided the series converges; this and other properties of 1 can be expressed in
terms of the sequence {a;} (Problem 8).

To match the two parts of the Ansatz smoothly, we also have to require Ox)1
(m+,y) = Oyyu(m—, y). This yields the condition Ca = a, where C = {C} is
the operator on £2(j) defined through its matrix elements,

1—e 274 jk
nq;  jP+kP—e’

Cjr =

A straightforward way to solve this condition is to consider a sequence of truncated
matrices and to find the sought {a;} as a limit when the cut-off is removed. However,
itis nota priori clear whether such an approximation would converge (cf. Problem 9),
hence we take another route and look for solution in the class of sequencesa; = j~°r;
with {r;} € £°°, where s > 0 will be determined later. Since the system Ca = a to be
solved is linear, we may put a; = r; = 1 without loss of generality. The remaining
partr = {r; }°° , of the sequence then satisfies the equation r = ¢ + Kr, where
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1—6_27"“ js+1 1_6—27rqj jS—Hks—l
= . K= I
q; je+1—e q Jje+kc—e
for j,k = 2,3,.... It has a unique solution, namely r = (I — K)_lt, provided

IK]loo < 1. We have

1 e \~6+D/2 roo dn
K& < €] —(1—.—) / __dn
J © T ]2 4 (1 +n)2ns—l

for s € [1,2), and since € € (0, 1) and j > 2, it follows that

174 +1)/2  poo d77
K - — =i N(s),
1Ko = 2 (3) /0 Tzt VO

provided || K ||s < 1, where || K ||« denotes the norm of the operator K on £>°. We

have
(K1 = e~ (1 -~ (HWZ/OO oy
S J? TR

for s € [1,2), and since € € (0, 1) and j > 2, it follows that

1 /4 s+1)/2  roo ns—l
K < (= dn=: N(s).
1Ko < — (3) /0 L =N

We have N (1) = 2/3 and the right-hand side is a continuous function of s, hence
there is a 9 > 0 such that N(149) < 1. In other words, there is a unique sequence
r € £°° which satisfies the equation » = ¢ 4+ Kr; the corresponding sequence a
decays as O(j~(149) for j — oo, and thus by Problem 8 it gives rise to a vector
¢ € Dom (—A9).

Finally, to find the value of € one has to solve the first equation of the original
system, Zj Cijaj =1witha; =1landa; = j~°r;, j > 2, obtained above. This
yields the condition

l—e=2m0

1 > r;
F(e) := J =1 1.15
© | +JZ:: g (1.15)

which has in (0, 1) a unique solution equal to € = 0.9291... (Problem 10). Notice
that this does not imply uniqueness of the solution to our spectral problem because
the class of sequences we have employed does not coincide with ¢2(j). However,
it is easy to check the relation N (7/2) = 1 directly (Problem 11). The exponential
decay is obvious from (1.14) because at large distances the term corresponding to
the first transverse mode dominates. |
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In a similar way one can treat 25 with 3 # /2 and more complicated polygonal
ducts—see the notes. The mode-matching method is often used in the physical liter-
ature; the convergence of the truncation procedure is rarely checked, typically being
guessed from the numerical stability of the algorithm.

1.3 Bent Tubes in R3

The mechanism which leads to the existence of localized states is not restricted
to planar waveguides. Let us now consider a three-dimensional Dirichlet tube. As
before it will be built around a sufficiently smooth curve I" with which we can
conventionally associate the Frenet triad frame (¢, n, b). We assume that the latter
exists at least piecewise globally, i.e. that there is an increasing sequence {s;} C R,
possibly empty and without finite accumulation points in case it is infinite, such that
t‘l.le triad is well defined in each interval (s}, s;1); recall that this is the case when
I vanishes nowhere in the interval.

Tubes in R? can have a variety of cross sections. We suppose that M C R? is
an open precompact set which contains zero, and put a := sup,.,, |x|. Given a
piecewise smooth function a : R — R we define amap f : Rx M — R3 by

f(s,r,0):=T(s) —r[n(s) cos(d—a) + b(s) sin(f—a) ], (1.16)

where r, # are polar coordinates in R2. In this way we associate with I" and M a tube
Q = Qr, yu which is the range of this map, 2 := f(R x M). While f depends on
a we do not use it as a label for 2 because we restrict ourselves in the following to
tubes which satisfy condition (1.18) below.

In analogy with (1.5) the map f introduces curvilinear coordinates in 2 which
will be useful in analyzing the spectrum of —A%. Recall first that the vectors ¢, n, b
are related by the Frenet formula

i 0 v0 t
nl=-y0r n |,
b 0 —70 b

where 7y, 7 are the curvature and torsion of I', respectively, and the dot means again
differentiation w.r.t. the arc length s. Using it we find the metric tensor

(1 +rvy cos(@—a))? +r2(r—&)? 0 ri(r—a)
(9ij) = 0 1 0 (1.17)
r?(r—d) 0 r?

of this coordinate system (Problem 12a). In particular, we have

g = det(g;j) = r? (1 +ry cos(9—a))2
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and the Jacobian of f equals g'/? = r(1 4 rvcos(f—a)). It is clear that to make the
described coordinates locally orthogonal one has to require

a=r, (1.18)

i.e. the system has to rotate around # with respect to the Frenet triad with the angular
velocity equal to the torsion when we move along I'.

Remarks 1.3.1 (a) This assumption, sometimes called Tang’s condition, which we
shall adopt in the following, can always be satisfied for a circular tube, M = B,
with B, :={x € R? : |x] < a}, which has a cross section invariant with respect
to rotations. In all the other cases (1.18) represents a nontrivial requirement on the
tube geometry.

(b) Without loss of generality we may also assume that M is connected because in
the opposite case the problem reduces to a spectral analysis of the family of disjoint
tubes corresponding to connected components of the cross section.

Asin the planar case we want the curvilinear coordinate system to be defined globally.
Hence we assume that €2 does not intersect itself, i.e. that

(i) the map f is injective.

In three-dimensional space this does not imply restrictions on the bending angle
as in Remark 1.1.1, and in addition, the tube can be knotted in various ways. The
smoothness requirement can be expressed as follows

(ii)y T €eC k+2 (R, R3 ), k > 0, and the functions 7y, 7 together with their derivatives
up to the k-th order are bounded in R.

In combination these assumptions ensure that f is a C¥-diffeomorphism between
Qo := R x M and Q—cf. Problem 12b—which provides the straightening transfor-
mation in the present case. This claim is obvious if the Frenet frame exists globally,
however, since o may have isolated jumps and condition (1.18) determines it only
up to a constant, such a coordinate transformation can be constructed even if I" satis-
fies only the weaker hypothesis made above. It is sufficient that the one-sided limits
of a(s) exist at the exceptional points which is, in view of the condition (1.18), true
if the torsion is locally bounded (Problem 12c).

Using U : L%(Q) — L*(Q, g'/*ds dr df) defined through the variable change
given by f we can pass from —A% to the unitarily equivalent operator

H:=—g 2027120, — g7'20,9' 20, — g7 0pr 9" 20 ,

which makes sense with k = 1 in the above assumption, and with kK = 0 or an even
weaker assumption if we define it through its quadratic form,

1A' 217 = lrg™ * 001> + 19" *0,01% + llg"/*r " Bpo (1.19)



18 1 Geometrically Induced Bound States

for ¢ € Q(I:I ), where the subscript labels the norm in L%(Qo, gl/ 2ds dr d6).

Under the stronger assumption (ii), one can remove the Jacobian passing to
another representation of —A% by means of U : L2(Q) — L2(Sp) defined as
Up = g'*¢po f. After a short calculation we get

H:=UAHU = —0h720, — AM +V(s,1,0), (1.20)

where —A%I is the Dirichlet Laplacian on the tube cross section and the effective
potential is given by

v 1 hgy 5 h?

Vs, r,) = —— 4+ - — — - = 1.21
GO =—gpt 395 "3 (121)
with
h = gl/zr_1 =14rvycos(—a),

hy = rvy7 sin(@—«) + r7y cos(f—a),
hss == r(y — 772) cos(@—a) + r2yT + 1) sin(f—c)

(Problem 13). The form of the straightened operator is similar to that of (1.7) and
the claim about its domain and cores from Remark 1.1.2 adapts easily to the three-
dimensional situation.

The same is true for the essential spectrum. The transverse part —A%I of (1.20) has
a purely discrete spectrum {1/, }° |, arranged conventionally in the ascending order,

corresponding to the eigenfunction family {x,}°%, C L?(M). The ground-state

n=1
eigenvalue v is simple and positive, in fact, it is bounded below by the Faber-Krahn

inequality,
v =gy 1M (1.22)

where |M| is the area of M and jo,1 =~ 2.40 is the first zero of the Bessel function
Jo, so the minimal value is for a fixed | M| attained by the disc. Let us again assume
that the tube is asymptotically straight in the sense that

(iit) v,%,% € LZ(R).
This allows us to localize the essential spectrum.

Proposition 1.3.1 Let I" have a piecewise global Frenet frame. Assume (i), (ii)a,
and (iii) together with a||v|lco < 1. Then we have O’ess(—A%) = [y, o0).

Proof Similar to that of Proposition 1.1.1 (Problem 14). |

Notice that we imposed no restriction on the torsion apart from the boundedness
contained in (ii);. Moreover, the stated assumptions may be weakened allowing
local deformations or a weaker curvature decay (cf. Problems 14 and 3.11).
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The heuristic argument of Sect. 1.1 applies again: for thin tubes the effective
potential (1.21) is dominated by the curvature-induced attractive potential, so one can
establish the existence of bound states using a simple perturbation-theory argument
(Problem 15). Furthermore, using the GJ-trick one can prove that such a result remains
valid for tubes not necessarily thin.

Theorem 1.3 Assume that I has a piecewise global Frenet frame, (i) is satisfied and
alv(s)| < ¢ < 1 holds outside a finite part of 2. Moreover, let v, T € L°°(R) be such
that (1.18) is satisfied. Then inf U(—A%) < vy unless v = 0 identically. In particu-
lar, —A% has at least one eigenvalue below vy if the assumptions of Proposition 1.3.1
are valid.

Proof To construct a trial function one starts from a generalized eigenfunction at
energy v1. It is straightforward to check that

/ [|8rX1|2 + r_2|89X1|2 — 1/1|x1|2] drdf =0,
M

and therefore one can adapt the argument from the two-dimensional case taking
Problem 4 into account (Problem 16). |

Notice that we made no use here of the particular form of the transverse eigenfunc-
tions. As a result the argument also works when the Hamiltonian contains a potential
provided the latter depends on the transverse variables only and conforms with con-
dition (1.18)—-cf. Problem 17. The same is true even if the additional interaction is
strongly singular as is the case for a tube threaded by a magnetic flux line—see the
notes. On the other hand, we shall see later that condition (1.18) is necessary.

1.4 Local Perturbations of Straight Tubes

Of course, bending is not the only way to create localized states. In this section we
shall briefly mention three mechanisms which give rise to a discrete spectrum in a
straight tube. We shall not restrict the dimension here, i.e. the unperturbed tube will
be Qo = R x M, where M C RY~! is an open precompact set; we suppose that
M is pathwise connected and that OM is piecewise smooth. The free Hamiltonian
is the corresponding Dirichlet Laplacian, Hy = —Ag" with form domain Hol(Qo).
The variables X = (x, y) with y € M can be separated in the free Hamiltonian, so
we have

Hy=-0?@1+1® (—Al), (1.23)

where —A% is the Dirichlet Laplacian on L>(M). Due to the compactness of M this
operator has a purely discrete spectrum; we denote by x,, v, withn = 1,2, ... its
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eigenfuctions and eigenvalues, respectively. The eigenfunctions can be chosen to be
real-valued, which we shall assume throughout.

First we perturb this Hy with a potential. In most situations we shall consider
below the potential will be bounded, however, in general a much weaker regularity
is required. For instance, using the corresponding quadratic form,

tyl] = /Q |V (3) )% dx + / V(@) Y@ d¥, (1.24)
0

Qo

one can define H = Hy + V forany V € LllOC(Qo)- To decide which potentials can
exhibit bound states we first have to localize the essential spectrum. One naturally
expects that the latter will be preserved if V vanishes along the tube at large distances
in both directions. In fact, itis enough if the potential decay is controlled in the integral

sense.

Proposition 1.4.1 e (H) = 0ess(Hy) = [v1, 00) holds for any V belonging to
(LP 4+ L2°)(Q0), where p > max {2, %}ford #4and p > 2 ford = 4.

Proof By Weyl’s theorem it is sufficient to check that V (Hy— z)~! is compact for
some z < 0. Since the Green function of Hp is majorized by that of the Laplacian
in R¢ (Problem 18), the result follows from the usual Schrédinger operator theory —
cf. [RS, Sect. XII1.4]. |

For the existence of bound states in such a tube it is then decisive whether the
potential V is attractive in a suitable sense.

Proposition 1.4.2  o4isc(H) # @ holds provided the assumptions of Proposi-
tion 1.4.1 are satisfied and

// Vix,y) x1i(»?di <0. (1.25)
RJM

Proof In view of the previous proposition we just have to find a trial function which
makes the shifted energy form, ¢ — ty[)] — v |||, negative. Using assumption
(1.25) one finds that this can be achieved, e.g., by choosing ¥ (x, y) = & (x)x1(y),
where ¢, is the function (1.11) with A small enough. |

Naturally, these bound states are not of a geometric origin but it is useful to include
them in the discussion; it will help us later, for instance in estimating eigenvalue
moments in Sect. 3.1.2 or in analyzing the weak coupling behavior in Sect.6.2. The
essentially one-dimensional character of the problem is seen from the fact that the
bound state existence is not affected by the potential strength. Furthermore, weakly
coupled states may exist even if the above integral is zero, as we shall show in Sect. 6.1
below. On the other hand, notice that condition (1.25) expressing attractiveness in
the mean does not concern the potential itself but rather its projection onto the lowest
transverse mode.


http://dx.doi.org/10.1007/978-3-319-18576-7_3
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Binding may result not only from a potential but also from a modification of the
kinetic term. While the former is typically associated with an external field, the latter
is a natural model for a local change of the waveguide material parameters. The
Hamiltonian can then be defined through the quadratic form

to[] = /Q p(E)|Vy ()| dX, (1.26)
0

where p is a measurable function such that ¢; < p(X) < ¢; holds for some positive
c1,cp and all X € . For simplicity we restrict ourselves to the situation when the
perturbation is local, i.e. the function p(-)—1 has a compact support; then the operator
H associated with (1.26) has the following spectral properties.

Proposition 1.4.3 Under the stated assumptions about the function p, we have
Oess(H) = [v1, 00), and moreover, odisc (H) is nonempty provided

/Q (PE—1) 1 ()2 dF < 0. (127)
0

Proof Inview of the hypotheses the essential spectrum is easily localized by means of
Neumann bracketing, minimax estimates, and constructing suitable Weyl sequences.
Next we consider the shifted energy form, ¥ +— 1,[¢] — 11 l2]1* and again choose
Y(x,y) = dr(x)x1(y) as a trial function with ¢)(x) = 1 on the support of p(-)—1.
Then the contribution from the integral in (1.27) is negative and independent of A,
hence it prevails over A|| d)lliz ®) and thus determines the sign of the form for A\ small
enough. |

Of course, the two effects can appear in various combinations, and the functions V, p
can either model actual physical quantities or they may arise from a transformation
of the Hamiltonian as was the case in Sects. 1.1 and 1.3.

Finally, the third binding mechanism we will mention here is again of a geomet-
rical nature, being connected with a local variation of the tube shape. Consider a
set-valued function x +— M, which assigns to each x € R abounded set M, C Rd-1
with the properties described at the beginning of this section. We shall consider tubes
of a varying cross section defined as

Q=] M. (1.28)
xeR

Suppose that the variation has a local character, i.e. that M, equals a fixed set M out-
side a compact set, and that the cross section of the tube (1.28) varies in a piecewise
continuous manner. More specifically, we assume that apart from a discrete set of
points, to each x € R and € > 0 there is an open O > x such that for any x’ € O the
symmetric difference M AM, is contained in the e-neighborhood of OM,. More-
over, the deformation is supposed to satisfy a global bound, i.e. there is a precompact
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N c R4! such that M, C N holds for all x € R. With these assumptions, we have
the following result.

Theorem 1.4 O’ess(—A%) = [v1, 00), where vy is the lowest eigenvalue of—A%I.
The discrete spectrum is empty if M, C M for all x € R. On the other hand, if
M, D M for each x € R and there is an interval where M, \ M has a nonzero
measure, then —A% has at least one eigenvalue in (0, vy).

Proof The essential spectrum is determined as in Proposition 1.1.1 (Problem 19).
For a squeezed tube we have Q2 C ¢ := R x M and by Dirichlet bracketing
—A% > —A%‘) holds on L%(2) so the discrete spectrum is void. For a protruded €2
we have to find 1) € Q(—A$) such that g[¢] := | V¥ [|? — v [[9]|> < 0.

In view of the assumption about the x-dependence of the cross section we may
suppose without loss of generality that €2 is a smooth volume-expanding deformation
of g, because otherwise we may choose Q' C  with this property and arrive at
the conclusion for €2 using Dirichlet bracketing. The transverse spectrum is purely
discrete for any x € R; we denote by x; x and v; ., respectively, the positive eigen-
functions (with unit norm in L2(M +)) and eigenvalues of —AAD/I*. Moreover, we
extend the function x| defined originally on R x M by zero to the whole 2. Now
we choose ¥ (x, y) 1= @x(x)x1(y) + ef(x)x1,x(y) in analogy with Theorem 1.1,
where ¢ is again the function (1.11) with the parameter s picked in such a way
that M, = M for |x| > so and f is a non-negative function from C3°(—so, so). If
the cross section varies smoothly with x so does X1, and it is easy to check that
belongs to Hol(Q). A short calculation using integration by parts with respect to y
then gives

gl +f x1.6] = AP, + 2 /R 10, (F (0)x1.0 d

+2€/f(x)(vl,x—l/1)/ X1(») x1,x(y) dy dx +52/f2(x)(l/1,x—m)dx.
R M R

The function x — vy , is continuous so the integrals make sense. Furthermore, the
ground state eigenvalue is strictly monotonous with respect to a (nonzero capacity)
expansion of the cross section by [GZ94]. Since x1,, and X are positive on M, it
follows that the term proportional to € is negative, hence it is sufficient to choose A
and ¢ small enough. |

If the variation of €2¢ does not have a local character and vanishes slowly enough
at infinity, it may produce infinitely many eigenvalues below the threshold of the
essential spectrum. We shall illustrate this effect in two-dimensional waveguides.
Let Q2 be given by

Q:{(x,y)eR2:xeR,O<y<l+f(x)}, (1.29)
where f is a suitable function vanishing at infinity. Although the statements of

the following proposition hold under much weaker assumptions, for the sake of
simplicity we consider only a particular class of functions f.
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Proposition 1.4.4 Let f € C*(R) be positive and such that
Fe)=IxI7%  |xl = xo (1.30)

for some 0 < o < 2 and xo > 0. Then Uess(—A%) = [n2, o0) and —A% has
infinitely many eigenvalues in (0, 72).

Proof We start with the essential spectrum. Let € > 0, then there is an x. > xg
such that | f(x)| < € provided |x| > |x-|. We introduce additional Neumann bound-
ary conditions at {x = =+x.}. In this way we obtain the operators H;, H. and H,
which correspond to the restriction of —A% onx < —xg, |x| < |xg|,and x > xg,
respectively. By the Neumann bracketing we get the operator inequality

—~AY>H ®H.®H,. (1.31)
It follows easily that
inf Uess(_A%) > inf oess(H; @ He © H;) = min {inf 0ess(H)), inf oess(Hy)} .

On the other hand, extending the test functions from the form domain of H, by zero
to Q" = (x;, 00) x (0, 1 + f(x:)), we obtain the inequality

Qr
H; > _AD,N’

where the subscript N indicates the Neumann boundary condition at x = x.. Hence

2
. . r i
inf 0ess (H,) > inf Uess(_A%,N) = m

The same reasoning shows that the latter inequality also holds for inf oegs(H;). Since
€ can be chosen arbitrary, it follows that

inf gess (—A$) > 72,

The inclusion [7%, 00) C Jess(—A%) can again be proved by constructing a suitable
Weyl sequence in the standard way.

In order to show that —A% has infinitely many eigenvalues in (0, 72), we look at
the quadratic form associated to —A% restricted to the functions

B e
u(x, u) =uo(x, y)v(x), MO(X’y)_Sm(1+f(x))'



24 1 Geometrically Induced Bound States

A straightforward but lengthy calculation then shows that

/|vu|2dxdy—7r2||u||§:/ M|u/(x)|2dx—/ W (x) v*(x) dx,
Q R 2 R

(1.32)
where

Wi = —=0% fan 4 201+ f(x) 6 4

TR+ [A) () N J(x)? (7r w1 )
From the assumptions on f it follows that we can find some R > 0 large enough such
that Wy (x) > ¢ x~® holds for some ¢ > 0 and all x > R. Next we put an additional
Dirichlet boundary condition at x = R and note that by the variational principle and
by (1.32) the number of eigenvalues of —A% below 72 is greater than or equal to the
number of negative eigenvalues of the operator Hy in L?(R, o0) generated by the
form

Qlv] = /OO 1+ 76 [V (x)?dx — ¢ /Oo x" v (x)dx, ve H(R, ).
R

2 R
(1.33)
Now we construct a sequence {v,} of test functions given by
27 (x —21) L2 < x < 2nfl
vp(x) =191 Lot < o2
1 — 27n72(x _ 2n+2) o on+2 X < on+3

and v, (x) = 0 otherwise, which satisfy v, € HO1 (R,00) as long as 2 > R. By a
direct calculation we find that

Olv,] <0

holds for all n large enough (depending on «). Since the v,, are linearly independent,
it follows that H ¢ has infinitely many negative eigenvalues, and therefore the same
is true for the operator —A% — 72 |

If @ is a deformation of €2y which is neither a protrusion nor a squeeze, there
is no general rule for the existence of bound states. In particular, it is not important
whether the deformation is protruding or squeezing in the mean.

Example 1.4.1 Consider a pair of functions ¢+ € C3°((0, 1)) satisfying the inequal-
ities 0 < p4(x) < @e_(x) < 1 forall x € (0,1). Given L > 0 we set
frx) = @[l + oy (x—L) — ¢_(L —x)] and consider —A%L corresponding to
the strip

QL ={x:0<y< fr(x), x eR}



1.4 Local Perturbations of Straight Tubes 25

having a protrusion and a dent spaced 2 L apart; by assumption the total volume added

by the deformation is negative. We get an upper bound to —A?)L adding a Dirichlet

boundary at the perpendicular strip cut at x = 0. Since both operators obviously

have the same essential spectrum [1, 00), a bound state in €2;, will exist if one of the
+

operators —AgL corresponding to the halfstrips

Qf ={X: 0<y<m[lEpi(x)], -L <x <00}
with Dirichlet condition at the cut has an eigenvalue in (0, 1). Since the family {Q‘Z}
is increasing with L to Q= J; Q“LL and the boundary has the segment prop-

Qf . L .
erty, the operators —A )" Py, where Py, is the projection onto Lz(Qz) in Lz(Qg;)),

+
converge by [RT75, Lemma I.1] to —Agm in the norm resolvent sense. Since the
latter has an eigenvalue in (0, 1) by Theorem 1.4, it follows that the same is true for
QL
—Ap" forall L large enough.

Example 1.4.2 Consider another locally deformed strip. This time it will be €4 1,
withd € (% l) and L > 1, definedas Qg1 :={x: |y| < fa.L(x), x € R}, where

nL ...2|x| < nd
far(x):=1 nd/2 ... 7wd > 2|x| <27L
m/2 ...|x|>=7L

Such a deformation of the unperturbed strip €21,1,2 means a positive volume change
ifd > 2L[1—+/1 — (2L)~!] which, for a fixed d, can be achieved by choosing

L large enough. The operator —Ag‘“ can be estimated from below by imposing
Neumann condition at the cuts {&7L} x (—7d /2, 7d/2), and this estimate will
not be spoiled if we replace the Dirichlet condition by the Neumann one at the
segments (—nd /2, wd /2) x {£wL}. The tail part spectrum fills the interval [1, 00),

so an isolated eigenvalue of —A Dd‘L would give rise to an eigenvalue v € (0, 1) of

Q ~ . . . e 1
—A DI'L , where Q4 7, is the middle part, a rectangular cross with Neumann “lids”.

By Problem 20 the ground state of such an operator tends to 7d ~2 as L — oo, where

v & 0.66. Consequently, the discrete spectrum of —Ag‘“ is void, e.g., for d = %

and L large enough.

On the other hand, the sign of the added volume plays a decisive role in the
situation where the deformation is gentle, as we shall discuss in Chap. 6.

1.5 Coupled Two-Dimensional Waveguides

Let us return now to the two-dimensional situation and consider more complicated
structures composed of several strips. There is naturally a large number of possible
combinations and we restrict ourselves to discussion of a few simple examples.
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Notice, however, that one can often draw conclusions about the existence of bound
states using the results we have already proved. For instance, if a system of tubes
contains a subset of the form of a bent guide (and no components pushing the essential
spectrum threshold down such as outgoing asymptotically straight ducts of a larger
width) then an isolated eigenvalue exists in accordance with Problem 6, and the same
is true if we can insert a locally protruded tube, etc.

1.5.1 A Lateral Window Coupling

The first example concerns a pair of parallel strips of widths d;, d> with a common
boundary containing a window of width £ = 2a. In other words, we consider the set
Q= Qg0 :=1{X:y € (=drd), x € R}\ By, where B, := {0} x ((—0o0, —a]U
[a, 00)). We regard the operator —A% as the Hamiltonian of such laterally coupled
waveguides. Let us introduce some notation. We setd := max{dy, d»}, D := d|+d>,
and p :=d -1 min{dy, d»}. Furthermore, we employ the shorthands ¢; := (5)2, and
€p = ed(l—i—g)’z, €¢ corresponding to D and £, respectively, in the same way. Then
the following claim is valid.

Theorem 1.5 We have O‘ess(—A%) = [eq, 00) and Udisc(—A%) # () for any a > 0.
The eigenvalues €, = ¢;,(a), m = 1, ..., N, are contained in (¢p, €5) and decrease
continuously as functions of a; their number satisfies the bounds N, < N < N,+ 1,

where N, := min {1, [%\/ 1 —(H—Q)*z]} and [-] denotes the integer part. The

spectrum is simple and the eigenvalues are bounded by

d 2 2 €m ) d 2 2
— ) im—1D)"<— =+ “<|{=—) m~. (1.34)
2a €4 2a

Similarly, for the critical values a,,, m = 2,..., at which the m-th eigenvalue

emerges from the continuum we have

dim—1) dm

—— <aq, EE——
JS-(r0 2 " 1-(r0 2

Proof The essential spectrum can be localized in the same way as in Proposition
1.1.1. The existence of eigenvalues is obtained by a GJ-type argument; the eigenvalue
estimates follow from the Dirichlet-Neumann bracketing by comparison with the
spectrum of the Laplacian in the box (—a, a) x (—d>, d1) with appropriate bound-
ary conditions. The sharp inequalities in (1.34) and (1.35) follow from the strict
monotonicity of the estimating eigenvalues w.r.t. a smooth outward deformation of
the Dirichlet box which can be checked in the same way as in Theorem 1.4 (Prob-
lem 20). Finally, continuity of €,,(-) can be checked in a similar way using a scaling
in the x direction. |

(1.35)
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Fig. 1.2 Ground-state eigenfunction in a waveguide with lateral coupling

In fact, the lower bounds in (1.34) and (1.35) are sharp too. Before proceeding
further, let us recall that the bound states described in the theorem are again of a
purely quantum nature. The reason is the same as in Proposition 1.1.3: the set of
closed classical trajectories has zero measure, which is here even more obvious.
Of course, the phase-space topology is now more complicated, because a particle
whose trajectory is not perpendicular to the strip axes may end up in any of the ducts
after passing the window region, depending on the initial conditions, but it cannot
be turned back (unless it hits a window edge, i.e. the tip of the barrier, which is an
event of probability zero).

More about eigenvalues and eigenfunctions can be learned from the numerical
solution which is found by the mode-matching method. Since €2 is mirror-symmetric
with respect to the line x = 0, the operator —A% decomposes into a direct sum of
two parts with definite parities, and one can therefore consider the halfstrip problems
with Neumann and Dirichlet conditions, respectively, at the cut. Moreover, in the
case di = dp = d there is another mirror symmetry, which allows us to study one
(half)duct only. The antisymmetric part is trivial in this case and the symmetric one
is equivalent to the strip with Neumann condition in the window. The matching
procedure is straightforward and we leave the task of working out the details to the
reader (Problem 21). An eigenfunction example in such a waveguide system with a
narrow window is shown in Fig. 1.2.

We shall describe the asymmetric case in more detail, because it reveals another
feature of the mode matching which is useful to keep in mind. Without loss of
generality we may assume d» < d; = d. As indicated above, we consider the
right-halfplane part of €2 with Neumann and Dirichlet conditions on the segment
C := (—dy, dy) of the y-axis. We expand the sought solution in terms of the transverse
bases. In the window part, 0 < x < a, we use

2
M(y) = \/; sin(Kg(di—y)), k=12,...,
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where K := kK| = kri(1 + o)~ ! with k| = /€4, while in the ducts we take

2
+ _ . _ . .
X ) = V72 (FD/4 sin (F»;y@ “*”/2) (), j=12...,

where 1 := jk| and i1 are the indicator functions of the intervals Cy := (0, dy)
and C_ := (—d»,0), respectively. The union of the two bases is, of course, an
orthonormal basis in L2(C). Since numerical computations involve a truncation,
however, a proper ordering is needed. For that purpose we arrange the numbers
Js kg’1 with j, k = 1, 2, ... into anondecreasing sequence (if o is rational and there
is a coincidence, any order can be chosen in such a pair); we denote its elements by
O, ie.

0y :=1, 6 :=min{2, g_l}, etc. (1.36)
The corresponding ordered basis in L(C) is

Ent En() =X 0 Oy = jo T2

The even solutions of energy em% with (1 4+ 0)™2 < € < 1, which correspond to the
Neumann condition at x = 0, are sought using the Ansatz

h
it ak nghgizg i (y) ...0<x<a

Px,y) = (1.37)

.
Z‘]’i] bj,i)e"j (@ X)X;i)(y) ..x>a,yeCy

where p; := r1+/j2(1+0)~%— eand q(i) k1+/ j2o~(UFD — e. The duct part of

(1.37) can be written in a unified way as

Yo y) =D enem (),

m=1

where we have set ¢, = »'* and rm = q;i) for 6,, = jg_(ljFl)/z. Using the
continuity of v and its normal derivative at x = a together with the orthonormality
of { Xﬁi)}, we find conditions which the coefficient sequences must satisfy; they can
be concisely written as

oo (0.¢]
Cm = Z ax Em, M) s TmCm + Z ay pr tanh(pra) (&, k) =0
k=1 k=1

substituting from the first equation to the second one, we obtain the spectral condition
Ca = 0, where C is the operator on £>(j) with the matrix elements

Cpk := (rm + pi tanh(pra)) Em, mk) (1.38)
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Fig. 1.3 The third eigenfunction in an asymmetric waveguide system

where the overlap integrals are given by

in (T
“ 2 o(IFD/4 sm(1+0)

(Xj ’nk)—ﬂm.z_(k)z.

=

In the odd case, which corresponds to the Dirichlet condition at x = 0, the only
change consists of replacing tanh by coth in (1.38). The eigenvalues and eigen-
functions are obtained by solving the equation Ca = 0 numerically (Problem 21).
Convergence of the truncated approximations is checked similarly as in Proposi-
tion 1.2.3: since an eigenfunction belongs to the domain of any power of —A$, we
may seek the solution in £2(;j*) for s large enough such that the operator C is com-
pact. Let us stress, however, that it is crucial for the convergence to use the proper
ordering (1.36) of the transverse basis. An eigenfunction example in an asymmetric
waveguide system with a lateral coupling is shown in Fig. 1.3.

Remark 1.5.1 The mode matching also shows that all eigenfunctions are exponen-

)
1,m

tially decaying, more specifically that |1, (X)| < ¢ exp [ —q

¢ > 0, where ql(tz 1= /1 —¢,, because at large distances the term corresponding to

the lowest transverse mode dominates the series. Similar exponential bounds hold
for bent tubes with a compactly supported curvature as well as for tubes with local
deformations considered in the previous section (Problem 22).

|x|] holds for some

1.5.2 A Leaky Interface

The waveguides considered so far have been ideal in the sense that their walls are
impenetrable. Since in real systems they are rather potential steps and tunneling
cannot be a priori excluded, we are going to discuss now a modification of the
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previous example in which two adjacent ducts have a common boundary through
which the particle can leak. The formal Hamiltonian of such a system has the form

Hy = =A% 4+ a(x)d(y),

where 2 := R x (—db, dy) is, as before, the double strip and « is the coupling
strength. We are interested in the nontrivial situation when the «.(x) varies along the
strip; our aim is to show that a local increase of the tunneling probability provides
another binding mechanism. The outer edges of 2 are supposed to be ideal, with
Dirichlet boundary conditions.

Hamiltonians of the above type will be discussed in more detail later, particularly
in Chaps. 6 and 10. Here we just recall that they can be defined in different ways.
A general method is to employ quadratic forms: for 1) € Q(—A%) we put

falt)] = / V@) dF + / ) lp(x, 02 dx, (139)
Q R

where the last integral makes sense by standard Sobolev imbedding for any Borel
measurable function o : R — R; the self-adjoint operator associated with the form
t, is identified with H,,. Since the singular interaction support is a smooth curve, one
can also say that for a regular enough «, say piecewise smooth, the operator acts as
H,v = — A away from the line y = 0 and its domain consists of all ¢ € HILC(Q)
which satisfy the Dirichlet condition at 92 and

P(x,04+) =P(x,0-), Oyp(x,04+)—0,¢¥(x,0-) = a(x)y(x,0) (1.40)

holds for any x € R, and — A1) in the sense of distributions belongs to L?(£2).

As elsewhere in this chapter we consider local perturbations of a system with
separating variables, i.e. we assume lim|y|_. o0 (x) = ag with the same limit in
both directions. While we speak for definiteness about a barrier dividing two strips,
which would mean choosing an g > 0, the sign of «y is not important in the rest
of this section. To determine the spectral properties of H,, one first has to find the
transverse modes, i.e. to solve the equation

—X"() + ad(y)xy) = vx(y) (1.41)

in (—d, d1) with Dirichlet conditions at the endpoints, where the J-interaction is
understood in the sense of the boundary conditions (1.40).

Lemma 1.5.1 The problem (1.41) has a complete system of eigenfunctions,

Xj(y; @) = FN; sin (mdg(lil)ﬂ) sin (m (y:ng(lﬂ)/z))

fory € C+, where Nj > 0 is chosen so that || x ;|| = 1. The corresponding eigenval-
ues {v; (a)}?O | solve the condition —ov = /v (cot J/vdy + cot ﬁdz). The function
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a = vj(o) is continuous and strictly increasing forany j = 1,2, .. .. Furthermore,
let {0; };?Ozl be the sequence (1.36) obtained by natural ordering of the set N U o~ !N,
then for any j = 2,3, ... we have

T . s T mj
ﬁ(]_l) < 30.,-_1 <, /vj(o) < EQ/ < i

Proof is left to the reader (Problem 23).

Remarks 1.5.2 (a)If the §-interaction is attractive enough, o < —(d;” 1+d; ])_l,the
lowest eigenvalue is negative and the corresponding eigenfuction is a combination
of hyperbolic sines analogous to the above expression.

(b) If the interval widths are rationally related, o = g, the spectrum also includes the
points with \/v = % n= % n,n=1,2,...,wheretheabove eigenvalue condition
is not well defined. From the point of view of our original problem it represents a
trivial part which can be left out without loss of generality. The prime example is
a symmetric waveguide pair, d; = dp, where this concerns all the antisymmetric
solutions. The eigenvalue inequalities remain valid if we take the corresponding
ordered set N U o~ 'N without repetitions.

Itis now easy to localize the essential spectrum through the transverse ground state.
The existence of bound states depends on the shape of the function «, because the
leaky barrier is similar to the systems considered in Sect. 1.4; here also the interaction
can be both attractive and repulsive.

Proposition 1.5.1 Suppose that o € LllOC (R) and there is a number o such that

a(x)—ap = O(x|~179) for some ¢ > 0 as |x| — 00; then oess(Hy) = [v1 (), 00)
and the discrete spectrum is nonempty provided

/ (a(x)—ag)dx < 0. (1.42)
R

Proof The essential spectrum is found as before: adding Neumann cuts at &y with
y large enough we check that inf oess(Hy) > vi(ag) — n for any n > 0, then
one has to repeat the argument of Problem 3 with 1 (y; ag) ¢/?* multiplied by a
suitable family of mollifiers. Next we employ functions (1.11) again and choose
P(x,y) = ox(x)x1(y; av) as a trial function, obtaining

tal¥0] = vi(ao) 1P 11* = M @lI* + x1(0; ap)? /}R (a(x)—ap)|gr(x)|* dx .

The value x1(0; ap) = Nj sin (/71 (a)d) sin (v/v1(ag)dg) is nonzero, which is
true even if v;(ap) = 0, because the normalization factor explodes in the limit
ag — —(d; T+ dy 1)_1 (cf. Problem 23). In view of the assumption the right-hand
side is then negative for A small enough. |
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Since the J-interaction can be approximated by a family of scaled potentials (see
the notes) there is an analogy between the present example and the potential binding
of Sect. 1.4. However, the problem has also a geometric aspect. This can be seen
when we look at eigenvalues and eigenfunctions of the operator H,, in the situation
when a constant barrier of the “height” «o has an opening of a fixed length and
compare the results with those of Sect. 1.5.1, in particular, in the situation when o
is large so that the tunneling is small and there is a little difference from the ideal
(Dirichlet) barrier (Problem 24).

1.5.3 Crossed Strips

In the previous two examples the strips were parallel. Suppose now instead that they
cross at an angle 6 € (0, %w], i.e. take the scissor-shaped region 2 = Qp ¢ which
consists of all (x, y) € R? satisfying the inequalities

B d 0 d
|x|sin3 — 5 [x|sin 3 + 5
maxi(), T2 2] ly| < T2 2.

0 (4 ’
Cos 5 COs 5

for simplicity we assume that all the arms have the same width d.

Proposition 1.5.2 Uess(—A%) = [€e4, 00) and Udisc(—A%) # O holds for any angle
0 € (0, %w]. The eigenvalues €, = €, (8), m = 1,2, ..., are contained in (€24, €7)
and increase continuously as functions of 0 in (0, 0™), where 8" is the critical
angle at which the m-th eigenvalue disappears in the continuum, 6™ < %7‘( for
m > 2. Their number satisfies the bound

2
t {odise(—AD)} > 2 [ﬂ ,

where c is the constant from Proposition 1.2.1. The ground state eigenvalue €1(0) <
€1(m/2) = 0.66¢q4. The eigenfunctions ¢y, corresponding to €, are even w.r.t. the
x-axis for any 0 € (0, %71’] and m=1,2,....

Proof The argument is analogous to that of Propositions 1.2.1 and 1.2.2. The single
eigenvalue for the symmetric cross-shaped region, 6 = %7‘(, can be found by mode
matching (Problem 26). |

1.6 Thin Bent Tubes

We have seen that in specific examples one can learn a lot more about the discrete
spectrum than just the fact that it is nonempty. Returning to a single strip or tube one
can ask what general properties of the eigenvalues can be deduced. In this section
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we shall demonstrate one result of this type; the discussion of the discrete spectrum
will continue in Chap. 3.

A powerful tool for spectral analysis is the perturbation theory. We have already
used relation (1.9) to establish the existence of bound states by comparison with
a suitable one-dimensional Schrédinger operator. Now we want to study thin bent
strips and tubes in more detail. For the sake of simplicity we shall speak here mostly
of planar strips; we encourage the reader to work out the generalization to tubes in
R? (Problem 27).

Consider thus a curved strip €2, of halfwidth a generated by a curve I which is
described by the transformed Hamiltonian (1.7). To reveal how spectral properties
change when a varies, it is useful to pass to the unitarily equivalent operator acting
on L2($2) with Qo := R x (—1, 1) obtained by transverse scaling

H = —a_zc’?,f +7T, T=T():= —E)s(l—i—au'y(s))_zas + V(s, au),
where V (s, au) is the rescaled effective potential (1.8). We shall use the decompo-
sition

H——é)z—iéﬂ—ﬁJr B(s, u, ) (1.43)
=% T 2% 4 aps,u,0ds), .
where (s, u, 0s) is the shorthand for the differential expression

2uy + au’~? au*y* 4+ 2ury3 uy 5 auy?
(A 4auy)? 7 41 +auv)? 2(1 +auy)®? 4 (1 +auy)*’

Let x; be the eigenfunctions (1.10) corresponding to the eigenvalues /i? = (7j/2)%.
We also consider the one-dimensional Schrédinger operator

1
Ty := —07 — i N (1.44)

We have a perturbation expansion in terms of the strip halfwidth.

Theorem 1.6 Adopt the assumption (i)—(iv) of Sect. 1.1 with k = 2. Then for each
negative eigenvalue A of Ty there exists an ay > 0 such that for all a € (0, ag) there
is a unique simple eigenvalue €(a) of —A%’ given by

ela) = H%Cl_z + Aa),

where X(a) € C™(0, ap), in particular, there exist coefficients d) ,, such that

MNa) =X+ D dyma". (1.45)

m=1
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Proof We just sketch the main ideas of the argument referring for details to the
literature mentioned in the notes. We start from the equation

a>H-Ng=f. (1.46)

Let P be the projector on the subspace L2(R,ds) ® {x1} of L%(Qp) and let 0 =
I — P. Accordingly, we have the decomposition

g(s.u) = wi(s)x1 ) +g,(s,u),  wis) == (X1, 96, IXDr2-1,1y» 9 = Q9.

and similarly the function f can be expressed as f(s, u) = fi(s)x1(u) + fa(s, u).

If weput p =€ — m%a‘z and apply the projectors P and Q to the Eq.(1.46), we
obtain the system

—d?wy + awy — pwy + aBii(s, d) wi + afrals, 05)9, = f1(s) ,
—a9}g, — (O + K7 + a*)g, + aai(s. O)wi + afan(s, 0)g, = fa(s.u),

where we have denoted by

B = (leﬁXl)LZ(_lyl), B2 == (B, XI)LZ(_1,1) . P =08x1, Brn:=0p

the differential operators in the variable s, dropping the arguments in the first two
formula. Let now ¢ be the eigenfunction of Ty associated with the eigenvalue
A and consider the following problem: given the triple (fi(s), f2(s, u), r), find
(w1(s), g, (s, u), t) such that

—07wy + awy — pwy +1 ¢+ apii(s, Oy) wi + aPia(s, &g, = fi(s)
—a? 3392 —OF + K1+ azu)gz +a 31 (s, Os)wy + aBa(s, d5)g, = fals, u),

(Wi, Pp2—1,y=r,

where » and t = t(u, a, fi1, f2, r) are real numbers. The central point of the proof is
to observe, with the help of the two systems, that € is an eigenvalue of H iff

1(11,a,0,0,1) =0, p=e—rla2.

Moreover, one can check that (i, a, 0, 0, 1) is infinitely differentiable as a func-
tion of (u,a) on (A — 6, A + &) x [0,ap) with some § > 0. Finally, passing
to the limit @ — 0, a direct calculation shows that #(u, 0, 0,0, 1)=x — A. Hence
(’9ut(,u, 0,0,0,1) = 1 and from the implicit function theorem we conclude that
u(a) € C*[0, ag); expansion (1.45) then follows by Taylor’s formula. |
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1.7 Twisted Tubes

But how curiously it twists! It’s more like a corkscrew than a path!
Lewis Carrol, Through the Looking Glass

The above discussed geometric deformations of waveguides are, of course, not the
only ones possible. To conclude this chapter let us mention another important case.
It concerns three-dimensional straight tubes which are twisted in the sense defined
properly below. We shall see that a local twisting can have an effect opposite to
the deformations discussed up to now, namely that it can preclude the existence of
bound states in such a tube. The reason for this is a Hardy-type inequality induced
by a twisting of the waveguide.

1.7.1 A Hardy Inequality for Twisted Tubes

Consider first a straight three-dimensional tube 9 = R x M, where M C R? is
an open connected subset of R2. For X = (x1, x2, x3) € Qo we write x = (X, x3)
with X, = (x1, x2). Given a function o € C2(R) with the first and second derivatives
bounded on R, we define the twisted domain by

Qq i={ro(x3)x : x e R x M},
where X is taken as a column vector and

cosa(xz) sina(xz) O
ro(x3) = | —sina(x3z) cosa(xz) O
0 0 1

‘We have encountered such a rotation along the tube already: €2, is nothing else than
the bent tube defined at the beginning of Sect. 1.3 in the particularcase y = 7 = 0. As
before we consider the Dirichlet Laplacian on L?(£2,), i.e. the self-adjoint operator
on L2(2,) associated with the closed quadratic form

Ouli] = /S2 Vo@)2dT. o € Dom(Qn) = Hl ().

We introduce the “straightening” transformation
Up)E) = ¢ (ra(x)¥) . X € Qo f€L*(Qa). (1.47)

It is easy to see that U is a unitary operator from L%(Q2,) onto L2($2): note also
that U(H} (R4)) = HJ (R x M). Set

V, = (31, 82) ) 8@ = Xlaz - xzal .
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The derivative ¢ exists by assumption and we define the operator H as the self-
adjoint operator on L2(Qq) associated with the closed quadratic form

Qalfl:= 0alUT'£] =/§2 (VeI +16(x3)0, f + 03 fIHE) A (1.48)
0

with f € HO1 (R x M). Evidently, Hs = U(—A%‘) U~!. By a straightforward
computation we find that H acts on its domain as

Denote by v the lowest eigenvalue of the Dirichlet Laplacian —A%I . The indicated
Hardy-type inequality for twisted tubes then reads as follows.

Theorem 1.7 Let M C R? be a bounded open connected set containing the origin
and with C?-regular boundary. Suppose that M is not a disc centered at the origin.
Assume, moreover, that ¢ is a compactly supported continuous function with bounded
derivative and that ¢ is not identically zero. Then for all f € H(} (R x M) and any
so such that &(sg) % 0 we have

|f G, x3)1?

— 2 dX,dxs, 1.49
v L+ (3 —s50)2 ’ (149

0ilf1-nlfI3 = ch/
R

where ¢y, is a positive constant independent of f but depending on so, & and M.

Remarks 1.7.1 (a) If M is a disc, then ¢, = 0 as expected, since in this case €2,
coincides with € as a set and H,, is unitarily equivalent to Hy.
(b) For a compactly supported ¢ the decay rate of the weight on the right-hand side
of (1.49) cannot be improved—see the notes for further details.

To prove Theorem 1.7 we need some preliminary results. First we define
Ju(Vevl” + 10,0 = v1v*) Gr) dxs

2
LX(M)

n(M)= inf

(1.50)
veH/ (M) vl

which depends on M only. Obviously n(M) > 0, and moreover, we have
Lemma 1.7.1 Let M satisfy the assumptions of Theorem 1.7. Then n(M) > 0.

Proof Since the Sobolev space HOl (M) is compactly embedded into L*(M), the
operator —A%’ - 8929 associated with the quadratic form

/(|vzv|2+|a¢v|2>dxf, ve HI(M),
M

has a purely discrete spectrum. Denote by A its principal eigenvalue and by v the
corresponding normalized eigenfunction, then n(M) = A\ — v; > 0 clearly holds.
Assume that 7(M) = 0; this would imply that
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10pvillz2a) =0,

and consequently, 8,¢v1 = O identically in M since v; € C*°(M); in other words, v}
would be radial and would satisfy the equation

AT+ XD =0 (1.51)

in M. Pick € > 0 such that the open disc B, := {x; € R? : |x¢| < €} is contained in
M. Since v is radial, regular, and satisfies (1.51) in B, we find that

vi(x) =0(x;), x; € B, (1.52)

with 0(x;) = cJo(/\i/ 2|x, D, x; € R2, where Jj is the zero-order Bessel function and
¢ # 0;if ¢ = 0, the unique continuation principle would imply v; = 0 identically in
M which contradicts the fact that vy is an eigenfunction. Note that (A%’ +ADv =20
holds in the whole R?. Comparing the last equation with (1.51) and bearing in mind
the unique continuation principle, we find that (1.52) holds for all x; € M. Let now
{C.} be the set of the connected components of 9M . Fix w and introduce the function
0w by Cy 2 x¢ = 0u,(x;) := |x¢| € (0, 00).SetZ,, := p,(Cy). Since C,, is connected
and g,, is continuous, 7, should be connected too, i.e. Z,, is either a one-point set or
a bounded interval of positive length. Due to the Dirichlet boundary conditions, we
have v;(x;) = Oforall x; € C,,i.e. ]0()\}/21*) = Oforallr € Z,,. However, Jy has at
most a finite number of zeros on any bounded interval, so all Z,, are one-point sets,
in other words, all C,,’s are arcs of circles centered at the origin. Since 9M € C 2 all
C,’s are circles. Since M is connected and contains the origin, it is a disc centered
at the origin which contradicts, however, the assumptions of Theorem 1.7. |

To estimate the form (1.48) it is useful to have the transverse and longitudinal
variables separated. Let us consider the terms entering the expression separately. By
assumption on ¢ there is an interval I = (a, b) C R such that supp& C I = [a, b].
Pick f € HJ (R x M) and define

Tilf1 = IVifIP = lIfIIF, T30f] = lladyfI12,
DIl = 105117, Tr3[f] == —2Re (D5 f, 40, f),

where the norms and the inner product refer to L>(R x M). The following lemma
allows us to control the mixed term 7> 3[ f].

Lemma 1.7.2 Let the assumptions of Theorem 1.7 be satisfied. Then for each p > 0
and v > 0 there exists a constant (i, V) such that

D31 = Y ) Tilf 1+ p T2 f1+ v T3] f]

holds for any f € HO1 R x M).



38 1 Geometrically Induced Bound States

Proof Here and in the sequel we denote by ¢ numerical constants, which may depend
on ¢ and M, but not on f and whose values may change from line to line. It suf-
fices to check the claim for f € C§°(R x M) which can always be written as
f(x) = ¥1(x;) u(x), where 1 is the unique normalized positive eigenfunction of
the Dirichlet Laplacian —A%’ corresponding to vy and u € C°(R x M). By a direct
calculation we get values of the terms T;[ f] for this f, namely

[ f]
[ f]

I Veull®,  T3LF] = Nl @10,u + udytn |12,
l1d5ull®,  Taslf] = —2Re (W1d3u, X1 & (191 + udsth)

where, in order to establish the identity for 71[ f], we have integrated by parts as
follows

2 wluv,u.v,wld)z:_/ W Ve Pdx + vy [ P u?dx.
Q Qo Qo

Using
& Qpu|* < ¢ |Voul?

and applying the Cauchy-Schwarz inequality, the first term in the sum of 7 3[ f] can
be estimated as follows,

20030, 6 D) <2 VIIF VBT < =2 Tilf1+ 5 Do) (153
To estimate the second term, we first combine integrations by parts to get
2(103u, udphr) = —(uapr, Gudsn) = (u, @i du).
From |& O u 1> < ¢|V,u|?* and from the Cauchy-Schwarz inequality we get

|, @43 Dpu)|* < e Tl fIxs drull?,

where X is the shorthand for the characteristic function of the set / x M. Obviously,
we can find an open interval J C supp & C I such that there exists a certain positive
number 6, for which ¢&(x3) > § holds for all x3 € J. On the other hand, there exists
a constant ¢, which depends on / and J, such that for any ¢ € H 1 (1), the following
inequality holds:
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191175y < € (||¢||§2(,) + ||¢>’||iz(,)) : (1.54)

The proof of this inequality is left to the reader as an exercise (Problem 29). In this
way we get

I vrul® < e (DL + s viul®) < e (BUFT+ 02 Ixs aul?),  (1.55)

where 7 denotes the characteristic function of the set J x M. Moreover, for each
fixed value x3 € R we have &(x3) ¥ u(-, x3) € HO1 (M), and therefore we can apply
Lemma 1.7.1 to obtain

Ixs cbrull? < llaaprull* < M)~ (T31F1+ llél2, Tilf]) - (1.56)

We then easily conclude that

|(u, x1 @07 D) | < e TVLAT (16115 Talf 1+ n(M) 6% Tal 1+ T3L£1)

I 2
= (cun L1+ 5 DIA + v T3L£) (1.57)

for any v > 0 and c(u, v) large enough depending also on n(M) and ¢. The desired
estimate then follows by combining (1.53) with (1.57). |

We note that a stronger version of Lemma 1.7.2, and consequently of Proposi-
tion 1.7.1 below can be proved—see the notes. As the next step we shall use the
above results to demonstrate a version of the Hardy-type inequality with the integral
weight proportional to ¢,

Proposition 1.7.1 Let the assumptions of Theorem 1.7 hold and let further I C R
be the open interval considered above. Then there exists a positive constant ¢ such
that for all f € H& (R x M) we have

/ (IVefIP+105f = @0, 1P = f)()dX = epn(M) / & f1?(%) d¥ .
RxM RxM
Proof If we choose x = 1 and v < 1, the previous lemma yields the estimate

/Q (IVif 12+ 105 f — @0 f1> — 11 f2)E) dX = Tif1 + Tl f1 + B3I 1+ T30 f]
0

1—v

1) I3 f1;

1 1
> =Tilf1+ (1 - m) (L2Lf1+ T3Lf1 — T3l f 1) +
without loss of generality we may suppose that 2y(1, v) > 1. Since we have at the
same time T2[f]+ T3[f] — |T23[f]] > O, it follows from Lemma 1.7.1 that the
expression in question is estimated from below by c¢; (||c'u||<2><J il f1+ T:1f ]) with
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| [ 1 1—v ]
cri=gmnj—0o—, ——— 1]
2 lalls, (1, v)

from here the claim follows easily. |

Proof of Theorem 1.7 We may suppose that so = 0. We choose an interval J =
(—a,a) Csupp & C [ with some a > 0, such that |¢&| > 0 holds on J, and define
i:R— Rby

u(s):=1 if |s|>a, u(s) :=|s|/a if |s| <a.

Letus write f = uf + (1 — &) f. Applying the one-dimensional Hardy inequality

2
[P ass [ wwpa ven'®. w0 =0,
R X R

to the function x3 > i (x3) f (X) with x1, x, fixed, we arrive at

=32 2
/ f<x)2d)-5§2/ deH/ (1= i) f P dx
Rxm 1+x3 Rxcm 53 P

<16 1(D3i) fI* + 16 17 03 1> + 2 1lxs (1 — ) fII?
=z +2) I fI2+ 1610117, (1.58)

where Y7 is again the shorthand for the characteristic function of J x M. Proposi-
tion 1.7.1 implies the existence of a constant ¢ > 0 depending on ¢ such that

s £11> < (en(M) m}n|a|)*‘(Qd[f1 —ullfI?).

To assess the second term on the right-hand side of (1.58) we rewrite the inequality
of Lemma 172 for v = 1 as v, [ Tas[f11 < TiLf] + py,! TaLf] + 7, LA,
where v, := max({l, y(u, 1)} and p € (0, 1). Substituting this inequality into

Qalf1—willfII* = Tilf1+ Tal £1+ T3 f1+ Toalf1,

writing T> 3[ f] = 'yul Toslf1+ (1 — 'y;l) T, 3[ ] and using the positivity of the
form o[ f]1+ T3 f]1+ T2,3[ f], we obtain

DUf1= 10517 < (1=~ (Qalf1 =il f117).

Summing up all the contributions and using (1.58), we arrive at the inequality (1.49)
with sg = 0. |
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1.7.2 Stability of the Spectrum

The Hardy-type inequality (1.49) demonstrated above has several important conse-
quences. One immediate corollary is the stability of the discrete spectrum against
sufficiently weak potential perturbations. Specifically, we have

Proposition 1.7.2 Under the assumptions of Theorem 1.7, let V : Q, — R be a
bounded function which satisfies V (X) = O(|x3 |_2) as |x3| — oo, then the operator

—AT+ AV, AeR,

has empty discrete spectrum provided ) is small enough.

The proof of this statement is elementary and we leave it to the reader. It is worth
noticing that for compactly supported potentials the critical value of \ in Proposition
1.7.2 decays with the square of the distance between the supports of V and ¢, see
also Problem 30.

Another consequence of Theorem 1.7 is the stability of the discrete spectrum in
twisted bent tubes introduced in Sect. 1.3. Recall also that the existence of a discrete
spectrum in bent tubes was demonstrated under the condition that the cross-section
M was rotated in an appropriate way, related to the torsion 7 of the reference curve
I by condition (1.18). It appears that this requirement is necessary at the same time
as long as the tube is only mildly bent.

Theorem 1.8 Adopt the notation of Sect. 1.3 and suppose that & and M satisfy the
assumptions of Theorem 1.7. If & # T, there exists a positive €, depending on T, &
and M, such that

I7lloc + 17l < & implies a(—A%") = [v1,00). (1.59)

We refer to the notes for the proof and also for further comments and references. We
have thus found that if the cross-section M is not a disc, and at the same time it is not
rotated in a particular way described by Tang’s condition (1.18), then a sufficiently
mild bending of the tube does not produce any discrete spectrum. This contrasts, of
course, with bent strips in dimension two, where any (sufficiently regular) nontrivial
bending leads to the appearance of bound states in accordance with Theorem 1.1.

1.7.3 Periodically Twisted Tubes and Their Perturbations

One of the essential features in the above analysis of twisted tubes was the assumption
that the twisting was local, in other words the function ¢ had a compact support.
Now we turn to situations in which the twisting has a global character. We begin with
a discussion of a periodically twisted tube which corresponds to ¢ being a nonzero
constant, & (x3) = .
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Since such a tube exhibits a translational invariance, we can employ a trick
described in more detail in Chap.7, namely a partial Fourier transform in the x3
direction, by which the operator Hyg, is unitarily equivalent to a direct integral, sym-

bolically Hg, =~ fﬂga h(p) dp with the fiber operator
. 2
h(p) = —AB + (p —i fo(x10y — x201))

in L2 (M) subject to Dirichlet boundary conditions at M . In view of the compactness
of M the spectrum of i (p) is purely discrete; we denote by

E := inf o(h(0))

the first eigenvalue of the operator 2(0). Of course, E € o(Hg,) holds in view of the
direct-integral decomposition; it appears that it also determines the spectral threshold
of the original operator Hp,.

Proposition 1.7.3 In the described situation we have o(Hp,) = [E, 00).

Proof Let 1) € L?>(M) be a real-valued eigenfunction of /(0) corresponding to the
eigenvalue E. Since it is the ground state, we can choose it to be positive; this allows
us to write any given u € C;°(£2) as the product

u(Xr, x3) = Y(X)v(Xy, x3)

with the appropriate v. Integration by parts now gives

an[u]—EnunZ:/ (V21901 = AB W) 6 o + 42 1050

Q0

+B0 1 Optp (v D30 + ¥ D3v) + Bo ¥* (D38 Dpv + D¥ D3v)
+03 42 10,02 = 3 02 ¥ o — Ev? [o]?) dxs dF;

Since u € C§°(L20) by assumption, we have f]R (v 930 + v O3v)dx3 = 0. Combining
this with —AY v — 550Z¢ = h(0)¢ = E), we obtain

Qﬂo[u]—E”M”z:/ 02 (190 + 1050 + o 9,01 dxyd¥s =0,

Q0

which proves inf o(Hj,) = E. It remains to check that the spectrum is purely
essential covering the halfline. The easiest way to do this is to construct a suitable
Weyl sequence for every point in [E, c0); we leave this to the reader. |

We thus see that a periodic twisting changes the essential spectrum in a way
depending on (. It inspires the question of what a local variation of the twist would
cause, in particular, what happens if the twist is locally slowed down. We thus consider
rotation angles « of the form
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a(x3) = o — B(x3), (1.60)

where 3 : R — R is a bounded function supported in an interval [—a, a] for some
a > 0. From the compactness of its support in combination with Proposition 1.7.3
it follows by standard perturbation arguments that

inf (0ess (Hy)) = inf(o'ess(Hﬁo)) =FE.

Let us now look for conditions under which a variation of the twist can give rise to
a nonempty discrete spectrum.

Theorem 1.9 Suppose that M satisfies the assumptions of Theorem 1.7 and ¢ is
given by (1.60). If

/ (6*(x3) — D) dxz <0, (1.61)
R

we have inf (o (Hg)) < E, and consequently, ogisc(Hg) # 0.

Proof We construct a family of trial functions depending on a parameter § > 0. Let
ugs(X;, x3) = ¥ (X;)v(x3), where 1 is the ground state of the operator /(0) and

eIt if  x3 < —a,
vixz) =141 if —a<x3=<a, (1.62)
e 003—a) jf X3 >a.

It is easy to see that us € Dom (Q4). A straightforward calculation then gives

Qalusl = Ellus® = 61101724y — 10001724 / (6%(x3) — B5) dx

—a

and |lus||®> = (0! + 2a)||1/)||iz(M), and in the limit § — 0 we get

Qalus] = E sl _ 106012, /

-2 2 2
= (x3) — fg) dx3 + O©57) .
s 2 gy J-a &)

—a

From the proof of Lemma 1.7.1 and the assumptions on the cross section M we

conclude that |0, ||%2 on > 0; it is thus enough to choose § small enough to ensure
that

Qulusl — E |lus|?
e

<0

and the claim of the theorem follows. |
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Under additional assumptions one can also extend the above result to the critical
case when the integral (1.61) vanishes.

Theorem 1.10 In addition to the hypotheses adopted in Theorem 1.9, assume that
&(x3) + Bo > 0 holds whenever |x3| < a, and that & € L*(—a, a). If

/R (6%(x3) — Bg) dx3 =0, (1.63)

we have inf(o(Hy)) < E, and consequently, ogisc(Hy) # 0.

Proof We use a GJ-type argument modifying the trial functions from the previous
proof by a slight deformation in the central region, us - (¥;) := ¥ (X;)vs(x3), where

edla+xs) it x3<-—a,
ve(xz) = 1 1 +e(Bo—ax3)) if —a<x3=<a, (1.64)
e—0(3—a) if x3>a,

with € > 0. By a direct calculation we find the shifted energy form,
Qalus.e] — Elluse|* = /Q (020,107 (2 = 63) + w29 | dxs d.
0

Using the assumptions of the theorem one can check that in the limit £, 6 — 0 the
integrals appearing in the last expression behave as

/ v2(x3) (dz(xz) - ﬂ%) dxz = _25/
—a

a

(@(x3) — B0)? (&(x3) + Bo) dx3 + O(e?)
a

and
/ 0o (x3)2 dxz = 6 4 &2 / d(x3)? dxz = O) + O(E?) .
R

—a
The last two relations imply
2
Qalusel = Elusel® _ ) NN,

2 - 2
”u5,5” ||¢HL2(M)

+50@E2) + O %) ;

a
/ (@(x3) — Bo)? (@(r3) + o) dn

setting then € = /6 and using again the fact that ||8991/1||i2 o > 0, we conclude

that for § small enough we have
Qaluse]l — E ||u5,€||2

<0,
llues,e 1%

which concludes the proof. |
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1.8 Notes

Section 1.1 The definition of the Dirichlet Laplacian is standard, for Sobolev spaces
see [Ad]. When the arc length serves as parameter, the term unit-speed curve is
employed in differential geometry. The curvilinear coordinates we use here are some-
times called Fermi coordinates—cf. [Fe22, Gra]—although they were known already
to Gauss. In the present context they appeared for the first time in [KJ71], where the
existence of bound states in the formal limita — 0 was also noticed. Recall that some
authors define the curvature + with the opposite sign (in analogy with the Weingarten
tensor for surfaces—see Sect.4.1.1 below); the sign convention for planar curves is
much less important than in higher dimensions. The effective potential (1.8) was
computed first by J. Tolar in 1977, the result being published with a decade delay in
[To88].

The assumption (ii); does not cover various interesting cases such as strips with ~y
being a (nontrivial) step function. A notorious example is the bookcover waveguide
consisting of two semi-infinite strips connected by an annular segment [SM90].
If we nevertheless require a global smoothness, it is because this leads to a sim-
plification of the analysis. However, in appropriate places—such as Remark 1.1.4
here—we indicate what can be done if the boundary satisfies weaker regularity
hypotheses. Sometimes a modified basis of transverse eigenfunctions is used. If one
of the boundaries of €2 is used as the reference curve, one conventionally chooses
xn () = 2/d)"/ 2 sin K, u which differs by sign from (1.10) for the even index values.

The existence result contained in Propositions 1.1.1 and 1.1.2 was first demon-
strated in [ES89a]. Three years later J. Goldstone and R.L. Jaffe [GJ92] came with a
deep insight which is the essence of the argument used to prove Theorem 1.1, namely
that the resonance at the bottom of the continuous spectrum is not a stationary point
of the energy form unless the strip is straight. Consequently, one can get a negative
contribution to the energy, dominating over the energy surplus from slowly decaying
tails, by deforming the trial function properly in the “central” curved part. This idea,
which we shall refer to as the GJ-argument, will be useful when dealing with various
waveguide systems below. The authors of [GJ92] did not strive to find a class of
strips for which the argument works—they just remarked correctly that the curva-
ture need not be continuous—and did not construct an appropriate deformation of
the trial function. This gap was filled in a little later in the thesis of W. Renger—
see its summary in [RB95] where a generalization of Proposition 1.1.1 was also
given—and independently in [DE95]; the proof presented here follows these papers.
Curved quantum waveguides with a discontinuous curvature were studied recently
in [KS12].

Proposition 1.1.3 and its analogy for the double waveguide discussed in Sect. 1.5
can be interpreted as a manifestation that the binding effect is of a purely quantum
nature. The relation between classical and quantum motion in tubular neighborhoods
of manifolds—especially in the limit of zero transverse width motivated by the need
to understand motion with constraints—is more involved, though. The heuristic bob-
sleigh example mentioned in the introduction suggests that one might try to replace
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the “hard” confinement by a soft one through a potential of, say, oscillator shape
perpendicular to the manifold. In this case, indeed, the shrinking limit can yield the
classical motion governed by the effective curvature-induced potential provided the
energy of the classical particle is assumed to change in the same way as that of the
quantum transverse confinement. We refer to [FHO1] where the general situation
of an n-dimensional (compact) manifold embedded in R"*™ is treated. Somewhat
similar limits allowing again for a semiclassical interpretation will be discussed in
Chap. 10.
Section 1.2 The idea of the estimate which we have used in Proposition 1.2.1 is
taken from [ABGMOI1]; the asymptotic behavior of the eigenvalues with respect to
the angle was worked out in [DR12]. As for Eq. (1.13) we refer to [Kon67] for
more information on Laplacian domains in non-convex regions with non-smooth
boundaries. The existence of a bound state in L-shaped strips was probably noticed
first in [He65], where the inequalities 0.870 < €;(7/2) < 0.951 were derived. It
was rediscovered in [LLMS86]; investigating meson scattering these authors men-
tioned a caricature model which involved hard confinement at a fixed distance. The
mode-matching argument used in Proposition 1.2.3 comes from [ESS89], the same
eigenvalue e = 0.929... was obtained by a direct truncation scheme for crossed strips
in [SRW89], later in [MKSW91], and experimentally checked in [CLM92] with a
1 % accuracy in a different physical setting which needs a separate comment.

While the main objects of this book are guided quantum particles, some proper-
ties discussed here can be tested in appropriate microwave devices. It was noticed
repeatedly, e.g., in [E§90], [SM90] and [GJ92], that in a rectangular waveguide built
over a planar strip the z-component of the electric field for TE,, modes satisfies the
same Helmbholtz equation with Dirichlet boundary conditions as the one we consider
here. Moreover, making the resonator sufficiently flat one can achieve that different
components of the spectrum can be clearly distinguished and the TM and TE,,,
modes, n # 0, are effectively suppressed. The mentioned first measurement which
confirmed the L-shaped strip eigenvalue was followed by [CLM93] where multiple
bound states in sharply broken strips were demonstrated, and by [CLMT97] where
Z-shaped ducts such as those considered in Problem 7 were investigated. More about
these experiments and geometric effects in electromagnetic waveguides can be found
in the book [LCM], see especially Chaps. 4 and 5, and also in [BDM13].

Speaking of observations of geometrically induced bound states one has to keep
in mind that in any actual measurement the channel is of a finite length, coupled to a
source and a drain, and the bound states investigated here give rise to resonances the
width of which decreases with the length of the leads. They must not be confused with
the resonances in the continuous spectrum of —A% which will be discussed in the
next chapter, although from the practical point of view the latter are also manifested
in finite-length channels. A discussion of this effect for a Z-shaped quantum wire
including a comparison with experiment is given in [CLM97], see also [LCM, Sect.
5.4]. At a model level the emergence of resonances coming from perturbations of
infinite-channel bound states was analyzed in [Ex90a].

The mode-matching method is particularly convenient if the channel in question
consists only of rectangular parts as for the L-shaped strip discussed here. On the
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other hand, if this is not the case one has to look for other “solvable” components. For
instance, a broken strip with 3 # 7/2 can be treated by matching the lead Ansatz
i1 of (1.14) with a general wedge solution in the corner area [WSM92, CLM93,
DR12]. For channels with a larger number of components it is useful to establish
a procedure for matching the solutions along the channel. One possibility is the
transfer-matrix method described in Chap. 2 of the book [LCM] together with other
methods of numerical solutions of such Helmholtz equations and the corresponding
bibliography. On the other hand, for discussion of the discrete spectrum of broken
and branched waveguides by variational methods refer, e.g., to [Nal1b] or [ART12].
Section 1.3 The rotating coordinate frame which allows us to avoid mixed deriva-
tives between the longitudinal and transverse coordinates of the “straightened” oper-
ator is known in the classical waveguide theory as the Tang system [TG89]. It is not
unique, locally there is a family of such systems with the corresponding functions o
differing by a constant. This property makes it possible to construct the Tang system
even if " has no global Frenet frame; the construction suggested in Problem 12c
can be used even in cases when points of non-uniqueness may accumulate at some
s € R, cf. [EKO4]. In the present context the rotating frame was first noticed in
[KJ71], see also [dC81]. The rotation is also the reason why the polar coordinates in
the cross-section plane are suitable. It is not difficult, however, to express —A% in
the Cartesian coordinates x = r cos §, y = r sin . For & = 0 this gives the result of
[Pi82]; disputing this choice R. da Costa [dC83] pointed out a relation between the
rotating frame and the orientation of the force due to a smooth confining potential
around the curve, see also an illustrative example suggested by M. Berry described
in [DJ93].

For the inequality (1.22) giving a lower bound to the transverse ground state see

[Fa23, Kra25]. The existence of bound states in thin bent tubes (Problem 15) was
demonstrated in [Ex90b]; the general variational proof is again due to [GJ92], see
also [DE95]. Adding a transverse potential is easy as long as it is relatively bounded
w.r.t. the operator —A% (Problem 17). A more complicated situation arises if the
interaction is strongly singular and one has to choose a self-adjoint extension of
—A% + V. An example of a bent tube threaded by a magnetic flux line, where
the transverse part of operator is the Aharonov-Bohm Hamiltonian (—iV — A)? in
L% (M) with the vector potential A giving a magnetic field which vanishes everywhere
outside the tube axis, cf. [Ru83], was discussed in [DJ93].
Section 1.4 The useful Green’s function inequality of Problem 18 which we
employed in Proposition 1.4.1 can be derived in alternative ways. For instance,
an analogous inequality between the heat kernels—see [Da, Sect. 2.1] or [DvC,
Appendix D]—gives the sought result through the Laplace transform. A classical
way to demonstrate this property is through Hadamard’s formula—see [Ha08] or
[Ga, Chap. 15].

The ground state of — A’[‘)’I is strictly decreasing with respect the domain expansion
by the result of [GZ94] provided the added volume M, \ M has a nonzero capacity,
which is the case for Theorem 1.4 in view of the inequality m(O) < cap(O), where
m is Lebesgue measure, valid for any open O—-cf. [Fu].
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Section 1.5 The spectrum of the double waveguide with a coupling through the
boundary window was found in [E§TV96], the existence of bound states for d; = d»,
which is equivalent to the Dirichlet-to-Neumann boundary condition switch in a
single duct, was independently noticed in [BGRS97]. This system is an idealization
of quantum-wire couplers—cf. [AEu90, HTW93, Ku93]. In the electromagnetic
waveguide context, the bracketing argument was used earlier in [Pop86] to establish
the existence of trapped modes in a wide enough window. The example of waveguides
coupled through a leaky interface is taken from [EKr99]. For the approximation of a
d-interaction by a family of scaled potentials see [AGHH, Sect. 1.3]; in a similar vein
we shall in Chap. 10 study approximations of d-interactions supported by curves of a
more general family by scaled potential “ditches”. A related problem of an attractive
singular interaction supported by two parallel lines in the plane, again related to the
subject of Chap. 10, is analyzed thoroughly in [KonK13].

As we have noticed, the bound states in waveguides with such a window-type
coupling, both for the Dirichlet wall or for a local increase of barrier transparency, are
of a purely quantum nature. Such a non-classical binding can nevertheless be strong
as one can see from the eigenfunctions which we suggest the reader to compute in
Problems 21 and 24, in particular, their nodal lines. It is true that apart from the
central one the latter cannot be straight (Problem 25), but the numerical results of
[ESTV96] and [EKr99] show that they differ little from line segments, so the wave
packets feel the barrier “spikes” almost as hard walls.

The bound state in a cross-shaped region found in [SRW89] was one of the
first examples of a geometrically induced discrete spectrum in a non-compact £2.
A scissor-shaped 2 with a general angle # has been discussed in [BEPS02]. In
addition to properties stated in Proposition 1.5.2, a numerical analysis suggests
that the eigenfunction ¢,, has parity (—1)”~! with respect to the y-axis and that
(e2m — €am—1)(0) — 0 holds with an exponentially fast convergence for § — 0 as
can be expected.

Section 1.6 Thin tube behavior of curvature induced bound states was first analyzed
in [Ex90b]. Theorem 1.6 and its extension to tubes in R? given in Problem 27 is due
to Grushin, see [Gr09] for details of the proof, and also Problem 28. As mentioned
in the notes to Sect. 1.1, the thin tube limit can use potentials instead of Dirichlet
conditions; one can regard the problem alternatively as an adiabatic approximation
[WT10].

Section 1.7 The repulsive effect of torsion was first pointed out in [CBr96]. Theorem
1.7 is due to [EKKOS], where local versions of Lemma 1.7.2 and Proposition 1.7.1
can also be found. The proof of Lemma 1.7.1 is taken from [BKRS09]. Spectral
stability of the Laplace operator in bent three-dimensional tubes as a consequence
of the Hardy inequality is discussed in [EKKOS8] and later in more detail in [Kr08].
A different approach to the repulsive effect of twisting, without appeal to a Hardy-
type inequality, was used in [Gr04,Gr05], see also [BMTO7]. Other consequences of
twisting on the behavior of the discrete spectrum, apart from the absence of bound
states in mildly bent tubes, will be discussed in Chap. 3.

Another observation which follows from inequality (1.49) is the fact that twisting
removes the Green’s function singularity at the threshold of the essential spectrum.
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This, in turn, influences the long time behavior of solutions to the heat equation
in twisted waveguides. Indeed, in [KrZul0] it was shown that the L? norm of the
solutions to the equation in twisted waveguides decay faster than in the straight
waveguides provided the initial data has a fast enough decay at infinity. The corre-
sponding pointwise estimates on the heat kernel were established later in [GKP14].
The effects of a repulsive nature similar to twisting have also been observed in two-
dimensional strips in the presence of a local magnetic field, see Theorem 7.3, and
in strips with “twisted” Dirichlet-Neumann boundary conditions, see [EkKo05] and
[KoKTr08].

Theorems 1.9 and 1.10 are taken from [EKo05]. For a compactly supported per-
turbation the induced discrete spectrum is finite. The situation changes when the
variation of the twist extends beyond any compact and decays slowly enough at
large distances; then the operator H;, has infinitely many discrete eigenvalues which
accumulate at the threshold E, see [BKRS09]. On the other hand, slowing down the
twist is not the only geometric deformation which induces a discrete spectrum in a
periodically twisted tube; it was shown in [EFr(7] that a similar effect also appears
in the situation when the twisting is constant, but the cross-section is radially scaled
with the scaling parameter depending on x3 in a suitable way.

1.9 Problems

1. Prove relations (1.6)—(1.8). Check that the first term of the effective potential
equals —%’yu (s)? where 7, is the signed curvature of the parallel curve T, defined
by relations (1.3) with a fixed value of the transverse variable u.

2. Prove that an infinite planar curve possesses asymptotes if its signed curvature
satisfies y(s) = O(|s|27¢) as s — o0 for some & > 0.

Hint: | sin B(s, 00)| < |B(s, 00)| '

3. Define 1, (s, u) = JLE ¢ (=52) e'PSx1(u) forafixed p € R, where ¢ € C°(R)
and {s,} is a sequence such that |s,|/n — o0o. Check that under the assumptions of
Proposition 1.1.1, v, — 0 weakly and ||(H — 7 — p?)y, |l — 0 asn — oo.

4. Prove the first claim in Remark 1.1.4.

Hint: Replace f in the proof by f (s, u) := j(s)ux1(u) with a suitable j € C3°(K).
5. Let Q satisfy the assumptions of Proposition 1.1.1 and suppose that €2, is a
set with C* smooth boundary which coincides with  outside a compact set in R.
Moreover, the boundary part 02, \ 92 may not be smooth. Then aess(—Age) =
[K2, 00).

6. If Q. D Qholdsin the previous problem, the respective eigenvalues of —A% and
—A% satisfy the inequalities ej. <e€j, j=1,2,.... Inparticular, O'disc(—Age) *0
holds when 2 obeys the assumptions of Theorem 1.1.

7. Let P be the polygonal path with two right-angle bends, which is the union of
the halflines {+x > 0, y = +¢/2} with the segment {x = 0, |y| < £/2}. Prove that
the operator —A% corresponding to the polygonal duct Q2 = Qp 4 built over P has
a bound state even in the case d > ¢ which is not covered by Theorem 1.2.
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Hint: Replace a part of the duct axis by the graph of p(x) = % sin 72, x| < a.

8. The pointwise convergence in (1.14) is ensured if {a;} C ¢!, The conditions
{aj} € 22(jFY) are equivalent to ¢ € L?*(R) and ¢ € Dom (—A%), respectively,
where v is the symmetric extension of the function (1.14) to the L-shaped strip
Q= Qqp.

9. The operator A = (A ) on €% with Ajp = V7k/(j*+k?) is non-compact.
Hint: A is compact if and only if |[A— P,A| — 0 as n — oo, where P, is the
projection spanned by the first n basis vectors. Consider {j~(17//2} with a suitable

L4
10. € =0.9291... is the unique solution of spectral condition (1.15).
Hint: The maps € +— ¢, K are £°°-continuous and monotonous, so F is continuous

and increasing; check that F(0) < (2m)~! [1 + (12/5m) Z;’iz j_z] < 1 while

F(1) > 2. For the numerical solution see [ESS89].

11. —A% on the L-shaped strip & = ;> has a single bound state.

Hint: Use Neumann bracketing at x = w and y = 7.

12. (a) Prove relation (1.17).

(b) The map (1.16) is a local C¥ diffeomorphism if ' € C¥*2, o € C¥,and g # 0
holds in R x M it becomes global under the assumption (i) of Sect. 1.3. In particular,
this is true if a |||l < 1, condition (1.18) holds, and I" has a global Frenet frame.
(c) Find examples of C* curves without global Frenet frame. Construct a global
diffeomorphism f satisfying the condition (1.18) in case of a piecewise global triad.

Hint: Consider curves with I vanishing at a point or in an interval.
13. Check relations (1.19)—(1.21).
14. Prove Proposition 1.3.1. Extend the claim made in Problem 5 to the three-

dimensional situation.
15. Inaddition to hypotheses of Proposition 1.3.1, suppose that~y, ¥, |¥|*/“and 7, 7

belong to L2(R, |s| ds). Using the minimax principle, show that Udisc(—A%) *0
holds for all a small enough. Find an alternative set of assumptions which does not

involve a requirement of torsion integrability.

16. Fill in the details of the proof of Theorem 1.3.

17. Let Q be a smoothly bent tube in R4, d = 2, 3. Let a function v € LZ(M)
define the potential which depends on transverse variables only, V (x, y) := v(u) if
d=2andV : (Vo f)(s,r,0) = v(r60) for d = 3. Show that the conclusions
of Theorems 1.1 and 1.3 extend to the operator H, := —A% + Vify = /@% is
understood as the lowest eigenvalue of —A% + v.

18. Let —A% and —A%/ be Dirichlet Laplacians in the regions @ ¢ Q' ¢ R¢ with
piecewise smooth boundaries, and let further G (-, -; 7), G/ (-, -; z), respectively,
be the corresponding Green’s functions. Then the inequalities 0 < G (x, x’;z) <
Gg/(x,x’; z) hold for any x, x" € Q, x # x’,and z < 0.

Hint: To check the monotonicity use the fact that —A% is approximated in the
strong resolvent sense by the projection of —A% + pxong to L%(Q) as 1 — 400,
cf. [BD79], together with with the identity

1/2

(Ho+0U —2)7' = (Hy—2)"' = U(Hy—2)"'(I + U(Hy—2)"'0)" " (Hy—2)"'U.

For positivity see [RS, Appendix 1 to Sect. XIII.12].
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19. Fill in the details of the proof of Theorem 1.4. Show that the result remains
valid if M, is only asymptotically constant in the following sense: there is an M
such that the symmetric difference My AM is for each x € R contained in some
ex-neighborhood of OM, where €, — 0 holds as |x| — oo.

Hint: Use once more the domain continuity of Dirichlet eigenvalues [RT75].

20. Prove Theorem 1.5.

Hint: Use a GJ-argument and bracketing as in [ESTV96]; to check the sharp inequal-
ities, use an outward deformation of B := (—a, a) x (—d>, d1) which can be mapped
onto B by a smooth coordinate change and proceed as in [Ka, Sect. VIL.6.5].

21. Consider the operator —A% of the previous problem in the symmetric case,
d; = d,. Find the eigenvalues and eigenfunctions by mode matching. Do the same
for di > d» using operator (1.38) and its antisymmetric counterpart. Show that the
condition Ca = 0 can be replaced by ¢ + K¢ = 0, where

1 (o 0]
Kjm = Z l;(fj, M) pr tanh(pra) (e, §m) -

Compare the convergence of the truncated approximants in the two cases.

Hint: Cf. [ESTV96].

22. LetQbeabenttubeinR?, d = 2, 3, which is straight outside a compact region.
Suppose that — A% has an eigenvalue € < /@%, then thereis a c > 0O such that the corre-

sponding eigenfunction v satisfies the inequality |1 (s, u)| < ¢ exp (— s Ii% —€

for all s € R. Similar exponential bounds hold for local perturbations of Sect. 1.4.

Hint: We have ¥ (s, u) = 23‘;1 cj exp (:I:s /n% — e) Xj(u) in any straight semi-
inifinite part of the tube 2.

23. Prove Lemma 1.5.1. Find the normalization factors N; and show that the
sequence {;(0; o)} is bounded for any fixed o € R.

Hint: Cf. [EKr99] and [EKrO1b].

24. Find the spectrum of the operator H,, corresponding to (1.39) for the function
o a(x) = op(1=X(—q,0)(x)) with fixed ap, a > 0. Compare the results with those
for the similar problem of Sect. 1.5.1, in particular, in the case when apd > 1.
Hint: Use mode matching—cf. [EK199].

25. Consider the eigenfuctions ¢,, corresponding to the eigenvalues ¢,, appearing
in Theorem 1.5 withm = 3,4, ... and their analogues from the previous problem.
Show that none of their nodal lines, with the exception of the central one for even m,
is a line segment perpendicular to the strip axis.

Hint: If so ¢, should be mirror symmetric w.r.t. the nodal line.

26. LetQp:=(X: |yl <%, x| <7wL}N{X: |x| <%, |yl <7L}and denote
by € the infinite cross structure, 2 := Ur .o Q1. Let Hp := —A%L and Hy be the
analogous operator with the Dirichlet boundary condition switched to the Neumann
condition at the cross arm cuts. Show that —A% has a single eigenvalue vy &~ 0.66
in (0, 1), and that the ground state eigenvalues ulD , I/{V of Hp and Hy, respectively,
tend to v from above and from below as L — oo.
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Hint: By symmetry the problem is analogous to that of Proposition 1.2.3 with Neu-
mann condition at the outer boundary. For a finite cross the exponentials in (1.14)

are replaced by hyperbolic functlons
27. Prove that for a bent tube in R? with a fixed cross section of radius a one has

the result analogous to Theorem 1.6, in particular, one has
e(@) = jg1a? + @),

where jo 1 &~ 2.40 is the first zero of the Bessel function Jy when the cross section is
circular. In this relation A(-) is a C* function, A(a) = X\ + O(a) as a — 0+, where
A is a negative eigenvalue of the operator analogous to (1.44); the latter may contain

a twisting term if the cross section is not circular.
28. Adopt the notation of Sect. 1.6 and consider the operator Hy = —a‘za,f + To.

Let Py be the eigenprojection of H® corresponding to the eigenvalue E¢ := a2 /4:% +A

and denote by RO the reduced resolvent of Hy with respect to Eg. The eigenvalue
€(a) from Theorem 1.6 can then be expressed as

el@)=a kI + A+ Z( D™ > w [ H — Ho)s»,

pr+-tpm=m—1 i=l

where S® = P0 and S = RO(E Oyri for p; € N. Work out the lowest orders of the
expansion for the perturbation W = ab(s, u, dy) given in the transverse-mode basis

) 4 .
by Wik = 272, (—3sb;-,25's + Vj(k))al with

~
=~
|

1
(A+1) (=)' / ] ul () xk () du

1 1
20+D (-2 / u!

c~
=
-

. 5 .
[—74 —Iy-g l(l—l)vz] X () Xk (u) due .
Do the same for the three-dimensional tube of Problem 27 where we have

=+ (=" | @ cos(@—a)) x;w)xk(u)du

jk B,
yO _1(1+1)(_ -2 0— an)i—2,2
o= vY) (r cos(@—a)) ~“r
J 4 B

x i [—’y“ — Iy — 7% — 21(1— 1)&2} cos?(0—a)
- |:17(2"y7' + 1) + g 1(l— 1)7&7':| sin(f — ) cos(0— )

- %l(l—l)’yzr sin®(0— a)]xj(u)Xk(u)du
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Hint: The perturbative expansion can be found in [Ka66, Sect.2.2], see also [DE95].
29. Prove inequality (1.54).

Hint: Without loss of generality, we may suppose that J = (—b/2, b/2) with some
positive b. Define a function g on I by g(t) = 2|¢|/b if |t| < b/2 and g(t) = 1
otherwise. Write ¢ = ¢g 4+ (1 — g)¢) and use the fact that (¢g)(0) = 0O to obtain a
suitable estimate on the function (¢g)(x).

30. Assume that the twisting function ¢ satisfies the assumptions of Theorem 1.7
and prove the following statement: if V : R — Ris a bounded function with compact
support and such that fR V(x)dx < 0, then to any A > O there exists an n € N such

that the operator —A ga + AV (x3+n) in L2($2,) has at least one eigenvalue below v/].
Hint: Construct a suitable sequence of test functions.



Chapter 2
Transport in Locally Perturbed Tubes

Our next aim is to discuss the systems of the previous chapter from the viewpoint
of particle transport. For simplicity we are going to pay most attention to the two-
dimensional case where €2 is a Dirichlet strip in the plane. The perturbations of the
ideal straight waveguide which we shall consider here are again of a local nature;
this allows us to work in the scattering-theory setting where the time evolution is
compared to an appropriate free asymptotic dynamics.

2.1 Existence and Completeness

The natural comparison operator is that of a straight tube, Hy = —Ag(’. In the
usual scattering theory for Schrédinger operators we most often compare pairs of
operators acting on the same Hilbert space. For waveguides this happens, e.g., if the
perturbation is a potential or a measure in the kinetic term which we have discussed
in Sect. 1.4. In that case the existence and asymptotic completeness of the wave
operators defined as usual by

Qu(H, Ho) := s-lim e'Hie=H p, (Hy)

is easily established (Problems 3 and 4). This is not the case for perturbations of a
geometric nature, however, such a comparison is still possible if we can replace the
Hamiltonian by a unitarily equivalent operator on L% (£2).

A prime example of this is given by smoothly bent planar strips where we can
use the straightening transformation and pass from —A% to the operator H given by
formula (1.7). The scattering problem is then well defined under suitable regularity
and asymptotic straightness requirements on the strip 2.

Theorem 2.1 Let assumptions (i), (ii)z, and (iii)y of Sect.1.1 be valid and
allYlleo < 1. Furthermore, suppose that the functions ~,%*,% are O(|s|~'=%) for
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some § > 0 as |s| — o0. Then the wave operators Q2+ (H, Hy) exist, are complete,
and the singularly continuous spectrum of H is empty.

Proof Using the notation of Sect. 1.6 we can write the difference of the two operators
as —0 (b — 1)y + V = B*A, where the operator A : L*(20) — L*(€0) ® C? acts
as (71.‘:?&) with Ag := |V|'/2, Ay := |b — 1|'/2, and B is the analogous operator
with the coefficients replaced by V1/2 := |V|1/2sgn V and (b — 1)!/2, respectively.
This factorization allows us to employ the smooth-perturbation method similarly as
it is done in the case of one-dimensional Schrodinger operators (see the notes).

Putting o(s) := (14-s2)~U+9)/4 for a fixed € € (0, §], we infer from the curvature
decay assumptions that max{|| A; g_l lloos || Br g_l loo} < o0 holds for [ = 0, 1. The
free resolvent Ro(z) := (Hy—z) ™! then satisfies the estimate

141 (=18 Ro(@) | = 1 Ar™" llow sup | o) (=i0)! (=02 4 v; — )|
J

forl = 0,1, where v; = Ii% j? are the transverse eigenvalues, and the analogous
inequalities hold with B;. The last factor can be estimated by the product of L?
norms of the functions ¢ and p — pl(p? + vj — z)~!, cf. Theorem11.20 of
[RS]. Using the first resolvent identity we conclude that the operator-norm limit of
I —A[BRo(A£in)]|* asn — 0 exists away from the thresholds, i.e. for any A # v;.
In a similar way we derive the inequality

IARo(A £ in)|1> + [ BRoA £ in)||* < e

with some ¢ > 0 for A in any compact interval / which does not contain any of
the points v; (Problem 1). Moreover, since A;, B; € L? by assumption, one can
check that the operator A Ry(z)[ B Ro(z")]* is trace class as a product of two Hilbert-
Schmidt operators, and thus compact for any non-real z, z’. The rest of the argument
proceeds as in the potential scattering case, cf. Theorem 10.5.1 of [Sch], since only a
finite number of transverse modes is involved in expressions containing the spectral
projection E g, (I). We arrive thus at the condition

[ s (V6P + b0 = 1) o) < oo,
R

—a<u<a

which is satisfied for any o > 0 in view of the decay assumptions we made. |

Remark 2.1.1 Inasimilar way one can prove asymptotic completeness for scattering
in a three-dimensional smoothly bent tube (Problem 2), as well as for tubes perturbed
by a potential or a kinetic-term weight (Problems 3 and 4).

An alternative way to prove, under slightly modified assumptions, that a bent
and asymptotically straight tube has no singularly continuous spectrum is to employ
Mourre’s method of positive commutator. Let us sketch its main ideas briefly with
our purpose in mind; for more information we refer to the literature indicated in the
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notes. The method is based on a suitable choice of a conjugate operator: one looks
for an operator A, self-adjoint on L2(Q), such that for a given interval I C o(H)
there is an operator K, compact in L(20), and a positive constant ¢ such that

Ey(I)[H, iAl]Ey(I) > cEg(I)+ K, (2.1)

where Ey (1) denotes the spectral projection of H onto the interval / and the com-
mutator [{A, H] is understood as a bounded operator from HO1 (R20) to its dual
(H(} (R0))*. Inequality (2.1) is referred to as Mourre’s estimate; if it holds with
K = 0 we say it is strictly valid. This estimate has, under certain conditions, con-
sequences for the structure of the spectrum of H in the interval /. These conditions
can be expressed in terms of the regularity of the map

R>¢tr> e (H—i) le 4 (2.2)

from R to B(L?(0)). We say that H € C'(A) if the above map is of class C' in the
strong operator topology; if, moreover, the derivative of (2.2) is Holder continuous
of order o > 0, we write H € C'T(A). Using these notions one is able to state the
following result:

Theorem 2.2 Suppose that !4 leaves the form domain of H invariant and that
H e C'T(A) for some o« > 0. If (2.1) holds true on an interval I C o(H), then
the singularly continuous spectrum of H on I is empty and the interval I contains at
most finitely many eigenvalues of H, each of them being of a finite multiplicity. If, in
addition, (2.1) holds with K = 0, then the spectrum of H on I is purely absolutely
continuous.

To apply Theorem 2.2 to our problem, consider an open interval separated from the
transverse thresholds, I C o(H) \ T with T = {v;} ;en, and choose

A= —%<s O; + 0,5)

defined initially, say, on C;°(20) and extended to a closed operator on L2(Qo). Itis
not difficult to check that

€ Y, s) = e’/2f(u, e's) for teR and f € L*(Q),

i.e. that A generates the group of dilations in the longitudinal variable. This implies, in
particular, that '’ A leaves HOl (£2p) invariant. Moreover, a direct computation shows
that

7(s)

. _ -2 —_ . 2
(H.i4] = =20,(1 + uy(s) ™ 8 = 2058 =3

Oy —s0sV(u,s), (2.3)
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where V (u, s) is the effective potential (1.8). Under suitable decay assumptions on
the curvature one can check that the difference (H — i)~} — (Hy — i)~ ! is compact
on L?(£2) which yields the inequality

Ey()[H,iAlEg(I) = =282 Ey(I) + K (2.4)

with a compact K. In view of our assumption about 7, it is not difficult to see that the
operator —83 E (1) is strictly positive, hence if one can show that H € C I+a(4)
holds for some o« > 0, Theorem 2.2 could be applied. It turns out that the needed
regularity of the map (2.2) can be demonstrated under appropriate decay assumptions
on the curvature ~y and its derivatives.

Theorem 2.3 Let assumptions (i), (ii)3 of Sect. 1.1 hold. Furthermore, suppose that
Y(s),Y(s) — O holds as |s| — oo and that ¥(s), 7 (s) are ) for some
0> 0as|s| — oo. Then (a) oess(H) = [v1,00), (b)osc(H) =9, (c)op(H)UT
is countable and closed, and (d) o, (H) \ T consists at most of eigenvalues of finite
multiplicity which can accumulate only at points of T .

2.2 The On-Shell S-Matrix: An Example

Full information about scattering requires, of course, more than just checking that
the problem is well posed. The central question is to find the on-shell scattering
operator S(k) which describes scattering at a given energy k2. In general it is not
unusual that the space on which S(k) acts depends on energy. In case of waveguide
scattering this dependence has a characteristic form: the on-shell space dimension is

ng

> Nj(k). (2.5)
j=1

where n, is the number of tubes leaving the scattering region, for example n, = 2 if
2 is a single locally deformed strip, and N; (k) is the number of propagating modes
in the j-th outgoing tube which obviously coincides with the number of transverse
eigenvalues satisfying the inequality V,(,] ) < k?, thus N k) = [kﬁf}] holds if the
outgoing channel is an asymptotically straight Dirichlet strip. ’

Since we consider situations where n, is finite, the operator S(k) can be regarded
as a matrix of the dimension given by (2.5) the elements of which are the reflection
and transmission amplitudes understood in the general sense, i.e. taking into account
that the particle may leave the scattering region in a state whose transverse component
differs from the one with which it entered.

Finding these amplitudes is a difficult task. A class of systems for which it can
be accomplished numerically is represented by those €2 which decompose into a
union of regions where the corresponding Schrodinger equation can be solved by
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separation of variables; the global scattering solution is then constructed using mode
matching similar to that used in Sects. 1.2 and 1.5. We shall illustrate this method
on the example of a pair of window-coupled waveguides having generally different
widths dy, d» which we have introduced in Sect. 1.5.1.

For definiteness let us suppose that the incident wave is in the upper channel,
being of the form X5.+)(y) exp(—ik;Jr)x), where k;i) = k1 Vk2— j2o~UFD are
(F) (F)
Jite L
corresponding reflection and transmission amplitudes to the j’-th transverse mode
in the upper and lower guide. Due to the mirror symmetry with respect to the line
x = 0, we can again consider separately the two parities, writing

used as symbols for channel momenta. We denote by r respectively, the

@ _ ey @b @ _ 1 ( () (a,i))
Tt T 3 (pjj’ T Pjy ) =5 \Piy —riy ) (26
where p(.7;i), o = s, a, are the appropriate reflection amplitudes. In the even case,

which corresponds to the Neumann condition at x = 0, we seek solutions using for
0<x <aandx >a, y € Cy,respectively, the following Ansatz,

s(ipex)
Die 2226222) ne(y)
—ikP (x— +) ik (x—a) +
¢(x, y) = 2;921 (5U/e ! J o a)+p§-j/)el J “ Xj/ )(y) (27)

— ik(.T)(xfcz) —
S5 A TN )

where p; is the same as in (1.37). The exterior part can also be written as

oo

1/}()6, y) = Z (5mm’ e_ikm(x_a)"'pmm/eik)n/ (e ) gm’(y) s

m'=1

where &, are elements of the ordered basis corresponding to (1.36),

. P;-j-_/)”-am:jvem’:j/
Pmm’ ‘= - 0 — i 0, — iyl
Pijr v Um =17, Um =] 0
and k, = k;i) for 0, = j, j Q_l, respectively. Matching the functions (2.7)

smoothly at x = a we arrive at the equation

o0
> (ike + p tan(ippa)) Ee, ) amr = 2ikebme (2.8)

m'=1

where the index m corresponds to the incident wave and the overlap integrals (&¢, 7,,,7)
are the same as in (1.38); in the odd case corresponding to the Dirichlet condition at
x = 0 one has to replace tan by — cot. The reflection amplitudes are then given by
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o0
+ +
p,(n[) = —Ome + Z ar(n/) (gﬂ, nm’) ;

m'=1

they determine the original quantities via (2.6). In a similar way one finds the reflec-
tion and transmission amplitudes in the case when the incident wave is in the lower
channel and by that the full on-shell S-matrix; convergence of the truncating approx-
imations is checked as in Proposition 1.2.3.

Often it is not the S-matrix itself but a quantity derived from it which is of primary
physical interest. When perturbed waveguides are used to model systems of quantum
wires coupled to macroscopic reservoirs we are concerned with conductance (or its
inverse quantity, resistance) between a given pair of leads, which is given by the
Landauer-Biittiker formula. Suppose, for instance, that we deal with the incoming
current in the upper right guide and the outgoing one in the lower left, then the
conductance (measured in the standard units e?/ k) is given by

Ny (k) N_(k) k(—)

Grer-0 = 20 2 5 I GOP, (2.9)

j=1 j=17j

where k and the current-carrier momenta k;i) are determined by the Fermi energy

and chemical potentials of the reservoirs and N4 (k) = [lml_jlt] are the number of
propagating modes in the considered channels; analogous expressions can be written
for conductances between other pairs of leads.
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Fig. 2.1 A conductance plot for an asymmetric coupled waveguide system


http://dx.doi.org/10.1007/978-3-319-18576-7_1

2.2 The On-Shell S-Matrix: An Example 61

As an illustration, we show in Fig.2.1 the conductance plot for transport from the
upper right to the upper left channel for dj = 7 and a = 1 as a function of the
momentum k and the lower channel width d5. If the window was closed, the conduc-
tance G;— ,—(-) would simply be a step function with a jump at every threshold. The
general steplike pattern is preserved, being modified by the coupling, in particular,
we observe pronounced resonances, the positions of which change with the channel
width ratio.

2.3 Resonances from Perturbed Symmetry

One of the conspicuous effects in waveguides are scattering resonances, which we
are going to discuss in this and the next section, because they typically entail sharp
changes in transport properties. There are different mechanisms which can create res-
onances. The simplest one is based on symmetry violations. If a waveguide supports
an eigenvalue embedded in the continuous spectrum which owes its existence to a
particular symmetry, it is natural to expect that this eigenvalue turns into a resonance
once the symmetry in question is perturbed.

Before discussing this mechanism in more detail, one has to make sure that its
basic premise is not empty, i.e. that embedded eigenvalues can exist.

Examples 2.3.1 (a)LetQ :={X e R?: —g(x) <y < g(x)} bea symmetric strip
with a protrusion. Specifically, suppose that g is a piecewise continuous function
with g(x) > %d and that there are sets U C C C R, respectively open and compact,
such that g(x) > %d forx € U and g(x) = ldforx eR \ C. By Theorem 1.4 we
have o (—A%) = [eg4, 00). At the same time the operator decomposes into the even
and odd part with respect to the strip axis, y = 0, the latter being unitarily equiva-
lent to the Dirichlet Laplacian in the halfstrip Q4 = {¥ e R? : 0 < y < g(x)}.
Consequently, if —A%’ has an eigenvalue in (g4, 4€4), it is an embedded eigenvalue
of the original operator (Problem 6).

(b) Let €2 be a pair of strips from Sect. 1.5.3 crossing at a right angle. The operator
—A% has an embedded eigenvalue &~ 3.72¢, (Problem 7).

(c) Similar conclusions can be made about local perturbations of the Neumann Lapla-
cian —A%O in the straight strip having Uess(—A%O) = [0, 00). The operator H,
obtained by imposing an additional Neumann condition at a segment of the strip axis
of length 2a has embedded eigenvalues for any a > 0 (Problem 3.2b).

Embedded eigenvalues can also be generated by a potential perturbation of a
straight waveguide of the type discussed in Sect. 1.4. We shall now use this example
to illustrate how the resonances emerge. We start from the unperturbed operator
—Ag(’ referring to the straight strip 29 = R x (—a, a) and put

Hy =AY+ V) +AU@), (2.10)
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where V, U are real-valued functions on R and €2, respectively, such that

(i) V is attractive, V(x) < 0, and it does not vanish everywhere. Moreover, it
is short-range, |V (x)| < const (x)™27 for some & > 0, and it extends to a
function analytic in the sector M, := {z € C : |argz| < ag} for some ap > 0
and obeys the same bound there,

(ii) U is nonzero with similar properties, |U (X)| < const (x)~279 for some § > 0
and all ¥ = (x,y) € , and U(-, y) extends for any fixed y € (—a, a) to an
analytic function in M, and satisfies the same bound there.

Here (x) := ~/1-+xZ; since the potentials are by assumption continuous and bounded,
the right-hand side in (2.10) is well defined. The unperturbed operator Hy admits a
separation of variables and the longitudinal part 2" := —(9)% + V(x) has in view of
(i) a nonempty and finite discrete spectrum,

< pp <---py <03

the normalized eigenfunctions ¢, € Lz(R), n=1,...,N, associated with these
simple eigenvalues are exponentially decaying. On the other hand, the transverse
spectrum consists of the eigenvalues v; = /{? = (7j/2a)?, j € N, corresponding to
the eigenfunctions (1.10), hence the spectrum of Hj consists of the continuous part,
Oess(Hp) = 04c(Hp) = [v1, 00), and an infinite family of eigenvalues,

op(H) ={pn+vj:n=1...,N, j=12..}.
Among these a finite subset is isolated, while the rest satisfying the condition
Vi < pnt+viFEuv, k=2,3,..., (2.11)

are embedded in the continuous spectrum away from the thresholds. We rewrite the
Hamiltonian (2.10) as an infinite matrix differential operator {H;(\)} on L*(R)
with the elements

HjxN) = T ATk = (hV n uj) Si + AU ji(x) (2.12)

where in the lastterm U jx (x) := ffa Ux,y) X (y)xx(y) dy and we use the embed-
dings Ji : L*(R) — L?(S) and their adjoints J;* : L?(€0) — L*(R) which act

as
a

(Tew)(x,y) =u@) k(). (JEH@= [ fl x> dy.

—a

Speaking of resonances we have in mind the most common definition which is based
on analytical continuation of the Hamiltonian resolvent across the cut(s) associated
with the continuous spectrum into a domain on another sheet of the corresponding
energy surface, conventionally to the lower complex halfplane. A resonance is then
identified with a pole in this analytic continuation; it is physically important if the
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pole is close to the real axis and the respective residue is not negligible. This concept
naturally requires a sort of analyticity hypothesis, for instance such as we have made
in the above assumptions.

One of the most efficient methods to determine resonances of Schrodinger oper-
ators is based on the so-called complex scaling. With a small modification this
technique can also be applied to waveguides. In this case one has to scale only the
longitudinal variable as we shall now illustrate on the example in question. We begin
with the family of unitary operators

Sp: (So)(x, y) = eye?x,y), 6eR, (2.13)

on L%(R) and extend this scaling transformations analytically to M. This is made
possible by assumptions (i), (ii) according to which the transformed Hamiltonians
are of the form

Hp ) :=SgH\S, ' = Hyo+ \Up,
Hyo:=e"2"(=07) — 0} + Vy(x) ,

where Vy(x) := V(e®) and Uy(x, y) := U(e’x, y). The operators Hy o with 0 €
My, clearly constitute a type (A) analytic family of m-sectorial operators. It is
straightforward to check that Uy is relatively bounded with respect to Hy g, thus the
operators Hp ) with the same 6 and |A| small enough constitute again a type (A)
analytic family. The free part of the transformed operator still separates variables,
hence its spectrum equals

o ) = U {0 ()]

where h(‘; = —e 2 8% + Vp(x). Since the potential V is dilation analytic by assump-
tion, the discrete spectrum of £ g is independent of 6; we have

U(h(;/)=e_2€R+ U {ut,....pony U {pr.p2, ... 1.

Here 1, are eigenvalues of 2" which will turn into resonances as a result of the
perturbation. On the other hand, the p, are the “intrinsic” resonances, i.e. complex
poles of the resolvent of & X uncovered by the rotation of the essential spectrum; in
view of assumption (i) there is at most a finite number of them in any finite part of the
lower complex halfplane (see the notes). The two pole types are easily distinguished
by their behavior in the limit A — 0 because only the former ones tend to the real
axis as the perturbation is removed.

The main insight of the complex scaling method is that moving the essential
spectrum we turn the embedded eigenvalues into isolated ones whose perturbation
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can be treated by usual methods; it is easy when the perturbation is relatively bounded
as in our case. Any fixed eigenvalue ¢g = p, + v; of Hy o has a neighborhood
containing none of the points px + v in which we choose a contour encircling it;
for the sake of simplicity we consider only the non-degenerate case, i.e. we suppose
that i, + v # p,y + vj» holds for different pairs of indices.

It is sufficient to consider a purely imaginary scaling parameter, § = i3 with
8 > 0. Let Py be the projection onto the eigenspace associated with such an €¢p and
let Ry(z) := (Hg’()—z)_l, then we set

S([’) . 1 Rﬂ (Z)

27i Je (g — 2)P
for p > 0, in particular, Py = —S;O) and S(gl) = I@e(eo) is the reduced resolvent

value at the point €y. The assumption (ii) implies the existence of a positive cg such
that max,cc ||UgRg(2)|| < cp, and it follows that

[Uos?] = o 11 C] 1 [aist ¢, )] 7

holds for any p > 0. Thus we can justify the existence of the perturbation expansion,

o0
€N =t +vi+ D em(N), (2.14)
m=1
where
N m
em(\) = > St H UgS
m

prt++pm=m—1

because €, (A) = O(N") and the convergence of the series (2.14) is checked in the
same way as in Problem 1.28.

Let us next determine what the leading terms in the expansion look like. The
first-order correction, €1 (\) = tr (AUy Pyp), is real-valued,

er(\) = (cbf, ® Xj» \Up &) ®Xj) = (¢n ® Xjs N\Ubp @ Xj) = A (. Ujjbn)

where ¢,, is the eigenvector of 1" associated with /1,,. Thus, as usual in such situations,
itdoes not contribute to the resonance width. The second-order term is conventionally
computed by taking the limit 5 — 0. In this way we get

e¢]

2N = =Nt (PaURi = i0) UP) = =7 3 (Ui ReUsidn)
k=1
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where P;, is the projection onto the subspace spanned by ¢, ® x; and 7%1( is
the shorthand for the reduced resolvent obtained by subtracting the pole term from
(hV—eg+1x—i0)~!. We are interested primarily in the imaginary part of €3 (\) which
determines the resonance width in the leading order.

Notice first that the imaginary part of the last series is in fact a finite sum. We put
k(ep) := max{k : €y — v > 0}; if the unperturbed eigenvalue is embedded we have
k(eo) > 1, otherwise the set is empty and we put k(¢p) = 0 by definition. It is clear
that R* Rk holds for k > k(ep), hence we have

k(eo)
mex() = =\ 3 (Ujkdn AmR) Ujid ) -
k=1

To write the right-hand side explicitly we need to express Im Ry. The imaginary
part and the relation between the free and full resolvent can be rewritten using the
resolvent identities; in this way we get for any € > 0 the formula

Im (hY — e —i0)™" = w(e +i0)* Im (=92 — € — i0) "' w(e 4 i0) (2.15)
(Problem 8) in which w(z) := (I + V(=02 — 2)~1) ™" is the inverse to

Vi(x)
ENG

By assumption (i) which ensures, in particular, that 2" has no positive eigenvalues,
the operator w(e + i0) is well defined. Furthermore, we have

W@ (VT @) () = dx )+ V0 ’ﬁ'H" P(x')dx’ .

Im (—0% —c—i0)"' = 2%/2 ; 70 (6)* 7y (€) (2.16)

for any € > 0 where 7,(¢) : H'(R) — C on the right-hand side is the trace map
acting as 7, (€)¢ = ¢(o/€) with ¢ being the Fourier transform of ¢ (Problem 8).
The above discussion can be summarized in the following way.

Theorem 2.4 Assume (i), (ii). Moreover, let eg = i, + v be a simple eigenvalue of
Hy satisfying conditions (2.11). Then ¢ is also a simple eigenvalue of the operator
Hy o and a weak potential perturbation AU (X) in (2.10) moves it to €(\) with

A2 k(o)
™ . 2 3
Ime(\) = —— To(eo—p) w(eg—ve+i0) Uiy |” + ON),
/;1 UEi NCEST |70 (c0— vk 0—Vk kbn|

as A — 0. Ifthe second-order coefficient is nonzero, then e(\) describes a resonance
of the operator H).
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Remarks 2.3.1 (a) The imaginary part given above is non-positive for small A. It may
happen, of course, that ¢ persists as an eigenvalue. A trivial example is represented
by a potential which preserves the symmetry, U (x) = Uj(x) + Uz (y) with suitable
functions of which Uj can be added to the potential V'; notice that k(ep) < j so the
diagonal elements of the matrix potential do not contribute. The leading coefficient
may also accidentally vanish for potentials which do not decompose, however, then
higher terms of the series may be nonzero.

(b) Notice that the w introduced above is in fact a wave operator for the pair (7 v, —8%).
It follows that the squared numbers in the above formula can be formally written as
| (4 Woe=rt U jk¢k)|2, where 1, is the generalized eigenfunction of hY with the
momentum m. This shows that the leading term of the resonance width expansion is
in this case given by Fermi’s golden rule.

2.4 Resonances in Thin Bent Strips

The symmetry violation is not the only mechanism which can give rise to resonances.
Let us now return to one of our basic examples, a curved planar strip, and discuss it
from the present point of view; the role of the perturbation parameter will be played
by the strip width d. To explain the idea, we express the Hamiltonian H introduced in
Sect. 1.1 in terms of the transverse modes, similarly as we did earlier in Theorem 1.6
where, however, we only singled out the lowest transverse mode, or in the previous
section using the embedding operators 7; and their adjoints.

If the strip is asymptotically straight, i.e. the curvature decays fast enough, the
spectrum of —92 — 4—11 ~(s)? consists of a continuous part which is the positive halfline

S
and a nonempty family {)\, } of simple negative eigenvalues. Let us define the operator

HY .= A—9?

1
. 2 0 0 2
- A=—-0:4+V", V =—ny(s) (2.17)
acting on the Hilbert space H = L%(R x (0, d), ds du) with Dirichlet conditions at
u = 0, d. Since the spectrum of the transverse part of H is discrete with the eigen-
values v; = n?, J € N,itis clear that forany j > 2 and d small enough the numbers

An+v; are eigenvalues embedded in the continuous spectrum of H 0. If we regard
the original operator —A% as a result of perturbing H°, as we did when discussing
the discrete spectrum in Sect. 1.6, one expects that these embedded eigenvalues can
turn into resonances provided we impose suitable analyticity assumptions on the
curvature, for instance,

(i) - extends to an analytic function, denoted by the same symbol, in M, :=
{zeC: Jargz| < ag or |Imz| < no} with ag < 7/2 and 19 > 0,

(ii) to each a € (0, ap) and 7 € (0, 1p) one can find positive ¢, and J such that
the inequality |y(z)| < ca,,](1+|z|)_l_5 holds in M. 5-
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Proceeding as in the previous section, we can then derive an expansion for the res-
onance pole position and to estimate the first nonzero contribution to its imaginary
part, i.e. the resonance width (cf. Problem 10 and the notes).

Theorem 2.5 Let H be given by (1.7). Suppose that the strip Q does not intersect
itself and assumptions (i), (ii) are valid. Then for all sufficiently small widths d each
eigenvalue N\, +v; of H with j > 2 gives rise to a resonance €j.n(d) of H the
position of which is given by a convergent series,

o0
cinld) = +vi+ > e (),
m=1

where 65,{ " (d) = Od™) as d — 0. The first-order term is real-valued and the
second-order term satisfies the estimate

0 <Im egj’")(d) <y e 2mV2j=1/d

for any n € (0, no) and some positive ¢, ;j depending on 1 and j.

The second claim of the theorem shows that e,(nj’") (d) may tend to zero much faster
than the O(d™) rate which such a straightforward argument gives. It is not a priori
clear whether the lowest order term are dominant as d — 0, however, one can prove
similar bounds on the total resonance width:

Theorem 2.6 Suppose that the strip Q2 does not intersect itself and assumptions (i),
(ii) are valid. Then for any n € (0,m9), j > 2, and n = 1, ..., N there exists a
¢n,y > 0 such that

0 < —Ime;,(d) < ¢, ;e W2~/ (2.18)

holds for all d small enough.

Sketch of the proof: As in the previous case, to demonstrate Theorem 2.6 one has to
treat the resonances of H as perturbations of a suitable operator with eigenvalues
embedded in the continuous spectrum; we write therefore H = H 0+ W, where H°
is given by (2.17) and W is the perturbation. The spectrum of the operator H? is of
the form

o(H") = {)\—i- E: XNeo(A), Ec U(_az%)} )

where

o0

a(A) = (A V10,000, a(=0) = (v}, ,
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withv; = K2, K j :=mj/d. Since Q is not straight, v # 0, the discrete spectrum of
A is nonempty and the eigenvalues \; are simple. Moreover, from assumption (ii)
it follows that their number N is finite. Then the eigenvalues

0
Ej,n =)\n+yj

with j > 2 are embedded in the continuous spectrum of H° for d small enough and
we expect them to give rise to resonances of the full operator H.

We pass to the unitary equivalent operator by performing the inverse Fourier
transformation in the s variable, denoted by F, !. We introduce

pi=Flidg Fy, D:=—id,=F 'sF,

N

and with a slight abuse of notation we shall employ the usual symbols for all other
transformed operators,

H=pbD,u)p— 9>+ V(D,u). (2.19)

As in Sect.2.3 above, we are going to use a complex scaling, this time an exterior
one defined as

t if teQ:=(—w,w)
po(t) = B (2.20)
tw+tel(tFw) if teQ=R\Q;

where w is a positive number to be determined later. First we consider € R and
associate with a given closed operator T the family of operators

_ 1/2
Ty:=UsTU; "', Ugp:=py*vo py.

If the function 6 — T has an analytic continuation to some strip {§ € C : | Im 0| <
a}, we are able to define complex deformations of 7. In particular, the family of
complex deformations of the Hamiltonian (2.19) is given by

Hp=H)+ Wy, H)=Ag@I+1® (=3, (2.21)
where

Wy = po(b — Dgpg + (V = V).

Under the premises of the theorem the operators Hy and He0 form self-adjoint analytic

families of type (A). From now we set for simplicity 8§ = i with 3 > 0. It is not
hard to check that the spectrum of Hl% equals



2.4 Resonances in Thin Bent Strips 69

o(HY) = {A+yj SN e ({An}fle UQUU(pizﬂ)),j:],Z,...}, (2.22)

where ¢ denotes the (possibly empty) set of resonances of the operators A; 3.

As before the resonances of H are identified with the complex eigenvalues of the
non-selfadjoint operator H; g, and their positions can be estimated with the help of
the regular perturbation theory, where the role of the unperturbed operator is played
by Hl% and the perturbation is represented by W;3. We choose a fixed eigenvalue

E,?,j =M\ +vj, j>20f Hl% and define
1
P=f{reC:lz—E)jI=r}. r=3distO o)\ D)

to be a circular contour around £, 0 such that no other eigenvalue of Hl% lies within

I'. It is convenient to use the transverse mode decomposition of H, [3’

HYy = > GHY T with HY = FEH)T in LR, dp)
k>1

where the 7 ’s are the natural embedding operators introduced in the previous section.

Assume now that E = E,, ; is the resonance arising from ES ; and that ¢; 5 is the
associated eigenfunction,

Hig ¢ip = E ¢ip . (2.23)
This equation is equivalent to the system
(PjHigP; = PiWigRL(EYWis Py) 615 = E Pjos,
Qj dis = —RI(EYWisP;dis,

A~ —1
where P; == J;J}, Qj =1 — Pj, and Rijﬁ(E) = Q;(Qj(Hip— E)Qj)  Qj.
Moreover, it is easy to see that the first equation is further equivalent to

(H, = BIE)) o]y = Edly. BI(E) = TiWigRI(EYWisT; (2.24)

in L2(R), where H i = P;H;3P; and ¢{ﬂ := Pj ¢;p. Taking the imaginary part of
equation (2.24) we get

Im E ||¢],]1> = (Im (H}; = BJ,(E) . 61,)- (2.25)

Using next the identity Im (ABA) = 2Re (Im (A)BA) + A*Im (B)A in combina-
tion with the resolvent equation, we can write Im Bijﬁ as
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Im By = Zis +1m E |R},Wi.7;1*
Zip = T} {2Re (Im WisRI W) — Wi (R Im (0, His ) R, Wis ) 7).
Inserting this into Eq.(2.25) we obtain
Jj 2 pJ T 2Y ) 2 ) 2 2
im E (116/,12 + 1R, WinTs6l112) = 1 Pioislly, + 105 0is13, = loisl,
and since the eigenfunction ¢; 3 is supposed to be normalized, we arrive at
Im E = ((Im H}); — Zig)gb{d, qs-,.’ﬂ). (2.26)

This equation will yield the desired bound (2.18); to this end we need a couple of
definitions. We choose w in the scaling relation (2.20) to be

w = gmj— D1 —&d).

where £ is a positive parameter. Moreover, we define the function

max{0, p}
p(p) :=n / X, () dt,
min{0, p}

where Q. = (—p4, p«) and p, is a suitable positive constant independent of d. Then
one can prove (see the notes) that there exists a number C;; such that

[(p) e (m Hy — Zig)(p) ' ™| < Cpe ) (2.27)
where
(ph = (p?+ 02 ri=sup{lle” VI + 18] < ao] .
Since Im E cannot be positive, insertion of (2.27) into equation (2.26) gives
0=—ImE < G (Ipe’ el I2 +7le" sl yI7) . (228)
At this point we have to take into account the exponential decay of the complex

scaled resonance eigenvectors gi){ 5 Indeed, with our definition of the function p we
have

Ipe” $lal> <2, lle” ¢l4l1° <2 pu,
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see again the notes for more details. Using now the fact that

2
e 2P = exp [—% V2j =T+ o@d»] as d —0

we get the upper bound (2.18) from (2.28). |

2.5 Notes

Section 2.1 The smooth perturbation method used in the proof of Theorem 2.1 is
due to Kato [Ka66]—see, e.g., Sect.8.7 of [RS], or [Sch], Chap. 10. The abstract
result we refer to here is contained in Theorem 10.2.2 of [Sch].

Mourre’s method naturally does not require the Hilbert space to be L?(£2p). The
idea to use positive commutators is based on an analogy with the classical Poison
bracket of some coordinate g and the Hamiltonian H. If one can show that for some
trajectory {q, Hc1} = 0rq > & > 0, then the motion along this trajectory is extended
in the coordinate g. The simplest application in quantum mechanics yields a criterium
for the absence of eigenvalues. Indeed, if 1 is an eigenfunction of the Hamiltonian
H, then by the virial theorem (¢, [iT1, H]) = 0 holds for any self-adjoint operator
IT satisfying certain regularity properties. E. Mourre proved in [Mou81] that under
yet stronger regularity assumptions the positivity of the commutator implies not
only op,(H) NI = { but also the absence of the entire singular spectrum of H
in the interval I, that is, the version of Theorem2.2 with o = 1. For a proof and
further generalizations see the monographs [ABG,CFKS]. Theorem 2.3 is taken from
[KrTO4], where the result is also extended to bent tubes in any dimensions provided
0 is large enough. Mourre’s method has also recently been applied to the analysis of
scattering in twisted three-dimensional waveguides, see [BKR14] for details.
Section 2.2 It is a matter of convention whether we regard threshold states, i.e.
those with 1/,(/ ) = k2, as propagating modes in the definition of N j (k). The example
discussed here comes from [ESTV96], in a similar way one can treat scattering in
a double waveguide separated by a leaky barrier of Sect.1.5.2 (Problem 5). Many
other examples of waveguide scattering treated by mode matching can be found in
[LCM].

The relation between the conductance of a perturbed channel and the correspond-
ing quantum mechanical scattering problem was first formulated by R. Landauer
[La70], later extended by M. Biittiker [Bi88] to systems with an arbitrary finite
number of outgoing channels. In practical applications one usually adds a factor of
two which accounts for the spin states of the electron, in other words the right-hand
side of (2.9) is multiplied in the standard units by 2e?/ k. A rigorous derivation of the
Landauer-Biittiker formula together with a bibliography can be found in [CJMOS5].
Let us add that such a description of transport contains two simplifying assumptions.
First, it supposes that the potential difference between the heat baths connected by
the waveguide is infinitesimally small—one usually speaks in this connection about
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linear response theory — and secondly, the transport occurs at temperature zero. More
generally, the current flowing through the guide is expressed by the formula

2 2
I= % R [f5k* = p2) = f5(k> — pp) ] 11 (R)1Pdk>

where fj3(e) = (eﬂ‘ + 1)~ is the Fermi-Dirac distribution function at temperature
67N n ;j are the chemical potentials in the reservoirs, and for simplicity we left
out the factor describing the possibly different incoming and outgoing velocities;
differentiating this expression and putting 5 = oo we get the conductance mentioned
above.

Mode matching also offers other insights into the scattering process. Using the
Ansatz (2.7) with the coefficients obtained by solving the matching conditions (2.8)
we find what the generalized eigenvectors at energy k> look like. Then one can
compute, in particular, the probability flow distribution f()’é) = —izﬁ(f)ﬁw()?), for
examples see again [ESTV96], [EKr99], [LCM]. The flow patterns can reveal some
features of the scattering, for example, a pronounced vortex suggests the existence
of a resonance. On the other hand, vortices in transport of charged particles give rise
to a nonzero magnetic moment which is in principle measurable [ESSF98].
Section 2.3 The embedded eigenvalue in the crossed strips of Example 2.3.1b was
noticed first in [SRW89]. On the other hand, the conclusion of Example 2.3.1c
extends to a class of more general symmetric obstacles in Neumann waveguides
—see [ELV94] and [DP98] where some conditions for the nonexistence of such
eigenvalues were also derived. Resonances coming from mirror symmetry viola-
tions in strips with rectangular protrusions were investigated by mode matching in
[AVDY5], the analogous question for obstacle-induced eigenvalues in a Neumann
waveguide was addressed in [APV00]. For an analysis of resonances coming from
symmetry breaking associated with twisting of a three-dimensional waveguide we
refer to [KSO7].

The resonance system with the Hamiltonian (2.10) is a modification of Nockel’s
model [N692] which will be discussed in Sect.7.1.3; the material is taken from
[DEMO1]. Similar conclusions can be made if a hard-wall strip is replaced by a “soft”
waveguide in which the confinement is due to a transverse potential (Problem 9).
The most common definition of a resonance used here, in terms of poles of an
analytically continued resolvent, is discussed in many places—see, e.g., Chap.3 of
[Ex] and the bibliography given there. Alternatively one can associate resonances, for
instance, with poles of the analytically continued scattering matrix. Since the former
definition expresses a property of the Hamiltonian alone while the latter concerns a
pair of operators which we compare, it is clear that the objects they describe are in
general different. On the other hand, it is true that for a “natural” choice of the free
and full dynamics both types of resonances usually coincide, but this is a fact which
one has to check it in each particular case.

The complex scaling method was formulated in the paper [AC71]. With several
modifications and generalizations, cf. Chap. 8 of [CFKS], it developed into a power-
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ful method for treating resonances in atomic and molecular systems—for a review
with a bibliography see [M098]. The application of longitudinal complex scaling to
resonances in waveguides was proposed in [DES95]. For the definition and proper-
ties of analytic operator families see Chap.7 of [Ka]. The “intrinsic” singularities
coming from resonances of 4" do not accumulate in M, ; under the assumption (i)
this follows from [AC71] or [Je78]. The method used here to evaluate the second-
order coefficient in Theorem 2.4 is standard—see, e.g., Sect. 8.6 in [RS].

Section 2.4 Theorem 2.5 comes from [DES95]. The bound on the imaginary part
of the pole positions corresponds to the heuristic semiclassical picture — see [LL],
Sect. 7.51—according to which the rate of exponential decay is proportional to

i10 2
2Im /O (\/e — Vo () — \/e _ vo,j_l(g)) ¢ = ”7"0\/2]' 1+ 0@,

where Vp ; = %72 +vjand e = A\, +v; + O(d). Theorem 2.6 showing that the total
resonance width has the same exponential bound as the lowest nontrivial term in the
expansion of Theorem 2.5 comes from [DEM98], an analogous result was proved in
[Ne97]. We refer to these papers for some technical statements made in the proof.

2.6 Problems

1. Fill in the details of the proof of Theorem 2.1.

Hint: Compute the integral [~ p*[(p* + ) 4+ n*]'dp.

2. Modify Theorem 2.1 for the case when H refers to a bent tube in R? satisfying
Tang’s condition (1.18) together with the other assumptions of Sect. 1.3.

3. Let H be the self-adjoint operator associated with quadratic form (1.24). Suppose
that the potential V satisfies the assumptions of Proposition 1.4.1 and in addition,
that |V (X)| < c|x|~'7¢ holds if |x| > xq for some positive ¢, xo, and . Then the
wave operators Q21 (H, Hy) exist, are complete, and oy (H) = 0.

Hint: Proceed as in the proof of Theorem 2.1.

4. Check the asymptotic completeness for the pair H, Hy where H is associated
with the form (1.26) and the function p(-) —1 has a compact support.

5. Find by mode matching the on-shell S-matrix for double waveguides of
Sect.1.5.2.

Hint: Modify the argument of Sect. 2.2—cf. [EKr99].

6. Suppose that the protrusion in Example 2.3.1a is of rectangular shape, g(x) =
%dl € (%d,d) for |x| < %L and g(x) = %d otherwise. Check that —A% has an
embedded eigenvalue whenever L > dd,/, /all2 — d?. Show that to a given n € N
one can find a protruded strip €2 such that —Ag has at least » embedded eigenvalues.
Hint: Use bracketing estimates.

7. Prove that the crossed strips of Example 2.3.1b support an embedded eigenvalue.
Hint: Use the symmetry of the problem and Proposition 1.2.3.
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8. Prove relations (2.15) and (2.16).

Hint: For the latter use the momentum representation.

9. The conclusions of Sect. 2.3 can be modified to the case of a potential confine-
ment, i.e. for the operator Hy := —A + V(x) + W(y) + AU (X) on L?(R?), where
U, V are similar as before and W satisfies, e.g., the inequality W (y) > cy? for some
c>0.

10. Prove Theorem 2.5. _

Hint: To estimate the imaginary part of eé’ " (d) use the analytic continuation of the
group of shifts in the longitudinal variable—cf. [DES95].



Chapter 3
More About the Waveguide Spectra

3.1 Spectral Estimates

‘We have seen in Sect. 1.6 that for thin bent tubes perturbation theory is rather efficient
in determining the bound-state energies. If such a tube is thick or the mode coupling
does not come from bending, we have to use other tools, some of them crude, others
more sophisticated.

3.1.1 Simple Bounds

The first question concerns the number of bound states. If we are able to map €2 onto
a straight tube as, for instance, in the case of bent ducts, it is possible to estimate
the transformed operator by the one with decoupled variables and to employ known
results about one-dimensional Schrédinger operators (see the notes). To describe
how this can be done we define g+ = (1 £ a|V|c0)?, Where a := %diam M for
d = 3, and introduce functions by which one can estimate the effective potentials
(1.8) and (1.21), for convenience with the switched sign,

- ()2 alFE)|  5a*(s)?
Wi(s) := 74 + =5 2
9- 2g” 4g9=

for d = 2, and an analogous expression for d = 3 in which the last two numerators
are replaced by a(|3—~72| + 1237+~7]) and 5a2(|y7| + |7])2, respectively. To deal
with contributions from the higher modes, j = 2, 3, ..., we introduce

Wi(s) = max { 0, W)=+ | .
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It is clear that only a finite number of them is nonzero; the index j runs up to the
largest integer for which v; < [|W|l + v1 soin thin tubes this part is missing at
all. With these prerequisites we are able to formulate the result.

Proposition 3.1.1 Adopt the hypotheses of Proposition 1.1.2 for d = 2 and of
Problem 1.15 for d = 3, then N(—=A$}) = N(=A$, v1) := ogsc(—AS) satisfies
the inequality

N(-AD) < 1+g+I(W1)+Z A [ s,

I(W)) == min[/ Is| Wi(s)ds , Jr2 Wi(s)ls—1| Wl(t)dsdt]‘
R

Jr Wi(s)ds

Proof Replacing the curvature-induced effective potential V by — W1, and the factors
(4uy) 2, (14rv cos(b—a)) 2 by gll ford = 2, 3, respectively, we get an estimate
on —A% from below by operators with separated variables, which implies

oG m)

j=1

Each operator in the orthogonal sum acts on L2(R) The quantity N (—A$ 1) is equal
to the number of negative eigenvalues of — AQ “1 , hence by the minimax principle
we have

d2 > d? -
N(=A )<N(—d——g+W1(s) 0)+Z (———g+Wj(s), o), (3.1)

ds?
j=

where N (T, 7) stands as usual for the number of eigenvalues of the operator T less
than 7; we have used the fact that multiplying an operator by a positive constant does
not change the number of its negative eigenvalues. The first term on the right-hand
side of (3.1) can be estimated by a Bargmann-type inequality (see the notes),

d? " -
N (_@ — g+ Wi(s), 0) <1 +g+/R Is| Wi(s)ds. (3.2)

The remaining terms on the right-hand side of (3.1) can be controlled with the help
of the Birman-Schwinger principle; the j-th term is bounded from above by

. a2 s JIT N
g+ Tr |:\/;1 (—@ +9+(Vj—V1)) \/;1:| = FJFVI /]R Wi(s)ds .


http://dx.doi.org/10.1007/978-3-319-18576-7_1
http://dx.doi.org/10.1007/978-3-319-18576-7_1

3.1 Spectral Estimates 77

Alternatively, the bound (3.2) can be replaced by the Birman-Schwinger estimates,
as modified to the one-dimensional case by Seto, K~1aus, and Newton (see the notes);
this yields the second expression appearing in Z(Wy). |

The Bargmann and Birman-Schwinger bounds are known for being inaccurate
in the case of a strong coupling. In Schrodinger operator theory this is manifested
by the power of the coupling constant which does not match the Weyl asymptotics.
Such a simple approach cannot be used here, because the effective potentials (1.8)
and (1.21) have a particular structure given by the geometry of 2. The role of the
coupling constant is played rather by the norm ||| 1 gy Which in view of (1.4) is
for d = 2 the total amount of bending taken in the absolute value, and has a similar
meaning for d = 3; we will say that the tube 2 is strongly bent if fR [v(s)|ds > 1.
The strong-coupling asymptotic regime means to compare tubes with a fixed cross
section and a family of generating curves I"y which are changing with respect to a
parameter in such a way that [[y\[| 1) — 00 as A — oco. An example is provided
by planar curves with a scaled curvature, ) (s) = y(s/A). Needless to say, one has
to check in particular cases whether the corresponding family of tubes {€2)} is free of
self-intersections (unless we bypass the injectivity requirement as in Remark 1.1.1).

Proposition 3.1.2 Let Qr pr be built over a strongly curved I'. Then under the
assumptions of the previous proposition, the asymptotic relation

o0
NEADH TS /Wj(s)l/zds
j=1

holds in the sense that for a family of Q2 for which some of the integrals diverge the
ratio of N (—A%) to the right-hand side is asymptotically bounded by one.

Proof 1t is sufficient to use the following simple estimate,
o
H-w>-g;'0} =) —Wi—vi > P (—g;laf - Wj) ® I,
j=1

and to apply the standard Weyl asymptotics for one-dimensional Schrédinger opera-
tors [RS, Theorem. XIII.80] to its right-hand side in combination with the appropriate
scaling in the longitudinal variable.

The above claim is somewhat vague since we do not attempt to specify in general
tube families with the said property. Nevertheless, it is clear that semiclassical bounds
can be expected to hold in strongly bent tubes, in particular, in view of the inequality
Wl ()12 > % gzl/ 2 |v(s)|. Moreover, in a similar way one can derive a rough lower
semiclassical bound to the eigenvalue number.

Other bounds can be obtained without a coordinate transformation by a direct use
of the bracketing technique. Its efficiency depends substantially on the geometry of

the problem and our ability to analyze the spectrum of the Dirichlet Laplacians used
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in the estimates. Sometimes we can get in this way a lot of information, not only
about the number of bound states, but also about the location of the eigenvalues in
the interval below the first transverse eigenvalue determining the essential spectrum
threshold. We have already seen several examples concerning, in particular, coupled
waveguides in Sect. 1.5. However, the bracketing technique can also provide more
general results. As an example, let us mention a rough lower bound for the ground
state.

Theorem 3.1 Let @ C R?, d = 2,3, be a bent tube satisfying the hypotheses of
Propositions 1.1.1 and 1.3.1, respectively. Suppose that —A% has exactly N eigen-
values, then €1, the lowest of them, is bounded from below as follows,

31—N

€] = cqvy ,

where the constants in this estimate are expressed in terms of Bessel function zeros

N )
ascy = (j?—l) ~ 0.394 and c3 = (1'372,1) ~ (0.489.

Proof Adding Dirichlet boundaries at s = +¢ we estimate —A% from above by the

decoupled operator He(_) &) (—A%‘) &) Hz(_)’ where g is the cut tube of the axis
of which has length 2¢. The tail operators can by further estimated from below by
switching from the Dirichlet to the Neumann condition at the cuts, so we know from
the indicated propositions that forany e > 0 one can achieve thatinf o (H, ((i)) > vj—€
by choosing ¢ large enough. Consequently, the part of the spectrum in (0, 1) is in
the limit £ — oo controlled by the middle part only. The latter has a purely discrete
spectrum with the known domain dependence: the eigenvalues ¢, (£) are continuously
decreasing as £ increases.

On the other hand, for any fixed ¢ the eigenvalues satisfy bounds on their ratios.
A result of Ashbaugh and Benguria which concluded a long array of papers starting
from the PPW-conjecture (see the notes) tells us that ex(£)/e;(£) in dimension d
is bounded by the same ratio for the ball in R?, which is (jj.1/jo.1)> for d = 2
and (j3/2,1 /7r)2 for d = 3. Similar bounds hold for ¢,11(£)/¢1(£) in which case the
factor 3"~! has to be added. Being valid for any ¢ the bounds are naturally preserved
in the limit £ — oo. Thus if —A% has N isolated eigenvalues, then in view of the
monotonicity the numbers €, (£) , n < N, tend to them, while limy_, o ey4+1(£) = 1]
which yields the result. |

Remarks 3.1.1 (a) For simplicity we have formulated the result for bent tubes. It is
clear that it applies to polygonal ducts, and more generally, to any 2 having the form
of a compact set from which a finite number of straight or asymptotically straight
channels are emanating. It is common for universal bounds like this one that they
are not very precise. Recall the L-shaped strip where the eigenvalue ~ 0.93&% is
much closer to the continuum than to c¢; n%. However, in the cross-shaped guide of
Problem 1.26 there is a single eigenvalue & 0.66/4%—and imagine how far the cross
is from the circle of radius a =~ 0.77d !
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(b) If there are more than a few eigenvalues the bound becomes useless. On the other
hand, if we have a waveguide system depending on a parameter which controls the
discrete spectrum, the result tells us how low the ground state can go maximally before
the next eigenvalue emerges from the continuum. For instance in the symmetric case
of laterally coupled waveguides of Sect. 1.5.1 we have €1 (az) =~ 0.5 1&% which is not
that far from c; H%.

Let us finally mention a simple lower bound to the spectrum of a bent strip, which
is of a local nature. Consider a circular annulus A = A(r, a) with outer and inner
radius 74 := r & a, respectively, and denote by k(r, a)? the ground state eigenvalue
of the Dirichlet Laplacian on A,

kv = inf { [V 0 € CR(AL vl = 1] .
Given a bounded function v : R — R we define
mly.al = min {1, inf k(@) @) s 96) £ 0}

where k1 := 7/2a as usual. Then we have the following result.

Proposition 3.1.3 Suppose that assumption (i) of Sect. 1.1 is satisfied, and that the
curvature vy is bounded and such that a||Y|co < 1. Then

, 2
inf o(—A%) > k1[y. al? > (JO—I) .
2a
Proof k(r,a) can be found using polar coordinates. The radial part of the operator
is unitarily equivalent to —85 — le(r + u)~2 with the Dirichlet boundary conditions
on L2(r — a,r + a), which shows that k(-, a) is monotonously increasing between
the values jo,1/2a for r — a— and k1 for r — oo. Neglecting the non-negative

longitudinal term, we can estimate the quadratic form of —A% by

ol = ||F1‘/2w||§z/ds/ du (1+uy () D s, )
R —a
> / ds k(1™ a)? [ du (1+uy(s)) (s, w)]?
R

—a

> rily. al? /R ds / du (I+uys) (s, w)* = kily, al Yl

for any 1) from the form domain of H, where the second inequality follows from the
definition of k(r, a) written explicitly in polar coordinates and the third one from its
monotonicity with respect to the radius. |
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Remark 3.1.2 The lower bound thus corresponds to the most curved part of the strip.
Being local it does not require the curvature v to decay, so it is valid irrespective
of the character which the spectrum has at its bottom. The worst bound given by
Proposition 3.1.3 is ~ 0.586/@%, hence for bent strips the present method yields a
result better than Theorem 3.1. Using the quadratic form (1.19) one can find in the
same way, e.g., a lower bound for a bent circular tube in R? through the ground state
eigenvalue of the Dirichlet Laplacian in a toroidal region (see the notes).

3.1.2 Lieb-Thirring Inequalities

Consider now Schrodinger operators in a straight tube €2 of the form (1.24) with a
potential the regularity properties of which will be specified below. From the start,
however, we fix its sign (we use here the symbols Vi := %(| V| £ V) for the posi-
tive and negative parts; elsewhere the subscripts may have a different meaning). Our
aim is to find upper bounds on moments of eigenvalues relative to the threshold of
the essential spectrum, and since the inequality ¢ty > 7_y_ implies the same rela-
tion between the respective eigenvalues by the minimax principle, we shall restrict
ourselves to potentials which are non-positive. Furthermore, since we want to com-
pare the behavior at different coupling strengths it is useful to introduce a coupling
constant, i.e. to study the operators

HYY = —AD — AV with V>0, A>0. (3.3)

Propositions 1.4.1 and 1.4.2 specify conditions under which such an operator has a
nontrivial discrete spectrum; due to the sign definiteness the second one requires just
that V is nonzero. Thus let {¢,(\)} be the sequence of these eigenvalues (counting
multiplicities) arranged in the ascending order. We seek bounds on the eigenvalue
moments S5(\) = S;ZO(/\V) defined as

S5(\) = tr( HY — 1/1) Z(ul—en()\)) §>0. (3.4)

Before we address this question, let us recall briefly the usual Lieb-Thirring inequal-
ities for Schrodinger operators Hy = —A — AV on L2(R?) with \, V of the same
signs as above—for more information see the notes. The moments S5(\) := tr(Hy)®
are estimated by means of the phase-space quantity

d¢ d . a
5N —/ (EP=AV ()2 o ));—)\“gLJ{d/Rdv(x)“’z’dx,
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where LY, := I'(d + 1) [2¢7¢/2T (5+ 2 +1)]”". The power & for which the
estimate is possible is dimension dependent: assuming thaty > 1/2ifd =1, § > 0
ifd =2,and § > 0if d > 3, the Lieb-Thirring inequality

S5(N) < R(8,d)S§H (V) (3.5)

holds with an R(J, d) > 1, while for other pairs (6, d) the estimate (3.5) fails.

If we try to find an analogous inequality for the operators (3.3) we have to realize
that the problem has mixed dimensionality and in the weak-coupling case its one-
dimensional character dominates; we have already remarked upon this in Sect. 1.4
and we will discuss this problem again in detail in Sect. 6.1.

Theorem 3.2 Ler V € LO+%(Q) N LO+> (R, dx; L2(M, x1(y)*dy)), then for any
0 >1/2, A > 0and all € > 0 the quantity (3.4) satisfies the bound

3+3
S50 < At / ( / V(x,y)xl(yfdy) Tdrt oSty (36)
R \UM ’

with the constants

cr < (14073 r (6, D LY,

_ d %)
e < (147 Hot2 (—
v —r1

d-1
KA 1

) r(d, 1)R(5+§,d—1),

where R(0 + %, d—1) and r (9, 1) are the constant involved in (3.5) and its operator

generalizations described in the notes.

Proof The idea is to reduce the problem to integrals of spectral estimates of the
operator

Wi\ x) o= =AM —A\V(x, )

on L?(M). To this end, we evaluate the quadratic form of H ;2‘9 on its form core
C§°(R0), further we employ Fubini’s theorem and an easy estimate concerning the
negative part. This yields
5 0
S[;()\) < trLZ(R)@)LZ(M) (—ax ® IM - (WM()\v x)—V]),)_ s
where Iy is the identity operator on L?(M). Now the operator version of the Lieb-

Thirring inequality mentioned in the notes in which we setd = 1, G = L?>(M), and
Wx) = Wy (X; x)—vy)- gives

1
S5\ < r(6, LY, / tr(Wy (s 1) =) d, (3.7
" JR
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hence it remains to estimate the integrated function. Let P = (1, -)x1 be the pro-
jection onto the subspace spanned by x1 and let Q := Iy — P. Since V > 0 by
assumption, one has (Q—<cP)V(Q —¢cP) > 0, and therefore

Wy (X x) = PWay(1+)X; )P + QWi ((1—e~ DA 0 Q.
By definition P(—A%I—i—yl )P =0, so we get for any € > 0 the estimate
Wi ) = Wi (14X ) + Wi (127D x)

where WM()\; x) := —APV(x,-)P and WM()\; x) = Q(Wy(X; x)—u1) Q. Since
these operators act in the ranges of the projections P and Q, respectively, we can

51 L
estimate the expression tr(Wys (\; x) —u1)o_+2 from above by
A o+4 = 1 5+4
Wy ((1+)Ax)—vi) - = + oWy ((l+e" HAx)—v)_ = (3.8)

Since P is a one-dimensional projection and V > 0, the part containing Wi gives
rise to the first term on the right-hand side of (3.6). In the second part we use the
inequalities v, —v > V;l (v —v1)yy, valid for n > 2, which give

Q=AY =)0 =D a=v)xa (s D2y = =

n=2

_2”‘ 0(-aM) .

1%

Thus denoting 7 := V;l (r»—v1) and p = 7M1 471, we are able to estimate
the second term in the expression (3.8) from above by

w(Q(—r AN —rpV(x, DO < W 00)

which is further bounded by T‘H‘%tr(W(p; x))(iJr%. By a bracketing argument the
negative eigenvalues of the operator W (p; x) on L>(M) are estimated from below
by the respective eigenvalues of the operator H,(x) := —A—pV (x, -) on L2(R4™1),
to which we may apply the inequality (3.5) with ' = § + % andd’ = d—1.In view
of this the second term in (3.8) is bounded by

7'Sy(N) = R@. d) LY 4 ¥ p 3 / Vx, )t dy;
’ M

we made use here of the identity § + ‘71 =+ %. It remains to insert the last
expression into (3.7) and to employ another identity, Lgl, d,Lgl | = Lf;l 4> (o get the
sought inequality (3.6). |
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The obtained result can be used, in particular, to derive Lieb-Thirring-type bounds
for bent tubes. Again let g, := (14a|7Y]s0)? and define the eigenvalue moments
S5(2) = S5(Qr pm) :=1tr (—A% — 1/1)0_ in analogy with (3.4). To unify the notation
for d = 2, 3 we write both the effective potentials (1.8) and (1.21) as V (s, w), where
w = u and w = (r, 0), respectively, and the transverse volume element is denoted
by dw.

Corollary 3.1.1 Under the assumptions of Proposition 3.1.1, the following bound,

5+%
S5(Q) < cig+ /R ( / X1@)? V(5. w)- dw) ds + c204584(Q).  (3.9)
M
holds, where c1, cy are constants of Theorem 3.2 and

d
ngd(Q) = Lfsl,d/ Vs, w)éjz dsdw .
Q

Proof The bound H > — 91182 — A% — V (s, w)_ together with the scaling in the

S
longitudinal variable gives the result. |

Notice that if we use a rougher bound by the potential —W; independent of
the transverse variables which we have introduced above, then the first term in the

inequality (3.9) will simplify to c1gy [, Wi(s)°2 ds.

3.1.3 The Number of Eigenvalues in Twisted Waveguides

Let us look next at a related problem, this time concerning the interplay between
a twisting and a potential in a straight tube. A particular case of the inequalities
(3.5) gives a bound on the number of negative eigenvalues of a Schrédinger operator
—A—V on L2(R%) withd > 3, known as the Cwickel-Lieb-Rosenbljum inequality,

N(=A—-V)< Cy4 / VP2 xydx, d=3, (3.10)
Rd

for some C; = R(0, d). The bound does not hold for d = 1,2 and the same is
true for the Laplacian in a straight tube: since the operator H f\?‘}’ has weakly coupled

bound states—cf. Theorem 6.1 below—a restriction to N (H ‘S} 0. 1) similar to (3.10)
must obviously fail.

On the other hand, we know from Sect. 1.7.1 that a local twisting of a straight
tube Q9 = R x M C R3 prevents to a certain extent the existence of weakly coupled
bound states, and we are going to show that as a consequence, a bound analogous to
(3.10) does hold in a locally twisted waveguide. We use the notation of Sect. 1.7.1
denoting by €2, the tube which results from the twisting of €2y. Correspondingly,
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H ‘iz “ is the Schrodinger operator on L%(Q,) witha potential — V. To avoid confusion,

we will denote in this section by X the position variable in the straight tube €y and
by boldface X the variable in the twisted tube €2,,. With this notation, we can make
the following claim.

Theorem 3.3 Let o and M satisfy the assumptions of Theorem 1.7. Then there is a
constant Cy, such that for any 0 <V € L3%(Q,, (1 + x%) dx) we have

N(Héz‘”,ul) < ca/ V@) (1 +x3) d¥. (3.11)

The proof requires an auxiliary result using the notation introduced in Sect. 1.7.1.

Lemma 3.1.3 Ler U : L2(Q2,) — L2(Q) be the unitary map (1.47). Then there is
a constant ¢ > 0 such that

U=AIWU™ — vy = e (=AY — )

holds true in the sense of quadratic forms in L*>().

Proof Let u be a test function and write u = f1); with | being the ground state
eigenfunction of —A% . By Lemma 1.7.2 it follows that for any a < 1 there exists a
constant ¢, such that

T3 fIl <ca i f14+a Tl f1+ T3[f]. (3.12)
Combining this estimate with the fact that 7>[ 14+ T3[ f]1— |T2.3[ f 1] > 0 we obtain

a
2¢,

1
NLif1+ Dl 1+ B+ T30 1= le[f]Jr (1 - ) Dlf]

1—a

1 1 1
+(1—2 )T3[f]—(1— )|T2,3[f]|2—T1[f]+ Tl f]
Ca 2C() 2

> min{ L, L1 / (VP 3) @

min { =, ¥)dx .

N 2" 2¢q IxM :

Consequently, (u, (U (—AZHU~! - ul)u) is bounded from below by

c/Q (1vri2vt) (i)dz:c/g (1Vu? = via?) &) a5
0

0

2¢,

this concludes the proof. |

_ Proof of Theorem 3.3 We again employ the notation of Sect. 1.7.1 and define
V(X) = V(ro(x3)x) for any ¥ € Q. In view of Proposition 1.7.1 it follows that
U (—A%“)U —1 _ y > ¢ &? holds in the sense of quadratic forms in L%(Qp), thus
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N(H* ) = NU(=ASHU™ =V =11, 0) (3.13)
1 Qn —1 -2 ks
<N E(U(_AD W —v) +cra” =V
for some constant ¢; > 0; as usual we write N(7,0) = N(T). Since multiplication

of an operator by a positive constant does not change the number of its negative
eigenvalues, we get from (3.13) and Lemma 1.7.3 the estimate

N(HZ*, 1) < N(A = V), (3.14)
where A = —Ago — 1 +¢162(x3). Its heat kernel e~ (X, X’) can be by separation
of variables expressed as

o
eTTAGLF) =D T T () (R q (2, x3, x5)
j=1

where 1); are normalized real-valued eigenfunctions of _A% with eigenvalues v;
. . . g 2
and g (7, -, -) is the heat kernel of the one-dimensional Schrédinger operator — ;7 +

c1&2(r) on L2(R). We use its decay properties: by [GS09, Sect. 8] there is a constant
¢y such that

1 2
q(:,r,r)g% ifr>1, q(t,r,r)f% if0<t<1.
t

On the other hand, to estimate the transverse part we note that by [Da, Corollary 4.6.3]
there is a c3 > 0 such that [);(x;)| < cv;11(x;) holds for all x, € M. Since the
cross section M is two-dimensional, we have v; = O(j) as j — 00, and

o0
> T g (xy) < eathi(xy) for 1> 1.
=1

Finally, by [Da, Theorem 2.4.4] the same expression can be estimated by ¢4t~ ! in
the case 0 < ¢ < 1; combining all the above estimates we get

TG T < es(L4+x 32 (3.15)

Next we employ Lieb’s inequality (see the notes) which says that

o0
N(A—=cV) < c/ / AR DT NEVE) = Dpdrdy;
Qo JO
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inserting the estimate (3.15) into it we get after a simple calculation

N(A—cV) < c/

V@E2 (1 +x3)dx = c/ V@Y (14 x3) d¥,
Qo

Qa

which in view of (3.14) completes the proof. |

3.2 Related Results

3.2.1 Combined Boundary Conditions

We have already discussed an example in which the Dirichlet boundary condition in
a finite part of the boundary is changed to the Neumann condition. Now we want to
consider situations where such a Neumann boundary segment is of infinite length,
thus changing the essential spectrum.

Let Q2 = Qr 4 be the curved strip of Sect. 1.1 generated by a curve I'. Consider the
operator —A% n Which acts as Laplacian with Dirichlet and Neumann condition at
the I, parts of the boundary referring to u = Fa, respectively. Using the curvilinear
coordinates we can replace —A%  in analogy with (1.6) by the unitarily equivalent
operator H on L?(Q, g'/>ds du) which is associated with the following quadratic
form,

1] == g~ 405011 + llg"*oull?,

the domain of which is {t) € H'(Q0) : 1(s, —a) = 0 for a.a. s € R}. For a straight
strip the spectrum is [R%, 00), with k1 := m/4a in this case.

It appears, however, that the spectral properties of such a non-symmetric
waveguide depend crucially on the sign of . Specifically, a discrete spectrum due
to a bend of 2 exists only if the Neumann boundary is at its outer edge.

Theorem 3.4 Adopt assumptions (i), (ii)1, and (iii); of Sect. 1.1. In addition, assume
that T is not a straight line and a||y|co < 1.

(a) inf o(H) < H% holds if the total bending Br > 0.

(b) On the other hand, v(s) < 0 for all s € R implies inf c(H) > KZ%.

Corollary 3.2.1 Assume (i) and (ii)| together with al|vY|leo < 1. The discrete spec-
trum of H is non-empty if v has a compact support and Br > O.

Proof Since 2 is straight outside a compact region, inf gess(H) = [KJ%, o), thus the
result follows from part (a) of the theorem. |

Proof of Theorem 3.4 As is the case for pure Dirichlet boundary we are looking for
1 from the form domain of H such that
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qlv] = tlY] — w316 4 )* < 0.

We choose ) = ¢\ +¢ f, where ¢, is the function defined by (1.11) and f (s, u) =
J (s)1 (1) with ; being a smooth function supported in (—sg, so). Using the explicit
form of the lowest transverse mode, ¥ (1) = a2 sin K, (u + a), we get by a
straightforward computation

Nk 1
qlorp1+efl < _Alel” Z/Rv(S)ds — %/RJ(S)’Y(S)dS

1 —alvlleo
+ 82/]1@ (j(s)2— %](S)z) ds .

If Br > 0 it suffices to choose € = 0 and A small enough. If Sr = 0 we can always
pick ; for which the term linear in € is nonzero. Hence the form ¢ takes a negative
value for suitable £ and A, and part (a) is proved. On the other hand, to check (b) one
can employ a local lower bound similar to that of Proposition 3.1.3 (Problem 1). |l

Combined boundary conditions can also give rise to nontrivial spectral properties
in straight waveguides. If one boundary of such a strip is Neumann and the other
Dirichlet with a finite Neumann segment, one can study the discrete spectrum by sim-
ple modification of the methods used in Sect. 1.5.1 (Problem 2). Other combinations
may lead to different spectral properties. As an example we mention in Problem 4
the situation where at each boundary the boundary condition switches from Dirichlet
to Neumann at a fixed point, with an opposite orientation at the two sides of the strip.

3.2.2 Robin Boundary Conditions

Robin, or mixed, boundary conditions interpolate between the Dirichlet and Neu-
mann conditions. They are characterized by a real parameter a. We will consider
them on a curved strip €2 defined as above; the corresponding Robin Laplacian —Aff
will be then associated with the quadratic form

/|v¢|2(£)d5c'+a/ 161> (s)ds, &€ H(Q).
Q o

Consequently, the functions from the domain of — Afj satisfy (in the weak sense) the
Robin boundary conditions

Ohp+ap=0 on 09,

where 0, denotes the outer normal derivative. In particular &« = 0 yields the Neumann
condition; the Dirichlet condition formally corresponds to o = oo.
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For simplicity we shall suppose that the boundary condition is repulsive, o > 0.
We also note that a may in general vary along the boundary of €2, in fact the Robin
condition can be regarded as a one-sided analogue of the leaky barrier discussed in
Sect. 1.5.2. Here, however, we will keep o constant; we will be interested in the
effect of the curvature on the spectrum of —A<.

If we assume that the curvature ~y of the reference curve I is compactly supported,
it is easy to see that aess(—Ag) is the interval [\,, 00), where A, is the lowest
eigenvalue of the Robin Laplacian on the strip cross section,

. [N P@du+alf@P +alf(—a)f?
Ao = inf 2 .
feH (~a.a) JE 1 f 12 () du

It turns out that the curvature again gives rise to a nonempty discrete spectrum of the
operator —A%? as long as « is nonzero.

Theorem 3.5 Assume again (i) and (ii)1. Let the curvature ~y be nonzero, compactly
supported, and a||V|lco < 1. If « # O, then —Afj has at least one eigenvalue of
finite multiplicity below \,.

Proof By using the curvilinear coordinates as in Sect. 1.1 we find that —Ag is
unitarily equivalent to the operator H, on LZ(QO, gl/ 2ds du) associated with the
quadratic form

Qulto] = g™ * o I> + llg" o> + 2 D /R (1 + tav(s)) [ (ea, )| ds .
1=+

Let x,, be the positive normalized eigenfunction of the Robin Laplacian in L(—a, a)
relative to the lowest eigenvalue \,. We have

—Xa=AaXa, Xo(m@) =axa(=a), x,(@)=-axs(@. (3.16)

Pick s¢ large enough so that (s) = 0 holds for |s| > s¢, and define

Ps(s, 1) = Xa () 9s(s),  @s(s) := min {1, e 06750 G+s0)}

with 6 > 0. We use a trial function of the form ;5(s, u) + € ¢(s) u xo(u), where
¢ € C§°(R) with the support contained in the interval (—sp, so) and € € R. A direct
calculation using (3.16) and the fact that x,, is even (Problem 3) gives

Qalths + € duxal — Aallts + € dpuxall®
:5+Cu€2_25/ uxg(u)xa(u)du/ o(s)v(s)ds,
R

—a

where C, > 0 is independent of § and e. Since u x/,(#) xo(#) < 0 on (—a, a)
(Problem 3) we can choose the function ¢ in such a way that the last term in the
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above equation is nonzero. Hence by taking ¢ and |¢| small enough and choosing the
sign of € in an appropriate way we can achieve that

Qalths +Puxal = Nallths + € duxal? <0,

which completes the proof. |

Remark 3.2.1 Notice that the requirement o % 0 in Theorem 3.5 cannot be aban-
doned. Indeed, for o = 0 we have A\, = 0, and therefore Jess(—Ag) = [0, 00). On
the other hand, — Ag is positive, thus it cannot have isolated eigenvalues. This shows
that the Neumann boundary condition is special in this context.

3.2.3 An Isoperimetric Problem

While our main concern in this chapter is bound states in infinitely long tubes,
the bent-tube techniques developed here can also be used to investigate spectral
properties in compact regions. As an illustration we shall mention an isoperimetric
problem for a strip Q@ = Qr_, which is a tubular neighborhood of a closed planar
curve I". We take a class of such strips with a fixed halfwidth a and the perimeter
L of T', and ask about the form for which the ground-state eigenvalue € of —A%
reaches an extremal value.

Proposition 3.2.1 Given positive a, L consider all strips Qr o such that T" is a
closed C?-smooth curve without self-intersections and the condition a||7y|leo < 1 is
satisfied. Within this class € is uniquely maximized when I is a circle.

Proof In view of the assumptions one can introduce in the strip 2 locally orthogonal
coordinates s, u in the same way as in Sect. 1.1; then the principal eigenvalue of
—A$ is given by

II¢H 1/ ds/ du[(1+u’7(5))_ 1050 (s, ) |>+ (14+uv(5)) |0 (s, u)| :|

where v runs through a core of the operator in question. In particular, taking a smooth
trial function 1) independent of s we get

L a a
(o < / ds / du(1+uy (NP = [ (Lt-2mu) Buib(@) 2 du.
0 —a —a

where in the second step we have used the fact that I" is a smooth loop and thus
it satisfies Or = 2m; the inequality would be sharp if the true ground state were
to depend on s. Taking the infimum of the right-hand side over the trial functions
independent of s we find €; < €|, where the last symbol means the ground state
eigenvalue for the corresponding circular annulus, €1 := k(L /27, a)? in the notation
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of Proposition 3.1.3. It remains to check the uniqueness. Since €; = €| requires the
ground-state eigenfunction 1 to be independent of s, the longitudinal term on the
left-hand side of —A%wl = €11 vanishes. On the other hand, the derivative 9,
can vanish at an isolated value of « only, so () (14u~y(s)) ™" must be s-independent
for almost all u € (—a, a) once the curve I' maximizes €1, which is possible only if
I is a circle. |

3.2.4 Higher Dimensions

Our basic physical motivation is to study quantum dynamics constrained to particular
regions of the configuration space. This means that we are interested mostly in tubes
inR? 4 = 2,3, and also in layers in the three-dimensional space which we will
discuss in Chap.4 and further. Nevertheless, it is natural to ask whether the results
of this chapter have higher-dimensional analogs.

Consider thus a curve I' in R?. As usual we parametrize it by its arc length and
suppose that as a function s — I'(s) it is C?-smooth. We also assume that I" has
a global positively oriented Frenet frame {e1, ..., e4}, where e; = I"is the tangent
vector, and moreover, that the functions ¢; € C'(R, R?) and each ¢; (s) lies in the
span of e|(s), ..., ej+1(s). For a fixed cross section M C R~ assumed to be an
open connected set, containing zero, and such that sup, .y, |x| < oo, we define a
tube 2 as f(R x M), where

d
f(s,uy,...,uq) :=T(s)+ Z Ruw ($)uy e, (s) (3.17)
L v=2

and {R,,,(s)} is a family of (d — 1) x (d — 1) orthogonal matrices, continuous in
the variable s; as in Sect. 1.3 we assume that 2 does not intersect itself.

The derivatives of the moving frame vectors are given by Serret-Frenet formulz,
é =, jijejs where the skew-symmetric matrix + has the elements

Yij = 0i,j—17% — 0i-1,j7j

with 7; : R — R being the i-th curvature of I'. To define Tang coordinate systems
in the d-dimensional situation we use the system of first-order equations

d

R+ D Ryupto = 0. (3.18)
p=2

It is not difficult to check that under the stated assumptions a continuous matrix
solution exists and is orthogonal for each s € R (Problem 9a). Then we define
a new frame rotating with the respect to the Frenet frame by el.T = j Rije;
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using the d x d matrix R := diag (1, (RW)). We will again suppose that the cross
section of the tube €2 remains fixed with respect to this frame—cf. Remark 1.3.1a—
which means that (3.17) maps (s, u2, ..., ug) into I'(s) + ZH ul,,e/TL(s). Then these
curvilinear coordinates allow us to rewrite the corresponding Dirichlet Laplacian
—A% decoupling the longitudinal and transverse coordinates (Problem 9b), and
consequently, to prove the following claim (Problem 11).

Theorem 3.6 In addition to the assumptions made above, suppose that the first
curvature 71 is bounded and a||v1|lco < 1. Then

(a) Oess(—A$) = [v1, 00) holds if lims— 00 71 (s) =0,

(b) inf O’ess(—A%) < v1 holds whenever 1 is nonzero, in particular, —A% has at
least one eigenvalue below v provided the tube is asymptotically straight.

3.3 Interacting Particles

So far we have considered properties of a single confined particle. Some of the results
can be used to describe many-particle states in quantum waveguides provided the
particles are not interacting or the interaction can be neglected as in the case of a
dilute electron gas in a quantum wire. For instance, Proposition 3.1.1 then gives a
bound on the number of particles which a bent duct can bind if the latter are fermions
which occupy the one-particle bound states in accordance with the Pauli principle;
the right-hand side must be multiplied by two, or more generally by the number
2s + 1 of spin states.

The situation is more complicated if the mutual interactions must be taken into
account. Having in mind electrons, we shall consider N particles with spin % and the
charge —e, which interact therefore by electrostatic repulsion. We suppose that they
are confined within a hard-wall bent strip Q2r , with the axis determined by its signed
curvature v which, for simplicity, we shall assume here to be compactly supported.
The Hamiltonian Hy = Hy (7, a, e) can be rewritten in a unitarily equivalent form
using the curvilinear coordinates introduced in Sect. 1.1; then it acts as

N
Hy = Z {_af_i(l + ”j'Y(Sj))_zay_, - 33./ + V(sj, uj)} e Z 7 — 71|_1

j=1 1<j<I<N

on the Hilbert space Hy := ®§V=] L%(Q0), where V is the curvature-induced poten-
tial (1.8) and 7; = 7 (s}, u;) are the Cartesian coordinates of the N-th electron. The
true state space of the system is, of course, the subspace of H  consisting of functions
antisymmetric with respect to particle exchanges, but it is convenient to take the Pauli
principle into account only later. The operator Hy is essentially self-adjoint on the
N-fold algebraic tensor product of U Dom (—A%), where U is the unitary operator
appearing in (1.7); alternatively one can use any core of —A%‘) (cf. Remark 1.1.2a).
Moreover, we have
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inf oess (Hy) < kTN (3.19)

and the equality holds if and only if v = 0 (Problem 12). The threshold depends,
in general, on the electrostatic interaction because the latter influences the bound
state energies of clusters to which the N-particle family can be decomposed; thus
one-particle methods are no longer useful.

At the same time, an implicit bound can be derived by a method used in atomic
physics to find ionization properties of Coulomb Hamiltonians. To formulate it we

firstintroduce some notation. Let {\,; }7>_, be the spectrum of — Agﬁ for the rectangle
Rg := (— %Bgi/z %ﬁgi/z) X (—a, a) with afixed § > 0, where g+ were introduced

in Sect. 3.1.1 together with the function W; estimating the potential (1.8). Then we
define

N
Tg(N) == Z A[m+l]

m=1 2

which allows us to state the following inequality.

Theorem 3.7 Adopt assumptions (i), (ii); of Sect. 1.1. In addition, suppose that the
curvature is compactly supported, v(s) = O for |s| > b > %a, and a||vlleo < 1.
Then o4isc (Hy) = @ holds for N > 2 if the condition

2 2
~ e
N(N—1) = [WilloN + KN +
Hiee TN

e

2813

holds for some 3 > max{2b, 629 ¢2}.

Ts(N) + (3.20)

Proof We use a variational argument based on a suitable decomposition of the
configuration space, the points of which are (s,u) with s = {s1,...,sy} and
u = {uy,...,upy}. Consider a pair of smooth functions v, h : Ry — [0, 1] such
that v interpolates between v(f) = 0 for r < 1 and v(¢) = 1 for t > %, and
v(t)2+ h(z‘)2 = 1; then we construct such a decomposition using the functions

s = (sl AlslleoB™),

where ||s|lc := max{sy,...,sy}and 8 > 2b > a will be specified later. Abusing
the notation, we also employ the symbols v, i for the corresponding operators of
multiplication. For a fixed ¢ € Dom (Hy) we evaluate (v, [Hy, v]e) and the
analogous expression for the function #; in both cases only the longitudinal term in
the kinetic part of Hy contributes. Thus (¢, Hy ) equals

N

(i, Hy o) + (o, Hyhd) + > [+ ™ o0 |+ [~ o)

j=1
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where we use the shorthands v; := % , hj o= (%’j, and v; := 7y(s;). The factors

(1+u;~v;)~! may be neglected, because v;, h; are nonzero only if s; > 3 > 2b
in which case v; = 0 holds by assumption. Furthermore, with the exception of the
hyperplanes where two or more coordinates coincide (which is a zero measure set)

the norm ||s||« is equal to one of the coordinates sy, ..., s, , and therefore
o 2 2 2 2
N (O O R T (DR O T
j=
where Cq := ||v/||go+ ||h’||go. This yields the estimate

C
W Hy) = Lilvol+ Lol Lilo] = 6, Hnd) = o3 1ol (32D

where the last index means the norm of the vector ¢ restricted to the subset Ng :=
{s B Isllee < %ﬂ} of the configuration space.

Next one has to estimate separately contributions from the inner and outer parts.
Consider first the exterior. We introduce the functions

j—1

£i(s) = v (2s,~||s||go1) [T " (2s,,||s||;}) . j=1,...,N—1

n=1

-

(an empty product equals one), and fn (s) := H,’l\:l] h (2s,, IIs]l gol ), which satisfy the
relation Zj-v:l fi (s)* = 1. Moreover, the functions sj > v(2sjlIslleo), h(2sjlIslloo)
have nonzero derivative only if |s;| > %||s||o_01. In particular, on the support of
s = v(||s]leo 8~ the derivative is nonzero onlyif[s;| > %ﬁ > b; in other words, the
function s > f; ($)2v(|Is[loo3~ 1) has zero derivative in all parts of the configuration

space such that at least one of the electrons dwells in the curved part of the waveguide.
Commuting now Hy with f;, we getin the same way as above the identity

N
Lilvol = X { L] = 1V fvs )
j=1
where Vg = (831 v, Oy N). To deal with the last part, we need a pointwise upper

bound to the gradient term. Letting o := 2s/||s|| gol and using the definition of f; we
can express this quantity; after a partial resummation using the relation v>+ h? = 1
we find that ij:l |(Vs £)(5)]? equals
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TR )2+ 1 (@) + h(@)*h (02)* + - + h(o)?. ..h<aN_1>2h/(aN)2]
s ANC
< o | Ve 2Nt s

j=1

and therefore

o] = ZLl[f,vz/z] anco ootz | ZLz[f]vw

where Ly[¢] := L[¢] — 4NCy ||¢|| v||Oo ” Hence the task is reduced to finding a

lower bound to Ly (¢);) with ¢; := f;v1). Since s; > —||s||<>o > zﬁ > b holds on
the support of 1), we have V (s, u;) = 0 there. This means, in particular, that we
can rewrite (¢j, Hy1;) in the following way,

N
W Hy—19) + 005> + 000 P + € 3 (w7 17— 717wy
=1

where Hy_1 refers to the system with the j-th electron excluded. The sum of the
first three terms is bounded from below by (1uy—1 + £3)|[;1|%, and since |7 — 7| <

(sj—s)?+4a® < 2/|s|13,+ a?, we have

A(N-1) -
W Hy)) = (v 4+ 8) 112 + == (w5 (s + a2 0)
(3.22)
The sought lower bound then follows from the definition of the functional L, in
combination with (3.21); we get it by subtracting the expression

K _ Co(8N+3) 12
ancou stz |+ cos 213, < 2Oy s

from the right-hand side of (3.22); recall that Ng := {s P B < Isllee < %ﬂ} More-
over, [|slloe = 3 > 2b > a yields (||s||>+ a®)'/? < V/2|s|lo0, and therefore

2

e“(N—1) Co(8N+3) —12

Loty = (s + o) 1012 + | |

Vj KN 1) 19;l Wi Pillslioo

Since N > 2, the last term is positive for 3 > 19«/§C0e’2. In such a case we have

Li[vy] = (un—1 + /@%)Hd)j %, so the exterior part of the wave function does not
contribute to the discrete spectrum.
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Let us turn to the inner part. The functional L{[h%)] in the decomposition (3.21)
can be estimated using the explicit form of the operator Hy as follows

N
Lilh] = g IVl + IVGhI + D (hp, Vsj, u)hep)
j=1
I C
+& 3 (=R h) = o Il

1<j<k<N

Since |V (s, u;)| < ||W1 lloo holds for j = 1,..., N, the potential term can be
estimated by N || Willoo |1 ||%. Furthermore, on the support of 2 we have

7=l < 2/Isl%+a® < VO + 4a?,

because ||5]lco < % (3 holds there. At the same time, 3 > 2b > a, so we arrive at the
estimate |Fj — x| < /13 which yields

Lo N(N-1)
h, [Fj— 7l "'h ——— |lhy)?.
1<§<N( G F= Rl ) = e )

Combining these two bounds with the inequality Co/ < e?/19+/2 we find that
L1[hv] is bounded from below by the expression

2 2
_ ~ e“N(N—-1) e
9 IVsh | + 1V b)) 4 [—Nuwnoo + — ] )12

26/13 195+/2

Together with the exterior estimate this tells us that the discrete spectrum of Hy is
empty for N > 2 if the above expression is not smaller that /@%N |hep||? for some 3

which satisfies the condition > max [ 2b, % } The first two terms represent

the quadratic form of the 2 N -dimensional Dirichlet Laplacian in Rg’ . Now finally the
Pauli principle enters the game; it implies that each eigenvalue may appear only twice
for spin % Thus one has to take the orthogonal sum of two copies of the Laplacian
on Rg and to sum the first N eigenvalues of such an operator; this is exactly the
quantity which we have denoted by T3(N).

To finish the proof, it remains to find Cy which appears in the above bounds.
Without trying to optimize it we put v(§) := sin (4%52(1—252)) fort—1=:¢¢
(0, 1) . This gives v'(€)? + ¢g'(£)? = (8m)22(1 — 4£%)2, so we may choose Cy =
(87m)%/27 A 23.39 obtaining thus the stated bound on /3. |

Corollary 3.3.1 oyisc(Hy) = @ holds for a fixed N > 2 if e is large enough.

Proof We have #EN (N—-1) — —L_ >~ 0 and the remaining terms in condition

1942
(3.20) are independent of e. |
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In this way Coulomb repulsion may prevent a curved guide of a fixed geometry to
trap more than one charged particle. On the other hand, one can always find a strip
Qr,, which binds a given number of electrons (Problem 13).

3.4 Acoustic Waveguides

So far we have paid attention mostly to waveguides with Dirichlet boundaries even
if other conditions have appeared from time to time, for instance, in Sects. 1.5 or 3.2.
There are situations where the choice of such conditions have a deep physical moti-
vation. A prime example is given by acoustic waveguides. The sound dynamics in a
tube or a system of tubes is described by the wave equation rather than Schrédinger’s
equation but in the stationary case the problem is reduced again to the study of the
Laplacian in infinite cylindrical regions, however, this time with Neumann boundary
conditions.

It is not surprising that the spectral properties of such operators differ from those
of Dirichlet waveguide Hamiltonians. Their spectrum typically covers the positive
real halfline, and since the Neumann Laplacian is positive by definition, there is no
room for a discrete spectrum. Nevertheless, acoustic waveguides can exhibit local-
ized modes corresponding eigenvalues of the operator embedded in the continuous
spectrum which typically come from a symmetry. The situation calls to mind the
Nockel-type model discussed in Sect. 2.3; we will show that such eigenvalues again
turn into resonances when the symmetry is violated.

3.4.1 Eigenvalues of the Neumann Laplacian in Tubes

The spectrum of the Neumann Laplacian in a straight tube is naturally purely
absolutely continuous. The situation may change when obstacles are placed into
the guide. Let 2 = R x M, where as before M is the cross section of the waveguide,
and let 3¢ C 2 be a bounded obstacle. For simplicity we shall consider the two-
dimensional case when M is a line segment. We are interested in eigenvalues of
the operator —AE acting in L2(X) with £ := Q \ ¢; as indicated above all such
eigenvalues have to be embedded in aess(—Al%,) =R"T.

As mentioned in Sect. 2.3 such eigenvalues often arise from some symmetry of the
system—see, in particular, Examples 2.3.1. It turns out that the same effect occurs in
the waveguide described above provided the obstacle %€ is mirror-symmetric with
respect to the axis of the strip.

Theorem 3.8 Let M = (—1, 1) and suppose that the obstacle is of the form %€ =
{(x,y) € Q: |yl < f(x)}, where f € C°(R) is such that 0 < f < 1. If f is

nonzero, then —A]%, has at least one eigenvalue in the interval (O, %ﬂz).
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Proof We again employ the symmetry decomposition mentioned in Sect. 1.5 intro-
ducing the subspaces of functions of a given transverse parity,

Hj:={ue LZ(Z) Culx,—y) = (—l)j u(x,y) for (x,y)ex}, j=1,2,

such that L2(Z) = H; @ Ha. A simple calculation shows that H;, j = 1,2,
are invariant subspaces of —AIE\;,. Since —AE, ‘Hl is subject to Dirichlet boundary
conditions on {(x,y) € ¥ : y = 0}, and since supp f is compact by assumption,
it is easy to see that inf O'ess( — AE/ | H1) = 211”2' Therefore it suffices to prove that

— Aﬁ |H has at least one isolated eigenvalue. We again employ variational principle
with a suitable choice of test functions; we consider the family

U (x, y) = p(ex) sin (%) ,

where ¢ € (Cgo(—Z, 2) is such that ¢(x) = 1 holds forx € [—1,1]ande > O is a
small parameter. Then u. € H1 N H 1(2) for any € > 0 and we find that

7T2
/|Vu5|2(x,y)dxdy——/ lus|*(x, u) dx dy
> 4 Js
2

= 26/ |<p/|2(x) dx — T sin(m f(x)) dx .
R 2 Jsupp f

As € — 0 the first term on the right-hand side vanishes while the second term is a
negative constant. Hence taking ¢ small enough we achieve that the right-hand side
in the last relation is negative; this proves the existence of an embedded eigenvalue
of —AIE\;, in the interval (0, }Tﬂ2). |

A similar result also holds when the obstacle has the form of a Neumann cut along
a segment of the waveguide axis (Problem 2b).

3.4.2 Resonances in Acoustic Waveguides

We have already pointed out in Sect. 2.3 that if a system has embedded eigenvalues
due to a symmetry, a perturbation which violates the latter will in general turn those
eigenvalues into resonances. We are now going to discuss from this point of view
acoustic waveguides with obstacles considered in the previous section. We will not
tackle the resonances, however, through a meromorphic continuation of the resolvent,
which is not trivial to construct in this model, but rather as complex poles of the
scattering matrix (see the notes to Sect. 2.3).

Let us first describe the problem setting. Similarly as in Theorem 3.8 we consider
a Neumann waveguide with a symmetric obstacle X5, now as an unperturbed system.
Let L be the length of the obstacle boundary and assume that 0¥ is parametrized
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by its arc length s as follows,
x=X(s), y=Y@), 0=<s<L,

which allows us to express the boundary curvature as y(s) = (XY — YX)(s). Now
we move the obstacle in the direction perpendicular to the guide axis by a distance
€ and denote the shifted obstacle by XZ; we keep € small enough to ensure that
X C Q. Weput X, := Q\ ¢ and consider the following boundary value problem,

Au+w’u=0 in%, Ou=0 ondX., (3.23)

where 9, denotes the outer normal derivative and w is the spectral parameter; the
square is due to the physical nature of the problem which is associated with the wave
rather than Schrodinger equation. First we have to specify how to define resonances
in this setting. Given an w with Imw < 0 we set §; = —/(mj/2)? —w?, j =
0,1,2.... Moreover, let no(y) := 1/+/2 and 7;(y) := cos (M) j>1,be
elements of the transverse-mode basis, and define

eSilkl . +x >0

=& Ix|
e ... x>0 ~+
’ ef ) [ 0 otherwise

o —
ej () = 0 ... otherwise
Note that in contrast to (1.10) the functions 7); satisfy Neumann conditionsaty = £1.
Next we take R large enough so that supp f C (—R, R) and consider the solutions
u]i(x, y; w) of Eq.(3.23) which for |x| > R have the form

Wi, yiw) = im0 + D0 D TH @) &0 (),
v=% k=0

where p and v are indices taking values &= and szy (w) are complex-valued functions
of w which are uniquely determined by the above Ansatz and relations (3.23). The
infinite matrix

T'(w) = {T;;CV(M)}M,I/=:I:, j.k=0,1,...
is for real w called the scattering matrix of the problem (3.23). It extends to the
complex plane being holomorphic for Imw < 0, and furthermore, it admits a mero-
morphic continuation onto the upper half-plane Imw > 0 accessed from the lower
half-plane through the interval (—7/2, 7/2); we identify resonances of the problem
(3.23) with the poles of such a meromorphic continuation of 7 (w) onto the upper
half-plane.

To describe the behavior of those resonances, we start from the unperturbed system
corresponding to £ = 0. We know that in that case —Af,(’ has at least one eigenvalue
a)(z) with wg € R and a normalized eigenfunction u(. Let us denote by u(j)t(~, -) two
generalized eigenfunctions relative to wy, i.e. two solutions of (3.23) with ¢ = 0,
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singled out by the asymptotic expansions

ug(x, y) = eTiwor 4 TO%i(wo) T L Oy . x> 40

ug(x, y) = Toioqc(wo) eTi0x 4 O0(e~0kly .. X —> —00

where ¢ is a positive constant, together with the orthogonality condition
/ up(x,y) u(?(x, y)dxdy =0.
o

Now we shift the obstacle in the vertical direction by € and ask about the asymptotical
behavior of the corresponding resonances as ¢ — 0; it is expressed by the following
result (see the notes) which can be regarded as a version of Fermi’s golden rule in
the present case.

Theorem 3.9 Let w(z) with wg > 0 be a simple eigenvalue of —AI%,O and let ug be
the normalized eigenfunction associated with wg. Then for € small enough there is a
unique resonance w; of the problem (3.23) satisfying Re w. — wg and

Imw, = <|a+|2 + |a_|2) 24+ 0E%) as >0,
with

L T . .
ax ug ) (X) (O2u0(s) + whuo(s)) =157 (900w (s) ) ds

_4w0 0

where ug(s) = uo(X (s), Y (5)) and u3 (s) = uz (X (s), Y (s)).

3.5 Notes

Section 3.1 Proposition 3.1.1 is taken essentially from [EV99] where it was stated
for d = 2. For the Bargmann inequality see [Barg52, BSh91, Theorem 2.5.3].

The Birman-Schwinger estimate on the number of bound states in dimension one
and two requires a trick which was independently discovered in [Se74, K177, Ne83]
and consists of splitting off the resolvent singularity responsible for the one bound
state, which is always present for the attractive interaction, and estimating the trace
norm of the rest. On the other hand, one does not use in this way the full strength
of the BS theory manifested in the weak-coupling analysis of Chap. 6, and as usual
with the BS technique, the result is not optimal for a strong coupling. Theorem 3.1 is
taken from [AE90]. It relies on inequalities the most simple of which was known as
the Payne-Pdlya-Weinberger conjecture after the authors who formulated it first in
[PPW55]. It was a subject of intense mathematical study for more than three decades
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until it was finally proven in [AB92a, AB92b]; in the first of these papers the reader
can also find the history of the problem. Proposition 3.1.3 comes from the paper
[EFK04] where such a result is proved generally for a class of curved tubes in RY.
Notice that in the non-circular case this class is not related to Tang’s system and its
higher dimensional analogues—cf. Sect. 3.2.4—rather it requires the cross section
to be fixed with respect to the Frenet frame of the generating curve.

Lieb-Thirring inequalities were introduced in [LT76] as a generalization of the
CLR-bound for the number of bound states of a Schrodinger operator [RS, Theo-
rem XIII.12]. The present-day knowledge about the constants involved is as follows,
(a) R(6,d)y=11if 6 >3/2,deN,

(b) R(0,d) <2 if 1<6<3/2,deNorl/2<di<l,d=1,

(¢) R(O,d)y<4if 1)2<d<1,d>2,

see [HLT98, HLWO00, LW0O0] where one can also find other related results together
with a rich bibliography. Recall that the constants are determined by the weak-
coupling behavior, because for all § > 0 and reasonable regular V the Weyl asymp-
totics, Sg(/\)[Sg}d W]~ = 1as A — oo, is valid which gives R(§,d) > 1. What is
important here is that (3.5) allows a generalization to potentials with values in non-
negative compact operators on a separable Hilbert space G. Let A :== —A®Ig—W (x)
be such a generalized Schrédinger operator on L2(R?) ® G, then for § > 1/2ifd = 1
and § > 0 if d > 2 the following inequality holds,

tr2raypg AL < (8, d) /Rd trg W (x)°T 7 dx

provided the right-hand side makes sense. The proof for d = 1 relies on the analy-
sis of the corresponding ODEs and a matrix approximation of A, the result is then
extended by induction to higher dimensions—see [HLW00, LWOO]. The constants
have the properties analogous to (a)—(c) and satisfy the bound r(§, d) > R(6, d).
The main result of this section, Theorem 3.2, was proved in [EW02]. A similar
decomposition can be used to prove LT-type inequalities also in situations when the
perturbation is not given by a potential but rather it is due to deformation and/or
boundary conditions—see Problems 5-7 and [ELW04] for a more detailed discus-
sion.

The bound on the number of potential-induced bound states in locally twisted
tubes, Theorem 3.3, comes from [GKP14], where it was proved in a different way. In
the proof of Theorem 3.3 we have employed bounds derived in [Da] and [GS09] where
other useful properties of heat kernels can be found; for Lieb’s inequality we refer
to [Li76, RS, Sect. VIIL.3]. Note that the bound (3.11) has the correct semiclassical
behavior, N(Hﬁ;“, V) >~ A3/2 as A — o0; as in the case of Theorem 3.2 the three-
dimensional nature of the tube dominates at high energies. Finally, it is also worth
mentioning that the spectrum of a quantum waveguide of non-constant cross section
might be purely discrete. Such a situation occurs, for example, if the waveguide has
cusps, i.e. its width tends to zero sufficiently fast at infinity; eigenvalues of such
waveguides have been studied, e.g., in [JMS92, GW11, Kol1, EB13].
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Section 3.2 The usual definition of the Neumann Laplacian through the appropriate
quadratic form can be found, e.g., in [RS, Sect. XIII.15] or [Da, Chap. 7]. For regions
with a sufficiently regular boundary the operator domain is specified by the Neumann
boundary condition, i.e. vanishing of the normal derivative—cf. [DKi02b]. The idea
of Theorem 3.4 and of its corollary comes from [DKi02a], where this result was
proved under stronger assumptions. Notice that in the case §§ > 0 the product
¢ax1 itself yields a suitable trial function. A similar effect can be seen in other
situations, e.g., for curved Dirichlet layers which we will discuss in Sect. 4.1 or for
strips embedded into a non-Euclidean space [Kr03]. A numerical analysis of a bent
waveguide of the bookcover form with mixed Dirichlet and Neumann conditions
was performed in [OMO3]. Analogous effects can also be demonstrated for other
equations, for instance, those modelling shelf waves along an “outward” curved
coast [JLPO5].

The straight Dirichlet-Neumann waveguides described in Problems 2 and 4 have
been discussed in [DK¥02b]. The case of a “window” in the Dirichlet boundary
appeared earlier in [ELV94] within the context of a Neumann guide with an obstacle.
The main physical motivation comes in this case from acoustics; more general results
on embedded eigenvalues in straight channels due to symmetric Neumann obstacles,
not necessarily of zero measure, can be found in [DP98] or [KPV00]. The spectrum
in the mixed-condition situation of Problem 4, which can be regarded as a two-
dimensional version of “twisted” boundary conditions, was found numerically in
[DKY02b] using mode matching; the result suggests that the first critical value is
a1 ~ 0.26 d, more recent results on such systems can be found in [BC11, BC12].

Waveguides with combined Dirichlet-Neumann boundary conditions have also
been studied from the homogenization point of view: results on the bottom of the
spectrum in the situation when the boundary conditions are frequently alternating
were established in [BBC10, BBC11a, BBC11b]. For waveguides with Robin bound-
ary conditions one also has various results in addition to that of Theorem 3.5, one
can mention, for instance, [FKr06, Ji07, Kr09, CDN10, OM10, BMT12].

Proposition 3.2.1 comes from [EHL99]. Notice that this result contrasts with the
Faber-Krahn inequality (1.22), because the circular shape maximizes the ground-state
eigenvalue. A similar behavior can be observed in other problems involving regions
which are not simply connected—see, e.g., [HKKO1]. In the paper [EHL99] the
reader can find a discussion of various related isoperimetric problems. Theorem 3.6
comes from [CDFKO5], for notions related to curves in RY the reader can consult,
e.g., [Kli].

Section 3.3 Theorem 3.7 comes from [EV99]. The argument also yields a bound
on the number of charged bosons which a bent strip can bind, just the first term in
(3.20) has to be replaced by the lowest Dirichlet eigenvalue in Rg . For fermions we

naturally get a stronger restriction because Tg(N) = O(N 2)as N — oo and locally
it may grow even faster if a is small. It is an open problem whether for large N one
can formulate an effective theory analogous to the Thomas-Fermi model of quantum
dots [Y99]. Let us mention also that the scattering counterpart of Corollary 3.3.1 is
usually called a Coulomb blockade: a bound state of a charged particle (or a certain
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number of particles) creates an electrostatic barrier which can make transport of
another charged particle through the guide impossible.

Section 3.4 Theorem 3.8 is taken from [ELV94], its generalization to n-dimensional
waveguides and more general obstacles was established in [DP98]. The proof of
the asymptotic behavior of obstacle resonances given in Theorem 3.9 can be found
in [APVO0O0], where the result was established. An analogous behavior should be
observed in the situation when the obstacle is a Neumann cut along a segment parallel
to the waveguides axis mentioned in Problem 2b. One can conjecture that resonances
would also arise if such a cut placed originally at the strip axis is rotated but the proof
of this claim remains an open problem. Various properties of eigenvalues embedded
in the continuous spectrum of acoustic waveguides were studied in [CNR12, GB13,
Nalla]. In particular, it was shown in [Nalla] that under an appropriate choice of
local smooth perturbations of the waveguide it is possible to create an eigenvalue
located near any given inner threshold.

3.6 Problems

1. Prove the claim (b) of Theorem 3.4.

Hint: Estimate the quadratic form ¢#[-] from below using the ground state eigenvalue
of annular regions with Neumann and Dirichlet condition at the inner and outer
boundary, respectively—cf. [DKf02a].

2. Let —Ag‘;\, be the Laplace operator in the strip {X : 0 < y < d, x € R} with
the domain consisting of all 1) € H'(Q,) with —At € L? satisfying the Dirichlet
boundary condition if |x| > a, y = d, and the Neumann condition, 6yw = 0, at the
remaining part of the boundary 9€2,.

(a) Show that gess(—ASY) = [ea, 00) and ogisc(—A4) # ¢ for any a > 0.
Furthermore, the eigenvalues ¢, (a) € (0, %Gd), m =1, ..., N, decrease continu-

ously in a and satisfy the bounds (%)2 (m—1)?% < ep(a) < (%)2 m?2. Their number

is estimated by N, < N < N,+ 1, where N, := min {1, [a/d]}, and the critical
“window” widths a,,, m =2,...,bym — 1 < a,, < m.

(b) Use this result to demonstrate the existence of embedded eigenvalues for the
Neumann Laplacian in a strip of width 2d due to an obstacle formed by an additional
Neumann condition at a segment of the strip axis.

Hint: Cf. [ELV94, ELU93] and [DK102b].

3. Let )\, and x,, be the lowest eigenvalue A\, and the associated eigenfunction x,,,
respectively, of the Robin Laplacian on (—a, a) defined in Sect.3.2.2.

(a) Suppose that @ > 0. Check that \, = k%, where k is the first positive root of
the implicit equation k tan(ka) = a and Y (1) = cos(+/Aqu) up to a normalization
constant.

(b) On the other hand, let & < 0. Show that A\, = —k2 where & is the first positive
root of the implicit equation  tanh(ka) = —a, and that x,(u) = cosh(xu), again
up to a normalization.
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4. Let —A%‘;\, be the Laplace operator in the same strip as in the previous problem,
however, with Dirichlet boundary condition for x sgn (y - %d ) >afory =0,d and
Neumann otherwise. We have again gegs (—A%}\,) = [%ed, 00). Moreover, there is an
ay € (0, d) such that adisc(—A%}\,) = {J holds for a < aj, while for a > a; there is
at least one eigenvalue in (0, %ed). The remaining properties of the discrete spectrum
are the same as in Problem 1a, the only modification to do is to put N, := [a/d].
Hint: The nonexistence of bound states for a sufficiently small positive a can be
demonstrated by the variational method which we will describe later in the proof of
Theorem 6.10—cf. [DKi02b] for details.

5. Let 2 satisfy the assumptions of Theorem 1.4. Then the following inequality,

tr (—A% — Vl)(i <r(,1) LfsElIQ,(S,

holds, where
5+1/2
Ig s = /Rtr (—A%X - 1/1 / Z Vpx — (m/zdf

Hint: Use the decomposition —A$} = Ik GB(—A/g*) dx similarly as in Theorem 3.2.
6. Assume in addition that the waveguide may also have Neumann obstacles or
windows, namely there is a precompact set N' C Q with A"\ T open and the
longitudinal projection M := {y € R~ : 3x € R such that (x, y) € N} of zero
measure in R~ By —A % v We denote the Laplace operator with Dirichlet boundary
conditions on 92 \ A and Neumann conditions on A/ which is associated with the
quadratic formtg A7 := fQ W |V)|?(¥) dX defined on the H '-closure of the set of all
smooth functions in Q\N wh1ch vanish for large | x| and in the vicinity of 9\ N and
which are square integrable together with their first partial derivatives. Furthermore,
let n, denote the transverse cut of A" at x € R and AM"n be the corresponding

transverse component of the Hamiltonian. We suppose that the spectrum of — A
below v is discrete (which is true unless n, is too “wild”—cf. [HSS91, Si92]) and
the functions x — min{v, ., 1} are measurable.

Assume now that the spectrum of —A% v below vy is discrete and nonempty. The
result of the previous problem then generalizes to the present situation as

(AR —v)) <r@. DL Io N5

where

(5+1/2 §+1/2
Io N ::/Rtr (—A}gfnx —1/1)7 dg:/RZ(u,,,x — ) +/ d¢.

n

Hint: Follow the same idea—cf. [ELW04].
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7. Apply the results of Problem 6 to a strip with a Neumann window, or the sym-
metric part of the problem considered in Sect. 1.5.1. Show that one has

5+1/2
tr (=A% — ) <76, DL ¢ (Zed) ,

which is by Theorem 1.5 asymptotically correct as £ — oo apart from the factor
r(, 1).

8. Show that the weight (1 + x32) in (3.11) cannot be improved in the power-like
scale. More precisely, prove that if the function V' > 0 is such that V (x) >~ |x3| —24e
holds for some € > 0 as |x3| — o0, then N(H\S,Z“, V1) = oQ.

Hint: One can modify the proof used in [RS, Theorem XIII.6].

9. (a) Prove that the system (3.18) of differential equations determines a continuous
family of (d—1)-dimensional rotations, unique up to a fixed rotation. Check that (3.18)

reduces to the condition (1.18) when d = 3 and we put R = (

(b) Show that under (3.18) the metric tensor associated with the map (3.17) becomes
diagonal, (g;;) = diag (h2,1,..., 1), where h(s,u) := 1 — Y1(s) Zu Rua(s)uy.
Using this result check that —A% is unitarily equivalent to the operator —dsh =20y —
A’g + V on L2(R x M), where the effective curvature-induced potential is given by

42 T2 hd T 4t

10. Let © be a tube in RY described in Sect. 3.2.4, then A belongs to aess(—A%)

iff there is a sequence {¢,} C Q(—A%) of unit vectors (in the || - || norm) such
that supp v, is disjoint with [—n, n] x M and (—A% — MY, = Oin Q(—A%)* as
n — oo.

Hint: Use the form version of Weyl’s criterion—cf. Lemma 4.2 in [DDI98].

11. Prove Theorem 3.6.

Hint: Use the result of the previous problem and the GJ-argument—cf. [CDFKO5].

12. Check that cores of —A%O define through the algebraic tensor product a core
for the operator Hy of Sect. 3.3. Prove inequality (3.19) and show that it is sharp if
and only if the strip €2 is nontrivially curved.

Hint: Use positivity of the interaction term as in [RS, Theorem XIII.28]. Modify
the proof of the standard HVZ theorem to check the inequality inf oess(Hy) <
UN—k + Imf with p; :=inf o(Hy j) for k = 1, and extend it by induction.

13. Given N > 2, a > 0, and the absolute bending fIR{ |v(s)|ds > 0, construct a
strip Qr 4 such that the operator Hy has a nonempty discrete spectrum.

Hint: Take a strip with N bends separated by straight segments long enough to make
the repulsion much smaller than the one-particle binding energy in a single bend.
Construct a trial function using the result of Problem 1.22.
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Chapter 4
Dirichlet Layers

Since our world is three-dimensional, tubular regions are not the only way to confine a
quantum particle in aregion of the configuration space which is infinitely extended but
in some directions only. Here we shall discuss another situation in which the region
is a layer  obtained by local perturbations of a straight one, Q9 = R? x (—a, a). We
will again suppose that the layer boundary is a hard wall and neglecting unimportant
constants we will identify the corresponding Dirichlet Laplacian — A% with the
Hamiltonian of the problem.

4.1 Layers of Non-positive Curvature

We are going to discuss first the situation when the mode-coupling perturbation comes
from curvature. Physically it may sometimes be easier to prepare such a curved layer
than to make a bent tube, but from the mathematical point of view curved layers
are more difficult than the strips and tubes discussed in the previous chapters for the
simple reason that the geometry of surfaces is more complicated than that of curves.
In this section we shall discuss a class of curved layers to which the methods of
Sects. 1.1 and 1.3 can be directly adapted.

4.1.1 Geometric Preliminaries

In analogy with the tube case we determine the layer as an a-neighborhood of a
surface X, so it is natural to start from the parametrization of the latter. We want
to define ¥ via a map from a suitable set X, which here will be the plane R2, to
R3. A new feature is that there is no natural system of coordinates, and in fact, the
very assumption that ¥ can be covered by an atlas consisting of a single chart, being
diffeomorphic to R%, means a non-negligible restriction.
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P. Exner and H. Kovatik, Quantum Waveguides,
Theoretical and Mathematical Physics, DOI 10.1007/978-3-319-18576-7_4


http://dx.doi.org/10.1007/978-3-319-18576-7_1
http://dx.doi.org/10.1007/978-3-319-18576-7_1

106 4 Dirichlet Layers

We shall go a step further and suppose in the present section that X is a C>-smooth
surface which can be equipped with geodesic polar coordinates. This requires the
existence of at least one pole, i.e. a point 0 € X such that the exponential mapping
exp, : To,X — Xisadiffeomorphism (see the notes); in that case X is diffeomorphic
to R? and as such simply connected and non-compact. The coordinate lines are the
geodesics emanating from the pole and the geodesic circles which connect points
with the same geodesic distance from the pole; let us stress that even at surfaces
diffeomorphic to R? such a coordinate system may not exist (Problem 1).

Under this assumption we can parametrize the surface X, except for the pole,
by amap p : X9 — R3, where Yo = (0,00) x sl with S! being the unit
circle, is the plane equipped with polar coordinates, ¢ = (s, #). The tangent vectors
p.u = Op/Oq" are linearly independent and their cross-product defines a unit
normal field n on X. In analogy with (1.5) and (1.16) we define a layer 2 := L(20)
of width d = 2a > 0 over the surface ¥ as the image of the straight layer ¢ :=
Yo X (—a, a) by the function £ : Q¢ — R? defined through

L(q,u) := p(q) +un(q) . 4.1

To be able to classify layers determined in this way by their metric properties, let
us first inspect the geometry of X. The surface metric tensor, g, = pu - P,
has in the geodesic polar coordinates a diagonal form, (g,,) = diag(1, r?), where
r?=g:= det(g,,) is the square of the Jacobian of the exponential mapping which
satisfies the classical Jacobi equation

#(s,0) + K(s,0)r(s,0) =0 with r(0,0) = 1—#(0,9) =0, (4.2

where 7 denotes the partial derivative of r with respect to s. The Gauss curvature
K which appears in (4.2) together with the mean curvature M are determined in
the usual way: the second fundamental form %, := —n , - p, gives rise to the
Weingarten tensor h,,” := hy,,g”", which in turn defines the said two curvatures by

K := det(h /tV) and M = %tr(h N” ). We will also need the corresponding global
quantities given by integration with respect to the invariant surface element, do :=
g'/?dgq, the total Gauss curvature K and the quantity M, defined respectively by

1/2
K:=[ K(g)do, M::( M(q)zda) )
o %o

The latter always exists, being possibly infinite, while C requires the former integral
to make sense which will be a matter of an assumption made below; in that case one
can derive a useful estimate of the Jacobian (Problem 2).

Next we have to specify the layer geometry. It is convenient to distinguish the
tensor component indices using Greek letters for the surface variables and Latin for
those of Q including g3 := u. It follows from (4.1) that the metric tensor of the layer,
as of a submanifold in R3, has the block form
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G0
(Gl]) = (( (l)“/) 1) 5 GV,U' = (5,‘,7—uhl,”)(5ﬁ—uh(,p)gm,,.

From here the determinant G := det(G;;) is easily computed. Recall that the
eigenvalues of the Weingarten map matrix are the principal curvatures ki, ky
through which the Gauss and mean curvatures are expressed as K = kjk, and
M = %(kl + ky), respectively. It follows that

G = gl(1—uk))(1—uky)]* = g(1—2Mu+Ku?)*.

In particular, this expression defines the volume element by dw := G!/2dg du.
As with the tubes, we start the list of assumptions about layer geometry with the
requirement that the defining map £ is injective, i.e.

(i) <2 1is not self-intersecting.

In particular, this imposes a local restriction on the layer thickness which we make
here a separate assumption,

(i) a < pm = (max {|k1]lco, ||k2||oo})_1, with the principal curvatures assumed
to be uniformly bounded, ||kl < 00 for j =1, 2,

where the number p,, has the natural interpretation of the minimal normal curvature
radius of ¥; it ensures that the factor 1-2M u+K u? is bounded from below on Qobya
positive number. Moreover, C_ < 1-2Mu+K u? < C, where the constants C1 :=
(1+ ap;])2 satisfy 0 < C_ < 1 < Cy < 4. Together with the C2-smoothness of
¥ this means that £ is a global diffeomeorphism. Another consequence is that G,
can be estimated by the surface metric,

C_guw =G = Ciguv. 4.3)

This bound is important, because in contrast to the tube case the “straightening”
transformation does not allow us here to get rid of the geometry of the generating
manifold fully—one cannot unfold ¥ into a plane.

Let us further examine how the described parametrization of 2 will be manifested
in our model, in which the Hamiltonian is H = —Ag with Q(H) = H'(Q). In the
coordinates (g, u) it acquires Laplace-Beltrami form

A= -G 28,G'*G' o (4.4)

acting on LZ(Q(), GY qu du), where the usual relation between covariant and con-
travariant tensor components, G;; G/ k.= (55‘, is employed. In other words, we define

H=U(-A$)U™!, where U : L*(2) — L?*(Q, dw) is the unitary operator act-
ing as 1 — 1) o L. Under the C2-smoothness assumption, H makes sense as the
self-adjoint operator associated with the quadratic form

tlp) = |H V1% = (i, Gy g, Q(H) = H (R, dw), (4.5)
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where the subscript indicates the norm and inner product in L*(g, dw). Treating
Hasa partial differential operator defined by means of (4.4) requires in addition the
surface ¥ to be C3. Using the block form of the metric tensor, we can write Hasa
sum of two parts, H=H 1+ Hz, with

H = -G"'%9,G"*G"d, = -9,G"9, — 2F ,G" 9,
M—Ku

Hy = —G 20,620y = —03 + T2tk

(4.6)

where we have introduced F := In G'/* and expressed F 3 explicitly in H .

Investigating tube Hamiltonians, we have proceeded next to an operator on a
straight tube removing the Jacobian by a subsequent unitary transformation. This
cannot be done for layers in general, but at least we are able to get rid of the “trans-
verse” factor 1 —2Mu+ Ku? in the inner-product weight by means of the unitary
operator U: LZ(QO, dw) — LZ(QO, do du) which acts as

Uiy := (1=2Mu~+Ku>)"?y) .

Abusing the notation we again employ the symbol H for the transformed operator
U(—AEDZ)U_1 on L2(Qq, do du), where U := UU. For the sake of definiteness
the norm and inner product in the corresponding Hilbert space will be indicated
by the subscript “g”. Computing the operator H explicitly we find that it contains
an effective potentlal which can be conveniently written using the quantity J :=
I In(1-2Mu+Ku?). We have

H=—-g""20,¢"2G"0;+Vv, V=g "2G"?G"1;);+7;GYI;, 47

which is well defined as a self-adjoint operator under a still stronger smoothness
requirement, namely that ¥ is C*. Using again the block form of the metric tensor,
we can write the operator as a sum of two parts, H = H| + H», where H; contains
the part of (4.7) with the summation over Greek indices, and

K —M?

. 2 —
H=-0+V2. V2= ke

(4.8)

An advantage of this form of the Hamiltonian is that it allows us to see how the
transverse and longitudinal variable become asymptotically decoupled in the thin
layer situation when a < p,,. Using (4.3) one finds

H=—g""20,9"%g"d, — 05 + K — M* + O(a) (4.9)
(Problem 3). In contrast to (1.9) the first term remembers the geometry of the surface

being the Laplace-Beltrami operator A, on X. However, as in the tube case the mode-
coupling terms vanish in the limit @ — 0. To assess the behavior of the leading term
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of the effective potential, K — M 2 it is useful to rewrite it in terms of the principal
curvatures as —%(kl — k»)?. This expression can vanish not only when ¥ is planar,
but also if it is locally spherical, i.e. k| = ky # 0. Nevertheless, a non-compact and
non-planar surface ¥ cannot be spherical everywhere. Thus at some parts of such a
% the curvature-induced interaction is attractive and the discrete spectrum may be
nonempty.

4.1.2 Curvature-Induced Bound States

The first question is again to localize the essential spectrum of —A%. For a planar
layer, i.e. such that K, M = 0 holds identically, it coincides clearly with the interval
[n%, 00). We shall call @ asymptotically planar if the curvatures vanish at a large
geodetic distance from the pole,

(iii) K(s,0), M(s,0) — 0 as s — oo.

This ensures that the essential spectrum threshold is not pushed down.
Proposition 4.1.1 inf Uess(—A%) > /1% holds under assumptions (i)—(iii).

Proof We employ Neumann bracketing dividing 2 into an exterior and interior
part, Qex¢ and Qijne 1= 2\ Qext, respectively, which are the £ images of Qg 5, :=
20,59 X (—a, a) with Zq g, 1= (50, 00) X S! for a fixed so > 0, and its complement
This yields a lower estimate by a decoupled operator, H > HN = H\ N Hext,
the sense of quadratic forms. Since the spectrum of H. mt is purely discrete by [Da,
Chap. 7], in view of the minimax principle it is sufficient to estimate inf o (H_),).
However, for all ¢ € Q(HL,) we have

W] = 193015 e = giznf 1=2Mu+Ku?} 14507 20, dodu ext

l—supz0 {2a|M|+a* K|}
1+supEO {2a|M|+a?|K |}

K1 ”w”G ext = (14+7(s0)) "f] M’”G ext

and 7(sg) goes to zero as sp — 00 by assumption (iii). |

Remarks 4.1.1 (a) While this lower bound is sufficient for the discussion of the
existence of curvature-induced bound states which will follow, one is naturally inter-
ested in other properties of the essential spectrum. In Proposition 4.2.1 below we
will show that under weaker assumptions the opposite inequality is also valid. More-
over, to demonstrate invariance with respect to the curvature-induced perturbation,
O’ess(—A%) = [/{%, 00), one can construct a Weyl sequence in analogy with Prob-
lem 1.3. To prove its convergence, however, the above assumptions are not sufficient
and one has to add requirements which involve derivatives of the Weingarten tensor
as well. Such supplementary conditions may be, for instance, the following: X is
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C3-smooth, (hﬂl’),p — Oand k; := 7r~1 > 0 holds as s — oo (see the notes). In
particular, the last condition is non-covariant with respect to a coordinate change.
(b) On the other hand, there are situations when the essential spectrum invariance is
easily verified, for example, layers which are curved in a compact part only. In such
a case, of course, the external planar part is important and neither the existence of a
pole nor the simple connectedness are needed.

In the tube case any nontrivial bending, under mild regularity assumptions, pushes
the spectrum threshold down as we demonstrated by variational technique in Theo-
rems 1.1 and 1.3. No such universal result is available for curved layers, however,
various sufficient conditions can be derived in a similar way: we will seek a function
1) from the form domain of the transformed Hamiltonian H such that the form (4.5)
shifted by the threshold value is negative,

ql] := t[Y] — w7 lYlI5 < 0.

The original GJ-idea to construct a trial function starting from a product of the lowest
transverse mode eigenfunction and a mollifier applies, however, only to a particular
class of curved layers. We shall need the above mentioned assumption concerning
the existence of the total Gauss curvature, namely

(iv) K € L'(Z, do).
It appears that the sign of K plays a role here.

Theorem 4.1 Suppose that ¥ is not planar and assumptions (i), (ii), and (iv) are
satisfied. If the total Gauss curvature is non-positive, IC < 0, then

inf a(—A%) < KZ% .

In particular, we have O’disc(—A%) # O provided the layer is asymptotically planar,
i.e. the assumption (iii) holds in addition.

Proof Following the indicated idea, we begin the construction from the function
W (s, 0, u) = ¢(s)x1(u), where ¢ is a function radially symmetric in the geodesic
polar coordinates and otherwise arbitrary for the moment; we use the functions (1.10)
as the transverse basis. It is convenient to split the quadratic form ¢ into two parts,
! = 1] + 12, associated with the above mentioned decomposition of H. Using the
explicit form of H> we get by a straightforward computation

Bl — KHIVIE = (6, Ko, .

On the other hand, the longitudinal part 7;(¢)) can be estimated by means of (4.3)
and Problem 2 as

n[w]sclfo ()P s ds
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where the right-hand side depends on the surface geometry through the constant
Ci:=(Cy/C)?Qu+|K lg,1) only, which is finite by assumption (iv). This repre-
sents a positive contribution from the trial function tails which we can make small
by a suitable choice of the mollifier. In two dimensions we cannot scale an arbitrary
function as in (1.11); instead we take a family {¢)} with
. Ko(Xs)
oA (S) = mln[l, —_— (4.10)
Ko(Aso)
for some sg > 0 and A > 0, where K is the Macdonald function. These functions
are not smooth, of course, but the corresponding 1) := ¢ X1 is an admissible trial
function belonging to Q(H). By a direct integration we get

o0 . 5 C2
/ [PpA(s)|“sds < 4.11)
0 |ln)\S()|

for all Asp small enough and some C; > 0 (Problem 4); hence #1[¢)] can be made
arbitrarily small if A tends to zero. On the other hand, by dominated convergence
we get t[Yy] — /{%”’(/),\H%; — K in the same limit; thus it is enough to choose A
sufficiently small to get the result if C < 0.

To deal with the case = 0 we add again a small deformation in the central
part of the layer setting ¢y . := ¥y + ¢ f, where f(q,u) := j(q)uxi(u) with
J € C§°(0, s0) x S1). Since f obviously belongs to Q(H), we can write

qln:1 = qla] + 2eq(f, 1by) + €2qLf]

using the fact that the scaling acts outside the support of j. The coefficient of the
linear term, 2¢ (£, 1») = —2(j, M), can be made nonzero by choosing j supported
on a compact set where M does not change sign; such a set certainly exists because
% is not a plane and the parameter sy can be chosen arbitrarily large. This concludes
the proof in the same way as in Theorem 1.1. |

The fact that the negative Gauss curvature leads to a non-void discrete spectrum is
intuitively acceptable when we observe relation (4.9): the leading term of the effective
potential is more attractive in the parts of ¥ where the two principal curvatures have
different signs, which means K < 0. While being non-universal, the proved theorem
still covers a wide class of layers.

Example 4.1.1 (locally curved layers) Consider the situation as in Remark 4.1.1b,
i.e. alayer built over a surface ¥ which is planar outside a compact set. By the Gauss-
Bonnet theorem we have IC = 0 so the theorem applies. Since the polar coordinate
system in the planar region trivially exists, the proof can be extended to surfaces
without a pole (Problem 1), or even those which are not diffeomorphic to R?. We
will say more about such extensions in the next section.


http://dx.doi.org/10.1007/978-3-319-18576-7_1
http://dx.doi.org/10.1007/978-3-319-18576-7_1

112 4 Dirichlet Layers

Another wide family covered by the hypotheses involves layers built over
the Cartan-Hadamard surfaces, which are by definition complete simply con-
nected non-compact surfaces with non-positive Gauss curvature. In view of Cartan-
Hadamard theorem each point of such a ¥ is a pole so there are infinitely many
geodesic polar coordinate systems. Excluding the trivial planar case, the total Gauss
curvature is always strictly negative, so such layers possess at least one bound state
provided they are asymptotically planar, C is finite, and assumptions (i), (ii) are
satisfied.

Examples 4.1.2 (a) Hyperbolic paraboloid: the simple quadric in R? given by the
equation z = x> — y? is an asymptotically planar surface with K = —2, thus
Theorem 4.1 applies for any layer halfwidth a < 1/2.

(b) Monkey saddle defined by z = x> —3xy?. This surface is also asymptotically
planar, its total Gauss curvature equals —4m, and there is an ap > 0 such that the
corresponding layers are compatible with (ii) for a < ap (Problem 5).

4.2 More General Curved Layers

The reasoning of the previous section was illustrative and directly extended the
methods used in Chap. 1. Now we want to discard unnecessary assumptions and
include cases which have no analogue in lower dimensions; we shall suppose that X
is a C2-smooth connected orientable surface embedded in R3, which is noncompact
and complete, i.e. no geodetic on ¥ is terminated.

4.2.1 Other Sufficient Conditions

We keep the assumptions made in Sect. 4.1.1 and note that the hypotheses about the
existence of a pole and simple connectedness were used only in proofs of Propo-
sition 4.1.1 and Theorem 4.1. If we want to include into considerations generating
surfaces for which the atlas need no longer consist of a single chart, it is useful to
employ the surface itself as a basis for the parametrization, i.e. to identify the set X
of the previous section with X. We shall again be interested in asymptotically planar
layers which are in this more general setting specified by the condition

@iy K(x), M(x) — 0 atinfinity,

replacing assumption (iii) of Sect. 4.1.2; recall that a function f on a noncompact
manifold ¥ is said to vanish at infinity if to any € > 0 there are R. > 0 and a point
X: € X such that | f(x)| < € holds for any x € ¥ with the geodetical distance from
X not smaller that R..

Let us first show that the essential spectrum threshold remains preserved.
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Proposition 4.2.1 inf Uess(—A%) = /1% holds under assumptions (i)—(iii).

Proof The lower bound is obtained as in Proposition 4.1.1 (Problem 6). To prove
inf aess(—A%) < /1% notice first that the spectral threshold of the Laplace-Beltrami
operator on X is zero provided K — 0 at infinity [Do81], hence to any ¢ > 0
there is an infinite-dimensional subspace N, C C3°(%) such that the inequality
V40l < ell¢lly holds for any ¢ € N, C C5° (%), where V, denotes the vector of
covariant derivatives. We will use the simple identity

IVox1I? = 11Vl x11I* — (pAX1, dx1) (4.12)

valid for all ¢ € N; C C§°(X). By (4.3) the first term on the right-hand side can be
estimated as follows,

1Vl X117 < (C+/C2) [Vy0lly < (C+/CHY X o X112,

while for the second one we get

— (0AX1, OX1) = K7 6 X117 + (BX], 2Mudx1)

with M), defined in Problem 7. Integrating the last term by parts in the variable « and
neglecting the negative term coming from the integration we infer from (4.12) that
to any € > 0 there is an N := A, ® {x1} C C°(£2) such that

IV — @, Kuh) < (87 + (C1/C2) 2 1Y)
holds for any ¢ € A/, where

K

K,i= —
" 1 —2Mu + Ku?

is the Gauss curvature of the parallel surface £(X x {u}). This proves that
inf oess(—A$ — K,) < k7. Since K, vanishes at infinity by assumption (iii), the
operator K, ,,(—A% + D7 lis compact in L%(Q), and therefore by Weyl’s theorem
the result holds for the operator —A% as well. |

The place in the proof of Theorem 4.1 where geodetic polar coordinates were
needed was the choice of the mollifier (4.10). One can use instead the following
abstract result which is valid under the assumption (iv).

Lemma 4.2.1 Let K € L'(X), then there is a sequence {¢y, o° | of smooth functions
with compact supports in X such that

(a) 0 < ¢, <1holds foralln e Nand x € %,
(b) IVyonlly — 0asn — oo,
(c) ¢n(x) = 1 as n — oo uniformly on compact subsets of X.
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Proof Under the stated integrability assumption it follows from Huber’s lemma that
(X, g) is conformally equivalent to a closed surface with a finite number of points
removed. However, the integral expressing the norm || V|l is a conformal invari-
ant, and it is easy to find a sequence with the required properties on such a pierced
closed surface. |

Armed with this tool we are ready to prove the claim of Theorem 4.1 under weaker
assumptions. At the same time we will derive two other sufficient conditions which
also apply to surfaces of positive total Gauss curvature. To this end we can no longer
construct a trial function from the threshold-resonance function (x, u) — xi(u),
and have to consider from the beginning functions in which the longitudinal and
transverse variables are coupled.

Theorem 4.2 Let ¥ be a C?-smooth and non-planar surface with the properties
described at the beginning of this section, such that K € L'(X). Let further the layer
Q built over X satisfy assumptions (i) and (ii), then the inequality inf a(—A%) < H%
is valid if any of the following conditions holds true:

(a) K <0,

(b) the layer is sufficiently thin, i.e. a is small enough, and VyM € LIZOC(E),

(¢c) M =00 and Vy;M € L*(2).

Consequently, adisc(—A%) # ) holds under the assumption (iii).

Before proving this theorem let us demonstrate its consequences for layers having a
nontrivial topology, which means that the generating surface ¥ has handles or ends.
Recall that an open set £ C X is called an end of ¥ if it is connected, unbounded
and its boundary O is compact (in particular, it may be empty).

Corollary 4.2.1 Under the hypotheses of Theorem 4.2, we have inf a(—A%) < H%

whenever X is not conformally equivalent to the plane, in particular, for any surface
X which is not simply connected.

Proof Indeed, the Cohn-Vossen inequality says that C < 27 (2 — 2h — ¢), where h
is the genus of X, i.e. the number of handles, and e is the number of ends. [ |

Proof of Theorem 4.2 Part (a) is proved as above with the family (4.10) replaced by
that of Lemma 4.2.1, i.e. we take v, := ¢, x1 which gives

qln) = 11V ul X1 1> + (0. Kbn), -

Since |V, | can be estimated by |V;p,|, by means of inequalities (4.3), the first
term on the right-hand side tends to zero as n — oo, while the second one gives K
in the limit by Lemma 4.2.1 and dominated convergence. This concludes the proof
in the situation when X < 0.

In the critical case, K = 0, we again add a small deformation, ¢, - := 1, + €6,
where now 0(x, u) := j(x)uxi(u) with j being a Cg° function supported in a region
where M is nonzero and does not change sign. This yields
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qln.] = qlibn] + 2 (8, Py) + 2q16].

Since K = 0, the first term on the right-hand side tends to zero as n — oo. The form
in the second term now requires more attention, because the supports of 6 and V1,
are not disjoint in general. We express it as

q(0, ¥n) = (0, 2My du X)) + (Vbu, V) — 20V X1, V)

where the last two terms tend to zero as n — oo by the the Schwarz inequality,
the estimates (4.3) and Lemma 4.2.1, while the first integral is calculated to be
—(j, M¢y,)y as before, with a nonzero limit —(j, M),. This means that one can
conclude the argument in the same way as in Theorem 4.1.

To prove the claim under conditions (b) or (c) we modify the trial function v,
from the first part of the proof by a multiplicative variable-mixing factor taking
Ua(x,u) = (1+M(s, Ou) ¢, (x)x1(u). Since Vb, (-, u) equals

(L+Mu) (Vo) x1 ) +(VM)u opx1 )+ ((1+Mu) ki pn X () +Mpux1 () Vu,

it is easy to see that 1/3,1 € Dom (Q) provided ;M € L%OC(E); recall that the
curvatures K and M are uniformly bounded by assumption (ii). We have

aln] = 2 (1 +al Ml 1160l 1 1P + a1V M| G 1)
-6
1257

(00 KM%0,) .

+ (¢, (K=MD0n) +
9 g

where the inequality giving the factor two comes from the first two terms in V), as

a consequence of (4.3) and Minkovski’s inequality; the second line follows from a

direct computation using the other two terms of the gradient.

Consider first the condition (c). If V,M € L*(2) and K € L'(2), then all terms
on the right-hand side of the above estimate have finite limits as n — o0, except
for the term containing K — M 2 which tends to —oo, hence there is an ng such that
q [1/~Jn0] < 0. The sufficiency of the condition (b) follows from two observations. First
of all, the integral containing K — M? is always negative for any non-planar and non-
compact surface in view of the remark made at the end of Sect. 4.1.1. Furthermore, the
first term in the estimate tends to zero as n — oo because of (4.3) and Lemma 4.2.1,
and the remaining ones vanish for any fixed n as a — 0; recall that /ffz = 4a’ /7>,
Hence we can find n( large enough so that the sum of the first and the third term is
negative, and then choose the layer halfwidth a so small that q[@zno] < 0. |

Notice that the condition (b) confirms the heuristic expectation based on the
formula (4.9), namely that curved layers do have bound states as long as they are
asymptotically planar and thin enough. On the other hand, this tells us nothing if we
have a fixed layer built over a surface of positive curvature, because we do not know
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how thin the layer must be for the condition (b) to apply. Sometimes condition (c)
can be used.

Example 4.2.1 An elliptic paraboloid is another simple quadric in R?, given now
2

by the equation z = Z—; + i—z with b, ¢ > 0. It is asymptotically planar with IC = 27

and M = oo, so the theorem applies for any a < min (357, $¢?) (Problem 8). For

the particular case b = ¢ we are going to derive another sufficient condition in the
following section.

4.2.2 Layers with a Cylindrical Symmetry

There is another class of layers with non-negative total Gauss curvature for which one
can establish the existence of the discrete spectrum with no restriction on the width
other than the local injectivity assumption (ii). They are characterized by a particular
symmetry, namely invariance with respect to rotations around a fixed axis. Suppose
thus that ¥ is a surface of revolution parametrized by a function p : 9 — R3 of
the form

p(s,0) := (r(s)cosf, r(s)sinb, z(s)) ,

where r, z € C? ((0, o0)) and r > 0. This will be a geodesic polar coordinate chart
if we impose the condition 72+ 3% = 1, which means that s is the arc length of the
curves which are radial cuts of X. In such a case we also have /¥ +zZ = 0. An
explicit calculation shows that the Weingarten tensor has a diagonal form, (k") =
diag(ks, k), with the principal curvatures ks = 77 —#z and kg = zr—!. In fact, it is
sufficient to know the function s — k;(s) only, because r, z can then be reconstructed
using relations analogous to (1.5) with & in place of the curvature . Recall that the
total Gauss curvature of a cylindrically symmetric ¥ cannot be negative in view of
the Gauss-Bonnet theorem,

K +2mi(00) = 2, #(00) := lim i (s), 4.13)

since 7/ (00) cannot exceed one in the chosen parametrization. On the other hand, we
assume from the beginning that the total Gauss curvature exists which means that the
limit value 7 (0co) makes sense. In addition, r is bounded from below (being positive)
which requires IC < 27. Since the case K = 0 is covered by Theorem 4.1 we restrict
our attention in the following to situations in which IC € (0, 27], or equivalently,
0 <r(o0) < 1.

The last assumption yields a useful estimate of the angular curvature in terms
of r~! (Problem 9). In combination with Problem 2 this implies that kg does not
belong to L' (R, ). On the other hand, the meridian curvature k; is integrable under
assumption (iv) as the following estimate shows
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/oo Ik (5)] ds < 5—1/°° ks (s)ko ()] r(s) ds < 5—1/00 K (5)|r(s) ds .
S S0 0

S0

These observations give us a hint how to prove the existence of bound states in the
present situation. Even if the mean curvature may decay at infinity, it is not negligible
there in the integral sense. On the other hand, K is supposed to be integrable which
will make it possible to eliminate the term (¢, K ¢), which was for C > 0 an obstacle
in the proof of Theorem 4.1. To this end we have to find a family of trial functions
supported far from the pole of X.

Theorem 4.3 Let 3 be a C2-smooth non-planar surface of revolution, with assump-
tions (i), (ii), and (iv) being satisfied. Then inf U(—A%) < Ii% , in particular,
adisc(—Ag) =% () holds under the assumption (iii).

Proof Wehave noted thatin view of Theorem 4.1 one may assume IC > 0. We employ
trial functions ¥, (s, u) = (Pn(s) + €pn(s)u)x1(u), where ¢ will be specified
later and ¢,, ¢, are localized far from the center of coordinates as n — oco. We
define them as follows: consider three integer sequences {b,}, {c,}, {d,}, such that
0<b, <c, <d,and b, — 00 as n — o0, then we set

In(s /by) In(s /dy)

ln(cn/bn) X[bn,Cn](s) + ]n(cn/dn) X[cmd”](s)

on(s) ==

and ¢, (s) := s_lgon (s). They are obviously positive and uniformly bounded, and as
before, the corresponding functions v, . are not smooth but belong to Q(H). Using
inequalities (4.3) and Problem 2 we can estimate the longitudinal kinetic parts of
q[¢n ] by means of the integrals

o0 o0
Hlema] < €y / en(s)sds,  nldauxi] < 24°C) / da(s)s ds |
0 0

which both converge to zero as n — oo provided the three sequences diverge at
different rates, i.e. ¢, /b, and d,, /c, tend to infinity as n — co. Moreover, the same
is true for the mixed term #1 (@, X1, @t x1) by the Schwarz inequality. On the other
hand, by an explicit integration in the variable u we find that the remaining part
B[Yn.el — /@%meng of the form equals

’—6
(on K on)g — 26(pn, M)y + € [Il%llﬁ + 7;7 (Pn K¢n)g} :
1

In the limit n — oo the contribution of the terms containing Gauss curvature vanish
in view of (iv) and the facts that ¢, and ¢,, are uniformly bounded and their supports
move towards infinity as n increases. In this way we arrive at

lim glne] = lim [26nl3 = 22(on Mon), | (4.14)

n—oo
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on the presumption that the limit on the right-hand side exists. Now we shall make the
parameter € also dependent on n putting &, := (yp,, M <;Sn)g_l which is a reasonable
choice as long as the integral tends to infinity as n — oo for particular choices of
the sequences; in this way we are trying to achieve

lim (Pns ¢n)g

——5 < 2.
n—00 (¢, M(bn)g

In the particular case of cylindrically symmetric surfaces when the information con-
cerning the behavior of M at large distances is available, one can show that the limit
on the left-hand side is zero. Indeed, since k; is integrable and ¢, is chosen in a
way to eliminate the weight » with the help of Problem 2, the contribution from the
meridian curvature in the denominator can be neglected as long as the other part
diverges. Furthermore, the result of Problem 9 allows us to estimate the factor |kgyr|
from below by a positive constant at large distances. Using in addition the result of
Problem 2 in the numerator, we conclude that it is sufficient to check that the limit
of the expression

fooo bn(s)?s ds _ 3
(s en($)bn(s)ds)”  n(n/bn)

vanishes as n — oo. This happens, e.g., if we choose b, = n, ¢, = n?, d, = n’

with n > 2, and such sequences also satisfy the other requirements put forth above.
In this way the described construction yields a family of trial functions which make
the shifted energy form negative for all n large enough. |

Requiring asymptotic planarity, we conclude again that O’disc(—A%) is not void.
The assumption (iii) is necessary, though, because abandoning it we can obtain layers
in which the threshold of the essential spectrum is lowered and no bound states exist
(Problem 10). The proved result concerns various situations which are not covered
by the previous sufficient conditions.

Examples 4.2.2 (a) Hyperboloid of revolution: Consider one of the two sheets of
the hyperboloid given by x*+ y?>—z? tan> ¥ = 1. It is an asymptotically planar and
cylindrically symmetric surface with the total Gauss curvature K = 27 cos? (1 +
sin®)~! which varies over the interval (0, 27) as a function of ¢J. The assumption
(ii) is satisfied provided @ < tan? (Problem 11).

(b) A nonintegrable |V, M |2: There are asymptotically planar surfaces of revolution
with curvatures which satisfy (iv) but violate the other integral requirements. For an
example take kg (s) = s~ 2sins? and reconstruct the functions r, z using b(s) =
fos kg (&) d¢ and formule analogous to (1.5). It is easy to check that there is a positive
csuchthatr(s) > cs forall s € Ry. Thus kyp = zr~! = 0ass — oo because |z] =
| sinb| < 1, and the meridian curvature k; also vanishes in the limit as seen from
its definition. It follows that the corresponding surface ¥ is asymptotically planar.
At the same time, |K|r = |ksz| < |ks| belongs to LI(R+) which gives (iv). On
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the other hand, while it is true that fce = kyr~Ycosb — r~2sinbcosb is an element
of L2(R+, r(s) ds), the same does not hold for the other derivative, Iéx, as is again
clear from its definition. Consequently, the vector V,M = (M, 0) does not satisfy
the requirement in assumption (c) of Theorem 4.2.

In fact, the used construction allows us to make a stronger claim.

Corollary 4.2.2 ﬁadisc(—A%) = 00 holds if the assumptions of Theorem 4.3 are
satisfied and X is asymptotically planar.

Proof One has to find an infinite-dimensional subspace on which the shifted energy
form is negative. To this end it is sufficient to choose the trial function sequence in
the preceding proof in such a way that their supports are disjoint; this happens, e.g.,

if we set by = 27" ¢, = 270+ and d, = 270+, "

Remark 4.2.1 (partial wave decomposition) If the layer 2 has a rotational symme-
try, —A% can be naturally decomposed into parts with fixed angular momentum.
Consider Cartesian coordinates in R* and suppose that the symmetry refers to the
third axis. Using polar coordinates x; = pcos # and x, = psin 6 in the plane x3 = 0,
we can decompose L?(2) and —A% in the same way as one does it for the Dirichlet
Laplacian in a planar layer—see relation (5.15) below. Now one can proceed as in
Sect. 1.1 introducing

pi=r(s)—uz(s), x3:=z(s)+ur(s),

where s is the arc length of the curve which is a radial cut of X; the meridian
curvature k; = 77 — ¥z coincides up to the sign with the signed curvature of this
curve. On Q(J{ := Ry X (—a, a) we introduce g := (1 —ukg)? and the measure
dg := §'/?ds du. Transforming the partial-wave components into the coordinates
(s, u) we get the operators

0 — _5-129 57129 _ 5129 51129 4m*—1
m = —g sg s — 9 ug =

4p(s, u)?

on L2(QF,dj) with {y € HY(F,dj) : Huv € LA, dj), ¥(, +a) = 0}
as the domain for m # 0, while in the s-wave one has to add the condition
limg_0 % (s, )(s/2Ins)~! = 0 (we take into account that r(s) = s(1+O(s)) as
s — 0 in view of (4.2)). From here one can proceed to operators on LZ(QS ) with
an effective potential analogous to (1.8) (Problem 12).

To prove the existence of a nonempty discrete spectrum it is more convenient
to work with the original operator, however, partial-wave components are useful
for a more detailed analysis of the discrete spectrum. Moreover, the decomposition
provides an insight which has inspired the proof of Theorem 4.3, namely that choosing
a family of trial function supported far from the center is a good guess. By (4.13)
we have r(00) < 1 for > 0 and |p(s, u) — r(s)| < a, hence }‘(s_z— p(s, u)72)
represents a long-range attractive potential in the s-wave component. It is also clear
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that in the other partial waves this effect is absent and the existence of bound states
with m # 0 depends on the balance between the curvature-induced attraction and
the repulsive centrifugal term.

The fact that any compact neighborhood of the origin can be left out in the con-
struction of the trial function family allows us to extend the results to a much wider
class of layers such that the generating surface need not be simply connected and
the layer may not have a fixed width or a smooth boundary in a compact region. We
have encountered a similar situation in Problems 1.5 and 1.6, however, now we are
able to make a stronger claim.

Theorem 4.4 Let X be a C?-smooth non-planar surface which has at least one
cylindrically symmetric end with a positive total Gauss curvature. Suppose that the
layer Q built over T satisfies assumptions (i)—(iv), and furthermore, that Q' is a region
in R3 obtained by a compact deformation of Q. Then we have inf O’ess(—A%/) = n%

and £ ogise(—AS) = 0.

Proof Let E be an end with the required properties. If E = X the result follows
from Corollary 4.2.2, in the opposite case we use E to construct a new surface E’
by attaching smoothly to it a cylindrically symmetric cap C, i.e. a simply connected
surface with a compact boundary. Using the Gauss-Bonnet theorem in a way similar
to (4.13) we find that K¢ > 0, and consequently, the total Gauss curvature of E’
cannot be smaller than g which means that it is positive. Then the mean curvature
of E’ behaves at infinity as in the proof of Corollary 4.2.2, and the same is true for the
mean curvature of E. Thus we may use the sequence of trial functions constructed
above because for n large enough their supports are contained in E. Finally, since
the essential spectrum is stable under compact deformations and the trial function
family can be chosen with supports outside the deformation region, the result extends
to . |

Example 4.2.3 Given a € (O, %w), consider a conical layer of a width d given in
the cylindrical coordinate parametrization by

O<z—pcota < — .
sin «

Since the layers of different thicknesses are related by scaling transformations, we can
putd = 7 without loss of generality denoting such a layer as €2,. It does not fall into
the class of smoothly curved layers discussed so far, of course, but it can be obtained
as a compact deformation of the layer built over a smoothed cone. By (4.13) the total
Gauss curvature of the latter equals 27 (1 — sin &), hence inf Uess(—A%“) = 1 and

ft adisc(—A%“) = 00. Notice also that for small « one has a lower bound analogous
to that of Proposition 1.2.1 (Problem 13). While this is a weaker claim than that
following from Theorem 4.4, it suggests that a very sharp cylindrical layer may also
have numerous bound states supported in the vicinity of its tip.
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4.3 Locally Perturbed Layers

Similarly as in the case of strips and tubes, there are other binding mechanisms which
can give rise to localized states. Some are of non-geometric type being based, for
instance, on an attractive potential or a suitable modification of the kinetic term of
the Hamiltonian in a direct analogy with the considerations of Sect. 1.4. We leave
this to the reader (Problems 14 and 15).

A geometric binding mechanism is based on suitable local deformations of the
layer. For the sake of simplicity we limit ourselves to discussion of a one-sided and
strictly local layer protrusion defining Q/{ as

Q = {(F=@yeR: xeR: 0<y<d+Af(x)) (4.15)

with A > 0 and a fixed compactly supported function f; for convenience we may
drop indices A or f from the notation. Then we have the following result.

Theorem 4.5 Let f : R? — [0, 00) be bounded, and suppose that there are n) > 0
and an open set W C R? such that f(x) > n holds for x € W. Then —A%\ has at
least one discrete eigenvalue whenever \ > 0, and furthermore, there is exactly one
such eigenvalue for all \ small enough.

Proof A standard bracketing argument shows that the essential spectrum of —Ag*
is [/@%, oo0) where k1 = m/d as usual. Due to the eigenvalue monotonicity of the
Dirichlet Laplacian with respect to a domain expansion we may suppose without
loss of generality that f € C{° (R?). Indeed, if this is not the case, we can find
g, h € Cgo (]Rz) such that 0 < g < f < h. Since the essential spectrum threshold
is the same for all of them, the existence result for Qg\ implies eigenvalue existence

for Qf\‘ , and vice versa, from the eigenvalue uniqueness of the Dirichlet Laplacian in

Qﬁ the same property for Qf\c will follow.

Now take R large enough to have supp f C Bpg, where Bp is the disc of radius
R centered at the origin. For an arbitrary 6 € (0, 1) we employ the function ¢; :
R? — [0, 1] which is equal to one in Bg and

R
ds(x) = |1n5|—1(1n —x)+ for |x| > R.

Choosing € € (0, \) we have Q. C €2); we define a trial function u. 5 on Q) by

. 2 . Ty
us 5(x,y) 1= ds(x) \/:f(x) st (d + 5f(x))

for (x,y) € Q¢ and u. 5(x, y) := 0 elsewhere. It is straightforward to check that
Ue s € HOI(Q,\) holds for all § € (0, 1) and € € (0, \); by a direct computation we
obtain the inequality



http://dx.doi.org/10.1007/978-3-319-18576-7_1

122 4 Dirichlet Layers

2

2 2 2 -1 2 - 2
IVue 1% = 57 luesll* < (o]~ + Ce +/R2((d+5f(x))2 #?) dx,

where the constant C depends on R only. Taking € = |In §|~!/? and § small enough
we can make the right-hand side of the above inequality negative which proves the
existence of an eigenvalue below li%. For the uniqueness for A\ small enough we refer
to Remark 4.3.1. |

In connection with the second claim of this theorem one naturally expects that
the number of such eigenvalues will increase with the growing bulge on the layer.
The next result justifies this conjecture and makes it more precise in terms of the
deformation function f. Asin Sect. 3.1 we use the notation N(H, €) := fo(H —¢€)—
in which we drop e when it is clear from the context.

Theorem 4.6 Let f € Ci° (R?) be supported in the disc By C R?* centered at the
origin and || fllo < d. Then there are constants C;, j = 1,2, 3, depending on f
and the radius R, such that the number of eigenvalues is bounded by

N(= AP, K}) < N(=Ap2 +3Vyp), (4.16)

where the Schrodinger operators on the right-hand side contains the potential term
determined through the formula

» fQ2d+ f)

gy TO IVFIP+ CIAfPP+ C3 VI

Vii=—k

Proof 1t suffices to prove the claim for A = 1. We write 1 instead of Q{ ' throughout
in order to simplify the notation; to distinguish the operators used, we write V, and
A for those acting in L?(R?). Any trial function 1) € Hj (1) can be written in the
form

Y(x, y) = @x, ) g(x) + h(x, y), (4.17)

o(x, y) = |2 n (L) ge H'(R?)
’ d+ f(x) d+ f(x))’ ’

and i € HO1 (£21) is transversally orthogonal to the lowest mode, i.e.

where

d+f(x)
/ p(x, y)h(x,y)dy =0 forall x € R?. (4.18)
0
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The quadratic form of —A%‘ — Ii% can be for such a ¢ expressed as

/Q(|vw|2—m%|w|2)(x,y>dxdy=/ (VP19 + 1Vx gP1l? + [V
1

Q)

— 5} (19 g + 1h1%) + 29V - Vih +2gpVip - Vog + 29 8y dyh
+2pVyg- Vxh) (x,y)dxdy.

To estimate the first two mixed terms in the above identity we note that

2190 Ve - Vigl < ay 'l Vegl* +ar lgVepl?,
219 Vg - Vih| < a5 ' |Veh* + a2 1gViepl?, (4.19)

where aj and a; are real positive numbers the values of which will be specified later.
As for the last two terms on the right-hand side of the quadratic form expression,
integration by parts in combination with (4.18) gives

/g8y<p8yhdxdy=—/ gh@iapdxdy:O,
Q1 Q)

/apng-Vxhdxdyz/ g(Axph 4+ Vyip-Vih)dxdy.
Q) Q)

The product gV, - Vh is estimated as in (4.19), for the rest we use the inequality
lg Axph| < asg® |Aspl* + a5 h* Xy,

where X s denotes the characteristic function of the support of f. Now we put a; =
ap = 3 arriving thus at the inequality

772 1 -
/ (|vw|2 -7 W) dx dy z/ (— IV, 9> + vf<x)|g|2) dxdy
Q) R2 3

1 _
+/Q (5|vxh|2+|ayh|2—m%|h|2—a3l|h|2><f) drdy  (4.20)
1

with

2

- T 2 a+f ) 2 2
Vf(x) = m — K] _/() (8|Vx80| + a3z Aol ) dy.

The function /4 satisfies Dirichlet boundary conditions at €2, hence it can be
extended continuously by zero to H'! (R% x (0, 2d)); with a slight abuse of notation
we will also use the symbol /4 for this extension. From the assumption || f||co < d
and from (4.18) we then deduce that
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/ ( Vi hI? + |0yh|?* — K B> — a3 |h|2xf) dx dy

// ( IV b2 + 362 |h|? (a;‘+3m%) |h|2Xf) dxdy
R2 .

2d
+/ / (—IVXhlz—a;I |h|2) dxdy.

d supp f 3

Since h(-, y) € Hl(supp f)forevery y € (d, 2d) and since supp f C Bg, it follows
that the last term is non-negative for all a3 > 3u(R)™!, where p(R) is the lowest
eigenvalue of —A, on the disc Bg with Dirichlet boundary conditions. Moreover,
the expression in the second line can be bounded from below as

d 1
/0 /R2 (5 Ve h? + 362 |0 — (agl +3n§) |h|2X,,») dx dy
d 00 27
1 0
= ([ (Grman? 4 R (36 xnm = 22)) raras) ay.
0 0 0 as

where we have employed the polar coordinates (r, 8) € (0, c0) x [0, 27). In view
of Problem 16, the left-hand side of the last inequality is non-negative for a3 >

max {8R2, %nl_z}, thus we can choose

1
a3(R) = maX[3l€1 s 8R2 3u(R)™ 1]

Now it remains to estimate the first term on the right-hand side of (4.20). By a direct
calculation we arrive at

d+f
/0 (81720 + as(R) 1Aol?) dy = €1 IVfP + CoIAfP + C3 IV I,

where C1, Cy, C3 are positive numbers which depend only on R. Finally, combining
(4.20) with the orthogonality condition (4.18) we obtain

1
[ (0P =Py avay = 5 [ (19e9P+3v,0010%) ax. @2n
Q R2

Let us show that the last inequality implies (4.16). To this end we consider the
subspace Mo C L?(RR?) spanned by the eigenvectors corresponding to the negative
eigenvalues of —Ag> + 3V in L?(R?). Its dimension obviously does not exceed
N(—Ag2 + 3Vy). Next we define My C L2(Q1) by My := {g¢ : g € Mo). We
assume that v L Mo and write ¢») = g + h as in (4.17). Then we have g ¢ L My,
and since fé”f(x) lo(x, y)|2dy = 1 holds for all x € R, this means that § L M.
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This means that the right-hand side of (4.21) is non-negative, hence by the variational
principle we find

N( N I{%) < dim My = dim Mo < N(—Agz +3Vy).

which concludes the proof. |

Remark 4.3.1 The estimate (4.16) in combination with the uniqueness of the weakly
coupled eigenvalue of two-dimensional Schrodinger operators yields the remaining
claim of Theorem 4.5, namely that —Ag* has exactly one simple eigenvalue below
H% for A small enough, because the potential is then dominated by the negative term
linear in \. We are going to return to this problem in Chap.6—see in particular
Theorem 6.6—where we shall explain that positivity of f is in fact not needed in
this case.

4.4 Laterally Coupled Layers

Next we turn to the three-dimensional analogue of the window-coupled waveguides
discussed in Sect. 1.5. Consider a pair of adjacent layers of widths d; > 0, j =1, 2,
and fix a bounded set W C R? which will play the role of the window connecting
the two layers. In analogy with the two-dimensional situation we set  := R? x
(—da, d1) \ Byy, where Byy := R2 \ W, and define H (dy, d>; W) in L%(Q) as the
corresponding Dirichlet Laplacian — A%. The analysis again simplifies in the mirror-
symmetric case, d| = d», when the antisymmetric part is trivial and the symmetric
one reduces to the investigation of the Laplacian in L2(R? x (0, d)) with Neumann
boundary conditions on ¥V x {0} and Dirichlet condition on the remaining part of
the layer boundary.

Theorem 4.7 Let VW C R? be open bounded setand d = max{d, d»}. The essential
spectrum of H(dy, dy; VW) coincides with the halfline [e4, 00), where €4 := (5)2,
and odisc (H(d1, do; W) is non-empty whenever YW # (. Moreover, if W = aM for
a fixed simply connected set M C R? and a > 0, then H (dy, d»; W) has exactly one
eigenvalue below ¢4 for all a small enough.

Proof Thefactthat oess(H (d1, d2; VW)) = [€q4, 00) follows by a bracketing argument
analogous to the one used for window-coupled strips in Sect. 1.5.1. Concerning the
existence of the discrete spectrum we first note that as an open set YV contains
a disc and that shrinking the window to it raises the eigenvalues. Hence to prove
that ogisc (H (d1, d2; VV)) is non-void we may assume without loss of generality that
W = Bpg, where Bp is a disc of radius R > 0. Consider first the symmetric case,
d; = dy = d. Here we employ trial functions of the form ¥y (x, y) = fu(x) x1(y) +
ng(x, y) with
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Ko(Alx])

Fr(x) := min {1, R

b gty =airo),

where Ko(-) is the Macdonald function, ¢ is the normalized ground-state eigenfunc-
tion of the Dirichlet Laplacian —A}/)V on W = By, extended by zero to the whole R?
and corresponding to the eigenvalue ;11 > 0, and

e VHIY ... YE
r(y) = .

0.4
2(1 = et

)
[3d.d)

Using integration by parts in the variable y and the fact that V f) and V¢; have
disjoint supports, we can express the quadratic form in question as

Vel 72 @2y — €allvnlFagey = IV A2 ga) + C1n* = Can,

where C| and C > 0 are constants independent of A\ and 7. The first term on the
right-hand side can be for our choice of f) calculated explicitly,

IV Al 72 gy = (VR* K{OAR)? — (1+ X RHK1(AR)) ,

s
K3(\R)

and using the relation — K { (z) = Ko(z)+z~! K1 (2) in combination with the behavior
of the modified Bessel functions as z — 0 we arrive at the estimate

C3

Cin* - C
ln)\R+ 1 21

IVOAIZ2 g2y = €alOrFagey < =
for some C3 > 0. Hence choosing appropriately small values of A and n we can
make the right-hand side of this inequality negative which implies that the discrete
spectrum of H(d,d; VW) is nonempty. If di # d> the trial functions have to be
modified. The starting point is the product f)(x) x1(y) corresponding to the wider
one of the two layers, followed by a suitable modification of this function in the
window; we leave this to the reader (Problem 17).

To prove the second part of the statement, consider the family of scaled window
sets, YW = aM. We impose an additional Neumann boundary condition at OWW x
(—d>, dy); this yields the operator H N(dy, d»: W) which is a direct sum of three
parts. The spectrum of the “outer” parts taken together is obviously [e4, 00), while
the “inner” part HCN(dl, d>; W) is the negative Laplacian in L2 x (—=da, dy))
with Neumann boundary conditions at YV x (—d, d1) and Dirichlet conditions at
the remaining part of the boundary; its discrete spectrum clearly coincides with the
eigenvalues of HCN (d1, d2; W) lying below €4. On the other hand, by separation of
variables the eigenvalues of HCN (d1, d; VW) are equal to

i (M) w2n?
a? (d1 + da)?

with j,n>1,
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where {11; (M)} jeN are the eigenvalues of the Neumann Laplacian in L?(M). Since
pj(M) > 0 holds for j > 2, it follows that for a small enough the second eigen-
value of HCN (d1, dr; W) equals 472 /(dy + d2)2 > €4, in other words, the operator
H" (dy, d»; VW) has exactly one eigenvalue below e, for a sufficiently small. Finally,
since H(dy,d»; W) > H N (d1, d2; VW) holds in the sense of quadratic forms, the
same is true for H(dy, do; W). |

4.5 Notes

Section 4.1 For geodesic polar coordinates and other geometric notions used here
see, e.g., [Kli]. The material of this section is taken from [DEKO1], where conditions
(b) and (c) of Theorem 4.2 were also proved under stronger assumptions, see also
[DEKOO]. The sufficient condition for invariance of the essential spectrum mentioned
in Remark 4.1.1 can be found in [KrO1]. There is some freedom in the choice of the
mollifier in the proof of Theorem 4.1, but the functions (4.10) are in a sense the most
natural ones containing the free Green’s function at small negative energies.
Section 4.2 For Huber’s lemma see [Hu57], for the Cohn-Vossen inequality
[CVo35]. Notice that only the limit K — 0 is needed in order to establish the
upper bound in Proposition 4.2.1; the latter comes from [CEK04] as well as Theo-
rem 4.2. If the layer is not asymptotically planar, the spectral threshold may be lower
than /1% and the spectrum may still be absolutely continuous—cf. [ESS90].

The relation (4.14) derived in the proof of Theorem 4.3, which is adopted from

[DEKO1], can be used even without the surface symmetry, once we are able to show
that the limit at its right-hand side is negative. A part of Theorem 4.4 stating the
existence of bound states in layers with cylindrical ends comes again from [CEK04],
a more detailed analysis of the Dirichlet Laplacian spectrum in conical layers men-
tioned in Example 4.2.3 can be found in [ET10]. Other sufficient conditions for the
existence of bound states in terms of the layer geometry have been established in
[LR12]; the analogous problem in higher dimensions was discussed in [LLO7].
Section 4.3 Weakly coupled eigenvalues of two-dimensional Schrédinger opera-
tors are analyzed in [Si76]. The asymptotic behavior of the eigenvalues of —A%* as
A — 0 will be discussed in detail in Chap. 6, see especially Sect. 6.2.3. Theorem 4.6
is a particular case of a more general result proved in [KVOS].
Section 4.4 The proof of existence of the discrete spectrum in window-coupled
layers is taken from [EV97b], its extension to the non-symmetric case, d; # da,
can be done in analogy with the analogous two-dimensional problem [EV96]. The
behavior of the lowest eigenvalue of H (d1, d2; aM) inthe limita — 0 will be treated
in Chap. 6. Dependence of the discrete eigenvalues in window-coupled layers on the
shape of the window was studied in [Bo07]. A model of a Dirichlet layer with two
concentric Neumann discs of different radii on the opposite boundaries was discussed
in [NO11].
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4.6 Problems

1. There are surfaces diffeomorphic to R? having no pole.
Hint: Consider a sphere and a plane connected smoothly by a long thin tube; destroy
the cylindrical symmetry by changing the sphere to an ellipsoid—see also [GM69].
2. Let K € L'(2, do) and denote by || K |4,1 the corresponding norm. Then the

inequality foh r(s,0)df < 27 + |[K|lg,1)s holds for any s > 0, and moreover, the
same is true, possibly with another constant, if /C exists as a principal value only.
Hint: Integrating (4.2) we get 7/(s, 0) < 1+ fooo |K(C, 0)|r(C, 8)df when the initial
condition is taken into account, then integrations over # and s yield the result.

3. Verity relations (4.7) and (4.9).

4. Prove relation (4.11) by computing the integral.

5. Check the claims made in Examples 4.1.2.

Hint: ky» = 2g~"! [2(y2—x2) +./9+ 4(y2—x2)2] with g = 1+4(x2+2) holds
in the first case and K = —36¢72(x?+y?) with g = 14+9(x2+y?)? in the second
one.

6. Prove the inequality inf oess(—A%) > f@'% in Proposition 4.2.1.
Hint: Adapt the proof from Proposition 4.1.1 replacing the geodetical balls used
there by a suitable family of compact subsets of X.

7. (a) Prove that M,, := % in the second one of relations (4.6) is the mean
curvature of the parallel surface ¥, = £(Xo x {u}); compare to Problem 1.1.

(b) Check the identity —Ax (u) = 2M, X} () + K7 x1(u).
Hint: Use |Vu| =1 and —Au =2M,,.

8. Check the claims made in Example 4.2.1.
Hint: K = 4(gbc)~% with g = 14+4(x2b24y2c ) and M = O(r— ) asr — oo.
9. Let K > 0, then there are positive d, so such that 6r(s)~! < |kg(s)| < r(s)~!
holds for all s > so and the function ky does not change sign there.
Hint: |kg| = r~"V1—72.

10. Find an example of a layer over a surface ¥ diffeomorphic to R? and equipped
with geodesic polar coordinates, which has no bound states.
Hint: Consider a cylinder with a hemispherical “cap” and employ Neumann brack-
eting, then take a smooth deformation of the connection part and use the domain
continuity of Dirichlet eigenvalues [RT75].

11. Find the Gauss curvature and the bound p,, in Example 4.2.2a. Check that the
surface used in the second part of the example has K = 27 (1 —Cos \/g) ~ 1.38.
12. Work out the details of the partial-wave decomposition of Remark 4.2.1.

13. Let Q2 be the conical layer of Example 4.2.3. Check that there is a C > 0 such
that the bound £ Udisc(—A%‘) > Ca ! holds for all o small enough.
Hint: Modify the proof of Proposition 1.2.1 inserting a cylinder into the tip region.
14. Consider the operator Hy = —Ago in L2(QO), d >3, where Qo = R x M
with M c RY~2 open and precompact, and its potential perturbation H = Hy + V
defined through the quadratic form analogous to (1.24). Check the following claims:
(a) Proposition 1.4.1 remains valid in this case.
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http://dx.doi.org/10.1007/978-3-319-18576-7_1
http://dx.doi.org/10.1007/978-3-319-18576-7_1
http://dx.doi.org/10.1007/978-3-319-18576-7_1

4.6 Problems 129

(b) Put X = (x, y) withx € R? and y € M. Under the same assumptions about the
potential V, the condition [ [,, V(x, y) x1(»)? dX < 0 implies ogisc (H) # 0.
15. Extend the claim of Proposition 1.4.3 to d-dimensional layers.

16. Prove that for any u € H' (R, r dr) and any R > 0 one has

R 2R 8 2R
/ lu(r)*rdr < / () rdr+ = R? / ' (r)[*rdr .
0 R 3 0

Hint: Consider the function ¢ : Ry — R which equals one in [0, R], zero for
r > 2R, and interpolates linearly between the two values in [R, 2R]. Use the fact
that for any r € (0, R) we have

2R 1 2R 2R
u(r) = orju(r) = —/ (Qu)' (1) dr = R / u(t)dr — ou'(r)dr,
r R r

then apply the Cauchy-Schwarz inequality.
17. Complete the proof of Theorem 4.7.


http://dx.doi.org/10.1007/978-3-319-18576-7_1

Chapter 5
Point Perturbations

So far we have supposed that the only interaction to which a single particle in a spatial
region 2 is exposed comes from its boundaries reflecting their geometry. This is
naturally an idealization. Among various sources of additional interactions, material
impurities often have to be taken into account. In particular, they are important when
we model semiconductor microstructures: we have argued in the introduction that
the free motion away of the boundary requires a perfect crystalline structure of the
material, i.e. an infinite mean free path.

It is clear that the problem of introducing local perturbations is in general quite
complicated. Fortunately we can get a useful insight if we employ another idealiza-
tion, this time supposing that the impurities have a point character. This hypothesis
reflects well the fact that the impurities, typically consisting of a single alien atom in
the lattice, are much smaller that the system size, and at the same time it simplifies
the solution considerably. Point interaction models are used in quantum mechanics
from the thirties. They came to use only slowly, however, in part because it was not
clear at the beginning what was the proper way to treat them mathematically.

A suitable framework was found in the theory of self-adjoint extensions. If we
want to construct a Hamiltonian with point interactions supported by a discrete set
{a;} of points in the configuration space, we employ the following procedure. Due
to the character of the interaction it is natural to require that the sought operator
acts as the free one, in our case as —A%, outside the interaction support. Restricting
—A% to functions which vanish at the points a; we get a symmetric operator with
equal deficiency indices; we look for the Hamiltonian among its “local” self-adjoint
extensions characterized by appropriate coupling constants (see the notes). The main
advantage of such a model is that the resolvent of the full Hamiltonian can be written
explicitly through Krein’s formula; this makes it possible to turn the spectral analysis
into an essentially algebraic problem. Throughout this chapter we suppose that the
number of point perturbations is finite.
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5.1 Point Impurities in a Straight Strip

Let us begin with the simplest case of a straight planar strip 2 := R x (0, d) at which
the free motion is governed in the chosen units by the Dirichlet Laplacian —A%. Its
domain and some cores are described in the introduction to Chap. 1, in particular, the
condition (1.2) now reads

Y(x,0) =9(x,d) =0

for all x € R. Since a change of the strip width amounts to a simple scaling trans-
formation (Problem 1) we put d = 7 everywhere in this section.

The abstract scheme of constructing point interaction Hamiltonians simplifies here
in view of two facts. First of all, we deal with second-order differential operators
where the described restriction and subsequent extension means just a change of
boundary conditions at the interaction sites. Furthermore, such a modification of
the operator domain bears a local character which means that we may adopt the
boundary condition which determine two-dimensional point interactions in Q =
R%2—cf. [AGHH, Sect. L.5].

On the other hand, the boundary conditions must be introduced with some care,
since they involve generalized boundary values at a point a € €2 defined as

Lo =~ Jim 0 10,3 = Im [w(z) + Low.a) A 'x_al],
xX—a n|x—a| xX—a 27
(5.1)

which relate v to the corresponding fundamental solution of the Laplace equation.
Given N-tuples o := {aq, ..., any} CRanda :={aj,...,ay} C Q we define the
point-interaction Hamiltonian H, ; by the boundary conditions

L1(1/J,&j)-0¢jL0(1/1,(3j)=0, j=1,...,N; (5.2)
since €2 is kept fixed we do not indicate it in the symbol. In other words, this operator

acts as (H, z0)(X) = —(Ay)(X) for X # a, in the sense of distributions, on the
domain

Dom (H, 3) = {q/; e H @\ {a}): —Av e L¥and (1.2), (5.2) are satisﬁed} .

The parameters o play the role of coupling constants. The absence of a point inter-
action at some @ is expressed by the requirement Lo (¢, a;) = 0 for all ¢) from the
domain which can be formally achieved by putting o/; = oo.
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5.1.1 A Single Perturbation

Consider first a single perturbation, N = 1, of the free Hamiltonian Hy := —A%
supported by a point d := (a, b) with b € (0, ). To find the resolvent of H,, ; we
start with that of Hy. We use the decomposition into transverse modes, L2(Q) =
@Zozl L*(R) ® {xn}, where Y, is instead of (1.10) a basis modified for the “one-

sided” strip, x,(y) = \/g sin(ny). Then the free Hamiltonian can be written as
o
Hy=@ hn®1lp. hy:=—0;+n (5.3)
n=1

with Dom (h,) = H?*(R). It follows that the free resolvent is an integral operator
with the kernel

L. e - i & etkn@bi—xl )
Go(x1, x2;2) = (Ho—2)" (X1, X2) = — —————— sin(nyy) sin(nyz),
™ kn (2)

n=1

where X; = (xj, y;) and k,(z) := ~/z—n? for z in the resolvent set of Ho, i.e.
z € C\[1, 00). The function G (-, -; z) is defined and smooth except at the diagonal,
X1 = X, but the sum on the right-hand side may not converge absolutely if the
longitudinal coordinates coincide, x; = x3. Moreover, the right-hand side makes
also sense for all non-integer z > 1, where it gives the boundary value of the kernel
at the cut; one has to properly choose the branch of the square root in k;,(z). Forz < 1
the kernel is strictly positive, G (X1, X2; z) > 0 for all mutually different X1, X, €
—cf. [RS, Appendix to Sect. XIII.12].

Proposition 5.1.1 The resolvent kernel of H,, ; equals

Go(X1,a; 2)Go(a, X2; 7)

(Hoz—2)"'(F1, %2) = Go(F1, %23 2) +

o —&(@a; z) ’
where
L i (sin’(nd) 1

n=1

Proof Since H, ; and Hp have a common symmetric restriction with deficiency
indices (1, 1), their resolvents differ by a rank-one operator. Its kernel is by
Krein’s formula equal to AGo(X1, a; z)Go(a, X2; z), so it remains to determine the
coefficient A. We use the fact that by definition (H,, ; —2)~! maps into Dom H, ;.
Writing ¥ = (H, ; —2)"'¢ and Yy = (Hy—2z)~'¢ for an arbitrary ¢ € L?*(),
we get
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A &, pikn(@)x—al

YY) =doe, ) + = > S sin(ny) sin(nb) do(a. b).
™ — ku(z)

Since 9 € Dom (Hp) is smooth at X = d, the generalized boundary values can
be written as L (v, a) = Lj(a)yo(a). The diagonal singularity of the resolvent
kernel for planar regions with a smooth boundary is well known [Ti, Chaps. 11, 14],
and it can also be evaluated directly (Problem 2). We find £y(a) = —\ which in
turn yields £1(a) = 1 + M\(@; z). Using now the boundary conditions (5.2) we get
A= (a—E&@; )~ |

Remark 5.1.1 Intherationalized units with i /2m* = 1 and ¢ = 1 the energy has the
dimension of length’z; the choice d = 7 then refers to this natural length scale. For
another value of d the logarithmic factor in the definition of the regularized boundary
values is replaced by In |k1 (X — a)|, where k,, := 7n/d as usual. In that case Lo (a)
does not change, while £ (a) acquires in addition to the scaling the additive factor
(27)~'1n k1. The denominator in the Krein formula is then o — &4(a; z), where

. 0 )

- i sin”(k,b) d 1
N = - - 1 3
Sal@a =72, ( k@) 2min ) tog

n=1

with k,(z) := \/z — k2. Hence changing the width of the strip Q is equivalent to a
shift in the coupling constant for a fixed d, in other words, to replacement of « by
a—Q2m) nky.

It is clear from the expression of the resolvent that the function £ plays a crucial
role. Let us review some of its properties.

Proposition 5.1.2 The function £(a; -) is for a fixed a € 2 analytic in p(Hp)
depending on the transverse component of a only. On (—oo, 1) it is increasing with
&ayz)=m'1=2)"Y?sin’ b+ O(1) as z — 1— and

1 z 1 =
-); =__1 (_ _)__ O( - _Z)
Saa)=—goin{~3) ~ e+ ol
as 7 — —oo for any ¢ < 1, where vg = —(1) = 0.57721 ... is Euler’s constant.

We also have

Ea;z) > €@z if b—g’<

py-T
>l

Finally, the series (5.4) also converges in [1, 00)\{n*},en giving boundary values of
&(a; +) at the cut which are smooth away from the thresholds; the choice of the branch
of the square roots in k,(z) determines the corresponding sheet of the Riemann
surface.
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Proof 1t is useful to introduce x, (z) := —ik,(z) = +/n% — z, then

1 < (sin’ 1 1 = kn(Z) — kn
€@ ) = ;; (S‘“ nh) _ —) = £+ > I G

Kn(2) 2n pr A COLZCD)

holds for any z, 7/ € C\[1, c0). The series on the right-hand side converges because
the coefficients at sinZ(nb) decay like Om=3)asn — co. Moreover, they are analytic
for z, z’ in any bounded subset of p(Hp) and the series converges uniformly there.
Since £(a; 7') exists for a particular z' (Problem 4) the first claim follows. The above
identity also gives convergence for z > 1 away from the thresholds, the smoothness
of £(a; -) there, and the inequality

98 1 < sinZ(nb)
= =— — >0
0z 2m Rn (Z)3

n=1
for z € (—o0, 1), which yields the monotonicity. The asymptotics for z — 1— is
obvious, for z — —o0 see Problem 5. To prove the monotonicity across a halfstrip,
we use the identity sin(nb) — sin>(nb’) = sin(n(b+b")) sin(n(b—>b")) for 0 < b’ <
b < 7 ; it shows that

€(d;z) — €@ 2) = Go(0,b+b0,b—b';2),

hence the result follows from the positivity of the free-resolvent kernel. |

A single-impurity Hamiltonian then has the following spectral properties.

Theorem 5.1 For any a € Q and o € R we have Oess(Hy i) = 0ac(Hp ) =
[1, 00) and 0s.(H, z) = Y. Moreover, H, ; has one eigenvalue €., ; € (—00, 1). The
Sunction o — €, ; is real-analytic and increasing and has the following asymptotic
behavior,

) 2
sin“ b
€aag =1— ( ) +0@™),
TQ
€ag = —4 e 4ma—2E (1 -0 (exp (—29 ezm)))

with any o < dist(a, 0Q) = § — ‘b — %Lforoz — 00, respectively. Furthermore,
proximity of the boundary pushes the bound-state energy up,

. m , o
€od < caq if b—§)<b—§.

Finally, there are no eigenvalues embedded in the continuous spectrum.

Proof The essential and absolutely continuous spectrum are preserved, since we
have a rank-one perturbation in the resolvent. Let {E;} be the spectral measure of
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H, ;. To prove the absence of the embedded eigenvalues away from the thresholds,
itis sufficient to check that — (¢, E;1)) isforall ¢ € L?(X) a continuous function
in any open interval / C (n%, (n+1)2), n € N. This follows from Stone’s formula
and the fact that the boundary values of the full Green’s function are smooth by
the two preceding propositions; recall that the denominator in the expression of the
resolvent cannot be zero in [1, 0o) as the hint to Problem 8 shows. In the same way
we get

1 .
G (E=Ey) = [ 1 (4, (Hog=07'0) du.
fo

The left-hand side is thus a smooth function of ¢ away from the thresholds, so the
singularly continuous spectrum is absent. To determine the point spectrum, one has
to solve the equation

{d;z) =a. (5.5)

The existence, uniqueness, and properties of the solution follow easily from Propo-
sition 5.1.2; the asymptotics for a — —oo is obtained by a bracketing estimate
(Problem 5). It remains to check the absence of eigenvalues at thresholds, which can
be done directly (Problem 6). |

Remark 5.1.2 The residue at the pole given by (5.5) provides us the (non-normali-
zed) wave function of the bound state, ¢, ; = Go(:, d; €4.3), or more explicitly

—kn(€q,a)lx—al

Z sin(ny) sin(nb) .

daa(®) =
o Fon(€0,3)

The limits &« — Foo are naturally associated with the strong- and weak-coupling

regime, respectively. If o decreases, ¢, ; becomes well localized and approaches

the Hankel eigenfunction of the point interaction in the plane (Problem 7), while in

the limit « — oo we have

— 2
boa (@) = o S0Y sin y e lv—al sin? b/ma 4 — Z et sin(ny) sin(nb) +o(1);
sin b = Jn2

the leading term here is the product of xi(y) with the eigenfunction of the one-
dimensional attractive point interaction of strength —(2/7a)sin®b, of course,
smoothed at the segment {a} x ((0, d)\{b}) by the other terms.

Let us turn now to scattering by the point impurity.

Proposition 5.1.3 The wave operators for the pair (Hy, H,, ;) exist and are asymp-
totically complete. Moreover, the on-shell operator S(k) at an energy z = k> €
(1, co)\ (1%}, en is a unitary 2[/z] x 2[/z] matrix with the blocks
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R k_m Tnm Cnm
o ky, Fum tam )
where k, = k,(z) := ~/z—n2, the indicesn,m =1, ..., [/Z], and the transmission

and reflection coefficients are given by

i sin(nb) sin(mb)

™ k(D) (=@ 2)

(tpm (k) — Opm) elkm—kn)a _ . (k) o—ikn+tkm)a _

with the tilded (right-to- left) amplitudes obtained by changing the sign of a, i.e.
Prm = Tnm e 2iknthna gpq tnm = Oum + (tam _5nm)ezl U —kn)aa,

Proof Since the perturbation is rank-one in the resolvent, the first claim follows
from the Birman-Kuroda theorem [RS, Sect. XI.3]. To find the scattering matrix, we
employ Proposition 5.1.1: to any ¢ € Dom (H,, ;) and a non-real z there is a unique
decomposition

- - 1 . -
(X)) =Y (X) + ———=— Go(x, a; 2)¢:(a)
a—&(a; 2)

with ¢, € Dom (Hyp) and (H, ; —z2)¢ = (Ho—2z)v,. If we choose, for instance,

PI(X) = elkn(2)x _Exzxn (y) for,, then the corresponding ¥° belongs to Dom (H,, ;)
for all ¢ > 0 and

((Hoa =2009) () = 25 (2662 =120k (%) V5 ().

The right-hand side makes sense on the real line, hence ) € Dom (H,, ;) for z €
[1, 00) and the last relation holds again. We have [|[¢°| = O(e~ /%) as e — 0+,
while the norm of the right-hand side is O(c!/#). Furthermore, the pointwise limit
(X)) = lim._, o 1°(X) exists and

eikn (2)a

$(E) = O, () + ———— Go(F, d; 2)xn(b) .
a—&(a; 2)

The function belongs to leoc, satisfies the appropriate boundary conditions and solves
(H, ; — 2)¢ = 0 as a differential equation, i.e. it is a generalized eigenvector of the
operator H,, ;. Substituting for G and comparing the coefficients of the plane waves
in different transverse modes as x — 300, we get 1y, (z) and t,,,,, (z) for the incident
wave corresponding to the n-th transverse mode; for the right-to-left amplitudes
one has to change k, to —k,, in the above Ansatz. It is clear that an asymptotically
non-vanishing quantity is obtained only if both the involved channels are open, i.e.
z > max{nz, mz}. Finally, the S-matrix must be normalized with respect to the
relative velocities. Its unitarity follows from the completeness of the wave operators
but it can also be checked directly (Problem 8). |
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Let us finish the single-impurity case with a brief discussion of scattering reso-
nances. The square rootin each k, (z) = +/z — n? givesrise to acut; hence Go (¥, d; -)
as well as other quantities derived from it are in general multi-valued with infinitely
sheeted Riemann surfaces. It is then possible that the pole condition (5.5) has solu-
tions on the other sheets.

To fix the branch set g, (z) := ~/z — n? with values in the upper complex halfplane
or at the positive real halfline. Given positive integers N, n define 9,1,\’ =—lifn <N
and 0 = 1 otherwise, then we will use

kN (2) := 0N gu(2) (5.6)

as the channel momenta on the N-th sheet. The condition (5.5) then reads

< N -1 2 1 | - N -1 -2
a+ - ; (9n Imgq, " (z) sin“(nb) + Zn) =0= - ;9,1 Re g, " (2) sin“(nb).
The most interesting situation arises in the weak-coupling regime, o« — 00, when
there is generically one resonance pole close to each threshold, with the exception
of the lowest one; the resonance is absent if Nb/7 is an integer so that the incident
wave has a node at the impurity. To explain this claim, let us decompose the N-th
branch of the function £(@; -), N > 2, into the sum £V (a; z) + £V (a; z), where
the two terms include contributions withn > N and 1 < n < N —1, respectively.
Suppose that the latter is switched on with the help of an additional parameter, i.e.
that we look for solutions of the equation

F(z,n) =a—&Y@z) —ngV@z=0.

If » = 0 we repeat the argument from the proof of Proposition 5.1.1 finding that
€N(@; -) is strictly increasing in the interval (—oo, N2) being divergent at the end-
points; hence to a given « there is a unique z(]{, () such that F (29\1 (), 0) = 0.
Moreover, the eigenvalues of the “truncated” problem behave as

sin?(Nb)

ye:

2
() = N? - ( ) + O@™)

in the limit @« — o0. For a nonzero 7 the above equation can be solved perturbatively
by means of the implicit-function theorem. We have

. N—1 .
OF N 2(ub 1
o (@5 (@),0) LB N2_n2  2in
OF i <= sin(nb) 1 33 O
9, =5 T 0, 3 Al A~ a).
02| .0) 2™ S qn @ (@)? 27 sin*(Nb)
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The first term is in fact obtained as a limit z — Z?v (cv); the sign depends on whether
it is taken from the upper or lower halfplane. Dividing these quantities we obtain
—(07] ~/0M)y=0. Moreover, the remainder term coming from 5‘21 JOn? is O(a™),
so for sufficiently large positive o we may use the expansion up to 17 = 1. Since we
are looking for a solution in the lower halfplane, we get an asymptotic formula for
the resonance-pole position,

4 N— 2
(@) = N2 - T Z ( = %) +0@™.
— VNZ—n2

In particular, the resonance width behaves in the weak-coupling limit as

sin*(Nb) %= sin?(nb)

m3a3 N2—n2
n=1

Iy(a) = —2Imzy (o) = 4 + O™

Hence a “weak” impurity leads to sharp resonances with poles close to the real
axis. Taking into account that the boundary value of o — £(a; z) is contained in
the denominators of the S-matrix elements in Proposition 5.1.3 we see that these
resonances are manifested in the transmission and reflection probabilities; it is clear
that the pole positions depend strongly on the transverse coordinate b.

5.1.2 A Finite Number of Impurities

Let us return now to the operator H, ; with N point impurities defined in the begin-
ning of this section. First we find an explicit form of its resolvent.

Proposition 5.1.4 The resolvent kernel of H, ; equals

N

(Hoi—2) " (F1, %2) = Go(G1, ¥2: )+ D, [Aaa (@15, Go(F1, dj3 2)Gom, ¥2; 2),
Jsm=1

where A = A, ;(z) is the N x N matrix with the elements

Ajm = (aj = €@;2)) jm — Go(dj dms 2)(1=jm) .
where £(a; z) is given by (5.4).
Proof Similar to that of Proposition 5.1.1 (Problem 9).

This allows us to determine the spectral properties of H,, ;.

Theorem 5.2 For any a = {aj} witha; € @, j =1,...,N, and o € RY we
have 0ess(Hy 7) = 0ac(Hy 5) = [1, 00) and 0. (H,, z) = . The discrete spectrum
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consists of k eigenvalues €, € (—o0,1), i = 1,...,k, counting multiplicity,
arranged in the ascending order, with 1 < k < N. They are real-analytic functions
of the parameters o ;. The ground-state eigenvalue e?’“ is simple while the other

eigenvalues may be degenerate. Eigenfunctions corresponding to e;"’“ are of the
form

N
¢(F) = D diGo(F, dj: €Y,
Jj=1

where the coefficients solve ZZ:I A(e?’a)jmdm = 0. In particular, for the eigen-
function ¢?’a all of them can chosen positive. Finally, z > 1 cannot be an eigenvalue

with an eigenvector from the subspace @Elf]] L*(R) ® {xu).

Proof The continuous spectrum part is analogous to Theorem 5.1. The discrete spec-
trum is again determined by poles of the resolvent coming from the coefficients in
the Krein formula; they are given by the condition

detA,;(z) =0. (5.7)

Comparing to the case N = 1, it is now slightly more complicated to determine the
eigenfunctions. Suppose that H = H,, ; satisfies H¢ = z¢ for some z € R. We pick
an arbitrary ' € p(H), then by Proposition 5.1.4 there is a 19 € Dom (Hp) such
that the eigenvector ¢ is expressed as

N
¢ =10+ > diGo(.a;:7) (5.8)

j=1

with the coefficients d; := Z,ivzl [A (z’)];k1 1o(ax). In addition to that, the relations
(Ho— 7)o = (H—7')¢ = (z—2')¢ are valid; applying (Hy — z/)~ " to this identity
we obtain

N
do=(—2)| (Ho—2)"o+ D dj(Hy—)"'Gol-dj;2) |
j=1

and this in turn yields (Ho— 2)vo = (z—2) 2V d;jGo(- dj;:2). If z < 1, the
resolvent (Hy— z)~! exists and may be applied to both sides of the last relation
giving
N
do = dj (Goldj; 2) — Go(-dj; )

j=1
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with the help of the first resolvent identity. Substituting into (5.8) and setting

z = e?’a we arrive at the expression for the (non-normalized) eigenfunction
given in the theorem. To determine the coefficients, we use the explicit form of

the matrix elements A(z)j,, and the expression of 1y to infer that ¢p(d;) =
>N (A(2)jm — A(2)jm) dm. On the other hand, inverting the formula for the
coefficients in (5.8) we get vp(a;) = ZZ:] A(Z") jmdy. Comparing these two
expressions for z = ¢;"“ we arrive at the sought claim.

The maximum number of eigenvalues equals the deficiency indices of the sym-
metric operator involved in the construction of H,, ;—cf. [We, Sect. 8.3]. The next
question is about the existence of solutions to the Eq.(5.7). We observe that the
matrix A, ; has the following asymptotic behavior,

1

Z 1
M@ == In(=3) 1400, Awa(d) = = —— M, + 01
a,a(z) . 4 + O a,a(z) ﬂ_m 1+01)
as z — Foo, respectively, where M := (sinb; sin bm) Gm=1- This matrix has, in
particular, the eigenvector (sin by, ..., sinby) corresponding to the positive eigen-

value Z;_v:l sin? b ;» and therefore one of the eigenvalues of A, ;(z) tends to —oo as
z — 1—. The matrix elements are real-analytic functions of z, hence the eigenvalues
are continuous and at least one of them must cross zero in (—oo, 1) giving rise to

an eigenvalue. Furthermore, det A, ;(z) is a real-analytic function of «; and z, so

the analytic dependence of ;" 4

function theorem.

To prove the non-degeneracy of the ground state and positivity of the coefficients
d; involved, one has to check that the lowest eigenvalue of A(z) = A ;(z) is simple
for any z € (—oo, 1), which is equivalent to the claim that the matrix semigroup
{e7"M@): 1 > 0} is positivity improving [RS, Sect. XIII.12]. The last named property
is ensured if all the non-diagonal elements of A (z) are negative. In our case we have
A@D)jm = —Go(a s dm; z) so the desired result follows from the positivity of the
free-resolvent kernel.

Let us turn finally to embedded eigenvalues. Suppose that H¢ = z¢ for some
z > 1. We again employ the formula (5.8) and write 1y as a series, ¥p(X) =
Z;O:] gn (x)xn (y) with the coefficient functions g, € L?(R). Substituting this into
the expression for (Hy— 7)1 and using the fact that {x,} is an orthonormal basis,
we obtain the following system of equations,

on the coupling constants follows by the implicit-

" 2 i / ol eikn@)lx—a;]
~g(0) — ka0 () = 5 =2 ;djxn Oy
for n = 1,2, ....The Fourier-Plancherel operator transforms it into
, , —1pa
(p"—z+n")gn(p) = /Xn(b ) 7+’ (5.9)
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If g, belongs to L?(R) the same is true for g, ; this is impossible if z > n* and the
right-hand side of the last equation is nonzero at £x,(z), since g,% would then have
a non-integrable singularity. It is clearly the factor p>— z + n* which matters; recall
that 7/ € p(H) by assumption.

We want to conclude that g, = 0 which is obvious for N = 1. If N > 1
and the a;’s are not the same, it might happen that the right-hand side is not
identically zero. However, we can use a longitudinal coordinate shift leading to
a common phase factor in front of the sum; then the square integrability requires
Z?’:l djxn(bj)eTiFn(@j=a — ( for an arbitrary a. If all the a; are mutually dif-
ferent (mod 27k, (z) 1) it follows that d iXn(bj) = 0 for each j. On the other hand,
if some of them coincide we find > j djxn(bj) = 0 where the index runs through
the values with the same longitudinal coordinate a, and therefore Jn = 0 again, i.e.
gn may be nonzero at most if some a; differ by multiples of 27 pr, (z)~!. Consider
now an arbitrary g € L>(R) and n < /7. Using relation (5.8) we find

N
A A ikn (z")]-—aj]
(gxn, ®) = (g, gn)Lz(R) + — 2%, ( N Zden(b )(g oikn(z aj )LZ(R) s

where g, in the first term is given by (5.9). If d;x.(b;) = O for each j, the right-
hand side is zero. In the exceptional case mentioned above we use the fact that the
left-hand side is independent of z". The explicit expression for d; together with the
asymptotics of A(z) show thatd; — 0 as 7/ — —o0; the same is true for the inner
product in the second term as well as for (g, g,) L2(R)> together we find (gxx, ¢) =0
again. This concludes the proof. |

The proved result deserves some comments. First of all, the claim about embedded
eigenvalues is weaker than in the one-center case. The situation for N > 2 is indeed
different:

Example 5.1.4 The operator H,, ; can have embedded eigenvalues with eigenfunc-

tions in (@L‘fl] L’R) ® {Xn})J_ if N > 2. Consider a pair of impurities with the
same coupling constant « placed at @y := (0, b) and dy := (0, 7—b). The eigenvalue
problem can be divided into symmetric and antisymmetric parts with respect to the
strip axis. In view of Remark 5.1.1 the antisymmetric part is obtained by scaling
the single-center problem with a := (0, 2b) and coupling constant o — ﬁ In2. The
scaled eigenvalue tends to 4 as o — oo, hence itis embedded in 0. (H,, ;) = [1, 00)
for all v large enough. In the same way one can construct other examples of embedded
eigenvalues. Their common feature is the existence of a symmetry which prevents
the (energetically allowed) decay of an eigenstate; a violation of this symmetry turns
these eigenvalues into resonances.

Another question concerns possible degeneracy of the discrete spectrum.
Theorem 5.2 says that the maximum multiplicity is N —1; in particular, the dis-
crete spectrum is always simple for N = 2. This may not be true in general:
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Example 5.1.5 For brevity put g;, (z) :== —Go(dj, dm; z). Let N = 3 with d; 3 :=
(:I:a, %) and a; := (0, b), and fix an energy z < 1. We have g12(z) = ¢23(z) for
any b € (0,m).If b = % this value is obviously strictly greater than g13(z) ; on the
other hand, limp_¢ g12(z) = 0, so thereisa b € (0, %) for which all three g, (z)
have the same value. Choosing now the coupling constants «; in such a way that

— §(ﬁj; 2) =9jm(2), j=1,2,3, we find that 7 is an eigenvalue of multiplicity
two.

It should be noted, however, that degenerated eigenvalues occur rather exception-
ally. The matrix A, ;(z) has 3N —1 real parameters, because one of the coordinates
aj may be chosen arbitrarily, while the number of different (N—1) x (N —1) minors
is N2, and the number of conditions required for a multiplicity larger than two grows
even faster with N. If we move the coupling constants we observe more frequently
avoided crossings. For simplicity fix N —1 parameters «; and let the remaining one
run through R. Then the whole discrete spectrum moves up in a peculiar way. If we
do not hit a degeneracy point by a chance, we see how the increasing eigenvalue
curve in the spectrum graph “exchanges place” with the subsequent constant levels
corresponding to the fixed a;’s. The mechanism of this effect can be understood
through an example involving a pair of perturbations (Problem 12).

Let us next turn to the asymptotic behavior; for simplicity let us consider only
the situation where all the interactions are simultaneously strong or weak. In the first
named case, max; a; — —o0, each perturbation gives rise to a single eigenvalue the
behavior of which is in the leading order independent of the other impurities and of
the boundary (Problem 13). In the weak-coupling regime the situation is different.

Proposition 5.1.5 Ifa_ :=min|<;<y «; is large enough, H, ; has a single eigen-
value which behaves as

2
N .2
- b
6(11’61 — l _ E Sin ] + O(a:3)

ye:
j=t "

as a— — 0o, with the eigenfunction

-1

N .2
sin? by, sin” by
= E E b E
(bl (x) sin y exp{ |x—aj] o }sm ( ﬂak)

j=I k=1

—vnz lx—aj|
+ Z sin(ny) Z sin(nb;) sinb; + o(1)

dominated by the product of x1(y) with a linear combination of the eigenfunctions
of one-dimensional point interactions placed ataj, j=1,..., N.

Proof We put A := diag(v1, ..., ay) and A(z) == A — ~Y1=2"12Mm,, and
employ the decomposition A(z) = A(z)+ A(z), where A(z) is a remainder term
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independent of av. There is a constant C such that || A(2)|| < C;forallz € (—o0, 1).
If we put n := m+/1—z, the condition (5.7) can be rewritten as

det (Ml —nA+ 7][\(1—772/72)) =0.

The largest eigenvalue of this matrix satisfies uy (1) > un(0) — (Cz+a+)n, where
oy = maxaj, while for j = 1,..., N—1 we have p;(n) < (Cz—a-)n. Since
un (0) > 0 we see that for a— large enough the condition has just one solution for
with 7 > 0. One can check directly (Problem 14) that without A(z) the condition is
satisfied for n = Zj a;l sin? bj. Thus n = O(a”') and the eigenvalue expansion
follows. To get the eigenfunction we use the eigenvector of M| mentioned in the
proof of Theorem 5.2. |

Let us finally mention the scattering problem.

Proposition 5.1.6 The wave operators for the pair (Hy, H, ;) exist and are asymp-
totically complete. The on-shell operator S(k) at energy k? with k & N is a unitary
2[k] x 2[k] matrix with the block structure as in Proposition 5.1.3 and the transmis-
sion and reflection coefficients given by

| sin(mb ;) sin(nb;) i Gona )

. N
rn(0) = = DA 5

ji=1

| sin(mb;)sin(nby) ;.
Tl e
ki (2)

mdj —knay)
9

. N

l _

tam (K) = Opm + ; .El 1[A(Z)]jl
Jit=

with the right-to-left amplitudes obtained by the mirror transformation which
replaces all the aj by —a;.

Proof Analogous to that of Proposition 5.1.3. The generalized eigenfunction at a
non-integer z > 1 is now replaced by

N

P(®) =D, () + D7 IA@I Go(F, djs 2) €™ @%x, (by)
Jok=1

with the incident wave in the n-th channel. Its asymptotic behavior as x — 00
gives the reflection and transmission amplitudes. |

As in the case N = 1 scattering resonances are given by complex solutions of
the condition (5.7) on other Riemann sheets specified by the choice of signs in (5.6).
The explicit form of the S-matrix also makes it possible to find other quantities of
physical interest, in the first place the conductance expressed in a way analogous to
(2.9), namely


http://dx.doi.org/10.1007/978-3-319-18576-7_2
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262 V7]
2
Z |tnm(Z)| (5.10)

“= 3
n,

where 7 is determined by the Fermi energy and chemical potential of the reservoirs; in
the particular case when just two channels are connected to the scattering “target” one
usually refers to is as Landauer formula. The presence of impurities again deforms
the steplike shape of this function corresponding to an ideal channel, in particular,
weak-coupling resonances are manifested by peaks and dips near the thresholds.

5.2 Point Perturbations in a Tube

Now we shall replace the strip of the previous section by a straight tube, Q2 := R x M
in R3. The assumptions we adopt are the same as in Sect. 1.4 ford = 2,i.e. M C R?
is an open precompact set which is pathwise connected and such that OM is piecewise
smooth. The free Hamiltonian is the corresponding Dirichlet Laplacian, Hy = —A%
with the form domain Hé (£2). As above the variables separate and we can write

=-PRI+1®(—AY),

where ¥ = (x, y) with y € M. Due to the compactness of M the last named operator
has a purely discrete spectrum; we denote by x,, v,, n = 1,2, ..., its eigenfuctions
and eigenvalues, respectively. As we have said, the eigenfunctions are supposed to
be real-valued. For any z € C\[v], 00) the free resolvent is thus an integral operator
with the kernel

L L - i X, ethkn(@Ixi—x|
Go(x1,x2;2) = (Ho—2)” (X1, X2) = 5 T Xn (YD Xn (32)
n(2)

n=1

where k;, (z) := +/zZ— n, which is defined everywhere and smooth except at X = X».
It is a multi-valued function of z with cuts [v,,, 00) , n = 1, 2, .. ., the sheets of which
are specified by the sign factors in (5.6) with n? replaced by v, in the definition of
gn(2). Recall that v; > 0 holds by the inequality (1.22).

Fix @ := {ai,... ay} withd; = (a;,bj) and « := {ay,...,ay} € RV, The
Hamiltonian H,, ; with N point interactions with the positions and strengths given
by the above parameters, respectively, is defined as the self-adjoint extension of the
operator —A%I [ C5°(2\{a}) specified by the boundary conditions (5.2). Since the
underlying space is three-dimensional, however, the generalized boundary values are
now different, namely

Lo(¥,a) := 47 lim ¢(X)|x—a|, Li@,a):= lim |:1/1()?) — M] .

X—a X—a dr|x —a)|
(5.11)


http://dx.doi.org/10.1007/978-3-319-18576-7_1
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The absence of the j-th point interaction means Lo(v, ;) = 0 which is formally
equivalent to putting o; = o0.

We shall first consider again the case of a single perturbation, N = 1. The resolvent
kernel of H,, ; is given by Krein’s formula:

Go(X1,a; 2)Go(a, X2; 2)

(Hog —2) 7 E1, %) = Go(&1, ¥2; 2) + i
a—¢(a;2)

’

where £(a; z) is the regularized Green’s function at @, written with the help of

Kkn(2) := /Uy — z as

o0

- . e Fn(Du ) 1
&(a; z) —‘}1_1;% |:z mxn(b) - m] . (5.12)

1

+—E

Proposition 5.2.1 Fix a € Q and suppose that |x,(b)| < Cn3~¢ holds for some
positive C, € and all n € N. Then the function £(a; -) is analytic in p(Hp). On the
interval (—oo, v1) it is increasing with £(a; z7) = %(ul -2 2D + O1) as

7z — v1— and
£@a;z) = —% (1 L0 (e—cﬁ))

as 7 — —oo for any ¢ < dist(b, OM). Finally, £(a; z) also makes sense in
[v1, ) \{Vn}nen as a boundary value at the cut which is smooth away from the
thresholds; the choice of the branch of the square roots in k,(z) determines the
corresponding sheet of the Riemann surface.

Proof The existence follows from the free-resolvent kernel behavior at the singularity
[Ti], the other properties are obtained as in Proposition 5.1.2 using the identity

Rn (Z/) — kn(2) 2
2 @) O

€@z — @)=y

n=1

The behavior of the series is determined by the semiclassical asymptotic properties:
the transverse eigenvalues behave as v, ~ 47|M|~'n as n — oo, where |M]| is the
area of M, so the coefficient at y,, (b)? is O(n=3/2). Using the assumption about the
transverse eigenfunctions, we find that the series on the right-hand side converges
uniformly for z, z’ in an arbitrary compact set which does not contain any of the
thresholds. |

Remarks 5.2.1 (a) The assumption about the asymptotic behavior of |x,(b)| was
made for convenience and £(a; z) exists irrespective of it. Moreover, it is not very
restrictive and it may happen that even if it is not satisfied the series in the above
proof still converges (see the notes).
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(b) The limit in (5.12) is not very suitable for practical computation and it is useful
to have a prescription to evaluate £(a; z). A natural idea is to proceed as in the
two-dimensional case. The procedure has to be modified, however; we employ the
identity

[e.e]

L_L ( —yu/n=T1 wf)

4dru  4rmu
n=1
with a properly chosen . The idea is to write the second term on the right-hand side
of (5.12) as the series the terms of which have the same asymptotics as the first one
with the oscillating factor (b)? replaced by its mean value. If the latter is |M|~!
we choose 7 := 2./7|M|~1/? which leads to

- _ - Xn(b)2 vn — «/_
s = Z |:2/£n(z) * ZW .

However, the convergence in this expression depends strongly on the ergodic prop-
erties of the sequence {x, (b) }nen and has to be checked separately.

(c) The scaling behavior for 27 = R x M7 with M? := oM, o > 0, is also more
complicated than in the two-dimensional case. One reason is that the definition of
oM = {ox : x € M} depends on the choice of the coordinate system origin in the
transverse plane, i.e. that a given tube cross section can be scaled in different ways.
For a chosen scaling we have {(aq”; z072) = 07 '€(a; z), so any singularity €(cv, @)
of the resolvent kernel transforms as

€ (%,a%) = 0 %e(a, @), o =0 'a.

In particular, the corresponding coupling constant renormalization is multiplicative
rather than additive in the three-dimensional case.

Proposition 5.2.2 For any a € Q and o € R we have Oess(Hy ) = 0ac(Hy 3) =
[v1, 00) and o4 (H,, 7) = 0. Under the assumption of the previous proposition, H, ;
has one eigenvalue €, ; € (—00, v1) with the eigenfunction

o0 efﬁn (50.',&) |x—al

ba,a(X) = Z s Xn (M) Xn (D) .

n=1

The function o +— €, is real-analytic and increasing and has the following asymp-
totic behavior,

xi1(b)* _
€og =v1— 35 +0@™),

g = — (—4na)? (1-0 ()
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with any fixed ¢ < 4 dist(a, O2), for « — o0, respectively. Finally, there are no
eigenvalues embedded in the continuous spectrum.

Proof Analogous to that of Theorem 5.1 (Problem 16).

In the case of N point interactions the resolvent kernel is given Krein’s formula
as in Proposition 5.1.4,

N
(Hoa—2)7"G1, %) = Go(¥1,%2: )+ D, [A0a(]5,GoF1, dj; 2)Go(dm, 2 2),

jom=1
where A = A, ;(z) isthe N x N matrix with the elements
Ajm = (oj — £(@@3 2)) §jm — Go(dj, dm: 2)(1—0jm)

and £(d; z) is now defined by (5.12). The spectral properties of the operator H,, ;
can be then summarized as follows:

Theorem 5.3 Fixa € RY anda = {aj}withaj € Q, j=1,..., N, and suppose
that |x,(b)] < C ni~¢ holds for some positive C, € and all n € N. The spectrum
of Hy ; consists of the absolutely continuous part [vy, 00) and eigenvalues e(ly’a <
eg‘a <...< eg’a < vy withl <k < N, given by the condition

det A(a,a,z) =0,

which are real-analytic functions of the coupling constants. The respective eigen-
functions are ¢ (X) = Z?’zl djGo(X,dj; €""), where the vector d € RN isa
solution of the linear system ZZ:] A(2) jmdm = 0. The ground-state eigenfunction
can be chosen positive. Furthermore, 7 > v1 cannot be an eigenvalue correspond-
ing to an eigenvector from the subspace @{n:l,nq} L%(R) ® {xn}, while H,; can
have embedded eigenvalues if the family {2, a, o} has suitable symmetry proper-
ties. Finally, in the weak coupling limit, o := min|<j<y o j — 00, thereis a single
eigenvalue which behaves as

N 2

e(ll’a=ul— ZM +(’)(a:3) .

2cv;
j=1 /

Proof For the most part the argument is the same as in the proof of Theorem 5.2.
The asymptotics of A, 5(z) as z — —oo and z — v — are now

vz . 1
Aoz =L"T400), Ala,d,z)=———=—M +0(),
a(@) yym +O) (o, a,z) PN 1+ O
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respectively, where the matrix My := (x1(b;)x1 (b,,l))}\fm:1 is rank-one with the

positive eigenvalue Z?’:] Xl(bj)2 corresponding to (x1(b1), ..., x1(bn)). Hence
all the eigenvalues of A, ;(z) tend again to 400 as z — —oo while at least one
goes to —oo at the opposite end of the interval (—oo, v/1). Using the continuity we
establish that the discrete spectrum is nonempty. The other ingredients of the proof
— positivity of Go(d;, dm; z), orthogonality of the basis {x,} and the fact that x (b;)
is nonzero — also remain valid. The weak-coupling asymptotics is likewise obtained
by adapting the argument of Proposition 5.1.5. |

Remark 5.2.2 We also obtain the weak-coupling asymptotics for the eigenfunction,

—1
E X — E ) b

j=1
> N o= a—vilx—aj]
€
+ 2 Xnlb)) D xn(b)x1(5)).
n=2 j=1 -

where the leading term combines 1 (y) with a linear combination of eigenfunctions
of one-dimensional point interactions placed ata;, j=1,..., N.

The scattering properties of H,, ; also adapt easily from the strip case.

Proposition 5.2.3 The wave operators for the pair (Hy, H,, ;) exist and are asymp-
totically complete. The on-shell S-matrix at energy z = k> away from the thresholds
is a 2N, x 2N, unitary matrix with elementary blocks

k
Spm = —m(fnm }:”m), n,m=1,...,N,,

ky \"nm tam

where N, := #{v, : v, < z}is the number of open channels at the energy z,

]—IXm(b )Xn(br) o Umaj+ al)

Fam (k) = Z[A() e

jl 1
]—1Xm(b )Xn (br) o~ (kmaj—knar)

N
i
b (K) = G + 5 D [AQ) e

J,I=1

and the tilded quantities are obtained by mirror transformation, aj — —a;.
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5.3 Point Perturbations in a Layer

Next we will discuss point interactions in another three-dimensional system, namely
an infinite planar layer Q := R2 x (0, d). We denote the coordinates as ¥ = (x, y)
with x = (x1,x2) € R* and y € (0, d), and consider the Dirichlet Laplacian —A %
as the free Hamiltonian. We shall again put d = m; a general strip width can be
restored using a scaling transformation which is analogous to that of Remark 5.2.1c.
Instead of (5.3) we have the decomposition

o
Hy=@D hn® L. hy:=—0f — 05 +n°, (5.13)

n=1

where 0; := 0/0x;, referring to L*>(X) = b, L>(R?) ® {x,} with the same
transverse basis as in Sect. 5.1. Using the properties of the two-dimensional Laplacian
we get an expression for the free resolvent kernel,

. o0
l
Gotx, yix', ¥’ 2) = 7 > HgY (knlx — 2D X () Xn () (5.14)

n=1

where k, = k,(z) := v/z—n? and Hél)(~) is the Hankel function of the first kind.
The point-interaction Hamiltonian H,, ; corresponding to given parameters o :=
{aq,...,an} € RN and a := {ay, ... ay} with Zij = (aj, bj) € Q is defined by
the boundary conditions (5.2) with the “three-dimensional” generalized boundary
values introduced at the beginning of the previous section, together with the Dirichlet
condition at 0%2.

As above it is useful to discuss first the case of a single perturbation. The resolvent
kernel of H,, ; is given by Krein’s formula:

Go(X1,a;2)Go(a, X2; 2)
a—&(@a;z2)

(Hyz —2)"'(31, %) = Go(31, X2; 2) +

To find £(a; z) we employ K, := ~/n?—z = —ik, and pass to the Macdonald
function Ky(z) = 7T—"Hél)(i z) ; then it can be written as

- R . 1
§(@:2) = lim {FZK()(M) sin? (nb) — m} .

n=1

Properties of the regularized Green’s function can be summarized as follows.
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Proposition 5.3.1 For fixed a € Q and z € p(Hy) we have

_ l . [z ., 1 by T
f(a;z):—;;]ﬂ I_ESIH (I’lb)—i—ml})/]g—i-w(;)—f—icotb:l
The function £(a; -) is analytic in p(Hp). On (—o0, 1) it is increasing with £(d; 7) =

—7 2 In/T=zsin?b+ O() as z — 1—, while

f(ﬁ;z)=—§+0(e_c _Z) as 7 — —0oo

holds forany ¢ < dist(a, OR2). As a function of b it is monotonous across the halflayer,

fa;z)> €@z if b——‘

Finally, the above expression also makes sense in [1, 00)\{n?},en giving boundary
values of £(a; -) at the cut which are smooth away from the thresholds; the Riemann
sheet is determined by the branches of the square roots.

Proof To get an expression of £(a; z) suitable for practical calculations we proceed as
in Problem 4 writing Ko (x,0) = Ko(ng)+[Ko(x,0)—Ko(npe)] to split the part which
can be computed exactly, and at the same time it has the correct asymptotic behavior
since k, = n(1+Om ™)) as n — oo. In this way we can write £(a; z) = & + &,
where

n=1
& i= tim [ -1 3" [Kotr0) - Kotnoycoscenty] - -
= — n cos - —
In the first part we use Ko(r,0) —Ko(no) = —In+/1—zn=2 (l + O(gz)) which

shows that the series converges uniformly w.r.t. ¢ and the limit can be interchanged

with the sum giving
1 > Z .9
:—P E In l_ﬁ sin“(nb) .

n=1

This series converges for z € C\{n®> : n € N}, because its terms are O(n"2) as
n — oo as we see using the Taylor expansion of In(1 — () to the first order. The series
in the second part can be summed and the limit computed explicitly (Problem 17);
the resulting &5 is independent of z and finite for any b € (0, 7). The rest of the proof
is analogous to that of Proposition 5.1.2. |
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Proposition 5.3.2 Fixa € Q and o € R, then 0ess(Hy 7) = 0ac(Hp 5) = [1, 00)
and o0s.(Hy z) = V. The operator H,, ; has a single eigenvalue €, ; € (—o0, 1)

which satisfies

N
2 b

. s
€aa < €a,a’ lf ‘b_ E

with the eigenfunction

Paa(X) = 2 Z Ko ( —Eaalx — al) sin(nb) sin(ny) .

n=1

The function o > €, is real-analytic and increasing and has the following asymp-
totic behavior,

2

_ 21 1
€ng =1 —exp [_sinzb (1+(9(a ))] ,
ag =— (—4ma)* (1 -0 (e°))

with any ¢ < 4ndist(a, OQ), for « — oo, respectively. Finally, there are no
eigenvalues embedded in the continuous spectrum.

Proof Analogous to that of Theorem 5.1 (Problem 18).

Let us pass to the scattering problem. The existence of the wave operators is easy
to establish due to the finite-rank character of the perturbation. On the other hand,
the on-shell scattering operator differs from those of the preceding sections, because
we now have more asymptotic directions. In the one-center case one can employ
a partial-wave decomposition placing the point perturbation at the origin of polar
coordinates in the plane by 7, : (T,¢)(x,y) = ¢(x+a, y). We have the tensor-
product decomposition L2(Q) = L?((0, 00)x (0, d); rdrdy) ® L*(S"), where S! is
the unit circle in R? and r := |x|. From here we may pass conventionally to

L@ =@ U7'L* (0. 00) x (0. ) @ (Y},

meZ

Wher9 the unitary U: L2((0, 00)x (0, d): rdrdy) - L?((0, 00) % (0, d)) is defined
by (U)(r) := r'/24(r) and Yy, (w) := 2m) /2! with w = (cos 6, sin ). The
operator Hy = —A% then decomposes as T[l {@mez 0’111,(,?)(7 ® I}T, with the
partial-wave components

4m?—1

h) = =07 = 0+~
.

mew. (5.15)

Their domains are given in the usual way. The radial boundary condition at the origin
is absent for m # 0, because the radial part of (5.15) is then a limit-point expression
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at zero. The point interaction can thus be introduced in the s-wave component
only; to this end one has to appropriately modify the free boundary condition,
lim, .o ¢(r, y)/r = 0fory € (0, w) (Problem 19).

Proposition 5.3.3 Fixa € Q and a € R. The on-shell operator S(k) at an energy
7 = k* € (1,00)\{n?}en for the pair (Hy, H, z) is non-trivial in the s-wave
subspace only, m = 0, where it is a unitary [\/z] X [/z] matrix with the elements

i sin(nb) sin(jb)

S (k) = e2i%nit) — § 4 -
nj (k) nj a—t@:2)

Proof The dimension of S(k) is given by the number of transverse modes in which
the particle of energy k> can propagate. Using the Krein formula expression of the
resolvent it is straightforward to check that

i(b)xn(b
GOGE)

- i 0
Un(E k) = Jolkn @) xn () + 7 D Hy kj @) X

j=1

with r = |x—al is a generalized eigenfunction of H,, ; with the eigenvalue k? in the
s-wave subspace, corresponding to the incident wave in the n-th transverse mode.
The S-matrix elements are then obtained using the Bessel function asymptotics for
r — oo (Problem 20). The unitarity follows from the asymptotic completeness but
it can also be checked directly. |

In the general case of N point interactions the Krein formula expression for the
resolvent kernel reads

N
(Hoa—2)""(F1,%2) = Go(F1, %2: D+ D [Aaa @15, Go(1, )3 2)Golam, X2 2),

j.m=1
where A = A, ;(z) is the N x N matrix with the elements
Ajm = (aj — &(@;2)) 8jm — Go(@j, dm; 2)(1—0jm)

and £(a; z) is described in Proposition 5.3.1. Notice that while the expression (5.14)
for Go(a i dn; 7) makes no sense if the two vectors are vertically arranged, a = am,
the Green function still exists and can be computed (Problem 17). The spectral
properties of H,, ; are now summarized as follows:

Theorem 5.4 Foranya ={aj}witha; € 2, j=1,...,N,and o € RY we have
Uess(Hw,(}) = Uac(Ha,Z) = [lj 00) and Usc(Ha,Z) = (. Furthermore, O'disc(Ha,z_i)
consists of the eigenvalues e?’“ € (—oo, 1) with1 <i <k < N, which are real-

analytic functions of the parameters « . The ground-state eigenvalue e(f’” is simple
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which may not be true for the higher ones. The eigenfunctions corresponding to
a.,d
€; " are of the form

N
¢ F) =D d;jGo(F.dj: e
j=1

with the coefficients given by solutions to the equation 2;17\1;1 A(el.a’“) jmdm = 0;
those corresponding to (b(f"” can be chosen positive. The weak-coupling limit, c_ 1=

minj<;<y & — 00, of the ground state is

—1

N .o
a sin“ b;
i =1—expi-2n > Ll a+0@zh)
;

J=1

Finally, z > 1 cannot be an eigenvalue with an eigenvector belonging to the subspace
Y L2®) ® ().

Proof The argumentis analogous to the proofs of Theorems 5.2 and 5.3. The existence
of an eigenvalue follows from the asymptotics

=z ]
Ao, @ 7) = 4—Z 1+0(), Aa.d:2) = —Inv/T=2 M +0(1)

7

. . o : N )
as z — Foo, respectively, where M; is the matrix (sinb; sin bm)jm:l as in

Theorem 5.2. |

Remark 5.3.1 The weak-coupling asymptotic expression of the ground-state eigen-
function,

5 S sin?b; 1 Y
&Y A g ~y=17 inZh. .
(X))~ siny N 7T2Z:sm bjIn|x —ajl
jzl aj ]:1
1 00 N
+ﬁ Zsin(ny) Zsin b;j sin(nb;) Ko (\/ n? —1|x — aj|) ,
n=2 Jj=1

is again dominated by the part corresponding to the lowest transverse mode.

Consider finally the scattering by a finite family of point interactions in the layer.
With the exception of the case when the impurities are arranged vertically, the Hamil-
tonian H,, ; now loses the invariance with respect to rotations around an axis perpen-
dicular to X. Hence we cannot employ the decomposition into angular-momentum
eigenspaces and we have to look for an expression of the on-shell scattering operator
which mixes different partial waves.
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Proposition 5.3.4 The wave operators for the pair (Hy, H,, ;) exist and are asymp-
totically complete. The on-shell scattering operator S(k) at energy z = k> with
k & N is unitary and acts on vectors ¢ € L*(S") @ L%((0, d)) as

P [Vzl
SWs=1+57 > > [Aaq@]y sin(ub;) sin(aby) (emh @0y, 9)

Jj,I=1m,n=1
e—ikn@0ajy

Proof We proceed as in the proof of Proposition 5.1.3. Starting from Z(X) =
eikn@wx=el¥® () for 1), where w is a unit vector in R?, and using

((H (o, @)—2)9°) (¥) = de[l—e|x|*+ ikywx ] Y5 (F)
we arrive at the generalized eigenvector ¥, , (X; ky (z)w) equal to
. N .
BNy, () + D [Aaa @15 (@, @5 2) Go(E, s 2) Oy, (by) .

Ji1=1

The components ( falkn(2), o/, w))mn of the on-shell scattering amplitude are then
given by projections of the following expression,

tim (/260 [ 3 k() — 0, ()]

[x|—00
with |x|~'x = w’ kept fixed, to the outgoing m-th transverse mode. This yields

(falkn(2), 0 W),

171'/4 N
— lkm(z)o_/aj Ao z Tleik"(z)w“/ sin(mb ) sin(nb
e lz [Aaa(]7 (mb) sin(nby)
and the on-shell scattering operator given above. |

As in the previous sections, resonances are determined by poles in the meromorphic
continuation of the matrix-valued function [A,, ; O~

5.4 Notes

Point interactions were introduced in the early days of quantum mechanics, first by
R. Kronig and W. Penney for one-dimensional systems [KP31], then by E. Fermi
in dimension three [Fe36]. A proper mathematical tool to deal with such strongly
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localized singular interactions was found only three decades later by F. Berezin and
L. Faddeev [BF61]. A thorough and extensive discussion of the point-interaction
theory, methods and applications can be found in the monograph [AGHH] which we
use here as a basic source on the subject, see also [AK]; for a discussion of point
interactions from the physicist’s point of view the reader can consult [DO].

The theory of self-adjoint extensions is one of the important contributions that
J. von Neumann made to the newborn quantum mechanics [vN]. It is explained in
many mathematical-physics textbooks such as [AG, Chap. VIII], [RS, Sect. X.1],
[We, Chap. 8], [BEH, Sect. 4.7], etc. An application of the theory to the description
of point interactions was proposed in [BF61]. To get a meaningful physical picture,
one has to add an interpretation of the “coupling constants” of such point interactions.
A natural way to do that is through approximation of point-interaction Hamiltonians
by those with more regular interactions. This idea works well in dimension one,
where one can use a family of Schrodinger operators with scaled potentials, con-
vergent in the norm-resolvent topology, which fits into the heuristic concept that
a low-energy particle with widely smeared wave packet “sees” the average value
of a well localized potential only. If d = 2, 3, however, a similar limit must be
accompanied by a sophisticated coupling constant renormalization leading an “infi-
nitely weak” interaction—see [AGHH, Sects. I.1, 1.5]. This does not mean that these
point interactions are something exceptional: despite their “zero radius” they have
a nonzero scattering length and thus represent a natural model of small obstacles
[ES96]. Note that point interactions as perturbations of second-order operators can
be constructed only for d < 3, since in higher dimensions the construction based
on self-adjoint extensions, in the standard quantum mechanical framework at least,
leads to a trivial result—cf. [He89, AGHH].

Point interactions as a model of impurity scattering in a two-dimensional elec-
tron gas appeared a longtime ago—-cf. [Pr81]. However, their nontrivial character
is probably the reason why this idea is not used often; for impurities in a hard-wall
strip we can mention, e.g., [Ba90, CBC92], where bound and resonance states are
discussed in this setting; the first named paper gives a survey of other approaches
to this problem. The point scatterers are usually treated in a simplified way, with
the model space restricted to a finite number of transverse modes, which makes a
comparison of the employed coupling parameters to «; of (5.2) difficult. Point inter-
actions may also be useful to describe artificial impurities in quantum wires—let us
mention [KSH94] as an example—but such a model should be taken cum grano salis
because these objects are so far much greater than “natural” impurities consisting of
isolated alien atoms.

Section 5.1 The material of this section is taken from [EGST96] where illustra-
tions of eigenvalue plots, eigenfunctions, transmission probabilities, etc., can also
be found. The generalized boundary values were introduced, e.g., in [BG85]. For
Krein’s formula see, e.g., [AG, Sect. 106], [AGHH, Appendix A], or more generally
[KL71]. An alternative expression for the resolvent difference in Proposition 5.1.1,
namely



5.4 Notes 157
Ml =a—¢@;2) =(1+ei€)_l[(i—Z)/Go()?,&';z)Go(iﬁ; i)dx
Q
—e“’(i+z)/Go(x,a;z)Go(;‘é,a; —i)dx t,
Q

is obtained from an integral formula in [Z080, Theorem4.1]. There is a simple relation
between the parameters 6 and « (Problem 3), however, only the latter has a reasonable
physical interpretation. Examples of resonance-pole trajectories are in [EGST96]
investigated beyond the weak-coupling regime, however, only weak perturbations
produce a substantial resonance scattering effect because the pole residue moduli
decrease rapidly with the coupling strength.

The argument in the proof of Theorem 5.2 is adapted from [AGHH, Sect. IL.1].
Monotonicity of the eigenvalues of A, ;(z) w.r.t. z is a general result [KL71], here
one can also check it directly (Problem 11). It is easy to see that the coefficients in the
ground-state eigenfunction are strictly positive: if some dj, = 0 the eigenfunction
would be smooth at X = dj, meaning that the corresponding point interaction is
absent, formally «j, = oco. Concerning the number of eigenvalues of the operator
H, z, one can specify polynomially bounded subsets of the parameter space RN
corresponding to different fixed numbers—cf. [EGST96].

The avoided-crossing effect with respect to a running coupling constant is known
for many operators. If the slope of the eigenvalue curves away from the avoided cross-
ings is steep, one also speaks of a cascading phenomenon. This typically happens
when the involved eigenfunctions are weakly correlated except for a small subset in
the parameter space—see, e.g., [GHKSVS88]. Problem 12 illustrates this effect for
N = 2 where the crossing is always avoided and the two eigenvalues follow asymp-
totically the two branches of the “decoupled” spectrum. The width of the avoided
crossing is controlled in this example by Go(a1, az; z); since this quantity at a fixed
energy decreases exponentially with the distance of the two points, a profound cas-
cading effect may be expected when the impurities are far apart. Moreover, if N > 2
and the perturbations produce a multiple eigenvalue or a cluster of almost identical
simple eigenvalues, the cascading means that one eigenvalue leaves the cluster and
one joins it—cf. [EGST96]. In that paper one can also find examples of conductance
plots illustrating the resonance effect. Let us remark finally that the explicit formula
in Propositions 5.1.4 and 5.1.6 make it obvious that scattering resonances coincide
in the present situation with those defined through poles in the analytically continued
resolvent.

Section 5.2 A part of the material of this section is taken from [Ex00]. The assump-
tion about the growth of |y, (b)| in Theorem 5.3 and the preceding propositions
is not very restrictive. Recall that by [SeS89, Corollary 2.2] there is a constant C
such that |y, (b)| < Cn'/* holds for all n. This is a particular case of the bound
Ixlloo < CAY=D/4 which holds for a d-dimensional M and a normalized eigen-
function y corresponding to an eigenvalue ) ; it remains true for the Laplace-Beltrami
operator on a Riemann manifold M with a smooth boundary—see [Gr02]. The bound
may be saturated if there are points in M where many classical trajectories intersect:
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a prime example is a circular M. However, even in such cases it may happen that the
series in the proof of Proposition 5.2.1 converges (Problem 15).

Section 5.3 The material of this section is taken from [EN02].

5.5 Problems

1. Check the properties of Hy and H,, ; with respect to a transverse scaling of the
strip 2—cf. Remark 5.1.1.

2. Check that £o(@) = — lims_g 2 {1 4+ 3,
is equal to —\ by a direct computation.

Hint: k;'— (in)~! and ek +n=2/20 _ | are O(n=3) asn — oc.

3. The resolvent formula of Proposition 5.1.1 and Zorbas’ parametrization given in

the notes to Sect.5.1 are related by a(0) = F(b)+ + liiéloi 7 F— (D), where

eikn |x—al

kn

sin(ny) sin(nb)}

1 & Vnt+1+n? 1+1
Fi(b) = — X T sin?(b) — —
=(0) ™ Z 2(n*+1) sin”(nb) 4n

n=1

Hint: Use i Fz = %k, (£i)?F ka(2)%.

4. Check directly that £(a; 0) = (27)~ ' In(2 sin b) holds for the function defined
in Proposition 5.1.1 and use this result to express £(d; 7).

5. Prove the asymptotics of £(a; z) as z — —oo in Proposition 5.1.2.

Hint: By Dirichlet bracketing the eigenvalue of H,, ; satisfies €, < €, < 65 , where
€, refers to a single point interaction with coupling constant o in R? and € to such
an interaction in the center of a Dirichlet circle of radius R.

6. In the vicinity of m2, m= 1,2,..., the resolvent kernel of H, ; behaves as
sin sin sin b)\—1
ia sin(myi) sin(mys) (&—l— (m )) (1+O(m)) ,
™ 7—m? T A/z—m?

3 ; in2 .
where & := . + 57— — L D ntm (s;:(::zb)) - ﬁ) , s0 it has no pole there.

7. Let Y,z = ¢(1[,5||<;5,L,3||’1 be the normalized eigenfunction of H,, ; according
to Remark 5.1.2 and k,, := 2e 27 then

holds in L%().
Hint: By Remark 5.1.1 one can reformulate the problem to keep « fixed and to

. . d . .
consider a family {Ha,ad} of operators corresponding to transversally scaled strips.

The latter converges to the Hamiltonian with a point interaction in L2(R) by Propo-
sition 5.1.1, [AGHH, Theorem 1.5.2], and the corresponding result for Dirichlet
Laplacians—see, e.g., [RT75].
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8. Check the unitarity of the S-matrix in Proposition 5.1.3, in particular, the con-
servation of probability flow, Z[‘n K (tnm %+ 1ram|2) = k.

Hint: Use tyy = 1 + rppe 2% and Im £(a; z) = w~ ! Zm 1 % z # n’.

9. Prove Proposition 5.1.4.

10. Any solution of the linear system Zr]r\{:l A(2) jmdn = 0, where A = A, ;(2)
is the matrix from Proposition 5.1.4, determines an eigenstate of the operator H,, ;
by >3, d;Go(.d: 2).

Hint: Invert the argument from Theorem 5.2—cf. [AGHH, Sect. IL.1].

11. The eigenvalues of A, ;(z) are decreasing w.r.t. the variable z.

Hint: Check that j—z (n, A(z)n) < 0 holds for any n € CV using the fact that the
function f : f(x) = e~ ¥ (14k|x|) is of the positive type as follows from Bochner’s
theorem [RS, Sect. IX.2].

12. Consider « := (&, arp), where « is kept fixed and & runs through R. If one of
the perturbations is absent, the other one gives rise to a single eigenvalue which we
denote by e (&) and ez () = ez, respectively. Find the the eigenvalues € (&) := e?’a
of H, ; and show that

a@ =+ —— calea) +C’)(“_2)

where ¢ 1= g122/§;. > 0 and ap := {1(e2) — 2(9129],) (e2) /&5 (e2) with gia(z) ==
Go(ay, ax; z) and §j = £(aj, ), as @ — —oo. Similarly, the ground state behaves
in the strong-coupling limit as

Ar
el(@) e (@) + — (912(61(04)))2 ~2Qna+9E)

where g12(e1(-)) is exponentially decaying with the same rate. Find the behavior
above the avoided crossing under the assumption that 2g15g}, remains small over a
wide range of energies.

13. Find the eigenvalue asymptotics of H, z with N > 1 as max; a; — —o0.
Hint: Write A(z) = diag (a; + ﬁ In(—%)+ %W’E) + A(z), where A(z) is a
remainder matrix, independent of «, with the norm vanishing exponentially fast
as z —> —oo.

14. Complete the proof of Proposition 5.1.5. Show that M| — 1A has a zero eigen-
valueif n = > a;l sin?b;.

15. Let M be a circle of radius R > 0 and denote by x;, the correspond-
ing normalized eigenfunctions of the Dirichlet Laplacian —A%I sl Xjm(r @) =
¢jJm(kjmr) e'™¥ with appropriate parameters. Show that

Xjm(0,0)% = L om

2R2



160 5 Point Perturbations

as j — oo. What does it mean for the sequence {|x, (6) |}, obtained by ordering
all the eigenfunctions in the order of their eigenvalues? Check that the corresponding
series in the proof of Proposition 5.2.1 converges.

Hint: xjm(0,0) =0 form # 0.

16. Prove Proposition 5.2.2.

17. Show that the quantity & = &> () in the proof of Proposition 5.3.1 equals

o0

1 1 B _E 1
52—@[—%—211(”2—%2)] —mﬁ-ﬁ(hﬂ(ﬁ)ﬁ-ﬂ'cotb),

n=1

where (3 := b/m. Furthermore, G (a, d’; z) for a pair of vertically arranged vectors
d = (a, b) and a’ = (a, b’) can be expressed as

1 0 b b/ b—b/
_pgln@sin(nb)sin(nb/)+gz<—; )—Ez(| - |).

Hint: Express 220:1 Ko(np) cos(2nb) using [PBM, Sects.11.5.9.1.4 and 1.5.1.15.2].

18. Prove Proposition 5.3.2.

19. Let H,, ; describe a layer with a single point interaction. Its partial-wave com-
ponents in the appropriate system of coordinates act as those of the free Hamiltonian
(5.15). Write the corresponding boundary conditions.

Hint: Use the generalized boundary values £o(¢)(y) := 4 lim, .o ¢(r, y)/r and
21(D)(y) == limy— o r~V2[p(r, b) —47lo($) (y)r— /3] at the symmetry axis.

20. Fillin the details into the proof of Proposition 5.3.3. Check the unitarity relation,

Zg“fl] Snj Sy j = Ons, in the same way as in Problem 8.
Hint: ¢, (X; k) ~ e/ ®) cos(ky (2)r — /4 + 6y (k) as r — oo.



Chapter 6
Weakly Coupled Bound States

Properties of the discrete spectrum in a tube or layer induced either by a local change
of geometry or by a potential depend, of course, on the perturbation. Situations
where the latter is weak are of special interest. We have already encountered such
problems in the previous chapter in the particular context of point interactions. Now
we are going to discuss systematically the weak coupling behavior of the bound
states treated above; our aim is to demonstrate several different methods which can
be used to this purpose.

6.1 Birman-Schwinger Analysis

One of the most useful tricks in the theory of Schrédinger operators was invented
more than forty years ago simultaneously and independently by M.S. Birman, a
mathematician, and J. Schwinger, a physicist. It consists of transforming the original
differential-operator problem to solution of an integral equation which is in many
respects an easier task.

In this section we will describe how the Birman-Schwinger method (or BS-
method) works for Schrodinger operators in straight Dirichlet tubes and layers. As
above we start from the Cartesian product Q¢ = R x M C R4, d > 2, where M C
R?=¢ is an open, precompact, pathwise connected set, with OM piecewise smooth
if d — ¢ > 2. The free Hamiltonian is the Dirichlet Laplacian, Hy = —A%O, defined
through its quadratic form on Hol(Qo). The spectrum is obtained by separation of
variables X = (x, y) as in (1.23) and Problem 4.14. We shall again use the symbols
Xn, Vn Withn = 1,2, ... for the eigenfuctions and eigenvalues, respectively, of the
Dirichlet Laplacian —A%I in L2(M) assuming without loss of generality that the
eigenfunctions are real-valued. The ground-state eigenvalue v is positive in view of
the inequality (1.22) which extends naturally to higher dimensions.
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The full Hamiltonian is a perturbation of Hy. In this section we shall be concerned
with potential perturbations which can be defined conveniently through the respec-
tive quadratic forms analogous to (1.24). It is useful, however, to include from the
beginning more general interaction terms. Let U, U be operators on L2(0) which
allow us to write the Hamiltonian as

Hy, = Hy+ \U*U ; 6.1)

with the needs of this chapter in mind we introduce the explicit coupling constant
A € R. Naturally, as a quantum observable H) has to be self-adjoint. For unbounded
U, U itis guaranteed, e.g., if the operator A\U*U is Hy-bounded with relative bound
less than one. We shall adopt this assumption throughout, of course, checking its
validity in particular situations.

For areal z < v; = inf 0 (Hp) the resolvent (Hy — z)~! is bounded, hence one
can define the operator

K$ == \U(Hy—2)'U* (6.2)

provided Dom (Hp) C Dom (U). We have the following important relation between
the spectral properties of K and those of the original operator H).

Proposition 6.1.1 (BS principle) Suppose that Dom (Hy) C Dom (U), then z €
odise (H)) holds if and only if —1 € ogisc(K5).

Proof If K{¢p = —, the vector ¢ = —A\(Hop — 2)~1U*y is easily checked to
satisfy H)\gb = z¢. Conversely, if Hy¢ = z¢ we have ¢ € Dom (H)) C Dom (U)
by assumption, so ¢ := U ¢ belongs to L?(p) and K¢ Y= —. |

Remarks 6.1.1 (a)If V is a potential on ¢, one usually takes multiplication by the
functions |V (-)|"/% and V()1/2 := |V ()|1/? sgn V (-), respectively, for the pair of
factorizing operators U, U.

(b) The result also remains valid in the case when U, U map into another Hilbert
space G, then K f\ is, of course, an operator on this space.

(c) Another generalization concerns the situation where one or both of the operators
U, U depend on the parameter \. The BS-principle holds again, but caution is needed
when the weak-coupling analysis is performed by expansion in A (see the notes).

Let us now apply the BS-principle to Schrodinger operators in tubes and layers,
H), = —A%O -+ AV. An important role will be played again by the matrix represen-
tation of the potential similar to that appearing in (2.12), namely

Vi © Vi (x) = /M Vs 3) Xm0 xa () dy 63)
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by functions which are well defined and measurable in the variable x € R¢. The
last claim depends, of course, on regularity properties of the function V. Although
we will deal mostly with bounded potentials, it is useful to consider a wider class
borrowed from the usual Schrédinger operator theory: we shall suppose generally
that V € (L” + L>)(0), where p > max {2, %} ford # 4and p > 2 ford = 4.
This requirement ensures, in particular, that H) is well defined as an operator sum
(Problem 1).

Since the free Green’s function depends on d, we shall treat the different codi-
mension cases separately starting with the tubes, ¢ = 1. Under slightly stronger
assumptions about the potential, we can prove the following claim.

Theorem 6.1 Suppose that V € (L? + L2°)(R), where p = 2 ford = 2,3 and
pP>3 ford > 4, nonzero, and such that |V|11 € L' (R, |x|dx) ; then Hy has for
small enough |\| at most one simple eigenvalue €(\) < vy, and this happens if and
only if fR AVi1(x) dx < 0. Moreover, if this condition holds the following expansion
is valid,

2

A
Vv —e(\) = V11(x)dx s [/ Vii()|x — x| Vi1 (x') dx dx’
RZ

(6.4)
e mh —x'|

—Z/ Vin) = e nl(x/)dxdx’}+w3>.

Proof Recall that inf o (H)) = v1 by Proposition 1.4.1. Since the BS-principle
applies to H) in view of Problem 1, we have to find the spectrum of the operator
K5 = \V]| 1/2(—A%° —2)~'V /2 The free resolvent is an integral operator with the
kernel we know from Sect. 5.1.2. Its part coming from the lowest transverse mode has
a singularity as z — v1— which we shall single out introducing the decomposition
K§ = AQ; + AP, with

o1 [x]

0., ) = S IV )1 P () €O (V)

where we use again k,(z) := /vy, —z,and P, := A, + [V|'/2B.V1/2 with

e~ @1 sinh(ry (2) [x]-)

k1(2)

A X)) = Ve I a () X1V, y)?

and B (X, X’) representing the sum of the higher-mode contributions to the Green
function Go(X, X; z); in the last formula we use the notation

x|< := max {0, min(|x]|, [x']) sgn (xx") } (6.5)
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and |x|- := max{|x|, |x’|}. It is obvious that ||B,| has for any z < z9 < 12 a
bound independent of z and, under our hypothesis on the potential, the same is true
for |||V|1/2BZV1/2|| (Problem 2). In the first term ||Az||2 can be estimated by the
Hilbert-Schmidt norm,

IA;}s < /g . IV G, X1 1x 2 IV, y)x (O) 1 di dv’
0 X320

2
s(/iuuvnmmdx),
R

with the right-hand side finite by assumption, where we have employed the inequali-
tiese ¢ sinhz < z for z > z and |x|2< < |xx’|. Moreover, the same estimate shows
by dominated convergence that A, tends to a bounded operator in the limitz — v —.
Hence || P, || has in (—o0, 1] a bound independent of z and || AP;|| < 1 holds for |A|
small enough.

In such a case I 4+ AP; is invertible and we may rewrite the operator, the singu-
larities of which we are seeking, using the identity

I+kH "= [1 + I +ApP)7! QZ]A (I+AP)~ L. (6.6)

It follows that for |A| small enough the operator K has eigenvalue —1 iff the same
is true for A(I + AP.)~' Q.. Since \Q. is a rank-one operator, K7 acts as (¢, )¢
with ¢ = ZHT\(Z) e @Iy 1/2y and ¢ == (I + AP,) e @I y|1/2y, and
consequently, it has just one eigenvalue which is (¢, ¢) . Putting it equal to —1 we

get for k1(z) =: ¢ the following equation

(=G0, (6.7)

where the right-hand side is defined as
A _ 1 -z
_E/Q e MV, 2y () [(1+/\Pz(<)) ‘e z"IVI1/2x1](x,y)dxdy.
0

If V decays sufficiently fast, G is analytic around (0, 0) and the assertion follows
by the implicit-function theorem; it also gives us a prescription of how to compute
higher-order terms in the expansion (6.4). For a general V one has to modify to the
present situation the standard argument used for weakly coupled one-dimensional
Schrodinger operators (Problem 3).

Itremains to check that the second-order term in the expansion is positive provided
fR AVi1(x)dx = 0, so the bound state exists in this case too. If the corresponding
functions V,,, belong to L%(R), the corresponding coefficient in the Taylor expansion
is proportional to
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e—clx x| _ 1
lim 2/ Vi1 (x) —— V1 (x)) dx dx’

e—>0+ e
—/Un—v1 |x—x'|
€
+Z / Vin() — e V1 (x) dx dx’
5 dk A dk
= lim 2 [ Vi) 5— Vin(O)]* ———— >0,
tim 2 [ V0P 5 +§/R| WP o >

otherwise we use L2 approximations and check that the sign is preserved in the limit
when the regularization is removed. This concludes the proof. |

The obtained result shows, in particular, that in case of a weak coupling the
condition (1.25) allows a zero mean value of the potential. For a layer, ¢ = 2, the
analogous criterion and asymptotic expansion are as follows.

Theorem 6.2 Let V e (L? + L) (), where p =2 ford = 2,3 and p > %for
d > 4; suppose that V is nonzero and satisfies the condition

VI e L™ (RY) N LYR2, (1 4 |x|%) dx)

for some § > 0. Then H)y has for small enough |\| at most one simple eigenvalue
€(A\) < vy, which happens iff fRZ AVii(x)dx < 0. If this is the case we have

eAN)=v; — 62”’()‘)_', where w(\) has the following asymptotic expansion,

w\) = i/ Vii(x)dx (6.8)
2w R2

/\ 2 -
+(%) [/R V) (7E+ln x zx')vn(x’)dxddx’

o
- Z/ Vin () Ko (Vom = vilx = x'l) Vi (') d dX’] + O
R2xR2
n=2

with vg being Euler’s constant and 1 := min{1, §/2}.

Proof As above the essential spectrum starts at v; and one can apply the BS-
principle. The free Green’s function is given by (5.14) with the x,’s being now
eigenfunctions of —A/l‘)” for the general cross section considered here. The kernel of
K = /\|V|1/2(—Ag0 — 2)7'V1/2 has in the layer case a logarithmic singularity as
7 — vi—. We split it using the decomposition Ky = AL, + AM;, where

L(3,%)=—— |V(x IV x1(») In ki (2) x1 () VI, yHY?

and the regular part written as M. = A, + |V|!/2B,V!/2 with the last term having
for any z < zp < 1, a bound independent of z, which can be checked as in the
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preceding proof (Problem 2). The first term has the kernel

1
S VG0 (Ko (1@l = 2'1) +Inm ) 106D VR )2,
which shows that M, is well defined at z = vy, in particular, that we have

x —x'|

-, 1 |
Ay G, 7)==~ V(@ DY x1) (vE +1In ) 1OV, Y)Y

To proceed we need several bounds the proof of which is left to the reader (Problem 5);
in all of them C is an unspecified positive number.

Lemma 6.1.1 (a) ||M;|| < C forany z < vy,
(b) |IM; — M, || < Ck1(2)?" with ) defined in the theorem,

(c) and finally, ‘ M)

T < C|w|_1f0r small enough w = (In /<;1(z))_1.

By the first claim of the lemma || AM, || < 1 holds for all sufficiently small |\|, hence
one can employ the identity

_ —1
(1+ ki)' = [1 AU+ )\MZ)_ILZ] (I + M)

and reduce the problem to the question of whether the rank one-operator (v, -)¢ with
P = —% Ink1(z) V/?x1 and ¢ := (I + AM.)~'|V|"/?x| has an eigenvalue equal
to —1. This requirement yields the equation

w=0g\ w), (6.9)

where
A 1/2 -1 12
GO w) = = (V120 (1 +AM) " VI 20)

2w

o . . . -1
and the auxiliary variable w determines the energy via z = v — e . To solve

(6.9), we rewrite the last expression using the identity
I+ =1 My, — XM, — M,)) + NM>(I + M)~

this leads to the asymptotic expansion (6.8) in view of claims (a), (b) of Lemma 6.1.1
and the coefficients are well defined owing to our assumptions about |V|1;. By an
elementary perturbation argument inf o(H)) > v; —c holds for some ¢ > 0, which
is possible only if w approaches zero assuming negative values. This yields the sign
definiteness as a necessary and sufficient condition for the existence of a weakly
bound state as above (Problem 6). The same argument gives r1 (2)? < ¢, and thus
the error term in combination with Lemma 6.1.1b.
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It remains to check that (6.8) is the only solution of (6.9) for small |\|. By mini-
max we can suppose without loss of generality that V' is non-positive, V = —|V|,
and A > 0. The Schwarz and triangle inequalities together with claims (a), (c) of

Lemma 6.1.1 allow us to estimate ’%(A, w)’ for small A by

A dM,
- ‘(Wﬁ/le (I + AM_ ()~ A d“<w)(1+AMz<w>> 1|V|1/2xl)‘

dMa(w)
dw

IA

A2 2 1
3 vl e x|

A2 2
5= (1=ACn” 2= VIl
™ |w|

IA

with some C1, C2 > 0, the last norm being finite and nonzero by assumption. Hence
there is a ¢/ > 0 such that the inequality |w|~' < ¢’A~! is valid for any solution w

of the implicit equation (6.9) and A small enough. Consequently, ’%) is bounded
by C3 ) for A small enough. Any two solutions wi, wy of the equation w = G(\, w)

have to fulfill
w2 a
[ gl =
w Ow

thus the uniqueness is ensured as long as A < C5 L |

lwy — wi| = dw| < C3A |wy — wy],

2%‘

6.2 Applications to Tubes and Layers

Our next aim is to apply the Birman-Schwinger technique to different types of weakly
bound states in systems which we considered in Chaps. 1 and 4.

6.2.1 Mildly Bent Tubes

The most straightforward way is to use the above results to estimate the operator in
question from below and from above. If the two bounds squeeze in the limit we can
determine the true asymptotics. We shall illustrate this method on Hamiltonians of
bent tubes considered in Sects. 1.1 and 1.3.

To compare different shapes we need to introduce a parametrization which allows
us to say precisely what a mildly curved tube is. In the two-dimensional case a natural
possibility is suggested by relation (1.4): we shall consider families of strips with
the generating curves I'g characterized by the curvature
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Y3(s) = By(s) (6.10)

for a fixed function v and § > 0. If fIR v(s)ds # 0 we may put it equal to one
without loss of generality; then /3 controls the total bending. If the integral is zero,
diminishing of (3 again means straightening of the curve. Its nature is then illustrated
by the example of « with a compact support: the length of the curved part remains
preserved and the curvature radius at each point grows proportionally to 37!, In the
three-dimensional case the situation is not so simple but we know from Sect. 1.3 that
it is the curvature again which is responsible for the existence of bound states. Hence
we consider families of tubes with the curvature scaled according to (6.10) and the
torsion fixed; the interpretation of the tube straightening as 5 — 0 remains the same.

Theorem 6.3 Let {Qp} C RY, d = 2,3, be a family of tubes with a fixed cross
section built over the curves I g described above. If d = 2 we adopt the assumptions
(i)—(v) with k = 2 of Sect. 1.1. If d = 3 we assume (i)—(iii) with k = 2 of Sect. 1.3
and, in addition, we suppose that v© € L'(R, |s|ds) for k < 2. Then if Ty is not

straight, the operator — A Dd has for small enough nonzero [ exactly one isolated
eigenvalue €(3) in (0, v1). Moreover,
(a) in the two-dimensional case the asymptotic behavior is given by

2 B R 2
w1 =€) = IP = 5 2 Conux)
n=2
X On / ﬁ(s)eQ"Ss/'ﬁ(s’)dsds’l+0(ﬁ3), (6.11)
R2

where v| = ;‘i% and o, := k1~/n? — 1 ; in fact the sum only runs over even n.
(b) Similarly, for d = 3 we have

2 2
v —e(® = e IvI* - v > dy dy" x1()x1 ()X ()X ()
8 16 = Jyum

X On /R dsds’ hy(s, y) e @I Tho(s', )+ OF),  (6.12)

where hy is the expression contained in (1.21) and 0, := /Vy, — V1.

Proof We shall consider the two-dimensional situation only, the case d = 3 is similar
(Problem 7). We pass to the operator (1.7) and squeeze it between

Hy = — (1 F aBlylleo) 28] = 05 + Vi(s.u)
where Vj is the potential (1.8) referring to v3. By Theorem 6.1 and the minimax

principle there is a single eigenvalue for small nonzero 3 which is squeezed between
the eigenvalues e (/3) of the estimating operators H; if we rescale the longitudinal


http://dx.doi.org/10.1007/978-3-319-18576-7_1
http://dx.doi.org/10.1007/978-3-319-18576-7_1
http://dx.doi.org/10.1007/978-3-319-18576-7_1
http://dx.doi.org/10.1007/978-3-319-18576-7_1
http://dx.doi.org/10.1007/978-3-319-18576-7_1
http://dx.doi.org/10.1007/978-3-319-18576-7_1

6.2 Applications to Tubes and Layers 169

variable to s+ := (1 F af|7v|leo)s and appropriately change the integrations, we
obtain

1
Vi —ex®? = = 5 (1 FaBllo) /R(V/j)u(S)ds

1
-0 F aBllyllco)? [/ Vai1(s) s = s'1(Vp)11(s") ds ds”
R2

oo

-> ot /IR2 (Ve 1n () e 25751 (V)1 (s") ds ds’ } + 0.

n=2

Since Vjp itself expands in terms of 3 and we are interested in the leading term
only, the scaling factors 1 F af3||7|lo play no role. Let us denote the explicit part
of the right-hand side by 11 + 2 I,,. The first term can be calculated through
integration by parts which leads to

. 6_2 a 2|: ,YZ B MZ;YZ :|
=% /_ad” /Rd”“(”) A+upn)? (I +uby)’

2
= B [ = a2} + 0@,

where we have used the fact that y(s) — 0 as |s| — oo due to (iv). The important
thing is that in the integration by parts the term linear in (3 is canceled. Hence we
need to compute >~ I , too because it contains parts of order (% coming from
the second term in (1.8). In particular, /> | equals

2 a a
_%/ / dudu’uu’x1(u)2x1(u’)2/Rz dsds'5(s) |s — s'| 5(s") + OF?),

where the inner integral is —2 fR 4(s)?ds by a double integration by parts, so

2
L = % (1, ux)* 12 + O3 .

Splitting the leading terms in the other expressions we get

2 a a
L, = a / / du du’ un’ x1 () xn @) x1 @) xn W)
16 /4 J-a

e—nls—s'|
X / ds ds’ 5(s) ———— 3(s") + OB).
R2 1%

n


http://dx.doi.org/10.1007/978-3-319-18576-7_1

170 6 Weakly Coupled Bound States

The inner integral can be rewritten by a repeated integration by parts as
2 / 4(s)2ds — on / ds ds’ (s) e~ 5= 55y (6.13)
R R2

hence putting all the contributions together and using the Parseval identity, ||z 1% =
Z:il (xn, ux1)?, we find that the terms containing [I711%> cancel and we arrive at the
relation (6.11). |

Remark 6.2.1 In thin tubes the leading-term coefficient is dominated by §||7||2 as
one expects from (1.9) and its three-dimensional analogue in combination with the
weak-coupling asymptotics for one-dimensional Schrodinger operators; it is not dif-
ficult to check that the other contributions are of order @(a?). On the other hand,
in the general case the coefficient has a more complicated structure with competing
contributions from the first and the higher transverse modes. While we know from
the existence results that the coefficient is non-negative, it is not obvious from the
above asymptotic formula. Nevertheless, one can check this fact directly as we shall
illustrate in the case d = 2. To this end, one has to integrate the second term in (6.13)
by parts again twice which gives 2 g,% ||'y||2ds — 9,31 fRZ Y(s)e™ ¢ ls—=s’] ~(s") ds ds’ and
to sum the series referring to the first term (Problem 8). This leads to cancelation of
the terms containing ||||>. The remaining part contains the Green function and can
thus be rewritten using Fourier transformation as in the proof of Theorem 6.1; in this
way we arrive at an equivalent form of the asymptotic expansion,

2 oo
i =2 v S i [
n=2

which shows that the leading-order coefficient is always positive.

2 2
;8’?'@2 dp+ 0B, (6.14)

6.2.2 Gently Curved Layers

Two-sided bounds can also be used to determine the weak-coupling behavior of
curved layers. The first question is how to choose a family of layers to make it
planar in the limit. One way is to multiply the principal curvatures of a fixed ¥ by
a scaling parameter in analogy with (6.10). However, since such an Ansatz lacks a
straightforward interpretation as we had in the tube case, we adopt another approach
and consider a class of layers built over surfaces which are graphs of a function
R? — R3 containing a scaling parameter,

Ti=p @), pGlaif =y srah D). 61s)
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where f is a C*-smooth function and B > 0; the layer Q5 := £(£2) is defined by
(4.1). While this choice has an illustrative meaning, it naturally requires us to first
express the geometric characteristics of such a X3 and to assess how they behave for
small 3 which makes the analysis more complicated.

The function f* has to satisfy additional requirements. First of all X3 must be
asymptotically planar, i.e. the Gauss and mean curvatures must vanish at large dis-
tances from the origin. This will hold if we require

(i) fue€L®®R?and f,, — 0as |x| — oo

for p, v = 1,2 as we shall see a little below. Since the injectivity hypotheses (i),
(ii) of Sect.4.1.1 are satisfied for small enough (3, Proposition 4.1.1 tells us that
inf aess(—Ag"/ > /1%. To get an opposite inequality, we assume

(ii) fwp — 0as|x| = oo, and fups € LX(R?);

we also add the following integrability hypotheses,

(iii)) fuvs Fuvps | Fuvpel/? € L2 (R%, (14 |x|°) dx) for some § > 0.

A consequence of these assumptions is that the total Gauss curvature of X3 tends to
zero faster than the natural scaling by the factor 3> would suggest (Problem 9). This
fact is reflected in the asymptotic expansion given below.

Theorem 6.4 Let {23} be a family of layers of halfwidth a built over the surfaces g
described above. Suppose that the function f € C*(R?) satisfies the assumptions
(i)—(iii). If 3| is not planar, then for all 3 small enough —A%B has exactly one
eigenvalue €(8) below the threshold of the essential spectrum. Moreover, it can

be expressed as €(3) = /@% — 2B yphere w(B3) has the following asymptotic

expansion,

2 |w]? + K2 — KT

00 ) ~ 2
wi® == > oann? (=) [ U dw k0
n=2

with ) := min{1, §/2}, where in fact the sum only runs over even n. The function
in the integral is the Fourier image of the leading term in the expansion of the mean
curvature of ¥g given by mo = %(ﬁn + f22).

Proof First we have to express the needed geometric quantities. Consider the 2 x 2
matrices (1,,), (7*"), (0,,,) defined by

.:( /3 f,lf,z) ~.=( /3 —mz) 9.=(ﬁ11 f,n)
- fafa f22 1 —fufa f21 T\ S f)

respectively. The metric tensor of X is of the form g, (8) = 8, + 3%7,, and

9(8) :=det(gu) = 1 + B (f1> + f2°)
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together with g (3) = ¢(3) "' (6" 4+ %7""). The Jacobian g'/? defines the invariant
surface element dog := g'/?dx. Under the assumption (i) the matrix function 7 is
bounded with the norm [|]loc =: 70, and thus g,,,,(3) is uniformly elliptic for
small 3, because

C,(Sw, = guu(ﬁ) = C+6uu , cxi=1=% ﬁznoo .

The second fundamental form is also easily computed, &, (3) = ﬂg(ﬂ)_l/ 29,“,,
which in turn yields the Weingarten tensor 2 := hy,g”, and subsequently, the
Gauss and mean curvatures of the surface X3,

K(B) = 3*9(B) ko, ko :=det(0) = f11f2 — f12°,

1 1
M(B) = Bg(B) (MO + ﬂzml) »omo = S (Ow) = 5 (fa1+ f22) .

1 1
my = Etr O,7") = = (f,12f,22 + 22 f1 - 2f,1f,2f,12) .

2
In view of the assumption (i), X3 is asymptotically planar. As we have said,
the injectivity hypotheses of Sect.4.1.1 are satisfied for small 3 because p;ll =
max {|lk1|lco, lk2llcc} = O(B). This also means that the constants C1+ = (1%

ap,;l)z in the bounds (4.3) approach one as 3 — 0.

Since ¥gis C 4_smooth by assumption we can cast the operator —A D‘J into the
form (4.7) with the transverse part H, given by (4.8), while for the longitudinal one
we have the estimate

C_
_(_Ag+vl) <H <

C%— (_A9+v1)

30

which holds in L*(R? x (—a, a), g'/>dx du) in the form sense. For brevity we
use the shorthand — A for the Laplace-Beltrami operator — gV 28M g'?g"d,. The
potential v; in the above inequalities is obtained replacing G*” by ¢"¥ in V| =
g_l/z(gl/zGWJ,,,),M + J,,G*"J ,, ; adirect computation gives

WPVyK —2uVyM[Z  uPA K —2uh M
4(1 —2Mu + Ku2)2 " 2(1 —2Mu + Ku?)’

V] =

where | - |; and V; are the norm and gradient operator induced by the metric g,,,,,
respectively. Furthermore, one can get rid of the metric using

? ct
—FA=SAg=—7A
C+ C
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with the constants introduced above. The Hilbert space can be identified with L? (R? x
(—a,a)) as a set in view of the uniform ellipticity, and using finally the scaling
X > (+x with Ci = ciC%/(ciCi), we get the bounds

H <H<H;, Hi:=—-A-003+/3Vs,

where

1f{C
s = 5 (G ) (2.0)
:F

Now we are able to apply Theorem 6.2 to the operators Hy ; notice that as in the
tube case the estimating potentials are 3-dependent.

In view of (i), (ii) we have K, M, |V4K |4, [VgM|4, AgK — Oas |x| — 00, 50
the same is true for (V)11 ; recall that u A ;M vanishes when projected onto the first
transverse mode. This means that Uess(—Aga) = [K%, 00). Since the potentials Vi
are bounded and (iii) ensures that sup{V.(-, u) : |u| < a} belongs to L' (R?, (1 +
|x]%) dx) the assumptions of Theorem 6.2 are satisfied and —Ag” has by the minimax
principle for small § > 0 exactly one eigenvalue which is squeezed between the
eigenvalues e (§) = n% — 2w of the estimating operators, where w (3) are
given by (6.8) with AV replaced by 3¢ Vi (C+-). The matrix elements of the potential
V, from (4.8) satisfy

G Vo 8) = 81, [ 8 (Ko@) = mo()?) + 0@, jeN,

where the error term is an integrable function of x. The expansion of 5~ v; is more
involved because 3! AyM appearing in the second term is of order one. We begin
by writing vy (x, u; §) as

1
—u(AgM)(x; B) + u® (EAgK — VM| — ZMAgM) (s B) +rix,u; 3),

where r| is an integrable function of order O(53), then we expand | - |4, Vg and A,.
The first term above is an odd function of u, so it does not contribute to (V4 )11, while
it plays an important role in the higher modes,

1
D1 (x: B) = fuxil? (EAQK — |VyM|} — 2MAgM) (x: B) + O3,
D1 (x5 B) = —(x1.uxj) (AgM)(x; B) + OB, n=2,3,....
In the next step we employ the relations |V, M |£2J = |VM)> + 3*°M u" M, and

—Ay = A+ B%L(B), where L(3) is a second-order differential operator with
coefficients which expand as O(1). Further we use the expressions of the curvatures


http://dx.doi.org/10.1007/978-3-319-18576-7_4

174 6 Weakly Coupled Bound States

K, M and the fact that C /C:ZF and (1 expand as 1 + O(f); in this way we arrive
at the formula for w (/3), which is up to O(3*1") equal to

32 2 2 1
= /]RZ (ko —mo) () dx + [luxi | /RZ 5 &k — [Vmo| = 2moAmo ) (x) dx

o0
5 > wal® [, (Qmo)s) Ko (onCels =) (mo) ' dx dx/] :

where 0, = /K2 — H% and the sum runs in fact over even n only. This result can be
further simplified. By a double integration by parts using the fact that f, f,, — 0
as|x| — oo by (i), we find that the integral of kg is zero; we also have to employ (iii)
here to ensure that the involved integrals exist. Moreover, Gauss’ theorem together
with (i), (ii) by which VK — 0 as [x| — oo imply that the integral of Ak vanishes
as well. A similar argument employing Green’s formula gives fR2 (mogAmg)(x)dx =
— fR2 [Vmo|?(x) dx. It is useful to rewrite the integral in the last part of the above

expression for wi (3) as

27 Jeo Rz(Amo)(x) Ko(onot]x — x']) (Amg)(x") dx dx’" = (Amg, Gy * Amy) ,
X

where G () := (27)~! Ko(k|-|) and k stands for p,0+. Since Gy is the fundamental
solution of the distributional equation (—A + k)G = J, we get

(Amo, Gy % Amg) = (Amg, AGy % mg) = (Amo, (K>Gy — b) * mo)
= k* (Amo, G+ mo) — (Amg, mo) = k> (G * Amo, mo) + || Vo>
= K2 (AGy % mo, mo) + [ Vmo |2 = & (€ Gr = ) xmo, mo ) + | Vo
= k* (mo. Gy xmo) — k*|lmo|1> + [[Vmo|*.

Using the Parseval identity, |luxi|?> = >l uxn)?, we find that the terms
containing ||Vmy|| in the expression for w4 (8) cancel giving

2 00
_2/6—7(_ {“m()“z —+ Z(Xla qu)z kzl:kz (mo’ Gk * mo) _ ||m0||2]] + 0(52_‘—77) ’
n=2

where k = 0,+O(3), and by Problem 8 the terms containing ||m¢ || cancel too. Finally
we rewrite (mo, Gy * mo) using Fourier transformation and expand the remaining k
from Gy with respect to (3 including the higher orders in the error term. Since the
obtained leading order is the same for both w (), the same is true for w((3) and we
arrive at the sought formula. |



6.2 Applications to Tubes and Layers 175

Remarks 6.2.1 (a) The leading-order coefficient given in the theorem is strictly
negative. If this was not the case, mo would be zero, so f11(x) = —f2(x)
everywhere. This yields kg = —(f1 2+ f 122) and thus kg = O; recall that
fRZ ko(x)dx = 0 holds by Problem 8 under the assumptions (i)—(iii). Hence
K(X3) = 0,and atthe same time, f,,,, = 0givesm;| = 0, and therefore M (X3) = 0,
so the coefficients vanish only in the trivial case of a plane.

(b) We have formulated the asymptotic expansion in a way analogous to (6.14). If
we are interested in the thin-layer situation, we can rewrite the formula for wj in the
expansion w(8) = 2w + O(B*+") in a different way,

-6

43 IVmo|2d* + O(d*) (6.16)

1|| 1> +
wp =——|m
1 o 0

(Problem 10). To interpret this recall that fRZ ko(x) dx = 0 which means
[ (K= m)doy = =5 mol? + 0.
E{j’

and thus the first term in (6.16) comes from the surface attractive potential K — M 2
which dominates the picture for thin layers—cf. (4.9).

6.2.3 A Direct Estimate: Local Deformations

The preceding discussion has shown that an application of the BS method based on
two-sided estimates by Schrodinger operators in tubes and layers is not always easy.
It would become even more complicated when the map 2 — €2¢ used to transform
the Hamiltonian lacks the properties such as local orthogonality. This often happens
when 2 is obtained from €2¢ by a cross-section variation. In such a case it is more
reasonable to avoid the intermediate step and to apply Proposition 6.1.1 directly. We
will illustrate this approach on asymptotic properties of weakly coupled bound states
in locally deformed tubes and layers.

Let us begin with the two-dimensional case. For simplicity we consider only a
one-sided deformation of Q¢ := R x (0, d), and moreover, we suppose that the
deformation is compactly supported with the boundary 02 infinitely smooth. In
other words, we define Qf = Q) by

Q={ieR: 0<y<d+ ()} (6.17)

for A > Oand a fixed /' € C§°(R). From the general discussion in Sect. 1.4 we know

only that —A%* has at least one eigenvalue below /{% if f isnonzero and f > 0. In
the weak-coupling case we can prove a lot more.
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Theorem 6.5 Let {Q2)\} be a family of strips (6.17) with a nonzero function f €
Co°(R). Then —Ag* has for small enough \ > 0 at most one simple eigenvalue
e(N\) € (0, m%). This is the case if (f) := fR f(x)dx > 0, when the eigenvalue is a
real-analytic function at A = 0, and

eN) = k2 — N2+ 00 .

Proof We employ the simplest possible coordinate change passing to the oper-
ator Hy, := U,\(—Ag*)UA_1 on LZ(Q()) defined by means of the unitary map
Uy : (U))(x,y) = 1T+ Af(x)Y(x, (1 + Af(x))y). To find the explicit form

of H) is a matter of straightforward computation which yields

3 7
Hy=Ho+ XY A3B;j+\ > A%B;, (6.18)
j=1 j=4

where the A;’s and B;’s are multiplication or first-order differential operators given
explicitly in Problem 11. To cast it into a more compact form of the type (6.1), we
define a pair of operators Cy, D : L2(S20) — L%*(Q0) ® C7 by

] Ao, j=1,2,3 e p .
(C/\Cb)j T <)\AJ¢7 ]:4’5 6,7 (D¢)j T Bj(ybv J _15~~-v7a

)

and rewrite the operator (6.18) as Hy = Ho + AC} D. In view of Proposition 6.1.1
we have to analyze then the BS operator K := AD(Hy — z)~'C*.

The argument follows the same lines as the proof of Theorem 6.1 so we con-
centrate on the differences. We employ a simpler decomposition of the free resol-
vent writing K{ = AL; + AM;, where L; := DL,C* with the middle part
kernel £, (%, X') = (2k1(2))"'x1()x1(y"), and M, := D(N; + Ri(z)C*, where
N3, ¥) = 2r1(2) " x1 () e =T~ 1)x1 (") and Ry (2) is the free-resolvent
partin L2(R) ® {x1}* =: Hf‘. It is important that M, is regular, more exactly, that
in the present case the function { +— M 2 is a bounded operator-operator val-
ued function which is analytic in a neighborhood of the point { = 0 (Problem 12).
This makes it possible to use a factorization analogous to (6.6) and to ask when the
eigenvalue of the rank-one operator (1 +AM,) 'L, is equal to —1. This yields the
implicit equation { = G(A, {) with

A o g
600 = =5 [ 0 (G0 + 257 D) G k.
0

The mentioned analyticity means that G is analytic around (0, 0), so the solution
C(A) is easily found by the implicit function theorem to be
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A A <
) = 3 Cx1, DX + 00N = 5 3 (Ajx, Bjx) + O
Jj=1

with the contributions from AA% B}, j = 4,5, 6, 7,included in the error term, and the
function ( is analytic around A = 0. Moreover, the sum is reduced to the first term
only, because Bzx; = 0 and (A1, Box1) = 0 follows from fR f"(x)dx = 0.
This gives the expression A fQo Fx) X} (y)?dxX = )\/Q%( f) for the leading-order

coefficient. The solution gives rise to an eigenvalue e(\) by ((\) = ,/ /if —€e(N)
provided the function takes non-negative values for small A which is ensured if
(f) > 0. Taking then (()\) to the square we get the asymptotic expansion of the
theorem. |

The same technique can be applied to weakly deformed layers. Given a function
f :R? — [0, 00) of compact support and a number A > 0 we define

Qi ={feR: 0<y<d+If)},

as in (4.15). Similarly to the curved layer case, the inherent two-dimensional nature
of the problem means that the coupling caused by the deformation is exponentially
weak as A — 0.

Theorem 6.6 Let f € C° (R?) be a nonzero function determining a family {S2)}

of layers by (4.15). Then —AgA has for sufficiently small \ > 0 at most one simple
eigenvalue in (0, /{%), which happens if (f) = fRZ f(x)dx > 0. The eigenvalue

can then be expressed as €e(\) = li% — 2wy

the vicinity of A\ = 0 with the expansion

, where w is an analytic function in

2
wA) = —)\% ()2 +00.

Proof We begin as in the deformed-strip case with the “straightening” map U), :
L*(Q)) = L(Q), (Un)(x, y) = VTFA)W(x, (1 + Af(x))y), by which we
pass from —Ag* to the unitarily equivalent operator H) which can be written in the
form (6.18) by Problem 11, or more concisely as Hy = Hy + AC;D if we adopt
the notation from the preceding proof. We shall focus on the aspects in which the
subsequent analysis differs from that of Theorems 6.2 and 6.5.

We employ the decomposition K = AL, + AM;, where the singular rank-one
part is L, := DL,C* with the kernel of the middle factor now being £, (¥, X') =
—2m~'x1(») In £1(2)x1(y"). The operator appearing in the remaining partis M, :=
D(N, + ROl (z)C*, where Ré-(z) is again the resolvent restricted to the subspace
spanned by the higher transverse modes, and

= 2/ 1 /! !/
N (x, ) = ——x1(y) (Ko(k1(2)]x —x']) +1Ink1(2)) x1(0) -
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In the next step we have to check that M, is bounded and even analytic with respect to
the variable w := (In % (z))~! around w = 0. The part coming from R(J)- (z) causes
no problems and can be dealt with as in Problem 12. Also for the lowest-mode
remainder we use the same route and rewrite the term in question as Dh N,gffghC*
with a suitable 7 € C§°(R); using integration by parts and the explicit form of
Cy, D we conclude that it is sufficient to check the boundedness and analyticity of
the integral operators hn h and hn; ,h, 1= 1,2, on L?(R?) with the kernels

1
ny(x, x') = oy (Ko(k1(2)|x — x']) + Ink; (2)) .

, 1 xu— xl/L ,
Nz p(x,x) = Tor =] ki () K1k (2)lx —x']);
recall that K) = — K. At this stage comes a difference, however. The singularity of

the second term prevents us from using the Hilbert-Schmidt norm to estimate these
operators. Instead we employ the Schur-Holmgren bound (Problem 14). Defining
pn = diam(supp ) and using further the fact that |(Ko(z) + Inz)e | < ¢ for
some ¢ > 0 we arrive at the following estimates,

Ihnzhlsy = sup [h(x)| | |n (x, x)h(x") dx’ < e1llhl|2, prcn(z)
xeR2 R2

with ¢;(2) := ppe™@Pr + max{e™!, pInps}, and [|hn, ,hllsy < |121% pr. To
check the analyticity one has to inspect properties of the (complex) derivatives of
operator-valued functions w > hn;)h and w +— hn;y), i, where we have intro-

duced z(w) := /ﬁ% peTeVe Using K| = —(Ko+ K3) and defining ¢ := £ (z(w))
we have 20 (x x'y = 2m) "L ¢w2(K1(¢) — (') and

1 X, —x), e ¢
i [Kl(o—z(Ko«HKz(o)]

21 |x — x|

dnz(w),u (x, x') =

Now we notice that |[CK{(¢)| < 1 and that the combinations K1(¢) — ¢! and
2K1(() — C(Ko(¢) + K2(C)) are also bounded in R. Furthermore, w e s
bounded in (—oo, 0). Taken together these inequalities allow us to check the finiteness

of the Schur-Holmgren bounds,

dnz(w),
w

h

’

d
max [ Hth
dw SH

L

2 2
] < a2llhliz Py
SH

for some ¢ > 0 and all w € (—o0, 0). Finally, since the limits as w — 0— in these
bounds make sense, the operators hn;h and hn, ,h can be analytically continued to
a neighborhood of w = 0.
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The rest of the proof is the same as in the preceding theorem. Factorizing out the
singular part we get the implicit equation w = G(\, w) with

A o o
G\, w) = E/Q x1(y) (C§(1+>\Mz(w))_lDX1) (x)dx,
0

which has an analytic solution w () in the vicinity of A = 0. Computing the derivative
of this implicitly given function we get

dw 1 1,5 K3
—(0) = =— (A1x1, Bix1) = —=IIxil / fx)dx = ——(f),
dX 27 T R2 T

because B3y; = 0 and fRz(Af)(x) dx = 0 gives (A2x1, Bax1) = 0, while the
contributions of the remaining operators in (6.18) can be included in the error term.
The obtained expression gives rise to an eigenvalue if the derivative is negative,
which is the case if (f) > 0. |

An attentive reader has surely noticed that in contrast to the results of Sect.6.1,
Theorems 6.5 and 6.6 provided only a sufficient condition for the existence of a
weakly coupled bound state, because the critical case, ( f) = 0, was left out. A naive
guess would suggest that such a state exists with a higher power of the deformation
parameter in the asymptotic expansion. However, since the mode coupling given by
the operators Cy and D differs from the potential case, the answer is not a priori
clear. Later in this chapter we shall see that this caution is justified: depending on
the particular shape of the function f critically deformed strips may or may not have
weakly coupled bound states.

6.3 A Generalized BS Technique

The basic idea of the Birman-Schwinger method which is to replace the original
operator, typically partial differential and unbounded, by a mathematically bet-
ter manageable object can be used even in situations when the assumptions of
Proposition 6.1.1 are not satisfied. This applies, for instance, to strongly singular
interactions supported by a set of zero measure for which the formula (6.2) defining
the BS operator makes no sense. To be specific we shall discuss such a generalization
in the example of a double waveguide with a semitransparent barrier described in
Sect. 1.5.2. However, since the resolvent formula which is a core of the argument is
useful in different contexts, we shall derive it in a more general form than needed
for this particular example.
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6.3.1 A Resolvent Formula

Let Q be an open set in R?. Consider a positive Radon measure m on €2 and a Borel
function o : RY — R such that the inequality

/(1+a(x)2) |1/J(x)|2dm(x)§a/ |V1/J(x)|2dx+b/ W@)Pdx  (6.19)
Q Q Q

is satisfied forall ¢ € CgO(Q) with some positivea < 1 and b. Since C(C)’O(Q) is dense
in HO1 (f2) by definition, there is a unique bounded linear operator 1, : H(} (Q) —
L?(m) := L*(S2, dm) such that I,,,4> = 1 holds for an arbitrary 1) € C§°(£2); abusing
notation and identifying a continuous function v with the corresponding equivalence
classes in H& (2) and L2(m) we can also write the last relation as (In)(x) = P(x)
for x € suppm. By density, (6.19) holds for all ¢ € Hé (R2) if ¥ is replaced by I,
on the left-hand side. A sufficient condition under which (6.19) is valid is, e.g., that
« is bounded and m belongs to the generalized Kato class (see the notes).

The class of operators we are interested in here can be formally written in the form
—A% + a(x)m(x). The most natural way to define such measure-type perturbations
is through the corresponding quadratic form,

tam[] = /Q |V (x)[* dx + /Q a(x) [(Iyh) (x)* dm (x) (6.20)

with the domain Dom (¢,,,,) = H& (€2). In view of (6.19) and the KLMN theorem
[RS, Sect. X.1], the above form is closed and bounded below on HO1 (€2), hence
there is a unique self-adjoint operator H,,, associated with 7,,,. Of course, this
definition includes the particular case (1.39) which we will discuss below, but it
is also worth mentioning that regular potential perturbations fit into the scheme as

well, and moreover in different ways: one can put, e.g., dm(x) = |V (x)|dx and
a(x) = sgnV(x), or V = « with m being the Lebesgue measure restricted to
supp V, etc.

To derive a formula for the resolvent of H,,, we need some more notation. Put
C& = {k: Imk >0 or k* € [0,inf o(—A$))} C C. For any z = k? the free
resolvent is an integral operator with the kernel Go(-, -; k). Let further u, v be
positive Radon measures without a discrete component, i.e. u({x}) = v({x}) = 0 for
any x € €2, then we denote by R/’j!l, the integral operator from L2 (y) := L*(2, dy)
to L2(v) with the kernel Go(-, -; k?). In other words, the operator acts at a vector
1 € Dom (RX ) ¢ L?(u) as

v

(RE 6)(x) = /Q Golr, y; KB du(y)
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where the right-hand side is understood with respect to x as an element of L2 ).
We are interested primarily in the situations when p, v are the measure m appearing
in (6.20) and the Lebesgue measure on €2 in various combinations.

Proposition 6.3.1 Let k € C4 and ¢ € L?(m), then RX | 1 € HN(RQ) and

m,dx

10 (RE g, &) — (PR 4 00, 6) = /Q D)) () dm(y)

holds for all ¢ € HO1 (Q). In particular, R® | is injective.

m,dx

Proof If we prove the first claim, the injectivity will follow by density of Ran I,,
in L?(m). Assume first k> < 0, so k belongs to the positive imaginary axis. Then
(U, o) == t0(Y, @) — kz(z/), ¢) defines an inner product on Hé(Q) and the cor-
responding norm is equivalent to the Sobolev norm. Fix a 1) € L*(m). Using the
Schwarz inequality and the fact that I,,, is bounded we infer that

2
‘ /Q V) Und) () dm(y)| < /Q [ (y)[*dm(y) /Q |(Ln®) (M2 dm(y) < ¢ (b, Dk

holds forany ¢ € H(} (£2) and a constant ¢ depending on 10. Hence the linear functional
¢ — fQ V() (np)(y) dm(y) on the Hilbert space (Hé (£2), (-, -)) is bounded, and
by Riesz’s lemma, there is a unique w,]; € H(} (£2) such that

(k. ), = /Q D) Und) (y) dm(y) (6.21)

for all ¢ € H(} (£2). Thus it is sufficient to show that (erfl’dxdj) (x) = wfn (x) holds
a.e. with respect to the Lebesgue measure dx.

Recall that the free Green’s function is positive forall x, y € Q, x # y,ifk* <0
and dx-integrable if the other variable is fixed, in fact exponentially decaying for a
non-compact 2. Moreover, we have

/Q Gotx, v: k) (=A% — K)é(x) dx = 6(y)

forall y € @, ¢ € HOI(Q) and the functions ¢ := (—A% — kz)_ln with some
n e C(‘)>Q (2) are C°°, bounded, and have the same decay as the Green’s function for
a non-compact 2. Suppose first that ¢ € L'(m) N L?(m). For ¢ of the indicated
form we may then employ the Fubini’s theorem which in combination with the above
relation and the fact that G is real-valued gives

/Q ( /Q Go(x,y;kZ)w(y)dm(y))(—A%—k2>¢(x>dx= /Q V() P(y) dm(y),
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so by (6.21) and the second representation theorem we have
/Q (Uh (=A5 = k)9) () dx = (U}, 0), = /Q (NG dm(y)

forall ¢ € (—A% — k3! C°(R2). The last identity uses the fact that /,,¢ = ¢ holds m-
a.e. This requires a comment because in general ¢ ¢ C5°(£2), however, if this is the case
one can approximate ¢ by C§°(€2) functions using a standard family of mollifiers and use
dominated convergence to check that the relation in question is valid. Since such ¢ are
dense in L!(2), comparing the last two displayed equations we find that 1/),’; = an, ax?
holds dx-a.e. By standard approximation arguments one can check that the same is true
for any ¢ € L?(m) and k*> € C& (Problems 15 and 16). |

This result allows us to derive an explicit formula for the resolvent of H,, as a
perturbation of the free resolvent which we denote for brevity by R’(; .

k

. dy 1S invertible on L2(m) and

Proposition 6.3.2 Letk € (Cg. Suppose that I + oI, R
the operator

R*:= RE — RE 4 (I + alu R, 4 )l RY

m,dx

is defined everywhere in L>(Q2). Then k> € p(Hpp) and (Ham — k*)~! = RX.

Proof The free resolvent maps L2($2) onto H(} (2) and the same is true for the second
term in view of the assumed invertibility and Proposition 6.3.1. Hence Ry € HOI(Q)
and by Problem 15 we have to check that

tam (R* Y, ¢) — (PR, §) = (¥, §)

holds for all ¢ € L?%(Q) and ¢ € HO1 (2) = Dom (#4,,). Substituting for R* and defining
x:=U+ oeImRk Yy lal, Rgd) we rewrite the left-hand side as

m,dx

to(REY, &) — (K*REw, §) — to(RE, 4o x. &) + (P RE, 4.x. )
+ /Q (x) (I R¥4) () (I ) (x) dm (x) .

The first two pairs of terms equal (1, ¢) and — fQ Xx) (L ¢)(x) dm(x) by Problem 15
and Proposition 6.3.1, respectively. Some simple algebra then gives

aly R = (I + alyRy, 4 )T + aly Ry, 3 ) aly RGtp — aln Ry, 4. X = X

for any ¥ € L?(2), thus the sought relation holds for all ¢ € HO1 (). |

In view of the relative boundedness (6.19) the invertibility assumption is satisfied if x
corresponds to a large enough negative energy (Problem 17). Since our aim is to extend
the BS method to the present case of measure-type perturbations, we have to ask about

the relation between the kernels of the operators H,,, and I + oy, Rﬁz, ax fork € Cg. It
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is not difficult to check that they have the same dimension (Problem 18), and thus there
is again a close relation between the solutions of the two spectral problems. To make use
of it we cast the above derived resolvent expression into a more convenient form.
Theorem 6.7 (a) I,,RY i = RS, and 1,R§ = RS, | forallk € C§ .

(b) I+ ozR%’fm has a bounded inverse in L*(m) for all k > 0 large enough.

(c) Assume that I + aRX is invertible for k € (Cg and the operator

m,m

RY:=R§ — R}, , (I + R}, )R, ,
is defined on L*(R2). Then k* € p(Hpy) and (Ham — k*)~' = RX.
(d) dimKer (Hom — k?) = dimKer (I + R}, ) for all k € C§ .

m,m

Proof By Proposition 6.3.2 and Problems 17, 18 it is sufficient to establish the claim (a).
We begin with the free Green’s function (x, x') — Go(x, x’; —x2) which exists for all
K > 0, is positive, smooth in each argument, and decays exponentially as [x — x'| — o0
if Q is non-compact. Moreover, for d > 2 it has a singularity at x = x’ which forces
us to employ a smooth approximation. To this end, choose a function n € C*(R4)
which is monotonous, 7(r) = 1 for r > 1, and behaves around the origin as n(r) =
cnr) ™+ o(nr)™Y and n(r) = cr?? + o(r??) with a nonzero ¢ for d = 2 and
d > 3, respectively. Define 7, (r) := n(nr). Furthermore, take an increasing sequence
Cn € CgO(Q) such that lim,— » (, (x) = 1 for a fixed x € 2, and put

G (x, x'; —=k2) 1= 0 (Ix — ') Go(x, x'; —K%) G (x) .

In this way we obtain a sequence which is non-decreasing for fixed x, x’ € Q with
Gu( x's —k?) € C§° (). Moreover, |V, G, (x, x'; —kH)| < cilx — x4 forx £ X
and |G, (x, x'; —kD)| + |ViGp(x, x'; —k2)| < cpe 3=l for [x — x/| large enough
holds with suitable constants.

For brevity we use the symbol y for m, dx. With an arbitrary 1) € L?(j1) we associate
the vector ¢, = [, Gn(-, x'; -k dux’) € C§°(2). Its Sobolev norm can be
estimated using the above listed properties. We have

/W@Mwmf/
Q R2

where 9 on the right-hand side means the trivial extension from € to R?; the integral
is easily seen to be finite using Fourier transformation. Furthermore, the non-derivative
contribution to the norm has a bound independent of n because Rl’fdxd) € HOl Q) C
L?(£2). Hence {¢,} C HO1 (€2) is a bounded sequence.

Now we put y, := % Z?:l ¢; and use the diagonal trick to show (choosing a subse-

2
[ v dnt)| ar,
R

2 |x —x'4-

quence if necessary) that {,} converges strongly in HO1 (£2). By the monotone conver-

gence theorem we then get y, — Rffdx¢ in Hj (Q) as n — oo. From the definition

of I, we have I,,x, — ImRif'dxdz in L%(m), and since Luxn € C5°(R2) holds by
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construction we conclude that 7,,x, = X, is valid m-a.e. which proves the result for
k purely imaginary. It extends to any k € (Cg by means of the Hilbert identity as in
Problem 16. |

6.3.2 A Semitransparent Barrier

If we want to apply the above result to weak-coupling analysis of systems with a locally
modified leaky barrier, it is useful to cast the resolvent formula of Theorem 6.7 into still
another form that would allow us to compare resolvents corresponding to two different
measure perturbations. With this aim in mind, we assume that the measure m is the same
for both perturbations and that one of the functions is constant, ag(x) = «ag for some
ap € R and all x € Q. Notice that this is not a strong restriction, because the possible
x-dependence of the perturbation can be included in the measure m.

Denote the corresponding resolvents by R¥(«) and R*(av), respectively. For any
k € C& with k% € p(Hagm) N p(Ham) Theorem 6.7 gives

Rk(a) - Rk(o‘O) = m dx [(I + CtoRm m) ao— (I + Osz m)_la] Rt];x,m

—1 k —
- Rm dx(I + Osz m) (ao - a)(l + aORm,m) Rdx,m ’
where we have used the fact that oy commutes with [ + aRm s the resolvent traces on
the right-hand side correspond to the function «.. Furthermore,

Ré{x,m(aO) = Rgx,m - an,m(l + aoan,m)_laoRgx,m = (I + aOan,m)_lex,m )

and using (R 0 V)* = R'; . we get an,dx (o) = 04 +040R )_] . Finally, applying

Theorem 6.7a once more we get the relations

m dx

Ri];,m(QO) I+ QORm m)_lR;I'(n,m = an,m(l + aOan,m)_l :

In particular, the “mixed-term” expressions allow us to write the resolvent difference as
—R* | (ag)(I + aoRm W+ aRk m) Ya — ap)RY. (ap). It is useful to rewrite it

m,dx dx,m
further in a form symmetric with respect tothe perturbatlon With the usual BS convention,

(@ —ap)'?:=|a- a0|1/2sgn(a — ay), the central part of the last expression equals

-1
(I +aoRl, ) +aRly )7 (@ = a0) = [ 1+ (@ = a0 R}, ,(@0) | (@ = ao)
-1
=[1+ @R, 0] [I+@=anRl @] @-ap
< [+ 10— a0l 2Rl (@0}~ 00)'?] o~ al V2

-1
= (@ = a1+ |a = ao 2R, , (@0)(@ — a0)'?] o — o2,
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The obtained expression for the resolvent no longer contains Rg, hence we can extend its
validity to (Caao = {k :Imk >0 ork?e [0, inf O'(Haom))} by means of the Hilbert
identity. Summing up the argument, we arrive at the following conclusion.

Proposition 6.3.3 Under the stated assumptions, the resolvents of Hy;, and Hyyp are
related for an arbitrary k € (Cg o by the formula

R¥(a) = R*(a) — R, 4 (o) (o — ag)/?

-1
x[1+1a = a0l R, (a0) (@ = )] o = agl2RE, . (a0)
Let us return now to the weak-coupling analysis of the example from Sect.1.5.2 in
which m is the Dirac measure supported by the x-axis in the strip 2 := R x (—d», d).
It is convenient in the present situation to regard « as a Borel function R — R in corre-
spondence with the definition of the Hamiltonian by (1.39). In view of Proposition 6.3.3
the question about bound states of H,,, = H, is equivalent to spectral analysis of the
integral operator
KX = o —aol'2 RE (o) (@ — ag)'/? (6.22)
on L%(m) = L*(R). For simplicity we adopt slightly stronger assumptions about the
coupling than those of Proposition 1.5.1.

Proposition 6.3.4 Suppose that o € Lllotn(R) and a(x) — g = O(|x|_2_5) holds as
|x| — oo for some n, e > 0. Then

(a) K(Ii is Hilbert-Schmidt for any k € Cg’ao,

(b) I + K(’f has a bounded inverse for all k > 0 large enough,

(c) dim Ker (H, —k?) = dim Ker (I + K(];) holds for all k € Cg,ao and the generalized
Birman-Schwinger principle is valid: k* € ogisc(Hp) if and only if —1 is an isolated
eigenvalue of the operator K, é

Proof We postpone verification of the claims (a), (b) to Proposition 6.3.5 below. In the last
partitis sufficientto assume o € L*°.Indeed, define ay (x) := sgn a(x) minf{|a(x)|, N}.
Then K (’iN — K (’i in the operator norm as N — 00, again by the argument of Propo-
sition 6.3.5. On the other hand, due to absolute continuity of the Lebesgue integral the
values of the quadratic form f,,, converge to those of (6.20) so H,y — H, in the
strong resolvent sense by [Ka, Theorem VIII.3.6]. Hence the discrete spectrum of H, is
approximated by that of H,,, ; both are finite in each interval (—oo, k%] with k% < vi(ap).

If |ao — aplloc < o0 then Rﬁudx(a()) (@ — a9)'/? and |a — a0|1/2R§x,m(a0) are
obviously bounded. The operator I + K (’i has by part (a) a purely discrete spectrum,
every non-unit eigenvalue being of finite multiplicity. Thus if —1 is an eigenvalue of
K (li, the number &2 belongs to o (Hy,,) with the same multiplicity. On the other hand, if
there is no v solving K(’jw = —1, then (1 + Kﬁ)’1 is bounded, and so is R¥(«), hence
k* € p(Hom). I

To be able to control the local variation of the barrier which plays here the role of an
effective potential, we will consider a(x) = ag + A3(x), where A > 0 is the parameter
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by which we tune the coupling and the function 3 : R — R has the properties stated in
the last proposition for A = 1.

To be consistent with the notation of the previous sections, we denote the Birman-
Schwinger operator (6.22) corresponding to this a by K f\ One finds easily that it is an
integral operator on L?(R) with the kernel

= |xn (0; ) |?
K/k\(x,x/) — /\|ﬁ(x)|1/2 Z "2/{’7(@ e—an(Z)‘X—X | ﬁ(x/)l/z ,
n

n=1

where k,(z) := /v, () — z corresponds to the energy z = k% and {y,} are the trans-
verse eigenfunctions from Lemma 1.5.1 . As in the case of the regular BS method, the
idea is to split the rank-one part of the above operator which diverges as z — v (ag)—.
We write K§ = )\Qk + AP*, where

. 2
Ze_”"’“l Ix1(0; ap)| e

—rp x| n1/2
2 Bx’)V7,

0F(x,x') = 1B

and furthermore, we again split off the lowest-mode contribution to the remaining part,
P¥ = A¥ 4 C¥ . In particular, the first-term kernel at the singularity equals A0 (x, x') =
1B 1x1(0; o) |? |x] < B(x")/2, where we use the notation (6.5). The function k +—>
P is regular around the threshold:

Proposition 6.3.5 Let 3 satisfy the same assumptions as o — «y in the previous propo-
sition. Then in a neighborhood of the point ky := v (a9)'/? the operators Ak, Ck are
Hilbert-Schmidt and

: k ki : k ki
lim ||A® — A" ||lgs = lim ||C" — C"|lgs = 0.
k—ko k—ko

Proof We have || A2 = [x1(0; ap)|* [z2 1B(0)] [x[2 [B(x")|dx dx’ < oo, since the
last integral is estimated by the square of fR |x| |8(x)| dx which is finite by assumption.
Using |A%(x, x)| < |A¥(x, x")| and the dominated convergence we establish the first
claim. The squared Hilbert-Schmidt norm of C*0 is

oo . . 2
[xn (05 o) Xim (0; avo) O 7y Y e (PSR , ,

n m d d
2 S odmn Je PO 5G] dax d

m,n=2

where the interchange of summation and integration is justified by the monotone conver-
gence theorem. Using Holder’s inequality we estimate the integral by

/

20" 1B lB11 (Vv =1+ om — 1)
with ' = ﬁ > () where the norms are again finite by assumption. Since the sequence
{xn(0; ap)} is bounded by Problem 1.22, it is sufficient to check convergence of the
double series
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1
Z \/Vn_Vl\/Vm_Vl (\/Vn_VI’FN/Vm_Vl)n’

m,n=2

which follows from the fact that u,,_l/z =o(n 1Y) asn — oo —cf. Lemma 1.5.1 . As in
the case of operators A¥ we complete the proof using the pointwise limit of the kernel as
k — ko in combination with the dominated convergence.

Notice finally that an analogous argument yields the claims (a), (b) of Proposition
6.3.4. The summation includes in this case also the first transverse mode and /v, — v
is replaced by v/, + k2, so the modification of the above series makes sense and its sum
tends to zero as kK — o0. |

Having established the decomposition of the Birman-Schwinger operator (6.22) into
the parts which are singular and regular at k = kg, we can proceed with the analysis
following the argument which led to Theorem 6.1.

Theorem 6.8 Let H, 13 correspond to a nonzero function (3 which obeys the assump-
tions of Proposition 6.3.5. Then an eigenvalue €(\) < vi(«ag) exists iff fR [x)dx <0.
In such a case, it is unique, simple, and satisfies the asymptotic expansion

A
Vri(ag) —e)) = -5 Ix1(0)[? /R B(x) dx

)\2
= [m <0)|4/ B(x) |x —x'| Bx") dx dx’

0 0 el drxdx’} + O\
_ ; + :
1) Z|x()| / 5 S B e | 400

where x;,(0) := x,(0; ap) and v, := v, ().
Proof is left to the reader (Problem 19).

Remark 6.3.1 Making the barrier variation small is just one way to achieve a weak-
coupling regime in the model we are discussing here. Another possibility is to shrink the
support of the effective potential while keeping || — oy || o fixed. Consider a longitudinal
scaling of the coupling function,

as(x) =« (g) ,

with the parameter o € (0, 1] and ask about the behavior in the limit 0 — 0+. A
modification of the above analysis to this case is not difficult (Problem 19). Since it is
convenient to employ a less sophisticated kernel decomposition similar to that in proof
of Theorem 6.5 one has to require a stronger decay, e.g. a(x) — ap = O(|x|7379) as
|x| — oo. Under this assumption H,,, has a weakly coupled bound state with energy e(o)
for all o small enough if and only if fR(a(x) — ap) dx <0, and one has the asymptotic
expansion
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2 00
Ve = @) = = O [ @) = a0 dx = 5 O 3 OF
n=2

e~/ vn—vilx—x'| , , 3
X /Rz(a(x) — ag) ﬁ (a(x") —ap)dxdx” + O(c7).

The formula differs from that of Theorem 6.8 mostly by the absence of the contribution
from the remainder operator in the lowest mode which is in the present case of order of
o* and thus absorbed in the error term.

6.4 Variational Estimates

The previous sections illustrated the power of the Birman-Schwinger technique in analyz-
ing the weak-coupling behavior of tube and layer systems. At the same time, the method
is not universal. Sometimes it is just too complicated as, for instance, in situations when
the leading-order term vanishes and the next one is difficult to compute. There are cases,
however, where the problem goes deeper. If the perturbation is not additive in the sense
of an operator or quadratic-form sum, an analogue of the BS principle is missing. An
alternative method is based on variational estimates. It typically does not yield the exact
asymptotics but it can provide upper and lower bounds which capture the correct power
behavior with respect to the coupling parameter. In this section we are going to illustrate
this claim on the examples discussed above.

6.4.1 A Critically Deformed Strip

The analysis of a weakly deformed strip (6.17) given in Theorem 6.5 is restricted to the
leading term and gives no answer in the critical case when (f) = 0. The variational
technique allows us to make the following conclusion.

Theorem 6.9 Letr {Q2)\} be the family (6.17) with a nonzero [ € Cgo(]R) such that
supp f C [—b, b] and ffh f(x)dx = 0. Then the discrete spectrum of—AgA is empty
for small enough |\| provided 8b < d~/3. On the other hand, if

R 24k}
< 9
If1I7 9+ V117 + 4872

then the same operator has for small nonzero |\| exactly one isolated eigenvalue €(\)
and in that case there are positive constants cy, ca such that

(6.23)

M < H% —e(\) < e\t (6.24)



6.4 Variational Estimates 189

Proof We employ the unitary equivalence of —A%A with the operator (6.18) which we
will for the present purpose write as Hy = —A%O + AW — A2 W,. Consider first the non-
existence condition. In view of Theorem 1.4 we have to check that (¢, Hy\v) > H% lv1?
holds for all ¢/ from a core of the operator, say, from Cg(Qo). Moreover, since H)
commutes with complex conjugation, it is sufficient to consider real-valued ) only. Any
such function can be written as ¢ = h +r, where h(x, y) = ¢(x)x1(y) and r(x, ) L x1
for all x € R, which yields for the value (v, Hy\v) of the quadratic form in question the
expression

2
—(h, ASR) = (r ASr) = D" (=N [, Wih) + (r. Wir) +20r, Wh)] .
j=1

Let us begin with the terms linear in A\. We put a := ¢(—>b) and g(x) := o(x) — «;
without loss of generality we may suppose that o > 0. Then with an abuse of notation
we can write

(h, Wih) = o*(x1, Wix1) + 2a(gx1, Wix1) + (9x1, Wigx1) -

The first term on the right-hand side vanishes in view of (f) = (f”) = 0, the second
one is easily calculated to be —4om% (9, f)12(—p,py using Problem 11 and the relation
-Xi = /@%Xl.Since f € C3°, the last term can be estimated by a linear combination of the
L? norms of the functions g, ¢’ in (—b, b). However, gl L2(—b.py < GB/TG || L2(—p.1)
because g(—b) = 0 by construction, so we get

Ah, Wih) = =43t (g, £ b = ACIG 152y p -

where C here and in the following is an unspecified positive constant. In a similar way

properties of f together with the Schwarz inequality yield |(r, Wir)| < C ||R||?11 @)’

where 2 := (—b, b) x (0, d), and an estimate for the a-independent part of the mixed
term,

210 Wigx Dl = € (19122 ) + 171320,) -

The remaining term linear in A requires more attention. Since r is smooth by assumption,
it expands pointwise as r(x, y) = 250:2 rn(X)xn () giving

o0
2a(r, Wix1) = —2a Z(V,/,, 2 by Xns YXD 1200.0) -
n=2

The last inner product equals (—1)"2n/(n*> — 1). We introduce the quantity

o N2\ >
— (Z (27”1) = % + - ~1.881 (6.25)
2 —

~
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(Problem 20a), which allows us to estimate 2c|(r, W x1)| by

o n o 1/2
2a(|f’|, A nz_l) < 20K |f’|,(Z|r,;|2)
n=2 L2(—b,b) n=2

L2(~b,b)
22 ~ / X
S a’K )\(1 +C)‘)||f ||L2( b,b) + )\(1 F )\) ” X”LZ(QI,) )
where r, := Or/0x and ¢ is a fixed positive number.
Among the quadratic terms we observe that X |(r, War)| < CA2|r|? HIQ) because

f € C§°. In a similar way we find
X1 Wa)] = X (a2 + 119125y ) + AP 12 g,

where we have also employed the Schwarz inequality and the fact the L? norm of ¢ is
dominated by that of ¢/, and furthermore,

X2, Wagxa) + (gxi, Wagxn)l = OO (23 + 119125, ) + Mglida

The remaining part of the mixed term is found explicitly in the leading term,

= X220, Wax)) = Na? (35217122, ) + K21 IR2y ) + OO (6.26)

with K given by (6.25) — cf. Problem 20a. Now putting all the estimates together, we find
that (v, Hyv) is bounded from below by

IVAIZ +1Vr 17 + 3N KT 1 f 172y ) — 4ART(G, 12—t
—A+ N g,y = € (Mg oy gy + A1 g, +02N)
for all |\| small enough. To estimate the kinetic part of the quadratic form, we employ the

lower bound || Vr||? > |Iry ||Lz(g ) +4K? ||r||Lz(Q ) together with the explicit expression
of the Sobolev norm; this shows that the inequality

1Vrl? = CAlIrlG q,) — A +EN Il g, = #1717 2,

holds if (1 — CA)(1 +¢A) > 0and 3 —4AC > 0, i.e. for || small enough. In a similar
way, the first term is estimated by ||[VA|? > | ¢’ ||L2( b.b) + K ||h|| and since

> (m/4b)*| 9|1 we arrive at the lower bound

LX)’

”g ”L2(—b,b) L2( b,b)

W, Hyp) — mill9)1* = 19172 _pp) = 4ART (G )12

16b2
+ X202 f 12y (351 = CAIAIE L, ) -
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where we may suppose without loss of generality that f is nonzero. It is straightforward
to see that the right-hand side of the last inequality is positive for small |A| as long as
K3 < 372 /64b%.

The same argument yields the upper bound in (6.24). Computing the minimum of
the right-hand side in the above relation and taking into account the contribution to the
kinetic energy from 0} := Qo \ €2, which we have previously neglected we see that the
shifted energy form is bounded from below by

(W, Hxt) = {1017 = 11hxl72ge) — Macoll £I7 + OO,

where ¢ := (2mba=2)? — 3x?. Forat) € C2(Q) such that the left-hand side of the last
inequality is negative we may use ) > ||h||2Lz(QC) > |91l .2(—o0,—p) and an analogous
b

lower bound for |4y || minimizing the corresponding functional we find that the

22(9;;)3
second inequality in (6.24) holds with ¢; > ¢§ |l f|*.

To get the lower bound we employ a family of trial functions defined by v, ,(x, y) :=
(I 4+ M fx)x1(y) in &, and ¥y ,(x,y) = e PP Flly (y) in the tail parts. Using
again the above estimates, this time with r = 0, & = 1, and g = Anf, we find that

I H/\l/zq/)n,pnz - K%Hq/)n,p”z is bounded from above by

p+ N {G = 4R} FI? + (P + KD} + CA3

Since p > 0 can be chosen arbitrarily small, a bound state exists as long as the curly
bracket is negative for all  which gives the condition (6.23). Finally, optimizing the ratio
of the above quantity to 26 — p~! — C X which estimated 120, |2 from below, we get the
first inequality in (6.24). |

The most important consequence of this result is that in the critical case weakly
bound states may not exist if the strip width is too large relative to the support of the
perturbation. Of course, the method does not give an exact coefficient in the asymptotics,
and thus there are situations in which the existence question cannot be decided in this
way—see Problem 20b and the notes.

6.4.2 Window-Coupled Strips

Now we want to show that variational estimates can be useful in situation where the BS
method does not work. We shall illustrate this claim on the example of lateral coupling
through the window in a Dirichlet boundary. Consider first a pair of coupled strips in
the plane discussed in Sect. 1.5.1. By Theorem 1.5 the respective operator —A% has for
small enough a > 0 exactly one simple eigenvalue €(a) below the essential-spectrum
threshold €.


http://dx.doi.org/10.1007/978-3-319-18576-7_1
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Theorem 6.10 In the described situation there are positive constants ¢y, cp such that

c1a4 <eq —e€la) < cza4 (6.27)

holds for all sufficiently small positive window halfwidths a.

Proof The lower bound to the gap width is again easier requiring the selection of a good
enough trial function. Consider first the symmetric case, o = 1, and put ¢y = h + g
in one guide, where h(x,y) := ¢(x)x1(y) with ¢(x) := « min{1, e~ *I¥1=4l} and
g(xX, ¥) 1= 1N X(~a.a)(X) r(y) cos /eg x with

_ Y\
() i= X©0.47210) €™ + 2x(a/2,4) () (1 —3 ) e md/4a

recall that €y := (77/2a)2. It is obvious that such a 1) belongs to Q(—A%) being thus an
admissible trial function. To evaluate the shifted energy form g[v¢] := ||V 12— eq K% IR
we employ the identity —x| = e;x1 and a simple integration by parts together with the

explicit value x| (0) = m/2/d? obtaining

2 a
qle1 = 16l + gy I = eallgll® - 20 e}/z\fd/ gl 0)dx.  (628)

Since h,, g, have disjoint supports, we have ||¢, |> = ||h.||® + [« I>. The second term

in this expression equals 7% ae, ||r||2L2 ©0.d)° where the squared norm can be estimated by

(a/m)(1 +¢€1) for any 1 > 0 and all a small enough. In the same way, ffu g(x,0)dx =

2
L2(0,d)

n*m /4. Putting these estimates together, using ||/, ||> = o
term —ey||w]||?, we arrive at the inequality

82 aa s
qlY) < o’k — —pr + Z(2+51)772~

< m/4a for a < wd/8, which means that ||gy||2 <
2

4an/~. Finally, we have ||r’||

k, and neglecting the negative

Taking the minimum of the right-hand side with respect to 7 and using a simple bound,
Y12 > a®(1 — ep)k~! for any €7 > 0 and all @ small enough, we get

2742k
—_ ! 2 senN 2.
ql] < (1 —e2) (fi 2B T o) ) ol

the sought inequality follows by minimizing the right-hand side with respect to «. In the
asymmetric case, ¢ < 1, we use an analogous argument; the part of the trial function in
the wider channel is as above and the other one is just transversally rescaled, &(x, y) =
Y(x, —oy).

The other bound is more difficult, however, by Neumann bracketing we are allowed
to consider the symmetric case only, i.e. a single guide with the Neumann segment
(—a, a) at the boundary. As in the previous proof we have to estimate the form g[v¢] :=
VY| — eqll0||> from below for all real-valued C2-smooth + with ||¢)|| = 1 satisfying
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the needed boundary conditions. It is also clear that we may restrict ourselves to functions
even with respect to x because the operator is reduced by the parity eigenspaces and a
lower bound to the symmetric part will estimate the antisymmetric one as well. Any such
function can be written through the Fourier expansion

ee}

P, y) =D ey, (6.29)

n=1

where the real-valued coefficients ¢, (x) = (x», ¥ (x, -)) are smooth and even with respect
to x and the series is uniformly convergent for |x| > a.

It is useful to split off the part of the coefficient ¢; which is constant in the doubled
window. We put & := ¢1(2a) and fl (x) 1= (c1(x) — @) X[=24,24] (x) so that, in particular,
fl (£2a) = 0. Then we define f| := ¢; — fl and use the decomposition ¢y = f + ¢
with f(x,y) := f1(x)x1(y) for which the relation (6.28) holds again. We shall estimate
separately contributions to its terms from different regions indicating the respective parts
of the norms by subscripts. We begin with the part exterior to the window and for a later
purpose we put aside one half of the longitudinal kinetic energy, considering

1 S, [
SIefza + 19y Wjza = €allgliyza = Z/ [(e})? + (n* — 1) eqc?] (x) dx.
n=174¢

To estimate the right-hand side we employ a bound obtained easily by solving the appro-
priate Euler equation: a function ¢ € Cc? (R4) with ¢(0) = « satisfies

/ h [¢/ ) +m*¢* ()] (1) dt = ma? (6.30)
0

for a fixed m > 0. Consequently, the expression in question is bounded from below by
e}/ 2 >, ney(a)? if we neglect the non-negative term fuoo ¢} (x)? dx. Using further the

fact that ¢, = g, for |x| < 2a we get the lower bound

1
ql) > 19 lza + 190 <o + 19y <o = €allglfii<a
12 ~ 12 /2 (¢
+6d/ chn(a)z—Zozed/ \/;/ G(x,0)dx.
n=2 —a

Next we want to estimate the sum of the first two terms on the right-hand side. To this end

we use the decomposition g = g, + g,, where g, (x, y) = ]:1 (*x)x1(y) and g, contains

the contributions from the higher transverse modes. Since fj(£2a) = 0 by definition,
1

we have g, x |||2x‘§20 > Z€f||9”\2x|52a- Moreover,

1 2 2 1 2 1 2 1 2
5 ||¢x||a5|x|§2g + ||9x|||x|§a > E llgx |||X\52a = 5 ”-gle”\xlSZa + 5 ”92,x”\x|52a s
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where the subscript in the last norm may be dropped because g, (x, y) = 0 for |x| > 2a.
Combining these estimates, we find

1 1
4001 >3 1022 + 5 1955 W00 + 19y W0 — €l i<
12 - R — 22 2 [ 0d 1 2
+ ¢4 ch”(a) — 2aey 7 g(x,0) X+§€Z ||91 -
n=2 —d

The function g, will also be splitinto parts, g, (x, y) = Qz (x, y)+g,(y), with g, (x, y) :=
—, cn(2a)xn (y) independent of x. The last property means that g, » = g,.x, and since
o 5 cn(2a)xn(y) ind d fx. Thel hat g, 0. dsi
g, (£2a) = 0 holds by construction, we have

2 1 A2 1 2 1 ~ 2
||92,x|||x|52a > 1 €¢ ||92||\x|52a > 3 €¢ ||92|||x|52a 3 €¢ ||92||\X|52a s

where in the second step we have used the Schwarz inequality. Since it is not easy to
find a lower bound for the last term, we restrict ourselves to the vicinity of the window
introducing 2, := (—2a, 2a) x (0, a) which gives

1 . 1 1 -
195, Wjz20 2 e 1,0, 2 5 e llgy )R, — 7 e 13,15, - (6.31)

To find an upper bound to || 5}2”%2{1’ notice that we may restrict ourselves to
with the higher Fourier coefficients exponentially dominated outside of the window,
len ()] < len(x)], where e, (x) = ca(a) exp{—ey/*v/n? — 1 (|x| — a)} for |x| > a and
n > 2. Indeed, write ¥ (x, y) = 12)(x, ¥) 4 Xjx|za (X)cn (x)Xn (y) to isolate the contribu-
tion from the exterior part of the n-th mode contribution, then the normalized quadratic
form ¢[v]||¥|| =2 can be expressed as

IVOI? = eallDl? + 2 [ [ c) ()% + (n? = 1) €q cn(x)?] dx
112 + 2 [ cp(x)2dx '

Without loss of generality we may consider only those i) for which the numerator is
negative. As in (6.30) its last term is minimized by the function e,, hence replacing
cn(x)? by min{c, (%)%, ey (x)%} we can only get a more negative number, and at the same
time, the positive denominator can only be diminished, which justifies the claim about
the exponential dominance.

To get the sought norm estimate we divide the series expressing g, into two parts
referring to small and large values, relative to a ~!. For the former we employ the smallness
of the , norm restricted to (0, a), while the latter will be estimated by means of the
subexponential decay specified above,
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2a a o 2
i, = [ ax [ay (ch@a)xn(y))
—ea n=2

a [la~+1 2 a ) 2
<8 / S aan() | dy+8a / S aanG) | d
0 n=2 O \n=fa1142
la="]+1 la="]+1
< 8a Z n~len(a) / Xn(y)*dy > n
n=2
00 a =)
+8a | D nea(@)? / Xn(3)2dy > nle@?| .
n=[a=11+2 0 n=[a—114+2

by Holder’s inequality and the rough bound c,(2a) < c¢,(a). Evaluating the integral
f(f X,,(y)zdy = % [1 — ( d )sin (2”%)] < % min [é (Z’Td"a)z , 2], and using the two

2mna

bounds in the first and the second term, respectively, we get

~ 12 16a* | 2 = —1_.—2man/d = 2
19,08, = —— {36+ n~le > nea(@)?,
=la~']+1

where the estimates ZL‘SHI n <2a~" andv/n? — 1 < n—1 have also been employed.
The sum in the curly bracket on the right-hand side has a bound independent of a, being
the Darboux sum of the integral floo x~le 2™/d dx = —Ei(—2w/d). Hence there is a
positive C such that

o0
13,115, < Ca* D" nca(@)*,
n=2
so using (6.31) we arrive at the inequality
5 172
||g2 loq + € chn(a) 16 lollg, - ||gz||9a + ¢4 ch,xa)
n=2

valid for any ¢ € (0, 1]; the above estimate shows that the sum of the last two terms can
be made non-negative by choosing J small enough. Putting m := ¢ /3, we can estimate
the shifted energy form by

1 1
qle) > 1220 + 195 i< — ed||g||%x|<a + g eelloI®

1/2
_Ja e/ [/ g(x, 0)dx+ 2 ||92||gza
—a



196 6 Weakly Coupled Bound States

Next we express the window contribution to the norm of g, using the decomposition
g = g, + g,, an integration by parts, the relation g, (x, 0) = g(x, 0) , and the fact that
g, (x, ) is orthogonal to x;. This yields the relation

12 /2 [ 2
gyl iza = 197513 < + N9y 313 20 — 265 Vg | gk 0)dx,
—da

in which the last term does not exceed (r/d?) (2|| 9112 g + dllgC 0)|||2x\5a) by the
Schwarz inequality. We use this conclusion in the last bound of g[x] in combination
with the identity ||g|||2X‘§a =g, |||2X‘Sa + g, ||‘2x|5a . We may also neglect ||91,y||\2x|5a as
well as the term (72/32a%)]|g, ||* — (7 + 2)d 2| g, |
enough, obtaining

|2x‘<a which is positive for a small

1 2 2 m* 2 2
qlv] >§ ||¢x||\x|32a + ||92,y||\x|ga + ? ||g2||Qa — €4 ||92|||x\§a

1/2

12 [2 [
— €4 ”g2(5 0)”\2x|§(l - 2« 6d/ E / 92 (xa O) dx.
—da

Now we notice that the function g, (x, -) satisfies for a fixed x € [—a, a] the assumptions
of Problem 21b, thus the sum of the second, third, and fourth term on the right-hand side
is bounded from below by (co/a)llg, (-, 0) ]
a, which yields

\2x| <a Furthermore, ‘—(a’ > ecl/ ? holds for small

1 co 2
4101 > 3 1Wlza0 + 5 19, ¢ O 0 = 2ae}/2\/;ngz(-,onnx‘swza,

where we have employed the Schwarz inequality again; taking the minimum of the right-
hand side over g, (-, 0) [l|x|<a, We arrive finally at the estimate
1 2 8r2a’
qlv] > 5 ”¢x”\x|22a - CO7G
The remaining part of the argument is simple. We have ||9] > |1« || |2x|22!1’ and estimating
the norms of ¢ and 1, outside of the doubled window from below by the contribution
from the lowest transverse mode, we get

2.2
L ZN
I 2 o 1(x)?dx cod? '

The second inequality, which is the final result, follows from the fact that the extremum
of the functional in question over functions with a fixed value at x = 2a is achieved
with ¢ (2a) e 7 —24) apnqd equals (n2/2) — (87r2/c0d3)m12; it is then sufficient to take
the minimum over &. |
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6.4.3 Window-Coupled Layers

In the three-dimensional case the setting is similar. Using the notation from Sect. 6.2.3 we
consider a pair of adjacent layers of widthsd; > 0, j =1, 2,i.e.Q = R2x (—dy, d1)\Byy
coupled by a boundary window W which is supposed to be an open bounded subset of R?.
As before we denote by H (d1, da; VW) the Dirichlet Laplacian in L3(Q). By Theorem 4.7
the discrete spectrum of H (d1, d>; VV) is nonempty whenever W # J, while the essential
spectrum coincides with the half-line [¢;4, 00), where d := max{d, d»} and ¢4 := Z—z
Moreover, if the window is sufficiently small there is just one eigenvalue of H (d1, d2; W);
now we are going to analyze its asymptotic behavior.

Theorem 6.11 Suppose that W = aM, wherea > Oand M C R? is open and nonempty.
Then for all a small enough the operator H(d1, d2; VW) has exactly one eigenvalue €(a)
and there are positive constants cy, ¢y such that

exp(—czaS) <e€q—¢€la) < exp(—cla3). (6.32)

Proof The existence of a single eigenvalue for small @ was established in Theorem 4.7.
As in the previous section, we shall treat in detail only the symmetric case, d| = dy = d,
leaving the general situation to the reader (see also the notes); in Sect. 4.4 we mentioned
that the problem then reduces to an analysis of the operator H(d,aM) on L*(R? x
(0, d)) which acts as Laplacian with combined boundary conditions, Neumann on W
and Dirichlet on the rest of the boundary. Moreover, by assumption W as a set can be
sandwiched between two open discs, and since by Neumann bracketing the eigenvalue
is monotonous with respect to a window enlargement, it is sufficient to prove (6.32) for
M = Bj with By C R? being open unit disc centered at the origin. We shall again use
the notation ¥ = (x, y) € Q withx € Rz and y € (0, d), as well as k| = g = etl/z.

To prove the lower bound in (6.32) we employ a trial function argument; we mimic
the choice used in Sect.4.4 and put ¢ (x, y) = f.(x)x1(y) +nG(x, y) with

Ko(kl|x])

fi(x) := min {1, Ko(na)

b Gy =@ R0,

where qﬁﬁa) is the normalized ground-state eigenfunction of the Dirichlet Laplacian — A“DM
on aM extended by zero to the whole R? and corresponding to the eigenvalue 11 (a) =
pi(1a=2, and

e—VHI(@y ...YE 0%)
R(y’“)z[z(l—g)eim c[5.4)

Using integration by parts with respect to the variable y and the fact that V f; and V(bﬁa)
have disjoint supports, we obtain

L) =Vl = 1 I10ull? = IV full ooy + 17 (1@ = 57 ) 1R 17200

P IR g~ 2iima [ oV Coar. (6.33)
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http://dx.doi.org/10.1007/978-3-319-18576-7_4
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http://dx.doi.org/10.1007/978-3-319-18576-7_4

198 6 Weakly Coupled Bound States

By a direct calculation one can check that there is an €; > 0, independent of a, such that

(1)

a

1@ IR0 0 + 1R 17200y < el
holds for all a sufficiently small. The first term on the right-hand side of (6.33) has been
calculated explicitly as in the proof of Theorem 4.7; we have just to replace R by a
in the formula derived there. Using again the identity —K{(z) = Ko(z) + 7 'Ki(2)
in combination with the asymptotic expansions Ko(z) = —Inz + O(1) and K(z) =
271 + O(In z) we arrive then at the bound

2 __2
”VfK”LZ(RZ) S lnna

valid for some e» > 0 and all @ small enough. Now we set n = Sa” with § > 0 and
insert all these estimates into (6.33). Since ¢§1) can be chosen positive in M, it is then
easy to see that for 4 small enough but fixed there exists a constant C > 0, independent
of a, such that

IE—Z —Cd®. (6.34)

L(y) < —
nrKra

We also need a lower bound on [|2),]|%. Estimating the contribution from the window

region by 2| fux1l1x/=a + 217° |G x| =a We get
lwl? = 1alfyza = 27 a* = 207 1R1IZ20 4, »

where the last term is of order O(a*) by assumption, and the first term can be calculated
similarly as above,

I Fza = (Ki(ka)* — Ko(ra)?).

Ta
K} (ka)
From the mentioned asymptotic expansions we get [0, [|> > k= 2(Inka) 2 e3 with a

fixed €3 > 0 for all a small enough; this inequality in combination with (6.34) gives the
estimate

L@y, 21
Wh; c_HmKa s kat E),
bl €3

where D, E are positive constants independent of a. The lower-bound part in (6.32) then
follows by minimizing the right-hand side of the above inequality with respect to the
parameter .

Passing to the other inequality we follow the argument scheme of the previous section:
to find a lower bound on e(a) we have to estimate L(v)/ ||1/J||2 from below for all real
Y € L?(2,) whichbelong to H' (2, ), are radially symmetric and vanish at the boundary


http://dx.doi.org/10.1007/978-3-319-18576-7_4
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except for the window. We can write such a v in the form of a series (6.29) where the
coefficients depend only on r := |x|. As in the proof of Theorem 6.10 we assume that

Ko(kiv/n2 —1r) -9
—_— n>
Ko(k1v/n? —1a)

In analogy with the waveguide case we write the lowest-mode component as

(6.35)

len(r)] < len(a)]

ax1(y) ... r<2a

Flx,y):= camx1(y) ... r>2a

with a := c¢1(2a) and we divide G(x,y) := ¥(x,y) — F(x,y) into G1(x,y) :=
(c1(r) —a)x1(y) supported in the extended window region of radius 2a and G (x, y) =
G(x, y)+T(x, y)with['(x, y) := Z;iz cn(2a)xn (v). Using these definitions we divide
the corresponding quadratic form,

LYl = Ve l* + [10,G 1 = eallGII* — 2a:}(0) ’ G(x,0)dx, (6.36)

into several parts which we estimate separately. We start with one half of the first term
combined with the second and the third one,

1
Lily] = 5 IVetllZe, + 10yGlEy — €l G2y

=7 Z/Oo (ch(M)? + 2e4(n* = ey (r)?) rdr
n=1"74

o 0

> Z/ (c;, (r)? + egn’ey (r)z) rdr
n=274
o0

K o0
> ch(a)zmna M > TR1a chn(a)z, (6.37)

— Ko(k1na) =

where the estimate in the last line employs the fact that the functional u# +— faoo(lu/ O+
m2u(t)|?) t dt on H'(a, 0o) with the condition u(a) = « is minimized by the function

Ko(mt)
Ko(ma)’

up(t) = «

as can be verified by inspecting the corresponding Euler equation, in combination with
the inequality K1(z) > Ko(z), see [AS]. Next we consider

La[¥] == IV 20n = Ve G112 00 + 1V2G2l22s
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Since G vanishes at r = 2a by assumption, the Friedrichs inequality implies
IV:G1ll} <20 = Cra 2 IG11? (6.38)

for some C; > 0. Using now the notation 2, := By, x (0, a) we get

IVeGall?ry = VGl oy = 2 ||G||,<2a z 2 ”G”Qa

C oC
33 16213, = —5 ITla, (6.39)

foralla < d and 0 < § < 1. The last term on the right-hand side can be estimated by
combining the dominated decay (6.35) with the smallness of the norm of x,, restricted to
[0, a] in complete analogy with the lower-dimensional case of the previous section; we
obtain

00 2 ) 00

K5Q2kiv/n —1a) 2
ITI3, < C2a*(Cs+ 0 ) > neat@
S Z n K3 (k1v/n — 1a) r; !

n=[a"11+2

with some C», C3. The sum can be estimated by the corresponding integral,

i K2Q2r1vV/n? —1a) </°° K§(k12)
an(m«/nz— la)  J1

2.1
n=la—1142 n Kqy(322)

which is convergent since Ko(z) ~ ./ 2% e % as z — 00, hence there is a C4 > 0,

independent of a, such that

oo
CillTlIg, < Caa® D nen(a)’. (6.40)
n=2

Combining now the estimates (6.37)—(6.40) we obtain

C1 2 m2 2
Li() + La@®) = —5 [G1I? + =5 G213,
a a

for some m > 0 and all a small enough. Using next the claim of Problem 21b and the
estimate

27
19, G > 10yGall7 <, — (2||G1||r<g +dGa(, 07 <,)

xr<a

obtained again as in the two-dimensional case, we arrive at the inequality

LilY] + Lal] + 10yG <o) — €allG 1<) = ||G2( 0=,
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valid for a positive Cs5 and a small enough. Inserting this into (6.36) and applying the
Cauchy-Schwarz inequality we get

1
LIY1 = 5 IVatllFzz, = Cod’

with some Cg > 0. The first term on the right-hand side can be estimated from below by
the first transverse-mode contribution. Estimating in the same way ||1/]|> we get

L[v] - 2(:10 c (N2rdr — C7a’c; (2a)?
llplI2 — 2fzoao c1(r)?rdr

(6.41)

with a C7 > 0. Solving the corresponding Euler equation one can check that the right-
hand side of the last inequality is minimized by

Ko(kr)

c1(r) = c1a) Ko(2r)

for some x > 0. If we insert this into (6.41) and evaluate the resulting integrals, we
arrive at

% > —k? In(2ka) (D/a3 In(2ka) + E')

for some D’, E’ > 0; minimization of the right-hand side with respect to x then leads to
second inequality in (6.32) concluding thus the proof. |

6.5 Distant Perturbations: Matching Methods

In the last section of this chapter we describe one more type of weak-coupling problem
in waveguides together with a method to analyze it. If a perturbation is supported by two
regions which are very far from each other, one can regard the spectrum coming from
each of them as the unperturbed one and examine how it is changed by the presence of
the remote component of the perturbation.

We shall illustrate this situation on the example of a planar strip with Dirichlet bound-
aries one of which has two Neumann segments; as we know it describes the nontrivial part
of the spectral problem for a symmetric pair of waveguides coupled by two windows in
the common boundary. We have encountered already, in Sect. 1.2 and elsewhere, match-
ing of solutions as a tool of spectral analysis, based on finding Fourier coefficients from
a comparison of solutions in adjacent regions. Here we will deal with a different type of
matching which consists of a smooth interpolation between solutions; we are going to
show that it can also be used to derive spectral results.

We consider thus a horizontal strip 2 = R x (0, d) in the lower boundary of which we
fix two segments 'yli (a) of the same lengths 2a. Specifically, we put 'yli (a) ={(x,y):
Ix Fl| <a, y=0}and y(a) = fy;’ (a) U, (a). We suppose that the behavior of the
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system is governed by the Laplacian on L2(£2) subject to Dirichlet boundary conditions
on 02\ y;(a) and to Neumann condition on 7;(a); we denote this operator by H;(a). We
are particularly interested in the asymptotic behavior of the discrete spectrum of H;(a)
in the limit [ — oo.

To begin with, let us briefly recall some basic facts about the single-window operators
discussed in Sect. 1.5.1 which we shall denote here by H (a). By Theorem 1.5 this operator
has for any a > 0 a finite number N > 1 of discrete eigenvalues €;(a), j =1,..., N
associated with normalized eigenfunctions ¢; having a definite parity, ¢;(—x,y) =
(—l)j_l¢j(x, y). There are critical values 0 = a; < a; < ap < ... at which new
eigenvalues emerge from the continuum; in such a case the equation (H (a,) — H%)l/) =0
has a bounded solution ¢/ describing a threshold resonance, again of a definite parity in
the variable x. This solution and the eigenfunctions ); behave in the limit x — +o00 as

2
PH(x,y) = \/; sinkpy + 3, e V3 sinZIily—i—O(e_"l 8") (6.42)

and
_ 2_ . _ 2 .
G, y) = aje VIO gingy 4 Oe VIO (6.43)

respectively, with some constants o, 3,, see also Problem 1.22.
The spectral behavior is different in those two situations. Let us first describe what it
looks like if a single window does not have a threshold resonance.

Theorem 6.12 Leta € (ay, ay+1) for some n € N. Then for the window distance | large
enough the operator Hj(a) has exactly 2n eigenvalues )\j.c (l,a), j=1,...,n, situated

in the interval (}TH%, R%). Each of them is simple and satisfies the asymptotic expansion
[2 . (42— (@)~
N a) = €j(@) F pj(a)e NI o(e (4y/ri-¢j@-0) l), (6.44)

as | — +oo, where o is a positive number and the coefficients 1 j(a) are given by

wjla) = aj(a)zd,/ﬁ% —€j(a).

Before turning to a proof sketch we note that in view of the natural scaling behavior it
suffices to consider the case d = 7 putting 1 = 1 in the above formulae. We shall need a
couple of auxiliary results which we state without proofs referring to the literature given
in the notes.

Lemma 6.5.2 The discrete spectrum of the operator Hj(a) is simple and nonempty for
any a > 0. The eigenvalues depend continuously on | and a. Those corresponding to
even and odd eigenfunctions are increasing and decreasing, respectively, as functions of
1. Moreover, all the eigenvalues of Hj(a) converge for a fixed a > 0 to the eigenvalues of
H(a) as| — +o0.
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This lemma shows, among other things, that H (a) is in a sense the limiting operator of
our system. This leads us to the analysis of the following problem,

—(A+Nu=7F1, u=0 onl(a), Oyu =0 on~(a), (6.45)

where I'(a) := 0Q \ v(a) and [ € L%(Q) is assumed to be supported in the rectangle
Qp = QN {(x,y): |x| < b} for some b > 0. The structure of the solution depends on
whether ) is close to one or not. We first pick & € (¢,(a), 1) and assume that A € Ds,
where Ds := {\ € C: Re A < 4}. It is then sufficient to consider solutions to problem
(6.45) which behave as <9(ef~/m 1) in the limit [x| — oco. Let Q* = {(x,y) € @ :
+x > 0} and consider the following pair of boundary value problems,

— (A + )\)vi =g in Q*, vE =0 ondQT, (6.46)

where g is an arbitrary function from L?(€2) supported in €24 for some number A >
max{a, b—1}. Solutions of problems (6.46) can easily be found by separation of variables,

vE(x, y) = /Qi GEx,y,x', ¥ M) g(x', y)dx'dy, (6.47)
N ., X =R Nx=x"| _ oFrj (V) (x+x) L,
G (x,y,x, ¥ A) = sin jy sin jy
TR (N)

j=1

with /1- (V) := v/ j2 — \. We can also write the function as v = Tli (M) g, where Tli(A) :
L2(QA) — H2(Q%) with Qf = QT N{(x,y): |x| < A} are bounded linear operators
which form a holomorphic family with respect to the variable A € D;. We also introduce
the “glued” function v equal to v+ if x > 0 and to v~ if x < 0. Then we consider the

problem
Aw=Av in Q4, dyw=0 ony@, w=v on I \ (), (6.48)

which is posed in a bounded domain, hence by the standard theory of elliptic boundary-
value problems the function w exists, is unique and belongs to H'(£24). Consequently,
there is a bounded linear operator T>()\) : L2(QA) — HY(Q) N HQ(QA \ ;) with
Sy = {(x,y) : (x £a)®> + y*> < r?} for any r > 0, and such that w = T>(\)g. Now
we introduce a C* interpolation function x such that x(z) = 1 holds if |1] < A — 1 and
x(t) = 1for |t] > A, and construct a solution to the problem (6.45) in the following way,

u(x,y) =x@wx,y)+ (1 = x@)Hvlx,y). (6.49)

Since w = T»(\)g and v* = TljE (\)g, we can further express the solution as u = T3(\)g,
where T3(\) is the appropriate bounded linear operator from L%(Q,) into H'(Q4) N
H2(24 \ Sy), holomorphic in the variable A € Ds. In view of the definition of w and v the
interpolated function (6.49) satisfies by construction the boundary conditions of (6.45),
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hence it represents a solution to this boundary-value problem if and only if it satisfies the
differential equation in question. Substituting u into it, we arrive at the equation

g+TNg=f, (6.50)
where Tu(\) : L2(24) — L23(2,4) is the bounded linear operator defined by
Ty(N) g := =2Vix - Vi(w —v) —(w —v)(A+ ) x.

Since €24 is a bounded region, it is possible to verify that 74(\) defined in this way is
a compact operator from L%($24) to L2(S24) (see the notes). This allows us to apply to
(6.50) the standard Fredholm technique. In this way one is able to derive another pair of
auxiliary results.

Lemma 6.5.3 7o any solution g of (6.50) there exists a unique solution u = T3(\)g of
(6.45). Conversely, to any solution u of (6.45) there exists a unique solution to (6.50)
such that u = T3(\)g. The equivalence holds for any X\ € Ds.

Thus the resolvent family (74(\) + I)~! is meromorphic and its only poles are the
eigenvalues of H (a). To proceed we shall also need the following result concerning the
behavior of (Ty(\) + 1 )_1 in the vicinity of the poles.

Lemma 6.5.4 Ifeg < 1 is an eigenvalue of H(a), then for any X close to ey we have

(Ts(N) + I)_] = % (-, ZZ))LZ(Q) + T5(N), (6.51)

where 1) is an eigenfunction of H(a) associated with ey and normalized in L%(S), the
function ¢ is such that v = T3(ep)¢p, and Ts : L2(Q4) — L%(Q4) is a bounded linear
operator holomorphic in the variable \.

After dealing with the single window case let us turn to the perturbed operator. Keeping
the window in the center and putting the axis of mirror symmetry at the point x = —/,
we have to solve the boundary-value problem

—(A4+Nu=f on{(x,y)eQ:x>—l}
u=0 onTI(), Owu=0 on~vy@, hu=0 at x=0, (6.52)

where hu := u in the odd case and hu := O,u in the even one. Let us consider for
simplicity the former situation only, the latter can be treated in the same way. In analogy
with (6.46) we have the problems

—(A—{—)\)v?':g on QT v[+=0 on 0Q",
—(A+My =g oan, v, =0 on 0, .
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While v;’ = v™, where v is the solution to (6.46), the equation for v , takes into account
the perturbation; by separation of variables we get

v (x,y) = v*(x,y)+/ G, (x,y, X',y ) g(x', y')dx'dy’,
o

Gy = =3 2N o sinh ey )
X, Y, X,y = - " sinh K ;(A)x sinh x;(A)x
Py < 7 O sinh 1y OV j J

x sin jysin jy'. (6.53)

Since the rest of the analysis of (6.52) follows the same line as in the case of the limiting
problem (6.45), we skip the details and conclude that (6.52) is equivalent to the second-
kind Fredholm operator equation

9+ TsNg+Te(\. D) = f, (6.54)

where Tg : L2(Q4) — L2(S24) is a compact linear operator which is holomorphic in
the variable A\ and jointly continuous in (A, /) provided A € Ds and [ is large enough.
Moreover,

IT6ll = O(e™2Y17A) as | — 0. (6.55)

With these prerequisites we can sketch the proof of Theorem 6.12: If we consider the
odd case, the eigenvalues of H;(a) and the corresponding eigenfunctions are given by
solutions to the problem (6.52) with hu = u and f = 0, hence we should look for A such
that the equation

S+ Ty(N)D + Te(A, 1) =0

has a non-trivial solution. We are interested in eigenvalues which are close to a fixed
eigenvalue ¢ of H (a), thus we consider A’s which lie in a neighborhood of ¢ containing
neither any other eigenvalue of H (a) nor the point 1. In view of Lemma 6.5.4 we can
rewrite the last equation in the form

®- ﬁ W, T\ D®) 12(g) + Ts(N) T\, P =0

recalling that 1) = T3(A\)¢. Since I + T5(\) Tg(A, 1) is invertible for / large enough, by
(6.55), the last equation implies

1
D — Yo @), Te(\, D®) 1200y (I + T5(N) Ts (A, N l=0.

Moreover, the inner product in the second term cannot vanish, otherwise ® would be
trivial. We are thus able to express ® from the above equation and to compute the inner
product (¢, T6(A, [)®P) 2 (q)- This yields the equation
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A= o= (1, Te O DU + TsN) Te\, 1) ™' ¢) 12y =0

which determines eigenvalues of the problem (6.52) and hence of the operator H;(a). In
view of the asymptotics (6.55) we get from here

A—eo— (L, s\ Do) 12y + O(e2VI—=al) — ¢ (6.56)

with some o > 0. Next we introduce the function V on 2 by

4 e—Zfil(eo)l
V(x,y) ;= ———  sinh k1 (€p)x sinh k1(ep)y
7 Kk1(€0)

X / sinh k1 (€g)x” sinh k1 (eg)y’ H(x’, ¥') dx’'dy’
o
for x < 0 and V(x,y) = 0O elsewhere; using it we can rewrite the leading term of

the operator Tg(A, ) which comes from the lowest contribution to the sum in (6.53).
Assuming that W solves (6.48) with v = V we arrive at

To(OA\ D = —(A + ) (V + x(W — V) + O(e2@VIm0=)

in L2(24). With the help of this expansion we can calculate the leading term of the
second summand in (6.56). Using integration by parts we obtain

(. Ts\ D) 2(g) = lim /07r (VOyh — Y8 V)(=R, y) dy + O (e 2@VT=0=0)1)

To evaluate the above integral we use the fact that in view of 1) = T3(ep)¢ and of the
definition of T3 the constant ; = v in (6.43) is given by

2
o= sinh k1 (eg)x” sinh k1 (€g)y” d(x’, y) dx'dy’.
mr1(€0) Ja-

In combination with (6.43) and the definition of V we thus get
W, Ts(\. D)9) 120y = —ma’ki(eg) e MO 4 O(e 2@V 0=,

which together with (6.56) implies the validity of the expansion (6.44) for )\; (,a). A
similar reasoning in the even case, when hu = O, u, leads to the respective expansion for
the eigenvalues A;’ {, a). |

The threshold case when the Neumann segments have a critical length can be treated
using the same technique, however, the analysis is more subtle since one also has to take
into account the threshold resonances of the operator H (a), therefore we limit ourselves
to stating the asymptotic expansion result, referring to the notes for further reading.
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Theorem 6.13 Let a = a, for some n > 2. Then the operator Hj(a) has for all | large
enough (2n—1) eigenvalues. The first 2n —2 of them obey the asymptotic expansion given
in Theorem 6.12, while the last eigenvalue, which we denote by /\;'n_1 (L, ay), corresponds
to an even eigenfunction and satisfies

Moo an) = 1] =361 a2 e V3nl  o(e 2BVl

as | — oo, where 3, are the coefficients in (6.42).

6.6 Notes

Section 6.1 The Birman-Schwinger principle was discovered simultaneously and inde-
pendently in [Bi61] and [Sch61]. It is discussed in many places; the present formulation
is adapted from [BGRS97, Lemma 2.1]. Subtle features of weak-coupling expansion for
interactions depending on A in a nonlinear way are usually manifested in situations when
the leading term vanishes as we noted at the end of Sect.6.2.3; a different, physically
interesting example of such an effect is given in [BCEZ99]. The slight difference in the
assumptions of Problems 1 and 2 does not concern the cases d = 2, 3 which are the most
interesting. Notice also that for d = 3 we can replace L? by Rollnik’s class provided
H) = Hy + V is defined through the quadratic form as in (1.24). Theorems 6.1 and 6.2
are taken from [DE95] and [EKrO1a], respectively.

Section 6.2 The applications of the above results to weakly-coupled states in tubes and
layers in Theorems 6.3 and 6.4 come again from [DE95] and [EKrO1a], respectively. The-
orem 6.5 was proved in [BGRS97] where the authors also conjectured various extensions
of the result; we leave the reader to work them out (Problem 13).

Section 6.3 Radon measure is an abstraction of Lebesgue’s outer measure for general
topological spaces — see, e.g., [Rao]. A measure m is said to belong to the generalized
Kato class if for every open set 2 we have

lim sup/ g(x —y)dm(y) =0,
=0+ xeQ JB.(x)NQ

where g(x —y) 1= |x — y|2_d ford > 3and g(x —y) := |In |x — y|| ford = 2, while for
d =1 the condition reads sup, g m([x, x + 1]) < oco. The inequality (6.19) for such m
and a bounded « was established in [SV96], for other examples of singular measures with
this property see [He89]. Theorem 6.7 was proved in [BEKS94], Proposition 6.3.3 and
its application to weak-coupling analysis of a double waveguide with a leaky interface
come from [EKrO1b] where slightly weaker assumptions were used.

Section 6.4 Theorem 6.9 is taken (with a slight correction) from [EV97a]. As mentioned
in Problem 20b, it leaves some situations undecided; this gap can be covered by another
method, cf. [BEGKO1]. Note that the nontrivial part of Theorem 6.9 is the non-existence
condition; the @(\*) asymptotic behavior of the gap can be expected from the BS analysis
of Sect. 6.2.3. However, the variational technique allows us to determine the correct power
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of leading term even in situations when the Hamiltonian cannot be expressed through
a quadratic form sum as is the case of windows in Dirichlet barriers. Concerning such
results, Theorem 6.10 comes from [EV96], Theorem 6.11 is essentially due to [EV97b];
we refer to those papers for details of the proofs including extensions to the asymmetric
cases. Weakly coupled bound states also appear in waveguides composed of two semi-
strips of slightly different widths and a small bulge near their junction, see [CNR13].
Section 6.5 For the proofs of Lemmata 6.5.2-6.5.4 and of Theorem 6.13 see [BE04]
where asymptotic expansions of the eigenfunctions of H;(a) are also calculated. The
reduction procedure which transforms the eigenvalue problem for the operator H;(a)
to an appropriate Fredhom operator equation follows a general scheme proposed by
E. Sanchez-Palencia [SP]. The application of this reduction technique in the proof of
Theorem 6.12 is simplified by the mirror symmetry of the model, i.e. by the fact that
the two Neumann segments have the same lengths. The method also works without this
assumption, however, the argument is more complicated [BEO7]. Moreover, by the same
technique one can also treat resonances: an example of a guide in which there are two long
but finite Dirichlet barriers separating the Neumann window from semi-infinite Neumann
boundary segments has been worked out in [BEG13].

6.7 Problems

I. LetV e (LP + L®)(), where p > max {2, ¢} ford # 4 and p > 2 ford = 4,
then the operator H) := —A%O + AV defined on Dom (—A%O) is self-adjoint and the
BS-principle holds for the factorization of Remark 6.1.1a.

Hint: Using Problem 1.18 show that V' is — A bounded with relative bound zero, and
employ the inclusion Dom (V) C Dom (|V| 1/5)).

2. LetV € (L? + L*°) (), where p =2 ford = 2,3 and p > % for d > 4, then
the norm |||V|1/ZBZV1/2|| in the proof of Theorem 6.1 has for any 7 < z9 < v, a bound
independent of z.

Hint: Employ the inequality || f (x)g(=iV) |y < @m)~4/4 I fligllglly, where || - || on the
left-hand side is the Schatten norm with ¢ > 2, for appropriate functions f, g — cf. [RS,
Theorem XI1.20].

3. Complete the proof of Theorem 6.1.

Hint: Solve the equation (6.7) using the implicit-function theorem. Show that the solution
is valid for any V satisfying the hypotheses up to O(\3) modifying the argument of [Si76],
see also [DE95].

4. There are real-analytic functions f, g which factorize the Macdonald function,
Ko(¢) = f(O)In¢ + g(¢) for any ¢ € (0, 00), such that

@ f(O) = —1+0(¢*) and g(Q) = (In2 = 7p) + O((?) as { — 0+,

(b) max{f((), g({)} < Ce~¢ for some C > 0 and all ¢>0.

Hint: Use an interpolation, e.g., f({) = —e¢ In(O) — (1 - e’(z) Ko (0).

5. Prove Lemma 6.1.1.

Hint: To check (a), compute the HS-norm of A, using the assumption on |V, employ
Holder and Young inequalities. In the A, part of (b) compute the HS-norm again using
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the previous problem; for the B, part employ the resolvent identity. The derivative of
A in (c) can be expressed by Cauchy’s formula, that of B; is computed directly. See
[EKrO1a] for details.

6. Using Fourier transformation and an approximation argument, check that the second-
order term in (6.8) is negative when the first one vanishes.

7. Prove Theorem 6.3b.
8. Check that the identity >0, (x1, uxn)? (k2 — k3) = llux}I? — k}lluxi||> = 1is
valid for the elements of the orthonormal basis (1.10).

9. Let X be the surfaces (6.15) satisfying the assumptions (i)—(iii) of Sect.6.2.2. Show
that limg_,o 7K (Z3) = 0 holds for any ;1 < 4.

10. Prove the relation (6.16).

Hint: At the intermediate stage in the proof of Theorem 6.4 apply the Fourier transforma-
tion directly to (Amg, G * Amg) and expand the result in powers of 3, compute ||u x| 112
and notice that || Amo|| < oo by (iii).

11. Show that the formule (6.18) are valid for strips and layers with
1:=2f0,, Bj:=gdy,
1
Az = Af, BQ :g(y8y+§) s

Ay = (2y0, +1)g, B3:=(Vf)-V,
32+ IVPY +20f°

A¥ = — ., Bi:=g0,,
4 1+ /)2 O Ba=g0,
. fAf 1
A = — B = | —
5 T+ Af 5 g(yay+2),
3V 1
14>‘< = —_—-— B = ) - )
s= =g Bema(0+d)
2y0y + 1
P2 f, B, =(Vf)-V,
: Y 7= (Vf)

where g € C§° is any function such that g(x) = 1 holds on supp f; in the case of a strip
V. Vf, Af mean simply % , f',and f”, respectively.

12. Consider the operators M introduced in the proof of Theorem 6.5. Show that the
map ( —> M B is a bounded operator-valued function for Re { < Ii% which can be
analytically continued to a region containing the point ( = 0 (in fact, a circle of radius
smaller than +/3x1 ).

Hint: In the part containing ROl (z) use the fact that the operators C) Pll ROL (z)~1/% and
DPILROL (z)~!/2 are bounded, and write the rest as DhNK%_ChC*, where h € C3°(R)
equals one onsupp f. Itis an operator on H; the kernel of which is found using integration
by parts, then one can estimate it and its derivative w.r.t.  in the Hilbert-Schmidt norm.

13. Discuss the extension of the result in Theorem 6.5 to the following situations:

(a) less regularity, e.g., f piecewise C2 with derivatives bounded to the second order, and
vanishing at large distances, limy| o f(x) =0,

(b) two-sided deformation, a — A f_(x) < y < a + A f4(x), with a pair of function f
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having suitable regularity and decay properties,

(c) more generally, a weak local deformation of Qg := R x M with M C R?~! satisfying
the assumptions of Sect. 1.4.

Consider the same problem for layers with a weak local deformation.

14. Let K : L2 (M) — L*(M), where M C R is an open set, be an integral operator
with the kernel K (-, -). Prove the Schur-Holmgren bound,

. 12
K|l < K lsu = (sup/ |K (x, x")|dx’ Sup/ IK(x,x/)IdX) .
M M

xeM x'eM

Check that || - ||sg is not a norm, and express it in case of a symmetric kernel.

Hint: More generally, || K|, , < K]l i/lp ||K||C1,é'foo, where K is an operator on L? (M),

p‘1 +q‘1 = 1,and || K ||co,00, | K|l1,1 are the two suprema appearing in the bound. If they
are finite, the result follows by interpolation, see [BEGKO01] and [Mad, Theorem 7.1.9]
for the better known discrete case.

15. Lett be a densely defined form on a Hilbert space H which is closed and bounded
from below, and denote by H the self-adjoint operator associated with ¢. Then for z € C
and amap R : H — Dom (¢) the following claims are equivalent:

(@) z€ p(H) and (H—2)"' =R,

(b) (R, ) = (zRp + ¢, 1) forall € H and v) € Dom (¢).

16. Complete the proof of Proposition 6.3.1.

Hint: To prove ¢f = R,’jl, ax¥ for a general ¥ € L?*(m), approximate it by a non-
decreasing sequence from ¢» € L'(m) N L?(m). Use the previous problem together
with the first resolvent identity to extend the validity of the result to any k% € (Cg -
cf. [BEKS94].

17. Thereis a kg > 0 such that |al, Rﬁn’fdx || < 1 holds for any x > k.

Hint: Rewrite (6.19) as [q [1nd(x)|*(1 4+ a(x)?) dm(x) < a (¢, ¢);,, with ko := /a/b,
estimate the rh.s. by means of Proposition 6.3.1 and the Schwarz inequality.

18. dimKer (Hom — k?) = dim Ker (I + oI, RS, ;) holds for any k € Cg,.

Hint: Use Proposition 6.3.1—cf. [BEKS94].

19. Prove Theorem 6.8 and its modification from Remark 6.3.1.

Hint: Cf. [EKrO1b].

20. (a) Prove the relations (6.25) and (6.26).

(b) Find an example of the shape function f for which Theorem 6.9 says nothing about
the existence of a weakly bound state.

Hint: Write the sum in terms of di- and tri-gamma functions [PBM, Sect. 5.1]. As for (b),
notice that the left-hand side of (6.23) can be made as small as (7/ 2b)2 leaving for d /b
open approximately the gap (1.697, 4.619).

21. Letog € C2[0, d] be real-valued with ¢(d) = 0. Then

(a) there are €1, €1 > 0 such that ‘fod o(t)x1(t) Dt| < e1]|¢|| implies

0
/ FwRn = 1+ eelol
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(b) if (¢, x1) = 0 and ¢(0) = S, then to each m > 0 there is a ¢y > 0 such that

/ ¢(z)2dz+ / d(1)*dt — g4 / o(t)>dr > Tﬁ

holds for all a small enough.

Hint: Consider an even extension of ¢ to [—d, d] and estimate the projection onto the
lowest Dirichlet eigenfunction in terms of €. Part (b) is obtained by solving Euler’s
equation on [0, a] if ||q§||L2(0 o> a’pa)* + |I¢||L2(a o while in the opposite case part
(a) has to be applied — cf. [EV96].



Chapter 7
External Fields and Magnetic Transport

Next we are going to discuss how the behavior of guided quantum particles is
influenced by electric or magnetic fields. Two questions are of a particular interest.
First we shall discuss the influence of such external fields on the curvature-induced
discrete spectrum in waveguides. Among other things, we will derive conditions
under which an electric or magnetic field prevents the existence of bound states
below the threshold of the essential spectrum. The second main topic addressed here
concerns transport properties of a two-dimensional electron gas subject to a perpen-
dicular magnetic field; we shall analyze the link between the properties of such a
field and the existence of states carrying electric current.

7.1 External Fields

For simplicity we shall discuss the influence of electric and magnetic fields separately
focusing on a few particular situations. The guided particles are supposed to be two-
dimensional and charged; we neglect possible finer properties such as their magnetic
moment. As the charge value plays no significant role in the following considerations
and a change of its sign is equivalent to a switch in potential orientation we suppose
everywhere that |e| = 1.

7.1.1 Homogeneous Electric Fields

We restrict our attention to the situation when the electric field is homogeneous
corresponding to a potential linear in a coordinate in the plane and the particle is
confined to a curved strip  C R?. It is evident the behavior of the system depends
on the interplay between the field and the geometry of 2 and the influence of the
field cannot be neglected anywhere. We shall discuss a particular case where 2 is
curved only locally and the effect outside the bent region is limited to a shift in the
© Springer International Publishing Switzerland 2015 213
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214 7 External Fields and Magnetic Transport

essential spectrum threshold as the field is perpendicular to the axis of €2 outside a
compact set.

We thus choose Cartesian coordinates in the plane in such a way that the straight
parts of €2 are parallel to the x-axis and the Hamiltonian has the form

—A} +Fy inL*(Q)

with the domain H 2(Q) N H(} (2), where F > 0 is the strength of the electric field.
As usual we introduce the curvilinear coordinates (s, 1), but in contrast to other
considerations it is convenient to let the coordinate # run through the interval (0, d).
Without loss of generality we may suppose that y(s) = 0 for s < 0; applying then
the straightening transformation of Sect. 1.1 we find that the above Hamiltonian is
unitarily equivalent to the operator

Ho(F) = =05~ (s,u) 9y — &> + Vp(s,u) in L*(R x (0, d))

with g(s, u) = (1 4+ u7y(s))? and
Ve(s,u) = Vo(s, u) — F/S sin 3(s1) ds1 + Fu cos 3(s) , (7.1)
0

where Vo (s, u) is given by the effective-potential formula (1.8) and 3(s) = (s, 0).

Suppose now that the bend causes a one-sided tilt of the guide. In such a case there
is a potential difference between the two straight parts of €2 which is proportional to
F, and it is thus not surprising that for a sufficiently large field strength the discrete
spectrum of Hq(F') can be empty.

Theorem 7.1 Adoptthe assumptions (i) and (ii); of Sect. 1.1 together withd || Y| co <
1. Moreover, suppose that - is non-vanishing with supp~y € [0, so] for some so > 0
and zero mean, fR v(s)ds = 0, giving rise to a one-sided tilt, 3(s) = fOS ~v(s)ds' €
[—m, 0] for all s € [0, so]. Then there is an Fy > 0 such that ogisc(Ho(F)) = @
holds for all F > F.

Proof We start with the essential spectrum. In view of (7.1) and the assumptions
imposed on +y the variables separate outside the central part of 2 and we have

AL(F) := inf oegs (Ho(F)) = inf o (h(F)),

where h(F) := —6‘3 + Fuon LZ(O, d) with the Dirichlet condition at the endpoints
of the interval. To find it we note that the Airy functions

o = (o= ). =7 -2)
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are fundamental solutions of the equation (—6% + Fy)) = Ay and \[(F) coincides
with the first root of the implicit equation wy(0)vy(d) — wx(d)vy(0) = 0. The
asymptotic behavior of the Airy functions for large arguments then implies

A(F) = F2/3 [cl + oy WAIEIVE () +O(F*‘/2))] as F — 00,

where —c; & —2.33 is the first zero of Ai and c; is a positive constant.

To study the discrete spectrum, it is convenient to work with the original operator
—A% + Fy in L%(); we want to estimate it from below by an operator Hqo(F)
such that inf O'(I:IQ(F )) > A (F). First we note that by assumption there is an
s1 € (0, sg) such that —%77 < B(s) < 0holds in (0, s1), in other words, the lower
boundary of €2 is the graph of a function smoothly increasing from zero at x = 0
to b := y(s1,0) ata := x(s1, 0). Using the domain monotonicity of —A% together
with the monotonicity of the potential with respect to y we can estimate the operator
in question from below by Hg, (F) := —A%‘ + Fy where €2 is the protruded strip
with the indicated part of the boundary replaced by the segments [0, a] on the x-axis
followed by [0, b] perpendicular to it.

In the next step we use a bracketing argument estimating Hg, (F) from below
by the operator Ho(F) = H;(F) ® Hy(F) ® H3(F), the three parts of which
correspond to a dissection of the protruded strip €2 by additional Neumann condi-
tions imposed at the segment (0, d) of the y-axis and the segment connecting the
points (0, d) and (a, d). The spectrum of H;(F) corresponding to the halfstrip is
[A1(F),00) and H3(F) > Fb > A\ (F) holds for F large enough. The remaining
part corresponds to a rectangle and one can find its purely discrete spectrum by sep-
aration of variables, in particular, the lowest eigenvalue is found using the first root
of the equation w) (0)v) (5) — w) (B)vr(0) = 0 in combination with the asymptotic
relation

2
p(F) = 5 + FP o) — ey e WP (14 0(F172) |
a

holds as F — oo. From the two asymptotic formula we see that p|(F) > A{(F)
holds for all F large enough, which concludes the argument. |

7.1.2 Local Magnetic Fields

Let us pass next to two-dimensional quantum waveguides exposed to a magnetic
field perpendicular to the guide plane. First we will be concerned with the effect of
a local, compactly supported field; we are going to demonstrate that it gives rise to
an effective repulsive interaction in many respects similar to that coming from the
twisting of three-dimensional tubes analyzed in Sect. 1.7. A mathematical expression
of this claim is a Hardy-type inequality induced by the magnetic field which we shall
now derive.
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Without loss of generality we may put d = m, the general case then follows by
scaling. Let 29 = R x (0, 7) and let B : 29 — R be a bounded magnetic field—
speaking of such a field here we always have in mind its intensity, the direction being
fixed as mentioned above. As before we shall describe points of 2 by their Cartesian
coordinates ¥ = (x, y). Choose a point p € € such that there is a ball Bg(p) C Q
of radius R, centered in p and such that the flux

1
D(r) = —/ B(X)dxdy
B (p)

™

through B, (p) is not identically zero for any » € (0, R); for simplicity we may
suppose that p = (0, yg) for some yg € (0, 7). We associate with B a magnetic
vector potential A(X) = (a1 (X), a2(¥)) defined on R?, for instance, by

1
aj(x) = —(y —yo)/o B(tx, t(y — yo) + yo) dt,
1
az()?)=x/0 B(tx,t(y — yo) + yo) dt;

it is obvious that dyas (X) — dya1 (X) = B(X) and that the transverse gauge condition
A(X) - (x, ¥y — y9) = 0 holds. From the diamagnetic inequality,

IVIv|(X)| < |GV — A)v(x)| for almostall X , (7.2)

we easily conclude that the estimate
| 169 = auPaxdy = [ P ardy
Qo Q0

holds for all u € HO1 (£20). One can make, however, a stronger claim.

Theorem 7.2 LetB € Cé (R?) be a real-valued magnetic field which does not vanish
in Q, then the inequality

>\12
/ (|(iv — Au@? — |u()?)|2) dxdy > CB/ @ 4 ay (1.3)
Qo Qo 1 + x2

holds for all u € H(} (R0), where A is a magnetic vector potential associated with B
and cp is a positive constant.

Proof For convenience we denote by ¢, ¢/, ... generic constants which may vary
from line to line, but do not depend on the test function u. It is straightforward
to check that the inequality (7.3) is gauge-invariant, hence we can without loss of
generality assume that the components of A are given by the above formula. Using
polar coordinates (r, ) centered at the point p, we will check that
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1
c/ lul®r dr df < / (|8,u|2 +—= liOgu — ra(r, 9)u|2) rdrdf
Br(p) BRr(p) r

holds forallu € H(; (R0), where a(r, 6) := A - (—sin 8, cos 0) is the (anticlockwise)
tangent component of the vector potential. For a fixed r we consider the operator
K, = i0p — ra in L?(0,27) which is self-adjoint on the domain consisting of
functions from H1(0, 27) with periodic boundary conditions. The spectrum of K,
is discrete consisting of the eigenvalues { Ay} _ . given by

2m
o= A () =k + L/ a(r,0)d =k + ®(r)
2w 0
which correspond to orthonormal eigenfunctions

or(r 0) = 1 e—i)\k()ﬁ—ir'fga(r,s) ds .
2w

This implies, in particular, that the quadratic form associated with K ,2 satisfies for
all u(r, -) € H'(0, 2m) with periodic boundary conditions the inequality

27 27
M(V)2/ lul®dd < / liOgu — rau|®do,
0 0

where p(r) := dist(®(r), Z). Integrating over the radial variable we get

I 1
/ —2|u|2rdrd0§/ — |iOpu — rau|*r dr do
Br(p) T Br(p) ¥

for all u € H'(Qp). Define next the function  : [0, R] — [0, 1] by

2 2 —1
o (1) . u(r)
r) = ———— with = ( max .
X(r) r2 . rel0,R] F

Since @ is by our assumption about B piecewise continuously differentiable and
@ (0) = 0 we see that  is well defined; by definition there is at least one ro € (0, R]
where it reaches its maximum, (o) = 1. Suppose that v € H 1(0, R) satisfies
v(rg) = 0, then we have the inequalities

R 2R3 —3R*ro+ry (R
/ |v(r)|2rdr < 077" / |v/(r)|2rdr
ro 6ro ro

and

ro ,.2 0
/ )P rdr <= [ ' @)Prdr,
0 Jo,1 /0
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where jo 1 &~ 2.40 is the first zero of Bessel function Jy. The latter comes from the
lowest eigenvalue of —A p in a circle of radius rg, the former follows by

/r v (¢) dt
ro

Using the the above estimates we infer that

() =

2 r _ R
s(r—m)/ W )P dr < - ”’/ W @) rdr.
70 ro 70

/ |u|2rdrd9§2/ (Ixul® + (1 = x)ul?) rdrdo
Br(p)

Br(p)
1 27 I‘2 ro
52;1%/ —2|i89u—rau|2rdrd9+ 2/ (TO/ I((1 = y)u) > rdr
Br(p) " 0 o /0
3 2 3 R
L 2R IR 0+ / (1 = 0wy P rdr)do (7.4)
6rg "o

1
< ZM(Z)/ - liOgu — rau|’r drdf + c/ (|X/u|2 + |8ru|2) rdrdf
Br(p) T Br(p)

1
< c’/ <|8ru|2 + — liOpu — raulz) rdrdf.
BRr(p) r

The operator —% — 1 on the domain H 2(0, ) N HO1 (0, ) with the additional

Dirichlet condition imposed at y = yp has the spectrum bounded from below by

72 min { Yo 2 (m — yo)*z} — 1, which in terms of quadratic forms means that for

ve HY0,n) satisfying v(yo) = 0 we have
5 Vs Vs
(min {352, (= =302 = 1) [P sin? vy < [P sint vy

Letu € H'(Q) and define v : Qo — [0, 1] by

V@) = % if x| <R and h_(x) <y < hy(x)
1 otherwise

where h4(x) := yo & +/R? — x2; then we write u = (1 — ¢)u + vu and use the
above estimate to obtain for a fixed x € (—R, R) the relation

™ hy (x)
/ u(X)|? sin® ydy < 2/ (1 — )ul*(¥)sin® ydy
0

h_(x)

T hy(x) >y 12
+c /w;aymz(;?) sinzydy+/ %Sinzydy :
0 o) RT—x



7.1 External Fields 219

combining it with (7.4) and defining Qg := (—R, R) x (0, m) we get

(R2 — xz)|u|2 sin? ydydx <c / [(iV — A)ul2 sin? ydxdy

Qr Br(p)

+c / |8yu|2 sin® y dy dx
QR
for any u € H'(p). The diamagnetic inequality (7.2) then implies

/ (R? — x®)|u|?sin® ydxdy < ¢ / |(iV — A)u|?sin? y dx dy
Qr

Qr

for all u € C*°(R). Recall next the classical one-dimensional Hardy inequality

00 2 00
/ '”(ttz)l dt§4/ /(1) d (75)

—00 —00

that holds for any v € H!(R) satisfying v(0) = 0. Take finally m = % and define
the map ¢ : R — [0, 1] by

1 if |x| >m
¢(X) Z{li if x| < m
m

Decomposing u € C*®(Q0) N L*(K2) in a similar way as above, u = u¢ + u(l — ¢),
and using the last two inequalities in combination with the diamagnetic one, we
arrive at

2 «in2 2 2
1—
/ |ul szydxdy§2/ lugl +|M(2 2] sin? y dx dy
Q 1+ x Q0 14+x

lu|?sin? y

1+ x2 drdy

< 16/ (|¢8xu|2—|— |u¢’|2) sin2ydxdy+2/
Qo Qum

< 16/ |Oyul? sinzydx dy+c¢ (R?> = xX®)|ul? sinzydx dy
Qo QR

<c / |(iV — A)u|?sin® ydx dy;
Qo
it is now sufficient to substitute v(X) = u(X) sin y to obtain (7.3). |

The proved theorem has consequences for the existence of geometrically induced
bound states. Consider, for instance, a bent strip €2 the axis of which has signed
curvature v and which is exposed to such a magnetic field. The corresponding mag-
netic Hamiltonian Héz is the unique self-adjoint operator associated with the closed
quadratic form
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0lpl = [ 1GY = 4) oD drdy 1.6
Q

defined on H(} (£2). It is not difficult to locate the essential spectrum of Hg.

Proposition 7.1.1 Adopt the assumptions (i) and (ii)> of Sect. 1.1 and suppose, in
addition, that ||v|lco < 2/7 and that v has a compact support. If the magnetic field
satisfies the hypotheses of Theorem 7.2, then oess(H g) = [1, 00).

The proof is left to the reader (Problem 1). The inequality (7.3) can be used to
demonstrate that the discrete spectrum of H g is empty provided both v and  are
sufficiently small.

Theorem 7.3 Let B be as in Theorem 7.2. If v satisfies the assumptions of Propo-
sition 7.1.1 and || |lco + |1V |lco is small enough, then adisc(Hg) = 0.

Proof We apply again the straightening transformation U : L*(Q) — L?*(Q0)
introduced in Sect. 1.1. Adopting the notation used there we define

A(s, u) = (@ (s, u), do(s, u)) = A(E(s) — uij(s), n(s) + u(s));

the operator H l? is then unitarily equivalent to H l? =UH IS} U~'in L?(Q) generated
by the quadratic form g [¢] :== Q[U ~14)] defined on H& (2p). Using the hypotheses
about v, we find after a straightforward calculation that

@[] = 1917 = qol] — 111> — c(Vlloo + MMOO)/Q XV + [91*) ds du,
0

where  is the characteristic function of supp vy, c is a positive constant, and
ald)i= [ 110 = €y + v + li0 — €@ — v ds du.
Q0

Since the magnetic field generated by the potential (€4 + nds, ar — nay) satisfies
the assumptions of Theorem 7.2, we can apply the Hardy-type inequality (7.3). The
latter in combination with the pointwise estimate

IVYI? <2(iVy — AP + AP P)
and the above derived lower bound on g [] — )% gives
1
401 = V1P = (5 — a1 M,) (o] = 1¥1P)

1 5 (s, u)|?
+(§CB — (1 + |Supp’)/| )Mfy) /QO ]—i——szds du


http://dx.doi.org/10.1007/978-3-319-18576-7_1
http://dx.doi.org/10.1007/978-3-319-18576-7_1

7.1 External Fields 221

for any ¢ € HJ(Q) (Problem 2), where M, := ||7[loc + [¥lloc and ci, c> are
constants independent of . Using the diamagnetic inequality (7.2) once again we
see that the right-hand side of the last estimate is positive for M, small enough,
which concludes the proof. |

Remarks 7.1.1 (a) While both Theorem 7.1 and the above result provide conditions
under which an external field destroys curvature-induced bound states, they refer
to rather different situations. The perturbation in the former case is global and, in
the latter, local with with appropriate consequences for the essential spectrum. In
addition, the claim of Theorem 7.1 depends on a particular type of bending which
need not be weak. On the other hand, a local magnetic field has the effect only if the
curvature is sufficiently small.

(b) A similar behavior can be observed for other geometrically-induced bound states;
the example of a locally bulged strip is proposed as Problem 3. The reason behind this
effect is that, in contrast to the non-magnetic case, the corresponding Hamiltonians
are in view of Theorem 7.2 and perturbative arguments subcritical, in other words,
they have no threshold resonances.

(c) The effect of local magnetic fields is robust, present even if the hypotheses of
Theorem 7.2 are not valid. A case of particular interest concerns Aharonov-Bohm
fields, i.e. a singular magnetic field vanishing everywhere except at a flux line, for
which a modified version of inequality (7.3) holds (Problem 4).

7.1.3 Nockel’s Model Revisited

In the rest of this chapter we shall deal with ahomogeneous magnetic field of intensity
B, again perpendicular to the plane to which the particles are confined. First we look
how such a field can influence spectral properties using for this purpose the model
of an open quantum dot introduced in Sect. 2.3.

The vector potential corresponding to the field can be chosen, of course, in dif-
ferent ways; for the present purpose the best option is to use the Landau gauge,
A(X) = (—By, 0). The split of the potential in (2.10) into an x-dependent part and a
perturbation controlled by the coupling constant is not essential here, hence we use
a single local potential writing the Hamiltonian as

Hy(B) = Ho(B) + U, Ho(B) = (=idx — By)* — 0;

with Dirichlet boundary conditions at |y| = a; the operator acts on L?(S2), where
Q0 = R x (—a, a) as before, and its domain coincides with that of —A%O. In the
absence of the magnetic field the potential U gives rise to a nonempty discrete spec-
trum as long as fQU U(X)x1 (y)2 dydx < 0, in particular, if U is purely attractive.
Our first aim is to find out what happens with the discrete eigenvalues of Hy (0)
when the magnetic field is switched on.
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The free operator Hy(B) exhibits a translational invariance in the longitudinal
variable x. This makes it possible to simplify its spectral analysis since by a partial
Fourier transformation, or more exactly, by means of F' ® I, where F is the one-
dimensional Fourier-Plancherel operator, one finds that Hy(B) is unitarily equivalent
to a direct integral,

®
Ho(B) ~ /R hs(p)dp. hu(p) =02+ (p— yB)® in L*(—a,a)

with Dirichlet boundary conditions at |y| = a. Each fiber operator hp(p) has a
purely discrete spectrum; we denote their eigenvalues by v/; (p) and the corresponding
normalized eigenfunctions by xf (p, -) so we can write

hp(p) =D vi(p)al(p). 72 (p) = OF (P ). V2w X5 (P:7) -
=

A closer inspection shows that v;(p) are real even analytic functions of p and that
pv'(p) > 0 holds if p # 0 (see the notes), hence we get

inf oess(Ho(B)) = min v1(p) = v1(0).
peR

To derive a sufficient condition under which Hy; (B) has at least one eigenvalue below
v1(0) we introduce as in Sect. 2.3 the potential projection

Ui () :=/ U, ) 150, )2 dy |

—a

now with respect to the magnetic transverse eigenfunctions.

Theorem 7.4 Assume that U € L°°(Q) and limy|— oo |U (x, ) loc = 0. Then the
discrete spectrum of Hy (B) is nonempty provided fR Upp(x)dx <O.

Proof In a standard way one checks that the decaying potential does not alternate
the essential spectrum, which means that the relation

inf oess (Hy (B)) = inf 0ess (Ho(B)) = v1(0)

holds and it is sufficient to find a suitable trial function ® € L?(§2) which would
make the quadratic form

q[®] := [|(—idy — BY)®|* + 9, ®|*> + (, UD) — 11 (0)[| |

negative. We again employ the criticality of the free operator Hy(B) and choose
D(x,y) = odx) X? (0, y), where the function ¢ is to be specified, obtaining
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alox?1 = 10172 = 2BIm (6, (71 ¢) oy + @ Ut D)oy - (17

where ( y)]f}1 = ff 2 Y Xf (0, y)|*dy . Note that the middle term on the right-hand
side of (7.7) vanishes if ¢ is real-valued. We choose a real function g € S(R) such
that g(x) = 1 in [—d, d] for some d > 0 and define

_ [ okl <d
Pe(x) =
g(xd +e(x Fd)) ... x> d
The exterior scaling allows us to make the kinetic term in (7.7) arbitrarily small by
the choice of ¢ because

qloext1 = ellg 172, + (6 Unn $) 12wy ;

on the other hand, the potential term tends to f]R Ui1(x)dx as e — 0 by dominated
convergence, so the right-hand side is negative for € small enough. |

Remark 7.1.2 We see that, in contrast to the previous section, even a strong mag-
netic field cannot remove the discrete spectrum arising from the presence of the
potential well U. Note that the question of whether the same could be true for geo-
metrically induced bound states remains open. Note also that in view of the magnetic
field homogeneity the coordinate choice does not matter; we can always choose a
coordinate system in which the guide axis is given by y = 0.

The present model can also be used for a different purpose. In Sect. 2.3 we have
shown how embedded eigenvalues which exist due to a symmetry can turn into
resonances under a perturbation that breaks the symmetry. Now we are going to
show that magnetic field can have the same effect. To this end replace the first term
in (2.10) by its magnetic counterpart and we leave out the potential perturbation, in
other words, we consider the Hamiltonian

H(B) := (—id, — By)* + V(x) — 0}

on L?(0) with the Dirichlet condition imposed at |y| = a. We shall regard the

magnetic field as a perturbation of the operator H (0) the spectral properties of which

were discussed earlier. We use the basis of transverse-mode eigenfunctions to write

H (B) as a matrix differential operator analogous to (2.10), the potential perturbation
AU i (x) now being replaced by

; 1 2

Ujk(B) :=2iBm') 0, + B*m7 |

where the involved momenta are defined by m(/rk) = ffa Y'Xj(7)xk(y) dy. Next we

use the complex scaling described by the operator Sy, see (2.13), and perform the
perturbation expansion for the eigenvalues of the obtained non-selfadjoint operator
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revealed by the rotation of the essential spectrum (Problem 5). This leads us to the
following conclusion.

Theorem 7.5 Adopt the assumption (i) of Sect. 2.3, and moreover, suppose that
€0 = pp + v is a simple eigenvalue of H(0) satisfying the conditions (2.11). Then
a weak magnetic field turns it into a resonance pole e(B) of H(B) with

k(o)

T . 2
Ime(B) = —2B Z Z ﬁlmﬂ‘ﬁﬁ |7 (0 —vi)w(eo— vk +i0) B, |~ + O(B?),

k=1 o=%
where the involved symbols are as in Theorem 2.4.

As in the non-magnetic case the conclusions of this section, both concerning the
discrete spectrum and resonances, can be extended to the case of soft channels, where
the free operator is Hy(B) := (—i0x — By)* — 6)2, + W (y) on L?(R?) with a suitable
confining potential W (Problem 6).

7.2 Magnetic Transport in Electron Gas

The results of the previous section are not the only examples of the influence that a
homogeneous magnetic field has on two-dimensional charged particles. Even more
important ones concern the absolutely continuous spectrum of the one-particle mag-
netic Hamiltonian, often also referred to as the Landau Hamiltonian, which, written
in Cartesian coordinates, acts as

(—idy + A + (—idy + Ay)?,

where A = (A, Ay) is a vector potential corresponding to the magnetic field B =
OxAy — 0y A, parallel to the z-axis. Our interest stems from the fact that electron
transport is associated with states carrying current. To achieve a macroscopic electric
current, a large number of electrons is naturally needed, however, if the electron gas
is dilute and the mutual interactions can be neglected, the one-particle Hamiltonian
provides useful information.

The existence of an absolutely continuous spectrum in this situation is a nontrivial
effect. Recall that if the particle motion in the plane is not restricted, then in the
absence of a magnetic field the energy spectrum is purely absolutely continuous
and covers the positive half-line. If a magnetic field is added, the situation changes
completely. It is well known that in the presence of a homogeneous magnetic field
its character changes to pure point. This effect has a classical counterpart in the fact
that charged particles in a homogeneous magnetic field are fully localized circling
on the appropriate cyclotron orbits, which means that transport is absent in both the
classical and quantum case. It appears, however, that it can result from a suitable
perturbation of the system.
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We are going to discuss two mechanisms which make such a transport possible.
One consists of restricting the particle motion by a boundary which is infinitely
extended but otherwise it can be of various nature. The other involves a local variation
of the magnetic field which is localized in one direction and infinitely extended in
the perpendicular one. Since our main motivation here comes from description of
magnetic transport in solids and real-life materials are never absolutely pure, itis also
useful to ask whether the transport remains preserved in the presence of a potential
modeling impurities.

7.2.1 Edge States

Bertrand Halperin showed in the seminal paper [Ha82] that the presence of bound-
aries in two-dimensional systems with homogeneous magnetic field induces the exis-
tence of current-carrying states. He also suggested that these edge states, localized
in the vicinity of the boundary but extended along it, play an important role in the
understanding of the quantum Hall effect contributing to the so-called Hall current.
We will analyze this phenomenon in a couple of particular situations with different
types of boundaries.

Consider first a straight hard wall, in other words, suppose that the particle motion
is confined to a halfplane with Dirichlet condition imposed at its boundary. In such
a system an unrestricted motion is possible also classically provided the particle is
close enough to the boundary. Indeed, if its cyclotron orbit crosses the boundary, the
particle gets reflected from it, and since the incidence and reflection angles coincide,
it bounces from the boundary periodically moving thus in a hopping fashion in the
direction determined by the magnetic field orientation. It is easy to see that the speed
of such a propagation does not exceed the initial velocity of the particle and that it
decreases with the distance of the cyclotron-orbit center from the boundary; once
it matches or exceeds its radius, the particle does not hit the boundary and remains
therefore localized. This, as we are going to show, is not the case in the quantum
situation unless, of course, an additional potential is introduced.

We choose the coordinates in such a way that the particle is confined to the
right halfplane, x > 0, and assume for definiteness that B > 0. The spectrum is
gauge invariant and it is again convenient to work in the Landau gauge, hence the
Hamiltonian in the absence of perturbations is

Hy = 92 + (=idy + Bx)*> in L*(Ry x R)
with Dirichlet boundary condition at x = 0. In view of its translational invariance in

the y-direction, we can use the same argument as in the previous section and to pass
by means of / ® F to the unitarily equivalent operator

52}
ﬁoz/ h(p)dp with h(p) :=—0>+ (p — Bx)?, (7.8)
R
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where the fiber operator is acting in L?(R,) with Dirichlet condition at x = 0.
The parameter p € R is the momentum component canonically conjugated with the
coordinate y. The spectrum of Hy is then given by

o(Ho) = o(Ho) = | J o(h(p)).

peR

As the potential term of /(p) diverges to +-00 when x — 400, the spectrum of each
h(p) is purely discrete and consists of simple eigenvalues ¢, (p), n € Ny, which are
usually referred to as band functions.

Proposition 7.2.1 (a) The functions €,(-) are real analytic on R.

(b) Foranyn € Noandall p € Rwe have Ope,(p) = —%|8xun(0; p)I? <0, where
uy, (-5 p) is the normalized real-valued eigenfunction of h(p) corresponding to
the eigenvalue €, (p).

(¢) €x(p) = €,(0) + p? holds for all p < 0 and any n € N.

(d) limp,_ o €,(p) = 2n+ 1)B for any n € Ny.

Proof The eigenvalue problem for 4 (p) is explicitly solvable; one gets
un(x§ P) =Cp DEn(P)*l (Bl/zx _ B—l/zp) ,

where ¢, a normalization constant, D,, is the Whittaker function [AS, 19.3], and the
eigenvalue €, (p) is determined by the condition

De,p—1(—=B~"?p) =0.

One can check easily that Dom & (p) is independent of p, then (d) follows from
the above condition in combination with properties of Whittaker functions (see also
Problem 9). To prove (a) we observe that for any u € HO1 (R4) and any € > 0 one
has the estimate

(u, Bxu)2g,y < Bllxullz [ulz2 < B(|lxull3 + lull3)
< (hOu, w) 2, + Bllul3 < ellh©ull3 + " + B)|ul3.
Hence the operator Bux is relatively bounded with respect to /(0) with relative bound

zero, and the assertion (a) follows from analytic perturbation theory, cf. [Ka, Theorem
VII.2.6]. Furthermore, using the eigenvalue equation

2y (x5 p) + (p — Bx)un (x; p) = e (p)utn(x; p),
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together with the Feynman-Hellmann formula and integration by parts we get

00 ) o0
Ipen(p) = 2/ (p = Bx)up(x: p) dx = B / (P — Bx)? uy (x; p) Oy (x; p) dx
0 0
2 o 5
= E /0 (En(p) un(x; p) Oxty (X5 p) +3xun(x; p) Oty (x; P)) dx
1
= _E [Ox 1t (0; P)|2 <0,

because the eigenfunction u,, (-; p) satisfying the Dirichlet boundary condition cannot
have at the same time vanishing derivative at x = 0. The proof of (c) is left to the
reader (Problem 8). |

A consequence of the claim (b) is that the hard-wall magnetic half-plane exhibits
transport at all energies, without any localized states.

Corollary 7.2.1 o(Hy) = [B, 00) is purely absolutely continuous.

This result demonstrates universality of free magnetic transport in the half-plane.
Let us next look at what happens in the presence of an additional impurity potential,
more specifically, whether and for which energies the absolutely continuous spectrum
survives when the Hamiltonian Hy is replaced by

H=Hy+W

with a bounded potential W. A suitable tool toward this goal is the Mourre theory
of positive commutators which has been described in Sect. 2.1. Its central point is
to find a conjugate operator I1 such that the commutator E(A)[iI1, H]E(A), where
E(A) denotes the spectral projection of H corresponding to a fixed interval A, is
positive. It is convenient to establish the corresponding estimate first for the free
Hamiltonian Hy. We denote by

L,=(2n+1)B, (2n+3)B]
the interval between neighboring Landau levels and define

¢y o [lew () —ar(p)| - if both y(p) and e, (p) are in Ly
On(p,n’,n7) = H 2B otherwise

which obviously satisfies 6, (p, n’, n") = 6, (p, n”, n’). Furthermore, put

8, := inf inf 0,(p,n’,n").
P

n’'<n”<n

It follows from Proposition 7.2.1 that 6,,(p,n’,n”") > ¢B with ¢ > 0 outside a
compact interval, and since |¢,/(p) — €,7(p)| > 0 for all p we conclude that 9, > 0
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holds for all n. Let Eg(A) be the spectral projection of Hy corresponding to a set A,
then we have the following estimate.

Lemma 7.2.1 Let A C L, be a closed interval with |A| < 6, B. Define

v_(A) = inf [0pen (p)] >0 (7.9)
{n',p:ey(p)eA)

and vy (A) similarly with inf replaced by sup. Then
VBU_(BT'A)Eg(A) < Eo(A) [iy, Hol Eo(A) < v/Bury (B~ A) Eg(A)

holds true in the sense of quadratic forms on L*(R4 x R).

Proof The positivity of v_(A) follows from Proposition 7.2.1b. Suppose first that
B = 1. Denote by 7,/(p) the eigenprojection associated with ¢,/(p) and by F =
I ® F the Fourier-Plancherel operator acting in the y-direction. Since |A| < §, by
assumption, we have e;,l (AN e;,,l (A) = @ if n’ # n” which allows us to use the
Feynman-Hellmann formula to infer

FEo(A) liy, Hol Eo(MF ™ =" / gy T PO B () dp

n'

=> / (P (= pew () my (p) dp
n' f;/ (A)

> v (M) / L™ (PP = v (A)Py(A),

where Py(A) is the corresponding spectral projection of Hy = FHyF~'; in the
same way we obtain the upper bound with v_(A) replaced by v+ (A). Hence

V- (A)Eo(A) < Eo(A) [iy, Hol Eo(A) < v1.(A) Eo(A)
and the claim for any B > 0 follows by scaling, (x, y) — /B (x, y). |

This result allows us to demonstrate that if the perturbation W is small enough,
the absolutely continuous spectrum of H in certain intervals of the positive real axis
remains preserved.

Theorem 7.6 Fix n € Ny and let \, \' > 0 be such that \ + \' < 2. Then there
exists n(n, A, \') > 0 such that for |W||co < n(n, A\, \') B we have

Osing(H)N (BRn+1+X),BQ2n+3-X))=0.

Proof As in the previous proof it suffices to check the claim for B = 1, the general
case will then follow by scaling. Let « € 2n + 1+ A, 2n 4+ 3 — )\') and set
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| ,
o= 7 min(d,, A\, ).

Our aim is to show that if Wy := || W/« and € € (0, o] are small enough, then the
inequality

E(Ac) iy, HIE(A:) > c(e, Wo) E(A;) (7.10)
holds in the sense of quadratic forms on the interval A. = [a—¢, a+¢] and with some
constant c(e, Wy) > 0. To this end we consider the interval A, = [ — 0, a + 7],
which contains A; since € < ¢, and its complement AS = R\ A,. By construction

we have A, C L,. For any vector ¢ € E(AE)Lz(R+ x R) we can then write the
following inequality,

(Ho — o) Yl < I(H — ) E(A) Il + Wo lI9]l < (e + Wo) Il
and moreover, since min{|s — «| : s € AS} > o, we also have
IEo(AS) Il < [[(Ho — o)™ Eo(AD || [|(Ho — )l < o' (e + Wo) 9]l . (7.11)

Using next the commutator identity [iy, H] = [iy, Hy] = 2(iJy + Bx) in combina-
tion with the fact that E(A$)y = 0 we obtain

(b, liy, HIY) = (Eo(Ap), liy, HolEo(An)Y) — 2 |Iliy, Hol Eo(ADYI 9]l

In order to control the second term on the right-hand side we note that
iy, Hol Eo(AS)| < 2 (Eo(AS), HoEo(AS)w)?
< 2| Eo(A) Y12 | HoEo(AG) w2,
If Wy < 1, then the last norm can be estimated by
1Ho Eo(ADYN'? < (IHYI + WollwlD'? < @n + ' 1)l

and putting the above estimates together we arrive at
W, liy, HIY) = (Eo(Ao)¥, [iy, HolEo(A)Y) — 42n +4)' ™12+ Wo) 210l
On the other hand, since |A,| = 20 < §, holds by assumption, we can apply

Lemma 7.2.1 with B = 1 to the first term on the right-hand side of the last inequality.
This yields the estimate

(Eo(A)Y, liy, Hol Eo(An)¥) = v(n, NI Eo(An)¢II,
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where v(n, A) := v_((2n + 1+ A, 2n + 3)) with v_(-) being defined by (7.9). This
in combination with (7.11), the above lower bound to (¢, [iy, H]), and the identity
117 = 1 Eo(A)YI* + I Eo(AS)|1* finally implies

+ Wo)2  4Qn + 92 (e + Wp)'/?
(w.liy. H10) = vn 1 - (€ > o, 2 0132,,((2 5 D .

Hence taking Wy and € small enough, the choice being dependent on n, A, \, we
conclude that

@, liy, H1) > c(e, Wo) llv]|*

holds for some c(e, Wp) > 0 and all ¢ € E(AE)LZ(R+ x R) giving (7.10).

Now it remains to apply the Mourre theory. It can easily be checked that the unitary
group {e/"¥ : t € R} preserves the domain of H. Moreover, [iy, Hy] = [iy, H] is
relatively bounded with respect to Hy and the double commutator [iy, [iy, Hol] is
bounded (Problem 10). Thus the spectrum of H in the interval A. is purely absolutely
continuous, and since & € 2n + 1 + X, 2n + 3 — \) is arbitrary, the claim of the
theorem follows. |

It is important to realize that the choice of the conjugate operator IT as multi-
plication by y in Lemma 7.2.1 and Theorem 7.6 is essential for the argument. We
have observed in the notes to Sect. 2.1 that the classical counterpart of a positive
commutator is the existence of an observable which increases in time with a positive
lower bound to its derivative. Looking at the classical trajectories near the boundary
described at the opening of this section, it is clear that the position coordinate parallel
to the boundary is a suitable candidate.

It is thus natural to ask whether the result on the stability of a part of the absolutely
continuous spectrum can be extended to domains with more complicated boundaries
by choosing a suitable conjugate operator replacing IT = y. It turns out that the
domain in question must satisfy some geometrical assumptions. The most important
is that it has to contain a conical subset. This requirement is related to interference
coming from scattering on the impurity potential. Note that the transport associated
with the edge states has a unique direction determined by the orientation of the
magnetic field. If two parts of the boundary face each other, the motion along them
occurs in opposite directions. Even in this situation the spectrum can be absolutely
continuous as the case of a straight magnetic strip without a potential discussed
in Sect. 7.1.3 shows, however, it appears to be more sensitive to the presence of
impurities.

Since the application of Mourre’s theory is more involved in the case of a general
boundary, we limit ourselves to stating the result, referring to the notes for reference
to the proof and a guide for further reading.

Theorem 7.7 Let 2 C R? be an open, simply connected region containing a wedge-
shaped subset, the boundary of which is C3-smooth apart from a finite number of
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points where its segments meet at nonzero angles. Suppose that OS2 is parametrized
by its arc length and there is a function s € C?(Q) such that s(y(s")) = s’ fors’ € R
having uniformly bounded derivatives, ||Ox sl co+|0y$|lco < 00 and [|0;0;s|lcc < 00
fori,j=x,y.Fix E ¢ {2n+1)B : n € No} and suppose that || W |~ < 00. Then
the spectrum of the operator H = Hy + W is absolutely continuous in the vicinity
of E provided B is large enough.

7.2.2 Edge States Without a Classical Analogue

Magnetic transport along a boundary considered above has a classical counterpart in
trajectories of particles moving on segments of cyclotron orbits and bouncing from
the wall. Our next aim is to demonstrate that the transport is also possible in the
absence of such a hopping propagation, more exactly, in situations where such tra-
jectories refer to a zero-measure family of initial conditions. The magnetic transport
then becomes a purely quantum effect in the same sense as the curvature-induced
bound states discussed in Chap. 1. The model we are going to analyze describes the
free magnetic Hamiltonian Hy in the plane perturbed by a periodic array of point
interactions.

Without loss of generality we may suppose that the point interactions are situated
along the x-axis. Using again a Landau gauge and choosing A(X) = (—By, 0) we
can write the Hamiltonian formally as

Hyy = (=i0x — By)> = 0} + > ad(x —xo — jb).
JEZL

where ¢ is the period of the array. The interaction term with “coupling constant” &
naturally has a symbolic meaning only; the proper way to introduce the perturbation
is to impose the boundary conditions (5.2) with a parameter o € R at the points
aj = (xo+j¢,0), j € Z. We denote the resulting operator as H, ¢. The free
operator Hy is identified with Hy, ; and as we have already indicated, its spectrum
consists of eigenvalues of infinite multiplicity, the Landau levels, being

0(Hso ) ={2n+1)B : n € Np}.

Our aim is to show that whenever the perturbation is present, i.e. for any finite value
of « there is an unbounded set of energies for which the transport occurs.

Theorem 7.8 The spectrum of H,, ¢ consists for any o € R of the Landau levels
B(2n+1), n € Ny, and an infinite family of absolutely continuous spectral bands
situated between any two adjacent Landau levels and below B.

Proof Without loss of generality we may suppose that 0 < xop < £. Using the
periodicity, we can perform the Bloch decomposition in the x direction and write


http://dx.doi.org/10.1007/978-3-319-18576-7_1
http://dx.doi.org/10.1007/978-3-319-18576-7_5

232 7 External Fields and Magnetic Transport

Y @
Ha,(f = Ha,l(e) dé 5
21 Jipei<n

where the fiber operator H, ¢(6) on the period cell acts on L2(0,¢) ® L*(R) with
the domain being specified by the boundary conditions

Oap—, y) = e dp(0+.y), i=0,1.

Since the strip (0, £) x R contains a single point perturbation, the Green function of
the operator H, ¢(f) can, in analogy with Proposition 5.1, be expressed by means
of Krein’s formula

I - - Go(X, ao; 0, 2)Go(do, X'; 0, 2
(Hoot0)-2) @5 = Go(&, 710, 5 4 LU LDO@TT0D g )
=€ G; 0, 2)

where Gy is the corresponding free Green’s function and

- . . 1 - o
£(@@a; 0,z) ;= _lim (Go(a, x;0,7) — — In |x—a|)
a|—0 2r

|¥—a|—

is its regularized value at the point a. To find Gy we employ a transverse mode
decomposition similarly as we did in Sect. 5.1.1, just the longitudinal part is a bit more
involved. The above boundary conditions determine eigenvalues and eigenfunctions
of the transverse part of the free operator, namely

2mm 2 0 1 oommes
Hm (0) = (T + 9) s () = ﬁel( Tm+ l)x/l’

where the index m runs through integers. Then we have

Goi. 0.0 =— 3 OO o T
m=—00 W(uﬁ“v’g’) " "

where y_, y- are as usual the smaller and the larger value of y, y’, respectively, and

u,,, v, are solutions to the equation

y 2mm 2
—uw M+ By+——+0) uly) =zuy)
such that u? is L? at —oc and v/}, is L? at 4+-00; in the denominator we have their

Wronskian. Making the appropriate argument shift we can write

27m + 96)

ui(y>=u(y+ 50
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and a similar relation for vi, where u, v are the corresponding solutions of the
equation with harmonic-oscillator potential. We have W(ufn, vn91) = W(u,v), of
course, and u, v express in terms of confluent hypergeometric functions,

_e By (B2 1l g
v(y) =€ (43 » 53 By

away from zero, and u is obtained by analytical continuation in the y> variable; one
can express both of them through the formula

B—z 1. 2 3B—z 3. 2
u _ —By?/)2 M (55 33 BY?) M (*35°. 31 BY?)
[U] (y) =me ™ [—r gy +2+/By r(E5) )

Computing the Wronskian and using the explicit form of the transverse eigenvalues
and eigenfunctions we then get

2(z/2B)=(3/2) B—2z\ . /
Go(3,%;0,2) = — r iBG—x') 7.13
o(x, x50, 2) o5 (23)6 (7.13)
o0
2mm + 64 2mm + 64 2rim(x—x')/
Xm;wu(y<+ BY )v(y>+ Be )e '

As expected the function has singularities independent of ¢ which coincide with
the Landau levels, z;, = B(2n+1), n = 0,1,2,.... Inspecting the functions
wk sin (T2) e~ BIw/4 with k € Ny and w := x — xo + iy which span the corre-
sponding eigenspaces and noting that the point-interaction condition is satisfied for
them automatically, it is not difficult to see that each z,, remains to be an infinitely
degenerate eigenvalue of the perturbed fiber operator H,, ¢(6).

On the other hand, H,, ¢() also has eigenvalues different from z,, which we denote

as ef,a‘l) (0). In view of (7.12) they are given by the implicit equation
o = &(ao; 0, €) (7.14)
referring to non-normalized eigenfunctions w,(,a’e)(q 0) = Go(-, ao; 0, €,(0)). In

order to evaluate them, we have to assess the convergence of the series in (7.13).
Using the asymptotic behavior

kj] () =B (V) T (14 00y17)

for y — Foo, we find that the product

. N 27m + 64 n 2wm + 04
Sm = U\ V< Bl vyy> Bl
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is for y # y’ governed by the exponential term, namely

S = exp [g (2 -»2)+ (e - 2”;’"') (- — y<>] (i1~ + O@mI )

as |m| — oo, while for y = y" we have 5, = — 7= [m|~' + O(lm|2), hence the
series (7.13) is not absolutely convergent. Summing now the contributions from +m
we see that in the limit x’ — x it diverges at the same rate as the Taylor series of
—(1/2m) In ¢ does for ( — 0+, and consequently, we get

N e 2mm + 604
£(x;0,2) = Z [ dnim| JrBe F(zO(MU)(y‘i‘T) ,

m=—00

(7.15)
where ¢ := %. Note that the expression is independent of x as it should be since
the free operator Hy is translationally invariant. We can write it by means of the first
hypergeometric function alone, since

) et [MOEER oM C i),

§
(MU)( F(<+%)2 F(OZ

VB

where we have used the shorthand £ := «/B (y + %).

The spectral bands of H,, ¢ are in view of the direct-integral decomposition given
by the ranges of the functions e,(f"’“ (+). Solutions of the condition (7.14) do not cross
the Landau levels, because £(do; 0, -) is increasing in the spectral gaps of Hy, i.e.
the intervals (—oo, B) and (B(2n — 1), B(2n + 1)), and diverges at their endpoints.
The spectrum will be continuous away from z,, if the band functions are nowhere
constant. In view of the spectral condition (7.14) one has to check that £(X; 6, z) is
nowhere constant as a function of §. Notice that each term in (7.15) is real-analytic
for z € R and the series has a convergent majorant independent of 6, hence £(X; -, z)
is real-analytic as well and one has to check that it is non-constant in the whole
Brillouin zone [—7 /¢, /).

Suppose that the opposite is true. Then the Fourier coefficients of the function,
k= ff{f;z £(x;0,z2) e*%9 49, must vanish for any nonzero integer k. Since the

summand in (7.15) behaves as O(|m|~2) as |m| — oo, we may interchange the
summation and integration; a simple change of variables then gives

22 rao am [T )( + 19) k9 g
Ck = — 1m uv y - e N
JTBe M—o0 J_roM+1) B

hence ﬁy(k) = [0 Fy(9) e’ dy = 0 holds for Fy(9) = (uv) (y + B%). The
same reasoning applies to any finitely periodic extension of § (X; 0, z) suggesting
that F (k) = 0 is also valid for any nonzero rational k. Some caution is needed,
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however, because the function decays as (’)(|19|_l) and the integral makes sense
only as the principal value. To avoid this problem, we use the mentioned asymptotic
behavior which implies, in particular, Fy (1)) = —ﬁ(l + 93~V 4 fy(®), where
fH@) = O(|9]~%) uniformly in y € [0, £]. The Fourier transform of the first term
can be computed explicitly giving

. 1 .
Fy(k) = = 5— Kolk) + fy (k) ,

and since fy € L', the second term on the right-hand side is continuous with respect
to k. The same is then true for ﬁy; this means that we have I*:y (k) = 0 for any
nonzero k. Furthermore, f) is bounded and the Macdonald function K¢ diverges

logarithmically at k = 0, hence [ _NN Fy (1) /¥ dy) can be majorized by an integrable
function independent of N. This yields

00 00 N 00
/ Fy(k)p(k) dk = / dk o(k) Tim / NFy(ﬁ)e"Wdﬁ: / Fy (9) (9) do)

—00 —00 —

for any ¢ € S(R), in other words, F y (k) is the Fourier transform of F(¢}) in the
sense of tempered distributions. Since this is a one-to-one correspondence we arrive
at the conclusion that F, = 0, which is a contradiction. [ |

7.2.3 The Iwatsuka Model

Let us turn now to the second mechanism mentioned in the opening of this section.
Our aim is to demonstrate that transport can also be induced by variations of a
homogeneous magnetic field, in other words, that the operator

Hp = (—idy + Ay)? 4 (—idy + A,)?

on L?(RR?) can have an absolutely continuous spectrum if the vector potential A gen-
erates a magnetic field of nonconstant intensity. Looking for such an effect one natu-
rally considers variations which are infinitely extended in some direction. A. Iwatsuka
noticed that the question simplifies considerably if the field exhibits a translational
symmetry proving the following result.

Theorem 7.9 Assume that B(x,y) = B(x) depends on x only and that there
are constants My such that 0 < M_ < B(x) < My < oo holds for all
x € R. Suppose, in addition, that either limsup,_, . B(x) < liminf,_, ;~ B(x)
orlimsup,_, ., B(x) <liminfy_ o B(x). Then the spectrum of Ha with a vector
potential A satisfying rot A = B is purely absolutely continuous.
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B,

N\ A e S e

B,

Fig. 7.1 Classical propagation along a magnetic-field step

Note that, similarly to the hard-wall case discussed above, such a non-constant
field can also force a classical charged particle to propagate, naturally only if its
trajectory passes through regions where the field varies. The simplest example is a
step-shaped field, B(x) = B for x < 0 and B(x) = B. > B_ for x > 0. Unless
the trajectory is confined to one of the half-planes, the difference of the cyclotron
radii causes a motion along the step—cf. Fig.7.1. The method used by Iwatsuka
to prove Theorem 7.9 can also be applied under different assumptions, and in fact,
one expects that any nonconstant and translationally invariant field gives rise to
an absolutely continuous spectrum (see the notes). The validity of this conjecture
remains, however, an open question; what is known are various sufficient conditions.

We limit ourselves here to discussing in more detail a particular situation where
the magnetic field variation is local in the sense that it is restricted to a straight strip
in the plane. Since we are free to choose the coordinate system we suppose that the
field intensity equals

B(x,y) = B(x) = B+ b(x)

with a fixed B > 0, where the function b(-) is bounded, piecewise continuous and
such that supp b C [—¢, ] for some ¢ > 0. We choose

A(X) = (0, Bx +a(x)), a(x):= /X b(t)dr,
0

as the corresponding vector potential which allows us to apply again partial Fourier
transformation in the y-direction; we infer that H4 is unitarily equivalent to the direct
integral fﬂée H (p) dp with the fiber operator

H(p) = -0+ (p + Bx +a(x))’ (7.16)

on L?(R). Since the function a is bounded, the potential is for a fixed p € R
dominated by the oscillator term, Dom (H(p)) = Dom (—8%) N Dom (xz), the
spectrum of H (p) is purely discrete and consists of a sequence of positive eigenvalues
€, (p) accumulating only at infinity. For the asymptotic behavior of the band functions
€, (-) we have a result similar to that of Proposition 7.2.1d.
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Lemma 7.2.2 For any n € Ny we have ¢,(p) - 2n+1)B as |p| — oo.

Proof Since suppb C [—t, ], there are constants a® such that a(x) = a for
+x > t. By the shift of variable, x — x + %, the operator H(p) is unitarily
equivalent to

H(p)=—-02+ (Bz +a(z— %))2

in L*>(R). Consider for definiteness the limit p — —oo; we will show that ﬁ(p)
converges in the strong resolvent sense to the operator h, = —812 +(Bz4+a")% Let
¥ € Dom (h) and choose a positive function g € C*°(R) such that g(x) = 0 for
x < 0and g(x) = 1forx > 1. Define 9, (z) = w(z)g(pTH), then v, — 1) holds

in L2(R) as p — —oo and

(HPp)Yp)@ = =029 g(5F) = 2 0:0@) ¢ (BF) = S (@9 (55F)

+ (Bz+a")? () + 2R (2) Bz )y (2) + R3(2) 1 (2) .

where R(z, p) — 0 as p — —oo pointwise. Taking into account the fact that

g(”TTZ) — landthat,, ¢ (’%Z) and ¢’ ’(’%Z) are uniformly bounded with respect

to p, it is easily seen from the above formula that H (P)Yp — hy Y in L% (R)
as p — —oo. Hence the graph of H( p) converges strongly to the graph of A,
which implies the strong resolvent convergence by [RS, Theorem 8.26]. Since the
spectra of H( p) and hy, are discrete and simple, this yields the convergence of the
eigenvalues. Moreover, the unitary transformation associated with the variable shift
Z ”lf_ shows that the spectrum of A, consists of the Landau levels, hence
€,(p) = (2n + 1)B holds as p — —o0; the proof of the limit p — +o0 is
analogous. |

To prove the absolute continuity of o(H,4) we adopt, in addition to the properties
of b stated above, the following assumptions:

(i) b(-) is nonzero and does not change sign in [—¢, t],
(ii) let a; := inf supp b and a, := sup supp b; there are cp, § > 0 and m € N such
that one of the following conditions holds,

1b(x)| = co(x —a;)™ or |b(x)| = colar —x)"

for x € [a;, a1 + §) and x € (a, — 6, a,], respectively.

Theorem 7.10 Suppose that at least one of the assumptions (i), (ii) is satisfied. Then
|0pen(p)| > O holds for each n € No and any |p| large enough, and furthermore,
the spectrum of Hy is purely absolutely continuous.

To prove the claim we need a few more preliminary results.
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Lemma 7.2.3 The operator family {H(p), p € R} is analytic of type (A) in the
sense of Kato, in particular, each €,(-) is a real analytic function on R.

The proof of this lemma is left to the reader (Problem 11); this result shows that it is
sufficient to check the first claim of the theorem in one of the asymptotic directions
because it would imply that €, (-) is nowhere constant. Let further ¢, (-, p) denote
real-valued eigenfunctions of the fiber operator, i.e.

H(p)n(x, p) = en(p)n(x, p).

2
Put 0, ,(x) = (p+Bx+a(x)) —en(p) andly (x, p) = ¥}, (x, p)*—Qn.pthu(x, p)*.
By standard results on decay of eigenfunctions of second-order elliptic operator [Ag],
the function v, (-, p) decays super-exponentially as |[x| — oo which implies that
Qn,p(x) Yy (x, p) — Oas |x| — oo for each p. Since 1/),,1/()6, p) = Qn,p(x)wn(x» p)
holds by assumption we conclude (Problem 12) that

lim I,(x, p) = 0. (7.17)
x—+o00

Lemma 7.2.4 Let f,(x, p) := (p+ Bx +a(x)),(x, p)>. For any p large enough
there exists a constant c(p) > 0 such that

S5c(p)e PO = fu(x, p) = @ e 3p(x=x0)

holds for all —t < xo <x <t.

Proof Note that the spectrum of the unperturbed operator —5)% + (p+ Bx)? is given
by the Landau levels (2n + 1) B; since the function a in (7.16) is bounded, it follows
that for each n the eigenvalue €, (p) is uniformly bounded with respect to p € R.
Hence thereis a po > Osuchthat O, ,(x) > Oholdsforallx € [—t,t]and |p| > po,
and moreover, O ,(x) grows for a fixed x as |p| — oo, which makes it possible to
employ a semiclassical form for the tails of the eigenfunctions [Ol, Theorem 6.2.1]:
for large enough p we have

n(x, p) = <P exp[—/ ,/Qn,p(f)df} (14 gn.p @) (7.18)
X0

0./ p(x)

X0

- dz
Fup) = | |Qn,}/“<x>dx—2 (Qn,i/‘%x))] dx.

and the error term satisfies g, ,(x)| < exp [% I |Fy (X dx’] — 1, where

Evaluating F, p(x) one can check that the integrand in the above estimate can be
made arbitrarily small for large enough | p|. Consequently, to a fixed A > 1 we can
always find a p) such that
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1 * !/ !/ /
exp| = |Fn,[,()€ Ndx"| < A (7.19)
2 Jxo

holds for all p > p). The representation (7.18) is valid on the halfline x > x¢, hence
the coefficient cq(p) is nonzero; without loss of generality we may suppose that it
is positive. The behavior of v, (x, p) /vy, (xo, p) is for x, xg € [—t, t] determined
essentially by the exponential factor, because (Q,,, p(x0)/ On, p(x))l/ 4 can be then
included in the error term. Since a(-) is bounded and we consider x, xo from a
bounded interval, one has % P =<Onpl = % p for all p larger than some p; > 0,
and therefore

2 2
9c1(p) e_p(x_x()) > 4 (x p)z < c1(p) e_3p(x_x())
2p - T 6p

if p > max(p1, p3,2), where p3 s refersto A = 3/21in (7.19). To conclude the proof,
it is sufficient to notice that lim . o (p + Bx + a()c))p_1 = 1 holds for x € [—1, 1]
and to put c(p) = c1(p)>. |

Proof of Theorem 7.10: As indicated we have to check that €, (-) is not constant for
any n € Ny and | p| large enough. The Feynman-Hellmann formula implies

9]

apen(p) :2/ (P+Bx +a(x))7~/]n(xvp)2d-x'

—00

Let us check the contribution to the integral from the semi-infinite intervals (—oo, —¢]
and [, 00). Since [, (x, p) = —2(B+b(x))(p+ Bx +a(x))i,(x, p)?andb(x) =0
holds for |x| > ¢ by assumption, we can write

2/ (p+ Bx 4+ a(x))¢n(x, p)* dx
(—o00,—a]Ula,00)

1 1
=—— I, (x, p)dx = —[ln(a, p) — l(=a, p)].
B (—00,—a]Ula,00) B

where we have employed the property (7.17). Using the above expression of [/, (x, p)
for the second time, we can rewrite the right-hand side of the last formula alternatively
as —2 [* (B +b(x))(p + Bx + a(x))i(x, p)* dx obtaining

a a

2 2
en(p) = —5 | PP+ Bx+a(0))nlx, p)*dx = —g [ b falx. p)dx.

—a —a

Under the assumption (i) the first claim of the theorem follows immediately since
Jfn(x, p) then has a definite sign in [—z, ¢] for | p| large enough.

Assume next that (ii) is valid and suppose that |b(x)| > co(x — a;)™ holds in
(ar, a; + §); the other cases can be treated in a similar way. In view of Lemma 7.2.4
the integral in the above expression of €], (p) can be estimated as
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aj+9 a,
/ b(x) fu(x, p) dx+/ b(x) fu(x, p) dx

I aj+6

aj+o ar
> C(7p) / b()C) ef3p(x7a1) dx — SC(p)/ |b(_x)| e*P(del) dx
aj aj+o6

=

)
coc(p) / € =€ e — 10acoc(p) [bllso e .
0

| =

The exponential function in the first integral on the right-hand side is bounded from
below by max {0, 1 —3 p¢}, hence we can conclude that

2 3 —m—1
¢ (p) < —octel | __On) — 10alblece | <0
B T(m + 1)(m + 2)
holds for all sufficiently large values of p. |

In view of the the direct-integral decomposition fﬂga H (p) dp with the fiber oper-
ators (7.16) in combination with Theorem 7.10 the spectrum of H4 consists of
absolutely continuous bands I, = [inf peR €n(P), SUP,cR en(p)]. They may or
may not overlap; it is natural to ask how many of the gaps the perturbation leaves
open. We are going to show that their number is finite provided

A[b] := /a b(x)dx #0, (7.20)

—a

i.e. that the flux variation per unit length of the perturbation support is nonzero. Note
that such a conclusion would not be surprising in case of Theorem 7.9 where the
band functions have different asymptotics to the left and right, however, it is less
self-evident for the localized perturbation we are discussing here.

We have to compare the counting functions N(E, p) and No(E) of the operators
H (p) and Hy, respectively, recall that they are defined as the numbers of eigenvalues
of H(p) and Hy smaller than E. Let us remark that speaking of the latter one can
have in mind the simple spectrum of the fiber operators Hy(p) in the decomposition
Hy = fﬂf Hy(p) dp which is, of course, p-independent.

Proposition 7.2.2 Assume (7.20). Then for any number m € Ny there are po and
E(m, po) such that the inequality

(No(E) — N(E, po)) sgn A[b] > m

holds for all E > E(m, pg).

Proof The assumption ffa b(x)dx # 0 is equivalent to the fact that the quantities

at = Oit b(x) dx do not coincide; assume for definiteness that A[b] < 0, in other

words, a~ > a*. Since we are interested in the high-energy limit we may suppose
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that the field variation support lies in the classically allowed region, £ > ( po +

Bx + a()c))2 for any x € [—¢, t], and to employ the Bohr-Sommerfeld quantization
condition obtaining

' (E)
mn(E, po) = /I(E) \/E — (po + Bx +a(x) dx + O(1), (7.21)

where the classical turning points satisfy by assumption the inequalities x/(E) =
—B'\WE+py—a)<—-tandx"(E)=—-B 'WE — py—a*) > t.

We want to compare (7.21) with the analogous expression for Hp. Since the
spectrum of —812 + Bz? is not affected by a shift of the potential, we make the

replacement z +— z + % obtaining

xg(E)\/ —
mng(E) = 1 E—(p0+Bx—|—a ) dx +O0();
x'(E)

we employed here the fact that the left turning point is the same for both poten-
tials, whereas the right one is moved to xj(E) = —B_l(\/F —po—a) >t
Since a~ > at we have r < xo(E) < x"(E). Taking further into account that
the two potentials coincide to the left of —¢, we may write the sought difference
T [N(E, po) — No(E)] as

/ i\/E—(p0+Bx+a(x))2—\/E—(p0+Bx+a_)2]dx

a
a

x5 (E)
+/ [\/E—(po+Bx+a+)2—\/E—(po+Bx+a_)2}dx
a

x"(E)
+/ \/E—(po+Bx+a+)2dx+(9(1),
x4 (E)

the last term being a positive number independent of E. In the first term we integrate
over a fixed interval, hence it behaves as O(E~1/2) in the limit E — oo and may
be absorbed into the error term. Furthermore, choosing pg > —a™* — t B we achieve
that the integrand in the second term is positive, which implies

x"(E)
7 [n(E, po) — no(E)] = JE = (po+ Bx +a+)2dx +O(1).
xp(E)

It remains to estimate the last integral. Since the function is non-negative, decreasing
and vanishes only at x = x" (E), it is bounded from below by

X (E)—6 - gt
/ \/E—(p0+Bx+a+)2dx > \/2BSVE — B2452 (% —5)

0(E)




242 7 External Fields and Magnetic Transport

for any 6 € (O, x"(E) — x{)(E)); choosing the latter sufficiently small to make
the last factor positive we get the sought result for E large enough. The inequality
N(E, po) < No(E) — c for A[b] > 0 is obtained in the same way. |

Corollary 7.2.2 The number of open gaps in o (Hpy) is finite provided A[b] # 0.

Proof Suppose again a~ > a™. Since ¢,(p) — (2n + 1)B holds as p — oo
for a fixed n € N by Lemma 7.2.2, it is sufficient to find 72 and p such that the
inequality €,41(p) < (2n + 1)B is valid for all n > n; this follows immediately
from Proposition 7.2.2 with m = 2. In the opposite case, a~ < a™, the inequality is
replaced by €,_1(p) > (2n 4+ 1) B and the argument is analogous. |

7.3 Notes

Section7.1 Theorem 7.1 is essentially due to [Ex95]; note that the assumption of
a one-sided tilt excludes classical bound states in such a guide which in general
may exist. The inequality Ho(F') > Hgq(F) for F/ > F implies by the minimax
principle that the eigenvalues are nondecreasing functions of the field strength. It does
not automatically imply the monotonicity of N(F) := N(Hq(F), A\1(F)) because
the function A{(-) is increasing, however, one can prove it in particular situations.
Having thus N noninteracting fermions bound in a locally curved tube, one is able
to eject them sequentially by applying an increasing electric field—one can speak in
this situation of a quantum pipette.

The Hardy-type inequality (7.3) as well as Theorem 7.3 come from [EkKo05], for
the diamagnetic inequality see, e.g., [Ka73] or [RS, Theorem X.27]. As mentioned
in Remark 7.1.1b, a local magnetic field also removes bound states induced by
small local deformations of the waveguide, see Problem 3, or by the presence of a
(sufficiently short) Neumann window [BEKOS5]. Note that similarly to the case of
locally twisted three-dimensional tubes, the repulsive effect of the magnetic field in
two-dimensional strips decays with the square of the distance from the support of
the field.

Theorems 7.4 and 7.5 have been proven in [DEMO1] where one can also find
extensions of these results, in particular, a demonstration of analogous properties for
potentially confined magnetic guides. Properties of the band functions v (p) used in
the proof of Theorem 7.4 are discussed in detail in [GS97], see also [BRSOS].
Section 7.2 For the Feynman-Hellmann formula see, e.g., [Ka, Sect.VIL.3.4]. The-
orem 7.6 is due to [dBP99]; similar results hold in the situation when the hard
wall described by Dirichlet boundary conditions is replaced by a smooth confin-
ing potential [MMP99]. The extension to more general planar domains contained
in Theorem 7.7 was established in [FGWO00]. The boundary regularity property can
be weakened; it is enough to suppose that O has the uniform C3 property in the
sense of [Ad]. The conjugate operator is in this case chosen as I1 = s(X) — Vs - 7+,
where 7 is canonically conjugate momentum turned to the perpendicular direction.
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As we have indicated the result may not hold if the wedge condition is violated, for
instance, a small but non-decaying impurity potential in a magnetic strip may lead to
Anderson localization due to interference between the involved edge states. Stabil-
ity of edge states under various perturbations, including those coming from random
potentials, was analyzed in [HS08a, HS08b], for the scattering theory of edge states
see [BGO6].

Theorem 7.8 was proved in [EJK99] where other properties of spectral bands
of this system were also discussed. For properties of the confluent hypergeometric
function used in the proof see [AS, Chap. 13], the argument showing that the Landau
levels remain in the spectrum of the perturbed operator follows [DMP99].

The first treatment of translationally invariant magnetic fields including the proof
of Theorem 7.9 comes from the paper [Iw85] where other situations are also treated
including the case when B(x) has the same limit at =00, see also [MP97] for exten-
sions of Iwatsuka’s results. The conjecture about universality of transport in the
presence of non-constant, translationally invariant fields was put forth in [CFKS,
Sect. 6.5]. Note that the magnetic field need not be sign-definite. If, for instance,
the plane is divided into two halfplane supporting homogeneous fields of opposite
orientation, the spectrum of Hy is absolutely continuous again; a classical charged
particle then follows in the vicinity of the interface trajectories referred to as snake
orbits [RP00]. For results concerning quantization of edge currents in the Iwatsuka
model we refer to [DGR11].

Theorem 7.10 comes from [EKo0O]. The Bohr-Sommerfeld quantization condi-
tion which yields Eq. (7.21) can be found, e.g., in [Ti, Theorem 7.5]. With respect to
Corollary 7.2.2 we note that the case of a zero-mean field variation when (7.20) fails
is more involved; a particular example of such a field is treated in [EKo00, Sect. 3].

7.4 Problems

1. Prove Proposition 7.1.1.

Hint: Use the diamagnetic inequality (7.2) to show that aeSS(HI?) C [1, 00). To
prove the opposite inclusion construct appropriate Weyl sequences.

2. Fill in the details of the proof of Theorem 7.3.

3. LetH ;2 * be the magnetic Hamiltonian in a weakly deformed strip, i.e. the
operator associated with the form (7.6) in which the curved strip Q2 is replaced by
(6.17). Show that if the function f € C§°(R) and the magnetic field satisfies the
assumptions of Theorem 7.3, ogisc (H ;2 *) = @ holds for all A small enough.

Hint: Cf. [EkKo05].

4. Modity the claim of Theorem 7.3 for the case of the Aharonov-Bohm field
corresponding to the magnetic vector potential of the form

-y —yo0) x )
x24 (v —y0)? X2+ (y — y0)?

Alx,y) = d’(


http://dx.doi.org/10.1007/978-3-319-18576-7_6
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which gives rise to the magnetic flux 27 ® supported by the point (0, yg) € 2¢. Prove
that for a non-integer @ the inequality (7.3) holds with the right-hand side replaced

2 . . .
by canp fQO % dx dy with a positive constant c4p.

Hint: Cf. [EKKo05].

5. Fill in the details of the proof of Theorem 7.5. Derive the leading term in the
resonance-width expansion in the case when both the weak potential and magnetic-
field perturbations are present.

Hint: Cf. [DEMO1].

6. The claim of Theorems 7.4 and 7.5 can be modified to the case of a guide with
potential confinement, i.e. for the operator H)(B) := (—i0y — By)? — 83 +Vx)+
W(y) + AU (X) on L*>(R?), where U, V are as before and the confining potential W
satisfies, e.g., the inequality W (y) > c¢y? for some ¢ > 0.

7. Extend the transformation (1.7) to curved strips in a homogeneous magnetic field.
Show that (—iV 4 A)? on L?(£2) with Dirichlet conditions is unitarily equivalent to

H(B) = TT}TI; — 82 + V (s, u)

on L%(Qp) with Dirichlet condition at [u| = a, where V (s, u) is the effective potential
(1.8) and I, := W{—i@f + Bu(l + Juy(s))}.

Hint: Use a suitable modification of the Landau gauge, cf. [Ex93].

8. Prove assertion (c) of Proposition 7.2.1.

Hint: Employ the Feynman-Hellmann formula.

9. The operator h(p) defined in (7.8) is by an obvious change of variables unitarily
equivalent to h( p) = —612 + B?z% in L*(—p/B, oo) with Dirichlet boundary con-
dition at z = —%. Check that }Az( p) converges to —8? + B%z% in L2(R) in the strong
resolvent sense as p — +00.

Hint: Modify the argument used in the proof of Lemma 7.2.2.

10. Fill in the details of the proof of Theorem 7.6. In particular, show that the
commutator [iy, Ho] = [iy, H]is Hp-bounded and that [iy, [iy, Hp]] is bounded.
11. Prove Lemma 7.2.3.

Hint: Mimic the proof of Proposition 7.2.1a; write H(p) = H(0) 4+ 2p(a(x) +
Bx) + p2 and check that a(x) 4+ Bx is H(0)-bounded with relative bound zero.
12. Prove the limit (7.17).

Hint: Check first that if f € C?(R) satisfies limy_ o0 f(x) = limy_ oo f”(x) = 0,
then lim,_, o f’(x) = 0, then employ the fact that ¢, (x, p) = Q, (X)) (x, p).
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Chapter 8
Graph Limits of Thin Network Systems

... there is a risk of being lost in the maze of tangled structures
and crevasses, sometimes reminiscent of jumbled colonnades,
sometimes of petrified geysers.

Stanislaw Lem, Solaris

There are numerous situations when the dominating feature of a waveguide system
is its essentially one-dimensional nature. We have seen examples in the previous
chapters, for instance, in Sect. 1.6 where we have discussed the zero-width limit
of a bent waveguide. The situation becomes more complicated when the system in
question is not a single duct but rather a network of nontrivial topology the “skeleton”
of which is a graph. The squeezing limit of such systems is the subject of this chapter;
we will see that the limiting behavior depends crucially on the boundary conditions
defining the Laplacian on the network.

Properties of quantum particles the motion of which is confined to a graph rep-
resents a rich topic which would deserve a separate monograph. Here we limit our-
selves to presenting the basic notions and describing the the features we shall need
for our purpose. They concern in the first place coupling of the wave functions at the
graph vertices which makes the corresponding Schrodinger operator self-adjoint; we
shall describe general coupling conditions with this property and various approxima-
tions of the couplings using regular and singular potentials. Armed with these tools
we shall then investigate spectral convergence of Schrodinger operators on quasi-
one-dimensional manifolds, which we can pictorially characterize as “fat graphs”,
shrinking to a given graph.

8.1 Quantum Graphs

By a quantum graph we mean a pair (I', H) where I" is a metric graph consisting
of a countable number of edges, i.e. one-dimensional line segments, connected by a
countable number of vertices, and H is an operator on a Hilbert space associated with
the graph I', typically L>(T"), which plays here the role of the system Hamiltonian.
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Let us look into these notions in more detail. A graph is a family of vertices
V = {v; : i € I}, where T is at most countable, and edges £ = {e;; : (i, j) €
Zg C I x T}. The index set Zg characterizes the adjacency of the graph telling us
which vertices are connected by an edge. The degree of a vertex is defined as the
number of edges connected to this vertex; we consider only graphs where all the
vertex degrees are finite. One may suppose that each pair of vertices is connected by
not more than one edge, otherwise we can always add a “dummy” vertex of degree
two to any “superfluous” edge. The above definition is purely combinatorial, the
second ingredient to add is a metric structure. We suppose that I" is a metric graph,
which means that every edge e, is isometric with a line segment /; := [0, {;];
the edge lengths £; may be finite or infinite. It often happens that the graphs we
consider are subsets of a Euclidean space which induces the said local metric structure
by embedding, however, it is not always the case and we shall not need such an
assumption for most of this chapter.

The local metric makes it possible to introduce the Hilbert space L>(I") :=
@jej Lz(lj) with elements written as W = {1;} ¢z, or simply {1;}. Since we
are going to discuss here the dynamics of nonrelativistic and spinless particles, this
will be the state space; in other situations it can be replaced by more complicated
spaces such as L2(I"; G) where G corresponds to the internal degrees of freedom,
being C? for electrons, etc. Assuming that the j-th edge supports a real-valued
potential V; € LIIOC(I ;) and putting V := {V;} we naturally define the correspond-
ing Schrodinger operator on I' by

HW){hj} = (=] + V). (8.1)

The definition needs to fix the domain, of course. It will consist of ¥ whose com-
ponents ¢; belong to the Sobolev space H 2 7); the crucial point is to choose the
coupling conditions for the wave functions at the graph vertices which will make
H (V) acting as (8.1) a self-adjoint operator.

The domain choice is not unique. In order to see how many self-adjoint operators
can correspond to the symbol appearing in (8.1) one can employ the theory of self-
adjoint extensions. The considerations are not affected by the potentials unless the
latter are strongly singular at the edge endpoints; for the sake of simplicity we thus
put V. = 0. Suppose first that the graph is fully decoupled in the sense that the
operator at each edge is determined by Dirichlet conditions at the edge endpoint,
and the corresponding self-adjoint Laplacian on L2(I") is an orthogonal sum of its
component operators.

Restricting this operator to functions with supports separated from the vertices we
get a symmetric operator Hp with deficiency indices (d, d) where d is the number
of edge ends, and the sought Hamiltonians have to be chosen among its self-adjoint
extensions. Not all of them are suitable, though, because we are not interested here
in the dynamics which allows the particle to hop from one vertex to another. Con-
sequently, we restrict ourselves to local couplings which relate boundary values of
edges meeting in each vertex separately. The number of parameters characterizing
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such a self-adjoint extension is, of course, > jel djz where d is the degree of the jth
vertex.

Since the operators in question are differential of the second order, the best way
to describe their self-adjoint extensions is through boundary conditions coupling the
boundary values

U 04) = lim w00, W04 = lim ). (8.2)

where the variable x measures the distance of an edge point from the vertex; the
limits make sense for functions v; € H 21 ;) which constitute the domain of the
adjoint HJ. To simplify the discussion, let us consider a star-shaped I' with a
single vertex and n half-line edges joined there, H = @?:1 L*(R,). The self-
adjoint extensions are maximal restrictions of Hg which annulate the boundary form
(P, V) > (O, HfV) — (Hj P, W), or explicitly

(@, W) > 3 (3;0)604) = 8,00 0)) - (8.3)

j=1

The latter can alternatively be rewritten as a symplectic form ([®], M[W]) on Cc2,
where M = (7(]) (I)) and the symbol [V] := (l‘ll,l/((%i))) denotes the 2n-dimensional
vector of boundary values. Thus one has to find the Lagrangean subspaces, in other

words, maximal subspaces in C2" on which the form (8.3) vanishes.

Proposition 8.1.1 (a) Any self-adjoint extension of Hy is characterized by the
conditions

AV (0+) + BY'(0+) =0, (8.4)

where A, B are n x n matrices such that the n x 2n matrix (A|B) has maximum
rank and AB* is Hermitean. Conversely, any pair of matrices with these properties
determines through (8.4) a self-adjoint extension of H.

(b) The on-shell scattering matrix at momentum k for a star graph with the vertex
coupling (8.4) equals S(k) = —(A + ikB) "' (A — ikB).

(c) Any self-adjoint extension of Hy is uniquely characterized by (8.4)with A = U —1
and B = i(U + I), where U is an n X n unitary matrix.

Proof is left to the reader (Problem 1).

The last claim removes the inherent non-uniqueness of the conditions (8.4). This is not
the only way to characterize the couplings uniquely; another one will be mentioned
in Sect. 8.2.3 below, see also Problem 2.

The higher the degree of the vertex, the larger the coupling condition family. Let
us mention two subfamilies which will be important in the following.
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Examples 8.1.1 (a)d-coupling: choosing U = nme — I with o« € RU{oo}, where
N is the n x n matrix whose entries are all equal to one, we get the coupling which
can be cast into the form

Gr0+) =+ =1, (0+) = $(©0), D 9;(0+) = a(0); (8.5)

j=1

the name is inspired by the fact that for n = 2 the conditions describe the usual
0 interaction on the line. Note that it is the only family of couplings with the wave
functions continuous in the vertex. For &« = oo we have U = —1 and the requirement
(8.5) is replaced by the Dirichlet condition, ¢;(0+) = 0, j = 1, ..., n. Another
particular case of interest is &« = 0. The corresponding conditions (8.5) are called
free or Kirchhoff .

(b) &%-coupling: another possible choice of the matrix U is I — ﬁ N with 3 €
R U {oo} which gives rise to the conditions

P1(04) = - =1, (04+) = ¢'(0+), ij 0+) =3¢/ (0+). (8.6)
j=1

They are a counterpart of (8.5) with the roles of the function and derivative boundary
values interchanged. If 3 = oo we have U = [ which leads to the full Neumann
decoupling. Note that both the § and 0 -couplings have the property of being invariant
with respect to edge permutations — cf. also Problem 4.

The appeal of the quantum graph concept is that it provides us with a wide family
of models which are interesting both from the physical and mathematical point of
view. We restrict ourselves here to the problem indicated in the opening of the chapter;
in the notes we mention some other problems related to quantum graphs and give a
guide to further reading.

8.2 Vertex Coupling Approximations

Before coming to the main topic of this chapter let us examine how different vertex
couplings can be approximated on the graph itself, either using suitable families of
potentials or by other means such as a local change of the graph topology. Since the
coupling concerns a single vertex we again consider in this section a star-shaped I
with a single vertex and n half-line edges joined there.

8.2.1 6-Coupling

First we are going to analyze an approximation inspired by the way in which a
d-interaction on a line can be understood as a limit of Schrddinger operators with
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suitably scaled potentials. We shall employ the symbol H (V') for the operator (8.1)
with the §-coupling (8.5) in the vertex. Given an n-tuple of functions W; : R, — R,
we construct a family of squeezed potentials

1 X .
We,jzzgwj(—), j=1....n. 8.7)

Then we can make the following claim.

Theorem 8.1 Suppose that the functions V; € LIIOC(R+) are bounded below and
W; € Ll(R+) for j = 1,..., N. Let further H(V + W.) have the limit-point
property at infinity for any <; then

Hyo(V+W.) — H,(V) as ¢ —> 0+ (8.8)

holds in the norm resolvent sense, where o := Z;V:l fooo W;(x)dx.

Proof Under the stated assumptions the involved operators are self-adjoint. To find
their resolvent difference, we first find the integral kernel G?‘jzv (x, y; k) of (Hy(V)—
k2)_1 which is a matrix valued operator on L2(R+; C™). Given k with Imk > 0,
ke p(Hxo(V)), we denote by uj = uj(-; k) and v; = v;(-; k) the solutions of the
equation

hij(Vip; = —TZJ;/ +Viv; = kzl/)j

such that u;(0; k) = 0 and v; € L? at infinity. If & = oo, the edges are decoupled
and the corresponding components of Hy (V) are characterized by the resolvent
kernels

uj(x<; K)vj(xs; k)
W(uj,vj)

’

gj(x, yi k) ==

where as usual x. := min{x, y} and x> := max{x, y}, while W(u;, v;) is the
Wronskian of the two solutions. The operators H, (V) and H, (V) are self-adjoint
extensions of the same symmetric operator with deficiency indices (n, n) and apply-
ing Krein’s formula we easily find the relation

v (x; k) ve(y; k)

G4V (x,yi k) =809 (x,yik , 8.9
g (yik) =0jegj(x, y k) + 51 0: e 0; B e — MK (8.9)
" (0;k .
where we have put M (k) := Z;V:l % (Problem 5). Consider further the re-

solvent kernel G?’ZV+W5 (x, y; k) of the operator Hy(V + W.). Using the resolvent

formula we can rewrite it as
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0 V We O,V
T vk =G (k) — Z/ / 8y ) W ()2

(1 W (B V) )T W) W

X GS,’ZV(x”, y; k) dx’ dx”.

Changing the integration variables to x’/e and x”'/e we can rewrite the resolvent

in question concisely as — By ¢ (I + Ck,g)_l ékgg, where the involved operators are
determined by their integral kernels,

(Bio)je(x, y) =G (x, ey k) We ()2,
(Bio)je e, )= W02 G (ex, yi ),
(Cro)jelx, ) =W )2 G (ex, ey k) We(n)'/2,

which converge pointwise to

(B je(x, ) =G (x, 0:k) We ()72,
(B jee, ) =1W; 012 G0, y: k),
(€ jeCx, ) =W, )12 G%V (0, 0: k) We(»)'/2,

respectively, as € — 0+. The explicit form of the last operator makes it possible to
find the kernel of its inverse,

[W; ()12 W ()12
(W) — M (k)

(I +Cj (x, y) = 6(x—y)dje —

)

where (W) = 27:1 fooo W;(x) dx; we employ here the fact that G(J).;ZV 0,0; k) =
—M(k)~! by (8.9). Thus, in the limit, the resolvent difference has the kernel
- / dx' W, (x') Y, x, 0; k)G, 0, y; )
0
B

GY,(x,0; K)GY, (0, y; k)

+Z/O /0 dx’ dx” W, (x" )W, (x") T —M®

_ v Rue(yi k) (W)
v (05 K)ve (05 k) MKY(W) — M(k))

which will coincide with the difference of G%V(x, y; k) and G(j).’ev (x, y; k) given by
(8.9) provided we set a = (W). It is sufficient to check the norm-resolvent conver-
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gence for a particular value of k. Since all the operators £ (V) are bounded below
by assumption, one may choose k = ik with k large enough to get exponentially
decaying solutions v; (-; k) at the semi-infinite edges; the convergence is then easily
established (Problem 5). |

8.2.2 98}-Coupling

The approximation using scaled potentials discussed in the previous section yields
a nontrivial result only if the wave functions are continuous at the vertex, and we
need different ideas to deal with the other couplings. Since we already know how to
approximate the §-couplings, it is natural to try to use them as “building blocks” and
to construct an approximation by amending the graph with additional vertices. We
shall describe now how such an approximation can work for the coupling conditions
(8.6).

We consider again a star-shaped graph I with n edges and suppose that no poten-
tial influences the particle. To approximate the Hamiltonian Hs on L?(I') with the
coupling (8.6), we employ the scheme sketched in Fig. 8.1: we place a d-interaction
at a distance a at each edge, in other words an additional vertex of degree two,
with the a-dependent coupling strength c(a), and suppose that in the center we have
the d-coupling of strength b(a). The corresponding Hamiltonian will be denoted by
H"¢(a); the crucial point is the choice of the functions b, c.

Theorem 8.2 Let b(a) = —aiz and c(a) = —%. Then H*“(a) — Hgasa — 0+
in the norm resolvent sense, the convergence rate being O(a).

Proof We shall give a sketch only, leaving the details to the reader (Problem 6).
We employ the fact that both the operators H”¢(a) and Hpg exhibit a symmetry
with respect to permutation of the edges, and thus they can be decomposed into a
component acting on the subspace of functions which depend on the distance from
the central vertex only, in other words, W = {1);} such that

Vi) =), jk=1,....n,

Fig. 8.1 Approximation scheme for the d;-coupling
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satisfying a mixed boundary condition at x = 0, and a part in the orthogonal com-
plement which satisfies Dirichlet and Neumann conditions at the central vertex for
the §- and ¢} -couplings, respectively. Since the same decomposition can be done
for the corresponding resolvents, the task is reduced to the investigation of a pair of
halfline problems. We shall describe the symmetric case; the other one is dealt with
analogously (Problem 6). We have to write down Green’s functions of the respective
operators. For the halfline operator with the §-coupling of strength b at the origin the
resolvent kernel at energy k> = —x? equals

—KX>

Gl(x,y) = (bsinh(kx<) + K cosh(kx.)) .

k(b + K)

By Krein’s formula we then obtain the part of the Green function of H”(a) acting
on the above described symmetric subspace,

G (x-,a)G(a, x-)

Gb,C , — Gh ,
w0V =GN T G G a)

On the other hand, the symmetric part of the resolvent kernel of Hjz equals

—KX>

Glx,y) = m (N sinh(kx-) + Brcosh(kx=)), a<x <y.
Substituting b = —aﬁz and ¢ = —% into the expression of vac(x, y), we find by a

straightforward computation that
. b,c _ 3
lim G,(x,y) =G, (x,y)
a—0+

holds for all x, y > 0. Since the two Green functions decay exponentially in both
variables, one easily concludes that the resolvent difference converges to zero in the
Hilbert-Schmidt norm, and therefore also in the operator norm. |

8.2.3 General Singular Vertex Coupling

The method we employed in the previous example can be extended to a wider class
of vertex couplings, however, adding d-type vertices alone is not sufficient to deal
with the general singular conditions (see the notes). To approximate an arbitrary
coupling (8.4), we need two more ingredients. First of all, we have to locally change
the graph topology, adding not only vertices but also edges which would shrink to
zero in the limit. In this way one can get (8.4) with real matrices A, B; to overcome
this restriction one also has to introduce local magnetic fields, i.e. to place suitable
vector potentials at the added edges.
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First we will rewrite the coupling conditions (8.4) into another form which is
again simple and unique but requires an appropriate edge numbering.

Proposition 8.2.1 For a quantum graph vertex of degree n, the following is valid:
(a) If S € C™™ with m < n is a Hermitean matrix and T € C"™"™™, then the

equation
™ s 0
( 0 O) v'(0+) = (—T* I("_m)) W (0+) (8.10)

expresses admissible boundary conditions giving rise to a self-adjoint operator.

(b) Conversely, for any vertex coupling there is a number m < n and a numbering
of edges such that the coupling is described by the conditions (8.10) with uniquely
given matrices T € C™" ™" and S = S§* € C™™. If the edge numbering is given
one can bring the coupling into the form (8.10) by a permutation (1,...,n)
(T1(1), ..., I[T(n)) of the edge indices with the matrices S, T uniquely determined
by the permutation TI.

Proof 1Tt is easy to check that the matrices

-S 0 ™ r
A:(T* _I(n—m))v B=( 0 0),

satisfy the requirements of Proposition 8.1.1: the n x 2n matrix (A|B) obviously has
rank n and AB* = diag(—S, 0) is Hermitean.

The task is to prove the first part of the claim (b), the second one will follow
by a simultaneous permutation of the elements of ¥ and W’. We shall start with a
fixed coupling condition (8.4) and show that one can cast it into the form (8.10).
This means that we have to find a number m < n, a numbering of the edges and the
corresponding matrices S and 7', and moreover, we have to show that such a number
m is the only possible and that S, T depend uniquely on the edge numbering. To this
end we may use only manipulations that do not affect the meaning of the coupling,
namely (i) simultaneous permutation of columns of the matrices A, B combined
with corresponding simultaneous permutation of components in W and ¥/, (ii) left
multiplication by a regular matrix.

We see from (8.10) that m is the rank of the matrix applied to ¥'. We note that
the rank of this matrix and the other matrix is not influenced by any of the manip-
ulations mentioned above, hence it is obvious that m = rank B is given uniquely.
Then there is an m-tuple of linearly independent columns of the matrix B, let their
indices be ji, ..., j,. We permute simultaneously the columns of B and A so that
those with indices ji, ..., j, are now at the positions 1, . .., m, and we do the same
with the components of the vectors W, W', Labeling the permuted matrices A, B
and the vectors W, W’ with tildes, we get AV + BWU’ = 0 where for simplicity we
drop the argument. Furthermore, since rank (B) = rank(B) = m, there are m rows
of B that are linearly independent; let their indices be iy, ..., i,. First we permute
the rows in AU + BW’ = 0 so those with the indices i1, ..., 1, are moved to the
positions 1, ..., m; note that this corresponds to a matrix multiplication of the whole
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by a permutation matrix from the left. In this way we pass from A, B to matrices
which we denote by A, B;itis obvious that this operation keeps the first m columns
of the matrix B linearly independent.

In the next step we add to each of the last n — m rows of AW + BU = 0 alinear
combination of the first m rows such that all of the last n — m rows of B vanish.
This is possible, because the last n — m rows of B are linearly dependent on the
first m rows. This is again an authorized operation, not changing the meaning of the
boundary conditions; the resulting matrices on the left-hand side will be denoted
by B and A, and the condition will become AY + BU = 0. It is clear from the
construction that the matrix B has the block form,

n _ 3115’12
= (05)

where Blz € C™"™™ and the square matrix l’;’“ e C™™ is regular, because its
columns are linearly independent. We proceed by multiplying the system AV +
BY = 0 from the left by the matrix dlag(B , 1*=™)) arriving at boundary

conditions
A A = 1™ B\ s/
(Azl Ao v+ 0 O vr=0

with By = l’;’l_]l 1’3’12. They are equivalent to (8.4), hence the involved matrices have
to satisfy the requirements of Proposition 8.1.1. Let us begin with the second one: the
corresponding matrix product is Hermitean if and only if .41 + 4128}, is Hermitean
and Ay + Axn B}, = 0. We infer that Ay} = —A»B},, hence the above condition

acquires the form
A A s 1™ B\ s,
(—Azzlgfz A2 Y+l o o)V =0

Applying next the maximum rank requirement we see that rank (—AzzBTZIAzz)
must equal n — m, and since (—AnB},|A2n) = —Axn - (Bf,[1"~™) we obtain
rank(App) = n — m, i.e. Ay must be a regular matrix. This allows us to multiply
1 A12A22 L .
which is obviously
0 —A22
well-defined and regular; this leads to the condition

A+ ApBj, 0 ~ 1™ B\ =
( 5t 2 e ) ¥y 00) ¥ =0

the last condition from the left by the matrix (

We have noted that the square matrix A + AlzB 1> 18 Hermitean. We denote it by
—S, rename the block By, as T and transfer the term containing W’ to the right-
hand side arriving thus at the condition (8.10); the order of components in ¥ and ¥’
determines the appropriate numbering. |
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k

J
Fig. 8.2 The approximation scheme for a vertex of degree n = 3 and n = 5. The inner edges are

of length 2d, some may be missing depending on the choice of the matrices S and 7. The arrows
symbolize the vector potentials

After this preliminary we are able to construct an approximation of a general
vertex coupling. We consider again a star graph of n edges; in view of the proposition
we may suppose that the wave functions are coupled according to (8.10) renaming
the edges if necessary. The construction is sketched in Fig.8.2; we disconnect the
edges and connect their endpoints by line segments carrying appropriate operators
according to the following rules:

(i) As a convention, the rows of the matrix 7 are indexed from 1 to m, while the
columns are indexed from m + 1 to n. For brevity, we use the symbol n = {1, ..., n}
in the rest of this section.

(i1) The external semi-infinite edges of the approximating graph, each parametrized
by x € R are at their endpoints V; connected to the inner edges by J-coupling with
the parameter v;(d) for each j € 7.

(iii) Certain pairs V;, Vi of external edge endpoints will be connected by segments
of length 2d. This will be the case if one of the following conditions is satisfied,
taking into account the convention (i):

(1) jemk=>=m+1,and Tj; #0(or j = m+ 1,k €, and Ty; # 0),
(2) j,kemand Al =m+ D(Tj #0ATu #0),
3) j, k em, Sk # 0, and the previous condition is not satisfied.

(iv) We denote the center of such a connecting segment by W/; 1) and place there a ¢-
interaction with a parameter wy; 1} (d). We adopt another convention: the connecting
edges will be regarded as the union of two line segments of length ¢, with the variable
running from zero at Wy; i) tod at V; or Vi.

(v) Finally, we put a vector potential on each connecting segment. What matters is
its component tangential to the edge; we suppose it is constant along the edge and
denote its value between the points W(; ) and V; as A x)(d), and between the
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points Wy «y and Vi as A, j)(d); recall that the two half-segments have opposite
orientation, thus A, j)(d) = —A(;j k) (d) holds for any pair {j, k}.

Asin Theorem 8.2, the choice of the dependence of v; (d), w(; k) (d),and A i (d)
on the length parameter d is crucial; we shall specify it below. We denote by N; C 7
the set containing indices of all the external edges connected to the j-th one by an
internal edge, i.e.

N; =lkem: Sjk;éO}U{keﬁi: Al >=m+D(Tj #0A Ty #0)}
Utk >m+1: Tj # 0} for j € m
={kem: Ty # 0} forj >m+1

The definition of the set N; has two simple consequences, namely
keNjo jeN and j>=m+1=N;Crm.

We employ the following symbols for wave function components on the edges: those
on the j-th external edge is denoted by 1 ;, while the wave function on the connecting
segments is denoted by ¢ x) on the interval between Wy rj and V; and ¢, j) on
the other half of the segment; the conventions concerning the parametrization of the
intervals have been specified above.

Next we shall write the coupling conditions corresponding to the above described
scheme, first without the vector potentials; for simplicity we shall refrain from
indicating the dependence of the parameters v;, wy;; on the distance d. The
d-interaction at the segment connecting the j-th and k-th outer edge (present for
Jj» k € i such that k € N;) is expressed through the conditions

0.0 (0) = @i, jH(0) =: v 1(0), 90/(]‘,]() 0+) + <P£k,j)(0+) = w; key.k0),

while the d-coupling at the endpoint of the j-th external edge, j € i, means

Vi(0) = ¢(jay(d) forallk € Nj, 9/(0) = D ¢ d—) = v1;(0).
keN;

It is not difficult to modify these conditions to include the vector potentials: the
continuity requirement is preserved, while the coupling parameter changes from v
to v+ e N; Ak (cf. Problem 7). In other words, the impact of the added
potentials results in the phase shifts d A x)(d) and d A, j)(d), respectively, on the
appropriate parts of the connecting segments.

To choose v;(d), wy;(d), and A (d) we insert the boundary values writ-
ten as o (d) = eldAGb (90(],1() ) + dcp’(j’k) (0)) + O(d?) and ap’(j’k) d) =
eldAGk 502 I (0) + O(d) for any j, k € n into the above boundary conditions and fix
the d-dependence in such a way that the limitd — 0 yields (8.10). The procedure is
rather lengthy and we just state the result referring to the notes for the original proof.
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As for A(j x)(d), we have the relations

1 .
5 T; if Re T;; >0
A _ 28 Lji j1=0, 1
G0 (@) [ 5g (arg Tjy — m) if Re Tj; < 0 @®-11)
forall j € m, | € Nj\m, while for j € /i and k € N; N m we put
1 n T
2q AT (dS'k + 2 T'lTkl)
Ay (d) = 2d j I=m+11j 8.12)

2 [ arg (d Sik + 2im+1 leT_kl) - W]

depending similarly on whether Re (d Sik+2 0w T le_kl) is non-negative or not.
Concerning wy; x}(d), we require that

1 1
wyjn(d) = 7 (—2+ —) forall jem, e NJ\I’IA’l (8.13)

(Tji)
and
n
U asas > TuTu) forall jem, ke N, (8.14)
24 d - wn = Jjk 1 jtdkl J ) j , (8.
=m+1
where we have employed the symbol (c) := =£|c| for Rec > 0 and Rec < O,

respectively. Finally, the expressions for v; are given by

1— &N+ 2 (Th)

vi(d) = p

forall [ >m+1 (8.15)

and

4N m 1 & . 1 &
Uj(d) = Sjj—TJ—Z<Sjk+E Z leTkl>+E Z (1+(le))<le) (8.16)
k=1 I=m+1 I=m+1

if jemandk € N; N,

The above choice of the parameters has been guided by the effort to obtain the
“correct” coupling conditions (8.10), however, our real aim is analyze the conver-
gence of the corresponding operators. Let us thus denote the free Hamiltonian on the
star graph I" with the coupling (8.10) in the vertex by H%", while H;ppmx will stand
for the operators of the described approximating family; the symbols R*® (k%) and
R;p PIO% (k2) will denote respectively the resolvents of those operators at the energy
k*. We have to keep in mind that they act on different spaces: R® (k%) maps L?(I")
onto Dom H% while the domain of R;pprox (k%) is LI @ Lz(Fj’T), where Fg’T
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is the family of connecting edges of length 2d described above. In order to compare
the resolvents, we thus identify RS (k%) with the orthogonal sum

RY™ (k%) := R (k*) @ 0 (8.17)

adding the zero operator acting on LZ(Fg’T). Then both operators act on the same
space and one can estimate their difference; using explicit forms of the corresponding
resolvent kernels one can check in a straightforward but rather tedious way (see the
notes) the relation

I R (k%) — Rspprox(kz)”HS =0Wd) as d — 0+

for the Hilbert-Schmidt norm. With the identification (8.17) in mind we can then
state the sought approximation result.

Theorem 8.3 Letvj, j € i, wijx, j €, k € Nj, and AUR (d) depend on the
length d according to (8.11)—(8.16). Then the family H*P**(d) converges to H™
in the norm-resolvent sense as d — 0.

8.3 An Abstract Convergence Result

As we have indicated our main task in this chapter is to show how one can approximate
Laplace operators on quantum graphs by families of Schrédinger operators on certain
graph-like manifolds dubbed “fat graphs” shrinking to a given graph. As another
useful preliminary we will now describe an abstract convergence scheme which
allows us to compare operators acting on different Hilbert spaces. In this section we
consider a general pair of self-adjoint non-negative operators H and H acting on
Hilbert spaces H and H, respectively.

8.3.1 Scale of Hilbert Spaces

Given a Hilbert space H with the norm || - || induced by the inner product (-, -) and
a non-negative unbounded operator H we define the scale of Hilbert spaces

Hy :=dom(H + D*2, Jully == I(H + D)Y?ull, k>0,

extending it to negative exponent values by duality, H_; := H;. Note that H = Hy
is naturally embedded into H_j through u + (u, -) since

I, Y-k = IR ullo, R:=(H+1",
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where we have employed the standard identification H ~ H* by u — (u, -). Hence
we have

llull—x = sup [{u, v)| forany k € R.
very  Ivlk

For the other Hilbert space H with inner product (-, -) and norm || - || together with a
non-negative unbounded operator H we define in the same way the scale of Hilbert
spaces Hy with norms Il - |- These definitions obviously include the usual scale of
Sobolev spaces as a particular case.

Suppose now we have two scales of Hilbert spaces, Hj and Hy., associated to non-
negative operators H and H with the resolvents R := (H+1Dland R:= (I:I—i— DL
respectively. The norm of an operator A : Hy — H_ % s given by

lAull_; <
IAll, , ;= sup ———= = ||RMZ ARY?|jo_.

ueH; Nl
The norm of the adjoint A* : 7:[,; — H_j then satisfies
IA™ e = NAl . ¢ (8.18)
and moreover, we have
1Al g < NAlns—i if k=n, k=7, (8.19)

Next we will formulate the notion of d-closeness of operators H and H acting on
‘H and 'H, respectively, which will allow us to compare them by means of suitable
identification maps. Suppose that we have linear operators

J:H—>H, Ji:Hi—H, J:H—->MH, J:H —H.
Letd > 0 and k > 1, then we say that (H, H) and (H,H) are 5-close with respect

to the quasi-unitary maps (J, Ji) and (J', J{) of order k if the following conditions
are fulfilled,

1= Jilho <6, IV = Jilhoo <9, (8.20)

I = J™*llo~0 <6, (8.21)

IHJ1 — J{*H k-1 <0, (8.22)
1= Tliso <6, 11— JJ -0 <9, (8.23)

17100 <2, [I7'llo—0 <2, (8.24)
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where 1 is the identical map in the appropriate space. Note that if H = H and the
identifications are trivial, the above conditions provide us with a simple tool to prove
norm-resolvent convergence (Problem 8).

8.3.2 Resolvent Convergence and Functional Calculus

Our primary aim is to use the notion of d-closeness of order k in cases when (H, H)
and (H, 'H) refer to different Hilbert spaces and to derive consequences for relations
between the corresponding resolvents.

Theorem 8.4 Put n := max{0, k — 2} and assume (8.20)—(8.22). The resolvents
R:=H+1D"' and R := (H+ 1)"! then satisfy the bounds

IRJ = JR[n—o = |JH — HJ|lps2- 2 <40,
IRIT = TR llno < 4j5.
the last one being valid for all j € N.

Proof To employ a suitable telescopic estimate, we start from the identity
JH—HJ] = —-J"H+ ' —J)'H+UH—HI)+HU - J),
Taking into account (8.18) and (8.19) we obtain from it the bound

IRJ — JRln—0 = IR(JH — HI)Rlly—0 = |JH — HJ |l24n——2
=< ”J_J/*”n%72 + ”J/_J]/”Z%fn + ”J]/*H_HJI ||2+n%72 + ”Jl _J”2+n%0
< IJ =T *loso+ 17 = J{l1=0 + I H — HIt k-1 + 171 — Jl1—0 < 40,

which proves (8.25). To demonstrate the second claim, we use the identity R/ J —
JRI =70 RI=1-I(RJ — JR)R which yields the estimate

j—1
IRIT = TR o < D IR om0l RT = TRIncs0 R s < 46
i=0

following from the previous result and the fact that [|Rl,—, < 1 holds for any n,
and similarly for R. |

The theorem has important consequences which we shall state without proofs
referring to the notes for the source. To formulate the first one we introduce the
space C(R) of functions which are continuous on [0, co].
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Corollary 8.3.1 Assume (8.20)—(8.22) and (8.24), then
lp(H)J = Jo(Hllaso < np(8)

holds for any ¢ € C(R,.) where Ne(0) = 0asd — 0.

Corollary 8.3.2 Given U C [0, o], assume that ¢ : [0, c0] — C is a bounded
measurable function, continuous on U. Moreover, suppose that lim)_, s ¥ (\)
exists. Then

I (HYT — JY(H) a0 < 174(0)

holds for all pairs of non-negative operators and Hilbert spaces, (H, H) and (H,H),
whichare § close and suchthat o (H) C U oro(H) C U, and in addition, 14,(5) — 0
as§ — 0.

8.3.3 Spectral Convergence

Next we formulate some convergence results concerning the spectra of operators H
and H. Let E C R and denote by P = xg(H), P = xg(H) the corresponding
spectral projectors of H and H, respectively.

Theorem 8.5 Let E be a measurable and bounded subset of R. Then there exists a
0o = 00(E, k) such that for all § € (0, o) we have

dim P = dim P

Jfor all pairs of non-negative operators and Hilbert spaces (H, H) and (H, ™) which
are d close and satisfy the condition OE No(H) =@ or OE No(H) = (.

Proof Suppose that f € PH, then we have

Ifln < Cenllfllo,  Cgni=sup(l+N)"? < oo.
MNeE

Moreover, from the triangle inequality and Corollary 8.3.2 we obtain
IPIfllo = I1fllo = IPT — T Pllassoll fllo = (1 —=0'Ce1 — 10y () I o

where §’ := +/30; the last inequality follows from the estimate

IIFIZ = A3 = 1 (JFT =D < |, (T = IO+ I (T T = 1) f)]
< 1% = I ool If ol fllo + 17T = Llhisoll /£ Il fllo < 361 £112.
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Hence there is a dg such that ||13Jf||0 > % Il fllo for 6 € (0, §p) which means that
PJ | py is injective. Consequently, if fi, ..., f, are linear independent in PH, the
same is true for PJf, ..., PJf,; this proves that dim P < dim P.

To prove the opposite inequality, take u € PH and consider functions pi € C(R,)
with values in [0, 1] such that ;1 + g2 + p3 = 1. Suppose in addition that supp
and supp po are compact, supp 41 and supp p3 are disjoint, and supp pp N E = #.
Then we have ug(ﬁ )P = 0 and we infer from Corollary 8.3.2 that

IPT*ull—p = ¥ Pull—y — |(PJ* = J*P)ull_,
> |1 (H) T ull—p — o (HDT*ull =y — I3 (H) T *ul| -,
—|PJ* = J*Pllasollullo
> Cp 1 Pullo — 1 (2 (HJ* — J* o () Pull = — 1y 9 [[ullo

where C%’n =infyy 4 0n=1)(1 + N2 — SUP\eupp i (1 + \)~"/2. Since the sup-
ports are disjoint by assumption, we can choose the functions y; in such a way that
C}syn > 0. The norm involving s can be estimated from above by 7, () using
Corollary 8.3.1. Moreover, by (8.21) and the triangle inequality we have

17 ullo = 17 ullo = 1(J* = Jullo = (1 = Cg,1 6" = ) llullo

with the same ¢’ as in the first part. In this way we have shown that
1P ull -y = (1 = 16" = ) = 1y (@) = 1y ) lulo

which, by the same reasoning as above, implies dim P > dim P. |

8.4 The Squeezing Limit of Neumann Networks

Having derived the abstract convergence results we can apply them to the problem we
are interested in, namely to find the convergence properties of operators on graph-
like manifolds as they approach those of the corresponding quantum graphs with
suitable vertex conditions. In what follows I' = ¢ will be a fixed metric graph
and {€2.}0<c<¢, a family of the corresponding “fat graphs”, as sketched in Fig. 8.3,
parametrized by € being the diameter of the network “fibers”. Before we analyze the
network squeezing we have to describe the framework in which we shall work in
more detail.
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Fig. 8.3 A graph and the associated graph-like manifold

8.4.1 The Problem Setting

Let us start with the graph. Without loss of generality we may suppose that € is
connected with vertices {vi}xekx and edges {e;} 7. We suppose that e; has length
t;>0,ie e; = I;:=[0,£;]. While the basic operator on £2 is the “plain” Lapla-
cian as in Sect. 8.1, we can also think about more general Sturm-Liouville operators.
With this aim in mind we make ¢ into a metric measure space with measure given
by pj(x)dx on the edge ej, j € J, where p; : I; — (0, 00) is a smooth density
function; we suppose that the functions p; are uniformly separated from both zero
and infinity. Our Hilbert space will then be H = L%(Qo) = @jej L2(I;, pj(x)dx)
with the norm

lullgy = 2 llujli, = Z/I_ ()1 pj () dx

jed jeg v

Let H'(Q0) be the space of continuous functions on g such that the Sobolev norm

— 112 712 /. . . s .
||u||1,.§zo = Zjej(H.u] ||1j + v IIIj), where v/, is the weak derivative of u ;, is finite.
Consider the quadratic form

m2 . ’ 2 1
w1 lg, = D ujlF, uwe H'(Q)
jed

which is closed and bounded below; the unique self-adjoint operator associated with
it is the negative weighted Laplacian acting as

1 '\
(mAguu)(x) = —m(pj(X)uj) (x) (8.25)

on the domain consisting of functions which are locally H? and satisfy the (weighted)
Kirchhoff boundary conditions at each vertex v, that is, they are continuous at vg
and
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Z pj(wu;(v) =0, (8.26)

{j: e; meets v}

where, as usual, the derivative is taken in the outward direction on each edge. The
spectrum of Agq, is purely discrete provided € is finite, i.e. having a finite number
of finite-length edges; otherwise it may have a continuous component or the discrete
spectrum may even be void. If ogisc(—Ag,) 7# ¥, we denote the corresponding
eigenvalues by Ay (), k = 1,2, ..., written in the ascending order and repeated
according to their multiplicity.

Now we turn to the thickened-graph side of the problem. Given a Riemannian
manifold X we denote by L2(X) the usual space of (equivalence classes of) square
integrable functions on X with respect to the invariant volume measure do. Similarly
as in Sect. 4.1.1 the measure has density (det(gij))l/ 2 with respect to the local
Lebesgue measure in a fixed chart; the norm of L2(X) will be denoted by || - || x. For
compactly supported smooth functions u we set

||du||%(=/x|du|2do, dul> =" g 0w d;u,
iJ

where (g'/) is the component representation of the inverse matrix (g; j)_l. Suppose
first that X has no boundary, then we define the negative Laplacian — A y as the unique
self-adjoint operator associated with the closure of the quadratic form u +— ||du||§(
defined above. On the other hand, if X has a piecewise smooth boundary 0X # ¢/
we introduce the Neumann Laplacian through the closure of the form u ||du||§(
defined on C*°(X), the space of smooth functions with derivatives continuous up to
the boundary of X. The spectrum of —Ay, with any local boundary condition if
0X # (0, is purely discrete as long as X is compact, otherwise it can be partly or
fully continuous. If ogisc(—Ax) # @, we denote the eigenvalues by M\ (X), k € N,
again arranged in increasing order and repeated according to their multiplicity.

Let us now look specifically at the manifolds which can describe thickened graphs.
We choose a positive, small enough ¢ and for each 0 < ¢ < g9 we associate with
the graph Q¢ a connected Riemannian manifold 2. of dimension d > 2 equipped
with a metric g. which we shall specify below. We suppose that €2. is the union of
subsets U. ;j and compact V. ; such that the interiors of all of them are mutually
disjoint for all possible combinations of j € J and k € K. We think of U ; as
the thickened edge e; and of V. ; as the thickened vertex vi. This is illustrated in
Fig.8.3; it is useful to keep in mind that while from the point of view of physical
applications we think of Q. as embedded in R”, v > d, mathematically one can
analyze the approximation using intrinsic geometrical properties of 2. only. In fact,
we may assume that U ;j and V. are c-independent as manifolds and implement
the squeezing to the graph €2 through a properly chosen family of metrics g.. For
the edge regions we assume that U, ; is diffeomorphic to /; x F; forall0 < ¢ < g9
where F; is the tube cross section being a compact and connected manifold, with or
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without a boundary, of dimension m := d — 1. Similarly, for the vertex regions we
assume that V. ; is diffeomorphic to an e-independent manifold Vj for 0 < ¢ < g.

In analogy with the construction of Sect. 8.2.3 we employ a decomposition of
e;j = I; into two halves with reverted orientations. Now, however, we suppose that
the variables increase away from the vertex. We collect all the halves [ ; sprouting
from the vertex v, i.e. those with j € J := {j € J : e; meets v;}. We put
Uji = Ij x F, and furthermore, the midpoint of the edge e; >~ I; will be x;.‘ and
the endpoint of /; corresponding to the edge v will be x?k, soljy = [x;f, x?k]. For
brevity, in the following, provided no confusion can occur, we shall omit the edge
and vertex subscripts, similarly we write U, = U, etc.

Consider thus the thickened edge U = I x F, assuming without loss of generality
that vol F = 1, with the metric which describes the shrinking of the cross section,
being of the product form

j- = diag (1, 52r2(x)h(y)) .y eU=IxF, (8.27)

where y stands for suitable coordinates on F" and r(x) = r;(x) = (p; )Ym s
by assumption a smooth function on the edge e;. It is important to notice that while
we need not suppose that 2. is embedded in the Euclidean space, we want such
situations to be included. In that case we have to allow the length of the thickened
edge to change with €. We denote by G, and G. the d x d-matrices associated with
the metrics g- and g. in the coordinates (x, y). Obviously the two metrics coincide
up to an error term as € — 0. More specifically

G. = G.+ (0(1) o(e) ) _ (l +o(1) o(e) ), (8.28)

0(e) 0(2) o(e) 52rj h+ o(e?)

80 gexx = 1 +o(1) and g¢ y,y; = e2r2(x) has(y) + 0(52) while the off-diagonal
terms are ge yy, = ge,y,x = 0(¢). The fact that the metric g. is equal to the product
metric g. up to error terms is crucial for the construction.

The shrinking of a vertex region can again be realized through an e-dependent
metric on a fixed manifold V. = V. In general, it can occur with a rate different from
that of the edge squeezing. Putting ¢ := g-, we assume that

c_e%g < g < ¥y (8.29)

for some constants 0 < c_ < ¢4, more specifically such that an inequality holds for
all diagonal components of the metric tensors in any local basis, where the power «

satisfies the inequalities
d—1
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Obviously, o < 1 is needed for the above bound to make sense with 0 < ¢ < &o.
The vertex parts may shrink more slowly than the edge parts but not too slow; this
assumption is again crucial for the result (see the notes).

8.4.2 Spectral Convergence: Kirchhoff Coupling

Now we can apply the abstract convergence result of Sect. 8.3 to prove the resolvent
convergence of —Agq. to —Ag, as ¢ — 0 which will, in particular, mean that a
part of the eigenvalues of the former operator will converge to those of the latter.
For simplicity we suppose that the graph is finite, i.e. it has a finite number of finite
edges. We set

H=1L*Q0), Hi=H"(Q0), H=L*Q), Hi=H Q).

The crucial thing is the choice of the identification operator J. We are interested in
the behavior in the bottom part of the spectrum neglecting the effects associated with
higher transverse modes. Consequently, we choose

0 ifz € Vg,

E””/zuj(x) ifz=(x,y) eU; ueH @.31)

(Ju)(z) := [

recalling thatm = d — 1, and

€—m/2

(JDu(z) :== [6_”’/2 u(vg) ifz e Vg,

uj(x) ifz=(x,y) € U; ueH. (8.32)
The mappings in the opposite direction will mean essentially projecting onto the
lowest transverse mode. The corresponding eigenfunction is constant, be it the case
of a manifold without boundary or with Neumann condition imposed at the boundary,
hence we will employ the following averaging operators,

1
(Nu)(x) = (Nju)(x) :=/ u(x,y)dy, Cu= Cru:= / u(y)dy,
F vol Vi Jy,
onU; = 1I; x F and Vi, respectively. Using them we define the operators
(J'u)j(x) = ™ (Nju) (x)
and

()0 1= 72 (Nju(o) + p(o(Cru = Nju?))



8.4 The Squeezing Limit of Neumann Networks 267

where p is a smooth interpolation function with values in [0, 1] chosen in such a way
that p(x%) = 1 and p(x) = 0 for all [x — x°| > 1 min;c s |e;|, and x0 = x?k € dl;
denotes the edge point which can be identified with the vertex vg; recall that /; x
denotes the half of the interval /; adjacent with the vertex v and oriented in the
direction away from vy.

Using these notions we are able to state the main result of this section.

Theorem 8.6 In the given setting the norm-resolvent convergence

lim |R.J — JR| =0,
e—0

is valid, where R = (—Agq, + 1)"' and R. = (—Aq_ + 1)"1.

To prove the theorem we first collect some auxiliary estimates. In order to avoid
the need to discuss geometric peculiarities of the vertex regions, we characterize them
in a simple spectral way. To this end, we denote by /\év (X) the second eigenvalue of
the Neumann Laplacian on a compact manifold X.

Lemma 8.4.1 Let X be a connected and compact manifold with a smooth bound-
ary. We associate with a given v € H Y(X) the constant function ug(x) =
v Jx 1) dy. Then we have uollx < lullx, and furthermore,

2 2 2 2 2
lu —wuoll” = dully . Nullx — lluollx =< O flullx

— A0 SAY (0 *

forany 6 > 0.

Proof The first estimate follows trivially from the Cauchy-Schwarz inequality. Con-
cerning the second one, note that u — ug is orthogonal to the first eigenfunction of
the Neumann Laplacian. By the minimax principle we have

M Xl —uplly < Ild(u — up)ll% = ldull%

and since X is connected by assumption, we have )\év (X) > 0. Finally,

1
2 2 2 2
lullx = lluollx| = 2llu = uollx llullx = Sllu—wuollx + 0 llully

holds for all § > 0 which concludes the proof. |

Next we compare the two metrics involved in our considerations, the “true” one,
ge given in (8.27), with the product metric g..

Lemma 8.4.2 Suppose that g., g- are as in (8.27) and (8.28). Then

(det G2)'/? = (1 +0(1)) (det G.)'/?,
g5 = (G N = 1+0(1),
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and furthermore, |dyul* = (1 + o(1)) |dul? and |dpul* = o(e) |dul? , where d,
and dr are the (exterior) derivative with respect to x € I and y € F, respectively.
All the estimates are uniformin (x,y) € I X F ase — 0.

Proof Using (8.28) we easily find det(GgGE’l) = 1 4 o(1) which yields the first
relation. As for the second one, the upper left component of

G' -G = -GN G - GG +0(G. - G.)

(1 0 o(1) oe) Y (1 O
- (0 0(62)) (0(5) 0(52)) (O (9(62)) +oll)

is of order o(1). To prove the next relation, we have to show that the inequality

£

10 .
(051)5(1+o(1))G5

holds in the sense of quadratic forms for some § > 0, where I is here the m x m
unit matrix. It follows from (8.28) that the off-diagonal terms of G are of order of
o(¢) while the diagonal ones 1 and 0(g?) from which the result is readily obtained;
the remaining claim is checked in a similar way. |

Next we need a comparison of a function v and its derivative du with the corre-
sponding normal averages Nu and d, Nu, respectively.

Lemma 8.4.3 For any function u € H L(U.) we have
lall, = 12Nl < o) (lul, + ldully,)

Proof Applying Lemma 8.4.1 with X = F we get

lux, )% — [(Nu)(x)[* <

1 ) s
=S ldF w(x, I + 0 llulx, Iz

for any x € I}, and integrating over / we obtain

o(e)
SAY (F)

lullf, —e™INull7 < / |duly_ (@) dw +llull?
: o :

where we have used the last relation from Lemma 8.4.2. Since the eigenvalue )\Q/ (F)
is e-independent we can put § := /o(¢) and apply the first relation from the same
lemma to obtain the result for the manifold U.. |

Lemma 8.4.4 For any u € H'(U.) we have

"2 (Nw' 17 = lldullg, < o(D)dull,.
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Proof The claim follows from the estimate
e 2(Nwy' (17 = [|E"* N (dew)ll7 < (14 o) [ldyullf, < (14 o) [dullz,.

where in the second step we have used the third relation from Lemma 8.4.2. |

Lemma 8.4.5 Forall u € H'(U.) and x° € dI we have
INuGx)* < 0E™) (lullg, + Idullg,) -

Proof We have [lu [ou. |13, < ci(llull?, + Ilduli3,) by standard Sobolev imbedding
theorems, and using Lemma 8.4.2 we can estimate |N w(x®) |2 from above by

/ [u(x®, WIFdF(y) < ci(lully + lldully) < OE™)(lullg, + lldulg,) .
F
which gives the result. |

Proof of Theorem 8.6: We shall employ Theorem 8.4 with J, Ji, J" and J| defined
at the beginning of the section. Let u € Hj, then in view of the first relation from
Lemma 8.4.2 we have

lulg, = Iully, < D dluli, = 1wz, )
jeg
= 2 (lullf, = (1 + o) 1ully, )=o) ullg,,
jed '
and in the same way the second relation yields
ldvullg, — eI, = > (0 + o)l deuly  — llu'l7)
ieg
= D (A +oIIF, = IW117) = o(1) /1,
jeJ

To get the needed estimates for the identification operator J{ we first note that using
Lemmata 8.4.1 and 8.4.5 together with (8.29) and the estimate used in the proof of
Lemma 8.4.5 one can check that for all © € H; we have
ICeu— Nju®)? < 0E*) ||duly,,
lu—Cul}, < OE") |dul},

lully, < OE™*™™) (lulg.oy. + Idulg_oy.)
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where x0 € 1 j.k corresponds to the vertex vx and 3 := (2 + d)a — d. Applying the
above inequalities in combination with Lemma 8.4.3 we arrive at the bound

2 2 2 2 2 2
lulldy, — 1{ullg, < Z(uunv&k + > (lullg, = 1" Nul,,)

keK jedk
+ 2 (O 2Nul, + 2"l ICu = Nu)2))
J€Jk

<o) (lullg, + Idullg,),

where ¢ := £*~D/2_In the same way, using the above inequalities again, this time
together with Lemma 8.4.4, we obtain

I w) e — Idulle. < o(D(ulld, + Idullg,).

Lemmata 8.4.1-8.4.5 thus allow us to conclude that the pairs (Ag,, H) and (Ag,, H)
are 6-close of order one in the sense of Sect.8.3.1, and the sought norm-resolvent
convergence follows from Theorem 8.4. |

The result can be extended to graphs which may not be finite (see the notes). It has
a consequence for eigenvalue convergence; note that if the graph is finite the spectra
of both the operators —Agq, and —Agq_ are discrete. We denote the eigenvalues by
A (€22) and A\ (€2), respectively, then Theorem 8.6 implies

Corollary 8.4.1 A\ (2:) = A\ (R2) holds as € — 0 for any k € N.

Notice also that —Ag,_ has “more” eigenvalues than the graph operator, those corre-
sponding to higher transverse modes blow up to infinity in the limit.

8.4.3 Spectral Convergence: More General Couplings

We have seen that using the Neumann Laplacian on a squeezing family of networks
2. one can obtain the Laplacian on the respective graph 2 with Kirchhoff conditions
at the vertices. If we want to get in this way different nontrivial couplings it is
necessary to employ other operators; some inspiration can be found in the graph
approximation results discussed in Sect. 8.2.

Let us begin with the §-coupling. In view of Theorem 8.1, a natural idea is to
add a suitably scaled potential to the Laplace operator on a graph-like manifold.
For the sake of simplicity, let us consider the case of a star-shaped graph Q29 = I
having one vertex v from which N edges e; of length £; € (0, oo] sprout. The
corresponding graph-like manifold €2 is the union of one vertex neighborhood V;
and N thickened edges,

Q=V.UL U.j, Ve=eV, Uj=c(0,¢;) x Fj,
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where V is a fixed vertex neighborhood and F is the transverse manifold; we suppose
now that the cross sections do not change along the edges. To simplify things further
we suppose that all of them are the same; without loss of generality we may put
volgy_1Fj = 1forall j =1,..., N. We denote by Hy the Laplace operator on
L?*(S2) corresponding to §-coupling (8.5) with the strength

q(v) 2=/ Q(x) dx
v

at the vertex v, where we choose a fixed bounded and measurable function Q sup-
ported in the (unscaled) vertex neighborhood V. The operator H is associated with
the quadratic form

holf1=1f'IIg, +a@) If.  f e H' (Q0). (8.33)
We begin again with a few auxiliary results.

Lemma 8.4.6 For any f € Dom (Hy) we have
holf 1+ 11 f gy, <2 max {Cija, V2} I(Ho £ i) flI, .

where

2
¢, =2 max [1OF g
nN2 * ¢N

} . fLo:=min{{;, 1}.
j
Proof Since H 1 (R20) is continuously embedded into L (£2p), it follows that

FOP =+ @By + 2 1f13,), 0<axto
Hence
"2 1 2 2 2
lholf1 = I1f7Ig,l < lg(W)] ﬁ(a 1 e + = 1£1g,) -
which in turn implies

1 1, + 1 £ 18y < 2[R0l T+ £ 18|+ 2C1 201 13, -

The first term on the right-hand side of the last inequality can be estimated by

oL f1+ 11.f 1, 1> < 2(holf 1 + 11 £11y,) = 2|holf1 = il £11G, | |0l 1+ i1l £ 11, |
=2|(f, (HoF )OI < I f g, I(HoF i) I

In view of the fact that || f|lq, < |[(Ho F i) f||, this concludes the proof. |
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Let us pass next to the description of the approximating family. On the manifold
2. corresponding to the graph I" we consider the operator

1
H: = —-Aqg. 4+ 0:(x), Q:(x) = EQ(X) on L*(:) (8.34)
associated with the quadratic form
helu] = |ldullg + (u, Qcuw)p2g,y. uwe H'(Q).

In a way similar to the above estimates for the graph Hamiltonian Hy we obtain the
following results (see the notes).

Lemma 8.4.7 To a given n € (0, 1) there exists an e, = O(Ly) such that
|helu] = |dullg_| < 7 ldullg, + Cy llulg,

holds true for any w € H'(Q2.) and all € € (0, eyl, where

. 10l 1
Cy = ellQllow max {2=1=, ~ |
n o

and c is a constant independent of € and Y.

Lemma 8.4.8 For any u € Dom (H;) and all ¢ € (0, €1/2] we have

ldullgy, + llullgy, <2 max {Ci/, V2} I(H: F i)ulg, .
With these preliminaries, we are ready to state and prove the result concerning
approximations of d-couplings.

Theorem 8.7 The pairs (Hy, H) and (H:, H) referring to (8.33) and (8.34), respec-
tively, are first-order §-close in the sense of Sect. 8.3.1.

Proof It suffices to check the inequality (8.22), since the remaining estimates follow
in the same way as in the case of Kirchhoff boundary conditions. We start from the
d-closeness of the quadratic forms hg and /., namely we will show that

holJiu, f1—helu, Ji f1 < O llull g1y 1 f a1 (g - (8.35)

where ho[-, -] and h.[-, -] are the sesquilinear forms generated by /¢ and &, respec-
tively, and 6. = O(c!/?) as ¢ — 0. We have

2
ol dfu, f1=helu, 1 <227 (| D0 piC = Na) O iz
J

+1g@)Ca — (Qu, 1) 2w I f @)2),
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where 1, is the constant function on V such that || 1, [ 72y = 1 and  is a piecewise
affine linear function on ¢; with x;(0) = 1 and ;(£;) = O; recall that C and N are
the averaging maps defined in the previous section. The first term can be estimated
as before using Lemma 8.4.1, for the second one we use the fact that

q() Cu = (u, C(Q1y)) 12y

to estimate the quantity in question as

lg)Cii — (Qu. 1) 2 > = [, CQ = Q) 2y
= |(u. Pv Q)2 > = (P, Q) 2yl

2 2
= W ”du”LZ(V) ”Q”LZ(V) >

where P,u := u — Cu; in doing that we have applied Lemma 8.4.1 with X = V.
Collecting these estimates and taking into account the dependence of the constants
on £, we arrive at relation (8.35) with

5. < cA7 max{”\Q/E_oo, el} (8.36)
0 0

Using the shorthands Rg = (Hy F i)~! and REi = (H: F i)~! for the respective
resolvents, and setting f := ROi f and v := R;Cﬂ, we get

(@, (JRE = REN ) = (@, Jf) — (u, T )
= (@i, (J — ) f) + (helw, Ty 1= holTju, 1) + ((J] — T*)u, f)
—i((u, (Jy = D f) + (T = T, ),

where the scalar product is taken in L?(2.). Hence from the first two and the last
two of relations (8.20)—(8.24) in combination with Lemmata 8.4.6 and 8.4.8 we infer
that

(@, (JRY — RED ) < 8- IfIlNall, 6. :=2d-max{Ci, V2},

where we have employed the fact that Cy/, < C 1,2, and consequently
IRy — REJ| < 6. (8.37)

this concludes the proof. |

Corollary 8.4.2 The spectrum of the “fat star” Hamiltonian H. converges to that
of Hy uniformly on any finite interval as ¢ — 0.

Corollary 8.4.3 To any \ € ogisc(H) there exists a family {\:} C ogisc(H:) such
that A\ — X\ as € — 0 and the multiplicity is preserved. If X is a simple eigen-
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value with normalized eigenfunction ¢, then there is a family of simple normalized
eigenfunctions {¢:} of He such that ||J ¢ — ¢:llo. — Oase — 0.

Remark 8.4.1 The claim of Theorem 8.7 can be generalized in various ways (see the
notes for further reading). In particular, the cross section volumes vol,;—1 F'; need not
be the same. What is more important, the norm-resolvent convergence remains valid
for any locally finite graph satisfying natural uniformity conditions, specifically,
vol V/vol OV and ||Q [y |lco must have an upper bound for all v € V, the edge
lengths must be bounded uniformly from below, and the same has to be true for the
second Neumann eignevalues A (V) and A\»(F') on all the vertices and edges.

From the introduction to this chapter we know that §-couplings form an important
but small subset in the family of all self-adjoint couplings, and we have to ask next
how one can deal with those having wave functions discontinuous at the vertex.
One can proceed using the same strategy as before, namely to employ the graph
approximation results of Sect. 8.2 and to “lift” them to the manifolds. Let us see how
it works in the case of the §;, —coupling.

To focus on the essential features of the approximation we again adopt several
simplifying assumptions. We consider the star-shaped graph I with one vertex vg
and N edges e}, as sketched in the left picture of Fig. 8.4. Furthermore, we suppose
that all the edges have the same length £; = 1, and that all the transverse volumes of
the corresponding “fat star” edges are the same and vol F'; = 1. The operator H % on
L%(I") is determined by the coupling conditions (8.6); the corresponding quadratic
form is given by

WL =118, + % > soeof
J

with Dom (h”) = H'(Q0) if 3 # 0, while for 3 = 0 we have h7[f] = || f'[I§,
with Dom (hﬂ) ={f e H'(Q) : Zi fj(vo) = 0}. For definiteness one has to fix
boundary conditions at the loose ends of the edges; here we have chosen Neumann
conditions, however, the choice is not important for the approximation.

The spectrum of H” is easily found, in particular, its negative part is given by the
following result, the proof of which is left to the reader (Problem 9).

Lemma 8.4.9 H?” is positive if 3 > 0. On the other hand, if 3 < 0, then H” has
exactly one negative eigenvalue \ = —r> determined by the condition

cosh k + @ sinhk =0.
N

In order to approximate H” on Qq by Schrodinger operators on the “fat star”
manifold, we employ the result of Theorem 8.2 and use the operator constructed there
as an intermediate step denoting it now by H%¢. We can regard it as a Hamiltonian
on the graph I'; obtained from I' by adding vertices v; of degree two on each edge
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e}

s = €
——
Vo -
€q Uj
Uee,
I Qe

Fig. 8.4 The §, approximation scheme, the left picture shows the graph approximation on I, used
as an intermediate step

e = e at the distance a € (0, 1) from the central one, vo, and imposing an attractive
d-coupling in each on them. Every edge is thus split into a pair of edges, e, = e,
and e, = ep_j, as indicated in the left part of Fig. 8.4.

The crucial point of the approximation is the proper, a-dependent choice of the
involved §-couplings parameters. If we assume that the graph-approximation oper-
ator H%¢ is associated with the closed quadratic form

1
W11 =111, ‘aﬁz 2P == 3 1fi@ol? . Dom (17 = H'(Ta),
J J

then by Theorem 8.2 we have
I(H —2)™' = (H — )" = O(a)

as a — 0, where || - || denotes the operator norm in L%(T',). We note in passing that
inf o(H?%) - —ooasa — oo if > 0 (Problem 10).

Next we pass to the manifold model approaching the intermediate Hamiltonian
H"%inthelimite — 0. We have two parameters now and we have to fix their relation.
It is easy to figure out that the approximation requires the transverse squeezing to be
faster than the vertex distance diminishing; we choose a = a. := ¢ with a € (0, 1)
to be specified later. The approximation of §-coupling discussed above suggests how
the manifold model €2, of the graph 2 has to be constructed; it is shown in the right
part of Fig. 8.4. To the additional vertices of degree two cylinder parts of length € and
distance of order of a; = € from vy will correspond; the edge e, thus has length
a-. The potentials in the vertex regions are chosen to be constant and equal to

1 ge
Qcp(x) == — 9e(v)

e volV,’

xeV, for v=v9 or v=u,,
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where in correspondence with the intermediate Hamiltonian H”“ we choose

—Q

g-(v0) '= —Fe72 and g¢.(v.) = —¢

The resulting Hamiltonian Hf in L%($2.) is then defined as the operator associated
with the quadratic form

g 2 1 2
WPu) = ||dul|3 —e 72— ||u —e i
clul = lldullg, vol Vi, I ”Vam Ee [ ||v£1ve

defined on Dom (h? )y = HY(Q.). Note that inf U(Hf ) depends again on sgn 3; for
B > 0 this operator family becomes unbounded below as ¢ — 0 (Problem 10).

Theorem 8.8 Suppose that 0 < o < 1/13, then the relation
1J(H? —2)7! — (Hgﬁ —27 ' >0 a e—>0

is valid for z € R, where J is the identification map (8.31), and the same is true
for |J(HP — )~ 1* — (Hgg — 2)7 Y. It implies, in particular, the same spectral
convergence as in Corollary 8.4.3 above.

Proof Since negative numbers may belong to the spectrum of both the operators
H” and Hf we have to take resolvents at non-real values. We employ the results of
the previous section in combination with Theorem 8.2. Let H?¢ := H"% be the
e-dependent intermediate Hamiltonian on the graph with the J-potentials as defined
above. The lower bounds on the tube lengths for the corresponding manifold model
now depend explicitly on g, namely £p = a. = £. From the definition of the constant
C 12, the bound preceding (8.37), Lemma 8.4.8, and equation (8.36) we obtain

Cipe) =0E™),  6.=0E"59/?%)),
Next we note that (8.37) implies
1J(H? S £ i)~ — (HP £ )7'J|| <105 max{Cy)2(), V2} = O 17130/2)

Using a telescopic estimate for the norm of the resolvent difference in question in
combination with Theorem 8.2 we infer that

IJ(H* i)' —(HP i)~ < 6.

with 6. = O(gmax{e.(1=130)/2}) \which, in combination with the first resolvent for-
mula, proves the sought convergence. Furthermore, we observe that (8.37) implies
(nL—-J J*)(Hé@ +i) 1 < 6. so the two operators are b.-close; this concludes the
proof. |
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In conclusion of this section we are going to describe a general result in the
Neumann-type case; we state it without a proof referring to the notes for more
information. For simplicity we again consider star graphs only. By Theorem 8.3
the Hamiltonian H on such a graph I with any vertex coupling, characterized by
matrices S, T according to Proposition 8.2.1, can be approximated using a locally
modified graph with added edges of lengths 2d as sketched in Fig. 8.2. We consider
the corresponding “fat graph” associated with this approximating graph, consisting
of tubes of diameter €, and construct the appropriate magnetic Schrédinger operator.
The procedure follows the same lines as in the ¢, case above but it is slightly more
complicated due to the presence of the inner edges. With any such edge e we associate
the quadratic form

d
he elue] == / (o) + iAc(@)yus()I? + llduc()172.p, ) ds

we(d) [©

+
28 J_¢

llue(s)]|* ds

defined for H'! functions on e x ¢F,, where the potentials A.(d) and w, are given
by the relations (8.11)—(8.14). In a similar way one defines

o0
ecluedi= [ (LI + IOl ) ds

for an outer edge e, and

vy (d)

h. = |id evol V.,
V’U[uv] “ uv(s)||L2(V5.v) + evol VE,U

||qu||L2(V5‘U) )

where vy, (d) is given by (8.15)—(8.16), in the manifold part related to a vertex v; the
approximating operator H: is then associated with the quadratic form

helul := D heelue] + D heylua],

where we sum over all the edges and vertices of the approximating graph.

To get a meaningful limit we have once again to relate the two parameters that
control the squeezing process; we put d = d. := € with a fixed a € (0, 1). We
denote the resolvent of H. by R.(z) and recall the definition (8.17); then we are in
position to make the following claim.

Theorem 8.9 Assume that R®(z) is the resolvent of a star-graph Hamiltonian with
the vertex coupling characterized by matrices S and T and R.(z) is the resolvent of
the operator H: described above. If 0 < o < 1/13, the relation

||JR21tEar(Z)J* _ RE(Z)” — O(gmin{l—l3a,a}/2)
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holds for all z € C\ R, where J is the identification map (8.31). The spectral
convergence implications are the same as in Corollary 8.4.3 above.

Remark 8.4.2 Comparison of the last two theorems illustrates that the approximation
of vertex couplings by squeezed networks is not unique. A ¢} interaction is in view
of (8.6) characterized by the condition %N £(0) — f/(0) =0, where N isthe n x n

matrix with all the entries equal to one, which correspondsto S = =N and T = 0
in the condition (8.10). According to the described scheme, all the inner edges are
present, no magnetic field is needed, and we choose

2—n n-—1

3 d

the corresponding Schrodinger operator then has a step-like potential of order
—e~%"! near the vertex V; and of order —3==2%~! around the edge midpoint W 4.
The approximation in Theorem 8.8 is different, using the original star graphs as the
skeleton of the squeezed network, however, the behavior of the involved potential
with respect to the length scale d = £ is the same in both cases up to multiplicative

constants and higher order terms.

J6] 2
wijk(d) = —5n Ty and vj(d) =

8.5 The Squeezing Limit of Dirichlet Networks

The fact that the network manifold had Neumann boundaries (or no boundaries at all)
played an essential role in the considerations of the previous section; if we modify
the boundary conditions the picture will change substantially. Let us now examine
what the squeezing limit can produce if the network has Dirichlet boundary which,
as we know, is the more important case from the viewpoint of applications to small
semiconductor structures. First of all, one has to modify the limit using the energy
renormalisation that we know from Theorem 1.6, since the threshold of the essential
spectrum in an infinite tube blows up as its diameter tends to zero and we have to
subtract this divergent quantity.

However, this is not the only difference. We have seen that the Laplacian on Neu-
mann networks typically yields Kirchhoff coupling conditions in the limit. We may
produce other couplings by adding properly scaled potentials but what is important is
that the limit is generically nontrivial resulting in graph Hamiltonians with the edges
coupled. This is not true in the Dirichlet case, where the generic limit in the vicinity
of the moving threshold leads to a fully decoupled graph with Dirichlet conditions
at the edge endpoints. However, it does not mean that the limit is always trivial.
Specifically, if the network system possesses a threshold resonance, then the limiting
procedure can result in a graph with nontrivial coupling conditions at the vertices.

To explain the meaning of the last claim let us discuss in detail the simplest
nontrivial case when the squeezed network is represented by a bent waveguide which
collapses onto the star graph I'g consisting of two half-lines joined in a single vertex.
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The starting point of our model is a planar strip @ C R? of width 2 built over a
smooth reference curve I' of signed curvature +y in the way described in Sect. 1.1.
Beginning with this, we shall construct a family of bent strips . C R? changing
simultaneously the strip width and its curvature as functions of the scaling parameter
€ in such a way that

VAE) S
Ne(s) = ~ (—) , ac=¢%a, (8.38)
€ €
with « > 1 to be fixed later and \(¢) being a fixed positive function such that \(g)
is analytic near zero and

Ae) =1+ N0)e+0OED.
Our scaled family of bent planar waveguides can be characterized as follows,

Q= {(x,y) € R?: x = &(s) —wie(s), y = ne(s) + uée(s), s € R, |u| < ac},

where &.(+) and 7). (-) are determined by 7. (-) through Egs. (1.4) and (1.5). As usual
we suppose that a. | V:]lco < 1;if 7y is bounded it is surely true for all € small enough.
If v is smooth and v(s) — 0 as |s| — o0, the family {€2.} obviously shrinks to the
graph I'p mentioned above in the limit ¢ — 0.

Our object of interest will be the family of Dirichlet Laplacians —Ag; on the bent
strips 2.. Using the straightening transformation described in Sect. 1.1 we easily
conclude that the Laplacian —Ag is unitarily equivalent to the operator H. on the
(unscaled) straight strip R x (—d, d) given by

1

_ —2a 92 -2
T Ty 075 e

with Dirichlet conditions at |u| = £ a and the effective potential

AE)(s/e) e Tu A& F(s/e) 5 202w M) A(s/e)?

e T A ) LM T R =T ) S S TR A= EA)E

Let x, be elements of the orthonormal basis in L?(—a, a.) analogous to (1.10),
namely real-valued functions such that y, (£a.) = 0 satisfying

™
2a.

—X0u) = K2 xa(u), K =

Consider now (s, u, s', u) — (H. — k* — n o (s, u,s’,u'), the integral kernel
of the resolvent of H. taken at a point sh1fted by the running transverse threshold

energy /{m <> and define


http://dx.doi.org/10.1007/978-3-319-18576-7_1
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a

Ry, (k. 5. s') = / X (W)X (W) (He — k> — ki, )7 (s, u, ", /) dudu

—a

It is not difficult to verify that the integral operator R, (k%) : L>(R) — L?*(R) with
this kernel is bounded and analytic in k> for k> € C \ R and Im k > 0.
To proceed we need to recall some facts about one-dimensional Schrodinger

operators on the line,
2

d
L= i + V(s). (8.39)
We say that L has a zero energy resonance if there is a function ¢, € L*°(R),
1, ¢ L*(R), such that L), = 0 holds in the sense of distributions. Moreover, if
/ Vis)ds #0, e"'lveL'(R), (8.40)
R

holds for some 7 > 0, then exactly one of the following alternatives occurs:

(a) the operator L does not have a zero energy resonance, or
(b) the operator L does have a zero energy resonance; in this case 1), can be chosen
real and the real constants ¢ and ¢ given by

_1 /
(/ V(s)ds) // Vi) By 6y i (s ds ds”
R RJR 2

1
= ——/V(s)sds,
2 Jr

cannot vanish at the same time.

cl

The graph I'g is isomorphic to the real line and the coupling is a generalized point
interaction at the vertex. To describe the limit we introduce two Hamiltonians, H d
and H", on R acting as f —> — f” with different boundary conditions at x = 0. The
first is the Dirichlet-decoupled operator H 4 with the domain Dom (HY) := {f €
H*R\ {0) N H'(R) : f(0) = 0}. The domain of H* depends on c; and ¢, in the
following way:

Dom (H") := {f € H*R\{0) : (c1 +c2) f(0+) = (c1 — c2) f(0-),

~

(c1 =) f(04) = (c1 +2) f/(0-) + -}

c1+ o

for a fixed )\ and c1, cp such that ¢y + ¢ # 0, and

~

A
Dom (H) i={ f € H*®\0): £(0-) =0, f'(0+) = 2 o)
1
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if c;+c¢» = 0. Note that H' couples the two halflines in a nontrivial way iff |c1| # |c2|
(see also Problem 11).

To match the introduced notions we put V = —4—1‘72 in (8.39); if the operator has
a zero energy resonance, we set

A= —iA’(O) / V2(s) 1y (s)* ds .
R

Armed with these notions we can describe the outcome of the squeezing limit.

Theorem 8.10 Assume that the curve Iz has no self-intersections for all € small
enough. Let ~y be piecewise C* with compact support and %, 5 bounded. In addition,
suppose that o > 5/2 and put V = —}‘72 in (8.39).

(a) If L does not have a zero energy resonance, then
u- lin})R,im(k2) =0m (H'—k»7', k*eC\R, Imk >0.
E—>

(b) If L has a zero energy resonance, then

u-;ir%R;m(kz) =0 (H = k57", K*eC\R, Imk >0,

provided that, in addition, k # ko with ko given in Problem 11,
where u-lim refers to convergence in the operator norm on L*(R).

Proof of Theorem 8.10 is based on a pair of auxiliary results which concern the
family of one-dimensional operators

L=-L 20y,

ds? g2 €

Notice that we have already met similar one-dimensional Schrddinger operators —see,
e.g., relation (8.7). There, however, the scaling was “natural”, preserving the integral
of the potential. Here, in contrast, we have something like a squared § singularity,
thus it is not surprising that the limit will be different.

Lemma 8.5.1 Suppose that V satisfies condition (8.40) for some 1 > 0.

(a) If L does not have a zero energy resonance, then

u- lim (L. — i '=H = kH, K2 eC\R, Imk >0.
£—>

(b) If L has a zero energy resonance, then

u- lin%)(LE—kz)_l =H -k, ki #k eC\R, Imk>0.
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Proof We start by introducing the operator,

Th) =1 +uG) ™ Gils.s) = Guls =) = 5,

where v(s) = |V (s)|'/? and w(s) = v(s) sgnV (s) is the standard Birman-Schwinger
factorization of the potential, cf. Remark 6.1.1a. We recall that the operator 7 (k)
admits a norm convergent expansion in k, namely

o0
Ty = (k)" 1y, (8.41)
n=p
where p = 0 if L has no zero energy resonance and p = —1 otherwise (see the

notes for the references). We have (L —k2)~! = Gy — Gx v T (k) w Gy and a simple
scaling argument then shows that

(L. — k> ' =G — éAE(k)T(ak) C.(k), (8.42)

where A: (k) and C. (k) are operators defined through their respective integral kernels,
A-(k;s,s") == Gr(s —esHv(s") and C.(k; s, 5") := w(s)Gi(es — s7).

Suppose first that L has a zero energy resonance and fix k with Imk > 0. By
(8.40) the operators A, (k) and C. (k) are Hilbert-Schmidt, and moreover

Ac(k;s,s') = (Gi(s) + ik Gi(s) (Is — es’| — Is]) + a=(k; 5. 5")) v(s) ,
Ce(ky s, s") = w(s) (Gr(s") + ik Gr(s") (|s" —es| — |s']) + c= (ks 5, 87))

where

ik Is—es’|—Is| )
as(k;s,s") = - etklsl / e*(Is —es’| — Is| — ) ds Ju(s))
0

and a similar integral representation holds for c.(k; s, s”). It follows that the Hilbert-
Schmidt norms of the operators a- (k) v and w c- (k) satisfy

k|
4 JImk

Scaling the power-series expansion (8.41) we get

max {la: (k)vllus, lwc-(k)[ns} < lIs?wll> .

1
T (ck) = e t1+1to+iket; + b(k)


http://dx.doi.org/10.1007/978-3-319-18576-7_6
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with the remainder satisfying ||b. (k)|| < ¢ €2; this allows us to write

(A: (T () C(k)) (s, s") = /]RZ [(Gk(S) + ik Gi(s) (Is — e7| — Is])v(7)

1 / / . / /
X(%t—l(ﬂ )+ to(r, ') +ike ti (7, 7)) w(r)
i

X (Gi(s) + ik Gr(s) (15" = e7'| = Is']) | dr a7’
+rls.s)

with ||r5l I <c 2. Next we need some properties of t_1, fy and #{, namely

¢
G+t +ik2k
A3 +ik/2k
A+AE+id2k

qw=0, fiv=0, (,HHw)=0, (vrjw:)=

c1c2

. nw)=
i+t +iN2k

('U,fow)=(vyf0w')=

where (-v, fpw) = fsz";(s) (tow)(s) ds, etc. (see Problem 12 and the references
given in the notes). With the help of them we can express the integral kernel
(A(K)T (ek)C(k)) (s, 57) as

2i(c3 + i)\/2k)
k(3 4 3 4 iM/2k)

G ()G (s

2k 3 )
el T Gk Gi(s)
i(ci +c7+iN/2k)
2cic0 I, / / 2 ’
I (Gk(9)Gi(s) + Gi(s)Gr(sN) ) +ri(s. s
cy +cr +iN/2k
with ||r§|| < c¢&3/2, where G;( (#) denotes the derivative of G (¢) with respect to ¢.

The last equation in combination with (8.42) shows that (L. — k*)~!tendsase — 0
in the operator norm to R” (k%) with the integral kernel equal to

2ik 2 2 A +iN2k
ﬁ Gr(s) Gk(s/) + _l %
i +ci +i)N/2k k cy+er +iN/2k
2ci¢r

o
o+t +iM/2k

Gir(s —s') + G (s) Gi(s)

(Gi(s) G (s") + G (s) Gi(s)) .

The second claim of the lemma will follow if we verify that R” (k) is the resolvent of
H'. Let f € L*(R) and examine the vector ¢ r=R" (k%) f which can be expressed
from the last relation using the fact that fR G () f()ydt = —(G} )(0). As the
resolvent maps L*(R) into the domain of the operator, we have to check that ¢ I
satisfies the boundary conditions from the definition of the operator H" which can
be done by a direct calculation (Problem 12).



284 8 Graph Limits of Thin Network Systems

On the other hand, if the operator L has no zero energy resonance, the expansion
of T (ek) starts from the zero order in € and the above properties of its lowest terms
have to be replaced by

v, ow)=0, (vipw) =@ Hw)=0, @HwW) =-2.

In the same way as above we then obtain that (L. — k3! converges as € — 0 in
the operator norm to R4 (kz) with the kernel

RIK?;s,s") = Gr(s — 5') + 2ik Gi(s) Gi(s))
which is nothing but the integral kernel of the resolvent of H¢. |

To proceed with the demonstration of Theorem 8.10 we also need the following
technical lemma for the proof of which we refer to the notes.

Lemma 8.5.2 Let V fulfil condition (8.40) for some n > 0 and f]R V(s)ds # 0.
Then for any k with k* € C\ R, Imk > 0, there is a constant Cy, such that

max [lim supe!/? |85 (L.—k*) 712, 12, limsup ||(L€—k2)—1||quLoo] < C.

e—0 e—>0

In order to apply the results of the above one-dimensional analysis to the family
{H:} we will introduce an intermediate operator with separated variables,

3 S

_ A(e) s
0_ 22 _—2as2 s
HY = =0} =00, + = V(E)

on LX(R x (—a, a)) subject to the Dirichlet condition at |u| = a. We note that its
matrix resolvent kernel with energy shifted by transverse threshold values,

d
R (s, 5") = / Xn(T) (HY = K = rip )7 K2 s, 708" 7)) X (7)) dr d
—d

is nothing but d,,,, (L — k%)~ 1(s, s'). We have the following approximation result.

Lemma 8.5.3 Under the conditions of Theorem 8.10 we have
u- lim (R0 (kY — R:,, (k1) =0,  kj #k* € C\R, Imk > 0.
e—
Proof The result will follow if we show that for any f, g € Cg°(R) the inequality

(9 (R0 = Ro ) £)| = e P glalfl: - 8.43)
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holds with a constant ¢ independent of f, g. From the resolvent identity we can
express the difference (H; — k2 — nﬁlﬁg)_l — (HE0 — k2 - /{,2,1,5)_l as

(He = 12 =15, 07 [0 (Zw) e Wetsow) | (HO = 12 =5, )71

where we have introduced the shorthands W.(s,u) := V.(s,u) — 4—1‘72 (%) and

b(s, u) = —2uA(s)(1 + e Luy(s)) 3. Hence it suffices to estimate the quantities
I = (g ® X, (H: = k* — i, ) ' %h (g ) O((Le—kH'H® Xm) »
o IR 21
L= \g®xn, (He —k* — K}, ) = We(s, w)((Le —k%) 7 f) ® Xm ) -
By the Cauchy-Schwarz inequality and Lemma 8.5.2 we infer that

11| < e [Im&*~igl2llblloo]| 05 (Le — kDT £,

< e mE | gl I £,

where we have used the assumptions imposed on «. As for I, from the explicit
expression for V., Lemma 8.5.2 and the Cauchy-Schwarz inequality we conclude
that

L < [Im k| gl e [ Wel, )(Le = k)7 ) @ x|
< Mm&*Miglla e | We|,I((Le =7 ) @ x| o,
<clmk*| Hglla | fll2 £

this implies (8.43) and completes the proof. |

Theorem 8.10 is now a direct consequence of Lemmata 8.5.1 and 8.5.3. |

Remark 8.5.1 (a) If A(s) = 1 in (8.38) the coupling resulting from the squeezing
limit is a scale-invariant point interaction, see Problem 11. On the other hand, for
c1 = 1, ¢ = 0 the limit yields the usual -interaction of strength A

(b) Notice that in Theorem 8.10 we have actually proved more than we wanted
covering not only the physically important case n = m = 1 but also an analo-
gous convergence in the vicinity of higher transverse thresholds. It is not surprising
because we have repeatedly seen that these modes become asymptotically decoupled
asa — 0.
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8.6 Notes

Section 8.1 The origins of the quantum graph model can be traced back to the foun-
dation period of quantum mechanics. Already in the 1930s Linus Pauling suggested
that the hexagon pictures everybody knows from organic chemistry textbooks can
in fact provide a realistic description of aromatic hydrocarbons, with some of the
electrons building the molecule “frame” and the others “living” on it. The idea was
later worked out by Ruedenberg and Scherr [RSch53] but then the concept fell into
oblivion, and if it appeared in the following three decades it was regarded rather as an
obscure textbook example. The situation changed in the late 1980 s with the progress
in experimental solid-state physics. The diminishing size of artificially fabricated
structures reached the state when the electron transport in them became dominantly
ballistic and quantum graphs suddenly reemerged as a useful model. It also became
clear that quantum graphs are attractive from the theoretical point of view, as a lab-
oratory to study various properties of quantum systems: on the one hand they are
mathematically accessible because they typically involve ordinary differential oper-
ators, on the other hand they make it possible to consider systems with a nontrivial
geometry and topology. The bibliography concerning quantum graphs is nowadays
indeed extensive. The most complete discussion of the subject can be found in the
recent monograph [BK]; a good introduction with numerous references can also be
obtained from the review paper [Ku04] and proceedings volumes [BCFK, EKKST].

Quantum graphs are used to model systems of a different physical nature. At
the beginning it included microstructures fabricated from semiconductor or metallic
materials, later carbon nanotubes were added; the latter became particularly inter-
esting when their branching became experimentally possible [LPXO00]. It is worth
mentioning, however, that the model is also suitable for studying systems of a non-
quantum nature, at least as long as a stationary situation is considered and the prob-
lem reduces, for instance, to a spectral analysis of the Laplacian on the appropriate
graph—one can recall the investigation of microwave phenomena in optical cable
networks [HBPSZ04].

Even within the realm of quantum physics various equations of motion are consid-
ered on graph-shaped configuration spaces. Most often it is Schrodinger’s equation,
either free or with the addition of potentials corresponding to external electric or
magnetic fields. One can also add internal degrees of freedom such as spin, etc. On
the other hand, one can also study Dirac operators on graphs. Such a model, too, was
for a long time regarded as a theoretician’s exercise and only attracted limited atten-
tion [BHO3, BT90]. The situation changed recently with the discovery of graphene, a
single-layer sheet of carbon atoms, in which electrons behave effectively as massless
relativistic particles, and numerous papers devoted to this subject have appeared.

Metric graphs are not the only type of graphs on which Laplace and similar
operators are studied. A lot is known about this problem on combinatorial graphs,
for a survey and bibliography we refer to Sunada’s review in [EKKST]. The two
subjects are connected, there is a duality relation between equations on metric and
combinatorial graphs. In physics this was noticed in de Gennes-Alexander theory of
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superconductivity; for a more general and rigorous formulation see [Ex97a, Ca97].
In particular, a unitary equivalence between the corresponding Hamiltonians can be
demonstrated provided the metric graphs are equilateral [Pal2].

A lot of attention has been paid to spectral properties of quantum graphs and
their relations to the underlying graph geometry. Weakly coupled bound states of
Schrodinger operators on graphs were for the first time considered in [Ex96b] and
later in a more general context in [Ko07, EEK10]. Other properties of the discrete
spectrum, in particular, Lieb-Thirring and Cwikel-Lieb-Rosenbljum-type inequali-
ties, were studied in [So09, DH10, EFK11]. Spectral properties of quantum graphs
differ in some aspects from those of usual Schrodinger operators. For instance, the
unique continuation property may not hold here, so Hamiltonians on infinite graphs
can have compactly supported eigenfunctions [Ku05]; if they correspond to eigen-
values embedded in the continuous spectrum, a perturbation can turn them into
resonances [ESe94, DET08, EL10b]. Another spectral property concerns infinite
periodic graphs where one can open spectral gaps by “decoration”, i.e. attaching
a fixed compact graph to a periodic subfamily of graph vertices [AS00, Ku05]. A
different mechanism of gap opening was observed on radial tree graphs with equal
edge lengths by Solomyak and collaborators [NS00, SoS02]. On the other hand, the
spectrum of a “sparse” radial tree graph, with growing edge lengths, is generically
singular [BF09, EL10a].

Attention has also been paid to various inverse problems. Gutkin and Smilansky
modified the famous question of Mark Kac asking whether one can hear the shape
of a graph [GSO1]. In the work that followed some conditions under which it is
possible to reconstruct the quantum graph topology and vertex coupling from its
spectral and/or scattering data were given. It was noted that the symmetries may
spoil the reconstruction [BK05] and examples of isospectral graphs were constructed
[BPB09].

Another often asked question concerns spectral behavior over large intervals of
energy, in particular, the asymptotics. For compact graphs various trace formulce
expressing the spectrum in terms of periodic orbits on the graph were derived starting
from the work of Roth [Ro83]. Kottos and Smilansky proposed such a formula as
a tool to study quantum chaos on graphs [KSm99]; the formula for graphs with a
general vertex coupling has been derived in [BE09]. On infinite graphs high-energy
behavior of resonances is of interest; it appears that for particular graph topologies
and coupling conditions their distribution may not follow the usual Weyl law [DP11,
DELI10, EL11].

Quantum graphs are also used to study the effect of randomness, in particular, the
existence of Anderson localization at the bottom of the spectrum when the geometry,
coupling, or potential on the graph edges is random, see for instance [CMV06,
EHSO07, HP09, KP09]. On the other hand, under some circumstances the absolutely
continuous spectrum on graphs can be stable under weak disorder, see e.g. [K194,
ASWO06].
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Returning to the subject of the present section, the construction of self-adjoint
graph Hamiltonians using self-adjoint extensions was proposed in [ES89b]. The stan-
dard form of the coupling conditions from Proposition 8.1.1 comes from [KoS99],
the unique form of the claim (c) from [Ha00, KoS00], see also [FT00], however, it
was known before in the general theory of boundary forms [GG]. For the notions
of 0- and J)-couplings see [ES89b, Ex96a]. The “projection form” of the coupling
conditions described in Problem 2 comes from [FKWO07], see also [Ku0O4].
Section8.2 The approximation of a d-coupling by a family of squeezing potentials,
Theorem 8.1, is taken from [Ex96b]; the proof follows the scheme used in [AGHH,
Sect. 1.3.2] for one-dimensional point interactions. The key idea concerning the
approximation of more general couplings with discontinuous wave functions at the
vertex was proposed formally by Cheon and Shigehara [CS98] in the case n = 2,
and proved to yield a norm-resolvent convergence in [ANOO, ENZ01]. Note that
the choice of the approximating operator is rather subtle: as shown in [ANOO] the
resolvents involved are highly singular as a — 0 but in their difference the first four
orders cancel giving a convergent result. An extension to vertices of higher degrees
was done for the §,-coupling in [CE04]; Theorem 8.2 is taken from this paper. The
method based on adding ¢ vertices also works in cases without an edge-permutation
symmetry giving at most a 2n parameter family of vertex couplings [ET07].

The general approximation described in Section 8.2.3 including the alternative

form of the coupling conditions from Proposition 8.2.1 was formulated in [CET10];
we refer to this paper for the detailed proof of Theorem 8.3. The described construc-
tion is not unique, however, the choice of the parameters is highly non-generic.
Section 8.3 The abstract convergence results of quasi-one-dimensional spaces are
due to [Po06], we also refer to this paper for the proofs of Corollaries 8.3.1 and
8.3.2. A more general discussion of this problem as well as of the approximations
discussed in the following section and various related results can be found in the
book [Pol1].
Section 8.4 A formal argument showing that the Neumann Laplacian on a squeezing
network should converge to the corresponding graph Laplacian with Kirchhoff cou-
pling was already presented in [RSch53]. The first rigorous treatment of the problem
appeared much later in the paper [FW93] followed by [Sa00], [KZ01], and [RuSO01].
While the later works use mostly PDE techniques, the original proof in [FW93] was
based on an analysis of diffusion processes in shrinking neighborhoods of a graph.
Our exposition is taken essentially from the paper [EP05] where the convergence
was proved in terms of the intrinsic geometry of the manifold only. Note also that
the compact graph assumption in Theorem 8.6 can be abandoned, see [Po06]. In the
same setting one can also demonstrate convergence of resonances, see [EP07].

While the main interest concerns uniformly shrinking networks, Theorem 8.6 is
stated in a way which admits the tube cross sections varying along graph edges,
this feature being expressed through the metric tensor (8.27) and leading to the
weighted graph Laplacian (8.25) in the limit, and moreover, the vertex regions of
the graph-like manifold €2, may shrink at a rate different from that of the edges.
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The difference, however, must not be too large as the condition (8.30) shows. It is
demonstrated in [EPO5] that a slow vertex region shrinking, 0 < o« < (d — 1)/d,
leads to fully decoupled edges with Dirichlet boundary conditions. In the borderline
case, « = (d — 1)/d, one gets a nontrivial coupling at the vertices, see [EP05] for
details.

The approximation of d-coupling at the vertices by Neumann-type Laplacians

by means of suitably scaled potentials on thin branched manifolds, Theorem 8.7,
is proved in [EP09] in a more general form allowing the tube cross sections to
have different volumes. Furthermore, one can find there the generalization of the
d-coupling approximation to locally finite graphs mentioned in Remark 8.4.1. The
same paper treats the case of J-coupling approximation discussed here; we also
refer to [EP09] for proofs of Lemmata 8.4.7 and 8.4.8. An attentive reader might
have noticed that the argument of the approximation potential (8.34) is not the same
as in (8.7). It is nevertheless the same thing, the variable scaling being hidden in
the used metric. Theorem 8.9 which provides a general solution of the problem in
the Neumann-type situation comes from [EP13]; we refer to this paper for the proof
using again the technique introduced in Sect. 8.3 and a discussion of other aspects
of this approximation.
Section 8.5 Subtraction of the first transverse eigenvalue is the most natural renor-
malisation but not the only one. For an alternative approach see [MV07] where the
reference value is chosen in a different way, specifically between the first and the
second transverse threshold. In such a case the squeezing limit gives generically
a nontrivial result and the coupling conditions in the vertex are determined by the
scattering matrix of the associated “fat star”.

Theorem 8.10 was proved in [ACF07] in the situation when the curvature is scaled
naturally, i.e. A(s) = 1 and the bending of the strip is in view of (1.4) preserved at
the scaling; in that paper the reader can also find the proof of Lemma 8.5.2. The
extension to the case when the bending angle may “wiggle” was done in [CaEOQ7].
Properties of zero energy resonances needed to state and prove the theorem come
from [BGWS85]; their application to scaling with A(s) = 1 in (8.38) was done in
[ACFO7], the extension to the more general situation is worked out in [CaEQ7].

Squeezing limits of more complicated, branched Dirichlet networks, with a renor-
malisation referring to the first transverse eigenvalue, have also been considered. If
the vertex regions are more narrow than the edge regions, the limit is trivial [Po0S5].
The mechanism which can produce a nontrivial result is the same as in the example
discussed here; one has to start from an operator having a threshold resonance. This
was discussed in [GrO8], a different but related approach using graphs with finite
edges was suggested in [DAC10]; the limit leads to weighted Kirchhoff conditions.
The analysis of these approximations has still to be completed and a procedure which
would allow the approximation a general coupling condition by squeezed Dirichlet
networks, analogous to Theorem 8.9 in the Neumann case, is not known in the present.
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8.7 Problems

1. Prove Proposition 8.1.1.

Hint: (a) A pair A, B such that the n x 2n matrix (A|B) has maximum rank defines
a Lagrangean subspace through (8.4) iff AB* is Hermitean. (c) The claim can be
checked directly. Alternatively, note that the squared norms ||W (0+) £ i ¥’ (0+) ||2
with a fixed £ > 0 coincide iff the boundary form (8.3) with & = W vanishes.

2. For any coupling in a graph vertex of degree n there are orthogonal and mutually
orthogonal projections P, Q in C" and an invertible Hermitean A acting on the range
of C := I — P — Q such that the coupling conditions can be written in the form
PY(0+) =0, Q¥ (04) =0, and CV'(0+) = ACY(0+).

3. The Laplacians acting on EB’}: 1 L?(R. ) with the coupling conditions described
in Examples 8.1.1 have R as their essential spectrum and a simple eigenvalue equal
to —(a/n)? and —(n/3)? if o and (3, respectively, are negative. Find the spectral
properties in case the star graph has finite edge lengths.

4. Vertex couplings of Proposition 8.1.1c which are invariant w.r.t.permutations of
the edges form a two-parameter family characterized by matrices U = al + bJ with
complex coefficients a, b satisfying the relations |a| = 1 and |a + nb| = 1.

5. Fill in the details of the proof of Theorem 8.1.
6. Fill in the details of the proof of Theorem 8.2.

7. (a) Let H = (—i% — A)2 + V(x) be a magnetic Schrodinger operator on
L%(I), where I = (0, L) is a finite or semiinfinite interval, with a potential V, vector
potential A, and boundary conditions at the endpoints of / which make Hy4 self-
adjoint. Let wi{t denote the solution of the equation H41) = k%) with the boundary
values d)i{t(O) = s and (d)ijt)/ (0) = t. Check that it is related to the analogous
solution in the nonmagnetic case, A = 0, by ¢’ (x) = ¢ Jo Az ¥y (x) for all
x € (0, L).

(b) Consider a quantum graph vertex with n outgoing edges indexedby j = 1,...,n
and parametrized by x € (0, L ;). Suppose that the j-th edge carries a constant vector
potential A ;. Using claim (a) find how the §-coupling with a parameter o modifies in
the magnetic case, namely that it includes continuity, 1, (0) = 1x(0) =: ¢(0) for all
Jjok=1,...,n, together with the condition >}_, ¥5(0) = (+i > Aj)(0).

8. Consider a non-negative operator H on a Hilbert space H and a sequence of
non-negative operators H = H, on H which all have the same form domain as H.
Suppose that H and H,, are §,-close of order one with respect to trivial identification
maps, where §,, — 0 as n — oo, then H, — H holds in the norm-resolvent sense.
On the other hand, such a convergence does not imply the appropriate closeness.
Hint: The assumed J,-closeness implies |H — Hy|1——1 — 0 while the norm-
resolvent convergence requires ||H — Hy|2—_2> — 0.

9. Prove Lemma 8.4.9.



8.7 Problems 291

10. Consider the Hamiltonian H?¢ defined in Sect. 8.4.3. Check that these operators
are uniformly bounded from below as ¢ — 0 if 3 < 0, while for 3 > 0 we have

inf o (H ﬂ’“) — —o0 as a — 0. Furthermore, show that the operators Hgﬂ used in
the ¢} -approximation have the same property.

11. The coupling in the definition of the operator H" appearing in Theorem 8.10 is
described by the boundary conditions of Proposition 8.1.1¢ with the matrix

U— 1 —deier — i) 2(0% -3
2+ D) +id\ 20 —¢)) derea—id )’

Oess(H") is absolutely continuous for any )\ € R and coincides with [0, 00). For
A > 0 there are no eigenvalues, while for A < 0 there is just one negative eigenvalue

equal to k2 = —%:\2 (c% + c%)_2 and the corresponding normalized eigenfunction is
dotsy — AL fer—ene s >0 DY
V2 x| tepe s<of T @y

Finally, for A = 0 the operator H' has a zero energy resonance. The on-shell scat-

1 r
i ; 2 o _ [tk (k) .
tering matrix at energy k-, k > 0, is given by S(k) = (rl(k) () with the
amplitudes
2_ 2 .4
Mgy = 2KA7D) gy oy a2 Fid
2k(c? +¢3) + i) 2k(c? +¢3) + i

12. Fill in the details of the proof of Lemma 8.5.1.



Chapter 9
Periodic and Random Systems

Most spectral and transport properties discussed in the previous chapters concerned
perturbations which have been in some sense localized, although there were excep-
tions, for instance, the effects connected with motion in a homogeneous magnetic
field treated in Chap.7. Now we are going to discuss two important situations in
which the geometric variations are infinitely extended, namely periodic and random
quantum waveguides and layers.

Periodic systems are ubiquitous in nature, in particular, due to the existence of
(natural or artificial) crystal structures and their spectra have typical properties such
as the absolute continuity and band-and-gap character. The question to ask is whether
the same can be said about periodically curved tubes; we will analyze it in the simplest
case of periodic planar waveguides. Apart from the geometry, a periodic structure
may also come from a potential. We have encountered an example of such a system
speaking about non-classical edge states in Sect. 7.2.2, here we are going to analyze
spectral properties caused by periodic impurities modeled by point interactions in
straight strips or layers.

On the other hand, a periodic structure is in fact a very particular arrangement and
in most real physical systems a disorder coming from randomly distributed impuri-
ties must be taken into account. Its presence has important spectral consequences.
By a deep insight of Philip Anderson which subsequently had a profound influence
on both physics and mathematics, the interference caused by interaction with ran-
domly positioned scatterers leads to a localization of the particle. The latter can be
manifested in various ways, for example, by the occurrence of a dense pure point
spectrum, at least in the vicinity of the spectral threshold, or by the so-called Lifschitz
tails of the integrated density of states. We are going to illustrate these effects in the
model of a randomly deformed two-dimensional waveguide.
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9.1 Periodic Waveguides

For simplicity we limit ourselves to the two-dimensional situation and discuss the
spectrum of periodic planar waveguides. As in the previous chapters it is convenient
to regard them as deformations of a straight waveguide. Since the properties we are
going to discuss do not change under scaling, we may take, for instance, Qg =
R x (0, 7) and consider a function 4 : Qa' — RR? such that

h(xy +2m, x2) = (h1(x1,x2) 4+ 27, hy(x1, x2)) forall¥ € QF , (9.1)

where X = (x1, x2) as usual. The periodic waveguide €2 to be considered is then
the image of the straight strip, Q = h(Q(J)r ). Note that this may describe various
geometries such as strips which are periodically curved, have a periodically changing
width, and other possibilities.

9.1.1 Absolute Continuity

Our aim is to prove the absolute continuity of the spectrum. First we need to recall
a result which guarantees this property for a certain class of second-order operators
in R? with periodic coefficients, both as a motivation and as a tool.

Theorem 9.1 Consider the lattice T = 27Z) x (2nZ) in R? and the operator

2
1 1
H= > —(i0;—A)Gj(iok — A)+—V
Frtls 1

in Lz(Rz, wdX). Let the functions Gk, Aj,u,V, j, k =1,2, be I'—periodic and
assume that G, Aj € WI’OC(RZ) and 1, V € LOO(RZ). Suppose, moreover, that
there are positive constants ¢ and C such that

clEP < (6, G@Ep < CIE)? and ¢ < pu@E) <C

holds for all ¢ € R? and X € R?. Then o(H) is absolutely continuous.

We refer the reader to the notes for sources concerning the history and the proof
of this theorem. Our main goal here is to demonstrate the validity of a similar claim
for periodic waveguides:

Theorem 9.2 Leth € W3 (QS’ ) be bijective and such that the Jacobian J, (X) does
not vanish for any X € Q(J{ . Under the periodicity condition (9.1) the spectrum of
the Dirichlet-Laplacian —A% in L*>(Q) corresponding to the periodically deformed

strip Q2 = h(QS‘) is absolutely continuous.
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The strategy behind the proof of Theorem 9.2 will be to reduce the problem to the
analysis of an operator on QE)" with periodic boundary conditions and A| = A =
V =0, and to apply Theorem 9.1. The reduction will be done in several steps which
we describe below in a series of auxiliary results.

As we did repeatedly before, in the first step we translate the geometry into the
coefficients of the operator by transforming the problem into an equivalent one on the
straight strip 528' . To this end, we employ the inverse mapping f =h~!: Q — Q(‘)"
and introduce the function

GEH =;'DpDp o fTH®), A®=Jr(fTET 02

where D is the Jacobi matrix of f and J denotes its determinant. Next we define
the unitary operator U from L2(2) onto Lz(QaL , Ldx) by

OP)E =P(f~' (@) fory € L ().
Finally, let Hp (G, [) be the operator on L? (Qg , [1dX) associated with the sesquilin-

ear form defined on HO1 (SZ(T ) by

00(,0) = [ (V6.6 Vo) d.
0
Lemma9.1.1 U (-A$)U~" = Hp(G, fi) holds in L*(2f, jidX).

Proof We denote by ¥ = f~!(X) the variables in Q. Let B(X) = JJTID (DT
so that G(¥) = B(f~!(¥)). Forany v, ¢ € HO1 (Q(‘)") we then have

/SZ Vi (U9 ®) - Vi (071 9) () dX = /Q J5®) (Vi (%), BX) Vi 6(X)) g2 d¥

= | V20, GG Vs 6Dz 07 = Q0. 0),

0
which is nothing else than the stated unitary equivalence. |

In the next step we are going to replace the matrix G with a new one which is
diagonal on the boundary.

Lemma 9.1.2 There exists a bijective mapping w € WZ’C’O(SZBL ) from Q(J)r onto itself
with Jy, uniformly positive, satisfying the periodicity requirement (9.1), and such that
if G is given by (9.2), then the matrix-valued function

GE) = (J,'Dy G (D) ow™H(F)
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is 2m-periodic with respect to x1, belongs to WI’OO(Q(J)r ), and satisfies
é]z(xl, 0) = é]z(xl, ) =0 for all x; e R.

Proof Note that det G = 1 holds in view of (9.2), hence we can factorize G as
G = MT GyM using the matrices

_(G» © _(10 A Al
Go—( 0 ézz)’ M—(ml), m:=G12G,, .

Fix a function n € C;°(R) satisfying 7(s) = 1 for |s| < 1 and a number § > 0; then
we define the map w : Qa' — QS‘ by w(X) =y = (x1 — b(X), x2), where

b = m(x1, 0 x2n(F) +mx. M —mn(Z=—).

It is easy to check that for 6 small enough w is bijective, belongs to WZ’OO(QE; ), and
that J,, = 1 + O(9), hence Jy, is uniformly positive for such 4. It is also obvious
that w satisfies the requirement (9.1), which in turn implies that G is 2m-periodic
with respect to x1. Moreover, from the fact that D,, € W“’O(Qar ) we deduce that

G ¢ Wl’o"(Qar ). Finally, a direct calculation using the construction of w shows

that M (D,)7 is the unit matrix for x, = 0 and x» = 7, hence we get G(}?) =
(Go o w™H) (%) for these values of x; thus concluding the proof. |

In view of Lemma 9.1.1, to prove Theorem 9.2 it suffices to show that the spectrum
of Hp(G, [1) in L2(§25r , udX) is absolutely continuous. To do so we extend the

operator Hp (G, fi) from Qg into

S=QfuQ,, =Rx(-x0).
For this purpose we have to introduce appropriate extension operators. Let us denote
by Li(S ) and L (S) the subspaces of symmetric and antisymmetric functions (with

respect to the axis x, = 0) from L?(S). Here p € [2, oo]. The respective projections
P+ on these subspaces are given by

- 1
Pry(x) = 3 (P (x1, x2) £ P(x1, —x2)).
The extension operators T : L? (Qa’ ) — LP(S) are then given by

. 2P yp(xy, x0) i X e R,
(Tep)(x) = {_2—1/p Y(x1, —x2) if X € Q.
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To relate these extensions to 27-periodic functions with respect the variable x,, we
define C = R2/72, where o = {27mm (0, 1) : m € Z}. It follows that

WiP(C) = PaWhP(C) = WP ()N LE(C). (9.3)

The proof of the following lemma is left to the reader (Problem 1).
Lemma 9.1.3 We have
T, WhP(QF) = WLP(C) and T-WhP(Q5) = WhP(©).

In addition, for any ¢4 € Wl”’(Qg_) and _ € W(}’p(Qa') we also have

O (Teypx) = Te(O1+) and O (Tetpt) = T=(Dovhx) . 9.4
Now we are able to transform the problem to the investigation of a periodic operator
on the doubled strip S. Let /i be given by (9.2). With Lemma 9.1.2 in mind we assume
that

Gi12(x1,0) = Ga(xy, m) forallx; e R. (9.5)

We employ the operator H,(G, ;1) in L?(S, pndx) associated with the following
sesquilinear form,

0,10 6] = /Sww, GVO g di. b.éeD(Q,) =W2C]s),

where G and p are given by

Gjj=T+Gjj, Gn=T-Ginn, p="T¢fi. (9.6)

In view of (9.3) we have P+ D(Q,) = D(Q,) N Li(C). Next we show that
OplPrip, P_gl =0 V1, g€ D(Qp). 9.7
Indeed, using the notation )y = Pyt and ¢ = P_¢, we obtain
2
Qplpr, 1= > /(3j¢+, G jk Oxp-)g2 dx .
k=175

It follows from (9.6) that G ; and y are even functions in the variable x,. This in

combination with Lemma 9.1.3, see Eq. (9.4), shows that all the integrands on the
right-hand side of the last equation are odd with respect to x2. Hence (9.7) holds true
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which implies that Li(S) are invariant subspaces of the operator H, = H,(G, p).
This means that

H,=HS ®H,, 9.9)

where H ;,'E are the self-adjoint operators associated with the sesquilinear forms
obtained from Q,[-, -] by restricting the domain D(Q ) to Wi’z(C [S).

It is now clear how to proceed further. We shall use Theorem 9.1 to show that the
spectrum of H, is absolutely continuous, and from (9.8) we can then conclude that
the same is true for the operator H,,". Note that the latter is related to H »(G, ) in
the following way.

Lemma 9.1.4 Under the condition (9.5) we have
T_Hp(G.[)T* = H, .

Proof Inview of Lemma 9.1.3 it suffices to check that the corresponding sesquilinear
forms coincide for any v, ¢ € Wl’z(C [ S). Using the definition of 7T_ we easily see
that

(T*u)(X) = V2u(¥) forall ¥ e Qf andu e L1 S):

if we now take into account the symmetry properties of G j x we find that the sesquilin-
ear form of the operator 7_ Hp(G, f1) T* satisfies

2
/S(V(wa), GV(T*$))gedi =2 D

jk=1

2
=2, /S (0. G ji 0k d)g2 d .

Jk=1

/ (0j, G jk Ok P)p2 dX
Q

Since the last expression coincides with the sesquilinear form of the operator H,,
we obtain the result.

Proof of Theorem 9.2: In view of Lemma 9.1.2 it suffices to prove the claim for G
which verifies (9.5). Since the coefficients G, i defined by (9.6) satisfy the assump-
tions of Theorem 9.1, it follows that the spectrum of H), is absolutely continuous.
Hence the same is true for its orthogonal parts H ; and H,, see (9.8). From Lemma

9.1.4 we then conclude that Hp (G, fi) is absolutely continuous, which in turn by
Lemma 9.1.1 implies the claim of Theorem 9.2. |
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9.1.2 Periodically Curved Waveguides

Let us now investigate in more detail a particular case of a periodic waveguide
discussed above, namely a two-dimensional periodically curved strip €2 of width d.
It is convenient to choose one the boundaries as the reference curve, in other words,
we suppose that €2 is the image of 29 = R x (0, d) by the map (1.3),

h(s,u) = (£(s) — uij(s), n(s) +ué(s)), (s,u) € Q,

expressed in terms of the curvilinear coordinated (s, #) introduced in Sect. 1.1. As
we have demonstrated there, the Dirichlet Laplacian —A% on L?(Q) is unitarily
equivalent to the operator

Hy=—0,(1+uy) 20, — 3> + V(s,u) in L*(Q)

with the effective potential V (s, u) given by (1.8); we label the symbol with the strip
width d which will be important in the following. In contrast to Sect. 1.1, the signed
curvature y(s) = ﬁ(s)é (s)— 5 (s)7j(s) is now supposed to be a periodic function; for
the sake of simplicity we suppose that its period is 2. In such a case the function
V (-, u) is 2m-periodic for a fixed u as well, and by the standard Bloch-Floquet
decomposition Hy is unitarily equivalent to a direct integral,

52

Hy=U""! ( Hao d9) U, 9.9)

[0,1]
where the fiber operators on Lz(Ad) with the cell Ay := (0,27) x (0, d) act as
Hyp=—05(1 +uy) 205 — 02+ V(s,u)

on Dom (Hy ¢) consisting of all functions f € H 2(A4) which satisfy the conditions
f(,0) = f(-,d) = 0and 9] f2r,-) = 299/ (0, ) for j = 0, 1. The quasi-
momentum 6 runs through the Brillouin zone [0, 1], and the unitary equivalence (9.9)
is mediated by

WUf)(s.u,0)= D e fls—ju), (s.u)eAq.

Jjen

Since the operator Hy; ¢ has compact resolvent, its spectrum is purely discrete; we
denote its eigenvalues by E, (0, d). In view of decomposition (9.9) we have

o(=AD) =0(Hy) = | ] In(d). 1,(d) :=(E,(0.d): 6 €[0,1]}.
n=1
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In the following we shall assume that the strip bending over a period is zero,
2w
/ v(s)ds =0, (9.10)
0

and that  is sufficiently regular, v € C%(R). With the help of parametrization (1.5)
it is easy to check that the mapping & then satisfies the assumptions of Theorem 9.2,
which means that the spectrum of — A% is absolutely continuous, and the same holds,
of course, for the operator H;. This means that none of the intervals 7, (d) defined
above degenerate into a single point, and consequently, the spectrum of Hy is the
union of spectral bands,

I,(d) = [9%] En(0.d). max E, (@, o], n=12...

It is natural to ask whether there are open gaps between these bands, and if so, where
they are located. We are going to show that the spectrum contains at least one open
gap provided the strip width d is sufficiently small.

It is obvious that the existence of open gaps depends on properties of the band
functions E, (0, d). In analogy with the considerations of Sect. 1.6 we shall use the
fact that in a thin strip the spectral properties are determined in the leading order by
a one-dimensional Schrodinger operator of the type (1.44). Hence we compare the
behavior of E, (-, d) in the limit d — 0 with that of the eigenvalues of the reference
operator

e 1,
Ty = —— — —
1= Ty

on L%(0, 27). The domain of Ty consists of all feH 200, 27) satisfying the condi-
tions f(2m) = e27”9f(0) and f'(27) = e27”9f’(0). Let {t;(0)} jen be the eigenval-
ues of Ty counted with their multiplicities.

Proposition 9.1.1 Suppose that v € C*(R) is 2w-periodic and such that Q is not
self-intersecting for all d small enough. Then the expansion

E;(0,d) = ki +1;(0) + Od) (9.11)

holds as d — 0 with the error term uniform with respect to 6 € [0, 1], where as
usual k1 = 7/d.

Proof We write conventionally v = 74 — v— with y4 = %(M +~) and put ¢4 :=
74 |lco- Using furthermore ¢ := ||¥]lco and ¢2 := ||¥]lco We define

Vi(s) = % (1—dc)de; — % (1 +dep) 2 y(s)?
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http://dx.doi.org/10.1007/978-3-319-18576-7_1
http://dx.doi.org/10.1007/978-3-319-18576-7_1

9.1 Periodic Waveguides 301

and
1 -3 5 4p2 1 —2 )2
V_(s) := —5 (1 —dc_) "dcr + ~7 (1 —dc_)"dcy — 7 (1 —=dc) “~(s)”.
Using these notations, we introduce the operators
Hy 'y =—(Fdcg) 207 = 0 + Vals)

on L*(Ag4) acting on Dom (H;fd) = Dom (Hp 4) which estimate Hy 4 satisfying the
inequalities

Hy, = Hpa = H;d 9.12)
in the sense of quadratic forms on H L(A4). We also introduce the operators
T = —(1+dyg) 2 07 + Va(s)

on L2(0, 2) with Dom (Toid) = Dom (7p) and denote by ej.E (0, d) their eigenvalues
counted with multiplicities. A straightforward calculation shows that

(1 Fdes) 7 Ty+0W) < Ty < (1 Fdes) > Ty + O(d)

for d — 0, where the error terms are independent of s and 6, and consequently, the
minimax principle implies that

&5(0,d) =kj(®) +0;(d) as d -0 (9.13)

with the error terms uniform with respect to § € [0, 1]. On the other hand, by
separation of variables one can check easily that the eigenvalues )\f (0, d) of the

operators H;[ , are given by
/\fk(a, d) =K} + ej.t(a, d), (9.14)

where as usual x; = k/jl]. Our goal is to show that for every jy € N there is a d (Jjo)
such that for any d < d(jo) we have

X0, d) = X5 (0, d)
forallk > 2, j > 1and 0 € [0, 1]. Indeed, from (9.14) and (9.13) we get

Afk(a, d) — /\j.;’l(o, d) > 3w7 + 650, d) — ej;(e, d)
> 3k% in #;(0) — ti(0)+ 0. d
> n1+02?(1){11] 1(0) eren[gﬁl o (@) + Ojy(d)
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forallk > 2, j > 1and 6 € [0, 1] which implies the sought inequality. The latter,
in turn, shows that for any jo € N there is a d=d( Jjo) such that for any d < d and
any n < jo the n-th eigenvalue of H(;fd is equal to )\i 1(0, d). The minimax principle
in combination with (9.12) then shows that

)\_(na 170’d) S En(69d) S )\+(n7 l’esd) Vn S jO’ VG e [09 1]

holds for any d < d. In view of (9.14) and (9.13) we thus obtain the asymptotic
expansion (9.11) with the error term independent of 6 € [0, 1]. |

In order to prove the existence of open gaps we also need the following classical
result from the theory of inverse Sturm-Liouville problems.

Theorem 9.3 Let W be a real-valued piecewise continuous function on [0, 27].
Denote by {/\j.t} jeN the non-decreasing sequences of eigenvalues of the operators

2

At =&
ds?

+ W(s) in L*(0,2m)

with Dom (AY) = {f € H?(0,27) : fQ2m) = ££(0), f'2m) = £f/(0)}. If

AT =T

; i+1 foralleven j and /\; =\, forall odd j,

Jj+1
then the potential W is constant on [0, 27].

Now we are able to prove the existence of an open spectral gap for the operator
H;, and hence also for the periodically curved strip Hamiltonian —A%.

Theorem 9.4 Suppose that vy satisfies the assumptions of Proposition 9.1.1. Assume,
moreover, that condition (9.10) is valid and that the strip is not straight, v # 0. Then
there exists an m € N and a constant C,,, > 0 such that

min Em+1(9, d) — max Em(e, d)=Cp+ O(d)
0€[0,1] 0el0,1]

holds true as d — 0.

Proof Consider the eigenvalues ¢ (0), 6 € [0, 1], of the operator Ty. It is well known
that each function #;(-) is continuous and even with respect to the center of the
Brillouin zone, k; (1 — 0) = k;(0) (see the notes). Moreover, for every j odd (even)
k;(-) is strictly increasing (decreasing) as 6 increases from O to 1/2. In particular,
we have

1j-100) <tj_1(1/2) < 1;(1/2) < 1,;(0) forall j € N. (9.15)
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We denote by
;= min t;.1(#) — max t;(0
9 9el0,1] +10) 0el0.1] i®

the jth spectral gap of T = f[%a 1 Ty d6. In view of Proposition 9.1.1 we have

min E,;1(0,d) — max E,(0,d) =G, + O) (9.16)
0el0,1] 0el0,1]

for each n € N as d — 0. Moreover, from (9.15) it follows that
Gj =kj1(1/2) —k;j(1/2) for j odd, G; =k;;1(0) —k;(0) for j even.

Hence we can apply Theorem 9.3 with At = Ty and A~ = Ty ;. Assuming that
G; = Oforall j € N, we come to the conclusion that v is constant on [0, 27].
Condition (9.10) then implies v = 0 which contradicts, however, our hypotheses
on . Consequently, there is an m € N such that G,, > 0, and the stated asymptotic
relation follows from (9.16). |

Knowing that the spectrum of —A% contains at least one open gap for d small
enough, one naturally asks where such open gaps are located, in other words, what
is the value of m in Theorem 9.4. In order to give at least a partial answer to this
question we consider gently curved waveguides passing to the strip €2(¢) which
results from replacing the reference curve (boundary) by the one with the scaled
curvature, y — €7, where € > 0 is a small parameter. As long as -y is 27-periodic the
Dirichlet Laplacian — Ag(g) admits the Bloch-Floquet decomposition; we denote the
corresponding band functions by E, (6, d, €). Let now «, be the Fourier coefficients
of the 27-periodic function 72,

1 .
(S)2 — @ ems;
1= 7 2

T
neZ

it turns out that their values are linked to the spectral-gap localization of the operator
—A%(E) (see the notes).

Theorem 9.5 Suppose that vy satisfies the assumptions of the previous theorem, and
moreover, assume that Q2 (€) is not self-intersecting for all d and € small enough. If
o 7# 0 holds for some m € N, then there is an €y > 0 such that for any 0 < ¢ < g
the asymptotic expansion

min E;4+1(0,d,e) — max E,(0,d,e) = C. 4+ O(d)
0e[0,1] 0€[0,1]

holds true as d — 0 with some C. > 0.
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9.2 Periodic Point Perturbations

A waveguide can also have a periodic structure coming from a potential rather than
from the geometry. The spectral analysis of such systems can be made more explicit
if the perturbation consists of point interactions which we have treated in Chap.5.
Let us see what happens if they are periodically arranged.

9.2.1 Point Perturbations in a Strip

Consider first the situation of Sect. 5.1 when 2 is a straight strip. As before we assume
thatits widthisd = 7, and since this fixes the scale, we keep the longitudinal period as
a parameter to be fixed. In other words, we suppose that the set of point perturbations
{a,a} ={lej,ajl: j=1,2,...}in Q =R x (0, 7) is countably infinite and has
a periodic pattern with a period £ > 0; the number of perturbations in a period cell
is assumed to be finite.

The point perturbations determine the operator H (v, d) through boundary condi-
tions (5.2) as in Sect. 5.1 which is again self-adjoint (see the notes). The periodicity
makes it possible to reduce the problem to the spectral analysis of systems with a
finite number of perturbations by means of the appropriate Bloch-Floquet decom-
position: there is a unitary operator from L2(£2) to the direct integral of the spaces
L2(Ay), where Ay is the period cell such that

53]

UH(a,a)U™ ! = H(o, ad: 0)do,

27 Jioe<x

where H (a, a; 0) is the corresponding point-interaction Hamiltonian on L%(Ap),ie.
the Laplacian defined on functions from H?(A ) satisfying the boundary conditions
(5.2) at X = a; together with ¥(x, 0) = ¢(x, d) = 0 and

WL, y) =0, y), e, y) = a0, y).

With a slight abuse of notation we shall use the symbol (c, @) for the subset of the
point interactions in A, and suppose that their number is N.

In the absence of point perturbations, o; = o0, the spectrum of H(a, a; ) is
easily found by separation of variables: the eigenvalues

o) 2
Emn(g):(me +0) +n’, meZ,n=12,..., 9.17)


http://dx.doi.org/10.1007/978-3-319-18576-7_5
http://dx.doi.org/10.1007/978-3-319-18576-7_5
http://dx.doi.org/10.1007/978-3-319-18576-7_5
http://dx.doi.org/10.1007/978-3-319-18576-7_5
http://dx.doi.org/10.1007/978-3-319-18576-7_5

9.2 Periodic Point Perturbations 305

correspond to the eigenfunctions nﬁ, ® Xxn, Where Y, are the transverse modes (1.10),
and

R oi @rm+60)x /€

00y
M (X) = 7

meZl.

From here one obtains by a direct computation the free resolvent kernel,

sinh((€—|x; —x2))vn2—z) 4+ 2" sinh(|x; —x2|v/n%—z)
cosh(£+/n?—z) — cos(0€)

o0

Go(X1,%2;0;2) = Z
n=1

sin(nyy) sin(ny;)

5 YL SIY2)

mv/n?—z '
where 77 := sgn (x] — x2). Then we have the following result (Problem 3).

Proposition 9.2.1 The resolvent kernel of H(«, a; 0) is expressed by the formula
analogous to that of Proposition 5.1.4 with

Ajm(a,a,0;2) = (aj — €@, 0;2)) djm — Go(@j, dm; 0; 2)(1—8jm)

where the regularized diagonal part is given by

|l ( sin(€+/z—n?) sin® nb; 1 )

cos(Uvz—n?) —cosbl /z—n?  2n
ad ( sinh(¢+/n%—z) sin? nb; 1 ) ©.18)

§@0:0=—

n=1

1
+_ E
v cosh(f~/n?2—z) —cosOf /n2—z 2n

n=n[z]+1

with n[z] := max{0, [/z]}. The above quantity is defined everywhere except at the
points where 7 = €, (8) and sinnb; # 0; as a function of real z it is increasing
between neighboring singularities.

To find the eigenvalues of H(«, a; #) which determine the band spectrum of
the original operator H (v, a) one has to find the resolvent singularities which are
determined by the condition det A («, @, 6; z) = 0. Let us see how the solution looks
like in the simplest case when we have a single array of perturbations, N = 1, and
the spectral condition simplifies to

@, b;2)=a.

According to Proposition 9.2.1 the function on the left-hand side is for real z
monotonically increasing between its singularities. This means that for fixed «, 6
there is a sequence {E, (v, d, 0)},cn of eigenvalues arranged in the ascending order;
each of them depends, in fact, only on the y-component b of the vector a. The low-
est one satisfies E1 (o, @, ) < €o1(0) = 1 + 67 and between any two neighboring


http://dx.doi.org/10.1007/978-3-319-18576-7_1
http://dx.doi.org/10.1007/978-3-319-18576-7_5

306 9 Periodic and Random Systems

singularities there is just one of the other eigenvalues. It is also clear that each of the
E,(a, a, 0) is continuous with respect to the parameters and E, (-, a, 0) is increas-
ing for fixed b and 6. The eigenvalues need not be monotonous with respect to 6,
however, the implicit-function theorem tells us that

OE (a,d,0) _  06@a.0;2) (06, 052\
a0 N a0 0z

0.Er)

whenever the denominator is nonzero. Leaving aside the thresholds, z = n?, and the
eigenvalues (9.17), a straightforward differentiation shows that £(a, -; -) is analytic
in both variables. Since the function ¢ is not identically zero, the derivative aE’(+9’aﬁ)
does not vanish in an open set, which means that the spectrum of H (c, a) is absolutely
continuous.

Let us ask next about the number of open gaps. The spectrum below z = 1 may
be estimated by means of extrema of the function &: we have

1 < (sin®nb 1 1
&i(a, z) = |gelfagx7r £, 0;z2) = - ; ( coth (Enn(z)é) — —) ,

Kkn(2) 2n

where again x, (z) = +/n%—z, and a similar formula for the minimum, £ _ (a, z), with
coth replaced by tanh. Both functions are increasing and have the same logarithmic
asymptotics as £(a, z) of Sect. 5.1 for z — —oo (cf. Problem 5.5). On the other
hand, £, (a, -) diverges as z — 1—, while £_(a, -) has a finite limit. This shows that
an open gap exists provided

. ? 1 1 < [sinnb 1 1
0 < €@ 1-) = — sin®b— — 4~ S MY tanh (—f-@n(l)ﬁ) - ).
27 2T 0w = K 2 n

The condition is satisfied for a strong enough coupling, or alternatively, for any fixed
« and the point-interaction spacing ¢ large enough.

Let us further check how many gaps can be open in the spectrum of such sys-
tems. Recall that we have already encountered periodic arrays of point interactions
when we discussed the edge states having no classical analogue in Sect. 7.2.2. The
corresponding Hamiltonian has an infinite number of gaps, however, their existence
comes from the magnetic field responsible for the occurrence of Landau levels in
the spectrum of the unperturbed system. In the non-magnetic case an array of point
interactions in the plane, sometimes called a straight polymer model, has one gap
provided the coupling is strong enough (see the notes). Now we are going to show
that for a “coated polymer” we are discussing here a stronger result is valid, namely
that for a suitable choice of the parameters it can have any finite number of open

gaps.
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To this end, we consider the energy between the first and the second threshold,
z € (1,2). We suppose that £ >> 1 and rewrite the right-hand side of the relation
9.18)as &(a, 05 2) = &o(a, 0; 2) +n(a, 0; z), where
sin(€+/z—1) sin? b
cos(l/z—1) —cos 0l m/z—1

Similarly as above one can check that 7(a, 0; -) is monotonically increasing with a
bounded derivative everywhere in the chosen interval of energies. Moreover,

1 1 < [ sin®nb 1 1
a,0;z) < ==+ - E ———coth{ =vn?2—z) - —1),

o, 0;z) =

and the minimum, 7)_(z), is obtained when coth is replaced by tanh. The upper and
lower estimate become close to each other when ¢ is large; using the inequality
cothu — tanhu < 5e~2 for 2u > 1, we find

5w sin?nb s S —

—0/n2— —L(n—1)

R -n-@) <= = VrE < N e
g n=2 HZ_Z g n=2

for z € (1,2), s0 n4(z2) —n—(2) < %e_z(l — e 7! and the allowed corridor
shrinks exponentially with increasing £. On the other hand, the function

) sinu
go(u) = cosu — cos ¢
is increasing between any two zeros of its denominator. In the intervals, where it is
positive, it is estimated by the appropriate branch of tan (% + 7rm) from below; if it
is negative, we have a similar estimate from above with tan replaced by — cot. Hence
independently of 6 we have

0@ 0:2) > sin?bh  (tan T (£ —
Oa”z_w\/z—_lcot 27rZ ,

where {-} denotes the fractional part. Putting these estimates together, we see that
the oscillating part dominates, hence for sufficiently large |« there are gaps hav-

ing 1 + (%)2 as one endpoint provided the latter lies in the chosen interval.
In addition, we have tanu + cotu > 2, which means that the gap between the
lower and the upper bound to £(a, 0; z) never closes for z € (1,2) provided
5¢ (1 —e %! < /2 sin? b. Summarizing the above considerations, we come to
the following conclusion.



308 9 Periodic and Random Systems

Proposition 9.2.2 The spectrum of H(c, a) describing a single array of point per-
turbations can have for a fixed o € R an arbitrary finite number of gaps provided
the distance £ is large enough.

In contrast to the magnetic case one expects that from some energy on the spectral
bands start overlapping. However, as for the geometric perturbations considered in
the previous section, the validity of the Bethe-Sommerfeld conjecture for waveguides
with periodic potential or point-interaction remains an open problem (see the notes).

9.2.2 Magnetic Layers with Periodic Point Perturbations

In Sect. 5.3 we treated motion in a planar layer = R? x (0, d) with a finite number
of point perturbations. In the same way as above we can extend this analysis to
Hamiltonians describing periodic lattices of point interactions; we leave this task
to the reader (Problem 4). Now we are going to discuss what will happen if such
a system is under the influence of a homogeneous magnetic field. For the sake of
simplicity we assume that the field is perpendicular to the layer and each elementary
cell of the lattice contains only one point interaction.

We adopt the notation of Sect. 5.3 and denote by X = (x, y) € € the coordinates
in the layer, where x = (xq, x2) € R? and y € (0, d); as before we put d = .
The magnetic field is supposed to be B = (0,0, B) with B # 0. We start with the
unperturbed operator,

Ho=(—id + A1)+ (—id+ Ar)* — 82
on LZ(Q) with the domain
Dom (Ho) = {f € H*(Q): Hof € L*(Q), f(x,0) = f(x,d) =0, x € R?*}.

We use the circular gauge, g(x) = (A1(x), Ar(x)) = %(—sz, Bxy). Due to the
presence of the magnetic field the decomposition (5.13) now becomes

= B B
Ho>~@ hn @ I, hy:=(—i0h - 5x2)2+(—i62+5x1)2+n2, (9.19)
n=1

where 1, is the unit operator on L2 (0, 7) and ~ denotes unitary equivalence; the oper-

ator on the right-hand side acts on @;’; 1 L2(R%)®{xn} with x,, (x3) = \/g sin(nx3)
(Problem 5). It follows that the spectrum of Hy is given by

0(Ho) = 0ess(Ho) = {|BI(2l = 1) +n* : I,n e N},
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in other words, it consists of eigenvalues of infinite multiplicity being sums of the
Landau levels | B|(2] 4+ 1) and the transverse-mode energies. The eigenvalue corre-
sponding to the /-th Landau level and the n-th transverse mode will be denoted by
e, n) =|B|(2l — 1) + n?.

L_qt A be the infinite lattice with the basis consisting of vectors @ = (ay, 0, 0)
and b = (b1, b, 0) with by # 0. By assumption the corresponding elementary cell
{sa+1tb: (s,t) € [0,1)} x (0, ) of 2 contains a single point potential; without
loss of generality we may suppose that it is placed at the point p = (0, 0, p3) and
define I' = A + {p}. In order to demonstrate how the spectrum of Hy changes under
the influence of periodically distributed point interactions, we need to check how the
system behaves with respect to translations. In particular, we have to determine the
two-dimensional translation group with respect to which the perturbed operator is
invariant. This will allow us to write a formula that will replace the Bloch-Floquet
decomposition used in the non-magnetic case.

We consider the group of discrete magnetic translations over the lattice A,

WE AN ={NO: NeA, (=™ meZ},

where 1 = % a1by B is the flux of the field B through the elementary cell. The
group law in the coordinates referring to the basis {a, l;} of A has the form

A O, ¢ = (A+ X, ¢ exp (minOaXy — ApAL)) ;

notice that groups W (£, A) corresponding to different values of £ and different two-
dimensional lattices A; having nevertheless the same value of 7 are isomorphic,
hence we will denote the group simply by W,,. It has a representation in the state
space L?(2) of our system given by

TAONE =Cexp (5B xD)-F) fE-H. feLl’@.

i.e. acting as translation with an additional exponential factor. If the flux through the
elementary cell is rational, n = N /M, then any unitary representation of the group
W,; decomposes uniquely into an orthogonal sum of irreducible representations (see
the notes) by means of the Landau-Zak transformation

Ly: L*(R*) @ 12(N) - LX) @ CM @ CV @ 2(N) ® £*(N)
with the torus Tn2 = [0, M~1) x [0, 1), where £, acts in the following way,

Ea D p. jokolom) = N2 S exp (2rim P2EK) (9.20)

meZ

x /}R fx,n)o(x, pr+nj+m,1)dx.
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Here p = (p1, p2) € Tn2 and Yo(x, g,l) with g € R and / € Ny are generalized

eigenfunctions of the operator /,, — n* associated with the lattice A,

(b @ N2 ithy , 2imx1 X2
Yvo(x,q,l) = (?|B|—3/22 l!) exp( an q ) eXp(T(Z_ln—i_q))

X exp ( — |Bl(x2 + %q)Z) H,(|B|1/z(x2 + %q)) .

where H; denotes the Hermite polynomial of order /.
Consider now the perturbation of Hy by point interactions placed at the points
of the lattice I". The construction is the same as in Chap.5: one starts from the

symmetric operator obtained by restriction of Dom (ngo)) = {f € Dom (Hp) :
f(w) = 0, w € I'} which makes sense in view of the Sobolev embedding, and

identify the perturbed operator H 4 r as a suitable self-adjoint extension of HI(-O). We
introduce the generalized boundary values from the behavior

14+iA@) - (% — )

4r|x — 0|

JF(X) = Lo(f, w) + Li(f,w) + O(xX — ¥

of the functions f € D(HIEO)*) in the vicinity of the lattice points modified to take
the presence of the magnetic field into account. To get a self-adjoint extension, the
vectors L (f) :={L;(f,w): w €T}, j =0, 1 have to satisfy the condition

Li(f) = ALo(f) =0, 9.21)

where A is a self-adjoint operator on £2(T"). In analogy with (5.2) we are interested
primarily in the physically relevant situation where the point perturbations are local,
i.e. the matrix representation of A is diagonal. However, we may consider a more
general class of A satisfying a “short-range” condition

|A@@, B')] < ¢ el (9.22)

for some positive ¢; and ¢ and all w, w" € I". The Green function of H 4  can be
again expressed by means of Krein’s formula (Problems 6 and 7). To this end we
introduce the matrix-valued function

- oy _ Go(w, W', 7) if
Q(w’w’Z)_[Qo(w3,Z) if

where the regularized Green function of ngo),

- . - - 1
QO(w’ Z) = Jlm (G()(.X, w7 Z) - ?)
X—=w 4 |x — w|


http://dx.doi.org/10.1007/978-3-319-18576-7_5
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depends in fact on the third component of W only, Qo(w, z) = Qo(w3, 7). We then
have the following result (Problem 6).

Proposition 9.2.3 Assume that A is a self-adjoint operator on £*(I') which satisfies
(9.22) and which is invariant with respect to the group Wy,. Then there is a unique self-

adjoint extension H A 1 of the operator HIEO) with the resolvent kernel G(X,y,z) =
(Hr —2)" (X, ) given by

G(i.5:2) = Go@. ¥ )+ > [A— Q@I (. #') Go(&. i: 2) Go(i'. 3 2).

w,w'el

The operator-valued function Q(-) is meromorphicin z € Cand all its poles coincide
with the spectrum of Hy. Moreover, the operator Hr is invariant with respect to Wy,
and the functions from its domain satisfy the condition (9.21).

The operator A— Q(z) plays the same role as the matrix A (z) in the Krein formula
expressions of Chap.5. In the physically interesting case when A is diagonal the
invariance with respect to W, means that all the point-interaction coupling constants
are the same, A(w, w') = d; g« with a fixed « € R.

Using the above result we are able to describe the spectral properties of the full
operator H 4 r. It turns out that the structure of the spectrum depends on the value
of the magnetic flux through the elementary cell. Suppose first that the flux is an
integer, n = N € N and M = 1, in which case the index j in the Landau-Zak
transformation (9.20) can be omitted. Given a vector A € A we denote by (Aa, Ap)
its coordinates relative to the basis {a, b} and introduce the Fourier transformation
Fy i 2() > L3(T}}) by

(Fy ) (p) = D oA+ ) ex(p),

XeA

with e)(p) := exp (— 2wi(Aap1+Aop2+ %N)\a )\b)). Since the unperturbed Green
function Gg is W,, invariant, the operator Q(z) transforms as follows,

0(p.2) = (F) Q) Fy ) (p) = D QA 5. 2) ealp). (9.23)

XeA

which is well defined since |Q (@, W', 2)| < c3 e~ holds for all @, &’ € T’
and some c3, ca4 > 0; this follows from the definition of Q(z) and the properties of
the free Green function Go (Problem 7).

The periodicity can be used to simplify the spectral analysis in a way analogous to
the Bloch-Floquet expansion. Since Hr is invariant with respect to W, it is unitarily
equivalent to the direct integral

~ @ ~
Hr = / Hr(p)dp,
T3
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where the fiber operator Hr( p) acts on the space CV ® ¢2(N) ® ¢2(N) as

(Hr(p) )k, 1,n) = (Lo ha (L' ) (P, 1k, L, 0)

with theindicesk = 1,... N andn, ! € N, cf. (9.19). The direct-integral deco~mposi—
tion means that the spectrum of Hr coincides with the closure of | peT? o(Hr(p)),
n

hence we have to analyze the spectrum of Hr(p) for a fixed value of the quasi-
momentum p € Tnz. This can be done by investigating its Green function G( p).
Using Proposition 9.2.3 in combination with a straightforward calculation we express
its matrix elements as

- 1
G(p, k. k', 1,I',n,n'; 2) = O Oppr Oy ——— (9.24)
ell,n) —z

e _ = —1 So(p’kvl) SO(p’k/sl/)
+[A(p) — Q(p, 2)] o —el =2 Xn(P3) X' (P3) »

where A(p) := D sen A\ + p) ex(p) and

- ko -
do(p,k, 1) :=N~1/? Z exp (27 m %) Po(0, p1 +m, 1)

mez

is the £,-transformed delta function in R2. In this way the problem is reduced to an
analysis of the function 0( P, z) givenby (9.23). To this end we denote the eigenvalues
of Hy arranged in ascending order by ¢;, i =0, 1...; if there is more than one pair
of numbers (I, n) such that €(/, n) = ¢; then we denote this set of pairs by J (¢;) and
their number by |J (¢;)|.

By examining the residua of the Green function (9.24) at z = ¢; € o(Hp) it is
straightforward to determine whether a given eigenvalue of Hy stays in the spectrum
of Hr(p) and if so, what is its multiplicity:

Lemma 9.2.1 Assume that the fluxn = N € N and fix ¢, € o(Hp) and p € T772‘
Then one of the following alternatives occurs:

(a) There is at least one pair (I,n) € J(e¢;) with So(p, 1) # 0and x,(p3) # 0,
then €; is an eigenvalue of Hr (p) with multiplicity N |J (¢;)| — 1.

(b) So(p, -~ Dxn(p3) = 0 holds for all indices (I, n) € J(¢;) and Q(p, €) # fl(p),
then~ €; is an eigenvalue of I:Ir (p) with multiplicity N |J (&;)|.

(c) do(p, -, Dxn(p3) = 0 holds for all indices (I, n) € J(¢;) and Q(p, €) = ./Zl(p),
then €; is an eigenvalue of Hr (p) with multiplicity N |J (¢;)| + 1.

In particular, if n = N > 2, then any eigenvalue of Hj remains in the spectrum
of Hr, while for the single flux quantum through the lattice cell, n = N = 1, the
eigenvalues zo € o(Hp) for which there is just one pair of indices (/, n) € J(z0) and
xXn(p3) # 0 have to be removed.
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On the other hand, the perturbation not only removes eigenvalues; the spectrum
of Hr can also contain other points than eigenvalues of Hy. In order to find them we
consider the implicit equation

O(p, E) = A(p). (9.25)

Its solutions, for which the 50 in the numerator does not vanish, are poles of the
Green function (9.24), and therefore determine points of the spectrum of Hr.

To find the solutions of (9.25) as functions of p let us first exclude the “orphan”
eigenvalues of Hy, i.e. those ¢;; for which there is no pair of indices (I, n) € J(¢;7)
satisfying x, (p3) # 0. It is obvious from (9.24) that they cannot be poles of Q(p, -),
and therefore equation (9.25) may have no solution in the intervals (¢;/_1, €;7) and
(ei7, €i741). Eliminating these “orphan” points we obtain a subsequence of eigenval-
ues which, for simplicity, we again denote by {¢;}; note that this subsequence is still
infinite. For notational convenience we set e_; = —oo. For a given / € N we also
put Uy = {p € T,]2 : So(p, 1) # 0}). Fixnow a p € Tnz, then for any interval
(ej—1, €;) there are two pairs of indices (I, n1) € J(¢;—1) and (I2, n2) € J(¢;) with
Xn; (p3) 7 0 and x,,(p3) # 0. The function Q(p, -) then diverges at the points of
the subsequence {¢;}, and since

0:0(p.2) = Z Z |€(IX2()'02) 5 z 1o(p, k. DI,

n=Il

itis strictly increasing in each of the intervals (¢;_1, €;). Hence there exists a unique
solution E(p) to the implicit equation (9.25) in the interval (¢;_1, €;). Moreover,

Q( p,-) and A( p) are real-analytic which means that the function E(-) is also real-
analytic on the set U;, N Uy,. Since U, N Uy, has a full measure in Tnz, the function

E(-) extends by continuity to the entire torus Tnz.

Lemma 9.2.2 The function E;(-) defined above has the following properties:

(a)Ifej—1 < Ej(p) < ¢€j, then Ej(p) is the unique solution of equation (9.25).
(b) If € is a pole of the function O(p, ), then Ej(p) <e;j < Eji1(p).
(c) If € is not a pole of the function O(p, ), then

O(p.ej) < Alp) = Ej(p)=¢€; < Ejti(p)
O(p.ej) > Alp) = Ej(p)<ej=E;j11(p)
O(p.e))=Alp) = Ej(p)=¢; =Ej1(p)

Proof Let (I1,n1) € J(ej—1) and (I2,n2) € J(€;) be pairs of indices such that

Xn, (p3) # 0 and x,,(p3) # 0; recall that such pairs exist by construction of the
sequence {e;}. Define 1u(p, z) := Q(p, z) — A(p).



314 9 Periodic and Random Systems

Assume first that £ (p) does not coincide with either of the endpoints ¢;_; and
€. From the the equation p(p, Ej(p)) = 0 and the joint continuity of x(-, -) in the
vicinity of p, E;(p)) we infer that u(p, E;(p)) = 0 holds forall p € Tnz; the claim
(a) then follows from the fact that u(p, -) is strictly increasing. The point E;(p)
defined above is not a pole of (p, -). Indeed, consider the function z — 3(p, z) :=
p(p,2)(z — €j—1)(z — €;), which is analytic in an interval (¢;_1 — d, €; + 0) for
0 > 0 small enough. By continuity of 3 we then conclude that 3(p, E;(p)) = 0
holds for all p € Tnz. Hence E (p) cannot be a pole of yi(p, -), which proves (b). To
check (c) we will need the following implications:

Ej(p)=¢;j = lim pu(p,z) <0,
z—>Ej(p)

(9.26)
Ej(p) =€j-1 = libzn p(p,z) = 0.

z—>Ej(p)

Recall that the limits exist in view of the monotonicity of u(p, -). To prove the
first implication assume that E;(p) = €, but lim;—, g (p) pu(p, 2) > 0. Then there
are Eg € (ej_1,¢;) with pu(p, Eg) > 0 and po such that p(po, Eg) > 0 and
Ep < Ej(po). From the monotonicity of u(p,-) we then get a contradiction,
0 < wp(po, Eo) < p(po, Ej(po)) = 0. The second implication in (9.26) can be
demonstrated in a similar way.

Assume now that €; is not a pole of Q(p, ) and p(p, €;) < 0. Then by (9.26) it
follows thate; < Ejy1(p). To proceed we consider a sequence {p, },en C Uy, NUY,
such that p, — p asn — oo. Then there is an ng such that u(py, €;) < 0 for all
n > ng, which in view of u(p,, Ej(p,)) = 0 and the monotonicity of u(p, -)
implies that €; < E;(py) for all n > ng. Since E;(p,) — E;(p), it follows that
€; < Ej(p) and hence ¢; = E;(p). The second implication in (c) is treated in
the same way. Finally, consider the last case in (c) when u(p, €;) = 0. Assume,
for instance, that E;(p) < ¢;. Then from the claim (a) and (9.26) it follows that
limzﬁEj(p) 1(p,z) > 0; hence there exists an E; € (E;(p),¢;) such that 0 <
w(p, Ej(p)) < p(p, E1) < p(p,e€;) = 0, which is impossible. It follows that
E(p) = ¢€;. The same argument shows thate; = E;1(p). |

Now we are able to describe the spectrum of the periodically perturbed magnetic
layer with a single perturbation in each lattice cell.

Theorem 9.6 Suppose that the flux through lattice cell n = n € N. Then the spec-
trum of Hr consists of two parts:

(a) The first part is the union of spectral bands 1;, j = 0,1, ..., where I; is the
range of the function E ; (-), defined by the implicit equation (9.25), over the torus T,,Iz.
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Two adjacent bands 1 and 11 have a common endpoint € if and only if there are
p,p € T712 such that Q(p, ) and Q(p', -) do not have a pole at €j and

O(p,ej) > Alp) A O, ¢j) < Ap).

Moreover, there is at most one degenerate band corresponding to a constant Ej(-),
in particular, such a degeneracy is excluded in the physically interesting case where
the operator A is diagonal.

(b) The point spectrum consists, apart from the possible degenerate band mentioned
above, of the eigenvalues of Hy which persist under the perturbation. This concerns
all the eigenvalues of Hy if n = N > 2. On the other hand, in the case n = 1 the
eigenvalues zo of Hy for which there is just one pair of indices (I, n) € J(zo) and
Xn(p3) # 0 do not belong to the spectrum of Hr.

Proof With Lemmata 9.2.1 and 9.2.2 in mind it only remains to prove the statement
about the degenerate band in part (a). Suppose that there are two different degenerate
bands E, E’ € R separated from the rest of the spectrum of Hy. Then we have
O(p. E) — A(p) = Q(p. E') — A(p) = O for all p € T2, which implies

oW, p, E) = AW, p) = Q(w, p, E)
for all i € A. However, since the asymptotic expansion

=12
_|B|[w]

Lo ., E-1Bl N
0, p, E) = C(E) exp ( ) 11 (1+0q1i1™)
holds as |w| — oo with ¥ = min {2, %}, we arrive for E # E’ at a contradiction
with the above identity for |w| large enough. |

Let us finally mention briefly the case of a general rational flux, n = N/M, when
the index j in (9.20) runs from 1 to M and Tn2 =[0,M ’1) x [0, 1). Consequently,
the implicit equation (9.25) must be replaced by

det O(p, j, E) = A(p, j).

This equation defines in each interval (e;_1, €;) the dispersion functions El.(” ) (-)on
T712 indexed by r = 1,...min{M, N}. In addition to the point spectrum, which is
given again by the persisting eigenvalues of Hy, the spectrum of Hr contains spectral
bands given by the ranges of the dispersion functions £ l.(r‘] ) ).

It turns out, however, that the matrices Q( p.j, E)— ,AI( p, j) for different indices
j =1,..., M are unitarily equivalent, which leads to the M-fold degeneracy of the
spectral bands. This is the main difference to the case of an integer flux; we refer the
reader to the notes for more details.
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9.3 Random Waveguides

Let us now turn our attention to waveguides with a random geometry. Properties of
such systems are far from being fully understood and we limit ourselves here to a
discussion of random deformations of the straight strip 29 = R x (0, dmax). More
specifically, we are going to discuss a waveguide in R? with one straight boundary
whose width changes in a piecewise linear way as we move in the longitudinal
direction; without loss of generality we may suppose that the deformations have the
same sign, i.e. one can regard them as random one-sided dents in the strip of the
maximum width dpax.

To be more precise, we fix ad € (0, dmax) and characterize the strip boundary by
an element of an infinite dimensional cube, w € ¥ := [0, d]Z , putting

di (W) = dpax — w(i),

where w (i) is the ith coordinate of w. Obviously, d; (w) lies between dmin := dmax —d
and dpax- Let k(w) : R — [dmin, dmax] be the polygonal curve in R2 joining the
points {(7, d; (w)) : i € Z}; using it, we define the waveguide 2 (w) as

Qw) ={(x1,x2) € R%: 0 < X2 < k(w)(x1)}.

It becomes random if the variable w characterizing its upper boundary is a random
variable. We fix a probability measure p on [0, d]. We suppose that supp p contains
the point 0 and that the measure is nontrivial, supp z # {0}, and denote by P = %
the associated probability measure on X. In other words, the coordinates w(i) are
independent random variables, each with the probability distribution given by . The
object of our interest is the Dirichlet Laplacian

Hw) = -A3Y

in L*(Q2 (w)) as the Hamiltonian of the waveguide. Since the probability distribution
of each w(i) is the same, the measure IP is ergodic, i.e. it does not change under
shifts, w(i) — w(i + j) with j € Z. As a consequence, the spectrum of the family
{H (w)}weyx is deterministic, in other words, thereisaset J C Rsuchthato(H (w)) =
J holds for P-almost every w € X (see the notes). Moreover, since 0 € supp x4 by
assumption, we have

2

Z— for P—almostevery w € X. (9.27)

max

inf o (H(w)) = K7 :=

A quantity of particular interest is the integrated density of states of the oper-
ator H(w). To define it we need to fix some notation. We consider a cut part
QW) = QW) N ((—31, 5D x (0, dmax)) of the strip and denote by HP (w) the
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Dirichlet Laplacian on it. Similarly, H IN (w) will be the Laplacian on the same domain
with Neumann boundary conditions at the cuts, 2 (w) N ({:I:%l)} x (0, dmax)) and
Dirichlet boundary conditions on the remaining part of 92;(w). We adopt the nota-
tion introduced in Sect. 3.1 and denote by N (Hlb (w), A) the number of eigenvalues
(counted with multiplicities) of Hlb (w) with b = D, N below A. By the ergodic
theorem the limits

llim ;N(HIN (W), \) = llirn %N(H,D(w), ) = n(Hw), \) (9.28)

exist P—almost surely. The quantity n(H (w), \) is the integrated density of states
of H(w) relative to the reference point A which can be understood as the number of
levels with energy less than A per unit strip length.

The randomness influences the spectrum in various ways. In particular, it is man-
ifested in the asymptotic behavior of n(H (w), A) as A approaches Ii%. In the absence
of the random deformations the spectral properties of H (w) near the vicinity of the
threshold are easily found: for the strip Q¢ = R x (0, dmax) of a fixed width dmax
we have

1
n(=AP K2+ ) = =VX + oA as A— 0+ (9.29)
Y

(Problem 8). In the random model the integrated density of states is expected to
decay much faster. A heuristic reasoning behind this conjecture is that the existence
of spectral points close to the threshold requires that the dent depths w(7) vanish over
a long stretch of the strip, which is a highly improbable event once the measure y is
nontrivial. It turns out that it is indeed the case.

Theorem 9.7 Let H(w) be as above, then there is a constant C > 0 such that

limsup A2 Inn(H (W), x3 + ) < —C. (9.30)
A—0+

To prove the theorem we need some preliminary results. The first one is related
to the way the eigenvalues behave under domain perturbations. Consider a twice
continuously differentiable function p : (—%l , ll) — [0, d], where d = dpmax —dmin-
For a fixed ¢ € [0, 1] we then define the bounded domain

Qi = {()Cl,xz) eR?: lx1| < %l, 0 <xp < dmax — tp(xl)}~
Let H,l be the Laplace operator on LZ(Qﬁ) with Neumann boundary conditions on

the vertical parts of the boundary, x; = :i:%l , and Dirichlet boundary conditions
elsewhere. Obviously, the spectrum of Htl is purely discrete. Let e’l (t) be the lowest
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eigenvalue of H,l . By the analytic perturbation theory it follows that el] () is contin-
uously differentiable. Since 611 0) = Ii%, we have

() =k 419, 0)+0(t) as 1 — 0,

where the error term can be estimated explicitly.

Lemma 9.3.1 There exists a constant T = T(dmax. || Plloos || P lo) such that for all
[ > Ldmax and 0 <t < 7172 we have

NG
272

=l
(1) — kT — 19,6 (0)] < 4—th2.

Proof Similarly to the case of deformed waveguides we transform the problem to
the rectangle Qf) = (—%l , 1y ) x (0, dmax) using the transformation

diax — tp(xl))l/zw(xl’ dmax — tp(x1) XZ)

dmax

v Ui = (

dmax

which maps L?(Q!) unitarily onto L?(2})), hence H is unitarily equivalent to the
operator H,l on Lz(Qé) associated with the quadratic form

Q0[] = /Q VWP R, Dom(Qn) = H' (=31, 51) @ Hy (0, dmay) -

Since 1) can be supposed, without loss of generality, to be real-valued, a direct
calculation yields the expression

_ 2 tp'(x1)
o= [ [owr+ s v ©31)
ip'(x1) N2 o 2tp/(xD)x
i Pt e R

2 / 2
= (p'(x1)) X2)2¢62w+

dmax 2 2 >
(o — tp(r1))? ) @07 ]ds;

(dmax —tp(x1)

the sought estimate of the Taylor expansion remainder can then be obtained by the
standard analytic perturbation theory. We note that

0:[0] = Qo] + 103 (] + 2P W1 + .. .,
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where

o v + 1 ¥

max max

0P = / [p’m) pGe)* 1 (xy) P2 x) pF2 ) (k= 1)

) k=1 k 1
L 2ar "(x1) p(r) (x1) A1t Orth + po)E+1) ()

d][ildx dmax
l k—2 _
x2p (xl)p(x;)k (x1) (k=1 11@2%/1] &5

max

+

holds for all £ > 1. It is now easy to see that there is a constant C which depends on
dmax; | Plloc, and || p'[|oc only, such that

2 0o\ k—
0101 = (APY T (i g+ IV )

dmax

This means that the operators ﬁ ! form a type (B) holomorphic family for t < 1,
where 1ty = to(dmax, || p||oo, P’ llso), and as a consequence, the perturbation series
for the eigenvalues of H has the convergence radius bounded from below by c7?/ 12,
where ¢ depends on dmax, Iplloo and || p’|lso only (Problem 9). If we now put 7 =
%cwz, a straightforward application of the second-order perturbation theory yields
the sought result. |

Remark 9.3.1 Tt is not difficult to deduce from the expression (9.31) that

, 27‘(’2 172
Ore1(0) = — pxp)dxy, (9.32)
diax ! J-12

max

which can be regarded as a version of the well-known Hadamard perturbation formula
(Problem 10).

The second main ingredient of the proofis related to the heuristic argument mentioned
above and expresses the fact that the probability of finding an eigenvalue close to the
threshold in long slices of the waveguide is rather small.

Lemma 9.3.2 Letm = fod sdu(s). Then there is a constant a = a(dmax, d) such
that for alll = 2i 4+ 1 withi € N and every b < mln{ T a—;} we have

(m — ax/E)z) ’

Pley(HY W) < 62 +b172) < 4 exp ( -1

(9.33)

where € (HZN (w)) denotes the lowest eigenvalue of HlN (w).

Proof Let ¢ € Cg(—%l, 11) be a function satisfying 0 < @(s) < 1 — |s] for all
s € (—%l, 11). We extend by zero to the whole real axis and define
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Qw, 1) ={(x1,x2) : [x1] < 31, 0 < x2 < dimax — tp(w, x1)}

where

plw, )= D wli)pa —i).

li|<l/2

Let H;(w, t) be the Laplace operator on LZ(QI (w, t)) with Neumann boundary con-
ditions on the vertical parts of the boundary and Dirichlet conditions elsewhere.
Denote by 611 (w, 1) its lowest eigenvalue; by construction we have

el (HY (W) = e (w, 1)

for all t € (0, 1). From Lemma 9.3.1 and equation (9.32) it follows that
272
! 2 l 1,
1) —K{—10 0] < —17,
. 0) = #] =10 @, 0] = 7

and furthermore,

a0 =7 3 wi)

lil<l/2

with the constants ¢ and 7 depending on dmax only. Assume now that the eigenvalue
satisfies e (HN (w)) < k3 + bl~% for b < t72. Inserting t = s7/=2 with s € (0, 1)
into the above inequalities we get

2
b
Ol w00 < 24 2
4T TS

and optimizing with respect to s we arrive at 0; 611 (w,0) <2 /b, which yields
1
= > wli) = = Vb
I . cT
lil<l/2
Now we put a := 7/(cT). Assuming that 0 < b < m?/a?, we get the estimate

1
Ple(H* @) = 1] +517%) = P{; |,-§/2w(i) < avh}

< IP’H; > w(i)—m‘ zm—a\/Z}

lil<l/2

and the last probability is by [T95, eq. (13.11)] bounded from above by the right-hand
side of (9.33) which concludes the proof. |
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Proof of Theorem 9.7: Fix A > 0. By Neumann bracketing we infer that

1
n(H@). 5+ < T E{NH @), 5] + 1)
.
S —
U Jiwer(HY @)=ri+))

< Plar(H ) < w7 + A}

N(HN (W), K7+ \) dP(w)

holds for any / > 0, where E(-) denotes expectation with respect to the probability
P and ¢’ > 0 is a suitable constant. If we put A\ = b/ _2, then in view of the above
estimate and Lemma 9.3.2 we get

(m — a\/z)Q) ’

2 -2 / _
n(H@), R +b17%) < 4C exp (=13

where a and m have been defined in the said lemma. This in turn implies that

—av/b)> Vb
lim sup A2 In n(H(w), KJ% +A) < — w
A—=0+ 4d
and the claim follows since the right-hand side is bounded for b € [0, ’;’—22] |

Remark 9.3.2 The estimate (9.30) that we have proved implies

) In(—Inn(H W), K2 + ) 1
lim sup <-—-.
A—0+ In A 2

In fact, under additional assumptions one can get a stronger result (see the notes):
if there are positive ¢, r such that ([0, ]) < ¢d”, then the opposite inequality also
holds, i.e.

In(—Inn(H W), K2 + A 1
. n(—Inn(H W), K] + A) - (9.34)
A—0+ In A 2

The exponential decay of the integrated density of states towards the edge of the
spectrum is usually referred to as a Lifshitz tail.

Another typical feature of random systems concerns the spectral character. It
appears that randomness can partially or fully prevent unrestricted motion of a par-
ticle which is manifested by a localization, meaning the appearance of a pure point
spectrum, most often in the vicinity of a spectral gap endpoint usually referred to
as a fluctuation boundary. In the model of a random waveguide considered here
the fluctuation boundary coincides with the bottom of the spectrum and localization
is established by the following theorem; we refer to the notes for references to the
proof and more details.
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Theorem 9.8 Assume that there exist ¢, r > 0 such that u(I) < c|I|" holds for
every interval I C [0, d]. Then there is a 6 > 0 such that the spectrum of H(w)
in the interval [H%, Iﬂ?% + 0] is P-almost surely pure point and the corresponding
eigenfunctions are exponentially decaying in the x1-direction.

9.4 Notes

Section 9.1 Theorem 9.1 about the absolute continuity of periodic Schrédinger
operators is of great importance in the theory of scattering in crystals and has a long
history. It was first proven by Thomas in [Th73] for G = I and A = 0. Later on, the
Thomas approach was further generalized; in [BiSu97] a magnetic vector potential A
was included, still for the trivial weight G, and in [Mor98] the claim was proved for a
smooth, generally non-constant G. The version with the weaker regularity conditions
stated here is due to Sobolev and Walthoe [SW02].

The absolute continuity of periodic waveguides expressed by Theorem 9.2 comes
from [SWO02]. In fact, a more general result is demonstrated in this paper: it is shown
there that the claim also remains valid if one includes a periodic electromagnetic
field and, under certain additional assumptions, even for the Neumann boundary
conditions. Note, however, that the approach used in the proof of Theorem 9.2 relies
heavily on the two-dimensional character of the waveguide, and indeed, in higher
dimensions the problem remains open; there is only a partial result applicable to
periodically curved waveguides that are sufficiently thin [BDEO3]. The absolute
continuity of Schrodinger operators describing motion in layers and cylinders under
the influence of periodic potentials was studied in [FK11].

Theorem 9.4 is due to [Yo98]; we also refer to this paper for the proof of Theo-
rem 9.5 and of the decomposition (9.9) (see also Problem 2). We stress that the result
holds for thin enough periodic strips. In the general case the question remains open
and one can conjecture that there may be nontrivial periodically curved waveguides
without open gaps. The spectral properties of the operator Ty, which imply equation
(9.15) used in the proof of Theorem 9.4, can be found, for instance, in [RS, Theorem
XIII.89]. The problem solved in Theorem 9.3 attracted a lot of attention and there are
various ways to demonstrate the claim. The first proof was given by Borg [Bo46];
alternative proofs of his result were found later in [U61] and [Ho65]. A band-gap
structure of the spectrum also appears in waveguides coupled by a periodic system
of small Neumann windows. For such a model it has been shown in [BP13] that by
varying the widths of the waveguides and the distance between the windows one can
control the number of the open gaps.

One of the main questions in the analysis of the band-gap structure of periodic
operators is the famous Bethe-Sommerfeld conjecture which states that the number
of gaps in the spectrum of a Schrédinger operator —A + V(¥) on L2(R?) with a
periodic potential V is finite whenever d > 2. This conjecture was formulated in
the early days of quantum mechanics, see [SB33], however, it turned out that for
general potentials this problem is rather difficult, and the first rigorous results only
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appeared in the eighties. We refer to [Pa08] for a proof of the Bethe-Sommerfeld
conjecture for smooth potentials in arbitrary dimension, a description of earlier work
and references to papers covering the case with less regular potentials. Quantum
waveguides as systems of a mixed dimension are not covered by these general results
and no proof of the Bethe-Sommerfeld conjecture for periodic waveguides is known
at present.

Section 9.2 The analysis of periodic point interactions in a strip comes from
[EGST96]. The self-adjointness of the operator H (v, @) with periodic families of
point perturbations can be established as in [AGHH, Sect. III.1.1]. An explicit solu-
tion of the spectral problem for the planar straight-polymer model is given in [AGHH,
Sect. I11.4].

For the notion of a lattice see [RS, Sect. XIII.16]. The magnetic translation group
was introduced in [Za64], a discussion of its representations can be found in [OT69].
Theorem 9.6 is taken from [EN(O3a] where one can also find a precise description of
the spectral bands in the case of a rational flux. On the other hand, the behavior for
an irrational flux through the lattice cell is not known, but it is natural to conjecture
that it will be substantially different from the one discussed here; the analogy with
the almost Mathieu operator [AJ09] seems to show that convincingly.

A planar version of the model treated in this section, namely a two-dimensional

Schrodinger operator with a periodic point potential and a perpendicular homoge-
neous magnetic field, was studied in [G92]. The main difference between the two
situations is the possible existence of a spectral gap containing the whole interval
(ei—1, €;) between adjacent unperturbed eigenvalues for some integer i. While this
cannot happen in the planar model, it occurs in the magnetic layer if the positions
of the point potentials coincide with a node of each transverse mode corresponding
to €;, in other words if x, (x3) = 0 holds for all (I, n) € J(¢;) and at the same time
Q(p, €) < .A(p) forall p € T2 Note also that Krein’s formula for Hamiltonians
with an infinite number of pomt potentials arranged in a general way can be found
in [PosO1].
Section 9.3 A thorough discussion of random-operator spectra can be found in the
monographs [PF], [CL], [St], in particular, we refer to Sect. 2B of the former for
a demonstration of the deterministic character of the spectra in case of an ergodic
(metrically transitive) probability measure. To check this property in the present
case requires the use of unitarily equivalent operators on L?(R x (0, dmax)) obtained
by a coordinate transformation similar to that employed in Sect. 5.2.3, see [KS00].
Theorem 9.7 is taken from the indicated paper, where the reader can also find the
proof of the lower bound in formula (9.34) and of Theorem 9.8.

It should be stressed that randomly deformed waveguides feature spectral proper-
ties very different from those coming from the various “deterministic” perturbations
we have considered earlier. If the effective interaction was of a local and attractive
character as in the case of bends, bulges, etc., we typically had isolated eigenval-
ues below the essential spectrum, while for periodic perturbations the spectrum was
typically only essential and absolutely continuous. It turns out that in the random
waveguide model discussed here o(H (w)) = [li%, 00) holds P-almost surely pro-
vided supp i1 = [0, d], see [KS00]. Hence the point spectrum the existence of which
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is established by Theorem 9.8 must be generically dense in the vicinity of the thresh-
old I{%; the cases where this is not true, such as periodic waveguides, occur with
probability zero.

Apart from localization, the difference between periodic and random systems is
manifested in the asymptotic behavior of the integrated density of states at the bottom
of the spectrum. This again holds for a much wider class of operators: for Schrédinger
operators —A + Vper 0n Lz(Rd ) with periodic operators it is known that

n(—=A + Vper, Ii%-i—)\) ~cX? as N> 0

with some ¢ > 0, see [KS87]. On the other hand, for disordered systems with random
potentials Viapg in L%(RY) one typically observes the Lifschitz-tail asymptotics,

n(—A + Viand, lﬁl% +A) ~ ¢ exp(—cz)\_d/z) as A\— 0

with ¢1, ¢3 > 0. Hence the randomness of the potential forces the integrated density
of states to decay generically much faster to zero when the threshold is approached.
Note that the asymptotics (9.34) is similar to the above formula with d = 1, which
corresponds well with the fact that at low energies the waveguide character is domi-
nantly one-dimensional as we observed earlier, for instance, in Chap. 6.

9.5 Problems

1. Prove Lemma 9.1.3.

2. Check that the map U : L%(Q0) — [?)9,1] L*(Ag)do appearing in (9.9) is an
isometry on C§°(€20) and that it extends uniquely to a unitary operator.

Hint: Cf. [Y098, Sect. 2].

3. (a) Prove Proposition 9.2.1.

(b) Analyze the spectral properties of a charged particle confined to a cylinder of
a finite height supporting a finite number of point interactions and threaded by a
magnetic field parallel to the cylinder axis.

Hint: (a) Employ Krein’s formula. (b) Note that the problem is equivalent to the fiber
operator analysis for a strip with periodic point interactions with the quasimomentum
replaced by the magnetic flux through the cylinder.

4. Analyze the operator H(c, a) describing the Dirichlet Laplacian in a straight
layer perturbed by a periodic family of point interactions.

5. Prove the decomposition (9.19). More precisely, show that

00
HO - @ (hn & In)nn ’

n=1

where IT,, : L*(Q) — L*(R*)®{x»}actsas (TT, u) (X) = xn(x3) [o xu(s) u(x, 5) ds.
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6. Prove Proposition 9.2.3.
7. Use the result of Problem 5 to derive the explicit form of the free Green function
of the magnetic layer Hamiltonian, namely

3 1 | B B > B 2 _
GO(x’x/aZ)zﬁexp(_%X/\x/—%PC—x/F)ZF(' | +n z)
us " n

B|+n? — B
U(ll;# 1 % lx — x/|2) sin(nx3) sin(nx3),

where x Ax” = x1x} —x|xz and U is the irregular confluent hypergeometric function.
This formula in combination with the properties of U (-) yields the exponential decay
of the matrix elements Q(w, w’, z) of the operator appearing in (9.23).

8. Prove the asymptotic behavior (9.29).

9. Fill in the details of the proof of Lemma 9.3.1.

Hint: Use [Ka, eq. (VI1.4.47)] to show that the convergence radius of the Taylor series
of ell (t) is bounded from below by a nonzero multiple of p, the distance between
H% and the rest of the spectrum of H(l), and check that under the assumptions of the
lemma we have p = w2/1>.

10. Prove relation (9.32).

Hint: Use the fact that 0, ell 0) = Q(()l) [10], where ug is the normalized eigenfunction
of Hé corresponding to the eigenvalue ell 0).



Chapter 10
Leaky Waveguides

Most of the material in the previous chapters dealt with particles strictly confined to
areas understood as guides or networks. While useful in many respects, such models
are not fully realistic. Consider a microscopic semiconductor wire the boundary
of which consists of an interface of two materials, and as such corresponds to a
finite potential jump. The latter is often high enough so that one can justify the
approximation in which it is replaced with Dirichlet boundary conditions, however,
in this approach one neglects effects such as quantum tunneling between two wires
placed close enough to each other.

This chapter is devoted to investigation of a class of models which overcome this
difficulty. The configuration space here will not be restricted and the confinement of
the particle to a guide, or a system of guides will be realized instead by an attractive
interaction supported by such a geometric object. On the other hand, to make the
problem simpler we will suppose that those guides have zero thickness, in other
words, we are going to consider Hamiltonians which can be formally written as

—A—ax)dé(x-T), (10.1)

where I is a curve or a graph, with a(x) > 0 to make the interaction attractive;
we shall refer to such systems as leaky graphs (curves, surfaces, etc.). Apart from
the opposite sign, we have encountered similar operators in Sects. 1.5.2 and 6.3.2.
In contrast to those, we consider no outer hard-wall boundaries, on the other hand,
we suppose that the attraction is position independent, a(x) = o > 0, and focus on
relations between the spectral properties of such operators and the geometry of the
interaction support.
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10.1 Leaky Graph Hamiltonians

First of all we have to define the operators on L?(R?) corresponding to the heuristic
expression (10.1). For simplicity we consider first the case d = 2; we shall comment
on extensions to higher dimensions later. We suppose that the singular potential is
supported by a graph I' € R? with the following properties:

(i) Edge smoothness: each edge e; € I"is a graph of a C ! function T ji I R?
where /; is a closed interval (finite, semi-infinite, or the whole R). Moreover,
without loss of generality we may suppose that edges are parametrized by the
arc length, | (s)| = 1.

(if) Cusp absence: at the vertices of I" the edges meet at nonzero angles.
(iii) Local finiteness: each compact subset of R? contains at most a finite number
of edges and vertices of I".

One way to define the singular Schrédinger operators we are interested in is to employ
the results of Sect. 6.3.1, in particular, the quadratic form (6.20). To this end we define
the measure

mr: mpr(M)=£4,(MNT) (10.2)

for any Borel set M C R2, where ¢; is the one-dimensional Hausdorff measure
given in our case by the edge-arc length. One can check that mr belongs to the
generalized Kato class (Problem 1) and consequently, the inequality (6.19) holds for
a constant function a.. The quadratic form (6.20) is thus closed and bounded from
below, corresponding to a unique self-adjoint operator H_,,, for which we will
employ in this chapter the symbol H,, r.

Since the edges of I' are smooth by assumption we can use an alternative way
which involves boundary conditions. We consider the operator acting as (negative)
Laplacian, (Ha’r’l/J)(x) = —(AvY)(x) for any ¥ which belongs to H2[R2\T), is
continuous at each edge e; € I' with the normal derivatives having there a jump,
namely

;l_dj_(x) _ 86;1_1/}_();) =—-a(x), xE€ intej ; (10.3)

the normal vector exists obviously at each inner point of an edge. It is easy to check
that Ha,r is e.s.a. and its closure is identical with the operator H,,  introduced above
by means of a quadratic form (Problem 2).

The fact that H, r can be defined by means of the quadratic form of the type
(6.20) allows us to use other results derived in Sect. 6.3.1, in particular, the generalized
Birman-Schwinger formula for its resolvent given by Theorem 6.7¢ which reduces the
spectral analysis of the original operator to the investigation of the integral operator
Rﬁ‘n,m. One can determine in this way not only the eigenvalues of H, r but also its
eigenfunctions (Problem 3).
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Before proceeding further with our investigation of the operators H,,r we want
to show that they can be regarded as a weak-coupling (or equivalently, low-energy)
approximation of a class of regular Schrodinger operators; we shall do this assuming
that the interaction support consists of a single infinite edge, i.e. that ' : R —
R2, T = (I'y,Ty),isa C? function; with the usual abuse of notation we employ the
same symbol for the function and its graph.

We suppose that the signed curvature vy := Iy fy - I"y I'; is bounded along the
curve, |v(s)| < cy for some cy > 0 and all s € R. Moreover, we assume that
I' has neither self-intersections nor “near-intersections”, i.e. that thereisac_ > 0
such that |'(s) —T'(s”)] > c— holds for any s, s” with |s —s’| > c¢_. This makes
it possible to define in the vicinity of I the standard locally orthogonal system of
coordinates (s, u) described in Sect. 1.1 which is unique in the strip neighborhood
Y. = {x(s,u) =T(s)+n(s)u: (s,u) € T with B0 1= {(s,u) : s € R, |u| < &}
as long as the condition 2¢ < c_ is valid. With these prerequisites we are able to
construct the approximating operator family. Given W € L°°(—1, 1), we define for
alle < %c_ the transversally scaled potential,

lw(4) ifxex.

Velx) := 0 otherwise

and put
H.(W,T):=—-A+ V.. (10.4)

The operators H.(W, I') are obviously self-adjoint on D(—A) = H?*(R?) for any
e € (0, %c_) and we have the following approximation result:

Theorem 10.1 Under the stated assumptions, H.(W,T") — H, r holds ase — 0
in the norm-resolvent sense, where o := f—ll W(t)dr.

Proof Since H.(W,T') is bounded from below uniformly in ¢, by taking k = ix
with  positive and large enough we can ensure that k% e p(H:(W,v) Np(—=A)
foralle < % c—. The resolvents of both involved operators then can be expressed
explicitly: for H-.(W, I') we have the Birman-Schwinger-type formula,

(HE(W, 1“)—k2)_1 - (—A—k2)_1

B (—A—kz)_l yi2 [1 2 (—A—kz)_l ‘,51/2]_l V12 (_A_kz)‘l ’

where we use the standard convention mentioned in Remark 6.1.1a, namely VE1 /2 =

|V|'/?sgn (V.), while for H, r it is given by Theorem 6.7c. The first terms on the
right-hand sides of these relations are e-independent and subtract mutually when the
difference is taken. The second term in the resolvent of H.(W, I') acts on a vector
1 € L*(R?) as
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-1
][ Grtemeovi e [1+ v R VIR o v Ry
x Gr(x" —x")(x"ydx" dx” dx”’

:// / Gy (x—x(s/,u/)) lWI/2 (u_)
E? R2 9 9
x5[1+|V|1/2RkV1/2] ' u's 5", u"y = 'W( )

x G (x""=x(s", u")) (L4 u'y(s" N1+ u"~(s"))
x (x"yds" du’ ds” du” dx"”,

1/2

where (1 + u~y(s)) is the Jacobian of the transformation between the Cartesian and
curvilinear coordinates similarly as in Sect. 1.1. Changing the integration variables
in the last expression to t' := u'/e and t” := u”"/e we can rewrite the operator
in question as the product B-(/ —C:)"'B., where B. : L2(R?) — L*(29), C. :
L*(2)) — L*(£))and B, : L*(2Y) — L*(R?), are integral operators with kernels

B.(x;s',1") == Gp(x—x(s',et’)) (A +et’y(s"HW (t/)l/2 ,

Bo(s.t;x) == |W @) |21 +et7(9)) Gi (x' —x(s.,21)) ,
Ca(s,t;5',1) = W@ |"?Gi(x(s, et)—x(s', et )W (t/)1/2 ,
see Problem 4. We have ||C.|| < ||W||oo||P1RkP1 | < [IW|loolk| ™2, where Py is

the projection onto Lz(EO) C Lz(Rz) hence ||C-|| < 1 holds for x large enough
uniformly with respect to €, and the operator can written as a sandwiched geometric
series,

o0
B.(I-C.)"'B. = ZBEC-E/BE.
j=0

Consider next the resolvent of H, . Since the operator / —ozRf,’[f m 18 by Theorem 6.7b
boundedly invertible for x large enough, we can again use a geometric-series inverse.
Since o = (W1/2, |W|1/2) holds by assumption, we have

k 1/2 1/2 k
aRdme(aRm m) mdx - Rdx m(W / (W / )R

+RE,, (W2 WV RE

mm(

oo
W1/2, |W|1/2)an,dx 4+ ... = ZBC]B"

where B, C, B are operators mapping between the same spaces as their indexed
counterparts above, determined by their integral kernels:


http://dx.doi.org/10.1007/978-3-319-18576-7_1
http://dx.doi.org/10.1007/978-3-319-18576-7_6

10.1 Leaky Graph Hamiltonians 331

B(x; s, 1) = Gp (x—(sh) W (i),
B(s,t;x") = |W ()" Gy (x' =),
Cls, 158, 1) = W @) |"2Gr(v(s) = NW ().

Note that while these operators depend on W, the expression ;BC /B contains
just the integral of the function, thus it does not depend on a particular shape
of the approximating potential. In the same way as above one can check that
max{||B|, | B:ll, ICIl, IC:Il, ||B|| ||B I} < c3 holds for any € € (0, 1) with some
positive c3 < 1 provided —k? is large enough. Combining it with the estimate

|B-(1—C-)™'B. — BU-C)"'B|

< {18~ Bl + 1B~ B||}Zc"+1+||cﬁ IS nert

n=0 n=0

which can be obtained by the telescopic trick (Problem 4), we see that it is sufficient
to assess the three norms involved here. The first one satisfies

1/2
1B BIl < IWIE {1+ 1loo) | RE .= RE o + 7o | R0 } -

where Rg o Rl}‘: o With & = E(l) are shorthands for the resolvent factors in this
expression, in other words, integral operators from L2 ( E?) to L>(R?) with the kernels

RE _(x,x(s, 1) = Gy (x—x(s',et") = ZL Ko (klx—x(s", e1")])
i T
and
1
Rgo(x, I'(s) = G (x—T(s")) = > Ko (klx=T(s"1),

respectlvely, where K is the Macdonald function. To show that R — Rk o holds
in the operator-norm topology, let us write the kernel of the dlfference as

1
G (x—x(s’, 51/))—Gk (x—F(s/)) = — [Ko (H|X—X(S/, 51/)|)—K0 (H‘X—F(S/)l)j|

27
et’ ! ’ IN LT d . ’ IN g/
= - — K (K;lx—l"(s )—n(s")et 19|) k| — dist(x, ['(s")+n(s")et'9) ) dv
2w 0 dd
where we have used the relation K(/) (z) = —Ki(z). The last factor in the above

integral does not exceed one in modulus, and therefore

er|t’|
=

1
Rga(x, x(s’, 61‘/)—R];:’0 /0 K (K,Ix —(s") —n(s/)al/79|) dd.




332 10 Leaky Waveguides
This shows that

1
heo 1= sup / ds’/ dr’
xeR2JR -1

ER ER
<& sup/ K1 (slx—x(0)) do’ < 22 1Kyl - Dl 1oy
E? 27'('

(RgE — REO) (x, x(s', et))

T xeR2
where the right-hand side is finite, because the function K (|-|) decays exponentially

at large distances and has the integrable singularity | - |~! at the origin. In the same
way we find

hy = sup/
x'ex R2

and consequently, the Schur-Holmgren bound (Problem 6.14) implies

(Rli,g—Rli,o) (x, x")

ER
dx < g 1K1 (k] - D”Ll(]RZ) ,

ER
| Re = RE o] = (hiho) = 2 1K1l Dl

where the right-hand side tends to zero as € — 0. Similarly one verifies the conver-
gence of ||B. — B|| and ||C.—C|| which concludes the proof. |

Let us briefly mention extensions of the concept to higher dimensions. This is
straightforward for any d > 2 provided T is of codimension one and sufficiently
regular to allow us to use the results of Sect. 6.3.1 (Problem 2c¢). Singular Schrédinger
operators corresponding to the formal expression (10.1) can also be constructed if
codimI" = 2, 3. Note that the above definition using boundary conditions (10.3)
can be rephrased in the following way: we first restrict the Laplacian to a symmetric
operator defined on functions which vanish in the vicinity of I, and afterwards we
choose a particular self-adjoint extension specified by appropriate boundary condi-
tions. A similar construction can be used for codimI" = 2, 3 provided we replace
the boundary values entering the definition by generalized ones analogous to (5.1)
and (5.11), respectively.

For the sake of simplicity, we restrict our attention to the situation when I" is a
curve in three-dimensional space being the graph of a C? function I'(s) : R — R3;as
in the case codim I" = 1 we suppose that the curve has neither self-intersections nor
“near-intersections”, and that |I"(s)| = 1. We also assume that the curve possesses
a piecewise global Frenet frame (¢, n, b) in the sense of Problem 1.12. For a fixed
nonzero p € R? we then define the curve I’ » as the graph of the function

Lp(s) :=T(s) + p1b(s) + pan(s) ;

the distance between the two curves is by construction r := |p| for small enough
|pl, in particular, I' and I, do not intersect. Since any function ¢ € Hl%)c (R3\T) is
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continuous in R3 \ T" its restriction 7/’|1",, is well defined as a distribution from D’(R).
We denote by D the set of functions f € Hl%)c (R3\ I") N L2(IR?) such that the limits

.27 . Inr
Lo(f)(s) == lim ="l (), Li(/)(s) = lim [4]r, (5) + Lo()(s) 5 |

r—01lnr r r—0 r 2m
exist a.e. in R, are independent of the direction % p, and define functions from L?(R);
the limits are understood here in the sense of the D’'(R) topology. Now we are able
to define the singular Schrodinger operator: it acts as

Hyr = —At¢ for x e R3\T (10.5)

on the domain D(H, 1) :={¢ € D: Li(3)(s) = aLo(¢)(s)} and it is indeed a
well-defined Hamiltonian which we seek.

Proposition 10.1.1 Under the said assumptions H, r is self-adjoint for any o € R.

We refer to the notes for references to the proof and further properties of the operators
(10.5). A comparison with Sect.5.1 shows the natural meaning of the definition as
describing a point interaction in the normal plane to I".

10.2 Geometrically Induced Properties

It is natural to expect that a particle whose dynamics is governed by the Hamiltonian
(10.1) will be likely to be found in the vicinity of the interaction support I', at least
as long as its energy is sufficiently low. In contrast to the graph model discussed in
Sect. 8.1, however, the spectral properties depend now not only on the edge lengths
but in general on the whole geometry of I.

10.2.1 Effects of Curvature and Local Deformations

To demonstrate this claim we are first going to show that the curvature effects which
we discussed in extenso in Chaps. 1 and 3 are robust and occur even if the confinement
does not come from hard walls. Consider the operator H,, r in L?(R?) corresponding
to an infinite planar curve I'. If I' = I is a straight line, I'g(s) = as + b for some
a, b € R? with |a| = 1, we can separate variables and prove easily that the spectrum
is purely absolutely continuous and that

o(Hary) = [—% a2, 00). (10.6)
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We are going to show that bends give rise to a non-void discrete spectrum. To be
specific, we assume that the function I' : R — R? is continuous and piecewise C'
satisfying the following assumptions:

(i) Non-triviality,i.e.I" # I'g. Recall that the curve is parametrized by its arc length
which means that [T'(s) — T'(s")| < |s — s’| holds true; our first assumption is
equivalent to the requirement that the inequality is sharp at least for some
s,s" e R.

(ii) There is a number ¢ € (0, 1) such that |['(s) — I'(s”)| > c|s — 5’|, in particular,
I'" has no cusps and self-intersections, and its asymptotes, if they exist, are not
parallel to each other.

(7ii) Asymptotic straightness: there are numbers r > 0, 7 > % and w € (0, 1) such
that the inequality

_IT(s) = TN

ls — s’

~12
1 <r [1 Fls +s’|27]

holds true in the sector S, := {(s, sNtw< g < w! }

The quantity used in assumption (iii) obviously marks the difference between I" and
the straight line; under a stronger regularity hypothesis one can use an alternative
sufficient condition (Problem 5b).

Theorem 10.2 Let o > 0 and suppose that T" : R — RZ satisfies the above assump-

tions. Then the essential spectrum is preserved, Oess(Hn 1) = [— ‘—11042, 00 ), but Hy 1
2

has at least one isolated eigenvalue below —‘l‘oz .
Proof By the generalized Birman-Schwinger principle the spectral information is
encoded in the operator R, - := aR;F, on L*(R) which is an integral operator
with the kernel

RZVF(S, s = % Ky (/{ [T (s) — I‘(s')l) , k>0. (10.7)

In particular, the eigenvalues of H,, r are by Theorem 6.7d associated with solutions
of the equation Ry ) = 1.

Let us start with the essential spectrum. The Fourier transformation maps Ko (xx)
to (7/2)/2(p?+£k%)~V/2. Therelation f(—i V) = 2m)~Y2(F~! f)x1) then shows
that R, r, is unitarily equivalent to the operator of multiplication by %a (p*+x>)~1/2

on L%(R), thus it is absolutely continuous and its spectrum is [0, 5] as expected

from o(Hu,ry) = [—}1 a?

also have

, oo). By a compactness argument presented below we
a
Uess(RZ,r) = I:O’ ﬂ]

for any curve I satisfying the assumptions (ii) and (iii), and consequently, oess (Hq. 1)
D [— %az, O]. By the same compactness argument we find that apart from a possible
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discrete set corresponding to eigenvalues of a finite multiplicity, the points —x? with
K > %a belong to p (HOW), hence the interval (—oo, —%oﬂ) is not contained in the
essential spectrum. To prove the first claim of the theorem, it remains to check that
Oess(Ha.r) D [0, 00) which can done by constructing a suitable Weyl sequence for
any k% > 0 (Problem 5a).

Next we will regard the difference between I' and ['g as a perturbation. The key
observation is that the kernel of Dy, := Ry, r — RZ,FO is sign-definite, namely

Dy(s.5)) = % (Ko (5T (s)—=T'(s")]) — Ko (/<;|s—s’|)) >0

in view of |T'(s) — ['(s")| < |s — 5’| and the monotonicity of K.
Step 1: We check that sup o (Rgr) > 5 holds if T is not straight. To this end it is

enough to find a real-valued v» € S(R) such that (w, Rar ) - 4] > 0 holds,
which is equivalent to the inequality

K [ (p) P
R / p?+ K2

Since Dy (s, s’) > 0 for at least some values of s and s’ by assumption (i), and since
I is supposed to be piecewise C', it follows that D, (s, s’) > 0 holds on a subset of
42202 \22

™

IR? of positive Lebesgue measure. Hence using trial functions ¢ (s) = \/» e

with A > 0 one can check by a direct computation that the above inequality holds
for A small enough (Problem 5a).

Step 2: Next we check that D,; is Hilbert-Schmidt as a map from L2(R) to L2(R).
For the sake of brevity we define ¢ := k|T'(s)—T'(s")| and o := k|s—s’| and estimate
Ko (0) — Ko (o) using the convexity of K¢ together with the relation K(’) (2) = —K1(2)
as follows,

2 / Dals, s') b(s)b(s’) ds ds’ + dp — / [D(pIPdp > 0.
o JR2 R

Ki(0)(0—0) < Ko(0) — Ko(0) < 0K (g)%,

Using (ii) it is easy to conclude from here that the kernel of D,, is bounded. Moreover,
there is a constant ¢; > 0 such that oK1 (p) < ¢ e~ 22 < ¢y e7¢9/2 and at the same
time assumption (iii) yields the inequality

o—0 o0—p —-1/2

— 2 < 55 [1~|—|s+s’|27]
0 co ¢

valid in the sector S,,. Combining these estimates one can check that the integral

fRz D,.(s,s))*ds ds’ is finite for 7 > % (Problem 5a). It follows that the operator

D,; is compact. This means, in particular, that the spectrum of Ry, . above 7o 18
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discrete; at the same time the compactness justifies a posteriori the above reasoning
concerning the essential spectrum.

Step 3: Finally we have to check that the function x +— R . is operator-norm
continuous and satisfies Ry  — 0 as k — oo. This is easﬂy done for I' = I'gy
using the unitary equlvalence with the multiplication operator, and using the explicit
form of the kernel we find the same for the perturbation, since | Dy — Dy |lus — 0
holds as " — k and | D, |lus — 0 as kK — 0.

The first two steps allow us to conclude that R7] - has at least one isolated eigen-

value A\(x) above sup o (Rg I-) = % which is a continuous function of « and tends

to zero as Kk — oo. This implies the existence of a kg > a such that A(kg) = 1,
and the eigenvalue of H, r associated with A(kgp) by Theorem 6.7d thus lies below
the essential-spectrum threshold —4—1‘012. |

As a consequence of this result it is often possible to establish the existence of
the discrete spectrum in a way reminiscent to the result of Problem 1.6.
Corollary 10.2.1 Suppose that T has a subgraph in the form of an infinite curve
satisfying the assumptions of the previous theorem, and oess(Ho 1) = [—zltaz, oo)
then the discrete spectrum of Hy, 1 is non-empty.

The claim follows easily from the minimax principle; the hypothesis can be in some
cases verified directly (Problem 5c¢).

Example 10.2.1 (leaky star graphs) Consider astar graph ' ¢ R? with N > 2 edges.
One can characterize it by an (N —1)-tuple 3 = {0, ..., Bn—1} of angles amended
by By =27 — ZN ~' 8; which is assumed to be positive. We set 1 := Z, \ B
and Jp := 0, and denote by L be the radial halfline with the endpoint at the origin,
Lj:={x¢€ R?: argx =¥ j}, naturally parametrized by its arc length s = |x|; the
star graph can then be identified with I'g := U;V:_ol Lj.

By Problem 5c the essential spectrurn of the corresponding operator Hy (3) :=
H,,r,; coincides with the interval [— 12 , 00). The existence and properties of the
discrete spectrum depend on the angle family; in view of Corollary 10.2.1 we have
odisc(Hy(8)) # @ unless N = 2 and 8 = «. The spectrum can be found explicitly
only in a particular case: for a cross-shaped I" corresponding to H4 () with . =

55 g} the variables separate and there is a single isolated eigenvalue —%az
corresponding to the eigenfunction (2a)~le=(¥I+1¥D/2,

On the other hand, it is possible to derive some general properties of the discrete
spectrum. We mention two of them (see also Problem 6):

(a) Fix N and a positive integer n. One can achieve that fogisc(Hy(3)) > n by
choosing one of the angles small enough. In particular, the number of bound states
can exceed independently of « any fixed integer for N large enough.

It is obviously sufficient to check the claim for Hy(3), where I" is a broken
line. We choose the coordinates in such a way that the two half-lines correspond to
argd = :I:% [ and employ trial functions of the form ® (x, y) = f(x)g(y) supported
in the strip L < x < 2L, with f e C? satisfying f(L) = f(2L) = 0, and
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9(O) = Xjyl<2do (¥) + X|y|=240(¥) € —a(yl=2d0) with dy := L tan ﬁ . There will be at
least n eigenvalues if we manage to make the Value of the form

q[®] = V| - 3 e + —a?||®|?
COS—

negative for n linearly independent functions. Since we have ||g 12 = 4dy+ o~ ! and
g1 = a, this requirement can be reformulated as

(7rn ﬁ)z I £/112 22S€C§—O¢d0—%
— tan — ) = inf sup 5 <« ,
do 2 M m, If] 1 +4ady

where M, is an n-dimensional subspace on L2 (L,2L), which is certainly satisfied
for 3 small enough. In fact, one can see from here that the number of bound states for
a sharply broken line is roughly proportional to the inverse angle, n > 3~!. Note that
the tunnel effect is at the root of this result: in the region where the two half-lines are
close to each other the depth of the transverse potential well is effectively doubled.

(b) Let us next consider the Birman-Schwinger formulation of the spectral problem
for these graphs. We use the distances

dij(s,s") = d,‘-[j-(s, s = \/s2+ s'2— 255’ cos [¥; — ;]

with J; — ¥; = zljziﬂ,@l, in particular, d;;(s,s’) = |s — s'|, to define the
corresponding operators on L?(R*) with the integral kernels Rfj (s,s;3) =
7 Ko (ndi (s, s’ )); then the (discrete part of the) spectral problem for the opera-
tor Hy (0) is by Theorem 6.7d equivalent to the matrix integral-operator equation

i(Rfj(ﬁ)_é‘ijl)Qsj:O, i=1,...,N,

j=1

on @jv: 1 L?*(R") and the associated eigenfunctions are expressed by the formula
given in Problem 3. Notice that the “entries” of the above kernel have the monotonic-
ity property, RK B > R” @) if |v; — vl < |19/J — ¥%|. This has the following
consequence: each 1solated elgenvalue A (B) of Ha(() is an increasing function of
the angle 3 between the two half-lines in (0, 7).

The existence of curvature-induced bound states is not limited to planar curves.
As a higher-dimensional analogue, consider operator H, r from Proposition 10.1.1
associated with an infinite piecewise C! curve I" in R3. If the latter is a straight line,
I' = Iy, the spectrum is found by separation of variables,

U(Ha,F) = Uac(Ha,F) = [(av o0),
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where ¢, = —4e 4T ~27E is the eigenvalue of the two-dimensional point interaction
with vg = —(1) ~ 0.577 being as usual Euler’s constant. On the other hand, if the
curve I is not straight but remains asymptotically straight we have a result similar
to Theorem 10.2 above.

Theorem 10.3 Fix o € R and suppose that T' : R — R3 has the properties (i),
(ii) stated above. Assume, moreover, that there exist numbers r > 0, T > %, and
w € (0, 1) such that

IF() =T _ s=5'
- r
=51 = U ls=s DA+ (24521

1

holds true in the sector S,. Then oess(Ha. 1) = [, 00) and the operator H, 1 has
at least one isolated eigenvalue in the interval (—oo, (q).

The proof follows the same scheme as in the previous theorem, but the argument is
slightly more involved due to the more singular character of the perturbation; we leave
it to the reader (Problem 7). Another higher dimensional extension of Theorem 10.2
concerning the situation when the interaction support is a curved surface in R? will
be mentioned in Sect. 10.3 below. Note also that the results described in the last two
theorems have a discrete analogue (Problem 8).

The geometry of I" does not only influence the discrete spectrum. Before leaving
the topic, let us briefly describe how it manifests itself in scattering. We limit our
attention to the simple situation where I' C R? is a local modification of a straight
line, in other words, we suppose that I" \ I'¢ is a finite graph satisfying assumptions
(i) and (ii) of Sect. 10.1. Furthermore, we shall be interested primarily in the negative
part of the spectrum where the states are kept by the interaction in the vicinity of "
being guided along the graph edges.

For definiteness we choose coordinates in the plane in such a way that I’y =
{(x1,0) : x; € R}. The spectrum of H, r, is absolutely continuous, being given by
(10.6) and the generalized eigenfunctions corresponding to A € (—%az, 0) are

wy(x1, x2) = elka(Nx1 g—alx2|/2 (10.8)

and its complex conjugate w), both corresponding to waves with the effective momen-
tum ko (N) 1= ()\ + %az) 172 moving in opposite directions. The perturbation can be
regarded as a singular interaction supported by the set

N
A=AgUA; with Ag:=To\T', A ::F\F():UFi,

i=1

where A is the removed part of the lineand I';, i = 1, ..., N, are added edges. We
use the fact that the resolvent of a singularly perturbed Laplacian can be expressed
by means of Theorem 6.7c¢ in order to quantify the difference between the resolvents


http://dx.doi.org/10.1007/978-3-319-18576-7_6

10.2 Geometrically Induced Properties 339

of H, r and H, r, using the latter as the comparison operator. We shall employ the
symbol 1 := mr, for the measure associated with the line, and similarly we introduce
the Dirac measures on A corresponding to the perturbation, v = vy + Z,N: 1 Vis
where v refers to the removed edge Ag and v; to I';; we associate with those edges
an auxiliary Hilbert space G := LZ(V), which decomposes into G = Gy @ G| with
Go := L*(vp) and G := @IN: 1 L2(v;). We will then reformulate the problem again
in terms of an integral operator acting on the space g.

By Theorem 6.7c we have Rk = Rl + aRk W= aRfl e IRM dr

with Imk > 0O such that k% € (C \ [— 1a?, 00). The action of Rr can be written
explicitly: by a direct computation we ﬁnd that its integral kernel equals

for any k

el (Px=r"y) (1) dp!
s (P2 — k) (p2 — k%) 2me(p)—a L2

RE, (. 3) = Grlx = 1) + 7 /R

with Gy (x —y) := %Ko(—ikpc — vy and 7% (p1) = (p% — k312, Using this result
we can introduce another trace map, namely

Rf,,:G— L*(R*»), Rf ,f=Rf *fv for feg, (10.9)
together with its adjoint (RF V) L*(R?) — G and the map Rr o which is the
operator-valued matrix in G with the “block elements” R]lio ij L2(1/ i) = L2(1/,~)

defined as the appropriated embeddings of Rllio (-, -). To express the resolvent differ-
ence we introduce an operator-valued matrix in G = Gy @ G given by

—1 . ) Ip O
G) = —(« ]H—Rrow) with 11.:(0_1l ,

where [; are the unit operators in G;.

Proposition 10.2.1 (a) The operator R{f’ ., is bounded for any r € (%oz, o0) and to
any o > 0 there is a ks > 0 such that ||RF wll < o holds for all k > K.
(b) Suppose that OF ¢ is invertible for a given k € C* and the operator

R} =R, + Rf, () (R, )

is defined everywhere in L*(R?). Then k* belongs to p(Hu ) and the resolvent
(Har — k%)~ coincides with R’li.

Proof of these claims follows the same lines as the demonstration of Theorem 6.7
and we leave the details to the reader (Problem 9).

The result of Proposition 10.2.1 makes it possible to treat scattering in this system.
The existence and completeness of wave operators can be checked by the trace-class
method (Problem 10). In addition, one has to find the on-shell S-matrix relating
the incoming and outgoing asymptotic solutions. We are especially interested in the


http://dx.doi.org/10.1007/978-3-319-18576-7_6
http://dx.doi.org/10.1007/978-3-319-18576-7_6

340 10 Leaky Waveguides

negative part of the spectrum where these solutions are combinations of w) and
w)y given by (10.8). These generalized eigenfunctions and their analogues w, for
complex values of the spectral parameter, z € p(H,, ), are square-integrable only
locally, but as usual we can approximate them by regularized functions, for instance,
wf(x) = e_5x12wz (x) with 6 > 0, which naturally belong to the domain of H,, r,.

We are looking for a function 1/)? such that (—Ar — z)z/Jf = (—=Ar, — z)wf.
Computing the right-hand side and taking the limit lim._.o ¢} ;. =: 1{ in the L?
topology we find that z/Jf\ still belongs to Dom (H,, ), and moreover

ka (V) [ ko (A)y—
U] =) + RS (@) T s

where /1 is the standard embedding H'(I') < G = L2(v) and R{2")

operator acting on G according to (10.9), with the kernel

is the integral

ka (M) T ko (A+ie) .
RFO (x,y) = EEI(I)I+RF0 (x,y);

similarly kN .— oI — Rlli‘(‘)(l)/‘l), are the maps § — G with R’li‘(‘)(fjf/ When
we remove the regularization, the pointwise limit 1) = limg_,¢ 1/’§ ceases to be

square integrable, however, it still belongs locally to L? and yields the generalized
eigenfunction of H,, r, namely

ko (X)

s @MW) wy

Yr=wy+R
where Jaw) denotes the trace of wy in L2(v). The sought on-shell S-matrix can be
then found by inspecting the asymptotic behavior of the function vy as |x1| — oo.
Using the explicit form of the kernel R’lif(*) W ¢,
(Problem 10).

-) we arrive at the following conclusion

Theorem 10.4 (a) Under the stated assumptions, wave operators for the pair
(Ha,r, Hao,ry) exist and are complete.
(b) For a fixed \ € ( - }taz, O) the generalized eigenfunctions of H, r behave as

Ir () = t(\) etkoaMx1i—alxal/2 (1 4 o(1)) as x; — +oo

AT (ke Ox g p (V) e thaOn) e=alv2l/2 (1 4 o(1)) as x1 — —o0
where ko (\) = ()\ + %a2)1/2 is the effective momentum and t(X) , r(\) are the
transmission and reflection amplitudes, respectively, given by

rO) =1—1()) = (]A(:J)\, (@’%W)*‘JAM)Q .

ia
8k (M)
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10.2.2 Hiatus Perturbations

Let us return to the discrete spectrum and consider another type of perturbation
coming now from the removal of a small part of the interaction support. In case of
a planar graph this means making a cut in a graph edge, but one can consider the
general codimension-one situation, i.e. Schrédinger operator on L2(R?) with the
interaction supported by a (d — 1)-dimensional surface having a “puncture”.

Suppose thus that I' ¢ R¢ is a compact C"-smooth surface with m > %d ; without
loss of generality we may suppose that 0 € I'. Let further {P:}.>0 be a family of
subsets of I' which obeys the following requirements:

(i) Measurability: P. is measurable with respect to the (d—1)-dimensional Lebesgue
measure on " for any € small enough.
(ii) Shrinking: sup,.p_|x| = O(¢) holds as £ — 0.

Consider the operators H, r and H, r, corresponding to I' := TI" \ P.. Since
I'c is compact, one easily finds that oess(Hn,r.) = [0, 00) holds for all € and
fodisc(Ha,r) < 0o. Furthermore, the discrete spectrum is nonempty for any o > 0
if d = 2, while in higher dimensions it is true only for & > ¢ with some critical
ap > 0 depending on I" (see the notes).

Suppose thus that H,  has N isolated eigenvalues. It is not difficult to see that
the perturbed operator H, . has for all € small enough the same number of negative
eigenvalues, \;(€) < A\a(e) < --- < An(e), which satisfy

Aj(e) > Aj(0) as e—>0, 1<j=<N.

Let {d);.v } j=1 be an orthonormal system of eigenfunctions of H, - corresponding to
these eigenvalues; without loss of generality we may suppose that ¢ (x) > 0 in R?.
By Sobolev’s trace theorem, each function ¢; is continuous on I" in the vicinity of
the origin. In general, the spectrum may not be simple; given ¢ € ogisc(Ha 1) We
denote by m(({) and n(() the smallest and largest index value j, respectively, for
which ¢ = A;(0), and introduce the positive matrix

C©) = (10 ¢ (M), )<i.j<n(

denoting by s,,(¢) < Sm()+1 < -+ < su(¢) its eigenvalues. If ¢ = A;(0) is a simple
eigenvalue of H, r, in particular, we have m(¢) = n({) = j and s; = |¢; 0)%.
Then we have the following result:

Theorem 10.5 Assume (i), (ii), and suppose that the coupling constant o > «y. For
a given ( € ogisc(Ha,r) and m(¢) < j < n(() the asymptotic formula

Aj(©) = ¢+ amp(P)s; +o(e?™h

holds as € — 0, where mr (+) is the (d —1)-dimensional Lebesgue measure on T'.
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We refer the reader to the notes for the proof sketch. We also remark that the com-
pactness of I" plays essentially no role in the argument which also allows us to treat
other situations. As an example, consider, a smooth curve I' C R? and a family
of curves I'. with a hiatus described by the same function I" where, however, the
argument runs over R \ (—¢, €) only.

Corollary 10.2.2 Suppose that T satisfies the assumptions of Theorem 10.2, then
the eigenvalues of H,, . with m(¢) < j < n({) obey the asymptotic formula

Aj(€) =Aj(0) +2aesj+o(e) as € — 0.

A way to visualize these results is to realize that, up to an error term, the eigenvalue
shift resulting from removing an e—neighborhood of a hypersurface point is the same
as that of adding a repulsive J-interaction at this point, with the coupling constant
proportional to the puncture “area”. Let us add, however, that this is true only in the
case when codim I' = 1. If we have, for instance, a simple eigenvalue of H, r with
the eigenfunction ¢, where I is a curve in R3, and perturb the latter by making a
2e-hiatus in it, the leading term in the perturbation expansion is again proportional
to [¢(0)|?, but this time it comes multiplied not by ¢ but rather by elne (see the
notes).

10.2.3 Isoperimetric Problem

The ways in which the interaction support can influence the spectral properties of
leaky-graph Hamiltonians are not exhausted by the above described results. Let us
mention one more which is analogous to the problem discussed in Sect.3.2.3; for
simplicity we limit ourselves again to the two-dimensional situation and suppose
that I' ¢ R? is a loop of a fixed length. We know that the discrete spectrum of Hor
is then nonempty for any fixed o > 0, in particular, A\j (o, I') ;= inf 6 (H,.r) < O is
a simple isolated eigenvalue. We ask about the shape of I" which makes this ground-
state eigenvalue maximal.

To state the problem, suppose that I" : [0, L] — R? is a closed C', piecewise C?
smooth curve, I'(0) = I'(L); we allow self-intersections provided the curve meets
itself at a non-zero angle. Furthermore, we divide such loops into equivalence classes:
" and I'” are equivalent if one can be obtained from the other by a Euclidean trans-
formation of the plane; the spectral properties of the corresponding operators H,,
and H,, 1+ are obviously the same. The above assumptions are satisfied, in particular,
by the circle C := { (% cos %, % sin %) : s € [0, L]}, and its equivalence class.
Then we have the following result:

Theorem 10.6 Within the above described class of loops, the ground-state eigen-
value \i(«, I') is for any fixed o« > 0 and L > 0 sharply maximized by the circle.

To prove the theorem we need an auxiliary geometric result.
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Lemma 10.2.1 Let I have the properties described above, then we have

I+p

L U
/0 ID(s+u) —T(s)|Pds < sin? T for p € (0,2].

Proof is left to the reader (Problem 11); note that the right-hand side of the inequality
is nothing else than the value of the integral when I' is a circle.

Proof of Theorem 10.6 We shall employ again the generalized Birman-Schwinger
principle in order to reformulate the question into the eigenvalue problem, Ry, ¢ =

¢on L?(0, L) with Rg r defined by equation (10.7). We note that the operator-valued
function k +— Rg,r is decreasing in (0, 00) and Ry Il — 0 holds as k — oo.
By the positivity improving property, the maximum eigenvalue of R |- is simple,
and the same is true by Theorem 6.7d for the ground state of H, r. If I' is a circle,
the latter eigenfunction exhibits rotational symmetry, and using Problem 3 we see

that the respective eigenfunction of RZIC corresponding to the unit eigenvalue is

constant, ¢~)1 (s) = L~Y2 Then we can write
N - - 1 L L .
max U(RZC) = (¢1, RZC@) = Z/o /0 RZ],C(S’ s dsds,
while for a general loop I" of length L a simple variational estimate gives
P ~ Lo~ 1 L L P
maXU(Rg{{r) = (Qb],RZ{rﬁbl) = Z/O /0 Rgfr(& s')dsds’;
hence to check that the circle is a maximizer it is sufficient to show that

L /L L oL
/ / Ko(kIT(s)—=T(s")|) ds ds’ > / / Ko(kIC(s)—C(s")]) ds ds’
0 0 0 0

holds for any k > 0 and I of the considered class. By a simple change of variables
we find that this is equivalent to the positivity of the functional

L2 L
F.T) := / du/ ds |:K()(K|F(S+M) — F(s)|) — Ko(/-e|C(s+u) — C(s)|)i| ,
0 0

where the second term is equal to KQ(% sin %) Now we employ the (strict) con-

vexity of Ko which yields by means of the Jensen’s inequality the estimate

Leays [ ko (2 ("1 resylds ) — Ko ("5 sin ™) | a
zn()_/o Oz/0|(s+u)— (S)IS—()?smT u,
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where the inequality is sharp unless |I"(s+u) — I'(s)| is independent of s. Finally,
we note that K is decreasing in (0, 0o), hence it is sufficient to apply Lemma 10.2.1
with p = 1 to the argument of the first term on the right-hand side. |

10.3 Strong Coupling Asymptotics

We have encountered repeatedly, in Sect. 1.6 and elsewhere, situations when the
particle was strongly localized transversally and the motion became effectively lower
dimensional. In the present context it is the coupling constant o which determines
how much is the particle attracted to the graph determining, in particular, the “spread”
of possible eigenfunctions in the direction transverse to the edges; it is thus natural
to ask what happens if the attraction is strong. We have seen in Chap. 8, however, that
the problem is significantly more complicated if the particle is localized in regions
which are non-smooth and/or branched; this is the reason why we limit ourselves
here to the situations where the interaction support is sufficiently smooth.

10.3.1 Interactions Supported by Curves

While for the definition of H, r the codimension of the interaction support was
important, for the asymptotic behavior considered here it is the dimension which
matters. As usual, we begin with the case of planar curves, at first finite ones.

Theorem 10.7 Suppose that T : [0, L] — R? is a C* smooth function, |I'| = 1,
which defines a curve T without self-intersections; then the relation

alL
ﬁo'dixc(Ha,F) = —+0(na)
2w

holds as o« — oo. In addition, if T is a closed curve, C* smooth at oy =r()),
then the jth eigenvalue of the operator H, r behaves asymptotically as

1
Aj(o) = —Zaz—i—uj —i—O(ofllna),

where i is the jth eigenvalue of the operator Sr = —% — %’y(s)2 on L%(0, L)

with periodic boundary conditions, counted with multiplicity, and ~(s) is the signed
curvature of T'. If, on the other hand, T is a finite arc with regular ends, the for-
mula holds again with i referring instead to the analogous operator with Dirichlet
conditions at the endpoints of the interval [0, L].
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Proof Suppose first that I is a closed curve without self-intersections, and consider

its strip neighborhood analogous to that used in proof of Theorem 10.1 with the

appropriate curvilinear coordinates, in other words, the set X, onto which the function
«: [0, L) x (—a, a) — R? defined by

(s,u) > (1(s) —ul5(s), Ta(s) + ul'}(s)) (10.10)
is a diffeomorphism for all ¢ > 0 small enough. We are going to estimate H,, - using
Dirichlet-Neumann bracketing, imposing additional conditions at the boundary of
%,, which yields the inequalities

(AN )@ L, <Hor <(-AR)®Lf,, (10.11)

where A, = R?\ X, =: A" U A% is the exterior domain, and Li(y are the
self-adjoint operators associated with the forms

GE 1= 1V 2o, — /F |f @) ds,

where f belongs to HO1 (Z4) orto H'(2,) for the + sign, respectively. Importantly,
the exterior domain A, does not contribute to the negative part of the spectrum, thus
for our purpose we may consider L;'fa only. Using the curvilinear coordinates (s, u),

we pass from L;'f ., to unitarily equivalent operators associated with the quadratic

forms
L pa 9
b

u

L pa
bff,a[f]:/o 1 +ursn 2 | 2L

—a

L L
+/ /a V(s u)| £ (s, u)|? duds —a/ | £ (s, 0)]? ds (10.12)
0 —a 0

defined for f € H L0, L) x (—a, a)) satisfying periodic boundary conditions in
the variable s and Dirichlet conditions at u = 4a, and

1

- + =S j/L k(s) Do)
ba ol f1=1b],1f] ;2( Y e @ CD @ ds (0.13)

without the Dirichlet condition at # = =a; the symbol V in (10.12) denotes the
curvature-induced potential (1.8). In the next step we replace inequality (10.11) by
rougher bounds squeezing H, r between operators with separated variables. To do
so we introduce self-adjoint operators U, f in L>(0, L) given by

2
U =—(1Fay)2 2d — + Vi(s) (10.14)
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with periodic boundary conditions, where

_ Lo 3. D 4.0 1 2,02
Ve(s) = 5 (1 —ayy) ey — o (I ayy)"a™yy — (L ay) ()

with v+ = [[V]leos Y+ = Vo, and A4 := ||¥|lco. Furthermore, let Tia be the
transverse operators associated with the quadratic forms

th Lf1= [ 1 ) du — o f(O)]?, Dom (1;,) = Hy (—a. a),
taol 1=t f1= 74 (f@I* + | f(=a)[*) ., Dom (1, ,) = H'(—a,a) .

The negative spectra of the operators ija can be localized with an exponential
precision (Problem 12): there is a number ¢ > 0 such that ija has a single negative

eigenvalue & f ., satisfying

2 2 2

- % (1 + ce*(w/z) <& < _% <&, < —O‘T (1 - 8e’“’“/2) (10.15)

provided « is large enough. If we now define

Hi,=U;r®I+I1®T],.
then )\ () is by the minimax principle squeezed between the corresponding eigen-
values of I:Iaf o and I:I(;r «» hence for « large enough we have

@)+, < Aj@) < i@ +EL,. (10.16)

where /,L?E (a) is the jth eigenvalue of the operator U ;t On the other hand, from the
definition of Vi we infer that [|[Vi(-) — V (-, )|lec = O(a) as a — 0, hence by a
simple perturbation argument there is a C; such that

i (@) — pujl < Cja (10.17)

holds for a small enough. To conclude the argument, we choose a = 6a~! In avas the
strip neighborhood halfwidth; the stated asymptotic formula for ) ; () then follows
from (10.15) and (10.16).

If T is not closed, the same can be done with the comparison operators SII-) N
having the appropriate boundary conditions, Dirichlet or Neumann, respectively, at
the endpoints of I". This gives the estimate on f ogisc(Hq,rr) and an upper bound on
Aj(a), however, it fails to provide a precise enough lower bound. If I" has regular ends,
i.e.itcanberegarded as the restrictionofa C 4smoothcurve I : [—a, L4+a] — RZfor
some a > 0, one is able to perform the Neumann estimate on such an extended curve.
This bound no longer has separated variables, but one can express the eigenfunctions
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of H, r using Problem 3 and employ decay properties of the Green function. The
estimate is somewhat involved and we provide a reference to the complete argument
in the notes. |

The case of a finite curve in R? is similar. We consider a C* smooth function
[ : [0,L] - R3? with |['(s)] = 1. We assume that it has a piecewise global
Frenet frame (¢, n, b) in the sense of Problem 1.12 and define the straightening
transformation using the map &, : [0, L] x B, — R3,

D,(s,r,0) =T (s) —r[n(s)cos(@—p3(s)) + b(s) sin(0—F(s))] ,

where B, is the disc of radius a centered at the origin; for small enough a it is a
diffeomorphism of a tubular neighborhood %, of I that does not intersect itself. If the
function [ is chosen to satisfy the Tang condition (1.18), 3 = 7, then the longitudinal
and transverse variable decouple and we can proceed as in the two-dimensional case
(Problem 13) arriving at the following result.

Theorem 10.8 For curves I" without self-intersections described above, we have
L 1/2 Ta
ﬁadisc(Ha,l") = ;(Ca) (1 +0E™))

as o — oo, where (1= 422+ Iy addition, if T is a closed curve, the jth
eigenvalue of the operator H, r behaves asymptotically as

Aj(@) = Ca+pj+0E™),

where (i is the jth eigenvalue of the operator St on L?(0, L) with periodic boundary
conditions described in the previous theorem.

The technique used to derive these results can be applied in other situations as
well. If T is an infinite curve, the threshold of the essential changes in general and the
estimates on f ogisc (H,, ) are no longer relevant. On the other hand, the eigenvalue
asymptotic formula remain valid under stronger assumptions on the curvature and
torsion.

Corollary 10.3.1 Let T : R — R?, d = 2,3, satisfy the hypotheses of The-

orems 10.2 and 10.3, respectively. In addition, assume that (s) and 5(s)'/* are

O™ 7%) as |s| = oo, and 7,7 € L®(R) for d = 3. Then the asymptotic expan-

sions from the said theorems hold for all the isolated eigenvalues \j(c) of Ha.r,
d

where St 1= —3Z %'y(s)2 is now the operator on L*(R) with domain H*(R).

Note that in this case we need not care about the multiplicity when counting the
eigenvalues because the spectrum of St in L2(R) is simple. On the other hand, the
smoothness requirement is essential for the above results.
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Example 10.3.1 Consider again the operator H,(/3) of Example 10.2.1. In this case
I' is a broken line, and as such it is self-similar. Using a scaling transformation we
find easily that 41 ; in the asymptotic formula of Theorem 10.7 should be replaced by
()\j + JT) a?, where Aj is the jth eigenvalue of H>(§3) corresponding to o = 1.

10.3.2 Interactions Supported by Surfaces

The method used for curves also works for interactions supported by surfaces, but the
geometric part is naturally different. Consider first a C* smooth compact and closed
Riemann surface & C R3 of a finite genus g. Asin Sect. 4.1.1, its geometry is encoded
in the metric tensor g, and the Weingarten tensor /2,”; the eigenvalues k. of the latter
are the principal curvatures which determine the Gauss curvature K = det(h,,”) and
mean curvature M = 1 Tr (h . ). For a compact X the essential spectrum is [0, 00)
and we ask about the asymptotic behavior of the negative eigenvalues as o — ©0.

This time it will be expressed in terms of a comparison operator of the form
Sy = —As + K — M?

on L*(%, do), where Ay, = —g’l/zaﬂgl/zg“”&, is the Laplace-Beltrami operator
on X. The jth eigenvalue p; of Sy is bounded from above by that of Ay because
K —M?= —é—lt(k+ — k_)2 < 0, in particular, the two coincide if X is a sphere.

Theorem 10.9 Under the stated assumptions, § ogisc(Ha,x) > j holds for any fixed
integer j provided « is sufficiently large and the counting function behaves asymp-
totically as

|2

8 dise(Ha,x) = ——a” + O(@) ,

16w
where | X| is the Riemann area of the surface ¥. Moreover, the jth eigenvalue )\ j (o)
of Hy,x. has the expansion

1
Aj(o) = —Zaz + 1 + 0@ 'Inw)

as o — 00, where i is the jth eigenvalue of Sx.

Proof We employ a bracketing argument again. To construct the needed neigh-
borhoods of ¥ we use the field {n(x) : x € X} of unit vectors normal to
the manifold, which exists globally because X is orientable, and define a map
Li: ¥ x (—a,a) - R3by Ly(x,u) = x + un(x). Since ¥ is smooth it is
a diffeomorphism for all a small enough mapping onto the layer neighborhood
Qq = {x e R3: dist(x, ') < a}. By bracketing we get a two-sided estimate for the
negative spectrum of H,, s in terms of Dirichlet and Neumann operators referring to
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the €2, component. They can be analyzed by means of the curvilinear coordinates as
in Sect. 4.1.1; one arrives at estimates through operators with decoupled variables,
STQI+1QTE, with

ST = —Ci(a)Ar 4+ C*(a)(K — M?) +va

and the transverse part which is the same as in the proof of Theorem 10.7. Here
Ci(a) := (1 £ap™")? with ¢ := max({||lks|lo. lk_ll)~" and v is a suitable
constant. The rest of the argument is the same as in the two-dimensional case; to
get the counting function one has to employ the Weyl formula (Problem 14) for the
comparison operator Sy. |

Note that £ need not be simply connected; the claim remains valid if it is a finite
disjoint union of C* smooth compact Riemann surfaces of finite genera. Moreover,
the asymptotic formula for the counting function is preserved for surfaces ¥ which
have a nonempty and smooth boundary.

The technique used to derive the above asymptotic expansions can also be applied
to singular interactions supported by infinite surfaces provided we adopt additional
assumptions, for instance

(i) Injectivity: the map £, : ¥ X (—a,a) — £, C R3 defined above is injective
for all a small enough.
(ii) Uniform ellipticity: c¢_0,, < gu, < c40,, holds for some c+ > 0.
(iii) Asymptotic planarity: K, M — 0 as the geodesic radius » — oo.

The assumptions allow for modifications, in particular, the first and the third one can
be replaced by another hypothesis (Problem 15). Then we have the following result,
the proof of which is left to the reader.

Theorem 10.10 Under assumptions (i) and (iii) we have inf oess(Hp,x) = €(v),
where e(a) + ‘1—‘042 = O(a?e 2y as o« — oo. In addition, if (i) is valid and
X is not a plane, then ogisc(Hy,x) # ¥ holds for all o large enough and the jth
eigenvalue has the asymptotic expansion,

1
Ajla) = —Zaz + pj + 0@ 'Inw

as o — 00, where i is the jth eigenvalue of the comparison operator Sy on
Lz(Z, do) introduced above, counted with multiplicity.

Note that this result establishes the existence of curvature-induced bound states
for surfaces ¥ which are asymptotically planar provided the coupling constant « is
sufficiently large. The eigenfunctions are in such a case strongly localized around
the surface, which allows us to regard this claim as an analogue of Theorem 4.2b.
The question of under which conditions this is still valid beyond the strong-coupling
regime remains open.
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10.3.3 Periodic and Magnetic Systems

So far we have dealt with situations where the interaction support was either compact
or at least its geometrically nontrivial part was localized. Let us now see what happens
if I" is periodic. We start again with a planar curve assumed to be C* smooth, hence
its signed curvature v is a C> function. We shall assume:

(i) Curvature periodicity: there is an L > 0 such that y(s + L) = y(s).

(ii) Curve periodicity: in analogy with (9.10) we assume fOL v(s)ds = 0.
Without loss of generality we may suppose that the normal at s = 0 is (1, 0),
then I'(- + L) — I'(:) = (I1, [2) where the period-shift components are /; :=
fOL sin (§(2 —Jj) - fé v(u) du) dt and we may assume that [; > 0.

(iii) Period cell match: the map (10.10) is injective for all ¢ small enough and
®,((0, L) X (—a,a)) C A:=(0,1) xR.

We proceed as in Sect. 9.1.2 and perform the Bloch-Floquet decomposition. The
operator Hy,r(6) on L*(A) is for a 6 from the Brillouin zone B := [ — I ﬁ]
defined through the quadratic form (6.20) with Q = R?; its domain consists of
functions u € H'(A) satisfying the boundary conditions u(/1, /> + -) = eu(0, -).
Identifying the Hilbert space L>(R?) with /; g? L%(A) df we can write with a slight
abuse of notation the direct-integral decomposition

l ® . .
Hor =5 [ Har®)d implying (o) = | o(Hor ).
2 /B 0eBB

Note that the decomposition is similar to that of Sect. 7.2.2, with the magnetic field
absent and the single point interaction replaced by the one supported by the curve
segment I'((0, L)). Since the latter is finite, it is easy to check that oess(Ho, 1 (0)) =
[0, 00); for the discrete spectrum we have the following result:

Theorem 10.11 To any j € N there is an aj > 0 such that 8 o4isc(Ha,r (0)) > j
holds for « > «;j and any 0 € B. The jth eigenvalue of H, r(0) counted with
multiplicity has the asymptotic expansion

1
Aj(a, 0) = —Zoﬂ +1j(0) + 0@ ' Ina)

2 .
—(57 — ‘l"y(s)2 with
the domain consisting of functions u € H 2(0, L) that satisfy u(L) = ¢"%u(0) and
u'(L) = %4 (0), and the error term is uniform with respect to 0 € B.

as o — 0o, where 1;(0) is the jth eigenvalue of Sr(0) =
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Proof The proof follows closely the line of argument used to demonstrate Theo-
rem 10.7, based on the bracketing technique. Let

Rf, = (e H'(Z): ulos,nn =0, ully,-) = eu(0, ) on (—a, )},

R (ue H'(Z) : uly,-) =€%u(, ) on (—a, a)},

a.0
and define the quadratic forms

GE ol F1= 19 PP, —a [ o FOR s, Dom (g, = RE,.
I'((0,L))

Let Lim o be the self-adjoint operators associated with the forms q: o> Tespectively,
and put again a(«) = 6a~! In o. By imposing additional Dirichlet respectively Neu-
mann boundary conditions at the boundary of ¥, and using the bracketing argument
we find that

K (@, 0) < N, 0) < K] (o, 0), (10.18)

+

a(a),a,0"
Theorem 10.7, we estimate nf (v, 0) by the eigenvalues of suitably chosen operators

where mj.c (v, 0) is the jth eigenvalue of the operator L Following the proof of

with separated variables. Specifically, let Uai( .0 be given by the right-hand side of
(10.14) acting on the domain

Py =f{ue H*(0,L)); u(L)=e"0), u'(L) =e"u0)},

and let uj.c(oz, #) denote their eigenvalues. We use the curvilinear coordinates (s, u)

and pass from L;a to unitarily equivalent operators associated with the quadratic
forms (10.12) and (10.13) with the respective form domains

05y =1lpeH'((0.L) x (~a.a) : o1, =ep(0,) on (~a,a))

and Q:e ={pe 0, ,: v, xa) =0 on (0, L)}. The minimax principle then
implies that nj.t (v, 0) are sandwiched between the corresponding eigenvalues of the

operators Uui(w)’ e ®I+1® T; () where cha have been introduced in the proof

of Theorem 10.7. More precisely, we have
Eoatey T 17 (@, 0) < K7 (,0) < £F(a,0) < &) +pf(@0). (10.19)
On the other hand, equation (10.17) implies in view of our choice of a that

|,u]#(oz, 0) — pjl = O 'Ina) as a — oo;
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this asymptotic behavior in combination with relations (10.15), (10.18), and (10.19)
completes the proof. |

Combining the last result with Borg’s theorem on the inverse problem for Hill’s
equation, we can make a claim about gaps of o(H,,r) similar to Theorem 9.4.

Corollary 10.3.2 Suppose thatT" : R — R?, d = 2, 3, is not a straight line, vy # 0,
and satisfies the assumptions of Theorem 10.11 or Problem 16b, respectively, then
the spectrum of H,r contains open gaps for all o large enough.

Remark 10.3.1 The interaction support need not consist of a single curve, in a similar
way one can treat finite or infinite families of curves periodic in n < d directions,
the only restriction is that their components have to satisfy individually the listed
assumptions and the distances between them must have a uniform positive lower
bound. There is a difference between the cases n = d and n < d, however, because
in the former the basic cell of the system is pre-compact, and therefore the spectrum
of each H, () is purely discrete. A particular situation occurs when a periodic
I consists of disjoint compact components. The described asymptotic expansions
are valid again but now the fiber comparison operator Sr(f) is independent of the
quasi-momentum 6, in other words

1
Aj(a, 0) = —Zaz + + 0@ '

holds for d = 2 and the respective expansion for d = 3. Note that in the latter case
the topology may again be nontrivial, e.g., for chains of interlocked rings.

Corollary 10.3.3 Suppose that the curve T' C RY satisfies the assumptions of The-
orem 10.11 or Problem 16b, respectively. In the case d = 2 to any \ > 0 there is
an oy > 0 such that the spectrum of the operator H, r is absolutely continuous
in (—oo, —4—1‘03 + A as long as o > . The same is true for d = 3 with —%az
replaced by (,, provided —a > ).

Proof 1t is straightforward to check that {H, r(0) : 6 € B} is a type (A) ana-
Iytic family. The spectral interval in question contains a finite number of eigenvalue
branches, each being a real analytic function which has the above described asymp-
totic expansion. The functions 1 () are nonconstant, hence the same is true for
Aj(c, ) provided (=D is large enough. |

In a similar way one can treat strong-coupling asymptotics for operators H, x
describing singular interaction supported by a periodic surface . We consider dis-
crete translations of R3 generated by an r-tuple {/,,}, where r = 1, 2, 3, and decom-
pose both X, assumedtobea C 4 smooth Riemann surface, not necessarily connected,
and the ambient space R? into period cells %, and A, respectively, assuming again
that they match mutually. The Bloch-Floquet decomposition is as above: we define
the fiber operators H,, x (6) on L%(A) through quadratic forms defined on functions
satisfying the appropriate boundary condition and express H, x and its spectrum
through them as
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1 ®
H,y = W,,,Ull“ /B Hox(0)d0, o(Hyx) = | o(Hax(0)),

0eB

where B = XL: 1 [ - % %] is the Brillouin zone. The spectrum of H,, - (f) depends
on r; it is purely diSCI/‘etelif r = 3 and A is compact, while for r = 1, 2 we have
Oess(Ha, 1 (0)) = [0, 00). The eigenvalues are continuous functions of the quasimo-
mentum components ¢,,.

As before we need a family of comparison operators on L ( X, do). One way to
describe them is to write their action as

Ss(0) = g "2 (—id, + 0,)9"*g" (=i0, + 6,) + K — M?

with the domain consistingof ¢ € H 1 (2p) suchthat Ax ¢ in the sense of distributions
belongs to LZ(EP, do) and satisfies periodic boundary conditions on B. If X, is
precompact and the curvatures K, M are bounded, the spectrum of Sx; () is purely
discrete for each 6 € B; we denote the jth eigenvalue, with the multiplicity taken
into account, by u;(6).

Theorem 10.12 Under the stated assumptions on the surface X, the following
claims are valid:

(a) Fix X\ as an arbitrary number if r = 3 and a non-positive one forr = 1,2. To
any j € N there is an oj > 0 such that H,, 5 (0) has at least j eigenvalues below \
forany o > o and 0 € B and the jth eigenvalue \j(c, 0) has the expansion

1
N, 0) = —Zozz + 1) + O(@ ' Ina)

as a — 00, where the error term is uniform with respect to 6.
(b) If the set o (S) = Ué)eB o (St (0)) has a gap separating a pair of bands, then the
same is true for o(H,, ) provided « is large enough.

Proof is left to the reader (Problem 16b).

Let us finally mention the strong-coupling asymptotics for planar loops threaded
by a magnetic flux which shows a formal similarity with the case of a periodic
curve discussed above. The physical interest in such systems is related, in particular,
to the existence of persistent currents in mesoscopic rings. For a charged particle
(typically an electron) confined to aloop I' this effect is manifested by the dependence
of the corresponding eigenvalues A\, on the flux ¢ through the loop, conventionally
measured in the units of flux quanta, 27hc|e| ~1- the derivative % then equals — % I,
where 1, is the persistent current in the nth state. If the particle is strictly confined to
the loop, the eigenvalues in the absence of other than the magnetic potential are easily
seen to be proportional to (n + ¢)? so the currents depend linearly on the applied
field. The question is what can be said when the loop is leaky, i.e. the confinement
comes from an attractive singular interaction supported by the curve.
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Assuming for simplicity that the magnetic field is homogeneous and choosing the
circular gauge, A = %B(—xz, x1), we replace the formal expression (10.1) by

H,r(B) :== (—iV + A)? —ad(x — )

in L2(R?); to define it properly we use quadratic form analogous to (6.20),
2 1
+ H (—i82 + EBXI) P

with the domain H'(R?). It is straightforward to check that the form is closed and
below bounded; we identify the (unique) self-adjoint operator associated to it with
H, r(B). One can employ the same technique as above, bracketing and estimating
the operator in the strip neighborhood of I" using curvilinear coordinates. The thing
to be changed is the comparison operator, Sr of Theorem 10.7 now being replaced by

2

oo (- 1)

- a/ (L)) dx
RZ

1

d 2
Sr(B) = a2 ZV(S)

on L%(0, L) with the domain consisting of H 2(0, L) functions satisfying the bound-
ary condition ¢/(L—) = e'Bl¢l)(0+) and ¢'(L—) = e/ BI®%y/(04), where Q is
the area encircled by the curve I'. The argument is now analogous to the proof of
Theorem 10.11 with the quasi-momentum replaced by the magnetic flux. In this
way we obtain the following result which establishes, in particular, the existence of
persistent currents on a leaky loop for « large enough.

Theorem 10.13 Let I' be a C*-smooth curve without self-intersections. For a fixed
J € Nand a compact interval I we have § o(Hy r(B)) > j for B € I if o is large
enough, and the jth eigenvalue behaves in the limit oo — 00 as

1
Aj(a, B) = —Zaz + uj(B) +0@ 'ha),

where 11 (B) is the jth eigenvalue of St (B) and the error term is uniform in B. This
implies, in particular, that the function \j(a, -) with a fixed j and o large enough
cannot be constant.

10.4 Notes

Section 10.1 Most of the material in this chapter is taken from the review paper
[Ex08]. Schrodinger operators with interactions supported by manifolds of a lower
dimension were studied first in examples with a particular symmetry [AGS87,
Sha88], a more systematical investigation began with the papers [BT92, BEKS94].
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Note that the operators discussed here may also have other applications. A prominent
example comes from studies of high contrast optical systems used to model photonic
crystals. The physical interpretation is different in this case, the roles of the coupling
and spectral parameters being switched, see [FK96] and the review [KuO1]. Opera-
tors of the type (10.1) are also encountered when one deals with contact interactions
of several one-dimensional particles [CDROS].

Theorem 10.1 is taken from [EIO1], a similar claim for interactions supported
by surfaces was demonstrated in [EKO3]. The proof of Proposition 10.1.1 is based

on an abstract analogue to Theorem 7.7 due to [PosOl1]. It again employs traces of
eiklr=yl

Iyl
to interpret the embedding operators not as maps between L? spaces, but rather to
consider Rlli : H2(R*) — L%(R) and its counterpart R’li as the Banach space dual

to R_{i Then

the free resolvent, which is now given by Gy (x —y) = however, one has

R* = Rl — RE(Q*—a)7'RK,

where the operator Q¥ is the counterpart to Rl,fl’m of Theorem 6.7 which now cannot be
written simply as an integral operator and requires a renormalization analogous to the
replacement of boundary values by the generalized ones given by (5.1), cf. [EK02]
for more details. The number « can be, of course, replaced by a function which
produces a wider class of singular Schrodinger operators.

The approximation described in Theorem 10.1 elucidates the meaning of the sin-
gular Schrodinger operators considered here but it does not help much when we
want to find spectral properties of a particular operator H, . This can be done using
another approximation using a family of point-interaction Hamiltonians; recall that
if the number of the §-potentials is finite the spectral analysis reduces by means
of Krein’s formula to an algebraic problem. One replaces the curve I' by arrays of
two-dimensional point interactions in such a way that their distances tend to zero and
the coupling parameters are inversely proportional to the distances. This may look
strange, but one has to keep in mind that the coupling described by the boundary
conditions (5.2) becomes weaker as « increases. In this way one can construct oper-
ators approximating H,, r in the strong resolvent sense [EN03b, OZ06] and similar
approximations to J-interaction supported by surfaces [BFT98]; moreover, a norm
resolvent convergence can be achieved if a A? type perturbation is added [BOO7].
Section 10.2 Theorem 10.2 comes from [EIO1], the analogous result for curves in
R3 is due to [EK02]. Note that in both cases assumptions (i) and (ii) are sufficient
to the establish the existence of a geometrically induced spectrum. Its discreteness
requires an asymptotic straightness of I'; in case of Theorem 10.3 alocal smoothness
is also needed due to the more strongly singular character of the interaction. The
discussion of leaky star graphs in Example 10.2.1 comes from [ENO1], see also
[ENO3b]. Theorem 10.4 describing scattering for a locally deformed I' is taken from
[EKO5].

Spectral properties of operators H,  in L%(R?) for a compact I of codimension
one are discussed in [BEKS94, BLL13]. The fact that H,, r. has for small € the same
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number of eigenvalues as H, r and that A\j(e) — A;(0) holds as € — 0 follows
from the convergence of the corresponding quadratic forms on H'(R?), cf. [Ka,
Theorem VIII.3.15]. To prove Theorem 10.5, however, one cannot employ Kato’s
perturbation theory of quadratic forms due to the strongly singular character of the
perturbation. Indeed, we have 7_ - [Y] = t—am [Y]14+amr (P:)[1(0) 124+0O(?) as
e — Oforey e Cf° (R?) and the quadratic form ¢ > |9 (0) |2 does not extend from
(O (R?) to a bounded form on H'(R¥), because the set of 1) € Cy° (R9) vanishing
at the origin is dense in H'(R%). A way to eliminate this difficulty is to use the
compactness of the map H!(R?) 5> f + f|r € L?(T'); the argument is worked out
in [EY03]. Note that there are other ways to derive such asymptotic expansions, for
instance, the technique of matching of asymptotic expansions [Il] where, however,
additional assumption are required such as self-similarity properties of the family
of shrinking sets P.. Numerical results illustrating such geometric perturbations for
curves in the plane were worked out in [ET04]. The asymptotic expansion for a curve
with a hiatus in R? mentioned at the end of Sect. 10.2.2 was derived in [EK08].

Theorem 10.6 comes from [EHLO06]. The geometric result of Lemma 10.2.1 on
which the proof is based can be demonstrated in alternative ways [Lii66, ACF03];
a proof of local validity of the isoperimetric inequality can be found in [Ex05].
Similarly as in Problem 8§, there is a discrete analogue concerning the ground state
of a Hamiltonian with N point interactions in Rd, d = 2,3, arranged like beads
on a necklace with a uniform bound of the neighbor distances: a sharp maximum
is now achieved if they are placed at vertices of a regular planar polygon [Ex06].
Another partial analogue of Theorem 10.6 concerns J-interactions supported by a
surface I' C R3. If the latter is a sphere and the coupling constant « is such that the
corresponding operator H,, r is critical, then any small area-preserving deformation
of I' gives rise to a non-void discrete spectrum [EFr09]. This result holds only locally,
however, there are large deformations which do not produce any eigenvalues.

Section 10.3 Most of Theorem 10.7 comes from [EY02a], the claim concerning
finite arcs has been demonstrated in [EPal4]. One can also conjecture that in the
other cases discussed here the strong-coupling asymptotical behavior for interaction
supported by manifolds with a boundary will be expressed in terms of the appropriate
operator with Dirichlet boundary conditions. Theorem 10.8 and Corollary 10.3.1
were demonstrated in [EK04], Theorems 10.9 and 10.10 come from [EK03]. The
strong coupling behavior in the two-dimensional situation when the coupling strength
a in (10.1) is non-constant along the curve has been discussed in [Kon13].

Theorem 10.11 comes from [EYOl], its three-dimensional analogue in
Problem 16b was demonstrated in [EK04]. Note that the hypotheses about matching
the period cells of the curve and the space can be weakened; what we really need
is a complete “tiling” of R¢ by domains with piecewise smooth boundaries. In the
case d = 3 such “bricks” need not even be simply connected: remember what your
grandmother was doing with her crochet to get an example of a curve which is topo-
logically inequivalent to a line, or in other words, such that you cannot disentangle
it by any local deformation—you can only unwind it by “pulling the ends”.
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Corollary 10.3.2 was also proved in [EY01] and [EKO04], respectively. Corollary
10.3.3 comes from [BDEO3]. To appreciate this result recall that if the period cell
of H, r is compact there is a way to establish the (global) absolute continuity of
such operators [BS§OO, SSOI]. The case n < d is more difficult; the global absolute
continuity has been so far demonstrated only in the related case of a straight '
supporting a singular interaction with the strength « periodically modulated [EF07].

Theorem 10.12 was proved in [Ex03], for Theorem 10.13 see [EY02b]. Note that
the last named result does not require the magnetic field to be homogeneous. The
important quantity is the magnetic flux through the loop, the field shape influences
the error term but not the first two terms of the expansion. In particular, the case
of an Aharonov-Bohm flux line was worked out in [HHO4]. Numerical results for
curves I in the plane illustrating the strong coupling limit in both the nonmagnetic
and magnetic cases can be found in [ET04].

Interpretation of the strong coupling results in this section can also be viewed from
another angle. The spectral properties of H, r can be related to quantum tunneling,
hence they should be sensitive to the Planck’s constant if we reintroduce it into the
picture. In the case of codim I = 1, for instance, the operator —hZA — 6 (x—T)is
the % multiple of (10.1) with the coupling constant o := vk ~2; in this sense therefore
one can regard the obtained asymptotic formula as a semiclassical approximation,
in particular, the leading term in fogisc(Hq,r) is the usual Weyl expression. With
Theorem 10.1 in mind, we can regard the asymptotic behavior discussed here also as
a counterpart to the shrinking potential channels mentioned in the notes to Sect. 1.1.

10.5 Problems

1. Check that the measure (10.2) belongs to the generalized Kato class.

Hint: Cf. [BEKS94, Theorem IV.1].

2. (a) The closure of I-'Ia,r defined by the conditions (10.3) coincides with H, .
(b) Extend this identification to the case where « is a bounded Borel function.

(c) Do the same in the situation when the curve I" is replaced by a smooth hypersurface
Y C Rd, d > 2, of codimension one.

Hint: Use Green’s formula and a suitable core, e.g. C§° (RY).

3. Using the notation introduced in Sect. 6.3.1 prove that an eigenfunction of H,
associated with an eigenvalue k% canbe expressed as ¥ (x) = fOL Rgx’m (x, s)o(s) ds,
where ¢ is the corresponding eigenfunction of aan, . With eigenvalue one.

4. (a) Fill in the details of the proof of Theorem 10.1. Extend the claim to operators
(10.1) with a non-constant coupling strength o using a family of bounded potentials
W : £} — Rsuch that a(x) = f_ll W(x,y)dy.

(b) Prove an analogous claim for the operator H,, . with the J-interaction supported
by a smooth surface & C R3.

Hint: Cf. [EIO1, Appendix A] and [EKO03].

5. (a) Fill in the details of the proof of Theorem 10.2.
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(b) Suppose that I' € C2, then condition (iii) of Sect. 10.2 with 7 > % is valid
provided the curvature of I" satisfies v(s) = O(|s| ™) with 3 > % as |s| — oo.
(c) Let I' C R? be a graph which outside a compact consists of a finite number
of straight halflines separated by wedges of nonzero angles, then oess(Ho,r) =
[_%aza OO)'
Hint: Cf. [EIOI, Sect. 5].

-2
6. Prove thatthe boundinf o (H,(5)) > —a? (1 + sin(g)) holds for the operator

H;(3) of Example 10.2.1. Similarly, for Hys (/é) describing a leaky star of two crossing
lines, B = {8, ™ — 3, B}, we have inf 0(H4(ﬁ~)) > —a2(1 +sinf)~ L.

Hint: Use properties of Sobolev spaces on wedges, cf. [LPO8] and [Lo13].

7. Prove Theorem 10.3.

Hint: Use the generalized BS principle, cf. notes to Sect. 10.1 and [EK02].

8. Let H, y be the Hamiltonian of a particle interacting with a chain of point
potentials in R4, d = 2, 3, all of the same strength « € R, defined by the conditions
of the type (5.2). The interaction support ¥ = {y;} ez is such that |y; — y; 41| =€
for afixed £ > 0. Furthermore, thereisac € (0, 1) suchthat|y; —y;/| > c£|j —Jj'l,
anddy > 0, 7 > %, and w € (0, 1) such that

e LR/ E i

lj=J'l
holds in the sector S, := {(j, j) : j, j' # 0w < j/j' <w™'} € Z?*. The essential
spectrum of H,, y consists of two absolutely continuous bands, possibly overlapping.
If the chain is not straight, |y; — y;/| < £|j — j’| for some j, j* € Z, the operator
has at least one isolated eigenvalue below inf oess(Ha,y)-
Hint: For the straight-chain spectrum see [AGHH]; using Krein’s formula, mimick
then the proof of Theorem 10.2, cf. [ExO01].
9. Prove Proposition 10.2.1. and show that oeg(Ho,r) = Oess(Ha,ry) = [—%
042, 00) .
Hint: To prove the last claim, check that R{io’y is Hilbert-Schmidt under the given
assumptions and the other two factors are bounded.
10. Fill in the details of the proof of Theorem 10.4.
Hint: Use Kuroda-Birman theorem to prove (a). To check that Bi* is trace class, find
a two-sided estimate of @f,f by suitable sign-definite integral operators, cf. [BT92].
For the asymptotics computation see [EK02, EK05].
11. Given a smooth, piecewise C? loopI": [0, L] — RY, d > 2, with f“(s) =1,
consider the following inequalities labeled as C Z (u) with p e Rand u > 0,

I+p

sin” — .

L
sgnp/ IT(s+u) —T(s)|Pds < sgnp
0 P L

Prove the following claims:
(a) CT (u) implies C¥ (u) if p > p' > 0.
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(b) C7 (u) implies C; * (u) for any p > 0.
(©C 1% (u) holds for any u < (0, %L] with strict inequality unless I" is a planar circle.
Hint: Use convexity to prove the claims (a) and (b). As for (c), put L = 27 and
write I'(s) = ZO#%Z cpe™ with c_,, = ¢,. Use I'(s) = 1 and Parseval’s identity
to reduce the problem to checking the inequality | sinnx| < n sin x for any positive
integer n and all x € (0, %w], cf. [EHLO6].

12. Prove the inequalities (10.15).

13. Fill in the details of the proofs of Theorem 10.8 and Corollary 10.2.1.

Hint: To estimate the 3D transverse part, replace (10.15) by ground-state bounds for
a point interaction in the center of the disc with Dirichlet and Neumann boundary.
14. Fill in the details of the proof of Theorem 10.9.

Hint: For the spectral analysis of —Ay see [Ch99].

15. Prove Theorem 10.10. Show that the assumptions (i) and (iii) are satisfied if the
normal vector to X satisfies n — ng as the geodesic radius r — oo, where ng is a
fixed vector.

16. (a)Prove the three-dimensional analogue of Theorem 10.11: Let I be a periodic
curve, without self-intersections and with the global Frenet frame, given by a C*
smooth function I" : R — R3. Suppose, in addition, that the period cells [, of I and
A referring to the corresponding operator H,, i match in the sense that I'y = ' A.
Then ogisc (Ha.r(#)) is as in Theorem 10.11, with the jth eigenvalue of H, r(0)
having the asymptotic expansion

N, 0) = Co+ p1j(0) + OE™) as a— —o0,
where 11 (0) is the jth eigenvalue of Sr(0) and the error is uniform w.r.t. § € B.

(b) Prove Theorem 10.12.
Hint: (b) Cf. [Ex03].



Appendix A
Coda

The road goes ever on and on, down from the door where it
began.
J.R.R. Tolkien, The Hobbit

Time came to stop. As good Dyson frogs we have explored the pool discovered in
the late eighties and collected various beautiful water lilies we found on the way.
Some pools are big, though. It is not only that there are numerous ways in which the
results of this treatise can be improved technically, more important is the existence
of wide areas and deep questions inviting to be explored.

The most prominent among them is the many-body theory of quantum waveguides.
We have briefly touched the subject in Sect. 3.3, but this was just a small foray into a
mostly unchartered territory. Needles to say, the problem has a strong physical moti-
vation because most effects investigated in waveguide structures have a many-body
character. The challenge includes both a true quantum mechanical description of
interacting particle ensembles confined to tubular and more complicated regions as
well as effective theories, and one should not also forget about quantum-field aspects
of this problem.

The focus of this book was on nonrelativistic quantum dynamics governed by
Schrodinger equation. Leaving aside the much older and well studied subject of
electromagnetic waveguides, one may wonder whether other equations are of interest.
The recent discovery of graphene, in which electron behavior is described by a
massless Dirac equation, shows that one’s mind should be kept open. Graphene
ribbons as waveguides with boundary conditions depending on the way they are cut
from a sheet offer various open questions.

A lot remains to be learned about time evolution of such systems. We have dis-
cussed here mostly bound and scattering states, simple from that point of view. It
is known, however, that presence of Dirichlet boundaries can force wave packets to
behave in unusual ways. Moreover, classical hard-wall tubes with local geometric
perturbations can exhibit mixed phase space picture which should be reflected in the
behavior of their quantum counterparts.
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Another subject we touched only lightly upon through the example discussed
in Sect. 9.3 was the behavior of waveguide systems under random perturbations,
especially those of geometric nature. A particularly deep aspect of the problem is
associated with the “mixed dimensionality” of such objects. It is known that random-
ness leads to localization at all energies in one-dimensional systems, while existence
of a mobility edge is expected (albeit not proven in general) in higher dimensions;
it is not easy to predict what will happen with the motion infinitely extended in one
direction and confined in the others.

The mixed dimensionality of waveguides also plays a role in another open prob-
lem, namely the validity of Bethe-Sommerfeld conjecture which we have mentioned
in the notes to Sect. 9.1. One expects that spectra of waveguides with periodic pertur-
bations of the classes considered here will exhibit only finite numbers of open gaps,
but this fact remains to be demonstrated.

Our discussion of electric and magnetic effects is quantum waveguides presented
in Chap. 7 leaves various questions open. Let us mention two of them. Once a homo-
geneous electric field is not perpendicular to the waveguide outside a compact a
variety of Stark effect situations can occur which are worth exploration. Another
problem concerns magnetic waveguides: one can ask whether a strong enough mag-
netic field can destroy the geometrically induced bound states.

While for squeezed Neumann networks we have a prescription which allows us to
approximate any self-adjoint vertex coupling, the Dirichlet case is less well under-
stood. We know that some nontrivial couplings can be obtained using threshold
resonances, however, it is not clear how far one can extend the approximation proce-
dure in this case. And nothing is known about the related problem of strong-coupling
limit for leaky graphs with nontrivial branchings.

And this, of course, is not all ...
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